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Résumé étendu

Avec le développement des technologies, les scientifiques ont souhaité observer la surface terrestre du ciel ou de l'espace afin qu'ils puissent mieux gérer les ressources de la Terre. Néanmoins, pour identifier différents matériaux sur le terrain par des moyens d'image directe, il faut une caméra de résolution spatiale très élevée, ce qui est assez difficile et coûteux à construire et à fonctionner. En outre, comme l'ordre de la résolution spatiale n'est que des centimètres, cela rend le volume de données d'image extrêmement grand, de sorte que ce soit aussi un gros problème pour stocker et analyser les données d'image dans l'ordinateur. En conséquence, les scientifiques ont développé le mode d'imagerie hyperspectrale pour réduire la résolution spatiale [START_REF] Landgrebe | Hyperspectral image data analysis[END_REF]. Les images hyper-spectrales (HSI) sont acquises par les instruments de télédétection, nommés capteurs hyperspectraux, généralement transportés par des avions ou des satellites, mais aussi pour imager des scènes à une échelle plus réduite en laboratoire. Les capteurs hyperspectraux collectent non seulement des informations spatiales, mais aussi un rayonnement spectral dans des centaines de bandes étroites et contiguës d'environ 10 nm, couvrant le visible (de 400nm à 700 nm), l'infrarouge proche (de 700 nm à 1100 nm) et la longueur d'onde infrarouge à ondes courtes de 1100 nm à 2500 nm [START_REF] Lillesand | Remote sensing and image interpretation[END_REF][START_REF] Vane | The airborne visible/infrared imaging spectrometer (aviris)[END_REF]. L'image hyperspectrale acquise est toujours décrite par une structure tridimensionnelle. Elle peut être modélisée en cube de données 3D, avec deux dimensions spatiales (domaine spatial) et une dimension spectrale (domaine spectral), comme le montre la figure 1. Ainsi, chaque bande du domaine spectral est une image 2D couverte par le champ de vision du capteur, tandis que chaque pixel du domaine spatial est un vecteur constitué d'un grand nombre de longueurs d'onde. En outre, tous les matériaux peuvent être identifiés en analysant les spectres de rayonnement, également appelés signatures de rayonnement, car ils absorbent, reflètent et émettent des rayonnements d'une manière unique [START_REF] Shaw | Signal processing for hyperspectral image exploitation[END_REF]. Par conséquent, en analysant les signatures spectrales, l'image hyperspectrale peut distinguer différents matériaux au sol même avec une résolution spatiale relativement faible. Pour cette raison, les i Figure 1 -Illustration : un cube de données images hyperspectrales attirent de plus en plus d'intérêt ces dernières années dans différents domaines, comme la géographie, ou l'agriculture [START_REF] Kotwal | Visualization of hyperspectral images using bilateral filtering[END_REF][START_REF] Lewis | Using hyperspectral imagery to estimate forest floor consumption from wildfire in boreal forests of alaska, usa[END_REF][START_REF] Tiwari | An assessment of independent component analysis for detection of military targets from hyperspectral images[END_REF]. On utilise l'imagerie hyperspectrales pour effectuer la détection de cible [START_REF] Veracini | Nonparametric framework for detecting spectral anomalies in hyperspectral images[END_REF] ou la classification [START_REF] Prasad | Information fusion in the redundant-wavelet-transform domain for noise-robust hyperspectral classification[END_REF] pour détecter les objets ou les matériaux intéressants sur le sol ou dans certains matériaux. Dans ce qui suit, nous énumérons certains champs où les HSI sont habituellement utilisés :

• Mines et géologie : car l'imagerie hyperspectrale peut identifier les matériaux [START_REF] Hewson | Advances in hyperspectral processing for province-and continental-wide mineral mapping[END_REF] ou l'huile [START_REF] Ellis | Exploring for onshore oil seeps with hyperspectral imaging[END_REF] du ciel ou de l'espace, c'est une façon plus appropriée d'explorer les minéraux que les observations sur le terrain d'un endroit à l'autre.

• Agriculture et surveillance : l'imagerie aérienne ou satellite à haute résolution est utile pour évaluer la croissance des cultures [START_REF] Chenghai | Using highresolution airborne and satellite imagery to assess crop growth and yield variability for precision agriculture[END_REF] et la surveillance à des fins militaires, telles que la surveillance des cibles terrestres militaires [START_REF] Stellman | War horse (wide-area reconnaissance: hyperspectral overhead real-time surveillance experiment)[END_REF].

• Surveillance de l'environnement : en analysant les spectres recueillis par imagerie hyperspectrale, on trouve les substances toxiques laissées dans l'environnement [START_REF] Yuzeng | Vegetational spectral characteristics in hongtoushan mining area, liaoning province: Potential of hyperspectral remote sensing in environment monitoring[END_REF].

• Imagerie chimique : l'imagerie hyperspectrale a également été appliquée dans le domaine chimique pour déterminer les agents chimiques [START_REF] Yuzeng | Vegetational spectral characteristics in hongtoushan mining area, liaoning province: Potential of hyperspectral remote sensing in environment monitoring[END_REF].

Le débruitage est donc une étape cruciale pour le traitement des données dans ces spécialités tres pointues : On se doit d'être rigoureux. Notamment, il a été montré que la formalisme de la transformée en ondelettes et les méthodes par sous-espaces insérées dans le contexte du traitement du signal tensoriel sont d'un intérêt certain pour le débruitage des données multidimensionnelles. Cependant il existe de nombreux paramètres à régler si l'on souhaite appliquer de telles méthodes, notamment les valeurs de rang ou dimension du sous espace signal pour tous les modes des coefficients issus de la transformée en ondelettes.

Ainsi on a consacrée cette thèse à la notion d'estimation de la dimension du sous-espace signal. Nous montrons d'abord l'intérêt du choix des valeurs correctes de rang que ce soit pour tronquer une décomposition de Parafac, ou de Tucker, des données. Ensuite, nous nous sommes intéressés à l'estimation automatique des valeurs optimales de rang, par des méthodes d'optimisation bio-inspirées, qui s'inspire du comportement des groupes d'animaux tels les oiseaux en recherche de nourriture.

On a développée des méthodes d'estimation de ces rangs dans le cadre de la transformée en ondelettes. Pour cette étude, nous avons eu recours à la décomposition en paquets d'ondelettes et à l'algèbre multilinéaire. Nous avons appliqué les méthodes de débruitage proposées à diverses images multidimensionnelles :

• Images RGB.

• images multispectrales extraites d'images hyperspectrales de pièces métalliques.

• Images par fluorescence des plantes.

• Images RX multispectrales.

Finalement, une étude comparative a été réalisée avec trois principaux types d'algorithmes : d'une part, la méthode de Perona-Malik basée sur la diffusion ; deuxièmement, la troncature de la HOSVD (higher order singular value decomposition) et MWF (multiway Wiener filtering) et troisièmement, un procédé basé sur la décomposition en paquets d'ondelettes et MWF, où les dimensions du sous-espace de signal sont estimées par un critère statistique plutôt que par une méthode d'optimisation.

Les résultats sont prometteurs en termes de débruitage en réalité terrain.

iii En définitive, dans un contexte appliqué, nous aboutissons un gain de temps avantageux durant l'acquisition des images hyperspectrales. En effet, en diminuant le temps d'exposition pour chaque ligne de l'image acquise, la valeur du rapport signal sur bruit diminue, ce que nous compensons par la méthode de débruitage proposée.
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Introduction

Multidimensional digital signal processing can be defined as the theoretical underpinnings for processing multidimensional signals independent of a specific application [START_REF] Chen | The past, present, and future of image and multidimensional signal processing[END_REF]. The operation of filtering, sampling, spectrum analysis, and signal representation are basic to all of signal processing. There are many applications of multidimensional signal processing, for instance image and video processing [START_REF] David | Multispectral data analysis:a signal theory perspective[END_REF][START_REF] Schonfeld | A new method for multidimensional optimization and its application in image and video processing[END_REF][START_REF] Smolic | Three-dimensional video postproduction and processing[END_REF], medical imaging [START_REF] Morozov | Reconstruction of large, irregularly sampled multidimensional images. a tensor-based approach[END_REF][START_REF] Zhu | Real-time image-based b-mode ultrasound image simulation of needles using tensor-product interpolation[END_REF], array processing [START_REF] Nicholas | Parallel factor analysis in sensor array processing[END_REF][START_REF] Nion | Tensor algebra and multidimensional harmonic retrieval in signal processing for mimo radar[END_REF] and so on.

Algorithms of multidimensional signal processing can be grouped into four categories [START_REF] Chen | The past, present, and future of image and multidimensional signal processing[END_REF]:

1. Separable algorithms using one-dimensional (1-D) operators to deal with the rows and columns of a multidimensional array.

2. Non-separable algorithms that borrow their derivation from their 1-D counterparts.

3. Multidimensional algorithms significantly different from their 1-D counterparts.

4. Multidimensional algorithms without 1-D counterparts. The former three categories are listed in increasing order of their mathematical and computational complexity and in decreasing order of their popularity.

Separable algorithms deal with the rows and columns of a multidimensional signal sequentially and they have been widely used for image processing since the 1960s due to lower computational complexity than older nonseparable algorithms.

1

Algorithms of the second category are uniquely multidimensional since they cannot be decomposed into a repetition of 1-D procedures. Some familiar 1-D methodologies do not extend to the multidimensional case or cannot extend because of the absence of a factorization theorem for multidimensional polynomials and the assumption of causality not appropriate for multidimensional signal processing applications.

To process multidimensional data, the algorithms in the former three categories above have some common drawbacks. They can not deal with multidimensional data as a whole. Processing the rows or columns of a multidimensional signal is one solution. Another way requires rearranging data from multidimensional to two dimensional. But these algorithms cannot make full use of or even ignore the relationships among different dimensions because the intuitive representation of a multidimensional signal is a multidimensional array.

General considerations about tensor decompositions

In the fourth categories, there are some algorithms that perform tensor decompositions, where a tensor is defined as a multidimensional array [START_REF] Kolda | Orthogonal tensor decompositions[END_REF][START_REF] Kolda | Tensor decompositions and applications[END_REF][START_REF] De | A multilinear singular value decomposition[END_REF]. Tensor decompositions originated with Hitchcock in 1927 [START_REF] Hitchcock | The expression of a tensor or a polyadic as a sum of products[END_REF][START_REF] Hitchcock | Multiple invariants and generalized rank of a p-way matrix of tensor[END_REF] and the idea of a multi-way model is attributed to Cattell in 1944 [START_REF] Cattell | Parallel proportional profiles and other principles for determining the choice of factors by rotation[END_REF]. These concepts received scant attention until the work of Tucker in the 1960s [START_REF] Tucker | Some mathematical notes on three-mode factor analysis[END_REF] and Carroll and Chang [START_REF] Carroll | Analysis of individual differences in multidimensional scaling via an n-way generalization of 'eckart-young' decomposition[END_REF] and Harshman [START_REF] Harshman | Foundations of the parafac procedure: Models and conditions for an "explanatory" multi-modal factor analysis[END_REF] in 1970, all of which appeared in psychometrics literature. In the last ten years, interest in tensor decompositions has expanded to other fields. Examples include image processing [START_REF] Muti | Multidimensional filtering based on a tensor approach[END_REF], numerical linear algebra [START_REF] Langville | A kronecker product approximate precondition for sans[END_REF], communication [START_REF] Nion | A parafac-based technique for detection and localization of multiple targets in a mimo radar system[END_REF] and so on.

Two main decomposition models for multidimensional arrays have been developed: Tucker3 decomposition [START_REF] Tucker | Some mathematical notes on three-mode factor analysis[END_REF] and PARAFAC/CANDECOMP (Canonical Decomposition / Parallel Factor Analysis) decomposition [5] [42]. Tucker3 decomposition is a form of higher-order principal component analysis and it decomposes a tensor into a core tensor multiplied by a matrix along each mode. Thus it is necessary to estimate multiple ranks for Tucker3 decomposition, which leads to the non-uniqueness of this decomposition. Parallel factor analysis extends the ideas and methods of standard two-way factor analysis to multi-way data. A key motivation for this is the possibility that 'simultaneous factor analyses' of several matrices in parallel can sometimes lead to a unique set of factors for which any rotation of axes will cause a loss in total fit. So low-rank PARAFAC decomposition can be unique for rank higher than one, and this is the distinguishing characteristic of PARAFAC.

General state-of-the-art about swarm intelligence

Swarm intelligence algorithms, together with evolutionary, and physics-based algorithms, compose the meta-heuristic algorithms. Meta-heuristics may be classified into three main classes: evolutionary, physics-based, and SI algorithms. The most popular among evolutionary algorithms are the genetic algorithms (GA). This algorithm was proposed by Holland in 1992 [START_REF] Holland | Genetic algorithms[END_REF] and simulates Darwnian evolution concepts. In their seminal work concerning particle swarm optimization, Kennedy and

Eberhart [START_REF] Eberhart | A new optimizer using particle swarm theory[END_REF][START_REF] Kennedy | Particle swarm optimization[END_REF] got inspired by [START_REF] Reeves | Particle systems, a technique for modeling a class of fuzzy objects[END_REF] where the term 'particle swarm' was chosen to define the members of a population or test set. In their paradigm, the population members are mass-less and volume-less. Their evolution is described through position, speed, and acceleration parameters [START_REF] Marot | Particle swarm optimization for blurred contour retrieval[END_REF]. An often cited, now well-known reference [START_REF] Mitchell | An introduction to genetic algorithms[END_REF] introduces genetic algorithms in the context of evolutionary computation which implies the evolution of a population of candidates which is inspired by Darwin's natural selection theory. Another largely cited reference presents basics about genetics, the hierarchical genetic algorithm, and applications to H∞ control, neural network, and speech recognition [START_REF] Man | Genetic algorithms: concepts and designs[END_REF].

Mainly, the rest of the swarm intelligence (SI) techniques which mimic the behavior of groups of animals are cited in [START_REF] Mirjalili | Grey wolf optimizer[END_REF].

We now focus on methods which get inspired by the Human behavior, at the individual scale through emotion modeling and at a larger scale through the modeling of tribes.

In [START_REF] Zhang | Machine training and parameter settings with social emotional optimization algorithm for support vector machine[END_REF][START_REF] Zheng | Parameter identification of nonlinear dynamic systems using an improved particle swarm optimization[END_REF] a social-emotional PSO (SEPSO) algorithm is proposed. To the best of our knowledge, it is a seminal work in the sense that no swarm intelligence algorithm is inspired by a Human behavior. A social emotional model is proposed to rule the velocity of each particle across the iterations: firstly, each particle is rather depressed and does not learn from the society, secondly it is calm to think and learn from the society, and thirdly passionate to learn. The personal best influences the velocity in the first and second cases, and the global best influences the velocity in the second and third cases. In a problem involving four parameters to estimate, SEPSO has superior global optimization ability and rate of convergence than PSO.

This algorithm is then inspired by the behavior of persons at the individual scale (their emotion).

Tribes PSO has first been proposed in [START_REF] Clerc | Tribes-un exemple d'oxptimisation par essaim particulaire sans parametres de contrôle. Optimisation par Essaim Particulaire[END_REF] and further developed in [START_REF] Chen | Tribe-pso: A novel global optimization algorithm and its application in molecular docking[END_REF]. Its performance has been analyzed in [START_REF] Cooren | Performance evaluation of tribes, an adaptive particle swarm optimization algorithm[END_REF]. The principles of tribes PSO is to reduce the number of parameters in PSO, through an adaptive process which modifies autonomously the number of particles.

Objectives of the thesis

The objective of this thesis is to evaluate the interest of multidimensional images in various contexts. Especially, we focus on multispectral and hyperspectral images.

But, the noise in HSIs degrades the performances of the target detection and the classification. In order to alleviate this problem, it is necessary to reduce the noise in HSIs before the target detection or classification. Indeed, the prospects of this thesis aims at the detection and classification of very small defects on industrial metal parts. Firstly, multilinear algebra based methods are developed to HSI processing, for instance, for denoising applications, a tensor is defined a multidimensional array, and HSI is modeled as tensor data. Conversely to the conventional methods, they consider the spectral relationship among bands and process tensor data as a whole entity. After studying different algorithms, we observed that subspace-based methods is adapted for removing noise in images. The subspace-based approach can be extended to multidimensional data. Multiway Wiener filtering is an extension to subspace-based approach to tensorial case. It was then placed in a wavelet framework. A subspace-based method requiring the estimation of ranks, usually performed with the statistical Akaike information criterion (AIC) [START_REF] Renard | Denoising and dimensionality reduction using multilinear tools for hyperspectral images[END_REF], working best with a very high number of signal realizations.

So, we aim at estimating the signal subspace dimensions for all modes of wavelet packet coefficients by minimizing the least squares criterion with the best possible optimization strategy.

Optimization is a commonly encountered mathematical problem in all engineering disciplines. It literally means finding the best possible and desirable solution.

Optimization problems are wide ranging and numerous. But former methods to solve optimization problems require enormous computational efforts, particularly in the field of multispectral, which tend to fail as the problem size increases. To resolve this disadvantage, the nature is of course a great and immense source of inspiration for solving hard and complex problems in computer science since it exhibits extremely diverse, dynamic, robust, complex and fascinating phenomenon. After finishing the theoretical part. We decided to build a setup to handle hyperspectral images. We encountered a problem of illumination for metal surfaces. To solve this problem, we have constructed a test setup in Fresnel institut. We reproduced this setup in Fraunhofer institut.
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Document organization

This manuscript includes three chapters and a conclusion. The below paragraphs describe the content of each chapter. We finalize the manuscript by a general conclusion, as well as further prospects.

Publications related to this thesis

This PhD thesis follows some advances performed during research work on master thesis was were performed on the field of non-negative matrix factorization.

In [START_REF] Zidi | Nonnegative matrix factorization with spatial prior and reference spectra application to remote hyperspectral image understanding[END_REF] nonnegative matrix factorization with spatial prior and reference spectra application to improve hyperspectral image understanding is considered. In [START_REF] Zidi | Unmixing of hyperspectral images with pure prior spectral pixels[END_REF] the unmixing of hyperspectral images with Pure Prior Spectral Pixels is considered.

The contents of the manuscript and its relationship with the papers published during this thesis are as follows:

Chapter 3 investigates the automatic estimation of either Tucker or Parafac ranks in a wavelet framework, with bio-inspired optimization methods.

In [START_REF] Zidi | Multispectral image denoising in wavelet domain with unsupervised tensor subspace-based method[END_REF], we investigated Multispectral image denoising in wavelet domain with unsupervised tensor subspace-based method: a short comparison of a genetic algorithm, particle swarm optimization, and the statistical criterion "Akaike Information

Criterion" is provided with a view to estimate subspace ranks in a wavelet framework. In [START_REF] Zidi | Bio-inspired optimization algorithms for automatic estimation of multiple subspace dimensions in a tensor-wavelet denoising algorithm[END_REF] the topic of Bio-Inspired Optimization Algorithms for Automatic Es-timation of Multiple Subspace Dimensions in a Tensor-Wavelet Denoising Algorithm is deeply investigated. It deals with the estimation of triplets of ranks, precisely the ranks of the Tucker decomposition, in the frame of wavelet packet decomposition.

In [START_REF] Zidi | Automatic rank estimation of parafac decomposition and application to multispectral image wavelet denoising[END_REF] this work is extended to the Parafac decomposition, with an application to multispectral image denoising.

Chapter 2

Brief state of the art

Introduction

Hyperspectral sensors allow simultaneous acquisition of several informations, especially with the quasi-continuous acquisition of spectral data for all pixels of the scene, from ultraviolet to near infrared, which corresponds to several hundred images associated with different spectral bands for the same scene. This very large number of data inevitably increases the complexity of the treatment, making less effective traditional methods of image processing. In order to exploit this information, it was necessary to develop new methods of hyperspectral image processing.

The multi-linear algebra tools are particularly well suited for analyzing this type of multidimensional data. Indeed, numerically, a data that is depending of several parameters can be modeled as a multi-input array. Each input corresponds to one parameter. For example, a hyperspectral image can be represented by an array of three inputs: two inputs for the spatial information (indexes of the spatial coordinates of the pixels) and one input for the spectral information (index of the spectral band). Each input in the array is associated with a sampled physical quantity. These multidimensional arrays allow a unique and global representation of the spectral data.

The treatment of these arrays requires the use of multi-linear algebra tools. Actually, several methods based on linear algebra tools are proposed in the literature [START_REF] Benediktsson | Classification of hyperspectral data from urban areas based on extended morphological profiles[END_REF], [START_REF] Bioucas-Dias | Hyperspectral subspace identification[END_REF] for the analysis of hyperspectral images. The most common applications are:

• Detection, for researching and identifying specific objects.

• Classification, for characterizing and grouping objects according to a criterion.

• Unmixing, for estimating the spectra and/or the abundance of each material in the scene.

All these applications usually need multiple preprocessing of hyperspectral data in order to enhance their performance, such as spectral dimension reduction or denoising the data, which are corrupted by noise from various phenomena, such as the atmospheric disturbance, sensors' noise, etc.

Hyperspectral imagery

Hyperspectral Imaging (HSI) is a technique that combines digital imaging with spectroscopy. HSI collects and processes information from across the electromagnetic spectrum as a function of the wavelength, and produces hyperspectral images with instruments called imaging spectrometers. Spectral imagers form and analyze the spectral radiances at each pixel in the scene, where the objects are characterized by their spatial shape and their spectral radiance. The spectral radiance of an object is its reflected light intensity as a function of wavelength, which is indicative of the material forming the object. Although the human eye can distinguish spatial shape very well, it does not discern spectral radiance characteristics nearly as precisely.

Instead, the human eye perceives only a dominant portion of the spectral radiance, which is perceived as the color of the object [START_REF] Chang | Hyperspectral Imaging: Techniques for Spectral Detection and Classification[END_REF].

