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Chapter I

Broad Introduction

We start with a very broad overview in order to provide general motivations for
the questions adressed later on in the present thesis.

String theory proposes to replace the notion of point particle and the ’worldline’
they follow when evolving in time by a one dimensional object, the string, which can
be open or closed, and the ’worldsheet’ it sweaps out in a d-dimensional spacetime
M . One then studies the motion of this string in some spacetime, i.e. the dynamics of
maps Xµ describing the embedding of the worldsheet into spacetime. String theory
therefore consists in a physical theory for the fields living on the worldsheet, and
its properties are closely connected to the spacetime physics through the embedding
maps Xµ. In particular, the properties required for the spacetime physics impose
severe constraints on the type of theory living on the worldsheet, which will therefore
be a particular type of quantum field theory, namely a conformal field theory. Such a

proposal appeared in the late 60’s as an attempt to explain the dynamics of hadrons
subject to the strong interaction. Various inherent features of the theory, such
as the unavoidable presence of a massless spin-two excitation, not present in the
hadronic bestiary, appeared however as fatal problems in trying to describe solely
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4 Chapter I. Broad Introduction

the strong interaction. These problems combined with the development of Quantum
Chromodynamics in the beginning of the 70’s and its quick successes were enough
to discard String Theory as a theory of the strong interaction.

It was understood only later that if the typical string scale is close to the Plank
scale, one could understand the massless spin-two excitation as a graviton, particle
mediating the gravitational interaction at the quantum level. It was then shown that
this massless excitation interacted in a way consistent with the covariance laws of
General Relativity, hence one could hope that String Theory may actually describe
a consistent quantum theory of gravity.

As mentioned above, String Theory contains closed and open strings, and consists
in a two-dimensional sigma model defined on the worldsheet spanned by the string,
valued in some target spacetime, and exhibiting conformal invariance for consistency
of the theory. In the Ramond-Neveu-Schwarz formalism, this two-dimensional sigma
model is required also to admit some amount of supersymmetry in order to contain
fermionic excitations in spacetime. Moreover, purely bosonic String Theory contains
in its spectrum a tachyon which tends to signal an instability in the theory, and
which is not present for the superstring. Requiring consistency of the theory at the
quantum level, namely that the conformal invariance of the sigma model is non-
anomalous, imposes the dimension of the target spacetime of the superstring to be
ten, the purely bosonic string being defined in twenty-six spacetime dimensions.

The properties of the various fundamental particles observed in Nature are un-
derstood as the various oscillation modes of strings. In the limit in which the energies
are much smaller than the typical string scale, the strings indeed appear as point-like
particle, and the lowest energy string excitations can be given a description in terms
of a low-energy effective quantum field theory.

The above mentioned graviton appears in the excitation spectrum of the closed
string. On the other hand, the open string spectrum naturally contains an abelian
gauge field. If one also attaches so-called Chan-Paton factors to the extremities of
the open string, then one can incorporate also non-abelian interactions, and hence
potentially reproduce the Standard Model or GUT gauge group.

There are five consistent String Theories: the type I, type IIA and IIB, and the
Spin(32)/Z2 and E8×E8 heterotic strings. The two heterotic string theories contain
only closed strings, as well as the two type II string theories in absence of D-branes.
The idea behin the construction of the heterotic strings involves exploiting the fact
that the right and left-moving sectors of the closed string are basically independent
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of one another, allowing to define a hybrid theory in which the right-moving sector
is supersymmetric, and the left-moving one is that of the bosonic string. Even
though these theories only contain closed strings, they do include non-abelian gauge
fields as part of their spectrum. The heterotic string may be considered as the
most economical way to implement both supersymmetry and gauge symmetry in
spacetime. The various string theories introduced above all lead to a low energy
supergravity effective action in 10 dimensions, with minimal supersymmetry for the
type I and heterotic theories, extended N = 2 for the type II theories, and are
actually all connected to each other by various perturbative and non-perturbative
duality transformations, hence forming a web of theories which then appears as
various perturbative limits of a single eleven-dimensional theory called M-theory.

In order to make contact with four-dimensional physics, one looks at string back-
grounds whose spacetime consists in the cartesian product of, say, four-dimensional
Minkowski spacetime and some compact manifold whose characteristic length scale
is much smaller than the typical length scales probed in particle physics experi-
ments. The main drawback of such a compactification approach is that the freedom
related to the shape and size of the internal manifold leads in the four-dimensional
spacetime to the presence a collection of massless scalar fields, whose presence is not
relevant from a phenomenological point of view.

One direction in order to tackle this problem is to turn on fluxes, namely to allow
for a non-trivial profile along the internal manifold for the fields corresponding to
the various massless string excitations. This typically fixes at least part of the
compactification moduli.

The goal of the thesis will be to study various aspects of heterotic compact-
ifications with fluxes turned on. Gauge fluxes have already been considered quite
extensively in the context of compactifications on a particular type of compact space
corresponding to Calabi-Yau manifolds. We will consider in this thesis compactifi-
cations which are also characterized by a non-trivial NS-NS flux, which is part of the
gravitational excitation sector of the closed string, and whose geometric interpreta-
tion is that of a non-trivial torsion on the compactification manifold. One of the
main advantages of the heterotic string is that it allows for a purely worldsheet de-
scription of fluxes, contrary to type II which should also contains Ramond-Ramond
fluxes, which do not admit a known description at the worldsheet level.

After introducing tools common to the various parts of the thesis (part A ch.
A.II), we will in a first part (part B) be interested in a large class of heterotic
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torsional compactifications known in the litterature as Fu-Yau compactifications.
We will define and compute a natural object associated to these compactification,
the dressed elliptic genus, which, as we will see, captures various properties related
to the topology of the compactification manifold and the gauge bundle over it. We
will also give a purely mathematical definition independent of any sigma model with
target the geometry of interest, and which naturally generalizes the elliptic genus
of a holomorphic vector bundle over a Calabi-Yau manifold to holomorphic vector
bundles over the non-Kähler total space of a two-torus principal fibration over a
Calabi-Yau d-fold.

In a second part (part C) we will use the results of the first part to compute one-
loop corrections to various couplings in the low-energy effective action corresponding
to these Fu-Yau compactifications. These so-called threshold corrections will be
expressed in two different forms in order to discuss different physical aspects.

Finally in a last part (part D), we will introduce and describe new non-compact
heterotic supergravity solutions generalizating already known torsional solution such
as warped Eguchi-Hanson or warped orbifoldized resolved conifold.

This Ph.D. thesis led to three articles:

• New supersymmetric index of heterotic compactifications with torsion, with
Dan Israël, arXiv:1509.05704, JHEP 1512 (2015) 069,

• Dressed elliptic genus of heterotic compactifications with torsion and general
bundles, with Dan Israël, arXiv:1606.08982, JHEP 1608 (2016) 176,

• Threshold corrections in heterotic flux compactifications, with Carlo Angelan-
tonj and Dan Israël, arXiv:1611.09442,

which mainly correspond to chapter B.II, chapter B.III and chapter C.II respectively,
as well as to some yet unpublished work:

• Heterotic Flux Solutions From Sasaki-Einstein Manifolds, with Nick Halmagyi,
Dan Israël and Eirik Eik Svanes,

corresponding to chapter D.II.



Chapter II

Heterotic supergravity and BPS equa-
tions

II.1 Heterotic supergravity action

Let us introduce the supergravity theory obtained in the low-energy limit of the

heterotic string. It will allow for a neat derivation of the BPS system of equations.

The theory consists in 10-dimensional N = 1 supergravity theory coupled to

N = 1 super Yang-Mills with Spin(32)/Z2 or E8 × E8 gauge group. The allowed

gauge groups are fixed by the requirement of vanishing of the gauge and gravitational

anomalies through the Green-Schwarz mechanism.

The bosonic part of the action describes the dynamics of a metric tensor g, a

rank-two antisymmetric Kalb-Ramond B-field, a dilaton φ and a gauge connection

A whose curvature we denote F , and is given in string frame by the following ex-

pression:

S[g,B, φ,A] =
∫
M

volg e−2φ
{
R(g) + 4|dφ|2 − 1

2 |H|
2 + α′

4
(
|R|2 − |F |2

)}
,

(A.II.1.1)

where R(g) denotes the scalar curvature of g, and the higher derivative |R|2 term

involves the curvature of a connection ∇ on the tangent bundle TX and is required

by quantum consistency of the theory, namely the vanishing of the Lorentz and

gauge anomaly forms through the Green-Schwarz mechanism. F and R are taken

7



8 Chapter II. Heterotic supergravity and BPS equations

to be anti-Hermitian:

F = dA+A ∧A , (A.II.1.2a)

R = d∇+∇∧∇ . (A.II.1.2b)

The presence of this |R|2 term in the action and the precise choice of spin connec-
tion will be explained in more details when we deal with the worldsheet theory, in
which the Green-Schwarz mechanism corresponds to a compensation between the
non-classically gauge invariant action of the two-dimensional theory and a one-loop
anomaly.

Here and in the following, the norm of a p-form ω is defined by:

|ω|2 = 1
p!g

µ1ν1 . . . gµpνpωµ1...µpων1...νp . (A.II.1.3)

The norms of the Lie algebra valued two-forms R and F are computed with respect
to the Killing form − tr (in the vector representation, see below). The field strength
H of the Kalb-Ramond B-field actually also receives an α′ correction due to the
requirement of anomaly cancellation, and reads locally:

H = dB + α′

4 (CS(∇)− CS(A)) , (A.II.1.4)

where the Chern-Simons 3-forms, defined by:

CS(∇) = tr
(
∇∧ d∇+ 2

3∇∧∇ ∧∇
)
, (A.II.1.5a)

CS(A) = tr
(
A ∧ dA+ 2

3A ∧A ∧A
)
, (A.II.1.5b)

are such that:

dCS(∇) = trR ∧R (A.II.1.6a)

dCS(A) = trF ∧ F . (A.II.1.6b)

The non-standard behaviour under spacetime Lorentz and gauge transformations
of the B-field whose field strengh is given by eq. (A.II.1.4) is known as the Green-
Schwarz mechanism. We will discuss it again from a worldsheet sigma model point
of view in the following, B.I.1, context in which this Green-Schwarz mechanism will
play a major role in the rest of the thesis.

Even though the connection B is only defined locally, the expression eq. (A.II.1.4)
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leads to the globally defined heterotic Bianchi identity:

dH = α′

4 (trR ∧R− trF ∧ F ) . (A.II.1.7)

The gauge trace naturally appearing in the above expression is actually 1
30Tr, where

Tr is the trace in the 496-dimensional adjoint representation of the gauge group. In
the case of Spin(32)/Z2 it is related to the trace in the 32-dimensional representation
tr by the relation1:

Tr(F ∧ F ) = 30 tr(F ∧ F ) . (A.II.1.8)

Moreover, the same notation is used in the E8×E8 case even though the latter does
not admit a 32-dimensional representation, hence defining tr in that case.

Let us denote for an arbitrary p-form F by F ∨ F the following symmetric rank
two tensor:

(F ∨ F )M1N1 = gM2N2 . . . gMpNpFM1M2...MpFN1N2...Np (A.II.1.9)

Extremization of the above supergravity/Yang-Mills action with respect to the field
configurations leads to the following set of equations of motion:

Ric(g)− 2∇lc(dφ)− 1
4H ∨H −

α′

4 (R ∨R− F ∨ F ) = 0 , (A.II.1.10a)

R(g)− 4∆φ− 4|dφ|2 − 1
2 |H|

2 + α′

4
(
|R|2 − |F |2

)
= 0 , (A.II.1.10b)

d†
(
e2φH

)
= 0 , (A.II.1.10c)

d†A
(
e2φF

)
+ 1

2 e
2φ ? (F ∧ ?H) = 0 , (A.II.1.10d)

where the dagger denotes the adjoint with respect to the metric, ∇lc the Levi-Civita
connection, and dA the gauge covariant exterior derivative which is locally written
dA = d + A and ? the Hodge duality operation defined in terms of the metric g.
As we will see later, these equations correspond to the lowest order approximation
in an expansion in the Regge slope α′. These equations are therefore corrected
by ’stringy’ contributions, beyond the point-like approximation, corresponding to
including loop diagrams in the worldsheet sigma-model. α′ being a dimensionful
parameter, carrying dimension (lenght)2, a dimensionless parameter can be defined
using a typical length scale in the geometry l as α′/l2. When the Hull connection ∇h

is chosen on the tangent bundle, cf. end of section A.II.2, these equations of motion
1More generically Tr(F ∧ F ) = (n− 2) tr(F ∧ F ) for SO(n).
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start receiving corrections at order O(α′). Different choices of connection correspond
to field redefinitions in the supergravity theory, or different regularization schemes
in the worldsheet theory, and lead to O(α′) corrections to the equations of motion
eq. (A.II.1.10). We refer the reader to the next section and to the litterature for
more details on the subtelties concerning this choice of connection [1–7].

II.2 Compactification and BPS conditions

In order to make contact with 4-dimensional physics, one has to consider space-
time topologies taking the form of a cartesian product of a 4-dimensional non-
compact maximally symmetric spacetime and a 6-dimensional internal manifold X:

M = M4 ×X , (A.II.2.1)

In the context of heterotic compactifications, the additional data of the gauge bundle
should also be dealt with by specifying a vector bundle E over X, whose structure
group we embbed into one of E8 factors, the remaining 4-dimensional spacetime
gauge group corresponding to the commutant of the structure group of E inside E8,
times the unbroken E8 factor.

The question raised by Strominger and Hull [8,9] some time ago is to determine
the properties which should be satisfied by the internal (X,E) data so that one
preserves at least N = 1 supersymmetry in spacetime. Let us briefly recall the
answer to this question.

4-dimensional Poincaré invariance actually allows to consider warped products
instead of simply cartesian products, namely settings in which the spacetime metric
comes with a warp factor depending on the internal coordinates. In Einstein frame,
the metric is therefore written:

ds2 = e2∆(x)
(
ds2(M4) + ds2(X)

)
, (A.II.2.2)

where x denotes the internal coordinates, and ∆(x) some warp factor. In the fol-
lowing, greek letters will denote external spacetime indices, latin letters will denote
internal indices and capital latin letters denote 10-dimensional indices. The require-
ment that M4 is a maximally symmetric spacetime imposes that gauge and torsion
fluxes and derivative of the dilaton field do not have legs along the external direc-
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tions:

Fµa = Fµν = 0 , (A.II.2.3a)

Hµab = Hµνa = Hµνρ = 0 , (A.II.2.3b)

∂µφ = 0 , (A.II.2.3c)

but nothing prevents them from exhibiting a non-trivial profile on the internal man-
ifold X.

A supersymmetric vacuum is left invariant by at least one supercharge. Since in a
classical vacuum the fermionic fields have a vanishing vacuum expectation value, one
needs only to ensure that the variation of the fermionic fields vanish in the vacuum,
since the variation of bosonic fields contain fermionic fields. The spinorial fields
entering the heterotic supergravity action are the gravitino, the dilatino and the
gaugino. Under a local supersymmetry transformation of Grassmanian parameter
ε, they transform as:

Gravitino variation: ∇b
M ε = 0 , (A.II.2.4a)

Dilatino variation:
(
/∇φ− 1

2H
)
ε = 0 , (A.II.2.4b)

Gaugino variation: Fε = 0 . (A.II.2.4c)

As mentioned already, the choice of connecton ∇ on the tangent bundle is a subtle
question. We will discuss this point a bit more later, but let us mention at this
point that the above described supergravity theory, in particular the action and
the supersymmetry variations written above should be understood as a truncation
in an α′ expansion, with α′ the Regge slope parameter, coupling constant of the
worldsheet theory (to be introduce in chapter B.I). It was shown that when ∇ is
chosen to be the so-called Hull connection ∇h, the first α′ corrections to the action
appear at order O(α′3), and the first corrections to the supersymmetry variations
at order O(α′2). If another connection is to be used, all possible connections being
related to each other by field redefinitions in the supergravity theory or by different
regularization schemes in the worldsheet σ-model, then O(α′) corrections start to
appear in the supersymmetry variations.

The first assumption ensuring the existence a supersymmetric vacuum will there-
fore be the existence of a globally defined spinor ε. Among the above system of equa-
tions, eq. (A.II.2.4a) is referred to as the Killing Spinor Equations. In eq. (A.II.2.4a),



12 Chapter II. Heterotic supergravity and BPS equations

the connection used is a connection with torsion, the Bismut connection:

∇b
M = ∇M −

1
2HM , (A.II.2.5)

where ∇ is the Levi-Civita connection. The Bismut connection is the only Hermitian
connection admitting torsion. One in particular sees here that the field strength of
the Kalb-Ramond B-field plays the role of a contorsion tensor.

We have introduced above some compact notation for the H flux, which for a
generic n-form F reads:

FM1...Mp := 1
(n− p)! ΓMp+1...MnFM1...Mp,Mp+1...Mn , (A.II.2.6)

with the antisymmetrized product of gamma matrices:

ΓM1...Mp := Γ[M1 . . .ΓMp] . (A.II.2.7)

The existence of a supersymmetric vacuum is equivalent to the existence of a spinor
field on M satisfying eq. (A.II.2.4).

The 16-dimensional spinorial irreducible representation in 10 dimensions splits
under the ansatz eq. (A.II.2.1) as:

SO(1, 9)→ SO(1, 3)× SO(6) (A.II.2.8)

16→ (2, 4)⊕ (2̄, 4̄) , (A.II.2.9)

and we decompose the supersymmetry parameter as:

ε = η+ ⊗ ζ+ + η− ⊗ ζ− , (A.II.2.10)

with η∗+ = η− and ζ∗+ = ζ− Weyl spinors.

The set of equations eq. (A.II.2.4) therefore leads to separate constraints on the
external and the internal geometry. Concerning the external geometry, eq. (A.II.2.4b)
together with the absence of torsion on M4 leads to the integrability condition:

Γµν∇µ∇ν = 0 , (A.II.2.11)

with the Levi-Civita connection ∇, which in turn leads to the fact that M4 has a
vanishing scalar curvature, hence is Minkowski spacetime.
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Concerning the internal manifold, eq. (A.II.2.4a) leads to:

∇b
aζ = 0 , (A.II.2.12)

namely to the question of the existence of a covariantly constant spinor ζ with
respect to the Bismut connection on X. The existence of such a spinor leads to a
restriction on the structure group of the orthonormal frame bundle on X, which is
reduced from SO(6) ' SU(4) to SU(3), [8–10]. X is then said to admit an SU(3)
structure. In the absence of torsion, this property reduces to the fact that X admits
SU(3) holonomy.

One sees from eq. (A.II.2.12) that ζ†+ζ+ is a constant, which can always be set
to 1 by properly normalizing the spinor ζ+. Since ζ+ is globally defined on X, it
can be used to build a globally defined real 2-form and a globally defined complex
3-form as follows. One first defines:

I b
a = −iζ†−Γ b

a ζ− , (A.II.2.13)

which can easily be shown to satisfy:

I b
a I

c
b = −δca , (A.II.2.14)

to which corresponds an almost complex structure (endomorphism of the tangent
bundle TX squaring to minus the identity) showing that X is an almost complex
manifold, and which is compatible with the metric. By rotating the metric with this
tensor, one obtains the following 2-form:

J = 1
2Jab dx

a ∧ dxb , (A.II.2.15)

with:
Jab = I c

a gcb . (A.II.2.16)

It is a real (1, 1)-form with respect to the almost complex structure I. Using the fact
that J is covariantly constant with respect to the Bismut connection, one can show
that the Nijenhuis tensor vanishes, showing that X is actually a complex manifold,
equipped with a hermitian metric. We will denote in the following a generic local
patch of complex coordinates by (zi, z̄ ı̄).

One can also define a complex 3-form, which is a (3, 0) with respect to the
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complex structure:
Ω = e−2φζt−Γijkζ− dzi ∧ dzj ∧ dzk , (A.II.2.17)

which can be shown to be holomorphic. One therefore sees that the canonical bundle
of X admits a globally defined section, hence is trivial:

KX ' OX . (A.II.2.18)

J and Ω satisfy the SU(3) structure conditions:

J ∧ Ω = 0 , (A.II.2.19a)

− i8 Ω ∧ Ω̄ = 1
3! J

3 , (A.II.2.19b)

therefore the pair (J,Ω) is what is usually referred to as the SU(3) structure on X.
In terms of this data, the dilatino equation can be shown to be equivalent to the

conformally balanced equation:

d
(
||Ω||J2

)
= 0 , (A.II.2.20)

where || · || is the norm corresponding to the hermitian scalar product (·, ·)J defined
with respect to the fundamental form J .

The physical fields, i.e. metric, torsion and dilaton field are then expressed in
terms of the geometric data:

g = J(·, I·) , (A.II.2.21a)

H = dcJ , (A.II.2.21b)

dφ = −1
4d log(||Ω||) , (A.II.2.21c)

with dc = i(∂̄ − ∂).
One in particular sees that whenever torsion is present, even though the canonical

bundle is trivial, the geometry will not be Kähler, hence not Calabi-Yau.
Let us schematically explain why we are actually dealing here with a subclass of

SU(3) structure manifolds. One can split the generic Riemannian structure group
Lie algebra so(6) as follows:

so(6) = su(3)⊕ so(6)/su(3)︸ ︷︷ ︸
su(3)⊥

, (A.II.2.22)
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and accordingly split a generic torsion T c
ab viewed as an element of Ω1 ⊗ Ω2 '

Ω1 ⊗ so(6) ' Ω1 ⊗ su(3)⊕ Ω1 ⊗ su(3)⊥ and decompose the intrinsic torsion T̃ (the
Ω1 ⊗ su(3)⊥ part of the torsion) into irreducible su(3) representations as follows:

Ω1 ⊗ su(3)⊥ = (1⊕ 1)⊕ (8⊕ 8)⊕ (6⊕ 6̄)⊕ (3⊕ 3̄)⊕ (3⊕ 3̄) , (A.II.2.23)

T̃ =W1 +W2 +W3 +W4 +W5 , (A.II.2.24)

where the five ’torsion classes’ correspond to:

W1 complex scalar , (A.II.2.25a)

W2 complex primitive (1, 1)-form , (A.II.2.25b)

W3 real primitive (2, 1) + (1, 2)-form , (A.II.2.25c)

W4 real (1, 0) + (0, 1)-form , (A.II.2.25d)

W5 complex (1, 0)-form . (A.II.2.25e)

They appear as various components in the exterior derivative of J and Ω and there-
fore characterize the non-closure of these forms:

dJ = 3
2Im

(
W̄1Ω

)
+W4 ∧ J +W3 , (A.II.2.26a)

dΩ =W1J
2 +W2 ∧ J + W̄5 ∧ Ω . (A.II.2.26b)

In the case of our heterotic BPS constraints, we just saw that X should be a complex
manifold, which corresponds to the subclass of SU(3) structure manifolds withW1 =
W2 = 0. The vanishing of the three torsion classes W1, W3 and W4 would imply
that X is symplectic, but we know that this is not the case since X is non-Kähler.
Even though it is not Kähler, we saw it still satisfies the weaker conformally balanced
condition:

d(||Ω||J2) = 0 . (A.II.2.27)

The only remaining constraint is a peculiarity of the Bismut connection, namely
that W4 = ReW5.

Remain to be discussed the constraints on the vector bundle E. They are given
by the vanishing of the supersymmetry variation of the gaugino eq. (A.II.2.4c), which
once splited into components along the internal manifold gives:

(
ΓijFij + 2Γi̄Fi̄ + Γı̄̄Fı̄̄

)
ζ = 0 , (A.II.2.28)
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leading to a constraint of holomorphy on the vector bundle:

F(2,0) = F(0,2) = 0 , (A.II.2.29)

and also to a constraint of primitivity:

F ∧ J2 = 0 . (A.II.2.30)

Together, these two constraints eqs. (A.II.2.29) and (A.II.2.30) are referred to as
the zero-slope Hermite-Yang-Mills equations, as the second one can be seen as a
particular case of the more generic equation

F ∧ J2 = − i rk(E)λ
3 J3 , (A.II.2.31)

with
λ = 6π µ(E)∫

X J
3 , (A.II.2.32)

where one has defined the slope of the holomorphic vector bundle E in terms of its
first Chern class and rank as follows:

µ(E) =
∫
X c1(E) ∧ Jn−1

rk(E) . (A.II.2.33)

A very beautiful theorem by Donaldson, Uhlenbeck and Yau then relates the ex-
istence of such a Hermite-Yang-Mills connection to the algebraic geometry of the
vector bundle E:

Theorem (DUY): A holomorphic vector bundle E on a compact Kähler mani-
fold X admits a Hermite-Yang-Mills connections if and only if E is polystable.

The notion of stability involved in this theorem is that of slope stability2 of
the vector bundle E. A holomorphic vector bundle E is said to be slope stable
(resp. slope semi-stable) if for all proper non-trivial OX -subsheaf F ⊂ E, one has
µ(F ) < µ(E) (resp. µ(F ) 6 µ(E)). A holomorphic vector bundle is polystable if it
decomposes into a Whitney sum with stable summands of same slope.

This theorem was proven by Donaldson in the case of algebraic surfaces [11], and
was then generalized by Uhlenbeck and Yau to any compact Kähler manifolds [12].

2Or more precisely slope semi-stability in the zero-slope case.
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Let us therefore summarize the BPS constraints on the internal geometry E →
X imposed by the requirement of preserving at least N = 1 supersymmetry in
spacetime:

• X is complex and Hermitian,

• X has a trivial canonical bundle: KX ' OX ,

• The Gauduchon metric
√
||Ω||J is balanced: d

(
||Ω||J2) = 0,

• E is a stable holomorphic vector bundle,

to which one should not forget to add the Bianchi identity:

dH = α′

4 (trR ∧R− trF ∧ F ) , (A.II.2.34)

tying together the data of the two bundles TX and E through the H-flux.
The α′ expansion in the case of the heterotic string is a subtle question, as we

alredy mentioned in section A.II.1. This is illustrated for instance by the fact that
the Bianchi identity eq. (A.II.2.34) above mixes different orders in α′. This implies
in particular that one should actually be particularly careful when discussing a large
volume supergravity limit, since this mixing of orders typically fixes the size of the
internal manifold at string scales.

One can then wonder whether the BPS constaints together with the Bianchi
identity imply the equations of motion eq. (A.II.1.10). It was shown that it is
indeed the case, provided that the connection ∇ is chosen so that it satisfies also an
instanton condition at order α′0, namely if [7, 13]:

Rζ = O(α′) , (A.II.2.35)

translating again into the pair of Hermite-Yang-Mills equations with zero slope for
the spin connection:

R(2,0) = R(0,2) = O(α′) , (A.II.2.36a)

R ∧ J2 = O(α′) . (A.II.2.36b)

The Hull connection given by:

∇h
a = ∇lc

a + 1
2Ha , (A.II.2.37)
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satisfies this constraint and is the standard choice of spin connection usually made in
the Bianchi identity and the action [2,14]. It seems in general in contradiction with
the fact that the left-hand side of the Bianchi identity dcJ is a (2, 2)-form, hence
the right-hand-side should also be a (2, 2)-form, which is generically the case if one
chooses the Chern connection which locally reads ∇c = d+2∂ log ||Ω||. But then one
should modify the supersymmetry variation with an O(α′) contribution and replace
the Hull connection in the action by ∇c. This modification of the supersymmetry
variation leads therefore also to a modification of the BPS system of equations.

In view of the above comments about the subtleties involved in actually making
sense of a consistent truncation in the α′ expansion, hence of a consistent supergrav-
ity large-volume description of heterotic flux compactifications, one can relies on a
purely worldsheet approach. Indeed, contrary to type II which contains Ramond-
Ramond fluxes whose worldsheet description is not known, the NS-NS torsion flux
admits a natural description at the worldsheet level, as we will describe in the next
section.

II.3 Solutions to the BPS system

Very few families of solutions are known to the BPS system of equations and
heterotic Bianchi identity introduced above. The latter actually constitutes the
most complicated equation to solve for a given ansatz, and is also the most difficult
constraint to understand from a purely mathematical point of view. Let alone
solving the Bianchi identity, finding genuine compact SU(3)-structure geometries is
a difficult task, see for instance [15] for a construction on toric 3-folds.

A simple way to handle this equation is to impose a pointwise equality at the
level of forms:

tr (R ∧R) = tr (F ∧ F ) . (A.II.3.1)

This can be done in particular by imposing that the gauge connection is equal to
the spin connection. This type of solution is characterized by a vanishing torsion
and a constant dilaton, and is referred to as the standard embedding of the spin
connection into the gauge connection. The internal manifold is then Calabi-Yau at
one-loop order in α′, and is then deformed order by order. The condition of space-
time supersymmetry is equivalent to having (2, 2) supersymmetry on the worldsheet
(cf. below, chapter B.I), imposing that the target space is Kähler. It is moreover
possible to find a regularization scheme of the worldsheet sigma model preserving
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(2, 2) supersymmetry, hence to restrict oneselves to flows in the space of Kähler
metrics on X when correcting the metric under the worldsheet RG flow. One actu-
ally has a flow preserving the Kähler class of the metric [16], making it possible to
correct order by order in α′ to maintain superconformal invariance [17].

This setup leads to E6 × E8 gauge group in spacetime.
Another class of solutions consists in allowing for a more generic gauge bundle

over a Calabi-Yau manifold. Depending on the rank r of the holomorphic vector
bundle, this has the advantage of leading to smaller gauge groups in spacetime,
SU(5) × E8 for r = 3 and SO(10) × E8 for r = 4, hence more interesting from a
phenomenological point of view. We will not extend more the discussion on Calabi-
Yau compactifications, and turn now to a class of non-Kähler compactifications,
supporting torsion flux.

When dealing with 4-dimensional N = 2 heterotic compactifications, one typi-
cally thinks of Calabi-Yau compactifications on K3×T 2. Actually, this geometry is
a particular case of a more generic type of compactifications whose topology consists
in a principal two-torus bundle over a warped K3 surface:

T 2 ↪→ X
π→ S . (A.II.3.2)

Generic such compactifications lead in spacetime to minimal N = 1 supersymmetry,
but a subclass of these correspond to enhanced N = 2 supersymmetry. More-
over these compactifications, known in the litterature as Fu-Yau compactifications,
generically support H-flux.

This family of compactifications constitutes the single well-known class of com-
pactifications with torsion. The vector bundle over the total space consists in the
pullback of a stable holomorphic vector bundle over K3.

These solutions were first obtained by Dasgupta, Rajesh and Sethi from type IIB
orientifolds by S-duality [18], and subsequently studied geometrically by Goldstein
and Prokushkin in [19], where their SU(3) structure was made explicit. Fu and
Yau managed to solve the Bianchi identity in [20], using the Chern connection for
which the Bianchi identity reduces to a complex Monge-Ampère equation for the
warp factor (with a sequel [21] discussing more physical aspects), while a different
choice of connection was put forward in [22]. The choice of Chern connection how-
ever would necessitate to include O(α′) corrections to the supersymmetry variations
of the fermions, hence to the BPS system of equations, which would vanish if one
decided to use the Hull connection. In the Fu-Yau context, the Hodge type homo-
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geneity argument at order α′ of the Bianchi identity which can leads to choose the
Chern connection is actually also satisfied by the Hull connection, since all the forms
entering the identity are actually horizontal, i.e. with legs only along the K3 base,
hence necessarily of Hodge type (2, 2). These compactifications lead to N = 2 or
N = 1 supersymmetry in space-time. The first class of torsion gauged linear sigma
model (cf. section B.I.2 below) that was obtained by Adams and collaborators [23]
was especially designed to give a worldsheet theory for the former.

Explicitly, taking a two-torus of moduli T and U , see eq. (eq. (B.II.1.11)), the
metric on the internal six-dimensional manifold X is chosen to be of the form:

ds2 = e2A(y)ds2(S) + U2
T2

∣∣∣dx1 + Tdx2 + π?α
∣∣∣2 , (A.II.3.3)

where ds2(S) is a Ricci-flat metric on S and e2A is a warp factor depending on the
K3 coordinates only. The connection one-form α on S is such that :

ι = dx1 + Tdx2 + π?α , (A.II.3.4)

is a globally defined (1, 0) form on X. We then define the complex curvature two-
form ω on S through:

1
2π dι = π?ω , (A.II.3.5)

that we expand in terms of the T 2 complex structure as

ω = ω1 + Tω2 . (A.II.3.6)

The metric eq. (A.II.3.3) is globally defined provided that ω` ∈ H2(S,Z).
As was shown by Goldstein and Prokushkin, a solution of the supersymmetry

conditions is obtained provided that ω has no component in Λ0,2T ?S and is primitive,
i.e. such that

ω ∧ JS = 0 . (A.II.3.7)

One can then obtain the fundamental (1, 1)-form J and the complex (3, 0)-form Ω
characterizing the SU(3) structure in terms of the Kähler form and holomorphic
two-form on S, JS and ΩS , as

Ω = π∗ (ΩS) ∧ ι , (A.II.3.8a)

J = π∗
(
e2φJS

)
+ iU2

2T2
ι ∧ ῑ . (A.II.3.8b)
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Solutions with extended N = 2 supersymmetry in four dimensions, i.e. with SU(2)
structure, are obtained by imposing the extra condition ω ∈ H(1,1)(S). This is the
relevant case for the torsion gauged linear sigma-models that we consider in this
thesis.

One therefore chooses ω1 and ω2 in the Picard lattice of S, defined by:

Pic(S) = H2(S,Z) ∩H(1,1)(S) , (A.II.3.9)

whose rank, the so-called Picard number is denoted ρ(S). Let us define a set of
complex topological charges {Mn, n = 1, . . . , ρ(S)}, belonging to the lattice Z+T Z,
and choose a basis of Pic(S), {$n, n = 1, . . . , ρ(S)}. One expands the curvature of
the two-torus bundle as

ω =
ρ(S)∑
n=1

Mn$n . (A.II.3.10)

The vector bundle over X is obtained as the pullback of a holomorphic gauge bundle
E on S satisfying the zero-slope limit of the Hermite-Yang-Mills equations, see
eqns. (eq. (B.II.1.2a),eq. (B.II.1.2b)). On K3 it implies anti-self-duality, i.e. that
the bundle E corresponds to an anti-instanton background. Fu and Yau showed
in [20] that one can find a smooth solution to the Bianchi identity for the warp
factor, using the Chern connection, provided the following tadpole condition holds,∫

S
ch2(E) + U2

T2
dmnM

mM̄n + 24 = 0 , (A.II.3.11)

written the basis (eq. (A.II.3.10)), where dmn is the intersection matrix on H2(S,Z).
K3 × T 2 compactifications appear in this setting as the very particular case in

which the fibration is trivial, namely in which ω = 0 and the instanton number of
the gauge bundle is the largest:

N := −
∫
S
ch2(E) = 24 . (A.II.3.12)

In the presence of fluxes, one typically expects that at least part of the moduli is
frozen. This is indeed the case here, as we will discuss in more detail in chapter B.II.
What one discovers is that the presence of torsion flux leads to the quantization of
the torus fibre moduli. This point will be discussed in more details a bit later.

A more generic holomorphic vector bundle is actually obtained by tensoring the
above described non-abelian bundle with line bundles over the total space of the
torus fibration. The connection on these lines bundles would reduce to Wilson lines
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in the K3×T 2 case, and we may therefore in the following loosely refer to the torus
Wilson lines moduli in the following, even when the torus fibration is non-trivial.
As we will see, contrary to the complex structure and Kähler moduli of the torus,
the Wilson line moduli are not quantized by the torsion flux.
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Chapter I

Worldsheet theory

I.1 Non-Linear Sigma Model

As described in the supergravity approach, there are lots of subtleties involved
in the large volume expansion in α′/l2, with l a typical length scale of the geometry
of interest. One instance of these subtlelties occurs in the modified Bianchi identity
which mixes different orders in α′. When considering a spacetime of the formM4×X
with X a six-dimensional compact manifold, the integrated Bianchi identity indeed
leads to a tadpole condition which freezes at least part of the internal geometry
to string scale. Fortunately, the heterotic string doesn’t have RR fluxes, hence all
fluxes are amenable to a worldsheet description, which is more fundamental point
of view in the sense that it allows to take into account stringy phenomena which are
typically ignored in a large volume description. The worldsheet approach however
does not capture non-perturbative effects in the string perturbation theory (i.e. in
the string coupling constant gs), i.e. the presence of NS5-branes, magnetic duals of
the fundamental string.

The worldsheet theory consists in a conformally invariant theory exhibiting su-
persymmetry in the right-moving sector only and describing the embedding of the
string in a target spacetime. The exact expression of the strongly coupled CFT
describing a given string vacua is however often not known apart at some very spe-
cific point in the compactification moduli space, for instance at Gepner or orbifold
points. Another approach is to consider sigma-models on the worldsheet that we
expect to admit a non-trivial infrared fixed-point relevant to describe a heterotic
flux vacuum. The sigma-model should be such that the infrared CFT breaks up

25
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into various pieces:

(c, c̄) = (4, 6)︸ ︷︷ ︸
non-compact directions

+ (−26,−26)︸ ︷︷ ︸
(b,c)−ghosts system

+ (0, 11)︸ ︷︷ ︸
(β,γ)−ghosts system

+ (22, 9)︸ ︷︷ ︸
internal

.

(B.I.1.1)
The first three pieces will be referred to as the external CFT, and the (22, 9) part
corresponds to the internal CFT, whose NLSM we introduce now. We will in the
following further split the internal (22, 9) CFT above into two pieces:

(22, 9) = (6 + r, 9) + (16− r, 0) , (B.I.1.2)

and also refer to the (6 + r, 9) piece as the internal CFT. The context will always be
clear enough so that one knows what ’internal’ refers to.

The BPS conditions described in section A.II.2 ensuring at least N = 1 in
spacetime were shown by Banks and Dixon [24] to be equivalent from a worldsheet
point of view to the requirement of extended (0, 2) supersymmetry in the worldsheet
sigma-model, together with a quantization of the U(1) R-symmetry charges [25].
In parts B and C, we will be particularly interested in compactifications leading to
extended N = 2 in spacetime. It was shown that this leads to a further enhancement
of the supersymmetry algebra on the worldsheet to (0, 4)⊕(0, 2), cf. for instance [26].

It is actually quite convenient to work solely with explicit (0, 1) supersymmetry
in order to exhibit the involved degrees of freedom. Let us denote by (σ±, θ) the
coordinates on a local R2|1 patch of (0, 1)-superspace. The NLSM describes the
dynamics of matter fields contained in chiral and Fermi superfields whose component
expansion is:

Chiral: X = x+ θ ψ , (B.I.1.3a)

Fermi: Γ = γ + θ G , (B.I.1.3b)

where x is a complex bosonic field, ψ a right-moving Weyl fermion, γ a left-moving
Weyl fermion, and G a complex bosonic auxiliary field. Let us also introduce the
supercovariant derivative as follows:

D+ = ∂

∂θ
+ iθ

∂

∂σ+ . (B.I.1.4)

We can then write a generic action describing the dynamics of a collection of chiral
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superfields {Xa}a=1...6 and a collection of Fermi superfields {Γs}s=1...32 as follows:

S = − 1
4πα′

∫
d2σdθ

{
Eab(X)D+X

a∂−X
b + δstΓs

(
D+Γt +D+X

aAtua(X)Γu
)}

,

(B.I.1.5)
where we introduced generic couplings Eab(X) and Asta(X) depending on the chiral
superfields. One can expand this Lagrangian in components and classically integrate
out the auxiliary fields to obtain in a local patch of the target:

S = 1
4πα′

∫
Σ
d2σ

{
Eab(x) ∂+x

a∂−x
b + igab(x)ψa

(
∂−ψ

b + ∂−x
aLb(−)acψ

c
)

+

+ iδstγ
s
(
∂+γ

t + ∂+x
aAtua(x)γu

)
+ 1

2Fstab(x)ψaψbγsγt
}
,

(B.I.1.6)

where we have introduced the symmetric tensor gab = E(ab) which has the interpre-
tation of a metric on the target space X described locally by the coordinates {xa}.
The antisymmetric tensor Bab = E[ab] defines the 2-form B = Babdxa ∧ dxb and has
the interpretation of a B-field on X. In particular it appears through its exterior
derivative H = dB as a contorsion term in the Lorentz connection:

La(−)bc = Γabc −
1
2H

a
bc , (B.I.1.7)

in accordance with the previous supergravity approach (section A.II.2), and where
Γabc denote the Christoffel symbols. Asta are interpreted as the components of a non-
abelian connection on a principal bundle over X. The 32 fermions {γs} are coupled
to the pullback of this connection on the worldsheet. The coefficients F stab appearing
in the Fermi interaction term then denote the components of the curvature of this
connection.

The above theory contains chiral fermions, hence develops anomalies under
spacetime Lorentz and gauge transformations. Under a spacetime Lorentz trans-
formation of parameter η and gauge transformation of parameter ε, the one-loop
effective action transforms as [4, 27]:

δη,ε Seff ∝
1

8πα′
∫
x∗
(
tr(ηd∇(+))− tr(εdA)

)
, (B.I.1.8)

where ∇(+) denote the spin connection:

∇α(+)βc = eαae
b
β L

a
(+)bc , (B.I.1.9)
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with α, β tangent space indices, and with:

La(+)bc = Γabc + 1
2H

a
bc , (B.I.1.10)

the Lorentz connection with opposite torsion compared to eq. (B.I.1.7). This vari-
ation of the fermion measure can be compensated by a redefinition of the local
expression of the H-field:

dB → dB − α′

4
(
CS
(
∇(+)

)
− CS(A)

)
. (B.I.1.11)

This is a worldsheet version of the Green-Schwarz mechanism [28]. Even though
the above expression eq. (B.I.1.11) is only local, it leads to the globally defined
constraint:

dH = α′

4 (tr (R+ ∧R+)− tr (F ∧ F )) , (B.I.1.12)

and one sees that it implies the equality of the second Chern characters of the tangent
bundle and the vector bundle (whose structure group is embedded into E8 × E8).

