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Abstract

The Viral Marketing is a relatively new form of marketing that exploits social networks
in order to promote a product, a brand, etc. It is based on the influence that exerts one user
on another. The influence maximization is the scientific problem for the Viral Marketing.
In fact, its main purpose is to select a set of influential users that could adopt the product
and trigger a large cascade of influence and adoptions through the network. In this thesis,
we propose two evidential influence maximization models for social networks. The proposed
approach uses the theory of belief functions to estimate the user’s influence. Furthermore,
we introduce an influence measure that fuses many influence aspects, like the importance
of the user in the network and the popularity of his messages. Next, we propose three
Viral Marketing scenarios. For each scenario we introduce two influence measures. The
first scenario is about influencers having a positive opinion about the product. The second
scenario searches for influencers having a positive opinion and influence positive opinion
users and the last scenario looks for influencers having a positive opinion and exert more
influence on negative opinion users. On the other hand, we turned to another important
problem which is about the prediction of the social message topic. Indeed, the topic is also an
important parameter in the influence maximization problem. For this purpose, we introduce
four classification algorithms that do not need the content of the message to classify it, they
just need its propagation traces. In our experiments, we compare the proposed solutions to
existing ones and we show the performance of the proposed influence maximization solutions
and the proposed classifiers.



Résumé

Le marketing viral est une nouvelle forme de marketing qui exploite les réseaux sociaux
afin de promouvoir un produit, une marque, etc. Il se fonde sur l’influence qu’exerce un
utilisateur sur un autre. La maximisation de l’influence est le problème scientifique pour
le marketing viral. En fait, son but principal est de sélectionner un ensemble d’utilisateurs
d’influences qui pourraient adopter le produit et déclencher une large cascade d’influence
et d’adoption à travers le réseau. Dans cette thèse, nous proposons deux modèles de max-
imisation de l’influence sur les réseaux sociaux. L’approche proposée utilise la théorie des
fonctions de croyance pour estimer l’influence des utilisateurs. En outre, nous introduisons
une mesure d’influence qui fusionne de nombreux aspects d’influence, comme l’importance de
l’utilisateur sur le réseau et la popularité de ces messages. Ensuite, nous proposons trois scé-
narii de marketing viral. Pour chaque scénario, nous introduisons deux mesures d’influence.
Le premier scénario cherche les influenceurs ayant une opinion positive sur le produit. Le
second scénario concerne les influenceurs ayant une opinion positive et qui influencent des
utilisateurs ayant une opinion positive et le dernier scénario cherche des influenceurs ayant
une opinion positive et qui influencent des utilisateurs ayant une opinion négative. Dans
un deuxième lieu, nous nous sommes tournés vers un autre problème important, qui est
le problème de la prédiction du sujet du message social. En effet, le sujet est également
un paramètre important dans le problème de la maximisation de l’influence. A cet effet,
nous introduisons quatre algorithmes de classification qui ne nécessitent pas le contenu du
message pour le classifier, nous avons juste besoin de ces traces de propagation. Dans nos
expérimentations, nous comparons les solutions proposées aux solutions existantes et nous
montrons la performance des modèles de la maximisation de l’influence et les classificateurs
proposés.
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Caractérisation des influenceurs

dans un réseau social pour des

perspectives de Marketing Viral

1 Introduction

Récemment, l’attention des entreprises a été attirée par une nouvelle forme de marketing,
couramment appelée Marketing Viral. Le Marketing Viral est le processus de cibler les
utilisateurs les plus influents dans un réseau social de telle sorte que ces clients peuvent
déclencher une réaction en cascade d’influence entrainée par le bouche-à-oreille. Ainsi avec
un petit budget de marketing, une grande proportion d’un réseau social peut être atteinte
ou influencée [1]. L’enjeu du Marketing Viral est donc de trouver un ensemble d’utilisateurs
d’influence à cibler pour déclencher un processus de bouche-à-oreille.

Le problème du Marketing Viral se traduit, scientifiquement, par un problème de maxi-
misation de l’influence des personnes. Le problème est de sélectionner parmi les socionautes,
un ensemble de k utilisateurs qui sont capables de déclencher une large cascade de propaga-
tion et d’influence. Dans la littérature, plusieurs travaux de recherche cherchent à résoudre
ce problème en proposant des modèles de maximisation de l’influence. Le problème de ces
modèles est qu’ils n’utilisent que la structure du réseau pour détecter les influenceurs, alors
que la position de l’utilisateur sur le réseau est généralement insuffisante pour confirmer son
influence [41]. Il est ainsi important de chercher des indicateurs d’influence plus performants.

Parmi les indicateurs d’influence, nous trouvons la propagation de l’information sur
le réseau, l’importance de l’utilisateur sur le réseau qui peut être mesurer en nombre de
messages qui lui ont été envoyés directement, la position de l’utilisateur dans le réseau ainsi
que son opinion. En fusionnant ces indicateurs d’influence, nous disposerions d’une mesure
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d’influence puissante. Dans ce document, nous introduisons des mesures d’influence qui
tiennent compte de ces indicateurs tout en utilisant la théorie des fonctions de croyance [79]
pour les fusionner.

Un problème important auquel nous nous sommes, également, intéressés, est le problème
de la classification des messages sociaux. En effet, les messages sociaux ont des caractéris-
tiques particulières qui les différencient du texte ordinaire. Parmi ces caractéristiques, on
trouve que le message social est de petite taille ce qui conduit au problème de la sparcifica-
tion, i.e. le nombre des mots est insuffisant pour la prédiction de la classe du message. Par
conséquent, il est important de trouver une nouvelle approche de classification qui résout ce
problème. En fait, les sujets auxquels un utilisateur de réseau social est intéressé, est une
information très utile pour de nombreuses applications parmi lesquelles le marketing viral.

Dans ce qui suit, nous présentons l’état de l’art de la maximisation de l’influence. Puis,
nous introduisons les solutions que nous proposons pour améliorer la qualité des influenceurs
sélectionnés. Ensuite, nous présentons les résultats de nos expérimentations. Par la suite,
nous nous focalisons sur le problème de la classification des messages sociaux et finalement
nous concluons ce résumé.

2 Modèles existants de maximisation de l’influence

Domingos et Richardson [30] ont été les premiers à modéliser le problème du Marketing Viral
en un problème de fouille de données. Motivés par ce travail, Kempe et al. [55] ont abordé
ce problème. Ils l’ont formulé en un problème de maximisation de l’influence. C’est un
problème d’optimisation NP-Difficile. Comme solutions, les auteurs ont proposé d’utiliser le
modèle en cascade indépendants [37] et le modèle à seuil linéaire [43] (Granovetter, 1978).
Ces modèles sont utilisés pour l’approximation d’une fonction σ mesurant le gain que peut
apporter un ensemble d’utilisateurs. Le problème est donc de maximiser la fonction gain σ.
Kempe et al. [55] ont montré que le problème de maximisation de l’influence peut être résolu
avec une bonne approximation en utilisant l’algorithme glouton. Leskovec et al. [60] ont
proposé une amélioration du processus de la maximisation de l’influence, ils ont développé
l’algorithme "Cost-Effective Lazy Forward" (CELF) qui a permis d’accélérer le processus
jusqu’à 700 fois tout en garantissant la même approximation de l’algorithme glouton.

Les travaux présentés ci-dessus considèrent disposer d’un réseau social dont les proba-
bilités d’influence sur les liens sont connues, mais l’apprentissage de ces probabilités n’est pas
traité. Goyal et al. [40] ont étudié le problème d’apprentissage des probabilités d’influence.
Goyal et al. [41] ont proposé une approche de maximisation de l’influence qui utilise les
traces de propagation pour la prédiction directe de la propagation de l’influence. Ainsi, leur
approche n’utilise pas un modèle explicite de diffusion. Wei et al. [94] et Gao et al. [35] ont
introduit la théorie des fonctions de croyance [26, 79] dans le processus de l’identification
des nœuds influencés.
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L’opinion de l’utilisateur par rapport au produit est un paramètre important dans le
problème de maximisation de l’influence. Le travail de Chen et al. [23] a été parmi les
premiers travaux considéront l’opinion négative dans le modèle en cascade indépendant. Les
auteurs affirment que l’avis négatif est plus contagieux que l’avis positif dans les décisions
et les choix des gens. De même, l’étude de Wen et al. [95] a été l’une des premières tenta-
tives qui se concentrent non seulement sur le type d’information, mais aussi la propagation
simultanée de l’information négative (comme les rumeurs) et positive (comme les idées et les
nouvelles). Cependant, ils ne considèrent pas l’avis de l’utilisateur par rapport au produit.
Un autre travail intéressant est celui de Zhang et al. [99]. Les auteurs ont proposé le modèle
en cascade à base d’opinions qui prend en considération les avis positifs des utilisateurs. Ils
ont utilisé leur modèle afin de maximiser l’influence positive en tenant compte de l’avis de
l’utilisateur et le changement de son opinion.

Dans la section suivante, nous introduisons les solutions que nous proposons pour
améliorer la qualité des utilisateurs d’influence sélectionnés par rapport aux solutions de
maximisation de l’influence existantes.

3 Solutions proposées pour la maximisation de l’influence

La plupart des solutions de maximisation de l’influence existantes n’ont pas considéré de
nombreux aspects d’influence. En fait, on constate que la plupart des solutions existantes
utilisent uniquement la structure du réseau pour identifier les influenceurs [55, 23, 99, 57].
Toutefois, la structure du réseau ne suffit pas pour résoudre ce problème [41]. En effet,
ces solutions peuvent souvent tomber sur des influenceurs bien positionnés sur le réseau
mais qui sont inactifs. Par conséquent, il est devenu nécessaire de trouver des solutions de
maximisation de l’influence dans lesquelles nous considérons plus d’aspects d’influence tels
que l’activité de l’utilisateur dans le réseau.

L’opinion de l’utilisateur est un autre paramètre important. En fait, ce paramètre n’a
pas été pris en compte dans la plupart des travaux existants. En outre, nous trouvons
quelques travaux qui tiennent compte de l’opinion dans leur modèle. Cependant, ce n’est
pas toujours une opinion sur le produit. Ainsi, vient la nécessité de nouvelles solutions qui
tiennent compte de l’avis de l’utilisateur par rapport au produit.

Afin de remédier à ces problèmes, nous proposons des solutions de maximisation de
l’influence en tenant compte de plusieurs aspects d’influence comme la position de l’utilisateur
sur le réseau et son activité de propagation de l’information. Nous introduisons alors une
amélioration qui considère l’opinion de l’utilisateur par rapport au produit.
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3.1 Mesure incertaine d’influence

Tout d’abord, nous proposons une mesure d’influence pour Twitter qui combine de nombreux
aspects d’influence. Cette mesure a fait l’objet du papier Jendoubi et al. [49]. En premier
lieu, nous commençons par l’estimation d’un ensemble de poids définis sur les liens (u, v)

du réseau. Pour ce faire, nous utilisons quelques statistiques sur les utilisateurs, u, v ∈ V
tel que V est l’ensemble des nœuds, du réseau à savoir: 1) le poids définissant l’ensemble de
voisins en commun entre u et v: wf (u, v). 2) le poids définissant le nombre de fois que u a
mentionné v dans ces tweets1: wm (u, v). Et 3) le poids définissant le nombre de fois que v
a partagé les tweets de u: wr (u, v).

Dans un deuxième temps, nous passons au niveau du nœud et nous calculons les trois
poids pour chaque nœud. Les poids des nœuds sont obtenus en additionnant les poids sur
ses liens sortant: wx (u) =

∑
v∈V wx (u, v), tel que wx (u) ∈ {wf (u) , wr (u) , wm (u)} et

wx (u, v) ∈ {wf (u, v) , wr (u, v) , wm (u, v)}. Dans un troisième temps, nous mettons à jour
les poids sur les liens en considérant les poids sur leurs nœuds de destination et nous obtenons
w

′

x (u, v) ∈
{
w

′

f (u, v) , w
′

r (u, v) , w
′

m (u, v)
}
. L’objectif principal de cette étape est de con-

sidérer l’hypothèse qui dit “je suis plus influenceur, si je suis connecté à des influenceurs”.

La prochaine étape du processus de l’estimation de l’influence consiste à estimer une
distribution de masse de croyance pour chaque poids sur les liens, comme suit :

mΩ
x(u,v)

(I) =
w

′

x (u, v)− Lminx
πx

(1)

mΩ
x(u,v)

(P ) =
Lmaxx − w

′

x (u, v)

πx
(2)

mΩ
x(u,v)

({I, P}) = 1−
(
mΩ
x(u,v)

(I) +mΩ
x(u,v)

(P )
)

(3)

sachant que Ω = {I, P}, I pour un influenceur et P pour un utilisateur passif,
Lminx = min(u,v)∈E w

′

x (u, v), Lmaxx = max(u,v)∈E w
′

x (u, v) et πx = Lmaxx − Lminx + ε.
Comme résultats, nous avons trois distributions de massesmΩ

f(u,v)
, mΩ

m(u,v)
etmΩ

r(u,v)
. Après,

nous combinons les résultats des trois masses obtenues en utilisant la règle de combinaison
de Dempster [26] et nous obtenons mΩ

(u,v) =
(
mΩ
f(u,v)

⊕mΩ
m(u,v)

)
⊕ mΩ

r(u,v)
. Finalement,

l’influence de l’utilisateur u sur v est définie par l’équation suivante :

Inf (u, v) = mΩ
(u,v) (I) (4)

Nous notons que la mesure proposée peut être adaptée à d’autres réseaux sociaux.

1un message de 140 caractères publié sur Twitter
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3.2 Considération de l’opinion de l’utilisateur

Nous améliorons la mesure d’influence proposée par la prise en compte de l’opinion de
l’utilisateur. En effet, nous introduisons trois scénarios de marketing viral qui peuvent se
produire dans les cas réels. Le premier scénario cherche à détecter les influenceurs ayant une
opinion positive. Une solution pour ce premier scénario a été publiée dans Jendoubi et al.
[48]. Pour ce scénario, nous proposons les deux mesures d’influence suivantes qui tiennent
compte de l’opinion positive de l’utisateur :

Inf+
1 (u, v) = PrΘu (Pos) .mΩ

(u,v) (I) (5)

Inf+
2 (u, v) = mΘ

u (Pos) .mΩ
(u,v) (I) (6)

sachant que PrΘu et mΘ
u sont respectivement une distribution de probabilités et une dis-

tribution de masse de croyance qui définissent l’opnion de u sur le cadre de décernement
Θ = {Pos, Neg, Neut}, Pos pour une opinion positive, Neg pour une opinion négative et
Neut pour une opinion neutre.

Le deuxième scénario proposé, cherche les influenceurs ayant une opinion positive et qui
exercent plus d’influence sur les utilisateurs ayant une opinion positive. Pour cet objectif
nous proposons les mesures d’influence suivantes :

Inf++
1 (u, v) = Inf+

1 (u, v) .
(

1− PrΘv (Neg)
)

(7)

Inf++
2 (u, v) = Inf+

2 (u, v) .
(
1−mΘ

v (Neg)
)

(8)

Le troisième scénario concerne les influenceurs ayant une opinion positive et qui exercent
plus d’influence sur les utilisateurs négatifs. Pour ce scénario, nous introduisons les deux
mesures d’influence suivantes :

Inf+−
1 (u, v) = Inf+

1 (u, v) .
(

1− PrΘv (Pos)
)

(9)

Inf+−
2 (u, v) = Inf+

2 (u, v) .
(
1−mΘ

v (Pos)
)

(10)

3.3 Modèles de maximisation de l’influence

Nous nous tournons vers le problème de la maximisation de l’influence et nous introduisons
deux modèles de maximisation d’influence. Ces modèles sont publiés dans le papier Jendoubi
et al. [49]. Nous introduisons les deux formules suivantes pour estimer l’influence d’un
ensemble d’utilisateurs S sur le nœud v :
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ΦM1 (S, v) =


1 si v ∈ S∑
u∈S

Inf (u, v) Sinon
(11)

ΦM2 (S, v) =


1 si v ∈ S∑
u∈S

∑
x∈DIN (v)∪{v}

Inf (u, x) .Inf (x, v) Sinon (12)

de telle sorte que Inf (v, v) = 1 et DIN (v) est l’ensemble des voisins entrants de v. Le tra-
vail de Chen et al. [23] justifie les deux modèles proposés. En fait, ils affirment que lorsque
le produit présente quelques problèmes de qualité, il est plus adaptable de choisir des influ-
enceurs ayant beaucoup de voisins immédiats d’où l’intérêt du premier modèle ΦM1 (S, v).
En outre, lorsque le produit a une haute qualité, nous pouvons choisir le deuxième modèle
ΦM2 (S, v) qui vise la profondeur du réseau. Ensuite, nous définissons les fonctions objectives
à maximiser comme suit :

σBelM1 (S) =
∑
v∈V

ΦM1 (S, v) (13)

σBelM2 (S) =
∑
v∈V

ΦM2 (S, v) (14)

Les fonctions σBelM1 (S) et σBelM2 (S) sont les fonctions à maximiser. Nous avons prouvé que
ces fonctions sont monotones et sous-modulaires. De plus, nous avons montré que la max-
imisation de l’influence en utilisant ces modèle est un problème NP-Défficile. Ainsi, nous
proposons une solution de maximisation fondée sur l’algorithme glouton. En effet, nous
avons utilisé l’algorithme CELF proposé par Leskovec et al. [60].

4 Maximisation de l’influence : Étude expérimentale

La section précédente est principalement dédiée à l’introduction des mesures d’influence et
des modèles de maximisation de l’influence que nous proposons. Dans cette section, nous
nous concentrons sur l’expérimentation des solutions proposées. En effet, nous étudions la
performance des solutions proposées sur des données réelles collectées à partir de Twitter.
Nous étudions aussi la qualité des influenceurs sélectionnés sur des données générées.

Nous introduisons deux ensembles de données, le premier a été collecté à partir de
Twitter. En effet, nous avons collecté un jeu de données contenant les utilisateurs, les
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liens entre eux, les tweets, les mentions2 et les retweets3. Le second jeux de données a
été généré. En effet, nous avons sélectionné, aléatoirement, 1010 nœuds et leurs liens des
données collectées à partir de Twitter et nous avons généré aléatoirement les valeurs de
l’influence et de l’opinion des utilisateurs.

Dans cette thèse, nous proposons un ensemble de mesures d’influence qui tiennent
compte de l’opinion de l’utilisateur. A cet effet, nous avons besoin d’estimer cette opinion.
Nous avons utilisé des outils existant qui sont dédiés à cet objectif à savoir le Stanford Log-
linear Part-Of-Speech Tagger4, le GATE Twitter part-of-speech tagger5 et le dictionnaire
d’opinion SentiWordNet 3.0. Tout d’abord, nous commençons par estimer la polarité de
l’opinion de chaque tweet dans les données, puis, nous définissons l’opinion de l’utilisateur
comme étant l’opinion moyenne de ses tweets.

Dans une première expérimentation effectuée sur les données réelles, nous n’avons pas
considéré l’opinion et nous avons comparé les modèles de maximisation de l’influence pro-
posés à quelques modèles de la littérature, à savoir le modèle en cascade indépendant, le
modèle à seuil linéaire [55] et le modèle de distribution des crédits [41]. La principale con-
clusion à partir de cette expérimentation est que les solutions de maximisation d’influence
proposées améliorent la qualité des influenceurs sélectionnés par rapport aux solutions de
maximisation d’influence existantes. En effet, nous avons comparé les modèles en termes
de nombre de #Follow6, #Mention, #Retweet et #Tweet des influenceurs détectés. Ainsi,
les modèles de maximisation de l’influence proposés sont très utiles pour promouvoir une
campagne de marketing viral donnée.

Dans une deuxième expérimentation effectuée sur les données réelles, nous avons con-
sidéré l’opinion et nous avons comparé les mesures d’influence proposées avec le modèle de
distribution des crédits [41] et le modèle en cascade à base d’opinion [99]. Cette expéri-
ence montre l’importance de l’opinion et sa contribution à l’amélioration de la qualité des
influenceurs choisis, non seulement en fonction des critères d’influence, à savoir #Follow,
#Mention, #Retweet et #Tweet, mais aussi en termes de l’opinion des influenceurs sélec-
tionnées. En effet, nous réussissons à détecter des graines ayant une opinion positive sur le
produit.

Dans une troisième expérimentation effectuée sur les données générées, nous avons
comparé les mesures d’influence proposées en termes de précision. En effet, on a généré
les données de telles sorte qu’on puisse savoir les influenceurs, les influenceurs positifs, les
influenceurs positifs qui influencent des utilisateurs positifs et les influenceurs positifs qui in-
fluencent des utilisateurs négatifs. Nous avons alors évalué les algorithmes de maximisation

2La mention permet à un utilisateur de Twitter d’envoyer un tweet directement à d’autre utilisateurs en
mentionnant leurs nom d’utilisateur dans le tweet.

3Le retweet est une fonctionnalité de Twitter qui permet le partage des tweets.
4http://nlp.stanford.edu/software/tagger.shtml
5https://gate.ac.uk/wiki/twitter-postagger.html
6Le follow est une relation sur Twitter qui permet à un utilisateur donné de suivre les mises à jour des

autres utilisateurs qu’il suit.
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de l’influence en calculant le taux de bonne classification. Cette expérience montre que tous
les algorithmes de maximisation ont réussi à avoir au moins 80% de taux de bonne classi-
fication pour la détection des influenceurs. Une deuxième remarque concerne la détection
des influenceurs positifs. En effet, nous avons aussi des taux de bonne classification qui vont
jusqu’à 90%. Une dernière remarque par rapport aux influenceurs positifs qui influencent
des utilisateurs positifs et les influenceurs positifs qui influencent des utilisateurs négatifs,
nous avons noté que lorsque le nombre détecté d’influenceurs positifs qui influenceent des
utilisateurs positifs augmente, le nombre détecté des influenceurs positifs qui influencent des
utilisateurs négatifs diminue. Cette observation est dûe principalement au processus de la
génération des données.

5 Classification de la propagation des messages sociaux

Le thème auquel les utilisateurs de réseaux sociaux et les influenceurs sont intéressés, est
un paramètre important pour le problème de maximisation de l’influence. Ainsi, nous avons
besoin de prédire le thème (la classe) des messages sociaux. A cet effet, nous introduisons une
nouvelle approche de classification des messages sociaux qui utilise les traces de propagation
des messages au lieu de leur contenu afin de prédire sa catégorie.

Tout d’abord, nous proposons un modèle de propagation de l’information qui tient
compte de la classe du message à propager. Ce modèle est utilisé pour simuler les traces
de propagation d’un type de message donné et pour créer un jeu de données des réseaux de
propagation afin de l’utiliser dans les expérimentations de l’approche de classification.

Ensuite, nous introduisons deux classificateurs pour les messages sociaux qui utilisent
des modèles de classification. Le premier classificateur se fonde sur la théorie des probabilités
alors que le deuxième utilise la théorie des fonctions de croyance. Les classificateurs proposés
ne nécessitent pas le contenu du message. De plus, tout type de contenu peut être classé.
Nous avons juste besoin de ses traces de propagation et les types de liens traversés par le
message. Ces classificateurs ont fait l’objet de l’article Jendoubi et al. [51]. Cette solution
est plus adaptée pour les types de liens distincts, par exemple un type de lien peut être
«amitié».

Dans le but de résoudre le problème des types des liens distincts présentés par les
classificateurs qu’on a proposé, nous introduisons deux autres classificateurs qui se fondent
sur la distance Dynamic Time Warping qu’on a adapté pour mesurer la distance entre les
réseaux de propagation et on a appelé cette distance PrNeT-DTW. La distance proposée
présente deux avantages. Elle fonctionne avec tout type de liens et elle considère le fait que
les chemins dans le réseau de propagation sont dépendants du temps. Ensuite, nous avons
utilisé la distance PrNeT-DTW avec les algorithmes k plus proche voisin probabiliste et
crédibiliste pour classifier les traces de propagation des messages sociaux. Ce travail a été
publié dans Jendoubi et al. [50].
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Nous avons effectué un ensemble d’expérimentations à partir duquel nous pouvons con-
clure que les classificateurs de message social proposés sont utiles pour caractériser un mes-
sage social donné sans avoir à accéder à son contenu. En effet, nous avons juste besoin des
traces de propagation du message et des types des liens parcourus afin de déterminer sa caté-
gorie. De plus les classificateurs proposés peuvent être triés en fonction de leur performance
par rapport au bruit de la classification comme suit : le meilleur classificateur est le k plus
proche voisin crédibiliste qui utilise PrNeT-DTW, après nous avons le k plus proche voisin
probabiliste qui utilise PrNeT-DTW. Le suivant est le classificateur crédibiliste et le dernier
est le classificateur probabiliste sans la distance. Une dernière contribution importante des
classificateurs proposés est qu’ils sont adaptés à tout type de contenu propagé sur les réseaux
sociaux, i.e. image, vidéo, etc.

6 Conclusion

Dans cette thèse, nous nous concentrons sur la proposition de nouvelles solutions pour le
problème de la maximisation de l’influence afin d’améliorer l’efficacité d’une campagne de
marketing viral. En fait, le marketing viral est une stratégie qui exploite l’effet de bouche à
oreille et utilise les réseaux sociaux pour promouvoir un produit, une marque, etc.

Nous proposons une mesure crédibiliste d’influence et un ensemble de mesure d’influence
qui tiennent en compte de l’opinion de l’utilisateur. De plus, nous introduisons deux modèles
de maximisation de l’influence qui sont adaptés aux mesures proposées. Nous effectuons un
ensemble d’expérimentations sur des données réelles et des données générées qui montre
l’efficacité des mesures proposées.

Nous introduisons également une approche de classification des messages sociaux qui
n’a pas besoin du contenu du message. En effet, on utilise les traces de propagation et les
types des liens parcourues par le message afin de le classifier. Nous proposons ensuite, un
ensemble d’expérimentations qui montre l’efficacité de l’approche proposée.

Dans ce qui suit, nous présentons quelques perspectives :

1. La généralisation de l’approche de la classification du message social en considérant
le contenu. L’approche de la classification sera utilisée après avec les modèles de
maximisation de l’influence.

2. La maximisation de l’influence dans les communautés sociales.

3. L’adaptation des modèles de maximisation de l’influence à d’autres réseaux sociaux
comme Facebook et LinkedIn.



x



Contents

1 Introduction 1

2 Information diffusion and influence maximization 9

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2 Information propagation in a social network . . . . . . . . . . . . . . . . . . . 11

2.2.1 Basic models and their extensions . . . . . . . . . . . . . . . . . . . . 11

2.2.2 Epidemic models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.3 Influence measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.3.1 Measuring influence on Twitter . . . . . . . . . . . . . . . . . . . . . . 16

2.3.1.1 What is Twitter? . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.3.1.2 Estimating influence on Twitter . . . . . . . . . . . . . . . . 17

2.3.2 Evidential influence measures . . . . . . . . . . . . . . . . . . . . . . . 18

2.3.3 Other influence measures . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.4 Influence maximization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.4.1 Diffusion models-based influence maximization . . . . . . . . . . . . . 20

2.4.2 Data-based influence maximization . . . . . . . . . . . . . . . . . . . . 21

2.4.3 Opinion-based influence maximization models . . . . . . . . . . . . . . 23

2.4.4 Maximization algorithms . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.4.5 Influence maximization application: Viral Marketing . . . . . . . . . . 28

2.4.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.5 Social message classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

xi



xii CONTENTS

3 Proposed solutions for influence maximization 33

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.2 Evidential measure of influence for Twitter . . . . . . . . . . . . . . . . . . . 35

3.2.1 Link weights estimation . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.2.2 Evidential influence measure . . . . . . . . . . . . . . . . . . . . . . . 38

3.2.2.1 Step 1: Node level . . . . . . . . . . . . . . . . . . . . . . . . 39

3.2.2.2 Step 2: Updating links weights . . . . . . . . . . . . . . . . . 40

3.2.2.3 Step 3: Link level . . . . . . . . . . . . . . . . . . . . . . . . 41

3.3 Opinion-based influence measures . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.4 Two influence maximization models . . . . . . . . . . . . . . . . . . . . . . . . 46

3.4.1 Measuring the influence of a set of users . . . . . . . . . . . . . . . . . 46

3.4.2 Objective functions properties . . . . . . . . . . . . . . . . . . . . . . . 48

3.4.3 Maximization algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.5 Running examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.5.1 Influencers detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.5.2 Opinion-based influencers detection . . . . . . . . . . . . . . . . . . . 53

3.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4 Influence maximization: Experimental study 59

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.2 Data gathering and processing . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.2.1 Twitter dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.2.2 Generated dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.3 User’s opinion estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.3.1 Text mining tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.3.2 Opinion estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.4 Detecting influencers for smartphones on Twitter . . . . . . . . . . . . . . . . 65

4.4.1 Experiments configuration . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.4.2 Quality of detected influencers . . . . . . . . . . . . . . . . . . . . . . 66

4.4.3 Impact of the opinion incorporation . . . . . . . . . . . . . . . . . . . 73

4.5 Studying the influence behavior on generated data . . . . . . . . . . . . . . . 81

4.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84



CONTENTS xiii

5 Classification of the social message propagation 87

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5.2 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5.3 Proposed information propagation model . . . . . . . . . . . . . . . . . . . . 90

5.4 Classification of propagation networks . . . . . . . . . . . . . . . . . . . . . . 93

5.4.1 Parameters learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.4.2 Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

5.5 Dynamic time warping distance and k-NN classifiers . . . . . . . . . . . . . . 96

5.5.1 Proposed propagation network DTW distance . . . . . . . . . . . . . . 96

5.5.1.1 Dynamic Time Warping distance . . . . . . . . . . . . . . . . 97

5.5.1.2 Propagation Network DTW distance . . . . . . . . . . . . . . 98

5.5.2 Classification with PrNet-DTW . . . . . . . . . . . . . . . . . . . . . 99

5.5.2.1 Probabilistic k nearest neighbors . . . . . . . . . . . . . . . . 100

5.5.2.2 Evidential k Nearest Neighbors . . . . . . . . . . . . . . . . 100

5.6 Experiments and results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

5.6.1 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

5.6.1.1 Twitter network data . . . . . . . . . . . . . . . . . . . . . . 102

5.6.1.2 Real propagation data . . . . . . . . . . . . . . . . . . . . . . 104

5.6.2 Results on generated propagation . . . . . . . . . . . . . . . . . . . . . 105

5.6.3 Results on real world propagation . . . . . . . . . . . . . . . . . . . . 109

5.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

6 Conclusion and perspectives 111

A Theory of belief functions 115

A.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

A.2 Information modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

A.2.1 Mass function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

A.2.2 Mass transformations . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

A.2.3 From a probability to a BBA . . . . . . . . . . . . . . . . . . . . . . . 119

A.3 Information fusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

A.4 Decision making . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

A.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121



xiv CONTENTS

B Graph theory: Basic concepts 123

B.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

B.2 Basic concepts definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

B.3 Centrality measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

B.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

C Publications 129

Bibliography 130



List of Tables

2.1 Limitations of existing influence maximization models . . . . . . . . . . . . . 29

3.1 Links and nodes weights . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.2 First model: sorted users according to their marginal gain . . . . . . . . . . . 53

3.3 First model: updated marginal gains after selecting {u5} . . . . . . . . . . . . 53

3.4 First model: updated marginal gains after selecting {u5, u4} . . . . . . . . . . 53

3.5 Second model: sorted users according to their marginal gain . . . . . . . . . . 54

3.6 Second model: updated marginal gains after selecting {u5} . . . . . . . . . . 54

3.7 Second model: updated marginal gains after selecting {u5, u7} . . . . . . . . . 54

3.8 Users opinions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.9 Marginal gain table of the first scenario example . . . . . . . . . . . . . . . . 56

3.10 Marginal gain table of the second scenario example . . . . . . . . . . . . . . . 57

3.11 Marginal gain table of the third scenario example . . . . . . . . . . . . . . . . 57

4.1 Statistics of the data set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.2 Running time in milliseconds . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.3 Seed sets intersection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.4 Mean opinions of selected seeds and their neighbors . . . . . . . . . . . . . . . 78

5.1 Statistics of the data set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

5.2 Comparison between PrNet classifiers . . . . . . . . . . . . . . . . . . . . . . 109

A.1 Mass, belief and plausibility example . . . . . . . . . . . . . . . . . . . . . . . 119

A.2 Combination rules example . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

xv



xvi List of Tables



List of Figures

1.1 Characterization of social influencers . . . . . . . . . . . . . . . . . . . . . . 5

2.1 Linear Threshold Model example . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2 Independent Cascade Model example . . . . . . . . . . . . . . . . . . . . . . . 12

2.3 Epidemic models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.4 Credit distribution model [41] . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.5 Signed social network example . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.1 Weight vector between u and v. . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.2 Follow weight example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.3 Network example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.4 Updating link weights . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.5 Measuring influence example . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.6 Influencers detection example . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.7 Opinion-based influencers detection example . . . . . . . . . . . . . . . . . . 55

4.1 Data distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.2 Comparison between the proposed approach, ICM and LTM . . . . . . . . . . 68

4.3 Comparison between “1 level”, “2 levels” and credit distribution (CD) models
with S size = 3000 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.4 Comparison between “1 level”, “2 levels” and credit distribution (CD) models
with S size = 100 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.5 The dependance of the number of affected nodes to the size of S . . . . . . . 72

4.6 Impact of the weight updating step on influence maximization results: 1 Level 74

4.7 Impact of the weight updating step on influence maximization results: 2 Levels 75

4.8 Comparison between the opinion based scenarios, the second influence model
and the OC model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

xvii



xviii List of Figures

4.9 Accuracy variation while varying the minimum influence value . . . . . . . . 82

4.10 Accuracy of detected positive influencers while varying the minimum positive
opinion value . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.11 Accuracy of detected positive influencers influencing positive users while vary-
ing the minimum positive opinion value of positive influencers neighbors . . . 84

4.12 Accuracy of detected positive influencers influencing positive and negative
users while varying the minimum negative opinion value of positive influencers
neighbors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.1 Examples of heterogeneous social networks . . . . . . . . . . . . . . . . . . . 90

5.2 Propagation network and propagation levels . . . . . . . . . . . . . . . . . . . 90

5.3 Dynamic Time Warping distance example [75] . . . . . . . . . . . . . . . . . . 99

5.4 Example of a propagation network and its dipathes . . . . . . . . . . . . . . 100

5.5 k-NN algorithm example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

5.6 Network visualization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

5.7 The impact of the propagation level on the classification accuracy . . . . . . . 107

5.8 Comparison between probabilistic results and evidential results (level three) . 108

5.9 Comparison between the four proposed classifiers . . . . . . . . . . . . . . . . 108

5.10 k variation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

B.1 Example of graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

B.2 A path relating A to D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

B.3 A dipath from A to D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

B.4 Directed acyclic graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126



List of Algorithms

1 Greedy algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2 CELF algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3 CELF based evidential influence maximization algorithm . . . . . . . . . . . . 51

4 Information propagation algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 92

5 Parameters learning algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

6 Classification algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

7 DTW algorithm [75] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

8 PrNet-DTW algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

xix



xx List of Algorithms



List of abbreviations

In the following, we present a list of abbreviations used in this document that is as exhaustive
as possible.