The spectral reflectance of an object is obtained by the ratio between the radiance and the scene illumination. In principle most objects can be identified by their spectral reflectance alone. The choice of the relevant spectral bands is crucial for the analysis. Indeed, the deflections of the spectral curves mark the wavelength ranges for which the material selectively absorbs the incident energy. These features are commonly called absorption bands. The overall shape of a spectral curve and the position and strength of absorption bands in many cases can be used to identify and discriminate different materials. For example, vegetation has higher reflectance in the near infrared range and lower reflectance of red light than soils. However, because the human eye is a relatively unsophisticated observer, it is not always possible to distinguish objects based upon their perceived colors.

Multispectral remote sensors such as the Landsat Thematic Mapper and SPOT XS produce images with a few relatively broad wavelength bands. Hyperspectral remote sensors, on the other hand, collect image data simultaneously in hundreds or thousands of narrow, adjacent spectral bands. These measurements make it possible to derive a continuous spectrum for each image cell, as shown in the The development of these complex sensors has involved the convergence of two related but distinct technologies: spectroscopy and the remote imaging of Earth and planetary surfaces [START_REF] Clark | Imaging spectroscopy: Earth and planetary remote sensing with the usgs tetracorder and expert systems[END_REF].

Spectroscopy is the study of light that is emitted by or reflected from materials and its variation in energy with wavelength. As applied to the field of optical remote sensing, spectroscopy deals with the spectrum of sunlight that is diffusely reflected (scattered) by materials at the Earth's surface. Instruments called spectrometers (or spectroradiometers) are used to make ground-based or laboratory measurements of the light reflected from a test material. An optical dispersing element such as a grating or prism in the spectrometer splits this light into many narrow, adjacent wavelength bands and the energy in each band is measured by a separate detector.

By using hundreds or even thousands of detectors, spectrometers can make spectral measurements of bands as narrow as 0.01 µm over a wide wavelength range, typically at least 0.4 to 2.4 µm (visible through middle infrared wavelength ranges) in remote-sensing applications. For other applications, such as astronomy, different wavelength ranges can be used (e.g. UV, visible, infrared and radio wavelength ranges).

Remote imagers are designed to focus and measure the light reflected from many adjacent areas on the Earth's surface. Recent advances have allowed the design of imagers that have spectral ranges and resolutions comparable to ground-based spectrometers.

Spectral reflectance

In reflected-light spectroscopy the fundamental property that we want to obtain is spectral reflectance: the ratio of reflected energy to incident energy as a function of wavelength. Reflectance varies with wavelength for most materials because energy at certain wavelengths is scattered or absorbed to different degrees. These reflectance variations are clear when we compare spectral reflectance curves (plots of reflectance versus wavelength) for different materials, as in Fig 2 .2. The overall shape of a spectral curve and the position and strength of absorption bands in many cases can be used to identify and discriminate different materials. For example, vegetation has higher reflectance in the near infrared range and lower reflectance in the red range than soils. 

Spectral libraries

Several libraries of reflectance spectra of natural and man-made materials are available for public use. These libraries provide a source of reference spectra that can aid the interpretation of hyperspectral and multispectral images. 

Hyperspectral images

Color images have three layers (or bands) that each has different information. It is possible to make even more layers by using smaller wavelength bands, say 20 nm wide between 400 nm and 800 nm. Then each pixel would be a spectrum of 21 (c) the I × J × K images can be presented as an image of vectors. In special cases, the vectors can be shown and interpreted as spectra.

With more than three wavelength bands, simple color representation is not pos-sible, but some artificial color images may be made by combining any three bands.

In that case the colors are not real and are called pseudo-colors.

Many imaging techniques make it possible to make multivariate images and their number is constantly growing. Also, the number of variables available is constantly growing. From about 100 variables upwards the name hyperspectral images was coined in the field of satellite and airborne imaging, but hyperspectral imaging is also available in laboratories and hospitals.

Images as in Fig 2 .3 with K = 2 or more are multivariate images. Multivariate images can also be mixed mode, e.g. an UV wavelength image, a near infrared (NIR) image and a polarization image in white light. In this case, the vector of three variables is not really a spectrum.

So, the hyperspectral images characterize:

• many wavelength or other variables bands, often more than 100;

• the possibility to express a pixel as a spectrum with spectral interpretation, spectral transformation, spectral data analysis, etc.

Many principles from physics can be used to generate multivariate and hyperspectral images [START_REF] Chanussot | Multivariate Image Processing[END_REF]. Other variables, e.g. time, can be used to generate sequencies of images and construct multivariate images. Examples of making NIR optical images are used to illustrate some general principles.

A classical spectrophotometer consists of a light source, a monochromator or filter system to disperse the light into wavelength bands, a sample presentation unit and a detection system including both a detector and digitalization/storage hardware and software. The most common sources for broad spectral NIR radiation are tungsten halogen or xenon gas plasma lamps. Light emitting diodes and tunable lasers may also be used for illumination with less broad wavelength bands. In this case, more diodes or more lasers are needed to cover the whole NIR spectral range (780 -2500 nm). For broad spectral sources, selection of wavelength bands can be based on specific bandpass filters based on simple interference filters, liquid crystal tunable filters (LCTFs), or acousto-optic tunable filters (AOTFs), or the spectral energy may be dispersed by a grating device or a prism-grating-prism (PGP) filter.

Scanning interferometers can also be used to acquire NIR spectra from a single spot.

A spectrometer camera designed for hyperspectral imaging has the hardware components listed above for acquisition of spectral information plus additional hardware necessary for the acquisition of spatial information. The spatial information comes from measurement directly through the spectrometer optics or by controlled positioning of the sample, or by a combination of both. Three basic camera configurations are used based on the type of spatial information acquired; they are called point scan, line scan or plane scan.

Advantages and disadvantages of HSI

The primary advantage to hyperspectral imaging is that, because an entire spectrum is acquired at each point, the operator holds all available information from the dataset to be mined. HSI can also take advantage of the spatial relationships among the different spectra in a neighborhood, allowing more elaborate spectral-spatial models for a more accurate segmentation and classification of the image.

The primary disadvantages are cost and complexity. Fast computers, sensitive detectors, and large data storage capacities are needed for analyzing hyperspectral data. Moreover, in high dimensionality, it comes difficult to perform accurate parameters estimation, for example in the Bayesian context, and the distance measures lose their efficiency to distinguish between different vectors (see section 2.4).

Representation of hyperspectral images

By the nature of the hyperspectral data, in which each pixel is a vector, the data are Indeed, the folding 3-mode matrix is currently used for spectral analysis. However, introducing spatial information often allows to increase the performances [START_REF] Schweizer | Efficient detection in hyperspectral imagery. Image Processing[END_REF].

Denoising and dimensionality reduction

In the case of HSI, the number of the acquired images can reach hundreds or even exceed thousand images. It is necessary to have a good spectral resolution and a sufficiently large band width for accurate analysis of the information. Indeed, this large number of images involves manipulating vector spaces of high dimension. In more challenging algorithms, the large dimension of the vector spaces, time consumption and significant storage involve a decrease in the accuracy of the statistical estimation for a fixed number of samples. This phenomenon is well known in hyperspectral image processing under the names of "Hughes phenomenon" and "the curses of the high dimensionality" [START_REF] Bellman | Dynamic programming and lagrange multipliers[END_REF], [START_REF] Donoho | High-dimensional data analysis : the curse and blessing of dimensionality. Math Challenges of the 21st Century[END_REF]. More often, the acquisition step is followed by a signal space dimensionality reduction, where a subspace signal is estimated. The identification of this subspace enables a correct dimensionality reduction, yielding gains in algorithm performance and complexity, and in data storage. This is a cru-cial first step in many hyperspectral processing algorithms such as target detection, change detection, classification, and unmixing.

The noise add to the raw data is not only specific to hyperspectral data but is a well-known image and signal-processing problem. Indeed, during the acquisition step of multivariate images from a sensor (HSI camera, IR camera or other), there are still several phenomena disturbing the acquisition process. The disturbances can be directly related to the quality of the sensor (such as electronic noise, the photon noise, aberrations of the optical system) or related to the environment in which the acquisition takes place (such as atmospheric disturbances) [START_REF] Atkinson | Wavelet-based 2-d multichannel signal estimation[END_REF], [START_REF] Chang | Estimation of number of spectrally distinct signal sources in hyperspectral imagery[END_REF], [39] [112].

Even low power, this acquisition noise affects the efficiency of the detection and classification algorithms based on spectral identification. In order to reduce the nuisance of these phenomena on the detection and classification methods, a preprocessing data denoising is commonly used to limit the influence on the results of detection and classification [START_REF] Othman | Noise reduction of hyperspectral imagery using hybrid spatial-spectral derivative-domain wavelet shrinkage[END_REF].

The steps of denoising and spectral dimensionality reduction are crucial stages of preprocessing for the analysis of hyperspectral images. Indeed, they directly affect the efficiency of the detection and classification methods. In recent years, numerous works have shown the interest of the denoising and spectral dimensionality reduction as pre-processing steps for the classification of hyperspectral images [START_REF] Chang | Hyperspectral Imaging: Techniques for Spectral Detection and Classification[END_REF], [11] [111].

Denoising and dimensionality reduction algorithms

In hyperspectral images processing, the spectral dimensionality reduction and denoising methods are two processes with distinct goals, however, they are based on a similar approach, which consists to use the signal subspace. Usually the denoising methods tend to separate the signal subspace from the noise subspace, while the spectral dimension reduction methods seek to estimate the signal subspace in order to work on this reduced space with smaller dimension than the original data space. Whatever, these two methods can be combined in case where a denoising and data dimensionality reduction are both needed. The most popular used denoising and/or dimensionality reductions methods are: the singular value decomposition (SVD), maximum noise fraction (MNF) [START_REF] Green | A transformation for ordering multispectral data in terms of image quality with implications for noise removal[END_REF] and hyperspectral signal identification by minimum error (HySime) [START_REF] Bioucas-Dias | Hyperspectral subspace identification[END_REF].

Traditionally, SVD and MNF are used for dimension reduction, but they are also useful for visually identifying the dominant image components. HySime is a combination algorithm of dimensionality reduction and denoising tools, which also esti-mates automatically the virtual dimension (VD) of the reduced data space.

Overview of Singular Value Decomposition

In the following chapters, we will often employ the notion of Singular Value Decomposition (SVD) for n-modal matrices (see the definition section 2.7.2) of tensor.

We remind in this paragraph the SVD process for a matrix. SVD is a method commonly used to analyze data in large domains such as signal and image processing (image recognition for face, for classification), economic forecasting, to study the evolution of animal and vegetal in biology. Singular value decomposition is extremely powerful and useful in a lot of contexts.

Singular Value Decomposition

The SVD of a matrix is a linear algebra method for matrix factorization, with many useful applications in signal processing and statistics. This factorization consists in finding in each of the two spaces, corresponding to the two dimensions associated with the matrix, an orthonormal basis.

Let X ∈ R I 1 ×I 2 rectangular matrix, u ∈ R I 1 ×1 a vector, v ∈ R I 2 ×1 a vector, and λ a scalar. If the relationship in Eq. (2.1) holds:

Xv = λu (2.1)
The vectors u and v are, respectively, left-and right-singular vectors of X, and λ is a singular value of X.

There exists a factorization of a matrix X into the form:

X = UΣV T (2.2)
where:

U = [u 1 , . . . , u I 1 ] ∈ R I 1 ×I 1 (2.3)
U is an orthogonal matrix containing the left singular vectors.

The vectors {u k } k=1,••• ,I 1 ∈ R I 1 constitute an orthonormal basis of the space E (1) , of dimension I 1 , associated with the matrix, and are the eigenvectors of the symmetric

matrix XX T . V = [v 1 , • • • , v I 2 ] ∈ R I 2 ×I 2 (2.4)
In a similar way, V is an orthogonal matrix containing the right singular vectors.

The vectors {v k } k=1,••• ,I 2 ∈ R I 2 constitute an orthonormal basis of the space E (2) , of dimension I 2 , associated with the matrix, and are the eigenvectors of the symmetric matrix X T X.

Let I denote the minimum value between I 1 and I 2 :

I = min{I 1 , I 2 }. Then Σ is a pseudo-diagonal matrix: if we denote Σ = diag (λ 1 , • • • , λ I ), then Σ ∈ R I 1 ×I 2 is a zero-padded version of Σ Σ = Σ 0 • • • 0 (2.5) or Σ =        Σ 0 • • • 0        (2.6) 
Σ is a quasi-diagonal matrix containing I ordered singular values,

λ 1 ≥ • • • ≥ λ I ,
of the matrix X. The singular values λ k correspond to the square root of the eigenvalues β k of the symmetric matrix XX T .

In the case where I 1 < I 2 , the decomposition of the matrix X, Eq. (2.2) can be written as:

X = I 1 k=1 λ k u k v T k = I 1 k=1 β k X k (2.7)
where λ k = β 2 k is the k th singular value and X k is the corresponding proper matrix.

In the case of HSI, a matrix X is obtained through flattening. Thereafter, SVD decomposes the data space into a set of I components, arranged in a descending order of the corresponding singular values, where the first components contain the maximum variance and represent the most characteristic variability of the data. The spatial and spectral information is extracted from the original matrix in a compact manner. SVD is close to principal component analysis (PCA) with the difference that SVD simultaneously provides the PCAs in both row and column spaces.

For a particular flattened version of the HSI, the columns of matrix U consist of the left singular vectors that represent the spectral variation of the data set. The columns of matrix V are the right singular vectors that represent the spatial variation of the data set. Usually, original data can be adequately represented with only a few components. The reduced space X R is obtained as:

X R = K k=1 λ k u k v T k (2.8)
where K is the desired dimension of the reduced data space. The columns of U and V are orthonormal bases: Since U and V T are unitary, the columns of each of them form a set of orthonormal vectors, which can be regarded as basis vectors. The matrix X maps the basis vector V i to the stretched unit vector λ i U i . By the definition of a unitary matrix, the same is true for their conjugate transposes U T and V, except the geometric interpretation of the singular values as stretches is lost. In short, the columns of U, U T , V, and V T are orthonormal bases.

Rank of a matrix

The rank of a matrix is defined as the maximum number of linearly independent column vectors in the matrix or the maximum number of linearly independent row vectors in the matrix. Both definitions are equivalent.

In the remainder of the manuscript, the rank of a matrix X ∈ R I 1 ×I 2 is defined as the number of nonzero singular values:

rank(X) = arg min k (λ k ), ∀ λ k > 0 (2.9)
where λ k are the singular values of X.

The rank of a matrix can also be defined as the dimension of the subspace vector generated by the row vectors (or columns) of X [73]

Matrix approximation -Eckart Young theorem

We consider a matrix X ∈ R I 1 ×I 2 of rank k and find a matrix X p in the set of matrices B ∈ R I 1 ×I 2 of rank p < k which is the best possible approximation of the initial matrix X in the least squares sense by considering the Frobenius norm . :

X p = arg min B∈R I 1 ×I 2 ( X -B 2 ) (2.10)
where the norm X -B 2 is obtained by:

X -B 2 = trace( (X -B)(X -B) T ) (2.

11)

According to the Eckart-Young theorem [START_REF] Eckart | The approximation of a matrix by another of lower rank[END_REF], It has been shown that the best approximation of the matrix X ∈ R I 1 ×I 2 by a matrix of the same dimension and of lower rank p < k is the matrix X p ∈ R I 1 ×I 2 obtained from the p first singular vectors and singular values derived from the SVD of matrix X such as:

X p = arg min B∈R I 1 ×I 2 ( X -B 2 ) = U p Σ p V T p (2.12)
in which:

the matrix U p ∈ R I 1 ×p is obtained with the p first left singular vectors of the SVD of X :

U p = [u 1 , . . . , u p ] (2.13) V p ∈ R I 2 ×p
is obtained with the p first right singular vectors of the SVD of X :

V p = [v 1 , . . . , v p ] (2.14) 
and Σ p ∈ R p×p is the square diagonal matrix composed by p first singular values of the SVD of X:

Σ p = diag(λ 1 , . . . , λ p ) (2.15)
The matrix X p thus obtained is commonly called « truncation » of rank p of the SVD of the matrix X.

Another way of obtaining the matrix X p of rank p is to project the column vectors and row vectors of the matrix X onto the subspaces vector E

p ⊂ E (1) and E

p ⊂ E (2) generated by the p left singular vectors and the p right singular vectors associated to the p largest eigenvalues of the matrix X:

X p = P ⊥ Up XP ⊥ Vp (2.16)
in which:

The projector P ⊥ Up ∈ R I 1 ×I 1 is defined by:

P ⊥ Up = U p U T p (2.17)
The projector P ⊥ Vp ∈ R I 2 ×I 2 is defined by:

P ⊥ Vp = V p V T p (2.18)
Further in the manuscript, we will see what is the relationship between singular value decomposition, and its generalization to multidimensional data, that is, Tucker3 decomposition and Parafac decomposition.

Application examples on simple matrices and images

This section provides examples of matrix rank estimation. It shows how to translate the rank of a matrix in terms of images and describes the effect of truncation on pure images or noisy images.

Example of lower triangular matrix nd singular value decomposition

We deal here with a lower triangular matrix

X =   1 0 1 1   (2.19)
This matrix can easily be expressed through:

X =     u 1 u 2       λ 1 λ 2     v T 1 v T 2   (2.

20)

with:

⋄ λ 1 = √ 5+1 2 , λ 2 = √ 5-1 2 , ⋄ u 1 = [-1, -λ 1 ] T , u 2 = [-λ 1 , 1] T , ⋄ v 1 = [-λ 1 , -1] T , v 2 = [-1, λ 1 ] T , all divided by 1 + λ 2 1 .
A numerical application yields λ 1 = 1.6180, λ 2 = 0.6180,

u 1 = [-0.5257, -0.8507] T , u 2 = [-0.8507, 0.5257] T , v 1 = [-0.8507, -0.5257] T and v 2 = [-0.5257, 0.8507] T .
Which give:

U =   -0.5257 -0.8507 -0.8507 0.5257   (2.21) V =   -0.8507 -0.5257 -0.5257 0.8507   (2.22) λ =   1.6180 0 0 0.6180   (2.23)
We can also write:

X     v 1 v 2     =     λ 1 u 1 λ 2 u 2     (2.24)
or:

X = λ 1 u 1 v T 1 + λ 2 u 2 v T 2 (2.25)
In Eq. (2.25) u 1 , u 2 are the left singular vectors and v 1 , v 2 are the right singular vectors of X. Hence, the best rank-1 approximation of X in a least squares sense is:

X 1 = λ 1 u 1 v T 1 (2.26)
or equivalently:

X 1 = u 1 u T 1 Xv 1 v T 1 . (2.27) 
On can notice that the scaling term λ 1 in Eq. (2.26) represents the 'magnitude' of the first term of the singular value decomposition, retained in the truncation. in Eq. (2.27), this saling term is not present, but this piece of information is contained in matrix X. From the Eckart-Young theorem presented in section 2.5.3, we can assert that we obtained in Eqs. (2.26) and (2.27) the best rank-one approximation of X in least squares sense. A numerical application yields, as best rank-1 estimate in least squares sense of X is:

X 1 =   0.7236 0.4472 1.1708 0.7236   (2.28)
In this case, X -X 1 2 = 0.6180.

'Flag' matrices

We deal here with the French and German flags Here is a matrix which reminds the French flag: 

(French flag) (German flag)
F =             
             (2.

29)

Here is a matrix which reminds the German flag: 

G =              a a a
             (2.30)
We notice that G = F T .

The matrix of Eq. (2.29) is easily expressed as: F = uv T with:

u = ( 1 1 1 1 1 1 ) T (2.31) v = ( a a b b c c ) T (2.32)
The matrix of Eq. (2.30) is easily expressed as: G = F T = vu T . We show thereby that F and G are rank-one matrices. However, in this case u and v may not If we consider the summation X = F + G, we can show that X is a rank-2 matrix. With the same numerical application, we get that the singular values of X are 1.9827 and 0.0173. As X = 1 u v T + 1 v u T , we can assert that u, v T and v, u T cannot be pairs of singular vectors of X.

Influence of subsampling on matrix rank

We denote by S the subsampling factor applied to both rows and columns, and study the influence of image subsampling on the rank value, for various types of images. In the example of Fig. 2.9, the original image, displayed on Fig. In Table 2.1 we present the size and rank values for the images in Fig. 

Exemplification with straight line segments

Tensor model

Tensor data modeling and tensor analysis have been improved and used in several application fields such as quantum physics, economy, chemometrics [START_REF] Sidiropoulos | On the uniqueness of multilinear decomposition of N-way arrays[END_REF], psychology, data analysis, etc. Nevertheless, only recent studies focus their interest on tensor methods in signal processing applications. Tensor formulation in signal processing has received great attention since the recent development of multicomponent sensors, especially in imagery (color or multispectral images, video, etc.) and seismic fields (antenna of sensors recording waves with polarization properties). Indeed, the digital data obtained from these sensors are fundamentally higher order tensor objects, that is, multiway arrays whose elements are accessed via more than two indexes. Each index is associated with a dimension of the tensor generally called "nth-mode" [START_REF] Lathauwer | A multilinear singular value decomposition[END_REF][START_REF] Lathauwer | On the best rank-(1) and rank-(r 1 , . . . , r N ) approximation of higher-order tensors[END_REF][START_REF] Kroonenberg | Three-mode principal component analysis[END_REF][START_REF] Kroonenberg | Principal component analysis of threemode data by means of alternating least squares algorithms[END_REF].

Tensor models were adopted in chemometrics [START_REF] Sidiropoulos | On the uniqueness of multilinear decomposition of N-way arrays[END_REF], for DS-CDMA system characterization [START_REF] Sidiropoulos | Blind parafac receivers for DS-CDMA systems[END_REF], and to perform facial expression classification, by multilinear independent component analysis [START_REF] Vasilescu | Multilinear independent components analysis[END_REF].

