
HAL Id: tel-01665129
https://theses.hal.science/tel-01665129

Submitted on 15 Dec 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Algorithms and Software for Decision Support in Design
of Assembly and Transfer Lines

Sergey Malyutin

To cite this version:
Sergey Malyutin. Algorithms and Software for Decision Support in Design of Assembly and Transfer
Lines. Other. Université de Lyon, 2016. English. �NNT : 2016LYSEM020�. �tel-01665129�

https://theses.hal.science/tel-01665129
https://hal.archives-ouvertes.fr

!

N°d’ordre NNT : 2016LYSEM020

THESE de DOCTORAT DE L’UNIVERSITE DE LYON
opérée au sein de

l’Ecole des Mines de Saint-Etienne

Ecole Doctorale N° 488
Sciences, Ingénierie, Santé

Spécialité de doctorat : génie industriel

Soutenue publiquement le 24/10/2016, par :
Sergey Malyutin

Algorithms and Software for Decision
Support in Design of Assembly and

Transfer Lines

Devant le jury composé de :
Prof. Farouk Yalaoui, Université de technologie de Troyes Rapporteur
Prof. Lyès Benyoucef, Aix-Marseille Université Rapporteur
Prof. Alain Quilliot, ISIMA, Clermont-Ferrand Membre de jury
Prof. Alexandre Dolgui, École des Mines de Nantes Directeur de thèse
Dr. Xavier Delorme, École des Mines de Saint-Étienne Co-directeur de thèse
Prof. Mikhail Kovalyov, Académie des Sciences de Biélorussie Co-directeur de thèse

ABSI Nabil CR Génie industriel CMP

AUGUSTO Vincent CR Image, Vision, Signal CIS

AVRIL Stéphane PR2 Mécanique et ingénierie CIS

BADEL Pierre MA(MDC) Mécanique et ingénierie CIS

BALBO Flavien PR2 Informatique FAYOL

BASSEREAU Jean-François PR Sciences et génie des matériaux SMS

BATTON-HUBERT Mireille PR2 Sciences et génie de l'environnement FAYOL

BEIGBEDER Michel MA(MDC) Informatique FAYOL

BLAYAC Sylvain MA(MDC) Microélectronique CMP

BOISSIER Olivier PR1 Informatique FAYOL

BONNEFOY Olivier MA(MDC) Génie des Procédés SPIN

BORBELY Andras MR(DR2) Sciences et génie des matériaux SMS

BOUCHER Xavier PR2 Génie Industriel FAYOL

BRODHAG Christian DR Sciences et génie de l'environnement FAYOL

BRUCHON Julien MA(MDC) Mécanique et ingénierie SMS

BURLAT Patrick PR1 Génie Industriel FAYOL

CHRISTIEN Frédéric PR Science et génie des matériaux SMS

DAUZERE-PERES Stéphane PR1 Génie Industriel CMP

DEBAYLE Johan CR Image Vision Signal CIS

DELAFOSSE David PR0 Sciences et génie des matériaux SMS

DELORME Xavier MA(MDC) Génie industriel FAYOL

DESRAYAUD Christophe PR1 Mécanique et ingénierie SMS

DJENIZIAN Thierry PR Science et génie des matériaux CMP

DOUCE Sandrine PR2 Sciences de gestion FAYOL

DRAPIER Sylvain PR1 Mécanique et ingénierie SMS

FAVERGEON Loïc CR Génie des Procédés SPIN

FEILLET Dominique PR1 Génie Industriel CMP

FOREST Valérie MA(MDC) Génie des Procédés CIS

FOURNIER Jacques Ingénieur chercheur CEA Microélectronique CMP

FRACZKIEWICZ Anna DR Sciences et génie des matériaux SMS

GARCIA Daniel MR(DR2) Génie des Procédés SPIN

GAVET Yann MA(MDC) Image Vision Signal CIS

GERINGER Jean MA(MDC) Sciences et génie des matériaux CIS

GOEURIOT Dominique DR Sciences et génie des matériaux SMS

GONDRAN Natacha MA(MDC) Sciences et génie de l'environnement FAYOL

GRAILLOT Didier DR Sciences et génie de l'environnement SPIN

GROSSEAU Philippe DR Génie des Procédés SPIN

GRUY Frédéric PR1 Génie des Procédés SPIN

GUY Bernard DR Sciences de la Terre SPIN

HAN Woo-Suck MR Mécanique et ingénierie SMS

HERRI Jean Michel PR1 Génie des Procédés SPIN

KERMOUCHE Guillaume PR2 Mécanique et Ingénierie SMS

KLOCKER Helmut DR Sciences et génie des matériaux SMS

LAFOREST Valérie MR(DR2) Sciences et génie de l'environnement FAYOL

LERICHE Rodolphe CR Mécanique et ingénierie FAYOL

MALLIARAS Georges PR1 Microélectronique CMP

MOLIMARD Jérôme PR2 Mécanique et ingénierie CIS

MOUTTE Jacques CR Génie des Procédés SPIN

NIKOLOVSKI Jean-Pierre Ingénieur de recherche Mécanique et ingénierie CMP

NORTIER Patrice PR1 SPIN

OWENS Rosin MA(MDC) Microélectronique CMP

PERES Véronique MR Génie des Procédés SPIN

PICARD Gauthier MA(MDC) Informatique FAYOL

PIJOLAT Christophe PR0 Génie des Procédés SPIN

PIJOLAT Michèle PR1 Génie des Procédés SPIN

PINOLI Jean Charles PR0 Image Vision Signal CIS

POURCHEZ Jérémy MR Génie des Procédés CIS

ROBISSON Bruno Ingénieur de recherche Microélectronique CMP

ROUSSY Agnès MA(MDC) Génie industriel CMP

ROUSTANT Olivier MA(MDC) Mathématiques appliquées FAYOL

STOLARZ Jacques CR Sciences et génie des matériaux SMS

TRIA Assia Ingénieur de recherche Microélectronique CMP

VALDIVIESO François PR2 Sciences et génie des matériaux SMS

VIRICELLE Jean Paul DR Génie des Procédés SPIN

WOLSKI Krzystof DR Sciences et génie des matériaux SMS

XIE Xiaolan PR1 Génie industriel CIS

YUGMA Gallian CR Génie industriel CMP

EMSE : Enseignants-chercheurs et chercheurs autorisés à diriger des thèses de doctorat (titulaires d’un doctorat d’État ou d’une HDR)

Spécialités doctorales Responsables :

SCIENCES ET GENIE DES MATERIAUX K. Wolski Directeur de recherche

MECANIQUE ET INGENIERIE S. Drapier, professeur

GENIE DES PROCEDES F. Gruy, Maître de recherche

SCIENCES DE LA TERRE B. Guy, Directeur de recherche

SCIENCES ET GENIE DE L’ENVIRONNEMENT D. Graillot, Directeur de recherche

Spécialités doctorales Responsables

MATHEMATIQUES APPLIQUEES O. Roustant, Maître-assistant

INFORMATIQUE O. Boissier, Professeur

IMAGE, VISION, SIGNAL JC. Pinoli, Professeur

GENIE INDUSTRIEL X. Delorme, Maître assistant

MICROELECTRONIQUE Ph. Lalevée, Professeur

M
is

e
 à

 j
o

u
r

:
 0

1
/0

2
/2

0
1

6

3

“Ideas are of themselves extraordinarily valuable, but an idea is just an

idea. Almost any can think up an idea. The thing that counts is developing

it into a practical product.”

Henry Ford, My life and work, 1923, NY

5

Acknowledgements
Firstly, I would like to express my sincere gratitude to my supervisor

Prof. Alexandre Dolgui for the continuous support of my Ph.D study. His

guidance helped me to solve both research problems and problems of ev-

eryday life. I could not have imagined having a better advisor and mentor

for my Ph.D study.

I place on record, my sincere thank you to my co-supervisor Dr. Xavier

Delorme, for the useful comments, remarks and engagement through the

learning process of this Ph.D thesis.

My sincere thanks also goes to my co-supervisor Prof. Mikhail Y. Ko-

valyov, who supported me during my stay in Belarus. I am extremely

thankful and indebted to him for sharing expertise, and sincere and valu-

able guidance.

Besides my advisors, I would like to thank the rest of my thesis com-

mittee: Prof. Farouk Yalaoui, Prof. Lyés Benyoucef, Prof. Alain Quilliot.

Furthermore, I would like to thank all the members of amePLM project

for providing me an opportunity to bring my insights to the project.

I thank my fellow labmates in for the stimulating discussions and all

the time we spent together.

Last but not the least, I would like to thank all my family. Special

thanks to my dad for the inspiration to start a thesis. And of course to

my wife for providing me with unfailing support throughout my years of

study and through the process of researching and writing this thesis.

7

Contents

Acknowledgements 5

General Introduction 13

1 Flow lines and related problems and solution methods 15
1.1 Introduction . 15
1.2 General problems of flow line design 18
1.3 Line balancing and workforce assignment problems and

their solution methods . 19
1.4 The issues of computer implementation and their resolution 25
1.5 Conclusions . 27

2 Workforce minimisation for a multi-product assembly line with
chain precedence relations 29
2.1 Introduction . 29
2.2 Product Sequencing Problem 33
2.3 MILP formulation . 36
2.4 Heuristic methods . 40

2.4.1 Heuristic Same-Station 40
2.4.2 Heuristic Sequential-Stations 40
2.4.3 Heuristic Sequential-Stations-Random 41
2.4.4 Heuristic Sequential-One-Traveling-Worker 41
2.4.5 Heuristic Min-Idle-One-Traveling-Worker 46
2.4.6 Heuristic Random-One-Traveling-Worker 46
2.4.7 Heuristic Additional-Workers 46
2.4.8 Heuristic Additional-Workers-Improved 48

2.5 Computer experiments . 48
2.6 Conclusions . 49

3 Workforce minimisation with an acyclic precedence graph 51
3.1 Introduction . 51
3.2 Heuristics . 54
3.3 Reduction to a series of feasibility problems 56
3.4 Relation tomulti-mode project scheduling andmultiproces-

sor scheduling. Computational complexity 60
3.5 Computational study . 63

3.5.1 Exact solution: maximum number of operations . . . 64
3.5.2 Quality of heuristics 68

3.6 Conclusions . 69

8

4 Bi-criteria Transfer Line Balancing Problem 73
4.1 Introduction . 73
4.2 Aproaches to construct a solution 74

4.2.1 Construction of a solution for a given sequence . . . 74
4.2.2 Local search on the number of machines 77
4.2.3 Combining lines . 78
4.2.4 Greedy Randomised Adaptive Search Procedure . . . 78

4.3 Computational Experiments 79
4.4 Conclusions . 80

5 amePLM project 83
5.1 Introduction . 83
5.2 Objectives of the project . 84
5.3 Intelligent Information Layer 85
5.4 3D workspace . 86
5.5 Developed optimisation module and its integration 87
5.6 Conclusions . 92

General Conclusions 95

A Computer experiment results for problem Feasible(Q) with 20
operations 97

B Computer experiment results for workforce assignment problem
with 170 operations 107

Bibliography 109

9

List of Figures

1.1 Main characteristics of different types of transfer lines 17

2.1 Repeated sub-sequence of evenly distributed engine models 31
2.2 Movement of workers between stations 32
2.3 Relation between sub-assembly and assembly stations 33
2.4 Best product sequence . 34
2.5 All product sequence with minimal bound of 24 workers . . . 35
2.6 Graphic representation of Iq subsets in case if r ≥ k and

I(q,r)\I
+
(q,k) = ∅ . 44

2.7 Graphic representation of Iq subsets in case if r < k and

I+(q,r)\I(q,r) = ∅ . 44

2.8 Screenshot of the created application 48
2.9 Comparison of the heuristics’ performance (number of

workers for each cycle) . 50

3.1 Precedence graph . 53
3.2 A feasible schedule. Dashed rectangles represent idle times

of workers. 53
3.3 Numbers of solved and unsolved instances of Feasible(LB)

in 1 hour for n = 20 . 65
3.4 Impact of parameter Idle on solution time of the problem

Feasible(3) . 66
3.5 Solution time of the problem Feasible(Q) for the real-life

instance with n = 28 aggregated operations 68
3.6 Heuristic solutions for the real-life instance with n = 170 . . 69
3.7 Heuristic solutions for the real-life instance with n = 28 ag-

gregated operations . 70

4.1 Analysis of the final Pareto front obtained 80

5.1 Structure of Intelligent Information Layer 86
5.2 Information Ecology within amePLM 87
5.3 Structure of the optimisation module 88
5.4 Optimisation module in Miramar environment 89
5.5 Results in text format . 90
5.6 Results in visual format . 90
5.7 Visualisation of individual tasks 91
5.8 Visualisation for production cycles 92

11

List of Tables

2.1 Available production time . 30
2.2 Annual line productivity with model shares 30
2.3 Number of workers for each subset of Iq 43

3.1 Processing times of operations 53
3.2 Complexity of special cases of MinNumber, in which a sin-

gle operation is assigned to each station 63
3.3 Scalability of the MILP model 66

A.1 Feasible(Q) with 20 operations 105

B.1 Heuristics . 108

13

General Introduction

In recent years, many organisations consider automation as a tool that can

help to reduce costs due to the optimisation of production process. But be-

fore starting automation they need to revise their existing processes, op-

timise them, make them more effective and after that begin automation.

This approach brought a success to Henry Ford when he designed his first

assembly line. He did not operate the term of assembly line and he did

not think about that. But he wanted to make assembly of the Model T car

more efficient and he found the way how to achieve it. His contributions

were: the use of interchangeable parts where every part can, without any

modification, be moved from any car to another; the use the conveyor,

where the machines are set up in the proper order for manufacturing. He

standardised the car. The idea for the Model T cars was that they are all

the same.

Nowadays, problems of automation, design and optimisation of pro-

duction systems become even more important and popular as a result of

the world wide competition and due to the rapid progress of manufactur-

ing technologies. Their efficient solutions are demanded. Many new char-

acteristics and properties of production systems are appearing. Therefore,

the industries require design and re-design of production lines and, hence,

new methods of mathematical modelling are needed.

These problems attract more and more attention from academic re-

searchers. Huge amount of journal papers and monographs exist in the

considered field. Numerous new articles are published each year.

In Chapter 1, an overview of assembly lines, transfer lines and flow

lines is given, and differences and similarities between them are outlined.

Many results are obtained in the considered field, however, many scientific

and practical problems are still unsolved. The aim of this thesis is to solve

two new important problems in this field, which were not studied before.

A broad survey of problems of flow line design, including those related to

the problems solved in this thesis, is given in Chapter 1.

In Chapter 2, a workforce minimisation problem for a semi-automated

multi-product sequential assembly line is studied. In this problem, several

14 List of Tables

identical workers can be assigned to the same station. A chain precedence

graph and task times, inversely proportional to the number of workers, are

considered. Algorithms and their computer implementations in modern

programming language are developed.

In Chapter 3, a problem, more general then the problem in Chap-

ter 2, with arbitrary acyclic precedence constrains and task times, non-

decreasing in the number of assigned workers is studied.

In Chapter 4, methods, algorithms and their computer implementation

for a multi-objective transfer line balancing problem, appearing in a single

product serial production line, are described.

In Chapter 5, an application of the results obtained in Chapter 2 to

solving real production problems related to the european project amePLM

is described. Objectives and results of the project amePLM, with a special

attention to the workforce optimisation problem are presented.

15

Chapter 1

Flow lines and related problems

and solution methods

1.1 Introduction

Manufacturers from different industries (like automotive production, elec-

tronics, etc.) are increasingly interested in the optimisation of their pro-

duction systems in order to remain competitive. The optimisation objec-

tives can be different. There can be a single criteria optimisation of to-

tal investment cost, production space, throughput, changes frequency or

number of workers. Multi-objective optimisation with several criteria of

production needs satisfaction are also relevant and useful.

Assembly line process is a manufacturing process in which some parts

or semi-products are combined to form a final product. Each half-finished

product moves in the same direction through sequentially arranged work-

stations. The stations are connected by a transporting system. The whole

system is a conveyor type. As soon as a workstation is released a new

half-finished product can enter it. The production cycle includes opera-

tions on all workstations related to the same product. If all half-finished

products move from the current workstation to the next one with the same

time step, then the production line is called paced. Otherwise, it is called

unpaced. The length of the mentioned time step for the paced line is called

cycle time, see Dolgui and Proth [34].

Historically, the first assembly lines were human operated. Lately,

steam and electric engined conveyors were employed to move parts from

one workstation to another. Nowadays, assembly lines are mainly auto-

mated or semi-automated, however, human operated lines still exist.

The design of assembly lines was improved by Henry Ford by in-

troducing moving platforms to the conveyor system that produced Ford

Model T, starting fromDecember 1, 1913 [50]. In this system, the chassis of

16 Chapter 1. Flow lines and related problems and solution methods

the vehicle was towed by a rope that moved it from one station to another

where workers were assembling car parts. By using this technology, each

car unit was produced every 93 minutes, with a total amount of around

two million units in a year.

During the next historical period assembly lines were evolving a lot.

In 1950s-1960s, robots were invented and intensively introduced into the

industrial process. Robots are still in use in modern assembly lines.

The Digital Revolution that started from the late 1950s to the late 1970s

changed mechanical and analogue electronic technology to digital elec-

tronics technology and had a positive effect on manufacturing processes.

An important event was the introduction of Computer Numeric Control

(CNC), see Dolgui and Proth [35]. CNC machining implies the use of

computers to control machine tools and operates them by precisely pro-

grammed commands encoded on a storage medium (computer command

module, usually located on the device), which is opposed to the manual

and mechanical control and operation. Numerical control allowed exe-

cution of advanced and precise operations, including parallel operations,

and production of larger quantities of complex products, see Dolgui et al.

[40].

There is a terminological difference between the notions of the assem-

bly line and transfer line. While the assembly line assumes assembly op-

erations as a major ones, transfer line can be intended for various opera-

tions including, for example, assembly operations, drilling holes, milling

of shapes, tapping, boring, painting, cleaning, etc. Transfer lines are usu-

ally paced and serial. They consist of a sequence of stations linked by an

automated material handling device. Each station is equipped with a spe-

cial tools which perform blocks of operations. All operations of a block are

usually executed simultaneously. When machining at the current station

is finished (all blocks of operations assigned to this machine have been

executed) the part is moved to the next station.

There are 3 principal types of automated transfer machining lines: ded-

icated transfer line (DTL), flexible transfer line (FTL) and reconfigurable

transfer line (RTL). Each of these lines has its own characteristics. Dedi-

cated transfer lines are used for the production of a single type product

in huge amounts (large quantity of identical products are manufactured

with the same sequence of operations). Therefore, DTL has high produc-

tivity (see Figure 1.1). Flexible transfer line can produce several types of

products, that have comparable dimensions and geometric characteristics.

1.1. Introduction 17

Frequent changes are specific for these lines (see Figure 1.1). In this thesis,

we focus on reconfigurable transfer lines used in reconfigurable manu-

facturing systems (RMS). The latter notion is introduced by Koren et al.

[64]. RMS allow easy changes of their physical configuration to cope with

market needs in both volume and product type. RTL combines positive

features of DTL and FTL by providing shorter cycle time and on the other

hand allows for multiple product types (see Figure 1.1).

FIGURE 1.1: Main characteristics of different types of

transfer lines

In the US literature, large series assembly lines and transfer lines are

sometimes considered as synonyms. Also, the flow line term is sometimes

used to generalise both assembly line and transfer lines terms. In this

thesis, assembly lines are considered as the lines intended for assembly

operations. And transfer lines are considered as the lines where various

machining operation are executed.

In section 1.2, general problems of the design of flow lines are dis-

cussed. In section 1.3, specific problems of flow line design are discussed

an their solution methods are reviewed.

18 Chapter 1. Flow lines and related problems and solution methods

1.2 General problems of flow line design

Designing a flow line is a complex decision problem, which requires many

important decisions affecting the manufacturing productivity and the cost

of the product. The real life flow line design problems can not be solved

by unique optimisation procedure or a single person. The design process

is usually split into several stages which are interrelated with their input

and output data, see Dolgui and Proth [35].

Some of the general flow line design problems are:

• product analysis and design (the result is basic operations required

to manufacture the final product);

• process planning (the result is a single production process selected

from a set of all alternative processes. The latter set can be repre-

sented by a collection of relations on the set of basic operations and

their physical, temporal and value characteristics);

• line configuration (the result is configuration type of the line, which

can be serial line, parallel lines, U-line, etc.);

• line balancing (the result is the assignment of operation to the work-

stations and their sequences);

• workforce assignment (the result is assignment of workers to the op-

erations that require workforce);

• part sequencing for multi-model lines (the result is a product se-

quence);

• equipment selection (the result is a single set of required equipment

from the set of alternative equipment);

• equipment dimensioning (the result is the capacities of workstations

and aggregated tools).

Some of the described problems are solved based on manufacturing

experience. On the other hand models, methods and software exist to

support solving these problems in specific environments. Since there ex-

ist many different production environments and product requirement is

it practically not possible to provide a mathematical model, method and

software for any specific problem of the flow line design. This thesis is

1.3. Line balancing and workforce assignment problems and their

solution methods
19

devoted to solving two new problems of line balancing and workforce as-

signment. An overview of line balancing and workforce assignment prob-

lems for which there exist mathematical algorithms and software tools is

given in section 1.3. The relation between these early studied problems

and problems in this thesis are outlined. Problems and solution methods

which are the topic of this thesis are presented in chapters 2, 3 and 4.

