Conjecture (Aliev-Smyth). Let f ∈ C[x 1 , . . . , x n ] be a non-constant polynomial, ∆ = conv(supp(f )) be its Newton polytope, and V ⊂ G n m be the hypersurface defined by f . The number of isolated torsion points in V can be bounded above by c n vol n (∆), where c n is an effective constant depending only on n, and vol n is the volume associated to the Lebesgue measure on R n .

V tors ⊂ V ∩ Z � V , and has degree δ up to a multiplicative factor depending only on n.

In the third step we intersect inductively with hypersurfaces as the ones mentioned above. To avoid an exponential growth of the exponent of δ from a such iterative process, we use Amoroso and Viada's approach in [2]. These techniques yield our first main result, Theorem 1.2.18.

m be a variety of dimension d, defined by polynomials of degree at most δ. Let V j tors be the union of the irreducible components of V tors of dimension j, j = 0, . . . , d. Then deg(V j tors ) ≤ c(n) δ n-j , for every j = 0, . . . , n, where c(n) is an effective constant that only depends on n.

, respectively. Assume that V is defined in P n by the intersection of hypersurfaces of degree at most δ. Then, from V � , we derive in Proposition 1.3.13 a hypersurface Z ⊂ P n of degree δ up to a multiplying factor depending on A and c, such that

The last step consists of applying the same double induction as we use to prove Theorem A. From it we obtain the following explicit bound for the abelian Manin-Mumford conjecture, Theorem 1.3.14. � � p max ϑ 0,p � + n � i=1

MV M (∆ 0 , . . . , ∆ i-1 , ∆ i+1 , . . . , ∆ n )�(f i ).

Introduction

The subject of this thesis lies in the field of arithmetic geometry, with a view towards toric geometry. We revisit geometric and arithmetic intersection theory to give computations on the closely related concepts of torsion and height of specific varieties.

This thesis consists of two independent chapters, the first one dedicated to the study of torsion in subvarieties of the torus and Abelian varieties, whereas the second one studies heights of 0-cycles of toric varieties.

The starting point of the first part of this thesis is the following question posed independently by Manin and Mumford, as stated by Lang in [START_REF] Lang | Division points on curves[END_REF]: If a curve in its Jacobian contains infinitely many points of finite period, is the curve of genus 1? Motivated by this question, Lang states in [48, p. 220] the Manin-Mumford conjecture under the following form:

Let G be a torus or an Abelian variety in characteristic 0. Let V be a subvariety of G containing an infinite number of torsion points of G. Then V contains a finite number of translations of group subvarieties of G which contain all but a finite number of the torsion points in V .

Here Lang refers as torus to the complex multiplicative group G n m = (C × ) n with the coordinatewise multiplication as its group action. Hence, torsion points are simply n-tuples of roots of unity.

We can replace the group subvarieties in the statement of the conjecture by torsion cosets of G, that is, irreducible algebraic subgroups of G translated by torsion points. So torsion points are torsion cosets by taking the trivial subgroup, and Manin-Mumford's conjecture can be reformulated as the statement that the Zariski closure of the torsion points in V is a finite union of torsion cosets.

For the case when G is a torus, the conjecture was first proved by Ihara, Serre and Tate [START_REF] Lang | Division points on curves[END_REF] when V is a curve, and by Laurent [START_REF] Laurent | Équations diophantiennes exponentielles[END_REF] for any variety, although it could be already deduced from previous results of Mann [START_REF] Mann | On linear relations between roots of unity[END_REF]. The Abelian counterpart of this conjecture was proven by Raynaud [START_REF] Raynaud | Courbes sur une variété abélienne et points de torsion[END_REF][START_REF] Raynaud | Sous-variétés d'une variété abélienne et points de torsion[END_REF]. Furthermore, Hindry [START_REF] Hindry | Autour d'une conjecture de Serge Lang[END_REF] also proved that the conjecture holds when G is replaced by any algebraic commutative group.

Since Manin-Mumford's conjecture has been proved, part of the focus of interest has shifted to bounding (explicitly and effectively) the number and degree of the torsion cosets in the variety V . To be more precise, ordering torsion cosets by inclusion yields a notion of maximality of torsion cosets that are contained in V ; the aim is to obtain a bound on the number and the degree of maximal torsion cosets. We denote by V tors the Zariski closure of the torsion points. From here on forward, we present both the toric and abelian instances of Manin-Mumford's conjecture separately. More information and precisions are given in §1. 1. Let us first restrict ourselves to the toric setting of the conjecture, and give an extensive overview of the results in this case. Let V ⊂ G n m be a variety defined over a number field K by polynomials of degree at most δ, and height at most η. In this case, Laurent's theorem gives a bound for the number of torsion cosets in V in terms of n, δ, η and the degree [K : Q]. But his result is not effective, as he actually proves a particular case of the Mordell-Lang conjecture. Later, Bombieri and Zannier [START_REF] Bombieri | Algebraic points on subvarieties of G n m[END_REF] showed that both the number of maximal torsion cosets and their degree can be bounded solely in terms of n and δ. Both parameters are needed, since we can build a simple example to show that the bound must depend on both the dimension of the ambient space and the degree of the variety as follows. If V is the hypersurface of degree δ defined as the zeroes of the polynomial

f (x 1 , . . . , x n ) = n -x δ 1 -• • • -x δ n ∈ Q[x 1 , . . . , x n ];
then it is easy to check that the only torsion points lying on V are n-tuples of δ-th roots of unity. Hence the number of maximal torsion cosets in V equals its number of torsion points, which amounts to δ n . Simultaneously to the results of Bombieri and Zannier, Schlickewei [START_REF] Schlickewei | Equations in roots of unity[END_REF] gave an upper bound for the number of solutions in roots of unity of a linear equation that depends only on the number of variables. This result was then used by Schmidt [START_REF] Schmidt | Heights of points on subvarieties of G n m . In Number theory[END_REF] to give an effective bound of the number of maximal torsion cosets of a variety V in terms of n and δ. Further contributions in this direction where obtained by the improvement of Schlikewei's result done by Evertse in [START_REF] Evertse | The number of solutions of linear equations in roots of unity[END_REF].

Much sharper bounds follow from the study of the (logarithmic) Weil height of points in the torus G n m . Since torsion points are the points of Weil height zero, the results on points of sufficiently small height can be used to deduce bounds on the number of maximal torsion cosets. The results in this direction by David and Philippon [START_REF] David | Minorations des hauteurs normalisées des sous-variétés des tores[END_REF], Rémond [START_REF] Rémond | Sur les sous-variétés des tores[END_REF], and Amoroso and Viada [2], and allow to obtain a bound on the number of maximal torsion cosets in V which is polynomial in δ.

From an algorithmic point of view, the first steps towards finding the solutions in roots of unity where provided by Mann [START_REF] Mann | On linear relations between roots of unity[END_REF] and Conway-Jones [START_REF] Conway | Trigonometric Diophantine equations (On vanishing sums of roots of unity)[END_REF]. Their work on relations between roots of unity precedes the formulation of Manin-Mumford's conjecture by Lang, and further motivates the study of torsion points in the toric case. A first algorithm on finding the torsion cosets of a general variety in the torus, is given by Sarnak and Adams [START_REF] Sarnak | Betti numbers of congruence groups[END_REF]. More recent developments on relations of roots of unity by Dvornicich and Zannier [START_REF] Dvornicich | On sums of roots of unity[END_REF] also improve the existing bounds in this direction.

In [START_REF] Ruppert | Solving algebraic equations in roots of unity[END_REF], Ruppert considers the case of a non-torsion irreducible curve C embedded in (P 1 ) n of multidegree (d 1 , . . . , d n ), d i > 0 for all i. He gives an algorithm to find the torsion points in C, which bounds its number by 22 min(d i ) max(d i ). His algorithm, however doesn't extend to higher dimensional varieties except for a small family of surfaces. Nevertheless, by a further study of the higher dimensional case, he provides a way of deducing bounds on the number of positive dimensional maximal torsion cosets in V , from a bound on its isolated torsion points (they correspond to maximal torsion cosets of dimension 0). These results together with some explicit examples motivate him to formulate the following conjecture:

Conjecture (Ruppert). Let f ∈ C[x 1 , . . . , x n ] be a non-constant polynomial of multidegree (d 1 , . . . , d n ), d i > 0 for all i, and let V ⊂ G n m be the variety defined by f . The number of isolated torsion points in V can be bounded above by c n d 1 • • • d n , where c n is an effective constant depending only on n.

With the above mentioned study by Ruppert, an affirmative answer to this conjecture would imply that for a variety V defined by polynomials of degree δ, one can give a bound on the number of maximal torsion cosets which is polynomial in δ and of degree n.

Beukers and Smyth [START_REF] Beukers | Cyclotomic points on curves[END_REF] reconsider this problem for curves in G 2 m , giving a refinement of Ruppert's bound for curves defined by sparse polynomials. Given f ∈ C[x, y] they provide a family of polynomials which are closely related to f , such that the solutions in roots of unity of f are also solutions of one of the polynomials in this family. They then use Berštein-Kušnirenko's theorem to give a bound in terms of the Newton polytope of f . More concretely, if ∆ = conv(supp(f )) is the Newton polytope of f , that is the convex hull in R n of the exponents appearing in the monomial expansion of f , and the curve defined by the zeroes of f is non-torsion, then it contains at most 22 vol 2 (∆) torsion points, where vol 2 represents the volume associated to the Lebesgue measure on R 2 .

Later Aliev and Smyth generalized this strategy to higher dimensional varieties in [START_REF] Aliev | Solving algebraic equations in roots of unity[END_REF]. They did that by using projections and resultants which yields a bound which is exponential in δ. However, the result they obtained is distant from their original objective, which was to prove the following stronger version of Ruppert's conjecture that takes into account the sparsity as Beukers and Smyth do in [START_REF] Beukers | Cyclotomic points on curves[END_REF].

It is easy to see that this conjecture implies the conjecture of Ruppert: If f is of multidegree (d 1 , . . . , d n ), d i > 0, then we have that the support of f lies in the box

� n i=1 [0, d i ], implying that vol n (∆) ≤ vol n � � n i=1 [0, d i ] � = d 1 • • • d n .
In the first part of Chapter 1 it is our purpose to prove both of these conjectures. The strategy can be divided in four steps:

1. an extension of the argument for plane curves of Beukers and Smyth [START_REF] Beukers | Cyclotomic points on curves[END_REF] to varieties of any dimension in G n m ;

2. an interpolation argument using upper and lower bounds on the Hilbert function in a similar fashion to Amoroso and Viada [2];

3. an application of the two induction techniques of Viada in [2] to replace straightforward intersection by Bézout's theorem (this gives a first bound in terms of the usual degree);

4. an implementation of a result on ellipsoids in metric spaces of John [START_REF] John | Extremum problems with inequalities as subsidiary conditions[END_REF] to translate the previous result to a notion of degree associated to convex polytopes and prove the conjectures.

For the first step, let us assume that V ⊂ G n m is an irreducible variety of positive dimension (incompletely) defined by polynomials of degree at most δ. We give a geometric analogue to Beuker and Smyth's results in [START_REF] Beukers | Cyclotomic points on curves[END_REF] that applies to V , and thereby construct a variety V � defined by polynomials of degree δ up to multiplication by a constant depending only on n. Moreover, this variety satisfies that V tors ⊂ V ∩ V � � V (Lemma 1.2.5 and Proposition 1.2.6).

In the second step, we use the upper and lower bounds on the Hilbert fuction, results of Chardin [START_REF] Chardin | Une majoration de la fonction de Hilbert et ses conséquences pour l'interpolation algébrique[END_REF], and Chardin and Philippon [START_REF] Chardin | Régularité et interpolation[END_REF] respectively, to prove the existence of a hypersurface Z that plays a similar role as the variety V � obtained in the first step. More concretely, in Theorem 1.2.16, we prove that there is a hypersurface Z such that From this result, one can readily deduce Ruppert's conjecture via algebraic group homomorphisms (Corollary 1.2. [START_REF] Burgos Gil | Arithmetic geometry of toric varieties. Metrics, measures and heights[END_REF]). However, we need an extra tool to prove Aliev-Smyth's conjecture.

For the last step, let us introduce the notion of degree related to a convex polytope ∆ ⊂ R n with integer vertices. Given a variety W ⊂ G n m of dimension d, we define deg ∆ (W ) = card(W ∩ Z) where Z is a variety of codimension d defined by d generic polynomials with Newton polytope ∆ (Definition 1. 2.22). Then, by means on a result of John [START_REF] John | Extremum problems with inequalities as subsidiary conditions[END_REF], we obtain our second main result, Theorem 1.2.23.

Theorem B. Let ∆ ⊂ R n be a convex polytope with integer vertices. Let V ⊂ G n m be a variety of dimension d, defined by polynomials with Newton polytope contained in ∆. Then

deg ∆ (V j tors ) ≤ � c(n) vol n (∆)
for every j = 0, . . . , d, where � c(n) is an effective constant that only depends on n.

From this statement we readily deduce Aliev-Smyth's conjecture by taking ∆ to be exactly the Newton polytope of f , and j = 0.

Let us now turn to the case when G = A is a complex Abelian variety. Fix ι : A �→ P n a closed immersion into a projective space of some dimension n, and identify any subvariety X ⊂ A with its image by ι. One then considers the degree of X as the usual degree in P n . In the sequel, when something is said to depend on A, it may also depend implicitly on the choice of ι.

Mainly because of the more intricate structure of torsion points of A, explicit bounds on the Manin-Mumford conjecture are less common than their toric counterparts. One should nevertheless emphasize that the particular case of a curve C embedded in its Jacobian has given rise to explicit and effective bounds on the number of torsion points in C. We highlight the results of Coleman [START_REF] Coleman | Torsion points on curves and p-adic abelian integrals[END_REF] using p-adic integration, and of Buium [START_REF] Buium | Geometry of p-jets[END_REF] relying on p-jets.

For the general case; given V ⊂ A, Hindry's proof of Manin-Mumford's conjecture in [START_REF] Hindry | Autour d'une conjecture de Serge Lang[END_REF] yields a bound on the number of maximal torsion cosets in V which is effective up to a constant depending on Galois representations. However these bounds can hardly be made explicit as discussed in [START_REF] Hindry | Points de torsion sur les sous-variétés de groupes algébriques[END_REF]. Further studies of Bombieri and Zannier [START_REF] Bombieri | Heights of algebraic points on subvarieties of abelian varieties[END_REF] on the Néron-Tate height show that it is possible to give a bound just in terms of the degree of V , and data coming from A. By means of model-theoretic methods, Hrushovski [START_REF] Hrushovski | The Manin-Mumford conjecture and the model theory of difference fields[END_REF] gives an explicit geometric bound on the Manin-Mumford conjecture whose dependence on deg(V ) is doubly exponential in parameters coming from A.

Given the result obtained for the toric Manin-Mumford conjecture (Theorem A), one expects a much better dependence on the degree of V . More concretely, say dim(A) = g and V is defined in P n by the intersection of hypersurfaces of degree at most δ, then one might expect to bound the number of maximal torsion cosets in V by c(A) δ g , where c(A) is a constant only depending on A.

In the second part of Chapter 1, we focus on obtaining a such bound when A is defined over Q. The strategy follows a similar structure to the one listed above in the toric case, and can be divided in three steps:

1. a study of the Galois action on the torsion of A to extract geometric information on torsion points, from which we are able to deduce a bound on the number of torsion points in the case when the variety V is a curve;

2. an interpolation argument using upper and lower bounds on Hilbert functions relative to the inclusion V ⊂ A;

3. an application of the two induction techniques of Viada in the abelian setting, from which we obtain the expected bound.

For the first step, let us assume that K is a "big enough" finite extension of the field of definition of A. A result of Bogomolov [START_REF] Bogomolov | Sur l'algébricité des représentations l-adiques[END_REF], later improved by Serre [START_REF] Serre | Résumé des cours au collège de france (1985-1986[END_REF], states that there exists a constant c ∈ N >0 , which is not known to be effectively computable, such that for every point P ∈ A of finite order, and every positive integer k prime to the order of P , there exists an automorphism σ ∈ Gal(K/K) such that

P σ = k c times � �� � P + • • • + P .
By means of this result, we are able to give an explicit construction of a variety V � ⊂ A such that V tors ⊂ V ∩ V � � V (Propositions 1.3.4, 1.3.7, and 1.3.8). Moreover, the degree of V � can be expressed as the degree of V up to an explicit multiplying factor depending on g = dim(A) and c. This allows us to give a preliminary bound in the case when V is a curve (Proposition 1.3.9 and the subsequent remark). We derive the following result, which can be seen as the abelian analogue to Beukers-Smyth's bound.

Proposition. Let C ⊂ A be an irreducible algebraic curve of genus greater than 1. Then # C tors ≤ (2 4g+c c 2g + 2 2g+1 -1) deg(C) 2 .

Theorem C. Let V ⊂ A be a subvariety of dimension d, defined in P n as the intersection of hypersurfaces of degree at most δ. Let V j tors denote the union of the irreducible components of V tors of dimension j, j = 0, . . . , d. Then deg(V j tors ) ≤ c(A)δ g-j ,

for every j = 0, . . . , n, where c(A) is an explicit constant only depending on the dimension of A, n, deg(A), and the constant c.

The bound on the number of maximal torsion cosets in V given by this theorem is effective, up to the non-effective constant c. This constant, however, was conjectured by Lang to equal 1 for points of order high enough, and any effective result on the computation of c will automatically yield our constant effective.

On the second part of this thesis we focus on the arithmetic of toric varieties. The foundations for the study of toric varieties were laid down in the 1970's by independent work of Demazure [START_REF] Demazure | Sous-groupes algébriques de rang maximum du groupe de Cremona[END_REF], Kempf,Knudsen,Mumford and Saint-Donat [START_REF] Kempf | Toroidal embeddings[END_REF], Miyake and Oda [START_REF] Oda | Almost homogeneous algebraic varieties under algebraic torus action[END_REF], and Satake [START_REF] Satake | On the arithmetic of tube domains (blowing-up of the point at infinity)[END_REF]. Fixed a field K, a toric variety can be defined as algebraic variety X containing densely a torus or multiplicative group (K × ) n , and such that the action of (K × ) n on itself by translations extends to X. There is a one-to-one correspondence between toric varieties and fans, which enables an extensive and deeply developed dictionary between the algebraic geometric properties of toric varieties and the convex geometric properties of fans and polytopes.

An interesting example where these relations prove to be useful, which is also the main motivation for this part, is Bernštein-Kušnirenko's theorem [START_REF] Bernstein | The number of roots of a system of equations[END_REF][START_REF] Kušnirenko | Polyèdres de Newton et nombres de Milnor[END_REF]. This theorem gives a bound on the number of isolated zeros of a system of Laurent polynomials over K, in terms of the mixed volume of their Newton polytopes. It follows from the one-to-one correspondence between convex polytopes in R n with integer vertices, and toric varieties endowed with a line bundle that is invariant by the torus action, and the properties implied by this bijection. For n Laurent polynomials f 1 , . . . , f n ∈ K[x ±1 1 , . . . , x ±1 n ] with respective Newton polytopes ∆ 1 , . . . , ∆ n , the number of isolated solutions of the system of equations f 1 = • • • = f n = 0 in (K × ) n is bounded by the mixed volume MV n (∆ 1 , . . . , ∆ n ) associated to the Lebesgue measure of R n (Definiton 2.2.7). Moreover, this is an equality for a generic choice of polynomials. In comparison with the classical Theorem of Bézout, it does not only take into account the degree of the polynomials, but the distribution of all exponents appearing in the monomial expansions. Thus it is a refinement of Bézout's theorem that allows to predict when a system of equations has a small number of solutions in the torus. As an illustrative example, let d, H ∈ N >0 and consider the system defined by the following Laurent polynomials

f i = x i -Hx d i-1 ∈ K[x ±1 1 , . . . , x ±1 n ], i = 1, . . . , n. (1) 
After an easy computation, one has that Bernštein-Kušnirenko's bound on the number of solutions in (K × ) n of this system of polynomials is 1, and indeed (H, . . . , H 1+d+•••+d n-1 ) is this system's only zero in the torus. Notice that is much smaller than the product of their degrees d n .

Bernštein-Kušnirenko's theorem has had a considerable impact since its formulation. As it provides a simpler way for dealing with polynomial systems of polynomial equations, it has seen many applications on this regard, for example in computational algebra [START_REF] Gelfand | Discriminants, resultants, and multidimensional determinants[END_REF][START_REF] Sturmfels | Solving systems of polynomial equations[END_REF]. Furthermore it has also contributed the other way around, providing for instance a proof of the Alexandrov-Fenchel inequality (for which a direct approach in convex geometry is rather difficult) by algebraic means via the Hodge inequality, see [START_REF] Teissier | Du théorème de l'index de Hodge aux inégalités isopérimétriques[END_REF] and Addedum 3 by Khovanski ȋ in [START_REF] Yu | Geometric inequalities[END_REF]. Because of its relevance, it has also inspired a great number of generalizations, a brief discussion on this matter can be found in [START_REF] Sturmfels | Solving systems of polynomial equations[END_REF]Chapter 3]. We point out the refinement of Philippon and Sombra [START_REF] Philippon | A refinement of the Bernštein-Kušnirenko estimate[END_REF] which gives a bound in terms of a mixed integral of convex functions, and serves as first precursor of some of the work considered below.

When K is endowed with an arithmetic structure, it is also of interest to have a control on the height or complexity of the solution set of a such family of Laurent polynomials. The notion of height of a point was first developed by Siegel, Northcott and Weil among others as a way of measuring the "size" of a point, and is an essential tool in diophantine geometry. In higher dimension, this concept extends as an analogue of the degree of a variety that measures the complexity of the representation of it, for example via its Chow form. Therefore, it is also of relevance in algebraic geometry and effective computational algebra, for instance when dealing with effective versions of the Nullstellensatz [START_REF] D'andrea | Heights of varieties in multiprojective spaces and arithmetic Nullstellensätze[END_REF][START_REF] Giusti | Lower bounds for Diophantine approximations[END_REF][START_REF] Krick | Sharp estimates for the arithmetic Nullstellensatz[END_REF]. This further motivates an arithmetic Bernštein-Kušnirenko type bound.

For simplicity of exposition, let us consider K = Q although the results exposed below also hold for the more general setting of adelic fields satisfying the product formula. The usual height of a point in (Q × ) n is the Weil height, which is defined for each (x 1 , . . . ,

x n ) ∈ (Q × ) n as h W (x 1 , . . . , x n ) = � p∈{primes}∪{∞} log max{1, |x 1 | p , . . . , |x n | p },
where | • | ∞ and | • | p , respectively represent the absolute value and p-adic absolute value normalized in the usual way. However, the general definition of height is richer than just considering the Weil height and allows a wider consideration of alternatives heights. For example, one can define a height attached to a monomial map ϕ : (Q × ) n → (Q × ) r by taking the inverse image of the Weil height in (Q × ) r ; that is, for every x ∈ (Q × ) n , we define its height associated to ϕ as h ϕ * W (x) = h W (ϕ(x)).

To give an example in which the difference between distinct considerations of heights is emphasized, let us come back to the system of polynomial equations defined by [START_REF] Aliev | Solving algebraic equations in roots of unity[END_REF], for d, H ∈ N >0 . As mentioned above, the zero set defined by these polynomials consists of a simple point p = (H, . . . , H 1+d+•••+d n-1 ). Its Weil height h W (p) = � n i=1 d i-1 log H grows polynomially with the degrees of the polynomials. On the contrary, by considering the height attached to the monomial map ϕ : (Q × ) n → (Q × ) n , defined by (x 1 , . . . , x n ) � → (x 1 , x 2 x -d 1 , . . . , x n x -d n-1 ), we obtain h ϕ * W (p) = log H. One can interpret this phenomenon as the fact that the complexity of a point depends on the representation we use. The motivation behind an arithmetic version of Bernštein-Kušnirenko's bound is to give a way of predicting heights of zero sets of systems of Laurent polynomials in terms of the monomial structure of the polynomials and the given height function.

Arithmetic analogues of Bézout's theorem were proved using Arakelov geometry by Faltings [32] and Bost, Gillet and Soulé [START_REF] Bost | Heights of projective varieties and positive Green forms[END_REF], although previous versions for heights that arise also without Arakelov theory were already known beforehand by Nesterenko [63], and Philippon [65]. As for Bernštein-Kušnirenko's theorem, a first result by Maillot [START_REF] Maillot | Géométrie d'Arakelov des variétés toriques et fibrés en droites intégrables[END_REF] gives a bound for canonical heights associated to the toric divisors (which are generalizations of Weil heights for toric varieties), this result however is not completely effective. A further study in this direction was later done by Sombra [START_REF] Sombra | Minimums successifs des variétés toriques projectives[END_REF].

In Chapter 2 we present an arithmetic Bernštein-Kušnirenko bound which improves the previous results obtained in this direction, and generalize them to adelic fields satisfying the product formula and height functions associated to arbitrary nef toric metrized divisors. This chapter is divided into three parts, where the two initial ones serve mostly as an exposition of the objects that are fundamental in the third one for stating and proving the main theorem.

In the first part, we give a brief overview on the geometry of toric varieties, mainly describing the correspondence between toric divisors and their convex analogues, and their behaviour in intersection theory. The purpose here is to lay the geometric groundwork that is essential in the follow up. By doing so, we also present a proof of the classical Bernštein-Kušnirenko theorem. This defines the strategy we use in our subsequent proof of our arithmetic version of this theorem.

In the second part, we present the arithmetic objects that are the centrepiece of the sequel. We introduce the notion of adelic field, and detail a construction of adelic field extension that preserve the product formula. For normal projective varieties over adelic fields, we describe (global) heights of 0-cycles attached to metrized divisors. Afterwards, we extend this definition recursively, and give a well-defined notion of (global) height for general cycles with respect to metrized divisors which are generated by small sections. For such metrized divisors, this definition is an extension to adelic fields satisfying the product formula of the equivalent one for global fields in [START_REF] Burgos Gil | Arithmetic geometry of toric varieties. Metrics, measures and heights[END_REF]. Most notably, under these assumptions, arithmetic intersection behaves similarly to its counterpart in algebraic geometry. When restricting to toric varieties, Burgos, Philippon and Sombra [START_REF] Burgos Gil | Arithmetic geometry of toric varieties. Metrics, measures and heights[END_REF] have done a thorough study on the arithmetic of toric varieties, relating arakelovian properties with convex geometry, and exploring the implications of these relations. As such, their work is central to our study. Thus, we present their characterizations of (semipositive) metrized toric divisors D in terms of concave functions, metric functions {ψ D,v } and roof functions {ϑ D,v } (Proposition 2.3.28), and the implications of these when dealing with their associated heights.

Finally, we prove our arithmetic Bernštein-Kušnirenko's bound. The following statements hold for general adelic fields; however, for simplicity, herein we present them in the case when our adelic field is Q with the usual set of absolute values as described above. The starting point is one of the principal results in [START_REF] Burgos Gil | Arithmetic geometry of toric varieties. Metrics, measures and heights[END_REF], which identifies the height of a toric variety with respect to metrized toric divisors with a sum of mixed integrals of the corresponding roof functions. The key point of our proof is to associate to a Laurent polynomial f , a metrized toric divisor that is generated by small sections and such that the section given by f is small: for a given Laurent polynomial f = r � j=0 α j x m j , where α j ∈ Q × and m j ∈ Z n for every j, with Newton polytope ∆ = conv(m j ), we define the concave functions ϑ p : ∆ → R, as

ϑ p (x) =              max λ � r � j=0 λ j log |α j | p λ j � , for p = ∞; max λ � r � j=0 λ j log |α j | p � , for p prime; (2) 
the maximum being over all λ = (λ 0 , . . . , λ r ) ∈ R r+1 ≥0 such that � j λ j = 1 and � j λ j m j = x. We then prove that the metrized toric divisor associated to these ϑ p 's is generated by small sections, and f is a small section of this divisor. The main result in this chapter, Theorem 2.4.5, states the following.

Theorem D. Let X be a proper toric variety and D 0 a nef toric metrized divisor on X with corresponding roof functions {ϑ 0,p :

∆ 0 → R} p . Let f 1 , . . . , f n ∈ Q[x ±1
1 , . . . , x ±1 n ], and let {ϑ i,p : ∆ i → R} p be the roof functions associated to each f i as in (2). Then the height with respect to D 0 of the 0-cycle defined by the system of f i 's is bounded by

h D 0 (Z(f 1 , . . . , f n )) ≤ � p∈{primes}∪{∞} MI(ϑ 0,p , . . . , ϑ n,p ).
We also give a second bound in terms of the mixed volumes of the Newton polytopes of the f i 's, and their logarithmic lengths, �(f i ) ( Definition 2.4.6). We readily derive from Theorem D, and basic properties of mixed integrals, that

h D 0 (Z(f 1 , . . . , f n )) ≤ MV M (∆ 1 , . . . , ∆ n )
This bound is easier to compute than the one of Theorem D, and in many cases already gives a good approximation to the actual height, as illustrated in Example 2.4.11. Nevertheless, we show the loss of precision of the bounds that occurs when passing from mixed integrals to mixed volumes (Example 2.4.12). We conclude by giving an application of these results to u-resultants and rational univariate representation of 0-cycles.

Chapter 1

Explicit bounds on the Manin-Mumford conjecture

In this chapter we focus on effectiveness questions around the toric version of the Manin-Mumford's problem. The first half is devoted to the results proven in [START_REF] Martínez | The number of maximal torsion cosets in subvarieties of tori[END_REF]. We give sharp bounds on the number of maximal torsion cosets in a subvariety of the complex algebraic torus, which prove the conjectures of Ruppert, and Aliev and Smyth on the number of isolated torsion points of a hypersurface. Furthermore, we present a work in progress in collaboration with Aurélien Galateau regarding analogous results for abelian varieties.

State of the art 1.The case of the torus

Let G n m = (C × ) n be the multiplicative group or complex algebraic torus of dimension n. We may identify G n m with the Zariski open subset

x 1 • • • x n � = 0 in A n C , with the usual multiplication (x 1 , . . . , x n ) • (y 1 , . . . , y n ) = (x 1 y 1 , . . . , x n y n ).
In the following, a point (x 1 , . . . , x n ) ∈ G n m is denoted by x. In particular, 1 = (1, . . . , 1) represents the identity element. Moreover, given any subset S ⊂ G n m and a point x ∈ G n m , we extend the operation above and denote by x • S (or simply xS) the translation of S by x; that is x

• S = {x • y | y ∈ S}.
A torsion point of G n m is an n-tuple of roots of unity. We denote by

µ k = {ζ ∈ G m | ζ k = 1}
the subgroup of k-th roots of unity. Hence ∞ . Let V be a subvariety of G n m , not necessarily irreducible, we denote by V tors the set of torsion points contained in V , and we call its Zariski closure in G n m the torsion subvariety of V :

µ n k = (µ k ) n and µ n ∞ = � k∈N >0 µ n k represent,
V tors = V ∩ µ n ∞ . We say that a torsion coset ω ⊂ V is maximal in V if it is maximal by inclusion.
Lang, inspired by a question that was posed to him by Manin and that arises, independently, from the work of Mumford, states in [START_REF] Lang | Division points on curves[END_REF] what was to be known as the Manin-Mumford conjecture. For the moment we restrict ourself to the toric version of this (former) conjecture. This asserts that, if V ⊂ G n m is an irreducible subvariety and

V tors is Zariski dense in V , then V is a torsion coset of G n m .
In other words, the torsion subvariety of V is a union of torsion cosets of G n m . Lang gives proofs by Ihara, Serre, and Tate for the case when V is a curve in G 2 m , see loc. cit. and [START_REF] Lang | Fundamentals of Diophantine geometry[END_REF]. The proof for higher dimensional varieties follows, independently, from the work of Laurent [51, Théorème 2], and of Sarnak and Adams [START_REF] Sarnak | Betti numbers of congruence groups[END_REF]Proposition 1.6].

In the sequel, we focus on finding a sharp upper bound for the number of maximal torsion cosets in V and their degrees. Assume that V ⊂ G n m is defined over a number field K by a set of polynomials of degree at most δ and height at most η. As a consequence of the finiteness, Laurent's proof yields a bound for the number of maximal torsion cosets in V in terms of n, δ, η and [K : Q]. However, to obtain this bound, Laurent uses Schmidt's subspace theorem which is not effective. Bombieri and Zannier [START_REF] Bombieri | Algebraic points on subvarieties of G n m[END_REF], following the work of Zhang [START_REF] Zhang | Positive line bundles on arithmetic varieties[END_REF], show that both the number of maximal torsion cosets in V and the their degree can be bounded just in terms of n and δ. Contemporarily, Schlickewei [START_REF] Schlickewei | Equations in roots of unity[END_REF] gives an upper bound for the number of solutions in roots of unity of a linear equation (which depends only on the number of variables), and Schmidt [START_REF] Schmidt | Heights of points on subvarieties of G n m . In Number theory[END_REF] uses this result to give an alternative prove of the fact that the number of maximal torsion cosets in V can be bounded in terms of n and δ. By combining Schmidt's techniques with Evertse's improvement of Schlickewei's result in [START_REF] Evertse | The number of solutions of linear equations in roots of unity[END_REF], we can bound the number of maximal torsion cosets in V by

(11δ) n 2 � n + δ δ � 3 � n+δ δ � 2 .
Results of Mann [START_REF] Mann | On linear relations between roots of unity[END_REF], Conway and Jones [START_REF] Conway | Trigonometric Diophantine equations (On vanishing sums of roots of unity)[END_REF] and, more recently, Dvornicich and Zannier [START_REF] Dvornicich | On sums of roots of unity[END_REF] on the vanishing subsums of linear relations of roots of unity provide different algorithms for finding all the maximal torsion cosets in a subvariety of G n m . The proof of Sarnak and Adams [START_REF] Sarnak | Betti numbers of congruence groups[END_REF] of the toric Manin-Mumford conjecture, derives from a result of this type [74, Lemma 3.1], proposed to them by Cohen, and implies an algorithmic approach to this problem. Furthermore, Ruppert [START_REF] Ruppert | Solving algebraic equations in roots of unity[END_REF] considers the problem of a non-torsion irreducible curve C in G n m �→ (P 1 ) n of multidegree (d 1 , . . . , d n ), d i > 0 for all i, and obtains that the number of torsion points in C can be bounded above by

22 min i (d i ) max i (d i ).
In fact, he starts by treating the case of plane curves (so n = 2) and obtains the following sharper bound on the number of torsion points in C:

#C tors ≤ 22 d 1 d 2 -2 d 1 -2 d 2 .
In general, the approach of Ruppert doesn't extend to higher dimensional varieties, but after an extended study of them, he states the following conjecture:

Conjecture 1.1.1 (Ruppert). Let f ∈ C[x 1 , . . . , x n ] have multidegree (d 1 , . . . , d n ), d i > 0. The number of isolated torsion points on Z(f ) ⊂ G n m can be bounded above by c n d 1 • • • d n
, where c n is a constant depending only on n. [START_REF] Beukers | Cyclotomic points on curves[END_REF] reconsider this problem for curves in G 2 m , refining this bound by giving one in terms of the volume of a Newton polytope of the curve. Given f ∈ C[x, y] a polynomial, they show that each torsion point in Z(f ), lies in the variety given by one of the following polynomials:

Beukers and Smyth

f 1 (x, y) = f (-x, y), f 2 (x, y) = f (x, -y), f 3 (x, y) = f (-x, -y), f 4 (x, y) = f (x 2 , y 2 ), f 5 (x, y) = f (-x 2 , y 2 ), f 6 (x, y) = f (x 2 , -y 2 ), f 7 (x, y) = f (-x 2 , -y 2 ).
Recall that the support of a polynomial is the finite subset of Z n given by the exponents of its monomials. Observe then that the supports of f 1 , . . . , f 3 and f 4 , . . . , f 7 are, respectively, the one of f and a dilation by 2 of the one of f . Then, by Bernštein-Kušnirenko's theorem (a toric analogue of Bézout's theorem, see Theorem 2.2.10), they obtain that the number of isolated torsion points of Z(f ) is bounded above by 22 vol 2 (∆);

(1.1.1)

where ∆ = conv(supp(f )) is the convex hull of the support of f , and vol 2 represents the volume associated to the Lebesgue measure on R 2 . As to fix notations, we precise that ∆ is called the Newton polytope of f . This leads Aliev and Smyth [START_REF] Aliev | Solving algebraic equations in roots of unity[END_REF] to try to prove a stronger version of Ruppert's conjecture.

Conjecture 1.1.2 (Aliev-Smyth). Let f ∈ C[x 1 , . . . , x n ] be a non-zero polynomial. Then the number of isolated torsion points on Z(f ) ⊂ G n m can be bounded above by c n vol n (∆), where c n is a constant depending only on n and ∆ is the Newton polytope of f . For a general polynomial f ∈ C[x 1 , . . . , x n ], these conjectures imply that the number of isolated torsion points on Z(f ) is bounded above by

c n deg(f ) n . (1.1.2)
Moreover, this bound implies that the degree of the j-equidimensional part of Z(f ) tors is bounded above by c n,j δ n-j , where c n,j is a constant depending only on n and j, see [START_REF] Ruppert | Solving algebraic equations in roots of unity[END_REF]Corollary 11].

In fact, Aliev and Smyth [START_REF] Aliev | Solving algebraic equations in roots of unity[END_REF] extend Beukers and Smyth's algorithm to higher dimensions and obtained a bound, which however remains far from the conjectured one. For a polynomial f ∈ C[x 1 , . . . , x n ], they bound the number of maximal torsion cosets in V by

κ 1 (n) deg(f ) κ 2 (n,δ) (1.1.3)
where

κ 1 (n) = n 3 2 (2+n)5 n and κ 2 (n, δ) = 1 16 (49 • δ n-2 -4n -9).
For sparse representation of polynomials, Leroux [START_REF] Leroux | Computing the torsion points of a variety defined by lacunary polynomials[END_REF] gives an algorithm to compute the maximal torsion cosets in V ⊂ G n m . As a consequence, if V can be defined by k polynomials in Q[X 1 , . . . , X n ] with at most r nonzero coefficients, then the number of maximal torsion cosets in V can be bounded above by

(r!) k exp � 3(n + 1) � kr log(kr) � .
Restricting to the case of dense polynomials, this bound is comparable to that of (1.1.3).