The equations of motion eq. (A.II.1.10) are understood from the 2-dimensional
worldsheet as the requirement of conformal invariance of the sigma model, which is
equivalent to the vanishing of the beta functions, which we give below1, computed
on the sphere up to first order α′:

βg = Ric(g)− 2∇(dφ)− 1
4H ∨H −

α′

4 (R ∨R− F ∨ F ) +O(α′2) , (B.I.1.13a)

βφ = R(g)− 4∆φ− 4|dφ|2 − 1
2 |H|

2 + α′

4
(
|R|2 − |F |2

)
+O(α′2) , (B.I.1.13b)

βB = d†
(
e2φH

)
+O(α′2) , (B.I.1.13c)

βA = d†A
(
e2φF

)
+ 1

2 e
2φ ? (F ∧ ?H) +O(α′2) , (B.I.1.13d)

where we also added the beta function for the dilaton, whose coupling to the world-
sheet field we did not consider in the action eq. (B.I.1.5). The coupling of the dilaton
to the worldsheet is a bit peculiar since it spoils the classical invariance under confor-
mal transformations of the theory, but which is of course restored at the quantum
level once one enforces the vanishing of the β functions. The coupling takes the
following form: ∫

Σ
volh φR(h) , (B.I.1.14)

1In the critical dimension d = 10.
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with h an auxiliary worldsheet metric. The piece corresponding to the zero-mode
part of the dilaton field is then proportional to the Euler number of the worldsheet,
hence organises the string loop expansion.

One therefore sees that the supergravity equations of motions correspond to the
lowest order of the β functions in the sigma model perturbation theory. The all-
order in α′ expansion equation of motions are actually not known. The first strategy
to adopt would be to suppose that the geometry singled out by the full equations of
motion should be quite close to the solution of the low order equations of motions,
and that one can correct it order by order. On the other hand, one can consider
the problem from a Wilsonian point of view, and consider that the non-linear sigma
model described above actually flows in the infrared to the conformal field theory
of interest, hence may be a fine description enough to describe part of the four-
dimensional physics, the part which is independent of the renormalization group
flow, corresponding the topological properties of the target geometry. Pushing the
reasoning even further, one can then look for the simplest theory in the same bassin
of attraction as the above described non-linear sigma model, if possible linear, since
it would capture this topological data as well as the NLSM and may be easier to
manipulate. Such linear ultraviolet completions take the form of two-dimensional
supersymmetric gauge theories, that we will now discuss.

I.2 Gauged Linear Sigma Model

It will turn out to be quite convenient to keep manifest (0, 2) supersymmetry in
the following. We will therefore consider gauge theories in (0, 2) superspace, whose
generic local R2|2 patch of coordinates we will denote (σ+, σ−, θ, θ̄). Some classes
of these supersymmetric gauge theories constitute an ultraviolet completion of the
heterotic NLSM.

Such GLSMs were first introduced by Witten [29] in order to give a physical
understanding of various connections between non-linear sigma models with Calabi-
Yau target, and some Landau-Ginzburg orbifolds, by arguing that the two theories
may actually sit on the RG flow of a same theory in the ultraviolet depending on
some continuous parameter. Depending on the value of this parameter, the theory
belongs either to a geometric phase flowing to the NLSM, or to a Landau-Ginzburg
orbifold phase.

Such kind of models are particularly adapted to the description of a large class of
Calabi-Yau manifolds built as complete intersections in toric varieties, and monad
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bundles over them.
As we will explain later in section B.II.1, these GLSMs were extended in order

to also describe the torsional N = 2 compactifications which will be of interest to
us [23].

Let us start by describing the field content of such theories. We will work with
a U(1) gauge theory for simplicity of the exposure, but one can generalize to higher
rank abelian or non-abelian gauge groups.

I.2.1 superfields

We define the superspace derivatives and supercharges as follows:

Q+ = ∂θ + iθ̄∂+ , Q̄+ = −∂θ̄ − iθ∂+ , (B.I.2.1a)

D+ = ∂θ − iθ̄∂+ , D̄+ = −∂θ̄ + iθ∂+ . (B.I.2.1b)

The non-trivial anti-commutators are then

{D̄+, D+} = 2i∂+ , {Q̄+,Q+} = −2i∂+ (B.I.2.2)

Chiral superfields are defined by the constraint that they are annihilated by half
of the superspace derivatives. This constraint leads to the following component
expansion:

D̄+Φ = 0 =⇒ Φ = φ+
√

2θλ+ − iθθ̄∂+φ, (B.I.2.3)

where φ is a complex boson, and λ+ a right-moving Weyl fermion.
Fermi superfields on the other hand have as a bottom component a left-moving

fermion. They satisfy generically the constraint:

D̄+Γ =
√

2E(Φi) , (B.I.2.4)

where E is a holomorphic function which quantifies the non-chirality of the super-
field. We will assume later that this function E(Φi) vanishes for simplicity, but
we will keep it for now. Fermi superfields therefore have the following component
expansion:

Γ = γ− +
√

2θG−
√

2θ̄E(Φi)− iθθ̄∂+γ− , (B.I.2.5)

where G is an auxiliary bosonic field.
Gauge superfields are actually described by a pair of (0, 2) superfields A and V.
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Super-gauge transformations act as

A → A+ i

2(Ξ̄− Ξ) , V → V − 1
2∂−(Ξ + Ξ̄) (B.I.2.6)

where Ξ is a chiral superfield. In the so-called Wess-Zumino gauge things get simpler,
even though one should be careful when dealing with classically non gauge-invariant
actions as it will be the case in chapter B.II. The residual gauge symmetry is

Ξ = ρ− iθθ̄∂+ρ (B.I.2.7)

with real ρ, while the component expansion of A and V reads

A = θθ̄+A+ (B.I.2.8a)

V = A− − 2iθµ̄− − 2iθ̄+µ− + 2θθ̄+D (B.I.2.8b)

where D is a real auxiliary field. Accordingly the components A± = A0 ±A1 of the
gauge field are shifted under the residual gauge transformations as

A±
ρ−→ A± − ∂±ρ (B.I.2.9)

The field strength superfield, which is chiral, is

Υ = D̄+(∂−A+ iV) = −2
(
µ− − iθ(D − iF+−)− iθθ̄+∂+µ−

)
(B.I.2.10)

with 2F+− = ∂−A+ − ∂+A−. We define the gauge-covariant superderivatives as:

D+ = (∂θ − iθ̄∇+) = D+ +Qθ̄A+ (B.I.2.11a)

D̄+ = (−∂θ̄+ + iθ∇+) = D̄+ −QθA+ . (B.I.2.11b)

where ∇± are ordinary covariant derivatives.
Let us make a side comment. If one wishes to discuss theories closer to (2, 2)

models, one should add to the above gauge superfield an extra Fermi superfield Σ
which together with the gauge multiplet would constitute the (2, 2) gauge multiplet.
One can then notice that the theory is actually invariant under an extra fermionic
gauge symmetry [30]:

Σ→ Σ + iΩ , (B.I.2.12a)

Γ→ Γ + 2iΩE(Φ) , (B.I.2.12b)
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with Ω a chiral Fermi superfield parameter. Σ is not chiral but rather satisfies D̄+Σ =

σ +
√

2θβ − iθθ̄∂+σ, where one has gauged away two out of the four components of

Σ thanks to the fermionic gauge symmetry. This Σ superfield will not be necessary

in the following.

Charged matter superfields of charge Q need to satisfy the gauge-covariant con-

straint:

D̄+Φ = 0 (B.I.2.13)

which is solved by

Φ = φ+
√

2θλ+ − iθθ̄∇+φ . (B.I.2.14)

In other words, since

D̄+ = eQAD̄+e
−QA (B.I.2.15)

We have that

Φ = eQAΦ0 (B.I.2.16)

where Φ0 is a superfield obeying the standard chirality constraint D̄+Φ0 = 0.

Similarly, a charged Fermi superfield of charge q can be obtained as Γ = eqAΓ0

where Γ0 satisfies D̄+Γ0 =
√

2E. Hence the superfield Γ has the component expan-

sion:

Γ = γ− +
√

2θG−
√

2θ̄E(Φ)− iθθ̄∇+γ− , (B.I.2.17)

where as before E is a holomorphic function of the chiral superfields.

We will also see later that so-called shift superfields have a crucial role to play in

describing generic heterotic compactifications. They correspond to chiral superfields

charged axially under the gauge symmetry.

In Wess-Zumino gauge supersymmetry transformations should be followed by a

supergauge transformation of chiral superfield parameter Ξwz = iε̄θ A+ in order to

restore the gauge choice. The explicit supersymmetric transformation of the various

component fields under the full transformation, defined as δε,ε̄ =
(
εQ+ − ε̄Q̄+ + δv.m.

)
is given by:
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δε,ε̄ φ = −ε̄λ (B.I.2.18a)

δε,ε̄ λ = iε∇+φ (B.I.2.18b)

δε,ε̄ γ = −ε̄G (B.I.2.18c)

δε,ε̄G = −iε∇+γ (B.I.2.18d)

δε,ε̄ µ = 1√
2
ε̄(F01 + iD) (B.I.2.18e)

δε,ε̄ F01 = i√
2
∂+(εµ− ε̄µ̄) (B.I.2.18f)

δε,ε̄ φ̄ = ελ̄ (B.I.2.18g)

δε,ε̄ λ̄ = −iε̄∇+φ̄ (B.I.2.18h)

δε,ε̄ γ̄ = εḠ (B.I.2.18i)

δε,ε̄ Ḡ = iε̄∇+γ̄ (B.I.2.18j)

δε,ε̄ µ̄ = − 1√
2
ε(F01 − iD) (B.I.2.18k)

δε,ε̄D = 1√
2
∂+(εµ+ ε̄µ̄) , (B.I.2.18l)

for ε and ε̄ constant Grassmann parameters.

Let us now describe the dynamics of these superfields.

I.2.2 Lagrangians

We give the Lagrangian describing the dynamics of the above introduced super-

fields, first in a manifestly supersymmetric expression and then in components.

Let us start with the kinetic term for a chiral field Φ of charge Q, whose com-

ponents expansion is given by eq. (B.I.2.14). It is given by

Lc.m. = − i2

∫
d2θ Φ̄D−Φ , (B.I.2.19a)

= 1
2
(
∇+φ∇−φ+∇−φ̄∇+φ

)
+ iλ̄+∇−λ+ + i

√
2Q

(
λ+µ−φ̄+ h.c.

)
+Q|φ|2D .

(B.I.2.19b)

Let us now move on to the case of a Fermi superfield of charge q. One has the

following component expansion:

Lf.m. = −1
2

∫
d2θ Γ̄Γ , (B.I.2.20a)

= iγ̄−∇+γ− + |G|2 − |E(φ)|2 −
(
E′(φ)γ̄−λ+ + h.c.

)
, (B.I.2.20b)

The gauge kinetic term is written in terms of the field strength superfield, which is

a chiral superfield

Υ = D̄+(∂−A+ iV) = −2
(
µ− − iθ(D − iF+−)− iθθ̄+∂+µ−

)
, (B.I.2.21)
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with 2F+− = ∂−A+ − ∂+A−.

Lv.m. = −1
8

∫
d2θ ῩΥ , (B.I.2.22a)

= iµ̄−∂+µ− + 1
2D

2 + 1
2F

2
01 . (B.I.2.22b)

Including a possible constant FI term, of parameter t = ir + θ
2π , one has

Lfi = t

4

∫
dθΥ + h.c. = −rD + θ

2πF01 , (B.I.2.23)

where the imaginary part of the Fayet-Iliopoulos parameter precisely corresponds to

this continuous parameter whose value indicates in which ’phase’ one is sitting.

The last term in the GLSM is the superpotential term, given by a set of holo-

morphic functions J of the chiral superfields which play a similar role as the already

encountered holomorphic function E(Φ) in the definition of the Fermi superfields. It

has to satisfy the constraint EaJa = 0 in order to preserve supersymmetry. (where

a runs over the Fermi superfields). It reads

Lj = α

2

∫
dθ ΓJ(Φ) + h.c. (B.I.2.24a)

= α√
2

(GJ(φ)− γ−λ+∂φJ(φ)) + h.c. (B.I.2.24b)

After solving for the auxiliary fields of the full theory one gets the scalar potential

V (φ) = e2

8
(
Q|φ|2 − r

)2
+ α

2 |J |
2 + |E|2 , (B.I.2.25)

which defines the vacua of the theory Q|φ|2 = r, J = 0 and E = 0 modulo gauge

transformations.

Let us define the following anticommuting supersymmetry transformation, where

we make ε and ε̄ commuting and equal to 1:

Q := (δε,ε̄)|ε=ε̄=1 , (B.I.2.26)

which will be particularly useful in chapter B.II when we will define and compute

the dressed elliptic genus by localization.

Then one can show that the action corresponding to all the Lagrangian intro-
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duced above are actually Q-exact:

Sc.m. = 1
g2 Q νc.m. , (B.I.2.27a)

Sf.m. = 1
f2 Q νf.m. , (B.I.2.27b)

Sv.m. = 1
e2 Q νv.m. , (B.I.2.27c)

Sfi = tQ νfi + h.c. , (B.I.2.27d)

Sj = αQ νj + h.c. , (B.I.2.27e)

with the following simple functionals:

νc.m. =
∫

d2x
(
iφ̄∇−λ− i

√
Qφ̄µ̄φ

)
, (B.I.2.28a)

νf.m. = −
∫

d2x γḠ , (B.I.2.28b)

νv.m. = − i√
2

∫
d2xµ (D + iF01) , (B.I.2.28c)

νfi = 1√
2

∫
d2xµ , (B.I.2.28d)

νj = − α√
2

∫
d2x γJ(φ) . (B.I.2.28e)

We included explicit couplings g, f, e in front the chiral, Fermi and gauge lagrangians

respectively.

I.2.3 U(1) charges, anomalies and example

In addition to the U(1) gauge group, the theory is also invariant under a global

U(1)r symmetry, flowing in the IR to the right-moving R-symmetry of the N = 2

superconformal algebra. We consider theories which in addition contain a flavor

U(1)l symmetry, which is used to implement the left-moving spectral flow, and also

constitutes part of the linearly realized spacetime gauge group. The above described

Lagrangians, including the superpotential, should be classically invariant under these

various U(1) groups.

The theory containing chiral fermions, the various U(1) symmetries are poten-
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tially anomalous, and one should ensure that the ’t Hooft anomaly matrix:

A :=


AU(1)·U(1) AU(1)·U(1)l AU(1)·U(1)r

AU(1)l·U(1) AU(1)l·U(1)l AU(1)l·U(1)r

AU(1)r·U(1) AU(1)r·U(1)l AU(1)r·U(1)r

 , (B.I.2.29)

with coefficients computed from loops of chiral fermions:

AA·B =
∑

right-moving Weyl fermions
QAQB −

∑
left-moving Weyl fermions

qAqB , (B.I.2.30)

takes the following prescribed form:

A =


0 0 0
0 −r 0
0 0 c̄/3

 , (B.I.2.31)

whose entries are computed in the UV from the OPE of the currents corresponding
to the various U(1) symmetries. Notice that one should not forget the contribution
from the gaugino, which is a left-moving Weyl fermion charged under the U(1)l. We
will not enter into the detail of such OPE computations, and will take the following
result for granted [30]: whenever the above equation eq. (B.I.2.31) is satisfied, one
ensures that:

• the anomalies for U(1), U(1)l and U(1)r vanish,

• the mixed anomalies U(1) · U(1)l and U(1) · U(1)r vanish,

• the currents of the left and right global U(1)l and U(1)r decouple,

• the central charges of the IR superconformal field theory take the prescribed
values (c, c̄) = (2

3 c̄+ r, c̄),

• the holomorphic vector bundle over the target space variety in the geometric
phase has prescribed rank r.

The vanishing of the U(1) gauge anomaly can be interpreted from the spacetime
point of view as the above mentioned requirement of equality of the second Chern
characters ch2(TX) = ch2(E).

Complete intersections in weighted projective spaces: Let us introduce a
particular class of theories, defined by the following field content: a collection of
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chiral superfields Φi whose lowest component correspond to homogeneous coordi-

nates in an ambient weighted projective space, a chiral superfield P which somehow

plays the role of a Lagrange multiplier and two sets of chiral Fermi superfields Γ̃α
and Γa. These Fermi superfields are also chosen to satisfy a chirality constraint for

simplicity, namely the E function in eq. (B.I.2.4) vanishes. One also introduces two

sets of transverse quasi-homogeneous holomorphic polynomials Gα(Φi) and Ja(Φi).

Let us denote the gauge charges of these fields in the following way:

Φi P Γ̃α Γa
U(1)v.m. Qi QP Qα Qa

(B.I.2.32)

with QP and Qα generically negative.

The superpotential eq. (B.I.2.24) is then chosen to be of the form:

Lpot = Lt + Lv , (B.I.2.33)

with:

Lt = −
∫

dθ Γ̃αGα(Φi) + h.c. , (B.I.2.34)

and:

Lv = −
∫

dθ ΓaPJa(Φi) + h.c. . (B.I.2.35)

The quasi-homogeneous polynomials are chosen to be of the appropriate degree

to preserve gauge invariance at the classical level and, geometrically, to obtain a

hypersurface of vanishing first Chern class.

Let us indeed write down once again the bosonic potential:

V (φi, p) = e2

8

(∑
i

Qi|φi|2 +QP |p|2 − r
)2

+
∑
α

|Gα|2 + |p|2
∑
a

|Ja|2 . (B.I.2.36)

The supersymmetric vacua of the theory are then defined by the vanishing of this

potential, which is written as a sum of three squares. Let us consider the ’phase’

r > 0. Then since QP < 0, the vanishing of the first term implies that at least one

of the φi’s has a non-vanishing expectation value in the vacuum. The vanishing of

the last term then implies that p has a vanishing vacuum expectation value. Finally,

modding out by the gauge group, the vanishing of the second terms cuts out the



38 Chapter I. Worldsheet theory

complete intersection defined by the vanishing of the polynomials Gα:

p⋂
α=1
{φi | Gα(φi) = 0} . (B.I.2.37)

Second, the holomorphic vector bundle is built, in the simplest examples, by the set
of r + 1 Fermi multiplets Γa. Indeed, r of these left-handed Weyl fermions can be
shown to transform as sections of a rank r holomorphic vector bundle E, determined
by the short exact sequence2

0 −→ E
ι−→

r+1⊕
a=1
O(Qa)

⊗Ja−→ O(−QP ) −→ 0 , (B.I.2.38)

one out of the r + 1 Weyl fermions obtaining a mass through the Yukawa coupling
appearing in eq. (B.I.2.35).

Let us add as a side remark that in the presence of the fermionic gauge trans-
formation discussed previously, with this time non-chiral Fermi superfields D̄+Γa =
√

2Ea(Φ), the holomorphic vector bundle E can be shown to be given by the coho-
mology of the sequence

0 −→ O ⊗Ea−→
r+1⊕
a=1
O(Qa)

⊗Ja−→ O(−QP ) −→ 0 . (B.I.2.39)

We will consider only models with chiral Fermi superfields in the following for sim-
plicity.

The phase r < 0 on the other hand is characterised by a non-vanishing VEV
for p, hence breaking down the U(1) gauge group to a discrete ZQP gauge group,
leading to a Landau-Ginzburg orbifold.

Allowing for higher rank gauge group on the worldsheet leads to more compli-
cated phase diagrams. In the following we will basically restrict ourselves to rank 1
gauge groups for simplicity of the exposure.

Let us make a few extra comments about the gauge charges, and their relation
to spacetime properties. In addition to the quadratic constraint corresponding to
the vanishing of the anomaly, there are also some linear constraints arising from the
requirement of describing a Calabi-Yau complete intersection. One indeed has then

2For simplicity of the presentation we do not consider adding the fermionic gauging, cf. comment
below eq. (B.I.2.11).
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to select the Gα with the appropriate degrees:

∑
i

Qi +
∑
α

Qα = 0⇔ c1(TX) = 0 . (B.I.2.40)

One can in addition add the extra bundle requirement:

∑
a

Qa +QP = 0⇔ c1(E) = 0 . (B.I.2.41)

The two conditions eqs. (B.I.2.40) and (B.I.2.41) precisely ensure that the theory is
invariant under the global U(1)l × U(1)r symmetry.

Let us finally say that the Fayet-Iliopoulos parameter generically exhibit a non-
trivial RG flow, with a one-loop log divergent diagram, proportional to the sum of
the scalar charges of the theory. In order to be able to make sense without any
ambiguity of statements like ’r > 0’, one needs to ensure the non-renormalisation
of r by adding, if necessary, a chiral/Fermi pair of spectator fields

(
Φ̃, Γ̃Φ̃

)
to the

model together with a mass superpotential [30]:

L(Φ̃,Γ̃Φ̃) =
∫

dθmΦ̃Φ̃Γ̃Φ̃ , (B.I.2.42)

which therefore do not have an impact on the infrared theory, and with the appro-
priate gauge charges

(
QΦ̃, QΓ̃Φ̃

)
= (−

∑
iQi −QP ,

∑
iQi +QP ).

I.3 Elliptic genus

I.3.1 Field-theoretic and geometric definitions

Given a (0, 2) SCFT, or any ultraviolet completion of it in the form of a non-
linear sigma model with target a holomorphic vector bundle E over a Calabi-Yau
manifold X, or a gauged linear sigma model describing in the IR of its geometric
phase such a NLSM, one defines the elliptic genus as a refined Witten index in
which one also keeps track of the grading of the Hilbert space of the theory by a
global left U(1)l charge, in addition to the grading by the energy. Alternatively, this
elliptic genus can be viewed a partition function in the Ramond-Ramond sector of
the theory with boundary conditions twisted by an extra U(1)l fugacity insertion in
the trace:

Zell(τ, z) := trrr
{

(−1)F yJ0qL0− c
24 q̄L̄0− c̄

24
}
, (B.I.3.1)
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with q = exp(2iπτ) and y = exp(2iπz) and the total fermion number F = Fl + Fr

(in the SCFT, one has F = J0 + J̄0).
One can understand this definition in the following way, illuminating the fact

that the elliptic genus is an index. Consider the right-moving supercharge Qr which
according to the right-moving super-Poincaré algebra squares to the right-moving
Hamiltonian

Q2
r = L̄0 −

c̄

24 . (B.I.3.2)

Its index, namely the difference between the number of bosonic and fermionic states
in the L̄0 = c̄/24 eigenspace, is given by a trace involving only the right-moving
operators in the definition eq. (B.I.3.1):

index (Qr) = tr(−1)Fr q̄L̄0− c̄
24 , (B.I.3.3)

since states with L̄0 6= c̄/24 come in pairs of opposite (−1)Fr eigenvalue. This index
receives however contributions from the whole tower of left-moving excitations, hence
is typically divergent. One therefore regularizes this index by inserting a convergence
factor commuting with the right-moving supercharge, and this can be generically
done by labelling the left-moving excitation by their L0 and J0 eigenvalue, and by
signing them by the fermion number (−1)Fl , giving the elliptic genus eq. (B.I.3.1).
Witten gave it the interpretation of a U(1)-equivariant index for a Dirac-like operator
on the loop space of X [31].

As an index, the elliptic genus is independent of the RG flow, hence can be
computed at any point on the flow starting from any UV completion of the SCFT of
interest. This is precisely the reason why the GLSM approach will be of particular
use in this thesis, since they are enough to capture the topological properties encoded
in the elliptic genus. It was shown recently [32–34] how to compute the elliptic
genus directly at the level of the gauged linear sigma-model, using supersymmetric
localization [35].

It is very interesting that there actually exists an independent definition of the
elliptic genus in terms of the geometric data of the holomorphic vector bundle E
over X which precisely coincides with the field-theoretic definition. In this context
the elliptic genus is defined as the holomorphic Euler characteristic of a formal series
with bundle coefficients:

Eq,y =
∞⊗
n=0

∧
−yqn

E? ⊗
∞⊗
n=1

∧
−y−1qn

E ⊗
∞⊗
n=1

SqnT
?
X ⊗

∞⊗
n=1

SqnTX , (B.I.3.4)
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where one defined the total antisymmetric and symmetric powers:

∧
t
E =

∞∑
k=1

tk
∧k

E , StTX =
∞∑
k=1

tk Sk TX , (B.I.3.5)

∧k and Sk being respectively the k-th exterior product and the k-th symmetric
product.

The elliptic genus is then given in terms of the holomorphic Euler characteristic
of Eq,y:

Zell(τ, z) = q
r−d
12 y−

r
2χ(Eq,y) . (B.I.3.6)

We recall that for any holomorphic vector bundle E → X, the holomorphic Euler
characteristic is given by:

χ(E) :=
∑
k≥0

(−1)kdimHk(X,OX(E)) . (B.I.3.7)

It follows from the Hirzebruch-Riemann-Roch theorem that this purely topological
quantity can be computed from local curvature data:

χ(E) =
∫
X
ch(E)td(X) , (B.I.3.8)

where appear the total Chern charater of E and the total Todd class of TX .
From a physics point of view, the formal series with bundle coefficients eq. (B.I.3.4)

corresponds precisely to the excitation spectrum of the heterotic string. From a
mathematical point of view, the elliptic genus is related to the concept of elliptic co-
homology [36]. The elliptic genus generalizes the χy genus of Hirzebruch, for which
we have3:

χy(X) :=
∑
p,q

(−1)qyphp,q

=
∑
p

yp
∑
q

(−1)qdimHq
(
X,
∧p

T ?X

)
=
∑
p

ypχ
(∧p

T ?X

)
=
∫
X
ch
(∧

y
T ?X

)
td(X)

=
∫
X

d∏
i=1

xi
1 + ye−xi

1− e−xi ,

(B.I.3.9)

3We restrict ourselves to E = TX here, i.e. to (2, 2) supersymmetry on the worldsheet from the
field theory point of view. The generalization to a generic holomorphic vector bundle E is simple.



42 Chapter I. Worldsheet theory

where we used the Atiyah-Singer index theorem, and with the Chern roots defined
by the splitting principle

c(TX) :=
d∏
i=1

(1 + xi) . (B.I.3.10)

Generalizing to the infinite dimensional loop space, one looks at the equivariant
χy genus χy(q,LX) and regularizing the divergent integral, one can show that the
natural object appearing is indeed the geometric elliptic genus eq. (B.I.3.6) (with
E = TX). Let us also mention that in the original definition of Ochanine [37], the
elliptic genus is a particular case of multiplicative genus, i.e. a ring homomorphism
φ from the oriented cobordism ring of X to some ring of automorphic functions,
whose formal logarithm series

logφ(u) :=
∑ φ(P2n)

2n+ 1u
2n+1 (B.I.3.11)

is given by an elliptic integral. We will however not use this definition in the follow-
ing.

The elliptic genus is well-behaved under modular and elliptic properties, which
can be understood from the worldsheet point of view as originating from the modular
invariance of the theory and the spectral flow. Together they imply that the elliptic
genus is a weak holomorphic Jacobi form of weight 0 and index r/2, with r the rank
of E. Let us quickly recall what a Jacobi form is. We define the Jacobi group as the
semi-direct product ΓJ(1) := SL2(Z)nZ2. For a function φ : H×C→ C, we define
the Petersson slash operation as:

(φ|k,m,χγ)(τ, z) = χ(g)
(cτ + d)k e

2iπm
(
− c(z+λτ+µ)2

cτ+d +λ2τ+2λz+λµ
)
φ

(
aτ + b

cτ + d
,
z + λτ + µ

cτ + d

)
,

(B.I.3.12)

with γ =
(
g =

(
a b

c d

)
, (λ, µ)

)
∈ ΓJ(1). A weak holomorphic Jacobi form of weight

k, index m and character χ is then a holomorphic function φ : H×C→ C satisfying
φ|k,mγ = φ ,∀γ ∈ ΓJ(1), with an extra requirement of holomorphy at the cusp:

φ(τ, z) =
∑

4nm−r2≥0
c(n, r)qnyr . (B.I.3.13)

As an example, let us give the elliptic genus of a (4, 4) SCFT arising in the IR of the
non-linear sigma model with K3 target space, equipped with its tangent bundle. It
can be computed anywhere in the moduli space of K3 compactifications, for instance
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using Landau–Ginzburg orbifolds [38–40], or toroidal orbifolds [41].

ZK3(τ, z) = 8
[(

θ2(τ, z)
θ2(τ, 0)

)2
+
(
θ3(τ, z)
θ3(τ, 0)

)2
+
(
θ4(τ, z)
θ4(τ, 0)

)2]
, (B.I.3.14)

where the various Jacobi theta functions are defined in appendix E.I. One recovers
the Euler number of K3: e(K3) = ZK3(τ, 0) = 24.

I.3.2 Moonshine

a Monstrous moonshine

The first instance of moonshine phenomena [42], namely unexpected connections
between modular objects and the representation theory of certain sporadic groups,
connects the largest sporadic group, the monster group M, and j(τ), unique weight
zero modular form for SL2(Z), defined by

j(τ) = JSL2(Z)(τ) + 744 =
(
θ2(τ |0)8 + θ3(τ |0)8 + θ4(τ |0)8)3

8η(τ)24 , (B.I.3.15)

where JSL2(Z) is the hauptmodul for SL2(Z), namely an isomorphism between the
compact genus 0 complex curves:

JSL2(Z)(τ) : SL2(Z)\H ∪ {∞} ∼−→ P1 , (B.I.3.16)

This hauptmodul admits the following q-expansion:

JSL2(Z)(τ) = q−1 + 196884 q + 21493760 q2 + 8642909970 q3 + . . . (B.I.3.17)

The observation of John McKay consists in noticing that:

196884 = 196883 + 1 , (B.I.3.18a)

21493760 = 21296876 + 196883 + 1 , (B.I.3.18b)

8642909970 = 842609326 + 21296876 + 2 · 196883 + 2 · 1 , (B.I.3.18c)

where appear on the right hand side the dimension of irreducible representations
R1, R196883, R21296876, R842609326 of the largest sporadic group M. Arise then the
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question of the existence of a graded module

V =
∞⊕
n=0

Vn , (B.I.3.19)

with the first vector spaces given by V0 = R1, V1 = {0}, V2 = R1 ⊕ R196883,
V3 = R1 ⊕R196883 ⊕R21296876, and for which the graded dimension is:

dim(V ; τ) :=
∞∑
n=0

dim(Vn)qn = qJSL2(Z)(τ) . (B.I.3.20)

Requiring furthermore that for each element g ∈ M the so-called McKay-Thompson
series defined by

Jg(τ) := q−1
∞∑
n=0

trVn(g)qn , (B.I.3.21)

constitutes the hauptmodul for a genus 0 subgroup Hg of SL2(R) leads to the
unicity, if existence, of the module V . V was built [43] as the Hilbert space in
the Ramond sector of the chiral CFT built out of 24 free bosons compactified
on the orbifold (R24/ΛLeech)/Z2. This theory has holomorphic partition function
trr q

L0−c/24 = JSL2(Z)(τ), and M as a symmetry group. Modularity of the graded
traces eq. (B.I.3.21) can be understoog conveniently from this physics point of view.

b Mathieu moonshine

Consider, as mentioned above, a non-linear sigma model with target space a K3
surface equipped with its tangent bundle. One can show that the hyperkähler nature
of the K3 target space actually implies that the worldsheet theory actually exhibits
extended (4, 4) supersymmetry. The striking observation made by Eguchi, Ooguri
and Tachikawa in [44] consist in noticing that if one expands the K3 elliptic genus
in terms of N = 4 super-Virasoro characters, the coefficients of the expansion are
all integers corresponding to the dimension of representation of the sporadic group
M24, one of the five sporadic simple Mathieu groups.

Consider indeed a non-linear sigma model with target a K3 surface whose sym-
metry algebra splits into a chiral and an anti-chiral piece:

(N = 4 super-Virasoro)⊗ (N = 4 super-Virasoro) . (B.I.3.22)

In particular, the spectrum of the theory organizes itself into representations of the
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N = 4 superconformal algebras:

H =
∑
i,̄

Ni̄Hi ⊗ H̄̄ . (B.I.3.23)

The moduli space of such K3 sigma models takes the form:

M = O(4, 20; Z)\O(4, 20; R)/O(4,R)×O(20,R) . (B.I.3.24)

The spectrum of states eq. (B.I.3.23) has a fairly complicated structure and is not
known exactly at a generic point in the above moduli space.

The elliptic genus eq. (B.I.3.1), namely the following partial index in the Ramond-
Ramond sector of the theory

Zell(τ, z) := trrr
{

(−1)FlyJ0qL0− c
24 (−1)Fr q̄L̄0− c̄

24
}
, (B.I.3.25)

is actually a holomorphic quantity, hence receives only contributions from the BPS
states defined as those states satisfying L̄0 = c̄/24 (cf. comment below eq. (B.I.3.3)),
i.e. the right-moving ground states. Such states then organize themselves in terms
of the left-moving N = 4 representations as follows:

Hbps = 20 · Hh= 1
4 ,j=0 ⊕ 2 · Hh= 1

4 ,j=
1
2
⊕
∞⊕
n=1

Mn ⊗Hh=n+ 1
4 ,j=

1
2
, (B.I.3.26)

where the Mn’s are multiplicity vector spaces, which depend on the point in moduli
space.

The expansion of the elliptic genus takes the following form:

ZK3(τ, z) = 24 chh= 1
4 ,l=0(τ, z) +

∞∑
n=0

An chh=n+ 1
4 ,l=

1
2
(τ, z) , (B.I.3.27)

where chh=1/4,l=0 is the character of the massless representation of isospin zero and
chh=k+1/4,l=1/2 are characters of massive representations of isospin one-half. The
multiplicities precisely correspond to

An = trMn(−1)Fr , (B.I.3.28)

and do not depend on the point in moduli space. In the spirit of McKay-Thompson
series, The coefficients {An} of the expansion are surprisingly related to dimensions
of M24 irreducible representations as A0 = −2, A1 = 90 = 45 + 45, etc..., i.e.
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An = dim(Rn) for some representation of M24.
In the spirit of the McKay-Thompson series in the context of the Monstruous

moonshine, and supposing that the spectrum of BPS states do carry an action of
M24, one can look at characters:

dim(Rn) −→ trRn g , (B.I.3.29)

where g corresponds to some element of M24. These characters of course only de-
pend on the conjugacy class of g. From the field theory point of view, this would
correspond to compute twining genera of the form:

Zell(τ, z) := trrr
{
g(−1)FlyJ0qL0− c

24 (−1)Fr q̄L̄0− c̄
24
}
, (B.I.3.30)

which are expected to be modular objects under the congruence subgroup

Γ0(N) =
{(

a b

c d

)
∈ SL2(Z)

∣∣∣∣∣ c ≡ 0 mod N
}
, (B.I.3.31)

of the modular group SL2(Z), with N = ord(g). Using in particular constraints from
modularity, Gaberdiel and collaborators [45] determined such twining genera, and
indeed showed that their coefficients in an N = 4 character expansion corresponded
the characters of representations of M24.

This Mathieu moonshine can be extended toK3 compactifications with arbitrary
gauge bundles [46], despite the fact that the underlying two-dimensional theory has
only (0, 4) supersymmetry (hence no N = 4 on the holomorphic side) thanks to the
universality properties of the new supersymmetric index dictated by its modular
properties [47].



Chapter II

Computation of the dressed elliptic
genus

This chapter is built out of the article: New supersymmetric index of heterotic
compactifications with torsion, with Dan Israël, arXiv:1509.05704, JHEP 1512 (2015)
069.

II.1 Gauged linear sigma-models with torsion

Let us now turn to the main goal of this thesis, namely the computation of what
we called the dressed elliptic genus associated to Fu-Yau compactifications. As we
will see, this dressed elliptic genus naturally generalizes the notion of elliptic genus in
the context of the non-Kähler compactifications we consider here. Moreover, from
the dressed elliptic genus derives naturally a quantity known in the literature as
the new supersymmetric index [48], which in particular counts the BPS states in
spacetime [49].

In this part we will compute by localization in a torsional GLSM the dressed el-
liptic genus corresponding to such compactifications. We will restrict in this chapter
to the cases where all the ’Wilson line’ moduli are turned off. Their inclusion re-
quires to generalize the GLSM description, and will be the topic of the next chapter
(chapter B.III). We will then introduce a purely mathematical quantity associated
to holomorphic vector bundles over non-Kähler principal torus fibration over Calabi-
Yau d-folds, which we will loosely call a modified holomorphic Euler characteristic,
and show that this object actually coincides with the Fu-Yau dressed elliptic genus
computed in a field-theoretic framework.

47
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The dressed elliptic genus constitutes, among other things, the building block
in computing the one-loop corrected threshold corrections to the gauge and gravi-
tational couplings of the low energy effective supergravity action corresponding to
Fu-Yau compactifications, which we will discuss later in part C. We will restrict to
the case without ’Wilson line’ moduli for simplicity of the computation and of the
exposure, but no conceptual reasons would prevent us in principle to include such
moduli.

As discussed in the introductory section A.II.2, one considers a compactification
of the E8 × E8 heterotic string down to four dimension on a manifold taking the
form of cartesian product M4 × X in string frame1. One also breaks the E8 × E8

gauge bundle by adding to the data a vector bundle E on the internal manifold X.
As discussed, the internal manifold X should be a complex manifold with trivial

canonical sheaf KX ' OX , characterized by a global holomorphic (3, 0)-form Ω.
In addition the internal manifold should satisfy the so-called conformally balanced
equation:

d (||Ω||J ∧ J) = 0 , (B.II.1.1)

and the bundle over it should satisfy the Hermite-Yang-Mills equations:

F(2,0) = F(0,2) = 0 , (B.II.1.2a)

F ∧ J ∧ J = 0 . (B.II.1.2b)

Finally, the data of the manifold X and the holomorphic vector bundle E over it
are tied together through the three-form flux by the heterotic Bianchi identity:

dH = 2i∂∂̄J = α′

4 (tr(R ∧R)− tr(F ∧ F )) , (B.II.1.3)

with the flux given by:
H = dcJ . (B.II.1.4)

The constraint that the manifold should be conformally balanced is a weaker condi-
tion than Kählerity, and one indeed sees from eq. (B.II.1.4) that whenever torsion
is present, the geometry will not be Kähler. eq. (B.II.1.2a),eq. (B.II.1.2b) can be
rephrased by demanding that E should be a stable holomorphic vector bundle. Fi-
nally, eq. (B.II.1.3) is a consequence of the Green-Schwarz mechanism, and is usually
the hardest condition to verify. As mentioned in section A.II.1, the right-hand side

1In Einstein frame, there is an extra warp factor.



II.1. Gauged linear sigma-models with torsion 49

of eq. (B.II.1.3) is computed using a connection with torsion on the tangent bun-
dle; various possible choices correspond to different regularization schemes in the
underlying non-linear sigma-model [3].

The type of solution to the above set of constraints we are interested in corre-
spond to a principal two-torus bundle over a warped K3 surface S together with the
pullback of a stable holomorphic vector bundle E over the base to the total space.
As we tried to motivate in the introduction, since the quantities we are ultimately
interested in are topological in nature, an ultraviolet completion the NLSM with
such a target space should be enough to procede to the computation.

The first class of torsion GLSM that was obtained by Adams and collabora-
tors [23] was especially designed to give a worldsheet theory for the flux compacti-
fications under consideration.

The microscopic description of Fu-Yau compactifications as torsion GLSMs pro-
vides some evidence for their consistency at the quantum level, beyond the super-
gravity regime2 [50,51]. This approach was also used in [52] to compute their mass-
less spectra using Landau-Ginzburg methods, and in [53] to obtain exact statements
about their duality symmetries. A very interesting aspect of the latter work, which
will play an important role in the chapter, was that covariance of the theory under
perturbative O(2, 2; Z) dualities along the two-torus fibre imposes that its moduli
are those of a c = 2 rational conformal field theory.

We will derive the new supersymmetric index directly from torsion GLSMs corre-
sponding to Fu-Yau compactifications with N = 2 supersymmetry, using supersym-
metric localization. Several steps of the derivation are similar to the computation
of the elliptic genera for ’ordinary’ gauged linear sigma-models [32–34]. There are
however important new aspects related to the presence of gauge anomalies cancelled
against classically non gauge-invariant interactions. With the choice of supercharge
Q appropriate to the problem, the action of the torsion multiplet, representing the
torus fibre, is not Q-exact, and the measure in field space is not Q-invariant; as we
will demonstrate, supersymmetric localization makes sense nonetheless for the full
theory.

2As for ordinary GLSMs the arguments leading to the absence of destabilization by worldsheet
instantons in torsion GLSMs should be taken with a grain of salt. In the present case however
space-time N = 2 supersymmetry presumably prevents such corrections from contributing to the
effective superpotential.
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II.1.1 Anomalous gauged linear sigma-model for the base

As the first step of this construction, one considers a standard (0,2) gauged linear
sigma-model for the K3 base; generically such model suffers from gauge anomalies,
that, in the usual case of Calabi-Yau GLSMs, should be made to vanish by a suitable
choice of field content hence of gauge bundle in space-time. In the present case,
one cancels instead the anomalous variation of the functional measure against a
classically non-gauge-invariant Lagrangian for a torsion multiplet modeling the T 2

principal bundle, thereby realizing the Green-Schwarz mechanism on the worldsheet.
For simplicity of the discussion, we restrict ourselves in the following discussion

to the case of a U(1) gauge group on the worldsheet; the generalization to higher rank
gauge groups is rather straightforward and will be briefly mentioned in section B.II.4.
The conventions we use for (0, 2) superfields, as well as the components Lagrangian,
are given in section B.I.2.