1.3 Line balancing and workforce assignment

problems and their solution methods

Optimisation for different types of production systems is considered in

this work. We start with the line balancing problem (assignment of oper-

ations to workstations), which is an important problem in the design of

flow lines. The optimisation of production systems is an important stage

for manufacturers to minimise costs and remain competitive. There are

different types of line balancing problems. The line balancing problem

was first studied for assembly lines. The name of Assembly Line Balanc-

ing problem (ALBP) and its first scientific research is attributed to Salve-

son [80] in 1955. ALBP was also considered by Baybars [11]. Later on the

name of this problem was changed to the simple line balancing problem

(SALBP). The goal of SALBP is the minimisation of the number of work-

stations for a given cycle time (SALBP-1) or the minimisation of cycle time

for a given number of workstations (SALBP-2). Various approximate and

exact methods were developed for this problem. One of the first proposed

heuristics was called Ranked Positional Weight (RPW). It was proposed

by Helgeson and Birnie [52] in 1961. The main idea of this heuristic is to

give priority for execution to the operations from the longest chains in the

precedence graph. Several years later, a ComputerMethod for Sequencing

Operations on the Assembly Lines (COMSOAL) was proposed by Arcus

[5] in 1966. The idea behind it is to generate a large set of feasible solutions,

and then to choose the best solution from them.

There are many extensions of SALBP. The Sequence-Dependent As-

sembly Line Balancing Problem (SDALBP) has a significant relevance to

practical to the real asembly lines and extends the basic problem by con-

sidering sequence-dependent operation times (see Scholl et al [82]). An-

other extension is the Parallel Assembly Line Balancing Problem (PALBP),

which considers a production system consisting of a number of parallel

20 Chapter 1. Flow lines and related problems and solution methods

assembly lines. A given product is manufactured on each line and a com-

mon cycle time is observed. This problem has been considered by Gökçen

et al. [56].

Another generalisation of SALBP is denoted as SALBP-G. It is obtained

by minimising the sum of idle times, subject to varying production rates

and numbers of stations (Scholl [81]). The U-Assembly Line Balancing

Problem (UALBP) considers the case of U-shaped assembly lines for a sin-

gle product. There, workers are assigned either side of the U, i.e., they

perform early and late operations in the production process Gökçen and

Aǧpak [57]. There exist several extensive surveys of the assembly line

balansing problems, see for example Boysen et al. [23] [22]. The paper

of Rekiek et al. [78] is a review of the assembly line design problems,

with a special attention paid to the line balancing and resource planning.

A survey of exact methods, heuristics and metaheuristics to solve these

problems is given.

Another type of line balancing problems is associated with the Transfer

Line Balancing Problem (TLBP). Inmost works that consider TLBP, the line

is composed of sequentially arrangedworkstations and a transport system

which ensures a constant flow of parts along the workstations. Each work-

station consists of several identical machines (machining centres). All ma-

chines have a set of machine-tools and can execute different processing

operations. Each operation is characterised by an operational time. Be-

sides the operation times, some of the problems consider unproductive

times between the operations (set-up times), Essafi et al. [46]. These set-

up times are needed to displace or change tools or to displace or rotate the

part. In such a line, a repeatable set of operations is executed in each pro-

duction cycle. The set of operations to be performed on the transfer line

is determined by the technological process for which the line is designed.

These machining lines produce large series of identical or similar items.

The solution of the TLBP answers the following questions:

• Which machining units are to be chosen to execute the required op-

erations?

• How many workstations are necessary?

• How should the machining units be assigned to the stations?

These questions are answered so the total equipment and production

costs are minimised for a given production cycle time.

1.3. Line balancing and workforce assignment problems and their

solution methods
21

In comparison with ALBP, the TLBP has a number of additional char-

acteristics such as parameterised operation times, parallel operation exe-

cution at the same workstations, and so on. The specificity of the ALBP is

that there are no restrictions other than precedence constraints. The TLBP

is considers different types of constraints on the set of operations such as:

• Precedence constraints define a partial order between the operations.

• Inclusion constraints define sets of operations such that all opera-

tions of the same set must be executed on the same workstation.

• Exclusion constraints define sets of operations such that all opera-

tions of the same set can not be executed on the same workstation,

but any proper subset of the same set can be executed on the same

worstation.

• Accessibility constraints specify that some sides of the part are only

accessible in certain positions of the part.

The additional characteristics of the TLBP do not allow the use of the

optimisation methods developed for the ALBP directly. The TLBP was

defined and studied in Dolgui et al. [38], where several exact, approxi-

mate and heuristic methods for solving TLBP were proposed. The most

significant methods for an exact resolution of TLBP are linear program-

ming (Belmokhtar et al [16]), dynamic programming (Dolgui et al [38]),

mixed integer approach (Dolgui et al [37], Essafi et al [47]) and branch

and bound procedures (Ihnatsenka et al [36]). Exact methods are useful

to better understand the problem, however, for large scale problems they

often require an unreasonable computation time. Contrarily, approximate

methods provide fast solution but they do not guarantee solution opti-

mality. Additionally, heuristic algorithms are often easier to implement

than the optimal procedures. Several approximate methods were devel-

oped for large scale problems: Priority Rules heuristics (Finel et al. [49]), a

Heuristic Multi-Start Decomposition approach (Guschinskaya et al. [58])

and Ant Colony Optimisation algorithm (Essafi et al [48]), metaheuristics

such as GRASP method and a Genetic Algorithm (Eremeev et al [41]). Es-

safi et al. [46] proposed heuristic based on the GRASP method combined

with path relinking and MIP approach to select sequences of operations

on workstations. In the paper of Borisovsky et al. [20] suggested a Genetic

Algorithm based on the permutation representation of solutions. An ad-

ditional local improvement step is introduced, which uses a special MIP

22 Chapter 1. Flow lines and related problems and solution methods

model to determine an optimal composition of workstations if the order

of operations is fixed.

Workforce assignment is another important problem arising in flow

line design. In this problem, there is a flow line that produces various

products and consists of several assembly stations. Each product or semi-

product requires a specific set of operations to be performed by workers.

The assignment of operations to the stations is known. Operations as-

signed to different stations can be performed in any order and those as-

signed to the same station should be performed according to the given

precedence relations. No worker can perform more than one operation

at a time. It is assumed that workers can switch between the stations at

zero time. The problem is to assign workers to operations so that the to-

tal number of workers is minimised, provided that a given cycle time is

satisfied.

Literature related to the optimal workforce assignment can be parti-

tioned into several categories. The first category includes publications on

the classic assignment problems of combinatorial optimisation, in which

there is a cost of assigning worker i to operation j and the objective is to

match workers with the operations so that the total cost is minimised. The

most important results of this category are described in the monograph of

Burkard et al. [24]. The second category can be characterised by the key-

words timetabling, rostering and shift scheduling. Example studies of this

type can be found in Burke and Trick [25] and Jiang et al. [51]. The third

category is the resource constrained project scheduling. A good source of in-

formation on this category is the book of Artigues et al. [6].

There exists a vast body of the literature on workforce assignment to

operations of a production line. Vidic [90] studies the effect of the assign-

ment of a fully cross-trained workforce on the throughput of a serial pro-

duction line. She focuses on dynamic work sharing and fixed workforce

assignment and suggests two models. One model assumes that work-

ers’ performance is determined by their steady-state productivity rate and

the other model assumes that workers’ productivity rates depend of their

learning and forgetting characteristics. Heuristic methods are developed.

A recent review and classification of the literature related to workforce

planning problems with skills is presented by De Bruecker et al. [31].

Corominas et al. [30] study a problem in which skilled permanent and un-

skilled temporary workers have to be assigned to an assembly line. Skilled

workers require less time to finish an operation (task) than unskilled ones,

1.3. Line balancing and workforce assignment problems and their

solution methods
23

and unskilled workers must work alongside at least one skilled worker.

The criterion is to minimise the number of unskilled workers. The authors

suggest a binary linear programming formulation for this problem.

In the paper of Blum and Miralles [18] a generalisation of SALBP-

2 which is called the Assembly Line Worker Assignment and Balancing

Problem (ALWABP-2) with the objective of minimising the cycle time is

considered. The difference with the classic SALBP-2 is that operations

must be assigned to workers,and workers to workstations.Task processing

times are worker specific, and workers might even be incompatible with

certain tasks. Authors employ beam search heuristics for that problem.

Araujo et al. [4] consider Assembly Line Worker Assignment and Bal-

ancing Problem (ALWABP) with non-identical workers. Two cases of this

problem are studied: parallel workstations (one worker is assigned to

the same station) and collaborative workstations (several workers are as-

signed to the same station).

Borba and Ritt [19] propose a MIP model for ALWABP-2, a heuristic

algorithm based on a beam search, and a task oriented branch-and-bound

procedure for the same problem with the non-identical workers.

An extension of the ALWABP to minimise the expected cycle time un-

der uncertain worker availability is proposed by Ritt et al. [77].

Moreira and Costa [73] studies ALWABP problem for non-identical

workers and propose hybrid algorithm that uses a Mixed Integer Pro-

gramming (MIP) to select appropriate schedules from a pool of heuristi-

cally constructed solutions. A local search based on MIP neighbourhoods

is used as a post-optimisation method.

Iterative Genetic Algorithm (IGA) for ALWABP-2 with the cycle time

minimisation criterion was developed by Mutlu et al. [74]. In the IGA,

three search approaches are adopted in order to obtain search diversity

and efficiency: a modified bisection search, a Genetic Algorithm and Iter-

ated Local Search.

Vilá and Pereira [91] propose an exact enumeration procedure for the

same problem. The new lower bounds allowed the authors to improve

results for a benchmark set of instances.

A multi-product semi-automated assembly line from automotive in-

dustry with temporary workers and with non-neglected setup-times was

considered by Giard and Jeune [55]. Multi-objective problem of optimisa-

tion workers cost and setup cost simultaneously was solved by employing

exact methods that allow obtain optimal solutions for instances with up to

24 Chapter 1. Flow lines and related problems and solution methods

15 items and satisfactory feasible solutions for some of the larger problems

within a reasonable time limit.

A new assembly line problem with qualification requirements of oper-

ations and qualification levels of workers is introduced by Sungur and

Yavuz [85]. In the hierarchical workforce structure, a lower qualified

worker can be substituted by a higher qualified one (but not vice versa)

with a certain cost. The objective is to minimise the total cost, while re-

specting a given cycle time. An ILP model is used to solve this problem.

The part supply scheduling problem in line-integrated supermarkets

with the workforce minimisation criterion and no-stockouts constraint is

studied by Boysen and Emde [21]. The authors use a heuristic decompo-

sition approach to solve this problem and draw important conclusions for

managers.

A scheduling problem with the criterion of workforce minimisation is

treated by Camm et al. [26]. The authors deal with a paced line com-

posed of identical parallel workstations. The number of workers needed

at a workstation depends on the job processed and it is fixed. A two-stage

approach is applied. The first stage is a MILP model that determines start-

ing times. The second stage is a polynomial time procedure which assigns

jobs to specific assembly workstations.

There is a stream of publications, in which workforce requirements of

the operations are assumed to be fixed, there is one operation for any prod-

uct on each station of the transfer line, and the problem is to find a cyclic

sequence of products such that the maximum number of workers needed

at any time is minimised. The relevant results can be found in Akagi et al.

[3], Wilson [94], Lutz and Davis [70], Lee and Vairaktarakis [67], Vairak-

tarakis and Winch [89], Kouvelis and Karabati [65], Vairaktarakis et al.

[88], Vairaktarakis and Cai [87] and Kovalyov et al. [63].

In this thesis, we used the ideas of the GRASP approaches for single ob-

jective TLBP, which are given provided in Eremeev et al. [41] Essafi et al.

[46] Borisovsky et al.[20]. The novelty of the results in this thesis is the ap-

plication of the earlier methods for the multi-objective TLBP with the goal

to minimise the total investment cost and the cycle time. Our approaches

and their combination in a metaheuristic are described in Chapter 4.

Problems with non-identical workers have been widely studied in the

literature. This thesis considers problems with identical workers and an

assumption that operation time depends on the number of workers as-

signed to this operation. Two different problems are studied in Chapters 2

1.4. The issues of computer implementation and their resolution 25

and 3. The problem in Chapter 2 assumes that the precedence contain have

the form of chains and that the operation time is inversely proportional to

the number of workers. The problem in Chapter 3 is more general. ,Is

considered arbitrary precedence constrains and arbitrary non decreasing

function of operation times depending on the number of workers. Sev-

eral exact and approximatemethods are proposed to solve these problems.

They will be described in more details in Chapters 2 and 3.

1.4 The issues of computer implementation and

their resolution

Nowadays, solutions of real production problems can not be obtained

without computers. A proper efficient computer implementation of math-

ematical models and algorithms is an important issue, because, solution

quality and the required computer resources (running time and memory)

are the characteristics that are the most important for the customers. Im-

plementation includes selection and realisation of computer science sub-

routines such as sorting, searching in data structures, basic graph algo-

rithms and so on, which are represented as blocks of commands in a par-

ticular programming language. The efficiency of the implementation de-

pends on the efficiency of all the sub-routings. Which is also confirmed by

Cormen et al. [29]. There can be an inefficient implementation of a theoret-

ically efficient algorithm and an efficient implementation of a theoretically

inefficient algorithm for the same problem, which can led to the incorrect

interpretations when comparing experimental results the two mentioned

algorithms.

In the paper of Segal and Morris [83], a difference between scientific

and commercial software development is outlined. They stress that, due

to the insufficient scientific knowledge of the average software engineers,

the scientific researchers often implement their algorithms themselves.

Paper of Hannay et al. [59] presents the results of a an online sur-

vey conducted in October-December 2008, which received almost 2000

responses. Main conclusions of their paper are that 1) the knowledge

required to develop scientific software is primarily acquired from peers

and thought self-study, rather than from formal education and training;

2) while many scientists believe that software testing is important, a rare

26 Chapter 1. Flow lines and related problems and solution methods

number of them know the principals and organisation of adequate com-

puter testing.

Most of mathematical models and algorithms are published and pass

through a review process. However, their computer implementations

are usually not reviewed, because they are usually not a part of the ar-

ticle. Thus the readers can only rely on the statements drawn by authors.

Lessons learned during implementations are usually not published as the

results, and therefore, they are often not shared, see Carver and Epperly

[27].

Ku and Beck [66] compare performance of several MIP models imple-

mented by commercial solvers CPLEX and GUROBI and non-commercial

solver SCIP for a scheduling problem. In their article, they provide perfor-

mance results for configurations with 1 and 8 processor threads and var-

ious solver parameters. Even though they show that parameters tuning

may give performance improvements, they do not describe which param-

eters were tuned and how.

Almost all scientific researchers make computer implementations of

their algorithms in order to solve benchmark or real life problems. Re-

sults of those implementations are usually included in the papers, how-

ever, computer programming techniques used to make the implementa-

tions efficient are usually omitted from the papers and not available to

other researchers. In the filed of line balancing and workforce assignment

we found no publication in which a technic to improve computer imple-

mentation of a solution algorithm is described.

A set of best practices for scientific software development is described

in the paper of Wilson et al. [95]. Best practices served to improve re-

search productivity and the reliability and maintainability of the research

software. Some of the best practices are: turning bugs into the test cases;

using version control system; making incremental changes; using peer

code reviews and tracking tools; re-using a verified code segment in-

stead of rewriting it; using build tools to automate workflows; writing

human readable code; making names consistent, distinctive and mean-

ingful; making code style and formatting consistent.

Merelo et al [71] is an example of a papers where computer implemen-

tation of Evolutionary Algorithms is improved due to the application of

best programming practices and usage of profiler program to determine

bottlenecks.

In this thesis, an attention is paid not only to the development of the

1.5. Conclusions 27

algorithms, but also to their proper and efficient computer implementa-

tions. Our software use best know practices, some of which are described

by Wilson et al. [95].

1.5 Conclusions

This chapter gives basic definitions and discusses the terms used in this

thesis. Different types of production lines are described in Section 1.1.

Section 1.2 provides an overview of flow line design problems.

Section 1.3 surveys existingmethods for the classic line balancing prob-

lem SALBP. Extensions of the classical problem by introducing additional

characteristics and constraints are reviewed. A special attention is paid to

the transfer line balancing problem andworkforce assignment problem. A

survey of the solution methods for these problems is provided. The prob-

lems studied in this thesis are introduced and similarity and difference of

these problems with early studied problems are remarked.

The issues of computer implementation of mathematical models and

algorithms are discussed in Section 1.4. The lack of descriptions of pro-

gramming techniques to improve computer implementations of scientific

algorithms in the filed of line balancing and workforce assignment is out-

lined. General best practices for scientific computer program development

are mentioned.

29

Chapter 2

Workforce minimisation for a

multi-product assembly line with

chain precedence relations

2.1 Introduction

The problem for a serial multi product assembly line with the objective of

minimising the number of workers is studied. This problem appeared in

a real life industrial situation. There is a paced unidirectional assembly line

that manufactures different types of products, which are three automobile

engine models V12, V16 and V20. A set of assembly stations and a set of sub-

assembly stations of this line are given, at which required operations on the

engines are performed in the predetermined sequences. The stations are

connected by a unidirectional conveyor. Products enter the line in a given

sequence one after another, and each product visits assembly stations in

the same order. At the same station, the same operations are performed

for any engine.

In a given production cycle, operations of different stations are per-

formed in parallel, and operations of the same station are performed se-

quentially.

Each sub-assembly station is associated with a unique assembly sta-

tion. An assembly station may have several sub-assembly stations associ-

ated with it. In each production cycle, operations of an assembly station

are performed on the product that is assembled at this station in this cy-

cle, while operations of sub-assembly stations in this cycle are linked with

the product that will arrive to the corresponding assembly station in the

next cycle. In one production cycle all operations of sub-assembly stations

linked to a certain assembly station must be performed. Thus, if there

are several sub-assembly stations associated with an assembly station they

30
Chapter 2. Workforce minimisation for a multi-product assembly line

with chain precedence relations

can be considered as a single sub-assembly station. The sequence of the

assembly stations to be visited by the semi-finished engines, the sequences

of operations to be performed at the assembly and sub-assembly stations

are the same for each engine model. However, the operation processing

times depend on the engine model. For the same number of workers as-

signed to an operation, some operations for V20 engine take longer time

than those for V16 engine, and some operations for V16 engine take more

time than those for V12 engine, while some operations have the same pro-

cessing times for all engine models if the number of assigned workers is

the same.

The assembly line is paced. Therefore, the sum of operation processing

times at a station in each cycle must not exceed a given cycle time. The

cycle time is determined as the ratio of the total production time available

in a year to the planned annual productivity.

The information on the available production time is given in Table 2.1.

TABLE 2.1: Available production time

Days per year 230
Shifts per day 2
Shift duration, hours 8

The annual line productivity and shares of demand for each engine

model are determined based on the customers demand analysis. They are

given in Table 2.2.

TABLE 2.2: Annual line productivity with model shares

Annual productivity (engines/year) 1450
V12 share 75%
V16 share 20%
V20 share 5%

Thus, the cycle time in hours is calculated as follows:

Cycle time =
⌊230 [days/year]× 2 [shifts/day]× 8 [hours/shift]

1450 [engines/year]

⌋

=

= 2.5 [hours/engine]

2.1. Introduction 31

The manufacturer wants to supply the consequent stages of the auto-

mobile production with the engines of different types evenly. Due to this

requirement, the sequence of model types to enter the line is designed,

which counts for the fractions of engine models in the total annual pro-

duction. These fractions are

Fraction V 12 = 75% =
3

4
=

15

20

Fraction V 16 = 20% =
1

5
=

4

20

Fraction V 20 = 5% =
1

20

The sequence of evenly distributed engine models adopted by the

manufacturer is a repetition of the sub-sequence of 20 models given in

Figure 2.1.

FIGURE 2.1: Repeated sub-sequence of evenly distributed
engine models

Operations are performed by identical workers of a given set. Any

worker can perform any operation, but their number assigned to the same

operation is upper bounded. If a worker is assigned to an operation,

he/she is fully occupied by this operation from its start time till comple-

tion. The workers can switch between operations. The switching time is

assumed to be zero. If a lack of workforce occurs at some station, then

workers from the stations with a surplus of the workforce can move there

to help completing operations in time. An example of such a situation is

illustrated in Figure 2.2.

The processing time of an operation depends on the number of workers

assigned to this operation and the product type. The values of processing

times are given for each operation, each possible number of workers and

each product type. For the studied industrial case, the processing time of

an operation in a given production cycle is inversely proportional to the

number of workers assigned to it. Let operation i require p time units if

performed by one worker. In a given cycle, denote by pim the processing

time of operation i if it is performed by m workers. Then pim = p

m
. No

32
Chapter 2. Workforce minimisation for a multi-product assembly line

with chain precedence relations

FIGURE 2.2: Movement of workers between stations

more than four workers can be assigned to the same operation in the real

life situation.

The line cycle time is assumed to be given such that the total processing

time of all operations at any station in any cycle should not exceed this

time.

One production cycle is considered. For this cycle, the assignment

of products to the assembly and sub-assembly stations is assumed to be

given. Therefore, operation processing time may be assumed not to de-

pend on the product type. The problem is to determine an assignment of

workers to operations such that the total number of workers is minimised

and the line cycle time is not exceeded. We denote this problem as P .

