
HAL Id: tel-01665198
https://theses.hal.science/tel-01665198v1

Submitted on 15 Dec 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Complex Job-Shop Scheduling with Batching in
Semiconductor Manufacturing

Sebastian Knopp

To cite this version:
Sebastian Knopp. Complex Job-Shop Scheduling with Batching in Semiconductor Manufacturing.
Other. Université de Lyon, 2016. English. �NNT : 2016LYSEM014�. �tel-01665198�

https://theses.hal.science/tel-01665198v1
https://hal.archives-ouvertes.fr

N° d’ordre NNT : 2016LYSEM014

THÈSE DE DOCTORAT DE L’UNIVERSITÉ DE LYON

opérée au sein de

l’École des Mines de Saint-Étienne

École Doctorale N° 488

Sciences, Ingénierie, Santé

Spécialité de doctorat : Génie Industriel

Soutenue publiquement le 20/09/2016, par :

Sebastian Knopp

Complex Job-Shop Scheduling with Batching
in Semiconductor Manufacturing

Devant le jury composé de :

Christelle Jussien-Guéret, Professeur, Université d’Angers Présidente

Christian Artigues, Directeur de Recherche, LAAS-CNRS, Toulouse Rapporteur
Scott J. Mason, Professeur, Clemson University, États-Unis Examinateur
Lars Mönch, Professeur, FernUniversität in Hagen, Allemagne Rapporteur
Philippe Vialletelle, Ingénieur, STMicroelectronics, Crolles Examinateur
Farouk Yalaoui, Professeur, Université de Technologie de Troyes Examinateur

Stéphane Dauzère-Pérès, Professeur, EMSE, Gardanne Directeur de thèse
Claude Yugma, Chargé de Recherche, EMSE, Gardanne Co-directeur

Jacques Pinaton, Ingénieur, STMicroelectronics, Rousset Invité
Renaud Roussel, Ingénieur, STMicroelectronics, Crolles Invité

ABSI Nabil CR Génie industriel CMP

AUGUSTO Vincent CR Image, Vision, Signal CIS

AVRIL Stéphane PR2 Mécanique et ingénierie CIS

BADEL Pierre MA(MDC) Mécanique et ingénierie CIS

BALBO Flavien PR2 Informatique FAYOL

BASSEREAU Jean-François PR Sciences et génie des matériaux SMS

BATTON-HUBERT Mireille PR2 Sciences et génie de l'environnement FAYOL

BEIGBEDER Michel MA(MDC) Informatique FAYOL

BLAYAC Sylvain MA(MDC) Microélectronique CMP

BOISSIER Olivier PR1 Informatique FAYOL

BONNEFOY Olivier MA(MDC) Génie des Procédés SPIN

BORBELY Andras MR(DR2) Sciences et génie des matériaux SMS

BOUCHER Xavier PR2 Génie Industriel FAYOL

BRODHAG Christian DR Sciences et génie de l'environnement FAYOL

BRUCHON Julien MA(MDC) Mécanique et ingénierie SMS

BURLAT Patrick PR1 Génie Industriel FAYOL

CHRISTIEN Frédéric PR Science et génie des matériaux SMS

DAUZERE-PERES Stéphane PR1 Génie Industriel CMP

DEBAYLE Johan CR Image Vision Signal CIS

DELAFOSSE David PR0 Sciences et génie des matériaux SMS

DELORME Xavier MA(MDC) Génie industriel FAYOL

DESRAYAUD Christophe PR1 Mécanique et ingénierie SMS

DJENIZIAN Thierry PR Science et génie des matériaux CMP

DOUCE Sandrine PR2 Sciences de gestion FAYOL

DRAPIER Sylvain PR1 Mécanique et ingénierie SMS

FAVERGEON Loïc CR Génie des Procédés SPIN

FEILLET Dominique PR1 Génie Industriel CMP

FOREST Valérie MA(MDC) Génie des Procédés CIS

FOURNIER Jacques Ingénieur chercheur CEA Microélectronique CMP

FRACZKIEWICZ Anna DR Sciences et génie des matériaux SMS

GARCIA Daniel MR(DR2) Génie des Procédés SPIN

GAVET Yann MA(MDC) Image Vision Signal CIS

GERINGER Jean MA(MDC) Sciences et génie des matériaux CIS

GOEURIOT Dominique DR Sciences et génie des matériaux SMS

GONDRAN Natacha MA(MDC) Sciences et génie de l'environnement FAYOL

GRAILLOT Didier DR Sciences et génie de l'environnement SPIN

GROSSEAU Philippe DR Génie des Procédés SPIN

GRUY Frédéric PR1 Génie des Procédés SPIN

GUY Bernard DR Sciences de la Terre SPIN

HAN Woo-Suck MR Mécanique et ingénierie SMS

HERRI Jean Michel PR1 Génie des Procédés SPIN

KERMOUCHE Guillaume PR2 Mécanique et Ingénierie SMS

KLOCKER Helmut DR Sciences et génie des matériaux SMS

LAFOREST Valérie MR(DR2) Sciences et génie de l'environnement FAYOL

LERICHE Rodolphe CR Mécanique et ingénierie FAYOL

MALLIARAS Georges PR1 Microélectronique CMP

MOLIMARD Jérôme PR2 Mécanique et ingénierie CIS

MOUTTE Jacques CR Génie des Procédés SPIN

NIKOLOVSKI Jean-Pierre Ingénieur de recherche Mécanique et ingénierie CMP

NORTIER Patrice PR1 SPIN

OWENS Rosin MA(MDC) Microélectronique CMP

PERES Véronique MR Génie des Procédés SPIN

PICARD Gauthier MA(MDC) Informatique FAYOL

PIJOLAT Christophe PR0 Génie des Procédés SPIN

PIJOLAT Michèle PR1 Génie des Procédés SPIN

PINOLI Jean Charles PR0 Image Vision Signal CIS

POURCHEZ Jérémy MR Génie des Procédés CIS

ROBISSON Bruno Ingénieur de recherche Microélectronique CMP

ROUSSY Agnès MA(MDC) Génie industriel CMP

ROUSTANT Olivier MA(MDC) Mathématiques appliquées FAYOL

STOLARZ Jacques CR Sciences et génie des matériaux SMS

TRIA Assia Ingénieur de recherche Microélectronique CMP

VALDIVIESO François PR2 Sciences et génie des matériaux SMS

VIRICELLE Jean Paul DR Génie des Procédés SPIN

WOLSKI Krzystof DR Sciences et génie des matériaux SMS

XIE Xiaolan PR1 Génie industriel CIS

YUGMA Gallian CR Génie industriel CMP

Spécialités doctorales Responsables :

SCIENCES ET GENIE DES MATERIAUX K. Wolski Directeur de recherche

MECANIQUE ET INGENIERIE S. Drapier, professeur

GENIE DES PROCEDES F. Gruy, Maître de recherche

SCIENCES DE LA TERRE B. Guy, Directeur de recherche

 D. Graillot, Directeur de recherche

Spécialités doctorales Responsables

MATHEMATIQUES APPLIQUEES O. Roustant, Maître-assistant

INFORMATIQUE O. Boissier, Professeur

IMAGE, VISION, SIGNAL JC. Pinoli, Professeur

GENIE INDUSTRIEL X. Delorme, Maître assistant

MICROELECTRONIQUE Ph. Lalevée, Professeur

Acknowledgements

Over the past few years, I had the chance to work on a very interesting topic in a pleasant
environment. Within a fruitful cooperation between academia and industry, many supportive
people helped me along the way. I wish to express my gratitude to my thesis adviser Stéphane
Dauzère-Pérès for wisely guiding and supporting me throughout the thesis. With his vast ex-
perience in scheduling and semiconductor manufacturing, he supported me at the best over
all these years. This work would not have been possible without the engineers of STMicro-
electronics who took the time for providing me with invaluable information. In particular, I
would like to thank Amélie Pianne and Renaud Roussel for many discussions and exchanges
during our cooperation. I would also like to thank Phillippe Vialletelle and Jacques Pinaton
for supporting this work and participating in the jury of the thesis. Of course, I also wish to
thank Claude Yugma for co-advising the thesis.

I would like to thank Lars Mönch for the time he took for discussions during his stay in
Gardanne, for inviting me to the illuminating Dagstuhl seminar on modeling and analysis of
semiconductor supply chains, and of course for refereeing my thesis. As well, I would like
to thank Christian Artigues for refereeing the thesis. I would also like to thank Christelle
Jussien-Guéret, Scott J. Mason and Farouk Yalaoui for being part of the jury. Again, my
gratitude goes to Scott Mason and Lars Mönch for providing test instances.

I want to thank all current and former members of the department of manufacturing sci-
ences and logistics for the pleasant time and all the interesting discussions during the past
years. Among many other things, I was very pleased about your patience when teaching
me some French, in particular during my first year. I thank my officemate Abdoul Bitar for
sharing his experience from scheduling in the photolithography area. Ich danke meiner Fam-
ilie, meinen Freunden und besonders Elisabeth Zehendner, die mich alle jederzeit unterstützt
haben. Thank you very much! Vielen Dank! Merci beaucoup!

Sebastian Knopp
Vienna, November 2016

Contents

General Introduction . 1

1 Introduction and Industrial Context 3

1.1 Semiconductor Manufacturing: An Overview 5

1.2 Decision Making for Production Planning in Semiconductor Manufacturing . 8

1.3 Scheduling in the Diffusion and Cleaning Area 12

1.4 Related Work . 13

1.4.1 Complex Job-Shop Scheduling with Batching Machines 15

1.4.2 Routing and Resource Flexibility in Job-Shop Scheduling 18

1.4.3 Time Constraints in Complex Job-Shop Scheduling 19

1.5 Overview and Main Contributions . 21

2 Industrial Problem Specification 23

2.1 Basic Model . 24

2.1.1 Time constraints . 25

2.1.2 Control Runs . 26

2.1.3 Moves and Priorities . 27

2.1.4 Interlacing Constraints . 27

2.2 Machine Types . 28

2.2.1 Serial Single-Wafer Machines . 28

2.2.2 Parallel Single-Wafer Machines . 29

2.2.3 Batch Machines with a Unique Chamber 30

2.2.4 Furnaces . 31

2.2.5 Wet Bench Machines . 34

2.3 Objectives . 35

2.3.1 Minimize Constraint Violations . 35

2.3.2 Objectives for Feasible Schedules 37

2.3.3 Combination of Objectives . 38

2.3.4 A Discussion of Flow Factor Definitions 38

2.4 Conclusion . 40

ii CONTENTS

3 Complex Job-Shop Scheduling: A Batch-Oblivious Approach 43

3.1 Formal Problem Description . 45

3.2 Disjunctive Graph Modeling . 46

3.2.1 Batch-Aware Conjunctive Graphs 48

3.2.2 Batch-Oblivious Conjunctive Graphs 49

3.3 Building Blocks for Integrated Batching Decisions 51

3.3.1 Static Start Date Computation . 51

3.3.2 An Integrated Batch-Oblivious Move 52

3.3.3 Adaptive Start Date Computation 53

3.3.4 Strategies for Selecting Nodes . 55

3.4 Heuristic Approaches . 57

3.5 Numerical Results . 58

3.5.1 Instances from the Diffusion and Cleaning Area 58

3.5.2 Instances for Parallel Batch Machines of Mönch 63

3.5.3 Complex Job-Shop Instances of Mason 64

3.5.4 Sequence-Dependent Setup Time Instances of Brucker 64

3.5.5 Flexible Job-Shop Instances of Hurink 67

3.6 Conclusion . 69

4 Extended Route and Resource Flexibility in Job-Shop Scheduling 71

4.1 Formal Problem Description . 73

4.1.1 Preliminaries and Notation . 74

4.1.2 Basic Problem Description . 75

4.1.3 Resource Acquisitions . 76

4.1.4 Batchable Resources . 76

4.1.5 Discussion and Possible Applications 77

4.2 Generalized Batch-Oblivious Conjunctive Graphs 78

4.2.1 Route-Graph-Aware Conjunctive Graphs 79

4.2.2 Integrated Computation of Start Dates and Batches 80

4.3 Solution Approach . 82

4.3.1 Efficient Node Insertions . 83

4.3.2 Heuristic Methods . 90

4.4 Numerical Experiments . 92

4.4.1 Model Complexity . 92

4.4.2 Photolithography Instances . 93

4.5 Conclusion . 94

CONTENTS iii

5 Time Constraints in Complex Job-Shop Scheduling 97

5.1 Modeling Time Constraints . 98

5.2 An Extension of the Formal Problem Description 100

5.3 Solution Approach . 102

5.3.1 Latest Start Dates in Batch-Oblivious Conjunctive Graphs 103

5.3.2 Lexicographical Objective Functions 107

5.3.3 A Guiding Objective Function . 111

5.4 Numerical Results . 112

5.4.1 Industrial Instances with Maximum Time Lags 112

5.4.2 Job-Shop Scheduling Instances with Maximum Time Lags 115

5.5 Conclusion . 116

6 Conclusion and Perspectives 119

6.1 Conclusion . 120

6.2 Perspectives . 121

Appendices 125

A Résumé en français 125

A.1 Introduction . 125

A.2 Ordonnancement pour les problèmes de type Complex Job-Shop 135

A.3 Modélisation des Ressources et du Routage 140

A.4 Modélisation des Contraintes de Temps . 142

A.5 Conclusion et Perspectives . 144

Bibliography 149

Index 165

General Introduction

The subject of this thesis is the scheduling of lots that have to be processed in a partic-
ular workcenter of a semiconductor manufacturing facility that imposes a rich set of con-
straints. We present suitable models and optimization methods which include the numerous
constraints and objectives which are present in this work area. Though this is a specific
application area, we will see that the underlying properties lead to very general scheduling
problems.

This thesis was conducted in the context of the European project INTEGRATE. This Eu-
ropean project aimed at developing optimization, information and control tools as well as
manufacturing procedures to efficiently manage a high product and technology mix of het-
erogeneous lots. Within this context, the close cooperation with the industrial engineering
departments of the semiconductor manufacturing facilities of STMicroelectronics in Crolles
and Rousset (France) enabled us to gain a detailed understanding of the challenges one has
to face when solving scheduling problems in a complex industrial setting. A software pack-
age consisting of a scheduler library at its core together with a graphical user interface and
adapters for data import and export has been developed. Beyond the experimental results
stated in this thesis, the scheduler also has been intensively evaluated by our industrial part-
ner.

In chapter 1, a broad overview of the semiconductor manufacturing landscape is given.
In particular, the variety of decision making challenges and solution methods in the context
of semiconductor manufacturing is discussed in order to understand the role of scheduling
in its context. A detailed specification of the diffusion and cleaning work area is given in
chapter 2 that provides an interface between engineers from a fab and combinatorial opti-
mization researchers. This specification is based on information obtained from the engineers
working at the facilities of our industrial partner. The first goal is to provide a clear, textual,
in-depth description verified by fab engineers. The second goal is to provide a comprehensive
description that allows formal models for optimization methods to be developed.

The fundamental challenge that we face in this thesis is a complex job-shop schedul-
ing problem which includes the principal characteristics of the diffusion and cleaning work
area: The integration of batching machines within a job-shop environment. One of our main
contributions, introduced in chapter 3, is a novel batch-oblivious disjunctive graph represen-
tation that uses edge weights to model batching decisions. This representation facilitates the
modification of batching decisions and allows the development of an original “on the fly”
batching algorithm. Complemented by a known move for integrated resequencing and re-
assignment of operations, we obtain an integrated neighborhood which is applied within a
parallel GRASP based meta-heuristic approach.

In chapter 4, we increase the detail of our model for the diffusion and cleaning area by
including internal components of machines. The combination within a job-shop setting leads
to a job-shop scheduling model with extended resource and routing flexibility. An impor-
tant contribution is the inclusion of resource acquisition constraints that help to model the

2 CONTENTS

exclusive acquisition of a resource between two operations of the same job. This modeling
offers an additional generality that e.g. allows to solve scheduling problems with auxiliary
resources from the photolithography area.

Finally, temporal constraints that limit the maximum time between given pairs of oper-
ations are taken into account in the final chapter of this thesis. We consider maximum time
lag constraints as soft constraints and include the severity of their violations in the objective
function lexicographically.

Chapter 1

Introduction and Industrial Context

T he production of a single wafer requires

up to 700 processing steps and takes up to

3 months. Wafers are produced in the most

expensive facilities that can be found through-

out industry. This requires wise decisions mak-

ing on different decision levels. The focus of

this thesis is to improve scheduling decisions in

the diffusion and cleaning work area. There,

multifold constraints lead to general complex

scheduling problems that also find applications

in other industries.

Image source: Flickr, Rob Bulmahn

http://www.flickr.com/photos/rbulmahn/ (CC License)

4 Chapter 1: Introduction and Industrial Context

The subject of this thesis is the scheduling of lots that have to be processed in a particular
work center of a semiconductor manufacturing facility that imposes a rich set of constraints.
We present suitable models and optimization methods that include the numerous constraints
and objectives that are present in this work area. Though this is a specific application area,
we will see that the underlying properties lead to very general scheduling problems. This
introduction starts with an explanation of the industrial context and summarizes the stages
of the semiconductor manufacturing process in section 1.1. Then, section 1.2 describes the
different planning levels and positions scheduling within this context. Section 1.3 provides a
brief overview of scheduling challenges in the considered diffusion and cleaning work area.
The literature review given in section 1.4 focuses on scheduling problems related to those
considered in this work and their known resolution methods. Finally, section 1.5 provides an
overview of the chapters in this thesis and highlights their main contributions.

Digital electronics showed an enormous influence and growth over the last 50 years.
Since the predictive statement of Moore (1965), which declares that device integration den-
sity will double approximately every two years, applications have become ubiquitous: com-
puters, sensors, data centers, automotive electronics, or wearable devices. Today, electronic
devices are everywhere. Semiconductor manufacturing remains the core process that en-
ables all these applications. Figure 1.1 shows the worldwide market billings provided by
the Semiconductor Industry Association (SIA (2015)). Between 1995 and 2015, the overall
worldwide sales increased from 50 to 337 billion U.S. dollars per year, which underlines the
importance and size of this industry sector.

1990 1995 2000 2005 2010 2015

Year

0

50

100

150

200

250

300

350

in
b

il
li

o
n

s
o
f

U
.S

.
d

o
ll

a
r
s

Figure 1.1 – Worldwide Market Billings, Semiconductor Industry Association (SIA)

The semiconductor manufacturing sector is a very capital intensive industry with a fierce
competition. Beside the high velocity of this market in terms of product lifecycle times, the
high cost of manufacturing is a key factor. Machines and cleanroom space are very expensive.
Individual machines cost between 100 thousand and 40 million U.S. dollars (consider e.g.

1.1 Semiconductor Manufacturing: An Overview 5

the annual report of ASML (2016)). Several hundred machines can be found in a single
semiconductor manufacturing facility (fab). Quirk and Serda (2001) report that around 75%
of the investment for a single fab is spent on the machines. A single fab nowadays can
cost up to 5 billions U.S. dollars. Therefore, a high fab utilization is crucial for success
in this industry. Since many options for cost reductions, such as increased wafer sizes and
automation, have already been exploited to a large extent, operational cost reductions through
better decision systems are considered to be an important direction. From an academic point
of view, this area also offers insightful challenges. The complexity observed in this industry
is rarely found elsewhere and the transferability of results for operations research questions
from this to other industries promises to be viable and fruitful.

1.1 Semiconductor Manufacturing: An Overview

This section summarizes the semiconductor manufacturing process in order to understand
the background for the planning decisions that need to be taken at different decision levels.
Semiconductor manufacturing and its underlying physical and chemical principles are de-
scribed in the textbook of Quirk and Serda (2001). Descriptions of the production process
that focus more on production planning, decision making and analysis are given by Uzsoy
et al. (1992) and Mönch et al. (2013). Based on these sources, this section aims at providing
the background information needed to understand and motivate the utility of scheduling in
an individual work area. Since work area schedulers need to collaborate with neighboring
information and decisions systems, it is important to understand the involved interrelations.

Raw wafers are the basic material that is used to produce integrated circuits (also known
as chips, or dies). A wafer is a thin slice of semiconductor material obtained from a single
crystal ingot. From a single wafer, hundreds or thousands of microelectronic chips can be
produced, depending on the size of the chips and the diameter of the wafer. Usual wafer
diameters increased over time to diameters of 200 mm or 300 mm which are used in most
wafer fabs today. An integrated circuit consists of a 3-dimensional structure of conductors,
semiconductors and insulators that are build upon a wafer. This structure is created by suc-
cessively adding layers upon the wafer. Already for one of these layers, many processing
steps are needed. Since up to 40 layers per chip are necessary, this leads to a large overall
number of processing steps. Up to 700 steps can be required for a single wafer. Individual
production steps can take between several minutes and many hours. Overall, the production
of a single wafer can take up to 3 months.

Semiconductor manufacturing is divided into a front-end stage and a back-end stage.
Figure 1.2 provides an overview of the principal phases of both stages. The core part of the
front-end stage is the fabrication of wafers. This is the technologically most demanding part
since this is where the structurally smallest parts of the chips are created. Wafer fabrication
takes place in large buildings where strict cleanroom conditions have to be ensured in order
to avoid wafer contamination. Cleanroom requirements might be less strict in modern fabs
where wafers are kept in specialized containers that ensure a clean environment. The details

6 Chapter 1: Introduction and Industrial Context

of this production phase are explained later in this section. At the end of the front-end stage,
the probing phase electrically tests each individual chip on the wafer to identify the chips
that are eligible for assembly. Front-end production sites are usually located in highly indus-
trialized nations and the production steps performed there consume about 75% of the overall
cycle time. During all phases of the front-end, all chips remain located on the same wafer in
order to profit from common processing. In the back-end, wafers are then cut into separate
chips and their individual assembly takes place. This includes wire bonding, where the chips
are attached to its package or another chip, and molding, that encloses the chip and its con-
nections in a protective casing. Also lid sealing, optical inspections, environmental testing
and other steps can take place. Since at this stage the manufacturing of integrated circuits
on the wafer is already completed, the back-end production requires less strict cleanroom
conditions. Back-end phases are mostly located in countries with cheaper labor wages. The
final test phase includes electrical tests and heat-stress tests which are performed in burn-in
ovens.

Front-End Back-End

Wafer Fabrication Probe Assembly Final Test

Figure 1.2 – Stages of semiconductor manufacturing

In the front-end stage, the structures on each wafer are built layer by layer. The different
processing steps needed to produce a single layer are performed in specialized work areas
that consist of machines with similar capabilities. Processing steps are executed multiple
times to create all layers. This leads to reentrant flows where each wafer visits different work
centers multiple times. The interaction between the work centers is shown in Figure 1.3. The
following listing describes the work centers and classifies them according to Mönch et al.
(2011):

Diffusion/Oxidation/Deposition The diffusion process disperses material on the surface of
the wafer. The oxidation process grows a layer of oxide on the surface of a cleaned
wafer. Such layers are modified by subsequent processing steps in order to develop
connected semiconductor devices (e.g., transistors, resistors, or diodes) that make up
the integrated circuit. Diffusion and oxidation steps can require very high process-
ing durations of 12 hours or longer. Diffusion and oxidation are high-temperature
processes performed on horizontal or vertical furnaces. These furnaces are batching
machines that can process multiple lots of wafers at the same time. The deposition

process places thin conductor or insulator films on the surface of a wafer. Deposited
thin films serve different purposes: They either become part of the device structure or
are used as an auxiliary layer which is removed later on. This work center also contains
wet cleaning machines which decontaminate wafers by removing unwanted particles.

1.1 Semiconductor Manufacturing: An Overview 7

Figure 1.3 – Processing steps within wafer fabrication (Mönch et al. (2011))

Photolithography The photolithography process transfers device features and wiring pat-
terns to the surface of a wafer by passing ultraviolet light through a mask. The resulting
temporary patterns are then made permanent during subsequent etching or ion implan-
tation steps. To perform a photolithography operation, in addition to the photolithog-
raphy machine (stepper or scanner), a mask (or reticle) is required as an auxiliary
resource. This work area contains the most expensive machines in a fab that can cost
up to 40 million U.S. dollars and often constitutes a bottleneck area in the overall fab.

Etching The etching process removes unneeded material from the wafer surface. Etching
can be patterned or unpatterned. Patterned etching removes a pattern that was brought
onto the wafer during photolithography. Unpatterned etching reduces thickness and
involves the entire area of the wafer. There are two types of etching: Dry etching ex-
poses the wafer surface to a plasma, and wet etching removes material using chemical
solutions.

Implantation The implantation process introduces dopants (i.e., desired impurities, ions)
into the crystal structure of the semiconductor material in order to modify its conduc-
tivity. This step can follow a photolithography or etching step.

Planarization The planarization process uses Chemical Mechanical Polishing in order to
level the surface of the wafer. Planarization reduces thickness differences over the
wafer and is performed each time before a new layer is added. This technique avoids
the accumulation of uneven topology over multiple layers and avoids therefore various
nonplanarity related problems, such as lens focusing issues in photolithography.

8 Chapter 1: Introduction and Industrial Context

The machines that can be found throughout the work areas show different characteristics:
Some of them are capable of batching, others involve sequence-dependent setup times, and
some show a pipelining behavior that allows overlapping operations. A set of identical ma-
chines in the same work center is also called a tool group. Usually, 25 wafers are grouped
within a carrier that can either be a front opening unified pod (FOUP) in 300 mm fabs and
modern 200 mm fabs, or a wafer carrying cassette in 200 mm fabs.

To ensure the quality of produced wafers, inspection and measuring procedures are per-
formed between production steps on sampled lots. If an inspection operation detects a dam-
aged wafer, that wafer can be reworked in rare cases and has to be scrapped in most cases.
Damages can be caused by several reasons that include contamination or machine failures.
Another cause which is becoming increasingly important with shrinking structural sizes of
chips are violations of time constraints. Time constraints limit the duration between two pro-
cessing steps and originate in the chemical or physical degradation that might appear during
overly long waiting periods. In addition, virtual metrology techniques aim at monitoring and
improving production quality by indirect means. Sensor data is collected from production
machines and analyzed using statistical methods in order to deduce machine failures or qual-
ity problems. An important quality measure is the percentage of the chips on the wafer that
is correctly produced. This percentage is called the yield of the wafer.

1.2 Decision Making for Production Planning

in Semiconductor Manufacturing

Planning and decision making in semiconductor manufacturing comprise several decision
levels with scopes that range from the entire supply chain to the internal dispatching deci-
sions within cluster tools. The scopes of different decision levels differ in their time horizon,
the level of modeled detail, and the granularity of decisions to be taken. A general overview
of decision levels and their interrelation is given in the textbooks of Silver et al. (1998) or
Stadtler and Kilger (2000). The positioning of scheduling within a matrix model for supply
chains is provided in Rohde et al. (2000). In Chien et al. (2011), the arising challenges are
discussed from a semiconductor manufacturing point of view. Mönch et al. (2013) distin-
guish decision levels on the enterprise level, the factory level, and the work center level. In
the following, we provide an overview of the decisions that need to been taken at each of
these levels. An overview of the described decision levels is depicted in Figure 1.4.

The enterprise level comprises long-term planning for a time horizon of several quarters
or years. The decisions at this level are strategic and are taken for coarse time buckets that
are typically weeks or months. The scope of this planning is the end-to-end customer supply
chain or the full supply chain within the enterprise. It is based on anticipated demand (fore-
casts). The master planning determines production quantities to be completed within given
time buckets and quantities to be released to each fab (or subcontractors). This defines the
routing throughout the company’s internal supply chain. Other long term planning problems
encompass investment decisions for production facilities or equipment and product mix de-

1.2 Decision Making for Production Planning in Semiconductor Manufacturing 9

Enterprise Level
(strategical)

Factory Level
(tactical)

Work Center Level
(operational)

Quarter - Years

Week - Months

Hour - Shifts

Supply Chain /
Facilities

Work Centers /
Tool Groups

Individual Machines /
Machine Components

Figure 1.4 – A characterization of decision levels in semiconductor manufacturing

cisions for a long term horizon. Ponsignon and Mönch (2012) describe and resolve master
planning problems that determine wafer quantities over products, facilities and time periods
for given demand and capacity constraints.

The factory level comprises mid-term planning for a time horizon of several weeks or
months. Its scope are activities within a fab and decisions are based on the current state
of the fab and confirmed demand. The decisions at this level are tactical and define the
production and inventory plan at the fab level. Multiple orders per job decisions, which are
described in Mönch et al. (2011), arise since the wafers of some customer orders do not
entirely fill up a carrier (FOUP or cassette). The objective is to group wafers of different
orders in the same carrier to enable increased machine utilization. Order release decisions
determine when the production of a lot is started to ensure its consistent and uniform flow
through the fab. This can be enforced by different measures. One way is to prescribe job
release dates and job due dates for each work center that a job is (repeatedly) traversing. This
approach apportions single customer due dates into multiple work center related due dates.
Another approach to achieve a uniform flow is the introduction of production targets. Each
production step is assigned to a product family. Production targets prescribe for each work
center the number of steps for each product family that need to be performed within a given
period of time. Both kinds of order release decisions are considered at the work center level
by taking the resulting due dates, production targets or priorities (weights) as an input for
scheduling or dispatching based approaches. In this context, time constraints as described in
Klemmt and Mönch (2012) can also be important since they might span over different work
centers. Qualification management decisions are needed to manage machine capabilities.
Every operation cannot be performed on all machines. Machines must be prepared to gain
production abilities by performing preparatory setups and tests. This preparation is called
qualification and can be very time-consuming. Therefore, qualification decisions can have
an important impact as shown in Johnzén et al. (2011) and Rowshannahad et al. (2015).

10 Chapter 1: Introduction and Industrial Context

The work center level comprises short-term planning over at most several hours or shifts.
The decisions at this level are operational and are taken for detailed time buckets that can be
seconds or minutes. Systems on this level must often react quickly in order to take near-term
decisions in time. Crucial are scheduling decisions that decide which machine is used to
process a lot, which lots are grouped in the same batch, and in which order lots are processed
on their assigned machine. In practice, dispatching rules are still often used to take these
kinds of decisions. These rules usually decide only on the very next operation to be pro-
cessed. Many elaborated dispatching rules haven been developed and analyzed (see Mönch
et al. (2013)). Scheduling takes a longer time horizon into account and creates a detailed
production plan over several hours or shifts. In comparison to dispatching, scheduling is less
myopic and usually uses optimization methods to calculate solutions that optimize a given
objective function. The input of scheduling and dispatching systems comprises the current
state of the fab and the lots to be released within the considered time horizon. Such problems
can be described as complex job-shop scheduling problems where each lot corresponds to
a job that has to follow a sequence of processing steps. The considered constraints include
batching machines, sequence-dependent setup times and other properties, such as auxiliary
resources, that depend on the work area that is considered. The problem could be mod-
eled in this way already at the factory level. However, for known scheduling methods, the
sizes of such instances seem to be intractable. Transportation policy decisions are required
in fabs that use Automatized Material Handling Systems (AMHS) to transport lots between
machines within the cleanroom. Policies for a material handling system, as described in
Kiba et al. (2010), aim at avoiding machine starvation caused by transportation delays. Tool

risk management decisions concern inspection and control procedures performed between
production steps. For capacity reasons, only a subset of all processed wafers is selected for
such measurements. As shown by Rodriguez Verjan et al. (2011), these selection decisions
are crucial in order to avoid late detections of machine disturbances. Good inspection strate-
gies avoid sampling lots that bring little information. Instead, only wafers that minimize the
number of potentially defective wafers are measured.

The decomposition of the entire production planning into subproblems, such as those
described before, yields manageable planning tasks that can be tackled independently. De-
composition seems indispensable at present since fully integrated approaches seem to involve
a nearly untamable complexity. This separation requires well-thought-out vertical and hori-
zontal interfaces between the involved systems. There is only little work in the literature that
concentrates on this integration. The integration between the fab level and particular work
areas is discussed in Bureau et al. (2007). They propose to feed information on global pro-
duction objectives to the work center decisions systems by aggregating global information
within input parameters of dispatchers or schedulers and to periodically update this informa-
tion. The effects of local scheduling decisions at work center level to the overall fab level are
studied in Mönch and Rose (2004). They use simulation to evaluate the impact of scheduling
within a rolling horizon setting. From a scheduling perspective, several input parameters
allow to steer scheduling decisions towards global objectives. Release dates, due dates, job
weights or production targets can incorporate factory level objectives.

1.2 Decision Making for Production Planning in Semiconductor Manufacturing 11

There are additional factors that complicate production planning and scheduling. One in-
fluencing factor is the product mix characteristic of the fab. We differentiate between low-mix

and high-mix fabs. In low-mix fabs, high quantities of few product types are manufactured.
In high-mix fabs, the situation is inverse: Many different product types are manufactured
with potentially small quantities for each product type. High-mix fabs usually produce Ap-
plication Specific Integrated Circuits (ASICs) which are customized chips for specialized
applications. In this work, we concentrate on high-mix fabs. There, lots for different product
types and at different production stages are competing for the same machines. In addition,
priorities or due dates related to customer needs must be taken into account. Therefore, in
high-mix fabs, deciders need to weigh up between a large number of competing objectives.
Also, high-mix fabs require a high number of reticles in the photolithography area since a
different reticle is needed for each pattern that is brought onto a chip. Thus, these auxiliary
resources are more critical in high-mix fabs. Additional complexity is coming from the prop-
erties that we observe in individual work areas. Processing durations can vary immensely be-
tween production steps and are in the range between a few minutes and over 12 hours. Many
properties of machines, such as batching, have a strong influence and require detailed mod-
els. The properties of machines in the diffusion and cleaning area are discussed in detail in
section 1.3 and in chapter 2. Rapid technological advancements in semiconductor technolo-
gies and the high velocity of innovation in this business sector require permanent research
and development efforts. This is reflected by the need to include engineering lots within
the production process. They are needed for the development of future products and are
processed on the same machines as regular production lots. Therefore, engineering lots also
influence the capacity of a fab. Ziarnetzky and Mönch (2016) study the combined planning of
engineering and production lots. Another aspect is that production steps do not always work
out perfectly and can cause defects. This impacts the planning in several ways: Preventive
maintenance works on machines have to be scheduled and unexpected machine breakdowns
can disturb planning. An approach to consider machine reliability in a non-binary way is
the assignment of a machine health indicator to each machine. Such indicators estimate the
probability that a step on a machine introduces a defect on the wafer. Doleschal et al. (2015)
study the consideration of such indicators in a simulation based evaluation of dispatching
and optimization approaches. An integration within job-shop scheduling is presented in Kao
et al. (2016).

Relevant performance indicators depend on the considered planning problem and its in-
terplay with related components. Often, multiple objectives are of interest. On the fab level,
a variety of performance indicators is important. In an industry survey presented by Pfund
et al. (2006), companies consider the overall factory throughput as the most important objec-
tive. It is followed by on-time delivery, cycle time, wafer starts, equipment throughput and
inventory levels in that order. To resolve, model and analyze the challenges described in this
section, a range of tools and methods are available and in use. Some problems can be tackled
using optimal or heuristic algorithms. Simulation (see Fowler and Rose (2004)) is beneficial
to study the effects of decisions and policies with a high degree of modeling detail. Rule
based dispatching systems are still widely used. An study on dispatching rules for wafer
fabrication is provided in Sarin et al. (2011). In practice, such rules can be quite complex

12 Chapter 1: Introduction and Industrial Context

since they evolved over longer time periods and take various company specific needs into ac-
count. However scheduling methods using optimization techniques obtain better results and
offer the advantage that objectives can be specified explicitly. Queuing models can be used
to predict aggregated system behavior while requiring only limited computational effort. To
analyze load dependent cycle times, cycle time throughput curves (Fowler et al. (2001)) and
clearing functions (Karmarkar (1989)) can be used.

1.3 Scheduling in the Diffusion and Cleaning Area

In the focus of this work are scheduling problems that originate from the diffusion and clean-
ing areas of the semiconductor manufacturing facilities of STMicroelectronics in Rousset
(France) and Crolles (France). Despite the fact that this work area is called Diffusion/Oxida-

tion/Deposition in the schema of work centers presented in section 1.1, we will stick to the
term diffusion and cleaning area throughout this work. The rationale for this is to have a term
that includes all properties of the work area specified in detail in chapter 2. The work area
specified there includes a wider range of machines: It comprehends not only diffusion and
oxidation furnaces, but also other machine types such as cleaning or wet bench machines.
The impact of this area to the overall performance of the fab can be high since up to 30% of
the WIP can be located in this area (Jung et al. (2013)). This section presents the main char-
acteristics of the rich scheduling problem that is imposed by this work area and it provides
the context for the literature review of section 1.4.

The fundamental problem beneath the considered application is a complex job-shop

scheduling problem where batching machines are considered within a job-shop setting. For
each job in a given set, a fixed sequence of operations (route) must be performed on given
machines. Each operation belongs to a family which specifies the machines that are qualified
for its processing. Processing durations depend on selected machines. Some machines are ca-
pable of batching: They can process multiple operations of the same family at the same time
as long as machine capacity restrictions are respected (p-batching). In addition, sequence-
dependent setup times have to be considered (s-batching) for some machines. Associated to
each job is a ready date and, depending on the used policy for order releases, potentially also
a due date. Initially, we are interested in mono-criteria regular objective functions such as to-
tal weighted tardiness or makespan. Additional industrial objectives described in section 2.3
require to consider multiple objective functions at the same time.

Modeling complex machines by one fixed processing duration neglects many properties
of machines that can be found in a real fab. Let us illustrate this for the case of furnaces.
They usually consist of two tubes, four boats (two per tube), and one load port. A tube is the
place where processes are conducted and a boat is a movable carrier for wafers and necessary
to run a process inside a tube. Boats are also utilized to load, unload and cool wafers. The
load port is the place where wafers are loaded and unloaded. To process a set of wafers,
a boat is used as follows: First, wafers are loaded from its carrier to the boat at the load
port. Then, the boat is moved into the tube where the process is conducted. Afterwards, the

1.4 Related Work 13

boat is removed from the tube and has to cool down before its wafers can be unloaded at
the load port. Potentially, the boat has to wait in case the tube or the load port is occupied.
Some operations, require more than one internal resource of the same machine at the same
time. In the “simple” complex job-shop scheduling model, we would assume that each tube
corresponds to one machine which is independently operating. As illustrated, this is not
the case and we want to consider a more detailed modeling of machines, integrated within
job-shop scheduling, in order to increase the accuracy of our modeling.

In practice, an additional property that is considered to be crucial are temporal constraints.
Chemical and physical processes impose maximum time lag constraints that limit the time
between given pairs of operations. In general, maximum time lags can occur for arbitrary
pairs of operations of the same job. Thus, time lags can be adjacent or overlapping and, at
the same operation, one maximum time lag can start and another one can end. This can lead
to chained constraints that are also called queue time constraints. There are different types
of time constraints. This reflects the fact that lots that violate a maximum time lag can be
reworked only in some cases. In other cases, occurring defects are not reworkable and wafers
have to be scrapped.

1.4 Related Work

This literature review is structured along the main chapters of this thesis. It starts with an
overview of solution methods and a brief survey of classical and flexible job-shop scheduling.
Then, the sections 1.4.1 (complex job-shop scheduling), 1.4.2 (route and resource flexibility)
and 1.4.3 (maximum time lag constraints) are organized in parallel to the chapters in this
work.

A tremendous amount of research on scheduling was conducted in the last decades. Gen-
eral introductions on scheduling are provided in the text books of Blazewicz et al. (2007),
Brucker (2007) and Pinedo (2012). To classify scheduling problems, they provide updated
versions of the classification scheme introduced in Graham et al. (1977). This thesis focuses
on generalizations of job-shop scheduling problems to model real-world needs of semicon-
ductor manufacturing facilities. An overview of the scheduling challenges in semiconduc-
tor manufacturing is provided in Mönch et al. (2011) and Mönch et al. (2013). Benefits
of scheduling methods for the performance of semiconductor manufacturing facilities are
known for years, consider for example Wein (1988). Known and successful algorithms for
scheduling problems cover a wide range of solution methods known in combinatorial opti-
mization. We provide a brief overview in the following.

Enumerative methods, such as dynamic programming or branch-and-bound, systemati-
cally explore the solution space. Dynamic programming relies on solving subproblems and
storing their results. Stored solutions for subproblems are combined in order to obtain solu-
tions of larger subproblems until the original problem is solved. Branch-and-bound methods
search the solution space by exploring a search tree. A node in that tree represents a set
of solutions and its child nodes correspond to a partitioning of this set. A search strategy

14 Chapter 1: Introduction and Industrial Context

specifies the traversal ordering and bounds limit the search space that is explored. Mixed

Integer Linear Programming (MILP) is a widely used approach that can solve optimiza-
tion problems with real- and integer-valued decision variables. It is supported by powerful
commercial software packages and is the basis for elaborated methods such as lagrangean
relaxation or column generation. Constraint Programming is based on feasibility and the
propagation constraints.

Heuristic methods can determine good solutions without guaranteeing their optimality.
For NP-hard problems, they often provide reasonable trade-offs between quality and compu-
tational effort. Often, greedy heuristics are used to construct initial solutions. List schedul-
ing is a heuristic method to create a schedule based on a dispatching rule. For NP-hard
scheduling problems, metaheuristic approaches have proven to be successful. Kirkpatrick
(1984) introduced the Simulated Annealing metaheuristic that escapes from local optima
with a probability that decreases over time. Genetic algorithms (see Goldberg and Hol-
land (1988)) maintain a population of solutions that evolves generation-wise using mutation,
cross-over and selection operators. Tabu search (see Glover (1989)) avoids being stuck in
local optima by (temporally) declaring certain moves as tabu. Greedy Randomized Adap-
tive Search Procedures (GRASP), introduced in Feo and Resende (1995), use a multi-start
based approach which independently improves solutions constructed by a randomized greedy
heuristic. Mladenović and Hansen (1997) introduce the concept of Variable Neighborhood
Search (VNS). In this concept, different neighborhoods are used in an alternating way to es-
cape form local minima. Recently, many new metaheuristics which use inventive analogies
have been proposed. Sörensen (2015) critically highlights recent developments in this area
and discusses important future directions.

Classical Job-Shop Scheduling The basic problem related to the one at hand is the clas-
sical job-shop scheduling problem. As indicated in Blazewicz et al. (2007), the earliest for-
mulations of this problem stem from the late fifties (Bowman (1959), Wagner (1959), Manne
(1960)) and it was proven to be NP-hard in Garey et al. (1976). Successful solutions methods
are often based on the disjunctive graph representation that models dependencies between op-
erations in a concise way. This representation was introduced by Roy and Sussmann (1964).
Blazewicz et al. (2000) propose data structures for an efficient implementation of disjunctive
graphs. An overview of solution methods in general is provided by Jain and Meeran (1998).
An overview which concentrates on local search based methods is given by Vaessens et al.
(1996). Carlier and Pinson (1989) propose a branch-and-bound approach that solved for the
first time the 10 × 10 job-shop problem proposed by Muth and Thompson (1963). A well-
known decomposition based solution approach is the shifting bottleneck heuristic of Adams
et al. (1988). It subsequently identifies bottleneck machines and optimizes their sequence of
jobs. This is done by a problem reduction that fixes operations on all machines except one
and then solves the resulting single-machine scheduling problem using a suitable subproblem
solution procedure. For this, the authors proposed to use the branch-and-bound approach of
Carlier (1982). An improved version of this approach was proposed in Dauzère-Pérès and
Lasserre (1993). Balas and Vazacopoulos (1998) propose an approach that embeds a guided

1.4 Related Work 15

local search procedure within a shifting bottleneck heuristic. Heads and tails provide a mea-
sure for the time that is needed before and after an operation, including all machine and route
dependencies in the solution. Their properties and adjustments are discussed in Carlier and
Pinson (1994).

Simulated annealing was first used to tackle the job-shop scheduling problem by
Van Laarhoven et al. (1992). There, a neighborhood induced by the swapping of critical
arcs is used and the connectivity of this neighborhood is proven. Taillard (1994) propose
parallel tabu search techniques for the job-shop scheduling problem. Nowicki and Smutnicki
(1996) propose a tabu search method for which they introduce a neighborhood definition
which employs blocks of jobs. Vaessens (1995) discusses deterministic and probabilistic lo-
cal search approaches for the job-shop scheduling problem. An extension of the classical
approaches which consider the makespan objective is the extension of the problem to other
objective functions. A criterion is said to be regular if earlier completion dates of operations
do not deteriorate the objective function value. Mati et al. (2011) propose an algorithm for
regular criteria that utilizes an efficient method to evaluate moves.

Flexible Job-Shop Scheduling The flexible job-shop scheduling problem was first studied
by Brucker and Schlie (1990). Brucker and Neyer (1998) reference to this as the multi-
purpose-machine job-shop problem. An extensive study including lower bounds for several
test instances is given in Jurisch (1992). Brandimarte (1993) as well as Hurink et al. (1994)
present a tabu search method for the problem. A disjunctive graph model that allows the re-
assignment and resequencing of operations in an integrated way was introduced in Dauzère-
Pérès and Paulli (1997). Mastrolilli and Gambardella (2000) improved results using a com-
parable tabu search approach. Chen et al. (1999) propose a genetic algorithm. Gao et al.
(2008) propose a hybrid genetic algorithm. Yazdani et al. (2010) schedule flexible job-shops
using a parallel variable neighborhood search algorithm. Recently, the problem was success-
fully tackled using constraint programming based approaches by Pacino and Van Hentenryck
(2011) and Schutt et al. (2013). A summary of experimental results for the flexible job-shop
scheduling problem is given in Behnke and Geiger (2012). Sobeyko and Mönch (2016) pro-
pose a heuristic to solve flexible job-shop scheduling problems with total weighted tardiness
objective. García-León et al. (2015) propose a heuristic method that avoids the runtime cost
of performing a move by evaluating its effects on the objective function without actually
performing the move.

1.4.1 Complex Job-Shop Scheduling with Batching Machines

The surveys of Brucker et al. (1998) and Potts and Kovalyov (2000) provide an overview
of scheduling problems that include batching machines. The term batching is used in the
context of parallel processing (p-batching) and in that of sequential processing (s-batching).
The term p-batching refers to the capability of machines to process more than one job at the
same time. The term s-batching refers to the presence of sequence-dependent setup times.
There, a batch is a series of sequentially processed operations with no (or small) setup dura-

16 Chapter 1: Introduction and Industrial Context

tions in between. Potts and Kovalyov (2000) discuss publications dealing with two-machine
scheduling problems in a flow-shop or open-shop environment, but batching machines within
a job-shop environment are not mentioned. Most of the approaches discussed in their review
consider single-machine scheduling problems. A literature review on scheduling problems
with batching in the context of semiconductor manufacturing is given in Mathirajan and
Sivakumar (2006). They classify literature depending on the problem configuration and the
used scheduling methodology.

We observe that the scheduling of parallel batching machines and variants of the job-shop
scheduling problem are well-studied problems whereas their combination is rarely consid-
ered. In practice, often dispatching rules are used. Glassey and Weng (1991) and Gurnani
et al. (1992) study dispatching rules designed for batching machines. Cigolini et al. (2002)
propose and study a dynamic look-ahead rule for batching machines in a setting with reen-
trant flows. An extensive overview of dispatching rules is provided in Mönch et al. (2003).

Starting with the work of Ovacik and Uzsoy (1997), several approaches for complex
job-shop scheduling problems are based on the shifting bottleneck heuristic of Adams et al.
(1988). For this setting, Ovacik and Uzsoy (1997) introduce a batch-aware disjunctive graph
representation that represents batches using dedicated nodes. Mason and Oey (2003) pro-
pose a cycle elimination procedure that increases the number of feasible schedules that are
found. This approach shows that the avoidance of cycles is an important complicacy in the
batch-aware disjunctive graph representation. This representation was also used in Mason
et al. (2005) and Mönch and Rose (2004), where the authors show that a modified shift-
ing bottleneck heuristic outperforms classical dispatching rules. A distributed version of the
shifting bottleneck heuristic is presented in Mönch and Drießel (2005). Similar approaches
are proposed in Upasani et al. (2006) and Sourirajan and Uzsoy (2007). Results were im-
proved in Mönch et al. (2007) by using a genetic algorithm in the subproblem solution pro-
cedure. Another approach is presented in Yugma et al. (2012) which relies on batch specific
moves, e.g. moving one batch or swapping operations from different batches. Again, batches
are represented using dedicated nodes. They optimize three different objectives related to
throughput, machine utilization and waiting time. An initial solution is constructed using
iterative sampling and improved by a simulated annealing metaheuristic. In distinction to
these approaches, we will see in chapter 3 that our approach uses a less complex disjunctive
graph model and a more holistic integration of batching decisions. A mixed integer linear
programming (MILP) formulation for complex job-shops with total weighted tardiness ob-
jective is given in Mason et al. (2005). Bilyk et al. (2014) propose an improved method to
solve parallel-machine scheduling problems which appear as subproblems of shifting bot-
tleneck based approaches. A sequential decomposition approach for complex job-shops is
presented in Guo et al. (2012) who apply an ant colony optimization heuristic. Two-machine
scheduling problems with batching in a permutation flow-shop environment are considered
by Skorin-Kapov and Vakharia (1993), Vakharia and Chang (1990), Sotskov et al. (1996),
Danneberg et al. (1999), or Tan et al. (2014). Though also considering multiple operations
per job, this problem is less general than the complex job-shop scheduling problem consid-
ered in this work.

1.4 Related Work 17

In contrast to the job-shop setting, in single and parallel machine scheduling problems,
there is no route for the job and only individual operations are scheduled. Mönch et al.
(2005) introduce a method that uses dispatching heuristics in combination with a genetic
algorithm. The used dispatching rules are based on the BATC (Batch Apparent Tardiness
Cost) rule. They analyze two variants: Either they determine batches first, or they determine
assignments to machines first. The results for such parallel machine scheduling problems
with batching were improved by a memetic algorithm of Chiang et al. (2010). Almeder and
Mönch (2011) present and compare different meta-heuristics for a scheduling problem with
batching and parallel machines. In contrast to the previous approach, they do not consider
release dates. An ant colony optimization method is introduced and a variable neighbor-
hood search heuristic is compared with a genetic algorithm similar to the one introduced in
Balasubramanian et al. (2004). The variable neighborhood search clearly outperforms the
other approaches in this setting. Kashan et al. (2008) consider a parallel batching machine
scheduling problem with makespan objective. They propose to start with a random solu-
tion that is made feasible by grouping long jobs. Such schedules are then used as the initial
population for a genetic algorithm. They combine the genetic algorithm with two different
improvement methods. Scheduling in the diffusion and cleaning area of semiconductor man-
ufacturing with its particular constraints is also addressed by Yurtsever et al. (2009), Kim
et al. (2010) and Jung et al. (2013). However, they do not consider a job-shop environment.
Yurtsever et al. (2009) propose a MILP formulation and a heuristic algorithm. They provide
practical insights from the deployment of a scheduling solution in a real fab. Fowler et al.
(2002) discuss optimal batching in a wafer fabrication facility using a multiproduct model
with batch processing.

