
HAL Id: tel-01665203
https://theses.hal.science/tel-01665203v3

Submitted on 25 Sep 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Surface motion capture animation
Adnane Boukhayma

To cite this version:
Adnane Boukhayma. Surface motion capture animation. Graphics [cs.GR]. Université Grenoble Alpes,
2017. English. �NNT : 2017GREAM080�. �tel-01665203v3�

https://theses.hal.science/tel-01665203v3
https://hal.archives-ouvertes.fr


THÈSE

Pour obtenir le grade de

DOCTEUR DE L’UNIVERSITÉ DE GRENOBLE
Spécialité : Mathématiques, Sciences et Technologies de l’Information

Arrêté ministériel : 7 août 2006

Présentée par

Adnane Boukhayma

Thèse dirigée par Edmond Boyer

préparée au sein Inria Grenoble
et de l’école doctorale MSTII : Mathématiques, Sciences et Technolo-
gies de l’Information, Informatique

Animation de Capture de Mouve-
ment de Surface
Surface Motion Capture Animation

Thèse soutenue publiquement le 6 décembre 2017,
devant le jury composé de :

Pr. Adrian Hilton
University of Surrey, Guilford, UK, Rapporteur

Dr. Gerard Pons Moll
Max Planck Institute of Intelligent Systems, Tübingen, Germany, Rapporteur

Pr. Céline Loscos (Président du jury)
Université de Reims, France, Examinateur

Dr. Jean-Sébastien Franco
Grenoble INP, France, Examinateur

Dr. Edmond Boyer
Inria Grenoble Rhône-Alpes, France, Directeur de thèse





3

Abstract

As a new alternative to standard motion capture, 4D surface capture
is motivated by the increasing demand from media production for highly
realistic 3D content. Such data provides real full shape, appearance and
kinematic information of the dynamic object of interest. We address in this
work some of the tasks related to the acquisition and the exploitation of 4D
data, as obtained through multi-view videos, with an emphasis on corpus
of moving subjects. Some of these problems have already received a great
deal of interest from the graphics and vision communities, but a number of
challenges remain open in this respect. We address namely example based
animation synthesis, appearance modelling, semantic motion transfer and
variation synthesis.

We first propose a method to generate animations using video-based
mesh sequences of elementary movements of a shape. New motions that
satisfy high-level user-specified constraints are built by recombining and
interpolating the frames in the observed mesh sequences. Our method brings
local improvement to the synthesis process through optimized interpolated
transitions, and global improvement with an optimal organizing structure
that we call the essential graph.

We then address the problem of building efficient appearance repre-
sentations of shapes observed from multiple viewpoints and in several
movements. We propose a per subject representation that identifies the
underlying manifold structure of the appearance information relative to a
shape. The resulting representation encodes shape appearance variabilities
due to viewpoint and illumination, with Eigen textures, and due to local inac-
curacies in the geometric model, with Eigen warps. In addition to providing
compact representations, such decompositions also allow for appearance
interpolation and appearance completion.

We additionally address the problem of transferring motion between
captured 4D models. Given 4D training sets for two subjects for which a
sparse set of semantically corresponding key-poses are known, our method
is able to transfer a newly captured motion from one subject to the other.
The method contributes a new transfer model based on non-linear pose and
displacement interpolation that builds on Gaussian process regression.

Finally, we propose a data based solution for generating variations of
captured 4D models, for automatic 4D dataset augmentation and realism
improvement. Given a few 4D models representing movements of the same
type, our method builds a probabilistic low dimensional embedding of shape
poses using Gaussian Process Dynamical Models, and novel variants of mo-
tions are obtained by sampling trajectories from this manifold using Monte
Carlo Markov Chain. We can synthesise an unlimited number of variations
of any of the input movements, and also any blended version of them. The
output variations are statistically similar to the input movements but yet



4

slightly different in poses and timings.

Keywords. Video-based animation • Multiview reconstruction • 4D mod-
elling • Motion transfer • Essential graph • Eigen appearance maps •
Gaussian process • Motion variation •



5

Résumé

En tant qu’une nouvelle alternative à la MoCap standard, la capture de
surface 4D est motivée par la demande croissante des produits médiatiques
de contenu 3D très réaliste. Ce type de données fournit une information
complète et réelle de la forme, l’apparence et la cinématique de l’objet dyna-
mique d’intérêt. On aborde dans cet ouvrage certaines taches liées à l’acquisi-
tion et l’exploitation de données 4D, obtenues à travers les vidéos multi-vues,
avec un intérêt particulier aux formes humaines en mouvement. Parmi ces
problèmes, certains ont déjà reçu beaucoup d’intérêt de la part des commu-
nautés de vision par ordinateur et d’infographie, mais plusieurs challenges
restent ouverts à cet égard. En particulier, nous abordons la synthèse d’ani-
mation basée sur des exemples, la modélisation d’apparence, le transfert
sémantique de mouvement et la géneration de variation de mouvement.

On introduit premièrement une méthode pour générer des animations
en utilisant des séquences de maillages de mouvements élémentaires d’une
forme donnée. De nouveaux mouvements satisfaisant des contraintes haut-
niveau sont construites en combinant et interpolant les trames des données
observées. Notre méthode apporte une amélioration local au processus de
la synthèse grâce à l’optimisation des transitions interpolées, ainsi qu’une
amélioration globale avec une structure organisatrice optimale qu’on appelle
le graph essentiel.

On aborde en suite la construction de représentations efficaces de l’appa-
rence de formes en mouvement observées à travers des vidéos multi-vue. On
propose une représentation par sujet qui identifie la structure sous-jacente de
l’information d’apparence relative à une forme particulière. La représentation
propre résultante encode les variabilités d’apparence dues au point de vue
et au mouvement avec les textures propres, et celles dues aux imprécisions
locales dans le modèle géométrique avec les déformations propres. Outre
fournir des représentation compactes, ces décompositions permettent aussi
l’interpolation et la complétion des apparences.

On s’intéresse aussi au problème de transfert de mouvement entre deux
modèles 4D capturés. Étant donné des ensembles d’apprentissages pour deux
sujets avec des correspondances sémantiques éparses entre des poses clés,
notre méthode est capable de transférer un nouveau mouvement capturé
d’un sujet vers l’autre. Nous contribuons principalement un nouveau modèle
de transfert basé sur l’interpolation non-linéaire de pose et de déplacement
qui utilise les processus Gaussiens de régression.

Finalement, on propose une solution pour générer des variations de
modèles 4D capturés, pour l’augmentation automatique et l’amélioration
du réalisme des bases de données 4D. Étant donné quelques modèles 4D
représentant des mouvements du même type, notre méthode construit un
plongement probabiliste à basse dimension des poses en utilisant les modèles



6

de processus Gaussiens dynamiques, et des variantes nouvelles de mouve-
ment sont obtenues en échantillonnant des trajectoires dans l’espace sous-
jacent grâce à une chaine de Markov de Monte Carlo. On peut synthétiser
un nombre illimité de variations des mouvements en entrée ainsi que toute
version interpolée de ces derniers. On obtient en sortie des séquences statisti-
quement similaires aux entrées avec de légères différences dans les poses et
leur timings.



Contents

Contents 7

List of Figures 9

1 Introduction 3
1.1 Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Summary and Contributions . . . . . . . . . . . . . . . . . . 5

2 Shape pose and motion blending 9
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3 Shape pose distance . . . . . . . . . . . . . . . . . . . . . . . 11
2.4 Shape pose interpolation . . . . . . . . . . . . . . . . . . . . 22
2.5 Shape Motion transition . . . . . . . . . . . . . . . . . . . . 30
2.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3 Shape animation synthesis 47
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.2 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.3 Organizing graph structure . . . . . . . . . . . . . . . . . . 52
3.4 Motion synthesis . . . . . . . . . . . . . . . . . . . . . . . . 64
3.5 High-level constraints . . . . . . . . . . . . . . . . . . . . . 68
3.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4 Shape appearance representation 75
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
4.2 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
4.3 Texture maps variation . . . . . . . . . . . . . . . . . . . . . 79
4.4 Eigen appearance maps . . . . . . . . . . . . . . . . . . . . . 80
4.5 Model performance evaluation . . . . . . . . . . . . . . . . 88
4.6 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

7



8 CONTENTS

4.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

5 Shape Motion transfer 101
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
5.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
5.3 Semantic Motion Transfer . . . . . . . . . . . . . . . . . . . 105
5.4 Shape Pose Representation . . . . . . . . . . . . . . . . . . . 106
5.5 Shape Pose Mapping . . . . . . . . . . . . . . . . . . . . . . 108
5.6 Shape Pose Reconstruction . . . . . . . . . . . . . . . . . . . 113
5.7 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
5.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

6 Shape Motion Variation Synthesis 121
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
6.2 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
6.3 Controllable motion variation synthesis . . . . . . . . . . . 124
6.4 Shape pose representation . . . . . . . . . . . . . . . . . . . 125
6.5 Shape motion embedding . . . . . . . . . . . . . . . . . . . 126
6.6 Shape motion sampling . . . . . . . . . . . . . . . . . . . . . 129
6.7 Shape motion parametrization . . . . . . . . . . . . . . . . . 131
6.8 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
6.9 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

7 Conclusions 139
7.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
7.2 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

Bibliography 143



List of Figures

1.1 Data acquisition pipeline. . . . . . . . . . . . . . . . . . . . . . 4

1.2 4D Animation from user constraints. Green frames are recorded
and red frames are synthetic. . . . . . . . . . . . . . . . . . . . 5

2.1 Interpolated transition with gradual blending Rose et al. [1998] 10

2.2 Motion transition schemes. . . . . . . . . . . . . . . . . . . . . . 11

2.3 Examples of mesh data animation with skeletal parametrization. 12

2.4 Adobe Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.5 Mantel test: Distributions of the Pearson correlation statistic of
permutation tests comparing the ground truth to ours and the
Euclidean pose distance. Horizontal lines show the original
value of correlation, and the histograms show the count of
correlation values after permutations. . . . . . . . . . . . . . . 19

2.6 Mantel Correlogram: Pearson correlation coefficient of classes
of range of distances, between the ground truth and our pose
distance (Red), and the ground truth and the Euclidean dis-
tance (Blue). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.7 Correlation between the ground truth and both our pose dis-
tance and the Euclidean pose distance. . . . . . . . . . . . . . 22

2.8 Linear versus Non-linear mesh interpolation. . . . . . . . . . . 23

2.9 Gradient of basis hat function in a mesh triangle . . . . . . . . 25

2.10 Link between global mesh gradient operator G and mesh func-
tion gradient Gm at triangle tm = (vk1 , vk2 , vk3) . . . . . . . . . 26

2.11 gradual frame blending based transitions . . . . . . . . . . . . 33

2.12 Permissible routes through the grid for various slope con-
straints p on the dynamic time warping path. The Red node is
the current node of the path and the black nodes are its possible
predecessors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.13 Examples of a dynamic time warping path with various slope
constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

9



10 List of Figures

2.14 Comparison between a standard interpolated transition and
our optimized interpolated transition. Green frames are origi-
nal and red frames are interpolated. . . . . . . . . . . . . . . . 40

2.15 Comparison of Standard transitions, transitions with dynamic
time warping (DTW), and transitions with dynamic time warp-
ing and varying length segments (DTW+VLS) for TOMAS dataset. 42

2.16 Comparison of Standard transitions, transitions with dynamic
time warping (DTW), and transitions with dynamic time warp-
ing and varying length segments (DTW+VLS) for DAN dataset. 43

2.17 Comparison of Standard transitions, transitions with dynamic
time warping (DTW), and transitions with dynamic time warp-
ing and varying length segments (DTW+VLS) for JP dataset. . 44

3.1 Essential graph built with TOMAS dataset. . . . . . . . . . . . . 54

3.2 Graph density . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.3 Graph representation of input sequences. . . . . . . . . . . . . 57

3.4 Building a motion graph. . . . . . . . . . . . . . . . . . . . . . . 58

3.5 Building an essential graph. . . . . . . . . . . . . . . . . . . . . 58

3.6 Shortest path from node (1, 1) to node (2, 3) . . . . . . . . . . . 59

3.7 Shortest path from node (2, 1) to node (1, 4) . . . . . . . . . . . 59

3.8 Comparison of Motions graphs and Essential graphs using
TOMAS dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.9 Comparison of Motions graphs and Essential graphs using
DAN dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.10 Comparison of Motions graphs and Essential graphs using JP
dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.11 A walk in the essential graph built with DAN dataset. Green
frames are original, Red frames are interpolated. . . . . . . . . 64

3.12 Transition from Walk to Run in TOMAS dataset. . . . . . . . . . 65

3.13 Recurring 2D alignment for motion segment blending . . . . . 65

3.14 Blending sequences Left and Right from TOMAS dataset . . . . 67

3.15 3D path synthesis. Green frames are original, Red frames are
interpolated. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

3.16 2D path synthesis. Green frames are original, Red frames are
interpolated. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

3.17 Pose/time editing. Green frames are original, Red frames are
interpolated. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

3.18 CATY dance sequence editing results. . . . . . . . . . . . . . . . 73



List of Figures 11

4.1 Appearance representation of a dynamic subject from multiple
views. Left: 3D Coarse geometric registration. Right: 2D
realignment in texture domain. . . . . . . . . . . . . . . . . . . 76

4.2 Captured (Green) versus Tracked (Red) geometries, sequence
Run, TOMAS dataset. . . . . . . . . . . . . . . . . . . . . . . . . 79

4.3 Method pipeline from input textures (left) to eigen maps (right). 81
4.4 Texture pre-alignment processing. . . . . . . . . . . . . . . . . 83
4.5 Poisson versus direct texture warping. . . . . . . . . . . . . . . 84
4.6 MSE Reconstruction error for TOMAS using Poisson and direct

warping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
4.7 Texture map generation by linear combination. . . . . . . . . 88
4.8 Texture reconstruction with our method using various num-

bers of Eigen maps. . . . . . . . . . . . . . . . . . . . . . . . . . 90
4.9 SSIM Reconstruction Error for TOMAS and CATY. . . . . . . . 91
4.10 MSE Reconstruction Error for TOMAS and CATY. . . . . . . . . 92
4.11 SSIM Generalization Error for TOMAS and CATY . . . . . . . . 93
4.12 MSE Generalization Error for TOMAS and CATY . . . . . . . . 94
4.13 Interpolation examples from CATY dataset using linear inter-

polation (left) and our pipeline (right). From left to right: Input
frames, Interpolated models, and a close-up on the texture
maps (top) and the rendered images (bottom). . . . . . . . . . 95

4.14 Interpolation examples from TOMAS dataset using linear inter-
polation (left) and our pipeline (right). From left to right: Input
frames, Interpolated models, and a close-up on the texture
maps (top) and the rendered images (bottom). . . . . . . . . . 96

4.15 Completion examples from TOMAS dataset. From left to right:
Input and completed models, close-up on input and completed
texture maps (top) and rendered images (bottom). . . . . . . . 98

5.1 Motion capture transfer. Left: Multi-View acquisition of mo-
tion sequences for 2 subjects; Middle: Training of the motion
mapping between subjects given shape sequences with sparse
frame correspondences (in color); Right: Motion animations of
subject 2 (bottom) given new input motions for subject 1 (top). 102

5.2 Body parts: shaded colors represent overlapping regions be-
tween parts delimited by user given curves. . . . . . . . . . . . 107

5.3 Pose correspondence densification and mapping. . . . . . . . . 109
5.4 Body part correction algorithm. . . . . . . . . . . . . . . . . . . 113
5.5 Example of body part correction (in green). . . . . . . . . . . . 114
5.6 Body part stitching. . . . . . . . . . . . . . . . . . . . . . . . . . 115
5.7 Transferring from TOMAS to DAN. . . . . . . . . . . . . . . . . 116



List of Figures 1

5.8 Learning curves for various regression models. . . . . . . . . . 117
5.9 Learning curves for various regression models. Training subset

initialized with key-poses. . . . . . . . . . . . . . . . . . . . . . 118
5.10 Learning curves for the GPR model with neural network kernel

with and without body parts. . . . . . . . . . . . . . . . . . . . 119

6.1 Overview. Left: Multi-view acquisition of motion sequences of
the same type (e.g. locomotion). Right: Variation synthesis for
any of the input sequences or any blended version of them. 5
variations are overlapped, each with a different color. . . . . . 122

6.2 Coarse body partition. . . . . . . . . . . . . . . . . . . . . . . . 125
6.3 Latent trajectories of the right leg, learned with sequences Walk

(blue), Jog (black), Left (cyan) and Right (magenta). . . . . . . . 128
6.4 Mean reconstruction error of the ”walk” GPDM (built with

sequences Walk, Jog, Left, Right) and the ”jumps” GPDM (built
with sequences Jump long, Short, High, Low), compared to PCA. 129

6.5 20 latent variations of sequence Walk for the torso. . . . . . . . 130
6.6 In green: Interpolation of Walk (blue) and Jog (blue) in latent

space. In red: Latent trajectory of non-linearly blended Walk
and Jog in mesh domain. . . . . . . . . . . . . . . . . . . . . . . 132

6.7 Interpolation in latent space with and without intermediate
learned latent trajectories. . . . . . . . . . . . . . . . . . . . . . 133

6.8 5 overlapped Jumping variations, each with a different color. . 135
6.9 5 overlapped locomotion variations, each with a different color. 135

7.1 Shape and appearance animation pipeline . . . . . . . . . . . . 139





Chapter 1

Introduction

Contents

1.1 Context . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Summary and Contributions . . . . . . . . . . . . . . . 5

1.1 Context

Realistic human motion and animation generation is motivated by
the increasing demand from media production, namely the video game
industry, the film industry and more recently virtual reality applications.
Many researchers and industrials consider physical modelling for this task,
but these solutions are computationally expensive, suffer from models’
limitations, and come without effective guarantees on the realism of the
synthesis. Animation through artistic Key-framing is unfortunately time-
wise and money-wise expensive: Surveys estimated that a single character
second costs between 100 and 250 $, and that it takes an artist an entire
day to complete roughly 2 to 3 seconds of finished character animation
only. While manual animations are usually tedious and require artistic
expertise, motion capture data allows to animate characters with real
motion information extracted from real performances. In addition to
significantly reduce the animation cost, the benefit of motion capture data
also lies in the inherent realism of the recorded motions compared to
synthetic data. Hence, a large body of work considers such input data to
animate virtual characters.

After more than a decade of predominance of standard motion cap-
ture, we have witnessed in the recent years the emergence of 4D(3D+t)
surface capture either through high quality multi-view setups Collet et al.

3







6 CHAPTER 1. INTRODUCTION

due to geometric modelling inaccuracies through 2D realignments in the
texture domain.

Next, we propose to automatically transfer 4D captured performances
in chapter 5, to the benefit of enabling the generation of uncaptured
animations. Given two training sets of motions for two subjects and a
sparse set of semantic annotations, we contribute an algorithm that builds
on Gaussian Process Regression to transfer motions from one subject to
the other without the need for subject shape correspondences.

Subsequently, we address the problem of generating variations of
captured 4D models automatically in chapter 6. Given a few 4D models
representing movements of the same type for a specific subject, we ad-
vocate the use of Gaussian Process Dynamical Models directly on mesh
data to build a low dimensional space of motion and sample new mo-
tion variants from it. We also propose a piecewise linear parametrization
scheme that allows synthesise of an unlimited number of variations of any
of the input movements, and also any blended version of them. Finally,
conclusions and future work are presented in Chapter 7.

Datasets

For qualitative and qualitative evaluations through out this work, we
use the following datasets:

In chapters 2 and 3, we contribute a new dataset TOMAS and CATY

Boukhayma and Boyer [2015] of temporally coherent mesh motion se-
quences, with 5000 vertices and 10000 faces per mesh, and a frame rate
of 50fps. It contains 2633 frames of an actor performing basic locomotion
activities, and 1910 frames of an actress performing random dancing. We
also use datasets of temporally consistent mesh sequences DAN Casas
et al. [2014b], JP Starck and Hilton [2007], Budd et al. [2013], CAPOEIRA

Stoll et al. [2010] and ADOBE Vlasic et al. [2008a].

In chapter 4, we contribute another new dataset TOMAS and CATY

Boukhayma et al. [2016] of temporally coherent mesh motion sequences,
with 5000 vertices and 10000 faces per mesh and a frame rate of 50fps,
with back-ground segmented images for each of the 68 capture views:
2048× 2048 px, and texture maps: 4096× 4096 px. It contains 207 frames
of an actor walking, running, turning left and right, and 290 frames of an
actress jumping far, close, high and low.

In chapter 5, we use datastes TOMAS and DAN, and in chapter 6 we
use dataset DAN.



1.2. SUMMARY AND CONTRIBUTIONS 7

Publications

Controllable Variation Synthesis for Surface Motion Capture
3DV 2017 - International Conference on 3D Vision.
Adnane Boukhayma, Edmond Boyer.

Surface Motion Capture Transfer with Gaussian Process Regression
CVPR 2017 - Computer Vision and Pattern Recognition.
Adnane Boukhayma, Jean-Sbastien Franco, Edmond Boyer.

Eigen Appearance Maps of Dynamic Shapes
ECCV 2016 - European Conference on Computer Vision.
Adnane Boukhayma, Vagia Tsiminaki, Jean-Sbastien Franco, Edmond
Boyer.

Video based Animation Synthesis with the Essential Graph
3DV 2015 - International Conference on 3D Vision.
Adnane Boukhayma, Edmond Boyer.

Surface Motion Capture Animation Synthesis (Submitted)
TVCG - Transactions on Visualization and Computer Graphics.
Adnane Boukhayma, Edmond Boyer.





Chapter 2

Shape pose and motion blending

Contents

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3 Shape pose distance . . . . . . . . . . . . . . . . . . . . 11

2.3.1 Skeleton-based representation . . . . . . . . . . 11

2.3.2 Mesh-based representation . . . . . . . . . . . . 13

2.4 Shape pose interpolation . . . . . . . . . . . . . . . . . 22

2.4.1 Linear interpolation . . . . . . . . . . . . . . . . 22

2.4.2 Differential operators for meshes . . . . . . . . 23

2.4.3 Non-linear interpolation . . . . . . . . . . . . . 28

2.5 Shape Motion transition . . . . . . . . . . . . . . . . . . 30

2.5.1 Gradual frame blending . . . . . . . . . . . . . 30

2.5.2 Dynamic time warping . . . . . . . . . . . . . . 32

2.5.3 Varying blended segment lengths . . . . . . . . 38

2.5.4 Optimal motion transition . . . . . . . . . . . . 39

2.5.5 Evaluation . . . . . . . . . . . . . . . . . . . . . 41

2.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . 45

2.1 Introduction

We propose in this work an example-based animation synthesis solu-
tion for textured mesh data. Given the input textured mesh sequences,
we want to generate continuous motion streams combining these motion
examples. Merely replaying the input sequences is hardly enough for this
purpose, hence we need to generate transitions between them to insure

9







12 CHAPTER 2. SHAPE POSE AND MOTION BLENDING

form of stacked joint orientations, lie in the Cartesian product of special
orthogonal groups of rotations (R1, ..., Rnjoints

) ∈ SO(3)njoints where njoints

is the total number of joints in the skeleton hierarchy. Since the special
orthogonal group is a Lie group, and Lie groups have a Riemannian man-
ifold structure, poses lie within the product Riemannian manifold, and
the corresponding geodesic metric between two poses i and j can be used
as a pose similarity measure:

dskel(i, j) =
∑

n∈Joints

1√
2
‖ log

(
Ri

n

−1
Rj

n

)
‖F (2.1)

Geodesic interpolation for each joint n can be used to interpolate poses

accordingly: Ri
n exp(λ log(R

i
n

−1
Rj

n)) where λ is the interpolation parame-
ter between poses i and j and varies between 0 and 1. This parametriza-
tion is used in the tasks of pose similarity measure and interpolation
within many animation synthesis pipelines for Motion Capture data.

(a) Zheng [2013], the snake Briceño et al.
[2003] is colormapped according to its
linear blend skinning bone distribution
Le and Deng [2012], beneath is its corre-
sponding bone graph.

(b) James et al. [2007], the scene object
is decomposed into colored groups ar-
ranged in a tree-structured kinematic
hierarchy.

Figure 2.3 – Examples of mesh data animation with skeletal parametriza-
tion.

Only few works consider yet mesh sequences as input data for anima-
tion synthesis. Some of these works still chose to solve this problem in
the skeleton domain. For instance (see figure 2.3), Zheng [2013] performs
a skinning decomposition with rigid bones on the mesh data based on
a linear blend skinning model Le and Deng [2012] prior to animation
synthesis. The work of James et al. [2007] also uses a skeletal parametriza-
tion for input ensemble mesh data in the form of separate groups each
arranged in tree-structured kinematic hierarchy forming the global object.



2.3. SHAPE POSE DISTANCE 13

While methods exist that provide articulated motion information, e.g.
Vlasic et al. [2008a] Gall et al. [2009], this strategy suffers anyway from
two drawbacks: First the identification of such information is difficult
to perform robustly with generic surfaces that do not always evolve
according to the assumed articulated motion model, as with clothes for
instance. Second, the use of an intermediate skeletal model makes it
difficult to guarantee realism for transitions that finally concern surfaces
around skeletons. Similar to this line of work Huang et al. [2009] Casas
et al. [2012], we follow another strategy that avoids the intermediate
motion model, removing therefore the issue of mesh/skeleton conversion,
and that directly considers surfaces or meshes.

2.3.2 Mesh-based representation

We define a mesh-based static pose distance function between two
given shape poses. This distance will be used further at various stages of
our approach, for instance when estimating the cost of a dynamic transi-
tion that involves several intermediate poses. we assume in the following
that mesh topology is consistent between source and target shape poses.
When such shape property is not consistent, other solutions might be
considered such as volumetric shape histograms Huang et al. [2007a]
combined with exhaustive rotation search as in Huang et al. [2009], or
rotation-invariant spherical harmonic descriptor of Kazhdan et al. [2003]
as used in Prada et al. [2016] for shape pose similarity measurement.

Euclidean distance

One possible solution could be a variant of the metric defined in Kovar
et al. [2002a], only it was genuinely used in the latter work to align point
clouds driven by the skeleton formed over a window of frames, while we
use it here to align pairs of 3D meshes.

Given two poses i and j, we first align them by finding the 2D rigid
transformation Tθ,x0,z0 that minimizes the weighted sum of squared dis-
tances between their respective mesh vertices. This rigid transformation
is composed of a translation of (x0, z0) in the horizontal plane (O, x, z) (i.e .
the plane parallel to the motion ) and of a rotation of θ around the vertical
axis (O, y). Weights are used to, for instance, give more importance to
torso vertices with humans. Once aligned, one could take the residual of
the alignment cost di,j as the distance between the poses:



14 CHAPTER 2. SHAPE POSE AND MOTION BLENDING

dEucl(i, j) = min
θ,x0,z0

∑

k

wk‖vik − Tθ,x0,z0v
j
k‖2 (2.2)

where index k is over the number of mesh vertices and vk = (xk, zk)
T .

