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Introduction

The subject of this thesis lies in the field of arithmetic geometry, with a view towards toric
geometry. We revisit geometric and arithmetic intersection theory to give computations
on the closely related concepts of torsion and height of specific varieties.

This thesis consists of two independent chapters, the first one dedicated to the study
of torsion in subvarieties of the torus and Abelian varieties, whereas the second one
studies heights of 0-cycles of toric varieties.

The starting point of the first part of this thesis is the following question posed
independently by Manin and Mumford, as stated by Lang in [47]: If a curve in its Jacobian
contains infinitely many points of finite period, is the curve of genus 17 Motivated by this
question, Lang states in [48, p. 220] the Manin-Mumford conjecture under the following
form:

Let G be a torus or an Abelian wvariety in characteristic 0. Let V be a
subvariety of G containing an infinite number of torsion points of G. Then
V' contains a finite number of translations of group subvarieties of G which
contain all but a finite number of the torsion points in V.

Here Lang refers as torus to the complex multiplicative group G} = (C*)" with the
coordinatewise multiplication as its group action. Hence, torsion points are simply
n-tuples of roots of unity.

We can replace the group subvarieties in the statement of the conjecture by torsion
cosets of G, that is, irreducible algebraic subgroups of G translated by torsion points. So
torsion points are torsion cosets by taking the trivial subgroup, and Manin-Mumford’s
conjecture can be reformulated as the statement that the Zariski closure of the torsion
points in V is a finite union of torsion cosets.

For the case when G is a torus, the conjecture was first proved by Ihara, Serre and
Tate [47] when V is a curve, and by Laurent [51] for any variety, although it could be
already deduced from previous results of Mann [56]. The Abelian counterpart of this
conjecture was proven by Raynaud [68,69]. Furthermore, Hindry [41] also proved that
the conjecture holds when G is replaced by any algebraic commutative group.



2 Introduction

Since Manin-Mumford’s conjecture has been proved, part of the focus of interest has
shifted to bounding (explicitly and effectively) the number and degree of the torsion
cosets in the variety V. To be more precise, ordering torsion cosets by inclusion yields a
notion of maximality of torsion cosets that are contained in V; the aim is to obtain a
bound on the number and the degree of maximal torsion cosets. We denote by Vios the
Zariski closure of the torsion points. From here on forward, we present both the toric
and abelian instances of Manin-Mumford’s conjecture separately. More information and
precisions are given in §1.1.

Let us first restrict ourselves to the toric setting of the conjecture, and give an
extensive overview of the results in this case. Let V C GJ}, be a variety defined over a
number field K by polynomials of degree at most 4, and height at most 7. In this case,
Laurent’s theorem gives a bound for the number of torsion cosets in V in terms of n, §, n
and the degree [K : Q]. But his result is not effective, as he actually proves a particular
case of the Mordell-Lang conjecture. Later, Bombieri and Zannier [9] showed that both
the number of maximal torsion cosets and their degree can be bounded solely in terms of
n and 0. Both parameters are needed, since we can build a simple example to show that
the bound must depend on both the dimension of the ambient space and the degree of
the variety as follows. If V is the hypersurface of degree § defined as the zeroes of the

polynomial
1]

f@e,... o) =n—a8 — - —2° € Qlzy,...,o,];
then it is easy to check that the only torsion points lying on V are n-tuples of J-th roots
of unity. Hence the number of maximal torsion cosets in V' equals its number of torsion
points, which amounts to §".

Simultaneously to the results of Bombieri and Zannier, Schlickewei [76] gave an upper
bound for the number of solutions in roots of unity of a linear equation that depends
only on the number of variables. This result was then used by Schmidt [77] to give an
effective bound of the number of maximal torsion cosets of a variety V in terms of n
and d. Further contributions in this direction where obtained by the improvement of
Schlikewei’s result done by Evertse in [31].

Much sharper bounds follow from the study of the (logarithmic) Weil height of points
in the torus GJ}. Since torsion points are the points of Weil height zero, the results
on points of sufficiently small height can be used to deduce bounds on the number
of maximal torsion cosets. The results in this direction by David and Philippon [28],
Rémond [70], and Amoroso and Viada [2], and allow to obtain a bound on the number of
maximal torsion cosets in V' which is polynomial in 4.

From an algorithmic point of view, the first steps towards finding the solutions in
roots of unity where provided by Mann [56] and Conway-Jones [26]. Their work on
relations between roots of unity precedes the formulation of Manin-Mumford’s conjecture
by Lang, and further motivates the study of torsion points in the toric case. A first
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algorithm on finding the torsion cosets of a general variety in the torus, is given by Sarnak
and Adams [74]. More recent developments on relations of roots of unity by Dvornicich
and Zannier [30] also improve the existing bounds in this direction.

In [73], Ruppert considers the case of a non-torsion irreducible curve C' embedded
in (P')" of multidegree (di,...,dy), d; > 0 for all i. He gives an algorithm to find the
torsion points in C, which bounds its number by 22 min(d;) max(d;). His algorithm,
however doesn’t extend to higher dimensional varieties except for a small family of
surfaces. Nevertheless, by a further study of the higher dimensional case, he provides a
way of deducing bounds on the number of positive dimensional maximal torsion cosets
in V, from a bound on its isolated torsion points (they correspond to maximal torsion
cosets of dimension 0). These results together with some explicit examples motivate him
to formulate the following conjecture:

Conjecture (Ruppert). Let f € Clzy,...,x,] be a non-constant polynomial of multi-
degree (dy,...,dy), di > 0 for all i, and let V C G}, be the variety defined by f. The
number of isolated torsion points in V can be bounded above by ¢, dy - - - d,, where ¢, is
an effective constant depending only on n.

With the above mentioned study by Ruppert, an affirmative answer to this conjecture
would imply that for a variety V defined by polynomials of degree §, one can give a
bound on the number of maximal torsion cosets which is polynomial in ¢ and of degree n.

Beukers and Smyth [5] reconsider this problem for curves in G2, giving a refinement
of Ruppert’s bound for curves defined by sparse polynomials. Given f € Clz,y] they
provide a family of polynomials which are closely related to f, such that the solutions in
roots of unity of f are also solutions of one of the polynomials in this family. They then
use Berstein-Kusnirenko’s theorem to give a bound in terms of the Newton polytope of f.
More concretely, if A = conv(supp(f)) is the Newton polytope of f, that is the convex
hull in R™ of the exponents appearing in the monomial expansion of f, and the curve
defined by the zeroes of f is non-torsion, then it contains at most 22 voly(A) torsion
points, where voly represents the volume associated to the Lebesgue measure on R2.

Later Aliev and Smyth generalized this strategy to higher dimensional varieties
in [1]. They did that by using projections and resultants which yields a bound which
is exponential in §. However, the result they obtained is distant from their original
objective, which was to prove the following stronger version of Ruppert’s conjecture that
takes into account the sparsity as Beukers and Smyth do in [5].

Conjecture (Aliev-Smyth). Let f € Clxy,...,x,] be a non-constant polynomial, A =
conv(supp(f)) be its Newton polytope, and V' C Gl be the hypersurface defined by f.
The number of isolated torsion points in V' can be bounded above by ¢, vol,(A), where ¢,
is an effective constant depending only on n, and vol, is the volume associated to the
Lebesgue measure on R™.
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It is easy to see that this conjecture implies the conjecture of Ruppert: If f is
of multidegree (di,...,dy), d; > 0, then we have that the support of f lies in the
box [Ti-;[0, d;], implying that vol,(A) < vol,, (ITi=,[0,d;]) = dy -+ - dp.

In the first part of Chapter 1 it is our purpose to prove both of these conjectures.
The strategy can be divided in four steps:

1. an extension of the argument for plane curves of Beukers and Smyth [5] to varieties
of any dimension in G} ;

2. an interpolation argument using upper and lower bounds on the Hilbert function
in a similar fashion to Amoroso and Viada [2];

3. an application of the two induction techniques of Viada in [2] to replace straight-
forward intersection by Bézout’s theorem (this gives a first bound in terms of the
usual degree);

4. an implementation of a result on ellipsoids in metric spaces of John [43] to translate
the previous result to a notion of degree associated to convex polytopes and prove
the conjectures.

For the first step, let us assume that V' C G} is an irreducible variety of positive
dimension (incompletely) defined by polynomials of degree at most §. We give a geometric
analogue to Beuker and Smyth’s results in [5] that applies to V', and thereby construct a
variety V' defined by polynomials of degree § up to multiplication by a constant depending
only on n. Moreover, this variety satisfies that Vio;s C VNV C V (Lemma 1.2.5 and
Proposition 1.2.6).

In the second step, we use the upper and lower bounds on the Hilbert fuction, results
of Chardin [23], and Chardin and Philippon [24] respectively, to prove the existence of
a hypersurface Z that plays a similar role as the variety V' obtained in the first step.
More concretely, in Theorem 1.2.16, we prove that there is a hypersurface Z such that
Viors C VN Z C V, and has degree § up to a multiplicative factor depending only on n.

In the third step we intersect inductively with hypersurfaces as the ones mentioned
above. To avoid an exponential growth of the exponent of § from a such iterative process,
we use Amoroso and Viada’s approach in [2]. These techniques yield our first main result,
Theorem 1.2.18.

Theorem A. Let V C G be a variety of dimension d, defined by polynomials of degree

at most §. Let Vi,rs be the union of the irreducible components of Viors of dimension j,
7=0,...,d. Then

deg(V}

tors

) < c(n) 6",

for every j =0,...,n, where c(n) is an effective constant that only depends on n.
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From this result, one can readily deduce Ruppert’s conjecture via algebraic group
homomorphisms (Corollary 1.2.19). However, we need an extra tool to prove Aliev-
Smyth’s conjecture.

For the last step, let us introduce the notion of degree related to a convex polytope A C
R™ with integer vertices. Given a variety W C G}, of dimension d, we define dega (W) =
card(W N Z) where Z is a variety of codimension d defined by d generic polynomials
with Newton polytope A (Definition 1.2.22). Then, by means on a result of John [43],
we obtain our second main result, Theorem 1.2.23.

Theorem B. Let A C R" be a convex polytope with integer vertices. Let V. C G be
a variety of dimension d, defined by polynomials with Newton polytope contained in A.
Then

degA(‘/t{)rs) < E(n) VOln(A)
for every j =0,...,d, where ¢(n) is an effective constant that only depends on n.

From this statement we readily deduce Aliev-Smyth’s conjecture by taking A to be
exactly the Newton polytope of f, and j = 0.

Let us now turn to the case when G = A is a complex Abelian variety. Fix¢t: A — P" a
closed immersion into a projective space of some dimension n, and identify any subvariety
X C A with its image by ¢. One then considers the degree of X as the usual degree in P".
In the sequel, when something is said to depend on A, it may also depend implicitly on
the choice of ¢.

Mainly because of the more intricate structure of torsion points of A, explicit bounds
on the Manin-Mumford conjecture are less common than their toric counterparts. One
should nevertheless emphasize that the particular case of a curve C' embedded in its
Jacobian has given rise to explicit and effective bounds on the number of torsion points
in C. We highlight the results of Coleman [25] using p-adic integration, and of Buium [15]
relying on p-jets.

For the general case; given V' C A, Hindry’s proof of Manin-Mumford’s conjecture
in [41] yields a bound on the number of maximal torsion cosets in V' which is effective up
to a constant depending on Galois representations. However these bounds can hardly be
made explicit as discussed in [40]. Further studies of Bombieri and Zannier [10] on the
Néron-Tate height show that it is possible to give a bound just in terms of the degree
of V, and data coming from A. By means of model-theoretic methods, Hrushovski [42]
gives an explicit geometric bound on the Manin-Mumford conjecture whose dependence
on deg(V') is doubly exponential in parameters coming from A.

Given the result obtained for the toric Manin-Mumford conjecture (Theorem A), one
expects a much better dependence on the degree of V. More concretely, say dim(A) = g
and V is defined in P™ by the intersection of hypersurfaces of degree at most J, then one
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might expect to bound the number of maximal torsion cosets in V' by c¢(A) ¢9, where
¢(A) is a constant only depending on A.
In the second part of Chapter 1, we focus on obtaining a such bound when A is

defined over Q. The strategy follows a similar structure to the one listed above in the

toric case, and can be divided in three steps:

1. a study of the Galois action on the torsion of A to extract geometric information
on torsion points, from which we are able to deduce a bound on the number of
torsion points in the case when the variety V is a curve;

2. an interpolation argument using upper and lower bounds on Hilbert functions
relative to the inclusion V C A;

3. an application of the two induction techniques of Viada in the abelian setting, from
which we obtain the expected bound.

For the first step, let us assume that K is a “big enough” finite extension of the field
of definition of A. A result of Bogomolov [7], later improved by Serre [80], states that
there exists a constant ¢ € N5, which is not known to be effectively computable, such
that for every point P € A of finite order, and every positive integer k prime to the order
of P, there exists an automorphism o € Gal(K/K) such that

k¢ times

a_ DY
P°=P+.---+P.

By means of this result, we are able to give an explicit construction of a variety V' C A
such that Viors C VNV’ C V (Propositions 1.3.4, 1.3.7, and 1.3.8). Moreover, the degree
of V' can be expressed as the degree of V up to an explicit multiplying factor depending
on g = dim(A) and c. This allows us to give a preliminary bound in the case when V is
a curve (Proposition 1.3.9 and the subsequent remark). We derive the following result,
which can be seen as the abelian analogue to Beukers-Smyth’s bound.

Proposition. Let C' C A be an irreducible algebraic curve of genus greater than 1. Then
# C1t0rs < (24g+cc2g + 22g+1 - 1) deg(0)2

In the second step we make use of the upper and lower bounds on the Hilbert function
relative to the homogeneous coordinate ring of P", due to Chardin [23], and Chardin
and Philippon [24], respectively. Assume that V' is defined in P™ by the intersection of
hypersurfaces of degree at most 6. Then, from V', we derive in Proposition 1.3.13 a
hypersurface Z C P™ of degree § up to a multiplying factor depending on A and c, such
that Vios CVNZ C V.

The last step consists of applying the same double induction as we use to prove
Theorem A. From it we obtain the following explicit bound for the abelian Manin-Mumford
conjecture, Theorem 1.3.14.



Introduction 7

Theorem C. LetV C A be a subvariety of dimension d, defined in P™ as the intersection
of hypersurfaces of degree at most 6. Let V; _ denote the union of the irreducible

tors

components of Vigrs of dimension j, j =0,...,d. Then
deg (Vi) < c(A)877,
for every j =0,...,n, where c(A) is an explicit constant only depending on the dimension

of A, n, deg(A), and the constant c.

The bound on the number of maximal torsion cosets in V' given by this theorem is
effective, up to the non-effective constant c¢. This constant, however, was conjectured
by Lang to equal 1 for points of order high enough, and any effective result on the
computation of ¢ will automatically yield our constant effective.

On the second part of this thesis we focus on the arithmetic of toric varieties. The
foundations for the study of toric varieties were laid down in the 1970’s by independent
work of Demazure [29], Kempf,Knudsen,Mumford and Saint-Donat [44], Miyake and
Oda [64], and Satake [75]. Fixed a field K, a toric variety can be defined as algebraic
variety X containing densely a torus or multiplicative group (K*)", and such that
the action of (K*)" on itself by translations extends to X. There is a one-to-one
correspondence between toric varieties and fans, which enables an extensive and deeply
developed dictionary between the algebraic geometric properties of toric varieties and
the convex geometric properties of fans and polytopes.

An interesting example where these relations prove to be useful, which is also the
main motivation for this part, is Bernstein-Kusnirenko’s theorem [4,46]. This theorem
gives a bound on the number of isolated zeros of a system of Laurent polynomials over K,
in terms of the mixed volume of their Newton polytopes. It follows from the one-to-one
correspondence between convex polytopes in R” with integer vertices, and toric varieties
endowed with a line bundle that is invariant by the torus action, and the properties
implied by this bijection. For n Laurent polynomials fi,..., f, € K[:vfl, .o, o1 with
respective Newton polytopes A1, ..., Ay, the number of isolated solutions of the system of
equations f{ = --- = f, =01in (KX)” is bounded by the mixed volume MV, (Aq,...,A,)
associated to the Lebesgue measure of R™ (Definiton 2.2.7). Moreover, this is an equality
for a generic choice of polynomials. In comparison with the classical Theorem of Bézout,
it does not only take into account the degree of the polynomials, but the distribution of
all exponents appearing in the monomial expansions. Thus it is a refinement of Bézout’s
theorem that allows to predict when a system of equations has a small number of solutions
in the torus. As an illustrative example, let d, H € N5 and consider the system defined
by the following Laurent polynomials

fi:xi—Hx?,1EK[xI—Ll,...,xﬂ], i=1,...,n. (1)

n
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After an easy computation, one has that Bernstein-Kusnirenko’s bound on the number of
solutions in (K*)™ of this system of polynomials is 1, and indeed (H, ..., Hitdt+d""")
is this system’s only zero in the torus. Notice that is much smaller than the product of
their degrees d".

Bernstein-Kusnirenko’s theorem has had a considerable impact since its formulation.
As it provides a simpler way for dealing with polynomial systems of polynomial equations,
it has seen many applications on this regard, for example in computational algebra [35,83].
Furthermore it has also contributed the other way around, providing for instance a proof
of the Alexandrov-Fenchel inequality (for which a direct approach in convex geometry is
rather difficult) by algebraic means via the Hodge inequality, see [84] and Addedum 3
by Khovanskii in [16]. Because of its relevance, it has also inspired a great number of
generalizations, a brief discussion on this matter can be found in [83, Chapter 3]. We
point out the refinement of Philippon and Sombra [67] which gives a bound in terms of
a mixed integral of convex functions, and serves as first precursor of some of the work
considered below.

When K is endowed with an arithmetic structure, it is also of interest to have a control
on the height or complexity of the solution set of a such family of Laurent polynomials.
The notion of height of a point was first developed by Siegel, Northcott and Weil among
others as a way of measuring the “size” of a point, and is an essential tool in diophantine
geometry. In higher dimension, this concept extends as an analogue of the degree of a
variety that measures the complexity of the representation of it, for example via its Chow
form. Therefore, it is also of relevance in algebraic geometry and effective computational
algebra, for instance when dealing with effective versions of the Nullstellensatz [27,37,45].
This further motivates an arithmetic Bernstein-Kusnirenko type bound.

For simplicity of exposition, let us consider K = Q although the results exposed below
also hold for the more general setting of adelic fields satisfying the product formula.
The usual height of a point in (Q*)" is the Weil height, which is defined for each

(X1,...,xpn) € (QF)™ as

hw(zy,...,zy) = Z log max{1, |z1|p,...,|znlp}
pE{primes}u{oo}

where | - | and | - |,, respectively represent the absolute value and p-adic absolute value
normalized in the usual way. However, the general definition of height is richer than just
considering the Weil height and allows a wider consideration of alternatives heights. For
example, one can define a height attached to a monomial map ¢ : (Q*)" — (Q*)" by
taking the inverse image of the Weil height in (Q*)"; that is, for every x € (Q*)", we
define its height associated to ¢ as hy«w(x) = hw(p(x)).

To give an example in which the difference between distinct considerations of heights
is emphasized, let us come back to the system of polynomial equations defined by (1),
for d, H € Nsg. As mentioned above, the zero set defined by these polynomials consists
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of a simple point p = (H, ..., H4+ """ Tts Weil height hy (p) = 3%, di! log H
grows polynomially with the degrees of the polynomials. On the contrary, by considering
the height attached to the monomial map ¢ : (Q*)™ — (Q*)", defined by (z1,...,x,) —
(x1, xgzz:fd, e ,xnx;ill), we obtain hy«w(p) = log H. One can interpret this phenomenon
as the fact that the complexity of a point depends on the representation we use. The
motivation behind an arithmetic version of Bernstein-Kusnirenko’s bound is to give a
way of predicting heights of zero sets of systems of Laurent polynomials in terms of the
monomial structure of the polynomials and the given height function.

Arithmetic analogues of Bézout’s theorem were proved using Arakelov geometry by
Faltings [32] and Bost, Gillet and Soulé [11], although previous versions for heights that
arise also without Arakelov theory were already known beforehand by Nesterenko [63], and
Philippon [65]. As for Bernstein-Kusnirenko’s theorem, a first result by Maillot [55] gives
a bound for canonical heights associated to the toric divisors (which are generalizations
of Weil heights for toric varieties), this result however is not completely effective. A
further study in this direction was later done by Sombra [82].

In Chapter 2 we present an arithmetic Bernstein-Kusnirenko bound which improves
the previous results obtained in this direction, and generalize them to adelic fields
satisfying the product formula and height functions associated to arbitrary nef toric
metrized divisors. This chapter is divided into three parts, where the two initial ones
serve mostly as an exposition of the objects that are fundamental in the third one for
stating and proving the main theorem.

In the first part, we give a brief overview on the geometry of toric varieties, mainly
describing the correspondence between toric divisors and their convex analogues, and their
behaviour in intersection theory. The purpose here is to lay the geometric groundwork
that is essential in the follow up. By doing so, we also present a proof of the classical
Bernstein-Kusnirenko theorem. This defines the strategy we use in our subsequent proof
of our arithmetic version of this theorem.

In the second part, we present the arithmetic objects that are the centrepiece of the
sequel. We introduce the notion of adelic field, and detail a construction of adelic field
extension that preserve the product formula. For normal projective varieties over adelic
fields, we describe (global) heights of 0-cycles attached to metrized divisors. Afterwards,
we extend this definition recursively, and give a well-defined notion of (global) height for
general cycles with respect to metrized divisors which are generated by small sections.
For such metrized divisors, this definition is an extension to adelic fields satisfying the
product formula of the equivalent one for global fields in [19]. Most notably, under these
assumptions, arithmetic intersection behaves similarly to its counterpart in algebraic
geometry. When restricting to toric varieties, Burgos, Philippon and Sombra [19] have
done a thorough study on the arithmetic of toric varieties, relating arakelovian properties
with convex geometry, and exploring the implications of these relations. As such, their
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work is central to our study. Thus, we present their characterizations of (semipositive)
metrized toric divisors D in terms of concave functions, metric functions {¥p,} and roof
functions {U5 ,} (Proposition 2.3.28), and the implications of these when cfealing with
their associated heights.

Finally, we prove our arithmetic Bernstein-Kusnirenko’s bound. The following state-
ments hold for general adelic fields; however, for simplicity, herein we present them in the
case when our adelic field is Q with the usual set of absolute values as described above.
The starting point is one of the principal results in [19], which identifies the height of
a toric variety with respect to metrized toric divisors with a sum of mixed integrals of
the corresponding roof functions. The key point of our proof is to associate to a Laurent

polynomial f, a metrized toric divisor that is generated by small sections and such that
T

the section given by f is small: for a given Laurent polynomial f = Z a;x™, where
§=0

a; € Q% and m; € Z™ for every j, with Newton polytope A = conv(m;), we define the

concave functions 9, : A — R, as

(Z)\ log >, for p = o0;
Up() = (2)
(Z Ajlog |aj|p> for p prime;

the maximum being over all A = (Ag,...,\,) € Rg{)l such that >3, \; = 1 and
>jAjmj = x. We then prove that the metrized toric divisor associated to these
Y,’s is generated by small sections, and f is a small section of this divisor. The main
result in this chapter, Theorem 2.4.5, states the following.

Theorem D. Let X be a proper toric variety and Dq a nef toric metrized divisor on X
with corresponding roof functions {¥y, : Ag — R},. Let fi,..., fn € Q[azl Lo at,

and let {¥;p : A;j — R}, be the roof functions associated to each f; as in (2). Then the
height with respect to Dq of the 0-cycle defined by the system of f;’s is bounded by

h (Z(f1s-- -5 fn)) < > MI(Fo.p, - - - O p)-
pe{primes}U{oco}

We also give a second bound in terms of the mixed volumes of the Newton polytopes
of the f;’s, and their logarithmic lengths, £(f;) ( Definition 2.4.6). We readily derive from
Theorem D, and basic properties of mixed integrals, that

b (Z(f1s- o fa)) < MVar(As, . Ag) (Y maxd, )
p

=+ ZMVM(A07 ceey Ai—ly Ai+17 cey An)g(fz)
i=1
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This bound is easier to compute than the one of Theorem D, and in many cases already
gives a good approximation to the actual height, as illustrated in Example 2.4.11.
Nevertheless, we show the loss of precision of the bounds that occurs when passing from
mixed integrals to mixed volumes (Example 2.4.12). We conclude by giving an application

of these results to u-resultants and rational univariate representation of 0-cycles.






Chapter 1

Explicit bounds on the
Manin-Mumford conjecture

In this chapter we focus on effectiveness questions around the toric version of the Manin-
Mumford’s problem. The first half is devoted to the results proven in [57]. We give sharp
bounds on the number of maximal torsion cosets in a subvariety of the complex algebraic
torus, which prove the conjectures of Ruppert, and Aliev and Smyth on the number of
isolated torsion points of a hypersurface. Furthermore, we present a work in progress in
collaboration with Aurélien Galateau regarding analogous results for abelian varieties.

1.1 State of the art

1.1.1 The case of the torus

Let G, = (C*)™ be the multiplicative group or complex algebraic torus of dimension n.
We may identify G}, with the Zariski open subset x1---x, # 0 in A, with the usual
multiplication
(@1, ymn) - (Yiy e Yn) = (1YL, - -+, Tnln)-
In the following, a point (z1,...,z,) € G} is denoted by x. In particular, 1 = (1,...,1)
represents the identity element. Moreover, given any subset S C G}, and a point « € GJ},,
we extend the operation above and denote by « - S (or simply «S) the translation of S
by ; thatisx-S={xz-y| ye S}
A torsion point of G}, is an n-tuple of roots of unity. We denote by

p, ={CE€Gy | =1}

the subgroup of k-th roots of unity. Hence

pr= ()" and  pl= |J pf
k€N
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represent, respectively, the subgroup of k-torsion points and the subgroup of torsion
points of GJt. A subtorus H C G} is an irreducible algebraic subgroup of G}. It is
isomorphic (as an algebraic group) to G}, for some 0 < r < n, and the torsion points
of G}, are Zariski dense in any such subtorus. A torsion coset is a translate w - H of a
subtorus H by a torsion point w € ul .

Let V be a subvariety of G], not necessarily irreducible, we denote by Vios the set of
torsion points contained in V', and we call its Zariski closure in G}, the torsion subvariety
of V:

Viors ::Vrr]ﬂgy

We say that a torsion coset w C V is maximal in V' if it is maximal by inclusion.

Lang, inspired by a question that was posed to him by Manin and that arises,
independently, from the work of Mumford, states in [47] what was to be known as the
Manin-Mumford conjecture. For the moment we restrict ourself to the toric version of
this (former) conjecture. This asserts that, if V' C G} is an irreducible subvariety and
Viors is Zariski dense in V', then V is a torsion coset of G'. In other words, the torsion
subvariety of V' is a union of torsion cosets of G}. Lang gives proofs by Ihara, Serre, and
Tate for the case when V is a curve in G2, see loc. cit. and [48]. The proof for higher
dimensional varieties follows, independently, from the work of Laurent [51, Théoréme 2],
and of Sarnak and Adams [74, Proposition 1.6].

In the sequel, we focus on finding a sharp upper bound for the number of maximal
torsion cosets in V' and their degrees. Assume that V' C GJ}, is defined over a number
field K by a set of polynomials of degree at most § and height at most 7. As a consequence
of the finiteness, Laurent’s proof yields a bound for the number of maximal torsion cosets
in V in terms of n, §, n and [K : Q]. However, to obtain this bound, Laurent uses
Schmidt’s subspace theorem which is not effective. Bombieri and Zannier [9], following
the work of Zhang [86], show that both the number of maximal torsion cosets in V' and
the their degree can be bounded just in terms of n and . Contemporarily, Schlickewei [76]
gives an upper bound for the number of solutions in roots of unity of a linear equation
(which depends only on the number of variables), and Schmidt [77] uses this result to
give an alternative prove of the fact that the number of maximal torsion cosets in V'
can be bounded in terms of n and §. By combining Schmidt’s techniques with Evertse’s
improvement of Schlickewei’s result in [31], we can bound the number of maximal torsion

cosets in V' by
n+5>2

3
oy (1)

J

Results of Mann [56], Conway and Jones [26] and, more recently, Dvornicich and
Zannier [30] on the vanishing subsums of linear relations of roots of unity provide different
algorithms for finding all the maximal torsion cosets in a subvariety of GJ,. The proof of
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Sarnak and Adams [74] of the toric Manin-Mumford conjecture, derives from a result
of this type [74, Lemma 3.1], proposed to them by Cohen, and implies an algorithmic
approach to this problem.

Furthermore, Ruppert [73] considers the problem of a non-torsion irreducible curve C'
in G < (PY)" of multidegree (di,...,d,), d; > 0 for all i, and obtains that the number
of torsion points in C' can be bounded above by

22 min(d;) max(d;).
(2 (2
In fact, he starts by treating the case of plane curves (so n = 2) and obtains the following
sharper bound on the number of torsion points in C:

#Cors < 22d1dy — 2dy — 2ds.

In general, the approach of Ruppert doesn’t extend to higher dimensional varieties, but
after an extended study of them, he states the following conjecture:

Conjecture 1.1.1 (Ruppert). Let f € Clzy,...,x,] have multidegree (dy, . .., dy), d; > 0.
The number of isolated torsion points on Z(f) C G}, can be bounded above by cndy - - - dp,
where ¢, is a constant depending only on n.

Beukers and Smyth [5] reconsider this problem for curves in G2,, refining this bound
by giving one in terms of the volume of a Newton polytope of the curve. Given f € C[z,y]
a polynomial, they show that each torsion point in Z(f), lies in the variety given by one
of the following polynomials:

x,y) = f(2?, 9>
fl(xay) f(_x7y)a f4( ’y) _ f(_ ’Qy );

_ f5(xay>_f( =,y )7
f2($,y>—f(33, y)’ f( >_f( 2 _ 2)
f3(xay> = f(_x7_y)7 oy ! ’2 Y é

f7(xay>:f(_x y Y )

Recall that the support of a polynomial is the finite subset of Z™ given by the
exponents of its monomials. Observe then that the supports of fi,..., f3 and f4,..., f7
are, respectively, the one of f and a dilation by 2 of the one of f. Then, by Bernstein-
Kusnirenko’s theorem (a toric analogue of Bézout’s theorem, see Theorem 2.2.10), they
obtain that the number of isolated torsion points of Z(f) is bounded above by

22vola(A); (1.1.1)

where A = conv(supp(f)) is the convex hull of the support of f, and vols represents the
volume associated to the Lebesgue measure on R%. As to fix notations, we precise that
A is called the Newton polytope of f. This leads Aliev and Smyth [1] to try to prove a
stronger version of Ruppert’s conjecture.
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Conjecture 1.1.2 (Aliev-Smyth). Let f € Clx1,...,x,] be a non-zero polynomial. Then
the number of isolated torsion points on Z(f) C G}, can be bounded above by c,, vol,(A),
where ¢, 1s a constant depending only on n and A is the Newton polytope of f.

For a general polynomial f € C[zy,...,z,], these conjectures imply that the number
of isolated torsion points on Z(f) is bounded above by

cn deg(f)". (1.1.2)

Moreover, this bound implies that the degree of the j-equidimensional part of Z(f),.,.
is bounded above by ij&n—j’ where ¢, ; is a constant depending only on n and j,
see [73, Corollary 11].

In fact, Aliev and Smyth [1] extend Beukers and Smyth’s algorithm to higher dimen-
sions and obtained a bound, which however remains far from the conjectured one. For a

polynomial f € C[zy,...,z,], they bound the number of maximal torsion cosets in V' by
k1 (n) deg(f)r2(m9) (1.1.3)
where )
ki(n) = n2 (25" and Ko(n,0) = —(49 - 8" % —4n — 9).

16

For sparse representation of polynomials, Leroux [53] gives an algorithm to compute
the maximal torsion cosets in V' C GJ,. As a consequence, if V can be defined by k
polynomials in Q[X71,..., X,] with at most r nonzero coefficients, then the number of
maximal torsion cosets in V' can be bounded above by

(r1)* exp (3(n + 1)/ kr log(k:r)).

Restricting to the case of dense polynomials, this bound is comparable to that of (1.1.3).

Much sharper bounds follow, as a particular case, from the study of the logarithmic
WEeil height of points in GJ;. In fact, the points of zero Weil height are the torsion
points, hence bounds on the number of (isolated) points of sufficiently small height yield
automatically bounds on the number of (isolated) torsion points. By these means, for a
subvariety V' C G} defined by polynomials of degree at most ¢, David and Philippon [28]
and Rémond [70], among others, obtain polynomial upper bounds in § on the number of
maximal torsion cosets in V. Most notably, Amoroso and Viada’s results on the essential
minimum of V' bear the following bounds [3, Corollary 5.4]:

deg(Vis) < (5(200n° log(n?6)) (= Rn(n=1)yn=7,

where Vt{)rs is the union all the irreducible components of Vi, that are of dimension j,
and k is the codimension of V. In particular, if V is a hypersurface in G}, the value
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0 can be taken as the degree of V', and the number of isolated torsion points in V is
bounded above by

#(V2.) < 8™ (200n° log(n?6))™ (=17,

This bound gives (1.1.2) up to a logarithmic factor.

In this chapter we detail a geometric version of the approach of Beukers and Smyth
(Lemma 1.2.5 and Proposition 1.2.6). By algebraic interpolation, using upper and lower
bounds on the Hilbert function by Chardin [23], and Chardin and Philippon [24], we
obtain hypersurfaces containing the torsion of the variety (Theorem 1.2.16). The first
main result (Theorem 1.2.18) follows from adapting the induction techniques introduced
by Amoroso and Viada. Given a d-dimensional variety V' C G}, defined by polynomials
of degree at most 9§, this theorem states that

deg(V{

tors

) < 0™ (1.1.4)

for every j = 0,...,d, where ¢, = ((2n — 1)(n — 1)(2%* + 2"+ — 2))7d. Applied to a
general hypersurface of degree ¢, this proves the bound in (1.1.2).

