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Introduction

Light as a wave and a particle

Quantum light can only be fully described by taking into account its wave-particle
duality. Einstein described this particular phenomenon as: "We have two contradictory

pictures of reality; separately neither of them fully explains the phenomena of light, but

together they do" [1]. This duality led to two historical ways of encoding information
on light, the discrete-variable (DV) approach [2] and the continuous-variable (CV)
approach [3], each of them focusing more on one side of the light’s nature. In order to
outperform classical computer (field of quantum computation) or to achieve spy-proof
protocols (field of quantum communication), quantum optics groups have traditionally
focused on one or the other of the two aforementioned approaches [4, 5].

The discrete-variable approach, analogous to the digital encoding in classical infor-
mation "0-1", encodes information on discrete degrees of freedom, such as the presence
or absence of a single photon, orthogonal polarizations, spatial modes... The spanned
Hilbert space has finite dimension. The resulting quantum state is called a quantum
bit, shortened as qubit, and represented in the form of a superposition of two orthogonal
states:

c0|0〉 + c1|1〉. (.0.1)

Discrete variables systems are usually easier to process, and large fidelities with tar-
geted results are usually obtained. However, they mostly rely on probabilistic genera-
tion schemes and operations [6].

As an alternative to the discrete-variable encoding, the continuous-variable ap-
proach plays with the wave-nature of light. In this framework, the information is
encoded onto the quadrature of a light field such as the phase and the amplitude. The
spanned Hilbert space is therefore of infinite dimension. This approach can be seen
as the quantum version of the analog encoding. Sometimes denoted as qu-mode, the
paradigmatic quantum state can be represented as the superposition of two phase-
opposite classical waves (called coherent states) of amplitude α:

cα|αeiϕ〉 + c−α|αei(ϕ+π)〉. (.0.2)

Continuous-variable systems allow deterministic operations, such as teleportation, or
gates [7], and feature on-demand entanglement sources and efficient measurements
such as homodyne detections (where efficiencies are higher than 99%). However they
suffer from their loss sensitivity, and usually lead to smaller fidelities to targeted states
and operations [6].
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Discrete variables Continuous variables

Encoding Particle state Quadratures of light fields

Relation to classical computing Digital Analog

Hilbert space dimension Finite Infinite

Detector Single photon detector Homodyne detector

Universal Q-Computing via CNOT gate Cubic phase gate

Achieved fidelities High Finite

Generation/Operation type Probabilistic Possibly Deterministic

Table .1: Resume of the two traditional ways to encode information and their properties.

The hybrid approach of quantum information processing

The wave-particle duality of light has therefore led to two traditionally separated ways
of generating quantum states and implementing protocols. However, recent works
based on a hybrid approach showed new advantages by combining their methods and
technologies [8, 9]. Implemented in a wide range of physical systems, going from
optical states to superconducting and cavity QED systems, they aim at overcoming
the intrinsic limitation of each field [10].

Bridging both approaches firstly enable the engineering of more complex quantum
states, such as non-Gaussian states. Such states are main resources for a variety of
quantum protocols and cannot be produced by the means of simple linear tools. An
example in quantum optics can be the subtraction of a single-photon (DV operation)
on a CV state, which leads to heralded non-Gaussian states [11, 12]. As an another
example, in the fields of cavity- and circuit-QED, coupling a CV oscillator to a DV
level, such as an atom, enables the deterministic generation of non-gaussian states
[13, 14].

In order to achieve universal computing, operations such as CNOT gate for DV
systems, or cubic phase gate for CV systems are required. The hybrid approach of
quantum information processing may enable to experimentally implement them more
efficiently. With discrete variables, schemes have therefore been proposed in order to
implement CNOT gate in a nearly-deterministic manner while minimizing the neces-
sary resources [15]. Other schemes proposed to implement a cubic phase gate by doing
DV measurements and conditional gaussian operations on CVs [16–18].

New protocols, such as entanglement witnesses for single-photon entanglement [19]
also have been based on such hybrid technique. The CV toolbox can also be used
in a more general manner to make operations deterministic, such as for example the
deterministic teleportation of a single-photon qubit [20].

In this manuscript we will review new techniques based on optical hybrid quantum
information applied to quantum state engineering.
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Context and structure of the manuscript

It is in this active context of hybridization of the processes that this PhD work took
place. Light is a convenient media for the implementation of hybrid quantum infor-
mation processing as having low decoherence at room temperature. We can also rely
on mature optical technologies such as nonlinear optics crystal and efficient detectors.
In addition, light is the natural carrier for quantum communication as the generated
states can be freely propagating.

Recent quantum state engineering works based on the optical hybrid approach
therefore impulsed new ways of designing quantum networks [21–24]. For example, het-
erogeneous networks, on which each operation is implemented with the most adequate
encodings, could therefore be a way to overcome the current limitations. However, the
nodes of a network need to be bridged together, in a quantum manner. Indeed, the
quantum information hold by a DV qubit needs to be fully transferred to a CV-type
state, for instance. A way to achieve such conversion is to perform teleportation based
on a shared entangled state between the network nodes. The hybrid entanglement gen-
eration between CV and DV states achieved in the beginning of this thesis therefore
paved the way for further study of such hybrid architectures [25]. The optical para-
metric oscillators used as main resources in this thesis were already well calibrated
through the previous thesis of Olivier Morin, which led to the first generation of highly
non-Gaussian optical states in the laboratory [26].
The present manuscript is organized as follows:

• Part I will first introduce the main toolboxes that will be used through all
the manuscript. The first chapter will present the theoretical concepts and the
adopted conventions. The second chapter will be devoted to the experimental
resources, including non-linear crystals and detectors. The third chapter will be
devoted to a certain type of detector, a superconducting nanowire single photon
detector, which efficiency has been improved to the state-of-the art at our wave-
length, through collaboration with the NIST and the JPL-NASA. The achieved
close-to-unity efficiency enables to speed up our applications and we can there-
fore target more complex states through multiple conditioning schemes.

• Part II will then focus on quantum state engineering. Using the upgraded single-
photon detectors, we will in Chapter IV demonstrate the high-purity and fast
generation of single and two-photon states. The demonstrated figures of merit
coupled to the achieved rate will enable us to target the generation of more com-
plex states, such as squeezed Schrödinger cat states as presented in Chapter V.
Such states will be generated with the help of a gaussian operation: squeezing.
This method helps us to achieve complex states more easily as well as protecting
them from decoherence.

• Finally Part III will focus on a certain type of hybrid state: the hybrid en-
tanglement of light. Demonstrated at the very beginning of this PhD, hybrid
entanglement of light enables to build a bridge between the different encodings.
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Information can then be transferred through this bridge via quantum telepor-
tation. Chapter VI will first introduce the experimental generation of remote
hybrid entanglement, based on a non-local single photon subtraction. Demon-
stration of a new type of hybrid entanglement, i.e. qutrit entanglement, con-
taining more entanglement due to a higher dimensionality will also be shown.
Methods to characterize the non-locality features of hybrid entangled states will
then be investigated. A first application of hybrid entanglement will be imple-
mented via the remote generation of arbitrary continuous-variable qubits. This
demonstration paves the way for the realization of a quantum encoding con-
verter, and will therefore be followed by a short theoretical study on hybrid
teleportation. Finally, Chapter VII will be devoted to a deeper study of hybrid
entanglement in a more fundamental manner. Indeed, hybrid entanglement can
be seen as entanglement between particle and waves, i.e. between microscopic
states and macroscopic states. We will propose and implement a scheme to gen-
erate a micro-macro entangled state, by adding a local photon subtraction and
increasing the mean photon number of the CV mode via a squeezing operation.
We will then characterize this state through criteria proposed in the literature.

Credit: Nature Photonics cover.
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I | Theoretical Tools

Introduction

In this first chapter, basic notions of quantum optics will be described. From the field
quantization to a description of the quantum states that will be found in this PhD
work, formulas and basic models will be explained. Although all of these notions are
detailed in textbooks [27–31], it is convenient for the reader to have them gathered
here, in order to know the normalizations and notations used in all this manuscript.
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Chapter I. Theoretical Tools

I.1 Field quantization

I.1.1 Field description

In classical optics, the field can be described using a basis made of orthogonal spatio-
temporal modes of light. These different modes can be for example found by using
a Fourier description. In quantum physics, the electric field can be described using
the annihilation and creation operators, â and â†. One mode of the electric field can
therefore be noted as:

Ê(−→r , t) = E0(âe−i(ωt−−→
k −→r ) + â†ei(ωt−−→

k −→r )). (I.1.1)

Such mode lives in a given Hilbert space H. When several modes are involved, for
example in the case of entanglement, it is possible to extend the description to a full
Hilbert space denoted: H = H1 ⊗ ... ⊗ Hk ⊗ ... ⊗ Hn. Each the Hilbert space Hi has
either a finite or an infinite dimension.

The annihilation (respectively creation) operator removes (respectively adds) a
quanta - here a photon - to a photon number state. Thus their effect is described as:

â|n〉 =
√

n|n − 1〉 (I.1.2)

â†|n〉 =
√

n + 1|n + 1〉 (I.1.3)

where |n〉 is a photon-number state, also called Fock state, and [â, â†] = 1 is their
commutation relation.

The photon-number operator is defined by the product of the two operators:

n̂ = â†â. (I.1.4)

I.1.2 Quadrature operators

In analogy to classical optics, the electric field can also be written in the Fresnel phase-
space in terms of its real and imaginary parts, as shown in Fig I.1:

Ê(−→r , t) = E0

√
2(X̂ cos(ωt − −→

k .−→r ) + P̂ sin(ωt − −→
k .−→r ) (I.1.5)

where X̂ and P̂ are called the quadrature operators of the field. They can also be
written as:

X̂ = σ0(â + â†) (I.1.6)

P̂ = −iσ0(â − â†) (I.1.7)

with σ0 the variance of the vacuum fluctuations. We usually choose the value σ0 = 1
to normalize our systems. These two operators can also be named as position and
momentum operators. Their commutation operator can be written as

[X̂, P̂ ] = 2iσ2
0. (I.1.8)

X̂ and P̂ are conjugated variables, they follow the Heisenberg inequality:

σxσp ≥ σ2
0. (I.1.9)
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I.2. Density operator, matrices and criteria

Figure I.1: Fresnel representation of the quantum field, also called phasor diagram. The
grey area represents the associated quantum flucutations.

The quadrature operators are observables and are therefore Hermitian operators. They
have orthonormal eigenvectors, X̂|x〉 = x|x〉, which satisfiy the completeness relation
∫ |x〉〈x|dx = 1. The number operator can also be expressed using these operators as

n̂ =
1

4σ2
0

(X̂2 + P̂ 2 − 2σ2
0). (I.1.10)

The quadrature operators can be generalized to any phase angle θ in the Fresnel
representation:

X̂θ = σ0(âe−iθ + â†eiθ). (I.1.11)

I.2 Density operator, matrices and criteria

The density operator enables to generalize the representation of states. For example
when a state experiences losses it cannot be described using a pure state description
(i.e. a ray description), it is becoming "mixed". In the following part, we will introduce
the density matrix formalism as well as some useful criteria for state characterization.

I.2.1 Density matrix representation

To describe a quantum state and its features, one can use the matrix formalism and
represent it as a density matrix. This matrix is the linear representation of the density
operator and they are often interchanged. The density operator representation is
especially used if the state is not a pure state, but a statistical mixture of states : it is
always the case experimentally due to the interaction with the environment resulting
from loss or phase damping. The density matrix may be infinite-dimensional. It is
diagonalizable in a basis of orthogonal eigenvectors which means that the state can
always be described as a sum of pure states |ψi〉:

ρ̂ =
∑

i

pi|ψi〉〈ψi|. (I.2.1)
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This description is also called the spectral decomposition of the state. The diagonal
elements of the density matrix are the probabilities of measuring each vector of the
Hilbert space basis. Thus, due to the conservation of the probabilities, one has:

Tr[ρ̂] = 1. (I.2.2)

A few properties also come from this representation.

• The density matrix is self-adjoint or hermitian:

ρ̂† = ρ̂. (I.2.3)

• The density matrix is also positive semi-definite. All the eigenvalues are either
positive or zeros:

rank(ρ̂) = rank(ρ̂2). (I.2.4)

• Given an operator Ô, the expectation value is given by:

〈Ô〉 = Tr[ρ̂Ô]. (I.2.5)

I.2.2 Tools for state characterisation

In this section, we will introduce criterions that are used to characterize the quantum
features of a state. We will use them later in the manuscript to describe our experi-
mental results.

• Purity
If a state is pure, Tr[ρ̂2] = 1. The purity is therefore measured as:

P = Tr[ρ̂2]. (I.2.6)

• Fidelity
The fidelity is related to the proximity between two states. It can be seen as the
overlap between two states. In the most general case, it is defined as [32]:

F =
(

Tr[
√

√

ρ̂1ρ̂2

√

ρ̂1]
)2

. (I.2.7)

If one of the states is a pure state, it can be conveniently simplified as:

F = Tr[ρ̂1ρ̂2]. (I.2.8)

If the two states are pure, the fidelity can be written as the simple overlap:

F = |〈ψ1|ψ2〉|2. (I.2.9)

• Pauli matrices
The Pauli matrices are also interesting to remind here, as they will be used
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for entanglement witnesses. They can be defined in any basis of orthogonal
eigenvectors:

σ̂x =







0 1

1 0






, σ̂y =







0 −i

i 0






, σ̂z =







1 0

0 −1






(I.2.10)

More generally these pseudo-spin operators can be defined for any angle θ as:

σ̂θ = cos θσ̂x + sin θσ̂y =







0 e−iθ

eiθ 0






, σ̂z =







1 0

0 −1






(I.2.11)

The expectation value of these operators is very commonly used as a tool when
it comes to implement entanglement witnesses such as Bell-type or steering in-
equalities.

They can be extended to the full Hilbert space [33, 34], in which case they act
upon the parity of the photons, and are therefore "parity-spin" operators:

σ̂x =
∞

∑

n=0

|2n〉〈2n + 1| + |2n + 1〉〈2n|

σ̂y =
∞

∑

n=0

i(|2n + 1〉〈2n| − |2n〉〈2n + 1|)

σ̂z =
∞

∑

n=0

|2n + 1〉〈2n + 1| − |2n〉〈2n|.

(I.2.12)

In such case, the operator σ̂z is the opposite of the parity operator. σ̂x and σ̂y are
called the parity-flip operators. Their commutation relations are analogous to the
pseudo-spin operators ones.

I.2.3 Tools for entanglement characterisation

A counter-intuitive property which follows from the quantum mechanics theory is the
possibility for states that contains several modes to be non-separable. A separable
state is a state ρ̂ living in a Hilbert space H = HA ⊗ HB that can be written in the
form:

ρ̂ =
∑

k

pkρ̂A ⊗ ρ̂B (I.2.13)

where pk ≥ 0.
Non-separable states can exhibit quantum correlations. These correlations are at

the heart of quantum information and can lead to the implementation of various pro-
tocols, including for quantum computing, communication and metrology [27]. In the
following will be reminded different measures that can be used to witness or quantify
the entanglement of the states we are producing.
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• Concurrence
For a bipartite pure state ρ̂AB and given the matrices

ρ̂′
AB = (σ̂y ⊗ σ̂y)ρ̂∗

AB(σ̂y ⊗ σ̂y) (I.2.14)

where ρ̂∗
AB is the complex conjugation, σ̂y the pauli operator and

M =
√

√

ρ̂AB ρ̂′
AB

√

ρ̂AB. (I.2.15)

The concurrence is defined as:

C(ρ̂AB) = max(0, λ1 − λ2 − λ3 − λ4) (I.2.16)

where λ1, ..., λ4 are the eigenvalues in decreasing order of the matrix M
This definition is valid for qubit states (dimension 2).

• Negativity
The negativity of entanglement is a measure given by:

N (ρ̂AB) =
‖ρ̂ΓA

AB‖ − 1

2
(I.2.17)

where ρ̂ΓA
AB is the partial transpose of ρ̂ with respect to subsystem A. Equivalently,

it can be defined as:

N (ρ̂AB) =
∑

i

|λi| − λi

2
(I.2.18)

where λi are the negative eigenvalues of ρ̂ΓA
AB.

This measure is monotone with entanglement and cannot increase under local
operations. It will be mostly used in our experimental realizations.

• Steering inequality
Steering is a phenomenon related to the Einstein Podolsky Rosen paradox which
can be shown when two parts, Bob and Alice, share entanglement. Alice is trying
to convince Bob by that they share entanglement by making a measurement on
her side and telling her results to Bob. Steering inequalities stand between non-
separability and non-locality Bell-type tests, and usually leads to higher technical
difficulties. They are becoming more and more investigated as a new way to show
strong entanglement features, and in particular "device-independent" cryptogra-
phy scenario [35]. Steering inequalities will be furtherly described in Chapter VI.

• Bell inequality
Bell-type measurements enable to violate an inequality that should be respected if
the theory of quantum mechanics was local. When such an inequality is violated,
it is possible to refute the presence of any hidden variables that would make
the correlations local, showing the robustness of the quantum mechanics theory.
When an assumption is made on the state for technical reasons, for example fair
sampling (because of limited detection inefficiency), no-communication between
the parties (because of limited distance), it forces us to trust one of the parties,
making the violation without any loophole harder to achieve experimentally.
Very recently, three loophole-free violations of such inequality have been reported
[36–38].
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I.3. Wigner representation

I.3 Wigner representation

Another tool to represent a quantum state, oftenly used in the continuous-variable
framework, is the Wigner representation. For a given state, the Wigner function can
be defined as:

Wρ̂(x, p) =
1

2πσ0

∫

e
iyp

σ2
0 〈x − y|ρ̂|x + y〉dy (I.3.1)

where for any Fock state |n〉,

〈n|xθ〉 = einθ 1

(
√

2πσ02nn!)
1
2

Hn

(

x

σ0

√
2

)

e
− x2

4σ2
0 . (I.3.2)

Hn(x) are Hermite polynomials and are detailed in Appendix A. Thus, it is possible
to calculate the Wigner function using the density matrix in the Fock state basis in
the following way:

Wρ̂(x, p) =
∑

k,l

ρklW|k〉〈l|(x, p) (I.3.3)

with

W|k〉〈l|(x, p) =
(−1)l

2πσ2
0

√

l!

k!

(

x − ip

σ0

)k−l

e
− x2+p2

2σ2
0 Lk−l

l

(

x2 + p2

σ2
0

)

(I.3.4)

if k > l (otherwise: W|k〉〈l|(x, p) = W|l〉〈k|(x, −p)). Ln(x) are Laguerre polynomials,
detailed in Appendix A. The Wigner representation allows one to represent a state in
terms of X- and P- distribution. It can be seen in quantum optics as the quantum
noise quasi-probability distribution.

The Wigner function can have negative values. These negative values are often
considered as a strong signature of non-classicality. Of course, this representation can
be generalized for several modes:

Wρ̂(x1, p1, ..., xn, pn) =
1

(2πσ2
0)n

∫

R2n
〈x1 − y1|...〈xn − yn|ρ̂|x1 + y1〉...|xn + yn〉dy1...dyn.

(I.3.5)
Using the same idea, any operators can be also transferred in terms of Wigner repre-
sentation.

I.3.1 Properties

The Wigner function only has real values if the operator is hermitian. An obvious
example can be the density matrix, i.e. the representation of a quantum state. The
Wigner function is also linear.

In the following are detailed some other useful properties.

• The conservation of the probabilities gives:
∫∫

R2
Wρ̂(x, p)dxdp = 1. (I.3.6)
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• Overlap
The overlap of two Hermitian operators is written using the Wigner representa-
tion as:

Tr[Ô1Ô2] = 4πσ2
0

∫∫

dxdpWÔ1
(x, p)WÔ2

(x, p). (I.3.7)

This very general formula can be easily adapted to get the direct expression for
the action of an operator on a quantum state as well as the fidelity between two
states or the purity of a state [39].

• Diagonal elements
In the Fock state basis, the sum of the density matrix diagonal elements, weighted
by their parity, is related to the value of the Wigner function at the origin of
phase-space:

Wρ̂(0, 0) =
1

2πσ2
0

∑

n

(−1)nρ̂nn. (I.3.8)

• Transposition
Transposing the density matrix is equivalent of replacing p by −p in the Wigner
function of the quantum state.

• Parity Operator
The Wigner function can also be written as the displacement of the parity oper-
ator Π̂:

W (α) =
2

π
Tr[D̂(−α)ρ̂D̂(α)Π̂] (I.3.9)

where α = (x + ip)/2σ0.

I.3.2 Continuous-variable tools

In continuous variable experiments, detection is usually implemented via homodyne
detection. This type of detector, which will be furtherly described in Chapter II, can
measure the quadratures of a light field. Therefore the marginal distribution, which
is the density probability to measure xθ with the quadrature observable x̂θ, is often
used. It can be extracted from the Wigner function as :

Pρ̂(xθ) =

∫

dpθWρ̂(xθ cos θ − pθ sin θ, pθ cos θ + xθ sin θ). (I.3.10)

I.4 Some useful operators

In this section will be listed the main operators that will be implemented experimen-
tally in the rest of the manuscript in order to engineer quantum states.

• Squeezing operator
The Heisenberg relation that constrains conjugate quadratures shows that the
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overall uncertainty of a system cannot be bypassed. However it is possible to
achieve a better knowledge on one quadrature while having more uncertainty
on the other one. Such phenomenon is known as quadrature squeezing, where
the fluctuations of one quadrature is decreased while the other quadrature gets
"anti-squeezed" in phase space. The squeezing operator can be written as:

Ŝξ = e
1
2

(ξâ2−ξ∗â†2) (I.4.1)

where ξ = reiθ. The squeezing factor s is the compression ratio of the quadrature
variance σ2

x̂θ
compared to its initial value, and can be written as:

s = e−2r. (I.4.2)

It is often given in the decibel scale. Additionally, parameters such as λ will be
used in this PhD work, for the sake of formula simplification. This latest can be
written as:

λ = tanh r. (I.4.3)

The factor s can be expressed in decibels as: sdB = −10log10(1−λ
1+λ) = 20

ln10r.

Experimentally, this operator can be implemented using non-linear processes
such as parametric down conversion processes. Its action on the Wigner function
of a quantum state can be seen as:

Wρ̂(x, p) → Wρ̂(xeξ, pe−ξ). (I.4.4)

We have taken here the case where ξ ∈ R to simplify the expression. The general
case is equivalent to to this change of coordinates on θ-rotated axes of the Wigner
function.

• Phase Shift Operator
This operator represents the phase shifting of a quantum state:

Ûϕ = eiâ†âϕ. (I.4.5)

In terms of Wigner representation it corresponds to a simple rotation in the
phase-space plan, leading to the transformation:

Wρ̂(x, p) → Wρ̂(x cos ϕ − p sin ϕ, x sin ϕ + p cos ϕ). (I.4.6)

• Displacement Operator
This operator enables to displace the state in phase space. Experimentally it is
implemented by mixing the state with a coherent state field via an asymmetric
beam splitter. It can be written as:

D(α) = eαa†−α∗a (I.4.7)

In terms of Wigner representation it corresponds to the transformation:

Wρ̂(x, p) → Wρ̂(x + Re[α], p + Im[α]). (I.4.8)
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Figure I.2: Losses modeled by a damping channel

• Beam Splitter Operator
Used to model losses (see below), splitting or mixing of modes, but also for condi-
tional generation schemes, the beam splitter operator is a basic tool in quantum
optics for quantum state generation as well as for protocol implementation. It is
given by:

B̂(θ) = eθ(â†b̂−âb̂†) (I.4.9)

where â and b̂ are the anihilation operators for the two spatial modes A and B.
It thus leads to an interesting way of reformulating the action of a beam-splitter
on a mode:

B̂†(θ)âB̂(θ) = â cos θ + b̂ sin θ

B̂†(θ)b̂B̂(θ) = b̂ cos θ − â sin θ
(I.4.10)

In the Wigner representation, its effect can be written as:

Wρ̂A⊗B
(xA, pA, xB, pB) → Wρ̂A⊗B

(txA + rxB, tpA + rpB, txB − rxA, tpB − rpA)
(I.4.11)

This latest operator will be used in order to model optical imperfection such as the
optical loss of a system, as shown in the next section.

I.5 Modeling experimental imperfections

In this section we will detail the two main sources of imperfections that can be met
in a quantum optics experiment. These imperfections are due to the interaction of
the quantum state with its environnement, on which the experimentalist cannot have
access. This leads therefore to a statistical mixture of the quantum state.

I.5.1 Losses or amplitude damping

In quantum optics, losses are seen as amplitude damping and can be modeled using a
beam splitter operation on which the environment (vacuum) is mixed with the quantum
state and then averaged with a partial trace operation on the environmental mode. The
process is sketched in Fig. I.2.

Let’s consider a state represented by its density matrix ρ̂, losses in energy, with a
value (1 − η) (where η is called the efficiency of the system) can be represented as the
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action of a beam splitter with a transmission coefficient cos θ =
√

η:

ρ̂A ⊗ |0〉E〈0| B̂(η)−−−→ B̂(η)ρ̂A ⊗ |0〉E〈0|B̂†(η), (I.5.1)

where |0〉E is the vacuum in the environnemental mode. The experimentalists only
have access to mode A, and cannot have access to the leakage of the photons due
to losses. The resulting density matrix is therefore obtained by partially tracing the
reflected output of the beam splitter:

ρ̂′
A = TrE [B̂(η)(ρ̂A ⊗ |0〉E〈0|)B̂†(η)]. (I.5.2)

It is also possible to calculate amplitude damping using the Wigner formalism. By
implementing a beam splitting operation of transmission corresponding to

√
η and

then integrating on the whole phase-space of E, one can find the expression for the
new Wigner representation of the state:

W ′
A(xA, pA) =

∫

WA,E(
√

ηxA +
√

1 − ηxE ,
√

ηpA +
√

1 − ηpE ,
√

ηxE +
√

1 − ηxA,
√

ηpE +
√

1 − ηpA)dxEdpE.

(I.5.3)

I.5.2 Phase noise

Another source of imperfection can be the phase averaging coming from the lack of
precision in phase measurement or from path instabilities. It leads to statistical mixing,
but without affecting the probability of measuring eigenmodes. In other terms, it
affects the anti-diagonal elements of the density matrix, i.e. the coherence terms, and
leaves unchanged the diagonal elements of the density matrix.

In this manuscript, we have chosen a very simple model of gaussian phase noise
(which may not be the case experimentally but can help to check the sensitivity of
states to phase noise, and is very easy to calculate). Let us consider a state ρ̂ written
as the sum of states ρk:

ρ̂ =
∑

k

ckeiϕkρk. (I.5.4)

The phase averaging on each phase ϕk due to one or several gaussian noises of standard
deviations σk leads to a new matrix ρ̂σ:

ρ̂σ =
1√

2πσ1

× · · · × 1√
2πσk

∫

· · ·
∫

R

e
− ϕ2

1
2σ2

1 . . . e
− ϕ2

k
2σ2

k ρ̂dϕ1 . . . dϕk. (I.5.5)

Such noise source is less commonly found in the literature as it happens only in the case
of state superposition. We will therefore give here a short example of its consequences
on one initial pure qubit of the form |Ψ〉 = c0|0〉 + c1|1〉. A gaussian noise on its
superposition phase will lead to a mixed state:

ρ̂σ =







c2
0 c∗

0c1e− σ2

2

c0c∗
1e− σ2

2 c2
1






(I.5.6)
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Figure I.3: Fidelity between the qubit state |Ψ〉, and a qubit ρ̂σ under gaussian phase
noise of standard deviation σ for different probabilities of the vacuum state c0.

The fidelity between the decohered state and the initial one decreases and is reduced
to:

F =
c4

0 + 2c2
0c2

1e− σ2

2 + c4
1

(

c2
0 + c2

1

)2 . (I.5.7)

This fidelity is plotted in Fig. I.3 as a function of σ and c0. The state is more sensitive
to phase noise when the superposition is equally weighted, i.e. for c2

0 = 0.5. When σ
becomes large, coherence terms fully disappear. Hence F → 0.5.

Now that we have presented our main toolboxes, we will review in the following
the quantum states that will be present in this PhD work.

I.6 Zoology of quantum states

In this section will be listed common quantum states that can be found in the manuscript,
for which it exists two main categories. Depending on their quadrature fluctuation
distributions, quantum states are qualified as gaussian or non-gaussian. The Hudson-
Picquet theorem [40] states that a gaussian state cannot have a negative Wigner func-
tion. Non-gaussian states exhibiting negative values of the Wigner function are there-
fore considered as strongly non classical. We will give in this section a few examples
of such states and show their Wigner functions.

I.6.1 Fock states

A first class of quantum states used in quantum optics are the Fock states or photon-
number states |n〉. They are eigenvectors of the number operator â†â. They are a class
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| >0 | >1 | >2

Figure I.4: Wigner function of vacuum, single-photon, and two-photon Fock states.

of orthonormal vectors. Their Wigner functions can be written as:

W|n〉(x, p) =
(−1)n

2πσ2
0

e
− x2+p2

2σ2
0 Ln

(x2 + p2

σ2
0

)

. (I.6.1)

The Wigner function of different Fock states are represented in I.4. The parity of
a Fock state is related to the sign of its Wigner function at the origin of the phase
space. The decoherence of Fock states under photon losses, scales with the power of the
photon number. For example, the fidelity with a Fock state |n〉〈n|, given an efficiency
η, can be expressed as:

F|n〉,η = ηn. (I.6.2)

Figure I.5 gives the evolution of the fidelity with losses of different Fock states. The
higher the photon number is, the faster a Fock state decoheres. This means that it is
technically very challenging to generate high-number Fock states. In Chapter IV, we
will see how to generate single photon and two-photon Fock states with high purity.
However their sensitivity to losses prevents the use of the same protocols to generate
three-photon Fock states with high purity.
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Figure I.5: Fidelity with the efficiency of the channel, for different Fock states. This
fidelity corresponds directly to the vacuum admixture for single-photon state |1〉.
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I.6.2 Coherent state

Considered as quasi-classsical states, coherent states |α〉 are the closest to an atten-
uated laser field. Coherent states exhibit a Poissonian distribution of their photon
number. As a consequence, they are gaussian states. They are as well eigenvectors of
the annihilation operator:

â|α〉 = α|α〉. (I.6.3)

The "simplest" form of coherent state is the vacuum. Any other coherent states can
be seen as a displaced vacuum state.

D̂(α)|0〉 = |α〉. (I.6.4)

Coherent states can be expressed in the Fock state basis as:

|α〉 = e− |α|2
2

+∞
∑

n=0

αn

√
n!

|n〉. (I.6.5)

Their mean photon number is related to their amplitude α:

〈α|n̂|α〉 = |α|2. (I.6.6)

Their Wigner function can be written as:

W|α〉〈α|(x, p) =
e

− 1

2σ2
0
((x−αx)+(p−αp)2)

2πσ2
0

(I.6.7)

where α = αx + iαp.
Finally, the overlap between two coherent states |α〉 and |β〉 is:

|〈α|β〉|2 = e−|β−α|2 . (I.6.8)

I.6.3 Squeezed vacuum state

It results from the application of squeezing operator on the vacuum state.

Ŝ|0〉 = (1 − λ2)1/4
∞

∑

n=0

(

2n

n

)
1
2
(

λ

2

)n

|2n〉. (I.6.9)

Due to this operation, the variance of the vacuum σ2
0 is reduced by the factor s = σ2

σ2
0

on the x̂θ quadrature, where θ = arg(ξ). The noise variance is increased of 1
s on the

conjugated quadrature.
The Wigner function of squeezed vacuum can be written, in the case where θ = 0,

as:

WŜ|0〉(x, p) =
e

− 1

2σ2
0
(e−2ξp2+e2ξx2)

2πσ2
0

(I.6.10)

Wigner functions of several squeezed states are given in Fig. I.6.
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0dB 3dB 6dB

Figure I.6: Wigner functions of vacuum, 3 dB- and 6 dB-squeezed vacuum states.

Two-mode squeezed vacuum
This particular two-mode state is obtained when mixing two single-mode squeezed
vacuum states on a 50/50 beam-splitter. Sometimes called "EPR-entangled" state, it
can be written in the form:

|Ψ〉 = (1 − Λ2)1/2
∞

∑

n=0

Λn|n〉s|n〉i (I.6.11)

and exhibits photon number correlations between the two modes.

I.6.4 Cat state

The famous thought experiment of Erwin Schrödinger [41] underlines the strangeness
of quantum mechanics, in which theoretically a macroscopic state, as a cat, could
be in a quantum superposition. The experiment involves entanglement between an
atom obeying to the laws of quantum mechanics and a cat dead or alive. The overall
system is inside a black box, avoiding any measurement that could be performed by the
observer. A simplified version mainly used in quantum physics considers only the cat
part. A "cat-like Schrödinger state" usually refers to the superposition of two classical
macroscopic states. In Chapter VII, we will come back to the foundation of the idea
and try to reproduce the entanglement of the though experiment, whereas in Chapter
V, we will only consider cat-like states as superposition of classical states. In quantum
optics, as coherent states are seen as quasi-classical states, an analogy to this thought
experiment would be to have a coherent-state superposition defined as:

|Cat+〉 =
1

N+
(|α〉 + | − α〉) =

2

N+
e−|α|2/2

+∞
∑

n=0

α2n

√
2n!

|2n〉

|Cat−〉 =
1

N−
(|α〉 − | − α〉) =

2

N−
e−|α|2/2

+∞
∑

n=0

α2n+1

√

(2n + 1)!
|2n + 1〉

(I.6.12)

with N± =
√

2(1 ± e−2|α|2) the normalization factor.
Depending on the phase between the two components, the cat can either be called

"even" or "odd". This is due to the resulting parity of the photon number components
due to the superposition. Indeed |Cat+〉 can be written as a sum of even photon
number state and is thus called even cat states whereas its counterparts is called odd.
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1 2 3| |²
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Figure I.7: Wigner function of cats states. The top row is for even cat states, the lower
one is for odd cat states. The first colum gives the mean photon number |α|2 from 1 to 3.