In practice, this optimization has the following closed form solution:

θ = tan−1

(∑
k wk(x

i
kz

j
k − xj

kz
i
k − x̄iz̄j + x̄j z̄i)∑

k wk(xi
kx

j
k + zikz

j
k − x̄ix̄j − z̄iz̄j)

)
(2.3)

x0 = x̄i − x̄j cos(θ)− z̄j sin(θ) (2.4)

z0 = z̄i + x̄j sin(θ)− z̄j cos(θ) (2.5)

where x̄ = 1∑
k wk

∑
k wkxk and z̄ = 1∑

k wk

∑
k wkzk.

However, this residual does not account for the mesh geometry Sorkine
et al. [2004]. We hence use a parametrization baed on deformation gradi-
ents instead Sumner and Popović [2004a], Yu et al. [2004a].

Non-Euclidean distance

For every pair of corresponding triangles (vi1, v
i
2, v

i
3) and (vj1, v

j
2, v

j
3) in

pair of meshes (i, j), we compute the following unique transform matrix
(see figure 2.8):

T =
(
vi1 − vi3, v

i
2 − vi3, n

i
)−1

.(vj1 − v
j
3, v

j
2 − v

j
3, n

j) (2.6)

where ni and nj are the triangle unit normals, and vk = (xk, yk, zk)
T . The

collection of these affine transformation matrices for all mesh triangles is
referred to as mesh deformation gradients, and it was first introduced in
the work of Barr [1984] under the name of local deformations.

Among affine transformations, i.e. rotation, shearing and scaling,
rotations are distorted by linear matrix interpolation. And thus extracting
them properly is crucial for deformation parametrization. Rotations have
the property of special orthogonality, which translates into RTR = I ,
and det(R) = +1 to avoid reflections. For square non-singular matrices,
three orthogonal decomposition algorithms have been proposed: Singular
Value decomposition, QR decomposition and Polar decomposition.

SVD decomposition T = UΣV T gives three factors, where U and
V are orthogonal and Σ is diagonal and positive. But the orthogonal
components produced by this decomposition are not unique. As a matter
of fact, there is an infinite number of possible decomposition components



2.3. SHAPE POSE DISTANCE 15

even for a pure rotation matrix, and the smallest perturbation in the
input can result in different orthogonal component for this factorization
regardless of the stability of the singular values.

QR decomposition T = QR yields an orthogonal component Q and
lower triangular one R. These components can be determined uniquely
and are stable under small perturbations. However, the resulting orthogo-
nal matrix is not independent of the coordinate basis. As a matter if fact,
given matrix T in a different basis T ′ = BTB−1, the basis independent
decomposition would be Q′ = BQB−1 and R′ = BRB−1. But this latter
is not lower triangular, because matrix similarity doesn’t preserve this
property.

Polar decomposition T = RS gives an orthogonal component R and a
symmetric positive definite component S. These components are unique
and independent of the coordinate basis. This decomposition can be
performed iteratively by initializing the orthogonal component with the
transformation matrix and averaging it by its inverse transpose until it
ceases to change:

R0 = T, Ri+1 =
1

2

(
Ri +RT

i

)
(2.7)

Another way to perform polar decomposition is through Eigen-decomposition
of T TT . Thas is, if the polar decomposition of T is writen in the following
from:

T = RS, (2.8)

then, since R is orthogonal

T TT = STS, (2.9)

hence by performing SVD decomposition on symmetric matrix T TT
we obtain the following expression:

STS = UΣUT (2.10)

where U is orthonormal and Σ is diagonal and its diagonal entries are
positive. We can then finally obtain an expression of S and R from the
SVD decomposition of T TT as follows:

S = UΣ
1

2UT (2.11)

R = TS−1 (2.12)



16 CHAPTER 2. SHAPE POSE AND MOTION BLENDING

The resulting orthogonal component R can then be divided by det(R)
to insure that it belongs the special orthogonal group of rotations SO(3),
and the symmetric component S can be updated accordingly. Rigid
triangle based rigid transformation T is finally uniquely decomposed into
a rotation component R and shearing and anisotropic scaling component
S.

Combining the Riemannian metric of the Lie group of rotations SO(3)
and Frobenius norm for symmetric 3 × 3 matrices, we define our pose
similarity metric as the combination of the amounts of local deformations
occurring at each triangle of the mesh to deform pose i into j or vice versa:

d(i, j) =
∑

m∈Triangles

1√
2
‖ log (Rm) ‖F + wm‖Sm − I3‖F (2.13)

Through weighting factors wm, we give more importance to the ro-
tation term. In practice, we use the same value wm = 0.01 for all mesh
triangles.

Noticing that the shearing/scaling component S of the polar decom-
position T = RS is positive semi-definite, and that this type of matrices
forms a Riemannian manifold as-well, we can use its Riemannian metric
and create a variant of the pose distance defined in equation 2.13:

d′(i, j) =
∑

m∈Triangles

1√
2
(‖ log (Rm) ‖F + wm‖ log (Sm) ‖F ) (2.14)

Practically, both metrics behaved similarly and we couldn’t notice
any significant difference between them as far as their influence in build-
ing our animation pipeline goes. It is also important to note that this
pose representation is not rotation invariant. Hence, we need to align
meshes globally using equation 2.3 before proceeding to pose distance
computations.

Evaluation

We attempt to statistically evaluate our mesh-based pose metric using
Adobe dataset Vlasic et al. [2008b]. This dataset (see figure 2.4) contains
various motions performed by 3 different actors in the form of mesh se-
quence data. Each actor’s set of mesh sequences are temporally consistent
in topology. The 3D models represent detailed meshes of loosely dressed
humans which makes this set of data relevant to our context. These se-
quences are additionally joined with ground truth pose information in the
form of a template skeleton joint Euler angle values for each frame.





18 CHAPTER 2. SHAPE POSE AND MOTION BLENDING

dEuler := {dEuleri}, d := {di}, dEucl := {dEucli} (2.17)

Where index i spans over the number of all possible pairs of frames,
which is P = N(N − 1)/2 for a dataset of N frames.

In order to statistically validate our pose distance function, we measure
the correlation of its random variable with the ground truth pose distance
variable first using Pearson correlation coefficient defined as follows:

∇r(d, d′) =

∑
i(di − d̄)(d′i − d̄′)√∑

i(di − d̄)2
√∑

i(d
′
i − d̄′)2

(2.18)

Where d̄ = 1
P

∑
i di and P is the total number of samples. This coeffi-

cient measure the linear correlation between two variables, and gives a
values between 1 and −1, where 1 is total positive correlation, −1 is total
negative correlation and 0 is no correlation at all.

However, the significance of this coefficient alone can be limited as
far as assessing the relationship between two variables is concerned. To
deal with this limitation, we perform a variant of a statistical test called
the Mantel test Mantel [1967]. It consists of randomly permuting samples
within one of the distance variable sets, d′ for instance, and computing
new correlation values between the permuted distance d′ and the refer-
ence distance d. The p-value of this test is the count of cases where the
permuted distance d′ is more correlated to the the reference distance d
than its original non permuted version, devided by the total number of
permutations. This p-value is derived from the reasoning that in case of
absence of correlation between d′ and d, permuting samples in d′ should
produce more or less correlated variables to d equally likely.

Figure 2.5 shows results of performing this statistical test with 10000
permutations to evaluate the correlation between our distance d and the
ground truth dEuler in the first row, and between the naive Euclidean
distance dEucl and the ground truth dEuler in the second row. The first,
second and third columns show results using data from Actors 1, 2 and
3. The red line show the correlation value between our distance and the
ground truth, and the the blue line shows the correlation between the
Euclidean distance and the ground truth. The grey histograms represent
the distribution of the test statistic, namely the correlation between the
permuted distances and the ground-truth distance.

We can first easily see that the correlation value between our distance
and the ground truth (red line) is always bigger than the correlation
between the Euclidean distance and the ground truth (blue line). The



2.3. SHAPE POSE DISTANCE 19

(a) Correlation between
the ground truth and our
pose distance, Actor 1

(b) Correlation between
the ground truth and our
pose distance, Actor 2

(c) Correlation between
the ground truth and our
pose distance, Actor 3

(d) Correlation between
the ground truth and the
Euclidean pose distance,
Actor 1

(e) Correlation between
the ground truth and the
Euclidean pose distance,
Actor 2

(f) Correlation between
the ground truth and the
Euclidean pose distance,
Actor 3

Figure 2.5 – Mantel test: Distributions of the Pearson correlation statistic of
permutation tests comparing the ground truth to ours and the Euclidean
pose distance. Horizontal lines show the original value of correlation, and
the histograms show the count of correlation values after permutations.

original correlation coefficient being always greater and clearly further
from the permutation histograms, we can also easily confirm the test
hypothesis of correlation between our distance and the ground truth,
and also between the Euclidean distance and the ground truth. For both
distances, ours and the Euclidean, no permuted version of the distance
achieves a better correlation to the ground truth, which gives us 0 p-values
for both. That is a bit unfortunate us we could have used the p-values as
an additional measure to compare the distances’ correlation to the ground
truth if they were not both null.

One of the drawbacks of this statistical test is that the dependence
measure between the distance variables is averaged over all distances,
and so the test cannot discover changes in the pattern of correlation at
different scales of distances. The Mantel correlogram helps to overcome
this limitation by allowing the visualization and the assessment of the



20 CHAPTER 2. SHAPE POSE AND MOTION BLENDING

(a) 10 distance classes, Ac-
tor 1

(b) 10 distance classes, Ac-
tor 2

(c) 10 distance classes, Ac-
tor 3

(d) 20 distance classes, Ac-
tor 1

(e) 20 distance classes, Ac-
tor 2

(f) 20 distance classes, Ac-
tor 3

(g) 30 distance classes, Ac-
tor 1

(h) 30 distance classes, Ac-
tor 2

(i) 30 distance classes, Ac-
tor 3

Figure 2.6 – Mantel Correlogram: Pearson correlation coefficient of classes
of range of distances, between the ground truth and our pose distance
(Red), and the ground truth and the Euclidean distance (Blue).

spatial dependency of distances more locally. The distance value sets are
separated into classes of different distance ranges, and a Mantel test is
performed on each of these classes separately. Figure 2.6 shows the com-
parison of these local correlation measures between the ground truth and
our pose distance (Red) and the ground truth and the Euclidean pose dis-
tance (Blue). We also plot the lower and upper confidence limits bounding
the 95% confidence interval about the null correlation hypothesis for both
comparisons in the same figure. Reiterating the experiment for different
total numbers of distance classes allows the assessment of the correla-



2.3. SHAPE POSE DISTANCE 21

tion at different distance scales. We can see that the local behaviour of
correlation scores is similar to the results that we obtained with global cor-
relation, as shown in figure 2.5 and 2.7, and which favours the correlation
of our distance to the ground-truth, compared to the Euclidean distance.
We can also notice on the plot that both metrics perform well for small
distance values, where both are highly correlated to the ground-truth as
expected. This means that for relatively small mesh deformations, even
the Euclidean distance can be a reliable estimate of shape pose distance.
Unfortunately for higher distance values, both distances show low and
even negative correlations to the ground truth in some cases.

An other limitation of the Pearson coefficient is that it only accounts
for linear correlation between variables. We hence introduce distance
correlation Székely et al. [2007] as an additional measure of statistical
correlation that takes into account non-linear dependencies. For instance,

if we consider the vector x = J−10, 10KT and y = x ◦ x where ◦ is the
Hadamart product, also known as the element wise product, i.e. yi = xi

2,
the correlation between x and y in terms of Pearson coefficient approxi-
mates 0, while the distance correlation is nearly 0.5. It was proven that
while Pearson correlation coefficient can approach zero easily for depen-
dant random variables, distance correlation equals zero if and only if the
variables are statistically independent.

To define distance correlation, we need to define distance covariance
first. For two variables d and d′ with P samples each, we compute the P ×
P distance matrices (ai,j) et (bi,j) containing pairwise Euclidean distances:

ai,j = |di − dj|, bi,j = |d′i − d′j|, 1 ≤ i, j ≤ P (2.19)

We then construct the P × P matrices of doubly centered distances
(Ai,j) and (Bi,j) defined as follows:

Ai,j = ai,j − āi. − ā.j + ā.., Bi,j = bi,j − b̄i. − b̄.j + b̄.. (2.20)

where āi. is the i-th row mean of (ai,j), ā.j is the j-th colomn mean
of (ai,j), and ā.. is the global mean of matrix (ai,j). The squared distance
covariance is defined as the global mean of the Hadamart product of
matrices (Ai,j) and (Bi,j):

V2(d, d′) =
1

P 2

P∑

i=1

P∑

j=1

Ai,jBi,j (2.21)



22 CHAPTER 2. SHAPE POSE AND MOTION BLENDING

Finally, the distance correlation between two variables d and d′ is
obtained by dividing their distance covariance by the product of their
distance variances:

R(d, d′) =
V(d, d′)√

V(d, d)V(d′, d′)
(2.22)

Actor 1 Actor 2 Actress 3

Eucl. Ours Eucl. Ours Eucl. Ours

Pearson Corr. 0.8078 0.9222 0.8749 0.9189 0.8804 0.9075

Distance Corr. 0.8031 0.9222 0.8686 0.8977 0.8582 0.8989

Figure 2.7 – Correlation between the ground truth and both our pose
distance and the Euclidean pose distance.

Figure 2.7 shows the comparison results of the correlation between the
ground truth dEuler and both our pose distance d and the Euclidean pose
distance dEucl. Overall, our pose distance is more correlated to the ground
truth both in terms of Pearson correlation defined in equation 2.18 and
distance correlation defined in equation 2.22.

2.4 Shape pose interpolation

2.4.1 Linear interpolation

The most straightforward way of achieving shape pose interpolation
is to consider a purely Euclidean representation of meshes in R

3×N where
N is the total number of mesh vertices, and applying linear interpolation
on vertex coordinates. After rigidly aligning pose mesh source i and pose
mesh target j using equation 2.3, each vertex ṽ in the interpolated pose
mesh is obtained as the following linear combination of the corresponding
vertices vi and vj in source and target poses respectively:

ṽk = (1− λ)vik + λvjk (2.23)

Where index k spans over the number of mesh vertices, and λ ∈ [0, 1] is
the interpolation parameter.

As shown in the example provided in figure 2.8, it is well known that
linear mesh interpolation introduces artefacts such as surface distortion





24 CHAPTER 2. SHAPE POSE AND MOTION BLENDING

Gradient

We start first with the gradient of the mesh function v(.) that writes:

∇v(x) =
N∑

k=1

∇φk(x)v
T
k (2.25)

Since function v(.) is triangle-wise linear in the case of a triangular
mesh, its gradient is intuitively constant within each mesh triangle. Thus
for a triangle m in the mesh, we note its 3× 3 mesh gradient matrix Gm

such that

Gm = ∇v|m =
N∑

k=1

∇φk|mvTk (2.26)

In practice, the gradient of the hat basis function associated to a vertex
vk is null when evaluated outside of the triangles incident to this vertex.
Hence, only vertices forming triangle m contribute to the summation in
equation 2.26 above, and if we note v1, v2 and v3 the mesh vertices making
up triangle m, tm = (v1, v2, v3), equation 2.26 simplifies

Gm = (∇φ1|m, ∇φ2|m, ∇φ3|m)



vT1
vT2
vT3


 (2.27)

Next, we need to compute basis function gradients ∇φk. In triangle
tm = (v1, v2, v3), the gradient ∇φ1|m is perpendicular to the opposite edge
(v2, v3), which is expressed as a null dot product:

∇φ1|m
T (v2 − v3) = 0 (2.28)

Let n be the unit vector normal to triangle m:

n =
(v1 − v3)× (v2 − v3)

‖ (v1 − v3)× (v2 − v3) ‖
(2.29)

Gradient ∇φ1|m also lies within triangle m, and is thus perpendicular
to n, which writes:

∇φ1|m
Tn = 0 (2.30)

Furthermore, the length of gradient ∇φ1|m must be equal to the inverse
of h, the distance between vertex v1 and the opposite edge (v2, v3) (see
figure 2.9). Hence we can write:







2.4. SHAPE POSE INTERPOLATION 27

Laplacian

Once we computed the gradient of the mesh function ∇v, the diver-

gence ~∇· of this gradient gives the Laplacian Tong et al. [2003] of the mesh
function ∆v expressed at each vertex vk as follows:

∆v(vk) =
(
~∇ · ∇v

)
(vk)

=
∑

m∈Tk

area(tm)∇φk|m
TGm

(2.38)

where Tk is the set of indices of triangles incident to vertex vk in the
mesh, and area(tm) is the area of triangle tm = (vk1 , vk2 , vk3) and is equal
to half the norm of the cross product of two vectors making up the triangle
and originating from the same vertex:

area(tm) =
1

2
‖ (vk1 − vk3)× (vk1 − vk3) ‖ (2.39)

Note that the formulation in equation 2.38 is also akin to the standard
discrete Laplace-Beltrami operator for triangular meshes Meyer et al.
[2002]:

∆vk =
∑

i∈Nk

1

2
(cot(αk,i) + cot(βk,i)) (vk − vi)

T (2.40)

where Nk is the set of indices of vertex vk 1-ring neighbours, and αk,i

and βk,i are the angles opposite to edge (vk, vi) (see figure 2.9). The result
of equation 2.38 can also be formulated in a matrix product form. For this
purpose we need to define D as a diagonal weighting mass matrix of size
3M × 3M containing the mesh triangle areas in this form:

D = diag



area(tm) 0 0

0 area(tm) 0

0 0 area(tm)




1≤m≤M

(2.41)

Then a global Laplace operator L = GTDG can be yielded in the form
of a N × N matrix that multiplies the stacked transposed mesh vertex
coordinates in a N × 3 matrix, to give a N × 3 matrix of stacked Laplacian
coordinates:



28 CHAPTER 2. SHAPE POSE AND MOTION BLENDING




∆v1
...

∆vN


 = GTDG︸ ︷︷ ︸

∆




vT1
...

vTN


 = GTD︸ ︷︷ ︸

~∇·




G1

...

GM


 (2.42)

In this equation, GTD is the matrix formulation of the divergence
operator introduced in equation 2.38 and GTDG is the divergence of the
gradient, i.e. the discrete Laplace operator. From this equation, we see
that, in matrix formulation, we are able to express the mesh Laplacian in
two ways: Either by applying the discrete Laplace operator GTDG directly
on the mesh vertices, i.e. the coordinates vector field, or by applying the
discrete divergence operator GTD to the mesh gradients. This equality
evokes in its formulation the second order differential Poisson equation.

The Poisson equation seeks the reconstruction of an unknown vec-
tor or scalar function f whose gradient matches a vector field w. It is
coupled with a condition on f , in the form of desirable value f ∗ over a
certain boundary δΩ, referred to as Dirichlet boundary condition, and it is
expressed as follows:

∆f = ~∇ · w, f |δΩ = f ∗|δΩ (2.43)

This equation is equivalent to the following least-square minimization
from the viewpoint of a variational method:

argmin
f

∫

Ω

(∇f − w)2 dΩ (2.44)

Our non-linear mesh interpolation technique uses the concept of 3D
gradient-based mesh editing which is inspired from 2D gradient-based
image editing Yu et al. [2004a]. It basically consists of manipulating the
mesh gradient field and deriving the surface matching the deformed
gradient by solving a linear Poisson system.

2.4.3 Non-linear interpolation

We are given a source pose i and a target pose j that we want to in-
terpolate. For each triangle m in the mesh, we start by extracting the
deformation gradient Tm that transforms the local coordinate frame asso-
ciated to triangle m and its unit normal in mesh i to the same coordinate
frame at that triangle in mesh j using equation 2.6. We then decompose the
local transformation into a rotation component Rm and scaling/shearing
component Sm using polar decomposition as it is explained previously in



2.4. SHAPE POSE INTERPOLATION 29

section 2.3: Tm = RmSm. Let us recall that in that very section, deformation
gradients are used to estimate pose distances. Then for an interpolation
parameter λ, such that λ ∈ [0, 1], we find the interpolated deformation
gradient T̃ that equals identity matrix I3 when λ is equal to 0, and reaches
the total transformation RmSm when λ is 1. This non-linear interpolation
scheme combines the interpolation of the rotation component and the
scaling/shearing component. The rotation component is geodesically
interpolated between identity I3 and rotation matrix Rm in the special
orthogonal group SO(3). As for the interpolation of the scaling/shearing
component, it can be performed linearly in the Euclidean space of real
matrices within the set of symmetric matrices giving thus the following
interpolated transformation:

T̃ (λ) = exp (λ log(Rm)) ((1− λ)I3 + λSm) (2.45)

This formulation is compatible with the pose distance defined in equa-
tion 2.13, which uses Frobenius norm for the shearing/scaling component
of the transformation. Another possible solution for the interpolation
of the shearing/scaling component consists of using a geodesic in the
Riemannian manifold of positive semi-definite matrices, thus giving the
following interpolated transformation:

T̃ ′(λ) = exp (λ log(Rm)) exp (λ log(Sm)) (2.46)

This second formulation is compatible with the pose distance defined
in equation 2.14, and which uses the Riemannian metric of the manifold
of positive semi-definite matrices. In practice, and since the rotation com-
ponent is predominant in this process, we couldn’t notice any significant
difference between these two formulations of local mesh deformations
interpolation judging by the final mesh interpolation results.

Once we obtained the interpolated deformation gradients T̃m, we
deform each triangle based gradient Gm in the source mesh i by this
interpolated local transformation T̃m to obtain the new gradients G̃m in
this mesh:

G̃m = T̃mGm (2.47)

These new deformed gradients are used to reconstruct the interpolated
mesh made with vertices {ṽ1, ..., ṽN} and triangles {t1, ..., tM}. This result-
ing surface consists of the vertex sites matching the deformed gradients
manipulated in equation 2.47, and is found by solving the following linear
sparse Poisson system:



30 CHAPTER 2. SHAPE POSE AND MOTION BLENDING

GTDG︸ ︷︷ ︸
∆




ṽT1
...

ṽTN


 = GTD︸ ︷︷ ︸

~∇·




G̃1

...

G̃m


 (2.48)

Note that in this equation all components G, D and G̃m are computed
for source pose mesh i. The mesh function v(.) and its derivatives change
from a pose to another as the differential properties of the mesh change
under non-rigid deformations. Hence G, D and Gm are different when
computed for target pose mesh j. Evaluating these component at mesh
i and solving equation 2.48 comes to deforming mesh i towards mesh j
with interpolation parameter λ. This results in a first solution {ṽi1, ..., ṽiN}.
One might also apply deformations T̃−1

m on mesh j gradients, evaluate
the Laplace and divergence operators on this mesh, and then solve the
system in equation 2.48, which comes to deforming mesh j towards mesh
i with interpolation parameter 1 − λ. We refer to this second solution
as {ṽj1, ..., ṽjN}. In our experiments, the two solutions are usually not
similar but quite close to each other. Hence to insure the uniqueness of
the resulting mesh of our pose interpolation method, we consider the
final interpolated mesh vertices {ṽ1, ..., ṽN} to be the linear interpolation
of these two solutions:

ṽk = (1− λ)ṽik + λṽjk (2.49)

where index k is over the mesh vertices. Figure 2.8 shows an exam-
ple of two pose meshes interpolation using our non-linear interpolation
scheme and the linear one. We can see that our interpolation preserves bet-
ter the mesh intrinsic properties such as the length of feet in this specific
case.

2.5 Shape Motion transition

2.5.1 Gradual frame blending

We use gradual frame blending to generate motion transitions as it is
done for Motion Capture data Kovar et al. [2002a]. Given a frame i in a
source motion sequence and a frame j in a destination motion sequence
(see figure 2.11a), we consider a window of successive frames of size li

in the source sequence starting at frame i: Ji, i + li − 1K, and a similar
window of successive frames of size lj in the destination motion sequence
ending at frame j: Jj − lj + 1, jK. We refer to these segments as the source



2.5. SHAPE MOTION TRANSITION 31

and destination segments respectively. Assuming that these segments
have the same length, i.e li = lj , we can generate a smooth transition from
frame i to frame j by gradually interpolating each pair of corresponding
frames in source and destination segments directly without any further
temporal adjustment, the pairs of frames to be interpolated being the set:
{(i, j− lj+1), (i+1, j− lj+2), ..., (i+ li−1, j)}. In this way, the resulting
motion segment contains li frames, and the kth frame in this segment is
the interpolation of frame i+ k− 1 in source segment with frame j− lj + k
in destination segment with interpolation parameter (k − 1)/(li − 1), that
varies from 0 to 1 when index index k goes from 1 to li increasingly.

This type of direct interpolated transition often results in transition
segments that are visually uncompelling due to two major aspects:

• The first one is static geometry distortions caused by deformations that
are not isometric or/and do not preserve the mesh volume. These de-
formations are encountered when interpolating pairs of meshes corre-
sponding to poses that are far from each other. The resulting distortions,
for instance body parts shrinkage for human models as shown in figure
2.8, can be substantially reduced through non-linear mesh interpolation
techniques, such as the one we present in section 2.4. Furthermore, the
data organizing structure layer presented in chapter 3 governs the se-
lection of the necessary transitions within the dataset, and ensures that
interpolations only happen between relatively close poses for the most
part. However, regardless of all these measures, these geometric flaws are
still present in interpolated motions. The frequency of their occurrence is
directly proportional to the variance of the poses in the dataset, as more
variance in the poses implies a higher probability of interpolating poses
far from each other. This frequency is also inversely proportional to the
size of the dataset, as less transitions are needed usually for animation
synthesis with larger datasets for the same transition selection criteria.

• The second cause of transition segments’ lack of visual compelliness is
when dynamic motion properties are not well synchronized or do not
share the same temporal scale which requires temporal expansion or
compression and alignment prior to blending. For instance, blending a
running segment with a walking segment recorded at the same frame
rate requires a global fitting of the time scale and a local adjustment of the
contact states with the ground, in order to avoid unrealistic phenomena
such as abrupt change in motion speed or foot-skate. This latter refers
commonly to the feet of the character sliding on the floor in computer
animation jargon, and is usually reduced, for Motion capture data, by
using contact information annotations to guide temporal alignment while
blending motions as a pre-process Menardais et al. [2004], while the



32 CHAPTER 2. SHAPE POSE AND MOTION BLENDING

remaining is cleaned-up as a post-process using inverse-kinematics Kovar
et al. [2002b].