Models and algorithms

• LTM: Linear Threshold Model

• ICM: Independent Cascade Model

• UN ICM: Independent cascade model with uniform edge probabilities

• TV ICM: ICM with trivalency edge probabilities

• GTM: General Threshold Model

• GCM: General Cascade Model

• WC, WC ICM: Weighted Cascade

• CD: Credit Distribution

• OC: Opinion-based Cascading model

• SI: Suspected-Infected epidemic model

• SIR: Suspected-Infected-Recovered epidemic model

• SIS: Suspected-Infected-Suspected epidemic model

• SIRS: Suspected-Infected-Recovered-Suspected epidemic model

• SPM: Shortest-Path Model

• WIC: Weighted Independent Cascade

xxi



xxii List of abbreviations

• CELF: Cost-Effective Lazy Forward algorithm

• 1 Level: the first evidential influence maximization model that uses the formula (3.34)

• 2 Levels: the second evidential influence maximization model that uses the formula
(3.35)

• k-NN: k nearest neighbors

Social network

• ONS: Online Social Network

• WoM: Word-of-Mouth

• eWoM: electronic word of mouth

• G: a graph or a directed graph

• V : a set of vertices

• T : a subset of V

• E: a set of directed links

• W : the set of weights vectors associated with each link in E

• u, v: vertices or nodes

• (u, v): a directed link where u is its source and v is its destination

• Du: the overall degree of the vertex u

• DIN (u): the number of in-neighbors of u

• Dmin : the minimum degree in the network

• Dmax: the maximum degree in the network

• $u: the strength of u

• $min: the minimum strength in the network

• $max: the maximum strength in the network

• µ: the difference between Dmax and Dmin plus an ε1 ∈ [0, 1]

• ν: the difference between $min and $max plus an ε2 ∈ [0, 1]

• w (u): the weight of the node u



List of abbreviations xxiii

• w (u, v): the weight of the link (u, v)

• Na (u): the set of active neighbors of u

• wf (u, v): the follow weight

• wm (u, v): the mention weight

• wr (u, v): the retweet weight

• wx (u, v) ∈ {wf (u, v) , wr (u, v) , wm (u, v)}

• w′

x (u, v) ∈
{
w

′

f (u, v) , w
′

r (u, v) , w
′

m (u, v)
}
: updated link weights

• Nminx = minu∈V wx (u)

• Nmaxx = maxu∈V wx (u)

• ϑx = Nmaxx −Nminx + α, α ∈ [0, 1] and ϑx ∈ {ϑf , ϑm, ϑr}

• Lminx = min(a,b)∈E w
′

x (a, b)

• Lmaxx = max(a,b)∈E w
′

x (a, b)

• πx = Lmaxx − Lminx + ε, ε ∈ [0, 1] and πx ∈ {πf , πm, πr}

• Scu: the set of successors of u

• Scmax: the biggest successors set in the network

• Pcu: the set of predecessors of u

• Tcu: the set of tweets of u

• Tcmax: the biggest tweets set in the network

• Rtu (v): the set of tweets of u that were retweeted by v

• Mtu (v): the set of tweets of u in which v was mentioned

• Mtmax: the biggest Mtu (v) in the network

• Mtu: the set of tweets in which u mentions another user.

• cb (v): the betweeness centrality measure

• cc (v): the closeness centrality measure

• g (u,w): the number of geodesics in G

• g′ (u, v, w): the number of (u,w) geodesics in G containing v.



xxiv List of abbreviations

Information propagation

• θu: the LTM threshold, it is a random uniform value from the range [0, 1]

• ρ (u, v): the ICM success probability of u to activate v

• fu: the threshold function used by GTM

• Sus: the fraction of suspected individuals

• Ift: the fraction of infected individuals

• R: the fraction of recovered individuals

• ξ: the probability with which a suspected individual becomes infected

• ι: the average rate at which an infected individual becomes recovered

• ε: the average rate at which the individual loses his immunity

• Acu: the number of actions performed by the user u

• Acu&v: the number of actions performed by u and v

• Acu|v: the number of actions performed by u or v

• Acu2v: the number of actions propagated from u to v.

• L : an action log that is defined as the set of tuples (User, Action, T ime)

• a: an action

• Na
out (v): the set of v’s active out-neighbors

• N ia
out (v): the set of v’s inactive out-neighbors

• att ∈ [−1, 1]: the user’s attitude to the product

• lp ∈ {−1, 1}: a link parameter

• PrNet: Propagation Network

• η: the number of iterations of the proposed information propagation algorithm

• Source: the source of the message, it is the first node that will trigger the propagation
process

• ReadyNodes: a list that contains nodes having received the message and that will try
to propagate it

• LinkType: the type of the link



List of abbreviations xxv

• e: the number of node neighbors that will receive the message from a given type of
link

• ψ: a matrix structure where in its lines we have the types of links, and in its columns
we have the propagation levels

• BbaSet: a set of BBA distributions to represent each propagation level

• ProbaSet: a set of probability distributions to represent each propagation level

• ProbaDist: the vector of distances between probabilities distributions

• BbaDist: the vector of distances between BBAs distributions

Influence measures

• S: the seed set or the set of influencer users, S ⊆ V

• k: an integer, it is used to define the size of S or to define the number of considered
nearest neighbors of k-NN classifier

• σM (S): the objective function of the ICM and LTM

• γv,u (a): a direct influence credit given to v for propagating the action a to u

• Γv,u (a): the total influence credit given to v for propagating the action a to u

• ΓS,u (a): the total influence credit given to S for propagating the action a to u

• ∆ (v, u): the total influence credit given to v to u

• ∆ (S, u): the total influence credit given to S to u

• σCD (S): the objective function of the CD model

• PMG (v): the potential marginal gain of v

• Op (v): the opinion indicator of v

• u.mg1: the marginal gain of u under the current S

• u.prevBest: the node with the maximum marginal gain in the current iteration that
was examined before u

• u.mg2: the marginal gain of u.prevBest

• u.flag: the iteration number when u.mg1 was last updated

• Inf : the evidential influence of the user u on his neighbor v



xxvi List of abbreviations

• Inf+
1 : the evidential influence measure that considers the user’s probabilistic positive

opinion about the product

• Inf+
2 (u, v): the evidential influence measure that considers the user’s evidential pos-

itive opinion about the product

• Inf++
1 (u, v): the evidential influence measure that considers the user’s probabilistic

positive opinion and the neighbors having a probabilistic positive opinion

• Inf++
2 (u, v): the evidential influence measure that considers the user’s evidential

positive opinion and the neighbors having an evidential positive opinion

• Inf+−
1 (u, v): the evidential influence measure that considers the user’s probabilistic

positive opinion and the neighbors having a probabilistic negative opinion

• Inf+−
2 (u, v): the evidential influence measure that considers the user’s evidential

positive opinion and the neighbors having an evidential negative opinion

• M1 and M2: are the proposed first and the second maximization models respectively

• ΦM1 (S, v): the influence of S on a user v using M1

• ΦM2 (S, v): the influence of S on a user v using M2

• σBelM1 (S): the spread function under M1

• σBelM2 (S): the spread function under M2

• Q: sorted list in decreasing order according to the marginal gain of nodes

• nodeMax: a node having a maximum marginal gain

Uncertainty theories

• Ω, Θ: frames of discernment

• 2Ω, 2Θ: power sets

• I: influencer user

• P : passive user

• Pos: positive opinion

• Neg: negative opinion

• Neut: neutral opinion

• high: high influence



List of abbreviations xxvii

• low: low influence

• mDu : the degree BBA

• m$u : the strength BBA

• mΩ
fu
: the follow BBA defined on the node u

• mΩ
mu : the mention BBA defined on the node u

• mΩ
ru : the retweet BBA defined on the node u

• mΩ
xu ∈

{
mΩ
fu
, mΩ

mu , m
Ω
ru

}
• mΩ

u : the combination result of mΩ
fu
, mΩ

mu and mΩ
ru

• BetPΩ
u : the result of the pignistic transformation of mΩ

u

• mΩ
f(u,v)

: the follow BBA defined on the link (u, v)

• mΩ
m(u,v)

: the mention BBA defined on the link (u, v)

• mΩ
r(u,v)

: the retweet BBA defined on the link (u, v)

• mΩ
x(u,v)

∈
{
mΩ
f(u,v)

, mΩ
m(u,v)

, mΩ
r(u,v)

}
• mΩ

(u,v): the combination result of mΩ
f(u,v)

, mΩ
m(u,v)

and mΩ
r(u,v)

• mΘ
u : the BBA distribution defined on Θ that express the opinion of the user u ∈ V

about the product

• PrΘ
u : the probability distribution defined on Θ that express the opinion of the user

u ∈ V about the product

• {C1, C2, ..., Cn}: a set of n classes

• A and B: focal elements

• χ, κi (dj): decreasing functions that take the distance dj as input

• γi > 0 and β ∈ {1, 2, . . .}: parameters of the evidential k-NN

• mΩ (A): the mass value assigned to the subset A ⊆ Ω

• belΩ (A): the belief function defined on Ω

• plΩ (A): the plausibility function defined on Ω

• PrΩ: a probability distribution defined of Ω

• ⊕: Dempster’s rule of combination

• CRC, ~: Conjunctive rule of combination



xxviii List of abbreviations

Distances

• dC (X1, X2): the Chebyshev distance

• dM (X1, X2): the Manhattan distance

• dE (X1, X2) : the Euclidean distance

• dJ (X1, X2): the Jousselme distance

• X1, X2: two vectors

• Λ
=
is a 2n × 2n matrix and Λ (A,B) = |A∩B|

|A∪B|

• DTW: the Dynamic Time Warping distance

• δ (b1i, b2j): a distance between b1i and b2j

• dj : the distance between the object to be classified and the jth nearest neighbor

• PrNet-DTW: the Propagation Network DTW distance

Other notations

• α, ε, ε1, ε2: numbers between [0, 1]

• i, j: counters

• t, t1, t2: time instant

• q: quality factor

• l: an object that we do not know its class

• TS1 = (b11, b12, . . . , b1T1), TS2 = (b21, b22, . . . , b2T2): two time series

• Ξ: a |T1| × |T2| matrix, used to estimate the DTW distance between TS1 and TS2



1
Introduction

The electronic Word of Mouth (WoM), called Viral Marketing, is a relatively new form
of marketing communication that exploits the internet and more specifically online social
networks in order to promote a product, a brand, etc. The Viral Marketing is based on the
social influence that exerts one user on another. In fact, the idea behind it, is to target a
small set of influencers that are able to trigger a large cascade of propagation and adoption
of the marketing message. Thus, with a small marketing budget a large proportion of a
social network can be reached or influenced [1].

Nowadays, there are 7.2 billion people in the world, 2.1 billion among them uses online
social networks (ONS). Today, 90% of young adults (ages 18 to 29) and 35% of those
aged over 65 use ONS1. Furthermore, many companies have recourse to social networks to
promote their products and brands. In fact, 96% of small companies use social networks
for marketing, and 92% of those adopt the phrase, “Social media marketing is important for
my business”2. From these statistics, we can conclude that OSN have successfully reached
many users worldwide, which make them more powerful in propagating any information.
Also, these statistics show the importance of OSN for business. These facts make them very
suitable for marketing and more specifically for Viral Marketing. Scientifically, the Viral
Marketing problem is translated into the influence maximization problem that searches to
select a small set of social network users that are able to maximize the global influence
through the network.

The purpose of the influence maximization problem is to find a set of social influencers
called seeds, those users have to be able to influence a large proportion of the network. For
this purpose, many research works were conducted trying to resolve this NP-Hard problem
[55]. The first optimization solutions were proposed in 2003 by Kempe et al. [55]. Indeed,
they introduced the Independent Cascade Model (ICM) and the Linear Threshold Model

1Pick, T., 47 Superb Social Media Marketing Stats and Facts,
http://www.business2community.com/social-media/47-superb-social-media-marketing-stats-facts-
01431126#mL1oK4xCld7sLb6S.97, Posted on 19/01/2016, Seen on 24/09/2016.

2Delzio, S., 12 Social Media Marketing Trends for Small Business,
http://www.socialmediaexaminer.com/social-media-marketing-trends-for-small-business/, Posted on
09/06/2015, Seen on 24/09/2016.

1



2 Chapter 1. Introduction

(LTM). These two models require only the network structure and are maximized through
the greedy algorithm. Later in 2007 an amelioration of the maximization solution were
proposed, it is about 700 times faster than the basic greedy solution. It is the Cost-Effective
Lazy Forward algorithm (CELF) [60]. This is true that CELF has ameliorated the time
spent to find the set of influencers. However, the quality of selected seeds stills not yet as
good as needed. Then, this problem stills always unclosed.

To improve the quality of selected seeds, Goyal et al. [41] propose a new influence max-
imization solution that has a new spirit in its principle. In fact, they used past propagation
to estimate the user’s influence in the network and they introduced the Credit Distribution
solution. Besides, the authors show the adaptability of their model to a greedy based ap-
proximation. Then, CELF algorithm is very adaptable to select a set of seeds having the
maximum amount of influence credit. According to the experiments of Goyal et al. [41],
their solution ameliorates the quality of selected seeds and the time spent to find them when
compared to ICM and LTM. However, it is possible to ameliorate more the quality of the
selected seeds. In fact, many other parameters can be considered for this purpose. Among
these parameters we find the user’s opinion that is crucial in the influence universe.

Existing influence maximization approaches assume only positive opinions influence
among users and availability of positive influence probabilities. Whereas, a key function of
social networks, besides sharing, is that they enable users to express their personal opinions
about a product or trend of news by means of posts, shared posts, likes/dislikes, or comments
on friend’s posts, etc. Such opinions are propagated to other users and might make a
significant influence on them, either positive or negative. For example, if some friends have
shown any positive (or negative) comments against a certain product or news, one will have
a similar feeling regardless of their own personal opinion. Consequently, the users opinion
is an interesting parameter if we are looking for influencers.

Opinion-based influence maximization attracted many researchers in these last years.
Let take the work of Zhang et al. [99] as an example. In fact, they propose a new influence
maximization model that looks for positive influencers. Their model is called Opinion-based
Cascading model. It is an extension of the Independent Cascade Model that considers the
user’s opinion. However, in this work all model parameters are randomly generated. In fact,
according to the work of [41], influence maximization models that use randomly generated
parameters in their input “can end up selecting seed sets of poor quality”. Therefore, it
is important to find a way to estimate the user’s influence and opinion from available real
world data. Other works in the literature considered the opinion in their process but it is
not always the user’s opinion about the product, it may be just about positive messages like
ideas and news or negative messages like rumors [95]. As a consequence, proposing a new
influence maximization solution that takes into account the user’s opinion is very important.

Another interesting social networks analysis research field that is very related to the
Viral Marketing is the problem of social message classification. In fact, the main purpose of
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this problem is to find the set of topics to which a given user is interested to. In fact, the
topic is an interesting parameter for the Viral Marketing and it is considered in many works
in the literature like the work of Barbieri et al. [10]. However, existing text classification
approaches are not always adaptable for social messages. Indeed, the social message is
characterized by its shortness which leads to the lack of sufficient word occurrence problem.
Besides, the social message is not an ordinary text, it may contain URLs, special characters,
etc. All these characters are not considered by ordinary text classification techniques. In
the literature, many works were conducted to resolve this problem [9, 47]. However, it still
not yet resolved.

A crucial problem that can arise with real social networks data is about imprecision
and uncertainty that is caused by many factors. In fact, social interactions can not always
be precise and certain, also, online social networks allow only a limited access to their data.
These facts are the sources of the imprecision and uncertainty for social networks data.
These data imperfections can generate some problems to social networks analysis. Indeed,
we may be confronted to obtain erroneous analysis results. In such a situation, the theory
of belief functions [26, 79] is widely applied. Furthermore, this theory is used many times
to handle such problems for analyzing social networks [94, 35, 51, 50, 100].

In these last years, many researchers are focusing on proposing new solutions to ame-
liorate the quality of selected seeds or to improve the running time of existing approaches.
Despite their efforts, many issues still not yet processed and many improvement can, always,
be done. In this thesis, we are interested to the Viral Marketing and especially we want to
ameliorate the quality of selected seeds.

When studying the state of the art of the influence maximization and social messages
classification problems, we become more motivated for our choice. In fact, we found that
most of existing works use only the structure of the network to select seeds and such a
model can select well located seeds. However, the position of the user in the network is
not sufficient to confirm his influence. For example, he may be a user that was active in a
period of time, then, he collected many connections, and now he is no more active. Hence,
the user’s activity is an interesting parameter that must be considered while looking for
influencers.

Besides to the user’s activity in the network, many other important influence behaviors
are not considered. Among these behaviors, we found the sharing and tagging activities
of network users. These activities allow the propagation of social messages from one user
to another. Also, the tagging activity is a good indicator of the user’s importance in the
network. In fact, more he is tagged in others’ posts more he is important for them. Therefore,
taking into account such influence behaviors will be very beneficial to improve the quality
of selected seeds.

Another crucial parameter in the influence maximization universe, that practically, was
not considered, is the opinion of the user about the object of the Viral Marketing campaign,
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i.e. we mean by the object here the product or the brand that we want to make viral. In
fact, when we do not consider the user’s opinion we may be confronted to harmful results
of the marketing campaign especially when we fall on influencers having a negative opinion.
Consequently, we find that the user’s opinion is an interesting parameter that must be took
into account to find appropriate influencers for a given Viral Marketing campaign. Besides,
we use the theory of belief functions to represent all these influence aspects, also to combine
them and manage the conflict that can arise between them.

An important problem to which we are also interested to, is the problem of classifying
social messages. As we explained above, social messages have some special characteris-
tics that differentiates them from ordinary text. Among these characteristics, we find the
shortness of the message that leads to the topic sparcification problem. Consequently, it is
important to find a new classification approach that resolves this problem. In fact, knowing
the topics to which a social network user is interested to, is a very useful information for
many applications among them the Viral Marketing.

Motivated by all these points, we conducted our thesis and we achieved many interesting
contributions. Figure 1.1 illustrates the main contributions of this thesis in terms of inputs,
steps and results. In a first place, we focused on the problem of measuring the influence
on a social network. For this step, we chosen Twitter as an example and we explained
the proposed measure using Twitter vocabulary. In fact, the proposed evidential influence
measure considers many influence aspects like the user’s position and his popularity in the
network. Besides, we use the theory of belief functions [79] to represent each parameter
using a basic belief assignment distribution and to combine all pieces of information in order
to manage the conflict that can arise between them.

In a second place, we incorporate the user’s opinion in the influence measure. For
this purpose, we introduce three new Viral Marketing scenarios. The first scenario is about
influencers having a positive opinion about the product. The second one concerns influencers
having a positive opinion about the product and that exert more influence on users having a
positive opinion too. The last scenario is about influencers having a positive opinion about
the product and that influences users having a negative opinion. For each scenario of those
we define two influence measures.

After defining the set of influence measures, we define an influence maximization model
that works with them. For this purpose, we introduced two new influence maximization
models. The first one considers the influence of a given user on his direct neighbors. In
fact, it is ideal to detect influencers having many neighbors. Furthermore, this model is very
useful in the case where we have a product with some quality issues [23]. The second model
considers more indepth influence. Indeed, it maximizes the influence that exerts the user on
his neighbors and his neighbor’s neighbors. This model is very adaptable to maximize the
Viral Marketing campaign.

To prove the performance of the proposed influence maximization solutions, we present
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Figure 1.1: Characterization of social influencers
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a case study on real world data. Its purpose is to maximize the influence for smartphones in
Twitter. It is the first case study that details all the process of the influence maximization
problem starting from data collect until getting seeds. Besides, we compare the quality of
selected seeds using our models to detected ones using existing models.

The topic to which social network users and influencers are interested in, is also an
important parameter for the influence maximization problem. Then we need to predict the
topic (the class) of the social messages. For this purpose, we introduce a new classification
approach that uses the propagation traces of the message in order to predict its class. Then
we present four classifiers, two of them are model based and use a training set of previous
propagation to learn their models parameters. The two others algorithms are distance based.
In fact, we propose a new distance measure between two propagation networks that is based
on the Dynamic Time Warping distance [75]. Then, we use the proposed distance with
probabilistic and evidential k-Nearest Neighbors algorithms.

This thesis is organized in four chapters as follows:

• In Chapter 2, we review the state of the art of the information dissemination, the influ-
ence maximization and social message classification problems. In fact, these problems
are among the popular research fields that are related to social network analysis. First,
we discuss the basic information propagation models and their extensions. Besides,
we introduce epidemic models that study the propagation of a given disease through a
population. Next, we present existing influence measures and their properties. Then,
we move to influence maximization approaches and we classify them into three main
classes which are maximization models that uses an information diffusion model, data-
based maximization models and opinion-based influence maximization models. Finally,
we introduce some existing algorithms for social message classification.

• In Chapter 3, we present our contributions to the social influence universe. In fact,
we present the process we propose to estimate the influence from social network data.
Then, we introduce three opinion-based scenarios, the first one is about influencers
having a positive opinion, the second one is about influencers having a positive opinion
and influencing positive users and the last scenario searches for influencers having a
positive opinion and influencing negative users. For each scenario we propose two
influence measures. Next, we present two new influence maximization models that are
useful with the proposed measures. Finally, we propound some examples to explain
deeper the proposed approach.

• In Chapter 4, we conduct some experiments to prove the performance of the proposed
influence maximization solutions. First, we introduce a case study in which we want
to promote smartphones on Twitter. Then, we present the process we used to collect
the dataset from Twitter and to estimate the user’s opinion. Next, we compare our
influence maximization models with some basic models like the Independent Cascade
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Model and the Linear Threshold Model [55]. We compare, also, the proposed models to
the Credit Distribution [41] that we consider the closest in its principle to our models.
Furthermore, other experiments are done to study the impact of incorporating the
user’s opinion in the influence maximization process. On the other hand, we study the
accuracy of the proposed solutions on generated data and we compare them to each
other.

• In Chapter 5, we move to another important problem in the Viral Marketing universe,
which is the problem of social message classification. First, we propose a new infor-
mation propagation algorithm that considers the message class in its process, besides,
this algorithm is useful to simulate the propagation of a given type of messages. Fur-
thermore, we introduce a new social message classification approach that uses past
propagation to learn a classification model. Next, the learned model is used to classify
new coming messages. After that, we present a new distance metric useful to estimate
the distance between two propagation networks. Then, we use the proposed distance
with the probabilistic and the evidential k-Nearest Neighbors algorithms to classify
propagation networks of social messages. Finally, a set of experiments is made to
prove the performance of the proposed solutions and to compare them to each other.

Besides to these chapters, we have Chapter 6 that is dedicated to the conclusion and some
perspectives of our work. Furthermore, we add the following three appendices:

• Appendix A introduces the theory of belief functions. Then we introduce some of its
basic concepts like the basic belief assignment. Besides, we present an overview of the
information fusion and decision making using the evidence theory.

• Appendix B defines some basic concepts from the graph theory that are very useful to
understand this document. Next, it introduces some centrality measures.

• Appendix C presents the list of published articles.
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Summary

The information diffusion is the process with which the information propagates from one
user to another through a social network, while the influence maximization process searches
to select a small set of the social network users that are able to trigger an important diffusion
cascade through the network. In this chapter, we review the state of the art of information
diffusion models, influence measures and influence maximization in online social networks.
Besides, we present some classification approaches for social messages that we find inter-
esting and popular in this domain. Finally, we introduce the Viral Marketing which is an
online marketing that uses influence maximization techniques to make products goes viral in
a social network.
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2.1 Introduction

In these last years, online social networks introduced some new functionalities that are ap-
preciated and used by millions of people all over the world. Among these functionalities we
find the sharing, sending messages, liking or commenting someone’s post, etc. In return,
online social networks collect every day a huge amount of data that may contain user’s
relationships, discussions, ideas, news, etc. Mining and analyzing such a data is always the
challenge of many researchers, also, many interesting results were found. However, until
today, many important problems are still not yet resolved. In this thesis, we are mainly
interested in the simulation of the information propagation phenomenon, the influence max-
imization and the social message classification problems. In this chapter, we present the
state of the art of these problems.

The information propagation is the phenomenon with which the information moves from
one user to another through the network relationships. In the literature, there are many
works that are interested in the study and/or the simulation of this phenomenon. Indeed,
many works (like [25, 39, 38]) used to study the information propagation process in order
to understand and explain this phenomenon, such a model is called explanatory model [44].
A second category of models called predictive models search to simulate the propagation
traces in the network. In this category, we find, for instance, works of [43, 37, 55, 57]. In
our work, we are interested in predictive models.

Another attractive research field, to which we are interested in, is the influence max-
imization problem. It is the problem of selecting a set of k users that are able to trigger
a large propagation cascade through the network. This problem is shown to be NP-Hard
[55]. In the literature, many solutions were designed for this problem. However, the qual-
ity of selected nodes, commonly called seeds, is not always assured. Indeed, most of the
existent solutions use only the network structure, whereas, Goyal et al. [41] showed that
these solutions are not efficient. In fact, the network structure is useful to detect well posi-
tioned users. However, those users may be inactive. Then comes the need for new influence
maximization approaches that consider more data and more influence aspects like the user’s
behavior and past propagations. In this chapter, we present a state of the art overview of
the information propagation simulation, the social message classification and the influence
maximization problems.

A third important research field concerns the classification of social messages. We call
social message all communications that can be done through an online social network, like
sending a message, writing a comment, etc. The social message is generally characterized
by its shortness, e.g. tweets are social messages of 140 characters. The short text is char-
acterized by the lack of sufficient word occurrence. Such a characteristic, makes ordinary
text classification techniques fail to classify short messages. In fact, these techniques use an
existing word corpus to represent each possible text class, then, they try to mach the set of
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words in the text to be classified with each class, and finally, they choose the class that fits
more to the input text. However, these solutions are not efficient with short texts. Then,
comes the need for new solutions.

The remainder of this chapter is organized as follows: Section 2.2, presents some existing
models of information propagation and epidemic models that simulate diseases dissemina-
tion. Next, we present works that are related to the influence maximization problem. We
divided this part into two sections: Section 2.3 that reviews influence measures and Section
2.4 that reviews maximization models. Finally, in Section 2.5, we move on to the social
message classification problem and we introduce some works.

2.2 Information propagation in a social network

A diffusion model, also called propagation model, is a model that simulates and describes
the entire propagation process and determines which node in the network will receive the
propagated message [1]. In this section, we give an overview of information propagation
models and how these models are used to simulate the information dissemination process.

2.2.1 Basic models and their extensions

The Linear Threshold Model (LTM) [43] and The Independent Cascade Model (ICM) [37]
are among the first simulation models that were used to simulate the information propaga-
tion process. The Linear Threshold Model (LTM) was first proposed by Granovetter [43]
to model collective behavior where one can trait two binary decisions, like the diffusion of
rumors, diseases, innovations, etc. Then, LTM was used to model the information propa-
gation process in social networks. The Independent Cascade Model (ICM) was introduced
in the context of the marketing by Goldenberg et al. [37] drawing inspiration from works in
interacting practical systems [64] and probability theory. LTM and ICM were adopted by
Kempe et al. [55] to simulate the propagation of the information in social networks.

LTM and ICM are similar in that, in both of them we suppose having a social graph
G = (V,E) where its vertices can be either active or inactive. A vertex v is said to be
active when it receives the information and accepts it. It is said to be inactive when it does
not receive the information or rejects it. An inactive node becomes active if it receives and
accepts the message. In the LTM, we associate a weight ω (u, v) to each edge (u, v) and a
threshold θu to each vertex u. A vertex u will be activated if the total weight, between it
and its activated neighbors, is at least θu:∑

v

ω (u, v) ≥ θu (2.1)
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Figure 2.1: Linear Threshold Model example

Figure 2.2: Independent Cascade Model example
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The threshold θu is a random uniform variable chosen from [0, 1], it “intuitively represents
the different latent tendencies of nodes to adopt the innovation when their neighbors do”
[55]. Next, we present a running example of LTM.