There is a direct approach to deduce Ruppert’s conjecture from (1.1.4), via algebraic
group homomorphisms (Corollary 1.2.19). However this method cannot be applied to
prove Aliev-Smyth’s conjecture. The keystone to obtain this second conjecture from (1.1.4)
is a result of John [43] which gives a mean of comparing the volume of a convex polytope
with the one of the ellipsoid of smallest volume containing it (John’s ellipsoid). Then, by
introducing a notion of degree related to a convex polytope (Definition 1.2.22), we get
the second main result (Theorem 1.2.23). In particular, given a full-dimensional convex
polytope A C R", and a variety V' C G}, defined by polynomials with Newton polytope
contained in A, this theorem implies that

deg(V2.) < cn2™n*"w; ! vol,(A), (1.1.5)

where ¢, is the constant in (1.1.4), and w,, is the volume of the n-sphere.

Given f € Q[x1, ...,y a polynomial of multidegree (dy,...,d,), d; > 0, we can take
A to be the n-orthotope [0,d;] X - -+ x [0,d,], and then (1.1.5) gives Ruppert’s conjecture
(Conjecture 1.1.1). Moreover, it suffices to take A as the Newton polytope of f to prove
Aliev-Smyth’s conjecture (Conjecture 1.1.2).

1.1.2 The case of Abelian varieties

The Manin-Mumford conjecture is most notably known for its abelian formulation. Let
A be an abelian variety of dimension g defined over a number field. A torsion point is an
element of finite order with respect to the additive group law of A. For k € N, we denote
by A[k] the group of torsion points of order dividing k, which is isomorphic to (Z/kZ)9.
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We write
Ators = U A[k]
keN
for the torsion group of A.

The abelian statement of Manin-Mumford’s conjectre asserts that for a given subva-
riety V' of A, the Zariski closure of V N Ao is a finite union, where each member is a
translate of abelian subvarieties of A by a point of finite order. A first partial result is
given by Bogomolov [7] for the p®™-torsion, that is U,>; A[p"]. Later, Raynaud proves
the conjecture in [68] for the case of a curve embedded in its Jacobian, and in [69] for
the general dimension case. Moreover, Hindry [41] gives a general result in which A can
be replaced by any algebraic commutative group, in particular a semiabelian variety.

For the case of a smooth, irreducible, projective curve C' of genus g > 2 embedded in
its Jacobian J(C), there are many different effective bounds on the number of torsion
points in C, for instance Raynaud [68], Coleman [25], and Hindry [40]. Using p-jets, and
under some ramification conditions on a prime p > 2¢g + 1, Buium [15] obtains that

#Ctors S g!p4g3g(p(29 - 2) + 69)7

responding to a question posed by Mazur [60, p.234] on a uniform bound depending only
on the genus of the curve, and on the prime p.

For the sequel, let us fix a closed immersion ¢ : A < P" into a projective space of
some dimension n. Given a subvariety V' C A, we focus on effective bounds on the
number of maximal torsion cosets in V', which correspond to abelian subvarieties of A
translated by torsion points of A that are maximal with respect to the inclusion. Hindry’s
approach in [41] yields already an effective bound (up to a constant related to Galois
representations), which is not made explicit. Later, Bombieri and Zannier [10] show that
the number of maximal torsion cosets in V' can be bounded just in terms of the degree
of V by ¢, and data coming from A.

By means of new model-theoretic methods, Hrushovski [42] bounds the number of
maximal torsion cosets in V' by

c deg(V)®, (1.1.6)

where ¢ and e depend only on A (in fact they are doubly exponential in parameters
coming from A), and deg(V') denotes the degree of the Zariski closure of the image of V'
by the fixed immersion ¢.

Given the results in the toric case regarding the dependence on the degree (Theo-
rem 1.2.18), it is a natural question to ask if one can improve the exponent e in (1.1.6),
with the cost of incrementing the multiplicative coefficient ¢. Given V a subvariety of A
defined in P™ as the intersection of finite number of hypersurfaces of degree at most 9,
one expects to bound the number of maximal torsion cosets in V' by

¢d9, (1.1.7)
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where ¢ is the dimension of A, and c is a constant only depending on A. To prove such a
statement, our aim is to adapt the techniques of the toric case.

Let K be a the number field such that A is defined over K. Using the results of
Bogomolov [7] and Serre [80] on the homotheties in the image of the absolute Galois
group of K by the [-adic representations, one has that there exists an integer ¢(A) which
depends only on A (and K) such that for every point P € A of finite order, and any
integer k prime to the order of P, there is a Galois automorphism o € Gal(K/K) such
that

P = [k*WY] P. (1.1.8)

This classical approach to the Manin-Mumford conjecture was first proposed by Lang [47],
and has since proven to be a succesful tool (see [69] and [41]).

In this chapter we retake this approach to the proof Manin-Mumford’s conjecture in
the abelian setting. The main idea is to set analogies with the toric version, and extend
them to Abelian varieties. The much more complicated structure of torsion points and
their of definition is however the main problem in establishing such analogies.

Let V be a subvariety of A. By means of a careful choice of homotheties coming from
Galois automorphisms, we are able to give an explicit construction of an auxiliary variety
containing the torsion of V' (Propositions 1.3.7 and 1.3.8). The first result of interest
arises when considering V' to be a curve of genus g > 2. In this case, for an irreducible
algebraic curve C' C A, we obtain the following Abelian analogue to Beukers and Smyth’s
result:

#Ctors < (2290(A)+4g—20(A) C(A)2g + 22g+1 - 1) deg(C)Z;

see Proposition 1.3.9 and the remark that follows.

To further extend our result to higher dimensional varieties, we proceed by mimicking
the process followed in the toric case. By identifying V', and A with their images in P",
we use relative versions of upper and lower bounds on the Hilbert function (due again to
Chardin [23], and Chardin and Philippon [24]), to obtain an interpolating hypersurface
in P" that intersects V' (Proposition 1.3.13). In addition, our result bounds the degree of
this hypersurface in terms of degree ¢ of the hypersurfaces in P such that V is defined
as the intersection of them.

This leads to the third main result of this chapter (Theorem 1.3.14) which states the
following. If dim(A) = g, and V is a d-dimensional subvariety of A that can be defined
in P™ as the intersection of hypersurfaces of degree at most §, then

deg(Vi)s) < ¢ 6979,

for every j =0, ...,d, where ¢c; = (29— 1)(g — 1)(229C+e(A)+2 ¢(A)29 4 2292 _ 9))(9=3)d,
Moreover, this explicit version of Manin-Mumford’s conjecture is effective, up to the
non-effective constant c(A).
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1.2 Bounds for the toric Manin-Mumford

For the length of this chapter GJ!, denotes (C*)™. If not specified, we consider GJ}
naturally embedded into P™ by (x1,...,2,) — (1 : 21 : --- : 2,,). When considering
subvarieties of G}, they are defined over C unless stated otherwise. Moreover, when we
say that a variety is irreducible, we imply it to be irreducible over C.

1.2.1 Geometric extrapolation of the torsion points

Let € G}, be a point and X = (A1,...,\,) € Z" be an integer vector, we adopt the
multi-index notation

x> = mi‘l . x;\;‘
So, a family of vectors vectors Ay,..., A, € Z", r > 0, induces an (algebraic group)
homomorphism
Gl — G, s (x™,... ™). (1.2.1)

In fact, this defines is a bijection between integer matrices M, ,,(Z) and (algebraic group)
homomorphisms Hom(G},, G},,) by taking the XA;’s in (1.2.1) as the row vectors of the
matrix in M, ,,(Z). In particular, for any | € Z, we define the multiplication map by [ as
the endomorphism

[l : Gy — G,

(z1,...,2n) — (2, ..., 2h)

which corresponds to the diagonal matrix [ - Id € M,,«,(Z). Hence, we may express the
subgroup of the k-torsion points of G}, as

W= {we Gl Kz =1).

Let A be a subgroup of Z"™. We denote by A% = (A ®z R) N Z" the saturation
of A, and we call [A*" : A] the index of A. In particular, we say that A is saturated if
[A%2t : A] = 1. We define the algebraic subgroup of G, associated to A as

Hy={xeG" | z*=1,YA e A}.

The following result sums up the relation between subgroups of Z™ and algebraic subgroups
of GJ,.

Theorem 1.2.1. The map A — Hy is a dimension reversing bijection between subgroups
of Z" and algebraic subgroups of G}. A subgroup Hy is irreducible if and only if A is
saturated. Moreover, for any two subgroups A and A we have Hy - Hyr = Hpnpr, and
HyNHpy = Hpqp.
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Proof. See [8, Proposition 3.2.7 and Theorem 3.2.19]. O

A homomorphism GJ;, — GJ, defines an algebraic subgroup of G} by means of the
kernel. It is also possible to build a homomorphism with a fixed kernel.

Corollary 1.2.2. Let H be an algebraic subgroup of Gl of dimension n —r. We can
write H = F - H°, where F is a finite subgroup of G™, and H® denotes the connected

m’

component of H containing 1. Moreover, there exists an isogeny
7:G" — HYxG",
such that Ker(p) = F, and p|go(H) : H® — HY x {1} is the identity.

Proof. By Theorem 1.2.1, there exists a lattice A such that H = H,. Write A = ASS* O A*,
where A* is a lattice of full dimension. Then H = F- H?, with H° = Hjsat and F = Hpsat.
Since A* is full dimensional, F' is a finite subgroup of GJ;. Moreover, there is an isogeny
G?, — G, such that its kernel is F. This allows us to reduce to the case when H = HY.

By Theorem 1.2.1, there exists a unique saturated lattice A C Z™ such that H = Hj,.
Take a complementary subgroup A’ C Z", that is a saturated lattice such that ANA’ = {0}
and A+ A’ =7Z". Then Hy is irreducible, and so Hys = G,. Also by Theorem 1.2.1, we
have that G}, = Hygy = Hxnar, and 1 = Hzn = Hy 1 p. Then we have an isomorphism
G&:HXHA/gHXGTm. ]

A subgroup of G}, with special interest for this chapter is the stabilizer of a variety.
For a subvariety V of G}, we define the stabilizer of V as

Stab(V) = {¢ € G | £V =V}

First, notice that dim(Stab(V)) < dim(V'). Moreover, the dimensions coincide if and only
if V is a translate of an algebraic subgroup of G . In this latter case either Vio,s = V, or
there are no torsion points in V.

The following fact should also be highlighted. If ¢ : G} — G, is a surjective
homomorphism, and W C G’ a variety, then ¢! (Stab(W)) = Stab(y~1(W)).

By means of the homomorphism appearing in Corollary 1.2.2, we associate to V
a subvariety of some G, which has trivial stabilizer. The following result is a direct
consequence of this corollary and illustrates some useful properties of this homomorphism.

Corollary 1.2.3. Let V' be a subvariety of G, and r = codim(Stab(V')). There exists

m’

a homomorphism ¢ : G, — G}, such that Ker(yp) = Stab(V), satisfying the following
properties:

(i) p(V) is a subvariety of G}, with trivial stabilizer;

(it) o~ (p(V)) =V;
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(iii) =1 (n)V =n,V, for every n € G, and for any ny € ¢~ (7).

Proof. Write Stab(V) = F - Stab(V)?, with I a finite subgroup of G? and Stab(V)°
the irreducible component passing through 1. By Corollary 1.2.2, one has an isogeny
?: G? — Stab(V)" x G, such that Ker() = F. Since $ is an isogeny, the image of
V by 7 is a variety. Moreover, if £p(V) = §(V), for a € € Stab(V)? x G, by taking
preimages & - F -V = F -V, for some & € p71(¢). In particular, since F C Stab(V),
we have & € @(Stab(V)), and therefore Stab(a(V)) = @(Stab(V)) = Stab(V)? x {1}.
Hence, $(V) is of the form Stab(V)? x V', where V' is a subvariety of G7,. Then, the
homomorphism ¢ is obtained from ® by taking the projection to G},. The properties in

the statement follow then by construction. O

There is a remarkable relation between the stabilizer and torsion cosets in V. To
illustrate this, let wH be a torsion coset in V' (not necessarily maximal) and let Stab(V)?
be the connected component of Stab(V') containing 1. Then Ugcganvyo § - (wH) is a
torsion coset in V' that contains wH. In particular, every maximal torsion coset in V' has
dimension at least dim(Stab(V)), and its subtorus contains Stab(V)°.

To fix notations, given a variety V C G and an automorphism ¢ € Aut(C/Q), we
denote by V¢ the variety obtained by applying ¢ to the coefficients the polynomials in
Clz1,...,zy] defining V.

Torsion points, being essentially vectors of roots of unity, are defined over cyclotomic
extensions of Q. Hence, any Galois automorphism fixing the maximal abelian extension
of Q leaves invariant the torsion cosets of GJ.,. This observation gives the following result:

Proposition 1.2.4. Let V C G}, be an irreducible variety of positive dimension defined
over a finite Galois extension K of Q, that is not contained in Q%. There exists a non
trivial Galois automorphism ¢ € Gal(K/(K N Q®)), such that

Viers CV NV C V.

It is so important to singularize the study of varieties defined over Q*. By the
Kronecker-Weber theorem, whenever we have an abelian extension K of Q, we have that
K is contained in a cyclotomic extension of Q. In fact, there is a unique minimal natural
number, which we denote by Nk, such that the Ng-th cyclotomic field is the minimal
cyclotomic extension of Q containing K, see for instance [62, Theorem 4.27(v)]. Given
V' a subvariety of G} defined over an abelian extension of QQ, we choose the minimal
natural number N as

N = ggig {Nk | K is the field of definition of & - V'}. (1.2.2)
TS
In particular, notice that if N =2 (mod 4), then Q((n) = Q((y/2). Therefore, we can
always choose N # 2 (mod 4). We adopt the notation (n for a primitive N-th root of
unity, and Q(¢{x) for the N-th cyclotomic extension of Q.
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Remark. Notice that the value of Nx (and henceforth also the value of N ) is the same
for V and o(V'), with ¢ as in Corollary 1.2.3. This follows from the fact that two varieties
V., W C G}, with the same stabilizer define the same homomorphism ¢, and then V. =W
if and only if (V) = o(W). Fized an automorphism o € Gal(Q**/Q), take W = V.
Since the stabilizer is an algebraic subgroup of G, it is defined over Q by Theorem 1.2.1,
hence Stab(V?) = Stab(V). Therefore V.=V if and only if (V) = p(V7) = p(V)“.
From here we deduce that V' and ¢(V') are defined over the same cyclotomic extensions

of Q.
For the remaining of this section, N, N’, M, M’,l and I’ represent positive integers.

Lemma 1.2.5. Let V. C G} be an irreducible variety whose field of definition is an
abelian extension K of Q. Let w € V' be a torsion point.

1. If 41 Nk, one of the following is true:

a) there exists a 2-torsion point n € uy \ {1} such thatn -w € V;
2

(b) there exists a 2-torsion point n € py such that n - 2w € V7, where o €
Gal(Q(Cny )/Q) is the Galois automorphism mapping (N, — CJQVK

2. If Nx = 4N, one of the following is true:

(c) there exists a 2-torsion point n € py \ {1} such that n-w € V;

d) there exists a 2-torsion point m € ups such that n-w € V7 where 7 €
2

Gal(Q(Cny)/Q) is a Galois automorphism mapping (N, — le\/;EQNI'

Proof. To simplify the presentation, throughout this proof we denote Nx by N. Let [ be
the order of w, in particular w € Q(¢;), and M = lem(N,1). We prove separately point 1
and 2.

1. By hypothesis, N is odd. We distinguish 3 cases regarding the parity of I, where
the first corresponds to (a) and the other two to (b).

(i) If I = 4', then M = 4M’'. In particular, we have ged(1 + 2M', M) = 1.
Therefore, we can take a Galois automorphism 7 € Gal(Q(¢ys)/Q) mapping
Car = Cif M. Since 2M7 = 21 (mod 1), we have that 7 maps ¢ — ¢/ 2. On
the other hand, N is odd so N|M’ and (y is invariant under the action of 7.
Hence V™ =V and [1+2l'|w € V. Choosing n = [2l'|w € ub \ {1}, (a) holds.

(ii) If | = 2U' with 2 1 ', then M = 2M’ with 2 { M’. In particular, we have
ged(2+ M’ M) = 1. Therefore, we can extend o to a Galois automorphism in
Gal(Q(¢n)/Q), mapping (s — (JQJM/ (this extends o because N | M, since
N is odd). Since M’ = 1" (mod ), we have that o maps (; — Cl2+l/. Hence
[2+')w € V7. Choosing n = [I'|w € uY, (b) holds.
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(iii) If 241, then 21 M. We have that o can be extended to a Galois automorphism
in Gal(Q(¢pr)/Q) mapping (us — (3. In particular, o maps ¢, — (7. Hence
[2]w € V7. Choosing n = 1, (b) holds.

2. By hypothesis 4 | N, so we also have 4 | M. Write N = 4N’" and M = 4M’. Let 7
be an automorphism in Gal(Q((ys)/Q) mapping (p — C}\ZFZM/. Let v9 denote the
2-adic valuation. We distinguish 2 cases by comparing the 2-adic valuations of N

and [, corresponding to (c) and (d) respectively.

(i) If vo(N) < va(l), then N | 2M" and [ 1 2M'. Write | = 41’. Since 2M’ = 2l
(mod ), we have that 7 maps (; — CZHQII. On the other hand, 2M’ = 0

(mod N) and so 7T fixes Q(¢x). Hence V™ =V and [1 + 2'Jw € V. Choosing
n = [2U'|w € uf \ {1}, we obtain that (c) holds.

(ii) If vo(N) > wa(l), then N { 2M’. We have that either 2M’ = 0 (mod 1)
or, if not, 2M’ = 1/2 (mod ), therefore [2M'|w € py. On the other hand,
2N’ =2M' (mod N) and so 7 is an extension of 7. Hence [2M' + 1jw € V7.
Choosing n = [2M']w, (d) holds. O

Remark. The particular case when the field of definition of V' is Q is covered in

Lemma 1.2.5. It corresponds to point 1, taking N =1 and o = Id.

When considering an irreducible variety V' C GJ}, defined over an abelian extension
of Q, this lemma lays the groundwork for an equivalent result to Proposition 1.2.4. We
provide an explicit construction of a variety V' containing Vios but not V. For this last
condition a good control over the stabilizer of V' is necessary.

Proposition 1.2.6. Let V C G}, be an irreducible variety of positive dimension, defined
over an abelian extension K of Q such that Viors # V. Let N be as in (1.2.2) and suppose
that N = Ng. Let r = codim(Stab(V)) and ¢ : G}, — G}, a homomorphism such that
Stab(V) = Ker(yp).

1. If 41 N, then

Vies CV'= [ (' mv)u [ 27 e V),
nepz\{1} neuy

where o € Gal(Q(Cy)/Q), mapping (N +— (%. Moreover V' NV C V.

2. If N =4N’, then

Viors C V' = U (90710’7)‘/) U U (9071(77)‘/7)7
nep;\{1} nEL,

where T € Gal(Q({n)/Q), mapping (N — (}VHN/. Moreover VNV C V.
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The expressions of V'’ in the proposition are set-theoretical, and in fact they are the
finite union of (2" — 1) 4 2" varieties, see point (iii) of Corollary 1.2.3.

Proof. To show the inclusion Vo C V7, it is enough to prove that every torsion point
in V lies also in V'. Torsion is preserved by homomorphisms, so ¢(Viors) = ©(V)tors,
and we may apply Lemma 1.2.5 to (V). If 41 N, then by taking the union of all the
varieties that come from points (a) and (b) of said lemma, we obtain that

e(Vis) € J m-e(WV)U U R (m- (V).
neps\{1} YIS

By taking the preimage of the variety on the right by ¢ we obtain the V' in the statement.
In a similar way, we may apply case 2 in Lemma 1.2.5 to prove the second inclusion of
the proposition.

To prove that VNV’ C V, we can assume that V has a trivial stabilizer since ¢ does
not change the value of N. So ¢ = Id. We proceed by showing that V is not contained
in any of the varieties that come from the lemma. First, since V' has trivial stabilizer by
hypothesis, -V # V for every n € uy \ {1}, and so VNn-V C V for all such n’s. This
deals with the varieties coming from (a) and (c).

To see that V C [2]7!(n - V) for all n € u¥, we do it by explicitly computing
the degrees. Assume that V C [2]7'(n - V), then [2](n, - V) C n- V7 for every
1o € Ker[2] = pf. Thus

U mo-V R m-vo).
noERy
Since V' has trivial stabilizer, the variety on the left is a union of 2" distinct varieties and
so it has degree 2" deg(V). On the other side the variety has degree 2¢°4m(V) deg(V),
see [41, Lemme 6(i)]. The contradiction arises from the fact that codim(V') < n. This
deals the varieties arising from (b).

It is left to proof that V # n - V7 for all n € u%, which correspond to the varieties
coming from (d). To do so, assume for instance that there is an equality and choose some
€ € p¥ \ {1} such that 2N'|€ =n. Then &™ =€ -nand (£- V)" =€ - V™ =¢-V. This
would mean that £ - V' is stable by 7 and so it is defined over Q(¢n)™ = Q((n/2), which
contradicts the minimality of N (1.2.2), and finishes the proof. O

1.2.2 Algebraic interpolation

Let V C G} be a variety of positive dimension. When V is irreducible, by using
Propositions 1.2.4 and 1.2.6 we can explicitly construct an equidimensional variety V'
of the same dimension that contains Vo and such that V N V' C V. The degree of
V' can be easily computed. In the case that V is not defined over Q2" the degree of
V' is the same as the one of V. On the other hand, if the field of definition of V is an
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abelian extension of Q we may use [41, Lemme 6(i)] and obtain the following two cases
depending on the parity of N:

1. if 24 N, then deg(V') = (2" — 1) deg(V) + 27 2°°4m(V) deg(V),
2. if 4| N, then deg(V') = (2" — 1) deg(V) + 2" deg(V),

where r = codimgy (Stab(V')). The idea to apply straightforwardly Bézout’s theorem
yields a bound on the number of maximal torsion cosets. If V is a non-torsion d-
dimensional variety defined over Q, such that dim(Stab(V)) = dim (V) — 1, we retrieve
the optimal bound this method gives:

deg(Viors) < (2041 4 22n=2d+1 _ 1y deg(V)2. (1.2.3)

In the particular case when n = 2 and V is a curve we have that the number of torsion
points of V is at most 11 deg(V)?, which corresponds to the bound given by Beukers and
Smyth [5], see (1.1.1). However, the iteration of this method does increase the exponent
of deg(V') exponentially, which motivates the use of the following definition.

Definition 1.2.7. Let V be a subvariety of G}},. We define the degree of definition of V
as the minimal degree 0 such that V is the intersection of hypersurfaces of degree at
most 0, and we denote it by 6(V).

We also define the degree of incomplete definition of V' as the minimal degree §y such
that there exists a variety X that is the intersection of hypersurfaces of degree at most dg,
such that any irreducible component of V' is a component of X. We denote it by do(V).

Lemma 1.2.8. If V C G}, is defined over K, then 6(V') and 6o(V') can be realized by
hypersurfaces defined over K.

Proof. Let I be an ideal in K[zy,...,z,] whose zero set is V', and let I ® C be the ideal
in C[z1,...,x,] defined by base change. Since K is perfect we can apply [12, Chapitre 5,
§15.5 Théoreme 3(d)] to obtain the equality v/I ® C = /T ® C. Hence the radical ideal
I(V) in C[z1,...,x,) defining V equals VI ®C, and is defined over K. For § > 0, denote
by I(V)<s C Clz1,...,xy] the subspace of the polynomials in I(V') of degree at most 4.
Since I(V') is defined over K, also is I(V')<s.

The definition of 6(V), is equivalent to the minimal ¢ such that the zero set of I(V')<s
equals V. On the other hand, the definition of §y(V') is equivalent to the minimal &
such that the zero set of I(V)<s equals V U W, for some subvariety W C G}, such that
V' ¢ W. Then the lemma follows from the fact that I(V)<; is defined over K. O

Let V an equidimensional variety of dimension d. Given a general linear map
¢ : P — P4l the image of V by £ is a hypersurface of degree at most deg(V). We
can take the pull-back of this hypersurface by ¢, which gives a hypersurface of degree at
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most deg(V') containing V. Then V is (as a set) intersection of all hypersurfaces obtained
in this way. This shows that (V) < deg(V'). Moreover,

So(V) < 8(V) < deg(V) < §o(V)codimV),

where the first inequality follows from Definition 1.2.7, and the last one from [66,
Corollaire 5]. Notice that, when intersecting V' with a hypersurface, the definition of §
gives 0(V N Z) < max{d(V),deg(Z)}, and the same is true for §y. The behaviour of d
is however more subtle with regard of the union of varieties. Let us recall first an easy
lemma for the degree of definition.

Lemma 1.2.9. Let X;,..., Xy be subvarieties of Gly. Then

t t

s(U X)) <D a(xi).

i=1 =1

Proof. 1t is enough to prove it for t = 2. Let X be defined by polynomials fi,..., f, with
deg(fi) < d(X1), and Xy be defined by g1, ..., gs with deg(g;) < §(X32). Then X; U Xo
is defined by the polynomials f;g; for 1 <7 <rand 1 <j <s. O

In general, this result is not true if we use dg instead of §. To have a similar lemma
for &g, we must therefore consider more specific varieties. The following is a variation
of [3, Lemma 2.5], which takes into account the action of Galois automorphisms on the
computation of dg of a variety.

Lemma 1.2.10. Let V' be an irreducible subvariety of G . Let M > 2 be a positive
integer, and (y; be a primitive M-th root of unity, such that V' is defined over Q((ar).
Let T C plhy x Gal(Q(Car)/Q) be a finite set with t elements. Then

so( | gv?) <tao(V).
(9,.9)€T

Proof. Throughout this proof, we say that an irreducible variety W C G}, is imbedded
in a variety X C Gy if W C X but W is not an irreducible component of X.

Notice that for any two g1, g2 € ufi; and any two ¢1, 2 € Gal(Q((ar)/Q), we have
that go(g, V)% = go¢y ' (g1)V?92. This endows u}, x Gal(Q(¢pr)/Q) with a natural
structure of semidirect product, given by

(gl’¢1) ’ (g27¢2) = (¢51(gl)g27¢1¢2)'

By definition of dp(V'), there exists a variety X such that V' is an irreducible component
of X and 6op(V) = 6(X). Let G = {a-b1| a,b € T) C uf; x Gal(Q(¢p)/Q), and
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S =1{(g,¢) € G| gV? is imbedded in X}. Notice that (¢(g~'),4 ') is the inverse of
(g,90) € piy x Gal(Q(¢a)/Q). Consider

X=xn( N égHx*).

(g,9)€S

We have that V' is an irreducible component of X and §(X) = §(X) = do(V). Moreover,
no gV? is imbedded in X , for (g,¢) € G. Assume by contradiction that there is a
gV? imbedded in X. Since X C X, gV? is imbedded in X and so (g,¢) € S. By
induction, we suppose (g,,,¢") = (g, )" € S for some n > 1. Then X C ¢"(g;)X?¢ "
and so gV¢ is imbedded in ¢"(g,,})X? "; which implies (g, ,1,8" ™) = (g,¢)"** € S.
Therefore, (g, )" € S for every n € Nyg. In particular, taking n = ord((g, ¢)) we have
that (1,Id) € S, which is a contradiction.
Next we define
Y = U g)~(¢.
(9.9)€T

Then Ug ¢ gV?® C Y and 6(Y) < t6(X) = t6(V) by Lemma 1.2.9. Moreover, no gV®
is imbedded in Y, for (g,¢) € T. Assume by contradiction that there is a (g,¢) € T
such that gV? is imbedded in Y. Then, there exists some (go, ¢o) € T such that gV'¢
is imbedded in goX‘ZﬁO Thus qbo(go )(gV¢)¢’0 = po(gg " )V¢’0 ¢ is imbedded in X and,
since (g, ) - (go; d0) " = (o(gg'9), ¢ ' 6) € G, this contradicts the definition of X. [J

Remark 1.2.11. It is possible to give a slightly more general version of this statement,
taking T a finite subset in u” x Gal(Q/Q). The proof follows as the one of Lemma 1.2.10
after setting M to be the smallest integer satisfying that every element (g, ¢) € T is such
that g € p%,, and (Q*®)? C Q(Car). This generalization is not needed in our application
of Lemma 1.2.10.

The following lemma is a key ingredient in the proof of Theorem 1.2.16 for varieties
defined over abelian extensions of Q.

Let the closure of V' in P™ be defined by the homogeneous radical ideal I in
C[zo,...,zn]. For v € N, denote by H(V;v) the Hilbert function dim(C[zo,...,z]/I),.
Notice that if V' is defined over K, also is I as shown in the proof of Lemma 1.2.8. Hence,
for v € N, one can define the Hilbert function H(V;v) as dim(K[xo, ..., zy]/I),, since
this value is invariant by base change.

The following sharp upper bound for the Hilbert function is a theorem of Chardin [23].

Theorem 1.2.12. Let V C G}, be an equidimensional variety of dimension d =n — k,
and let v € N. Then

H(V;v) < (V ?; d) deg(V).
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On the other hand, as a consequence of a result of Chardin and Phillipon [24,
Corollaire 3] on Castelnuovo’s regularity, we have the following lower bound for the
Hilbert function.

Theorem 1.2.13. Let V C G}, be an equidimensional variety of dimension d =n — k,
and m = k(do(V) — 1). Then, for any integer v > m, we have

v Cfi_ m) deg(V).

H(V;v) > (
By means of these bounds, we aim to infer from Propositions 1.2.4 and 1.2.6 a hy-
persurface Z of degree dy(V') up to a multiplicative factor depending only on n and the

dimension of V', such that Vio,s CVNZ C V. We first present the following intermediate
result which we use for varieties defined over abelian extensions of Q.

Lemma 1.2.14. Let V C G} be an irreducible variety of dimension d = n — k. Let
M > 2 be a positive integer, and fix (pr a primitive M-th root of unity, such that V is

defined over Q(Cnr). Let ¢ € Gal(Q(Car)/Q) and let m € pfy.

(a) If nV® # V, then there exists a homogeneous polynomial F € Q®[xy, ..., x,] of
degree at most 2k(2d + 1)6o(V') such that F =0 onnV? and F #0 on V.

(b) If V ¢ [2] 1 (nV'?), then there exists a homogeneous polynomial G € Q™[x, ..., xy,)
of degree at most 2"k(2d + 1)50(V) such that G =0 on [2]71(nV?) and G Z 0 on
V.

Proof. The proof of both cases is similar; however we choose to discuss both of them for
the subtleties.

(a) Since V is an irreducible variety, nV'¢ is also irreducible and of the same degree.
By Theorem 1.2.12 we get, for any v € N,

H(nV?v) < (V j; d) deg(V).

On the other hand, let V/ = V UnV?. This is a d-equidimensional variety of
degree 2deg(V'). Thereby, using Theorem 1.2.13 we have, for any v > m,

v c;— m) 2deg(V),

H(\V'v) > (

where m = k(6o(V') — 1). In particular, m < 2kdo(V) due to Lemma 1.2.10.
Fixing v = m(2d + 1), we obtain the following inequalities
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d d (2dm +d)!  (2dm +m)!

1
d 1
§<1+ mn > :<1+) <el? <2,

v—m

<V+d><u+dm>_1:(2dm+m—i—d)! (2dm)! :ﬁ (v +j)

Hence, we have H(nV?%;v) < H(V';v).

This implies that there exists a homogeneous polynomial F' of degree v such that
F=0onnV? and F#0on V' =nV?UV. In particular F' # 0 on V. Moreover,
deg(F) = v < 2k(2d 4 1)6o(V). Notice that nV¢ and V are defined over Q?, so
one can choose F' with coefficients in Q*". This proves (a).

Let W = [2]7}(nV'?). This is a d-equidimensional variety of degree 2¥ deg(V'). By
Theorem 1.2.12 we get, for any v € N,

v+d

H(W;v) < < )2’“ deg(V).

On the other hand, consider H = [2]~! Stab(V) = Stab([2]7*(V)), and let W' =
Uner - V. In fact if r = codimgy, (Stab(V')), taking ¢ as in Corollary 1.2.3, we
have that H /Stab(V) ~ o(H) = [2]7! Stab(x(V)) = u. This variety W' is also
a d-equidimensional variety of degree 2" deg(V'), and k < r < n. Thereby, using
Theorem 1.2.13 we have, for any v > m,

H(W';v) > ( " Cfi‘ m) 2" deg(V),

where m = k(6o(W') — 1). In particular, m < 2"kdp(V) due to Lemma 1.2.10.
Fixing v = m(2d + 1), we obtain the following inequalities

-1
V+d V+d—m 1/2 r—k
< 2",

Hence, we have H(W;v) < H(W';v).

This implies that there exists a homogeneous polynomial G of degree v such that
G=0onW =[2]7}(nV?),and G # 0 on W’. In particular, there exists an 1, € H
such that G # 0 on n,V. Notice also that since W and W’ are defined over Q?",
one can choose G to have coefficients in Q?P.

Let G(z) = G(ny - =) € Q*[x, . ..,x,]. We have that G = 0 on 1y '[2] " (nV?).
Since the stabilizer is an algebraic subgroup, we have

Stab([2] 1 (nV?)) = [2] ! Stab(nV?) = [2] ! Stab(V?) = [2] ! Stah(V) = H.