A number of publications study scheduling problems for single batching machines that
are motivated by semiconductor manufacturing. Mehta and Uzsoy (1998) present a dynamic
programming algorithm and a heuristic approach. Wang and Uzsoy (2002) consider a single
batch machine and suggest a dynamic programming algorithm that determines exact solu-
tions of the minimum makespan problem for a fixed sequence of jobs. A heuristic dynamic
programming algorithm to minimize maximum lateness is proposed as well. This is then
used to initialize a genetic algorithm with a random number based crossover operator. Fi-
nally, they optimize maximum lateness using binary search. Perez et al. (2005) decom-
pose the problem into independent batch formation and sequencing problems that are solved
heuristically. Sobeyko and Mönch (2011) compare heuristics to solve scheduling problems
for a single batch machine with unequal ready times of the jobs. Dauzère-Pérès and Mönch
(2013) schedule jobs on a single batch processing machine with incompatible job families to
minimize weighted number of tardy jobs.

For the back-end of semiconductor manufacturing, Lee et al. (1992) present algorithms
for single and parallel machine scheduling problems related to burn-in operations. For the
same application, Mathirajan et al. (2004) describe a simulated annealing algorithm with non-
identical job sizes. Also for burn-in ovens, Kempf et al. (1998) include secondary resource
constraints and propose a scheduling method to minimize makespan and total completion
time. They decompose the problem and form batches for each family independently. The

18 Chapter 1: Introduction and Industrial Context

best result out of four different heuristics is taken and a local search algorithm is used to
improve results. Chandra et al. (2008) use a tabu search approach for scheduling a burn-in
oven with non-identical job sizes and secondary resource constraints.

A real-world problem from the chemical industry which includes batching is tackled by
Brucker and Hurink (2000). They propose a general-shop modeling that includes minimum
time lags and present a tabu search metaheuristic approach. Kovalyov et al. (2004) discuss
two-stage assembly scheduling problems with batching. They show properties of optimal
schedules with batch availability and develop a polynomial heuristic algorithm.

The presence of sequence-dependent setup times is an important characteristic in com-
plex job-shop scheduling problems. There are several works on job-shop scheduling prob-
lems that consider sequence-dependent setups without including batching machines. Ovacik
and Uzsoy (1994) present a heuristic for a problem stemming from a semiconductor testing
facility. Balas et al. (2008) adapt the shifting bottleneck heuristic to solve a job-shop problem
with sequence-dependent setup times. Artigues and Feillet (2008) present an branch-and-
bound method for a job-shop problem with sequence-dependent setup times. The method
employs the solution of elementary shortest path problems with resource constraints solved
using dynamic programming. Oddi et al. (2009, 2011) tackle the problem using an iterative
sampling based approach. Good results for a lateness minimization problem were achieved
by a tabu search based approach in González et al. (2013). Shen (2014) propose a tabu search
algorithm for the job-shop problem with sequence-dependent setup times.

1.4.2 Routing and Resource Flexibility in Job-Shop Scheduling

As described in section 1.3, the machines in this work area imply complex behavior that
motivates a closer look at their internal components. Complex internal behavior creates a
relation to cluster tool scheduling problems and other approaches that consider properties of
machines in detail. Lee (2008) provides an overview of the literature on cluster tool schedul-
ing. A detailed description of furnace equipment is provided by Hasper et al. (1999). Kao
et al. (2012) consider furnace tool allocation. Mauer and Schelasin (1993) evaluate integrated
tool performance in semiconductor manufacturing by simulation. Kohn and Rose (2011) an-
alyze and generate process time models for cluster tools in semiconductor manufacturing.
The scheduling of a wet-etch station is considered in Geiger et al. (1997) and Ham (2012).

We aim at integrating the consideration of internal components within job-shop schedul-
ing. We are not aware of other approaches that do this for machines in a semiconductor
manufacturing facility. However, there are approaches that generalize job-shop scheduling in
similar ways. The closest approach to our model presented in chapter 4 that we are aware of is
that of Kis (2003). It describes processing alternatives as a directed graph. His approach con-
siders also nonlinear routes given as partial orderings of operations (called and-subgraphs),
which are not required in our case. Our approach is distinguished in particular from the one
of Kis by the consideration of resource acquisitions. A generalization of precedence con-
straints by Möhring et al. (2004) allows a job to depend on further jobs which can be chosen
from a set of alternatives. Beck and Fox (2000) present a modeling of alternative graphs

1.4 Related Work 19

using xor and xand nodes. Čapek et al. (2012) describe a scheduling problem with alterna-
tive process plans motivated by the production of wire harnesses. Hutchinson and Pflughoeft
(1994) consider general flexible process plans. Rossi et al. (2015) include routing and re-
source flexibility in a mixed-shop setting that combines flow-shop and open-shop problems.
Barták and Čepek (2008) consider nested precedence networks with alternatives. Golmakani
and Namazi (2012) describe an algorithm for a multiple-route job-shop scheduling problem.
Brucker and Thiele (1996) present a branch-and-bound method for a general-shop schedul-
ing problem. There, the assignment to machines is given and arbitrary precedence relations
can occur. Ho and Moodie (1996) solve a cell formation problem in a manufacturing envi-
ronment with flexible processing and routing capabilities. Ding et al. (2006) model specific
behavior of machine components by introducing event graphs.

The detailed modeling approaches which we will present in chapter 4 considers individual
components of machines as resources. This requires operations to demand multiple resources
at the same time. The multi-processor job-shop problem was introduced as an extension of
the flexible job-shop problem by Dauzère-Pérès et al. (1998). It is further generalized in
Dauzère-Pérès and Pavageau (2003) by occupying the resources of a specific operation for
varying periods of time. Brucker and Neyer (1998) present a tabu search algorithm for the
multi-mode job-shop problem. There, a set of machines sets is assigned to each operation.
For each operation, one of this set of sets has to be selected. Artigues and Roubellat (2000)
present an insertion algorithm for multi-resource scheduling. Bürgy (2014) present schedul-
ing approaches for complex job-shops with a focus on transportation which involves rails as
additional resource. Kis and Pesch (2005) review exact solution methods for non-preemptive
multiprocessor flow-shop problems.

1.4.3 Time Constraints in Complex Job-Shop Scheduling

The presence of time lags poses a substantial difficulty as shown by Wikum et al. (1994).
Time lags render an otherwise polynomial one-machine scheduling problem into an NP-
hard problem. Brucker et al. (1999) show the generality of such problems and propose
a branch-and-bound approach. An overview and classification of different maximum time
lag constraints that appear in semiconductor manufacturing is given in Klemmt and Mönch
(2012). They also provide a MILP based decomposition heuristic for a job-shop setting with-
out batching machines. The combination of non-adjacent maximum time lag constraints is
often denoted by the term queue time constraints.

Yurtsever et al. (2009) describe a custom heuristic which has been deployed in an indus-
trial setting and which includes maximum time lag constraints. Jung et al. (2013) consider
maximum time lags and their violations in the diffusion and cleaning area of a semiconductor
manufacturing facility. They propose to use a MILP based heuristic in a rolling horizon envi-
ronment. They limit each planning horizon by allowing only a certain number of operations
to be scheduled on each tool. Kohn et al. (2013) present a parallel batch machine schedul-
ing problem that includes maximum time lag constraints. They propose to use a VNS based
approach for a parallel batch machine scheduling problem in combination with simulation.

20 Chapter 1: Introduction and Industrial Context

They study the correlation between different key performance indicators and discuss the in-
corporation of a minimum batch size constraint. Maximum time lags (denoted time bounds

in that work) are considered as primary objectives in a lexicographical objective function.
Scholl and Domaschke (2000) describe a simulation based approach that includes maximum
time lag constraints. All approaches discussed before do not consider a job-shop setting
and therefore can consider in their optimization methods only maximum time lag constraints
that have already started. Yugma et al. (2012) present an approach for scheduling complex
job-shops that considers maximum time lags between adjacent operations.

Cho et al. (2014) consider queue time constraints in the context of wafer fabrication using
a higher abstraction level. They use gate-keeping decisions to specify whether the processing
of an operation that initiates a maximum time lag can start. Sadeghi et al. (2015) (a) develop
an approach to support the same type of decisions by estimating the probability of a job to
satisfy its maximum time lag constraints. Sadeghi et al. (2015) (b) propose a simulation-
based approach to control jobs that are within maximum time lag constraints. The goal of
these two papers is not to determine optimized schedules but rather to control jobs in rule-
based dispatching systems.

Only few works consider maximum time lags within job-shop scheduling problems. La-
comme et al. (2012) consider maximum time lags between arbitrary operations and propose
a randomized heuristic which extends an approach of Deppner and Portmann (2006). Other
approaches consider maximum time lags only between adjacent operations, e.g. González
et al. (2015) present a scatter search approach which applies tabu search and path relinking
to tackle a job-shop scheduling problem with time lags and sequence-dependent setup times.
Artigues et al. (2011) present a heuristic approach using an insertion heuristic and resource
constraint propagation. Grimes and Hebrard (2015) include time lags in a generic constraint
programming based approach. Caumond et al. (2008) propose a memetic algorithm.

Botta-Genoulaz (2000) considers maximum time lags within a flow-shop scheduling
problem. Fondrevelle et al. (2006) consider time lags between successive operations in per-
mutation flow shops. Dhouib et al. (2013) propose a mathematical programming formulation
and a simulated annealing heuristic approach for a permutation flow-shop scheduling prob-
lem with sequence-dependent setup times and maximum time lag constraints. Bartusch et al.
(1988), Dorndorf et al. (2000), Nonobe and Ibaraki (2006) and Schwindt and Trautmann
(2000) consider maximum time lags in the context of resource constraint project schedul-
ing. Hurink and Keuchel (2001) consider maximum time lags in single-machine scheduling.
Raaymakers and Hoogeveen (2000) study no-wait constraints. Rossi et al. (2002) consider
soft time constraints in a more general setting. Zhang and van de Velde (2010) consider an
online open-shop problem with time lags.

1.5 Overview and Main Contributions 21

1.5 Overview and Main Contributions

We present an overview of the structure of this work and highlight the main contributions of
the individual chapters:

Chapter 2, Industrial Problem Specification

This chapter provides a detailed specification of the diffusion and cleaning work area at
the interface between engineers from a fab and combinatorial optimization researchers.
It is based on information obtained from the engineers of two real-world fabs. The first
goal is to provide a clear, textual, in-depth description verified by fab engineers. The
second goal is to provide a comprehensive description which allows formal models for
optimization methods to be developed.

Chapter 3, Complex Job-Shop Scheduling: A Batch-Oblivious Approach

This chapter considers complex job-shop scheduling problems which include the main
characteristics of the diffusion and cleaning work area: The integration of batching
machines within a job-shop environment. Our main contribution is a novel batch-
oblivious disjunctive graph representation which uses edge weights to represent batch-
ing decisions. This representation facilitates the modification of batching decisions
and allows the development of an original “on the fly” batching algorithm. Comple-
mented by a known move for integrated resequencing and reassignment of operations,
we obtain an integrated neighborhood which is applied within a parallel GRASP based
meta-heuristic approach.

Chapter 4, Extended Route and Resource Flexibility in Job-Shop Scheduling

We increase the detail of our model for the diffusion and cleaning area by including
internal components of machines. The combination within a job-shop setting leads to
a job-shop scheduling model with extended resource and routing flexibility. A main
contribution is the inclusion of resource acquisition constraints which help to model
the exclusive acquisition of a resource between two operations of the same job. This
modeling offers an additional generality that e.g. allows to solve scheduling problems
with auxiliary resources from the photolithography area.

Chapter 5, Time Constraints in Complex Job-Shop Scheduling

Temporal constraints that limit the maximum time between given pairs of operations
are taken into account in this chapter. We consider maximum time lag constraints
as soft constraints and include the severity of their violations lexicographically in the
objective function. The main contribution is the combination of time lags within a
complex job-shop scheduling problem.

Chapter 2

Industrial Problem Specification

O ptimization methods that are useful in

practice require a thorough understanding

of the real-world problem to be solved. An ac-

curate textual specification helps to find and un-

derstand reasonable abstractions needed in for-

mal models, and it can be easily verified by do-

main experts.

Image source: Flickr, Rob Bulmahn

http://www.flickr.com/photos/rbulmahn/ (CC License)

24 Chapter 2: Industrial Problem Specification

This chapter provides a detailed specification of the diffusion and cleaning work area
at the interface between fab engineers and combinatorial optimization researchers. It was
written in the context of the European project ENIAC INTEGRATE based on information
from engineers of two real-world fabs and following numerous meetings and discussions.
The specification was written by the author of this thesis and verified in an iterative proof
reading process by fab engineers. The first goal of this chapter is to provide a comprehensive,
textual, in-depth description of all equipment and constraints that should be observed by an
automatic scheduling algorithm. Potential restrictions due to limitations of known or future
scheduling algorithms are not in the scope of this specification. The second goal of this
chapter is to provide a foundation to develop formal models for scheduling in this work area.

Section 2.1 describes the general properties of the shop floor in the diffusion and clean-
ing area without considering machine types in detail. This is done in section 2.2, where
different types of machines are described and their behavior is modeled in detail. Section 2.3
describes the objectives that should be optimized when calculating schedules for this work
area. Later chapters in this thesis provide formal models and solution methods for the most
crucial aspects specified here.

2.1 Basic Model

The basic entity we consider in this specification is a lot: This is a set of wafers that need to be
processed together. A wafer is a thin slice of semiconductor material that needs to undergo
hundreds of processing steps during its manufacturing process. We are given a set of lots
that need to be scheduled. For each lot, its number of contained wafers is given (up to 25).
Depending on the fab, each lot is contained in a FOUP (Front Opening Unified Pod used in
300 mm fabs or modern 200 mm fabs) or a cassette (used in 200 mm fabs). We model this by
using the term container to denotes a storage for one or more lots. A container may store lots
for different products or customer orders (see multiple items per job, Mönch et al. (2011)).
We assume the assignment of lots to containers to be given in advance. This assignment is
fixed and not subject of our optimization efforts.

A given sequence of processing steps has to be performed for each lot that is processed in
this work area. In the literature, a step is called an operation. In this chapter, we use the term
step instead since, within STMicroelectronics, the term operation is used with a different
meaning. The order of steps is fixed and this sequence is called the route of the lot. Each step
has to be performed by a machine that needs to be selected from a given set. We denote the
execution of a step also as processing of a lot. Each lot can be processed by only one machine
at a time. Once a process is started, it cannot be interrupted (preemption is not allowed). For
each step, a recipe is given that specifies properties of its processing. Different steps can
share the same recipe. A step can be processed only on machines that are qualified for its
recipe. For each machine, we are given a list of qualifications. A qualification defines that a
specific machine is able to process a specific recipe and it provides corresponding processing
parameters. We call a machine qualified for a step if it has a suitable qualification.

2.1 Basic Model 25

Some machines can process multiple lots at the same time. A set of lots that is simul-
taneously processed on the same machine is called a batch. To obtain a consistent notation,
we define the term batch for all kinds of machines—even if they are incapable of batching.
We cannot combine arbitrary lots in a batch. To specify feasible batches, we are given a
family for each qualification. We call two qualifications compatible if they refer to the same
machine and have identical families. Only steps that are processed with compatible qualifica-
tions can be combined in a batch. We are given machine capacities that restrict the number of
containers and the number of wafers that can be processed within the same batch. Capacities
depend on the qualification (recipe and machine) used to process the batch. They specify a
maximum number of containers and a maximum number of wafers. Analogously, we can be
given a minimum batch size that specifies the minimum number of wafers in a batch.

Machines process lots enclosed in containers. However, within one processing step, they
do not necessarily process all lots of one container; some could be processed while others are
waiting. Note that lots within the same container could require different recipes. This could
prohibit to process the lots of a container together.

2.1.1 Time constraints

We represent each point in time as a natural number corresponding to seconds. For each step,
its processing duration is determined by the qualification corresponding to the machine that
is selected to process the step. Before or after processing, machine dependent processes such
as loading, unloading, or cooling may take place. Section 2.2 details those processes and
their durations for each machine type.

Containers of lots need to be transported between machines. So, we have to consider the
time needed for material handling and transportation. To model this, we prescribe a transport

duration between consecutive steps. This duration specifies for all lots the minimum duration
between the end of unloading of a machine until the beginning of loading on the succeeding
machine. It is dependent on the distances between machines and therefore given for all
unordered pairs of distinct machines. We also have to consider the time to prepare a machine
for a different recipe. This changeover duration imposes sequence-dependent setup times.
Note that they are relevant only for some machines. For each affected machine, a setup
duration is given for each pair of qualifications. It defines a minimum duration between the
end of processing of a step and the beginning of processing of the following step on the same
machine.

Physical and chemical processes may set up time constraints between different steps. For
example, the time between some steps must be limited to avoid contamination and oxidation.
So, we can be given maximum time lag constraints for all unordered pairs of distinct steps
of each lot. Such a constraint specifies the maximum period of time between the beginning
(or end) of processing of a step until the beginning (or end) of processing of the following
step in the route of the lot. Analogously, minimum time lag constraints are given to constrain
the minimum period of time between steps. Those constraints relate to the actual processing
of lots on the machine, not to loading, unloading or other auxiliary activities. Figure 2.1

26 Chapter 2: Industrial Problem Specification

Time

lo
a
d
in

g 1

p
ro

ce
ss

in
g 1

co
o
li

n
g 1

u
n
lo

a
d
in

g 1

lo
a
d
in

g 2

p
ro

ce
ss

in
g 2

co
o
li

n
g 2

u
n
lo

a
d
in

g 2

≥ transport duration

≥ minimum time lag

≤ maximum time lag

Figure 2.1 – Time constraints for two consecutive steps of a lot

illustrates an example for time constraints between two consecutive steps. Maximum time
lag constraints can be chained in the sense that there can be steps where one maximum time
lag constraint ends and another one starts. For resulting schedules, we always require that
both constraints are observed. As a consequence, in some cases, starting the first step of the
earlier constraint must be delayed because the later constraint can otherwise not be fulfilled.

Machines sometimes must be shut down for maintenance, repair or other work. Such
planned down times are provided by given machine availability periods for each machine.
Outside of these time windows, machines neither can perform processing steps nor can they
be loaded or unloaded.

2.1.2 Control Runs

The quality of the manufacturing process must be permanently monitored. For this purpose,
control runs are conducted: Specific monitoring containers are added within the course of
manufacturing. They contain monitoring wafers that are used to measure the state of produc-
tion quality and to detect defects in machines or wafers. We need to consider control runs
only for specific types of machines where they take up room regarding the limited machine
capacity.

Each control run needs to include an additional control run container. Thus, regarding
the limited machine capacity, the execution of a control run reduces the number of payload
containers that can be processed at the same time. Note that control runs cannot be affected
without production containers. Consequently, we require that the container capacity is at least
two for all machines that conduct control runs. To guarantee a certain amount of executed
control runs, we introduce the term control run quantity. It specifies the maximum number
of consecutive processing steps without a control run. Control run quantities are given per
machine (defectivity) and per qualification (thickness).

2.1 Basic Model 27

2.1.3 Moves and Priorities

In order to count the number of performed processing steps, we introduce the term move.
This is defined as the processing of a single wafer on a machine. The number of moves of

a batch is the number of wafers contained in that batch. To be able to prefer specific lots,
we introduce a priority for lots. This is a positive natural number that is given for each lot.
Larger priority values indicate a greater importance. They can be used to prioritize lots over
each other. For example, some manufactured wafers may have a larger business value than
others.

We want to measure productivity while taking priorities into account. So, analogously
to the term move, we define the term weighted move. One weighted move is defined as the
processing of a lot with priority one that contains exactly one wafer. The number of weighted

moves of a batch is defined as follows:

(#weighted moves of Batch B) =
∑

(Lots L in B)

(priority of L) · (#wafers of L) .

Recall that wafer fabrication is a reentrant process: Each lot visits a work area multiple
times. As mentioned in the discussion of order release decisions in section 1.2, in order
to globally manage the flow of production in the whole fab, individual work areas must
balance their number of moves depending on the production stages of their lots in progress.
Therefore, a production target constraint is introduced in the following. Each step of each
lot belongs to a production target group. For each production target group, we are given
a production target constraint. It prescribes that the number of moves belonging to this
production target group must stay between given minimum and maximum numbers during
the considered planning horizon.

2.1.4 Interlacing Constraints

Certainly, we restrict our scope of optimization to a limited area and time period. In this
section, we describe constraints that interlace the current scope with adjacent scopes. Those
include past and future issues of this and other areas of the fab. We restrict our scope to
a fixed period of time (e.g. 24 hours) that is called planning horizon. The system to be
developed needs to make scheduling decision for this planning horizon.

Now, we regard the state of the diffusion area at the beginning of our planning horizon.
There, machines can be occupied with in-process lots. These machines are not available
until their respective in-process lots are finished and unloaded. Additionally, initial states for
all machines and its relevant components must be given for the beginning of the planning
horizon.

Consider that in-process lots may have triggered maximum time lag constraints before the
current planning horizon. As well, a maximum time lag constraint might have been triggered
before in a different area of the fab. Both are modeled as a step due date that prescribes the
completion time for a step of a lot. It can be given independently for all steps of each lot. In

28 Chapter 2: Industrial Problem Specification

contrast to the maximum time lag constraint that defines relative time periods, it prescribes
absolute points in time.

Containers that need to be processed in the diffusion area arrive from other areas of the
fab. Not all of them are immediately available. So, for each container, an initiation date is
given that specifies its arrival date in the diffusion area. The initiation date can reflect known
arrival dates of containers in the past or projected future arrival dates. The ready date of
a container specifies the earliest point in time the container can be scheduled. It takes the
beginning of the planning horizon into account. Processing of the contained lots (including
loading wafers to machines) cannot begin earlier than this point in time.

We do not want to set up time constraints for future planning periods that will not be
satisfiable. To avoid this, we must take care of the maximum time lag constraint. If we
schedule only some but not all steps of a lot, the remaining steps have to be scheduled in a
future planning horizon. However, this partial scheduling may trigger time constraints that
become step due dates in the next planning horizon. So, we want to ensure it remains possible
to schedule them later. Due to this, we define a lot completeness constraint. This prescribes
that it is not allowed to schedule only a portion of the steps of a lot. For each lot, all of its
steps have to be scheduled.

2.2 Machine Types

In the following section, the modeling of different machine types is explained. We distin-
guish between five types of machines: Serial single-wafer machines, parallel single-wafer

machines, batch machines with a unique chamber, furnaces, and wet bench machines. Be-
side the qualification dependent processing duration, other activities may be of importance.
They depend on the machine characteristics described in the following.

2.2.1 Serial Single-Wafer Machines

A serial single-wafer machine sequentially processes wafers one after another. We observe an
overlap between the processing periods of consecutive wafers: The processing of the current
wafer can start before the preceding wafer is completed. This overlap is quantified by a
minimum duration ∆ between the start dates of two consecutive wafers. Moreover, we are
given the processing duration p of a single wafer. Both durations are given per qualification.
Together, the processing duration of a lot A is given by

pA + ∆A · (#wafersA − 1).

Analogously, an overlap is possible between wafers of different consecutive lots. In the
following, we describe the computation of the start date of a lot B that directly follows a lot
A on the same serial single-wafer machine. For simplicity, we assume the tool and both lots
to be immediately available. We denote the completion time of lot A as CA. We denote the

2.2 Machine Types 29

Lot A

pA ∆A · (#wafersA − 1)

∆A · (#wafersA − 1)

S A: start
first wafer of A

start final
wafer of A

completion first
wafer of A

CA: completion
final wafer of A

max(E,∆A)

CA − pA

Lot B

∆B · #wafersB

completion first
wafer of B

CB: completion final
wafer of B

∆B

pB

CA + ∆B − pB

Time

Figure 2.2 – Overlapping behavior for two subsequent lots on a serial single-wafer machine

sequence-dependent setup time between the lots as E. Then, the processing of lot B can start
at the time

CA +max(max(∆A, E) − pA,∆B − pB).

Figure 2.2 illustrates the computation of start times with an example that includes two con-
secutive lots. Note that the processing duration already contains the time needed for loading
and unloading. So, we do not need to additionally take loading durations into account. We
can neglect control runs for serial single-wafer machines since they do not affect any relevant
parameters of our schedules. As well, capacities are not relevant for single-wafer machines.
Load ports of serial single-wafer machines are not included in the model since we assume
that they are not a critical resource. Note that in the literature (see Lee (2008); Lee and Lee
(2010)), such serial single-wafer tools are also called pipeline tools, which emphasizes that
operations can overlap.

2.2.2 Parallel Single-Wafer Machines

A parallel single-wafer machine behaves almost like a set of identical serial single-wafer
machines. This set is given as a number of parallel processing steps for each parallel single-
wafer machine. However, those parallel processing components are not entirely independent.
They are linked by a mutual family exclusion constraint: Two lots cannot be processed at the
same time on a parallel single-wafer machine if they are compatible (their qualifications
share the same family). Note that the loading robot of parallel single-wafer machines is not
considered in the model since we do not assume it to be a critical resource.

30 Chapter 2: Industrial Problem Specification

1

2

3

4

loadload11 processprocess1 unloadunload1

loadload22adadad processprocess2 unloadunload22adad

load3 process3 unload3

loadload44adadad processprocess4 unloadunload44adad

Time

Figure 2.3 – Four consecutive batches on a batch machine with a unique chamber

2.2.3 Batch Machines with a Unique Chamber

A batch machine with a unique chamber consists of a chamber for processing and several
load ports. It can process wafers from multiple lots commonly within one batch. The maxi-
mum number of wafers per batch is usually fixed to 50 and the maximum number of contain-
ers per batch is two. A number of load ports is given for each batch machine with a unique
chamber. Load ports can be occasionally unavailable: We are given load port availability

periods for each load port.

For each qualification, we are given a batch processing duration that is independent of
the number of involved wafers and containers. Before processing, wafers must be loaded;
after processing, they must be unloaded. So, for each batch machine with a unique chamber,
we are given a loading duration and an unloading duration that describe durations per batch.
As well, these durations are independent of the number of wafers and containers in the batch.
Note that loading and unloading are crucial since their durations do not differ much from
actual processing durations. Batch machines with a unique chamber do not take sequence-
dependent setup times into account.

Each container involved in the processing of a batch occupies a load port from the be-
ginning of loading until the end of unloading. Since the number of containers per batch is
limited to two, either one or two load ports are occupied during that period of time. Load-
ing, unloading, and processing can only take place if the number of available load ports is
sufficient. All load ports have the same properties and are indistinguishable. We can neglect
control runs for batch machines with a unique chamber.

The chamber is occupied during the actual processing of a batch, but not during loading
and unloading. Only one batch at a time can be processed in the chamber and processing
cannot be interrupted. Figure 2.3 provides an example that illustrates the usage of such a
machine. In this example, batches 2 and 3 cannot start processing before the chamber is
available. Batch 4 cannot load wafers as long as load port 3 is occupied.

2.2 Machine Types 31

2.2.4 Furnaces

A furnace can process a set of containers in parallel within a batch. To obtain a realistic
model, we need to consider internal properties of furnaces. They consist of tubes, boats and
a robot. A tube is the place where processes are conducted. A boat is a moveable carrier for
wafers and necessary to run a process inside a tube. Boats are also utilized to load, unload and
cool wafers. The robot is needed to load and unload containers. Essentially, a boat is used
as follows: first, wafers are loaded from its containers to the boat using the robot. Then, the
boat is moved into the tube where the process is conducted. Afterwards, the boat is removed
from the tube and has to cool down before its wafers can be unloaded using the robot. It can
happen that the boat has to wait in case the tube or the robot is occupied. All wafers that are
part of the same batch stay together from the beginning of loading until the end of unloading.
In the fabs we consider, there exist two types of furnaces. The simpler one consists of one
tube and one boat. The more complex one consists of two tubes and four boats (two assigned
to each tube). For both types of furnaces, we need to observe synchronization constraints.
We describe them for the complex case first and continue with the simpler one.

For technical reasons, within each tube there must always be a process running. If there
is no process conducted on wafers, a so-called standby process has to be performed instead.
This standby process requires an empty boat. This means: If there is no boat performing a
production process, then one boat must perform the standby process. As for real processes,
the boat needs to cool down after the standby process. When one boat leaves the tube, another
one has to enter the tube. This is called boat swap. Robots and tubes can be used by only one
boat at the same time. A boat corresponds to a specific tube and cannot use the other tube.

We subsume these requirements as boat synchronization constraints. The described be-
havior of boats can be modeled as a state machine as given in Figure 2.4. It describes the
interplay between the states swap in

�
(si�), standby

�
, swap out

�
(so�), cooling

�
, waiting

�
,

loading
�
, unloading

�
, swap in

�
(si�), processing

�
, swap out

�
(so�), cooling

�
, waiting1

�
and

waiting2
�
. The following visualization scheme is used in this and later figures: A darker

(lighter) background color and straight (dotted) lines indicate the boat is (not) loaded. Sharp
(round) edges indicate that the tube is (not) used by this boat. For each boat its own state
is maintained. Examples are given in Figures 2.5 - 2.7. Figure 2.5 shows a case where
both boats are used in an alternating way. Both of them are qualified for the wafers to be
processed. In Figure 2.6, boat 2 does not process any wafer (e.g., because there are no lots
boat 2 is qualified for). Therefore, it performs a standby process while boat 1 is preparing
the next processing step. In Figure 2.7, there is no batch loaded on boat 2 when boat 1 fin-
ishes processing. So, boat 2 has to do the standby process. Then, wafers arrive that can be
processed only with boat 2. Next, boat 1 runs the standby process while boat 2 can prepare
processing.

The preceding paragraph considered the case of two boats per tube. We now adapt the
previous constraints for the case that only a single boat is available. In this situation, we
relax the constraint that requires the tube to be used all the time. Instead, we want the
single available boat to use the tube as much as possible. So, we do not allow it to be in

32 Chapter 2: Industrial Problem Specification

swap out
�

cooling
�

loading
�

swap in
�

standby
�

waiting
�

processing
�

swap in
�

unloading
�

cooling
�

swap out
�

waiting1
�

waiting2
�

Figure 2.4 – A state diagram describing boat behavior

the state waiting
�
. Hence, after being in the state unloading

�
, it must either proceed to

swap in
�

or loading
�
. In the example shown in Figure 2.8, only a single boat is available.

After it is unloaded, further containers are ready to be processed. So, the boat can load them
immediately to continue processing. In the example shown in Figure 2.9, there also is only
a single boat available. After it is unloaded, no containers are ready to be processed. So, the
boat starts to perform the standby process.

We stated previously that qualifications are given for each machine. However, for ma-
chines with multiple boats, we need a more detailed modeling. In such cases, qualifications
are given for each boat separately. So, one boat could be qualified for a certain recipe while
a different boat of the same machine is not. The processing duration of a batch is given by
the qualification of the used boat. It is independent of the number of wafers and containers
to be processed. Some recipes prescribe the tube to stay empty for some time to cool down
before the process starts. We assume that it is sufficient to model this by including this idle
time as increased processing duration. A cooling duration is given per boat. It specifies the
time needed for cooling after standby or production processes. A minimum standby duration

is given for each boat and prescribes standby processes to take at least the given period of
time. Also, the loading duration and the unloading duration are given per boat and are in-
dependent of the number of involved wafers and containers. A boat swap duration specifies
the duration of a boat swap and is given per tube.

Boats as parts of furnaces have availability periods, too. These boat availability periods
are given for each boat separately. So, one boat of a machine can be available while the other
is not. In this case, the synchronization constraints for furnaces with a single boat apply. We
require the state of a boat to be always waiting

�
outside of its availability periods. We need

to consider control runs for furnaces. Since we may have two tubes and four boats in one
machine, control run counters are maintained per tube. Note that sequence-dependent setup
times are not relevant for furnaces.

Furnaces include internal buffers to store containers. For each furnace, a buffer capacity

specifies the number of containers that can be stored at the same time. Containers must be
stored in an internal buffer while their wafers pass through the furnace. For each furnace, we

2.2 Machine Types 33

processing
�

so� cool.� unloading
�

waiting
�

1

waiting
�

loading
�

si� processing
�

2

Time

Figure 2.5 – Both boats are used alternately

processing
�

so� cool.� unload.� loading
�

wait.1� si� processing
�

1

waiting
�

si� standby
�

so� cool.� waiting
�

2

Time

Figure 2.6 – One standby process needs to be performed

proc.
�

so� cool.� unload.� wait.� si� standby
�

so� cool.�1

waiting
�

si� standby
�

so� cool.� load.� wait.1� si� proc.
�

2

Time

Figure 2.7 – Two subsequent standby processes are necessary

processing
�

so� cool.� unload.� loading
�

si� processing
�

Time

Figure 2.8 – A single boat and immediate continuation of processing

processing
�

so� cool.� unload.� si� standby
�

Time

Figure 2.9 – Processing followed by standby for a single boat

34 Chapter 2: Industrial Problem Specification

max. number of
parallel batches = 3

load initial bath following baths unload1

load ini. bath following baths unload2

load ini. bath following baths unload3

following baths4 load initial bath4

Time
Figure 2.10 – Four consecutive batches on a wet bench machine

can constantly keep track of the current buffer usage as follows: Every time a container is
loaded, the current buffer usage is increased by one. Analogously, if a container is unloaded,
the current buffer usage is reduced by one. As long as the buffer capacity is sufficient, load-
ing and unloading durations are not affected. This may not always be the case: A buffer

exceedance penalty duration is applied if the buffer capacity is exceeded. It means that this
penalty duration is added to related loading and unloading durations.

2.2.5 Wet Bench Machines

Wet bench machines consist of several bath tanks in a row. Wafers are processed by travers-
ing a sequence of chemical baths in those tanks. Such machines are capable of batching, so
multiple wafers from different lots can be processed at the same time. Moreover, the presence
of multiple baths allows more than one batch to be processed at the same time. However, dif-
ferent batches cannot start at the same time; they are processed in a kind of pipeline. A new
batch can start processing after the preceding has left the initial bath tank. So, we are given
an initial bath duration that specifies the time spend in the first bath. For the overall duration,
we are given a processing duration which includes the time of the initial bath. Processing
cannot be interrupted during this period of time. Both durations depend on the recipe.

The number of batches that can be run at the same time on a wet bench machine is
limited: For each wet bench machine, we are given a maximum number of parallel batches.
We also need to take loading operations into account: For each wet bench machine, we
are given a loading duration and an unloading duration that describe durations per batch.
They are independent of the number of involved wafers and containers. Sequence-dependent
setup times are not relevant for this kind of machines. Figure 2.10 provides an example
for a sequence of four batches that are performed consecutively on a wet bench machine.
Batches 2 and 3 cannot start before the initial bath tank is available. Batch 4 cannot start
before the number of running batches is below three. We can neglect control runs for wet
bench machines. This modeling is slightly simplified since it ignores the overtaking of lots
that can happen in case the set of subsequently used bath tanks is different.

2.3 Objectives 35

2.3 Objectives

In the following, we describe the objectives to be optimized. Note that we can state them in-
dependently of any means used to improve them. This is an advantage of scheduling systems
over rule-based systems. An objective function is a mapping from the set Π of schedules for
the given problem to an ordered set. There is a plethora of possibilities to set up objective
functions. Hence, the scheduling system to be developed should offer a flexible way to ex-
change them. In the following, we describe different objectives and an initial approach to
combine them. For this multicriteria setting, we suggest a combination of a lexicographical
ordering and a linear combination.

2.3.1 Minimize Constraint Violations

Our first objective is to create a feasible schedule. This is not always possible since the given
constraints could be too restrictive. To be able to return a schedule in any case, we turn
some of the constraints into objectives. However, since constraints are not negotiable, we
treat them as objectives of highest importance. Those objective functions stemming from
constraints return zero in case their respective constraint are fulfilled. In case the constraints
are violated, the associated objective function returns a positive value which indicates the
severity of the constraint violation. Our goal is to minimize these functions. If all of them
are equal to zero, we have found a feasible schedule. So, in the overall objective function,
these violation related objective functions do not have any influence on the assessment of
feasible solutions.

In the following, we describe the constraints to be converted to objective functions such
that a schedule can be computed for any given input. For this, we replace the constraints for
maximum time lags, production targets and availability periods by the following objectives.
For each objective, we define its amount of violation in the following.

Total time lag violation (g1) Lots that have not yet started the processing of a time lag trig-
gering step can always be scheduled without maximum time lag violations because
the start of the constraint can still be delayed. However, ongoing maximum time lags
become fixed due dates for the final operation of the time lag. Since time lags might be
nested or chained, lots with due dates induced by time lags can imply other unstarted
time lags that might become unsatisfiable as a consequence. The scheduler has to deal
with the possibility of such time lag violations and we must define appropriate viola-
tion costs. We distinguish reworkable time lags from non-reworkable time lags. Lots
with violated reworkable time lags need to be reworked in case a time lag violation
occurs. This imposes a rework cost. Lots with violated non-reworkable time lags have
a defectivity risk that rises increasingly with the duration of the maximum time lag
violation. Once a non-reworkable lot is defect, it must be scrapped which induces a
scrap cost. We assume that scrapping is inevitable once a certain violation duration is
surpassed. Lots that must be reworked or scrapped remain unscheduled since we know
that processing them is pointless. Thus, for each maximum time lag, a violation cost k,

36 Chapter 2: Industrial Problem Specification

Time

Violation Cost

due date deadline

scrap cost

rework cost

Figure 2.11 – Time lag violation cost as a function of the completion date of a lot.

a maximum duration d (a relative due date) and an ultimate duration γ (a relative dead-
line) is given. The ultimate duration must be equal to or greater than the maximum
duration. For a completion time C of the considered operation, the violation severity
of the time lag is specified as

0 if C ≤ d

k if C > γ

k ·
(C−d)2

(γ−d)2 else

Figure 2.11 illustrates the violation cost as a function of the completion time of a
lot. Maximum and ultimate durations are denoted as due date and deadline, since
Figure 2.11 assumes that the time constraint has already started. For non-reworkable
lots, the ultimate duration is greater than the maximum duration. For reworkable lots,
the time lag maximum and ultimate durations are equal. We want to minimize the sum
of all time lag violations over the maximum time lags of all scheduled steps.

Total production target gap (g2) We want to minimize the sum of the production target
gaps over all production target groups defined in section 2.1.3. A production target
gap for a production group is the difference between the scheduled and the minimum
number of moves for this production group in the planning horizon. The gap is zero in
case a sufficient number of moves is performed.

Amount of availability period violations (g3) We want to minimize the sum over the du-
rations of all periods during which operations are scheduled outside of availability
periods.

2.3 Objectives 37

2.3.2 Objectives for Feasible Schedules

In the following, we specify objectives to be optimized for feasible schedules. The objectives
stem from experience of a preceding research project about scheduling in the diffusion area
(Yugma et al. (2012)). In addition to those, we include minimizing the number of control
runs as a new objective.

Weighted flow factor (h1) To specify the first objective, we introduce the theoretical route

duration of a lot. This determines the shortest possible manufacturing duration of a
lot. In order to define this, we choose the fastest machine for each step of the lot. The
fastest machine for a step is the one with the smallest sum of the durations for loading,
processing and unloading (plus boat switching and cooling durations if a furnace is
involved). This sum is what we call the minimum duration of a step. The theoretical
route duration of a lot is the sum of the minimum durations of all steps of its route plus
the minimum time lags between them.

The actual route duration of a lot is the time between the initiation date of the lot and
the completion date of the lot (end of unloading after its final operation). The flow

factor of a lot is its actual route duration divided by its theoretical route duration. Now,
the weighted flow factor that we want to minimize is the weighted average of all flow
factors. This criterion is also known as x-factor. We only take lots into account that
are completed within the planning horizon. With L denoting the set of lots completed
within the planning horizon, the objective can be written as

1∑
l ∈ L (priority of l)

·
∑

l ∈ L

(priority of l) · (actual route duration of l)
(theoretical route duration of l)

.

Number of weighted moves (h2) Our next objective is to maximize the number of weighted

moves in the given planning horizon. The definition of this term was given in sec-
tion 2.1.3. This objective is related to the throughput of the working area.

Batching coefficient (h3) The batching coefficient is a performance indicator that describes
the capacity usage of the operations performed on batching machines. It is calculated
as the number of (unweighted) moves in the planning horizon divided by the sum of the
number of batches performed on each machine, times the maximum capacity of that
machine. The denominator is the number of wafers that would have been processed
in case all machines have been loaded for every batch to their respective maximum
capacities. With M denoting the set of machines and H denoting the planning horizon,
the objective can be written as

(#moves in H)∑

m ∈ M

(#batches performed on m in H) · (wafer capacity of m)
.

Note that this quotient is equal to one if all batches are filled up to their maximum wafer
capacity. We include the objective of maximizing the batching coefficient into our

38 Chapter 2: Industrial Problem Specification

objective function. This objective can be seen as a means to support the improvement
of other goals. This objective also avoids the cost that is associated to each machine
run.

Control runs (h4) Each time a control run is performed, a monitoring container is used.
Since such a usage induces a certain cost, we want to minimize the number of control

runs within the planning horizon as an additional objective.

2.3.3 Combination of Objectives

As stated before, our first goal is to compute a schedule that is feasible. For feasible sched-
ules, we want to optimize the objectives hi given in the previous section. In summary, we
distinguish two kinds of objectives: Objectives to minimize violations and objectives to im-
prove feasible schedules. This suggests to link the two kinds of constraints in a lexicographi-
cal way. Objectives of the same kind can be combined in a scalar way as proposed by Yugma
et al. (2012). Hence, we introduce parameters αi and β j to weight the presented objectives.
We define our combined objective function f as follows:

f : S → R2
, x �→

3∑

i=1

αi · gi(x),
4∑

j=1

β j · h j(x)

 .

Note that the different objectives functions are not comparable regarding their scale and
units. So the given parameters αi and β j do not only provide a weighting; they provide a
normalization as well. We discuss this issue in section 5.3.2 and tackle it by applying ideas
known from multicriteria optimization.

2.3.4 A Discussion of Flow Factor Definitions

We have seen a definition of objective functions that fits the needs of a particular fab. Regard-
ing the definition of flow factors, different definitions are possible that we want to discuss in
this section. First, note that there are different kinds of flow factors. The aggregated flow

factor for the overall schedule is our optimization objective and needs to be defined by com-
bining refined flow factors. Refined flow factors definitions can refer to an overall lot or
individual steps of a lot. Weighted flow factors take the priority of the lot into account.

In the following, we introduce some notation that will be needed in the discussion on
different options to define flow factors. Note that we neglect the priorities of lots in this
context. For each lot, we are given a sequence of processing steps o1, . . . , on. Assume that
the first k− 1 steps have already been processed. So, only the steps steps ok, . . . , on remain to
be processed and need to be scheduled. Let us denote the theoretical step duration of a step
i as pi. It is defined by the processing duration of a this step using the fastest qualified tool.
Then, the sum

∑n
i=1 pi of the theoretical durations of all steps of the lot defines the theoretical

route duration.

2.3 Objectives 39

As described in section 2.1.4, we are given an initiation date for each lot. This corre-
sponds to the earliest possible point in time where we could have started to process step ok.
Let us denote this point in time as step release date rk. Let us denote the current time as t.
So, operation ok cannot be scheduled before max(t, rk). Now, corresponding to rk, we as-
sume that past values ri with i < k are known. Next, we assume that the completion dates of
steps performed in the past are given as C1, . . . ,Ck−1. Then, assume that we have computed
a schedule that is to be evaluated. The schedule provides completion dates Ck, . . . ,Cn for
the remaining steps of the lot. Let us now compare different options for the definition of the
flow factor of a lot L. The basic flow factor definition for a single step is fi =

Ci−ri

pi
. This is a

common measure in semiconductor manufacturing and the values expected by fab managers
differ strongly depending on the considered tool group. It remains to define how the flow
factor of a lot can be computed from this in our scheduling context. We could use the sum of
step flow factors divided by the number of remaining steps (n + 1 − k):

f A
L =

1
n + 1 − k

·

n∑

i=k

Ci − ri

pi

We could use the flow factor definition specified in section 2.3.2. It uses the sum of the
theoretical durations of all steps to be scheduled but ignores steps performed in the past:

f S
L =

Cn − rk∑n
i=k pi

We could use a flow factor definition that does include steps performed in the past. In contrast
to f S

L
, we start at step 1 instead of step k:

f P
L =

Cn − r1∑n
i=1 pi

In order to understand the impact of these definitions, let us consider the examples pro-
vided in Figure 2.12. The figure shows different options to schedule the same lot and presents
its evaluations. Rectangles correspond to steps and the number in each rectangle gives the
theoretical step duration. Assume that the dotted steps already have been scheduled. Assume
that the gaps between operations originate from other parts of the schedule that are not shown
here. The evaluations of the different flow factor definitions are listed on the right-hand side.
Let us in the following point out some observations. We notice that the scheduling of short
steps can have a strong influence on f A

L and f S
L

(see Option 5). f A
L might consider a later lot

completion date to be better (Option 2 vs. Option 7) and therefore it is not a regular criterion.
f A
L cares about the distribution of waiting times (Option 2 vs. Option 3). We believe that the

definition f P
L is the preferable objective function since it promises a more stable behavior in

a rolling horizon setting. Preceding decisions have a smaller influence for the evaluation of
the following time horizon.

40 Chapter 2: Industrial Problem Specification

1 1.000 1.000 1.0001 4 1
4

2 2.500 1.176 1.1431 4 1
4

3 1.094 1.176 1.1431 4 1
4

4 1.000 1.000 1.0001 4 1
4

5 4.000 4.000 1.1431 4 1
4

6 1.000 1.000 1.1431 4 1
4

7 1.496 1.647 1.5241 4 1
4

8 1.000 1.000 1.5241 4 1
4

Time

f A
L

f S
L

f P
L

0 1 2 3 4 5 6 7 8

Figure 2.12 – Comparison of flow factor definitions for eight options to schedule the same lot

2.4 Conclusion

The specification presented in this chapter provides a comprehensive definition of a com-
plex optimization problem. Only few works in the literature focus on this work area while
considering substantial portions of the described constraints. Namely, we are only aware of
Yurtsever et al. (2009), Yugma et al. (2012), Jung et al. (2013) and Kohn et al. (2013) to
consider this specific work area in a comprehensive way. Among these approaches, only
Yugma et al. (2012) tackle it as a generalization of the complex job-shop scheduling problem
as defined in e.g. Mason et al. (2005). Due to the complexity and extent of the problem, we
concentrate in this thesis on the core parts of the given specification. Our goal is to cover
the basic properties in a way that facilitates the future integration of further constraints. In
this thesis, we have integrated all fundamental properties of the specification and we can
compute solutions that are applicable in practice. However, not all the details that were spec-
ified are covered in this thesis. Though a further increase in detail bears some potential, we
believe that the omitted constraints do not fundamentally change the structure of solutions.
Though this is a subjective statement, this point of view is supported by the prioritization
of our industrial partner. An outlook towards an inclusion of further properties is given in
chapter 6.

2.4 Conclusion 41

A problem as complex as ours needs to be broken down in manageable portions. Thus,
each chapter in this thesis focuses on a particular aspect. The thesis is organized in a bottom-
up manner, in the sense that each chapter extends the problem of its preceding chapter. The
presented approaches are designed to be combinable and the resulting implementation is a
single piece of software that comprises all methods presented in this thesis. The structure of
this thesis presented in section1.5 overviews the properties that are discussed in the individual
chapters.

Chapter 3

Complex Job-Shop Scheduling:

A Batch-Oblivious Approach

T he integration of batching machines within

a job-shop scheduling problem is the core

challenge of this thesis. An original batch-
oblivious approach is proposed which integrates

the computation of earliest start dates and the

creation of batches during the traversal of a con-

junctive graph.

Job A

Job B

Job C

0

1 2 3

4 5 6

7 8 9

∗

rA

p1,4 p2

p
3

rB p1,4 p5,8 p6

r
C

p7 p5,8

p 9p 7

p
2

p
6

p 9

0

p1,4

p 3

0

p5,8

44 Chapter 3: Complex Job-Shop Scheduling: A Batch-Oblivious Approach

This chapter tackles a fundamental version of the industrial scheduling problem specified
in chapter 2 and presents an approach that has been published in Knopp et al. (2015a) and
Knopp et al. (2015b). The considered industrial scheduling problem can be seen as a job-
shop scheduling problem that features a wide range of additional constraints and properties.
Since batching machines constitute the main characteristic of the problem, this chapter con-
centrates on scheduling batching machines within a job-shop environment. This, together
with some additional constraints, leads to a complex job-shop scheduling problem that can
be described as a flexible job-shop scheduling problem with p-batching, reentrant flows,
sequence-dependent setup times and release dates. As noted in section 1.4.1, the complex

job-shop scheduling problem has been considered in the literature before, in most cases also
in the context of semiconductor manufacturing. We optimize a regular mono-criterion ob-
jective function. Depending on the context, we consider the weighted flow factor as defined
in the industrial specification as well as other objectives from the scheduling literature such
as makespan, total weighted tardiness, or maximum lateness. A formal definition of the
problem is given in section 3.1.

The considered problem is NP-hard since it generalizes both the NP-hard classical job-
shop scheduling problem as well as the NP-hard single-machine scheduling problem with
total weighted tardiness objective (see Garey et al. (1976)). Recall that we want to solve
industrial instances with about 100 machines and hundreds of jobs, each job consisting of up
to ten operations. We develop a heuristic method since we want to solve large instances of
an NP-hard problem in reasonable CPU times. The scheduling of parallel batching machines
and variants of the job-shop scheduling problem are have already been studied whereas their
combination is rarely considered. Most existing solution approaches for complex job-shop
scheduling problems with batching machines rely on the disjunctive graph representation
of Ovacik and Uzsoy (1997). This representation introduces dedicated nodes to represent
batching decisions. We propose a novel batch-oblivious modeling which avoids additional
batching nodes. Instead, we encode batching decisions in the weights of edges to reduce the
structural complexity of the graph and to facilitate modifications. This modeling is explained
in detail in section 3.2.