Example 1. Figure 2.1 presents a running example of the LTM. In this example, we have
a social network with four nodes and three links between them, v2 and v4 are active at the
time instant t. At time t+ 1, the node v1 is activated because ω (v1, v2) +ω (v1, v4) ≥ θv1

.�

In the ICM each newly activated node is given only one chance to activate its inactive
neighbors, i.e. an active node can send its message only one time for all its inactive neighbors.
For instance, at the step t, a newly activated node u will try to activate its inactive neighbor
v, the success probability of u to activate v is given by ρ (u, v) (parameter of the system).
A special case of ICM is Weighted Cascade (WC) where

ρ (u, v) =
1

Du
(2.2)

such that Du is the overall degree of the vertex u (see the degree definition in the appendix
B). Next, we present a running example of ICM.

Example 2. Figure 2.2 introduces a running example of the ICM. In this example, we have
a social network with four nodes and three links. At the instant t, only the node v1 is active
and it has only one chance to try to activate its neighbors. At t + 1, the node v1 succeeds
to activating its neighbor v2. �

Kempe et al. [55, 57] introduced a broader framework that generalizes ICM and LTM.
This “general framework has equivalent formulations in terms of thresholds and cascades”
[55]. The General Threshold Model (GTM) generalizes LTM. As in LTM, it associates to
each node u in the network a threshold θu. It differs from the LTM in that, it defines a
monotone threshold function fu for each node u that maps the set of active neighbors of u
to the range [0, 1], such that fu (∅) = 0. The activation of u in the GTM depends on the
following inequation:

fu (Na (u)) ≥ θu (2.3)

that defines the activation condition, such that Na (u) is the set of active neighbors of u. The
General Cascade Model (GCM) is a generalization of ICM. In GCM, the probability with
which a user v succeeds in activating its neighbor u is defined by an incremental function
ρu (v, Na (u)) that maps the set of active neighbors already tried to activate u, to the range
[0, 1]. Further propagation models are later proposed, like the Decreasing Cascade Model
in which the activation probability is a decreasing function [56, 57]. All these models try to
ameliorate the basic ICM and LTM and that with a more flexible ways for measuring the
user’s influence in the network. However, they still use random functions to estimate the
influence.



14 Chapter 2. Information diffusion and influence maximization

2.2.2 Epidemic models

In the previous subsection we reviewed some basic information propagation models. This
subsection is mainly dedicated for epidemic models. They are used to describe the trans-
mission of infectious diseases, they model the diffusion process of a particular disease to
understand the mechanism with which the disease spreads through the population to pre-
vent and/or control its spreading. Recently, epidemic models have been also used to model
the information propagation like rumors or news propagation.

The simplest version of epidemic models considers two states: Suspected (S) and Infected
(I), this model is called SI model (see Figure 2.3a for illustration). The suspected state means
that the individual has not caught the disease yet but could catch it through a contact with
another individual who did. An individual in the infected state if he has the disease and
can transmit it to susceptible people who are in contact with him [73]. This is the simplest
epidemic model, it was extended to be more appropriate to model a specific disease. In the SI
model, once the individual catches the disease, he still infectious forever. However, someone
can recover from the disease after a period of time and he may preserve its immunity to
the disease and will not catch it again. To model such a case, we need a third state usually
called Recovered (R).

SIR model is an epidemic model that considers the three disease states Suspected (S),
Infected (I) and Recovered (R), the reader can refer to Figure 2.3b for illustration. SIR
model was first introduced by [58]. This epidemic model has two main steps, in the first
step, the individual is suspected and may become infected if he has a contact with another
infectious individual. This contact is assumed to happen according to a probability ξ. In the
second step, the infected individual becomes recovered at an average rate ι. The following
equations are defined for the SIR model:

dSus

dt
= −ξ.Sus.Ift (2.4)

dIft

dt
= ξ.Sus.Ift− ι.Ift (2.5)

dR

dt
= ι.If (2.6)

where Sus is the fraction of suspected individuals, Ift is the fraction of infected individuals
and R is the fraction of recovered individuals, such that Sus+ Ift+R = 1.

Another extension of the SI model is defined for diseases where the individual can be
infected many times. This case can arise with diseases that confer limited immunity or do
not confer it at all. Such a model is called SIS model (see Figure 2.3c). It has two states as
the SI model, however, infected individuals can return to the suspected state after recovery.
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(a) SI model (b) SIR model

(c) SIS model (d) SIRS model

Figure 2.3: Epidemic models

Equations of the SIS model are defined as follows:

dSus

dt
= ι.Ift− ξ.Sus.Ift (2.7)

dIif

dt
= ξ.Sus.Ift− ι.Ift (2.8)

We present another epidemic model which is the SIRS model, the reader can refers to Figure
2.3d. In this model the individual recovers from the disease and confers immunity as in the
SIR model. However, this immunity is not forever, after a period of time the individual loses
it and returns suspected again. A third parameter is needed for this model which is ε, the
average rate at which the individual loses his immunity. The equations of this model are:

dSus

dt
= ε.R− ξ.Sus.Ift (2.9)

dIft

dt
= ξ.Sus.Ift− ιIft (2.10)

dR

dt
= ι.Ift− ε.R (2.11)

Epidemic models are very useful to study the spreading mechanism of a given disease through
the population. In the case of the information propagation, the SIR model for example can
corespond to the case where a set of initially infected users corresponds to a set of active
users (recieved and accepted the information). Those infected (active) users try to infect
(activate) their neighbors. An active user is recovered as he can not purchase again the
product. According to Leskovec et al. [61] “The problem with these type of models is
that they assume a known social network over which the diseases (the information) are
spreading and usually a single parameter which specifies the infectiousness of the disease”.
In the context of the information propagation “this would mean that the whole population
is equally susceptible” to receive the information, and this is not the case in the information
propagation problem. The reader can refer to [2, 73] for further details.
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2.3 Influence measures

In the previous section, we presented the state of the art of information propagation models.
This section, reviews some of the existing influence measures in the literature that we find
interesting and having a relation with the proposed measures in this document. We are
mainly interested in influence measures that are adapted to Twitter and those that uses
the theory of belief functions. Besides, we present other existing measures that we find
interesting. The remainder of this section is organized as follows: first, we present influence
measures that were proposed for Twitter, second, we introduce evidential influence measures.
Finally, we focus on other influence measures.

2.3.1 Measuring influence on Twitter

Nowadays, there exists a lot of online social networks like Twitter, Facebook, LinkedIn,
etc. They propose several services to their users like sending messages, sharing images,
videos, etc. Each social network has its specific notions and characteristics. For example, on
Twitter we have follow relationships, tweets, retweets, etc. On Facebook, we have friendship
relations, status, share, etc. These specific characteristics require to be considered while
measuring influence. In this work, we choose Twitter, as did many works in the literature.
In fact, it is easier to get data from Twitter, because it provides a documented API with many
toolboxes adapted to the most programming languages. In this section, we first introduce
Twitter and its notions then we review some of the existing works that try either to study
the influence on Twitter or to measure it.

2.3.1.1 What is Twitter?

Actually, Twitter is one of the most popular social networking microblogging service. In this
section, we define some common concepts that one need to know about Twitter and that
are used in this document.

Definition 1. A Follow is an explicit relation that allows a given user to follow updates
from other users he follows. The follow relationship can either be reciprocated or one way.

Example 3. Let u and v be two Twitter users, then, if u is interested in updates from
v, u can simply “follow” v and it will receive all the messages (called tweets) from v in its
actuality timeline. �

Definition 2. A Tweet is a short message of 140-characters. Twitter allows its users to
publish tweets in order to share their new, for example, with others.

Definition 3. The Mention functionality allows for a given Twitter user to send tweets
directly to other users by mentioning their usernames prefixed with an “@” sign. Then, the
tweet will appear in the timeline of all mentioned users.
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Definition 4. A Retweet is a Twitter functionality that allows the sharing of tweets from
each other. In fact, when someone retweets a tweet, it will appear to his followers. A retweet
is always prefixed by an “RT @” plus the username of the user that wrote it.

2.3.1.2 Estimating influence on Twitter

In the literature, influence on Twitter was widely studied. However, most of the existing
works either try to study Twitter users’ behavior or use existing Twitter metrics like indegree
and the number of mentions to identify influencers. In this section, we present some of the
existing measures that we find relevant.

The work of Cha et al. [21] was among the first research works that studied the influence
on Twitter. The authors present an empirical comparison of three basic influence indicators
which are indegree (follow), retweets and mentions. They found that “indergree represents
the popularity of a user, retweet represents the content value of one’s tweets and mention
represents the name value of a user”. In a similar study, Dubois and Gaffney [32] compare
six influence metrics (like indegree, eigenvector centrality and clustering coefficient) that
are commonly used to identify influential users on Twitter. Besides, they identified the
characteristics of top influencers that are selected by each measure.

Authors in [17] measure the user influence on Twitter using the k-Shell decomposition
algorithm that determines the core and hierarchical structure of a given network. Then, the
algorithm gives to each set of nodes a k value that is equal to their level. The authors used
k-Shell decomposition algorithm for measuring influence. In fact, they interpret the k level
of each node as its influence value. In the work of [17], authors modify the basic algorithm
to assign to each user a logarithmic k-Shell influence value.

Ben Jabeur et al. [13] define Twitter influencers as “active actors who have the ability to
spread information and inspire other people in the network”. According to their definition,
an influencer on Twitter is a user that is able to gain many reweets for his published tweets.
Then, they propose InfRank algorithm to rank Twitter users by their opportunity to be
retweeted. Similarly the work of Sung et al. [86] proposes an interaction ranking measure,
called InterRank, that improves the PageRank measure by considering not only the follower
relationship of the network but also the topical similarity between Twitter users.

The work of [76] study the influence of the “information value” of the tweet (content
criteria) and the “agent awareness” (context criteria) on the retweeting decision. They found
that both the content and the context criteria of the tweet leads to its retweeting. The work
of Azaza et al. [6] introduces an influence measure for Twitter users. We will detail this
work in the next section as they used the theory of belief functions to identify influencers.
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2.3.2 Evidential influence measures

In the literature, there are some recent works that use the theory of belief functions to model
the uncertainty while measuring the user’s influence in online social networks. Appendix
A is an overview of the theory of belief functions and its basic concepts. Also, Appendix
B details the used graph theory concepts. In this section, we present a review of evidence
theory-based works that we find close to our work.

The work of Wei et al. [94] was among the first works that use the theory of belief
functions to estimate the user’s influence in social networks. This work presents an evidential
centrality (EVC) measure that combines “the degree and strength of every node in a weighted
network” and tries to find a trade off between them. The method starts, first, by estimating
two BBA distributions for each user, u, on the frame {high, low} where high for high
influence and low for low influence. The first BBA to represent the degree, mDu , and the
second BBA for the strength, m$u , as follows:

mDu (high) =
Du −Dmin

µ
(2.12)

mDu (low) =
Dmax −Du

µ
(2.13)

m$u (high) =
$u −$min

ν
(2.14)

m$u (low) =
$max −$u

ν
(2.15)

where Du, Dmin and Dmax are, respectively, the degree centrality of u, the minimum degree
and the maximum degree in the network. Besides, $u, $min and $max are, respectively,
the strength of u, the minimum strength and the maximum strength in the network. Finally,
µ = Dmax −Dmin + ε1, ε1 ∈ [0, 1] and ν = $max −$min + ε2, ε2 ∈ [0, 1]. In a second step,
mDu and m$u are combined using the Dempster’s rule of combination:

mu = mDu ⊕m$u (2.16)

Finally, the evidential centrality of u is defined by the BBAmu (more details about centrality
measures can be found in appendix B). An extension of this measure was, later proposed by
Gao et al. [35]. In fact, they propose a centrality measure with a similar spirit as EVC. They
modified the EVC measure according to the actual degree of the node instead of following
the uniform distribution, also, they extended the semi-local centrality measure [22] to be
used with weighted networks. Their centrality measure is the result of the combination of
the modified EVC and the modified semi-local centrality measure. The work of [35] is similar
to the work of [94] in that, they used the same frame of discernment, their approaches are
structure based, and they choose the influential nodes to be top-1 ranked nodes according
to the proposed centrality measure.

Azaza et al. [6] introduces an influence measure for Twitter. They consider three
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different types of relationships on Twitter: Retweet, Mention and Reply. For each of these
they estimated a BBA distribution defined on the frame Ω ={Very weak, Weak, Average
Enough, Average, Strong Enough, Strong, Very Strong, Extremely Strong}. Also, they
presented a modified version of the conjunctive combination rule [81] in which they take
into account a subset of 2Ω. Next, they used the defined combination rule to combine their
BBAs on a preselected subset of 2Ω. Finally, the user’s influence class (Very weak, Weak,
etc) is obtained from the prignistic probability that results from the pignistic transformation
of the combined BBA. The purpose of the work of [6] was to classify Twitter users according
to their influence class and not to quantify their influence.

2.3.3 Other influence measures

In the literature, there exist many ways to quantify the user’s influence in a social network.
We may find measures that need only the structure of the network. Those, generally, work
with most social networks. Other measures estimate the influence using some characteristics
of the online social network, we can take for example, the measures presented in section 2.3.1.
Those measures are adaptable for similar social networks, i.e. we can find some analogy
between them. A third category of measures tries to model the user’s past propagations in
the network. In this section, we give an overview of some interesting influence measures in
the literature.

Among the first influence measures that were introduced in the literature, we find the
measures that use a propagation model to simulate the propagation process of messages in
the network. The influence is defined as the number of users that have received the message
at the end of the propagation process. Such an influence measures were used, first, by Kempe
et al. [55].

Goyal et al. [40] introduced many methods that can be used to learn influence proba-
bilities from past propagation. In their paper they consider the static case, the continuous
time case and the discrete time case. In this document, we consider the static case, for more
details the reader can refer to [40]. Let Acu be the number of actions performed by the user
u, Acu&v the number of actions performed by u and v, Acu|v the number of actions per-
formed by u or v and Acu2v the number of actions propagated from u to v. An action here
may be posting a message for example. We choose to present two static models which are
the Bernoulli distribution and the Jaccard index. In the Bernoulli distribution, the authors
interpreted each propagation (successful attempt) as Bernoulli trial and they compute the
maximum likelihood of success probability as:

ρ (u, v) =
Acu2v

Acu
(2.17)
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They also adapted the Jaccard index to estimate the influence probability as follow:

ρ (u, v) =
Acu2v

Acu|v
(2.18)

In the next section, we move on to the problem of influence maximization, and we
present some of the existing influence maximization models that we find interesting.

2.4 Influence maximization

Measuring user’s influence is useful to identify influencer users in a social network. However,
the influence maximization problem consists of choosing from influencer users those that are
able to influence the maximum proportion of users in the network. To resolve this problem
we have two main challenges, the first one is about the estimation of the user’s influence in
the network and the second challenge consists in finding the set of users that maximize the
influence.

In previous sections, we reviewed some existing works on information dissemination
and measuring influence in online social networks. In this section, we survey many influence
maximization models. First, we introduce influence maximization models that use a diffusion
model in their process. Second, we present data-based maximization models. Then, we focus
on maximization models that consider the opinion in their process. Next, we introduce the
used maximization algorithms in the literature. After that, we talk about an interesting
application of the influence maximization problem which is the Viral Marketing. Finally, we
present a discussion of the state of the art of this problem.

2.4.1 Diffusion models-based influence maximization

In this section, we present influence maximization models that use an information propa-
gation model in their maximization process (more details about propagation models can be
found in section 2.2). Domingos and Richardson [30] were the first to introduce the problem
of identifying influencers for a marketing campaign as a learning problem. They modeled
the customer’s network value, i.e. “the expected profit from sales to other customers he may
influence to buy, the customers those may influence, and so on recursively” [30]. Further-
more, they modeled the market as a social network of customers. Later in 2003, Kempe et
al. [55] formulated the influence problem as an optimization problem. Also, they proved the
NP-Hardness of their models. Besides, they assumed that they have the social network, and
influence probabilities extent to which each individual influence one another. Their issue is
to find/choose a set of influential individuals that maximizes the spread of the marketing
message within the network.
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Given a social network G = (V,E), V is a set of vertices, E is a set of edges and
a diffusion model M , the influence maximization (IM) problem is to select a set S of k
influential users (called seed set) that maximizes the awareness of the “product” over the
social network G [55]. In other words, it is the problem of choosing S seed nodes that
maximize the expected number of influenced nodes, σM (S). To estimate σM (S), Kempe et
al. [55] propose the use of the classical propagation models ICM and LTM (refer to section
2.2.1 for more details about ICM and LTM). Besides, they prove that maximizing σM is a
NP-Hard problem, also, σM is monotone and submodular, the reader can refer to section
2.4.4 for more details about useful maximization models in such a case. To maximize σM and
extract seed nodes, the authors used the greedy algorithm with the Monte Carlo simulation.

In the literature, many works were conducted to improve the running time when con-
sidering ICM and LTM. Leskovec et al. [60] introduced the Cost Effective Lazy Forward
(CELF) algorithm. CELF is a greedy based solution that exploits the submodularity prop-
erty of the function to be maximized. It is proved to be 700 times faster than the solution of
[55]. More details about CELF algorithm can be found in section 2.4.4. Kimura and Saito
[59] proposed the Shortest-Path Model (SPM) which is a special case of the ICM. In SPM,
shortest paths are considered in the activation process. In fact, an inactive node u have the
chance to be activated only through the shortest path from the seed set. Bozorgi et al. [16]
considered the community structure, i.e. a community is a set of social network users that
are connected more densely to each other than to other users from other communities [101],
in the influence maximization problem. In fact, Bozorgi et al. [16] used the LTM to find the
influencers within each community. Those are called local influencers. Next, they estimate
the global influence, i.e. on the whole network, of those users using LTM. The influence of
a given node is a combination between its local and global influence. Finally, they select a
set of influencers that maximizes the influence in the network.

We also find other extensions of the basic models that search to improve the quality of
the selected influencers or that consider some other important parameters. Wang et al. [92]
introduced the Weighted Independent Cascade (WIC) model, which is an extension of ICM
that considers attributes on the nodes of the network. The main purpose of the WIC model
is to maximize the value of the influenced nodes. The values of the nodes are defined by
their attributes. These attributes may model the ability of a given user to buy the product.

2.4.2 Data-based influence maximization

A data-based model is a model that uses social network data in addition to the network
structure. The social network data may contain user profiles, messages, past propagation,
etc. Works of [40] and [41] propose to use past propagation to learn their models. Besides
the network structure, G = (V,E), they used an action log L that is defined as the set
of tuples (User (u) , Action (a) , T ime (t)) such that (u, a, t) ∈ L means that the user u



22 Chapter 2. Information diffusion and influence maximization

performed the action a at time t [41]. Past propagation is extracted from the action log L.
Indeed, if we have (u, a, t1) ∈ L, (v, a, t2) ∈ L, t1 < t2 and (u, v) ∈ E, we say that the action
a propagates from u to v. The work of [40] was detailed in section 3.3.

The Credit Distribution (CD) [41] is, also, a data-based model that investigates past
propagation to detect influencers. It uses past propagation actions to associate an influence
credit to each user in the network. The reader can refer to Figure 2.4 for illustration.
Indeed, the figure shows that CD takes two main inputs which are the network structure
and propagation log. It uses these inputs to estimate the influence. In fact, the influence
spread is defined as the total influence credit given to a set of users S from the whole
network. The idea behind this algorithm is when an action a propagates from a user v to a
user u, a direct influence credit γv,u (a) is given to v. Also, a credit amount is given to the
predecessors of v in the propagation graph. The total credit of a user v is defined as follows:

Γv,u (a) =
∑

u1∈Din(u,a)

Γv,u1
(a) γu1,u (a) (2.19)

where Γv,v (a) = 1 and Din (u, a) is the set of in-neighbors of u that performed the action
a. They also defined the credit given to a set of nodes as:

ΓS,u (a) =

1 if u ∈ S∑
u1∈Din(u,a) ΓS,u1

(a) γ
u1,u

(a) otherwise
(2.20)

The total influence credit given to v by u and the total influence credit given to S by u are
defined, respectively, as follows:

∆ (v, u) =
1

| Au |
∑
a∈Au

Γv,u (a) (2.21)

∆ (S, u) =
1

| Au |
∑
a∈Au

ΓS,u (a) (2.22)

such that Au is the set of actions made by u. Finally, the total influence credit given to S
is defined as:

σCD (S) =
∑
u∈V

∆ (S, u) (2.23)

Authors [41] demonstrated that σCD is monotone and sub-modular, then, it can be maxi-
mized using the CELF algorithm. Also, they proved that the marginal gain of a given node
u with respect to S is:

σCD (S + u)− σCD (S) =
∑
a∈A

(
(1− ΓS,u (a))

∑
v∈V

1

Au
ΓV−Sv,u (a)

)
(2.24)

The first step of the credit distribution algorithm consists of scanning the action log L
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Figure 2.4: Credit distribution model [41]

to compute Γv,u (a). The set of seed nodes, S, is initialized to ∅. In the second step, CD
runs up the CELF algorithm to select a node with the maximum marginal gain (eq. (2.24)).
Then, the algorithm updates ΓS,u (a) and ΓV−Sv,u (a). Next, it loops the second step until
getting all needed seed nodes. For more details the reader can refer to [41].

The works presented above used the social network data to estimate the user’s influence
in the network. However, they omitted some characteristics that can be critical for the
influence maximization problem. Among these characteristics the topic of the message and
the trust or distrust between network users. Barbieri et al. [10] proposed topic-aware
influence propagation models. First, they extended ICM and LTM to consider the topic of
the message in the propagation process. Then, they ameliorated these models by considering
the user’s authoritativeness and interest in the topic instead of the user to user influence (such
the case of IC and LT models). Later, Aslay et al. [5] introduced INFLEX: a query based
system that gives a seed set in the social network for a given topic. Another characteristic
was considered which is the trust between users. In an interesting work, [1] proposed a new
diffusion model called Trust-General Threshold (TGT) model in which they considered the
trust and the distrust probabilities that were defined on the relationships between network
users. Besides, they introduced an influence maximization algorithm to select a seed set
from the trust network. The work of [70] proposed an extension of ICM that considers trust
and time factors in the maximization process.

2.4.3 Opinion-based influence maximization models

In sections 2.4.1 and 2.4.2, we reviewed two categories of influence maximization models,
the first one, only uses the network structure to predict the user’s influence while the second
category of models uses past propagation for the same purpose. In this section, we are mainly
interested in works that incorporate the user’s opinion in the influence maximization process
which is a relatively new idea. In fact, the user’s opinion is a critical factor in marketing and
social science. In the social psychology literature, the concept of positive-negative opinion
asymmetry was largely studied [87, 11]. These works agreed on the fact that negativity
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(negative events, ideas, news, etc) is always stronger than positivity (positive events, ideas,
news, etc). This fact was, also, shown in marketing science like the work of Cheung and
lee [24] that studied the impact of the negative electronic word of mouth (eWoM) on online
shops and they found that “negative eWoM has a significantly larger impact on consumer
trust and intention to the online shop”. These works prove the importance of the opinion in
the influence maximization process and especially the importance of selected seeds opinion.

The work of Chen et al. [23] was among the first works to incorporate the propagation
of negative opinion in ICM [55]. They said that the negative opinion is more contagious than
positive one, especially in people’s decisions. Also, they defined an interesting parameter
that models the quality of the product, called quality factor q, this parameter is used to
detect when a seed node turns from having a negative opinion to a positive one or the inverse
according to (1− q). Similarly, the study of [95] was one of the first attempts to focus, not
only, on one type of information, but also, on simultaneous spread of negative (like rumors)
and positive (like ideas and news) information. However, they did not consider the user’s
opinion towards the propagated product. Furthermore, the work of [98] studied the problem
of minimizing the influence of negative information (like rumors). Their main idea was to
detect a set of influencers that maximizes the spread of negative information and to block
them in order to minimize their influence.

On an interesting work, Zhang et al. [99] proposed the Opinion-based Cascading (OC)
model that takes positive opinions of users into consideration. They used the OC model to
maximize the positive influence by taking into account the user’s opinion and the change
of the opinion. They showed that the objective function of the OC model is no longer
submodular. Besides, they proved the NP-Hardness of their model. Then, they proposed an
approximation of the maximization results in a polynomial time. In a first step, OC ignores
all users that have a small potential marginal gain that is defined as:

PMG (v) = Op (v) +
∑

u∈Naout(v)

(Op (u) +Op (v) .w (v, u))

+
∑

u∈Niaout(v)

w (v, u)

θu
(Op (u) +Op (v) .w (v, u)) (2.25)

where Op (v) defines the opinion indicator of v such that:

• Op (v) = 0 means that v has a neutral opinion,

• Op (v) > 0 indicates that the opinion is positive,

• Op (v) < 0 the opinion of v is negative.

The sets Na
out (v) and N ia

out (v) are respectively, the sets of v’s active and inactive out-
neighbors. The parameter θu defines the activation probability of u. Finally, w (v, u) is
the weight associated to the edge (v, u). In the next step, OC iterates until getting k
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Figure 2.5: Signed social network example

seed nodes. In each iteration, the algorithm updates the activation status according to the
following condition:

∑
u∈Nain(v)

w (u, v) ≥ θv (2.26)

where Na
in (v) is the set of active in-neighbors of v. Also, it updates the opinion value of

each user according to his previously activated neighbors as:

Op (v) = Op (v) +
∑

u∈Nain(v)

(Op (u) .w (u, v)) (2.27)

Then, it chooses the user that stills in the top of the potential list. Li et al. [63] consid-
ered not only the friendship relations, but also foe relations in the influence maximization
problem. They extended the IC model of Kempe et al. [55] and proposed a Polarity-related
Independent Cascade (P-IC) model. P-IC is useful to select seeds with maximum positive
influence or maximum negative influence. P-IC works with a signed social network in which
we find positive relations (1) to model friendship or trust and negative relations (−1) to
model foe or distrust.

Example 4. Figure 2.5 shows an example of a signed social network. In this figure, we
have v3 trusts v1 and distrusts v6. �

Similarly, Wang et al. [91] mined positive influencer form signed social networks. They
proposed an extension of the Linear Threshold model of Kempe et al. [55] by incorporating
two parameters which are the user’s attitude to the product, att ∈ [−1, 1], and a link
parameter, lp ∈ {−1, 1}, that indicates if it is a positive or negative relationship.

All of these recent works assumed that positive and negative influence probabilities are
known and given to the influence maximization algorithm as input. This is, obviously, not
the case in real-world social networks. Therfore, some preprocessing is needed to close the
gap between the model and the real data [41].
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2.4.4 Maximization algorithms

In the influence maximization process, we have two main issues. The first one is: how to
estimate the user influence in the network? Some interesting solutions for this problem are
presented in previous sections. The second issue is: how to select the set of users that
maximizes the influence? In the literature, this last problem is shown to be NP-Hard.
The reader can refer to [55] and [41] for some examples of NP-Hardness proofs. In the
state of the art, we often found a common solution for this problem. In fact, this solution
consists of proving some specific characteristics of the objective function to be maximized
and then they use an adaptable optimization algorithm. In this section, we present the
popular greedy-based optimization solutions that performs a (1− 1/e)-approximation to
the optimal solution [72].

To use a greedy-based solution, the objective function σ has to be submodular and
monotone set function that is defined from the power set 2V to R where V is the set of
network nodes and 2V is the set of all subsets of V . The function σ is said to be submodular
if it satisfies a “diminishing returns” property which means that the marginal gain of adding
an element x to an input set S is at least as high as adding the same element to a superset
T of S as follows:

σ (S ∪ {x})− σ (S) ≥ σ (T ∪ {x})− σ (T ) (2.28)

whenever S ⊆ T ⊆ V and x ∈ V . Besides, σ is said to be monotonic increasing function if

σ (S) ≤ σ (T ) (2.29)

whenever S ⊆ T ⊆ V . A greedy-based solution can be adapted to maximize any monotone
submodular set function σ that has σ (∅) = 0. To maximize the influence in a social net-
work, the purpose is to select a set S of k influencer users that are able to trigger a large
cascade of adoption through the network. Kempe et al. [55] were the first to use the greedy
algorithm for influence maximization. The greedy algorithm (Algorithm 1) is very simple in
its principle. At each step, it estimates the marginal gain of each node, x ∈ V , with respect
to S. The marginal gain is defined as the gain in influence of a given node with respect to
the current S. Then, it chooses the node that has the maximum marginal gain until having
k nodes in S. The marginal gain of nodes is estimated using ICM or LTM in the work of
[55].

Another interesting greedy-based maximization solution was, later, proposed by Leskovec
et al. [60]. They introduced the Cost-Effective Lazy Forward algorithm (CELF). CELF (al-
gorithm 2) exploits the submodularity property of the objective function to minimize the
number of calls of the marginal gain function. In fact, submodularity guarantees that the
marginal gain decreases with the solution size. Then, instead of estimating it for each ex-
pected node at each iteration as the basic greedy algorithm do, CELF computes the marginal
gain, for all nodes, in the first iteration and keeps an ordered list of them according to their
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Algorithm 1: Greedy algorithm
begin

S = ∅;
// S is the set of seed nodes
while | S |≤ k do

u← argmaxx∈V/SmarginalGain(x);
S ← S ∪ {u};

marginal gain for next iterations. In the next iteration, the algorithm pulls off the top node
in the list (that has the current maximum marginal gain) and re-estimates its marginal gain,
next, if the top node maintains its position in the list (still in the top), then it will be chosen
and added to S, otherwise CELF re-evaluates the marginal benefit for the new top node
and so on. This algorithm is up to 700 time faster than the basic algorithm [60] and it gives
the same approximation guarantee.

An amelioration of CELF was, later, proposed by Goyal et al. [42], called CELF++.
This extension reduces again the number of calls of the marginal gain function. Then,
CELF++ improves the efficiency of the CELF algorithm by about 35%-55%. The idea
behind this algorithm is that it maintains for each node a tuple of the form
(u.mg1; u.prevBest; u.mg2; u.flag) where u.mg1 is the marginal gain of u under the current
S, u.prevBest is the node with the maximum marginal gain in the current iteration that
was examined before u, u.mg2 is the marginal gain of u.prevBest and u.flag is the iteration
number when u.mg1 was last updated. At each iteration of the algorithm, if the node
u.prevBest is chosen as a seed node in the current iteration then there is no need for
estimating the marginal gain of u in the next iteration.

Algorithm 2: CELF algorithm
begin

S = ∅;
// S: the set of seed nodes
Q = ∅;
// Q: sorted list of nodes in decreasing order according to their

marginal gain
foreach u ∈ V do

marginalGain(u);
// a function that estimates the marginal gain of u with respect to S
Q.add(u);

while | S |≤ k do
v ← Q.pop();
marginalGain(v);
if v.MG ≥ Q.getF irst().MG then S.add(v);
else Q.add(v);
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2.4.5 Influence maximization application: Viral Marketing

With the ever-increase of social networks, marketers have turned to alternate strategies,
including Viral Marketing. It is one of the most popular application of the influence max-
imization problem. In fact, the main purpose of the influence maximization problem is to
detect a set of k influencers in a social network that are able to trigger a large cascade of
influence. This set of influencers is the set of the first users (called seeds) that will receive
the Viral Marketing message in order to propagate it through the network. In fact, in a
Viral Marketing campaign, the marketer needs to know some influencers for his campaign.
Next, he tries to convince them to send Viral Marketing messages, related to the company,
the brand or the product, triggering, thus, a cascade of influence by which friends will rec-
ommend intentionally or unintentionally the product to other friends and many individuals
will, ultimately, adopt it.