Much sharper bounds follow, as a particular case, from the study of the logarithmic Weil height of points in G n m . In fact, the points of zero Weil height are the torsion points, hence bounds on the number of (isolated) points of sufficiently small height yield automatically bounds on the number of (isolated) torsion points. By these means, for a subvariety V ⊂ G n m defined by polynomials of degree at most δ, David and Philippon [START_REF] David | Minorations des hauteurs normalisées des sous-variétés des tores[END_REF] and Rémond [START_REF] Rémond | Sur les sous-variétés des tores[END_REF], among others, obtain polynomial upper bounds in δ on the number of maximal torsion cosets in V . Most notably, Amoroso and Viada's results on the essential minimum of V bear the following bounds [3,Corollary 5.4]:

deg(V j tors ) ≤ � δ(200n 5 log(n 2 δ)) (n-k)n(n-1) � n-j ,
where V j tors is the union all the irreducible components of V tors that are of dimension j, and k is the codimension of V . In particular, if V is a hypersurface in G n m , the value δ can be taken as the degree of V , and the number of isolated torsion points in V is bounded above by #(V 0 tors ) ≤ δ n (200n 5 log(n 2 δ)) n 2 (n-1) 2 . This bound gives (1.1.2) up to a logarithmic factor.

In this chapter we detail a geometric version of the approach of Beukers and Smyth (Lemma 1.2.5 and Proposition 1.2.6). By algebraic interpolation, using upper and lower bounds on the Hilbert function by Chardin [START_REF] Chardin | Une majoration de la fonction de Hilbert et ses conséquences pour l'interpolation algébrique[END_REF], and Chardin and Philippon [START_REF] Chardin | Régularité et interpolation[END_REF], we obtain hypersurfaces containing the torsion of the variety (Theorem 1.2.16). The first main result (Theorem 1.2.18) follows from adapting the induction techniques introduced by Amoroso and Viada. Given a d-dimensional variety V ⊂ G n m defined by polynomials of degree at most δ, this theorem states that

deg(V j tors ) ≤ c n δ n-j (1.1.4)
for every j = 0, . . . , d, where c n = ((2n -1)(n -1)(2 2n + 2 n+1 -2)) nd . Applied to a general hypersurface of degree δ, this proves the bound in (1.1

.2).

There is a direct approach to deduce Ruppert's conjecture from (1.1.4), via algebraic group homomorphisms (Corollary 1.2.19). However this method cannot be applied to prove Aliev-Smyth's conjecture. The keystone to obtain this second conjecture from (1.1.4) is a result of John [START_REF] John | Extremum problems with inequalities as subsidiary conditions[END_REF] which gives a mean of comparing the volume of a convex polytope with the one of the ellipsoid of smallest volume containing it (John's ellipsoid). Then, by introducing a notion of degree related to a convex polytope (Definition 1.2.22), we get the second main result (Theorem 1.2.23). In particular, given a full-dimensional convex polytope ∆ ⊂ R n , and a variety V ⊂ G n m defined by polynomials with Newton polytope contained in ∆, this theorem implies that

deg(V 0 tors ) ≤ c n 2 n n 2n ω -1 n vol n (∆), (1.1.5) 
where c n is the constant in (1.1.4), and ω n is the volume of the n-sphere.

Given f ∈ Q[x 1 , . . . , x n ] a polynomial of multidegree (d 1 , . . . , d n ), d i > 0, we can take ∆ to be the n-orthotope [0, d 1 ] × • • • × [0, d n ]
, and then (1.1.5) gives Ruppert's conjecture (Conjecture 1.1.1). Moreover, it suffices to take ∆ as the Newton polytope of f to prove Aliev-Smyth's conjecture (Conjecture 1.1.2).

The case of Abelian varieties

The Manin-Mumford conjecture is most notably known for its abelian formulation. Let

A be an abelian variety of dimension g defined over a number field. A torsion point is an element of finite order with respect to the additive group law of A. For k ∈ N, we denote by A[k] the group of torsion points of order dividing k, which is isomorphic to (Z/kZ) 2g .

We write

A tors = � k∈N A[k]
for the torsion group of A.

The abelian statement of Manin-Mumford's conjectre asserts that for a given subvariety V of A, the Zariski closure of V ∩ A tors is a finite union, where each member is a translate of abelian subvarieties of A by a point of finite order. A first partial result is given by Bogomolov [START_REF] Bogomolov | Sur l'algébricité des représentations l-adiques[END_REF] for the p ∞ -torsion, that is ∪ n≥1 A[p n ]. Later, Raynaud proves the conjecture in [START_REF] Raynaud | Courbes sur une variété abélienne et points de torsion[END_REF] for the case of a curve embedded in its Jacobian, and in [START_REF] Raynaud | Sous-variétés d'une variété abélienne et points de torsion[END_REF] for the general dimension case. Moreover, Hindry [START_REF] Hindry | Autour d'une conjecture de Serge Lang[END_REF] gives a general result in which A can be replaced by any algebraic commutative group, in particular a semiabelian variety.

For the case of a smooth, irreducible, projective curve C of genus g ≥ 2 embedded in its Jacobian J(C), there are many different effective bounds on the number of torsion points in C, for instance Raynaud [START_REF] Raynaud | Courbes sur une variété abélienne et points de torsion[END_REF], Coleman [START_REF] Coleman | Torsion points on curves and p-adic abelian integrals[END_REF], and Hindry [START_REF] Hindry | Points de torsion sur les sous-variétés de groupes algébriques[END_REF]. Using p-jets, and under some ramification conditions on a prime p ≥ 2g + 1, Buium [START_REF] Buium | Geometry of p-jets[END_REF] obtains that #C tors ≤ g!p 4g 3 g (p(2g -2) + 6g), responding to a question posed by Mazur [60,p.234] on a uniform bound depending only on the genus of the curve, and on the prime p.

For the sequel, let us fix a closed immersion ι : A �→ P n into a projective space of some dimension n. Given a subvariety V ⊂ A, we focus on effective bounds on the number of maximal torsion cosets in V , which correspond to abelian subvarieties of A translated by torsion points of A that are maximal with respect to the inclusion. Hindry's approach in [START_REF] Hindry | Autour d'une conjecture de Serge Lang[END_REF] yields already an effective bound (up to a constant related to Galois representations), which is not made explicit. Later, Bombieri and Zannier [START_REF] Bombieri | Heights of algebraic points on subvarieties of abelian varieties[END_REF] show that the number of maximal torsion cosets in V can be bounded just in terms of the degree of V by ι, and data coming from A.

By means of new model-theoretic methods, Hrushovski [START_REF] Hrushovski | The Manin-Mumford conjecture and the model theory of difference fields[END_REF] bounds the number of maximal torsion cosets in V by

c deg(V ) e , (1.1.6) 
where c and e depend only on A (in fact they are doubly exponential in parameters coming from A), and deg(V ) denotes the degree of the Zariski closure of the image of V by the fixed immersion ι.

Given the results in the toric case regarding the dependence on the degree (Theorem 1.2.18), it is a natural question to ask if one can improve the exponent e in (1.1.6), with the cost of incrementing the multiplicative coefficient c. Given V a subvariety of A defined in P n as the intersection of finite number of hypersurfaces of degree at most δ, one expects to bound the number of maximal torsion cosets in V by

c δ g , (1.1.7)
where g is the dimension of A, and c is a constant only depending on A. To prove such a statement, our aim is to adapt the techniques of the toric case.

Let K be a the number field such that A is defined over K. Using the results of Bogomolov [START_REF] Bogomolov | Sur l'algébricité des représentations l-adiques[END_REF] and Serre [START_REF] Serre | Résumé des cours au collège de france (1985-1986[END_REF] on the homotheties in the image of the absolute Galois group of K by the l-adic representations, one has that there exists an integer c(A) which depends only on A (and K) such that for every point P ∈ A of finite order, and any integer k prime to the order of P , there is a Galois automorphism σ ∈ Gal(K/K) such that

P σ = [k c(A) ] P. (1.1.8)
This classical approach to the Manin-Mumford conjecture was first proposed by Lang [START_REF] Lang | Division points on curves[END_REF], and has since proven to be a succesful tool (see [START_REF] Raynaud | Sous-variétés d'une variété abélienne et points de torsion[END_REF] and [START_REF] Hindry | Autour d'une conjecture de Serge Lang[END_REF]).

In this chapter we retake this approach to the proof Manin-Mumford's conjecture in the abelian setting. The main idea is to set analogies with the toric version, and extend them to Abelian varieties. The much more complicated structure of torsion points and their of definition is however the main problem in establishing such analogies.

Let V be a subvariety of A. By means of a careful choice of homotheties coming from Galois automorphisms, we are able to give an explicit construction of an auxiliary variety containing the torsion of V (Propositions 1.3.7 and 1.3.8). The first result of interest arises when considering V to be a curve of genus g ≥ 2. In this case, for an irreducible algebraic curve C ⊂ A, we obtain the following Abelian analogue to Beukers and Smyth's result:

# C tors ≤ (2 2gc(A)+4g-2c(A) c(A) 2g + 2 2g+1 -1) deg(C) 2 ; see Proposition 1.3.9 and the remark that follows.

To further extend our result to higher dimensional varieties, we proceed by mimicking the process followed in the toric case. By identifying V , and A with their images in P n , we use relative versions of upper and lower bounds on the Hilbert function (due again to Chardin [START_REF] Chardin | Une majoration de la fonction de Hilbert et ses conséquences pour l'interpolation algébrique[END_REF], and Chardin and Philippon [START_REF] Chardin | Régularité et interpolation[END_REF]), to obtain an interpolating hypersurface in P n that intersects V (Proposition 1.3.13). In addition, our result bounds the degree of this hypersurface in terms of degree δ of the hypersurfaces in P n such that V is defined as the intersection of them.

This leads to the third main result of this chapter (Theorem 1.3.14) which states the following. If dim(A) = g, and V is a d-dimensional subvariety of A that can be defined in P n as the intersection of hypersurfaces of degree at most δ, then

deg(V j tors ) ≤ c j δ g-j ,
for every j = 0, . . . , d, where

c j = ((2g -1)(g -1)(2 2g(2+c(A))+2 c(A) 2g + 2 2g+2 -2)) (g-j)d .
Moreover, this explicit version of Manin-Mumford's conjecture is effective, up to the non-effective constant c(A).

Bounds for the toric Manin-Mumford

For the length of this chapter G n m denotes (C × ) n . If not specified, we consider G n m naturally embedded into P n by (x 1 , . . . , x n ) � → (1 :

x 1 : • • • : x n ).
When considering subvarieties of G n m they are defined over C unless stated otherwise. Moreover, when we say that a variety is irreducible, we imply it to be irreducible over C.

Geometric extrapolation of the torsion points

Let x ∈ G n m be a point and λ = (λ 1 , . . . , λ n ) ∈ Z n be an integer vector, we adopt the multi-index notation

x λ = x λ 1 1 • • • x λn n .
So, a family of vectors vectors λ 1 , . . . , λ r ∈ Z n , r > 0, induces an (algebraic group) homomorphism

G n m -→ G r m , x � -→ (x λ 1 , . . . , x λr ). (1.2.1)
In fact, this defines is a bijection between integer matrices M r,n (Z) and (algebraic group) homomorphisms Hom(G n m , G r m ) by taking the λ j 's in (1.2.1) as the row vectors of the matrix in M r,n (Z). In particular, for any l ∈ Z, we define the multiplication map by l as the endomorphism

[l] : G n m -→ G n m (x 1 , . . . , x n ) � -→ (x l 1 , . . . , x l n )
which corresponds to the diagonal matrix l • Id ∈ M n×n (Z). Hence, we may express the subgroup of the k-torsion points of G n m as

µ n k = {x ∈ G n m | [k]x = 1}.
Let Λ be a subgroup of Z n . We denote by Λ sat = (Λ ⊗ Z R) ∩ Z n the saturation of Λ, and we call [Λ sat : Λ] the index of Λ. In particular, we say that Λ is saturated if [Λ sat : Λ] = 1. We define the algebraic subgroup of G n m associated to Λ as

H Λ = {x ∈ G n m | x λ = 1, ∀λ ∈ Λ}.
The following result sums up the relation between subgroups of Z n and algebraic subgroups of G n m .

Theorem m → G n m , such that its kernel is F . This allows us to reduce to the case when H = H 0 . By Theorem 1.2.1, there exists a unique saturated lattice Λ ⊂ Z n such that H = H Λ . Take a complementary subgroup Λ � ⊂ Z n , that is a saturated lattice such that Λ∩Λ � = {0} and Λ + Λ � = Z n . Then H Λ � is irreducible, and so

H Λ � ∼ = G r m . Also by Theorem 1.2.1, we have that G n m = H {0} = H Λ∩Λ � , and 1 = H Z n = H Λ+Λ � . Then we have an isomorphism G n m = H × H Λ � ∼ = H × G r m .
A subgroup of G n m with special interest for this chapter is the stabilizer of a variety. For a subvariety V of G n m , we define the stabilizer of V as

Stab(V ) = {ξ ∈ G n m | ξV = V }.
First, notice that dim(Stab(V )) ≤ dim(V ). Moreover, the dimensions coincide if and only if V is a translate of an algebraic subgroup of G n m . In this latter case either V tors = V , or there are no torsion points in V .

The following fact should also be highlighted. If ψ : G n m → G r m is a surjective homomorphism, and W ⊂ G r m a variety, then ψ -1 (Stab(W )) = Stab(ψ -1 (W )). By means of the homomorphism appearing in Corollary 1.2.2, we associate to V a subvariety of some G r m which has trivial stabilizer. The following result is a direct consequence of this corollary and illustrates some useful properties of this homomorphism.

Corollary 1.2.3. Let V be a subvariety of G n m , and r = codim(Stab(V )). There exists a homomorphism ϕ : G n m → G r m such that Ker(ϕ) = Stab(V ), satisfying the following properties:

(i) ϕ(V ) is a subvariety of G r m with trivial stabilizer; (ii) ϕ -1 (ϕ(V )) = V ; (iii) ϕ -1 (η)V = η 0 V , for every η ∈ G r m and for any η 0 ∈ ϕ -1 (η). Proof. Write Stab(V ) = F • Stab(V ) 0 , with F a finite subgroup of G n
m and Stab(V ) 0 the irreducible component passing through 1. By Corollary 1.2.2, one has an isogeny

ϕ : G n m → Stab(V ) 0 × G r m , such that Ker(ϕ) = F . Since ϕ is an isogeny, the image of V by ϕ is a variety. Moreover, if ξϕ(V ) = ϕ(V ), for a ξ ∈ Stab(V ) 0 × G r m , by taking preimages ξ � • F • V = F • V , for some ξ � ∈ ϕ -1 (ξ). In particular, since F ⊂ Stab(V ), we have ξ ∈ ϕ(Stab(V )), and therefore Stab(ϕ(V )) = ϕ(Stab(V )) = Stab(V ) 0 × {1}. Hence, ϕ(V ) is of the form Stab(V ) 0 × V � , where V � is a subvariety of G r m .
Then, the homomorphism ϕ is obtained from ϕ by taking the projection to G r m . The properties in the statement follow then by construction.

There is a remarkable relation between the stabilizer and torsion cosets in V . To illustrate this, let ωH be a torsion coset in V (not necessarily maximal) and let Stab(V ) 0 be the connected component of Stab(V ) containing 1. Then � ξ∈Stab(V ) 0 ξ • (ωH) is a torsion coset in V that contains ωH. In particular, every maximal torsion coset in V has dimension at least dim(Stab(V )), and its subtorus contains Stab(V ) 0 .

To fix notations, given a variety V ⊂ G n m and an automorphism φ ∈ Aut(C/Q), we denote by V φ the variety obtained by applying φ to the coefficients the polynomials in

C[x 1 , . . . , x n ] defining V .
Torsion points, being essentially vectors of roots of unity, are defined over cyclotomic extensions of Q. Hence, any Galois automorphism fixing the maximal abelian extension of Q leaves invariant the torsion cosets of G n m . This observation gives the following result: Proposition 1.2.4. Let V ⊂ G n m be an irreducible variety of positive dimension defined over a finite Galois extension K of Q, that is not contained in Q ab . There exists a non trivial Galois automorphism ς ∈ Gal(K/(K ∩ Q ab )), such that

V tors ⊂ V ∩ V ς � V.
It is so important to singularize the study of varieties defined over Q ab . By the Kronecker-Weber theorem, whenever we have an abelian extension K of Q, we have that K is contained in a cyclotomic extension of Q. In fact, there is a unique minimal natural number, which we denote by N K , such that the N K -th cyclotomic field is the minimal cyclotomic extension of Q containing K, see for instance [START_REF] Narkiewicz | Elementary and analytic theory of algebraic numbers[END_REF]Theorem 4.27(v)]. Given V a subvariety of G n m defined over an abelian extension of Q, we choose the minimal natural number N as

N = min ξ∈µ n ∞ {N K | K is the field of definition of ξ • V }. (1.2.2)
In particular, notice that if N ≡ 2 (mod 4), then

Q(ζ N ) = Q(ζ N/2
). Therefore, we can always choose N � ≡ 2 (mod 4). We adopt the notation ζ N for a primitive N -th root of unity, and Q(ζ N ) for the N -th cyclotomic extension of Q.

Remark. Notice that the value of N K (and henceforth also the value of N ) is the same for V and ϕ(V ), with ϕ as in Corollary 1.2.3. This follows from the fact that two varieties V, W ⊂ G n m with the same stabilizer define the same homomorphism ϕ, and then

V = W if and only if ϕ(V ) = ϕ(W ). Fixed an automorphism σ ∈ Gal(Q ab /Q), take W = V σ . Since the stabilizer is an algebraic subgroup of G n m , it is defined over Q by Theorem 1.2.1, hence Stab(V σ ) = Stab(V ). Therefore V = V σ if and only if ϕ(V ) = ϕ(V σ ) = ϕ(V ) σ .
From here we deduce that V and ϕ(V ) are defined over the same cyclotomic extensions of Q.

For the remaining of this section, N, N � , M, M � , l and l � represent positive integers. Lemma 1.2.5. Let V ⊂ G n m be an irreducible variety whose field of definition is an abelian extension K of Q. Let ω ∈ V be a torsion point.

1. If 4 � N K , one of the following is true:

(a) there exists a 2-torsion point η ∈ µ n 2 \ {1} such that η • ω ∈ V ; (b) there exists a 2-torsion point η ∈ µ n 2 such that η • [2]ω ∈ V σ , where σ ∈ Gal(Q(ζ N K )/Q) is the Galois automorphism mapping ζ N K � → ζ 2 N K . 2. If N K = 4N � , one of the following is true: (c) there exists a 2-torsion point η ∈ µ n 2 \ {1} such that η • ω ∈ V ; (d) there exists a 2-torsion point η ∈ µ n 2 such that η • ω ∈ V τ where τ ∈ Gal(Q(ζ N K )/Q) is a Galois automorphism mapping ζ N K � → ζ 1+2N � N K .
Proof. To simplify the presentation, throughout this proof we denote N K by N . Let l be the order of ω, in particular ω ∈ Q(ζ l ), and M = lcm(N, l). We prove separately point 1 and 2.

1. By hypothesis, N is odd. We distinguish 3 cases regarding the parity of l, where the first corresponds to (a) and the other two to (b).

(i) If l = 4l � , then M = 4M � . In particular, we have gcd(1 + 2M � , M ) = 1. Therefore, we can take a Galois automorphism

� τ ∈ Gal(Q(ζ M )/Q) mapping ζ M � → ζ 1+2M � M . Since 2M � ≡ 2l � (mod l), we have that � τ maps ζ l � → ζ 1+2l � l . On the other hand, N is odd so N |M � and ζ N is invariant under the action of � τ . Hence V � τ = V and [1 + 2l � ]ω ∈ V . Choosing η = [2l � ]ω ∈ µ n 2 \ {1}, (a) holds. (ii) If l = 2l � with 2 � l � , then M = 2M � with 2 � M � .
In particular, we have gcd(2 + M � , M ) = 1. Therefore, we can extend σ to a Galois automorphism in

Gal(Q(ζ M )/Q), mapping ζ M � → ζ 2+M � M (this extends σ because N | M � , since N is odd). Since M � ≡ l � (mod l), we have that σ maps ζ l � → ζ 2+l � l . Hence [2 + l � ]ω ∈ V σ . Choosing η = [l � ]ω ∈ µ n 2 , (b) holds.
(iii) If 2 � l, then 2 � M . We have that σ can be extended to a Galois automorphism in Gal(

Q(ζ M )/Q) mapping ζ M � → ζ 2 M . In particular, σ maps ζ l � → ζ 2 l . Hence [2]ω ∈ V σ . Choosing η = 1, (b) holds. 2. By hypothesis 4 | N , so we also have 4 | M . Write N = 4N � and M = 4M � . Let � τ be an automorphism in Gal(Q(ζ M )/Q) mapping ζ M � → ζ 1+2M � M
. Let v 2 denote the 2-adic valuation. We distinguish 2 cases by comparing the 2-adic valuations of N and l, corresponding to (c) and (d) respectively.

(i) If v 2 (N ) < v 2 (l), then N | 2M � and l � 2M � . Write l = 4l � . Since 2M � ≡ 2l � (mod l), we have that � τ maps ζ l � → ζ 1+2l � l
. On the other hand, 2M � ≡ 0 (mod N ) and so � τ fixes

Q(ζ N ). Hence V � τ = V and [1 + 2l � ]ω ∈ V . Choosing η = [2l � ]ω ∈ µ n 2 \ {1}, we obtain that (c) holds. (ii) If v 2 (N ) ≥ v 2 (l), then N � 2M � . We have that either 2M � ≡ 0 (mod l) or, if not, 2M � ≡ l/2 (mod l), therefore [2M � ]ω ∈ µ n 2 .
On the other hand, 2N � ≡ 2M � (mod N ) and so � τ is an extension of τ . Hence [

2M � + 1]ω ∈ V τ . Choosing η = [2M � ]ω, (d) holds.
Remark. The particular case when the field of definition of V is Q is covered in Lemma 1.2.5. It corresponds to point 1, taking N = 1 and σ = Id.

When considering an irreducible variety V ⊂ G n m defined over an abelian extension of Q, this lemma lays the groundwork for an equivalent result to Proposition 1.2.4. We provide an explicit construction of a variety V � containing V tors but not V . For this last condition a good control over the stabilizer of V is necessary. Proposition 1.2.6. Let V ⊂ G n m be an irreducible variety of positive dimension, defined over an abelian extension K of Q such that V tors � = V . Let N be as in (1.2.2) and suppose that N = N K . Let r = codim(Stab(V )) and ϕ :

G n m → G r m a homomorphism such that Stab(V ) = Ker(ϕ). 1. If 4 � N , then V tors ⊂ V � = � η∈µ r 2 \{1} (ϕ -1 (η)V ) ∪ � η∈µ r 2 [2] -1 (ϕ -1 (η)V σ ), where σ ∈ Gal(Q(ζ N )/Q), mapping ζ N � → ζ 2 N . Moreover V � ∩ V � V . 2. If N = 4N � , then V tors ⊂ V � = � η∈µ r 2 \{1} (ϕ -1 (η)V ) ∪ � η∈µ r 2 (ϕ -1 (η)V τ ), where τ ∈ Gal(Q(ζ N )/Q), mapping ζ N � → ζ 1+2N � N . Moreover V � ∩ V � V .
The expressions of V � in the proposition are set-theoretical, and in fact they are the finite union of (2 r -1) + 2 r varieties, see point (iii) of Corollary 1.2.3.

Proof. To show the inclusion V tors ⊂ V � , it is enough to prove that every torsion point in V lies also in V � . Torsion is preserved by homomorphisms, so ϕ(V tors ) = ϕ(V ) tors , and we may apply Lemma 1.2.5 to ϕ(V ). If 4 � N , then by taking the union of all the varieties that come from points (a) and (b) of said lemma, we obtain that

ϕ(V tors ) ⊂ � η∈µ r 2 \{1} η • ϕ(V ) ∪ � η∈µ r 2 [2] -1 (η • ϕ(V σ )).
By taking the preimage of the variety on the right by ϕ we obtain the V � in the statement.

In a similar way, we may apply case 2 in Lemma 1.2.5 to prove the second inclusion of the proposition.

To prove that V ∩ V � � V , we can assume that V has a trivial stabilizer since ϕ does not change the value of N . So ϕ = Id. We proceed by showing that V is not contained in any of the varieties that come from the lemma. First, since V has trivial stabilizer by hypothesis, η • V � = V for every η ∈ µ n 2 \ {1}, and so V ∩ η • V � V for all such η's. This deals with the varieties coming from (a) and (c).

To see that

V � [2] -1 (η • V σ ) for all η ∈ µ n 2 , we do it by explicitly computing the degrees. Assume that V ⊂ [2] -1 (η • V σ ), then [2](η 0 • V ) ⊂ η • V σ for every η 0 ∈ Ker[2] = µ n 2 . Thus � η 0 ∈µ n 2 η 0 • V ⊂ [2] -1 (η • V σ ).
Since V has trivial stabilizer, the variety on the left is a union of 2 n distinct varieties and so it has degree 2 n deg(V ). On the other side the variety has degree 2 codim(V ) deg(V ), see [START_REF] Hindry | Autour d'une conjecture de Serge Lang[END_REF]Lemme 6(i)]. The contradiction arises from the fact that codim(V ) < n. This deals the varieties arising from (b).

It is left to proof that V � = η • V τ for all η ∈ µ n 2 , which correspond to the varieties coming from (d). To do so, assume for instance that there is an equality and choose some

ξ ∈ µ n N \ {1} such that [2N � ]ξ = η. Then ξ τ = ξ • η and (ξ • V ) τ = ξ τ • V τ = ξ • V . This would mean that ξ • V is stable by τ and so it is defined over Q(ζ N ) τ = Q(ζ N/2
), which contradicts the minimality of N (1.2.2), and finishes the proof.

Algebraic interpolation

Let V ⊂ G n m be a variety of positive dimension. When V is irreducible, by using Propositions 1.2.4 and 1.2.6 we can explicitly construct an equidimensional variety V � of the same dimension that contains V tors and such that V ∩ V � � V . The degree of V � can be easily computed. In the case that V is not defined over Q ab , the degree of V � is the same as the one of V . On the other hand, if the field of definition of V is an abelian extension of Q we may use [START_REF] Hindry | Autour d'une conjecture de Serge Lang[END_REF]Lemme 6(i)] and obtain the following two cases depending on the parity of N :

1. if 2 � N , then deg(V � ) = (2 r -1) deg(V ) + 2 r 2 codim(V ) deg(V ), 2. if 4 | N , then deg(V � ) = (2 r -1) deg(V ) + 2 r deg(V ),
where r = codim G n m (Stab(V )). The idea to apply straightforwardly Bézout's theorem yields a bound on the number of maximal torsion cosets. If V is a non-torsion ddimensional variety defined over Q, such that dim(Stab(V )) = dim(V ) -1, we retrieve the optimal bound this method gives:

deg(V tors ) ≤ (2 n-d+1 + 2 2n-2d+1 -1) deg(V ) 2 .
(1.2.3)

In the particular case when n = 2 and V is a curve we have that the number of torsion points of V is at most 11 deg(V ) 2 , which corresponds to the bound given by Beukers and Smyth [START_REF] Beukers | Cyclotomic points on curves[END_REF], see (1.1.1). However, the iteration of this method does increase the exponent of deg(V ) exponentially, which motivates the use of the following definition.

Definition 1.2.7. Let V be a subvariety of G n m . We define the degree of definition of V as the minimal degree δ such that V is the intersection of hypersurfaces of degree at most δ, and we denote it by δ(V ).

We also define the degree of incomplete definition of V as the minimal degree δ 0 such that there exists a variety X that is the intersection of hypersurfaces of degree at most δ 0 , such that any irreducible component of V is a component of X. We denote it by δ 0 (V ).

Lemma 1.2.8. If V ⊂ G n
m is defined over K, then δ(V ) and δ 0 (V ) can be realized by hypersurfaces defined over K.

Proof. Let I be an ideal in K[x 1 , . . . , x n ] whose zero set is V , and let I ⊗ C be the ideal in C[x 1 , . . . , x n ] defined by base change. Since K is perfect we can apply [12, Chapitre 5, §15.5 Théorème 3(d)] to obtain the equality

√ I ⊗ C = √ I ⊗ C. Hence the radical ideal I(V ) in C[x 1 , . . . , x n ] defining V equals √ I ⊗ C
, and is defined over K. For δ ≥ 0, denote by I(V ) ≤δ ⊂ C[x 1 , . . . , x n ] the subspace of the polynomials in I(V ) of degree at most δ. Since I(V ) is defined over K, also is

I(V ) ≤δ .
The definition of δ(V ), is equivalent to the minimal δ such that the zero set of I(V ) ≤δ equals V . On the other hand, the definition of δ 0 (V ) is equivalent to the minimal δ such that the zero set of I(V ) ≤δ equals V ∪ W , for some subvariety W ⊂ G n m such that V � ⊂ W . Then the lemma follows from the fact that I(V ) ≤δ is defined over K.

Let V an equidimensional variety of dimension d. Given a general linear map � : P n → P d+1 , the image of V by � is a hypersurface of degree at most deg(V ). We can take the pull-back of this hypersurface by �, which gives a hypersurface of degree at most deg(V ) containing V . Then V is (as a set) intersection of all hypersurfaces obtained in this way. This shows that δ(V ) ≤ deg(V ). Moreover,

δ 0 (V ) ≤ δ(V ) ≤ deg(V ) ≤ δ 0 (V ) codim(V ) ,
where the first inequality follows from Definition 1.2.7, and the last one from [66, Corollaire 5]. Notice that, when intersecting V with a hypersurface, the definition of δ gives δ(V ∩ Z) ≤ max{δ(V ), deg(Z)}, and the same is true for δ 0 . The behaviour of δ 0 is however more subtle with regard of the union of varieties. Let us recall first an easy lemma for the degree of definition.

Lemma 1.2.9. Let X 1 , . . . , X t be subvarieties of G n m . Then

δ � t � i=1 X i � ≤ t � i=1 δ(X i ).
Proof. It is enough to prove it for t = 2. Let X 1 be defined by polynomials f 1 , . . . , f r with deg(f i ) ≤ δ(X 1 ), and X 2 be defined by g 1 , . . . , g s with deg(g i ) ≤ δ(X 2 ). Then X 1 ∪ X 2 is defined by the polynomials f i g j for 1 ≤ i ≤ r and 1 ≤ j ≤ s.

In general, this result is not true if we use δ 0 instead of δ. To have a similar lemma for δ 0 , we must therefore consider more specific varieties. The following is a variation of [3, Lemma 2.5], which takes into account the action of Galois automorphisms on the computation of δ 0 of a variety. Lemma 1.2.10. Let V be an irreducible subvariety of G n m . Let M > 2 be a positive integer, and ζ M be a primitive M -th root of unity, such that V is defined over

Q(ζ M ). Let T ⊂ µ n M × Gal(Q(ζ M )/Q) be a finite set with t elements. Then δ 0 � � (g,φ)∈T gV φ � ≤ tδ 0 (V ).
Proof. Throughout this proof, we say that an irreducible variety

W ⊂ G n m is imbedded in a variety X ⊂ G n m if W ⊂ X but W is not an irreducible component of X. Notice that for any two g 1 , g 2 ∈ µ n M and any two φ 1 , φ 2 ∈ Gal(Q(ζ M )/Q), we have that g 2 (g 1 V φ 1 ) φ 2 = g 2 φ -1 2 (g 1 )V φ 1 φ 2 . This endows µ n M � Gal(Q(ζ M )/Q
) with a natural structure of semidirect product, given by

(g 1 , φ 1 ) • (g 2 , φ 2 ) = (φ -1 2 (g 1 )g 2 , φ 1 φ 2 ).
By definition of δ 0 (V ), there exists a variety X such that V is an irreducible component of X and δ 0

(V ) = δ(X). Let G = �a • b -1 | a, b ∈ T � ⊂ µ n M � Gal(Q(ζ M )/Q), and 
S = {(g, φ) ∈ G | gV φ is imbedded in X}. Notice that (φ(g -1 ), φ -1 ) is the inverse of (g, φ) ∈ µ n M � Gal(Q(ζ M )/Q). Consider � X = X ∩ � � (g,φ)∈S φ(g -1 )X φ -1 � .
We have that V is an irreducible component of � X and δ( � X) = δ(X) = δ 0 (V ). Moreover, no gV φ is imbedded in � X, for (g, φ) ∈ G. Assume by contradiction that there is a gV φ imbedded in � X. Since � X ⊂ X, gV φ is imbedded in X and so (g, φ) ∈ S. By induction, we suppose (g n , φ n ) = (g, φ) n ∈ S for some n ≥ 1. Then � X ⊂ φ n (g -1 n )X φ -n and so gV φ is imbedded in φ n (g -1 n )X φ -n ; which implies (g n+1 , φ n+1 ) = (g, φ) n+1 ∈ S. Therefore, (g, φ) n ∈ S for every n ∈ N >0 . In particular, taking n = ord((g, φ)) we have that (1, Id) ∈ S, which is a contradiction.

Next we define

Y = � (g,φ)∈T g � X φ .
Then � (g,φ) gV φ ⊂ Y and δ(Y ) ≤ tδ( � X) = tδ 0 (V ) by Lemma 1.2.9. Moreover, no gV φ is imbedded in Y , for (g, φ) ∈ T . Assume by contradiction that there is a (g, φ) ∈ T such that gV φ is imbedded in Y . Then, there exists some (g

0 , φ 0 ) ∈ T such that gV φ is imbedded in g 0 � X φ 0 . Thus φ 0 (g -1 0 )(gV φ ) φ -1 0 = φ 0 (g -1 0 g)V φ -1 0 φ is imbedded in � X and, since (g, φ) • (g 0 , φ 0 ) -1 = (φ 0 (g -1 0 g), φ -1 0 φ) ∈ G, this contradicts the definition of � X.
Remark 1.2.11. It is possible to give a slightly more general version of this statement, taking T a finite subset in µ n ∞ × Gal(Q/Q). The proof follows as the one of Lemma 1.2.10 after setting M to be the smallest integer satisfying that every element (g, φ) ∈ T is such that g ∈ µ n M , and

(Q ab ) φ ⊂ Q(ζ M
). This generalization is not needed in our application of Lemma 1.2.10.

The following lemma is a key ingredient in the proof of Theorem 1.2.16 for varieties defined over abelian extensions of Q.

Let the closure of V in P n be defined by the homogeneous radical ideal I in

C [x 0 , . . . , x n ]. For ν ∈ N, denote by H(V ; ν) the Hilbert function dim(C[x 0 , . . . , x n ]/I) ν .
Notice that if V is defined over K, also is I as shown in the proof of Lemma 1.2.8. Hence, for ν ∈ N, one can define the Hilbert function H(V ; ν) as dim(K[x 0 , . . . , x n ]/I) ν , since this value is invariant by base change.

The following sharp upper bound for the Hilbert function is a theorem of Chardin [START_REF] Chardin | Une majoration de la fonction de Hilbert et ses conséquences pour l'interpolation algébrique[END_REF].

Theorem 1.2.12. Let V ⊆ G n m be an equidimensional variety of dimension d = nk, and let ν ∈ N. Then

H(V ; ν) ≤ � ν + d d � deg(V ).
On the other hand, as a consequence of a result of Chardin and Phillipon [24, Corollaire 3] on Castelnuovo's regularity, we have the following lower bound for the Hilbert function.

Theorem 1.2.13. Let V ⊆ G n m be an equidimensional variety of dimension d = nk, and m = k(δ 0 (V ) -1). Then, for any integer ν > m, we have

H(V ; ν) ≥ � ν + d -m d � deg(V ).
By means of these bounds, we aim to infer from Propositions 1.2.4 and 1.2.6 a hypersurface Z of degree δ 0 (V ) up to a multiplicative factor depending only on n and the dimension of V , such that V tors ⊂ V ∩ Z � V . We first present the following intermediate result which we use for varieties defined over abelian extensions of Q.

Lemma 1.2.14. Let V ⊆ G n m be an irreducible variety of dimension d = n -k. Let M > 2 be a positive integer, and fix ζ M a primitive M -th root of unity, such that V is defined over Q(ζ M ). Let φ ∈ Gal(Q(ζ M )/Q) and let η ∈ µ n M . (a) If ηV φ � = V , then there exists a homogeneous polynomial F ∈ Q ab [x 0 , . . . , x n ] of degree at most 2k(2d + 1)δ 0 (V ) such that F ≡ 0 on ηV φ and F � ≡ 0 on V . (b) If V � ⊂ [2] -1 (ηV φ ), then there exists a homogeneous polynomial G ∈ Q ab [x 0 , . . . , x n ] of degree at most 2 n k(2d + 1)δ 0 (V ) such that G ≡ 0 on [2] -1 (ηV φ ) and G � ≡ 0 on V .
Proof. The proof of both cases is similar; however we choose to discuss both of them for the subtleties.

(a) Since V is an irreducible variety, ηV φ is also irreducible and of the same degree. By Theorem 1.2.12 we get, for any ν ∈ N,

H(ηV φ ; ν) ≤ � ν + d d � deg(V ).
On the other hand, let V � = V ∪ ηV φ . This is a d-equidimensional variety of degree 2 deg(V ). Thereby, using Theorem 1.2.13 we have, for any ν > m,

H(V � ; ν) ≥ � ν + d -m d � 2 deg(V ),
where m = k(δ 0 (V � ) -1). In particular, m ≤ 2kδ 0 (V ) due to Lemma 1.2.10. Fixing ν = m(2d + 1), we obtain the following inequalities

� ν + d d � � ν + d -m d � -1 = (2dm + m + d)! (2dm + d)! • (2dm)! (2dm + m)! = d � j=1 (v + j) (v -m + j) ≤ � 1 + m ν -m � d = � 1 + 1 2d � d ≤ e 1/2 < 2.
Hence, we have H(ηV φ ; ν) < H(V � ; ν).

This implies that there exists a homogeneous polynomial F of degree ν such that F ≡ 0 on ηV φ , and

F � ≡ 0 on V � = ηV φ ∪ V . In particular F � ≡ 0 on V . Moreover, deg(F ) = ν ≤ 2k(2d + 1)δ 0 (V ).
Notice that ηV φ and V are defined over Q ab , so one can choose F with coefficients in Q ab . This proves (a).