In order to take advantage of the batch-oblivious representation, we then introduce a
novel integrated algorithm to compute start dates and to create batches. This representation
allows our integrated algorithm to take batching decisions “on the fly” during graph traversal.
This can be used to “fill up” underutilized batches by applying a combined resequencing and
reassignment strategy. In addition, an integrated batch-oblivious move is proposed to relocate
individual operations. The combination of the algorithm and the batch-oblivious move yields
a neighborhood that implicitly comprises specific moves known from the literature such as
the swapping of batches. This neighborhood also includes more moves generated by the
interplay of the algorithm and the integrated batch-oblivious move. These building blocks
for heuristic methods are detailed in section 3.3.

We apply the previously presented building blocks within a GRASP based approach (Feo
and Resende (1995)). We randomize the construction of initial solutions by successively

3.1 Formal Problem Description 45

inserting jobs using a randomly perturbed ordering of jobs. Solutions are improved using
a Simulated Annealing heuristic. This GRASP based metaheuristic approach is presented
in section 3.4. Computational experiments using a parallelized implementation yield very
good results for various types of instances and show the generality and applicability of our
approach. Numerical results are presented and discussed in section 3.5, where new public
industrial benchmark instances are proposed and known benchmark instances from the liter-
ature are used. The approach is designed to facilitate extensions towards further constraints,
in particular those given in the industrial problem specification. It is extended in the later
chapters of this thesis.

3.1 Formal Problem Description

This section provides a formal definition of the considered flexible job-shop scheduling prob-
lems with p-batching, reentrant flows, sequence-dependent setup times and release dates
(complex job-shop scheduling problem). We want to optimize regular objective functions
which are formally defined later in this section. Using the α|β|γ notation of Graham et al.
(1977), this class of scheduling problems can be denoted as FJc|r j, si, j, B, recr|reg. We con-
sider p-batching and its embedding in a job-shop environment to be the main characteristics
of the problem.

We are given a set of jobs J which have to be processed using a given set of machines M.
For each job j ∈ J, we are given a set of operations O j = {o1, j, o2, j, . . . , o|O j|, j}, and a re-

lease date r j ∈ Z. The disjoint union O = O1

.

∪ O2 . . .
.

∪ O|J| denotes all given operations.
We are given a set of batch families F and a set of setup families F̃. Each batch family
f ∈ F prescribes a machine m f ∈ M, a processing duration p f ∈ N0, a setup family σ f ∈ F̃,
and a batching capacity b f ∈ N>0. For each operation oi, j ∈ O, a set of eligible batch fami-
lies Fi, j ⊂ F with Fi, j � ∅ is given. A given mapping s : F̃ × F̃ → N0 prescribes sequence-

dependent setup times between operations that are scheduled on the same machine.

A schedule is completely characterized by selecting families fi, j ∈ Fi, j and start dates

S i, j ∈ Z for all given operations oi, j ∈ O. To avoid using fi, j as an index, we denote the
machines, processing durations, setup families, and batching capacities related to this selec-
tion as mi, j, pi, j, σi, j and bi, j, respectively. To describe a schedule that is feasible, selected
families fi, j and start dates S i, j of operations oi, j have to respect several constraints that are
detailed in the following. Preemption is not allowed: Once the processing of an operation
has begun, it cannot be interrupted. Thus, the completion time of an operation oi, j ∈ O j is
given by Ci, j = S i, j + pi, j. Operations belonging to the same job have to be performed in
the order given by the route of the job. So, Ci, j ≤ S i+1, j has to be fulfilled for all oi, j ∈ O

with i <
∣∣∣O j

∣∣∣. The first operation o1, j ∈ O j of each job cannot be processed before its release
date, so S 1, j ≥ r j must hold for all j ∈ J. Operations performed on the same machine must
not overlap. Hence, for two operations oi, j, ok,l ∈ O with mi, j = mk,l, either S i, j = S k,l or
S i, j ≥ Ck,l or Ci, j ≤ S k,l must hold. Only operations of the same family can be processed

46 Chapter 3: Complex Job-Shop Scheduling: A Batch-Oblivious Approach

at the same time on the same machine. So, for two operations oi, j, ok,l ∈ O with fi, j � fk,l

and mi, j = mk,l, we require S i, j � S k,l. A subset B ⊂ O of operations with mi, j = mk,l and
S i, j = S k,l is called a batch. Batching capacities limit the number of operations per batch.

Thus, we require
∣∣∣∣
{
ok,l ∈ O

∣∣∣ mk.l = mi, j ∧ S k,l = S i, j

}∣∣∣∣ ≤ bi, j for all operations oi, j ∈ O. To
respect sequence-dependent setup times, for all operations oi, j, ok,l ∈ O with mi, j = mk,l and
S i, j � S k,l, either Ci, j + s(σi, j,σk,l) ≤ S k,l or Ck,l + s(σk,l,σi, j) ≤ S i, j must hold.

Our goal is to determine schedules that optimize regular objective functions. An objec-

tive function is a function f : R|O| → R that maps tuples of operation start dates to a real
number. We call an objective function regular (Brucker (2007)) if, for any pair of tuples of
start dates (S 1, . . . , S |O|), (S ′1, . . . , S

′
|O|

) ∈ R|O| with S 1 ≤ S ′1 ∧ · · · ∧ S |O| ≤ S ′
|O|

, it follows
that f (S 1, . . . , S |O|) ≤ f (S ′1, . . . , S

′
|O|

). Intuitively speaking, the quality of a schedule cannot
deteriorate by advancing the start date of some of its operations. Most objective functions
considered in the scheduling literature (e.g., makespan, maximum lateness, total weighted
completion time, or total weighted tardiness) are regular objective functions.

We have provided a concise formal definition of a complex job-shop scheduling prob-
lem which generalizes several scheduling problems defined in the literature: It reduces to
a flexible job-shop scheduling problem if all batching capacities are equal to one, and to a
scheduling problem with parallel batching machines if the routes of all jobs contain only a
single operation. Tool groups, i.e. sets of identical tools, can be taken into account by con-
sidering each tool as an individual machine. Recurrent flows are comprised in the definition:
No constraint forbids to reuse a machine for multiple operations of the same job. Note that
some objective functions might depend on due dates d j ∈ Z or weights w j ∈ R which may
be associated to each job j ∈ J. These parameters were not explicitly included in the formal
definition above since they do not impose any hard constraint on schedules. Yet they can be
integrated in the definition of an objective function.

Note that we distinguish two different types of families: One is related to batching and
one is related to setups. Setups are needed between batches of operations, which implies
that two operations with the same batching family must have the same setup family. How-
ever, two operations with the same setup family could have different batching families. An
equivalent but more concise formulation of the same complex job-shop scheduling problem
that uses only a single type of family is possible when defining setup times appropriately.
Our motivation to distinguish batch and setup families is to obtain a uniform notation over
the chapters of this thesis. The distinction between family types is meaningful in chapter 4
in order to differentiate setup families when multiple resources per operation are required.
There, each resource usage can be assigned to a different setup family.

3.2 Disjunctive Graph Modeling

Disjunctive graphs, introduced by Roy and Sussmann (1964), allow combinatorial proper-
ties of schedules to be represented in a concise way and have been applied to solve a broad

3.2 Disjunctive Graph Modeling 47

range of scheduling problems. To tackle the inclusion of p-batching within job-shop environ-
ments, we introduce in this section a batch-oblivious disjunctive graph representation which
is designed to facilitate decision-making on batches during graph traversals. First, we recall
the disjunctive graph model for complex job-shops. Then, two alternative representations
for batching decisions are described: In section 3.2.1, we recall and discuss an established
representation which inserts dedicated batching nodes into the graph (see Ovacik and Uzsoy
(1997)). In section 3.2.2, a novel, batch-oblivious representation is introduced which modi-
fies edge weights instead of introducing auxiliary nodes. This batch-oblivious representation
helps us to take batching decisions on the fly (during graph traversal). This idea provides the
foundation for the scheduling approach proposed in this chapter.

Disjunctive graphs represent structural properties of schedules but do not encode assign-
ment, sequencing or batching decisions. Conjunctive graphs encode all decisions to be taken
and are the principal tool for our algorithms. Let us briefly recapitulate those graph types. In
both cases, each node represents an operation and each edge represents a dependency induced
by either the route of a job or the assignment and sequencing decisions for an operation on a
machine. Disjunctive graphs model all possible assignments of operations to machines and
sequences of operations on the machines using undirected edges. By replacing undirected
by directed edges while satisfying some feasibility constraints, a conjunctive graph is con-
structed which corresponds to an assignment of operations to machines and an ordering of
operations (sequencing) on the machines. Redundant edges are removed in the conjunctive
graph. Next, we provide a definition of a basic conjunctive graph representation that still ne-
glects the representation of batching decisions. This basic conjunctive graph representation
corresponds to that of Dauzère-Pérès and Paulli (1997) for flexible job-shops.

A conjunctive graph G = (V, E) is an acyclic directed graph with nodes V = O ∪ {0, ∗}
that correspond to the given operations O plus an artificial start node 0 and an artificial end
node ∗. For each job and each machine, the graph contains one path from the artificial start
node 0 to the artificial end node ∗. The disjoint union of those paths yields all edges of the
graph. Each node v ∈ O is part of exactly two paths: One corresponding to the route of its
job and one corresponding to the sequence of the machine it is assigned to. For a node v ∈ O,
we denote its route successor by r(v) ∈ V \ {0} and its machine successor by m(v) ∈ V \ {0}.
Analogously, its predecessors are denoted by r−1(v) ∈ V \ {∗} and m−1(v) ∈ V \ {∗}. The
artificial start node 0 has |J| + |M| outgoing edges and no incoming edges. Analogously, the
artificial end node ∗ has |J| + |M| incoming edges and no outgoing edges. Overall, the graph
contains |E| = 2 |O| + |J| + |M| edges.

A conjunctive graph can be used to determine start dates S v of operations v ∈ O.
A weight lu, v ∈ N0 is assigned to each edge (u, v) ∈ E in order to ensure a minimum duration
between the beginning of adjacent operations: S v ≥ S u+ lu, v for each edge (u, v) ∈ E. Having
this, start dates of operations correspond to distances of longest paths from the artificial start
node with respect to those edge weights. We denote the distance of a longest path from a
node v ∈ V to a node w ∈ V by L(v,w) ∈ N0. For each operation v ∈ O, its start date is deter-
mined by S v = L(0, v). To reflect the given constraints, we define edge weights as follows.

48 Chapter 3: Complex Job-Shop Scheduling: A Batch-Oblivious Approach

For edges (0, o1, j) ∈ E connecting the artificial start node 0 with the initial operation o1, j of a
job j, the edge weight is set to the release date r j of job j. For edges (0, om) ∈ E connecting
the artificial start node 0 with the initial operation om scheduled on machine m ∈ M, the edge
weight is set to zero. For route edges (v, r(v)) ∈ E with v � 0, the edge weight is set to
the processing duration pv of operation v. For machine edges (v,m(v)) ∈ E with v � 0 of
non-batching machines, the edge weight is set to the sum pv + s(σv,σm(v)) of the process-
ing duration of operation v and the sequence-dependent setup time between operation v and
operation m(v).

Now, what remains is to provide a representation for batching machines. They can be
either modeled by modifying the structure of the graph (batch-aware) or by adapting the
weights of edges (batch-oblivious). The following two subsections present both alternatives.
Recall that each batch has to respect the capacity of the machine as well as the equality of
involved families. The adherence to those constraints has to be guaranteed for each schedule.
The related checks are not detailed in this section in order to focus on the essential parts of
both representations.

3.2.1 Batch-Aware Conjunctive Graphs

This section reviews a batch-aware conjunctive graph representation that was introduced
by Ovacik and Uzsoy (1997). All solution approaches for complex job-shop scheduling
problems that we are aware of make use of this type of representation (e.g., Mason et al.
(2005), Mönch et al. (2003), or Yugma et al. (2012)).

Recall that a batch denotes a set of operations B ⊂ O that is processed simultaneously on
the same machine. In the batch-aware representation, for each batch, an additional node b is
added to the graph. The start date of this batching node is taken as the common start date
for all operations contained in the batch. A batch requires all of its operations to be ready
before it can begin processing. To reflect this, each operation node v ∈ B is connected to the
batching node b via an edge (v, b) of weight zero. Then, operations following in the routes
of involved jobs are connected as follows: For each operation v ∈ B of the batch, an edge
(b, r(v)) from the batching node to the route successor r(v) of v is introduced. Those edges
are given the processing duration of pv as their weight. Two additional edges (m−1(b), b)
and (b,m(b)) are introduced to order the batch in the sequence of operations on machine mb.
Analogously to the non-batching case, the weight of each machine edge (u,w) is defined by
the sum pu + s(σu,σw). Each operation node v ∈ B has exactly one incoming edge and one
outgoing edge. The batching node b has |B| + 1 incoming edges and |B| + 1 outgoing edges.

Batch-aware conjunctive graphs represent dependencies stemming from batching deci-
sions in a structural way. The number of nodes in those graphs depends on the number of
batches. This structure renders modifications of batching decisions complicated to handle:
The number of nodes in the graph must be adapted and several edges have to be manipulated
while the acyclicity of the graph must be preserved.

3.2 Disjunctive Graph Modeling 49

3.2.2 Batch-Oblivious Conjunctive Graphs

In the following, we introduce a novel representation for batching decisions in conjunctive
graphs which is non-intrusive regarding the structure of the graph. No dedicated batching
nodes are introduced and the basic representation presented at the beginning of this section
can remain as is. Our only means to represent batching decisions is to adapt the weights of
machine edges (v,m(v)) ∈ E. The weight of a machine edge is set to zero if its adjacent
operations should be processed in the same batch. Otherwise, the edge weight is set to
pv + s(σv,σm(v)), as in the non-batching case. Unfortunately, it is not that simple: lv,m(v) = 0
only guarantees that S v ≤ S m(v) but not that S v = S m(v). Since the start dates of all operations
in a batch must be equal, setting edge weights to zero can lead to infeasible solutions. In
the following, we develop a simple criterion that decides on the feasibility of zero weighted
machine edges.

First, let us reconsider a general property of longest paths in directed acyclic graphs. The
start date of a node v ∈ V directly depends on the start dates of its predecessors as follows:

S v = max
(u,v)∈E

(S u + lu, v). (3.1)

Now, consider two operations v ∈ O and m(v) ∈ O that might be scheduled in the same batch.
The node m(v) ∈ V has two incoming edges coming from its machine predecessor v and its
route predecessor w = r−1(m(v)). We can apply equation (3.1) to obtain

S m(v) = max(S v + lv,m(v), S w + lw,m(v)). (3.2)

If the length lv,m(v) of the machine edge (v,m(v)) ∈ E is set to zero, we want to obtain
S v = S m(v) from a longest path computation. So, let us assume that lv,m(v) = 0 and S v = S m(v).
With equation (3.2), we obtain

S v = max(S v, S w + lw,m(v)) ⇐⇒ S v ≥ S w + lw,m(v). (3.3)

This means (3.3) is a necessary condition to combine v and m(v) in the same batch. Thus, in
batch-oblivious disjunctive graphs, we require the invariant

(
lv,m(v) = 0 ∧ S v ≥ S w + lw,m(v)

)
∨
(
lv,m(v) = pv + s(σv,σm(v))

)
(3.4)

to be fulfilled for all nodes v ∈ O and w ∈ V with w = r−1(m(v)). It follows that, for
each operation v ∈ V , a longest path computation schedules the machine successor opera-
tion m(v) either at the same time as v or at a later point in time where processing durations
and sequence-dependent setup times are satisfied. This property propagates in a natural way:
Multiple operations belonging to the same batch are connected in a path of zero weighted
machine edges. Next, we want to show that each optimal schedule can be represented using
our batch-oblivious conjunctive graph representation.

Theorem 3.1. For any given regular criterion, there exists a batch-oblivious conjunctive

graph G with edge weights l : V → N0 such that longest paths in this graph represent an

optimal schedule.

50 Chapter 3: Complex Job-Shop Scheduling: A Batch-Oblivious Approach

Job A

Job B

Job C

0

1 2 3

4 5 6

7 8 9

∗

rA

0 p 1,4

p2

p
3

rB

0
p
1
,4

0 p 5,8

p6

r
C

p7

0
p
5
,8

p 9p 7

p
2

p
6

p 9

p1,4

p 3

p5,8

(a) Batch-Aware Conjunctive Graph

Job A

Job B

Job C

0

1 2 3

4 5 6

7 8 9

∗

rA

p1,4 p2

p
3

rB p1,4 p5,8 p6

r
C

p7 p5,8

p 9p 7

p
2

p
6

p 9

0

p1,4

p 3

0

p5,8

(b) Batch-Oblivious Conjunctive Graph

Time

Machine 1 C 7 A 2 B 6 C 9

Machine 2
A 1

B 4
A 3

B 5

C 8

(c) Gantt Chart

Figure 3.1 – A comparison of alternative representations of the same schedule

3.3 Building Blocks for Integrated Batching Decisions 51

Proof. Consider a feasible schedule that is optimal with respect to the given regular criterion.
We denote the operation start dates of this optimal schedule by S v. Now, we construct a
batch-oblivious conjunctive graph that defines the assignment and ordering of operations on
the machines as follows:

a) The graph respects all machine assignment decisions of the optimal schedule.
b) Ordering decisions on the machines respect the start dates of the optimal schedule: If

S v > S w for v ∈ V and w ∈ V , then v is ordered before w.
c) Nodes v ∈ V and w ∈ V that are part of the same batch (i.e. S v = S w) are ordered as

follows: If S r−1(v) + lr−1(v), v < S r−1(w) + lr−1(w),w, then v is ordered before w.
d) For two nodes v ∈ V and w ∈ V of the same batch with S r−1(v) + lr−1(v), v = S r−1(w) + lr−1(w),w,

their relative order can be arbitrarily decided as long as no cycle is introduced.

Since those rules are derived from a feasible schedule, this graph is constructed without any
cycle. Edge weights are set according to the batching decisions in the given optimal schedule.
Property c) guarantees that, for all adjacent nodes v ∈ V and m(v) ∈ V of the same batch,
S r−1(m(v)) + lr−1(m(v)),m(v) ≤ S v holds. Thus, invariant (3.4) holds for all edges of the graph. �

Figure 3.1 shows an example that allows to compare batch-aware and batch-oblivious
representations. It shows a schedule with three jobs A, B and C using two machines. We see
two batches processed on machine 2, each consisting of two operations: One is composed
of operation 1 plus operation 4, another one is composed of operation 5 plus operation 8.
For brevity of notation, sequence-dependent setup times have been omitted and let us denote
p1,4 = p1 = p4 and p5,8 = p5 = p8. Note that invariant (3.4) is not visualized in Figure 3.1 (b),
so assume that S 1 ≥ rB and S 5 ≥ S 7 + p7.

3.3 Building Blocks for Integrated Batching Decisions

This section develops the foundation of our heuristic approach. First, we describe in sec-
tion 3.3.1 how start dates can be computed from a given batch-oblivious conjunctive graph.
The graph will remain structurally unchanged in this first version. Then, we define a general
move in section 3.3.2. It moves individual operations and is designed to be complemented
by the interleaved start date computation and graph modification that we introduce in sec-
tion 3.3.3. This interleaved computation advances suitable nodes to “fill up” incomplete
batches. Overall, our method integrates adaptive batching decisions with one general move
to resequence and reassign operations. It can be used as a building block for metaheuristic
approaches.

3.3.1 Static Start Date Computation

Let us first describe how start dates of operations can be computed from a given batch-
oblivious conjunctive graph. For this, batching decisions are taken dynamically (“on the
fly”) during a traversal of the graph by deciding the weights of edges. Thereby, it is im-

52 Chapter 3: Complex Job-Shop Scheduling: A Batch-Oblivious Approach

portant to preserve invariant (3.4) introduced in section 3.2. In contrast to the adaptive start
date computation presented in section 3.3.3, this static algorithm does not modify the graph
itself: It preserves all ordering and assignment decisions inherent in the given conjunctive
graph. The ordering is relaxed in the sense that a directed edge (u, v) ∈ E requires only that
operation v must not be processed before operation u. So, u and v might start at the same
time which means they are part of the same batch.

The computation is based on topological orderings. In an acyclic directed graph, a topo-

logical ordering is a linear ordering of the nodes of the graph. It can be defined as a rela-
tion ≺ ⊆ V × V with v ≺ w⇒ ∄ a path from w to v. Thus, traversing a conjunctive graph in
topological order guarantees that, for each node v ∈ O, both predecessors r−1(v) and m−1(v)
are visited before v. Hence, the inductive formula for S v given in equation (3.1) can be
applied.

Algorithm 3.1 A static batching algorithm for a given conjunctive graph G

computeStartDatesStatically (G)
S 0 ← 0
βv ← 1 (∀ v ∈ V)
f o r v ∈ computeTopologicalOrdering (G \ {0})

i f (S r−1(v) + pr−1(v) ≤ S m−1(v) and fm−1(v) = fv and βm−1(v) < bv)
S v ← S m−1(v), βv ← βm−1(v) + 1

e l s e

S v ← max
(
S r−1(v) + pr−1(v), S m−1(v) + pm−1(v) + s(σm−1(v),σv)

)

Algorithm 3.1 provides the pseudo-code for a static graph evaluation algorithm. It tracks
the used capacity β for each node and checks if the families fv ∈ F and fm−1(v) ∈ F of con-
secutive operations are equal. The algorithm greedily creates batches while preserving the
invariant for batch-oblivious conjunctive graphs. This corresponds to a longest path compu-
tation with dynamically specified edge weights. The computation takes O(|E|) time since a
topological ordering in a conjunctive graph can be computed in O(|E|) and each node is vis-
ited exactly once. Batching decisions are taken greedily and strongly depend on the structure
of the given graph.

3.3.2 An Integrated Batch-Oblivious Move

In order to develop heuristic algorithms, we want to introduce moves which modify a given
batch-oblivious conjunctive graph. Known heuristic approaches we are aware of employ
specific knowledge about previous batching decisions. E.g. they explicitly displace, combine
or split entire batches, or they exchange operations belonging to different batches (Bilyk
et al. (2014); Yugma et al. (2012)). To keep it simpler, we follow a different strategy and
maintain the batch-obliviousness of our graph also for our moves. An observation from
section 3.2 is that, except of its edge weights, our conjunctive graph representation does

3.3 Building Blocks for Integrated Batching Decisions 53

not differ from a conjunctive graph representation for flexible job-shop scheduling problems
without batching. This allows us to apply the move introduced in Dauzère-Pérès and Paulli
(1997) which integrates the resequencing and reassignment of operations. We include a
detailed description of this move in this section not only for completeness, but also to adapt
it to our notation and to show that it remains valid for redefined edge weights.

Assume that all batching decisions have been taken and thus edge weights and start dates
have been fixed. An operation v is moved after another operation w as follows: First, the
machine related conjunctive edges (m−1(v), v) ∈ E and (v,m(v)) ∈ E of operation v are
replaced by an edge (m−1(v),m(v)). Then, operation v is reinserted after operation w by
replacing the edge (w,m(w)) ∈ E with two edges (w, v) and (v,m(w)). In the graph that is
created by executing the move, we then have m(w) = v. Recall that mw must be a machine
for which v is qualified to be processed on. To be computed efficiently, the feasibility check
of a move relies on start dates of operations as shown in the following. Let us denote by
lv = min

(
lv,m(v), lv, r(v)

)
the minimum weight of the outgoing edges of a node v ∈ O.

Theorem 3.2. (Dauzère-Pérès and Paulli (1997)) An operation v ∈ O can be moved be-

tween two operations w and m(w) with w � r(v) and m(w) � r−1(v) if S r(v) + lr(v) > S w and

S m(w) + lm(w) > S r−1(v).

Proof. (Dauzère-Pérès and Paulli (1997)) When the node v is removed, the edges (m−1(v), v)
and (v,m(v)) are replaced by an edge (m−1(v),m(v)) which cannot introduce a cycle. When v

is reinserted after w, there are only two possible ways to create a cycle:

a) There was a path from operation r(v) to operation w before moving v. This implies S r(v)+

lr(v) ≤ S w, which contradicts the first assumption.

b) There was a path from operation m(w) to operation r−1(v) before moving v. This implies
S m(w) + lm(w) ≤ S r−1(v), which contradicts the second assumption.

�

Note that the original theorem has been adapted to include redefined edge weights. This
move has been successfully applied to solve flexible job-shop scheduling problems without
batching and is not restricted to a particular objective function. However, in our case which
includes batching, those moves might tear apart batches. This might lead to poor solutions
containing unfavorable batches of only a single operation. Thus, to escape from a local
optimum, a sequence of moves might need to strongly deteriorate a given solution before it
can improve it again. The following subsection shows how we tackle this problem.

3.3.3 Adaptive Start Date Computation

To improve batching decisions, we interleave the computation of start dates with modifica-
tions of the batch-oblivious conjunctive graph. In particular, we want to improve schedules

54 Chapter 3: Complex Job-Shop Scheduling: A Batch-Oblivious Approach

created by the moves described in section 3.3.2 by “filling up” batches with remaining ma-
chine capacity: We advance suitable nodes by removing and reinserting them in the graph. In
algorithm 3.1 of section 3.3.1, a topological ordering is computed first and then all nodes are
traversed in this order. This is not viable anymore if we modify the graph while traversing
it. Thus, we propose to interleave the computation of a topological ordering with a dynamic
modification of the graph. We will see in the following that this idea can be described in
terms of unidirectional cuts. During the course of our algorithm, unidirectional cuts distin-
guish unsettled nodes that still can be modified from settled nodes that are fixed. Finally, we
propose in section 3.3.4 different strategies for such adaptive graph modifications.

Definitions and Notation For a given batch-oblivious conjunctive graph G = (V, E), we
consider a cut Vs ⊆ V that partitions the graph into a subset of settled nodes Vs and a subset
of unsettled nodes Vu = V \ Vs. A cut Vs is called unidirectional if there are no edges from an
unsettled node to a settled node, i.e. E ∩ (Vu × Vs) = ∅. Let us denote by Gs = (Vs, Es) and
Gu = (Vu, Eu) the resulting subgraphs. The edges of each graph G� ∈ {Gs,Gu,G} are given
by E� = E ∩ (V� × V�). Let us denote for a node v ∈ V� its indegree in G� by deg−

�
(v) and

its outdegree in G� by deg+
�
(v). A node v ∈ V� without incoming edges (i.e. deg−

�
(v) = 0) is

called a root node of G�. A node v ∈ V� without outgoing edges (i.e. deg+
�
(v) = 0) is called

a leaf node of G�.

Proposition 3.1. In a conjunctive graph G = (V, E), Vs = {0} is a unidirectional cut.

Proof. Since the only settled node 0 ∈ Vs is a root in G, no edges can end in a settled
node. �

To settle a node v ∈ Vu with r−1(v) ∈ Vs after a leaf node w ∈ Vs of Gs, v is removed
from Gu and appended to Gs. If m−1(v) = w, the operation remains assigned to machine mv

sequenced after the same machine predecessor w. In this case, no edges need to be mod-
ified. Otherwise, if m−1(v) � w, we modify the graph G as follows: The machine related
conjunctive edges (m−1(v), v) ∈ E and (v,m(v)) ∈ E of operation v are replaced by an edge
(m−1(v),m(v)) and the edge (w,m(w)) ∈ E is replaced by two edges (w, v) and (v,m(w)).
Settling a node does not change any route edges. If m−1(v) � w and mv = mw, then v is
resequenced. If m−1(v) � w and mv � mw, then v is reassigned. Note that we require for a
node v ∈ Vu to be reassigned after a node w ∈ Vs that ∃ q ∈ Rv with mq = mw.

Theorem 3.3. Let G = (V, E) be a conjunctive graph and let Vs be a unidirectional cut in G.

When a node v ∈ Vu with r−1(v) ∈ Vs is settled after a leaf node w ∈ Vs of Gs, the modified

graph G′ = (E′,V ′) does not contain any cycle and V ′s = Vs∪ {v} is a unidirectional cut in G′.

Proof. When v ∈ Gu is settled, three edges from E \ Es are deleted and the edges
(m−1(v),m(v)), (w, v) and (v,m(w)) are inserted. Edge deletions can neither introduce a cycle,
nor invalidate any unidirectional cut. Since Vs is a unidirectional cut in G and v ∈ Vu, it
follows that m(v) ∈ Vu and r(v) ∈ Vu. With r(v) ∈ V ′u and m(w) ∈ V ′u, we conclude that v is

3.3 Building Blocks for Integrated Batching Decisions 55

a leaf in G′s. Since the predecessors of v in G′ are settled, i.e. r−1(v) ∈ V ′s and w ∈ V ′s, edges
adjacent to v cannot invalidate the unidirectional cut V ′s. The only inserted edge that is not
adjacent to v in G′, (m−1(v),m(v)), does not invalidate the unidirectional cut since m(v) ∈ Vu.
Thus, V ′s is a unidirectional cut in G′.

It remains to show that no cycle is introduced in G′. Since v ∈ V ′s, the edge (m−1(v),m(v))
is the only inserted edge that might be contained in the subgraph G′u. It cannot introduce a
cycle since it replaced the edges (m−1(v), v) and (v, m(v)). Thus, the subgraph G′u is acyclic.
Both edges (r−1(v), v) ∈ E′ and (w, v) ∈ E′ that are added to G′s end in the node v. Since v is
a leaf in G′s, this cannot introduce a cycle in G′s. Thus, the subgraph G′s is acyclic. Overall,
since G′u and G′s are acyclic, a cycle in G′ must include an edge from V ′u to V ′s. Such an edge
cannot exist since V ′s is a unidirectional cut in G′. �

Algorithm 3.2 An adaptive batching algorithm for a given conjunctive graph G

computeStartDatesAdaptively (G)
S 0 ← 0
Vs = {0}
βv ← 1 (∀ v ∈ V)
whi le Vs � V

v, w← select (v ∈ V \ Vs, w ∈ Vs)
assert (r−1(v) ∈ Vs and deg+s (w) = 0)
settle v after w

i f (S r−1(v) + pr−1(v) ≤ S m−1(v) and fm−1(v) = fv and βm−1(v) < bv)
S v ← S m−1(v), βv ← βm−1(v) + 1

e l s e

S v ← max
(
S r−1(v) + pr−1(v), S m−1(v) + pm−1(v) + s(σm−1(v),σv)

)

Vs ← Vs ∪ {v}

Algorithm 3.2 shows how the results on unidirectional cuts can be applied to interleave
the computation of start dates with modifications of the graph. Initially, only the artificial
start node 0 is considered to be settled. Then, nodes that meet the criteria of Theorem 3.3
can be successively settled without introducing any cycle. The start dates of settled nodes
are calculated as proposed in Algorithm 3.1. The quality of the resulting schedule and the
efficiency of the algorithm strongly depends on the selection of the nodes v and w. In the
following, we propose and analyze three selection strategies.

3.3.4 Strategies for Selecting Nodes

A Static Selection Strategy A straightforward selection strategy chooses in each step a
root node v ∈ Vu of Gu and settles it after its machine predecessor w = m−1(v). This strategy
does not modify the graph and iterates the nodes in topological order. Algorithm 3.2 with this
static selection strategy is equivalent to Algorithm 3.1 presented in section 3.3.1. In order

56 Chapter 3: Complex Job-Shop Scheduling: A Batch-Oblivious Approach

to implement this strategy, we need to determine root nodes of Gu efficiently. This has been
done by applying the approach of Kahn (1962). It maintains the indegree in Gu for each node
of the graph G and a list containing all root nodes in Gu. When a node is settled, it is removed
from the list of root nodes in Gu and, for each of its successor nodes, the number of incoming
edges in Gu is decreased. These successor nodes v ∈ Vu are added to the list of root nodes
when their indegree in Gu becomes zero. Since these auxiliary data structures can be updated
in constant time, the runtime of the algorithm is linear in the number of edges of G.

A Resequencing Selection Strategy The idea of this strategy is to “fill up” batches that
underutilize the available batching capacity. This is done by advancing suitable operations
on their assigned machines and can be implemented as follows: As in the static strategy, we
first determine a root node v ∈ Vu in Gu. If it can be included in the same batch as its machine
predecessor w = m−1(v) or if no batching capacity is remaining for w, v is settled after w as
in the static selection strategy. Otherwise, we iterate through the machine successors of v

until we find an operation u ∈ Vu with r−1(u) ∈ Vs and qu = qw for which invariant (3.4) is
fulfilled. If such an operation is found, u is settled after w, and is combined in a batch with
operation w by Algorithm 3.2. If no such operation exists, we fall back to settling v ∈ Vu

after w. Again, the auxiliary data structures can be updated in constant time.

A Reassigning Selection Strategy We can enhance the resequencing selection strategy by
extending the search for suitable “batch-filling” operations to other machines. If no rese-
quenceable operation is found, we continue to search on other machines for suitable opera-
tions to be reassigned: We search in turn, starting from root nodes y ∈ Vu in Gu with my � mv.
Again, we successively search machine successors of y until an operation u ∈ Vu is found
such that r−1(u) ∈ Vs and ∃ q ∈ Ru : q = qw and which fulfills invariant (3.4). If such an
operation is found, it is settled after w. Otherwise, we fall back to settling v ∈ Vu after w.

Analysis We proposed three selection strategies which differ in their effort to “fill up” un-
derutilized batches. These strategies offer a solid baseline to evaluate our algorithmic frame-
work. However, finding improved strategies might be an interesting challenge for future
research. In the worst case, both the resequencing and the reassignment strategies explore
O(|V |) operations to select a node. This increases the runtime bound of Algorithm 3.2 to
O(|E| · |V |). However, in the average case, as observed in the numerical experiments of sec-
tion 3.5, a much better behavior is obtained since only few batches are underutilized and only
those will trigger a search.

An interesting property of our method is that it includes various classical moves. Consider
as an example the swapping of adjacent batches of different families. First, an integrated
move could displace a single operation of the second batch before the first batch. Then, the
resequencing selection strategy fills up that newly created batch with all operations that had
been part of the second batch. In the end, both batches are swapped. Note that this is only a
simple example of possible interactions. We observe much more complex rearrangements in
practice.

3.4 Heuristic Approaches 57

3.4 Heuristic Approaches

In this section, we apply the building blocks developed in Section 3.3 within different heuris-
tics. Since our batch-oblivious methodology is not bound to one specific solution approach,
we deploy it within classical heuristic frameworks in order to evaluate its performance. In
the following, we describe a construction heuristic, a local search method, a Simulated An-
nealing metaheuristic and a Greedy Randomized Adaptive Search Procedure (GRASP) based
metaheuristic.

First, we define a construction heuristic which adapts the methods presented in Yugma
et al. (2012) and Knopp et al. (2014). If due dates and weights are given, jobs are initially
sorted in decreasing order of their ratio w j

d j
(weight divided by due date). Otherwise, jobs

are initially sorted in decreasing order of the sum of the shortest processing durations of
their operations. The heuristic then iterates over the sorted list of jobs and successively
inserts all operations of the current job. The operations of a job are greedily inserted, starting
from the first operation, by selecting the best insertion position for each operation. The
best insertion position is determined by the objective function value of the partial solution
obtained by actually inserting the considered operation. The construction is completed when
all operations of all jobs have been inserted.

In both local search and Simulated Annealing, we combine the batch-oblivious move
from Section 3.3.2 with the adaptive start date computation from Section 3.3.3 as follows.
After a batch-oblivious move is performed, an adaptive start date computation follows in
order to determine start dates and batching decisions. The combined result of both modifi-
cations is considered as one single move. If such a move is rejected, all involved changes
are collectively reverted. The local search starts with the solution found by the construction
heuristic, and explores the neighborhood using steepest descent. All moves reachable from
the current solution are evaluated and the one leading to the best solution is selected. The
local search continues until no strictly better solution is found.

Our Simulated Annealing metaheuristic is based on the same integrated move and also
starts with the solution found by the construction heuristic. In each step, one node is ran-
domly chosen to be moved, its feasible insertion positions are computed, and one of them
is randomly selected and performed. We use a geometric cooling schedule that maintains a
temperature T which is multiplied by a cooling factor Pc < 1 after each iteration. At iter-
ation n, the move is immediately accepted if the current value of the objective function fn

improves the previous objective function value fn−1. Otherwise, the new solution is accepted
with a probability of exp(−∆

T
), where ∆ = fn − fn−1. If the new solution is not accepted, all

changes related to the move are reversed. The search is stopped if the best solution does not
improve during a specified number of iterations Pm. The initial temperature is determined
by sampling a fixed number Ps of random moves. For each random move r, we evaluate its
influence ∆ = fr − fi on the objective function value fi of the initial solution. Then, for a
tuning parameter Pp, the Pp-th percentile of these values is selected as initial value for the
temperature T .

58 Chapter 3: Complex Job-Shop Scheduling: A Batch-Oblivious Approach

In order to further diversify the search and to make use of the ever increasing parallelism
of modern CPUs, we developed a heuristic approach based on the idea of Greedy Randomized

Adaptive Search Procedures (GRASP) of Feo and Resende (1995). Our heuristic creates
many different starting solutions by randomizing the construction heuristic. This is done
by perturbing the sorted list of jobs used in the construction heuristic as follows. A tuning
parameter Pi ≥ 1 is introduced that steers the perturbation intensity. At each iteration of
the construction heuristic, the next job to be inserted is determined by randomly selecting
one of the first Pi elements in the sorted list of remaining jobs. The operations of the job
are then greedily inserted as described earlier and the job is then removed from the list.
Each solution is independently improved using the Simulated Annealing metaheuristic. The
GRASP based approach is parallelized as follows. Each solution is constructed and improved
independently and thus can be run in its own thread. Communication between threads is only
needed to update the best overall solution once a thread has completed its computation. A
fixed number of threads is used, and each thread restarts with a new initial solution once its
Simulated Annealing metaheuristic has met the stopping criterion.

3.5 Numerical Results

The algorithms presented in this chapter were implemented in C++14 and compiled using
the GCC MinGW-W64 compiler in version 4.9.1. All numerical experiments are conducted
on an Intel Xeon E5-2620 2.1 GHz machine (6 cores) running Microsoft Windows 7. Ex-
tensive numerical experiments on different types of industrial and academic instances were
performed. The generality of our approach allows to assess its performance using instances
of different scheduling problems. Section 3.5.1 evaluates our algorithms on new complex
job-shop benchmark instances that stem from a real-world semiconductor manufacturing fa-
cility. Section 3.5.2 compares our methods with results for the instances for parallel batch
machines of Mönch et al. (2005). Section 3.5.3 compares our methods with results for the
complex job-shop instances of Mason et al. (2005). Section 3.5.5 provides results for the
flexible job-shop benchmark instances of Hurink et al. (1994). The sampling strategy of our
simulated annealing implementation avoids the need to adapt parameters for individual in-
stances. For all numerical experiments, we used the following identical parameter settings:
A cooling factor of Pc = 0.99999, a number of samples Ps = 100, a maximum number of
iterations Pm = 100 000, a temperature percentile of Pt = 5 %, and a perturbation intensity
of Pi = 5. All heuristics are run only once, and 6 parallel threads are used in all runs of the
GRASP based approach.

3.5.1 Instances from the Diffusion and Cleaning Area

This sections presents results for new benchmark instances from the diffusion and cleaning
area of a semiconductor manufacturing facility. We provide two types of instances. First,
15 industrial instances were provided by STMicroelectronics and modified to anonymize

3.5 Numerical Results 59

confidential data. Second, 15 random instances that are close to the industrial instances were
generated. The random instances include due dates which are not present in the industrial
instances. All instances are published under github.com/sebastian-knopp/cjs-instances and
its details are described in the following.

Industrial Instances We perform experiments on 15 industrial instances that were ex-
tracted from the Manufacturing Execution System (MES) of a semiconductor manufacturing
facility over a period of one year. These instances represent various situations that actually
appeared in production. Smaller instances with around 25 machines represent a subset of the
actual area while larger instances with around 100 machines correspond to the full area. The
number of jobs per instance is between 119 and 346. For each job, between one and seven
operations have to be performed. Only some of the machines are capable to process multiple
operations in the same batch. Sequence-dependent setup times are required only for some of
the non-batching machines. Since no due dates are provided, the total weighted completion
time is minimized.

Random Instances We perform experiments on 15 random instances that are close to the
industrial instances for the diffusion and cleaning area. The instance generation method
described below and its parameters are chosen to serve this purpose. As in the industrial
instances, machines are partitioned into batching machines and non-batching machines. We
assume that all batching machines have the same capacity. A family is processable either
on a random subset of the batching machines or on a random subset of the regular ma-
chines. We generated 15 instances using all possible combinations for the numbers of jobs
|J| ∈ {20, 40, 60, 100, 200} and batching capacities b ∈ {2, 4, 6}. We consider |J|20 batching
machines, |J|10 non-batching machines, |J|10 batching families, and |J|5 non-batching families. We
denote a discrete uniform distribution over [a, b] by DU[a, b]. For each job j ∈ J, a random
number

∣∣∣O j

∣∣∣ ∼ DU[1, 7] of operations is chosen. Each operation is randomly assigned to a
family. Sequence-dependent setup times ∼DU[1, 10] are generated between all non-batching
families. We use w j ∼DU[1, 10], r j ∼DU[0, 2· |J|], d j ∼ r j + DU[p j,

3
2 p j] for job weights,

release dates and due dates, respectively (p j denotes the minimum sum of the processing du-
rations of all operations of the job). The number of recipes per family is selected according
to DU[1, 5]. For the processing time of operations oi, j ∈ O we use pi, j ∼b · DU[10, 20] with
b = 1 for non-batching machines. The total weighted tardiness is minimized.

We performed numerical experiments for the described industrial (I) and random (R) in-
stances allowing a maximum computation time of 5 minutes per instance. Table 3.2 provides
the obtained objective function values for the Simulated Annealing and GRASP based ap-
proaches. Table 3.5 provides results in terms of the relative deviation from the best objective
function value that has been found. We provide average (I, R) and median (Ĩ, R̃) values of
these relative deviations over all instances. The column initial refers to the solution that is
computed using the non-randomized version of the construction heuristic. We clearly see that
the GRASP based approach outperforms all other approaches. The static selection strategy is
outperformed by the resequencing and the reassigning strategies with a slight advantage for

60 Chapter 3: Complex Job-Shop Scheduling: A Batch-Oblivious Approach

Simulated Annealing GRASP

I |J| |M| static reseq reass static reseq reass

In
du

st
ri

al
(t

ot
al

w
ei

gh
te

d
co

m
pl

et
io

n
ti

m
e)

01 119 24 92973 93208 93189 92899 92803 92532

02 148 22 250240 249400 243372 245939 242890 239892

03 195 25 217863 203678 203485 208286 202801 201790

04 209 24 271548 265801 268121 267669 260286 260931

05 186 88 171229 169174 170373 167902 163345 162884

06 268 26 341448 333429 333323 336012 331276 329918

07 210 94 150271 150984 158954 149680 150115 150332

08 310 17 465701 461574 460594 454252 451612 447305

09 231 95 167754 167973 168011 167271 166798 166643

10 245 94 202722 199565 204280 198112 197369 195789

11 302 24 561202 562295 561767 554883 555655 554670

12 302 24 350461 349444 371985 345590 344109 345673

13 324 94 349147 337979 340014 346464 334409 334416

14 315 101 475725 470249 505656 469239 450909 465354

15 346 94 777426 726829 749775 736514 698666 702559

R
an

do
m

(t
ot

al
w

ei
gh

te
d

ta
rd

in
es

s)

01 20 3 10618 10613 10613 10598 10011 10011

02 20 3 6030 6098 6354 5939 5883 5883

03 20 3 7063 7074 7074 7036 7006 7006

04 40 6 9201 9302 9256 8801 9083 9015

05 40 6 14208 14246 14842 14573 14904 14674

06 40 6 37152 33318 32629 32406 32048 32321

07 60 9 17832 17522 17427 16126 15165 15668

08 60 9 41609 40514 41537 42560 41094 42508

09 60 9 35888 37155 37068 31984 32354 30890

10 100 15 28503 30051 30209 28015 27954 28342

11 100 15 34501 33315 36518 32738 33370 33161

12 100 15 50505 44284 49300 39565 40851 43102

13 200 30 28580 27030 47916 28259 27685 32242

14 200 30 55075 53193 67950 52867 51444 58399

15 200 30 66589 63042 66672 60993 60494 62464

Table 3.2 – Detailed results for industrial and random instances

3.5 Numerical Results 61

reass reseq static

#Threads: 1 1 2 3 4 5 6 1 1 1

I |O| #m
s r r r r r r r r ns

|O|

In
du

st
ri

al

01 193 5810 1.00 2.28 3.39 4.54 5.67 6.72 1.38 1.40 637
02 293 3809 1.00 2.39 3.53 4.74 5.75 6.93 1.39 1.38 647
03 305 3215 1.00 2.34 3.50 4.59 5.76 6.67 1.48 1.54 664
04 370 2768 1.00 2.29 3.42 4.59 5.72 6.79 1.43 1.50 649
05 452 1740 1.00 2.28 3.36 4.50 5.56 6.56 1.76 1.81 700
06 461 1960 1.00 2.28 3.40 4.43 5.67 6.61 1.57 1.58 698
07 472 1300 1.00 2.06 3.08 4.35 5.12 6.24 2.16 2.23 731
08 480 2134 1.00 1.99 2.95 3.69 4.91 5.91 1.31 1.38 705
09 511 1502 1.00 1.88 2.77 3.76 4.73 5.69 1.77 1.77 736
10 539 1441 1.00 1.92 2.96 3.99 4.93 5.92 1.70 1.76 733
11 569 2070 1.00 1.97 2.92 3.88 4.77 5.74 1.17 1.18 718
12 720 963 1.00 1.62 2.22 3.14 3.75 4.55 1.84 1.83 787
13 725 654 1.00 2.07 3.05 3.98 5.09 6.14 2.64 2.72 776
14 752 748 1.00 2.03 3.11 3.69 5.17 6.12 2.28 2.34 759
15 835 609 1.00 2.17 3.23 3.93 5.01 5.96 2.42 2.44 804

R
an

do
m

01 82 18605 1.00 1.93 2.92 3.84 4.80 5.54 1.02 1.02 640
02 80 17831 1.00 1.98 2.97 3.76 4.86 5.65 1.04 1.09 644
03 75 18635 1.00 1.97 2.97 3.97 4.94 5.83 1.05 1.11 645
04 147 10053 1.00 1.98 2.94 3.93 4.78 5.67 1.02 1.04 652
05 165 7732 1.00 2.06 3.09 3.60 5.15 6.12 1.23 1.22 641
06 159 8749 1.00 2.00 2.93 3.75 4.72 5.21 1.09 1.16 618
07 222 5589 1.00 2.00 3.00 4.00 4.97 5.90 1.20 1.26 640
08 269 3959 1.00 2.06 3.10 3.51 5.14 6.08 1.37 1.47 638
09 220 5682 1.00 1.96 2.92 3.90 4.77 5.63 1.19 1.23 649
10 398 2485 1.00 2.06 3.04 4.00 5.07 6.01 1.41 1.51 668
11 406 2167 1.00 1.95 3.03 3.62 4.90 5.84 1.64 1.70 670
12 387 2507 1.00 1.81 2.68 3.49 4.46 5.29 1.44 1.49 692
13 796 885 1.00 1.96 2.92 3.88 4.81 5.57 1.87 1.94 730
14 796 743 1.00 1.98 2.90 3.84 4.83 5.96 2.14 2.23 758
15 768 820 1.00 1.92 2.86 3.54 4.78 5.59 1.96 2.08 765

Table 3.4 – Analysis of the number of moves performed per second

62 Chapter 3: Complex Job-Shop Scheduling: A Batch-Oblivious Approach

Initial Local Search Sim. Annealing GRASP

static reseq reass static reseq reass static reseq reass

I 12.2% 7.4% 6.4% 7.6% 3.9% 2.1% 3.8% 2.0% 0.3% 0.3%

Ĩ 10.8% 6.7% 5.7% 6.7% 4.1% 1.6% 3.0% 1.8% 0.3% 0.0%

R 52.9% 41.2% 40.2% 41.2% 8.3% 5.7% 15.2% 2.3% 1.5% 4.2%

R̃ 49.6% 39.9% 39.6% 36.5% 5.7% 4.0% 8.1% 1.1% 0.0% 2.4%

Table 3.5 – Aggregated results for industrial and random instances.

the resequencing strategy. One reason that could explain the performance of the resequenc-
ing strategy is that a larger number of moves can be performed in the same amount of time
compared to the reassigning strategy, for which additional time is spent to search for nodes
that can be settled.

To explain this further, the number of moves performed per second is analyzed in Ta-
ble 3.4. In column |O|, the total number of operations for each instance is provided since we
assume it is correlated to the number of moves which are performed per second. Different
variants of our algorithms have been tested on the industrial and random instances using a
computation time of one minute for each variant and instance. In order to determine the
number of moves performed per second, the time for constructing solutions is not taken into
account. The GRASP based heuristic is run using a large value for the maximum number of
non-improving iterations Pm in order to avoid triggering runs of the construction algorithm.
This setting means there is one parallel run of the Simulated Annealing algorithm for each
thread that is used. The second row of Table 3.4 provides the number of used threads. For
runs using the reassigning strategy with one thread, the absolute number of moves performed
per second is given in column #m

s . Based on that, all columns entitled by “r” provide the
relative number of moves per second. The three rightmost columns provide results for the
resequencing and static node selection strategies. The results show that the reassigning strat-
egy requires more time per move than the other strategies. Column ns

|O|
provides the average

number of nanoseconds that is spent per node while performing a single move. Being al-
most constant, these values show that the static selection strategy yields an algorithm that is
linear in the number of nodes. The slight increase that can be observed might be due to sec-
ondary reasons such an increasal of cache misses coming along with the increased memory
consumption of larger instances; also, additional time might be needed for a larger number
of jobs. The numbers of moves performed per second increases linearly with the numbers
of threads, which shows that the parallel implementation of our algorithm scales with the
number of threads.

3.5 Numerical Results 63

3.5.2 Instances for Parallel Batch Machines of Mönch et al. (2005)

Mönch et al. (2005) consider a scheduling problem for the diffusion and cleaning area that
models the machines in that area as parallel batch processors. This modeling does not include
a job-shop environment, so the problem is much less general than ours. From the perspec-
tive of this chapter, their instances consist of jobs with exactly one operation without any
sequence-dependent setup times. We compare our algorithms with results that are obtained
by methods dedicated to this less general problem. Table 3.7 provides average values for
total weighted tardiness. The best results for such instances that we are aware of are reported
by Chiang et al. (2010). We put their results in brackets since they used a parameter-identical
reimplementation instead of the original instances of Mönch et al. (2005). For this compari-
son, we scaled their reported results using the relative values given in their paper.