Their Wigner functions are of the form:

W|Cat±〉(x, p) =
e

− x2+p2

2σ2
0

(

± cos(2αp
σ0

) + e−2α2
cosh(2αx

σ0

)

2πσ2
0

(

e−2α2 + 1
) . (I.6.13)

They are represented in Fig. I.7. The size of a cat states scales as the mean photon
number |α|2.

I.6.5 Squeezed cat state

Squeezed cat states are states resulting from the action of the squeezing operator on a
cat state. They will be experimentally generated and studied later in the manuscript.
The squeezing operation is a gaussian operation, and therefore does not introduce
additional non-gaussianity features on the state. The Wigner function of such states
can be written as:

WŜ|Cat±〉(x, p) = W|Cat±〉(xeξ, pe−ξ). (I.6.14)

Such states are interesting as the squeezing operation allows one to reduce the
mean photon number without changing the maxima values of the Wigner function,
i.e. the contrast of the oscillations in phase-space. The decoherence of a cat state can
therefore be reduced by squeezing its means photon number while the Wigner function
negativity, signature of strong non-classicality, is preserved. This phenomenon will be
deeply studied in Chapter V.
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I.7 Conclusion

In this chapter we briefly introduced the optical field quantization and defined the
resulting quadrature operators. As this thesis is based on the combination of discrete-
like and continuous-like types of variable in quantum information, we have shown the
two descriptions that can be used for a quantum state, i.e. the density matrix and
the Wigner function. Definitions of useful parameters and operators were given, as
well as a list of quantum states that will be used in the following work. To generate
such quantum states, and to experimentally build the useful operators, one has to use
specific tools. These experimental tools will be described in the next chapter.
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II | Experimental tools

Introduction

In this chapter we will review several tools used in the experiments realized during this
thesis.

Firstly, non-linear materials are one of the main ingredients used to generate optical
quantum states. In these materials, parametric conversion can be used to initially get
photon-number correlations or squeezing at their output. In this work, non-linear
crystals are inserted into resonant cavities realizing optical parametric oscillators.

Secondly, once such quantum states are generated, the detection plays an important
part to characterize their quantum features. A section of this chapter will be devoted
to a typical continuous-variable detection scheme: the homodyne detection. This very
efficient detection enables to measure the quantum fluctuations of an optical field.

Finally, another requirement is the implementation of path stabilization and mode-
filtering via resonant cavities. For this we will describe the recent improvement made on
the setup to enhance the long-term stability, via configurable micro-controller locking
[42].
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II.1 Optical parametric oscillators

In this section we will quickly review the main principles of parametric down-conversion,
and apply them to parametric oscillators. We will also give the experimental specifi-
cation of the devices used during this PhD work.

II.1.1 Spontaneous parametric down-conversion

In our experiments, we use a continuous-wave Nd:YAG laser, with two outputs, one
at 532 nm that we will use as a pump laser, and another at 1064 nm that will be
used as a seed to lock the different paths and cavities and as local oscillator for the
homodyne detection. The green laser output is obtained via a doubling of the infrared
beam thanks to an external cavity. This laser is sent onto non-linear crystals where a
pump photon at 532 nm can be converted into two photons (signal and idler) at 1064
nm, as sketched in Fig. II.1(a). This down-conversion process only happens when two
conditions are fulfilled:

• the energy conservation: ωp = ωi + ωs

• the momentum conservation (phase-matching): þkp = þki + þks.

To fulfill the phase-matching condition, it is necessary to have birefringence in the
medium. The tailoring of the birefringence can allow to reach the relation: npωp ≈
niωi + nsωs. The Hamiltonian of the process can be written as:

H = i
~g

2
â†

sâ†
i âp + h.c. (II.1.1)

p, kp

s, ks

i, ks

(a) (b)

L T

OutIn

HR 532 nm

95%@ 532 nm

HR@1064 nm

HR@ 532 nm

90% @1064 nm

Figure II.1: (a) Scheme of the spontaneous parametric down-conversion phenomenon,
where a pump photon with frequency ωp and wave vector þkp is converted into two photons,
signal and idler, with frequencies ωs and ωi, and wave vector þks and þki respectively. The
specific case of degenerate wavelengths ωs = ωi is represented. (b) Scheme of the OPO
cavity and of the specific parameters of the cavity mirrors for both pump and signal
wavelengths. L stands for the losses of the cavity and T for the transmission of the output
coupler. HR stands for highly-reflective, with reflexion above 99%. The other facet of the
crystal is anti-reflection coated.
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In our system we will always use the degenerate wavelengths for signal and idler. By
approximating the pump by a coherent state |αp〉, it is possible to write the annihilation
operator evolution as:

â(t) = â(0)ch(κt) − â†(0)sh(κt). (II.1.2)

This gives the quadratures of the output field evolution to be:

x̂′ = e−κtx̂

p̂′ = eκtp̂.
(II.1.3)

by writing ξ = κt = gαpt, we find back the squeezing operator seen in Chapter I:

Ŝ(ξ) = e
ξ
2

(âiâs−â†
i â†

s). (II.1.4)

Physically, t will be related to the interaction time of the photon with the non-linear
crystal.

In this work, the process occurs in a resonant cavity, as detailled in the following.

II.1.2 Principle of an optical parametric oscillator

An optical parametric oscillator (OPO) is a cavity in which a nonlinear crystal is
inserted. The presence of the cavity makes the process much more efficient, as the
probability for a pump photon to be converted is increased by the cavity-enhancement
power. The cavity also "cleans" the output modes and allows a well-definition in
frequency and space of the output state. It also induces a threshold effect, i.e., a pump
power at which the oscillation can start.

One can write equations about what is happening during a single round-trip, for an
triply-resonant OPO (for pump, idler and signal), and deduce the mode loop equations
under the assumption of low loss L and low transmission T [26, 43].

τ
dâs

dt
= −T + L

2
âs + 2gLâpâ†

i +
√

LâsL +
√

T âsIn

τ
dâi

dt
= −T + L

2
âi + 2gLâpâ†

s +
√

LâiL +
√

T âiIn

(II.1.5)

where L is the length of the cavity.
From such equations the threshold power:

Pth =
(T + L)2

16g2L2
(II.1.6)

can be extracted, which is the pump power when the gain compensates the losses and
some oscillation process starts. Importantly, this threshold expression shows that it
scales as T 2, the square of the output coupler transmission.

Another important parameter used to characterize an OPO is its escape efficiency,
i.e., the probability that a generated photon has to be transmitted by the OPO. It can
be linked to the intra-cavity losses, and the transmission by the expression

η =
T

T + L
. (II.1.7)
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This parameter directly defines the maximal amount of squeezing that can be achieved
close to the threshold, or the maximal purity one can obtain in the case of heralded
single-photon generation, which will be developed in Chapter IV. To achieve quantum
states with high purity, an OPO must have its escape efficiency close to unity. In
our OPOs, this escape efficiency is around ηOP O ∼ 0.96. For given intracavity losses,
increasing the escape efficiency requires to increase the transmission of the output
coupler, at the expense, as seen just before, of a quadratic increase in the threshold.

II.1.3 Phase matching

Two situations to fulfill the momentum conservation requirement can be found de-
pending on the type of crystal and its birefringence properties.

Type-I phase matching: Single-mode squeezed vacuum
In this case, the pump is polarized along the ordinary axis of the crystal, and it leads
to the generation of signal and idler, on the extraordinary axis: o ←→ e + e. The
emitted photons are therefore degenerate in polarization. The squeezing operator can
be re-written, for photon pairs of the same wavelength, in the form:

Ŝ(ξ) = e
ξ
2

(â2−â†2). (II.1.8)

This operation therefore leads to single-mode squeezed vacuum of the form:

|Ψ〉 = (1 − λ2)1/4
∞

∑

n=0

(

2n

n

)
1
2
(

λ

2

)n

|2n〉 (II.1.9)

with λ = tanh |ξ|. This OPO will be used for the generation of continuous-variables
states, such as squeezed light or Schrödinger cat-like states.

Type-II phase matching: Two-mode squeezed vacuum
In this case, the pump is polarized along the extraordinary axis of the crystal, and
it leads to the generation of signal and idler, on the two different axes: e ←→ o + e.
The output infrared photons are thus orthogonally polarized. This situation leads to
two-mode squeezed-vacuum of the form:

|Ψ〉 = (1 − Λ2)1/2
∞

∑

n=0

Λn|n〉s|n〉i. (II.1.10)

The two modes can be separated with their polarization, and the resulting modes are
EPR-entangled, exhibiting photon number correlations. This situation will be the one
we use most of the time in order to create discrete-like states such as Fock states.

II.1.4 Mode-filtering

The free spectral range of the OPO is smaller than the acceptance window of the phase
matching, leading to the emission of pairwise correlated photons but with separated
spectral modes f0 + ∆f and f0 − ∆f as shown in II.2(a), where the emission spectrum
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OPO

Interential filter
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f
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Figure II.2: (a) Frequency modes at the output of the OPO cavity (in blue), the in-
terferential filter (in green), and the high-finesse cavity (in red). The action of the two
filtering elements results in a 25 dB rejection of the non-degenerate modes.(b) Scheme
of the experimental filtering path, where the beam is first sent to an interferential filter
(IF) and then to a Fabry-Pérot cavity (FP). The resulting beam is then coupled to a
single-mode fiber.

is schematized. In order to implement conditioning based on single photon detection
of the idler mode, and to detect on the same mode the signal photons, the non-
degenerate modes due to the OPO cavity must therefore be filtered out. To do so,
we first implement a broad filtering of the conditioning path via an interferential filter
of 0.5 nm bandwidth. Its effect is plotted in green in II.2 (a). We then send the
conditioning mode to a homemade Fabry-Pérot cavity of 0.4 mm length, with a 330
GHz free spectral range, and 300 MHz bandwidth (the finesse of this cavity is therefore
around 1000). The cavity effect is plotted in red color in II.2(a). The combination
of the two aforementioned filtering elements leads to 25 dB of rejection of the non-
degenerate modes. However this filtering path, shown in II.2(b) also induces optical
losses. After the coupling of the cavity output to a single-mode fiber, the overall
transmission of the conditioning path is 50%.

II.1.5 OPO specifications

As shown in Fig II.1 (b), our OPOs are made of a semi-monolithic cavity, where one
of the mirror is coated on the OPO itself and is highly reflective for 1064 nm while
being 95% reflective for the pump laser. The crystal is anti-reflection coated for both
wavelengths on the opposite side. The other curved mirror is on the contrary HR-
coated for 532 nm and has a transmission of T = 90% for signal and idler at 1064 nm.
Both OPOs are based on KTiOPO4 material, shortened as KTP. The type-I crystal is
made of periodically-poled KTP crystal (PP-KTP), while the type-II is made of KTP
crystal. The mount on which the crystal is set is shown in II.3(a) and, a picture is
given in II.3(b). To ensure the resonance of signal, idler and pump, a Peltier element
is set on the crystal for temperature tuning. Our OPO being semi-monolithic, it is not
possible to tune the angle of the crystal to achieve such resonance. In the particular
case of the type-II OPO, the idler and signal beams are non-degenerate. Therefore a
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(a) (b)

Figure II.3: (a) Scheme of the mount of the type-I OPO. (b) Picture of the similar
type-II OPO mount.

resonance for the three beams, the pump, the idler and the signal must be achieved. In
this endeavor, the wavelength of the laser have additionnally to be adjusted. Changing
the point on which the light is focused can also help to find stable configurations. The
free spectral range of our OPOs is equal to ∆ω = 4.3 GHz, and its bandwidth are
around 50 MHz. A collimating lens is set at the output of the OPO to have a size of
beam around 1 mm. The type-I phase-matched OPO has been used before this thesis
to generate squeezed vacuum of 10.5 dB of noise reduction at 5 MHz central frequency,
as shown in the measured noise spectra given on Fig. II.4 [44].

II.1.6 Phases

In order to measure phase-dependent states, it is necessary get a phase reference.
For this purpose, an infrared seed beam is sent through the OPO cavity, to lock the
relative phase between the pump and the idler and signal beams, via the resulting
amplification of the infrared field. By using a piezoelectric transducer (PZT) at the
input of the OPO, the phase of the seed beam can be controlled, in order to reach
maximum amplification. However locking on the maximum of the amplification of the
seed is precise at a π offset. Indeed if we write the phase equation of the OPO for the
amplification/de-amplification process:

∆ϕ = ϕp − ϕs − ϕi. (II.1.11)

Our signal and idler having the same frequency and being issued from the same seed,
they experience the same dephasing:

∆ϕ = ϕp − 2ϕs,i. (II.1.12)

To get amplification, one needs to have: ∆ϕ = π
2 , which is the targeted locking value.

However, this point is defined at a π constant offset on the signal phase. Indeed, the π
dephasing counts twice for idler and signal and is finally equivalent to a 2π phase shift
on the overall phase. Thus, if the PZT gets out of range and relocks automatically, it
can relock at a point which can be dephased of π for the signal.
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Figure II.4: Measured noise spectra of squeezed vacuum states generated by the type-I
phase-matched PP-KTP OPO. All the data are recorded by a spectrum analyzer with a
resolution bandwidth of 300 kHz and a video bandwidth of 300 Hz. Spectra are normalized
to the shot noise limit.(a) Noise variance as a function of the local oscillator phase, at a
pump power of 40 mW and an analysis frequency of 5 MHz. (b) Broadband squeezing up
to 50 MHz for a pump power of 5 mW and a pump power of 40 mW. The peak at 12 MHz
results from the electro-optic modulation used to lock the cavities.

This offset has no consequences on the detection because the homodyne detector
that we used and which will be developed in the next section is π-periodic, but it can
be sometimes noticed experimentally by a "jump" of π on the fringe signal.

This phase reference via amplification process enables us to get a reference to
implement phase-dependent tomography process via homodyne detection. We will
detail in the next section this type of continuous-variable detector.

II.2 Homodyne detection

In order to characterize a quantum state, two categories of detectors exist. Photon de-
tectors such as avalanche photodiodes (APDs), superconducting single photon detector
(SSPD), transition edge sensors (TES),..., are sensitive to the presence or absence of a
photon or their photon number. However these detectors are insensitive to the phase
features of the quantum state. Homodyne detection is a scheme used in the field of
continuous variable, which has the advantages of being very efficient and sensitive to
the phase space structure of the state. This detector records the quantum fluctuations
of the optical field [39].

II.2.1 Tomography principle via homodyne detection

How does it work?
The quantum state ρ̂s interferes with a laser beam called local oscillator |αLOe−iθ〉,

on a 50/50 beam splitter (Fig II.5 (a)). In terms of operator this operation can be
translated as:

(âS , âLO) → (
âS + âLO√

2
,
âS − âLO√

2
). (II.2.1)
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(a) (b)

LO

Phase

X

P

Figure II.5: (a) Experimental scheme of optical homodyne detection (b) Homodyne
detection effect in the Fresnel plane: the state is projected onto the local oscillator (LO).
By sweeping the phase of the later, all the quadratures values can be measured

The two outputs of the beam splitter are then sent on two photodiodes, whose pho-
tocurrents are subtracted. Under the assumption of a bright local oscillator field, the
operator of the local oscillator can be replaced by its expected value αLO. Assum-
ing a perfect detection efficiency, i.e. each photon gives an electron, the resulting
photocurrent can be writen as:

∆i ∝ ∆n̂ = âS â†
LO + â†

S âLO ≈ |αLO|(e−iθâs + eiθâ†
s)) (II.2.2)

where θ is the phase of the local oscillator. The detected photocurrent is thus directly
proportional to the measurement of the quadrature Q̂θ = X̂cosθ + P̂ sinθ. This detec-
tion is phase sensitive, and by recording the quadrature values for each phase of the
local oscillator (Fig II.5 (b)), it is possible to reconstruct via a maximum likelihood
tomography the full density matrix of the quantum state.

Detection efficiency
The overall efficiency of our detection is 85%. This is firstly due to the efficiency of
our photodiodes (Fermionics,FD500N-1064 - ηP D ≈ 98%). The visibility of the fringes
between the signal and the local beam also induces some losses (ηV is = V 2 = (99%)2).
Finally, the electronic noise of the homodyne detection can be translated in terms of
equivalent losses. Our electronics exhibits 20 dB between vacuum shot noise at the
central frequency and electronic noise. By taking an overall 50 MHz bandwidth, the
equivalent efficiency can be calculated to be ηnoise = 96% [45].

On top of these losses intrinsic to the detection system, we have to add the losses
due to the propagation of light through optical elements. The total transmission from
the OPO output to the detection system, ηprop = 93% is mainly limited by an optical
isolator used to prevent backscattering photons from the bright local oscillator beam.

Maximum-likelihood algorithm
Shortened as "MaxLike" algorithm, this reconstructing tool, widely used in quantum
optics experiments, enables to find the closest density matrix compatible with the
measured quadrature values [46, 47]. The quadratures values xk corresponding to an
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angle θk of the local oscillator are rearranged in terms of occurrences frequencies fk.
Using these data sets, we construct the iteration operator:

R̂(ρ̂) =
∑

k

fk

Tr[Π̂(θk, xk)ρ̂]
Π̂(θk, xk) (II.2.3)

where Π̂(θk, xk) is the projector |xk, θk〉〈xk, θk|. Initialized by the identity matrix, this
operator is used to iterate the generation of the density matrix

ρ̂(i+1) = N(R̂

(

ρ̂(i))ρ̂(i)R̂(ρ̂(i))

)

(II.2.4)

where N is the normalization factor in order to keep the trace equal to 1. When the
algorithm converges Tr[Π̂(θk, xk)ρ̂] → fk and therefore R̂(ρ̂) → 1, giving the closest,
i.e. the most likely, density matrix. As the MaxLike algorithm returns the density
matrix, it is then easy to calculate the associated Wigner function.

This reconstruction process always gives physical states thanks to always positive
diagonal elements. It also enables to easily correct from detection losses, by changing
the measurement operator [26]. Moreover this reconstruction process is also the most
accurate. Easy to implement, this algorithm requires at least 50 000 acquisitions for
single-mode tomography and 100 000 for two-mode reconstruction. Assumptions on
the size of the Hilbert space must also be given to the algorithm. Typically we will
choose a size of 10 for most of the states, and will limit the chosen size to 7 for single-
photon Fock states, in order to save iteration time during two-mode reconstruction
processes.

In the context of heralded quantum states, the homodyne detection is triggered
on the detection of a conditioning event. Therefore, the temporal structure of the
quantum state comes into play.

II.2.2 Temporal mode

The temporal mode of a photon can be seen as the probability of the photon to be
emitted at a certain time. It can also be seen as the "duration" of the photon. The
temporal mode of a photon emitted by an OPO is related to the OPO cavity bandwidth.
Indeed it corresponds to the "lifetime" of the photon inside the cavity, before it gets
out. It can be written [26]:

f(t) =
√

πγe−πγ|t| (II.2.5)

where γ is the OPO bandwidth. This mode is plotted in Fig II.6(a), for a 50 MHz
bandwidth OPO cavity.

In the pulsed regime, the time of emission of the photon can be precisely defined,
thanks to the repetition frequency of the pump laser. One particularity of continuous-
wave experiments is the difficulty to localize in time a photon probabilistically emitted
by the OPO.

Heralded generation
In the case of heralded experiments, where the detection of an idler photon heralds
the generation of its correlated counterparts, it is possible to use a temporal mode
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Figure II.6: (a) Temporal mode of a single photon out of an OPO cavity of 50MHz band-
width. (b) Acquisition of the variance on each time for several samples of the homodyne
detection signal, corresponding to a heralded single photon generation.

based method to localize the generated state. To localize precisely the time of photon
emission, given a heralding event, one can simply check the variance of the homodyne
signal [48]. This experimental acquisition is shown for a heralded single photon in
II.6(b). Indeed the variance of a single photon, or any other states, is higher than
the one of the vacuum. Therefore, in experiments, we make several acquisition of the
homodyne signal for which we compute the variance. The maximum of the variance
enables us to localize the center of the temporal mode.

Extracting quadrature values
Given the knowledge of the shape of the temporal mode, and of the emission time,
quadrature values of the generated state can be extracted via homodyne detection.
Given x(t) the recorded signal of the homodyne detection, its integration by the tem-
poral mode gives the measurement of the quadrature value:

xθ =

∫

x(t)f(t)dt. (II.2.6)

This operation can be realized numerically, or directly by shaping the local oscillator
mode.

Combining several OPOs
For experiments involving several OPOs, like the generation of hybrid entanglement,
in order to achieve indistinguishability between the emitted photons, it is necessary to
realize a matching of the temporal mode of the photons. This has been achieved by
building the two OPO cavities with the closest possible geometry and coupler transmis-
sion. By measuring the temporal modes of each OPO cavity output and numerically
computing the overlap, a value of 99% is found, showing the strong similarity between
the emitted photons. By using the same filtering cavity to filter out the non-degenerate
modes of both OPOs, we additionally ensure to get similar filtering on the conditioning
path of our setups. Given a heralding event detected at the output of the conditioning
path, the two generated states will therefore be in the same temporal mode.
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Playing with the temporal mode can also highlight interesting effects on state gen-
eration as described in Chapter IV.

We have introduced how to detect quantum states generated with continuous-wave
OPOs. Homodyne detection being sensitive to the phase of an optical field, it is
necessary to ensure the path stability of the overall setup. In the following section we
will describe our methods in order to ensure the locking of relative optical path, phases
and optical cavity lengths.

II.3 Locking methods

Experimental setups in optics usually rely on various locking for path or cavity stabi-
lizations. In our experiments, a seed beam is sent for 50 ms, during which we lock all
the necessary optical paths by sending a voltage to piezo electric transducers (PZTs).
Then, the seed beams are switched off, using mechanical shutters, and the positions
of the PZT are hold for 50 ms, during which our quantum states are generated and
detected.

Various methods based on analog locking have been extensively studied. These
lockings require an error signal, which is fed into an analog proportional-integral con-
troller (PI) towards a PZT to ensure a continuous and fast correction of the transducer.

We will first give a few examples and a quick description of techniques used to
generate such an error signal in our experimental setup:

• The Dither and Lock method [49] consists in the low frequency modulation (a few
kHz) of the length of an optical path via a PZT. We then detect and demodulate
the signal, with a lock-in amplifier. This method could be used in order to lock
the phase between the pump and the seed of the OPOs, or other relative phases
in the experimental setup.

• In the Pound-Drever-Hall method [50], used to lock cavities, the modulation
frequency is higher than the bandwidth. A beating note between the mean field
and the side bands is obtained via phase modulation of the signal. When the
cavity is at resonance the demodulation leads to a zero signal. When the cavity
is out of resonance, the two lateral bands do not have the same phase, and thus
lead to an amplitude modulation. This creates an error signal that can be locked.
This method is used to lock the OPOs cavities, by using the laser modulation
at 12 MHz. Despite the fact that 12 MHz is smaller than the bandwidth of our
OPO cavities, the parasite bands that could appears are small enough, and we
can implement a correct locking of the system.

• The tilt-locking [51] method also relies on the interference of the mean field and
a phase reference directly reflected by the cavity. However, the phase reference
is given here by spatial modes and not sidebands. For this purpose, the signal
is slightly misaligned to ensure the presence of the TEM01 mode, coexisting
with the TEM00. The TEM01 will be totally reflected by the cavity, its lobes
exhibit a π phase difference. The two modes are then sent to a photodiode with
two detection area. When at resonance the interference of TEM00 and TEM01
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will then give the same intensity on both photodiodes and the photocurrent
difference will be zero. When the cavity is out of resonance, the phase of TEM00
is changing, but not the TEM01 one, leading to a difference in each part of
the photodiode, and a non-zero photocurrent. This signal has a different sign
depending on the side of the resonance. This leads to an error signal that can be
fed into a PI. This locking method was employed to lock the high-finesse filtering
cavity which is at the direct 1064 nm output of the laser. This cavity is used
to filter out all the possible parasite spatial modes that would exist in the laser
output and ensure a "cleaned" local oscillator for the homodyne detection as well
as all the seed beams used to lock cavities and paths.

However these techniques require some materials, such as lock-in amplifier, PI, and
do not contain any automatic relocking features when the PZT transducer is out of
range or when a strong vibration or the cutting of the light produce an unlocking of
the signal. For complicated experiments in quantum optics, where multiple locking are
required (up to 9 in some of our experiments), it is necessary to achieve robust and
good phase lockings.

In this endeavor we have implemented the locking of several optics system by the
use of only cheap micro-controllers (ADUC7020 and Arduino Due), sometimes coupled
with a PI [42], as now detailed.

II.3.1 Micro-controller based locking

The idea of a micro-controller locking is to avoid the use of an error signal. For this
purpose, it is possible to use a maximum (or minimum) searching algorithm. In this
algorithm, the micro-controller registers an initial value of the signal. The microcon-
troller then sends a voltage to the PZT, of a certain step value (the step can be adapted
to achieve either fast or very precise locking). The micro-controller registers then the
new value of the signal and compares it to the previous one. If the voltage is higher
(lower), it means the maximum (minimum) has not been reached, the microcontroller
register this value and keep on incrementing the voltage sent to the PZT by one step.
If the voltage is smaller, it means the previous value was already the maximum, the
direction of the step is then reversed.

In the following, we will show some experimental applications of this simple algo-
rithm, by using an Analog Device ADUC7020 micro-controller.

Phase locking of an interferometer

A phase locking system can be applied to a certain number of elements. For
example, such system will be used in our experiments to lock an optical path, an inter-
ferometer, or the local oscillator phase of the homodyne detection. In order implement
such locking, one needs to only have access to an interference fringe signal. In the case
of an OPO, the amplification-deamplification process occuring between the pump and
a signal beam creates an interference-like signal, depending on the phase of the seed
beam. It is then easy to implement a maximum, or minimum locking algorithm, and
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lock the fringes at a maximum or a minimum point (or any phase value by adding an
offset, see in Chapter VI).

In the following we will show experimental results of the locking of a 1.5 meter long
Mach-Zender interferometer, using a maximum-searching algorithm. Figure II.7(a)
gives the scheme of the experimental setup as well as the flowchart of the algorithm in
(b). The signal of the interference is recorded on the photodiode A, and shown in Fig
II.7(c). A fast-Fourier transform algorithm is then performed on this signal in order to
get the frequency spectrum of the locking, which is compared to a non-locked system,
where the position of the PZT is manually adapted to stay close to the maximum.
The spectra resulting from the two locking methods, for an acquisition time of 100s,
are presented in II.7(d). The smallest angle that can be locked, is determined by the
smallest step achievable i.e. the resolution of the ADC. Indeed at the equilibrium,
only fluctuations larger than its resolution can be detected by the micro-controller.
For the ADUC 7020, this resolution is of 12 bits. With a reference voltage of 2.5V,
this leads to a minimal signal fluctuations δADC = 2.5V/212 ≈ 0.61mV , corresponding
to a minimum detectable phase change ∆θ0:

∆θ0 = N × n × 2π/212 ≈ 1.8◦ (II.3.1)

with N the step size, and n the number of periods for a full scanning. Experimentally,
by optimizing the parameters of the lock, such as the step size (N = 1), the number
of periods (n ∼ 1.5), or the delay between two corrections (depending on the speed of
the PZT), we obtained a standard deviation of 0.50 mV, corresponding to ∆θ0 = 1.7◦

as shown in II.7(c).

Cavity Locking

Locking of low-finesse cavity can be applied by locking for example on the maximum
of transmission of the resonant light. In order to lock such cavity, the maximum (or
minimum) phase-locking algorithm must be complexified. Indeed, the position of the
peak of resonance must be found in order to start the locking algorithm. To do that,
we implemented one (or two- for high finesse cavities) voltage scanning, fed on the
PZT of the cavity, to identify the rough voltage where the peak is localized. The
microcontroller first sweeps the cavity length and subsequently defines a high and
low threshold (Yth1 and Yth2). It then sweeps again the length to reach an initial
starting point above the high threshold. If the locked signal becomes smaller than
the low threshold, the microcontroller will get out of the locking mode and go back
to the scanning mode. Once this range is identified, the maximum (or minimum)
locking algorithm can be triggered. This simple locking method can be enhanced by
implementing some proportional feedback using more sophisticated programming. For
instance, one can numerically calculate the corresponding derivative of the signal, or
simply use the signal difference between the sequential steps, as the gain of the feedback
signal. We call this method the PI-like algorithm.

The flowchart is presented in Fig II.8(a). We implemented such algorithm on one of
our OPO cavities, with minimum-locking of the pump reflection. The finesse is around
100 for the pump light. The resulting signal acquisition is shown in Fig II.8(b). The
simple maximum searching algorithm, and the PI-like method are compared with the
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Figure II.7: (a) Experimental setup: locking a 1.5-meter-arm Mach-Zehnder interferom-
eter with a microcontroller unit. HR stands for high-reflective mirror, BS for beam-splitter,
PZT for piezoelectric transducer and PD for photodiode. (b) Flowchart of the program
execution for the maximum-searching algorithm. (c) Long-term stability. The inset gives
a one-second zoom and the associated standard deviation. (d) Noise spectrum at low fre-
quencies with and without locking, acquired by processing fast-Fourier transform on the
recorded signal of PDA.
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Figure II.8: (a) Flowchart of the program execution to lock a low-finesse cavity, including
peak searching and automatic relocking. (b) Long-term stability. The inset gives a one-
second zoom. The standard deviation is normalized to the cavity peak height. (c) Noise
spectra for maximum-searching locking, PI-like locking and for locking with the standard
analog Pound-Drever-Hall technique.

previously used Pound Drever Hall (PDH) method in Fig II.8(c). Using the PI-like
algorithm, we obtain a standard deviation equivalent to the one obtained by PDH
locking: 7.0×10−4 to compare with 6.6×10−4. By using the simple maximum search-
ing algorithm, the standard deviation: 8.0 × 10−4, is still very close to the previous
methods and can therefore be used in many applications.

High-finesse cavities

High finesse cavities (of finesse ≈ 1000) are used on our experiment to filter out
parasitic modes. For example, the filtering cavity at the 1064 nm output of the laser
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enables to clean the laser from all spatial or spectral undesired modes. In order to
filter out the non-degenerate modes of the OPO cavities, as previously explained, we
also use micro-cavities, of a few mm long, to ensure the detection of a single photon
on a well-defined frequency mode, for the generation of heralded quantum states.

To lock such cavities, we implemented the same type of algorithm developed for
low-finesse cavities. However, due to the limited resolution of the DAC, it is not
possible to use exactly the same algorithm. For a finesse of 1000 for example, 4096

1000 ≈ 4
is the number of points that will cover the whole peak. This number is obviously not
sufficient. To overcome this problem, we combine two 12-bits DAC in order to get a
24-bits DAC. Another way to see this, is that we use two different scanning voltages:
a long scan (DAC1) to cover the whole range and localize roughly the peak position,
and a shorter one (DAC0), to scan around the peak position and to lock the signal.
The two outputs are summed up with different gains. As there is four DACs available
in the microcontroller development board, this method is easy to implement without
the need of any additional electronic building.

We give here an experimental application of such locking by locking the micro-
cavity used for the heralding path filtering. A seed beam is sent through this cavity.
The micro-controller first starts a long range scanning, where it finds a rough start
point corresponding to the peak position. Then, a second smaller voltage is added to
the starting point and is used in order to lock the cavity using the same algorithm as
used for low-finesse cavities. The flowchart of the algorithm and locking process scheme
are given in Fig. II.9(a) and (b). The resulting long-time acquisition of the locked sig-
nal is given in Fig. II.10(a). The simple maximum searching locking is enhanced by
a PI-locking algorithm, and both methods are compared to an implemented Dither
and Lock method (DTH). A fast-Fourier transform is performed on the three resulting
signals and are shown in II.10(b). The measured standard deviation for one second
4.8 × 10−3 for the PI-like, being slightly higher than the DTH method: 5.6 × 10−3.
The maximum-searching algorithm gives 6 × 10−3. For 15 minutes, the normalized
standard deviation reaches 8 × 10−3. These results show the suitability and efficiency
of the microcontroller-based locking with high-finesse cavities.

Requirements for an adequate micro-controller

The requirements that are needed for such lockings are listed in the following.
Firstly, it is very convenient to have several analog inputs and outputs. Implementing
an analog to digital converter would require the need of synchronization systems that
can take time and money. Several inputs and outputs also enable us to have several
lockings on the same card. For example with the ADUC7020, it is possible to lock
2 OPOs (2 phase locking + 2 low-finesse cavity locking = 4 locking systems), or two
high-finesse cavities with only one board. Also we wanted this micro-controller to be
cheap, and it is: around 50 euros. The micro-controller must also be fast enough: the
ADC and DAC are at 1 MHz, and the internal clock of the system is 60 MHz. This is
sufficient enough for our applications as the main limitation of the locking is the PZT
bandwidth, which is around a few kHz.

This micro-controller can also be coupled to an analog PI, in particular for cavity
locking. In that case, the micro-controller is used to search the starting voltage, cor-
responding to the peak of the signal, and to start the PI system. Automatic relocking
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Figure II.9: (a) Flowchart of the program execution to lock a high-finesse cavity. This
scheme includes two different scanning modes controlled by two outputs in order to use
the full DAC resolution. (b) Experimental locking process of a cavity with a finesse equal
to 1000. The light is measured in reflection. (I) Cavity is locked. (II) Light is blocked to
disrupt the lock and the program goes thus to the short-scan mode.(III) As the short-scan
did not enable the relocking in this specific example, the long-scan is started in order to
learn the rough peak position. (IV) The output is set at a rough start point determined
in the previous step. (V) A short-scan is started to find the precise peak position. (VI)
The output is set to the precise start point. (VI) Locking is on.

of the system can be also implemented. This method is taking advantage of the high-
quality obtained by analog PI-locking as well as of the digital automatic re-locking
enabled by micro-controller. Because of the weight of the historical mount of the type-
II OPO, the OPO-cavities are locked using this hybrid method in our experiments.

The codes for the ADUC7020 micro-controller phase-locking algorithm can be
found in Appendix B.

We also used another type of micro-controller which met the aforementioned re-
quirements. This micro-controller is easier to find and can be bought in larger quan-
tities.