As already discussed in the introductory part of this thesis, a (0, 2) gauged
linear sigma-model for a complete intersection Calabi-Yau manifold in a weighted
projective space [29] contains first a set of n (0, 2) chiral multiplets Φi, as well as a
set of p Fermi multiplets Γ̃α, interacting through the superpotential

Lt =
∫

dθ Γ̃αGα(Φi) + h.c. , (B.II.1.5)

where the Gα(φi) are quasi-homogeneous polynomials of the appropriate degree to
preserve gauge invariance at the classical level and, geometrically, to obtain a hy-
persurface of vanishing first Chern class. This Calabi-Yau hypersurface corresponds
then to the complete intersection

⋂p
α=1 {φi | Gα(φi) = 0}.

Second, the holomorphic vector bundle is described, in the simplest examples,
by adding a set of r + 1 Fermi multiplets Γa, a single chiral multiplet P and the
superpotential

Lv =
∫

dθ P Γa Ja(Φi) + h.c. , (B.II.1.6)

where the Ja are again quasi-homogeneous polynomials. In the geometrical "phase",
where the real part of the Fayet-Iliopoulos coupling is taken large and positive, one
expects that the model flows to a non-linear sigma-model on the CY hypersurface
with left-handed fermionic degrees of freedom transforming as sections of a rank s
holomorphic vector bundle E, determined by the short exact sequence:

0 −→ E
ι−→

s+1⊕
a=1
O(Qa)

⊗Ja−→ O(−QP ) −→ 0 . (B.II.1.7)
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As the (0, 2) multiplets contain chiral fermions there are potentially gauge anomalies
on the worldsheet that should be canceled. The model should also contain a non-
anomalous global right-moving U(1) symmetry which corresponds in the infrared to
the U(1)r symmetry of the N = 2 superconformal algebra, and a global left-moving
U(1)l symmetry, used to implement the left-moving GSO projection.

The variation of the effective Lagrangian under a super-gauge transformation of
chiral parameter Ξ reads

δΞLeff = −A4

∫
dθΞΥ + h.c., (B.II.1.8)

with Υ the field strength superfield, and the anomaly coefficient

A =
∑
i

Q 2
i +Q 2

P −
∑
α

Q 2
α −

∑
a

Q 2
a , (B.II.1.9)

which measures the difference between the second Chern character of the tangent
bundle of the base manifold and the second Chern character of the vector bundle
over the latter, cf. section B.I.2. If one considers a model with A 6= 0, then the
theory is at this point ill-defined quantum mechanically.

II.1.2 Two-torus principal bundle and anomaly cancellation

In the original work of Adams and collaborators [23], the two-torus bundle over
the K3 base is built up by first constructing a C∗×C∗ non-compact bundle, and then
changing complex structure in field space, allowing to discard the decoupled non-
compact part from the C∗ × C∗ = C× T 2 bundle, while preserving (0, 2) supersym-
metry. We refer the reader to section B.I.2 for our conventions for supersymmetric
gauge theories in (0, 2) superspace.

To start, one introduces two extra chiral multiplets Ω1 = (ω1, χ1) and Ω2 =
(ω2, χ2), whose (imaginary) shift symmetry is gauged as

δΞ Ω` = −iM` Ξ , M` ∈ Z , ` = 1, 2 . (B.II.1.10)

The compact bosonic fields Im(ω`) will ultimately parametrize the torus fibre.

A generic two-torus is characterized by a complex structure T = T1 + iT2 and a
complexified Kähler modulus U = U1 + iU2, such that the metric and Kalb-Ramond
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field are given by

G = U2
T2

(
1 T1

T1 |T |2

)
, B =

(
0 U1

−U1 0

)
. (B.II.1.11)

The Lagrangian for Ω1 and Ω2, corresponding to a complexification of this two-torus,
reads [53]:

Ls =− iU2
4T2

∫
d2θ

(
Ω1 + Ω̄1 + T1

(
Ω2 + Ω̄2

)
+ 2(M1 + T1M2)A+

)
×

×
(
∂−
(
Ω1 − Ω̄1 + T1

(
Ω2 − Ω̄2

))
+ 2i(M1 + T1M2)A−

)
− iU2T2

4

∫
d2θ

(
Ω2 + Ω̄2 + 2M2A+

) (
∂−
(
Ω2 − Ω̄2

)
+ 2iM2A−

)
+ iU1

4

∫
d2θ

{(
Ω1 + Ω̄1 + 2M1A+

) (
∂−
(
Ω2 − Ω̄2

)
+ 2iM2A−

)
−

−
(
Ω2 + Ω̄2 + 2M2A+

) (
∂−
(
Ω1 − Ω̄1

)
+ 2iM1A−

)}
− iN i

2

∫
dθΥ Ωi + h.c. (B.II.1.12)

The couplings between the chiral superfields Ω` and the field strength superfield
Υ contain field-dependent Fayet-Iliopoulos (FI) terms (last line) that are classically
non-invariant under (super)gauge transformations:

δΞLs = −N
iMi

2

∫
dθ+ Υ Ξ + h.c. . (B.II.1.13)

This gauge variation should be such that it compensates the one-loop anomaly
eq. (B.II.1.9) of the base GLSM; this can be viewed as a worldsheet incarnation of the
Green-Schwarz mechanism. Finally, in order for the action to be single-valued under
ωi ∼ ωi + 2iπ in any instanton sector, the couplings N i should be integer-valued.

Moduli quantization

In order to restrict the non-compact C∗ × C∗ fibration described above to a T 2

fibration while maintaining (0, 2) worldsheet supersymmetry, one has to define a
complex structure in field space that allows for a decoupling of the real part of these
multiplets. This is compatible with supersymmetry provided that the couplings
between the gaugini and the fermionic components of the superfields Ωi vanish [23].
It amounts to the following relations between the Fayet-Iliopoulos parameters and
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the charges [53]

N1 = −U2
T2

Re(M)− U1M2 ∈ Z , (B.II.1.14a)

N2 = −U2
T2

Re(T̄M) + U1M1 ∈ Z , (B.II.1.14b)

with the complex charge M defined as

M = M1 + TM2 . (B.II.1.15)

Using these relations the gauge-variation of the field-dependent Fayet-Iliopoulos term
reads:

δΞLs = U2
2T2
|M |2

∫
dθΥΞ + h.c. , (B.II.1.16)

which should be cancelled against the gauge anomaly from the chiral fermions in
order to get a consistent quantum theory. One obtains the condition

∑
i

Q 2
i +Q 2

P −
∑
α

Q 2
α −

∑
a

Q 2
a −

2U2
T2
|M |2 = 0 , (B.II.1.17)

reproducing the tadpole condition from the integrated Bianchi identity in Fu-Yau
compactifications [21], see section A.II.3.

The torus moduli T and U are partially quantized by the pair of supersymmetry
conditions eq. (B.II.1.14); in a model with worldsheet gauge group U(1)k one obtains
one such condition for each complex charge Mκ, hence the moduli are generically
fully quantized. As was shown in [53], covariance of the theory under T-duality
symmetries along the fibre provides another way of understanding quantization of the
torus moduli. Under the transformation U 7→ −1/U in PSL(2; Z)U , each complex
charge M is mapped to −ŪM . For consistency this charge should belong to the
same lattice as the original one, namely ŪM ∈ Z + TZ.

Demanding that this property holds for every topological charge in the model is
actually a non-trivial statement. Generically, this is true if and only if the elliptic
curve ET = C/(Z + TZ) admits a non-trivial endomorphism

ET → ET

z 7→ Ūz , (B.II.1.18)

which is known as complex multiplication. This property holds if and only if both
U and T are valued in the same imaginary quadratic number field Q(

√
D) with D
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the discriminant of a positive definite integral quadratic form:

D = b2 − 4ac < 0 , a, b, c ∈ Z , a > 0 . (B.II.1.19)

Crucially, c = 2 conformal field theories with a two-torus target space are rational
iff their T and U moduli satisfy these conditions [54, 55]; this property will play an
important role in section B.II.3.

One could also consider incorporating in the torsion GLSM terms corresponding
to extra Abelian gauge bundles over the total space X (that would be Wilson lines
along the torus in the K3 × T 2 case), which are indeed allowed by the space-time
supersymmetry constraints [21]. This generalization is discussed in chapter B.III.

Torsion multiplet

Whenever the supersymmetry conditions eq. (B.II.1.14) are met, the non-compact
real parts of Ω1,2 decouple and one can reorganize their imaginary parts into a tor-
sion multiplet Θ = (α, χ), with

α = Im (ω1) + T Im (ω2), (B.II.1.20)

χ = Re (χ1) + T̄ Re(χ2), (B.II.1.21)

shifted as δΞΘ = −M Ξ under supergauge transformations, with the complex charge
M defined in eq. (B.II.1.15). The Lagrangian is given (omitting temporarily the
topological B-field term for simplicity) by

Lt.m. = −iU2
T2

∫
d2θ

(
Θ̄ + 2iM̄A+

)
D−Θ− M̄

2
U2
T2

∫
dθΘΥ + h.c., (B.II.1.22)

where the superspace covariant derivative reads D−Θ = ∂−Θ− iM
2 (2∂−A+ + iA−).

As usual going to Wess-Zumino gauge is convenient in order to exhibit the phys-
ical degrees of freedom; in the present situation one should not forget nevertheless
that the theory is not classically gauge invariant, hence such gauge choice only makes
sense in the path integral of the full quantum theory, including the base GLSM, as
will be clear below when supersymmetric localization will be put into action.

In this gauge the torsion multiplet contains a compact complex boson coupled
chirally to a gauge field and a free right-moving Weyl fermion. After going to
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Euclidean signature3 and some rescaling of the fields, one has

T2
U2
Lt.m. = ∇zᾱ∇z̄α+∇zα∇z̄ᾱ−

1
2
(
Mᾱ+ M̄α

)
azz̄ + 2χ̄∂χ, (B.II.1.23)

with ∇zα = ∂α + Maz and ∇z̄α = ∂̄α + Maz̄, and where azz̄ = 2
(
∂az̄ − ∂̄az

)
denotes the field strength of the gauge field. After integrating by parts, one gets the
following Lagrangian

T2
U2
Lt.m. = 2∂ᾱ∂̄α+ 2Maz̄∂ᾱ+ 2M̄az̄∂α+ 2|M |2azaz̄ + 2χ̄∂χ+ t.d. , (B.II.1.24)

where the left-moving U(1) currents ∂α and ∂ᾱ are coupled to the gauge fields, but
not the right-moving ones.

Since we are working in Wess-Zumino gauge, the appropriate supersymmetry
transformations are given by

δε =
(
εQ+ − ε̄Q̄+ + δgauge

)
, (B.II.1.25)

where δgauge refers to the supergauge transformation which is needed to restore
Wess-Zumino gauge after the supersymmetry transformation, corresponding to the
chiral parameter Ξwz = iε̄θ+az̄. The transformation properties of the different
component fields are listed in section B.I.2, eq. (B.I.2.18); the Lagrangian for the
torsion multiplet is not invariant under this transformation, but its variation is
precisely such that it compensates the variation of the effective action of the base
GLSM under the gauge transformation back to WZ gauge.

To summarize, a consistent torsion gauged linear sigma-model is given by a base
K3 GLSM whose gauge anomaly is canceled by a torsion multiplet, provided that
the tadpole condition eq. (B.II.1.17) holds. Finally one has to choose the U(1)l

and U(1)r charges of all the multiplets in order to cancel the global anomalies, and
to obtain the correct central charges of the IR superconformal algebra and rank of
the vector bundle. The global charges of the torsion multiplet, proportional to their
gauge chargeM , correspond naturally to charges under a shift symmetry. Consistent
choices of global charges will be given in section B.II.4.

3One first Wick rotates to Euclidean time σ2 = −iσ0. Complex coordinates are then defined by
z = σ1 + iσ2 and z̄ = σ1 − iσ2.
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II.2 Dressed elliptic genus of N = 2 compactifications

We consider N = 2 compactifications to four dimensions of the E8 × E8 het-
erotic string theory. For any (0, 2) superconformal field theory with (c, c̄) = (22, 9)
corresponding to the ’internal’ degrees of freedom of such compactification, the new
supersymmetric index is defined as the following trace over the Hilbert space in the
right Ramond sector:

Znew(τ, τ̄) = 1
η(τ)2Trr

[
J̄0(−1)FRqL0−c/24q̄L̄0−c̄/24

]
, (B.II.2.1)

where FR is the right-moving fermion number and J̄0 the zero-mode of the right-
moving R-current, which is part of the (right-moving) superconformal algebra. In
general, this index is independent of D-term deformations, while it is sensitive to
F-term deformations [48].

It was observed in [56,57] that the threshold corrections to the gauge and gravi-
tational couplings of N = 2 heterotic string compactifications on K3×T 2 are easily
obtained in terms of the new supersymmetric index eq. (B.II.2.1). Furthermore
Harvey and Moore showed in [49] that it counts the four-dimensional BPS states as

− 1
2iη2Znew(q, q̄) =

∑
BPS vectors

q∆q̄∆̄ −
∑

BPS hypers
q∆q̄∆̄ . (B.II.2.2)

One of the goals of this paper is to extend this analysis to Fu-Yau geometries.
Formulaneq. (B.II.2.2) was proven using representation theory of the N = 4 su-
perconformal algebra underlying the K3 CFT. As was explained in [26], non-linear
sigma-models with a Fu-Yau target space are invariant under the action of the gen-
erators of a (0, 2) ⊕ (0, 4) superconformal algebra, at the classical level, hence we
expect that a similar reasoning holds in the present case.

Let us perform explicitely the left-moving GSO projection using standard orb-
ifold formulæ, see e.g. [40], and write the new supersymmetric index in the following
form:

Znew(τ, τ̄) := η̄2E4(τ)
η10

1
2

1∑
γ,δ=0

qγ
2
{(

θ1(τ |z)
η(τ)

)8−r
Zfy(τ, τ̄ , z)

}∣∣∣∣∣
z= γτ+δ

2

, (B.II.2.3)

where we have defined what we will call the dressed elliptic genus:

Zfy(τ, τ̄ , z) = 1
η̄2Tr

int
rr

[
(−1)F yJ0qL0−c/24q̄L̄0−c̄/24J̄0

]
, (B.II.2.4)
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with the superscript ’int’ meaning that the trace is restricted to the internal (22, 9)
CFT. This dressed elliptic genus will constitute the main character in this part of
the thesis. As we just saw, this objet is the building block in deriving the new
supersymmetric index.

Let us make a few comments at this stage about this dressed elliptic genus we
just defined. When dealing with Calabi-Yau compactifications, i.e. N = 1 vacua,
the typical object one introduces is the elliptic genus, cf. section B.I.3:

Zell(τ, z) = Trrr
[
(−1)F yJ0qL0−c/24q̄L̄0−c̄/24

]
, (B.II.2.5)

However, as we will see in the following, the elliptic genus vanishes identically in
the context of T 2 → X → CYn−1 compactifications. This can be seen from various
points of view. From the field-theoretic point of view, we will see that the culprit if
the fermionic zero-mode which is necessarily part of the sigma-model modelization
of the torus fibre. One can also see it as a consequence of the purely mathematical
definition of Ochanine of an elliptic genus, see [37]. A non-vanishing index can be
obtained by inserting an extra J̄0 in the trace to saturate the fermionic zero-mode of
the torus, and one precisely recovers the dressed elliptic genus. As we will see in the
following, in the case where the torus fibration is trivial, the dressed elliptic genus
further factorizes in the elliptic genus of the base and the Narain partition function
and oscillators contribution of the torus fibre.

II.2.1 Dressed elliptic genus of K3 × T2 compactifications

We first review the computation of the new supersymmetric index in the familiar
case of K3 × T 2 compactifications of the E8 × E8 heterotic string, without Wilson
lines for simplicity. We emphasize the role of the left-moving GSO projection and the
formulation of the index as a chiral orbifold in order to facilitate the generalization
to Fu-Yau compactifications in the next subsection.

We assume that the gauge bundle lies in the first E8 only. More specially, we
consider a gauge bundle E of structure group G with the embedding G ⊂ SO(2r) ⊂
E8. The internal CFT is then the tensor product of a (0, 2) theory with (c, c̄) =
(14, 9) and a (c, c̄) = (8, 0) theory corresponding to the second E8 factor.

Using the factorization of the (c, c̄) = (14, 9) CFT in the two-torus and K3
factors, hence the decomposition of the corresponding (0, 2) superconformal algebra
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into the direct sum (0, 2)⊕ (0, 4), we split the right-moving R-current as follows:

J̄ = J̄ T2
+ J̄ K3 . (B.II.2.6)

It allows to expand the superconformal index into the sum of two terms. For the
second one, we get

Trr
[
J̄ K3

0 (−1)FRqL0−c/24q̄L̄0−c̄/24
]

= 0 , (B.II.2.7)

for two different reasons. First, the fermionic partners of the T 2 have a pair of
fermionic zero modes of opposite fermion numbers, hence the trace over the two-
torus Hilbert space vanishes. Second the K3 SCFT has N = (0, 4) superconformal
symmetry, hence the eigenvalues of J̄K3

0 , which are twice the eigenvalues of the
Cartan current of the SU(2)1 R-symmetry, come in pairs of opposite sign [49].

In order to trace over the internal Hilbert space of the theory we have to define
a left-moving GSO projection corresponding to the first E8 factor. We assume the
existence of a U(1)l left-moving symmetry, acting on the (0, 4) SCFT describing the
K3 surface as on the remaining (8 − r) free left-moving Weyl fermions of the first
E8.

We consider the dressed elliptic genus as introduced above, i.e. the twining
partition function in the RR sector, with a chemical potential y for this U(1)l

symmetry, which we denoted Zfy above and will denote here ZK3×T 2 :

ZK3×T 2(τ, τ̄ , z) = 1
η̄(τ̄)2Trrr,HK3×T2

[
e2iπzJ0 J̄ 0(−1)F qL0−c/24q̄L̄0−c̄/24

]
, (B.II.2.8)

with J0 the left-moving U(1) current, (−1)F = exp iπ(J0 − J̄0) and where the trace
is over the Hilbert space of the K3 × T 2 (0, 2) superconformal field theory with
(c, c̄) = (6+r, 9). Then the new supersymmetric index is obtained as a sum over the
sectors of the chiral Z2 quotient corresponding to the left-moving GSO projection,
cf. eq. (B.II.2.3):

Znew(τ, τ̄) = η̄2E4(τ)
2η10

1∑
γ,δ=0

qγ
2
{(

θ1 (τ |z)
η(τ)

)8−r
ZK3×T 2(τ, τ̄ , z)

}∣∣∣∣∣
z= γτ+δ

2

,

(B.II.2.9)
where the modular form E4(τ) comes from the contribution of the second E8 factor,
see appendix E.I.

The partition function over the two-torus degrees of freedom is straightforward.



II.2. Dressed elliptic genus of N = 2 compactifications 59

For a torus with complex and Kähler moduli T and U the soliton sum Ξ2,2(U, T |τ, τ̄)
is given by

Ξ2,2(τ, τ̄ |T,U) =∑
mi,ni∈Z

exp
(
− π
τ2

U2
T2

∣∣m1 + n1τ + T (m2 + n2τ)
∣∣2 + 2iπU(m1n2 − n2m1)

)
.

(B.II.2.10)

Then the contribution to the partition function eq. (B.II.2.8) reads:

Trrr,HT2

[
J̄0(−1)J̄0qL0−c/24q̄L̄0−c̄/24

]
= 1

2iπ
∂

∂α

∣∣∣∣
α=1/2

Trrr,HT2

[
e2iπαJ̄0qL0−c/24q̄L̄0−c̄/24

]
= Ξ2,2(T,U)

η2η̄2
∂

∂α

∣∣∣∣
α=0

θ1(q̄, e2iπα)
η̄

= Ξ2,2(T,U)
iη2 .

(B.II.2.11)

Finally one needs to compute the trace over the Hilbert space of the (0, 4) theory
with a K3 target space. Let us consider the case of the standard embedding of
the spin connection in the gauge connection, enhancing the supersymmetry of the
K3 SCFT to N = (4, 4). Then plugging back the expression eq. (B.II.2.11) into
eq. (B.II.2.9), and tracing over the Hilbert space of the 6 free Weyl fermions with
twisted boundary conditions, one gets finally the index in terms of the K3 elliptic
genus [49]:

Znew = E4(τ)Ξ2,2
2iη12η̄2

1∑
γ,δ=0

qγ
2
(
θ1(τ, γτ+δ

2 )
η(τ)

)6

Zell
K3

(
τ,
γτ + δ

2

)
, (B.II.2.12)

where the (2, 2) elliptic genus of K3 is defined by

Zell
K3 (τ, z) = Trrr,HK3

[
e2iπzJ0(−1)F qL0−c/24q̄L̄0−c̄/24

]
. (B.II.2.13)

As we shall see in the next section, this localization method which we refer to
in section B.I.3 can be generalized to compute the dressed elliptic genus of Fu-Yau
compactifications.

The new supersymmetric index of K3×T 2 compactifications is actually universal,
i.e. independent of the choice of gauge bundle, as was shown in [47], and reviewed
recently in [46]. The quantity τ2Znew should be a non-holomorphic modular form
of weight -2, with a pole at the infinite cusp (this will remain valid in the case of
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Fu-Yau compactifications). Factorizing the index as

Znew(τ, τ̄) = −2iΞ2,2(τ, τ̄)
η(τ)4 GK3(τ) , (B.II.2.14)

one can show that η20GK3(τ) should be a holomorphic modular form of weight
10, hence proportional to E4E6. Due to the relation eq. (B.II.2.2) the space-time
anomaly cancellation condition nH−nV = 244 fixes the coefficient to one. Hence the
expression eq. (B.II.2.12), obtained from the standard embedding with (4, 4) world-
sheet supersymmetry, extends to any (0, 4) compactification; it means in particular
that the "Mathieu moonshine" is a property of the K3 × T 2 new supersymmetric
index regardless of the choice of gauge bundle [46]. Determining whether this prop-
erty extends to Fu-Yau compactifications is one of the motivations for the present
work.

II.2.2 Dressed elliptic genus of Fu-Yau compactifications

We now turn to the main point of this chapter, the computation of the dressed
elliptic genus of Fu-Yau compactifications based on their worldsheet formulation as
torsion gauged linear sigma-models.

The starting point of the computation is the same as for K3× T 2 compactifica-
tions. However in the case of torsion GLSMs one cannot split the worldsheet theory
as a tensor product of the T 2 and the K3 factors, as none of them makes sense as a
quantum theory in isolation. We assume as before that the gauge bundle over the
total space, which is the pullback of a Hermite-Yang-Mills gauge bundle E over the
K3 base, whose structure group G is embedded as G ⊂ SO(2r) ⊂ E8 in the first E8

factor.
As explained above, the quantity we want to compute is written in operator

language as follows:

Zfy (τ, τ̄ , z) = 1
η̄(τ̄)2Trrr,Hfy

[
e2iπzJ0 J̄ 0(−1)F qL0−c/24q̄L̄0−c̄/24

]
, (B.II.2.15)

the trace being taken into the Hilbert space of the (0, 2) superconformal theory
obtained as the infrared fixed point of the torsion GLSM.

A crucial point at this stage is that the right-moving fermions (χ, χ̄) associated
with the T 2 factor, that belong to the torsion multiplet, are free in the Wess-Zumino
gauge, see the Lagrangian eq. (B.II.1.24), in particular not coupled to the compo-
nents of gauge multiplet; this is the feature of the theory that eventually leads to
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N = 2 supersymmetry in space-time. The right-moving R-current of the supercon-
formal algebra, whose zero-mode J̄0 appears in the trace eq. (B.II.2.15), is of the
form

J̄ = χ̄χ+ · · · , (B.II.2.16)

where the ellipsis stands for (i) a term in ∂̄α, as the bottom component of the torsion
multiplet can have a shift R-charge, (ii) the contributions of the chiral and Fermi
multiplets and (iii) Q-exact terms, where Q is the localization supercharge (see next
section), relating the exact R-current to the Noether one defined in the UV theory.
Because there are two right-moving fermionic zero-modes χ0 and χ̄0 that need to
be saturated in the path integral, and that there are no interactions involving these
fermionic fields in the Lagrangian, we do not have to care about these extra terms
in any case, as their contribution to the path integral vanishes.

In summary, the new supersymmetric index of Fu-Yau compactifications follows
from the twisted partition function eq. (B.II.2.15) that can be formulated as a path
integral. Considering the theory on a two-dimensional Euclidean torus of complex
structure τ , the quantity to compute can be schematically written as

Zfy(τ, τ̄ , z) = 1
η̄(τ̄)2

∫
DA−DA+DµD µ̄DDe−

1
e2
Sv.m.[A,µ,D]−t Sfi(A,D) ×

×
∫

DφiD φ̄iDλiD λ̄i e
− 1
g2
Sc.m.[φi,λi,A,D,al] ×

×
∫

DγaD γ̄aDGaDḠa e
− 1
f2 Sf.m.[γa,Ga,A,al]−Sj[γa,Ga,φi,λi] ×

×
∫

DαDᾱDχDχ̄ e−St.m.[α,χ,A,al]
∫ d2w

2τ2
χ̄χ , (B.II.2.17)

where we have included a background gauge field for the U(1)l global symmetry

al = πz

2iτ2
(dw − dw̄) , (B.II.2.18)

in order to implement the twisted boundary conditions.4 The torsion multiplet will
be coupled chirally to this flat connection, in the same way as it couples to the
dynamical gauge field, see eq. (B.II.1.24).

The left- and right-moving fermions have periodic boundary conditions along
both one-cycles of the worldsheet torus. We have also included for latter convenience
coupling constants 1/g2 and 1/f2 in front of the chiral and Fermi multiplets actions,

4Strictly speaking, we define the twisted path integral for real y (corresponding to twisted bound-
ary conditions along the space-like cycle) and consider an analytic continuation of the result, see [58].
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respectively Sc.m. and Sf.m., besides the usual 1/e2 factor in front of the vector
multiplet action Sv.m. and t in front of the Fayet-Iliopoulos term Sfi. Finally St.m.

denotes the torsion multiplet action.
To take care of the gauge redundancy one should in principle introduce a gauge-

fixing procedure and the corresponding Faddeev-Popov ghosts; however it does not
really impact the computation of the path integral through supersymmetric local-
ization that will follow, see [59] for details.

Having set the calculation in functional language will allow us to deal with it
using localization techniques. In this formulation one sees that the insertion of the
J̄0 operator only contributes through the free right-moving fermion χ which is part
of the torsion multiplet, and this insertion appears as a prescription to deal with the
fermionic zero modes. This will be important in proving that the supersymmetric
localization method is valid in this context, as we shall explain below.

II.3 Dressed elliptic genus through localization

In this section we obtain the dressed elliptic genus of Fu-Yau compactifications,
defined by eq. (B.II.2.15), allowing to compute their new supersymmetric index
using eq. (B.II.2.3). We consider the case of a U(1) worldsheet gauge group; the
main result is given by equation eq. (B.II.3.50). The generalization to higher rank
will be provided in the next section.

II.3.1 Review of the localization principle

Let we briefly recall the motivation underlying the supersymmetric localization
techniques. Consider the vacuum expectation value of a given operator O[φ] in
quantum field theory admitting a symmetry at the classical and quantum level,
generated by a Grassmann-odd operator Q, which is such that Q2 = δb, with δb

the generator of a bosonic symmetry of the theory (for instance a Lorentz or gauge
symmetry). We wish to compute

〈O〉 =
∫
Dφ e−S[φ]O[φ] . (B.II.3.1)

The operator is taken to be Q-closed, i.e. {Q, O} = 0. The action and measure are
also Q-closed, since Q generates a symmetry at the classical and quantum levels.
The choise of supercharge is in general not unique for a given theory.



II.3. Dressed elliptic genus through localization 63

The idea is that one can deform the theory by adding a positive definite Q-exact
term to the action, i.e. look at the quantity

〈O〉t =
∫
Dφ e−S[φ]−tQVO[φ] , (B.II.3.2)

where V [φ] is a fermionic quantity such that δbV = 0. The quantity we are interested
in is therefore 〈O〉t=0. The crucial observation is that 〈O〉t does not actually depend
on the value of t. Indeed

∂

∂t
〈O〉t = −

∫
Dφ e−S[φ]−tQV (QV )O[φ]

= −
∫
Q
(
Dφ e−S[φ]−tQV V O[φ]

)
= 0 , (B.II.3.3)

after application of Stokes theorem in field space5. Since the integral does not depend
on the value of t, it can be evaluated in different regimes, such a as t→ 0 or t→∞,
the results being equal. This kind of manipulation can lead to highly non-trivial
functional identities, where the two side of the identities relate to different regimes
of the parameter t.

In the integral above, the limit t → ∞ is particularly interesting because the
integral localizes toQ-fixed points, i.e. to a BPS sub-locus of field space on whichQV
vanishes, and which in the most favourable cases turns out to be finite dimensional,
hence reducing the problem of computing a complicated infinite dimensional path
integral to a finite dimensional integral. In this limit, the saddle point approximation
becomes exact. We decompose

φ = φ0 + δφ√
t
, (B.II.3.4)

into a piece parametrizing the BPS locus and a fluctuation orthogonal to it. This
leads to

〈O〉 =
∫

dφ0Dδφ e
−S
[
φ0+ δφ√

t

]
−t
(
QV (φ0)+ ∂2QV

∂φ2 (φ0) (δφ)2
t

+O(t−3/2)
)
O

[
φ0 + δφ√

t

]
(B.II.3.5)

One thus gets, after taking the limit t → ∞ and performing the Gaussian integral

5We suppose that no boundary terms appear here.
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over the fluctuation:

〈O〉 =
t→∞

∫
dφ0 e

−S[φ0]O [φ0] 1√
det

(
∂2QV
∂φ2 [φ0]

) (B.II.3.6)

In the 2-dimensional quantum field theories considered in this thesis, the Lagrangian
are actually Q-exact, so one does not even need to add a Q-exact deformation term
to the action to apply these techniques of supersymmetric localization. In particular,
one can normalize the fields such that the kinetic terms comes with a factor 1

e2 for
the gauge fields and 1

g2 or 1
f2 for the matter fields, cf. eq. (B.I.2.27), and consider

the ultraviolet limit e→ 0, g → 0 and f → 0 where the kinetic terms dominate and
the theory becomes free.

II.3.2 Justification of the supersymmetric localization

Supersymmetric localization techniques have been successfully applied to com-
pute the elliptic genera of ordinary (0,2) gauged linear sigma-models, see [32–34].
Our goal is to extend these results to compute the dressed elliptic genus of Fu-Yau
compactifications, using the torsion gauged linear sigma-models.

One immediate objection to this project is that, as mentioned above, the contri-
bution of the torsion multiplet to the action is not invariant under the supersym-
metry transformations eq. (B.II.1.25); furthermore, the operator insertion

∫ d2w

2τ2
χ̄χ (B.II.3.7)

in the path integral eq. (B.II.2.17) is obviously not supersymmetric. As we will see
below, these two obstacles can be successfully overcome.

The GLSM corresponding to the base contains a (0, 2) vector multiplet together
with (0, 2) chiral and Fermi multiplets (conventions related to (0, 2) superspace are
gathered in section B.I.2). The first step in applying localization is to choose a
fermionic symmetry of the theory, we therefore define the following supercharge, cf.
eq. (B.I.2.26):

Q := (δε,ε̄)|ε=ε̄=1 , (B.II.3.8)

One can then show that the (0, 2) Lagrangians describing the dynamics of the U(1)
vector multiplet, the Fermi multiplet and the chiral multiplets, as well as the su-
perpotential and Fayet-Iliopoulos terms are actually all exact with respect to the
above defined supercharge, cf. eqs. (B.I.2.27) and (B.I.2.28). In an ordinary GLSM,
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this would imply immediately that the path integral is independent of the coupling
constants e, f and g and of the FI parameter t.

To understand what happens in the present situation, let us write the contribu-
tion of the base and of the vector multiplet to the TGLSM as

SK3 = 1
e2Qνv.m. +Qν , (B.II.3.9)

where the first term is the vector multiplet action, written as a Q-exact term, and
Qν denotes the (Q-exact as well) contribution of the chiral and Fermi multiplets
and of the constant FI term. The functional integral we aim to compute is of the
schematic form:

Zfy(τ, τ̄ , z) = 1
η̄(τ̄)2

∫
DΦDΓDADVDΘ e−

1
e2
Qµv.m.−Qνe−St.m.[Θ,A,V]

∫ d2w

2τ2
χ̄χ

(B.II.3.10)
One considers then the derivative with respect to 1/e2:

∂Zfy(τ, τ̄ , z)
∂(1/e2) =

= − 1
η̄(τ̄)2

∫
DΦDΓDADVDΘ Qµv.m. e

− 1
e2
Qµv.m.−Qνe−St.m.[Θ,A,V]

∫ d2w

2τ2
χ̄χ .

(B.II.3.11)

As mentioned above, the operator insertion
∫ d2w

2τ2 χ̄χ has the effect of saturating the
fermionic zero modes present in the measure DΘ over the torsion multiplet. Hence
its variation under the action of the supercharge Q, while non-zero, leads to terms
which do not saturate the fermionic zero modes anymore, and thus do not contribute
to the path integral.

Since the supersymmetry transformation we are considering contains a super-
gauge transformation of chiral parameter Ξwz|ε̄=1, see eq. (B.II.1.25), there is a
non-trivial transformation of the functional measure over the chiral and Fermi mul-
tiplets due to the gauge anomaly. At the same time, the torsion multiplet action
is not classically invariant under the action of the supercharge, see eq. (B.II.1.16).
Whenever the tadpole condition eq. (B.II.1.17) is satisfied, these two variations can-
cel each other:

Q
(
DΦDΓe−St.m.[Θ,A,V]

)
= 0 . (B.II.3.12)

In conclusion, whenever the quantum anomaly of the base GLSM is canceled against
the classical contribution from the torsion multiplet, we get as in more familiar
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examples

∂

∂(1/e2)Zfy(τ, τ̄ , z) =

= − 1
η̄(τ̄)2

∫
Q
(

DΦDΓDADV e−
1
e2
Qµv.m.−Qν−W [A,V] µv.m.

∫ d2w

2τ2
χ̄χ

)
= 0 ,

(B.II.3.13)

using an analogue of Stokes’ theorem in field space. The result of the path integral
is then independent of the gauge coupling, allowing to take a free-field limit e→ 0.
The same reasoning allows to take the limit g → 0 and f → 0 in the chiral and Fermi
multiplets actions respectively. By rescaling the superfields Φ′ = Φ/g and Γ′ = Γ/f
one sees that the superpotential couplings do not contribute to the path integral
which is localized in the free-field limit of the theory, as far as the base GLSM is
concerned.

A similar argument regarding the dependence of the path integral on the torsion
multiplet couplings would fail, as the torsion multiplet action is not Q-exact, being
not even Q-closed.6 Nevertheless, this action is Gaussian hence the path integral
can be performed exactly. As expected, it implies that the result of the path integral
computation does depend on the moduli (T,U) of the principal two-torus bundle in
the Fu-Yau geometry.

As in [33] the localization locus is parametrized by the holonomies of the gauge
field modulo gauge transformations, corresponding to Wilson lines along the two
cycles for the worldsheet torus,

a = π

2iτ2
(ūdw − udw̄) , (B.II.3.14)

the complex parameter u taking values in the torus

u ∈Mbps = C
Z + τZ

, (B.II.3.15)

to avoid gauge redundancy. One could therefore expect, if everything worked safely
and following the idea developped previously in section II.3.1, a result of the form

Zfy(τ, τ̄ , z) =
∫
Mbps

d2u

τ2
e−S[u,ū]Zone-loop(u, ū, z) , (B.II.3.16)

6Even if it were the case (this is what happens if one considers K3 × T 2 examples), the Q
variation of

∫ d2z
2τ2

χ̄χ would then contribute to the path integral.
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in analogy with eq. (B.II.3.6). This expression is however ill-defined due to the
presence of various bosonic and fermionic zero-modes contributing to the one-loop
determinant originating from the path integral over quadratic fluctuations around
the finite dimensional BPS locus. Indeed, the bosons φi of gauge charge Qi and
left charge ql

i contained in the chiral multiplets are charged under both the flat
U(1)-gauge connection and the background flat U(1)l connection, hence can become
massless at some points on the BPS locus defined by

Qiu+ ql
i z = 0 mod Z[τ ] . (B.II.3.17)

We will denote the singular locus defined in this way by the various chiral multiplets
of the theoryMsing. The torsion multiplet does not introduce such singularities, cf.
section II.3.4 below.

In [33], Benini, Eager, Hori and Tachikawa proposed a prescription to deal with
these zero-modes for the computation of the elliptic genus of (2, 2) and (0, 2) gauge
theories, which consists in first working at finite gauge coupling e 6= 0, i.e. in
particular in the presence of the zero modes of the gaugino µ0, µ̄0 and the auxiliaryD-
field7 D0, the latter acting through the quartic potential it generates as a regulator.
The same prescription is followed here in presence of the torsion multiplet, and we
will explaine how most of the steps that go into the derivation of the elliptic genus by
Benini, Eager, Hori and Tachikawa [33], especially the reduction of the integral over
the gauge holonomies into a contour integral of the one-loop determinants, carry
over to the present situation without significant modifications.

The prescription therefore consists as we said to work first at a small but non-
vanishing value of the gauge coupling e, and then cut out small disks of radius
ε around each of the singular points in Msing. Let us denote by Mε

bps this BPS
locus with disks removed. It so happens, by a careful study of the behaviour of the
contribution of the fields becoming massless in the e→ 0 limit, that if one first takes
the limit ε→ 0 and only then8 the limit e→ 0, then the contribution of the integral
restricted to the disks vanishes.

The above described prescription therefore leads to an expression of the form:

Zfy = lim
e,ε→0

∫
R
dD0

∫
Mε

bps

d2u

τ2
exp

(
− 1

2e2D
2
0 − irD0

)
fe(u, ū,D0) , (B.II.3.18)

7We follow the convention of [33], D is here the Euclidean D-field, rescaled by π/τ2
8One can also take the double limit e→ 0 and ε→ 0 provided the bound ε < eM+1 is satisfied,

where M is the number of bosonic fields vanishing at the singular point of interest.
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where fe(u, ū,D0) corresponds to the result of the path integral over all fields apart
the zero modes of the D-field and the gauge field, in the limit g, f → 0, with finite
gauge coupling e, including the contribution from the torsion multiplet. In addition
to the zero-mode of the auxilary D-field, the vector multiplet also contains the zero-
modes of the gaugino, whose contribution was included in fe(u, ū,D0). Explicitely,
the fermionic measure corresponding to this zero-mode should be saturated, hence
pulling down coulings between the gaugini and the bosons in the chiral multiplets:

fe(u, ū,D0) =
∫

dµ0dµ̄0

〈∣∣∣∣∣
∫

d2w
∑
i

Qiµλ̄iφi

∣∣∣∣∣
2〉

. (B.II.3.19)

The crucial point in our torsional theory is that since the torsion multiplet has no
coupling to the gaugini, as was explained in section B.II.1, it is not involved in the
saturation of their zero-modes.

Furthermore, the torsion multiplet has no coupling to the auxiliary D-field by
supersymmetry; as a consequence, the ū-dependence of the one-loop determinant
lies entirely in the contribution from the chiral multiplets of the base. One has in
the limit:

fe(u, ū,D0) −→
e→0

h(τ, z, u,D0)Zbase(τ, z, u,D0)Ztorsion(τ, τ̄ , u, z) , (B.II.3.20)

where h(τ, z, u,D0) precisely arises from the saturation of the gaugini zero-modes,
Zbase corresponds to the one-loop determinants arising from the integrals over quadratic
flucturations and includes the multiplets contributing to the K3 base. Zbase will be
given in section II.3.3. Finally, Ztorsion corresponds to the path integral over the
fields in the torsion multiplet coupled to the flat gauge connection u, and which we
will determine soon, in section II.3.4.

Let us now tackle a subtle point which will appear more precisely in sections II.3.3
and II.3.4 where we compute Zbase and the contibution Ztorus from the torsion mul-
tiplet. The definition of the one-loop determinants for the various fields of the base
involves infinite products which require to be renormalized, and all together deter-
minants involve a non-holomorphic (in the holonomy u) exponential factor whose
argument is proportional to the anomaly of the base GLSM eq. (B.II.1.9). The
precise expression of this exponential anomalous factor depends on the prescription
one takes for the determinant of the Dirac operator on the torus coupled to a flat
U(1)-connection, various prescriptions being related by the addition of finite coun-
terterms in the sigma model. On the other hand, the torsion multiplet contribution
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will also come with a non-holomorphic exponential factor (all the non-holomorphicity
in u is contained in this anomalous factor) which, whenever the adapted prescrip-
tion is chosen for the determinants of the Dirac operator and the tadpole condition
eq. (B.II.1.17) is satisfied, compensates the exponential factor from the base. We will
now be sloppy with the notations, and assume that this cancellation of anomalous
factors has occured in the product Zbase(τ, z, u,D0)Ztorsion(τ, τ̄ , u, z). In particular,
all the remaining non-holomorphicity in u comes from Zbase(τ, z, u,D0).