In particular, ng' € Stab([2]'nV?). So G =0 on [2]~'(nV). In addition, G # 0
on n~'nV = V. Moreover, deg(G) = v < 2"k(2d + 1), which proves (b).
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O]

Notice that the cases of this result cover all the irreducible components of the
varieties V' arising from Proposition 1.2.6. Since we use Lemma 1.2.10 in the proof,
technically it does not include the variety of Proposition 1.2.4. We state the following
lemma to cover also this case.

Lemma 1.2.15. Let V C G} be an irreducible variety of dimension d =mn — k, defined
over a finite Galois extension K of Q. Let ¢ € Gal(K/Q) such that V® # V. Then there
exists a homogeneous polynomial F € K|xo, ..., zy] of degree at most 2k(d+1)do(V') such
that F=0o0onV® and F#0 in V.

Proof. First of all, we prove that do(V U V?) < 260(V), following the same inductive
argument as in Lemma 1.2.10. By the definition of dg, there exists a variety X such
that V is an irreducible component of X and §(X) = §o(V). Let S = {¢ € (¢) |
V¥ is imbedded in X} and consider

X=xnx¥"
PpeSs

We have that V is an irreducible component of X and §(X) = 6(X) = &,(V'). Moreover
V¥ is not imbedded in )Z', for ¢ € (¢), by the same inductive argument as in Lemma 1.2.10.
If there was a ¢ € (¢) such that V¥ is imbedded in X C X, this would imply that V¥
is imbedded in X and so ¢ € S. By induction, if ¥ € S for some n > 1, X cXxv.
Hence V¥ is imbedded in X¥™", and so ¢"*! € S. Therefore (¢) = S; in particular
Id € S, which is a contradiction.

Next, for

Y = XUX?,

we have that V and V? are irreducible components of Y and §(Y) = 260(V). Hence
(50(V U V¢) < 2(50(V).

The proof of the existence of a polynomial as in the statement is as the one of
Lemma 1.2.14(a). O

The following theorem may be considered as a specialization of [2, Theorem 2.1] to
torsion subvarieties.

Theorem 1.2.16. Let V C G} be an irreducible variety of dimension d =n —k > 0,
defined over Q, such that Vigrs # V. Let

0o = 0(V) = k(2" + 2" —2)(2d + 1)50(V).

Then Vigrs is contained in a hypersurface Z defined over Q of degree at most 6y, which
does not contain V; that is Viors CVNZ G V.
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Proof. Let K be the field of definition of V. When K is an abelian extension of QQ, we
may distinguish both cases arising in Proposition 1.2.6. Let N be as in (1.2.2). Since
(€-V)tors = & - Viors, after possibly translating the hypersurface Z by €1, we can assume
that N = Nk.

1. If 24 N, by Proposition 1.2.6(1) we have that
ViesCV'= | e 'mvu LRI e mv),
nepz\{1} LIS
where o € Gal(Q({n)/Q) maps (x + (¥;and V' NV C V.,

For each p € p} \ {1} we have that V # ¢ '(n)V. By Lemma 1.2.14(a), we
obtain a hypersurface Z,, defined over Q* of degree at most 2k(2d + 1)do(V) such
that ¢~ 1(n)V C Z,, and V ¢ Z,. Moreover, for each 1 € u5, we also have that
V ¢ [2]7 ¢ (n)V?), since VN V' C V. Thus, by Lemma 1.2.14(b), we obtain
a hypersurface Z; defined over Q2P of degree at most 2"k(2d + 1)dg(V) such that
2] Y e (m)V) C Zy, and V ¢ Z,. For the union of these hypersurfaces

z= U zywvu l 2,
nepz\{1} NEN,
we have then
deg(Z) < Y. 2k(2d+1)60(V) + D 2"k(2d + 1)d0(V) < by
nepp\{1} neuy

and Viors CV NV CVNZCV.

2. If 4| N, by Proposition 1.2.6(2) we have that

Vs CV'= | ¢ 'mVvu ¢ 'V,
nemp\{1} nEH;
where 7 € Gal(Q(¢x)/Q) maps (n — C}VJFMVI; and VNV C V.

We proceed as in (1), and by using Lemma 1.2.14(a) for each irreducible component
of V', we obtain a hypersurface Z defined over Q" such that

deg(Z) < Y 2k(2d+1)6(V) + Y 2k(2d + 1)50(V) < b,
neps\{1} LIS

and Vigs CV NV CVNZCV.

Whenever K ¢ Q2" by Proposition 1.2.4 we have that Vio,s € VNV C V, for any
non-trivial ¢ € Gal(K/(Q**NK)). Since V # V<, by Lemma 1.2.15 there is a hypersurface
Z defined over K of degree at most 2k(2d + 1)5o(V) < 0y such that Vies CVNZ C V.
This concludes the proof. ]
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Notice that this should not be used in the case of treating curves, since the direct
approach yields already an optimal bound, see (1.2.3). This theorem proves useful in
treating varieties of higher dimension where an iterative application of Bézout’s theorem
only leads a bound with an exponential exponent for deg(V).

1.2.3 Induction theorems

In this section we present the first main result of this chapter. Both of the proofs we
give in this section follow the same lines as the ones of Theorems 2.2 and 1.2 in [2].

First, we state a theorem which serves as an intermediate result.

Theorem 1.2.17. Let Vi C V; be subvarieties of G, such that Vy is irreducible, and
Vi is defined over Q. Let codim(V;) = k;, i = 0,1. Then, if Vo & Vi tors, there exists a
hypersurface Z C G?, defined over Q of degree at most 0 such that Vo ¢ Z and Vo tors € Z,
where

0 = ((2n — 1)k (22" + 271 — 2))ho=kitls(17),

Proof. Assume that the statement in the theorem is false; that is, if Z is a hypersurface
defined over Q of degree at most § containing Vo, tors, then it contains the whole variety V5.
We proceed by building a chain of varieties

X, =V1i2- -2 X1
satisfying, for every r = kq,..., kg + 1, the following:
(i) Vo C X,
(ii) each irreducible component of X, containing Vj has at least codimension r.

If a such chain exists, then there is an irreducible component of Xy, which is at least
of codimension kg + 1 containing V4. This yields a contradiction since the codimension of
Vo is kg, and concludes the proof.

We construct a chain like this by recursion. We demand X, to satisfy the following
additional property for each X,, r =kq,..., ko + 1:

(iii) 0(X;) < Dy,
where
D, = (ko(22" + 2™ —2)(2n — 1)) F15(17).
First, notice that for r = ki we already have that for the variety X}, properties
(i)—(iii) hold.
Next, let us assume that for » > ki we have constructed the variety X, in the chain,
and write X, = Wy U--- U W; where the W;’s are the irreducible components of X,.
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After possibly renumbering, by (i) there exists an s > 1 such that V; C W; if and only if
1 < j < s. By the hypothesis of the theorem, Vj ¢ ‘/Ltors, no W; can be a torsion coset
for j =1,...,s. Moreover, for these j’s, we have codim(W;) < kg since Vy C Wj, and
do(Wj) < 6(X,). Thus, for every j =1,...,s, Theorem 1.2.16 gives a hypersurface Z;
defined over Q such that

deg(Z;) < ko(2*" + 2" —2)(2n — 1)6(X;) < Dy,

and

Wj,tors - Wj N Zj - Wj. (1.2.4)
The inclusion Vy C W; also gives an inclusion of their respective torsion subvarieties.
Hence Z; is a hypersurface of degree at most D,y < 6 containing Vjtors. By the

assumption in the proof, this implies that Vo C Z;.
With these Z;’s, we define

Xpn=X,0 () 2,
7j=1,...,s
which is defined over Q. Since Vy C Zj, for all j = 1,...,s, we have that Vj C X,41,
satisfying therefore property (i). To show that property (ii) holds for X, 1, first observe
that the only irreducible components of X411 containing Vj are irreducible components
of W;NZiN---NZ for every j < s. By construction of X, we have that codim(W;) > r
for j <'s, since Vi C Wj for these j’s. Therefore, the second inclusion in (1.2.4) gives
codim(W; N Z;) > r + 1, and so item (ii) is satisfied for » + 1. Finally, property (iii)
comes from the following inequalities

0(Xr4+1) < max{0(X,),deg(Z1),...,deg(Zs)} < Dyi1. O

Theorem 1.2.18. Let V C G} be a variety of dimension d > 0. For j =0,...,d, let
V]

tors

denote the j-equidimensional part of Viors. Then, for every j =0,....d,
deg(Vihys) < cngd (V)"

where

Cnj = ((2n —1)(n — 1)(22n 4 ontl 2))d(n—j)_

Proof. First, assume that V is defined over Q. Write V = XU --- U X%, where X7 are
the j-equidimensional part of V', for j = 0,...,d. For simplicity of notation, let us fix

0= ((2n—1)(n—1)(2% + 2" —2))d 5(V).

The key element is to prove the following inequality

d d

> 609 deg (Vi) < Z 07 deg(X7). (1.2.5)
=0 =0
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We then apply a result of Philippon [66, Corollaire 5] as we detail next. With the notation
as it appears loc. cit., we take m = n, S = P", § = 0 and Zy,..., Z; hypersurfaces of
degree at most §(V') < 6 that define V. By the definition of d,, in [66, p. 347], when we
apply Corollaire 5 in loc. cit. to S; =P" - Z1 --- Z;, we obtain

d
> 67 deg(X7) < 6™
§=0
From this inequality follows, for every j =0,...,d,

deg(Vil) <079 = ¢ 6(V)",

proving the theorem.
The strategy to show inequality (1.2.5) is to build inductively a family of varieties
Y4 ... Y0 satisfying, for each r =d,...,0, the following:

(i) Y is r-equidimensional,

tors

)
(ii) Viers C V& U---UVIHUYTUX™1U-- U XO,
)

(i) Y41 6777 deg(Vitys) + deg(Y™) < 2, 6977 deg(X7),

(iV) every irreducible component of Y intersects Viors, and is not contained in V¢ . U
V’I‘-I—l

tors -

Then inequality (1.2.5) is deduced by the inclusion V2 . € Y which gives deg(V{?,.) <
deg(Y?).

Notice first that for = d, X% already satisfies (i)(iii). We thus set Y¢ to be the
union of all irreducible components of X¢ satisfying (iv). Next, let us assume that for
0 < r < d we already have a variety Y satisfying these properties and write

=Vi UWiuU---UW;s, for some s >0,

where the W;’s are the irreducible components of Y that are not in V{, .. Observe that
if s = 0, X" ! already satisfies (i)-(iii), so we may take Y"~! to be the union of all
irreducible components of X" ™1 satisfying (iv). Hence we assume s > 0. Moreover, after
possibly discarding some of these irreducible components, we can also assume that (iv) is
satisfied. Hence, no W; is included in a torsion coset of V.

For each ¢« = 1,...,s, we apply Theorem 1.2.17 to V, = W, and Vi = V, where
ko < n — 1, which gives a hypersurface Z; of degree at most 6 such that W, .. C
Wi N Z; © W;. Then Krull’s Hauptidealsatz implies that W; N Z; is either empty or an
(r — 1)-equidimensional variety. We hence define

Yt=x"1tu |J WinZ)
1177
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By construction, Y"1 verifies properties (i) and (ii) for 7 — 1. Moreover, by Bézout’s
theorem we have .
deg(Y™1) < HZ deg(W;) + deg(X™1).
i=1
On the other hand, since Y" = V[ ;UW; U---UW,, we may replace the inequality above
by
deg(Y™™1) < 0(deg(Y") — deg(Vi" ) + deg(X™1).

The addition of Z?:,, it deg(V

tors

) on both sides of the inequality yields

d
> 0T deg (Vi) + deg(Y )

j=r

d
<N O deg (Vi) + 0(deg(Y") — deg(Vitys)) + deg(X™ 1)

j=r

d
=0 (>0 7" deg(Vily) + deg(y")) + deg(X7 ),
Jj=r+1

By property (iii) in the induction step for r, the sum can be bounded above, and therefore

d d
0 (z 07 deg(Vi,o) + deg(Y’">> Fdeg(X1) < S BT deg(X).

j=r j=r—1

This shows that Y"~! satisfies property (iii) for » — 1, concluding the proof for V defined
over Q.

To conclude the proof of the theorem, we have to deal with the case when V' is not
necessarily defined over Q. First we prove that if Z is a hypersurface defined over C,
and Z' = seAut(C/D) £ ¢ where Aut(C/Q) denotes the automorphisms of C that fix the
field Q, then Z’ is a variety defined over Q. We do this in a similar fashion as Amoroso
and Viada’s proof of [3, Lemma 2.2].

Let f € Clzy,...,x,) be a polynomial whose zero set is Z(f) = Z, and write f =
Sy Aifi, where fi,..., fr € Q[x1,...,2,] and Aq,..., A, € C are linearly independent
over Q. Notice that, for every ¢ € Aut(C/Q), Z? is defined by the zeros of f¢ =

"1 ¢(\i)fi, and in particular Z? O Z(f1,..., f,). Hence

Z'"D>Z(f1,. . fr)- (1.2.6)

Moreover, since Q is a perfect field, by [12, Chapitre V, §15.6 Théoréme 4(c)] there are
é1, ..., ¢, such that det (qﬁj(/\i))ij # 0. So, for all z € GT,

f¢](w) :ZQSJ()‘Z)JCZ(:E) :07 VJ: 1,...,7“ = fl(w) = :fT(‘T‘) = 0.
=1
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Hence Z' C j—y Z% C Z(f1,..., fn). Together with (1.2.6), this gives Z' = Z(f1,..., fr)
and so Z' is defined over Q.

For V C G}, a variety of any dimension, write V' as the intersection of Z1,..., Z;
hypersurfaces defined over C. Notice that for every ¢ € Aut(C/Q), V¢ = Zf) NN Zf’ .
Then V' := ﬂ¢€Aut((c/@) V® is defined over Q, since Z]’- = m(bEAut((C/@) Zj) is defined
over Qand V' =2Z{n---NZ.

In addition, Vigy is defined over Q, so it is invariant by all the automorphisms
in Aut(C/Q), and we have that Vios = V.. The statement of the theorem follows from
the fact that 6(V') < §(V) and dim(V') < dim(V). O

Remark. Following the proofs of these theorems as presented by Amoroso and Viada [2]
we obtain that 5o(H) < 0, for each maximal torsion coset w - H in V. Nevertheless,
sharper bounds than this one are already known, for example [8, Theorem 3.3.8] gives

0(H) <ndé(V).

For a squarefree polynomial f € C[x1,...,z,], the degree of f is equal to the degree of
definition of the variety given by f. This gives the weak version of the conjecture in (1.1.2).
Via homomorphisms one can deduce Ruppert’s conjecture from Theorem 1.2.18.

Corollary 1.2.19. Let f € Q[z1,...,x,] be a polynomial with deg, (f) = d; > 0, for
i1=1,...,n, and V be the variety defined by the zeroes of f. Then the number of isolated
torsion points in V is bounded above by

Cn,0 n" dl to dna

where
2

cno = ((2n —1)(n —1)(2%" + 2"+ —2))" 7",

Proof. For each j =1,...,n,let D; = %, and consider the homomorphism

[D1,...,Dy]: GT —s G™

(T1y .0 X)) — (xlDl,...,mS"),

corresponding to the diagonal matrix with coefficients D1, ..., D,. The variety given by
n

f(:L‘lDl,... xPn)is W = [Dy,...,D,]" 'V, and deg, (W) = Hdi’ for every i =1,...,n.

r'n

=1
Then, W is of degree at most nd; - - - d,,, and by applying Theorem 1.2.18 to W we obtain
that
#Wt(())rs < Cn,O(n dl Ce dn)n

The result follows from the fact that #W . = # Ker([D1, ..., Dy]) #V2 ... O
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In Theorem 1.2.18 we could have given a more precise bound, depending on the field
of definition of the variety V. To understand this, first observe that the varieties V' we
obtain in Propositions 1.2.4 and 1.2.6 are defined over the same field as V. Hence, in
Theorem 1.2.16 we could consider changing the definition of 6y, depending on which field
V' is defined over. If the field of definition of V' is an abelian extension of Q, sharpening
the value of 6y does not change significantly our bound because the order of n in the
constants ¢, ;’s remains essentially the same. However, in the case when V' is not defined
over Q*, Theorem 1.2.16 holds also for

0y = 2]{}(2(1 + 1)(50(V)

Using this definition of #y in Theorems 1.2.17 and 1.2.18, we can improve the bound
obtained in the latter. Hence, if V' is not defined over Q®P, the number of isolated torsion
points in V' can be bounded above by

(2(2n —1)(n — 1))"2’”5(V)”.

1.2.4 Proof of the conjectures

The idea to prove Aliev-Smyth’s conjecture is to proceed similarly as in the proof of
Corollary 1.2.19. Let f € C[xy,...,z,] be a polynomial with Newton polytope A, and V'
be the hypersurface given by f. Our aim is to give a homomorphism ¢ : G} — G}, such
that the determinant of the matrix representing ¢ is equal to &, deg(p~(V))", where
Kn only depends on n. This direct approach does not work if we want to deal with any
polytope. Instead, we consider a family of homomorphisms ¢; : G, — G} such that the
limit

lim deg(y; (V)" det(pr) ™

l—00
only depends on n.

First, we state a result of John [43, Theorem III] which allows us to compare the

volume of any convex polytope A with the volume of the ellipsoid of smallest volume
containing A.

Theorem 1.2.20. Let S C R™ be a set such that its convex hull is of dimension n. If E
is the ellipsoid of smallest volume containing S, then the ellipsoid E' which is concentric
and homothetic to E at ratio % s contained in the convex hull of S.

An ellipsoid F in R™ is determined by an invertible matrix M € GL,(R) and a vector
v € R" such that
B,=M-E4+v={M-t+v | te E}, (1.2.7)

where B,, represents the n-dimensional unit ball with respect to the L?-norm, centered
in 0. In particular, the volume of E is detemined by M:

vol, (E) = | det(M)|  w,,
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where w, is the n-volume of B,,.
For a polytope A C R™ with integer vertices and of dimension n, John’s result gives
a way of including some affine deformation of A in a homothety of the standard simplex

An:{tE(Rzo)n| t1+"'+tn§1}

in such a way that both volumes differ by a multiplicative factor depending only on n.
The next proposition gives explicit construction of such translations and integer linear
transformations.

Proposition 1.2.21. Let A C R™ be a convex polytope with integer vertices and of
dimension n. For any | € Nsg, there exists a non-singular integer matriz M; € GL,,(Z)
and an integer vector T; such that

MA + 7, C 2n(l + v/ndiam; (A) + n) A", (1.2.8)

where diamy (A) represents the diameter of A with respect to the L'-norm. Moreover, a
family of such pairs {(M;, T;)}1>0 can be taken so that

liigloo 1" det(M;)| 7! < n"w, tvol, (A). (1.2.9)
Proof. After possibly translating A by an integer vector, we can always assume that
AC (Rsp)", and AN{teZ"|t;=0}#0, foreveryi=1,...,n.
Thus for any matrix N € M, (R) with maximum norm ||N|| <1, we have
N A C y/ndiam;(A)B,,. (1.2.10)

Let E be the ellipsoid of smallest volume containing A, and M € GL(R) and v € R"
be as in (1.2.7).

Next, choose M; € GL(Z) and v; € Z™ to be integer approximations of [M and lv in
the following sense:

My=IM+M', [[M' <L
v =lv+v, ||V <1

where || - || denote the respective maximum norms.
Notice that, by inclusion (1.2.10) and the choice of matrices and vectors, we have

MA+ v, CIU(M-E+v)+ MA+v CIB,+yndiam;(A)B,, + nB,.

Thus, translating by (I + /n diam;(A) 4+ n)1, we guarantee that the above convex bodies
are all included in (R>¢)". Therefore, taking

71 = (I + vndiam; (A) + n)1 + vy,
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we obtain

MA + 7 C (I 4+ /ndiamy(A) + n)B, + (I + v/ndiami (A) +n)1
C 2n(l + v/ndiam; (A) + n)A™.

It remains to prove that the inequation (1.2.9) holds for these M;’s and 7;’s. Using
John’s result (Theorem 1.2.20), we have that £ C A, where E’ is an ellipsoid that is
concentric and homothetic to F with ratio % In particular,

vol,(E") =n""vol,(E) and vol,(E’) < vol,(A).

Therefore
|det(M)|™! = w,tvol,(E) < w;,

n

L n™vol, (A).

In addition, by our choice of M;, we have that

lim " det(M;)|~' = | det(M)| ™.

l—+o0

Inequality (1.2.9) follows then directly. O

By means of this proposition, we can take the bound in Theorem 1.2.18 and prove
the conjecture of Aliev and Smyth. Before that, let us define the notion of degree related
to a convex polytope we use in the theorem (see also Definition 2.2.4 for an equivalent
definition).

Definition 1.2.22. Let A C R” be a convex polytope with integral vertices. Given a
variety V' C G of dimension d, we define the degree associated to A as

dega (V) = #(V N Z(f1,..., fa)),

where f1,..., fq € (C[a;fcl, ..., o1 are generic Laurent polynomials of Newton polytope A,

rrn

and Z(f1,..., fq) is the d-codimensional variety in G}, defined by them.

This definition coincides with the degree of V' with respect to the toric divisor D
associated to A. Then global sections of O(D) are related to Laurent polynomials with
Newton polytope A, see (2.2.5) for the precise statement.

Notice that degs = dega  for every integer A € Z". Moreover, from the inclusion
of polytopes A; C Ay, it follows that

dega, (V) < dega, (V). (1.2.11)

In particular, since the usual degree corresponds to degan, if A contains the standard
simplex, we have deg(V) < degn (V).
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To deal with polytopes of dimension strictly lower than n, we have to consider a
relative version of volume of the polytope instead of simply vol,. For A C R" a convex
polytope with integer vertices, not necessarily of dimension n, we consider A(A) the
lattice obtained after saturating the integer span of {A1 — A2 | A1, A2 € ANZ"}.
Then, the relative volume of A, voly(a)(A), is the volume of A for the Haar measure on
A(A) ®z R normalized such that A(A) has covolume 1.

Theorem 1.2.23. Let V C G} be a variety of dimension d. Let A C R"™ be a convex
polytope such V' can be defined by polynomials in C[mfl, . ,a:,jfl
For j =0,...,d, let Vt]('m

j=0,....d,

| with support lying in A.
denote the j-equidimensional part of Viors. Then, for every

degA(Vvt{)rs) < 5n7j VOIA(A) (A)7

where
Cng = 20w, (20 — 1)(n — 1)(2°" + 27F1 — 2))4nT),

and wy, is the volume of the n-sphere.

Proof. If A is not of dimension n, we reduce to the case of full dimension as follows. Fix
a basis of A(A), and complete it to a basis of Z™ such that the covolume of the basis of
A(A) in A(A) ® R coincides with the covolume of the extended basis in R™. Then we
can extend A to a polytope A C R" of dimension n, by taking the Minkowski sum of A
with the vectors of the base extension. In particular, A is a convex polytope with integer
vertices and such that A is a facet of A. By (1.2.11), this implies that

for any subvariety W C GJ,. Moreover, since the base extension preserves the covolume
of the respective bases, we have that vol A)(A) = vol, A. Therefore, we can assume
that A is of dimension n.

Let M; and 7, be as in Proposition 1.2.21. Let ¢; : G}, — G}, be the algebraic group
endomorphism defined by M;, see (1.2.1). By the inclusion (1.2.8), for any polynomial
fe C[xfl, ..., o1 with support supp(f) C A, we have

supp (f(pi(x)) - &™) C 2n(l + v/ndiam; (A) + n)A™.

So we have that f(p;(x) - ™) is of degree at most 2n(l 4+ y/ndiam;(A) + n).

Write W = ¢; (V). We have that 6(W) < 2n(l + y/ndiam;(A) + n). In addition,
= gol_l(Vt%rs). Then, for a fixed j, by
Theorem 1.2.18, we have the following inequality:

for every j = 0,...,d, we have that W/

tors

deg(Wi ) < ¢nj(2n(l + v/n diam; (A) + n))nij. (1.2.12)
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We proceed to compare deg(W7, ) and dega (V{ ). To do this, take generic Laurent
polynomials fi,..., f; with Newton polytope A, and so

dega (Vi) = # (Vi N Z(f1,..., [)).

Given a polynomial g, the zeroes of g(x) and g(x) - ™! define the same variety. Hence

Sofl(mirs N Z(fla . afj)) = Wtjors N Z(fl((pl(m)) ’ mTlv s 7fj(§0l(m)) ’ mTl).

Then, Bézout’s theorem gives
7 <ijorsmz(f1 (pu(x))-™, ..., fj(w(w))'ﬂf”)) < deg(Wi,,,) (2n(I++/n diamy (A)+n))’,

and since #(p; ' (y)) = | det(M;)] for any point y € G2, we have

| det(M;)| dega (Vi) =
#or (Vi N Z(frv- - f5) < deg(Wi) (2n(1 + /ndiamy (A) +n))’.

Combining this inequality with the one in (1.2.12), we obtain
dega (V) < ni(20)" (1 + vndiamy (A) 4 n)"| det(M;)| L. (1.2.13)
Finally, we use the inequality (1.2.9) and take the limit [ — oo in (1.2.13) to conclude
dega (Vibys) < cnj 2" w, voly (A). O

Notice that deg of 0-dimensional varieties does not depend on the polytope. There-
fore, equation (1.1.5) is a direct consequence of this theorem.

Remark. Given V C G}, a variety defined by dense polynomials, that is their Newton
polytopes are homotheties of the standard simplex; we observe that the bound coming
from Theorem 1.2.18 and the one from Theorem 1.2.28 differ only by a multiplying
factor 2"n?"w,. This does not increase the order in n of the constants given by these

theorems.

Both conjectures follow as a direct consequence to this theorem. Let V' C G}, be a
hypersurface given by a polynomial f € Clzy,...,x,]. If we take A = [0,d1] x -+ x [0, d,]
where (di,...,d,) is the multidegree of f, Theorem 1.2.23 for j = 0 proves Ruppert’s
conjecture (Conjecture 1.1.1). Even though a slightly better constant could be obtained
directely from Theorem 1.2.18, see Corollary 1.2.19. On the other hand, if we take A as
the Newton polytope of f, Theorem 1.2.23 for j = 0 proves Aliev-Smyth’s conjecture
(Conjecture 1.1.2).
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1.2.5 Example

We build an example to show that the dependence on the multidegree in Ruppert’s
conjecture (Conjecture 1.1.1) is optimal and the constant ¢, must depend on n. To do
this, we first present a result of Conway and Jones on vanishing sums of roots of unity.
Let us define, for m € Ny,

U(m):=2+ > (p—2).

plm
p prime

The theorem of Conway and Jones [26, Theorem 5] states the following.

Theorem 1.2.24. Let &1,...,&En be N roots of unity. Let ay,...,an € Z such that

S =a1&1+...+anén = 0 is minimal; that is there are no non-trivial vanishing subsums
of S. Let

m = lem(ord(§2/&1), ..., ord(En/&1)).
Then ¥(m) < N.

We present the following consequence to this result, which we use in the construction
of our example.

Lemma 1.2.25. Let pi,...,p, be n different primes such that p; > n + 1 for every
i=1,...,n, and wi,...,wy, be roots of unity such that

Then, up to reordering, S = S1+---+ Sy, where S; = (p, +w; =0, for everyi =1,...,n.

Proof. Let (py + -+ (p, +w1 + - +wp =51 +---+ 5, t > 1, be a decomposition in
minimal vanishing and non-trivial subsums. We have to prove that each S; contains at
most one term (p,.

If this is not the case, there exists a minimal vanishing subsum S with at least three
elements. Without loss of generality, we may assume that ¢, and (p, are summands
of S. Then taking m as in Theorem 1.2.24, we have that p; - po|m. Therefore

U(m) > U(py - p2) =p1 +p2 — 2> 2n.

On the other hand, by the minimality of S, Theorem 1.2.24 implies that ¥(m) < 2n.
This gives the contradiction that yields the proof. O

Example 1.2.26. Let pq,...,p, be n different primes such that p; > n + 1, for every
1=1,...,n. Let W be the variety defined by the zeros of

g(xlavxn):xl_'_—i_xn_(gpl—i_+Cpn)



44 Chapter 1. Explicit bounds on the Manin-Mumford conjecture

By Lemma 1.2.25, we have
Wiors = {w € Gl | {w1,- 00} = {Gors- 5 G} )

Thus, Wiors = Wiors is a finite set with n! elements.
Let di,...,d, € N5g, and consider the homomorphism associated to the diagonal
matrix (di,...,dy):

[dl,...,dn] G&—)G&

dy
-

x—s (2§, adn).

Let V = [dy,...,d,) (W), which is the hypersurface in G? defined by the zeros of

f(xl,...,xn):xclll+'--+J:Z"—(Cp1+~--+Cpn)-

Then we have that the torsion subvariety of V is the preimage of Wiy, which is

Viors = {w € G | {0 0} = {Gouvo -2 G} -

Which allows us to conclude that the number of (isolated) torsion points in V' is nld; - - - d,
proving the dependence on the multidegree of Corollary 1.2.19 to be optimal.

A further remark can be made for the bounds on the number of j-dimensional torsion
cosets that follow from Theorem 1.2.18, for positive values of j.

Remark 1.2.27. Fix j =1,...,n — 1. Similar to the example above, we can construct
a variety W C G/ such that Wi = W2 is a set of (n — 5)! elements. Consider the
group homomorpshism

©: G —» G, (..., m) — (24, 2 ).
Then V = ¢~ 1(W) is a variety with non trivial stabilizer, indeed Stab(V') ~ G{,, and
Viows = {w x G, C Gl x Gl | [dlw € Wions |-

This implies that Ve is the union of (n — j)!d"~/ distinct j-dimensional torsion cosets,
and shows also the optimality of the bound for positive dimensional torsion cosets in
terms of the degree of the variety.

1.3 Bounds for the abelian Manin-Mumford

Let A be an abelian variety of dimension g defined over a number field K. After possibly
replacing K by a finite algebraic extension, we assume that K satisfies that the [-adic
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representations attached to A are independent in the sense of Theorem 1.3.1, and all
the simple factors of A are defined over K. Let ¢t : A — P™ be a fixed closed immersion
into a projective space some dimension n, given by a very ample symmetric line bundle.
Moreover, we assume that i(A) is projectively normal subvariety of P".

When considering subvarieties of A they are defined over a fixed algebraic closure of
K unless stated otherwise. Moreover, when we say that a variety is irreducible, we imply
it is geometrically irreducible.

This section is an analogy of the previous in the case of Abelian varieties, we may
therefore choose to omit a complete exposition of some of the proofs due to its similarities
to their toric analogues.

1.3.1 Galois action on torsion points

Although there seems to be a common behaviour between torsion points in the torus and
in abelian varieties, the more complex structure of the latter ones also transpires in our

setting.
First, to fix notations, we denote the multiplication map by k, with k > 0, as the
isogeny
[k]: A— A
k times

—N—
PP+ - +P,

whose kernel are the k-torsion points of A. The multiplication maps are defined by
algebraic polynomials when we consider A as a subvariety of the projective space, which
implies the algebraicity of torsion points.

As comparison with the previous section, a torsion point in the torus, being a vector
of roots of unity, is always defined over a cyclotomic extension of Q, namely the Q((x)
where k is the order of the torsion point and ( a primitive k-th root of unity. Thus, the
Galois action on torsion points in G}, is a well understood topic. However, this is not the
case for abelian varieties. The field of definition of a torsion point is not straightforwardly
determined, strongly depending on the choice of A. Nevertheless, Galois automorphisms
fixing the base field K do not change the order of a torsion point. This motivates the
study of f-adic representations attached to abelian varieties, which we briefly discuss
below.

For a natural number k, the group of the k torsion points of A, denoted as A[k], is a
Z/kZ-module. Given a prime ¢, we define the ¢-adic Tate module of A as

Ty(A) = lim A[¢¥],
&
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which is a free Zy-module of rank 2g. The absolute Galois group of K, Gal(K/K), acts
over Ty(A) by a representation

pPe Gal(?/K) — Aut(Tg(A)) ~ GLQQ(ZK)

which is induced by the Galois action on each A[¢¥], k > 0. For simplicity, we denote
by Gk the image by py of the absolute Galois group of K. Bogomolov proved that
Gk ¢ contains an open subgroup of the homotheties Zj of GLag4(Zy), see [7, Théoreme 2]
and [6]. That is, for every prime ¢, the index

Cp = [Zz : GKyg N Z;]

is finite. A long-standing conjecture of Lang states that ¢, = 1 for all but a finite number
of primes £. For elliptic curves without complex multiplication this is a consequence to
Serre’s open image theorem (see Théoreme 3 and Corollaire of Théoreme 5 in [79]). A
further result of Serre states that ¢, can be bounded independently of ¢ for any Abelian
variety.

The family of ¢-adic representations defines a representation

p=]]re: Gal(K/K) — [] Aut(T¢(A)) ~ GLaoy(Z).
)4 ¢
The following result of Serre [80, Théoréme 1] gives a way of glueing all these together.
We refer to [81, Théoréme 1] for a proof of the statement.

Theorem 1.3.1. There is a finite extension K' of K such that p: Gal(K'/K') —
[I; Gk is surjective.

Indeed this finite extension K’ of K depends on A. Without loss of generality, we
may replace K by K’ in the sequel. This, together with the existence of a bound for the
c¢’s for varying ¢, gives the following result which is also due to Serre [80, Théoréme 27].
We refer to [85, Théoréme 3| for a proof of the statement.

Theorem 1.3.2. There is an integer ¢ > 1 such that if n and k are coprime positive
integers, there is a Galois automorphism o € Gal(K /K) satisfying

o1aln) = [K°]ja[n)-

Remark 1.3.3. The problem of finding an explicit effective expression for the constant c
(and K') in terms of A is still open. Some advancements towards obtaining an explicit
constant where made by Wintenberger in [85], where he gives a proof of Theorem 1.3.2.