(b) Let W = [2] -1 (ηV φ )
. This is a d-equidimensional variety of degree 2 k deg(V ). By Theorem 1.2.12 we get, for any ν ∈ N,

H(W ; ν) ≤ � ν + d d � 2 k deg(V ).
On the other hand, consider

H = [2] -1 Stab(V ) = Stab([2] -1 (V )), and let W � = � η∈H η • V . In fact if r = codim G n m (Stab(V )), taking ϕ as in Corollary 1.2.3, we have that H/ Stab(V ) � ϕ(H) = [2] -1 Stab(ϕ(V )) = µ r 2 .
This variety W � is also a d-equidimensional variety of degree 2 r deg(V ), and k < r ≤ n. Thereby, using Theorem 1.2.13 we have, for any ν > m,

H(W � ; ν) ≥ � ν + d -m d � 2 r deg(V ),
where m = k(δ 0 (W � ) -1). In particular, m ≤ 2 n kδ 0 (V ) due to Lemma 1.2.10. Fixing ν = m(2d + 1), we obtain the following inequalities

� ν + d d � � ν + d -m d � -1 ≤ e 1/2 < 2 r-k .
Hence, we have H(W ; ν) < H(W � ; ν).

This implies that there exists a homogeneous polynomial � G of degree ν such that

� G ≡ 0 on W = [2] -1 (ηV φ
), and � G � ≡ 0 on W � . In particular, there exists an

η 0 ∈ H such that � G � ≡ 0 on η 0 V . Notice also that since W and W � are defined over Q ab , one can choose � G to have coefficients in Q ab . Let G(x) = � G(η 0 • x) ∈ Q ab [x 0 , . . . , x n ]. We have that G ≡ 0 on η -1 0 [2] -1 (ηV φ ). Since the stabilizer is an algebraic subgroup, we have Stab([2] -1 (ηV φ )) = [2] -1 Stab(ηV φ ) = [2] -1 Stab(V φ ) = [2] -1 Stab(V ) = H. In particular, η -1 0 ∈ Stab([2] -1 ηV φ ). So G ≡ 0 on [2] -1 (ηV ). In addition, G � ≡ 0 on η -1 ηV = V . Moreover, deg(G) = ν ≤ 2 n k(2d + 1), which proves (b).
Notice that the cases of this result cover all the irreducible components of the varieties V � arising from Proposition 1.2.6. Since we use Lemma 1.2.10 in the proof, technically it does not include the variety of Proposition 1.2.4. We state the following lemma to cover also this case.

Lemma 1.2.15. Let V ⊂ G n m be an irreducible variety of dimension d = n -k, defined over a finite Galois extension K of Q. Let φ ∈ Gal(K/Q) such that V φ � = V . Then there exists a homogeneous polynomial F ∈ K[x 0 , . . . , x n ] of degree at most 2k(d + 1)δ 0 (V ) such that F ≡ 0 on V φ and F � ≡ 0 in V .
Proof. First of all, we prove that δ 0 (V ∪ V φ ) ≤ 2δ 0 (V ), following the same inductive argument as in Lemma 1.2.10. By the definition of δ 0 , there exists a variety X such that V is an irreducible component of X and δ(X

) = δ 0 (V ). Let S = {ψ ∈ �φ� | V ψ is imbedded in X} and consider � X = X ∩ � ψ∈S X ψ -1 . We have that V is an irreducible component of � X and δ( � X) = δ(X) = δ 0 (V ). Moreover V ψ is not imbedded in �
X, for ψ ∈ �φ�, by the same inductive argument as in Lemma 1.2.10. If there was a φ ∈ �φ� such that

V ψ is imbedded in � X ⊂ X, this would imply that V ψ is imbedded in X and so ψ ∈ S. By induction, if ψ n ∈ S for some n ≥ 1, � X ⊂ X ψ -n . Hence V ψ is imbedded in X ψ -n ,
and so ψ n+1 ∈ S. Therefore �φ� = S; in particular Id ∈ S, which is a contradiction.

Next, for

Y = � X ∪ � X φ ,
we have that V and V φ are irreducible components of Y and δ(Y ) = 2δ 0 (V ). Hence

δ 0 (V ∪ V φ ) ≤ 2δ 0 (V ).
The proof of the existence of a polynomial as in the statement is as the one of Lemma 1.2.14(a).

The following theorem may be considered as a specialization of [2, Theorem 2.1] to torsion subvarieties.

Theorem 1.2.16. Let V ⊂ G n m be an irreducible variety of dimension d = n -k > 0, defined over Q, such that V tors � = V . Let θ 0 = θ 0 (V ) = k(2 2n + 2 n+1 -2)(2d + 1)δ 0 (V ). Then V tors is contained in a hypersurface Z defined over Q of degree at most θ 0 , which does not contain V ; that is V tors ⊂ V ∩ Z � V .
Proof. Let K be the field of definition of V . When K is an abelian extension of Q, we may distinguish both cases arising in Proposition 1.2.6. Let N be as in (1.2.2). Since (ξ • V ) tors = ξ • V tors , after possibly translating the hypersurface Z by ξ -1 , we can assume that N = N K .

1. If 2 � N , by Proposition 1.2.6(1) we have that

V tors ⊂ V � = � η∈µ r 2 \{1} ϕ -1 (η)V ∪ � η∈µ r 2 [2] -1 (ϕ -1 (η)V σ ), where σ ∈ Gal(Q(ζ N )/Q) maps ζ N � → ζ 2 N ; and V � ∩ V � V . For each η ∈ µ r 2 \ {1} we have that V � = ϕ -1 (η)V . By Lemma 1.2.14(a)
, we obtain a hypersurface Z η defined over Q ab of degree at most 2k(2d + 1)δ 0 (V ) such that ϕ -1 (η)V ⊂ Z η , and V � ⊂ Z η . Moreover, for each η ∈ µ r 2 , we also have that

V � ⊂ [2] -1 (ϕ -1 (η)V σ ), since V ∩ V � � V . Thus, by Lemma 1.2.14(b), we obtain a hypersurface Z � η defined over Q ab of degree at most 2 n k(2d + 1)δ 0 (V ) such that [2] -1 (ϕ -1 (η)V σ ) ⊂ Z � η , and V � ⊂ Z � η .
For the union of these hypersurfaces

Z = � η∈µ r 2 \{1} Z η ∪ � η∈µ r 2 Z � η ,
we have then

deg(Z) ≤ � η∈µ r 2 \{1} 2k(2d + 1)δ 0 (V ) + � η∈µ r 2 2 n k(2d + 1)δ 0 (V ) ≤ θ 0 and V tors ⊂ V ∩ V � ⊂ V ∩ Z � V .
2. If 4 | N , by Proposition 1.2.6(2) we have that

V tors ⊂ V � = � η∈µ r 2 \{1} ϕ -1 (η)V ∪ � η∈µ r 2 ϕ -1 (η)V τ , where τ ∈ Gal(Q(ζ N )/Q) maps ζ N � → ζ 1+2N � N ; and V � ∩ V � V .
We proceed as in (1), and by using Lemma 1.2.14(a) for each irreducible component of V � , we obtain a hypersurface Z defined over

Q ab such that deg(Z) ≤ � η∈µ r 2 \{1} 2k(2d + 1)δ 0 (V ) + � η∈µ r 2 2k(2d + 1)δ 0 (V ) ≤ δ 0 ,
and

V tors ⊂ V ∩ V � ⊂ V ∩ Z � V . Whenever K � ⊂ Q ab , by Proposition 1.2.4 we have that V tors ⊂ V ∩ V ς � V , for any non-trivial ς ∈ Gal(K/(Q ab ∩K)). Since V � = V ς , by Lemma 1.2.15 there is a hypersurface Z defined over K of degree at most 2k(2d + 1)δ 0 (V ) ≤ θ 0 such that V tors ⊂ V ∩ Z � V . This concludes the proof.
Notice that this should not be used in the case of treating curves, since the direct approach yields already an optimal bound, see (1.2.3). This theorem proves useful in treating varieties of higher dimension where an iterative application of Bézout's theorem only leads a bound with an exponential exponent for deg(V ).

Induction theorems

In this section we present the first main result of this chapter. Both of the proofs we give in this section follow the same lines as the ones of Theorems 2.2 and 1.2 in [2].

First, we state a theorem which serves as an intermediate result.

Theorem 1.2.17.

Let V 0 ⊂ V 1 be subvarieties of G n m , such that V 0 is irreducible, and V 1 is defined over Q. Let codim(V i ) = k i , i = 0, 1. Then, if V 0 � ⊂ V 1,tors , there exists a hypersurface Z ⊂ G n m defined over Q of degree at most θ such that V 0 � Z and V 0,tors ⊆ Z, where θ = ((2n -1)k 0 (2 2n + 2 n+1 -2)) k 0 -k 1 +1 δ(V 1 ).
Proof. Assume that the statement in the theorem is false; that is, if Z is a hypersurface defined over Q of degree at most θ containing V 0,tors , then it contains the whole variety V 0 . We proceed by building a chain of varieties

X k 1 = V 1 ⊇ • • • ⊇ X k 0 +1
satisfying, for every r = k 1 , . . . , k 0 + 1, the following:

(i) V 0 ⊂ X r , (ii) each irreducible component of X r containing V 0 has at least codimension r.
If a such chain exists, then there is an irreducible component of X k 0 +1 which is at least of codimension k 0 + 1 containing V 0 . This yields a contradiction since the codimension of V 0 is k 0 , and concludes the proof.

We construct a chain like this by recursion. We demand X r to satisfy the following additional property for each X r , r = k 1 , . . . , k 0 + 1:

(iii) δ(X r ) ≤ D r , where D r = (k 0 (2 2n + 2 n+1 -2)(2n -1)) r-k 1 δ(V 1 ).
First, notice that for r = k 1 we already have that for the variety X k 1 properties (i)-(iii) hold.

Next, let us assume that for r ≥ k 1 we have constructed the variety X r in the chain, and write X r = W 1 ∪ • • • ∪ W t where the W j 's are the irreducible components of X r .

After possibly renumbering, by (i) there exists an s ≥ 1 such that V 0 ⊂ W j if and only if 1 ≤ j ≤ s. By the hypothesis of the theorem, V 0 � ⊂ V 1,tors , no W j can be a torsion coset for j = 1, . . . , s. Moreover, for these j's, we have codim(W j ) ≤ k 0 since V 0 ⊂ W j , and δ 0 (W j ) ≤ δ(X r ). Thus, for every j = 1, . . . , s, Theorem 1.2.16 gives a hypersurface Z j defined over Q such that

deg(Z j ) ≤ k 0 (2 2n + 2 n+1 -2)(2n -1)δ(X r ) ≤ D r+1 , and 
W j,tors ⊂ W j ∩ Z j � W j . (1.2.4)
The inclusion V 0 ⊂ W j also gives an inclusion of their respective torsion subvarieties. Hence Z j is a hypersurface of degree at most D r+1 ≤ θ containing V 0,tors . By the assumption in the proof, this implies that V 0 ⊂ Z j . With these Z j 's, we define

X r+1 = X r ∩ � j=1,...,s Z j ,
which is defined over Q. Since V 0 ⊂ Z j , for all j = 1, . . . , s, we have that V 0 ⊂ X r+1 , satisfying therefore property (i). To show that property (ii) holds for X r+1 , first observe that the only irreducible components of

X r+1 containing V 0 are irreducible components of W j ∩ Z 1 ∩ • • • ∩ Z s for every j ≤ s.
By construction of X r we have that codim(W j ) ≥ r for j ≤ s, since V 0 ⊂ W j for these j's. Therefore, the second inclusion in (1.2.4) gives codim(W j ∩ Z j ) ≥ r + 1, and so item (ii) is satisfied for r + 1. Finally, property (iii) comes from the following inequalities

δ(X r+1 ) ≤ max{δ(X r ), deg(Z 1 ), . . . , deg(Z s )} ≤ D r+1 .
Theorem 1.2.18. Let V ⊂ G n m be a variety of dimension d > 0. For j = 0, . . . , d, let V j tors denote the j-equidimensional part of V tors . Then, for every j = 0, . . . , d ,

deg(V j tors ) ≤ c n,j δ(V ) n-j , where c n,j = ((2n -1)(n -1)(2 2n + 2 n+1 -2)) d(n-j) . Proof. First, assume that V is defined over Q. Write V = X 0 ∪ • • • ∪ X d ,
where X j are the j-equidimensional part of V , for j = 0, . . . , d. For simplicity of notation, let us fix

θ = ((2n -1)(n -1)(2 2n + 2 n+1 -2)) d δ(V ).
The key element is to prove the following inequality

d � j=0 θ j deg(V j tors ) ≤ d � j=0 θ j deg(X j ). (1.2.5)
We then apply a result of Philippon [66, Corollaire 5] as we detail next. With the notation as it appears loc. cit., we take m = n, S = P n , δ = θ and Z 1 , . . . , Z l hypersurfaces of degree at most δ(V ) ≤ θ that define V . By the definition of d ϕ in [66, p. 347], when we apply Corollaire 5 in loc. cit. to

S l = P n • Z 1 • • • Z l , we obtain d � j=0 θ j deg(X j ) ≤ θ n .
From this inequality follows, for every j = 0, . . . , d,

deg(V j tors ) ≤ θ n-j = c n,j δ(V ) n-j ,
proving the theorem.

The strategy to show inequality (1.2.5) is to build inductively a family of varieties Y d , . . . , Y 0 satisfying, for each r = d, . . . , 0, the following:

(i) Y r is r-equidimensional, (ii) V tors ⊆ V d tors ∪ • • • ∪ V r+1 tors ∪ Y r ∪ X r-1 ∪ • • • ∪ X 0 , (iii) 
� d j=r+1 θ j-r deg(V j tors ) + deg(Y r ) ≤ � d j=r θ j-r deg(X j ), (iv) every irreducible component of Y r intersects V tors , and is not contained in V d tors ∪ • • • ∪ V r+1 tors . Then inequality (1.2.5) is deduced by the inclusion V 0 tors ⊂ Y 0 , which gives deg(V 0 tors ) ≤ deg(Y 0 ).
Notice first that for r = d, X d already satisfies (i)-(iii). We thus set Y d to be the union of all irreducible components of X d satisfying (iv). Next, let us assume that for 0 < r ≤ d we already have a variety Y r satisfying these properties and write

Y r = V r tors ∪ W 1 ∪ • • • ∪ W s , for some s ≥ 0,
where the W i 's are the irreducible components of Y r that are not in V r tors . Observe that if s = 0, X r-1 already satisfies (i)-(iii), so we may take Y r-1 to be the union of all irreducible components of X r-1 satisfying (iv). Hence we assume s > 0. Moreover, after possibly discarding some of these irreducible components, we can also assume that (iv) is satisfied. Hence, no W i is included in a torsion coset of V .

For each i = 1, . . . , s, we apply Theorem 1.2.17 to

V 0 = W i and V 1 = V ,
where

k 0 ≤ n -1, which gives a hypersurface Z i of degree at most θ such that W i , tors ⊂ W i ∩ Z i � W i . Then Krull's Hauptidealsatz implies that W i ∩ Z i is either empty or an (r -1)-equidimensional variety. We hence define Y r-1 = X r-1 ∪ � i=1,...,s (W i ∩ Z i ).
By construction, Y r-1 verifies properties (i) and (ii) for r -1. Moreover, by Bézout's theorem we have

deg(Y r-1 ) ≤ θ s � i=1 deg(W i ) + deg(X r-1 ). On the other hand, since Y r = V r tors ∪ W 1 ∪ • • • ∪ W s , we may replace the inequality above by deg(Y r-1 ) ≤ θ � deg(Y r ) -deg(V r tors ) � + deg(X r-1
).

The addition of

� d j=r θ j+1-r deg(V j tors ) on both sides of the inequality yields d � j=r θ j+1-r deg(V j tors ) + deg(Y r-1 ) ≤ d � j=r θ j+1-r deg(V j tors ) + θ � deg(Y r ) -deg(V r tors ) � + deg(X r-1 ) = θ � d � j=r+1 θ j-r deg(V j tors ) + deg(Y r ) � + deg(X r-1 ).
By property (iii) in the induction step for r, the sum can be bounded above, and therefore

θ   d � j=r θ j-r deg(V j tors ) + deg(Y r )   + deg(X r-1 ) ≤ d � j=r-1 θ j+1-r deg(X j ).
This shows that Y r-1 satisfies property (iii) for r -1, concluding the proof for V defined over Q.

To conclude the proof of the theorem, we have to deal with the case when V is not necessarily defined over Q. First we prove that if Z is a hypersurface defined over C, and Z � = � φ∈Aut(C/Q) Z φ where Aut(C/Q) denotes the automorphisms of C that fix the field Q, then Z � is a variety defined over Q. We do this in a similar fashion as Amoroso and Viada's proof of [3,Lemma 2.2].

Let

f ∈ C[x 1 , . . . , x n ] be a polynomial whose zero set is Z(f ) = Z, and write f = � r i=1 λ i f i , where f 1 , . . . , f r ∈ Q[x 1 , . . . , x n ] and λ 1 , . . . , λ r ∈ C are linearly independent over Q. Notice that, for every φ ∈ Aut(C/Q), Z φ is defined by the zeros of f φ = � r i=1 φ(λ i )f i , and in particular Z φ ⊃ Z(f 1 , . . . , f r ). Hence Z � ⊃ Z(f 1 , . . . , f r ). (1.2.6)
Moreover, since Q is a perfect field, by [12, Chapitre V, §15.6 Théorème 4(c)] there are

φ 1 , . . . , φ r such that det � φ j (λ i ) � i,j � = 0. So, for all x ∈ G n m , f φ j (x) = r � i=1 φ j (λ i )f i (x) = 0, ∀j = 1, . . . , r =⇒ f 1 (x) = • • • = f r (x) = 0. Hence Z � ⊂ � r j=1 Z φ j ⊂ Z(f 1 , . . . , f n ).
Together with (1.2.6), this gives Z � = Z(f 1 , . . . , f r ) and so Z � is defined over Q.

For V ⊂ G n m a variety of any dimension, write V as the intersection of Z 1 , . . . , Z t hypersurfaces defined over C. Notice that for every

φ ∈ Aut(C/Q), V φ = Z φ 1 ∩ • • • ∩ Z φ t . Then V � := � φ∈Aut(C/Q) V φ is defined over Q, since Z � j := � φ∈Aut(C/Q) Z φ j is defined over Q and V � = Z � 1 ∩ • • • ∩ Z � t .
In addition, V tors is defined over Q, so it is invariant by all the automorphisms in Aut(C/Q), and we have that V tors = V � tors . The statement of the theorem follows from the fact that δ(V � ) ≤ δ(V ) and dim(V � ) ≤ dim(V ).

Remark. Following the proofs of these theorems as presented by Amoroso and Viada [2] we obtain that δ 0 (H) ≤ θ, for each maximal torsion coset ω • H in V . Nevertheless, sharper bounds than this one are already known, for example [START_REF] Bombieri | Heights in Diophantine geometry[END_REF]Theorem 3.3.8] gives

δ(H) ≤ nδ(V ).
For a squarefree polynomial f ∈ C[x 1 , . . . , x n ], the degree of f is equal to the degree of definition of the variety given by f . This gives the weak version of the conjecture in (1.1.2). Via homomorphisms one can deduce Ruppert's conjecture from Theorem 1.2.18.

Corollary 1.2.19. Let f ∈ Q[x 1 , . . . , x n ] be a polynomial with deg x i (f ) = d i > 0, for i = 1, . . . ,
n, and V be the variety defined by the zeroes of f . Then the number of isolated torsion points in V is bounded above by

c n,0 n n d 1 • • • d n , where c n,0 = � (2n -1)(n -1)(2 2n + 2 n+1 -2) � n 2 -n .
Proof. For each j = 1, . . . , n, let D j = d 1 ...dn d j , and consider the homomorphism

[D 1 , . . . , D n ] : G n m -→ G n m (x 1 , . . . , x n ) � -→ � x D 1 1 , . . . , x Dn n � ,
corresponding to the diagonal matrix with coefficients D 1 , . . . , D n . The variety given by

f (x D 1 1 , . . . , x Dn n ) is W = [D 1 , . . . , D n ] -1 V , and deg x i (W ) = n � i=1 d i , for every i = 1, . . . , n.
Then, W is of degree at most n d 

#W 0 tors ≤ c n,0 (n d 1 . . . d n ) n . The result follows from the fact that #W 0 tors = # Ker([D 1 , . . . , D n ]) #V 0 tors .
In Theorem 1.2.18 we could have given a more precise bound, depending on the field of definition of the variety V . To understand this, first observe that the varieties V � we obtain in Propositions 1.2.4 and 1.2.6 are defined over the same field as V . Hence, in Theorem 1.2.16 we could consider changing the definition of θ 0 , depending on which field V is defined over. If the field of definition of V is an abelian extension of Q, sharpening the value of θ 0 does not change significantly our bound because the order of n in the constants c n,j 's remains essentially the same. However, in the case when V is not defined over Q ab , Theorem 1.2.16 holds also for

θ 0 = 2k(2d + 1)δ 0 (V ).
Using this definition of θ 0 in Theorems 1.2.17 and 1.2.18, we can improve the bound obtained in the latter. Hence, if V is not defined over Q ab , the number of isolated torsion points in V can be bounded above by

� 2(2n -1)(n -1) � n 2 -n δ(V ) n .

Proof of the conjectures

The idea to prove Aliev-Smyth's conjecture is to proceed similarly as in the proof of Corollary 1.2.19. Let f ∈ C[x 1 , . . . , x n ] be a polynomial with Newton polytope ∆, and V be the hypersurface given by f . Our aim is to give a homomorphism ϕ :

G n m → G n m , such that the determinant of the matrix representing ϕ is equal to κ n deg(ϕ -1 (V )) n , where
κ n only depends on n. This direct approach does not work if we want to deal with any polytope. Instead, we consider a family of homomorphisms ϕ l : G n m → G n m such that the limit lim

l→∞ deg(ϕ -1 l (V )) n det(ϕ l ) -1 only depends on n.
First, we state a result of John [43, Theorem III] which allows us to compare the volume of any convex polytope ∆ with the volume of the ellipsoid of smallest volume containing ∆.

Theorem 1.2.20. Let S ⊂ R n be a set such that its convex hull is of dimension n. If E is the ellipsoid of smallest volume containing S, then the ellipsoid E � which is concentric and homothetic to E at ratio 1 n is contained in the convex hull of S. An ellipsoid E in R n is determined by an invertible matrix M ∈ GL n (R) and a vector

v ∈ R n such that B n = M • E + v = {M • t + v | t ∈ E}, (1.2.7) 
where B n represents the n-dimensional unit ball with respect to the L 2 -norm, centered in 0. In particular, the volume of E is detemined by M :

vol n (E) = | det(M )| -1 ω n ,
where ω n is the n-volume of B n . For a polytope ∆ ⊂ R n with integer vertices and of dimension n, John's result gives a way of including some affine deformation of ∆ in a homothety of the standard simplex

∆ n = {t ∈ (R ≥0 ) n | t 1 + • • • + t n ≤ 1}
in such a way that both volumes differ by a multiplicative factor depending only on n. The next proposition gives explicit construction of such translations and integer linear transformations.

Proposition 1.2.21. Let ∆ ⊂ R n be a convex polytope with integer vertices and of dimension n. For any l ∈ N >0 , there exists a non-singular integer matrix M l ∈ GL n (Z) and an integer vector τ l such that

M l ∆ + τ l ⊂ 2n(l + √ n diam 1 (∆) + n)∆ n , (1.2.8)
where diam 1 (∆) represents the diameter of ∆ with respect to the L 1 -norm. Moreover, a family of such pairs {(M l , τ l )} l>0 can be taken so that

lim l→+∞ l n | det(M l )| -1 ≤ n n ω -1 n vol n (∆).
(1.2.9)

Proof. After possibly translating ∆ by an integer vector, we can always assume that

∆ ⊂ (R ≥0 ) n , and ∆ ∩ {t ∈ Z n | t i = 0} � = ∅, for every i = 1, . . . , n.
Thus for any matrix N ∈ M n×n (R) with maximum norm ||N || ≤ 1, we have

N ∆ ⊂ √ n diam 1 (∆)B n . (1.2.10)
Let E be the ellipsoid of smallest volume containing ∆, and M ∈ GL(R) and v ∈ R n be as in (1.2.7).

Next, choose M l ∈ GL(Z) and v l ∈ Z n to be integer approximations of lM and lv in the following sense:

M l = lM + M � , ||M � || < 1; v l = lv + v � , ||v � || < 1;
where || • || denote the respective maximum norms. Notice that, by inclusion (1.2.10) and the choice of matrices and vectors, we have

M l ∆ + v l ⊂ l(M • E + v) + M � ∆ + v � ⊂ lB n + √ n diam 1 (∆)B n + nB n .
Thus, translating by (l + √ n diam 1 (∆) + n)1, we guarantee that the above convex bodies are all included in (R ≥0 ) n . Therefore, taking

τ l = (l + √ n diam 1 (∆) + n)1 + v l ,
we obtain

M l ∆ + τ l ⊂ (l + √ n diam 1 (∆) + n)B n + (l + √ n diam 1 (∆) + n)1 ⊂ 2n(l + √ n diam 1 (∆) + n)∆ n .
It remains to prove that the inequation (1.2.9) holds for these M l 's and τ l 's. Using John's result (Theorem 1.2.20), we have that E � ⊂ ∆, where E � is an ellipsoid that is concentric and homothetic to E with ratio 1 n . In particular,

vol n (E � ) = n -n vol n (E) and vol n (E � ) ≤ vol n (∆). Therefore | det(M )| -1 = ω -1 n vol n (E) ≤ ω -1 n n n vol n (∆).
In addition, by our choice of M l , we have that

lim l→+∞ l n | det(M l )| -1 = | det(M )| -1 .
Inequality (1.2.9) follows then directly.

By means of this proposition, we can take the bound in Theorem 1.2.18 and prove the conjecture of Aliev and Smyth. Before that, let us define the notion of degree related to a convex polytope we use in the theorem (see also Definition 2.2.4 for an equivalent definition). Definition 1.2.22. Let ∆ ⊂ R n be a convex polytope with integral vertices. Given a variety V ⊂ G n m of dimension d, we define the degree associated to ∆ as

deg ∆ (V ) = #(V ∩ Z(f 1 , . . . , f d )),
where This definition coincides with the degree of V with respect to the toric divisor D associated to ∆. Then global sections of O(D) are related to Laurent polynomials with Newton polytope ∆, see (2.2.5) for the precise statement.

f 1 , . . . , f d ∈ C[x ±1 1 , . . . , x ±1 n ]
Notice that deg ∆ = deg ∆+λ for every integer λ ∈ Z n . Moreover, from the inclusion of polytopes

∆ 1 ⊂ ∆ 2 , it follows that deg ∆ 1 (V ) ≤ deg ∆ 2 (V ).
(1.2.11)

In particular, since the usual degree corresponds to deg

∆ n , if ∆ contains the standard simplex, we have deg(V ) ≤ deg ∆ (V ).
To deal with polytopes of dimension strictly lower than n, we have to consider a relative version of volume of the polytope instead of simply vol n . For ∆ ⊂ R n a convex polytope with integer vertices, not necessarily of dimension n, we consider Λ(∆) the lattice obtained after saturating the integer span of {λ 1 -

λ 2 | λ 1 , λ 2 ∈ ∆ ∩ Z n }.
Then, the relative volume of ∆, vol Λ(∆) (∆), is the volume of ∆ for the Haar measure on

Λ(∆) ⊗ Z R normalized such that Λ(∆) has covolume 1. Theorem 1.2.23. Let V ⊂ G n
m be a variety of dimension d. Let ∆ ⊂ R n be a convex polytope such V can be defined by polynomials in C[x ±1 1 , . . . , x ±1 n ] with support lying in ∆. For j = 0, . . . , d, let V j tors denote the j-equidimensional part of V tors . Then, for every

j = 0, . . . , d , deg ∆ (V j tors ) ≤ � c n,j vol Λ(∆) (∆),
where

� c n,j = 2 n n 2n ω -1 n ((2n -1)(n -1)(2 2n + 2 n+1 -2)) d(n-j)
, and ω n is the volume of the n-sphere.

Proof. If ∆ is not of dimension n, we reduce to the case of full dimension as follows. Fix a basis of Λ(∆), and complete it to a basis of Z n such that the covolume of the basis of Λ(∆) in Λ(∆) ⊗ R coincides with the covolume of the extended basis in R n . Then we can extend ∆ to a polytope � ∆ ⊂ R n of dimension n, by taking the Minkowski sum of ∆ with the vectors of the base extension. In particular, � ∆ is a convex polytope with integer vertices and such that ∆ is a facet of � ∆. By (1.2.11), this implies that

deg ∆ (W ) ≤ deg � ∆ (W ),
for any subvariety W ⊂ G n m . Moreover, since the base extension preserves the covolume of the respective bases, we have that vol Λ(∆) (∆) = vol n � ∆. Therefore, we can assume that ∆ is of dimension n.

Let M l and τ l be as in Proposition 1.2.21. Let ϕ l : G n m → G n m be the algebraic group endomorphism defined by M l , see (1.2.1). By the inclusion (1.2.8), for any polynomial

f ∈ C[x ±1 1 , . . . , x ±1 n ] with support supp(f ) ⊂ ∆, we have supp � f (ϕ l (x)) • x τ l � ⊂ 2n(l + √ n diam 1 (∆) + n)∆ n . So we have that f (ϕ l (x) • x τ l ) is of degree at most 2n(l + √ n diam 1 (∆) + n). Write W = ϕ -1 l (V ). We have that δ(W ) ≤ 2n(l + √ n diam 1 (∆) + n).
In addition, for every j = 0, . . . , d , we have that W j tors = ϕ -1 l (V j tors ). Then, for a fixed j, by Theorem 1.2.18, we have the following inequality:

deg(W j tors ) ≤ c n,j � 2n(l + √ n diam 1 (∆) + n) � n-j .
(1.2.12)

We proceed to compare deg(W j tors ) and deg ∆ (V j tors ). To do this, take generic Laurent polynomials f 1 , . . . , f j with Newton polytope ∆, and so

deg ∆ (V j tors ) = #(V j tors ∩ Z(f 1 , . . . , f j )).
Given a polynomial g, the zeroes of g(x) and g(x) • x τ l define the same variety. Hence

ϕ -1 l (V j tors ∩ Z(f 1 , . . . , f j )) = W j tors ∩ Z � f 1 (ϕ l (x)) • x τ l , . . . , f j (ϕ l (x)) • x τ l � .
Then, Bézout's theorem gives

# � W j tors ∩Z � f 1 (ϕ l (x))•x τ l , . . . , f j (ϕ l (x))•x τ l � � ≤ deg(W j tors ) � 2n(l+ √ n diam 1 (∆)+n) � j ,
and since #(ϕ

-1 l (y)) = | det(M l )| for any point y ∈ G n m , we have | det(M l )| deg ∆ (V j tors ) = #ϕ -1 l � V j tors ∩ Z(f 1 , . . . , f j ) � ≤ deg(W j tors ) � 2n(l + √ n diam 1 (∆) + n) � j .
Combining this inequality with the one in (1.2.12), we obtain

deg ∆ (V j tors ) ≤ c n,j (2n) n (l + √ n diam 1 (∆) + n) n | det(M l )| -1 . (1.2.13)
Finally, we use the inequality (1.2.9) and take the limit l → ∞ in (1.2.13) to conclude

deg ∆ (V j tors ) ≤ c n,j 2 n n 2n ω -1 n vol n (∆).
Notice that deg ∆ of 0-dimensional varieties does not depend on the polytope. Therefore, equation (1.1.5) is a direct consequence of this theorem.

Remark. Given V ⊂ G n m a variety defined by dense polynomials, that is their Newton polytopes are homotheties of the standard simplex; we observe that the bound coming from Theorem 1.2.18 and the one from Theorem 1.2.23 differ only by a multiplying factor 2 n n 2n ω n . This does not increase the order in n of the constants given by these theorems.

Both conjectures follow as a direct consequence to this theorem. Let V ⊂ G n m be a hypersurface given by a polynomial

f ∈ C[x 1 , . . . , x n ]. If we take ∆ = [0, d 1 ] × • • • × [0, d n ]
where (d 1 , . . . , d n ) is the multidegree of f , Theorem 1.2.23 for j = 0 proves Ruppert's conjecture (Conjecture 1.1.1). Even though a slightly better constant could be obtained directely from Theorem 1.2.18, see Corollary 1.2.19. On the other hand, if we take ∆ as the Newton polytope of f , Theorem 1.2.23 for j = 0 proves Aliev-Smyth's conjecture (Conjecture 1.1.2).

Example

We build an example to show that the dependence on the multidegree in Ruppert's conjecture (Conjecture 1.1.1) is optimal and the constant c n must depend on n. To do this, we first present a result of Conway and Jones on vanishing sums of roots of unity. Let us define, for m ∈ N >0 ,

Ψ(m) := 2 + � p|m p prime (p -2).
The theorem of Conway and Jones [26, Theorem 5] states the following.

Theorem 1.2.24. Let ξ 1 , . . . , ξ N be N roots of unity. Let a 1 , . . . , a N ∈ Z such that S = a 1 ξ 1 + . . . + a N ξ N = 0 is minimal; that is there are no non-trivial vanishing subsums of S. Let m = lcm(ord(ξ 2 /ξ 1 ), . . . , ord(ξ N /ξ 1 )).

Then Ψ(m) ≤ N .

We present the following consequence to this result, which we use in the construction of our example. Lemma 1.2.25. Let p 1 , . . . , p n be n different primes such that p i > n + 1 for every i = 1, . . . , n, and ω 1 , . . . , ω n be roots of unity such that

S := ζ p 1 + • • • + ζ pn + ω 1 + • • • + ω n = 0.
Then, up to reordering, S = S 1 + • • • + S n , where S i = ζ p i + ω i = 0, for every i = 1, . . . , n.

Proof. Let ζ p 1 + • • • + ζ pn + ω 1 + • • • + ω n = S 1 + • • • + S t , t ≥ 1,
be a decomposition in minimal vanishing and non-trivial subsums. We have to prove that each S j contains at most one term ζ p i .

If this is not the case, there exists a minimal vanishing subsum S with at least three elements. Without loss of generality, we may assume that ζ p 1 and ζ p 2 are summands of S. Then taking m as in Theorem 1.2.24, we have that

p 1 • p 2 |m. Therefore Ψ(m) ≥ Ψ(p 1 • p 2 ) = p 1 + p 2 -2 > 2n.
On the other hand, by the minimality of S, Theorem 1.2.24 implies that Ψ(m) ≤ 2n. This gives the contradiction that yields the proof.

Example 1.2.26. Let p 1 , . . . , p n be n different primes such that p i > n + 1, for every i = 1, . . . , n. Let W be the variety defined by the zeros of

g(x 1 , . . . , x n ) = x 1 + • • • + x n -(ζ p 1 + • • • + ζ pn ).
By Lemma 1.2.25, we have

W tors = � ω ∈ G n m | {ω 1 , . . . , ω n } = {ζ p 1 , . . . , ζ pn } � .
Thus, W tors = W tors is a finite set with n! elements. Let d 1 , . . . , d n ∈ N >0 , and consider the homomorphism associated to the diagonal matrix (d 1 , . . . , d n ):

[d 1 , . . . , d n ] : G n m -→ G n m x � -→ (x d 1 1 , . . . , x dn n ). Let V = [d 1 , . . . , d n ] -1 (W )
, which is the hypersurface in G n m defined by the zeros of

f (x 1 , . . . , x n ) = x d 1 1 + • • • + x dn n -(ζ p 1 + • • • + ζ pn ).
Then we have that the torsion subvariety of V is the preimage of W tors , which is

V tors = � ω ∈ G n m | {ω d 1 1 , . . . , ω dn n } = {ζ p 1 , . . . , ζ pn } � .
Which allows us to conclude that the number of (isolated) torsion points in

V is n!d 1 • • • d n ,
proving the dependence on the multidegree of Corollary 1.2.19 to be optimal.

A further remark can be made for the bounds on the number of j-dimensional torsion cosets that follow from Theorem 1.2.18, for positive values of j. Remark 1.2.27. Fix j = 1, . . . , n -1. Similar to the example above, we can construct a variety W ⊂ G n-j m such that W tors = W 0 tors is a set of (nj)! elements. Consider the group homomorpshism

ϕ : G n m -� G n-j m , (x 1 , . . . , x n ) � -→ (x d 1 , . . . , x d n-j ).
Then V = ϕ -1 (W ) is a variety with non trivial stabilizer, indeed Stab(V ) � G j m , and

V tors = � ω × G j m ⊂ G n-j m × G j m | [d]ω ∈ W tors � .
This implies that V tors is the union of (nj)!d n-j distinct j-dimensional torsion cosets, and shows also the optimality of the bound for positive dimensional torsion cosets in terms of the degree of the variety.

Bounds for the abelian Manin-Mumford

Let A be an abelian variety of dimension g defined over a number field K. After possibly replacing K by a finite algebraic extension, we assume that K satisfies that the l-adic representations attached to A are independent in the sense of Theorem 1.3.1, and all the simple factors of A are defined over K. Let ι : A �→ P n be a fixed closed immersion into a projective space some dimension n, given by a very ample symmetric line bundle. Moreover, we assume that i(A) is projectively normal subvariety of P n . When considering subvarieties of A they are defined over a fixed algebraic closure of K unless stated otherwise. Moreover, when we say that a variety is irreducible, we imply it is geometrically irreducible. This section is an analogy of the previous in the case of Abelian varieties, we may therefore choose to omit a complete exposition of some of the proofs due to its similarities to their toric analogues.

Galois action on torsion points

Although there seems to be a common behaviour between torsion points in the torus and in abelian varieties, the more complex structure of the latter ones also transpires in our setting.

First, to fix notations, we denote the multiplication map by k, with k ≥ 0, as the isogeny

[k] : A -→ A P � -→ k times � �� � P + • • • + P ,
whose kernel are the k-torsion points of A. The multiplication maps are defined by algebraic polynomials when we consider A as a subvariety of the projective space, which implies the algebraicity of torsion points.

As comparison with the previous section, a torsion point in the torus, being a vector of roots of unity, is always defined over a cyclotomic extension of Q, namely the

Q(ζ k )
where k is the order of the torsion point and ζ k a primitive k-th root of unity. Thus, the Galois action on torsion points in G n m is a well understood topic. However, this is not the case for abelian varieties. The field of definition of a torsion point is not straightforwardly determined, strongly depending on the choice of A. Nevertheless, Galois automorphisms fixing the base field K do not change the order of a torsion point. This motivates the study of �-adic representations attached to abelian varieties, which we briefly discuss below.