Time #Machines Batch size

(s) m=3 m=4 m=5 b=4 b=8

Mönch et al. (2005) 58 412 300 231 389 240

Chiang et al. (2010) 4 (370) (272) (209) (347) (220)

Yugma et al. (2012) 178 411 278 206 367 229

Initial <1 630 455 356 577 383

Local Search static 14 607 434 334 553 363

Local Search reseq 30 539 399 316 487 348

Local Search reass 60 486 361 269 452 292

Sim. Annealing static 120 548 383 294 503 314

Sim. Annealing reseq 120 457 344 261 418 290

Sim. Annealing reass 120 411 303 210 382 234

GRASP static 120 502 356 266 469 280

GRASP reseq 120 429 318 244 399 262

GRASP reass 120 382 274 197 356 212

Table 3.7 – Results for instances of Mönch et al. (2005) with total weighted tardiness objective

Our best method (GRASP reass) outperforms the results of Mönch et al. (2005) and
Yugma et al. (2012). It reaches a quality that is comparable to the dedicated method of
Chiang et al. (2010). In contrast to the previous section, we see stronger differences between
the different selection strategies. We assume that this is due to the fact that, in non-job-shop
instances, a larger number of operations is available to be settled. We observe that the reas-
signing strategy strongly outperforms both the static and the resequencing selection strate-
gies. Again, the GRASP metaheuristic approach yields a clear improvement over Simulated
Annealing alone.

64 Chapter 3: Complex Job-Shop Scheduling: A Batch-Oblivious Approach

3.5.3 Complex Job-Shop Instances of Mason et al. (2005)

Mason et al. (2005) consider a complex job-shop scheduling problem from semiconductor
manufacturing and provide results for instances based on the mini-fab model of El Adl et al.
(1996). They minimize the total weighted tardiness instead of general regular criteria. There
is a difference to our problem definition that concerns sequence-dependent setup times. Ma-
son et al. (2005) do not allow the setup between operations oa and ob to begin before the route
predecessor operation of ob is completed. In our definition, this setup can begin as soon as
oa is completed. We consider this difference by modifying the instances as follows: We
consider all setup durations to be zero and prolong operation processing durations instead.
We extend each processing duration by adding the longest possible setup duration that might
precede the operation. It is important to note that, in case setup durations are crucial, this
modification might increase (but never decrease) the optimal total weighted tardiness.

Tables 3.8, 3.9, and 3.9 show results for the batching capacities b = 2, b = 3 and b = 4,
respectively. Columns “Batch-Oblivious” show our results, all others are taken from Mason
et al. (2005) for comparison. The column GRASP refers to results obtained using the GRASP
based algorithm with the reassigning strategy for node selections. We allowed a computa-
tional time of 5 seconds per instance. Values represent normalized average total weighted
tardiness and 1.000 represents the best solution found by Mason et al. (2005). For smaller
instances, setup durations are crucial and our results are worse due to the assumptions for
setups in the modified instances. For instances with more than 5 jobs, setup durations are
negligible and our method outperforms the results of Mason et al. (2005). Initial solutions
obtained by our construction heuristic are strongly improved by our GRASP based approach.
We observe a similar behavior for all considered batching capacities.

3.5.4 Sequence-Dependent Setup Time Instances

of Brucker and Thiele (1996)

This section presents numerical results for the instances of Brucker and Thiele (1996) for the
job-shop scheduling problem with sequence-dependent setup times. The objective function
is the makespan. Though no batching machines are considered, this allows a performance
comparison which focuses on sequence-dependent setup times. Our GRASP based meta-
heuristic approach was run using a computational time of two minutes per instance. Results
are provided in Table 3.12. Column GRASP reports makespan values of our GRASP based
approach and column Initial reports makespan values obtained by our construction heuristic.
Values are compared to results from the literature. The best known results we are aware
of are reported in González et al. (2013) and Grimes and Hebrard (2010). González et al.
(2013) propose a tabu search based algorithm. In their numerical results, they report com-
putational times between one and four minutes which are comparable to the two minutes per
instances that we allowed. Grimes and Hebrard (2010) present a constraint programming
approach. They report computational times below one second for smaller instances and one
hour for larger instances. For comparison, we also include results from other known publi-
cations on these instances. Both Brucker and Thiele (1996) and Artigues and Feillet (2008)

3.5 Numerical Results 65

SB Dispatching MIP Batch-Oblivious

|J| best ATCS CR EDD 6 hrs Initial GRASP

3 2.171 2.871 2.972 2.972 1.000 2.036 1.351
4 1.952 2.944 3.004 3.004 1.000 2.122 1.294
5 1.822 2.810 3.019 3.019 1.000 2.291 1.231
6 1.510 1.850 1.821 1.821 1.000 1.458 0.937
7 1.260 1.261 1.347 1.347 1.200 1.402 0.706
8 1.301 1.106 1.044 1.044 1.377 1.406 0.656
9 1.179 1.013 1.099 1.099 3.315 1.177 0.639
10 1.294 1.033 1.030 1.030 3.972 1.333 0.708

Table 3.8 – Results for instances of Mason et al. (2005) with b = 2

SB Dispatching MIP Batch-Oblivious

|J| best ATCS CR EDD 6 hrs Initial GRASP

3 1.484 3.082 2.974 2.996 1.000 2.024 1.268
4 2.028 2.401 3.495 3.371 1.000 2.257 1.313
5 1.885 2.267 3.604 3.207 1.000 1.575 1.098
6 1.283 1.534 1.860 1.929 1.003 1.440 0.876
7 1.131 1.608 1.446 1.515 1.198 1.349 0.735
8 1.164 1.325 1.120 1.193 2.860 1.180 0.713
9 1.240 1.299 1.087 1.207 N/A 1.497 0.806

10 1.266 1.453 1.032 1.066 N/A 1.292 0.768

Table 3.9 – Results for instances of Mason et al. (2005) with b = 3

SB Dispatching MIP Batch-Oblivious

|J| best ATCS CR EDD 6 hrs Initial GRASP

3 3.786 6.133 6.155 6.155 1.000 2.009 1.421
4 2.094 3.010 3.092 3.092 1.000 2.118 1.312
5 1.680 2.231 2.343 2.343 1.000 1.485 1.102
6 1.451 1.769 1.720 1.720 1.005 1.355 0.831
7 1.033 1.237 1.346 1.346 1.343 1.086 0.716
8 1.101 1.131 1.206 1.206 N/A 1.164 0.701
9 1.076 1.123 1.271 1.271 N/A 1.251 0.770

10 1.175 1.015 1.107 1.107 N/A 1.076 0.718

Table 3.10 – Results for instances of Mason et al. (2005) with b = 4

66 Chapter 3: Complex Job-Shop Scheduling: A Batch-Oblivious Approach

B
ru

ck
er

an
d

T
hi

el
e

(1
99

6)

A
rt

ig
ue

s
an

d
F

ei
ll

et
(2

00
8)

B
al

as
et

al
.(

20
08

)

G
ri

m
es

an
d

H
eb

ra
rd

(2
01

0)

G
on

zá
le

z
et

al
.(

20
13

)

In
it

ia
l

G
R

A
S

P

t2-ps01 798 798 798 798 798 1059 798

t2-ps02 784 784 784 784 784 1069 784

t2-ps03 749 749 749 749 749 925 749

t2-ps04 730 730 730 730 730 999 730

t2-ps05 691 691 693 691 691 780 693

t2-ps06 1056 1009 1018 1009 1013 1274 1026

t2-ps07 1087 970 1003 970 970 1264 970

t2-ps08 1096 963 975 963 963 1184 965

t2-ps09 1119 1061 1060 1060 1060 1335 1060

t2-ps10 1058 1018 1018 1018 1018 1294 1018

t2-ps11 1658 1494 1470 1443 1443 2012 1455

t2-ps12 1528 1381 1305 1269 1274 1679 1299

t2-ps13 1549 1457 1439 1415 1415 2229 1430

t2-ps14 1592 1483 1485 1452 1492 1852 1492

t2-ps15 1744 1661 1527 1486 1485 1963 1518

Table 3.12 – Comparison of makespan for instances of Brucker and Thiele (1996)

3.5 Numerical Results 67

present branch-and-bound based approaches. Balas et al. (2008) propose an approach based
on the shifting bottleneck heuristic. The gap between our results and those obtained by dedi-
cated approaches is small, which shows that our approach is also competitive for this type of
instances.

3.5.5 Flexible Job-Shop Instances of Hurink et al. (1994)

Finally, we present results for the flexible job-shop instances of Hurink et al. (1994). These
instances do not incorporate batching machines and have been widely used to assess the
performance of several highly efficient dedicated methods. The instances are partitioned
into edata, rdata, and vdata instances that include low, medium and high flexibility levels,
respectively. We allow a computation time of 2 minutes per instance for our GRASP based
approach. The comparison with best known results from literature refers to the best known
solution that is obtained by combining the results of Jurisch (1992), Dauzère-Pérès and Paulli
(1997), Mastrolilli and Gambardella (2000), Pacino and Van Hentenryck (2011), Behnke and
Geiger (2012) and Schutt et al. (2013). Detailed results are presented in Table 3.13. Columns
“Init.” show the makespan obtained by our construction heuristic. Columns “GRASP” show
the makespan obtained by our GRASP based metaheuristic approach. Columns “Publ.” show
the best known makespan published in the literature, indicating the first paper that reported
the result. We observe an average gap to the best known solution of 0.8%, 0.6%, and 0.2%
for the edata, rdata, and vdata instances, respectively. We observe a maximum gap to the
best known instance of 3.8%, 2.9%, and 1.4% for the edata, rdata, and vdata instances,
respectively. These results show that our non-dedicated method obtains good results even for
this less general problem.

68 Chapter 3: Complex Job-Shop Scheduling: A Batch-Oblivious Approach

edata rdata vdata

Init. GRASP Publ. Init. GRASP Publ. Init. GRASP Publ.

mt06 56 55 55 J 54 47 47 J 47 47 47 J
mt10 1202 878 871 J 831 686 686 D 932 655 655 J
mt20 1407 1092 1088 J 1219 1023 1022 M 1063 1023 1022 J
la01 840 609 609 J 662 573 570 S 700 572 570 J
la02 761 655 655 J 667 531 529 S 559 531 529 J
la03 730 550 550 J 619 479 477 S 526 478 477 M
la04 694 568 568 J 656 504 502 J 596 502 502 J
la05 659 503 503 J 580 458 457 J 557 458 457 M
la06 1102 833 833 J 857 800 799 M 1004 799 799 J
la07 887 768 762 J 818 751 749 S 834 750 749 M
la08 929 845 845 J 989 766 765 M 875 766 765 M
la09 1093 878 878 J 1017 853 853 M 955 854 853 D
la10 1019 866 866 J 860 805 804 M 915 804 804 J
la11 1220 1104 1103 J 1244 1072 1071 J 1206 1072 1071 J
la12 1215 960 960 J 1035 936 936 D 992 936 936 J
la13 1156 1053 1053 J 1178 1038 1038 J 1106 1038 1038 J
la14 1345 1123 1123 J 1276 1070 1070 J 1134 1070 1070 D
la15 1234 1111 1111 J 1285 1090 1089 S 1167 1090 1089 D
la16 1285 892 892 J 933 717 717 J 772 717 717 J
la17 807 707 707 J 872 646 646 J 646 646 646 J
la18 1088 842 842 J 826 669 666 J 783 663 663 J
la19 1058 799 796 J 848 703 700 M 728 617 617 J
la20 1033 857 857 J 1161 756 756 J 991 756 756 J
la21 1412 1039 1009 P 1143 854 835 M 1031 815 804 B
la22 1178 887 880 P 1103 780 760 M 946 741 736 B
la23 1333 950 950 M 1193 857 842 M 1200 818 815 M
la24 1314 916 908 P 1162 820 808 M 1079 779 775 B
la25 1189 955 936 P 1052 798 791 M 1071 762 756 M
la26 1468 1128 1107 P 1442 1073 1061 M 1250 1057 1054 M
la27 1594 1198 1181 P 1487 1094 1091 M 1282 1088 1084 B
la28 1766 1168 1142 P 1575 1084 1080 M 1363 1072 1070 M
la29 1516 1137 1111 P 1363 1006 998 M 1337 997 994 M
la30 1627 1241 1195 P 1531 1093 1078 M 1288 1072 1069 M
la31 2056 1559 1538 S 1988 1525 1521 M 1783 1523 1520 M
la32 2521 1698 1698 D 2080 1660 1659 M 1907 1659 1658 J
la33 2086 1547 1547 J 1806 1500 1499 M 1687 1499 1497 M
la34 2117 1645 1599 M 2001 1539 1536 M 1973 1536 1535 M
la35 2147 1736 1736 J 1920 1551 1550 M 1895 1552 1549 M
la36 1782 1171 1160 P 1415 1037 1030 D 1232 948 948 J
la37 1588 1397 1397 J 1579 1085 1077 M 1269 986 986 J
la38 1601 1178 1141 S 1214 976 962 M 1184 943 943 J
la39 1710 1208 1184 J 1430 1048 1018 B 1234 922 922 J
la40 1469 1168 1144 P 1268 978 970 M 1140 955 955 J

Table 3.13 – Results for flexible job-shop instances of Hurink et al. (1994).

Abbreviations: B: Behnke and Geiger (2012), D: Dauzère-Pérès and Paulli (1997), J: Jurisch (1992),

M: Mastrolilli and Gambardella (2000), P: Pacino and Van Hentenryck (2011), S: Schutt et al. (2013)

3.6 Conclusion 69

3.6 Conclusion

In this chapter, we considered a complex job-shop scheduling problem with a focus on the
integration of batching machines. We reduced the structural complexity of disjunctive graphs
by introducing a novel batch-oblivious representation. This representation allows batching
decisions to be taken during a traversal of the graph and enables the implementation of re-
sequencing and reassignment strategies that adaptively “fill up” underutilized batches. To-
gether with an integrated batch-oblivious move, we obtain a neighborhood that is applied in
a GRASP based heuristic approach. The scheduling problem on parallel batching machines
is often considered to be important because it is a subproblem in the shifting bottleneck
heuristic. Our holistic way to modify schedules outperforms such approaches for the in-
stances considered in our numerical experiments. Our batch-oblivious approach improves
both solution quality and implementation complexity in comparison to decomposition based
approaches.

Avoiding the complexity of additional batching nodes simplifies the inclusion of further
constraints. Regarding the diffusion and cleaning area, we want to model machines in more
detail in order to account for the industrial problem specification presented in section 2.
Chapter 4 extends the approach of this chapter by allowing complex routing structures and
multiple resources per operation. This can be used to model machines in more detail. Also
in this context, we want to include additional time constraints that limit the time between
certain operations (see Klemmt and Mönch (2012); Sadeghi et al. (2015)). Chapter 5 will
extend the approach in order to include such maximum time lag constraints.

Though we already obtain good numerical results, we still see opportunities for further
improvements. Enhancing the node selection strategies proposed in section 3.3.4 seems
promising. The batch-oblivious approach is independent of the proposed GRASP based
metaheuristic and also can be applied within other heuristic or exact methods. GRASP has
strong diversification and intensification mechanisms but lacks elements of mutual learning
that can be found in path-relinking approaches or genetic algorithms. Speeding up indi-
vidual moves by only partially updating the graph as proposed by Michel and Van Hen-
tenryck (2003), Pearce and Kelly (2007) and Sobeyko and Mönch (2016) seems applicable
and promising as well. García-León et al. (2015) obtain good results for flexible job-shops.
They avoid the runtime cost of performing a move by evaluating its effects on the objective
function without actually performing the move.

Chapter 4

Extended Route and Resource

Flexibility in Job-Shop Scheduling

M achines in the diffusion and cleaning area

show a very complex behavior. To in-

crease the accuracy of our model, we man-

age internal resources of machines while taking

scheduling decisions. This leads to a job-shop

scheduling problem with extended route and re-

source flexibility.

72 Chapter 4: Extended Route and Resource Flexibility in Job-Shop Scheduling

As comprehensively discussed in the industrial specification in chapter 2, a wide range
of different machines can be found in the diffusion and cleaning area. Each machine has
its specific properties and often their internal components must be considered. in order to
fully describe their behavior. We want to consider machines that are modeled in detail as
part of a job-shop scheduling problem in order to reduce the gap between our model and the
reality. Thus, to obtain practicable schedules, we consider several machines, in particular
furnaces, in detail and include their components as resources in our model. This leads to
a generalized version of the flexible job-shop problem that imposes additional constraints
for resource utilization. A literature review on related work is presented in section 1.4.2.
We have presented a preliminary version of this approach for scheduling job-shops with
complex routing structures in Knopp et al. (2014), where the scheduling of internal machine
components is integrated in a job-shop scheduling problem for the overall work area. We are
not aware of other approaches that consider machines in detail while combining this with a
job-shop scheduling problem. The closest approach we are aware of is that of Kis (2003).
Note that this chapter generalizes the approach of chapter 3. The main extensions are the
introduction of route graphs and the consideration of multiple resources per operation.

Let us take furnaces as an example and consider them in detail in order to illustrate the
idea of the approach. Recall from section 2.2.4 that furnaces in the diffusion and cleaning
area consist of tubes, boats and load ports. A tube is the place where processes are conducted.
A boat is a movable carrier for wafers which is necessary to run a process inside a tube. Boats
are also utilized to load, unload and cool wafers. A load port is the place where wafers are
loaded and unloaded. Commonly, such machines consist of two tubes, four boats (two per
tube), and one load port. To process a set of wafers, a boat is used as follows. First, wafers are
loaded from its carrier to the boat at the load port. Then, the boat is moved into the tube where
the process is conducted. Afterwards, the boat is removed from the tube and has to cool down
before its wafers can be unloaded at the load port. Potentially, the boat has to wait in case the
tube or the load port is occupied. Some operations, e.g. loading wafers, require more than
one resource at the same time. The load port, tubes and boats are components of a furnace.
Figure 4.1 provides a schematic illustration of such a machine. A more detailed description
of this type of machines is given in section 2.2.4 of the industrial problem specification.
We decompose one processing step of a furnace into separate operations using its internal
resources as described before. Note that processing times of operations may depend on the
specific internal resource that is used.

The properties described in the previous paragraph impose dependencies between re-
sources used by consecutive operations. Consider the following two characteristic examples.
Firstly, if a loading operation uses the load port of a machine, the corresponding unloading
operation must use the load port of the same machine. Secondly, after a specific boat is
loaded, it cannot be used elsewhere before being unloaded. So, a resource can be blocked
even if no operation is currently using it.

We base our approach on the job-shop scheduling problem presented in the preceding
chapter. There, a given set of jobs must be scheduled using given resources. For each job,
an individual route of operations must be processed. It is a generalization of the flexible

4.1 Formal Problem Description 73

Boat 1A

Boat 2A

Boat 1B

Boat 2BTube 2

Tube 1

Load Port

Boat 2A is processing at Tube 2.

Boat 2B is waiting for Tube 2.

Boat 1A is waiting for the load port.

Boat 1B is loading at the load port.

Figure 4.1 – Schematic representation of a furnace in the diffusion and cleaning area

job-shop scheduling problem that allows the resource used to process an operation to be
chosen from its set of allocated resources. To cope with the given constraints of furnaces, we
formulate an extension of the complex job-shop scheduling problem presented in chapter 3.
The formal description is given in section 4.1. In this extension, resource dependencies are
taken into account by defining multiple routes with fixed resource assignments: For each job,
we statically assign resources to operations and resource flexibility is obtained by allowing
different routes. Allowed routes are specified by route graphs which are introduced before the
actual problem definition. The introduced model is not dependent on the objective function
to be optimized and, as in the preceding chapter, regular criteria are optimized.

A suitable disjunctive graph representation is given in section 4.2 that is the basic struc-
ture needed in the following algorithms. Section 4.3 defines a neighborhood by reordering
and resequencing operations that is based on the insertion of nodes into the conjunctive graph
in order to extend the GRASP based meta-heuristic solution approach presented in the pre-
ceding chapter. In section 4.4, we present and discuss numerical results of our implementa-
tion.

4.1 Formal Problem Description

This section extends the scheduling problem that was formally described in section 3.1. The
main ideas of the problem description given here have been introduced in Knopp et al. (2014).
Before formally defining the problem, let us outline its main elements. We generalize the
routes of jobs as follows: Instead of considering a fixed linear sequence of operations, feasi-
ble routes are defined by a route graph that is associated to each job. This allows dependen-
cies between resources to be taken into account. Machine flexibility is achieved by choosing
paths in these graphs. Thus, other than in section 3.1, the assignment of machines to op-

74 Chapter 4: Extended Route and Resource Flexibility in Job-Shop Scheduling

erations is fixed, but not all operations have to be scheduled. This increased generality in
the modeling is emphasized by a change in the terminology: The term resource is used in-
stead of the term machine (though both could be used interchangeably). Instead of exactly
one resource, multiple resources per operation can now be required. Section 4.1.1 provides
preliminary definitions and notation required for subsequent definitions. Then, the basic
problem definition is given in section 4.1.2. It is refined in section 4.1.3 where resource ac-
quisitions are introduced. Section 4.1.4 specifies the inclusion of batching machines into the
modeling. Finally, section 4.1.5 discusses properties of the problem and provides application
examples.

4.1.1 Preliminaries and Notation

Consider a graph G = (V, E) with a set of nodes V and a set of edges E. For a node v ∈ V , we
denote the set of incoming edges as in(v) ⊂ E and the set of outgoing edges as out(v) ⊂ E.
A path from v1 ∈ V to vk ∈ V is defined as a sequence of nodes (v1, v2, . . . , vk) with
(vi, vi+1) ∈ E for all 1 ≤ i < k. Next, we introduce the term two-terminal series parallel

graph according to the definition of Eppstein (1992) and repeat his definition here for com-
pleteness. Then, we use that definition to define the term route graph.

Definition 4.1. Eppstein (1992) A directed graph G is two-terminal series parallel, with

terminals α and φ, if it can be produced by a sequence of the following operations:

1. Initialization: Create a graph that consists of a single edge directed from α to φ.

2. Parallel composition: Given two two-terminal series parallel graphs X and Y, with

terminals αx, φx, αy, and φy, form a new graph G = P(X, Y) by identifying α = αx = αy

and φ = φx = φy.

3. Serial composition: Given two two-terminal series parallel graphs X and Y, with ter-

minals αx, φx, αy, and φy, form a new graph G = S (X, Y) by identifying α = αx,

φx = αy, and φy = φ.

Definition 4.2. A two-terminal series parallel graph G = (V, E,α, φ) is called a route graph
if, for all v ∈ V, one of the following properties is true:

1. v is neither branching, nor merging: |in(v)| = |out(v)| = 1

2. All paths from α to φ include v; i.e., they have the form (α, . . . , v, . . . , φ). Such a node

v is called a route separator.

A node of a route graph corresponds to an operation. A path from α to φ in a route graph
is called a route. The nodes of a route define a sequence of operations. Note that the start
node α and the terminal node φ are also route separators.

4.1 Formal Problem Description 75

4.1.2 Basic Problem Description

This section provides the formal description of a complex job-shop scheduling problem with
extended route and resource flexibility. We want to optimize regular objective functions. The
definition given here is self-contained. Definitions known from section 3.1 are reintroduced
for completeness while pursuing a consistent notation. This section does not yet include
batching machines or resource acquisitions which are introduced in subsequent sections. The
problem is formally defined in the following.

We are given a set of jobs J that have to be processed using a set of resources M. For
each job j ∈ J, we are given a set of operations O j and a release date r j ∈ Z. The disjoint
union O = O1

.

∪ O2 . . .
.

∪ O|J| denotes all given operations. For each job j ∈ J, feasible se-
quences of operations are specified by a given route graph G j = (O j, E j,α j, φ j). For each
operation v ∈ O j, we are given a processing time pv ∈ N0 and a set of resources Mv ⊂ M.
For each resource m ∈ Mv that is required by an operation v, a setup family σv,m ∈ F̃ from
a given set of setup families F̃ is specified. A given mapping s : F̃ × F̃ → N0 prescribes
sequence-dependent setup times between scheduled operations that use the same machine.
Setup times must fulfill the triangle inequality: For all (f1, f3, f3) ∈ F̃ × F̃ × F̃ it must hold
that s(f1, f3) ≤ s(f1, f2) + s(f2, f3).

A schedule is completely characterized by providing for each job j ∈ J a route selec-

tion R j ⊂ O j and start dates S i, j ∈ Z for all selected operations oi, j ∈ R j. The route selec-
tion R j must describe a path (α j = o1, j, . . . , o|R j |, j = φ j) in the route graph G j. We denote the
resources and processing durations related to this selection as Mi, j and pi, j, respectively. The
disjoint union R = R1

.

∪ R2 . . .
.

∪ R|J| denotes all selected operations. To describe a schedule
that is feasible, selected routes R j and start dates S i, j have to respect several constraints that
are detailed in the following. Preemption is not allowed: Once the processing of an operation
has begun, it cannot be interrupted. Thus, the completion time of an operation oi, j ∈ O j is
given by Ci, j = S i, j + pi, j. Operations belonging to the same job have to be performed in
the order that is specified by the route selection. So, Ci, j ≤ S i+1, j has to be fulfilled for all
oi, j ∈ R with i <

∣∣∣R j

∣∣∣. The first operation o1, j ∈ R j of each job cannot be processed before
its release date, so S 1, j ≥ r j must hold for all j ∈ J. For two operations oi, j, ok,l ∈ R with
Mi, j ∩ Mk,l � ∅, having S i, j = S k,l in general means that a batch is created, which is only
allowed in the cases specified in section 4.1.4. In all other cases, for all common resources
m ∈ Mi, j ∩ Mk,l of two operations oi, j, ok,l ∈ R, either S i, j + pi, j + s(σi, j,m,σk,l,m) ≤ S k,l or
S k,l + pk,l + s(σk,l,m,σi, j,m) ≤ S i, j must hold. We want to optimize regular objective functions
as defined in section 3.1.

For separator operations oi, j ∈ O, we assume without loss of generality that Mi, j = ∅ and
pi, j = 0. In particular, this assumption is interesting for the terminal nodes φ j = o|J|, j since it
allows the identification of the completion time of a job j ∈ J with the start date C|J|, j = S |J|, j
of its terminal node φ j. This provides a notation consistent to that of Mati et al. (2011).

76 Chapter 4: Extended Route and Resource Flexibility in Job-Shop Scheduling

4.1.3 Resource Acquisitions

We extend the basic version of the problem description by an additional constraint. Consider
two operations that are part of the same route and require a common resource. In some cases,
we want to exclusively acquire the resource between such two operations; we prohibit other
operations to use the resource in between. More formally, we are given a set of resource
acquisitions as a subset Ai, j ⊂ Mi, j for each operation oi, j ∈ O j. For all given acquisitions
m ∈ Ai, j, their release must be uniquely defined; there must exist an operation ok, j with
m ∈ Mk, j such that there is a path Pm =

(
oi, j, . . . , ok, j

)
in G j that does not contain a route

separator. This path must be minimal in the sense that, for all operations ol, j ∈ Pm with l � i,
l � k, we must have m � Ml, j. Note that a resource can be immediately reacquired: we
allow m ∈ Ak, j. The resource acquisition constraint now imposes that, for an acquisition of a
resource m ∈ Ai, j at an acquisition operation oi, j with a corresponding release operation ok, j,
there must not be any other operation that uses m in the time between S i, j and Ck, j. So, for all
operations ox,y ∈ O (� oi, j, � ok, j) with m ∈ Mx,y, either S x,y ≥ Ck, j or Cx,y ≤ S i, j must hold.

Figure 4.2 presents an example of a route graph including resource acquisitions. This
route graph allows six different routes between α j and φ j: Three alternatives in the first
section times two alternatives in the second section. The nodes represent operations and
are labeled with the resources that are required to process them. Resource acquisitions are
indicated by a superscript “A” and a dashed arc (which is not an edge of the route graph)
from the acquisition operation to the release operation.

α j

1, 2A 2

3

4

6 1

3A 7, 8 3

φ j

acquire

acquire

Figure 4.2 – Example of a route graph of a job j ∈ J

4.1.4 Batchable Resources

This section extends the formal problem description in order to include batching machines.
Batching is restricted to individual operations and not considered for sequences of operations.
It remains an interesting subject for future research to further generalize this part of the
problem definition. Though batching is not in the focus of this chapter, including it in this
definition shows that the problem considered in chapter 4 is a true generalization of the one
considered in chapter 3.

4.1 Formal Problem Description 77

Formally, we extend the problem as follows. We are given a set of batch families F. For
each batch family f ∈ F, we are given a batching capacity b f ∈ N>0. A batch family fv ∈ F

is assigned to each operation v ∈ O j. All operations v ∈ O that are assigned to the same batch
family f ∈ F must have the same processing duration pv, must require an identical set of
resources Mv, and must have, for each resource m ∈ Mv, the same setup family σv,m. A path
(vk, . . . , vk+l) in a route graph G j is called a movable component if it has a unique predecessor
node vk−1 and a unique successor node vk+l+1 that both are separator nodes. We consider
batching only for movable components that consist of a single node. More formally, for all
operations o ∈ O j with ∃ v ∈ in(o) ∪ out(o) such that v is not a separator node, we require
b f = 1 for f = fo.

Only operations of the same family can be processed at the same time on the same ma-
chine. So, for two operations oi, j, ok,l ∈ R with fi, j = fk,l and Mi, j ∩ Mk,l � ∅, we re-
lax the resource sequencing constraints of section 4.1.2 and allow S i, j = S k,l. It S i, j �

S k,l, the resource sequencing constraints from section 4.1.2 have to be fulfilled. A sub-
set B ⊂ R of operations with Mi, j ∩ Mk,l � ∅, fi, j = fk,l, and S i, j = S k,l is called a
batch . Batching capacities limit the number of operations per batch. Thus, we require∣∣∣∣
{
ok,l ∈ R

∣∣∣ Mk,l ∩ Mi, j � ∅ ∧ S k,l = S i, j

}∣∣∣∣ ≤ b f for all operations oi, j ∈ R with f = fi, j.

4.1.5 Discussion and Possible Applications

The problem specified in this section is a generalization of the problem specified in chap-
ter 3. Since it is a generalization, this problem definition also includes all special cases
mentioned in section 3.1, e.g., flexible job-shop scheduling problems or parallel batching
machine scheduling problems. Again, additional properties such as due dates or job weights
can be included in the objective function. Let us in the following show the generality of the
problem description introduced in this section by illustrating possible applications. Note that
the formal problem description can be extended to resource-dependent processing durations
in the sense that the processing duration can be different for the route of the jobs as well
as each individual resource. We informally provide the main ideas of the modeling without
describing them in full detail.

Serial-single wafer machines are introduced in section 2.2.1 and show pipeline behavior:
For two operations that are consecutively processed on the same machine, their pro-
cessing intervals can overlap. This can be modeled by assigning different durations to
the resource-dependent processing period and the processing duration of the operation.
Thus, processing a subsequent operation can start while the preceding operation is still
being processed.

Photolithography tools often constitute bottlenecks in semiconductor manufacturing facil-
ities. The ability to consider multiple resources per operation, together with setup fam-
ilies that are given independently for each resource, allows us to tackle such problems.
Two resources are required for each operation: The photolithography tool and an auxil-
iary resource, called reticle. Sequence-dependent times are required due to temperature

78 Chapter 4: Extended Route and Resource Flexibility in Job-Shop Scheduling

changes. Reticles need to be transported between different machines which involve
transport durations that are given by a travel time matrix. Both can be modeled by
defining appropriate resource-dependent setup families and sequence-dependent setup
times.

Blocking Constraints Wet bench machines, described in section 2.2.5, involve a sequence
of bath tanks that each operation has to consecutively traverse. Modeling this in de-
tail introduces a blocking constraint: Since there is no storage between adjacent bath
tanks, an operation can only enter a bath tank if the preceding operation has already
left it, i.e., has started its subsequent operation. This can be modeled using resource
acquisition constraints as follows. The first bath tank is acquired at an initial operation
and released at the consecutive operation that requires two resources: The first bath
tank and its subsequent bath tank. There, the first bath tank is released at the same
time as the next one starts processing. This shows that combining different aspects
of the modeling approach, in this case resource acquisitions and resource-dependent
processing durations, offers valuable options.

Multiple orders per job Some lots may contain multiple wafers associated to different or-
ders which might require varying routes. Being in the same physical container forbids
different jobs to be processed at the same time on different machines. We believe this
can be modeled by considering each order as a job that requires its container as an
additional resource.

4.2 Generalized Batch-Oblivious Conjunctive Graphs

We tackle the generalized problem described in the preceding section by extending our con-
junctive graph based heuristic approach. This section generalizes the batch-oblivious con-
junctive graph representation of section 3.2 such that all properties of the scheduling problem
described in section 4.1 are taken into account. We provide a self-contained description in
order to introduce notation and specify the graph in detail. The absence of dedicated batch-
ing nodes and the absence of redundant edges in the sequencing of operations on resources
remain core properties of the graph. We specify a disjunctive graph representation analog
to the one presented in Dauzère-Pérès and Paulli (1997), Dauzère-Pérès et al. (1998), or Kis
(2003). After specifying the graph in detail, we describe an adaptation of our start date and
batching algorithm of section 3.3. The approach of section 3.3 remains applicable for the
introduced generalized conjunctive graph with only few modifications. This section builds
the foundation for section 4.3, where a solution approach based on efficient node insertions
is presented.

4.2 Generalized Batch-Oblivious Conjunctive Graphs 79

4.2.1 Route-Graph-Aware Conjunctive Graphs

Let us now introduce a route-graph-aware batch-oblivious conjunctive graph representation.
Schedules are represented as a directed acyclic graph G = (V, E) with nodes V = O ∪ {0, ∗}
that correspond to the given operations O plus an artificial start node 0 and an artificial end
node ∗. Note that all operations can be considered to be part of the conjunctive graph, even if
they are not scheduled. As in section 3.2, for each job and each resource, the graph contains
one path from the artificial start node 0 to the artificial end node ∗. We denote the edges
involved in the sequencing of operations on resource m ∈ M by Em ⊂ E. Analogously,
edges involved in the sequencing of the operations of a job j ∈ J are denoted by E j ⊂ E.

The disjoint union E =
.⋃

j∈J E j

.

∪
.⋃

m∈M Em of these paths yields all edges of the graph.
Each scheduled node v ∈ R is included in exactly |Mv| + 1 paths. One corresponds to the
route of its job and all others correspond to the sequencing of its assigned resources. For
a node v ∈ R, we denote its route successor by r(v) ∈ V \ {0} and the set of its resource
successors by m(v) ⊂ V \ {0}. Analogously, its predecessors are denoted by r−1(v) ∈ V \ {∗}

and m−1(v) ⊂ V \ {∗}. Each unscheduled operation u ∈ O \ R corresponds to a disconnected
node in the conjunctive graph, i.e. in(u) = out(u) = ∅. The artificial start node 0 has |J| + |M|
outgoing edges and no incoming edges. The artificial end node ∗ has |J|+ |M| incoming edges
and no outgoing edges. Overall, the graph has |E| = |J| + |M| + |R| +

∑
v∈R |Mv| edges.

Next, we include the resource acquisition constraint as follows. For each acquisition of a
resource m ∈ Ai, j at an operation oi, j ∈ R j with a corresponding release operation ok, j ∈ R j,
the following property must hold: For all operations ox,y ∈ R (� oi, j, � ok, j) with m ∈ Mx,y

there must not be any path in the disjunctive graph that has the form (oi, j, . . . , ox,y, . . . , ok, j).
Consequently, ok, j must directly follow oi, j in the sequencing of operations scheduled on
resource m (if both operations are scheduled). Thus, there must be an edge (oi, j, ok, j) ∈ Em.
This property must be preserved if the graph is modified.

As described in section 3.2, start dates S v ∈ Z of operations v ∈ O are determined from
conjunctive graphs using longest paths. Some adaptations are needed for the generalized
problem. Again, a weight lu,v is associated to each edge (u, v) ∈ E to ensure a minimum
duration between the start dates of adjacent operations, i.e. S v ≥ S u + lu,v is required for
each edge (u, v) ∈ E. For each operation v ∈ O, its start date S v is determined by the
distance L(0, v) of the longest path from the artificial start node 0 to the node v. To respect
the constraints given in our scheduling problem, edge weights are defined as follows. For
edges (0, o1, j) ∈ E j connecting the artificial start node 0 with the initial operation o1, j of job
j ∈ J, the edge weight is set to the release date r j of job j. For edges (0, om) ∈ Em connecting
the artificial start node 0 with the initial operation om scheduled on resource m ∈ M, the
edge weight is set to zero. For route edges (v, r(v)) ∈ E with v � 0, the edge weight is set
to the processing duration pv of operation v. For resource edges (v,w) ∈ Em with v � 0
and w ∈ m(v), the edge weight is set either to zero when both operations are included in the
same batch, or to the sum pv+ s(σv,m,σw,m) of the resource-dependent processing duration pv

of operation v on resource m and the sequence-dependent setup time s(σv,m,σw,m) between
operation v and operation w on machine m. The cases in which operations can be combined
into a batch are discussed in the following section.

80 Chapter 4: Extended Route and Resource Flexibility in Job-Shop Scheduling

4.2.2 Integrated Computation of Start Dates and Batches

In this section, the integrated algorithm for computing start dates and batching decisions
of section 3.3 is adapted for the previously introduced route-graph-aware batch-oblivious
conjunctive graph. The main difference with chapter 3 is that we now have to deal with op-
erations that can require multiple resources at the same time. Though route graphs increase
complexity, recall that (as described in section 4.1.4) batching is restricted to movable com-
ponents consisting of one single node. So, at most one operation of the same job can be
involved in each batch. Relaxing this constraint remains an interesting challenge for future
research.

First, we provide a necessary condition for combining two operations in a common batch
in the presence of multiple resources per operation. Recall that operations with the same
batch family require identical sets of operations, i.e. for two operations u, v ∈ O with fu = fv,
it follows that Mu = Mv. In the following, a conjunctive graph as defined in the preceding
section is considered.

Proposition 4.1. For two operations u, v ∈ O with (u, v) ∈ Em and fu � fv, it follows that

S u + pu + s(σu,m,σv,m) ≤ S v.

Proof. Since fu � fv, the operations u and v cannot be included in a common batch. Thus,
the weight of the edge (u, v) has to be chosen as lu,v = pu + s(σu,m,σv,m) and the proposition
follows. �

Theorem 4.1. If, for two operations u,w ∈ R, we have w ∈ m(u) and |m(u)| � 1, then

S u + pu + s(σu,m,σw,m) ≤ S w.

Proof. Let u,w ∈ R be two operations with w ∈ m(u) and |m(u)| � 1. If fu � fw, the inequality
holds due to Proposition 4.1. Let us therefore assume fu = fw. With |m(u)| � 1, it follows that
∃ v ∈ m(u) with v � w. Let us consider a resource m corresponding to an edge (u, v) ∈ Em

and a resource m′ � m corresponding to an edge (u,w)) ∈ Em′ . With fu = fw, it follows
Mu = Mw, and thus we know that m ∈ Mu ∩Mv ∩Mw. In the sequencing of the operations on
the resource m, w cannot be scheduled before v, because otherwise (since (u, v) ∈ Em) w must
be also scheduled before u, which would lead to a cycle in the graph (since (u,w) ∈ Em′).
Thus, operation v has to be scheduled before operation w on resource m.

Now, let us assume that fv = fu and thus m′ ∈ Mu ∩ Mv ∩ Mw. In the sequencing
of m′, v cannot be scheduled before w, because otherwise (since (u,w) ∈ Em′) v must be also
scheduled before u, which would lead to a cycle in the graph (since (u, v) ∈ Em). Thus, w

has to be scheduled before v on m′. This contradicts that v has to be scheduled before w on
m since there would be a cycle in the graph. Thus, we conclude fv � fu by contradiction.

Finally, since fv � fu = fw and because the considered operations are scheduled on the
resource m in the order u before v and v before w, we conclude with Proposition 4.1 that
S u + pu + s(σu,m,σv,m) ≤ S v and S v + pv + s(σv,m,σw,m) ≤ S w. Since s satisfies the triangle
inequality, then S u + pu + s(σu,m,σw,m) ≤ S w. �

4.2 Generalized Batch-Oblivious Conjunctive Graphs 81

Theorem 4.1 describes a necessary condition for two operations to be scheduled in the
same batch. For a node v ∈ R encountered during graph traversal, this is the first condition
to be checked for deciding if v should extend an existing batch. If

∣∣∣m−1(v)
∣∣∣ = 1 is fulfilled,

v has a unique resource predecessor and combining both in the same batch can be considered.
Note that in the following, if |m(v)| = 1, by abuse of notation we identify a set m(v) with its
only element, e.g. if m(v) = {u} then S m(v) refers to S u. We include this condition by adapting
invariant 3.4 of chapter 3 as follows: We require the invariant

(
lv, u = 0 ∧ |m(v)| = 1 ∧ S v ≥ S r−1(u) + pr−1(u)

)
∨
(
lv, u = pv + s(σv,m,σu,m)

)
(4.1)

to be fulfilled for all edges (u, v) ∈ Em of each resource m ∈ M. Algorithm 4.1 provides
the pseudo-code for an integrated start date and batching algorithm which considers multiple
resources per operation by generalizing Algorithm 3.1.

Algorithm 4.1 Static batching and start date computation for a conjunctive graph G

computeStartDatesStatically (G)
S 0 ← 0
βv ← 1 (∀ v ∈ V)
f o r v ∈ computeTopologicalOrdering (G \ {0})

i f
∣∣∣m−1(v)

∣∣∣ = 1 and S r−1(v) + pr−1(v) ≤ S m−1(v) and fm−1(v) = fv and βm−1(v) < bv

S v ← S m−1(v), βv ← βm−1(v) + 1
e l s e

S v ← max
(
S r−1(v) + pr−1(v),

(
maxm∈M, (u,v)∈Em

S u + pu + s(σu,m,σv,m)
))

Having provided a static algorithm, we are now interested in applying the adaptive al-
gorithm of section 3.3.3 to the generalized problem. Recall that in the adaptive algorithm,
schedules are dynamically improved “on the fly” by filling up batches with remaining ma-
chine capacity. This involves modifications of the graph while it is being traversed. Algo-
rithm 4.2 shows the pseudo-code of an adapted version of Algorithm 3.2. The main differ-
ence with Algorithm 3.2 is that a check of the condition |m(v)| = 1 is added for a all traversed
nodes v ∈ V as in the static algorithm.

Note that the selection strategies for resequencing and reassigning operations that have
been presented in section 3.3.4 are adapted. If a node v ∈ V \ Vs cannot extend the underuti-
lized batch of its resource predecessor, an alternative node to be settled can be determined.
Since the resource predecessor of an operation v ∈ O is not uniquely determined if |m(v)| > 1,
an arbitrary operation u ∈ m(v) is chosen in this case for starting the search for a node that can
extend the batch. Beside that, no other changes have been made for the selection strategies.

Overall, we have seen that the batch-oblivious approach still can be used if multiple
resources per operation are considered. Constraining the problem to movable components of
one single node considerably simplifies the task. We continue to adapt the approach that is
proposed in chapter 3 for the generalized scheduling problem in the following section.

82 Chapter 4: Extended Route and Resource Flexibility in Job-Shop Scheduling

Algorithm 4.2 Adaptive batching and start date computation for a conjunctive graph G

computeStartDatesAdaptively (G)
S 0 ← 0
Vs = {0}
βv ← 1 (∀ v ∈ V)
whi le Vs � V

v, w← select (v ∈ V \ Vs, w ∈ Vs)
assert (r−1(v) ∈ Vs and deg+s (w) = 0)
settle v after w

i f
∣∣∣m−1(v)

∣∣∣ = 1 and S r−1(v) + pr−1(v) ≤ S m−1(v) and fm−1(v) = fv and βm−1(v) < bv

S v ← S m−1(v), βv ← βm−1(v) + 1
e l s e

S v ← max
(
S r−1(v) + pr−1(v),

(
maxm∈M, (u,v)∈Em

S u + pu + s(σu,m,σv,m)
))

Vs ← Vs ∪ {v}

4.3 Solution Approach

As described in the preceding section, solutions of the considered scheduling problem with
extended route and resource flexibility can be represented using generalized batch-oblivious
conjunctive graphs. An important element of the approach presented in chapter 3 is the inte-
grated move for resequencing and reassigning operations of Dauzère-Pérès and Paulli (1997).
In our batch-oblivious approach of chapter 3, this move complements batching decisions and
conjunctive graph modifications which are performed “on the fly” during graph traversals.
When generalizing the approach, the integrated move of Dauzère-Pérès and Paulli (1997) has
to be modified or replaced since, in its original form, it cannot cope with multiple resources
per operation or resource acquisition constraints. Therefore, based on the work of Kis (2003),
this section introduces a move that takes into account multiple resources per operation and
resource acquisition constraints at the same time. A crucial aspect of the move introduced
in this section is the insertion of individual nodes. For this, an algorithm is described in sec-
tion 4.3.1. Subsequently, section 4.3.2 details the integration of route-graph-aware moves in
our heuristic algorithms.

The integrated move of Dauzère-Pérès and Paulli (1997) for resequencing and reassign-
ing operations has been generalized to multiple resource per operation in Dauzère-Pérès et al.
(1998) and Dauzère-Pérès and Pavageau (2003). Both approaches propose moves that mod-
ify, for one operation, its sequencing or assignment on only one out of multiple resources
while leaving all others untouched. This is not viable in the presence of resource acquisi-
tion constraints since both affected operations must be moved at the same time. Moreover,
moves for changing route selections are needed which requires to modify entire sequences
of operations at once.

4.3 Solution Approach 83

In a preliminary work presented in Knopp et al. (2014), two kinds of moves are introduced
for this problem: One reorders operations on a given machine and the other one modifies
the selected path in the route graph. However, the former move misses to address a case
described in Dauzère-Pérès et al. (1998) where an operation has the same direct predecessor
for more than one resource. In this case, both predecessor relations have to be modified at
the same time.

The route graph formulation of our problem given in section 4.1 is closely related to the
job-shop scheduling problem with processing alternatives introduced in Kis (2003), where
also multiple resources per operation are considered. The meta-heuristic solution approaches
presented in Kis (2003) are based on an efficient algorithm for inserting nodes in the conjunc-
tive graph, focusing on the makespan as the objective function. A similar insertion technique
for nodes is proposed by Artigues and Roubellat (2002) in a setting that includes sequence-
dependent setups in addition to multiple resources per operation. Both insertion methods
avoid to enumerate dominated insertion positions. In our approach, we adapt the node in-
sertion technique of Kis (2003) to the problem at hand by considering resource acquisition
constraints and applying it for problems with regular objective functions.

The move introduced in this section is based on the movable components of a route graph
which are defined in section 4.1.4. A move works in two phases: First, it removes all nodes
belonging to a currently scheduled movable component from the conjunctive graph. Second,
it inserts all nodes that belong to a movable component into the conjunctive graph. The
latter movable component could either be the same that was removed before or it could be a
parallel (i.e. alternative) movable component. Removing nodes from a conjunctive graph is
a straightforward procedure where no decisions have to be taken. However, inserting nodes
efficiently is challenging since a meaningful and feasible insertion position has to be found.
An algorithm to determine insertion positions for nodes is described in the following section
which will then be used in section 4.3.2 to define an integrated route-graph-aware move.

4.3.1 Efficient Node Insertions

Nodes insertions are essential for the moves of our meta-heuristic algorithms as well as for
our construction algorithm. In this section, it is not necessary to distinguish between these
applications. Let us consider a conjunctive graph where the nodes from one movable com-
ponent either have been removed or have not been inserted yet. In this situation, we want
to insert an unscheduled movable component (i.e., a sequence of adjacent operations of the
same job). This section aims at finding meaningful and feasible insertion positions for one
individual node. Partial solutions will occur in between since a movable component is in-
serted by performing a sequence of independent individual node insertions. Partial solutions
are infeasible in the sense of the problem description since the route selection must consist
of valid paths for all given route graphs. Note that since also operations linked by resource
acquisition constraints are subsequently inserted, resource acquisition constraints may be un-
satisfied in partial solutions. When the first operation of a resource acquisition constraint has
been inserted, its insertion position strongly constrains the insertion position of the second
operation.

84 Chapter 4: Extended Route and Resource Flexibility in Job-Shop Scheduling

Let us consider a conjunctive graph G = (V, E) with a route selection R′ ⊂ V . We want to
insert a currently unscheduled node1 v ∈ O \ R, i.e., a node that is disconnected in the sense
that |in(v)| = |out(v)| = 0. After inserting v, a new route selection R = R′ ∪ {v} is obtained. In
the following, we apply and adapt results of Kis (2003) in order to obtain a suitable method
for efficiently inserting nodes. Results of Kis (2003) are restated here for completeness and
in order to adapt them to the problem at hand. We start by defining node insertion positions
in detail.

Insertion Position In order to introduce node insertion positions, we first introduce a re-

source insertion position as a pair ((u,w),m) ∈ E × M that specifies for a resource m that
a node should be inserted between the nodes u and w. For notational convenience, let us
assume that both the artificial start node 0 ∈ V and the artificial end node ∗ ∈ V require
all resources, i.e. M0 = M∗ = M. This provides a consistent notation since both artificial
nodes are involved in all resource paths of the conjunctive graph. Since one operation can
require multiple resources, a node insertion position is composed of a tuple of resource in-
sertion positions: For a node v ∈ O j with a set of resource requirements Mv ⊂ M, a node

insertion position specifies a tuple π ∈ (E × M)|Mv | of |Mv| resource insertion positions. Each
resource insertion position ((uk,wk),mk) ∈ E × M of π must refer to a resource edge of mk,
i.e., mk ∈ Muk

and mk ∈ Mwk
. Resource insertion positions must be specified for all resources

of the node v, so we require that
⋃|Mv |

k=1 mk = Mv.

Node Insertion A node oi, j ∈ O j is inserted at a node insertion position π ∈ (E × M)|Mi, j|

as follows: For each resource insertion position ((u,w),m) of π, the edge (u,w) in the re-
source path of m is replaced by two edges (u, oi, j) and (oi, j,w). The route predecessor node

oi−1, j ∈ O j ∪ {0} and the route successor node oi+1, j ∈ O j ∪ {∗} of the node oi, j can be deter-
mined from the given route graph. The existing route edge (oi−1, j, oi+1, j) ∈ E is replaced
by two edges (oi−1, j, oi, j) and (oi, j, oi+1, j). A node insertion is called acyclic if it creates no
cycles in the conjunctive graph. An acyclic node insertion is called feasible if no resource
acquisition constraint is violated in the resulting conjunctive graph. Note that this creates a
difference in notation between this work and Kis (2003): Our definition of “feasible” requires
in addition that all resource acquisition constraints are taken into account. “Acyclic” in our
notation corresponds to “feasible” in the notation of Kis (2003).