Unfortunately, as we are daily exposed to real scenes of various objects
in motion, the human eye is extremely adequate and very well trained to
spot the slightest manifestations of visual flaws and unsmoothness in syn-
thetic motion data, even for inexperienced users. Besides the challenges
of 3D shape synthesis, the dynamic aspect of motion data is very intricate
to edit and synthesise as irregularities are easily noticeable. In parallel,
the realism in animation industry products in continuously increasing
thus raising the bar of expectations of users.

Hence, we propose to improve in this work on the standard gradual
frame blending framework though the optimization of the parameters
involved in the blending process. Going back to the formulation intro-
duced in the beginning of this section, there are four elements that can be
introduced or tuned to improve the interpolated transition from frame i
to frame j using source and destination segments:

• First, temporal warps that we note wi and wj can be used to better align
source segment and destination segment respectively.

• Second and last, source and target segment length li and lj can be subject
to optimization them selves.

Since no annotation such as contact information is available for our motion
data, the only mean to evaluate the quality of synthesised transitions with
a numerical criterion is through surface deformation cost, which is the
cumulated distances between the poses to be interpolated in order to
generate the desired transition, mesh based pose distance being defined
in equation 2.13.

2.5.2 Dynamic time warping

We start with the time wrapping task. Given two fixed source and
destination segment length li and lj , our aim is to find two temporal
warps wi and wj that when applied to the source segment Ji, i+ li − 1K
and target segment Jj − lj + 1, jK in this order, the normalized cumulated
surface deformation cost between corresponding frames in the warped
segments is minimized. We solve this minimization with a variant of stan-
dard dynamic time warping algorithms that uses dynamic programming
Müller [2007]. Dynamic time warping for signal time alignment was first
introduced by Sakoe and Chiba [1987] and it was used in conjunction with
dynamic programming techniques for the recognition of isolated words.
It had been widely used since then mainly for recognition tasks.





34 CHAPTER 2. SHAPE POSE AND MOTION BLENDING

(i+ li − 1, j). We note L the length of this path, which also represents the
transition duration in time units. This path defines the warps applied to
source and destination segments. If we view warps wi and wj abusively
for the sake of simplicity as functions, their domains being sets Ji, i+li−1K

and Jj − lj + 1, jK respectively, and define wi−1
and wj−1

as their inverse
functions, then the path defines the warps’ image, which is the set J1, LK.
The tth node in the path being at location (k, l) on the grid, with t ∈ J1, LK,

determines the inverse image of t by the warps, which writes wi−1
(t) = k

and wj−1
(t) = l, thus defining warps wi and wj at k and l respectively

as-well: wi(k) = t and wj(l) = t. We note additionally that the warps and
the path are dual representations of the same operations on the segments
to be aligned. As a matter of fact, when the path is diagonal between
two successive nodes, this stands for a substitution operation in speech
recognition terms Bruderlin and Williams [1995], and corresponds to the

following case: wi−1
(t + 1) = wi−1

(t) + 1 and wj−1
(t + 1) = wj−1

(t) + 1.
When the path is horizontal, it’s a deletion operation and it corresponds

to the case: wi−1
(t + 1) = wi−1

(t) and wj−1
(t + 1) = wj−1

(t) + 1. Finally
when the path is vertical, it’s an insertion operation and it corresponds to

the following case: wi−1
(t+ 1) = wi−1

(t) and wj−1
(t+ 1) = wj−1

(t).

We seek to minimize the normalized total cost of the dynamic time
warping path through the distance matrix, which can be expressed as the
summation of costs of all the nodes undertaken by the path through the
distance matrix divided by the path length L. The cost of the tth node
of the path at location (k, l) on the grid being d(i + k − 1, j − lj + l) =

d(wi−1
(t), wj−1

(t)). The energy to be minimized writes then as:

E =
1

L

∑

t∈J1,LK

d(wi−1
(t), wj−1

(t)) (2.50)

As we do not only want to align signals, but we intend to actually warp
the motion segments with these temporal warps, a set of conditions are
imposed on the dynamic time warping path to insure the validity of the
interpolated transition. This resulting motion segment should preserve
the significant time related features of motion signals, which primarily
include continuity and monotonicity. Continuity dictates that for each
node t in the path, the next node t+1 must be one of its direct neighbours
on the grid. For the warps, this means that the absolute difference between

the inverse image of t and t+1 is less than 1: |wi−1
(t+1)−wi−1

(t)| ≤ 1 and

|wj−1
(t+ 1)− wj−1

(t)| ≤ 1. Monotonicity imposes that the path does not
reverse direction, which implies that for a node t, the next node t+1 must



2.5. SHAPE MOTION TRANSITION 35

be one its right, bottom or right-bottom neighbours. This condition also

means that the inverse warps are non-decreasing: wi−1
(t + 1) ≥ wi−1

(t)

and wj−1
(t + 1) ≥ wj−1

(t). Another trivial constraint is the boundary
condition, which states that the path starts at the top left corner at case
(1, 1) and ends at the bottom right one at case (li, lj). This translates to
initial and final conditions on the inverse warps: the inverse image of
1 with source warp is i and with destination warp is j − lj + 1, and the
inverse image of L with source warp is j−lj+1 and with destination warp

is j, which writes: wi−1
(1) = i, wj−1

(1) = j + lj − 1, wi−1
(L) = i + li − 1

and wj−1
(L) = j. The last condition that we impose on the path is the

slope constraint. To prevent the resulting motion from being degenerate,
the path can not move in one direction more than p times in a row either
horizontally or vertically. p consecutive nodes in the path in a row in the
same direction must be followed by a diagonal move. In terms of warps,
and for a node t in the path, this condition can be presented as follows: if

wi−1
(t + k) = wi−1

(t) and wj−1
(t + k) = wj−1

(t) + k, ∀k ∈ J1, p − 1K then

wi−1
(t+ p) = wi−1

(t) + 1 and wj−1
(t+ p) = wj−1

(t) + p. And identically if

wj−1
(t + k) = wj−1

(t) and wi−1
(t + k) = wi−1

(t) + k, ∀k ∈ J1, p − 1K then

wj−1
(t+ p) = wj−1

(t) + 1 and wi−1
(t+ p) = wi−1

(t) + p.
Taking these conditions into consideration, the minimization of the

energy in equation 2.50 is obtained through a dynamic programming
algorithm with a complexity of O(li × lj) which guaranties a globally
optimal solution by visiting each node in the li by lj grid once, with a
constant amount of work per node. We recursively define a cost function
g(., .) on the grid starting from case (1, 1) where we initialize it as follows:

g(1, 1) = d(i, j − lj − 1) (2.51)

Then for each other node in the grid, the function value is obtained by
exploring its possible predecessors in the path through the permissible
routes allowed by the conditions elaborated previously. The permissible
paths under different slope constraints which determine the potential
predecessors are illustrated in figure 2.12. For each possible predecessor
of the current node, a cost of this precession is computed as the summation
of cost function g at that predecessor, plus the cumulative cost of the route
joining the current node to this predecessor in terms of distance d(., .). The
final predecessor of the current node is chosen as the one with the smallest
precession cost among the candidates, and this very least precession cost
is assigned to function g(., .) at the current node.

Following the scheme in figure 2.12, the potential predecessors of node
(k, l) in the case of unconstrained path slopes, i.e p = ∞, are its left, top





2.5. SHAPE MOTION TRANSITION 37

g(k, l) = min





g(k − 1, l − 1) +d(i+ k − 1, j − lj + l)

g(k − 2, l − 1) +d(i+ k − 1, j − lj + l)

+d(i+ k − 2, j − lj + l)
...

g(k − p, l − 1) +d(i+ k − 1, j − lj + l)
...

+d(i+ k − p, j − lj + l)

g(k − 1, l − 2) +d(i+ k − 1, j − lj + l)

+d(i+ k − 1, j − lj + l − 1)
...

g(k − 1, l − p) +d(i+ k − 1, j − lj + l)
...

+d(i+ k − 1, j − lj + l − (p− 1))
(2.53)

In practice, we use a slope constraint of p = 3 in our experiments, and
in this specific case equation2.53 writes:

g(k, l) = min





g(k − 1, l − 1) +d(i+ k − 1, j − lj + l)

g(k − 2, l − 1) +d(i+ k − 1, j − lj + l)

+d(i+ k − 2, j − lj + l)

g(k − 3, l − 1) +d(i+ k − 1, j − lj + l)

+d(i+ k − 2, j − lj + l)

+d(i+ k − 3, j − lj + l)

g(k − 1, l − 2) +d(i+ k − 1, j − lj + l)

+d(i+ k − 1, j − lj + l − 1)

g(k − 1, l − 3) +d(i+ k − 1, j − lj + l)

+d(i+ k − 1, j − lj + l − 1)

+d(i+ k − 1, j − lj + l − 2)

(2.54)

After browsing the grid by filling the values of function g(., .) and
setting a predecessor for each node, starting from the top left corner node
(1, 1) and reaching node (li, lj) in the bottom right corner, the optimal
solution is recovered by back tracking through the grid, starting form





2.5. SHAPE MOTION TRANSITION 39

signal frame rate. The datasets that we constructed is this work, namely
TOMAS and CATY datasets, were recorded at 50 frames fer second. For
these datasets, lmin = 15 and lmax = 100. Most of the other motion datasets
available in the literature and that we used in our results are available at a
frame rate of 24 frames per second, which implies segment boundaries of
lmin = 8 and lmax = 48 for ADOBE, CAPOEIRA, DAN and JP datasets that
we sued in our results.

2.5.4 Optimal motion transition

In addition to performing dynamic time warping for a better align-
ment, we seek the lengths li and lj that minimize the normalized total
surface deformation cost, assuming that this leads to a visually improved
transition. This minimal cost defines the surface deformation cost D(i, j)
of going from frame i to frame j, which can be expressed as follows:

D(i, j) = min
li,lj ,wi,wj ,L

∑

t∈J1,LJ

d(wi−1
(t), wj−1

(t)) (2.55)

In practice this minimization is solved by performing a dynamic
time warping optimization for every pair of segment lengths (li, lj) in
Jlmin, lmaxK × Jlmin, lmaxK. Additionally, transition duration L is uniquely
defined by construction for a given set of segment lengths and temporal
warps (li, lj, wi, wj), and defines what we refer to as the duration cost of a
transition Li,j = L (2.56) . Thus equation 2.55 rewrites:

D(i, j) = min
li,lj∈Jlmin,lmaxK


min

wi,wj

∑

t∈J1,LJ

d(wi−1
(t), wj−1

(t))




︸ ︷︷ ︸
Dynamic time warping

(2.57)

In figure 2.14, we generate an interpolated transition from the green
frame on the left side to the green frame on the right side, using the
same source and destination motion sequences from JP dataset. On top,
we show the result of our optimized interpolated transition that uses
dynamic time warping along with variable length blended segments,
with a slope constraint of p = 3. In the bottom, the result obtained
with a standard interpolated transition. Both methods use the same
non-linear mesh interpolation technique detailed in section 2.4. Notice
how our interpolated transition avoids the surface distortions present





2.5. SHAPE MOTION TRANSITION 41

2.5.5 Evaluation

In this section, we evaluate our optimized interpolated transitions
numerically by considering the normalized surface deformation costs and
the durations costs of the transitions generated between all possible frame
pairs in a motion dataset. The normalized surface deformation cost is the
total cumulated cost of the dynamic time warping path between source
and target motion segments of the transition, divided by the length of that
path. The duration cost of a transition is the length of the dynamic time
warping path.

We also show qualitative comparisons between standard interpolated
transition and our optimized transitions using various datasets in this
video. As it can be seen in these results, our method allows us to avoid
surface shrinkage, foot skate and other unnatural looking motion artefacts
thanks to the improved alignment of poses in the interpolated motion
segments prior to interpolation. Note that all these examples use non-
linear mesh interpolation in the synthesis.

In Figure 2.15, we first show in Table 2.15a the average surface defor-
mation cost over all pairs of frames in TOMAS dataset, using a standard
interpolated transition scheme, transitions that use dynamic time warping
only, then transitions that use a combination of dynamic time warping
and varying length source and target segments. When dynamic time
warping is involved, we evaluate the statistics of deformation cost for var-
ious slope constraints, allowing between 2 and 5 consecutive horizontal
or vertical nodes in a row in the dynamic warping path. We can see that
dynamic time warping improves transition deformation cost in average
and this improvement increases when source and target segment lengths
are optimized as-well. We notice also that relaxing the slope constraint
results in lower normalized deformations costs. However, allowing a
big number of vertical or horizontal nodes in a row in a dynamic time
warping path might result in temporally degenerate transitions. Hence,
we opt for an empirical limit of 3 allowed straight nodes in dynamic time
warping for motion generation.

We plot the normalized deformation costs of transitions between a
subset of all frame pairs from the dataset in Figure 2.15b using both
standard transitions and our optimized transitions with a slope value of
3. We see that our method is clearly less costly. In figure 2.15c, we plot
the corresponding durations of these transitions. Notice that the standard
duration length is constant while our transition durations changes due
to the use of dynamic time warping and also varying the interpolated
segments’ lengths.



42 CHAPTER 2. SHAPE POSE AND MOTION BLENDING

Mean Std. dev.

Standard 0.2490 0.0758

D
T

W

S
lo

p
e

2 0.2446 0.0769

3 0.2427 0.0772

4 0.2415 0.0774

5 0.2409 0.0774

D
T

W
+

V
L

S

S
lo

p
e

2 0.1942 0.0607

3 0.1860 0.0574

4 0.1817 0.0557

5 0.1789 0.0547

(a) Average transition normalized surface deformation cost

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 55

 0  50  100  150  200

D
e
fo

rm
a
ti

o
n
 c

o
s
t 

1
0
⁻²

Frame pairs

standard
DTW+VLS

(b) Transition normalized surface deformation costs

 8

 10

 12

 14

 16

 18

 20

 22

 0  50  100  150  200

D
u
ra

ti
o
n

Frame pairs

standard
DTW+VLS

(c) Transition duration costs

Figure 2.15 – Comparison of Standard transitions, transitions with dy-
namic time warping (DTW), and transitions with dynamic time warping
and varying length segments (DTW+VLS) for TOMAS dataset.



2.5. SHAPE MOTION TRANSITION 43

Mean Std. dev.

Standard 0.2231 0.0706

D
T

W

S
lo

p
e

2 0.2184 0.0713

3 0.2161 0.0717

4 0.2147 0.0719

5 0.2138 0.0719

D
T

W
+

V
L

S

S
lo

p
e

2 0.1731 0.0550

3 0.1662 0.0519

4 0.1629 0.0502

5 0.1609 0.0490

(a) Average transition normalized surface deformation cost

 5

 10

 15

 20

 25

 30

 35

 40

 45

 0  50  100  150  200

D
e
fo

rm
a
ti

o
n
 c

o
s
t 

1
0
⁻²

Frame pairs

standard
DTW+VLS

(b) Transition normalized surface deformation costs

 8

 10

 12

 14

 16

 18

 20

 22

 0  50  100  150  200

D
u
ra

ti
o
n

Frame pairs

standard
DTW+VLS

(c) Transition duration costs

Figure 2.16 – Comparison of Standard transitions, transitions with dy-
namic time warping (DTW), and transitions with dynamic time warping
and varying length segments (DTW+VLS) for DAN dataset.



44 CHAPTER 2. SHAPE POSE AND MOTION BLENDING

Mean Std. dev.

Standard 0.4855 0.1626

D
T

W

S
lo

p
e

2 0.4827 0.1630

3 0.4817 0.1631

4 0.4813 0.1632

5 0.4812 0.1632

D
T

W
+

V
L

S

S
lo

p
e

2 0.4043 0.1560

3 0.3941 0.1543

4 0.3893 0.1532

5 0.3865 0.1525

(a) Average transition normalized surface deformation cost

 10

 20

 30

 40

 50

 60

 70

 80

 0  50  100  150  200

D
e
fo

rm
a
ti

o
n
 c

o
s
t 

1
0
⁻²

Frame pairs

standard
DTW+VLS

(b) Transition normalized surface deformation costs

 8

 10

 12

 14

 16

 18

 20

 0  50  100  150  200

D
u
ra

ti
o
n

Frame pairs

standard
DTW+VLS

(c) Transition duration costs

Figure 2.17 – Comparison of Standard transitions, transitions with dy-
namic time warping (DTW), and transitions with dynamic time warping
and varying length segments (DTW+VLS) for JP dataset.



2.6. CONCLUSION 45

Figures 2.16 and 2.17 show similar results for datasets DAN and JP
respectively.

2.6 Conclusion

We presented in this chapter tools for evaluating distances between
static shape poses and interpolating them. These tools are based on differ-
ential mesh processing and allow for a better assessment and manipula-
tion of shape pose compared to straightforward vertex-based operations.
We then used this static pose distance to build a tool that improves on
standard gradual frame blending via a better temporal alignment of inter-
polated source and target segments. This is achieved by using dynamic
time warping while allowing the length of the interpolated segments to
vary within fixed boundaries. The compelling perceptual results obtained
by our transition strategy stem from the numerical improvement it attains
compared to standard interpolations. However, transitions between seg-
ments with substantially different shape poses and dynamics will still
look unrealistic and contain mesh distortions even with optimized tempo-
ral alignments and non-linear mesh interpolation. Hence, the role of the
animation organizing structure introduced in chapter 3 is to avoid these
costly unrealistic transitions while generating animations.





Chapter 3

Shape animation synthesis

Contents

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.2 Related work . . . . . . . . . . . . . . . . . . . . . . . . 48

3.3 Organizing graph structure . . . . . . . . . . . . . . . . 52

3.3.1 Essential graph . . . . . . . . . . . . . . . . . . 52

3.3.2 Graph edge weights . . . . . . . . . . . . . . . . 54

3.3.3 Illustrative example . . . . . . . . . . . . . . . . 57

3.3.4 Evaluation . . . . . . . . . . . . . . . . . . . . . 59

3.4 Motion synthesis . . . . . . . . . . . . . . . . . . . . . . 64

3.4.1 Transition synthesis . . . . . . . . . . . . . . . . 64

3.4.2 Motion segment concatenation . . . . . . . . . 68

3.5 High-level constraints . . . . . . . . . . . . . . . . . . . 68

3.5.1 Behavioral 3D path synthesis . . . . . . . . . . 69

3.5.2 Pose/Time constraint . . . . . . . . . . . . . . . 72

3.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . 74

3.1 Introduction

Our example based animation scheme consists of reusing recorded
4D model data to generate spatially and temporally continuous motion
streams only by concatenanting input segments and generating smooth
transitions between them. In this respect, the problem that we aim to solve
in this chapter is the following: Given a set of 4D models, how can we
make the best use of this data to generate real looking motion animation

47



48 CHAPTER 3. SHAPE ANIMATION SYNTHESIS

from user specified constraints ? We propose in this chapter an answer to
this question in three parts:

• The first module is the user control level: We require an intuitive formu-
lation of user defined constraints. These constraints must subsequently
be transformed into a quantitative cost function and numerical synthesis
conditions. This is detailed in section 3.5.

• The second module is the organizing structure level: We need a data
structure that organizes the input sequences and encodes selected tran-
sitions between them. In order to select these transitions, we also need
to define a numerical criterion to quantify the realism of a transition. In
order to meet the requirement of the user perceptual acuity, the realism
criterion must be reliable, and the data structure that we choose needs
to deliver optimal results in terms of the latter criterion. Additionally,
since we have access to a limited amount of data, one more challenge
to the data structure is to make exhaustive use of the input sequences.
Following seminal related work, we define a graph-based high level
abstraction of the data to control the synthesis process, and a realism
criterion that mixes surface deformation and duration costs as detailed
in section 3.3.

• The last module is the motion data processing and synthesis level: We
need to transform the output of the organizing structure level into a
spatially and temporally continuous stream of meshes. This is achieved
through the generation of realistic synthetic motion transitions, and seam-
less concatenation of real and synthetic motion segments. Since this work
is applied to sensitive data with complex dynamics, this component re-
lies on mesh processing and temporal alignment techniques explained in
chapter 2, and other motion segment blending and alignment algorithms
detailed in section 3.4.

The rest of the chapter develops the solutions we propose for each of
these motion synthesis modules.

3.2 Related work

Motion graphs Kovar et al. [2002a] are an ubiquitous tool for automatic
motion synthesis from examples of Motion Capture data in the literature.
In this strategy, motion data sequences are represented by a graph where
nodes stand for sequence frames and edges represent transitions between
them (see figure 3.4). Thus for starters, every node is naturally connected
to the next one in the same sequence. The method tries then to add new
edges in the graph. For every pair of sequences in the dataset, a frame to



3.2. RELATED WORK 49

frame pose or/and velocity dissimilarity matrix is computed. The new
transition points between this pair of sequences correspond then to the
local minima in this matrix. Thresholding can eventually be performed
on the resulting selected transitions to reduce their final number. Finally,
Graph pruning is performed on the final structure to remove dead ends.

Motion graphs were extended to mesh data animation as-well. The
work of Huang et al. [2009] was one of the first to use motion graphs
on mesh data. As far as the organizing data structure is concerned, this
work contributed a novel approach for optimal path search to avoid
infinite numbers of paths caused by graph cycles. However, due to the
lack of temporal coherency of data, no interpolation based transitions
were used. Recently, the work of Prada et al. [2016] also used motion
graphs on unstructured mesh sequences, i.e. sequences with inconsistent
mesh topology. They contributed a solution for appearance interpolation
in addition to geometry synthesis. Interpolation based transitions were
performed through template based tracking applied locally to pre-selected
similar source and target mesh transition segments only.

Although simple and intuitive, the way transitions are added in a
standard motion graph follows a heuristic that does not guarantee the
optimality of motion synthesis with graph walks. We try hence to im-
prove this aspect with a novel structure that we introduce in this chapter,
the essential graph, on which we will elaborate in section 3.3.1 . This
optimality requirement is more vital in our case because of the data we
use. Unlike skeletal motion capture data, interpolating and editing mesh
data is non-trivial and hence motion transitions should be selected even
more carefully for this data.

Other variants of motion graphs were proposed in the literature to
solve the problem of automatic animation synthesis from examples for
motion capture data. For instance, the work of Arikan and Forsyth [2002]
also creates a graph where nodes represent sequences, and transition
edges are subsequently added between sequence frame pairs if the dis-
similarity cost between them is lower than a user specified threshold. A
hierarchical randomized search is used then to generate motions. The
authors of Lee et al. [2002] build first a directed graph in a similar manner
to motion graphs. They then map the frame pose and velocity metric to
a transition probability and and thus consider the resulting digraph as a
Markov Process. They finally build a higher statistical model over this
later for more intuitive control.

Other works proposed improvements that build on motion graphs,
such as Interpolated Motion Graphs Safonova and Hodgins [2007], Well-
Connected Motion Graphs Zhao and Safonova [2008], or Optimization



50 CHAPTER 3. SHAPE ANIMATION SYNTHESIS

Based Motion Graphs Ren et al. [2010]. The structure proposed by Sa-
fonova and Hodgins [2007] consists of interpolating time-scaled paths
within a standard motion graph. Zhao and Safonova [2008] increases the
connectivity in a motion graph by using multi-target blending to generate
intermediate interpolated motions between some of the dataset sequences
and builds subsequenlty a more connected motion graph that incorporates
these new motions. Ren et al. [2010] constructs an optimization-based
graph combining constrained optimization and motion graphs.

We are well aware of the existence of improvements and extensions
done to motion graphs, as the ones mentioned above. However, we note
here that we only compare our method to a standard motion graph in
the evaluation section, both quantitatively and qualitatively with visual
results, for the following reasons:

• There is an enormous body of work on motion graph extensions in
computer animation.

• Most of these improvements start from a motion graph as an initial stage
and build on it by enhancing the connectivity. Our method serves the
same purpose as a motion graph in these works, and can be in theory
subject to the same improvements in a follow up step.

• Most of these methods, like interpolated motion graphs, imply even more
and longer interpolations in the input data. In some cases, data resulting
from interpolated inputs is also re-incorporated in the input set, and
can be subject to additional rounds of new interpolations. In the case of
surface capture data, we try to avoid long and costly interpolations for
mesh data as much as we can since it is much more delicate to edit than
skeletal data.

• Most of these methods use contact information that comes as annotation
with standard motion capture data. This information is not available for
mesh data.

Some statistical approaches were proposed to solve this problem also.
In a two-level model, Tanco and Hilton [2000] apply dimension reduction
and clustering to the input dataset and construct a Markov chain with
these clusters as states in the first level. The second level consists of a
hidden Markov model that relates the states of the Markov chain to the
motion examples. Given a source and destination key frames defined
by the user, the corresponding sequence of clusters in found in the first
level, and the most likely succession of motion segments is found in the
second. But unlike skeletal motion capture, and besides their very high
dimensionality, 3D mesh motion datasets available currently are mostly
limited, i.e. temporally short and poor in content variability. Thus, a
similar statistical approach would not be very adequate to this specific



3.2. RELATED WORK 51

type of data.
Using skeletal data, Min and Chai [2012] proposes a graph where

nodes represent motion primitives and edges transitions between them.
Each node stores a statistical model learned from similar motion segments
associated to the same primitive, and a transition distribution function is
associated to every directed edge. Unfortunately, mesh motion datasets
available currently do not offer multiple examples of the same motion
type, which makes such statistical generative models inapplicable in this
case. Additionally, unlike this method, we also need to solve for random
acyclic motion, such as an unplanned dancing sequence (see section 3.5.2),
which seems hard to decompose into distinctive simple motion primitives.

In a graph-less approach, the work of Ikemoto et al. [2007] clusters
motion segments and pre-computes a table defining the intermediary
segments needed to blend all pairs of cluster medoids. In order to gen-
erate a transition from a source segment to a target segment, these two
segments are thus blended together with their respective cluster medoid
intermediaries. Although this work gives in theory the possibility to find
transitions between all pairs of frames in the dataset, it requires a transi-
tion naturalness scoring, motion segment clustering and mutli-way frame
blending which would be difficult to achieve with 3D mesh sequences
and without contact information.

More recently, the authors of Holden et al. [2016] introduced a deep
learning framework for animation synthesis . First, and as detailed in this
work Holden et al. [2015], a convolutional auto-encoder network is used
to learn a low dimensional embedding of normalized motion capture data.
Forward neural networks are used then to learn mappings between high
level user constraints and motion segments in the low dimensional motion
space. This pioneer work required a dataset twice larger than the size of
the CMU motion capture database containing around six million frames
for a single character sampled at 120 frames per second. Unfortunately,
no such amount of surface capture data is available.