Giving an explicit value of c is also a simple instance of explicit versions of Mumford-
Tate’s conjecture on the closure of the whole p(Gal(K/K)). Recent results in this
direction were made by Lombardo, who gave first explicit versions of Serre’s open image
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theorem in [54, Theorem 9.1], and then extended to some more general cases. Nevertheless
these results aim at a much more ambitious problem, and the bounds obtained do not
seem suitable for our purpose of finding sharp bounds.

For a subvariety V C A, we define the stabilizer of V in A as

Stab(V)={P € A(K)| P+V =V}.

As it was the case for the torus, we have dim(Stab(V)) < dim(V). When V is irreducible,
the equality holds if and only if V is a translate of an irreducible algebraic subgroup of A.
By Poincaré’s irreducibility theorem, the abelian variety A is isogenous to a product of
abelian varieties

B x Stab(V)° (1.3.1)

where Stab(V)? is the connected component of Stab(V') containing 0, and B is an abelian
subvariety of A. Then, by taking the quotient of A by Stab(V) we obtain an abelian
variety which is isogenous to B. By abuse of notation, we denote by B the abelian variety
obtained by this quotient. So, there exists a surjective group homomorphism

p:A— B, (1.3.2)

such that Ker(yp) = Stab(V'). In particular ¢ (V') is a subvariety of B with trivial stabilizer.
Up to replacing K by a finite extension, we can assume that all the simple factors of A
are defined over K, and so is also ¢. From here on forward, when we refer to the field
K over which A is defined, we always assume that all the simple factors of A are also
defined over K.

Let V C A be a subvariety defined over K. We denote by Ky the minimal algebraic
extension of K such that V is defined over it, and then we say that V is defined over Ky .
In particular, if ¢ is as in (1.3.2), (V) is also defined over Ky .

The first case we need to consider is when Ky is not contained in K (Aos). Here
K (Ators) plays the role of QP in Proposition 1.2.4, yielding by the same arguments the
following result.

Proposition 1.3.4. Let V C A be an irreducible variety of positive dimension that is not
defined over K(Ayors). For every non-trivial automorphism ¢ € Gal(Ky /(KyNK (Aiors))),
we have

‘/tors cvnve -,C«- V.

The rest of this section is devoted to the case when Ky C K(Aios). This case is
more involved because of the fields of definition of torsion points in abelian varieties.
Denote by vy the 2-adic valuation of an integer, and

co = va(c),
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with c the integer constant from Theorem 1.3.2. Fix M > 1 the smallest integer such
that

Ky € K(A[M]) and wva(M) > co + 2. (1.3.3)

For every M-torsion point R € A[M], we consider the set N'(R) of integers o > —va(M),
such that there exists a Galois automorphism o € Gal(K/K) satisfying

oja = [(L+2°M)fjap and  (V+ R)? =V + R.

Notice that a > —wvy(M) implies the coprimality of M and 1 4 2*M. Henceforth, it
enables the use of Theorem 1.3.2 to show in the first place the existence of a ¢ with a
such restriction to A[M].

Remark. For every non-negative o € N(R), M and 1+ 2*M are coprime, by Theo-
rem 1.8.2 there exists a o € Gal(K/K) such that o = [(1+2°M)°)apar). We have
that (14 2*M)¢ =1 (mod M). Thus, for each M-torsion point R € A[M] we have that
[(142*M)°|R = R. Moreover, since Ky C K(A[M]), this implies that

(V+R°=V°+R° =V +R.
Hence, N C N(R).
It then makes sense to take 3(R) to be the biggest integer in Z \ N'(R). Take

/ﬁ}gmmm. (1.3.4)

In particular, we have —vo(M) < 5 < —1.
Since Viors + R = (V + R)tops for any torsion point R, throughout this paragraph we
will continuously assume that g = $(0). Then, we define

N =20+ (1.3.5)

It is an integer since f > —vy(M), and in fact even. This integer plays the same role of
the integer N defined in (1.2.2) for the toric case.

Let us give an easy computation on the behaviour of the 2-adic valuation of the
coefficients in binomial expansions.

Lemma 1.3.5. Let 2 <~ < 4§ be two integers. For any integer k with 2-adic valuation

va(k) > 2, we have
V2 ((j) /C’y> > 1)2(/4?) + 1)2((5) + 1.
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Proof. First, since v,§ > 1, we have
6y _dfd-1
v) v\r-1)

V2 <<5> k’Y) > va(0) — va(y) + yva(k) = v2(d) + va (k) + (v — Dwa(k) — va(7).

Thus, by developing we obtain

v

Since va(k) > 2, the proof can be reduced to the simple verification of

2y —2—wvy(y) > 1.
The statement follows then trivially by the choice of v > 2. O

This allows us to better bound the value £.
Lemma 1.3.6. Let V C A, and 3 defined in (1.3.4). Then
0 < —co—1.

In particular, for M and N as in (1.3.3) and (1.3.5), respectively, we have

va(N) + cg < wa(M).
Proof. The inequality is equivalent to showing that, for each R € A[M],

B(R) < —cg — 1.

This is trivially true when co = 0.
Assume co > 1. Fix an integer o > —cg, we develop the binomial

(1+2°M)° =1+2%cM + Z (C>(2O‘ M),

v=2 v

Notice that 2%c € N, because of the choice of «. Hence, M divides 2% ¢ M. Moreover,
by (1.3.3), we have that vo(2“M) > a + c2 + 2 > 2. Thus, Lemma 1.3.5 shows that, for
every v > 2,

v2(<f;> (2% M)Y) > va(M) + a+ e+ 1 > v5(M),
which gives that M divides (,‘;)(20‘ M)7, for v > 2. We then have
(14 2% M) apap = 1d.

So B(R) < —cg — 1, for every R € A[M], which concludes the proof. O
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With these tools we can give an explicit description of another subvariety contain-
ing ‘/YtOI'S'

Proposition 1.3.7. Let V C A be an irreducible subvariety of A defined over K(Aiors).
Let M and ( be the integers defined in (1.3.3) and (1.3.4), and assume that [ attains
its minimum at 0. Then there exist two Galois automorphisms o,p € Gal(K/K) whose
respective restrictions to A[M] are

opap = [2+272DM) Y any and  plapn = [(1+ 27 M) ap, (1.3.6)
such that

vi=|J 29've+Pr) u |J (vv+P) U | (V+P)
PeA[4c] PeA|2] PeA2)\{0}

satisfies Vigrs C V.

Proof. Fix a torsion point ) € Viors of order [ > 1.

The strategy of the proof starts by considering three different cases according to
the 2-adic valuation of [. For each of these, we obtain a Galois automorphism whose
action on A[l] can be easily described. If vy(l) < ¢y + 2, we show that there is an element
o € Gal(K/K) such that Q° = [2°]Q (mod Al4c]). If co+2 < vo(l) < co+ B+ 1+vo(M),
we show that there is an element p € Gal(K/K) such that Q? = @Q (mod A[2]). If
vo(l) > ca + B+ 1+ va(M), we show that there is an element 7 € Gal(K/K) such that
Q7 — Q € AJ2]. Moreover, these automorphisms o, p and 7 can be chosen such that their
restrictions to A[M] are independent of @ and [; being this restriction as in (1.3.6) for o
and p, and 7457 = Id. In particular, the restriction to Ky C K(A[M]) does not depend
on () and .

Before giving the details of the proof, we introduce the following notation:

m=lem(l, M), and m' =272,

To have a certain control on the p-adic difference of [ and M, for p > 2, we denote by
A\, 1 € Z two coefficients satisfying the Bézout identity (2v2(M))\ + (%) uw=1.
Then

m/p=2""MA0 (mod M) (1.3.7)

The fact that 2 1 m/u follows from the definition of M in (1.3.3) and is strongly used
below. It should be kept in mind throughout the proof.

1. If vo(l) < c2 + 2, we make use of the fact that ged(m,2 + m/u) = 1. Hence, by
Theorem 1.3.2, there exists an autormorphism o € Gal(K /K) such that

O1afm) = [(2+m 1) Ay -
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This Galois automorphism maps @ to

Q" =[29Q + > [<7>2°"Ynzu)}Q (1.3.8)

1<y<c

Firstly, since 2 { m’p, we have that [(m/u)?]Q is a point of order 2¥2(), for every
v=1,...,c. In particular, we have [(£)2°77(m'p)"]Q € A[22%2]. We derive from
this that for some point P € A[2°272] C A[4c] we have

Q° =[29Q - P.

On the other hand, by definition of M in (1.3.3), va(M) > ca+2 > va(l). Therefore,
va(m) = va(M). In addition, using the congruence in (1.3.7), we obtain

opap = [(2+ 272D 4

2. Assume next co +3 < v2(l) < cg+ B+ 1 +v2(M) = ¢ + va(N), with N = 28+
as in (1.3.5).

Since 2 < v3(N) — 1 < wa(M), we have that 1 + 22~/ ) is an integer coprime
to m. Hence, by Theorem 1.3.2, there exists an automorphism p € Gal(K /K) such
that

prapm) = [(1+ 22711
This Galois automorphism maps @ to
Q° =Q+ [2”MIm/uQ + > [<7> gu2(V)= 1m’u)7]Q. (1.3.9)

2<y<c

Let v > 2. Since v3(2"2™N) =1 m’ ) = vo(N) — 1 > 2, Lemma 1.3.5 gives
v ((;) (2“2(N)_1m’,u)7> >va(N) —14co+1=v2(N)+ca > va(l).

Thus, for the corresponding terms in (1.3.9), we have that [(£) (202N =1/ 11)7]Q = 0.
Moreover, since vy(c22M)~1m/p) = ¢y 4+ vo(N) — 1 > wy(l) — 1, we have that
[CQUZ(N )=/ 1)@ is a point of order dividing 2. From this we derive that for some
point P € A[2], we have

QF=Q - P
Using the congruence in (1.3.7), p acts on A[M] as

prap = [(1 4 202N =tmv2 D ypye] = [(1+ 28 M) apan-
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3. For the last case, assume vy(l) > max{ce + 3,co + va(N) + 1}.

Since 1 < vy(l)—ca—1 < vp(m), we have that 1422021/ ) is an integer coprime
to m. Hence, by Theorem 1.3.2, there exists an automorphism 7 € Gal(K/K) such
that

Tam) = [(1+ 220727 m/ 1) .

This Galois automorphism maps @ to

Q" = Q + [c22O—2=1py 1 + Z [<C>(2”2(l)_c2_1m’u)7}Q (1.3.10)

2<y<e N\

Similarly to the preceding case, v2(2”2(l)*52*1m’ w) > 2 and Lemma 1.3.5 yields
the equality [(g)(2“2(l)*c2*1m’u)V]Q = 0, for v = 2,...,c. Moreover, since
v (c22W =21/ ) = uy(l) — 1, we have that [c2v2(D=2=1m/1]Q is a point of

order 2. From this we derive that for some point P € A[2]\ {0} we have
Q" =Q - P
On the other hand, by the congruence in (1.3.7)
A = [(1 + 2v2(l)762717v2(M)M>c]|A[M]_

Furthermore, notice that o := va(l) —ca—1—v2 (M) > vo(N)—vo(M) = f+1. This
implies that o € A'(0), and so there exists a Galois automorphism 7/ € Gal(K /K)
that is not necessarily 7, but coincides with it on A[M], such that V™ = V. Since
V is defined over K(A[M]), VT =V"™ =V.

O]

By means of the closed immersion fixed at the beginning of this section, we may
identify every subvariety X C A with its image by ¢. This allows us to consider the
degree of X as the degree of the Zariski closure of +(X) in P". The definition of this
degree depends on the chosen immersion.

It is essential to have some control over the degree with the operations in A. First, it
is invariant by translations in A, see for instance [41, Lemme 7]. For the multiplication
map by k € N*, a result of Hindry [41, Lemme 6(ii)] gives, for every subvariety X C A,

deg([k]7H(X)) = k2eodmalX) deg(X). (1.3.11)

We have all the ingredients to prove the following result.
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Proposition 1.3.8. Let V C A be an irreducible subvariety defined over K(Aiors), and
¢ : A — B be a homomorphism of algebraic groups defined over K as in (1.3.2). Assume
that the B in (1.3.4) relative to (V) C B attains its minimum at 0. Then, there exist
two Galois automorphisms o,p € Gal(K/K), such that Viors is contained in

Vi= U 27V e P) U (vt ) v o (Ve i(P),
PEB[4c] PEB[2) PeB[2)\{0}

and V'OV CV.

Proof. Since ¢ is a group homomorphism, o(V N Aiors) = (V) N Biors. In fact, since
Ker(p) = Stab(V), we have ¢~ (¢(V)tors) = Viors- Notice that the variety V' is the
preimage of the variety we obtain by applying Proposition 1.3.7 to ¢(V'). This already
gives the inclusion Viors C V/. Then, to prove V' NV C V it is enough to proof that
e(V) N (V") € ¢(V). To simplify the notations, let us assume that V has trivial
stabilizer, so ¢ = Id and B = A in the rest of the proof.

Take the Galois automorphisms o, p € Gal(K/K) to be as in Proposition 1.3.7. We
separate the proof in three cases, corresponding to each group of varieties in the expression
of V'.

1. First, we show that V ¢ [2]71(V? + P), for every P € Al4c].
Assume that there is a such point P € A[4c] such that V' C [2¢]7}(V? 4 P). Then,

U V+Rc2T V7 +P).
ReA[2¢)

On the left-hand side we have (2¢)29 different varieties of degree deg(V'), because
V is assumed to have trivial stabilizer. This gives a variety of degree (2¢)9 deg(V).
However, due to (1.3.11), we have that the variety on the right is of degree

(202000 deg(V) < (2 des(V).
This yields a contradiction.

2. Next, we show that V' ¢ VP + P, for every P € A[2]. Let M and ( be as defined
in (1.3.3) and (1.3.4), respectively. Recall that this case only arises whenever
B+ va(M) > 2. As mentioned above, we are under the hypothesis that 8 = 5(0).

Assume that V7 + P = V for some P € A[2]. Let R € A[2°2*A+1 )] such that
[c2°M]R = [2©2*PM]R = P. By Lemma 1.3.6, 3 < —c2, and we have R € A[M].
Then, by the explicit expression of the action of p on A[M], we get

R =[1+2°M)IR=R+P+ ¥ [(;) (2°M)| R. (1.3.12)
2<y<c
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Let v > 2. Since v2(26M) > 2, Lemma 1.3.5 gives
m(Gnyﬁ>25+wM@+@+L

Thus, for the corresponding summands in (1.3.12), we have that 202 tBH T di-
vides (fy)(26M)“f. Since R € A[2°2TA+1 1], this gives [(5)](25M)7]R = 0. Then

(V+RP =V +R =V -P+(R+P)=V +R.

This implies that V' + R is fixed by p, and we conclude that 5 € N'(R).

Take o > f+ 1 = (0) + 1. By definition of 3(0), there exists an automorphism
po € Gal(K/K) such that poapg = [(1 4 2“M)°] and po(V') = V. Notice that
2041 M divides 2*M. So by expanding R0 as in (1.3.12), we readily obtain R = R.
Hence, we also have (V + R)? = VP + R0 =V + R, which shows that o € N(R).

From the above statements, we conclude that § + N>o C N (R). Therefore,

B(R) < B,
and this contradicts the minimality of 3.

3. Finally, the fact that V' # V 4+ P for every P € A[2]\ {0} follows directly from the
assumption that V has trivial stabilizer.

1.3.2 The case of a curve

Proposition 1.3.8 is enough to give an explicit upper bound (modulo the constant c) for
the number of torsion points in a curve of genus greater than 1 in an Abelian variety.
Indeed, the result we give in this section is the analogue of Beukers and Smyth’s one
in [5]; that is an explicit upper bound for the number of torsion points in V', when V' is a
curve.

Proposition 1.3.9. Let C C A be an irreducible algebraic curve of genus greater than 1.
Then

# C’tors S (2290+4g—2c CQQ + 229+1 - 1) deg(C)2

Proof. The result follows directly from computing the degree of V' in Proposition 1.3.7,
which is ((4c)?9 (2°)2(9=1) 4229 4229 — 1) deg(C). So, due to Proposition 1.3.8 a straight-
forward application of Bézout’s theorem yields the result. ]
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Remark. A mild improvement can be made to this bound if we assume the Abelian
variety is in fact the Jacobian J of a smooth irreducible projective curve C, with the
closed immersion J — P, given by taking m times the theta-divisor coming from the
Abel maps, choosing m so that the resulting divisor is very ample. So C is of genus g > 1,
and by Poincaré’s formula (see for instance [59, Equation (4)]), deg(C) =mg. In this
case C and J are defined over the same number field. This implies that in the proof of
Proposition 1.5.7 the second case does not occur. Therefore, we do not need to consider
the irreducible components VP + P of V', and we have that

# Ctors S m(2290+4g—2c C29 + 229 o 1)92-

1.3.3 Degrees of definition and Hilbert functions

In the case of treating varieties of dimension > 1, an iterative use of Bézout’s theorem
would give a bound which is doubly exponential in the degree of the variety, as was the
case in [1]. It is therefore helpful to introduce the equivalent notions of degree we used in
the toric case.

We briefly recall the definitions. By identifying every subvariety of A with its image
in P", we say that the degree of (complete) definition of V' C A is the minimal degree
d(V) such that V is the intersection of a family of hypersurfaces in P" of degree at
most 6(V'). On the other hand, the degree of incomplete definition of V' is the minimal
degree dp(V') such that the irreducible components of V' are also irreducible components
of the intersection of a family of hypersurfaces in P™ of degree at most do(V).

Contrary to the toric case, the degree of complete (respectively incomplete) definition
does not necessarily behave as the usual degree with respect to translations in A. First
we present the following consequence to a result of Lange and Ruppert [50, Theorem].

Lemma 1.3.10. The translations in A can be defined locally in terms of homogeneous
polynomials in K[ X1, ..., X, of degree at most 2.

As a consequence, we deduce the following lemma.
Lemma 1.3.11. Let V be a subvariety of A.

(i) For any point P € A, we have

S(P+V)<25(V) and 8o(P+V) <280(V).

(ii) Assume Ky C K(Aiors). For any finite subset T C Ayors X Gal(K /K) of cardinal-
ity #1 = t, we have
so( U P+V?) <4ts(V).
(Pop)ET
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Proof. Assertion (i) is a direct consequence of Lemma 1.3.10.

To prove (ii), let n € N5 be such that Ky C K(A[n]), and [n]P = 0 for every P
appearing as the first coordinate of a pair in 7. We may then replace the T in the
statement by

{(P, ¢k am)) | (P,¢) € T} C Aln] x Gal(K(A[n])/K).
Also notice that, for each Pj, P, € Aln] and each ¢1, ¢2 € Gal(K(A[n])/K), we have
Py + (P + V)% = Py 4¢3 (Py) + V192,

This relation defines a natural structure of semidirect product on A[n] x Gal(K (A[n])/K),
given by

(Pr 1) - (P2, ¢2) = (P + ¢3 ' (P1), $162);
where the inverse of an element (P, ¢) is (¢(—P), ¢~ 1).

By the definition of degree of incomplete definition, there exists a subvariety X C A
such that V' is an irreducible component of X and Jp(V) = 6(X). We denote by G the
group

G=1{(a-b'a,beT) C An] x Gal(K(A[n])/K),
and by S the subset of G consisting of the pairs (P, ¢) € G such that P+ V¢ is imbedded
in X. Consider then the variety

X=xn( (] ¢(-P)+Xx°").
(P,p)eS

By construction, V is an irreducible component of X, and from (i) we have §(X) <
25(X) = 200(V'). Moreover, the following claim holds.
Claim. There is no (P, ¢) € G for which P + V¢ is imbedded in X.
Proof of the claim. Assume that P + V? is properly included in X, for some (P,¢) €G.
Since X C X , P+ V? is also properly included in X, which means (P,¢) € S. By
induction, this yields (P, #*) = (P,¢)* € S for all k. Assume (P, ¢*) € S, then
X C ¢*(—P) + X¢ " and so P + V? is properly included in ¢*(—P;) + X¢ ", which
implies (Pyy1,0"™!) € S. Hence, taking k = ord ((P, ¢)), we have (0,Id) € S that
contradicts the fact that V is an irreducible component of X. O
Let us consider the subvariety

Y= |J P+X°
(P)ET
Then P+ V¢ C Y, for every (P,¢) € T. Let us assume that there is a pair (P,¢) € T

such that P 4 V¢ is properly included in Y. This means that there is a (Q, 1) € T such
that P + V¢ is properly included in Q + X¥. Thus

G=Q) + P+ VI =u(-Q+ P)+ VIV
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is properly included in X. This contradicts the claim, since

(P,d)- (Q,9) ' = (W(—Q+ P), ¢y 1) € G.

So P + V¢ is an irreducible component of Y, for every (P, $) € T. Moreover, notice that

t t

s(|wi) < Z(S(Wi),

=1

for every family of varieties Wiy,...,W; C P". Hence, by (i), we also have d(Y) <
> 6(2t6(X). Assertion (ii) follows then from the fact that §(X) < 25¢(V). O

Next, let us recall that if the closure of V' in P" is defined by the homogeneous radical
ideal I in Q[z]; for v € N, H(V;v) = dim(Q[x]/I), denotes the Hilbert function. And
we also recall the upper and lower bounds on the Hilbert functions due to Chardin [23],
and Chardin and Philippon [24], respectively. Let X C P be an equidimensional variety
of dimension d. Then, for every v € N,

H(X:v) < (” ; d) deg(X). (1.3.13)
Moreover, if v > m = codimpn (X )(do(X) — 1),

deg(X). (1.3.14)

v+d—m
H(X;Z/)>< p )

By means of these bounds for the Hilbert function, we obtain the following result:

Lemma 1.3.12. Let V be an irreducible proper subvariety of A of dimension d > 0,
such that Ky C K(Aors) and V # Vigrs. Let ¢ € Gal(K/K), P € Aors and k > 2 be an
integer.

(i) If P+ V® # V, then there exists a hypersurface Z of P* of degree at most
8(2d + 1) codimpn (V)3o(V) such that P+V® C Z and VNZ C V.

(ii) If V ¢ [k]71(P + V'), then there exists a hypersurface Z' of P of degree at most
8k29(2d + 1) codimpn (V)6o(V) such that [k] "1 (P +V®) C Z' and VN Z' C V.

Proof. We start by proving (i). Notice that P + V® is an irreducible subvariety of A.
By (1.3.13), for any v € N,

v+d

H(P+ V%) < ( J

) deg(V).
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Denote V = V U (P + V?). This is an equidimensional variety (of dimension d) of
degree 2deg(V'). Using (1.3.14), for any v > m,

H(V;v) > (”*fl‘ m) 2 deg(V),

where m = codimpn (V)(0o(V) — 1). Fix v = m(2d + 1). We obtain the following
inequality:

H(P+V¢;y)<l v+d\ (v+d—m -
H(f/;y) -2 d d

1 m \¢ 1 1\¢ 1
<>(1 = (1+—=) <=e?<1.
_2(+V—m) 2(+2d>_2e <

Thereby, there is a hypersurface Z of P" of degree v such that P+V¢ € Z and VNZ - V.

In particular, V' ¢ Z. Moreover, by Lemma 1.3.11(ii) we have d¢(V) < 839(V'). Then, we
obtain the bound on the degree of Z:

deg(Z) < 8(2d + 1) codimpn (V)(V),

concluding the proof of (i).

We now turn to prove assertion (ii). For simplicity, we denote W = [k]}(P + V'?).
It is an equidimensional subvariety of A of dimension d. As a consequence to (1.3.11),
we have deg(W) = k2°°dima(V) deg(V). By (1.3.13), for any v € N,

H(W;’U) < <V—£d> k?codimA(V) deg(V).

Denote W = Ugep—1 stab(v) (@ + V). Let ¢ : A — B be the isogeny that trivializes the
stabilizer as in (1.3.2), and r = codim 4 (Stab(V)) = dim(B). Since [k] o ¢ = p o [k] we
have that W is an equidimensional subvariety of A of dimension d and degree k2" deg(V).
Using (1.3.14), for any v > m,

H(W, v) > (V + Cfi_ m) k2 deg(V),

where m = codimpn (W)(do(W) — 1). Notice that from the fact that V # Vies and
r > 0, since V # A, we have codimy (V) < 7. So k2ecdima(V)=2r < =2 < ¢! Fix
v =m(2d + 1). We obtain the following inequality:

1
H(E/Kv V) < kQCodimA(V)—Qr v+d v+d—m < kQCOdimA(V)_QTel/Q < 1.
HW;v) ~ d d -
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Thereby, there is a hypersurface Z} of P" of degree v such that W € Z) and WN 2, C W.
In particular, there is a Qg € [k]~! Stab(V') such that Z{ N (Qo + V) € Qo + V. Notice
that Z{ N A is a hypersurface in A since it intersects properly Qo +V C A.

Let X = —Qo + (Zy3 N A), then VN X # V. On the other hand, for every Q €
[k]~! Stab(V), we have Q + [k]"}(P + V?) = [k] (P + V). This implies W C X. By
Lemma 1.3.10, there is a hypersurface Z’ of degree 2deg(Z))) = 2v such that X = Z' N A.
This hypersurface satisfies W C Z' and V. N Z" C V. Moreover, by Lemma 1.3.11(ii) we
have 8o(W) < 4k 6o(V) < 4k2950(V). Then, we obtain the bound on the degree of Z':

deg(Z') < 8k?(2d + 1) codimpn (V)o(V),

which ends the proof of (ii). O

1.3.4 Interpolation and proof of the theorem

We start by presenting the key element for the proof of the main theorem.

Proposition 1.3.13. Let V C A be an irreducible variety of dimension d > 0, such that
V' # Viors. Then there exists a hypersurface Z C P™ of degree at most

(22964945 (29 4 929%6)(9d 4 1) (n — d) 6o(V), (1.3.15)
such that Vigrs CVNZ C V.

Proof. First assume Ky C K(Aiors). Moreover, let us assume that § in (1.3.4) for o(V)
attains its minimum at 0. We apply Lemma 1.3.12 to the distinct components in that
appear in the union defining V' in Proposition 1.3.8. Let us consider the notations
as in Proposition 1.3.8. For each P € B[4c], we have that V ¢ [2]7}(V7 + ¢~ 1(P)),
which gives a hypersurface Z, p of degree bounded as in Lemma 1.3.12(i) of the lemma.
Moreover, for each P € B[2] we have that V # VP + o Y(P) and V # V + o }(P),
which gives respectively a hypersurface Z, p and Zp as in Lemma 1.3.12(ii). Then, for
Z = (Upepjuq Zo,p) Y (Upepy Zp.p) U (Upepjg Zp), we have that VN V' C V' N Z and
V ¢ Z. Moreover, the degree of Z is at most

> 8- (29%2d+1)(n—d)do(V)+2 > 8(2d+1)(n—d)s(V)
PeB[4d] PeB[2]

< (229°T4913¢29 4 92074) (24 4 1) (n — d)do(V). (1.3.16)

Notice that the inequality comes from the implicit use of dim(B) < dim(A).

If §in (1.3.4) for (V) does not attain its minimum at 0, let R € B[M]\ {0} be
such that 8 = B(R). Fix an element R’ € ¢ 1(R). Then, since 5o(V + R’) < 25¢(V) by
Lemma 1.3.11(ii), there exists a hypersurface of degree at most 2 times the expression
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n (1.3.16), such that (V + R/)

tors

C(V+R)NZ CV+R. Then Z=2"—R is a
hypersurface in P" such that

V:cors:(V‘FR/) —R,CVﬂZgV

tors

In addition, the degree of Z is 2deg(Z’) by Lemma 1.3.10, which is bounded above by
the expression in (1.3.15).

If Ky ¢ K(Ators), as consequence to Proposition 1.3.4, for every non-trivial Galois
automorphism ¢ € Gal(Ky /(KyNK (Ators))), one has Vigrs C VNV C V. First, one uses
the fact that do(V UV*®) < 260(V) to prove Lemma 1.3.12(i) for V and V¢, with P = 0.
This concludes the proof, since 8(2d+1)(n — d)dp(V') is at most the value in (1.3.15). O

The main theorem of this section states the following.

Theorem 1.3.14. Let V C A be a subvariety of dimension d > 0. For j =0,...,d, let
%4

tors

denote the j-equidimensional part of Viors. Then, for every j =0, ...,d,
deg(vtjom) < ¢ 6(V)gij'

where
c; = (229494529 4 920%46) (99 — 1) (n — 1)) deg(A).

Proof. For j =0,...,d, let us denote by X/ the j-equidimensional part of V. We also fix
0 = ((220°T495c20 4 920%6) (29 — 1)(n — 1))% §(V)).

We first apply the result of Philippon [66, Corollaire 5] as follows. With the notation
used by Philippon in loc. cit., we take m =g, S=A, p =1 : A — P" § = 0, and
Z1, ..., Z the hypersurfaces in P of degree at most §(V') such that V- = Z;N---NZ;. (after
identifying V and A with their image in P"). In particular, Z1N---NZ; = ANZ1N---NZ.
Then, from the result of Philippon applied to the cycle S; = A- Z; --- Z;, we deduce

d
> 67 deg(X7) < 0™ - deg(A). (1.3.17)
§=0
Then, following straightforwardly the double induction in the proofs of Theorems 1.2.17
and 1.2.18, with Proposition 1.3.13 at the place of Proposition 1.2.16; one obtains the

inequality
d d

ZW deg(V ) Z 67 deg(X7). (1.3.18)
=0 i=0

The upper bound in the theorem then follows from combining (1.3.17) and (1.3.18).
O

Remark. As a final remark we should precise that the upper bound given by Theo-
rem 1.3.14 is effective up to the constant c.



Chapter 2

An arithmetic
Bernstein-Kusnirenko theorem

In this chapter we present the results included in the joint work [58]. We study the
height(s) of zero-cycles defined by a system of Laurent polynomials, in terms of mixed
integrals of specific concave functions. In doing so we provide an arithmetic analogue of
Bernstein-Kusnirenkos upper bound on the number of solutions of a such system.

2.1 Introduction

The classical Bernstein-Kusnirenko theorem bounds the number of isolated zeros of a
system of Laurent polynomials over a field, in terms of the mixed volume of their Newton
polytopes. This result, initiated by Kusnirenko and put into final form by Bernstein,
is also known as the BKK theorem to acknowledge Khovanskii’s contributions to this
subject. It shows how a geometric problem (the counting of the number of solutions of a
system of equations) can be translated into a combinatorial, simpler one. It is commonly
used to predict when a given system of equations has a small number of solutions. As
such, it is a cornerstone of polynomial equation solving and has motivated a large amount
of work and results over the past 25 years, see for instance [35,67,83] and the references
therein.
Let K be a field, and fix an algebraic closure K. Let M ~ Z" be a lattice, and set

KM= P K-x" =K1, ... 2]
meM

for its group K-algebra, and

Tar = Spec(K[M]) ~ Gy,



62 Chapter 2. An arithmetic Bernstein-Kusnirenko theorem

for its algebraic torus over K. For a family of Laurent polynomials fi, ..., f, € K[M], we
denote by Z(f1,..., fn) the 0-cycle of Tj; given by the isolated solutions of the system
of equations

fr=r=fa=0

with their corresponding multiplicities (Definition 2.2.8).

Set Mr = M ® R ~ R". Let voly; be the Haar measure on My normalized so
that M has covolume 1, and let MV, be the corresponding mixed volume function
(Definiton 2.2.7). For i = 1,...,n, let A; C Mg be the Newton polytope of f;. The BKK
theorem [4,46] amounts to the upper bound

deg(Z(f1,---, fn)) S MVy(Ag, ..., Ap), (2.1.1)

which is an equality when the f;’s are generic with respect to their Newton polytopes,
see also Theorem 2.2.10.

When dealing with Laurent polynomials over a field with an arithmetic structure like
the field of rational numbers, it is also important to control the arithmetic complexity or
height of their zero set. In this chapter, we present an arithmetic version of the BKK
theorem, bounding the height of the isolated zeros of a system of Laurent polynomials
over such a field. It is a refinement of the arithmetic Bézout theorem that takes into
account the finer monomial structure of the system.

Suppose that K is endowed with a set of places 91, so that the pair (K,9%) is an
adelic field (Definition 2.3.1). Each place v € 9 corresponds to an absolute value |- |,
on K and a weight n,, > 0. We assume that this set of places satisfies the product formula,
namely, for all o € K*,

Z ny log |af, = 0.

vEM
The classical examples of adelic fields satisfying the product formula are number fields
and finite extensions of function fields of curves. These are called global fields in [19],
and are more general than the usual notion of global fields, since neither the base field of
the function fields is required to be finite nor the extension is assumed separable.

Let X be toric compactification of Ty; and Dy a nef toric metrized divisor on X as in
Definition 2.3.25. This data gives a notion of height for 0-cycles of X (Definitions 2.3.10
and 2.3.14). Then, for a family of Laurent polynomials f1, ..., f, € K[M], the height

b, (Z(f1s- s fu))

is a nonnegative real number. It is our aim to bound this quantity in terms of the
monomial expansion of the f;’s.

The first arithmetic analogue of the BKK theorem was proposed by Maillot [55,
Corollaire 8.2.3], who considered the case of canonical toric metrics. His result is
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not completely effective, as explained in [82, Remarque 4.2]. Another result in this
direction was obtained by Sombra for the unmixed case and also canonical toric metrics
[82, Théoreme 0.3]. In this chapter we improve these previous upper bounds, and
generalize them to adelic fields satisfying the product formula, and to height functions
associated to arbitrary nef toric metrized divisors.