For a natural number k, the group of the k torsion points of A, denoted as A[k], is a Z/kZ-module. Given a prime �, we define the �-adic Tate module of A as

T � (A) = lim k ← - A[� k ],
which is a free Z � -module of rank 2g. The absolute Galois group of K, Gal(K/K), acts over T � (A) by a representation

ρ � : Gal(K/K) -→ Aut(T � (A)) � GL 2g (Z � )
which is induced by the Galois action on each A[� k ], k ≥ 0. For simplicity, we denote by G K,� the image by ρ � of the absolute Galois group of K. Bogomolov proved that G K,� contains an open subgroup of the homotheties Z * � of GL 2g (Z � ), see [7, Théorème 2] and [START_REF] Bogomolov | Points of finite order on abelian varieties[END_REF]. That is, for every prime �, the index 

c � = [Z * � : G K,� ∩ Z * � ] is finite. A long-
ρ = � � ρ � : Gal(K/K) -→ � � Aut(T � (A)) � GL 2g ( Ẑ).
The following result of Serre [80, Théorème 1] gives a way of glueing all these together. We refer to [81, Théorème 1] for a proof of the statement.

Theorem 1.3.1. There is a finite extension K � of K such that ρ : Gal(K � /K � ) → � � G K � ,� is surjective.
Indeed this finite extension K � of K depends on A. Without loss of generality, we may replace K by K � in the sequel. This, together with the existence of a bound for the c � 's for varying �, gives the following result which is also due to Serre [80, Théorème 2']. We refer to [85, Théorème 3] for a proof of the statement.

Theorem 1.3.2.

There is an integer c ≥ 1 such that if n and k are coprime positive integers, there is a Galois automorphism σ ∈ Gal(K/K) satisfying

σ |A[n] = [k c ] |A[n] . Remark 1.3.3.
The problem of finding an explicit effective expression for the constant c (and K � ) in terms of A is still open. Some advancements towards obtaining an explicit constant where made by Wintenberger in [START_REF] Wintenberger | Démonstration d'une conjecture de Lang dans des cas particuliers[END_REF], where he gives a proof of Theorem 1.3.2.

Giving an explicit value of c is also a simple instance of explicit versions of Mumford-Tate's conjecture on the closure of the whole ρ(Gal(K/K)). Recent results in this direction were made by Lombardo, who gave first explicit versions of Serre's open image theorem in [START_REF] Lombardo | Bounds for Serre's open image theorem for elliptic curves over number fields[END_REF]Theorem 9.1], and then extended to some more general cases. Nevertheless these results aim at a much more ambitious problem, and the bounds obtained do not seem suitable for our purpose of finding sharp bounds.

For a subvariety V ⊂ A, we define the stabilizer of V in A as

Stab(V ) = {P ∈ A(K) | P + V = V }.
As it was the case for the torus, we have dim(Stab(V )) ≤ dim(V ). When V is irreducible, the equality holds if and only if V is a translate of an irreducible algebraic subgroup of A. By Poincaré's irreducibility theorem, the abelian variety A is isogenous to a product of abelian varieties

B × Stab(V ) 0 (1.3.1)
where Stab(V ) 0 is the connected component of Stab(V ) containing 0, and B is an abelian subvariety of A. Then, by taking the quotient of A by Stab(V ) we obtain an abelian variety which is isogenous to B. By abuse of notation, we denote by B the abelian variety obtained by this quotient. So, there exists a surjective group homomorphism

ϕ : A -� B, (1.3.2) 
such that Ker(ϕ) = Stab(V ). In particular ϕ(V ) is a subvariety of B with trivial stabilizer. Up to replacing K by a finite extension, we can assume that all the simple factors of A are defined over K, and so is also ϕ. From here on forward, when we refer to the field K over which A is defined, we always assume that all the simple factors of A are also defined over K. Let V ⊂ A be a subvariety defined over K. We denote by K V the minimal algebraic extension of K such that V is defined over it, and then we say that V is defined over K V . In particular, if ϕ is as in (1.3.2), ϕ(V ) is also defined over K V .

The first case we need to consider is when K V is not contained in K(A tors ). Here K(A tors ) plays the role of Q ab in Proposition 1.2.4, yielding by the same arguments the following result.

Proposition 1.3.4. Let V ⊂ A be an irreducible variety of positive dimension that is not defined over K(A tors ). For every non-trivial automorphism ς ∈ Gal(K V /(K V ∩K(A tors ))), we have

V tors ⊂ V ∩ V ς � V.
The rest of this section is devoted to the case when K V ⊂ K(A tors ). This case is more involved because of the fields of definition of torsion points in abelian varieties. Denote by v 2 the 2-adic valuation of an integer, and

c 2 = v 2 (c),
with c the integer constant from Theorem 1.3.2. Fix M ≥ 1 the smallest integer such that

K V ⊂ K(A[M ]) and v 2 (M ) ≥ c 2 + 2. (1.3.3)
For every M -torsion point R ∈ A[M ], we consider the set N (R) of integers α > -v 2 (M ), such that there exists a Galois automorphism σ ∈ Gal(K/K) satisfying

σ |A[M ] = [(1 + 2 α M ) c ] |A[M ] and (V + R) σ = V + R.
Notice that α > -v 2 (M ) implies the coprimality of M and 1 + 2 α M . Henceforth, it enables the use of Theorem 1.3.2 to show in the first place the existence of a σ with a such restriction to A[M ].

Remark. For every non-negative α ∈ N (R), M and 1 + 2 α M are coprime, by Theorem 1.3.2 there exists a

σ ∈ Gal(K/K) such that σ |A[M ] = [(1 + 2 α M ) c ] |A[M ] . We have that (1 + 2 α M ) c ≡ 1 (mod M ). Thus, for each M -torsion point R ∈ A[M ] we have that [(1 + 2 α M ) c ]R = R. Moreover, since K V ⊂ K(A[M ]), this implies that (V + R) σ = V σ + R σ = V + R. Hence, N ⊂ N (R).
It then makes sense to take β(R) to be the biggest integer in Z \ N (R). Take

β = min R∈A[M ] β(R). (1.3.4)
In particular, we have -v 2 (M ) < β ≤ -1.

Since V tors + R = (V + R) tors for any torsion point R, throughout this paragraph we will continuously assume that β = β(0). Then, we define

N = 2 β+1 M. (1.3.5)
It is an integer since β ≥ -v 2 (M ), and in fact even. This integer plays the same role of the integer N defined in (1.2.2) for the toric case.

Let us give an easy computation on the behaviour of the 2-adic valuation of the coefficients in binomial expansions. Lemma 1.3.5. Let 2 ≤ γ ≤ δ be two integers. For any integer k with 2-adic valuation v 2 (k) ≥ 2, we have

v 2 �� δ γ � k γ � ≥ v 2 (k) + v 2 (δ) + 1. Proof. First, since γ, δ ≥ 1, we have � δ γ � = δ γ � δ -1 γ -1 � .
Thus, by developing we obtain

v 2 �� δ γ � k γ � ≥ v 2 (δ) -v 2 (γ) + γ v 2 (k) = v 2 (δ) + v 2 (k) + (γ -1)v 2 (k) -v 2 (γ).
Since v 2 (k) ≥ 2, the proof can be reduced to the simple verification of

2γ -2 -v 2 (γ) ≥ 1.
The statement follows then trivially by the choice of γ ≥ 2.

This allows us to better bound the value β.

Lemma 1.3.6. Let V ⊂ A, and β defined in (1.3.4). Then

β ≤ -c 2 -1.
In particular, for M and N as in (1.3.3) and (1.3.5), respectively, we have

v 2 (N ) + c 2 ≤ v 2 (M ).
Proof. The inequality is equivalent to showing that, for each R ∈ A[M ],

β(R) ≤ -c 2 -1.
This is trivially true when c 2 = 0. Assume c 2 ≥ 1. Fix an integer α ≥ -c 2 , we develop the binomial

(1 + 2 α M ) c = 1 + 2 α c M + c � γ=2 � c γ � (2 α M ) γ .
Notice that 2 α c ∈ N, because of the choice of α. Hence, M divides 2 α c M . Moreover, by (1.3.3), we have that v 2 (2 α M ) ≥ α + c 2 + 2 ≥ 2. Thus, Lemma 1.3.5 shows that, for every γ ≥ 2,

v 2 � � c γ � (2 α M ) γ � ≥ v 2 (M ) + α + c 2 + 1 > v 2 (M ), which gives that M divides � c γ � (2 α M ) γ , for γ ≥ 2.
We then have

[(1 + 2 α M ) c ] |A[M ] = Id . So β(R) ≤ -c 2 -1, for every R ∈ A[M ],
which concludes the proof.

With these tools we can give an explicit description of another subvariety containing V tors . Proposition 1.3.7. Let V ⊂ A be an irreducible subvariety of A defined over K(A tors ). Let M and β be the integers defined in (1.3.3) and (1.3.4), and assume that β attains its minimum at 0. Then there exist two Galois automorphisms σ, ρ ∈ Gal(K/K) whose respective restrictions to

A[M ] are σ |A[M ] = [(2 + 2 -v 2 (M ) M ) c ] |A[M ] and ρ |A[M ] = [(1 + 2 β M ) c ] |A[M ] , (1.3.6) 
such that

V � := � P ∈A[4c] � 2 c � -1 � V σ + P � ∪ � P ∈A[2] � V ρ + P � ∪ � P ∈A[2]\{0} � V + P ) � satisfies V tors ⊂ V � . Proof. Fix a torsion point Q ∈ V tors of order l ≥ 1.
The strategy of the proof starts by considering three different cases according to the 2-adic valuation of l. For each of these, we obtain a Galois automorphism whose action on A[l] can be easily described. If v 2 (l) ≤ c 2 + 2, we show that there is an element

σ ∈ Gal(K/K) such that Q σ ≡ [2 c ]Q (mod A[4c]). If c 2 + 2 < v 2 (l) ≤ c 2 + β + 1 + v 2 (M ), we show that there is an element ρ ∈ Gal(K/K) such that Q ρ ≡ Q (mod A[2]). If v 2 (l) > c 2 + β + 1 + v 2 (M ), we show that there is an element τ ∈ Gal(K/K) such that Q τ -Q ∈ A[2]
. Moreover, these automorphisms σ, ρ and τ can be chosen such that their restrictions to A[M ] are independent of Q and l; being this restriction as in (1.3.6) for σ and ρ, and τ |A[M ] = Id. In particular, the restriction to K V ⊂ K(A[M ]) does not depend on Q and l.

Before giving the details of the proof, we introduce the following notation:

m = lcm(l, M ), and m � = 2 -v 2 (m) m.
To have a certain control on the p-adic difference of l and M , for p > 2, we denote by

λ, µ ∈ Z two coefficients satisfying the Bézout identity (2 v 2 (M ) )λ + � m � 2 -v 2 (M ) M � µ = 1. Then m � µ ≡ 2 -v 2 (M ) M (mod M ) (1.3.7)
The fact that 2 � m � µ follows from the definition of M in (1.3.3) and is strongly used below. It should be kept in mind throughout the proof.

1. If v 2 (l) ≤ c 2 + 2, we make use of the fact that gcd(m, 2 + m � µ) = 1. Hence, by Theorem 1.3.2, there exists an autormorphism σ ∈ Gal(K/K) such that

σ |A[m] = [(2 + m � µ) c ] |A[m] .
This Galois automorphism maps Q to l) , for every γ = 1, . . . , c. In particular, we have [

Q σ = [2 c ]Q + � 1≤γ≤c � � c γ � 2 c-γ (m � µ) γ � Q (1.3.8) Firstly, since 2 � m � µ, we have that [(m � µ) γ ]Q is a point of order 2 v 2 (
� c γ � 2 c-γ (m � µ) γ ]Q ∈ A[2 c 2 +2
]. We derive from this that for some point

P ∈ A[2 c 2 +2 ] ⊂ A[4c] we have Q σ = [2 c ]Q -P.
On the other hand, by definition of M in (1.

3.3), v 2 (M ) ≥ c 2 + 2 ≥ v 2 (l). Therefore, v 2 (m) = v 2 (M ).
In addition, using the congruence in (1.3.7), we obtain

σ |A[M ] = [(2 + 2 -v 2 (M ) M ) c ] |A[M ] . 2. Assume next c 2 + 3 ≤ v 2 (l) ≤ c 2 + β + 1 + v 2 (M ) = c 2 + v 2 (N ), with N = 2 β+1 M as in (1.3.5). Since 2 ≤ v 2 (N ) -1 < v 2 (M ), we have that 1 + 2 v 2 (M )-1 m � µ is an integer coprime to m.
Hence, by Theorem 1.3.2, there exists an automorphism ρ ∈ Gal(K/K) such that

ρ |A[m] = [(1 + 2 v 2 (N )-1 m � µ) c ] |A[m] .
This Galois automorphism maps Q to

Q ρ = Q + [c2 v 2 (N )-1 m � µ]Q + � 2≤γ≤c � � c γ � (2 v 2 (N )-1 m � µ) γ � Q. (1.3.9) Let γ ≥ 2. Since v 2 (2 v 2 (N )-1 m � µ) = v 2 (N ) -1 ≥ 2, Lemma 1.3.5 gives v 2 �� c γ � (2 v 2 (N )-1 m � µ) γ � ≥ v 2 (N ) -1 + c 2 + 1 = v 2 (N ) + c 2 ≥ v 2 (l).
Thus, for the corresponding terms in (1.3.9), we have that [

� c γ � (2 v 2 (N )-1 m � µ) γ ]Q = 0. Moreover, since v 2 (c2 v 2 (N )-1 m � µ) = c 2 + v 2 (N ) -1 ≥ v 2 (l) -1, we have that [c2 v 2 (N )-1 m � µ]Q is a point of order dividing 2.
From this we derive that for some point P ∈ A [2], we have

Q ρ = Q -P.
Using the congruence in (1.3.7), ρ acts on A[M ] as

ρ |A[M ] = [(1 + 2 v 2 (N )-1-v 2 (M ) M ) c ] |A[M ] = [(1 + 2 β M ) c ] |A[M ] .
3. For the last case, assume v 2 (l)

≥ max{c 2 + 3, c 2 + v 2 (N ) + 1}. Since 1 < v 2 (l)-c 2 -1 ≤ v 2 (m)
, we have that 1+2 v 2 (l)-c 2 -1 m � µ is an integer coprime to m. Hence, by Theorem 1.3.2, there exists an automorphism τ ∈ Gal(K/K) such that

τ |A[m] = [(1 + 2 v 2 (l)-c 2 -1 m � µ) c ] |A[m] .
This Galois automorphism maps Q to

Q τ = Q + [c2 v 2 (l)-c 2 -1 m � µ]Q + � 2≤γ≤c � � c γ � (2 v 2 (l)-c 2 -1 m � µ) γ � Q (1.3.10)
Similarly to the preceding case, v 2 (2 v 2 (l)-c 2 -1 m � µ) ≥ 2 and Lemma 1.3.5 yields the equality [

� c γ � (2 v 2 (l)-c 2 -1 m � µ) γ ]Q = 0, for γ = 2, . . . , c. Moreover, since v 2 (c2 v 2 (l)-c 2 -1 m � µ) = v 2 (l) -1, we have that [c2 v 2 (l)-c 2 -1 m � µ]Q is a point of order 2.
From this we derive that for some point P ∈ A[2] \ {0} we have

Q τ = Q -P.
On the other hand, by the congruence in (1.3.7)

τ |A[M ] = [(1 + 2 v 2 (l)-c 2 -1-v 2 (M ) M ) c ] |A[M ] .
Furthermore, notice that α

:= v 2 (l)-c 2 -1-v 2 (M ) ≥ v 2 (N )-v 2 (M ) = β +1.
This implies that α ∈ N (0), and so there exists a Galois automorphism τ � ∈ Gal(K/K) that is not necessarily τ , but coincides with it on A[M ], such that

V τ � = V . Since V is defined over K(A[M ]), V τ = V τ � = V .
By means of the closed immersion fixed at the beginning of this section, we may identify every subvariety X ⊂ A with its image by ι. This allows us to consider the degree of X as the degree of the Zariski closure of ι(X) in P n . The definition of this degree depends on the chosen immersion.

It is essential to have some control over the degree with the operations in A. First, it is invariant by translations in A, see for instance [41, Lemme 7]. For the multiplication map by k ∈ N * , a result of Hindry [41, Lemme 6(ii)] gives, for every subvariety X ⊂ A,

deg([k] -1 (X)) = k 2 codim A (X) deg(X). (1.3.11)
We have all the ingredients to prove the following result.

Proposition 1.3.8. Let V ⊂ A be an irreducible subvariety defined over K(A tors ), and ϕ : A � B be a homomorphism of algebraic groups defined over K as in (1.3.2). Assume that the β in (1.3.4) relative to ϕ(V ) ⊂ B attains its minimum at 0. Then, there exist two Galois automorphisms σ, ρ ∈ Gal(K/K), such that V tors is contained in

V � = � P ∈B[4c] � 2 c � -1 � V σ + ϕ -1 (P ) � ∪ � P ∈B[2] � V ρ + ϕ -1 (P ) � ∪ � P ∈B[2]\{0} � V + ϕ -1 (P ) � , and 
V � ∩ V � V . Proof. Since ϕ is a group homomorphism, ϕ(V ∩ A tors ) = ϕ(V ) ∩ B tors . In fact, since Ker(ϕ) = Stab(V ), we have ϕ -1 (ϕ(V ) tors ) = V tors .
Notice that the variety V � is the preimage of the variety we obtain by applying Proposition 1.3.7 to ϕ(V ). This already gives the inclusion

V tors ⊂ V � . Then, to prove V � ∩ V � V it is enough to proof that ϕ(V ) ∩ ϕ(V � ) � ϕ(V ).
To simplify the notations, let us assume that V has trivial stabilizer, so ϕ = Id and B = A in the rest of the proof. Take the Galois automorphisms σ, ρ ∈ Gal(K/K) to be as in Proposition 1.3.7. We separate the proof in three cases, corresponding to each group of varieties in the expression of

V � . 1. First, we show that V � ⊂ [2 c ] -1 (V σ + P ), for every P ∈ A[4c].
Assume that there is a such point

P ∈ A[4c] such that V ⊂ [2 c ] -1 (V σ + P ). Then, � R∈A[2 c ] V + R ⊂ [2 c ] -1 (V σ + P ).
On the left-hand side we have (2 c ) 2g different varieties of degree deg(V ), because

V is assumed to have trivial stabilizer. This gives a variety of degree (2 c ) 2g deg(V ). However, due to (1.3.11), we have that the variety on the right is of degree

(2 c ) 2 codim A (V ) deg(V ) < (2 c ) 2g deg(V ).
This yields a contradiction.

2. Next, we show that V � ⊂ V ρ + P , for every P ∈ A [2]. Let M and β be as defined in (1.3.3) and (1.3.4), respectively. Recall that this case only arises whenever

β + v 2 (M ) ≥ 2.
As mentioned above, we are under the hypothesis that β = β(0).

Assume that V ρ + P = V for some P ∈ A[2]. Let R ∈ A[2 c 2 +β+1 M ] such that [c 2 β M ]R = [2 c 2 +β M ]R = P . By Lemma 1.3.6, β < -c 2 , and we have R ∈ A[M ].
Then, by the explicit expression of the action of ρ on A[M ], we get

R ρ = [(1 + 2 β M ) c ]R = R + P + � 2≤γ≤c � � c γ � (2 β M ) γ � R. (1.3.12) Let γ ≥ 2. Since v 2 (2 β M ) ≥ 2, Lemma 1.3.5 gives v 2 �� c γ � (2 β M ) γ � ≥ β + v 2 (M ) + c 2 + 1.
Thus, for the corresponding summands in (1.3.12), we have that 2 c 2 +β+1 M divides

� c γ � (2 β M ) γ . Since R ∈ A[2 c 2 +β+1 M ], this gives [ � c γ � ](2 β M ) γ ]R = 0. Then (V + R) ρ = V ρ + R ρ = V -P + (R + P ) = V + R.
This implies that V + R is fixed by ρ, and we conclude that β ∈ N (R).

Take α ≥ β + 1 = β(0) + 1. By definition of β(0), there exists an automorphism

ρ 0 ∈ Gal(K/K) such that ρ 0|A[M ] = [(1 + 2 α M ) c
] and ρ 0 (V ) = V . Notice that 2 β+1 M divides 2 α M . So by expanding R ρ 0 as in (1.3.12), we readily obtain R ρ 0 = R. Hence, we also have

(V + R) ρ = V ρ 0 + R ρ 0 = V + R, which shows that α ∈ N (R).
From the above statements, we conclude that β + N ≥0 ⊂ N (R). Therefore,

β(R) < β,
and this contradicts the minimality of β.

3. Finally, the fact that V � = V + P for every P ∈ A[2] \ {0} follows directly from the assumption that V has trivial stabilizer.

The case of a curve

Proposition 1.3.8 is enough to give an explicit upper bound (modulo the constant c) for the number of torsion points in a curve of genus greater than 1 in an Abelian variety. Indeed, the result we give in this section is the analogue of Beukers and Smyth's one in [START_REF] Beukers | Cyclotomic points on curves[END_REF]; that is an explicit upper bound for the number of torsion points in V , when V is a curve.

Proposition 1.3.9. Let C ⊂ A be an irreducible algebraic curve of genus greater than 1.

Then # C tors ≤ (2 2gc+4g-2c c 2g + 2 2g+1 -1) deg(C) 2 .
Proof. The result follows directly from computing the degree of V � in Proposition 1.3.7, which is ((4c) 2g (2 c ) 2(g-1) + 2 2g + 2 2g -1) deg(C). So, due to Proposition 1.3.8 a straightforward application of Bézout's theorem yields the result.

Remark. A mild improvement can be made to this bound if we assume the Abelian variety is in fact the Jacobian J of a smooth irreducible projective curve C, with the closed immersion J �→ P n , given by taking m times the theta-divisor coming from the Abel maps, choosing m so that the resulting divisor is very ample. So C is of genus g > 1, and by Poincaré's formula (see for instance [59, Equation (4)]), deg(C) = m g. In this case C and J are defined over the same number field. This implies that in the proof of Proposition 1.3.7 the second case does not occur. Therefore, we do not need to consider the irreducible components V ρ + P of V � , and we have that

# C tors ≤ m(2 2gc+4g-2c c 2g + 2 2g -1)g 2 .

Degrees of definition and Hilbert functions

In the case of treating varieties of dimension > 1, an iterative use of Bézout's theorem would give a bound which is doubly exponential in the degree of the variety, as was the case in [START_REF] Aliev | Solving algebraic equations in roots of unity[END_REF]. It is therefore helpful to introduce the equivalent notions of degree we used in the toric case.

We briefly recall the definitions. By identifying every subvariety of A with its image in P n , we say that the degree of (complete) definition of V ⊂ A is the minimal degree δ(V ) such that V is the intersection of a family of hypersurfaces in P n of degree at most δ(V ). On the other hand, the degree of incomplete definition of V is the minimal degree δ 0 (V ) such that the irreducible components of V are also irreducible components of the intersection of a family of hypersurfaces in P n of degree at most δ 0 (V ).

Contrary to the toric case, the degree of complete (respectively incomplete) definition does not necessarily behave as the usual degree with respect to translations in A. First we present the following consequence to a result of Lange and Ruppert [START_REF] Lange | Complete systems of addition laws on abelian varieties[END_REF]Theorem].

Lemma 1.3.10. The translations in A can be defined locally in terms of homogeneous polynomials in K[X 1 , . . . , X n ] of degree at most 2.

As a consequence, we deduce the following lemma.

Lemma 1.3.11. Let V be a subvariety of A.

(i) For any point P ∈ A, we have

δ(P + V ) ≤ 2 δ(V ) and δ 0 (P + V ) ≤ 2 δ 0 (V ). (ii) Assume K V ⊂ K(A tors ). For any finite subset T ⊂ A tors × Gal(K/K) of cardinal- ity #T = t, we have δ 0 � � (P,φ)∈T P + V φ � ≤ 4 t δ 0 (V ).
Proof. Assertion (i) is a direct consequence of Lemma 1.3.10.

To prove (ii), let n ∈ N >0 be such that K V ⊂ K(A[n]), and [n]P = 0 for every P appearing as the first coordinate of a pair in T . We may then replace the T in the statement by

{(P, φ |K(A[n]) ) | (P, φ) ∈ T } ⊂ A[n] × Gal(K(A[n])/K).
Also notice that, for each P 1 , P 2 ∈ A[n] and each φ 1 , φ 2 ∈ Gal(K(A[n])/K), we have

P 2 + (P 1 + V φ 1 ) φ 2 = P 2 + φ -1 2 (P 1 ) + V φ 1 φ 2 . This relation defines a natural structure of semidirect product on A[n] � Gal(K(A[n])/K), given by (P 1 , φ 1 ) • (P 2 , φ 2 ) = (P 2 + φ -1 2 (P 1 ), φ 1 φ 2 )
; where the inverse of an element (P, φ) is (φ(-P ), φ -1 ).

By the definition of degree of incomplete definition, there exists a subvariety X ⊂ A such that V is an irreducible component of X and δ 0 (V ) = δ(X). We denote by G the group

G = �a • b -1 | a, b ∈ T � ⊂ A[n] � Gal(K(A[n])/K),
and by S the subset of G consisting of the pairs (P, φ) ∈ G such that P + V φ is imbedded in X. Consider then the variety

� X = X ∩ � � (P,φ)∈S φ(-P ) + X φ -1 � .
By construction, V is an irreducible component of � X, and from (i) we have δ( � X) ≤ 2δ(X) = 2δ 0 (V ). Moreover, the following claim holds.

Claim. There is no (P, φ) ∈ G for which P + V φ is imbedded in � X. Proof of the claim. Assume that P + V φ is properly included in � X, for some (P, φ) ∈ G. Since � X ⊂ X, P + V φ is also properly included in X, which means (P, φ) ∈ S. By induction, this yields (P k , φ k ) = (P, φ) k ∈ S for all k. Assume (P k , φ k ) ∈ S, then � X ⊂ φ k (-P k ) + X φ -k and so P + V φ is properly included in φ k (-P k ) + X φ -k , which implies (P k+1 , φ k+1 ) ∈ S. Hence, taking k = ord � (P, φ) � , we have (0, Id) ∈ S that contradicts the fact that V is an irreducible component of X.

Let us consider the subvariety

Y = � (P,φ)∈T P + � X φ .
Then P + V φ ⊂ Y , for every (P, φ) ∈ T . Let us assume that there is a pair (P, φ) ∈ T such that P + V φ is properly included in Y . This means that there is a (Q, ψ)

∈ T such that P + V φ is properly included in Q + � X ψ . Thus ψ(-Q) + (P + V φ ) ψ -1 = ψ(-Q + P ) + V φ ψ -1
is properly included in � X. This contradicts the claim, since

(P, φ) • (Q, ψ) -1 = (ψ(-Q + P ), φ ψ -1 ) ∈ G.
So P + V φ is an irreducible component of Y , for every (P, φ) ∈ T . Moreover, notice that

δ( t � i=1 W i ) ≤ t � i=1 δ(W i ),
for every family of varieties W 1 , . . . , W t ⊂ P n . Hence, by (i), we also have δ(Y ) ≤ � δ(2tδ( � X). Assertion (ii) follows then from the fact that δ( � X) ≤ 2δ 0 (V ).

Next, let us recall that if the closure of V in P n is defined by the homogeneous radical ideal

I in Q [x]; for ν ∈ N, H(V ; ν) = dim(Q[x
]/I) ν denotes the Hilbert function. And we also recall the upper and lower bounds on the Hilbert functions due to Chardin [START_REF] Chardin | Une majoration de la fonction de Hilbert et ses conséquences pour l'interpolation algébrique[END_REF], and Chardin and Philippon [START_REF] Chardin | Régularité et interpolation[END_REF], respectively. Let X ⊆ P n be an equidimensional variety of dimension d. Then, for every ν ∈ N,

H(X; ν) ≤ � ν + d d � deg(X). (1.3.13) Moreover, if ν > m = codim P n (X)(δ 0 (X) -1), H(X; ν) ≥ � ν + d -m d � deg(X). (1.3.14)
By means of these bounds for the Hilbert function, we obtain the following result:

Lemma 1.3.12. Let V be an irreducible proper subvariety of A of dimension d > 0, such that K V ⊂ K(A tors ) and V � = V tors . Let φ ∈ Gal(K/K), P ∈ A tors and k ≥ 2 be an integer.

(i) If P + V φ � = V , then there exists a hypersurface Z of P n of degree at most 8(2d + 1) codim

P n (V )δ 0 (V ) such that P + V φ ⊂ Z and V ∩ Z � V . (ii) If V � ⊂ [k] -1 (P + V φ ), then there exists a hypersurface Z � of P n of degree at most 8k 2g (2d + 1) codim P n (V )δ 0 (V ) such that [k] -1 (P + V φ ) ⊂ Z � and V ∩ Z � � V .
Proof. We start by proving (i). Notice that P + V φ is an irreducible subvariety of A. By (1.3.13), for any ν ∈ N,

H(P + V φ ; ν) ≤ � ν + d d � deg(V ).
Denote � V = V ∪ (P + V φ ). This is an equidimensional variety (of dimension d) of degree 2 deg(V ). Using (1.3.14), for any ν > m,

H( � V ; ν) ≥ � ν + d -m d � 2 deg(V ),
where m = codim P n ( � V )(δ 0 ( � V ) -1). Fix ν = m(2d + 1). We obtain the following inequality:

H(P + V φ ; ν) H( � V ; ν) ≤ 1 2 � ν + d d � � ν + d -m d � -1 ≤ 1 2 � 1 + m ν -m � d = 1 2 � 1 + 1 2d � d ≤ 1 2 e 1/2 < 1.
Thereby, there is a hypersurface Z of P n of degree ν such that P +V φ ⊂ Z and � V ∩Z � � V . In particular, V � ⊂ Z. Moreover, by Lemma 1.3.11(ii) we have δ 0 ( � V ) ≤ 8δ 0 (V ). Then, we obtain the bound on the degree of Z:

deg(Z) ≤ 8(2d + 1) codim P n (V )δ(V ),
concluding the proof of (i).

We now turn to prove assertion (ii). For simplicity, we denote W = [k] -1 (P + V φ ). It is an equidimensional subvariety of A of dimension d. As a consequence to (1.3.11), we have deg(W ) = k 2 codim A (V ) deg(V ). By (1.3.13), for any ν ∈ N,

H(W ; v) ≤ � ν + d d � k 2 codim A (V ) deg(V ). Denote � W = � Q∈[k] -1 Stab(V ) (Q + V ).
Let ϕ : A → B be the isogeny that trivializes the stabilizer as in (1.3.2), and r = codim

A (Stab(V )) = dim(B). Since [k] • ϕ = ϕ • [k] we have that �
W is an equidimensional subvariety of A of dimension d and degree k 2r deg(V ). Using (1.3.14), for any ν > m,

H( � W ; ν) ≥ � ν + d -m d � k 2r deg(V ),
where

m = codim P n ( � W )(δ 0 ( � W ) -1). Notice that from the fact that V � = V tors and r > 0, since V � = A, we have codim A (V ) < r. So k 2 codim A (V )-2r ≤ k -2 < e -1 . Fix ν = m(2d + 1)
. We obtain the following inequality:

H(W ; ν) H( � W ; ν) ≤ k 2 codim A (V )-2r � ν + d d � � ν + d -m d � -1 ≤ k 2 codim A (V )-2r e 1/2 < 1.
Thereby, there is a hypersurface

Z � 0 of P n of degree ν such that W ⊂ Z � 0 and � W ∩ Z � 0 � � W . In particular, there is a Q 0 ∈ [k] -1 Stab(V ) such that Z � 0 ∩ (Q 0 + V ) � Q 0 + V . Notice that Z � 0 ∩ A is a hypersurface in A since it intersects properly Q 0 + V ⊂ A. Let X = -Q 0 + (Z � 0 ∩ A), then V ∩ X � = V . On the other hand, for every Q ∈ [k] -1 Stab(V ), we have Q + [k] -1 (P + V φ ) = [k] -1 (P + V φ ). This implies W ⊂ X. By Lemma 1.3.10, there is a hypersurface Z � of degree 2 deg(Z � 0 ) = 2ν such that X = Z � ∩ A. This hypersurface satisfies W ⊂ Z � and V ∩ Z � � V . Moreover, by Lemma 1.3.11(ii) we have δ 0 ( � W ) ≤ 4k 2r δ 0 (V ) ≤ 4k 2g δ 0 (V )
. Then, we obtain the bound on the degree of Z � :

deg(Z � ) ≤ 8 k 2g (2d + 1) codim P n (V )δ 0 (V ),
which ends the proof of (ii).

Interpolation and proof of the theorem

We start by presenting the key element for the proof of the main theorem.

Proposition 1.3.13. Let V ⊂ A be an irreducible variety of dimension d > 0, such that V � = V tors . Then there exists a hypersurface Z ⊂ P n of degree at most

(2 2gc+4g+5 c 2g + 2 2g+6 )(2d + 1)(n -d) δ 0 (V ), (1.3.15 
)

such that V tors ⊂ V ∩ Z � V .
Proof. First assume K V ⊂ K(A tors ). Moreover, let us assume that β in (1.3.4) for ϕ(V ) attains its minimum at 0. We apply Lemma 1.3.12 to the distinct components in that appear in the union defining V � in Proposition 1.3.8. Let us consider the notations as in Proposition 1.3.8. For each P ∈ B[4c], we have that V � ⊂ [2] -1 (V σ + ϕ -1 (P )), which gives a hypersurface Z σ,P of degree bounded as in Lemma 1.3.12(i) of the lemma. Moreover, for each P ∈ B [2] we have that V � = V ρ + ϕ -1 (P ) and V � = V + ϕ -1 (P ), which gives respectively a hypersurface Z ρ,P and Z P as in Lemma 1.3.12(ii). Then, for

Z = ( � P ∈B[4c] Z σ,P ) ∪ ( � P ∈B[2] Z ρ,P ) ∪ ( � P ∈B[2] Z P ), we have that V ∩ V � ⊂ V ∩ Z and V � ⊂ Z. Moreover, the degree of Z is at most � P ∈B[4c] 8 • (2 c ) 2g (2d + 1)(n -d)δ 0 (V ) + 2 � P ∈B[2] 8(2d + 1)(n -d)δ 0 (V ) ≤ (2 2gc+4g+3 c 2g + 2 2g+4 )(2d + 1)(n -d)δ 0 (V ). (1.3.16)
Notice that the inequality comes from the implicit use of dim(B) ≤ dim(A).

If β in (1.3.4) for ϕ(V ) does not attain its minimum at 0, let R ∈ B[M ] \ {0} be such that β = β(R). Fix an element R � ∈ ϕ -1 (R). Then, since δ 0 (V + R � ) ≤ 2δ 0 (V ) by Lemma 1.3.11(ii), there exists a hypersurface of degree at most 2 times the expression in (1.3.16), such that (

V + R � ) tors ⊂ (V + R � ) ∩ Z � � V + R � . Then Z = Z � -R � is a hypersurface in P n such that V tors = (V + R � ) tors -R � ⊂ V ∩ Z � V.
In addition, the degree of Z is 2 deg(Z � ) by Lemma 1.3.10, which is bounded above by the expression in (1.3.15).

If K V � ⊂ K(A tors ), as consequence to Proposition 1.3.4, for every non-trivial Galois automorphism ς ∈ Gal(K V /(K V ∩K(A tors ))), one has V tors ⊂ V ∩V ς � V . First, one uses the fact that δ 0 (V ∪ V ς ) ≤ 2δ 0 (V ) to prove Lemma 1.3.12(i) for V and V ς , with P = 0. This concludes the proof, since 8(2d + 1)(nd)δ 0 (V ) is at most the value in (1.3.15).

The main theorem of this section states the following. Theorem 1.3.14. Let V ⊂ A be a subvariety of dimension d > 0. For j = 0, . . . , d, let V j tors denote the j-equidimensional part of V tors . Then, for every j = 0, . . . , d, deg(V j tors ) ≤ c j δ(V ) g-j . where

c j = ((2 2gc+4g+5 c 2g + 2 2g+6 )(2g -1)(n -1)) (g-j)d deg(A).
Proof. For j = 0, . . . , d, let us denote by X j the j-equidimensional part of V . We also fix

θ = ((2 2gc+4g+5 c 2g + 2 2g+6 )(2g -1)(n -1)) d δ(V ).
We first apply the result of Philippon [66, Corollaire 5] as follows. With the notation used by Philippon in loc. cit., we take m = g, S = A, ϕ = ι : A �→ P n , δ = θ, and Z 1 , . . . , Z l the hypersurfaces in P n of degree at most δ(V ) such that V = Z 1 ∩• • •∩Z l . (after identifying V and A with their image in P n ). In particular,

Z 1 ∩• • •∩Z l = A∩Z 1 ∩• • •∩Z l .
Then, from the result of Philippon applied to the cycle

S l = A • Z 1 • • • Z l , we deduce d � j=0 θ j deg(X j ) ≤ θ n • deg(A).
(1.3.17)

Then, following straightforwardly the double induction in the proofs of Theorems 1.2.17 and 1.2.18, with Proposition 1.3.13 at the place of Proposition 1.2.16; one obtains the inequality

d � j=0 θ j deg(V j tors ) ≤ d � j=0 θ j deg(X j ). (1.3.18)
The upper bound in the theorem then follows from combining (1.3.17) and (1.3.18).

Remark. As a final remark we should precise that the upper bound given by Theorem 1.3.14 is effective up to the constant c.

Chapter 2

An arithmetic Bernštein-Kušnirenko theorem

In this chapter we present the results included in the joint work [START_REF] Martínez | An arithmetic Bernštein-Kušnirenko inequality[END_REF]. We study the height(s) of zero-cycles defined by a system of Laurent polynomials, in terms of mixed integrals of specific concave functions. In doing so we provide an arithmetic analogue of Bernštein-Kušnirenkos upper bound on the number of solutions of a such system.

Introduction

The classical Bernštein-Kušnirenko theorem bounds the number of isolated zeros of a system of Laurent polynomials over a field, in terms of the mixed volume of their Newton polytopes. This result, initiated by Kušnirenko and put into final form by Bernštein, is also known as the BKK theorem to acknowledge Khovanskiȋ's contributions to this subject. It shows how a geometric problem (the counting of the number of solutions of a system of equations) can be translated into a combinatorial, simpler one. It is commonly used to predict when a given system of equations has a small number of solutions. As such, it is a cornerstone of polynomial equation solving and has motivated a large amount of work and results over the past 25 years, see for instance [START_REF] Gelfand | Discriminants, resultants, and multidimensional determinants[END_REF][START_REF] Philippon | A refinement of the Bernštein-Kušnirenko estimate[END_REF][START_REF] Sturmfels | Solving systems of polynomial equations[END_REF] and the references therein.