In a work similar to [Kovar and Gleicher, 2004a] with skeletal data,
[Casas et al., 2011a] achieves motion synthesis by high-level parametriza-
tion of mesh data. These approaches consist in first temporally aligning
logically similar motion clips, guided usually by additional annotation
such as foot contact information. These aligned motions are then blended,
and blending weights are mapped to high level parameters, thus creating
parametric motion spaces. In the work of Kovar and Gleicher [2004a] fir
instance, weights are inverse-proportional to the distance between the
sample and the desired final positions of a leg in a kicking motions, of
the hand in reaching motions. In the work of Casas et al. [2012] for in-



52 CHAPTER 3. SHAPE ANIMATION SYNTHESIS

stance, a walking motion space is parametrized with speed, and jumping
motion spaces are parametrized either by jump height or length. These
parametrized spaces allow for the creation of a supervised variant of
motion graphs called Parametric motion graphs, which are similar to
move-trees Menache [2000] used for interactive control in video games.
the graphs consist of connecting several parametric motion spaces either
through pre-computed transitions, as in Heck and Gleicher [2007a] for
skeletal data, or by computing optimal transitions at runtime, as in Casas
et al. [2012] for 3D meshes. We note that The idea behind parametric
motion graphs is similar to that of Fat graphs Shin and Oh [2006]. These
methods allow motion synthesis with precise control but only for spe-
cific input data and require a high level of supervision. Our objective is
different and improves over Huang et al. [2009] with globally optimal
motion sequences generated from a general set of input sequences, and
not necessarily cyclic or parametrizable motions.

3.3 Organizing graph structure

This section details the steps involved in the construction of the es-
sential graph for mesh based motion segments. The input data is a set
of temporally aligned sequences of 3D triangulated meshes, i.e. meshes
present the same topology and vertex connectivity over all sequences.
These sequences represent a model, typically but not necessarily a hu-
man, undergoing arbitrary movements with no prior restrictions on the
nature of the movements. It should be noticed here that while we consider
meshes as input, the graph construction is independent of the pose model
used and could be applied with other parametrizations of shape and
motion including articulated models.

3.3.1 Essential graph

We use a directed weighted graph structure to organize our input
mesh sequences with the same semantics as motion graphs. That is,
nodes represent frames and edges stand for possible transitions between
them. Our goal is to synthesise optimal continuous motions from a set
of example sequences with respect to a certain realism criterion. Hence,
edge weights in the graph, that we note Ei,j for an edge linking node i
to j, represent the realism of transition segment (i, j) evaluated with the
same criterion.



3.3. ORGANIZING GRAPH STRUCTURE 53

In a traditional motion graph, edges between sequences are obtained
by selecting minima in transition cost matrices between pairs of sequences.
This strategy is intuitive but yet not globally optimal, as transitions be-
tween sequences other than minima might give better total cost to a graph
walk if the minimized criterion considers also duration for instance, which
is an important constraint for motion synthesis. We propose therefore a
global and principled strategy that consists of extracting the best paths
between any pairs of poses and to keep only edges in the graph that
contribute to these paths. This corresponds to extracting the essential
sub-graph from the complete digraph induced from the input sequences.
Unlike previous methods, ours ensures the existence of at least one tran-
sition between any two nodes in the graph, which potentially yields a
better use of the original data with less dead ends trimming.

The three steps of construction of the essential graph are as follows:

• As shown in figure 3.3b, the initial instance of the graph is drawn from
the input motions. Hence, edges in the graph only connect successive
frames in the original sequences.

• In the second stage, we connect all nodes in the graph with directed
weighted edges, thus forming a complete digraph, As shown in figure
3.5a. In our implementation, function E.,. satisfies positivity and positive
definiteness, but it is lacking symmetry and triangle inequality to define
a proper metric. Hence, the resulting graph structure is analogous to
a quasi-semi-metric space, (V,E), where V is the set of nodes and E :
V × V → R

+ is the asymmetric function that defines edge weight values.
• Finally, for every pair of nodes in the graph, we use Dijkstra algorithm to

find the path with the least cost joining the source node to the destination
node. The cost of a path p = [n1, n2, ..., nN ] that goes through nodes
n1, n2, ..., nN is defined as the sum of the costs of all edges forming this
path sequentially:

J(p) = J([n1, n2, ..., nN ]) =
∑

i∈J1,N−1K

Eni,ni+1
. (3.1)

Once the optimal paths joining all pairs of nodes are found, all edges that
do not belong to any of these paths are pruned. This gives an optimally
connected graph which contains only the necessary edges to connect
every pair of nodes with the best possible path cost in terms of realism
(figure 3.5c). This resulting structure is also referred to as the union of
shortest path trees rooted at every graph node.

Figure 3.1 shows an essential graph built using TOMAS dataset.



54 CHAPTER 3. SHAPE ANIMATION SYNTHESIS

Figure 3.1 – Essential graph built with TOMAS dataset.

3.3.2 Graph edge weights

Weights attributed to edges in our graph should ideally capture the
realism of the transitions they represent. This realism is quantified with a
a criterion that derives from both physical and temporal considerations. It
takes into account a surface interpolation cost, that measures the amount
of surface deformation along a motion segment, as well as a duration cost
that accounts for the number of frames of a segment. The first cost tries
to preserve shape consistency along a motion segment while the second
tries to minimize the number of poses within a segment.

Assuming that a realistic transition should involve as little surface
deformation as possible, we use the optimal transition cost D(., .) defined
in equation 2.57 as a metric that measures the surface deformation cost
between any pair of nodes in the graph. As explained in section 2.5.4 , this
metric evaluates the minimal normalized cumulative deformation cost
through a dynamic time warping path, allowing for the best interpolated
transition between a source and a destination frame segments. It involves
several intermediate poses for that purpose, which makes it different from
the static pose d(., .) similarity defined in equation 2.13. Naturally on
another hand, edges connecting successive frames in the original data,
present in the initial instance of the graph (figure 3.3b), have a null surface
deformation cost. This cost, in addition to the transition duration, allows
us to quantitatively evaluate the realism of a transition, as it was done in
previous works Casas et al. [2012].

It is important to consider a temporal component in the realism cri-
terion. As a matter of fact, the duration of a generated motion segment
is one of its crucial characteristics and it is usually subjected to limita-
tions deriving from the synthesis scenario conditions. Hence it must be
subject to optimization in the process of motion synthesis and should be
consequently represented in edge weights. Given a query pair of source
and destination frames, and at the expense of some amount of surface
deformation cost, we might obtain a graph walk that is much shorter
than the one with the least surface deformation cost, and the difference



3.3. ORGANIZING GRAPH STRUCTURE 55

in surface deformation cost between these two solutions might not even
be perceptually noticeable. We use the optimal transition duration L.,. de-
fined in equation 2.56 as a metric that measures the duration cost between
any pair of nodes in the graph. As explained in section 2.5.4, this metric
evaluates the length of the Dynamic time warping path, allowing for the
best interpolated transition between a source and a destination frame
segments. Naturally on another hand again, edges connecting successive
frames in the original data, present in the initial instance of the graph
(figure 3.3b), have a one time unit duration cost, assuming uniform input
data sampling.

if i and j belong to the same sequence and i < j then

Ei,j = min[α(j − i), Di,j + α Li,j], (3.2)

else

Ei,j︸︷︷︸
realism

= Di,j︸︷︷︸
surface deformation

+ α Li,j︸︷︷︸
duration

(3.3)

end
Algorithm 1: Transition realism definition.

In conclusion, for each pair of nodes i and j in the graph, we define the
weight Eij of the directed edge (i, j) as the weighted sum of the optimal
surface deformation cost Di,j = D(i, j) and the associated duration cost
Li,j : Eij = Di,j + αLi,j . In the situation where frames i and j belong to the
same sequence, with i < j, it is unnecessary to consider an interpolated
transition if its cost is greater than α(j − i), that is the cost of going from i
to j through the original motion sequence. Algorithm 1 summarizes the
definition for the edge weight Ei,j between poses i and j.

The weight α represents the ratio of tolerance between surface defor-
mation and transition duration. This user defined coefficient allows for
some flexibility on the admissible surface deformation during a transition
with respect to time duration. It controls the permissibility of adding new
edges in the essential graph and hence the density of this later.

We define the density of a directed graph as the ratio of the number of
its edges to the maximum number of edges:

Density =
|E|

|V | (|V | − 1)
(3.4)

where operator |.| is the cardinality of a set and V and E represent the
sets of graph nodes and edges respectively.



56 CHAPTER 3. SHAPE ANIMATION SYNTHESIS

 4

 6

 8

 10

 12

 14

 16

 0.01  0.02  0.03

D
e
n
s
it

y
 1

0
⁻²

Alpha

Motion graph
Essential graph

(a) TOMAS dataset

 10

 15

 20

 25

 30

 35

 40

 0.01  0.02  0.03

D
e
n
s
it

y
 1

0
⁻³

Alpha

Motion graph
Essential graph

(b) DAN dataset

 5

 10

 15

 20

 25

 30

 0.01  0.02  0.03

D
e
n
s
it

y
 1

0
⁻³

Alpha

Motion graph
Essential graph

(c) JP dataset

Figure 3.2 – Graph density

As one can see in figure 5.3, and using datasets TOMAS(3.2a) , JP(3.2c)
and DAN(3.2b), we constructed motion graphs and essential graphs with
various values of α. We evaluated the resulting graph structures and
noticed that the density of the essential graphs increases almost linearly
with the value of α. In practice for our synthesis experiments, we use a









60 CHAPTER 3. SHAPE ANIMATION SYNTHESIS

only accept local minima below an empirically determined threshold to
reduce the computational burden. We deliberately ignore this measure to
obtain a highly connected motion graph to better challenge our method.
Note that we do not compare to existing extensions of the motion graph
since our primary objective is to evaluate the initial structure that is used
to select optimal transitions and we believe that many of these exten-
sions could anyway apply to the essential graph as well. We reiterate
these experiments for the three datasets and for different values of the α
parameter.

Figures 3.8a, 3.9a and 3.10a, show the mean and the variance of the
shortest path costs between all frames in TOMAS, DAN and JP datasets
respectively for both the essential graph and the motion graph, and for
different values of α. We also plot the optimal transition cost between
a subsample of the dataset frames for cases α = 0.2 and α = 0.05 for
datasets TOMAS (figures 3.8b and 3.8c ), DAN (figures 3.9b and 3.9c ) and
JP (figures 3.10b and 3.10c).

As summarized in figures 3.8, 3.9 and 3.10, the essential graph gives
shortest paths with smaller costs than the essential graph in average for all
our datasets. This is also visually confirmed in the plots of the costs of the
shortest paths joining a subsample of the dataset frame pairs, where the
motion graph curve is at it best always above the essential graph curve.

One could suspect that our graph representation outperforms a stan-
dard motion graph numerically merely because of a higher graph density
for instance, as a graph with more edges allows for more flexibility in path
optimization. The results in figure 5.3 show that this hypothesis is not
true: For a value of α = 0.01 for instance, essential graphs are less dense
than motion graphs for the three datasets TOMAS, DAN and JP. Never-
theless, Figures 3.8a,3.9a and 3.10a still show a lower average shortest
path cost for the essential graphs compared to motion graphs for the three
datasets in this case. Hence, with a more sparsely connected graph, our
method still performs numerically better than standard motion graphs.
This proves that the reason behind the good performance of our method
is not the density of our graph but rather its better connectivity.

From figures 3.8b and 3.8c for TOMAS, 3.9b and 3.9c for DAN and
3.10b and 3.10c for JP datasets, we also notice that for smaller values
of parameter α, the essential graph converges in its shortest path costs
towards the motion graph, as path cost plots tend to look more similar to
each other. As a matter of fact, building the essential graph with α = 0
is equivalent to discarding the duration cost in the numerical realism
criterion, which means solving the optimal transition selection problem in
the case where initial edges between original sequence nodes are costless.



3.3. ORGANIZING GRAPH STRUCTURE 61

α
Motion Graph Essential Graph

Mean Std. dev. Mean Std. dev

0.01 2.0696 0.6040 2.0366 0.5985

0.02 2.3072 0.6203 2.2619 0.6168

0.03 2.5232 0.6375 2.4583 0.6331

0.05 2.9201 0.6800 2.8008 0.6694

0.1 3.8128 0.8158 3.4756 0.7406

0.2 5.4628 1.2008 4.5102 0.7917

(a) Average shortest path costs

 20

 30

 40

 50

 60

 70

 80

 90

 0  50  100  150  200

P
a
th

 c
o
s
t 

1
0
⁻¹

Frame pairs

Motion graph
Essential graph

(b) Shortest path costs, α = 0.2

 10

 15

 20

 25

 30

 35

 40

 45

 50

 0  50  100  150  200

P
a
th

 c
o
s
t 

1
0
⁻¹

Frame pairs

Motion graph
Essential graph

(c) Shortest path costs, α = 0.05

Figure 3.8 – Comparison of Motions graphs and Essential graphs using
TOMAS dataset.

In this specific case, we know that the motion graph covers the optimal
solution by definition, and hence it coincides with the essential graph.



62 CHAPTER 3. SHAPE ANIMATION SYNTHESIS

α
Motion Graph Essential Graph

Mean Std. dev. Mean Std. dev

0.01 1.5589 0.4757 1.5509 0.4753

0.02 1.7595 0.4782 1.7392 0.4785

0.03 1.9391 0.4844 1.9006 0.4858

0.05 2.2695 0.5069 2.1830 0.5077

0.1 3.0397 0.6043 2.7847 0.5759

0.2 4.5011 0.8927 3.8083 0.6837

(a) Average shortest path costs

 25

 30

 35

 40

 45

 50

 55

 60

 65

 70

 75

 0  50  100  150  200

P
a
th

 c
o
s
t 

1
0
⁻¹

Frame pairs

Motion graph
Essential graph

(b) Shortest path costs, α = 0.2

 10

 15

 20

 25

 30

 35

 40

 0  50  100  150  200

P
a
th

 c
o
s
t 

1
0
⁻¹

Frame pairs

Motion graph
Essential graph

(c) Shortest path costs, α = 0.05

Figure 3.9 – Comparison of Motions graphs and Essential graphs using
DAN dataset.

The performance of our method comes however with a significant
computational complexity. We Denote in the following by V the set
of graph nodes, i.e. motion dataset frames, and by E the set of graph



3.3. ORGANIZING GRAPH STRUCTURE 63

α
Motion Graph Essential Graph

Mean Std. dev. Mean Std. dev

0.01 2.2705 0.3990 2.2272 0.4002

0.02 2.7922 0.6676 2.7184 0.6619

0.03 3.2526 0.9098 3.1367 0.8999

0.05 4.0316 1.2635 3.8090 1.2454

0.1 5.4115 1.6108 4.8709 1.5476

0.2 7.5315 2.0157 6.2073 1.7041

(a) Average Shortest path costs

 30

 40

 50

 60

 70

 80

 90

 100

 110

 120

 130

 0  50  100  150  200

P
a
th

 c
o
s
t 

1
0
⁻¹

Frame pairs

Motion graph
Essential graph

(b) Shortest path costs, α = 0.2

 10

 20

 30

 40

 50

 60

 70

 80

 0  50  100  150  200

P
a
th

 c
o
s
t 

1
0
⁻¹

Frame pairs

Motion graph
Essential graph

(c) Shortest path costs, α = 0.05

Figure 3.10 – Comparison of Motions graphs and Essential graphs using
JP dataset.

edges. The complexity of a simple implementation of Dijkstra algorithm
is O(|E|+ |V |2) which equals O(|V |2) since |E| = O(|V |2), where operator



64 CHAPTER 3. SHAPE ANIMATION SYNTHESIS

|.| symbolizes the cardinality of a set. In practice, we only need to find
the shortest path between all pairs of node in the complete digraph in
order to find the essential graph. Hence, the final complexity of building
the essential graph naively amounts to O(|V |4). However, we are not
highly concerned with this cost since this step is performed off-line in our
animation framework, and also mesh motion datasets available so far are
relatively small in size.

Finally, for qualitative evaluation, we show some visual results where
motion graphs fail to find graph walks as short and costless as essential
graphs (see video).

3.4 Motion synthesis

Motion synthesis consists of converting a walk in the essential graph
into a temporally and spatially continuous motion stream in the form of
a 3D mesh sequence. These sequences are made of a mixture of original
motion parts from the input dataset and synthetic ones.

Figure 3.11 – A walk in the essential graph built with DAN dataset. Green
frames are original, Red frames are interpolated.

A Graph walk path is represented by a node sequence, where every
pair of successive nodes must belong to an edge in the essential subgraph.
We browse the path and sequentially identify two types of motion seg-
ments: Any succession of nodes belonging to the same input sequence
in their original order forms an original motion segment, represented in
green in figure 3.11. When a non original transition appears in the graph
path, it signals the end of the current original motion segment. The next
segment consists then of the interpolated transition frames, and we refer
to it as a synthetic motion segment, represented is red in figure 3.11.

3.4.1 Transition synthesis

A synthetic motion segment represents a transition from a frame (i.e.
node) i to a frame j in two sequences of the dataset. Such segment is





66 CHAPTER 3. SHAPE ANIMATION SYNTHESIS

Data: Source segment [Mi,Mi+li−1], Destination segment[
Mj−lj+1,Mj

]
, Source warp wi, Destination warp wj ,

Transition duration L.
Result: Output segment Sout

Current mesh center of mass P := M̄i;
for t ∈ J1, LK do

Current source frame n := wi−1
(t);

Current destination frame m := wj−1
(t);

λ := (t− 1)/(L− 1);
θ := Align(Mn,Mm);
θn := −λθ;
θm := (1− λ)θ;
Tn := P − M̄n;
Tm := P − M̄m;
Move([Mn,Mi+li−1] , θn,M̄n, Tn);
Move([Mm,Mj] , θm,M̄m, Tm);
Mt := Interpolate(Mn,Mm, λ);
P := P + (1− λ)(M̄n+1 − M̄n) + λ(M̄m+1 − M̄m);
Sout := [Sout,Mt];

end
Algorithm 2: function Blend()

takes as input source and destination mesh segments with their respective
alignment temporal warps, and outputs the interpolated transition mesh
segment. In this algorithm, function Move(S, θ, C, T ) moves sequence of
meshes S by a rotation around the perpendicular axis to the motion plane,
where θ is the rotation angle and C the rotation center. It also applies a
translation T to the mesh sequence. Function Align(M1,M2) finds the
angle by which mesh M2 needs to be rotated around the perpendicular
axis to the motion plane to align with mesh M1 using equation 2.3. Func-
tion Interpolate(M1,M2, λ) interpolates meshes M1 and M2 non-linearly
with interpolation parameter λ as explained in section 2.4.3.

At each step of the process, illustrated also in figure 3.13, the current
source and destination frame indices n and m are obtained through in-
verse source and destination time warps wi and wj . Next, we move the
current remaining of source segment [Mn,Mi+li−1] and destination seg-
ment [Mm,Mj] with planar translations Tn and Tm towards P the current
position of mesh center of mass (figure 3.13b). We also align them with
respect to the their first frames Mn and Mm with rotations θn and θm
respectively around the vertical axis (figure 3.13c). After that, current





68 CHAPTER 3. SHAPE ANIMATION SYNTHESIS

natural looking motion transitions without major visual flaws and unnat-
ural character global trajectories, regardless of the nature of the motions
to be blended.

3.4.2 Motion segment concatenation

Finally, Algorithm 3 details how motion sequences are generated from
a general walk in the essential subgraph. The final sequence is broadly
a concatenation of original and synthetic motion segments. In order to
insure spatial continuity of the resulting motion stream, we additionally
perform 2D rigid alignment at the junction between two consecutive
motion segments, in the form of translations in the motion plane and
rotations around the perpendicular axis to it.

Data: Graph walk path p := [n1, . . . , nN ]
Result: Output mesh sequence Sout

current rotation angle θc, current rotation center Cc, current
translation Tc for i ∈ J1, N − 1K do

if Jni, ni+1K is an original segment then
Move(

[
Mni

,Mni+1

]
, θc, Cc, Tc);

Sout :=
[
Sout,

[
Mni

,Mni+1

[]
;

end
else

Move([Mni
,Mni+lni−1] , θc, Cc, Tc);

S := Blend([Mni
,Mni+lni−1] ,

[
Mni+1−lni+1+1,Mni+1

]
);

Sout := [Sout, S(1 : end − 1)] ;
θc := Align(S(end),Mni+1

);
Cc := M̄ni+1

;
Tc := S̄(end)− M̄ni+1

;
end

end
Move(MnN

, θc, Cc, Tc);
Sout := [Sout,MnN

] ;
Algorithm 3: Algorithm to generate a motion sequence from a graph
walk

3.5 High-level constraints

As generating random graph walks is not of much interest in terms
of applications, we consider in this part constrained navigation in the



3.5. HIGH-LEVEL CONSTRAINTS 69

essential graph with various user-specified constraints such as spatial,
temporal and behavioural constraints. We cast motion extraction as a
graph search problem, that consists of finding the walk p = [n1, n2, ..., nN ]
that minimizes a total error cost Jc(p) defined as follows:

Jc(p) = Jc([n1, n2, ..., nN ]) =
∑

i∈J1,NK

jc([n1, ..., ni−1], ni) (3.5)

Where jc([n1, ..., ni−1], ni) is a scalar function evaluating the additional
error of appending node ni to the graph walk [n1, ..., ni−1] with respect
to the user specification. Since a graph node might be visited more than
once in this search, the user also needs to specify a halting condition to
prevent the search from recursing infinitely.

In order to demonstrate the interest of essential graphs for animation
purposes, we implement two scenarios with different types of constraints.
In both scenarios, the graph search was solved using Depth-First algo-
rithm with Branch-and-Bound to reduce the search space. When both the
start and end nodes are known as in the dance sequence editing scenario
in section 3.5.2, we use bi-directional searh for a faster graph search.

3.5.1 Behavioral 3D path synthesis

Given a set of motion sequences of the same character, the user pro-
vides a 3D curve that the characters center of mass should follow as closely
as possible. Additionally, some parts of this path may impose specific
types of motion taken from the dataset. Other than the character’s mesh
center of mass, the targeted element could be any vertex of the mesh,
or the center of mass of any subgroup of vertices of the mesh such as a
specific body part. This kind of constraints better adapts to datasets with
a variety of motions involving locomotion activities, and for which there
are significant displacements of the character in space. This is the case of
our dataset TOMAS.

In this example scenario, and for a currently added node to the current
generated path, cost function jc is obtained by first evaluating the length
of the currently generated path after appending the current node to it; We
subsequently find the 3D point in the input curve with the same arc length
to the origin; The value of jc is then the distance between this point and
the center of mass of the mesh added to the current generated graph walk.
The halting condition is when the length of the travelled path exceeds the
length of the query 3D curve.

We test this scenario using TOMAS dataset. Figure 3.15 shows an
example where the character has to follow a 3D curve provided by the



70 CHAPTER 3. SHAPE ANIMATION SYNTHESIS

(a) Red: Input path, Blue: Output path

(b) Output sequence

(c) Textured output sequence

Figure 3.15 – 3D path synthesis. Green frames are original, Red frames
are interpolated.



3.5. HIGH-LEVEL CONSTRAINTS 71

(a) Red: Input path, Blue: Output path

(b) Output sequence

(c) Textured output sequence

Figure 3.16 – 2D path synthesis. Green frames are original, Red frames
are interpolated.



72 CHAPTER 3. SHAPE ANIMATION SYNTHESIS

user. This user guidance allows the character to duck under an obstacle,
jump over a gap, reach a target with its head and climb stairs up and down.
For some segments of the curve, the user also requires that the character
performs kicking and running motions exclusively. In this example, green
output frames are original ones, and red frames are interpolated ones. We
also show the output sequence with textured meshes.

Figure 3.16 shows an other example where we only require the pro-
jection of the center of mass of the character to follow a 2D path in the
motion plane. In this example, only purely locomotion sequences of
TOMAS dataset were involved in the graph search, i.e. sequences Walk,
Right, Right Sharp, Left and Left Sharp. We pick a smaller value for the
α parameter when building the essential graph for this case in order to
densify the final graph. More edges in the graph means more possible
transitions and hence a better ability to fit the 2D path accurately. How-
ever, this comes at the expense of realism as the surface deformation cost
has less priority in the transition selection process. In this example also,
green output frames are original ones, and red frames are interpolated
ones. We also show the output sequence with textured meshes.

3.5.2 Pose/Time constraint

In this example scenario, and given an input motion sequence, the
user selects a set of key-poses and provides new times of occurrence for
each one of them. The graph search generates the motion sequence that
respects as closely as possible these pose/time restrictions. This type of
constraint is more adapted to sequences of random unplanned activities,
such as dancing in our dataset Caty.

This time, the search is solved for every two successive query poses
separately, and cost function jc measures the duration cost of adding a
node to the current path. The halting condition is when the duration of
the travelled path between start and end key-poses exceeds the desired
duration.

In Figure 3.17, we show an example where we apply this scenario to
synthesize a new variant of the dance sequence in CATY dataset, where
certain key-poses appear at different timings from their original occur-
rence times in the input sequence. In the same figure, green output frames
are original ones, and red frames are interpolated ones. We also show the
output mesh sequence with textures.

Figure 3.18 shows the numerical results of this experiment. In the
top row, we show the original occurrence times of the selected key-poses.
In the second row we show the desired times of occurrence of the same





74 CHAPTER 3. SHAPE ANIMATION SYNTHESIS

timing error in the previous solved pair is taken into account in the next
pair search. As we show also in this video, the resulting dance sequence
nearly matches the input sequence in realism and the visual results are
quite convincing.

3.6 Conclusion

We contributed in this chapter a new organizing structure for anima-
tion synthesis, the essential graph, that proves to be more optimal than
standard motion graphs, a widely used alternative in the literature. How-
ever, this improvement comes with additional computational complexity
that becomes intractable for large motion datasets. Since, we work with
mesh data which is more intricate and harder to interpolate compared
to skeletal data, our primary concern was the optimality of the selected
transitions in the animation graph with respect to the realism criterion
combining surface deformation and duration costs.



Chapter 4

Shape appearance representation

Contents

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.2 Related work . . . . . . . . . . . . . . . . . . . . . . . . 77

4.3 Texture maps variation . . . . . . . . . . . . . . . . . . 79

4.4 Eigen appearance maps . . . . . . . . . . . . . . . . . . 80

4.4.1 Texture maps alignment . . . . . . . . . . . . . 81

4.4.2 Eigen textures and Eigen warps . . . . . . . . . 86

4.4.3 Texture map instantiation . . . . . . . . . . . . 88

4.5 Model performance evaluation . . . . . . . . . . . . . . 88

4.5.1 Estimation Quality and Compactness . . . . . 89

4.5.2 Generalization ability . . . . . . . . . . . . . . . 93

4.6 Applications . . . . . . . . . . . . . . . . . . . . . . . . 94

4.6.1 Interpolation . . . . . . . . . . . . . . . . . . . . 95

4.6.2 Completion . . . . . . . . . . . . . . . . . . . . 97

4.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . 97

4.1 Introduction

In this chapter, we propose a view-independent appearance repre-
sentation and estimation algorithm, to encode the appearance variability
of a dynamic subject, observed over one or several temporal sequences.
Compactly representing image data from all frames and viewpoints of
the subject can be seen as a non-linear dimensionality reduction problem
in image space, where the main non-linearities are due to the underly-
ing scene geometry. Our strategy is to remove these non-linearities with

75





4.2. RELATED WORK 77

content from blended input sequences, or completions to cope with miss-
ing observations due to e.g. occlusions.