Tensor models are also in adequation with a medical imaging modality referred to as magnetic resonance imaging, and the need to process and visualize such images [START_REF] Depeursinge | Three-dimensional solid texture analysis in biomedical imaging: Review and opportunities[END_REF]. Tensor data generalize the classical vector and matrix data to entities with more than two dimensions [START_REF] Muti | Multidimensional filtering based on a tensor approach[END_REF][START_REF] Sidiropoulos | On the uniqueness of multilinear decomposition of N-way arrays[END_REF]. In signal processing, there was a recent development of multicomponent sensors, especially in imagery (color or multispectral images, video, etc.) and seismic fields (antenna of sensors recording waves with polarization properties). The digital data obtained from these sensors are fundamentally multiway arrays, which are called, generally, higher order tensor objects, or tensors. Each multiway array entry corresponds to any quantity. The elements of a multiway array are accessed via several indexes. Each index is associated with a dimension of the tensor generally called "nth-mode" [START_REF] Lathauwer | A multilinear singular value decomposition[END_REF][START_REF] Lathauwer | On the best rank-(1) and rank-(r 1 , . . . , r N ) approximation of higher-order tensors[END_REF][START_REF] Kroonenberg | Three-mode principal component analysis[END_REF][START_REF] Kroonenberg | Principal component analysis of threemode data by means of alternating least squares algorithms[END_REF].

Definition of a tensor

A N -th order tensor is a N -dimensional array, X ∈ R I 1 ×...×I N , in which R indicates the real manifold, and N is the number of dimensions. The elements in tensor X can be expressed as

x i 1 ...i N , with i 1 = 1, . . . , I 1 ; • • • ; i N = 1, . . . , I N . The n-th dimension of tensor X is called mode-n.
Tensors are generalizations of matrices, for instance, a zero-order tensor x ∈ R is a scalar, a first-order tensor x ∈ R I 1 a vector and a second-order tensor X ∈ R I 1 ×I 2 a matrix. The relationship of scalar, vector, matrix, and tensor is illustrated in Fig. 

Tensor unfolding

Unfolding [START_REF] Kolda | Tensor decompositions and applications[END_REF] is also known as matricization [START_REF] Letexier | Non-orthogonal tensor matricization for hyperspectral image filtering[END_REF] [57] or flattening [START_REF] Letexier | Adaptive flattening for multidimensional image restoration[END_REF]. It can convert a tensor into its matrix form for the convenient of using the matrix-based data analyzing methods. A tensor can be unfolded in different ways according to the mode in which the unfolding is performed. The unfolding in mode-n is called mode-n unfolding.

Fig. 2.12 illustrates the principle of unfolding graphically for a third-order tensor (for example HSI) and shows different possible unfolding:

Let X n ∈ R In×Mn denote the mode-n unfolding matrix of a tensor X ∈ R In×I 1 I N ,
where

M n = I 1 . . . I n-1 I n+1 . . . I N .
The columns of X n are the I n -dimensional vectors obtained from X by varying index i n while keeping the other indices fixed. The mode-n product is defined as the product between a data tensor X ∈ R I 1 ×...×I N and a matrix B ∈ R J×In in mode n. This mode-n product is denoted by C = X × n B, whose entries are given by

c i 1 ...i n-1 ji n+1 ...i N In in=1 x i 1 ...i n-1 ini n+1 ...i N b jin , (2.33) 
Outer product •

The outer product is defined as the product between two tensors: X ∈ R I 1 ×I N and

B ∈ R J 1 ×J N .
The outer product is denoted by C = X • B, whose entries are given by

c i 1 ...i N j 1 ...j N x i 1 ...i N b j 1 ...j N , (2.34) 
where

C ∈ R I 1 ×I N ×J 1 ×J N .

Kronecker product ⊗

The Kronecker product is defined as the product between two matrices:

X ∈ R I 1 ×I 2 and B ∈ R J 1 ×J 2 .
The Kronecker product is denoted by C = X ⊗ B, which can be calculated by:

C =      x 11 B • • • x 1I 2 B . . . . . . . . . x I 1 1 B • • • x I 1 I 2 B      , (2.35) 
where

C ∈ R I 1 J 1 ×I 2 J 2 .

Khatri-Rao product ⊙

The Khatri-Rao product is defined as the product between two matrices:

X ∈ R I 1 ×I 2 and B ∈ R J 1 ×I 2 .
The Khatri-Rao product is denoted by C = X ⊙ B, which can be calculated by:

C = x 1 ⊗ b 1 • • • x I 2 ⊗ b I 2 , (2.36) 
where C ∈ R I 1 J 1 ×I 2 , and x n and b n are the n-th column vectors of X and B respectively.

Frobenius norm •

The Frobenius norm of tensor X is denoted by X in this thesis. It can be calculated by:

X 2 = I 1 i 1 =1 • • • I N i N =1
x 2 i 1 ...i N .

(2.37)

The quadratic distance between two tensors X and B can be calculated by X -B 2 .

Tensor Rank

In the case of order two, the rank of a matrix have a fundamental role in its SVD, in its canonical decomposition and in its approximation of lower rank. In this section we recall the different definitions of the rank of a tensor of order greater than two [START_REF] Kolda | Orthogonal tensor decompositions[END_REF][START_REF] Lathauwer | On the best rank-1 and rank-(r1 ,r2 ,. . .,rn) approximation of higher-order tensors[END_REF]. These different definitions make it possible to generalize the matrix SVD to the tensors.

Usual rank

Figure 2.13: A rank-1 third-order tensor equals to the outer product of three vectors Rank-one tensor let an N -th order tensor X ∈ R I 1 ×...×I N has rank 1 when it equals the outer product of N vectors x 1 , . . . , x N , which can be expressed as [START_REF] Kolda | Orthogonal tensor decompositions[END_REF]:

X = x 1 • . . . • x N . ( 2 

.38)

A rank-1 third-order tensor is presented in 2.13. Rank-1 tensor is the fundamental concept for defining the rank of a tensor.

Tensor of rank K The concept of rank of a matrix can be extended to higherorder tensors [START_REF] Lathauwer | Signal processing based on Multilinear Algebra[END_REF]98]. The definition of a tensor of rank K generalizes the matrix definition. Indeed, X is a tensor of rank K, where K is the minimum number of rank-1 tensors which, by addition, gives X . We denote the rank of the tensor X by:

Rank(X ) = K (2.39) Therefore, X ∈ R I 1 ×...×I N is a rank K tensor if, ∀n = 1 . . . N , There exists K n-modal normalized vectors u (n) k ∈ E (n)
, and K scalars λ k , k=1 . . . , K such as :

X = K k=1 λ k u (1) k • . . . u (N ) k = K k=1 λ k X k (2.40)
The definition (2.40)of the rank of a tensor permits to extend, the canonical decomposition of a matrix, to the tensors. Several studies known as «Parallel Factor Analysis» (Parafac) [START_REF] Harshman | Book review : Three-mode principal component analysis[END_REF] and «Canonical Decomposition» (CANDECOMP) [START_REF] Carroll | Analysis of individual differences in multidimensional scaling via an n-way generalization of "eckart-young" decomposition[END_REF] were carried out on the determination of the rank of a tensor and its decomposition into a minimal sum of rank-1 tensors. These two methods are known as Parafac / CAN-DECOMP tensor decomposition.

Remark 1: Note that this definition of rank don't impose constraint on the orthogonality of the rank-1 tensors as is imposed naturally in the SVD matrix.

Remark 2:

The rank of a matrix A ∈ R I 1 ×I 2 is always less than or equal to min(I 1 , I 2 ):

Rank(A) ≤ min(I 1 , I 2 ) (2.41)
This property is not verified in the case of a tensor [START_REF] Lathauwer | A multilinear singular value decomposition[END_REF][START_REF] Kolda | Orthogonal tensor decompositions[END_REF][START_REF] Lathauwer | Signal processing based on Multilinear Algebra[END_REF]. Indeed, the rank of a tensor X ∈ R I 1 ×...×I N can be such that:

Rank(X ) > min(I 1 . . . I 2 ) (2.42)
Mode-n rank of a tensor The term mode-n rank K n of a tensor X ∈ R I 1 ×...×I N , denoted by K n = rank n (X ), is the dimension of the column space of the mode-n unfolding matrix X n [START_REF] Lathauwer | Signal processing based on Multilinear Algebra[END_REF], i.e.,

K n = rank n (X ) = rank(X n ). (2.43)
Like the term rank of a tensor, the term mode-n rank is another way to extend the notion of the matrix rank to the tensor case. The mode-n rank actually is a rank of a matrix, therefore it can be analyzed by means of matrix techniques. Nevertheless, for a matrix X, the ranks of its column space and row space are the same, rank(X) = rank(X T ), but for the tensor X , the different mode-n ranks are not necessarily the same, which means that the mode-n rank of tensor X is not a unique value but a set of N values {K 1 , . . . , K N }. Since the rank and the mode-n rank both are the extensions of the matrix rank concept, there is a relationship between them, which can be described as [START_REF] Lathauwer | Signal processing based on Multilinear Algebra[END_REF]:

K n ≤ K.
(2.44)

Figure 2.14: A rank-(K 1 , K 2 , K 3 ) third-order tensor means that the rank of its mode-

n unfolding matrix A n is K n , n = 1, 2, 3
It's often useful to be able to approximate a tensor using decompositions. This makes it possible to generalize the matrix decompositions to the higher-order tensors in order to solve filtering problems for example. The main idea is to find a good approximation of a tensor X ∈ R I 1 ×...×I N by another tensor  to minimize a specific criterion. In the matrix case, the Eckart-Young theorem [START_REF] Eckart | The approximation of a matrix by another of lower rank[END_REF] indicates that the best approximation of Low-rank-K of a matrix A is obtained by truncating SVD itself,in the sense of the least squares. That is, by keeping only the K first singular vectors associated with the K largest singular values of A, we obtain an optimal approximation of A. In the case of tensors of order higher than 2, this theorem must be extended. Studies have been carried out to overcome the problem of optimal decomposition.

Tensor decomposition

Tucker3 Model

Tucker3 model was first introduced by TUCKER [START_REF] Tucker | Problems in Measuring Change, chapter Implications of factor analysis of three-way matrices for measurement of change[END_REF] and refined in [START_REF] Tucker | The extension of factor analysis to three-dimensional matrices[END_REF][START_REF] Tucker | Some mathematical notes on three-mode factor analysis[END_REF].

Tucker3 decomposition was originally developed to perform a decomposition for a tensor to find singular values of all modes which are independent from each other, so it was also named as higher-order SVD (HOSVD) [START_REF] De | A multilinear singular value decomposition[END_REF]. This model is also one source of the solution of lower rank approximation of a tensor [START_REF] Lathauwer | On the best rank-1 and rank-(r 1 ,r 2 ,. . .,r n ) approximation of higher-order tensors[END_REF]. Kroonenberg

and Leeuw [START_REF] Kroonenberg | Principal component analysis of threemode data by means of alternating least squares algorithms[END_REF] suggested an alternating least squares algorithm (ALS) to solve the minimization of the approximation error.

Tucker3 decomposition

The Tucker3 decomposition [START_REF] Kolda | Tensor decompositions and applications[END_REF] can be seen as a form of higher-order principal component analysis, which decomposes a tensor into a core tensor multiplied by a matrix along each mode. Thus, X ∈ R I 1 ×...×I N can be expressed as:

X = C × 1 X (1) × 2 X (2) × 3 • • • × N X (N ) = K 1 k 1 =1 K 2 k 2 =1 • • • K N k N =1 c k 1 k 2 •••k N x k 1 • x k 2 • • • • • x k N (2.45)
where, the factor matrix

X (n) ∈ R In×Kn (n = 1, 2, • • • , N ) is usually orthogonal
and can be thought of as the principal components in each mode. It holds the K n eigenvectors associated with the K n largest eigenvalues of the unfolding matrix

X n ; C ∈ R K 1 ו••×K N
is the core tensor whose entries show the level of interaction between the different components. Therefore, given a real-valued third-order tensor X , the Tucker3 decomposition provides the lower rank-(

K 1 , K 2 , K 3 ) multi-mode data X by minimizing E[ X -X 2 ] [118]
. An example of Tucker3 decomposition of a three-way array is displayed in Fig. 2.15.

Multiple ranks of Tucker3 decomposition

The n-rank of tensor X , denoted by rank n (X ), is the column rank of the unfolding matrix X n of X , that is to say that the n-rank is the dimension of the vector space spanned by the n-mode vectors [START_REF] Kolda | Tensor decompositions and applications[END_REF][START_REF] Lathauwer | A multilinear singular value decomposition[END_REF]. By defining K n = rank n (X ), X could be said as a rank -

(K 1 , K 2 , • • • , K N ) tensor with K n ≤ I n for all n = 1, • • • N . There-
fore, an approximation of a tensor X could be calculated by Tucker3 decomposition such as: making

of rank -(K 1 , K 2 , • • • , K N ) with K n ≤ rank n (X ).
C ← C × 1 W 1 × 2 W 2 × 3 • • • × N W N and X (1) ← X (1) × W -1 1 . . . X (N ) ← X (N ) × W -1 N where W 1 ∈ R K 1 ×K 1 , • • • , W N ∈ R K N ×K N ,
the result is still the same. Since the synchronous estimation of the values of all [START_REF] Renard | Denoising and dimensionality reduction using multilinear tools for hyperspectral images[END_REF] but it is time-consuming due to the multiple combinations of different K n . Another method is Akaike information criterion (AIC) to estimate each K n value [START_REF] Letexier | Noise removal from hyperspectral images by multidimensional filtering[END_REF][START_REF] Liu | Denoising of hyperspectral images using the parafac model and statistical performance analysis[END_REF][START_REF] Renard | Improvement of target detection methods by multiway filtering[END_REF]. However the assumption that the rank values are independent one from the others may not always be true.

K 1 , K 2 , • • • , K N is hard, one solution con- sists in estimating K N with fixed K 1 , • • • , K N -1
The optimal estimation of the rank values is the purpose of the Chapter 3 of this manuscript.

Application of Tucker3

Tucker3 decomposition finds its utility in chemical analysis [START_REF] Henrion | n-way principal component analysis theory, algorithms and applications[END_REF]. Many examples of applications in psychometrics were provided by Kiers and Van Mechelen [START_REF] Kiers | Three-way component analysis : Principles and illustrative application[END_REF]. 

Parafac model

The idea of the polyadic form of a tensor was proposed by Hitchcock in 1927 [START_REF] Hitchcock | The expression of a tensor or a polyadic as a sum of products[END_REF][START_REF] Hitchcock | Multiple invariants and generalized rank of a p-way matrix of tensor[END_REF], i.e., expressing a tensor as the sum of a finite number of rank-one tensors. Later

Cattell proposed ideas for parallel proportional analysis and the idea of multiple axes for analysis (circumstances, objects, and features) [START_REF] Cattell | Parallel proportional profiles and other principles for determining the choice of factors by rotation[END_REF][START_REF] Cattell | The three basic factor-analytic research designs -their interrelations and derivatives[END_REF]. The concept finally became popular after its third introduction,to the psychometrics community, in the form of CANDECOMP (canonical decomposition) by Carroll and Chang [START_REF] Carroll | Analysis of individual differences in multidimensional scaling via an n-way generalization of 'eckart-young' decomposition[END_REF] and Parafac by

Harshman [START_REF] Harshman | Foundations of the parafac procedure: Models and conditions for an "explanatory" multi-modal factor analysis[END_REF]. Kiers refers to the CANDECOMP/Parafac decomposition as CP in [START_REF] Kiers | Towards a standardized notation and terminology in multiway analysis[END_REF]. Mocks [START_REF] Mocks | Topographic components model for event-related potentials and some biophysical considerations[END_REF] independently discovered Parafac in the context of brain imaging and called it the Topographic Components Model.

Parafac decomposition

The Parafac decomposition factorizes a tensor into a sum of rank-1 tensors [START_REF] Kolda | Tensor decompositions and applications[END_REF]. For instance, a tensor X ∈ R I 1 ×I 2 ו••×I N can be expressed as

X ≈ X = K k=1 X k = K k=1 x(1) k • x(2) k • • • • • x(N) k (2.46)
where X is the rank-K approximation of X ,

X k ∈ R I 1 ×I 2 ו••×I N is rank-1 tensor.
We define the factor λ k as:

λ k = x(1) k • x(2) k • • • • • x(N) k , for k = 1, 2, • • • , K and x(n) k = [x (n) 1k , x(n) 2k , • • • , x(n) ink ] T , for n = 1, 2, • • • , N
By normalizing, the unit-norm vectors of the n-mode space of X could be defined as:

x (n) k = x(n) k x(n) k .
Then Eq. (2.46) becomes:

X ≈ X = K k=1 X k = K k=1 λ k x (1) k • x (2) k • • • • • x (N )
k .

(2.47)

Elementwise, Eq. (2.47) is written as Parafac decomposition is used to compute X with K components that approximate the best value of X by minimizing the square error e = X -X 2 .

xi 1 i 2 •••i N = K k=1 λ k x (1) i 1 k x ( 2 
)
i 2 k • • • x (N ) i N k , for i n = 1, 2, • • • , I n and n = 1, 2, • • • N (2.
Using Khatri-Rao product, the n-mode unfolding matrix of X is given by [START_REF] Kolda | Tensor decompositions and applications[END_REF]:

Xn = X (n) Λ Λ Λ(X (N ) ⊙ • • • ⊙ X (n+1) X (n-1) ⊙ • • • ⊙ X (1) ) T (2.49)
where

X (n) = [x (n) 1 , . . . , x (n) K ] , n = 1, 2, • • • , N and 
Λ Λ Λ =         λ 1 λ 2 . . . λ K         .

An example of Tucker3 decomposition

This section provides examples of tensor rank estimation. It shows how to translate the rank of a tensor in terms of images and describes the effect of truncation on pure images or noisy images.

We consider a 2 × 2 × 2 tensor where each band is as follows:

X (:, :, 1) = X (:, :, 2) =   1 0 1 1   (2.50)
The properties of tensor X are as follows: We notice from Eq. (2.50) that the two bans of X are equal. From this, we infer easily that, for the first and second modes (n = 1 and n = 2), the rank values K 1 and K 2 in the Tucker3 decomposition are equal to 2, the matrix rank of the first band. A possible way to unfold X along the third mode yields:

X 3 =   1 0 1 1 1 0 1 1   (2.51)
Obviously, from Eq. (2.51) for the third mode, the rank value K 3 is 1.

Matrices U (1) , U (2) , U (3) in the Tucker3 model of Eq. (2.45) are as follows: Also, U (1) , U (2) are the same as the matrices U, V in the example of subsection 2.6.1. A numerical application yields:

U (1) =   -0.5257 -0.8507 -0.8507 0.5257   (2.52) U (2) =   -0.8507 -0.5257 -0.5257 0.8507   (2.53)
Matrix U (3) is as follows:

U (3) =   -0.7071 -0.7071 -0.7071 0.7071   (2.54)
The core tensor is obtained by inverting Eq. (2.45): Firstly, we notice that the core tensor S exhibits the same n th -mode rank values as tensor X . Also, we notice that the core tensor S is not diagonal. Hence, the Parafac decomposition of X is not obvious. To illustrate the Parafac decomposition in a simple case, we prefer further to choose another example of multidimensional array.

S = X × 1 U (1)T × 2 U (2)T × 3 U (3)T (2.

Noisy case

We add a random tensor to the tensor defined above. We get a tensor R: Let's define the square error SE= X -X 2 between raw tensor X and estimate X .

With ranks K = (2, 2, 1), the square error between truncated and noise-free tensor is 0.1805. With this triplet corresponding to the dimension of the signal subspace and other rank triplets, here are the estimation error values: This illustrates with a simple example the interest of retrieving the appropriate rank value for the truncation of a tensor decomposition, here the HOSVD.

K (2, 2, 2) (2, 2, 1) (2, 1, 2) (2,

Examples for the Parafac decomposition

In this study we compute the decomposition with a fixed rank. This is not the same as computing the decomposition with an elevated number of ranks, and then truncating the decomposition.

For the sake of the computational load, we prefer this solution because the maximum Parafac rank of a tensor is a number of elements inside, possibly very elevated.

Extension of the 'Flag' matrix to 3D data

We remind the matrix representing the the 'French flag': 

F =             
             (2.62)
Let F be a tensor such that:

F(:, :, 1) = F (2.63) F(:, :, 2) = 2F (2.64)
and

F(:, :, 3) = 3F (2.65)
The tensor F is easily expressed as the outer product of three vectors:

F = u • v • w with: u = ( 1 1 1 1 1 1 ) T (2.66) v = ( a a b b c c ) T (2.67) w = ( 1 2 3 ) T (2.68)
Hence, the Parafac rank of F is 1.

We remind the matrix representing of the 'German flag' is denoted by G.

Let G be a tensor such that: 

G(:, :, 1) = G (2.
We notice that G = v • u • w.
Now let H be the following matrix: 

H =              c c c c
             (2.72) 
Let H be a tensor such that: Let R be a noisy tensor version of X : R = X + N where N is a noise tensor.

H(:, :, 1) = H (2.
Let X be the estimate of X obtained by truncation of the Parafac decomposition of R to rank K (see Eq. (3.9)).

Let's define: the square error SE R,X = R -X 2 between noisy tensor R and noise-free tensor X ; the square error SE X , X = X -X 2 between noise-free tensor X and estimate X ; the square error SE R, X = R -X 2 between noisy tensor R and estimate X .

When the SNR level is such that SE R,X = 0.00022969 10 -5 , we get the following values, depending on the rank for the truncation K:

For rank values 2 to 8: all error values are multiplied by 10 -5.