Following [33], one has

fe(u, ū,D0) −→
e→0
− 1
πD0

∂

∂ū
[Zbase(τ, z, u, ū,D0)Ztorsion(τ, τ̄ , u, z)] , (B.II.3.21)

which is a total derivative in the anti-holomorphic holonomy, allowing to reduce the
integral over the u-plane to a contour integral:

Zfy = lim
e,ε→0

∫
R

dD0
2πiD0

e−
1

2e2
D2

0−irD0
∮
∂Mε

bps

duZbase(τ, z, u, ū,D0)Ztorsion(τ, τ̄ , u, z) .

(B.II.3.22)
One should however be careful to avoid the origin in the D0 complex plane, by
translating the D0 contour integral below the real axis at a distance δ, to get a
contour Γδ. Let us see what happens for a given component of ∂Mε

bps, encircling
a singular point u?. We can suppose that the gauge charge of all fields becoming
massless at u? have the same sign (if this is not the case, it is possible to achieve
it by mixing the gauge and U(1)l charges.). It therefore makes sence to split the
singular points as

∂Mε
bps = ∂Mε+

bps ∪ ∂Mε−
bps, (B.II.3.23)

according to the sign of the fields becoming massless there.

As we will see in section II.3.3, in addition to the singularity at D0 = 0, their
are poles coming from Zbase, which involves factors with a pole at D0 = iQiε

2 due
to the bosons φi satisfying Qiu? + ql

i z = 0. Therefore, provided 0 < δ � ε2, the
contour in D0-plane avoids such poles. Simple application of Cauchy theorem (on
the one hand, ∂Mε+

bps does not contribute, and on the other hand the integral over
the contour Γ′δ defined in section II.3.2 vanishes) then allows to conclude that:

Zfy =
∮
∂Mε−

bps

duZbase(τ, z, u, ū, 0)Ztorsion(τ, τ̄ , u, z) . (B.II.3.24)

Had we chosen to deform the contour in D0 plane above the real axis, we would
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D

×

×iQiε
2

××

Γδ

=

D

×

×iQiε
2

××

Γ′δ

C0

Figure II.1: Poles for u? ∈ ∂Mε−
bps and contour integral over Γ′−, equivalent to the

contour over the sum of Γ′δ and C0.

have obtained:

Zfy = −
∮
∂Mε+

bps

duZbase(τ, z, u, ū, 0)Ztorsion(τ, τ̄ , u, z) . (B.II.3.25)

Both expressions agree, since the sum of residues of a meromorphic function on the
torus vanishes.

For a rank-one gauge group, the formula for the dressed elliptic genus eq. (B.II.2.15)
is therefore of the form:

Zfy(τ, τ̄ , z) = ± 1
2iπ

∑
u?∈M±sing

∮
C(u?)

Σ1-loop(τ, τ̄ , z, u) , (B.II.3.26)

where

Σ1-loop(τ, τ̄ , z, u) = Zbase(τ, z, u, ū, 0)Ztorsion(τ, τ̄ , u, z) , (B.II.3.27)

which we split into the contribution from the various fields as follows:

Σ1-loop(τ, τ̄ , z, u) = 1
η̄(τ̄)2ZA ×

∏
Φi
ZΦi

×
∏

Γa
ZΓa

× Zχ × Ztorus , (B.II.3.28)

the various factors in the above formula being the one-loop contributions of the var-
ious multiplets around the localization locus, and C(u?) denoting a contour around
the singularity u?. M+

sing and M−sing forms a partition of the set of poles of the
product of chiral multiplet determinants according to the splitting eq. (B.II.3.23).

In the case where the gauge group G has an arbitrary rank, the formula general-
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izes using a notion of residue in higher dimensions, the Jeffrey-Kirwan residue [60];
one obtains the following expression for the twining partition function in terms of
the one-loop determinant [34]:

Zfy(τ, τ̄ , z) = 1
|W |

∑
u?∈Msing

JK-Res
u=u?

(Q(u?), η) Σ1-loop , (B.II.3.29)

with now Σ1-loop a meromorphic rank(G)-form, and |W | the order of the Weyl group.
The sum does not depend on the choice of co-vector η ∈ h∗, in the dual of the Cartan
subalgebra, per singular locus u?. We refer the reader to [34] for more details on the
definition of the Jeffrey-Kirwan residue.

Let us now discuss the various contribution to Σ1-loop, from the base and the
torus fibre.

II.3.3 Contribution of the K3 base

As we have noticed previously, the contributions from the chiral and Fermi multi-
plets corresponding to the K3 base, as well as from the gauge multiplets, are similar
to those appearing in the elliptic genus computed in [33]. However, since in the
present context issues of gauge invariance are crucial, we need to be a little bit more
careful regarding the definition of the chiral fermionic determinants. In the end,
taking into account the contribution of the torsion multiplet, the tadpole condition
will translate into a cancellation of the prefactors in these expressions, as discussed
above.

In order to define the determinant of a chiral Dirac operator ∇(u) coupled to a
(background) flat gauge field, one has to specify a way to split the determinant of the
self-adjoint operator ∇†(u)∇(u) into a ’holomorphic’ part and an ’anti-holomorphic’
part. According to Quillen’s theorem [61], the zeta-regularized determinant of the
former is given by (see e.g. [62] for a discussion in a similar context):

Detζ ∇(u)†∇(u) = e
π
τ2

(u−ū)2
|θ1(τ |u)|2 , (B.II.3.30)

where u is here a compact notation which takes into account both the U(1) gauge
field and the background U(1)l. Splitting (u− ū)2 = (u2− uū) + (ū2− uū), one can
define the chiral determinant as:

Det∇(u) = e
π
τ2

(u2−uū)
θ1(τ |u) , (B.II.3.31)
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modulo an overall factor independent of u; other definitions can be interpreted as
corresponding to different choices of local counterterms.

With this prescription, as was argued by Witten in [63] in a related context,
the gauge functional obtained after the path integral over the fermionic degrees
of freedom can be viewed as a holomorphic section of a holomorphic line bundle
over the space of gauge connections. The determinant is indeed annihilated by the
covariant derivative D

Dū = ∂
∂ū + π

τ2
u (restricted to its zero-mode part in the present

situation). It turns out that this choice, besides its nice geometrical interpretation,
is naturally compatible with the contribution from the torsion multiplet Lagrangian,
see eq. (B.II.3.43) below, leading to an expression without modular anomalies.

Equipped with this result, one can express the contribution of a (0, 2) chiral
multiplet Φi of gauge charge Qi and U(1)l charge ql

i , and a Fermi multiplet Γa of
gauge charge Qa and U(1)l charge qL

a as:

ZΦi(τ, u, z) = ie
− π
τ2

(υ2−υῡ) η(τ)
θ1(τ |υ) , υ = Qiu+ ql

i z , (B.II.3.32a)

ZΓa(τ, u, z) = ie
π
τ2

(υ2−υῡ) θ1(τ |υ)
η(τ) , υ = Qau+ ql

az . (B.II.3.32b)

Finally, the contribution from the vector multiplet reads, considering a U(1)
gauge group,

ZA(τ) = −2iπη(τ)2du . (B.II.3.33)

These contributions combine to give Zbase. The final step will be to evaluate the
contribution of the torsion multiplet.

II.3.4 Torsion multiplet determinant

In this section we derive the contribution of the torsion multiplet to the partition
function Zfy(τ, τ̄ , y) at the localization locus. In the functional integral formulation
it takes the form∫

Dα1Dα2DχDχ̄ e−Storsion[α1,α2,χ,χ̄,a,al]
∫ d2w

2τ2
χ̄χ. (B.II.3.34)

One is thus dealing with two compact bosons chirally coupled to a flat gauge field,
together with a free right-moving Weyl fermion. As was noticed before, the action
is not Q-exact, however it is Gaussian hence can be computed explicitly.

Let us evaluate first the contribution of the free fermion, which is completely
decoupled from the vector multiplet. Taking into account the insertion

∫ d2z
2τ2 χ̄χ



II.3. Dressed elliptic genus through localization 73

into the functional integral,9 one gets, using formula eq. (E.I.1.8a):

Zχ(τ̄) = ∂µ

∫
DχDχ̄ e

−
∫
d2w 2χ̄∂χ+µ

∫
d2w
2τ2

χ̄χ
∣∣∣
µ=0

= η̄(τ̄)2 . (B.II.3.35)

Orthogonal torus Now we compute the contribution from the ’axion field’ α =
α1 +Tα2. It corresponds to a pair of chiral bosons coupled to a gauge field (a+, a−).
Considering first an orthogonal torus with no B-field, for each of them one has to
compute a path integral of the form:

∫
Dϕ exp

{
−R

2

2π

∫
d2w (∂+ϕ∂−ϕ+ 2a+∂−ϕ+ a−a+)

}
, (B.II.3.36)

where ϕ ∼ ϕ+2π. Here az and az̄ refer to both the dynamical gauge field and to the
background U(1)l gauge field. In the present context, because of localization one
focuses on the zero mode of the gauge fields, i.e. the holonomies on the worldsheet
two-torus.

At the fermionic radius Rf = 1√
2 , the bosonic action appearing in the path

integral eq. (B.II.3.36) is actually nothing but the bosonized form of the chiral
determinant eq. (B.II.3.31) (up to an anti-holomorphic determinant independent of
the gauge field) that was considered by Witten in [63], hence motivating the choice
made above for the latter. In the bosonic formulation this prescription amounts to
set the coefficient of the a−a+ term, which can be affected by local counterterms,
to one, and implies that the classical variation of the Lagrangian under a gauge
transformation is independent of ϕ.

The different instanton sectors of the free compact boson ϕ on the torus obey
the periodicity condition

ϕ (z + k + τ l, z̄ + k + τ̄ l) = ϕ (z, z̄) + 2π (km+ ln) , (B.II.3.37)

with winding numbers m,n ∈ Z. The solution for the zero-modes φ0 is then given
by:

ϕ0 (w, w̄) = iπ

τ2
(w (mτ̄ − n)− w̄ (mτ − n)) . (B.II.3.38)

Plugging this into the classical action and adding the contribution from the quantum

9In our conventions,
∫
d2w = 2τ2
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fluctuations leads to

ZS1(τ, τ̄ , u, z) = exp
(
−2π
τ2
R2uū

)
R

√
τ2|η(τ)|2×

×
∑

m,n∈Z

exp
(
−πR

2

τ2
|mτ − n|2 − 2iR2 (mτ̄ − n) (az̄)0

)
. (B.II.3.39)

Poisson resummation formula appendix E.I applied to the dummy variable n allows
to rewrite this as

ZS1(τ, τ̄ , u, z) = 1
|η(τ)|2 exp

(
−2π
τ2
R2(uū− u2)

)
×

×
∑

m,n∈Z

exp
(
iπτ

2

(
n

R
+Rm

)2
− iπτ̄

2

(
n

R
−Rm

)2
− iπRu

(
n

R
+Rm

))
,

(B.II.3.40)

Setting the radius to the free fermion radius Rf = 1√
2 , the above expression can

be recast as a finite sum over the different spin structures on the worldsheet torus,
namely

ZS1 (τ, τ̄ , u, z;Rf) = 1
2

1
|η(τ)|2 e

− 2π
τ2
R2

f [(Mu+mlz)(Mū+mlz)−(Mu+mlz)2]×

×
1∑

k,l=0
θ
[
k
l

]
(τ |Mu+mlz)θ̄

[
k
l

]
(τ̄ |0) , (B.II.3.41)

where we have restored the shift chargeM and added the coupling to the background
U(1)l gauge field. Taking into account the second S1 is straightforward, since the
two circles factorize.

Comparing the holomorphic part of the partition function eq. (B.II.3.41) to the
contribution of a left-moving fermion coming from a charged Fermi multiplet of the
base GLSM, one has in the former case an independent sum over the spin structures
(k, l) on the worldsheet two-torus, while in the latter case the spin structure is chosen
periodic along both one-cycles.10 This simple observation clarifies some statements
about topology-changing T-dualities, mixing the torus and gauge bundles, that were
originally proposed by Evslin and Minasian in [64] in the effective theory context,
and discussed by one of the authors in the torsion GLSM framework [53] (see also [65]

10We consider in this discussion that we are in the left GSO sector given by z = 0 for simplicity.
Considering a different sector does not change the outcome of the argument; the important point is
that the spin structures of all free Fermi multiplets are identical (considering that the gauge group
lies in a single E8).
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for related comments). Such duality, that exchanges a line bundle over the base S
and a circle bundle at the fermionic radius, is indeed a symmetry of the twining
partition function Zfy built from eq. (B.II.3.41) only in the sector (k = 0, l = 0),
in which case the two corresponding left-moving fermions, from the Fermi multiplet
and from the left-moving component of the fermionized S1 fibre, have identical (odd)
spin structure. Including the independent sum over the spin structures (k, l) of the
latter does not respect this symmetry.

In order to generalize the results obtained at the fermionic radius to compact
bosons of arbitrary rational radius squared, it is convenient to rewrite the previous
expression in terms of ŝu(2) theta functions at level 2 (see appendix E.I):

ZS1 (τ, τ̄ , u, z;Rf) = 1
|η(τ)|2 e

− 2π
τ2
R2

f [(Mu+mlz)(Mū+mlz)−(Mu+mlz)2]×

×
∑
s∈Z4

Θs,2 (τ |2(Mu+mlz)) Θ̄s,2(τ̄ |0) , (B.II.3.42)

although the sum over spin structures is no longer explicit.
Whenever a compact boson is at radius R =

√
k
l (with k and l coprime integers),

the corresponding c = 1 conformal field theory becomes rational. One can then reor-
ganize the sum in eq. (B.II.3.40) over infinitely many û(1)L× û(1)R representations
into a finite sum over representations of the chiral algebra, much as in the case of the
fermionic radius that we have discussed previously. In terms of ŝu(2) theta functions
level kl, one obtains then

ZS1

(
τ, τ̄ , u, z;R =

√
k
l

)
= 1
|η(τ)|2 e

− 2π
τ2
R2[(Mu+mlz)(Mū+mlz)−(Mu+mlz)2]×

×
∑

s,s̄∈Z2kl,

{
s+s̄=0 [2k]
s−s̄=0 [2l]

Θs,kl

(
τ
∣∣∣2l (Mu+mlz)

)
Θ̄s̄,kl(τ̄ |0) . (B.II.3.43)

Arbitrary rational torus As we have reviewed in section B.II.1, covariance under
O(2, 2; Z) implies that the moduli of the (spacetime) two-torus should always be
those of a rational c = 2 conformal field theory, i.e. with T and U belonging to
the same imaginary quadratic number field Q(

√
D) with D < 0. Reducing the

corresponding Narain lattice to a sum over characters of the underlying chiral algebra
of the rational theory can be done explicitly, as previously, for any given example.
However to write down the result explicitely in a uniform way for all cases requires
a more abstract point of view.
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A precise relation between rational Narain lattices and the data of rational con-
formal field theories with c = 2 was given in a beautiful article by Hosono, Lian,
Oguiso and Yau [66]. Whenever the Narain lattice Γ2,2(T,U) is rational, i.e. with
T and U belonging to the same Q(

√
D), the even positive definite lattices

Πl := Γ2,2(T,U) ∩ R2,0 , Πr := Γ2,2(T,U) ∩ R0,2 (B.II.3.44)

have rank two. Conversely, a rational CFT with c = 2 is given by a triple (Γl, Γr, φ),
where Γl,r are even positive definite lattices of rank two, and φ an isometry mapping
one discriminant group to the other, i.e. an application φ : Γ∨l /Γl → Γ∨r/Γr, with
Γ∨l = Hom(Γl,Z), preserving the bilinear form; it is known also as the gluing map.

To each even positive definite lattice of rank two one can associate an integral
quadratic form Q = ax2 + bxy + cy2 with, choosing a basis, 2a = (e1, e1), b =
(e1, e2) and 2c = (e2, e2). The GL2(Z) equivalent classes of quadratic forms, C̄,
are isomorphic to the GL2(Z) equivalent classes of even positive definite lattices
of rank two, [Γ], characterized by their invariant discriminant (resp. determinant)
4ac− b2 := −D. Restricting the former classes to SL2(Z) equivalence classes C, one
obtains for each D an Abelian group of finite rank, equipped with a composition
law known as the Gauss product C ? C′.11

Likewise, for a given determinant D, the equivalence classes of rational Narain
lattices Γ2,2(T,U) under the SL2(Z) × SL2(Z) action on T and U correspond to
equivalent classes of quadratic forms, CT and CU . The equivalence classes of the left
and right lattices defining the rational CFT, [Γl] and [Γr], are then given in terms
of the equivalent classes of the moduli by:

[Γl] =
[
ΓCT ?(CU )−1

]
, [Γr] =

[
ΓCT ?CU

]
. (B.II.3.45)

This provides the data of the c = 2 rational CFT for any rational (2, 2) Narain
lattice.

One can now express the result of the path integral in terms of the rational
CFT data, in other words in terms of the theta-functions ΘΓ

µ associated with the
left and right lattices Γl and Γr, see appendix E.I for details. Let us consider the
case of a U(1) (worldsheet) gauge group. Taking an orthonormal basis, the two-
dimensional vector of topological charges corresponding to the two-torus bundle,

11Whenever the quadratic forms are not primitive, i.e. such that gcd (a, b, c) > 1, these statements
should be slightly modified, see [66] for details.
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see section B.II.1, is of the form

pm =
√

2U2
T2

(
M1 + T1M2

T2M2

)
. (B.II.3.46)

One can check that this vector belongs actually to the lattice Γ2,2(T,U) ∩ R2,0,

hence to the left lattice of the rational CFT. A convenient assignment of U(1)l shift

charges for cancellation of global anomalies is to take them proportional to the gauge

charges, with a coefficient of proportionality λ, see section B.II.4.

One obtains then the following one-loop contribution from the bosonic degrees

of freedom of the torsion multiplet, for arbitrary T and U in the same imaginary

quadratic number field Q(
√
D):

Ztorus(τ, τ̄ , u, z;T,U) = exp
(
−2π
τ2

[
(u+ λz)(ū+ λz)− (u+ λz)2

]
〈pm, pm〉Γl

)
×

×
∑

µ∈Γ∨l /Γl

ΘΓl
µ (τ |(u+ λz)pm)

η(τ)2

Θ̄ΓR
ϕ(µ)(τ̄ |0)
η̄(τ̄)2 . (B.II.3.47)

where 〈?, ?〉Γl is the inner product on Γl. Hence the quadratic prefactor of this

expression is written in terms of the norm of the vector pm ∈ Γl giving the topological

charges of the torus bundle

〈pm, pm〉Γl = 2U2
T2
|M |2 . (B.II.3.48)

O(2, 2; Z) T-duality transformations are mapped, under the correspondence between

rational Narain lattices and rational CFTs summarized above, to isometries of the

triple providing the rational CFT data, hence preserve eq. (B.II.3.48). It provides

an elegant explanation of the invariance of this expression, which gives also the

contribution of the torus bundle to the integrated Bianchi identity, under the per-

turbative duality group [64]; as we have shown, this property is intimately related

to the rational nature of the Narain lattice.
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II.3.5 The result

Having dealt separately with the contribution of each type of multiplet, one can
write the full one-loop determinant, in the case of a rank one gauge group, as follows:

Σ1-loop(τ, τ̄ , z) =− 2iπη(τ)2∏
Φi

iη(τ)
θ1(τ |Qiu+ ql

i z)
∏
Γa

iθ1(τ |Qau+ ql
az)

η(τ) ×

×
∑

µ∈Γ∨l /Γl

ΘΓl
µ (τ |(u+ λz)pm)

η(τ)2

Θ̄ΓR
ϕ(µ)(τ̄ |0)
η̄(τ̄)2 ×

× exp
[ π
τ2

(
−
∑
i

Q 2
i +

∑
a

Q 2
a + 2U2

T2
|M |2

)
︸ ︷︷ ︸

= 0

(
u2 − uū

) ]
du .

(B.II.3.49)

The first line corresponds to the K3 base and the second line to the two-torus fibre.
In this computation we had chosen a prescription for the determinant of a chiral

Dirac operator consistent with the torsion multiplet contribution, such that at the
end the various factors present in the last line of eq. (B.II.3.49) cancel each other
whenever the gauge charges satisfy the tadpole condition eq. (B.II.1.17), as anounced
below eq. (B.II.3.20). Notice that there are also factors linear in y, corresponding to
the U(1)l global anomaly, that we did not include in the equation for sake of clarity;
likewise, they cancel among themselves in an anomaly-free model.

Thus the one-loop determinant Σ1-loop is a holomorphic function of the gauge
field holonomy. Simplifying the above expression and injecting it in the contour
integral, one gets for the twining partition function eq. (B.II.2.15) the result:

Zfy(τ, τ̄ , z) =± η(τ)2 ∑
u?∈M±sing

∮
C(u?)

du
∏
Φi

(
i

η(τ)
θ1(τ |Qiu+ ql

i z)

)
×

×
∏
Γa

(
i
θ1(τ |Qau+ ql

az)
η(τ)

) ∑
µ∈Γ∨l /Γl

ΘΓl
µ (τ |(u+ λz)pm)

η(τ)2

Θ̄ΓR
ϕ(µ)(τ̄ |0)
η̄(τ̄)2 .

(B.II.3.50)

This quantity is then plugged into eq. (B.II.2.3) to finally give the new supersym-
metric index of Fu-Yau compactifications.

For consistency the new supersymmetric index that we have computed should
behave properly under transformations of the modular group PSL(2,Z)τ . As men-
tioned above, τ2Znew(τ, τ̄) should be a (non-holomorphic) modular form of weight



II.4. Generalization to higher rank, global charges 79

−2. Tracking this statement back to the modular behaviour of the non-holomorphic
twining partition function Zfy, one should check that whenever the anomaly can-
cellation condition is satisfied, the latter behaves as a weak Jacobi form of weight 0
and index r

2 , where r is the rank of the vector bundle, although it is not holomorphic
in τ .

This behavior will be checked first at the level of the torsion GLSM in the next
section once we have given the charge assignment, and then later on using the
geometrical formula that we will define is section B.II.5.

II.4 Generalization to higher rank, global charges

In this section we first generalize the results obtained above to the case of a
higher rank gauge group on the worldsheet, provide a consistent assignment of global
charges and then consider a concrete example, in which the base manifold is a quartic
in P3.

II.4.1 Higher rank gauge groups on the worldsheet

As mentioned above, the whole construction of the torsion linear sigma-model
can be carried on with a larger Abelian12 gauge group G = U(1)k. For each compo-
nent U(1)κ, one introduces:

• A (0, 2) vector multiplet (A+κ, A−κ),

• A chiral multiplet Pκ,

• A set of rκ + 1 Fermi multiplets Γaκ ,

• A set of quasi-homogeneous polynomials Jaκ(Φi),

and a superpotential

L =
∫

dθ+ Γ̃αGα(Φi) +
∫

dθ+ ∑
κ

Pκ ΓaκJaκ(Φi) + h.c. . (B.II.4.1)

The generalization to higher rank gauge group of the twining partition function
Zfy(τ, τ̄ , y) in terms of Jeffrey-Kirwan residues is immediate, as explained before.

12One could consider general non-Abelian gauge groups, with the torsion multiplet charged under
their Abelian part.



80 Chapter II. Computation of the dressed elliptic genus

Using results from reference [34] one gets the twining partition function

Zfy(τ, τ̄ , z) =
(
−2iπη(τ)2

)rank(G)
×

∑
u?∈Msing

JK-Res
u=u?

(Q(u?), η)
{∏

Φi

iη(τ)
θ1(τ |Qκi uκ + ql

i z)
∏
Γa

iθ1(τ |Qκauκ + ql
az)

η(τ)

∑
µ∈Γ∨l /Γl

ΘΓl
µ (τ |pκmuκ + p̂mz)

η(τ)2

Θ̄ΓR
ϕ(µ)(τ̄ |0)
η̄(τ̄)2

rank(G)∧
κ=1

duκ

(B.II.4.2)

where one defines a vector pκm ∈ Γl as eq. (B.II.3.48) for each κ and an extra vector p̂m
defining the shift charge for the U(1)l global symmetry. To simplify the notations,
Φi denotes all the chiral multiplets in the model, and Γa all the Fermi multiplets.
Whenever gauge and global anomalies are absent no extra factors appear in the
one-loop determinant, as before.

One then has to choose a charge assignment for the fields which is compatible
with the various anomaly cancellations, and gives the required value for the central
charges and the rank of the spacetime gauge bundle. Let us assign the charges in
the following way:

Φi Pκ Γ̃α Γaκ Θ

U(1)ι Qιi −dικ Qια Qιaκ M ι
`

U(1)l 0 1 0 −1 0
(B.II.4.3)

One sees that whenever the tadpole conditions

∑
i

QεiQ
ε′
i +

∑
κ

dεκd
ε′
κ −

∑
α

QεαQ
ε′
α −

∑
κ,aκ

QεaκQ
ε′
aκ −〈p

ε
m, p

ε′
m〉 = 0 ∀ε, ε′ ∈ {1, 2, ..., k} ,

(B.II.4.4)
are satisfied, then the various local and global anomalies vanish. Furthermore, the
rank r of the holomorphic vector bundle is then given by construction by r =

∑
κ r

κ,
the central charges take the appropriate values (c, c̄) = (6 + r, 9) and the left and
right global U(1) current decouple, see [52] for details.13 Finally this choice of charge
is consistent with a space-time gauge bundle having vanishing first Chern class.

This choice of global charges implies that in the geometrical "phase" of the torsion
GLSM, which corresponds to taking the residues at the poles of the chiral multiplets

13Compared to the work of Adams and Lapan, we have shifted all the U(1)L charges using the
gauge shift ũκ := uκ−

∑
ι
(d−1)ικz. Our choice of charges turns out to be more appropriate in order

to discuss the link with the geometrical formula of section B.II.5.
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Φi (i.e. points u? such that Qκi u?κ ∈ Z + τZ), the contribution from the torsion
multiplet has no y-dependence, in keep with the geometrical formula that we define
in section B.II.5. From a geometrical point of view, the meaning of this absence
of y-dependence is that the torus fibre should not contribute to the rank of the
holomorphic vector bundle. This assertion becomes transparent when we examine
the modular behavior of Zfy.

Modular transformations

Let us denote by d the complex dimension of the base, k the rank of the world-
sheet gauge group and r the rank of the space-time holomorphic vector bundle. Using
the results of appendix E.I, the behavior of Σ1-loop under the SL(2,Z) modular trans-
formations is straightforward. Under a modular T-transformation τ 7→ τ + 1, the
torsion multiplet contribution is by itself invariant.14 The remaining contribution
comes from the base, and gives:

Σ1-loop(τ + 1, τ̄ + 1, z, uκ) = e−
iπ
6 (d−r)Σ1-loop(τ, τ̄ , z, uκ) . (B.II.4.5)

Under an S-transformation τ 7→ −1/τ , one finds the following transformation rule:

Σ1-loop

(
−1
τ
,−1

τ̄
,
z

τ
,
uκ
τ

)
=

id−r exp

− iπτ
∑

Φi
v 2
i +

∑
Pκ

v 2
κ −

∑
Γ̃α

v 2
α −

∑
Γaκ

v 2
aκ − 〈v, v〉ΓL

Σ1-loop(τ, τ̄ zy, uκ) ,

(B.II.4.6)

where

vi = Qεiuε , (B.II.4.7a)

vκ = −dεκuε + z , (B.II.4.7b)

vα = Qεαuε , (B.II.4.7c)

vaκ = Qεaκuε − z , (B.II.4.7d)

v = pεmuε . (B.II.4.7e)

The charge assignement given by eq. (B.II.4.3) was precisely designed such that the
gauge and global anomalies vanish provided that the tadpole conditions eq. (B.II.4.4)

14 The isometry φ preserving the bilinear form, 〈µ, µ〉ΓL = 〈φ(µ), φ(µ)〉ΓR .
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hold. One gets then:

Σ1-loop

(
−1
τ
,−1

τ̄
,
z

τ
,
uκ
τ

)
= id−r exp

[2iπ
τ

r

2z
2
]

Σ1-loop(τ, τ̄ , z, uκ) . (B.II.4.8)

One concludes that, though non-holomorphic in τ , the twining partition function
Zfy transforms as a weak Jacobi form of index r

2 and weight zero. This result will
be derived again starting from the geometrical formula that we provide in section
section B.II.5.

II.4.2 Example of the quartic

We illustrate here the formula giving the twining partition function Zfy of Fu-
Yau compactifications in terms of the torsion GLSM data with a simple example,
namely a quartic hypersurface in P3 with a rank four gauge bundle [52]. Following
eq. (B.II.4.3), let the charges for the base be:

Φi=1,...,4 P Γ̃ Γa=1,...,5 Θ

U(1) 1 −5 −4 1 M`

U(1)l 0 1 0 −1 0
, (B.II.4.9)

with, in addition, the moduli (T,U) and the topological charge M of the torus
fibre chosen such that the tadpole condition eq. (B.II.1.17) is satisfied. The full
one-loop determinant writes

Σ1-loop =
[
−2iπη(τ)2

] [
i
η(τ)

θ1 (τ |u)

]4 [
i

η(τ)
θ1 (τ |−5u+ z )

] [
i
θ1 (τ |−4u)

η(τ)

]
×

×
[
i
θ1 (τ |u− z )

η(τ)

]5
 ∑
µ∈Γ∨l /Γl

ΘΓl
µ (τ |pmu)
η(τ)2

Θ̄ΓR
ϕ(µ)(τ̄ |0)
η̄(τ̄)2

du . (B.II.4.10)

Landau-Ginzburg phase

One can first provide the result in a form that one would obtain by a direct
computation in the Landau-Ginzburg regime of the base GLSM. For this purpose
one selects the set of poles M−sing =

{
u = −k+τl−z

5

∣∣∣ k, l ∈ J0, 4K
}
. Plugging the
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one-loop determinant into the contour integral 1
2iπ
∮
leads to:

Zfy(τ, τ̄ , z) = − i

η(τ)η̄(τ̄)2

4∑
k,l=0

∮
u=− k+τl−z

5

du θ1 (τ |u− z )5

θ1 (τ |u)4
θ1 (τ |−4u)

θ1 (τ |−5u+ z )×

×
∑

µ∈Γ∨l /Γl

ΘΓl
µ (τ |pmu) Θ̄ΓR

ϕ(µ)(τ̄ |0) .

(B.II.4.11)

Evaluating the residues, one has

Zfy(τ, τ̄ , z) = 1
5η(τ)4η̄(τ̄)2

4∑
k,l=0

(−1)k+leiπl
2τ
θ1
(
τ
∣∣∣−k+τl

5 − 4z
5

)5

θ1
(
τ
∣∣∣−k+τl

5 + z
5

)4 ×

× θ1

(
τ

∣∣∣∣4(k + τ l)
5 − 4z

5

) ∑
µ∈Γ∨l /Γl

ΘΓl
µ

(
τ

∣∣∣∣(−k + τ l

5 + z

5

)
pm

)
Θ̄ΓR
ϕ(µ)(τ̄ |0) .

(B.II.4.12)

Geometrical phase

An expression corresponding to a direct computation in the geometrical formu-
lation of the index, see section B.II.5, is obtained by considering the contribution of
the pole u = 0, which is of order 4.15 Plugging the one loop determinant into the
contour integral − 1

2iπ
∮
leads to the expression

Zfy(τ, τ̄ , z) = i

η(τ)η̄(τ̄)2

∮
u=0

du θ1 (τ |u− z )5

θ1 (τ |u)4
θ1 (τ |−4u)

θ1 (τ |−5u+ z )×

×
∑

µ∈Γ∨l /Γl

ΘΓl
µ (τ |pmu) Θ̄ΓR

ϕ(µ)(τ̄ |0) .

(B.II.4.13)

To conclude this section, let us consider one specific consistent choice of two-torus
fibre. To illustrate what happens for a non-orthogonal torus with non-vanishing
B-field, one takes the Wess-Zumino-Witten theory ŝu(3)1.16 It corresponds to a
c = 2 toroidal rational CFT with T and U both equal to the cubic root of unity
j = exp

(
2iπ
3

)
, satisfying the quadratic equation j2 + j + 1 = 0. Hence T and U

belong to the same imaginary quadratic number field Q(
√
−3).

15As was noted earlier, the expressions that one gets by choosing the poles in M−sing (Landau-
Ginzburg picture) or inM+

sing (geometrical picture) coincide.
16This is a special case of the construction discussed in [67].
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A consistent choice of topological charge is given byM1 = M2 = 2, corresponding
to the following vector in the root lattice su(3) ' A2:

pm =
√

2
(

1
√

3

)
, (B.II.4.14)

written in an orthonormal basis. The root latticeA2 has discriminant groupA∨2 /A2 '
Z3. Hence, in terms of the SU(3) theta functions

ΘA2
µ (τ |λ) =

∑
γ∈A2+µ

q
1
2 〈γ,γ〉e2iπ〈γ,λ〉 , (B.II.4.15)

one has the following twining partition function

Zfy(τ, τ̄ , z) = 1
5η(τ)4η̄(τ̄)2

4∑
k,l=0

(−1)k+leiπl
2τ
θ1
(
τ
∣∣∣−k+τl

5 − 4z
5

)5

θ1
(
τ
∣∣∣−k+τl

5 + z
5

)4 ×

× θ1

(
τ

∣∣∣∣4(k + τ l)
5 − 4z

5

) ∑
µ∈Z3

ΘA2
µ

(
τ

∣∣∣∣(−k + τ l

5 + z

5

)
pm

)
Θ̄A2
ϕ(µ)(τ̄ |0) ,

(B.II.4.16)

that we have evaluated in the Landau-Ginzburg phase.

Notice that this model is non-supersymmetric in spacetime, as the primitivity
condition (A.II.3.7) is not satisfied, the two-form ω being necessarily proportional to
the Kähler form of the base JK3 (cf. section A.II.3). Supersymmetric examples are
easily obtained with higher rank worldsheet gauge groups; instead of dealing with
such examples in detail, we will provide below a formulation of the index which is
independent of the choice of GLSM. However, this absence of spacetime supersym-
metry is not explicit in the GLSM, and one would need to compute explicitely the
massless spectrum of the model in the Landau-Ginzburg phase to see the absence
of spacetime supersymmetry.

II.5 A geometrical formula for the genus

The elliptic genus of a complex manifold X of dimension d, of holomorphic
tangent bundle TX , with a holomorphic vector bundle E of rank r over it, can be
defined independently of its realization as the target space of a (0, 2) superconformal



II.5. A geometrical formula for the genus 85

field theory. One defines the formal power series:

Eq,y =
∞⊗
n=0

∧
−yqn

E? ⊗
∞⊗
n=1

∧
−y−1qn

E ⊗
∞⊗
n=1

SqnT
?
X ⊗

∞⊗
n=1

SqnTX , (B.II.5.1)

where

∧
t
E = 1 + t E + t2

∧2
E + · · · , StTX = 1 + t TX + t2 S2 TX + · · · , (B.II.5.2)

∧k and Sk being respectively the k-th exterior product and the k-th symmetric
product. The elliptic genus corresponding to this bundle is defined as follows:

Zell(X,E|τ, z) = q
r−d
12 y−

r
2

∫
X
ch (Eq,y) td(TX) , (B.II.5.3)

where ch (Eq,y) is the total Chern character of the formal power series Eq,y and
td (TX) the total Todd class of the tangent bundle, cf. section B.I.3. Considering
that X is a Calabi-Yau manifold, that E has vanishing first Chern class, and that the
anomaly condition ch2(TX) = ch2(E) is satisfied (that is, we consider an anomaly-
free heterotic Calabi-Yau compactification), the elliptic genus is a weak Jacobi form
of weight 0 and index r/2.

This geometrical formula has been checked against (0, 2) Landau-Ginzburg re-
sults in [39], and directly compared with the results of supersymmetric localization
for (2, 2) GLSMs in [33, 34], building on previous works in the physical and mathe-
matical literature [40,68–71].

In the present context, there is a natural generalization of this geometrical for-
mulation of the Calabi-Yau elliptic genera, defining a non-holomorphic genus for a
two-torus bundle over a K3 surface S, T 2 ↪→ X

π→ S, endowed with a rank r gauge
bundle E. The relevant geometrical data of such non-Kähler manifold is given by

• The holomorphic tangent bundle TS over the base, with c1(TS) = 0,

• A rank r holomorphic vector bundle E over S, with c1(E) = 0, whose pullback
provides the gauge bundle of the compactification on X,17

• A rational Narain lattice Γ(T,U) with T,U ∈ Q(
√
D), or equivalently a triple

[Γl,Γr, φ] defining a c = 2 toroidal rational CFT,
17 Considering that the holomorphic gauge bundle has vanishing first Chern class is not mandatory

for getting consistent heterotic compactifications; it is enough that c1(E) ∈ H2(S, 2Z) (i.e. vanishing
of the second Stieffel-Whitney class) to ensure that the bundle admits spinors.
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• A pair of anti-self-dual two-forms ω1 and ω2 in H2(S,Z) ∩ Λ1,1T ?S .

We define then themodified holomorphic Euler characteristic associated to the above
data as: as:18

χ(X,E, ω|τ, τ̄ , z) = q
r−2
12 w−

r
2

∫
S
ch (Eq,y) td (TS)

∑
µ∈Γ∨l /Γl

ΘΓl
µ

(
τ
∣∣ pω
2iπ
)

η(τ)2

Θ̄Γr
ϕ(µ)(τ̄ |0)
η̄(τ̄)2 ,

(B.II.5.4)
where the two-component vector pω valued in H2(S) × H2(S) reads, taking an
orthonormal basis on Γl:

pω =
√

2U2
T2

(
ω1 + T1 ω2

T2 ω2

)
, (B.II.5.5)

which generalizes eq. (B.II.3.46). This vector belongs to a formal extension of the
left momentum lattice Γl, which is now a module over H2(S,Z).

It turns out that this object actually coincides with the Fu-Yau dressed elliptic
genus we computed from the worldsheet sigma model:

χ(X,E, ω|τ, τ̄ , z) = Zfy(τ, τ̄ , z) , (B.II.5.6)

hence providing an alternative definition of the dressed elliptic genus purely in terms
of the geometrical data associated to the sigma model target space.

A more explicit expression can be obtained using the splitting principle. Let
c(TS) =

∏2
i=1(1 + νi) and c(E) =

∏r
a=1(1 + ξa) denote the total Chern classes of the

respective bundles. We have then

Zfy(X,E, ω|τ, τ̄ , z) =
∫
S
G(τ, τ̄ , z, ν, ξ, pω) , (B.II.5.7)

where

G(τ, τ̄ , z, ν, ξ, pω) =
r∏

a=1

iθ1(τ
∣∣∣ ξa2iπ − z )
η(τ)

2∏
i=1

η(τ)νi
iθ1(τ

∣∣ νi
2iπ )×

×
∑

µ∈Γ∨l /Γl

ΘΓl
µ

(
τ
∣∣ pω
2iπ
)

η(τ)2

Θ̄Γr
ϕ(µ)(τ̄ |0)
η̄(τ̄)2 .

(B.II.5.8)

18Notice that in eq. (B.II.5.4) the tangent bundle of the base S, rather than of the total space
X, appears. This makes sense as the Chern classes of TX are ’horizontal’, i.e. with no components
along the torus fibre.
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II.5.1 Modular properties

The behaviour of G(τ, τ̄ , z, ν, ξ, pω) under PSL(2,Z)τ is easily derived using the
results of appendix appendix E.I. Under the T-transformation τ 7→ τ + 1, one gets

G(τ + 1, τ̄ + 1, z, ν, ξ, pω) = e−
iπ
6 (2−r)G(τ, τ̄ , z, ν, ξ, pω) , (B.II.5.9)

exactly as in the GLSM computation of section B.II.4.

The contributions of the holomorphic vector bundle E and of the tangent bundle
TS to G(τ, τ̄ , z, ν, ξ, pω) behave under an S-transformation τ 7→ −1/τ as

r∏
a=1

θ1
(
− 1
τ

∣∣∣ ξa/2iπ−zτ

)
η
(
− 1
τ

) =
r∏

a=1

−ie iπτ ( ξa
2iπ−z)

2 θ1(τ
∣∣∣ ξa2iπ − z )
η(τ)

 , (B.II.5.10a)

2∏
i=1

η
(
− 1
τ

)
νi
τ

θ1
(
− 1
τ

∣∣∣νi/2iπτ

) = 1
τ2

2∏
i=1

{
ie−

iπ
τ ( νi

2iπ ) 2 η(τ)νi
θ1(τ

∣∣ νi
2iπ )

}
. (B.II.5.10b)

One recognizes on the right-hand side of eqs. (B.II.5.10a) and (B.II.5.10b), the sec-
ond Chern characters of the vector bundle and of the tangent bundle:

ch2(E) = 1
2 tr

(
i

2πF
)2

= 1
2

r∑
a=1

ξ 2
a , (B.II.5.11a)

ch2(TS) = 1
2 tr

(
i

2πR
)2

= 1
2

2∑
i=1

ν 2
i , (B.II.5.11b)

Combining these expressions with the contribution from the torus fibre, obtained
using the modular transformation of theta-functions given by eq. (E.I.1.15) in ap-
pendix E.I, one gets

G

(
−1
τ
,−1

τ̄
,
z

τ
,
ν

τ
,
ξ

τ
,
pω
τ

)
=

− (−i)rτ−2e
2iπ r2

z2
τ

+ 2iπ
τ

ch2(E)−ch2(TS )
(2iπ)2 e

iπ
τ
〈pω,pω〉
(2iπ)2 G(τ, τ̄ , z, ν, ξ, pω) , (B.II.5.12)

with

〈pω, pω〉 = 2U2
T2

(ω1 + Tω2) ∧ (ω1 + T̄ ω2) = −2U2
T2

ω ∧ ?S ω̄ , (B.II.5.13)

using the anti-self-duality property of the complex two-form ω.