The distance between any two consequent stations is at most 11meters,

and any worker can travel between them in less than 10 seconds, which

is only 0.09% of the cycle time. Therefore, we simplify the problem by

assuming that any worker can move from one operation to another at zero

time.

The sub-assembly stations operate in a Just-In-Sequence mode, accord-

ing to which operations of a sub-assembly station must be completed just

before the arrival of a specific engine model to the corresponding assem-

bly station. In order to do this, a sub-system, which is a part of the engine

2.2. Product Sequencing Problem 33

prepared at the sub-assembly stations, must be finished in a cycle that im-

mediately precedes the cycle, in which the engine model will be treated at

the corresponding assembly station. In Figure 2.3, engine V20 arrives to

the assembly station A.S.01 and, at the same time, the sub-assembly sta-

tions SA.S.2.1 and SA.S.2.2 start to prepare a sub-system for engine V20,

so that it will be mounted on the engine in the next cycle at the assembly

station A.S.2.

FIGURE 2.3: Relation between sub-assembly and assembly
stations

There are 170 operations in total to be executed at 11 assembly and 17

sub-assembly stations.

Since the sequence of enginemodels entering the line is a repetition of a

sub-sequence that consists of 20 models, there are 20 distinct cycles which

differ by the assignment of engine models to the assembly stations. For

each of these 20 cycles, the problem is to find an assignment of workers

to the 170 operations such that the total number of workers is minimised

and the cycle time of 2.5 hours is satisfied.

2.2 Product Sequencing Problem

Taking into account the input data, we can assume without loss of gener-

ality that if the variant V20 is placed first at the line, we only need to find

the place for 4 products of type V16 and 15 products of type V12. As it is

34
Chapter 2. Workforce minimisation for a multi-product assembly line

with chain precedence relations

known from combinatorics, the total amount of such arrangements can be

computed as follows:

(

4

19

)

=

(

15

19

)

=
19 !

4 ! ∗ 15 !
= 3876. (2.1)

One can see that is not large amount of possible sequences, which

means that we can apply an exhaustive search to find the best sequence

of variants.

While constructing all possible sequences, those with the minimal the-

oretical number of workers are selected. This number Nmin is calculated

by dividing the maximal total working time for the sequence Ttotal by cycle

time.

Nmin =

⌈

Ttotal

Tcycle

⌉

=

⌈

Ttotal

150min

⌉

. (2.2)

After applying the exhaustive search the following optimal sequence

shown on Figure 2.4 was obtained:

FIGURE 2.4: Best product sequence

With such a sequence the most demanding configuration requires 59 h

42 min, which means that the minimal bound for the number of workers

is

Nmin =

⌈

Ttotal

Tcycle

⌉

=

⌈

59h42min

150min

⌉

= 24. (2.3)

However, one can see that the sequences with workforce demand for

all configurations not exceeding 60 hours will also provide the same min-

imal bound of 24 workers. Therefore, all sequences (Figure 2.5) providing

the same minimal bound are processed in next step.

2.2. Product Sequencing Problem 35

FIGURE 2.5: All product sequence with minimal bound of

24 workers

Because of discrete tasks times, any of these 10 sequences may provide

the optimal line configurationwith theminimal number of workers. How-

ever, if configuration with 24 workers is not feasible, all the sequences pro-

viding the lower bound of 25 workers can be examined during the process

of searching optimal workforce assignment.

Note that even a slight increase in the number of product types or

changing the number of each product type results in a dramatically in-

crease of the number of possible product sequences, which leads to the

36
Chapter 2. Workforce minimisation for a multi-product assembly line

with chain precedence relations

impossibility of applying an exhaustive search procedure.

2.3 MILP formulation

A Mixed-Integer Linear Programming (MILP) model was developed for the

workers assignment problem. In the industrial case, the model is the same

for each of the 20 cycles determined by the entering sequence of evenly

distributed engine types, but the input data can be different for different

cycles. The following notation is used.

GIVEN SETS:

• W - the set of available workers;

• I - the set of operations;

• L - the set of last operations at all stations;

• O - the set of ordered pairs of operations (i, j) such that operation i

precedes operation j on their station, not necessarily immediately;

• O′ - the set of ordered pairs of operations (i, j) such that operation i

immediately precedes operation j on their station;

• D - the set of unordered pairs of operations {i, j} such that they are

assigned to different stations.

INDICES:

• i or j - an operation;

• w - a worker;

• m - the number of workers assigned to an operation.

GIVEN PARAMETERS:

• c - the cycle time;

• wmax - the cardinality of the set W of available workers, wmax = |W |;

• mmax - an upper bound on the number of workers assigned to the

same operation, mmax ≤ wmax;

2.3. MILP formulation 37

• pim - the processing time of operation i, if it is performed bymwork-

ers, i ∈ I , m = 1, . . . ,mmax.

DECISION VARIABLES:

• Si - the start time of operation i;

• xiw= {1, if i is the first operation performed by worker w, 0 other-

wise};

• xijw = {1, if worker w performs operations i and j, and no other op-

eration between them, 0 otherwise};

• uij = {1, if operations i and j are performed by the same any worker,

and this worker performs no other operation between them, 0 other-

wise};

• yim = {1, if operation i is performed by m workers, 0 otherwise};

• zw = {1, if worker w is used, 0 otherwise}.

Let M be a sufficiently large positive number. Our MILP model is the

following.

min
wmax
∑

w=1

zw,

38
Chapter 2. Workforce minimisation for a multi-product assembly line

with chain precedence relations

subject to

Si +
mmax
∑

m=1

pimyim ≤ C, i ∈ L, (2.4)

Sj −
mmax
∑

m=1

pimyim ≥ Si, (i, j) ∈ O′, (2.5)

uij + uji ≤ 1, i, j ∈ I, i 6= j, (2.6)

xijw + xjiw ≤ 1, i, j ∈ I, i 6= j, w ∈ W, (2.7)
∑

i∈I

xijw ≤ 1, j ∈ I, w ∈ W, (2.8)

∑

i∈I

xjiw ≤ 1, j ∈ I, w ∈ W, (2.9)

uji = 0, (i, j) ∈ O, (2.10)

Sj − Si ≥
mmax
∑

m=1

pimyim −M(1− uij), {i, j} ∈ D, (2.11)

wmax
∑

w=1

xijw ≥ uij, {i, j} ∈ D, (2.12)

wmax
∑

w=1

xijw ≤ wmaxuij, {i, j} ∈ D, (2.13)

mmax
∑

m=1

yim = 1, i ∈ I, (2.14)

∑

i∈I

xiw = zw, w ∈ W, (2.15)

xiw +
∑

j∈I,j 6=i

xjiw ≥
∑

j∈I,j 6=i

xijw, i ∈ I, w ∈ W, (2.16)

mmax
∑

m=1

myim =
wmax
∑

w=1

xiw +
∑

j∈I,j 6=i

wmax
∑

w=1

xjiw, i ∈ I, (2.17)

zw ≥ xijw, w ∈ W, i, j ∈ I, (2.18)

zw ≥ zw+1, w ∈ W, w 6= wmax, (2.19)

xiw, xijw, uij, yim, yw ∈ {0, 1}, i, j ∈ I, w ∈ W, m = 1, . . . ,mmax, (2.20)

Si ≥ 0, i ∈ I. (2.21)

The constraints (2.4) ensure that the cycle time limit is not exceeded.

These constraints can be extended by considering i ∈ I if it will accelerate

the solver.

The constraints (2.5) guarantee that if operation i immediately precedes

2.3. MILP formulation 39

operation j on a station, then it completes before or at the start of opera-

tion j. These constraints can be extended by considering i ∈ O if it will

accelerate the solver.

The constraints (2.6) exclude the case that uij = 1 and uji = 1, and

the constraints (2.7) exclude the case that xijw = 1 and xjiw = 1 for any

operations i and j and any worker w.

By the constraints (2.8) and (2.9), anyworker can switch to an operation

from at most one other operation, and he can switch from an operation to

at most one operation.

The constraints (2.10) state that no worker can perform operation j be-

fore operation i, if i precedes j on a station.

The constraints (2.11)-(2.13) consider operations i and j that are on dif-

ferent stations. The constraints (2.11) assure that if i and j are decided to

be performed by the same worker in the order (i, j) with no other opera-

tion between them, i.e., uij = 1, then the start time of operation i plus its

processing time does not exceed the start time of operation j.

The constraints (2.12) state that, if i and j are decided to be performed

by the same worker in the order (i, j) with no other operation between

them, i.e., uij = 1, then at least one worker should be this worker.

The constraints (2.13) require that, if i and j are decided not to be per-

formed by the same worker in the order (i, j) with no other operation be-

tween them, i.e., uij = 0, then no worker can perform these operations in

this order with no operation between them.

The constraints (2.14) ensure that the number of workers assigned to

an operation is unique.

The constraints (2.15) state that, if a worker is chosen, then he should be

assigned his first operation, and, if he is not chosen, then no first operation

should be assigned to him.

The constraints (2.16) require that if some worker performs opera-

tions i and j in the order (i, j) with no other operation between them

(
∑

j∈I,j 6=i xijw = 1 for a worker w), then either i is its first operation

(xiw = 1) or he performs some other operation immediately before op-

eration i (
∑

j∈I,j 6=i xjiw = 1).

On the left hand side of the constraints (2.17), there is the number of

workers assigned to operation i. On the right hand side, the first sum is

the number of workers for whom i is the first operation. The double sum

counts for the number of workers that switch to i immediately from some

other operations. It is required that the values in both sides are equal.

40
Chapter 2. Workforce minimisation for a multi-product assembly line

with chain precedence relations

The constraints (2.18) state that if worker w is not used, i.e., zw = 0,

then there is no operations i and j such that this worker switches to j

immediately after i.

The constraints (2.19) break the symmetry by requiring that only con-

secutively numbered workers are used.

2.4 Heuristic methods

In order to solve problem P described in section 2.1, we developed sev-

eral heuristics. The first heuristic is simple. It determines the number of

workers for each station. They perform every task of their station and do

not move to another station. This heuristic gives the same solution as the

solution proposed by our industrial partner.

Let s be the number of stations and let Iq be the given set of tasks of

station q, q = 1, . . . , s. Let mq denote the number of workers assigned to

station q, which has to be determined, mq = 1, . . . ,mmax.

2.4.1 Heuristic Same-Station

• Step 1 Calculate mq = min {m|
∑

j∈Iq
pj(m) ≤ C}, q = 1, . . . , s. Note

that, if
∑

j∈N pj(mmax) ≤ C}, then the bisection search can be em-

ployed to find the above minimum in polynomial time for any non-

increasing function pj(m). In each of O(log2 mmax) iterations of the

bisection search, the relation
∑

j∈I pj(m) ≤ C needs to be verified

for a trial value m ∈ {1, . . . ,mmax}.

• Step 2 Output a solution, in which mq consecutively indexed work-

ers perform tasks required for station q and these tasks only, q =

1, . . . , s. If mq < mmax for a q, 1 ≤ q ≤ s, then the solution found is

unfeasible. Otherwise, it is feasible with the total number of workers

W (1) =
∑s

q=1 mq.

This algorithm can be applied with any functions pj(m). For the case

pj(m) =
pj
m
, with this algorithm we obtain mq equal to ⌈

∑
j∈Iq

pj

c
⌉.

2.4.2 Heuristic Sequential-Stations

Our second heuristic, denoted as Sequential-Stations, is also applied for

mq ≤ mmax, q = 1, 2, . . . , s. The heuristic considers stations in a certain

2.4. Heuristic methods 41

sequence. Let the sequence be 1, 2, . . . , s. The heuristic proposes to as-

sign the same arbitrary mmax workers to the stations 1, 2, . . . , qmax, where

qmax ≤ s − 1, so that the workers serve these stations in the indicated or-

der from time zero until the total processing time of the last task of station

qmax does not exceed the takt time C. Then the assigned workers and the

stations 1, . . . , qmax are removed from the problem input, and the process

is repeated. If qmax = s, then m0 < mmax workers can be assigned to the

last stations.

• Step 1 Calculate mq = min
{

m|
∑

j∈Iq
pj(m) ≤ C

}

, 1 = 1, 2, . . . s. If

mq > mmax for a q, 1 ≤ q ≤ s, then stop: no feasible solution exists.

• Step 2 Re-number stations 1, 2, . . . , s in a certain order, for example,

such that the sub-assembly stations of station 1 go first, then station

1, then the sub-assembly stations of station 2, station 2, and so on.

Set a = 1. Initialize the total number of assigned workers W (2) = 0.

• Step 3 Determine qmax = maxa≤q≤s
{

q|
∑q

h=a

∑

j∈Ih
pj(mmax) ≤ C

}

.

If qmax = s, then go to Step 4. If qmax ≤ s − 1, then perform the

following computations. Assign arbitrarymmax workers from the set

W of available workers to each task of the stations a, a + 1, . . . , qmax

so that they serve these stations in the indicated order. Remove the

assigned workers from the set W . Re-set a := qmax + 1 and W (2) :=

W (2) +mmax. Repeat Step 3.

• Step 4 Determine m0 = min1≤m≤mmax

{

m|
∑s

h=a

∑

j∈Ih
pj(m) ≤ C

}

Assign arbitrarym0 workers to each task of the stations a, a+1, . . . , s

so that they serve these stations in the indicated order. Re-setW (2) :=

W (2) +m0. Output the final solution and its value W (2)

2.4.3 Heuristic Sequential-Stations-Random

The third heuristic, denoted as Sequential-Stations-Random, differs from

the heuristic Sequential-Stations in that the sequence of stations is gener-

ated at random

2.4.4 Heuristic Sequential-One-Traveling-Worker

Let s be the number of stations and let Iq be the given set of tasks required

at station q, q = 1, . . . , s. Let mq denote the number of workers assigned

42
Chapter 2. Workforce minimisation for a multi-product assembly line

with chain precedence relations

to station q, which has to be determined, q = 1, . . . ,mmax, where i or j is a

task, i, j ∈ I .

If the number of workersmq, performing tasks of station q with a given

cycle time C, is constant, then we can evaluate the minimum number of

workers mq required to perform the given set of tasks Iq at station q for a

given tact time C:

mq = min {m|
∑

j∈Iq

pj(m) ≤ C}, q = 1, . . . , s (2.22)

Now we consider the case when a part of the tasks of set Iq is per-

formed by mq workers and a part of the tasks of set Iq is performed by

mq − 1 workers.

Let I−(q,k) be first k tasks of station q and I+(q,k) = Iq\I
−
(q,k).

We can calculate:

kq = min











k|
∑

j∈I−
q,k

pj(mq) +
∑

j∈I+
q,k

pj(mq − 1) ≤ C











(2.23)

Note that I−q,k 6= ∅ and I+q,k can be empty set.

If I+q,k 6= ∅, then tasks of set I−q,kq are performed by mq workers and

tasks of set I+q,kq are performed by mq − 1 workers. In this situation, one

worker at station q is free starting from the time:

Sq =
∑

j∈I−
q,k

pj(mq) (2.24)

This worker can perform tasks of set Iq+1,r at station q + 1. We assume

that all tasks assigned to a particular station are denoted sequentially and

first task performed at a station has index 1, so:

Iq+1,r = {j ∈ Iq+1, j ≥ r} (2.25)

If all the workers initially assigned to the station q + 1 remain at this

station until the end of takt time, we can calculate r using the following

formula:

r = min







r|
∑

j∈Iq+1,j<r

pj(mq+1) ≥ Sq







(2.26)

2.4. Heuristic methods 43

However we should note that this formula does not take into account

that, due to the set I+q+1,k , one of the workers at station q + 1 does not

necessarily perform all tasks from set I∗ = {j|j ∈ Iq+1, j < r}, because of

his/her movement to station q + 2. We will provide the exact value for r

after clarifying the partition of all tasks of station q + 1 into subsets that

are performed by different numbers of workers.

Now we need to calculate the minimum number of workers mq+1 re-

quired to perform a given set of tasks Iq+1Iq at station q + 1, taking into

account that a worker from station q performs tasks Iq+1,r. To make these

calculations, we consider the following equalities:

Iq = I−q,k ∪ I+q,k (2.27)

Iq = (Iq\Iq,r) ∪ Iq,r (2.28)

Iq\Iq,r = (I−q,k\Iq,r) ∪ (I+q,k\Iq,r) (2.29)

Iq,r = (Iq,r\I
−
q,k) ∪ (Iq,r\I

+
q,k) (2.30)

Therefore

Iq = (I−q,k\Iq,r) ∪ (I+q,k\Iq,r) ∪ (Iq,r\I
−
q,k) ∪ (Iq,r\I

+
q,k) (2.31)

The number of workers for each subset is shown in Table 2.3.

TABLE 2.3: Number of workers for each subset of Iq

I−q,k\Iq,r m

I+q,k\Iq,r m− 1

Iq,r\I
−
q,k m

Iq,r\I
+
q,k m+ 1

Figures 2.6 and 2.7 demonstrates the subsets defined above.

Since we have already defined how many workers are performing

tasks for each subset (see Table 2.3), we can provide an exact value for

r:

44
Chapter 2. Workforce minimisation for a multi-product assembly line

with chain precedence relations

FIGURE 2.6: Graphic representation of Iq subsets in

case if r ≥ k and I(q,r)\I
+
(q,k) = ∅

FIGURE 2.7: Graphic representation of Iq subsets in

case if r < k and I+(q,r)\I(q,r) = ∅

r = min











r|
∑

j∈I−
q+1,k\Iq+1,r

pj(mq+1)+

+
∑

j∈I+
q+1,k\Iq+1,r

pj(mq+1 − 1) ≥ Sq











(2.32)

2.4. Heuristic methods 45

Note that set Iq,r defined by formula (2.32) contains the set Iq,r defined

by the formula (2.25).

One can think that we can use the following formula to determine

mq+1:

mq+1 = min {m|kq+1 =

= min











k|
∑

j∈I−
q+1,k\Iq+1,r

pj(mq+1) +
∑

j∈I+
q+1,k\Iq+1,r

pj(mq+1 − 1)

+
∑

j∈Iq+1,r\I
−

q+1,k

pj(mq+1) +
∑

j∈Iq+1,r\I
+
q+1,k

pj(mq+1 + 1) ≤ C





















(2.33)

However, this formula does not guarantee that there will be no over-

flow for one worker and underflow for another one (see an explanation

below). We need to add constraints for each worker and then combine

them. As the result we will obtain the following:

mq+1 = min {m|kq+1 =

= min











k|
∑

j∈I−
q+1,k\Iq+1,r

pj(mq+1) +
∑

j∈I+
q+1,k\Iq+1,r

pj(mq+1 − 1) ≤ Sq,

∑

j∈Iq+1,r\I
−

q+1,k

pj(mq+1) +
∑

j∈Iq+1,r\I
+
q+1,k

pj(mq+1 + 1) ≤ C − Sq





















(2.34)

Thus, one worker at station q + 1 does not perform tasks of set

(I+q+1,k\Iq+1,r) ∪ Iq+1,r\I
−
q+1,k = I+q+1,k . This worker can perform tasks of

set Iq+2r at station q + 2 starting from the time Sq+1:

Sq+1 =
∑

j∈I−
q+1,k\Iq+1,r

pj(mq+1) +
∑

j∈Iq+1,r\I
+
q+1,k

pj(mq+1 + 1) + ∆q+1 (2.35)

46
Chapter 2. Workforce minimisation for a multi-product assembly line

with chain precedence relations

∆q+1 =







0 r ≥ k

Sq −
∑

j∈I−
q+1,k\Iq+1,r

pj(mq+1) +
∑

j∈I+
q+1,k\Iq+1,r

pj(mq+1 − 1) r < k

Note that Sq+1 ≥
∑

j∈I−1
q+1,k

pj(mq+1), due to possible idle time between

tasks.

The term ∆q+1 appears in equality (2.35) because the time Sq is evalu-

ated for tasks of station q but the sets I+q+1,k, I
−
q+1,k are defined for tasks of

station q + 1. Therefore, the idle time shown in Figure 5 appears between

tasks of set I−q+1,k\Iq+1,r and tasks for set Iq+1,r\I
+
q+1,k. For this reason, in

order to calculate mq+1 we use formula (2.34) instead of formula (2.33).

Note that we can define Sq+1 in another way:

Sq+1 =







∑

j∈I−
q+1,k\Iq+1,r

pj(mq+1) r ≥ k

Sq +
∑

j∈Iq+1,r\I
+
q+1,k

pj(mq+1 + 1) r < k

2.4.5 Heuristic Min-Idle-One-Traveling-Worker

In the previous heuristic we used sequentially arranged stations. How-

ever, we can improve this heuristic by choosing the next station for a

worker to move, it will be the station which will have the minimal total

idle time after adding this supplementary worker. Note that we should

only take into account idle time but not the free time (the rest of the time

at the start of moving, i.e. the difference between the end of cycle and the

moment when the move starts) of the worker who is going to move to the

next station.

2.4.6 Heuristic Random-One-Traveling-Worker

This heuristic is similar to algorithm described in Sections 2.4.4 and 2.4.5.

The difference of this methods is that stations are chosen at random.

2.4.7 Heuristic Additional-Workers

This heuristic is as follows (we assume that workers performing tasks can

move from one station to another).