II.3.2 Arduino

Recently, Arduino came out with a new model that possesses analog outputs: the
Arduino Due, with a slightly faster internal clock (84MHz) than the ADUC7020. Its
ADC and DAC roughly have the same speed (500k-1MHz and ∼ 1.5 MHz, respectively)
which will be the limitation. It is also simpler to write code with it, user-friendly, and
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Figure II.10: (a) Long-term stability for the high- finesse cavity. The inset gives a
one-second zoom. The standard deviation is normalized to the cavity peak height. (b)
Noise spectrum for maximum-searching locking, PI-like locking and the traditional analog
dither-and-lock technique.

a large amount of free libraries already exists. However unlike the ADUC7020, it has
only two outputs. It is also slightly cheaper (≈ 30 euros).

Using this micro-controller, we implemented the locking of an interferometer at any
phase difference, i.e. at any position on the fringe signal. The idea is to implement
a first scan to measure the maximum and the minimum of the fringe. Using this
measurement, it is possible to target a specific voltage corresponding to a certain phase.
Using a feedback gain proportional to the difference between the targeted signal and
the detected signal, we can lock the interferometer at any phase. We have used this
method to lock the local oscillator phase of our homodyne detection at any desired
point. This will be used in Chapter VI, for remote state preparation and steering.

The codes for locking a Mach-Zender interferometer with the Arduino Due can be
found in Appendix C.

II.4 Conclusion

This chapter has detailled the general tools used in our quantum optics experiments.
The central non-linear system here is an OPO based on a crystal inserted into a cavity.
Depending on its phase matching properties, such device can generate either single or
two-mode squeezed vacuum states. Both are available on our experimental setup. To
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detect and characterize the generated quantum state, we use homodyne detections
as they are phase-sensitive, can achieve full tomography of a state and have a high
efficiency. Such detectors also need a correct knowledge of the temporal mode features
of the state [48]. This aspect will be furtherly investigated for Fock states in Chapter
IV.

A new way of locking optical paths and cavities has also been implemented as
the generation of complex states requires many locking systems. We implemented a
reconfigurable, automatically re-locking, cheap, and efficient method thanks to different
micro-controllers [42].

In the next chapter we will focus on another type of detector we did not develop
so far: a single-photon detector, often used in discrete-variable schemes. In our case,
we rely on superconducting nanowire single photon detectors, which can reach close to
unity quantum efficiency and combined variety of figures of merits.
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III | Superconducting Nanowire

Single Photon Detectors

Introduction

In this chapter, we will show the optimization at 1064 nm of superconducting nanowire
single-photon detectors (SNSPDs) that we will use in our quantum state engineering
experiments. Based on a fruitful collaboration with V. Verma and S. W. Nam, from
the National Institute of Standard and Technology (NIST), and F. Marsili and M. D.
Shaw from the Jet Propulsion Laboratory (JPL), the WSi-based SNSPDs reached an
efficiency of 93% with a dark noise below Hz level. We will firstly provide a brief review
of the different types of existing detectors, and then focus on SNSPDs. We will then
discuss about the WSi-based SNSPDs that we optimized, characterized and used.
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III.1 Context

III.1.1 The near-infrared range

The near-infrared wavelength range has been an important playground for a large
community in quantum optics, in particular at λ = 1064 nm. At this wavelength that
corresponds to Nd:YAG lasers, narrow-linewidth and ultra-stable lasers are available,
as well as ultralow-loss optical coatings and photodiodes with close-to-unity efficiency.
Pioneering [52] and world-record [53] demonstrations of squeezed light [54] have been
performed at this wavelength, as well as quantum teleportation [55] and enhanced
quantum metrology, including for gravitational wave detection [56].

In contrast to these realizations, the preparation of single-photon states or more
complex states involving larger photon-number components generally requires single-
photon detections to herald their preparations [25, 57, 58]. Indeed, combining several
photon detection lead to a drastic decrease in the count rate which can prevent from
using several protocols at a row [59]. It as well adds technical difficulties due to the
stability over long time of the experiment.

In the case of multiple heralding events, as targeted in this thesis work, or also
to implement successive protocols, the implementation of fast and highly efficient sin-
gle photon detectors is therefore a fundamental and demanding requisite for these
investigations [60].

III.1.2 History and different types of detectors

Detecting efficiently single photons at 1064 nm has been a long standing issue. The first
available detectors were avalanche photodiode detectors (APDs), where the detection
of a photon triggers an avalanche multiplication of the current. Two materials are used
in this endeavor. Si-based APDs have low efficiency (< 2%) while having a dark count
rate from 50 Hz to 1 Hz. InGaAs/InP ones, even though large improvements have
been obtained in the recent years with these devices, exhibit limited efficiency for this
specific wavelength and often suffer from large dark count rates if used in free-running
mode. In addition their dead-time is usually around the µs scale, too long for our
targeted applications.

For all these reasons people started to go towards superconducting-nanowire single-
photon detectors that could reach high efficiency, with low dead-time and jitter, and
below Hz dark noise. Such parameters will be detailed in the following section. Histori-
cally, the first generation of such detectors was based on NbN material and could reach
up to 30% detection efficiency [61]. The first detectors used in the group a few years
ago were based on such material. Published works reported efficiency larger than 50%
[62], but were considering only photons coming onto the area of the detector and not an
overall system detection efficiency. Despite recent progresses [63, 64], their efficiency is
limited by the intrinsic nature of the material. Indeed, due to the lack of compatibility
between NbN and the others materials helping on the increase of the system efficiency,
only a small choice of substrates can be used to fabricate the NbN nanowire. Moreover,
NbN being crystalline, it is affected by crystal defects, which limits the fabrication of
large-area devices to maximize the absorption probability of a photon, and to be able
to play widely with design parameters to enhance the absorption.
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Recently, the development of SNSPDs based on tungsten silicide (WSi) [65, 66]
enabled to outperform other infrared single-photon detectors. In addition to a better
internal efficiency than other materials, the amorphous nature of WSi facilitates the
fabrication of large sensitive area and the embedding of the material inside an optical
stack to enhance absorption. System detection efficiency greater than 90% has been
achieved in the wavelength range λ = 1520 − 1610 nm [67].

III.2 Characterizing a single-photon detector

In this section will be briefly described the important parameters for different types of
single-photon detector.

• System detection efficiency (SDE)
The system detection efficiency quantifies the capacity for one input photon to
generate a detectable electronic pulse. This value includes coupling and fiber
losses and provides an overall effective quantum efficiency.

• Dark count rate
Dark counts are events appearing despite the absence of light. They can be very
detrimental in quantum state engineering. False-detection events will indeed
degrade the fidelity of heralded states.

• Jitter
The jitter is the deviation from a periodic signal, which produces some uncer-
tainty on the photon detection time. The jitter can be of hundreds of picoseconds
for Transition-Edge Sensors (TESs) or APDs and is closer to tens of picoseconds
for SNSPDs. This parameter is therefore not relevant for the experiments pre-
sented in this thesis.

• Dead-time
The dead time is the time it takes for detector to come back at its operating state
after a detection event. During this time, it cannot sense any other excitation.
This duration is around a few µs for TES while reaching few ns for SNSPDs.

SNSPDs combine large system detection efficiencies, low dark count rates, limited
jitter and dead time. This combination makes them one of the best detectors for quan-
tum optics experiments. The next section will focus on SNSPDs, their principle and
operation apparatus. The protocol used to measure their quantum system detection
efficiency will also be detailed.

III.3 SNSPD

III.3.1 Principle

The detector is cooled down to cryogenic temperature in order to achieve a supercon-
ducting behavior of the material. A current called the bias current IB is sent to the
detector. This current must be small enough, below the switching current ISW , to
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(a) (b)

(c) (d)

Figure III.1: (a) A single photon is absorbed by the nanowire. (b) Creation of a hotspot
making the material locally resistant. (c) The density of current increases as the current
tries to bypass the resistance. (d) Complete phase transition. The material becomes
locally resistant and a voltage pulse is detected.

keep the detector in the superconducting state. When a photon is absorbed by the
nanowire (Fig. III.1(a)), it creates a hotspot that makes the material locally resistant
(Fig. III.1(b)). The current then tries to bypass this resistance and the resulting in-
crease in the current density leads to a phase complete transition (Fig. III.1(c)). It
results in a resistance of a few kΩ (Fig. III.1(d)), and a measurable voltage pulse.

Depending on the material, the necessary cooling temperature can vary. In the
first experiments conducted at NIST, the operating temperature of the cryostat was
set to 800 mK. However, more recently, operations above 2K were also demonstrated
for detection at 1310 nm [68].

III.3.2 Alignment: NIST’s plug-and-play mounts

It is important to check the overall system detection efficiency and not only the prob-
ability for one photon impinging on the surface to create a pulse, which is determined
by the material’s intrinsic nature. Indeed, what can be tricky when one wants to ef-
ficiently detect all the photons is to be able to send them correctly onto a very small
area.

For example, for NbN-based device the efficiency is in part limited by the difficulty
of fabricating large areas, without defects, leading to a difficulty to couple them with
optical fibers. Drifting of alignment with time can therefore also be an issue.

To simplify the alignment and prevent from misalignment issues with time, NIST
has developed a self-alignment technique. A keyhole shape is etched though the wafer
around each detector as shown in Fig III.2(a). Each detector can then be removed
and self-aligned to a single mode fiber, using a fiber ferrule of the same diameter [69]
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(a) (b)

(c)

Figure III.2: (a) Photography of a wafer containing several detectors. (b) Detector
assembly and fiber connection. The single-mode fiber is self-aligned via a zirconia sleeve.
The 16 µm × 16 µm active area of the SNSPD is larger than the 10 µm mode field diameter
of a standard single mode fiber, to allow for slight misalignment. (c) Photography of the
SNSPD mount.

as shown in Fig III.2(b). Thanks to an adequate mount holding the overall system,
the alignment is made stable, efficient and very reproducible. A picture of the usually
used mount is shown in Fig III.2(c).

III.3.3 Cooling and apparatus

In our case, the SNSPD is mounted at the bottom of a double-wall dipstick. This
dipstick is immersed into a liquid Helium dewar while the vacuum inside is pumped,
in order to decrease the temperature slightly below 2K by the Joule-Thomson effect.
The apparatus is shown in Fig. III.3(a).

A 1-meter-long single-mode fiber is connected to the detector and to the top of the
dipstick. The fiber end face is anti-reflection coated for 1064 nm (OZ-Optics). The
resulting voltage pulses are sent through a coaxial wire to the top of the dipstick.

To enhance the signal-to-noise ratio, we filter the signal using a 100 MHz low-
pass filter, and amplify it with a chain of two 1 GHz amplifiers of 24 dB gain each
(Minicircuits ZFL-1000LN+). All the electronics is implemented at room temperature.
The overall electronic scheme is presented in Fig. III.3(b). An additional filter is added
on the oscilloscope settings in order to ease a precise triggering by smoothing the signal.
The signals of the SNSPD with and without this additional numerical filter are shown
in Fig III.3(c). Usually, a value of 20 MHz for the scope filter is chosen.
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Figure III.3: (a) Photography of the dipstick immersed into the liquid Helium dewar.
(b) Scheme of the electrical circuit used to recover the pulse. A small DC current is sent
via a SRS SIM928 source (1 mV on the voltage source corresponds to 0.1 µA in current)
to the detector. In order to check the current sent do the detector we use a SRS SIM970
voltmeter. This voltmeter also enables us to check that the detector stays in its supercon-
ducting state, i.e. that it does not become resistant because of the sent DC current. The
voltage pulse resulting on the absorption of a photon is a high frequency signal. This signal
(in green) is recovered thanks to a bias tee. The signal is frequency-filtered using a 100
MHz low pass filter, and then amplified using two Minicircuits amplifiers ZFL-1000LN+
of 24 dB gain each. (c) In blue is given the voltage pulse of the SNSPD after amplification.
In Red is given the SNSPD pulse, filtered on the oscilloscope via a 200 MHz numerical low
pass filter. In green is given the SNSPD pulse, filtered numerically by a 20 MHz low pass
filter. This configuration is usually used in the experiments for a facilitated triggering.

III.3.4 Measurement of the system detection efficiency

To quantify the overall system detection efficiency (SDE) including fiber and coupling
losses, we sent a strongly attenuated laser at 1064 nm in a fiber, in order to reach
a mean photon number of about 100,000 photons/s. The detector is polarization-
sensitive (typically up to 10% difference in efficiency) due to the anisotropic nature of
the material. The polarization of the probe light is thus optimized in order to maximize
the number of counts.

Then, to quantify the efficiency, we follow the steps shown in Fig III.4:
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Figure III.4: SDE measurement, consisting in two main steps. The light of a 1064-nm
continuous-wave laser is sent to a single-mode fiber and a 50/50 beam splitter. The first
step consists in finding the good combination of fiber attenuator to reach the range 5
nW-200 pW at point A with the power meter, and a photon number of 105 photons/s at
point B, i.e. at the SNSPD side. The polarization is optimized using a half-wave plate and
a quarter-wave plate at the input of the fiber. The ratio between the count number in B,
and the laser power in A is calibrated. The second step consists in the precise calibration
of the power attenuation between A and B. The light power is finally increased until the
same power meter at point B reaches the range 5 nW-200 pW, and 1 µW-30 µW at point
A.

Step 1:

• The light of a 1064-nm continuous-wave laser is sent to a single mode fiber and
attenuated until the power meter measures at point A in the range 5nW −200pW .
Fiber attenuators are added on B to reach at point B, i.e. on the detector side,
a photon number of 105 photons/s.

• The polarization is optimized using a half-wave plate and a quarter wave plate
at the input of the fiber.

• The ratio between the count number in B, and the laser power in A is calibrated
(Fig III.4 step 1).

Step 2:

• The light power is finally increased until the power meter in B reaches the range
5 nW-200 pW, and 1µW-30 µW on A. This step enables to calibrate the power
attenuation between A and B (Fig III.4 step 2).
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The steps must be repeated several times to ensure a correct calibration of the
quantum efficiency, and with other attenuators. It is then necessary to pay attention
to some uncertainty sources such as:

• The intensity fluctuations of the light, due to the technical fluctuations of the
laser intensity and the light shot noise. These fluctuations have been estimated
to be below ±0.5%.

• The calibration uncertainties, due to the curve fitting of the data point to get
the ratios. They can be minimized by taking a sufficient number of points and
by repeating the steps several times. These uncertainties have been estimated to
be below ±0.5%.

• The precision of the power meter (Ophir PD300-IRG): due to two different
sources. The first one is the precision of the power meter itself, and its cali-
bration with a standardized source. The second one is the non-linearity between
two different ranges of the power meter. These uncertainties sum up to be below
±3%, according to the constructor data.

Thus the total uncertainty on the system detection efficiency is governed by the one
of the power meter and is equal to ±3%.

We can with this method achieve a trustful calibration of our SDE.

III.4 Detector optimization

We will now turn to the work done on the development and optimization of the SNSPDs
at the wavelength 1064 nm [70].

III.4.1 Simulation

Because the crystal structure of WSi is amorphous, WSi-based nanowires are more
robust to structural defects than NbN nanowires. Moreover, its nature allows it to be
embedded in a variety of substrates, enabling to enhance its absorption. The W0.8Si0.2

detectors were then optimized for maximum absorption at 1064 nm. Simulations were
performed via a Matlab c© program running RCWA (rigorously coupled-wave analysis)
to optimize the layer thicknesses, given the optical constants of the materials. A scheme
of the different layers is shown in Fig III.5(a). The simulated spectra of absorption,
reflexion and transmission can be found in Fig III.5 (b).

III.4.2 Fabrication

The first step of the fabrication process consists in the deposition of an 80 nm-thick
gold mirror on a 3”Si wafer by electron beam evaporation and lift-off, with a 2 nm Ti
adhesion layer below and above the mirror. A quarter-wave spacer layer (152 nm of
SiO2) was then deposited by plasma-enhanced chemical vapor deposition, and Ti/Au
contact pads were patterned by electron beam evaporation and lift-off. The ∼ 4
nm-thick superconductor layer was deposited by DC magnetron co-sputtering from
separate W and Si targets at room temperature. It was then capped with 2 nm of
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Figure III.5: (a) Scheme of the different layers of WSi-based SNSPDs. The WSi meander
is embedded inside an optical stack deposited on a Si substrate. The layers have been
optimized to enhance absorption at 1064 nm. An antireflection coating is deposited on
the top surface and a quarter-wave spacer layer is realized between the meander and the
bottom gold mirror. (b) Theoretical absorption, reflection and transmission spectra for
the optimized layers using an RCWA analysis.

amorphous Si to prevent oxidation. Photolithography and etching in an SF6 plasma
were used to define a 20 µm-wide strip between gold contact pads. Electron beam
lithography using PMMA resist and etching in SF6 were then used to define nanowire
meanders with a width of 140 nm and a pitch of 245 nm within the 20 µm-wide strip.
An SEM image of the meander is shown on Fig III.6.

An antireflection coating was finally deposited on the surface with 102 nm SiO2,
137 nm SiNx, 171 nm SiO2, and 192 nm SiNx.

III.4.3 Results

Many detectors were tested with different pitches and gaps. Their efficiencies usually
varied from 70% to close-to-unity efficiency. Figure III.7 provides the measurement of
the best detector’s SDE and dark count rate as a function of the bias current. As it
can be seen, at this operating temperature the system reaches the inflection current,
leading to a saturated efficiency, before reaching the switching current, ∼ 2µA, for
which the device switches to its resistive, non-superconducting state. At a bias current
of 1.8µA, an SDE of 93 ± 3% is obtained with a dark noise limited to 3 counts per
second (cps). For bias currents closer to the switching current, the dark count rate
increases rapidly.

A recent improvement consisted in replacing the gold mirror by a dielectric one.
This operation led to an increase of the critical current by a factor of 2 and therefore
an enhancement of the signal to noise ratio.
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Figure III.6: SEM image of the meander. The nanowire has a width of 140 nm and
pitch of 245 nm

III.5 Perspectives

We conclude this chapter by discussing two main on-going evolutions of this work.

III.5.1 A new superconducting material: MoSi

A new material based on molybdenum silicide is currently tested and optimized for our
wavelength. MoSi detectors are interesting because they work at higher temperature,
which enables to have higher switching current, and therefore have a larger voltage
response around 1.8K. The resulting increase is a strong incentive in the signal-to-
noise ratio. Moreover this high switching current enables us to almost always reach the
plateau region, where the SDE saturates. Therefore we can fully reach the maximal
intensity of each detector. This direction will therefore be followed in the future.

However it requires another fabrication process that our collaborators at NIST
recently started to develop. First batches enable to reach detection efficiencies around
70%. It should be feasible to target close-to-unity efficiency for this material as well,
with a greatly improved signal-to-noise ratio.

III.5.2 A new cryogen-free cryostat

Problems concerning the lifetime of the detectors were found and were an important
issue during this thesis. Indeed from one cooling cycle to another one, the surface
coating is peeling off, resulting on unbounding of the aluminum micro-wires and de-
terioration of the quantum efficiency. Even though the surface can be cleaned with
alcohol and the wire rebounded, after some time, the efficiency is still decreasing and
the surface get so dirty that it is almost impossible to reconnect the wires.

These issues are related to our cooling process. Two hypotheses were made. When
the pump is stopped, the detector is still immersed in boiling helium that can cause
mechanical action and damage the surface and the aluminum boundings. Alternatively,
when the pump is stopped and the dipstick is taken out of the helium, either some air
is getting back in it and can easily turn into ice, or some impurities in the helium itself
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Figure III.7: System detection efficiency (SDE) at 1064 nm (blue) and dark counts (red)
as a function of the bias current. For a bias current of 1.8µA, a value equal to 0.9 times
the switching current, a SDE of 93 ± 3% is obtained with a dark noise of 3 cps. These
measurements are obtained at an operating temperature of 1.8 K.

crystallize on the detector. We saw sometimes crystalline-like dirt on the surface, and
very often had water in the dipstick, comforting us to assume such hypothesis.

To prevent these damages from occurring again, a new helium free cryostat based
on charcoal sorption cooling will be arriving soon. Cooling at 4 K with some liquid
Helium make the charcoal adsorb gas and decrease the pressure enabling further cooling
below 2 K.

III.6 Conclusion

The fruitful collaboration with NIST and JPL resulted in the most-efficient single-
photon detectors at 1064 nm so far using superconducting nanowire single-photon
detectors. The amorphous nature of the WSi material enables to grow large areas and
facilitates its embedding inside an optical stack. The detectors are easy to connect
with an optical fiber, and requires only an operating temperature around 2 K. The
achieved detection efficiency of detection was 93% ± 3%, with dark counts at the Hz
level. In the future, we can expect that the signal to noise ratio will even be further
enhanced by the fabrication of MoSi-based devices.

The unique combination of such close-to-unity efficiency single-photon detectors
and our high-quality non-linear sources opens the path to a variety of quantum state
engineering experiments, as detailed in the following of this work.
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IV | Fock State Generation

Introduction

Fock states, i.e. photon-number states, are often used in the world of discrete variables
as carriers of information. In particular, building reliable single-photon sources is a
critical requirement for the implementation of quantum optics protocols. Fock states
are also main resources for the engineering of non-gaussian states. Indeed, one cannot
build a non-gaussian state by solely using gaussian operation and resources. Generating
non-gaussian states requires at the minimum either non-gaussian operation or to start
with non-gaussian states, such as Fock states.

In this chapter, we will describe an efficient method for generating heralded Fock
states, based on spontaneous parametric down-conversion (SPDC) in an OPO. We
will demonstrate that our single-photon source shows high performances, such as one
of the largest spectral brightness to date for SPDC sources and a large heralding
efficiency. We will then use the same source to demonstrate high-purity two-photon
Fock state generation. Thanks to the achieved large generation rate, we will also study
the temporal mode structure of two-photon state and show how it can be used as an
additional degree of freedom for quantum engineering.
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Chapter IV. Fock State Generation

IV.1 Fast and high-purity heralded single photon

IV.1.1 Characterizing a single-photon source

At the heart of many protocols, high-purity single-photon sources are a central resource
for the development of quantum information [71]. In linear optical quantum computing
protocols, such as in the KLM scheme [72] where universal quantum computing is
achieved with linear optics tools and single-photon detectors, single photons are used
as information carrier. This approach is based on interferometric transformation and
high-efficiency single-photon detection and highly relies on the quality of the single-
photon source. High-quality single-photon source is at the heart of a large number of
groups’ working themes [73], ranging from quantum-key distribution schemes, boson
sampling approach, or Bell type violation of locality [36–38].

In all these developments, the need of a low admixture of vacuum is a crucial
requirement and is directly linked to the overall optical losses of the system. The
generation of high-purity and ultrafast single-photon is thus an active topic nowadays.
Depending on what is required for the protocols, the source need to reach different
figures of merit that will be described in the following.

Heralding efficiency
The heralding efficiency corresponds to the probability P1 to have one and only one
photon, given the detection of a heralding event. It is thus directly linked to the pu-
rity of the source. Definitions may vary whether it is with or without correction from
detection losses. In this study, we chose to give it with correction from detection losses
as it quantifies the limit our source can target, and the quality of the photon used in
subsequent protocols. In our case, the detection losses are a technical issue and not
intrinsically limiting the purity nor preventing its direct use in subsequent protocols,
as the photon is emitted in a very well-defined spatio-temporal mode. Such losses will
thus be given separately.

Second-order correlation
The second-order intensity correlation g(2)(0) is proportional to the ratio of the 2-
photon population with the overall population:

g(2)(0) =
〈((â†)2â2〉

〈(â†â〉2
≈ 2P2

(P1 + 2P2)2
(IV.1.1)

where P1 is the heralding efficiency, i.e. the probability to find one photon, and P2 the
probability to find two photons, in a well-defined spatio-temporal mode. It quantifies
the multi-photon character of the source. The autocorrelation function is an important
though incomplete parameter. Indeed, g(2)(0)) criterion is insensitive to losses.

Spectral Brightness
The spectral brightness is the number photons emitted per unit of time and per unit
of bandwidth per mW. The effective count rate, deriving from the spectral brightness
of the source, is important if one wants to use these photons on subsequent protocols.
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IV.1. Fast and high-purity heralded single photon

Also the spectral brightness shows how many photons are emitted in a well-defined
spectral mode. If ones want to store these states in a quantum memories, the mode
size needs to meet the atomic bandwidth and thus needs to be well-defined and of a
few MHz large.

Brightness
Another parameter, which can be applied to pulsed sources, and which characterizes
also the speed and efficiency of the source is the brightness. Definition may vary. It
can be seen as the spectral brightness integrated over all wavelengths. But also as the
probability, given one pump photon, to emit a single-photon as referred in [74]. This
latest definition is hard to apprehend for our continuously-pumped OPO and we will
therefore here only focus on the spectral brightness of our source.

In order to meet all this requirements, we will detail in the following how each of
these criteria depends on the parameters of an OPO.

IV.1.2 A single-photon source based on an OPO

Our single-photon source will be based on a type-II phase-matched OPO, as detailed
in Chapter II. Two mode-squeezed states, which will be furtherly studied in the next
chapter, are emitted at the output of the device. The output state can be written in
the Fock basis as:

|Ψ〉 ≈
∞

∑

0

Λ2n|n〉i|n〉s. (IV.1.2)

The resulting idler and signal modes are therefore photon-number correlated. More-
over, the modes being orthogonally polarized, they can be separated using a simple
polarization beam splitter (PBS) and a half wave-plate (HWP). Then, by implement-
ing a single-photon detection on the idler mode, it is possible to herald the generation
of its twin on the signal mode.

In an OPO, the two main parameters on which the user can play are the system
escape efficiency ηOPO, and the threshold power Pth. These parameters are given by
the cavity features: the intra-cavity losses L, the transmission for the pump Tp of the
input coupler and the transmission of the infrared photons T of the output coupler
of the cavity. Indeed the escape efficiency can be written as: ηOPO = T

T +L , and the

threshold power as: Pth ∝ Tp
T 2

L2 .
More specifically, the heralding efficiency P1 is limited by the escape efficiency, as

1 − ηOPO, which is the minimal admixture of vacuum than cannot be avoided. Then
P1 also depends on the distance of the pump power to the threshold. Indeed P

Pth
∝ Λ2.

Therefore the P2 component increases with the pump power while the P1 component
will decrease. Consequently, the g(2)(0) function is determined by the distance to the
pump power.

The spectral brightness is independent of the pump power. To achieve a large
spectral brightness, one must have a narrow mode bandwidth. Narrow bandwidth are
also necessary for photon coupling to atomic systems, and in particular for atomic
quantum memories. This bandwidth is defined by the cavity bandwidth of the OPO
and therefore depends on the output coupler of transmission T . The longer time the
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Parameter Depends on Play with

P1 Pth, ηOPO T , L, Pp

g(2)(0) Pth Pp

Sp. Brightness ηOPO T

Table IV.1: The parameters of a single-photon source in the first column depend on the
parameters of the OPO source, in the second column. In order to optimize the single-
photon source, one can play with the experimental parameters of the third column.

photon "spends" in the cavity, the narrower will be its bandwidth. Therefore the
smaller T is, the narrower the mode is. However the bandwidth scales in the inverse
way than the escape efficiency ηOPO, and thus than the heralding efficiency P1. The
output coupler of the OPO must be chosen as a trade-off between a narrow bandwidth
and a high heralding efficiency.

Table IV.1 summarizes the dependency of each figure of merit of the source with
the OPO parameters, and how they can be experimentally tuned.

In our system, we chose for the mirrors the values detailed in Chapter II, leading
to: ηOPO ≈ 96%, Pth ≈ 50 mW and a bandwidth of around 50 MHz.

IV.1.3 Experimental implementation

The experimental setup is shown in Fig. IV.1. The non-linear crystal is a type-II
phased-matched KTP crystal pumped by a continuous-wave Nd: YAG laser at 532 nm.
The crystal is 1 cm-long. The transmission of the output coupler is of T = 90% for 1064
nm and highly reflective for 532 nm. This OPO is made triply-resonant for the pump
and the two polarizations of idler and signal at 1064 nm by tuning the temperature
of the crystal and the pump wavelength. This enables the generation of orthogonally-
polarized photon pairs at 1064 nm, which can be split using a polarizing beam splitter.
The idler non-degenerate modes are then filtered using the combination of a 0.5 nm-
wide interferential filter followed by a Fabry-Pérot cavity of 300 MHz bandwidth. The
resulting idler photons are then detected via a superconducting nanowire single-photon
detector (SNSPDs). The combination of these filtering elements is used in order to
make sure that the emitted signal photon will be in the same, well-defined, mode
than the heralding idler photon (see Chapter II for details and values). The overall
transmission of this conditioning path is of ηcond ≈ 50%.

We then analyzed the emitted photons using homodyne detection. However due
to backscattering of the local oscillator on the optical elements and the photodiodes,
we have to use an optical isolator made of a Faraday rotator and two polarized beam
splitters on the detection path. The additional elements create some losses that we can
correct from when we reconstruct the density matrix. The detection losses sum up to
be 15%, which details can be found in Chapter II. For each event, the homodyne signal
is recorded and multiplied by the temporal mode of the photon [48], which is a double
decaying exponential profile with a bandwidth of 53 MHz, as detailed in Chapter II.
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IV.1. Fast and high-purity heralded single photon

Figure IV.1: Experimental setup for the heralded single-photon source. A polarization
non-degenerate and triply-resonant OPO is pumped far below threshold by a continuous-
wave laser at 532 nm. Due to the cavity enhancement, the pump power is in the mW
range. At the output of the OPO, photons pairs are separated via a polarizing beam
splitter. Single-photon detection on the conditioning path heralds the emission of its
twin, which is then characterized by homodyne detection. The overall transmission of the
conditioning path, which includes frequency filtering (interferential filter IF and resonant
cavity), reaches 50%. An optical isolator enables to avoid any backscattering from the
detection system.
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Figure IV.2: (a) Quadrature values and (b) distribution measured via the homodyne
detection for the heralded state. (c) Wigner function of the heralded state corrected from
detection losses (15%). (d) Photon-number distribution for a 1 mW pump power, with
and without correction from detection losses (15%). The heralding efficiency, i.e. the
probability of obtaining a single photon at the output of the OPO per heralding event,
reaches 93%. The vacuum admixture is limited to 5%.

IV.1.4 Results

The recorded quadrature values and the experimental Wigner function are given in
Fig. IV.2. Using a maximum likelihood algorithm, the density matrix is reconstructed
and its diagonal elements (photon number probabilities) are given in Fig IV.2(d), with
and without correction from detection losses (15%). We reach a heralding efficiency as
high as 93%, with a vacuum component limited to 5% [75]. This is in agreement with
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Figure IV.3: Heralding rate and conditional autocorrelation function g(2)(0) as a function
of the pump power. A spectral brightness as large as 0.6 × 104 photons/(s·mW·MHz) is
obtained, close to the maximal achievable value in this parametric down-conversion system.

the escape efficiency of the OPO which is around η = 96%. Figure IV.3 provides the
g(2)(0) values with the pump power. g(2)(0) values from 0.008 to 0.1 for a heralding
rate going from 150 kHz to 1 MHz are obtained. The rate is proportional to the single-
photon probability and thus depends linearly on the pump power: RH ∝ Λ2 ∝ Ppump

[70] Thanks to the high-efficiency SNSPDs, we thus can reach a spectral brightness of
0.6 × 104 photons/(s·mW·MHz). This value is very close to the maximum achievable
by our source 1.2 × 104 photons/(s·mW·MHz) if one assumes a perfect single-photon
detector and no loss in the heralding path (50% overall losses currently).

IV.1.5 Comparison with other photon sources

In this section we will briefly review some of the best photon sources based on SPDC
published in the literature. A comparison table of several parameters can be found
in Table IV.2. Many sources lack of the presence of good detectors while others have
problems in terms of the mode definition of the emitted photons because of the ab-
sence of a cavity. Our source has the advantage to reach high values for many figures
of merits, being one of the best in each category. This can be resumed by its high
spectral brightness while having a heralding efficiency greater than 90%.
Recently, new sources such as in reference [74], based on enhanced Purcell effect due to
the presence of a quantum dot embedded in a cavity, are starting to reach high figures
of merits, and in particular a very high brightness.

We demonstrated the generation of high-brightness single-photon source. In the
following, using the same source we will demonstrate the generation of highly-pure
two-photon Fock states, via multiple conditioning events.
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Sources λ (nm) HR (kHz) Hη g2(0) ∆ν (MHz) SP detector ηdet Spectral Brightness

and wavelength (nm) (pairs/(s·mW·MHz)

This work 1064 390 0.79 0.04 53 SNSPD, 1064 0.92 0.61.2 × 104

Jin [76] 1584 45 ≤ 0.02 0.02 - SNSPD, 1584 0.6 -

Ramelow [77] 810 6 0.82 - 230 × 103 TES, 810 ≥ 0.95 2.6 × 10−3

Krapick [78] 1575 105 0.6 0.4 330 × 103 APD, 800 0.55 ∼ 3

Pomarico [79] 1550 4400 0.45 0.18 375 × 103 APD, 800 0.50 ∼ 3

- - 94 0.80 0.018 - - - ∼ 3

Ngah [80] 1540 2100 0.42 0.023 200 × 103 SSPD, 1550 0.17 2.5 × 102

Neergaard-Nielsen [81] 860 12.8 0.625 - 8 APD, 860 0.44 ∼ 9 × 102

Wakui [82] 860 ∼ 50 0.58 - 9.3 APD, 860 - 102

Scholz [83] 894 5 0.55 0.012 3 APD, 894 - 1.4 × 104

Fortsch [84] 1064 - - < 0.2 7.2 − 13 APD, 1064 0.075 106

Luo [85] 890 - - < 0.02 66 APD, 890 - 3 × 104

Table IV.2: Comparison of different heralded single-photon sources based on spontaneous parametric down conversion
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Chapter IV. Fock State Generation

Figure IV.4: Experimental setup for the generation of high-purity and fast two-photon
Fock state. The presented setup is the same as the one developed for single-photon gener-
ation, but with an additional photon detection, in order to detect two-photon as heralding
events. The accepted coincidence window between the two heralding triggers is set to 1
ns, much smaller than the typical time given by the inverse of the OPO bandwidth.