In conclusion we obtain that G, although non-holomorphic in τ , transforms as a



88 Chapter II. Computation of the dressed elliptic genus

Jacobi form of weight −2 and index r
2 , whenever the anomaly cancellation condition

ch2(E)− U2
T2
ω ∧ ?S ω̄ = ch2(TS) (B.II.5.14)

is satisfied. This condition corresponds exactly to the Bianchi identity for Fu-Yau
compactifications, see section A.II.3. After integrating G over S, through a Taylor
expansion to second order in the differential forms, the non-holomorphic genus Zfy

transforms then as a Jacobi form of weight zero and index r
2 .

Let us remark here that the expression of the geometrical formula eq. (B.II.5.4)
is pretty much fixed by its modular behavior. In particular, the absence of z-
dependence in the torus fibration contribution, hence the absence of shift in the
rank of bundle from the latter under modular transformations, is compatible with
the result that one obtains when evaluating the twining partition function of the
gauged linear sigma-model description in the geometrical phase.

We indeed expect that the geometrical formula eq. (B.II.5.4) and the GLSM
formula eq. (B.II.4.2) for the non-holomorphic genus Zfy(τ, τ̄ , z) coincide. A general
mathematical proof should follow from a natural generalization of the arguments
in [69, 70], first to (0, 2) Calabi-Yau examples and second to the Fu-Yau geometries
under consideration in the present article. We provide below a proof of this statement
in a simple case.

II.6 Proof of the geometrical formula

Independently of physics, the non-holomorphic genus (C.II.1.5) is of valuable
mathematical interest. The elliptic genera of holomorphic gauge bundles of vanishing
first Chern class over Calabi-Yau manifolds define Jacobi forms only if ch2(TM ) =
ch2(V). In [72] a modified elliptic genus was defined by Gritsenko, in order to
preserve this modular behavior even in particular when ch2(TM ) 6= ch2(V). In the
present context there is an alternative definition motivated by physics; heterotic
compactifications with ch2(TM ) 6= ch2(V) can be made anomaly-free if one adds an
appropriate two-torus bundle over the Calabi-Yau manifold, leading naturally to the
non-holomorphic genus (C.II.1.5) transforming as a Jacobi form.

Let us give a proof of the fact that the modified holomorphic Euler characteristic
given by eq. (B.II.5.4) actually coincides with the dressed elliptic genus in the case
where the K3 base S is constructed as a subvariety of a projective space Pn or more
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generally of a weighted projective space V = Pn(q0, ..., qn). We restrict to the case

where the subvariety does not intersect the singular loci of the ambient space.

One has the following dual of the normal bundle sequence:

0→ N?
S/V → T ?V |S → T ?S → 0 , (B.II.6.1)

which gives the following long exact sequence in sheaf cohomology:

. . .→ H1(S, N?
S/V ) α1→ H1(S, T ?V |S)→ H1(S, T ?S)→

→ H2(S, N?
S/V ) α2→ H2(S, T ?V |S)→ H2(S, T ?S)→ . . . . (B.II.6.2)

The exactness of this sequence gives in particular:

H1,1
∂̄

(S) ' coker(α1)⊕ ker(α2) . (B.II.6.3)

For the proof we will restrict to the case where the hypersurface S is favourable,

namely that ker(α2) is trivial and α1 is surjective. In this case, all the elements of

H1,1
∂̄

(S) can be understood as being inherited from the ambient space. Moreover,

since for a weighted projective space one has Pic(Pn(q0, ..., qn)) = Z as a finitely

generated abelian group, we have that rk(Pic(S)) = 119. Following the mathematical

literature and given two holomorphic vector bundles E and F over S, we define the

formal series with bundle coefficients:

Eq,y(E,F ) :=
∞⊗
n=1

(∧
−yqn−1 F

? ⊗
∧
−y−1qn

F ⊗ SqnE? ⊗ SqnE
)
. (B.II.6.4)

We also consider a heterotic Narain lattice Γ(T,U, V ) with a left coupling to pω

characterizing the torus bundle, see eq. (B.III.3.1), of partition function:

Z(τ, τ̄ , pω) =
∑

µ∈Γ∨l /Γl

ΘΓl
µ

(
τ
∣∣ pω
2iπ
)

η(τ)2

Θ̄Γr
ϕ(µ)(τ̄ |0)
η̄(τ̄)2 , (B.II.6.5)

Given this data, and for E a holomorphic vector bundle of rank r over S, we intro-

19This actually implies that one restricts to examples which are non-supersymmetric in spacetime,
since the two-form ω then fails to be primitive with respect to the base. However, this restriction
can be straightforwardly overcome, see the end of this appendix. Moreover, neither from the two-
dimensional QFT nor from the mathematical viewpoint this seems to play an important role.



90 Chapter II. Computation of the dressed elliptic genus

duce the following modified holomorphic Euler characteristic:

χ(S, E, ω) := q
r−(n−1)

12 y−
r
2

∫
S
ch(Eq,y(TS , E)) td(TS)Z(τ, τ̄ , ω) . (B.II.6.6)

Given a holomorphic vector bundles E of formal Chern roots {xa}, let us define the
following objects:

f(E) := ch
( ∞⊗
n=1

(∧
−yqn−1 E

? ⊗
∧
−y−1qn

E

))
, (B.II.6.7a)

g(E) := ch
( ∞⊗
n=1

(SqnE? ⊗ SqnE)
)
td (E) . (B.II.6.7b)

Using the total Chern characters for the total symmetric and skew-symmetric prod-
ucts:

ch(StE) =
∏
a

1
1− texa , ch

(∧
t
E
)

=
∏
a

(1 + texa) , (B.II.6.8)

one can show that:

f(E) =
∏
a

{ ∞∏
n=1

(
1− yqn−1e−xa

) (
1− y−1qnexa

)}
, (B.II.6.9a)

g(E) =
∏
a

{
xa

∞∏
n=1

1
(1− qn−1e−xa) (1− qnexa)

}
, (B.II.6.9b)

leading to:

f(E) =
∏
a

{
q−1/12y1/2e−xa/2

iθ1
(
τ
∣∣ xa
2iπ − z

)
η(τ)

}
, (B.II.6.10a)

g(E) =
∏
a

{
q1/12exa/2

η(τ)xa
iθ1
(
τ
∣∣ xa
2iπ
)} . (B.II.6.10b)

In our context one has the following defining short exact sequences for the hyper-
surface S and the rank r holomorphic vector bundle E over it:

0→ TS → TV |S → OV (k)|S → 0 , (B.II.6.11a)

0→ E →
r⊕

a=0
O(Qa)|S

⊗Ja→ O(−QP )|S → 0 . (B.II.6.11b)

Using multiplicative properties of f and g, one obtains:

f

(
r⊕

a=0
O(Qa)

)
= f(E)f(O(−QP )) , g(TV |S) = g(TS)g(OV (k)|S) . (B.II.6.12)
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The formal Chern roots are defined through the following total Chern classes:

c(O(m)) = 1 +mH , c(V ) =
n∏
i=0

(1 + qiH) , (B.II.6.13)

leading to:

f(E)

 iθ1
(
τ
∣∣∣−QPH

2iπ − z
)

η(τ)

∣∣∣∣∣∣
S

=

= q−r/12yr/2e−(
∑

Qa+QP )H2
r∏

a=0

 iθ1
(
τ
∣∣∣QaH2iπ − z

)
η(τ)

∣∣∣∣∣∣
S

,

(B.II.6.14)

Exploiting the Euler exact sequence:

0→ OV →
n⊕
i=0
OV (qi)→ TV → 0 , (B.II.6.15)

one also has:

g(TS)

 η(τ) kH
iθ1
(
τ
∣∣∣kH2iπ

)
∣∣∣∣∣∣
S

= q
n−1
12 η(τ)2

n∏
i=0

 η(τ) qiH
iθ1
(
τ
∣∣∣ qiH2iπ

)
∣∣∣∣∣∣
S

. (B.II.6.16)

The two equations above give the contributions from the tangent bundle and from
the holomorphic vector bundle E in terms of the embedding in the ambient space V .
Concerning the lattice part, Pic(S) being of rank one, one necessarily has ω` = m`H.

Turning the integral over the hypersurface to an integral over the ambient space
via: ∫

S
ϕ =

∫
V
c1(OV (k))ϕ , (B.II.6.17)

One obtains:

χ(S, E, ω) = η(τ)2
n∏
i=0

qi

∫
V
Hn+1

r∏
a=0

 iθ1
(
τ
∣∣∣QaH2iπ − z

)
η(τ)

 η(τ)
iθ1
(
τ
∣∣∣−QPH

2iπ − z
)


n∏
i=0

 η(τ)
iθ1
(
τ
∣∣∣ qiH2iπ

)
 iθ1

(
τ
∣∣∣kH2iπ

)
η(τ)

 Z(τ, τ̄ ,mH) . (B.II.6.18)

Using the fact that the hyperplane class is normalized such that:

∏
i

qi

∫
V
Hn = 1 , (B.II.6.19)
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together with the residue formula, to turn
∫
V H

n+1ϕ(H) into a contour integral
around the origin of the complex plane

∮
u=0 duϕ(2iπu), one concludes that this

modified holomorphic Euler characteristic coincides with the formula that would
be obtained in the geometrical phase of the torsional GLSM, i.e. considering the
contour integral around u = 0 in eq. (B.II.3.50):

Zfy(X,E, ω) = χ(S, E, ω) . (B.II.6.20)

This proof can be generalized by allowing for non-favorable hypersurfaces, or by con-
sidering complete intersections in more generic toric varieties as ambient spaces. One
would then end up with higher dimensional residue operations, leading to Jeffrey-
Kirwan residue formulæ type. The generalization to the non-toric case is left for
later work.

Let us conclude by saying that non-holomorphic genus is presumably, as the CY
elliptic genera, providing a generating functional for the indices of a family of Dirac
operators, each transforming in a representation of the bundle specified by a given
term in the expansion of (B.II.5.1). A possible interpretation is that, in the present
case, one considers a similar problem for Dirac operators related, in the string theory
context, to Kaluza-Klein modes with momenta (pL, pR) along the two-torus fibre, in
their right Ramond ground state and with, roughly speaking, arbitrary left-moving
oscillator modes along the tangent bundle of the base TS and the gauge bundle
V. Because of the non-trivial fibration, one may expect a grading according to the
toroidal left momentum pL, as our explicit formula (C.II.1.5) suggests. Making this
correspondence more precise is a very interesting project.

Following what was said concerning the absence of spacetime supersymmetry
of the Fermat quartic example. The (0, 4) supersymmetry actually does not seem
at all crucial from the GLSM perspective, hence all the construction of the torus
fibration can be generalized to a torus fibration over a Calabi-Yau d-fold. It would
be extremely interesting to have a criteria at the level of the GLSM to know whether
or not the model is supersymmetric in spacetime, without having to compute the
massless spectrum in the Landau-Ginzburg phase using Q̄-cohomology.



Chapter III

Generic bundle and dressed elliptic
genus

This chapter is built out of the article: Dressed elliptic genus of heterotic com-
pactifications with torsion and general bundles, with Dan Israël, arXiv:1606.08982,
JHEP 1608 (2016) 176.

III.1 Torsional geometry and its GLSM

In the previous chapter we considered only gauge bundles which are pullbacks
of stable holomorphic bundles over the K3 base. It is known [21] that an additional
Abelian gauge bundle over the total space of the principal T 2 bundle, that would
reduce to a set of Wilson lines on T 2 for a K3× T 2 compactification, is allowed by
space-time supersymmetry. The main objective of the present chapter is to include
them in the torsion GLSM and in the computation of the new supersymmetric index.

As discussing in the previous part, a large class of vector bundles compatible
with supersymmetry [21] consists first of the pullback of a stable holomorphic vector
bundle over S, satisfying the integrated Bianchi identity:∫

S
ch2(E) + 24− U2

T2

∫
S
ω ∧ ?Sω̄ = 0 . (B.III.1.1)

We assume in the following that the structure group of this vector bundle is embed-
ded in the first E8 factor of the heterotic gauge group.

Second, one can consider also an Abelian bundle over the total space X, whose
connection is of the form:

A = T aRe(V̄ a ι) , (B.III.1.2)

93
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depending on 8 complex parameters V a. It reduces to a set of Wilson lines for
K3 × T 2 compactifications, which constitute particular cases of this construction.
Therefore, we will loosely call them Wilson lines thereafter.

For simplicity we will embed the structure group of this bundle in the second
E8 factor. In eq. (B.III.1.2) {T a} forms a basis of H8, its Cartan subalgebra. The
tadpole condition eq. (B.III.1.1) is unchanged hence depends only on the second
Chern character of the vector bundle over the base and on the torus moduli T and
U . The present chapter extends the results of [73] where only special points in the
moduli space where these Abelian gauge bundles over the total space where turned
off were considered.

III.1.1 The gauged linear sigma-model with torsion

The construction of the torsion GLSM starts following precisely the same steps as
in absence of Wilson lines, namely by introducing a (0, 2) GLSM describing the K3
base as a complete intersection in a weighted projective space, the model differing
from a standard CY GLSM by the requirement of a non-vanishing gauge anomaly,
which one then compensates by a worldsheet Green-Schwarz mechanism in a way
that mimics the principal torus fibration in the spacetime picture. The base GLSM
is fairly standard, built out of a (0, 2) vector multiplet, as well as chiral and Fermi
multiplets. We refer the reader to section B.I.2 for the expression of the various
Lagrangians.

The torus fibre on the other hand is modelized by a pair {Ω` = (ω`, χ`)}`=1,2 of
chiral superfields charged axially under the worldsheet gauge field. The key point is
that, as we saw in chapter B.II, their Lagrangangian contains, in addition to standard
kinetic terms and minimal coupling to the gauge superfield, a field-dependent Fayer-
Iliopoulos term

− ih`
4

∫
dθΥΩ` + h.c. , (B.III.1.3)

which is obviously non-invariant under the gauge symmetry, but whose gauge vari-
ance precisely compensates the anoaly from the base.

At this point, the geometry obtained after integrating out the massive gauge field
is that of a (C∗)2 bundle overK3. To decouple the real part of the shift multiplets Ω`,
in order to restrict to a T 2 bundle while preserving (0, 2) supersymmetry, one should
cancel their couplings to the gaugini. This leads to the quantization conditions
eq. (B.II.1.14). With at least a rank-two worldsheet gauge group, U and T are
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generically quantized such that the underlying c = 2 CFT with a 2-torus target
space is rational, see appendix E.II.

Using the relations eq. (B.II.1.14), the anomaly cancellation condition can be
written in a simple form:

A− 2U2
T2
|m|2 = 0 , (B.III.1.4)

where m := m1 + Tm2 is the complex topological charge, which is the worldsheet
counterpart of the tadpole condition eq. (B.III.1.1).

The extra novelty with respect to the previous chapter is that we previously
chose to reorganize the remaining degrees of freedom obtained after decoupling of
the real part of Ω` into a torsion multiplet [52], in order to exhibit more explicitly the
torus sub-bundle inside the (C∗)2 bundle, but we will stick here to a formulation in
terms of shift multiplets as the Abelian bundle in target-space will be more naturally
described in this framework.

III.1.2 Abelian connections over the total space

In order to describe a target-space Abelian gauge bundle over the total space X
as eq. (B.III.1.2), one needs to enlarge the torsion GLSM framework. For simplicity,
we embed the structure group of E in the first E8 and the structure group of the
Abelian bundle in the second E8.

From the worldsheet perspective, each line bundle is mapped to a left-moving
Weyl fermion λ− in a Fermi multiplet Λ, transforming as a section of this bundle. In
components, a connection of the type eq. (B.III.1.2) corresponds to a kinetic term
like λ̄− (∂+ (ω − ω̄) + 2mA+)λ− in the Lagrangian of the two-dimensional supersym-
metric gauge theory. It will be convenient to bosonize these left-moving fermions,
as one will be able to consider them and the shift multiplets for the two-torus on
the same footing.

As one defines the GLSM in (0, 2) superspace, one needs to add enough de-
grees of freedom to form a multiplet. One first bosonizes λ− into a chiral and
real compact boson, and embeds it in a neutral chiral multiplet B, of components
B = (b, b̄, ξ+, ξ̄+), as the left-moving, compact imaginary part of b. Of course, such
a procedure introduces extra degrees of freedom. For each multiplet B, one has:

• The real part of b which is non-compact,

• The right-moving fermions ξ+ and ξ̄+,
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• The right-moving part of Im(b).

All of these extra degrees of freedom are an artifact of the bosonization procedure.
Naturally the right-moving part of Im(b) cannot decouple from the Lagrangian of the
theory, as it would give Lagrangians for chiral bosons. However as we shall see at the
end of the computation, the contribution from those degrees of freedom will appear
in the dressed elliptic genus as an overall finite and non-vanishing multiplicative
factor.

The dynamics of the chiral multiplets {Bn}n=1,...,8 is described by the following
Lagrangian:

LWilson =− iEmn
8

∫
d2θ

(
Bm + B̄m

)
∂−
(
Bn − B̄n

)
− iβ`n

16

∫
d2θ

(
Ω` + Ω̄` + 2m`A

)
∂−
(
Bn − B̄n

)
, (B.III.1.5)

where Emn := Gmn +Bmn is such that the corresponding (8, 8) toroidal lattice splits
into (E8)l × (E8)r, i.e. into two lattices of signatures (8, 0) and (0, 8) respectively,
both isomorphic to the E8 root lattice, see e.g. [74].

The Bn’s are chirally coupled to the torus shift multiplets through the off-
diagonal terms in the second line of eq. (B.III.1.5), leading to couplings correspond-
ing to the connection eq. (B.III.1.2) in space-time. The parameters β`n are related
to the ’Wilson line’ moduli V a, see eq. (B.III.2.27) in the next section. Unlike the
torus moduli (T,U), they are not quantized by the flux.

A discussion about moduli quantization in this context, from the target-space
viewpoint, can be found in [75]. In that article examples where the Abelian bundle
was not embeded in the commutant of the structure group of E were also considered.
They can be incorporated in the present framework without too much effort. One
needs to gauge the imaginary shift symmetry of the Bn’s, and add an extra axial
coupling of the form

∫
dθΥBn, in order to reproduce the gauge anomaly; in other

words, at least part of the Bn’s become shift multiplets similar to the Ω`’s modeling
the two-torus fibre.

The extended fibre Lagrangian: In the following, we will adopt compact nota-
tions incorporating both the torus and the Wilson lines by working with a (10, 10)
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lattice whose metric and B-field are:

G :=



U2
T2

U2
T2
T1

β11
4

β12
4 · · · β18

4
U2
T2
T1

U2
T2
|T |2 β21

4
β22
4 · · · β28

4
β11
4

β21
4 G11 G12 · · · G18

β12
4

β22
4 G21 G22 · · · G28

...
...

...
... . . . ...

β18
4

β28
4 G81 G82 · · · G88


,

B :=



0 U1
β11
4

β12
4 · · · β18

4

U1 0 β21
4

β22
4 · · · β28

4

− β11
4 −β21

4 0 B12 · · · B18

−β12
4 −β22

4 B21 0 · · · B28
...

...
...

... . . . ...

−β18
4 −β28

4 B81 B82 · · · 0


.

(B.III.1.6)

We also introduce the following combinations:

E = G+B , Ē = G−B. (B.III.1.7)

Let us group together the gauge charges and Fayet-Iliopoulos couplings into the

following vectors, and denote the various (shift) multiplets by a common letter:

v :=



m1

m2

0
...
...
0


, h :=



h1

h2

0
...
...
0


, Ω :=



Ω1

Ω2

B1

B2

...
B8


. (B.III.1.8)

The indices {i, j} run over the full set of multiplets {Ωi}i=1,...,10 thereafter.

With these notations, the Lagrangian Ltor = L0
tor + LWilson modelling the two-
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torus together with a set of 8 complex Wilson lines reads:

Ltor =− iEij
8

∫
d2θ

(
Ωi + Ω̄i + 2viA

)(
∂−
(
Ωj − Ω̄j

)
+ 2ivjV

)
− ihi

4

∫
dθΥΩi + h.c. . (B.III.1.9)

Upon using the conditions (B.II.1.14), the Lagrangian (B.III.1.9) is given in compo-
nents, after integrating by parts by:

L = Eij
8
{
∂+
(
ωi + ω̄i

)
∂−
(
ωj + ω̄j

)
− ∂+

(
ωi − ω̄i

)
∂−
(
ωj − ω̄j

)
− 2ivi∂−

(
ωj − ω̄j

)
A+ − 2ivj∂−

(
ωi − ω̄i

)
A+ + 4vivjA+A−

+ 2iχi∂−χ̄j + 2iχ̄i∂−χj
}

+ t.d. . (B.III.1.10)

III.2 Dressed elliptic genus of compactifications with torsion

In this section we will extend the computation of the dressed elliptic genus done
in section B.II.3.

III.2.1 Dressed elliptic genus and Abelian bundles over the total space

In the formulation of the GLSM used in this work, unlike in the previous chapter,
one has also to deal with the spurious degrees of originating from the shift multiplets
Ω` and from the Bn multiplets. All these degrees of freedom are of course artifacts
of this formulation and should be decoupled at the end of the computation.

As an intermediate step, one defines a supersymmetric index appropriate for this
’enlarged’ (0, 2) superconformal field theory as follows:

Zext (τ, τ̄ , z) = 1
η̄(τ̄)20 TrHext,rr

{
e2iπzJ0

(
J̄ 0
)10

(−1)F qL0−c/24q̄L̄0−c̄/24
}
,

(B.III.2.1)
the trace being taken in the Hilbert space Hext of the SCFT at the infrared fixed
point of the torsion GLSM comprising the shift multiplets {Ωi}i=1,...,10, in the left
and right Ramond sectors.

The extra insertions of the R-current zero mode J̄0 in eq. (B.III.2.1) are needed
in order to cancel the extra spurious fermionic zero modes appearing in this formula-
tion. The right-moving R-current of the (0, 2) GLSM with the multiplets {Ωi}i=1,...,10

is:
J̄ = Gij χ̄

iχj + . . . , (B.III.2.2)
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where the ellipsis stands for the contribution of the other fields of the theory. From

the path integral point of view, this means that each J̄0 insertion has indeed the effect

of saturating the fermionic zero modes of a fermion contained in a shift multiplet;

hence, having inserted just the right power of this zero-mode, the other terms con-

tributions to the current J̄R do not play any role in the computation. Additionally

to the right-moving fermions χi, one gets first a contribution from the non-compact

real part of the bosons ωi, which is completely factorized. Remains finally the con-

tributions from the right-moving part of Im(bn), which will be discussed in due

time.

From this intermediate partition function Zext one can then extract the dressed

elliptic genus of interest that we define as,

Zw
fy (τ, τ̄ , z) = 1

η̄(τ̄)2 TrHw
rr

{
e2iπzJ0 J̄ 0(−1)F qL0−c/24q̄L̄0−c̄/24

}
, (B.III.2.3)

where Hw
rr is the Hilbert space of the SCFT corresponding to the (0, 2) non-linear

sigma model of central charges (c, c̄) = (14 + r, 9) and target space T 2 ↪→ X
π→ S,

with a rank r gauge bundle E in the first E8 factor and a generic Abelian gauge

bundle in the second E8 factor; while the trace is restricted to the left Ramond

sector for the former, we sum over all spin structures for the latter.

The index eq. (B.III.2.3) is the closest analogue of the elliptic genus in the present

context, and consists in a non-holomorphic dressing of the elliptic genus of the K3

base, which is anomalous with respect to modular transformations, by a (10, 2)

lattice encoding the principal two-torus bundle and the line bundles over its total

space. The new supersymmetric index is then obtained as

Znew(τ, τ̄) = η̄2

2η2

1∑
γ,δ=0

qγ
2
{(

θ1 (τ |z )
η(τ)

)8−r
Zw

fy (τ, τ̄ , z)
}∣∣∣∣∣

z= γτ+δ
2

. (B.III.2.4)

III.2.2 Computation of the dressed elliptic genus through localization

The supersymmetric partition function eq. (B.III.2.1) corresponds in Lagrangian

formalism, following the previous chapter, to the following path integral on an Eu-
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clidean torus of complex structure τ :

Zext(τ, τ̄ , z) = 1
η̄(τ̄)20

∫
DawDaw̄DλD λ̄DDe−

1
e2
SGauge[a,λ,D]−t Sfi(a,D) ×

×
∫ ∏

I

DφID φ̄IDψIDψ̄I e
− 1
g2
Schiral[φI ,ψI ,a,D,al] ×

×
∫ ∏

a

DγaD γ̄aDGaDḠa e
− 1
f2 SFermi[γa,Ga,a,al]−Spot[γa,Ga,φi,ψi] ×

×
∫ s+2∏

i=1
DωiD ω̄iDχiDχ̄i e

−Stor[ωi,χi,a,al]
(∫ d2w

2τ2
Gij χ̄iχj

)10

,

(B.III.2.5)

where we have included couplings to a background gauge field for the U(1)l global
symmetry

al = πz

iτ2
dw − πz

iτ2
dw̄ , (B.III.2.6)

in order to implement the twisted boundary conditions, as well as coupling constants
g and f in front of the chiral and Fermi Lagrangians for convenience.

Following what is done in section B.II.3, this path integral localizes to the BPS
configurations with respect to the supercharge:

Q =
(
εQ+ − ε̄Q̄+ + δwz

)∣∣∣
ε=ε̄=1

, (B.III.2.7)

with δwz the super-gauge transformation of chiral parameter Ξwz = iε̄θaw̄ needed to
restore Wess-Zumino gauge.

One can wonder whether standard localization arguments apply to the path
integral eq. (B.III.2.5). Indeed, as was emphasized above, neither the action, because
of the field dependent Fayet-Ilioupoulos couplings, nor the path integral measure,
because of the gauge anomaly, are separately gauge-invariant hence supersymmetry-
invariant. However, owing to the anomaly cancellation condition eq. (B.III.1.4), one
has:

Q
(
DΦDΓ e−S

)
= 0 . (B.III.2.8)

Moreover, the operator
∫

d2wGij χ̄
iχj is not annihilated by Q. Thankfully, terms

generated by the action of the supercharge do not saturate the fermionic measure
hence do not contribute to the path integral. Finally, one can show as in [33] that
the whole Lagrangian is actually Q-exact, apart from the torus fibre part.

Gathering these arguments, one can see that the path integral does not depend
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on the various couplings of the theory, allowing to compute it in the free-field limit:

e, g, f → 0 . (B.III.2.9)

Notice that even though non-Q-exact, the torus part is Gaussian hence can be
computed directly. It implies as expected that the result will depend on the two-
torus moduli (T,U) as well as on the Wilson lines moduli V a.

The localization procedure reduces the path integral to a finite-dimensional inte-
gral over the gauge holonomies (u, ū) on the worldsheet torus, the zero-modes of the
gauginos and of the auxiliary D-field. We refer to [33] and to the previous chapter
for details and for the reduction of the final result to a contour integral in the u
complex plane of the one-loop determinant. The contribution from the K3 base
GLSM fields is the same as in section II.3.3.

Contribution from the extended fibre We compute below the contribution
of the ’extended’ fibre Lagrangian, introduced in section B.III.1, eq. (B.III.1.9),
containing the chiral multiplets {Ωi}i=1,...,10.

We consider first the bosonic terms in the Lagrangian eq. (B.III.1.10). Let us
define the compact bosons:

αi := Im(ωi) , (B.III.2.10)

and proceed to a Wick rotation. α1 and α2 describe the coordinates on the two-torus
of moduli T an U , while the other αi correspond to the lattice (E8)l×(E8)r. Setting
aside the decoupled real part of ωi, the bosonic part of the Lagrangian is then:

Lbos = Eij
2
{
∂̄αi∂αj + vi∂αjAw̄ + vj∂αiAw̄ + vivjAwAw̄

}
. (B.III.2.11)

The fields αi satisfy the periodicity conditions:

αi(z + k + τ l, z̄ + k + τ̄ l) = αi(z, z̄) + 2π(kwi + lni) . (B.III.2.12)

The zero mode part of the compact bosons is then:

αi0(z, z̄) = iπ

τ2
{z(wiτ̄ − ni)− z̄(wiτ − ni)} , (B.III.2.13)

where ni and wi represent respectively the momentum and winding numbers. At the
localization locus the gauge fields are reduced to their holonomies on the worldsheet
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two-torus:
A0 = πū

iτ2
dw − πu

iτ2
dw̄ . (B.III.2.14)

Plugging these expressions into (B.III.2.11) leads to the zero modes part of the
action:

S0
bos = πEij

τ2

{
(wiτ − ni)(wj τ̄ − nj)− vi(wj τ̄ − nj)u− vj(wiτ̄ − ni)u+ vivjuū

}
.

(B.III.2.15)
The partition function is given as a sum over the momenta and windings:

Z0
bos =

∑
(wi,ni)∈Z20

exp
(
−S0

bos

)
. (B.III.2.16)

Adopting obvious matrix notations, we can write the action as:

S0
bos = π

τ2

{
n ·Gn+ F · n+ |τ |2w ·Gw − 2τ̄uGv · w + uū v ·Gv

}
, (B.III.2.17)

where we have defined:

F := −
(
τ̄E + τĒ

)
w + 2uGv . (B.III.2.18)

After performing a Poisson resummation on each variable ni, one gets:

Z0
bos =

√
τ2

10
√
detG

e
− π
τ2
v·Gv uū ∑

(w,n)∈Z20

exp
{
− πτ2

(
n− F

2iτ2

)
·G−1

(
n− F

2iτ2

)}
× exp

{
− π

τ2

(
|τ |2w ·Gw − 2τ̄uGv · w

)}
.

(B.III.2.19)

Let us introduce the left and right momenta:

Pl = 1√
2
G−1(n− (B −G)w

)
, Pr = 1√

2
G−1(n− (B +G)w

)
. (B.III.2.20)

One then has, after adding the contribution from the quantum fluctuations1:

Zbos = 1
|η(τ)|20 e

− π
τ2
v·Gv (uū−u2) ∑

(w,n)∈Z20

q
1
2P

2
l q̄

1
2P

2
r e−2iπ

√
2u v·GPl , (B.III.2.21)

with P 2
l = Pl ·GPl and P 2

r = Pr ·GPr. Let us introduce the following (20) × (20)

1We set q := exp(2iπτ).
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matrices:

M =
(
G−1 −G−1B

BG−1 G−BG−1B

)
, I =

(
0 I10

I10 0

)
. (B.III.2.22)

In terms of these matrices, one has:

1
2P

2
l = 1

4
(
n w

)
(M+ I)

(
n

w

)
,

1
2P

2
r = 1

4
(
n w

)
(M− I)

(
n

w

)
. (B.III.2.23)

The spurious contributions to the path integral, a consequence of the formulation
of the GLSM in terms of shift multiplets, are dealt with as follows. First, the real
part of each complex boson ωi gives a V/(√τ2|η|2) contribution, proportional to the
infinite volume V of their target space, which factorizes completely from the result.
Second, the anti-holomorphic contribution of the right-moving part of Im(bn) is
also completely factorized, given that its zero-modes contribution span an E8 root
lattice of signature (0, 8). Indeed by construction the Wilson lines deformation do
not involve this sub-lattice of the (10, 10) lattice corresponding to the ’extended’
fibre, see eq. (B.III.1.6).

It leads eventually to a expression similar to standard heterotic lattices with
Wilson lines, in terms of 8 complex moduli V a, together with an extra left coupling
of the torus fibre to the worldsheet gauge holonomy:

Zbos = 1
η(τ)18η̄(τ̄)2 exp

{
− π
τ2

U2
T2
|m|2 (uū− u2)

}
×

×
∑

(n1,n2,w1,w2)∈Z4,
N∈Γ8,0

q
1
4 |pl|2 q̄

1
4 |pr|2 exp

(
−2iπuRe

(
m p0

l

))
, (B.III.2.24)

with the following standard complex expression for the momenta:

|pr|2 = 1
(T2U2 −

∑
a(V a

2 )2)

∣∣∣∣∣−n1T + n2 + w1U + w2

(
TU −

∑
a

(V a)2
)

+NaV
a

∣∣∣∣∣
2

,

(B.III.2.25a)

|pl|2 = |pr|2 + 4(n1w1 + n2w2) +NaN
a , (B.III.2.25b)

and where p0
l is the left-moving momentum along the two-torus, in the absence of

Abelian bundle, written in complex notation:

p0
l := pl|V a=0 = 1√

U2T2

(
− n1T + n2 + U(w1 + Tw2)

)
. (B.III.2.26)
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The relation between the complex Wilson line moduli V a = V a
1 + TV a

2 and the
couplings β`n is then given by:

4iV a
1 =

(
1 + T 2

1
T2

)
β1a −

T1
T2
β2a , (B.III.2.27a)

4iV a
2 = T1

T2
β1a −

1
T2
β2a . (B.III.2.27b)

Let us finally consider the contribution from the free fermions χi, χ̄i. After Wick
rotation of eq. (B.III.1.10), one has:

Lfer = Gij
2 χ̄i ∂χj . (B.III.2.28)

On the other hand, the right-moving current is of the form:

J̄ = Gij χ̄
iχj + . . . , (B.III.2.29)

where the ellipsis stand for the contribution of all the other fields and possible Q-
exact terms. As discussed previously, a (J̄0)10 allows to handle all the fermionic zero-
modes originating from the torus fibre and Wilson lines fermions, see eq. (B.III.2.3),
and one obtains a η̄(τ̄)2 contribution for each of the 10 free fermions which is canceled
by the 1/η̄20 in the definition of the intermediate supersymmetric index defined in
eq. (B.III.2.1).

The result Assembling all pieces together, namely the contributions of the chiral
and Fermi multiplets from the K3 base, of the U(1) vector multiplets, and those
from the torus fibre and Wilson lines, one obtains:

Zw
fy(τ, τ̄ , z) =±

(
−2iπη(τ)2

)
×

∑
u?∈M±sing

∮
u=u?

du
{∏

Φi

iη(τ)
θ1(τ |Qiu+ ql

i z)
∏
Γa

iθ1(τ |Qau+ ql
az)

η(τ)

∑
(pl,pr)∈Γ10,2

q
1
4 |pl|2

η(τ)18
q̄

1
4 |pr|2

η̄(τ̄)2 exp
(
−2iπuRe

(
m p0

l

))}
, (B.III.2.30)

Thanks to the tadpole condition eq. (B.III.1.1), the global factor from the determi-
nants

exp
{
−π

(
u2 − uū

)
τ2

(∑
chiral

Q2 −
∑
fermi

Q2 − 2U2
T2
|m|2

)}
,
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which is non holomorphic in the gauge field holonomy (hence potentially forbidding
the reduction to a contour integral) vanishes. There are also similar non-holomorphic
terms involving the U(1)l global charges which vanish owing to the cancellation of
the corresponding (mixed) anomalies.

A consistent choice of global charges, as we have already discussed in the previous
chapter, is to assign U(1)l charge +1 to the chiral multiplet P , charges −1 to the
Fermi multiplets Γa, both appearing in the superpotential term eq. (B.II.1.6), and
vanishing U(1)l charge to all other multiplets.

In the formula eq. (B.III.2.30), M±sing corresponds to one of two sets of singu-
larities in the u plane for the determinants of chiral multiplets (from the K3 base),
of positive or negative gauge charge respectively [34]. Both choices are equivalent
since the sum of residues of a meromorphic function on the torus vanishes, however
the natural interpretation of the formula is different in both cases. In general, the
expression obtained from M+

sing would correspond to a Landau–Ginzburg type of
computation.

Picking upM−sing, giving typically a contour integral around a pole at the origin,
and provides the result that one would obtain by a direct computation in the geo-
metrical ’phase’, flowing in the IR to a (large volume) non-linear sigma-model. In
the next section, we will provide a corresponding geometrical formula for the index,
while the equivalence between both expressions is proven in section B.II.6, when the
K3 surface is a subvariety of a weighted projective space.

In the computation of the index that we have presented in this section, we
considered a U(1) worldsheet gauge group for clarity. The result can be generalized
for higher rank gauge groups in terms of a sum of Jeffrey-Kirwan residues using the
results from [34], as we have done in the previous chapter. Instead of going along
this route we will instead move to the geometrical formulation of the supersymmetric
index, which is expected to be equally valid for any formulation, or UV completion,
of the worldsheet theory underlying the N = 2 compactifications with torsion.

III.3 Geometrical formulation of the dressed elliptic genus

In exactly a similar fashion as the in case without Abelian bundle over the total
space, one proposes a purely geometrical formula in terms of a modified holomorphic
Euler characteristic.

The relevant data of such non-Kähler heterotic compactification involves a het-
erotic Narain lattice Γ(T,U, V ) of signature (10, 2), with T and U belonging to the
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same imaginary quadratic number field Q(
√
D). One notices that the main differ-

ence with respect to the case in absence of Wilson lines basically consists in the
replacement of the rational CFT data (Γl,Γr, φ), cf. section II.3.4 by the data of
this Narain lattice Γ(T,U, V ).

The data also involves a pair of anti-self-dual (1, 1)-forms ω1 and ω2 which we
gather into the following vector:

pω :=
√
U2
T2

(ω1 + Tω2) . (B.III.3.1)

This vector as it is belongs to a formal extension, over H2(S,Z), of the winding
sub-lattice of the Γ2,2(T,U) toroidal lattice. As explained in appendix E.II, the
compatibility conditions eq. (E.II.1.12) between ω1,2 and the lattice ensure that it
actually belongs to (a formal extension of) the left lattice Γl of the two-torus. Notice
that pω involves the moduli U and T of the torus with the Wilson lines turned off,
and not those corresponding to the physical Kaluza-Klein metric on T 2.

In appendix E.II, we discuss in more detail the quantization of the torus moduli,
and the compatibility between the choice of rational Narain lattice and of the pair
of two-forms (ω1, ω2). These anti-self-dual two-forms generate a rank two2 even
negative-definite lattice Γω, which is a sub-lattice of H2(S,Z).

Notice that pω involves the moduli U and T of the torus with the Wilson lines
turned off, and not those corresponding to the physical Kaluza-Klein metric on T 2.

III.3.1 Modified Euler characteristic

Using the notations introduced above and following sections B.I.3 and B.II.5,
we define the dressed elliptic genus of a holomorphic vector bundle E over a K3
surface S, with a given (10, 2) lattice comprising the T 2 fibre of the principal bundle
T 2 ↪→ X

π→ S, and the set of Abelian connections over X, as the following modified
Euler characteristic:

Zw
fy (X,E, ω| τ, τ̄ , z) = q

r−2
12 y

r
2

∫
S
ch (Eq,y) td (TS)×

×
∑

(pl,pr)∈Γ10,2

q
1
4 |pl|2

η(τ)18
q̄

1
4 |pr|2

η̄(τ̄)2 e
−Re

(
pω p0

l
)
,

(B.III.3.2)

2We don’t consider the degenerate case where ω1 and ω2 are colinear.
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where p0
l is defined in eq. (B.III.2.26).

The proof that this formula actually coincides with the GLSM result, eq. (B.III.2.30),
is given in the previous chapter for the case without Wilson lines, when S is con-
structed as a subvariety of a weighted projective space V = Pn(q0, ..., qn). The proof
in the present context follows exactly the same lines as in absence of Wilson lines,
simply replacing the partition function of the rational toroidal c = 2 CFT by the
partition function of the Narain lattice Γ10,2, with no extra modifications.

Let c(TS) =
∏2
i=1(1+νi) and c(E) =

∏r
a=1(1+ξa) denote the total Chern classes

of the respective bundles, making use of the splitting principle. One can write

Zw
fy(X,E, ω|τ, τ̄ , z) =

∫
S
G(τ, τ̄ , z, ν, ξ, pω) , (B.III.3.3)

with integrand

G(τ, τ̄ , z, ν, ξ, pω) =
r∏

a=1

iθ1
(
τ
∣∣∣ ξa2iπ − z

)
η(τ)

2∏
i=1

η(τ)νi
iθ1(τ

∣∣ νi
2iπ )×

×
∑

(pl,pr)∈Γ10,2

q
1
4 |pl|2

η(τ)18
q̄

1
4 |pr|2

η̄(τ̄)2 e
−Re

(
pω p0

l
)
. (B.III.3.4)

III.3.2 Modular properties

The ordinary elliptic genus of a rank r holomorphic vector bundle of vanishing
first Chern class over a K3 surface S, satisfying the condition c2(E) = c2(TS), is a
weak Jacobi form of weight 0 and index r/2 with the same character, or multiplier
system, as (θ1/η)r−2.

The dressed elliptic genus Zw
fy that we have defined for non-Kähler T 2 ↪→ X

π→ S
principal bundles, though non-holomorphic in τ by construction, is holomorphic in
the z variable and transforms also as a weak Jacobi form3 of weight 0 and index r

2 ,
with the same character as (θ1/η)r−2E4/η

8, as can be seen by a trivial generalization
of the computation that we have presented in the previous chapter.

3If the fibre of the principal bundle is one-dimensional (i.e. an S1 rather
than a T 2), in the absence of Wilson lines, the non-trivial part of the index∫
S

∏r

a=1

iθ1
(
τ

∣∣ ξa
2iπ−z

)
η(τ)

∏2
i=1

η(τ)νi
iθ1(τ| νi2iπ )

∑
µ∈Z2k

Θµ,k

(
τ |m

1ω1
2iπ

)
Θϕ(µ),k(−τ̄ |0) has some similar-

ity with skew-holomorphic Jacobi forms, defined by Skoruppa [76], but fails to satisfy a heat
equation.