2.4. Heuristic methods 47

Step 1: For every station q, q = 1, . . . , s, we evaluate the number of

workers mq so that

∑

j∈Iq

pj(mq + 1) < C ≤
∑

j∈Iq

pj(mq), q = 1, . . . , s (2.36)

and the remainder time (slack time):

rq =
∑

j∈Iq

pj(mq)− C (2.37)

and we assign mq workers to each station q.

Step 2: Now, the problem is to find aminimal set of additional workers

{wd, 1 ≤ d ≤ D} to perform the set of tasks I . This problem is equivalent

to the problem of placement of intervals with length rq, q = 1, . . . , s ,

without intersections in the minimal number of intervals with length C.

For station q = 1, let bq−1 be equal to 0 and let the index of additional

worker d be equal to 1. Find minimal set of tasks Iq,r for station q such

that they are performed after time bq−1 and their runtime is greater than or

equal to rq. In order to do this, we calculate:

aq = min







a|
∑

j∈Iq ,j≤a

pj(mq) ≥ bq−1







, (2.38)

bq = min







b|
∑

j∈Iq ,aq≤j<b

pj(mq + 1) ≥ rq







. (2.39)

Note that we can also use the following formula for bq:

bq = min







b|
∑

j∈Iq ,j<aq

pj(mq) +
∑

j∈Iq ,aq≤j<b

pj(mq + 1) +
∑

j∈Iq ,j≥b

pj(mq) < C







.

(2.40)

Then, Iq,r = {j ∈ Iq, aq ≤ j < bq}. If Iq,r exists, we add the set Iq,r to

tasks that are performed by the worker with number d, then go to next

station q + 1 and find a minimal set of tasks Iq+1,r. If the set Iq,r does not

exist, we take a new additional worker wd+1, assign bq−1 = 0 and find a

minimal set of tasks Iq,r for station q.

48
Chapter 2. Workforce minimisation for a multi-product assembly line

with chain precedence relations

2.4.8 Heuristic Additional-Workers-Improved

We can also consider the following modification of the heuristic proposed

above. For every station q, q = 1, . . . , s, we evaluate

bq = min







b|
∑

j∈Iq ,aq≤J<b

pj(mq + 1) ≥ rq







. (2.41)

where aq does not depend on bq−1; here aq is selected randomly or so

that bq − aq is minimized. We get intervals [aq, b1], q = 1, . . . , s. Then, we

solve the problem of placement of intervals [aq, bq]without intersections in

the minimal number of intervals [0, C].

2.5 Computer experiments

In order to compare proposed heuristics, they were implemented using

C# programming language. Figure 2.8 demonstrates a screenshot of the

developed software application.

FIGURE 2.8: Screenshot of the created application

The experiments were run on a PC with Intel Core i7-3520M CPU with

4Gb of RAM under MSWindows 7, 64bit. All the heuristics take a few sec-

onds to provide a solution, which is very fast. The time limit for solving

2.6. Conclusions 49

the MILP problem related to each of the 20 cycles was set to 30 minutes.

However, we were unable to solve the initial MILP to find the exact solu-

tion, because of the exponentially increasing time needed to find a solu-

tion.

In order to visualise the performance of the created heuristics in differ-

ent cycles, we have made a chart (Figure 2.9) which demonstrates number

of workers obtained by all heuristics. The vertical axis shows the number

of workers needed and the horizontal axis shows the number of a cycle.

Due to the independence of cycles, we can select for each cycle the best

solution of different heuristics. For example, we can choose the solution

obtained by heuristic Random-One-Traveling-Worker for all cycles except

6, 11 and 16. For cycles 6, 11, 16 we choose solution obtained by Random-

Additional-Workers heuristic. Detailed results are given in Appendix B.

The workload distribution is unbalanced - some workers have a higher

percentage of idle time than others. In order to smooth the workload,

we propose to rank workers in cycle q (which is just finished) in the non-

increasing order of their accumulated idle times. For the next cycle q + 1,

the workers are ranked in the non-increasing order of their workload.

Then, for the cycle q + 1, the worker with the highest workload will be

replaced (to perform his/her tasks) by the worker with the highest ac-

cumulated idle time in the cycle q. For example, let worker w1 have the

highest accumulated idle time up to and including the current cycle q, and

let worker w2 have the highest workload in the next cycle q+1 according

to the obtained solution. Then, in the cycle q + 1, worker w1 will perform

the tasks of worker w2.

2.6 Conclusions

Preliminary results of this chapter were described in Battaïa et al. [8] [9]

[10].

Previously the manufacturer used a solution, in which workers do not

move between stations. For the industrial case, such an approach finds

solutions with 28 workers for 15 cycles, and 29 workers for the remain-

ing 5 cycles. Since the set of workers should not change from one cycle

to another, 29 was the number of workers used by the industrial partner.

The problem of best product sequence was solved for the real case from

the industrial partner. The workforce minimisation problem for a semi-

automatic multi-product sequential assembly line and identical workers

50
Chapter 2. Workforce minimisation for a multi-product assembly line

with chain precedence relations

FIGURE 2.9: Comparison of the heuristics’ performance

(number of workers for each cycle)

was solved. After the results of two solved problems (best product se-

quence problem andworkforceminimisation problem) have been applied,

the number of workers to 26. This result was obtained by a combination

of all the proposed heuristics.

An exact method provided no solution. Therefore heuristic methods

were developed. Some of these heuristics are based on the idea of limiting

workers movements. In particular, each worker is allowed to make only

one move from station to another and if there are many workers assigned

to a station, only one from them canmove to another station. As a perspec-

tive for the future research, another MILP model can be developed which

addresses constraint that restricts the number of worker movements. This

approach is a heuristic for the the studied problem.

51

Chapter 3

Workforce minimisation with an

acyclic precedence graph

3.1 Introduction

The problem studied in this chapter generalises the problem studied in

chapter 2 so that chain precedence constraints are replaced with arbitrary

acyclic precedence constraints and operation times inversely proportional

to the number of workers are replaced with operation processing times

being arbitrary non-decreasing functions of the numbers of workers. We

consider a paced unidirectional assembly line consisting of m stations and

manufacturing different products. Every station switches from processing

a current product to the following one simultaneously and with the same

time step. The time interval that spans between two successive switches

is called cycle and its length is called cycle time. Motivated by a real life

production situation, we study a workforce assignment problem for one

cycle of such a line. Without loss of generality, we assume that the cycle

starts at time zero. In a given cycle, workers on station k execute a given

set Nk of operations, k = 1, . . . ,m. Operations of different stations can be

performed in parallel. The order of operations of the same station should

follow a given technological process characterized by precedence relations

between the operations. If operation i is followed by operation j, then i

must be completed before the start time of i. If operations i and j have no

precedence relation, then they are called independent and can be performed

in any order. Operations with no predecessor can start at time zero. The

set of precedence relations of operations on station k is represented by a

directed acyclic graph Gk = (Nk, Uk), where Nk is the set of vertices (opera-

tions) and Uk, Uk ⊂ Nk×Nk, is the set of arcs (oriented pairs of operations)

(i, j) such that (i, j) ∈ Uk if and only if operation i is followed by operation

j. Let N = ∪m
k=1Nk, n = |N |, and U = ∪m

k=1Uk.

52 Chapter 3. Workforce minimisation with an acyclic precedence graph

Operations are executed by rmax identical workers. Processing time pj(r)

of an operation j is an integer valued positive non-increasing function of

the number of workers r assigned to it. If a worker is assigned to an op-

eration, he or she performs this operation from its start until completion.

No worker can perform more than one operation at any time. The time

of the worker’s movement from one station to another is negligibly small

comparing to the time of any operation. Therefore, we assume that any

worker can move from one operation to another in zero time. The de-

cision to be made is a schedule, in which the operations’ start times and

workforce assignment are specified. Given a schedule, the number rj of

workers assigned to operation j, the operation start time Sj and the oper-

ation completion time Cj can be calculated for each operation j such that

Cj = Sj + pj(rj), j = 1, . . . , n. The makespan of a schedule is defined as

Cmax = maxj∈N{Cj}. This value is equal to the line cycle time.

The following constraints must be satisfied in a feasible schedule:

• aj ≤ rj ≤ bj , where aj and bj are given positive integer numbers,

j = 1, . . . , n, and

• Cmax ≤ d, j = 1, . . . , n, where d is a given upper bound on the line

cycle time.

The problem that we denote as MinNumber consists in finding a feasible

schedule which minimizes the maximum number of workers employed

simultaneously,

Wmax = max
0≤t≤d

{

∑

j∈N(t)

rj

}

,

where N(t) is the set of operations executed at time t. LetW ∗
max denote the

minimumWmax value. Assume without loss of generality that the number

of available workers is such that rmax ≤
∑

j∈N bj , because otherwise we

can re-set rmax =
∑

j∈N bj , and that
∑

j∈Nk
pj(bj) ≤ d for k = 1, . . . ,m

and max
{

maxj∈N{aj}, ⌈
∑

j∈N pj(bj)/d⌉
}

≤ rmax, because otherwise the

problem MinNumber has no solution.

For the sake of clarity, consider an example in which the assembly

line consists of two stations, eight operations and four available workers.

Precedence relations are given by the graph in Figure 3.1.

Processing times of operations depending on the number of workers

are given in Table 3.1.

3.1. Introduction 53

Station 1:

✍✌
✎☞
1 ✲

✍✌
✎☞
2

Station 2:

✍✌
✎☞
3

✍✌
✎☞
4
❅❅❘

✍✌
✎☞
5
 ✒
✍✌
✎☞
6
 ✒

❅❅❘

✍✌
✎☞
7

✍✌
✎☞
8

FIGURE 3.1: Precedence graph

Operations\ 1 2 3 4 5 6 7 8
Number of workers

1 50 10 10 9 11 24 20
2 30 6 5 7 12 12 9
3 8 7 6

TABLE 3.1: Processing times of operations

An empty entry for a given number of workers and operation j means

that this number of workers is either less than aj or greater than bj . Note

that all four workers can be used on the line, but only one, two or three of

them can be used to perform the same operation. AGantt chart illustrating

a feasible schedule with an upper bound on line cycle time d = 44 and

maximum number of workers rmax = 4 is given in Figure 3.2.

✻

✲

0 5 10 15 20 25 30 35 40 45

d

Cmax

Time

Worker 1

Worker 2

Worker 3

Worker 4 Operation 5 Op 4 Operation 6 Oper 7 Oper 8

Operation 3 Op 4 Operation 6 Oper 7 Oper 8

Operation 1 Oper 7 Oper 8

Operation 1 Operation 2

FIGURE 3.2: A feasible schedule. Dashed rectangles repre-
sent idle times of workers.

54 Chapter 3. Workforce minimisation with an acyclic precedence graph

3.2 Heuristics

We suggest three parametrized constructive heuristics for the problem

MinNumber: two conventional ones and one randomized. All heuris-

tics use a numerical parameter α, 0 ≤ α ≤ 1, which affects the heuristics

behavior in such a way that a higher value of α tends to assign workers

with a higher ready time value to an operation. In the beginning, all three

heuristics determine a hypothetical minimal total number workers, W , to

be employed, set initial numbers of workers for each operation: rj = aj ,

j ∈ N , and build a schedule by assigning operations to W workers over

time in an order which is topologically feasible with respect to the prece-

dence graph G. The topological feasibility means that in the constructed

schedule precedence constraints are not violated. Since there can exist nu-

merous topologically feasible orders, we have to determine the operations

selection procedure. Thus, from the set of operations having no predeces-

sor, the conventional heuristic TopLong(α) selects the longest operation

first, the conventional heuristic TopLongPath(α) selects an operation of

the longest path first and the randomized heuristic TopRandom(α) selects

an operation to be assigned first at random.

Conventional heuristics TopLong(α) and TopLongPath(α)

Step 1 Determine an initial hypothetical minimal total number of work-

ers, W . Obviously, maxj∈N{aj} ≤ W ≤ rmax. The specific value

of W can be defined by an expert. Alternatively, we propose to set

W = max
{

maxj∈N{aj}, ⌈
∑

j∈N pj(bj)/d⌉
}

.

Set rj = aj and calculate pj(rj) for j = 1, . . . , n. Initiate ready times Ti

of workers: Ti = 0, i = 1, . . . ,W , and ready times tj of operations: tj := 0,

j = 1, . . . , n.

Step 2 In graph G, identify the set N+ of operations having no predeces-

sor. In heuristic TopLongPath(α), calculate the longest path P ∗ con-

necting a vertex of N+ with any other vertex of the graph G. Path

length is the total weight of its vertices, and the weight of vertex j is

pj(rj).

Step 3 Select j∗ ∈ N+ with the largest value pj(rj) in heuristic TopLong(α)

and select j∗ as the first vertex of the longest path P ∗ in heuristic

TopLongPath(α).

Let the workers be ordered such that Ti1 ≤ · · · ≤ TiW . Determine sets

of rj∗ workers Xh := {ih−rj∗+1, ih−rj∗+2, . . . , ih}, h = rj∗ , rj∗ + 1, . . . , k,

3.2. Heuristics 55

where k satisfies Tik ≤ αTiW + (1 − α)Tirj∗
and Tik+1

> αTiW + (1 −

α)Tirj∗
, TiW+1

:= +∞. For example, Xk = {i1, . . . , irj∗} if α = 0 and

Xk = {iW−rj∗+1, . . . , iW} if α = 1. Select index h which minimizes

max{tj∗ , Tih} − Th−rj∗+1 for rj∗ ≤ h ≤ k. Let it be index h∗.

Assign workers of the setXh∗ to operation j∗ so that all of them start

performing this operation at the same time t∗ := max{tj∗ , Tih∗}. Note

that index h∗ is selected such that the maximum idle time of workers

in the sets Xh, h = rj∗ , rj∗ + 1, . . . , k, just before they start processing

operation j∗, is minimized.

Update ready times of workers so that Th := t∗ + pj∗(rj∗), h ∈ Xh∗ .

Update ready times of immediate successors of vertex j∗ so that tj :=

max{tj, t
∗} + pj∗(rj∗), j ∈ A(j∗), where A(j∗) is the set of immedi-

ate successors of j∗ in the graph G. Update graph G by removing

vertex j∗ from it.

If G is empty, then a complete schedule is constructed and the fol-

lowing computations are performed.

• Calculate the makespan Cmax = max{Ti | i = 1, . . . ,W}.

• If Cmax ≤ d, then return the corresponding schedule with W

workers and stop.

• Suppose that Cmax > d. If W = rmax, then return the infeasible

solution with rmax workers and stop. If W ≤ rmax − 1, then

determine operations of a critical path, which do not intersect in

time and whose processing times sum up to Cmax. Re-set rj :=

min{rj+1, bj,W+1} for every such operation, re-setW := W+1,

restore original graph G, and go to Step 2.

If G is not empty, then perform Step 2.

Heuristic TopLong(α) or TopLongPath(α) is run until a feasible solu-

tion is constructed, or an infeasible solution with rmax workers is obtained,

or a given solution time limit is exceeded, in which case its output is an in-

feasible solution found last. If the solution time limit permits, then heuris-

tics TopLong(α) and TopLongPath(α) can be run for several values of α,

0 ≤ α ≤ 1.

Our randomized heuristic TopRandom(α) differs from heuristics

TopLong(α) and TopLongPath(α) in that in Step 3 operation j∗ ∈ N+

is selected at random. If the solution time limit permits, then heuristic

56 Chapter 3. Workforce minimisation with an acyclic precedence graph

TopRandom(α) can be run several times and for several values of α. Com-

putational experiments with the heuristics are described in Section 3.5.

3.3 Reduction to a series of feasibility problems

Consider a problem, which is to determine if there exists a feasible solution

of the problemMinNumberwith a given numberQ of workers. We denote

this problem as Feasible(Q).

Problem MinNumber can be solved by the following bisection search

procedure over the range of possible values ofQ. Let LB and UB be lower

bound and upper bound, respectively, on the value of Q for which there is

a feasible solution of the problem MinNumber.

Step 1 Apply heuristics TopLong(α), TopLongPath(α) and

TopRandom(α) for certain values of α, 0 ≤ α ≤ 1.

• If the heuristics found no feasible solution, then solve the prob-

lem Feasible(rmax). If no feasible solution of this problem is

found, then the problem MinNumber has no feasible solution,

stop. If a feasible solution is found, then set UB = rmax.

• If the heuristics found a feasible solution, then set UB to be the

minimum feasible solution value.

• Set LB = max
{

maxj∈N{aj}, ⌈
∑

j∈N pj(bj)/d⌉
}

and solve the

problem Feasible(LB). If a feasible solution of this prob-

lem is found, then it is an optimal solution of the problem

MinNumber, stop. If no feasible solution is found, then the

generic iteration of the bisection search is applied. It can be de-

scribed as follows.

Step 2 (Generic iteration of bisection search)

• If UB = LB + 1, then a feasible schedule for the prob-

lem Feasible(UB) is an optimal schedule for the problem

MinNumber.

• If UB ≥ LB + 2, then solve the problem Feasible(Q) for Q =

⌈UB+LB
2

⌉. If no feasible solution is found, then re-set LB := Q

and repeat the generic iteration. If a feasible solution is found,

then re-set UB := Q and repeat the generic iteration.

3.3. Reduction to a series of feasibility problems 57

The number of iterations of the bisection search isO(log2(UB−LB)),

and in each iteration the problem Feasible(Q) is solved for a given

Q, Q ∈ {LB,LB + 1, . . . , UB}.

We now describe a MILP model for the problem Feasible(Q). It is con-

venient to introduce the following notation:

• N−: subset of vertices from N , which do not have successors;

• I : set of vertex pairs (i, j) that are independent with respect to the

precedence constraints, I = {(i, j) | i ∈ N, j ∈ N, i 6= j, (i, j) 6∈

U, (j, i) 6∈ U};

• Ik = {(i, j) | (i, j) ∈ I, i ∈ Nk, j ∈ Nk}, k = 1, . . . ,m;

• Igk = {(i, j) | (i, j) ∈ I, i ∈ Ng, j ∈ Nk}, g = 1, . . . ,m, k = 1, . . . ,m,

g 6= k.

Let us introduce the following variables:

• xir ∈ {0, 1}, i ∈ N , r = 1, . . . , Q: xir = 1 if operation i is assigned to

worker r, and xir = 0, otherwise;

• yij ∈ {0, 1}, (i, j) ∈ I : yij = 1 if operation i completes before or at the

start of operation j, and yij = 0, otherwise. Note that yij = 0 implies

that either j completes before or at the start of i, or some parts of i

and j are performed in parallel. In the latter case, i and j must be

performed by different workers in a feasible solution;

• zir ∈ {0, 1}, i ∈ N , r = 1, . . . , Q: zir = 1 if operation i is performed by

r workers, and zir = 0, otherwise;

• Sir ≥ 0, i ∈ N , r = 1, . . . , Q: start time of operation i if it is processed

by worker r, and any non-negative value otherwise.

Below we give a Mixed Integer Linear Programming (MILP) formu-

lation of the problem Feasible(Q), for which we keep the same notation

Feasible(Q).

58 Chapter 3. Workforce minimisation with an acyclic precedence graph

Problem Feasible(Q):

Sir +

Q
∑

q=1

pi(q)ziq ≤ d, i ∈ N−, r = 1, . . . , Q, (3.1)

n
∑

i=1

Q
∑

q=1

pi(q)ziq ≤ Qd, (3.2)

Q
∑

r=1

zir = 1, i ∈ N, (3.3)

Q
∑

r=1

xir =

Q
∑

r=1

rzir, i ∈ N, (3.4)

Sjh − Siq ≥

Q
∑

r=1

pi(r)zir, (i, j) ∈ U, h, q = 1, . . . , Q, (3.5)

Sjh − Siq ≥

Q
∑

r=1

pi(r)zir − (d+ 1)(3− yij − xih − xjq), (i, j) ∈ Ik, (3.6)

k = 1, . . . ,m, h, q = 1, . . . , Q,

Sjh − Sih ≥

Q
∑

r=1

pi(r)zir − (d+ 1)(3− yij − xih − xjh), (i, j) ∈ Igk, (3.7)

g, k = 1, . . . ,m, g 6= k, h = 1, . . . , Q,

Sih − Siq ≤ (d+ 1)(2− xih − xiq), i ∈ N, h = 1, . . . , Q, (3.8)

q = h+ 1, . . . , Q,

Siq − Sih ≤ (d+ 1)(2− xih − xiq), i ∈ N, h = 1, . . . , Q, (3.9)

q = h+ 1, . . . , Q,

yij + yji ≤ 1, (i, j) ∈ I, (3.10)

xir + xjr − 1 ≤ yij + yji, (i, j) ∈ I, r = 1, . . . , Q, (3.11)
Q
∑

r=1

rzir ≤ bi, i ∈ N, (3.12)

ai ≤

Q
∑

r=1

rzir, i ∈ N, (3.13)

xir, yij, zir ∈ {0, 1}, i, j ∈ N, r = 1, . . . , Q, (3.14)

Sir ≥ 0, i ∈ N, r = 1, . . . , Q. (3.15)

The constraints (3.1) address the cycle time d on each station by con-

sidering completion times of operations that have no successors. The con-

straints (3.2) guarantee that all the operation time slots fit the rectangle

3.3. Reduction to a series of feasibility problems 59

with dimensionsQ and d. The constraints (3.3) state that exactly one num-

ber of workers in the range 1, . . . , Q must be employed for the execution

of every operation. The constraints (3.4) ensure that if operation i is as-

signed some number of workers, say v, and, hence, ziv = 1, then exactly

v variables xir take value 1. The constraints (3.5) require that the starting

times of operations i and j performed by any workers are pi(r) time units

away from each other if i precedes j. The constraints (3.6) enforce worker

q to complete operation i before or at the time when worker h starts op-

eration j if i and j are on the same station (from the same set Ik), it is

decided that operation i completes before operation j starts, worker q per-

forms operation i and worker h performs j, i.e., if yij = 1, xiq = 1 and

xjh = 1. The constraints (3.7) do the same as (3.6), but in the case when

operations i and j are on different stations and they are performed by the

same worker. The constraints (3.8) and (3.9) force all workers assigned to

the same operation to start at the same time. The constraints (3.10) ensure

that, for independent operations i and j, the case when both yij = 1 and

yji = 1 cannot happen. The constraints (3.11) guarantee that if two in-

dependent operations are assigned to the same worker, then one of these

operations must be completed before or at the start time of the other, i.e.,

either yij = 1 or yji = 1 must hold. Assume that operations i and j are

independent. Consider values of the pair (xir, xjr). If (xir, xjr) = (1, 1),

i.e., worker r is assigned to i and j, then (3.10) and (3.11) guarantee that

either yij = 1 or yji = 1 must take place, which, together with (3.5) for

h = q = r, guarantees that worker r will not process parts of i and j simul-

taneously. If (xir, xjr) = (1, 0), i.e., worker r is assigned to i and not to j,

then yij = 0 and yji = 0 can happen, that is, processing of i and j can be

done independently in time. Implication of the cases (xir, xjr) = (0, 1) and

(xir, xjr) = (0, 0) is the same as for (xir, xjr) = (1, 0). The constraints (3.12)

and (3.13) address the limits on the number of workers for each operation.