4.2 Related work

Obtaining appearance of 3D models from images was first tackled from
static images for inanimate objects, e.g. Debevec et al. [1996], Nishino
et al. [2001], a case largely explored since e.g. Lempitsky and Ivanov
[2007], Waechter et al. [2014]. The task also gained interest for the case
of subjects in motion, e.g. for human faces Blanz and Vetter [1999]. With
the advent of full body capture and 3D interaction systems Carranza et al.
[2003], Collet et al. [2015a] the task of recovering appearance has become
a key issue, as the appearance vastly enhances the quality of restitution of
acquired 3D models.

A central aspect of the problem is how to represent appearance, while
achieving a proper trade-off between storage size and quality. 3D cap-
ture traditionally generates full 3D reconstructions, albeit of inconsistent
topology across time. In this context the natural solution is to build
a representation per time frame which uses or maps to that instant’s
3D model. Such per instant representations come in two main forms.
View-dependent texturing stores and resamples from each initial video
frame Zitnick et al. [2004], eventually with additional alignments to avoid
ghosting effects Eisemann et al. [2008]. This strategy creates high quality
restitutions managing visibility issues on the fly, but is memory costly as
it requires storing all images from all viewpoints. On the other hand, one
can compute a single appearance texture map from the input views in
an offline process Collet et al. [2015a], reducing storage but potentially
introducing sampling artefacts. These involve evaluating camera visibility
and surface viewing angles to patch and blend the view contributions in a
single common mapping space. To overcome the resolution and sampling
limitations, 3D superresolution techniques have been devised that lever-
age the viewpoint multiplicity to build such maps with enhanced density
and quality Tung [2008], Tsiminaki et al. [2014], Goldlücke et al. [2014].

In recent years, a leap has been made in the representation of 3D
surfaces captured, as they can now be estimated as a deformed surface of
time-coherent topology de Aguiar et al. [2008], Cagniart et al. [2010]. This
in turns allows any surface unwrapping and mapping to be consistently
propagated in time, however in practice existing methods have only
started leveraging this aspect. Tsiminaki et al. [2014] examines small
temporal segments for single texture resolution enhancement. Volino et al.



78 CHAPTER 4. SHAPE APPEARANCE REPRESENTATION

[2014] uses a view-based multi-layer texture map representation to favour
view-dependant dynamic appearance, using some adjacent neighbouring
frames. Collet et al. [2015a] use tracked surfaces over small segments to
improve compression rates of mesh and texture sequences. Methods are
intrinsically limited in considering longer segments because significant
temporal variability then appears due to light change and movement.

While global geometry consistency has been studied Boukhayma and
Boyer [2015], Casas et al. [2012], most such works were primarily aimed
at animation synthesis using mesh data. the work of Casas et al. [2014b]
is the first to solve for appearance synthesis for parametric motion graphs
as-well. They propose an image-based pair wise alignment between
pre-selected frames within parametric motion spaces, and this approach
is extended in Casas et al. [2015] through alignment pre-computation
and storing for efficient real-time rendering. However, none of these
works propose a global appearance model for sequences. In contrast,
we propose an analysis and representation spanning full sequences and
multiples sequences of a subject.

For this purpose, we build an Eigen texture and appearance represen-
tation that extends concepts initially explored for faces and static objects
Turk and Pentland [1991b], Blanz and Vetter [1999], Cootes et al. [2001],
Nishino et al. [2001]. Eigenfaces Turk and Pentland [1991b] were initially
used to represent the face variability of a population for recognition pur-
poses. The concept was broadened to built a 3D generative model of
human faces both in the geometry and texture domains, using the fact
that the appearance and geometry of faces are well suited to learning their
variability as linear subspaces Blanz and Vetter [1999]. Cootes et al. [2001]
perform the linear PCA analysis of appearance and geometry landmarks
jointly in their active appearance model. Nishino et al. [2001] instead use
such linear subspaces to encode the appearance variability of static objects
under light and viewpoint changes at the polygon level. We use linear
subspaces for full body appearance and over multiple sequences. Because
the linear assumption doesn’t hold for whole body pose variation, we
use state of the art tracking techniques Allain et al. [2015] to remove the
non-linear pose component by aligning a single subject-specific template
to all the subject’s sequence. This in turn allows to model the appear-
ance in a single mapping space associated to the subject template, where
small geometric variations and appearances changes can then be linearly
modelled.



4.3. TEXTURE MAPS VARIATION 79

4.3 Texture maps variation

After a first examination of temporal sequences of texture maps of
the same shape undergoing geometrical change, we notice that there is a
great deal of information redundancy that could be factored to optimize
storing and reusing such data. But we also notice a substantial amount of
temporal variation in the appearance. With further inspection, we can de-
scribe the temporal change occurring in the texture map as an underlying
reference texture, with inherent properties, undergoing temporal change
in its pixel intensities, while being subject to a non-rigid displacement
field. Hence, we break down texture variation into two components that
we assume to be independent:

• Time varying surface-borne spatial displacement field.
• Pixel intensity variation over time.

Figure 4.2 – Captured (Green) versus Tracked (Red) geometries, sequence
Run, TOMAS dataset.

The spatial displacement can be seen as a motion field that is tangential
to the geometry, leading to non-rigid appearance drift. We argue that it
accounts for the following elements introduced by our 4D textured model
reconstruction pipeline:

• Geometric measurement errors introduced by calibration and static sur-
face reconstruction imprecisions.

• Our template-based temporal surface tracking favours geometric over
photo-metric consistency. Consequently, as we can see in figure 4.2, the
resulting tracked geometry fails sometimes to capture small non-rigid
details such as garment movements, facial expressions and hair change
for human subjects.

Some of the factors behind temporal variation of pixel values are:
• Illumination changes that are due to change in the global position, orien-

tation and pose of the subject.



80 CHAPTER 4. SHAPE APPEARANCE REPRESENTATION

• Viewpoint change, as our capture system combines visual information
from 68 different views for instance.

• Blur in highly dynamic motions.
Provided that we could estimate the misalignment between texture

maps accurately, we can then represent the aligned texture maps in a linear
compact subspace that factors all types of intensity variation mentioned
above. For more dimensional reduction, the displacement fields can also
be represented in a compact subspace of their own. Such globally compact
and simple representation can allow for a wide range of applications, some
of which we present in section 4.6.

4.4 Eigen appearance maps

Our approach considers as input the texture maps of a subject over
different motion sequences and as generated by a multi-view acquisition
system. The approach is in principle agnostic in its construction to the
particular technique used to generate these textures but still benefits from
an optimal exploitation of the original image information. For the reduc-
tion of these subject specific textures, elaborate non-linear schemes from
scratch might be used but would be burdened to rediscover non-linear
variations resulting from the underlying geometry of the scene, for which
good estimates are already available using state of the art techniques.
Instead, we leverage these variations as compensation estimates in our
method to eliminate the main non-linear components: the viewpoint to
texture-space mapping on one hand, which is governed by the 3D tracking
and initial per-frame texture-space estimation; the common texture-space
mapping to reduce all textures to one consistent appearance layout on the
other hand, which is compensated by the geometric warps. In practice,
we proceed as follows:

• Texture deformation fields that map input textures to, and from, their
aligned versions are estimated using optical flows. Given the deformation
fields, Poisson reconstruction is used to warp textures.

• PCA is applied to the aligned maps and to the texture warps to generate
the Eigen textures and the Eigen warps that encode the appearance
variations due to, respectively, viewpoint, illumination, and geometric
inaccuracies in the reference model.

Hence, The main modes of variation of aligned textures and deforma-
tion fields, namely Eigen textures and Eigen warps respectively, span the
appearance space in our representation. The main steps of this method
are depicted in Figure 4.3 and detailed in the following sections.





82 CHAPTER 4. SHAPE APPEARANCE REPRESENTATION

stops decreasing.

Data: Texture maps {Ik}k∈[[1..F ]]

Result: Reference map Aref , aligned textures Ak

Aref , e0 initializations;
while ei < ei−1 do

Compute alignment warps: {wk}k∈[[1..N ]] s.t. Aref ≈ Ik(x+ wk);
Align texture maps: Ak = Ik(x+ wk);

Update alignment error: ei =
∑

k ‖Ak − Aref‖2;
Set Aref as the texture that gives the medoid of the aligned
textures:

Aref = Ik0 s.t. k0 = argmin
k

∑
l ‖Ak − Al‖2;

end
Algorithm 4: Texture alignment with iterative reference map selection.

Correspondence with optical flow

The warps {wk} in the alignment algorithm, both forward and back-
ward in practice, are estimated as dense pixel correspondences with an
optical flow method Snchez Prez et al. [2013]. Forward warp w aligns
texture map I to the reference map Aref such that Aref ≈ I(x+ w), thus
giving the aligned texture map A = I(x+w). Backward warp w maps the
aligned texture map A back to the corresponding original input texture I
such that I ≈ A(x + w). We mention here that the optical flow assump-
tions: brightness consistency, spatial coherency and temporal persistence,
are not necessarily verified by the input textures. In particular, the bright-
ness consistency does not hold if we assume appearance variations with
respect to viewpoint and illumination changes. To cope with this in the
flow estimation, we use histogram equalization as a preprocessing step,
which presents the benefit of enhancing contrast and edges within im-
ages. Additionally, local changes in intensities are reduced using bilateral
filtering, which smooths low spatial-frequency details while preserving
edges. Figure 4.4 shows the result of performing histogram equalization
followed by bilateral filtering on each color channel of the first texture
frame from sequence Walk in TOMAS dataset. For the bilateral filter, we
set the diameter of each pixel neighbourhood that is used during filtering
to 80, the filter sigma in the color space to 15 and the filter sigma in the
coordinate space to 80.







4.4. EIGEN APPEARANCE MAPS 85

(
LTL+ Λ2

)
A = LT−→∇ .∇I(x+ w) + Λ2I(x+ w). (4.3)

Since the Laplacian matrix doesn’t have a full rank, soft constraints
are needed to improve the system’s conditioning and stabilize the factor-
ization of the normal equations.

Poisson warping comes at no run-time computational cost. That is,
since the whole dataset shares the same mesh topology and UV domain
proxy, the linear Laplacian operator is the same for all examples and thus
the factorization of the left hand side of the normal equations is computed
only once and used for any element of the dataset.

Figure 4.5 shows an example where a texture map is warped, given
a warp field, using both direct pixel remapping and Poisson warping.
The latter strategy achieves a more visually compelling alignment that
preserves the original edges, unlike direct warping which generates many
intensity discontinuities in extreme cases.

In order to visualize the numerical impact of using Poisson texture
warping on our pipeline, we plot the mean square reconstruction error
for TOMAS dataset in both texture and image domains in Figure 4.6. The
details of this evaluation mode are explained later on in section 4.5.1.
Texture domain error is obtained by comparing the reconstructed textures
to the textures estimated from the original images. Image domain error
is obtained by projecting the reconstructed textures into the input views
and comparing the resulting images to the original input views. We plot
the errors as a function of the number of Eigen appearance maps used to
build the subspace where textures are projected and reconstructed. Every
3 Eigen maps account for 2 Eigen textures and 1 Eigen warp. As we can
see in the figure, Poisson warping reduces the error introduced by the
reconstruction pipeline with respect to direct texture warping in both
texture and image domains. We note that texture warping, as illustrated
in figure 4.3, occurs twice in the process, first to align texture maps to the
reference map and second to de-align them using backward warps, hence
the importance of optimizing the warping algorithm.

We believe the overall numerical improvement achieved with Poisson
warping comes from three partial improvements:

• The reconstruction error of the process of merely aligning textures than
warping them back to their original state is improved.

• Aligned images with poisson warping are smoother, which gives better
reconstruction errors in the Eigen texture space.

• The backward warps mapping these smoother aligned textures to the
original textures are also smoother, which gives better reconstruction



86 CHAPTER 4. SHAPE APPEARANCE REPRESENTATION

errors in the Eigen warp space.

4.4.2 Eigen textures and Eigen warps

Once the aligned textures and the warps are estimated, we can proceed
with the statistical analysis of appearances. Given the true geometry of
shapes and their motions, texture map pixels could be considered as
shape appearance samples over time and PCA applied directly to the
textures would then capture appearance variability. In practice, incorrect
geometry causes distortions in the texture space and textures must be
first aligned before any statistical analysis. In turn, de-alignment must
be also estimated to map the aligned textures back to their associated
input textures (see Figure 4.3). And these backward warps must be part
of the appearance model to enable appearance reconstruction. In the
following, warps denote the backward warps. Also, we consider vector
representations of the aligned texture maps and of the warps. These
representations include only pixels that fall inside active regions within
texture maps. We perform Principal Component Analysis on the textures
and on the warp data separately to find the orthonormal bases that encode
the main modes of variation in the texture space and in the warp space
independently. We refer to vectors spanning the texture space as Eigen
textures, and to vectors spanning the warp space as Eigen warps.

Let us consider first texture maps. Assume N is the dimension of
the vectorized representation of active texture elements, and F the total
number of frames available for the subject under consideration. To give
orders of magnitude for our datasets, N = 22438995 and F = 207 for the
TOMAS dataset, and N = 25966476 and F = 290 for the CATY dataset that
will be presented in the next section. We start by computing the mean
image Ā, which is a vector of size N , and the centered data matrix M from
aligned texture maps {Ai}i∈[1..F], of size N × F :

Ā =
1

F

∑

k

Ak , M =




| |
A1 − Ā ... AF − Ā

| |


 . (4.4)

Traditionally, the PCA basis for this data is formed by the Eigen vectors
of the covariance matrix MMT , of size N ×N , but finding such vectors
can easily become prohibitive as a consequence of the texture dimensions.
However, it appears that the non zero eigen values of MMT are equal
to the non zero Eigen values of MTM , of size (F × F ) this time, and
that they are at most: min(F,N)− 1. Based on this observation, and



4.4. EIGEN APPEARANCE MAPS 87

since F << N in our experiments, we solve the characteristic equation
det(MMT − αIN) = 0 by performing Singular Value Decomposition on
the matrix MTM , as explained in Turk and Pentland [1991a]:

MTM = DΣDT , D =




| |
V1 ... VF

| |


 (4.5)

where matrix D of size F × F contains the (F − 1) orthonormal Eigen
vectors of MTM , denoted by {Vi}, which are vectors of size F . Square
diagonal matrix Σ = diag(αi)1≤i≤F contains the Eigen values {αi}1≤i≤F−1.
We can then write:

MTMVi = αiVi , i ∈ [1..F − 1], (4.6)

and hence:
MMT MVi︸︷︷︸

Ti

= αi MVi︸︷︷︸
Ti

, i ∈ [1..F − 1], (4.7)

where {Ti} are the Eigen vectors of MMT of size N , and therefore form
the orthonormal basis of the aligned texture space after normalization,
namely the Eigen textures.

We process the backward de-alignment warps in a similar way to the
aligned texture maps. We start by computing the mean warp w̄ and the
centered data matrix M from de-alignment warps {wi}i∈[1..F]:

w̄ =
1

F

∑

k

wk , M =




| |
w1 − w̄ ... wF − w̄

| |


 . (4.8)

To avoid prohibitive computational cost, we find the non-zero Eigen
values and Eigen vectors of matrix MTM of size (F ×F ) instead of matrix
MMT of size N ×N (F << N ) using Singular Value Decomposition:

MTM = DΣDT , D =




| |
V1 ... VF

| |


 (4.9)

where matrix D contains the (F −1) orthonormal Eigen vectors {Vi} of
MTM , and Σ = diag(βi)1≤i≤F contains the Eigen values {βi}1≤i≤F−1. The

Eigen vectors of MMT , denoted by {Wi}, can be subsequently found as
follows:





4.5. MODEL PERFORMANCE EVALUATION 89

from the original images in our pipeline using Tsiminaki et al. [2014], that
we consider as ground-truth textures. We also project the reconstructed
textures into the input views and compare the resulting images to the
original input views, that we consider as ground-truth images. For the
image error measurement, we use the 3D model that was fitted to the
sequence, as tracked to fit the test frames selected, and render the model
as textured with our reconstructed appearance map, using a standard
graphics pipeline. In both cases, we experiment with both the structural
similarity index (SSIM) Wang et al. [2004b] and the mean square error
(MSE) as metrics to compare to the original data. All of our error estimates
are computed in the active regions of the texture and image domains. In
the texture domain, that means that we only consider the set of texels
actually mapped to the 3D model. In the Image domain, it means that only
actual silhouette are taken into consideration. Besides, In the case of image
domain evaluations, we plot the average error among all viewpoints.

We study in particular the compactness and generalization abilities of
our method, by examining the error response as a function of the number
of Eigen components kept after constructing the linear subspaces, and
the number of training images selected. For all these evaluations, we
also provide the results for a naive PCA strategy, where only a set of
Eigen appearance maps are built in texture space and used to project and
reconstruct textures, to show the performance contribution of including
the Eigen warps.

For validation, we used two multi-sequence datasets:
• The TOMAS dataset which consists of 4 different sequences left, right,

run and walk with 207 total number of frames and 68 input views each
captured at resolution 2048x2048 pixels per frame.

• The CATY dataset: low, close, high and far jumping sequences with 290
total number of frames and 68 input views each captured at resolution
2048x2048 pixels per frame.

The dimension of the vectorized texture maps is computed as the
product of the number of occupied pixels multiplied by the number of
color channels (RGB in our case). TOMAS dataset is of order 22× 106 (N =
22.438.995) and in CATY dataset of order 25× 106 (N = 25 966 476).

4.5.1 Estimation Quality and Compactness

We study the quality and compactness of the estimated representation
by plotting the errors of reconstructed texture and image estimates of our
method against naive PCA, for the two multi-sequence datasets (Figures
4.9 and 4.10). Note that all texture domain variability could be trivially





4.5. MODEL PERFORMANCE EVALUATION 91

 96

 96.5

 97

 97.5

 98

 98.5

 99

 99.5

 20  40  60  80  100  120  140

S
S
IM

 1
0
⁻²

Number of Eigen vectors

PCA
Our method

(a) Texture domain, TOMAS

 64

 65

 66

 67

 68

 69

 70

 71

 20  40  60  80  100  120  140

S
S
IM

 1
0
⁻²

Number of Eigen vectors

PCA
Our method

(b) Image domain, TOMAS

 95

 96

 97

 98

 99

 100

 10  30  50  70  90  110  130  150  170

S
S
IM

 1
0
⁻²

Number of Eigen vectors

PCA
Our method

(c) Texture domain, CATY

 52

 54

 56

 58

 60

 62

 64

 66

 68

 70

 10  30  50  70  90  110  130  150  170

S
S
IM

 1
0
⁻²

Number of Eigen vectors

PCA
Our method

(d) Image domain, CATY

Figure 4.9 – SSIM Reconstruction Error for TOMAS and CATY.

Eigen components (images and warps), with a significant compactness
gain. This can be confirmed with the reconstruction results in figure 4.8.
In this figure, we show the evolution of a mesh appearance from the
Run sequence of TOMAS dataset projected than reconstructed through
our model, compared to the original texture (Figure 4.8d). Notice how
appearance features and wrinkles are moved towards their true positions
and get refined along with the increasing reconstruction Eigen subspace
dimension (Figures 4.8a, 4.8b and 4.8c ).

Our method outperforms naive PCA in image and texture domains on
both datasets, achieving higher quality with a lower number of Eigen com-
ponents, and only marginally lower quality as the number of components
grows, where the method would be anyway less useful. Higher number
of Eigen components marginally favours naive PCA, because naive PCA
converges to input textures when increasing the Eigen textures retained by
construction. Because of the non bijective behaviour of texture alignment
and dealignment in our pipeline, our method hits on the other hand a
quality plateau due to small constant errors introduced by texture forward
and backward warping. The PCA curve is hence bound to surpass ours at
a given number of Eigen components.



92 CHAPTER 4. SHAPE APPEARANCE REPRESENTATION

 0

 5

 10

 15

 20

 25

 30

 20  40  60  80  100  120  140

M
S
E

Number of Eigen vectors

PCA
Our method

(a) Texture domain, TOMAS

 56

 58

 60

 62

 64

 66

 68

 70

 20  40  60  80  100  120  140

M
S
E

Number of Eigen vectors

PCA
Our method

(b) Image domain, TOMAS

 0

 2

 4

 6

 8

 10

 12

 14

 10  30  50  70  90  110  130  150  170

M
S
E

Number of Eigen vectors

PCA
Our method

(c) Texture domain, CATY

 48

 50

 52

 54

 56

 58

 60

 10  30  50  70  90  110  130  150  170

M
S
E

Number of Eigen vectors

PCA
Our method

(d) Image domain, CATY

Figure 4.10 – MSE Reconstruction Error for TOMAS and CATY.

Figure 4.10 shows the mean square reconstruction errors in both image
and texture domains for CATY and TOMAS datasets. We notice that the
MSE shows similar behaviour to the SSIM measure in both texture and
image domains and for both datasets. The only main difference is the
point where the naive PCA surpasses ours method. This happens earlier
at a smaller subspace dimension for the MSE curves compared to the
SSIM ones, which means that this metric favours our method less than
the SSIM. We suspect this is due to the fact that, unlike the SSIM, the
MSE does not take into account pixel neighbourhood information and
hence is very sensitive to the errors introduced with texture warping.
However, structural similarity Wang et al. [2004b] was proved to be a
reliable measure of visual comeliness and was previously used in similar
evaluations involving 3D shape texture map quality assessment Volino
et al. [2014]. We hence believe that it is more fit to evaluate the quality
and the compactness of our model.



4.5. MODEL PERFORMANCE EVALUATION 93

 97.1

 97.2

 97.3

 97.4

 97.5

 97.6

 97.7

 97.8

 97.9

 98

 98.1

 30  50  70  90  110  130

S
S
IM

 1
0
⁻²

Number of training frames

PCA
Our method

(a) Texture domain, TOMAS

 66.5

 67

 67.5

 68

 68.5

 69

 69.5

 30  50  70  90  110  130

S
S
IM

 1
0
⁻²

Number of training frames

PCA
Our method

(b) Image domain, TOMAS

 93

 94

 95

 96

 97

 98

 99

 30  50  70  90  110  130  150  170

S
S
IM

 1
0
⁻²

Number of training frames

PCA
Our method

(c) Texture domain, CATY

 57

 58

 59

 60

 61

 62

 63

 64

 65

 66

 67

 68

 30  50  70  90  110  130  150  170

S
S
IM

 1
0
⁻²

Number of training frames

PCA
Our method

(d) Image domain, CATY

Figure 4.11 – SSIM Generalization Error for TOMAS and CATY

4.5.2 Generalization ability

In the previous section, we examined the performance of the method
by constructing an Eigen space with all input frames. We here evaluate the
ability of the model to generalize, i.e. how well the method reconstructs
textures from input frames under a reduced number of examples that
don’t span the whole input set. We note that the ability of the model
to describe instances outside its training set can be exploited in various
applications such as data completion (see section 4.6.2).

For this purpose, we perform an experiment using a varying size
training set, and a test set from frames not in the training set. We use
a training set comprised of randomly selected frames spanning 0% to
60% of the total number of frames, among all sequences and frames of all
datasets, and plot the error of projecting the complement frames on the
corresponding Eigen space (Figures 4.11 and 4.12).

Figure 4.11 shows the structural similarity generalization errors in both
image and texture domains for CATY and TOMAS datasets. These results
shows that our representation produces a better generalization than naive
PCA, i.e. less training frames need to be used to reconstruct a texture
and reprojections of equivalent quality. For TOMAS dataset, one can



94 CHAPTER 4. SHAPE APPEARANCE REPRESENTATION

 6

 7

 8

 9

 10

 11

 12

 13

 14

 15

 30  50  70  90  110  130

M
S
E

Number of training frames

PCA
Our method

(a) texture TOMAS

 �� 

 59

 59.5

��

��� 

��

��� 

��

 30  50  70  90  110  130

M
S
E

Number of training frames

PCA
Our method

(b) image TOMAS

 0

 5

 10

 15

 20

 25

 30  50  70  90  110  130  150  170

M
S
E

Number of training frames

PCA
Our method

(c) texture CATY

��

�	

�


��

��

��

��

�

��

�	 �	  70 �	  110 
�	 
�	  170

M
S
E

N����� �� �������� ������

PCA
Our method

(d) image CATY

Figure 4.12 – MSE Generalization Error for TOMAS and CATY

observe than less than half training images are needed to achieve similar
performance in texture space, and a quarter less with CATY dataset.

Figure 4.12 shows the mean square generalization errors in both image
and texture domains for CATY and TOMAS datasets. The MSE errors seem
to follow the same pattern as the SSIM errors, except for reconstructions in
the image domain, where the naive PCA catches up with the performance
of our method at a smaller number of training frames. We believe this
can be due to the same shortcomings of the MSE error measurement
mentioned in the previous section.

4.6 Applications

We investigate below two applications of the appearance representa-
tion we propose. First, the interpolation between frames at different time
instants and second, the completion of appearance maps at frames where
some appearance information is lacking due to occlusions or missing
observations during the acquisition. Results are shown in the following
section and this video.







4.7. CONCLUSION 97

TOMAS datasets. Note that our method is also linear but benefits from the
alignment performed in the texture space to reduce interpolation artefacts,
as well as from the simplified computational aspects since interpolation
applies to projection coefficients only.

4.6.2 Completion

As mentioned earlier, appearance maps can be incomplete due to
acquisition issues. For instance, as shown in Figure 4.15, during the
running sequence the actor TOMAS bends his knees in such a way that
the upper parts of his left and right shins become momentarily hidden to
the acquisition system. This results in missing information for those body
parts in the texture maps and over a few frames. Such an issue can be
solved with our texture representation by omitting the incomplete frames
when building our appearance representations, and then projecting these
incomplete appearance maps in the Eigen spaces and reconstructing them
using the projection coefficients and Poisson texture warping. Figure 4.15
shows two examples of this principle with occluded regions. The top
figure shows frame 15 and the bottom one shows frame 24 from the
Run sequence of Tomas dataset. We show side to side the original input
model with missing texture and its completed version. In both cases,
we show the rendered 3D textured model (left), and a close up on the
region of interest of the model (bottom right) and the 2D texture map (top
right). Note however, that while effectively filling gaps in the appearance
map, this completion might yet loose appearance details in regions of the
incomplete map where information is not duplicated in the training set.