108 Chapter III. Generic bundle and dressed elliptic genus

III.3.3 Decomposition into weak Jacobi forms

An explicit expression of the dressed elliptic genus can then be obtained, with

minimal knowledge of the underlying geometrical data. The following formula

holds [72]:

θ1(τ |z + ξ) = exp

−π2

6 E2(τ)ξ2 + θ′1(τ |z)
θ1(τ |z)ξ −

∑
n>2

℘(n−2)(τ, z)ξ
n

n!

 θ1(τ |z) ,

(B.III.3.5)

where ℘ is the Weierstrass elliptic function and ℘(n) := ∂n

∂zn℘. Expanding the inte-

grand (B.II.5.8) and keeping only the top degree form terms, one obtains

Zw
fy = (−i)r θ1(τ |z)r

η(τ)r+4

∑
(pl,pr)∈Γ10,2

q
1
4 |pl|2

η(τ)18
q̄

1
4 |pr|2

η̄(τ̄)2 ×

×
∫
S

{
−E2(τ)

24
∑
i

ν2
i +

(
E2(τ)

24 − ℘(τ, z)
2(2iπ)2

)∑
a

ξ2
a + 1

2Re
(
pω p0

l

)2
}
, (B.III.3.6)

where we have used the fact that the first Chern class of the holomorphic vector

bundle c1(V) vanishes. Using the definition of the instanton number, the fact that∫
S ch2(TS) = −24, and that the ordinary elliptic genus of a (4, 4) non-linear sigma-

model on K3, namely

ZK3
ell (τ, z) = 8

{(
θ2(τ |z)
θ2(τ |0)

)2
+
(
θ3(τ |z)
θ3(τ |0)

)2
+
(
θ4(τ |z)
θ4(τ |0)

)2}
, (B.III.3.7)

is related to the Weierstrass ℘-function by the following formula:

ZK3
ell (τ, z) = 6

π2
℘(τ, z)θ1(τ |z)2

η(τ)6 , (B.III.3.8)

one can write the index as sum of three terms in the following way:

Zw
fy = −(−i)r

∑
(pl,pr)∈Γ10,2

q
1
4 |pl|2

η(τ)18
q̄

1
4 |pr|2

η̄(τ̄)2 ×

(
ϑ1(τ |z)
η(τ)

)r−2{N
24Z

K3
ell (τ, z) + N − 24

12
θ1(τ |z)2

η(τ)6 E2(τ)− θ1(τ |z)2

2 η(τ)6

∫
S
Re
(
pω p0

l

)2
}
.

(B.III.3.9)
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This expression can be rewritten as:

Zw
fy = −(−i)r

∑
(pl,pr)∈Γ10,2

q
1
4 |pl|2

η(τ)18
q̄

1
4 |pr|2

η̄(τ̄)2

(
ϑ1(τ |z)
η(τ)

)r−2
ZN (τ, z, pl) , (B.III.3.10)

where:

ZN (τ, z, pl) = N

12 φ0,1(τ, z) +
(
−N − 24

12 E2(τ) +m(pl, ω)
)
φ−2,1(τ, z) (B.III.3.11)

with the standard weak Jacobi forms of index 1:

φ0,1(τ, z) = 4
(
θ2(τ |z)2

θ2(τ |0)2 + θ3(τ |z)2

θ3(τ |0)2 + θ4(τ |z)2

θ4(τ |0)2

)
,

φ−2,1(τ, z) = −θ1(τ |z)2

η(τ)6 , (B.III.3.12)

and where we have defined:4

m(pl, ω) := 1
2

∫
S
Re
(
pω p0

l

)2
. (B.III.3.13)

The expression (B.III.3.11) that we have obtained shows that the index depends on
the vector bundle V only through its instanton number N . The data characterizing
the principal two-torus bundle is encoded in (B.III.3.13), that intertwines Γω with
Γ2,2(T,U). Equation (B.III.3.11) is a good starting point to compute the threshold
corrections to the gauge and gravitational couplings, that will be given in the next
part.

III.4 Moonshine properties of the index?

As discussed quickly in the introductory part when we introduced the elliptic
genus, non-linear sigma-models on K3 with (4, 4) supersymmetry have a rather
mysterious relationship with the Mathieu group M24, that was first observed in [44]
(and explored later on by many authors), by expanding the elliptic genus of the
former into characters of the N = 4 superconformal algebra:

ZK3
ell (τ, z) = 24 chh=1/4,l=0(τ, z) +

∞∑
n=0

An chh=k+1/4,l=1/2(τ, z) , (B.III.4.1)

4m(pl, ω) is an integer since the Picard lattice Pic(S) = H2(S,Z) ∩H1,1
∂̄

(S) is even.
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where chh=1/4,l=0 is the character of the massless representation of isospin zero and

chh=k+1/4,l=1/2 are characters of massive representations of isospin one-half. The

coefficients {An} of the expansion are indeed related to dimensions of M24 irreducible

representations as A0 = −2, A1 = 90 = 45 + 45, etc...

As we discussed in section b, this Mathieu moonshine can be extended to K3

compactifications with arbitrary gauge bundles [46]. Since Fu-Yau compactifica-

tions encompass and largely extend such K3× T 2 compactifications, it is therefore

legitimate to investigate possible moonshine phenomena for the torsional compact-

ifications investigated here. A first step is naturally to look for possible hints of

relations with the group M24.

One can actually expand ZN (τ, z, pl), the summand appearing in the dressed

elliptic genus (B.III.3.6), in terms of N = 4 characters as follows:

ZN (τ, z, pl) = N chh=1/4,l=0(τ, z) +
∞∑
n=0

Ãn chh=n+1/4,l=1/2(τ, z) , (B.III.4.2)

with

Ãn(N, pl, ω) = N

24An + N − 24
12 Bn −m(pl, ω)Cn , (B.III.4.3)

where the integer coefficients Bn and Cn are defined by the expansions:

q1/8E2
η3 =

∞∑
k=0

Bk q
k , (B.III.4.4a)

q1/8

η3 =
∞∑
k=0

Ck q
k . (B.III.4.4b)

In particular the {Cn} give the number of partition into three kinds of integers.

They can be expressed by the following recursive relations:

C0 = 1 ,

Cn = 3
k

n−1∑
l=0

C` σ1(n− l), ∀n ∈ N∗, (B.III.4.5)

where σ1(n) =
∑
d|n d. Moreover, one can expand the Eisenstein series E2 as

E2(τ) = 1− 24
∞∑
k=1

σ1(k) qk . (B.III.4.6)
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One thus has the following relation between these two sequences of coefficients:

∀n ∈ N, Bn = Cn − 24
n−1∑
l=0

C` σ1(n− l)

= (1− 8n)Cn . (B.III.4.7)

Using these relations, one obtains the final expression for the coefficients {Ãn} of

the expansion into N = 4 characters, eq. (B.III.4.2), as

Ãn = 2(8n− 1)Cn +N
An − 2(8n− 1)Cn

24 −m(pl, ω)Cn . (B.III.4.8)

The first coefficients of this expansion are explicitly:

n Ãn

0 −2−m(pl)
1 42 + 2N − 3m(pl)
2 270 + 8N − 9m(pl)
3 1012 + 22N − 22m(pl)
4 3162 + 58N − 51m(pl)
5 8424 + 132N − 108m(pl)
6 20774 + 294N − 221m(pl)
7 47190 + 604N − 429m(pl)
8 102060 + 1210N − 810m(pl)
9 210018 + 2318N − 1479m(pl)
10 417120 + 4334N − 2640m(pl)

(B.III.4.9)

All the coefficients {Ãn} are integer numbers, which is not obvious from their ex-

pression (B.III.4.8). This follows from a quite intriguing property, which may shed

some light on the ordinary Mathieu moonshine, namely that:

∀n ∈ N , An − 2(8n− 1)Cn ≡ 0 mod 24 , (B.III.4.10)

where the {An} are the coefficients of the expansion of the K3 elliptic genus into

N = 4 representations – hence encode the information about M24 representations –

and where Cn are defined by (B.III.4.4a). In fact one has a stronger result:

∀n ∈ N , An − 2(8n− 1)Cn ≡ 0 mod 48 . (B.III.4.11)
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To see it, let us define:

A(q) :=
∞∑
n=0

Anq
n , C(q) := q1/8

η(q)3 , (B.III.4.12)

and consider the function:

ν(q) := A(q)− 2
(

8q ∂
∂q
− 1

)
C(q) . (B.III.4.13)

This function then has the following q-expansion:

ν(q) =
∞∑
n=0

(
An − 2(8n− 1)Cn

)
qn . (B.III.4.14)

Using the fact that q∂q = (2iπ)−1∂τ and that:

E2(τ) = 12
iπ

∂

∂τ
η(τ) , (B.III.4.15)

one computes

ν(q) = A(q) + 2 q1/8

η(q)3 E2(q) . (B.III.4.16)

One can then use eq. (7.16) of [77] to obtain:

ν(q) = 48 q1/8

η(q)3 F
(2)(q) , (B.III.4.17)

with:
F (2)(q) =

∑
0<m<n

n6≡m mod 2

(−1)nmq
mn
2 , (B.III.4.18)

the relevant point being that 48 divides ν(q). It may be possible to generate other
identities of the type eq. (B.III.4.11) by considering twists by insertion of M24 ele-
ments.

Coming back to the possible moonshine behavior of the index (B.III.4.2), given
that the coefficients m(pl) can be arbitrary large (negative) integers, depending
on the left-moving momentum along the two-torus fibre, the decomposition of the
coefficients {Ãn} into dimensions of irreducible representations of M24, or any other
sporadic group, is far from obvious. If these coefficients were corresponding each
to the dimension of a given representation, the term in m(pl, ω) could indicate the
number of times such representation appears in the module for this pl.
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By considering the problem from another point of view, one could notice that the
quantity ZN (τ, z, pl) appearing in eq. (B.III.3.11) is actually similar to a twining
partition function in the context of the standard Mathieu moonshine [45, 78], if
one sets aside the contribution in m(pl, ω) which involves the torus fibre. Further
investigations are under way [79].

Conclusion

Let us conclude this chapter by saying that, as mentioned in the beginning of
chapter B.II, the dressed elliptic genus leads naturally to the new supersymmetric
index, which is the natural starting point for computing the gauge and gravitational
one-loop threshold corrections appearing in the low-energy four-dimensional effective
action of N = 2 heterotic compactifications. Given that the torsional compactifica-
tions considered here represent a large fraction of those, including as a subset the
familiarK3×T 2 compactifications, computing these thresholds is a rather important
task. Starting from eq. (B.III.3.9) in the present chapter, one can reach an expres-
sion in terms of standard weak almost holomorphic modular forms for the threshold
corrections, and exploit the whole machinery developped in [80, 81] for perform-
ing modular integrals by unfolding the integration domain against Niebur-Poincaré
series. These results will be presented in chapter C.II.

The computation of the heterotic threshold corrections could also shed light on
N = 2 type IIA/heterotic dualities. Potential duals of torsional heterotic compact-
ifications were proposed in [75], as Calabi-Yau three-folds admitting a K3 fibration
without compatible elliptic fibration with section. Given that the Abelian bundle
moduli are not quantized by H-flux, unlike the T and U moduli of the two-torus
fibre, one can in principle compute the associated prepotential governing the com-
plex structure moduli from the heterotic threshold corrections, and compare with
the type II expectations, as was done for K3× T 2 in [46]. We plan to perform such
quantitative checks, that would extend significantly our current knowledge of type
IIA/heterotic N = 2 dualities.





Part C

Threshold corrections in N = 2
heterotic compactifications
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Chapter I

Effective N = 2 supergravity and
threshold corrections

In this part, we continue focusing on compactifications of the heterotic string
leading to extended N = 2 in four-dimensional effective theory. We will introduce
the kind of topological quantities related to such compactifications one is typically
interested in, namely the loop corrections to the couplings appearing in the low
energy effective action, especially those receiving correction only from the BPS states
of the theory, and which are deeply connected to the dressed elliptic genus introduced
and computed in the context of Fu-Yau compactifications in chapter B.II and further
discussed in chapter B.III.

As mentioned above, we will be interested in a particular type of couplings en-
tering the four-dimensional supergravity effective action corresponding to the above
heterotic compactifications. In order to introduce these couplings, let us give some
generic comments about the effective action for a generic N = 2 heterotic compact-
ification.

The field content of the four-dimensional low energy effective theory consists
in a gravitational multiplet consisting of the metric tensor, two gravitini and a
graviphoton. It also contains vector multiplets, consisting of the gauge bosons as
well as their associated pair of gaugini, and one complex scalar. Finally, the theory
contains a collection of hypermultiplets consisting of a single fermionic field and four
scalar fields.

The moduli space of the theory is then written locally as a cartesian product
corresponding to the contribution of the scalars contained in the vector and hyper

117
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multiplets:
M =MV ×MH , (C.I.0.1)

N = 2 local supersymmetry imposing constraints on the structure carried by these
two factors. MV plays the major role for us, since its structure and the various
quantum corrections it receives directly contribute to the couplings of interest to
us. MV is a special Kähler manifold, meaning that in addition to being Kähler, the
whole data is basically fixed by the knowledge of a unique function, the prepotential
f(zi), where {zi}i=0,1,...,NV denotes a local patch of coordinates onMV . Denoting
by:

fi1,...,ik(z) = ∂k

∂zi1 . . . ∂zik
f(z) , (C.I.0.2)

the Kähler potential is given by:

K = − log
(
−2Im(zifi)

)
, (C.I.0.3)

from which the Kähler metric obtained:

Gi̄ = ∂2K

∂zi∂z̄ ̄
. (C.I.0.4)

We will be interested in the following to the one-loop contribution to the threshold
corrections of the gauge coupling. The kinetic term for the gauge fields is given by:

Lgauge = −1
2 ΞijF i ∧ ?F j . (C.I.0.5)

This term is related by supersymmetry to a parity-violating contribution of the form:

Lodd = −1
2 ΘijF

i ∧ F j . (C.I.0.6)

The coupling functions Ξij and Θij are also completely fixed in terms of the prepo-
tential:

Ξij = −1
2 ImNij , (C.I.0.7a)

Θij = 1
2 ReNij , (C.I.0.7b)

with:
Nij = f̄ij + 2i z

kzl Imfik Imfjl
zmzn Imfmn

. (C.I.0.8)

Let us focus on the contibution from a given simple factor G in the spacetime gauge
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group, and normalize its coupling as follows:∫ 2
g2
G

tr (F a ∧ ?F a) . (C.I.0.9)

As mentionned above the gauge coupling actually depends on the vector moduli, the
goal being precisely to make explicit this dependence at one-loop.

The running of the above gauge coupling takes the following form:

16π2

g2
G(µ)

=
(

16π2

g2
s

+ ∆univ

)
+ βGlog

(
M2
s

µ2

)
+ ∆G , (C.I.0.10)

with the tree level contribution being given by the string coupling gs. The universal
component ∆univ does not depend on the gauge group under consideration, and
typically originates from taking into account the backreaction on the geometry due
to the presence of a non-trivial gauge configuration [82]. One usually absorbs this
piece into a redefinition of the string coupling:

16π2

g̃2
s

:= 16π2

g2
s

+ ∆univ . (C.I.0.11)

We will follow this convention in the following, and actually drop the tilde on the
string coupling.

The second term corresponds to the contribution from the massless states of the
theory, hence to the result on would obtain in a purely field-theoretic computation.
This contribution is of course plagued by IR divergences, and the energy scale µ
correspond to some IR regularization scheme, which we will briefly discuss later.
Finally, the last term corresponds to the contribution from the whole tower of stringy
massive states running into the loop, and depends on the compactification details.

In a similar fashion, one will also be interested in the one-loop threshold correc-
tions to the gravitational coupling:

16π2

g2
grav(µ) = 16π2

g2
s

+ βgravlog
(
M2
s

µ2

)
+ ∆G , (C.I.0.12)

The Lagrangian also contains the equivalent parity odd counterpart of the gravita-
tional coupling corresponding to a term of the form R∧R in the effective Lagrangian.

As we discussed in section A.II.1 and section B.I.1, these higher derivative terms
are intrinsically related to the Green-Schwarz mechanism of anomaly cancellations,
which requires to include such one-loop (in the sigma model perturbation theory)
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contributions to the supergravity action. Let us describe schematically how the
expression of the one-loop threshold corrections is related to descendants of an ob-
ject called the new supersymmetric index, which has already been introduced in
section B.II.2.

Let us focus on a simple factor Ga of the spacetime gauge group for concreteness,
the same king of reasoning applying in the same way to the R2 gravitational term
in the effective action. As explained above, one expects the gauge coupling ga to
have the following one-loop expression:

16π2

g2
a(µ)

∣∣∣∣∣
one-loop

= βGlog
(
M2
s

µ2

)
+ ∆G , (C.I.0.13)

which splits into a logarithmic contribution from the massless fields proportional
to the field-theoretic β-function, and the contribution ∆a from the whole tower of
massive fields running into the loop. As is usual in field theory, massless fields
come with infrared divergences, whose regularization requires the introduction of
an energy scale denoted µ in the above expression. Let us simply mention that for
instance in the case of K3 × T 2 compactifications, a very quick way to derive the
expression of the threshold as the intgral over the fundamental domain of SL2(Z) of
almost holomorphic modular form consists in first looking at second derivatives with
respect to, say, the moduli of the torus, which do not contain any IR divergent pieces.
However, we will ultimately be interested in computing the threshold corrections
corresponding to N = 2 Fu-Yau compactifications for which we know that such
moduli are actually quantized, both belonging to the same imaginary quadratic
field:

T,U ∈ Q(
√
D) , (C.I.0.14)

with D the discriminant of some positive definite integer quadratic form.
There are therefore to possible approaches. Either one can formally analyt-

ically continue the expression of the thresholds to generic complex values of the
torus fibre moduli, hence allowing to follow the above mentioned approach, or fol-
low the more rigorous background field method [83–85], which consists in replacing
the four-dimensional CFT descibing the flat Minkowski spacetime by some other
CFT characterized by a non-trivial profile of the gravitational sector fields, hence
generating a mass gap in the theory, providing a natural IR cutoff µ2. Among other
good properties, this approach preserves modular invariance, and the results can
be matched unambiguously with the field-theoretic results. We will not enter to
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much into the details of this computation below, and refer the reader to the existing

litterature.

Schematically, one wants to compute a correlation function in the worldsheet

CFT quadratic in the field strength of the gauge field corresponding to simple gauge

factor Ga under consideration. One way to do this is to try and turn on a background

gauge field in the theory by deforming it with an exactly marginal operator, and

collect the quadratic terms in the modified partition function. However, as described

for instance in the original paper of Kaplunovsky [82], turning on a non-trivial gauge

field contributes to the energy-momentum tensor, hence adds a source to the Einstein

equations, imposing to also turn on a background gravitational field for consistency.

In the zero ghost number picture, the gauge vertex operator is written:

Vgauge(z, z̄) = F aµνJ
a(z)

(
Xµ(z, z̄)∂̄Xν(z, z̄) + ψµ(z̄)ψν(z̄)

)
, (C.I.0.15)

but the right-moving part of this vertex operator is not a well-defined (0, 1) operator.

This problem is solved if one replaces the CFT corresponding to the four-dimensional

spacetime by a curved background with the same central charge and such that

modular invariance is preserved. One such theory is R1/
√
k+2×SU(2)k, and provides

a mass gap µ2 = 1/(k + 2) in the spectrum of the theory. The vertex operator in

the regulated theory is:

Vgauge(z, z̄) = ~Fa · ~Ja(J̄3 + ψ1ψ2) , (C.I.0.16)

with still a labelling a simple factor of the gauge group. J ia is in the Cartan of the

gauge group, in the adjoint representation. The gravitational marginal deformation

is:

Vgrav(z, z̄) = RJ3(J̄3 + ψ1ψ2) . (C.I.0.17)

This IR regulator is removed in the flat limit k →∞. The partition function of the

regulated theory is then written as:

Z(µ) = Γ0(µ)
V (µ) Z(0) , (C.I.0.18)

where V (µ) = 1/8πµ3 is the volume of the three-sphere, and the partition func-

tion in the unregulated theory splits into the flat spacetime contribution and the
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contribution from the internal CFT:

Z(0)(τ, τ̄) = 1
τ2 |η|4

1∑
k,l=0

θ
[
k
l

]
(τ, 0)
η

Zint
[
k
l

]
(τ, τ̄) . (C.I.0.19)

Finally Γ0(µ) is proportional to the SO(3)k/2 partition function and can be conve-

niently written as:

Γ0(µ) = −
∂µ2X(µ)

2π , (C.I.0.20)

with

X(µ) = P (µ)− P (2µ) , (C.I.0.21)

and

P (µ) =
√
τ2

∑
(m,n)∈Z2

q
1
4 (mµ+n/µ)2

q̄
1
4 (mµ−n/µ)2

. (C.I.0.22)

The deformation of the theory by the marginal operators eqs. (C.I.0.16) and (C.I.0.17)

is then understood as a boost of the fermionic and SU(2) charge lattice leading to:

δL0 =
(
P̄ + Ī

)
(RI + FaQa)+

+ −1 +
√

1 + (k + 2)(kaF 2
a + kR)

2


(
P̄ + Ī

)2

k + 2 + (FaQa +RI)2

kaF 2
a + kR2

 ,

(C.I.0.23)

where P̄ is the zero mode of the antiholomorphic helicity current ψ1ψ2, Qa the zero

mode of the holomorphic current Ja and I, Ī the zero modes of the SU(2) currents

J3, J̄3. One can then expand the deformed partition function ZF,R(µ) in powers

of Fa and R and collect the quadractic terms to obtain the following correlation

functions in a supersymmetric vacuum:

〈F 2
a 〉 = 8π2τ2

2 〈P̄2〉
(
〈Q 2

a 〉 −
ka

8πτ2

)
, (C.I.0.24a)

〈R2〉 = 8π2τ2
2 〈P̄2〉

(
〈I 2〉 − k

8πτ2

)
, (C.I.0.24b)

whose integral over the fundamental domain of SL2(Z) corresponds precisely to the

one-loop gauge and gravitational couplings. One computes for instance the following
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expression:

16π2

g2
a(µ)

∣∣∣∣∣
one-loop

= i

π2V (µ)

∫
F
dν τ2
|η|4

∂µ2X(µ)
1∑

k,l=0

∂τθ
[
k
l

]
(τ, 0)

η
Trintk,l

(
〈Q 2

a 〉 −
ka

8πτ2

)
.

(C.I.0.25)
Sending the regulator to zero by going to the flat k →∞ limit, one obtains:

16π2

g2
a(µ)

∣∣∣∣∣
one-loop

= βa log M
2
s

µ2 + ∆a =
∫
F

dν Za(τ, τ̄) , (C.I.0.26)

where Za(τ, τ̄) corresponds to the new supersymmetric index Znew with an extra
insertion of

(
Q2
a − 1

8πτ2

)
in the trace:

Za(τ, τ̄) = τ2
η(τ)2 Trr

{(
Q2
a −

1
8πτ2

)
J̄ 0(−1)FrqL0−c/24q̄L̄0−c̄/24

}
. (C.I.0.27)

Similarly, one can show that in the flat limit, the one-loop gravitational coupling is
given by:

16π2

g2
grav(µ)

∣∣∣∣∣
one-loop

= βgrav log M
2
s

µ2 + ∆grav = 1
24

∫
F
dν

{
τ2Ê2(τ)Znew(τ, τ̄)

}
,

(C.I.0.28)
where Ê2 = E2 − 3/πτ2 is the weight-2 non-holomorphic modular Eisenstein se-
ries defined in appendix E.I. In the next chapter, we will compute these threshold
corrections for the N = 2 Fu-Yau compactifications.

Let us simply add as a comment that we chose in this introductory chapter a
certain prescription among others, the background field method, in order to derive
the generic expression of the thresholds, and then removed the IR cutoff by going
to the flat limit, giving the divergent expressions eqs. (C.I.0.26) and (C.I.0.28). Any
other regularization scheme consistent with the Fu-Yau N = 2 vacua would also be
acceptable. For instance, in [80, 81, 86], whose results concerning modular integrals
are to be used later on, used another prescription. The common advantage that
both prescriptions share is that they preserve modular invariance.





Chapter II

One-loop corrections to BPS satu-
rated couplings

This chapter is built out of the article: Threshold corrections in heterotic flux
compactifications, with Carlo Angelantonj and Dan Israël, arXiv:1611.09442.

II.1 N = 2 thresholds and new supersymmetric index

The goal of this chapter is to exhibit a physical application of the dressed elliptic
genus defined and computed in chapters B.II and B.III. We will explicitely com-
pute the one-loop threshold corrections to the gauge and gravitational couplings
introduced in chapter C.I.

The one-loop running of the coupling constant associated with a simple factor
G of the space-time gauge group is, as we discuss in the introduction, expressed
through the relation:

16π2

g2
G(µ)

= 16π2

g2
s

+ βG log M
2
s

µ2 + ∆G . (C.II.1.1)

The second term in the right-hand-side of eq. (C.II.1.1) corresponds to the contri-
bution from the massless multiplets, hence to the running one would compute in a
field theoretic setting. It is proportional to the gauge-theory beta-function βG. The
last term ∆G incorporates the contribution from the whole tower of massive fields,
hence describes the stringy part of the one-loop correction to gauge coupling.

A similar expression holds for the one-loop threshold correction to the gravita-
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tional coupling as well:

16π2

g2
grav(µ) = 16π2

g2
s

+ βgrav log M
2
s

µ2 + ∆grav . (C.II.1.2)

These threshold corrections have been studied in great details forK3×T 2 compactifi-
cations, see the introduction for a partial list of relevant references. Extended N = 2
supersymmetry in spacetime highly constrains these corrections; in particular, they
only receive contribution from BPS states. As discussed in the introduction, it turns
out that they all can be expressed as the integral over the fundamental domain of the
worldsheet torus modular group of descendants of a quantity known as the new su-
persymmetric index [48]. This objet is independent of the moduli of the K3 surface,
but depends on the torus and Wilson line moduli of the compactification.

This type of integral can be computed using the standard orbit method that
was developped for K3 × T 2 compactifications, which consists in unfolding the in-
tegration domain against the Narain lattice partition function [82]. This approach
is convenient for studying the D-instanton corrections in the type I S-duals (see
e.g. [87,88]), however it hides the explicit covariance under the perturbative duality
group O(2, 2;Z) of the two-torus, that occurs also in the N = 2 compactifications
with torsion under study [53].

Another approach, developed recently in [80, 81, 86] , suggests to maintain the
explicit covariance under T-duality by instead keeping the Narain partition function
intact, expanding the remaining weak almost holomorphic modular form in terms of
(absolutely convergent) Niebur-Poincaré series, and finally unfolding the integration
domain against the latter. This approach not only has the advantage of keeping
T-duality manifest and the analytic structure of the amplitude transparent, but
rather it is the best (if not the only) way to extract physical couplings for values
of the moduli close to the string scale, where the conventional expansion might fail
to converge. This is especially useful for the present class of models, given that the
volume of the two-torus fiber is generically frozen by the fluxes to a small value in
string units.

Following this approach, we obtain in this section compact and T-duality co-
variant expressions for the threshold corrections, written in a chamber-independent
form, i.e. valid for any values of the moduli of the torus fiber. The results depend
explicitely on the topology of the principal two-torus bundle, i.e. on the choice of a
pair of anti-self-dual (1, 1) forms on the K3 base.
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We will consider thereafter an alternative representation of the threshold correc-
tions in terms of a Fourier series expansion in the Kähler modulus T of the torus
fiber [81], enlightening the origin of the various contributions, especially those cor-
responding to the worldsheet instantons wrapping the T 2. These corrections, that
would be, for Spin(32)/Z2 compactifications, S-dual to D1-instanton corrections in
type I compactifications with Ramond-Ramond fluxes, are particularly interesting.
Indeed, topologically, the two-torus is not a proper two-cycle of the total space of
the bundle, but only a torsion two-cycle. Nevertheless as we will find the instanton
corrections take the form of a infinite sum over the wrapping number.

We computed this dressed elliptic genus for Fu-Yau compactifications, from
which derives naturally the new supersymmetric index, buidling block of these
threshold corrections. We did the computation first in absence of Abelian bun-
dle over the total space, cf. chapter B.II, and then including such ’Wilson line’
moduli, cf. chapter B.III.

As we already discussed, a main difference with the conventional K3× T 2 com-
pactifications is that both the complex structure and complexified Kähler moduli
of the two-torus fiber are now generically quantized. However Abelian bundles over
the total space, that would reduce to Wilson lines in the K3×T 2 case, have moduli
which are not quantized by the three-form flux. In the following, we will turn off
such exta moduli for simplicity of the computations and of the exposure.

These compactifications are also characterized by the pullback of a holomorphic
vector bundle E over the K3 base. For definiteness, we will embed its structure
group in the first E8 factor of the E8 × E8 heterotic gauge group.

Then the new supersymmetric index Znew, which we computed above is ex-
pressed in terms of a non-holomorphic dressed elliptic genus Zfy (τ, τ̄ , z) through

Znew(τ, τ̄) = η̄2E4(τ)
2η10

1∑
γ,δ=0

qγ
2
{(

θ (τ, z)
η(τ)

)8−r
Zfy (τ, τ̄ , z)

}∣∣∣∣∣
z= γτ+δ

2

, (C.II.1.3)

where we have defined the non-holomorphic dressed elliptic genus as follows:

Zfy (τ, τ̄ , z) = 1
η̄(τ̄)2 Trrr,Hfy

(
e2iπzJ0 J̄ 0(−1)F qL0−c/24q̄L̄0−c̄/24

)
, (C.II.1.4)

the trace being taken into the Hilbert space of the (0, 2) superconformal theory corre-
sponding to the compactification. This dressed elliptic genus, which is holomorphic
in z but not in τ , transforms as a weak Jacobi form of weight 0 and index r/2, where
r is the rank of the holomorphic vector bundle E. This object somehow appeared as
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the natural ireeducible index to look at. The same non-holomorphic dressed elliptic

genus can be defined for K3×T 2, which corresponds to the particular case in which

the torus fibration is trivial, hence the dressed elliptic genus factorizes into the usual

elliptic genus of K3 and the partition function of the signature (2, 2) Narain lattice

of the two-torus.

The dressed elliptic genus eq. (C.II.1.4) was computed in the previous parts, and

is given by :

Zfy(X,E, ω|τ, τ̄ , z) = q
r−2
12 w−

r
2

∫
S
ch (Eq,y) td (TS)

∑
µ∈Γ∨l /Γl

ΘΓl
µ

(
τ
∣∣ pω
2iπ
)

η(τ)2

Θ̄Γr
ϕ(µ)(τ̄ |0)
η̄(τ̄)2 ,

(C.II.1.5)

where the two-component vector pω valued in H2(S) × H2(S) reads, taking an

orthonormal basis on Γl:

pω =
√

2U2
T2

(
ω1 + T1 ω2

T2 ω2

)
, (C.II.1.6)

This vector belongs to a formal extension of the left momentum lattice Γl, which is

a module over H2(S,Z).

A more explicit expression was obtained using the splitting principle. With

c(TS) =
∏2
i=1(1 + νi) and c(E) =

∏r
a=1(1 + ξa) denote the total Chern classes of the

respective bundles, we have:

Zfy(X,E, ω|τ, τ̄ , z) =
∫
S
G(τ, τ̄ , z, ν, ξ, pω) , (C.II.1.7)

where

G(τ, τ̄ , z, ν, ξ, pω) =
r∏

a=1

iθ1(τ
∣∣∣ ξa2iπ − z )
η(τ)

2∏
i=1

η(τ)νi
iθ1(τ

∣∣ νi
2iπ )×

×
∑

µ∈Γ∨l /Γl

ΘΓl
µ

(
τ
∣∣ pω
2iπ
)

η(τ)2

Θ̄Γr
ϕ(µ)(τ̄ |0)
η̄(τ̄)2 .

(C.II.1.8)

Let us try and massage a bit the above expression of the non-holomorphic genus in

order to obtain a form more adapted to the computation of the threshold corrections.
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The following formula holds [72]:

θ1(τ |z + ξ) = exp

−π2

6 E2(τ)ξ2 + θ′1(τ |z)
θ1(τ |z)ξ −

∑
n>2

℘(n−2)(τ, z)ξ
n

n!

 θ1(τ |z) ,

(C.II.1.9)

where ℘ is the Weierstrass elliptic function and ℘(n) := ∂n

∂zn℘. Expanding the inte-

grand eq. (B.II.5.8) and keeping only the top degree form terms, one obtains

Zw
fy = (−i)r θ1(τ |z)r

η(τ)r+4

∑
(pl,pr)∈Γ10,2

q
1
4 |pl|2

η(τ)18
q̄

1
4 |pr|2

η̄(τ̄)2 ×

×
∫
S

{
−E2(τ)

24
∑
i

ν2
i +

(
E2(τ)

24 − ℘(τ, z)
2(2iπ)2

)∑
a

ξ2
a + 1

2Re
(
pω p0

l

)2
}
, (C.II.1.10)

where we have used the fact that the first Chern class of the holomorphic vector

bundle c1(V) vanishes. Using the definition of the instanton number, the fact that

∫
S ch2(TS) = −24, and that the ordinary elliptic genus of a (4, 4) non-linear sigma-

model on K3, namely

ZK3
ell (τ, z) = 8

{(
θ2(τ |z)
θ2(τ |0)

)2
+
(
θ3(τ |z)
θ3(τ |0)

)2
+
(
θ4(τ |z)
θ4(τ |0)

)2}
, (C.II.1.11)

is related to the Weierstrass ℘-function by the following formula:

ZK3
ell (τ, z) = 6

π2
℘(τ, z)θ1(τ |z)2

η(τ)6 , (C.II.1.12)

one can write the index as sum of three terms in the following way:

Zw
fy = −(−i)r

∑
(pl,pr)∈Γ10,2

q
1
4 |pl|2

η(τ)18
q̄

1
4 |pr|2

η̄(τ̄)2 ×

(
ϑ1(τ |z)
η(τ)

)r−2{N
24Z

K3
ell (τ, z) + N − 24

12
θ1(τ |z)2

η(τ)6 E2(τ)− θ1(τ |z)2

2 η(τ)6

∫
S
Re
(
pω p0

l

)2
}
.

(C.II.1.13)
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One therefore obtain the following very simple expression as a sum of three terms:

Zfy = 1
η(τ)2η̄(τ̄)2

∑
µ∈Γ?l/Γl

∑
pl∈Γl+µ

pr∈Γr+ϕ(µ)

q
1
2 〈pl,pl〉Γl q̄

1
2 〈pr,pr〉Γr×

×
{
n

24

(
θ(τ, z)
η(τ)

)r−2
ZK3
ell (τ, z) + θ(τ, z)r

12 η(τ)r+4 (n− 24)Ê2(τ)

− θ(τ, z)r

2 η(τ)r+4

(∫
S
〈pl, pω〉2Γl −

n− 24
2πτ2

)}
. (C.II.1.14)

The definition of the various functions entering the above expression are summarized
in appendix E.I. The left and right momenta pl and pr belong to the even lattices Γl

and Γr
1 shifted by µ and ϕ(µ) respectively, where µ is an element of the discriminant

group Γ?l/Γl and ϕ : Γ?l/Γl → Γ?r/Γr is an isometry [55]. In the above expression,
〈·, ·〉Γ denotes the scalar product on the even lattice Γ. We define then

f(pl, ω) :=
∫
S
〈pl, pω〉2Γl −

n− 24
2πτ2

=
∫
S

(
〈pl, pω〉2Γl −

1
4πτ2

〈pω, pω〉Γl

)
. (C.II.1.15)

where we have used the tadpole condition (B.II.1.17).

Taking into account the remaining free fermions and performing the left GSO
projection, one obtains then for the new supersymmetric index:

Znew(τ, τ̄) = E4(τ)
η(τ)12

∑
µ∈Γ?l/Γl

∑
pl∈Γl+µ

pr∈Γr+ϕ(µ)

q
1
2 〈pl,pl〉Γl q̄

1
2 〈pr,pr〉Γr×

× 1
2

1∑
γ,δ=0

qγ
2
{
n

24

(
θ(τ, z)
η(τ)

)6
ZK3
ell (τ, z)+ (C.II.1.16)

+ θ(τ, z)8

12 η(τ)12 (n− 24)Ê2(τ)− θ(τ, z)8

2 η(τ)12 f(pl, ω)
}∣∣∣∣∣

z= γτ+δ
2

. (C.II.1.17)

Notice that the modular behaviour of the third term with a momentum insertion is
ensured, since by construction the sum of the three terms is well-behaved and the
first two terms are also by themselves weak almost holomorphic modular forms of
weight −2.

Finally, in terms of standard weak almost holomorphic modular forms, the result

1These lattices are defined as Γl = Γ2,2(T,U)∩R2,0 and Γl = Γ2,2(T,U)∩R0,2 and are both of
rank two because the corresponding c = 2 CFT is rational.
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takes a relatively simple form:

Znew(τ, τ̄) =
∑

µ∈Γ?l/Γl

∑
pl∈Γl+µ

pr∈Γr+ϕ(µ)

q
1
2 〈pl,pl〉Γl q̄

1
2 〈pr,pr〉Γr ×

×
(
− n

12
E4E6

∆ + n− 24
12

E2
4Ê2
∆ − f(pl, ω)

2
E2

4
∆

)
, (C.II.1.18)

which will allow us to use the techniques developed in [80, 81, 86], and reviewed
briefly in the next section, to perform the integration over the fundamental domain
of the worldsheet torus modular group leading to the various threshold corrections.

The formula eq. (C.II.1.10) that we used as a starting point was derived in
the previous part from a geometrical definition of the dressed elliptic genus, that
coincides with the result obtained directly from a gauged linear sigma model using
supersymmetric localization as we have proven there. We expect that this formula
holds in full generality for all N = 2 compactifications with torsion of the class
discussed in this work, even for those without an obvious GLSM realization.

This result contains as a special case the standard K3 × T 2 compactifications,
corresponding to the limiting case where the gauge instanton number n equals 24
and where the momentum insertion f(pl, ω) vanishes.

II.2 Niebur-Poincaré Series

Integrals of the type ∫
F
dν Φ(τ)Λ2,2(T,U ; τ) (C.II.2.1)

are quite common in string theory, since they compute the one-loop correction to
couplings in the low-energy effective action. Here dν = dτ1dτ2 τ

−2
2 is the SL(2,Z)

invariant measure, while F = H/SL(2,Z) is the fundamental domain of the modu-
lar group, H being the Poincaré upper complex plane. Λ2,2(T,U ; τ) is the partition
function associated to the (2, 2) dimensional Narain lattice, depending on the Käh-
ler and complex structure moduli of the compactification torus as well as on the
Teichmüller parameter τ of the worldsheet torus, while Φ(τ) is a, a priori, generic
function invariant under the action of the modular group, whose explicit expression
depends on the kind of coupling we are interested in. For those of interest in this
paper, the automorphic function is weak quasi holomorphic modular function, in
the sense that it has zero weight, it is holomorphic in the τ variable, aside from
possible explicit τ2 dependence via the Eisenstein series Ê2, and has a simple pole
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at the cusp τ = i∞. Holomorphy is a consequence of the fact that the couplings we
are interested in receive contributions only from BPS states.

While the traditional way of computing the integral (C.II.2.1) relies on the
SL(2,Z) orbit decomposition of the Narain partition function, in [80, 81, 86] a new
method has been proposed whereby the fundamental domain is unfolded against the
automorphic function Φ itself. This way of proceeding has the clear advantage of
keeping manifest the perturbative T-duality symmetries at all steps, and expresses
the final result as a sum over BPS states. Moreover, singularities associated to states
becoming massless at special points in the Narain moduli space are easily revealed
in this representation.

In order to implement this strategy, it is essential that Φ be represented as
an absolutely convergent Poincaré series, so that the unfolding of the fundamental
domain is justified. This is actually the case, since any weak quasi-holomorphic
modular form can be uniquely decomposed in terms of so-called Niebur-Poincaré
series F(s, κ, w), where w is the modular weight, κ determines the growth of the
function at the cusp, while s is a generic complex parameter. The Poincaré series
representation of F(s, κ, w) is

F(s, κ, w) = 1
2
∑

(c,d)=1
(cτ + d)−wMs,w

(
− κτ2
|cτ + d|2

)
×

× exp
{
−2iπκ

(
a

c
− cτ1 + d

c|cτ + d|2
)}

,

(C.II.2.2)

in terms of the Whittaker M -function,Ms,w(y) = |4πy|−w/2Mw
2 sgn(y),s− 1

2
(4π|y|).

We refer the interested reader to [80, 81, 86] for a general discussion of Niebur-
Poincaré series. In the following we shall only remind that for negative weight, the
choice s = 1 − w

2 + n is rather special, since the Niebur-Poincaré series are quasi
holomorphic and absolutely convergent. As a result,

Φ(τ) =
∑
n,`

d`(n)F(1− w

2 + n, `, w) , (C.II.2.3)

where the coefficients d`(n) are uniquely determined by matching the principal parts
of the q-Laurent expansion of the two sides of the equation. In eqs. (C.II.3.3),
(C.II.3.15) and (C.II.3.25) we list the decomposition of interest for us, while we
refer to [81,86] for more general cases.