Note that the solution of the MILP problem Feasible(Q) specifies the

start times of the operations, worforce assignment and the operation dura-

tions. This information is sufficient to construct the corresponding sched-

ule. The MILP model is verified in the computational study in Section

3.5.

60 Chapter 3. Workforce minimisation with an acyclic precedence graph

3.4 Relation to multi-mode project scheduling

and multiprocessor scheduling. Computa-

tional complexity

The problem Feasible(Q) can be viewed as a multi-mode project schedul-

ing problem, in which an activity (operation) is assigned a mode (set of

workers) and has the mode dependent duration, see Kolisch et al. [62],

Tseng and Chen [86] and Artigues et al. [6] for the definitions of the

latter problem. The known mathematical programming formulations of

such problems include variables with indices whose number is equal to

the number of modes, see Kolisch and Sprecher [61]. Since solution of

the problem Feasible(Q) should specify not only the number of workers

to perform an operation, but it should also identify these workers, there

can be 2Q − 1 different modes and the same number of variables in the

modeling approach based on modes. The most popular solution tech-

niques for multi-mode project scheduling problems include time-indexed

and event-indexed MILP formulations, branch and bound schemes and

meta-heuristics, see, for example, Monma et al. [72], Demeulemeester et

al. [33], Salewski et al. [79], Ranjbar and Kianfar [76], Li and Womer [68],

Besikci et al. [17], and Ghoddousi et al. [54].

Problem Feasible(Q) is related to the multiprocessor moldable task

scheduling problem, in which the processing time of a computer task de-

pends on the number of identical processors allocated to it, and this num-

ber cannot change during the task execution. The processors play the role

of the workers. Box constraints on the number of processors allocated

to the same task are not considered. According to the survey of multi-

processor task scheduling problems of Drozdowski [42], the makespan

minimization counterpart of the problem Feasible(Q), in which a single

operation is assigned to each station, is denoted as P |spdp − lin − δj|Cmax

if the task processing times are inversely proportional to the number of

assigned processors, pj(r) = pj/r, and as P |spdp − any|Cmax if process-

ing times are arbitrary functions of the number of processors. For mul-

tiprocessor task scheduling problems, off-line and on-line heuristics with

performance guarantees are often developed, see, for example, Wang and

Cheng [92, 93], Choundhary et al. [28], Srinivasa Prasanna and Musi-

cus [84], Blazewicz et al. [15], Blazewicz et al. [13], Dutot et al. [43] and

Hunold [60].

3.4. Relation to multi-mode project scheduling and multiprocessor

scheduling. Computational complexity
61

The relation with multiprocessor task scheduling allows establishing

computational complexity of the following special cases of the problem

Feasible(Q), in which a single operation is assigned to each station: 1)

pj(r) = 1 for any r, aj = bj , j ∈ N ; 2) pj(r) = 1 for any r, aj = bj ,

bj ∈ {1, . . . ,∆}, j ∈ N , ∆ is a given constant; 3) Q = 5, aj = bj , j ∈ N ; 4)

Q ∈ {2, 3}, aj = bj , j ∈ N ; 5) aj = 0, bj = Q, pj(r) = pj/gj(r), gj(r) is a

convex increasing function; 6) aj = bj = 1, j ∈ N . Case 1) is strongly NP-

hard, because, in the notation of Drozdowski [42], problem P |sizej, pj =

1|Cmax is strongly NP-hard due to Lloyd [69]. Case 2) is solvable in O(n)

time, because problem P |sizej ∈ {1, . . . ,∆}, pj = 1|Cmax is solvable in

O(n) time due to Blazewicz et al. [14]. Case 3) is strongly NP-hard and

case 4) is pseudo-polynomially solvable, because problem P5|sizej|Cmax

is strongly NP-hard and problem Pm|sizej|Cmax, m ∈ {2, 3}, is pseudo-

polynomially solvable due to Du and Leung [44]. Case 5) is solvable in

O(n) time, because it reduces to the malleable task scheduling problem

studied by Blazewicz et al. [12] and Barketau et al. [7]. In an optimal

solution of the latter problem, each task is assigned Q processors. Case 6)

is strongly NP-hard, because it is equivalent to the decision version of the

classic scheduling problem P ||Cmax, which is NP-hard in the strong sense

due to Garey and Johnson [53].

We now prove that the problem MinNumber is NP-hard in the strong

sense if a single operation is assigned to each station, values aj and bj differ

by one unit, and operation processing times are inversely proportional to

the number of assigned workers, as they are in the industrial case of the

project amePLM [1], which motivates our studies.

Theorem 1 Problem MinNumber is NP-hard in the strong sense if a single

operation is assigned to each station, aj = bj − 1 and pj(r) = pj/r, j ∈ N .

We will use a reduction from the NP-complete problem 3-PARTITION, see

Garey and Johnson [53].

3-PARTITION: Given 3v+ 1 positive integer numbers h1, . . . , h3v andH

satisfying
∑3v

j=1 hj = vH , does there exist a partition of the set {1, . . . , 3v}

into subsets Y1, . . . , Yv such that
∑

j∈Yt
hj = H for t = 1, . . . , v? Assume

without loss of generality that hj ≥ v+1, j = 1, . . . , 3v. If it is not the case,

all numbers h1, . . . , h3v and H can be multiplied by v + 1 with no change

of the problem complexity.

Given an instance of 3-PARTITION, we construct an instance of the

problem MinNumber, in which there are n = 3v operations and the same

62 Chapter 3. Workforce minimisation with an acyclic precedence graph

number of stations, operation j is assigned to station j, pj(r) = hj/r,

aj = hj − 1, bj = hj , j = 1, . . . , n, and d = v. Thus, the processing

time of operation j can take one of the two values: 1 or 1 + 1
hj−1

, where

1 ≤ 1 + 1
hj−1

≤ 1 + 1
v
, j = 1, . . . , n. Note that any operations can be per-

formed in parallel if they are assigned to different workers. We will show

that there exists a feasible solution for this instance with value W ∗
max ≤ H

if and only if the original instance of 3-PARTITION has a solution.

Assume that there exists a feasible solution of the problemMinNumber

with rj workers assigned to operation j, j = 1, . . . , n, and the maximum

number of used workers W ∗
max ≤ H . For this solution, let us represent

an assignment of a worker i to operation j as a small rectangle of height

1 and length pj(rj) located in line i of a large rectangle of height H and

length v. Then the solution can be viewed as a collection of small rectan-

gles inscribed into the large rectangle so that no two small rectangles have

a common point other than on their border. Figure 3.2 can be used for

an illustration. Observe that every operation j contributes hj to the total

area of the large rectangle irrespectively of the assignment of workers, be-

cause rpj(r) = hj for any r. Since
∑n

j=1 hj = vH , the union of the small

non-intersecting rectangles must give the large rectangle.

We will now show that every operation j is assigned hj workers. As-

sume the contrary that at least one operation q is assigned hq − 1 workers.

Consider one of these workers. Let it be used to fulfill w operations, and

let J be a subset of these operations, each operation j of which is assigned

hj−1workers. We havew ≤ v−1, because ifw = v, then, since the process-

ing time of every operation is at least one time unit and the processing time

of at least one operation is greater than one time unit, the total occupation

time of this worker is greater than v, that is, the cycle time constraint is

violated. The total occupation time of this worker is equal to

w +
∑

j∈J

1

hj − 1
≤ v − 1 +

|J |

v
≤ v − 1 +

w

v
≤ v − 1 +

v − 1

v
< v.

This strict inequality implies that there is a space in the large rectangle not

occupied by any small rectangle, which is a contradiction.

We have shown that every operation j must be assigned hj workers.

Hence, the processing time of any operation is equal to 1. Denote the set of

operations performed in parallel in the time interval [t−1, t] as Yt. Since the

union of small rectangles gives the large rectangle, equality
∑

j∈Yt
hj = H

holds for t = 1, . . . , v, as required for the proof of the part “only if”.

3.5. Computational study 63

Part “if” is proved easily: if Y1, . . . , Yv is a solution of the problem

3-PARTITION, then assign hj workers to operation j, j = 1, . . . , n, and

perform operations of the set Yt in parallel in the time interval [t − 1, t],

t = 1, . . . , v.

Computational complexity results are summarized in Table 3.2.

TABLE 3.2: Complexity of special cases of MinNumber, in
which a single operation is assigned to each station

Problem characteristics Complexity

pj(r) = 1, aj = bj strongly NP-hard
pj(r) = 1, aj = bj , bj ∈ {1, . . . ,∆},

∆ is a given constant O(n log rmax)
rmax = 5, aj = bj strongly NP-hard

rmax ∈ {2, 3}, aj = bj pseudo-polynomially solvable
pj(r) = pj/gj(r),

gj(r) is convex increasing,
aj = 0, bj = rmax O(n log rmax)

aj = bj = 1 strongly NP-hard
pj(r) = hj/r, aj = hj − 1, bj = hj strongly NP-hard

3.5 Computational study

We performed two series of computational experiments with the problem

MinNumber. The goal of the first series is to establish the maximum prob-

lem size in terms of the number of operations that can be solved to opti-

mality in a reasonable time based on the bisection search and the MILP

formulation. The goal of the second series is to compare the quality of

the heuristics. We used the data generator for the simple assembly line

balancing problem described in Otto et al. [75], extending it to match

the specificity of the problem MinNumber. This generator constructs in-

stances with the number of operations n = 20 and n = 50. We do the same.

The number of stations, the assignment of operations to the stations and

the box constraints are selected to conform with the real life problem of

our industrial partner, see Chapter 2. Processing times pj(1) = pj , where

pj are generated as in [75], and pj(r) = pj/r for r ≥ 2. We assumed that

each connected component of a precedence graph, generated as in [75],

corresponds to a station. Values aj ∈ {1, 2} were generated with proba-

bility 2/3 for aj = 1 and probability 1/3 for aj = 2, and values bj = 4

64 Chapter 3. Workforce minimisation with an acyclic precedence graph

for all j, as in the industrial application. The source code of the computer

implementations is available on request at GitHub [2].

3.5.1 Exact solution: maximum number of operations

The MILP model Feasible(Q) was handled by the solver IBM ILOG

CPLEX Optimization Studio 12.6.2, which was run on a workstation In-

tel Xeon CPU E5-2673 v3 @ 2.40 GHz 8 GB RAMwith MSWindows Server

2008 R2 Datacenter, 64bit on 2 different hardware configurations, with 4

threads and 16 threads. The time limit for solving each instance was set to

1 hour.

For n = 50, no instance ofMinNumberwas solved to optimality within

one hour in either configuration. For n = 20, 250 instances were gener-

ated. Since functions pj(r) = pj/r are convex, the relaxed problem with

aj = 1, bj = W ∗
max, no precedence constraints and the possibility to per-

form any operations in parallel if they are assigned to different workers,

is the special case 5) in Section 3.4, which is solved by assigning all W ∗
max

workers to each operation. Therefore, W ∗
max ≥ LB = ⌈

∑

i∈N pi/d⌉ in this

case, and we used the latter lower bound LB in the experiments. We also

calculated the upper bound UB on the number of workers as the sum of

the minimal numbers of workers required for each station independently:

UB =
∑m

k=1 max
{

maxj∈Nk
{aj}, ⌈

∑

j∈Nk
pj/d⌉

}

.

Recall that the bisection search procedure includes solving the problem

Feasible(Q) for Q = LB, where LB depends on the problem instance as

it is written in the previous paragraph. Fig. 3.3 shows the numbers of

solved and unsolved instances of the problem Feasible(LB) for n = 20.

The horizontal axis represents the values of LB that were calculated for all

the generated instances. The height of the color column corresponding to

a given LB represents the number of instances with this LB. One can see

that the number of solved instances decreases as the number of workers

increases.

We observed that the solver finds a feasible solution of the problem

Feasible(Q) quite fast if it exists, but it takes a lot of time to detect infea-

sibility. This observation can be used to solve the problem Feasible(Q)

heuristically: if a feasible solution is not found within a certain time limit,

then it is decided that the problem Feasible(Q) has no solution. This ob-

servation is confirmed by the fact that the ratio of the number of solved

3.5. Computational study 65

FIGURE 3.3: Numbers of solved and unsolved instances of
Feasible(LB) in 1 hour for n = 20

instances to the number of unsolved instances increases as the value of Q

increases from LB to UB.

We also noticed that the idle time parameter calculated as Idle =
Qd−

∑
j∈Npj

Qd
impacts the performance, see Fig. 3.4) for an example. One

can see that higher value of Idle implies faster solution of the problem

Feasible(3).

We compared the impact of the number of available processor threads

66 Chapter 3. Workforce minimisation with an acyclic precedence graph

FIGURE 3.4: Impact of parameter Idle on solution time of
the problem Feasible(3)

on the first 100 generated instances. Table 3.3 shows that using 16 proces-

sor threads instead of 4 leads to solving 7% more instances within the 1h

time limit.

Configuration 4 threads 16 threads
Percent of solved instances 67% 75% (+7%)

Average solving time of solved instances 225 s 271 s (+46 s)

TABLE 3.3: Scalability of the MILP model

However, the average instance solution time for instances solved to

optimality slightly increases for the more powerful configuration due to

the fact that the instances unsolved for 4 threads also need long solution

3.5. Computational study 67

time for 16 threads. A general observation is that realization of the MILP

model on parallel threads does not improve the performance a lot.

We have also tried to solve the real-life problem from the project ame-

PLM [1] with 170 operations. In this problem, there are 20 production

cycles, which differ by the assignment of the same set of operations to

the stations. The problem is to minimize the maximum number of work-

ers needed for each cycle. For this problem, the straightforward solution

of the MILP model was not possible because of the memory limitation,

which was mainly caused by the constraints (3.6) and (3.7). We noted that

the matrix of these constraints contains many zero entries and decided to

modify the model such that it is populated by non-zero entries only. This

modification removed the memory problem, but the required CPU time

increased dramatically such that 24 hours were not enough to populate

the model. In order to find a compromise between the time and memory

requirements, we have tried to balance the model population with with

non-zero row entries only. However, we failed in all our attempts.

Based on the advice of a referee, we have applied a heuristic approach

which is to aggregate operations on the same station, whose intervals

[aj, bj] intersect, into one operation, say J , with the interval [aJ , bJ] being

the intersection of the original intervals, and solve the problem with the

aggregated operations. By doing this, we reduced the number of opera-

tions from 170 to 28. A feasible solution to the problem MinNumber with

25 workers was found in 1 day by solving the problem MinNumber for

each of the 20 production cycles. In order to better demonstrate the per-

formance, we performed experiments with the problems Feasible(Q) for

all values of Q from the interval [LB,UB], see Fig. 3.5. Note that, though

LB = 23 for several production cycles, the entire line can not operate with

less than 24 workers. Therefore, we did not solve solve Feasible(Q) for

Q = 23. We also did not solve the problem Feasible(Q) for Q > UB. The

corresponding entries are blank.

Solution with 25 workers for the problem with the 28 aggregated oper-

ations was converted into a feasible solution for the original real-life prob-

lem with 170 operations by addressing the precedence constraints. This

result is better than the previously obtained result of 26 workers obtained

in Chapter 2 for the same problem.

68 Chapter 3. Workforce minimisation with an acyclic precedence graph

FIGURE 3.5: Solution time of the problem Feasible(Q) for
the real-life instance with n = 28 aggregated operations

3.5.2 Quality of heuristics

We compared the solution quality of the heuristics TopLong(α),

TopLongPath(α) and TopRandom(α). They were tested on the real-

life instance with 170 operations. We made experiments for α ∈

{0, 0.1, 0.2, . . . , 1}. The heuristic TopRandom(α) was applied in two sce-

narios, with 100 and 1000 runs for each α. The obtained results are demon-

strated in the Fig. 3.6. 1000 runs of TopRandom(α) for a given α take about

30 minutes and provide better result than 100 runs of the same heuristic.

Heuristic TopLong(α) is not mentioned in Fig. 3.6 because it finds unrea-

sonably high numbers of workers for all values of α.

We also applied heuristics to the problem with the 28 aggregated op-

erations. TopRandom(α) was run 100000 times for each value of α, and

3.6. Conclusions 69

FIGURE 3.6: Heuristic solutions for the real-life instance
with n = 170

all these runs required less than 30 minutes. The results are given in Fig-

ure 3.7.

We noticed that the heuristics were able to find a solution 10000 times

faster than the MILP solver for the same problem Feasible(Q). The min-

imal number of workers delivered by all the heuristics can be used as an

upper UB in the bisection search procedure for the exact solution of the

problem MinNumber.

3.6 Conclusions

Preliminary results of this chapter were described in Dolgui et al. [39].

70 Chapter 3. Workforce minimisation with an acyclic precedence graph

FIGURE 3.7: Heuristic solutions for the real-life instance
with n = 28 aggregated operations

The following results are obtained for the problem MinNumber: two

conventional and one randomized heuristics, a bisection search reduction

to a series of feasibility problems Feasible(Q), a MILP model for the fea-

sibility problem, a relation of the feasibility problem to the multi-mode

project scheduling problems and multiprocessor moldable task schedul-

ing problems, which is used to establish computational complexity of sev-

eral special cases of the problem MinNumber, and computer experiments

with the suggested exact and heuristic solution approaches.

Computational experiments demonstrated that the instances with up

to 20 operations and 10 workers can be solved to optimality in a reason-

able time on a standard computer. They also showed that the quality of

the heuristic solutions for the industrial problem with 170 operations is

sufficiently good. The obtained results can also be useful for modeling

and solving relevant multi-mode project scheduling and moldable task

scheduling problems.

Developing meta-heuristic and matheuristic approaches, which are

3.6. Conclusions 71

able to find near optimal solutions of the problem MinNumber, is inter-

esting from the practical point of view, and investigating computational

complexity of special cases of this problem is interesting from the theo-

retical point of view. For example, what is the complexity of the problem

MinNumber, in which pj(r) = p/r and rj ∈ {a, b}, j ∈ N , for given p, a

and b?

73

Chapter 4

Bi-criteria Transfer Line Balancing

Problem

4.1 Introduction

Multi objective transfer line balancing problem for a serial single product

production line is studied in this chapter. We consider paced and serial

production line, which mean that each part moves from one station to

the next one using transport system between those stations composed of

conveyors and robots used for part loading and unloading. Stations are

equipped with CNC machines. All machines are identical. The goal for

machining lines is to assign set of operations to workstations equipped

with a set of machines tools satisfying usual assembly lines constraints:

processing time of operations and their precedence graph. However for

machining lines additional time is required to pass from one operation

to the next due to tool changes, displacements and rotations of the part,

which is called setup time. Some sides and elements of the part may not

be accessible for machining when part is fixed on a station. Therefore, part

position should be also considered in the optimization procedure. We con-

sider, that part position can be only changed during transportation from

one station to another.

The full list of input data can be described as follows:

• Processing times for all operations (as in usual ALB problem);

• Precedence constraints (used to contract feasible sequences of oper-

ations);

• Sequence-dependent setup times (usually presented as amatrix with

time values for all combinations of 2 operations);

74 Chapter 4. Bi-criteria Transfer Line Balancing Problem

• Inclusion constraints (some operations must be executed on the sane

stations);

• Exclusion constraints (some operations cannot be executed on the

same workstations);

• Part fixing constraints (normally a subset from a set of possible part

positions is associated with each operation).

Solution (which refers to line configuration) for the studied problem

contains information about the following 3 decisions:

• Assignment of the set of operations to workstations and number of

those workstations (balancing problem);

• Sequencing of the operations for each station (scheduling problem);

• Choice of the number of CNC machines (equipment problem).