IV.2 Heralded two-photon Fock states

Based on the same source, i.e. a high-escape efficiency OPO, it is also possible to
generate two-photon Fock state with the addition of another single-photon detection,
as shown in Fig IV.4. This double-detection is implemented using a fibered beam
splitter at the output of the micro-cavity and plugged into two SNSPDs of efficiency
85%. For coincidences arriving within a time window of 1 ns, smaller than the typical
time of the system, which is the inverse of the OPO bandwidth, the homodyne signal is
detected. The density matrix is then reconstructed using the same technique used for
the heralded single-photon state. The experimental quadrature values and marginal
distribution are given in Fig. IV.5(a) and (b). The results in the form of the Wigner
function and the photon number elements are given in IV.5(c) and (d). Due to the
high escape efficiency of our OPO and the efficiency of the detectors, we manage to
achieve a generation of 80% purity two-photon Fock state (60% without correction for
detection losses), at a rate of 200 Hz. The achieved purity is consistent with the OPO
escape efficiency. The achieved preparation rate is the largest obtained so far, when
other experiments are around the Hz level, and the purity of our two-photon Fock
state is also the highest demonstrated heretofore.

We demonstrated fast two-photon source based on two-photon detection heraldings.
We considered here the case when the two heralding events arrive in a time much
smaller than the OPO typical time. In the next section, thanks to the achieved rate, we
will study as an additional degree of freedom, the generation of Fock state superposition
via time-separated heralded single photon detection.
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Figure IV.5: (a) Quadrature values and (b) distribution measured via the homodyne
detection for the heralded state. (c) Wigner function of the generated two-photon Fock
state with correction from detection losses (15%). (d) Photon number probabilities of
the generated two-photon Fock state, with and without correction from detection losses
(15%).

IV.3 Quantum state engineering with time-separated

heraldings

In contrast to the pulsed regime where the acceptance window of the heralding events
is defined by the pulse temporal profile itself, in the continuous-wave regime these
events can occur at different times. Such time separation of the conditioning detec-
tions is an additional degree of freedom and can strongly affect the heralded states by
introducing a multimode temporal structure [48, 86–88]. For example, large-amplitude
coherent-state superpositions have been obtained by time-separated two-photon sub-
traction operated on a continuous-wave single-mode squeezed vacuum [89, 90]. Simi-
larly, considering two-mode squeezed vacuum, A. E. B. Nielsen and K. Mølmer have
theoretically investigated how the fidelity of the generated states can be affected by the
time separation and have defined optimal temporal modes for Fock-state generation
[86].

We experimentally investigated such scheme, using two-mode squeezed vacuum out
of our type-II OPO and two photon detections, where now the delay between the events
can be tuned. We have shown in the previous section that a small delay (typically 1
ns) between two conditioning events does not compromise the two-photon fidelity [58].
Thanks to our newly-developed high-efficiency SNSPDs, an unprecedented preparation
rate was achieved. Here, this feature enables us to acquire a sufficient amount of data
in a reasonable time to cover temporal separation between the two heralding clicks in
a range much longer than the width of the temporal mode defined by the OPO cavity.
Therefore, we can post-select the temporal delay between triggers within this range,
and then explicitly demonstrate the behavior of the resulting state with this delay.

IV.3.1 Temporal mode definition

In the following, we consider the general case where the heralding detections have a
temporal delay and we investigate how this delay affects the modal structure of the
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Figure IV.6: (a) Generation of two-photon state with time-separated conditional de-
tections. OPO: nondegenerate optical parametric oscillator, SPD: single-photon detector,
PBS: polarization beam-splitter, BS: beam-splitter, cw TMSS: continuous-wave two-mode
squeezed vacuum state. (b) Temporal mode functions for an OPO cavity bandwidth
γ = 53 MHz. The time separation of the heralding events is set to 40 ns here.

heralded state. The generation of two-photon state with time separated conditional
detections is sketched on Fig. IV.6 (a). This scheme is the same as the setup presented
for the two-photon Fock state generation, but we can now play on the acceptance
window between the two photon detections.

For each single photon detected at the time t1,2, the temporal modes can be defined
as:

g1,2(t) =
√

πγe−πγ|t−t1,2|. (IV.3.1)

These two modes are given in Fig. IV.6(b). The overlap I between the two modes, g1

and g2, depends on ∆t = |t1 − t2|, the delay between the two detections, and can be
written as

I =

∫

g1(t)g2(t)dt = e−πγ|∆t|(1 + πγ|∆t|). (IV.3.2)

The heralded two-photon state can thus be written:

|Ψ〉 =
1√

1 + I2

∫ ∫

dtdt′g1(t)g2(t′)a†(t)a†(t′)|0〉1|0〉2. (IV.3.3)

where â†(t) corresponds to the operator associated with the idler photon in the mode
in which the heralding detection took place. It is possible to rewrite the state |Ψ〉 in
the form of two orthogonal temporal modes, a symmetric and an antisymmetric ones:

fs(t) =
1

√

2(1 + I)
[g1(t) + g2(t)],

fas(t) =
1

√

2(1 + I)
[g1(t) − g2(t)].

(IV.3.4)

These last modes are plotted in Fig IV.6 (b). The expression of the heralded state
using these two modes enables to simplify the expression of the heralded state as:

|Ψ〉 =
1

√

2(1 + I2)

(

(1 + I)|2〉s|0〉as − (1 − I)|0〉s|2〉as

)

. (IV.3.5)

where |x, y〉s,as = |x〉s⊗|y〉as and |x〉s/as corresponds to x photons in the mode fs/as(t).
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IV.3.2 Experimental realization of Fock-state superpositions

As the experiment is performed in the continuous-wave regime, the two heralding
events can occur at different times. The outputs of the two SNSPDs are connected to
a fast digital oscilloscope (Lecroy Wavepro 7300A), offering a dual A-B triggering. By
playing on the delay ∆t, it is possible to play on the photon number distribution of
the generated state.

The photocurrent x(t) of the homodyne detection is recorded with an oscilloscope
at a sampling rate of 10 Gs/s during 500 ns. As the local oscillator is continuous,
post-processing is used to extract the heralded state in a given temporal mode h(t).
For each realization, we get a single outcome of the quadrature measurement as

x =

∫

h(t)x(t)dt. (IV.3.6)

In our experiment, one million measurements are accumulated over the 65 ns accep-
tance window to obtain sufficient quadrature values for quantum state tomography
with a maximum likelihood algorithm.

In the following, we discuss the different cases, from small delay, to large delay.

a Small acceptance range: generation of two-photon state

When ∆t is small, and in particular for ∆t = 0, i.e. the generation of a two-photon
state, the situation is the one developed in the previous section. As seen later, a small
delay ∆t = 1ns do not affect too much the fidelity of the heralded state.

b Large acceptance range: generation of two independent single photons

In this part, the time delay between the coincident triggers is set to be in an acceptance
range much longer than the temporal mode duration defined by the OPO cavity band-
width: 1/γ ≈ 20ns. In this situation, the generated states is made of two independent
single photons, occupying the two temporal mode g1(t) and g2(t).

For example when the delay between two triggers is set to 40 ns, depending on
which mode is used to reconstruct the state, different Fock-state superpositions can
be generated. The photon number distributions are shown in Fig IV.7, for different
temporal mode functions g1(t), g2(t), fs(t), and fas(t), used for the reconstruction of
the density matrix.

For the temporal modes gi(t), adapted to a single-photon state, the single-photon
fidelity is about 76%. This value gives an expected optimal two-photon fidelity about
0.762 ≈ 0.58 when heralded by zero-delay coincident triggers. This value is in agree-
ment with the one measured in the small delay case.

c Intermediate acceptance range: from single-mode to two-mode struc-
tures

We now investigate the general case with an intermediate delay ∆t.
Figure IV.8 gives the evolution of the photon number components depending on

this delay, for the temporal mode g1(t). The solid lines are the theoretical evolutions of
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Figure IV.7: Photon-number distributions of the reconstructed states for the different
temporal mode functions g1(t), g2(t), fs(t), and fas(t) shown in the insets. The distribu-
tions are not corrected for detection losses. The delay is set to 40 ns.
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Figure IV.8: Photon-number weights of the reconstructed states for the fixed temporal
mode g1(t) as a function of the delay ∆t. The two parameters for the model are the OPO
bandwidth γ = 53 MHz and the overall intensity transmission η = 0.76.

such components, by using γ = 53 MHz and η = 0.76 as the overall system efficiency.
The slight discrepancy between the theory and the experiment is due to larger photon-
number components that are not taken into account in the theory and were minimized
in the experiment by using a very low pump power. The last data point corresponds
to the previous case with large delay.
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Figure IV.9 finally provides the two-photon component of the resulting state, when
using the temporal mode fs(t). Using this mode, we can witness the degradation of
the fidelity with the delay: this illustrates the transition from single mode to two-mode
structure.

Interestingly, we can also observe that there is, in the case where the used temporal
mode is fs(t), a plateau for the fidelity to two-photon Fock state at small delays. This
favors the practical generation of two-photon Fock states.

Finally, in the case where the temporal mode g1(t) is used, the decay of the two-
photon state fidelity with the delay ∆t is faster than in the case where fs(t) is used.
This is because fs(t) is the optimal temporal mode for a two-photon Fock state.

d Fidelity with a two-photon Fock state: best strategy

The two-photon fidelity for the mode fs/as(t) can be written by calculating the norm
square of the weight coefficients of the state |Ψ〉:

F =
(1 ± I)2

2(1 + I2)
=

1

2
± I

1 + I2
(IV.3.7)

where ± corresponds to the modes fs(t) and fas(t) respectively. The fidelity is maxi-
mized when the mode fs(t) is used. This mode is therefore the optimal temporal mode
for two-photon Fock state generation.

In the case where the time delay is much bigger than the bandwidth of the OPO,
the overlap I goes to zero. Therefore the fidelity to the two-photon Fock state when
using the mode fs(t) is limited to 1/2. This two-photon fidelity should therefore be in
this case 0.58/2 = 0.29, which is in good agreement with the measurements given in
Fig. IV.7(c) and (d).

In the limit ∆t → 0, when the optimal mode fs(t) is used, the fidelity with a
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Figure IV.9: Weight of two-photon component for the optimal temporal mode fs(t) as
a function of the delay between the two triggers. The blue line corresponds to the model
taking into account the overall loss and the OPO bandwidth.
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two-photon Fock state can be written:

F ≈ 1 − (
πγ∆t

2
)4. (IV.3.8)

When the mode g1(t) is used, the fidelity with a two-photon Fock state is:

F ≈ 1 − (
πγ∆t√

2
)2. (IV.3.9)

Therefore in the case where fs(t) was used, the fidelity is equal to 1 minus a small
correction of fourth order, whereas in the case where g1(t) is used, the small correction
is of second order. For a fixed temporal mode, the acceptance window should be thus
reduced relative to the optimal adapted case.

This result confirms that a small delay can indeed be used without compromising
the state fidelity but should be reduced in the second case. This highlights the im-
portance of temporal modes when working with continuous-wave sources. When one
wants to use a generated state in a quantum circuit, it is important to have a pre-
cise knowledge of its modal structure. Efficient methods have been developed recently
to experimentally access the optimal mode via raw homodyne data without initial
assumptions on the state [48, 91].

IV.4 Conclusion

We demonstrated a bright single-photon source that gathers a heralding efficiency
larger than 90%, a low g(2)(0) and a narrowband spectrum. The unique combination
of large escape efficiency OPOs, which enable a very low admixture of vacuum, and
SNSPDs with close-to-unity efficiency, is making protocols based on multiple-photon
conditioning more accessible and scalable. Based on this high quality source, we have
therefore generated two-photon Fock states with the largest fidelity and the highest
count rates so far.

Due to the continuous-wave light source used here, the possible delay between
multiple conditioning events introduces a multimode temporal structure. The two-
photon state fidelity achieved with the optimal temporal mode has therefore been
measured as a function of the delay between the heralding events. We showed that
in continuous-wave generation protocols, this temporal mode structure plays a central
role and must be carefully studied.

Using this efficient source enables us to generate more exotic states like cat states
based on multiple conditioning. This is the topic of the next chapter.
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V | Squeezing as a Tool for

Quantum Engineering
of Non-Gaussian States

Introduction

Squeezed light is commonly used in quantum information protocols based on gaussian
resources [54]. In this chapter, we will describe quantum state engineering experiments
where this gaussian resource can also help in the generation of complex non-gaussian
states [92]. More specifically, we will show the engineering of large Schrödinger cat-like
states where squeezing plays a central role [58]. The squeezing operation also helps
to better protect these cat states from decoherence. We will finally demonstrate and
characterize such protection.
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Chapter V. Squeezing as a Tool for Quantum Engineering of Non-Gaussian States

V.1 Transition between a thermal state and a squeezed

state

Squeezing can find applications in a variety of continuous-variable protocols for quan-
tum computing [17, 93–95], communication [96, 97], as well as in metrology [98] or in
imaging [99]. It can also be useful, to improve the sensitivity of the main interferome-
ter in the new generation of gravitational wave detectors [100, 101]. Experiments can
now reach squeezing larger than 15 dB noise reduction [102].

Squeezed light is the most common non-classical Gaussian state. Thermal light,
on the contrary, is a classical state, with gaussian distribution in phase-space. Two
recent papers by G. Leuchs, R.J. Glauber and W. P. Schleich [103] focused on the link
between the distribution in phase space of a state, related to its dimensionality, and
its second-order intensity correlation [104]. They apply this method to three gaussian
states: a coherent state, a thermal state and a squeezed state. This study opened a
question about the evolution in between those three "isolated islands". In the following
we will experimentally and theoretically investigate the transition between a squeezed
and a thermal state. Such study can be seen as an introduction in order to help the
reader to understand the technique used for the engineering of large cat states, which
will be developed in the next section, as the required main resource will be identical.

V.1.1 Two-mode squeezed state and rotated basis

The resources that will be used for this generation is a type-II phase matched OPO,
already detailed in Chapter II and used in Chapter IV as a high-purity Fock state
generator. In this system, under the absence of a conditioning event, the output can
be written as the state:

|ψ〉i,s = Ŝi,s|0〉 = e
ξ
2

(âiâs−â†
sâ†

i )|0〉 (V.1.1)

where a squeezing operator is applied to the vacuum. The generated state exhibits
photon-number correlation called EPR-entanglement and can be written in the form:

|Ψ〉 ∝
∞

∑

n=0

Λ2n|n〉i|n〉s. (V.1.2)

If one of the modes is traced out, a thermal state, which is a statistical mixture of
photon number states, is generated on the other mode:

ρ̂th ∝
∞

∑

n=0

Λ4n|n〉〈n|. (V.1.3)

In type-II phase matching crystals, signal and idler photons have orthogonal polar-
izations. When rotating the polarization basis of 45◦, each annihilation and creation
operator can be re-written as:

âs = â1 + iâ2

âi = â2 − iâ1.
(V.1.4)
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V.1. Transition between a thermal state and a squeezed state

Figure V.1: Experimental setup: a type-II OPO is continuously pumped with a 532
Nd:YAG laser. The output modes are mixed using a polarized beam splitter (PBS) and
a half-wave plate (HWP). A two-photon detection is implemented on one output of the
polarized beam splitter, while the other output is analyzed via a homodyne detection for
full quantum state tomography. This setup is equivalent to the one used for two-photon
Fock state generation, at the difference of a HWP and a PBS, in order to play with the
mixing of idler and signal modes.

The squeezing operator can therefore be re-written in the form of two single-mode
squeezing operators:

Ŝsi(ξ) → e
ξ
4

((â2+iâ1)(â2−iâ1)−h.c) = e
ξ
4

(â2
1+â2

2−h.c.)) = Ŝ1Ŝ2 (V.1.5)

This corresponds to two uncorrelated squeezed vacuum states on each of the spatial
modes 1 and 2:

|Ψ〉 ∝
( ∞

∑

n=0

cn|2n〉1

)( ∞
∑

n=0

cn|2n〉2

)

(V.1.6)

Depending on the half-wave plate angle (HWP), it is possible to either generate EPR-
entanglement, leading to thermal states in each spatial mode, or to de-correlate the
modes, which leads to independent squeezed vacua on each mode. This situation
corresponds to the transition of one amplifier phase-insensitive to two independent
amplifiers, which are phase-sensitive. In the following, we will therefore be able to
study the transition between a squeezed state and a thermal state by simply changing
the HWP angle. In particular, we will study the evolution of the quadrature variances
and of the second-order correlation function.

V.1.2 Experimental implementation

The setup is presented in Fig V.1. This setup is similar to the one used in Chapter IV
for two-photon Fock state generation. We use a type-II KTP triply-resonant optical
parametric oscillator, pumped by a continuous-wave Nd:YAG laser at 532 nm. As
shown previously, the output polarization modes can be mixed using a half-wave plate
and a polarized beam splitter. One output of the beam splitter is frequency-filtered
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(a) (b)

Figure V.2: (a) The coincidences rates of single-photon detections happening at different
delays, normalized by the uncorrelated (t → ∞) coincidences means, gives g(2)(t). This
parameter is displayed for several angles of the HWP. A strong bunching effect happens at 0
ns delay. (b) g(2)(0) for different angle of the HWP. The solid line represents the theoretical
fitting of the experimental data points with the model f(t) = a × cos((x + b) π

45 )2 + c,
where x is the angle of the HWP, and {a, b, c} are the fitting parameters. 0◦ corresponds
to a thermal state, while 22.5◦ corresponds to squeezed vacuum. The dotted red line
corresponds to g(2)(0) = 2.

via an interferential filter and a cavity. This path is then split on a fibered beam
splitter, and the outputs are detected via two SNSPDs (see Chapters III and IV for
more details). This configuration will enable us to check the second-order correlation
function g(2)(t). The other output of the beam splitter is measured via a homodyne
detection, enabling therefore to reconstruct the density matrix and the associated
Wigner function, in order to study the quantum fluctuation variances.

For one angle of the HWP, we can record the second-order correlation function
g(2)(t) of a state, and the density matrix of its complementary. However, the two
recorded states only differs by a rotation in phase space. Therefore their quadrature
variances and g(2)(t) are the same.

We will now give the results obtained independently for the g(2)(t) and the quadra-
ture variances.

a Second-order correlation function

The filtered path enables to measure the second-order correlation function. For this
purpose, we acquire, for an acceptance window between two detection events of 50
ns, the time of the two single-photon detections. The distribution of the photon co-
incidences depending on the delay normalized by the uncorrelated coincidences gives
the g(2)(t) function, and is shown in Fig V.2(a) for several wave-plate angles. The
zero angle of the HWP corresponds to the perfect separation of the two orthogonally
polarized modes. A strong bunching effect appears at 0 ns delay, corresponding to
g(2)(0).

The evolution of g(2)(0) with the angle of the HWP is shown in Fig V.2(b). The
angle corresponding to the generation of EPR entanglement is 0◦. Indeed for this
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Figure V.3: Evolution of the g(2)(0) as a function of the angle of the wave plate, for two
different input pump powers, 2 mW and 5mW, corresponding respectively to 0.7 and 1.6
dB of squeezing.

angle the output is made of two correlated thermal states, and their g(2)(0) = 2 [105].
However, for a squeezed vacuum state, g(2)(0) > 2 and more precisely, for a pure
squeezed vacuum:

g(2)(0) = 3 +
1

〈n̂〉 , (V.1.7)

leading to g(2)(0) = 3 for infinitely squeezed vacuum. Our two uncorrelated squeezed
states, i.e. resulting from the perfect separation of the two parts of the two-mode
squeezed state, corresponds thus to an angle of 22.5◦. Our squeezing is voluntarily
small here, close to 1.3 dB, in order to avoid any damage on the crystal. This value
explains that we are far away from 3.

Evolution with the squeezing
Two sets of data have additionally been acquired for 2 mW and 5 mW of pump power,
corresponding respectively to 0.7 and 1.6 dB of squeezing. They are shown in Fig V.3.
A higher squeezing means that more photons are involved in the correlations. The
obtained values are consistent with the mean photon number 0.0074 and 0.04, leading
respectively to g(2)(0) = 75.5 and g(2)(0) = 27.7.

b Wigner function and evolution of the variances

Using our homodyne detection, for the same wave plate angle, we can reconstruct
the full density matrix of the state and plot the associated Wigner function. We can
thus witness the transition from a squeezed state, where one quadrature has smaller
fluctuations than the other, to a thermal state. The data are given in Fig. V.4. From
these Wigner functions, we can extract the variances of each quadratures and compare
them to the expected values.

To deduce the quadrature variances, we fit the Wigner functions by a gaussian
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Figure V.4: Wigner functions for several HWP angles showing the transition from a
thermal state corresponding to the angle 0◦ to a squeezed vacuum state.

distribution model:

W (x, p) = W0e

(

−x2

(

cos2(θ)

2σ2
x

+
sin2(θ)

2σ2
p

)

−2xp sin(2θ)

(

1

4σ2
p

− 1

4σ2
x

)

−p2

(

sin2(θ)
2σx

+
cos2(θ)

2σ2
p

))

. (V.1.8)

We can then deduce σx and σp, the standard deviation of the fluctuations of quadrature
X̂ and its orthogonal counterpart P̂ . They are plotted for different HWP angles in Fig
V.5.

Therefore, for the same angles of the HWP, using one path we get the evolution
of the variances, and using the other path we get the evolution of the second-order
correlation function. In the following, we will show how these two evolutions can be
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Figure V.5: Variances of the quadratures X̂ and P̂ extracted from the fitted Wigner
function for different HWP angles.
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V.1. Transition between a thermal state and a squeezed state

Figure V.6: Evolution of the phase space distribution of the state, from a pure squeezed
vacuum state, in green, where β = 1, to a thermal state, in blue, where β = 1+s2

2s2 .

related, and theoretically model the transition.

V.1.3 Modeling the transition

Following these experimental results, we are now going to show how the correlation
function and the variances evolution are related to each other. To do so, we will find
a theoretical model for the evolution of the g(2)(0) function using the variances of the
state.

To quantify the evolution between the two states, we introduce the transition pa-
rameter β as:

〈X̂2〉 = βs, (V.1.9)

where s will be here related to the variance of the quadrature P̂ : 〈P̂ 2〉 = 1
s . β evolves

from 1 to 1+s2

2s2 during the transition from a squeezed vacuum state to a thermal state,
as sketched in Fig. V.6. The correlation function can be written as follows:

g(2)(0) =
〈â†â†ââ〉
〈â†â〉2

=
〈n̂2〉 − 〈n̂〉

〈n̂〉2
. (V.1.10)

The expression can be re-written with the variances of the quadratures X̂ and P̂
[106]. Indeed, for states with a Gaussian Wigner function of the form : W (x, p) =
W0e−ax2−bp2

, we have:

〈n̂〉 =
1

4σ2
0

(〈X̂2〉 + 〈P̂ 2〉 − 2σ2
0)

〈n2〉 =
1

σ4
0

(

3〈X̂2〉2 + 2〈X̂2〉〈P̂ 2〉 + 3〈P̂ 2〉2) − 〈n̂〉 − 1

2

(V.1.11)
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where the quadrature variances can be expressed as a function of our experimental
standard deviation:

〈X̂2〉 = σ2
x

〈P̂ 2〉 = σ2
p.

(V.1.12)

For a pure squeezed vacuum state, the variances of the quadratures are linked by
the squeezing parameter as e−2ξ = s. Therefore, β = 1, and:

〈X̂2〉 = s

〈P̂ 2〉 =
1

s
.

(V.1.13)

The mean photon number can be written as:

〈n̂〉 =
1

4
(s +

1

s
− 2). (V.1.14)

The auto-correlation function g(2)(0) form for a squeezed vacuum can be finally de-
duced:

g(2)(0) = 3 +
1

〈n̂〉 . (V.1.15)

For a thermal state, 〈X̂2〉 = 〈P̂ 2〉, directly leads to g(2)(0) = 2∗. In this case
β = 1+s2

2s2

It is then possible to write the correlation function in function of the transition
parameter β:

g(2)(0) = 3 +
1

〈n̂〉 − (β − 1)

4〈n̂〉2
. (V.1.17)

β can be deduced from the standard deviation parameters extracted from the fitting
of the Wigner function. We can then compare the g(2)(0) values obtained from this
method to the ones obtained by direct coincidence detection.

The results are plotted in Fig. V.7. The results are globally consistent with each
other. However the indirect method to acquire g(2)(0), by using the parameter β and
the variances, seems to slightly minimize the correlation function compared to the
direct acquisition by photon counting.

The perspectives of this work will be to study these methods for different squeezing,
i.e. for different pump power, and to evaluate their g(2)(0) using different continuous
variable measurements. A thinner precision, with better time resolution, and more
squeezing points must be conducted in the future. In particular, it could be inter-
esting to compare those results with the measurement of the Husimi-Q function, as

∗Note that the starting hypothesis are different in the case of the coherent state. Indeed, in the
case of the thermal state, we can write X̂ = 0 + ∆X̂, and Ŷ = 0 + ∆Y . Therefore:

〈X̂2〉 = 〈∆X̂
2〉 = 〈Y 2〉 = 〈∆Y

2〉. (V.1.16)

In the case of a coherent state, we can write for example X̂ = X̂0 + ∆X̂, and Ŷ = 0 + ∆Y . Therefore,
the formula given for 〈n2〉 is different.
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Figure V.7: Evolution of the g(2)(0) of the one output of the PBS as a function of the
angle of the wave plate. The indirect method of evaluating the g(2)(0) using homodyne
detection and Wigner function reconstruction is given in blue, while the direct method,
using two single-photon detectors and coincidence counts is given in red.

pointed by C. R. Müller and co-workers [107]. This latest function is generally used to
represent results obtained via heterodyne detection, while the Wigner function often
characterizes homodyne detection results.

As a conclusion, we studied here the evolution between a thermal state and a
squeezed vacuum state by using a type-II phase-matched OPO, a half-wave plate and
a beam splitter. We are going to use this transition as a technique in order to generate
squeezed Schrödinger cat states.

V.2 Efficient generation of large squeezed Schrödinger
cat states

We studied on the previous section how to play with the output of a type-II OPO. We
will demonstrate in this section that this ingredient enables to generate a "core state"
for a variety of large squeezed Schrödinger cat states [58]. A core state is a state that
can be transformed into the targeted state by only applying one or several gaussian
operation [92]. By slightly mixing the idler and signal modes of the OPO output, we
will generate superposition of 0 and 2 photon Fock states that have a very high fidelity
to large squeezed cat states.

V.2.1 Cat states in quantum optics and quantum information

In the context of hybrid quantum information processing, a considerable effort has been
dedicated to the generation of highly non-Gaussian states of light [10]. Specifically,
free-propagating coherent-state superpositions, also referred as optical Schrödinger cat
states, are an essential resource. Such states of the form

|Cat±〉 =
1

N±
(|α〉 ± | − α) (V.2.1)
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(a) (b)

Figure V.8: (a) Overlap of two coherent states |α〉 and | − α〉 for several mean photon
number |α|2. The inset gives a zoom on the 1 to 2 range. (b) Wigner representation of an
even cat state of size |α|2 = 3.

consist in a superposition of two coherent states with opposite phases and mean photon
number |α|2. They play the central role of qubits in the coherent state basis [4, 93, 108,
109], as an analogy with the |0〉 and |1〉 of the discrete-variable approach. However,
in order to really encode the information onto a CV qubit, it is necessary to achieve
orthogonality of the two coherent-state components. The overlap directly relates with
the size of the superposition, i.e. the number of photon of the state |α|2, as :

|〈α| − α〉|2 = e−4|α|2 . (V.2.2)

A theoretical plot of the overlap with the size of the superposition is shown in Fig
V.8(a). The Wigner function of an even large cat state is given as an example in Fig.
V.8(b). For example, fault-tolerant protocols require to reach a minimal size of |α|2 =
1.2 [110]. The generation of cat states with this minimal size and a generation rate large
enough to allow subsequent operations will open a wealth of possible protocols and gate
implementations [10, 111, 112]. However, such generation remains very challenging.

V.2.2 Methods for their generation

In cavity- or circuit-QED systems, size larger than |α|2 ≥ 2 has already been reached
[13, 113]. However, large free-propagating optical cat states that can be transferred
through optical fibers are hard to generate. In this endeavor, various optical circuits
have been developed to generate cat states using non-Gaussian resources. They are pre-
sented in Fig. V.9. The first seminal scheme consisted in subtracting a single-photon
from a single-mode squeezed vacuum [11, 12, 82]. This operation can be performed by
tapping a small part of squeezed light and by detecting it with a single-photon detec-
tor (Fig. V.9-M1). This process results in heralding a squeezed single-photon, which
exhibits a high fidelity with an odd cat state with |α|2 ∼ 1. Two-photon subtraction
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Figure V.9: Probabilistic methods to generate cat states. M1: photon subtraction on
squeezed vacuum: a small part of the initial resource is tapped on a beam splitter, and
detected via one or several single-photon detector. M2: Quadrature measurement on
photon number states. An n-photon Fock state is sent onto a 50/50 beam splitter. On
one output of the beam splitter is implemented a homodyne detection. The detection of
a certain quadrature heralds the generation of a large cat state. M3: Variant of the M2
method. Several Fock states are mixed on a beam splitter. On one of the input of the
beam splitter a quadrature measurement via homodyne detection is performed.

operated on squeezed light, with [89] or without [114] time-separation, has led to values
|α|2 close to 2. An alternative method has provided a 3 dB-squeezed cat state with
|α|2 = 2.6 [115]. For this purpose, a two-photon Fock state was first heralded, split on
a beam splitter, and one output was measured by homodyne detection. A quadrature
measurement within a given acceptance window is used as third conditioning (Fig.
V.9-M2).

Up to now, cats of size |α|2 larger than 2 have been obtained with a very limited
preparation rate, in the Hz level. In all cases this limited rate is coming either from
photon subtraction on single mode squeezed light, where experimentally only a very
small part of the beam can be tapped, or from the cascading of several conditioning op-
erations. Recently, a similar approach based on the interference of two single-photons
and homodyne conditioning has led to the same result (Fig. V.9-M3) [116, 117]. In all
these experiments, the low generation rate precludes their use in subsequent protocols.

In this context, we implemented a new method for the generation of large optical
Schrödinger cat states, based on two-mode squeezed vacuum and a n-photon detection
performed on one of the modes, as explained in the following [58]. Importantly, rates
two orders of magnitudes larger than obtained in previous experiments are demon-
strated.

V.2.3 Engineering modulo a gaussian operation - The core states

As one cannot obtain non-gaussian states by using only gaussian operations and gaus-
sian resources, generation of states that exhibits strong non-gaussianity is technically
tricky. Indeed, non-gaussian resources such as highly pure single-photon are tricky to
implement experimentally, and cascaded non-gaussian operations such as photon sub-
traction decrease a lot the count rate. Thus to overcome the difficulty of generating
such states, one can find help in the addition of a gaussian operation. This operation
will help to target the size, i.e. a certain number of photons, while the non-gaussianity
will be realized by the implementation of a minimized number of non-gaussian opera-
tions.
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(a) (b)

Figure V.10: Representation of the core states of two cat states of size |α|2 = 3. Each
core state is labeled by a different squeezing r = |ξ| and have a different photon number
distribution, characterized by the photon number n, and the weight pn. The even cat
state core states are shown in (a), and the ones for the odd-parity cat are shown in (b).
This figure is extracted from the work of D. Menzies and R. Filip [92].

In this spirit, the idea of the protocol we built is based on optimizing the state
engineering by focusing all the non-gaussian resource and operation in generating the
non-gaussian part of the state. Then, by using a gaussian operation such as displace-
ment or squeezing, it is possible to target the desired size of the state. By identifying
the minimal non-gaussianity needed in the targeted state, this strategy leads to better
results while requiring less photon detections.

Figure V.10 shows different core states for even and odd cat states with |α|2 = 3,
corresponding to different squeezing operations. The core state which has the smaller
photon number will also be the one minimizing the number of non-gaussian resources or
operations. By building this core state, and then implementing the optimal squeezing
operation [118], it is thus easier to experimentally target larger cat states.

For example, as shown in Fig. V.10(a), a squeezed even cat state with squeezing
parameter |ξ| ≈ 0.5, is a superposition of |0〉 and |2〉. Therefore, if we are able to gen-
erate any superposition of |0〉 and |2〉 photon state, by using a subsequent unsqueezing
operation such as described in [118], it is possible to target a large variety of even cat
state.

Generally, in order to generate the core state with the minimal number of photons,
we can check theoretically what is the optimal squeezing. For example, for an even
cat state, to check which squeezing is more adapted to a given cat of size |α|2, we can
check when the coefficient c4 of the 4-photon component of a squeezed cat states gets
cancelled:

c4 =

√
λ4

(

8α4(1−λ2)
2

λ2 − 48α2(1−λ2)
λ + 24

)

8
√

6
(V.2.3)
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Figure V.11: Theoretical plot of the optimal squeezing with α for even (blue) and odd
(red) cat state.

where λ = tanh |ξ|. We get several solutions for this equation, and for each of those, we
can plot the probability of having 6-photon and 8-photon components. The optimal
squeezing, to erase all higher components in the desired range (α < 1.7) is given by
the solution:

λE,Opt = −
−

√

4α4 + 6
√

6 + 15 +
√

6 + 3

2α2
. (V.2.4)

In order to simplify the expressions given in the following we will sometime use this
specific squeezing. The same idea can be applied for an odd cat state, by cancelling
its 5-photon component, we can find a physical solution for the optimal squeezing:

λO,Opt =

√

4α4 + 10
√

10 + 35 −
√

10 − 5

2α2
. (V.2.5)

In figure V.11 is plotted the optimal squeezing with the size of the cat state, for even
and odd cat states.

V.2.4 The protocol

To generate a superposition of |0〉 and |2〉, one can mix two squeezed vacua and imple-
ment an n-photon detection. Two squeezed vacua of form Ŝ(ξ)|0〉 are first overlapped
with a π/2 phase-shift on a tunable beam splitter. The beam splitter here is slightly
asymmetric with the asymmetry ǫ = sin(2θ) ≪ 1. Depending on the squeezing level,
the detection of n photons in the conditioning channel heralds the following state:

|Ψ〉 =
1

√

n(n − 1)ǫ2 + λ2
(ǫ

√

n(n − 1)|n − 2〉 + λ|n〉) (V.2.6)

with λ the squeezing parameter and r =
√

(1 + ǫ)/2 the reflection of the beam splitter.
This expression is valid in the limit of small squeezing (λ ≪ 1, where three-photon
components are therefore ignored), and where the multiplexing of several on-off single-
photon detectors is equivalent to a photon number resolving detector.