Since any weak quasi holomorphic modular form can be decomposed in terms of
Niebur-Poincaré series, for the purpose of computing modular integrals it suffices to
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consider the basic integral

I(s) = R.N.
∫
F
dν F(s, 1, 0)Λ2,2(T,U ; τ) . (C.II.2.4)

Here we have selected κ = 1, the only case of interest in string theory. The symbol
R.N. (that we shall omit in the following, assuming that all integrals are properly
renormalised) implies that the integral has been properly renormalised in order to
cope with the infrared (logarithmic) divergences ascribed to massless states running
in the loop. Our modular invariant prescription amounts at cutting-off the funda-
mental domain at large τ2 > T , thus removing the singular behaviour of light states
in the T → ∞ limit [80,81,86]. This prescription to handle the infrared divergences
coming from the massless excitations is different form the one we chose in chap-
ter C.I. As mentioned already there, these two IR regulators share the nice property
of preserving modular invariance, ensuring the absence of spacetime Lorentz and
gauge anomalies [89]. The infrared divergence regularization problem will not play
any further role in the following.

Upon unfolding the fundamental domain against F(s, 1, 0) one gets [81]

I(s) =
∑
BPS

∫ ∞
0

dτ2
τ2
Ms,0(−τ2) e−πτ2(p2

L+p2
R)/2 (C.II.2.5)

where the sum is restricted only to the BPS states satisfying p2
l − p2

r = 2. The
integral can be straightforwardly evaluated to yield [81]

Iα(s, w) =
∫
F

dν τα2
∑
pl,pr

q
1
2p

2
l q̄

1
2p

2
r F(s, κ, w)

=
∑
pl,pr

δ
(
p2

l − p2
r − 2κ

)
(4πκ)1−α

(
p2

l
2κ

)− |w|2 −α−s+1

Γ
(
α+ |w|2 + s− 1

)

× 2F1

(
α+ |w|2 + s− 1, s− |w|2 ; 2s; 2κ

p2
l

)
,

(C.II.2.6)

with p2
l := 〈pl, pl〉Γl and p2

r := 〈pr, pr〉Γr , and where we have allowed for a non-
trivial weight of the Niebur-Poincaré series to compensate for Wilson lines and/or
for momentum insertions in the Narain partition function [81]. As we shall see in the
next section, this representation of the modular integral clearly spells out possible
IR divergences ascribed to new states becoming massless at points of symmetry
enhancement.
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The integral (C.II.2.5) can actually be given an alternative representation when-
ever the BPS constraint is solved before the τ2 integral is evaluated. The resulting
representation defines a Fourier series expansion in the U1 variable, which is only
valid in special regions of moduli space (corresponding to large volume) [86]. For the
case of momentum insertions we need to slightly generalise the construction of [86],
and we shall present the new results in section section C.II.4.

II.3 Threshold corrections

We are now ready to compute the one-loop threshold corrections to the gauge and
gravitational coupling for N = 2 heterotic compactifications with torsion, starting
from eq. (C.II.1.18) and using the techniques that were summarized in section C.II.2.
Note that the actual models we are considering only exist at special points of the
Narain moduli space compatible with the three-form flux. Nevertheless, we shall
try to keep the moduli arbitrary and treat them as continuous variables, so that the
expressions can be conveniently adapted to any special realization.2

II.3.1 Gravitational threshold corrections

In order to compute the threshold correction to the gravitational coupling, one
has to compute the following modular integral:

Λgrav = βgrav log M
2
s

µ2 + ∆grav = 1
24

∫
F
dν

{
τ2Ê2(τ)Znew(τ, τ̄)

}
. (C.II.3.1)

Using eq. (C.II.1.18), one thus has to compute:

24Λgrav =
∑

µ,pl,pr

∫
F
dν τ2 q

1
2 〈pl,pl〉Γl q̄

1
2 〈pr,pr〉Γr×

×
{
− n

12
Ê2E4E6

∆ + n− 24
12

Ê2
2E

2
4

∆ − f(pl, ω)
2

Ê2E
2
4

∆

}
. (C.II.3.2)

where here and in the following, the momentum sum
∑
µ,pl,pr is a compact notation

for
∑
µ∈Γ?l/Γl

∑
pl∈Γl+µ

∑
pr∈Γr+ϕ(µ).

Following [81] we rewrite the weak almost holomorphic modular forms entering
in the integrands above in terms of Niebur-Poincaré series F(s, κ, w). One has the

2In particular, when ω1 and ω2 in eq. (C.II.1.6) are proportional to each other, only one complex
torus modulus is stabilized by the flux and the other one remains.
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following decompositions:

Ê2E4E6
∆

= F(2, 1, 0)− 5F(1, 1, 0)− 144 ,

Ê2
2E

2
4

∆
= 1

5F(3, 1, 0)− 4F(2, 1, 0) + 13F(1, 1, 0) + 144 ,

Ê2E
2
4

∆
= 1

40F(3, 1,−2)− 1
3F(2, 1,−2) .

(C.II.3.3)

Regularizing the IR divergence and performing the modular integral by unfolding

the integration domain against the Niebur-Poincaré series, one obtains

Λgrav =
∑
BPS

{
− m(pl)

48

(
3 2F1

(
2, 4, 6, t−1)
20t4 − 2 2F1

(
1, 3, 4, t−1)
3t3

)

− n

12× 24

(
2F1

(
2, 2, 4, t−1)
t2

− 5 2F1
(
1, 1, 2, t−1)
t

)

+ n− 24
24

(
2F1

(
2, 3, 6, t−1)
20t3 − 2F1

(
1, 2, 4, t−1)
3t2

)

+ n− 24
12× 24

(
2 2F1

(
3, 3, 6, t−1)
5t3 − 4 2F1

(
2, 2, 4, t−1)
t2

+ 13 2F1
(
1, 1, 2, t−1)
t

)}
+ (n− 12)Idkl , (C.II.3.4)

where t := p2
l/2, m(pl, ω) :=

∫
S〈pl, pω〉2Γl

and

Idkl :=
∫
F

dν τ2
∑

µ,pl,pr

q
1
2p

2
l q̄

1
2p

2
r = −log

(
4πe−γT2U2 |η(T )η(U)|4

)
(C.II.3.5)

is the Dixon-Kaplunovsky-Louis integral, where γ is the Euler-Mascheroni constant.

As already explained, in the above expression,
∑

BPS is a shorthand for
∑
pl,pr δ(p

2
l−

p2
r − 2), in other words the sum over perturbative half-BPS states.

Fortunately, this complicated expression simplifies considerably in the cases of

interest here, and one ends up with standard polynomial and logarithmic functions

of the last argument, cf. appendix E.I. One ends up with the following simple
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expression for the gravitational threshold corrections:

Λgrav =
∑
BPS

{
1 + n− 24

24
3
2t +

(
t− 11

12

)
log

(
t− 1
t

)
+

+ m(pl, ω)
24

[
6− 3

4t2 −
5
2t + 6

(
t− 11

12

)
log

(
t− 1
t

)]}
+ (n− 12) Idkl . (C.II.3.6)

This expression is clearly independent of the choice of chamber in the Narain moduli
space.

Setting n = 24 and m(pl, ω) = 0 to make the torus fibration trivial, one obtains
the result for K3× T 2 compactifications:

Λgrav =
∑
BPS

{
1 +

(
t− 11

12

)
log

(
t− 1
t

)}
+ 12 Idkl . (C.II.3.7)

Note that these expressions are potentially divergent if t = 1, i.e. at point of
symmetry enhancement where p2

L = 2. The presence or not of these divergences
clearly depends of the actual values of the Kähler and complex structure moduli.

Finally from eq. (C.II.3.6) we can extract the value of gravitational β-function,
which is the coefficient of the trace anomaly [90]:

βgrav = n− 12 . (C.II.3.8)

This coefficient is related to the relative number of hypermultiplets and vector mul-
tiplets. Comparing eq. (C.II.3.7) with known results from K3× T 2 [91], we get the
normalisation:

βgrav = 24 + nh − nv
22 . (C.II.3.9)

Hence nh − nv, i.e. the difference between the number of massless hypermultiplets
and vector multiplets (including S, containing the dilaton, and the graviphoton),
depends on the instanton number n of the vector bundle E, hence indirectly on
the data of the principal two-torus bundle through the integrated Bianchi identity
eq. (B.II.1.17).

II.3.2 Gauge threshold corrections

The expression eq. (C.II.1.18) for the new supersymmetric index is independent
of the rank of the gauge bundle. In order to compute explicitely the correction
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to the gauge couplings one has to choose a particular sub-class of bundles; we will
consider below the case of a bundle of structure group SU(2), embedded into one of
the two E8 factors of the gauge group, with arbitary instanton number 0 6 n 6 24.
It will allow to compare easily with classical results for K3× T 2 with the standard
embedding of the spin connection into the gauge connection, and vanishing Wilson
lines, i.e. models with a rank one bundle and n = 24.

Corrections to the E8 coupling Let us start with the one-loop correction to
the gauge coupling corresponding to the unbroken E8 factor of the spacetime gauge
group. The threshold correction is given by:

ΛE8 = βE8 log M
2
s

µ2 + ∆E8 =
∫
F

dν ZE8(τ, τ̄) , (C.II.3.10)

where ZE8(τ, τ̄) corresponds to the new supersymmetric index with an extra inser-
tion of

(
Q2
E8
− 1

8πτ2

)
in the trace:

ZE8(τ, τ̄) = τ2
η(τ)2 Trr

{(
Q2
E8 −

1
8πτ2

)
J̄ 0(−1)FrqL0−c/24q̄L̄0−c̄/24

}
(C.II.3.11)

Let us define D̃w := (−4w)−1Dw, where Dw is the modular covariant derivative as
defined in appendix E.I. The insertion

(
Q2
E8
− 1

8πτ2

)
corresponds then to acting in

Znew on the character of the affine E8 algebra, namely E4(τ) with the operator D̃4.
Using the fact that:

D4E4 = 2
3
(
E6 − Ê2E4

)
, (C.II.3.12)

One obtains:

ZE8 = Ê2E4 − E6
24∆ τ2

∑
µ,pl,pr

q
1
2p

2
l q̄

1
2p

2
r

{
− n

12E6 + n− 24
12 Ê2E4 −

f(pl, ω)
2 E4

}
,

(C.II.3.13)
i.e.:

ZE8 = 1
24∆ τ2

∑
µ,pl,pr

q
1
2p

2
l q̄

1
2p

2
r×

{
−n− 12

6 Ê2E4E6 + n

12E
2
6 + n− 24

12 Ê2
2E

2
4 −

f(pl, ω)
2 (Ê2E

2
4 − E4E6)

}
.

(C.II.3.14)
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In addition to eq. (C.II.3.3), one has the following decompositions into Niebur-
Poincaré series:

E2
6

∆ = F(1, 1, 0)− 1008 ,

E4E6
∆ = 1

6F(2, 1,−2) .
(C.II.3.15)

One then performs the modular integral to get:

ΛE8 =
∑
BPS

{
− m(pl)

48

(
3 2F1

(
2, 4, 6, t−1)
20t4 − 2F1

(
1, 3, 4, t−1)
t3

)

− n− 12
6× 24

(
2F1

(
2, 2, 4, t−1)
t2

− 5 2F1
(
1, 1, 2, t−1)
t

)

+ n− 24
24

(
2F1

(
2, 3, 6, t−1)
20t3 − 2F1

(
1, 2, 4, t−1)
2t2

)
+ n 2F1

(
1, 1, 2, t−1)
12t

+ n− 24
12× 24

(
2 2F1

(
3, 3, 6, t−1)
5t3 − 4 2F1

(
2, 2, 4, t−1)
t2

+ 13 2F1
(
1, 1, 2, t−1)
t

)}
− 2(n+ 12) Idkl . (C.II.3.16)

Once again, for such integer values of the arguments, the hypergeometric functions
simplify dramatically, cf. eq. (E.I.2.3), and one ends up with the following simple
expression:

ΛE8 =
∑
BPS

{
1 + n− 24

12t + (t− 1) log
(
t− 1
t

)
+

+ m(pl, ω)
4

[
1− 1

6t2 −
1
2t + (t− 1) log

(
t− 1
t

)]}
− 2(n+ 12) Idkl . (C.II.3.17)

From this expression we can read off immediately the expression of the β-function:

βE8 = −2(n+ 12) . (C.II.3.18)

Setting n = 24 and m(pl, ω) = 0, one obtains:

ΛE8 =
∑
BPS

{
1 + (t− 1) log

(
t− 1
t

)}
− 72 Idkl , (C.II.3.19)

which coincides with the already known result for K3× T 2 [81].
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Corrections to the E7 coupling For definiteness, and as stated in the intro-

duction of this section, we focus on the case in which the vector bundle over the

compact manifold has an SU(2) structure group, such that the unbroken gauge

group in spacetime contains a E7 factor.

As before, computing the threshold correction corresponds to performing the

modular integral of a descendant of the new supersymmetric index, i.e. with a(
Q2
E7
− 1

8πτ2

)
insertion in the trace:

ΛE7 = βE7 log M
2
s

µ2 + ∆E7 =
∫
F

dν ZE7(τ, τ̄) , (C.II.3.20)

with:

ZE7(τ, τ̄) = τ2
η(τ)2 Trr

{(
Q2
E7 −

1
8πτ2

)
J̄ 0(−1)FrqL0−c/24q̄L̄0−c̄/24

}
(C.II.3.21)

In functional picture, the extra operator insertion acts as D̃w on every E4(τ) and

E6(τ) factor in the new supersymmetric index but not on the E4(τ) corresponding

to the unbroken E8 factor of the gauge group, which was treated in the previous

section. One has the following identities, due to Ramanujan:

D4E4 = 2
3
(
E6 − Ê2E4

)
, (C.II.3.22a)

D6E6 = E2
4 − Ê2E6 . (C.II.3.22b)

One thus obtains:

ZE7 = τ2
24∆

∑
µ,pl,pr

q
1
2p

2
l q̄

1
2p

2
r× (C.II.3.23)

{
−n− 12

6 Ê2E4E6 + n

12E
3
4 + n− 24

12 Ê2
2E

2
4 −

f(pl, ω)
2 (Ê2E

2
4 − E4E6)

}
.

(C.II.3.24)

In addition to eqs. (C.II.3.3) and (C.II.3.15) one has the following decomposition

into Niebur-Poincaré series:

E3
4

∆ = F(1, 1, 0) + 720 . (C.II.3.25)
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It gives:

ΛE7 =
∑
BPS

{
− m(pl)

48

(
3 2F1

(
2, 4, 6, t−1)
20t4 − 2F1

(
1, 3, 4, t−1)
t3

)

+ n

12× 24
2F1

(
1, 1, 2, t−1)
t

+ n− 24
24

(
2F1

(
2, 3, 6, t−1)
20t3 − 2F1

(
1, 2, 4, t−1)
2t2

)

+ n− 24
12× 24

(
2 2F1

(
3, 3, 6, t−1)
5t3 − 4 2F1

(
2, 2, 4, t−1)
t2

+ 13 2F1
(
1, 1, 2, t−1)
t

)}
+ 4(n− 6)Idkl . (C.II.3.26)

Once again, for such integer values of the arguments, the hypergeometric functions
simplify dramatically, cf. eq. (E.I.2.3), and one ends up with the following simple
expression:

ΛE7 =
∑
BPS

{
1 + n− 24

12t + (t− 1) log
(
t− 1
t

)

+ m(pl, ω)
4

[
1− 1

6t2 −
1
2t + (t− 1) log

(
t− 1
t

)]}
+ 4(n− 6) Idkl . (C.II.3.27)

We can once again read directly the β-function:

βE7 = 4(n− 6) . (C.II.3.28)

Setting n = 24 and m(pl, ω) = 0, one obtains:

ΛE7 =
∑
BPS

{
1 + (t− 1) log

(
t− 1
t

)}
+ 72 Idkl , (C.II.3.29)

corresponding indeed to the already known result for K3× T 2.

Universality property of the gauge threshold corrections The presence of
N = 2 supersymmetry in spacetime hints towards some universality properties of
the thresholds, as in the K3× T 2 case. The difference of the two gauge thresholds
indeed turns out to be universal. Using the fact that:

E3
4 − E2

6 = 1728∆ , (C.II.3.30)
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one obtains for the difference of the two integrands:

ZE8 − ZE7 = −6n τ2
∑

µ,pl,pr

q
1
2p

2
l q̄

1
2p

2
r (C.II.3.31)

leading to an integer multiple of the Dixon-Kaplunovsky-Louis integral for the
thresholds:

ΛE8 − ΛE7 = (βE8 − βE7) Idkl = −6n Idkl . (C.II.3.32)

Setting n = 24, one recovers the well-known result:

ΛE8 − ΛE7 = −144 Idkl . (C.II.3.33)

II.4 Fourier series and worldsheet instanton corrections

The results obtained in the previous section encapsulate in a compact and
O(2, 2;Z) invariant way the threshold corrections to the gauge and gravitational
couplings. It is useful to present the result in a different way, which allows one to
isolate the contributions from worldsheet instantons, using a Fourier series expan-
sion [86].

The role of worldsheet instantons is particularly interesting to investigate in these
N = 2 torsional compactifications, whose topology corresponds to the total space
of the principal bundle T 2 ↪→ X

π→ S. The relevant instantons in this context are
holomorphic maps from the worldsheet two-torus to the target-space T 2.

In the present context neither the K3 base nor the T 2 fiber are cycles of the total
spaceM of the principal bundle; in particular the two-torus is only a torsion two-
cycle. One may wonder therefore whether an infinite tower of instanton corrections
appears in the result; as we will see below, it turns out to be the case.

Starting from Spin(32)/Z2 ten-dimensional heterotic strings, our results lead
to interesting insights on non-perturbative corrections to Type I compactifications
with Ramond-Ramond flux. Under heterotic/type I S-duality, the one-loop heterotic
computations capture both perturbative and non-pertubative corrections on the type
I side, in particular the contribution of Euclidean D1-brane worldsheets wrapping
the two-torus [88,92]. This is a quite interesting result, as D-instantons corrections
in the presence of RR fluxes have not been investigated in detail to our knowledge.
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II.4.1 The Fourier series expansion

Let us now focus on an alternative representation in terms of a Fourier series
expansion of the integral:

Ig(s) :=
∫
F
dν τ2

∑
µ,pl,pr

g(pl
√
τ2) q

1
2p

2
l q̄

1
2p

2
r F(s, 1, w) , (C.II.4.1)

with some momentum insertion g(pl
√
τ2), which in our case will correspond to

f(pl, ω).
In order to obtain this alternative Fourier series representation, one first performs

the τ1 integral which imposes the BPS constaint on the momenta, then solves the
constraint and performs a suitable Poisson resummation.

Explicitly, one expands the Niebur-Poincaré series in terms of the Whittaker
M-function, which is then itself expressed in terms of the confluent hypergeometric
function 1F1,

Ms,w(−t) = (4πt)−w/2M−w/2,s−1/2(4πt)

= (4πt)s−w/2 e−2πt
1F1(s+ w/2; 2s; 4πt) .

(C.II.4.2)

The hypergeometric function 1F1 satisfies:

1F1(a; 2a+n; y) = Γ (a− 1
2)
(
y

4

) 1
2−a

ey/2
n∑
`=0

(−n)` (2a− 1)`
(2a+ n)` `!

(a+`− 1
2) Ia+`− 1

2
(y/2) .

(C.II.4.3)
In these expressions (x)` = Γ (x+`)/Γ (x) = x(x+1) . . . (x+l−1) is the Pochhammer
symbol or rising factorial. It satisfies, (−x)` = (−1)`(x− `+ 1)`.

This strategy can be applied first to compute the Fourier series expansion in
absence of momentum insertion:

I(s) :=
∫
F
dν F(s, 1, 0)Λ2,2(T,U) , (C.II.4.4)

where:
Λ2,2(T,U) := τ2

∑
µ,pl,pr

q
1
2p

2
l q̄

1
2p

2
r (C.II.4.5)

is the modular invariant partition function of the signature (2, 2) Narain lattice. It
is evaluated at some particular points in moduli space specified by the quantization
condition T,U ∈ Q[

√
D], although the computation below, by itself, could be done

for any T and U as nowhere we make use of these conditions.
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The Fourier expansion of eq. (C.II.4.4) was computed in [86]. The result splits

into zero, negative and positive frequency parts:

I(s) = I(−)(s) + I(0)(s) + I(+)(s) , (C.II.4.6)

with:

I(0)(s) = 24s−3√4πΓ
(
s− 1

2

) ∑
(n1,n2)=1

(U2T̃2)s
(
U2 + T̃2 + |U2 − T̃2|

)1−2s
,

I(+)(s) = 1
2
∑
M>0

∑
γ∈Γ∞\ΓT

e2iπM(U1−T̃1)

M
Ms,0

(
M

2
(
U2 + T̃2 − |U2 − T̃2|

))
×

×Ws,0

(
M

2
(
U2 + T̃2 + |U2 − T̃2|

))
,

(C.II.4.7)

the negative frequency part being obtained by complex conjugation.

Using the relations between the Whittaker functions Mk,m, Wk,m and the mod-

ified Bessel functions of the first and second kind [81]:

Ms,0(±y) = 22s−1Γ
(
s+ 1

2

)√
4π|y| Is− 1

2
(2π|y|) ,

Ws,0(±y) = 2
√
|y|Ks− 1

2
(2π|y|) ,

(C.II.4.8)

and focusing on the fundamental chamber U2 > T̃2 for definiteness, one can rewrite

the positive frequency part in the following way:

I(+)(s) = 22s+1√π Γ
(
s+ 1

2

)
×

×
∑
M>0

∑
γ∈Γ∞\Γ

√
U2T̃2 e

2iπM(U1−T̃1)Is− 1
2
(2πMT̃2)Ks− 1

2
(2πMU2) ,

(C.II.4.9)

where one recognizes the sum over comprime integers n1, n2 as a sum over cosets

in the quotient of the modular group Γ = SL2(Z)T by the stabilizer of the cusp

at infinity Γ∞. Notice the presence of a factor of 2 since the pairs (n1, n2) and

(−n1,−n2) correspond to the same coset γ.

We now want to compute the Fourier series expansion of an integral of the same
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type but with the extra f(pl, ω) weight 2 momentum insertion, namely:

If (s) :=
∫
F
dν F(s, 1,−2) τ2

∑
µ,pl,pr

q
1
2p

2
l q̄

1
2p

2
rf(pl, ω) , (C.II.4.10)

with:
f(pl, ω) =

∫
S
〈pl, pω〉2Γl −

n− 24
2πτ2

. (C.II.4.11)

Upon unfolding the fundamental domain F against the Niebur-Poincaré series
F(s, 1,−2) one gets:

If (s) =
∫ ∞

0

dτ2
τ2

2

∫ 1/2

−1/2
dτ1Ms,−2(τ2)e−2πiτ1

∑
µ,pl,pr

q
1
2p

2
l q̄

1
2p

2
rf(pl, ω)

=
∑
bps

∫ ∞
0

dτ2
τ2
Ms,−2(τ2)f(pl, ω) e−πτ2(|pl|2+|pr|2)/2 . (C.II.4.12)

The τ1 integration variable acts as a Lagrange multiplier to restrict the lattice sum
to the contributions m1n

1 +m2n
2 = 1, where we have expanded the momenta in a

complex basis:

pL = 1√
T2U2

(
m2 − Tm1 + Ū(n1 + Tn2)

)
(C.II.4.13a)

pR = 1√
T2U2

(
m2 − Tm1 + U(n1 + Tn2)

)
(C.II.4.13b)

As explained above, first one has to solve the BPS constraint m1n
1 + m2n

2 = 1.
In general, for any pair of co-prime integers (n1, n2), Bézout’s lemma ensures that
one can find another pair of co-primes (m̃1, m̃2) such that m̃1n

1 + m̃2n
2 = 1. The

solutions of the BPS constraints are then of the form:

m1 = m̃1 + M̃n2 ,

m2 = m̃2 − M̃n1 ,
(C.II.4.14)

with M̃ ∈ Z. Upon inserting this expression into the integrand one notices that the
complex structure T and the charges defining pω always appear in the combination
T̃ = γ · T so that the sum over (n1, n2) reduces to a sum over images with respect
to SL(2;Z)T . At this point one has to Poisson resum over the variable M̃ to obtain
the desired Fourier series expansion in U . Notice that the momenta are at most
linear in M̃ which imply that both the argument in the exponential and the f(pl, ω)
insertion in eq. (C.II.4.12) are polynomials of second degree in M̃ . One gets the
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following schematic expression for this integral eq. (C.II.4.10):

If (s) = 2
∑
M∈Z

∑
γ∈Γ∞\Γ

√
U2T̃2e

2iπM(U1−T̃1)×

×
∫ ∞

0

dτ2

τ
3/2
2
Ms,−2(−τ2)

(
α

τ2
2

+ β

τ2
+ δ

)
exp

(
−A
τ2
−Bτ2

)
.

(C.II.4.15)

The precise expression of the various coefficients in the above schematic expression

is determined in appendix E.III. We recall that

Ms,−2(y) = 4πyM1,s−1/2(4πy)

= (4πy)s+1 e−2πy
1F1(s− 1; 2(s− 1) + 2; 4πy) ,

(C.II.4.16)

that, together with eq. (C.II.4.3) yields:

Ms,−2(y) = 22s−3 Γ (s− 3
2) (4πy)5/2×

×
2∑
`=0

(−1)` (3− `)` (2s− 3)`
(2s)` `!

(s+ `− 3
2) Is+`− 3

2
(2πy) .

(C.II.4.17)

Plugging this expression into the integral in eq. (C.II.4.15) yields:

42s π5/2 Γ (s− 3
2)

2∑
`=0

(−1)` (3− `)` (2s− 3)`
(2s)` `!

(s+ `− 3
2)×

×
∫ ∞

0
dt
(
α

t
+ β + δt

)
Is+`− 3

2
(2πt) e−A/t−Bt .

(C.II.4.18)

The relevant values of the coefficients A,B, α, β and δ computed in appendix E.III

are the following:

A = πM2U2T̃2 , (C.II.4.19a)

B = π

(
U2

T̃2
+ T̃2
U2

)
, (C.II.4.19b)

α = −U2
2M

2Ñ i
(1)dijÑ

j
(1) , (C.II.4.19c)

β = 2iU2M
U2 + T̃2

T̃2
Ñ i

(1)dijÑ
j
(2) −

U2

2πT̃2
Ñ i

(2)dijÑ
j
(2) , (C.II.4.19d)

δ =
(
U2 + T̃2

T̃2

)2

Ñ i
(2)dijÑ

j
(2) , (C.II.4.19e)
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where Ñ(1) := Re(Ñ) and Ñ(2) := Im (Ñ).
One then plugs eq. (C.II.4.18) into eq. (C.II.4.15), and splits the later into its

zero, positive and negative frequency parts:

If (s) = I(−)
f (s) + I(0)

f (s) + I(+)
f (s) . (C.II.4.20)

Zero-frequency mode One has explicitely for the zero mode part of the Fourier
expansion:

I(0)
f (s) = 2

∑
γ∈Γ∞\Γ

√
U2T̃2

∫ ∞
0

dt
t3/2
Ms,−2(−t)

(
β(0)

t
+ δ

)
exp (−Bt) , (C.II.4.21)

which we can rewrite, using the results above, as:

I(0)
f (s) = 24s+1 π5/2 Γ (s− 3

2)
∑

γ∈Γ∞\Γ

√
U2T̃2
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(−1)` (3− `)` (2s− 3)`
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2)×

×
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−β(0) ∂

∂B
+ δ

∂2

∂B2

)∫ ∞
0

dt
t
Is+`− 3

2
(2πt) e−Bt .

(C.II.4.22)

One can obtain a very explicit expression in the form:

I(0)
f (s) = 24s+1 π5/2 Γ (s− 3

2)
∑

γ∈Γ∞\Γ

√
U2T̃2

2∑
`=0

(−1)` (3− `)` (2s− 3)`
(2s)` `!

(s+ `− 3
2)×

×
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β(0)F

(0)
1,s+l− 3

2
(B, 2π) + δF

(0)
2,s+l− 3

2
(B, 2π)

)
,

(C.II.4.23)

where the functions F (0)
n,ν are defined and computed in appendix E.I.

Positive frequency modes Let us now consider the positive frequency part, the
negative part being obtained from it by complex conjugation. The contribution of
positive modes reads:

I(+)
f (s) = 2

∑
M>0

∑
γ∈Γ∞\Γ

√
U2T̃2e

2iπM(T1−Ũ1)×

×
∫ ∞

0

dτ2

τ
3/2
2
Ms,−2(−τ2)

(
α

τ2
2

+ β

τ2
+ δ

)
exp

(
−A
τ2
−Bτ2

)
.

(C.II.4.24)
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One can again rewrite it as:

I(+)
f (s) = 24s+1 π5/2 Γ (s− 3

2)
∑
M>0

∑
γ∈Γ∞\Γ

√
U2T̃2

2∑
`=0

(−1)` (3− `)` (2s− 3)`
(2s)` `!

×

× (s+ `− 3
2)
(
α− β ∂

∂B
+ δ

∂2

∂B2

)∫ ∞
0

dt
t
Is+`− 3

2
(2πt) e−A/t−Bt ,

(C.II.4.25)

leading to the expression:

I(+)
f (s) = 24s+1 π5/2 Γ (s− 3

2)
∑
M>0

∑
γ∈Γ∞\Γ

√
U2T̃2

2∑
`=0

(−1)` (3− `)` (2s− 3)`
(2s)` `!

×

× (s+ `− 3
2)
(
αF0,s+l− 3

2
(A,B, 2π) + βF1,s+l− 3

2
(A,B, 2π) + δF2,s+l− 3

2
(A,B, 2π)

)
,

(C.II.4.26)

where the functions Fn(A,B,C) are defined in appendix E.I, and depend on the

coeffients A,B and C mainly through u± =
√
A(
√
B + C ±

√
B − C).

Putting all pieces together, one has the following compact expressions for the

Fourier expansion of the three threshold corrections:

Gravitational threshold corrections:

24Λgrav =− n

12 (I(2)− 5I(1)− 144 Idkl)

+ n− 24
12

(1
5I(3)− 4I(2) + 13I(1) + 144 Idkl

)
− 1

2

( 1
40If (3)− 1

3If (2)
)
.

(C.II.4.27)

E8 threshold corrections:

24ΛE8 =− n− 12
6 (I(2)− 5I(1)− 144 Idkl)

+ n− 24
12

(1
5I(3)− 4I(2) + 13I(1) + 144 Idkl

)
+ n

12 (I(1)− 1008 Idkl)− 1
2

( 1
40If (3)− 1

2If (2)
)
.

(C.II.4.28)
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E7 threshold corrections:

24ΛE7 =− n− 12
6 (I(2)− 5I(1)− 144 Idkl)

+ n− 24
12

(1
5I(3)− 4I(2) + 13I(1) + 144 Idkl

)
+ n

12 (I(1) + 720 Idkl)− 1
2

( 1
40If (3)− 1

2If (2)
)
.

(C.II.4.29)

II.4.2 A simple subclass of models

The Fourier series expansion that we have obtained above is not easy to analyse,
in particular because the two-torus metric and the intersection form on the base
dij =

∫
S ωi ∧ ωj are intertwined in a non trivial way in the momentum insertion∫

〈pl, pω〉2. In order to unveil the role of the worldsheet instantons, we consider
below a subclass of models that, although not really special from the physical point
of view, allow to present the results in a much simpler way.

Noticing that the interpretation in terms of worldsheet instantons does not de-
pend on the precise moduli of the torus fiber, let us consider for convenience examples
in which the momentum insertion

∫
〈pl, pω〉2 is proportional to 〈pl, pl〉 := p2

l, namely
the case where:

f(pl, ω) = (n− 24)
(
p2

l −
1

2πτ2

)
, (C.II.4.30)

where the proportionality constant in front of the p2
l term is fixed by modularity,

and where one made use of the tadpole condition eq. (B.II.1.17). It amounts to
a particular relation between the torus metric and the intersection form dij , see
section II.4.3.

For definiteness let us consider the gravitational threshold corrections corre-
sponding to such a setting. As discussed previously, it is written:

24Λgrav =
∫
F
dν τ2

∑
µ,pl,pr

q
1
2p

2
l q̄

1
2p

2
r×

×
{
− n

12
Ê2E4E6

∆ + n− 24
12

Ê2
2E

2
4

∆ − f(pl, ω)
2

Ê2E
2
4

∆

}
, (C.II.4.31)

with dν = dτ1dτ2/τ
2
2 the modular invariant measure. Let us focus on the last term

and exploit eq. (C.II.4.30). Once again, we denote by Λ2,2 the partition function
associated with the Narain lattice Γ2,2(T,U), including a factor τ2 making it modular
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invariant by itself. As a preliminary step, notice that:

(n− 24)(D0Λ2,2) = −τ2
∑

µ,pl,pr

f(pl, ω) q
1
2p

2
l q̄

1
2p

2
r , (C.II.4.32)

with D0 the modular covariant derivative as defined in eq. (E.I.1.28). This allows

to reexpress the last term in eq. (C.II.4.31) simply as:

n− 24
2

∫
dν (D0Λ2,2)Ê2E

2
4

∆ . (C.II.4.33)

Using eq. (E.I.1.29), an integration by part then leads to:

− n− 24
2

∫
dν Λ2,2D−2

(
Ê2E

2
4

∆

)
. (C.II.4.34)

Exploiting again eq. (E.I.1.29), one computes:

D−2

(
Ê2E

2
4

∆

)
= 1

6
E3

4
∆ + 4

3
Ê2E4E6

∆ + 1
2
Ê2

2E
2
4

∆ . (C.II.4.35)

Plugging this result into eq. (C.II.4.31), one obtains finally:

24Λgrav =
∫
F
dν Λ2,2

(
−3n− 64

4
Ê2E4E6

∆ − n− 24
6

Ê2
2E

2
4

∆ − n− 24
12

E3
4

∆

)
.

(C.II.4.36)

Using the decompositions in terms of Niebur-Poincaré series, one finally obtains:

24Λgrav =
∫
F
dν Λ2,2

(
−n− 24

30 F(3, 1, 0)− n

12F(2, 1, 0)+

+3n− 52
2 F(1, 1, 0) + 24(n− 12)

)
,

(C.II.4.37)

which can be written in terms of eq. (C.II.4.4) as:

24Λgrav = −n− 24
30 I(3)− n

12 I(2) + 3n− 52
2 I(1) + 24(n− 12) Idkl . (C.II.4.38)

Let us split the result into positive, negative and zero-frequency parts:

Λgrav = Λ(−)
grav + Λ(0)

grav + Λ(+)
grav , (C.II.4.39)

that will be given separately below.
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Zero-frequency mode It turns out that one can have a very explicit expression
for the zero mode part of the above expression in terms of real analytic Eisenstein
series, defined by:

E(z, ρ) := 1
2

∑
(m,n)=1

Im(z)ρ

|m+ zn|2ρ
. (C.II.4.40)

The zero-frequency mode of the gravitational threshold correction in the above ex-
ample is then given by:

Λ(0)
grav = π

90U2
2

{
15(3n− 52)U2

2 E(T, 1)− 5nU2E(T, 2)− 12(n− 24)E(T, 3)
}

+ (n− 12) Idkl .

(C.II.4.41)

In the K3× T 2 case, it reduces to:

Λ(0)
grav = 2π

3
{

5E(T, 1)− 2T−1
2 E(T, 2)

}
+ 12 Idkl . (C.II.4.42)

Positive frequency part The positive frequency part can also be written ex-
plicitely in terms of the Niebur-Poincaré series themselves, cf. eq. (C.II.4.7):

Λ(+)
grav = 1

30× 24
∑
M>0

e2iπMU1

M

{
30(3n− 52)W1,0(MU2)F(1,M, 0;T )

− 5nW2,0(MU2)F(2,M, 0;T )− 2(n− 24)W3,0(MU2)F(3,M, 0;T )
}
,

(C.II.4.43)

which reduces for K3× T 2 to:

Λ(+)
grav = 1

6
∑
M>0

e2iπMU1

M

{
5W1,0(MU2)F(1,M, 0;T )−W2,0(MU2)F(2,M, 0;T )

}
.

(C.II.4.44)
Given that W1+`,0(MU2) ∼ (MU2)−`e−2πMU2 × (polynomial in MU2), one has in
both cases a sum overM ∈ Z>0 which represents the sum over the wrapping number
of a worldsheet instanton around the two-torus fiber of the principal bundle T 2 ↪→
X

π→ S, which is of volume T2.
Even though for n < 24 the torus fiber is only a torsional two-cycle, it appears

that worldsheet instantons, corresponding to holomorphic maps from the heterotic
worldsheet to X wrapping the fiber, do contribute to the threshold corrections, for
any wrapping number.
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Would we have decided to work with the Spin(32)/Z2 heterotic string, this dis-
cussion should also be considered in the context of type I flux compactifications via
S-duality [18]. Then, the heterotic thresholds encompass both the spacetime per-
turbative and non-perturbative effects on the type I side, the latter corresponding
to Euclidean D1-branes wrapping the torus fiber.

II.4.3 Generic momentum insertion

In section II.4.2, we discussed a simple class of models for which the momentum
insertion takes a particularly simple form. Here, we want to understand in more
detail the constraint eq. (C.II.4.30).

The data of the compactification involves an even integral lattice Γl naturally
associated to the rational Narain lattice Γ2,2. In the following we denote this lattice
Γl simply by Γ. One associates to this lattice the theta function ΘΓ : H×(Γ⊗C)→
C:

ΘΓ(τ, z) =
∑
v∈Γ

eiπ(〈v,v〉+2〈v,z〉) , (C.II.4.45)

whose second argument lives in the complexification of the lattice Γ. More precisely,
the rational Narain lattice partition function involves such a theta function with
an extra characteristic µ, namely the summation vector runs over the shifted lattice
Γ+µ, where µ belongs to the discriminant group Γ?/Γ. In our situation, we actually
have two lattices involved in the compactification data, Γ and Pic(S). The inner
product on Γ is denoted 〈·, ·〉, and the one on Pic(S) is defined via the composition:

(·, ·) : Pic(S)× Pic(S)→ ∧2Pic(S)
∫
S−→ Z , (C.II.4.46)

In our situation, the second argument of the theta function actually lives in a further
extension of the lattice Γ:

ΘΓ
(
τ,
pω
2iπ

)
=
∑
v∈Γ

eiπ〈v,v〉+〈v,pω〉 , (C.II.4.47)

with pω ∈ Γ⊗Pic(S)⊗C. Hence, denoting by {ei} and {εa} a basis of Γ and Pic(S)
respectively, we have:

pω = ωia ei ⊗ εa , (C.II.4.48a)

v = vi ei , (C.II.4.48b)
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with ωia ∈ C. The matrix (ωia) specifies the data of the torus fibration, and is fixed
once and for all for a given model. (ωia) should be viewed as connecting the two a
priori independent integral even lattices Γ and Pic(S). In the above function, 〈v, pω〉
should be understood as the map Γ × (Γ ⊗ Pic(S)) → Pic(S) naturally induced by
the pairing on Γ, also loosely denoted 〈·, ·〉:

〈v, pω〉 := vigijω
ja εa , (C.II.4.49)

with g the metric on the lattice Γ, namely gij := 〈ei, ej〉, not to be confused with the
metric on the Narain lattice Γ2,2. We also define the metric d on the lattice Pic(S)
by:

dab := (εa, εb) =
∫
S
εa ∧ εb . (C.II.4.50)

Let us also define the pull-back metric:

d̃ij := ωiaωjb dab . (C.II.4.51)

Notice that we can define a natural inner product on Γ⊗Pic(S), which we denote by
a dot, in the following way: given two elements α = αia ei ⊗ εa and β = βia ei ⊗ εa,
we define:

α · β := gijdabα
iaβjb . (C.II.4.52)

Let us look at the simplified case for which
∫
S〈v, pω〉2 ∝ (n− 24)〈v, v〉, the (n− 24)

coefficient originating from the tadpole cancellation condition pω · pω = 2(n − 24).
Let us simply express the momentum insertion in terms of the lattice data in the
following way: ∫

S
〈v, pω〉2 = vivk gijgkld̃

jl = d̃ikv
ivk . (C.II.4.53)

Therefore, we see that the insertion is proportional to (n − 24)〈v, v〉 if and only if
d̃ ∝ g.

Let us give a final comment about the above defined object. One has actually
defined a pairing through the following chain of maps:

∗ :
(
Γ× Γ⊗ Pic(S)

)
×
(
Γ× Γ⊗ Pic(S)

) 〈,〉∧〈,〉−−−−→ Pic(S)× Pic(S) (,)−→ Z , (C.II.4.54)

hence endowing Γ × Γ ⊗ Pic(S) with a natural structure of integral lattice. The
momentum insertion eq. (C.II.4.53) corresponds simply to (v, pω) ∗ (v, pω). The
lattice (Γ × Γ ⊗ Pic(S), ∗) is in this sence the natural lattice keeping track of the
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principal torus fibration structure at the level of the Fu-Yau genus, enlightening the
interplay between the two even integral lattices Γ and Pic(S).

Some comments: To conclude this part, let us say that as mentioned above,
by S-duality our results apply to D-instanton corrections in orientifold compactifi-
cations with Ramond-Ramond backgrounds fluxes. A better understanding of the
physics behind these instanton corrections would involve then studying D1-instanton
probes in these flux backgrounds of type I supergravity. In [93] heterotic five-branes
wrapping the torus fiber have been studied. However the physics is not the same
because the coupling to the NS-NS flux is different. We plan to come back to this
problem in the future.