4.2 Aproaches to construct a solution

In this section we will present 3 sub approaches and their combination in

a metaheuristic used to solve the described problem.

4.2.1 Construction of a solution for a given sequence

Let’s consider a fixed sequence of the operations of set N satisfying prece-

dence constraints. The remaining decisions to be made are:

• Number of workstations and assignment of operations to worksta-

tions, which is equivalent to finding the places in the sequence of

operations where there is a change of workstation;

• Number of CNC machines and part fixing position for each work-

station.

Notations associated with the problem:

• N : set of operations;

• Pi: set of all predecessors of operation with number i;

• ES: set of subsets of set N of operations which must be assigned to

the same station (inclusion constraints);

4.2. Aproaches to construct a solution 75

• ES: set of operation pairs (i, j)which cannot be assigned to the same

station (exclusion constraints);

• A: set of all possible part fixing positions;

• Ai: set of part fixing positions for operation i (subset of A);

• ti: time needed to execute operation i;

• ti,j : setup time for switching from operation i to operation j (which

means that full time for executing both operation is ti + ti,j + tj);

• TMAX : upper bound for line cycle time;

• CoS: cost of one CNC machine;

• CoMAX : upper bound on total investment cost;

• M = {1, . . . ,MaMAX}: set of possible numbers of machines on a

station;

The multi-objective optimisation problem can be formulated with the

following MIP:

min
n

∑

i=1

(cS.σi + cM .µi) (4.1)

76 Chapter 4. Bi-criteria Transfer Line Balancing Problem

s.c.

σi ≥ Tc− TMAX ∗ (1−

c0
∑

c=1

xi,c), i = 1, . . . , n (4.2)

µi ≥ c ∗ (Tc− TMAX ∗ (1−

c0
∑

c′=c

xi,c′)), i = 1, . . . , n, c = 1, . . . , c0 (4.3)

cS ∗
n

∑

i=1

c0
∑

c=1

xi,c + cM ∗
n

∑

i=1

c0
∑

c=1

c ∗ xi,c ≤ CoMAX (4.4)

Tc ≤ TMAX (4.5)
n

∑

i=1

c0
∑

c=1

xi,c ≤ w0, (4.6)

c0
∑

c=1

xi,c ≤ 1, i = 1, . . . , n− 1 (4.7)

c0
∑

c=1

xn,c = 1 (4.8)

b−1
∑

i=a

c0
∑

c=1

xi,c ≥ 1, (a, b) ∈ ES (4.9)

maxj∈I {j}
∑

i=minj∈I {j}

c0
∑

c=1

xi,c = 0, I ∈ ES (4.10)

τi ≥ τi−1 + ti + ti−1,i −M.

c0
∑

c=1

xi−1,c, i = 2, . . . , n (4.11)

τi ≤ c.T c+M(1−
c

∑

c′=1

xi,c′), i = 1, . . . , n, c = 1, . . . , c0 (4.12)

i+n0−1
∑

j=i

c0
∑

c=1

xj,c ≥ 1, i = 1, . . . , n− n0 + 1 (4.13)

max {l∈{i,...,n}|∩r∈[i,l]Ar 6=∅}
∑

j=i

c0
∑

c=1

xj,c ≥ 1, i = 1, . . . , n (4.14)

xi,c ∈ {0, 1}, i = 1, . . . , n, c = 1, . . . , c0 (4.15)

τi ≥ ti, i = 1, . . . , n (4.16)

Tc ≥ 0 (4.17)

In the described model the decision variables xi,k are equal to 1 if op-

eration i is the last operation assigned to a workstation equipped with k

CNC machines, τi is the workload time accumulated on the current work-

station up to operation i, and T corresponds to the cycle time of the line.

4.2. Aproaches to construct a solution 77

σi is equal to the cycle time of the line if operation i is the last operation

signed to a workstation and 0 otherwise, µi is equal to the cycle time of the

line multiplied by the number of CNC machines which equip the current

workstation if operation i is the last operation assigned to a workstation

and 0 otherwise. However solution of the model does not have informa-

tion about part fixing position, the constrain 4.14 ensures that there is fea-

sible solution in the meaning of part position for each workstation.

4.2.2 Local search on the number of machines

Let’s consider an assignment of all operations to workstation is known

and fixed. The remaining decisions in this case are:

• Sequence of operations on each workstation;

• Number of CNC machines used on each workstation;

• Part fixing position on each workstation (which is trivial due to

known assignment of operations).

The first decision corresponds to a single machine scheduling problem

with sequence-dependent setup time and precedence constraints which

has to be solved for each workstation. As shown by (Bigras et al., 2008),

this problem is equivalent to a time-dependent traveling salesman prob-

lem for which various MIP formulations and algorithms have been pro-

posed.

The second decision can be obtained with the following algorithm:

• Generate S1 with 1 CNC machine per workstation

• Determine the workstation w1 with the largest workload

• Set i to 1

• Until wi has the maximal number of CNC machine repeat

– Generate Si+1 by adding 1 CNC machine to wi

– Determine the workstation wi+1 with the largest local cycle time

– Increment i

• End repeat

78 Chapter 4. Bi-criteria Transfer Line Balancing Problem

4.2.3 Combining lines

Let’s consider a solution corresponding to a feasible RML denotedX . The

cost and the cycle time of this solution are denoted C(X) and T (X), re-

spectively. In case we are searching for a solution with lower cycle time

than cycle time of solution X , we can a production system X(2) composed

of two identical production lines X working in parallel. The cost of the

obtained line will be twice more than the cost of X , but at the same time

the cycle time of X(2) will be just a half of X .

Similar to the above, we can consider a production system of 2 parallel

production lines X and Y . Defining the combination of lines X and Y as

(X + Y), the cost and cycle time of combined system can be calculated as

follows:







C(〈X + Y 〉) = C(X) + C(Y)

T (〈X + Y 〉) =
T (X)× T (Y)

T (X) + T (Y)

(4.18)

We can easily demonstrate that the cycle time of the combined solution

is al- ways lower than those of each initial line, which means that the so-

lution generated by combination neither dominates nor is dominated by

any of the initial solutions.

4.2.4 Greedy Randomised Adaptive Search Procedure

We propose the following metaheuristic algorithm, which is based on ran-

dom generation of set of initial allowed sequences and applying 3 men-

tioned above approaches to obtain and improve solutions for the overall

studied multi-objective problem:

• Create a pool of potentially non-dominated solutions

• Until stopping criteria repeat

– Generate a random sequence with respect to the precedences

– Check the feasibility of the sequence for inclusion, exclusion

and accessibility constraints

– Solve the MIP with a solver (section 4.2.1)

– Apply local search procedure (section 4.2.2)

– Update the pool

4.3. Computational Experiments 79

– While new solutions are added to the pool do

∗ For each pair of solutions in the pool do

· Combine them to generate a new solution (section 4.2.3)

· Update the pool

∗ End do

– End do

• End repeat

4.3 Computational Experiments

We have tested proposed approach on an example of reconfigurable trans-

fer line where 26 operations has to be performed to produce a product.

Precedence graph for the operations has 14 direct relations. There are 2

exclusion sets, 3 inclusion sets and 3 part-fixing positions. All computer

experiment were performed on 2,6 GHz Intel Core i7 mobile processor

equipped with 8 GB 1600 MHz DDR3 RAM memory and SSD disk. IBM

CPLEX solver were used for solvingMIP problems. The final implementa-

tion of GRASP procedure including all sub approaches were implemented

in C#

Studied as an example production line has the following key parame-

ters and restrictions:

• Costs

– One workstations - 50,000

– One CNC machine - 200,000

• Upper bounds

– Cycle time - 40

– Cost - 10,000,000

– Machines per workstation - 3

– Operations per workstation - 10

– Workstations per line - 10

– Parallel lines - 3

80 Chapter 4. Bi-criteria Transfer Line Balancing Problem

FIGURE 4.1: Analysis of the final Pareto front obtained

On the Figure 4.1 we provide the obtained non dominated solutions

and final Pareto front based on those solutions.

If the solution generated with CPLEX are mostly at the center of the

Pareto front, it is interesting to note that local search tends to obtain so-

lutions with lower cost and higher cycle time, but very similar efficiency.

Solution combination provides higher efficiency in the range of lower cy-

cle time and higher total cost.

4.4 Conclusions

Preliminary results of this chapter were described in [32].

In this chapter we addressed several problems arising during single

product transfer line design. By solving single-objective MIP model for

a previously generated feasible random sequence of operation we solved

balancing problem (assignment of operations to stations) and equipment

problem (Choice of number of machines). During local search procedure

we also solved a scheduling problem (choosing sequence of operation) for

each station (but not globally for entire line). Combination of lines into

parallel production lines reduce cycle time of generated production sys-

tem. Integration of all described approaches in a meta heuristic allowed

4.4. Conclusions 81

us to solve line balancing problem for reconfigurable transfer line taking

into account two main criteria (total cost and cycle time) at the same time.

Multi-objective optimisation methods for assembly lines are relevant,

because they better addresses needs of manufactures, those are trying to

minimise all spending resources to achieve maximum gain. Another im-

portant performance indicator for industry is a how fast line can be recon-

figured to produce a new product, which can be characterised by level of

reconfigurability, which was not considered in this chapter, but is a subject

for future research.

83

Chapter 5

amePLM project

5.1 Introduction

Developed techniques and results obtained in Chapter 2 were used in eu-

ropean project amePLM [1]. amePLM (advanced platform for manufac-

turing engineering and PLM, FoF-ICT-285171) is a project funded by the

European Commission in the frame of the Factories-of-the-Future Public-

Private-Partnership. The project began at October 1st, 2011 and had a du-

ration of almost 4 years and ended in May 2015. amePLM brings together

an exciting project consortium comprising industrial partners - Intel, MB

Technology, RTT, Aerogen and Shannon Coiled Springs - with research

and development partners - Fraunhofer IAO, Ontoprise, Politecnico di

Torino, Armines, University of Limerick, University of Nottingham, and

Universita degli Studi di Trietse.

The development of products and productions in industrial compa-

nies can be characterized by large amounts of information from a vari-

ety of disciplines and backgrounds, created and processed by a multi-

tude of methods and tools that have to be considered to realise new prod-

ucts in short time-to-market and time-to-production in a cost-effective and

resource-optimized manner. Therefore, the focus of amePLM is to support

knowledge-based cross-disciplinary collaborative engineering. Essential

challenges of this focus include:

• engineering in development and manufacturing is often done in a

multidisciplinary manner;

• decision making in engineering often involves specialists from dif-

ferent backgrounds, organisational departments and potentially lo-

cations;

• engineering is often done in company networks or clusters, leading

to a variety of methods, tools and systems that are concerned to a

84 Chapter 5. amePLM project

situation that is comparable to large companies, where a multitude

of systems are used;

• the support of engineering activities by different tools and systems

results in information flows that have to be seamlessly realised

through the concerned systems by continuous engineering work-

flows;

• experiences and knowledge of all partners along the lifecycle of a

product have to be considered already in the early phases of manu-

facturing and engineering to facilitate short time-to-market and -to-

production by less iteration cycles and assuring cost-effective high

quality products that are needed to support the competitiveness of

European industrial companies, especially when looking to emerg-

ing and existing competitors from the BRIC countries.

5.2 Objectives of the project

amePLM targets the support of product and production engineers by a

radically new and extensible approach to collaborative engineering of

products and productions that leverages state-of-the art research on se-

mantics, heuristics and visualization. The main work areas of amePLM

are therefore:

• to support users with appropriate knowledge, experiences and in-

formation, relieve them from extensive manual retrieval of informa-

tion„

• to facilitate continuous information flows and workflows in engi-

neering,

• to provide users with situation- and context-specific solutionmethod

support for complex tasks and decisions in design, analysis, virtual

testing and optimization in engineering,

• to enable users to handle, investigate and manipulate complex and

large sets of information by appropriate visualisation support, and

• to support complex collaborative tasks of decision making by appro-

priate methods and tools.

5.3. Intelligent Information Layer 85

One of the key objectives for industrial partners in the amePLMproject,

which represents a subset of industry needs, is to reduce the time for in-

formation retrieval for engineers and accelerating the product and product

engineering through capturing and re-use of knowledge and experiences

along the product lifecycle.

5.3 Intelligent Information Layer

The amePLM ontologies are the basis of the amePLM platform. The first

kind of ontology, i.e., the data model ontology, is accessed by the applica-

tion modules through the semantic backend, which is the set of functions

available to insert data as ontology instances and retrieve the informa-

tion previously stored. The second kind of ontology, i.e., the taxonomy, is

used to tag the documents and any other knowledge item involved in the

product lifecycle of the company. This taxonomy is also used to perform

semantic searches among them. The ontology-set is utilised by different

parts of the amePLM intelligent information layer (IIL) as can be seen in

Figure 5.1, which specifies as the amePLM knowledge structure.

There are several pilot cases studied during the amePLM project. Later

in this chapter MB-T pilot that support the company during the optimisa-

tion of a virtual production facility will be discovered. There are models

for each pilot, those represent the data structure for the information that

have to be stored for each pilot case in order to allow the efficient man-

agement of its lifecycle, accordingly with the requirements expressed by

the five pilots. The information stored according to these models can be

accessed and managed by the other modules through the Intelligent Infor-

mation Layer, and particularly the semantic backend. All the other mod-

ules and components of the amePLM platform will consider these mod-

els as a reference to store and retrieve data. One of the major benefits of

the ontologies is that they allow the linking of different product lifecycle

stages within the platform, while the domain ontologies serve as meta-

data repositories to give the individual knowledge items and documents

a meaning within the platform.

86 Chapter 5. amePLM project

FIGURE 5.1: Structure of Intelligent Information Layer

5.4 3D workspace

The amePLM consortium proposed the concept of the 3D workspace as

a means to create containers for a specific work context, into which arte-

facts supporting that context can be assembled, providing an environment

where the computer becomes more like an intelligent assistant, allowing

the user to explore, refine, annotate and synthesise their knowledge.

The main aim of the amePLM platform is not to substitute existing so-

lutions used within companies but seamlessly integrate information and

knowledge coming from different stages of the product life cycle (PLC)

and support the creation, sharing, retrieval and preservation of knowl-

edge along the PLC. The 3Dworkspace created to support such integrated

’Information Ecology’ experience (Find it, Keep it, Build on it, Share it) in

a unifying way across an engineer’s environment of information, particu-

larly when combinedwith an intelligent information layer (IIL) (see Figure

5.2).

5.5. Developed optimisation module and its integration 87

FIGURE 5.2: Information Ecology within amePLM

The 3D workspace Miramar is a client side application. With the 3D

workspace being a key user interface to access the various modules of the

amePLM platform, it has been used across all trials to enable users to in-

teract with the amePLM Engineering platform.

5.5 Developed optimisation module and its inte-

gration

Developed heuristic methods were implemented inside the optimisation

module, which was integrated to amePLM platform. This module has the

structure shown in Figure 5.3. The optimisation module was tested and

demonstrated on MBTech pilot.

Due to its architecture, the optimisation module can easily communi-

cate with the amePLM ontology and other engineering modules of the

platform. The front-end integration of the optimisation module is imple-

mented viaMiramar (an example is shown in Figure 5.4), which is done by

hosting the optimisation module on a web server and allowing miramar

to access it via web url from the Miramar internal web browser. And the

88 Chapter 5. amePLM project

FIGURE 5.3: Structure of the optimisation module

backend Integration of the optimisation module is attained via an Intelli-

gent Information Layer (IIL) by using the API of IIL to retrieve all the files

already added and stored inside the platform related to optimization. All

the files containing input data can be solved with optimisation module.

Obtained results can be saved back to IIL.

The amePLM platform is used to store all the information relevant for

the product lifecycle via Miramar into IIL. They can be retrieved through

the Intelligent Information Layer search functionality and used to create

input file for the optimisation tool. After the optimisation is finished, the

results can be stored as information item within Intelligent Information

Layer via Miramar and other meta-data can be added for future informa-

tion retrieval. Therefore, users may use the optimisation module through

the platform in various ways:

1. The data for the optimisationmodule can be extracted from amePLM

ontology.

2. The input and output files used by the optimisation module can be

5.5. Developed optimisation module and its integration 89

FIGURE 5.4: Optimisation module in Miramar environ-

ment

stored in the platform and enriched by meta-data to facilitate the

information retrieval.

3. The optimisation results stored in the platform can be used for other

platform modules.

For each product sequence, the module will screen the data describing

worker’s utilization in text (Figure 5.5) and visual (Figure 5.6) formats.

The aim of text format is to list all the workers and for each worker pro-

vide the list of task he needs to perform or to list all the tasks and provide

the information to each of it about home many workers are needed and

exact worker numbers. Such output (both workers list and tasks list) pro-

vides the full information about the obtained solution and can be used as

an input file for any other tools. At the same time, the visual format helps

an end user to analyse the obtained solution. This colorful visualization

format has been conceived in the following way:

1. Each bar represent one worker. For example, 26 bars in Figure 11

represent 26 workers needed for the line designed.

90 Chapter 5. amePLM project

FIGURE 5.5: Results in text format

FIGURE 5.6: Results in visual format

2. Each workstation is represented by its own color. For example, pur-

ple color of the first 3 bars corresponds to RM01 main station and

green color corresponds to VM 01.1 substation. Colors of the 4-th

bars correspond to the stations RM02, VM 02.1 and VM 02.2 and etc.

5.5. Developed optimisation module and its integration 91

3. All green tones correspond to sub stations and all non-green to main

stations.

4. The vertical axis of the bar means time. Full height of the bar corre-

sponds to the cycle time, so all blanc (white) spaces are idle times.

5. There are also sub bars with a label inside them. Each sub bar corre-

sponds to a task performed by theworker and a label inside indicates

the task number (see Figure 5.7).

FIGURE 5.7: Visualisation of individual tasks

6. Each worker starts to perform his/her list of the task from the bot-

tom. And he/she performs the tasks one by one in ascending order

until the task at the top is completed.

7. Labels below the bars have the format like ’wN -M ’, where N indi-

cates the number of the worker andM stands for the station number.

For example, w4-2 means that the 4-th worker is performing tasks on

the station 2 (both substation andmain station). The label like w21-1,

4 means that the worker with number 21 works on both 1st and 4th

stations.

8. Each picture illustrates only one cycle. There is a dropdown to select

the cycle to show (see Figure 5.8).

92 Chapter 5. amePLM project

FIGURE 5.8: Visualisation for production cycles

5.6 Conclusions

Since the line configuration problem is highly combinatorial, the optimal

solution is hard to find, in practice for our industrial partner this results in

the approach ’Trial and error’ validated by a simulation model. The use of

an optimisation model before the simulation helps to reduce the number

of trials and to save the time in finding the best solution. Therefore, the

use of the optimisation module helps to improve both the quality of the

solution obtained and the time spent on the project.

A component based approach chosen for the platform consisting of the

IIL functioning as semantic middleware, the 3D workspace as central user

interface to facilitate collaborative and distributed knowledge-capturing

along the PLC and engineering models serving as interoperable models

5.6. Conclusions 93

for capturing and re-usage of product and manufacturing related engi-

neering knowledge allowed to build a flexible and extensible platform.

The optimisation module (as one of the engineering modules) successfully

integrated in the platform amePLM and available as service for industrial

partners. The example of its integration can serve for further integration

of other modules available as service in the platform.

95

General Conclusions

From the perspective of themodern advanced technology and production,

initial assembly lines were simple, small amount of non complicated oper-

ations were executed. Even if any kind of optimisation of production line

was used, it was applied without any electronic devises. Computer revo-

lution had changed a lot. It influenced on the assembly lines and allowed

to create more complex production lines controlled by computers. And

vice versa evolution of production lines leads to more advanced electronic

systems. Complex mathematical models and methods were developed to

reflect new generations of complicated production systems. Solving new

problems by humans without the use of special tools is no longer possible.

Many programming languages were created in order to implement devel-

oped methods and algorithms in a software tools. Those software tools

consist of a machine code representing developed methods understand-

able by computer and output data with a solution in human readable for-

mat. That allowed to use computational power for solving optimisation

problems for production systems. The final decision making for manufac-

tures is based on results of solving optimisation problem and another fac-

tors such as financial, technological, economical, payback time and so on.

This thesis is a synthesis of mathematical methods and their implementa-

tions inside software tools for decision support is design of assembly and

transfer lines.

The results of the thesis are the following.

• New workforce minimisation problem for semi automatic multi

product paced assembly line with chains precedence relations and

condition that several identical workers can be assigned to one sta-

tion was solved. Computer implementation of developed heuristic

methods was integrated to a software tool with graphical user in-

terface for personal computers equipped with Windows operation

systems. That tool was supplied to our industrial partner in order

to help in decision making during final procedure of production line

design.

96 Chapter 5. amePLM project

• New problem of minimisation of number of workers for multi prod-

uct serial assembly line with arbitrary acyclic graph was solved

by a bisection search reduction to a series of feasibility problems

Feasible(Q). Problems Feasible(Q) solved optimally with a devel-

oped MIP approach. Computer experiments of MIP model and de-

veloped heuristic methods were performed.

• New multi objective approach for single product transfer line bal-

ancing problem was developed and tested on a computer. Method

includes solving of scheduling for each station problem, balancing

and equipment problems for entire production line.

• Another web based software tool with a core optimisation module

based on workforce minimisation methods was created and inte-

grated inside amePLM platform during european project.