The Viral Marketing takes its name from the spread of viruses or computer viruses as it
uses a viral propagation to promote its messages. A classic example of this phenomenon is
the example of Hotmail email service [54]. In fact, Hotmail had very fast adoption of a Viral
Marketing strategy and reported a significant rise of its business from influence propagation.
It gains 18 million users in 12 months, spending only $50,000 on traditional marketing which
is a miniscule advertising budget. The strategy adopted by the Hotmail company was very
simple, they, just included into each sent email a simple promotional message like ‘PS: We
love you! Get your free email at Hotmail,’ 1

In this document we are interested in the influence maximization problem. In fact, our
main purpose is to propose new solutions for this problem in order to improve the quality
of selected seeds. We choose the Viral Marketing to be an application for the proposed
solutions.

2.4.6 Discussion

In this section, we focused on the reviewing of influence maximization models. We classified
them into three classes, in the first one, we presented basic models that use an information
propagation model to estimate the user’s influence in the network, like ICM and LTM [55].
The second category of models uses past propagation in the network to predict the user’s
influence, like the CD model [41]. Finally, in the third category we reviewed influence
maximization models that considered the opinion in their process.

In Table 2.1, we give a summery of some relevant influence maximization models and
their limitations. We found that the most common limitations are related to the parameters
of the model that are generally supposed to be given as explicit parameters. For instance,

1Matt Janaway, Want to Hack Serious Business Growth? Do a Lean Start Up!, published on April 4,
2016, Seen on June, 13, 2016
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the works of [55], [23] and [91] supposed to have the user influence values. A second common
limitation is related to the user’s opinion about the product. This parameter was omitted in
[55], [23], [1] and [41]. On the other hand, we found that the opinion parameter is considered
only in the work of Zhang et al. [99]. However, they assumed to have the user’s opinion as
input. We find the opinion in some other works, but they use a signed network that models
generally the trust and distrust between users, like the work of [91], or they consider only
the negative opinion like [23]. Other existing works, assume implicitly the positive opinion
of all network users as they do not consider the opinion in their process. In Chapter 3 of this
thesis, we propose some solutions to handle these problems and to ameliorate the quality of
selected seeds.

Table 2.1: Limitations of existing influence maximization models

Work Description Limitation

Kempe et al. [55] They proposed a greedy
algorithm for the spread
of influence through a
social network.

• Overlooked the user’s
opinion in the influence
process.

• The probability of
influence is defined
randomly.

Goyal et al. [41] They used past
propagation to estimate
the influence spread of
users, and they used a
greedy based solution to
maximize the influence.

• Overlooked the user’s
opinion in the influence
process.

Chen et al. [23] They incorporated
negative opinions and
their propagation in
influence maximization.

• The probability of
negative opinion is known
and given as an explicit
parameter.

• Overlooked the learning of
influence and opinion
probabilities.
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Work Description Limitation
Ahmed et al.[1] They considered the trust

and distrust relationships
in their influence
maximization model.

• Overlooked the user’s
opinion in the influence
process.

Zhang et al. [99] They incorporated the
spread of positive
opinions in the influence
maximization problem.

• Only positive opinions are
considered in the influence
maximization problem.

• The probability of positive
opinions is known and
given as an explicit
parameter.

Wang et al. [91] They proposed an
extension of the Linear
Threshold model to mine
positive influencer form
signed social networks.

• Influence probabilities of
nodes and nodes
thresholds were randomly
generated.

• Used a signed network to
model the opinion.

2.5 Social message classification

In this section, we consider another important problem in the context of social networks
analysis fields which is the problem of social message classification, i.e. we call a social
message, a message that is sent or published through an online social network. In fact, we
propose new solutions for this problem in which there are no need for the content of the
message neither for external sources of information. In this section, we review some social
message classification approaches that we find useful and interesting.

Sriram et al. [85] classified tweets to a set of generic classes which are “News”, “Events”,
Opinions”, “Deals” and “Private Messages”. For this purpose they defined a set of features
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extracted from the tweet and the author’s profile, then for each tweet they have a value for
each feature. In the classification step, they used the classical Naive-Bayes classifier and they
got better results than traditional methods. Similarly, Zubiaga et al. [102] classified tweets
into the following classes: news, ongoing events, memes (funny or attractive tweets), and
commemoratives (congratulating a birthday for example). They defined a set of 15 features
to characterize each tweet and they used the Support Vector Machines classifier [52] to
identify the class of each tweet. The advantage of this solution is that it is indpendent to
the language of the tweet.

Another solution was proposed for short text clustering that uses not only the short
text content but also an additional set of items that is extracted from an external source
of information like Wikipedia and WorldNet2. Banarjee et al. [9] proposed a clustering ap-
proach that uses Wikipedia to enrich the content of a given social message before classifying
it. The idea behind this solution is that for a given message they retrieve the top match-
ing Wikipedia articles to that message. Then, they used the titles of these articles as an
extra feature in the clustering step. Similarly, Hu et al. [47] introduced a solution for short
text clustering that uses internal information from the short text and external information
from Wikipedia and WorldNet. First, they process the short text to extract phrases, i.e. a
set of words that produce a grammatical unit like the noun phrase “the year” for example,
that are called seed phrases. These seed phrases are next used to extract external features
from Wikipedia. When the phrase does not contain sufficient non-stopwords3, authors use
the WordNet to enrich that phrase. Finally, all extracted features are used together in the
clustering step.

Social messages are also classified for sentiment analysis and opinion mining purposes.
In this case, the task is to identify the dominant opinion about a product or a brand using
text mining techniques. Mostafa [71] used 3516 tweets to identify costumer’s sentiment
about some well known brands. He et al. [46] used text published on Twitter and Facebook
to analyze the opinion about three chain of pizza. Lo and Potdar [67] and Othman et al.
[74] presented a survey of existing opinion mining and sentiment analysis approaches.

Social message classification approaches presented in the literature are generally based
on the content of the information and text mining techniques. In fact, they usually define a
set of features that are extracted from the social message and sometimes enriched with some
external features from Wikipedia for example. With these solutions, one always needs at
least the content of the message to classify it. However, in online social networks the content
of the message is not always available. Besides, it is very frequent to find very short messages
that may contain one or two words or only special characters, e.g. tweets on Twitter are
short messages. In such cases, existing classification approaches always fail to find the class
for the social message. As a consequence, using a traditional text classification technique

2https://wordnet.princeton.edu/
3Stop words are words that do not contain important significance to be used as a feature like “a”, “about”,

“after”, etc.
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to classify tweets, like the “Bag-Of-Words” method, fail to achieve good classification rates
due to the message shortness. In chapter 5, we propose a classification approach for social
messages that does not need the content of the message to classify it. The proposed approach
may be used together with existing ones in order to predict, as accurate as possible, the class
of the social message.

2.6 Conclusion

In this chapter, we give an overview of the state of the art of some social network analysis
axes to which we contribute with new solutions. In the first place, we review information
propagation models. We classify them into two main categories, in the first one we review
basic models like ICM and LTM and in the second one we give a summary about epidemic
models.

In a second axis, we presented an overview of existing influence measures. In fact, we
mainly reviewed influence measures that are designed for Twitter and those that use the
theory of belief functions. We found that most of Twitter influence measures use an existing
Twitter metric, like indegree, number of mentions, etc, to identify influencers. Whereas, the
use of only one metric is not sufficient for influencers identification. On the other hand, we
need an influence measure for Twitter users that consider many influence aspects on Twitter.
In the Chapter 3, we present a measure that takes all these points into account. Besides,
we introduce three extensions of the proposed evidential measure of influence in which we
consider the user’s positive and negative opinion.

The next axis that we review in this chapter, is about influence maximization models.
In fact, we present three categories of models: first, we review basic models that use an infor-
mation propagation model in their process. Second, we present the influence maximization
models that use past propagation in the network to estimate user’s influence. Finally, in
the third category, we review the models that consider the opinion in their process. In the
Chapter 3, we introduce two new influence maximization models that work well with the
proposed influence measures. Moreover, in the Chapter 4, we present some cases study that
show the performance of the proposed influence measures and maximization models.

Finally, the last research axis we discussed in this chapter is about social message
classification. Indeed, we presented some of the existing approaches for this purpose. The
problem of social message is its shortness which makes a new challenge to text classification
techniques. In the Chapter 5 of this document, we introduce new classification algorithms
that use the propagation traces of the message instead of its content in the classification
process.
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Summary

The previous chapter is, mainly, dedicated to the state of the art of the information diffusion,
the influence maximization and the social message classification. Indeed, we presented some
of the relevant research works that treat these problems. In this chapter, we consider an
important problem in the context of social networks which is the influence maximization. It
is the problem of selecting a set of influential users in the social network. Those users could
adopt the product and trigger a large cascade of adoptions through the “word of mouth” effect.
To resolve this problem, we propose four influence measures and two influence maximization
models that we detail in this chapter. These solutions will be evaluated in the next chapter.
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3.1 Introduction

Viral Marketing exploits existing social networks and sends marketing messages, related to
a company, brand or product, triggering, thus, a cascade of influence by which friends will
recommend intentionally or unintentionally the product to other friends and many individu-
als will ultimately adopt it. Hotmail and Yahoo had very fast adoption of a Viral Marketing
strategy and reported a significant rise of their business from influence propagation through
social networks. Hotmail gains 18 million users in 12 months, spending only $50,000 on
traditional marketing [54], while Gmail rapidly gains users although referrals are the only
way to sign up.

The influence maximization in online social networks (OSN) presents two main chal-
lenges: the first challenge is about data imprecision1 and uncertainty2. In fact, OSNs allow
only a limited access for their data, e.g. Twitter API3 allows a limited number of requests
per hour, which generates more imprecision and uncertainty for the social network analysis
research fields. Then, if we ignore this imperfection of the data, we may be confronted to
obtain erroneous analysis results. The second challenge is about the diversity of influence
markers and parameters. Indeed, it is important to combine all of them to obtain a global
influence measure that considers all these parameters and takes into account the data im-
perfection and the conflict that may exists between influence markers. In such a situation,
the theory of belief functions [26, 79] has been widely applied. We find it used, for example,
in some related research fields like pattern clustering [28, 66] and classification [65]. Further-
more, this theory was used for analyzing social networks [94, 35, 51, 50, 100]. More details
about the evidence theory can be found in Appendix A.

Existing influence maximization solutions, generally, ignore many interesting influence
aspects. In fact, we notice that most existing solutions use only the network structure to
identify the influencers [55, 23, 99, 57]. However, the network structure is not sufficient
for this task [41]. In fact, we can commonly fall on inactive users that are well positioned
in the network. Then, there is a need for influence maximization solutions in which we
consider more influence aspects like the user’s activity in the network. Another important
parameter of this problem is the user’s opinion. In fact, this parameter is not considered in
most existing works. In fact, we find some works that consider the opinion in their model.
However, it is not always an opinion about the Viral Marketing campaign. Hence, comes
the need for new solutions that consider the user’s opinion.

The main contributions presented in this chapter are the following: first, we propose a
new influence measure for Twitter that combines many influence aspects. We note that the
proposed measure can be adapted to other social networks. This measure is a first part of

1The imprecision of the information is characterized by its content. In fact, it is related to the information
or to the source. It measures a quality issue of the knowledge.

2The uncertainty of the information characterizes the degree of its conformity to the reality. Therefore,
an uncertain information describes a partial knowledge of the reality.

3https://dev.twitter.com/



3.2. Evidential measure of influence for Twitter 35

the subject of the paper Jendoubi et al. [49]. The second contribution is an amelioration of
the proposed influence measure. Then, we propose a set of measures that take into account
the user’s opinion about the product. Furthermore, we introduced three viral marketing
scenarios that are adapted to the proposed measure. The first scenario looks for influencers
having positive opinion. A solution for this first scenario has been published in Jendoubi et
al. [48]. The second scenario looks for influencers having a positive opinion and that exert
more influence on positive users and the third scenario is about influencers having a positive
opinion and that exert more influence on negative users. A third contribution is about
influence maximization. In fact, we introduced two greedy-based influence maximization
models. These models are a second part of the subject of the paper Jendoubi et al. [49].

This chapter is organized as follows: Section 3.2 introduces a new evidential measure
of influence. Section 3.3 presents three Viral Marketing scenarios and proposed influence
measures for them. Section 3.4 explains the influence maximization models and the greedy
based algorithm which we use to get a seed set of influencers. Finally, section 3.5 is a set of
running examples that explains more and compares the behavior of the proposed influence
maximization solutions.

3.2 Evidential measure of influence for Twitter

In the literature, influence in Twitter was widely studied. However, most of existing works
either try to study Twitter users’ behavior or use existing Twitter metrics like indegree and
the number of mentions to identify influencers. In this section, we introduce a new influence
measure for Twitter. The influence estimation process is as follows:

• In a first step, we assign to each influence aspect a weight and for each link (u, v) in
the network, we attribute a vector of weights that has the form (wf , wm, wr). This
step is detailed in section 3.2.1.

• In a second step, for each link weight, wx (u, v) ∈ {wf (u, v) , wr (u, v) , wm (u, v)},
(u, v) ∈ E, we use the theory of belief functions (see Appendix A) to estimate a BBA
distribution, defined on the frame of discernment Ω = {I, P}, I for an influencer and
P for a passive user. This step is detailed in section 3.2.2.

Consequently, we obtain, for each link, three influence BBA distributions that represent
follow, mention and retweet beliefs respectively. To get a measure that contracts these
BBAs, we combine them using the Dempster’s rule of combination (equation (A.19) in
Appendix A). Then, we obtain a BBA, mΩ (u, v), that models the influence of u on v. The
proposed influence measure will be, after, used with an influence maximization model for
Viral Marketing perspective [49].
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Figure 3.1: Weight vector between u and v.

3.2.1 Link weights estimation

Twitter social network is a multi-relational network that allows an explicit and many implicit
relationships between users. In this work, we are mainly interested in the follow relation
which is explicit and two implicit relations which are the mention and the retweet. We
consider these relations as influence indicators and we use them to estimate the amount of
influence that exerts u on its neighbor v. In Twitter, two users u and v can have a follow, a
mention and/or a retweet relation between them. To model this property, we assign to each
of those a weight and we attribute to each link (u, v) a vector of weights that has the form
(wf , wm, wr) as shown in Figure 3.1. The defined weights can be explained as follows:

• The follow weight wf measures the strength of the followership between u and v, i.e.
wf measures the fact that u still receives v’s tweets even if the direct followership
relation is broken, via intermediary users between them.

• The mention weight wm weights information exchange between users u and v. Indeed,
when u mentions v in a tweet then this second (v) will receive directly the message.
This behavior emphasizes direct communication between Twitter users.

• The retweet weight wr represents the information diffusion and influence weight be-
tween users, in fact, more v retweets from u more it is influenced by u [13].

Let G = (V,E) be the social network where V is the set of nodes and E is the set of links.
Ben Jabeur et al. [13] proposes a measure to estimate each of these weights. Let Scu ⊆ V

be the set of immediate successor of u ∈ V , Pcu ⊆ V the set of immediate predecessors of
u, Tcu the set of tweets of u, Rtu (v) the set of tweets of u that were retweeted by v ∈ V ,
Mtu (v) the set of tweets of u in which v was mentioned and Mtu the set of tweets in which
u mentions any user in the network except himself. According to Ben Jabeur et al. [13], the
weights wf , wm and wr of the link (u, v) ∈ E are estimated using the following measures:

wf (u, v) =
|Scu ∩ Pcv|+ 1

|Scu|
(3.1)

wm (u, v) =
|Mtu (v) |
|Mtu|

(3.2)

wr (u, v) =
|Rtu (v) |
|Tcu|

(3.3)
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Figure 3.2: Follow weight example

These measures propose to estimate the link weights at the level of the source of the link,
i.e. the divisor is always related to the source. The measures defined by Ben Jabeur et al.
[13] are not suitable for our case. Indeed, in the case where the source of the link, u, has
few successors, i.e. small Scu, then its out links will get high follow weights and the same
goes for mention and retweet weights. This fact causes erroneous results in the next steps.
In fact, we may be confronted to obtain users that have high influence value, but they are
not influencers, i.e. with small values of |Scu|, of |Mtu| and of |Tcu|.

Example 5. Let’s take the example in Figure 3.2. If we use the equation (3.1) to estimate
wf (u1, u2), we will obtain wf (u1, u2) = 1. �

To remedy this problem, we modify these definitions to estimate the links weights with
respect to the whole network as follows:

wf (u, v) =
|Scu ∩ Pcv|+ 1

|Scmax|
(3.4)

wm (u, v) =
|Mtu (v) |
|Mtmax|

(3.5)

wr (u, v) =
|Rtu (v) |
|Tcmax|

(3.6)

such that:

|Scmax| = max
u∈V
|Scu| (3.7)

|Mtmax| = max
u∈V
|Mtu| (3.8)

|Tcmax| = max
u∈V
|Tcu| (3.9)

After computing the three weights for each link in the network, we move on to the node
level and we compute the three weights for each node, i.e. for each node in the network we
compute a follow weight, a retweet weight and a mention weight. Node weights are obtained
by summing its out links weights as:
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Figure 3.3: Network example

Link Wf Wm Wr

(u1, u2) 0.3 0.4 0.2
(u1, u3) 0.4 0.3 0.1
(u4, u1) 0.5 0.4 0.3

(a) Links weights

Node wf wm wr
u1 0.7 0.7 0.3
u2 0 0 0
u3 0 0 0
u4 0.5 0.4 0.3

(b) Nodes weights

Table 3.1: Links and nodes weights

wx (u) =
∑
v∈V

wx (u, v) (3.10)

where wx (u) ∈ {wf (u) , wr (u) , wm (u)} and wx (u, v) ∈ {wf (u, v) , wr (u, v) , wm (u, v)}.
In the formula (3.10), we use the sum function to aggregate user’s weights for its simplicity,
but it is possible to use another aggregation function like the mean [49].

Example 6. Let’s take the network example given in Figure 3.3, in this example, we have a
social network of four users related to each other by three links. Suppose that after applying
the process of link weights estimation described above for each link, we obtain weights given
in Table 3.1a. To compute each node weights, we sum up its outlinks weights, then the
follow weight of the node u1 is wf (u1) = wf (u1, u2) +wf (u1, u3) = 0.3 + 0.4 = 0.7. Nodes
weights are given in Table 3.1b.

In this section, we introduced a set of equations to estimate links and nodes weights from
Twitter data. These weights summarize the information that we have about the network
users, the links between them and their activity. In the next section, we use these weights
to estimate the influence in Twitter.

3.2.2 Evidential influence measure

In this section, we present the estimation process of the proposed influence measure that is
based on the defined weights in the previous section. We note that the proposed estimation
process can be adapted to any directed weighted social network, this point will be detailed
at the end of this section.
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Let Ω = {I, P} be the influence frame of discernment: I models the user’s influence and
P the user’s passivity, a user cannot be influencer and passive at the same time. We mean
by passivity the antonym of influence, i.e. when the user is not influencer at all. Besides,
let G = (V, E, W ) be a directed graph where v ∈ V, u ∈ V are nodes in G, (u, v) ∈ E is the
edge having u as a source and v as a destination and W is the set of weights vectors, such
that (wf (u, v) , wm (u, v) , wr (u, v)) ∈ W is the weight vector associated to (u, v). More
details about basic concepts of the graph theory can be found in Appendix B. The influence
estimation process contains three basic steps:

• Estimate a BBA distribution for each node in the network, this BBA summarizes many
influence aspects that are related to the node.

• For each node, use its estimated BBA (the result of step one) to update its in-links
weights.

• Use the updated weights to estimate a BBA distribution that contracts many influence
aspects.

Next, we detail these steps, their importance in the influence estimation process and their
impact on the resulting measure.

3.2.2.1 Step 1: Node level

In the node level step, the main purpose is to estimate a BBA distribution for each node in
the network using its weights values. We used the theory of belief functions to define the
BBA. The use of the evidence theory in this step is justified by the following properties:

1. The Dempster-Shafer theory allows its user to model various kinds of information
through a rich modeling framework.

2. The theory of belief functions provides powerful combination rules for information
fusion. In this step, we used the Dempster’s rule of combination in order to combine
the information that comes from the three influence parameters we defined.

3. The third property that justifies our choice concerns the conflict management. Indeed,
when we combine many pieces of information from different sources, we can face some
conflict between them, for example, one source may say that the user is an influencer
but another source says that he is passive. In such a case, the Dempster’s rule computes
the conflict and redistribute it on the focal elements.

Let Nminx = minu∈V wx (u) and Nmaxx = maxu∈V wx (u). For each node in the network, we
estimate a mass distribution for each variable, i.e. Follow, Mention and Retweet, using its
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weight. For each u ∈ V , and for each weight wx (u) ∈ {wf (u) , wr (u) , wm (u)}, we estimate
a mass distribution as follows [94, 35]:

mΩ
xu (I) =

wx (u)−Nminx
ϑx

(3.11)

mΩ
xu (P ) =

Nmaxx − wx (u)

ϑx
(3.12)

mΩ
xu ({I, P}) = 1−

(
mΩ
xu (I) +mΩ

xu (P )
)

(3.13)

where ϑx = Nmaxx −Nminx +α, α ∈ [0, 1] and ϑx ∈ {ϑf , ϑm, ϑr}. The mass value given to
the set Ω = {I, P} is the mass that can not be given to its singletons and it is called total
ignorance. At the end of this step, we have three BBA distributions defined on Ω, i.e. follow
BBA mΩ

fu
, mention BBA mΩ

mu and retweet BBA mΩ
ru , for each node in the network. Then,

we combine all these BBAs using the Dempster’s rule of combination (equation (A.19)):

mΩ
u =

(
mΩ
fu ⊕m

Ω
ru

)
⊕mΩ

mu (3.14)

Once mΩ
uu is computed, we apply the pignistic transformation on it. Then, we obtain

a pignistic probability distribution BetPΩ
u (the reader can refer to section A.4 for more

details). In this stage, we have a probability distribution for each node that reflects the
following influence aspects:

1. The importance of the user in the network structure. Indeed, the number of user’s
followers on Twitter network reflects his structural importance. In fact, more he has
followers, more he is important and his tweets interests more users.

2. The popularity of user’s tweets that is measured using the number of times where
user’s tweets are retweeted. In fact, the more the tweet is retweeted, more it propagates
through the network and more users read it.

3. The popularity of the user that is measured by the number of times the user was
mentioned in other users tweets. Indeed, we assume that more the user is mentioned
more he is popular in the network.

In the next step, we use the pignistic probability distribution for each node u, BetPΩ
u , to

update u in-links weights.

3.2.2.2 Step 2: Updating links weights

The main purpose of this second step is to consider the following assumption: “I am more
influencer if I am connected to influencer users”. This assumption means that when a given
user is connected to other influencer users, his personal influence increases. To take into
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Figure 3.4: Updating link weights

account this assumption, we update weights vector of each link in the network using the
estimated pignistic probability distributions defined on the link destination node:

w
′

x (u, v) = wx (u, v) .BetPΩ
v (I) (3.15)

where wx (u, v) ∈ {wf (u, v) , wr (u, v) , wm (u, v)} and
w

′

x (u, v) ∈
{
w

′

f (u, v) , w
′

r (u, v) , w
′

m (u, v)
}

is the vector of updated link weights. In this
equation, we ponder the weight value given to the influence link between u and v by the
influence pignistic probability of the destination node v, BetPΩ

v (I). Using the equation
(3.15), the influence of the node v will propagate to its in-neighbors as shown in Figure 3.4.
Then, if the influence of v is high, the weights of its in-links will maintain a high value from
their original amount and if the influence of v is low, the weights of its in-links will maintain
only a low value from their amount before the updating. Therefore, if a user u is connected
to many influencer users, then, his own influence will be consolidated using the proposed
equation.

In the next step, we move on to the link level and we estimate the influence that exerts
a user u on his neighbor v via the link (u, v).

3.2.2.3 Step 3: Link level

In this third step, we estimate the influence that exerts each user u on his neighbors in the
network. The theory of belief functions is used in the link level step for the same reasons as
the first step. In fact, this theory provides a powerful framework for information modelling.
Besides, it we have the choice between many combination rules while information fusion,
which allows the use of an adapted combination rule according to the information properties.
First of all, for each link (u, v) ∈ E and for each weight value,
w

′

x (u) ∈
{
w

′

f (u) , w
′

r (u) , w
′

m (u)
}
, we estimate a mass distribution, mΩ

x(u,v)
, on the frame

Ω = {I, P}, as follow:

mΩ
x(u,v)

(I) =
w

′

x (u, v)− Lminx
πx

(3.16)

mΩ
x(u,v)

(P ) =
Lmaxx − w

′

x (u, v)

πx
(3.17)

mΩ
x(u,v)

({I, P}) = 1−
(
mΩ
x(u,v)

(I) +mΩ
x(u,v)

(P )
)

(3.18)
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where:

Lminx = min
(u,v)∈E

w
′

x (u, v) (3.19)

Lmaxx = max
(u,v)∈E

w
′

x (u, v) (3.20)

πx = Lmaxx − Lminx + ε (3.21)

such that ε ∈ [0, 1] is used to model an imprecise knowledge by adding an amount of belief on
ignorance, i.e. the ignorance value is the mass on the set {I, P}, to model our uncertainty.
As a result, we have got three BBA distributions for each link (u, v) ∈ E, i.e. follow
BBA mΩ

f(u,v)
, mention BBA mΩ

m(u,v) and retweet BBA mΩ
r(u,v)

. In the next stage, we need
to combine these three BBAs into one. For that purpose, we use the Dempster’s rule of
combination (equation (A.19)):

mΩ
(u,v) =

(
mΩ
f(u,v)

⊕mΩ
m(u,v)

)
⊕mΩ

r(u,v)
(3.22)

Therefore, for each link (u, v), we obtain a mass distribution, mΩ
(u,v), that consider the

following influence aspects:

1. The strength of the link between u and v in the network structure that is measured
by the mean of the follow weight.

2. Information exchange and propagation activities between users that is considered
through mention and retweet weights respectively.

3. The fact of being more influencer if you are connected to influencer users.

Finally, we define the influence of the user u on his neighbor v as the amount of mass given
to the influence {I} as:

Inf (u, v) = mΩ
(u,v) (I) (3.23)

In this section, we introduced a new process for estimating the user’s influence in an
online social network for Viral Marketing perspectives [49]. We used Twitter as an example to
detail more the proposed process. However, the proposed influence measure can be adapted
for many other social networks, we just need to define link weights. In such a case, it is
possible to define only one weight for each link, then, we use the same process to estimate
the influence mass function. The only difference is that there is no need to combine. Also,
it is possible to define as weights as influence aspects we have, and the proposed process
remains always applicable. As a result, we get an influence measure that summarizes and
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combines all defined influence aspects. In the next section, we introduce new extensions of
the proposed influence measure in which we consider the user’s opinion about the product.
These extensions will be evaluated in the next chapter.

3.3 Opinion-based influence measures

In the previous section, we introduced a new evidential measure of influence for social
network users. The novelty of the proposed measure is that it is based on the theory of
belief functions to combine many influence aspects into one measure. In this section, we
incorporate a new important parameter in the proposed influence measure which is the
user’s opinion about the product. This parameter plays a crucial role in a Viral Marketing
campaign (more details about Viral Marketing can be found in section 2.4.5). In fact, if
a user u shares his negative opinion about a product, then all users that will receive the
opinion of u will have, at least, some doubt about the product and that in the case where u is
not influencer for them. In the case where u is an influencer user, then, his negative opinion
will be harmful for the product. This fact encouraged us to propose new influence measures
for online social networks that consider the user’s opinion. Details about the process we
used to estimate the user’s opinion from real messages can be found in section 4.3. Besides,
we introduce the following three scenarios of opinion based Viral Marketing:

1. First scenario, Positive influencers: in this scenario we look for influencers having a
positive opinion about the product. It is useful for marketers who are looking for
positive influencer spreaders. In this case, the marketer may want to avoid influencers
that have a negative opinion, and to target only influencer spreaders that have a
positive opinion. A solution for this scenario was published in Jendoubi et al. [48].

2. Second scenario, Positive influencers influencing positive users: the purpose in this
scenario is to find positive influencers that exert more influence on users having a
positive opinion about the product. It is destined to marketers who are interested
by influencer spreaders that have a positive opinion about the product and that are
connected to users having a positive opinion too. In such a case, the marketer may
want to boost the probability of success of his Viral Marketing campaign.

3. Third scenario, Positive influencers influencing negative users: the main goal of this
scenario is to detect positive influencers that exert more influence on users having
a negative opinion about the product. It is useful for marketers who are looking
for influencer spreaders that have a positive opinion about the product and that are
connected to users having a negative opinion. The marketing strategy here may be,
for example, to try to gain more customers by changing the opinion of users that have
a negative opinion.
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In this section, we detail the solutions we propose for each defined scenario. In fact, we
present two influence measures for each one. Then, we introduce the influence spread func-
tion. First of all, let’s define our framework. Let G = (V,E,W ) be a directed graph (the
social network) where V is a set of vertices, E is a set of directed links and W is the set
of weights vectors associated with each link. Let Θ = {Pos, Neg, Neut} be a frame of
discernment expressing opinion, Pos for positive, Neg for negative and Neut for neutral,
such that Pos, Neg and Neut are exclusive. Let Ω = {I, P} a frame of discernment ex-
pressing influence and passivity, I for influencer and P for passive user, a given user can
not be influencer and passive at the same time. Besides, we define a probability distribution
PrΘ

u on Θ to express the opinion of the user u ∈ V about the product. In fact, we estimate
the user’s opinion through his published messages (see section 4.3 for some details about
the estimation process), then, we can not be sure about the positivity, the negativity or the
neutrality of his opinion which justifies the use of a probability distribution to model the
opinion. Finally, we define a basic belief assignment (BBA) function mΩ

(u,v) on Ω to model
the influence that exerts the user u on v.

We transform the opinion probability distribution PrΘ
u to a mass distribution mΘ

u in
order to consider the uncertainty that may exist in the user’s opinion (see Appendix A for
more details about the used uncertainty theory). Indeed, to estimate the user’s opinion,
generally, we use machine learning tools that give a good approximation of the opinion but
not a certain one. For this reason, we propose to use the theory of belief functions to adjust
slightly the approximation errors. For this purpose, we create two simple BBA distributions
for PrΘ

u (Pos) and PrΘ
u (Neg). In fact, we take α value, the simple BBA parameter defined

in equation (A.7), equals to PrΘ
u (Pos) for the first BBA and to PrΘ

u (Neg) for the second
one. After this step we obtain two BBAs expressing the user’s positive and negative opinions
respectively. In the next step, we combine the resulting BBAs to obtain mΘ

u that expresses
the opinion of u. We will justify the choice of this transformation process in the next
chapter while presenting the opinion learning process (Section 4.3.1). Indeed, we show that
PrΘ

u (Pos) and PrΘ
u (Neg) come from independent sources. Next, we detail our solution for

each Viral Marketing scenario.