Equivalently this scheme can be realized using a two-mode squeezed state instead
of two single-mode squeezed state, as shown in Fig. V.12. The output modes of
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Figure V.12: Schemes for generating the superposition α|n−2〉+β|n〉. (a) Two squeezed
vacua are mixed on a tunable beam splitter. The detection of n photons in one of the
outputs heralds the generation. (b) Equivalently, the scheme can be implemented directly
from a two-mode squeezed vacuum. The two orthogonally-polarized modes are separated
with a tunable mixing ǫ induced by a rotated half wave plate and a polarizing beam
splitter, with ǫ = sin(2θ). The angle θ = 0◦ corresponds to the perfect separation, leading
to the generation of a n-photon state.

our OPO are orthogonally polarized. The mixing can be realized by separating the
beams after a small polarization rotation induced by a half-wave plate (HWP). Such
implementation will be realized experimentally here, where as detailed in Section V.1,
two independent squeezing modes can be mixed and exit an EPR-entangled state. In
this case the mixing parameter is given by ǫ = sin(2θ). To control the phase between
the two components, it is possible to add birefringent elements before the polarized
beam splitter.

Given a two-photon detection it is thus possible to herald any superposition of
c0|0〉 + c2|2〉 which can have a high fidelity with an even squeezed cat. A three-photon
detection would herald superpositions c1|1〉+ c3|3〉, which have high fidelities with odd
squeezed cat. Numerical simulations of the fidelity with squeezed cat states depending
on the number of photon detection are given in Fig. V.13. Squeezed cat states can be
written:

Ŝ(ξ)|Cat±〉 =
1

√

2(1 ± e−2|α|2)
Ŝ(ξ)(|α〉 ± | − α〉) (V.2.7)

and their Wigner function can be found in the Chapter 1. For each point, the fidelity
has been optimized by the size |α|2 and the squeezing applied to the cat. Fidelities
higher than 98% can be obtained with cats of size as large as |α|2 = 3 for a two-photon
detection, and as large as |α|2 = 5 for three-photon detection.

V.2.5 Experimental setup

To generate this superposition state, we use the same type-II phase-matched OPO,
with a two-photon detection on the conditioning path, as shown in Fig. V.1, of section
V.1. This time, the two-photon detection will be used as herald for the generation of
squeezed cat states. If the two modes are perfectly separated like in Chapter IV, given
a two-photon detection event, the generation of two-photon Fock state is obtained.
However if one add a very small angle to the half-wave plate before the polarized beam
splitter, states with high fidelity with squeezed Schrödinger cat states are produced.
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Figure V.13: (a) Two-photon detection: fidelity with a squeezed even cat state as a
function of the ratio ǫ/λ. The fidelity is optimized by the size |α|2 and the squeezing of
the target state. The inset gives the weights of the vacuum and two-photon components.
(b) Three-photon detection state and fidelity with a squeezed odd cat state.

This experiment is performed in the continuous-wave regime, thus two events can
occurs at different time. The acceptance coincidence windows is the same that set in
the case of two-photon Fock state generation in Chapter IV, i.e. 1 ns.

V.2.6 Results

For an angle of the wave plate enabling the perfect separation of the signal and idler
modes, i.e. θ = 0◦, a two-photon Fock state is generated, as described in Chapter IV.
The angle of the plate is then increased up to 4.4◦. The associated Wigner functions
for different angles are given in Fig. V.14. The mixing strongly influences the output
states which start to exhibit phase dependency and cat-like behavior. The larger the
angle is, the smaller the generated cat is, up to a squeezed state.

We will focus now on two of the generated squeezed cat states corresponding to the
angles θ = 1.6◦ and θ = 2.4◦. Marginal distributions, photon number probabilities,
and Wigner functions (with correction from detection losses, 15%) are given in Fig.
V.15.

Fidelities with cat state are also the highest reported to date, reaching 80% as

0° 1.6° 2.4° 3.0° 4.4°

Figure V.14: Wigner function of the generated cats for angles going from 0◦ to 4.4◦
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Figure V.15: From left to right, Homodyne detection acquisition for different phases,
Marginal, and photon number probabilities of two generated squeezed cat states and
Wigner function, for (a) θ = 1.6◦ and (b) θ = 2.4◦, with correction from detection losses
(15%).

shown in Fig V.16, where the fidelity with cat states of different sizes and for different
squeezing is displayed. The main limitation of this fidelity is due to the escape efficiency
of the OPO.

It is important to note that these states are very phase-sensitive. Indeed due to
insufficient sampling of the fringes of the homodyne detection, the first version of the
experiment that we published only reached a 68% fidelity. These errors in the sampling
of the homodyne detection are equivalent in introducing wrong phases for the state
in phase-space. An ideal squeezed even cat state, shifted by certain phase ϕ can be
written as:

|Ψ〉ϕ ∝ Ŝ(λ)(|αeiϕ〉 + | − αeiϕ〉) ∝
∑

c2neinϕ|2n〉 (V.2.8)

where:

cn =

√

λn

2nn!
(Hn

(

√

1 − λ2

2λ
α

)

+ Hn

(

−
√

1 − λ2

2λ
α

)

). (V.2.9)

By modeling the phase noise by a gaussian noise, the resulting state is slightly phase-
averaged, and can be written as:

ρ̂ =
1

σ
√

2π

∫

|Ψ〉ϕ〈Ψ|e− ϕ2

2σ2 . (V.2.10)

An example of the evolution with the gaussian noise standard deviation σ of the
fidelity to a targeted squeezed cat state of size |α|2 = 3 is given in Figure V.17, for
different losses. The bigger |α|2 is, the more two-photon component there is, and the
more sensitive to phase noise the state is. To estimate this noise experimentally, it
is possible to record the deviation between two fitted fringes on the continuous signal
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Figure V.16: Fidelity between the generated state and a squeezed even cat state, for(a)
θ = 1.6◦ and (b) θ = 2.4◦. The plots give the calculated fidelity as a function of |α|2 and
the squeezing in dB. The black crosses indicate the maximal fidelities. For θ = 1.6◦, the
fidelity reaches 0.79 with an even cat state of size |α|2 = 2.82 and a 3.8 dB squeezing. For
θ = 2.4◦ it reaches 0.84 with an even cat state of size |α|2 = 1.54 and a 2.3 dB squeezing.

of the homodyne signal. This amount of noise measured must then be multiplied by
a factor of 2. Indeed, an angle of π for the fringes is equivalent to an angle of 2π in
phase space, meaning that the sensitivity to the phase noise is twice bigger in phase
space. An important work on the optimization of this noise has been realized, by
better stabilizing the optical table and isolating the mechanical shutters used to block
the light. We now manage to get a deviation noise under σ ∼ 0.1 rad in phase space
during an overall acquisition of 30 min, instead of σ ≈ 0.2 − 0.4 rad in the previous
work [58]. We also increased the sampling rate in order to determine more accurately
the homodyne detection phase angle. This helped us to reach the fidelity of 80% for all
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Figure V.17: Evolution of the fidelity between an ideal squeezed cat state and a squeezed
cat state of size |α|2 = 2.8, and 4 dB squeezing, i.e., the generated cat corresponding to
the angle θ = 1.6◦, with gaussian phase noise of standard deviation σ, for different system
losses: 0% in blue, 10% in red and 20% in pink.
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our generated squeezed cats instead of the limited 68% efficiency we initially published.
Importantly, the achieved rate is higher than 200 Hz, thanks to the combination of

this mixing technique and high-efficiency SNSPDs: we only have two costly operations
(single-photon detections) that we realize very efficiently. This rate is two orders of
magnitude larger than previous experiments. Furthermore this scheme is versatile
and allows to easily adapt the parameter ǫ (linked to the HWP angle) in order to
produce many types of squeezed cat states. The fidelity is the best achieved so far
for free propagating cat states. These free-propagating cats are ready to be used in
subsequent protocols thanks to the achieved rate.

In the next section we will show that this method to generate the core state with the
smaller number of photons is also a way to produce cat states robust to decoherence.
This means that by the help of a gaussian operation, i.e. squeezing, we can better
protect such states from decoherence.

V.3 Minimizing the decoherence by squeezing

Non-gaussian states, and specifically the paradigmatic Schrödinger cat state, are well-
known to be very sensitive to losses. When propagating through damping channels,
these states quickly lose their non-classical features. However, by optimally squeezing
the superposition states, the decoherence process can be qualitatively changed and
substantially slowed-down [119].

In this section, we experimentally observe the reduced decoherence of squeezed
coherent-state superpositions through an amplitude damping channel. In particular,
we will show that the core state which minimizes the photon number is the most
robust squeezed cat state against a damping. It is therefore the most suitable for the
transmission and storage of non-Gaussian states. To quantify the robustness of states,
we introduce and measure a speed of decay of the Wigner function negativity.

V.3.1 From quantum to classical

Preserving the quantum nature of a state is a key point towards the implementation
of quantum protocols and the expansion of quantum technologies. When a quantum
state travels through a network, it suffers from its interaction with the environment,
whether it comes from dephasing or from optical losses (10 km of fiber is equivalent to
20% loss). The quantum state interacts with its environment leading to correlations
that cannot be measured and have to be traced out: information about the quantum
state is lost.

This decoherence effect increases with the dimension of the system. For example the
more photons a superposition state contains, the faster it will lose its coherence: a n-
photon Fock state will lose its n-photon component on a scale ηn, where η is the system
efficiency. The idea behind this effect leads back to the famous gedankenexperiment of
Schrödinger [41], where the likeliness of having a macroscopic superposition decreases
with the size of the system. This property makes the situation of having a macroscopic
state (a real cat) in a quantum superposition impossible to witness. The simple fact
that the cat breathes (or not), i.e. its interaction with our environment, would already
collapse the quantum superposition onto a classical state.
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The main idea that will be developed here, is to make macroscopic superpositions
more robust to losses by optimally squeezing them, until the minimal mean number
of photon is achieved, i.e. by going back to the core state of the cat. Then, as the
state has less photons, it also suffers less from decoherence. Theoretical studies have
already shown this effect on different parameters such as purity, or on non-classical
parameters [120, 121]. Here we study particular parameters linked to the negativity
of the Wigner function. Importantly, we will then experimentally check our method
by adding losses to squeezed cat states, then performing homodyne measurement to
reconstruct their density matrices, and following their decoherence.

V.3.2 Quantifying Decoherence

Decoherence is a very general term, often seen as a decrease in terms of fidelity or
purity of a state. However the fidelity and the purity are very general tools and
only give a wide quantification of an overall decoherence process. To characterize
the evolution of decoherence, people often use as well the evolution of the Wigner
function [13], and in particular of its negativity. The negativity of the Wigner function
is a criterion of quantumness and non-classicality. The number of Wigner function
negativities, often used as a characteristic of the quantumness of a state, can also be
related to the number of non-gaussian operation implemented. The main fringe of the
cat state’s Wigner function is related to the phase relationships between the two main
parts of the cat, i.e. the two coherent states, and represents the quantum feature of
the superposition.

When going through a lossy channel, the contrast of the central fringe of a cat state
decreases, leading a comparable reduction in the negativity of the Wigner function.
However, when the mean number of photon is smaller, typically when a cat state
is squeezed, the contrast and the negativity are the same for no losses while their
robustness to losses is very different. A theoretical plot of the Wigner function and
the central fringe of an even cat state and its optimally-squeezed counterpart is shown
in Fig. V.18. If this state is going through an 80% transmission channel, such as 10
km of optical fiber, the negativity and the contrast of the Wigner function are much
better preserved for a squeezed cat state.

Following the idea of the core state method developed and experimentally illus-
trated in the previous section, the most robust squeezed cat state will be the one with
the fewer photon number. In order to simplify the mathematical expressions given in
the following, we will sometimes give them for optimal squeezing, which expression
was developed in the previous section.

a A decoherence quantification: the speed of decay

In atomic system, the decoherence is observed in the time scaling, and it is often
characterized by the lifetime of the quantum system. Following the same idea, we
propose a criterion that is based on "how fast" a quantum property decoheres. This
work is based on a collaboration with R. Filip.

The quantum property, which will be observed here, is the negativity of the Wigner
function, as it can be easily accessed via our experimental process of homodyne to-
mography. It corresponds to the minimal value of the Wigner function.
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Figure V.18: Illustration of the decoherence process. The Wigner functions of an even
coherent-state superposition (|α|2 = 3) and of its squeezed counterpart (4 dB-squeezing)
are displayed before and after propagation through an amplitude-damping channel (trans-
mission η = 0.8). The 2D plots give the cross-sections of the Wigner functions along
the imaginary axis. The oscillations are damped with the loss but the contrast is better
preserved for the squeezed version.

We introduce therefore the speed of decay of the Wigner function negativity, as the
normalized derivative of the negativity of the Wigner function with the efficiency:

SDW (η) =
1

W (xmin, pmin, η)

∂W (x, p, η′)
∂η′

∣

∣

∣

∣

xmin,pmin,η

. (V.3.1)

In the following, we will introduce a few examples of the evolution of this criterion.

• For a single-photon state

W|1〉(0, 0, η) =
1 − 2η

2π

SDW,|1〉(η) = − 2

1 − 2η

(V.3.2)

For a perfect transmission: SDW,|1〉(1) = 2.

• For a two-photon Fock state

W|2〉(0, pmin, η) = −
e

√
12η2−8η+2−6η+2

2η η
(

√

12η2 − 8η + 2 − 2η
)

π

SDW,|2〉(η) =
(2η − 1)

(

√

12η2 − 8η + 2 − 2η + 1
)

η2
(

√

12η2 − 8η + 2 − 2η
)

(V.3.3)
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(a) (b)

Figure V.19: (a) Theoretical plot of the evolution of the speed of decay of different Fock
States with the transmission η of the channel. (b) Theoretical plot of the evolution of the
speed of decay of cat states of different sizes with the transmission of the channel.

with pmin =

√

−
√

12η2−8η+2−6η+2
η .

For a perfect transmission : SDW,|2〉(1) = 1
2(4 +

√
6) ≈ 3.22.

In Fig V.19(a) is shown the theoretical evolution of the negativity and speed of
decay for different Fock states.
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(a) (b)

Figure V.20: Theoretical plots of the evolution of (a) the negativity of the Wigner
function and (b) the resulting speed of decay of a cat state without and with different
squeezing, as a function of the transmission of the channel. The considered size is |α|2 = 3.

• For a cat state:

W|cat+〉(x, p, η) =
e− x2+p2

2
−2α2(η−1)−2xα

√
η(2e2α(α(2η−1)+

√
ηx) cos

(

2α
√

ηp
)

+ e4α
√

ηx + 1)

4π
(

e2α2 + 1
)

(V.3.4)
For simplification purpose, the expression for the speed of decay will be given for x = 0
(given a rotation in phase space, the final expression remains the same):

SDW,|cat+〉(η) = −
α

(

4α
√

η − 4α
√

ηe2α2(2η−1) cos
(

2α
√

ηp
)

+ 2pe2α(2αη−α) sin
(

2α
√

ηp
)

)

√
η

(

2e2α2(2η−1) cos
(

2α
√

ηp
)

+ 2
)

(V.3.5)
where |cat+〉 = 1

N+
(|α〉 + | − α〉). Fig V.19(b) gives the speed of decay of cat states

of different sizes. The larger the cat is, the higher the speed of decay for a perfect
transmission η = 1 will be.

• For a squeezed cat state

WŜ|cat+〉(x, p, s, η) =

A ×
(

e

2αs(η3/2s2x+α(2η−1)s−(η−1)
√

ηx)
((η−1)s2−η)(η(s2−1)+1) (e

4α
√

ηsx

η−ηs2+s2 + 1) + 2 cos
(

2α
√

ηps
η(s2−1)+1

)

)

4π
(

e2α2 + 1
)

√

η + 1−η
s2

√

η − (η − 1)s2

(V.3.6)

where A = e

p2(η−(η−1)s2)+s2(4α2η((η−1)s2−η)+x2(η(s2−1)+1))
2((η−1)s2−η)(η(s2−1)+1) .

The expression for the speed of decay can then be deduced from this one. By opti-
mizing the squeezing, it is possible to target the minimal speed of decay. This optimal
squeezing is the one which provides the core state with the minimized photon number.
Indeed, in Fig. V.20(a), the negativity of the Wigner function is better preserved for
the optimally squeezed cat state than for the original cat. In Fig. V.20(b), we can
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see that it is possible to optimize the squeezing to minimize the speed of decay. This
squeezing is the same as the one which minimizes higher photon number components.

In the two last part of this section, we will show that the minimization of the speed
of decay of a state can have effects on other more general criterion such as the fidelity
to the targeted state, or the overlap between two coherent states.

b Fidelity

The fidelity between an initial cat state and his decohered counterpart after a lossy
channel, is also better preserved when one use the squeezed (and then unsqueezed)
method, than when one directly sends the cat state, as shown in Fig. V.21(a). However
sometimes the fidelity can be a deceptive criteria as being an overall measurement. For
this reason, we showed here that both fidelity and negativity are protected.

c Overlap

A more important parameter to preserve is the orthogonality between the two different
parity cat states. To quantify precisely the ability to really discriminate the two parts
of the superposition, we can plot the theoretical fidelity between an odd and even cat
state, i.e. the overlap, and its evolution through the transmission channel, depending
if we optimally squeeze the two cats, transfer them, and then unsqueeze them, or if
the two cats are directly sent through a lossy channel. In Fig V.21(b), we can see that
this overlap Tr[ρ̂Cat+ρ̂Cat−] is smaller when optimal squeezing for both even and odd
cat state is applied.

The orthogonality between the cats, and thus the phase difference is better pre-
served. Even though the size stays the same, the preservation of the overlap shows
that the important parameter to preserve is the Wigner function central fringe. This
fringe is the only part which is different depending on the parity of the cat. The size
is itself more related to the two gaussian "bumps" around the fringe.

(a) (b)

Figure V.21: (a) Theoretical plot of the evolution of the fidelity with the initial even
cat state, for a cat state sent directly through the lossy channel (in blue), and a squeezed,
transferred, and then unsqueezed cat state (in red). The considered size is |α|2 = 3.(b)
Theoretical plot of the evolution of the overlap between two initial even and odd cat states,
for cat states sent directly through the lossy channel (in blue), and two optimally squeezed,
transferred, and then unsqueezed cat states (in red). The considered size is |α|2 = 3.
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Figure V.22: Efficiency of the detection with temporal mode delay in ns.

V.3.3 Experimental verification

We choose two squeezed cat states corresponding to the angle θ = 1.6◦ and θ = 2.4◦

of the HWP, as shown in the previous section. They correspond respectively to a 4
dB squeezed cat state with |α|2 = 2.8 and a 2.5 dB squeezed cat state with |α|2 = 1.7.
Then, to add quantifiable losses on the state we use the following method: by shifting
the temporal mode of the state by an artificial delay in the reconstruction algorithm, we
decrease the quantum efficiency of the detection and add losses that we can quantify.
The introduced delay can be related to the introduced losses using the formula:

η(τ) =

( ∫

f(t)f(t + τ) dt)2 = ((1 + πγ|τ |)e−πγ|τ |
)2

. (V.3.7)

It is plotted in Fig. V.22.
The evolution of the Wigner functions under decoherence are compared for the

two squeezed cat states experimentally prepared and for cat states of same amplitude
but without squeezing. Figure V.23 shows the evolution of the Wigner functions for
one of our experimental squeezed cat state, corresponding to θ = 1.6◦, corrected from
detection losses (15%), and a cat state onto which we add the same initial system losses
(10%). In particular, the cross section of the Wigner functions along the imaginary
axis corresponding to the quadrature P̂ is shown. This comparison confirms that the
Wigner function oscillations preserved a much better contrast for the squeezed version
of the cat state.

Figure V.24(a) finally provides the maximal Wigner function negativity as a func-
tion of the channel transmission η. As it can be seen, the negativity stays larger for
the squeezed cat state, whatever the amount of loss experienced by the state. By fit-
ting the experimental points by a third-order polynomial, we can finally estimate the
derivative of the negativity of the Wigner function, and therefore the speed of decay
as a function of the transmission η. These results are shown in Fig. V.24(b). Even
though the speed of decay is smaller for the squeezed cat state than for the cat state,
the difference between the two cat states is not so obvious. The mean photon numbers
of the two states are 0.92 and 1.37, for θ = 2.4◦ and θ = 1.6◦ respectively, which is
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Figure V.23: Each block corresponds to a certain transmission of the channel: (a)
η = 100%, (b) η = 85%, (c) η = 75%, and (d) η = 60%. For each block, the two
top figures represent the simulated Wigner function of a cat state of size |α|2 = 2.8, on
which is applied 10% losses, corresponding to the losses intrinsic to our resource (left),
the experimental Wigner function of a squeezed cat state of the same size, with 4 dB
of squeezing (right). In the lowest part of the block is plotted the corresponding central
fringes.

quite close and can explain this proximity. This difference remains inside the error
bars of the measurement.

V.3.4 A robust method for generating cat states

We have shown the slowed-down decoherence of the Wigner function negativity of
squeezed cat states compared to cat states. We characterized this decrease of non-
classicality using a speed-of-decay criterion. The method we use to generated squeezed
cat state already makes us generate their core state i.e. their minimized-photon-number
state, which means that no other operation is necessary to generate the minimally-
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Figure V.24: Experimental results. Left and right figures correspond to an initial
squeezed coherent-state superposition with |α|2 = 1.5 and S = 2.8 dB and with |α|2 = 2.8
and S = 3.8 dB, respectively, with correction from detection losses (15%). The blue line
corresponds to a simulated cat state of the same size, on which is added 10% losses, corre-
sponding to the intrinsic losses of our source. (a) Negativity of the Wigner functions. The
red line is a third-order polynomial fit. (b) Estimated speed of decay of the negativity.
The red line is the corresponding speed of decay of the third-order polynomial fit.

decohering core state. The cats are ready to be used and to be sent through a trans-
mission channel, at the output of which one can implement unsqueezing operation in
order to retrieve the "real" cat state. One must point out that unsqueezing the cat will
not decrease non-classical effects (the Wigner function negativity is preserved), nor
undermine fault-tolerant continuous variable protocols (it consists only in a division
and multiplication of each quadrature).

This work opens therefore the question whether squeezed cat states could be suf-
ficient for quantum information schemes, instead of the use of costly “real” large cat
states, which can only be found for the moment in superconducting qubits [113, 122]
or cavity QED experiments [13, 123], and where the generated cats are not freely-
propagating, unlike optical ones.

In a recent study by J. P. Home’s group [124], it was also shown that measurement
where easier and more efficient on squeezed cats states, than on their larger counter-
parts, although the main reason for it (i.e. the slowed decoherence) is not explicitly
described.
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V.4 Conclusion

We have extensively studied some effects that can happen out of a type-II OPO,
where not only the situation when the idler and signal modes are perfectly separated
is experimentally interesting for quantum state engineering, but also the transition
towards two independent squeezed vacuum states. This transition enabled us to realize
Fock states superposition, which can be seen as core states containing the minimal
non-gaussian features to target the generation of high fidelity large cat states. This
new method of generating large optical squeezed Schrödinger cat states enables to
reach high count rates, two orders of magnitude higher than up-to-now protocols, and
the highest fidelity so far. Moreover, these core states are more robust to loss, as
they contain the minimum number of photons. Their fidelity, and non-classicality
(characterized here by the negativity of the Wigner function and its evolution through
losses) are shown to be preserved thanks to the use of the squeezing operation. Thus,
in order to use them in communication protocols, it is more advantageous to use
squeezed cat states as main resources than to directly send large cat states through a
lossy channel. Our method already generates squeezed cat states with the minimal non-
gaussian cost and can then be implemented in communication channels or continuous-
variable protocols.

This work, which uses squeezing as an ancillary Gaussian resource, opens new possi-
bilities to obtain, preserve and manipulate quantum superpositions at the macroscopic
level.
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VI | Hybrid Entanglement of Light

In this chapter, we will first introduce hybrid entanglement. The first demonstration
was published at the beginning of this thesis [25, 26, 125]. We will show how this
complex photonic state can be heralded using two different OPOs. In this thesis,
we have pushed further this work by first generating a hybrid entangled state with
a potentially higher degree of entanglement, by increasing the dimensionality. We
will also focus on the possibility to characterize such hybrid entanglement via steering
inequality and non-locality Bell tests. Finally, we will demonstrate a first application
of such entanglement: it consists in the remote state preparation of any continuous-
variable qubits. This experiment is the first step towards the achievement of hybrid
teleportation of a discrete-variable qubit to a continuous-variable one, analog to the
conversion of a "digital" signal to an "analog" one, at a distance. Several schemes will
be proposed and discussed.
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VI.1 Hybrid entanglement of light

The discrete- [2] and the continuous-variable approaches [126] are often applied to
different protocols in quantum information processing, due to their intrinsic advantages
and drawbacks. In the context of future heterogeneous networks, sketched in Fig.
VI.1, where some protocols are based on continuous variables and some others on the
discrete counterpart, the realization of a quantum converter would be a key ingredient.
Such converter would build a bridge between the different encodings of light and can be
achieved via the teleportation of the state, from one encoding, hold by Alice, to another
one hold by Bob, at a distance. It require in this case a quantum link, which can be
provided by hybrid entanglement of light, i.e. entanglement of the form |0〉|α〉+|1〉|−α〉
between particle-like and wave-like optical qubits [127].

Such entanglement can also be useful for hybrid communication, such as cryptog-
raphy protocols [128, 129]. Recently proposed schemes also hold the promise of nearly
deterministic universal gate operations [130], thanks to the use of a hybrid entangled
state as a double-encoded qubit. Hybrid entanglement is also the central resource of
the quantum bus approach [8, 131], in which direct qubit-qubit interactions are avoided
by the means of a common CV state.

In this section, we will show the first demonstration of hybrid entanglement, achieved
at the beginning of this thesis [25] The discrete-variable qubit is encoded in the ab-
sence or presence of a single-photon, as expressed by c0|0〉 + c1|1〉. The continuous-
variable qubit will be encoded in Schrodinger cat states of different parities, c+|Cat+〉+
c−|Cat−〉. Therefore the final hybrid entangled qubit state, shared between Alice and
Bob, will be of the form:

|Ψ〉AB =
1√
2

|0〉A|Cat+〉B + |1〉A|Cat−〉B. (VI.1.1)

As a first step, we will detail how to generate the continuous resource, i.e. Schrödinger
cat states of size |α|2 ≈ 1 and with different parities.

Figure VI.1: Scheme of an heterogeneous network where distant nodes of a quantum
network can rely on different information encodings, i.e. continuous (CV) in blue or
discrete (DV) variables in red.
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(a) (b)

Figure VI.2: (a) In blue is given the fidelity between an even cat state of size |α|2
and a squeezed vacuum state for different optimized squeezing. The optimal squeezing to
achieve the maximal fidelity for a given size is represented in red. (b) Fidelity (in blue)
between odd cat state of size |α|2 and a single-photon-subtracted squeezed vacuum of
optimal squeezing (in red).

VI.1.1 Schrödinger kitten states

We have seen in Chapter V a new method to generate large optical cat state via the
core state method. However here, it is not possible to use the same method. Indeed,
using this method would force us to have two type-II OPOs, while having limited
degrees of freedom to ensure two triple-resonances at the same time. We will therefore
here describe a more traditional approach to generate small Schrödinger cat states,
also sometimes called kittens, with a size |α|2 close to 1. This generation is based on
squeezed vacuum and single-photon detection.

In order to generate such states, we will use this time a type-I phase-matched OPO
made of a PP-KTP crystal, as presented in Chapter II . This OPO can provide up to
11 dB of squeezing. However, here, to achieve good fidelity with the targeted states,
only 3 dB of squeezing will be required.

Even kitten
The output of the OPO is a single-mode squeezed vacuum. As a first approximation,
we will use in the following:

|Cat+〉 ≈ Ŝ|0〉 (VI.1.2)

This approximation is valid for small cat states, as show in Fig VI.2(a), and is deter-
ministic, since it does not rely on the probabilistic detection of a heralding event.

Odd kitten
In order to generate odd kitten states, the most common scheme, initially proposed
by Dakna et al. [132] relies on one (or more) photon subtraction operated on squeezed
vacuum [11, 44, 81]. As shown in Fig. VI.2(b), the fidelity of a single-photon subtracted
squeezed vacuum with different odd cat states can be closed to unity for |α|2 ≤ 1. For
one photon subtraction, it is possible to have the approximation:

|Cat−〉 ≈ âŜ|0〉. (VI.1.3)
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Figure VI.3: (a) Experimental setup for the generation of small odd kitten. A type I
phase-matched PP-KTP OPO is pumped by a continuous-wave laser. A small part (≈ 3%)
of the output single-mode squeezed state is reflected by a beam splitter. This reflected path
is frequency-filtered and sent to a superconducting single-photon detector (SNSPD). Given
the detection of a single photon, a single-photon subtracted squeezed vacuum state, which
has a high fidelity with an odd Schrödinger kitten state of size |α|2 ≈ 1, is heralded. (b)
Experimental photon number probabilities and (c) associated Wigner function corrected
from detection losses (15%).

With the help of the relation:

Ŝ†âŜ = â cosh |ξ| − â† sinh |ξ|, (VI.1.4)

this state can also be seen as a squeezed single photon:

|Cat−〉 ≈ âŜ|0〉 = ŜŜ†âŜ|0〉 = − sinh |ξ|Ŝ|1〉. (VI.1.5)

A squeezed vacuum is a superposition of even photon- number states. Subtracting a
single photon leads therefore to a superposition of odd photon-number states,

|Cat−〉 ≈ (1 − λ2)3/4

λ

∑

n=1

√

(2n)!

n!
(
λ

2
)n

√
2n|2n − 1〉. (VI.1.6)

where λ = tanh |ξ| The experimental setup is presented in Fig. VI.3(a). The sub-
tracting operation can then be realized by taping a small fraction of the beam (≈ 3%)
with a beam splitter. The detection of a single photon on the conditioning path will
herald the generation of a single-photon subtracted squeezed vacuum, reaching a high
fidelity with an odd Schrödinger kitten. The heralding mode is frequency filtered via
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an interferential filter followed by a Fabry-Pérot cavity (see Chapter II). The resulting
states are phase-dependent and will therefore be detected via homodyne detection.

The resulting state is presented in Fig VI.3(b) and (c) and reaches a fidelity of 87%
with an odd cat state of size |α| = 0.9.

In this section, we have described the resources that will be used to generate the
continuous basis of our hybrid entanglement. Using our type-I phase-matched OPO,
we can indeed generate two orthogonal continuous-variable qubits, {|Cat+〉, |Cat−〉},
with a size |α|2 = 0.8. In the following section we will use such resources for the
generation of hybrid entanglement of light.

VI.1.2 Entanglement generation

a Principle

We have defined the basis {|Cat+〉, |Cat−〉} that we will use in the continuous-variable
mode of our hybrid entanglement. The discrete-variable basis that is going to be used
for the other mode is the presence or absence of a single photon, {|0〉, |1〉}. In order
to generate single photon, we use a type-II phase-matched OPO, pumped far below
threshold, exhibiting EPR-entangled state. This single-photon source is detailed in
Chapters IV and V.

Given these two resources, a type-I and a type-II phase-matched OPO, we aim at
generating a state of the form:

|Ψ〉AB =
1√
2

|0〉A|Cat+〉B + |1〉A|Cat−〉B (VI.1.7)

The experimental setup is given in Fig. VI.4. Bob’s side consists in a type I-OPO,
generating either even or odd Schrödinger kitten state, depending on the absence or
presence of a single-photon detection event. The pump power is of 5 mW, in order to
have 3 dB of squeezing at the output of the OPO. On Alice’s side, a type II-OPO is
used: the state is either a single-photon state or a thermal state, very close to vacuum,
depending on the probabilistic detection of a single-photon on the idler mode.

Our scheme for the generation of entanglement relies on mixing the two condition-
ing paths, in an indistinguishable fashion: the tapped mode and the idler mode are
interfered on a beam splitter, and then frequency-filtered by an interferential filter and
a Fabry-Pérot cavity. Therefore, the detection of a single photon heralds either an
odd cat state on Bob’s side, and vacuum on Alice’s side, or a single photon on Alice’s
side, and an even cat state on Bob’s side. Giving a single-photon detection event, it is
impossible to know from which mode the photon has been subtracted, leading to the
heralded generation of the hybrid state:

|Ψ〉AB ∝ |0〉Ab̂ŜB|0〉B + eiϕ|1〉AŜB|0〉B ≈ |0〉A|Cat−〉B + eiϕ|1〉A|Cat+〉B. (VI.1.8)

The normalization is omitted here. Such a state can also be written in the rotated
|±〉A basis:

|Ψ〉AB ∝ |+〉A|α〉B − |−〉A| − α〉B (VI.1.9)

where |±〉A = |0〉A±eiϕ|1〉A√
2

. The full theoretical derivation for the generated hybrid
entangled state can be found in Appendix D.
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Figure VI.4: Experimental setup for the generation of hybrid entanglement. Alice and
Bob locally generate the required resources by using continuous-wave optical parametric
oscillators operated below threshold. A type-II and type-I phase-matched OPO are used
respectively on Alice’s and Bob’s node. A small fraction of Bob’s squeezed vacuum, which
is a good approximation of an even cat state for |α|2 ≤ 1, is tapped (3%) and mixed
at a central station to the idler beam generated by Alice. The resulting beam is then
frequency filtered (conditioning path) and detected by a superconducting single-photon
detector (SSPD). Given a detection event, which heralds the entanglement generation, the
hybrid entangled state is characterized by two high-efficiency homodyne detections. Two-
mode tomography is performed and the density matrix is reconstructed via a MaxLike
algorithm. Photodiodes P1, P2 and P3 are used for phase control and stabilization.
The beam splitter ratio in the central station enables to choose the relative weights in
the superposition. FP stands for Fabry-Pérot cavity, IF for interferential filter, PBS for
polarizing beam splitter and LO for local oscillator.

In order to achieve such entanglement, the superposed beams must be indistin-
guishable in any degree of freedom. Therefore a fine tuning of the OPO bandwidth
cavities must also be operated in order to achieve as close as possible temporal-mode
shapes.