Let K be a field, and fix an algebraic closure K. Let M � Z n be a lattice, and set

K[M ] = � m∈M K • χ m � K[x ±1 1 , . . . , x ±1 n ]
for its group K-algebra, and

T M = Spec(K[M ]) � G n m,K
for its algebraic torus over K. For a family of Laurent polynomials f 1 , . . . , f n ∈ K[M ], we denote by Z(f 1 , . . . , f n ) the 0-cycle of T M given by the isolated solutions of the system of equations

f 1 = • • • = f n = 0
with their corresponding multiplicities (Definition 2.2.8).

Set M R = M ⊗ R � R n . Let vol M be the Haar measure on M R normalized so that M has covolume 1, and let MV M be the corresponding mixed volume function (Definiton 2.2.7). For i = 1, . . . , n, let ∆ i ⊂ M R be the Newton polytope of f i . The BKK theorem [START_REF] Bernstein | The number of roots of a system of equations[END_REF][START_REF] Kušnirenko | Polyèdres de Newton et nombres de Milnor[END_REF] amounts to the upper bound

deg(Z(f 1 , . . . , f n )) ≤ MV M (∆ 1 , . . . , ∆ n ), (2.1.1)
which is an equality when the f i 's are generic with respect to their Newton polytopes, see also Theorem 2.2.10.

When dealing with Laurent polynomials over a field with an arithmetic structure like the field of rational numbers, it is also important to control the arithmetic complexity or height of their zero set. In this chapter, we present an arithmetic version of the BKK theorem, bounding the height of the isolated zeros of a system of Laurent polynomials over such a field. It is a refinement of the arithmetic Bézout theorem that takes into account the finer monomial structure of the system.

Suppose that K is endowed with a set of places M, so that the pair (K, M) is an adelic field (Definition 2.3.1). Each place v ∈ M corresponds to an absolute value | • | v on K and a weight n v > 0. We assume that this set of places satisfies the product formula, namely, for all α ∈ K × ,

� v∈M n v log |α| v = 0.
The classical examples of adelic fields satisfying the product formula are number fields and finite extensions of function fields of curves. These are called global fields in [START_REF] Burgos Gil | Arithmetic geometry of toric varieties. Metrics, measures and heights[END_REF], and are more general than the usual notion of global fields, since neither the base field of the function fields is required to be finite nor the extension is assumed separable.

Let X be toric compactification of T M and D 0 a nef toric metrized divisor on X as in Definition 2.3.25. This data gives a notion of height for 0-cycles of X (Definitions 2.3.10 and 2.3.14). Then, for a family of Laurent polynomials f 1 , . . . ,

f n ∈ K[M ], the height h D 0 (Z(f 1 , . . . , f n ))
is a nonnegative real number. It is our aim to bound this quantity in terms of the monomial expansion of the f i 's.

The first arithmetic analogue of the BKK theorem was proposed by Maillot [55, Corollaire 8.2.3], who considered the case of canonical toric metrics. His result is not completely effective, as explained in [START_REF] Sombra | Minimums successifs des variétés toriques projectives[END_REF]Remarque 4.2]. Another result in this direction was obtained by Sombra for the unmixed case and also canonical toric metrics [START_REF] Sombra | Minimums successifs des variétés toriques projectives[END_REF]Théoreme 0.3]. In this chapter we improve these previous upper bounds, and generalize them to adelic fields satisfying the product formula, and to height functions associated to arbitrary nef toric metrized divisors.

Let ∆ 0 ⊂ M R be the polytope defined by the toric Cartier divisor D 0 . Following [START_REF] Burgos Gil | Arithmetic geometry of toric varieties. Metrics, measures and heights[END_REF], we associate to D 0 an adelic family of continuous concave functions ϑ 0,v : ∆ 0 → R, v ∈ M, called the local roof functions of D 0 , see Proposition 2.3.28. For i = 1, . . . , n, write

f i = � m∈M α i,m χ m
with α i,m ∈ K, and denote by ∆ i their corresponding Newton polytope. Let N R = M ∨ R � R n be the dual space and, for each place v ∈ M, consider the concave function

ψ i,v : N R → R defined by ψ i,v (u) =        -log � � m∈M |α i,m | v e -�m,u� � if v is Archimedean, -log � max m∈M |α i,m | v e -�m,u� � if v is non-Archimedean. (2.1.2)
The Legendre-Fenchel dual

ϑ i,v = ψ ∨ i,v = inf u∈N R �x, u� -ψ i,v (u) 
is a continuous concave function on ∆ i . Furthermore, we denote by MI M the mixed integral of a family of n + 1 concave functions on convex bodies of M R (Definition 2.3.30).

Then, the main result of this chapter (Theorem 2.4.5) gives the following upper bound

h D 0 (Z(f 1 , . . . , f n )) ≤ � v∈M n v MI(ϑ 0,v , . . . , ϑ n,v ). (2.1.3)
It's proof relies on the construction of nef toric metrized divisors D i on a suitable toric variety, such that each f i corresponds to a small section of D i . Indeed, they correspond to the concave functions in (2.1.2), see Proposition 2.4.2 and Lemma 2.4.4. Then, one proceeds by applying the constructions and results of [START_REF] Burgos Gil | Arithmetic positivity on toric varieties[END_REF][START_REF] Burgos Gil | Arithmetic geometry of toric varieties. Metrics, measures and heights[END_REF] and basic results from arithmetic intersection theory. However, trying to keep a certain level of generality, we faced difficulties to define and study global heights of cycles over adelic fields. This lead us to a more detailed study of these notions. In particular, we detail a notion of adelic field extension that preserves the product formula (Definition 2.3.5), and a well-defined notion of global height for cycles with respect to metrized divisors that are generated by small sections (Proposition-Definition 2.3.22).

Using the basic properties of the mixed integral, we can bound the right-hand side of (2.1.3) in terms of mixed volumes. From this, we can derive the bound in Corollary 2.4.8:

h D 0 (Z(f 1 , . . . , f n )) ≤ MV M (∆ 1 , . . . , ∆ n ) � � v∈M max ϑ 0,v � + n � i=1 MV M (∆ 0 , . . . , ∆ i-1 , ∆ i+1 , . . . , ∆ n )�(f i ), (2.1.4)
where �(f i ) denotes the (logarithmic) length of f i , see Definition 2.4.6. This bound should be compared with the one given by the arithmetic Bézout theorem (Corollary 2.4.9), which follows as a direct consequence to these results. Inequality (2.1.4) gives a far more treatable bound than the one appearing in (2.1.3); however, there are cases in which the bounding of the mixed integrals by the length and mixed volume may proof inefficient, see Example 2.4.12.

The following illustrates a typical application of these results. It concerns two height functions applied to the same 0-cycle. Our upper bounds are close to optimal for both of them and, in particular, they reflect their very different behaviour on this family of Laurent polynomials. We refer to Example 2.4.11 for details.

Example 2.1.1. Take integers d, α ≥ 1 and consider the system of Laurent polynomials

f 1 = x 1 -α, f 2 = x 2 -αx d 1 , . . . , f n = x n -αx d n-1 ∈ Q[x ±1 1 , . . . , x ±1 n ].
The 0-cycle Y := Z(f 1 , . . . , f n ) of G n m,Q is the single point (α, α d+1 , . . . , α d n-1 +•••+d+1 ) with multiplicity 1.

Let P n Q be the n-dimensional projective space over Q and E can the divisor of the hyperplane at infinity, equipped with the canonical metric. Its associated height function is the Weil height. We consider two toric compactifications X 1 and X 2 of G n m . These are given by compactifying the torus via the equivariant embeddings ι i :

G n m �→ P n Q , i = 1, 2, respectively defined, for p = (p 1 , . . . , p n ) ∈ G n m (Q) = (Q × ) n , by ι 1 (p) = (1 : p 1 : • • • : p n ) and ι 2 (p) = (1 : p 1 : p 2 p -d 1 : • • • : p n p -d n-1 ). Set D i = ι * i E can , which is a nef toric metrized divisor on X i , i = 1, 2
. By an explicit computation, we show that

h D 1 (Y ) = � n � i=1 d i-1 � log(α) and h D 2 (Y ) = log(α).
On the other hand, the upper bounds given by (2.1.3) are

h D 1 (Y ) ≤ � n � i=1 d i-1 � log(α + 1) and h D 2 (Y ) ≤ n log(α + 1).
As further application of (2.1.3), we give an upper bound for the size of the coefficients of the u-resultant of the direct image under a monomial map of the solution set of a system of Laurent polynomial equations. The following version of this result is contained in the statement of Theorem 2.4.14.

For the simplicity of the exposition, set K = Q and M = Z n . Let r ≥ 0, m 0 = (m 0,0 , . . . , m 0,r ) ∈ (Z n ) r+1 and α 0 = (α 0,0 , . . . , α 0,r ) ∈ (Z \ {0}) r+1 , and consider the map ϕ m 0 ,α 0 : G n m,Q → P r Q defined by

ϕ m 0 ,α 0 (p) = (α 0,0 χ m 0,0 (p) : • • • : α 0,r χ m 0,r (p)). (2.1.5)
For a 0-cycle W of P r Q , let u = (u 0 , . . . , u r ) be a group of r + 1 variables and denote by Res(W ) ∈ Z[u 0 , . . . , u r ] its primitive u-resultant, see Definition 2.4.13, which is well-defined up a sign.

Theorem 2.1.2. Let f 1 , . . . , f n ∈ Z[x ±1 1 , . . . , x ±1 n ], m 0 ∈ (Z n ) r+1
and α 0 ∈ (Z \ {0}) r+1 with r ≥ 0. Set ∆ 0 = conv(m 0,0 , . . . , m 0,r ) ⊂ R n and let ϕ be the monomial map associated to m 0 and α 0 as in (2.1.5). For i = 1, . . . , n, let ∆ i ⊂ R n be the Newton polytope of f i , and α i the vector of nonzero coefficients of f i . Then

�(Res(ϕ * Z(f 1 , . . . , f n ))) ≤ n � i=0 MV M (∆ 0 , . . . , ∆ i-1 , ∆ i+1 , . . . , ∆ n ) �(α i ),
where �(•) represents the logarithmic length.

The classical Bernštein-Kusnirenko theorem

In this section, we recall the proof of the Bernštein-Kušnirenko theorem using intersection theory on toric varieties, which is the model that we follow in our treatment of the arithmetic version of this result. Presenting this proof also allows us to introduce the basic definitions and results on the intersection of Cartier divisors with cycles, and on the algebraic geometry of toric varieties. For more details on these subjects, we refer to [START_REF] Fulton | Intersection theory, volume 2 of Ergeb[END_REF][START_REF] Lazarsfeld | Positivity in algebraic geometry. I[END_REF] and to [START_REF] Fulton | Introduction to toric varieties[END_REF].

Intersection theory

Let K be an infinite field and X a variety over K of dimension n. For 0 ≤ k ≤ n, the group of k-cycles, denoted by Z k (X), is the free abelian group on the k-dimensional irreducible subvarieties of X. Thus, a k-cycle is a finite formal sum

Y = � V m V V
where the V 's are k-dimensional irreducible subvarieties of X and the m V 's are integers. The support of Y , denoted by |Y |, is the union of the subvarieties V such that m

V � = 0. The cycle Y is effective if m V ≥ 0 for every V . Given Y, Y � ∈ Z k (X), we write Y � ≤ Y whenever Y -Y � is effective.
Let Z be a subscheme of X of pure dimension k. For an irreducible component V of Z, we denote by O V,Z the local ring of Z along V , and by l O V,Z (O V,Z ) its length as an O V,Z -module. The k-cycle associated to Z is then defined as

[Z] = � l O V,Z (O V,Z ) V ,
the sum being over the irreducible components of Z.

Let V be an irreducible subvariety of X of codimension one and f a regular function on an open subset U of X such that U ∩ V � = ∅. The order of vanishing of f along V is defined as ord

V (f ) = l O V,X (U ) (O V,X (U )/(f )).
For a Cartier divisor D on X, the order of vanishing of D along V is defined as

ord V (D) = ord V (g) -ord V (h) with g, h ∈ O V,X (U ) such that g/h is a local equation of D on an open subset U of X with U ∩ V � = ∅.
This definition does not depend on the choice of U , g and h. Moreover, ord V (D) = 0 for all but a finite number of V 's. The Weil divisor associated to D is then defined as

D • X = � V ord V (D) V , (2.2.1) 
the sum being over all irreducible subvarieties of X of codimension one. The support of D, denoted by |D|, is the support of D • X. Now let W be an irreducible subvariety of X of dimension k. If W � ⊂ |D|, then D restricts to a Cartier divisor on W . In this case, we define D • W as the Weil divisor of W obtained by restricting (2.2.1) to W . This gives a (k -1)-cycle of X. If W ⊂ |D|, then we set D • W = 0, the zero element of Z k-1 (X). We extend by linearity this intersection product to a morphism

Z k (X) -→ Z k-1 (X), Y � -→ D • Y,
with the convention that Z -1 (X) = 0, the zero group.

For 0 ≤ r ≤ n and Cartier divisors D i on X, i = 1, . . . , r, we define inductively the intersection product

� r i=1 D i ∈ Z n-r (X) by t � i=1 D i =    X if t = 0, D 1 • � t i=2 D i if 1 ≤ t ≤ r. Definition 2.2.1.
Let Y be a k-cycle of X and D 1 , . . . , D r Cartier divisors on X, with r ≤ k. We say that D 1 , . . . , D r intersect Y properly if, for every subset I ⊂ {1, . . . , r},

dim � |Y | ∩ � i∈I |D i | � = k -#I.
If D 1 , . . . , D r intersect X properly, then the cycle � r i=1 D i does not depend on the order of the D i 's. We refer to [START_REF] Fulton | Intersection theory, volume 2 of Ergeb[END_REF]Corollary 2.4.2] for a proof of this statement in the case of pseudo-divisors, which is a generalization of Cartier divisors. This conclusion does not necessarily hold if these divisors do not intersect properly.

Example 2.2.2. Let X = A 2 K and consider the principal Cartier divisors D 1 = div(x 1 x 2 ) and D 2 = div(x 1 ) given by taking all local equations equal to x 1 x 2 and x 1 , respectively. Then

D 1 • D 2 = 0 and D 2 • D 1 = (0, 0).
Proposition 2.2.3. Let X be an equidimensional Cohen-Macaulay variety over K of dimension n, and D 1 , . . . , D n Cartier divisors on X. Let s i be a global section of O(D i ), i = 1, . . . , n, and write

n � i=1 div(s i ) = � p m p p ∈ Z 0 (X), (2.2.2)
where the sum is over the closed points p of X and m p ∈ Z. This 0-cycle is effective and, for each isolated closed point p of the intersection

� n i=1 | div(s i )|, m p = dim K (O p,X (U )/(f 1 , . . . , f n )),
where U is a trivializing neighborhood of p, and f i is a defining function for s i on U , i = 1, . . . , n.

Proof. The fact that the cycle in (2.2.2) is effective follows from the hypothesis that the s i 's are global sections.

For the second statement, by possibly replacing U with a smaller open neighborhood of p, we can assume that div(s 1 ), . . . , div(s n ) intersect X properly on U . So, by Definition 2.2.1, this intersection on U is of dimension 0. By [33, Proposition 7.1 and Example 7.1.10],

m p = l O p,X (U ) (O p,X (U )/(f 1 , . . . , f n )).
By [33, Lemma A.1.3 and Example A.1.1], we have the equality

l O p,X (U ) (O p,X (U )/(f 1 , . . . , f n )) = dim K (O p,X (U )/(f 1 , . . . , f n )), completing the proof.
For the rest of this section, we assume that the variety X is projective. With this hypothesis, Chow's moving lemma allows to construct, given a cycle and a family of Cartier divisors, another family of linearly equivalent Cartier divisors intersecting the given cycle properly, in the sense of Definition 2. 

(Y ) = deg D 1 ,...,D k-1 (div(s k ) • Y ).
The degree of a cycle with respect to a family of Cartier divisors does not depend on the choice of the rational section s k in 2, see for instance [ 

0 ≤ deg D 1 ,...,D k-1 (div(s k ) • Y ) ≤ deg D 1 ,...,D k (Y ).
Proof. Since Y is effective and s k is a global section, div(s k ) • Y is also effective. Since For the upper bound, we reduce without loss of generality to the case when

Y = V is an irreducible subvariety of dimension k. If V ⊂ | div(s k )|, then div(s k )•Y = 0 ∈ Z k-1 (X).
Hence deg(div(s k ) • Y ) = 0 and the bound follows from the nefness of the D i 's. Otherwise, from the definition of the degree,

deg D 1 ,...,D k-1 (div(s k ) • V ) = deg D 1 ,...,D k (V ),
which completes the proof. Corollary 2.2.6. Let D 1 , . . . , D n be nef Cartier divisors on X and, for i = 1, . . . , n, let s i be a global section of O(D i ). Then

0 ≤ deg � n � i=1 div(s i ) � ≤ deg D 1 ,...,Dn (X).

Toric varieties

Let M � Z n be a lattice, and set

K[M ] � K[x ±1 1 , . . . , x ±1 n ] and T = Spec(K[M ]) � G n m,K (2.2.4) 
for its group K-algebra and algebraic torus over K, respectively. The elements of M correspond to the characters of T and, given m ∈ M , we denote by χ m ∈ Hom(T, G m,K ) the corresponding character. Set also M R = M ⊗ R Let N = M ∨ � Z n be the dual lattice and set N R = N ⊗ R. Given a complete fan Σ in N R , we denote by X Σ the associated toric variety with torus T. It is a proper normal variety over K containing T as a dense open subset and such that the action of T on itself extends to X Σ . When the fan Σ is regular, in the sense that it is induced by a piecewise linear concave function on N R , the toric variety X Σ is projective.

Let X = X Σ be a toric variety, and D be a toric Cartier divisor on X, that is a T-invariant Cartier divisor. We denote by Ψ D its associated virtual support function on Σ. This is a piecewise linear function Ψ D : N R → R satisfying that, for each cone σ ∈ Σ, there exists m ∈ M such that, for all u ∈ σ,

Ψ D (u) = �m, u�.
The condition that Ψ D is concave is both equivalent to the conditions that D is nef and that the line bundle O(D) is globally generated. This line bundle O(D) is a subsheaf of the sheaf of rational functions of X. For each m ∈ M , the character χ m is a rational function of X, and so it induces a rational section of O(D) that is regular and nowhere vanishing on T. The rational section corresponding to the point m = 0 is called the distinguished rational section of O(D) and denoted by s D . The toric Cartier divisor D also determines the lattice polytope of M R given by

∆ D = {x ∈ M R | �x, u� ≥ Ψ D (u) for every u ∈ N R }.
A rational section corresponding to a point m ∈ M is global if and only if m ∈ ∆ D . The global sections corresponding to the lattice points of ∆ D form a K-basis for the space of global sections of O(D). Identifying each character χ m with the corresponding rational section ς m of O(D), we have the decomposition

Γ(X, O(D)) = � m∈∆ D ∩M K • ς m . ( 2 

.2.5)

Now let ∆ 1 , . . . , ∆ r be lattice polytopes in M R . For each ∆ i , we consider its support function, which is the piecewise linear concave function with lattice slopes Ψ ∆ i : N R → R given by

Ψ ∆ i (u) = min x∈∆ i �x, u�. (2.2.6) Proposition 2.2.9. Let f 1 , . . . , f n ∈ K[M ].
Let Σ be a regular complete fan in N R compatible with the Newton polytopes of the f i 's. For i = 1, . . . , n, let D i be the Cartier divisor on X Σ associated to N (f i ), and s i the global section of O(D i ) corresponding to f i as in (2.2.5). Write

n � i=1 div(s i ) = � p ν p p,
where the sum is over all closed points p of X Σ and ν p ∈ Z. Then

1. for every p ∈ V (f 1 , . . . , f n ) 0 , we have ν p = dim K (K[M ] mp /(f 1 , . . . , f n )); 2. the inequality Z(f 1 , . . . , f n ) ≤ � n i=1 div(s i ) holds.
Proof. We have that

� n i=1 | div(s i )| = V (f 1 , . . . , f n ).
Since T is Cohen-Macaulay, Proposition 2.2.3 gives the first statement. Since the sections s i are global, the 0-cycle � n i=1 div(s i ) is effective. Hence, the second statement follows directly from the first one.

We conclude this section by proving the version of the Bernštein-Kušnirenko theorem as presented in (2.1.1).

Theorem 2.2.10. Let f 1 , . . . , f n ∈ K[M ] be a family of Laurent polynomials, and let ∆ i denote the newton polytope of f i , for every i = 1, . . . , n. Then

deg(Z(f 1 , . . . , f n )) ≤ MV M (∆ 1 , . . . , ∆ n ).
Proof. This follows from Proposition 2.2.9(2), Corollary 2.2.6 and the formula (2.2.7).

Remark. It should be noted that, for a fixed family of convex polytopes ∆ 1 , . . . , ∆ n ⊂ M R with integer vertices, and for generic Laurent polynomials supported on these ∆ i 's, Bernštein-Kušnirenko's theorem gives in fact an equality.

Arithmetic of toric varieties

In this section we consider adelic fields following [START_REF] Burgos Gil | Arithmetic geometry of toric varieties. Metrics, measures and heights[END_REF], and give a detailed construction of adelic field extension that preserves the product formula. In this sense it is an extension of the one in loc. cit., which was only meant to preserve the product formula when dealing with extensions of number fields and function fields of curves. We then introduce a notion of global height for cycles of a variety over a such field, giving an explicit description of this construction in the 0-dimensional case. Finally, we recall the necessary background on the arithmetic geometry of toric varieties. We refer to [START_REF] Burgos Gil | Arithmetic positivity on toric varieties[END_REF][START_REF] Burgos Gil | Arithmetic geometry of toric varieties. Metrics, measures and heights[END_REF] for more details.

Adelic fields and finite extensions

We first introduce the notion of arithmetic field on which we give our results. 2. for each α ∈ K × , we have that |α| v = 1 for all but a finite number of v ∈ M.

Moreover, we say that an adelic field (K, M) satisfies the product formula if

� v∈M |α| nv v = 1, for every α ∈ K × .
Example 2.3.2. Let M Q be the set of places of Q consisting of the Archimedean and p-adic absolute values of Q, normalized in the standard way, and with all the weights equal to 1. The adelic field (Q, M Q ) satisfies the product formula. where ord v (f ) denotes the order of vanishing of f at v and

c κ = � e if #κ = ∞, #κ if #κ < ∞. (2.3.2)
The set of places M K(C) is indexed by the closed points of C, and consists of these absolute values and weights. The pair (K(C), M K(C) ) is an adelic field which satisfies the product formula.

Let (K, M) be an adelic field. For each place v ∈ M, we denote by K v the completion of K with respect to the absolute value | • | v . By a theorem of Ostrowski, if v is Archimedean, then K v is isomorphic to either R or C [21, Chapter 3, Theorem 1.1]. In particular, an adelic field has only a finite number of Archimedean places. Lemma 2.3.4. Let F be a finite extension of K and v ∈ M. Then

F ⊗ K K v � � w E w , (2.3.3)
where the sum is over the absolute values | • | w on F whose restriction to K v coincides with | • | v , and where the E w 's are local Artinian K v -algebras with maximal ideal p w . For each w, we have E w /p w � F w .

Proof. Since K �→ F is a finite extension, the tensor product F ⊗ K v is an Artinian K v -algebra. By the structure theorem for Artinian algebras,

F ⊗ K K v � � i∈I E i ,
where I is a finite set and the E i 's are local Artinian K v -algebras. Let p i be the maximal ideal of E i , for each i. These are the only prime ideals of F ⊗ K v , and so rad(

F ⊗ K v ) = � i∈I p i . Each w in the decomposition (2.3.3) corresponds to an absolute value | • | w on F extending | • | v ,
and there is a natural inclusion F �→ F w . The diagonal morphism

F → � w F w extends to a map of K v -vector spaces F ⊗ K K v -→ � w F w .
By [13, Chapitre VI, §8.2 Proposition 11(b)], this morphism is surjective and its kernel is the radical ideal of F ⊗ K v . Therefore

� i∈I E i /p i = � � i∈I E i �� rad(F ⊗ K v ) � � w F w . (2.3.4)
The summands in both extremes of (2.3.4) are fields over K v , and so Artinian local K valgebras. By the uniqueness of the decomposition in the structure theorem for Artinian algebras, there is a bijection between the elements in I and the w's, identifying each i ∈ I with the unique w such that E i /p i � F w .

The following definition for adelic field extension is equivalent to the one proposed by Gubler for M -fields, see [START_REF] Gubler | Heights of subvarieties over M -fields[END_REF]Remark 2.5]. 

n w = dim Kv (E w ) [F : K] n v ,
where the E w 's are the Artinian K v -algebras in the decomposition of

F ⊗ K K v from Lemma 2.3.4. Set N = � v∈M N v .
The pair (F, N) is an adelic field. The adelic fields of this form are called adelic field extensions of (K, M).

Remark. With notation as in

Lemma 2.3.4, dim Kv (E w ) = l Ew (E w )[F w : K v ],
where l Ew (E w ) is the length of E w as a module over itself. This follows from [START_REF] Fulton | Intersection theory, volume 2 of Ergeb[END_REF]Lemma A.1.3] applied to the morphism K v → E w . Hence, the weights in Definition 2.3.5 can be alternatively written as

n w = l Ew (E w ) [F w : K v ] [F : K] n v .
Proposition 2.3.6. Let (K, M) be an adelic field and (F, N) an adelic field extension of (K, M). Then 1. the equality � w∈Nv n w = n v holds for every place v ∈ M; 2. if (K, M) satisfies the product formula, then (F, N) also does.

Proof. From the definition of adelic field extension and Lemma 2.3.4,

� w∈Nv n w = � w∈Nv dim Kv (E w ) [F : K] n v = dim Kv (F ⊗ K v ) [F : K] n v = n v ,
which proves statement (1). To prove the second statement, let α ∈ F × and consider the multiplication map η α : F → F given by η α (x) = αx. The norm N F/K (α) ∈ K × is defined as the determinant of this K-linear map. Moreover, η α extends to the K v -linear map

η α ⊗ 1 Kv : F ⊗ K v -→ F ⊗ K v ,
which has the same determinant. Using the decomposition in (2.3.3), write α ⊗ 1 Kv = (α w ) w with α w ∈ E w . Hence η α ⊗ 1 Kv = � w η αw and

N F/K (α) = det(η α ⊗ 1 Kv ) = � w∈Nv N Ew/Kv (α w ).
By [14, Chapitre III, §9.2, Proposition 1], N Ew/Kv (α w ) = N Fw/Kv (α w ) l Ew (Ew) . Moreover, by [START_REF] Lang | Algebra[END_REF]VI Proposition 5.6],

N Fw/Kv (α w ) = � σ σ(α w ) [Fw:Kv] i ,
where the product is over the different embeddings σ of F w in an algebraic closure of K v , and [F w : K v ] i denotes the inseparability degree of the extension K v �→ F w . Furthermore, the number of such embeddings is equal to the separability degree [F w : K v ] s . For every embedding σ, we have |σ(α

w )| v = |α| w because the base field K v is complete. Since [F w : K v ] i [F w : K v ] s = [F w : K v ], we get |N F/K (α)| nv v = � w∈Nv |σ(α w )| l Ew (Ew)[Fw:Kv]nv v = � w∈Nv |α| [F:K]nw w . Since N F/K (α) ∈ K × , if (K, M) satisfies the product formula, then � w∈N |α| nw w = � � v∈M |N F/K (α)| nv v � 1 [F:K] = 1,
concluding the proof.

Example 2.3.7. Let F be a number field. This is a separable extension of Q. By [13, Chapitre VI, §8.5, Corollaire 3], we have that 

F ⊗ Q v � � w∈Nv F w for all v ∈ M Q . Therefore, the weight associated to each place w ∈ N v is n w = [F w : Q v ] [F : Q] .
n w = [F w : K(C) v ] [F : K(C)] [K(v) : κ].
Let e(w/v) denote the ramification index of w over v. By [13, Chapter VI, §8.5, Corollaire 2], we have that [F w : K(C) v ] = e(w/v) [K(w) : K(v)]. Therefore, for each place w ∈ N v , the weight of w can also be expressed as

n w = e(w/v) [K(w) : κ] [F : K(C)] .
Following [START_REF] Burgos Gil | Arithmetic geometry of toric varieties. Metrics, measures and heights[END_REF], a global field is a finite extension of the field of rational numbers or of the function field of a regular projective curve, with the structure of adelic field described in Examples 2.3.7 and 2.3.8. The discussions in these examples shows that this structure of adelic field extension coincides with the one given by Definition 2.3.5. In the case of function fields, it should be noted that the adelic structure depends on the extension. Function fields of varieties of higher dimension provide examples of adelic fields satisfying the product formula, that are not global fields.

Example 2.3.9. Let K(S) be the function field of an irreducible normal variety S over a field κ of dimension s ≥ 1, and E 1 , . . . , E s-1 nef Cartier divisors on S. Set S (1) for the set of irreducible hypersurfaces of S. For each V ∈ S (1) , the local ring O V,S is a discrete valuation ring. We associate to V the absolute value and weight given, for f ∈ K(S), by

|f | V = c -ord V (f ) κ n v = deg E 1 ,...,E s-1 (V ),
with c κ as in (2.3.2). The set of places M K(S) is indexed by S (1) , and consists of these absolute values and weights. For f ∈ K(S) × , � V ∈S (1) 

n V log |f | v = log(c k ) � V ∈S (1) deg E 1 ,...,E s-1 (V ) ord V (f ) = deg E 1 ,...,E s-1 (div(f )) = 0,
because the Cartier divisor div(f ) is principal. Hence (K(S), M K(S) ) satisfies the product formula.

Height of cycles

Let (K, M) be an adelic field satisfying the product formula, and X a normal projective variety over K. For each place v ∈ M, we denote by X an v the v-adic analytification of X.

In the Archimedean case, if K v � C, then X an v is an analytic space over C whereas, if K v � R, then X an
v is an analytic space over R, that is, an analytic space over C together with an antilinear involution, as explained in [START_REF] Burgos Gil | Arithmetic geometry of toric varieties. Metrics, measures and heights[END_REF]Remark 1.1.5]. In the non-Archimedean case, X an v is a Berkovich space over K v as in [19, § 1.2]. Fix v ∈ M and set

X v = X × Spec(K v ).
Given a 0-cycle Y of X v , a usual construction in Arakelov geometry associates a signed measure on X an v , denoted by δ Y , that is supported on |Y | an and has total mass equal to deg(Y ), see for instance [START_REF] Burgos Gil | Arithmetic geometry of toric varieties. Metrics, measures and heights[END_REF]Definition 1.3.15] for the non-Archimedean case. In what follows, we explicit this construction.

Let q be a closed point of X v . The function field K(q) is a finite extension of K v and deg(q) = [K(q) : K v ]. If v is Archimedean, then deg(q) is either equal to 1 or 2. In the first case, the analytification of q is a point of X an v whereas, in the second case, it is a pair of conjugate points. If v is non-Archimedean, choose an affine open neighborhood U = Spec(A) of q and A → K v the corresponding morphism of K v -algebras. The analytification of q is the point q an ∈ U an ⊂ X an v corresponding to the multiplicative seminorm given by the composition

A -→ K(q) | • | --→ R ≥0 ,
where | • | is the unique extension to K(q) of the absolute value | • | v .

Since the measure δ q is supported on the point q an and has total mass deg(q), it follows that

δ q = [K(q) : K v ] δ q an , (2.3.5)
where δ q an denotes the Dirac delta measure on q an . For an arbitrary 0-cycle Y of X v , the signed measure δ Y is obtained from (2. 

� • � v , s) is defined as h �•�v (Y ; s) = - � X an v log ||s|| v δ Y .
We now study the behavior of these objects with respect to adelic field extensions. Let (F, N) be an extension of the adelic field (K, M) as in Definition 2.3.5, and fix a place w ∈ N v , so that F w is a finite extension of the local field K v . Let q be a closed point of X v and consider the subscheme q w of X w = X × Spec(F w ) obtained by base change. Decompose K(q)

⊗ Kv F w = � j∈I G j
as a finite sum of local Artinian F w -algebras and, for each j ∈ I, denote by q j the corresponding closed point of X w . Then

[q w ] = � j∈I l G j (G j ) q j and δ [qw] = � j∈I dim Fw (G j ) δ q an j
denote respectively the 0-cycle of X w associated to q w , and the Dirac measure supported on it. The inclusion K v �→ F w induces a map of the corresponding analytic spaces

π : X an w -→ X an v . (2.3.6)
In the non-Archimedean case, this map of Berkovich spaces is defined locally by restricting seminorms.

The following proposition gives the behavior of the measure associated to a 0-cycle with respect to field extensions. Proposition 2.3.11. With notation as above, let Y be a 0-cycle of X v and set Y w for the 0-cycle of X w obtained by base extension. Then

π * δ Yw = δ Y .
Proof. By the compatibility of the map π with restriction to subschemes, it follows that π(q an j ) = q an for all j ∈ I. It follows that

π * δ [qw] = � j∈I dim Fw (G j ) π * δ q an j = � � j∈I dim Fw (G j ) � δ q an = [K(q) : K v ] δ q an = δ q .
Let D be a Cartier divisor on X and � • � v a metric on O(D) an v . The extension of this metric to a metric � • � w on the analytic line bundle O(D) an w on X an w is obtained by taking the inverse image with respect to the map π in (2.3.6), that is

� • � w = π * � • � v .
(2.3.7) Proposition 2.3.11 implies directly the invariance of the local height with respect to adelic field extensions.

Proposition 2.3.12. With notation as above, let Y be a 0-cycle of X v and s a rational section of O(D) an v that is regular and non-vanishing on the support of Y . Set Y w and s w = π * s for the 0-cycle and rational section obtained by base extension. Then

h �•�w (Y w , s w ) = h �•�v (Y, s).
To define global heights of cycles over an adelic field, we consider adelic families of metrics on the Cartier divisor D satisfying a certain compatibility condition. Definition 2.3.13. An (adelic) metric on D is a collection � • � v of metrics on O(D) an v , for v ∈ M, such that, for every point p ∈ X(K) and a choice of a rational section s of O(D) that is regular and non-vanishing at p and of an adelic field extension (F, N) such that p ∈ X(F),

�s(p an w )� w = 1 (2.3.8)
for all but a finite number of w ∈ N. We denote by D = (D, (�•� v ) v∈M ) the corresponding (adelically) metrized divisor on X.

In addition, D is semipositive if each of its v-adic metrics is semipositive in the sense of [START_REF] Burgos Gil | Arithmetic geometry of toric varieties. Metrics, measures and heights[END_REF]Definition 1.4.1].

The condition (2.3.8) does not depend on the choice of the rational section s and of the adelic field extension (F, N).

Remark. When K is a global field, the classical notion of compatibility for a collection of metrics � • � v on O(D) an v , v ∈ M, is that of being quasi-algebraic, in the sense that there is an integral model that induces all but a finite number of these metrics [START_REF] Burgos Gil | Arithmetic geometry of toric varieties. Metrics, measures and heights[END_REF]Definition 1.5.13].

By Proposition 1.5.14 in loc. cit., a quasi-algebraic metrized divisor D is adelic in the sense of Definition 2.3.13. The converse is not true, as it is easy to construct toric adelic metrized divisors that are not quasi-algebraic (Remark 2.3.3).

For a 0-cycle Y of X and a place v ∈ M, we denote by Y v the 0-cycle of X v defined by base change. When Y = p is a closed point of X, by Lemma 2.3.4 applied to the finite extension K(p) of K, the 0-dimensional subscheme

p v = p × Spec(K v ) of X v decomposes as p v = Spec(K(p) ⊗ K K v ) � � w∈Nv Spec(E w ),
where the E i 's are the Artinian K v -algebras in (2.3.3). Let q w , w ∈ N v , be the irreducible components of this subscheme. Then, the associated 0-cycle of X v writes down as

[p v ] = � w∈Nv l Ew (E w ) q w
and, for each w ∈ N v , we have K(q w ) � K(p) w . For an arbitrary Y , the 0-cycle Y v is obtained by linearity.

Let D = (D, (� • � v ) v∈M ) be a metrized divisor on X, Y a 0-cycle of X and s a rational section of O(D) that is is regular and non-vanishing on the support of Y . For each place v ∈ M, we set

h D,v (Y ; s) = h �•�v (Y v ; s),
where Y v is the 0-cycle of X v obtained by base change. The condition that D is adelic implies that h D,v (Y ; s) = 0 for all but a finite number of places. If s � is another rational section of O(D) that is regular and non-vanishing on |Y |, then s � = f s with f ∈ K(X) × and, for v ∈ M,

h D,v (Y ; s � ) = h D,v (Y ; s) -log |γ| v (2.3.9)
where Y = The local heights in (2.3.10) are zero for all but a finite number of places, and so this sum is finite. The equality (2.3.9) together with the product formula imply that this sum does not depend on the rational section s.

Given a metrized divisor D on X and an adelic field extension (F, N), we denote by D F the metrized divisor on X F obtained by extending the v-adic metrics of D as in (2.3.7).

Proposition 2.3.15. Let D be a metrized divisor on X, Y a 0-cycle of X and (F, N) an adelic field extension of (K, M). Then

h D F (Y F ) = h D (Y ).
Proof. Let s be a rational section of O(D) that is is regular and non-vanishing on |Y | and v ∈ M. By Propositions 2.3.12 and 2.3.6(1),

� w∈Nv n w h D F ,w (Y F , s) = � w∈Nv n w h D,v (Y, s) = n v h D,v (Y, s).
The statement follows by summing over all the places of K.

Since the global height is invariant under field extension, it induces a notion of global height for algebraic points, that is, a well-defined function

h D : X(K) -→ R.
When K is a global field, this notion coincides with the one in [START_REF] Burgos Gil | The distribution of Galois orbits of points of small height in toric varieties[END_REF]Definition 2.2]. Now we turn to cycles of arbitrary dimension. Let V be a k-dimensional irreducible subvariety of X and D 0 , . . . , D k-1 a family of k semipositive metrized divisors on X. For each place v ∈ M, we can associate to this data a measure on X an v denoted by Let Y be a k-cycle of X and, for i = 0, . . . , k, let (D i , s i ) be a semipositive metrized divisor on X and a rational section of O(D i ) such that div(s 0 ), . . . , div(s k ) intersect Y properly (Definition 2.2.1). For v ∈ M, the local height of Y with respect to (D 0 , s 0 ), . . . , (D k , s k ) is inductively defined by the rule

c 1 (D 0 ) ∧ • • • ∧ c 1 (D k-1 ) ∧ δ V an
h D 0 ,...,D k ,v (Y ; s 0 , . . . , s k ) = h D 0 ,...,D k-1 ,v (div(s k ) • Y ; s 0 , . . . , s k-1 ) - � X an v log ||s k || k,v c 1 (D 0 ) ∧ . . . ∧ c 1 (D k-1 ) ∧ δ Y an v
and the convention that the local height of the cycle 0 ∈ Z -1 (X) is zero.