Let Ag C Mg be the polytope defined by the toric Cartier divisor Dy. Following [19],
we associate to Dy an adelic family of continuous concave functions Jg,: Ag — R, v € 9,

called the local roof functions of Dy, see Proposition 2.3.28. For i = 1,...,n, write
fi= Z Oéi,me
meM

with o;,, € K, and denote by A; their corresponding Newton polytope. Let Ng =
My ~ R™ be the dual space and, for each place v € 9, consider the concave function
Yin: Ngp — R defined by

—log ( Z |t | €T ) if v is Archimedean,
Yiw(u) = meM (2.1.2)
—log ( max | m v e~ (mu) ) if v is non-Archimedean.
meM

The Legendre-Fenchel dual

(@, u) = i (u)

791','0 = wz\fv = uienl\ffR
is a continuous concave function on A;. Furthermore, we denote by MI;; the mixed
integral of a family of n+ 1 concave functions on convex bodies of My (Definition 2.3.30).

Then, the main result of this chapter (Theorem 2.4.5) gives the following upper bound

h (Z(f1,- 5 fn) < D e Mo, -+, o) (2.1.3)
veEM

It’s proof relies on the construction of nef toric metrized divisors D; on a suitable toric
variety, such that each f; corresponds to a small section of D;. Indeed, they correspond
to the concave functions in (2.1.2), see Proposition 2.4.2 and Lemma 2.4.4. Then, one
proceeds by applying the constructions and results of [17,19] and basic results from
arithmetic intersection theory.

However, trying to keep a certain level of generality, we faced difficulties to define
and study global heights of cycles over adelic fields. This lead us to a more detailed
study of these notions. In particular, we detail a notion of adelic field extension that
preserves the product formula (Definition 2.3.5), and a well-defined notion of global
height for cycles with respect to metrized divisors that are generated by small sections
(Proposition-Definition 2.3.22).
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Using the basic properties of the mixed integral, we can bound the right-hand side of
(2.1.3) in terms of mixed volumes. From this, we can derive the bound in Corollary 2.4.8:

b, (Z(f1s- o fa)) < MVar(Ar, . A) (D max o)
veEM

n
D MVar(Ao, - Aimt, A, Ap)U(f), (2.1.4)
i=1
where £(f;) denotes the (logarithmic) length of f;, see Definition 2.4.6. This bound should
be compared with the one given by the arithmetic Bézout theorem (Corollary 2.4.9),
which follows as a direct consequence to these results. Inequality (2.1.4) gives a far more
treatable bound than the one appearing in (2.1.3); however, there are cases in which the
bounding of the mixed integrals by the length and mixed volume may proof inefficient,
see Example 2.4.12.

The following illustrates a typical application of these results. It concerns two height
functions applied to the same 0-cycle. Our upper bounds are close to optimal for both
of them and, in particular, they reflect their very different behaviour on this family of
Laurent polynomials. We refer to Example 2.4.11 for details.

Example 2.1.1. Take integers d,a > 1 and consider the system of Laurent polynomials
fi=z1—a, fo=x—azd, ..., fo=z,—azl | eQzF,... .

The O-cycle Y := Z(f1,..., fa) of G} o is the single point (a, @1 . "t
with multiplicity 1.

Let P§ be the n-dimensional projective space over Q and E“" the divisor of the
hyperplane at infinity, equipped with the canonical metric. Its associated height function
is the Weil height. We consider two toric compactifications X; and Xa of GJ}. These are
given by compactifying the torus via the equivariant embeddings ¢;: G}, — P3, i = 1,2,
respectively defined, for p = (p1,...,pn) € G2 (Q) = (@X)", by

u)=0:pr:---:py) and )= (1:pr:poepr® - papy ).

Set D; = i} E", which is a nef toric metrized divisor on X;, i = 1,2. By an explicit
computation, we show that

by, (V) = ( 3y dH) log(a) and g (Y) = log(a).
i=1
On the other hand, the upper bounds given by (2.1.3) are

b (V) < <idi71) log(a+1) and hy (V)< nlog(a+1).
=1
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As further application of (2.1.3), we give an upper bound for the size of the coefficients
of the u-resultant of the direct image under a monomial map of the solution set of a
system of Laurent polynomial equations. The following version of this result is contained
in the statement of Theorem 2.4.14.

For the simplicity of the exposition, set K = Q and M = Z". Let r > 0, mg =
(mo.0s---,mos) € (Z") ™ and ag = (o, -..,a0,) € (Z\ {0})"™!, and consider the
mMap Pmg,aq: G, o — P defined by

Pmoao(P) = (@0, 0X ™0 (p) -+ apr X7 () (2.1.5)

For a O-cycle W of Py, let w = (ug,...,u,) be a group of r 4+ 1 variables and denote
by Res(W) € Zluo,...,u,] its primitive u-resultant, see Definition 2.4.13, which is
well-defined up a sign.

Theorem 2.1.2. Let fi,..., f, € Z[zT!, ... 2], mg € (Z*)+! and o € (Z\ {0})" !
with v > 0. Set Ay = conv(mgg,...,mo,) C R" and let ¢ be the monomial map
associated to my and ag as in (2.1.5). Fori =1,...,n, let A; C R™ be the Newton
polytope of f;, and a; the vector of nonzero coefficients of f;. Then

K(RGS(QD*Z(fl, SERE) fn))) < Z MVM(A()’ SRR Ai—lv Ai-‘rlv SR An) e(al)7
=0

where ((-) represents the logarithmic length.

2.2 The classical Bernstein-Kusnirenko theorem

In this section, we recall the proof of the Bernstein-Kusnirenko theorem using intersection
theory on toric varieties, which is the model that we follow in our treatment of the
arithmetic version of this result. Presenting this proof also allows us to introduce the
basic definitions and results on the intersection of Cartier divisors with cycles, and on
the algebraic geometry of toric varieties. For more details on these subjects, we refer
to [33,52] and to [34].

2.2.1 Intersection theory

Let K be an infinite field and X a variety over K of dimension n. For 0 < k < n, the
group of k-cycles, denoted by Zi(X), is the free abelian group on the k-dimensional
irreducible subvarieties of X. Thus, a k-cycle is a finite formal sum

Y:vaV
%

where the V’s are k-dimensional irreducible subvarieties of X and the my’s are integers.
The support of Y, denoted by |Y'|, is the union of the subvarieties V' such that my # 0.
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The cycle Y is effective if my > 0 for every V. Given Y,Y' € Zx(X), we write Y/ <Y
whenever Y — Y is effective.

Let Z be a subscheme of X of pure dimension k. For an irreducible component V'
of Z, we denote by Oy,z the local ring of Z along V, and by lo,, ,(Ov,z) its length as an
Oy z-module. The k-cycle associated to Z is then defined as

(2] = 1oy, (Ovz)V,

the sum being over the irreducible components of Z.

Let V be an irreducible subvariety of X of codimension one and f a regular function
on an open subset U of X such that U NV # (). The order of vanishing of f along V is
defined as

ordv (f) = lo, @) (Ov,x(U)/(f)).

For a Cartier divisor D on X, the order of vanishing of D along V is defined as
ordy (D) = ordy(g) — ordy (h)

with g,h € Oy x(U) such that g/h is a local equation of D on an open subset U of X
with U NV # (). This definition does not depend on the choice of U, g and h. Moreover,
ordy (D) = 0 for all but a finite number of V’s. The Weil divisor associated to D is then
defined as
D-X =) ordy(D)V, (2.2.1)
%

the sum being over all irreducible subvarieties of X of codimension one. The support
of D, denoted by | D], is the support of D - X.

Now let W be an irreducible subvariety of X of dimension k. If W ¢ |D|, then D
restricts to a Cartier divisor on W. In this case, we define D - W as the Weil divisor of W
obtained by restricting (2.2.1) to W. This gives a (k — 1)-cycle of X. If W C |D|, then
we set D - W = 0, the zero element of Zj_1(X). We extend by linearity this intersection
product to a morphism

Zk(X) — Zp1(X), Y r— DY,

with the convention that Z_;(X) = 0, the zero group.
For 0 < r < n and Cartier divisors D; on X, i=1,...,r, we define inductively the
intersection product [[i_y D; € Z,—(X) by

fio-{

Definition 2.2.1. Let Y be a k-cycle of X and Dy,...,D, Cartier divisors on X,
with r < k. We say that Dy,..., D, intersect Y properly if, for every subset I C {1,...,7},

dim (|Y|N()IDi]) =k — #1.

i€l

X if t =0,
Dy -[Il,D; if1<t<r
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If Dy,..., D, intersect X properly, then the cycle [[_; D; does not depend on the
order of the D;’s. We refer to [33, Corollary 2.4.2] for a proof of this statement in the
case of pseudo-divisors, which is a generalization of Cartier divisors. This conclusion

does not necessarily hold if these divisors do not intersect properly.

Example 2.2.2. Let X = A% and consider the principal Cartier divisors D = div(z172)
and Dy = div(z1) given by taking all local equations equal to z1z2 and x1, respectively.
Then

Dl'D2:0 and D2'D1 = (0,0)

Proposition 2.2.3. Let X be an equidimensional Cohen-Macaulay variety over K of

dimension n, and Dy, ..., D, Cartier divisors on X. Let s; be a global section of O(D;),
i=1,...,n, and write
H div(s;) = Zmpp € Zo(X), (2.2.2)
i=1 p

where the sum is over the closed points p of X and m, € Z. This 0-cycle is effective and,
for each isolated closed point p of the intersection (i, | div(s;)|,

mp = dimg (Op, x (U)/(f15- -, fn)),

where U is a trivializing neighborhood of p, and f; is a defining function for s; on U,

1=1,...,n.

Proof. The fact that the cycle in (2.2.2) is effective follows from the hypothesis that
the s;’s are global sections.

For the second statement, by possibly replacing U with a smaller open neighbor-
hood of p, we can assume that div(s;),...,div(sy,) intersect X properly on U. So, by
Definition 2.2.1, this intersection on U is of dimension 0. By [33, Proposition 7.1 and
Example 7.1.10],

my =lo, v@)(Opx(U)/(f1,-. -, fn))
By [33, Lemma A.1.3 and Example A.1.1], we have the equality

lo, x)(Opx(U)/(f1,- s fn)) = dimg (Op x (U)/(f1;- -, fn)),

completing the proof. ]

For the rest of this section, we assume that the variety X is projective. With this
hypothesis, Chow’s moving lemma allows to construct, given a cycle and a family of
Cartier divisors, another family of linearly equivalent Cartier divisors intersecting the
given cycle properly, in the sense of Definition 2.2.1.
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Definition 2.2.4. Let Y be a k-cycle of X and D, ..., Dy Cartier divisors on X. The
degree of Y with respect to D1, ..., Dy, denoted by degp,  p, (Y), is inductively defined
by the rules:

L. if k=0, write Y = 3> m,p, and set deg(Y) = >°, m, [K(p) : K]J;

2. if k > 1, choose a rational section s of O(Dy) such that div(sy) intersects Y
properly, and set deng,ka(Y) = degDh”.7Dk71(div(sk) -Y).

The degree of a cycle with respect to a family of Cartier divisors does not depend on
the choice of the rational section si in 2, see for instance [33, § 2.5] or [52, § 1.1.C].

A Cartier divisor D on X is nef if degp(C') > 0 for every irreducible curve C of X.
By Kleiman’s theorem [52, §1.4.B], for a family of nef Cartier divisors Dy,..., Dy on X
and an effective k-cycle Y of X,

degp, . ..p,(Y) = 0. (2.2.3)

Proposition 2.2.5. Let Y be an effective k-cycle of X and Dy, ..., Dy nef Cartier
divisors on X. Let s be a global section of O(Dy). Then

0 <degp, . p, ,(div(sg) Y) <degp, p,(Y).

Proof. Since Y is effective and sy, is a global section, div(sy) - Y is also effective. Since
Dy, ..., Dy are nef, by (2.2.3) we have that degp, p,  (div(sg)-Y) >0, proving the
lower bound.

For the upper bound, we reduce without loss of generality to the case when ¥ =V is
an irreducible subvariety of dimension k. If V' C |div(s)|, then div(sg)-Y =0 € Zx_1(X).
Hence deg(div(sg)-Y) = 0 and the bound follows from the nefness of the D;’s. Otherwise,
from the definition of the degree,

degp, . p,_,(div(sk) - V) =degp, p,(V),

which completes the proof. ]

Corollary 2.2.6. Let Dq,..., D, be nef Cartier divisors on X and, fori=1,...,n, let
si be a global section of O(D;). Then

n

0 < deg <H diV(Si)) <degp, . p,(X).
i=1
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2.2.2 Toric varieties

Let M ~ 7Z" be a lattice, and set

K[M]~ K[z, ... zF] and T = Spec(K[M]) ~ m.K (2.2.4)

n

for its group K-algebra and algebraic torus over K, respectively. The elements of M
correspond to the characters of T and, given m € M, we denote by x™ € Hom(T, Gy, k)
the corresponding character. Set also Mg = M @ R

Let N = MY ~ Z" be the dual lattice and set Ng = N ® R. Given a complete fan X
in Ngr, we denote by X the associated toric variety with torus T. It is a proper normal
variety over K containing T as a dense open subset and such that the action of T on
itself extends to Xx;. When the fan ¥ is regular, in the sense that it is induced by a
piecewise linear concave function on Ng, the toric variety Xy is projective.

Let X = Xy, be a toric variety, and D be a toric Cartier divisor on X, that is a
T-invariant Cartier divisor. We denote by W its associated virtual support function on X.
This is a piecewise linear function ¥p: Ng — R satisfying that, for each cone o € 3,
there exists m € M such that, for all u € o,

Up(u) = (m,u).

The condition that ¥p is concave is both equivalent to the conditions that D is nef and
that the line bundle O(D) is globally generated. This line bundle O(D) is a subsheaf
of the sheaf of rational functions of X. For each m € M, the character x™ is a rational
function of X, and so it induces a rational section of O(D) that is regular and nowhere
vanishing on T. The rational section corresponding to the point m = 0 is called the
distinguished rational section of O(D) and denoted by sp.

The toric Cartier divisor D also determines the lattice polytope of My given by

Ap ={x € Mg | (z,u) > ¥p(u) for every u € Nr}.

A rational section corresponding to a point m € M is global if and only if m € Ap. The
global sections corresponding to the lattice points of Ap form a K-basis for the space of
global sections of O(D). Identifying each character x" with the corresponding rational
section g, of O(D), we have the decomposition

['(X,0D)= P K- on. (2.2.5)

Now let Aq,..., A, be lattice polytopes in Mg. For each A;, we consider its support
function, which is the piecewise linear concave function with lattice slopes ¥a,: Ng — R
given by

U, (u) = irenAnl(x,w (2.2.6)
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Let X be a regular complete fan in Ng compatible with the collection Aq,..., A, in
the sense that the WA, ’s are virtual support functions on ¥. Such a fan can be constructed
by taking any regular complete fan in Np refining the complex of cones that are normal
to the faces of A;, for all i. Let X be the toric variety corresponding to this fan and
D; the toric Cartier divisor on X corresponding to these virtual support functions. By
construction, W, is concave. Hence D; is nef and O(D;) is globally generated, and its
associated polytope coincides with A;.

Definition 2.2.7. The mized volume of A1,...,A, is defined as the alternating sum
n .
MV (A, .. Ay) :Z(—l)”ﬁ Z volpr(Ag, +-~—|—A,~j),
j=1 1<ii<<i;<n
where volys be the Haar measure on My such that M has covolume 1, and take r = n.

A fundamental result in toric geometry states that the degree of a toric variety with
respect to a family of nef toric Cartier divisors is given by the mixed volume of its
polytopes [34, § 5.4]. In our present setting, this amounts to the formula

degp,.. p,(X) =MV (A, ..., Ay). (2.2.7)

2.2.3 The Bernstein-KusSnirenko theorem

We first associate a 0-cycle of the torus to a family of Laurent polynomials on M.

Definition 2.2.8. Let fi,...,f, € K[M], and denote by V(fi,..., fn)o the set of
isolated closed points in the variety defined by this family of Laurent polynomials. For
each p € V(f1,..., fn)o, let my, be the maximal ideal of K[M] corresponding to p and set

Hp = dimK(K[M]mp/(fh‘ : 7fn))

The 0-cycle associated to f1,..., fn is defined as

Z(fi,- o fa) = Y. mpp € Zy(T).

pev(fla-"vf’n)()

Let f =>",,enm @mX™ € K[M] be a Laurent polynomial. Its support is defined as the
finite subset of M of the exponents of its nonzero terms, that is supp(f) = {m | o, # 0}.
The Newton polytope of f is the lattice polytope in Mg given by the convex hull of its
support, that is N(f) = conv(supp(f)).

The following proposition gives us the relation between the 0-cycle in Definition 2.2.8
and the one arising from intersection theory.
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Proposition 2.2.9. Let fi,...,f, € K[M]. Let ¥ be a regular complete fan in Ny
compatible with the Newton polytopes of the f;’s. Fori=1,...,n, let D; be the Cartier
divisor on Xy, associated to N'(f;), and s; the global section of O(D;) corresponding to f;
as in (2.2.5). Write

H div(s;) = Z Up D,
i=1 p

where the sum is over all closed points p of Xx. and v, € Z. Then

1. for every p € V(f1,..., fn)o, we have vy = dimg (K[M]w,/(f1,- .., fn));
2. the inequality Z(f1,..., fn) < 12, div(s;) holds.

Proof. We have that (', | div(s;)| = V(f1,..., fn). Since T is Cohen-Macaulay, Proposi-
tion 2.2.3 gives the first statement. Since the sections s; are global, the 0-cycle []i; div(s;)
is effective. Hence, the second statement follows directly from the first one. O

We conclude this section by proving the version of the Bernstein-Kusnirenko theorem
as presented in (2.1.1).

Theorem 2.2.10. Let fi,..., fn € K[M] be a family of Laurent polynomials, and let A;
denote the newton polytope of f;, for everyi=1,...,n. Then

deg(Z(fla .. 7fn)) < MVM(Ab . 7An)

Proof. This follows from Proposition 2.2.9(2), Corollary 2.2.6 and the formula (2.2.7). [

Remark. It should be noted that, for a fixed family of convex polytopes A+, ..., A, C Mg
with integer vertices, and for gemeric Laurent polynomials supported on these A;’s,

Bernstein- Kusnirenko’s theorem gives in fact an equality.

2.3 Arithmetic of toric varieties

In this section we consider adelic fields following [19], and give a detailed construction of
adelic field extension that preserves the product formula. In this sense it is an extension
of the one in loc. cit., which was only meant to preserve the product formula when dealing
with extensions of number fields and function fields of curves. We then introduce a notion
of global height for cycles of a variety over a such field, giving an explicit description of
this construction in the 0-dimensional case. Finally, we recall the necessary background
on the arithmetic geometry of toric varieties. We refer to [17,19] for more details.
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2.3.1 Adelic fields and finite extensions

We first introduce the notion of arithmetic field on which we give our results.

Definition 2.3.1. Let K be an infinite field and 9t a set of places. Each place v € 91 is
a pair consisting of an absolute value | - |, and a positive real weight n,. We say that
(K, ) is an adelic field if

1. for each v € M, the absolute value | - |, is either Archimedean or associated to a
nontrivial discrete valuation;

2. for each o € K*, we have that |a|, = 1 for all but a finite number of v € 9.

Moreover, we say that an adelic field (K, 9) satisfies the product formula if

I lelyr =1,

veEM

for every a € K*.

Example 2.3.2. Let Mg be the set of places of Q consisting of the Archimedean and
p-adic absolute values of (Q, normalized in the standard way, and with all the weights
equal to 1. The adelic field (Q,Mg) satisfies the product formula.

Example 2.3.3. Let K(C') denote the function field of a regular projective curve C' over
a field k. To each closed point v € C we associate the absolute value and weight given,
for a non-zero element f € K(C), by

|flo = o) and  n, = [K(v) : K], (2.3.1)

where ord, (f) denotes the order of vanishing of f at v and

_Joe if #k = o0,
= { #r if #r < oc0. (2.3.2)

The set of places My () is indexed by the closed points of C', and consists of these
absolute values and weights. The pair (K(C'), Mk c)) is an adelic field which satisfies
the product formula.

Let (K, 9) be an adelic field. For each place v € 91, we denote by K, the completion
of K with respect to the absolute value |- |,. By a theorem of Ostrowski, if v is
Archimedean, then K, is isomorphic to either R or C [21, Chapter 3, Theorem 1.1]. In
particular, an adelic field has only a finite number of Archimedean places.



2.3. Arithmetic of toric varieties 73

Lemma 2.3.4. Let F be a finite extension of K and v € 9. Then

F @k Ky ~ €D Eu, (2.3.3)

where the sum is over the absolute values | - |, on F whose restriction to K, coincides
with | - |, and where the E,,’s are local Artinian K,-algebras with mazimal ideal p,,. For
each w, we have Ey, /Py, ~ Fy.

Proof. Since K — F is a finite extension, the tensor product F ® K, is an Artinian
K,-algebra. By the structure theorem for Artinian algebras,

F ok K, ~ P E;,
el
where [ is a finite set and the FE;’s are local Artinian K,-algebras. Let p; be the
maximal ideal of E;, for each ¢. These are the only prime ideals of F ® K,, and so
rad(F ® Ky) = Nier bi-
Each w in the decomposition (2.3.3) corresponds to an absolute value | - |, on F
extending | - |, and there is a natural inclusion F — F,. The diagonal morphism
F — @, F, extends to a map of K,-vector spaces

F ok Ky — D Fo.
w

By [13, Chapitre VI, §8.2 Proposition 11(b)], this morphism is surjective and its kernel is
the radical ideal of F ® K,. Therefore

PEi/vi = (@Ei>/rad(F®Kv) ~ (P Fo. (2.3.4)

iel el w
The summands in both extremes of (2.3.4) are fields over K, and so Artinian local K,-
algebras. By the uniqueness of the decomposition in the structure theorem for Artinian
algebras, there is a bijection between the elements in I and the w’s, identifying each
i € I with the unique w such that E;/p; ~ F,,. O

The following definition for adelic field extension is equivalent to the one proposed by
Gubler for M-fields, see [38, Remark 2.5].

Definition 2.3.5. Let (K, 91) be an adelic field and I a finite extension of K. For every
place v € M, we denote by N, the set of absolute values |- |, on F that extend | - |, with
weight given by
. diva (Ew)
=T R Y

where the F,,’s are the Artinian K,-algebras in the decomposition of F ®x K, from
Lemma 2.3.4. Set M = | |,cop Ny The pair (F,MN) is an adelic field. The adelic fields of
this form are called adelic field extensions of (K, 9).
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Remark. With notation as in Lemma 2.3.4,
dimg, (Ey) = g, (Ey)[Fw : K],

where g, (Ey) is the length of Ey as a module over itself. This follows from [33,
Lemma A.1.3] applied to the morphism K, — E,,. Hence, the weights in Definition 2.5.5
can be alternatively written as

[Fy : Ky
[F: K]

Proposition 2.3.6. Let (K,9M) be an adelic field and (F,M) an adelic field extension
of (K,9M). Then

Ny = le (Ew)

Ty.

1. the equality ), coq, Mw = N holds for every place v € M;

2. if (K, 9M) satisfies the product formula, then (F,M) also does.
Proof. From the definition of adelic field extension and Lemma 2.3.4,

B dim]KU (Ew) . dimKU (F X® KU)
2T A TEE T E

Ny = TNy,
we‘)'lu we‘ﬁv

which proves statement (1). To prove the second statement, let o € F* and consider the
multiplication map 7,: F — F given by 7,(x) = az. The norm Ng/g(a) € K* is defined
as the determinant of this K-linear map. Moreover, 7, extends to the K,-linear map

N @1k, FOK, — F®K,,

which has the same determinant. Using the decomposition in (2.3.3), write a ® 1g, =
(ouy)w With ay, € Ey,. Hence 1, ® 1x, = @B,, Mo, and

Npjk(a) = det(na ® 1k,) = H Ng, /x, (ow).
’Ll)emv
By [14, Chapitre 111, §9.2, Proposition 1], Ng, /k, (0w) = Nr, /K, (v ) 2w (Bw) | Moreover,
by [49, VI Proposition 5.6],

Ny, /x, (o) H c [le Ko;

where the product is over the different embeddings o of [F,, in an algebraic closure of K,
and [, : K,]; denotes the inseparability degree of the extension K, < F,,. Furthermore,
the number of such embeddings is equal to the separability degree [F,, : K,]s. For every

embedding o, we have |o(au)|y = |a], because the base field K, is complete. Since
[Fu : Kyli[Fy : Kyls = [Fu : Ky, we get
l Ew ]Fw K'u Ny . Naw

wWEMN, wEMN,
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Since Ng/g(a) € K*, if (K, ) satisfies the product formula, then

1

[FK]
[T ol = (1T Wa@l) ™ =1,

weN veEM

concluding the proof. O

Example 2.3.7. Let F be a number field. This is a separable extension of Q. By
[13, Chapitre VI, §8.5, Corollaire 3], we have that F ® Q, ~ @, cn, Fu for all v € Mg.
Therefore, the weight associated to each place w € M, is

[Fw : Qv]

T

Example 2.3.8. Let (K(C), Mk ()) be the function field of a regular projective curve C
over a field k with the structure of adelic field as in Example 2.3.3. The places of K(C)
correspond to the closed points of C' with absolute values and weights given by (2.3.1).
Let I be a finite extension of K(C) and 91 the set of places of F as in Definition 2.3.5.
There is a regular projective curve B over k and a finite map n: B — C such that the
extension K(C) < F identifies with the morphism 7*: K(C) < K(B). For each place
v € My (), the absolute values of F that extend ||, are in bijection with the fiber 7~ ().

For a closed point v € C, the integral closure in K(B) of O, ¢ coincides with Or—1(v),B;
the local ring of B along the fibre 7—!(v). The ring Or-1(),p is of finite type over O, c.
With notation as in Lemma 2.3.4, by [13, Chapter VI, §8.5, Corollaire 3], we have
E, ~F, for all w € 9M,. Hence, the weight of w is given by

Let e(w/v) denote the ramification index of w over v. By [13, Chapter VI, §8.5,
Corollaire 2], we have that [F,, : K(C),] = e(w/v) [K(w) : K(v)]. Therefore, for each
place w € M, the weight of w can also be expressed as

e/ [K(w) : r]
S R

Following [19], a global field is a finite extension of the field of rational numbers or of
the function field of a regular projective curve, with the structure of adelic field described
in Examples 2.3.7 and 2.3.8. The discussions in these examples shows that this structure
of adelic field extension coincides with the one given by Definition 2.3.5. In the case of
function fields, it should be noted that the adelic structure depends on the extension.

Function fields of varieties of higher dimension provide examples of adelic fields
satisfying the product formula, that are not global fields.
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Example 2.3.9. Let K(S) be the function field of an irreducible normal variety S over
a field k of dimension s > 1, and Ej, ..., E,_1 nef Cartier divisors on S. Set SU) for the
set of irreducible hypersurfaces of S. For each V € SU)| the local ring Oy, is a discrete
valuation ring. We associate to V' the absolute value and weight given, for f € K(S5), by
V),

[flv = ¢V n, = degp, g, ,

with ¢, as in (2.3.2). The set of places M g) is indexed by S (1) and consists of these
absolute values and weights. For f € K(S5)~*,

Z ny log | f|, = log(ck) Z degg, g, ,(V)ordy(f) =degp, g, ,(div(f)) =0,
Ves) ves)

because the Cartier divisor div(f) is principal. Hence (K(S), Mk g)) satisfies the product
formula.

2.3.2 Height of cycles

Let (K,9) be an adelic field satisfying the product formula, and X a normal projective
variety over K. For each place v € 9, we denote by X" the v-adic analytification of X.
In the Archimedean case, if K, ~ C, then X3" is an analytic space over C whereas, if
K, ~ R, then X3" is an analytic space over R, that is, an analytic space over C together
with an antilinear involution, as explained in [19, Remark 1.1.5]. In the non-Archimedean
case, X3" is a Berkovich space over K, as in [19, § 1.2].
Fix v € 9 and set
X, = X x Spec(K,).

Given a O-cycle Y of X,,, a usual construction in Arakelov geometry associates a signed
measure on X2", denoted by dy, that is supported on |Y|*" and has total mass equal to
deg(Y'), see for instance [19, Definition 1.3.15] for the non-Archimedean case. In what
follows, we explicit this construction.

Let ¢ be a closed point of X,. The function field K(q) is a finite extension of K, and
deg(q) = [K(q) : K,]. If v is Archimedean, then deg(q) is either equal to 1 or 2. In the
first case, the analytification of ¢ is a point of X" whereas, in the second case, it is a
pair of conjugate points. If v is non-Archimedean, choose an affine open neighborhood
U = Spec(A) of ¢ and A — K, the corresponding morphism of K,-algebras. The
analytification of ¢ is the point ¢*" € U?" C X3" corresponding to the multiplicative
seminorm given by the composition

A— K(q) u} RZ(]?

where | - | is the unique extension to K(gq) of the absolute value | - |,.
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Since the measure §, is supported on the point ¢*" and has total mass deg(q), it
follows that
dq = [K(q) : Ko] Ggan, (2.3.5)

where d4an denotes the Dirac delta measure on ¢**. For an arbitrary 0-cycle Y of X,,, the
signed measure dy is obtained from (2.3.5) by linearity. It is discrete signed measure of
total mass equal to deg(Y).

Let D be a Cartier divisor on X. A metric on the analytic line bundle O(D)2" is an
assignment that, to each open subset U C X2" and local section s on U, associates a
continuous function

[s()llv: U — Rxo

that is compatible with restrictions to open subsets, vanishes only when the local
section does, and respects multiplication of local sections by analytic functions, see
[19, Definitions 1.1.1 and 1.3.1]. This notion allows to define local heights of 0-cycles.

Definition 2.3.10. Let D be a Cartier divisor on X, and || - ||, a metric on O(D)3". For
a 0-cycle Y of X, and a rational section s of O(D) that is regular and non-vanishing on
the support of Y, the local height of Y with respect to the pair (|| - ||, $) is defined as

by, (V8) = —/Xan log |[s[[, dy-

We now study the behavior of these objects with respect to adelic field extensions.
Let (F,M) be an extension of the adelic field (K, 9%) as in Definition 2.3.5, and fix a place
w € Ny, so that F,, is a finite extension of the local field K,. Let ¢ be a closed point
of X, and consider the subscheme ¢, of X,, = X x Spec(F,,) obtained by base change.
Decompose

K(q) ©k, Fu = P G;
J€elI
as a finite sum of local Artinian F,-algebras and, for each j € I, denote by ¢; the
corresponding closed point of X,,. Then

[qw] =Y le,(Gj)q; and &) = dimp, (G)) Fgan
jeI jel
denote respectively the 0-cycle of X, associated to ¢, and the Dirac measure supported
on it.

The inclusion K,, < F,, induces a map of the corresponding analytic spaces
m Xt — X0 (2.3.6)

In the non-Archimedean case, this map of Berkovich spaces is defined locally by restricting
seminorms.

The following proposition gives the behavior of the measure associated to a 0-cycle
with respect to field extensions.
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Proposition 2.3.11. With notation as above, let Y be a 0-cycle of X, and set Y, for
the 0-cycle of Xy, obtained by base extension. Then

T Oy,, = Oy

Proof. By the compatibility of the map 7 with restriction to subschemes, it follows that
m(g5") = ¢*" for all j € I. Tt follows that

G = 3 e, (G5) e = (3 dim, (Gy) )3pn = [K(a) : K] i =

jel jel
]

Let D be a Cartier divisor on X and || - ||, a metric on O(D)3". The extension of
this metric to a metric || - ||, on the analytic line bundle O(D)2" on X3" is obtained by
taking the inverse image with respect to the map 7 in (2.3.6), that is

Il =70 o (2.3.7)

Proposition 2.3.11 implies directly the invariance of the local height with respect to adelic
field extensions.

Proposition 2.3.12. With notation as above, let Y be a 0-cycle of X, and s a rational
section of O(D)2" that is regular and non-vanishing on the support of Y. Set Y, and
Sy = T*s for the 0-cycle and rational section obtained by base extension. Then

B, Yo, $w) =, (1 ).

To define global heights of cycles over an adelic field, we consider adelic families of
metrics on the Cartier divisor D satisfying a certain compatibility condition.

Definition 2.3.13. An (adelic) metric on D is a collection || - ||, of metrics on O(D)a",

for v € M, such that, for every point p € X(K) and a choice of a rational section s
of O(D) that is regular and non-vanishing at p and of an adelic field extension (I, )
such that p € X (F),

(Pl )lw =1 (2.3.8)

for all but a finite number of w € M. We denote by D = (D, (|| ||s)vesn) the corresponding
(adelically) metrized divisor on X.

In addition, D is semipositive if each of its v-adic metrics is semipositive in the sense
of [19, Definition 1.4.1].

The condition (2.3.8) does not depend on the choice of the rational section s and of
the adelic field extension (F,9).



2.3. Arithmetic of toric varieties 79

Remark. When K is a global field, the classical notion of compatibility for a collection of
metrics || - |y on O(D)3", v € M, is that of being quasi-algebraic, in the sense that there

v o7

is an integral model that induces all but a finite number of these metrics [19, Definition
1.5.13].

By Proposition 1.5.14 in loc. cit., a quasi-algebraic metrized divisor D is adelic in
the sense of Definition 2.3.13. The converse is not true, as it is easy to construct toric
adelic metrized divisors that are not quasi-algebraic (Remark 2.5.3).