The phase and weight of the components can be fully tuned to engineer a variety
of hybrid entangled states. The phase ϕ between the two components can be chosen
by adapting the locking point of the fringes signal between the two paths. We usually
lock on the maximum signal of the fringes, i.e. when ϕ = π, leading to the heralded
generation of:

|Ψ〉 ∝ |0〉A|Cat−〉B − |1〉A|Cat+〉B. (VI.1.10)

The weights of the superposition can be tuned by adapting the count rate ratio between
the two heralding paths of the setup.

The fidelity is not affected by the loss in the conditioning path, equivalent to 80
km of fiber, which only affects the count rate of the generation. This entanglement can
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(a) (b) (c)

Figure VI.5: Experimental Wigner functions associated with the reduced density ma-
trices 〈k|ρ̂|l〉A with k, l ∈ {0, 1}, without (a) and with (b) correction for detection losses
(15%). The components with k Ó= l being not Hermitian, the corresponding Wigner func-
tions are not necessarily real, but conjugate. The plot gives therefore the real part in the
back corner (k < l) and the imaginary part in the front corner (k > l). The relative phase
is set to ϕ = π and the beam splitter ratio in the central station is adjusted to generate a
maximally entangled state, i.e. with equal weights. (c) Wigner functions associated with
the reduced density matrices 〈k|Aρ̂|l〉A with k, l ∈ {+, −}, corrected for detection losses.
|+〉 and |−〉 stand respectively for the rotated basis 1√

2
(|0〉A + |1〉A) and 1√

2
(|0〉A − |1〉A).

therefore be realized in a network where the two nodes are distant from each other.
The single-photon detector used is a superconducting single-photon detector (SNSPD,
NIST-JPL) working at cryogenic temperature, detailed in Chapter III. The low dark
count of such detectors allows to avoid false detection events and therefore to achieve
high-fidelity in the state generation.

VI.1.3 Characterization

To represent in a convenient way the results, we decided to use a hybrid representation.
In the discrete-variable framework, the results are generally shown in form of the
density matrix, while in continuous variable, the Wigner representation is privileged.
Therefore, we chose to represent the Wigner function of the reduced density elements
〈k|Aρ̂|l〉A with k, l ∈ {0, 1}, i.e. of the continuous mode of the state, of the experimental
state generated ρ̂.

The experimental results are given in Fig. VI.5(a) without and (b) with correction
for detection losses, for a phase set to ϕ = π and a beam splitter ratio tuned to
balance the detection probability from each node. Higher photon number components
are limited to 2% and are therefore not represented in Fig. VI.5. In this subspace, the
two first diagonal elements, namely the projections 〈0|ρ̂|0〉A and 〈1|ρ̂|1〉A, correspond
respectively to a photon-subtracted squeezed state and to a squeezed state. The non-
zero off-diagonal terms witness the coherence of the superposition.

The generated state can also be represented using as another projection basis the
rotated one |+〉A = (|0〉A + |1〉A)/

√
2, |−〉A = (|0〉A − |1〉A)/

√
2 (Fig. VI.5(c)). As it

can be clearly seen from the contour plots, the two projections 〈+|ρ̂|+〉A and 〈−|ρ̂|−〉A

exhibit an opposite displacement in phase space, corresponding with large fidelity to
the two states |α〉B and | − α〉B. Corrected for detection losses, we obtain a fidelity
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77 ± 3% with the targeted state with ϕ = π and |α| = 0.9 . The demonstrated size
is already compatible with the value |α| ≈ 1 shown as the optimal value in recent
proposals of resource-efficient operations with hybrid qubits [130].

To quantify the entanglement, we can calculate the negativity of entanglement
value N = 0.37 when corrected from detection losses (15%), and N = 0.27 without.
For a maximally entangled state the negativity of entanglement is 0.5. The fidelity
reaches F = 0.77 with the state |+〉A|α〉B −|−〉A|−α〉B with correction from detection
losses. This work was the first demonstration of hybrid entanglement of light.

Phase noise sensitivity
The relative phase ϕ in the generated state, has to be critically kept constant to achieve
entanglement. In order to control this phase, a very weak seed beam is injected into
each OPO. Depending on the phase of the seed beam with the pump, the resulting
signal is either amplified or de-amplified. The phase of the seed beam is locked on the
maximum amplification using the photodiodes P1 and P2 in Fig. VI.4 (see Chapter
II for more details). Then, the relative phase where the tapped modes are combined
is locked using Photodiode P3. This last locking is extremely sensitive. Indeed, it
corresponds to a few-meter long interferometer, and occurs after the other locking
signals of the OPO cavities and phases. It is therefore sensitive not only to its own
path instability but also to all the perturbations of the other upstream locking signals.
To model the phase noise of the system, it is possible to plot the negativity of a state
resulting from a gaussian phase noise of standard deviation σ:

ρ̂ =
1√
2πσ

∫

|Ψ〉AB〈Ψ|e− ϕ2

2σ2 . (VI.1.11)

with |Ψ〉AB ∝ |0〉Ab̂ŜB|0〉B + eiϕ|1〉AŜB|0〉B.
The evolution of the negativity of entanglement with the standard deviation σ of
the phase noise is given in Fig. VI.6, for different losses. In our experiment, the
high quality of our states locates us in the region where the system efficiency is around
ηA = ηB ≈ 0.9. The negativity is not very sensitive to the phase noise. However we will
see later than this noise is nonetheless critical for other entanglement characterization
parameters. Finally, it is important to note that as the number of required locking
systems increases a lot, the need of automatic relocking systems became crucial for
this experiment (see Chapter III for more information).

In summary, we have achieved entanglement between two remote nodes that are
using different information encodings [25]. Living in Hilbert space of different dimen-
sionality, the two parties establish heralded hybrid entanglement, which would enable
for instance to map discrete qubits onto coherent state ones. The work presented
here constitutes the first demonstration of such hybrid entanglement enabling to link
computational basis of different nature. In the following section, we will show the gen-
eration of a more complex state, reaching potentially higher degree of entanglement
by an increased dimensionality of the system.
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Figure VI.6: Theoretical plot of the evolution of the negativity of the hybrid entangled
state under gaussian phase noise of standard deviation σ, for different system efficiencies
(symmetric on both sides).

VI.2 Increasing the dimensionality

Systems of higher dimensions, often called qudit, offer many advantages for increased
channel capacity [133]. In particular generation of Fock qutrit states of the form:

|Ψ〉 ∝ c0|0〉 + c1|1〉 + c2|2〉 (VI.2.1)

has been proposed in quantum optics field [134, 135], as well as in superconducting sys-
tems [136]. Higher-dimension entangled system, such as discrete qutrit entanglement
of the form:

|Ψ〉 ∝ |02〉 + |10〉 + |20〉 (VI.2.2)

can also find applications in cryptography protocols [137], such as in bit commitment
protocols [138], where they can provide higher level of security than qubit entangled
states. This is coming from the fact that qutrit states can contain more entanglement
than qubit systems. For example, the negativity of entanglement for a maximally
entangled state can reach 1, instead of 0.5 for qubit systems. Proposal for discrete
qutrit entanglement have been made, such as in optical spatial modes [139], or in
superconducting systems [140].

In this section, we will show the generation of hybrid qutrit entangled state, between
discrete and continuous encodings, a more complex state than its qubit counterparts
in terms of technical difficulties and resulting quantum features.

VI.2.1 Hybrid qutrit entanglement: principle

The goal of our experiment is the generation of a discrete-continuous qutrit entangled
state of the form:

|Ψ〉AB ∝ (c1|0〉A|ψ1〉 + c2|1〉A|ψ2〉 + c3|2〉A|ψ3〉) (VI.2.3)

where |ψ1〉, |ψ2〉, |ψ3〉 are continuous-variable states.
To implement such a state, we use the same setup as for the hybrid entanglement

qubit generation, but we now condition this generation on the detection of two photons.
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(a) (b)

Figure VI.7: (a) Negativity of entanglement of the qutrit hybrid entangled state, for dif-
ferent squeezing amount and different weight parameter c. (b)Negativity of entanglement
of the qutrit hybrid entangled state, for different weight parameter c, in the case of 3 dB
squeezing and 6 dB squeezing, and for different system efficiencies. The parameter cMax,
for which the negativity of entanglement is maximized, slightly changes.

For this purpose, we replace the fiber and the connected SNSPD by a 50/50 fiber beam
splitter at which outputs we connect two SNSPDs. Given a double conditioning event
happening between 1 ns delay, we can herald the generation of the state:

|Ψ〉AB =
1√

2 + 4c2 + c4
(
√

2|2〉A|Sq〉B −2ceiϕb̂|1〉A|Sq〉B +c2ei2ϕb̂2|0〉A|Sq〉B) (VI.2.4)

where |Sq〉B = Ŝ|0〉B, b̂ is the annihilation operator on Bob’s mode, c = θt
Λr , and

t2 and r2 are respectively the transmission and the reflection of the mixing beam-
splitter. θ is the angle of the beam splitter enabling the photon-subtraction on the
type-I OPO, and Λ is related to the two-mode squeezed state on the type-II OPO :
|TMSS〉s,i ∝ ∑

n Λn|n〉s|n〉i. The phase term ϕ can be adapted by locking on different
points on the fringe resulting from the interference of the two conditioning path. This
calculation is fully detailed in Appendix E.

Depending on the choice of the parameter c, it is possible to have different weights
for each component of the superposition, resulting in different negativity of entan-
glement. In figure VI.7(a) is plotted the negativity of entanglement of the system,
for different squeezing, and different weight parameters c. The negativity of a qutrit
can reach 1 for maximally entangled state. Here, however, due to the fact that |Sq〉
and b̂2|Sq〉 are not perfectly orthogonal, it is not possible to reach this value for finite
squeezing.

The maximum of the negativity of entanglement is obtained in the ideal case, i.e.
in absence of losses, when ϕ = 0, for:

c2
Max = sinh2 |ξ|(1 − cosh2 |ξ|

2
) (VI.2.5)

where ξ is the squeezing parameter. This situation corresponds to a two-photon bal-
ancing of the count rates, i.e., by blocking one of the conditioning modes, the coin-
cidence counts must be equalized. For infinite squeezing |Sq〉 and b̂2|Sq〉 are orthog-
onal, therefore the negativity tends to a limiting value N ≈ 0.96 when the squeezing
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Figure VI.8: Negativity of entanglement of the qutrit hybrid entangled state, in the case
of ideal two-photon balancing, for 3 dB (in blue) and 6 dB (in red) of squeezing amount
out of the type I OPO, for different system symmetric efficiencies η = ηA = ηB .

increases. When losses are added, the balancing value cMax which maximizes the neg-
ativity slightly changes depending on the squeezing, as shown in VI.7(b). It is however
difficult to give a simple analytical expression. As the change of cMax is very small, we
will keep in the following, for simplification of the simulations, the value of the ideal
case.

We plot for several values of squeezing, the negativity depending on the efficiency
of the system in Fig. VI.8. As it can be seen, The qutrit entangled state is extremely
sensitive to losses. In particular for 6 dB squeezing we reach the same amount of
negativity as for the 3 dB squeezed qutrit, for an efficiency of η = ηA = ηB = 0.9.
It will therefore be difficult to surpass the negativity obtained for the hybrid qubit
(N = 0.37) and to show experimentally an improvement for 6 dB squeezing. The count
rate of this experiment is particularly low, of a few Hz, making it also challenging in
terms of path stabilization.

VI.2.2 Results

Figure VI.9 gives the Wigner functions of the reduced density elements 〈k|ρ̂|l〉A, of
the experimental state ρ̂ for a 5 mW pumping power of the type I OPO, leading to
a 3 dB squeezed resource. The higher photon number elements are not represented,
being below 2%. The fidelity is 73% for c = 2.3. The theoretical value of c in order to
maximize the negativity is around 1. This means there is still way for improvement in
order to balance correctly balance the coincidences counts. However as the count rate
is extremely low (around a few Hz), it is difficult to achieve a precise balancing of the
two-click coincidences. The achieved negativity is nonetheless 0.38, which is equivalent
to ones obtained for the hybrid qubit entanglement, but here for a state much more
sensitive to detection losses. This shows the strong entanglement features achieved.

A first attempt has been made for 6 dB of squeezing (30 mW pumping power for
the type-I OPO), and the resulting Wigner functions are shown in Fig. VI.10. The
achieved negativity is 0.3. The oscillations all over the Wigner functions are coming
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Figure VI.9: Experimental qutrit entangled state ρ̂ represented in form of Wigner func-
tions of the reduced density matrices 〈k|ρ̂|l〉A for 3 dB squeezing. The diagonal elements
are close to the Wigner functions of b̂2|Sq〉, b̂|Sq〉 and |Sq〉.

Figure VI.10: Experimental qutrit entangled state ρ̂ in form of Wigner functions of the
reduced density matrices 〈k|ρ̂|l〉A for 6 dB squeezing. The plotted phase space is twice
bigger than the one for the 3 dB case.

from the lack of points (only 70 000 here), due to the low count rate, of a few Hz.
When the Hilbert space dimension increases, this effect becomes preponderant. To
achieve a better reconstruction, it would require to achieve 200 000 points for the
MaxLike tomography. However, such results are only preliminary, as this state is
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very sensitive to losses, in particular for high squeezing. Additional generations with
different weights and phases must also be conducted, for different squeezing, in order
to show the tunability of the setup.

In the following section we will see other criteria in order to characterize the degree
of entanglement of our system, and in particular its non-locality properties. We will
try to apply the following criteria to our hybrid entangled qubit state.

VI.3 Characterization of the hybrid entanglement
via steering

Many different criteria are used in order to characterize entanglement. They can be
for instance non-separability tests conducted on the density matrix such as negativity
or concurrence. We applied one of these criteria, the negativity of entanglement on
our hybrid entangled state in the previous section.

Other criterions such as Bell-type measurements where proposed in order to assume
fewer hypothesis on the state and still show quantum mechanical features.

In this section we will review "steering" test that we hope to apply on our hybrid
entangled state. Steering testing was proposed by Schrödinger as a generalization of
the EPR paradox [141]. The idea is the following: Alice and Bob shares two separated
modes of an entangled state. Alice is making a measurement on her side, which makes
Bob state’s wave function collapse. In the steering context, Alice is trying to convince
Bob that they share an entangled state. Bob trusts his laboratory, which makes it
slightly easier, technically speaking, than Bell-type non-locality tests, where none of
the sides can be trusted. It is one of the key tests in order to implement one-sided
device-independent protocols in quantum key distribution [35].

Alice can be seen as a black box, where only outcomes s = +1, −1 can be shared
with Bob. Bob is thus giving a set of parameters j and Alice performs the measure-
ments Aj on its state. She then transmits her answers to Bob, which performs the
measurement Bj . As Bob is trusted, he can correct from losses or detection efficiency.
In [141] and [142], a steering inequality using homodyne measurement was presented.
Such inequality was applied to the case of single-photon entanglement, i.e. state of the
form:

√
R|0〉A|1〉B+

√
1 − R|1〉A|0〉B. An experimental violation, following this method

has been demonstrated in [143]. In a first place, we will apply the same reasoning to
our hybrid entangled qubit state.

VI.3.1 Steering inequality using homodyne detection

In [142] an inequality is provided in order to know if a single-photon entangled state
under the losses η is steerable or not:

η[R + (1 − R)2ηHD] ≥ 1 (VI.3.1)

where ηHD is the efficiency of the homodyne detector used to witness steering. If
we consider of our state as a form of single-photon entanglement with: η|1〉,B = 78%
η|1〉,A = 90% By taking η =

√
η|1〉,Aη|1〉,B, we therefore should be able to witness

steering.
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Here, as a first attempt, we use the inequality derived by Fuwa and co-workers for
single-photon entangled state [143], by using it in the {Ŝ|0〉, Ŝ|1〉} basis. Alice and
Bob share a hybrid entangled state denoted |Ψ〉:

|Ψ〉AB = (
√

1 − RŜ|0〉B|1〉A −
√

RŜ|1〉B|0〉A) (VI.3.2)

where R is proportional to the ratio of the count rates and can be tuned by playing
with the half-wave plate in front of the mixing beam splitter. To attempt to convince
Bob of the veracity of such entanglement, Alice performs quadrature measurement
via homodyne detection. Making a quadrature measurement Aj on Alice’s side, and
getting the result s ∈ {+1, −1} collapses Bob’s mode’s wave function in the eigenvector
|Qθj ,Aj

〉 of the measured quadrature:

|ψB〉 = 〈Qθj ,Aj
|Ψ〉 (VI.3.3)

On his side, Bob makes then a full tomography of the state |ψB〉, with correction
from detection losses (15%), and apply to it the measurement Bj depending on Alice’s
result. The idea of the steering inequality is to find measurement on Alice’s side to
ensure the violation of the following inequality:

1

n

n
∑

j=1

∑

s

P (s|θj)sTr[σ̂
θj

B ρ̂
θj
s ] ≤ f(n)

√

1 − Tr[σ̂z
B ρ̂]2 (VI.3.4)

where σ̂
θj

B = σx,B cos θj − iσy,B sin θj , and σ̂z
B are the extended spin operators applied

to the mode B [33, 34], and ρ̂
θj
s Bob’s resulting state after Alice’s measurement. f(n)

is a monotonically decreasing positive function of the number of measurement settings
n, and is defined in [142]. This function is close to its asymptotic value f(∞) = 2

π
for n = 6: f(6) = 0.644. Therefore 6 measurements should be sufficient to witness a
violation. Following the idea developed by Fuwa and co-workers [143], we will apply
sign binning on Alice’s side, i.e. s(Qθ

A) = sign(Qθ
A) ∈ {+1, −1}. Therefore, P (s|θ) =

0.5. Finally, we can chose a set of angle θj in order to cover the full phase space, i.e.
θj = π j

6 . This θj can be chosen by locking the phase of the local oscillator of Alice’s
homodyne detection.

For a maximally entangled state, i.e. when R = 0.5, and 3 dB of squeezing, Fig.
VI.11(a) gives the left and right part of the inequalities members evolution with optical
efficiencies (symmetric on both sides). We can see that up to ηA = ηB = 0.8, it is
possible to witness a steering violation. This violation is however different when the
ratio changes and can be slightly easier to witness. For example, the left and right
sides of the inequality for the transmission ratio are given in Fig. VI.11(b), for the
typical experimental losses ηA = 0.92 × 0.85 (including optical losses and detection
efficiency, which are respectively of 8% and 15%) on Alice’s side, and ηB = 0.90
(including optical losses 10%), on Bob’s side. The resulting differences between the
two sides of the inequality is plotted in Fig. VI.12(a), for the experimental efficiencies
and ηB = 0.90 as a function of the parameter R. Figure VI.12(a) also shows the amount
of violation we would get if the considered state was a single-photon entangled state,
with the same system efficiencies. Achieving a steering inequality violation is therefore
harder, both in terms of transmission ratio R range, and of smaller value ∆, for hybrid
entanglement than for single-photon entanglement.
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(a)(a) (b)

Figure VI.11: (a) Left and right sides of the steering inequality evolution as a function
of the efficiency of the system (with ηA = ηB = η), for a maximally entangled state (i.e.
R = 0.5). (b) Left and right sides of the steering inequality evolution for the typical
experimental losses ηA = 0.92 × 0.85 (including optical losses and detection efficiency,
which are respectively of 8% and 15%) and ηB = 0.90 (including optical losses 10%), with
the parameter R.

Both evolutions with losses for the two parameters R = 0.5 and R = 0.6 are
summarized in Fig. VI.12(b).

Given the efficiencies we have in our experiment, i.e. ηA = 0.85 × 0.92 and ηB =
0.90, we should therefore be on the limit to see this steering inequality violation.
Experimentally, we found 0.53 < 0.55 and 0.55 < 0.56 for R = 0.5 and R = 0.6
respectively. We could therefore not witness any violation so far while being very close
to the limit. Improvements of a few percent of the efficiencies on both sides should
therefore be targeted.

Such inequality is very hard to violate, as showed by two recent papers [144] and
[145], where it is explained that violating this inequality is the same as violating a
CHSH-type inequality, i.e. that the entangled state exhibits strong Bell-type non-

(a)(a) (b)

Figure VI.12: (a) In blue is given the value of the theoretical amount of violation
observed ∆ for ηA = 0.85 × 0.92 and ηB = 0.90 as a function of the parameter R. In
red is given the value of the theoretical amount of violation observed in the case of single-
photon entanglement, for the same system efficiencies. (b) Value of the amount of violation
observed ∆ with the efficiency of the system (when ηA = ηB = η) for R = 0.6 (blue) and
R = 0.5 (red).
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locality features.
In order to show steering-type entanglement, other promising measurements have

recently been proposed using for example displacement operation followed by single-
photon detection [146]. According to this publication, their steering inequality can
be violated for single-photon entanglement provided that the total transmission and
detection efficiency is above ≈ 43%, which clearly is the case in our experiment.

VI.3.2 Towards Bell-type violation

Following the same idea as steering entanglement witnesses, we also study inequalities
for Bell-type non-locality witnesses. A typical scheme of is given in Fig. VI.13. The

B
j
,B
^

j'

^

A
i
,A
^

i'

^

+1 -1 -1 +1 ...

+1 +1 -1 -1 ...
i i i' i'

j j' j' j

SMeasurement

Alice

Outcome

Bob

Entangled 

    state

Figure VI.13: Principle of a non-locality witness: Alice and Bob shares entanglement.
They randomly perform measurements using operators Â and B̂. Depending on the out-
comes of such measurement they calculate correlators of the form 〈Âi, B̂j〉 and calculate
the resulting term S.

general principle is to find two operators Â and B̂ hold by Alice and Bob, which give
+1, −1 outcomes, and two settings of the operators i, i′ and j, j′ where we can derive
the inequality, valid for local systems:

S = 〈Âi ⊗ B̂j〉 + 〈Âi′ ⊗ B̂j〉 + 〈Âi ⊗ B̂j′〉 − 〈Âi′ ⊗ B̂j′〉 ≤ 2 (VI.3.5)

Terms of the form 〈Âi, B̂j〉 are called the correlators, and can be retrieved by the
probability to have a certain measurement outcome. Therefore, for a state ρ̂:

〈Âi ⊗ B̂j〉 = Tr[ÂiB̂j ρ̂] =
∑

a,b={+1,−1}
p(a = b|Âi ⊗ B̂j) − p(a Ó= b|Âi ⊗ B̂j) (VI.3.6)

If S > 2 the system exhibits non-locality.
In continuous-variable systems, Milman and co-workers [147] proposed to use the

value of the Wigner function, experimentally corresponding to a displacement of the
parity operator.

〈Π̂Alice,α ⊗ Π̂Bob,β〉+〈Π̂Alice,α′ ⊗ Π̂Bob,β〉+〈Π̂Alice,α ⊗ Π̂Bob,β′〉−〈Π̂Alice,α′ ⊗ Π̂Bob,β′〉 ≤ 2
(VI.3.7)

where Π̂α = D̂(α)
ˆ̂
ΠD̂†(α) is the displaced parity operator, corresponding to a dis-

placement to the point α. The mean value of this operator corresponds to the value
of Wigner function on this point:

〈Π̂α〉 = W (α). (VI.3.8)
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First demonstrations using homodyne detection have been proposed [148]. However
this method is extremely sensitive to losses and it is impossible to experimentally
conduct such test in our setup. The same method haves been applied to two mode-
squeezed state in [149–151]. The detection efficiency requirement are usually on the
order of η > 95% as shown in [152] or as well as in more recent proposals [153].

Another test procedure we worked on could be to have hybrid types of operators:

〈σ̂Alice,i ⊗ Π̂Bob,β〉 + 〈σ̂Alice,i′ ⊗ Π̂Bob,β〉 + 〈σ̂Alice,i ⊗ Π̂Bob,β′〉 − 〈σ̂Alice,i′ ⊗ Π̂Bob,β′〉 ≤ 2
(VI.3.9)

where σ̂θ = σ̂X cos θ + σ̂Y sin θ. However, for the same reason, the sensitivity of the
parity operator measurement to losses, this measurement is very sensitive to losses,
and cannot permit to witness any violation at the current experimental efficiencies.

Finally, another proposal by Vlastakis and co-corkers [154], is based on Pauli-type
measurement only:

〈 σ̂x + σ̂z√
2

⊗ ẐBob〉 + 〈 σ̂x − σ̂z√
2

⊗ ẐBob〉 + 〈 σ̂x + σ̂z√
2

⊗ X̂Bob〉 − 〈 σ̂x − σ̂z√
2

⊗ X̂Bob〉 ≤ 2.

(VI.3.10)
In this specific case, the Pauli formalism was extended to our continuous qubit basis
as:

X̂Bob = |Cat+〉〈Cat − | + |Cat−〉〈Cat + |
ŶBob = i|Cat+〉〈Cat − | − i|Cat−〉〈Cat + |

ẐBob = |Cat+〉〈Cat + | + |Cat−〉〈Cat − |
(VI.3.11)

By directly applying such operators to our experimental density matrix, with correction
from detection losses, a value slightly above 2 has been obtained, however inside the
error bars. Therefore we cannot have conclusions on the non-locality of our state,
corrected from detection losses, for the current system efficiencies.

In order to calculate the possible violation for our state we can compute the Bell
parameter based on pseudospin operator (BP S)max. This parameter enables to quantify
the total amount of qubit entanglement in our system. It is the highest that one can
reach in a Bell-type test, by using the optimal operators. In this parameter, the
Pauli operators for Bob’s side used here are the extended formalism of Pauli operators
[33, 34], as defined in Chapter I. Such parameter can be simplified [155] if:

〈σ̂i ⊗ σ̂j〉 = 0 (VI.3.12)

for i Ó= j. Provided a rotation in phase space of the experimental density matrix
in order to fulfill this condition, the maximal amount of Bell-type inequality can be
provided as:

(BP S)max = 2
√

Z2 + X2 (VI.3.13)

where X = 〈σ̂x ⊗ σ̂x〉 and Z = 〈σ̂z ⊗ σ̂z〉. Figure VI.14 gives the evolution of such
parameter with losses. By applying this criterion to our density matrix, we got the
value (BP S)max = 2.24 with correction from detection losses, and (BP S)max = 1.74
without correction from detection losses. We are nonetheless stuck to two issues: the
first one is that there is not to our knowledge solutions to measure the Pauli Operators
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Figure VI.14: Value of the Bell parameter (BP S)max achievable depending on the losses
(ηA = ηB = η).

via single-shot homodyne measurements. The second one is that we need to correct
from detection efficiency from both sides, i.e. we have to open the detection loophole.
It is an interesting question to see whether the achieved value of Bell parameter could
enable us to violate a steering inequality.

Reaching high fidelity hybrid entangled is important not only for fundamental
tests such as presented in this section, but also in order to use it as a toolbox for
other protocols. In the context of building heterogeneous networks, the conversion
of information from one encoding to the other can be achieved via teleportation. In
the following section, we will show the first step of a teleportation scheme, consisting
in being able to remotely prepare any continuous-variable qubits by measurement on
the discrete-variable side. Such protocol is also interesting on its own as it enables to
generate for subsequent protocols any desired CV qubit at a distance.

VI.4 Remote state preparation

As a first application of our hybrid entangled state generation, we will show in this
section the preparation at a distance of any continuous-variable qubits. Even though
the generation of balanced superposition (i.e. cat states) has been the subject of many
studies, being able to fully play on the superposition weights and phases, is more
complicated, and requires several conditioning measurement [156]. By using hybrid
entanglement, we can implement a quadrature measurement on Alice’s DV mode, and
therefore generate any coherent-state superpositions on Bob’s mode.

VI.4.1 Principle

Following the method developed for single-photon entanglement [157], we start from
our hybrid entangled state,

|Ψ〉AB = |0〉A|Cat−〉B − |1〉A|Cat+〉B, (VI.4.1)
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(a) (b)

Figure VI.15: (a) Experimental setup for the remote state preparation of continuous-
variable qubits via hybrid entanglement. Alice and Bob share an entangled state of the
form |Ψ〉AB = |0〉A|Cat−〉B − |1〉A|Cat+〉B . By performing quadrature measurement
via homodyne detection on its part of the state, Alice can herald the generation of any
continuous-variable state superposition c+|Cat+〉B + eiϕc−|Cat−〉B on Bob side. The
quadrature can be chosen by locking the local oscillator of Alice’s detection on a certain
value θ, and by waiting for an event value Q (within a given acceptance window). Bob
then performs homodyne detection in order to check the quality of the generated state.(b)
Marginal distributions of vacuum and single-photon states.

and implement, on the discrete-variable side, a quadrature measurement using ho-
modyne detection, as shown in the experimental setup presented in Fig VI.15(a).
The marginal distributions corresponding a single photon and vacuum are plotted
in VI.15(b), in the ideal case. The measurement of a quadrature outcome close to
the value zero on Alice’s side will project Bob’s state onto the state |Cat−〉B. On
the contrary, a large value quadrature outcome will project Bob’s state onto the state
|Cat+〉B. By measuring quadratures in between, and by playing on the phase of the lo-
cal oscillator, we can therefore prepare on Bob’s side the arbitrary superposition state:
c−|Cat−〉B + eiϕc+|Cat+〉B. In particular, the measurement of a quadrature value
of -1, projects the state onto the balanced case 1/

√
2(|Cat+〉B − |Cat−〉B) ≈ |α〉B,

leading to the generation of a coherent state, for |α|2 ≈ 1.
The analytical calculation of the coefficients goes as follows. The measurement

implemented can be written in the form:

Q̂θ,A = X̂ cos θA + P̂ sin θA. (VI.4.2)

The measurement of the quadrature value Q, projects the entangled state onto an
eigenstate of the quadrature |QθA,A〉:

|Ψ〉B = Q̂θ,A|Ψ〉AB ∝ 〈QθA,A|0〉A|Cat−〉B − 〈QθA,A|1〉A|Cat+〉B, (VI.4.3)

where

〈QθA,A|0〉A =
1

(2π)1/4
e

− Q2

4σ2
0

〈QθA,A|1〉A =
QeiθA

(2π)1/4
e

− Q2

4σ2
0 .

(VI.4.4)
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(a) (b)

Figure VI.16: (a) Fidelity depending on the measurement results Q for different targeted
continuous-variable states (θ = 0). (b) Fidelity as a function of the acceptance band ǫ for
different targeted states.

The final state on Bob’s side can be written after renormalization as:

|Ψ〉 =
1

√

1 + Q2
(|Cat−〉B + Qeiθ|Cat+〉B). (VI.4.5)

The closer the measured value is to Q = 0, the more the entangled state will be
projected onto |0〉A|Cat-〉B. In a nutshell, the value of Q will change the weight of
the superposition, while the chosen quadrature will be directly mapped onto the final
phase of the superposition. To generate the following states on Bob’s side, the following
values must therefore be chosen, according to the different fidelity plots in Fig VI.16(a):

• Ŝ|1〉 ≈ |Cat−〉, Q = 0, any value of θ

• Ŝ|0〉 ≈ |Cat+〉, |Q| as high as possible, any value of θ

• |α〉, Q = 1.15, θ = 0

• | − α〉, Q = −1.15, θ = 0

• |α〉 + i| − α〉, Q = 1.15, θ = π/2.

The fact that the coherent state’s highest fidelity is obtained for Q = 1.15 and not
at Q = 1, as it could be expected in the ideal case, comes from the limited value of
|α| ≈ 0.76.

Experimentally, a strict condition Q = x would lead to zero probability of success.
We therefore need to measure a certain band of quadratures of size ǫ that we choose to
keep. This would lead to a compromise between the fidelity of the targeted state and
the resulting count rate, for the quadrature value Q̂θ,A. The final result can therefore
be written as:

ρ̂B ∝
∫ Q+|ǫ|

Q−|ǫ|
dQ〈Qθ,A|Ψ〉AB〈Ψ|Qθ,A〉. (VI.4.6)

Depending on the acceptance window ǫ, the state fidelity decreases as shown in Fig.
VI.16(b). Therefore, we will choose for Q = 0 or Q = 1.15 the value ǫ = 0.1. To
generate Ŝ|0〉 ≈ |cat+〉 we will however take |Q| ≥ 2.5
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Figure VI.17: Theoretical plot of the fidelity depending on the efficiency of the system
η = ηAlice = ηBob for different remotely prepared states on Bob’s side.

The overall process is obviously sensitive to loss. Indeed, for different bands ǫ we
plot the fidelity of each state for symmetric losses η = ηAlice = ηBob on both sides in
Fig. VI.17. As squeezed vacuum is mostly containing vacuum component, the fidelity
is not too much affected by the losses. However, for the odd kitten state generation, the
measurement of Q = 0 can lead to the generation of unwanted squeezed vacuum, due to
the losses on Alice’s side. Therefore the fidelity is high for the squeezed vacuum state,
and decreases with the increase of the odd kitten state component in the superposition.
.

Experimentally, given a quadrature measurement on Alice’s side, we then sample
50 000 quadratures values on Bob side, and reconstruct the full density matrix using
a maximum likelihood algorithm.

VI.4.2 Results

Some of the experimentally generated states are presented in Fig. VI.18, in the form
of a continuous-variable Bloch sphere, where the poles are defined by the orthogonal
states Ŝ|1〉 and Ŝ|0〉. For each experimental state ρ̂exp, we find the maximal fidelity
with the state

|Ψ〉θ,ϕ = cos
θ

2
Ŝ|0〉 + eiϕ sin

θ

2
Ŝ|1〉. (VI.4.7)

We represented it on the sphere using the coordinates {θ, ϕ}. The distance to the
center of the Bloch sphere scales with the purity of the state : d =

√

2Tr[ρ̂2
exp] − 1.

We associate each result with a number and we plot next to it the corresponding
Wigner function. The generated state corresponding to each number on the Bloch
Sphere, and their fidelities can be found in Table VI.1
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# Point Targeted state Fidelity |α|

1 |α〉 86% 0.7

2 | − α〉 85% 0.70

3 |Cat+〉 86% 0.5

4 |Cat−〉 66% 0.9

5 |α〉 − i| − α〉 82% 0.6

6 |α〉 + i| − α〉 83% 0.6

Table VI.1: Summary of the different generated states corresponding to each point
numbered on the Bloch Sphere given in Fig VI.18. The targeted state is given as well
as the experimental fidelity, with correction from detection losses on Bob’s side (15%),
and the |α| value that maximizes this fidelity. The color of each point corresponds to the
coordinate ϕ of the Bloch sphere, which legend is given.