Remark.

1. The local height is linear with respect to the group structure of Z k (X). In particular, the local heights of the cycle 0 ∈ Z k (X) are zero.

2. For a closed point of X and v ∈ M, it the v-adic Monge-Ampère measure coincides with the weighted Dirac measure in (2. The following notion is the arithmetic analogue of global sections of a line bundle, and Proposition 2.3.18 below is an analogue for local heights of Proposition 2.2.5.

Definition 2.3.17. Let D = (D, (|| • || v ) v∈M ) be a metrized divisor on X. A global section s of O(D) is D-small if, for all v ∈ M, sup q∈X an v �s(q)� v ≤ 1.
Proposition 2.3.18. Let Y be an effective k-cycle of X and, for i = 0, . . . , k, let (D i , s i ) be a semipositive metrized divisor on X and a rational section of O(D i ) such that div(s 0 ), . . . , div(s k ) intersect Y properly and such that s k is D k -small. Then, for each place v ∈ M,

h D 0 ,...,D k-1 ,v (div(s k ) • Y ; s 0 , . . . , s k-1 ) ≤ h D 0 ,...,D k ,v (Y ; s 0 , . . . , s k ).
Proof. Since the cycle Y is effective and the metrized divisors D i are semipositive, their v-adic Monge-Ampere measure is a measure, that is, it takes only nonnegative values. Since the global section s k is D k -small, log ||s k (q)|| k,v ≤ 0 for all q ∈ X an v . The inequality follows then from the inductive definition of the local height. Our next step is to define global heights for cycles over an adelic field. We first state an auxiliary result specifying the behavior of local heights with respect to change of sections, extending (2.3.9) to the higher dimensional case. The following lemma and its proof are similar to [START_REF] Gubler | Heights of subvarieties over M -fields[END_REF]Corollary 3.8].

Lemma 2.3.19. Let Y be a k-cycle of X and D 0 , . . . , D k semipositive metrized divisors on X. Let s i , s � i be rational sections of O(D i ), i = 0, . . . , k, such that both div(s 0 ), . . . , div(s k ) and div(s � 0 ), . . . , div(s � k ) intersect Y properly. Then there exists γ ∈ K × such that, for all v ∈ M,

h D 0 ,...,D k ,v (Y ; s � 0 , . . . , s � k ) = h D 0 ,...,D k ,v (Y ; s 0 , . . . , s k ) -log |γ| v . (2.3.11) 
Proof. Let s �� i be a rational section of O(D i ), i = 0, . . . , k, such that the (s �� 0 , . . . , s �� k ) is generic.

Notice that, by the genericity of (s �� 0 , . . . , s �� k ), for any choice of r = 0, . . . , k and any permutation i 0 , . . . , i k of 0, . . . , k, we have that div(s i 0 ), . . . , div(s ir ), div(s �� i r+1 ), . . . , div(s �� i k ) intersect Y properly. We proceed by proving (2.3.11) with the s �� i 's in the place of the s � i 's. That is, there exists a γ ∈ K × such that, for all v ∈ M,

h D 0 ,...,D k ,v (Y ; s �� 0 , . . . , s �� k ) = h D 0 ,...,D k ,v (Y ; s 0 , . . . , s k ) -log |γ| v . (2.3.12) 
Consider the particular case when

s i = s �� i for i = 0, . . . , k -1. Set s �� k = f s k with f ∈ K(X) × ,

and

� � k-1 i=0 div(s i ) � • Y = � p µ p p.
By [19, Theorem 1.4.17(3)], the equality (2.3.12) holds with γk ∈ K × given by γk =

� p f (p) µp .
By [19, Theorem 1.4.17 [START_REF] Aliev | Solving algebraic equations in roots of unity[END_REF]], the local height is symmetric in the pairs (D i , s i ). Hence, we can reorder the metrized line bundles and sections, and iterate the above construction for every i = 0, . . . , k. The resulting γ in (2.3.12) is obtained by multiplying each of the γi 's.

Analogously, we can proof (2.3.12) replacing the s i 's by the s � i 's. By combining both these equalities, we obtain (2.3.11).

We consider the following notions of positivity of metrized divisors.

Definition 2.3.20. Let D be a metrized divisor on X.

1. D is nef if D is nef, D is
semipositive, and h D (p) ≥ 0 for every closed point p of X.

2. D is generated by small sections if, for every closed point p ∈ X, there is a D-small section s such that p / ∈ | div(s)|.

Lemma 2.3.21. Let Y be an effective k-cycle of X and (D i , s i ) semipositive metrized divisors on X together with a rational section of O(D i ), i = 0, . . . , k, such that the divisors div(s 0 ), . . . , div(s k ) intersect Y properly. Suppose that D i , i = 1, . . . , k, are generated by small sections. Then there exists ζ ∈ K × such that, for all v ∈ M,

h D 0 ,...,D k ,v (Y ; s 0 , . . . , s k ) ≥ log |ζ| v + h D 0 ,v �� k � i=1 div(s i ) � • Y, s 0 � .
Proof. For k = 0, the statement is obvious, so we only consider the case when k ≥ 1. By Lemma 2.3.19, it is enough to prove the statement for any particular choice of rational sections s i , provided that their associated Cartier divisors intersect Y properly.

We can also reduce without loss of generality to the case when Y = V is an irreducible variety of dimension k. We can then choose rational sections s i , i = 0, . . . , k, such that each s i is D i -small. By Proposition 2.3.18,

h D 0 ,...,D k ,v (V ; s 0 , . . . , s k ) ≥ h D 0 ,...,D k-1 ,v (div(s k ) • V ; s 0 , . . . , s k-1 ).
Since div(s k ) • V is an effective (k -1)-cycle, the statement follows by induction on k.

Proposition-Definition 2.3.22. Let Y be an effective k-cycle of X, and D 0 , . . . , D k semipositive metrized divisors on X such that D 1 , . . . , D k are generated by small sections. Let s i be a rational section of O(D i ), i = 0, . . . , k, such that div(s 0 ), . . . , div(s k ) intersect Y properly. The global height of Y with respect to D 0 , . . . , D k is defined as the sum

h D 0 ,...,D k (Y ) = � v∈M n v h D 0 ,...,D k ,v (Y ; s 0 , . . . , s k ).
(2.3.13)

This sum converges to an element in R ∪ {+∞}, and its value does not depend on the choice of the s i 's.

Proof. The existence of rational sections s i such that div(s 0 ), . . . , div(s k ) intersects Y properly follows from the moving lemma, with the hypothesis that X is projective. By Lemma 2.3.21 and the fact that the local heights of 0-cycles are zero for all but a finite number of places, the local heights in (2.3.13) are non negative, except for a finite number of v's. Hence, the sum converges to an element in R ∪ {+∞}. Lemma 2.3.19 and the product formula imply that the value of this sum does not depend on the choice of the s i 's.

Remark. This definition generalizes the notion of global height of cycles of varieties over global fields in [19, §1.5], to cycles of varieties over an arbitrary adelic field, in the case when the considered metrized divisors are generated by small sections.

In the context of varieties over global fields, the local heights of a given cycle are zero for all but a finite number of places [19, Proposition 1.5.14], and so their global height is a real number given as a weighted sum of a finite number local heights. In our present generality, the sum in (2.3.13) might contain an infinite number of nonzero terms. We will see that, in the toric situation, these global heights are nonnegative real numbers, different from +∞.

The following results are arithmetic analogues of Proposition 2.2.5 and Corollary 2.2.6. Proposition 2.3.23. Let Y be an effective k-cycle of X, and D 0 , . . . , D k semipositive metrized divisors on X such that D 0 is nef and D 1 , . . . , D k are generated by small sections. Let s k be a D k -small section. Then

0 ≤ h D 0 ,...,D k-1 (div(s k ) • Y ) ≤ h D 0 ,...,D k (Y ).
Proof. We reduce without loss of generality to the case when Y = V is an irreducible subvariety of dimension k. If V ⊂ | div(s k )|, the first inequality is clear. For the second inequality, we choose rational sections s i , i = 0, . . . , k -1, and s � k such that div(s 0 ), . . . , div(s k-1 ), div(s � k ) intersect Y properly. Using Lemmas 2.3.19 and 2.3.21, the product formula and the fact that D 0 is nef, we deduce that h D 0 ,...,D k (Y ) ≥ 0.

Otherwise, V � ⊂ | div(s k )| and we choose rational sections s i , i = 0, . . . , k -1, such that div(s 0 ), . . . , div(s k ) intersect Y properly. The first inequality follows by applying the argument above to div(s k ) • Y , whereas the second one is given by Proposition 2.3.18.

Corollary 2.3.24. Let D 0 , . . . , D n be semipositive metrized divisors on X such that D 0 is nef and D 1 , . . . , D n are generated by small sections. Let s i be a D i -small section, i = 1, . . . , n. Then

0 ≤ h D 0 � n � i=1 div(s i ) � ≤ h D 0 ,...,Dn (X).

Metrics and heights on toric varieties

Let (K, M) be an adelic field satisfying the product formula. Let M � Z n be a lattice and T � G n m,K its associated torus over K as in (2.2.4). For v ∈ M, we denote by T an v the v-adic analytification of T, and by S v its maximal compact subgroup. In the Archimedean case, S v is homeomorphic to the polycircle (S 1 ) n , whereas in the non-Archimedean case, it is a compact analytic group, see [19, §4.2] for a description. Moreover, there is a map defined, in a given splitting, as

val v : T an v -→ N R (x 1 , . . . , x n ) � -→ (-log |x 1 | v , . . . , -log |x n | v ).
This map does not depend on the choice of the splitting, and S v coincides with its fiber over the point 0 ∈ N R .

Let X be a projective toric variety with torus T given by a regular complete fan Σ on N R , and D a toric Cartier divisor on X given by a virtual support function Ψ D on Σ. Recall that X contains T as a dense open subset. Let � • � v be a toric v-adic metric on D, that is, a metric on the analytic line bundle O(D) an v that is invariant under the action of S v . This allows to define a continuous function

ψ ||•||v : N R → R, called v-adic metric function associated to || • || v , given by ψ ||•||v (u) = log ||s D (p)|| v , (2.3.14) 
for any p ∈ T an v with val v (p) = u and where s D is the distinguished rational section of O(D). This function satisfies that |ψ ||•||v -Ψ D | is bounded on N R and moreover, this difference extends to a continuous function on N Σ , the compactification of N R induced by the fan Σ. Indeed, the assignment

|| • || v � -→ ψ ||•||v (2.3.15)
is a one-to-one correspondence between the set of toric v-adic metrics on D and the set of such continuous functions on N R [START_REF] Burgos Gil | Arithmetic geometry of toric varieties. Metrics, measures and heights[END_REF]Proposition 4.3.10]. In particular, the toric v-adic metric on D associated to the virtual support function Ψ D is called the canonical v-adic toric metric of D and is denoted by

|| • || v,can . Furthermore, when � • � v is semipositive, ψ �•�v is a concave function and it verifies that |ψ ||•||v -Ψ D | is bounded on N R ,
and the assignment in (2.3.15) gives a one-to-one correspondence between the set of semipositive toric v-adic metrics on D and the set of such concave functions on N R .

When � • � v is semipositive, we also consider a continuous concave function on the polytope ϑ �•�v : ∆ D → R defined as the Legendre-Fenchel dual of ψ �•�v , that is

ϑ �•�v (x) = inf u∈N R �x, u� -ψ �•�v (u).
We call this function, the v-adic roof function associated to || • || v . The assignment Let D be a toric metrized divisor on X. For each v ∈ M, we set

� • � v � → ϑ �•�v
ψ D,v = ψ �•�v and ϑ D,v = ϑ �•�v
for the associated v-adic metric function and v-adic roof function, respectively. Proof. Let p ∈ X(K) and choose an adelic field extension (F, N) such that p ∈ X(F).

Then p F is a rational point of X F and the inclusion

ι : p F �-→ X F
is an equivariant map. Hence the inverse image ι * D is an adelic toric metric on p F and so, for w ∈ N, log �p F � w = ψ ι * D,w (0), and this quantity vanishes for all but the finite number of w ∈ N such that � • � w is not the canonical metric. Since this holds for all p ∈ X(K), we conclude that D is adelic in the sense of Definition 2.3.13.

For the second statement, assume that D is semipositive and adelic in the sense of Definition 2.3.13. Let x i ∈ M , i = 1, . . . , s, be the vertices of the lattice polytope ∆ D . By [START_REF] Burgos Gil | Arithmetic geometry of toric varieties. Metrics, measures and heights[END_REF]Example 2.5.13], there is an n-dimensional cone σ i ∈ Σ corresponding to x i under the Legendre-Fenchel correspondence, i = 1, . . . , s. Each of these n-dimensional cones corresponds to a 0-dimensional orbit p i of X. Denote by ι i : p i �→ X the inclusion of this orbit.

Fix 1 ≤ i ≤ s. Modulo a translation, we can assume without loss of generality that

x i = 0. By [19, Proposition 4.8.9], for v ∈ M, ϑ D,v (x i ) = ϑ ι * i D,v (0) = -log �s D (p i )� v . Hence ϑ D,v (x i ) = 0
for all but a finite number of v's.

On the other hand, let x 0 be the distinguished point of X, which coincides with the neutral element of T, and denote by ι 0 : x 0 �→ X its inclusion. By [START_REF] Burgos Gil | Arithmetic geometry of toric varieties. Metrics, measures and heights[END_REF]Proposition 4.8.10],

max x∈∆ D ϑ D,v (x) = ϑ ι * 0 D,v (0) = -log �s D (x 0 )� v .
Hence max x∈∆ D ϑ D,v (x) = 0 for all but a finite number of v's. For all v ∈ M such that ϑ D,v (x i ) = 0 for all i and max x∈∆ D ϑ D,v (x) = 0, we have that ϑ D,v ≡ 0 because this local roof function is a concave function on ∆ D . Hence, � • � v coincides with the v-adic canonical metric of D for all these places.

Remark. In the general non-semipositive case, Definitions 2.3.25 and 2.3.13 do not coincide. For instance, when

X = P 1 K , a collection of metrics � • � v , v ∈ M, satisfies Definition 2.3.

if and only if its associated metric functions satisfy that

ψ D,v (0) = 0 and lim u→±∞ ψ D,v (u) -Ψ D (u) = 0
for all but a finite number of places. In the absence of convexity, these conditions do not imply that ψ D,v = Ψ D for all but a finite number of places.

Proposition 2.3.28. Let D be a toric Cartier divisor on X.

1. The assignment D � → (ψ D,v ) v∈M is a one-to-one correspondence between the set of semipositive toric metrics on D, and the set of families of concave functions

(ψ v ) v∈M on N R such that |ψ v -Ψ D |
is bounded for all v, and ψ v = Ψ D for all but a finite number of v ∈ M.

The assignment

D � → (ϑ D,v
) v∈M is a one-to-one correspondence between the set of semipositive toric metrics on D and the set of families of continuous concave functions (ϑ v ) v∈M on ∆ D such that ϑ v = 0 for all but a finite number of v ∈ M.

A classical example of toric metrized divisors are those given by the inverse image of an equivariant map to a projective space equipped with the canonical metric on its universal line bundle. Below we describe this example and we refer to [START_REF] Burgos Gil | Arithmetic geometry of toric varieties. Metrics, measures and heights[END_REF]Example 5.1.16] for the technical details.

Let m = (m 0 , . . . , m r ) ∈ M r+1 and α = (α 0 , . . . , α r ) ∈ (K × ) r+1 , with r ≥ 0. The monomial map associated to this data is defined as

ϕ m,α : T -→ P r K , (2.3.16 
)

p � -→ � α 0 χ m 0 (p) : • • • : α r χ mr (p) � .
Let Σ be a regular fan in N R compatible with the polytope ∆ = conv(m 0 , . . . , m r ) ⊂ M R , in the sense that the support function Ψ ∆ is a virtual support function on Σ. For a toric variety X with torus T corresponding to the fan Σ, the monomial map (2.3.16) extends to an equivariant map X → P r K , also denoted by ϕ m,α .

Example 2.3.29. With notation as above, let E can be the divisor of the hyperplane at infinity of P r K , equipped with the canonical metric at all places. Then D = ϕ * m,α E is the nef toric Cartier divisor on X corresponding to the translated polytope ∆m 0 . We consider the semipositive toric metrized divisor

D = ϕ * m,α E on X. For each v ∈ M, the v-adic metric function of D, ψ D,v : N R -→ R, is given by ψ D,v (u) = min 0≤j≤r � �m j -m 0 , u� -log � � � α j α 0 � � � v � .
The polytope corresponding to D is ∆m 0 and, for each v ∈ M, the v-adic roof function of D is given by

ϑ D,v (x) = max λ r � j=0 λ j log |α j | v -log |α 0 | v , the maximum being over the vectors λ = (λ 0 , . . . , λ r ) ∈ R r+1 ≥0 with � r j=0 λ j = 1 such that � r j=0 λ j (m j -m 0 ) = x.
In other words, this the piecewise affine concave function on ∆m 0 parametrizing the upper envelope of the extended polytope

conv � (m j -m 0 , log |α j /α 0 | v ) 0≤j≤r � ⊂ M R × R.
Definition 2.3.30. For i = 0, . . . , n, let g i : ∆ i → R be a concave function on a convex body ∆ i ⊂ M R . The mixed integral of g 0 , . . . , g n is defined as

MI M (g 0 , . . . , g n ) = n � j=0 (-1) n-j � 0≤i 0 <•••<i j ≤n � ∆ i 0 +•••+∆ i j g i 0 � • • • � g i j d vol M ,
where ∆ i 0 + • • • + ∆ i j denotes the Minkowski sum of polytopes, and g i 0 � • • • � g i j the sup-convolution of concave function, which is the function on

∆ i 0 + • • • + ∆ i j defined as g i 0 � • • • � g i j (x) = sup � g i 0 (x i 0 ) + • • • + g i j (x i j ) � ,
where the supremum is taken over

x i l ∈ ∆ i l , l = 0, . . . , j, such that x i 0 + • • • + x i j = x.
The mixed integral is symmetric and additive in each variable with respect to the sup-convolution. Moreover, for a concave function g : ∆ → R on a convex body ∆, we have MI M (g, . . . , g) = (n + 1)! � ∆ g d vol M , see [67, §8] for details. The following is a restricted version of a result by Burgos Gil, Philippon and Sombra, giving the global height of a toric variety with respect to a family of semipositive toric metrized divisors in terms of the mixed integrals of the associated local roof functions [19, Theorem 5.2.5].

Theorem 2.3.31. Let D i , i = 0, . . . , n, be semipositive toric metrized divisors on X such that D 1 , . . . , D n are generated by small sections. Then

h D 0 ,...,Dn (X) = � v∈M n v MI M (ϑ D 0 ,v , . . . , ϑ Dn,v ).
(2.3.17)

Remark. The result in [19, Theorem 5.2.5] is more general. Given semipositive toric metrized divisors D i , i = 0, . . . , n, and rational sections s i such that div(s 0 ), . . . , div(s n ) intersect X properly, the corresponding local heights are zero except for a finite number of places, and the formula (2.3.17) holds without any extra positivity assumption.

Arithmetic Bernštein-Kušnirenko

In this section we first prove the main results of this chapter, Theorem 2.4.5 and Corollary 2.4.8, which give bounds on the height of 0-cycles coming from systems of Laurent polynomials. Furthermore, we apply these results to more concrete settings: we present two families of examples and compare the actual height of the the 0-cycles with the bounds provided by our results. Finally, we give an application bounding the height of the resultant of a 0-cycle defined by a system of Laurent polynomials.

Main theorem

Let (K, M) be an adelic field satisfying the product formula. Let f ∈ K[M ] be a Laurent polynomial and ∆ ⊂ M R its Newton polytope. Let X be a projective toric variety over K given by a fan on N R that is compatible with ∆, and D the Cartier divisor on X given by this polytope. To prove our main theorem, we first construct a toric metric on D such that the associated toric metrized divisor D is semipositive and generated by small sections, and the global section of O(D) associated to f is D-small. We obtain this metrized divisor as the inverse image of a metrized divisor on a projective space. For r ≥ 0, let P r K be the r-dimensional projective space over K and E the divisor of the hyperplane at infinity. We denote by E this Cartier divisor equipped with the � 1 -norm at the Archimedean places, and the canonical one at the non-Archimedean ones. This metric is defined, for p = (p 0 :

• • • : p s ) ∈ P s K (K v ) and a global section s of O(E) corresponding to a linear form ρ s ∈ K[x 0 , . . . , x s ], by �s(p)� v =          |ρ s (p 0 , . . . , p s )| v � j |p j | v if v is Archimedean, |ρ s (p 0 , . . . , p s )| v max j |p j | v if v is non-Archimedean, (2.4.1) 
The projective space P r K has a standard structure of toric variety with torus G r m,K , included via the map (z 1 , . . . , z r ) � → (1 :

z 1 : • • • : z r ). Thus E is a toric metrized divisor.
It is a particular case of the weighted � p -metrized divisors on toric varieties studied in [20, §5.2].

The following result summarizes the basic properties of this toric metrized divisor and its combinatorial data. Proposition 2.4.1. The toric metrized divisor E on P r K is semipositive and generated by small sections. For v ∈ M, its v-adic metric function is given, for u = (u 1 , . . . , u r ) ∈ R r , by

ψ E,v (u) =        -log � 1 + r � j=1 e -u j � if v is Archimedean, min(0, u 1 , . . . , u r ) if v is non-Archimedean. (2.4.2) The polytope corresponding to E is the standard simplex ∆ r of R r . For v ∈ M, the v-adic roof function of E is given, for x = (x 1 , . . . , x r ) ∈ ∆ r , by ϑ E,v (x) =        - r � j=0 x j log(x j ) if v is Archimedean, 0 if v is non-Archimedean, with x 0 = 1 - � r j=1 x j .
Proof. The distinguished rational section of the line bundle O(E) corresponds to the linear form x 0 ∈ K[x 0 , . . . , x r ]. Hence, for an Archimedean place v and a point z = (z 1 , . . . , z r ) ∈ G r m,K (K v ),

ψ E,v (val v (z)) = log �s E (z)� v = -log � 1 + r � j=1 |z j | � ,
which gives the expression in (2.4.2) for this case. The non-Archimedean case is done similarly. We can easily check that these metric functions are concave. In the Archimedean case, this can be done by computing its Hessian and verifying that it is nonpositive and, in the non-Archimedean case, it is immediate from its expression. Hence, E is semipositive. Set s j for the global section corresponding to the linear form x j ∈ K[x 0 , . . . , x r ], j = 0, . . . , r. We have that � r j=0 | div(s j )| = ∅, and so this is a set of generating global sections. It follows from the definition of the metric in (2.4.1) that these global sections are E-small. Hence, E is generated by small sections.

The fact that the polytope corresponding to E is the standard simplex is classical, see for instance [34, page 27]. When v is Archimedean, the v-adic roof function can be computed similarly as the one for the Fubini-Study metric in [START_REF] Burgos Gil | Arithmetic geometry of toric varieties. Metrics, measures and heights[END_REF]Example 2.4.3]. When v is non-Archimedean, v-adic roof function is zero, because the metric � • � v is canonical.

Set r ≥ 0. Take m = (m 0 , . . . , m r ) ∈ M r+1 and α = (α 0 , . . . , α r ) ∈ (K × ) r+1 , and consider the polytope ∆ = conv(m 0 , . . . , m r ) ⊂ M R . Let X be a projective toric variety over K given by a fan on N R that is compatible with ∆. Let ϕ m,α : T → P r K be the monomial map in (2.3.16) and set

D m = div(χ -m 0 ) + ϕ * m,α E,
which coincides with the Cartier divisor on X corresponding to ∆. For each v ∈ M, we consider the metric on

O(D m ) an v � O(ϕ * m,α E) an v defined by � • � m,α,v = |α 0 | -1 v ϕ * m,α � • � E,v , (2.4.3) 
the homothecy by |α 0 | v of the inverse image by ϕ m,α of the v-adic metric of E. We then set

D m,α = (D m , (� • � m,α,v ) v∈M ). (2.4.4)
Since ϕ m,α is an equivariant map and E is toric, this is a toric metrized divisor on X.

Proposition 2.4.2. The toric metrized divisor D = D m,α on X is semipositive and generated by small sections. For v ∈ M, its v-adic metric is given, for p ∈ T(K v ), by

�s D (p)� v =          � r � j=0 |α j χ m j (p)| v � -1 if v is Archimedean, � max 0≤j≤r |α j χ m j (p)| v � -1 if v is non-Archimedean.
(2.4.5)

The v-adic metric function of D is given, for u ∈ N R , by

ψ D,v (u) =          -log � r � j=0 |α j | v e -�m j ,u� � if v is Archimedean, min 0≤j≤r �m j , u� -log |α j | v if v is non-Archimedean, (2.4.6) 
and the v-adic roof function of D is given, for x ∈ ∆, by

ϑ D,v (x) =            max λ r � j=0 λ j log � |α j | v λ j � if v is Archimedean, max λ r � j=0 λ j log |α j | v if v is non-Archimedean, (2.4.7) 
the maximum being over the vectors λ = (λ 0 , . . . , λ r ) ∈ R r+1 ≥0 with

� r j=0 λ j = 1 such that � r j=0 λ j m j = x.
Proof. Set D � = ϕ * m,α E for short. This is a toric metrized divisor on X that is semipositive and generated by small sections, due to Proposition 2.4.1 and the preservation of these properties under inverse image. Since the v-adic metrics of D are homothecies of those of D � , it follows that D is semipositive too. Moreover, a global section ς of O(D � ) � O(D) is D � -small if and only if the global section α 0 ς is D-small. It follows that D is also generated by small sections.

Using (2.4.1) and the definition of the monomial map ϕ m,α , for v ∈ M, the v-adic metric of D � is given, for p ∈ T(K v ), by

�s D � (p)� v =            � r � j=0 � � � � α j α 0 χ m j -m 0 (p) � � � � v � -1 if v is Archimedean, � max 0≤j≤r � � � � α j α 0 χ m j -m 0 (p) � � � � v � -1 if v is non-Archimedean.
Since D = div(χ -m 0 ) + D � , their distinguished rational sections are related by

s D = χ -m 0 s D � . It follows from (2.4.3) that �s D (p)� v = |α 0 | -1 v |χ -m 0 (p)| v �s D � (p)� v ,
which implies the formulae in (2.4.5). As a consequence, we obtain also the expressions for the v-adic metric functions of D.

For its roof function, consider first the linear map H : N R → R r+1 given, for u ∈ N R , by H(u) = (�m 0 , u�, . . . , �m r , u�). For each place v, consider the concave function

g v : R r+1 → R given, for ν ∈ R r+1 , by g v (ν) =          -log � r � j=0 |α j | v e -ν j � if v is Archimedean, min 0≤j≤r ν j -log |α j | v if v is non-Archimedean.
Notice that ψ D,v = H * g v . The domain of the Legendre-Fenchel dual g ∨ v of g v is the simplex S given as the convex hull of the vectors in the standard basis of R r+1 ; and g ∨ v is given, for λ ∈ S, by

g ∨ v (λ) =            r � j=0 λ j log � |α j | v λ j � if v is Archimedean, max λ r � j=0 λ j log |α j | v if v is non-Archimedean.
For the Archimedan case, this follows similarly to [ ] be a Laurent polynomial and X be a projective toric variety over K given by a fan on N R that is compatible with the Newton polytope N (f ). Write f = � r j=0 α j χ m j with m j ∈ M and α j ∈ K × . The toric metrized divisor on X associated to f is defined as

D f = D m,α ,
the toric metrized divisor in (2.4.4) for the data m = (m 0 , . . . , m r ) ∈ M r+1 and α = (α 0 , . . . , α r ) ∈ (K × ) r+1 . It does not depend on the ordering of the terms of f . For v ∈ M, we denote by ψ f,v and ϑ f,v the v-adic metric and roof functions of D f , respectively. 

�s(p)� v = |f (p)| v �s D (p)� v = � � � � r � j=0 α j χ m j (p) � � � � v �s D (p)� v .
It follows from (2.4.5) that �s� v ≤ 1 on T(K v ), and so s is D-small.

The following result corresponds to (2.1.3) in the introduction.

Theorem 2.4.5. Let f 1 , . . . , f n ∈ K[M ], and let X be a proper toric variety with torus T M and D 0 a nef toric metrized divisor on X. Let ∆ 0 ⊂ M R be the polytope of D 0 and, for v ∈ M, let ϑ 0,v : ∆ i → R be v-adic roof function of D 0 . For i = 1, . . . , n, let ∆ i ⊂ M R be the Newton polytope of f i and, for v ∈ M, let ϑ i,v : ∆ i → R be the v-adic roof function on the metric associated to f i . Then

h D 0 (Z(f 1 , . . . , f n )) ≤ � v∈M n v MI(ϑ 0,v , . . . , ϑ n,v ).
Proof. Let Σ be the complete fan corresponding to the proper toric variety X. By taking a refinement, we can assume without loss of generality that Σ is regular and compatible with the Newton polytopes ∆ i , i = 1, . . . , n. Hence X is a projective toric variety and D 0 a nef toric metrized divisor, and there are nef toric Cartier divisors D i , i = 1, . . . , n, corresponding to these Newton polytopes.

For i = 1, . . . , n, we denote by D i the toric metrized divisor associated to f i (Definition 2.4.3). By Proposition 2.4.2, D i is semipositive and generated by small sections and, by Lemma 2.4.4, the global section s i of O(D i ) corresponding to f i is D i -small. Applying Corollary 2.3.24 and Theorem 2.3.31,

h D 0 � n � i=1 div(s i ) � ≤ h D 0 ,...,Dn (X) = � v∈M n v MI M (ϑ D 0 ,v , . . . , ϑ Dn,v ).
Due to Proposition 2.2.9(2), the inequality Z(f 1 , . . . , f n ) ≤ � n i=1 div(s i ) holds. By the linearity of the global height and the nefness of D 0 ,

h D 0 (Z(f 1 , . . . , f n )) ≤ h D 0 � n � i=1 div(s i ) � ,
which concludes the proof. Definition 2.4.6. Let α = (α 0 , . . . , α r ) ∈ (K × ) r with r ≥ 1. For v ∈ M, the v-adic logarithmic length of α is defined as

� v (α) =          log( r � j=0 |α j | v ) if v is Archimedean, log( max 0≤j≤r |α j | v ) if v is non-Archimedean.
The logarithmic length of α is defined as

�(α) = � v∈M n v � v (α). For a Laurent polynomial f ∈ K[M ],
we define its v-adic logarithmic length, denoted by � v (f ), as the v-adic length of its vector of coefficients, v ∈ M. We also define its logarithmic length, denoted by �(f ), as the length of its vector of coefficients.

Lemma 2.4.7. Let ϑ i : ∆ i → R be a concave function on a convex body, i = 0, . . . , n. Then

MI M (ϑ 0 , . . . , ϑ n ) ≤ n � i=0 � max x∈∆ i ϑ i (x) � MV M (∆ 0 , . . . , ∆ i-1 , ∆ i+1 , . . . , ∆ n )
Proof. Set c i = max x∈∆ i ϑ i (x) for short. By the monotonicity of the mixed integral, see [START_REF] Philippon | A refinement of the Bernštein-Kušnirenko estimate[END_REF]Proposition 8.1],

MI M (ϑ 0 , . . . , ϑ n ) ≤ MI M (c 0 | ∆ 0 , . . . , c n | ∆n ),
where c i | ∆ i denotes the constant function c i on the convex body ∆ i . By [67, formula (8.3)],

MI M (c 0 | ∆ 0 , . . . , c n | ∆n ) = n � i=0 c i MV M (∆ 0 , . . . , ∆ i-1 , ∆ i+1 , . . . , ∆ n ),
giving the stated inequality.

The following result corresponds to the inequality (2.1.4) in the introduction. 

h D 0 (Z(f 1 , . . . , f n )) ≤ � � v∈M n v max x∈∆ 0 ϑ 0,v (x) � MV M (∆ 1 , . . . , ∆ n ) + n � i=1 �(f i ) MV M (∆ 0 , . . . , ∆ i-1 , ∆ i+1 , . . . , ∆ n ).
In particular, for the canonical metric on D 0 (Example 2.3.26),

h D can 0 (Z(f 1 , . . . , f n )) ≤ n � i=1 �(f i ) MV M (∆ 0 , . . . , ∆ i-1 , ∆ i+1 , . . . , ∆ n ).
Proof. For 1 ≤ i ≤ n and v ∈ M, let ϑ i,v be the v-adic roof function of the toric semipositive metric associated to f i . From the definition of the Legendre-Fenchel dual, the maximum of a concave function ϑ is -ϑ ∨ (0) (see also [START_REF] Rockafellar | Convex analysis[END_REF]Theorem 23.5]). Using (2.4.7), we compute the values of -ψ i,v (0) = -ϑ ∨ i,v (0) and obtain max

x∈∆ i ϑ i,v (x) = � v (f i ). (2.4.8)
The first statement follows then from Theorem 2.4.5 and Lemma 2.4.7. The second statement is a particular case of the first one, using the fact that the v-adic roof functions of D can 0 are the zero functions on ∆ 0 .

We readily derive from the previous corollary the following version of the arithmetic Bézout theorem.

Corollary 2.4.9. Let f 1 , . . . , f n ∈ K[x 1 , . . . , x n ] and let D can be the divisor at infinity of P n K equipped with the canonical metric. Then

h D can (Z(f 1 , . . . , f n )) ≤ n � i=1 � � j� =i deg(f j ) � �(f i ),
where deg denotes the total degree of the corresponding polynomial.

Proof. Notice that, for each i = 1, . . . , n, the Newton polytope of f i is contained in deg(f i )∆ n . Then by the monotonicity and linearity of the mixed volume

MV Z n (∆ n , . . . , � ∆ i , . . . , � ∆ n ) ≤ � j� =i deg(f j ) MV Z n (∆ n , . . . , ∆ n ) = � j� =i deg(f j ),
where the ∆ i 's are the respective Newton polytopes of the f i 's.

Examples

The two families of examples have as objective to illustrate two aspects of the bounds obtained above. With the first family of examples we provide a case in which both these bounds do approach the height of the 0-cycle; while with the second one we show a situation where the bound of Theorem 2.4.5 is sharp, and that of Corollary 2.4.8 is not.

We keep the notation of §2.4.1. We need the the following auxiliary computation of mixed volumes. For its proof, we recall that the mixed volume of a family of polytopes ∆ i ⊂ R n , i = 1, . . . , n, can be decomposed in terms of mixed volumes of their lower dimensional faces as

MV n (∆ 1 , . . . , ∆ n ) = - � u∈S n-1 Ψ ∆ 1 (u) MV n-1 (∆ u 2 , . . . , ∆ u n ), (2.4.9) 
where S n-1 is the unit sphere of R n , Ψ ∆ 1 is the support function of ∆ 1 as in (2.2.6), ∆ u i is the unique face of ∆ i that minimizes the functional u on this polytope, and MV n and MV n-1 denote the mixed volume functions associated to the Lebesgue measure of R n and u ⊥ � R n-1 , respectively. In fact, this sum ranges through all the normal vectors of the facets of each polytope. We refer to [78, formula (5.1.22)] for more details. Proof. Choosing a basis, we identify M = Z n . With this identification, MV M = MV n , the mixed volume associated to the Lebesgue measure of R n . The formula in (2.4.9) applied to the polytopes ∆, 0 m 2 , . . . , 0 m n implies that (2.4.10) where �u� is the Euclidean norm. We have that (2.4.12)

MV n (∆, 0 m 2 , . . . , 0 m n ) = - � Ψ ∆ � u �u� � + Ψ ∆ � - u �u� �� MV n-1 (0 m 2 , . . . , 0 m n ) = - 1 �u� (Ψ ∆ (u) + Ψ ∆ (-u)) MV n-1 (0 m 2 , . . . , 0 m n ),
Ψ ∆ (u) + Ψ ∆ (-u) = min
The result follows then from (2.4.10), (2.4.11) and (2.4.12).

Example 2.4.11. Let d, α ≥ 1 be integers and consider the system of Laurent polynomials given by

f 1 = x 1 -α, f 2 = x 2 -αx d 1 , . . . , f n = x n -αx d n-1 ∈ Q[x ±1 1 , . . . , x ±1 n ].
Its zero set in T Z n = G n m,Q consists of the rational point p = (α, α d+1 , . . . ,

α d n-1 +d n-2 +•••+1 ) ∈ T Z n (Q) = (Q × ) n .
Let X be a proper toric variety over Q, and D can 0 a nef toric Cartier divisor on X equipped with the canonical metric. Let ∆ 0 ⊂ R n be the polytope corresponding to D 0 and, for i = 1, . . . , n, set

u i = e i + de i+1 + • • • + d n-i e n ∈ Z n ,
where the e j 's are the vectors in the standard basis of Z n . The height of p with respect to

D can 0 is h D can 0 (p) = � vol Z � ∆ 0 , n � i=1 u i �� log(α). ( 2 

.4.13)

To prove this, let v ∈ M Q . By (2.3.14), the local height of p with respect to the pair (D can 0 , s D 0 ) is given by

h D can 0 ,v (p, s D 0 ) = -log �s D 0 (p)� v,can = -Ψ ∆ 0 � val v (p) � . Set u = � n i=1 u i for short. Since val v (p) = -log |α| v u, -Ψ ∆ 0 � val v (p) � =      log |α| v max m∈∆ 0 ∩Z n �m, u� if v = ∞, log |α| v min m∈∆ 0 ∩Z n �m, u� if v � = ∞.
By adding these contributions,

h D can 0 (p) = log(α) � max m∈∆ 0 ∩Z n �m, u� -min m∈∆ 0 ∩Z n �m, u� � ,
which gives the formula in (2.4.13).