For a 0-cycle Y of X and a place v € 91, we denote by Y, the 0-cycle of X, defined
by base change. When Y = p is a closed point of X, by Lemma 2.3.4 applied to the finite
extension K(p) of K, the 0-dimensional subscheme p, = p x Spec(K,) of X, decomposes
as

po = Spec(K(p) @x Ky) = [[ Spec(Ew),
weN,
where the E;’s are the Artinian K,-algebras in (2.3.3). Let ¢, w € 9, be the irreducible
components of this subscheme. Then, the associated 0-cycle of X, writes down as

[pv] = Z le(Ew) qu

we‘ﬁu

and, for each w € M,, we have K(qy) ~ K(p). For an arbitrary Y, the O-cycle Y, is
obtained by linearity.

Let D = (D, (|| - |lv)vesm) be a metrized divisor on X, Y a 0-cycle of X and s a
rational section of O(D) that is is regular and non-vanishing on the support of Y. For
each place v € M, we set

hg  (Yis) =hy, (Yo; s),

where Y, is the 0-cycle of X, obtained by base change. The condition that D is adelic
implies that hﬁU(Y; s) = 0 for all but a finite number of places.

If s’ is another rational section of O(D) that is regular and non-vanishing on |Y|,
then s’ = fs with f € K(X)* and, for v € M,

hp, (Vss') = hp,(Vis) —loglyl (2.3.9)

where Y =37y, p and v =[], f(p)r € K*.

Definition 2.3.14. Let D be a metrized divisor on X and Y a 0O-cycle of X. The global
height of Y with respect to D is defined as

hp(Y) = > nyhp (Vss), (2.3.10)
veEM

with s a rational section of O(D) that is is regular and non-vanishing on |Y.
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The local heights in (2.3.10) are zero for all but a finite number of places, and so this
sum is finite. The equality (2.3.9) together with the product formula imply that this sum
does not depend on the rational section s.

Given a metrized divisor D on X and an adelic field extension (F,91), we denote
by Dr the metrized divisor on Xy obtained by extending the v-adic metrics of D as
in (2.3.7).

Proposition 2.3.15. Let D be a metrized divisor on X, Y a O-cycle of X and (F,91)
an adelic field extension of (K,9). Then

hy (Yr) = hp(Y).

Proof. Let s be a rational section of O(D) that is is regular and non-vanishing on |Y|
and v € M. By Propositions 2.3.12 and 2.3.6(1),

Z ne hg, (Y, s) = Z nw hg (Y, s) = ny hg (Y, s).
weMNy weMNy,

The statement follows by summing over all the places of K. O

Since the global height is invariant under field extension, it induces a notion of global
height for algebraic points, that is, a well-defined function

hy: X (K) — R.
When K is a global field, this notion coincides with the one in [18, Definition 2.2].
Now we turn to cycles of arbitrary dimension. Let V be a k-dimensional irreducible
subvariety of X and Dy, ..., Dj_1 a family of k& semipositive metrized divisors on X. For
each place v € M, we can associate to this data a measure on X3" denoted by

C1 (Do) VANKIERIVAN Cl(ﬁk—l) VAN (5Vvan

and called the v-adic Monge-Ampére measure of V and Dy, ..., Dy_1 [19, Definition 1.4.6]
and [22, Définition 2.4]. For a k-cycle Y of X, this notion extends by linearity to a signed
measure on X3", denoted by ¢1(Dg) A -+ A ci(Dg_1) A dyan. It is supported on |Y,[*
and has total mass equal to the degree degp, p, (V).

We recall the notion of local height of cycles from [19, Definition 1.4.11].

Definition 2.3.16. Let Y be a k-cycle of X and, fori =0, ..., k, let (D;, s;) be a semipos-
itive metrized divisor on X and a rational section of O(D;) such that div(sp),...,div(sk)
intersect Y properly (Definition 2.2.1). For v € 9, the local height of Y with respect to
(Do, 80), - - -, (Dg, sx) is inductively defined by the rule

hg  B..Ys5s0,...os6) =hg 5 (div(sg)-Yiso,...,sk-1)
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— /Xan log Hska’vcl(Eo) VAP Cl(ﬁkfl) VAN (5y5n

v

and the convention that the local height of the cycle 0 € Z_;(X) is zero.
Remark.

1. The local height is linear with respect to the group structure of Zi(X). In particular,
the local heights of the cycle 0 € Zi(X) are zero.

2. For a closed point of X and v € M, it the v-adic Monge-Ampére measure coincides
with the weighted Dirac measure in (2.3.5), see for instance [19, page 17 and
Definition 1.53.15]. Hence, for 0-cycles, the local heights in Definitions 2.3.10 and
2.3.16 coincide.

The following notion is the arithmetic analogue of global sections of a line bundle,
and Proposition 2.3.18 below is an analogue for local heights of Proposition 2.2.5.

Definition 2.3.17. Let D = (D, (|| - ||v)vem) be a metrized divisor on X. A global
section s of O(D) is D-small if, for all v € M,

sup |[|s(q)[lv < 1.
qeEXE

Proposition 2.3.18. Let Y be an effective k-cycle of X and, for i = 0,...,k, let
(D;, s;) be a semipositive metrized divisor on X and a rational section of O(D;) such
that div(sg),...,div(sg) intersect Y properly and such that sy, is Dy-small. Then, for
each place v € M,

hﬁow,ﬁkfl,v(div(sk) Y550, 86-1) < hﬁo,...,ﬁk,v(y; 805+ -5 Sk)-

Proof. Since the cycle Y is effective and the metrized divisors D; are semipositive, their
v-adic Monge-Ampere measure is a measure, that is, it takes only nonnegative values.
Since the global section sy, is Dy-small, log ||sk(q)||[x» < 0 for all ¢ € X2". The inequality
follows then from the inductive definition of the local height. O

Our next step is to define global heights for cycles over an adelic field. We first state
an auxiliary result specifying the behavior of local heights with respect to change of
sections, extending (2.3.9) to the higher dimensional case. The following lemma and its
proof are similar to [38, Corollary 3.8].

Lemma 2.3.19. Let Y be a k-cycle of X and Dy, ..., D;, semipositive metrized di-
visors on X. Let s;,s; be rational sections of O(D;), i = 0,...,k, such that both
div(sp),...,div(sg) and div(sp),...,div(s)) intersect Y properly. Then there exists
~v € K* such that, for all v € M,

/

hs 5. S0y -y Sg) = hEO,-~75k,U(Y; 50y« -+, Sk) — log |[V]y- (2.3.11)
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Proof. Let s; be a rational section of O(D;), ¢ = 0,...,k, such that the (s,...,s}) is
generic.

Notice that, by the genericity of (sg,...,s}), for any choice of r = 0,...,k and any
permutation g, ...,i; of 0,..., k, we have that

div(siy), . .., div(ss, ), div(sy ,),. .., div(s;,)

7;r+1

intersect Y properly. We proceed by proving (2.3.11) with the s/’s in the place of the s}’s.
That is, there exists a 4 € K* such that, for all v € 9,

h 5. S0y eySh) = hi  5,..(Yis0,. .., 8%) —1og[Flo. (2.3.12)

Consider the particular case when s; = s/ for i = 0,...,k — 1. Set s} = fs;
with f € K(X)*, and (Hf:_ol div(si)) - Y = >, ppp- By [19, Theorem 1.4.17(3)], the
equality (2.3.12) holds with 43 € K* given by

B = [ f(p)".

By [19, Theorem 1.4.17(1)], the local height is symmetric in the pairs (D, s;). Hence, we
can reorder the metrized line bundles and sections, and iterate the above construction for
every i = 0,..., k. The resulting 4 in (2.3.12) is obtained by multiplying each of the 3;’s.

Analogously, we can proof (2.3.12) replacing the s;’s by the s}’s. By combining both
these equalities, we obtain (2.3.11). O

We consider the following notions of positivity of metrized divisors.
Definition 2.3.20. Let D be a metrized divisor on X.
1. D is nef if D is nef, D is semipositive, and hz(p) > 0 for every closed point p of X.

2. D is generated by small sections if, for every closed point p € X, there is a D-small
section s such that p ¢ | div(s)].

Lemma 2.3.21. Let Y be an effective k-cycle of X and (D;, s;) semipositive metrized
divisors on X together with a rational section of O(D;), 1 =0, ..., k, such that the divisors
div(sg),...,div(sk) intersect Y properly. Suppose that D;, i =1,...,k, are generated by
small sections. Then there exists ( € K* such that, for all v € M,

k
hﬁo,...,ﬁk,v(y; S0y ey Sk) 2 lOg |C|U —+ hﬁofu (< H le(SZ)> . Y, 80) .
i=1

Proof. For k = 0, the statement is obvious, so we only consider the case when k > 1. By
Lemma 2.3.19, it is enough to prove the statement for any particular choice of rational
sections s;, provided that their associated Cartier divisors intersect Y properly.
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We can also reduce without loss of generality to the case when Y = V is an irreducible
variety of dimension k. We can then choose rational sections s;, i = 0,...,k, such that
each s; is D;-small. By Proposition 2.3.18,

hﬁoyl_.jw(v; 80y .-y 8k) > hﬁo,---ﬁk_l,v(div(sk) V580, 8k—1)-
Since div(sg) -V is an effective (k — 1)-cycle, the statement follows by induction on k. [

Proposition-Definition 2.3.22. Let Y be an effective k-cycle of X, and Dy, ..., Dy
semipositive metrized divisors on X such that D1, ..., Dy, are generated by small sections.
Let s; be a rational section of O(D;), i =0,...,k, such that div(sp), ...,div(sg) intersect
Y properly. The global height of Y with respect to Dy, ..., Dy, is defined as the sum

hﬁo:--wﬁk (Y) = Z Ny hﬁo,...,ﬁk,v(y; S0, - - - ,Sk). (2313)
veEM

This sum converges to an element in R U {+o0}, and its value does not depend on the
choice of the s;’s.

Proof. The existence of rational sections s; such that div(sg),...,div(sk) intersects Y
properly follows from the moving lemma, with the hypothesis that X is projective.

By Lemma 2.3.21 and the fact that the local heights of O-cycles are zero for all but a
finite number of places, the local heights in (2.3.13) are non negative, except for a finite
number of v’s. Hence, the sum converges to an element in R U {+0c0}. Lemma 2.3.19
and the product formula imply that the value of this sum does not depend on the choice
of the s;’s. ]

Remark. This definition generalizes the notion of global height of cycles of varieties
over global fields in [19, §1.5], to cycles of varieties over an arbitrary adelic field, in the
case when the considered metrized divisors are generated by small sections.

In the context of varieties over global fields, the local heights of a given cycle are zero
for all but a finite number of places [19, Proposition 1.5.14], and so their global height is
a real number given as a weighted sum of a finite number local heights. In our present
generality, the sum in (2.3.13) might contain an infinite number of nonzero terms. We
will see that, in the toric situation, these global heights are nonnegative real numbers,
different from +oo.

The following results are arithmetic analogues of Proposition 2.2.5 and Corollary 2.2.6.

Proposition 2.3.23. Let Y be an effective k-cycle of X, and Dy, ..., D;, semipositive
metrized divisors on X such that Dy is nef and D1, . .., Dy, are generated by small sections.
Let s be a Dy-small section. Then

0 S hﬁo,...,ﬁkfl(div(sk) . Y) S hﬁo,m,ﬁk (Y)
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Proof. We reduce without loss of generality to the case when Y = V is an irreducible
subvariety of dimension k. If V' C |div(sg)|, the first inequality is clear. For the
second inequality, we choose rational sections s;, i = 0,...,k — 1, and s}, such that
div(sp),...,div(sg_1),div(s}) intersect Y properly. Using Lemmas 2.3.19 and 2.3.21, the
product formula and the fact that Dy is nef, we deduce that hp B, (Y)>0.
Otherwise, V' ¢ |div(sy)| and we choose rational sections s;, i = 0,...,k — 1, such
that div(sg),...,div(sg) intersect Y properly. The first inequality follows by applying the
argument above to div(sg)-Y, whereas the second one is given by Proposition 2.3.18. [

Corollary 2.3.24. Let Dy, ..., D, be semipositive metrized divisors on X such that Dy
is mef and D1, ..., D, are generated by small sections. Let s; be a D;-small section,
1=1,...,n. Then

0 <y (H div(si)) <hg, . 5,X)
=1

2.3.3 Metrics and heights on toric varieties

Let (K, 1) be an adelic field satisfying the product formula. Let M ~ Z" be a lattice
and T ~ G} i its associated torus over K as in (2.2.4). For v € 90, we denote by T3" the
v-adic analytification of T, and by S,, its maximal compact subgroup. In the Archimedean
case, S, is homeomorphic to the polycircle (S1)", whereas in the non-Archimedean case,
it is a compact analytic group, see [19, §4.2] for a description. Moreover, there is a map
defined, in a given splitting, as

val, : Tin — NR

(x1,...,zn) —> (—log|z1]v, ..., —log|zn|y)-

This map does not depend on the choice of the splitting, and S, coincides with its fiber
over the point 0 € Ng.

Let X be a projective toric variety with torus T given by a regular complete fan X
on Ng, and D a toric Cartier divisor on X given by a virtual support function ¥p on X.
Recall that X contains T as a dense open subset. Let || - ||, be a toric v-adic metric on D,
that is, a metric on the analytic line bundle O(D)2" that is invariant under the action
of Sy. This allows to define a continuous function ¥, : Ng — R, called v-adic metric
function associated to || - ||, given by

D1, (@) = log [[sp () |ls, (2.3.14)

for any p € T2" with val,(p) = u and where sp is the distinguished rational section
of O(D). This function satisfies that |¢).;, — ¥p| is bounded on Ng and moreover, this
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difference extends to a continuous function on Ny, the compactification of Ng induced
by the fan 3. Indeed, the assignment

1 o — Py, (2.3.15)

is a one-to-one correspondence between the set of toric v-adic metrics on D and the set of
such continuous functions on N [19, Proposition 4.3.10]. In particular, the toric v-adic
metric on D associated to the virtual support function ¥p is called the canonical v-adic
toric metric of D and is denoted by || - ||4.can-

Furthermore, when || - ||, is semipositive, 9|, is a concave function and it verifies
that [¢). |, — ¥p| is bounded on Ng, and the assignment in (2.3.15) gives a one-to-one
correspondence between the set of semipositive toric v-adic metrics on D and the set of
such concave functions on Ng.

When || - ||, is semipositive, we also consider a continuous concave function on the
polytope 9, : Ap — R defined as the Legendre-Fenchel dual of ¢, that is

Iy (x) = inf (x,u) — Y.y ().

1, (@) = Inf (z,u) =3y, (u)

We call this function, the v-adic roof function associated to || - ||,. The assignment
| llo = 9., is a one-to-one correspondence between the set of semipositive toric v-adic
metrics on D and that of continuous concave functions on Ap. Under this assignment,
the canonical v-adic toric metric of D corresponds to the zero function on Ap.

Definition 2.3.25. An (adelic) toric metric on D is a collection of toric v-adic metrics
(Il - lo)vesm, such that || - ||, = || - ||v,can for all but a finite number of v € M. We denote
by D = (D, (|| - ||v)vem) the corresponding (adelic) toric metrized divisor on X.

Example 2.3.26. The collection (|| - ||y,can)veom of v-adic toric metrics on D is adelic
in the sense of Definition 2.3.25. We denote by D" the corresponding canonical toric
metrized divisor on X.

Let D be a toric metrized divisor on X. For each v € 9, we set
Vo =V, and  dp, =7y,
for the associated v-adic metric function and v-adic roof function, respectively.

Proposition 2.3.27. Let D = (D, (|| - ||s)vem) be toric divisor together with a collection
of toric v-adic metrics. If D is adelic in the sense of Definition 2.3.25, then it is
also adelic in the sense of Definition 2.3.13. Moreover, both definitions coincide in the
semipositive case.
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Proof. Let p € X(K) and choose an adelic field extension (F,9t) such that p € X(F).
Then pg is a rational point of Xy and the inclusion

t: pp — XF

is an equivariant map. Hence the inverse image (*D is an adelic toric metric on pr and
so, for w € N,

log |lpFllw = %,-5,,(0),

and this quantity vanishes for all but the finite number of w € 9N such that || - [|,, is not
the canonical metric. Since this holds for all p € X(K), we conclude that D is adelic in
the sense of Definition 2.3.13.

For the second statement, assume that D is semipositive and adelic in the sense of
Definition 2.3.13. Let x; € M, ¢ =1,...,s, be the vertices of the lattice polytope Ap.
By [19, Example 2.5.13], there is an n-dimensional cone o; € ¥ corresponding to x; under
the Legendre-Fenchel correspondence, ¢ = 1,...,s. Each of these n-dimensional cones
corresponds to a O-dimensional orbit p; of X. Denote by ¢;: p; — X the inclusion of this
orbit.

Fix 1 <17 < s. Modulo a translation, we can assume without loss of generality that
x; = 0. By [19, Proposition 4.8.9], for v € 9,

Up,(@i) = 0,.5,(0) = =log lsp(pi) -

Hence 95, (z;) = 0 for all but a finite number of v’s.
On the other hand, let ¢ be the distinguished point of X, which coincides with the
neutral element of T, and denote by ¢o: 9 < X its inclusion. By [19, Proposition 4.8.10],

max V5, (2) = ¥,,5,(0) = —log|lsp(wo) -
Hence maxgena , Y5 ,(2) = 0 for all but a finite number of v’s.

For all v € M such that J5 ,(z;) = 0 for all 7 and maxzea,, V5, (x) = 0, we have
that ¥/5 , = 0 because this local roof function is a concave function on Ap. Hence, || - ||,
coincides with the v-adic canonical metric of D for all these places. ]

Remark. In the general non-semipositive case, Definitions 2.3.25 and 2.3.13 do not
coincide. For instance, when X = Pk, a collection of metrics || - ||o, v € M, satisfies
Definition 2.3.13 if and only if its associated metric functions satisfy that

Y5,0)=0 and lim ¢y, (u) —¥p(u) =0

) u—r+o00 )

for all but a finite number of places. In the absence of convexity, these conditions do not
imply that o5, = Wp for all but a finite number of places.
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Proposition 2.3.28. Let D be a toric Cartier divisor on X.

1. The assignment D + (Y5, )vem is a one-to-one correspondence between the set
of semipositive toric metrics on D, and the set of families of concave functions
(Vy)vesm on N such that |v, — ¥p| is bounded for all v, and ¥, = Vp for all but

a finite number of v € M.

2. The assignment D (19571})1,6931 is a one-to-one correspondence between the set
of semipositive toric metrics on D and the set of families of continuous concave

functions (9y)pemm on Ap such that 9, = 0 for all but a finite number of v € M.

A classical example of toric metrized divisors are those given by the inverse image
of an equivariant map to a projective space equipped with the canonical metric on its
universal line bundle. Below we describe this example and we refer to [19, Example
5.1.16] for the technical details.

Let m = (mo,...,m;) € M™™ and a = (ap,...,q;) € (KX)""! with » > 0. The
monomial map associated to this data is defined as

Yma: T — Pk, (2.3.16)

pr— (aox™(p) -+ arxX™ ().
Let ¥ be a regular fan in Ng compatible with the polytope A = conv(my,...,m,) C Mg,
in the sense that the support function W is a virtual support function on Y. For a toric

variety X with torus T corresponding to the fan ¥, the monomial map (2.3.16) extends
to an equivariant map X — P§, also denoted by ¢ «-

Example 2.3.29. With notation as above, let " be the divisor of the hyperplane at
infinity of P, equipped with the canonical metric at all places. Then D = ¢, E is the
nef toric Cartier divisor on X corresponding to the translated polytope A — mg. We
consider the semipositive toric metrized divisor D = ¢, o on X.

For each v € M, the v-adic metric function of D, wﬁ,v: Nr — R, is given by

)

The polytope corresponding to D is A —mg and, for each v € 9N, the v-adic roof function

N . ‘ Q;
Up,(u) = Join ((m] — mg, u) — log o
of D is given by

'
ﬁﬁv(:v) = max Z Ajlog |aj|, — log |agly,
§=0
the maximum being over the vectors A = (A\g,...,A\) € R;‘Bl with Z;:o Aj = 1 such
that 377 _o Aj(m; —mo) = z. In other words, this the piecewise affine concave function
on A — mg parametrizing the upper envelope of the extended polytope

conv ((m; — mo,log |a;/aolv)o<j<r) C Mg X R.
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Definition 2.3.30. For i =0,...,n, let g; : A; = R be a concave function on a convex
body A; C Mgr. The mized integral of gy, ..., g, is defined as

MIM goy---y9n) = -1 n=j / g; EﬂEBgldVOIM,
e =0 S [ e Es

0<ip<-<i;<n

where A, + -+ A;; denotes the Minkowski sum of polytopes, and g;, B ---H g;; the
sup-convolution of concave function, which is the function on A;, + --- + A;, defined as

Gio BH-.-H 9i; (1:) = sup (g’Lo (xlo) +eet 9i; (xij))a
where the supremum is taken over x; € A;;, 1 =0,...,j, such that z;, +--- +x;; = z.

The mixed integral is symmetric and additive in each variable with respect to the
sup-convolution. Moreover, for a concave function g: A — R on a convex body A, we
have MIx(g,...,9) = (n+ 1)! [, gdvola, see [67, §8] for details.

The following is a restricted version of a result by Burgos Gil, Philippon and Sombra,
giving the global height of a toric variety with respect to a family of semipositive toric
metrized divisors in terms of the mixed integrals of the associated local roof functions
[19, Theorem 5.2.5].

Theorem 2.3.31. Let D;, i = 0,...,n, be semipositive toric metrized divisors on X
such that D1, ..., D, are generated by small sections. Then
hﬁo,m,ﬁn (X) = Z Ny MIM(’lgﬁo,v’ Ceey ﬁﬁn,v)' (2317)
veEM

Remark. The result in [19, Theorem 5.2.5] is more general. Given semipositive toric
metrized divisors D;, i = 0,...,n, and rational sections s; such that div(sg),...,div(s,)
intersect X properly, the corresponding local heights are zero except for a finite number
of places, and the formula (2.3.17) holds without any extra positivity assumption.

2.4 Arithmetic Bernstein-KusSnirenko

In this section we first prove the main results of this chapter, Theorem 2.4.5 and
Corollary 2.4.8, which give bounds on the height of O-cycles coming from systems of
Laurent polynomials. Furthermore, we apply these results to more concrete settings: we
present two families of examples and compare the actual height of the the 0-cycles with
the bounds provided by our results. Finally, we give an application bounding the height
of the resultant of a O-cycle defined by a system of Laurent polynomials.
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2.4.1 Main theorem

Let (K,90) be an adelic field satisfying the product formula. Let f € K[M] be a Laurent
polynomial and A C My its Newton polytope. Let X be a projective toric variety over K
given by a fan on N that is compatible with A, and D the Cartier divisor on X given
by this polytope. To prove our main theorem, we first construct a toric metric on D
such that the associated toric metrized divisor D is semipositive and generated by small
sections, and the global section of O(D) associated to f is D-small. We obtain this
metrized divisor as the inverse image of a metrized divisor on a projective space.

For r > 0, let Px be the r-dimensional projective space over K and E the divisor
of the hyperplane at infinity. We denote by E this Cartier divisor equipped with the
¢'-norm at the Archimedean places, and the canonical one at the non-Archimedean ones.

This metric is defined, for p = (po : --- : ps) € Pi(K,) and a global section s of O(E)
corresponding to a linear form ps € K[z, ..., zs], by
"05(1;):’ ‘ . "ps)’v if v is Archimedean,
i |1Pjlv
[s(p)[lo = oul ’ ) (2.4.1)
PsAPOy - -5 Psllv ) g non-Archimedean,
max; [pj v

The projective space Pi has a standard structure of toric variety with torus G;7K7
included via the map (21,...,2:) = (1:21:---:2,.). Thus E is a toric metrized divisor.
It is a particular case of the weighted ¢P-metrized divisors on toric varieties studied
in [20, §5.2].

The following result summarizes the basic properties of this toric metrized divisor
and its combinatorial data.

Proposition 2.4.1. The toric metrized divisor E on P is semipositive and generated by

small sections. For v € M, its v-adic metric function is given, for w = (uy,...,u,) € R",
by
T
—log (1 + Z e Y ) if v is Archimedean,
%,v(u) = j=1 (242)
min(0,u1,...,uy) if v is non-Archimedean.

The polytope corresponding to E is the standard simplex A™ of R". For v € M, the v-adic
roof function of E is given, for € = (x1,...,x,) € A", by

T
- Z xzjlog(z;) if v is Archimedean,
0 if v is non-Archimedean,

with g =1 — Z;Zl xj.
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Proof. The distinguished rational section of the line bundle O(FE) corresponds to the
linear form zy € K[zo,...,z,]. Hence, for an Archimedean place v and a point z =

(21,5 2r) € G k(Ky),

Vg, (valy(2)) = log [sp(2)]l = —log (1 + Y |21),

j=1

which gives the expression in (2.4.2) for this case. The non-Archimedean case is done
similarly. We can easily check that these metric functions are concave. In the Archimedean
case, this can be done by computing its Hessian and verifying that it is nonpositive
and, in the non-Archimedean case, it is immediate from its expression. Hence, E is
semipositive.

Set s; for the global section corresponding to the linear form z; € Kixo,...,z,],
j=0,...,7. We have that j_q |div(s;)| = 0, and so this is a set of generating global
sections. It follows from the definition of the metric in (2.4.1) that these global sections
are E-small. Hence, E is generated by small sections.

The fact that the polytope corresponding to F is the standard simplex is classical,
see for instance [34, page 27]. When v is Archimedean, the v-adic roof function can
be computed similarly as the one for the Fubini-Study metric in [19, Example 2.4.3].

When v is non-Archimedean, v-adic roof function is zero, because the metric || - ||, is
canonical. O

Set r > 0. Take m = (mg,...,m,) € M"! and a = (ap,...,q,) € (K*)" 1 and
consider the polytope A = conv(my,...,m,) C Mr. Let X be a projective toric variety

over K given by a fan on Ng that is compatible with A. Let ¢pmo: T — Pg be the
monomial map in (2.3.16) and set

Dm = diV(X_mo) + cp;kn,aE7

which coincides with the Cartier divisor on X corresponding to A. For each v € 9, we
consider the metric on O(Dpm)5" =~ O(py, o £)5" defined by

(2.4.3)

I e = looly @ all - 17,0

the homothecy by |agl, of the inverse image by ¢m « of the v-adic metric of E. We then
set

S

m,a — (Dmv (H : ”m,a,v)veim)~ (244)

Since Y o is an equivariant map and E is toric, this is a toric metrized divisor on X.
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Proposition 2.4.2. The toric metrized divisor D = Dy, o on X is semipositive and

generated by small sections. For v € M, its v-adic metric is given, for p € T(K,), by

T -1
<Z lajx™ (p)|v) if v is Archimedean,
j=0

sl = y (2.45)
o . i .
(Orgjagr lojx™ (p)|v) if v is non-Archimedean.
The v-adic metric function of D is given, for u € Ng, by
T
—log (Z s, e (mau) ) if v is Archimedean,
Y, (1) = =0 (2.4.6)
0%127~<mj’ u) —log|ay|, if v is non-Archimedean,
and the v-adic roof function of D is given, for x € A, by
max XT: Ajlog (@> if v is Archimedean,
A =0 J )\j
19571](1:) = , (2.4.7)
Al ; if v i -Archimed
m}z\mxjgo jlog |y if v is non-Archimedean,
the mazimum being over the vectors A = (Ao, ..., A\p) € ]R;gl with Z;’:O Aj =1 such that

> =0 Ajmj = .

Proof. Set D’ = %,  E for short. This is a toric metrized divisor on X that is semipositive
and generated by small sections, due to Proposition 2.4.1 and the preservation of these
properties under inverse image. Since the v-adic metrics of D are homothecies of those of
D', it follows that D is semipositive too. Moreover, a global section ¢ of O(D’) ~ O(D)
is D’-small if and only if the global section aq¢ is D-small. It follows that D is also
generated by small sections.

Using (2.4.1) and the definition of the monomial map ¢ «, for v € M, the v-adic
metric of D’ is given, for p € T(K,), by

T ) -1
(Z &ij Mo (p) ) if v is Archimedean,
— Qo
sl = | =0 Vo
< max | 2Ly mi—mo (p) ) if v is non-Archimedean.
0<j<r|apg .

Since D = div(x~"™0) + D', their distinguished rational sections are related by sp =
X ™ spr. It follows from (2.4.3) that

lsp@)lle = ool X (Pl s () o,
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which implies the formulae in (2.4.5). As a consequence, we obtain also the expressions
for the v-adic metric functions of D.

For its roof function, consider first the linear map H: Ng — R"t! given, for u € Ng,
by H(u) = ({(mo,u),...,(m,,u)). For each place v, consider the concave function
gv: R™1 — R given, for v € R™!, by

,
—log (Z lajlye™ ) if v is Archimedean,
go(v) = i=

min Vi log |y if v is non-Archimedean.
0<5<

Notice that ¢, = H"g,. The domain of the Legendre-Fenchel dual gy of g, is the
simplex S given as the convex hull of the vectors in the standard basis of R"*!; and g
is given, for A € S, by

Z Ajlo (]a] ’v) if v is Archimedean,
gy (A) = r
Al ilo ifvi -Archimedean.
m/%x]z:% jlog|ajly if v is non-Archimedean
For the Archimedan case, this follows similarly to [19, Example 2.4.3], and is also proved
in [20, Proposition 5.8]. For the non-Archimedean case, it follows from Example 2.3.29.
Then, by [19, Proposition 2.3.8(3)], the v-adic roof function 5 is the direct image
under the dual map H" of the Legendre-Fenchel dual g/, which gives the stated formulae
n (2.4.7). O

Definition 2.4.3. Let f € K[M] be a Laurent polynomial and X be a projective toric
variety over K given by a fan on N that is compatible with the Newton polytope N (f).
Write f = Z;ZO a;x™ with m; € M and a; € K*. The toric metrized divisor on X
associated to f is defined as
D¢ =Dma:

the toric metrized divisor in (2.4.4) for the data m = (mq,...,m,) € M"™! and a =
(ag,...,a.) € (KX)"T1 It does not depend on the ordering of the terms of f. For v € I,
we denote by 1, and ¥y, the v-adic metric and roof functions of Dy, respectively.

Lemma 2.4.4. With notation as in Definition 2.4.3, the global section of O(Dy) associ-
ated to f is Dg-small.

Proof. Set D = Dy for short, and let s = fsp be the global section of O(D) associated
to f. For v € M and p € T(K,),

sl = 1f @)l lsp @)l =

Z%X ISD(p)Hv-

It follows from (2.4.5) that [|s][, <1 on ']I‘(KU), and so s is D-small. O
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The following result corresponds to (2.1.3) in the introduction.

Theorem 2.4.5. Let f1,..., fn € K[M], and let X be a proper toric variety with torus
Tar and Do a nef toric metrized divisor on X. Let Ag C Mg be the polytope of Dy and,
forv e M, let 9o, Ay — R be v-adic roof function of Dg. Fori=1,...,n, let A; C Mg
be the Newton polytope of f; and, for v € M, let ¥;,: A; — R be the v-adic roof function
on the metric associated to f;. Then

h (Z(f1,- - fn)) < D e Mo, - -, ).
veEM

Proof. Let 3 be the complete fan corresponding to the proper toric variety X. By taking
a refinement, we can assume without loss of generality that X is regular and compatible
with the Newton polytopes A;, i = 1,...,n. Hence X is a projective toric variety and
Dy a nef toric metrized divisor, and there are nef toric Cartier divisors D;, i = 1,...,n,
corresponding to these Newton polytopes.

For i = 1,...,n, we denote by D; the toric metrized divisor associated to f; (Defini-
tion 2.4.3). By Proposition 2.4.2, D; is semipositive and generated by small sections and,
by Lemma 2.4.4, the global section s; of O(D;) corresponding to f; is D;-small. Applying
Corollary 2.3.24 and Theorem 2.3.31,

hp, (Hdiv(si)) <hgp, 5 (X)= Z ny MIa (95, s+ 05, ,)-
i=1 veM

Due to Proposition 2.2.9(2), the inequality Z(f1,..., fn) < Ilj=; div(s;) holds. By the
linearity of the global height and the nefness of D,

hg (Z(f1,-.-, fa)) < hp, (HdiV(Si)),
=1

which concludes the proof. O

Definition 2.4.6. Let a = (g, ..., o) € (KX)" with » > 1. For v € M, the v-adic
logarithmic length of o is defined as

,
log(z lajly) if v is Archimedean,
ly(a) = =0
log( max |a|,) if v is non-Archimedean.
0<j<r

The logarithmic length of o is defined as £(a) = >, cop Nl ().

For a Laurent polynomial f € K[M], we define its v-adic logarithmic length, denoted
by ¢,(f), as the v-adic length of its vector of coefficients, v € M. We also define its
logarithmic length, denoted by £(f), as the length of its vector of coefficients.
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Lemma 2.4.7. Let 9;: A; — R be a concave function on a conver body, i = 0,...,n.
Then
n
MIM(190,..., Z(grgréanﬁ )MVM(A(),...,Ai_l,AH_l,...,An)
i=0

Proof. Set ¢; = maxgzen, Ui(x) for short. By the monotonicity of the mixed integral,
see [67, Proposition 8.1],

MIM(190, e ,Q?n) § MIM(CO|A07 ceey C7L|An)7
where ¢;|a, denotes the constant function ¢; on the convex body A;. By [67, formula (8.3)],
n
MIM(CO|AOa e ,Cn|An) = ZCZ' MVM(A(), ey Aifl, Ai+1, ceey An),
i=0
giving the stated inequality. O
The following result corresponds to the inequality (2.1.4) in the introduction.

Corollary 2.4.8. With notation as in Theorem 2.4.5,

TEA

hﬁO(Z(fl,...,f (Znymaxﬁoy( )) MVM(Al,...,An)
D fIMVa(Do, - A1, A, Ag).
i=1

In particular, for the canonical metric on Dy (Example 2.3.26),
hpean (Z(f1, - fa)) Z (FOMVar(Ag, .. A1, Ay, A).