Noise free

In this case R = X . 

K 2 3 4 5 SE X , X 1574528 

Medium noise level

In this case SE X ,R = X -R 2 = 0.0071983 10 For SE X , X , the best value of rank is K = 6.

For SE R, X , the best value of rank is K = 5.

High noise level

In this case, SE X ,R = 7502.212510 For SE X , X , the best value of rank is K = 4.

For SE R, X , the best value of rank is K = 5.

Very high noise level

In this case, SE X ,R = 59417.4057 10 For SE X , X , the best value of rank is K = 3.

For SE R, X , the best value of rank is K = 6.

observation

The results obtained in the preceding examples note that the estimated rank differ for each case.

In this case, to solve optimization problems require enormous computational efforts, particularly (in the field of multispectral), which tend to fail as the problem size increases. To resolve this disadvantage, the nature is great source of inspiration for solving hard and complex problems in computer science. Indeed, the use of bio inspired stochastic optimization algorithms as computationally efficient alternatives to deterministic approach.

Conclusion

In this chapter, we have introduced the definition of a tensor and its corresponding algebra and properties. Particularly, we have discussed two tensor decompositions, Parafac and TUCKER, which are the cornerstones of the tensor-based denoising methods: MWF and Parafac filters.

MWF extends the classical Wiener filter to the multidimensional case by using TUCKER decomposition with minimizing the MSE between the desired signal tensor and the estimated signal tensor. As the filter in one mode relies on the filters in the other modes, the ALS algorithm is used to jointly calculate the MWF filters. In the filtering process, the rank of signal subspace in mode-n needs to be known in order to remove the noise in the orthogonal complement subspace of the signal subspace.

For this reason, the AIC algorithm is taken to estimate the rank in mode-n, which makes MWF can reduce noise automatically.

Parafac filtering method was proposed to reduce the rank numbers to be estimated. As aforementioned, the rank in each mode needs to be estimated in MWF, while only one rank needs to be estimated in Parafac filtering, therefore it reduces the rank numbers significantly. Moreover, low-rank Parafac decomposition is unique for rank values higher than one, whereas TUCKER decomposition is not. However, there is not an efficient way to estimate the Parafac rank automatically. We have discussed a rank estimation method in this chapter, however, it is a time-consuming brute force searching way.

The tensor-based denoising methods jointly filter each mode of HSI by employing the multilinear algebra, therefore they can utilize the underlying structure of HSI.

Thus, this tensor can be a model for an HSI, expressed as: R = X + N . Tensors R, X , and N are of size I 1 × I 2 × I 3 . For each spectral band indexed by i = 1, ..., I 3 , the noise N (:, :, i) is assumed additive, zero-mean, white and Gaussian. The objective is to denoise the tensor R with a subspace-based method. Subspace-based methods have been shown to exhibit good denoising results when applied to data with main salient orientations in the image [START_REF] Letexier | Main flattening directions and quadtree decomposition for multi-way wiener filtering[END_REF]. They provide an estimated signal tensor which, generally in the literature and the remainder of this paper, is denoted by X . This estimate depends on the so-called signal subspace dimensions' or signal subspace ranks' K 1 ×, K 2 ×, K 3 which must be estimated.

Multiway Wiener filtering in the wavelet framework

In [START_REF] Jukic | Noninvasive diagnosis of melanoma with tensor decomposition-based feature extraction from clinical color image[END_REF], MWF has been inserted into a wavelet framework to denoise images while preserving details. In tensor form, 2-dimensional wavelet packet transform (WPT)

is applied for each mode to get the multidimensional wavelet packet transform (MWPT):

C R l = R × 1 W 1 × 2 W 2 × 3 W 3 , (3.1) 
In Eq. (3.1) C R l is the wavelet packet coefficient tensor for levels in l = [l 1 , l 2 , l 3 ] T ; for each value of n between 1 and 3, W n ∈ R In×In indicate the WPT matrices, and × n denotes the n-mode product [START_REF] Lin | Hyperspectral image processing by jointly filtering wavelet component tensor[END_REF]. To select the 'frequency' components out of the wavelet packet coefficient tensor, a 'frequency' index is defined for the mode 1, The principles of multidimensional wavelet packet transform-multiway Wiener filtering (MWPT-MWF) proposed in [START_REF] Lin | Hyperspectral image processing by jointly filtering wavelet component tensor[END_REF] are to apply MWF to each coefficient subtentor C R l,m . Following the same notation as for the noisy tensor R, let C X l,m and ĈX l,m be the coefficient subtensors for the expected tensor X and its estimate X respectively.

From the Parseval theorem, minimizing the MSE between X and its estimate X is equivalent to minimizing the MSE between C X l,m and ĈX l,m for each m:

X -X 2 = C X l -ĈX l 2 = m C X l,m -ĈX l,m 2 (3.2)
To minimize the expression C X l,m -ĈX l,m 2 for all instances of vector m, multiway Wiener filtering is applied. This requires, for each vector m, the knowledge of three rank values.

Proposed criterion for optimal rank selection

In the literature, the Akaike Information Criterion (AIC) [START_REF] Lin | Hyperspectral image processing by jointly filtering wavelet component tensor[END_REF] is commonly used to estimate the subspace ranks. AIC estimates the number of sources correctly in an array processing problem [START_REF] Wax | Detection of signals information theoretic criteria[END_REF]. In an array processing context, there are many realizations of the same random signal, and the data are rarely noisy, so AIC exhibits a good behavior. Usually, in the frame of HSI processing, through a stationarity hypothesis, a covariance matrix is computed from the column vectors of the unfolded matrix obtained from the HSI, which are considered as realizations of the same random signal. AIC is applied to the eigenvalues of the covariance matrix obtained for each mode of the HSI [START_REF] Renard | Denoising and dimensionality reduction using multilinear tools for hyperspectral images[END_REF]. However, it has been shown empirically that there is no clear domination of a subset of eigenvalues with high magnitude with respect to the others [START_REF] Renard | Denoising and dimensionality reduction using multilinear tools for hyperspectral images[END_REF], and that AIC tends to overestimate the rank values when the data are noisy. In [START_REF] Marot | Advanced Concepts for Intelligent Vision Systems: 10th International Conference[END_REF], the minimization of the least squares criterion is proposed to estimate the rank values, but its relevance and optimality are not proven. We look for a method which is robust to noise and takes into account the assumptions about our noise model. Maximum likelihood restoration methods have been developed during the last decades for blurred, Poisson noise or additive Gaussian noise models [START_REF] Hudson | Maximum likelihood restoration and choice of smoothing parameter in deconvolution of image data subject to poisson noise[END_REF].

In the case of Gaussian noise, they yield to the minimization of the least squares criterion [START_REF] Lanteri | A general method to devise maximum-likelihood signal restoration multiplicative algorithms with nonnegativity constraints[END_REF]. Among other methods [START_REF] Lanteri | A general method to devise maximum-likelihood signal restoration multiplicative algorithms with nonnegativity constraints[END_REF], mean square error minimization yielded the Wiener filter [START_REF] Grigoryan | Optimal Wiener and homomorphic filtration: Review[END_REF], and MWF [START_REF] Muti | Lower-rank tensor approximation and multiway filtering[END_REF], which is the core of the methods presented in this work. For these reasons, and because our model for noise is white Gaussian, we propose to minimize a least square error (LSE) criterion to estimate the signal subspace dimensions:

J m (K 1 , K 2 , K 3 ) = ||C X 1 l,m -ĈX l,m (K 1 , K 2 , K 3 )|| 2 (3.3)
where ||.|| represents the Frobenius norm, X 1 is a gross estimate of the expected tensor X , and ĈX l,m is a coefficient subtensor of the final estimate X . ĈX l,m depends on the expected rank values (K1, K2, K3). It is obtained with a fast version of MWF including fixed point algorithm [START_REF] Marot | About Advances in Tensor Data Denoising Methods[END_REF].

The criterion J m (K 1 , K 2 , K 3 ) is a nonlinear function of the parameters K 1 , K 2 , K 3 , hence the need for an adequate optimization method, which must be global. In [START_REF] Marot | Advanced Concepts for Intelligent Vision Systems: 16th International Conference[END_REF], a single optimization method, particle swarm optimization, is proposed. To the best of our knowledge,no thorough investigation was performed on the comparative performance of optimization methods to estimate the signal subspace ranks in a wavelet framework.

Brief review on global optimization methods

The considered optimization problem is highly non-linear, and we have no insurance that some constraints on the minimized function are respected. Therefore, we left aside the deterministic optimization methods such as Dividing Rectangles (DIRECT) [START_REF] Jones | Lipschitzian optimization without the lipschitz constant[END_REF]which assumes that the minimized function is a k-Lipschitzian one.

Moreover, as the data considered in this work are impaired with random noise, we focused on stochastic optimization methods. These methods introduce randomness in the initialization and iterative process of the optimization algorithm. Contrary to well-known deterministic methods such as Gradient descent which may converge to a local minimum, this randomness prevents the stochastic optimization method from focusing on a local optimum, but also turns it less sensitive to modeling errors. Further in this work, we provide some details on two bio-inspired optimization methods: swarm optimization [START_REF] Marot | Particle swarm optimization for blurred contour retrieval[END_REF]and genetic algorithms [START_REF] Mitchell | An introduction to genetic algorithms[END_REF]. First, we present Nelder-Mead [START_REF] Lagarias | Convergence properties of the nelder-mead simplex method in low dimensions[END_REF]. The Nelder-Mead Simplex method [START_REF] Lagarias | Convergence properties of the nelder-mead simplex method in low dimensions[END_REF] is a global optimization method, which is meant to minimize a scalar-valued nonlinear function of several real variables, without any derivative information. It is known to yield a rapid decrease in cost function values [START_REF] Lagarias | Convergence properties of the nelder-mead simplex method in low dimensions[END_REF]. It has been shown that, in dimension two or more, the Nelder-Mead method may converge to a non-critical point of the minimized function [START_REF] Gao | Implementing the nelder-mead simplex algorithm with adaptive parameters[END_REF]. In their seminal work concerning particle swarm optimization, Kennedy and Eberhart [START_REF] Eberhart | A new optimizer using particle swarm theory[END_REF][START_REF] Kennedy | Particle swarm optimization[END_REF] got inspired by [START_REF] Reeves | Particle systems, a technique for modeling a class of fuzzy objects[END_REF]where the term 'particle swarm' was chosen to define the members of a population or test set. In their paradigm, the population members are mass-less and volume-less. Their evolution is described through position, speed, and acceleration parameters [START_REF] Marot | Particle swarm optimization for blurred contour retrieval[END_REF]. An often cited, now well-known reference [START_REF] Mitchell | An introduction to genetic algorithms[END_REF] introduces genetic algorithms in the context of evolutionary computation which implies the evolution of a population of candidates which is inspired by Darwin's natural selection theory. Another largely cited reference presents basics about genetics, the hierarchical genetic algorithm, and applications to H∞ control, neural network, and speech recognition [START_REF] Man | Genetic algorithms: concepts and designs[END_REF]. For applications which concern specifically image processing, genetic algorithms are combined with mathematical morphology methods [START_REF] Liu | Genetic algorithm and mathematical morphology based binarization method for strip steel defect image with nonuniform illumination[END_REF], watermarking [START_REF] Mohananthini | Comparison of multiple watermarking techniques using genetic algorithms[END_REF], medical imaging [START_REF] Ghosh | Incorporating priors for medical image segmentation using a genetic algorithm[END_REF], or 3D reconstruction [START_REF] Williams | Reconstruction of 3d surface maps from anterior segment optical coherence tomography images using graph theory and genetic algorithms[END_REF]. As GA requires a large number of function evaluations for convergence, and because PSO may prematurely converge to a local minimum, hybrid algorithms were proposed which combine the advantages of both types of methods: genetic algorithms were mixed with particle swarm optimization [53, 103][37-41], or an ant colony algorithm [START_REF] Dong | Combination of genetic algorithm and ant colony algorithm for distribution network planning[END_REF]. Recently, such a hybrid algorithm was proposed [START_REF] Cherifi | Multimodal score-level fusion using hybrid ga-pso for multibiometric system[END_REF], where the evolutionary natures and social interactions of both algorithms are combined in the frame of a multibiometric system. Nelder-Mead can be a valuable comparative method. However, three parameters should be estimated in the considered optimization problem, and Nelder-Mead method could be stacked in a local minimum of the criterion in Eq. (3.10). Hence, and as a balance to section 3.6., we will then focus on two types of stochastic bio-inspired optimization methods: genetic algorithm (GA) and particle swarm optimization (PSO). Both types of methods provide the global minimum of a scalar function of several variables and are gradient-free.

Genetic algorithm and particle swarm optimization

for tensor rank estimation GA and PSO are population-based iterative algorithms. They start with an initial random set of Q rank triplets called population. In the following, this population is denoted by y K 1 ,K 2 ,K 3 q , q = 1, . . . , Q. Each vector y q = [K 1 , K 2 , K 3 ] T is modified throughout the iterations. Vector y q is called a chromosome while dealing with a genetic algorithm, and a particle while dealing with swarm optimization.

Principles of Genetic algorithms

The genetic algorithm is a method for solving both constrained and unconstrained optimization problems that is based on natural selection, the process that drives biological evolution. It is based on 'survival of the fittest' theory of Charles Darwin [START_REF] Schwefel | Contemporary Evolution Strategies[END_REF]. It was introduced by Holland in [START_REF] Holland | Adaptation In Natural And Artificial Systems[END_REF]. This algorithm is interesting because it's very robust in nature and capable of optimize complex problems, including when a great number of unknown values are expected.

Each individual y K 1 ,K 2 ,K 3 q , q = 1, . . . , Q in the population is called a chromosome, representing a solution to problem at hand. The chromosomes evolve through successive iterations, called generations. During each generation, the chromosomes y K 1 ,K 2 ,K 3 q are evaluated, using the fitness function J m (y K 1 ,K 2 ,K 3 q ) (directly adapted from Eq. (3.10)):

J m (y K 1 ,K 2 ,K 3 q ) = ||C X 1 l,m -ĈX l,m (y K 1 ,K 2 ,K 3 q )|| 2 (3.4)
The genetic algorithm uses three main types of rules at each step to create the next generation from the current population [START_REF] Tongchim | Coarse-grained parallel genetic algorithm for solving the timetable problem[END_REF]:

• Selection rules select the individuals, called parents, that are best adapted to their environment and contribute to the population at the next generation.

• Crossover is a genetic operator that recombines two chromosomes (a pair of individuals) to produce a new chromosome (called an offspring). The new chromosome may be better than both of the parents if it takes the best characteristics from each of the parents. Crossover occurs during evolution according to a user-definable crossover probability.

• Mutation promotes diversity in population characteristics, to prevent the algorithm from being trapped in local minima [START_REF] Cherifi | Multimodal score-level fusion using hybrid ga-pso for multibiometric system[END_REF].

The five main steps of a GA algorithm [START_REF] Mitchell | An introduction to genetic algorithms[END_REF] are described in Algorithm 1.

Algorithme 1 Pseudo-code: Genetic Algorithm for multiple rank estimation Inputs: fitness function of Eq. (3.4), tensor gross estimate X 1 , small factor ε set by the user, to stop the algorithm.

1. Set iteration number iter = 1, and maximum number of iterations maxiter.

2. Create an initial population composed of Q random chromosomes with all required rank values y K 1 ,K 2 ,K 3 q (iter), q = 1, . . . , Q. This initial population takes the form of a matrix with Q rows and 3 columns.

3. Evaluate fitness function value of Eq.(3.10) for each each chromosome

y K 1 ,K 2 ,K 3 q
(iter) in the population.

Generate the new population:

(a) Selection: choose new parents through fitness function value.

(b) Crossover: pair probabilistically the parents to create the offsprings with crossover fraction X f .

(c) Mutation: modify slightly some components, chosen randomly, of each offspring. We now afford the population y K 1 ,K 2 ,K 3 q (iter + 1), q = 1, . . . , Q ′

5.

Replace the current population with the new one, obtained at step 4.

6.

Increase iter ; if iter < maxiter, or ||y K 1 ,K 2 ,K 3 q (iter)y K 1 ,K 2 ,K 3 q (iter -1)|| > ǫ go to step 3.

Output: estimated rank values K1, K2, K3

Here are some details for GA algorithm:

At each iteration iter, y K 1 ,K 2 ,K 3 q (iter) is the current chromosome q.

At step 2, the initial population is stored in a Q × 3 matrix. Each row of the matrix is 1× 3 vector with three random values. The n th component of this vector is a random value between 1 and In 2 ln . Therefore, the q th row of the matrix is y K 1 ,K 2 ,K 3 q (1).

In the following, we exemplify the step 4. of Algorithm 1, with two chromosomes with index q and q': At step 4, after selection, we assume that we afford, among the selected chromo-

somes, y K 1 ,K 2 ,K 3 q (iter) = [K 1 , K 2 , K 3 ] and y K 1 ,K 2 ,K 3 q ′ (iter + 1) = [K ′ 1 , K ′ 2 , K ′ 3 ]
At the iteration iter+1, crossover provides the new offsprings. Whatever n, either Algorithme 2 Pseudo-code: Particle Swarm Optimization for multiple rank estimation Inputs: fitness function of Eq. (3.4), tensor gross estimate X 1 , small factor ǫ set by the user, to stop the algorithm.

1. Set iteration number iter = 1, create an initial population composed of Q random particles with all required rank values y K 1 ,K 2 ,K 3 q (iter), q = 1, . . . , Q.

This initial population takes the form of a matrix with Q rows and 3 columns.

2. Evaluate fitness function value of each particle y K 1 ,K 2 ,K 3 q (iter), q = 1, . . . , Q.

3. Update the local best particles p K 1 ,K 2 ,K 3 q (q = 1, . . . , Q), and the global best particle G K 1 ,K 2 ,K 3 , 4. Repeat steps for each particle q, q = 1, . . . , Q:

(a) Compute velocity V K 1 ,K 2 ,K 3 q (iter + 1) (b) Compute position y K 1 ,K 2 ,K 3 q (iter + 1)
5. Exchange current population from new one, obtained at step 4.

If iter

< maxiter or y K 1 ,K 2 ,K 3 q (iter) -y K 1 ,K 2 ,K 3 q
(iter -1) > ǫ, and go to step 2.

Output: estimated rank values K1 , K2 , K3 and (3.6), we show how to get an updated particle, at iteration iter +1.

At step 4a, the velocity is computed as follows:

V K 1 ,K 2 ,K 3 q (iter + 1) = W V K 1 ,K 2 ,K 3 q (iter) + γ 1q r 1q (p K 1 ,K 2 ,K 3 q -y K 1 ,K 2 ,K 3 q (iter)) ... + γ 2q r 2q (G K 1 ,K 2 ,K 3 -y K 1 ,K 2 ,K 3 q (iter)) (3.5)
At step 4b, the position at iteration iter +1 is computed as the summation of the position at iteration iter and the velocity at iteration iter+1.

y K 1 ,K 2 ,K 3 q (iter + 1) = y K 1 ,K 2 ,K 3 q (iter) + V K 1 ,K 2 ,K 3 q (iter + 1) (3.6) 
In Eqs. (3.5) and (3.6), the arithmetic operations are computed componentwise. For a given particle q, the velocity is influenced by two contributions: the cognitive one and the social one. The cognitive contribution is due to personal best location of the particle over all iterations. It is denoted by p K 1 ,K 2 ,K 3 q in Eq. (3.5).

Social contribution represents global best location over all particles in the swarm and all iterations. It is denoted by G K 1 ,K 2 ,K 3 in Eq. (3.5).

In Eq. (3.5), W is the inertia weight, γ 1q and γ 2q are the acceleration constants encouraging a local and a global search respectively. The probabilistic aspect of the transition between two iterations of Algorithm 2 is due to r 1q and r 2q , which, for each particle q and each iteration iter, are two numbers generated randomly between 0 and 1. A large inertia weight(W ) facilitates a global search while a small inertia weight facilitates a local search. We look forward to encourage a global search for the first iterations, and a local search for the last iterations. Hence, we fix an initial value W Init and a final value W F inal for the weighting coefficient. At the iteration iter, the weighting coefficient is computed as:

W = W Init -(W Init -W F inal ) * iter maxiter ,
where maxiter is the final iteration number. When this last iteration number is attained, or when the Frobenius norm of the difference between estimated vectors at iteration iter and iter -1 is less than a fixed threshold ǫ (see step 6 of Algorithm 2), the position vector G K 1 ,K 2 ,K 3 is a row vector containing 3 components which are the final estimated values K1, K2, K3, of the signal subspace ranks.

Comparative discussion: GA and PSO

From Algorithms 1 and 2, we can learn that GA and PSO share many common points: they search a population of points in parallel, not a single point; they do not require derivative information or other auxiliary knowledge, only the objective function. They use probabilistic transition rules between one iteration to the next, not deterministic ones. This probabilistic aspect is due to the probabilistic crossover and mutation at steps 4(b) and 4(c) in Algorithm 1 (GA). The role of mutation is often seen as providing a guarantee that the probability of searching any given triplet of rank values will never be zero. The crossover routines recombine pairs of individuals with given probability to produce offspring. In Algorithm 2 (PSO), the probabilistic aspect is due to random parameters r 1q and r 2q (see Eq. the best solution at a given iteration is not preserved. Hence, a large number of iterations is generally required for convergence [START_REF] Cherifi | Multimodal score-level fusion using hybrid ga-pso for multibiometric system[END_REF].

In PSO, particles do not undergo crossover and mutation: they update themselves with the internal velocity, which depends on local p K 1 ,K 2 ,K 3 q and global G K 1 ,K 2 ,K 3

best candidates selected at the previous iteration (see Eqs. (3.5) and (3.6)). There exists a single particle G K 1 ,K 2 ,K 3 which has an influence on the behavior of the other candidate solutions. Hence, PSO includes a 'memory' feature: over all iterations, the personal best of each particle and the overall best are taken into account to compute velocity. So, the evolution only looks for the best solution at a given iteration.