We achieve fidelities of 70% for the odd cat state (#4), and 80% for the other states
for |α| ∼ 0.7. The fidelity of the odd cat state is smaller than the other ones because it
is obtained using the measurement Q = 0 which is related to the vacuum component
and thus to the losses. Q = 0 has therefore a non-negligible probability to be result
from the initial component |1〉AŜ|0〉B that has experienced photon losses on Alice’s
side. This cannot be the case for higher values of Q. The state #1, is the closest to a
coherent state. It is not exactly aligned onto the equator of the sphere due to limited
values of |α|. It is also for the same reason we choose to represent the Bloch sphere in
the {|Cat+〉, |Cat−〉} basis, instead of the coherent state basis, due to the unperfected
orthogonality of the two vectors (the overlap between the two states is here equal to
〈α| − α〉 = e−4|α|2 ∼ 0.14).

In summary, we have achieved here the remote state preparation of any CV qubits.
This step is the first one towards the teleportation as it enabled us to achieve a full
mapping between the discrete- and the continuous-variable encodings. In the following
section, we will briefly discuss possible schemes for the implementation of teleportation
and discuss about their robustness to optical losses.

VI.5 Encoding conversion by hybrid teleportation

In the near future, quantum technologies might be empowered from the use of different
physical platforms. Hybrid systems, between different media, or different encodings,
enable to reach out new performances. In the case of the discrete-continuous hybrid
quantum information processing, some protocols can be easily achieved in continuous
encodings [126], while others benefits from the discrete-variable toolbox [2]. Recently
new approaches based on hybrid systems themselves enabled to achieve better perfor-
mances [9, 10, 130, 158].

The realization of a heterogeneous network taking advantages of the best proper-
ties of both worlds requires therefore a transfer of the information between the two

Page 120



VI.5. Encoding conversion by hybrid teleportation

(a)

(b) (c)

(rad)

2

0

Figure VI.18: (a) Bloch Sphere and associated Wigner functions of several remotely
prepared CV qubits. They are corrected from detection losses on Bob’s side (15%). (b)
Projection on the XZ plane. (c) Projection on the XY plane

Page 121



Chapter VI. Hybrid Entanglement of Light

encodings, which cannot be achieved without quantum teleportation. Such protocol
can be seen as a discrete- to continuous-variable converter, as an analogy of digital-to-
analog conversion (or the other way round) in classical electronics. In this section we
will discuss about possible schemes that would enable us to achieve hybrid quantum
teleportation from one encoding to the other in the future.

The goal is to be able to teleport any discrete-variable qubit of the form c0|0〉+c1|1〉
to the continuous-variable encoded qubit c0|α〉 + c1| − α〉, at a distance.

VI.5.1 Finding an optimal Bell measurement

Alice and Bob shares hybrid entanglement of the form |0〉A|Cat−〉B − |1〉A|Cat+〉B.
Charlie sends a discrete-like qubits of the form c0|0〉C + c1|1〉C . Charlie’s qubit is
then mixed with Alice’s mode on a beam splitter of transmission t and reflection r.
rAC = −rCA = tCC = tAA = 1√

2
gives the following state:

|Ψ〉ABC =
1

2

( − c0√
2

|0〉A|Cat+〉B|1〉C − c1√
2

|0〉A|Cat+〉B|2〉C

+c0|0〉A|Cat−〉B|0〉C +
c1√

2
|0〉A|Cat−〉B|1〉C

− c1√
2

|1〉A|Cat−〉B|0〉C − c0√
2

|1〉A|Cat+〉B|0〉C

+
c1√

2
|2〉A|Cat+〉B|0〉C

)

(VI.5.1)

As in usual quantum teleportation protocols, a Bell measurement is required. The
detection of a single photon (and only one) on mode A enables the generation of the
following state on Bob’s mode:

|Ψ〉B =
1√
2

(c1|Cat−〉B − c0|Cat+〉B). (VI.5.2)

Any DV qubit encoded in the {|0〉, |1〉} can therefore be converted to the {|Cat−〉, |Cat+〉}
basis. The single-photon detectors must, in such case, not only have high efficiency,
but they also need to be photon-number resolved. In particular, the contribution of
the term |2〉A|Cat+〉B|0〉C cannot be ignored.

Another way to implement the single-photon resolving detection, can be to use
a single-photon subtraction, equivalent to an annihilation operation, followed by a
quadrature measurement. The annihilation operation on Alice’s mode leads to the
heralded state:

â|Ψ〉ABC =
1

2

( c1√
2

|0〉A|Cat−〉B|0〉C − c0√
2

|0〉A|Cat−〉B|0〉C − c1|1〉A|Cat+〉B|0〉C

)

.

(VI.5.3)
The former |2〉A|Cat+〉B|0〉C component, now become a |1〉A|Cat+〉B|0〉C term. In
order to discard this term, and only keep the |0〉A term, we trigger the teleportation
protocol on the detection of the quadrature value Q = 0.

The annihilation operation can be realized experimentally by tapping a part of
the mode A on a beam splitter, and realizing single-photon detection on it. Thus,
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Figure VI.19: Converter scheme. Alice and Bob share a hybrid entangled state. Charlie
sends a qubit that is mixed with Alice’s mode using a 50/50 beam splitter. One of the out-
puts of the beam splitter is slightly reflected onto another beam splitter in order to achieve
a single-photon subtraction. Alice detects the resulting state using homodyne detection
and performs quadrature measurement. The teleportation protocol success is heralded on
the detection of a single photon and on the homodyne measurement corresponding to a
quadrature value Q = 0.

the efficiency of the detector is not a critical parameter as it is only used to herald
the teleportation, and thus only the count rate will be affected. One must note that
since this click is local, it will not be too costly in terms of success probability and
resulting count rate. The quadrature measurement can be implemented by homodyne
detection, similarly to the one proposed for steering characterization and remote state
preparation of continuous qubits. This measurement efficiency will affect the resulting
state and cannot be corrected.

VI.5.2 Implementation and expected results

Alice and Bob firstly generate remote hybrid entanglement, where they share the two
modes of the resulting entangled state, by using the scheme described in section VI.1.2,
and use the setup illustrated in Fig. VI.19.

Charlie sends its qubit to Alice, who mixes it with her part of the beam, using
a 50/50 beam splitter. At one of the outputs, Alice then tap a little part of the
beam (≈ 3%), and send it to an SNSPD. Given a detection event, Alice implements
homodyne detection and heralds the teleportation by the detection of the quadrature
value Q = 0. Bob then performs homodyne tomography on its side using a homodyne
detector, in order to check the resulting state.

The ideal case, i.e. involving ideal states and no detection losses, is presented in
Fig. VI.20, where the fidelity for different measurement outcome Q and for different
qubits with a vacuum weight c2

0. We can therefore confirm that for all c2
0, the best

measurement is for Q = 0.
Despite our system losses (ηA = ηB = 0.9) and the homodyne detection losses

(15%), we should be able to achieve higher than 70% fidelity, i.e. above the 2/3 limit,
for a large variety c2

0 as shown in Fig. VI.21(a) where the fidelity is plotted for Q = 0.
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Figure VI.20: Fidelity of the generated continuous-variable qubit with the targeted
state, for different homodyne measurement result Q and several weights c0 of the initial
qubit.

(a) (b)

Figure VI.21: (a) Fidelity of the generated continuous-variable state with the targeted
state, for Q = 0 and several weights of the qubit c0. The system efficiencies are considered
symmetric on each side of the hybrid entangled state, ηA = ηB = 0.9, and the homodyne
detection losses (15%). (b) Fidelity of the generated continuous-variable state with the
targeted state as a function different acceptance band ǫ of the homodyne detection, and
of c0 the vacuum weight of the qubit.

The fidelity depending on the bandwidth of our quadrature acceptance window ǫ is
plotted on Fig. VI.21(b).

Changing the CV basis
For two ideal cat states, with a large |α|, the relation between the cat state basis
{|Cat+〉, |Cat−〉}, and the coherent state basis {|α〉, | − α〉} is trivial. The resulting
qubit can be written in the ideal case as aα|α〉B + a−α| − α〉B in the {|α〉, | − α〉},
with aα = c1 − c0 and a−α = c0 + c1. In the case of a squeezed vacuum and squeezed
single photon as initial resources, the relation between such basis, and the coherent
state basis can be a little more complex. The overlap between two qubits is plotted in
Fig. VI.22, as a function of c0 and aα, for |α| = 0.7.

Page 124



VI.5. Encoding conversion by hybrid teleportation
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Figure VI.22: Overlap of the qubit encoded in the squeezed Fock basis {Ŝ|0〉, Ŝ|1〉},
with weight c0, and encoded in the coherent state basis {|α〉, | − α〉}, of weight aα, for
|α| = 0.7.

VI.5.3 An analog-to-digital converter?

In this section we will briefly discuss the possibility of using a similar method for the
implementation of a continuous-to-discrete-variable teleportation protocol.

Alice and Bob share hybrid entanglement, which can be written as:

|Ψ〉AB ∝ |+〉A|α〉B − |−〉A| − α〉B = D̂B(α)|+〉A|0〉B − D̂B(−α)|−〉A|0〉B. (VI.5.4)

Charlie sends this time a continuous qubit of the form :

cβ|β〉C + c−β | − β〉C (VI.5.5)

Charlie combines his mode with Bob’s mode with a 50/50 beam splitter, therefore
realizing the transformation:

D̂B(α) = eαâ−α∗â† → e
α â+ĉ√

2
−α∗ â†+ĉ†

√
2 = D̂B(

α√
2

)D̂C(
α√
2

)

D̂B(−α) → D̂B(
−α√

2
)D̂C(

−α√
2

)

D̂C(β) → D̂C(
β√
2

)D̂B(
−β√

2
)

D̂C(−β) → D̂C(
−β√

2
)D̂B(

β√
2

)

(VI.5.6)

The resulting state can then be simplified as:

|Ψ〉ABC = cβ|+〉A|α − β√
2

〉B|α + β√
2

〉C + c−β|+〉A|α + β√
2

〉B|α − β√
2

〉C

−cβ|−〉A|−(α + β)√
2

〉B|β − α√
2

〉C − c−β|−〉A|β − α√
2

〉B|−(α + β)√
2

〉C .

(VI.5.7)
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For the particular case of α = β, this can be furthermore simplified in:

|Ψ〉ABC = cα|+〉A|0〉B|
√

2α〉C + c−α|+〉A|
√

2α〉B|0〉C

−cα|−〉A| −
√

2α〉B|0〉C − c−α|−〉A|0〉B| −
√

2α〉C .
(VI.5.8)

A simple homodyne measurement Q = 0 on mode B and tracing of mode C would
lead to:

|Ψ〉A = cα|+〉A − c−α|−〉A. (VI.5.9)

However if α is too small, this scheme might not work. Detecting a single photon on
mode B can therefore also be a way to implement this teleportation scheme, and to
get:

|Ψ〉A = c−α|+〉A − cα|−〉A. (VI.5.10)

Experimentally speaking, the mode C can be used in order to lock the two seed waves
and to maintain the same phase between Alice and Charlie at the mixing point.

VI.6 Conclusion

We have demonstrated hybrid entanglement, i.e. entanglement between particle-like
and wave-like optical qubits. This entanglement is produced at a distance, and the two
modes can freely propagate and be used in subsequent protocols. We have shown that
we can also increase the dimensionality of the state and the amount of entanglement
it contains by generating qutrit hybrid entangled state This scheme is based on an ad-
ditional photon detection. We also studied some theoretical protocols and calculations
that could be applied to our system to show entanglement features such as Bell-type
non-locality or steering. However it is complicated to find operators robust enough to
losses and further investigations should therefore be conducted.

Finally, we gave a first example of the use of hybrid entanglement by remotely
generating continuous-variable qubits by measurement on the discrete mode. A second
application would be the conversion of discrete-variable states to continuous-variable
states, for which we studied a possible scheme.

Hybrid entanglement can also be seen as entanglement between a particle, and
between a wave like-qubit, i.e. between a system of 0 or 1 particle, and a system con-
taining several particles. On the next chapter, we will demonstrate that the developed
setup is also a versatile way to achieve the exploration in phase space of the entangled
state and the realization of "micro-macro entanglement".
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of light

Introduction

In the previous chapter, we have shown the generation of hybrid entanglement between
discrete-like and continuous-like types of optical qubit. However, we will show here
that the fidelity to the targeted state remain limited by the approximation done on
the initial resource. To enhance this fidelity, an additional local subtraction can be
operated, resulting into new effects in phase space. Moreover, the ability to play
with the number of photon detections, and the amount of initial squeezing make our
setup a versatile platform to study the generation of squeezing-induced micro-macro
entanglement, where state of small size, i.e. single-photon states, are entangled with
"macroscopic" states. In this chapter, we will detail the realization of such entanglement
and study some macroscopicity witnesses that we will apply to our state.
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Chapter VII. Micro-Macro entanglement of light

VII.1 Additional local photon subtraction

In Chapter VI, we have demonstrated hybrid entanglement between discrete-like and
continuous-like types of qubit of the form:

|Ψ〉 ∝ |0〉|Cat+〉 + |1〉|Cat−〉. (VII.1.1)

However, due to our approximation consisting in using squeezed vacuum as a starting
resource, instead of a real even cat state, the maximum achievable fidelity with the
targeted hybrid state was therefore limited to 94%. The effectively generated state
was therefore of the form:

|Ψ〉AB ∝ ŜB|0〉A|0〉B + b̂ŜB|0〉A|0〉B. (VII.1.2)

where ŜB and b̂ are the squeezing and annihilation operators on mode B. This effect
can be seen directly in the superposition of the generated even and odd cat states
(|Cat+〉B + |Cat−〉B)/

√
2, i.e. the projection in the rotated basis, which should be

a coherent state in the ideal case. Figure VII.1(a) gives the Wigner function of this
superposition for the state in Eq. VII.1.2: as it can be seen, it has an imperfect
gaussian shape.

In this section, we will show how to go around this approximation by an additional
local subtraction and how this can be implemented experimentally.

VII.1.1 Even kitten state: an approximation

In order to improve such fidelity, an additional local photon subtraction enables to
generate a two-photon subtracted squeezed vacuum, which has a closer fidelity to an
even cat state [81]. Such operation will also lead to an increase in the size of the
generated cat state. This operation can be written as:

|Cat+〉 ≈ ââŜ|0〉 ∝
(

− sinh 2|ξ|
2

Ŝ|0〉 +
√

2 sinh2 |ξ|Ŝ|2〉
)

(VII.1.3)

The fidelity with a targeted even cat state can be found in Fig. VII.2 (a). A value |α|2
up to 1.1 can be obtained with fidelities greater than 98%.

(a) (b)

Figure VII.1: Theoretical plot of the Wigner function of the resulting state in the rotated
basis (a) without and (b) with additional local photon detection.
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Figure VII.2: (a) The fidelity between an even cat state of size |α|2 and a two-photon-
subtracted squeezed vacuum is given in blue, for different optimized squeezing. The op-
timal squeezing to achieve the maximal fidelity for a given size is plotted in red. (b)
Experimental photon-number probabilities with and without correction from detection
losses (15%). (c) Experimental Wigner function of two-photon subtracted squeezed vac-
uum corrected from detection losses (15%).

Experimentally speaking, going from the generation of an odd cat state to an even
one requires the addition of another annihilation operation, which can be implemented
by an other photon detection on a small part of the beam. For example, at the output
of the conditioning path, one can replace the former fiber by a fibered beam splitter
and two photon-detectors. Given two conditioning events in an acceptance window
smaller than 1 ns, the heralded state is therefore a two-photon subtracted squeezed
vacuum. The experimental resulting state is presented in VII.2(b) and (c), and reaches
F = 88% with an even cat state of size |α|2 = 0.8, and a squeezing of 3 dB out of the
type I-OPO.

By this improved approximation, the fidelity of the hybrid entangled state is there-
fore not limited anymore and can be higher than 99%. The resulting hybrid entangled
state can in this case be written as:

|Ψ〉AB ∝ b̂Ŝb|0〉A|0〉B + b̂2Ŝb|0〉A|0〉B. (VII.1.4)

Figure VII.1 (b) gives the Wigner function of the projection in the rotated basis, with
an additional subtraction, i.e. when the even cat state is approximated by a two-
photon subtracted squeezed vacuum. The fidelity of the superposition with a coherent
state is close to unity.

VII.1.2 Experimental setup

The protocol of the resulting hybrid entangled state generation will be the same as the
one developed in Chapter VI, at the difference of a single-photon subtracted squeezed
vacuum, i.e. an odd kitten state, used as a starting resource on Bob’s side, instead
of the previous squeezed vacuum state. This additional local photon subtraction is
experimentally translated into another conditioning path for the continuous-variable
mode, which is the twin of the other as shown in Fig. VII.3. We trigger the homodyne
detection on the detection of two events, arriving inside an acceptance window of 1 ns
of delay. The beam splitter ratio is chosen in order to balance the coincidences counts:
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given a single-photon detection on Bob’s first detector, the second detection probability
of each path must be equal. The calculation of the generated hybrid entangled state
is fully detailed in Appendix F.

Figure VII.3: Experimental setup. Alice and Bob locally generate the required re-
sources by using continuous-wave optical parametric oscillators operated below threshold.
A two-mode squeezer and a single mode-squeezer are used respectively on Alice’s and
Bob’s node. Firstly, a small fraction of Bob’s squeezed vacuum is tapped (3%) and send
through a first filtering path and to a single-photon detector (SNSPD). This detection is a
local operation. A second small fraction of Bob’s is the tapped by a second beam splitter
and mixed at a central station to the idler beam generated by Alice. The resulting beam
is then frequency-filtered (second conditioning path) and detected by a superconducting
single-photon detector (SNSPD). Two-photon detection events, one on each detector, sep-
arated by less than 1 ns, herald the entanglement generation. The hybrid entangled state
is characterized by two high-efficiency homodyne detections. Photodiodes P1, P2 and
P3 are used for phase control and stabilization. The beam splitter ratio in the central
station enables to choose the relative weights in the superposition. FP stands for Fabry-
Pérot cavity, IF for interferential filter, PBS for polarizing beam splitter and LO for local
oscillator.

VII.1.3 Results

The results are given in form of the Wigner functions of the reduced density matrices
〈k|Aρ̂|l〉A in Fig. VII.4. As expected, the elements in the |±〉 basis have Wigner
functions closer to gaussian functions. The reached negativity of entanglement is N =
0.28 with correction from detection efficiency (η = 85%). The fidelity with the targeted
state is F = 71%, for |α| = 0.9.
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(a) (b)

Figure VII.4: Experimental Wigner representation of the hybrid entangled state with
an additional local photon detection, with correction from detection losses (η = 85%) (a)
in the Fock state basis and (b) in the |±〉 rotated basis. The relative phase is set to ϕ = π
and the beam splitter ratio in the central station is adjusted to generate a maximally
entangled state, i.e. with equal superposition weights.

The lack of improvement in the size |α|2 and in the fidelity comes from the fact
that this state is more sensitive to losses, due to the multiple heraldings.

The theoretical negativity of entanglement is given as a function of the efficiency
of the system in Fig VII.5(a), as well as the one for the single-photon detection hybrid
entangled state. Due to the complex structure of the state, it is therefore much more
sensitive to optical losses than its "single-detection" counterpart.

This state is also more sensitive to phase noise in its "non-local" conditioning path,
as shown in Fig VII.5(b), where the negativity of entanglement is plotted as a function
of the gaussian noise standard deviation σ, for different system efficiencies.

In addition to this high sensitivity, the requirement of a two-photon detection event
leads to a drastic decrease of the count rate, requiring therefore long-term stability of

(a) (b)

Figure VII.5: (a) Theoretical evolution of the negativity of entanglement with the system
efficiency, for the single-photon detection (in blue), i.e. the state generated in Chapter VI,
and for the additional photon subtraction (in red). (b) Theoretical plot of the negativity
of entanglement as a function of the gaussian phase noise standard deviation σ on its
conditioning path for different system efficiencies (symmetric on both sides)
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the experiment. Efficient photon detectors are therefore required for these cascaded
detections and the new generation of SNSPDs, detailed in Chapter III, was used here.

We have shown here a way to increase the quality of our state by the mean of
additional single-photon detection operation. We will see in the next section that the
setup furthermore enables a larger distance in phase space between the two coherent
states, paving the way to the study of squeezing induced micro-macro entangled states
[159].

VII.2 Squeezing-induced micro-macro entanglement of light

Hybrid entanglement between continuous and discrete variables can also be seen as
entanglement between two waves with opposite phases, and the presence or absence of
one particle. By extending this idea to higher photon numbers, hybrid entanglement
can therefore be related to entanglement between a small number of particles - 0 or 1,
with two "classical" macroscopic systems: two lasers with opposite phase. Such view
reminds the historical Schrödinger cat gedankenexperiment, where a cat is entangled
with an atom [41]. In this experiment, an atom is in a superposition of |g〉 + |f〉. The
de-excitation of the atom triggers the spreading of a poison, which kills the cat. The
cat-atom system is therefore in the superposition: |g〉|dead〉 + |f〉|alive〉. Such state is
very close to the targeted hybrid system: |0〉|α〉 + |1〉| − α〉.

If the "micro" aspect is easy to define here, the macroscopicity of a quantum system
is a tough question and an active topic, where very recent experiments [160, 161] and
measures are still fruits of numerous questions nowadays [162, 163].

This question of macroscopicity has long been related to the absurdity of having
a cat alive and dead at the same time and to the collapsing of quantum mechanics
at macroscopic scale. Creating macroscopic quantum states is thus an experimental
challenge as it allows to probe the border between quantum and classical behavior and
to see if a limiting size of system could exist. While the role of decoherence has long
been studied to explain the difficulty to have macroscopic states [13], criteria on what
precisely is a macroscopic superposition has still not found a universal answer.

In this section we will show the experimental construction of microscopic states en-
tangled to macroscopic states. Unlike previous studies based on displaced single-photon
entanglement [164–167], where the mean photon number is signing the macroscopicity
of the state, our setup also enables to play with the number of photon detection and
initial squeezing, in order to investigate features of macroscopicity in phase space.

VII.2.1 Experimental generation

In order to implement such micro-macro entanglement, we use the same setup as for
the hybrid entanglement setup with additional local subtraction, shown in Fig. VII.3
and described in Section VII.1.2. Using a half-wave plate and a polarized beam splitter
in front of the local subtraction path, we can choose whether to subtract or not a first
single-photon on the squeezed vacuum on Bob’s side. In the following of the chapter,
the two generated state will be re-named 1-click and 2-click states depending on the
number of photon detection involved in the setup, for the sake of simplicity. Given the
choice of a first photon detection, we then implement the same setup as for the hybrid
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entanglement, by mixing the two conditioning path and heralding the generation of
the entangled state by a second, non-local, detection. Finally, we can change the pump
power on Bob’s side to increase the initial squeezing.

To simplify the notation, we also re-name the two "macroscopic" states involved in
the superposition: |Ψ+〉 and |Ψ−〉. The hybrid entangled state can this way be written,
whatever the squeezing and number of photon detection involved, in the general form:

|Ψ〉AB ∝ |+〉A|Ψ+〉B − |−〉A|Ψ−〉B. (VII.2.1)

Thanks to the full reconstruction of the density matrix ρ̂AB, we can obtain these
states by getting the reduced density matrix in the rotated basis: ρΨ± = 〈±|Aρ̂AB|±〉A,

where |±〉A = |0〉A±|1〉A√
2

.

VII.2.2 Results

Figures VII.6 and VII.7 give the experimental marginal distribution of the states ρΨ+

and ρΨ− , and the corresponding Wigner functions, for 1-click and 2-click experiments
respectively.

The two states exhibit very different behavior in terms of marginal distributions.
For both states, the two marginal blocks seem to enlarge with the increasing squeezing.
However their phase-space distance increases much more with the squeezing for the
2-click state. Moreover, the overlap between the two distributions decreases for the
2-click state, while it stays constant for the 1-click state.

The slight oscillations on the Wigner functions and on the marginal distributions
of highly squeezed states come from the fact that the Hilbert space spanned by these
states is higher. The number of acquired quadrature of 100 000 for the tomography
process becomes therefore insufficient in these cases.

Figures VII.8 and VII.9 provide the negativity of entanglement and the mean pho-
ton number of the states on Bob’s side (since theoretically 〈Ψ+|n̂|Ψ+〉 = 〈Ψ−|n̂|Ψ−〉,
we give here the experimental mean value) for an ideal system and for the experimental
results.

For 6 dB of squeezing, entanglement is present in the system (N ≈ 0.20) between a
small number of photon (0 and 1) and a larger mean photon number (〈n̂〉 ≈ 5.6). The
mean photon number is higher than the theoretical prediction in the ideal case (i.e.
no losses in the system). This discrepancy with the theory comes from the fact that
the measured squeezing on the homodyne detection has experienced losses. In order
to reach a certain final amount of squeezing, the pumping value must be higher than
the theoretical prediction, resulting on a higher mean photon number.

In terms of photon number, we can say that we achieve entanglement between two
states of different sizes. But is the macroscopicity, and in particular a micro-macro
entangled state, only characterized by the mean photon number? A recently published
paper softens this affirmation by showing that the macroscopicity of a system depends
more on the effective number of photon truly participating in the entanglement [168].
New criteria, other than the mean photon number, have therefore to be studied in
order to fully characterize such entanglement.
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Figure VII.6: Experimental results for the 1-click state. (a) Marginal distributions
and (b) Wigner functions of the two reduced density matrices ρΨ±

= 〈±|Aρ̂AB |±〉A, for
different input pump powers for the type I-OPO, i.e. for different amounts of squeezing
on Bob’s mode. These results are corrected from detection losses (15%). |Ψ−〉 marginal
distribution is plotted in purple and the corresponding Wigner function is on the left side.

Page 134



VII.2. Squeezing-induced micro-macro entanglement of light

- 10 - 5 0 5 10

X

P=2mW

2 dB

- 10 - 5 0 5 10

X

- 10 - 5 0 5 10

X

P=5mW

3 dB

P=15mW

4 dB

(a) (b)

- 10 - 5 0 5 10

X

P=21mW

5 dB

- 10 - 5 0 5 10

X

P=30 mW

6 dB

Figure VII.7: Experimental results for the 2-click state. (a) Marginal distributions
and (b) Wigner functions of the two reduced density matrices ρΨ±

= 〈±|Aρ̂AB |±〉A, for
different input pump powers for the type I-OPO, i.e. for different amounts of squeezing
on Bob’s mode. These results are corrected from detection losses (15%). |Ψ−〉 marginal
distribution is plotted in purple and the corresponding Wigner function is on the left side.
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Figure VII.8: Experimental negativity of entanglement as a function of squeezing, cor-
rected from detection losses (15%).
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Figure VII.9: (a) Theoretical simulations of the mean photon number with the squeezing
for 1-click and 2-click states, for an ideal system without losses, i.e. η = ηA = ηB = 1.
(b) Experimental values of the mean photon number with the squeezing, as (〈Ψ+|n̂|Ψ+〉+
〈Ψ−|n̂|Ψ−〉)/2, corrected from detection losses (15%).

VII.3 Macroscopicity witnesses

In order to quantify the macroscopic aspect of our state we will review a certain
number of criteria. Indeed, quantifying in a universal manner the macroscopicity of
a quantum state is still not a solved question [168]. H. Jeong et al. provide in [169]
a review of different criteria used in the literature. However most of the reviewed
criteria are only applicable to pure states. In this section we will only consider criteria
that are applicable to our state, i.e., applicable to optical mixed states. We will as well
apply them to single-photon entanglement, and in particular to displaced single-photon
entanglement, where a displacement operation is performed on one of the modes [164]:

|ψ〉 =
1√
2

(|0〉AD̂B(α)|1〉B + |1〉AD̂B(α)|0〉B). (VII.3.1)

VII.3.1 Pointer in phase space

This criterion was proposed, as a first approach, by Sekatski and co-workers in [170]
and [171]. The macroscopicity is related to the distinguishability of the two states
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using a noisy classical measurement. A classical pointer on a scale x, interacts with
our quantum state, and can shift by a value related to the mean photon number. The
final distribution of the pointer can be written as:

pρ = Tr[pi(x + â†â)ρ̂] (VII.3.2)

where pi(x) = e− x2

2σ is a gaussian distribution of the pointer, indicating the classical
behavior of the pointer. The probability for the classical pointer to distinguish between
the two states therefore depends on the amount of noise of the classical detector and
can be written as:

P σ
|Ψ1〉,|Ψ2〉 =

1

2

(

1 +
1

2

∫

dx|p|Ψ1〉(x) − p|Ψ2〉(x)|
)

. (VII.3.3)

The size of the superposition is there related to the maximal amount of noise that
can be tolerated to distinguish the two states with a certain probability Pg. The more
macroscopic a superposition is, the easier it can be distinguished, and therefore the
more noise the detector can tolerate. The authors give an example for two Fock states,
|M〉 and |M + N〉, separated by N photons:

P σ
|M〉,|N+M〉 =

1

2
(1 + erf

(

N

2
√

2σ

)

). (VII.3.4)

For a given targeted separation Pg, and the related maximal tolerable amount of noise
σ

Pg

MAX, the size of any state is defined as the corresponding size N of the equivalent
Fock state superposition:

SizePg [|Ψ1〉, |Ψ2〉] = 2
√

2erf−1(2Pg − 1) × σ
Pg

MAX[|Ψ1〉, |Ψ2〉]. (VII.3.5)

For displaced single-photon entanglement of the form:

|Ψ〉 = D̂B(α)|0〉A|1〉B + D̂B(α)|1〉A|0〉B, (VII.3.6)

the probability of distinguishing between D̂B(α)|1〉B and D̂B(α)|0〉B as a function of
the detector noise is plotted in Fig. VII.10. For a targeted value of Pg, for example
Pg = 2/3, the maximum tolerable noise evolves with α. The Fock state that would

lead to the same σ
2/3
MAX has the size N ≈ 0.86 × σ

2/3
MAX, which is therefore the defined

size of the displaced single-photon entangled state.
For states opposite in phase space, as for example in cat-like superposition |α〉 ±

| − α〉 , the photon number being the same, |α|2, it is required to add a displacement
in order to translate their photon number and to "help" the detector: |0〉 ± |2α〉. This
criterion is therefore displacement-sensitive. Numerical simulations of the probability
P σ

Ψ+,Ψ− for our 1- and 2-click states, are given in Fig. VII.11(a) for 3 dB of squeezing
and in (b) for 6 dB of squeezing. Our 2-click state is more "macroscopic" than the
1-click state: the amount of noise that can be tolerated to reach out certain value Pg

is higher. For more squeezing, it is possible to target values of Pg for a larger tolerable
σ

Pg

MAX. The size therefore rises with the squeezing.

The theoretical prediction of σ
2/3
MAX as a function of the squeezing, for an ideal state

is presented in Fig. VII.12(a). Figure VII.12(b) gives the corresponding experimental
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Figure VII.10: Theoretical simulation of the probability P σ
D̂B(α)|1〉B ,D̂B(α)|0〉B

in function
of standard deviation of the detector noise σ for displaced single-photon entanglement, for
several values α of the displacement

results with correction from detection losses (15%). The 2-click state can thus be
considered more macroscopic for this criterion than the 1-click state. For a given
displacement, the macroscopicity is, as predicted, both depending on the squeezing,
and on the number of single-photon detection.

However, if we add another displacement on Bob’s mode it is possible to theoret-
ically target any values of Pg, showing that this criterion is above all sensitive to the
mean photon number. This means also that a displacement operation can lead to the
generation of macroscopic superposition, as is featured in displaced single-photon ex-
periments [164–167]. Moreover, such criterion can also be applied to demonstrate the
macroscopicity of states such as a coherent state |α〉, as such state can be re-written
as: |α〉 = 1√

2
(D(α)|+〉 + D(α)|−〉). Given a large enough displacement to be distin-

guishable, i.e. its amplitude being large enough, a coherent state can therefore be a
macroscopic superposition, which is controversial.

As a conclusion, even though this criterion gives information about the possibility
of discriminating two states with a classical detector, it is more related to the photon

(a) (b)

Figure VII.11: Theoretical simulation of the probability P σ
Ψ+,Ψ−

as a function of the
standard deviation of the detector noise σ (with system symmetric losses of η = ηA = ηB =
0.9), for (a) for 3 dB of squeezing, and (b) for 6 dB squeezing. The used displacement value

α is related to the mean photon number value of our two states as α =
√

T r[ρ+n̂]+T r[ρ−n̂]
2 .
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(a) (b)

2
/3

2
/3

Figure VII.12: (a) Theoretical simulation for an ideal state of σ
2/3
MAX

as a function of
the squeezing for (in blue) 1-click state and (in red) 2-click state.(b) Experimental values,
with correction from detection losses (15%), for different squeezing amount measured on
the homodyne detection. The used displacement value α is related to the mean photon

number value of our two states as α =
√

T r[ρ+n̂]+T r[ρ−n̂]
2 .

number than to a separability in phase space. The next criterion will target the ability
to distinguish both states in phase space.

VII.3.2 Distance in phase space

In a second approach, the two states must be as distant as possible in phase space,
i.e. answering to a criterion defined in [159]. In particular, such distance D can be
expressed via the marginal distribution P(x) as:

D =
1

σ0
|〈Ψ+|x̂|Ψ+〉−〈Ψ−|x̂|Ψ−〉| =

1

σ0
|
∫ +∞

−∞
xP+(x)dx−

∫ +∞

−∞
xP−(x)dx|. (VII.3.7)

It can be seen as the "distance" between the two marginal distributions. For displaced
single-photon entanglement, this distance does not change with the amplitude of the
displacement, and is always equal to 2. Applied to our particular states, it can be
written as a function of the squeezing:

D1-click =
2√
s

D2-click =
6 − 2s√

3s3 − 2s2 + 3s

(VII.3.8)

where s = e−2ξ. Figure VII.13 (a) gives the theoretical value of this criterion in the
ideal case (i.e. no losses). Both distances increase with the squeezing, but the slope is
much more important for the 2-click state than for the single conditioning hybrid state.
However, for a certain squeezing amount, a 1-click state could always reach the same
D as a 2-click state (for a smaller squeezing though). Moreover, this criterion does
not imply anything about the distinguishability of the two states by a measurement,
despite the fact it shows some sort of separation in phase space.