Next we compare the value of the height of p with the bounds given by Corollary 2.4.8. We have �(f i ) = log(α + 1) for all i. Consider the dual basis of the u i 's, given by m 1 = e 1 , m 2 = e 2de 1 , . . . , e nde n-1 ∈ Z n .

For i = 1, . . . , n, the Newton polytope ∆ i of f i is a translate of the segment 0 m i , and u i is the smallest lattice point in the line (

� j� =i Rm j ) ⊥ . Moreover the sublattice � j� =i Zm i is saturated. By Lemma 2.4.10 MV Z n (∆ 0 , . . . , ∆ i-1 , ∆ i+1 , . . . , ∆ n ) = vol Z �∆ 0 , u i �.
Therefore, the bound given by Corollary 2.4.8 is

h D can 0 (p) ≤ � n � i=1 vol Z �∆ 0 , u i � � log(α + 1).
Example 2.1.1 in the introduction consists of the particular cases corresponding to the polytopes ∆ 0 = ∆ n , the standard simplex of R n , and ∆ 0 = conv(0, m 1 , . . . , m n ).

In the following example, we exhibit a situation where the difference between the bounds given by the results in §2.4.1 is noticeable. Recall that passing from Theorem 2.4.5 to Corollary 2.4.8 amounts to replacing the local roof functions by constant functions on the polytope bounding them from above. Hence, to maximize the discrepancy between these two concave functions, we look for local roof functions that are tent-shaped, which is the situation where the difference between the mean value and the maximum value of these functions is the greatest possible.

Example 2.4.12. Let α ≥ 1 be an integer, and consider the system of Laurent polynomials defined as

f i = x i -α ∈ Q[x ±1 1 , . . . , x ±1 n ], for i = 1, . . . , n,
Its zero set in G n m,Q is the rational point p = (α, . . . , α) ∈ (Q × ) n . Let X = P n Q and let E can be the divisor of the hyperplane at infinity equipped with the canonical metric.

Then the height of p with respect to E can is h E can (p) = log(α).

Next we compare the value of this height with the bound given by Theorem 2.4.5. Since the explicit computation of the mixed integrals appearing in this bound is somewhat involved, instead of giving its exact value we are going to approximate it with an upper bound that is easier to compute.

The polytope associated to the toric Cartier divisor E is ∆ 0 = ∆ n , the standard simplex of R n . For each v ∈ M Q , the v-adic roof function ϑ 0,v of E can is the zero function on this simplex.

For each i = 1, . . . , n, let ∆ i = N (f i ) ⊂ R n be the Newton polytope of f i , which coincides with the segment 0 e i . For v ∈ M Q , let ϑ i,v be the v-adic roof function associated to f i (Definition 2.4.3). This function is given, for t e i ∈ ∆ i = 0 e i , by

ϑ i,∞ (t e i ) =    (1 -t) log(α) -t log t -(1 -t) log(1 -t) if v = ∞, (1 -t) log |α| v if v � = ∞.
For the Archimedean place, the v-adic roof functions are nonnegative, and so their mixed integral can be expressed as a mixed volume

MI Z n (ϑ 0,∞ , . . . , ϑ n,∞ ) = MV Z n+1 ( � ∆ 0 , . . . , � ∆ n ), (2.4.14) 
with

� ∆ i = conv � graph(ϑ i,∞ ), ∆ i × {0}) ⊂ R n × R. Consider the concave function ϑ : ∆ n → R defined by x = (x 1 , . . . , x n ) � -→ log(2) + log(α) � 1 - n � i=1 x i � , and set � ∆ = conv � graph(ϑ), ∆ n × {0} � ⊂ R n × R.
Notice that ϑ i,∞ ≤ ϑ on ∆ i , and so � ∆ i ⊂ � ∆, i = 0, . . . , n. By the monotony of the mixed volume,

MV Z n+1 ( � ∆ 0 , . . . , � ∆ n ) ≤ MV Z n+1 ( � ∆, . . . , � ∆) = (n + 1)! � ∆ n ϑ dx = (n + 1)! � log(2) vol(∆ n ) + log(α) � ∆ n � 1 - n � i=1 x i � dx � = (n + 1) log(2) + log(α).
(2.4.15)

When v is non-Archimedean, we have that |α| v ≤ 1 because α is an integer. Hence ϑ i,v ≤ 0, and so the mixed integral of these concave functions is nonpositive. Theorem 2.4.5 together with (2.4.14) and (2.4.15) gives the upper bound h E can (p) ≤ (n + 1) log(2) + log(α).

Let X be a proper toric variety over K defined by a fan that is compatible with ∆ i , i = 0, . . . , n, and let D 0 be the toric metrized divisor on X associated to m 0 and α 0 as in (2.4.4). Given a point p ∈ T M (K), we deduce from (2.4.5) that

� � α 0,0 χ m 0,0 (p) u 0 + • • • + α 0,r χ m 0,r (p) u r � = h D 0 (p).
(2.4.17) By Proposition 2.4.2, the toric metrized divisor is semipositive and generated by small sections. In particular, it is nef. Similarly as in (2.4.8), we also get from Proposition 2.4.2 that the v-adic roof functions of D 0 satisfy

� v∈M n v max ϑ 0,v = �(α 0 ). Hence, Corollary 2.4.8 implies that � p µ p h D 0 (p) ≤ n � i=0 �(α i ) MV(∆ 0 , . . . , ∆ i-1 , ∆ i+1 , . . . , ∆ n ).
(2.4.18)

The statement follows then from (2.4.16), (2.4.17) and (2.4.18).

Given a 0-dimensional variety in (K × ) r , a way of representing this variety in terms of a family of univariate polynomials is given by the shape lemma. The following is a simple instance of this result.

Lemma 2.4.15. Assume that W is a 0-dimensional variety in (K × ) r defined over K.

Then, there exist polynomials h, g 0 , . . . , g r ∈ K[t] such that

W = � (g 1 (t)/g 0 (t), . . . , g r (t)/g 0 (t)) ∈ (K × ) r | t ∈ K, h(t) = 0 � ,
and deg(g j ) < deg(h) ≤ #W , for every j = 0, . . . , r.

This kind of parametrizations can be tracked back to Kronecker when he introduced parametric representations of equidimensional varieties. It has since been a vast research subject in computational algebra, and are commonly known as rational univariate representations, or geometric representations in the case of varieties of any dimension. In particular, we highlight the approaches of Giusti and Heintz [START_REF] Giusti | Algorithmes-disons rapides-pour la décomposition d'une variété algébrique en composantes irréductibles et équidimensionnelles[END_REF] Rouillier [START_REF] Rouillier | Solving zero-dimensional systems through the rational univariate representation[END_REF], and Krick, Pardo and Sombra [START_REF] Krick | Sharp estimates for the arithmetic Nullstellensatz[END_REF] for their relation to u-resultants.

The usual assumption on the shape lemma is that there is some coordinate that "distinguishes points". That is, there is a projection to some coordinate such that any two distinct points of W take different values under this projection. Nevertheless one can always impose a linear separating condition. For λ ∈ (K) r \ {0}, define the linear map L λ (x) = λ 1 x 1 + • • • + λ r x r . Then, the polynomial

L(λ) = � x,x � ∈W x� =x � � L λ (x) -L λ (x � )
� is of bounded degree. Hence, there is a linear map that separates points.

The following is a proof of the Shape lemma (Lemma 2.4.15).

Proof. Fix the embedding (K × ) r �→ P r K , (q 1 , . . . , q r ) � → (1 : q 1 : • • • : q r ), and a vector λ ∈ (K × ) r separating points of W . We then can take the polynomials of a rational univariate representation of W to be, for t

∈ K × ,          h(t) = Res(W )(1, t λ 1 , . . . , t λ r ); g j (t) = ∂ Res(W ) ∂ u j
(1, t λ 1 , . . . , t λ r ), for j = 0, . . . , n.

(

2.4.19) Notice that, since W ⊂ (K × ) r is reduced, every u ∈ (K × ) r+1 such that Res(W )(u) = 0 determines a point � ∂ Res(W ) ∂ u 0 (u) : • • • : ∂ Res(W ) ∂ ur (u) � in W . The fact that L λ (x) � = L λ (x � )
for any two distinct points x, x � ∈ W , implies that one can simply take u ranging through a line as in (2.4.19).

To deal with multiplicities (and henceforth 0-cycles), one could formally codify this information in h, the multiplicity of the point in W being the one of its corresponding value t. This is however not the point of interest of geometric representations, and we continue considering varieties below.

It is our purpose to apply Theorem 2.4.14 to derive upper bounds on the logarithmic length of a such rational univariate representation of a 0-dimensional variety arising from a polynomial system.

Corollary 2.4.16. Let f 1 , . . . , f n ∈ K[x ±1 1 , . . . , x ±1 n ], m ∈ (Z n ) r and α ∈ (K × ) r , with r ≥ 0. Let φ : (K × ) n -→ (K × ) r
p � -→ (α 1 p m1 , . . . , αr p mr ).

For i = 1, . . . , n, let ∆ i ⊂ M R be the Newton polytope of f i , and α i the vector of nonzero coefficients of f i . Set ∆ 0 = conv(0, m1 , . . . , mr ) ⊂ R n , and α 0 = (1, α1 , . . . , αr ).

Then there is a rational univariate representation of φ * (Z(f 1 , . . . , f n )), such that the logarithmic length of h, g 0 , . . . , g r is bounded above by

�(h) ≤ n � i=0 MV Z n (∆ 0 , . . . , ∆ i-1 , ∆ i+1 , . . . , ∆ n ) �(α i ) + κ MV Z n (∆ 1 , . . . , ∆ n );
and, for j = 0, . . . , r,

�(g j ) ≤ log � MV Z n (∆ 1 , . . . , ∆ n ) � + n � i=0 MV Z n (∆ 0 , . . . , ∆ i-1 , ∆ i+1 , . . . , ∆ n ) �(α i ) + κ (MV Z n (∆ 1 , . . . , ∆ n ));
where κ is a constant depending on the coefficients of the linear separating condition, and can always be taken κ ≤ log � MV Z n (∆ 1 , . . . , ∆ n ) � . In particular, if the projection to a coordinate is already a separating condition, κ = 0.

Proof. Let W = ϕ * (Z(f 1 , . . . , f n )) K . First, notice that for r = 1 no separating condition is needed. For r > 1, since L(λ) is of degree at most

� #W 2 �
, one can always choose a linear separating condition L λ with a λ ∈ K r \ {0} such that

κ = �(L λ ) ≤ log(#W ) ≤ log � MV Z n (∆ 1 , . . . , ∆ n ) � ; (2.4.20)
where the last inequality follows from the classical Bernštein-Kušnirenko, see Theo-rem2.2.10. Set m 0 = (1, m1 , . . . , mr ), and fix the natural embedding ι : (Q × ) r �→ P r Q , given by (q 1 , . . . , q r ) � → (1 : q 1 : • • • : q r ). Then the monomial map associated to m 0 and α 0 as in (2.3.16), is ϕ = ι • φ.

Take h, g 0 , . . . , g r ∈ K[t] as in (2.4.19), with L λ chosen as above. Since the length is submultiplicative, and �(L λ ) = κ, we have

�(h(t)) ≤ � q∈W κ + � � Res(ϕ * (Z(f 1 , . . . , f n ))) � .
By applying Theorem 2.4.14, we obtain the inequality in the statement for h. Fix j = 0, . . . , r. For t ∈ Q × , following the notations in Definition 2.4.13 (and setting q 0 = 1 for every q for a compact expression), we have

∂ Res(ϕ * (Z(f 1 , . . . , f n ))) ∂ u j (u 0 , λ 1 u 1 , . . . , λ n u n ) = � q � ∈W λ j q � j � q∈W q� =q � (1+λ 1 q 1 u 1 +• • •+λ r q r u r ).
For every q � , we have the following inequality of lengths

� � λ j q � j � q∈W q� =q � (1 + λ 1 q 1 u 1 + • • • + λ r q r u r ) � ≤ � � Res(ϕ * (Z(f 1 , . . . , f n ))(u 0 , λ 1 u 1 , . . . , λ r u r ) � .
Hence, we can derive

�(g j (t)) ≤ � � � q � ∈W Res(ϕ * (Z(f 1 , . . . , f n )) � ≤ � � #W Res(ϕ * (Z(f 1 , . . . , f n )) � .
By the classical Bernštein-Kušnirenko, the submultiplicity of the length, and Theorem 2.4.14, we obtain the inequality in the statement for g j .

Compte rendu

Le sujet de cette thèse s'inscrit dans la géométrie arithmétique, avec un fort lien avec la géométrie torique. Dans son sein, on revoit la théorie d'intersection, tant géométrique comme arithmétique. Ceci nous permet d'obtenir des computations précises sur deux concepts fortement liés qui jouent les rôles principaux dans ce manuscrit : la torsion et la hauteur de certaines variétés.

Le travail ici présenté a été divisé en deux chapitres indépendants. Le premier est dédié à l'analyse de la torsion dans des sous-variétés du tore et des variétés abéliennes, et le déuxieme concerne l'étude de la hauteur de 0-cycles de variétés toriques. Afin de respecter cette partition, on la reproduit ci-dessous, en présentant les deux parties séparément :

Bornes explicites pour la conjecture de Manin-Mumford

Le point de départ de la première partie de cette thèse est la question suivante, posée indépendamment par Manin et Mumford, et présentée par Lang dans [START_REF] Lang | Division points on curves[END_REF] : Si une courbe, plongée dans sa jacobienne, contient une infinité de points d'ordre fini, est-ce courbe de genre 1 ? Motivé par cette question, Lang étendit cette question dans [48, page 220], où il formula la conjecture de Manin-Mumford sous la forme suivante : Soit G un tore ou une variété abélienne en caractéristique 0. Soit V une sous-variété de G contenant une infinité de points de torsion de G. Alors V ne contient qu'un nombre fini de translatés de sous-groupes algébriques de G qui contiennent tous, sauf un nombre fini, les points de torsion dans V .

Ici, Lang appela tore le groupe multiplicatif complexe G n m = (C × ) n muni de la multiplication coordonnée par coordonnée (on donnera plus de détails ci-dessous).

Dans l'énoncé de la conjecture, on peut remplacer les « translatés de sous-groupes algébriques » par translatés de sous-groupes algébriques irréductibles de G par un point de torsion; ceux-là équivalent aux classes d'un point de torsion suivant un sous-groupe algébrique irreductible de G. Pour alléger la notation, on les appellera classes de torsion, par analogie à la terminologie anglaise « torsion coset ». En particulier, remarquons que les points de torsion sont classes de torsion en prenant le sous-groupe trivial. Alors, la conjecture de Manin-Mumford peut être reformulée comme il suit :

Conjecture (Manin-Mumford). Soit G = G n
m ou une variété abélienne en caractéristique 0. Soit V une sous-variété de G, la clôture de Zariski dans G des points de torsion de V est l'union finie de classes de torsion.

Dans le cas où G est un tore, la conjecture fut prouvée par Ihara, Serre et Tate quand V est une courbe [48, §8.6], et Laurent pour V une variété quelconque [START_REF] Laurent | Équations diophantiennes exponentielles[END_REF]. Néanmoins, elle pouvait déjà être déduite dès résultats précédents de Mann [START_REF] Mann | On linear relations between roots of unity[END_REF]. Son analogue abélien fut prouvé par Raynaud [START_REF] Raynaud | Courbes sur une variété abélienne et points de torsion[END_REF][START_REF] Raynaud | Sous-variétés d'une variété abélienne et points de torsion[END_REF]. De plus, Hindry prouva que la conjecture est aussi vraie dans le cas que l'on remplace G par un groupe algébrique commutative quelconque [START_REF] Hindry | Autour d'une conjecture de Serge Lang[END_REF].

Depuis que la conjecture de Manin-Mumford fut prouvée, l'intérêt changea partiellement au problème de borner (de façon explicite et effective) le nombre de classes de torsion dans V . Plus précisément, en ordonnant ces classes de torsion par inclusion, on obtient une notion de maximalité des classes de torsion dans V ; ainsi, le but est de borner le nombre de classes de torsion maximales dans V , et déterminer de quoi dépend une telle borne.

Soit V une sous-variété de G, pas nécessairement irréductible, on note V tors l'ensemble des points de torsion dans V , et on appelle sous-variété de torsion de V sa clôture de Zariski dans G :

V tors = V ∩ G tors .
Par la conjecture de Manin-Mumford (théorèmes de Laurent et Raynaud respectivement) on a que V tors est l'union d'une famille finie de classes de torsion de G. En particulier, on remarque qu'une sous-variété irréductible est de torsion si et seulement s'il s'agit d'une classe de torsion de G. D'après la conjecture de Manin-Mumford, et en considérant que les classes de torsion maximales dans V , il existe un nombre N (V ) ∈ N tel que l'on peut écrire :

V tors = N (V ) � j=1 H j ,
où H j est une classe de torsion maximale dans V , pour tout j = 1, . . . , N (V ). Dans la suite, le but est de trouver une borne tant pour N (V ) comme pour le degré de toute classe de torsion maximale dans V .

Les résultats dans le premier chapitre de cette thèse proposent des nouvelles bornes pour le nombre de classes de torsion maximales dans une sous-variété, tant du tore comme d'une variété abélienne définie sur un corps de nombres. Dans une première instance, on présente le travail [START_REF] Martínez | The number of maximal torsion cosets in subvarieties of tori[END_REF] dans lequel on prouve des bornes fines pour le nombre de classes de torsion d'une sous-variété d'un tore, et démontre les conjectures de Ruppert et Aliev-Smyth sur le nombre de points de torsion isolés contenus dans une hypersurface.

Dans un deuxième temps, on présente un travail en commun avec Aurélien Galateau qui propose des bornes analogues pour sous-variétés de variétés abéliennes définies sur un corps de nombres.

Dans la suite, on traite de façon indépendante le cas torique et le cas abélien.

Le cas du tore

Soit G n m = (C × ) n le groupe multiplicatif complexe de dimension n. On identifie G n m avec l'ouvert de Zariski de l'espace affine A n C : 

{(x 1 , . . . , x n ) ∈ A n C | x 1 • • • x n � = 0},
; c'est-à-dire, x • S = {x • • • y | y ∈ S}.
Un point de torsion de G n m est un n-uplet de racines de l'unité. On note par :

µ k = {ζ ∈ G n m | ζ k = 1}
le sous-groupe de G m des racines k-ièmes de l'unité. Alors : m . Supposons que V est définie sur un corps de nombres K par des polynômes de degré au plus δ et de hauteur au plus η. Comme conséquence de la preuve de Laurent [START_REF] Laurent | Équations diophantiennes exponentielles[END_REF], on peut borner N (V ) en termes de n, δ, η et [K : Q]. Néanmoins, le résultat prouvé par Laurent est un cas particulier de la conjecture de Mordel-Lang qui est plus générale que ce que l'on considère ici; cela lui fit utiliser une version non-effective du théorème des sous-espaces de Schmidt, qui rendit non-effective aussi sa borne pour N (V ). Plus tard, Bombieri et Zannier [START_REF] Bombieri | Algebraic points on subvarieties of G n m[END_REF], suivant les travaux de Zhang dans [START_REF] Zhang | Positive line bundles on arithmetic varieties[END_REF], démontrèrent que tant N (V ) comme le degré des classes de torsion maximales dans V peuvent être bornés seulement en fonction de n et δ.

µ n k = (µ k ) n et µ n ∞ = � k∈N >0 µ n k représentent,
Il est possible de construire un exemple simple qui permet d'illustrer qu'une borne uniforme pour N (V ) doit toujours dépendre tant de n comme de δ. Soit :

f (x 1 , . . . , x n ) = n -x δ 1 -• • • -x δ n ∈ Q[x 1 , . . . , x n ],
et V ⊂ G n m l'hypersurface définie par les zéros de f , qui est de degré δ. Les solutions en racines de l'unité de f = 0 sont les n-uplets de racines δ-ièmes de l'unité, qui correspondent aux classes de torsion maximales dans V . Ainsi, on obtient :

V tors = V tors = µ n δ et N (V ) = #µ n δ = δ n .
Parallèlement au résultat de Bombieri et Zannier, Schlickewei [START_REF] Schlickewei | Equations in roots of unity[END_REF] continua les travaux de Mann [START_REF] Mann | On linear relations between roots of unity[END_REF], Conway et Jones [START_REF] Conway | Trigonometric Diophantine equations (On vanishing sums of roots of unity)[END_REF], et al.; donnant une borne supérieure au nombre de solutions en racines de l'unité pour une équation linéaire (qui ne dépend que du nombre de variables). Ce résultat fut donc utilisé par Schmidt [START_REF] Schmidt | Heights of points on subvarieties of G n m . In Number theory[END_REF] pour donner une preuve alternative du fait que N (V ) et le degré des classes de torsion maximales dans V peut être borné en terme de n et δ.

En combinant les techniques de Schmidt avec les améliorations faites par Evertse [START_REF] Evertse | The number of solutions of linear equations in roots of unity[END_REF] du résultat de Schlickewei, pour tout sous-variété V de G n m définie par des polynômes de degré au plus δ, on a :

N (V ) ≤ (11δ) n 2 � n + δ δ � 3( n+δ δ ) 2 .
Les résultats de Mann [START_REF] Mann | On linear relations between roots of unity[END_REF], Conway et Jones [START_REF] Conway | Trigonometric Diophantine equations (On vanishing sums of roots of unity)[END_REF], et plus récemment Dvornicich-Zannier [START_REF] Dvornicich | On sums of roots of unity[END_REF] sur les sous-sommes annulatrices d'un système de relations linéaires de racines de l'unité permettent d'obtenir diverses algorithmes pour obtenir les classes de torsion maximales d'une sous-variété de G n m . La preuve de Sarnak et Adams [START_REF] Sarnak | Betti numbers of congruence groups[END_REF] de la conjecture de Manin-Mumford torique est une conséquence d'un résultat de ce style, loc. cit. Lemma 3.1 qui leur fut proposé par Cohen, ce qui rendit leur preuve algorithmique.

En outre, Ruppert considéra dans [START_REF] Ruppert | Solving algebraic equations in roots of unity[END_REF] 

(d i ) max i (d i ).
En fait, il commença en considérant le cas des courbes planes (alors n = 2) et obtint que le nombre de points de torsion dans C peut être majoré par la borne plus fine suivant :

#C tors ≤ 22 d 1 d 2 -2 d 1 -2 d 2 .
En dimension supérieure, l'approche de Ruppert ne s'étendit que pour des variétés particulières. Cependant, il fit un étude extensif qui lui porta a formuler la conjecture suivante : Ici, Ruppert appela points de torsion isolés les points de torsion qui ne sont pas contenus dans une composante de dimension positive de la sous-variété de torsion. Ils coïncident avec les classes de torsion maximales de dimension 0.

Conjecture (Ruppert). Soit f ∈ C[x 1 , . . . ,
Plus tard, Beukers et Smyth [START_REF] Beukers | Cyclotomic points on curves[END_REF] reconsidérèrent ce problème pour les courbes dans G n m . Soit f ∈ C[x, y], le polytope de Newton de f est l'enveloppe convexe dans R 2 des exposants qui apparaissent dans l'expression monômiale de f . Cela permit à Beukers et Smyth de raffiner la borne de Ruppert, en donnant une en termes du volume du polytope de Newton du polynôme définissant la courbe plane. Tout d'abord, ils prouvèrent que toute paire de racines de l'unité est un zéro de f si et seulement si elle l'est aussi d'un des polynômes suivants :

f 1 (x, y) = f (-x, y), f 2 (x, y) = f (x, -y), f 3 (x, y) = f (-x, -y), f 4 (x, y) = f (x 2 , y 2 ), f 5 (x, y) = f (-x 2 , y 2 ), f 6 (x, y) = f (x 2 , -y 2 ), f 7 (x, y) = f (-x 2 , -y 2 ).
Les exposants des monômes de f 1 , . . . , f 3 et f 4 , . . . , f 7 sont, respectivement, ceux de f et une homothétie de rapport 2 de ceux de f . Alors, par le théorème de Bernštein-Kušnirenko (analogue torique du théorème de Bézout, Theorem 2.2.10) Beukers et Smyth obtint que le nombre de points de torsion (isolés) de C est borné par : 22 vol 2 (∆), où ∆ est le polytope de Newton de f , et vol 2 est le volume associé à la mesure de Lebesgue de R 2 .

Ces résultat porta Aliev et Smyth à énoncer dans [START_REF] Aliev | Solving algebraic equations in roots of unity[END_REF] la conjecture suivante qui généralise la conjecture de Ruppert :

Conjecture (Aliev-Smyth). Soit f ∈ C[x 1 , . . . , x n ] un polynôme non-nul. Le nombre de points de torsion de l'hypersurface Z(f ) ⊂ G n m définie par les zéros de f peut être borné par c n vol n (∆), où c n est une constante qui ne dépend que de n, ∆ est le polytope de Newton de f , et vol n est le volume associé à la mesure de Lebesgue de R n .

Le fait que cette conjecture entraîne celle de Ruppert suit d'une simple observation. Soit f ∈ C[x 1 , . . . , x n ] un polynôme de multi-degré (d 1 , . . . , d n ), où d i > 0 pour tout i; alors les exposants de ses monômes sont contenus dans une boîte

� n i=0 [0, d i ].
En particulier, le polytope de Newton ∆ de f est contenu dans cette boîte, et :

vol n (∆) ≤ vol n � n � i=0 [0, d i ] � = d 1 • • • d n . Soit f ∈ C[x 1 , . . . ,
x n ] un polynôme de degré δ > 0, les deux conjectures impliquent que le nombre de points de torsion isolés de Z(f ) est borné supérieurement par :

c n δ n ;
(1) où c n est une constante qui ne dépend que de n. D'ailleurs, pour j = 0, . . . , n -1, Ruppert montra [73, Corollary 11] que la borne (1) implique que le degré de la partie j-équidimensionnelle de Z(f ) tors est borné supérieurement par c n,j δ n-j , où c n,j est une constante qui ne dépend que de n et j.

Aliev et Smyth se proposèrent de démontrer (1) dans [START_REF] Aliev | Solving algebraic equations in roots of unity[END_REF]. Pour cela, ils étendit l'algorithme de Beukers et Smyth à dimensions supérieures, et prouvèrent une borne qui reste loin de celle conjecturé. Soit f ∈ C[x 1 , . . . , x n ] un polynôme de degré δ > 0, ils obtint :

N (Z(f )) ≤ κ 1 (n)δ κ 2 (n,δ) ; (2) 
où :

κ 1 (n) = n 3 2 (2+n)5 n , et k 2 (n, δ) = 1 16 (49δ n-2 -4n -9).
Pour représentations lacunaires de polynômes, Leroux [START_REF] Leroux | Computing the torsion points of a variety defined by lacunary polynomials[END_REF] donna un algorithme pour obtenir les classes de torsion maximales dans une sous-variété V ⊂ G n m . Comme une conséquence de ses résultats, si V est définie par k polynômes dans Q[x 1 , . . . , x n ] avec au plus r coefficients non-nuls, alors on a la borne suivante :

N (V ) ≤ (r!) k exp � 3(n + 1) � kr log(kr) � .
En restreignant cette borne au cas de polynômes denses, on a une valeur comparable à celle de Aliev et Smyth (2).

Des bornes plus fines peuvent se déduire comme une conséquence de l'étude de la hauteur de Weil logarithmique dans G n m . En effet, les points de hauteur zéro correspondent au points de torsion. C'est ainsi que les bornes supérieures pour le nombre de points (isolés) de hauteurs « assez petite » impliquent automatiquement des bornes pour le nombre de points (isolés) de torsion. Suivant ce processus, soit V une sous-variété de G n m définie par des polynômes de degré au plus δ, les résultats de David et Philippon [START_REF] David | Minorations des hauteurs normalisées des sous-variétés des tores[END_REF], Rémond [START_REF] Rémond | Sur les sous-variétés des tores[END_REF] et al. entraînent des bornes supérieures pour le nombre de classes de torsion maximales dans V qui sont polynômiales en δ. On souligne le résultat suivant, obtenu par Amoroso et Viada [2, Corollary 5.4], qui est une conséquence de leur étude sur le minimum essentiel d'une sous-variété de G n m :

deg(V j tors ) ≤ � δ(200n 5 log(n 2 δ)) (n-k)n(n-1)
� n-j

, ∀j = 0, . . . , dim(V ); où V j tors représente l'union de toutes les classes de torsion maximales dans V qui sont de dimension j, et k est la codimension de V dans G n m . En particulier, quand V est une hypersurface dans G n m , la valeur δ peut être prise comme le degré de V ; alors le nombre de points de torsion isolés dans V est borné supérieurement par :

#V 0 tors ≤ δ n (200n 5 log(n 2 δ)) n 2 (n-1) 2 .
On remarque que cette borne est la valeur attendue dans (1) à un facteur logarithmique près.

Dans cette première partie de la thèse ( §1.1) on se propose de démontrer tant la conjecture de Ruppert comme celle de Aliev-Smyth. Le plan suivi peut être divisé dans les quatre pas suivants :

1. On étend l'argument pour courbes planes de Beukers et Smyth dans [START_REF] Beukers | Cyclotomic points on curves[END_REF] qui s'étend à toute sous-variété irréductible de dimension positive dans G n m , n ≥ 1.

2. On utilise un argument d'interpolation avec des bornes supérieures et inférieures de la fonction de Hilbert de façon similaire à Amoroso et Viada [2] pour obtenir une « hypersurface obstructrice ».

3. On applique la technique de double induction de Viada dans [2] pour remplacer l'intersection simple par le théorème de Bézout. Cela nous permet déjà d'obtenir la borne préliminaire en fonction du degré indiqué dans (1) et en déduire la conjecture de Ruppert.

4. On implémente un résultat sur les ellipsoïdes dans des espaces métriques dû à John [START_REF] John | Extremum problems with inequalities as subsidiary conditions[END_REF] pour « traduire » la borne (1) en termes de degré et volume associés à polytopes convexes. Ce nous permet de démontrer la conjecture de Aliev-Smyth.

Pour le premier pas, on suit le résultat de Beukers et Smyth [START_REF] Beukers | Cyclotomic points on curves[END_REF] et on démontre son analogue géométrique pour des sous-variétés irréductibles qui ne sont pas de torsion :

Proposition. Soit V ⊂ G n
m une sous-variété de dimension positive telle que V tors � = V . Il existe une sous-variété V � ⊂ G n m équidimensionnelle et de même dimension que V , qui est définie à partir de V , telle que :

V tors ⊂ V ∩ V � � V.
La construction de cette variété V � dépend du corps de définition de V : si V n'est pas défini sur Q ab , le résultat correspond à Proposition 1.2.4; autrement, il équivaut à Proposition 1.2.6. Leur preuves s'appuyèrent fortement sur le fait que les points de torsion, étant des n-uplets de racines de l'unité, sont définis sur des corps cyclotomiques; ainsi leur groupes de Galois sont bien connus. Dans Proposition 1.2.4 et Lemma 1.2.5, on trouve donc une famille d'automorphismes de Galois desquels on connait l'action sur les points de torsion et sur le corps de définition de V , ce qui nous permet de donner une description de la variété V � dans la proposition ci-dessus.

Dans le deuxième pas, on utilise les bornes supérieur et inférieur pour la fonction de Hilbert dues à Chardin [START_REF] Chardin | Une majoration de la fonction de Hilbert et ses conséquences pour l'interpolation algébrique[END_REF], et Chardin et Philippon [START_REF] Chardin | Régularité et interpolation[END_REF], respectivement. Cela nous permet de construire une hypersurface obstructrice à partir de la sous-variété V � du résultat précédent. On prouve ainsi Theorem 1.2.16, qui est comme il suit :

Théorème. Soit V ⊂ G n
m une sous-variété de dimension positive qui est définie par des polynômes de degré au plus δ > 0, telle que V tors � = V . Il existe une hypersurface Z ⊂ G n m de degré δ à facteur multiplicatif près qui ne dépend que de n, telle que :

V tors ⊂ V ∩ Z � V.
Dans le troisième pas, on intersecte récursivement avec des hypersurfaces du théorème ci-dessus. Pour éviter un incrément exponentiel du degré de l'intersection, on suit l'approche de Amoroso et Viada [2]. Leur techniques nous permettent d'obtenir notre premier résultat principal, Theorem 1. 

Le cas des variétés abéliennes

La conjecture de Manin-Mumford est plus connue dans sa formulation abélienne. Les points de torsion de A, sont éléments d'ordre fini par rapport à la loi de groupe additive de A. Pour un entier k > 0, on note A[k] le groupe des points de torsion d'ordre divisant k. Il est isomorphe à (Z/kZ) 2g , où g est la dimension de A. On note :

A tors = � k>0 A[k]
le groupe de torsion de A. Les sous-groupes algébriques de A sont les sous-variétés abéliennes de A, et les points de torsion sont Zariski denses dans toute sous-variété abélienne. Une classe de torsion de A est donc un translaté P + B = {P + Q | Q ∈ B}, où B est une sous-variété abélienne de A et P ∈ A tors est un point de torsion.

À cause de la structure plus complexe des points de torsion de A, et leur corps de définition, les bornes explicites pour la conjecture de Manin-Mumford sont moins prolifères dans la littérature que ces analogues toriques. Pour le cas d'une courbe C de genre g ≥ 2 plongée dans sa jacobienne J(C), des bornes supérieures pour #C tors furent étudiés par Raynaud [START_REF] Raynaud | Courbes sur une variété abélienne et points de torsion[END_REF], Coleman [START_REF] Coleman | Torsion points on curves and p-adic abelian integrals[END_REF], et Hindry [START_REF] Hindry | Points de torsion sur les sous-variétés de groupes algébriques[END_REF]. En utilisant p-jets, et sous certaines conditions de ramification en un nombre premier p ≥ 2g + 1, Buium [START_REF] Buium | Geometry of p-jets[END_REF] prouva :

#C tors ≤ g!p 4g 3 g (p(2g -2) + 6g), répondant à une question qui fut posée par Mazur [60, page 234] sur une expression que en termes de g d'une telle borne uniforme. Soit A une variété abélienne complexe de dimension g, fixons un plongement A �→ P n de façon que l'on identifie toute sous-variété de A avec son image dans P n . Cela nous permet de considérer le degré d'une sous-variété de A comme le degré usuel dans P n . Dans la suite, quand on dira qu'une constante dépend de A, elle peut dépendre implicitement du choix du plongement.

L'approche d'Hindry dans [START_REF] Hindry | Autour d'une conjecture de Serge Lang[END_REF] donna une borne effective (à une constante près qui est liée aux réprésentations galoisiennes), mais il est difficile de la rendre explicite pour toute sous-variété. Soit V ⊂ A une sous-variété, Bombieri et Zannier prouvèrent dans [START_REF] Bombieri | Heights of algebraic points on subvarieties of abelian varieties[END_REF] qu'il est possible de borner le nombre de classes de torsion maximales dans V par une constante qui ne dépend que de A et du degré de V . Il faut préciser que la dépendance en A ne fut pas éclaircie.

Par des nouvelles méthodes modèle-théoriques, Hrushovski [START_REF] Hrushovski | The Manin-Mumford conjecture and the model theory of difference fields[END_REF] borna le nombre de classes de torsion maximales dans V par :

c deg(V ) e , (3) 
où c et e ne dépendent que de A. En effet, elles sont doublement exponentielles en paramètres provenant de A. Soit V une sous-variété de A, les résultats dans le cas torique sur la dépendance du degré de V d'une borne pour N (V ) motivent la question si c'est possible améliorer l'exposant e dans (3), incrémentant potentiellement la constante c. En particulier, on pourrait attendre une borne du type de celle du théorème A; c'est-à-dire, si V est définie dans P n par des polynômes de degré au plus δ, existe-t-il une constante c A ne dépendant que de A telle que

N (V ) ≤ c A δ n ? (4) 
Dans la deuxième partie du premier chapitre ( §1.3) on se propose de démontrer (4) quand la variété abélienne est définie sur un corps de nombres. La stratégie de ce preuve est similaire à celle suivie dans le cas torique, le plan de laquelle on peut diviser en trois étapes :

1. On étudie l'action de Galois sur la torsion de A a travers des représentations galoisiennes attachées à A, afin d'en extraire de l'information géométrique sur les points de torsion. Depuis ces résultats, on déduit une borne pour le nombre de points de torsion d'une courbe de genre plus grand que 2 contenue dans une variété abélienne quelconque.

2. On utilise un argument d'interpolation dans P n , relative à l'inclusion V ⊂ A, avec des bornes supérieures et inférieures de la fonction de Hilbert.

3. On applique une version abélienne de la double induction de Viada [2] qui nous permet démontrer (4).

Tout d'abord, fixons K un corps de nombres « assez grand » tel que A est définie sur K. Par un résultat de Bogomolov [START_REF] Bogomolov | Sur l'algébricité des représentations l-adiques[END_REF] en suite amélioré par Serre [START_REF] Serre | Résumé des cours au collège de france (1985-1986[END_REF], il existe une constante c ∈ N >0 qui n'est pas connue effective, tel que pour tout point de torsion P ∈ A tors et tout entier k > 0 premier à l'ordre de P , il existe un automorphisme du groupe de Galois absolu σ ∈ Gal(K/K) tel que : Proposition. Soit V ⊂ A une sous-variété irréductible de dimension positive telle que V tors � = V . Il existe une sous-variété V � ⊂ A équidimensionnelle de même dimension que V qui est définie à partir de V et telle que :

P σ =
V tors ⊂ V ∩ V � � V.
La construction de cette variété V � dépend du corps de définition de V , et suit d'une famille d'automorphismes du groupe de Galois absolue desquels on connait l'action sur une partie des points de torsion et le corps de définition de V . Du fait que cette variété V � est construite à partir de V de manière explicite, on peut calculer le degré de V � , qui est celui de V à un facteur multiplicatif constant près ne dépendant que de la dimension de la variété abélienne et de la constante c de [START_REF] Beukers | Cyclotomic points on curves[END_REF]. Ce contrôle du degré nous permet de donner un premier résultat partial : Théorème. Soit C ⊂ A une courbe algébrique irréductible de genre plus grand que 2, et soit g = dim(A). Alors # C tors ≤ (2 4g+c c 2g + 2 2g+1 -1) deg(C) 2 .

Dans le deuxième pas, on utilise les bornes supérieur et inférieur pour la fonction de Hilbert dus a Chardin [START_REF] Chardin | Une majoration de la fonction de Hilbert et ses conséquences pour l'interpolation algébrique[END_REF], et Chardin et Philippon [START_REF] Chardin | Régularité et interpolation[END_REF], respectivement; nous permettant construire, en Proposition 1.3.13, une hypersurface de P n obstructrice à partir de la sous-variété V � de la proposition précédente.