In PSO, there is no selection operator, and the higher the number of particles, the higher the computational load. However, compared with GA, and even if the number of particles remains the same throughout the evolution, the particles tend to converge faster to the final solution.

In the considered problem, we look for only three parameters which are the signal subspace ranks. Hence, and as a balance to section 3.6, we infer that PSO should be faster than GA or any hybrid algorithm. In the next section, we insert the optimization algorithm in a tensor-wavelet framework.

Unsupervised multiway Wiener filtering in wavelet framework

In this section, we show how to obtain an unsupervised MWF-MWPT algorithm. We estimate the multiple signal subspace dimensions automatically. We also propose a method to set the number of wavelet packet decomposition levels for each mode, and we refine the reference tensor with a recursive algorithm.

Automatic estimation of multiple ranks in wavelet framework

It is necessary to adapt a global optimization method for multiple rank estimation when MWF is inserted in the wavelet framework [START_REF] Lin | Hyperspectral image processing by jointly filtering wavelet component tensor[END_REF]. Indeed, even if we restrict the study to third-order tensors such as color, multispectral or hyperspectral images, the number of required rank values may be so elevated that they cannot be fixed manually: One triplet of rank values must be estimated for each wavelet packet coefficient. There exists 2 ln coefficients for mode n, n = 1, 2, 3. Each wavelet packet coefficient such as C R l,m is a tensor of order 3 [START_REF] Lin | Hyperspectral image processing by jointly filtering wavelet component tensor[END_REF], so 3 rank values must be estimated for each wavelet packet coefficient. When the decomposition is performed, the number of coefficients is equal to 3 n=1 2 ln . In total, the number of rank values to be estimated in the whole algorithm is given by 3 3 n=1 2 ln . This number is possibly elevated. Therefore, it is of great interest to estimate the rank values automatically.

We wish to minimize all terms of the summation in Eq. (3.2), knowing that the noise-free tensor X is not available. For it, we propose Algorithm 3, multidimensional wavelet packet transform and multiway Wiener filtering with rank estimation (MWPT-MWF-RE).

In Algorithm 3, H 1,m , H 2,m and H 3,m denote the n-mode filters of MWF, which depend on rank values K 1 , K 2 , K 3 [START_REF] Muti | Lower-rank tensor approximation and multiway filtering[END_REF]: C R l,m denote the wavelet packet coefficients of R. Note that, for computational load purposes, different versions of MWF may be used in the algorithm. Here are some details about the key steps of Algorithm 3: At Algorithme 3 MWPT-MWF-RE Input: noisy tensor R, gross estimate X 1 of R obtained by MWF with fixed rank values.

1. Compute the wavelet decomposition of the noisy tensor R and of the gross estimate

X 1 : C R l = R × 1 W 1 × 2 W 2 × 3 W 3 , C X 1 l = X 1 × 1 W 1 × 2 W 2 × 3 W 3 .
2. Extract the wavelet coefficients [START_REF] Lin | Hyperspectral image processing by jointly filtering wavelet component tensor[END_REF]:

C R l,m = C R l × 1 E m 1 × 2 E m 2 × 3 E m 3 , C X 1 l,m = C X 1 l × 1 E m 1 × 2 E m 2 × 3 E m 3 .
3. Perform rank estimation and denoising for each wavelet packet coefficient C R l,m associated with vector m:

(a) Subsample C R l,m and C X 1 l,m by factors S 1 , S 2 , and S 3 along the first, second and third mode respectively to get a smaller version C R S l,m and

C X 1S l,m . Notice that C X 1S l,m is a gross estimate of C R S l,m .
(b) Estimate with a global optimization method the optimal rank values K1 , K2 , K3 in terms of the criterion:

J m (K 1 , K 2 , K 3 ) = ||C X 1S l,m -ĈX S l,m (K 1 , K 2 , K 3 )|| 2
In the equation above, ĈX S l,m is obtained from C R S l,m with MWF: (d) Apply MWF to each coefficient subtensor C R l,m , with the optimal rank values:

ĈX S l,m = C R S l,m × 1 H 1,m × 2 H 2,m × 3 H 3,m ,
ĈX l,m = C R l,m × 1 H 1,m × 2 H 2,m × 3 H 3,m
where H 1,m , H 2,m and H 3,m depend on K1 , K2 and K3 respectively.

Concatenate all coefficients ĈX

l,m to afford the wavelet packet decomposition ĈX l as a whole [START_REF] Lin | Hyperspectral image processing by jointly filtering wavelet component tensor[END_REF].

5. Retrieve the final estimated tensor by inverse wavelet packet transform:

X = ĈX l × 1 W T 1 × 2 W T 2 × 3 W T 3 .
Output: denoised tensor X .

step 1, we compute wavelet packet decomposition of the processed R, to get C R l , and the wavelet decomposition of the gross estimate X 1 to get C X 1 l . At step 2, we extract all the coefficients out of the whole decomposition: we get coefficients C R l,m and C X 1 l,m . This process is described in detail in [START_REF] Lin | Hyperspectral image processing by jointly filtering wavelet component tensor[END_REF]. At step 3, we firstly estimate the best rank values, and secondly use these rank values to denoise the coefficients with MWF.

To reduce the computational load of step 3(b), the estimation of the best rank values is performed on subsampled versions of C R l,m and C X 1 l,m . The subsampling is made at step 3(a). In step 3(b), we seek for the best rank values, without expecting the best estimates of the singular vectors used in MWF. That is why, still to reduce the computational load, a fast version using fixed-point algorithm and inverse power method [START_REF] Marot | About Advances in Tensor Data Denoising Methods[END_REF] may be used if significant data are processed with low SNR values.

At step 3(c) we multiply the rank values which were obtained by the subsampling factors. Then, we perform denoising at step 3(d). At step 3(d), the singular vectors used in the Wiener filters along each mode are computed through singular value decomposition, and are then optimal in the least squares sense [START_REF] Eckart | The approximation of a matrix by another of lower rank[END_REF]. At step 4 a simple concatenation of the wavelet packet coefficients is performed. The whole set of coefficients is expressed in a synthetic way as ĈX l , which is by definition the wavelet packet decomposition of the denoised tensor. At step 5 the denoised tensor is provided by inverse wavelet packet transform. With a global optimization method, Algorithm 3 is supposed to converge asymptotically towards the best set of rank values, and therefore the best possible estimate X at step 5 and as the final output of the algorithm. In practice, the total number of iterations, that is, the parameter maxiter, is fixed automatically: whatever the optimization algorithm is considered, the algorithm stops if the maximum a priori fixed number of iteration is attained or if the estimated values do not vary from one iteration to the next.

Estimation of the number of decomposition levels

At step 1 of Algorithm 3, the number of wavelet decomposition levels for each mode, contained in vector l = [l 1 , l 2 , l 3 ] T , is a required input for the computation of the wavelet coefficients. In [START_REF] Lin | Hyperspectral image processing by jointly filtering wavelet component tensor[END_REF], these values are chosen empirically. We propose an algorithm to estimate vector l. To reduce the range of acceptable values, we first notice that, up to now, the interest of performing decomposition along the wavelength mode has not been emphasized when multidimensional images are processed with MWPT-MWF. That is, l 3 is always fixed to 0. Secondly, without loss of generality, there is no prior assumption concerning the structure of the images. That is, we assume there is no feature which is expressly related to rows or columns. So, the row and column dimensions are processed in the same manner, and the number of decomposition levels is equal for each dimension: l 1 = l 2 . Thirdly, it has been shown empirically in [START_REF] Lin | Hyperspectral image processing by jointly filtering wavelet component tensor[END_REF] that there is no interest to perform wavelet packet decomposition with more than three levels. From the considerations above, we restrict the set of candidate instances for l to [1, 1, 0] T , [2, 2, 0] T , and [3, 3, 0] T .

To make our choice between these three possibilities, we apply Algorithm 4 below. . In Algorithm 4, at step 1, subsampling is applied to yield a faster process. At step 2(a), we notice that, for each mode n where n is equal to 1,2, or 3, the value of the signal subspace dimension is K n = In Sn2 1+ln . It is fixed to half the size of the processed wavelet packet coefficient. Notice that we do not choose optimal values of K n in any sense at step 2(a). Indeed, we do not seek for the best denoised tensor at this step, but for the best number of decomposition levels.

Algorithme 4 Estimation of the number of decomposition levels

Input: noisy tensor R of size for each decomposition level:

I 1 × I 2 × I 3 , gross estimate X 1 of R obtained by MWF with fixed rank values K 1 = I 1 2 , K 2 = I 2 2 , K 3 = I 3 2 , set of candidate vectors l.
K 1 = I 1 S 1 2 1+l 1 , K 2 = I 2 S 2 2 1+l 2 , K 3 = I 3 S 3 2 1+l 3
, that is, half of the size of the coefficients.

(b) Retrieve the error between the estimate obtained with Algorithm 3 at step 2. (a) and the subsampled version of X 1 .

3. Select the vector l for which the error is minimum.

Output: optimal vector l in terms of least squares error.

Still, the reference tensor which is used in Eq.(3.10) is obtained in a supervised way: with MWF with manually fixed ranks. In the next subsection, we propose a method to reduce the dependence of the algorithm, and to get a better reference Output: denoised tensor X .

Results

Experimental setup

In this section, we evaluate the performances of the proposed methods on RGB and multispectral images. We consider images where the relevant features are localized in some regions of the image. From the presence of such small local features we expect methods based on wavelet packet decomposition to provide good results, as wavelet packet decomposition permits to separate the processing of high frequency and low frequency features.

In the recent state-of-the-art about HSI denoising [START_REF] Letexier | Noise removal from hyperspectral images by multidimensional filtering[END_REF][START_REF] Liu | Denoising of hyperspectral images using the parafac model and statistical performance analysis[END_REF], the authors emphasize the quality of the recent HSI sensors: since in most bands noise is nearly invisible for human eyes, the authors impair the images with synthetic data. In this paper, we focus on a specific application fluorescence imaging of plant leaves [START_REF] Everard | A comparison of hyperspectral reflectance and fluorescence imaging techniques for detection of contaminants on spinach leaves[END_REF].

In the context of fluorescence imagery, the noise magnitude is inherently rather elevated, compared to the applications considered elsewhere. Indeed, the emitted fluorescence light has a much lower magnitude than the excitation light provided by a monochromator.

Consequently, we will firstly present some quantitative results obtained from artificially impaired images. These results are at first obtained from the RGB Baboon image. Secondly, they are obtained from multispectral aerial images. These multispectral images are extracted from hyperspectral images that were obtained with the ROSIS acquisition sensor over the urban area of Pavia, northern Italy. Thirdly, we present results obtained from fluorescence images which are inherently noisy.

We remind that X is the noise-free tensor, R is the noisy tensor and X is the estimated tensor. The processed noisy images follow the tensor model and are expressed as:R = X + N .

The results obtained are evaluated in terms of SN R and perceptual image quality. The perceptual image quality is measured through mean structural similarity (SSIM) [START_REF] Wang | Image quality assessment: from error visibility to structural similarity[END_REF] over all spectral bands. We remind that SN R = 10 log( ||X || 2 ||X -X || 2 ) and SSIM ( X , X ) = lu(X , X )co(X , X )st(X , X ), where lu, co, and st are three terms aiming at image comparison: luminance, contrast, and structure. filters because they provide either poor SSIM or output SNR values [START_REF] Marot | Advanced Concepts for Intelligent Vision Systems: 16th International Conference[END_REF]. We propose Perona-Malik [START_REF] Perona | Scale-space and edge detection using anisotropic diffusion[END_REF] as a comparative method. When Perona Malik is applied, the image is smoothed through a diffusion process, in such a way as to encourage intraregion smoothing rather than interregion smoothing. The Perona-Malik method is denoted as 'Per-Mal' in the tables presented further in the paper. Following the recommendations in [START_REF] Perona | Scale-space and edge detection using anisotropic diffusion[END_REF], the parameters are as follows: the number of iterations is 15, the constant integration δt is fixed to its maximum value, 1 7 ; the gradient modulus threshold that controls the conduction is k = 30; and the conduction coefficient function privileges high contrast edges. The tested algorithms require a few parameters which are set once for all processed images: following the recommendations in [START_REF] Kennedy | Particle swarm optimization[END_REF] PSO is run with the swarm size is Q = 10 (about three times the number of unknowns which is three) and ǫ = 10 -6 . This yields maxiter = 100 iterations. The acceleration constants γ 1i and γ 2i are set to 2 and 3 respectively. We run a version of GA using a Lagrangian algorithm [START_REF] Conn | A globally convergent augmented lagrangian algorithm for optimization with general constraints and simple bounds[END_REF][START_REF] Goldberg | Genetic algorithms in search optimization and machine learning[END_REF], with Q = 300 individuals in the initial population. We use the fitness function to provide a measure of how individuals have performed in the problem domain. When THOSVD or MWF are run, we set the values of signal subspace dimension equal to 60% of the data size along each mode.

Unless specified, to create the reference tensor we set the values of signal subspace dimension equal to 60% of the data size along each mode. When the iterative process described in subsection 3.7.3. is used, 3 iterations are used to refine the gross tensor estimate. Unless specified, the subsampling factors used to obtain a smaller version of the wavelet packet coefficient tensor are set to S 1 = S 2 = 4, and S 3 = 2 in algorithms 3 and 4. For the RGB display of the multispectral images throughout the section, we select 3 representative bands. Unless specified, they are in the red (690nm), green (550nm), and blue (450nm) wavelength domains respectively.

Baboon RGB image 256×256×3

To process this RGB image, the values of signal subspace dimension in the reference tensor are set to 80% along the spatial modes, and 100 % along the wavelength mode, that is, 3 because only three bands compose this image. The subsampling factors are set to S 1 = S 2 = 4, and S 3 = 1. This image is processed with 2 wavelet packet decomposition levels along the spatial modes, leading to wavelet packet coefficients of size 64×64×3.

Exemplification with SN R in = 5 dB

Table 3.1 provides the estimated values for the first computed detail coefficient, and for the approximation coefficient. Notice that the spatial ranks are multiples of 4, because S 1 = S 2 = 4. MM-GA and MM-PSO yield similar spatial rank values, whereas AIC tends to underestimate the value of the rank along the first mode (rows), for both approximation and detail coefficients. Otherwise, considering the detail coefficient, the maximum value is obtained for rows and columns. This can be explained as follows: In the case where salient structures are present in an image, such as horizontal lines or columns, there exists a set of columns or rows which are mutually proportional, and the rank of such images is rather low. When we consider the estimated rank values for detail coefficient (see Table 3.1), we notice that the rank values are elevated (64 for all but one value). This is because there is no salient structure in the detail coefficients in the case of this image: it rather contains noise. 

Table 3.1: Baboon RGB image 256×256×3: Estimated ranks values Fig. 3.2 presents the results obtained with the proposed and comparative methods on the Baboon image. It can be noticed that Perona-Malik yields a blurred image, that the image provided by MM-AIC is rather blurred along rows. When MM-Iterative is applied, the result image is slightly more noisy than the result provided by MM-PSO, but the contrast and the contours are better preserved. This is done to the cost of a higher computational load (see Table 3 

Statistical results

The statistical results presented in Table 3.3, and Table 3.4 show that, for all input SNR values but 5 dB, the proposed methods MM-GA, MM-PSO, and MM-Iterative perform better than Perona-Malik, MM-AIC, MWF or truncation of HOSVD, regarding output SN R and SSIM . Firstly, in the case where SN R in = 5dB, we notice that the output SNR values provided by MM-AIC are significantly lower than those obtained with MM-GA or MM-PSO due to the blurred aspect of the result obtained by AIC in Fig. 3.2, and to the underestimation of the rank along rows. For such an image with 3 bands, the comparative Perona-Malik method is valuable for the low SN R value of 5dB but the output SN R is almost the same whatever the input SN R. Secondly, if we consider the proposed methods, and for any value of input SN R, when the iterative method is used, the output SN R and SSIM are slightly better than when PSO is used, at the expense of a larger computational load: 8.931s.

for MM-PSO, 24.59s. for MM-Iterative, and 2.398s. for MM-AIC. When this image is considered, MM-GA is significantly slower than MM-PSO. That is why PSO is used in the iterative method, and not GA. We wish to confirm this with multispectral images with more bands.

the input SN R is 5 dB. Fig. 3.4 is a zoom on the upper right region of the image. The numerical results in Table 3.6 show that the performances of MM-PSO and MM-Iterative hardly change when the number of bands is reduced. Conversely, the output SNR provided by MM-AIC sinks, when the number of bands is reduced from 12 to 3.

Exemplification with SN R in = 12, 5 dB

The example in Fig. 3.5 concerns a case where the input SN R is 12.5 dB. 

Statistical results

These result images presented in this subsection yield the following comments: we notice that the result image provided by the Perona-Malik method is more blurred than all other result images. As for the methods which are not based on wavelet packet decomposition, the truncation of the HOSVD yields an image which is still rather noisy, and the MWF yields a column and row artifact and a poor detail preservation. As for the methods which include wavelet packet decomposition, the details are slightly better preserved when MM-GA, MM-PSO, and MM-Iterative are used than in the case where MM-AIC is used.

It is worth noticing that the performance of MM-GA, and MM-PSO are barely the same when the number of bands is reduced from 16 to 3. On the contrary, the performance of MM-AIC sinks when the number of bands decreases. This is coherent with the result presented in Table 3.3, for an input SN R of 5 dB, with the Baboon image which is composed of only 3 bands: MM-GA, and MM-PSO outperform MM-AIC in this case as well.

The numerical results in Tables 3.7 and 3.8 are by the visual aspect of the images obtained with input SN R values 5 and 12.5 dB: the output SN R and SSIM values are higher when the MWPT-MWF-RE algorithm is used, at the expense of a higher computational load. 

SNR

Multispectral image PaviaU Image 128×128×16

In this subsection we consider a multispectral image, of size 128×128×16. This image is processed with 2 wavelet decomposition levels along the spatial modes, leading to wavelet coefficients of size 32×32×16. This image is processed with subsampling parameters S 1 = S 2 = S 3 = 1. As shown in Tables 3.9 and 3.10, for all input SN R values, the iterative method provides the best values of output SN R and output SSIM . As shown in Table 3.11, its computational load is about 20sec., higher than methods which are not based on multiway Wiener filtering of wavelet packet coefficients, but still 2 times lower than in the case where MM-GA is used. The interest of using PSO in the iterative method is to reach a good compromise between the improvement of the image quality, and the computational load. The MM-Nelder method yields output SN R and SSIM values which are lower than MM-GA or MM-PSO. This can be due to the fact that, as three unknowns are expected, Nelder optimization method converges towards non-critical points. In the following, we will focus on MM- 

Subsampling and rank estimation

The purpose of this subsection is to evaluate the effect of subsampling on the estimation of the rank values. The multispectral image in Fig. 3.6 is a smaller version of the image in Fig. 3.5, with the same SN R of 12.5 dB. It has been obtained by subsampling along spatial modes by a factor 4, and keeping the same number of bands. We expect to obtain subspace rank values which are four times smaller than for the large image. Table 3.12 presents the values of signal subspace dimensions obtained from the image in Fig. 3.5, and Table 3.13 presents the values of signal subspace dimensions obtained from the image in Fig. 3.6.

SSIM in 0,35 0,47 0,58 0,66 0,76 SSIM out Per-Ma 0,3015 0,3017 0,3171 0,3223 0,3237 SSIM out MM-GA 0,5959 0,7171 0,7741 0,8321 0,8891 SSIM out MM-Nelder 0,5179 0,5770 0,5988 0,6108 0,6351 SSIM out MM-PSO 0,6201 0,7233 0,7835 0,8391 0,8803 SSIM out MM-AIC 0,5773 0,7206 0,7612 0,8578 0,9077 SSIM out MM-Iterative 0,6603 0,7524 0,7978 0,8591 0,9150 SSIM out THOSVD 0,4508 0,5702 0,6697 0,7656 0,8389 SSIM out MWF 0,3554 0,4707 0,5822 0,6660 0,7621 Table 3.14 provides the rank values estimated by GA, PSO and AIC. It shows that, compared to the case when the input SN R is 12.5 dB (see Table 3.13), the estimated rank values are smaller, even much smaller for the detail coefficients. Table 3.15 presents the computational loads obtained with GA, PSO, the iterative method, and MWF when either SVD, or FP, are used. The computational time required by AIC in the same conditions is 2.77 s. In the conditions presented above, we notice that for this image fixed point algorithm divides the computational load by almost 2 when MM-PSO is used (see Table 3.15), at the expense of slightly smaller output SN R and SSIM values (see Table 3.16). From Fig. 3.7, we infer that using FP instead of SVD degrades the details.

The output SNR value is still higher than when MM-AIC is used.

Performance and number of bands

In this section, we study the performance of MM-AIC and MM-PSO for multispectral images with various values for the number of bands. For this, we have selected CAVE database of multispectral images [START_REF] Juang | A hybrid of genetic algorithm and particle swarm optimization for recurrent network design[END_REF]. This database is composed of images of size 512×512×31. That is, they contain 31 bands, regularly obtained from the wavelength range 400 to 700 nm, with a 10 nm step between each band.