4.7 Conclusion

We presented in this chapter a novel framework to efficiently represent
the appearance of a subject observed from multiple viewpoints and in
different motions. We propose a straightforward representation that
decomposes this dynamic scene appearance modelling problem into Eigen
textures and Eigen warps. These Eigen vectors encode, respectively, the
appearance variations due to viewpoint and illumination changes, and
due to geometric modelling imprecisions. The framework was evaluated
on 2 datasets and with respect to:

• The ability to accurately reproduce appearances with compact represen-
tations.

• The ability to resolve appearance interpolation and completion tasks.





4.7. CONCLUSION 99

sionality reduction of images from all viewpoints and time frames. The
informed reduction to a linear PCA that we propose is one of the most
straightforward approaches one can imagine to the problem and could be
a baseline for future, more complex approaches. As a matter of fact, more
elaborate reductions are always possible, but note that using e.g. agnostic
non-linear schemes from scratch would be burdened to rediscover non-
linear variations resulting from the underlying geometry of the scene, for
which good estimates are already available using state of the art surface
tracking techniques. We simply leverage these as compensation estimates
in our method to eliminate the main non-linear components: the view-
point to texture-space mapping on one hand, which is governed by the
3D tracking and initial per-frame texture-space estimation; the common
texture-space mapping to reduce all textures to one consistent appearance
layout on the other hand, which is compensated by the geometric warps.





Chapter 5

Shape Motion transfer

Contents

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 101

5.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . 103

5.3 Semantic Motion Transfer . . . . . . . . . . . . . . . . . 105

5.4 Shape Pose Representation . . . . . . . . . . . . . . . . 106

5.4.1 Rigid Transformation . . . . . . . . . . . . . . . 106

5.4.2 Body Parts . . . . . . . . . . . . . . . . . . . . . 107

5.4.3 Dimension Reduction . . . . . . . . . . . . . . . 107

5.5 Shape Pose Mapping . . . . . . . . . . . . . . . . . . . . 108

5.5.1 Temporal Correspondence Densification . . . 108

5.5.2 Pose and Displacement Mapping . . . . . . . . 111

5.6 Shape Pose Reconstruction . . . . . . . . . . . . . . . . 113

5.6.1 Body Part Correction . . . . . . . . . . . . . . . 113

5.6.2 Body Part Stitching . . . . . . . . . . . . . . . . 114

5.7 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . 115

5.7.1 Transfer Model . . . . . . . . . . . . . . . . . . 117

5.7.2 Dense Correspondence . . . . . . . . . . . . . . 118

5.7.3 Body Parts . . . . . . . . . . . . . . . . . . . . . 119

5.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . 119

5.1 Introduction

In this chapter, we address the task of transferring captured motions
from one subject to another, to the benefit of enabling the generation

101



102 CHAPTER 5. SHAPE MOTION TRANSFER

of uncaptured animations, removing the burden of exhaustive motion
acquisition for each subject, and broadening creative possibilities with
captured 4D models. Given two training sets of motions for two subjects
and a sparse set of annotated semantic correspondences between the two
sets, a regression model can be built, by which a new captured motion
associated to one of the subjects can be transferred to the other. While the
transfer for sparse surface parametrizations such as motion capture data
have received some attention Rhodin et al. [2014], Vögele et al. [2012],
Yamane et al. [2010], Feng et al. [2008], only a handful of works exists that
deal with the particular problem of surface to surface transfer relevant
to our shape capture situation Sumner and Popović [2004b], Baran et al.
[2009]. The most successful approach to date Baran et al. [2009] obtains
inspiring results with a linear representation of pose mapping.

Figure 5.1 – Motion capture transfer. Left: Multi-View acquisition of mo-
tion sequences for 2 subjects; Middle: Training of the motion mapping
between subjects given shape sequences with sparse frame correspon-
dences (in color); Right: Motion animations of subject 2 (bottom) given
new input motions for subject 1 (top).

We propose a more general model, which significantly broadens trans-
ferring capabilities in a multi-view capture context, thanks to the following
two important contributions:

• First, we propose a novel motion mapping model, based on non-linear
Gaussian Process regression and on body part segmentation, which sig-
nificantly improves the accuracy and generalization abilities of mappings
for a given training set. Unlike existing works, this regression model also
captures the global rigid component of motion, allowing more realistic
transfer of subject displacements.

• Second, while previous works only use a sparse set of matching key-
frames in the training set, we provide a full temporal matching densifi-
cation approach based on probabilistic dynamic time-warping. Starting
from the initially provided matching pairs, or key-frames, between two



5.2. RELATED WORK 103

paired training sequences, it extrapolates correspondences densely be-
tween the two sequences. This allows the regression to benefit from
an expanded and complete set of frame pairs, which in turn increases
realism by better preserving learned individual dynamic patterns in new
motions.

In order to conduct evaluation, we consider two annotated datasets
acquired with different platforms. These datasets contain motions for
two subjects, any subset of which can be used for training and the other
for testing. Testing data annotations are used as baseline to measure the
accuracy of the transfer and generalization capability of the method. We
also evaluate the benefit of densification versus only using the initially
annotated sparse key-frame pairs. Under this protocol, we are able to
verify quantitatively and qualitatively that our method outperforms all
existing strategies and yields more visually pleasing results in typical
vision-based surface capture scenarios, in particular achieving higher
fine-scale motion fidelity of the transfer.

5.2 Related Work

Existing works in the field of captured surface motion transfer can be
roughly categorized with respect to the surface motion parametrization
they consider and to the motion transfer model they apply. Articulated
motions can be naturally parametrized using skeletons and several works
resort to such models to transfer motions between subjects as in Feng et al.
[2008], Vögele et al. [2012], Yamane et al. [2010]. In order to be applicable
to surface based information, e.g. 3D meshes in our case, this strategy
requires mesh rigging and skinning or tracked control points. Obtaining
this information reliably in generic situations is often difficult, for instance
with loose clothing, and we follow a different strategy that does not rely
on intermediate representations.

Regarding surface to surface motion transfer, and given vertex cor-
respondences between source and target meshes, the seminal work of
Sumner and Popović [2004b] proposed an elegant solution to transfer
deformations between triangulated meshes based on deformation gradi-
ents. Such a solution was applied to synthetic and real models of humans,
animals as well as recently to faces Thies et al. [2016]. Ben-Chen et al.
[2009] generalized such deformation transfer to multi-component and non
manifold meshes using harmonic maps. While successful, this strategy
however requires correspondences between surface meshes which can
easily be involved and complicated. In addition, a local transfer strategy



104 CHAPTER 5. SHAPE MOTION TRANSFER

can be disadvantageous with shapes that differ in the way they deform
locally when undergoing similar global motions. We therefore favour a
more global approach.

Some works attempted surface to surface motion transfer without
correspondences. The work of Rhodin et al. [2014] uses a linear pose
mapping from sparse point clouds to surface data for character control.
Closer to our concern, Baran et al. [2009] proposed a method that performs
semantic deformation transfer between surfaces. This method does not
require local correspondences and accomplishes instead motion trans-
fers through poses within spaces spanned by key-poses (key-frames),
for which global correspondences are given. This approach was later
extended to multi-component objects Zhou et al. [2010]. We follow a
similar strategy, albeit significantly improving the pose space representa-
tion, which accounts for all training poses in our case, instead of sparse
key-poses only. Ours differs also in the transfer function that accounts for
global rigid displacements and is based on non-linear regressions instead
of direct pose mapping, with the benefit of allowing the transfer of more
complex motion patterns.

Motion transfer models have been largely studied in the literature in
the case of motion capture and therefore sparse data. They range from
direct transfer to linear and non-linear interpolation models. Among
the latter, Gaussian Processes have proven to be effective for performing
various tasks with motion capture data, such as non-trivial transfers
to non-humanoid characters Yamane et al. [2010] or, interestingly with
complex real subjects, motion style and variability modelling Wang et al.
[2007, 2008a]. Our framework thus builds on Gaussian Process Regression
and extends it to surface mesh data.

We use a body part based representation for pose regression. Many
works use similar representations for mesh related tasks like registration
Zuffi and Black [2015] or animation Tejera and Hilton [2013]. From an
anatomical standpoint, this representation makes sense since body parts
move independently, which makes it hard to align and learn their motions
with a global model. To confirm these claims, we evaluate our regression
with both a whole body and a part based representation, and we show in
section 5.7 that the latter yields better results.

Furthermore, we propose a user friendly body partition scheme that
doesn’t require accurate body segmentation. The user merely provides a
roughly selected area of uncertainty delimiting the body parts (see figure
6.2). In the learning stage, each body part is augmented by this overlap
region with it’s neighbour. In the inference stage, optimal boundaries
within these overlap regions are automatically selected to stitch the body



5.3. SEMANTIC MOTION TRANSFER 105

parts back together seamlessly using Poisson mesh merging, inspired by
this work Huang et al. [2007b]. Introduced first for images Pérez et al.
[2003], the Poisson editing method was later incremented by optimal
boundary selection Jia et al. [2006] for better results. These concepts were
then generalized to videos Wang et al. [2004a], Chen et al. [2013]. In a
similar fashion, Poisson editing for static meshes Yu et al. [2004a] was
enhanced with optimal merger boundaries Huang et al. [2007b], and we
generalize this concept in our work to dynamic mesh sequences.

5.3 Semantic Motion Transfer

Our approach considers as input 3D shape sequences of two moving
subjects as acquired with multi-view acquisition systems (see figure 5.1).
It handles the possibility of different acquisition systems for source and
target, e.g. different resolution and frame rate. Shapes are represented
by 3D meshes which are globally consistent for a given subject, i.e. all
the subject’s poses are represented with the same mesh. This is not true
between subjects that can even present different topologies. A first set of
various motions is used to train the transfer function between subjects.
We assume that sparse frame correspondences between sequences (as
illustrated with colors in figure 5.1) are given to bootstrap the motion
transfer. They represent semantic correspondences Baran et al. [2009]
between subject’s poses as seen or desired by the user and therefore need
not be accurate. The transfer mapping estimation follows then two steps:

• Correspondence Densification: from the sparse semantic correspon-
dences, or key-poses, a dense correspondence map between the two
subject’s poses is obtained using dynamic time warping applied to mo-
tion sequences in the training set.

• Transfer Model: a non-linear mapping between the subjects’ pose spaces
is learned using Gaussian Process Regression applied on the full set of
pose correspondences.

Given then a newly acquired motion sequence for one of the subjects, its
transferred version onto the other subject is obtained by mapping each
pose of the source sequence to a corresponding pose in the space of the
target subject using the transfer model. In practice, shapes are represented
as body parts over which regressions are performed. The benefit is to sig-
nificantly improve the transfer model accuracy since the limbs of observed
subjects can move independently, making global regression over the full
body less precise. Another feature of the approach is to compensate the
increased complexity with body part regressions using PCA dimension



106 CHAPTER 5. SHAPE MOTION TRANSFER

reduction applied to body parts. We introduce the different components
of the approach below.

5.4 Shape Pose Representation

A shape is represented by a 3D mesh M, whose pose is encoded in its
vertex positions. Different subjects are represented by different meshes. A
shape pose is in practice characterized by elements such as its global rigid
transformations and its body part poses. While not fully independent,
only weak dependencies of body limb movement with body motions
are observed and the body-part model produces better results in our
experiments. Consequently, we choose to learn transfer functions for all
elements using independent regressions. In addition, we further reduce
body part pose representations using PCA.

5.4.1 Rigid Transformation

Let {Mi}1≤i≤n be the n poses of a shape M. We first rigidly align all
the consistent meshes {Mi}1≤i≤n of a subject using standard Procrustes
analysis applied to the mesh vertex coordinates. We assume, without loss
of generality, that all motions starts at the same space location and with
the same initial orientation. Hence, a shape pose is represented by its
aligned mesh M̄i and its globally rigid displacement from the previous
pose in the motion sequence in which it appears. This elementary rigid
motion is composed of a translation δTi and rotation δRi that will further
be part of the transfer analysis.

In order to learn a mapping between source and target subject displace-
ments, we need a linear parametrization of this data. Rotation matrices
δR, which lie in the Lie group SO(3), can be expressed as the exponential

of skew symmetric matrices Ĥ , belonging to the Lie algebra so(3):

δR = eĤ , Ĥ =

(
0 −h3 h2

h3 0 −h1

−h2 h1 0

)
, H =

(
h1

h2

h3

)
(5.1)

where vector’s H norm and direction give the angle-axis representation
of rotation δR. The global subject’s rotations between successive frames
being relatively small ‖H‖ ≈ 0, they can be approximated accordingly:

δR =
∞∑

k=0

Ĥk

k!
≈ I + Ĥ (5.2)



5.4. SHAPE POSE REPRESENTATION 107

Thereafter, we hence represent elementary rigid subject displacements in
the following 6-dimensional linear parametrization:

(δT, δR) 7→ (tx, ty, tz, h1, h2, h3)
T (5.3)

5.4.2 Body Parts

As mentioned earlier, body parts can move independently, for instance
arms can move differently over various instances of a walking movement
while legs present similar motions. As a result, learning independent
transfer functions for each body part can increase accuracy compared to a
global strategy, which is confirmed by our experiments (see section 5.7).
In order to ease the decomposition in practice while keeping robustness,
we adopt a strategy similar to Tejera and Hilton [2013] with a coarse but
overlapping mesh segmentation. To this purpose, as illustrated in figure
6.2, for each subject the user provides closed and non-intersecting curves
that delimit each overlapping region between contiguous body parts on
M. Throughout the regression process, each body part will be augmented
with the overlap regions it shares with its neighboring parts. During the
motion transfer, merging will be achieved to ensure seamless body part
stitching as described later in section 5.6.1.

Figure 5.2 – Body parts: shaded colors represent overlapping regions
between parts delimited by user given curves.

Each aligned mesh M̄i is therefore decomposed into N body part
sub-meshes {Pk

i }1≤k≤N . In our experiments, we use N = 5 parts in a tree
structured hierarchy including a torso as the root, and a pair of arms and
legs as children nodes.

5.4.3 Dimension Reduction

In order to reduce the computational cost, dimension reduction is
applied on each body part using Principal Component Analysis. All



108 CHAPTER 5. SHAPE MOTION TRANSFER

body part sub-meshes for a given subject are first rigidly aligned and
PCA applied on the vertex locations. For a given pose i, each body part
Pk

i is now on expressed as a vector of eigen decomposition coefficients

x = (x1, . . . , xm)
T , where the reduced dimension m could be different

from source to target subjects. In practice, we use m = 20 coefficients for
each body part. Note that this operation, as the body segmentation step,
introduces additional inaccuracies in the overlapping regions that require
post-processing (section 5.6.1).

5.5 Shape Pose Mapping

Given two groups of shape poses for two subjects and a set of key-pose
correspondences between the groups, we want to estimate a function that
maps poses from one group to the other. Since the objective is to transfer
motions, hence sequences of poses, we expect this function to provide
consistent and realistic temporal pose arrangements. Relying for that
purpose on sparse key-poses only, as in Baran et al. [2009], is suboptimal
when global semantic motion correspondences, e.g. walking or running,
are known. We therefore first extend the set of key-pose correspondences
to full pose correspondences between similar motions. Second, in order
to better capture pose inter-dependencies, we perform a global non-linear
regression over all pose correspondences. Our experiments demonstrate
that both contribute to a better accuracy of motion transfers.

5.5.1 Temporal Correspondence Densification

For every pair of matching motions in the training set, sparse semantic
correspondences between the source and target poses are provided by the
user (see figure 5.3). Starting from these initial correspondences, our aim is
to optimally propagate associations to the rest of the sequence by solving
a shortest path problem using dynamic time warping. The costs of source
and target pose associations are derived from a linear mapping between
poses as learned from the initial correspondences. A linear model per
motion is sufficient here to capture the information given by the very few
initial associations (around 5 key-poses per sequence in our experiments).

Association Cost

Using the notations introduced in section 5.4.2, we hence assume that
the mapping between the target and source pose vectors y and x of part k



5.5. SHAPE POSE MAPPING 109

Figure 5.3 – Pose correspondence densification and mapping.

is linear, up to an observation noise vector ε, thus:

y = Mx+ ε, (5.4)

where M is the matrix of the linear transformation for part k. We assume
that the additive noise follows a Gaussian distribution: ε ∼ N (0, σ2I),
where σ2 = 0.01 in our experiments. Together with the above linear
formulation, this assumption gives rise to the following likelihood for
body part k:

p(Y|X,M) = N (MX, σ2I), (5.5)

where matrices X and Y contain the stacked source and target initially
matched key-poses: X = (x1s , . . . ,xLs) and Y = (y1t , . . . ,yLt) for part
k, assuming we have L key-pose correspondences. Given a zero mean



110 CHAPTER 5. SHAPE MOTION TRANSFER

identical Gaussian prior on rows of M: row(M) ∼ N (0, I), the posterior
distribution over parameters in M can then be written as follows, using
Bayes’ rule:

p(M|Y,X) ∝ p(Y|X,M)p(M),

p(M|Y,X) = N ( 1
σ2YXTA−T ,A−1),

(5.6)

where A = 1
σ2XXT + I. The predictive distribution for the function Mx at

x is obtained by averaging over all matrices M with the Gaussian posterior
in (5.6):

p(Mx|x,X,Y) =

∫

M

p(M|X,Y)Mx

= N ( 1
σ2YXTA−Tx,xTA−1xI).

(5.7)

Hence for a given body part k, the probability of the target pose yj to
belong to the predictive distribution for Mx at the source pose xi is then:

P k
i,j = e−

1
2
(yj−µi)

T (Σi)
−1(yj−µi), (5.8)

where µi =
1
σ2YXTA−Txi and Σi = xT

i A
−1xiI. For the whole body, the

probability, or cost, of this association between poses i and j is then the
product of the latter probabilities over all the body parts:

Pi,j =
∏

1≤k≤N

P k
i,j. (5.9)

Dense Correspondence

Denoting by fs and ft the source and target sequence sizes, the next
step is to find a map φ : J1, ..., fsK → J1, ..., ftK between source and target
sequence poses that maximizes the product of the association probabilities
{(i, φ(i))}:

φ∗ = argmax
φ

∏

i

Pi,φ(i),

= argmin
φ

∑

i

− log
(
Pi,φ(i)

)
.

(5.10)

When formulated as a minimization, as above, and taking into account
some motion priors such as continuity and monotonicity, finding a map-
ping φ can be cast as a shortest path problem, solved using a dynamic
programming algorithm Müller [2007]. The solution corresponds to a least
cost path within a cost matrix (shown in figure 5.3) taking the negative
log of the probability Pi,j as value for node (i, j). In our implementation,
we bound the path through the cost matrix to be continuous, not reserve



5.5. SHAPE POSE MAPPING 111

path, not include more than 3 vertical or horizontal consecutive nodes in
a row, and also run through the initial key-pose correspondences.

5.5.2 Pose and Displacement Mapping

Using the densification approach presented before, we can augment
the set of source and target pose correspondences using all the motion
sequences present in the training datasets. This allows to benefit from
both variability and redundancy in the shape pose training set. In the
previous section, a linear model was used to map poses between the
source and target in each motion sequence. We consider now the full set
of corresponding poses, whose correspondence distribution is expected
to be better captured by a more elaborate model, as demonstrated in our
experiments.

Non-linear Model

For a given body part, we assume that the i-th parameter yi of the
target pose y can be related to a new source vector x with a non-linear
function and up to an observation noise:

yi = fi(x) + ε, (5.11)

with ε ∼ N (0, σ2
n) and σ2

n = 0.1 in our experiments. We use a Gaussian
Process (GP) to describe the distribution over such functions fi(x) given a
training set.

A Gaussian process is a collection of random variables, any finite num-
ber of which have a joint Gaussian distribution. It extends multivariate
Gaussian distributions to infinite dimensionality. GP have shown to be
efficient in solving similar regression problems on sparse motion repre-
sentations. A GP is defined by its mean and covariance functions. Since
body parts are first aligned, we assume the mean functions to be null. For
the covariance functions, we introduce the following entities:

K =




k(x1,x1) . . . k(x1,xF )
...

. . .
...

k(xF ,x1) . . . k(xn,xF )


 ,

K∗ =
[
k(x∗,x1) . . . k(x∗,xF )

]
, K∗∗ = k(x∗,x∗),

(5.12)

where F is the total number of training poses, and x∗ is a new input
pose for a body part and k(., .) a kernel function. In our experiments, the



112 CHAPTER 5. SHAPE MOTION TRANSFER

neural network covariance below outperforms other traditional kernels
(see section 5.7):

knn(x,x
′) = σ2

f sin
−1




1
2l2

xTx′

√
(1 + 1

2l2
xTx)(1 + 1

2l2
x′Tx′)


 (5.13)

where the hyper-parameters l and σf are optimized using conjugate gradi-
ents Rasmussen and Williams [2005]. We also use the squared exponential
and the linear kernels for a comparative study in section 5.7.

kse(x,x
′) = σ2

f exp
(
− 1

2l2
(x− x′)

T
(x− x′)

)

klin(x,x
′) = xTx′

(5.14)

Using the GP prior on function fi, the joint distribution of the observed
target pose parameters {yi} over the training set and the predicted pa-
rameter yi∗ = fi(x∗) + ε at the new source pose x∗ can be expressed as
follows: [

yi

yi∗

]
∼ N

(
0,

[
K+ σ2

nI KT
∗

K∗ K∗∗

])
. (5.15)

By conditioning the joint Gaussian prior distribution on the observations
Rasmussen and Williams [2005], we obtain the posterior distribution for
yi∗:

p(yi∗|X,Yi,x∗) ∼N ( K∗[K+ σ2
nI]

−1Yi,

K∗∗ −K∗[K+ σ2
nI]

−1KT
∗

)
,

(5.16)

where the matrix X contains the stacked values of the source part poses
x in the training set and the vector Yi contains the stacked values of the
pose parameter yi in the corresponding target pose in the training set.
Finally, for a given input pose x∗, we take the mean of this distribution as
the predicted output value;

yi∗ = K∗[K+ σ2
nI]

−1Yi, (5.17)

this for all the body part pose parameters {yi∗}1≤i≤m and over all body
parts.

Rigid Displacement

As explained in section 5.4.2, a shape pose is characterized by its body
part poses as well as its rigid displacement from the previous pose in the



5.6. SHAPE POSE RECONSTRUCTION 113

considered motion sequence. This rigid displacement is modelled using
a similar GPR approach that learns from all training correspondences
the mappings between the source displacement vectors and each of the 6
target displacement vector values.

5.6 Shape Pose Reconstruction

Using the approach described in the previous sections we can predict
body part poses and global rigid displacement for any input source pose.
Since these predictions are independent, a post-processing step is required
to combine them all in a consistent way. This includes body part correction,
body part stitching and a global rigid displacement according to the
prediction. We elaborate on the body part tasks below. Note also that
final motions might require additional traditional post-processing such as
self-intersection clean up, or foot-skating correction to ensure foot contacts
don’t appear to be slipping.

5.6.1 Body Part Correction

Figure 5.4 – Body part correction algorithm.

As a result of the reduced pose parametrization, mesh deformities can
appear in the predicted body-part meshes such as shrinkage, distortion
and local magnification. We propose in this section an example-based
algorithm that solves these limitations. It relies on the assumption that
mesh deformities result from strong non-isometric deformations, that we
therefore try to factor out. The algorithm is composed of the following
steps, illustrated is figure 5.4:

• The M nearest meshes to the predicted mesh are found in the training
set, according to a simple vertex-to-vertex distance. In our experiments,



114 CHAPTER 5. SHAPE MOTION TRANSFER

Figure 5.5 – Example of body part correction (in green).

3 nearest meshes were enough to obtain perceptually valid results. A
weight wi is associated to each nearest mesh, which decreases with the
distance to the predicted mesh.

• Polar decompositions are performed between triangles on nearest meshes
and their correspondents on the predicted mesh to obtain isometric {Ri}
(Rotation) and non-isometric {Si} (Shear/Scale) deformation components
per triangle.

• Nearest mesh triangles are deformed with only the isometric per-face
components {Ri} and the corresponding deformed meshes are recon-
structed using a Poisson based method Xu et al. [2005]. The resulting M
deformed meshes are then combined using weights {wi}.

Figure 5.5 shows a correction example where the algorithm helps correct
shrinkage and local magnification in the prediction.

5.6.2 Body Part Stitching

Assuming we deal with zero-genus manifold meshes, drawing two
non-intersecting curves on the mesh will result in an overlap region that
is topologically equivalent to a cylinder, as can be visualized in figure 5.6
flattened with conformal mapping. For a pair on contiguous body parts,
and after rigidly aligning the child parts to the root part with respect to
the overlap region, we look for a closed curve within this shared overlap
topology that we will use as a Dirichlet boundary condition for Poisson
mesh merging algorithm Yu et al. [2004a] applied to these two parts. The
topological curve that is more likely to produce seamless merges is the one



5.7. EVALUATION 115

Figure 5.6 – Body part stitching.

with the least deformation cost between its two instantiations in the root
and child geometries. Following Huang et al. [2007b], an approximation
of this solution is found with a Dijkstra shortest path algorithm. This
process is subsequently reiterated for all overlap regions to recover the
full final body merged mesh.

5.7 Evaluation

To demonstrate our method, we use two datasets containing tempo-
rally coherent mesh sequences of matching basic motions, and we attempt
motion transfer from one dataset to the other in both ways. DAN Casas
et al. [2014a] dataset has meshes with 2667 vertices and 5330 faces and was
recorded at 25 fps. TOMAS Boukhayma and Boyer [2015] dataset has more
uniform meshes with 5000 vertices and 10000 faces and was recorded at a
higher frame rate; 50 fps. For the training, we match TOMAS’s sequences
Walk, Run, Jump, Jump forward and Bend with DAN’s sequences Walk, Jog,
High jump, Long jump and Big box low respectively. We initialize the key-
pose correspondences with 5 frames for each sequence and end up with
a total number of 350 pairs of frame correspondences after densification.
As we show in figures 5.7,5.1 and this video, we succeed in transferring
both motions that are semantically similar to the ones in the training set,
like Run2walk, and other new motions not represented in the training set,
such as Duck, Push, Upstairs, Downstairs.

For quantitative evaluations, we fully annotate the motion datasets
with frame to frame correspondences, and we randomly split this ground-
truth data into a training set and a cross-validation set. The training set





5.7. EVALUATION 117

5.7.1 Transfer Model

 1

 1.5

 2

 2.5

 3

 3.5

 20  30  40  50  60  70  80  90  100

R
M

S
E
 1

0
⁻²

% Training set

affine mapping
linear

s-exp kernel
nn kernel

(a) Cross-val error, DAN to TOMAS

 1

 2

 3

 4

 5

 6

 7

 20  30  40  50  60  70  80  90  100

R
M

S
E
 1

0
⁻²

% Training set

affine mapping
linear

s-exp kernel
nn kernel

(b) Cross-val error, TOMAS to DAN

 0

 0.5

 1

 1.5

 2

 2.5

 10  20  30  40  50  60  70  80  90  100

R
M

S
E
 1

0
⁻²

% Training set

affine mapping
linear

s-exp kernel
nn kernel

(c) Training error, DAN to TOMAS

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 10  20  30  40  50  60  70  80  90  100

R
M

S
E
 1

0
⁻²

% Training set

affine mapping
linear

s-exp kernel
nn kernel

(d) Training error, TOMAS to DAN

Figure 5.8 – Learning curves for various regression models.