Proof. For 1 < i < n and v € M, let ¥;, be the v-adic roof function of the toric
semipositive metric associated to f;. From the definition of the Legendre-Fenchel dual, the
maximum of a concave function 9 is —9V(0) (see also [71, Theorem 23.5]). Using (2.4.7),
we compute the values of —);,(0) = —¥9y,(0) and obtain

max ¥, ,(x) = €y (fi). (2.4.8)
TEA;

The first statement follows then from Theorem 2.4.5 and Lemma 2.4.7. The second
statement is a particular case of the first one, using the fact that the v-adic roof functions
of Dy are the zero functions on Ay. O

We readily derive from the previous corollary the following version of the arithmetic
Bézout theorem.
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Corollary 2.4.9. Let fi,..., fn € Klz1,...,2,] and let D™ be the divisor at infinity
of P equipped with the canonical metric. Then

n

heen (Z(fry ooy fu)) <3 (Hdeg(fj))é(fi),

i=1  j#i
where deg denotes the total degree of the corresponding polynomial.

Proof. Notice that, for each ¢ = 1,...,n, the Newton polytope of f; is contained in
deg(f;)A™. Then by the monotonicity and linearity of the mixed volume

—

MVza (A", Ay, Ay) < [[ deg(f;) MVza (A", A") = [] deg(f)),
J# J#
where the A;’s are the respective Newton polytopes of the f;’s. O

2.4.2 Examples

The two families of examples have as objective to illustrate two aspects of the bounds
obtained above. With the first family of examples we provide a case in which both these
bounds do approach the height of the 0-cycle; while with the second one we show a
situation where the bound of Theorem 2.4.5 is sharp, and that of Corollary 2.4.8 is not.

We keep the notation of §2.4.1. We need the the following auxiliary computation of
mixed volumes. For its proof, we recall that the mixed volume of a family of polytopes
A; CR* i =1,...,n, can be decomposed in terms of mixed volumes of their lower
dimensional faces as

MV, (AL, An) == > Ua, (u) MV, (A, ... A, (2.4.9)

ueSn—1

where S"~! is the unit sphere of R™, WA, is the support function of A; as in (2.2.6), AY
is the unique face of A; that minimizes the functional v on this polytope, and MV,, and
MV, _1 denote the mixed volume functions associated to the Lebesgue measure of R"
and ut ~ R" ! respectively. In fact, this sum ranges through all the normal vectors of
the facets of each polytope. We refer to [78, formula (5.1.22)] for more details.

Lemma 2.4.10. Let A C Mg be a lattice polytope, and m; € M, i =2,...,n, linearly
independent lattice points. Denote by 0m; the segment between 0 and m;, and u € N
the smallest lattice point orthogonal to all the m;’s, which is unique up to a sign. Let
P =" ,Zm; C M be the sublattice generated by the m;’s, and P** its saturation.
Then

MV (A, 0ma, ..., 0my,) = [P : P]volz(A, u),

where (A, u) is the image of A under the functional u: Mgr — R, and voly represents the
volume associated to the Lebesgue measure in Z.
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Proof. Choosing a basis, we identify M = Z". With this identification, MV j; = MV,,,
the mixed volume associated to the Lebesgue measure of R". The formula in (2.4.9)

applied to the polytopes A, 0mao,...,0m, implies that

MV (A, 0ma, . .., 0my) = — (\IJA(HZ—H) +0a( - HuTH)) MV,,_1(0mma, . ..,0mmy)

= L (WA u) + Ua (=) MV, (073, ..., Oy), (2.4.10)

]
where ||u|| is the Euclidean norm. We have that

Ua(u) +Ua(—u) = ;réiil(x,u) + miIA1<$, —u) = —volz (A, u) (2.4.11)

TE

By the Brill-Gordan duality theorem (see for example [39, Lemma 1]), we have |lu| =
vol,_1(Pr/P%*) where vol,_; denotes the Lebesgue measure of u'. Hence

1 0o nY S _— -
T MV 0772, 07m) = MV e (07, ... D) = [Pt ; P, (2.4.12)
The result follows then from (2.4.10), (2.4.11) and (2.4.12). O

Example 2.4.11. Let d,a > 1 be integers and consider the system of Laurent polyno-
mials given by

fi=xi—a, fo=xo—axl, ..., fo=mx, —am‘fl_l € Q[:L‘lﬂ,...,mfl].
Its zero set in Tzn = Gy,  consists of the rational point
m—1 m—2_ ...
p:(Oz,OédJrl,...,Ctd +d + +1)€Tzn(@):((@x>n.

Let X be a proper toric variety over QQ, and Egan a nef toric Cartier divisor on X equipped
with the canonical metric. Let Ag C R™ be the polytope corresponding to Dy and, for
1=1,...,n, set

Uy =e; +dejp1+ -+ dn_ien ez,

where the e;’s are the vectors in the standard basis of Z". The height of p with respect
—T~can

to Dy is

hpeen (p) = ( volz (Ao, f:u» log(c). (2.4.13)
1

1=

To prove this, let v € Mg. By (2.3.14), the local height of p with respect to the pair
(Dg™, sp,) is given by

e (9, 590) = — 108 (15D () [ocan = ~ar, (val, ().
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Set u = > i, u; for short. Since val,(p) = —log|al|, u,

log |al, men&ﬁﬁﬁ(m,u) if v = o0,

=T, (valy(p)) = , , ’
0g\a|vm€r£égzn<m,u> if v # oo.

By adding these contributions,

hpen (p) = log(a) (| max, (m,u) = min (m,u)),
which gives the formula in (2.4.13).
Next we compare the value of the height of p with the bounds given by Corollary 2.4.8.
We have ¢(f;) = log(a + 1) for all . Consider the dual basis of the u;’s, given by

myp = e}, mo :eg—del,...,en—den,l e 7"

For i =1,...,n, the Newton polytope A; of f; is a translate of the segment 0m,;, and u;
is the smallest lattice point in the line (37, Rm;)t. Moreover the sublattice > i Lmi
is saturated. By Lemma 2.4.10

MVZn (A(), e ,Ai_l, Ai—i—l) ey An) = VOlz<AQ, ul>

Therefore, the bound given by Corollary 2.4.8 is

hpean (p) < (ZV012<A0, uz)) log(a + 1).
i=1

Example 2.1.1 in the introduction consists of the particular cases corresponding to the
polytopes Ay = A", the standard simplex of R", and Ay = conv(0,m1,...,my).

In the following example, we exhibit a situation where the difference between the
bounds given by the results in §2.4.1 is noticeable. Recall that passing from Theorem 2.4.5
to Corollary 2.4.8 amounts to replacing the local roof functions by constant functions on
the polytope bounding them from above. Hence, to maximize the discrepancy between
these two concave functions, we look for local roof functions that are tent-shaped, which
is the situation where the difference between the mean value and the maximum value of
these functions is the greatest possible.

Example 2.4.12. Let o > 1 be an integer, and consider the system of Laurent polyno-
mials defined as

1 .
fi=z;—aeQzil, ... ,ztY, fori=1,...,n,
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Its zero set in G, ( is the rational point p = (a,...,a) € (Q*)". Let X = Pg and let
—J=can

E be the divisor of the hyperplane at infinity equipped with the canonical metric.
Then the height of p with respect to E* " is

hesn (p) = log(a).

Next we compare the value of this height with the bound given by Theorem 2.4.5.
Since the explicit computation of the mixed integrals appearing in this bound is somewhat
involved, instead of giving its exact value we are going to approximate it with an upper
bound that is easier to compute.

The polytope associated to the toric Cartier divisor E is Ay = A", the standard
simplex of R". For each v € Mg, the v-adic roof function Yq,, of E" is the zero function
on this simplex.

For each i = 1,...,n, let A; = N(fi) C R" be the Newton polytope of f;, which
coincides with the segment O e;. For v € My, let ¥; ,, be the v-adic roof function associated
to f; (Definition 2.4.3). This function is given, for te; € A; = 0e;, by

ino(tes) = (1 —t)log(a) —tlogt — (1 —t)log(1 —t) if v = oo,
R (1 —1t)log|al, if v # oo.

For the Archimedean place, the v-adic roof functions are nonnegative, and so their mixed
integral can be expressed as a mixed volume

MIzn (D000, - - - » Pnoe) = MVzat1 (Ao, ..., Ay), (2.4.14)

with A; = conv (graph(¥; o0), A; x {0}) € R™ x R. Consider the concave function
¥ : A" — R defined by

= (21,...,2n) — log(2) + log(a) (1 -

:Ei>a
i

1
and set A = conv (graph(d), A™ x {0}) C R™ x R. Notice that ¥; « < on A;, and so
A; CA,i=0,...,n. By the monotony of the mixed volume,

n

MV (Ao, ..., An) < MVznii (A, ...,A) = (n+1)! [ dde
An

n
= (n+ 1)!(log(2) vol(A™) + log(a) /A (1= @) de) = (n+ 1)log(2) + log(a).
" i=1
(2.4.15)
When v is non-Archimedean, we have that ||, < 1 because « is an integer. Hence
Y;, < 0, and so the mixed integral of these concave functions is nonpositive. Theorem 2.4.5
together with (2.4.14) and (2.4.15) gives the upper bound

hoean (p) < (n + 1) log(2) + log(av).
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To conclude the example, we compute the bound given by Corollary 2.4.8. For
i=1,...,n, we have that ¢(f;) =log(a+1) and MVyzn(Ag,..., Aj—1,Aiy1, ..., Ay) = 1.
Hence, this bound reduces to

hean (p) < nlog(a + 1),

concluding the study of this example.

2.4.3 Application to u-resultants and geometric representations

Fix K an algebraic closure of K, and M ~ Z" a lattice. As an application of our results,
we bound the size of the coefficients of the u-resultant of the direct image of this cycle
under an equivariant map. It corresponds to Theorem 2.1.2 in the introduction, for
general adelic fields satisfying the product formula. We first introduce the notion of
u-resultant of a O-cycle.

Definition 2.4.13. Let W € Zy(Pk) be a 0-cycle of a projective space over K and
u = (ug,- .-, u,) a group of 7+ 1 variables. Write Wi = 3= 114 q € Zo (IP%) for the 0-cycle
obtained from W by the base change K < K. The u-resultant (or Chow form) of W is
defined as
Res(W) = H(qoug + -+ gup )t € K(u)™,

q
the product being over the points g = (qo : - - : ¢r) € Pk (K) in the support of Wg. It is
well-defined up to a factor in K*.

The length of a Laurent polynomial (Definition 2.4.6) is invariant under adelic field
extensions and multiplication by scalars. It is also submultiplicative, in the sense that it
satisfies the inequality

U(fg) < €(f)+(g)
for any Laurent polynomials f, g € K[M].

Theorem 2.4.14. Let fi,..., f, € K[M], mo € M™ and ag € (K*)" ! with r > 0.
Set Ay = conv(mo,...,mo,) C Mg and let ¢ : Tyy — Py be the monomial map
associated to mgy and o as in (2.3.16). Fori=1,...,n, let A; C Mg be the Newton
polytope of f;, and a; the vector of nonzero coefficients of f;. Then

K(RGS((p*Z(fl, ceey fn))) < Z MVM(A(), ceey Ai—la Ai+1, ceey An) E(az)
i=0
Proof. Write Z(f1,..., fu)g = >, #pp, Where the sum ranges over all points p € Tn (K).
Since the length is invariant under adelic field extensions and submultiplicative, we

deduce that

(Res(pZ(fr, -0 fa)) < D p Llaoox ™ () uo + - + g™ (p) ur).  (2.4.16)
P
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Let X be a proper toric variety over K defined by a fan that is compatible with A;,
i=0,...,n, and let Dy be the toric metrized divisor on X associated to mg and o as

in (2.4.4). Given a point p € T/ (K), we deduce from (2.4.5) that

(a0, 0x™°(p) uo + -+ - + a0, X" (p) ur) = h (p)- (2.4.17)

By Proposition 2.4.2, the toric metrized divisor is semipositive and generated by
small sections. In particular, it is nef. Similarly as in (2.4.8), we also get from Proposi-
tion 2.4.2 that the v-adic roof functions of Dy satisfy Y, con 1y max g, = ¢(ay). Hence,
Corollary 2.4.8 implies that

Z Hp hﬁo (p) < Zé(az) MV(A(), PN ,Aifl, AiJr]_, ey An) (2418)
P i=0
The statement follows then from (2.4.16), (2.4.17) and (2.4.18). O

Given a 0-dimensional variety in (KX )", a way of representing this variety in terms
of a family of univariate polynomials is given by the shape lemma. The following is a
simple instance of this result.

Lemma 2.4.15. Assume that W is a 0-dimensional variety in (KX)” defined over K.

Then, there exist polynomials h, go, ..., gr € K[t] such that

W ={(g1(t)/g0(t),---,9-(£)/g0(t)) € (K)" |t € K, h(t) =0},
and deg(g;) < deg(h) < #W, for every j =0,...,r.

This kind of parametrizations can be tracked back to Kronecker when he introduced
parametric representations of equidimensional varieties. It has since been a vast research
subject in computational algebra, and are commonly known as rational univariate
representations, or geometric representations in the case of varieties of any dimension.
In particular, we highlight the approaches of Giusti and Heintz [36] Rouillier [72], and
Krick, Pardo and Sombra [45] for their relation to u-resultants.

The usual assumption on the shape lemma is that there is some coordinate that
“distinguishes points”. That is, there is a projection to some coordinate such that any
two distinct points of W take different values under this projection. Nevertheless one
can always impose a linear separating condition. For A € (K)" \ {0}, define the linear
map Ly(x) = \ix1 + - - - + A\px,. Then, the polynomial

L) = JI (Lalx)-La(z")
x,x' €W
TH#x’
is of bounded degree. Hence, there is a linear map that separates points.
The following is a proof of the Shape lemma (Lemma 2.4.15).
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Proof. Fix the embedding (KX)T — Pk, (¢1,--.,¢) = (L:q1:---:¢q), and a vector
A € (K*)" separating points of W. We then can take the polynomials of a rational
univariate representation of W to be, for t € KX,

h(t) = Res(W)(1,t A1, ..., t\);

9 Res(W) (2.4.19)

gi(t) = 50 (Lt A1, ...,tA), forj=0,...,n.
J

Notice that, since W < (K™)" is reduced, every w € (K*)"*! such that Res(W)(u) = 0
determines a point (aféeifb(()m(u) Dol 8%67151&%(@) in W. The fact that Ly(x) # La(z)
for any two distinct points @, ' € W, implies that one can simply take u ranging through

a line as in (2.4.19). O

To deal with multiplicities (and henceforth 0-cycles), one could formally codify this
information in h, the multiplicity of the point in W being the one of its corresponding
value t. This is however not the point of interest of geometric representations, and we
continue considering varieties below.

It is our purpose to apply Theorem 2.4.14 to derive upper bounds on the logarithmic
length of a such rational univariate representation of a 0-dimensional variety arising from
a polynomial system.

Corollary 2.4.16. Let fi,...,f, € K[z, ...,zF], m € (Z") and & € (K*)7,
with r > 0. Let

B (KX)" — (KX

g (dlpmla s ad'r‘pmr)’
Fori=1,...,n, let A; C Mg be the Newton polytope of f;, and a; the vector of nonzero
coefficients of fi. Set Ag = conv(0,my,...,m,) CR", and ag = (1,a1,...,G&).

Then there is a rational univariate representation of @«(Z(f1,..., fn)), such that the
logarithmic length of h, go, ..., gr is bounded above by

0(h) <> MVzn (Ao, Aim, A, A) Uay) + 5 MVze (A, Ay);
i=0
and, for j =0,...,r,

f(gj) < log (MVZn (Al, ceey An)) + Z MVzn (AQ, VAV EES Ai+17 Ce ,An) f(al)
i=0
+ K (MVZn(Al, c. 7An));
where k is a constant depending on the coefficients of the linear separating condition, and

can always be taken k < log (MVzn(Ay,...,Ay)). In particular, if the projection to a
coordinate is already a separating condition, k = 0.
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Proof. Let W = @.(Z(f1,..., fn))g- First, notice that for 7 = 1 no separating condition
is needed. For r > 1, since L£(A) is of degree at most (#;V ), one can always choose a
linear separating condition Ly with a A € K"\ {0} such that

k =L4(Ly) <log(#W) <log (MVzn(A1,...,Ap)); (2.4.20)

where the last inequality follows from the classical Bernstein-Kusnirenko, see Theo-
rem2.2.10.

Set mg = (1,mq,...,m,), and fix the natural embedding ¢: (Q*)" — Py, given by
(qg1y---,qr) — (1 :q1:--+:q). Then the monomial map associated to my and ay as
in (2.3.16),is ¢ =10 P.

Take h, go,...,g9r € K[t] as in (2.4.19), with Ly chosen as above. Since the length is
submultiplicative, and ¢(Ly) = k, we have

Uh() < Y w+ E(Res(eu(Z(frs -, f)))-

qew

By applying Theorem 2.4.14, we obtain the inequality in the statement for h.
Fix 7=0,...,r. Fort € @X, following the notations in Definition 2.4.13 (and setting
qo = 1 for every g for a compact expression), we have

0 ReS(QO*(Z(fh REE] fn)))(
auj

uo,)\lul,...,)\nun) = Z )\jq;- H (1+)\1q1u1+---+)\TqruT).
qew qew
q#q

For every q’, we have the following inequality of lengths

z(qu;. T (+ Mg+ + )\Tq,,u,,)> < E(Res(cp*(Z(fl, ooy fo)) (w0, M, - <. ,)\rur)>.
qew
a#q’

Hence, we can derive

gi(8) <€ 2 Res(pu(Z(frr- - a))) < U(#W Res(pu(Z(fr, - ).

qew

By the classical Bernstein-Kusnirenko, the submultiplicity of the length, and Theo-
rem 2.4.14, we obtain the inequality in the statement for g;. O



Compte rendu

Le sujet de cette these s’inscrit dans la géométrie arithmétique, avec un fort lien avec la
géométrie torique. Dans son sein, on revoit la théorie d’intersection, tant géométrique
comme arithmétique. Ceci nous permet d’obtenir des computations précises sur deux
concepts fortement liés qui jouent les roles principaux dans ce manuscrit : la torsion et la
hauteur de certaines variétés.

Le travail ici présenté a été divisé en deux chapitres indépendants. Le premier est
dédié a ’analyse de la torsion dans des sous-variétés du tore et des variétés abéliennes,
et le déuxieme concerne ’étude de la hauteur de O-cycles de variétés toriques. Afin
de respecter cette partition, on la reproduit ci-dessous, en présentant les deux parties
séparément :

Bornes explicites pour la conjecture de Manin-Mumford

Le point de départ de la premiere partie de cette theése est la question suivante, posée
indépendamment par Manin et Mumford, et présentée par Lang dans [47]: Si une courbe,
plongée dans sa jacobienne, contient une infinité de points d’ordre fini, est-ce courbe de
genre 12 Motivé par cette question, Lang étendit cette question dans [48, page 220], ou
il formula la conjecture de Manin-Mumford sous la forme suivante :

Soit G un tore ou une variété abélienne en caractéristique 0. Soit V une
sous-variété de G contenant une infinité de points de torsion de G. Alors V
ne contient qu’un nombre fini de translatés de sous-groupes algébriques de G
qui contiennent tous, sauf un nombre fini, les points de torsion dans V.

Ici, Lang appela tore le groupe multiplicatif complexe G}, = (C*)™ muni de la multipli-
cation coordonnée par coordonnée (on donnera plus de détails ci-dessous).

Dans I’énoncé de la conjecture, on peut remplacer les « translatés de sous-groupes
algébriques » par translatés de sous-groupes algébriques irréductibles de G par un point
de torsion; ceux-la équivalent aux classes d’un point de torsion suivant un sous-groupe
algébrique irreductible de G. Pour alléger la notation, on les appellera classes de torsion,
par analogie a la terminologie anglaise « torsion coset ». En particulier, remarquons que
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les points de torsion sont classes de torsion en prenant le sous-groupe trivial. Alors, la
conjecture de Manin-Mumford peut étre reformulée comme il suit :

Conjecture (Manin-Mumford). Soit G = G}, ou une variété abélienne en caractéris-
tiqgue 0. Soit V' une sous-variété de G, la cloture de Zariski dans G des points de torsion
de V' est l'union finie de classes de torsion.

Dans le cas ou G est un tore, la conjecture fut prouvée par Ihara, Serre et Tate quand
V est une courbe [48, §8.6], et Laurent pour V une variété quelconque [51]. Néanmoins,
elle pouvait déja étre déduite des résultats précédents de Mann [56]. Son analogue abélien
fut prouvé par Raynaud [68,69]. De plus, Hindry prouva que la conjecture est aussi vraie
dans le cas que 'on remplace G par un groupe algébrique commutative quelconque [41].

Depuis que la conjecture de Manin-Mumford fut prouvée, I'intérét changea partielle-
ment au probléeme de borner (de fagon explicite et effective) le nombre de classes de
torsion dans V. Plus précisément, en ordonnant ces classes de torsion par inclusion, on
obtient une notion de maximalité des classes de torsion dans V'; ainsi, le but est de borner
le nombre de classes de torsion maximales dans V', et déterminer de quoi dépend une
telle borne.

Soit V' une sous-variété de GG, pas nécessairement irréductible, on note V;ors I’ensemble
des points de torsion dans V, et on appelle sous-variété de torsion de V sa cloture de
Zariski dans G :

Wors =Vn G1tors-

Par la conjecture de Manin-Mumford (théorémes de Laurent et Raynaud respec-
tivement) on a que Viors est 'union d'une famille finie de classes de torsion de G. En
particulier, on remarque qu’une sous-variété irréductible est de torsion si et seulement
s’il s’agit d’une classe de torsion de G. D’apres la conjecture de Manin-Mumford, et en
considérant que les classes de torsion maximales dans V| il existe un nombre N (V) € N
tel que 'on peut écrire:

N(V)
Viors = U Hja
j=1
ou H; est une classe de torsion maximale dans V, pour tout j = 1,...,N(V). Dans la

suite, le but est de trouver une borne tant pour N (V) comme pour le degré de toute
classe de torsion maximale dans V.

Les résultats dans le premier chapitre de cette these proposent des nouvelles bornes
pour le nombre de classes de torsion maximales dans une sous-variété, tant du tore
comme d’une variété abélienne définie sur un corps de nombres. Dans une premiere
instance, on présente le travail [57] dans lequel on prouve des bornes fines pour le nombre
de classes de torsion d’une sous-variété d’un tore, et démontre les conjectures de Ruppert
et Aliev-Smyth sur le nombre de points de torsion isolés contenus dans une hypersurface.
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Dans un deuxiéme temps, on présente un travail en commun avec Aurélien Galateau qui
propose des bornes analogues pour sous-variétés de variétés abéliennes définies sur un
corps de nombres.

Dans la suite, on traite de fagon indépendante le cas torique et le cas abélien.

Le cas du tore

Soit G2, = (C*)™ le groupe multiplicatif complexe de dimension n. On identifie G}, avec
I'ouvert de Zariski de I'espace affine Ag :

{($1,...,xn)€A6|$1"'£L‘n7&0},

avec la multiplication coordonné par coordonné habituelle:

(@1, @) - (Y1, -+ 0n) = (T1Y1, - - Tn)-

Dans la suite, on notera simplement par  un point (z1,...,z,) € GJ;. En particulier,

1 = (1,...,1) représente I’élément unité du groupe G}. De plus, étant donnés un

sous-ensemble S C G} et un point € G}, on étend 'opération ci-dessus et note par

x-S (ou simplement xS) la translation de S par x; c’est-a-dire, x-S ={x---y |y € S}.
Un point de torsion de G}, est un n-uplet de racines de I'unité. On note par:

we=1{Ce Gy | M =1}

le sous-groupe de Gy, des racines k-iemes de 'unité. Alors:

pr = ()" et p=J wi
keN>o
représentent, respectivement, le sous-groupe de G}, des points de torsion d’ordre k, et le
sous-groupe de G}, des points de torsion.

Un sous-tore H C G}, est un sous-groupe algébrique irréductible de GJ;. 1l est
isomorphe (et tant que groupe algébrique) a G, pour un certain 0 < r < n, et les points
de torsion de Gj, sont Zariski denses dans tout sous-tore. Une classe de torsion de G},
est donc un translaté w - H, ou H est un sous-tore de G} et w € ul est un point de
torsion de GJ,,.

Supposons que V est définie sur un corps de nombres K par des polynémes de degré
au plus ¢ et de hauteur au plus . Comme conséquence de la preuve de Laurent [51],
on peut borner N (V') en termes de n,d,n et [K : Q]. Néanmoins, le résultat prouvé par
Laurent est un cas particulier de la conjecture de Mordel-Lang qui est plus générale
que ce que 'on considére ici; cela lui fit utiliser une version non-effective du théoréeme
des sous-espaces de Schmidt, qui rendit non-effective aussi sa borne pour N (V). Plus
tard, Bombieri et Zannier [9], suivant les travaux de Zhang dans [86], démontrérent que



106 Sommaire

tant NV (V') comme le degré des classes de torsion maximales dans V' peuvent étre bornés
seulement en fonction de n et 4.

Il est possible de construire un exemple simple qui permet d’illustrer qu’une borne
uniforme pour N (V') doit toujours dépendre tant de n comme de . Soit:

f(ml,...,xn):n—x‘f—---—xiEQ[xl,...,xn],

et V C G}, I'hypersurface définie par les zéros de f, qui est de degré 6. Les solutions en
racines de I'unité de f = 0 sont les n-uplets de racines J-iemes de I'unité, qui correspondent
aux classes de torsion maximales dans V. Ainsi, on obtient:

Viors = Viors = pg et N(V) = #uy ="

Parallelement au résultat de Bombieri et Zannier, Schlickewei [76] continua les travaux
de Mann [56], Conway et Jones [26], et al.; donnant une borne supérieure au nombre de
solutions en racines de 1'unité pour une équation linéaire (qui ne dépend que du nombre
de variables). Ce résultat fut donc utilisé par Schmidt [77] pour donner une preuve
alternative du fait que NV (V) et le degré des classes de torsion maximales dans V peut
étre borné en terme de n et d.

En combinant les techniques de Schmidt avec les améliorations faites par Evertse [31]
du résultat de Schlickewei, pour tout sous-variété V de G}, définie par des polynémes de
degré au plus 6, on a:

3("?)°
n+ 5)

N(V) < <115>"2< 5

Les résultats de Mann [56], Conway et Jones [26], et plus récemment Dvornicich-
Zannier [30] sur les sous-sommes annulatrices d’un systéme de relations linéaires de
racines de l'unité permettent d’obtenir diverses algorithmes pour obtenir les classes
de torsion maximales d’une sous-variété de G}. La preuve de Sarnak et Adams [74]
de la conjecture de Manin-Mumford torique est une conséquence d’un résultat de ce
style, loc. cit. Lemma 3.1 qui leur fut proposé par Cohen, ce qui rendit leur preuve
algorithmique.

En outre, Ruppert considéra dans [73] le probléme d’une courbe irréductible C' dans
G qui n’est pas de torsion. En plongeant G?, — (P1)", il nota (di, ..., d,) le multi-degré
de C, ou d; > 0 pour tout 7, et prouva que le nombre de points de torsion dans C' est
toujours inférieur a:

22 miin(di) miax(di).

En fait, il commenga en considérant le cas des courbes planes (alors n = 2) et obtint que
le nombre de points de torsion dans C' peut étre majoré par la borne plus fine suivant :

#Ctors < 22 d1d2 - 2d1 - 2d2.
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En dimension supérieure, 'approche de Ruppert ne s’étendit que pour des variétés
particulieres. Cependant, il fit un étude extensif qui lui porta a formuler la conjecture

suivante :

Conjecture (Ruppert). Soit f € Clxy,...,z,] un polynome de multi-degré (dy, ..., dy),
ot di > 0 pour tout i. Le nombre de points de torsion de Uhypersurface Z(f) C G},
définie par les zéros de f peut étre borné par c, dy - --d,, ou c, est une constante qui ne

dépend que de n.

Ici, Ruppert appela points de torsion isolés les points de torsion qui ne sont pas
contenus dans une composante de dimension positive de la sous-variété de torsion. Ils
coincident avec les classes de torsion maximales de dimension 0.

Plus tard, Beukers et Smyth [5] reconsidérerent ce probleme pour les courbes dans GJl,.
Soit f € Clz,y], le polytope de Newton de f est I'enveloppe convexe dans R? des exposants
qui apparaissent dans I’expression monomiale de f. Cela permit a Beukers et Smyth
de raffiner la borne de Ruppert, en donnant une en termes du volume du polytope de
Newton du polyndéme définissant la courbe plane. Tout d’abord, ils prouverent que toute
paire de racines de I'unité est un zéro de f si et seulement si elle ’est aussi d’un des

polyndmes suivants :

_ 2,2
filay) = foay), DO =IEE)
o N f5($7y)_f( =,y )7
fQ(J"ay)_f(x’ y)a _ 2 .2
folwy) = f—z,—y), 1O =T =8,
’ ’ ’ f7(l‘ay) = f(_xz’ _yQ)
Les exposants des monémes de f1,..., f3 et f4,..., fr sont, respectivement, ceux de f

et une homothétie de rapport 2 de ceux de f. Alors, par le théoreme de Bernstein-
Kusnirenko (analogue torique du théoréme de Bézout, Theorem 2.2.10) Beukers et Smyth
obtint que le nombre de points de torsion (isolés) de C' est borné par:

22 VO]Q(A),

ou A est le polytope de Newton de f, et voly est le volume associé a la mesure de
Lebesgue de R2.

Ces résultat porta Aliev et Smyth & énoncer dans [1] la conjecture suivante qui
généralise la conjecture de Ruppert:

Conjecture (Aliev-Smyth). Soit f € Clz1,...,x,]| un polynome non-nul. Le nombre de
points de torsion de Uhypersurface Z(f) C G, définie par les zéros de f peut étre borné
par ¢, vol,(A), ot ¢, est une constante qui ne dépend que de n, A est le polytope de
Newton de f, et vol, est le volume associé da la mesure de Lebesque de R™.



108 Sommaire

Le fait que cette conjecture entraine celle de Ruppert suit d’une simple observation.
Soit f € C[xy,...,zy] un polynéme de multi-degré (di,...,dy,), ou d; > 0 pour tout i;
alors les exposants de ses monoémes sont contenus dans une boite [[i_[0, d;]. En particulier,
le polytope de Newton A de f est contenu dans cette boite, et :

n
vol,(A) < vol, (H[O, dl]) =dy--d,.
i=0
Soit f € Clx1,...,zy] un polynéme de degré § > 0, les deux conjectures impliquent
que le nombre de points de torsion isolés de Z(f) est borné supérieurement par:

cn 0" (1)

ou ¢, est une constante qui ne dépend que de n. D’ailleurs, pour j = 0,...,n — 1,
Ruppert montra [73, Corollary 11] que la borne (1) implique que le degré de la partie
j-équidimensionnelle de Z(f)iors est borné supérieurement par cnvjénfj, ol ¢, ; est une
constante qui ne dépend que de n et j.

Aliev et Smyth se proposerent de démontrer (1) dans [1]. Pour cela, ils étendit
I’algorithme de Beukers et Smyth & dimensions supérieures, et prouveérent une borne qui

reste loin de celle conjecturé. Soit f € Clxy,...,x,] un polynéme de degré § > 0, ils
obtint :

N(Z(f)) < ri(n)o=0); (2)
ou:

k1(n) = 3@ et ho(n,0) = %(495%2 —n—9).

Pour représentations lacunaires de polynémes, Leroux [53] donna un algorithme pour
obtenir les classes de torsion maximales dans une sous-variété V C G},. Comme une
conséquence de ses résultats, si V est définie par k polynémes dans Q[z1, ..., x,]| avec au
plus r coefficients non-nuls, alors on a la borne suivante :

N (V) < (r)*exp (3(71 + 1)/ kr log(kr)).

En restreignant cette borne au cas de polynémes denses, on a une valeur comparable a
celle de Aliev et Smyth (2).

Des bornes plus fines peuvent se déduire comme une conséquence de ’étude de la
hauteur de Weil logarithmique dans G},,. En effet, les points de hauteur zéro correspondent
au points de torsion. C’est ainsi que les bornes supérieures pour le nombre de points
(isolés) de hauteurs « assez petite » impliquent automatiquement des bornes pour le
nombre de points (isolés) de torsion. Suivant ce processus, soit V' une sous-variété de GI,
définie par des polynémes de degré au plus 9, les résultats de David et Philippon [28],
Rémond [70] et al. entrainent des bornes supérieures pour le nombre de classes de torsion
maximales dans V qui sont polynoémiales en §. On souligne le résultat suivant, obtenu
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par Amoroso et Viada [2, Corollary 5.4], qui est une conséquence de leur étude sur le
minimum essentiel d'une sous-variété de G}, :

deg(Viy) < (6(2000° log(n26) "0 =0, dim(V);

ol Vtz)m représente 1'union de toutes les classes de torsion maximales dans V' qui sont de
dimension j, et k est la codimension de V' dans G}. En particulier, quand V est une
hypersurface dans G, la valeur § peut étre prise comme le degré de V; alors le nombre
de points de torsion isolés dans V' est borné supérieurement par :

#Viors < 07(200n° log(n?6))" "~ V".

On remarque que cette borne est la valeur attendue dans (1) & un facteur logarithmique
pres.

Dans cette premiere partie de la theése (§1.1) on se propose de démontrer tant la
conjecture de Ruppert comme celle de Aliev-Smyth. Le plan suivi peut étre divisé dans
les quatre pas suivants:

1. On étend l'argument pour courbes planes de Beukers et Smyth dans [5] qui s’étend
a toute sous-variété irréductible de dimension positive dans GJ.,, n > 1.