We considered the image called "jelly beans" because it contains lots of small features and details to be preserved. We exemplify the MM-AIC and MM-PSO with two images impaired with random noise in such a way that SN R in = 2dB. The first (resp. second) image contains 5 (resp. 31) bands regularly spaced between 400 and 700 nm. The image presented in Fig. 3.9 contains 31 bands. The MM-AIC method provided SN R out = 21, 7dB, and the MM-PSO method provided SN R out = 24, 5dB. As comments to Figs. 3.8 and 3.9, we first can notice that the higher the number of bands, the better the aspect of the denoised image, with either MM-AIC and MM-PSO. Secondly, we notice that the result obtained by MM-PSO in terms of output SNR is better than the result obtained with MM-AIC. The difference is slightly higher (3,8 dB) when a low number of bands ( 5) is processed. When the whole "jelly beans" image is processed, with all 31 bands, the difference is 2,8 dB. As stated in 3.7.3 for another multispectral image, the proposed MM-PSO method behaves better than MM-AIC for multispectral images with a low number of bands. Indeed, AIC is a statistical criterion whose performances are undoubtedly improved when a large amount of data are available.

Results for various values of input SNR and number of bands

We now present results obtained with the following values of input SNR: 0, 2.5, 5, 7.5, 10, 12.5, and 15 dB, and the following values for the number of bands: 3, 4, 5, 6, 10, 12, 16, 20, and 31. These bands are selected out of the 31 bands of the "Jelly bean" multispectral image [START_REF] Juang | A hybrid of genetic algorithm and particle swarm optimization for recurrent network design[END_REF], and regularly spaced between 400 and 700 nm. For instance, when 3 bands are selected, they correspond to 400 nm, 550 nm, and 700 nm. When 31 bands are selected, all bands between 400 and 700 nm with a 10 nm spacing are included in the processed image. We notice that the difference is always positive, which means that the performance of MM-PSO is better in all cases. The largest difference is obtained for input SNR values between 7.5 and 15 dB, and for the number of bands between 6 and 25.

Plant leaf fluorescence image

We now consider plant leaf images. While illuminated with a 400 nm light source, a plant leaf emits fluorescence light of little energy, in a wavelength range between 600 and 800 nm. Because of the low brightness of the light emitted through the fluorescence phenomenon, the gain of the imaging sensors are pushed to a high value, and the exposure time must be elevated to capture this phenomenon. The electronic noise is then of large magnitude, and the acquired images are noisy.

The image acquisition setup that was used is as follows: a hyperspectral camera To process these images, we select 16 wavelengths between 677 nm and 740 nm. For the representation of the acquired and processed images, we select 677, 681, and 726 nm for the R, G, and B bands.

To evaluate the denoising results quantitatively, we consider the images in Fig. 3.12 as noise-free. With respect to these images, the SNR of the raw images in Figs. 3.9 Automatic rank estimation of Parafac decomposition and application

Introduction

In the frame of multidimensional data denoising, tensor methods were proposed to take into account the relationships between dimensions, as opposed to slice-by-slice methods [START_REF] Muti | Lower-rank tensor approximation and multiway filtering[END_REF]. For instance, Multiway Wiener Filtering (MWF) has been derived from the minimization of a mean square error criterion between the expected noisefree tensor and the denoised tensor [START_REF] Muti | Lower-rank tensor approximation and multiway filtering[END_REF]. Since this seminal work, some extensions have been proposed, for the minimum rank approximation of matrices [START_REF] Wei | Minimum rank solutions to the matrix approximation problems in the spectral norm[END_REF] or tensors, based either on Tucker decomposition [START_REF] Lin | Survey of hyperspectral image denoising methods based on tensor decompositions[END_REF] or on Parafac decomposition [START_REF] Liu | Reduction of signal-dependent noise from hyperspectral images for target detection[END_REF].

It has been shown that the truncation of the Parafac decomposition permits to minimize the square error (SE) between the 'raw-data' tensor and the estimated tensor [START_REF] Liu | Reduction of signal-dependent noise from hyperspectral images for target detection[END_REF]. Another field of applied mathematics, Wavelets [START_REF] Daubechies | Ten lectures on wavelets[END_REF], has provided efficient algorithms for image denoising. For instance, ForWaRD method [START_REF] Neelamani | Forward : Fourier-wavelet regularized deconvolution for i11-conditioned systems[END_REF] performs image deconvolution and denoising in the Fourier domain, and refined image denoising in the wavelet domain.

Relation with previous work in the field Owing to the ability of the wavelet transform to separate high frequency components from low frequency ones, wavelets are privileged tools for image denoising [START_REF] Tekin | Benefits of consistency in image denoising with steerable wavelets[END_REF]. That is why, recently, the wavelets and tensor framework got recently closer to each other: the multiway Wiener filtering, based on the Tucker decomposition, has been introduced in a wavelet frame-work to preserve small targets while denoising hyperspectral images [START_REF] Lin | Survey of hyperspectral image denoising methods based on tensor decompositions[END_REF]. This method, called MWF-MWPT (multiway Wiener filtering-multidimensional wavelet packet transform), preserves well the spatial details, but exhibits a drawback: the elevated number of parameters to estimate, that is, for each wavelet decomposition level, and for each tensor mode, the adequate signal subspace rank value. The truncation of the Parafac decomposition exhibits good performances in reducing low amplitude, possibly signal dependent noise [START_REF] Liu | Reduction of signal-dependent noise from hyperspectral images for target detection[END_REF], and there is only one parameter to estimate: a single rank for the truncation. However, it has never been introduced in a wavelet framework. For rank estimation, DIFFIT [START_REF] Timmerman | Three-mode principal components analysis: Choosing the numbers of components and sensitivity to local optima[END_REF], Convex Hull [START_REF] Ceulemans | Selecting among three-mode principal component models of different types and complexities: A numerical convex hull based method[END_REF], and Minimum Description Length [START_REF] Liu | Detection of number of components in candecomp/parafac models via minimum description length[END_REF] have much merit, especially for SNR (signal to noise ratio) values higher than 10 dB, but results seem to be restricted to artificially generated data. Outline Section 3.9.2 sets the problem of the Parafac rank estimation. In section 3.9.3 we propose a criterion to estimate the rank in an optimal sense, and the Nelder-Mead method [START_REF] Lagarias | Convergence properties of the nelder-mead simplex method in low dimensions[END_REF] to optimize it; in section 3.9.4, the truncation of Parafac decomposition is set in a wavelet framework. Section 3.9.5 presents a flowchart of the proposed method; in section 3.9.6, multispectral image denoising results are obtained with the proposed method and comparative ones [START_REF] Kennedy | Particle swarm optimization[END_REF][START_REF] Neelamani | Forward : Fourier-wavelet regularized deconvolution for i11-conditioned systems[END_REF].

Goal and contributions

3.9.2 Problem setting

Truncation of the parafac decomposition: overview

We model a noisy multispectral image as a tensor resulting from a multidimensional signal X impaired by an additive white noise N [START_REF] Muti | Lower-rank tensor approximation and multiway filtering[END_REF][START_REF] Parra | Unmixing hyperspectral data[END_REF]. The multispectral image can be expressed as :

R = X + N . (3.7)
Tensors R, X , and N are of size I 1 × I 2 × I 3 . For each spectral band indexed by i = 1, . . . , I 3 , the noise N(:, :, i) is assumed stationary zero-mean. We aim at estimating the desired tensor signal X from data tensor R. The PARAFAC model factorizes a tensor into a sum of rank-1 tensors [START_REF] Kolda | Tensor decompositions and applications[END_REF]: a tensor R ∈ R I 1 ×I 2 ×I 3 can be expressed as

R = T k=1 R k = T k=1 λ k a (1) k • a (2) k • a (3) k (3.8) R k ∈ R I 1 ×I 2 ×I 3 is rank-1 tensor; a (1) k , a (2) 
k , a

k ∈ R In are normalized vectors of the n-mode space of R normalized by a

(n) k = a (n) k / a (n) k , n = 1, 2, 3; and λ k = a (1) k • a (2) k • a (3) k , k = 1, 2, • • • , T .
It has been proved in [START_REF] Liu | Nonwhite noise reduction in hyperspectral images[END_REF] that truncating the PARAFAC decomposition to the K terms weighted by the largest values of λ k yields the minimum square error SE= R-X 2 between raw tensor R and estimate X . Assuming without loss of generality that the values λ k are correctly ordered, the truncation of the Parafac decomposition consists in selecting the K first terms in Eq. (3.9), so that we obtain the estimate:

X = K k=1 R k = K k=1 λ k a (1) k • a (2) k • a (3) k (3.9)
where K is the rank, X is the truncation of the Parafac decomposition of R, also called rank-K approximation of R. As shown in [START_REF] Lin | Survey of hyperspectral image denoising methods based on tensor decompositions[END_REF], X is a close estimate of the noise-free tensor X , especially when the noise magnitude is low.

The rank estimation issue

In [START_REF] Liu | Reduction of signal-dependent noise from hyperspectral images for target detection[END_REF], an iterative 'brute-force' method is proposed to obtain a guess on a convenient Parafac truncation rank. the covariance matrix of the residual noise is computed, and the non-diagonal coefficients are summated. As it should tend to 0 when only decorrelated noise is present, a threshold is set empirically on this summation.

Unfortunately, the optimality of this method as a function of any criterion is not proved. For these reasons, we propose a criterion to minimize, and an adequate optimization algorithm, to estimate the rank of the truncation which is optimal in the sense of this criterion.

Nelder-Mead optimization method for the estimation of the

Parafac truncation rank

For the first time, we propose a method to estimate an optimal rank for the truncation of the Parafac decomposition. For this, firstly, we propose a squared error criterion; secondly, we justify the use of Nelder-Mead optimization method to minimize this criterion. truncation of the Parafac decomposition, with an automatic estimation of the rank is now introduced in a wavelet framework.

Parafac truncation of the multidimensional wavelet packet transform coefficients

After the MWPT, abundant and rare features can be separated into different components, therefore the 'useful part' of each component can be estimated more accurately than using the entire dataset [START_REF] Lin | Survey of hyperspectral image denoising methods based on tensor decompositions[END_REF]. Furthermore, a better estimation of the 'useful part' can improve the performance of the Parafac rank-K truncation of each component. We propose a combination, named Parafac-MWPT. This subsection proves the ability of Parafac-MWPT to minimize the SE between R and X . By performing multidimensional wavelet transform to tensor R, X and N , we obtain:

R × 1 W 1 × 2 W 2 × 3 W 3 = (X + N ) × 1 W 1 × 2 W 2 × 3 W 3 = X × 1 W 1 × 2 W 2 × 3 W 3 + N × 1 W 1 × 2 W 2 × 3 W 3 (3.12)
where × n denotes the n-mode product for each mode n: wavelet filtering is performed successively after flattening tensor R along each mode. The coefficient tensor of each part:

C R l = R × 1 W 1 × 2 W 2 × 3 W 3 (3.13) C X l = X × 1 W 1 × 2 W 2 × 3 W 3 (3.14) C N l = N × 1 W 1 × 2 W 2 × 3 W 3 (3.15)
and the coefficient tensor of the estimate X :

ĈX l = X × 1 W 1 × 2 W 2 × 3 W 3 (3.16)
With the extraction process proposed in [START_REF] Lin | Survey of hyperspectral image denoising methods based on tensor decompositions[END_REF], we obtain the components of each

frequency C R l,m , C X l,m and C N l,m from C R l , C X l and C N l respectively. We obtain: C R l,m = C X l,m + C N l,m (3.17) 
From Parseval's theorem, the following expression can be obtained:

R -X 2 = C R l -ĈX l 2 = m C R l,m -ĈX l,m 2 (3.18)
which means that minimizing the SE between R and its estimate X is equivalent to minimizing the SE between C R l,m and ĈX l,m for each m. If we apply Nelder-Mead optimization method while performing the truncation of the Parafac decomposition (see section 3.9.3) to estimate the rank K, we get the optimal rank for the Parafac

truncation of C R l,m : ĈX l,m = K k=1 C R,k l,m (3.19) 
After estimating ĈR l,m for each m, we obtain ĈR l by concatenating ĈR l,m . Furthermore, the estimate X can be obtained by inverse MWPT:

X = ĈX l × 1 W T 1 × 2 W T 2 × 3 W T 3 (3.20)
The process composed of wavelet transform, Parafac truncation, and inverse wavelet transform yields an estimate X of the expected tensor. In Eq. (3.10), we notice that the first reference tensor X 1 which is used in the criterion J(K) is the noisy tensor R itself. The wavelet coefficient tensor C R l,m is supposed to be noisy, which is not convenient for a reference. Therefore, we introduce the denoising process in a loop:

Let Xr be the estimated tensor at iteration 'r'. At iteration 'r+1', the new reference becomes tensor Xr . The loop is stopped at a given iteration 'r' when || Xr -Xr-1 || < δ where δ is an a priori set very low threshold. of the proposed method to remove low-magnitude noise in an application to multispectral image denoising. Our method based on Parafac decomposition and wavelet decomposition performs better than the wavelet-based ForWaRD method in terms of SN R and P SN R. It preserves the details, while preserving the visual aspect evaluated by the SSIM criterion. Also, the Nelder-Mead method is relevant for the truncation of the Parafac decomposition: in the considered application case, it is two times faster than particle swarm optimization though yielding similar results.

Flowchart of the algorithm

Future works could consist in testing the behavior of the proposed method in the presence of signal-dependent noise.

Conclusion

In this work, an algorithm named MWPT-MWF-RE has been proposed to estimate multiple values of signal subspace dimension, to apply multiway Wiener filtering in a wavelet packet framework. The final purpose of this method is to remove noise from multidimensional images. The main advances brought by our thesis are as follows: Firstly, we propose a criterion depending on signal subspace ranks, and adapt an optimization algorithm to minimize this criterion. Mainly, two bio-inspired optimization algorithms are compared: a genetic algorithm (GA) and particle swarm optimization (PSO). As PSO offers the best compromise between computational load and denoising quality, we insert it in an iterative algorithm. In the iterative algorithm, the raw estimate required in the criterion to be minimized is the estimate provided by MM-PSO obtained at the previous step. Still, the number of decomposition levels should be estimated, and the computational load of the overall algorithm should be reduced. That is why, secondly, we propose to estimate the number of decomposition levels and the adequate values of signal subspace ranks on a subsampled version of the data: we performed tests on various types of images and concluded that, at least for the considered data, the values of the optimal signal subspace dimension in terms of denoising accuracy are divided by the subsampling factor when such a subsampling is applied to the image. Thirdly, we evaluate the performance of the proposed MWPT-MWF-RE algorithm on various multidimensional images: the RGB Baboon image, and various multispectral images extracted from the well-known Pavia University hyperspectral image. We considered an application of plant fluorescence imaging. The emitted light in this context is of very low intensity, yielding images which are impaired with rather low SNR values. A comparative study was performed involving three main types of algorithms: firstly, the diffusion-based Perona-Malik method; secondly, the truncation of HOSVD and MWF; thirdly, a method based on wavelet packet decomposition and MWF, where the dimensions of signal subspace are estimated with AIC. From the analysis and the comparative study of other similar methods, it can be concluded that an iterative algorithm with automatic rank estimation with particle swarm optimization offers a good compromise between computational load, SNR, and SSIM improvement. The proposed method performs best, compared to AIC, when the noise magnitude is elevated and the number of bands is between 6 and 25. As well as the truncation of the Tucker3 decomposition, on which the MWF is based, we have considered the truncation of the Parafac decomposition in the wavelet framework. Contrary to the case of MWF, where three rank values are required for each wavelet packet coefficient, a single rank value is required in the Parafac decomposition. Hence, we could adapt the Nelder-Mead simplex method, whose global convergence is ensured in a onedimensional problem As further works, we could adopt the proposed optimization strategy to any other denoising methods which require the tuning of parameters, but also to classification methods, such as for the choice of optimal kernel parameters for support vector machine.

Chapter 4

Image acquisition systems

Introduction

Illumination is a particularly important component of the image acquisition system for both human and automatic surface inspection. The choice of the illumination technique is a crucial step in the designing process of any machine vision system.

The goal of illumination in machine vision is to make the important features of the object to be inspected visible and reduce undesired features [START_REF] Xue-Wu | A vision inspection system for the surface defects of strongly reflected metal based on multi-class {SVM}[END_REF]. The quality of these important features is related to the illumination concept, as they need to be presented with a maximum of contrast. The challenge of illumination is to increase the signal to noise ratio, and to emphasize and explore these features to maximize the contrast. The means to increase the contrast are the direction of the light, the choice of the light spectral band and the effect of polarization [START_REF] Hornberg | Handbook of Machine Vision[END_REF].

The HSI algorithms are mainly used in remote sensing applications, which treat threedimensional data (spatial and spectral information) generated from hyperspectral sensors. HSI are non-destructive technologies that represent an attractive solution for characterization, classification and quality control of different materials in several industrial sectors. The studies based on the application of HSI techniques to material classification and inspection are increasing every day [START_REF] Gao | Implementing the nelder-mead simplex algorithm with adaptive parameters[END_REF], demonstrating that this technique represents a very smart and promising analytical tool for quality control. However, despite these advantages, HSI is still difficult to be systematically applied, especially in real-time industrial applications, because of the huge amount of data constituting a spectral image. The long computation time sometimes represents a big constraint at industrial level, where often, a fast processing of the collected information is required.

Results

In this section, we evaluate the performances of our proposed methods on multispectral Xray image. we will firstly present some quantitative results obtained from artificially impaired images with white, identically distributed random noise with the following input SNR (SN R in ) values (in dB): 10 and 30.

Secondly, we will present results obtained from image which have inherently poisson nois.e 

Experimental setup horizontal lighting

The hyperspectral image acquisition system includes a 2 Kgs sCMOS VIS-NIR camera (see Fig. 6.11 in the chapter 6), consisting of a linear scanning spectrograph which is theoretically sensitive at wavelengths of 100 to 1400 nm, but actually reliable for wavelengths of about 400 to 1000 nm.

Plan of prototype

This type of prototype makes it a shedding light. Indeed, the shining lighting emphasizes the relief and the texture of what is brought to light, which plunges into the shadow everything that is not illuminated. This prototype must be made in a dark room to avoid the reflection of the rays of the white light. For lighting, we use a Khöler Lighting which allows us to obtain a quality image.

You can see the experimental schema in the Fig. 6.8 (in the chapter 6)

Results

In this part, we evaluate the performances of the proposed denoising methods with various values of exposure time used during the acquisition. We consider a scene which is generally used for camera calibration. This image is processed with 2 wavelet packet decomposition levels along the spatial modes and the values of signal subspace dimension in the reference tensor are set to 60% along the spatial modes, and 100 % along the spectral mode.

We performed experiments with the following values of exposure time: 1ms, 5ms, and 10ms. Fig. 4.7 displays in the first column the raw images acquired with 1, 5, or 10 ms as exposure time respectively; and in the second column the denoising result.

We notice that regardless of the value of the exposure time we obtain the same quality of denoised image: we thus gain up to a factor 10 in terms of acquisition time, saved while acquiring hyperspectral images. For the rest of study, we applied the same method for the setup in Germany. Indeed we wished to check if this setup could improve the quality of acquisitions of metallic surfaces. 

Setup of metallic surface

In this section, we present the acquisition system and some examples of acquisitions performed in Fraunhofer institute IIS.

The hyperspectral image acquisition system consists of a Pike 145F camera with 1.45 megapixel (1388 × 1038) (see Fig. 4.9), and a linear scanning spectrograph.

Our goal is to test the ability of this acquisition system based on non-direct lighting of the target, to avoid light saturation.

Description of metallic surface setup

Our acquisition system is placed in a dark room: It consists of the hyperspectral camera, a source of white light and a moving plane. The target is placed on the moving plane. The movable plane is controlled by a motor.

In order to perform the acquisition correctly, a collimator is placed in front of the lamp. Indeed the lamp provides a white light, which is not homogeneous. A collimator is a device that narrows a beam of particles or waves. To narrow can mean either to cause the directions of motion to become more aligned in a specific direction (i.e., make collimated light or parallel rays), or to cause the spatial cross section of the beam to become smaller (beam limiting device).

time consuming, and may not be always required to reach a significant improvement in terms of signal to noise ratio.

4. Consider the estimation of the rank of the Parafac decomposition of the wavelet packet decomposition coefficients as a whole. In this thesis, we estimate the best possible Parafac rank independently for each coefficient. We could investigate the inter-dependence of these rank values.

Secondly, as concerns the applicative aspects:

1. Consider other applications involving multidimensional data acquisition systems: we infer that for several applications yielding data of high dimensionality, it is of great importance to reduce the time dedicated to the acquisition.

This will be done at the expense of a degradation of the signal to noise ratio, because the lower the exposure time, the higher the gain of the sensors. The denoising methods proposed in this thesis have been applied to fields which are as various as the characterization of plant leaf by fluorescence, liquid mixtures by X-Ray scanning, aerial images... Hence, we can hope that could be applied to any noisy multidimensional data. We inferred from these conditions of acquisition that it could be interesting in the frame of this work, to test our proposed denoising methods on such images: a fluorescence phenomenon consists of light of a very low intensity. Hence, the gain of the sensors is pushed to a high value, which increases the noise magnitude. 

Photography of the PIXSCAN micro-CT prototype

= R × 1 W 1 × 2 W 2 × 3 W 3 MWPT: X 1 -→ C X 1 l = X 1 × 1 W 1 × 2 W 2 × 3 W 3 .
2. Extract wavelet packet coefficients:

C R l,m = C R l × 1 E m 1 × 2 E m 2 × 3 E m 3 , C X 1 l,m = C X 1 l × 1 E m 1 × 2 E m 2 × 3 E m 3 .
3. For each couple of coefficients C R l,m and C X 1 l,m :

Rank estimation and filtering for each coefficient:

C R l,m -→ ĈX l,m
4. Concatenate: ĈX l,m -→ ĈX l .

Retrieve estimated tensor

X = ĈX l × 1 W T 1 × 2 W T 2 × 3 W T 3 .
Output: denoised tensor X . 3. Select the vector l for which the error e is minimum.