We compare our pose regression model to other methods both quanti-
tatively and qualitatively. We use Gaussian Process regression with the
neural network kernel, and compare it to the squared exponential kernel,
the linear kernel and the method presented in Baran et al. [2009], which
uses source and target affine spaces spanned with key-poses, and a map-
ping derived from these key-pose pair associations. As shown in figure
5.8, our method outperforms the rest for both training and testing errors.

The low cross-validation error curve of our method is demonstrated
in the qualitative comparison through a visually superior generalization
ability that we can witness in figure 5.7. For both examples, Duck and
Run2walk, our method succeeds in extrapolating the best prediction corre-
sponding to the input motion, while preserving the properties inherent to
the target motion space. The other methods fail to achieve comparable
results. We note that we show raw outputs in figure 5.7 for all methods
alike, prior to the mesh enhancement process described in section 5.6.1
(see also this video).

Perceptually, we noticed that affine mapping performs particularly
poorly in our training scenario, which consists of relatively large train-



118 CHAPTER 5. SHAPE MOTION TRANSFER

ing examples obtained from dense temporal matching between several
different motions. On the contrary, our strategy does not suffer from
the training set extension thanks to the Gaussian model ability to better
handle redundancy, variability and uncertainty in the associations.

5.7.2 Dense Correspondence

���

 1

��!

��"

��#

���

 2

!�!

!�"

!�#

!��

 20 $�  40 %�  60  70  80 &�  100

R
'
(
)
*
+

⁻²

% Training set

affine mapping
linear

s-exp kernel
nn kernel

(a) Cross-val error, DAN to TOMAS

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 20  30  40  50  60  70  80  90  100

R
M

S
E
 1

0
⁻²

% Training set

affine mapping
linear

s-exp kernel
nn kernel

(b) Cross-val error, TOMAS to DAN

 0

 0.5

 1

 1.5

 2

 2.5

 10  20  30  40  50  60  70  80  90  100

R
M

S
E
 1

0
⁻²

% Training set

affine mapping
linear

s-exp kernel
nn kernel

(c) Training error, DAN to TOMAS

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 10  20  30  40  50  60  70  80  90  100

R
M

S
E
 1

0
⁻²

% Training set

affine mapping
linear

s-exp kernel
nn kernel

(d) Training error, TOMAS to DAN

Figure 5.9 – Learning curves for various regression models. Training
subset initialized with key-poses.

We evaluate the impact of using dense correspondence instead of
sparse key-pose associations both qualitatively and quantitatively. To this
end, we recalculate the learning curves in figure 5.8. Only this time, the
training subset, randomly selected with gradually increased size through-
out the experiment, is initialized with key-pose pairs. We can see in figure
5.9 that the generalization error globally decreases for all methods as we
densify the correspondences, which accordingly translates into visually
improved predictions in figure 5.7. The linear regression seems to be an
exception to this behaviour. In fact, with more training examples, the
linear model under-fits the learning set, which also results in poor predic-
tions. We note also that cross-validation errors are globally lower in figure



5.8. CONCLUSION 119

5.9 which makes perfect sense as key-poses are meant to better encode
variability in the data and hence yield better generalization.

5.7.3 Body Parts

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 2.6

 10  20  30  40  50  60  70  80  90  100

R
M

S
E
 1

0
⁻²

% Training set

with body parts
without body parts

(a) Cross-val error, DAN to TOMAS

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 2.6

 10  20  30  40  50  60  70  80  90  100

R
M

S
E
 1

0
⁻²

% Training set

with body parts
without body parts

(b) Cross-val error, TOMAS to DAN

 0

 1

 2

 3

 4

 5

,

 7

 10  20  30  40  50 ,-  70 .-  90  100

/
0
1
2
3
4

⁻³

% Training set

with body parts
without body parts

(c) Training error, DAN to TOMAS

 1

 2

 3

 4

 5

 6

 7

 8

 10  20  30  40  50  60  70  80  90  100

R
M

S
E
 1

0
⁻³

% Training set

with body parts
without body parts

(d) Training error, TOMAS to DAN

Figure 5.10 – Learning curves for the GPR model with neural network
kernel with and without body parts.

Using our regression method, we reiterate the learning curve experi-
ments (figure 5.8) for two different pose representations: Using the whole
body mesh, and using body parts. As we show in figure 5.10, indepen-
dent transfer of body part motion compares favourably to the whole body
approach both in training and testing errors, for equivalent total number
of input and output dimensions.

5.8 Conclusion

We presented in this work a novel solution for surface motion capture
transfer that doesn’t require source and target mesh correspondence. We
contributed a Gaussian Process regression model applied directly to mesh



120 CHAPTER 5. SHAPE MOTION TRANSFER

data, and a correspondence densification scheme based on probabilistic
dynamic time warping. Densifying the correspondences helps better
capture motion style and variability. Concordantly, this richer variability
is modelled more accurately with our non-linear regression. We also
propose a user friendly algorithm for body parts separation and automatic
stitching, and an example-based approach to improve predicted meshes
with respect to the training set. This last heuristic compensates for the
limitations of the linear parametrization of shape poses, which is mainly
motivated by compatibility with standard regression kernels. A more
elaborate regression model designed specifically for manifold valued data
Banerjee et al. [2016] could be attempted as a next step. We could also
consider transferring appearance information along with geometry.



Chapter 6

Shape Motion Variation
Synthesis

Contents

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 121

6.2 Related work . . . . . . . . . . . . . . . . . . . . . . . . 123

6.3 Controllable motion variation synthesis . . . . . . . . . 124

6.4 Shape pose representation . . . . . . . . . . . . . . . . . 125

6.4.1 Rigid alignment . . . . . . . . . . . . . . . . . . 125

6.4.2 Body parts . . . . . . . . . . . . . . . . . . . . . 126

6.5 Shape motion embedding . . . . . . . . . . . . . . . . . 126

6.5.1 Non-linear dynamic model . . . . . . . . . . . 127

6.5.2 Multiple sequences . . . . . . . . . . . . . . . . 128

6.6 Shape motion sampling . . . . . . . . . . . . . . . . . . 129

6.6.1 Mean prediction . . . . . . . . . . . . . . . . . . 130

6.6.2 Latent sampling . . . . . . . . . . . . . . . . . . 130

6.7 Shape motion parametrization . . . . . . . . . . . . . . 131

6.8 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

6.9 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . 136

6.1 Introduction

In this chapter, we address the task of generating an unlimited number
of variations of a subject movement using a limited number of training
frames of captured performance. As humans rarely perform similar ac-
tions in the exact same manner every time, variation in motion is an

121





6.2. RELATED WORK 123

second probabilistic mapping between successive frame latent coordi-
nates. New motion examples are next generated by sampling from this
manifold using a Hybrid Monte Carlo Markov Chain. The resulting se-
quences are statistically similar to the initialization of the Markov Chain
but are not exact copies of it, as one could see in the latent space (figure
6.5) and the observation space (figures 6.8 and 6.9). This variation in the
generated sequences stems from the following: variation in poses in the
input data, the independent body part modelling scheme that we elabo-
rate in section 6.4.2, the probabilistic mapping between the latent and the
observation spaces, and finally the probabilistic mapping of dynamics in
the latent space.

• Second, we propose an algorithm that allows generation of variations of
any blended version of the input sequences. This process avoids costly
non-linear mesh interpolation of many variations in the observation
space, and sampling motion around latent trajectories outside the training
set, which leads to degenerate samples. Instead, we learn the model
with few pre-interpolated sequences and sample variations only around
learned trajectories. For a given requested blending weight, the variations
of the closest latent trajectories are interpolated with the appropriate
proportions to generate the requested blended sequence variations.

We evaluate our work perceptually in section 6.8 and in the following
video using a dataset of surface capture, with two different types of move-
ments: locomotion and jumps. We succeeded in generating variations of
the input motions and blended versions of them that are globally similar
to the inputs but yet slightly different in both poses and timings. We also
provide in section 6.7 numerical validation of the benefit of our motion
parametrization scheme guided with pre-blended examples, compared to
a simple trajectory interpolation in the latent space.

6.2 Related work

With the term variation of motion, we refer to new examples that look
globally like the original sequences but differ slightly from them in body
poses and their timings of occurrence, thus mimicking human behaviour
richness and inexactitude when reproducing the same movement. Previ-
ous work on Motion Capture data Bodenheimer et al. [1999]Perlin [1995]
attempts to generate variations merely with an additive noise component.
However, biomechanical research Harris and Wolpert [1998] asserts that
variation is rather a functional component of motion and not just noise.
In addition, the work of Lau et al. [2009] on motion capture shows empiri-



124 CHAPTER 6. SHAPE MOTION VARIATION SYNTHESIS

cally that there are no guarantees that added noise, either arbitrary or with
tuned distributions, matches well with the existing motion, which renders
these methods prone to unrealistic results and not robust to automation.
Following other works on Motion Capture Wang et al. [2008b], Lau et al.
[2009], Ma et al. [2010], we use a data-based approach where variation
comes from the data and not a separate additive component.

There are many works in the literature that use use few examples of
skeletal human Motion Capture sequences to generate new variations. The
work of Pullen and Bregler [2000, 2002] models the correlations between
the degrees of freedom in motion data with a distribution, and synthesize
new motions by sampling from this distribution. The authors in Lau et al.
[2009] use Dynamic Bayesian Networks to model and simulate dynamics
in similar but slightly different example motions. Ma et al. [2010] interpolates
various examples of skeleton joint group motions with Universal Kriging.
We follow the work of Wang et al. [2008b] and extend Gaussian Process
Dynamical Models Wang et al. [2006] to Surface Motion Capture. The
GPDM augments the Gaussian Process Latent Variable Model Lawrence
[2004], Grochow et al. [2004] with a latent dynamical model, in addition
to a probabilistic non-linear mapping from the latent space to the data
space. The dynamic model enables prediction and adds regularization
when modelling temporal data, and was used successfully for standard
Motion Capture data synthesis.

Motion sequence parametrization Casas et al. [2011b], Kovar and Gle-
icher [2004b] is a key component in building parametric motion graphs
Casas et al. [2014b], Heck and Gleicher [2007b], Gleicher et al. [2008] for
interactive character control using skeletal and mesh data alike. For a
given set of sequences exhibiting variation of the same type of movement,
these sequences are temporally aligned and blended with various weights.
However, each blending weight gives a unique output sequence. We
extend this framework in this chapter to allow both motion blending and
variation synthesis for blended motions in the latent motion space.

6.3 Controllable motion variation synthesis

Our approach considers as input 3D shape sequences of the same
subject as acquired from multi-view acquisition systems (See figure 6.1),
performing motions of the same type, such as locomotion or jumping.
Shapes are represented by globally consistent 3D meshes. In practice,
motion sequences are temporally pre-aligned to a reference sequence and
shapes are represented as independent body parts. We proceed as follows:





126 CHAPTER 6. SHAPE MOTION VARIATION SYNTHESIS

sequence can hence be decomposed into a set of rigidly aligned meshes
{M̄i}1≤i≤N and relative rigid displacements between successive frames
{δTi, δRi}1≤i≤N , factored into elementary translations δTi and rotations
δRi. These transformations are expressed with a 6-dimensional linear

parametrization (δTi, δRi) 7→ (tx, ty, tz, h1, h2, h3)
T , based on exponential

maps for the rotation parameters hk.

6.4.2 Body parts

Each aligned mesh M̄i is next decomposed into P body part sub-
meshes {Pk

i }1≤k≤P . We use P = 5 parts in a tree structured hierarchy
including a torso as the root, and a pair of arms and legs as children
nodes. We adopt the coarse and overlapping body segmentation strategy
proposed previously in chapter 5. As illustrated in figure 6.2, the user
provides closed and non-intersecting curves that delimit each overlapping
region between contiguous body parts on M. During motion learning and
prediction, each body part is augmented with the overlap regions shared
with its neighbouring parts. The sampled output body part motions are
merged in the end with an automatic algorithm that ensures seamless
body part stitching as described in section 6.6.2. Considering body parts
independently allows for learning their deformations more accurately,
enriches variation in the finally stitched body mesh, and also reduces the
dimensionality of our model inputs. Increased complexity for large input
partial meshes can be compensated by adopting more body parts with
fewer vertices, or any means of dimension reduction such as PCA.

Each body part Pk
i is finally represented with a vector yi that stacks

successively the three coordinates of every vertex in the part. The torso
vector is appended additionally with the 6 global mesh displacement
parameters.

6.5 Shape motion embedding

We learn a probabilistic low dimensional embedding of motion for
each body part independently using the Gaussian Process Dynamical
Model Wang et al. [2008b]. We build latent spaces of body part motion
using temporally pre-aligned motion sequences that are logically compat-
ible, such as locomotion movements with various speeds and directions,
or jumping movements with varying heights and lengths.



6.5. SHAPE MOTION EMBEDDING 127

6.5.1 Non-linear dynamic model

For a body part motion sequence {yi}1≤i≤N , the GPDM comprises a
non-linear probabilistic mapping f from the latent variables xi ∈ R

d to the
meshes yi ∈ R

D, parametrized with coefficients A, and another mapping
g between latent coordinates of consecutive frames, parametrized with
coefficients B:

yi = f(xi,A) + ny,i (6.1)

xi = g(xi−1,B) + nx,i (6.2)

where nx,i and ny,i are zero-mean white Gaussian noises.
Marginalizing over A MacKay [2003], Neal [2012] with isotropic Gaus-

sian priors on its parameters yields the likelihood:

P (Y|X,α) =
1√

(2π)ND|KY |D
exp

(
−1

2
tr
(
K−1

Y YYT
))

(6.3)

where Y = [y1, . . . ,yN ]
T is the matrix of training shape poses, X =

[x1, . . . ,xN ]
T is the matrix of the associated latent positions. This likeli-

hood is expressed using the kernel matrix KY whose coefficients (KY )1≤i,j≤N =
kY (xi,xj) are defined using the Radial Basis Function MacKay [2003]:

kY (x,x
′) = α1 exp

(
−α2

2
‖x− x′‖2

)
+

δx,x′

α3

(6.4)

Hyperparameter vector α comprises kernel parameters αk and the
variance of the additive noise ny,i.

Similarly, the density over latent trajectories can be obtained by marginal-
izing out B Wang et al. [2006] with isotropic Gaussian priors on its param-
eters:

P (X|β) = P (x1)√
(2π)(N−1)d|KX |d

exp

(
−1

2
tr
(
K−1

X X′X′T
))

(6.5)

where X′ = [x2, . . . ,xN ]
T and x1 is given an isotropic Gaussian prior.

This joint probability is expressed using the kernel matrix KX whose
coefficients (KX)1≤i,j≤N−1 = kX(xi,xj) are defined using the linear and
Radial Basis kernel:

kX(x,x
′) = β1 exp

(
−β2

2
‖x− x′‖2

)
+ β3x

Tx′ +
δx,x′

β4

(6.6)

Hyperparameter vector β comprises kernel parameters βk and the
variance of the additive noise nx,i.





6.6. SHAPE MOTION SAMPLING 129

 0.001

 0.01

 0.1

 1

 10

 100

 1  2  3  4  5  6  7  8  9  10

M
S
E
 1

0
⁻³

Latent space dimensions

GPDM walks
GPDM jumps

PCA walks
PCA jumps

Figure 6.4 – Mean reconstruction error of the ”walk” GPDM (built with
sequences Walk, Jog, Left, Right) and the ”jumps” GPDM (built with se-
quences Jump long, Short, High, Low), compared to PCA.

Time Warping Müller [2007], we concatenate the M training motion se-
quences Y = [YT

1 , . . . ,Y
T
M ]T . The associated latent position sequences

{Xj} share the same latent space, X′ comprises all but the first latent
position for each sequence, and kernel matrix KX is computed from all
but the last latent position of each sequence. Figure 6.3 shows 4 latent
trajectories of locomotion sequences of the right leg body part from DAN

Casas et al. [2014b] dataset. Figure 6.4 shows vertex reconstruction errors
of the training mesh sequences from two GPDMs built with walking and
jumping movements from the same dataset, compared to PCA.

6.6 Shape motion sampling

Following the work of Wang et al. [2008b] on skeletal Motion Capture
data, we synthesise variants of a motion sequence Yj in the observation
space by sampling variants of its subjacent trajectory Xj = [x1, . . . ,xN ]
using a Markov Chain Monte Carlo method in the latent space, initialized
with a mean prediction sequence. Mesh motion sequences are finally
obtained from latent motion samples through the Gaussian Process of
pose reconstruction.





6.7. SHAPE MOTION PARAMETRIZATION 131

Pose reconstruction Finally for a latent position x̃ in a sampled trajec-
tory X̃, the corresponding shape ỹ is obtained by sampling from the
predictive distribution of the Gaussian Process of pose reconstruction
MacKay [2003]:

ỹ ∼ N (µY (x̃), σ
2
Y (x̃)I) (6.11)

µY (x) = YTK−1
Y kY (x) (6.12)

σ2
Y (x) = kY (x,x)− kY (x)

TK−1
Y kY (x) (6.13)

where vector kY (x) contains kY (x,xi) in its i-th entry, and xi is the i-th
training vector.

After predicting all body parts {P̃}1≤k≤P and global rigid displacement
parameters (i.e. {ỹk}1≤k≤P ) for a given pose (i.e frame), we adopt the
strategy proposed in Boukhayma et al. [2017] to stitch the body mesh back
together automatically. We rigidly align each child part to the root part
with respect to the overlap region, then we find the closed curve with
the least deformation cost between its two instantiations in the root and
child geometries, and use it as an optimal boundary for Poisson mesh
merging Huang et al. [2007c] Yu et al. [2004b]. This process is reiterated
for all overlap regions to recover the fully merged body mesh, which is
positioned subsequently according the current global rigid displacement
prediction.

6.7 Shape motion parametrization

Once we have learned the motion latent space, we can synthesise infi-
nite variations of any sequence used to build this space using the method
detailed in section 6.6. In this section, we present a method that allows
variation synthesis for any blended version of logically compatible pair of
input sequences, without the need for costly non-linear interpolation of
many input sequence variations in the mesh domain.

Given a pair Y1 and Y2 of input sequences exhibiting variations of a
common movement, such as a pair of walking and running sequences
which both represent locomotion but with two different speeds, seminal
work on mesh animation Casas et al. [2014b] proposes to synthesise new
intermediate sequences of the same movement, ranging from the first
motion Y1 to the second motion Y2, by blending the input sequence pair
with weights w varying between 0 and 1: Yw = (1−w)Y1+wY2. However,
for a given parameter value w, only one unique interpolated sequence







134 CHAPTER 6. SHAPE MOTION VARIATION SYNTHESIS

{(1− w)X̃l
1 + wX̃m

2 }l,m could be considered as a variant of Xw. However,
these two strategies suffer from the two following shortcomings:

• Blended motions in the observation space are not necessarily represented
by interpolated trajectories with the same proportions in the latent space.
For instance in figure 6.6, we build a GPDM with 5 sequences: Walk, Jog,
Left, Right, and a blended version of sequences Walk and Jog with w = 0.5.
We notice that this sequence’s latent trajectory (in red) does not coincide
with the linear interpolation of Walk and Jog trajectories (in green) in the
latent space, due to the over representation of walking like poses (Walk,
Left and Right) in the training set in this example for instance.

• In our experiments, sampling variations from a latent trajectory that was
not learned with the GPDM model, such as an interpolated trajectory
Xw, usually results in degenerate sequences. Hence we limit sampling
initialization to trajectories of real sequences that took part of the training
process.

In light of these observations, we propose the following solution to
overcome the limitations above. We perform blending offline for few
discriminative weighting values, e.g. w ∈ W = {0.25, 0.5, 0.75}. In our
experiments, one intermediate value was enough (W = {0.5}) to obtain
visually compelling results. The GPDM is learned with both the original
sequences Y1,Y2, . . . ,Ym and the blended sequences {Yw}w∈W . Varia-
tions are generated for latent trajectories of all of these sequences offline.
Then, for a new requested blend value w∗ ∈ [0, 1] we can obtain variations
of sequence Yw∗ online as follows: First, we find the closest bounding val-
ues of w∗ in W : w∗ ∈ [w1, w2] where Xw=0 := X1 and Xw=1 := X2. Second,
we select two variants of the corresponding latent trajectories X̃l

w1
and

X̃m
w2

randomly and blend them accordingly : X̃w∗ = w∗−w2

w1−w2
X̃l

w1
+ w∗−w1

w2−w1
X̃m

w2
.

Finally, we generate an example shape sequence Ỹw∗ .

Figure 6.7 shows that guiding interpolation of latent trajectories with
nearby learned intermediate trajectories results in good approximations
of non-linearly interpolated mesh sequences. In this particular example,
we learn a GPDM with sequences Walk, Jog, Left, Right and a blended
version of sequences Walk and Jog with w = 0.5. As shown in figure 6.7a,
we generate a sequence Xw=0.25 both from interpolating latent trajectories
X1 (Walk) and X2 (Jog) that we plot in red, and interpolating nearby
trajectories X1 and Xw=0.5 that we plot in green. We realise that the
reconstruction of the interpolation that uses intermediate sequence Xw=0.5

is closer, in vertex distance, to the non-linearly blended sequence Yw=0.25

in the observation space, that we consider to be ground truth, as shown
in figure 6.7b.



6.7. SHAPE MOTION PARAMETRIZATION 135

(a) Jumping long.

(b) (1− w) Jumping short + w Jumping long, w = 0.5.

(c) Jumping short.

Figure 6.8 – 5 overlapped Jumping variations, each with a different color.

(a) Jogging.

(b) (1− w) Walking + w Jogging, w = 0.5.

(c) Walking.

Figure 6.9 – 5 overlapped locomotion variations, each with a different
color.



136 CHAPTER 6. SHAPE MOTION VARIATION SYNTHESIS

6.8 Results

We use DAN surface motion capture dataset Casas et al. [2014b] to
evaluate our method. Meshes have 2667 vertices and 5330 faces and
motions are recorded at 25 fps. We build two GPDMs using locomotion
sequences and jumping sequences respectively.

Figure 6.8 shows results from the GPDM of jumping movements,
which comprises sequences Short jump, Long jump, Low jump, High jump.
All sequences are temporally aligned to Short jump with dynamic time
warping guided with feet contact annotation. To demonstrate motion
parametrization, we interpolate sequences Short jump and Long jump non-
linearly with w = 0.5 and add this interpolated mesh sequence to the
training sequences. As a result, we can generate variations of sequences
Short jump, Long jump, Low jump, High jump and blended versions of
sequences Short jump and Long jump with any weighting proportions. We
show in this figure variations of training sequences and also blended
sequences.

In figure 6.9, we show results from the GPDM of locomotion move-
ments, which comprises sequences Walk, Jog, Left turn, Right turn. All
sequences are temporally aligned to Walk with dynamic time warping
guided with feet contact annotation. To demonstrate motion parametriza-
tion, we interpolate sequences Walk and Jog non-linearly with w = 0.5
and add this interpolated mesh sequence to the training sequences. As a
result, we can generate variations of sequences Walk, Jog, Left turn, Right
turn and blended versions of sequences Walk and Jog with any weighting
proportions. We show in this figure variations of training sequences and
also blended sequences.

As we can see in figures 6.8 and 6.9 and this video, the output varia-
tions are logically similar but slightly different from each other in poses
and timings. The differences between the variations are big enough to be
noticed by users, but still conserve the main characteristics of the base
movement. The realism of the generated sequences matches that of the
input ones, as poses and dynamics are overall sound and coherent.

6.9 Conclusion

We presented in this chapter a solution for generating infinite varia-
tions of a subject movement using few training sequences of surface mo-
tion capture, based on Gaussian Process Dynamical Models. We also con-
tributed an algorithm that allows synthesis of variations for any blended



6.9. CONCLUSION 137

version of the input sequences without costly non-linear interpolation of
many motion sequence variations in mesh domain. While the differences
between a movement variations are easily noticeable, these generated
motions are mostly visually plausible and match the realism level of the
input sequences. As a next step, this work can be extended to model and
synthesis both shape and appearance variation.







140 CHAPTER 7. CONCLUSIONS

user constraints. As illustrated in figure 7.1, we start by computing shape
pose distances between the dataset frames and then we use those to obtain
an evaluation of dynamic transition costs between the dataset frames as
elaborated in chapter 2. A graph representation of the input sequences
is then augmented with additional optimal transitions with their respec-
tive costs, thus forming our animation organizing structure, the essential
graph, which was introduced in chapter 3. Finally, a minimal cost walk
in the essential graph with respect to the user guidance generates the
desired output mesh sequence. Theses meshes are appended with ap-
pearances through interpolations within our subject-specific appearance
representation introduced in chapter 4.

In chapter 4, we approached dynamic object appearance modelling
from multiple views with a twofold strategy that solves the non-linearly
of the problem first through 3D coarse geometric registration, then by
factoring out the fine scale geometric inaccuracies through 2D realignment
of appearances in the common texture map domain. The appearance of
the model can then be compactly represented through the linear reduction
of the realignment warps and the aligned appearances both through PCA.

In chapter 5, we addressed the problem of transferring motion be-
tween captured 4D models. Given 4D training sets for two subjects for
which a sparse set of corresponding key-poses are known, we were able to
transfer newly captured motions from one subject to the other. We built on
Gaussian Process and used non-linear pose and displacement regression
directly on mesh data without the need for source/target vertex corre-
spondence, or any intermediate pose representation such as skeletons or
control points.

In chapter 6, we addressed the problem of generating variations of
captured 4D models automatically, in order to mimic human motion
richness and inexactitude while performing the same action repeatedly,
thus resulting in improved realism and augmented datasets with more
motion samples. We built on Gaussian Process Dynamical models to
model motion sequences and sample new variants of the input motions
and any blended versions of them.

7.2 Future work

Regarding 4D animation synthesis, the quality of the rendered anima-
tions is limited by the quality of the 4D surface capture process, including
surface reconstruction, surface tracking and appearance reconstruction.
Although the Vision and Graphics state of the art is very promising with



7.2. FUTURE WORK 141

this respect, we still have room to improve. Besides, popularizing this
animation process and convincing the industrials of the utility of such
data is still a work in progress, but we believe that with the emergence of
Virtual Reality and Augmented Reality applications, such solutions will
be of great use for the community.