Determining Insertion Positions Having provided all necessary preliminaries, we now
want to identify reasonable insertion positions for an unscheduled operation v ∈ O \ R. For
a resource m ∈ M, let us denote by Rm ⊂ R the set of all scheduled operations which require
resource m. A node insertion position can be considered as selecting, for each m ∈ Mv,
one node from Rm after which the node v should be inserted. Overall, including infeasible
ones, there are

∏
m∈Mv
|Rm| different possibilities for choosing an insertion position. Clearly,

1 Note that throughout this section, we denote the node to be inserted by either v ∈ O or oi, j ∈ O, depending
on which notation is more convenient. We use oi, j if its route predecessor and successor nodes oi−1, j and oi+1, j

need to be referred. Otherwise, denoting the node by v facilitates readability.

4.3 Solution Approach 85

it would be too time consuming to enumerate all of them. Thus, we aim at reducing this
set as much as possible without missing reasonable insertion positions. The approach pre-
sented subsequently directly follows the one given in Kis (2003) which allows the efficient
identification of feasible node insertion positions while implicitly avoiding some dominated
insertion positions (dominated in the sense of makespan). The approach of Kis (2003) is
generalized here to consider resource acquisition constraints.

All operations that share resources with the operation v to be inserted are denoted by

Qv :=
⋃

m∈Mv

Rm.

An insertion position for an operation v can be expressed as a partitioning H ⊂ Qv. After
inserting v into the graph G at the insertion position H (i.e. directly after H), there exist paths
from each node in H to v, and conversely, paths from v to each node in Qv \ H.

When inserting an operation v = oi, j ∈ O, no cycles must be introduced and resource
acquisition constraints must be respected. To include these constraints, we start by consid-
ering all nodes that must be directly adjacent to oi, j after its insertion. For this, Kis (2003)
introduces the sets pred(v) ⊂ V and succ(v) ⊂ V which contain all route predecessors and
route successors in so called and-subgraphs. And-subgraphs allow general precedence re-
lations to be considered, e.g., as appearing in resource constrained project scheduling prob-
lems. Though and-subgraphs are not considered in our case, we also use the sets pred(v) and
succ(v) for referring direct predecessor and successor nodes.

Apparently, the set pred(v) contains the route predecessor oi−1, j ∈ V of oi, j, and the set
succ(v) contains the route successor oi+1, j ∈ V of oi, j. Beside these route predecessor and
successor operations, additional nodes are added to prec(v) and succ(v) in order to cope
with resource acquisition constraints. Recall that v ∈ O \R since v is not scheduled yet. Each
resource acquisition constraint can be represented as a tuple (u,w,m) ∈ O×O×M in the sense
that resource m is acquired at operation u and released at operation w. Using this notation,
nodes are added to pred(v) as follows: For each resource acquisition constraint of the form
(v,w,m) with w ∈ R, the resource predecessor u ∈ m−1(w) of the scheduled operation w on
resource m is added to pred(v). The intention of this is to schedule v directly after operation u

on resource m. The insertion of operation v before w is taken into account by adding oi+1, j to
succ(v) since w is equal to or follows after oi+1, j in the route graph of their job. Thus, v will
be scheduled between u and w on m. Conversely, for each resource acquisition constraint of
the form (u, v,m) with u ∈ R, the resource successor w ∈ m(u) of operation u on resource m is
added to succ(v). Denoting the set of all resource acquisition constraints by A ⊂ O ×O ×M,
this leads to the following formal definitions:

pred(v) :=
{
oi−1, j

}
∪
{
u ∈ V

∣∣∣ ∃ w ∈ R ∃ m ∈ M with (v,w,m) ∈ A, u ∈ m−1(w),m ∈ Mu

}
.

succ(v) :=
{
oi+1, j

}
∪ {w ∈ V | ∃ u ∈ R ∃ m ∈ M with (u, v,m) ∈ A,w ∈ m(u),m ∈ Mw} .

To facilitate notation, a reachability relation ≺ ⊂ V ×V is defined which contains (u,w) ∈
V × V if and only if there exists a path from u to w in the conjunctive graph G. The relation
is reflexive, i.e., u ≺ u holds ∀ u ∈ V .

86 Chapter 4: Extended Route and Resource Flexibility in Job-Shop Scheduling

Using this definition, we introduce the sets

Pv = {u ∈ Qv | u ≺ pred(v)}

and
S v = {w ∈ Qv | succ(v) ≺ w} .

Note that Pv ∩ S v = ∅ since G is acyclic. Based on the preceding definitions, let us recall the
following results of Kis (2003) that can be applied to the problem at hand.

Definition 4.3. Kis (2003) A subset H of Qv is called a prefix of v ∈ V if and only if

1. Pv ⊆ H and H ∩ S v = ∅, and

2. x ∈ Qv, y ∈ H, x ≺ y⇒ x ∈ H.

Lemma 4.1. Kis (2003) H ⊂ Qv, v ∈ V, H is an acyclic insertion⇔ H is a prefix of v.

The proof of Lemma 4.1 given in Kis (2003) remains valid in the situation at hand since
it solely brings forward arguments referring to the structure of the conjunctive graph without
relying on edge weights or longest path distances (which are different in our case). In the
following, we define maximum prefixes based on the work of Kis (2003). The definitions
given there have been adapted to the problem at hand, in particular to take into account that
outgoing edges of the same node now can have unequal edge weights. Let us beforehand
introduce the following definitions. The maximum weight of all outgoing edges of a node
u ∈ V is denoted by lu = max(u,w) ∈ E lu,w and the length of a longest path between two nodes
u,w ∈ V is denoted by L(u,w).

Definition 4.4. For a node v ∈ V, its head (or earliest start date) is denoted by

hv = L(0, v).

Definition 4.5. The headspan of a set of operations H ⊂ Qv is defined as

h(H) := max {hu + lu | u ∈ Qv s.t. ∃w ∈ H with u ≺ w} .

Definition 4.6. Kis (2003) A subset H of Qv is called a maximal prefix of v ∈ V if and only if

1. Pv ⊆ H and H ∩ S v = ∅, and

2. H contains all operations x ∈ Qv \ S v with hx + lx ≤ h(H).

Lemma 4.2. Kis (2003) H ⊂ Qv, v ∈ V, H is a maximal prefix⇒ H is a prefix of v.

Proof. Let H be a maximal prefix and let x ∈ Qv, y ∈ H be two operations with x ≺ y. It
follows hx + lx ≤ h(H) by definition of h(H) and thus x ∈ H. Pv ⊆ H and H ∩ S v = ∅ hold by
definition. �

Definition 4.5 has been adapted to the varying edge weights appearing in the problem at
hand. Due to this modified definition, Lemma 4.2, proven by Kis (2003) in its original form,
had to be proven again. Note that the conditions Pv ⊆ H and H ∩ S v = ∅, mean that H lies
between Pv and Qv \ S v in the sense that Pv ⊆ H ⊂ (Qv \ S v). Let us restate in the following
two additional results of Kis (2003).

4.3 Solution Approach 87

Lemma 4.3. Kis (2003) Let H and H′ be maximal prefixes. The following properties hold:

1. H ⊆ H′ if and only if h(H) ≤ h(H′).

2. H = H′ if and only if h(H) = h(H′).

Proof. The proof follows directly the one given in Kis (2003) (px is replaced by lx).

1. First suppose H ⊆ H′. Then h(H) ≤ h(H′) follows by definition. Conversely, suppose
h(H) ≤ h(H′). Let x be any operation in H. Since hx + lx ≤ h(H) ≤ h(H′), it holds that
x ∈ H′.

2. Apply the first part to h(H) ≤ h(H′) and to h(H′) ≤ h(H), the statement follows.

�

Corollary 4.1. Kis (2003) Maximal prefixes are nested, i.e. whenever H � H′ are two

distinct maximal prefixes, either H ⊂ H′ or H′ ⊂ H holds.

Maximum prefixes so far do not take resource acquisition constraints into account. Node
insertion positions need to be chosen such that scheduled resource acquisition constraints
remain satisfied. For this purpose, the following definition is introduced.

Definition 4.7. A subset H of Qv is called an acquisition-aware maximal prefix of v ∈ V if

and only if

1. H is a maximal prefix of v ∈ V, and

2. for each scheduled resource acquiring operation va ∈ R that has a corresponding

scheduled release operation vb ∈ R, it holds that va ∈ H ⇔ vb ∈ H.

Note that acquisition-aware maximal prefixes determine feasible node insertions posi-
tions since they are maximal prefixes by definition. For constant edge weights used in Kis
(2003), it can be shown (see Lemma 3 of Kis (2003)) that always an optimal insertion po-
sition can be found. An interesting research direction is to generalize these findings. Such
a generalization would need to take into account that one node can have edge weights with
unequal weights. In addition, edge weights might change after a node insertion since in our
batch-oblivious approach edge weights can become zero if adjacent operations are processed
in a common batch.

Algorithm Considering only acquisition-aware maximal prefixes for inserting nodes
largely reduces the number of insertion positions to be explored. The number of insertion
positions to be considered for a node is given by the number of acquisition-aware maximum
prefixes ∣∣∣{h ∈ Z

∣∣∣ ∃ maximum prefix H : h(H) = h
}∣∣∣ .

88 Chapter 4: Extended Route and Resource Flexibility in Job-Shop Scheduling

Algorithm 4.3 Compute a set of insertion positions for a node v ∈ G

calculateInsertions(v)
I ← ∅

Pv ← Qv ∩ calculateReachableNodesUsingReverseBFS(pred(v))
S v ← Qv ∩ calculateReachableNodesUsingForwardBFS(succ(v))
H ← Pv

L← h(H)
whi le Qv \ (S v ∪ H) � ∅

A0 ← ∅

do
H ← H ∪ A0

L← max(L, h(H))

// restore max. prefix
H ← H ∪ {w ∈ Qv \ (S v ∪ H) | ∃ u Qv with u ≻ w such that hu + lu ≤ L}

// resource releases that with corresponding acquisitions in H

A0 ← {w ∈ Qv \ H | ∃ u ∈ H,∃ m ∈ M s.t. (u,w,m) ∈ A}

whi le A0 � ∅

I ← I ∪ {H}

L← min
u ∈ Qv \ (S v∪H)

(hu + lu)

re turn I

This number is bounded by the number of nodes contained in the set Qv \(Pv∪S v). Kis (2003)
shows that an algorithm can be provided for iterating all maximum prefixes with a runtime
of (|Qv \ (Pv ∪ S v)| log2(|Mv|)).

In the following, we present an adapted version of the algorithm of Kis (2003) which
returns all acquisition-aware maximal prefixes. It can be implemented by representing the
current insertion position H as an array of |Mv| node references. A node reference can be
represented as an integer providing the index of the node. Pv and S v can also be represented
in this way. Each element of such an array corresponds to one resource m ∈ Mv and refers
to the final node in the sequencing Rm that belongs to H. These node references can be
successively advanced during iteration. Initially, the insertion position is set to Pv and it is
advanced until S v is reached. Each step of the algorithm must make sure that H actually
is an acquisition-aware maximal prefix: If an operation is added to H that acquires a re-
source, the corresponding release operation is also added in order to avoid inserting a node
in between the two. The pseudo-code for this procedure is given in Algorithm 4.3. The com-
plexity of iterating all maximum prefixes could remain (|Qv \ (Pv ∪ S v)| log2(|Mv|)), though
we use an implementation with a complexity of (|Qv \ (Pv ∪ S v)| |Mv|) since we assume the
maximum number of resources per operation to be very small. A forward and a backward

4.3 Solution Approach 89

breadth-first search (BFS) starting from v is needed to determine Pv and S v, which dominates
the complexity. This leads to an overall complexity of O(|E|) for the algorithm. Note that
Kis (2003) proposes further improvements to reduce this runtime by avoiding breadth-first
searches which are not included in our work. We believe exploring their inclusion is also a
promising direction for future research.

R1

R2

R3

R4

u v w

Figure 4.3 – Insertion positions for a node v which requires 4 different resources

Let us summarize again in the following why resource acquisition constraints are cor-
rectly handled by our approach. Resource acquisition aware node insertions need to take
care of two things: First, all resource acquisition constraints in which the node to be inserted
is directly involved must be respected. This was taken care of by adapting the sets prec(v)
and succ(v) accordingly. Second, all correctly scheduled resource acquisition constraints
must remain intact. This is taken care of by using acquisition-aware maximum prefixes
defined in Definition 4.7 for insertion positions. This avoids node insertions between two
operations that are linked by a resource acquisition constraint.

Figure 4.3 provides an example illustrating the search for insertion positions for a node
v ∈ O that requires four resources. The figure illustrates the elements of a conjunctive
graph that are relevant for finding insertion positions—so, most parts of the conjunctive graph
are omitted. R1, R2, R3, and R4 indicate the resource paths in the conjunctive graph of all
resources required by the node to be inserted. The route predecessor of v is denoted by
u ∈ V . The route successor of v is denoted by w ∈ V . The positioning of the nodes on
the x-axis indicates the calculated headspan of each node. Thick dashed lines indicate the
five insertion positions corresponding to maximal prefixes. Grey nodes indicate the sets Pv

90 Chapter 4: Extended Route and Resource Flexibility in Job-Shop Scheduling

and S v which provide the boundaries within which all feasible insertion positions are located.
The intuition is that, H is scanning this range linearly from left to right, starting behind Pv

and ending before S v.

Finally, let us summarize the contents of this section. We have presented an algorithm
for inserting nodes into conjunctive graphs by adapting a method which is proposed in Kis
(2003). It is shown that the proposed insertion method can be extended to take resource
acquisitions into account.

4.3.2 Heuristic Methods

In this section, the elements introduced so far for extended route and resource flexibility in
job-shop scheduling are combined in order to apply and adapt the heuristic approach pre-
sented in section 3.4. Based on the generalized conjunctive graph representation presented
in section 4.2 and the method for efficiently determining node insertion positions presented
in the preceding section 4.3.1, we introduce a neighborhood that can be applied in meta-
heuristic solution approaches. We describe in the following the adaptation of our GRASP
based approach.

Route-Graph-Aware Moves

The move introduced in this section is based on the movable components of a route graph
which are defined in section 4.1.4. The move works in two phases: First, all nodes belong-
ing to a currently scheduled movable component are removed. Second, all nodes belonging
to a movable component are inserted. The movable component that is inserted has to be
an alternative for (or to be identical to) the movable component that was removed. For-
mally, a route-graph-aware move is a tuple (O−,O+,Π) composed of a sequence of nodes
O− =

(
oi, j, . . . , ok, j

)
to be removed, a sequence of nodes O+ =

(
o f , j, . . . , og, j

)
to be inserted,

and a sequence of insertion positionsΠ =
(
π f , . . . , πg

)
. Initially, only the nodes to be removed

have to be scheduled, so O− ⊂ R is required. Depending on whether the move describes a
resequencing or a reassignment, either O− = O+ or O+ ⊂ V \ R has to be fulfilled. Both node
sequences have to be proper movable components. Thus, oi−1, j, ok+1, j, o f−1, j, and og+1, j have
to be separator nodes. Neither O− nor O+ must contain a separator node. We require that
both sets O− and O+ are connected subgraphs (i.e. paths) of the route graph G j.

A move is performed by first removing all nodes in O− and then inserting the nodes O+

(as described in section 4.3.1) at their corresponding insertion positions in Π. The nodes
in O− are removed by replacing their adjacent edges by edges which bride corresponding
predecessor and successor operations. Each node to be inserted has a corresponding insertion
position. Node that the sequencing of insertions is relevant; Each insertion position of a move
refers to the graph obtained by executing all preceding node insertions.

Note that we allow O− = O+ to obtain a unified move which includes both resequencing
moves (where the route selection remains unchanged) and reassignment moves (where a
different path in the route graph is chosen, usually requiring different resources). It is also

4.3 Solution Approach 91

allowed that O− is empty. This allows the construction heuristic to be expressed in terms
of route-graph-aware moves. Recall that, during the execution of route-graph-aware moves,
infeasible schedules appear as long as modifications of route selection are incomplete. Thus,
in the sense of a neighborhood, all modifications which are described by a single move are
considered as one elementary change.

For given sets of nodes O− ⊂ R and O+ ⊂ O to be removed and inserted, the set of fea-
sible insertion positions is determined as follows. First, all nodes in O− ⊂ R are removed.
Then, all possible insertion positions for the nodes in O+ are determined by repeatedly ap-
plying Algorithm 4.3. This is implemented using a variant of an algorithm for calculating
the cartesian product of a given list of sets. If, as in our case, movable components contain
only very few nodes, this simplistic approach is practicable. Note that the first node insertion
can strongly reduce the number of possible insertion positions for the remaining operations
if they share common resources or if resource acquisition constraints are involved. The com-
bined insertion of a fixed sequence of operations has already been considered in the literature
by Kis and Hertz (2003), Gröflin and Klinkert (2007) and Gröflin et al. (2008). It is an inter-
esting direction of future research to incorporate ideas from these papers in order to consider
multiple insertions at the same time in a more efficient manner.

Heuristic Algorithms

In this section, we adapt the solution approach presented in section 3.4. The approach is still
based on the idea of Greedy Randomized Adaptive Search Procedures (GRASP) of Feo and
Resende (1995): Many different starting solutions are created by randomizing a construc-
tion algorithm. Each solution is then independently improved using Simulated Annealing.
Solutions are represented using generalized conjunctive graphs as presented in section 4.2.
Route-graph-aware moves based on the method for inserting nodes presented in section 4.3.1
are used for defining a neighborhood to be used within Simulated Annealing.

In the construction heuristic, again, jobs are first sorted using an objective function de-
pendent sorting criterion as in section 3.4. The heuristic then iterates the sorted list of jobs
and successively inserts the operations of the current job by probing the best insertion posi-
tion. To randomize this greedy construction method, the next job to be inserted is determined
by randomly selecting one of the first Pi elements in the list of unscheduled jobs for a tuning
parameter Pi ≥ 1 that steers perturbation intensity.

Operations are inserted as follows. For each job, we iterate the sections between separa-
tor nodes—starting at the start node of the route graph. We determine the best insertion by
probing all possible insertion positions for all movable components between the current sep-
arator nodes. Insertion positions are determined using the method presented in section 4.3.1.
The best insertion is executed. Then, we continue with the section between the following pair
of separator nodes. To evaluate the best insertion, we rate corresponding partially computed
schedules by determining their objective functions.

Analogously to chapter 3, the Simulated Annealing improvement heuristic uses an in-
tegrated neighborhood which is obtained by combining route-graph-aware moves with the

92 Chapter 4: Extended Route and Resource Flexibility in Job-Shop Scheduling

adaptive algorithm for computing start dates and batching decisions. The adaptions that
were made for both elements are taken into account as described in the preceding part of
this section and in section 4.2. As in chapter 3, the combined result of both modifications is
considered as one single move. If such a move is rejected, all involved changes are reverted
collectively.

To determine a route-graph-aware move in the course of Simulated Annealing, a movable
component of the current conjunctive graph is randomly chosen. If the movable component
is scheduled, its nodes are removed from the graph. Otherwise, all nodes of its scheduled
alternative movable component are removed from the graph. Then, the nodes of the movable
component that had been chosen randomly are inserted. Therefore, all insertion positions
for this movable component are calculated as mentioned before and one of them is chosen
randomly. The Simulated Annealing parameters are the same as in section 3.4. A geo-
metric cooling schedule is used: A temperature T is multiplied by a cooling factor Pc < 1
after each step. Moves are immediately accepted if their objective function value improves
the previous objective function value. Otherwise, schedules are accepted with a probability
of exp(− fn− fn−1

T
). The search is stopped if the best solution did not improve during the preced-

ing Pm iterations. The initial temperature is determined by sampling Ps random moves.

4.4 Numerical Experiments

This section presents numerical experiments to analyze the modeling presented in this chap-
ter and to evaluate the implementation of the solution approach. One objective of this section
is to justify the additional complexity introduced by the route graph based modeling. This
is done by comparing, on a real-world instance, results obtained with our model to those
obtained with a less complex model. In addition, we aim at evaluating the performance of
our approach on instances for a scheduling problem in the photolithography work area for
parallel machines with sequence-dependent setup times and auxiliary resources. The algo-
rithms were run using the same environment as in the numerical experiments presented in
section 3.5, i.e. an Intel Xeon E5-2620 2.1 GHz machine with 6 cores running Microsoft
Windows 7.

4.4.1 Model Complexity

The degree of detail in our modeling induces a considerable complexity. We illustrate po-
tential benefits of the more complex modeling using an instance from a real-world fab of
our industrial partner STMicroelectronics. We compare two schedules: The first one is ob-
tained using the job-shop scheduling model presented in this chapter, with extended route
and resource flexibility. The second schedule is computed using a simpler model based on
a flexible job-shop with multiple resources per operation. In the simpler model, a consistent
resource usage is guaranteed neither for cooling operations including boats, nor for loading
and unloading operations at load ports since only the sequencing of operations in tubes are

4.4 Numerical Experiments 93

TUBE

BOAT 1

BOAT 2

TUBE

BOAT 1

BOAT 2

(a)

(b)

Figure 4.4 – Comparison of schedules obtained by different models

determined and all other resources are neglected. Consequently, the computed start times of
operations may differ from those obtained by the first model. We simulate the performance
of the sequencing determined by the simpler model in the extended model by using the ex-
tended model to compute a schedule with the same sequencing of operations—including
loading, cooling and unloading. Note that batching is not considered in this evaluation.

Figure 4.4 compares the schedules obtained by the two approaches. This extract of a
schedule visualizes the jobs scheduled on a machine with one tube and two boats. Sched-
ule (a) is obtained by the simpler model, Schedule (b) by the model with extended route flex-
ibility. The makespan of the schedule corresponding to the simpler model is 74 hours which
is significantly larger than the makespan of 66 hours obtained with the extended model. This
difference stems from idle periods in the usage of the tube in the simpler model. Those idle
periods are caused by the inefficient assignment of loading, cooling, and unloading opera-
tions to boats. This is because the simpler model neglects those operations.

Note that here the alternating usage of boats is most efficient. However, we do not see how
this observation could lead to a simpler model. One reason is that a job could be processable
by only one of two boats. This example illustrates the relevance of considering internal
components of complex machines for scheduling operations in the diffusion and cleaning
area of a semiconductor manufacturing facility.

4.4.2 Photolithography Instances

Photolithography tools often are the most expensive machines in semiconductor manufactur-
ing facilities and therefore constitute bottlenecks in the fab. For processing an operation on
such a machine, masks are required as auxiliary operations. Transport durations given by a
travel time matrix have to be considered since masks must be transported between machines.
Additionally, photolithography tools involve sequence-dependent times due to temperature
changes. The abilities to consider multiple resources per operation and sequence-dependent

94 Chapter 4: Extended Route and Resource Flexibility in Job-Shop Scheduling

setup families that are given independently for each resource allow us to tackle such prob-
lems. Two resources are required for each operation: The photolithography tool and an aux-
iliary resource which is called mask or reticle. Both types of resources can be modeled by
defining appropriate sequence-dependent setup times. Setup families reflect reticle locations
(i.e. photolithography tools) and recipes used at individual tools.

The scheduling problem with auxiliary resources as presented in Bitar et al. (2016) can
be solved by our approach. Bitar et al. (2016) present a memetic algorithm for this problem.
A comparison of numerical results is given in Table 4.1. Columns “

∑
j∈J w jC j” provide

average total weighted tardiness values over 10 instances and columns “Time (s)” provide
the average runtime for individual instances. We use a runtime of 2 minutes per instance for
all instances. The results show that we obtain very competitive results which improve the
ones given in Bitar et al. (2016). This shows that the algorithm for node insertions based
on the results of Kis (2003) can efficiently handle multiple resources per operation and the
presented generalizations of our approach work well.

Bitar et al. (2016) GRASP

|J|
∑

j∈J w jC j Time (s)
∑

j∈J w jC j Time (s)

10 156 16 156 120

20 526 29 524 120

30 746 60 730 120

40 1385 130 1308 120

50 1840 389 1857 120

70 2462 490 2387 120

90 3743 532 3750 120

100 4134 845 3822 120

120 5861 417 5300 120

150 7125 850 6416 120

200 8755 855 7379 120

Table 4.1 – Results for the instance of Bitar et al. (2016)

4.5 Conclusion

In this chapter, a job-shop scheduling problem with extended route flexibility was introduced
to take internal components of machines in semiconductor manufacturing facilities and their
properties into account. We use the concept of extended route flexibility to be able to ensure
that different subsequent operations use the same resource. This is extended by introducing

4.5 Conclusion 95

resource acquisition constraints that can exclusively reserve a resource between two opera-
tions. We are not aware of any other solution approaches that model resource acquisition
constraints. In addition, the approach can handle multiple resources per operation which
is tackled only by few approaches in the literature. Our approach obtains better results on
industrial instances than simpler modeling approaches. An interesting direction for future
research is the application of the approach to a wider range of instances and areas beyond
semiconductor manufacturing. Resource acquisition constraints appear, for example, in the
scheduling of railway maintenance operations (Ramond et al. (2006)).

We have presented a GRASP based meta-heuristic based on a neighborhood which is in-
duced by an integrated route-graph-aware move. We expect that our results can be improved
by incorporating properties that are already exploited by established methods for the flexi-
ble job-shop scheduling problem. Also, studying other meta-heuristics such as tabu search,
variable neighborhood search or genetic algorithms in combination with the main building
blocks of our approach seems to be interesting.

In this chapter, we evaluated instances for which the makespan or total weighted comple-
tion time were minimized. However, many other objectives are more important in semicon-
ductor manufacturing. So, it would be useful to consider them as well and optimize multiple
criteria. A very important property of machines used in the diffusion area is their batching
capability: They can process multiple lots of wafers at the same time. This can only be
taken into account in the approach if the length of a movable component in the route graph
has exactly length one. A very interesting generalization of the problem can be obtained
by relaxing this limitation. Modeling and solving this is a challenging direction for future
research. Additionally, temporal constraints, in particular maximum time lags, play an im-
portant role in the diffusion and cleaning area. The approach is extended in the following
chapter in order to take them into account.

Chapter 5

Time Constraints in

Complex Job-Shop Scheduling

M aximum time lag constraints limit the to-

tal waiting and processing time between

two operations of the same job. With the reduc-

tion in semiconductor technology scale, “the

ability to handle this complexity efficiently be-

comes more important to overall fab perfor-

mance.” (Jung et al. (2013))

≤ τ

98 Chapter 5: Time Constraints in Complex Job-Shop Scheduling

The preceding parts of this thesis concentrated on the modeling of various machine prop-
erties integrated within a job-shop environment. Chapter 3 presents a complex job-shop
scheduling problem including batching machines and sequence-dependent setup times. In
order to model machines in more detail, chapter 4 generalizes the problem by adding flex-
ibility for the route of a job while allowing multiple resources per operation. This chapter
aims to further extend the problem by including maximum time lag constraints. Maximum
time lag constraints are an important aspect in the diffusion and cleaning area and crucial
for schedules to be applicable in practice. In particular, interleaved maximum time lag con-
straints need to be observed. This is becoming increasingly important with the shrinking
structural sizes of semiconducting devices. The particular importance of this in the diffusion
area is highlighted in Jung et al. (2013), where the authors claim that with the reduction in
semiconductor technology scale, “the ability to handle this complexity efficiently becomes
more important to overall fab performance.”

A review of the literature on maximum time lag constraints in related scheduling prob-
lems is presented in section 1.4.3. Properties of the considered maximum time lags in the
industrial context are described in the problem specification of chapter 2. In particular, sec-
tion 2.3.1 proposes to include time lags as soft constraints. We continue the discussion on the
modeling of maximum time lags in section 5.1 and extend our formal problem description
in section 5.2. We adapt our solution approach in section 5.3 and present related numerical
experiments in section 5.4. A brief version of the contents of this chapter is presented in
Knopp et al. (2016).

5.1 Modeling Time Constraints

Chemical and physical processes in the diffusion and cleaning work area impose maximum

time lag constraints that limit the waiting and processing time between two operations of the
same job. Often, time lags start after cleaning processes where the chemical conditions on
the wafer surface deteriorate over time. Maximum time lags can be adjacent or overlapping
which implies that starting a time lag might implicitly trigger another one. This interleav-
ing of time lags is also called “queue time constraints” in the literature or “time constraint
tunnels” in industrial terminology. Regarding the classification of maximum time lag con-
straints presented in Klemmt and Mönch (2012), the maximum time lags that we consider in
this chapter belong to the most general class that allows overlapping of time lags as well as
time lags between non-adjacent operations.

As defined in the industrial specification in chapter 2, we distinguish between rework-

able and non-reworkable maximum time lags. In case a reworkable maximum time lag is
violated, the lot needs to be reworked. We want to avoid reworking as much as possible, since
it increases the cycle time of the concerned lot and requires additional machine capacity. In
case a non-reworkable maximum time lag is violated, the risk that wafers contained in this
lot are defective increases with the duration of the time lag violation. Additional measure-
ments need to be performed after violations of non-reworkable maximum time lags in order

5.1 Modeling Time Constraints 99

to evaluate wafer quality. Depending on the results of these measurements, wafers might
be scrapped. Scrapping wafers is very expensive, not only due to the loss of the involved
material, but also due to the uselessness of the afore conducted processing steps and delayed
product completion times.

In practice, the scheduler is used in a rolling horizon setting. So, when a schedule is
computed at a certain point in time, several operations of a job might have already been
completed, one could be currently running, and the remaining ones still have to be sched-
uled. Now, consider a maximum time lag whose beginning refers to an operation that has
started in the past and whose ending refers to an operation to be scheduled. Let us call
such maximum time lags initiated time lags. Jobs without initiated time lags can always be
scheduled without any time lag violation since its operations can be arbitrarily postponed.
The canonical schedules introduced in Caumond et al. (2008) suggest a trivial method to
schedule non-initiated maximum time lags in a feasible way. An initiated time lag however
imposes a fixed due date for its end operation. Since maximum time lags can be adjacent or
overlapping, it is possible that also the operations of some non-initiated time lags cannot be
indefinitely delayed. Hence, we cannot guarantee that maximum time lag constraints related
to ongoing jobs can always be satisfied. Though in practice, scheduling decisions are always
needed—even if maximum time lag constraints cannot be satisfied. Therefore, we include
maximum time lags as soft constraints in the sense that we minimize maximum time lag
violations as our primary objective in a lexicographical objective function.

Since we want to minimize time lag violations, we need to quantify the time lag violations
for a given schedule. An initial discussion is given in the industrial specification of the
objective function in section 2.3. For each time lag, a violation severity is introduced. This
is a real number that is zero in case the time lag is satisfied, and greater than zero in case the
time lag is violated. The total maximum time lag violation severity for a schedule is the sum
of the violation severities over all time lags. This sum then makes up the first component
of our lexicographical objective function. We have found a feasible schedule if the total
maximum time lag violation severity is zero.

If a maximum time lag constraint is violated, the corresponding violation severity de-
pends on the reworkability of the time lag and the duration of the delay. Since a lot needs to
be reworked once a reworkable maximum time lag is violated, independently of the duration
of its delay, a constant rework cost is assigned to violated reworkable maximum time lags. In
contrast, the duration of the delay is important for non-reworkable maximum time lags: The
probability that wafers must be scrapped increases with the duration of the maximum time
lag violation. Thus, long delays should be avoided at all times, while smaller ones can rather
be tolerated. Though they propose a linear violation severity, Kohn et al. (2013) describe
the same reasoning in an example with two lots, where they argue that two medium delays
are favored over one small and one large delay. We propose to penalize delays quadratically,
which is a straightforward way to include the cases above. This approach is similar to the
method of least squares which is a standard approach in regression analysis and dates back to
at least Legendre (1805). However, once a maximum time lag delay gets too large, all wafers
contained in the lot most certainly have to be scrapped. Therefore, we bound the violation

100 Chapter 5: Time Constraints in Complex Job-Shop Scheduling

cost imposed by a single time lag by introducing a scrap cost for a lot. This is the maximum
cost that is applied once the violation duration is larger than the given limit. Specifying the
maximum time lag violation severity in this way can be viewed as an estimation of the in-
duced yield loss. Note that it would not make sense to impose a scrap cost more than once
for the same lot. However, we have omitted this in our definition of the time lag violation
severity for the sake of simplicity. In section 5.2, we provide a generalized formulation that
defines the violation severity for both types of maximum time lags in a uniform way.

An additional observation is the following. For schedules with violated time lags, we
know beforehand that some lots have to be reworked or scrapped. Knowing this, it makes no
sense to further continue their processing and it could be reasonable to consider this directly
during the calculation of schedules. The removal of supposedly scrapped lots would free
capacities on related machines and thus could also affect the evaluation of other objective
functions. Some of these effects are partially taken into account in our approach. Since the
delay cost for a single time lag constraint is always bound to a maximum, violated operations
can be delayed to the very end in order to fulfill other maximum time lag constraints. In
practice, directly proposing to scrap valuable lots might hamper the acceptance of a decision
making tool.

In addition to the discussed maximum time lag constraints, minimum time lag constraints

can be given that impose a minimum duration between two operations. They can be included
in a much simpler way and do not introduce infeasible solutions. In our case, we restrict
minimum time lags to adjacent operations. Therefore, they can already be handled by adding
an additional operation between the two concerned operations that has the minimum time lag
duration as its processing duration and does not require any resources.

5.2 An Extension of the Formal Problem Description

This formal problem description extends that of section 4.1 and uses the same notation given
there. Since the problem described in section 4.1 generalizes that of section 3.1, the extended
problem given here is the most general scheduling problem considered in this thesis. This
extension introduces an additional objective function but does not modify any constraints.

Recall that the set of operations for a job j ∈ J is denoted as O j =
{
o1, j, . . . , o|O j|, j

}
. In

addition, let us consider a given set of maximum time lag constraints T ⊂ J × Z4 × R>0. The
components of a time lag (j, k, l, d, γ, c) ∈ T have the following meaning: j ∈ J identifies the
job; k, l ∈ N with 1 ≤ k < l ≤

∣∣∣O j

∣∣∣ identify separator operations ok, j and ol, j ∈ O j; d ∈ N≥0

identifies a maximum time lag duration; γ ∈ N≥0 with γ ≥ d identifies an ultimate time lag
duration; and c ∈ R>0 identifies the cost of a time lag violation. Now consider a feasible
schedule with start dates S i, j ∈ N given for all scheduled operations oi, j ∈ O. For each time
lag τ = (j, k, l, d, γ, c) ∈ T , with a delay Lτ = S l, j − S k, j, its violation severity is defined as

Vτ =

0 if Lτ ≤ d,

c if Lτ > γ,
(Lτ−d)2

(γ−d)2 · c else.

5.2 An Extension of the Formal Problem Description 101

Note that, in cases where the initial operation of a time lag refers to an operation that has
started its processing in the past, we allow k ≤ 0 and assume for notational consistency that
(though the operation is not part of the considered scheduling problem) its start date is still
given by S k, j. Overall, the total maximum time lag violation severity to minimize is defined
as

V =
∑

τ∈T

Vτ.

This definition comprises the cases described in section 5.1. For reworkable lots we have
d = γ, which applies a constant violation cost regardless of the duration of the delay. For
non-reworkable lots we have d < γ, which applies a cost that increases quadratically with
the duration of the delay as long as the delay does not exceed the ultimate duration which
reflects the certain scrapping of the lot. Note that this objective function is not regular, since
advancing an operation that starts a maximum time lag could increase the total maximum
time lag violation severity. Figure 5.1 illustrates the time lag violation cost for both cases.

Time

Violation Cost

d2d1 = γ1
γ2

scrap cost (c2)

rework cost (c1)

Figure 5.1 – Time lag violation cost for a reworkable time lag τ1 and a non-workable time lag τ2

Note that we require time lags to refer to separator operations (which are defined in sec-
tion 4.1.1) as part of the route graph modeling. Since separator operations must be scheduled
in every feasible schedule, we avoid referring to unscheduled operations. This restriction
comes with a caveat. Time lags starting at a separator operation constrain the start date of
its succeeding operation, whereas time lags ending at a separator operation constraint the
start date of its preceding operation. Thus, referencing separator operations might couple
time lags that are actually independent. To tackle this, we can introduce adjacent separator
operations. One is meant to represent the end of its preceding operation, i.e. its start date is
the completion date of its route predecessor operation. The other one is meant to represent
the beginning of its following operation, i.e. its start date is the start date of its route suc-
cessor operation. This representation can handle the conflict without introducing additional
modeling complexity. Figure 5.2 shows an example for both cases. The first graph includes
a separator node c where the time lag τ1 ends and the time lag τ2 starts. In the second graph,
both time lags are independent due to the introduction of two separator nodes c and c′.

102 Chapter 5: Time Constraints in Complex Job-Shop Scheduling

a b c d e

τ1 τ2

a b b′ c c′ d d′ e

τ1 τ2

Figure 5.2 – Two route graphs with and without duplicated separator nodes

5.3 Solution Approach

In this section, we extend the solution approach of the preceding chapters in order to include
maximum time lags as soft constraints in the way it was motivated and defined in the pre-
vious sections. This requires to compute maximum time lag violations and to optimize a
lexicographical objective function instead of a single criterion. We tackle the problem by
extending the batch-oblivious metaheuristic algorithm introduced in chapter 3 and extended
in chapter 4. The proposed extension of the approach computes maximum time lag viola-
tions based on latest start dates of operations. In order to consider lexicographical objective
functions we adopt an aggregation function known from multicriteria optimization into our
approach.

We determine maximum time lag violations based on a computation of latest start dates
that does not take maximum time lags into account. This allows the computational perfor-
mance of the approach to be nearly maintained in terms of the number of moves explored
per second. Maintaining the computational performance is necessary since, in the industrial
instances at hand, only a few minutes are available for computing schedules. Admittedly, we
cannot expect this approach to work out well for all possible instances, in particular ones with
tight maximum time lags. However, we believe it is it worthwhile to explore this approach
since it offers an apparent extension of the batch-oblivious approach and a baseline for more
elaborate algorithms to be developed. The usage of latest start dates is additionally motivated
by the fact that, in the considered industrial instances, most time lags are not tight and many
do end at the final operation of a job. In comparison to earliest start dates, latest start dates
minimize the time between the first operation and the final operation of each job. In addition,
machine utilization is supposed to be very high in the industrial setting. Thus, “deliberate”

5.3 Solution Approach 103

waiting times introduced to observe maximum time lags would decrease machine utilization
and therefore would generate undesirable solutions. Still, latest start dates also introduce
“deliberate” waiting times, although they are introduced in a way that avoids to deteriorate
regular objective functions that depend on the completion times of jobs. For these reasons,
we base the calculation of violation severities on latest start dates of operations. We see this
as a promising starting point that can be further explored by future research. Section 5.3.1
demonstrates that the calculation of latest start dates in a batch-oblivious conjunctive graph
cannot be directly based on longest path distances. An adapted algorithm is provided to
calculate latest start dates for batch-oblivious conjunctive graphs.

We decided to adapt the GRASP based approach by shifting from a mono-criterion objec-
tive function to a lexicographical objective function. Recall that the insertion based construc-
tion heuristic described in section 3.4 requires only that (partial) solutions can be compared
pairwise. Since the considered lexicographical orderings are also total orderings, pairwise
comparisons remain possible and no changes need to be made to the construction heuris-
tic. The shift is more difficult for Simulated Annealing since differences between objective
function values need to be calculated. We tackle this by introducing an aggregation function
known from multicriteria optimization. Section 5.3.2 details the inclusion of a lexicograph-
ical objective function into our approach. Finally, section 5.3.3 introduces a supplementary
objective function that aims at guiding the search towards solutions with less severe maxi-
mum time lag violations.

5.3.1 Latest Start Dates in Batch-Oblivious Conjunctive Graphs

The computation of latest start dates presented here is based on the earliest start dates and
batching decisions obtained by the integrated algorithm presented in chapter 3. There, each
operation starts as early as possible while respecting the sequencing and assignment decisions
inherent in the given conjunctive graph. Edge weights indicating batching decisions are a
result of this procedure. Earliest start dates might incorporate slack, i.e. some operations
could be postponed without negatively impacting the given regular objective function. Latest
start dates delay operations in order to remove slack. In the following, we describe how the
computation of latest start dates can be adapted to batch-oblivious conjunctive graphs.

Algorithm 5.1 Compute latest start dates S for a given graph G and earliest start dates S

computeLatestStartDates (G = (V = O ∪ {0, ∗} , E), S)
S v ← ∞ (∀ v ∈ V)
f o r v ∈ O ∪ {∗}

S v ← S v

f o r v ∈ computeReverseTopologicalOrdering (G \
(
O ∪ {∗}

)
)

f o r (v,w) ∈ out(v)

S v ← min
(
S v, S w − lv,w

)

104 Chapter 5: Time Constraints in Complex Job-Shop Scheduling

0 ∗

a b

c d

1

2

1

0

2
1

0

0 2
0

1

1

Figure 5.3 – Conjunctive graph for two jobs with two operations per job scheduled on two machines

{0} {∗}{a, c}

{b}

{d}

1
2 1

0
2

1

0
2

0

1

1

Figure 5.4 – Quotient graph of the conjunctive graph in Figure 5.3

Let us introduce the following notation. Recall that the earliest start date S v of a sched-
uled operation v ∈ O can be obtained by determining the length L(0, v) of a longest path
from the artificial start node 0 to node v (see section 3.2). Let us now denote the latest

start date of an operation v ∈ O by S v and the set of the final operations of all jobs as
O = {o ∈ O | ∃ j ∈ J with o = o|O j|, j}. For all final operations of jobs v ∈ O, we maintain

S v = S v. In the absence of batching machines, longest paths in the conjunctive graph allow
latest start dates to be calculated for all operations oi, j ∈ O j as S i, j = S |O j|, j − L(oi, j, o|O j|, j).
Algorithm 5.1 provides the pseudocode of an algorithm that computes latest start dates in
linear time for the conjunctive graph of a scheduling problem without batching machines.

The computation of latest start dates in Algorithm 5.1 is based on longest paths and re-
quires all dependencies to be included in the graph. The invariant introduced in section 3.2.2
is only designed for the computation of earliest start dates and not encoded in the structure
of the graph. Thus, in the presence of batching machines, Algorithm 5.1 cannot be directly
used to compute latest start dates in batch-oblivious conjunctive graphs. A counterexample
is provided in Figure 5.3. There, a batch-oblivious conjunctive graph is given that repre-
sents a schedule with two jobs and two machines. Job 1 that has release date 1 consists
of the operations a and b, and job 2 that has release date 0 consists of the operations c

and d. The processing durations are equal to 2 for operations a and c, and equal to 1 for
operations b and d. Operations a and c are processed in a batch on the first machine (red

5.3 Solution Approach 105

dashed arcs), thus the corresponding edge weight is zero. For earliest start dates, we have
S a = S c = L(0, a) = L(0, c) = 1. The final operation of job 1 can start at S b = L(0, b) = 3.
The final operation of job 2 can start at S d = L(0, d) = 4. However, longest paths in this
graph cannot be used to compute latest start dates: Although a and c are supposed to start at
the same time, we have S a = S b − L(a, b) = 1, but S c � S d − L(c, d) = 2.

Algorithm 5.1 requires that all dependencies are encoded in the structure of the graph.
As shown before, this is not the case for batch-oblivious conjunctive graphs. A batch-aware
conjunctive graph, as presented in section 3.2, would be suitable. However, its additional
nodes would consume additional memory and computation time. To obtain an algorithm that
can run directly on a batch-oblivious conjunctive graph, we describe in the following the
quotient graph of a batch-oblivious conjunctive graph and its application to the situation at
hand. The idea is to find a topological ordering of the batch-oblivious conjunctive graph that
respects all dependencies of the quotient graph. An algorithm that computes latest start dates
during a graph traversal of the batch-oblivious conjunctive graph can then be developed.

A quotient graph is a known concept from graph theory. Definitions can be found in e.g.,
Gustin (1963), or Schulz (2013). A quotient graph Gq = (Vq, Eq) is defined for a partitioning
of the nodes of a graph. In our case, let O = B1 ∪ B2 ∪ · · · ∪ Bb be a partitioning of the
operations such that each subset Bi ⊆ O corresponds to all operations that are processed in
a common batch on the same machine. The nodes of the quotient graph then are given by
Vq = (

⋃b
i=1 {Bi}) ∪ {{0} , {∗}} ⊆ 2V . There exists an edge between two nodes Bi and B j in

the quotient graph if and only if there exists a corresponding edge in the original conjunctive
graph, i.e. (Bi, B j) ∈ Eq ⇔ ∃ (u, v) ∈ E s.t. u ∈ Bi, v ∈ B j. The definition of edge weights
is consistent between both graphs since batches are composed of operations that have equal
processing times and setup families. The edges that are removed in the quotient graph are
edges between operations of the same batch. These edges have an edge weight of zero.
Figure 5.4 shows the quotient graph of the conjunctive graph in Figure 5.3.

Since all operations of the same batch are represented in the same node, no inconsisten-
cies between their start dates can arise in the quotient graph. All edges that represent relevant
route and resource dependencies are maintained. Thus, longest path distances in the quotient
graph can be used to determine latest start dates. This is an interesting conceptual insight, but
does not directly lead to an efficient implementation. We use this concept to calculate latest
start dates directly on the existing batch-oblivious conjunctive graph: A graph traversal on

the batch-oblivious conjunctive graph is performed that emulates the topology of the corre-

sponding quotient graph. To obtain a node ordering that is suitable for such a traversal, we
define topological orderings that are consistent between the original graph and the quotient
graph. Intuitively speaking, this means that the topological ordering on G also respects all
dependencies imposed by the quotient graph Gq.

In the following, we are given a graph G = (V, E), a partitioning
⋃b

i=1 Bi = V of its nodes
into batches, and the resulting quotient graph Gq = (Vq, Eq). Additionally, we assume that
the processing durations of all operations processed on batching machines are greater than
zero. This means that, for each edge (v,w) ∈ E such that v ∈ Bi, we have lv,w = 0 ⇒
w ∈ Bi ∨ |Bi| = 1. We denote by the topological rank of a node its position within a given
topological ordering.

106 Chapter 5: Time Constraints in Complex Job-Shop Scheduling

Definition 5.1. A topological ordering ≺ ⊂ (V × V) of G is called consistent between G

and Gq if and only if ∀ Bi ⊂ V, ∀ u, v ∈ Bi,∀ x ∈ V \ Bi such that (v, x) ∈ E, then u ≺ x.

Looking at the example in Figure 5.3, (0, a, b, c, d, ∗) is a topological ordering that is not
consistent between the given graph and its quotient graph (Figure 5.4). The reason is that b

is positioned before c, although a and c are in the same batch and there is an edge (a, b). This
means that the node b is visited before the batch {a, c} has been entirely visited. In contrast,
the topological ordering (0, a, c, b, d, ∗) is consistent between both graphs.

Lemma 5.1. Let ≺ ⊂ V × V be a topological ordering of G with ∀ u, v ∈ V such that u ≺ v it

follows L(0, u) ≤ L(0, v). Then, ≺ is consistent between G and Gq.

Proof. Assume that ≺ is not consistent between G and Gq. Thus, there exist Bi ⊂ V, u, v ∈ Bi,
x ∈ V \ Bi such that (v, x) ∈ E and x ≺ u. Since ≺ is a topological ordering, we have v � u

and thus lv,x > 0 since the processing duration of a batch cannot be equal to zero. Because
(v, x) ∈ E and x � Bi, then L(0, x) > L(0, v) since the processing duration of v is greater
than zero. With u ≻ x, we have L(0, u) ≥ L(0, x). It follows that L(0, u) > L(0, v), which
contradicts u, v ∈ Bi. �

Lemma 5.2. For a given topological ordering ≺ ⊂ (V×V), the total ordering ⊏ ⊂ (V×V) that

is obtained by sorting V lexicographically, first by earliest start date (i.e. L(0, v)), second by

topological rank based on ≺, is a topological ordering that is consistent between G and Gq.

Proof. First, we show that ⊏ is a topological ordering of G. Let u, v ∈ V be nodes such that
u ⊏ v. This implies L(0, u) ≤ L(0, v) by definition of ⊏. There cannot exist a path from v to u

with L(v, u) > 0 since this would imply L(0, u) > L(0, v). Thus, if there exists a path from u

to v, it must be of length zero and thus L(0, u) = L(0, v). In this case, no path from v to u

can exist since u ≺ v due to the second lexicographical sorting criterion. Thus, the ordering
is topological. From the definition of ⊏ it follows directly that if u, v ∈ V such that u ≺ v,
then L(0, u) ≤ L(0, v). Thus, with Lemma 5.1, ⊏ is a topological ordering that is consistent
between G and Gq. �

Lemma 5.2 allows to traverse a batch-oblivious conjunctive graph as if it were its quotient
graph. This is applied in Algorithm 5.2. Instead of iterating over all outgoing edges of a
single node, Algorithm 5.2 iterates over all outgoing edges of all nodes belonging to the
same batch. The ordering according to Lemma 5.2 (which is reversed here) guarantees that
the latest start dates of successor operations have been calculated before. When the first node
of a batch is visited, the latest start date of its batch is calculated and stored for each node that
belongs to the batch. Note that the subset Bv ⊂ V is introduced in the pseudocode only for
notational clarity. In the actual implementation, since the traversal uses a reverse topological
ordering of G, the nodes of Bv can be obtained by following resource predecessor edges until
a non-zero weighted edge is reached.

The algorithm includes the computation of a topological ordering which can be done
in O(|E|). In an actual implementation, the topological ordering obtained during the inte-
grated start date and batching algorithm can be reused. Since the algorithm visits every edge

5.3 Solution Approach 107

Algorithm 5.2 Compute latest start dates S for a given batch-oblivious conjunctive graph

computeLatestStartDates (G = (V = O ∪ {0, ∗} , E), S)
S v ← ∞ (∀ v ∈ V)
f o r v ∈ O ∪ {∗}

S v ← S v

π← computeReverseTopologicalOrdering(G)
π← reverse_stable_sort(π, L(0, v)) // Stable sort, descending by earliest start date
f o r v ∈ π with S v � ∞

Bv ← Set of operations in the same batch as v

f o r u ∈ Bv

f o r (u,w) ∈ out(u)

S v ← min
(
S v, S u, S w − lu,w

)

f o r u ∈ Bv

S u ← S v

once, this caching does not reduce the complexity of the algorithm. Sorting nodes by ear-
liest start date requires O(|V | · log(|V |)). The overall runtime is O(|E| + |V | · log(|V |)). So,
a drawback of this method is the additional factor of log(|V |) due to the sorting of the nodes.
However, the magnitude of the number of nodes is at most 10 000 in all practical instances
that we consider. Since sorting such an array stored in contiguous memory is fast and the
construction of a duplicated quotient or batch-aware graph can involve larger constant fac-
tors, we use Algorithm 5.2 in our method. In addition, not constructing any auxiliary graph
avoids additional implementation complexity.