Output: optimal vector l in terms of least squares error.
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  -inspired optimization algorithms are computationally efficient alternatives to deterministic approaches. Meta-heuristics are based on the iterative improvement of either a population of solutions (as in Evolutionary algorithms, Swarm based algorithms) or a single solution (eg. Tabu Search) and mostly employ randomization and local search to solve a given optimization problem. So in this approach A bio-inspired stochastic optimization method has been adapted, with the ultimate objective of suppressing noise in multidimensional images. In order to ensure this, we have estimated the different values of the dimensions of the tensor subspace for all the modes of the coefficients of the wavelet packets. We have applied the proposed denoising methods to various multidimensional images: RGB images, plant fluorescence images, and multispectral RX images. To inspect the effectiveness of our algorithms, a comparative study was carried out with three main types of algorithms: on the one hand, the Perona-Malik method based on diffusion; second, the truncation of HOSVD and MWF, and thirdly, a method based on wavelet packet decomposition and MWF, where the dimensions of the signal subspace are estimated by a statistical criterion rather than by an optimization method. The results are promising in terms of denoising in ground truth. Ultimately, we achieve an advantageous time saving during the acquisition of hyperspectral images.

Fig 2. 1 .

 1 Hyperspectral images contain a wealth of data, but interpreting them requires an understanding of exactly what properties of materials we are trying to measure, and how they are related to the measurements actually made by the hyperspectral sensor.

Figure 2 . 1 :

 21 Figure 2.1: a plot of the brightness values versus wavelength shows the continuous spectrum for the image cell, which can be used to identify surface materials.

Figure 2 . 2 :

 22 Figure 2.2: representative spectral reflectance curves for several common Earth surface materials over the visible light to reflected infrared spectral range.

  wavelength bands. This is the multivariate image. The 21 wavelength bands in the example are called the image variables and in general there are K variables. An I × J image in K variables would form a three-way array of size I × J × K.

Figure 2 . 3 :

 23 Figure 2.3: (a) an I × J image in K variables is an I × J × K array of data. (b) the I × J × K image can be presented as K slices where each slice is a grey-value image.

  typically represented by a hyperspectral cube. Because of this cubic representation of the data, it is natural to consider the use of tensors of order 3 as a mathematical model for the analysis of hyperspectral images. Typically, the spatial dimensions are respectively associated to 1-mode and 2-mode of the tensor and the spectral dimension is associated to the 3-mode of the tensor, see Fig 2.4.

Figure 2 . 4 :

 24 Figure 2.4: illustration of the tensor representation of a hyperspectral image.

Figure 2 . 5 :

 25 Figure 2.5: folding matrix of the spectral mode corresponding to the column matrix of all the spectral pixels of a hyperspectral image.

Figure 2 . 6 :

 26 Figure 2.6: Geometry of the SVD

Figure 2 . 7 :

 27 Figure 2.7: Example of used flags.

1 (

 1 be the singular vectors of F and G. Let's consider for instance a numerical application with a = 1, b = 2, c = 3. The unique non-zero singular value of the matrix in Eq. (2.29) or in Eq. (2.30) is λ = 12.9615 = 1. Because F = 1 u v T = λ u v T , u and v of Eqs. (2.31) and (2.32) are not the singular vectors of F, only proportional to them. The singular vectors associated with λ = 12.9615 are respectively -0.4082 u and -0.1890 v.Notice that -0.4082)(-0.1890) = 12.9615 = λ.

Figure 2 . 8 :

 28 Figure 2.8: Diagonal segment, for values of S: (a) 1; (b) 2; (c) 4.

Fig. 2 .

 2 Fig. 2.8 illustrates the effect of subsampling on the matrix rank on an image containing a straight line segment, with offset 0 and orientation 45 • . This segment crosses the first half of the image, so that only the first half of the columns contain 1 pixel with value 1 (on the segment). All other pixels are 0-valued. The original image, displayed on Fig. 2.8 (a) has size 100×100, and rank 50. The first subsampled image, by a factor 2 along rows and columns, is displayed on Fig. 2.8 (b). It has

Figure 2 . 9 :

 29 Figure 2.9: Vertical segment, for values of S: (a) 1; (b) 2.

Figure 2 . 10 :

 210 Figure 2.10: Disks, for values of S: (a) 1; (b) 2; (c) 4; (d) 6; (e) 8; (f) 16 .
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Figure 2 . 11 :

 211 Figure 2.11: The relationship of scalar, vector, matrix and tensor

Figure 2 . 12 :

 212 Figure 2.12: Illustration of tensor unfolding

Figure 2 . 15 :

 215 Figure 2.15: Tucker3 decomposition of a three-way array

48 )Figure 2 . 16 :

 48216 Figure 2.16: Parafac decomposition of a three-way array.

Fig. 2 .

 2 Fig. 2.16 illustrates an example of Parafac decomposition of a three-way array.
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 75 We notice thatH = y • u • w, with y = ( c a b c a b ) T (2.76).Let X be the sum of tensors F, G, H: X = F + G + H. Obviously, because there is no tensor which is proportional to any other in the tensor triplet (F, G, H), Xfollows the Parafac decomposition model of Eq. (2.48) with rank value T = 3.

2 or 3 .

 3 A set of indices forms the index vector m = [m 1 , m 2 , m 3 ] T . For n equal to 1, 2 or 3 the index values m n are such that 0 ≤ m n ≤ 2 ln -1. The coefficient subtensor extracted from C R l and containing the frequency components for a given index vector m is denoted by C R l,m . It is worth noticing that the size of each coefficient C R l,m is In 2 ln along each mode n, whatever the index vector m [84].

  (3.5) and step 4(b) of Algorithm 2). The role of these parameters is to enable the scan of the whole research space and to avoid the algorithm to be trapped in a local minimum.Different terms are used for similar features in both types of algorithms: both methods start with a population of randomly generated candidate solutions, called individuals or phenotypes in GA, and particles in PSO. The population is evolved toward better solutions, regarding a fitness function. Each candidate solution has a set of properties, called chromosomes or genotype in GA, position, and velocity in particle swarm optimization.Both update the population and search for the optimum with random techniques.Both systems do not guarantee success. GA and PSO are different mainly in the way the information is shared between candidate solutions. In a nutshell, advantages and drawbacks of both methods are as follows: In GA, candidate solutions with much diversity are created. Every chromosome shares information with at least another chromosome, or mutates. The reproductive success varies with fitness, but

  where H 1,m , H 2,m and H 3,m depend on K 1 ,K 2 and K 3 respectively. (c) Multiply the values obtained at step (b) by S 1 , S 2 and S 3 respectively: K1 = S 1 K 1 , K2 = S 2 K 2 , and K3 = S 3 K 3 .

1 . 1 , 2 .

 112 Apply subsampling by factors S 1 , S 2 , and S 3 along modes 1, 2 and 3, to tensor R and X For each candidate vector l = [l 1 , l 2 , l 3 ] T : (a) Apply algorithm 3 with fixed values of the signal subspace dimensions

Algorithme 5

 5 Overall algorithmInput: noisy tensor R of size I 1 × I 2 × I 3 , 1. Obtain the gross estimate X 1 of R by MWF with fixed rank values. Apply Algorithm 4 to select the best vector l with values of the number of decomposition levels for each mode.2. Set iteration r = 1; choose a small factor δ.

  (a) Apply Algorithm 3 (MWPT-MWF-RE) with X 1 obtained at step 1, as gross estimate. Algorithm 3 provides Xr using the optimization method described in Algorithm 1 or Algorithm 2 for instance. (b) Increase the iteration index: r = r + 1; Set the gross estimate as Xr-1 , the tensor estimated at step 3. a) (c) Apply Algorithm 3 (MWPT-MWF-RE) with Xr-1 obtained at step 3. a), as gross estimate. Algorithm 3 (MWPT-MWF-RE) provides Xr . (d) Compute the error e = || Xr -Xr-1 || 2 . (e) If e > δ, go to step 3. b). Otherwise, set X = Xr .

Figure 3 . 2 :

 32 Figure 3.2: Baboon RGB image 256×256×3: pure, noisy 5 dB, denoising results.

Figure 3 . 3 :Figure 3 . 4 :

 3334 Figure 3.3: PaviaU image 512 × 512 × 16: free noise, noisy 5 dB, denoising results

Figure 3 . 5 :

 35 Figure 3.5: PaviaU image 512 × 512 × 16: noise-free, noisy 12.5 dB, denoising results

3. 8 . 4 . 1

 841 Exemplification with SN R in = 12.5 dB The results obtained are exemplified in Fig. 3.6, where the image is impaired with SN R in = 12.5 dB.

Figure 3 . 6 :

 36 Figure 3.6: PaviaU image 128 × 128 × 16: free noise, noisy 12.5 dB, denoising results.

3. 8 . 6

 86 Multispectral image PaviaU Image 128×128×32The results presented above have shown the interest of using MM-PSO or MM-Iterative to reach elevated output SNR values when the number of bands in the processed multispectral image is rather low. As their computational load is more elevated than MM-AIC, we wish to provide an alternative for the case where the multispectral image is composed of a high number of bands. We aim at demonstrating the interest of fixed point algorithm when the processed image is large, and impaired with a low input SN R of 5 dB. The visual results obtained are presented in Fig.3.7: we display the noise-free image, the noisy image impaired with a 5 dB white Gaussian noise, and the denoising results obtained with MM-PSO and MWF using either singular value decomposition (SVD) or fixed point (FP) algorithm.

Figure 3 . 7 :

 37 Figure 3.7: PaviaU image 128 × 128 × 32: pure, noisy 5 dB, results with PSO and MWF with either SVD or Fixed Point.

3. 8 . 7 . 1

 871 Exemplification with SN R in = 2dB and 5 Bands The image presented in Fig. 3.8 contains 5 bands. The MM-AIC method provided SN R out = 5, 0dB, and the MM-PSO method provided SN R out = 8, 8dB.

Figure 3 . 8 :

 38 Figure 3.8: "Jelly bean" multispectral image, 5 bands: noise-free and noisy images; result obtained by MM-AIC and MM-PSO

Figure 3 . 9 :

 39 Figure 3.9: "Jelly bean" multispectral image, 31 bands: noise-free and noisy images; result obtained by MM-AIC and MM-PSO

Fig. 3 .

 3 Fig. 3.10 presents the results obtained in terms of output SNR for all couples of input SNR and number of bands: Fig. 3.10 a) shows the results obtained with MM-PSO, Fig. 3.10 b) the results obtained with MM-AIC, and Fig. 3.10 c) shows the difference between the values obtained with MM-PSO and MM-AIC. For both methods, the larger the number of bands, the better the result obtained.

Figure 3 .

 3 Figure 3.10: "Output SNR for various values of input SNR and number of bands: a) MM-PSO, b)MM-AIC; c) Difference MM-PSO -MM-AIC

  HySpex VNIR-1600 (Norsk Elektro Optikk, Norway) acquired successive lines of 1600 pixels and 160 spectral bands ranging from 415 to 994 nm with a 3.7 nm spectral sampling interval. The lighting was provided by halogen source positioned close to the cameras. The illumination zenith angles were set to θ = 20 • . A monochromator is placed in the incoming halogen irradiance between the leaf and the Halogen. This monochromator permits to select the wavelength which induces the fluorescence phenomenon. Fig.3.11 presents, for a relevant pixel of the acquired scene, the spectrum acquired by the camera. It focuses on the relevant part of the spectrum, corresponding to the fluorescence light, located between 600 and 800 nm.

Figure 3 . 11 :

 311 Figure 3.11: Leaf fluorescence, wavelength range of interest

Fig. 3 .

 3 Fig. 3.12 shows the image obtained in the best conditions, with an elevated power for the incident light, and 50 ms of exposure time. We display a subimage of size 256 × 256 in Fig. 3.12 a), and two other subimages of size 12 × 128 and 64 × 64 in Figs. 3.12 b) and 3.12 c).
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Figure 3 . 12 :

 312 Figure 3.12: Leaf fluorescence image: a) large image; b) zoom 1; c) zoom 2.

Figs. 3 .

 3 Figs. 3.13, 3.14, 3.15, and 3.16 correspond to different values of exposure time between 50 ms and 250 ms, and incident power of the excitation light, for the same leaf. For a lower power of the excitation light, the setup is cheaper, but the noise level is higher.

Figure 3 . 13 :

 313 Figure 3.13: Leaf fluorescence image: a) raw acquisition; b) MM-PSO; c) MM-Iterative.

Figure 3 . 14 :Figure 3 . 15 :

 314315 Figure 3.14: Leaf fluorescence image: a) raw acquisition; b) MM-PSO; c) MM-Iterative.
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Figure 3 . 16 :

 316 Figure 3.16: Leaf fluorescence image: a) raw acquisition; b) MM-PSO; c) MM-Iterative.

  In this work, our objectives are as follows: reduce the low-amplitude noise in multispectral images, with a low number of parameters and their automatic tuning. For this, we focus on the truncation of the Parafac decomposition. The originality of our work relies on the automatic estimation of the rank for the truncation of the Parafac decomposition, and on the introduction of the Parafac decomposition in the wavelet framework.

Figure 3 . 17 :

 317 Figure 3.17: Truncation of the Parafac decomposition in wavelet packet transform domain: iterative process

4. 2 . 1 . 1

 211 Noisy RX image 256×256×3 This image is processed with 2 wavelet packet decomposition levels along the spatial modes, leading to 2 2 × 2 2 × 1 = 16 wavelet packet coefficients of size 64 × 64 × 3. The subsampling factors are set to S 1 = S 2 = 4, and S 3 = 1. Exemplification with SN R in = 10 dB and reference tensor at 60% To process this image, the values of signal subspace dimension in the reference tensor are set to 60% along the spatial modes, and 100 % along the wavelength mode.

Fig. 4 .

 4 Fig. 4.1 presents the results obtained with the proposed methods on the RX image. It can be noticed that the result image provided by MM-PSO is less noisy.

Figure 4 . 1 :

 41 Figure 4.1: X-Ray image: a) Noise-free ; b) Noisy; c) MM-PSO

Figure 4 . 5 :Figure 4 . 6 :

 4546 Figure 4.5: X-Ray image: a) Original ; b) MM-PSO

Figure 4

 4 Figure 4.7: a) raw, 1 ms ; b) MM-MWF, 1 ms ; c) raw, 5 ms; d) MM-MWF, 5 ms ; e) raw, 10 ms; f) MM-MWF, 10 ms

2 .

 2 Create application-oriented denoising methods. For instance, the noise which impairs the fluorescence data and the X-Ray data we have considered is rather modeled as Poisson noise than as Gaussian noise. The proposed methods based on multiway Wiener filtering are optimal in the sense of the maximum likelihood only when Gaussian noise is considered. We could extend this method to other types of noise such as Poisson noise.3. Investigate the interest of the truncation of the Parafac decomposition inserted in a wavelet framework on real-world data which are impaired with signaldependent noise.

4 .

 4 We wish to go further into the matter as concerns the non-destructive testing of metal surfaces: for this we should build a setup including calibration with one image, and testing with all but the first image. The calibration would include not only the classical calibration of the optical system, but also the estimation of the best possible parameters for the denoising method, such as the number of decomposition levels in the wavelet packet decomposition, and the values of the ranks in each coefficient." used is a HySpex VNIR-1600 camera (Norsk Elektro Optikk, Norway) which acquires successive lines of 1600 pixels and 160 spectral bands ranging from 415 to 994 nm with a 3.7 nm spectral sampling interval. As shown in Fig.6.3, the camera was placed at 30 cm above the imaged leaf. The lighting was provided by a halogen source positioned close to the cameras. The illumination zenith angles were set to θ = 20 • for the VNIR camera. A monochromator is placed in the incoming halogen irradiance between the leaf and the halogen. This monochromator transmits only the wavelength which induces leaf fluorescence. Fig.6.2 provides photographies of the fluorescence HSI acquisition system.

Figure 6 . 2 :

 62 Figure 6.2: HSI camera in a chlorophyll fluorescence setup

Figure 6 . 4 :

 64 Figure 6.4: Photo of the box where the PIXSCAN is installed.

Figure 6 Figure 6 . 6 :Figure 6 . 7 :

 66667 Figure 6.5: PIXSCAN picture

Figure 6 . 8 : 114 Figure 6 . 9 :Figure 6 . 10 : Target scene 115 Figure 6 . 1 1.

 681146961011561 Figure 6.8: Schematic of the experimental setup

Algorithme 7 1 l,m 1 .Algorithme 8 1 Fixed 2 , K 3 = I 3 2 1 . 1 = I 1 S 1 2 2 S 2 2 3 S 3 2

 711812311112233 Rank estimation and filtering for each coefficientInput: C R l,m , C X Get a 'small version' of the coefficients Subsample with factors S 1 , S 2 , S 3 :C R l,m -→ C R S l,m Noisy coefficient C X 1 l,m -→ C X 1S l,m Gross estimate coefficient 2. Adapt GA or PSO -→ K1 , K2 , K3 :Criterion to minimize:J m (K 1 , K 2 , K 3 ) = ||Reference tensor -Estimated tensor|| 2Reference tensor: Gross estimate coefficientC X 1S l,m Estimated tensor: obtained from C R S l,m by MWF: C R S l,m -→ ĈX S l,m = C R S l,m × 1 H 1,m × 2 H 2,m × 3 H 3,m , Filters H 1,m , H 2,m , H 3,m depend on K 1 ,K 2 , K 3 .output of GA or PSO: estimated K 1 ,K 2 , K 3 .3. Rescale rank valuesK1 = S 1 K 1 , K2 = S 2 K 2 , K3 = S 3 K 3 .Strong assumption:Features are still present in the 'small version' of the coefficients 4. Apply MWF to each C R l,m :MWF: C R l,m -→ ĈX l,m : ĈX l,m = C R l,m × 1 H 1,m × 2 H 2,m × 3 H 3,m H 1,m , H 2,m and H 3,m depend on K1 , K2 , K3 . Output: denoised coefficient tensor ĈX l,m . Estimation of the number of decomposition levels Input: R of size I 1 × I 2 × I 3 set of candidate vectors l MWF: R -→ X rank values half of tensor size K 1 = I 1 2 , K 2 = I 2 Subsample with factors S 1 , S 2 , S 3 : Get a 'small version' of the tensors R -→ R S Small noisy tensor X 1 -→ X 1S Small gross estimate 2. For each candidate vector l = [l 1 , l 2 , l 3 ] T : (a) Apply algorithm MWPT-MWF-RE to get XS : with the number of decomposition levels in l with fixed rank values half coefficient size K 1+l 1 , K 2 = I 1+l 2 , K 3 = I 1+l 3 , (b) Retrieve the error e = ||X 1S -XS ||.
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  Khoromskij and Khoromskaia[START_REF] Khoromskij | Low rank tucker-type tensor approximation to classical potentials[END_REF] applied the Tucker decomposition to approximations of classical potentials while adapting optimized algorithms. J.-T. Sun et al.[START_REF] Sun | Cubesvd: A novel approach to personalized web search[END_REF] used Tucker to analyze web site click-through data. Liu et al.[START_REF] Liu | Text representation: from vector to tensor[END_REF] applied Tucker to create a tensor space model, analogous to the well-known vector space model in text analysis. J. Sun et al.[START_REF] Sun | Window-based tensor analysis on high-dimensional and multi-aspect streams[END_REF] explained how to dynamically update a Tucker approximation, with applications ranging from text analysis to environmental and network modelling. Very recently, through a prewhitening approach, Tucker3 decomposition was extended to reduce non-white noise in HSIs[START_REF] Liu | Nonwhite noise reduction in hyperspectral images[END_REF].

De Lathauwer et al. used 

Tucker3 decomposition in signal processing

[START_REF] Lathauwer | Fourth-order cumulant based blind identification of underdetermined mixtures[END_REF]

. Muti and Bourennane extended Tucker3 decomposition to multidimensional Wiener filter which was applied to image processing

[START_REF] Muti | Multidimensional filtering based on a tensor approach[END_REF]

. Vasilescu and Terzopoulos pioneered the use of Tucker decompositions in computer vision with Tensor Faces

[START_REF] Vasilescu | Multilinear analysis of image ensembles: Tensorfaces[END_REF]

.

  Notice that the error value for the triplet K = (2, 2, 2) is the error between the noisefree matrix and the impaired matrix. Obviously, the best rank triplet is K = (2, 2, 1), containing the dimension of the signal subspace for each mode. Only with this triplet, the error value between estimated matrix and noise-free matrix is lower than the error between impaired and noise-free matrices. With the best rank triplet,

		X (:, :, 2) =	 	1.0127 0.0043 1.0042 1.0094	 	(2.61)
					1, 1)
	SE 0.0296	0.0247	0.8899	0.8880
	K (1, 2, 2) (1, 2, 1) (1, 1, 2) (1, 1, 1)
	SE 0.8893	0.8880	0.8882	0.8880
	we get the following estimate:			
		X (:, :, 1) =	 	1.0134 0.0043 1.0049 1.0102	 	(2.60)

  .5345 5.72 10 -8 4.3876 10 -9 9.9136 10 -12

	SE R, X	1574528.5345	5.72 -8	4.3876 10 -9 9.9136 10 -12
	K	6	7	8
	1.1217 10 -13 1.6093 2.11 1.1217 10 -13 1.6093 2.11 In this case, a result obtained for K=6 for both errors. SE X , X SE R, X

Table 3 .

 3 .2).

	Per-Mal	MM-GA	MM-Nelder MM-PSO
	0.931	49.03	11.59	8.931
	MM-AIC MM-Iterative THOSVD	MWF
	2.398	24.59	0.143	0.369

2: Baboon RGB image 256×256×3: Computational load all methods (in sec.) 65

Table 3 .

 3 5, which provides the processing time with an image containing 16 bands, shows that the proposed methods MM-GA, MM-PSO, and MM-Iterative are slower than MM-AIC.

	Per-Mal	MM-GA	MM-Nelder MM-PSO
	17.83	196.5	52.03	48.12
	MM-AIC MM-Iterative THOSVD	MWF
	16.22	138.5	2.66	7.16

Table 3 .