The experimental results, given in Fig VII.13(b), with correction from detection
losses (15%), are consistent with the theoretical predictions. Due to the losses on the
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(a) (b)

Figure VII.13: (a) Theoretical simulation of the distance D with squeezing for the ideal
1-click state (in blue) and 2-click states (in red). (b) Experimental results, with correction
from detection losses (15%).

optical path, to reach 6 dB squeezing on the homodyne detection, we have indeed to
furtherly push the pump, leading to a higher number of photon and a higher squeezing
at the output of the OPO, as previously explained for the mean photon number. D
is therefore higher than its theoretical prediction for 6 dB and is closer to the value it
would reach for 7 dB.

All the observed discrepancies can be explained by phase noise and losses, as studied
theoretically in the following. We will use squeezing values of 3 dB and 6 dB as
examples. Figure VII.14 provides the distance D as a function of the system efficiency,
(a) for 3 dB squeezing and (b) for 6 dB squeezing. The discrepancy with losses is
slightly more important for 2-click states than for 1-click states, and increases with
the squeezing amount. The distance between the two marginal distributions is also
affected by the noise on the phase of the entanglement. D therefore varies with the
standard deviation σ of a gaussian phase noise of the entanglement path, as shown in
VII.15 for different squeezing levels, with the system efficiencies η = ηA = ηB = 0.9.

(a) (b)

Figure VII.14: Theoretical simulation of D criterion under symmetric system efficiencies
(ηA = ηB = η) for (a) 3 dB of squeezing and (b) 6 dB of squeezing.
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(a) (b)

Figure VII.15: Theoretical simulation of D with the standard deviation of the gaussian
phase noise of the entangling optical path for (a) 3 dB of squeezing and (b) 6 dB of
squeezing, with symmetric efficiencies η = ηA = ηB = 0.9.

VII.3.3 Distinguishability in phase space

To quantify the distinguishability between the two states in phase space, Neergard-
Nielsen and Andersen introduced criterion P [159] such as:

P =
1

2
(〈Ψ+|Π̂+|Ψ+〉 − 〈Ψ+|Π̂−|Ψ−〉) =

1

2
(

∫ +∞

0
P+(x)dx +

∫ 0

−∞
P−(x)dx), (VII.3.9)

where

Π̂+ =

∫ +∞

0
|x〉〈x|dx

Π̂+

∫ 0

−∞
|x〉〈x|dx.

(VII.3.10)

This quantity is related to the overlap between the two components of the superpo-
sition. Applied to our state, it is possible to re-write the corresponding equations
as:

P1-click =
1

2
+

1√
2π

≈ 0.9

P2-click =
1

2
+

√

2

π

1√
3s2 − 2s + 3

(VII.3.11)

with s = e−2ξ. For displaced single-photon entanglement, P does not depend on the
amplitude of the displacement and is always equal to 0.9.

In Figure VII.16(a) is given the evolution of P with the squeezing for both states,
in the ideal case (i.e. no losses). We can see that whatever the squeezing, for single-
click experiments, P stays at 0.9. This is the consequence of the first observation
we made about the overlap between the marginal distributions being constant. The
two-click state, however, can theoretically reach values impossible to obtain with one
click experiment. Moreover displaced single-photon entanglemed states give the same
boundary at P ≈ 0.9. The experimental values that we obtained for our states are
given in Fig VII.16(b). Theoretically, according to the losses for 3 dB (Fig VII.17(a))
and for 6 dB-squeezing (Fig VII.17(b)) we should be able to target slightly larger values
of P for 1-click and 2-click states and beat the Psingle ≈ 0.9 limit. This discrepancy
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(a) (b)

Figure VII.16: (a) Theoretical simulation of P, the distinguishability, with squeezing.
(b) Experimental values of P with the squeezing, with correction from detection losses
(15%).

(a) (b)

Figure VII.17: Theoretical simulation of P criterion under symmetric losses (ηA = ηB =
η) for (a) 3 dB of squeezing and (b) 6 dB of squeezing.

might be due to the phase noise we can observe. We saw previously that the negativity
of entanglement was not so sensitive to the phase noise of the mixing path, even though
this effect was more important for the 2-click state than for the 1-click counterpart.
However the distinguishability, shown in Fig. VII.18 for 3 dB (a) and for 6 dB (b), is
more sensitive.

This sensitivity is roughly the same whatever the squeezing and the number of
click, which would explain the offset effect, of roughly the same amount : ∆P ≈ 0.05,
for all our experiments. Improvements have therefore to be made in order to furtherly
stabilize the optical setup to target higher values of P and beat the "single detection"
experiment limit.

As a conclusion, this criterion is above all sensitive on the number of photon de-
tection involved in the system.
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(a) (b)

Figure VII.18: Theoretical simulation of P with the standard deviation σ of the gaussian
phase noise of the entangling optical path, for (a) 3 dB of squeezing and (b) 6 dB of
squeezing. Symmetric efficiencies ηA = ηB = η = 0.9 are considered.

VII.3.4 Amplitude and frequency of the Wigner fringes
and purity decay

The idea, developed by Jeong et al. [172], is to base a macroscopicity criterion on the
measurement of the amplitude and the frequency of the Wigner function fringes of a
superposition, at the same time. Such criterion was developed because of the fringes
observed in Schrödinger cat-like superposition of coherent states, where the frequency
and observed contrast is directly related to the size and the purity of the superposition.

The Wigner function can be calculated from the characteristic function χ(ξ) of the
state ρ :

χ(ξ) = Tr[ρ̂e(ξâ†−ξ∗â)]. (VII.3.12)

The authors therefore define the criterion as:

I(ρ̂) =
1

2π

∫

dξ[|ξ|2 − 1]|χ(ξ)|2 (VII.3.13)

This criterion can also be defined in an alternative way as:

I(ρ̂) = −1

2

dP(ρ̂)

dτ
= −Tr[ρ̂L(ρ̂)] (VII.3.14)

where L(ρ̂) = âρ̂â† − 1
2(ρ̂â†â + â†âρ̂) is a Lindblad superoperator for photon losses. If

our states were more sensitive to other types of decoherence (such as phase noise for
example), another type of operator would be adapted. For single-photon entanglement,
this value is equal to 0.5, and does not change even if displacement is applied on one
mode.

By simulating the behavior of our two states, we can find out in Fig VII.19 that
indeed, the more squeezing is applied, the more macroscopic the system is. Moreover
it seems consistent with the idea of phase-space separation as the 2-click state is more
macroscopic than the 1-click state. However, no difference can really be obtained
experimentally, as shown in Fig. VII.19 (b).

Indeed, this criterion is very sensitive to losses as shown in Fig. VII.20. For 6
dB of squeezing, the state is more fragile and therefore decoheres faster than for 3 dB
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(a) (b)

Figure VII.19: (a) Theoretical simulation, in the ideal case, of I(ρ̂) with squeezing
for 1-click and 2-click states. (b) Experimental values, of I(ρ̂) with the squeezing, with
correction from detection losses (15%).

(a) (b)

Figure VII.20: Theoretical simulation of I(ρ̂) with the system efficiency, (a) for 3 dB
squeezing and (b) for 6 dB squeezing, for 1-click and 2-click states.

of squeezing. However both systems converge towards similar values around 80% of
system efficiency. Improvement on the setup must therefore be conducted in order to
be able to witness differences with squeezing and photon detections.

This criterion answers to a large number of properties of a "good" measurement of
macroscopicity, such as the invariance through free operations, an operation which does
not create the resource. However, a recently published paper by Yadin and Vedral [173]
demonstrated that it fails as a monotone measurement of the macroscopicity, leading
to a significant underestimation of the macroscopicity in terms of Fisher information,
therefore still considered as the best criterion so far.

VII.3.5 Fisher information based criterion

This criterion, proposed by Fröwis and Dür [174], has been proved to comply with
many requirements, such as the impossibility to achieve macroscopic superposition
using displacement operation [173]. Originally made for spin systems, it makes a dif-
ference between macroscopic quantum states and macroscopic superpositions. The
macroscopicity criterion derived here consists in quantifying the maximal Fisher in-
formation that can be obtained from a system. The Fisher information quantifies the
maximal precision in which a parameter associated with a certain observable Â, can
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be estimated with a given quantum state ρ̂.
The authors also show that this criterion can be related to the fast oscillations of

certain observables, which could remind us of the oscillations of the Wigner function
fringes for large cat states, developed as a macroscopicity measurement in the previous
criterion. By decomposing any state using its spectral decomposition:

ρ̂ =
∑

a

λa|ψa〉〈ψa|, (VII.3.15)

the Fisher information can be written as:

F(ρ̂, A) = 2
∑

a,b

(λa − λb)
2

λa + λb
|〈ψa|A|ψb〉|2. (VII.3.16)

For a pure state, it can be simplified using the variance of the operator A as:

F(|ψ〉, A) = 4V (|ψ〉, A) = 4(〈ψ|A2|ψ〉 − 〈ψ|A|ψ〉2). (VII.3.17)

The size of the system is then defined by the maximal Fisher information for a set of
operator Ai:

NF (ρ̂) = maxAi∈A
1

4N
F(ρ̂, Ai). (VII.3.18)

As in the previous criterion, we will only apply such operation onto Bob’s subsystem,
therefore N = 1 for us. For operators, we can use the set of quadrature operators:

xi(θi) = 1 ⊗ σ0(aBe−iθi − a†
Beiθi) (VII.3.19)

The maximal Fisher information one can get is then to be optimized on θi. For any
NOON-state type, |N〉|0〉 + |0〉|N〉, the Fisher information can be written as 2N . In
the case of single-photon entanglement, the size is therefore 2/4 = 0.5. Moreover,
for displaced single-photon entanglement, the maximal Fisher information does not
depend on the displacement amplitude α that is applied to it.

In contrast, the maximal Fisher information depends on the squeezing and the
number of photon subtraction in our case. Figure VII.21(a) provides the theoretical
value of the maximized Fisher information with the amount of squeezing on Bob’s
mode. We can see that the evolution is very similar to the I(ρ̂) criterion for pure
states. We apply this criterion to our experimental matrices, corrected from detection
losses (15%) and find the results plotted in Fig. VII.21(b).

The results are quite consistent with the theory and show the macroscopicity of
our state as being more important than displaced single-photon entanglement, in par-
ticular for high squeezing. Already, for 3 dB squeezing, the state is found to be more
macroscopic than an ideal displaced single-photon entangled state.

The difference between 2-click and 1-click states tends to be very small experimen-
tally, though existing. Indeed for the losses of our experiments, this criterion drops
drastically for the 2-click state, as shown in Fig. VII.22, where the maximal Fisher
information is given with the system efficiency for (a) 3 dB and (b) 6 dB squeezing.
However, the resulting operation seems quite noisy, probably due to the reconstruc-
tion process and the added errors. By increasing the number of sample points for
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(a) (b)

Figure VII.21: (a) Theoretical simulation, in the ideal case, of NF (ρ̂) with squeezing.
(b) Experimental value, of NF (ρ̂) with the squeezing, with correction from detection losses
(15%).

(a) (b)

Figure VII.22: Theoretical simulations of NF (ρ̂) as a function of the system efficiency,
(a) for 3 dB squeezing and (b) for 6 dB squeezing.

the tomographic process and the number of iteration of the MaxLike algorithm, we
would probably reduce such numerical noise, in particular for larger size. The Fisher
information seems more robust to losses than I(ρ̂) for 3 dB of squeezing, but tends to
be the same for 6 dB, as shown in Fig. VII.22.

The maximal Fisher information is, up-to-date, the most acknowledged criterion
on macroscopicity measurement. In our case, it is sensitive to squeezing operation and
to the number of photon detection, but not to displacement operations. As the Fisher
information is also a criterion based on the measurement of a quadrature operator, it
might probably be possible to translate this macroscopy criterion on a direct homodyne
measurement.

VII.3.6 Resume

We resume here the results of the different criteria applied to the 1-click and 2-click
states, both theoretically simulated and experimentally realized. The comparison with
displaced single-photon entangled state is given. In particular we summarize, by adding
a check mark, when a given criterion can be affected by the controllable ingredients of
the setup, such as displacement in the single-photon case or squeezing in our case.
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Criterion Disp. Sg.T h 1-clickT h 2-clickT h 1-clickExp 2-clickExp

Pointer X X X X X

Distance × X X X X

Distinguishability × × X × ×
Purity decay × X X × ×

Fisher Information × X X X X

Table VII.1: Recapitulative table of the different macroscopicity criteria, for differ-
ent states: the theoretical 1-clickT h and 2-clickT h states, their experimental counterparts
1-clickExp and 2-clickExp, with correction from detection losses (15%), and the displaced
single-photon entangled state, denoted as: Disp. Sg.T h.

VII.4 Conclusion

In this chapter, we extended the notion of hybrid entanglement to entanglement be-
tween microscopic degree of freedom and macroscopic degrees of freedom. We im-
plemented a scheme in order to generate a new type of optical squeezing-induced
micro-macro entanglement, where the macroscopicity can be seen in the phase-space
distance between two states.

This new type of "micro-macro" entangled state allows the test of various criteria.
The way of qualifying and quantifying this macroscopicity is still an unanswered ques-
tion and a very active topic. While some criterion can only applied to pure states,
some only quantify the separability, as the ability to be detected by a classical detec-
tor, or the distance in phase-space. For some criterion, our states can beat the limit
achievable with an ideal single-photon entangled state, even with the addition of a
displacement operation on this latest, such as phase space distance and separability.
In particular, our state can show a macroscopic behavior with respect to the most
recognized criteria for macroscopicity which is the maximal Fisher information.

We therefore provided a new platform for playing with these macroscopic features
where in addition to the photon number ingredient achieved via squeezing, one can
change the number of photon detections applied.
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Conclusion

In the work presented here we have demonstrated new applications of the hybrid ap-
proach of quantum information processing, such as the engineering of complex optical
quantum states. Firstly, by combining large escape efficiency optical parametric oscil-
lators and high-efficiency superconducting single-photon detectors, we demonstrated a
high brightness single-photon source. Such source can also be used to generate higher
number Fock states as well as large optical Schrödinger cat states. In this endeavor, we
used a method that consists in engineering the core state containing all the required
non-gaussianity and minimizing therefore the experimental costs. Then, the targeted
size can be achieved through a gaussian operation, such as squeezing. We therefore
demonstrated the generation of high-fidelity optical large squeezed cat states with a
count rate allowing the implementation of subsequent protocols. We also showed that
the generated core state contains the same quantum features as a Schrödinger cat
states, in terms of negativity of the Wigner function, while being more robust against
decoherence. Moreover, the method we developped already provides the optimal core
state for transmission purpose.

In a last part, we demonstrated a quantum bridge between discrete and continu-
ous encodings via the generation of remote hybrid entanglement between CV and DV
optical qubits. As a first step towards the transfer of information from one encoding
to another via quantum teleportation, we reported the remote generation of arbitrary
continuous-variable qubits via measurement on the discrete variable side. We finally
extended the idea of entanglement between a wave-like qubit and a particle-like qubit
to the concept of micro-macro entanglement between Hilbert-spaces of different sizes.
After generating squeezing induced micro-macro entanglement on a versatile platform
enabling to play with the number of photon detections and photon number via squeez-
ing, we demonstrated that our state should ideally exhibit macroscopic features and
scaling through a wide range of criteria. Our experimental results showed in addition
macroscopic behavior under the most acknowledged criterion, which is the maximal
Fisher information.

Perspectives

Firstly, the robustness of the generated large squeezed cat states to losses opens the
question of the necessity of large cat state resources for quantum computation and
communication. Indeed, as the changes between a squeezed cat state and a real cat
states only consists in the division and multiplication of the quadrature by a certain
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amount (i.e. unsqueezing), the protocols should remain the same, while showing more
robustness to experimental losses. A recent paper by the group of J. Home [124] in
the field of circuit QED shows an improvement of the precision of the measured state
via squeezing. This effect is due to the reduced sensitivity of the state to the detection
inefficiency, showing the large range of application of this question. This would mean
that the size of the cat, i.e. its photon number, is therefore not the important parameter
for quantum information processing, but it is the overlap related to the contrast of the
Wigner central fringes which would enable to overcome classical protocols.

Another immediate perspective of this PhD work is the implementation of a Dig-
ital to Analog-like quantum converter via the teleportation of a discrete qubit to a
continuous encoding.

It has also been recently suggested that single photon entanglement can be more
efficiently distributed over long distances using hybrid entangled state. This potential
advantage has to be fully examined [175].

On another side, the limiting factor on the efficiency of our teleportation protocol is
coming from its sensitivity to the decoherence [169]. By changing the discrete variable
degree of freedom, encoded in presence or absence of a particle to polarization type
qubits, as recently proposed by Jeong [176], or to time-bin encoding, would enable to
reach better connectivity to DV realizations. It would also change the game for Bell
tests implementation. With polarization encoding on the DV side, the hybrid entangled
state can also directly be used as the main off-line resource to achieve resource-efficient
quantum computation [130].

Finally, another current limitation of our hybrid processes, and in particular of
our generation of hybrid entangled state, is the probabilistic nature of the process.
This drastically decreases the count rate when one wants to generate more complex
states, even with close-to-unity detection efficiencies. A way to achieve deterministic
generation of such entanglement would be to implement light-matter interaction, such
that, through single-photon operation, a coherent wave would be reflected. The in-
teraction of a single-photon entangled state with this system would directly lead to
the deterministic generation of large size micro-macro hybrid entangled state of form
|0〉|α〉 + |1〉| − α〉. A first step has been recently realized by our co-workers [177], by
the demonstration of a Bragg mirror made of a few atoms coupled to a nanofiber. In
order to enhance the light-matter coupling, other platforms such as photonic crystal
waveguides should be considered in this endeavor.
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A | Useful mathematical

formulas

A.1 Hermite polynomials

We use in the entire manuscript the physicist description:

H0(x) = 1, H1(x) = 2x, H2(x) = 4x2 − 2,

Hn(x) = 2xHn−1(x) − 2(n − 1)Hn−2(x)
(A.1.1)

A.2 Laguerre polynomials

The definition:

Lα
n =

n
∑

i=0

(−1)i

(

n + α

n − i

)

xi

i!
, (A.2.1)

and the recurrence relation:

Lα
n =

α + 1 − x

n
Lα+1

n−1(x) − x

n
Lα+1

n−1(x), (A.2.2)

therefore give:
Lk

0 = 1, Lk−l
1 = −x + (k − 1) + 1

Lk−l
l =

k − l + 1 − x

l
Lk−l+1

l−1 (x) − x

l
Lk−l+2

l−2 (x).
(A.2.3)

A.3 Gauss integral

∫

R

e−ax2+bxdx =

√

π

a
e

b2

4a (A.3.1)

153



Appendix A. Useful mathematical formulas

Page 154



B | ADUC7020 code for

Maximum searching algorithm

#include < aduc7020 .h>

# define DIG_OUT_LOCK 0

# define DIG_IN_SWEEP 3

# define DIG_OUT_SWEEP 0

// test

void test(void);

// main functions

void Lock_phase (void);

// auxiliary functions

unsigned long Bound ( unsigned long);

void Sweep (void);

void Delay (int);

// functions to simplify code

void init_digital (void);

int Read_Digital (int);

void Write_Digital (int ,int);

void ADCpoweron (int);

int ADCtoDAT ( unsigned long);

unsigned long DATtoADC (int);

int main(void){

REFCON = 0x01; // internal 2.5V reference

DAC0CON = 0x12; // AGND -ARef range 0x12 2.5V

while (1){

Lock_phase ();

}

}

void test(void){ // test for adc and dac

ADCpoweron (20000) ; // power on ADC

REFCON = 0x01; // internal 2.5V reference

DAC0CON = 0x12; // AGND -ARef range 0x12 2.5V

while (1){

ADCCP = 0x00; // conversion on ADC0

ADCCON = 0x6E4; // continuous conversion
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while (! ADCSTA ){}

DAC0DAT = ADCDAT ;

}

}

/** This is the basic code for locking phase using fringes signal

output from the interferometer .* */

void Lock_phase (void){

// define variables

int N_step , N_delay , flag , N, sum , k;

unsigned long Vout , Vin1 , Vin2;

// ADC&DAC setting

ADCpoweron (20000) ; // power on ADC

REFCON = 0x01; // internal 2.5V reference

DAC0CON = 0x12; // AGND -ARef range 0x12 2.5V

ADCCP = 0x00; // conversion on ADC0

ADCCON = 0x6E4; // continuous conversion

// IO setting

init_digital ();

// locking parameters initialization

N_step = 5; // step size

N_delay = 500; // wait for certain time

flag = 1; // indicator for searching direction

N = 100; // accumulation number for each locking step

Vin1 = DATtoADC (0); // initialize the voltage of first step

// main loop for the locking

while (1){

Sweep ();

// switch between sweep mode and locking mode;

// note that the sweep mode is just for the

convenience of the experiment ,

// for locking the phase , it is not necessary .

Write_Digital (0 ,1); // Output a high level digital

output on pin P1.0 for indicating the locking

mode.

Vout = Vout + flag * DATtoADC ( N_step ); // calculate

the voltage for next step

Vout = Bound(Vout); // limit the range of V

DAC0DAT = Vout; // output voltage on DAC0

Delay ( N_delay ); // wait for a certain time for the

response of PZT

// input average over N samples in order to filter out

highest frequencies noise

sum = 0; // initialization

for(k = 1; k <= N; k++){

while (! ADCSTA ){} // wait for the end

of ADC conversion

sum += ADCtoDAT ( ADCDAT ); // read voltage from

ADC0
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}

Vin2 = DATtoADC (sum/N); // calculate average value

for the voltage of second step

if(Vin2 < Vin1) flag = -1 * flag; // change maximum

searching direction if V2 < V1

Vin1 = Vin2; // update the voltage of first step

}

}

// /*** Simple functions ***///

void init_digital (void){

GP1CON = 0 x00000000 ; // IO initialization

GP1DAT = 0 xFF000000 ; // set P1.n as digital output

GP0CON = 0 x00000000 ; // IO initialization

GP0DAT = 0 x00000000 ; // set P0.n as digital input

}

// read digital value from the pin P0. input_pin

int Read_Digital (int input_pin ){

return (( GP0DAT &0 x000000FF ) >> input_pin ) & 0x1;

}

// write digital value to the pin P1. output_pin

void Write_Digital (int output_pin , int state ){

if(state == 1)

GP1DAT = (0 x00000001 <<( output_pin +16))| GP1DAT ;

else

GP1DAT = ~((0 x00000001 <<( output_pin +16))|(~ GP1DAT ));

}

// wait for ADC to be fully powered on

void ADCpoweron (int time){

ADCCON = 0x620; // power -on the ADC

while (time >= 0) time --;

}

// convert ADC/DAC format to integer format

int ADCtoDAT ( unsigned long ADC){

return (ADC &0 xFFF0000 ) >>16;

}

// convert integer format to ADC/DAC format

unsigned long DATtoADC (int DAT){

unsigned long ADC;

ADC = DAT;

return ADC < <16;

}
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C | Arduino code for

Maximum searching
algorithm

// values of ADC0

unsigned long U0; // before the step

unsigned long U1; // after the step

// values of DAC0

unsigned long V0;// before the step

unsigned long V1; // after the step

// locking variables

double T =0.05; // waiting delay between two steps in ms

int s=10; // step between two voltages sent to the piezo

unsigned long moy =100; // average x time the analog signal

// user pins

int sweepPin =49; // pin where we plug the digital input sweep/lock

// other useful variables

int val =0; // a variable to store the state of sweepin

int flag =1; // direction of the correction : +/-1

void setup (){

analogWriteResolution (12); // 12- bit resolution for the analog !

pinMode (sweepPin , INPUT); // put the sweep pin as an input

}

void loop (){

flag =1;

V0 =2048; // start in the middle

val= digitalRead ( sweepPin ); // check if sweeping or locking mode

while (val == HIGH){ // sweeping mode

for(int x=0; x <4096; x=x+s){

analogWrite (DAC0 , x); // use DAC1 for ... DAC1

delay (T);

}

for(int x =4095; x >=0; x=x-s){

analogWrite (DAC0 , x);

delay (T);

}

val= digitalRead ( sweepPin ); // check if sweeping or locking mode
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}

while (val == LOW){ // locking mode

for(int i=0; i<moy;i++){ // average ADC

U0=U0+ analogRead (ADC0);

delay (0.001) ;

}

U0=U0/moy;

V1=V0+flag*s; // make a step in one direction

if(V1 >4095|| V1 <1){ // check the signal is still between max and

min range , if not , set back the voltage in the middle of the

range

V1 =2048;

}

analogWrite (DAC0 ,V1); // send the signal to PZT

delay (0.1);

for(int i=0; i<moy; i++){ // average ADC

U1=U1+ analogRead (ADC0);

delay (0.001) ;

}

U1=U1/moy;

if(U1 <U0){ // if the new signal is smaller than the previous one ,

change the direction of the step.

flag=-flag;

}

V0=V1;

val= digitalRead ( sweepPin );// check if sweeping or locking mode

}

}
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D | Hybrid entangled qubit state

In the following is detailed the calculation for the generation of hybrid qubit entan-
glement, where Alice and Bob, on distant nodes, have a type-II and a type-I OPO
respectively as shown in Fig.D.1. On the type-I OPO side, a small part of the cat

Figure D.1: Scheme for the generation of hybrid entangled qubit state.

state is tapped onto a beam splitter of reflectivity r = sin θ ≈ θ ≪ 1, resulting in :

B̂(r) = eθ(âb̂†−â†b̂)|Cat+〉a|0〉b ≃ (1 + θâb̂†)|Cat+〉a|0〉b (D.0.1)

On the type-II OPO side, a two-mode squeezed state of the form |TMSS〉s,i ∝
∑

n Λn|n〉s|n〉i. is generated. By pumping far below threshold, Λ ≪ 1 which can be
approximated as:

(1 + Λĉ†d̂†)|0〉c|0〉d (D.0.2)

The mode b and c acquire phase shifts ϕ1 and ϕ2 respectively, due to their optical
propagations, and are then combined on a beam splitter of transmission t and reflection
r, which gives the transformation:

(1 + θâb̂†)(1 + Λĉ†d̂†)|Cat+〉a|0〉b|0〉c|0〉d →
(1 + θâ(̂tb̂†eiϕ1 + rĉ†eiϕ2))

(1 + Λ(tĉ†eiϕ2 − rb̂†eiϕ1)d̂†)|Cat+〉a|0〉b|0〉c|0〉d

(D.0.3)

Then, by only keeping first order terms in Λ and θ, and the operator b̂†, corre-
sponding to the detection of a single photon on mode b, and tracing out the mode c
the resulting state is :

|Ψ〉AB = (eiϕ1θtâb̂† − eiϕ2Λrb̂†d̂b
†
)|Cat+〉a|0〉b|0〉d (D.0.4)
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Appendix D. Hybrid entangled qubit state

By tracing out the mode b, one gets:

θt|1〉d|Cat+〉a + Λreiϕ|0〉d|Cat−〉a (D.0.5)

where ϕ = ϕ2 − ϕ1 + π. The maximal negativity of entanglement is obtained for a
balancing of the probabilities, i.e. for: Λ2r2 = θ2t2.
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E | Hybrid entangled qutrit state

Here is detailed the calculation for the generation of the hybrid qutrit entangled state.
Alice and Bob owns the same OPOs as in Appendix D. A small part of the single-mode
squeezed vacuum state is tapped onto a beam splitter of reflectivity r = sin θ ≈ θ ≪ 1,
resulting in :

B̂(r) = eθ(âb̂†−â†b̂)Ŝa|0〉a|0〉b ≃ (1 + θâb̂† +
θ2

2
â2b̂†2)Ŝa|0〉a|0〉b (E.0.1)

On the type-II OPO side, a two-mode squeezed state of the form |TMSS〉s,i ∝
∑

n Λn|n〉s|n〉i. is generated. By pumping far below threshold, Λ ≪ 1 which can be
approximated as:

(1 + Λĉ†d̂† +
Λ2

2
ĉ†2d̂†2)|0〉c|0〉d (E.0.2)

Following the same procedure as in Appendix D and by only keeping second order
terms in Λ and θ, and the operator b̂†2, corresponding to the detection of two photon
on mode b, and tracing out the mode c the resulting state is :

|Ψ〉AB =
θ2t2

2
â2Ŝ|0〉a|0〉b − eiϕθΛrtâŜ|0〉a|1〉b − e2iϕ Λ2r2

√
2

Ŝ|0〉a|2〉b. (E.0.3)

where ϕ = ϕ2 − ϕ1 + π. Leading to the heralded state:

|Ψ〉AB
1√

2 + 4c2 + c4

(√
2|2〉A|Sq〉 − 2ceiϕ|1〉A|Cat−〉 + c2ei2ϕ|0〉A|Cat+〉

)

(E.0.4)

where c = θt
Λr .
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F | Hybrid entangled qubit state

with additional
photon subtraction

Here is given the calculation of the hybrid qubit entangled state generation, with an
additional local subtraction, as shown in Fig. F.1. We consider now the realistic case
in which we start with squeezed vacuum on Bob’s side. The first local detection enable
to reiterate the same calculation but starting with an odd cat state.

Figure F.1: Scheme for the generation of hybrid entangled qubit state with an additional
local photon subtraction.

A small part of the odd cat state is taped onto a beam splitter of reflectivity
r = sin θ ≈ θ ≪ 1, resulting in :

B̂(r) = eθ(âb̂†−â†b̂)|Cat−〉a|0〉b ≃ (1 + θâb̂†|Cat−〉a|0〉b (F.0.1)

On the type-II OPO side, an two-mode squeezed state of the form |TMSS〉s,i ∝
∑

n Λn|n〉s|n〉i. is generated. By pumping far below threshold, Λ ≪ 1 which can be
approximated as:

(1 + Λĉ†d̂†)|0〉c|0〉d (F.0.2)

The mode b and c go through phase changing ϕ1 and ϕ2, and are then combined
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on a beam splitter of transmission t and reflection r, which gives the transformation:

(1 + θâb̂†)(1 + ĉ†d̂†)|Cat−〉a|0〉b|0〉c|0〉d →
(1 + θâ(̂tb̂†eiϕ1 + rĉ†eiϕ2))

(1 + Λ(tĉ†eiϕ2 − rb̂†eiϕ1)d̂†)|Cat−〉a|0〉b|0〉c|0〉d

(F.0.3)

Then, by only keeping first order terms in Λ and θ, and the operator b̂†, corre-
sponding to the detection of a single photon on mode b, and tracing out the mode c
the resulting state is :

(eiϕ1θtâb̂† − eiϕ2Λrb̂†d̂b
†
)|Cat−〉a|0〉b|0〉d (F.0.4)

By tracing out the mode b, one gets:

|Ψ〉AB = θt|1〉d|Cat−〉a + Λreiϕ|0〉d|Cat+〉a (F.0.5)

where ϕ = ϕ2 − ϕ1 + π. The maximal negativity of entanglement is obtained for a
balancing of the probabilities, i.e. for: Λ2r2 = θ2t2.
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Résumé :
La dualité onde-particule a conduit à deux façons d’encoder l’information quantique. Dans

la première approche dite "continue", l’information est encodée sur les quadratures du

champ lumineux tandis que la seconde dite "discrète" repose par exemple sur des photons

uniques. L’approche hybride a récemment émergé, et consiste à utiliser les concepts et

boites à outils de ces deux approches, afin de contourner les limitations individuelles.

Dans ce travail de thèse, nous avons, dans une première partie, utilisé des protocoles hy-

brides pour générer des états quantiques non-gaussiens de la lumière. A l’aide d’oscillateurs

paramétriques optiques, et de détecteur de photons supraconducteurs de haute efficacité,

nous avons généré des photons uniques extrêmement purs très efficacement, ainsi que des

états chats de Schrödinger de large amplitude, qui permettent d’encoder l’information en

variables continues. Nous avons également étudié comment des opérations continues telles

que la compression de bruit peuvent aider à cette génération. La méthode utilisée, basée

sur la génération "d’états-noyaux" rend en outre ces états plus robustes à la décohérence.

Dans une seconde partie, dans le contexte d’un réseau quantique hétérogène basé sur

différents encodages, connecter les deux approches nécessite une intrication hybride de la

lumière. Nous avons introduit une telle ressource entre des états continus et discrets, et

nous avons montré une première application : la génération à distance de bits quantiques

continus. Le système expérimental développé au cours de cette thèse est également une

plateforme polyvalente permettant la génération d’états « micro-macro » intriqués.

Mots clés : Optique quantique, approche hybride en information quantique, chat de Schrö-

dinger, photon unique, intrication, intrication micro-macro, macroscopicité

Abstract:
In quantum information science and technology, two traditionally-separated ways of enco-

ding information coexist -the continuous and the discrete approaches, resulting from the

wave-particle duality of light. The first one is based on quadrature components, while the

second one involves single photons. The recent optical hybrid approach aims at using both

discrete and continuous concepts and toolboxes to overcome the intrinsic limitations of

each field.

In this PhD work, first, we use hybrid protocols in order to realize the quantum state

engineering of various non-Gaussian states of light. Based on optical parametric oscillators

and highly-efficient superconducting-nanowire single-photon detectors, we demonstrate the

realization of a high-brightness single-photon source and the quantum state engineering

of large optical Schrödinger cat states, which can be used as a continuous-variable qubit.

We show how continuous-variable operations such as squeezing can help in this generation.

This method based on so-called core states also enables to generate cat states that are

more robust to decoherence.

Second, in the context of heterogeneous networks based on both encodings, bridging the

two worlds by a quantum link requires hybrid entanglement of light. We introduce opti-

cal hybrid entanglement between qubits and qutrits of continuous and discrete types, and

demonstrate as a first application the remote state preparation of continuous-variable qu-

bits. Our experiment is also a versatile platform to study squeezing-induced micro-macro

entanglement.

Keywords : Quantum optics, hybrid quantum information, Schrödinger cat states, single

photon, entanglement, micro-macro entanglement, macroscopicity