Positive influencers. The goal in the first scenario is to detect social influencers that
have a positive opinion about the product. In fact, we search to avoid negative influencers,
because targeting these users may have a harmful effect on the Viral Marketing campaign.
For example, the marketer wants to promote his product in an online social network. First,
he starts by identifying a set of influencers in the network that maximizes the total influence.
Second, he contacts them and tries to convince them to do some advertising for his product.
He may give the influencers a free product or a discounting in order to encourage them more
to do the advertising. If by chance he falls on some influencers that do not like his product,
what would be their reaction in such a case? Then we propose to avoid negative influencers
by detecting and targeting positive influencers. As defined in section 3.2, the mass value
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mΩ
(u,v) (I) measures the influence of u on v but without considering the opinion of u about

the product. We define the positive opinion influence of u on v as the positive proportion of
mΩ

(u,v) (I) and we propose two measures to estimate this proportion as:

Inf+
1 (u, v) = PrΘu (Pos) .mΩ

(u,v) (I) (3.24)

Inf+
2 (u, v) = mΘ

u (Pos) .mΩ
(u,v) (I) (3.25)

In equation (3.24), we weight mΩ
(u,v) (I) using PrΘu (Pos) to estimate the positive influence

[48], Inf+
1 (u, v), while in equation (3.25), we consider the uncertainty of the user’s opinion

and we use mΘ
u (Pos) to weight mΩ

(u,v) (I) to estimate Inf+
2 (u, v).

Positive influencers influencing positive users. In this second scenario, the goal is
to select among positive opinion influencers, those that are connected to and exert more
influence on positive users. We emphasize such a scenario is very useful in the Viral Market-
ing world, especially when the marketer wants to make his viral marketing campaign safer
by targeting users having a positive opinion. To detect positive influencers that influence
positive users, we define two influence measures by weighting Inf+

1 (u, v) and Inf+
2 (u, v)

using
(

1− PrΘv (Neg)
)
and

(
1−mΘ

v (Neg)
)
respectively as follows:

Inf++
1 (u, v) = PrΘu (Pos) .mΩ

(u,v) (I) .
(

1− PrΘv (Neg)
)

(3.26)

= Inf+
1 (u, v) .

(
1− PrΘv (Neg)

)
(3.27)

Inf++
2 (u, v) = mΘ

u (Pos) .mΩ
(u,v) (I) .

(
1−mΘ

v (Neg)
)

(3.28)

= Inf+
2 (u, v) .

(
1−mΘ

v (Neg)
)

(3.29)

The proposed measures, Inf++
1 and Inf++

2 , give more importance to the positive connec-
tion. Indeed, the values of

(
1− PrΘv (Neg)

)
and

(
1−mΘ

v (Neg)
)
emphasize the positive

opinion of u’s neighbor.

Positive influencers influencing negative users. In the third scenario, we emphasize
influencer users having a positive opinion about the product and that exert more influence
on negative users. For example, the goal in this case may be to gain more customers by
convincing negative users and make them change their opinion. Then, we define two influence
measures for this scenario that are based on those defined in the first scenario. In fact, we
multiply Inf+

1 (u, v) and Inf+
2 (u, v) with the non-positive proportion of v opinion using(

1− PrΘv (Pos)
)
and

(
1−mΘ

v (Pos)
)
respectively as:
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Inf+−
1 (u, v) = PrΘu (Pos) .mΩ

(u,v) (I) .
(

1− PrΘv (Pos)
)

(3.30)

= Inf+
1 (u, v) .

(
1− PrΘv (Pos)

)
(3.31)

Inf+−
2 (u, v) = mΘ

u (Pos) .mΩ
(u,v) (I) .

(
1−mΘ

v (Pos)
)

(3.32)

= Inf+
2 (u, v) .

(
1−mΘ

v (Pos)
)

(3.33)

The proposed measures, Inf+−
1 and Inf+−

2 , emphasize negative connections. In fact, the
values of

(
1− PrΘv (Pos)

)
and

(
1−mΘ

v (Pos)
)
give more importance to neighbors having a

negative opinion about the product.

To sum up this section, we introduce three new scenarios of viral marketing that can
arise. The first scenario is intended for marketers who are looking for influencer users that
have a positive opinion about the product (or the brand, etc) object of the viral marketing
campaign. The second scenario searches to detect influencer spreaders that have a positive
opinion about the product and exert more influence on positive users. In the third scenario
we target positive influencers influencing negative users. For each defined scenario, we
propose two influence measures in order to detect the targeted users. The proposed scenarios
are adaptable for many social networks. Indeed, we just need to choose an appropriate
opinion estimation process. In this thesis, we choose Twitter to be a validation example of
the proposed solutions. Then, we used an existing opinion estimation process adapted to
tweets. This process is introduced in secion 4.3.

3.4 Two influence maximization models

To maximize the influence in a social network, we need an influence maximization model. In
this section, we define the amount of influence given to a set of users, S ⊆ V , for influencing a
given user, v ∈ V . To estimate this amount we define two models. In fact, we introduce two
new influence maximization models, the first one is suggested to be used in the case where we
have a product with some quality issue, and the second influence model can be used in other
cases. The proposed models can be used with each influence measure introduced in this
chapter. Finally, we study the properties of the proposed models to choose an appropriate
approximation algorithm.

3.4.1 Measuring the influence of a set of users

We start this section by defining the amount of influence given to a set of nodes, S ⊆ V ,
for influencing a user v ∈ V . We present two estimation models. The first model considers
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the influence links directly connected to nodes in S. The second estimation model considers
directed influence links, like in the first method, and the intermediate nodes having a direct
influence link from S and a second influence link towards v. In other words, the second
method models the fact that says “my friend’s influencer is my influencer”.

Example 7. Let’s take the network given in Figure 3.5 as an example. In this network,
we have S = {u, w, x, w} and we want to calculate the influence of S on v. If we use the
first method, we consider the influence on the links (u, v) and (y, v). However, if we use the
second method, we consider not only the influence on the links (u, v) and (y, v), but also,
the influence on the links (x, z) and (z, v). �

Let M1 and M2 be the first and the second models respectively. We estimate the
influence of S on a user v as follows:

ΦM1 (S, v) =


1 if v ∈ S∑
u∈S

Inf (u, v) Otherwise
(3.34)

ΦM2 (S, v) =


1 if v ∈ S∑
u∈S

∑
x∈DIN (v)∪{v}

Inf (u, x) .Inf (x, v) Otherwise (3.35)

such that Inf (v, v) = 1 and DIN (v) is the set of in-neighbors of v. The work of Chen et al.
[23] justifies the two proposed models. In fact, they affirm that when the product have some
quality issues, it is more adaptable to choose influencers having many immediate neighbors.
In fact, when the influence propagates in many hops in the network, it may fall on a user
that dislikes the product. Besides, when the product has a high quality, we can choose users
that have a large reachable set.

Finally, we define the influence spread functions, σBelM1 (S), σBelM2 (S), under the two
proposed models, respectively, as the total influence given to S ⊆ V from all nodes in the
social network as follows:

σBelM1 (S) =
∑
v∈V

ΦM1 (S, v) (3.36)

σBelM2 (S) =
∑
v∈V

ΦM2 (S, v) (3.37)

In the spirit of the influence maximization problem, as defined by [55], σBelM1 (S) and σBelM2 (S)

are the objective functions to be maximized.
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Figure 3.5: Measuring influence example

3.4.2 Objective functions properties

In this section, we study the properties of the proposed objective functions in order to choose
the appropriate maximization algorithm. We demonstrate that the proposed functions are
monotone and submodular [49]. Before that, we define these two properties.

Definition 5. A monotone set function, σ, is a function between ordered sets that either
preserves or reverses the given order, i.e. σ (S) ≤ σ (T ) if S ⊆ T when x preserves the order
and σ (S) ≥ σ (T ) if S ⊆ T when σ reverses the order. In our case, we are interested in
increasing monotone set functions that preserves the given order.

Definition 6. A submodular set function, σ, is a set function that has a natural diminishing
returns property which means that the gain of σ when adding an element x to a superset T
is no more than the gain of σ when adding the same element to a subset S, S ⊆ T :

σ (S ∪ {x})− σ (S) ≥ σ (T ∪ {x})− σ (T ) , S ⊆ T (3.38)

The use of submodular monotone objective functions in the influence maximization field
is very common in the literature. For example, the following works used such a function in
their model [55, 56, 57, 41]. Next, we show that the defined objective functions are monotone
and submodular.

Theorem 1. σBelM1 (S) and σBelM2 (S) are monotone and submodular.

Proof. σBelM1 (S) and σBelM2 (S) are monotone

σBelM1 (S) ≤ σBelM1 (T ) , S ⊆ T (3.39)

σBelM2 (S) ≤ σBelM2 (T ) , S ⊆ T (3.40)

In fact,
∑
v∈V ΦM1 (S, v) ≤

∑
v∈V ΦM1 (T, v) and

∑
v∈V ΦM2 (S, v) ≤

∑
v∈V ΦM2 (T, v).
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σBelM1 (S) and σBelM2 (S) are submodular if and only if

σBelM1 (S ∪ {x})− σBelM1 (S) ≥ σBelM1 (T ∪ {x})− σBelM1 (T ) , S ⊆ T (3.41)

σBelM2 (S ∪ {x})− σBelM2 (S) ≥ σBelM2 (T ∪ {x})− σBelM2 (T ) , S ⊆ T (3.42)

i.e. the marginal gain of x with respect to T is no more than the marginal gain of x with
respect to S. To demonstrate the submodularity of the proposed objective functions, we
distinguish two cases. First, the case were x ∈ S, we have

σBelM1 (S ∪ {x})− σBelM1 (S) = σBelM1 (T ∪ {x})− σBelM1 (T ) = 0, S ⊆ T (3.43)

σBelM2 (S ∪ {x})− σBelM2 (S) = σBelM2 (T ∪ {x})− σBelM2 (T ) = 0, S ⊆ T (3.44)

In this case, the marginal gain of x in zero in all cases. Second, the case were x /∈ S, we
have

σBelM1 (S ∪ {x})− σBelM1 (S) = 1 +
∑

v∈V \S

Inf (x, v) (3.45)

σBelM1 (T ∪ {x})− σBelM1 (T ) = 1 +
∑

v∈V \T

Inf (x, v) (3.46)

σBelM2 (S ∪ {x})− σBelM2 (S) = 1 +
∑

v∈V \S

∑
a∈DIN (v)∪{v}

Inf (x, a) .Inf (a, v) (3.47)

σBelM2 (T ∪ {x})− σBelM2 (T ) = 1 +
∑

v∈V \T

∑
a∈DIN (v)∪{v}

Inf (x, a) .Inf (a, v) (3.48)

In the two models, we have S ⊆ T which means that |S| ≤ |T |, then |V \S| ≥ |V \T | which
proves the sub-modularity of σBelM1 (S) and σBelM2 (S).

We demonstrated the monotonicity and the submodularity of σBelM1 (S) and σBelM2 (S).
In the next stage, we demonstrate that the maximization of σBelM1 (S) and σBelM2 (S) in an
NP-Hard problem [49].

Theorem 2. The influence maximization using the first of the second proposed models is
NP-Hard.

Proof. To demonstrate the NP-Hardness of our approach, we show that it can be seen as a
particular case of the CD approach [41] that was shown to be NP-Hard. If we assume that
we have one action a then

γ (u, v) (a) = Γ (u, v) (a) = Inf (u, v) (3.49)
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then we can write Γ (S, v) as:

Γ (S, v) =


1 if v ∈ S∑
x∈DIN (v)

ΦM2 (S, x) .Inf (x, v) Otherwise (3.50)

ΦM2 (S, v) can be seen as Γ (S, v) of the CD model by considering only two hops between
neighbors while estimating influence. CD model is proved to be NP-Hard [41]. Consequently,
we prove that the maximization of the second model, i.e. in which we use the objective
function σBelM2 (S), is NP-Hard. The first model, i.e. in which we use the objective function
σBelM1 (S), can be viewed as a generalization of the second model of the proposed approach.

In this section, we demonstrated that the proposed objective functions are monotone
and submodular. Besides, we shown the NP-Hardness of the proposed evidential models.
In the next section, we select an appropriate optimization algorithm that goes with the
properties of our models.

3.4.3 Maximization algorithm

The main purpose in this chapter is to find a set of k influencer users that maximizes the total
influence in a social network. First, we define a set of data-based influence measures. These
measures are based on the theory of belief functions to combine many influence aspects and
to manage the conflict that may appear between them. Second, we move to the influence
model and we propose two models. Next, we study their properties and we prove their
NP-Hardness. Now, we need to choose an appropriate optimization algorithm to maximize
the defined objective functions. In section 2.4.4, we discuss the maximization algorithms
that are used to maximize the influence in the literature.

We showed that the influence maximization under the evidential model is NP-Hard,
besides, the influence spread function is monotone and sub-modular. Therefore, these prop-
erties allow to choose the greedy algorithm because it performs good approximation for the
optimal solution. We choose the cost effective lazy-forward algorithm (CELF) [60] which is
a two pass modified greedy algorithm that is proved to be about 700 times faster than the
basic greedy algorithm. CELF exploits the submodularity property of the function to be
maximized, in fact, submodularity guarantees that marginal benefits decrease with the so-
lution size. Hence, instead of computing the marginal benefit of each expected node at each
iteration, it computes it in the first iteration and keeps an ordered list of nodes according to
their marginal benefits value for the next iteration. In the next iteration, it re-evaluate the
marginal benefit for the top node, then it resorts the node list. If the top node maintains
its position, it will be chosen, elsewhere the algorithm re-evaluates the marginal benefit for
the new top node and so on.
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Algorithm 3 shows the steps of the CELF based evidential influence maximization
algorithm. First, it starts by initializing the seed nodes set S and the node list Q to the
empty set ∅. Second, it estimates the marginal gain of all nodes in the network and sorts
them. Third, the algorithm adds the node with maximum marginal gain to S. Then, it
loops on the following steps until getting k seed nodes in S:

1. Select the node, nodeMax, having a maximum marginal gain, i.e. the head of the list
Q,

2. Update the marginal gain of the selected node, nodeMax,

3. If nodeMax preserves its position in the list Q, it will be added to S, else, it will be
returned to Q and the algorithm returns back to the first step.

Algorithm 3: CELF based evidential influence maximization algorithm
begin

S = ∅;
// S: the set of seed nodes
Q = ∅;
// Q: sorted list in decreasing order according to the marginal gain of

nodes
foreach node ∈ V do

marginalGain(node);
// marginalGain() estimate the marginal gain of the node
Q.add(node);

nodeMax← Q.pop();
S.add(nodeMax);
while | S |≤ k do

nodeMax← Q.pop();
updateMarginalGain(nodeMax);
// We use formula 3.45 or 3.47 to update the marginal gain
if nodeMax.MG ≥ Q.getF irst().MG then S.add(nodeMax) ;
else Q.add(nodeMax) ;

In the next section, we present some running examples to explain more the proposed influence
maximization solutions, and show the differences between them.

3.5 Running examples

In this section, we present some running examples to illustrate the proposed approach. In
the first two running examples, we compare the behavior of each proposed model using the
proposed evidential influence measure (equation (3.23)). Next, we present three examples
to compare the three opinion scenarios using the second influence model.
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Figure 3.6: Influencers detection example

3.5.1 Influencers detection

In this section, we present two running examples to compare the behavior of the two proposed
influence maximization models. In these examples, we use the influence network in Figure
3.6. It is a directed network with ten nodes that are related to each other by twenty five
weighted links. Each link in the network is weighted by the influence that exerts its source
on its destination. For example, the link (u1, u2) is weighted by 0.2, we say that the influence
of u1 on u2 equals to 0.2.

Example 8. Let’s consider the weighted network in the Figure3.6. We fix the parameter
k to 3 and we run the Algorithm 3 with the first maximization model, i.e. using σBelM1 (S).
First, the algorithm initializes S1 = ∅. Second, it estimates the marginal gain (MG) of all
users and sorts them. Table 3.2 contains the sorted list of nodes according to their marginal
gain. Then, we select the node with a maximum MG and we add it to S1, S1 = {u5}.
In the next step, the algorithm loops until getting k nodes in S1. In fact, the algorithm
chooses the node that keeps its position as top of the list to be added to S. Table 3.3 shows
the updates that have occurred on nodes marginal gains and orders when the algorithm is
looking for the second node to be added to S1. The node u4 is the second node to be added
to S1 as S1 = {u5, u4}. Table 3.4 shows the updates until finding the last node to be added
to S1 which is u3. Finally, the set of seeds according to the first maximization model is
S1 = {u5, u4, u3}. �

Example 9. Consider the weighted network in the Figure 3.6. Let k = 3, we turn the
Algorithm 3 with the second maximization model, i.e. using σBelM2 (S). Similarly to the
previous example, Table 3.5 presents the sorted list of nodes according to their marginal
gain. We add the node u5 to S2 as it has the maximum marginal gain, S2 = {u5}. Next,
we update the marginal of the other nodes until getting a node that does not change its
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Table 3.2: First model: sorted users according to their marginal gain

MG(u5) 2.9 MG(u7) 1.7
MG(u2) 2 MG(u3) 1.5
MG(u1) 1.8 MG(u6) 1.4
MG(u8) 1.7 MG(u9) 1.3
MG(u4) 1.7 MG(u10) 1.3

Table 3.3: First model: updated marginal gains after selecting {u5}

MG(u5) 2.9 MG(u8) 1.3
MG(u4) 1.6 MG(u9) 1.3
MG(u3) 1.5 MG(u10) 1.3
MG(u7) 1.4 MG(u2) 1.1
MG(u6) 1.4 MG(u1) 0.9

position. According to Table 3.6, the node u7 is the second node to be added to S2. Table
3.7 shows the updates after adding u5 and u7 to S2. Finally, the last node to be added to
S2 is u3. Then according to the second model S2 = {u5, u7, u3} . �

We present two running examples to explain more the proposed maximization models
and the idea behind the CELF algorithm. In the first example, we obtain the seed set
S1 = {u5, u4, u3} and in the second example we have got S2 = {u5, u7, u3}. We notice
that S1 6= S2 and this is due to the use of two different maximization models. In fact, the
first model chooses the node u4 to be the second node in S. However, the second model
prefers the node u7 because it influences more its neighbors’ neighbors than u4. In the next
section, we present other examples to explain the difference between the three opinion-based
scenarios that are presented in section 3.3.

3.5.2 Opinion-based influencers detection

In this section, we present three examples using the second influence maximization model.
In the first example, our purpose is to detect positive opinion influencers. In the second
example, we are looking for positive influencers that influence positive users, and in the last
example, we detect positive influencers influencing negative users. The main purpose behind
these examples is to test the efficiency of the proposed opinion-based influence measures.
Then, we define the input of the examples in such a way one knows the influencers, their

Table 3.4: First model: updated marginal gains after selecting {u5, u4}

MG(u5) 2.9 MG(u8) 1.3
MG(u4) 1.6 MG(u9) 1.3
MG(u3) 1.5 MG(u10) 1.3
MG(u7) 1.4 MG(u2) 1.1
MG(u6) 1.4 MG(u1) 0.9
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Table 3.5: Second model: sorted users according to their marginal gain

MG(u5) 4.29 MG(u8) 2.18
MG(u7) 2.51 MG(u3) 1.69
MG(u2) 2.47 MG(u6) 1.56
MG(u1) 2.38 MG(u10) 1.45
MG(u4) 2.19 MG(u9) 1.39

Table 3.6: Second model: updated marginal gains after selecting {u5}

MG(u5) 4.29 MG(u10) 1.45
MG(u7) 2.11 MG(u9) 1.39
MG(u4) 1.91 MG(u2) 1.33
MG(u3) 1.69 MG(u1) 1.32
MG(u6) 1.56 MG(u8) 1.24

opinions and their neighbors’ opinions. Finally, the task in each example is to detect the
good influencers.

We created the network in Figure 3.7, this network is composed of two trees of thirteen
nodes and twelve links each one. We gave the same influence probabilities in the two trees
for links that have the same position. Besides, we defined these probabilities to obtain two
influencers which are the root nodes, u1 and u14. Table 3.8 presents the users’ opinions. We
define a positive opinion for the root nodes and we define u1 to be a positive influencer that
influences negative users and u14 to be a positive influencer that influences positive users.

Example 10. Consider the network in Figure 3.7 and the Table 3.8 that contains the users’
opinions. The purpose of this example is to detect positive opinion influencers. We fix k = 2

and we estimate the marginal gain of each node in the network using the second influence
maximization model with the equation (3.24), we obtain the marginal gains in Table 3.9.
After applying the CELF algorithm, we get S = {u1, u14}. The mean positive opinion of
the seed nodes equals to 0.8, the mean positive opinion of seeds’ neighbors is 0.4 and the
mean negative opinion of seeds’ neighbors is 0.43. These results mean that we achieve our
goal in detecting positive opinion influencers. �

Example 11. In this example, we are interested in positive opinion influencers that influence
positive users. Then, let’s consider the network in Figure 3.7 and the Table 3.8 that contains
the users’ opinions. We fix k = 1 and we run the CELF algorithm with the second influence

Table 3.7: Second model: updated marginal gains after selecting {u5, u7}

MG(u5) 4.29 MG(u9) 1.39
MG(u7) 2.11 MG(u2) 1.33
MG(u3) 1.66 MG(u1) 1.32
MG(u6) 1.56 MG(u4) 1.29
MG(u10) 1.45 MG(u8) 1.24
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Figure 3.7: Opinion-based influencers detection example
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Table 3.8: Users opinions

Id Pos Neg Obj Id Pos Neg Obj
u1 0.8 0.1 0.1 u14 0.8 0.1 0.1
u2 0.3 0.6 0.1 u15 0.6 0.3 0.1
u3 0.1 0.7 0.2 u16 0.7 0.1 0.2
u4 0.2 0.8 0 u17 0.8 0.2 0
u5 0.2 0.6 0.2 u18 0.6 0.2 0.2
u6 0.33 0.33 0.34 u19 0.33 0.33 0.34
u7 0.33 0.33 0.34 u20 0.33 0.33 0.34
u8 0.33 0.33 0.34 u21 0.33 0.33 0.34
u9 0.33 0.33 0.34 u22 0.33 0.33 0.34
u10 0.33 0.33 0.34 u23 0.33 0.33 0.34
u11 0.33 0.33 0.34 u24 0.33 0.33 0.34
u12 0.33 0.33 0.34 u25 0.33 0.33 0.34
u13 0.33 0.33 0.34 u26 0.33 0.33 0.34

Table 3.9: Marginal gain table of the first scenario example

MG(u1) 2.89 MG(u10) 1 MG(u19) 1
MG(u2) 1.14 MG(u11) 1 MG(u20) 1
MG(u3) 1.04 MG(u12) 1 MG(u21) 1
MG(u4) 1.09 MG(u13) 1 MG(u22) 1
MG(u5) 1.09 MG(u14) 2.06 MG(u23) 1
MG(u6) 1 MG(u15) 1.28 MG(u24) 1
MG(u7) 1 MG(u16) 1.18 MG(u25) 1
MG(u8) 1 MG(u17) 1.37 MG(u26) 1
MG(u9) 1 MG(u18) 1.28

model and using the equation (3.26) to estimate the influence. At the end, we get S = {u14}.
The positive opinion of u14 is 0.8, the mean positive opinion of u14 neighbors is 0.6 and the
mean negative opinion of u14 neighbors is 0.2. In these results, we notice that the second
influence model detects the good influencer which is in our example the node u14. �

Example 12. In this last example, we are mainly looking for positive opinion influencers
that influence users having negative opinion. We consider the same network and opinion
table as in the previous example. Also, we fix k = 1. Then, we run the CELF algorithm
with the third influence model and using the equation (3.30) to estimate the influence. As
a result, we have S = {u1}. The positive opinion of u1 is 0.8, the mean positive opinion of
u1 neighbors is 0.2 and the mean negative opinion of u1 neighbors is 0.67. In this example,
we are looking for an influencer having a positive opinion and that exerts more influence on
negative users and we succeed in detecting it. �

In this section, we present some running examples to illustrate the proposed solution for
the problem of influence maximization in a social network. The presented examples explain
more the running process of the proposed CELF algorithm and show the differences between
the proposed influence models and measures.
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Table 3.10: Marginal gain table of the second scenario example

MG(u1) 1.74 MG(u10) 1 MG(u19) 1
MG(u2) 1.14 MG(u11) 1 MG(u20) 1
MG(u3) 1.04 MG(u12) 1 MG(u21) 1
MG(u4) 1.09 MG(u13) 1 MG(u22) 1
MG(u5) 1.09 MG(u14) 3.22 MG(u23) 1
MG(u6) 1 MG(u15) 1.28 MG(u24) 1
MG(u7) 1 MG(u16) 1.18 MG(u25) 1
MG(u8) 1 MG(u17) 1.37 MG(u26) 1
MG(u9) 1 MG(u18) 1.28

Table 3.11: Marginal gain table of the third scenario example

MG(u1) 2.89 MG(u10) 1 MG(u19) 1
MG(u2) 1.14 MG(u11) 1 MG(u20) 1
MG(u3) 1.04 MG(u12) 1 MG(u21) 1
MG(u4) 1.09 MG(u13) 1 MG(u22) 1
MG(u5) 1.09 MG(u14) 1.89 MG(u23) 1
MG(u6) 1 MG(u15) 1.28 MG(u24) 1
MG(u7) 1 MG(u16) 1.32 MG(u25) 1
MG(u8) 1 MG(u17) 1.37 MG(u26) 1
MG(u9) 1 MG(u18) 1.28

3.6 Conclusion

In this chapter, we mainly focus on the problem of social influence maximization. It is the
problem of detecting a set of k influencers that are able to trigger a large cascade of adoptions
through the social network. In fact, while studying the existing solutions for this problem,
we find that many important influence aspects and parameters were not considered. Among
these aspects, we find the user’s opinion about the product that we consider as crucial
parameter in the influence maximization problem. To remedy the drawbacks of existing
models, we introduce new measures of influence and two maximization models that work
with them.

First, we propose an evidential influence measure that contracts many influence aspects
like the user’s position in the network, the popularity of user’s tweets, etc. Second, we
incorporate the user’s opinion on the proposed evidential measure and we introduce three
Viral Marketing scenarios that can arise in the real world. The first scenario is about
the detection of social influencers that have a positive opinion about the product. In the
second scenario, the purpose is to find positive influencers that exert more influence on
users having a positive opinion about the product. In the third scenario, we are looking for
positive influencers that influence more users having a negative opinion about the product.
In the second place, we define two influence maximization models and we use the CELF
algorithm to maximize the influence using the two proposed models. Finally, to illustrate
the proposed influence maximization solutions, we propose some running examples in which
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we detail the process of each model.

In the next chapter, we present a set of experiments to compare the proposed solutions
to existing ones and to study the quality of the detected seeds on real world data. Indeed,
we propose two case studies that are done on two different datasets. The first dataset was
collected from Twitter and the second one was randomly generated.
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Summary

In the previous chapter, we propose many influence measures for users of an online social
network. The proposed measures consider many influence aspects. Also, we introduce two
evidential influence maximization models. In this chapter, we focus on two case studies
in order to compare the proposed Viral Marketing solutions to existing ones and to prove
the performance of our solutions. Some parts of the results presented in this chapter are
published in Jendoubi et al. [48].
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4.1 Introduction

In the past, Word-of-Mouth (WoM) was seen as a powerful factor in sharing information
about a product, promotion, etc., between a customer and a friend, colleague, or other
acquaintance. With the appearance of online social networks, the WoM was developed more
and more. Furthermore, it is actually used for Viral Marketing perspectives. It is the
process of targeting the most influential users in the social network so that these customers
can start a chain reaction of influence driven by WoM, thus with a small marketing budget
a large proportion of a social network can be reached or influenced [1]. Scientifically, the
Viral Marketing problem is known by the influence maximization problem. Its main goal is
to find a set of k users that are able to make an information goes viral through the social
network.

The previous chapter is mainly dedicated to introducing and explaining the propose
Viral Marketing solutions. In fact, we present seven measures of influence that consider
many influence aspects. Next, we propose two influence maximization models and we use the
Cost-Effective Lazy Forward algorithm to find a set of k seeds that maximizes the proposed
models. In this chapter, we focus on the experimentation of the proposed solutions. Indeed,
we present a real world Viral Marketing task which is the maximization of the promotion
of smartphones on Twitter and we compare the results given by our solutions to the results
given by existing models.

This chapter is organized as follows: Section 4.2 introduces the used datasets and the
process we used to get them. Section 4.3 explains the method and the tools we used to
estimate the user’s opinion from his tweets. Section 4.4 presents a set of experiments made
on the Twitter dataset to study the performance of the proposed solutions in detecting
influencers for smartphones on Twitter. Also, we compared the quality of the selected
influencers to the quality of those selected by existing models. Finally, in Section 4.5, we
study the accuracy of the proposed solutions using generated data.

4.2 Data gathering and processing

In this section, we present the datasets we used in our experiments. Also, we detail the
process we followed and used tools to obtain our data. Next, we propose two datasets, the
first one was collected from Twitter and the second one was randomly generated.

4.2.1 Twitter dataset

In our experiments, we define a Viral Marketing task which is about the promotion of
smartphones on Twitter. For this purpose, we crawled Twitter data for the period between
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Table 4.1: Statistics of the data set

#User #Tweet #Follow #Retweet #Mention
36274 251329 71027 9789 20300

08/09/2014 and 03/11/2014. We used the Twitter API through the Twitter4j java library1.
It is an open-sourced java implementation of the Twitter API, created by Yusuke Yamamoto.
Twitter API provides many kinds of data with some limitations, i.e. a limited number of
queries per hour or limited response size. In our case, we are interested in collecting tweets
written in English, users, who mentions whom and who retweets from whom. Next, we
filtered the obtained data by keeping only tweets that talk about smartphones and users
having at least one tweet in the data base. In a last step, we used the process explained in
the section 4.3 to estimate the opinion of each user in the data set about smartphones.

Table 4.1 presents some statistics about the content of the collected data. Besides,
Figure 4.1 displays data distributions over users based on the number of followers, mentions,
retweets and tweets across our data. The follow relationship is an explicit relation between
Twitter user. In fact, when a user u follows another user v, u will receive all the actuality of v.
The mention and the retweet are implicit relations in Twitter. Besides, these relations allow
the information propagation on the network. Finally, a tweet is 140 characters message.
More details about Twitter can be found in section 2.3.1.1.

4.2.2 Generated dataset

The generated data is used in this thesis to study the performance of the proposed influence
measures. In fact, we generated data in such a way one can know the influencers, the positive
influencers, the positive influencers influencing positive users and the positive influencers
influencing negative users. Then, we obtain a useful dataset to study the accuracy of the
proposed influence maximization solutions. Next, we detail the process we used to obtain
this data. The proposed process is parameterizable and allows the study of the accuracy
variation in terms of each parameter.

Social network structure has some special characteristics that differentiate them from
ordinary graphs like the small world assumption [73]. For this reason, we chose to use a
real world structure. Then, we selected a random sampling of the collected network from
Twitter, i.e. Twitter dataset introduced in section 4.2.1. The sampled network contains
1010 nodes and 6906 directed links between them. In a second step, we selected a set of
users that have at least 15 outlinks. As a result, we have got a set of 108 users.

Next, we define, randomly, the influence on each link in the network and the selected
108 users are defined as influencers by setting maximum influence values in their outlinks.

1http://twitter4j.org/en/index.html
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The minimum value of influence given to an influencer is a parameter to the random process.
In a third step, we define positive influencers among the defined influencer users. Then, we
select a random set of influencers and we give them a random value of positive opinion. The
chosen positive opinion value equals at least a fixed minimum value given as a parameter to
the random process. In a last step, we define among positive influencers those that influences
positive and negative users. For this purpose, we divide the set of positive influencers into
two random subsets. The first subset is for positive influencers influencing positive users,
then, we set the opinion of the influencers neighbors to positive. The second subset is for
positive influencers influencing negative users and we set the opinion of their neighbors to
negative. We notice that we have two more parameters of the random process which are the
minimum positive and negative opinion of positive influencers neighbors.