 3 

5: PaviaU image 512 × 512 × 16: Computational time for each method.

Table 3 .

 3 [START_REF] Carroll | Analysis of individual differences in multidimensional scaling via an n-way generalization of "eckart-young" decomposition[END_REF] presents results obtained regarding output SNR from the zoom image in Fig.3.4, when a subset of bands is selected out of the 16 bands which compose the image. The number of selected bands varies from 12 to 3. The image is still impaired with an input SNR of 5 dB.Nb Bands SNR out MM-PSO SNR out MM-AIC SNR out MM-Iterative

	12	14.42	13.21	14.22
	10	14.09	11.99	14.61
	8	13.40	12.03	13.73
	6	12.84	9.95	12.95
	4	12.66	7.85	13.16
	3	13.46	7.56	13.47

Table 3 .

 3 6: PaviaU image, zoom , SN R in = 5dB: SN R out for various number of bands.

Table 3 .

 3 7: PaviaU 512 × 512 × 16: SNR out all methodsFrom these remarks, we infer that the proposed methods MM-PSO or MM-Iterative are preferable in applications where the processed multispectral image is composed of a low number of bands and the input SNR are rather low.

	in	5 db 7,5 db 10 db 12,5 db 15 db
	SNR out Per-Ma	11.97 12.05 12.10	12.13	12.14
	SNR out MM-GA	15.38 17.41 18.91	20.54	21.82
	SNR out MM-Nelder	13.89 14.77 15.39	15.84	16.17
	SNR out MM-PSO	16.48 17.86 19.10	20.58	22.24
	SNR out MM-AIC	16.23 17.26 18.92	20.52	22.15
	SNR out MM-Iterative 16.40 18.00 19.24	20.79	22.29
	SNR out THOSVD	7.17	9.42	11.73	14.09	16.49
	SNR out MWF	13.47 15.00 16.57	18.18	19.84

Table 3 .

 3 8: PaviaU 512 × 512 × 16: SSIM out all methods

Table 3 .

 3 9: PaviaU image 128 × 128 × 16: SNR out all methods

	GA, MM-PSO, MM-AIC,

Table 3 .

 3 10: PaviaU image 128 × 128 × 16: SSIM out all methods

	Per-Mal	MM-GA	MM-Nelder MM-PSO
	1.446	39.94	10.11	6.880
	MM-AIC MM-Iterative THOSVD	MWF
	1.530	20.54	8.99 10 -2	1.648 10 -1

Table 3 .

 3 11: PaviaU image 128 × 128 × 16: Computational load all methods (in sec.)

	P P P P P P P P P P P P Coefficient Method	MM-GA	MM-PSO	MM-AIC
	Approximation	(116,119,14) (113,114,14) (43,43,6)
	Detail	(78,68,12)	(73,72,12)	(1,128,16)

Table 3 .

 3 12: PaviaU 512 × 512 × 16: Estimated ranks values all methods

Table 3 .

 3 [START_REF] Chanussot | Multivariate Image Processing[END_REF] presents the values of signal subspace dimensions obtained from the image in Fig.3.5 with subsampling parameters S1 = S2 = S3 = 1.

	P P P P P P P P P P P P Coefficient Method	MM-GA	MM-PSO MM-AIC
	Approximation	(29,29,15) (28,30,14) (32,32,13)
	Detail	(15,20,9)	(20,20,2)	(32,32,9)

Table 3 .

 3 13: PaviaU image 128 × 128 × 16: Estimated ranks values all methods

Table 3 .

 3 14: PaviaU image 128 × 128 × 32: Estimated ranks values all methods

	P P P P P P P P P P P P Coefficient Method	MM-GA	MM-PSO MM-AIC
	Approximation	(26,26,18) (16,17,11) (24,32,15)
	Detail	(4,4,4)	(13,8,5)	(1,32,12)

Table 3 .

 3 15: 'PaviaU' multispectral image 128×128×32: Computational time for each method with either svd or fixed point.

	Table 3.16 presents numerical results obtained with MM-PSO when either SVD
	or FP are used, and with MM-AIC.		
		MM-PSO-SVD MM-PSO-FP MM-AIC
	SNR out	13.14	12.58	12.17
	SSIM out	0.62	0.56	0.58

Table 3 .

 3 16: PaviaU image 128 × 128 × 16, noisy 5 dB: SNR out and SSIM out obtained by MM-PSO, with SVD or Fixed Point

  The computational time for the largest image of size 256 × 256 × 16 is of 13.8 sec for MM-PSO, and 33.6 sec for MM-Iterative. As for comparison, with an exposure time of 50 ms, the acquisition time required for such an image is of several minutes. We can notice that the results obtained with MM-PSO are more blurred and noisy than when MM-Iterative is applied. Indeed, MWF 81

	3.13,
	3.14, 3.15, and 3.16 is 0.5, 5.6, 10.2, and 15.5 dB. The MM-PSO method yields
	4.0, 8.5, 12.5, and 15.1 dB as output SNR. The MM-iterative method yields 3.6, 8.3,
	12.6, and 16.3 as output SNR.

Table 4 .

 4 1 provides the 16 estimated values for the tensor rank in each mode. We notice that the rank values of tensor reference is (64 64 3).

	(36 36 3) (64 64 2) (38 34 3) (40 36 3)
	(34 36 3) (64 64 2) (36 32 3) (64 64 2)
	(64 64 2) (38 36 3) (64 64 2) (36 34 3)
	(40 38 3) (64 64 2) (38 32 3) (34 38 3)

Table 4 .

 4 1: X-Ray image 256×256×3: Rank estimation for all subtensor 4.2.1.2 RX image with poisson noise Exemplification with reference tensor at 20%
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Chapter 3

Bio-inspired optimization algorithms for automatic estimation of multiple subspace dimensions in a tensor-wavelet denoising algorithm

Introduction

The accurate estimation of signal subspace ranks for the purpose of multidimensional data is still pending and has become a required step since multiway Wiener filtering has been inserted in a wavelet framework. To solve this issue, we propose a criterion to be minimized with a global optimization method.

Rank estimation issue in a multidimensionnal context

A noisy multidimensional signal will be considered, also called tensor: a signal X impaired by a multidimensional additive, zero-mean white Gaussian noise N [START_REF] Muti | Lower-rank tensor approximation and multiway filtering[END_REF].

For instance, the additive case holds for hyperspectral images [START_REF] Parra | Unmixing hyperspectral data[END_REF][START_REF] Renard | Denoising and dimensionality reduction using multilinear tools for hyperspectral images[END_REF]. As concerns the white noise assumption, it is also generally adopted for multidimensional images [START_REF] Muti | Lower-rank tensor approximation and multiway filtering[END_REF], and permits to focus on the main issue of this paper. In the case where the noise is not white, a prewhitening process could be applied as proposed in [START_REF] Green | Aviris: A new approach to earth remote sensing[END_REF].

n is chosen, randomly, as the n th component of y K 1 ,K 2 ,K 3 q (iter + 1) and y K 1 ,K 2 ,K 3 q ′ (iter + 1). For instance:

Then after mutation, these offsprings are slightly modified: y K 1 ,K 2 ,K 3 q (iter + 1) =

[K 1 +κ 1 , K ′ 2 +κ 2 , K ′ 3 +κ 3 ] and modified:

, where, whatever n, κ n and κ ′ n are random values which are small compared K n and K ′ n .

For the practical implementation of Algorithm 1, we have selected a globally convergent Lagrangian algorithm which permits to define lower and upper bounds on the estimated values K1 , K2 , K3 [START_REF] Conn | A globally convergent augmented lagrangian algorithm for optimization with general constraints and simple bounds[END_REF]. Our motivation is the following: in the fitness function of Eq. 3.4, the values of K 1 , K 2 , K 3 cannot be less than 1, and greater than the size of the wavelet packet coefficient ĈX 1 l,m along each mode n : 0 < K n ≤ In 2 ln , where n is equal to either 1,2, or 3.

Principles of particle swarm optimization algorithm

The basic PSO algorithm [START_REF] Kennedy | Particle swarm optimization[END_REF] is inspired by the behavior of fish or bird swarms.

The basic principles of PSO algorithm are to simulate the communication between animals of a swarm, which aim at locating food for instance. PSO updates the behavior of such individuals of the swarm, called particles, through time. As shown in Algorithm 2, it is implemented as an iterative algorithm which, for the current iteration number iter, computes two characteristics of the particles: velocity, and position.

Here are some detail for PSO algorithm:

At each iteration iter, y K 1 ,K 2 ,K 3 q (iter) is the current position of particle q, and

(iter) is its velocity.

At step 1, the initial population is stored in a Q × 3 matrix. Each row of the matrix is a 1 × 3 vector with three random values. The n th coefficient of this vector is a random values between 1 and In 2 ln Therefore, at iteration 1, the q th row of the matrix is y K 1 ,K 2 ,K 3 q (1).

In the following, we exemplify the step 4. of Algorithm 2, with one particle with index q. This particle is expressed as y

In Eqs. (3.5) tensor.

Iterative algorithm for the estimation of the reference tensor

In Eqs.(3.10) and (3.4), a reference tensor is required, which should ideally be the expected tensor itself. As we do not afford it, we propose an iterative algorithm: we first provide a gross estimate obtained with MWF, and refine in an iterative manner this reference tensor. At iteration 1 the reference tensor is the gross estimate X 1 . At iteration r > 1 the reference tensor is Xr-1 , the result of denoising obtained at the previous iteration r -1. This process is repeated iteratively. The algorithm stops when the estimate at iteration r differs from the estimate at iteration r -1 by a small factor δ.

In Fig. 3.1, we present the flowchart of the overall algorithm, with iterative estimation of the reference tensor and estimation of the ranks with a global optimization method. This overall algorithm is described in detail in Algorithm 5 below. If Algorithm 5 stops at iteration r = 1, that is, at step 3.a), it is equivalent to selection of the best vector l followed by Algorithm 3. In the rest of the work, we denote Algorithm 3 as MM-GA, or MM-PSO depending on the optimization method.

We denote Algorithm 5 as MM-Iterative. MM stands for MWPT-MWF.

Programmes were written in M atlab , and executed on a PC running Windows, with a 3GHz double core and 3GB RAM.

Unless for the last considered application to fluorescence imaging, the images are artificially impaired with white, identically distributed random noise with the following input SNR (SN R in ) values (in dB): 5, 7.5, 10, 12.5, and 15. We present both examples for a specific value of SN R in such as 5 dB or 12.5 dB, and statistical results obtained with the values of SN R in cited above and 20 noise realizations.

Values of input SNR between 5 and 15 dB are realistic for the considered fluorescence images, hence our choice. The results are evaluated in terms of output SNR (SN R out ) and output SSIM (SSIM out ). In the wavelet decomposition, following the recommendations in [START_REF] Lin | Hyperspectral image processing by jointly filtering wavelet component tensor[END_REF] we choose Coiflets as wavelet functions.

As to the number of decomposition levels along each mode, we set the number l 3 for the third mode through the following heuristic process: with fixed number of decomposition levels along the first and two modes to 2, and tried several values for l 3 . We noticed that performing decomposition along the wavelength mode does improve the denoising results in terms of output SNR, at least for the considered data.

Hence, we set l 3 = 0. We then referred to Algorithm 4 to estimate l 1 and l 2 automatically. To run Algorithm 4, we set the subsampling factor S to 4. Unless specified, its yields l 1 = l 2 = 2 as optimal values. An example of the number of signal subspace dimension values to be estimated is as follows: if we obtain l = [2, 2, 0] T , the decomposition yields 16 wavelet packet coefficients, which are 3 rd -order tensors. The total number of rank values to be estimated is

We test the proposed methods in Algorithm (3) with either genetic algorithm, particle swarm, or Nelder-Mead optimization methods. We also test the iterative method presented in Algorithm 5. These methods are denoted as MM-GA, MM-PSO, or MM-Nelder, for Algorithm 3, and MM-Iterative for Algorithm 5. We selected state-of-the-art comparative methods, based on data projection on a signal subspace:

AIC estimating the subspace ranks in the wavelet framework denoted by MM-AIC, truncation of higher order decomposition denoted by THOSVD [START_REF] Lathauwer | On the best rank-(1) and rank-(r 1 , . . . , r N ) approximation of higher-order tensors[END_REF] and multiway Wiener filtering denoted by MWF [START_REF] Muti | Multidimensional filtering based on a tensor approach[END_REF]. We omitted some other methods, based on 

Multispectral image PaviaU Image 512×512×16

In this subsection we consider a multispectral image, of size 512×512×16. This image is processed with 2 wavelet packet decomposition levels along the spatial modes, leading to wavelet packet coefficients of size 128×128×16. Firstly, we exemplify the proposed and comparative methods with the case where the input SN R in = 5dB.

Secondly, we propose an exemplification with an input SN R 12.5 dB. Thirdly, we provide statistical results obtained with various values of input SN R. When GA or PSO are used, comparing the values in Tables 3.13 and 3.12 yields the following comments: when considering the approximation coefficients, the values along rows and columns of signal subspace dimension are 3.8 to 4.1 times higher.

For the detail coefficients, the ratio between dimension values is slightly farther from 4. This is coherent with the subsampling factor between the large and the small image, equal to 4. The slight bias with respect to the subsampling factor may be due to the fact that a different noise realization impairs the image. Additionally, we performed similar tests with the iterative method. When it is used, the estimated rank values increase throughout the iterations and reach almost always the size of the wavelet packet coefficient along each mode at the last iteration. Indeed, the noise magnitude of the processed image shrinks throughout the iterations, hence the increase in the values of signal subspace dimension. These results assess, at least for the considered images and subsampling factors, the relevance of step 3a in Algorithm 3.

Secondly, here are comments which aim at comparing the rank values in either approximation or detail coefficients: When referring to the results presented in 3.12 and 3.13, we notice that AIC always provides the maximum possible value, except once: the least possible value, that is, 1, is provided for a detail coefficient of the image in Fig. 3.4. The interest of this method is therefore limited in this case.

When GA or PSO are used, the rank values for the approximation coefficient is more elevated than the rank values for the detail coefficient. This is due to the ability of wavelet packet decomposition to concentrate the high frequency components, that is, the noise, in the detail coefficients. The noise magnitude is less elevated in the approximation coefficient, and a larger proportion of singular vectors are considered as forming part of the signal subspace. So the value of the signal subspace dimension is more elevated for the approximation coefficient than for the detail coefficient.

Proposed criterion

The proposed criterion is as follows:

where ||.|| represents the Frobenius norm, X 1 is a first, gross estimate of the expected tensor X or the noisy tensor R itself, and X its final estimate. It is worth noticing that we remain close to the framework of the Parafac decomposition, while choosing the SE as a criterion. Now we wish to solve:

It is rather complex to minimize the criterion J as it is a nonlinear function of the parameter K. We wish to estimate a single value -the rank for the truncation of the Parafac decomposition-, but the optimization method used for this purpose must be global. Moreover, the multispectral image considered in this work exhibit a large number of voxels. Therefore, the proposed optimization method must be fast.

Why the Nelder-Mead method ?

Some methods from the literature may be available to perform the minimization in Eq. (3.11), but they exhibit some drawbacks: the DIRECT method [START_REF] Jones | Lipschitzian optimization without the lipschitz constant[END_REF], for instance, requires the objective function to be Lipschitzian. Particle swarm optimization (PSO) [START_REF] Kennedy | Particle swarm optimization[END_REF] provides the global minimum of a scalar function of several variables but is not assumed, to the best of our knowledge, to be particularly fast.

The Nelder-Mead Simplex method [START_REF] Lagarias | Convergence properties of the nelder-mead simplex method in low dimensions[END_REF] is a global optimization method, which is meant to minimize a scalar-valued nonlinear function of several real variables, without any derivative information. It is known to yield a rapid decrease in cost function values [START_REF] Lagarias | Convergence properties of the nelder-mead simplex method in low dimensions[END_REF]. It has been shown that, in dimension two, the Nelder-Mead method may converge to a non-critical point of the minimized function [START_REF] Gao | Implementing the nelder-mead simplex algorithm with adaptive parameters[END_REF]. However, as specified in [START_REF] Lagarias | Convergence properties of the nelder-mead simplex method in low dimensions[END_REF], the global convergence of the Nelder-Mead method is ensured in a one-dimensional problem, which is the case in the current work. For these reasons, we select the Nelder-Mead Simplex Method.

Nelder-Mead algorithm falls into five steps: ordering, reflection, expansion, contraction, and shrinkage. At each iteration, a simplex is modified, following these five steps. Four scalar parameters must be specified to run the Nelder-Mead method: coefficients of reflection (ρ), expansion (χ), contraction (γ), and shrinkage (σ). They are such that ρ > 0, χ > 1, χ > ρ, 0 < γ < 1, 0 < σ < 1. The proposed improved 

Results

In this section, we apply the proposed method based on the truncation of the Parafac to avoid the border issues. The parameter δ is set to 10 -6 . Table 3.17 presents the results obtained in terms of SNR (signal to noise ratio), PSNR (peak signal to noise ratio), and slice-by-slice SSIM (structural similarity) [START_REF] Wang | Image quality assessment: from error visibility to structural similarity[END_REF] with the proposed and ForWaRD methods. The rank of the Parafac decomposition is estimated either with Nelder-Mead or with PSO. The number of particles in PSO is such that the results in terms of SNR are approximately the same than when Nelder-Mead is used. Examples of estimated rank values are as follows: for the first decomposition level PSO provides K = 41, and Nelder-Mead provides K = 39. Table 3.17 shows that the rank value provided by PSO and Nealder-Mead yield close SNR and PSNR values, which are higher than the comparative ForWaRD method. However, one iteration of PSO lasts 8 10 -2 sec. to get this estimation, while Nelder-Mead lasts 4 10 -2 sec. From the results displayed in Fig. 3.18, we can assert that when the truncation of the Parafac decomposition and ForWaRD are used, the overall visual aspect of the image is well preserved, which is confirmed by the SSIM values in Table 3.17.

However, the details are better preserved when the truncation of the Parafac decomposition is used, which is confirmed by the SNR and PSNR values in Table 3.17.

We propose a least squares criterion to get an optimal evaluation of the optimal rank, with respect to this criterion, of the truncation of the Parafac decomposition; secondly, we insert the truncation of the Parafac decomposition in a wavelet framework, for the purpose of multidimensional data denoising. We illustrate the ability

Setup X-ray Tomography

The simulated object is a plastic cylinder with holes along its height: there are six cylindric holes where various liquid mixtures have been inserted: iodine, silver nitrate, and bone 6.2.2. The tomographic images have been simulated for 8 viewing angles, and for 3 spectral bands. The data are independent along the viewing angles, but the 3 bands are correlated.

The PIXSCAN is installed in a lead box 6.4 whose wall thickness is dimensioned to attenuate the radiation to a threshold lower than the regulatory threshold of work. You can see the two doors on the left panel as well as the baffle allowing the passage of the cables and the ventilation [START_REF] Kronland-Martinet | Développement de la tomographie intra-vitale au K-edge avec la caméra à pixels hybrides XPAD3[END_REF].

The front doors provide access to the imaging system itself, as shown in 6.5.

The PIXSCAN is made up of three main blocks: the detector block that supports the XPAD3 camera, the object block consisting of a motorized rotation table 6.2.2 to allow translations in three directions. It allows to acquire images of the set of projections necessary for the tomographic reconstruction.

Exemplification with SN R in = 30 dB and reference tensor at 60%

The example in Fig. 4.2 concerns a case where the input SN R is 30 dB. 4.2: X-Ray image 256×256×3: Rank estimation for all subtensor

In the following cases, we fix the reference tensor at 20%

Exemplification with SN R in = 10 dB and reference tensor at 20%

The example in Fig. 4.3 concerns a case where the input SN R is 10 dB. The ranks estimated for the approximation coefficient are mostly influenced by the ranks in the reference tensor. Surprisingly, the ranks estimated for the detail coefficients are more elevated when the noise is high. This means that the most important part of the denoising is performed on the approximation coefficient.

Then a concentrator lens is placed in front of the collimator to target a particular reflection angle.

The whole of this lighting system produces a lighting angle of thirteen degrees with the horizontal.

Thus, according to the laws of geometrical optics, the majority of the energy is reflected and the camera captures only the refracted ray.

In this way a grazing illumination is obtained which emphasizes the relief and the texture of what is brought to light, which plunges into the shadow everything that is not illuminated.

This system allowed us to avoid the saturation of the images produced by the camera. Chapter 5

Concluding remarks

In this general conclusion we outline the main outcomes of this thesis, and draw some prospects concerning both algorithmic and applicative aspects. To judge the effectiveness of our algorithms,a comparative study was carried out with three main types of algorithms: on the one hand, the Perona-Malik method based on diffusion; Second, the truncation of HOSVD and MWF, and thirdly, a method based on wavelet packet decomposition and MWF, where the dimensions of the signal subspace are estimated by a statistical criterion rather than by an optimization method.

Balance

The results are promising in terms of denoising in grund truth. Ultimately, we achieve an advantageous time saving during the acquisition of hyperspectral images. Precisely, it is meant for X-ray spectral tomography. The third setup is the one that I have built in Fraunhofer Institue IIS in Furth, Germany, in order to acquired hyperspectral images of metal surfaces.

Prospects of the Thesis

The prospects of the thesis two-fold: they concern both the algorithms, and the applicative aspects.

Firstly, as concerns the algorithms:

1. Investigate additional swarm intelligence methods such as Grey Wolf Optimization, glow worm optimization, . . ., and their interest for parameter estimation in multidimensional image denoising.

2. In the field of image characterization by hyperspectral images, it is relevant to select the most relevant spectral bands for a given application. An automatic method could be adapted for this: We could propose a relevant criterion to estimate either the number of -regularly spaced-bands, or determine the most relevant band indices.