2. On utilise un argument d’interpolation avec des bornes supérieures et inférieures
de la fonction de Hilbert de fagon similaire & Amoroso et Viada [2] pour obtenir
une « hypersurface obstructrice ».

3. On applique la technique de double induction de Viada dans [2] pour remplacer
I'intersection simple par le théoreme de Bézout. Cela nous permet déja d’obtenir la
borne préliminaire en fonction du degré indiqué dans (1) et en déduire la conjecture
de Ruppert.

4. On implémente un résultat sur les ellipsoides dans des espaces métriques di a
John [43] pour «traduire » la borne (1) en termes de degré et volume associés a
polytopes convexes. Ce nous permet de démontrer la conjecture de Aliev-Smyth.

Pour le premier pas, on suit le résultat de Beukers et Smyth [5] et on démontre son
analogue géométrique pour des sous-variétés irréductibles qui ne sont pas de torsion :

Proposition. Soit V C G}, une sous-variété de dimension positive telle que Viprs # V.
Il existe une sous-variété V' C Gl équidimensionnelle et de méme dimension que V, qui
est définie a partir de 'V, telle que:

Vies CV AV C V.
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La construction de cette variété V' dépend du corps de définition de V : si V n’est
pas défini sur Q?P, le résultat correspond & Proposition 1.2.4; autrement, il équivaut
a Proposition 1.2.6. Leur preuves s’appuyerent fortement sur le fait que les points de
torsion, étant des n-uplets de racines de 'unité, sont définis sur des corps cyclotomiques;
ainsi leur groupes de Galois sont bien connus. Dans Proposition 1.2.4 et Lemma 1.2.5,
on trouve donc une famille d’automorphismes de Galois desquels on connait 'action sur
les points de torsion et sur le corps de définition de V, ce qui nous permet de donner une
description de la variété V'’ dans la proposition ci-dessus.

Dans le deuxieme pas, on utilise les bornes supérieur et inférieur pour la fonction de
Hilbert dues & Chardin [23], et Chardin et Philippon [24], respectivement. Cela nous
permet de construire une hypersurface obstructrice a partir de la sous-variété V’ du
résultat précédent. On prouve ainsi Theorem 1.2.16, qui est comme il suit:

Théoréeme. Soit V C G}l une sous-variété de dimension positive qui est définie par des
polynomes de degré au plus § > 0, telle que Viors # V. 1l existe une hypersurface Z C G},
de degré § a facteur multiplicatif prés qui ne dépend que de n, telle que:

Vies CVNZCV.

Dans le troisieme pas, on intersecte récursivement avec des hypersurfaces du théoreme
ci-dessus. Pour éviter un incrément exponentiel du degré de l'intersection, on suit
Papproche de Amoroso et Viada [2]. Leur techniques nous permettent d’obtenir notre
premier résultat principal, Theorem 1.2.18:

Théoréeme A. Soit V C G}, une variété de dimension d > 0 définie par des polyndomes

de degré au plus §, et soit V?  Uunion des classes de torsion mazimales dans V de

tors
dimension j, pour j =0,...,d. Alors:

deg(Vj

tors

) < Cn,j 571*]'7

0il ey = (20— 1)(n — 1)(22 + 271 2))"d.

De ce résultat, on peut déja déduire la conjecture de Ruppert en passant par des
homomorphismes de groupes algébriques (Corollary 1.2.19). Néanmoins, on a besoin
d’un outil de plus pour prouver la conjecture d’Aliev-Smyth.

Dans le dernier pas, on introduit la notion de degré relatif a un polytope convexe
A C R" de sommets entiers. Soit W C GJ une variété de dimension d, on définit

dega (W) ::#(WﬁZ1ﬂ~--ﬁZd);

ou les Z;’s sont des hypersurfaces génériques définies par des polyndmes avec polytope
de Newton A. Alors, dans Proposition 1.2.21, & partir d’un résultat de John [43], on
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obtient un moyen de comparer asymptotiquement le volume du polytope de Newton
d’un polynéme avec son degré. Cela nous suffit pour passer du théoréme A au deuxiéme
résultat principal, Theorem 1.2.23:

Théoreme B. Soit A C R"™ un polytope convexe de sommets entiers. Soit V. .C G
une sous-variété de dimension d > 0 définie par des polynomes avec polytope de Newton
contenu dans A. Alors:

dega (Vigys) < Enj voln(A);

(n=1)(n—7)
0il &5 = 2wt (20 — 1)(n — 1)(22 + 21 - 2)) ’

volume de la n-spheére.

avec w, représentant le

Soit f € C[x1,...,zy] un polynéme de multi-degré (dy,...,dy), ou d; > 0 pour tout i;
si on prend A = [[*4[0, d;], le théoréeme B implique la conjecture de Ruppert. De plus,
prenant A le polytope de Newton de f, on prouve la conjecture de Aliev-Smyth.

Le cas des variétés abéliennes

La conjecture de Manin-Mumford est plus connue dans sa formulation abélienne. Les
points de torsion de A, sont éléments d’ordre fini par rapport a la loi de groupe additive
de A. Pour un entier k > 0, on note A[k] le groupe des points de torsion d’ordre divisant k.
Il est isomorphe & (Z/kZ)?9, ot g est la dimension de A. On note:

Ators - U A[k]
k>0

le groupe de torsion de A. Les sous-groupes algébriques de A sont les sous-variétés
abéliennes de A, et les points de torsion sont Zariski denses dans toute sous-variété
abélienne. Une classe de torsion de A est donc un translaté P+ B ={P+ Q | Q € B},
ou B est une sous-variété abélienne de A et P € A5 €st un point de torsion.

A cause de la structure plus complexe des points de torsion de A, et leur corps
de définition, les bornes explicites pour la conjecture de Manin-Mumford sont moins
proliferes dans la littérature que ces analogues toriques. Pour le cas d’une courbe C
de genre g > 2 plongée dans sa jacobienne J(C'), des bornes supérieures pour #Ciors
furent étudiés par Raynaud [68], Coleman [25], et Hindry [40]. En utilisant p-jets, et
sous certaines conditions de ramification en un nombre premier p > 2g + 1, Buium [15]
prouva :

#Chors < g'p"3%(p(2g — 2) + 6g),

répondant a une question qui fut posée par Mazur [60, page 234] sur une expression que
en termes de g d’une telle borne uniforme.

Soit A une variété abélienne complexe de dimension g, fixons un plongement A — P™
de fagon que 'on identifie toute sous-variété de A avec son image dans P". Cela nous
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permet de considérer le degré d’une sous-variété de A comme le degré usuel dans P". Dans
la suite, quand on dira qu'une constante dépend de A, elle peut dépendre implicitement
du choix du plongement.

L’approche d’Hindry dans [41] donna une borne effective (& une constante pres qui est
liée aux réprésentations galoisiennes), mais il est difficile de la rendre explicite pour toute
sous-variété. Soit V' C A une sous-variété, Bombieri et Zannier prouverent dans [10]
qu’il est possible de borner le nombre de classes de torsion maximales dans V par une
constante qui ne dépend que de A et du degré de V. Il faut préciser que la dépendance
en A ne fut pas éclaircie.

Par des nouvelles méthodes modele-théoriques, Hrushovski [42] borna le nombre de
classes de torsion maximales dans V par:

c deg(V)°, (3)

ou ¢ et e ne dépendent que de A. En effet, elles sont doublement exponentielles en
parametres provenant de A.

Soit V' une sous-variété de A, les résultats dans le cas torique sur la dépendance
du degré de V' d’une borne pour N (V) motivent la question si ¢’est possible améliorer
Iexposant e dans (3), incrémentant potentiellement la constante c. En particulier, on
pourrait attendre une borne du type de celle du théoréme A; c’est-a-dire, si V' est définie
dans P™ par des polynémes de degré au plus 0, existe-t-il une constante c4 ne dépendant
que de A telle que

NV)<cad™? (4)

Dans la deuxiéme partie du premier chapitre (§1.3) on se propose de démontrer (4)
quand la variété abélienne est définie sur un corps de nombres. La stratégie de ce preuve
est similaire a celle suivie dans le cas torique, le plan de laquelle on peut diviser en trois
étapes:

1. On étudie 'action de Galois sur la torsion de A a travers des représentations
galoisiennes attachées a A, afin d’en extraire de 'information géométrique sur les
points de torsion. Depuis ces résultats, on déduit une borne pour le nombre de
points de torsion d’une courbe de genre plus grand que 2 contenue dans une variété
abélienne quelconque.

2. On utilise un argument d’interpolation dans P", relative a l'inclusion V' C A, avec
des bornes supérieures et inférieures de la fonction de Hilbert.

3. On applique une version abélienne de la double induction de Viada [2] qui nous
permet démontrer (4).

Tout d’abord, fixons K un corps de nombres « assez grand » tel que A est définie
sur K. Par un résultat de Bogomolov [7] en suite amélioré par Serre [80], il existe
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une constante ¢ € Ny qui n’est pas connue effective, tel que pour tout point de
torsion P € Atqs et tout entier £ > 0 premier a l'ordre de P, il existe un automorphisme
du groupe de Galois absolu o € Gal(K/K) tel que:

k€ times

O-— LY
PP=P+. 1P, (5)

Ce fait clé nous permet de contréler certains éléments du groupe de Galois de K(A[m])
sur K, pour m > 1, dans Propositions 1.3.4, 1.3.7 et 1.3.8:

Proposition. Soit V C A une sous-variété irréductible de dimension positive telle que
Viors # V. Il existe une sous-variété V' C A équidimensionnelle de méme dimension que
V' qui est définie a partir de V' et telle que :

Vies CV NV C V.

La construction de cette variété V' dépend du corps de définition de V', et suit d’une
famille d’automorphismes du groupe de Galois absolue desquels on connait l'action sur
une partie des points de torsion et le corps de définition de V. Du fait que cette variété
V' est construite a partir de V' de maniere explicite, on peut calculer le degré de V', qui
est celui de V' a un facteur multiplicatif constant pres ne dépendant que de la dimension
de la variété abélienne et de la constante ¢ de (5). Ce controle du degré nous permet de
donner un premier résultat partial :

Théoréme. Soit C C A une courbe algébrique irréductible de genre plus grand que 2, et
soit g = dim(A). Alors

# Crors < (249720 +220%1 — 1) deg(C)*.

Dans le deuxieme pas, on utilise les bornes supérieur et inférieur pour la fonction de
Hilbert dus a Chardin [23], et Chardin et Philippon [24], respectivement; nous permettant
construire, en Proposition 1.3.13, une hypersurface de P obstructrice a partir de la
sous-variété V' de la proposition précédente.

Proposition. Soit V C GJ}, une sous-variété de dimension positive qui est définie par
des polynomes de degré au plus § > 0, telle que Viors # V. Il existe une hypersurface
Z C G}, de degré § a facteur multiplicatif prés qui ne dépend que de A, telle que :

Vies CVNZCV.

Dans le troisieme pas, on adapte au cas abélien I'approche d’Amoroso et Viada [2] et on
applique une double induction utilisant I’hypersurface obstructrice dans P™ obtenue dans
la proposition ci-dessus. Notre résultat principal pour la conjecture de Manin-Mumford
abélienne, Theorem 1.3.14, est le suivant :
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Théoréme C. Soit A une variété abélienne de dimension g définie sur un corps de
nombres. Soit V. C A une sous-variété de dimension d > 0 définie dans P" par des
polynémes de degré au plus 3, et soit V. . l'union des classes de torsion maximales dans

V de dimension j, pour j =0,...,d. Alors:
deg(Viy,) < ca; 8777,

(9—7)

d
ot caj = (2204495620 4 22%046)(29 — 1)(n — 1)) deg(A).

On souligne que cette borne est effective a une constante preés qui n’est pas encore con-
nue. Néanmoins, cette constant fut conjecturée par Lang d’étre 1 pour des points d’ordre
« assez grands », et toute borne effective pour c rendrait aussi effectif le théoreme (C).

Théoreme de Bernstein-Kusnirenko arithmétique

Dans la deuxiéme partie de cette theése, on s’intéresse a 'arithmétique des variétés
toriques. Les fondations pour 1’étude des variétés toriques fut mis en place dans les
années 1970’s par des travaux indépendants de Demazure [29], Kempf, Knudsen, Mumford
et Saint-Donat [44], Miyake et Oda [64], et Satake [75]. Etant fixé un corps K et un
tore algébrique T sur K, une variété torique est une variété algébrique X qui contient T,
de sorte que l'action de T sur elle méme (par translation) s’étend a X. Pour simplifier
la notation, on choisit de présenter ici les travaux dans le cas que le tore est le groupe
multiplicatif (K*)™. Néanmoins, les résultats dans la suite peuvent étre exprimés dans le
cas d’un tore algébrique quelconque et sont ainsi présentés dans le chapitre 2.

L’étude des variétés toriques est fortement motivé par son aspect combinatoire. En
effet, les variétés toriques sont en correspondance un-a-un avec des éventails, qui équivalent
a une collection de cones avec certes conditions d’admissibilité. Cette relation a permis,
et continue & permettre, le développement d’un « dictionnaire » extensive et profond qui
relis les propriétés des variétés toriques du point de vu de la géométrie algébrique et les
propriétés des éventails et polytopes du point de vue de la géométrie convexe.

A continuation, on présente un exemple intéressant qui illustre 'utilité de ces relations,
et qui nous servira aussi comme motivation pour notre étude arithmétique dans la suite.
Le théoreme de Bernstein-Kusnirenko permet de borner le nombre de solutions isolées
d’un systeme de polynémes de Laurent en termes du volume mixte de leurs polytopes de

Newton.
Théoréme (Bernstein-Kusnirenko). Soit f1,..., fn € K[ajfcl, oo,z une famille de
polynomes de Laurent, et Ay, ..., A, CR"™ leurs polytopes de Newton respectives, on a :

deg(Z(f1,.--, [n)) S MV, (Aq,...,Ay); (6)
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ot Z(fi,..., fn) est le zéro cycle de (K*)™ donné par les solutions du systéme d’équations
polynomiales f1 = --- = fr, = 0, et MV est le volume mixte qui est définit comme la

somme alterné :

MV, (AL A) =S (=)™ S voly(Ay, 4+ Ay), (7)

j=1 l§i1<“'<ij§n

ou vol, est le volume associé d la mesure de Lebesgue dans R™. De plus, l’inégalité
dans (6) est une égalité pour un choix de polyndmes générique.

Ce résultat, initié par Kusnirenko [46] et puis mis sous forme finale par Bernstein [4],
est aussi connu comme « théoreme BKK » afin de reconnaitre de méme les contributions
de Khovanskif.

En comparant le théoreme de Bernstein-Kusnirenko avec le théoréme de Bézout, on
remarque que le premier ne prend en compte que le degré des polyndémes, mais aussi la
distribution de tous les exposants qui apparaissent dans leurs expansions monémiales.
Ainsi, il s’agit d’un raffinement du théoreme de Bézout qui permet de déterminer quand
un systéeme polynomial a un petit nombre de solutions dans le tore. Dans l'intention
de relever la comparaison entre le théoreme de Bernstein-Kusnirenko et le théoréme de
Bézout, on propose I'exemple suivant.

Exemple. Soient d € Nyg et H € K*, considérons le systéme d’équations définit par les
polyndomes suivants

R +1 17 s
i — Ly — yeeey s =1,...,n.
fi=z; — Hzx{_| € K[z7 x], i=1 n (8)

n

Aprés un calcul simple, on peut vérifier que la borné pour le nombre de solutions dans
(K*)™ donné par le théoréme de Bernstein-Kusnirenko est égale d 1; et, effectivement,
(H,..., H1+d+"'+dn_1) est la seule solution de ce systéme dans le tore. Remarquons que
cette borne est beaucoup plus petite que le produit de leurs degrés, d™.

Le théoreme de Bernstein-Kusnirenko a eu un fort impact deés sa formulation. En
offrant une alternative plus simple pour traiter les systémes d’équations polynomiales, il
a nombreuses applications dans ce sens, par exemple en 'algébre computationelle [35,83].
En outre, il contribue aussi dans ’autre sens, fournissant par exemple une preuve de
I'inégalité d’Alexandrov-Fenchel (pour laquelle une approche directe avec des outils de
géométrie convexe est plutot difficile) par moyen de 'inégalité de Hodge, voir [84] et
Addendum 3 par Khovanskiidans [16]. D a son importance, il a inspiré un grand nombre
de généralisations, une bréve discussion la-dessus peut étre trouvé dans [83, Chapter 3].
On souligne le raffinement de Philippon et Sombra dans [67], ou ils prouvérent une borne
comme (6) en termes d’'un intégrale mixte de fonctions concaves. Ce résultat sert comme
premier précurseur d’une partie du travail présenté dans cette partie de la these.
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Quand K a une structure arithmétique, il est aussi d’intérét avoir un contrdle de la
hauteur ou complexité de la solution d’un tel systéeme d’équations polynémiales. La notion
de hauteur d’un point fut développée d’abord par Siegel, Northcott, Weil, et al. comme
un moyen de mesurer la « taille » d’un point, et c’est un outil essentiel dans la géométrie
diophantienne. En dimension supérieure, ce concept s’étend comme un analogue du
degré d’une variété qui mesure la complexité de sa représentation, par exemple via la
forme de Chow. Par conséquence, elle est aussi d’importance en géométrie algébrique et
algébre computationelle effective, notamment quand on considére des versions effectives
du théoreme des zéros [27,37,45]. Ce fait motive d’avantage une borne arithmétique du
type (6).

La notion de corps arithmétique que 1’on considére dans ce texte est celle d'un corps
adélique. On considere K un corps infini et 901 un ensemble de places, dont chaque place
v correspond a une paire constituée par une valeur absolue |- |, et un poids n, € Rsg. De
plus, on demande que pour chaque place v € 9, la valeur absolue | - |, soit archimédienne
ou associée & une valuation discréte non-triviale; et que pour tout élément o € K*,
|al, = 1 pour presque toute place v € 9. D’ailleurs, on considére aussi que (K, 9N)
satisfait la formule du produit, ¢’est-a-dire:

H log |a|yr = 1.
veEM

Exemples classiques de ces corps sont les corps de nombres, et le corps de fonction d’une

courbe.
Dans ce contexte, la hauteur canonique d'un point = (z1,...,z,) € (K*)™ est:
hmcan(x) = Z ny logmax{1, |z1]y,. .., |Tn|o}- (9)
veEM

En particulier, elle correspond a la hauteur de Weil dans le cas dont K est un corps
de nombres. Néanmoins, la définition formelle de hauteur est plus riche et permet de
considérer des hauteurs alternatives a celle canonique. Par exemple, on peut définir
une hauteur associé & un morphisme mondémial ¢ : (K*)" — (K*)" en prenant 'image
inverse de la hauteur canonique dans (K*)"; c’est & dire, pour tout élément x € (K*)",
on considere la hauteur donné par:

hv*mcan (:1’:) = hmcan ((70(93))

La considération de deux définitions de hauteur différentes peut changer la hauteur d’un
point de fagon bien évidente. Pour souligner ce fait, on reprend le point solution de
I’exemple précédent.

Exemple. Supposons que K = Q, fM = {premiers} U {0}, et H € Nsgy. La hauteur
canonique de p = (H, ..., HIFdH-+d"7) cgp

hgmen (@) = (L+d+---+d"") log H.
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Par contre, si on considére le morphisme ¢ : (K*)" — (K*)™ définit par (x1,...,x5) —
(xl,a:Qxl_d, . ,:cnx_iil), on obtient que la hauteur associé a ¢ de p est:
hso*o(l)can (p) = log H

On peut interpréter ce phénomene comme le fait que la complexité de la solution
d’un systeme d’équations dépend de sa représentation.

La motivation pour un théoreme de Bernstein-Kusnirenko arithmétique est de donner
une fagon de prévoir la hauteur des solutions d’un systéme de polyndémes de Laurent en
fonction de la structure monoémiale des polynémes et la fonction hauteur donnée. Pour
certaines hauteurs, Nesterenko [63] et Philippon [65] prouveérent analogues arithmétiques
au théoreme de Bézout. En utilisant la géométrie d’Arakelov, Falting [32], et Bost, Gillet
et Soulé [11] démontreérent versions complétes du théoreme de Bézout arithmétique. Pour
ce qui concerne le théoréeme de Bernstein-Kusnirenko, un premier résultat fut prouvé par
Maillot [55] dont il donna une borne pour les hauteurs canoniques associées aux divisors
toriques (qui sont généralisations des hauteurs canoniques considérées dans (9)), mais
ses bornes ne furent completement effectives. Un étude postérieur dans cette direction
fut fait par Sombra dans [82]. Plus récemment, Burgos, Philippon et Sombra [19] firent
une étude profonde de 'arithmétique des variétés toriques, dans lequel ils relierent des
propriétés arakeloviennes avec des propriétés de géométrie convexe, et aussi explorerent
les implications de ces relations.

Le Chapitre 2 est dédié a prouver un analogue du théoréme de Bernstein-Kusnirenko,
prenant comme point de départ, le travail de Burgos, Philippon et Sombra. Il est divisé
en trois sections:

1. D’abord, on fait un rappel des concepts et résultats de la théorie de l'intersection
et de la géométrie des variétés toriques qui nous seront utiles dans la suite. En
particulier, ceci nous permet de démontrer le théoréme de Bernstein-Kusnirenko
classique.

2. Dans la deuxiéme partie, on présente les objets arithmétiques essentiels dans la
suite : les corps adéliques et la hauteur. De plus, on introduit 'arithmétique des
variétés toriques a partir de [19].

3. Finalement, on démontre notre version du théoréeme de Bernstein-Kusnirenko
arithmétique, qui borne supérieurement la hauteurs d’'un systéme d’équations
polyndmiales. D’ailleurs, on fournit des exemples pour la finesse de cette borne et
on donne des applications d’intérét pour l'algebre computationelle.

Pour la premiére partie, on décrit de forme breve la géométrie des variétés toriques.
Principalement, on détail la correspondance entre diviseurs toriques et leurs analogues
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en géométrie convexe: polytopes convexes A dans R” et fonctions concaves, appelées
fonctions support de A:

UaA:R" — R, ur— miIAl<a:,u>.
S

Un point essentiel de cette correspondance est le fait que si D est un diviseur torique
d’une variété torique X et A C R™ est son polytope convexe associé, les sections globales
du fibré en droites sur X, O(D), sont données par :

IXx,0D)~ P K-z™ (10)
meANZ"
Apres un rappel de théorie de l'intersection, on donne une preuve du théoréeme de
Bernstein-Kusnirenko classique (Theorem 2.2.10). Cela détermine la stratégie que 'on
suivra dans la suite pour prouver 'analogue arithmétique.

Dans la deuxiéme partie, on commence en introduisant les corps adéliques et on
détaille une construction d’extension d’un corps adélique qui préserve la formule du
produit dans Proposition 2.3.6. A continuation, étant donné une variété normale X, on
donne la définition de hauteur locale d’'un zéro-cycle dans X associée a une métrique sur
un fibré en droites analytique, Definition 2.3.10. En rajoutant une notion de compatibilité
au long de toutes les places, on obtient une métrique adélique sur un diviseur D, qui
nous permet donner une définition de hauteur (globale) d’un zéro-cycle en ces termes,
Defintion 2.3.14. On note D un diviseur métrisé comme dans Définition 2.3.13, et h5(Y)
la hauteur d'un zéro cycle Y associé & D. Ensuite, on présente les outils nécessaires qui
nous permettent donner un équivalent arithmétique de la théorie d’intersection et définir
la hauteur de cycles de dimension positive, Definition 2.3.16. A partir de cette définition
on démontre un premier résultat dans la direction du Bernstein-Kusnirenko arithmétique,
Corollary 2.3.24, dont les définitions des objets qui interviennent se trouvent dans §2.2:

Corollaire. Soient Dy, ..., D, diviseurs métrisés semipositifs sur X, tels que Dq est nef
et D1,...,D, sont engendrés par sections petites. Soit s; une section globale D;-petite,
1=0,...,n. Alors:

0 <, (T[] div(ss)) <hp, 5, (X). (11)
=1

Dans le cas ot X est une variété torique, Burgos, Philippon et Sombra [19] donnérent
des correspondants en géométrie convexe aux concepts arithmétiques qui apparaissent
dans ce résultat. Ainsi, comme on détaille dans Proposition 2.3.28, soit D un diviseur
torique sur X et soit A C R" son polytope convexe associé:

e il y a une correspondance un-a-un entre les métriques adéliques toriques semiposi-
tives sur D, et les familles de fonctions concaves (¢),em sur R™, appelées fonctions
métriques, telles que |1, — WA | est borné et ¢, = U pour presque toute place v;
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e il y a une correspondance un-a-un entre les métrique adélique toriques semipositives
sur D, et les familles de fonctions concaves continues (¢, )yem sur A, appelées
fonctions toit, telles que ¢, = 0 pour presque toute place v.

De plus, les fonctions métriques et les fonctions toit sont duales I'une de I'autre par la
dualité de Legendre-Fenchel. Une métrique est dite canonique si elle est associé a la
famille de fonctions métriques {1, = Ua }yeom, ou de maniére équivalente, & la famille de
fonctions toit {9, = 0}yeom.

Ces équivalences permettent définir des hauteurs associés a diviseurs métrisés en
termes combinatoires. Un autre résultat de Burgos, Philippon et Sombra, permet calculer
la hauteur de la variété torique associé a une famille de n + 1 diviseurs métrisés en termes
d’une intégrale mixte, voir Theorem 2.3.31:

Théoréme. Soient D;, i =0, ...,n, diviseurs toriques métrisés semipositifs sur D, tels
que D1,...,D,, sont engendrés par des sections petites. Soit (V;)vem la famille de
fonctions toit associés a D;, i =0,...,n. Alors:
hp, 5, (X) = > e Mo, - - Unw), (12)
veEM

ot MI est l’intégrale mixte définie par:

n
MI(ﬂOﬂ” e ’19”7"1> - Z(_l)nij Z / ﬂio,’l} H..-H 192']'71} dxa

Jj=0 0<ip<-<i;<n Ai0+"'+Ai]_
ot «H » note la sup-convolution de fonctions concaves (on renvoie a Definition 2.3.30
pour les détails).

Dans la derniére partie de ce chapitre on démontre le résultat principale. Soit
fi,. ..y fn € KlzT'] une famille de polynémes de Laurent. On définie une variété torique
X telle que les polytopes de Newton des f;’s définissent des diviseurs toriques D; de X
le degré de laquelle est donné par le volume mixte de ces polytopes. Le théoréme de
Bernstein-Kusnirenko classique suit de la bijection (10) qui associe & chaque f; une
section globale de chaque O(D;), et d’'une inégalité du style (11) pour les degrés. La
stratégie est donc associer a chaque D; une métrique adélique torique semipositive telle
que les D;’s satisfont les conditions nécessaires pour utiliser (11) et (12). This is done in
Proposition 2.4.2 and Lemma 2.4.4.

Proposition. Soit f =37%_oa;x™ un polynéme de Laurent dans K[xz*!], et soit D le
diviseur torique d’une variété toriqgue compatible associé au polytope de Newton A de f.
Soit (¢ : R™ = R)y,econ une famille de fonctions définies, pour u € R™, comme :

—log (Z lovjl, e (myu) ) si v est archimédienne,
Yy(u) = =0

oréljhglr<mj’ u) — log |oj|,  autrement,

(13)
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et (¥y : A = R)yeom une famille de fonctions définies, pour x € A, comme :

,
|l . L
Al t archiméd
m}z\ix;] j og( y ) si v est archimédienne,
Yy(x) = 75 (14)
max Z Ajlog |y autrement,
7=0
ou les mazimums sont pris sur les vecteurs X = (Xo,...,\) € (Rso)™™! tels que

oA = Let Yo A\my = x. Alors, (Vy)vem et (9y)vem sont des familles de
fonctions métriques et de fonctions toit, respectivement, qui définissent une métrique
adélique torique semipositive sur D, tel que D est engendré par des sections petites et la
section globale de O(D) associé a f par (10) est D-petite.

A partir de ce résultat on a tous les moyens pour démontrer le théoréme de Bernstein-
Kusnirenko arithmétique que 1'on propose, Theorem 2.4.5:

Théoréme D. Soient fi,..., f, € Klx®!], et X une variété torique compatible avec les
polytopes de Newton A; des f;’s. Soit Ag C R"™ un polytope conveze, et (Vo : Do —
R)yem une famille de fonctions toit qui définissent un diviseur métrisé torique semipositif
Dy de X. Soit, pour touti=1,...,n et tout v € M, V;, : A; — R définie comme (14)
a partir de f;. Alors:

h (Z(f1,-- 5 fn) < D ne MI(Wo,, -+ -, Onw),
veEM
ot Z(f1,..., fn) est le zéro-cycle de (K*)™ donné par les solutions du systéme d’équations
polynomiales f1 = --- = f, = 0.

D’ailleurs, en bornant supérieurement les fonctions toit qui apparaissent dans ce

théoréme, on obtient aussi une borne en termes d’un volume mixte. Pour cela il faut

r+1

d’abord définir la longueur logarithmique d’un vecteur a € (Ktimes) 1, r > 0, qui est

Ua) =3 cop noly(ar), ot

T
log(z lajly) si v est archimédienne,
ly(a) = j=0
1 i t t.
og(orgj; lajly) autremen
Soit f = >j_ga;x™ € K[z£!, ..., 2] un polynéme de Laurent, on définie £(f) :=

f((ao, .. ,ozr)). Alors, on obtient Corollary 2.4.8:

Corollaire. Avec les notations de Théoréme D, on a:

b (Z(f1,. fa)) < ( 3 o max ﬂo,v(x)> MVa(Aq, .. A)
veEM 0 n

D Lf)MVar(Ao, - A1, A, Ag).
i=1
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On peut maintenant reprendre ’exemple fil rouge de ce paragraphe pour voir que
I’approximation des bornes du théoréeme D et son corollaire sont pres d’étre optimales.

Exemple. Soient d, H € N, et fi,..., fn € Qzil,... x| définis dans (8). Le zéro-
cycle de (Q*)" donné par les solutions du systéme est p = (H,...,H™ ") et on
avait :

hmcan(p) = (1 + 4 dn—l) log H, et hsD*O(l)Can(p) — log H’

ot o 1 (QX)" = (Q*)" est défini par (x1,...,2n) — (1, 2927, ..., 2z, %)), De Uautre
coté, les bornes obtenus par les corollaire du théoréme D sont les suivantes :

hmcan (p) S (1 + e _'_ dn—l) 10g(H + 1), et hw*mcan (p) =n 10g(H + 1)

Cet exemple est donné en plus de généralité dans Example 2.4.11, dans lequel on
considere la hauteur de p par rapport au diviseur torique quelconque sur une variété
torique avec la métrique canonique. Dans ces cas, la borne donnée par le corollaire du
théoreme D est aussi prés d’étre optimale.

Postérieurement, on donne un exemple qui illustre la différence entre la borne du
théoreme D et celle de son corollaire, dont la premiere reste pres de 'optimalité. Pour
cela, dans Example 2.4.12; on considere la famille de polynémes

fi=xi— He€Qxy,...,zn], i=1,...,m

ou H € N5g. Le zéro-cycle de (Q*)™ donné par les solutions de ce systeme est H =
(H,...,H), et son hauteur canonique est hmcan (H) = log(H). Les fonctions toit
associées a ces polyndmes sont toutes identiquement 0, sauf a la place a l'infinie, dont les
fonctions toit correspondantes maximisent la différence entre leurs valeurs maximales et

leur intégrale. Ainsi, le théoréme D et son corollaire bornent hmcan(H ) par:

h@““(H) <(n+1)log2+logH, et hmmn(ﬂ) <nlogH,
respectivement. Il faut noter que déja dans ce cas «simple» l'intégrale mixte du
théoréme D est tres difficile a calculer explicitement, et en effet (n + 1)log2 + log H est
seulement une borne supérieure de 'intégrale mixte correspondante.

Pour conclure, on présente deux applications du Bernstein-Kusnirenko arithmétique
que 'on prouve, en particulier, du corollaire du théoreme D di a la difficulté de calcul
de l'intégrale mixte. Soit W un zéro-cycle de Py, notons W = >_, 1qq le zéro-cycle de
PZ obtenu par le changement de base K — K. Soit w = (ug, . ..,u,), la u-résultante (ou
forme de Chow) de W es définie par:

ReS(W) = H(CJOUO + -+ QTUT)MQ € K(u)x’
q
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ot le produit est pris sur tous les point ¢ = (qo : -+~ : qr) € ]P’FK dans le support de Wr.
Alors, a partir du théoréme de Bernstein-Kusnirenko arithmétique on peut borner la
« taille » des coefficients de Res(W') a partir d’un systéme de polynémes de Laurent dont W
est le zéro-cycle des solutions isolées. Le théoréme suivant correspond a Theorem 2.4.14.

Théoréme. Soit fi,...,f, € Klzil,... =], Soient mg € (Z") ! et ap € (K*)" T,
r > 0, vecteurs définissant un morphisme ¢ : (K*)" — (K*)", et soit Ao ’enveloppe
conveze de {my ;|j=0,...,r}. Soit A; le polytope de Newton de f; et a; son vecteur
de coefficients non-nuls, i = 1,...,n. Alors

n

URes(peZ(f1y- s ) < D MVia(Aoy ooy Aoty Ay, A )l ).
i=0
Comme une conséquence de ce théoreme on peut borner aussi la longueur des
polynoémes d’une représentation géométrique d’une variété de dimension 0. On renvoie
a Lemmas 2.4.15 et 2.4.16 pour les énoncés précis. (...parce que je suis déja arrivé au
minimum de 20 pages )
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