4.3 User’s opinion estimation

In this thesis, we propose a set of influence measures that considers the user’s opinion about
the product for Twitter dataset. For this purpose, we need to estimate the user’s opinion
about the product. First, we start by estimating the opinion polarity of each tweet in our
dataset, then, we take the user’s opinion as the mean opinion of his tweets. Next, we present
the tools and the process we used to estimate the user’s opinion.

4.3.1 Text mining tools

To estimate the user’s opinion about the product, we used some existing text mining tools
that are designed for this purpose. Next, we introduce the used tools.

• Stanford Log-linear Part-Of-Speech Tagger2 is a software implemented in java. It takes
a text in its input and attributes, to each part of speech on it, a tag. A part-of-speech
tag can be a verb, an adjective, an adverb or a noun. The tag of a given part-of-speech
depends on many parameters like its position in the text, the context, etc. Stanford
part-of-speech tagger is an implementation of the Log-linear part-of-speech tagger [88].
It can be used for any language we just need to choose an appropriate trained model.
In our case we chose the Gate Twitter part-of-speech tagger.

• GATE Twitter part-of-speech tagger3 is a trained model designed to be used with
Stanford part-of-speech tagger. This model is customized for English tweets [29].

• SentiWordNet 3.0 is "a lexical resource explicitly devised for supporting sentiment
classification and opinions mining applications" for English language [7]. It was, au-
tomatically, generated from WordNet4 dictionary that is an English lexical database.

2http://nlp.stanford.edu/software/tagger.shtml
3https://gate.ac.uk/wiki/twitter-postagger.html
4http://wordnet.princeton.edu/
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Each row in SentiWordnet 3.0 contains six different attributes as follows:

# Part−Of−Speech ID PosScore NegScore SynsetTerms Gloss
a 00001740 0 .125 0 ab le#1 ( u sua l l y f o l l owed by ‘ to ’ ) . . .
a 00002098 0 0 .75 unable#1 ( u sua l l y f o l l owed by ‘ to ’ ) . . .
a 00002312 0 0 do r s a l#2 abax ia l#1 f a c i n g away from . . .
a 00002527 0 0 ven t r a l#2 adax ia l#1 nea r e s t to or . . .
a 00002730 0 0 ac r o s cop i c#1 f a c i n g or on the s i d e . . .
. . .

The first attribute is “Part-Of-Speech”, it indicates the position of the word in a sen-
tence. For example, “a” means adjective. The second attribute is “ID” which is an
identifier. The couple (Part-Of-Speech, ID) is a unique identifier of the row. Next,
we have “PosScore” and “NegScore” that are opinion-related values expressing positive
and negative opinion respectively. Having the positive and the negative opinion, we
can obtain the objective or the neural one as:

Neut(v) = 1− (Pos(v) +Neg(v)) (4.1)

where Pos(v), Neg(v) and Neut(v) are respectively positive, negative and objective
opinion of the user v. The next attribute is “SynsetTermes” and it contains a group of
data elements or words that are considered semantically equivalent. The last attribute
is “Gloss” and it may contain a definition or some examples or both of them. We
studied the process used to estimate the opinion and we found that the positive and
negative values are estimated separately. Next the process tests if Pos (v)+Neg (v) ≤
1, then, Neut (v) is computed using equation (4.1), else the sum Pos(s) + Neg(s)

is normalized to 1 and Neut (v) is null. As a conclusion, the probabilities Pos(v)

and Neg(v) are independent and it is possible to consider that they have two different
sources which justify the process explained in section 3.3 to transform the user’s opinion
probability to a basic belief assignment distribution.

4.3.2 Opinion estimation

In this section, we explain the process that we applied to estimate the opinion polarity of
each user in our dataset. For this purpose, we used the text mining tools presented in the
previous section. First, for each user, we select the set of tweets that he emitted. Next we
estimate the opinion polarity of each tweet of those as follows:

1. In the first step, we delete URLs and special characters that are not considered by the
used POS tagger. We note that URLs and special characters may be informative for
the opinion. However, we choose to not consider them in order to simplify the task.
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2. The second step is the part-of-speech tagging. Its goal is to attribute a label (noun,
adjective, verb, etc) to each word in the tweet. Then, we use the java library “Stanford
POS Tagger” with the model “GATE Twitter part-of-speech tagger” that were designed
for tweets.

3. In the third step, we use the SentiWordNet 3.0 dictionary to get the polarity of each
word (positive, negative and objective polarity) in the tweet according to its tag (result
of the step two). The result of this step is a probability distribution defined on Θ =

{Pos, Neg, Neut} for each word in the tweet.

4. The last step is the computation of the polarity of the tweet. Then, we take the mean
probability distribution of words’ probability distributions that compose the tweet.

Next, after estimating the opinion polarity of all user’s tweets, we calculate the user’s opinion
about the product. As we did for the tweet, we take the mean probability distribution of
the user’s tweets probability distributions. Finally, for each user in the Twitter dataset we
have got a probability distribution defined on the frame Θ = {Pos, Neg, Neut}.

4.4 Detecting influencers for smartphones on Twitter

In this section, we present a set of experiments to show the performance of the proposed
solutions against existing ones. The task we propose is about the influence maximization
for smartphones on Twitter. The main purpose of this task is to find a set of k influencer
users that are able to maximize the global influence through the network and to promote
the adoption of smartphones. In this set of experiments, we use the dataset collected from
Twitter presented in section 4.2.1. Next, we present the set of algorithms with which we
compare our approach. After, we divide our experiments into two main parts, in the first
part, we show the performance of the proposed influence maximization models with the
evidential influence measure. In the second part, we show the interest of incorporating the
user’s opinion in the influence maximization process.

4.4.1 Experiments configuration

This section is dedicated for algorithms and configurations we used in our experiments.
To prove the performance of our evidential approach, we compare it to existing influence
maximization solutions. In the literature, there exist many influence maximization models.
Then, we chosen to compare the proposed models to some basic models like ICM and LTM
and to closest models like CD and OC as follows:

• Basic models detailed in section 2.2.1:
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– Independent cascade model with uniform edge probabilities (UN ICM), i.e. all
edges have the same influence probability that is equal to 1%.

– ICM with trivalency edge probabilities (TV ICM), i.e. we choose the influence
probabilities, randomly, from {10%, 1%, 0.1%}.

– Weighted cascade (WC ICM) i.e. is a special case of ICM with edge probability
of an edge (u, v) equals to 1

Du
.

– Linear threshold model (LTM) with uniform edge weights ω (u, v) = 1% and
random threshold θu for each node.

• Closest models:

– Credit distribution (CD) model is detailed in section 2.4.2. We consider the CD
model closest in its principle to our models in that it uses real word propagation
to estimate the user’s influence.

– Opinion-based cascading (OC) model is detailed in section 2.4.3. It is a modified
version of ICM that considers the user’s opinion. It sounds like our models in
that it considers the user’s opinion about the product.

To fix ICM edge probabilities and LTM weights we followed the experiments of previous
works [55, 41]. We run each basic model 10000 times with the Monte-Carlo simulation. In
fact, basic models used a random process to estimate the influence of a user or a set of users,
the idea behind this process is that they use the random propagation simulation algorithm
to estimate the influence many times, then, they take the global influence as the mean of all
obtained values.

To examine the quality of the selected seeds, we need to fix/choose some compari-
son criteria. For this purpose, we choose the accumulated number of followers, #Follow,
the accumulated number of tweets, #Tweet, the accumulated number of times the user
was mentioned, #Mention, and the accumulated number of times the user was retweeted,
#Retweet. In fact, if a given user is an influencer on Twitter, he is necessarily: very active
then he has a lot of tweets, he is followed by many users in the network that are interested
in his news, he is frequently mentioned in other tweets and his tweets are retweeted several
times. These assumptions justify the chosen comparison criteria.

4.4.2 Quality of detected influencers

In this section, we propose an influence maximization task. It is about detecting influencers
for smartphones on Twitter. For this purpose, we use many influence maximization models,
listed in section 4.4.1, to select k seeds from the network users. Then, we study the quality
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of selected seeds by each model. We denote by “1 Level” the first evidential influence maxi-
mization model that uses the formula (3.34) and by “2 Levels” the second evidential model
with the formula (3.35). We note that we do not consider the user’s opinion in this section.

First, we compare the proposed two maximization models to basic models (ICM and
LTM) and CD model. It was very hard to turn basic models on the whole dataset. In fact,
as we explaine in the previous section, basic models use the Mont Carlo simulation which
is time and memory consuming, besides, this fact was shown by previous works like [41].
To remedy this problem, we used a sampling of 1010 nodes from the original data for this
experiment.

In the first experiment, our purpose is to compare the proposed models with basic
models and CD in terms of quality of selected seeds. As mentioned above, the quality of the
seed set is measured through four criteria, i.e. #Follow, #Mention, #Retweet and #Tweet.
Then, we run all the experimented models on the sampled dataset with k = 50 and we
obtained the results in Figure 4.2.

In Figure 4.2a, we observe that LTM, UN ICM, TV ICM and CD detect weakly con-
nected users at first. However, we observe that the “2 Levels” model starts by detecting
strongly connected users. Figure 4.2b shows that most of the scatter plots are close to each
other except that of “2 Levels” that detected highly mentioned users at first. In Figure 4.2c,
the “2 Levels” model has successfully detected highly retweeted users, also, UN ICM per-
forms well by detecting users that are retweeted by others and we notice that “1 Level”, WC
ICM and LTM have almost close scatter plots. Finally, Figure 4.2d shows that “1 Level”,
“2 Levels”, WC ICM, UN ICM, TV ICM and LTM detect active users. However, the CD
selects inactive users that have few tweets.

From Figure 4.2, we conclude that “1 Level” and “2 Levels” models of the proposed
approach detects influencer users. Detected users are active and have a good position in the
network that allows them to propagate their messages in a short time. Also, we conclude
that “2 Levels” model is the best model in selecting influencer users. In fact, it chooses users
having a good compromise between the four criteria, i.e. #Follow, #Mention, #Retweet
and #Tweet.

In a second experiment, we compare the experimented models in terms of running
time. Table 4.2 presents the running time in milliseconds of all models used in experiments
of Figure 4.2. In fact, all these models are proven to be NP-Hard [55, 41]. As shown in Table
4.2 the proposed models, “1 Level” and “2 Levels”, are faster than the other models. In fact,
the “1 Level” model gave its results in 32 milliseconds and the “2 Levels” in 536 milliseconds.

Two other experiments are made using the whole dataset. The purpose of these ex-
periments is to compare the “1 Level” and “2 Levels” models with CD model according to
the accumulated #Follow (Figures 4.3a and 4.4a), the accumulated #Mention (Figures 4.3b
and 4.4b), the accumulated #Retweet (Figures 4.3c and 4.4c) and the accumulated #Tweet
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Model Time (ms) Model Time (ms)
1 Level 32 TV ICM 7267904
2 Level 536 UN ICM 4844867
CD 4654 WC ICM 4295455
LTM 65963285

Table 4.2: Running time in milliseconds

(Figures 4.3d and 4.4d) of seed set nodes. In fact, we consider the Credit Distribution model
to be the closest in its principle to “1 Level” and “2 Levels” models.

In the first experiment, we fix k to 3000 (Figure 4.3). The goal here is to see the impact
of the size of the seed set on the quality of selected seeds. In the second experiment, we fix
k to 100 (Figure 4.4) to study the quality of the first selected seeds by each experimented
model.

Figures 4.3 and 4.4 show the performance of the proposed models (“1 Level” and “2
Levels”) against the credit distribution model. In fact, the evidential influence maximiza-
tion approach detects influencer spreaders that have a good compromise between #Follow,
#Mention, #Retweet and #Tweet. Detected seeds are followed by many users. In Figure
4.4a, the first 10 seeds detected by “1 Level” and “2 Levels” are followed by over 6000 users
while there are no followers for the first 10 seeds detected by CD model. According to Figures
4.3b and 4.4b, detected influencer users with “1 Level” and “2 Levels” models are mentioned
many times whereas the CD model starts to detect mentioned users after selecting over 93
seed nodes.

In Figure 4.3c, the CD model selected seeds that were retweeted a lot. However, in
Figure 4.4c we notice another behavior of this model. In fact, it starts to detect retweeted
users after about 70 influencer nodes detected while evidential influence maximization models
start detecting them from the second seed. Finally, we move on to the fourth criterion of
comparison which is shown in Figures 4.3d and 4.4d. It is about the accumulated activity
size of the detected seeds that is measured by their number of tweets. As a first comment,
CD model has the same behavior as in the retweet scatter plot. In fact, it starts to detect
active users after about 50 selected influencers. Second, the proposed evidential approach
demonstrates its performance in detecting active users from the first detected user.

Based on Figures 4.3 and 4.4, the proposed evidential models, “1 Level” and “2 Levels”,
are better than the CD model in that the evidential models provide a good compromise
between the four influence criteria, i.e. #Follow, #Mention, #Retweet and #Tweet. Also,
the selected influencer spreaders have a good position in the network. Besides, they are active
and highly mentioned in other tweets. Furthermore, their tweets are highly retweeted. These
observations prove the performance of “1 Level” and “2 Levels” models in selecting seeds in
our task. Then, if we want to promote smartphones or another product on Twitter, the use
of “1 Level” and “2 Levels” models to detect seeds is recommended.
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Figure 4.5: The dependance of the number of affected nodes to the size of S

Another interesting experiment is given by the number of distinct affected nodes con-
nected to the influencers and to their neighbors. Through this experiment, we want to see
the number of affected nodes by each detected seed set. The results of this experiment are
shown in Figure 4.5.

In Figure 4.5, we observe that the CD model detects about 40 isolated users at first
and from the seed node 80 it started to detect users that are followed by many other users.
In the other hand, we notice a different behavior for the scatter plots of “1 Level” and “2
Levels”. In fact, “1 Level” scatter plot is upper than the scatter plot of “2 Levels” in Figure
4.3a. However, in Figure 4.5, “2 Levels” scatter plot is upper than or equal to the scatter plot
of “1 Level”. From these observations, we conclude that “2 Levels” model detects influencer
spreaders that are connected to highly followed users and “1 Level” model detects highly
followed influencer spreaders. Also, we conclude that our models (either “1 Level” or “2
Levels” ) are better than the CD model in detecting highly connected seeds at first.

In a last experiment, we study the impact of considering the assumption of “being more
influencer if you are connected to influencer users” on the influence maximization results.
This fact is defined in the second step, i.e. the “Updating step”, of our influence estimation
process. The reader can refer to section 3.2.2.2 for more details. In Figures 4.6 and 4.7, we
compare the “1 Level” (Figure 4.6) and the “2 Levels” (Figure 4.7) models with and without
the updating step.

In Figure 4.6 the difference between “1 Level” with and without updating step is not
significant. In fact, we notice that with the updating step we have, sometimes, slightly
better results. However, in Figure 4.7 the impact of the updating step is clear. Indeed, we
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observe that the updating step ameliorates the influence maximization results. We explain
this observation by the fact that the “2 Levels” model consider the user’s neighbors and their
neighbors in its principle, then, a given user has more chance to have one or more influencer
connected to him and then to reinforce more his influence.

In this section, we study the behavior of the two defined influence maximization models
on a real world Viral Marketing task. Besides, we compare the two proposed models to some
basic models and to CD model that we consider the closest to our models in its principle. The
experiments we made, show the performance of the proposed influence maximization models
in detecting reliable influencers according to the defined criteria. In the next section, we
study the impact of the incorporation of the user’s opinion about the product in the influence
measure.

4.4.3 Impact of the opinion incorporation

In this section, we perform some experiments to study the impact of the user’s opinion about
the product on the detected seeds. We use the dataset collected from Twitter, the reader
can refer to section 4.2.1 for more details. Next, we use the second influence maximization
model that uses the equation (3.35) with the proposed influence measures as follows:

• The evidential influence measure, Inf , (equation (3.23)), called “2 Levels” or “2 Levels
with Inf ”.

• The first measure of the first scenario, Inf+
1 , (equation (3.24)), called “2 Levels with

Inf+
1 ” or “First scenario with probability opinion”.

• The second measure of the first scenario, Inf+
2 , (equation (3.25)), called “2 Levels with

Inf+
2 ” or “First scenario with belief opinion”.

• The first measure of the second scenario, Inf++
1 , (equation (3.26)), called “2 Levels

with Inf++
1 ” or “Second scenario with probability opinion”.

• The second measure of the second scenario, Inf++
2 , (equation (3.28)), called “2 Levels

with Inf++
2 ” or “Second scenario with belief opinion”.

• The first measure of the third scenario, Inf+−
1 , (equation (3.30)), called “2 Levels with

Inf+−
1 ” or “Third scenario with probability opinion”.

• The second measure of the third scenario, Inf+−
2 , (equation (3.32)), called “2 Levels

with Inf+−
2 ” or “Third scenario with belief opinion”.

The reader can refer to the previous chapter for more details about the used “2 Levels”
influence model and influence measures. We note that all the proposed influence measures
can also be used with the “1 Level” model. We compared the proposed solutions to the
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Credit Distribution model (CD) [41] (refer to section 2.4.2 for more details) and to the
Opinion-based Cascading (OC) model [99]. In the following experiments we fixed k to 50.

In a first experiment, we compare the number of common selected seeds as shown in
Table 4.3. Then, we examine the number of common selected seeds between each couple of
models. Indeed, the number of common selected seeds can be seen as a similarity indicator
between influence maximization models. Then, it allows to know if there are some similarities
between the experimented models. We notice that the Opinion-based Cascading model
(OC) has no common seeds with any experimented model. Besides, CD model has no
more than nine common seeds with “2 Levels” model that uses an influence measure on
the set

{
Inf+

1 , Inf
+
2 , Inf

++
1 , Inf++

2

}
. However, CD has only one common seed with “2

Levels” with
{
Inf+−

1 , Inf+−
2 , Inf

}
. Furthermore, “2 Levels with Inf ” has a little number

of common seeds with other experimented models. However, we notice that we have at least
34 common seeds between any couple of models from “2 Levels” with any influence measure
from the set

{
Inf+

1 , Inf
+
2 , Inf

++
1 , Inf++

2

}
. Besides, “2 Levels with Inf+−

2 ” and “2 Levels
with Inf+−

1 ” have 47 common seeds. We explain these observations by the fact that the
used opinion-based influence measures are similare because all of them are based on the
evidential influence measure, Inf .

In a second experiment, we compare the mean positive and negative opinions of the
selected seeds and their neighbors using each maximization model as shown in Table 4.4.
This experiment allows the evaluation of each experimented model in terms of the opinion
of selected seeds and their neighbors. In Table 4.4, “2 Levels” model that uses the eviden-
tial influence measure, Inf , selects influencer spreaders that have a moderate positive and
negative opinion, about 0.3. This fact is expected, because Inf does not consider the user’s
opinion. Besides, the CD model chooses influencers that have a small value of positive and
negative opinion, about 0.01, which proves that it is not adaptable for this purpose. In fact,
CD does not consider the user’s opinion [48]. However, the OC model selects seeds with
about 0.41 of mean positive opinion which still an unsatisfactory result for a model that
considers the user’s opinion about the product.

In another hand, when we consider the user’s opinion in the “2 Levels” model, we notice
better results in “mean positive opinion” and “mean negative opinion” of selected seeds. In-
deed, “2 Levels” that uses an influence measure from the set

{
Inf+

1 , Inf
+
2 , Inf

++
1 , Inf++

2

}
,

selects seeds having at least about 0.82 of “mean positive opinion” and at most about 0.08

“mean negative opinion” which is a very good result against the results of existing mod-
els (CD and OC). In Table 4.4, we notice that the best maximization model in terms of
mean positive and negative opinion is “2 Levels with Inf+

2 ”. In fact, it gives a maximum
value of “mean positive opinion”, that equals to 0.85 ± 0.06 (0.95 confidence interval), and
a minimum value of “mean negative opinion”, that equals to 0.06 ± 0.03. Furthermore,
we observe that all results of “2 Levels” model with any influence measure from the set{
Inf+

1 , Inf
+
2 , Inf

++
1 , Inf++

2

}
are very near to each others, this observation is explained
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Table 4.4: Mean opinions of selected seeds and their neighbors

Model Mean positive
opinion

Mean negative
opinion

Mean positive
neighbors
opinion

Mean negative
neighbors
opinion

2 Levels
with Inf+

1

0.83± 0.07 0.07± 0.03 0.39± 0.06 0.21± 0.06

2 Levels
with Inf+

2

0.85± 0.06 0.06± 0.03 0.40± 0.06 0.21± 0.06

2 Levels
with Inf++

1

0.80± 0.07 0.08± 0.03 0.42± 0.07 0.20± 0.07

2 Levels
with Inf++

2

0.82± 0.07 0.07± 0.03 0.42± 0.07 0.20± 0.07

2 Levels
with Inf+−

1

0.59± 0.06 0.18± 0.03 0.39± 0.06 0.22± 0.06

2 Levels
with Inf+−

2

0.62± 0.06 0.17± 0.03 0.39± 0.06 0.22± 0.06

2 Levels
with Inf

0.30± 0.04 0.30± 0.02 0.39± 0.06 0.21± 0.06

CD 0.01± 0.02 0.01± 0.01 0.24± 0.05 0.13± 0.05

OC 0.41± 0.08 0.20± 0.04 0.35± 0.08 0.21± 0

in Table 4.3 where we find that they have many common seeds.

The neighbors positive and negative opinion are now considered. We find that the
best “mean positive opinion” value of seeds neighbors is given by “2 Levels” with Inf++

1

and Inf++
2 . Indeed, we have got 0.42 ± 0.07 which is the highest value compared to those

given by the other proposed influence measures, CD and OC models. This observation
can be explained by the fact that Inf++

1 and Inf++
2 consider the positive opinion of the

user’s neighbors while estimating the influence. By the same way, we notice that “2 Levels”
model with Inf+−

1 and Inf+−
2 detects seeds with highest “mean negative opinion” of seed’s

neighbors. In fact, they give a value of 0.22± 0.06 which is the maximum value in the last
column of the Table 4.4. This fact is explained by the consideration of the negative opinion
of the user’s neighbors while estimating the influence.

In a last experiment, we compare all experimented models in terms of #Follow, #Men-
tion, #Retweet and #Tweet. This experiment is useful to study and compare the quality
of selected seeds using each experimented model. As a result, we have got curves presented
in Figure 4.8.

In Figure 4.8, we have four sub-figures in which we present the accumulated #Follow,
#Mention, #Retweet and #Tweet respectively. In the accumulated #Follow figure, we
notice that all experimented models selected seeds that are followed by many other users
except CD and OC models that their seeds do not exceed ten followers in all. Besides,
the “2 Levels” model, the “Third scenario with probability opinion” and the “Third scenario
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with belief opinion” give almost the same results that are up to 12000 accumulated follow.
Furthermore, the results of the first and the second scenarios are very similar and are up to
about 9000 accumulated follow.

In a second sub-Figure of Figure 4.8, we have the accumulated #Mention curves. We
observe that OC and CD models do not select mentioned seeds and their accumulated
#Mention values do not exceed twenty in all. Furthermore, the “2 Levels” model that uses
an opinion-based measure (the three scenarios) have better results in terms of accumulated
#Mention than “2 Levels” model that uses the evidential influence measure Inf . Besides, the
“second scenario with probability opinion” and ”the “second scenario with belief opinion” have
the best results between all the experimented models in terms of accumulated #Mention.
Indeed, they reach over 1100 #Mention from about the twentieth selected seed. From the
results of this sub-Figure, we can conclude that the incorporation of the user’s opinion in
the process of the influence maximization ameliorates the quality of selected seeds in terms
of accumulated #Mention.

In a third sub-Figure of Figure 4.8, we study the quality of selected seeds by each
experimented model in terms of accumulated #Retweet. We observe that selected seeds
using OC or CD models are not retweeted a lot. In fact, their curves do not exceed fifty
accumulated #Retweet. In addition, we notice a similar behavior of the proposed influence
measures to the accumulated #Mention curves. In fact, we see that the three proposed
scenarios have succeed in selecting seeds having a high accumulated #Retweet. Also, the
“second scenario with probability opinion” and the ”second scenario with belief opinion” give
the best results in terms of accumulated #Retweets.

In the last sub-Figure, we study the quality of the selected seeds in terms of accumulated
#Tweet. In this sub-Figure we observe a different behavior of OC model. In fact, it succeeds
to select some active users in terms of #Tweet. However, it does not reach the activity level
of seeds detected by the proposed influence maximization solutions. Besides, we notice that
CD model does not exceed twenty accumulated #Tweet in all. In another hand, we notice
that the proposed influence maximization solutions have the same shape. Also, the “second
scenario with probability opinion” and the “second scenario with belief opinion” detect the
best seeds in terms of accumulated #Tweet. Besides, we observe that curves of “2 Levels”
model with an opinion-based influence measure exceed the curve of “2 Levels with Inf ”.

In this section, we present some interesting experiments using real world data to study
the behavior of the proposed influence maximization solutions when we incorporate the
user’s opinion about the product. Our experiments show the performance of the proposed
approach. In fact, we notice a good improvement in the quality of selected seeds not only in
terms of the opinion about the product but also in terms of #Follow, #Mention, #Retweet
and #Tweet. In the next section, we present a set of experiments to study the accuracy of
the proposed approach.
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4.5 Studying the influence behavior on generated data

In this section, we use the generated dataset introduced in section 4.2.2 in order to study
the behavior of the proposed influence maximization solution while varying influence and
user’s opinion. In these experiments, we fix the size of the seed set k to 50 and we repeat the
random process twenty times. As we said above in section 4.2.2, the process used to generate
the data is parameterizable. Then, in our experiments, we vary each parameter and we fix
the others in order to study the accuracy of the proposed influence maximization solutions.
Finally, we experiment the following influence measures with the “2 Levels” model:

• The evidential influence measure, Inf , (equation (3.23)), called “2 Levels”,

• The first measure of the first scenario, Inf+
1 , (equation (3.24)), called “First scenario

with probability opinion”,

• The first measure of the second scenario, Inf++
1 , (equation (3.26)), called “Second

scenario with probability opinion”,

• The first measure of the third scenario, Inf+−
1 , (equation (3.30)), called “Third sce-

nario with probability opinion”.

In a first experiment, we vary the minimum influence parameter and we study its impact on
detecting influencers and positive influencers as shown in Figure 4.9. We fix the minimum
positive opinion of positive influencers to 0.8, the minimum positive and negative opinion
of positive influencers neighbors to 0.3 and 0.8 respectively. Figure 4.9a shows the accuracy
of detecting influencers by the experimented models while varying the minimum influence
value. This figure shows the performance of the proposed models. In fact, even with a small
influence value, 0.1, the experimented models succeed in detecting influencers with a good
accuracy that is no less than 80%. Besides, we notice that the “2 Levels” model starts having
the highest accuracy from the influence value 0.15 until the value 0.6 from where all other
models start having an accuracy equals to 1.

In Figure 4.9b, we study the accuracy of detecting positive influencers while varying
the “minimum influence” value. In this figure, we observe that the first, the second and the
third scenarios give good accuracies of detecting seeds having a positive opinion. Besides,
we notice a natural behavior of the “2 Levels” model that does not consider the opinion in
its principle, but it keeps giving acceptable accuracies.

In a second experiment, we vary the “minimum positive opinion” value of influencer
users. In this experiment, we fixed the minimum influence value to 0.5, the minimum
positive and negative opinion of positive influencers neighbors to 0.3 and 0.8 respectively.
Figure 4.10 presents the accuracy of detecting influencers having a positive opinion by the
mean of each experimented model. In this figure, we notice a similar results to those of the
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(a) Accuracy of detected influencers while varying the minimum influence
value

(b) Accuracy of detected positive influencers while varying the minimum in-
fluence value

Figure 4.9: Accuracy variation while varying the minimum influence value
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Figure 4.10: Accuracy of detected positive influencers while varying the minimum positive
opinion value

Figure 4.9b. In fact, all curves are almost steady. Besides, the best accuracies are given by
the second, the third and the first scenarios models respectively.

In a third experiment, we vary the “minimum positive opinion of positive influencers
neighbors”. In this experiment, we fixed the minimum influence value to 0.4, the minimum
positive opinion of influencers to 0.5 and the minimum negative opinion of positive influencers
neighbors to 0.8. Figure 4.11 shows the accuracy of detecting positive influencers that exert
more influence on positive users. In this figure, we notice a different behavior from the
previous figures. In fact, all curves increase gradually when the minimum positive opinion
value of positive influencers neighbors increases until getting high accuracies.

In a last experiment, we vary the “minimum negative opinion of positive influencers
neighbors”. Besides, we fix the minimum influence value to 0.4, the minimum positive opinion
of influencers to 0.5 and the minimum positive opinion of positive influencers neighbors to
0.2. Figure 4.12 shows the accuracy of detecting positive influencers that exert more influence
on positive and negative users while varying the minimum negative opinion value of positive
influencers neighbors. In the first sub-figure 4.12a, we have the accuracy of detected positive
influencers influencing negative users. All curves increase when the varied value increases.
Besides, the best accuracies values are given by the third scenario which is dedicated to
positive influencers that exert more influence on negative users. In the second sub-figure
4.12b, we have the accuracy of detected positive influencers influencing positive users. In
this figure, we observe a reverse behavior of curves in Figure 4.12a. In fact, the accuracy
decreases when the varied value increases. This behavior is explained by the fact that, when
the number of positive influencers influencing negative users increases, the number of those
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Figure 4.11: Accuracy of detected positive influencers influencing positive users while varying
the minimum positive opinion value of positive influencers neighbors

influencing positive users decreases.

To sum up, in this section, we present some results made on generated data. These
results show the performance of the proposed approaches. Besides, we notice that the results
of the first, the second and the third scenarios are very similar. This behavior is justified by
the similarity between their influence measure.

4.6 Conclusion

This chapter is mainly dedicated for experimental studies of the proposed influence maxi-
mization solutions that are introduced in Chapter 3. First, we present the used data and
the process we apply to estimate the users opinion. Next, we make some experiments on
real data, collected from Twitter, to compare the proposed solutions to some existing one.
Finally, we study the accuracy of the proposed models on generated data.

The main conclusion from the presented experiments is that the proposed influence
maximization solutions ameliorate the quality of selected seeds when compared with existing
influence maximization solutions in terms of #Follow, #Mention, #Retweet and #Tweet.
This founding makes the proposed influence maximization models very useful to promote
a given Viral Marketing campaign. Furthermore, a second important conclusion is about
the user’s opinion about the product. In fact, our experiments show the importance of this
parameter and its contribution to the improvement of the quality of selected influencers not
only in terms of the influence criteria, i.e. #Follow, #Mention, #Retweet and #Tweet, but
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(a) Accuracy of detected positive influencers influencing negative users while
varying the minimum negative opinion value of positive influencers neighbors

(b) Accuracy of detected positive influencers influencing positive users while
varying the minimum negative opinion value of positive influencers neighbors

Figure 4.12: Accuracy of detected positive influencers influencing positive and negative users
while varying the minimum negative opinion value of positive influencers neighbors
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also in terms of the opinion of selected seeds. Indeed, we succeed in detecting seeds having
a positive opinion about the product.