Evaluating the total maximum time lag severity as defined in section 5.2 for given lat-
est start dates is straightforward. As proposed in the literature, backward edges are added
between the nodes involved in a maximum time lag. These edges can be stored in a sepa-
rate list that is iterated once. Maximum time lag constraints that have already started can be
treated as regular maximum time lag constraints by modeling them as edges that end at the
artificial start node of the conjunctive graph. Note that we consider these additional edges as
supplementary data—the original batch-oblivious graph remains untouched.

5.3.2 Lexicographical Objective Functions

The GRASP based solution approach presented in the preceding chapters considers a mono-
criterion objective function. There, for the set of all feasible solutions Π (including partially
constructed solutions), the objective function f assigns to a solution s ∈ Π an objective
function value f (s) ∈ R. As motivated earlier, in order to include the total maximum time
lag violation severity, we now want to lexicographically consider a multi-criteria objective
function f : Π → Rn instead. Since also additional objective functions are of interest, we

108 Chapter 5: Time Constraints in Complex Job-Shop Scheduling

consider the general case f : Π → Rn instead of restricting the approach to the particular
case f : Π → R2. Other objective functions are proposed in the industrial specification
presented in section 2.3. An additional objective function to guide the search is introduced
in section 5.3.3. In the following, we describe the adaptation of our GRASP based approach
in order to include lexicographical objective functions.

A general overview of multi-criteria optimization for scheduling problems is given in
T’kindt and Billaut (2001). To extend our method, we apply ideas from the multi-criteria
approach of Bitar (2015) for a parallel machine scheduling problem with auxiliary resources
arising in the photolithography area of semiconductor manufacturing facilities. Pfund et al.
(2008) propose a multi-criteria approach that takes makespan, average cycle time, and total
weighted tardiness into account. They use a desirability function to combine objectives.
This function is based on two values selected for each criterion: The first value specifies
a maximum allowable value while the second value specifies a goal value. Their solution
approach is based on the modified shifting bottleneck procedure of Mason et al. (2002). The
idea to compare allowable and goal values shares similarities with the usage of the nadir and
utopian points used in the approach of Bitar (2015). The augmented weighted Tchebycheff
norm used in Bitar (2015) was introduced in the context of multicriteria optimization by
Steuer and Choo (1983). Dächert et al. (2010) propose an adaptive augmented weighted
Tchebycheff method to determine problem dependent parameters for this metric. We use the
augmented weighted Tchebycheff norm in this work while closely following the approach
proposed in Bitar (2015). Several adjustments for the problem at hand are discussed in this
section.

Formally, a relation � ⊆ Rn × Rn is called a lexicographical ordering if A � B ⇔

A ≺ B ∨ A = B with (a1, . . . , an) ≺ (b1, . . . , bn) ⇔ ∃ m ≤ n : ∀ i < m : ai = bi ∧ am < bm.
Since such relations meet the criteria for antisymmetry, transitivity and totality, these lexico-
graphical orderings are also total orderings. This allows pairwise comparisons of objective
function values. Thus, no changes are required for the construction algorithm (described in
section 3.4) where the objective function is only involved in pairwise comparisons of (par-
tial) solutions. Within Simulated Annealing, during iteration k, the objective functions values
f (sk−1) and f (sk) of two solutions sk−1 ∈ Π and sk ∈ Π are compared. Depending on the re-
sult of the comparison, the move leading from solution sk−1 to solution sk is accepted or not.
If f (sk) � f (sk−1), then the move is improving or constant and gets immediately accepted.
Again, no changes are needed in the algorithm. However, if the move is not immediately ac-
cepted, it is accepted with a probability of exp(−∆

T
), where ∆ = f (sk) − f (sk−1) measures the

difference of the objective function values and T is the current temperature value. We need
to rethink this situation, since ∆, that was a scalar in the mono-criterion case, now becomes a
vector. To cope with this, as proposed in Bitar (2015), we introduce an aggregation function

a : Rn → R to calculate the difference between the objective function values of two solutions
as ∆ = a(f (sk)) − a(f (sk−1)) ∈ R.

In the following, we discuss the definition of a suitable aggregation function. We start
by providing definitions known from multi-criteria optimization that can be found in the
literature, e.g. T’kindt and Billaut (2001). We slightly adapt the notation for consistency.

5.3 Solution Approach 109

Let us denote by fi : Π → R the projection of the objective function f to its i-th component.
Note that we assume w.l.o.g. that we minimize the given objectives.

Definition 5.2. A point (x1, . . . , xn) ∈ Rn dominates a point (y1, . . . , yn) ∈ Rn if and only if

(∀ i ∈ {1, . . . , n} : xi ≤ yi) ∧ (∃ i ∈ {1, . . . , n} : xi < yi).

Definition 5.3. A solution x ∈ Π is called a weak Pareto optimum (or weakly efficient) if

and only if ∄ s ∈ Π such that fi(s) < fi(x) ∀i ∈ {1, . . . , n}.

Definition 5.4. A solution x ∈ Π is called a strict Pareto optimum (or strictly efficient) if and

only if ∄ s ∈ Π such that f (s) dominates f (x).

Definition 5.5. A point (rI
1, . . . , r

I
n) ∈ Rn is called ideal if and only if for each i ∈ {1, . . . , n} it

holds rI
i = mins∈Π fi(s).

Definition 5.6. A point (rU
1 , . . . , r

U
n) ∈ Rn is called an utopian point if and only if it dominates

the ideal point.

Definition 5.7. Let P ⊂ Π be the set of all strict Pareto optimal solutions. A point (rN
1 , . . . , r

N
n)

is called nadir (or anti-ideal point) if and only if rN
i
= maxs∈P fi(s) ∀ i ∈ {1, . . . , n}.

A known aggregation function in the context of multi-criteria optimization is the weighted
Tchebycheff metric. It determines the weighted distance to a reference point r ∈ Rn using
weights λ ∈ Rn and the maximum norm defined as L∞ : Rn → R, (x1, . . . , xn) �→ maxn

i=1 |xi|.
The weighted Tchebycheff metric is defined as

aλ,r : Rn → R,

aλ,r(x1, . . . , xn) �→ ‖ λ1(x1 − r1), . . . , λn(xn − rn) ‖∞ .

As pointed out in Bitar (2015), Wierzbicki (1986) describes the following property of the
weighted Tchebycheff metric which is based on results of Dinkelbach (1971) and Bowman
(1976): For a reference point r ∈ Rn that dominates or is equal to the ideal point, there
exist weights λ ∈ Rn for all Pareto optimal solutions x ∈ Rn such that x is an optimal
solution of a minimization problem that has aλ,r as its objective function. This is an advantage
over aggregation functions that are solely using a weighted sum since, used as an objective
function, aggregation functions cannot generate all Pareto optimal solutions.

A drawback of the weighted Tchebycheff metric is that it does not break ties between
solutions that are equal regarding the objective that dominates the maximum norm L∞ but
different regarding other objectives. This is tackled by the weighted augmented Tchebycheff

metric which is defined as
aλ, r, ρ : Rn → R,

aλ, r, ρ(x1, . . . , xn) �→ ‖ λ1 (x1 − r1) , . . . , λn (xn − rn) ‖∞ + ρ
n∑

k=1

λk |xk − rk| .

This metric was introduced by Steuer and Choo (1983) and aims at avoiding solutions that
are non-strict Pareto optima. In order to apply this metric within the Simulated Annealing

110 Chapter 5: Time Constraints in Complex Job-Shop Scheduling

metaheuristic (as a part of the considered GRASP based metaheuristic approach), the param-
eters of this metric need be determined. In order to do this, a preprocessing step is performed
once before the GRASP based algorithm is started. The following paragraphs describe how
the reference point, the weights and the parameter ρ are determined in order to parametrize
the metric.

Determination of the reference point r ∈ Rn As pointed out in Wierzbicki (1986), utopian
points can be used as reference points in the weighted augmented Tchebycheff metric. The
preprocessing procedure determines a (not necessarily feasible) utopian solution that has
objective function values which yield an utopian point. This utopian point consists of lower
bounds for the individual objective functions. In order to determine an utopian solution (i.e.
lower bounds), we relax all resource constraints in the conjunctive graph. So, this conjunctive
graph consists only of edges related to the routes of the job. To select routes, in the sense of
the route graphs defined in section 4.1, for each job, the shortest path from the start separator
operation of the job to the end separator operation of the job is chosen. In other words, each
time the machine with the fastest processing time is selected. Note that the release dates of all
jobs are still modeled in this graph. Then, computing earliest start dates in this graph yields
a schedule without waiting periods. A computation of the objective function values for such
schedules leads to lower bounds for all regular objective functions. The construction of this
graph also leads to lower bounds for the objectives that were derived from maximum time lag
constraints. Thus, we obtain objective function values that either represent an ideal point or
an utopian point. They are then used as the reference point within the weighted augmented
Tchebycheff metric.

Determination of the weights λ ∈ Rn The objective functions that we consider do not use
the same unit of measurement. In the industrial case at hand, the total maximum time lag
violation severity and weighted flow factors cannot be directly compared. Typical regular
criteria cannot be directly compared as well. This observation leads to the insight that the
weights of the metric essentially should normalize the values to be compared. For this, we
follow again the approach of Bitar (2015) who proposes to cope with this by estimating
the nadir (see Definition 5.7). For the scheduling problem at hand, which is different from
that considered in Bitar (2015), we estimate the nadir as follows. During preprocessing,
we determine a set of sample solutions S ⊂ Π by performing random moves on a starting
solution. Note that the same set is also used to calibrate Simulated Annealing (it is |S | = Ps,
for the parameter Ps introduced in section 3.4). Then, the set Q ⊆ S is defined to determine
the sampled solutions that are best with respect to at least one considered objective function.
This is given by

Q =

n⋃

i=1

argmin
x∈S

fi(x).

An estimation of the nadir is then determined by the point rN ∈ Rn which is defined by

rN
i = max

s∈Q
fi(s) ∀ i ∈ {1, . . . , n} .

5.3 Solution Approach 111

In addition, we are given weights c ∈ Rn
>0 that allow to manually weight the objective func-

tions. In most cases, these manual weights can be set to one. They allow the search to be
manually enforced towards certain objectives, e.g. for instances where the estimations of the
utopian point and the nadir yield weak results. Based on this, the weights λ ∈ Rn, used in the
weighted augmented Tchebycheff metric, are determined as

λi =
ci

rN
i
− ri

(∀ i ∈ {1, . . . , n}),

where rN ∈ Rn is the estimation of the nadir and r ∈ Rn is the reference point. This formula
slightly generalizes the definition used in Bitar (2015) which focuses on the case n = 2. This
choice of λ ∈ Rn normalizes the different objective function values.

Determination of the parameter ρ We apply ideas presented in Bitar (2015) also for
determining the parameter ρ. In the weighted augmented Tchebycheff metric, the L∞ norm
should always be the dominating term to guarantee that the weighted sum is only relevant for
breaking ties between solutions that are equally rated by the L∞ norm. Thus, the parameter ρ
must be chosen sufficiently small. With

∑n
i=1 λi |xi − ri| ≤ n ·maxn

i=1 λi |xi − ri| < 2 · n ·maxn
i=1 λi |xi − ri|

(for each x ∈ f (Π) except the ideal point for which aλ, r, ρ(rI) might be equal to zero), we
conclude that fixing the parameter to ρ = 1

2·n does always satisfy the desired property, i.e. the
L∞ norm is always the dominating term in the weighted augmented Tchebycheff metric.

5.3.3 A Guiding Objective Function

In this section, we introduce an additional objective function to guide the search towards
solutions with less severe maximum time lag violations. This objective function is intended
to be used as the third component in a lexicographic objective function. As earlier, the
first component is given by the total maximum time lag violation severity and the second
component is given by the original objective function (which is the weighted flow factor in
our industrial setting).

This guiding objective function measures total maximum time lag exceedance and is de-
fined as follows. Consider a feasible schedule with start dates S i, j ∈ N given for all scheduled
operations oi, j ∈ O. As earlier, we obtain for each time lag τ = (j, k, l, d, γ, c) ∈ T its delay
L = S l, j − S k, j. We define the exceedance of a maximum time lag as Eτ = max(0, L − γ)2.
Overall, the total maximum time lag exceedance of a schedule is defined as

E =
∑

τ∈T

Eτ.

In contrast to the actual objective function that acts as a soft constraint, this function is
unbounded regarding the delay. Therefore, lots with violated maximum time lag constraints

112 Chapter 5: Time Constraints in Complex Job-Shop Scheduling

tend to be moved forward which might help to obtain more quickly solutions with less vio-
lated constraints. The motivation for making it quadratic is analogous to that given for the
maximum time lag violation severity.

5.4 Numerical Results

The algorithms were run using the same environment as in the numerical experiments pre-
sented in section 3.5, i.e. an Intel Xeon E5-2620 2.1 GHz machine with 6 cores running
Microsoft Windows 7. Section 5.4.1 presents results for industrial instances from a real-
world semiconductor manufacturing facility. Section 5.4.2 presents results for the job-shop
scheduling instances with maximum time lags of Caumond et al. (2008). For experiments
on the academic instances, we used the same parameter settings as in section 3.5: A cooling
factor of Pc = 0.99999, a number of samples Ps = 100, a maximum number of iterations
Pm = 100 000, a temperature percentile of Pt = 5 %, and a perturbation intensity of Pi = 5.
For the industrial instances, the only difference in the parameter settings is the cooling factor,
which is decreased to Pc = 0.9995.

5.4.1 Industrial Instances with Maximum Time Lags

In the following, we present numerical results for instances extracted from the Manufactur-
ing Execution System (MES) of a real-world semiconductor manufacturing facility over the
course of two months. Each instance reflects the state of the diffusion and cleaning area at
a given moment in time. The objective function considered here is the Weighted Flow Fac-

LB Initial O1 O2 O3

WFF TVS WFF TVS WFF TVS WFF TVS WFF TVS

1 13.07 0.00 16.80 10.73 14.84 30.21 15.85 0.00 15.62 0.00

2 11.95 0.00 13.22 6.81 13.01 18.34 13.02 0.00 13.03 0.00

3 16.73 5.00 18.41 60.04 17.93 99.94 18.03 5.00 17.99 5.00

4 13.44 0.15 15.16 15.04 14.59 16.56 14.64 0.15 14.63 0.15

5 16.24 10.14 18.09 21.32 17.45 52.47 17.60 10.14 17.64 10.14

6 28.57 0.00 31.45 9.35 31.17 32.79 31.39 0.00 31.56 0.00

7 24.84 0.00 27.30 0.15 26.06 42.88 26.10 0.00 26.12 0.00

8 13.91 16.47 16.91 86.63 15.73 107.59 16.35 25.52 17.00 25.73

9 12.21 13.87 14.71 58.19 13.71 124.05 15.58 20.19 14.75 20.12

10 21.43 22.50 23.76 22.99 22.84 103.11 23.99 23.24 23.34 22.60

Table 5.1 – Objective function values for industrial instances

5.4 Numerical Results 113

1

2

3

4

5

6

7

8

9

10

0.0%

0.0%

0.0%

0.0%

0.0%

0.0%

0.0%

0.0%

0.0%

0.0%

rWFF

10.7

6.8

55.0

14.9

11.2

9.3

0.1

70.2

44.3

0.5

dTVS

-11.7%

-1.6%

-2.6%

-3.8%

-3.5%

-0.9%

-4.5%

-7.0%

-6.8%

-3.9%

rWFF

30.2

18.3

94.9

16.4

42.3

32.8

42.9

91.1

110.2

80.6

dTVS

-5.7%

-1.5%

-2.1%

-3.4%

-2.7%

-0.2%

-4.4%

-3.3%

5.9%

1.0%

rWFF

0.0

0.0

0.0

0.0

0.0

0.0

0.0

9.1

6.3

0.7

dTVS

-7.0%

-1.4%

-2.3%

-3.5%

-2.5%

0.3%

-4.3%

0.5%

0.3%

-1.8%

rWFF

0.0

0.0

0.0

0.0

0.0

0.0

0.0

9.3

6.3

0.1

Initial O1 O2 O3

dTVS

Figure 5.5 – Comparison of three objective functions for 10 industrial instances

tor (WFF) defined in the industrial problem specification in section 2.3.2. As described in this
chapter, we also consider the Total time lag Violation Severity (TVS) defined in section 5.2
and the Total time lag Violation Exceedance (TVE) defined in section 5.3.3. We consider
three different combined objective functions. The first, denoted as O1 (WFF), refers to a
mono-criterion objective function that minimizes the weighted flow factor alone, ignoring
maximum time lag constraint violations. The second, denoted as O2 (TVS, WFF), refers to
a lexicographic objective function that minimizes the total time lag violation severity before
minimizing the weighted flow factor. The third, denoted as O3 (TVS, WFF, TVE), is an ex-
tension of O2 that minimizes the total time lag violation exceedance as the third component
of a lexicographical objective function in order to guide the search.

Detailed results are provided in table 5.1. Column LB refers to the lower bound obtained
during the computation of the utopian solution (see section 5.3.2). Column Initial refers to
a solution computed by the construction heuristic (see section 3.4) using O3 (TVS, WFF,
TVE) as objective function. The remaining columns refer to solutions obtained by running
the GRASP based metaheuristic for the three objective functions O1, O2, and O3, allowing a
computation time of 5 minutes per instance. The sub-columns WFF and TVS provide values
for the weighted flow factor and the total maximum time lag violation severity of the best
solutions, respectively.

An alternative representation of the same results is given in Figure 5.5. It aims at illustrat-
ing the relation between the weighted flow factor and the total maximum time lag violation
severity. The weighted flow factors of optimized solutions are compared to the weighted
flow factors of the initial solution. Using initial solution as a baseline is motivated by the
assumption that our construction heuristic obtains solutions with objective functions values
that are close to the results obtained by dispatching rules (see section 3.5.3). So, the columns
rWFF (relative weighted flow factor) show the deviation in percent from the weighted flow
factor obtained by the construction heuristic. The columns dTVS show the total maximum
time lag violation severity minus the corresponding lower bound. Thus, if dTVS is equal to

114 Chapter 5: Time Constraints in Complex Job-Shop Scheduling

zero, then the solution is optimal regarding the total maximum time lag violation severity.

Note that the results obtained by the construction heuristic are strongly improved. Opti-
mizing the original objective function (O1) alone yields solutions that are up to 11.7% better.
However, these solutions strongly violate the maximum time lag constraints. The results for
O2 show that the original objective function value can still be strongly improved if maximum
time lag constraints are taken into account. Note that, when manually looking at the solutions
for instances 8 and 9, we can see that, for the total maximum time lag violation severity, the
gap to the lower bound is entirely caused by weaknesses in the lower bounds. The results for
O3 show that using the guiding objective function can improve solutions. Since maximum
time lag constraints are satisfied as much as possible while obtaining high quality solutions,
we conclude that the approach is practical and applicable for the considered industrial setting.

O3 E-O3 E-Initial

WFF TVS WFF TVS WFF TVS

1 15.62 0.00 17.03 8.05 16.86 27.18

2 13.03 0.00 13.10 0.00 13.29 6.84

3 17.99 5.00 18.12 60.45 18.53 110.00

4 14.63 0.15 14.99 32.44 15.25 52.85

5 17.64 10.14 17.93 20.94 18.17 52.18

6 31.56 0.00 31.98 17.12 31.49 68.17

7 26.12 0.00 26.48 0.80 26.87 38.59

8 17.00 25.73 18.44 125.67 16.44 206.73

9 14.75 20.12 14.25 82.08 14.14 155.17

10 23.34 22.60 23.56 74.22 23.28 96.07

Table 5.2 – Comparison using earliest and latest start dates

The results presented so far are based on latest start dates. To see if the effort of computing
latest start dates is really necessary, it is interesting to compare results based on earliest start
dates with those based on latest start dates. This comparison can be found in Table 5.2.
Columns O3 refer again to the objective function (TVS, WFF) using the GRASP based meta-
heuristic approach with latest start dates. Columns E-O3 refer to the same objective function
and solution approach, but time lag violation severities are calculated based on earliest start
dates. Columns E-Initial refer to results obtained by our construction heuristic. The results
clearly show that latest start dates yield better results. The earliest start date based algorithm
never obtains better results for the ten industrial instances. Moreover, in many cases, the
Total time lag Violation Severity (TVS) is much worse with earliest start dates. Although
it is not as significant, the Weighted Flow Factor (WFF) is also worse. We believe that this

5.4 Numerical Results 115

is because the approach with earliest start dates, which first tries to minimize TVS (as the
primary criterion), is not very successful on this criterion. Thus, it does not have enough time
to explore solutions that improve WFF or solutions with good WFF are discarded since their
TVS is poor.

5.4.2 Job-Shop Scheduling Instances with Maximum Time Lags

A job-shop scheduling problem that considers maximum time lags between adjacent opera-
tions of the same job is investigated by Caumond et al. (2008). For their computational evalu-
ation, they extend the job-shop instances of Lawrence (1984) (which optimize the makespan),
by adding maximum time lag constraints. A tightness factor is fixed in order to generate
maximum time lag constraints with durations derived from the processing durations of the
original instances. We refer to these job-shop scheduling instances with maximum time lags
as JSTL instances in the following. In contrast to our approach, maximum time lags are
treated as hard constraints in the JSTL instances. However, if we obtain solutions with a total
maximum time lag violation severity of zero, the results for the makespan can be compared.
In our numerical experiments, we focus on the instances la06, la07, la08, because they are
the only ones for which Caumond et al. (2008) provide numerical results for all tightness
factors between 0.5 (very tight) and 10 (relaxed). Recall that these instances do not consider
batching machines and the assignment to a machine is fixed for each operation (i.e. flexibility
is not considered).

In order to solve these instances, we introduce maximum time lag constraints (see sec-
tion 5.2) with a violation cost of one, a maximum duration equal to the duration in the JSTL
instances, and an ultimate duration that is equal to the duration in the JSTL instances as well.
Thus, the total maximum time lag violation severity counts the number of violated maxi-
mum time lags. We consider two different objective functions. The first objective function,
denoted by O4 (TVS, M), lexicographically optimizes first the total maximum time lag vi-
olation severity, and second, the Makespan. The second objective function, denoted by O5

(TVS, TVE, M), optimizes a lexicographical objective function with three components: (1)
the total maximum time lag violation severity, (2) the total maximum time lag violation ex-
ceedance, (3) the makespan. All weights of these objectives (w.r.t. the aggregation function
in section 5.3.2) are equal to one, except for the total maximum time lag violation exceedance
in the second objective function, which is weighted by two.

Table 5.3 provides numerical results for these instances. We provide results for our con-
struction heuristic run using both objective functions (C-O4 and C-O5). For our GRASP
based metaheuristic approach, we allow a computation time of two minutes per instance and
also provide results for both objective functions (G-O4 and G-O5). We compare these re-
sults to the literature: Columns MA refer to a memetic algorithm presented in Caumond
et al. (2008). Columns BB refer to a branch-and-bound approach presented in Artigues
et al. (2011). Columns SSPR refer to a scatter search and path-relinking approach presented
in González et al. (2015). Column Opt shows the known optimum solutions provided in
González et al. (2015). For the results from the literature, the makespan (sub-columns M)

116 Chapter 5: Time Constraints in Complex Job-Shop Scheduling

Opt BB MA SSPR C-O4 C-O5 G-O4 G-O5

M M t (s) M t (s) M t (s) M V M V M V M V

la06 0.5 1003 1471 526 1153 545 1006 14 1182 15 1162 15 1342 2 1780 0

la06 1 926 1391 524 1086 1117 926 18 1163 15 1197 9 1154 1 1184 0

la06 3 926 1391 524 1101 405 926 7 1095 8 1126 7 926 0 926 0

la06 10 926 927 707 926 14 926 4 933 1 933 1 926 0 926 0

la07 0.5 953 1430 529 1132 573 982 12 1145 12 1328 13 1159 2 1604 0

la07 1 896 1065 754 1009 532 906 16 1046 12 1085 12 984 0 1040 0

la07 3 890 1079 659 975 477 890 6 1056 7 1082 7 890 0 890 0

la07 10 890 1123 518 890 39 890 6 1059 4 1003 4 890 0 890 0

la08 0.5 984 1454 529 1124 1199 1014 16 1265 13 1278 14 1526 1 1234 0

la08 1 892 1052 587 1013 541 897 13 1054 15 1303 10 1017 1 1143 0

la08 3 863 1052 587 1013 544 863 6 1003 9 1129 12 863 0 863 0

la08 10 863 863 260 863 17 863 5 1097 2 1060 3 863 0 863 0

Table 5.3 – Results for instances of Caumond et al. (2008)

and the runtime in seconds (sub-columns t(s)) is given. For the results obtained by our ap-
proaches, the makespan (sub-columns M) and the number of maximum time lag violations
(sub-columns V) is given. Only the GRASP based approach that includes the guiding ob-
jective function O5 is able to find feasible results for all instances. We obtain good results
for instances that do not include very tight maximum time lags. For the tightness factors 3
and 10, optimal solutions are found. For instances with tighter maximum time lags, results
are not as good. We believe that, for tight maximum time lags, computing latest start dates
as performed in our approaches is not sufficient and a more elaborate method for computing
start dates is needed. The results of this comparison to dedicated solution approaches support
the usage of latest start dates in our approach, where we want to deal with complex but not
extremely tight maximum time lag constraints for the industrial use case.

5.5 Conclusion

Maximum time lag constraints, which are crucial for the industrial application at hand, can
be included in our approach as soft constraints. We assign individual violation costs to each
maximum time lag constraint and distinguish between reworkable and non-reworkable max-
imum time lags. This chapter shows the extensibility of our scheduling approach: Additional
objective functions which quantify maximum time lag constraints are included and lexico-
graphically ordered multi-criteria objective functions can be optimized.

5.5 Conclusion 117

The lexicographic approach described in section 5.3.2 is based on a suitable aggregation
function. We believe that it can be extended towards a true multi-criterial approach: In-
stead of maintaining exactly one lexicographically best solution, we could maintain a Pareto
frontier containing a set of solutions.

We have seen that the presented approach works well for the considered industrial in-
stances and yields results that are applicable in practice. However, the approach needs to be
improved if instances with tight maximum time lag constraints should be considered. For
this, maximum time lag constraints should be somehow considered during the computation
of start dates. In the literature, usually negative weighted backward edges are introduced and
taken into account during the calculation of longest paths.

We have shown how latest start dates can be directly computed for batch-oblivious con-
junctive graphs. Though the topology of the batch-oblivious conjunctive graph does not
reflect all dependencies related to batching decisions, no auxiliary graph needs to be con-
structed. In addition, it would be interesting to see numerical results based on earliest start
dates. Note in this context that, in the considered industrial setting, start dates often are only
important to determine performance indicators. In practice, only the obtained sequencing de-
cisions are provided to the Manufacturing Execution System (MES). Actual start dates might
then differ from the start dates calculated by a scheduler due to inaccuracies in the data and
simplifications in the modeling. Thus, the practical influence of the computational method
to determine start dates might be small in practice—at least as long as no artificial waiting
periods for lots available in front of machines must be prescribed.

Chapter 6

Conclusion and Perspectives

I n this thesis, an optimization approach for

scheduling jobs in the diffusion and cleaning

area of a semiconductor manufacturing facility

has been developed which is applicable in prac-

tice. The approach can handle a broad range of

scheduling problems and can be further gener-

alized.

Two Gantt Charts, showing an initial solution and an optimized solution of the

instance rdata-la37 from Hurink et al. (1994).

120 Chapter 6: Conclusion and Perspectives

In this thesis, models and optimization methods are presented for the rich set of con-
straints and objectives that we observe in the diffusion and cleaning area of a semiconductor
manufacturing facility. We have seen that the underlying properties of this specific appli-
cation area lead to very general scheduling problems. Meta-heuristic solution approaches
based on a novel batch-oblivious conjunctive graph representation are proposed in this work.
Section 6.1 summarizes the main contributions of this thesis and section 6.2 provides future
research directions.

6.1 Conclusion

The complex industrial scheduling problem, which is specified in detail in chapter 2, imposes
a rich set of constraints that can barely be tackled all at once. Therefore, this thesis starts by
considering complex job-shop scheduling problems which cover the core characteristics of
our industrial scheduling problem. The main property is the presence of batching machines
in a job-shop scheduling environment. As preceding approaches known from the literature,
we tackle the problem using a heuristic approach based on conjunctive graphs. We intro-
duce a novel batch-oblivious representation which helps to reduce the structural complexity
of batch-aware conjunctive graphs. Together with an integrated batch-oblivious move, an
integrated computation of start dates and batching decisions during a traversal of the graph is
proposed to adaptively “fill up” underutilized batches. The batch-oblivious representation en-
ables an integrated neighborhood where batching, sequencing and assignment decisions are
interleaved. We believe that the batch-oblivious representation facilitates the generalization
of the approach towards additional constraints. The presented representation and neighbor-
hood is independent of the meta-heuristic which is using it. We apply these building blocks
in a GRASP based heuristic approach which can be straightforwardly parallelized—an im-
portant property to exploit the continuously increasing parallelism of modern CPUs. Good
numerical results for a wide range of different benchmark instances validate the performance
of our approach.

In order to increase the detail of our scheduling model, we integrate the management of
internal machine components by extending the route and resource flexibility of the complex
job-shop scheduling problem. Finding an appropriate conjunctive graph representation for
this generalization is facilitated by our batch-oblivious approach. To model furnaces in detail,
a resource acquisition constraint is introduced that exclusively reserves a resource between
two operations of the same job. We show that an efficient approach for inserting nodes
presented by Kis (2003) can be further generalized to include these constraints. We show that
the batch-oblivious approach also works in case multiple resource per operation are required.
Good numerical results are obtained for benchmark instances from the photolithography area.

Maximum time lag constraints, which are crucial for the industrial application at hand,
can be included in our approach as soft constraints. In order to obtain a modeling that is
applicable in practice, individual violation costs are assigned to each maximum time lag
constraint while distinguishing between reworkable and non-reworkable maximum time lags.

6.2 Perspectives 121

Additional objective functions which quantify maximum time lag constraints are included.
Lexicographically ordered multi-criteria objective functions are optimized in order to cope
with infeasible schedules.

Overall, we have demonstrated that our batch-oblivious approach is extensible by im-
plementing various generalizations. All presented constraints can be used in arbitrary com-
binations, which allows a rich set of scheduling problems to be tackled. We believe that
further extensions are practicable. Therefore, we indicate future extensions in the following
section for improving the performance of our approach and taking additional constraints into
account.

6.2 Perspectives

Though we already obtain good numerical results, we believe that a huge potential remains
for further improving the performance of our approach. Approaches for speeding up the
computation of start dates by only partially updating start dates that were previously com-
puted are proposed by Michel and Van Hentenryck (2003), Pearce and Kelly (2007) and
Sobeyko and Mönch (2016). The idea is to recalculate, after each move, only those start
dates that might have changed instead of updating the start dates of every scheduled node
in the conjunctive graph. We assume that a major gain in the number of moves performed
per second can be achieved by combining this ideas with our approach. This is in partic-
ular promising for large problem instances since the expected gain grows with the number
of nodes in the graph. Another idea to improve our approach is a combination with the
ideas presented in Dauzère-Pérès and Paulli (1997) and García-León et al. (2015) for flexible
job-shops. Dauzère-Pérès and Paulli (1997) and García-León et al. (2015) avoid the run-
time cost of performing a move by evaluating its effects on the objective function without
actually performing the move. Regarding our batch-oblivious approach, it seems promis-
ing to further explore more advanced node selection strategies in order to improve the ones
proposed in section 3.3.4. For scheduling instances with large movable components, ex-
ploring improvements of the exhaustive search proposed in section 4.3.2 in order to insert
entire movable components more efficiently could be worthwhile. The construction heuristic
which is used in the GRASP based approach probes a large number of node insertion po-
sitions. Since this can be slow for large instances, replacing it by a faster approach seems
promising. An idea would be to use a randomized version of a dispatching rule (e.g., BATC
(Mönch et al. (2013))) in order to accelerate the construction phase and thus to leave more
time for the improvement phase (i.e. Simulated Annealing). Though we have shown that our
approach works well for industrial instances and yields results that are applicable in practice,
we observed difficulties for instances with tight maximum time lag constraints. It would be
interesting to explore how maximum time lag constraints can be taken directly into account
during the calculation of start dates.

Beside the concrete improvement ideas for our current approach presented in the pre-
ceding paragraph, exploring a wider range of ideas might be interesting as well. Our most

122 Chapter 6: Conclusion and Perspectives

important contribution, the batch-oblivious approach, is not bound to a GRASP based meta-
heuristic. GRASP has strong diversification and intensification mechanisms but lacks ele-
ments of mutual learning that can be found in path-relinking approaches or genetic algo-
rithms. Thus, it would be interesting to explore the performance of our batch-oblivious
method in combination with other meta-heuristic approaches. Let us emphasize that the cur-
rent performance of our approach is already suitable for real-world instances in the diffusion
and cleaning area. However, a significant improvement in performance would enable us to
tackle larger instances and new application areas: We could get closer to the ability of opti-
mizing the scheduling of lots through multiple work areas or even considering an entire fab
at once, although the latter might not be relevant for multiple reasons, in particular because
the planning horizon to be considered would be too long.

A comprehensive industrial problem specification is presented in chapter 2. Though the
most crucial properties of this specification are included in the models and solution methods
proposed in this thesis, there remains a feature gap between the industrial specification and
our solution methods. It would be valuable to close that gap and take further modeling de-
tails into account. Several properties of the industrial problem can be tackled by the extended
route and resource flexibility described in chapter 4. It would be very interesting to further
apply and analyze the approach by performing extended numerical experiments. Also, an
experimental study for analyzing a reasonable modeling granularity would be very interest-
ing. Many properties can be taken into account by combining the available constraints as
proposed in section 4.1.5. In order to model furnaces in detail, it would be necessary to
combine the models presented in chapters 3 and 4 in a more general way. Since the pro-
posed route graph modeling only takes batching machines into account if the length of the
movable component is one, a relaxation of this limitation is required to consider movable
components of arbitrary lengths. The obligatory boat standby durations in furnace machines
could be tackled by an adaptation of edge weights. However, this adaptation seems to be
non-trivial. A possible approach could (again) be to dynamically adapt edge weights during
graph traversals. This would require to maintain a state for each furnace machine that is
updated whenever a concerned operation is traversed. Utilizing the number of moves per-
formed in the planning horizon as an additional objective function would be useful. Though,
this might be difficult to combine with the previously proposed partial graph updates since
then the number of moves in the planning horizon must be partially updated as well.

An interesting long-term perspective could be to integrate scheduling approaches with re-
lated decisions making systems which have been described in chapter 1. Integrating tool risk
management decisions, concerning inspection and control procedures, with scheduling might
help to choose machines with less risk already during scheduling. Similarly, the integration of
a machine health indicator into the scheduling approach can reduce risk by avoiding “risky”
machines for important lots. A machine health indicator is an index that represents the state
of the machine at a given point in time. Note that such approaches already have been pro-
posed in the literature (Doleschal et al. (2015), Kao et al. (2016)). It might be also interesting
to consider the scheduler as a tool that could be used in order to make or verify qualification
management decisions following the ideas described in Johnzén et al. (2008). Qualifica-

6.2 Perspectives 123

tion management decisions are needed to manage machine capabilities. They determine
the machines that are prepared to gain production abilities by performing time-consuming
preparatory setups and tests.

Applying the approach presented in this thesis to other work areas of a fab seems to
be practicable and relevant. We already have shown that scheduling problems in the photo-
lithography area can be solved efficiently by our method. Since the implantation area contains
equipment with similar characteristics it might be promising and practicable to be applied
there as well. Another interesting future direction is to analyze how the approach can be ap-
plied to other areas beyond semiconductor manufacturing. Resource acquisition constraints
appear, for example, in the scheduling of railway maintenance operations (see Ramond et al.
(2006)). Another important extension for such cases would be the consideration of time
window constraints for machines. This is generally not necessary in semiconductor manu-
facturing since a fab operates 24 hours per day. However, in many other industries this is not
the case. Time windows can also be used for modeling other use cases, e.g. a machine down
time due to a planned maintenance activity. In many applications more than one optimization
criterion is of interest. Since the lexicographic approach described in section 5.3.2 is based
on an general aggregation function, we believe that this approach allows a straightforward
extension towards a true multi-criteria approach: Instead of maintaining exactly one lexico-
graphically best solution, we could maintain a Pareto frontier containing a set of solutions.

Appendix A

Résumé en français

A.1 Introduction

Le sujet de cette thèse est l’ordonnancement dans une usine de fabrication de semi-con-
ducteurs ; plus précisément dans un atelier spécifique qui impose un ensemble de con-
traintes variées. Nous présentons des modèles et des méthodes d’optimisation qui prennent
en compte les nombreux contraintes et objectifs qui sont présents dans cette zone de travail.
Bien que ce soit un domaine d’application spécifique, nous allons voir que les propriétés
sous-jacentes conduisent à des problèmes d’ordonnancement généraux.

L’électronique numérique a connu une énorme croissance au cours des 50 dernières an-
nées. Depuis la prédiction de Moore (1965), qui déclare que le nombre de transistors des
microprocesseurs sur une puce de silicium double tous les deux ans, les applications sont
devenues omniprésentes : les ordinateurs, les capteurs, les centres de données, l’électronique
automobile et les dispositifs portables. Aujourd’hui, les appareils électroniques sont partout.
La fabrication de semi-conducteurs reste le processus de base qui permet toutes ces appli-
cations. La Figure A.1 montre le chiffre d’affaires du marché mondial de semi-conducteurs
fournis par la Semiconductor Industry Association (SIA (2015)). De 1995 à 2015, les ventes
mondiales ont augmentées de 50 à 337 milliards de dollars américains par an, soulignant
l’importance et la taille de ce secteur.

La fabrication de semi-conducteurs est un secteur à forte intensité capitalistique et avec
une concurrence féroce. Des temps de production très longs, des durées de vie des produits
courtes et des coûts de fabrication élevés sont les facteurs clé de ce secteur. Les machines
et l’espace en salle blanche sont très chers. Une seule machine coûte entre 100 000 et 40
millions de dollars américains (voir par exemple le rapport annuel d’ ASML (2016)). Des
centaines de machines peuvent être présentes dans une seule usine de semi-conducteurs (fab).
Quirk and Serda (2001) rapportent que près de 75% de l’investissement d’une fab est dépensé
sur les machines. Une seule fab peut coûter jusqu’à 5 milliards de dollars américains. Par
conséquent, une utilisation élevée de l’équipement est un facteur de succès important dans
ce secteur. Des nombreuses stratégies pour réduire les coûts de production ont déjà été ex-
ploitées. De nos jours, la réduction des coûts opérationnels par une amélioration des systèmes
de décision est considérée comme une possibilité d’amélioration prometteuse. D’un point de
vue académique, ce secteur offre également des défis intéressants. La complexité observée

126 Appendix A: Résumé en français

1990 1995 2000 2005 2010 2015

Year

0

50

100

150

200

250

300

350

in
b

il
li

o
n

s
o
f

U
.S

.
d

o
ll

a
r
s

Figure A.1 – Chiffre d’affaires du marché mondial de semi-conducteurs, SIA (2015)

dans la fabrication de semi-conducteurs est unique. De surcroît, les résultats obtenus peuvent
être transférés sur d’autres domaines d’applications de la recherche opérationnelle.

La Fabrication de Semi-Conducteurs

Cette section décrit le processus de fabrication de semi-conducteurs pour permettre au lecteur
de mieux comprendre les décisions de planification à différents niveaux de décision. La fabri-
cation de semi-conducteurs et ses principes physiques et chimiques sous-jacents sont décrits
dans Quirk and Serda (2001). Des descriptions du processus de production en se concen-
trant sur la planification de la production et la prise de décision sont données par Uzsoy et al.
(1992) et Mönch et al. (2013). En se basant sur ces sources, cette section résume le processus
de planification et démontre l’utilité de l’ordonnancement dans un atelier. Comme les plan-
ificateurs d’un atelier doivent prendre en compte l’information et les décisions des ateliers
voisins, il est important de comprendre les relations impliquées entre différents ateliers.

Les plaquettes brutes sont le matériau de base qui est utilisé pour produire des circuits
intégrés (également connus sous le nom de puces). Une plaquette est une tranche mince
du matériau semi-conducteur. Elle est obtenue à partir d’un lingot monocristallin. A partir
d’une seule plaquette, des centaines ou des milliers de puces microélectroniques peuvent être
produites. Ceci dépend de la taille des puces et du diamètre de la plaquette. Le diamètre des
plaquettes standards a augmenté au fil du temps. Des diamètres de 200 mm ou 300 mm sont
les plus utilisés actuellement. Un circuit intégré est constitué d’une plaquette revêtue d’une
structure en 3 dimensions : des conducteurs, des semi-conducteurs et des isolants. Cette
structure est créée en ajoutant successivement des couches sur la plaquette. Pour chacune de
ces couches, plusieurs étapes de traitement sont nécessaires. Une seule puce peut contenir
jusqu’à 40 couches. Un très grand nombre d’étapes de traitement est donc nécessaire, jusqu’à

A.1 Introduction 127

700 étapes peuvent être nécessaires pour une seule plaquette. Une seule étape de production
peut prendre entre quelques minutes et plusieurs heures. La production d’une seule plaquette
peut prendre jusqu’à 3 mois.

La fabrication de semi-conducteurs est divisée en une étape front-end et une étape back-

end. La Figure A.2 fournit un aperçu des principales phases de ces deux étapes. La partie
centrale du front-end est la fabrication des plaquettes. Ceci est la partie la plus exigeante
technologiquement car ici les plus petites structures des puces sont créées. La fabrication
des plaquettes a lieu dans des grands bâtiments à l’intérieur des salles blanches afin d’éviter
la contamination de la plaquette. Les exigences par rapport à la concentration des particules
dans la salle blanche, peuvent être moins strictes dans les fabs modernes où les plaquettes
sont conservées dans des conteneurs spécialisés qui assurent un environnement propre. Les
détails de cette phase de production sont expliqués plus loin dans cette section. A la fin du
front-end, la phase de détection à sonde teste électriquement chaque puce sur la plaquette afin
d’identifier les puces qui sont éligibles pour le montage. Les sites de production du front-end
sont généralement situés dans les pays hautement industrialisés. Les étapes de production
du front-end représentent environ 75% de la durée de production entière. Pendant toutes les
phases du front-end, les puces restent unies sur la même plaquette afin de bénéficier d’un
traitement commun.

Dans l’étape du back-end, les plaquettes sont ensuite découpées en puces distinctes et
l’assemblage des puces individuelles y a lieu. Ceci comprend la liaison, qui attache les puces
à leurs emballages ou à d’autres puces, et le moulage, qui entoure la puce avec ses connex-
ions dans un carter de protection. En plus, la pose des couvercles étanches, des inspections
optiques, des essais environnementaux et d’autres étapes peuvent y avoir lieu. A ce stade la
fabrication des circuits intégrés sur la plaquette est déjà terminée et les conditions de salle
blanche sont moins strictes. Les usines du back-end sont principalement situées dans les pays
à faible salaire. La phase de test final comprend des tests électriques et des tests de stress
thermique qui sont effectués dans des fours.

Front-End Back-End

Fabrication Sélection Assemblage Tests finaux

Figure A.2 – Les étapes de fabrication de semi-conducteurs

Dans le front-end, les structures de chaque plaquette sont construites couche par couche.
Les différentes étapes de traitement nécessaires pour produire une seule couche sont effec-
tuées dans des ateliers spécialisées. Ces ateliers se composent de machines avec des aptitudes
similaires. Les différentes étapes de traitement sont exécutées plusieurs fois afin de créer
toutes les couches. Ceci génère des flux rentrants car chaque plaquette visite les différentes
zones de travail plusieurs fois. L’interaction entre les zones de travail est représentée dans la

128 Appendix A: Résumé en français

Figure A.3. La liste suivante décrit les zones de travail en utilisant le classement de Mönch
et al. (2011) :

Diffusion/Oxydation/Déposition Le processus de diffusion disperse le matériau sur la sur-
face de la plaquette. Le processus d’oxydation fait développer une couche d’oxyde
sur la surface d’une plaquette nettoyée. Ces couches sont ensuite modifiées par les
étapes de traitement ultérieures dans le but de développer des semi-conducteurs con-
nectés (par exemple, des transistors, des résistances ou des diodes) qui constituent le
circuit intégré. Les étapes de diffusion et d’oxydation peuvent avoir des durées de
traitement élevées de 12 heures ou plus. Ces étapes sont exécutées à haute tempéra-
ture dans des fours horizontaux ou verticaux. Ces fours traitent les plaquettes par lot
et peuvent traiter plusieurs lots en parallèle. Le processus de dépôt pose des couches
conductrices ou isolantes sur la surface d’une plaquette. Ces couches servent à des
fins différentes : soit elles deviennent une partie de la structure soit elles sont utilisées
comme des couches auxiliaires qui sont retirées par la suite. Cet atelier contient égale-
ment des machines de nettoyage, qui décontaminent les plaquettes en éliminant les
particules indésirables.

Photolithographie Le processus de photolithographie transfère le schéma de câblage sur la
surface d’une plaquette en faisant passer une lumière ultraviolette à travers un masque.
Les motifs résultants sont d’abord temporaires et sont ensuite rendus permanents lors
des étapes ultérieures de gravure ou d’implantation ionique. Pour la photolithogra-
phie, la machine de photolithographie ainsi qu’un masque (ou réticule) sont néces-
saires. Cet atelier contient les machines les plus chères dans une fab (une machine
peut coûter jusqu’à 40 millions de dollars américains) et représente souvent un goulot
d’étranglement dans le processus de fabrication.

Gravure Le processus de gravure enlève les matières superflues de la surface de la plaque-
tte. La gravure peut être avec ou sans masque. La gravure avec masque enlève le
masque qui a été posé sur la plaquette pendant la photolithographie. La gravure sans
masque réduit l’épaisseur de la plaquette et traite toute sa surface. Ils existent deux
types de gravure : la gravure à sec expose la surface de la plaquette à un plasma ; la
gravure humide enlève de la matière par des solutions chimiques.

Implantation Le processus d’implantation introduit des dopants (par exemple, des impuretés
désirées ou des ions) dans la structure cristalline du matériau semi-conducteur afin de
modifier sa conductivité. Cette étape peut suivre l’étape de photolithographie ou de
gravure.

Aplanissement Le processus d’aplanissement utilise un polissage mécano-chimique afin
d’aplatir la surface de la plaquette. L’aplanissement réduit les différences d’épaisseur
sur une plaquette. Il est effectué avant chaque ajout d’une nouvelle couche. Cette étape
évite que l’inégalité de l’épaisseur s’accumule sur plusieurs couches. Elle évite donc
divers problèmes liés à l’aspérité, tels que des problèmes de focalisation de la lentille
en photolithographie.

A.1 Introduction 129

Figure A.3 – Aperçu des étapes de fabrication de plaquettes (Mönch et al. (2011))

Les machines des différentes zones de travail montrent des caractéristiques différentes :
certaines fonctionnent avec un traitement par lot, d’autres imposent des temps de réglage,
et encore d’autres permettent un chevauchement des opérations. Un ensemble de machines
identiques dans un même atelier est appelé un groupe d’outils. Normalement, 25 plaquettes
sont regroupées au sein d’un support qui peut soit être un contenant à ouverture frontale
(Front Opening Unified Pod, FOUP) dans les fabs de 300 mm et les fabs modernes de
200 mm.

Pour assurer la qualité des plaquettes produites, des procédures d’inspection et de mesure
sont effectuées entre les différentes étapes de production sur des lots échantillonnés. Si le
contrôle détecte une plaquette endommagée, cette plaquette peut être retravaillée dans de
rares cas et doit être détruite dans la plupart des cas. Les dégâts peuvent avoir différentes
causes telles que la contamination, les défauts des machines ou la violation des contraintes
de temps. Les contraintes de temps limitent la durée entre deux étapes de traitement et
proviennent des dégradations chimiques ou physiques. Les contraintes de temps gagnent en
importance avec la réduction des dimensions des structures. Les techniques de métrologie
virtuelle visent à surveiller et à améliorer la qualité de la production par des moyens indirects.
Les données sont collectées par des capteurs à partir des machines de production et ensuite
analysées à l’aide de méthodes statistiques afin de déduire des défaillances des machines ou
des problèmes de qualité. Une mesure de qualité importante est le pourcentage de puces sur
une plaquette qui a été réalisé correctement. Ce pourcentage est appelé le rendement de la
plaquette.

130 Appendix A: Résumé en français

La Planification et la Prise de Décision

La planification et la prise de décision dans la fabrication de semi-conducteurs comportent
plusieurs niveaux de décision : de la chaîne logistique globale à l’ordonnancement sur les
postes de travail. Les champs d’application des différents niveaux de décision diffèrent par
rapport à l’horizon temporel, au détail de modélisation et à la granularité des décisions à
prendre. Un aperçu des niveaux de décision et des relations entre eux est donné dans Silver
et al. (1998) et Stadtler and Kilger (2000). Le positionnement de l’ordonnancement dans les
chaînes logistique est fourni par Rohde et al. (2000). Dans Chien et al. (2011), les défis de
planification sont discutés d’un point de vue de la fabrication de semi-conducteurs. Mönch
et al. (2013) distinguent les décisions au niveau de l’entreprise, au niveau de l’usine, et au
niveau du poste de travail. Dans la suite, nous présentons un aperçu des décisions qui doivent
être prises à chacun de ces niveaux.

La planification au niveau de l’entreprise comprend la planification à long terme pour
un horizon de temps de plusieurs trimestres ou années. Les décisions à ce niveau sont
stratégiques et sont prises pour des grandes mailles de temps qui sont habituellement des
semaines ou des mois. L’envergure de cette planification est la chaîne logistique du four-
nisseur au client ou la chaîne logistique globale au sein de l’entreprise. Elle est basée sur la
demande anticipée (les prévisions). Le plan directeur de production détermine les quantités
à produire par maille de temps et par fab (ou sous-traitant). D’autres problèmes de plani-
fication à long terme englobent les décisions d’investissement pour les sites de production
ou l’équipement ainsi que la gamme de produits sur le long terme. Ponsignon and Mönch
(2012) décrivent et proposent un plan directeur de production qui détermine le nombre de
plaquettes à produire par produit, par fab et par maille pour une demande et une capacité
donnée.