97

Appendix A

Computer experiment results for

problem Feasible(Q) with 20

operations

Number

of

Stations

Sum

of

task

times

LB UB q Idle (%) Feasible(q) Time (s)

1 4 2882 3 6 3 3.93% TRUE 1.58

2 3 2861 3 5 3 4.63% TRUE 168.37

3 3 2785 3 5 3 7.17% TRUE 6.97

4 3 2727 3 4 3 9.10% TRUE 1.92

5 3 2837 3 4 3 5.43% TRUE 2.17

6 2 2914 3 4 3 2.87% TRUE 2.61

7 3 2786 3 5 3 7.13% TRUE 1.45

8 1 2985 3 3 3 0.50% FALSE 3598.58

9 2 2925 3 4 3 2.50% TRUE 17.04

10 4 2831 3 6 3 5.63% TRUE 2.76

11 3 2766 3 5 3 7.80% TRUE 1.58

12 3 2930 3 4 3 2.33% TRUE 34.06

13 3 2896 3 4 3 3.47% TRUE 6.78

14 3 2979 3 4 3 0.70% TRUE 30.77

15 4 2981 3 6 3 0.63% TRUE 2943.98

16 3 10376 11 11 11 5.67% FALSE 3599.58

17 4 9134 10 11 10 8.66% TRUE 2390.16

18 2 9524 10 11 10 4.76% FALSE 3599.91

11 13.42% FALSE 3599.98

19 2 11113 12 12 12 7.39% FALSE 3599.98

98
Appendix A. Computer experiment results for problem Feasible(Q) with

20 operations

20 3 9829 10 11 10 1.71% FALSE 3599.98

11 10.65% TRUE 2258.16

21 3 11256 12 13 12 6.20% FALSE 3599.88

13 13.42% FALSE 3599.27

22 2 10171 11 11 11 7.54% FALSE 3598.58

23 4 10374 11 12 11 5.69% FALSE 3601.54

12 13.55% FALSE 3600.08

24 4 9982 10 11 10 0.18% FALSE 3600.50

11 9.25% FALSE 3600.70

25 2 9670 10 10 10 3.30% FALSE 3600.64

26 3 10110 11 11 11 8.09% FALSE 3600.61

27 3 10521 11 12 11 4.35% FALSE 3601.83

12 12.33% FALSE 3600.64

28 2 10138 11 11 11 7.84% FALSE 3602.74

29 5 9079 10 11 10 9.21% TRUE 836.63

30 3 11578 12 13 12 3.52% FALSE 3600.60

13 10.94% FALSE 3600.74

31 3 10270 11 12 11 6.64% TRUE 3052.23

32 1 10489 11 11 11 4.65% FALSE 3600.57

33 3 9944 10 11 10 0.56% FALSE 3600.84

11 9.60% FALSE 3600.63

34 3 10203 11 12 11 7.25% FALSE 3600.60

12 14.98% FALSE 3600.83

35 1 9906 10 10 10 0.94% FALSE 3600.48

36 2 10314 11 12 11 6.24% FALSE 3600.49

12 14.05% FALSE 3600.54

37 3 10328 11 12 11 6.11% FALSE 3600.46

12 13.93% FALSE 3612.06

38 3 10083 11 11 11 8.34% FALSE 3600.59

39 2 10662 11 11 11 3.07% FALSE 3600.68

40 3 10193 11 11 11 7.34% FALSE 3600.66

41 5 5156 6 8 6 14.07% TRUE 36.06

42 3 4391 5 6 5 12.18% TRUE 32.00

43 4 4688 5 6 5 6.24% TRUE 106.77

44 4 4561 5 7 5 8.78% TRUE 5.80

45 3 5320 6 7 6 11.33% TRUE 75.05

Appendix A. Computer experiment results for problem Feasible(Q) with

20 operations
99

46 2 3540 4 5 4 11.50% TRUE 4.13

47 3 3690 4 5 4 7.75% TRUE 14.70

48 3 4851 5 7 5 2.98% FALSE 3600.23

6 19.15% TRUE 3.44

49 3 3888 4 5 4 2.80% TRUE 35.63

50 4 3576 4 6 4 10.60% TRUE 5.05

51 2 3701 4 5 4 7.48% TRUE 334.39

52 4 3901 4 6 4 2.48% TRUE 191.20

53 4 4501 5 7 5 9.98% TRUE 99.02

54 3 4192 5 6 5 16.16% TRUE 10.02

55 3 4492 5 6 5 10.16% TRUE 5.45

56 2 3865 4 5 4 3.38% TRUE 2.63

57 3 3714 4 5 4 7.15% TRUE 4.34

58 3 4296 5 5 5 14.08% TRUE 12.66

59 4 3985 4 7 4 0.38% FALSE 3600.39

5 20.30% TRUE 3.34

60 4 5144 6 8 6 14.27% TRUE 18.20

61 2 6202 7 7 7 11.40% TRUE 526.35

62 4 4276 5 6 5 14.48% TRUE 11.69

63 5 4650 5 8 5 7.00% TRUE 7.41

64 3 4877 5 7 5 2.46% TRUE 71.97

65 3 4564 5 6 5 8.72% TRUE 11.95

66 1 2743 3 3 3 8.57% TRUE 2.33

67 1 2942 3 3 3 1.93% TRUE 23.25

68 1 2906 3 3 3 3.13% TRUE 44.84

69 1 1972 2 2 2 1.40% TRUE 0.37

70 1 2985 3 3 3 0.50% TRUE 245.49

71 1 2957 3 3 3 1.43% TRUE 64.00

72 1 2827 3 3 3 5.77% TRUE 26.76

73 1 1933 2 2 2 3.35% TRUE 0.42

74 1 2792 3 3 3 6.93% TRUE 2.83

75 2 2886 3 4 3 3.80% TRUE 9.95

76 1 2903 3 3 3 3.23% TRUE 2.67

77 1 2939 3 3 3 2.03% TRUE 19.77

78 1 2810 3 3 3 6.33% TRUE 3.27

79 1 2945 3 3 3 1.83% TRUE 75.00

100
Appendix A. Computer experiment results for problem Feasible(Q) with

20 operations

80 1 2914 3 3 3 2.87% TRUE 98.08

81 1 2937 3 3 3 2.10% TRUE 64.72

82 1 3505 4 4 4 12.38% TRUE 4.64

83 1 2847 3 3 3 5.10% TRUE 165.96

84 1 2932 3 3 3 2.27% TRUE 232.40

85 1 2817 3 3 3 6.10% TRUE 16.81

86 1 2912 3 3 3 2.93% TRUE 566.39

87 1 2824 3 3 3 5.87% TRUE 15.94

88 1 2727 3 3 3 9.10% TRUE 9.77

89 1 2877 3 3 3 4.10% TRUE 12.17

90 1 2807 3 3 3 6.43% TRUE 11.08

91 1 9478 10 10 10 5.22% FALSE 3600.81

92 1 9786 10 10 10 2.14% FALSE 3600.66

93 1 10465 11 11 11 4.86% FALSE 3600.56

94 1 9224 10 10 10 7.76% FALSE 3600.48

95 1 9527 10 10 10 4.73% FALSE 3600.55

96 1 9537 10 10 10 4.63% FALSE 3600.43

97 1 10460 11 11 11 4.91% FALSE 3600.55

98 1 10293 11 11 11 6.43% FALSE 3600.56

99 1 10219 11 11 11 7.10% FALSE 3600.54

100 1 9448 10 10 10 5.52% FALSE 3600.42

101 1 9979 10 10 10 0.21% FALSE 3600.51

102 1 10067 11 11 11 8.48% FALSE 3600.41

103 1 9823 10 10 10 1.77% FALSE 3600.43

104 1 9561 10 10 10 4.39% TRUE 788.76

105 1 10532 11 11 11 4.25% FALSE 3600.36

106 2 9330 10 10 10 6.70% FALSE 3600.49

107 1 10770 11 11 11 2.09% FALSE 3600.54

108 1 10672 11 11 11 2.98% FALSE 3600.43

109 1 10183 11 11 11 7.43% FALSE 3600.75

110 2 9743 10 11 10 2.57% TRUE 448.80

111 1 10295 11 11 11 6.41% FALSE 3600.75

112 1 9815 10 10 10 1.85% FALSE 3600.67

113 1 9741 10 10 10 2.59% FALSE 3600.55

114 1 10203 11 11 11 7.25% TRUE 406.22

115 1 9661 10 10 10 3.39% FALSE 3600.51

Appendix A. Computer experiment results for problem Feasible(Q) with

20 operations
101

116 1 4592 5 5 5 8.16% TRUE 8.28

117 1 4641 5 5 5 7.18% TRUE 126.53

118 1 4546 5 5 5 9.08% TRUE 61.09

119 1 5779 6 6 6 3.68% TRUE 322.28

120 1 5485 6 6 6 8.58% TRUE 135.09

121 1 4888 5 5 5 2.24% TRUE 797.33

122 1 5277 6 6 6 12.05% TRUE 115.97

123 1 4514 5 5 5 9.72% TRUE 25.27

124 1 4226 5 5 5 15.48% TRUE 21.33

125 1 4231 5 5 5 15.38% TRUE 6.08

126 1 4411 5 5 5 11.78% TRUE 30.50

127 1 3634 4 4 4 9.15% TRUE 4.66

128 1 4615 5 5 5 7.70% TRUE 58.88

129 1 4639 5 5 5 7.22% TRUE 2650.91

130 1 5381 6 6 6 10.32% TRUE 995.47

131 1 6542 7 7 7 6.54% FALSE 3612.84

132 1 3614 4 4 4 9.65% TRUE 35.89

133 1 4580 5 5 5 8.40% TRUE 86.50

134 1 5262 6 6 6 12.30% TRUE 49.98

135 2 5041 6 6 6 15.98% TRUE 82.45

136 1 4946 5 5 5 1.08% TRUE 734.02

137 1 4677 5 5 5 6.46% TRUE 207.26

138 1 4852 5 5 5 2.96% TRUE 277.65

139 1 4818 5 5 5 3.64% FALSE 3600.25

140 1 4763 5 5 5 4.74% TRUE 294.20

141 4 2908 3 4 3 3.07% TRUE 4.84

142 4 2808 3 6 3 6.40% TRUE 1.50

143 4 2934 3 5 3 2.20% TRUE 9.05

144 2 3507 4 4 4 12.33% TRUE 3.33

145 3 2966 3 5 3 1.13% TRUE 23.64

146 4 2672 3 5 3 10.93% TRUE 1.70

147 6 2857 3 7 3 4.77% TRUE 8.37

148 5 2852 3 5 3 4.93% TRUE 3.78

149 5 2938 3 6 3 2.07% TRUE 15.30

150 2 2962 3 4 3 1.27% TRUE 67.31

151 5 2870 3 6 3 4.33% TRUE 2.23

102
Appendix A. Computer experiment results for problem Feasible(Q) with

20 operations

152 4 2781 3 5 3 7.30% TRUE 1.52

153 4 2940 3 5 3 2.00% TRUE 4.05

154 4 2859 3 5 3 4.70% TRUE 2.81

155 3 2735 3 5 3 8.83% TRUE 1.66

156 4 2785 3 5 3 7.17% TRUE 1.39

157 6 2823 3 6 3 5.90% TRUE 1.37

158 6 2924 3 7 3 2.53% TRUE 31.91

159 3 2781 3 5 3 7.30% TRUE 1.91

160 2 2969 3 4 3 1.03% TRUE 19.81

161 5 2940 3 5 3 2.00% TRUE 65.45

162 4 2766 3 4 3 7.80% TRUE 2.02

163 2 2964 3 4 3 1.20% TRUE 50.89

164 3 3456 4 5 4 13.60% TRUE 4.09

165 5 2865 3 5 3 4.50% TRUE 7.08

166 4 10257 11 12 11 6.75% FALSE 3600.61

12 14.53% TRUE 1001.92

167 2 9497 10 10 10 5.03% FALSE 3600.92

168 5 9512 10 12 10 4.88% FALSE 3600.62

11 13.53% TRUE 911.76

169 4 9448 10 12 10 5.52% TRUE 2762.55

170 5 10001 11 12 11 9.08% FALSE 3600.72

12 16.66% FALSE 3600.49

171 6 10414 11 14 11 5.33% FALSE 3601.57

12 13.22% FALSE 3600.71

13 19.89% TRUE 2741.05

172 4 9979 10 12 10 0.21% FALSE 3600.73

11 9.28% FALSE 3603.55

12 16.84% TRUE 318.42

173 3 10059 11 11 11 8.55% TRUE 1455.72

174 3 10408 11 12 11 5.38% FALSE 3600.57

12 13.27% FALSE 3601.12

175 2 9509 10 10 10 4.91% FALSE 3600.36

176 1 9525 10 10 10 4.75% FALSE 3600.47

177 4 8674 9 11 9 3.62% FALSE 3600.59

10 13.26% TRUE 1466.40

178 4 9919 10 12 10 0.81% FALSE 3600.48

Appendix A. Computer experiment results for problem Feasible(Q) with

20 operations
103

11 9.83% FALSE 3600.91

12 17.34% FALSE 3600.91

179 3 10019 11 12 11 8.92% FALSE 3601.14

12 16.51% FALSE 3608.28

180 4 10238 11 13 11 6.93% FALSE 3600.52

12 14.68% TRUE 1167.77

181 4 10053 11 13 11 8.61% FALSE 3600.38

12 16.23% FALSE 3600.47

13 22.67% FALSE 3600.80

182 2 9611 10 11 10 3.89% FALSE 3600.54

11 12.63% TRUE 1073.85

183 5 9855 10 12 10 1.45% FALSE 3600.77

11 10.41% FALSE 3600.78

12 17.88% TRUE 1337.00

184 5 10304 11 13 11 6.33% FALSE 3600.63

12 14.13% TRUE 3148.97

185 4 10853 11 13 11 1.34% FALSE 3600.50

12 9.56% FALSE 3600.54

13 16.52% FALSE 3600.93

186 2 10943 11 12 11 0.52% FALSE 3600.51

12 8.81% FALSE 3600.61

187 2 9287 10 10 10 7.13% FALSE 3600.73

188 3 9646 10 11 10 3.54% FALSE 3622.26

11 12.31% FALSE 3600.93

189 3 10312 11 12 11 6.25% FALSE 3600.78

12 14.07% FALSE 3600.69

190 3 10762 11 12 11 2.16% FALSE 3600.84

12 10.32% FALSE 3601.13

191 6 3709 4 7 4 7.28% TRUE 4.97

192 4 4669 5 7 5 6.62% TRUE 7.27

193 3 4577 5 7 5 8.46% TRUE 16.70

194 5 5099 6 7 6 15.02% TRUE 17.19

195 5 5023 6 9 6 16.28% TRUE 69.25

196 6 4511 5 8 5 9.78% TRUE 14.14

197 4 3951 4 6 4 1.23% TRUE 19.05

198 4 5322 6 8 6 11.30% TRUE 102.27

104
Appendix A. Computer experiment results for problem Feasible(Q) with

20 operations

199 4 4669 5 6 5 6.62% TRUE 26.30

200 3 5195 6 7 6 13.42% TRUE 100.46

201 6 5401 6 8 6 9.98% TRUE 9.81

202 4 3984 4 6 4 0.40% TRUE 187.19

203 2 3920 4 5 4 2.00% TRUE 128.97

204 4 4762 5 7 5 4.76% TRUE 67.17

205 3 5044 6 7 6 15.93% TRUE 87.17

206 3 4632 5 6 5 7.36% TRUE 74.14

207 3 5163 6 7 6 13.95% TRUE 9.98

208 5 4906 5 7 5 1.88% TRUE 271.43

209 2 3859 4 5 4 3.53% TRUE 7.09

210 5 4603 5 8 5 7.94% TRUE 13.63

211 3 4178 5 5 5 16.44% TRUE 13.58

212 5 4685 5 9 5 6.30% TRUE 48.85

213 3 4124 5 6 5 17.52% TRUE 6.89

214 3 4766 5 7 5 4.68% TRUE 33.14

215 4 4783 5 6 5 4.34% TRUE 83.08

216 1 2928 3 3 3 2.40% TRUE 2.66

217 1 3532 4 4 4 11.70% TRUE 14.53

218 1 2870 3 3 3 4.33% TRUE 3.52

219 1 2816 3 3 3 6.13% TRUE 242.02

220 1 2954 3 3 3 1.53% TRUE 102.11

221 1 2857 3 3 3 4.77% TRUE 34.86

222 1 2882 3 3 3 3.93% TRUE 19.16

223 1 2835 3 3 3 5.50% TRUE 3.11

224 1 2808 3 3 3 6.40% TRUE 16.84

225 1 2791 3 3 3 6.97% TRUE 21.34

226 1 2934 3 3 3 2.20% TRUE 430.29

227 1 2872 3 3 3 4.27% TRUE 25.34

228 1 1891 2 2 2 5.45% TRUE 0.44

229 1 2969 3 3 3 1.03% FALSE 3600.07

230 1 2782 3 3 3 7.27% TRUE 8.66

231 1 2848 3 3 3 5.07% TRUE 3.36

232 1 2933 3 3 3 2.23% TRUE 576.10

233 1 2772 3 3 3 7.60% TRUE 2.39

234 1 2937 3 3 3 2.10% TRUE 3.67

Appendix A. Computer experiment results for problem Feasible(Q) with

20 operations
105

235 1 2761 3 3 3 7.97% TRUE 6.23

236 1 2906 3 3 3 3.13% TRUE 24.28

237 1 2908 3 3 3 3.07% TRUE 21.41

238 1 2854 3 3 3 4.87% TRUE 17.95

239 1 2785 3 3 3 7.17% TRUE 2.27

240 1 2910 3 3 3 3.00% TRUE 12.05

241 1 9944 10 10 10 0.56% FALSE 3600.28

242 1 9917 10 10 10 0.83% FALSE 3600.78

243 1 8837 9 9 9 1.81% FALSE 3600.64

244 1 9618 10 10 10 3.82% FALSE 3600.84

245 1 10379 11 11 11 5.65% FALSE 3601.32

246 1 10677 11 11 11 2.94% FALSE 3600.66

247 1 9485 10 10 10 5.15% FALSE 3600.75

248 1 9989 10 10 10 0.11% FALSE 3600.49

249 1 10171 11 11 11 7.54% TRUE 370.94

250 1 9192 10 10 10 8.08% FALSE 3600.37

TABLE A.1: Feasible(Q) with 20 operations

107

Appendix B

Computer experiment results for

workforce assignment problem

with 170 operations

S
am

e-
S
ta
ti
o
n
s

S
eq

u
en

ti
al
-S
ta
ti
o
n
s

S
eq

u
en

ti
al
-S
ta
ti
o
n
s-
R
an

d
o
m

S
eq

u
en

ti
al
-S
ta
ti
o
n
s-
O
n
e-
T
ra
v
el
in
g
-W

o
rk
er

M
in
-I
d
le
-O

n
e-
T
ra
v
el
in
g
-W

o
rk
er

R
an

d
o
m
-O

n
e-
T
ra
v
el
in
g
-W

o
rk
er

S
eq

u
en

ti
al
-A

d
d
it
io
n
al
-W

o
rk
er
s

R
an

d
o
m
-A

d
d
it
io
n
al
-W

o
rk
er
s

T
ak

t

L
B

W
o
rk
er
s

G
ap

(%
)

W
o
rk
er
s

G
ap

(%
)

W
o
rk
er
s

G
ap

(%
)

W
o
rk
er
s

G
ap

(%
)

W
o
rk
er
s

G
ap

(%
)

W
o
rk
er
s

G
ap

(%
)

W
o
rk
er
s

G
ap

(%
)

W
o
rk
er
s

G
ap

(%
)

1 24 29 21 36 50 32 33 27 13 27 13 25 4 27 13 25 4

2 24 29 21 36 50 32 33 26 8 27 8 25 4 28 17 26 8

3 23 28 22 36 57 28 22 26 13 26 13 25 9 26 13 25 9

4 24 30 25 40 67 32 33 26 8 26 8 26 8 27 13 26 8

5 24 29 21 36 50 32 33 26 8 26 8 25 4 27 13 26 8

6 23 29 26 36 57 32 39 26 13 26 13 25 9 26 13 24 4

7 24 29 21 36 50 32 33 25 4 25 4 25 4 27 13 26 8

8 24 29 21 36 50 32 33 29 21 29 21 26 8 27 13 26 8

108
Appendix B. Computer experiment results for workforce assignment

problem with 170 operations

9 23 29 26 36 57 28 22 27 17 27 17 25 9 27 17 25 9

10 24 29 21 36 50 32 33 26 8 26 8 25 4 27 13 26 8

11 23 28 22 36 57 28 22 27 17 27 17 25 9 27 17 24 4

12 24 29 21 36 50 32 33 26 8 26 8 25 4 27 13 25 4

13 24 29 21 36 50 28 17 26 8 26 8 25 4 26 8 25 4

14 24 30 25 36 50 32 33 26 8 26 8 25 4 27 13 25 4

15 24 29 21 36 50 32 33 26 8 26 8 25 4 27 13 26 8

16 24 29 21 36 50 32 33 26 8 26 8 26 8 27 13 25 4

17 24 29 21 36 50 32 33 26 8 26 8 25 4 27 13 25 4

18 24 30 25 36 50 32 33 27 13 27 13 26 8 27 13 26 8

19 24 30 25 36 50 32 33 26 8 26 8 25 4 28 17 25 4

20 24 29 21 36 50 32 33 26 8 26 8 25 4 28 17 26 8

TABLE B.1: Heuristics

109

Bibliography

[1] http://cordis.europa.eu/project/rcn/100702_en.html

[2] http://malyutins.github.io/Workforce_minimization/

[3] Akagi, F., Osaki, H., Kikuchi, S., 1983. A method for assembly line

balancing with more than one worker in each station. International

Journal of Production Research, 21(5), 755 - 770.