In the next chapter, we consider another interesting problem that is related to Viral
Marketing too. It is the problem of social messages classification in online social network.
In fact, we need to know the topics to which each user is interested to. Such an information
is helpful to distinguish social influencers by topics of interests.
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Summary

In chapters 3 and 4, we focus on the problems of measuring and maximizing influence in
a social network for Viral Marketing perspectives and we propose some solutions for these
problems. In this chapter, we consider another important problem. In fact, we present the
solutions we propose to resolve the problem of classifying social messages without any need
for access to their content. Also, we introduce a model of information propagation simulation
in a social network that consider the message to be propagated while propagating it. This
work is published in Jendoubi et al. [51, 50].
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5.1 Introduction

The information propagation is a well-known problem, in which we try to simulate the dis-
semination process used by a given information to go from one user to another through
social links. The information propagation simulation is an important task that searches
generally to study and understand the propagation process or to estimate the user’s influ-
ence. In section 2.2, we present an overview of the existing works that tries to simulate
such a process. However, we notice that existing information propagation models like ICM
and LTM do not consider the propagated content in the propagation process. They just
suppose having an information and they simulate its propagation traces. In this chapter, we
propose an information propagation algorithm that considers the class of the message while
propagating it [51].

A second problem handled in this chapter is the problem of social message classification.
We studied the existing classification approaches (the reader can refer to section 2.5 for more
details about existing solutions) and we find that these solutions still not yet as efficient as
needed. In fact, the social message is characterized by its shortness which causes a real
problem for existing classification approaches. This fact justifies the need for classification
solutions that resolve this problem. In this chapter, we introduce a classification approach
that do not need the content of the message in its classification process [51, 50].

The main contributions presented in this chapter are the following: first, we propose
an information propagation model that considers the class of the propagated message while
propagating it. This model is used to simulate the propagation traces of a given type of
message and to create a dataset of propagation networks (see the definition in section 5.2).
A second contribution is that we introduce two model-based classifiers for social messages.
The proposed classifiers do not need the content of the message. Then, any type of content
can be classified. We just need its propagation traces [51]. Besides, this solution is more
adaptable for discrete types of links, e.g. a type of link may be “friendship” for example. A
third contribution is that we propose the Dynamic Time Warping distance for propagation
networks (PrNet-DTW) [50]. The proposed distance has two advantages. In fact, it works
with any type of links and it considers the fact that the paths in the propagation network are
time dependent. Next, we used the proposed PrNet-DTW distance with the probabilistic
and the evidential k-Nearest Neighbors algorithms to classify the propagation traces of social
messages.

The remainder of this chapter is organized as follows: Section 5.2 is a glossary of the
concepts we use in this chapter. Section 5.3 presents the information propagation algorithm
we propose to simulate the propagation of a specific message. Section 5.4 and Section 5.5
introduce the solutions we propose for the problem of social message classification. Finally,
Section 5.6 is dedicated for the experiments and results that are made on real and generated
data.
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5.2 Definitions

In this section, we define some concepts we use in this chapter to present the proposed
algorithms.

Definition 7. Homogeneous social network : is a social network that is composed by one
type of links and one type for nodes. For example, is such a network, nodes may be simple
users and links are the friendship relation between them.

Definition 8. Heterogeneous social network : is a social network that is composed of several
types of links and/or nodes. In fact, in real word social networks, we can find many types
of nodes, e.g. users, groups, applications, etc. These nodes are connected to each other via
many types of social links, e.g. friendship, membership, colleague, etc. For instance, Figure
5.1a shows a small heterogeneous social network where nodes are either users, a company,
application or group of users and links are friendship, professional link, member link, uses
and works in. In this chapter, we consider a heterogeneous social network where we have
one type of nodes, i.e. users, and several types of links. Let’s take the example of Figure
5.1b, in this example nodes are users and we have many possible links between them like:
friendship, professional link, undefined link and familial link.

Definition 9. Social message: is a message that is sent or published through an online
social network. For instance, we find status on Facebook, tweets on Twitter, comments,
private messages, etc.

Definition 10. Propagation strategy : we mean by propagation strategy the way with which
a specific message can propagate from one user to another. Each specific type of message
has a specific propagation strategy. It is defined by a probability distribution on types of
links for each message class. In fact, it gives to each possible type of links a propagation
probability value in the range [0, 1].

Definition 11. Tendency of a node to propagate a message: is a propagation parameter. It
models the fact that a given node can choose to, either, propagate the message to a subset
of its neighbors or not to propagate it.

Definition 12. Propagation network (PrNet): is a graph based data structure that is used to
store propagation traces of a given message. It has two main characteristics that distinguish
it from an ordinary Directed Acyclic Graph (DAG): its edges are weighted by the type of the
relationship between users. Second, its paths are time dependent. For instance, Figure 5.2
presents an example of a propagation network where nodes are network users and directed
links model the propagation direction.

Definition 13. Propagation level : in the propagation network, we call propagation level
the number of links in the path that separates the source of the message and the target
node. For example, Figure 5.2 presents a propagation network with two propagation levels.
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(a) Many types of nodes and links (b) Many types of links

Figure 5.1: Examples of heterogeneous social networks

Figure 5.2: Propagation network and propagation levels

Definition 14. Classification noise: it is a small biases that may appear between the real
class of the message and the observed one. It may leads to a misclassification of the message.

Other definitions related to the theory of belief functions and graph theory can be
found in Appendices A and B respectively. In the next section, we introduce the proposed
information propagation model.

5.3 Proposed information propagation model

The information propagation in a social network is the process with which the information
spreads between network users by reaching one user from another following their relation-
ships in the network. Modeling and simulating the information dissemination process is the
challenge of many researchers. In this section, we propose a new information propagation
model that fits more with existing real world social networks. The contributions of the
proposed model are, mainly, the following:

• We take into account the message class while simulating its propagation. In fact, we
assume that each class of messages has some specific propagation characteristics. For
instance, a professional message propagates, generally, through professional relations.
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• We define a model that simulates the propagation of a social message in a user-to-user
network where it is possible to have many types of relationships between its nodes.
For instance, a possible relationship may be a professional link or a familial relation.

The main purpose of the proposed algorithm is to simulate the propagation process of a
given message and to generate an associated propagation network. To run the algorithm,
we need:

1. Heterogeneous social network : the algorithm works with a network in which nodes are
users and links model the type of the relationship between them. The reader can refer
to Figure 5.1b for an example of a heterogeneous network.

2. Propagation strategy for each possible class of messages: as the proposed algorithm
considers the class of the message in the propagation process, we define a specific
propagation strategy in terms of types of links for each message class. The propagation
strategy of a given message class can be either defined by an expert or learned from
real world propagation.

3. Class of the message to be propagated : we need the message class to select an appro-
priate propagation strategy.

4. Source of the message that will start the propagation: it is the node that will trigger
the propagation cascade of the message, it is possible to select a random node.

5. Stopping condition: in real world propagation, the time is the very common stopping
condition of a given message propagation. Indeed, after a period of time the prop-
agation stops. In our case, we define the number of iterations of the algorithm, η,
as a stopping condition. The variable η models the number of time instants of the
propagation process that the algorithm will consider.

Another important propagation parameter is the tendency of a given node to propagate a
message. This parameter is mainly defined to model the intention of a particular node to
send the message to a subset of its neighbors or to not send it.

The Algorithm 4 presents the outlines of the proposed information propagation algo-
rithm. It starts by adding the source of the message, Source, to the list ReadyNodes that
contains nodes having received the message and that will try to propagate it. Next, the
algorithm loops until achieving the stopping condition and at each iteration it loops on the
ready nodes. For each node in ReadyNodes list, the algorithm tests if the node wants/ready
to propagate the message across a boolean random variable that is defined for each node in
the network. If the node is ready to propagate the message, the algorithm loops on each
possible type of link in the network. For each type of link, the algorithm estimates the
number e of node neighbors that will receive the message. Then it chooses them randomly
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from node neighbors that are related to it via a LinkType link. After running through all
types of links and choosing the list of neighbors that will receive the message, the algorithm
updates the propagation network of the message and the list of ready nodes.

Algorithm 4: Information propagation algorithm
begin

ReadyNodes.add(Source);
// Source: the source of the message
// N: number of iterations (stopping condition)
for i = 1 to η do

for j = 1 to ReadyNodes.size() do
node← ReadyNodes.get(j);
if node.propagate = true then

foreach LinkType do
e← node.outdegree() ∗ node.propagationTendency() ∗
Str.linkTypeProportion(); R← node.randomSelection(e, LinkType);

PrNet.refine(R);
R1.addAll(R);
ReadyNodes.addAll(R1);
R1.clear();

In this section, we introduce a new information propagation algorithm. The proposed
algorithm can be used for many purposes like:

• The simulation of the propagation traces of a given type of messages: in this chapter,
we mainly use the proposed algorithm for this purpose. Indeed, in our experiments,
we use the information propagation algorithm in order to create a training and a
testing corpus that will be used to evaluate the performance of our social messages
classification approaches.

• The study of the propagation process of each type of messages: in this task, we are
looking for understanding the process with which the information goes from one user
to another in the network.

• The estimation of the user’s influence in the network: in fact, we can assume the fact
that “more the user is influencer, more his messages propagate through the network”.
Then, we can attribute more influence amount to users that are able to make their
messages propagate and reach more other users. Also, a given user can be influencer
for a given type of messages. Then, in such a case we can define an amount of influence
for each specific type of messages.

In the next two sections, we consider the problem of social message classification and we
present four algorithms that do not use the content of the message to classify it.
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5.4 Classification of propagation networks

In this section, we introduce two classification algorithms adapted for social messages that
are published in Jendoubi et al. [51]. The first algorithm is totally probabilistic while
the second one incorporates the theory of belief functions. The proposed algorithms are
useful to classify the propagation network of the message instead of its content. Our work
is motivated by the fact of the inefficiency of existent text classification approaches with
short texts. Indeed, this is due to the lack of word occurrence in the message. Besides,
text processing techniques always need a pre-processing step in which it is necessary to
remove URLs, stop words, questions, special characters, etc. When working with tweets,
for example, after the pre-processing step, it falls very often on empty messages. Those
empty messages can not be classified by a text based classification technique. The proposed
approach does not suffer from such a problem. In fact, it does not need the access to the
content of the message in order to classify it. We just need its propagation traces. Another
advantage of our approach is that it can be used with any content of social messages, i.e.
text, image, video, etc.

The proposed classifiers are composed of two main steps. In the first step, we define a
set of probability or basic belief assignment (BBA) distributions for each possible class of
messages. We learn these distributions using a training set of existent propagation traces.
The choice of the distribution (probability or BBA) depends on the used classification algo-
rithm (the probabilistic one or the evidential one). The second step is the classification step.
This process can be used if we want to classify a new message that we have its propagation
traces. In this section, we detail the two steps of the proposed classifiers.

5.4.1 Parameters learning

In the parameters learning step, we learn a model for each class of messages. The main role
of this model is to represent the characteristics of the class in order to recognize it in the
classification step. The parameters learning algorithm needs a training set that contains a
set of propagation networks for each possible message class. We defined each classification
model by a set of probability or BBA distributions, one distribution for each propagation
level. We fix the number of propagation levels to be considered as input in the algorithm.
In this section, we present the parameters learning step for the two proposed algorithms.
Then, we highlight the difference between them. Algorithm 5 shows the main steps of the
parameters learning algorithms [51].

The parameters learning process works in two main steps. The first step is called
effective computation. In this step, the algorithm loops on all the propagation networks in the
training set. For each propagation network, PrNet, the algorithm loops on its propagation
levels. For each propagation level in PrNet, it computes the number of nodes that have
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received the message across each type of links. All computed values are stored in a matrix
structure, ψ, where in its lines we have the types of links, and in its columns we have the
propagation levels. The second step is called accrued effective calculation. As indicated by
its name, the algorithm runs through the matrix ψ starting from the second level until the
last one. At each level, it sums the current effective with those of the one before. This
computation is done in order to preserve the propagation history at each propagation level.

When the accrued effective is calculated for all propagation levels, the algorithm moves
to the computation of probability and BBA distributions. We note that if we work with the
probabilistic classifier, then, the parameters learning algorithm stops in the instruction of
probabilities computation, i.e. it computes only ProbaSet. Besides, if we work with the evi-
dential classifier, we need to run the parameters learning algorithm until its end, i.e. the com-
putation of BbaSet. ProbaSet is the output of the function ProbabilitiesCalculation(ψ).
This function takes as input the structure ψ and for each propagation level it transforms
the accrued effective to a probability distribution defined on the types of link. The trans-
formation is done by dividing each value by the sum of the accrued effective of its level. To
estimate the BbaSet the algorithm applies the consonant transformation. More details about
the consonant transformation and the theory of belief functions can be found in Appendix
A.

Algorithm 5: Parameters learning algorithm
begin

// Effective computation
foreach PrNet in PrNetSet do

foreach Level in PrNet do
foreach LinType do

ψ(TypeLink, Level)← ψ(TypeLink, Level) + ComputeNodes(TypeLink);

// Accrued effective calculation
for Level = 2 to NbrLevels do

foreach TypeLink do
ψ(TypeLink, Level)← ψ(TypeLink, Level) + ψ(TypeLink, Level − 1);

// ProbaSet and BbaSet computation
ProbaSet← ProbabilitiesCalculation(ψ);
BbaSet← ConsonantTransformation(ProbaSet);

5.4.2 Classification

The next step of the social message classifiers is the classification step. It uses the outputs
of the parameters learning step as a classifier. In fact, it compares the propagation network
of a new coming message to the class of messages model. Then, it attributes to the message
the class of the model that fits more to its propagation network. In this section, we present
the classification step of the probabilistic and the evidential classifiers together as there is a
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similarity between them, then we highlight the difference between them. Algorithm 6 shows
the main steps of the classification algorithms [51].

The first step of the classification algorithm transforms the propagation network of the
message to be classified, PrNet, to a set of probability or BBA distributions, the choice
of the distribution depends to the used algorithm. This step is done using the parameter
learning algorithm (algorithm 5) by running it on PrNet. In the next step, the algorithm
loops on the considered classes. Then, for each class it loops on the propagation levels.
For each possible class and for each propagation level, the algorithm computes the distance
between the distribution of the message and the distribution of the class. Then, it stores
these distances in a matrix structure as shown in algorithm 6. We note that if we are
working with the probabilistic classifier, we compute the values of the structure ProbaDist,
and if we are working with the evidential classifier we compute the values of the structure
BbaDist. In the last step, the algorithm gives a class for each propagation level in the
propagation network of the message. The class of the level is chosen as the nearest class,
i.e. with minimum distance value, from the training set in that level.

Algorithm 6: Classification algorithm
begin

(ProbaPr,BbaPr)← ParameterLearning(PrNet);
for i = 1 to NbrClasses do

foreach Level do
ProbaDist(i, Level)← Distance(ProbaPr, Probasets(i));
BbaDist(i, Level)← Distance(BbaPr,BbaSets(i));

foreach Level do
ProbaClasses(Level)← ClassMinDistance(ProbaDist(:, Level));
BbaClasses(Level)← ClassMinDistance(BbaDist(:, Level));

In the second step of the algorithm, we need to estimate the distance between the
message to be classified and the classes in the training set. In the literature we find many
useful distances like:

• The Chebyshev distance:

dC (X1, X2) = max
i

abs (X1 (i)−X2 (i)) (5.1)

• The Manhattan distance:

dM (X1, X2) =
n∑
i=1

abs (X1 (i)−X2 (i)) (5.2)

where n is the size of the vectors X1 and X2.
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• The Euclidean distance:

dE (X1, X2) =

√√√√ n∑
i=1

(X1 (i)−X2 (i))
2 (5.3)

• The Jousselme distance [53] that is more adaptable for the evidential classifier because
it considers the size of each focal element while computing the distance:

dJ (X1, X2) =

√
1

2
(X1 (i)−X2 (i))

T
Λ
=

(X1 (i)−X2 (i)) (5.4)

such that Λ
=
is a 2n × 2n matrix and Λ (A,B) = |A∩B|

|A∪B| . In the case where X1 and X2

are not BBAs distributions, then, |A ∩B| = 0 if A 6= B.

In this section, we introduced a new classification approach for social messages. The contri-
butions of the proposed approach are that it does not need any access to the content of the
message to be classified, and it is a standard classification approach that can be used with
any type of social contents. In the next section, we present an improvement of the solutions
that are presented in this section.

5.5 Dynamic time warping distance and k-NN classifiers

In the previous section, we introduced two propagation network (PrNet) classifiers that are
based on mathematical distances like the Euclidean distance and the Jousselme distance.
This solution needs to transform the PrNet to a set of probability or BBA distributions.
Then, it computes the distance between these distributions instead of PrNets. This trans-
formation leads to a loss of information that may be significant in the classification step.
Another drawback is that these classifiers do not work with continuous types of links and a
discretization step is always needed in such a case. To overcome these problems, we intro-
duce a solution in which we do not need any transformation for the propagation network.
In this new solution, we propose a measure that quantifies the distance between two propa-
gation networks, i.e. the distance between the PrNet to be classified and each PrNet in the
training set, and we incorporate it in the probabilistic and the evidential k-NN classifiers.
These solutions are published in Jendoubi et al. [50]. In this section, we present the new
distance-based solution.

5.5.1 Proposed propagation network DTW distance

In section 5.2, we define the propagation network as a DAG that has two extra characteristics:
its edges are weighted by the type of the relationship between users, and its paths are time
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dependent. Our purpose is to classify the propagation network of the message without any
transformation that may lead to the loss of the information. The solution that we propose is
to use a distance based approach like k-NN. Then, we need a distance metric that measures
the similarity between PrNets.

Graph similarity measures are used to evaluate the similarity or the distance between
two graphs. In the literature, we find a lot of methods [18, 90, 36] that are used for this
purpose. There is in particular the family of graph edit distances. The edit distance was,
firstly, proposed by [62] to evaluate the distance between two strings. Then, it was adapted
for graphs [89]. Graph edit distances have as purpose to determine the minimal cost to
transform a graph to a target one. Then, it computes the number of needed edit operations
(deletion, insertion or substitution) to transform the first graph into the second one. Also,
it attributes a cost to each operation and finally it computes the distance between them.
In [36], the authors present a survey for graph edit distances. Maximal common sub-graph
based distances [19, 93] are, also, used to measure graph similarity. The idea behind these
methods consists of finding the maximal common sub-graph between input graphs. The
bigger the sub-graph is, more common are the graphs. Also, we find a graph similarity
measure that is based on finding the common minimal super-graph [33].

However, all these distances do not consider the time dimension which is a character of
the PrNet. Then, comes the need of proposing a distance that fits more to the characteristics
of the weighted time dependent DAGs like the PrNet. As a solution to this problem, we
propose the Dynamic Time Warping distance for propagation networks similarity (PrNet-
DTW).

5.5.1.1 Dynamic Time Warping distance

The Dynamic Time Warping distance (DTW) [78] was first proposed to measure the sim-
ilarity between two speech sequences. The advantage of this measure is that it considers
the fact that the speech is time dependent. Recently, [75] propose to use it to measure
the similarity between two time series in order to analyze satellite images. A time se-
ries or a sequence is a time ordered list of elements. DTW distance considers the order
of appearance of each element in the time series while computing the distance between
them. Let TS1 = (b11, b12, . . . , b1T1) and TS2 = (b21, b22, . . . , b2T2) be two time series.
DTW (TS1i, TS2j) is the DTW distance between the sub-sequences TS1i and TS2j , and
it is defined as [75]:

DTW (TS1i, TS2j) = δ (b1i, b2j) + min


DTW (TS1i−1, TS2j−1)

DTW (TS1i, TS2j−1)

DTW (TS1i−1, TS2j)

(5.5)
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Note that δ (b1i, b2j) is a distance between the two elements b1i ∈ TS1 and b2j ∈ TS2.
As mentioned in [75], the implementation of this recursive function leads to an exponential
temporal complexity. To resolve this problem, authors propose to use the memoization
technique as a solution to speed up the computation. Hence, we need a |T1| × |T2| matrix,
Ξ, in which we record previous results in order to avoid their computation in next iterations.
This computation technique maintains the time and space complexity of the DTW distance
to O (|T1| × |T2|). Algorithm 7 shows the outlines of the DTW computation using the
memoization technique [75]. The algorithm starts by estimating the values in the first
column and the first line of the matrix Ξ. Then, it loops on the other elements, and
estimate each one by using the smallest distance from the left value, the upper value and
the diagonal one until reaching the element Ξ[T1, T2]. The value of Ξ[T1, T2] represents the
DTW distance between the two sequences taken as input of the algorithm.

Algorithm 7: DTW algorithm [75]
begin

Ξ[1, 1]← δ (b11, b21);// Ξ is the cost matrix
for i = 2 to T1 do

Ξ[i, 1]← Ξ[i− 1, 1] + δ (b1i, b21);
for j = 2 to T do

Ξ[1, j]← Ξ[1, j − 1] + δ (b11, b2j);
for i = 2 to T1 do

for j = 2 to T2 do

Ξ[i, j]← δ (b1i, b2j) + min


Ξ (i− 1, j − 1)

Ξ (i, j − 1)

Ξ (i− 1, j)

;

return Ξ[T1, T2];

Example 13. Figure 5.3 shows a computation example of the DTW distance between two
sequences and the alignment between them. As we see in the figure, the DTW algorithm
coordinates each value in the first sequence with one or more values in the second sequence
until achieving the last values and finding an alignment between the two sequences. �

5.5.1.2 Propagation Network DTW distance

The Propagation Network Dynamic Time Warping distance (PrNet-DTW) is used to mea-
sure the distance between two propagation networks by considering, simultaneously, the
time dependencies of its paths and the weights defined on its links. The algorithm 8 shows
the outlines of the PrNet-DTW algorithm. In the first step, it transforms each PrNet to a
set of dipaths. A dipath is defined as a finite sequence of vertices connected with edges that
are directed to the same direction.

Example 14. Figure 5.4 presents an example of a propagation network and its correspond-
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(a) The matrix and the warping path (b) The alignment between the two se-
quences

Figure 5.3: Dynamic Time Warping distance example [75]

ing dipathes as needed by the proposed algorithm. As shown in the figure, all dipaths start
from the source of the message and we have as dipaths as leafs in the network. �

In the second step, the PrNet-DTW algorithm loops on DipathSet1. At each iteration,
it fixes a Dipath and computes the DTW distance between the fixed Dipath and each Dipath
in DipathSet2. Then, the algorithm takes the minimal DTW value to be the distance
between the current Dipath and PrNet2. Finally, PrNet-DTW computes the mean of the
minimal distances computed in the second step. The resulting value, Distance, is the
PrNet-DTW distance between PrNet1 and PrNet2.

Algorithm 8: PrNet-DTW algorithm
begin

DipathSet1← PrNet1.T ransformToDipathSet();
DipathSet2← PrNet2.T ransformToDipathSet();
for i = 1 to DipathSet1.size() do

D ← maxV alue;
for j = 1 to DipathSet2.size() do

D ← min(D,DTW (DipathSet1.get(i), DipathSet2.get(j)));
Distance← Distance+D;

Distance← Distance/DipathSet1.Size();

5.5.2 Classification with PrNet-DTW

To classify propagation networks of social messages, we need a distance-based classification
approach to be used with the proposed PrNet-DTW distance. For this purpose, we choose
the probabilistic and evidential k-NN algorithms because these classifiers are distance-based
and they can be used together with the proposed PrNet-DTW distance to classify prop-
agation traces of social messages. The second reason of this choice is the simplicity of
implementation and use of these algorithms. In this section, we present two k-NN based
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(a) Propagation network example (b) Dipathes example

Figure 5.4: Example of a propagation network and its dipathes

approaches which are the probabilistic k-NN and the evidential k-NN.

5.5.2.1 Probabilistic k nearest neighbors

The probabilistic k nearest neighbors (k-NN) is a well known supervised algorithm that is,
generally, used for classification. It needs as input a set of training examples where their
classes are known, and of course the object to be classified. Besides, we have to specify a
measure of distance that is used to quantify the matching between the new object l and
every object in the training set. First, k-NN starts by computing the distance between l

and every object in the training set. Then, it selects the first k nearest neighbors, i.e. that
have the shortest distance from l. Finally, the object l is classified according to the majority
vote principle, i.e. the algorithm chooses the class that has the maximum occurrence count
in the k nearest neighbors set to be the class of l. The k-NN technique is surveyed in [14].

Example 15. Figure 5.5 gives an illustration example of the k-NN algorithm. In the figure,
when k = 3 the class of the new object is C2. However, when k = 5 the class of the new
object is C1. �

5.5.2.2 Evidential k Nearest Neighbors

The evidential k-NN algorithm [27] is an extension of the probabilistic k-NN. The evidential
k-NN uses the theory of belief functions in its classification step. As explained above, the
probabilistic k-NN sorts the training examples according to their distances from the object l
to be classified. Then, it chooses the k nearest neighbors to l. However, according to [27], the
distance value between l and its nearest neighbors may be significant. The evidential k-NN
differs from the probabilistic algorithm in the decision rule, i.e. the probabilistic algorithm
classifies a new object using the majority vote principle, but the evidential algorithm uses,
also, the distance values between the new object and its k nearest neighbors. Let Ω =

{C1, C2, ..., Cn} be the set of all possible classes, it is the frame of discernment, and let dj be
the distance between l and the jth nearest neighbor. The idea behind the evidential k-NN
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Figure 5.5: k-NN algorithm example

consists on representing each object of the k neighbors by a BBA distribution defined as:

m ({Ci}) = χ (5.6)

m (Ω) = 1− χ (5.7)

m (A) = 0∀A ∈ 2C \ {Ci} (5.8)

such that 0 < χ < 1. If dj is big, then, the jth nearest neighbor is considered as giving a
little information about the class of l. In that case, χ has to take a small value. On the
other hand, if the distance dj is small, i.e. jth nearest neighbor is near l, then, χ has to take
a big value. According to this reasoning χ is a decreasing function of dj . The function χ is
defined as follows [27]:

χ = χ0κi (dj) (5.9)

κi (dj) = e−γid
β
j (5.10)

where γi > 0 and β ∈ {1, 2, . . .}. After estimating a BBA distribution for each nearest
neighbor, the evidential k-NN makes a decision about the class of l according to the following
steps:

• It combines all BBA distributions using a combination rule.

• It applies the pignistic transformation [83] in order to obtain a pignistic probability
distribution.

• It chooses the class that has the biggest pignistic probability to be the class of l.
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In this section, we introduce the PrNet-DTW distance. PrNet-DTW is useful to measure the
distance between two propagation networks which are acyclic directed graphs that have time
dependent edges. Then, we propose to use the proposed distance to classify propagation
networks by incorporating it in the probabilistic and the evidential k-NN algorithms. The
next section is dedicated to the experiments. In fact, we test the proposed algorithms and
show their performance in classifying the propagation networks of social messages.

5.6 Experiments and results

In this section, we present some experiments that show the performance of the proposed
algorithms. We made our experiments using two datasets that were collected from Twitter
and we made experiments on each one of them.

5.6.1 Datasets

In this section, we present two datasets and we explain the process we use to create them.

5.6.1.1 Twitter network data

Twitter network data is a dataset that was collected from Twitter using NodeXL1 V 1.0.1.245
[45]. It is a free and open-source template for Microsoft Excel, allows many nice function-
ality like data import from social networks, networks metrics, graph visualization, etc. We
obtained the network shown in Figure 5.6. It is a directed network in which nodes are
Twitter users and links are the follow relationship between them. The network contains 97
vertices and 350 directed edges.

Twitter network dataset contains only the structure of the social network. However,
we need also the types of the relationship between the network users. Then we defined the
following four generic relations:

• “Professional ” link, for professional relations like colleagues, office mates, etc.

• “Familial ” link like sisters, brothers, cousins, etc.

• “Friendly” link to model the friendship.

• “Undefined ” link to model the case were we do not know the kind of the relation.

Furthermore, for each link, we choose its type from the list defined above. Then, we obtain
a heterogeneous social network we use as input of the proposed information propagation
algorithm in order to generate a training and a testing sets for each type of message from
the following:

1https://nodexl.codeplex.com/
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Figure 5.6: Network visualization

• “Spam”: is a kind of malicious messages.

• “Professional ”: may be a kind of a product or service sent to an enterprise, an infor-
mation sent between colleagues, etc.

• “Familial ”: is for messages sent between the members of a family.

For each class of messages we define a propagation strategy. Each strategy is a set
of values in [0, 1] defined on types of links and interpreted as “the proportion of the node
neighbors that will receive the message from the type of link ”. Then each strategy is composed
by four proportions as we have four types of links.

Example 16. Let define a strategy of a professional message as follows:

{(Professional, 0.7) , (Familial, 0.25) , (Friendly, 0.25) , (Undefined, 0.1)} (5.11)

�

To be as near as possible to the reality, we disrupt each defined strategies using a noise
rate, i.e. see the definition of the classification noise in section 5.2. The noise value can be
added to or removed from the proportions of the of strategy.

Example 17. Let consider a noise rate of 0.1 in the strategy defined in the previous example:

{(Professional, 0.8) , (Familial, 0.35) , (Friendly, 0.15) , (Undefined, 0.2)} (5.12)

�

We fix the number of propagation levels in the propagation network to three (the stop-
ping condition of the propagation algorithm is three iterations). Then we run the proposed
propagation algorithm to create a training set for each propagation strategy containing a
set of 100 propagation networks. Also, we created a testing set of size 100.
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5.6.1.2 Real propagation data

To obtain this second dataset, we implemented a crawler for Twitter using the java library
Twitter4j (see section 4.2.1 for more details). We crawled the Twitter network for the period
between 08/09/2014 and 03/11/2014. We collected tweets, users profiles, mentions, retweets
and followership relations. Next, we filtered the obtained data and we kept only tweets that
talk about smartphones, after, we deleted users that do not have any tweet in the dataset.
Finally, we classified the resulting set of tweets into three classes:

• “Android ”

• “Galaxy”

• “Windows”

In fact, if a given tweet contains the name of a class C, it is considered of that class. For
example, a given tweet that contains the word “Android”, is classified to the class “Android ”.

In this stage, we have a dataset that contains a set of Twitter users, followership links
between them, who mentions whom, who retweets from whom and classified tweets into the
three classes. In a second stage, we extract the propagation traces of each class of messages.
For this purpose, we consider that a tweet of class C is propagated from a user u to a user
v if and only if:

• the user u posts a tweet of class C before v.

• and at least one of the following relations between u and v exists:

1. v follows u,

2. u mentions v in a tweet of class C,

3. v retweets a tweet of class C written by u.

Definitions of “follow”, “mention”, “retweet” and “tweet” can be found in section 2.3.1.1.
At the end of this step, we get a table containing the propagation links of each class of
messages. Next, we extract propagation networks (PrNets) such that each PrNet has to
have one source. Then, we consider a node as a source if and only if it is the first to send
the message, i.e. it does not receive the message from any other node. Table 5.1 presents
some statistics about the data set.

In the next step, we define the types of links on the social network. On Twitter, there
exist many possible relationships, the first one is explicit which is the follow relation, the
second and the third relations are implicit which are the mention and the retweet. Another
property of Twitter is that between two users u and v we can have a follow, a mention
and/or a retweet relationship. We assign to each relationship a weight [12] and we assign
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Table 5.1: Statistics of the data set

Android Galaxy Windows
#User 6435 4343 5775
#Follow 9059 4482 12466
#Tweet 81840 8067 11163
#Retweet 3606 2873 2632
#Mention 6092 5965 3441

#Prop. links 7623 6819 11400
#PrNet 224 161 219

to each link a vector of weights having the form (wf , wm, wr) where wf is the weight of
follow relationship, wm is the weight of mention relationship and wr is the weight of retweet
relationship.

Let Scu be the set of successors of u, Pcu the set of predecessors of u, Tcu the set of
tweets of u, Rtu (v) the set of tweets of u that are retweeted by v, Mtu (v) the set of tweets
of u in which v is mentioned and Mtu the set of tweets in which u mentions another user.
We compute weights [12] as follows:

wf (u, v) =
|Scu ∩ Pcv|+ 1

|Scu|
(5.13)

wm (u, v) =
|Mtu (v) |
|Mtu|

(5.14)

wr (u, v) =
|Rtu (v) |
|Tcu|

(5.15)

In the next sections, we use the presented datasets to show the performance of the
proposed classifiers.