La planification au niveau de l’usine comprend la planification à moyen terme pour un
horizon de temps de quelques semaines ou mois. Son champ d’application sont les activ-
ités au sein d’une fab et les décisions sont basées sur l’état actuel de la fab et la demande
confirmée. Les décisions à ce niveau sont tactiques et définissent le plan de production et la
planification des stocks au niveau de la fab. Mönch et al. (2011) traitent le cas avec plusieurs

commandes par lot où les plaquettes d’une commande ne remplissent pas entièrement le sup-
port (FOUP ou cassette). L’objectif est de regrouper des plaquettes de commandes différents
dans un même support pour augmenter l’utilisation des machines. Les décisions de lance-

ment déterminent le moment quand la production d’un lot est lancée afin d’assurer son flux
constant et uniforme à travers de la fab. Ce but peut être obtenu par différentes mesures. Une
façon est d’imposer pour chaque ordre de fabrication les dates de lancement et les échéances
par atelier traversée (à plusieurs reprises). Cette approche définit à partir d’un délai client
globale les échéances par atelier pour chaque ordre de fabrication. Une autre approche pour
obtenir un écoulement uniforme est l’introduction d’objectifs de production. Chaque étape
de production est affectée à une famille de produits. Les objectifs de production imposent
pour chaque zone de travail, le nombre d’étapes par famille à exécuter dans une période de
temps donnée. Les deux approches considèrent la fab de manière globale ; les délais, les ob-
jectifs ou les priorités (poids) qui en découlent sont ensuite utilisés comme données d’entrée

A.1 Introduction 131

pour le dispatching ou l’ordonnancement. Dans ce contexte, les contraintes de temps telles
que décrites dans Klemmt and Mönch (2012) s’avèrent important car ils peuvent s’étendre
sur différentes zones de travail. Les décisions de gestion de qualifications sont nécessaires
pour gérer les capacités des machines. Une opération ne peut pas être effectuée sur toutes
les machines. Les machines doivent être préparées en effectuant des réglages et des es-
sais préparatoires pour acquérir de la capacité de production. Cette préparation est appelée
qualification et peut être très longue. Par conséquent, les décisions de qualification peuvent
avoir un impact important comme indiqué dans Johnzén et al. (2011) et Rowshannahad et al.
(2015).

La planification au niveau de l’atelier comprend la planification à court terme sur un
horizon de temps de quelques heures. Les décisions à ce niveau sont opérationnelles et sont
prises pour des mailles de temps très courtes de quelques secondes ou minutes. Les systèmes
de décisions doivent réagir rapidement afin de prendre des décisions à court terme rapide-
ment. Les décisions d’ordonnancement décident quelle machine traite un lot, quels lots sont
regroupés dans un même lot plus grand, et dans quel ordre les lots sont traités sur la machine
qui leur a été affectée. En pratique, les règles de dispatching sont encore souvent utilisées
pour prendre ce genre de décisions. Ces règles considère souvent uniquement la prochaine
opération à traiter. Beaucoup de règles de dispatching élaborées ont été développées et
analysées (voir Mönch et al. (2013)). Par contraste, l’ordonnancement prend en compte
un horizon de temps plus long et crée un plan de production détaillée sur plusieurs heures.
Contrairement au dispatching, l’ordonnancement est moins myope et utilise généralement
des méthodes d’optimisation qui proposent des solutions qui optimisent une fonction objec-
tive donnée. Les données d’entrée représentent l’état actuel de la fab et les lots à produire
dans l’horizon de temps donné. Ces problèmes peuvent être décrits comme des problèmes
d’ordonnancement de job-shop complexe où chaque lot correspond à un job qui doit suivre
une séquence d’étapes de traitement donnée. Les contraintes considérées incluent des ma-
chines de regroupement par lot, les temps de préparation et d’autres propriétés, telles que les
ressources auxiliaires. Même au niveau de l’usine, le problème d’ordonnancement pourra
être modélisé de cette manière. Toutefois, pour les méthodes de planification connues, les
tailles des instances d’une usine entière semblent intraitables. Les décisions de transport sont
nécessaires dans les fabs qui utilisent des Automatized Material Handling Systems (AMHS)
pour transporter les lots entre les machines à l’intérieur de la salle blanche. Les stratégies de
transport visent à éviter l’arrêt des machines causés par les retards de transport (Kiba et al.
(2010)). Les outils de gestion des risques adressent les procédures d’inspection et de con-
trôle effectuées entre les étapes de production. Pour des raisons de capacité, uniquement un
sous-ensemble de toutes les plaquettes traitées est sélectionné pour être contrôlé. Comme le
montre Rodriguez Verjan et al. (2011), ces décisions de sélection sont cruciales pour éviter de
détecter les perturbations des machines trop tard. Des bonnes stratégies d’inspection évitent
de faire beaucoup d’échantillonnage qui apporte peu d’informations. Uniquement les pla-
quettes qui minimisent le nombre de plaquettes potentiellement défectueuses sont mesurées.

132 Appendix A: Résumé en français

La décomposition de la planification de production en sous-parties, telles que décrites
précédemment, génère des tâches de planification gérables qui peuvent être traitées indépen-
damment. De nos jours, cette décomposition semble indispensable car les approches in-
tégrées impliquent une complexité presque indomptable. En contrepartie, cette séparation
impose des interfaces verticales et horizontales bien pensées entre les systèmes concernés.
Peu de travaux considèrent cette intégration. Notamment l’intégration entre le niveau fab
et les zones de travail est discutée dans Bureau et al. (2007). Ils proposent d’introduire
l’information des objectifs globaux de production dans les systèmes de décision des zones
de travail et de mettre à jour ces informations périodiquement. Pour ceci, ils regroupent
l’information globale dans les paramètres d’entrée des répartiteurs et des ordonnanceurs. Les
effets des décisions de planification locales au niveau de la zone de travail sur le niveau de la
fab globale sont étudiés dans Mönch and Rose (2004). Ils utilisent la simulation pour éval-
uer l’impact de l’ordonnancement dans le cadre d’un horizon glissant. Plusieurs paramètres
d’entrée de la planification permettent d’orienter les décisions d’ordonnancement vers les
objectifs globaux. Des paramètres tels que la date de sortie, la date d’échéance, la priorité ou
l’objectif de production peuvent intégrer les objectifs au niveau de l’usine.

Ils existent d’autres facteurs qui compliquent la planification de la production et l’ordon-
nancement. Un facteur très important est le product mix (gammes de produits). Nous dis-
tinguons les fabs low-mix et high-mix. Les fabs low-mix fabriquent des quantités élevées
de quelques types de produits. Les fabs high-mix fabriquent de nombreux types de produits
différents avec potentiellement des petites quantités pour chaque type de produit. Normale-
ment, les fabs high-mix produisent les Application Specific Integrated Circuits (ASICs) qui
sont des puces personnalisées pour des applications spécialisées. Dans ce travail, nous nous
concentrons sur les fabs high-mix. Dans ce cas, beaucoup de types de produits différents à
différentes étapes de production sont en concurrence pour les mêmes machines. En outre,
les priorités et les dates d’échéance liées au besoin client doivent être prises en compte. Par
conséquent, les décideurs doivent peser entre un grand nombre d’objectifs concurrents. Par
ailleurs, les fabs high-mix nécessitent un nombre élevé de masques pour la photolithographie
car un masque différent est nécessaire pour chaque motif qui est transféré sur la puce. Ainsi,
ces ressources auxiliaires sont plus critiques dans les unités de production high-mix. Une
complexité supplémentaire provient des propriétés spécifiques aux différentes zones de tra-
vail. Les temps de traitement varient énormément entre les différentes étapes de production
et peuvent durer de quelques minutes jusqu’à plus de 12 heures. Les nombreuses propriétés
des machines, telles que le traitement par lot, ont un grand impact sur la production et deman-
dent une modélisation détaillée. L’accélération du progrès technologique dans la fabrication
de semi-conducteurs ainsi que la rapidité de l’innovation dans ce secteur imposent des ef-
forts de recherche et de développement (R&D) permanents. Cela se traduit par le besoin
d’inclure les ordres de fabrication du R&D dans la planification de production. Les plaque-
ttes du R&D sont utilisées pour le développement de produits futurs et sont traitées sur les
mêmes machines que les plaquettes régulières. Par conséquent, l’activité du R&D influence
fortement la capacité de fabrication de l’usine. Ziarnetzky and Mönch (2016) étudient la
planification combinée des plaquettes du R&D et de la production. En outre, les étapes de
production ne sont pas toujours exécutées correctement et peuvent ainsi causer des défauts

A.1 Introduction 133

sur les plaquettes. Cela impacte la planification de différentes manières : la maintenance
préventive des machines doit être planifiée et les pannes inattendues peuvent perturber le
plan établi. Une approche pour représenter la fiabilité des machines d’une manière non-
binaire est l’attribution d’un indicateur de santé à chaque machine. Cet indicateur estime
la probabilité qu’une machine génère un défaut sur une plaquette. Doleschal et al. (2015)
étudient l’évolution de ces indicateurs pour différentes règles de dispatching et d’approches
d’optimisation à l’aide de la simulation. L’application de ces indicateurs dans un environ-
nement d’ordonnacement de type job-shop est présentée dans Kao et al. (2016).

Ils existent différents indicateurs de performance. Les indicateurs à prendre en compte
dépendent du problème de planification considéré et de son interaction avec les composants
associés. Souvent une variété d’indicateurs de performance sont à prendre en compte. Selon
un sondage présenté par Pfund et al. (2006), les entreprises considèrent le débit global de
l’usine comme objectif primordial. D’autres indicateurs importants dans l’ordre décroissant
sont le taux de service, le temps de cycle, le nombre de plaquettes commencées, le débit de
l’équipement et le niveau de stocks . Pour analyser et résoudre les défis décrits dans cette
section, une gamme d’outils et de méthodes sont disponibles et utilisées. Certains problèmes
peuvent être résolus en utilisant des méthodes exactes ou des heuristiques. La simulation

(voir Fowler and Rose (2004)) permet d’étudier les effets des décisions prises de manière
très précise. Les systèmes basés sur des règles de dispatching sont encore largement utilisés.
Une étude sur les règles de dispatching pour la fabrication de plaquettes est présentée dans
Sarin et al. (2011). En pratique, ces règles peuvent être assez complexes car elles ont évolué
dans le temps et prennent en compte les divers besoins spécifiques de l’entreprise. Cepen-
dant, les méthodes de planification qui utilisent des techniques d’optimisation obtiennent des
meilleurs résultats et ont l’avantage que les objectifs peuvent être spécifiés explicitement. La
théorie des files d’attente peut être utilisée pour prédire le comportement du système agrégé
avec un effort de calcul limité. Pour analyser les temps de cycle en fonction de la charge, les
courbes de débit (Fowler et al. (2001)) et les fonctions de compensation (Karmarkar (1989))
peuvent être utilisées.

Ordonnancement des Ateliers de Diffusion et de Nettoyage

Cette thèse adresse des problèmes d’ordonnancement qui proviennent des ateliers de diffu-
sion et de nettoyage des usines de fabrication de semi-conducteurs de STMicroelectronics
à Rousset (France) et à Crolles (France). La zone de travail que nous considérons com-
prend une grande variété de machines. Elle comprend non seulement la diffusion et les fours
d’oxydation, mais aussi d’autres types de machines telles que le nettoyage ou les bancs hu-
mides. Cette zone de travail a un grand impact sur la performance globale de la fab puisque
jusqu’à 30% de l’encours peuvent se retrouver dans cette zone (Jung et al. (2013)). Nous
présentons d’abord les principales caractéristiques du problème d’ordonnancement qui sont
imposées par cette zone de travail.

Le problème de base est un problème d’ordonnancement de type complex job-shop où
les machines sont considérées dans un cadre de type job-shop. Pour chaque ordre de fab-

134 Appendix A: Résumé en français

rication, une séquence fixe d’opérations (une gamme) doit être executée sur un ensemble
de machines données. Chaque opération appartient à une famille qui précise les machines
qui sont qualifiées pour traiter l’opération. La durée du traitement dépend de la machine
sélectionnée. Certaines machines sont capables de faire un traitement par lot. Ils peuvent
traiter plusieurs opérations de la même famille en parallèle en respectant la capacité de la
machine (p-batching). Les temps de réglage de certaines machines dépendent de la séquence
des opérations sur cette machine (s-batching). A chaque ordre de fabrication est associé une
date de début au plus tôt et potentiellement aussi une date d’échéance. Dans un premier
temps, nous nous intéressons à des fonctions objectives régulières avec un seul critère tel que
le retard ou la durée totale de production pondérée.

Les machines complexes sont souvent modélisées par une durée de traitement fixe qui
néglige de nombreuses contraintes présentes dans une vraie fab. Nous illustrons ceci pour
le cas des fours. Un four est généralement constitué de deux tubes, de quatre nacelles (deux
par tube) et d’un port de chargement. Le tube est l’endroit où le processus est exécuté. La
nacelle est un support mobile pour les plaquettes et les accompagne à l’intérieur du tube. Les
nacelles sont également utilisés pour charger, décharger et refroidir les plaquettes. Le port
de chargement sert à charger et décharger les plaquettes de la machine. Le fonctionnement
détaillé est le suivant. Tout d’abord, les plaquettes sont chargées de leur support sur la nacelle
au port de chargement. Puis, la nacelle est déplacé dans le tube où se déroule le processus.
Ensuite, la nacelle est retiré du tube et doit refroidir avant que les plaquettes peuvent être
déchargées au port de chargement. Si le port de chargement est occupé, la nacelle doit atten-
dre qu’il se libère. Certaines opérations exigent plus d’une ressource interne en parallèle. Le
modèle simple d’ordonnancement de type complex job-shop suppose que chaque tube cor-
respond à une machine qui fonctionne de façon indépendante. Nous avons vu que cela n’est
pas le cas et nous allons proposer une modélisation plus détaillée des machines qui peut être
intégrée dans l’ordonnancement de type job-shop et ainsi augmenter la précision du modèle.

En pratique les contraintes de temps sont cruciales. Les processus chimiques et physiques
imposent des délais maximaux qui limitent le temps passé entre deux étapes de production.
Les contraintes de temps peuvent avoir lieu entre différentes opérations d’un même ordre
de fabrication. Les délais peuvent s’appliquer sur des opérations adjacentes, peuvent se
chevaucher et une même opération peut apparaître dans plusieurs contraintes. Cela peut
causer des contraintes enchaînées. Ils existent deux types de contraintes. Dans certains cas,
les plaquettes qui ne respectent pas le délai maximal peuvent être retravaillées. Dans d’autres
cas, les défauts ne sont pas réparables et les plaquettes deviennent du rebut si les délais ne
sont pas respectés. Nous allons inclure les contraintes de temps dans notre modèle pour ainsi
augmenter sa précision.

A.2 Ordonnancement pour les problèmes de type Complex Job-Shop 135

A.2 Ordonnancement pour les problèmes de type

Complex Job-Shop

Ce chapitre aborde une version industrielle du problème d’ordonnancement et présente notre
approche qui a été publiée dans Knopp et al. (2015a) et Knopp et al. (2015b). Le prob-
lème d’ordonnancement industriel que nous traitons peut être considéré comme un problème
d’ordonnancement de type job-shop avec un large éventail de contraintes et de propriétés.
Car les machines avec traitement par lot constituent la principale caractéristique du prob-
lème, ce chapitre se concentre sur ces machines dans un environnement de type job-shop. Le
traitement par lot en combinaison avec des contraintes supplémentaires, conduit à une prob-
lématique d’ordonnancement de type complex job-shop. Ceci peut aussi être décrit comme
un problème d’ordonnancement de type flexible job-shop avec p-batching, des flux rentrants,
des temps de réglage qui dépendent de la séquence des opérations et des dates de sortie. Le
problème d’ordonnancement de type complex job-shop est très présent dans la littérature et
aussi appliqué dans le cadre de la fabrication de semi-conducteurs. Nous étudions le prob-
lème avec une fonction objective régulière avec un seul critère. En fonction du contexte, nous
considérons le facteur d’écoulement pondéré (tel que défini dans la spécification industrielle)
ainsi que d’autres objectifs de la littérature académique tels que la durée totale de production,
le retard total pondéré ou le retard maximum.

Le problème considéré est NP-difficile, car il généralise d’autres problèmes NP-difficiles
tels que le problème d’ordonnancement de type job-shop classique et le problème d’ordon-
nancement avec une seule machine et le retard pondéré comme fonction objective (voir
Garey et al. (1976)). Notre objectif est de résoudre des instances industrielles avec env-
iron 100 machines et des centaines d’ordres de fabrication dont chacun peut comprendre
jusqu’à dix opérations. Nous développons une méthode heuristique puisque nous voulons ré-
soudre des grandes instances d’un problème NP-difficile dans un temps de calcul raisonnable.
L’ordonnancement des machines avec traitement par lot (p-batching) et des variantes du prob-
lème d’ordonnancement de type job-shop sont déjà étudiés séparément alors que leur com-
binaison est rarement considérée. La plupart des approches existantes pour les problèmes
de type complex job-shop ou le p-batching sont basées sur la représentation du problème
de Ovacik and Uzsoy (1997) et utilisent un graphe disjonctif. Cette représentation utilise
des nœuds dédiés pour représenter les décisions de regroupement par lot. Nous proposons
une nouvelle modélisation du regroupement par lot qui n’as pas besoin de nœuds spécifiques
pour représenter ce regroupement. Nous représentons les décisions de regroupement par les
poids des arêtes afin de réduire la complexité de la structure du graphe et de faciliter les
modifications du graphe.

Pour profiter pleinement de cette nouvelle représentation du regroupement par lot, nous
présentons un nouveau algorithme qui calcule les dates de début des opérations ainsi que le
regroupement par lot. Grâce à cette nouvelle représentation, notre algorithme peut prendre
des décisions de regroupement à la volée quand il parcourt le graphe. L’algorithme utilise
une stratégie combinée de reséquencement et de réaffectation des opérations aux lots ainsi

136 Appendix A: Résumé en français

que le déplacement d’opérations individuelles. Ceci permet de remplir des lots non-remplis.
La combinaison du séquencement et des décisions de regroupement représente implicitement
différents mouvements spécifiques décrits dans la littérature tels que l’échange de lots. Cette
approche intégrée permet d’évaluer trés rapidement trés nombreux mouvements.

Nous appliquons notre algorithme au sein d’une approche basée sur le GRASP (Feo and
Resende (1995)). Nous créons des solutions initiales en insérant successivement les ordres
de fabrications dans un ordre aléatoire. Les solutions sont ensuite améliorées en utilisant
une heuristique de type recuit simulé. Notre algorithme est parallélisé et peut utiliser tous
les cœurs de la machine. Nous obtenons de très bons résultats avec notre approche pour
différents types d’instances. Ceci montre la généralité et l’utilité de notre approche. Notre
approche est conçue pour pouvoir intégrer d’autres contraintes facilement. Nous pensons
en particulier aux contraintes figurant dans le cahier des charges du problème industriel.
Quelques extensions de l’approche sont décrites dans les chapitres suivants.

Modélisation par Graphe Disjonctif

Les graphes disjonctifs, introduits par Roy and Sussmann (1964), permettent de représen-
ter la séquence et les dates des opérations sur les machines de manière concise. Ils ont été
appliqués pour résoudre un large éventail de problèmes d’ordonnancement. Pour pouvoir in-
clure le regroupement par lot dans un environnement de type job-shop, nous introduisons un
graphe disjonctif qui représente le regroupement sans introduire de nouveaux nœuds (batch-
oblivious). Ceci permet de définir le regroupement par lot lors de la traversée du graphe.

Nous présentons d’abord l’utilisation du graphe disjonctif pour les problèmes d’ordon-
nacement du type complex job-shop. Puis, deux modélisations alternatives pour représen-
ter les décisions de regroupement sont décrites. Nous discutons d’abord une représentation
établie qui insère des nœuds de regroupement dédiés dans le graphe (voir Ovacik and Uzsoy
(1997)). Ensuite, nous introduisons une nouvelle représentation où le regroupement est défini
par le poids des arêtes et aucun nœud supplémentaire est introduit. Cette nouvelle représen-
tation permet de prendre les décisions de regroupement à la volée pendant la traversée du
graphe. Cette idée est le point fondamental de l’approche d’ordonnancement proposée dans
ce chapitre.

Les graphes disjonctifs représentent toutes les possibilités de production mais ne représen-
tent pas une solution spécifique (ni une affectation à la machine, ni une séquence sur la
machine, ni un regroupement par lot). Les graphes conjonctifs représentent des solution spé-
cifiques avec toutes les décisions à prendre. Ils sont l’outil principal de nos algorithmes.
Nous commençons par décrire ces deux graphes brièvement. Dans les deux types de graphe,
chaque nœud représente une opération et chaque arête représente une dépendance induite
soit par la gamme soit par la séquence des opérations sur une même machine.

Un graphe conjonctif est construit à partir du graphe disjonctif en remplaçant les arêtes
non-orientées par des arêtes orientées en respectant les contraintes de faisabilité. Le graphe
conjonctif représente l’affectation des opérations aux machines et la séquence des opérations
sur une machine. Les arêtes redondantes sont supprimées du graphe conjonctif. Maintenant,

A.2 Ordonnancement pour les problèmes de type Complex Job-Shop 137

nous définissons la représentation du graphe conjonctif que nous utilisons dans la suite. Cette
représentation du graphe conjonctif correspond à celle proposée par Dauzère-Pérès and Paulli
(1997). Elle ne représente pas encore les décisions de regroupement qui seront introduites
plus tard.

Un graphe conjonctif G = (V, E) est un graphe orienté acyclique avec des nœuds V =

O∪{0, ∗} qui correspondent aux opérations O, un nœud de départ artificiel 0 et un nœud de fin
artificiel ∗. Pour chaque ordre de fabrication et pour chaque machine, le graphe contient un
chemin à partir du nœud de départ artificiel 0 au nœud de fin artificiel ∗. L’union disjointe de
ces chemins donne toutes les arêtes du graphe. Chaque nœud v ∈ O fait partie d’exactement
deux chemins : l’un représente la gamme de son ordre de fabrication et l’autre la séquence
des opérations sur la machine à laquelle il est affecté. Pour un nœud v ∈ O, on définit son
successeur de gamme par r(v) ∈ V \ {0} et son successeur de machine par m(v) ∈ V \ {0}. De
la même manière, ses prédécesseurs sont désignés par r−1(v) ∈ V \ {∗} et m−1(v) ∈ V \ {∗}. Le
nœud de départ artificiel 0 a |J| + |M| arêtes sortantes et pas d’arêtes entrantes. De la même
manière, le nœud de fin artificiel ∗ a |J| + |M| arêtes entrantes et pas d’arêtes sortantes. En
total, le graphe contient |E| = 2 |O| + |J| + |M| arêtes.

Le graphe conjonctif peut être utilisé pour déterminer les dates de début S v des opérations
v ∈ O. Un poids lu, v ∈ N0 est affecté à chaque arête (u, v) ∈ E. Ce poids impose une durée
minimale entre le début de deux opérations adjacentes : S u + lu, v ≤ S v pour chaque arrête
(u, v) ∈ E. Avec le poids des arêtes, les dates de début des opérations correspondent au plus
long chemin entre le nœud de départ artificiel et le nœud de l’opération.

Soit L(v,w) ∈ N0 la distance d’un plus long chemin d’un nœud v ∈ V vers un nœud w ∈ V .
Pour chaque opération v ∈ O, sa date de début est déterminée par S v = L(0, v). Pour tenir
compte des contraintes données, on définit le poids des arêtes de la manière suivante. Pour
les arêtes (0, o1, j) ∈ E qui relient le nœud de départ artificiel 0 avec la première opération o1, j

de l’ordre de fabrication j, le poids de l’arête est fixé à la date de sortie r j de l’ordre de
fabrication j. Pour les arêtes (0, om) ∈ E qui relient le nœud de départ artificiel 0 avec la
première opération om prévue sur la machine m ∈ M, le poids de l’arête est fixé à zéro. Pour
les arêtes des gammes (v, r(v)) ∈ E avec v � 0, le poids de l’arête correspond à la durée
du traitement pv de l’opération v. Pour les arêtes de séquence machine (v,m(v)) ∈ E avec
v � 0, le poids de l’arête correspond à la somme pv + s(σv,σm(v)) qui représente la durée
du traitement de l’opération v et le temps de réglage qui dépend de l’opération v et de son
successeur machine m(v). Ceci représente les machines sans traitement par lot.

Ils nous reste à proposer une représentation pour les machines avec regroupement par
lot. Ces machines peuvent être modélisées en modifiant la structure du graphe ou en adap-
tant les poids des arêtes. Les deux paragraphes suivants présentent les deux alternatives.
Nous rappelons que chaque regroupement doit respecter la capacité de la machine et doit se
faire uniquement par famille. Ces deux contraintes doivent toujours être satisfaites. Nous
ne détaillons pas les contrôles connexes pour vérifier la faisabilité d’une solution car nous
souhaitons nous concentrer sur les parties essentielles des deux représentations.

138 Appendix A: Résumé en français

Graphes Conjonctifs de type Batch-Aware

Cette section examine une représentation du regroupement par lot via un graphe conjonctif
de type batch-aware qui a été présentée par Ovacik and Uzsoy (1997). Toutes les approches
pour résoudre les problèmes d’ordonnancement de type complex job-shop dont nous nous
sommes conscientes utilisent ce type de représentation (p. ex., Mason et al. (2005), Mönch
et al. (2003) ou Yugma et al. (2012)).

Un lot est un ensemble d’opérations B ⊂ O qui sont traitées simultanément sur la même
machine. Dans une représentation de type batch-aware, un nœud supplémentaire b est ajouté
au graphe pour chaque lot. La date de début d’un nœud de regroupement représente la date
de début commune à toutes les opérations d’un même lot. Le traitement du lot ne peut
commencer que quand toutes ses opérations sont prêtes. Pour ceci, chaque nœud d’une
opération v ∈ B est relié au nœud de regroupement b via une arête (v, b) avec un poids égal à
zéro. Les opérations suivantes des gammes sont reliées de la manière suivante : pour chaque
opération v ∈ B du lot, une arête (b, r(v)) est introduite qui part du nœud de regroupement
b vers le successeur de gamme r(v) de v. Ces arêtes ont la durée de traitement pv comme
poids. Deux autres arêtes (m−1(b), b) et (b,m(b)) sont introduites pour placer le lot dans la
séquence de sa machine MB. Comme dans le cas sans regroupement, le poids de chaque
arrête de séquence machine (u,w) est défini par la somme pu + s(σu,σw). Chaque nœud
d’une opération v ∈ B a exactement une arête d’entrée et une arête de sortie. Le nœud de
regroupement b a |B| + 1 arrêtes entrantes et |B| + 1 arrêtes sortantes.

Les graphes conjonctifs de type batch-aware représentent les dépendances qui résultent
des décisions de regroupement par des nœuds supplémentaires. Ceci implique une modifica-
tion de la structure du graphe. Le nombre de nœuds dans ces graphes dépend du nombre de
lots. Avec cette modélisation, une modification des décisions de regroupement est difficile à
gérer : le nombre de nœuds dans le graphe doit être adapté et plusieurs arêtes doivent être
manipulées en s’assurant que l’acyclicité du graphe est préservée.

Graphes Conjonctifs de type Batch-Oblivious

Nous introduisons une nouvelle représentation pour les décisions de regroupement par lot
dans un graphe conjonctif qui est non-intrusive car elle ne modifie pas la structure du graphe.
Nous n’introduisons aucun nœud de regroupement dédié et la représentation de base présen-
tée au début de cette section reste valable. Nous représentons les décisions de regroupement
en adaptant les poids des arêtes machines (v,m(v)) ∈ E. Le poids d’une arête machine est
égale à zéro, si les opérations adjacentes doivent être traitées dans un même lot. Sinon,
le poids de l’arête est égale à pv + s(σv,σm(v)), comme dans le cas sans regroupement par
lot. Malheureusement, ceci n’est pas aussi simple : Lv,m(v) = 0 ne garantit uniquement que
S v ≤ S m(v) mais pas que S v = S m(v). Nous pouvons ainsi obtenir des solutions infaisables
car toutes les opérations d’un lot doivent être égales. Pour ceci, nous avons ajouté un critère
simple qui vérifie la faisabilité de la solution.

A.2 Ordonnancement pour les problèmes de type Complex Job-Shop 139

OF A

OF B

OF C

0

1 2 3

4 5 6

7 8 9

∗

rA

0 p 1,4

p2

p
3

rB

0
p
1
,4

0 p 5,8

p6

r
C

p7

0
p
5
,8

p 9p 7

p
2

p
6

p 9

p1,4

p 3

p5,8

(a) Graphe conjonctif de type batch-aware

OF A

OF B

OF C

0

1 2 3

4 5 6

7 8 9

∗

rA

p1,4 p2

p
3

rB p1,4 p5,8 p6

r
C

p7 p5,8

p 9p 7

p
2

p
6

p 9

0

p1,4

p 3

0

p5,8

(b) Graphe conjonctif de type batch-oblivious

Temps

Machine 1 C 7 A 2 B 6 C 9

Machine 2
A 1

B 4
A 3

B 5

C 8

(c) Gantt Chart

Figure A.4 – Comparaison des représentations d’un même ordonnancement

140 Appendix A: Résumé en français

La Figure A.4 montre un exemple qui compare les représentations des regroupements par
lot d’un graphe de type batch-aware et d’un graphe de type batch-oblivious. Elle décrit un
plan de production avec trois ordres de fabrications A, B et C qui utilisent deux machines. La
machine 2 (trait rouge) traite deux lots. Chacun est composé de deux opérations : le premier
de l’opération 1 et 4 et le deuxième de l’opération 5 et 8. Pour des raisons de lisibilité, les
temps de changement ont été omis et nous obtenons p1,4 = p1 = p4 et p5,8 = p5 = p8.

A.3 Modélisation des Ressources et du Routage

Lors de l’introduction, nous avons vu que beaucoup de machines différentes sont utilisées
dans la zone de diffusion et de nettoyage. Chaque machine a ses propriétés spécifiques et
le comportement global de la machine est souvent déterminé par le fonctionnement de ses
composants internes. Nous proposons une modélisation détaillée de ces machines pour les
problèmes d’ordonnancement de type job-shop afin de réduire l’écart entre le modèle et
la réalité. Pour obtenir un ordonnancement réaliste, nous représentons les différents com-
posants des machines (des fours en particulier) comme ressources individuelles dans notre
modèle. Nous obtenons ainsi une version généralisée du problème d’ordonnancement de
type complex job-shop avec des contraintes supplémentaires qui représentent l’utilisation
des ressources internes des machines.

Nous illustrons l’idée et l’utilité de notre approche au travers des fours. Les fours de
la zone de diffusion et de nettoyage se composent généralement de deux tubes, de quatre
nacelles (deux par tube) et d’un port de chargement. Le tube est l’endroit où le processus est
exécuté. La nacelle est un support mobile pour les plaquettes et les accompagne à l’intérieur
du tube. Les nacelles sont également utilisés pour charger, décharger et refroidir les pla-
quettes. Le port de chargement sert à charger et décharger les plaquettes de la machine. Le
fonctionnement détaillé est le suivant. Tout d’abord, les plaquettes sont chargées de leur
support dans la nacelle au port de chargement. Puis, la nacelle est déplacée dans le tube où
se déroule le processus. Ensuite, la nacelle est retirée du tube et doit refroidir avant que les
plaquettes soient déchargées sur le port de chargement. Si le port de chargement est occupé,
la nacelle doit attendre qu’il se libère. La Figure A.5 montre une représentation schématique
d’un four. Certaines opérations, tel que le chargement des plaquettes, exigent plus d’une
ressource interne. Chaque étape de traitement du four est décomposée dans ses opérations
distinctes qui utilisent les différentes ressources internes telles que décrites ci-dessus. Par
conséquent, le temps de traitement sur une machine peut dépendre du choix de ses ressources
internes.

Les propriétés des machines décrites ci-dessus font que les ressources internes choisies
pour une opération imposent l’utilisation de ressources internes données dans la suite. Nous
illustrons ceci par deux exemples. Premièrement, si une opération de chargement utilise
le port de chargement d’une machine, l’opération de déchargement doit utiliser le port de
chargement de la même machine. Deuxièmement, si une nacelle est chargée, elle ne peut pas
être utilisée ailleurs avant d’être déchargée. Ainsi, une ressource peut être bloquée même si
aucune opération ne l’utilise actuellement.

A.3 Modélisation des Ressources et du Routage 141

N1A

N2A

N1B

N2BTube 2

Tube 1

Port de chargement

La nacelle 2A est traité au Tube 2.

La nacelle 2B attend le Tube 2.

La nacelle 1A attend le Port de chargement.

La nacelle 1B est chargé au Port de chargement.

Figure A.5 – Représentation schématique d’un four de la zone de diffusion et de nettoyage

Notre approche se base sur le problème d’ordonnancement de type flexible job-shop.
Dans ce cas, un ensemble d’ordres de fabrications doit être planifié sur un ensemble de
ressources données. Pour chaque ordre de fabrication, une gamme spécifique d’opérations
doit être exécutée. Elle permet de choisir une ressource à utiliser parmi un ensemble de
ressources alloué à chaque opération. Pour inclure les contraintes représentant le fonc-
tionnement des fours, nous proposons une extension du problème et une représentation
comme problème d’ordonnancement de type complex job-shop. Cette extension représente
les dépendances des ressources internes en définissant toutes les routes possibles qui résul-
tent des différentes affectations possibles de ressources internes. Pour ceci, nous introduisons
le concept d’un graphe de routage. Pour chaque ordre de fabrication, le graphe de routage af-
fecte les ressources aux opérations de manière statique. La flexibilité du choix des ressources
est obtenue par la représentations de toutes les routes possibles.

s

1, 2A 2

3

4

6 1

3A 7, 8 3

t

blocage

blocage

Figure A.6 – Exemple d’un graphe de routage pour un ordre de fabrication

142 Appendix A: Résumé en français

La Figure A.6 présente l’exemple d’un graphe de routage pour un ordre de fabrication
avec blocage des ressources. Ce graphe permet six routes différentes entre s et t : trois al-
ternatives pour la première partie et deux alternatives pour la deuxième partie. Les nœuds
représentent les opérations et les noms des ressources requises. Le blocage des ressources
est indiqué par l’exposant “A” et les arcs pointillés de l’opération d’occupation jusqu’à
l’opération de libération. Ces arcs servent uniquement pour l’illustration et ne font pas partie
du graphe de routage.

Les itinéraires autorisés sont spécifiés par graphes d’itinéraire. Cette modélisation est in-
dépendante de la fonction objective et peut être combinée avec tous les critères réguliers. Nos
algorithmes d’ordonnancement se basent sur la représentation du problème comme graphe
disjonctif. L’ordonnancement des opérations se fait via l’insertion des nœuds dans ce graphe.
Pour ceci, nous utilisons une approche méta-heuristique de type GRASP.

A.4 Modélisation des Contraintes de Temps

Les chapitres précédents ont présenté différentes extensions du problème d’ordonnancement
de type complex job-shop pour prendre en compte les spécificités des machines. Nous avons
d’abord intégré le traitement par lot et les temps de réglage. Ensuite, le modèle a été général-
isé pour représenter les machines avec leurs ressources internes : décisions de routage et
utilisation de plusieurs ressources par opération. Ce chapitre vise à étendre davantage le
champ d’application en incluant les contraintes de temps. Cette extension introduit une fonc-
tion objective supplémentaire mais ne modifie pas les contraintes. Les contraintes de temps
sont un aspect important dans l’atelier de diffusion et de nettoyage. Elle représentent un
délai maximal entre l’exécution de deux opérations. Elles sont sont cruciales et définissent si
le plan de production est applicable en pratique. En particulier, les contraintes de temps en-
lacées doivent être prises en compte. L’importance des contraintes de temps augmente avec la
miniaturisation des dimensions structurelles des dispositifs semi-conducteurs. L’importance
particulière de ces contraintes dans la zone de diffusion est mise en évidence par Jung et al.
(2013).

Les processus chimiques et physiques dans la zone de diffusion et de nettoyage imposent
des contraintes de temps qui représentent le délai maximal (temps d’attente et temps de traite-
ment) entre deux opérations d’un même ordre de fabrication. Ces délais s’appliquent sou-
vent après le processus de nettoyage car les conditions chimiques sur la surface de la pla-
quette se détériorent au fil du temps. Les contraintes de temps peuvent être adjacentes ou se
chevaucher. Ainsi, un délai maximal peut implicitement déclencher un autre. Cet entrelace-
ment des délais est également appelé “tunnels de contraintes de temps” dans la terminologie
industrielle. Par rapport à la classification des contraintes de temps présentée dans Klemmt
and Mönch (2012), nous considérons les contraintes les plus générales : contraintes de temps
avec chevauchement et contraintes de temps entre opérations non-adjacentes.

Nous distinguons les délais récupérables et les délais non-récupérables. Si une contrainte
de temps récupérable est violée, le lot doit être retravaillé. Les opérations de reprise sont à

A.4 Modélisation des Contraintes de Temps 143

éviter car ils augmentent le temps de cycle et demandent de la capacité supplémentaire sur
les machines. Si une contrainte de temps non-récupérable est violée, la probabilité que les
plaquettes soient défectueuses augmente avec la durée du retard. Des mesures supplémen-
taires doivent être effectuées après avoir atteint le délai maximal des contraintes de temps
non-récupérables pour évaluer la qualité des plaquettes. Selon le résultat des mesures, les
plaquettes sont du rebut ou non. La destruction des plaquettes coûte très cher : non seule-
ment à cause de la perte du matériel, mais aussi en raison de l’inutilité des étapes exécutées
jusque là.

En pratique, l’ordonnancement se fait sur un horizon glissant. Au moment où un or-
donnancement est calculé, plusieurs opérations d’un ordre de fabrication peuvent déjà être
réalisées ou être en cours d’exécution. Uniquement les opérations non-commencées peuvent
être planifiées dans le temps. Nous appelons délai initié le délai maximal entre une opéra-
tion qui a commencé dans le passé et une opération du même ordre de fabrication qui n’a
pas encore commencé. Les ordre de fabrications sans délai initié peuvent toujours être plan-
ifiés en respectant les contraintes de temps car toutes les opérations peuvent être décalées
dans le temps. Mais une contrainte de temps avec délai initié impose toujours une date de
fin fixe pour son opération de fin. Comme les contraintes de temps peuvent être adjacentes
ou se chevaucher, il est aussi possible que certaines opérations sans délai initié ne peuvent
pas être retardées indéfiniment. Par conséquent, nous ne pouvons pas garantir que toutes
les contraintes de temps d’un ordre de fabrication commencé soient satisfaites. De plus,
l’industriel a besoin d’un ordonnancement même si les contraintes de temps ne peuvent pas
toutes être satisfaites. Pour ceci, nous utilisons des contraintes de temps souples. C’est à dire
que nous utilisons une fonction objective lexicographique où la minimisation des contraintes
de temps est l’objectif principal. L’objectif secondaire est un critère régulier qui mesure la
performance de l’ordonnancement hormis les contraintes de temps.

Puisque nous tentons de minimiser les violations des contraintes de temps, nous avons
besoin de quantifier les violations des délais pour un ordonnancement donné. Pour chaque
contrainte de temps nous mesurons l’envergure du retard. L’envergure est un nombre réel qui
est égal à zéro si la contrainte est satisfaite et supérieur à zéro si elle ne l’est pas. L’envergure

globale pour un ordonnancement donné est la somme des envergures de toutes les contraintes
de temps. Cette somme constitue la première composante de notre fonction objective lexi-
cographique. Si l’envergure globale est nulle, nous avons trouvé un ordonnancement faisable
qui respecte toutes les contraintes de temps.

Si une contrainte de temps n’est pas satisfaite, son envergure dépend du type de la
contrainte (récupérables / non-récupérables) et de la durée du retard. Pour les contraintes
récupérables, un coût de reprise constant s’applique si la contrainte n’est pas satisfaite. Ceci
représente le fait, que les operations de reprise à faire ne dépendent pas de la durée du re-
tard. Pour les contraintes non-récupérables, la durée du retard est importante. La probabilité
que les plaquettes soient mises au rebut augmente avec la durée du retard. Par conséquent,
les gros retards doivent être évités tandis que les petits retards peuvent être tolérés. Nous
proposons de pénaliser les retards quadratiquement, car c’est une façon simple d’inclure les
cas décrits ci-dessus. Cette approche est similaire à la méthode des moindres carrés qui est

144 Appendix A: Résumé en français

une approche standard dans l’analyse de régression et remonte au moins à Legendre (1805).
Cependant, si le retard devient trop grand, toutes les plaquettes doivent être mis au rebut.
Par conséquent, nous introduisons un coût maximal qui s’applique si le retard est supérieur
au retard maximal toléré. De cette manière, l’envergure peut être considérée comme une
estimation de la perte du rendement des plaquettes. Veuillez notez qu’il n’est pas logique
d’appliquer un coût de rebut plusieurs fois pour une même plaquette. Cependant, nous avons
omis cela dans notre définition de l’envergure pour des raisons de simplicité. Nous four-
nissons une formulation généralisée qui définit l’envergure du retard pour les deux types de
contraintes de temps d’une manière uniforme.

Figure A.7 illustre l’envergure d’une contrainte de temps dans les deux cas. Nous définis-
sons d ∈ N≥0 comme délai maximal entre deux opérations, γ ∈ N≥0 avec γ ≥ d comme retard
maximal toléré et c ∈ R>0 comme coût de non-respect d’une contrainte de temps. Pour
les contraintes récupérables, nous avons d = γ et un coût de violation constant qui est ap-
pliqué si le délai maximal n’est pas respecté indépendamment de la durée du retard. Pour
les contraintes non-récupérables, nous avons d < γ et le coût de violation augmente quadra-
tiquement avec la durée du retard entre d et γ. Si le retard maximal toléré est atteint, toutes
les plaquettes sont mis au rebut et le coût n’augmente plus. Veuillez notez que cette fonc-
tion objective n’est pas régulière. Si une opération de départ d’une contrainte de temps est
avancée ceci peut augmenter l’envergure de retard.

Temps

Envergure du retard

d2d1 = γ1
γ2

Coût de destruction (c2)

Coût de reprise (c1)

Figure A.7 – Exemple de l’envergure pour une contrainte récupérable τ1 et une non-récupérable τ2

A.5 Conclusion et Perspectives

Dans cette thèse, nous avons présenté des modèles et des méthodes d’optimisation qui pren-
nent en compte les contraintes et les objectifs variés de la zone de diffusion et de nettoyage
d’une usine de fabrication de semi-conducteurs. Nous avons vu que les propriétés sous-
jacentes de ce domaine d’application spécifique génèrent des problèmes d’ordonnancement

A.5 Conclusion et Perspectives 145

très généraux. Nous avons proposé une approche méta-heuristique pour résoudre ces prob-
lèmes d’ordonnancement. L’approche est basée sur une représentation du problème avec ses
différentes contraintes comme un graphe conjonctif qui intègre les décisions de regroupement
de manière implicite.

Conclusion

Le problème d’ordonnancement industriel est très complexe et impose un riche ensemble
de contraintes qui peut difficilement être abordé dans sa totalité. Par conséquent, cette thèse
adresse d’abord le problème d’ordonnancement de type complex job-shop qui couvre les car-
actéristiques fondamentales de notre problème d’ordonnancement industriel. Le point capital
est la présence de machines avec traitement par lot dans un environnement d’ordonnancement
de type job-shop. Comme les approches existantes dans la littérature, nous abordons le prob-
lème en utilisant une approche heuristique basée sur les graphes conjonctifs. Nous intro-
duisons une nouvelle représentation qui permet de représenter les décisions de regroupement
de manière implicite (batch-oblivious). Ceci permet de réduire la complexité structurelle du
graphe conjonctif par rapport aux graphes qui représentent les décisions de regroupement de
manière explicite (batch-aware). Cette nouvelle représentation permet de calculer les dates
de début, de prendre les décisions de regroupement et de remplir des lots sous-utilisés lors
de la traversée du graphe. La représentation implicite des décisions de regroupement per-
met d’adresser les problèmes de regroupement, d’affectation et d’ordonnancement en par-
allèle. La représentation implicite des décisions de regroupement facilite la généralisation
de l’approche en permettant d’intégrer des contraintes supplémentaires. La représentation
est indépendant de la méta-heuristique utilisée. Nous appliquons les blocs de construction
dans une approche heuristique de type GRASP parallélisée. Notre implémentation permet
d’exploiter le nombre croissant de processeurs. De bons résultats numériques pour un large
éventail de types d’instances de référence valident la performance de notre approche.

Afin d’augmenter le détail de notre modèle d’ordonnancement, nous intégrons la gestion
des composants internes des machines. Pour ceci nous introduisons une flexibilité par rapport
au choix des ressources internes et des routes dans un problème d’ordonnancement de type
complex job-shop. Notre approche de représentation implicite des décisions de regroupe-
ment facilite la généralisation du graphe conjonctif pour intégerer ces nouveaux éléments.
Une contrainte d’acquisition de ressource est introduite pour modéliser les fours de manière
détaillée. Cette contrainte d’acquisition bloque une ressource entre deux opérations d’un
même ordre de fabrication. Nous montrons que l’approche de Kis (2003) pour insérer des
nœuds efficacement peut être généralisée pour inclure ces contraintes. L’approche de solution
présentée pour les décisions implicites de regroupement peut aussi être appliquée en cas de
besoin de plusieurs ressources par opération. Nous obtenons des bons résultats numériques
pour les instances de référence de la zone de photolithographie.

Les contraintes de temps sont un point essentiel pour une application industrielle. Ces
contraintes peuvent être inclues dans notre approche comme contraintes souples. Afin d’ob-
tenir une modélisation qui soit applicable en pratique, des coûts de non-respect sont attribués

146 Appendix A: Résumé en français

à chaque contrainte de temps. Nous distinguons entre les contraintes de temps récupérables
et non-récupérables. Une fonction objective supplémentaire quantifie l’envergure du retard.
Une fonction objective lexicographique avec plusieurs critères est optimisée afin d’éviter de
générer un ordonnancement infaisable.

Pour résumer, nous avons démontré que notre approche de modélisation implicite des dé-
cisions de regroupement est extensible en mettant en œuvre diverses généralisations. Toutes
les contraintes présentées peuvent être utilisées dans des combinaisons arbitraires. Ceci
permet d’aborder un riche ensemble de problèmes d’ordonnancement. Nous pensons que
d’autres extensions peuvent être intégrées. Nous discutons les possibilité d’améliorer la per-
formance de notre approche et des extensions prometteuses dans la suite.

Perspectives

Bien que nous obtenions déjà de bons résultats numériques, nous sommes convaincu qu’un
énorme potentiel reste pour améliorer la performance de notre approche. Ils existent des
approches qui accélèrent le calcul des dates de début en mettant à jour les dates de début
calculées précédemment que partiellement (Michel and Van Hentenryck (2003), Pearce and
Kelly (2007) et Sobeyko and Mönch (2016)). L’idée est de recalculer, après chaque itération,
uniquement les dates de début qui sont successibles d’avoir changés au lieu de mettre à jour
les dates de début de chaque nœud du graphe conjonctif. Nous supposons que ceci permet
d’augmenter considérablement le nombre de mouvements que notre heuristique peut effec-
tué par seconde. Ceci est particulièrement prometteur pour les grandes instances puisque
le gain attendu croît avec le nombre de nœuds du graphe. Une autre idée pour améliorer
notre approche est d’inclure les idées présentées dans Dauzère-Pérès and Paulli (1997) et
García-León et al. (2015) pour des problèmes d’ordonnacement de type flexible job-shop.
Ils estiment le coût d’exécution d’un mouvement en évaluant ses effets sur la fonction ob-
jective sans réellement effectuer le déplacement. En outre, il semble prometteur d’explorer
davantage les stratégies avancées de sélection de nœud. L’heuristique de construction que
nous utilisons dans notre approche de type GRASP évalue un grand nombre de positions
d’insertion pour chaque nœud. Puisque cela peut être lent pour les grandes instances, il sem-
ble prometteur d’appliquer une approche plus rapide. Une idée est d’utiliser une version
randomisée d’une règle de répartition (par exemple, BATC (Mönch et al. (2013))) pour ac-
célérer la phase de construction et laisser ainsi plus de temps pour la phase d’amélioration
(par recuit simulé). Bien que nous ayons montré que notre approche fonctionne bien pour
les instances industrielles et donne des résultats applicables en pratique, nous avons observé
des difficultés pour les instances avec des contraintes de temps serrées. Il serait intéressant
d’étudier comment les contraintes de temps peuvent être prises en compte directement lors
du calcul des dates de début.

En plus de ces idées concrètes d’amélioration de la performance, d’autres pistes d’amélio-
ration et de généralisation peuvent être poursuivies. Notre contribution la plus importante, la
représentation implicite des décisions de regroupement, n’est pas liée à une méta-heuristique
spécifique. Le GRASP a des mécanismes de diversification et d’intensification forts mais

A.5 Conclusion et Perspectives 147

ils lui manquent des éléments d’apprentissage mutuel qui peuvent être trouvés dans les ap-
proches path-relinking ou les algorithmes génétiques. Il serait donc intéressant d’explorer
la performance de notre modélisation avec d’autres approches méta-heuristique. La perfor-
mance actuelle de notre approche est déjà adaptée aux instances du monde réel d’une zone de
diffusion et de nettoyage. Cependant, une amélioration significative de la performance nous
permettrait de traiter des instances plus grandes et nouvelles domaines d’application. Nous
pourrions ainsi optimiser l’ordonnancement des ordre de fabrications de plusieurs ateliers ou
même de toute la fab de manière intégrée. Ce dernier pourrait ne pas être pertinent pour dif-
férentes raisons, mais notamment parce que l’horizon d’ordonnancement à considérer serait
trop long.