[4] Araújo, F.F.B., Costa, A.M., Miralles, C., 2012. Two extensions for the

ALWABP: Parallel stations and collaborative approach. International

Journal of Production Economics, 140(1), 483 - 495.

[5] Arcus A.L., 1966. A computer method of sequencing operations for

assembly lines. International Journal of Production Research, 4, 259 -

277.

[6] Artigues, C., Demassey, S., Néron, E., 2013. Resource-constrained

project scheduling: models, algorithms, extensions and applications.

ISTE Ltd and John Wiley & Sons.

[7] Barketau, M., Kovalyov, M.Y., Weglarz, J., Machowiak, M., 2014.

Scheduling arbitrary number of malleable tasks on multiprocessor

systems. Bulletin of the Polish Academy of Sciences Technical Sci-

ences. 62(2), 255 - 261.

[8] Battaïa, O., Delorme, X., Dolgui, A., Hagemann, J., Horlemann, A.,

Kovalev, S., Malyutin, S., 2015. Workforce minimization for a mixed-

model assembly line in the automotive industry, International Jour-

nal of Production Economics, 170, 489 - 500.

[9] Battaïa, O., Delorme, X., Dolgui, A., Hagemann, J., Kovalev, S.,

Malyutin, S., 2014. Optimal Designof Assembly Lines with Flexible

Workers, 20th Conference of the International Federation of Opera-

tional Research Societies (IFORS).

[10] Battaïa, O., Delorme, X., Dolgui, A., Malyutin, S., Horlemann, A., Ko-

valev, S., 2015. WorkforceMinimization for aMixed-Model Assembly

110 BIBLIOGRAPHY

Line, Preprints of the Eighteenth International Working Seminar on

Production Economics, 3, 51 - 63.

[11] Baybars I., 1986. A survey of exact algorithms for the simple assembly

line balancing problem. Management Science, 32(8), 909-932.

[12] Blazewicz, J., Machowiak, M., Weglarz, J., Kovalyov, M.Y., Trystram,

D., 2004. Scheduling malleable tasks on parallel processors to mini-

mize the makespan. Annals of Operations Research, 129, 65 - 80.

[13] Blazewicz, J., Cheng, T.C.E., Machowiak, M., Oguz, C., 2011. Berth

and quay crane allocation: amoldable task schedulingmodel. Journal

of the Operational Research Society, 62(7), 1189 - 1197.

[14] Blazewicz, J., Drabowski, M., Weglarz, J., 1986. Scheduling multipro-

cessor tasks to minimize schedule length. IEEE Transactions on Com-

puters. 35(5), 389 - 393.

[15] Blazewicz, J., Ecker, K., Plateau, B., Trystram, D., 2000. Handbook on

parallel and distributed processing, Springer, Berlin.

[16] Belmokhtar S., Dolgui A., Guschinsky N., Levin G., 2006. An integer

programming model for logical layout design of modular machining

lines. Computers and Industrial Engineering, 51(3), 502 - 518.

[17] Besikci, U., Bilge, U., Ulusoy, G., 2013. Resource dedication problem

in a multi-project environment, Flexible Services and Manufacturing

Journal, 25 (1-2), 206 - 229.

[18] Blum, C., Miralles, C., 2011. On solving the assembly line worker as-

signment and balancing problem via beam search. Computers & Op-

erations Research, 38(1), 328 - 329.

[19] Borba, L., Ritt, M., 2014. A heuristic and a branch-and-bound algo-

rithm for the Assembly LineWorker Assignment and Balancing Prob-

lem. Computers & Operations Research, 45, 87 - 96.

[20] Borisovsky P., Delorme X., Dolgui A., 2013. Genetic algorithm for bal-

ancing reconfigurable machining lines. Computers and Industrial En-

gineering.

[21] Boysen, N., Emde, S., 2014. Scheduling the part supply of mixed-

model assembly lines. European Journal of Operational Research,

239(3), 820 - 829.

BIBLIOGRAPHY 111

[22] Boysen N., Fliedner M., and Scholl A., 2008. Assembly line balanc-

ing: which model to use when. International Journal of Production

Economics, 111, 509 - 528.

[23] Boysen N., Fliedner M., Scholl A., 2007. A classification of assembly

line balancing problems. European Journal of Operational Research,

183, 674 - 693.

[24] Burkard, R.E., Dell’Amico, M., Martello, S., 2009. Assignment prob-

lems. SIAM e-books, Philadelphia.

[25] Burke, E., Trick, M., 2005. Practice and theory of automated

timetabling V: 5th International Conference. Springer.

[26] Camm, J.D., Magazine, M.J., Polak, G.G., Zaric, G.S., 2008. Schedul-

ing parallel assembly workstations to minimize a shared pool of la-

bor. IIE Transactions, 40(8), 749 - 758.

[27] J. C. Carver and T. Epperly, 2014. Software engineering for computa-

tional science and engineering, Computing in Science and Engineer-

ing, 16, 6 - 9.

[28] Choundhary, A.N., Narahari, B., Nicol, D.M., Simha, R., 1994. Opti-

mal processor assignment for a class of pipelined computations. IEEE

Transactions on Parallel and Distributed Systems, 5/4, 439 - 445.

[29] Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C., 2001. Introduc-

tion to Algorithms, 2nd edn. MIT Press, Cambridge, 10 - 12.

[30] Corominas, A., Pastor, R., Plans, J., 2008. Balancing assembly line

with skilled and unskilled workers. Omega, 36(6), 1126-1132.

[31] De Bruecker, P., Van den Bergh, J., Beliën, J., Demeulemeester, E.,

2015. Workforce planning incorporating skills: State of the art. Eu-

ropean Journal of Operational Research, 243(1), 1-16.

[32] Delorme, X., Dolgui, A., Malyutin S., 2014. A multi-objective algo-

rithm for balancing reconfigurable transfer lines, 20th Conference

of the International Federation of Operational Research Societies

(IFORS).

[33] Demeulemeester, E.L., Herroelen, W.S., Elmaghraby, S.E., 1996. Opti-

mal procedures for the discrete time/cost tradeoff problem in project

networks. European Journal of Operational Research, 88(1), 50-68.

112 BIBLIOGRAPHY

[34] Dolgui, A., Proth, J.-M., 2006. Systèmes de production modernes.

Hermès Science/ Lavoisier, Londres.

[35] Dolgui, A., Proth, J.-M., 2010. Supply Chains Engineering: Useful

Methods and Techniques. Springer, London.

[36] Dolgui A., Ihnatsenka I., 2009. Branch and bound algorithm for a

transfer line design problem: Workstations with sequentially ac-

tivated multi-spindle heads. European Journal of Operational Re-

search, 197(3), 1197 - 1232.

[37] Dolgui A., Finel B., Guschinsky N., Levin G., Vernadat F., 2006. MIP

approach to balancing transfer lines with blocks of parallel opera-

tions. IIE Transactions, 38, 869 - 882.

[38] Dolgui A., Guschinsky N., Levin G.. 1999. On problem of optimal

design of transfer lines with parallel and sequential operations. Pro-

ceedings of the 7-th IEEE international conference on emerging tech-

nologies and factory automation (ETFA-99), 1, 329 - 334.

[39] Dolgui, A., Kovalev, S., Kovalyov, M.Y., Malyutin, S., Soukhal, A.,

2015. Minimizing the number of workers for one cycle of a paced

production line. IFAC-PapersOnLine, 48 (3), 2281?2286.

[40] Dolgui, A., Guschinsky, Levin, G., 2000. Approaches to balancing

of transfer lines with blocks of parallel operations; Preprints No 8,

Institute of Engineering Cybernetics of Academy of Sciences of Be-

larus/University of Technology of Troyes, 42p.

[41] Dolgui A., Guschinskaya O., Eremeev A., 2008. MIP-based GRASP

and genetic algorithm for balancing transfer lines. In Proceedings of

the Matheuristics 2008: The second international workshop onmodel

based metaheuristics, 22p.

[42] Drozdowski, M., 1996. Scheduling multiprocessor tasks - An

overview. European Journal of Operational Research, 94(2), 215-230.

[43] Dutot, P.-F., Mounié, G., Trystram, D., 2004. Scheduling parallel tasks

approximation algorithms. In Handbook of Scheduling: Algorithms,

Models, and Performance Analysis, edited by Joseph Y.-T. Leung,

CRC Press, LLC.

BIBLIOGRAPHY 113

[44] Du, J., Leung, J.Y-T., 1989. Complexity of scheduling parallel task sys-

tems. SlAM Journal on Discrete Mathematics 2(4), 473 - 487.

[45] Du, J., Leung, J.Y-T., Young, G.H., 1991. Scheduling chain-structured

tasks to minimize makespan and mean flow time. Information and

Computation, 92(2), 219 - 236.

[46] Essafi M., Delorme X., Dolgui A., 2012. A reactive GRASP and Path

Relinking for balancing reconfigurable transfer lines. International

Journal of Production Research, 50(18), 5213 - 5238.

[47] Essafi M., Delorme X., Dolgui A., Guschinskaya O., 2010. A MIP

approach for balancing transfer line with complex industrial con-

straints. Computer and Industrial Engineering, 58, 393 - 400.

[48] Essafi M., Delorme X., Dolgui A., 2010. Balancing lines with CNC

machines: A multi-start and based heuristic. CIRP Journal of Manu-

facturing Science and Technology, 2, 176 - 182.

[49] Finel B., Dolgui A., Vernadat F., 2008. A random search and back-

tracking procedure for transfer line balancing. International Journal

of Computer Integrated Manufacturing, 21(4), 376 - 387.

[50] Ford, H., Crowther, S., 1923. My Life and Work. Garden City, NY:

Garden City Publishing.

[51] A.T. Ernst, H. Jiang, M. Krishnamoorthy, D. Sier, 2004. Staff schedul-

ing and rostering: A review of applications, methods and models.

European Journal of Operational Research, 153, 3 - 27.

[52] Helgeson W.P., Birnie D.P., 1961. Assembly line balancing using the

ranked positional weight technic. Journal of Industrial Engineering,

12, 394-398.

[53] Garey, M.R., Johnson, D.S., 1979. Computers and intractability: A

guide to the theory of NP-completeness. Freeman, San Francisco.

[54] Ghoddousi, P., Eshtehardian, E., Jooybanpour, S., Javanmardi, A.,

2013. Multi-mode resource-constrained discrete time-cost-resource

optimization in project scheduling using non-dominated sorting ge-

netic algorithm. Automation in Construction, 30, 216 - 227.

114 BIBLIOGRAPHY

[55] Giard, V., Jeunet, J., 2010. Optimal sequencing of mixed models with

sequence-dependent setups and utility workers on an assembly line.

International Journal of Production Economics, 123(2), 290-300.

[56] Gökçen, H., Aǧpak, K., Benzer, R., 2006. Balancing of parallel assem-

bly lines. International Journal of Production Economics, 103, 600 -

609.

[57] Gökçen, H., Aǧpak, K., 2006. A goal programming approach to sim-

ple U-line balancing problem. European Journal of Operational Re-

search, 171, 577 - 585.

[58] Guschinskaya O., Dolgui A., GuschinskyN., Levin G., 2008. A heuris-

tic multi-start decomposition approach for optimal design of serial

machining lines. European Journal of Operational Research, 189, 902

- 913.

[59] Hannay, J.E., MacLeod, C., Singer, J., Langtangen, H.P., Pfahl, D., Wil-

son, G., 2009. How do scientists develop and use scientific software?

Proceedings of the 2009 ICSE Workshop on Software Engineering for

Computational Science and Engineering, 5069155, 1 - 8.

[60] Hunold, S., 2015. One step toward bridging the gap between the-

ory and practice in moldable task scheduling with precedence con-

straints. Concurrency Computation, 27(4), 1010 - 1026.

[61] Kolisch, R., Sprecher, A., 1997. PSPLIB - A project scheduling prob-

lem library: OR Software - ORSEP Operations Research Software Ex-

change Program. European Journal of Operational Research, 96(1),

205 - 216.

[62] Kolisch, R., Sprecher, A., Drexl, A., 1995. Characterization and gen-

eration of a general class of resource-constrained project scheduling

problems. Management Science, 41(10), 1693 - 1703.

[63] Kovalyov, M.Y., Delorme, X., Dolgui, A., 2016. Workforce planning

for cyclic production of multiple parts. The First International Work-

shop on Dynamic Scheduling Problems, Poznan.

[64] Koren, Y., Jovane, F., Heisel, U., Moriwaki„ T., Pritschow G., Ulsoy

G., and VanBrussel H., 1999. Reconfigurable Manufacturing Systems.

A Keynote paper. CIRP Annals, 48(2), 527 - 598.

BIBLIOGRAPHY 115

[65] Kouvelis, P., Karabati, S., 1999. Cyclic scheduling in synchronous pro-

duction lines, IIE Transactions, 31(8), 709 - 719.

[66] Ku, W.-Y., Beck, J.C. Mixed Integer Programmingmodels for job shop

scheduling: A computational analysis (2016) Computers and Opera-

tions Research, 73, 165 - 173.

[67] Lee, C.-Y., Vairaktarakis, G.L., 1997. Workforce planning in mixed

model assembly systems. Operations Research, 45(4), 553 - 567.

[68] Li, H., Womer, K., 2012. Optimizing the supply chain configuration

for make-to-order manufacturing. European Journal of Operational

Research, 221(1), 118 - 128.

[69] Lloyd, E.L., 1981. Concurrent task systems. Operations Research,

29(1), 189 - 201.

[70] Lutz, C.M., Davis, K.R., 1994. Development of operator assignment

schedules: a DSS approach. Omega 22(1), 57 - 67.

[71] Merelo-Guervós, J.J., Romero, G., García-Arenas, M., Castillo, P.A.,

Mora, A.M., Jiménez-Laredo, J.L., 2011. Implementationmatters: pro-

gramming best practices for evolutionary algorithms. Advances in

Computational Intelligence, 333 - 340.

[72] Monma, C.L., Schrijver, A., Todd, M.J., Wei, V.K., 1990. Convex re-

source allocation problems on directed acyclic graphs: duality, com-

plexity, apecial cases, and extensions. Mathematics of Operations Re-

search, 15(4), 736 - 748.

[73] Moreira, M.C.O., Costa, A.M., 2013. Hybrid heuristics for planning

job rotation schedules in assembly lines with heterogeneous workers.

International Journal of Production Economics, 141(2), 552 - 560.

[74] Mutlu, O., Polat, O., Supciller, A.A., 2013. An iterative genetic algo-

rithm for the assembly line worker assignment and balancing prob-

lem of type II. Computers & Operations Research, 40(1), 418 - 426.

[75] Otto, A., Otto, C., Scholl, A., 2013. Systematic data generation and

test design for solution algorithms on the example of SALBPGen for

assembly line balancing. European Journal of Operational Research,

228(1), 33 - 45.

116 BIBLIOGRAPHY

[76] Ranjbar, M.R., Kianfar, F., 2007. Solving the discrete time/resource

trade-off problem in project scheduling with genetic algorithms. Ap-

plied Mathematics and Computation, 191(2), 451 - 456.

[77] Ritt, M., Costa, A.M., Miralles, C., 2016. The assembly line worker as-

signment and balancing problem with stochastic worker availability.

International Journal of Production Research, 54(3), 907 - 922.

[78] Rekiek B., Dolgui A., Delchambre A., and Bratcu A., 2002. State of art

of assembly lines design optimization. Annual Reviews in Control,

26(2), 163 - 174.

[79] Salewski, F., Schirmer, A., Drexl, A., 1997. Project scheduling under

resource andmode identity constraints: Model, complexity, methods,

and application. European Journal of Operational Research, 102(1), 88

- 110.

[80] Salveson M.E., 1955. The assembly line balancing problem. Journal of

Industrial Engineering, 6 (3), 1825.

[81] Scholl A., 1999. Balancing and Sequencing of Assembly Lines.

Physica-Verlag, Heidelberg.

[82] Scholl, A.; Boysen, N.; Fliedner, M., 2008. The sequence-dependent

assembly line balancing problem. Operations Research Spectrum, 30,

579 - 609.

[83] Segal, J., Morris, C., 2008. Developing Scientific Software. IEEE Soft-

ware, 25 (4), 18 - 20.

[84] Srinivasa Prasanna, G.N., Musicus, B.R., 1994. Generalized multipro-

cessor scheduling for directed acyclic graphs. In: Proceedings of Su-

percomputing 1994, IEEE Press, New York, 237 - 246.

[85] Sungur, B., Yavuz, Y., 2015. Assembly line balancing with hierarchical

worker assignment. Journal of Manufacturing Systems, 37(1), 290 -

298.

[86] Tseng, L.Y., Chen, S.C., 2009. Two-phase genetic local search method

for multimode resource-constrained project scheduling problem.

IEEE Transactions on Evolutionary Computation, 13(4), 848-857.

BIBLIOGRAPHY 117

[87] Vairaktarakis, G.L., Cai, X., 2003. Complexity of workforce schedul-

ing in transfer lines. Journal Journal of Global Optimization, 27(2-3),

273 - 291.

[88] Vairaktarakis, G.L., Cai, X., Lee, C.-Y., 2002. Workforce planning in

synchronous production systems. European Journal of Operational

Research, 136(1), 551 - 572.

[89] Vairaktarakis, G.L., Winch, J.K., 1999. Worker cross-training in paced

assembly lines, Manufacturing and Service Operations Management,

1(2), 112 - 131.

[90] N.S. Vidic, 2008. Developing methods to solve the workforce assign-

ment problem considering worker heterogeneity and learning and

forgetting. Doctoral Dissertation, University of Pittsburgh.

[91] Vilà, M., Pereira, J., 2014. A branch-and-bound algorithm for assem-

bly line worker assignment and balancing problems. Computers &

Operations Research, 44, 105-114.

[92] Wang, Q., Cheng, K.H., 1991. List scheduling of parallel tasks. Infor-

mation Processing Letters, 37(5), 291 - 297.

[93] Wang, Q., Cheng, K.H., 1992. A heuristic of scheduling parallel tasks

and its analysis. SIAM Journal on Computing, 21(2), 281 - 294.

[94] Wilson, J.M., 1986. Formulation of a problem involving assembly

lines with multiple manning of work stations, International Journal

of Production Research, 24(1), 59-63.

[95] Wilson, G., Aruliah, D.A., Brown, C.T., Chue Hong, N.P., Davis, M„

Guy., R.T., et al., 2014. Best Practices for Scientific Computing. PLoS

Biol 12(1): e1001745. doi:10.1371/journal.pbio.1001745

École Nationale Supérieure des Mines

de Saint-Étienne

NNT : 24 October 2016

Sergey MALYUTIN

Algorithms and Software for Decision Support in Design of Assembly

and Transfer Lines

Speciality : Industrial Engineering

Keywords : assembly line, transfer line, line balancing, workforce assignment, algorithms,

software, MILP, heuristics, computer experiments

Abstract :

An overview of existing problems and methods for the design of

assembly and transfer lines is given. A new workforce assignment

problem for a paced multi-product assembly line with a goal of

minimising the number of workers is studied. Various precedence

relations between operations and various functions of operation

processing times, dependent on the number of workers, are

considered. A new problem of multi-objective optimisation for a

single product transfer line is solved. Several exact and heuristic

methods and their computer implementations for both problems are

developed by the author. An application of developed approaches to

solving a real production problem relevant to the European project

amePLM is demonstrated.

École Nationale Supérieure des Mines

de Saint-Étienne

NNT : 24 Octobre 2016

Sergey MALYUTIN

Algorithmes et logiciels pour aide à la décision dans la conception de

lignes d'assemblage et des lignes de transfert

Spécialité: génie industriel

Mots clefs : ligne d'assemblage, ligne de transfert, équilibrage de ligne, affectation de ma

main d'oeuvre, algorithmes d'optimisation, logiciel d'aide à la décision, études numériques

Résumé :

Une vue d'ensemble des problèmes et des méthodes pour la conception des lignes

d'assemblage et d'usinage est donnée. Un nouveau problème d'affectation de la main-d'œuvre

pour une ligne d'assemblage multi-produits cadancée avec un objectif de minimiser le

nombre d'opérateurs est étudié. Diverses relations de priorité entre les opérations et les

différentes fonctions définissant les temps d'opérations, en fonction du nombre d'opérateurs

sont considérés. Un nouveau problème d'optimisation multiobjectif pour une ligne d'usinage

mono-produit est formulé. Plusieurs méthodes exactes et heuristiques et leurs

implémentations informatiques pour les deux problèmes sont développés par l'auteur. Un

module logiciel d'aide à la décision pour résoudre ces problèmes est développé et implémenté

dans un environnement d'un nouveau PLM d'IBM dans le cadre du projet europen amePLM.

Ce module est testé sur un exemple réel de conception d'une ligne de montage des moteurs

chez Mercedes Benz en Allemagne.