5.6.2 Results on generated propagation

In this experiment, we use the first dataset, and we compare the accuracy of the proposed
algorithm in classifying the generated propagation networks of social messages. We use the
Euclidean distance (equation (5.3)) for the probabilistic classifier and the Jousselme distance
(equation (5.4)) for the evidential one. To obtain accurate results we run the experimental
process ten times. At each running, we generate a new training set and testing set, we use the
process described in section 5.6.1.1 to generate the datasets. The result of each running of
the algorithms is an accuracy value for each algorithm. To obtain the classification accuracy,
we compute the percentage of correctly classified messages. Next, for each classifier, we take
the mean and the 95% confidence interval of the ten classification accuracies.

Figure 5.7 shows the impact of propagation levels on the classification accuracy of prob-
abilistic results (Figure 5.7a) and the evidential results (Figure 5.7b). We noticed that the
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accuracy increases when the propagation level increases, we observe this fact starting from
the noise level 20%. In Figure 5.7a we observe that the curve of the second level coin-
cides with the curve of third level and practically there is no improvement in the accuracy.
However, in Figure 5.7b (evidential results), we note that the accuracy increases with the
propagation level, this fact is observed starting from the noise rate 20%. Then, the accuracy
of the third level is greater than the one of the first and the second levels, and the accuracy
of the second level is higher than of the first one. Therefore, more the message propagates
in the network, more we can characterize it, more accurate its predicted class.

In Figure 5.8, we compare the accuracy of the probabilistic and evidential classifiers in
the third propagation level. We notice that without noise (0%) we have good classification
rates. In fact, the probabilistic accuracy is about 96% (with a 95% confidence interval of
±1.27) and the evidential accuracy is equal to 93% (with a 95% confidence interval of ±1.60).
However, in a real world case, the absence of noise arises rarely. In the case where the noise
rate increases, the curve shows that the classification accuracy decreases. Furthermore, we
observe that the evidential (Belief) curve starts to be upper than the probabilistic (Proba)
one. This fact appears from the noise rate 20% where we have an evidential accuracy
equals to 70.7% (±4.33) and a probabilistic one equals to 65.8% (±4.18). Thus, we can
conclude that the evidential classifier is more robust against the noise and gives better
classification accuracy than the probabilistic classifier. In fact, the mass function used in
the evidential algorithm considers some imprecision which mitigates the effect of the noise
on the classification accuracy.

In a second experiment, we compare the probabilistic and the evidential classifiers
with the PrNet-DTW k-NN and the PrNet-DTW belief k-NN in terms of the classification
accuracy. We fix k to 5, the propagation level to 8, and we used the conjunctive combination
rule for the PN-DTW belief k-NN. Figure 5.9 presents the obtained results. We notice that
the curves of the four algorithms have the same shape when increasing the noise rate.
Furthermore, we observe that the PN-DTW belief k-NN and PN-DTW k-NN give better
classification accuracy until reaching the noise rate 40%. Finally, we noticed that when we
consider more propagation levels in the probabilistic and the evidential classifiers become
more robust against noise. In fact, there is an amelioration of the classification accuracy
with the noise rate 20% and 30% which is not the case in Figure 5.8 where we considered
only three levels of propagation.

In this section, we make some experiments on the first dataset. These experiments
show the dependance of the probabilistic and the evidential classifiers to the propagation
level. Besides, the proposed classifiers are very useful to classify social messages without any
access to their content. According to these experiments, the belief classifier is better than
the probabilistic one when we have a noise rate greater than 20%. Furthermore, according
to Figure 5.9, we conclude that the best classifier that is robust to noise, is the PrNet-DTW
belief k-NN classifier.
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(a) Probabilistic results

(b) Evidential results

Figure 5.7: The impact of the propagation level on the classification accuracy
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Figure 5.8: Comparison between probabilistic results and evidential results (level three)

Figure 5.9: Comparison between the four proposed classifiers
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Table 5.2: Comparison between PrNet classifiers

Probabilistic
classifier

Belief
classifier

PrNet-DTW
k-NN

PrNet-DTW
Belief k-NN

Accuracy 51.97% ±2.04 52.25% ±1.99 88.69%
±3.39

89.92%
±3.20

5.6.3 Results on real world propagation

In this section, we test the performance of the proposed algorithms on real world propagation
networks, and we compare the four classifiers between each other. The probabilistic and the
evidential propagation network classifiers [51] works with a discrete type of links, then,
a discretization step is needed. The main purpose of the discretization is to transform
continuous types of links to discrete one. For this purpose, we use the following control
structure: if the weight value (wf , wm or wr) is greater than 0 we replace it by 1 in the
discrete weight vector elsewhere we keep it null (equals 0).

Example 18. If the link is weighted by the vector (wf = 0.5, wm = 0, wr = 0.25), the
output after the discretization step will be (1, 0, 1). �

Next, we use the cross validation principle to divide the dataset into training and testing
sets. Then, we split, randomly, our data set into two subsets: the first one contains 90% of
PrNets and it is used for training and the second one (10%) is used for testing. We do this
division ten times. Besides, we choose the Euclidean distance to evaluate the δ (ai, bj) in
the computation process of the PrNet-DTW.

The k-NN algorithm is known to be dependent to k value, and varying k may vary
the classification accuracy. Then, to see the impact of the parameter k, we made this first
experiment. In fact, we run the two k-NN based algorithms with multiple k values and we
obtained results in Figure 5.10. We note that odd values are more appropriate to k when
we use the Probabilistic k-NN. Moreover, the PrNet-DTW belief k-NN has not the same
behavior as the PrNet-DTW k-NN. In fact, the curve of the evidential classifier is more
stable than the curve of the probabilistic one and the variation of the value of k does not
have a great effect on the classification accuracy.

A second experiment is done to evaluate and compare the proposed classification algo-
rithms. We fix the parameter k to 5 and we obtain results in table 5.2. As shown in table
5.2, the probabilistic and the belief classifiers do not give good classification accuracy, this
behavior is a consequence of the discretization step that leads to the loss of the information
given by weights. In contrast, the two PrNet-DTW based classifiers show their performance.
Indeed, we have got good accuracy rates: 88.69% (±3.39, for a 95% confidence interval) and
89.92% (±3.20) respectively. We also see that the PrNet-DTW belief classifier gives slightly
better results than the probabilistic one.
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Figure 5.10: k variation

5.7 Conclusion

In conclusion, this chapter introduces a new classification approach for social messages
that do not need any access to their content. The idea behind the proposed approach
is that to classify the propagation traces of the social message instead of classifying its
content. A second important contribution that is presented in this chapter, is an information
propagation algorithm that considers the class of the message to be propagated in the
propagation process.

According to the presented experiments, we can conclude that the proposed social
message classifiers are useful to characterize a given social message without any access to
its content. Then, we just need the propagation traces of the message in order to determine
its class. The second important contribution of the proposed classifiers is that they are
adaptable with any type of social content, i.e. text, image, video, etc. Another interesting
conclusion is that the proposed classifiers can be sorted according to their performance
against the noise as follows: the best classifier is PrNet-DTW Belief k-NN, then we have
PrNet-DTW probabilistic k-NN, next the belief classifier and the last one is the probabilistic
classifier.

The next chapter is dedicated to present some conclusions of this thesis. Besides, we
introduce a new generalization idea for the proposed social message classifiers in order to
be more adaptable for the Viral Marketing, and to be useful to identify the influencers
according to their topics of interest.
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Conclusion and perspectives

In this thesis, we focus on proposing new solutions to improve the effectiveness of a Viral
Marketing campaign. In fact, Viral Marketing exploits the world of mouth effect and uses
social networks to promote a product, a brand, etc. Scientifically, this problem is translated
to the problem of influence maximization in social networks. We start our work by identifying
the drawbacks of existing solutions. In fact, existing influence maximization approaches lack
of considering many important influence markers like the user’s activity in the network and
his opinion about the object of the viral marketing campaign, e.g. a product or a brand.
Then we focus on resolving some of these disadvantages. Another important problem we
found while studying existing approaches, is about social messages classification that is an
interesting step if we want to consider the topic to which a given social network user is
interested to.

In a first step of this thesis, we focus on the problem of influence maximization. In
fact, we study the influence aspects in Twitter. Next, we propose a new evidential influence
measure for Twitter users. We use the theory of belief functions in the estimation process
in order to take profit from the robustness of this theory in managing imperfect data and
especially its performance in managing conflict while combining many pieces of information.
The proposed influence measure contracts many influence aspects like the strength of the
user’s relationships, its activity in the networks, the propagation of its tweets, etc. Also, it
is possible to adapt it to other social networks, we just need to define a set of link weights
for the influence aspects we want to consider.

After defining an evidential influence measure, we search to consider the user’s opinion
about the product. For this purpose, we define three Viral Marketing scenarios that may
arise. In the first scenario, we are interested to influencer users having a positive opinion
about the product or the object of the Viral Marketing campaign. In the second scenario,
our focus is on influencers having a positive opinion about the product and exert more
influence on users that have a positive opinion too. In the last scenario, we look for positive
opinion influencers that exert more influence on users having a negative opinion. For each
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defined scenario, we propose two influence measures that take into account specificities of
each scenario.

Next, we introduce two influence maximization models that can be used with any pro-
posed influence measure. The first model considers the influence that exerts a given node on
its direct out-neighbors. This influence model target influencers having many direct neigh-
bors. Besides, it is very useful for products having some quality issues as it is more prudent
in selecting influencers. The second maximization model takes into account the influence
in two hopes, that is to say, it considers the influence that exerts a given user on his out-
neighbors and on out-neighbors of his out-neighbors. This second model is very adaptable
if we want to reach and influence a maximum number of users in the network.

To prove the performance of the proposed influence maximization solutions we present
several experiments. First we introduce a Viral Marketing case study, in which the main
goal is to promote the propagation of smartphones on Twitter. We run these experiments
on a real world dataset collected from Twitter. Then, a second set of experiments is done on
generated data in order to study the behavior and the accuracy of each proposed influence
measure and to compare the performance of the proposed Viral Marketing scenarios.

In the proposed case study, we compare the selected smartphones’ seeds using the
proposed two models to those selected by existing models. Our results prove the performance
of our solutions against existing ones especially when we compare the evidential models to
the credit distribution [41] model that we consider to be the closest in its principle to our
models. Next, we compare the proposed influence measures using the second influence
maximization model to opinion-based cascading model [99] which is an existing solution
that considers the user’s opinion. According to these experiments, we notice that the fact
of considering the user’s opinion has ameliorated the quality of selected seeds. Also, we
ameliorate the mean positive opinion against to the opinion-based cascading model.

The second set of experiments is made on generated data. The purpose of these exper-
iments is to study the performance of the proposed influence measures. Indeed, we generate
the data in such a way that we know the influencers, the positive influencers and the positive
influencers influencing positive and negative users respectively. Next, we study the accu-
racy of our solutions in detecting each type of influencers. According to our experiments,
the proposed influence measures succeed in getting good accuracy values especially when
detecting influencers where we have an accuracy of about 100% obtained by all measures.

In a next step of this thesis, we focus on the problem of social message classification.
We define a new classification approach that ignores the message content and considers its
propagation traces. In fact, the idea behind the proposed solutions is that the propagation
of a given message is directed by its content, then, we search to classify the propagation
network of a given message in order to have a more clearer idea about its content. For this
purpose, we propose two main classification ways, the first one is based on a model that
summarizes the training set. The second one is distance based, then, we need the training
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set to classify each new coming message. Next, we conduct some experiments to prove the
performance of the proposed solutions and we succeed in getting good classification rates.

In this thesis, we achieve many new findings and good results that ameliorate those
given by existing solutions. However, many other ameliorations still not yet resolved. In the
following, we introduce some perspectives for future works:

• A first perspective that comes in mind is to generalize the proposed social message
classification approach to be useful with the proposed influence maximization models.
In fact, in a Viral Marketing campaign we need to know if a detected influencer is
interested in the product or not. Then, in such a case we need to know the topics
to which the influencer is interested to. Furthermore, it is important to consider this
information in the influence maximization process. Indeed, in our work we assume to
have only one topic while maximizing the influence. However, this is not always the
case in the real world social networks. This idea will be done in two main steps:

– In a first step, we will search to propose a more generic classification approach
for social messages. The idea here is to consider the content of the message and
its propagation traces in the classification process to determine the set of topics
to which a given user is interested. Besides, we want to know if the user has some
interest or preference about a given topic. Such an information is very helpful if
we want to find influencers that are more interested in a given product or brand.

– In a second step, the main purpose is to integrate the existence of many topics
and topic preferences in the influence maximization model. In fact, we need a
more generic model that considers many topics of interest in the social network
and the fact of preferring some topics. This information will be very useful if we
search to detect good seeds to promote the Viral Marketing campaign.

• Another interesting idea for future works is about maximizing the influence within
communities. A community is defined as a set of users or vertices that are connected
more densely to each other than to other users from other communities [101]. People
in the same community generally have some common properties. For example, they
may be friends that attended the same school or they are from the same town. The
idea here is to minimize the number of selected influencers and the time spent to find
them. In fact, we will search to find influencers at the scale of the community instead
of the social network and it is obvious that the community is smaller than the social
network.

• A third interesting perspective is to generalize the proposed influence maximization
models by adapting them to other social networks like Facebook and LinkedIn. In
fact, each social network has some specific characteristics that distinguish it from the
others. For example, Facebook allows its users to express their feeling or reaction
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about a given post. Then, someone may love a post or finds it funny1 for example.
All these specificities may be very informative for influence maximization.

• A last perspective will be about defining an updating technique for influence maxi-
mization. Indeed, every day online social networks collect a huge amount of data that
may contain much new information about a given product. Then, a detected influ-
encer spreader today, maybe not an influencer after a period of time or it may appear
another more influencer user. On the other hand the influence maximization process
may be expensive and time consuming in some cases. Hence, an updating approach
for social influencers may be very interesting. Its main purpose is to update the set
of seeds by adding some new ones and/or deleting those that are no more influencers.
The updating will be done without running again all the influence maximization pro-
cess. In fact, we want to use the seed set we have, and the new coming data in order
to generate a new updated seed set.

1Constine J., Facebook Enhances Everyone’s Like With Love, Haha, Wow, Sad, Angry Buttons,
https://techcrunch.com/2016/02/24/facebook-reactions/, Posted on 24/02/2016, Seen on 30/08/2016.
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Summary

The theory of belief functions is very useful for the processing of imperfect information.
Indeed, it provides a rich framework for the information modeling and processing, also, it
allows the decision making. In this thesis, we are mainly using this theory to combine many
pieces of information that come from different sources and to manage the conflict that may
arise between them. In this appendix, we present this theory and we detail some of its basic
concepts that are used in this document.
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A.1 Introduction

The theory of belief functions was first introduced by Dempster in his paper [26]. Next,
Shafer published his book “A mathematical theory of evidence” [79] in which he developed
the basic concepts of this theory. Next, many works appeared either to develop new tools to
enrich the theory or to use it in an application domain as in our case. This theory has other
names like Dempster-Shafer theory and evidence theory. In this thesis, we use the theory of
belief functions especially for information fusion and conflict management.

In this appendix, we give a brief overview of the theory of belief functions, we detail its
basic concepts and we give some examples to explain them. First, we present some concepts
that are used to model the information and to present the different pieces of information in
a same universe (Section A.2). Next, we move on to the information fusion (Section A.3). In
fact, having many pieces of information is not always understandable, then, we need to fuse
them into one compact piece of information that summarizes those given as input. Finally,
a decision making step is, always, needed (Section A.4). Hence, we introduce some well
known tools that are generally used for making decision in the belief functions framework.

A.2 Information modeling

In this section, we present some functions that are very useful to model the information in
order to make its processing easier. First, we present the basic belief assignment (also called
mass function), then, we introduce some of its transformations.

A.2.1 Mass function

The first think to define while using the theory of belief functions is the frame of discernment
or in other words the set of all possible decisions or choices in the given problem. Suppose
that Ω = {C1, C2, ..., Cn} is our frame of discernment where Ci ∩ Cj = ∅, Ci, Cj ∈ Ω and
Ci 6= Cj . In fact, the conjunction between Ω elements is not allowed. Next, we define the
power set, 2Ω, which is the set of all subsets of Ω:

2Ω = {∅, {C1} , {C2} , {C1, C2} , ..., {C1, C, ..., Cn}} (A.1)

Example 19. Let’s consider the well known example of the murder of Mr. Jones introduced
by [84]. Big Boss has a team of assassins composed of three members which are Peter, Paul
and Mary. We need to define a frame of discernment that contains all possible assassins: Ω is
formed by: Peter (Pe), Paul (Pa) and Mary (Ma), Ω = {Pe, Pa, Ma}, and its corresponding
power set is:

2Ω = {∅, {Pe} , {Pa} , {Pe, Pa} , {Ma} , {Pe,Ma} , {Pa,Ma} , {Pe, Pa,Ma}} (A.2)
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�

The mass function, also called basic belief assignment (BBA) function, mΩ, is defined
by the following mapping:

2Ω → [0, 1]

A 7→ mΩ (A) (A.3)

The amount mΩ (A) is the mass value assigned to the subset A ⊆ Ω. The mass function has
the following property ∑

A⊆Ω

mΩ (A) = 1 (A.4)

In the case where we have mΩ(A) > 0, A is called focal element. If mΩ(∅) = 0, mΩ is said
to be a normalized mass function. In many cases, we may have mΩ(∅) ≥ 0. The mass given
to the empty set, ∅, is the mass value that is not given to any subset. It is called fusion
inconsistency value. It appears generally when we combine many pieces of information and
it is caused, generally, by the non idempotence of the combination rule and the conflict
between information sources, i.e. the degree of contradiction between them. It can be
redistributed using the following transformation:

mΩ (A) =
mΩ (A)

1−mΩ (∅)
(A.5)

mΩ (∅) = 0 (A.6)

The mass value given to the set Ω is the mass that can not be given to its subsets and it
is called total ignorance. When we compare a BBA distribution to a probability distribution,
we notice that the BBA allows a subset of Ω to be a focal element when we have some doubt
about the decision, while the probability theory forces the equiprobability in such a case.

Example 20. Let us take the same example of the murder of Mr. Jones. One day, Big
Boss decided that Mr. Jones has to be killed. Then, he selected a killer from his team using
a dice, if he obtain an even number, then the killer is a female, else, the killer is a male.
Let’s help the Judge to find the murder. We know that Mr. Jones has been murdered and
the sex of the murder was selected through a dice. However, there is no information about
the choice between Peter and Paul in the case of an odd number.

Knowing this information, we can define the following BBA on Ω:
mΩ

1 ({Pe, Pa}) = 0.5 and mΩ
1 ({Ma}) = 0.5. �

There are some particular mass functions like the simple mass function, also called
simple BBA [79, 82]. A BBA is said to be simple if it has two focal elements, the first one



118 Appendix A. Theory of belief functions

is a subset of Ω, A ⊆ Ω, and the second one is Ω. Let α ∈ [0, 1], the simple BBA mΩ is
defined as:

mΩ (A) =


1− α A ⊆ Ω

α A = Ω

0 otherwise

(A.7)

Example 21. Suppose that a new information comes to the Judge that said: the killer may
be Paul or Marry and our belief on this assumption is 0.6 and their is no new information
about Peter.

We model this information using a simple mass function defined on Ω: mΩ
2 ({Pa,M}) =

0.6 and mΩ
2 ({Ω}) = 0.4. �

Another very useful particular mass function is the consonant mass. This BBA is
characterized by its nested focal elements, i.e. A1 ⊆ A2 ⊆ . . . ⊆ Ω.

Example 22. The following BBA is consonant: mΩ
3 ({Pe}) = 0.2, mΩ

3 ({Pe, Pa}) = 0.4

and mΩ
3 (Ω) = 0.4. �

In the next section, we present some possible transformations of the mass function.

A.2.2 Mass transformations

In this section, we introduce some transformations of the mass function that are very useful
to present differently the same piece of the information. The belief function, belΩ, represents
the minimal amount of support that is given to the subset A. In other words, it represents
the total belief given to A ⊆ Ω [79]. As the mass function, belΩ is also a mapping from 2Ω

to [0, 1]. The belief given to A is obtained through the following equation:

belΩ (A) =

0 if A = ∅∑
∅6=B⊆Am

Ω (B) ∀A ⊆ ∅, A 6= ∅
(A.8)

The mass function, mΩ, that produces belΩ can be retrieved using the following equation:

mΩ (A) =
∑
B⊆A

(−1)
|A|−|B|

belΩ (B) , ∀A ⊆ Ω (A.9)

Another important function is the plausibility function, plΩ, which represents the max-
imum amount of support that can be given to a subset A if another information become
available. It is also a mapping from 2Ω to [0, 1] and it is estimated using the following
equation:
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plΩ (A) = belΩ (Ω)− belΩ
(
Ā
)
, ∀A ⊆ Ω (A.10)

plΩ (A) =
∑

B∩A=∅

mΩ (B) , ∀A ⊆ Ω (A.11)

The mass function that produces plΩ can be retrieved as in the case of the belief function,
belΩ, using the following equation:

mΩ (A) =
∑
B⊆A

(−1)
|A|−|B|−1

plΩ
(
B̄
)
, ∀A ⊆ Ω (A.12)

Example 23. Consider the mass function of the first example. Table A.1 presents a com-
putation example of belΩ and plΩ. �

Table A.1: Mass, belief and plausibility example

mΩ belΩ plΩ

∅ 0 0 0
{Pe} 0 0 0.5
{Pa} 0 0 0.5
{Pe, Pa} 0.5 0.5 0.5
{Ma} 0.5 0.5 0.5
{Ma,Pe} 0 0.5 1
{Ma,Pa} 0 0.5 1

Ω 0 1 1

A.2.3 From a probability to a BBA

The transition from a probability distribution to a BBA distribution is, eventually, possible.
This transformation is called consonant transformation or inverse pignistic transformation
[3, 4]. Let PrΩ be a probability distribution defined on Ω. To transform PrΩ into mΩ, we
first order the probabilities given to singletons of Ω as:

PrΩ (C1) ≥ PrΩ (C2) ≥ . . . ≥ PrΩ (Cn) (A.13)

Next, we use the following equations to obtain a BBA:

mΩ ({C1, C2, . . . , Cn}) = n.PrΩ (Cn) (A.14)

mΩ ({C1, C2, . . . , Cn−1}) = (n− 1) .
(
PrΩ (Cn−1)− PrΩ (Cn)

)
(A.15)

. . . (A.16)

mΩ ({C1, C2}) = (2) .
(
PrΩ (C2)− PrΩ (C3)

)
(A.17)

mΩ ({C1}) = (1) .
(
PrΩ (C1)− PrΩ (C2)

)
(A.18)
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In the next section, we detail some tools that are very useful to combine the information.

A.3 Information fusion

After the information modeling step, comes the information fusion which is an essential step
when working with belief functions. It allows the combination of many pieces of information
that comes from different and independent sources. The strength of the theory of belief
functions comes from its strength in the management of the conflict during the information
fusion step. Besides, it performs many tools for this purpose. Indeed, each of these has its
specific characteristics and according to these characteristics we can select an appropriate
tool for a given case. In the literature, we find many combination rules like Dempster’s rule
[26], Conjunctive combination rule [80], Dubois et Prade rule [31], Yager rule [97], PRC6
[68, 69], etc.

The Dempster’s rule [26] is the first combination rule that was introduced to combine
pieces of evidence in the theory of belief functions. Having two mass functions, mΩ

1 and mΩ
2 ,

that comes from two distinct sources, we can obtain the combined BBA distribution, mΩ
1⊕2,

using the following equation:

mΩ
1⊕2 (A) =


∑
B∩C=Am

Ω
1 (B).mΩ

2 (C)

1−
∑
B∩C=∅m

Ω
1 (B).mΩ

2 (C)
, ∀A ⊆ Ω, A 6= ∅

0 if A = ∅
(A.19)

The resulting BBA , mΩ
1⊕2, is normalized, i.e. mΩ

1⊕2 (∅) = 0.

Another very useful combination rule is the Conjunctive rule of combination CRC [80].
It is used to fuse two mass functions, mΩ

1 and mΩ
2 , that have two distinct sources as follows:

mΩ
1~2 (A) =

∑
B∩C=A

mΩ
1 (B) .mΩ

2 (C) , ∀A ⊆ Ω (A.20)

The BBA mΩ
1~2, result of the CRC, is not normalized, i.e.

mΩ
1~2 (∅) =

∑
B∩C=∅

mΩ
1 (B) .mΩ

2 (C) ≥ 0

Example 24. Table (A.2) is an example of the Dempster’s rule and CRC. �

A.4 Decision making

As mentioned above, to use the theory of belief functions, generally, we start by transforming
each given piece of information to a BBA distribution. Next, we combine the obtained BBAs
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Table A.2: Combination rules example

mΩ
1 mΩ

2 Dempster’s rule CRC
∅ 0 0 0 0.15
{Pe} 0 0 0 0
{Pa} 0 0 0.1765 0.15
{Pe, Pa} 0.5 0.3 0.4118 0.35
{Ma} 0.5 0 0.4118 0.35
{Ma,Pe} 0 0 0 0
{Ma,Pa} 0 0.3 0 0

Ω 0 0.4 0 0

in order to obtain a BBA, mΩ, that summarizes all pieces of information. Then, we move
on to the decision making step. This third step can be done using the pignistic probability,
noted BetPΩ [83]. It is a mapping from Ω to [0, 1] and it is calculated from the combined
BBA, mΩ, as follows:

BetPΩ (Ci) =
∑

di∈A,A∈Ω

mΩ (A)

card (A) . (1−mΩ (∅))
(A.21)

where card (A) is a function that computes the cardinality of the subset A. The chosen
decision according to the pignistic probability is the decision, Ci, having the maximum
pignistic probability value.

Example 25. Let return to the example of the murder of Mr. Jones. We havemΩ
1 ({Pe, Pa}) =

0.5, mΩ
1 ({Ma}) = 0.5, mΩ

2 ({Pa,Ma}) = 0.6 and mΩ
2 ({Ω}) = 0.4. We use the Demp-

ster’s rule to combine these two pieces of information, we have got: mΩ ({Ma}) = 0.5,
mΩ ({Pa}) = 0.3 and mΩ ({Pe, Pa}) = 0.2. Next, we compute BetPΩ and we obtain:
BetPΩ (Ma) = 0.5, BetPΩ (Pe) = 0.1 and BetPΩ (Pa) = 0.4. As a result, the murder of
Mr. Jones seems to be Mary as it has the maximum pignistic probability. �

A.5 Conclusion

In conclusion, this appendix is dedicated to the theory of belief functions. This theory is
very helpful for the process of the imperfect information that may be imprecise, uncertain,
etc. In this thesis, the theory of belief functions is used to define the influence measures and
to combine the influence aspects. Besides, it is also used to define an evidential classifier for
social messages.
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Summary

The graph theory and its tools are very helpful if we are working with social networks. In
fact, a social network is a graph where nodes are people, groups of people, etc, and links are
the relationships between them. In this appendix, we explain some essential concepts of the
graph theory that are very useful for social networks.
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(a) Graph (b) Directed edge (c) Digraph

Figure B.1: Example of graphs

B.1 Introduction

The social network analysis field is based on the graph theory. Indeed, the use of graphs to
model the social relationships is very helpful as it allows the analyzer to study the structural
properties of the network. In the literature, we find many works that use the structure of the
network to select influencers, to simulate the process with which the information propagates
through the network [55, 56], etc. We also use the graph structure of the social network in
our work, which justify the interest of this appendix.

The remainder of this appendix is organized as follows: Section B.2 defines some useful
basic concepts from the graph theory, and Section B.3 introduces some centrality measures.

B.2 Basic concepts definitions

In this section, we define some concepts from the graph theory that are used in this docu-
ment.

Definition 15. A Graph G is a couple (V,E) where V is a finite set of elements called
vertices or nodes, v ∈ V , and E is a finite set of pairs of elements from V called edges,
(u, v) ∈ E, u, v ∈ V . An edge represents a relationship between two nodes. If the edges
have a specific direction, they are said to be directed edges. Besides, a graph having directed
edges is called directed graph or digraph.

Example 26. Figure B.1a is an example of a graph where u1, u2, u3, and u4 are vertices
and links between them are edges. Figure B.1b is an example of an edge, it starts from u2,
the source, to its destination u1. Figure B.1c is an example of a digraph. �

Definition 16. The degree of a vertex, v, in a G is the number of neighbors of v:

degree (v,G) = |N (v) | (B.1)

where N (v) is the set of neighbors of the vertex v.
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Figure B.2: A path relating A to D

Figure B.3: A dipath from A to D

Example 27. The degree of the node u1 in the graph of the Figure B.1a is two as it has
two neighbors u2 and u4. �

Definition 17. The indegree of a vertex, v, in a directed graph is the number of links having
v as source. �

Definition 18. The outdegree of a vertex, v, in a directed graph is the number of links
having v as destination.

Example 28. Let take the digraph of Figure B.1c, the indegree of u1 is equal to one and
its outdegree is two. �

Definition 19. The strength of a node, v, in a weighted graph is the sum of weights of links
that relates v to its neighbors.

Definition 20. A path in a graph G between two nodes u and v is a sequence of distinct
edges connecting a sequence of vertices. A directed path or a dipath is a sequence of vertices
connected with directed edges that are directed to the same direction. A shortest path
between two nodes in the graph is called geodesic.

Example 29. Figure B.2 is an example of path that relates u1 to u4 and Figure B.3 is an
example of a directed path that starts from u1 to u4. �

Definition 21. A cycle is a path that starts and ends in the same vertex. A directed cycle
is a cycle with a directed path.

Definition 22. A directed acyclic graph (DAG) is a graph that does not contain cycles.

Example 30. Figure B.4 is an example of a directed acyclic graph. �

The reader can refer to [15] and [96] for more details and examples about the graph
theory.

B.3 Centrality measures

Centrality measures search to find the centric nodes in the graph. In the literature, we find
many definitions for the centrality of a vertex in a given graph. It may be, for example, the
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Figure B.4: Directed acyclic graph

degree of the node, then the node having the maximum degree is the centric node in the
graph [73]. In this section, we present some examples of these measures and for more details
the reader can refer to the book of Newman [73].

Definition 23. The betweeness centrality measures “the extent to which the focal vertex
lies on a large number of shortest paths between various third parties” [20]. Given a graph
G, the betweeness can be estimated as follows [34]:

cb (v) =
∑

{u,w}⊂V/{v}

g′ (u, v, w)

g (u,w)
(B.2)

where g (u,w) is the number of geodesics in G and g′ (u, v, w) is the number of (u,w)

geodesics in G containing v. A geodesic between two nodes is a path with a minimum
number of links between them. We have cb (v) = 0 when g (u,w) = 0. The work of [8]
introduces an algorithm to estimate the betweeness of a node in a graph.

Definition 24. The closeness centrality measures the mean distance between a given vertex
v to other vertices in the network. It is defined by the following equation [77]:

cc (v) =
1∑

u∈V
g (v, u)

(B.3)

The degree, the betweeness and the closeness centrality measures are very useful to
determine the structural importance of a given node in a given graph and more specifically
in a social network.

B.4 Conclusion

To sum up, in this appendix we detail some basic concepts from the graph theory that are
very useful in the social networks analysis field. Also, we introduce some centrality measures
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which are the degree, the betweeness and the closeness centrality. In this thesis, we used
graphs to model and manage the social network.
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