Nous avons présente une spécification complète du problème industriel. Bien que les
propriétés les plus importantes de cette spécification soient incluses dans nos modèles et
nos méthodes de solution, il reste un écart entre la spécification industrielle et nos méth-
odes de solution. Il serait utile de combler cet écart et d’inclure d’autres aspects dans notre
modélisation. Plusieurs caractéristiques du problème industriel peuvent être abordées en
utilisant notre représentation détaillée des ressources et du routage. Il serait aussi très in-
téressant d’appliquer et d’analyser notre approche de manière plus détaillée en effectuant des
expériences numériques étendues. En outre, une étude expérimentale pour analyser la bonne
granularité du modèle serait très intéressante. De nombreuses caractéristiques peuvent être
modélisées en combinant les contraintes disponibles. Afin de modéliser les fours de manière
détaillée, une combinaison plus générale de nos modèles est nécessaire. Notre représentation
graphique de la route proposée ne prend en compte uniquement les machines avec traitement
par lot si la composant ne contient qu’une seule opération. Un assouplissement de cette lim-
itation est nécessaire afin de pouvoir examiner les éléments mobiles de longueurs arbitraires.
Les durées obligatoires de la nacelle de secours dans les fours pourraient être abordées par
une adaptation du poids des arêtes. Cependant, cette adaptation ne semble par être triviale.
Une approche possible est (encore une fois) d’adapter dynamiquement le poids des arêtes
pendant la traversée du graphe. Cela nécessiterait de maintenir un état pour chaque ressource
interne du four qui est mis à jour chaque fois qu’une opération concernée est traversée. Il
serait utile d’utiliser le nombre de mouvements effectués dans l’horizon d’ordonnancement
comme fonction objective supplémentaire. Cela est probablement difficile à combiner avec
les mises à jour partielles du graphe proposées ci-dessus car le nombre de mouvements dans
l’horizon d’ordonnancement doit être partiellement mis à jour.

Une perspective à long terme intéressante est la combinaison des approches d’ordonnance-
ment avec des décisions connexes du système. L’intégration des décisions de gestion des
risques des outils, provenant des procédures d’inspection et de contrôle, avec l’ordonnance-
ment pourrait aider à choisir les machines au moindre risque lors de l’ordonnancement. De
même, l’intégration des indicateurs de santé des machines dans l’ordonnancement peut ré-
duire le risque en évitant les machines à haut risque pour les lots importants. Un indicateur
de santé d’une machine représente l’état de la machine à un moment donné. Ces approches
ont déjà été proposées dans la littérature (Doleschal et al. (2015), Kao et al. (2016)). Il
pourrait également être intéressant de considérer l’ordonnancement comme un outil qui peut

148 Appendix A: Résumé en français

être utilisé pour déterminer ou vérifier les décisions de gestion de qualification selon les idées
décrites dans Johnzén et al. (2008). Les décisions de gestion de qualification sont nécessaires
pour gérer les capacités des machines. La gestion de qualification détermine les réglages et
les essais préparatoires qui déterminent si une machine est prête à recevoir une opération
spécifique.

Il semble possible et pertinent d’appliquer l’approche présentée dans cette thèse dans
d’autres domaines de la fab. Nous avons déjà montré que les problèmes d’ordonnancement
dans la zone de photo-lithographie peuvent être résolus efficacement par notre approche.
Etant donné que la zone d’implantation contient un équipement avec des caractéristiques
similaires, il semble prometteur d’y appliquer notre approche. Une autre perspective intéres-
sante est d’analyser la façon dont l’approche peut être appliquée à d’autres domaines au-delà
de la fabrication de semi-conducteurs. Les contraintes d’acquisition de ressources apparais-
sent dans d’autres domaines, par exemple dans l’ordonnancement des opérations de mainte-
nance des trains (voir Ramond et al. (2006)). Une extension importante pour une application
dans d’autres domaines est la prise en compte des calendriers des machines. Ceci n’est pas
nécessaire dans la fabrication de semi-conducteurs où l’usine tourne généralement 24 heures
sur 24. Mais ceci n’est pas le cas dans d’autres industries. Les calendriers peuvent également
être utilisés pour la modélisation d’autres cas d’utilisation, tel que le temps d’arrêt d’une ma-
chine en raison d’une activité de maintenance planifiée. Dans de nombreuses applications,
plus d’un critère d’optimisation doit être considéré. Puisque notre approche lexicographique
est basée sur une fonction générale d’agrégation, nous croyons que notre approche permet
une extension directe vers une véritable approche multi-critères : au lieu de maintenir ex-
actement la meilleure solution lexicographique, nous pourrions maintenir un ensemble de
solutions du front de Pareto.

Bibliography

Adams, J., E. Balas, and D. Zawack (1988). The shifting bottleneck procedure for job shop
scheduling. Management Science 34(3), 391–401.

Almeder, C. and L. Mönch (2011). Metaheuristics for scheduling jobs with incompati-
ble families on parallel batching machines. Journal of the Operational Research Soci-

ety 62(12), 2083–2096.

Artigues, C. and D. Feillet (2008). A branch and bound method for the job-shop problem
with sequence-dependent setup times. Annals of Operations Research 159(1), 135–159.

Artigues, C., M.-J. Huguet, and P. Lopez (2011). Generalized disjunctive constraint propaga-
tion for solving the job shop problem with time lags. Engineering Applications of Artificial

Intelligence 24(2), 220–231.

Artigues, C. and F. Roubellat (2000). A polynomial activity insertion algorithm in a multi-
resource schedule with cumulative constraints and multiple modes. European Journal of

Operational Research 127(2), 297 – 316.

Artigues, C. and F. Roubellat (2002). An efficient algorithm for operation insertion in a multi-
resource job-shop schedule with sequence-dependent setup times. Production Planning &

Control 13(2), 175–186.

ASML (2016, February). Asml, 2015 annual report. https://staticwww.asml.

com/doclib/investor/annual_reports/2015/DownloadCenter/reports/

Annual-Report-Form20F.pdf.

Balas, E., N. Simonetti, and A. Vazacopoulos (2008). Job shop scheduling with setup times,
deadlines and precedence constraints. Journal of Scheduling 11(4), 253–262.

Balas, E. and A. Vazacopoulos (1998). Guided local search with shifting bottleneck for job
shop scheduling. Management Science 44(2), 262–275.

Balasubramanian, H., L. Mönch, J. Fowler, and M. Pfund (2004). Genetic algorithm based
scheduling of parallel batch machines with incompatible job families to minimize total
weighted tardiness. International Journal of Production Research 42(8), 1621–1638.

Barták, R. and O. Čepek (2008). Nested precedence networks with alternatives: Recog-
nition, tractability, and models. In Artificial Intelligence: Methodology, Systems, and

Applications, pp. 235–246. Springer.

150 BIBLIOGRAPHY

Bartusch, M., R. H. Möhring, and F. J. Radermacher (1988). Scheduling project networks
with resource constraints and time windows. Annals of Operations Research 16(1), 199–
240.

Beck, J. C. and M. S. Fox (2000). Constraint-directed techniques for scheduling alternative
activities. Artificial Intelligence 121(1), 211–250.

Behnke, D. and M. J. Geiger (2012). Test instances for the flexible job shop scheduling
problem with work centers. Technical report, Helmut-Schmidt-Universität, Universität
der Bundeswehr Hamburg.

Bilyk, A., L. Mönch, and C. Almeder (2014). Scheduling jobs with ready times and prece-
dence constraints on parallel batch machines using metaheuristics. Computers& Industrial

Engineering 23(5), 1621–1635.

Bitar, A. (2015). Ordonnancement sur machines parallèles appliqué à la fabrication de

semi-conducteurs : Atelier de photolithographie. Ph. D. thesis, École des Mines de Saint-
Étienne.

Bitar, A., S. Dauzère-Pérès, C. Yugma, and R. Roussel (2016). A memetic algorithm to solve
an unrelated parallel machine scheduling problem with auxiliary resources in semiconduc-
tor manufacturing. Journal of Scheduling 19(4), 367–376.

Blazewicz, J., K. H. Ecker, E. Pesch, G. Schmidt, and J. Weglarz (2007). Handbook on

Scheduling - From Theory to Applications. Springer Berlin Heidelberg.

Blazewicz, J., E. Pesch, and M. Sterna (2000). The disjunctive graph machine representation
of the job shop and scheduling problem. European Journal of Operational Research 127,
317–331.

Botta-Genoulaz, V. (2000). Hybrid flow shop scheduling with precedence constraints and
time lags to minimize maximum lateness. International Journal of Production Eco-

nomics 64(1), 101–111.

Bowman, E. H. (1959). The schedule-sequencing problem. Operations Research 7(5), 621–
624.

Bowman, V. J. J. (1976). On the relationship of the tchebycheff norm and the efficient frontier
of multiple-criteria objectives. In Multiple criteria decision making, pp. 76–86. Springer.

Brandimarte, P. (1993). Routing and scheduling in a flexible job shop by tabu search. Annals

of Operations research 41(3), 157–183.

Brucker, P. (2007). Scheduling algorithms. Springer.

Brucker, P., A. Gladky, H. Hoogeveen, M. Y. Kovalyov, C. Potts, T. Tautenhahn, and S. Van
De Velde (1998). Scheduling a batching machine. Journal of Scheduling 1(1), 31–54.

BIBLIOGRAPHY 151

Brucker, P., T. Hilbig, and J. Hurink (1999). A branch and bound algorithm for a single-
machine scheduling problem with positive and negative time-lags. Discrete Applied Math-

ematics 94(1), 77–99.

Brucker, P. and J. Hurink (2000). Solving a chemical batch scheduling problem by local
search. Annals of Operations Research 96(1-4), 17–38.

Brucker, P. and J. Neyer (1998). Tabu-search for the multi-mode job-shop problem.
Operations-Research-Spektrum 20(1), 21–28.

Brucker, P. and R. Schlie (1990). Job-shop scheduling with multi-purpose machines. Com-

puting 45(4), 369–375.

Brucker, P. and O. Thiele (1996). A branch & bound method for the general-shop problem
with sequence dependent setup-times. Operations-Research-Spektrum 18(3), 145–161.

Bureau, M., S. Dauzère-Pérès, C. Yugma, L. Vermariën, and J.-B. Maria (2007). Simulation
results and formalism for global-local scheduling in semiconductor manufacturing facili-
ties. In Proceedings of the 39th conference on Winter simulation: 40 years! The best is yet

to come, pp. 1768–1773. IEEE Press.

Bürgy, R. (2014). Complex Job Shop Scheduling: A General Model and Method. Ph. D.
thesis, Université de Fribourg.

Čapek, R., P. Šŭcha, and Z. Hanzálek (2012). Production scheduling with alternative process
plans. European Journal of Operational Research 217(2), 300–311.

Carlier, J. (1982). The one-machine sequencing problem. European Journal of Operational

Research 11(1), 42–47.

Carlier, J. and E. Pinson (1989). An algorithm for solving the job-shop problem. Manage-

ment Science 35(2), 164–176.

Carlier, J. and E. Pinson (1994). Adjustment of heads and tails for the job-shop problem.
European Journal of Operational Research 78(2), 146–161.

Caumond, A., P. Lacomme, and N. Tchernev (2008). A memetic algorithm for the job-shop
with time-lags. Computers & Operations Research 35(7), 2331–2356.

Chandra, S. M., M. Mathirajan, R. Gopinath, and A. Sivakumar (2008). Tabu search meth-
ods for scheduling a burn-in oven with non-identical job sizes and secondary resource
constraints. International Journal of Operational Research 3(1), 119–139.

Chen, H., J. Ihlow, and C. Lehmann (1999). A genetic algorithm for flexible job-shop
scheduling. In Robotics and Automation, 1999. Proceedings. 1999 IEEE International

Conference on, Volume 2, pp. 1120–1125. IEEE.

152 BIBLIOGRAPHY

Chiang, T.-C., H.-C. Cheng, and L.-C. Fu (2010). A memetic algorithm for minimizing total
weighted tardiness on parallel batch machines with incompatible job families and dynamic
job arrival. Computers & Operations Research 37(12), 2257–2269.

Chien, C.-F., S. Dauzère-Pérès, H. Ehm, J. W. Fowler, Z. Jiang, S. Krishnaswamy, T.-E.
Lee, L. Moench, and R. Uzsoy (2011). Modelling and analysis of semiconductor manu-
facturing in a shrinking world: challenges and successes. European Journal of Industrial

Engineering 4 5(3), 254–271.

Cho, L., H. M. Park, J. K. Ryan, T. C. Sharkey, C. Jung, and D. Pabst (2014). Production
scheduling with queue-time constraints: Alternative formulations. Proceedings of the 2014

Industrial and Systems Engineering Research Conference.

Cigolini, R., M. Perona, A. Portioli, and T. Zambelli (2002). A new dynamic look-ahead
scheduling procedure for batching machines. Journal of scheduling 5(2), 185–204.

Dächert, K., J. Gorski, and K. Klamroth (2010). An adaptive augmented weighted tcheby-
cheff method to solve discrete, integer-valued bicriteria optimization problems. Technical
report, Technical Report BUWAMNA-OPAP 10/06, University of Wuppertal, FB Mathe-
matik und Naturwissenschaften.

Danneberg, D., T. Tautenhahn, and F. Werner (1999). A comparison of heuristic algorithms
for flow shop scheduling problems with setup times and limited batch size. Mathematical

and Computer Modelling 29(9), 101–126.

Dauzère-Pérès, S. and J.-B. Lasserre (1993). A modified shifting bottleneck procedure for
job-shop scheduling. The International Journal of Production Research 31(4), 923–932.

Dauzère-Pérès, S. and L. Mönch (2013). Scheduling jobs on a single batch processing ma-
chine with incompatible job families and weighted number of tardy jobs objective. Com-

puters & Operations Research 40(5), 1224–1233.

Dauzère-Pérès, S. and J. Paulli (1997). An integrated approach for modeling and solving
the general multiprocessor job-shop scheduling problem using tabu search. Annals of

Operations Research 70, 281–306.

Dauzère-Pérès, S. and C. Pavageau (2003). Extensions of an integrated approach for multi-
resource shop scheduling. Systems, Man, and Cybernetics, Part C: Applications and Re-

views, IEEE Transactions on 33(2), 207–213.

Dauzère-Pérès, S., W. Roux, and J. Lasserre (1998). Multi-resource shop scheduling with
resource flexibility. European Journal of Operational Research 107(2), 289–305.

Deppner, F. and M.-C. Portmann (2006). A hybrid decomposition approach using increasing
clusters for solving scheduling problems with minimal and maximal time lags. In Tenth

International Workshop on Project Management and Scheduling (PMS 2006), pp. 4–pages.

BIBLIOGRAPHY 153

Dhouib, E., J. Teghem, and T. Loukil (2013). Minimizing the number of tardy jobs in a per-
mutation flowshop scheduling problem with setup times and time lags constraints. Journal

of Mathematical Modelling and Algorithms in Operations Research 12(1), 85–99.

Ding, S., J. Yi, and M. T. Zhang (2006). Multicluster tools scheduling: An integrated event
graph and network model approach. Semiconductor Manufacturing, IEEE Transactions

on 19(3), 339–351.

Dinkelbach, W. (1971). über einen lösungsansatz zum vektormaximumproblem. In Un-

ternehmensforschung Heute, pp. 1–13. Springer.

Doleschal, D., G. Weigert, and A. Klemmt (2015). Yield integrated scheduling using machine
condition parameter. In Proceedings of the 2015 Winter Simulation Conference, pp. 2953–
2963. IEEE Press.

Dorndorf, U., E. Pesch, and T. Phan-Huy (2000). A time-oriented branch-and-bound algo-
rithm for resource-constrained project scheduling with generalised precedence constraints.
Management Science 46(10), 1365–1384.

El Adl, M., A. A. Rodriguez, and K. S. Tsakalis (1996). Hierarchical modeling and control
of re-entrant semiconductor manufacturing facilities. In Proceedings of the 35th IEEE

Conference on Decision and Control, Volume 2, pp. 1736 – 1742.

Eppstein, D. (1992). Parallel recognition of series-parallel graphs. Information and Compu-

tation 98(1), 41–55.

Feo, T. A. and M. G. Resende (1995). Greedy randomized adaptive search procedures.
Journal of Global Optimization 6(2), 109–133.

Fondrevelle, J., A. Oulamara, and M.-C. Portmann (2006). Permutation flowshop scheduling
problems with maximal and minimal time lags. Computers & Operations Research 33(6),
1540–1556.

Fowler, J. W., G. L. Hogg, and S. J. Mason (2002). Workload control in the semiconductor
industry. Production Planning & Control 13(7), 568–578.

Fowler, J. W., S. Park, G. T. MacKulak, and D. L. Shunk (2001). Efficient cycle time-
throughput curve generation using a fixed sample size procedure. International Journal of

Production Research 39(12), 2595–2613.

Fowler, J. W. and O. Rose (2004). Grand challenges in modeling and simulation of complex
manufacturing systems. Simulation 80(9), 469–476.

Gao, J., L. Sun, and M. Gen (2008). A hybrid genetic and variable neighborhood de-
scent algorithm for flexible job shop scheduling problems. Computers & Operations Re-

search 35(9), 2892–2907.

154 BIBLIOGRAPHY

García-León, A., S. Dauzère-Pérès, and Y. Mati (2015). Minimizing regular criteria in the
flexible job-shop scheduling problem. In 7th Multidisciplinary International Scheduling

Conference : Theory & Applications, Prague.

Garey, M. R., D. S. Johnson, and R. Sethi (1976). The complexity of flowshop and jobshop
scheduling. Mathematics of Operations Research 1(2), 117–129.

Geiger, C. D., K. G. Kempf, and R. Uzsoy (1997). A tabu search approach to scheduling an
automated wet etch station. Journal of Manufacturing Systems 16(2), 102–116.

Glassey, C. R. and W. W. Weng (1991). Dynamic batching heuristic for simultaneous pro-
cessing. Semiconductor Manufacturing, IEEE Transactions on 4(2), 77–82.

Glover, F. (1989). Tabu search-part i. ORSA Journal on computing 1(3), 190–206.

Goldberg, D. E. and J. H. Holland (1988). Genetic algorithms and machine learning. Machine

learning 3(2), 95–99.

Golmakani, H. R. and A. Namazi (2012). An artificial immune algorithm for multiple-
route job shop scheduling problem. The International Journal of Advanced Manufacturing

Technology 63(1-4), 77–86.

González, M. A., A. Oddi, R. Rasconi, and R. Varela (2015). Scatter search with path relink-
ing for the job shop with time lags and setup times. Computers & Operations Research 60,
37–54.

González, M. A., C. R. Vela, I. González-Rodríguez, and R. Varela (2013). Lateness mini-
mization with tabu search for job shop scheduling problem with sequence dependent setup
times. Journal of Intelligent Manufacturing 24(4), 741–754.

Graham, R. L., E. L. Lawler, J. K. Lenstra, and A. Rinnooy Kan (1977). Optimization and
approximation in deterministic sequencing and scheduling: a survey. Annals of Discrete

Mathematics 5, 287–326.

Grimes, D. and E. Hebrard (2010). Job shop scheduling with setup times and maximal
time-lags: A simple constraint programming approach. In Integration of AI and OR Tech-

niques in Constraint Programming for Combinatorial Optimization Problems, pp. 147–
161. Springer.

Grimes, D. and E. Hebrard (2015). Solving variants of the job shop scheduling problem
through conflict-directed search. INFORMS Journal on Computing 27(2), 268–284.

Gröflin, H. and A. Klinkert (2007). Feasible insertions in job shop scheduling, short cycles
and stable sets. European Journal of Operational Research 177(2), 763–785.

Gröflin, H., A. Klinkert, and N. P. Dinh (2008). Feasible job insertions in the multi-processor-
task job shop. European Journal of Operational Research 185(3), 1308–1318.

BIBLIOGRAPHY 155

Guo, C., J. Zhibin, H. Zhang, and N. Li (2012). Decomposition-based classified ant colony
optimization algorithm for scheduling semiconductor wafer fabrication system. Comput-

ers & Industrial Engineering 62(1), 141–151.

Gurnani, H., R. Anupindi, and R. Akella (1992). Control of batch processing systems in
semiconductor wafer fabrication facilities. Semiconductor Manufacturing, IEEE Transac-

tions on 5(4), 319–328.

Gustin, W. (1963). Orientable embedding of cayley graphs. Bulletin of the American Math-

ematical Society 69(2), 272–275.

Ham, M. (2012). Integer programming-based real-time dispatching (i-rtd) heuristic for wet-
etch station at wafer fabrication. International Journal of Production Research 50(10),
2809–2822.

Hasper, A., E. Oosterlaken, F. Huussen, and T. Claasen-Vujcic (1999). Advanced manu-
facturing equipment: a vertical batch furnace for 300-mm wafer processing. IEEE Mi-

cro 19(5), 34–43.

Ho, Y.-C. and C. Moodie (1996). Solving cell formation problems in a manufacturing en-
vironment with flexible processing and routeing capabilities. International Journal of

Production Research 34(10), 2901–2923.

Hurink, J., B. Jurisch, and M. Thole (1994). Tabu search for the job-shop scheduling problem
with multi-purpose machines. Operations-Research-Spektrum 15(4), 205–215.

Hurink, J. and J. Keuchel (2001). Local search algorithms for a single-machine scheduling
problem with positive and negative time-lags. Discrete Applied Mathematics 112(1), 179–
197.

Hutchinson, G. and K. Pflughoeft (1994). Flexible process plans: their value in flexible
automation systems. The International Journal of Production Research 32(3), 707–719.

Jain, A. S. and S. Meeran (1998). A state-of-the-art review of job-shop scheduling tech-
niques. Technical report, Technical report, Department of Applied Physics, Electronic and
Mechanical Engineering, University of Dundee, Dundee, Scotland.

Johnzén, C., S. Dauzère-Pérès, and P. Vialletelle (2011). Flexibility measures for qualifica-
tion management in wafer fabs. Production Planning and Control 22(1), 81–90.

Johnzén, C., P. Vialletelle, S. Dauzère-Pérès, C. Yugma, and A. Derreumaux (2008). Im-
pact of qualification management on scheduling in semiconductor manufacturing. In Pro-

ceedings of the 40th Conference on Winter Simulation, pp. 2059–2066. Winter Simulation
Conference.

156 BIBLIOGRAPHY

Jung, C., D. Pabst, M. Ham, M. Stehli, and M. Rothe (2013). An effective problem decom-
position method for scheduling of diffusion processes based on mixed integer linear pro-
gramming. In Advanced Semiconductor Manufacturing Conference (ASMC), 2013 24th

Annual SEMI, pp. 35–40. IEEE.

Jurisch, B. (1992). Scheduling jobs in shops with multi-purpose machines. Ph. D. thesis,
Fachbereich Mathematik/Informatik, Universität Osnabrück.

Kahn, A. B. (1962). Topological sorting of large networks. Communications of the

ACM 5(11), 558–562.

Kao, Y.-T., S. Dauzère-Pérès, and J. Blue (2016). Integrating equipment health in job shop
scheduling for semiconductor fabrication. In International Conference on Project Man-

agement and Scheduling, pp. 223.

Kao, Y.-T., S.-C. Zhan, and S.-C. Chang (2012). Efficient and waiting time violation-free
furnace tool allocation via integration of sequencing constraints. In e-Manufacturing &

Design Collaboration Symposium (eMDC), 2012, pp. 1–2. IEEE.

Karmarkar, U. S. (1989). Capacity loading and release planning with work-in-progress (wip)
and leadtimes. Journal of Manufacturing and Operations Management 2, 105–123.

Kashan, A. H., B. Karimi, and M. Jenabi (2008). A hybrid genetic heuristic for scheduling
parallel batch processing machines with arbitrary job sizes. Computers & Operations

Research 35(4), 1084 – 1098.

Kempf, K. G., R. Uzsoy, and C.-S. Wang (1998). Scheduling a single batch processing
machine with secondary resource constraints. Journal of Manufacturing Systems 17(1),
37–51.

Kiba, J., S. Dauzère-Pérès, C. Yugma, S. G. Charpak, and G. Lamiable (2010). Comparing
transport policies in a full-scale 300mm wafer manufacturing facility. Proceedings of the

11th International Material Handling Research Colloquium.

Kim, Y.-D., B.-J. Joo, and S.-Y. Choi (2010). Scheduling wafer lots on diffusion machines in
a semiconductor wafer fabrication facility. Semiconductor Manufacturing, IEEE Transac-

tions on 23(2), 246–254.

Kirkpatrick, S. (1984). Optimization by simulated annealing: Quantitative studies. Journal

of statistical physics 34(5-6), 975–986.

Kis, T. (2003). Job-shop scheduling with processing alternatives. European Journal of

Operational Research 151(2), 307 – 332. Meta-heuristics in combinatorial optimization.

Kis, T. and A. Hertz (2003). A lower bound for the job insertion problem. Discrete Applied

Mathematics 128(2), 395–419.

BIBLIOGRAPHY 157

Kis, T. and E. Pesch (2005). A review of exact solution methods for the non-preemptive
multiprocessor flowshop problem. European Journal of Operational Research 164(3),
592–608.

Klemmt, A. and L. Mönch (2012). Scheduling jobs with time constraints between consecu-
tive process steps in semiconductor manufacturing. In Proceedings of the Winter Simula-

tion Conference, WSC ’12, pp. 194:1–194:10. Winter Simulation Conference.

Knopp, S., S. Dauzère-Pérès, and C. Yugma (2014). Flexible Job-Shop Scheduling with
Extended Route Flexibility for Semiconductor Manufacturing. In Proceedings of the 2014

Winter Simulation Conference (WSC), pp. 2478–2489. IEEE Press.

Knopp, S., S. Dauzère-Pérès, and C. Yugma (2015a). A Batch-Oblivious Approach for Com-
plex Job-Shop Scheduling Problems. Working Paper EMSE CMP-SFL 2015/2.

Knopp, S., S. Dauzère-Pérès, and C. Yugma (2015b). Scheduling Complex Job-Shops using
Batch Oblivious Disjunctive Graphs. In 7th Multidisciplinary International Conference

on Scheduling: Theory and Applications, pp. 788–793.

Knopp, S., S. Dauzère-Pérès, and C. Yugma (2016). Modeling Maximum Time Lags in
Complex Job-Shops with Batching in Semiconductor Manufacturing. In 15th International

Conference on Project Management and Scheduling, pp. 227–230.

Kohn, R. and O. Rose (2011). Automated generation of analytical process time models for
cluster tools in semiconductor manufacturing. In Proceedings of the 2011 Winter Simula-

tion Conference (WSC), pp. 1803–1815. IEEE.

Kohn, R., O. Rose, and C. Laroque (2013). Study on multi-objective optimization for parallel
batch machine scheduling using variable neighbourhood search. In Proceedings of the

2013 Winter Simulation Conference (WSC), pp. 3654–3670. IEEE.

Kovalyov, M. Y., C. N. Potts, and V. A. Strusevich (2004). Batching decisions for assembly
production systems. European Journal of Operational Research 157(3), 620–642.

Lacomme, P., , N. Tchernev, and M.-J. Huguet (2012). Job-shop with generic time-lags: A
heuristic based approach. In 9th International Conference of Modeling, Optimization and

Simulation-MOSIM, Volume 12, pp. 06–08.

Lawrence, S. (1984). Resource constrained project scheduling: an experimental investigation
of heuristic scheduling techniques (supplement). Graduate School of Industrial Adminis-

tration, Carnegie-Mellon University, Pittsburgh, Pennsylvania.

Lee, C.-Y., R. Uzsoy, and L. A. Martin-Vega (1992). Efficient algorithms for scheduling
semiconductor burn-in operations. Operations Research 40(4), 764–775.

Lee, J.-H. and T.-E. Lee (2010). An open scheduling architecture for cluster tools. In Automa-

tion Science and Engineering (CASE), 2010 IEEE Conference on, pp. 420–425. IEEE.

158 BIBLIOGRAPHY

Lee, T.-E. (2008). A review of scheduling theory and methods for semiconductor manufac-
turing cluster tools. In Proceedings of the 2008 Winter Simulation Conference (WSC), pp.
2127–2135. IEEE.

Legendre, A. M. (1805). Nouvelles méthodes pour la détermination des orbites des comètes.
Number 1. F. Didot.

Manne, A. S. (1960). On the job-shop scheduling problem. Operations Research 8(2), 219–
223.

Mason, S., J. Fowler, W. Carlyle, and D. Montgomery (2005, May). Heuristics for minimiz-
ing total weighted tardiness in complex job shops. International Journal of Production

Research 43(10), 1943–1963.

Mason, S. J., J. W. Fowler, and W. Matthew Carlyle (2002). A modified shifting bottle-
neck heuristic for minimizing total weighted tardiness in complex job shops. Journal of

Scheduling 5(3), 247–262.

Mason, S. J. and K. Oey (2003). Scheduling complex job shops using disjunctive graphs:
a cycle elimination procedure. International Journal of Production Research 41(5), 981–
994.

Mastrolilli, M. and L. M. Gambardella (2000). Effective neighbourhood functions for the
flexible job shop problem. Journal of Scheduling 3(1), 3–20.

Mathirajan, M. and A. Sivakumar (2006). A literature review, classification and simple meta-
analysis on scheduling of batch processors in semiconductor. The International Journal of

Advanced Manufacturing Technology 29(9-10), 990–1001.

Mathirajan, M., A. Sivakumar, and P. Kalaivani (2004). An efficient simulated annealing
algorithm for scheduling burn-in oven with non-identical job sizes. International Journal

of Applied Management and Technology 2(2), 117–138.

Mati, Y., S. Dauzère-Pérès, and C. Lahlou (2011). A general approach for optimizing reg-
ular criteria in the job-shop scheduling problem. European Journal of Operational Re-

search 212(1), 33–42.

Mauer, J. L. and R. E. Schelasin (1993). The simulation of integrated tool performance in
semiconductor manufacturing. In Proceedings of the 25th conference on Winter simula-

tion, pp. 814–818. ACM.

Mehta, S. V. and R. Uzsoy (1998). Minimizing total tardiness on a batch processing machine
with incompatible job families. IIE transactions 30(2), 165–178.

Michel, L. and P. Van Hentenryck (2003). Maintaining longest paths incrementally. In
Principles and Practice of Constraint Programming–CP 2003, pp. 540–554. Springer.

BIBLIOGRAPHY 159

Mladenović, N. and P. Hansen (1997). Variable neighborhood search. Computers & Opera-

tions Research 24(11), 1097–1100.

Möhring, R. H., M. Skutella, and F. Stork (2004). Scheduling with and/or precedence con-
straints. SIAM Journal on Computing 33(2), 393–415.

Mönch, L., H. Balasubramanian, J. W. Fowler, and M. E. Pfund (2005). Heuristic scheduling
of jobs on parallel batch machines with incompatible job families and unequal ready times.
Computers & Operations Research 32(11), 2731 – 2750.

Mönch, L. and R. Drießel (2005). A distributed shifting bottleneck heuristic for complex job
shops. Computers & Industrial Engineering 49(3), 363–380.

Mönch, L., J. W. Fowler, S. Dauzère-Pérès, S. J. Mason, and O. Rose (2011). A survey of
problems, solution techniques, and future challenges in scheduling semiconductor manu-
facturing operations. Journal of Scheduling 14(6), 583–599.

Mönch, L., J. W. Fowler, and S. J. Mason (2013). Production Planning and Control for

Semiconductor Wafer Fabrication Facilities, Volume 52. Springer New York.

Mönch, L. and O. Rose (2004). Shifting-Bottleneck-Heuristik für komplexe Produktionssys-
teme: Softwaretechnische Realisierung und Leistungsbewertung. Quantitative Methoden

in ERP und SCM, DSOR Beiträge zur Wirtschaftsinformatik 2, 145–159.

Mönch, L., O. Rose, and R. Sturm (2003). A simulation framework for the performance
assessment of shop-floor control systems. Simulation 79(3), 163–170.

Mönch, L., R. Schabacker, D. Pabst, and J. W. Fowler (2007). Genetic algorithm-based
subproblem solution procedures for a modified shifting bottleneck heuristic for complex
job shops. European Journal of Operational Research 177(3), 2100–2118.

Moore, G. E. (1965). Cramming more components onto integrated circuits. Electron-

ics 38(8), 114–117.

Muth, J. F. and G. L. Thompson (1963). Industrial scheduling. Prentice-Hall.

Nonobe, K. and T. Ibaraki (2006). A metaheuristic approach to the resource constrained
project scheduling with variable activity durations and convex cost functions. In Perspec-

tives in Modern Project Scheduling, pp. 225–248. Springer.

Nowicki, E. and C. Smutnicki (1996). A fast taboo search algorithm for the job shop problem.
Management Science 42(6), 797–813.

Oddi, A., R. Rasconi, A. Cesta, and S. Smith (2009). Iterative-sampling search for job
shop scheduling with setup times. In COPLAS-09. Proc. of the Workshop on Constraint

Satisfaction Techniques for Planning and Scheduling Problems at ICAPS. Citeseer.

160 BIBLIOGRAPHY

Oddi, A., R. Rasconi, A. Cesta, and S. F. Smith (2011). Solving job shop scheduling with
setup times through constraint-based iterative sampling: an experimental analysis. Annals

of Mathematics and Artificial Intelligence 62(3-4), 371–402.

Ovacik, I. M. and R. Uzsoy (1994). Exploiting shop floor status information to schedule
complex job shops. Journal of manufacturing systems 13(2), 73–84.

Ovacik, I. M. and R. Uzsoy (1997). Decomposition methods for complex factory scheduling

problems. Kluwer Academic Publishers Boston.

Pacino, D. and P. Van Hentenryck (2011). Large neighborhood search and adaptive random-
ized decompositions for flexible jobshop scheduling. In Proceedings of the Twenty-Second

international joint conference on Artificial Intelligence-Volume Volume Three, pp. 1997–
2002. AAAI Press.

Pearce, D. J. and P. H. Kelly (2007). A dynamic topological sort algorithm for directed
acyclic graphs. Journal of Experimental Algorithmics (JEA) 11, 1–7.

Perez, I. C., J. W. Fowler, and W. Carlyle (2005). Minimizing total weighted tardiness on
a single batch process machine with incompatible job families. Computers & Operations

Research 32(2), 327 – 341.

Pfund, M. E., H. Balasubramanian, J. W. Fowler, S. J. Mason, and O. Rose (2008). A multi-
criteria approach for scheduling semiconductor wafer fabrication facilities. Journal of

Scheduling 11(1), 29–47.

Pfund, M. E., S. J. Mason, and J. W. Fowler (2006). Semiconductor manufacturing schedul-
ing and dispatching. In Handbook of Production Scheduling, pp. 213–241. Springer.

Pinedo, M. (2012). Scheduling: theory, algorithms, and systems. Springer.

Ponsignon, T. and L. Mönch (2012). Heuristic approaches for master planning in semicon-
ductor manufacturing. Computers & Operations Research 39(3), 479–491.

Potts, C. N. and M. Y. Kovalyov (2000). Scheduling with batching: a review. European

Journal of Operational Research 120(2), 228–249.

Quirk, M. and J. Serda (2001). Semiconductor manufacturing technology, Volume 1. Prentice
Hall Upper Saddle River, NJ.

Raaymakers, W. H. and J. Hoogeveen (2000). Scheduling multipurpose batch process indus-
tries with no-wait restrictions by simulated annealing. European Journal of Operational

Research 126(1), 131–151.

Ramond, F., D. de Almeida, and S. Dauzère-Pérès (2006). Enhanced operation scheduling
within railcar maintenance centers. In 7th World Congress on Railway Research, Montréal,

Canada.

BIBLIOGRAPHY 161

Rodriguez Verjan, G. L., S. Dauzére-Pérès, and J. Pinaton (2011). Impact of control plan
design on tool risk management: a simulation study in semiconductor manufacturing. In
Proceedings of the Winter Simulation Conference, pp. 1918–1925. Winter Simulation Con-
ference.

Rohde, J., H. Meyr, M. Wagner, et al. (2000). Die supply chain planning matrix. PPS-

Management.

Rossi, A., S. Soldani, and M. Lanzetta (2015). Hybrid stage shop scheduling. Expert Systems

with Applications 42(8), 4105–4119.

Rossi, F., A. Sperduti, K. B. Venable, L. Khatib, P. Morris, and R. Morris (2002). Learning
and solving soft temporal constraints: An experimental study. In Principles and Practice

of Constraint Programming-CP 2002, pp. 249–264. Springer.

Rowshannahad, M., S. Dauzère-Pérès, and B. Cassini (2015). Capacitated qualification man-
agement in semiconductor manufacturing. Omega 54, 50–59.

Roy, B. and B. Sussmann (1964). Les problemes d’ordonnancement avec contraintes dis-
jonctives. Note ds 9.

Sadeghi, R., S. Dauzère-Pérès, C. Yugma, and G. Lepelletier (2015). Production control in
semiconductor manufacturing with time constraints. In Advanced Semiconductor Manu-

facturing Conference (ASMC), 2015 26th Annual SEMI, pp. 29–33. IEEE.

Sadeghi, R., S. Dauzère-Pérès, C. Yugma, and L. Vermarien (2015). Consistency between
global and local scheduling decisions in semiconductor manufacturing: an application to
time constraint management. In International Symposium on Semiconductor Manufactur-

ing Intelligence (ISMI), 2015, pp. 5 pages.

Sarin, S. C., A. Varadarajan, and L. Wang (2011). A survey of dispatching rules for opera-
tional control in wafer fabrication. Production Planning & Control 22(1), 4–24.

Scholl, W. and J. Domaschke (2000). Implementation of modeling and simulation in semi-
conductor wafer fabrication with time constraints between wet etch and furnace operations.
Semiconductor Manufacturing, IEEE Transactions on 13(3), 273–277.

Schulz, C. (2013). High Quality Graph Partitioning. epubli.

Schutt, A., T. Feydy, and P. J. Stuckey (2013). Scheduling optional tasks with explanation.
In Principles and Practice of Constraint Programming, pp. 628–644. Springer.

Schwindt, C. and N. Trautmann (2000). Batch scheduling in process industries: an applica-
tion of resource–constrained project scheduling. OR-Spektrum 22(4), 501–524.

Shen, L. (2014). A tabu search algorithm for the job shop problem with sequence dependent
setup times. Computers & Industrial Engineering 78, 95–106.

162 BIBLIOGRAPHY

SIA (2015, December). Global billings report history (3-month moving average), 1976 - de-
cember 2015. http://www.semiconductors.org/industry_statistics/global_
sales_report/.

Silver, E. A., D. F. Pyke, R. Peterson, et al. (1998). Inventory management and production

planning and scheduling, Volume 3. Wiley New York.

Skorin-Kapov, J. and A. Vakharia (1993). Scheduling a flow-line manufacturing cell: a tabu
search approach. The International Journal of Production Research 31(7), 1721–1734.

Sobeyko, O. and L. Mönch (2011). A comparison of heuristics to solve a single machine
batching problem with unequal ready times of the jobs. In Proceedings of the 2011 Winter

Simulation Conference (WSC), pp. 2006–2016. IEEE.

Sobeyko, O. and L. Mönch (2016). Heuristic approaches for scheduling jobs in large-scale
flexible job shops. Computers & Operations Research 68, 97–109.

Sörensen, K. (2015). Metaheuristics - the metaphor exposed. International Transactions in

Operational Research 22(1), 3–18.

Sotskov, Y. N., T. Tautenhahn, and F. Werner (1996). Heuristics for permutation flow shop
scheduling with batch setup times. Operations-Research-Spektrum 18(2), 67–80.

Sourirajan, K. and R. Uzsoy (2007). Hybrid decomposition heuristics for solving large-scale
scheduling problems in semiconductor wafer fabrication. Journal of Scheduling 10(1),
41–65.

Stadtler, H. and C. Kilger (2000). Supply chain management and advanced planning.
Springer.

Steuer, R. E. and E.-U. Choo (1983). An interactive weighted tchebycheff procedure for
multiple objective programming. Mathematical programming 26(3), 326–344.

Taillard, E. D. (1994). Parallel taboo search techniques for the job shop scheduling problem.
ORSA Journal on Computing 6(2), 108–117.

Tan, Y., L. Mönch, and J. W. Fowler (2014). A decomposition heuristic for a two-machine
flow shop with batch processing. In Proceedings of the 2014 Winter Simulation Confer-

ence, pp. 2490–2501. IEEE Press.

T’kindt, V. and J.-C. Billaut (2001). Multicriteria scheduling problems: a survey. RAIRO-

Operations Research 35(02), 143–163.

Upasani, A. A., R. Uzsoy, and K. Sourirajan (2006). A problem reduction approach for
scheduling semiconductor wafer fabrication facilities. Semiconductor Manufacturing,

IEEE Transactions on 19(2), 216–225.

BIBLIOGRAPHY 163

Uzsoy, R., C.-Y. Lee, and L. A. Martin-Vega (1992). A review of production planning and
scheduling models in the semiconductor industry part i: system characteristics, perfor-
mance evaluation and production planning. IIE transactions 24(4), 47–60.

Vaessens, R. J., E. H. Aarts, and J. K. Lenstra (1996). Job shop scheduling by local search.
INFORMS Journal on Computing 8(3), 302–317.

Vaessens, R. J. M. (1995). Generalized Job Shop Scheduling: Complexity and Local Search.
Ph. D. thesis, Eindhoven University of Technology.

Vakharia, A. J. and Y.-L. Chang (1990). A simulated annealing approach to scheduling a
manufacturing cell. Naval Research Logistics (NRL) 37(4), 559–577.

Van Laarhoven, P. J., E. H. Aarts, and J. K. Lenstra (1992). Job shop scheduling by simulated
annealing. Operations Research 40(1), 113–125.

Wagner, H. M. (1959). An integer linear-programming model for machine scheduling. Naval

Research Logistics Quarterly 6(2), 131–140.

Wang, C.-S. and R. Uzsoy (2002). A genetic algorithm to minimize maximum lateness on a
batch processing machine. Computers & Operations Research 29(12), 1621–1640.

Wein, L. M. (1988). Scheduling semiconductor wafer fabrication. Semiconductor Manufac-

turing, IEEE Transactions on 1(3), 115–130.

Wierzbicki, A. P. (1986). On the completeness and constructiveness of parametric character-
izations to vector optimization problems. Operations-Research-Spektrum 8(2), 73–87.

Wikum, E. D., D. C. Llewellyn, and G. L. Nemhauser (1994). One-machine generalized
precedence constrained scheduling problems. Operations Research Letters 16(2), 87–99.

Yazdani, M., M. Amiri, and M. Zandieh (2010). Flexible job-shop scheduling with parallel
variable neighborhood search algorithm. Expert Systems with Applications 37(1), 678–
687.

Yugma, C., S. Dauzère-Pérès, C. Artigues, A. Derreumaux, and O. Sibille (2012). A batching
and scheduling algorithm for the diffusion area in semiconductor manufacturing. Interna-

tional Journal of Production Research 50(8), 2118–2132.

Yurtsever, T., E. Kutanoglu, and J. Johns (2009). Heuristic based scheduling system for
diffusion in semiconductor manufacturing. In Winter Simulation Conference, pp. 1677–
1685. Winter Simulation Conference.

Zhang, X. and S. van de Velde (2010). On-line two-machine open shop scheduling with time
lags. European Journal of Operational Research 204(1), 14–19.

Ziarnetzky, T. and L. Mönch (2016). Incorporating engineering process improvement activ-
ities into production planning formulations using a large-scale wafer fab model. Interna-

tional Journal of Production Research 54(21), 6416–6435.

Index

Aggregation Function, 108
Anti-Ideal Point, 109
ASIC, 11
Automatized Material Handling Systems, 10
Availability Period, 35

boat, 32
load port, 30
machine, 26

Back-End, 5
Batch, 25, 46, 77
batch, 48
Batch Size

minimum, 25
Batch-Oblivious Conjunctive Graph, 49
Batching Coefficient, 37
Bath Tank, 34
Boat, 31

swap, 31
synchronization, 31

Buffer Capacity, 32
Buffer Exceedance Penalty Duration, 34

Capacity, 25, 26, 45
Cassette, 8
Chamber, 30
Chip, 5
Compatibility, 25
Completion Time, 45, 75
Complex Job-Shop, 45
Conjunctive Graph, 47, 79

batch-aware, 48
batch-oblivious, 49

Construction Heuristic, 91
Container, 24
Control Run, 26, 32

objective, 38

quantity, 26
Cost

rework, 35
scrap, 35

Cut, 54

Deposition, 6
Die, 5
Diffusion, 6
Diffusion And Cleaning Area, 12
Disjunctive Graph, 47
Dispatching, 11
Due Date, 27
Duration

boat swap, 32
changeover, 25
cooling, 32
initial bath, 34
loading, 30, 32, 34
minimum standby, 32
processing, 25, 28, 30, 32, 34, 45
transport, 25
unloading, 30, 32, 34

Efficient
strictly, 109
weakly, 109

Etching, 7

Fab, 5
Family, 25

batch, 45, 77
mutual exclusion constraint, 29
setup, 45, 75

FOUP, 8, 24
Front-End, 5
Furnace, 31

165

166 INDEX

GRASP, 14, 91

Head, 86
Headspan, 86
High-Mix, 11

Ideal Point, 109
Implantation, 7
Initiation Date, 28
Integrated Circuit, 5
Internal Buffer, 32

Job, 45, 75

Lexicographical Ordering, 108
Load Port, 30

number of, 30
Longest path

length, 47, 86
Lot, 24

completeness constraint, 28
in-process, 27

Low-Mix, 11

Machine, 24, 45
batch with a unique chamber, 30
furnace, 31
single-wafer

parallel, 29
serial, 28

wet bench, 34
Mask, 7
Maximum Time Lag, 25, 35

exceedance, 111
initiated, 99
maximum duration, 100
non-reworkable, 35, 98
reworkable, 35, 98
total violation severity, 101
ultimate duration, 100
violation severity, 100

Minimum Time Lag, 25, 100
Movable Component, 77
Move, 27

weighted, 27, 37

Multiple Orders Per Job, 9

Nadir, 109
Node

settled, 54
unsettled, 54

Node Insertion
acyclic, 84
feasible, 84

Node Insertion Position, 84

Objective Function, 46
regular, 46

Operation, 45, 74, 75
selected, 75

Order Release, 9
Oxidation, 6

p-batching, 15
Parallel Processing Steps

number of, 29
Pareto Optimum

strict, 109
weak, 109

Path, 74
Photolithography, 7
Planarization, 7
Planning Horizon, 27
Prefix, 86

acquisition-aware maximal, 87
maximal, 86

Priority, 27
Processing, 24
Product Mix, 11

Qualification, 24
Qualification Management, 9
Quotient Graph, 105

Reachability Relation, 85
Ready Date, 28
Recipe, 24
Reference Point, 109
Release Date, 45, 75
Resource, 75

INDEX 167

Resource Insertion Position, 84
Reticle, 7
Robot, 31
Route, 24, 45, 74
Route Duration

actual, 37
theoretical, 37

Route Graph, 74
Route Selection, 75
Route Separator, 74

s-batching, 15
Sequence-Dependent Setup Time, 25, 29, 45,

75
Simulated Annealing, 14, 91
Slack, 103
Standby Process, 31
Start Date, 45, 75

earliest, 86, 104
latest, 104

Step, 24

TchebycheffMetric
weighted, 109
weighted augmented, 109

Tool Group, 46
Topological Ordering, 52

consistent, 105
Topological Rank, 105
Tube, 31
Two-Terminal Series Parallel Graph, 74

Utopian Point, 109

Wafer, 5, 24
Weighted Flow Factor, 37

X-Factor, see Weighted Flow Factor

Yield, 8

École Nationale Supérieure des Mines de Saint-Étienne

NNT: 2016LYSEM014

Sebastian KNOPP

COMPLEX JOB-SHOP SCHEDULING WITH BATCHING
IN SEMICONDUCTOR MANUFACTURING

Specialization: Industrial Engineering

Keywords:

Scheduling, Disjunctive Graphs, Semiconductor Manufacturing, Optimization

Abstract:

The integration of batching machines within a job-shop environment leads to a complex
job-shop scheduling problem. Semiconductor manufacturing presumably represents one of
the most prominent practical applications for such problems. We consider a flexible job-
shop scheduling problem with p-batching, reentrant flows, sequence dependent setup times
and release dates while considering different regular objective functions. The scheduling of
parallel batching machines and variants of the job-shop scheduling problem are well-studied
problems whereas their combination is rarely considered.

Existing disjunctive graph approaches for this combined problem rely on dedicated nodes
to explicitly represent batches. To facilitate modifications of the graph, our new modeling
reduces this complexity by encoding batching decisions into edge weights. An important
contribution is an original algorithm that takes batching decisions “on the fly” during graph
traversals. This algorithm is complemented by an integrated move to resequence and reassign
operations. This combination yields a rich neighborhood that we apply within a GRASP
based metaheuristic approach.

We extend this approach by taking further constraints into account that are important
in the considered industrial application. In particular, we model internal resources of ma-
chines in detail and take maximum time lag constraints into account. Numerical results for
benchmark instances of different problem types show the generality and applicability of our
approach. The conciseness of our idea facilitates extensions towards further complex con-
straints needed in real-world applications.

École Nationale Supérieure des Mines de Saint-Étienne

NNT : 2016LYSEM014

Sebastian KNOPP

Ordonnancement d’ateliers complexes de type job-shop
avec machines à traitement par batch
en fabrication de semi-conducteurs

Spécialité : Génie Industriel

Mots clefs :

Ordonnancement, Graphe Disjonctif, Fabrication de semi-conducteurs, Optimisation

Résumé :

La prise en compte de machines à traitement par batch dans les problèmes d’ordonnancement
d’ateliers complexes de type job-shop est particulièrement difficile. La fabrication de semi-
conducteurs est probablement l’une des applications pratiques les plus importantes pour ce
types de problèmes. Nous considérons un problème d’ordonnancement de type job-shop
flexible avec « p-batching », des flux rentrants, des temps de préparation dépendant de la
séquence et des dates de début au plus tôt. Le but c’est d’optimiser différentes fonctions
objectives régulières.

Les approches existantes par graphe disjonctif pour ce problème utilise des nœuds dédiés
pour représenter explicitement les batches. Afin de faciliter la modification du graphe con-
jonctif, notre nouvelle modélisation réduit cette complexité en modélisant les décisions de
batching à travers les poids des arcs. Une importante contribution de cette thèse est un
algorithme original qui prend les décisions de batching lors du parcours du graphe. Cet al-
gorithme est complété par un déplacement (« move ») intégré qui permet de reséquencer ou
réaffecter les opérations. Cette combinaison donne un voisinage riche que nous appliquons
dans une approche méta-heuristique de type GRASP.

Nous étendons cette approche en prenant en compte de nouvelles contraintes qui ont un
rôle important dans l’application industrielle considérée. En particulier, nous modélisons de
manière explicite les ressources internes des machines, et nous considérons un temps maxi-
mum d’attente entre deux opérations quelconques d’une gamme de fabrication. Les résultats
numériques sur des instances de la littérature pour des problèmes plus simples ainsi que
sur de nouvelles instances montrent la généricité et l’applicabilité de notre approche. Notre
nouvelle modélisation permet de faciliter les extensions à d’autres contraintes complexes
rencontrées dans les applications industrielles.