Proposition. Soit V ⊂ G n m une sous-variété de dimension positive qui est définie par des polynômes de degré au plus δ > 0, telle que V tors � = V . Il existe une hypersurface Z ⊂ G n m de degré δ à facteur multiplicatif près qui ne dépend que de A, telle que :

V tors ⊂ V ∩ Z � V.
Dans le troisième pas, on adapte au cas abélien l'approche d'Amoroso et Viada [2] et on applique une double induction utilisant l'hypersurface obstructrice dans P n obtenue dans la proposition ci-dessus. Notre résultat principal pour la conjecture de Manin-Mumford abélienne, Theorem 1.3.14, est le suivant : où Z(f 1 , . . . , f n ) est le zéro cycle de (K × ) n donné par les solutions du système d'équations polynomiales f 1 = • • • = f n = 0, et MV est le volume mixte qui est définit comme la somme alterné :

MV n (∆ 1 , . . . , ∆ n ) = n � j=1 (-1) n-j � 1≤i 1 <•••<i j ≤n vol n (∆ i 1 + • • • + ∆ i j ), (7) 
où vol n est le volume associé à la mesure de Lebesgue dans R n . De plus, l'inégalité dans (6) est une égalité pour un choix de polynômes générique.

Ce résultat, initié par Kušnirenko [START_REF] Kušnirenko | Polyèdres de Newton et nombres de Milnor[END_REF] et puis mis sous forme finale par Bernštein [START_REF] Bernstein | The number of roots of a system of equations[END_REF], est aussi connu comme « théorème BKK » afin de reconnaitre de même les contributions de Khovanskiȋ.

En comparant le théorème de Bernštein-Kušnirenko avec le théorème de Bézout, on remarque que le premier ne prend en compte que le degré des polynômes, mais aussi la distribution de tous les exposants qui apparaissent dans leurs expansions monômiales. Ainsi, il s'agit d'un raffinement du théorème de Bézout qui permet de déterminer quand un système polynomial a un petit nombre de solutions dans le tore. Dans l'intention de relever la comparaison entre le théorème de Bernštein-Kušnirenko et le théorème de Bézout, on propose l'exemple suivant. 

Après un calcul simple, on peut vérifier que la borné pour le nombre de solutions dans (K × ) n donné par le théorème de Bernštein-Kušnirenko est égale à 1; et, effectivement, (H, . . . , H 1+d+•••+d n-1 ) est la seule solution de ce système dans le tore. Remarquons que cette borne est beaucoup plus petite que le produit de leurs degrés, d n .

Le théorème de Bernštein-Kušnirenko a eu un fort impact dès sa formulation. En offrant une alternative plus simple pour traiter les systèmes d'équations polynomiales, il a nombreuses applications dans ce sens, par exemple en l'algèbre computationelle [START_REF] Gelfand | Discriminants, resultants, and multidimensional determinants[END_REF][START_REF] Sturmfels | Solving systems of polynomial equations[END_REF]. En outre, il contribue aussi dans l'autre sens, fournissant par exemple une preuve de l'inégalité d'Alexandrov-Fenchel (pour laquelle une approche directe avec des outils de géométrie convexe est plutôt difficile) par moyen de l'inégalité de Hodge, voir [START_REF] Teissier | Du théorème de l'index de Hodge aux inégalités isopérimétriques[END_REF] et Addendum 3 par Khovanskiȋdans [START_REF] Yu | Geometric inequalities[END_REF]. Dû a son importance, il a inspiré un grand nombre de généralisations, une brève discussion la-dessus peut être trouvé dans [START_REF] Sturmfels | Solving systems of polynomial equations[END_REF]Chapter 3]. On souligne le raffinement de Philippon et Sombra dans [START_REF] Philippon | A refinement of the Bernštein-Kušnirenko estimate[END_REF], où ils prouvèrent une borne comme (6) en termes d'un intégrale mixte de fonctions concaves. Ce résultat sert comme premier précurseur d'une partie du travail présenté dans cette partie de la thèse.

Quand K a une structure arithmétique, il est aussi d'intérêt avoir un contrôle de la hauteur ou complexité de la solution d'un tel système d'équations polynômiales. La notion de hauteur d'un point fut développée d'abord par Siegel, Northcott, Weil, et al. comme un moyen de mesurer la « taille » d'un point, et c'est un outil essentiel dans la géométrie diophantienne. En dimension supérieure, ce concept s'étend comme un analogue du degré d'une variété qui mesure la complexité de sa représentation, par exemple via la forme de Chow. Par conséquence, elle est aussi d'importance en géométrie algébrique et algèbre computationelle effective, notamment quand on considère des versions effectives du théorème des zéros [START_REF] D'andrea | Heights of varieties in multiprojective spaces and arithmetic Nullstellensätze[END_REF][START_REF] Giusti | Lower bounds for Diophantine approximations[END_REF][START_REF] Krick | Sharp estimates for the arithmetic Nullstellensatz[END_REF]. Ce fait motive d'avantage une borne arithmétique du type [START_REF] Bogomolov | Points of finite order on abelian varieties[END_REF].

La notion de corps arithmétique que l'on considère dans ce texte est celle d'un corps adélique. On considère K un corps infini et M un ensemble de places, dont chaque place 

En particulier, elle correspond à la hauteur de Weil dans le cas dont K est un corps de nombres. Néanmoins, la définition formelle de hauteur est plus riche et permet de considérer des hauteurs alternatives à celle canonique. Par exemple, on peut définir une hauteur associé à un morphisme monômial ϕ : (K × ) n → (K × ) r en prenant l'image inverse de la hauteur canonique dans (K × ) r ; c'est à dire, pour tout élément x ∈ (K × ) n , on considère la hauteur donné par : 

Après un rappel de théorie de l'intersection, on donne une preuve du théorème de Bernštein-Kušnirenko classique (Theorem 2.2.10). Cela détermine la stratégie que l'on suivra dans la suite pour prouver l'analogue arithmétique. Dans la deuxième partie, on commence en introduisant les corps adéliques et on détaille une construction d'extension d'un corps adélique qui préserve la formule du produit dans Proposition 2.3.6. A continuation, étant donné une variété normale X, on donne la définition de hauteur locale d'un zéro-cycle dans X associée a une métrique sur un fibré en droites analytique, Definition 2.3.10. En rajoutant une notion de compatibilité au long de toutes les places, on obtient une métrique adélique sur un diviseur D, qui nous permet donner une définition de hauteur (globale) d'un zéro-cycle en ces termes, Defintion 2.3.14. On note D un diviseur métrisé comme dans Définition 2.3.13, et h D (Y ) la hauteur d'un zéro cycle Y associé à D. Ensuite, on présente les outils nécessaires qui nous permettent donner un équivalent arithmétique de la théorie d'intersection et définir la hauteur de cycles de dimension positive, Definition 2.3.16. À partir de cette définition on démontre un premier résultat dans la direction du Bernštein-Kušnirenko arithmétique, Corollary 2.3.24, dont les définitions des objets qui interviennent se trouvent dans §2.2 :

Corollaire. Soient D 0 , . . . , D n diviseurs métrisés semipositifs sur X, tels que D 0 est nef et D 1 , . . . , D n sont engendrés par sections petites. Soit s i une section globale D i -petite, i = 0, . . . , n. Alors :

0 ≤ h D 0 � n � i=1 div(s i ) � ≤ h D 0 ,...,Dn (X). (11) 
Dans le cas où X est une variété torique, Burgos, Philippon et Sombra [START_REF] Burgos Gil | Arithmetic geometry of toric varieties. Metrics, measures and heights[END_REF] donnèrent des correspondants en géométrie convexe aux concepts arithmétiques qui apparaissent dans ce résultat. Ainsi, comme on détaille dans Proposition 2.3.28, soit D un diviseur torique sur X et soit ∆ ⊂ R n son polytope convexe associé :

• il y a une correspondance un-à-un entre les métriques adéliques toriques semipositives sur D, et les familles de fonctions concaves (ψ v ) v∈M sur R n , appelées fonctions métriques, telles que |ψ v -Ψ ∆ | est borné et ψ v = Ψ ∆ pour presque toute place v;

• il y a une correspondance un-à-un entre les métrique adélique toriques semipositives sur D, et les familles de fonctions concaves continues (ϑ v ) v∈M sur ∆, appelées fonctions toit, telles que ϕ v = 0 pour presque toute place v.

De plus, les fonctions métriques et les fonctions toit sont duales l'une de l'autre par la dualité de Legendre-Fenchel. Une métrique est dite canonique si elle est associé à la famille de fonctions métriques {ψ v = Ψ ∆ } v∈M , où de manière équivalente, à la famille de fonctions toit {ϑ v ≡ 0} v∈M . Ces équivalences permettent définir des hauteurs associés à diviseurs métrisés en termes combinatoires. Un autre résultat de Burgos, Philippon et Sombra, permet calculer la hauteur de la variété torique associé à une famille de n + 1 diviseurs métrisés en termes d'une intégrale mixte, voir Theorem 2.3.31 :

Théorème. Soient D i , i = 0, . . . , n, diviseurs toriques métrisés semipositifs sur D, tels que D 1 , . . . , D n sont engendrés par des sections petites. Soit (ϑ i,v ) v∈M la famille de fonctions toit associés à D i , i = 0, . . . , n. Alors : h D 0 ,...,Dn (X) = � v∈M n v MI(ϑ 0,v , . . . , ϑ n,v ), [START_REF] Bourbaki | Éléments de mathématique[END_REF] où MI est l'intégrale mixte définie par :

MI(ϑ 0,v , . . . , ϑ n,v ) = n � j=0 (-1) n-j � 0≤i 0 <•••<i j ≤n � ∆ i 0 +•••+∆ i j ϑ i 0 ,v � • • • � ϑ i j ,v dx,
où « � » note la sup-convolution de fonctions concaves (on renvoie à Definition 2.3.30 pour les détails).

Dans la dernière partie de ce chapitre on démontre le résultat principale. Soit f 1 , . . . , f n ∈ K[x ±1 ] une famille de polynômes de Laurent. On définie une variété torique X telle que les polytopes de Newton des f i 's définissent des diviseurs toriques D i de X; le degré de laquelle est donné par le volume mixte de ces polytopes. Le théorème de Bernštein-Kušnirenko classique suit de la bijection (10) qui associe à chaque f i une section globale de chaque O(D i ), et d'une inégalité du style (11) pour les degrés. La stratégie est donc associer à chaque D i une métrique adélique torique semipositive telle que les D i 's satisfont les conditions nécessaires pour utiliser [START_REF] Bost | Heights of projective varieties and positive Green forms[END_REF] et [START_REF] Bourbaki | Éléments de mathématique[END_REF]. This is done in Proposition 2.4.2 and Lemma 2.4.4.

Proposition. Soit f = � r j=0 α j x m j un polynôme de Laurent dans K[x ±1 ], et soit D le diviseur torique d'une variété torique compatible associé au polytope de Newton ∆ de f . Soit (ψ v : R n → R) v∈M une famille de fonctions définies, pour u ∈ R n , comme : 

ψ v (u) =          -log
où les maximums sont pris sur les vecteurs λ = (λ 0 , . . . , λ r ) ∈ (R ≥0 ) r+1 tels que 

  are generic Laurent polynomials of Newton polytope ∆, and Z(f 1 , . . . , f d ) is the d-codimensional variety in G n m defined by them.

2 . 1 .

 21 Definition 2.2.4. Let Y be a k-cycle of X and D 1 , . . . , D k Cartier divisors on X. The degree of Y with respect to D 1 , . . . , D k , denoted by deg D 1 ,...,D k (Y ), is inductively defined by the rules: 1. if k = 0, write Y = � p m p p, and set deg(Y ) = � p m p [K(p) : K]; 2. if k ≥ 1, choose a rational section s k of O(D k ) such that div(s k ) intersects Y properly, and set deg D 1 ,...,D k

D 1 ,

 1 . . . , D k-1 are nef, by (2.2.3) we have that deg D 1 ,...,D k-1 (div(s k ) • Y ) ≥ 0, proving the lower bound.

Definition 2 . 3 . 1 .

 231 Let K be an infinite field and M a set of places. Each place v ∈ M is a pair consisting of an absolute value | • | v and a positive real weight n v . We say that (K, M) is an adelic field if 1. for each v ∈ M, the absolute value | • | v is either Archimedean or associated to a nontrivial discrete valuation;

Example 2 . 3 . 3 .

 233 Let K(C) denote the function field of a regular projective curve C over a field κ. To each closed point v ∈ C we associate the absolute value and weight given, for a non-zero element f ∈ K(C), by |f | v = c -ordv(f ) κ and n v = [K(v) : κ],(2.3.1)

Definition 2 . 3 . 5 .

 235 Let (K, M) be an adelic field and F a finite extension of K. For every place v ∈ M, we denote by N v the set of absolute values | • | w on F that extend | • | v with weight given by

Example 2 . 3 . 8 .

 238 Let (K(C), M K(C) ) be the function field of a regular projective curve C over a field κ with the structure of adelic field as in Example 2.3.3. The places of K(C) correspond to the closed points of C with absolute values and weights given by (2.3.1). Let F be a finite extension of K(C) and N the set of places of F as in Definition 2.3.5. There is a regular projective curve B over κ and a finite map π : B → C such that the extension K(C) �→ F identifies with the morphism π * : K(C) �→ K(B). For each place v ∈ M K(C) , the absolute values of F that extend | • | v are in bijection with the fiber π -1 (v). For a closed point v ∈ C, the integral closure in K(B) of O v,C coincides with O π -1 (v),B , the local ring of B along the fibre π -1 (v). The ring O π -1 (v),B is of finite type over O v,C . With notation as in Lemma 2.3.4, by [13, Chapter VI, §8.5, Corollaire 3], we have E w � F w for all w ∈ N v . Hence, the weight of w is given by

3 . 5 )

 35 by linearity. It is discrete signed measure of total mass equal to deg(Y ).Let D be a Cartier divisor on X. A metric on the analytic line bundle O(D) an v is an assignment that, to each open subset U ⊂ X an v and local section s on U , associates a continuous function�s(•)� v : U -→ R ≥0that is compatible with restrictions to open subsets, vanishes only when the local section does, and respects multiplication of local sections by analytic functions, see [19, Definitions 1.1.1 and 1.3.1]. This notion allows to define local heights of 0-cycles. Definition 2.3.10. Let D be a Cartier divisor on X, and � • � v a metric on O(D) an v . For a 0-cycle Y of X v and a rational section s of O(D) that is regular and non-vanishing on the support of Y , the local height of Y with respect to the pair (

� p µ p p and

  γ = � p f (p) µp ∈ K × . Definition 2.3.14. Let D be a metrized divisor on X and Y a 0-cycle of X. The global height of Y with respect to D is defined as h D (Y ) = � v∈M n v h D,v (Y ; s),(2.3.10)with s a rational section of O(D) that is is regular and non-vanishing on |Y |.

v

  and called the v-adic Monge-Ampère measure of V and D 0 , . . . , D k-1[START_REF] Burgos Gil | Arithmetic geometry of toric varieties. Metrics, measures and heights[END_REF] Definition 1.4.6] and[START_REF] Chambert-Loir | Mesures et équidistribution sur les espaces de Berkovich[END_REF] Définition 2.4]. For a k-cycle Y of X, this notion extends by linearity to a signed measure on X an v , denoted by c1 (D 0 ) ∧ • • • ∧ c 1 (D k-1 ) ∧ δ Y an v . It is supported on |Y v | anand has total mass equal to the degree deg D 0 ,...,D k-1 (Y ). We recall the notion of local height of cycles from [19, Definition 1.4.11]. Definition 2.3.16.

  is a one-to-one correspondence between the set of semipositive toric v-adic metrics on D and that of continuous concave functions on ∆ D . Under this assignment, the canonical v-adic toric metric of D corresponds to the zero function on ∆ D . Definition 2.3.25. An (adelic) toric metric on D is a collection of toric v-adic metrics (� • � v ) v∈M , such that � • � v = || • || v,can for all but a finite number of v ∈ M. We denote by D = (D, (� • � v ) v∈M ) the corresponding (adelic) toric metrized divisor on X. Example 2.3.26. The collection (� • � v,can ) v∈M of v-adic toric metrics on D is adelic in the sense of Definition 2.3.25. We denote by D can the corresponding canonical toric metrized divisor on X.

Proposition 2 . 3 . 27 .

 2327 Let D = (D, (� • � v ) v∈M ) be toric divisor together with a collection of toric v-adic metrics. If D is adelic in the sense of Definition 2.3.25, then it is also adelic in the sense of Definition 2.3.13. Moreover, both definitions coincide in the semipositive case.

Lemma 2 . 4 . 4 .

 244 With notation as in Definition 2.4.3, the global section of O(D f ) associated to f is D f -small. Proof. Set D = D f for short, and let s = f s D be the global section of O(D) associated to f . For v ∈ M and p ∈ T(K v ),

Corollary 2 . 4 . 8 .

 248 With notation as in Theorem 2.4.5,

Lemma 2 . 4 . 10 .

 2410 Let ∆ ⊂ M R be a lattice polytope, and m i ∈ M , i = 2, . . . , n, linearly independent lattice points. Denote by 0 m i the segment between 0 and m i , and u ∈ N the smallest lattice point orthogonal to all the m i 's, which is unique up to a sign. Let P = � n i=2 Zm i ⊂ M be the sublattice generated by the m i 's, and P sat its saturation.Then MV M (∆, 0 m 2 , . . . , 0 m n ) = [P sat : P ] vol Z �∆, u�,where �∆, u� is the image of ∆ under the functional u : M R → R, and vol Z represents the volume associated to the Lebesgue measure in Z.

  x∈∆ �x, u� + min x∈∆ �x, -u� = -vol Z �∆, u� (2.4.11) By the Brill-Gordan duality theorem (see for example [39, Lemma 1]), we have �u� = vol n-1 (P R /P sat ) where vol n-1 denotes the Lebesgue measure of u ⊥ . Hence 1 �u� MV n-1 (0 m 2 , . . . , 0 m n ) = MV P sat (0 m 2 , . . . , 0 m n ) = [P sat : P ].

  x n ] un polynôme de multi-degré (d 1 , . . . , d n ), où d i > 0 pour tout i. Le nombre de points de torsion de l'hypersurface Z(f ) ⊂ G n m définie par les zéros de f peut être borné par c n d 1 • • • d n , où c n est une constante qui ne dépend que de n.

2 . 18 :

 218 Théorème A. Soit V ⊂ G n m une variété de dimension d > 0 définie par des polynômes de degré au plus δ, et soit V j tors l'union des classes de torsion maximales dans V de dimension j, pour j = 0, . . . , d. Alors :deg(V j tors ) ≤ c n,j δ n-j , où c n,j = � (2n -1)(n -1)(2 2n + 2 n+1 -2) � nd .De ce résultat, on peut déjà déduire la conjecture de Ruppert en passant par des homomorphismes de groupes algébriques (Corollary 1.2.19). Néanmoins, on a besoin d'un outil de plus pour prouver la conjecture d'Aliev-Smyth.Dans le dernier pas, on introduit la notion de degré relatif à un polytope convexe∆ ⊂ R n de sommets entiers. Soit W ⊂ G n m une variété de dimension d, on définit deg ∆ (W ) := # � W ∩ Z 1 ∩ • • • ∩ Z d � ;où les Z j 's sont des hypersurfaces génériques définies par des polynômes avec polytope de Newton ∆. Alors, dans Proposition 1.2.21, à partir d'un résultat de John [43], on obtient un moyen de comparer asymptotiquement le volume du polytope de Newton d'un polynôme avec son degré. Cela nous suffit pour passer du théorème A au deuxième résultat principal, Theorem 1.2.23 : Théorème B. Soit ∆ ⊂ R n un polytope convexe de sommets entiers. Soit V ⊂ G n m une sous-variété de dimension d > 0 définie par des polynômes avec polytope de Newton contenu dans ∆. Alors : deg ∆ (V j tors ) ≤ cn,j vol n (∆); où cn,j = 2 n n 2n ω -1 n � (2n -1)(n -1)(2 2n + 2 n+1 -2) � (n-1)(n-j) avec ω n représentant le volume de la n-sphère. Soit f ∈ C[x 1 , . . . , x n ] un polynôme de multi-degré (d 1 , . . . , d n ), où d i > 0 pour tout i; si on prend ∆ = � n i=1 [0, d i ], le théorème B implique la conjecture de Ruppert. De plus, prenant ∆ le polytope de Newton de f , on prouve la conjecture de Aliev-Smyth.

  nous permet de contrôler certains éléments du groupe de Galois de K(A[m]) sur K, pour m ≥ 1, dans Propositions 1.3.4, 1.3.7 et 1.3.8 :

Exemple.

  Soient d ∈ N >0 et H ∈ K × ,considérons le système d'équations définit par les polynômes suivantsf i = x i -Hx d i-1 ∈ K[x ±1 1 , . . . , x±1n ], i = 1, . . . , n.

v

  correspond à une paire constituée par une valeur absolue | • | v et un poids n v ∈ R >0 . De plus, on demande que pour chaque place v ∈ M, la valeur absolue | • | v soit archimédienne ou associée à une valuation discrète non-triviale; et que pour tout élément α ∈ K × , |α| v = 1 pour presque toute place v ∈ M. D'ailleurs, on considère aussi que (K, M) satisfait la formule du produit, c'est-à-dire: � v∈M log |α| nv v = 1. Exemples classiques de ces corps sont les corps de nombres, et le corps de fonction d'une courbe. Dans ce contexte, la hauteur canonique d'un point x = (x 1 , . . . , x n ) ∈ (K × ) n est : h O(1) can (x) := � v∈M n v log max{1, |x 1 | v , . . . , |x n | v }.

h ϕ * O( 1 )

 1 can (x) := h O(1) can (ϕ(x)).La considération de deux définitions de hauteur différentes peut changer la hauteur d'un point de façon bien évidente. Pour souligner ce fait, on reprend le point solution de l'exemple précédent.Exemple. Supposons queK = Q, f M = {premiers} ∪ {∞}, et H ∈ N >0 . La hauteur canonique de p = (H, . . . , H 1+d+•••+d n-1 ) est : h O(1) can (p) = (1 + d + • • • + d n-1 ) log H.en géométrie convexe : polytopes convexes ∆ dans R n et fonctions concaves, appelées fonctions support de ∆ :Ψ ∆ : R n -→ R, u � -→ min x∈∆ �x, u�.Un point essentiel de cette correspondance est le fait que si D est un diviseur torique d'une variété torique X et ∆ ⊂ R n est son polytope convexe associé, les sections globales du fibré en droites sur X, O(D), sont données par :Γ(X, O(D)) � � m∈∆∩Z n K • x m .

  |α j | v e -�m j ,u� � si v est archimédienne, min 0≤j≤r �m j , u� -log |α j | v autrement;

( 13 )λ

 13 et (ϑ v : ∆ → R) v∈M une famille de fonctions définies, pour x ∈ ∆, comme : j log |α j | v autrement,

� r j=0 λ j = 1

 1 et � r j=0 λ j m j = x. Alors, (ψ v ) v∈M et (ϑ v ) v∈M sont des familles de fonctions métriques et de fonctions toit, respectivement, qui définissent une métrique adélique torique semipositive sur D, tel que D est engendré par des sections petites et la section globale de O(D) associé à f par (10) est D-petite.À partir de ce résultat on a tous les moyens pour démontrer le théorème de Bernštein-Kušnirenko arithmétique que l'on propose, Theorem 2.4.5 :Théorème D. Soient f 1 , . . . , f n ∈ K[x ±1 ], et X une variété torique compatible avec les polytopes de Newton ∆ i des f i 's. Soit ∆ 0 ⊂ R n un polytope convexe, et (ϑ 0,v : ∆ 0 → R) v∈M une famille de fonctions toit qui définissent un diviseur métrisé torique semipositif D 0 de X. Soit, pour tout i = 1, . . . , n et tout v ∈ M, ϑ i,v : ∆ i → R définie comme (14)à partir de f i . Alors :h D 0 (Z(f 1 , . . . , f n )) ≤ � v∈M n v MI(ϑ 0,v , . . . , ϑ n,v ), où Z(f 1 , . . . , f n ) est le zéro-cycle de (K × ) n donné par les solutions du système d'équations polynomiales f 1 = • • • = f n = 0.D'ailleurs, en bornant supérieurement les fonctions toit qui apparaissent dans ce théorème, on obtient aussi une borne en termes d'un volume mixte. Pour cela il faut d'abord définir la longueur logarithmique d'un vecteur α ∈ (K t imes) r+1 , r ≥ 0, qui est�(α) = � v∈M n v � v (α), où � v (α) = j | v ) si v est archimédienne, log( max 0≤j≤r |α j | v ) autrement. Soit f = � r j=0 α j x m j ∈ K[x ±1 1 , . . . , x±1n ] un polynôme de Laurent, on définie �(f ) := � � (α 0 , . . . , α r ) � . Alors, on obtient Corollary 2.4.8 :Corollaire. Avec les notations de Théorème D, on a : h D 0 (Z(f 1 , . . . , f n )) ≤ i ) MV M (∆ 0 , . . . , ∆ i-1 , ∆ i+1 , . . . , ∆ n ).

  respectively, the subgroup of k-torsion points and the subgroup of torsion points of G n m . A subtorus H ⊂ G n m is an irreducible algebraic subgroup of G n m . It is isomorphic (as an algebraic group) to G r m , for some 0 ≤ r ≤ n, and the torsion points of G n m are Zariski dense in any such subtorus. A torsion coset is a translate ω • H of a subtorus H by a torsion point ω ∈ µ n

  1.2.1. The map Λ � → H Λ is a dimension reversing bijection between subgroups of Z n and algebraic subgroups of G n m . A subgroup H Λ is irreducible if and only if Λ is saturated. Moreover, for any two subgroups Λ and Λ � we have H Λ • H Λ � = H Λ∩Λ � , andH Λ ∩ H Λ � = H Λ+Λ � . By Theorem 1.2.1, there exists a lattice Λ such that H = H Λ . Write Λ = Λ sat ∩ Λ * , where Λ * is a lattice of full dimension. Then H = F • H 0 , with H 0 = H Λ sat and F = H Λ sat . Since Λ * is full dimensional, F is a finite subgroup of G n m .Moreover, there is an isogeny G n

	Proof. See [8, Proposition 3.2.7 and Theorem 3.2.19].
	A homomorphism G n m → G r m defines an algebraic subgroup of G n m by means of the kernel. It is also possible to build a homomorphism with a fixed kernel.
	Corollary 1.2.2. Let H be an algebraic subgroup of G n m of dimension n -r. We can write H = F • H 0 , where F is a finite subgroup of G n m , and H 0 denotes the connected
	component of H containing 1. Moreover, there exists an isogeny
	ϕ : G n m -→ H 0 × G r m ,
	such that Ker(ϕ) = F , and ϕ| H 0 (H) : H 0 → H 0 × {1} is the identity.
	Proof.

  standing conjecture of Lang states that c � = 1 for all but a finite number of primes �. For elliptic curves without complex multiplication this is a consequence to Serre's open image theorem (see Théorème 3 and Corollaire of Théorème 5 in[START_REF] Serre | Propriétés galoisiennes des points d'ordre fini des courbes elliptiques[END_REF]). A further result of Serre states that c � can be bounded independently of � for any Abelian variety.

The family of �-adic representations defines a representation

  33, § 2.5] or [52, § 1.1.C]. A Cartier divisor D on X is nef if deg D (C) ≥ 0 for every irreducible curve C of X. By Kleiman's theorem [52, §1.4.B], for a family of nef Cartier divisors D 1 , . . . , D k on X and an effective k-cycle Y of X, deg D 1 ,...,D k (Y ) ≥ 0.

(2.2.3) Proposition 2.2.5. Let Y be an effective k-cycle of X and D 1 , . . . , D k nef Cartier divisors on X. Let s k be a global section of O(D k ). Then

  3.5), see for instance [19, page 17 and Definition 1.3.15]. Hence, for 0-cycles, the local heights in Definitions 2.3.10 and 2.3.16 coincide.

  19, Example 2.4.3], and is also proved in [20, Proposition 5.8]. For the non-Archimedean case, it follows from Example 2.3.29. Then, by [19, Proposition 2.3.8(3)], the v-adic roof function ϑ D,v is the direct image under the dual map H ∨ of the Legendre-Fenchel dual g ∨ v , which gives the stated formulae in (2.4.7).

	Definition 2.4.3. Let f ∈ K[M

  avec la multiplication coordonné par coordonné habituelle :(x 1 , . . . , x n ) • (y 1 , . . . , y n ) = (x 1 y 1 , . . . , x n y n ).Dans la suite, on notera simplement par x un point (x 1 , . . . , x n ) ∈ G n m . En particulier, 1 = (1, . . . , 1) représente l'élément unité du groupe G n m . De plus, étant donnés un sous-ensemble S ⊂ G n m et un point x ∈ G n m , on étend l'opération ci-dessus et note par x • S (ou simplement xS) la translation de S par x

  respectivement, le sous-groupe de G n m des points de torsion d'ordre k, et le sous-groupe de G n m des points de torsion. Un sous-tore H ⊂ G n m est un sous-groupe algébrique irréductible de G n m . Il est isomorphe (et tant que groupe algébrique) à G r m , pour un certain 0 ≤ r ≤ n, et les points de torsion de G n m sont Zariski denses dans tout sous-tore. Une classe de torsion de G n

m est donc un translaté ω • H, où H est un sous-tore de G n m et ω ∈ µ n ∞ est un point de torsion de G n

  le problème d'une courbe irréductible C dans G n m qui n'est pas de torsion. En plongeant G n m �→ (P 1 ) n , il nota (d 1 , . . . , d n ) le multi-degré de C, où d i > 0 pour tout i, et prouva que le nombre de points de torsion dans C est toujours inférieur à : 22 min

	i

Let Σ be a regular complete fan in N R compatible with the collection ∆ 1 , . . . , ∆ r , in the sense that the Ψ ∆ i 's are virtual support functions on Σ. Such a fan can be constructed by taking any regular complete fan in N R refining the complex of cones that are normal to the faces of ∆ i , for all i. Let X be the toric variety corresponding to this fan and D i the toric Cartier divisor on X corresponding to these virtual support functions. By construction, Ψ ∆ i is concave. Hence D i is nef and O(D i ) is globally generated, and its associated polytope coincides with ∆ i . Definition 2.2.7. The mixed volume of ∆ 1 , . . . , ∆ n is defined as the alternating sum

where vol M be the Haar measure on M R such that M has covolume 1, and take r = n.

A fundamental result in toric geometry states that the degree of a toric variety with respect to a family of nef toric Cartier divisors is given by the mixed volume of its polytopes [34, § 5.4]. In our present setting, this amounts to the formula

(2.2.7)

The Bernštein-Kušnirenko theorem

We first associate a 0-cycle of the torus to a family of Laurent polynomials on M .

Definition 2.2.8. Let f 1 , . . . , f n ∈ K[M ], and denote by V (f 1 , . . . , f n ) 0 the set of isolated closed points in the variety defined by this family of Laurent polynomials. For each p ∈ V (f 1 , . . . , f n ) 0 , let m p be the maximal ideal of K[M ] corresponding to p and set

The 0-cycle associated to f 1 , . . . , f n is defined as

Its support is defined as the finite subset of M of the exponents of its nonzero terms, that is supp(f ) = {m | α m � = 0}. The Newton polytope of f is the lattice polytope in M R given by the convex hull of its support, that is N (f ) = conv(supp(f )).

The following proposition gives us the relation between the 0-cycle in Definition 2.2.8 and the one arising from intersection theory.

To conclude the example, we compute the bound given by Corollary 2.4.8. For i = 1, . . . , n, we have that �(f i ) = log(α + 1) and MV Z n (∆ 0 , . . . , ∆ i-1 , ∆ i+1 , . . . , ∆ n ) = 1. Hence, this bound reduces to h E can (p) ≤ n log(α + 1), concluding the study of this example.

Application to u-resultants and geometric representations

Fix K an algebraic closure of K, and M � Z n a lattice. As an application of our results, we bound the size of the coefficients of the u-resultant of the direct image of this cycle under an equivariant map. It corresponds to Theorem 2.1.2 in the introduction, for general adelic fields satisfying the product formula. We first introduce the notion of u-resultant of a 0-cycle. Definition 2.4.13. Let W ∈ Z 0 (P r K ) be a 0-cycle of a projective space over K and u = (u 0 , . . . , u r ) a group of r + 1 variables. Write

the product being over the points q = (q 0 : •

The length of a Laurent polynomial (Definition 2.4.6) is invariant under adelic field extensions and multiplication by scalars. It is also submultiplicative, in the sense that it satisfies the inequality

Set ∆ 0 = conv(m 0,0 , . . . , m 0,r ) ⊂ M R and let ϕ : T M → P r K be the monomial map associated to m 0 and α 0 as in (2.3.16). For i = 1, . . . , n, let ∆ i ⊂ M R be the Newton polytope of f i , and α i the vector of nonzero coefficients of f i . Then

where the sum ranges over all points p ∈ T M (K). Since the length is invariant under adelic field extensions and submultiplicative, we deduce that
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Théorème C. Soit A une variété abélienne de dimension g définie sur un corps de nombres. Soit V ⊂ A une sous-variété de dimension d > 0 définie dans P n par des polynômes de degré au plus δ, et soit V j tors l'union des classes de torsion maximales dans V de dimension j, pour j = 0, . . . , d. Alors :

On souligne que cette borne est effective à une constante près qui n'est pas encore connue. Néanmoins, cette constant fut conjecturée par Lang d'être 1 pour des points d'ordre « assez grands », et toute borne effective pour c rendrait aussi effectif le théorème (C).

Théorème de Bernštein-Kušnirenko arithmétique

Dans la deuxième partie de cette thèse, on s'intéresse à l'arithmétique des variétés toriques. Les fondations pour l'étude des variétés toriques fut mis en place dans les années 1970's par des travaux indépendants de Demazure [START_REF] Demazure | Sous-groupes algébriques de rang maximum du groupe de Cremona[END_REF], Kempf, Knudsen, Mumford et Saint-Donat [START_REF] Kempf | Toroidal embeddings[END_REF], Miyake et Oda [START_REF] Oda | Almost homogeneous algebraic varieties under algebraic torus action[END_REF], et Satake [START_REF] Satake | On the arithmetic of tube domains (blowing-up of the point at infinity)[END_REF]. Étant fixé un corps K et un tore algébrique T sur K, une variété torique est une variété algébrique X qui contient T , de sorte que l'action de T sur elle même (par translation) s'étend à X. Pour simplifier la notation, on choisit de présenter ici les travaux dans le cas que le tore est le groupe multiplicatif (K × ) n . Néanmoins, les résultats dans la suite peuvent être exprimés dans le cas d'un tore algébrique quelconque et sont ainsi présentés dans le chapitre 2.

L'étude des variétés toriques est fortement motivé par son aspect combinatoire. En effet, les variétés toriques sont en correspondance un-à-un avec des éventails, qui équivalent à une collection de cônes avec certes conditions d'admissibilité. Cette relation a permis, et continue à permettre, le développement d'un « dictionnaire » extensive et profond qui relis les propriétés des variétés toriques du point de vu de la géométrie algébrique et les propriétés des éventails et polytopes du point de vue de la géométrie convexe.

À continuation, on présente un exemple intéressant qui illustre l'utilité de ces relations, et qui nous servira aussi comme motivation pour notre étude arithmétique dans la suite. Le théorème de Bernštein-Kušnirenko permet de borner le nombre de solutions isolées d'un système de polynômes de Laurent en termes du volume mixte de leurs polytopes de Newton.

1 , . . . , x ±1 n ] une famille de polynômes de Laurent, et ∆ 1 , . . . , ∆ n ⊂ R n leurs polytopes de Newton respectives, on a :

On peut maintenant reprendre l'exemple fil rouge de ce paragraphe pour voir que l'approximation des bornes du théorème D et son corollaire sont près d'être optimales.

1 , . . . , x ±1 n ] définis dans [START_REF] Bombieri | Heights in Diophantine geometry[END_REF]. Le zérocycle de (Q × ) n donné par les solutions du système est p = (H, . . . , H 1+•••+d n-1 ), et on avait :

). De l'autre côté, les bornes obtenus par les corollaire du théorème D sont les suivantes :

Cet exemple est donné en plus de généralité dans Example 2.4.11, dans lequel on considère la hauteur de p par rapport au diviseur torique quelconque sur une variété torique avec la métrique canonique. Dans ces cas, la borne donnée par le corollaire du théorème D est aussi près d'être optimale.

Postérieurement, on donne un exemple qui illustre la différence entre la borne du théorème D et celle de son corollaire, dont la première reste près de l'optimalité. Pour cela, dans Example 2.4.12, on considère la famille de polynômes Pour conclure, on présente deux applications du Bernštein-Kušnirenko arithmétique que l'on prouve, en particulier, du corollaire du théorème D dû à la difficulté de calcul de l'intégrale mixte. Soit W un zéro-cycle de P r K , notons W K = � q µ q q le zéro-cycle de P r K obtenu par le changement de base K �→ K. Soit u = (u 0 , . . . , u r ), la u-résultante (où forme de Chow) de W es définie par :
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où le produit est pris sur tous les point q = (q 0 : • • • : q r ) ∈ P r K dans le support de W K . Alors, à partir du théorème de Bernštein-Kušnirenko arithmétique on peut borner la « taille » des coefficients de Res(W ) à partir d'un système de polynômes de Laurent dont W est le zéro-cycle des solutions isolées. Le théorème suivant correspond à Theorem 2.4.14.

Théorème. Soit f 1 , . . . , f n ∈ K[x ±1 1 , . . . , x ±1 n ]. Soient m 0 ∈ (Z n ) r+1 et α 0 ∈ (K × ) r+1 , r ≥ 0, vecteurs définissant un morphisme ϕ : (K × ) n → (K × ) r , et soit ∆ 0 l'enveloppe convexe de {m 0,j | j = 0, . . . , r}. Soit ∆ i le polytope de Newton de f i et α i son vecteur de coefficients non-nuls, i = 1, . . . , n. Alors

MV n (∆ 0 , . . . , ∆ i-1 , ∆ i+1 , . . . , ∆ n )�(α i ).

Comme une conséquence de ce théorème on peut borner aussi la longueur des polynômes d'une représentation géométrique d'une variété de dimension 0. On renvoie à Lemmas 2.4.15 et 2.4.16 pour les énoncés précis. (...parce que je suis déjà arrivé au minimum de 20 pages )