This research aims also to ease the burden of surface motion capture
and allow automatic synthesis of 3D textured shapes in motion with high
realism. In fact, we proposed some attempts at augmenting 4D datasets
through motion transfer and also variation synthesis. Once 4D datasets
are enlarged enough through more capture and such robust automatic
generalization methods, deep learning animation frameworks, such as the
work of Holden et al. [2016] on motion capture data, might be attempted
also on 4D data.





Bibliography

B. Allain, J.-S. Franco, and E. Boyer. An efficient volumetric framework
for shape tracking. In CVPR, 2015. Cited on pages 4 and 78.

O. Arikan and D. A. Forsyth. Interactive motion generation from examples.
ACM Trans. Graph., 21(3):483–490, 2002. Cited on pages 11 and 49.

M. Banerjee, R. Chakraborty, E. Ofori, M. S. Okun, D. E. Viallancourt, and
B. C. Vemuri. A nonlinear regression technique for manifold valued
data with applications to medical image analysis. In CVPR, 2016. Cited
on page 120.

I. Baran, D. Vlasic, E. Grinspun, and J. Popović. Semantic deformation
transfer. In ACM SIGGRAPH, 2009. Cited on pages 102, 104, 105, 108,
and 117.

A. H. Barr. Global and local deformations of solid primitives. In ACM
SIGGRAPH Papers, 1984. Cited on page 14.

M. Ben-Chen, O. Weber, and C. Gotsman. Spatial deformation transfer. In
SCA, 2009. Cited on page 103.

V. Blanz and T. Vetter. A morphable model for the synthesis of 3d faces.
In ACM SIGGRAPH, 1999. Cited on pages 77 and 78.

B. Bodenheimer, A. V. Shleyfman, and J. K. Hodgins. The effects of noise
on the perception of animated human running. In Computer Animation
and Simulation, volume 99, 1999. Cited on page 123.

A. Boukhayma and E. Boyer. Video based Animation Synthesis with the
Essential Graph. In 3DV, 2015. Cited on pages 4, 6, 78, 115, and 122.

A. Boukhayma, V. Tsiminaki, J.-S. Franco, and E. Boyer. Eigen Appearance
Maps of Dynamic Shapes. In ECCV, 2016. Cited on pages 4 and 6.

143



144 BIBLIOGRAPHY

A. Boukhayma, J.-S. Franco, and E. Boyer. Surface motion capture transfer
with gaussian process regression. In CVPR, 2017. Cited on page 131.

H. M. Briceño, P. V. Sander, L. McMillan, S. Gortler, and H. Hoppe. Geom-
etry videos: A new representation for 3d animations. In Proceedings
of the 2003 ACM SIGGRAPH/Eurographics Symposium on Computer
Animation, SCA ’03, pages 136–146, 2003. ISBN 1-58113-659-5. Cited
on page 12.

A. Bruderlin and L. Williams. Motion signal processing. In Proceedings
of the 22Nd Annual Conference on Computer Graphics and Interactive
Techniques, SIGGRAPH ’95, pages 97–104, 1995. ISBN 0-89791-701-4.
Cited on page 34.

C. Budd, P. Huang, M. Klaudiny, and A. Hilton. Global non-rigid align-
ment of surface sequences. Int. J. Comput. Vision, 102(1-3), 2013. Cited
on pages 4 and 6.

C. Cagniart, E. Boyer, and S. Ilic. Free-from mesh tracking: a patch-based
approach. In CVPR, 2010. Cited on page 77.

J. Carranza, C. Theobalt, M. A. Magnor, and H.-P. Seidel. Free-viewpoint
video of human actors. ACM Trans. Graph., 2003. Cited on page 77.

D. Casas, M. Tejera, J. Guillemaut, and A. Hilton. Parametric control of
captured mesh sequences for real-time animation. In Motion in Games -
4th International Conference, 2011a. Cited on pages 40 and 51.

D. Casas, M. Tejera, J.-Y. Guillemaut, and A. Hilton. Parametric control of
captured mesh sequences for real-time animation. In MIG, 2011b. Cited
on page 124.

D. Casas, M. Tejera, J.-Y. Guillemaut, and A. Hilton. 4d parametric motion
graphs for interactive animation. In in Proc. of the ACM SIGGRAPH
Symposium on Interactive 3D Graphics and Games. ACM, 2012. Cited
on pages 13, 51, 52, 54, and 78.

D. Casas, M. Tejera, J.-Y. Guillemaut, and A. Hilton. Interactive animation
of 4d performance capture. TVCG, 19(5), 2013. Cited on page 132.

D. Casas, M. Volino, J. Collomosse, and A. Hilton. 4d video textures for
interactive character appearance. Computer Graphics Forum (Proceed-
ings Eurographics), 33(2), 2014a. Cited on pages 4 and 115.



BIBLIOGRAPHY 145

D. Casas, M. Volino, J. Collomosse, and A. Hilton. 4D Video Textures for
Interactive Character Appearance. Computer Graphics Forum (Proc.
of Eurographics), 2014b. Cited on pages 6, 78, 122, 124, 129, 131, 132,
and 136.

D. Casas, C. Richardt, J. Collomosse, C. Theobalt, and A. Hilton. 4D
Model Flow: Precomputed Appearance Alignment for Real-time 4D
Video Interpolation. Computer Graphics Forum, 2015. Cited on page 78.

T. Chen, J.-Y. Zhu, A. Shamir, and S.-M. Hu. Motion-aware gradient
domain video composition. IEEE Transactions on Image Processing,
2013. Cited on pages 83 and 105.

A. Collet, M. Chuang, P. Sweeney, D. Gillett, D. Evseev, D. Calabrese,
H. Hoppe, A. Kirk, and S. Sullivan. High-quality streamable free-
viewpoint video. ACM Trans. Graph., 2015a. Cited on pages 77 and 78.

A. Collet, M. Chuang, P. Sweeney, D. Gillett, D. Evseev, D. Calabrese,
H. Hoppe, A. Kirk, and S. Sullivan. High-quality streamable free-
viewpoint video. ACM Trans. Graph., 34(4), 2015b. Cited on page 3.

T. F. Cootes, G. J. Edwards, and C. J. Taylor. Active appearance models.
IEEE Trans. Pattern Anal. Mach. Intell., 2001. Cited on page 78.

E. de Aguiar, C. Stoll, C. Theobalt, N. Ahmed, H.-P. Seidel, and S. Thrun.
Performance capture from sparse multi-view video. ACM Trans. Graph.,
2008. Cited on page 77.

P. E. Debevec, C. J. Taylor, and J. Malik. Modeling and rendering architec-
ture from photographs: A hybrid geometry- and image-based approach.
In ACM SIGGRAPH, 1996. Cited on page 77.

M. Dou, S. Khamis, Y. Degtyarev, P. Davidson, S. R. Fanello, A. Kowdle,
S. O. Escolano, C. Rhemann, D. Kim, J. Taylor, P. Kohli, V. Tankovich,
and S. Izadi. Fusion4d: Real-time performance capture of challenging
scenes. ACM Trans. Graph., 35(4), 2016. Cited on page 4.

M. Eisemann, B. De Decker, M. Magnor, P. Bekaert, E. de Aguiar,
N. Ahmed, C. Theobalt, and A. Sellent. Floating textures. Computer
Graphics Forum (Proc. of Eurographics), 2008. Cited on page 77.

W.-W. Feng, B.-U. Kim, and Y. Yu. Real-time data driven deformation
using kernel canonical correlation analysis. ACM Trans. Graph., 27(3),
2008. Cited on pages 102 and 103.



146 BIBLIOGRAPHY

J.-S. Franco and E. Boyer. Efficient Polyhedral Modeling from Silhouettes.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 2009.
Cited on page 4.

J. Gall, C. Stoll, E. De Aguiar, C. Theobalt, B. Rosenhahn, and H.-P. Seidel.
Motion capture using joint skeleton tracking and surface estimation. In
Proc. of CVPR, 2009. Cited on page 13.

M. Gleicher, H. J. Shin, L. Kovar, and A. Jepsen. Snap-together motion:
assembling run-time animations. In ACM SIGGRAPH 2008 classes,
2008. Cited on page 124.

B. Goldlücke, M. Aubry, K. Kolev, and D. Cremers. A super-resolution
framework for high-accuracy multiview reconstruction. International
Journal of Computer Vision, 2014. Cited on page 77.

K. Grochow, S. L. Martin, A. Hertzmann, and Z. Popović. Style-based
inverse kinematics. ACM TOG, 23(3), 2004. Cited on page 124.

C. M. Harris and D. M. Wolpert. Signal-dependent noise determines
motor planning. Nature, 394(6695), 1998. Cited on page 123.

R. Heck and M. Gleicher. Parametric motion graphs. In Proc. of the 2007
Symposium on Interactive 3D Graphics and Games, 2007a. Cited on
pages 40 and 52.

R. Heck and M. Gleicher. Parametric motion graphs. In ACM I3D, 2007b.
Cited on page 124.

D. Holden, J. Saito, T. Komura, and T. Joyce. Learning motion manifolds
with convolutional autoencoders. In SIGGRAPH Asia 2015 Technical
Briefs, 2015. Cited on page 51.

D. Holden, J. Saito, and T. Komura. A deep learning framework for
character motion synthesis and editing. ACM Transactions on Graphics
(TOG), 35(4), 2016. Cited on pages 51 and 141.

P. Huang, J. Starck, and A. Hilton. Temporal 3d shape matching. In Visual
Media Production, 2007. IETCVMP. 4th European Conference on, 2007a.
Cited on page 13.

P. Huang, A. Hilton, and J. Starck. Human motion synthesis from 3d
video. In Proc. of CVPR, 2009. Cited on pages 10, 13, 49, and 52.



BIBLIOGRAPHY 147

X. Huang, H. Fu, O. K.-C. Au, and C.-L. Tai. Optimal boundaries for
poisson mesh merging. In SPM, 2007b. Cited on pages 105 and 115.

X. Huang, H. Fu, O. K.-C. Au, and C.-L. Tai. Optimal boundaries for
poisson mesh merging. In SPM, 2007c. Cited on page 131.

D. Q. Huynh. Metrics for 3d rotations: Comparison and analysis. Journal
of Mathematical Imaging and Vision, 35(2):155–164, 2009. Cited on
page 17.

L. Ikemoto, O. Arikan, and D. Forsyth. Quick transitions with cached
multi-way blends. In Proc. of the 2007 Symposium on Interactive 3D
Graphics and Games, 2007. Cited on page 51.

M. Innmann, M. Zollhöfer, M. Nießner, C. Theobalt, and M. Stamminger.
Volumedeform: Real-time volumetric non-rigid reconstruction. In
ECCV, 2016. Cited on page 4.

D. L. James, C. D. Twigg, A. Cove, and R. Y. Wang. Mesh ensemble motion
graphs: Data-driven mesh animation with constraints. ACM Trans.
Graph., 26(4), 2007. Cited on page 12.

J. Jia, J. Sun, C.-K. Tang, and H.-Y. Shum. Drag-and-drop pasting. ACM
Trans. Graph., 2006. Cited on pages 83 and 105.

M. Kazhdan, T. Funkhouser, and S. Rusinkiewicz. Rotation invariant
spherical harmonic representation of 3 d shape descriptors. In Sympo-
sium on geometry processing, 2003. Cited on page 13.

L. Kovar and M. Gleicher. Flexible automatic motion blending with
registration curves. In Proc. of the 2003 ACM SIGGRAPH/Eurographics
Symposium on Computer Animation, 2003. Cited on pages 11 and 67.

L. Kovar and M. Gleicher. Automated extraction and parameterization of
motions in large data sets. ACM Trans. Graph., 23(3), 2004a. Cited on
pages 40 and 51.

L. Kovar and M. Gleicher. Automated extraction and parameterization of
motions in large data sets. ACM TOG, 23(3), 2004b. Cited on page 124.

L. Kovar, M. Gleicher, and F. Pighin. Motion graphs. ACM Trans. Graph.,
21(3):473–482, July 2002a. ISSN 0730-0301. Cited on pages 11, 13, 30, 40,
and 48.



148 BIBLIOGRAPHY

L. Kovar, J. Schreiner, and M. Gleicher. Footskate cleanup for motion
capture editing. In Proc. of the 2002 ACM SIGGRAPH/Eurographics
Symposium on Computer Animation, 2002b. Cited on page 32.

M. Lau, Z. Bar-Joseph, and J. Kuffner. Modeling spatial and temporal
variation in motion data. In ACM Transactions on Graphics (TOG),
volume 28, page 171, 2009. Cited on pages 122, 123, and 124.

N. D. Lawrence. Gaussian process latent variable models for visualisation
of high dimensional data. In NIPS, 2004. Cited on page 124.

B. Le and Z. Deng. Smooth skinning decomposition with rigid bones.
In Proceedings of the 2012 SIGGRAPH Asia Conference, SA ’12, New
York, NY, USA, 2012. ACM. Cited on page 12.

J. Lee, J. Chai, P. S. A. Reitsma, J. K. Hodgins, and N. S. Pollard. Interactive
control of avatars animated with human motion data. ACM Trans.
Graph., 21(3), 2002. Cited on pages 11 and 49.

V. S. Lempitsky and D. V. Ivanov. Seamless mosaicing of image-based
texture maps. In CVPR, 2007. Cited on page 77.

B. Lévy, S. Petitjean, N. Ray, and J. Maillot. Least squares conformal maps
for automatic texture atlas generation. ACM. Trans. Graph., 2002. Cited
on page 4.

C. Linz, C. Lipski, and M. Magnor. Multi-image interpolation based on
graph-cuts and symmetric optical flow, 2010. Posters. Cited on page 83.

L. Lucas, P. Souchet, M. Ismael, O. Nocent, C. Niquin, C. Loscos, L. Blache,
S. Prévost, and Y. Remion. Recover3d: A hybrid multi-view system for
4d reconstruction of moving actors. In 4th International Conference
and Exhibition on 3D Body Scanning Technologies, page 219. Cited on
page 4.

W. Ma, S. Xia, J. K. Hodgins, X. Yang, C. Li, and Z. Wang. Modeling
style and variation in human motion. In Proceedings of the 2010 ACM
SIGGRAPH/Eurographics Symposium on Computer Animation, pages
21–30, 2010. Cited on pages 122 and 124.

D. J. MacKay. Information theory, inference and learning algorithms.
Cambridge university press, 2003. Cited on pages 127, 130, and 131.



BIBLIOGRAPHY 149

D. Mahajan, F.-C. Huang, W. Matusik, R. Ramamoorthi, and P. N. Bel-
humeur. Moving gradients: a path-based method for plausible image
interpolation. ACM Trans. Graph., 2009. Cited on page 83.

N. Mantel. The detection of disease clustering and a generalized regression
approach. Cancer research, 27(2 Part 1):209–220, 1967. Cited on page 18.

A. Menache. Understanding motion capture for computer animation and
video games. Morgan kaufmann, 2000. Cited on page 52.

S. Menardais, R. Kulpa, F. Multon, and B. Arnaldi. Synchronization for dy-
namic blending of motions. In Proc. of ACM SIGGRAPH/Eurographics
Symposium on Computer Animation, 2004. Cited on pages 11 and 31.

M. Meyer, M. Desbrun, P. Schrder, and A. H. Barr. Discrete differential-
geometry operators for triangulated 2-manifolds, 2002. Cited on
page 27.

J. Min and J. Chai. Motion graphs++: a compact generative model for
semantic motion analysis and synthesis. ACM Transactions on Graphics
(TOG), 31(6), 2012. Cited on page 51.

M. Müller. Information Retrieval for Music and Motion. Springer-Verlag
New York, Inc., Secaucus, NJ, USA, 2007. Cited on pages 32, 110,
and 129.

A. Mustafa, H. Kim, J.-Y. Guillemaut, and A. Hilton. Temporally coherent
4d reconstruction of complex dynamic scenes. In CVPR, 2016. Cited on
page 4.

R. M. Neal. Bayesian learning for neural networks, volume 118. Springer
Science & Business Media, 2012. Cited on page 127.

R. A. Newcombe, D. Fox, and S. M. Seitz. Dynamicfusion: Reconstruction
and tracking of non-rigid scenes in real-time. In CVPR, 2015. Cited on
page 4.

K. Nishino, Y. Sato, and K. Ikeuchi. Eigen-texture method: Appearance
compression and synthesis based on a 3d model. IEEE Trans. Pattern
Anal. Mach. Intell., 2001. Cited on pages 76, 77, and 78.

P. Pérez, M. Gangnet, and A. Blake. Poisson image editing. ACM Trans.
Graph., 2003. Cited on pages 83 and 105.



150 BIBLIOGRAPHY

K. Perlin. Real time responsive animation with personality. TVCG, 1(1),
1995. Cited on page 123.

K. Polthier and E. Preuß. Identifying vector field singularities using a
discrete Hodge decomposition. 2003. Cited on page 23.

F. Prada, M. Kazhdan, M. Chuang, A. Collet, and H. Hoppe. Motion
graphs for unstructured textured meshes. ACM Trans. Graph., 35(4),
2016. Cited on pages 4, 13, 49, and 122.

K. Pullen and C. Bregler. Animating by multi-level sampling. In Computer
Animation, 2000. Cited on page 124.

K. Pullen and C. Bregler. Motion capture assisted animation: Texturing
and synthesis. ACM TOG, 21(3), 2002. Cited on page 124.

C. E. Rasmussen and C. K. I. Williams. Gaussian Processes for Machine
Learning (Adaptive Computation and Machine Learning). The MIT
Press, 2005. Cited on page 112.

C. Ren, L. Zhao, and A. Safonova. Human motion synthesis with
optimization-based graphs. Comput. Graph. Forum, 29(2), 2010. Cited
on page 50.

H. Rhodin, J. Tompkin, K. I. Kim, V. Kiran, H.-P. Seidel, and C. Theobalt.
Interactive motion mapping for real-time character control. Computer
Graphics Forum (Proceedings Eurographics), 33(2), 2014. Cited on
pages 102 and 104.

C. Rose, B. Guenter, B. Bodenheimer, and M. F. Cohen. Efficient generation
of motion transitions using spacetime constraints. In Proc. of ACM
SIGGRAPH, 1996. Cited on page 11.

C. Rose, M. F. Cohen, and B. Bodenheimer. Verbs and adverbs: Multidi-
mensional motion interpolation. IEEE Comput. Graph. Appl., 18(5):
32–40, Sept. 1998. ISSN 0272-1716. Cited on pages 9, 10, and 11.

A. Safonova and J. K. Hodgins. Construction and optimal search of
interpolated motion graphs. ACM Trans. Graph., 26(3), July 2007. ISSN
0730-0301. Cited on pages 11, 49, and 50.

H. Sakoe and S. Chiba. Readings in speech recognition. chapter Dynamic
Programming Algorithm Optimization for Spoken Word Recognition,
pages 159–165. 1987. ISBN 1-55860-124-4. Cited on page 32.



BIBLIOGRAPHY 151

H. J. Shin and H. S. Oh. Fat graphs: constructing an interactive char-
acter with continuous controls. In Proceedings of the 2006 ACM
SIGGRAPH/Eurographics symposium on Computer animation, 2006.
Cited on page 52.

O. Sorkine and M. Alexa. As-rigid-as-possible surface modeling. In Pro-
ceedings of the Fifth Eurographics Symposium on Geometry Processing,
SGP ’07, pages 109–116, 2007. ISBN 978-3-905673-46-3. Cited on page 23.

O. Sorkine, D. Cohen-Or, Y. Lipman, M. Alexa, C. Rössl, and H.-P. Seidel.
Laplacian surface editing. In Proc. of the 2004 Eurographics/ACM SIG-
GRAPH Symposium on Geometry Processing, 2004. Cited on page 14.

J. Starck and A. Hilton. Surface capture for performance-based animation.
IEEE Comput. Graph. Appl., 27(3), 2007. Cited on page 6.

C. Stoll, J. Gall, E. de Aguiar, S. Thrun, and C. Theobalt. Video-based
reconstruction of animatable human characters. ACM Trans. Graph., 29
(6), 2010. Cited on page 6.

R. W. Sumner and J. Popović. Deformation transfer for triangle meshes.
ACM Trans. Graph., 23(3), 2004a. Cited on page 14.

R. W. Sumner and J. Popović. Deformation transfer for triangle meshes.
In ACM SIGGRAPH, 2004b. Cited on pages 102 and 103.

G. J. Székely, M. L. Rizzo, N. K. Bakirov, et al. Measuring and testing
dependence by correlation of distances. The Annals of Statistics, 35(6):
2769–2794, 2007. Cited on page 21.

J. Snchez Prez, E. Meinhardt-Llopis, and G. Facciolo. TV-L1 Optical Flow
Estimation. Image Processing On Line, 2013. Cited on page 82.

L. M. Tanco and A. Hilton. Realistic synthesis of novel human movements
from a database of motion capture examples. In Proc. of the Workshop
on Human Motion (HUMO’00), 2000. Cited on page 50.

M. Tejera and A. Hilton. Learning part-based models for animation from
surface motion capture. In 3DV, 2013. Cited on pages 104 and 107.

J. Thies, M. Zollhöfer, M. Stamminger, C. Theobalt, and M. Nießner.
Face2face: Real-time face capture and reenactment of rgb videos. In
CVPR, 2016. Cited on page 103.



152 BIBLIOGRAPHY

Y. Tong, S. Lombeyda, A. N. Hirani, and M. Desbrun. Discrete multi-
scale vector field decomposition. In ACM SIGGRAPH 2003 Papers,
SIGGRAPH ’03, pages 445–452, 2003. ISBN 1-58113-709-5. Cited on
pages 23 and 27.

V. Tsiminaki, J.-S. Franco, and E. Boyer. High resolution 3d shape texture
from multiple videos. In CVPR, 2014. Cited on pages 4, 77, and 89.

T. Tung. Simultaneous super-resolution and 3D video using graph-cuts.
2008. Cited on page 77.

M. Turk and A. Pentland. Eigenfaces for recognition. J. Cognitive Neuro-
science, 1991a. Cited on page 87.

M. Turk and A. Pentland. Eigenfaces for recognition. J. Cognitive Neuro-
science, 1991b. Cited on page 78.

D. Vlasic, I. Baran, W. Matusik, and J. Popović. Articulated mesh anima-
tion from multi-view silhouettes. ACM Transactions on Graphics, 27(3),
2008a. Cited on pages 6 and 13.

D. Vlasic, I. Baran, W. Matusik, and J. Popović. Articulated mesh anima-
tion from multi-view silhouettes. In ACM SIGGRAPH 2008 Papers,
SIGGRAPH ’08, pages 97:1–97:9, New York, NY, USA, 2008b. ACM.
ISBN 978-1-4503-0112-1. Cited on page 16.

A. Vögele, M. Hermann, B. Krüger, and R. Klein. Interactive steering of
mesh animations. In SCA, 2012. Cited on pages 102 and 103.

M. Volino, D. Casas, J. Collomosse, and A. Hilton. Optimal representation
of multiple view video. In BMVC, 2014. Cited on pages 4, 77, and 92.

M. Waechter, N. Moehrle, and M. Goesele. Let there be color! large-scale
texturing of 3d reconstructions. In ECCV, 2014. Cited on page 77.

H. Wang, R. Raskar, and N. Ahuja. Seamless video editing. In ICPR, 2004a.
Cited on pages 83 and 105.

J. Wang and B. Bodenheimer. Synthesis and evaluation of linear motion
transitions. ACM Trans. Graph., 27(1), 2008. Cited on pages 11 and 38.

J. Wang, A. Hertzmann, and D. M. Blei. Gaussian process dynamical
models. In NIPS, 2006. Cited on pages 124 and 127.

J. M. Wang, D. J. Fleet, and A. Hertzmann. Multifactor gaussian process
models for style-content separation. In ICML, 2007. Cited on page 104.



BIBLIOGRAPHY 153

J. M. Wang, D. J. Fleet, and A. Hertzmann. Gaussian process dynamical
models for human motion. IEEE Trans. Pattern Anal. Mach. Intell., 30,
2008a. Cited on page 104.

J. M. Wang, D. J. Fleet, and A. Hertzmann. Gaussian process dynamical
models for human motion. PAMI, 30(2), 2008b. Cited on pages 122, 124,
126, and 129.

R. Wang, L. Wei, E. Vouga, Q. Huang, D. Ceylan, G. Medioni, and H. Li.
Capturing dynamic textured surfaces of moving targets. In ECCV, 2016.
Cited on page 4.

Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli. Image quality
assessment: From error visibility to structural similarity. IEEE Transac-
tions on Image Processing, 2004b. Cited on pages 89 and 92.

A. Witkin and Z. Popovic. Motion warping. In Proceedings of the 22Nd
Annual Conference on Computer Graphics and Interactive Techniques,
SIGGRAPH ’95, pages 105–108, New York, NY, USA, 1995. ACM. ISBN
0-89791-701-4. Cited on page 10.

D. Xu, H. Zhang, Q. Wang, and H. Bao. Poisson shape interpolation. In
Proc. of the 2005 ACM Symposium on Solid and Physical Modeling,
2005. Cited on pages 23 and 114.

D. Xu, H. Zhang, Q. Wang, and H. Bao. Poisson shape interpolation.
Graphical models, 68(3), 2006. Cited on page 132.

K. Yamane, Y. Ariki, and J. Hodgins. Animating Non-Humanoid Charac-
ters with Human Motion Data. In SCA, 2010. Cited on pages 102, 103,
and 104.

Y. Yu, K. Zhou, D. Xu, X. Shi, H. Bao, B. Guo, and H.-Y. Shum. Mesh editing
with poisson-based gradient field manipulation. In ACM SIGGRAPH
2004 Papers, 2004a. Cited on pages 14, 28, 105, and 114.

Y. Yu, K. Zhou, D. Xu, X. Shi, H. Bao, B. Guo, and H.-Y. Shum. Mesh
editing with poisson-based gradient field manipulation. ACM TOG, 23
(3), 2004b. Cited on page 131.

L. Zhao and A. Safonova. Achieving good connectivity in motion graphs.
In Proc. of the 2008 ACM/Eurographics Symposium on Computer
Animation, July 2008. Cited on pages 49 and 50.



154 BIBLIOGRAPHY

C. Zheng. One-to-many: example-based mesh animation synthesis. In The
ACM SIGGRAPH / Eurographics Symposium on Computer Animation,
SCA ’13, Anaheim, CA, USA, July 19-21, 2013, 2013. Cited on page 12.

K. Zhou, W. Xu, Y. Tong, and M. Desbrun. Deformation transfer to multi-
component objects. Computer Graphics Forum, 29(2), 2010. Cited on
page 104.

C. Zitnick, S. Kang, M. Uyttendaele, S. Winder, and R. Szeliski. High-
quality video view interpolation using a layered representation. In
ACM SIGGRAPH, 2004. Cited on page 77.

S. Zuffi and M. J. Black. The stitched puppet: A graphical model of 3D
human shape and pose. In CVPR, 2015. Cited on page 104.