A generalization of our results to models with Abelian gauge bundle over the
total space is also worthwile considering, given that the dressed elliptic genus has
also been computed in those cases in chapter B.III. These examples are especially
important from the four-dimensional effective field-theory perspective, as the thresh-
old corrections will then be functions of the bundle moduli, while the torus moduli
are frozen to discrete values for a generic choice of torus principal bundle.
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New non-compact heterotic
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Chapter I

Introduction

As we already discussed in the previous parts, finding compact solutions to the
BPS system of equations ensuring minimal supersymmetry in spacetime is a very
difficult task. The equation originating from the variation of the dilatino field in-
deed tells us the the internal manifold X should be a balanced manifold, or more
precisely a conformally balanced manifold (due to the presence of a non-constant
dilaton field), which is a weaker condition than Kählerity. In addition, the gravitino
equation tells us that the manifold X should have a restricted holonomy with re-
spect to a connection with torsion, the Bismut connection, where the NS⊗NS field
strength plays the role of torsion. In each dimension Berger’s classification of the
possible holonomy groups on a Riemannian manifold then restricts the possible type
of geometry.

On another hand, we saw that the gaugino equation constraints the connection
on the holomorphic vector bundle E → X to be an instanton configuration. Comes
therefore the existence question of such connections on X, let alone their explicit
construction. The Donaldson-Uhlenbeck-Yau theorem then allows to rephrase this
question into the existence problem of stable holomorphic vector bundles over X.

Finally comes the Bianchi identity, which ties together the data of the NS⊗NS
flux and the connection on E. As described in the previous parts, this identity is non-
linear in the torsion flux, hence particularly difficult to deal with, and constitutes the
main obstacle in exhibiting solutions to the BPS system. We saw that apart from
the Fu-Yau solution leading to a four-dimensional flux background, new compact
torsional solutions are rare. Moreover, this identity mixes different orders in the α′

expansion, and leads to tadpole conditions which typically fix the compact manifold
to stringy size, hence making the large volume limit approximation a bit dubious.
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A strategy often adopted consists in considering non compact solutions to the
BPS system of equations, which are local approximation of compact models. In
contrast to the compact spaces they appromimate, these geometries often admit
isometries, hence one can often write the metric explicitely. In addition to providing
a richer collection of solutions, they also often allow to define a ’large charge’ limit
in which one can consistently neglect the non-linear trR ∧ R term in the Bianchi
identity.

As an illustration, consider the singular point in the K3 moduli space correpond-
ing to the standard T 4/Z2 orbifold. One obtains then a smooth surface by blowing
up each or the 16 singularities, i.e. replacing each of them by an Eguchi-Hanson
space, whose boundary is P3

R = S3/Z2. The Kähler metric on Eguchi-Hanson space
is written in terms of the SU(2) left-invariant one forms:

σ1 = cos ψ2 dθ − sin ψ2 sin θ dφ , (D.I.0.1a)

σ2 = sin ψ2 dθ − cos ψ2 sin θ dφ , (D.I.0.1b)

σ3 = 1
2dψ + cos θ dφ , (D.I.0.1c)

as:
ds2

eh = ∆−1dr2 + r2

4
(
σ 2

1 + σ 2
2 + ∆σ 2

3

)
, (D.I.0.2)

with ∆ = 1 −
(
a
r

)4, r ∈ [a,+∞], θ ∈ [0, π] and φ, ψ ∈ [0, 2π]. The Eguchi-Hanson
space has the topology of the canonical bundle OP1(−2).

This geometry corresponds therefore to the resolution of an A1 singularity, with
resolution parameter a.

In the spirit of the non-Kähler geometries studied in the previous parts, and
applying thechniques analog to those of [94], it was shown by Fu, Tseng and Yau in
[95] that two-torus principal bundles over Eguchi-Hanson space T 2 → X → OP1(−2)
with the following metric:

ds2 = ds2
1,3 + eΦ−Φ∞ds2

eh + α′U2
T2

∣∣∣dx1 + Tdx2 +
(
m1 + Tm2

)
$
∣∣∣2 , (D.I.0.3)

with the connection one-form on the base:

$ = a2

2r2σ3 , (D.I.0.4)

and equipped with a direct sum of line bundles constitute a solution of the BPS sys-
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tem and Bianchi identity, by solving the Bianchi identity with the Chern connection
for the dilaton in a ’large resolution’ limit. It was then shown in [96] instead that in
a large NS5-brane charge regime in which one can neglect the spin curvature term
in the Bianchi identity, one could define a ’double scaling limit’ by:

gs → 0 , µ = gs
√
α′

a
fixed , (D.I.0.5)

allowing to decouple the near-horizon physics from the bulk, while keeping fixed the
tension of NS5-branes wrapping the resolution cycle fixed, preventing the appearance
of new massless degrees of freedom.

The exceptional feature of this decoupled theory is that it can be shown to admit
an exact worldsheet CFT description, ensuring its status of exact solution to the full
string theory. In [96], Luca Carlevaro, Dan Israël and Marios Petropoulos built this
CFT starting from the blown down limit of the decoupled theory where the abelian
gauge instanton becomes pointlike, correponding to the so-called Callan-Strominger-
Harvey background1 further compactified on the two torus. In the blowdoan limit,
the worldsheet SCFT is therefore:

R1,3 × T 2 × R√2/k × SU(2)k/Z2 × SO(32)1|l , (D.I.0.6)

in the case of the Spin(32)/Z2 heterotic string for definiteness. The performing on
it a so-called dynamical deformation, namely a deformation by a marginal operator
with field-dependent parameters allows to consistently blow-up the resolution cycle
from the worldsheet point of view. We refer the reader to the paper [96] for details.

Later on, Luca Carlevaro and Dan Israël [97] built a genuine SU(3)-structure
non-compact heterotic solution based on the conifold equipped with a line bundle,
which was further studied in [98]2. Let us briefly recall the ansatz of [97].

In the singular geometry, the asymptotic locally Ricci-flat geometry consist in
the conifold, metric cone over T 1,1. The latter corresponds to the quotient SU(2)×
SU(2)/U(1), the U(1) being embedded symmetrically in the two SU(2) factors.
The SU(2) × SU(2) × U(1)-invariant Ricci-flat metric is written in terms of a pair
of SU(2) left-invariant one-forms with common third Euler angle ψ, (σi, σ̃i) as:

ds2
conifold = dr2 + r2

[1
6
(
σ2

1 + σ2
2 + σ̃2

1 + σ̃2
2

)
+ 1

9$
2
]
, (D.I.0.7)

1More precisely a Z2 orbifold of it.
2In this article, the ansatz was generalized allowing for a breaking of the Z2 symmetry between

the two P1’s, cf. below.
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with

$ = σ3 + σ̃3 = dψ + cos θ1dφ1 + cos θ2dφ2 (D.I.0.8)

a connection one-form. The geometry is usually desingularized in the IR by blowing

up a two or three sphere, but considering a Z2 orbifold of the conifold for which

the range of ψ is reduced to [0, 2π[ instead of [0, 4π[ allows to blow up a four-cycle

P1 × P1, leading to a geometry homeomorphic to the total space of the canonical

line bundle O(−K) → P1 × P1. The ansatz for the torsional background geometry

is conformal to such a regularized conifold:

ds2
1,9 = ds2

1,3 + 3H(r)
2

{
dr2

f(r)2 + r2

6
(
σ2

1 + σ2
2 + σ̃2

1 + σ̃2
2

)
+ r2

9 f(r)2$2
}
,

(D.I.0.9a)

H3 = α′k

6 g1(r)2(Ω1 + Ω2) ∧$ , (D.I.0.9b)

A1 = 1
4 [(Ω1 − Ω2)p + g2$q] · I , (D.I.0.9c)

with the two volume forms Ωi = sin θidθi ∧ dφi and I in the Cartan of so(32) or

e8 × e8. The dilaton also exhibit a non-constant profile. It was shown numerically

that this ansatz indeed solves the BPS equations, as well as the Bianchi identity

at leading order in the large charge limit in which p2 = q2 is large in string units

compared to the blow-up mode a characterizing the bolt, defined by f(a) = 0. One

can then decouple the physics near the bolt from the bulk by defining a limit similar

in spirit to eq. (D.I.0.5):

gs → 0 , µ = gsα
′

a2 fixed , (D.I.0.10)

where gs is the asymptotic string coupling. This leads to the following analytic

solution (we set ρ := r/a):

ds2
1,9 = ds2

1,3 + 4α′Q5
ρ2

{
dρ2

1− 1
ρ8

+ ρ2

8
(
σ2

1 + σ2
2 + σ̃2

1 + σ̃2
2

)
+ ρ2

16

(
1− 1

ρ8

)
$2
}
,

(D.I.0.11a)

H3 = α′Q5
4

(
1− 1

ρ8

)
(Ω1 + Ω2) ∧$ , (D.I.0.11b)

F = 1
4

[
(Ω1 − Ω2)p + 1

ρ4$q
]
· I , (D.I.0.11c)
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with fivebrane charge
Q5 := 1

2π2α′

∫
P3

R

H3 = k

2 . (D.I.0.12)

The dilaton behaves as:
eΦ = 2µ

H∞

(
Q5
ρ2

)
. (D.I.0.13)

It was then shown that the above solution eq. (D.I.0.11) admits an algebraic de-
scription in terms of a coset CFT:

SL2(R)k/2 ×
SU(2)k×SU(2)k

U(1)l

U(1)l × U(1)r
, (D.I.0.14)

together with the flat CFT R1,3, the left-moving heterotic affine algebra, and a
ghost-superghost system. Such a description in principle allows to include all the
loop corrections order by order, turning the theory into a full heterotic solution,
even away from the large-charge limit.





Chapter II

Heterotic flux solutions from Sasaki-
Einstein manifolds

II.1 Expression of the ansatz

This chapter is built out of the article to appear: Heterotic Flux Solutions From

Sasaki-Einstein Manifolds, with Nick Halmagyi, Dan Israël and Eirik Eik Svanes.

Let us try and generalize the above constructions. We introduce a Sasaki-

Einstein manifold M of real dimension 2n − 1, build from an S1 fibration over a

Kähler-Einstein (n−1)-fold base Bn−1. The metric on the Sasaki-Einstein manifold

reads:

gM = gB +$ ⊗$ , (D.II.1.1)

with

$ := dψ −A (D.II.1.2)

a connection one-form, A being the Kähler potential one-form on the base B (The

Kähler form reds JB = 2dA). It is known that the metric cone X := C(M) is then

a non-compact Calabi-Yau n-fold, with standard metric:

gX = dr ⊗ dr + r2gM . (D.II.1.3)

Drawing lessons from the above described heterotic solutions, we propose the fol-
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lowing ansatz for a heterotic flux background:

ds2
1,9 = ds2

1,9−2n +H(r)
{

dr2

f(r)2 + r2
(
ds2

B + f(r)2

n2 $2
)}

, (D.II.1.4a)

F = F̂ + d [g(r)$] q · I (D.II.1.4b)

with F̂ an instantonic gauge field on a holomorphic vector bundle Ê living purely

on the Kähler-Einstein base, and g a function to be solved for by the Hermite-

Yang-Mills equations. The metric ansatz involves two functions, f and H, which

we will refer to as the squashing function and the warping function respectively.

The internal geometry is therefore conformal to a regularized metric cone over the

Sasaki-Einstein manifold M .

Let us define the following holomorphic vielbein:

E1 =
√
H(r)
f(r) dr + i

rf(r)
n

√
H(r)$ , (D.II.1.5a)

Ea = r
√
H(r)Êa , (D.II.1.5b)

with {Ea}a=2,...,n holomorphic vielbein on the Kähler-Einstein base B.

Let us recall the BPS constaints in this context, completely similar to those

derived in the introduction of this thesis, in section A.II.2. The internal manifold

data should satisfy:

d
(
e−2ΦJn−1

)
= 0 , (D.II.1.6a)

d
(
e−2ΦΩ

)
= 0 . (D.II.1.6b)

The three-form flux is given by:

H3 = ?e2Φd
(
e−2ΦJn−2

)
, (D.II.1.7)

and finally, the vector bundle should satisfy the zero-slope Hermite-Yang-Mills equa-

tions:

F ∧ Jn−1 = 0 , (D.II.1.8a)

F (2,0) = F (0,2) = 0 . (D.II.1.8b)
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As usual, one should add to this system the heterotic Bianchi identity:

dH3 = α′

4 (trR ∧R− trF ∧ F ) . (D.II.1.9)

We will also require the existence of a ’large-charge’ limit, allowing to neglect con-
sistently the term involving the curvature of the spin connection. In the case where
connection F̂ on the Kähler-Einstein base is abelian, such a large charge limit can be
defined easily, similarly to the Eguchi-Hanson or conifold cases. However, it seems
more difficult to define such a limit for non-abelian bundles, as we will discuss below.

In terms of our complex vielbein basis eq. (D.II.1.5), the Kähler form and holo-
morphic n-form read:

J = 1
2i

n∑
i=1

Ei ∧ Ē ı̄ , (D.II.1.10a)

Ω = E1 ∧
n∧
a=2

Ea , (D.II.1.10b)

which when injected into the BPS equations together with the gauge connection
yield the following expressions for the three-form flux and dilaton in terms of the
ansatz functions:

H3 = −r
3f2H ′

n
$ ∧ JB , (D.II.1.11a)

e2(Φ−Φ0) = Hn−1 , (D.II.1.11b)

as well as the following pair of non-linear first order ODEs:

(
logH2−nr2nf2

)′
= 2n
rf2 , (D.II.1.12a)

r3f2H ′

n
= −α

′

2
(
τ2 − q2g2

)
. (D.II.1.12b)

The Hermite-Yang-Mills equations allow to obtain exactly the function g:

g(r) =
(
a

r

)2(n−1)
(D.II.1.13)

completely fixed by the Hermite-Yang-Mills eqs. (D.II.1.8a) and (D.II.1.8b). We
have actually made a very strong assumption concerning the bundle Ê over the
Kähler-Einstein base, namely that in addition to being a holomorphic stable vector
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bundle, its Hermite-Yang-Mills connection G also satisfies:

tr F̂ ∧ F̂ = −τ2JB ∧ JB , (D.II.1.14)

with τ a constant which can be made arbitrarily large. This requirement of course
originates from imposing the Bianchi identity in a large charge limit, leading to
eq. (D.II.1.12b). We will suppose that this assumption is valid, leaving the proof of
existence for a later work.

Case n=2:
Let us consider the particular case where n = 2. Let us recall that a (2n −

1)-dimensional Sasakian manifold (M,gM ) can only satisfy the Einstein equation
RicgM = µgM for µ = 2(n− 1). In particular it has positive Ricci curvature. In the
case n = 2, one recovers the conformally Eguchi-Hanson solution. In this case, the
condition eq. (D.II.1.14) is empty since JB ∧ JB vanishes identically on the base.
One can solve the above system exactly for the warping and squashing functions.
The solution for f is:

f(r)2 = 1−
(
a

r

)4
(D.II.1.15)

allowing to reduce the equation for H to a Laplace equation on Eguchi-Hanson:

∆ehH(r) = −2α′a4q2

r8 , (D.II.1.16)

which is generically solved by the following function preserving the SU(2) × U(1)
isometry:

H(r) = 1 + α′q2

4r2 + α′
(
q2 + C

)
8a2 log

(
(r/a)2 − 1
(r/a)2 + 1

)
, (D.II.1.17)

with C an integration constant. Defining the following radial variable

r

a
=: 1 + ε , (D.II.1.18)

one can probe the local behaviour of the solution near the horizon:

H (a(1 + ε)) '
ε→0+

α′
(
q2 + C

)
8a2 log ε . (D.II.1.19)

Such a logarithmic divergence at the bolt can prevented by choosing C = −q2.
Otherwise, the logarithmic divergence signals the presence of fivebranes smeared on
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the resolution two-sphere. In the limit where the blowup parameter is sent to zero,
this solution reduces to a Z2 orbifold of the CHS background [99].

Case n=3:

In the case of a Kähler-Einstein 2-fold B2, one can choose for instance the following
homogeneous spaces:

P1 × P1 = SU(2)
U(1) ×

SU(2)
U(1) , (D.II.1.20a)

P2 = SU(3)
U(2) , (D.II.1.20b)

the first one leading to nothing else but the cone over T 1,1/Z2. In that case, the
question of the existence of a stable holomorphic vector bundle satisfying the con-
staint:

tr F̂ ∧ F̂ = −τ2JB ∧ JB , (D.II.1.21)

is solved, and precisely corresponds to the line bundles discussed for instance in
[97, 98]. The singular Ricci-flat conifold indeed has two harmonic two-forms which
are inherited by the resolved geomtry by a four-cycle O(−K)→ P1×P1, and which
read locally:

$1 = 1
4d (cos θ1dφ1 − cos θ2dφ2) , (D.II.1.22a)

$2 = a2

4π d
(
$

r4

)
. (D.II.1.22b)

The gauge field strength in this context therefore reads:

F = π ($1p +$2q) · I . (D.II.1.23)

Let us come back to the generic n case. It is very interesting to notice that
our ansatz may actually allow for a non-zero slope of the stable holomorphic vector
bundle Ê on the base B. Indeed, let us suppose that the curvature F̂ of the Hermite-
Yang-Mills connection on Ê satisfies:

F̂ ∧ Jn−2
B = c

n− 1 J
n−1
B idÊ , (D.II.1.24)
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where the purely imaginary number c is proportional to the slope:

c = −2iπn
µ
(
Ê
)

∫
B J

n−1 . (D.II.1.25)

Let us at this stage that the slope a holomorphic vector bundle E over a complex
n-fold X is defined in terms of its first Chern class by:

µ(E) = deg(E)
rk(E) =

∫
X c1(E) ∧ Jn−1

rk(E) . (D.II.1.26)

Starting from the ansatz eq. (D.II.1.4b), let us try and solve for g. Recall that on
the cone

J = −1
2d(r2$) = −rdr ∧$ + r2JB , (D.II.1.27)

implying that (only two terms survive in the Newton binomial formula):

Jn−1 = r2n−2
(
Jn−1
B − (n− 1)d(log r) ∧$ ∧ Jn−2

B

)
. (D.II.1.28)

One therefore has:

F ∧ Jn−1 = 0⇔
(
Jn−1
B − (n− 1)d(log r) ∧$ ∧ Jn−2

B

)
∧

∧
(
F̂ + (g′dr ∧$ − 2gJB)q · I

)
= 0

⇔
[
(rg′ + 2(n− 1)g)q · I − c idÊ

]
d(log r) ∧$ ∧ Jn−1

B = 0

⇔ (rg′ + 2(n− 1)g)q · I − c idÊ = 0 .
(D.II.1.29)

Therefore, provided that q·I = q idÊ for some charge q, we can solve for the function
g:

g(r) =
(
a

r

)2(n−1)
+ c

2(n− 1)q , (D.II.1.30)

naturally generalizing eq. (D.II.1.13).

II.2 Numerical solution for vanishing slope

It is quite convenient to work with the following radial coordinate:

ρ := r

a
. (D.II.2.1)
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We set:

k := τ2 = q2 . (D.II.2.2)

Let us also define the following large charge expansion parameter:

λ := a2

α′k
. (D.II.2.3)

Massaging a bit eqs. (D.II.1.12a) and (D.II.1.12b), we obtain:

f2H ′ + n

2λ
1
ρ3

(
1− 1

ρ4(n−1)

)
= 0 , (D.II.2.4a)

nρ2H
(
f2 − 1

)
+ ρ3ff ′H + n(n− 2)

4λ

(
1− 1

ρ4(n−1)

)
= 0 . (D.II.2.4b)

This system cannot be solve analytically for n > 2, and needs to be integrated

numerically. We impose that the warping function is asymptotically constant, as one

may expect from a brane solution in supergravity. One can find in sections D.II.2

and D.II.2 the plots of the numerical solutions for this system in the case n = 3.
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Figure II.1: Plot of the numerical solution for the squashing function f(ρ)2 with
parameter λ = 0.0001 on the left and λ = 0.01 on the right.

The squashing function vanishes at the bolt ρ = 1 and tends to the asymp-

totic value 1. Our solutions therefore interpolate between squashed resolved cone

over Sasaki-Einstein manifolds, and a standard Ricci-flat background asymptoti-

cally, where one recovers a the Einstein orbifold M/Z2, the modding out by Z2

being required for regularity of the solution at the bolt, cf. section D.II.3 below.

At finite radial coordinate, the geometry is squashed by the non-trivial profile of f ,

hence in non-Kähler, which as we saw corresponds to the presence of torsion.
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Figure II.2: Plot of the numerical solution for the warping function H(ρ) with
parameter λ = 0.01.

The warp factor behaves like

H(ρ) ∼
ρ∼1

1 + n

λρ2 , (D.II.2.5)

near the bolt. In the blowdown limit, the conformal factor therefore diverges in the
IR, the conical singularity therefore corresponds to a strong coupling singularity.
This signals the presence of NS5-branes wrapping the vanishing cycle, and corre-
sponding to the limit where the gauge bundle characterized by the charge vector q
becomes point-like.

II.3 Regularity of the solution for non-vanishing slope

Let us check that this one-parameter generalization of the ansatz does not spoil
its regularity at the bolt. Recall that we obtained the following coupled system of
first order differential equations:

(
logH2−nr2nf2

)′
= 2n
rf2 , (D.II.3.1a)

r3f2H ′ ∝ −τ2 + q2g2 , (D.II.3.1b)

with τ2 defined by:
tr(F̂ ∧ F̂ ) = −τ2 JB ∧ JB . (D.II.3.2)
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The charges q and q are related by 2q2 = rk(Ê)q2. The radius at the bolt is defined
by the requirement that limr→rb f(r) = 0. Supposing that H(rb)H ′(rb) 6= 0, this
leads to:

q2g2(rb) = τ2 . (D.II.3.3)

The radius at the bolt is therefore defined as the real positive root of the following
equation:

q2

( a
rb

)2(n−1)
+

√
rk(Ê)

2
c

2(n− 1)||q||2

2

= τ2 . (D.II.3.4)

One obtains the following expression for the radius at the bolt:

rb = a

 τ

||q||
−

√
rk(Ê)

8
c

(n− 1)||q||2

−
1

2(n−1)

, (D.II.3.5)

which is real provided

c2 ≤ 8τ
2(n− 1)2

rk(Ê)
. (D.II.3.6)

The Bogomolov-Lübke inequality ensures that this is indeed always the case1.

Now, rewriting eq. (D.II.3.1a) as:

(f2)′ = 2n
r
− 2n

r
f2 + (n− 2)H

′

H
f2 , (D.II.3.7)

gives the following limit:
lim
r→rb

(f2)′ = 2n
rb
, (D.II.3.8)

showing that f2 behaves in the vicinity of the bolt as:

f2(r) = 2n r − rb
rb

+O
((

r − rb
rb

)2
)
. (D.II.3.9)

We see that the resolved cone metric contains a piece proportional to

f−2dr2 + r2f2

n2 dψ2 . (D.II.3.10)

Let us make the change of variable dρ = f−1dr. In the vicinity of the bolt, this

1The Bogomolov-Lübke inequality gives actually the even stronger condition c2 ≤ τ2(n−1)2

rk(Ê) .
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corresponds to setting:

ρ :=

√
2rb(r − rb)

n
, (D.II.3.11)

leading again in the vicinity of the bolt to:

dρ2 + ρ2dψ2 , (D.II.3.12)

proving the absence of conical singularity at the bolt provided the range of the angle
ψ is restricted to [0, 2π).

II.4 Near-horizon solution

One can obtain an analytic solution in a certain double scaling limit:

gs → 0 , µn := gsα
′n−1

2

an−1 , (D.II.4.1)

with the asymptotic string coupling defined by:

gs := eΦ0H
n−1

2∞ . (D.II.4.2)

In this limit, one isolates the physics near the horizon, by decoupling the physics
in the IR from the asymptotic region and fixing the heterotic fivebrane tension µn.
One obtains:

H(ρ) = n

λρ2 , (D.II.4.3a)

f(ρ) = 1
2

√
1− 1

ρ4(n−1) , (D.II.4.3b)

leading to the following line element:

ds2
1,9 = ds2

1,9−2n + nα′k

ρ2

 dρ2

1
4

(
1− 1

ρ4(n−1)

) + ρ2
[
ds2

B + 1
4n2

(
1− 1

ρ4(n−1)

)
$2
] .

(D.II.4.4)
The dilaton reads:

eΦ = µn

H
n−1

2∞

k
n−1

2

ρn−1 , (D.II.4.5)
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and the three-form flux:

H(3) = −α
′k

4

(
1− 1

ρ4(n−1)

)
$ ∧ JB . (D.II.4.6)

This near-horizon solution (in the case n = 3) coincides nicely for values of ρ
close to 1 with the asymptotically flat supergravity solution found numerically in the
previous section, provided the large charge expansion parameter λ is small compared
to 1.

We observe that the blow-up mode a was completely absorbed in the double-
scaling parameter µn, similarly to what happens for Eguchi-Hanson [96] and the
conifold [97, 98]. The double-scaling parameter therefore defines the effective cou-
pling in the double-scaling limit.

Holography:

Let us make a quick comment which would require more work to be devel-
opped further. We see that both in the asymptotically Ricci-flat case and in the
double-scaling limit solution, the dilaton field is asymptotically linear, suggesting
the existence of a holographic description of these supergravity solutions, as argued
in [100], and generalizing the standard heterotic fivebrane setup [101]. The dual
theory should be a N = 1 little string theory [102] living on the extended dimen-
sions of the worldvolume of the fivebranes wrapped on the resolution cycle. These
fivebranes can in some sense be considered in analogy with fractional D3-branes in
the type II solutions.

II.5 Towards solving the Bianchi identity

Let us now discuss some ideas towards solving the existence question of stable
holomorphic vector bundles over the Kähler-Einstein B which we now take to be of
complex dimension n. In the following we drop the tildes above the bundle data on
B, we also drop the subscript B on the fundamental form JB.

In order to tackle the question of whether a holomorphic vector bundle E (with
stucture groupG) over a Kähler-Einstein projective baseB, equipped with a Hermite-
Yang-Mills connection A, further satisfying the very restrictive property that its sec-
ond Chern character is proportional to J∧J , where J is the fundamental form on B.
We denote by dA the covariant exterior derivative (which locally reads dA = d+A)
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and F = dAA the curvature of the connection. In the following we will write
Ωp,q :=

∧p,q T ?X for the bundle of (p, q)-forms on X.

Let us introduce the Lefschetz operator:

L : Ωp,q(X)→ Ωp+1,q+1(X)

α→ J ∧ α .
(D.II.5.1)

Let us also introduce the dual Lefschetz operator Λ = ∗−1L ∗. We recall that a
(p, q)-form ω is said to be primitive if it is orthogonal to the Kähler form, namely
Λ(ω) = 0, i.e. it is not of the form L(ρ) for some (p− 1, q − 1)-form ρ.

As stated above, we equip the holomorphic vector bundle E with a Hermite-
Einstein structure. The curvature F therefore satisfies:

J yF = c idE , (D.II.5.2)

with c a purely imaginary number proportional to the slope of E:

c = −2iπ n µ(E)∫
B J

n
, (D.II.5.3)

where the slope is defined by eq. (D.II.1.26):

µ(E) = deg(E)
rk(E) =

∫
B c1(E) ∧ Jn−1

rk(E) . (D.II.5.4)

The slope therefore quantifies the non-primitivity of the curvature.

Let us split F into a primitive part F̃ and a non-primitive part:

F = F̃ + αJ idE . (D.II.5.5)

Applying Λ on both sides and using eq. (D.II.5.2) then fixes α = c/n. One therefore
has:

F ∧ F =
(
F̃ + αJ idE

)
∧
(
F̃ + αJ idE

)
= F̃ ∧ F̃ + 2αJ ∧ F̃ + α2 J ∧ J idE ,

(D.II.5.6)

leading for the trace to the following quadratic polynomial in the slope:

− 8π2ch2(E) = tr
(
F̃ ∧ F̃

)
+ 2αJ ∧ tr

(
F̃
)

+ rk(E)α2 J ∧ J . (D.II.5.7)
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The second term in eq. (D.II.5.7) belongs to Γ
(
B,P1,1(B)⊗ End(E)

)
, where Pp,q(B)

denotes the bundle of primitive (p, q)-forms. The first term belongs to
Γ
(
B, diag

(
P1,1

)
⊗ End(E)

)
, where the sections of diag (Pq,q(B)) are of the type

ω ∧ ω, with ω a section of Pq,q(B). Therefore, no accidental cancellation of these
two terms may occur.

Let us mention that we haven’t used the fact that B is Kähler-Einstein, namely
that the curvature of the Levi-Civita connection on the holomorphic tangent bundle
itself satisfies:

J yR = λ idTB , (D.II.5.8)

for some purely imaginary constant λ, proportional to the slope of the holomorphic
tangent bundle TB.

Let us now introduce the degree operator H:

H =
2n∑
k=0

(k − n)pk , (D.II.5.9)

where pk :
∧• T ?B → ∧k T ?B is the projection on the kth pure component. The triplet

(L,Λ, H) then satisfy the sl2(C) commutation relations. Let us therefore decompose
the first term of eq. (D.II.5.7) into its irreducible components:

tr
(
F̃ ∧ F̃

)
:= β4 + J ∧ β2 + β0J ∧ J , (D.II.5.10)

where β4,β2 and β0 are respectively a primitive (2, 2)-form, (1, 1)-form and function.
Translating the familiar representation theory of sl2(C) to the present reducible
representation on the exterior algebra

∧• T ?B, we can see that irreducible represen-
tations, labelled by j, are given by:

0 ≤ j ≤ n

2 ,

−2j + n ≤ k ≤ 2j + n ,
(D.II.5.11)

with j jumping by half-integer units, and k jumping by even integer units (repre-
senting the degree of the form). Therefore, sl2(C) representation theory gives us the
following decomposition into irreducible representations in various dimensions :

n = 2 : Ω2,2 = L2
(
P 0,0

)
, (D.II.5.12a)

n = 3 : Ω2,2 = L
(
P 1,1

)
⊕ L2

(
P 0,0

)
. (D.II.5.12b)
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Indeed, let us see what happens for n = 3. In this case, one has the following
irreducible representations:

j = 0 : 3 ≤ k ≤ 3 ,

j = 1/2 : 2 ≤ k ≤ 4 ,

j = 1 : 1 ≤ k ≤ 5 ,

j = 3/2 : 0 ≤ k ≤ 6 .

(D.II.5.13)

Therefore collecting the various k = 4 components, we get:

Ω4 = L
(
P 2
)
⊕ L2

(
P 0
)
. (D.II.5.14)

Moreover, since the decomposition respects the Dolbeault grading, we indeed get eq.
(D.II.5.12a). Combining eq. (D.II.5.10) and eq. (D.II.5.7), one therefore obtains
that:

n = 2 : − 8π2ch2(E) =
(
β0 + rk(E)α2

)
J ∧ J , (D.II.5.15a)

n = 3 : − 8π2ch2(E) =
(
β0 + rk(E)α2

)
J ∧ J +

(
β2 + 2αtrF̃

)
∧ J , (D.II.5.15b)

where β0 and β2 are "Clebsch-Gordan coefficients" obtained from F̃ .
Therefore, we see that in the case of a Calabi-Yau 3-fold cone X, we have the second
Chern character of the vector bundle ch2(E) is proportional to J ∧ J , and can be
made arbitrarily large provided that we can construct holomorphic stable vector
bundles of arbitrarily large degree on a Kähler-Einstein surface.

If we therefore decide to focus on complex surfaces, we then see with a bit of
sl2(C) representation theory that

− 8π2ch2(E) = tr(F ∧ F ) ∝ J ∧ J , (D.II.5.16)

regardless of the fact that the slope is null or not. Provided we restrict ourselves
to surfaces which are algebraic, we can then invoke the main result of Li and Qin
in [103], which ensures the nonemptiness of the moduli space of slope-stable rank-r
vector bundle with first Chern class c1 and large enough second Chern class c2 (and
with determinant given by a line bundle L used to make the construction), hence
ensuring the existence of some sort of "large charge limit", even in the non-abelian
case. Once again, this is independent of the value of the slope. Slope considerations
may enter into the game for higher dimensional base, for which the decomposition
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of forms into irreducible sl2(C) components gives less sharp results. One direction
could be to exploit the polynomial structure in the slope of eq. (D.II.5.7), and restrict
to large-slope bundle in order to suppress the terms which are not proportional to
J ∧J . Remains however open the question of finding such bundles further satisfying
the property that the second Chern character is proportional to J ∧J with constant
proportionality factor, i.e. not a function of the base coordinates.

An approach to study this question could be to restrict ourselves to homogeneous
spaces for the Kähler-Einstein base and homogeneous vector bundles over it [104–
106].

More generically, this question can be rephrased in terms of the obtruction for
a Chern class form to be harmonic. There is a large mathematical litterature where
this kind of questions arise, and the good tools to look at seem to be the so-called
Futaki invariants and K-energy functionals [107,108]. This subtle question is left for
later work.

II.6 Towards a GLSM description

This section corresponds to a very preliminary work on the worldsheet aspects
of the above describe heterotic solutions.

It would be extremely interesting to extend the analysis of [96, 97] in order to
provide an exact worldsheet CFT description of some new heterotic backgrounds
described above. Such techniques should be extendable for instance in the case of a
Kähler-Einstein base

SU(3)
U(1)2 . (D.II.6.1)

We will try to explore such worldsheet CFT description in the near future.
Independently of knowing or not the exact worldsheet CFT underlying the het-

erotic flux backgrounds of interest, and drawing lessons from the previous parts of
the thesis, it would be extremely interesting to exhibit a gauged linear sigma model
description, since it could capture at least part of the physics.

In particular, these GLSMs could allow to compute topological quantities such
as the elliptic genus, even without knowing the exact CFT.

II.6.1 Toric realization of Eguchi-Hanson OP1(−2)

We consider a 2-dimensional a fairly standard U(1) gauge theory in (0, 2) super-
space with chiral superfields X1, X2, X0, P,Φ and Fermi superfields Λ,Γ,ΓΦ. The
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pair (Φ,ΓΦ) is a couple of spectator fields, becoming massive in the IR, and whose
role is described in section B.I.2. Apart from the kinetic terms and minimal coupling
of the matter fields to the gauge multiplet, the Lagrangian contains the following
superpotential:

Lj =
∫

dθ
( 1√

2
ΓPX0 +mΦΦΓΦ

)
, (D.II.6.2)

the idea being that when the field X0 develops a vev, the fields P and Γ become
massive, with a mass large compared to the gauge coupling e. Once integrated
out [109], the effective action at one-loop contains a term of the form

i (QP −Qγ)
16π

∫
d2σdθΥ log(X0) , (D.II.6.3)

which is precisely the type of field-dependent Fayet-Iliopoulos coupling leading to a
non-trivial torsion flux.

We impose the following charge assignement to the fields:

X1 X2 X0 Λ P Γ Φ ΓΦ

U(1) 1 1 −2 q Q 2−Q −Q Q

U(1)l 0 0 0 1 q/2 −q/2 0 0
U(1)r 0 0 0 0 1 0 1 0

(D.II.6.4)

where
Q = q2

4 −
1
2 . (D.II.6.5)

We recall that U(1)r flow in the IR to the R-symmetry of the right-moving N = 2
superconformal algebra. The complete freedom on the choice of charge q corresponds
from the worldsheet point of view to the existence of a large charge limit. This charge
assignements solves the whole set of anomaly cancellation conditions, is such that
the superpotential is classically invariant under the various U(1) symmetries and
gives c̄ = 6 for the right moving central charge, and r = 1 for the rank. The left-
moving central charge is given by c = 2

3 c̄ + r = 5. We again refer the reader to
section B.I.2 for the generic discussion on (0, 2) GLSMs.

By studying the vacuum manifold of this theory defined by the zero locus of
the D-term constraint modded out by the action of gauge group, one sees that this
GLSM describes in the IR of the large FI parameter phase a NLSM with target a
rank 1 vector bundle over T ?P1 , as required.
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II.6.2 ALE elliptic genus

Let us proceed to the computation of the elliptic genus, for which we can rely

on [33]. The full one loop determinant reads:

Σ1−loop = −η4 θ1 (qu+ z) θ1
(
(2−Q)u− q

2z
)

θ1 (u)2 θ1 (2u− z) θ1
(
−Qu− q

2z
) , (D.II.6.6)

where we dropped the modular argument of the odd Jacobi theta functions. We

compute the elliptic genus in the phase defined by the fields P and X0, i.e. we choose

in M−sing (as in eq. (B.II.3.26)), and we explicitely perform the contour integral in

the u-plane. The poles are located at:

u = k + τ l + z

2 , k, l ∈ {0, 1} , (D.II.6.7a)

u =
k + τ l + q

2z

|Q|
, k, l ∈ {0, . . . , |Q| − 1} . (D.II.6.7b)

Recall that that we have the following residue:

∮
u=k+τl

du 1
θ1(u) = i(−1)k+leiπl

2τ

η3 , (D.II.6.8)

from which we finally obtain the following holomorphic expression:

Zell = iη(τ)
{

1
2

1∑
k,l=0

(−1)k+l+1eiπl
2τ
θ1
( q

2(k + τ l + z) + z
)
θ1
(

2−Q
2 (k + τ l + z)− q

2z
)

θ1
(
k+τl+z

2

)2
θ1
(
Q
2 (k + τ l + z)− q

2z
) +

+ 1
|Q|

|Q|−1∑
k,l=0

(−1)k+l+1eiπl
2τ
θ1
(
q
|Q|(k + τ l + q

2z) + z
)
θ1
(

2−Q
|Q| (k + τ l + q

2z)−
q
2z
)

θ1

(
k+τl+ q

2 z

|Q|

)2
θ1
(

2
|Q|(k + τ l + q

2z)− z
)

}
.

(D.II.6.9)

Alternatively, it would be extremely interesting to write a GLSM describing the

double-scaling limit of the warper Eguchi-Hanson solution. It would allow to make

the connection with the existing litterature discussing the non-compact elliptic gen-

era of the corresponding CFT and their interesting relations to Mock modular forms,

see [58,59,110,111] for instance.
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II.6.3 Toric realisation of the resolved conifold OP1×P1(−K)

We consider a 2-dimensional U(1)2 gauge theory in (0, 2) superspace with chi-

ral superfields X1, X2, X3, X4, X0, P,Φ and Fermi superfields Λa,Γ,ΓΦ. The pair

(Φ,ΓΦ) is a couple of spectator fields, becoming massive in the IR. As in the case of

warped Eguchi-Hanson, the Lagrangian contains the following superpotential:

Lj =
∫

dθ
( 1√

2
ΓPX0 +mΦΦΓΦ

)
. (D.II.6.10)

Mimicking the Eguchi-Hanson case, we consider the following charge assignement:

X1 X2 X3 X4 X0 Λa P Γ

U(1) 1 1 −1 −1 0 qa 0 0
Ũ(1) 1 1 0 0 −2 q̃a Q̃ 2− Q̃
U(1)l 0 0 0 0 0 Qa

1
2
∑
a q̃aQa −1

2
∑
a q̃aQa

U(1)r 0 0 0 0 0 0 1 0
(D.II.6.11)

where:

Q̃ = 1
4
∑
a

q̃2
a −

1
2 . (D.II.6.12)

The charges of the Λa multiplets should satisfy the following Diophantine equations:

∑
a

q2
a = 4 ,

∑
a

qaq̃a = 2 ,
∑
a

qaQa = 0 ,
∑
a

Q2
a = 2 , (D.II.6.13)

imposing the minimal number of Fermi multiplets Λa to be 3. One example of charge

assignement satisfying the above conditions is:

(q1, q2, q3) = (0, 0, 2) ,

(q̃1, q̃2, q̃3) = (q̃1, q̃2, 1) ,

(Q1, Q2, Q3) = (1, 1, 0) . (D.II.6.14)

One can check that the above charge assignement leads to the right central charges,

i.e. (c, c̄) = (6 + r, 9), with a rank r = 2 gauge bundle, and is such that the various

anomalies and mixed anomalies vanish.
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II.6.4 Asymptotically Ricci-flat elliptic genus

We compute the elliptic genus of the model described above using the result
obtained in [34] extending the computation of the elliptic genus for a higher rank
worldsheet gauge group and giving the index as a sum of Jeffrey-Kirwan residues.
The refer the reader to the later article for details, especially concerning the defini-
tion of the Jeffrey-Kirwan residue.

One introduces the following charge vectors:

Q1,2 =
(

1
1

)
, Q3,4 =

(
−1
0

)
, Q0 =

(
0
−2

)
QP =

(
0
Q̃

)
, (D.II.6.15)

all belonging to the dual h∗ of the Cartan algebra h ' R2, and defining the various
’phases’ of the GLSM, cf. fig. II.3.

r

r̃

Q3,4

Q1,2

Q0

QP

III

IV

II

I

Figure II.3: ’Phases’ of the GLSM

The constraints obtained from D-terms are:

|X1|2 + |X2|2 − |X3|2 − |X4|2 = r (D.II.6.16)

|X1|2 + |X2|2 − 2|X0|2 + Q̃|P |2 = r̃ , (D.II.6.17)
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or taking the difference of the two equations:

|X1|2 + |X2|2 − 2|X0|2 + Q̃|P |2 = r̃ , (D.II.6.18)

|X3|2 + |X4|2 − 2|X0|2 + Q̃|P |2 = r̃ − r , (D.II.6.19)

from which we see that the phases II and III have the interpretation of geometric
phases. The one-loop determinant associated to a (0, 2) chiral multiplet Xi and
Fermi multiplet Λa are respectively:

ZXi(τ, u, ũ, z) = i e
− π
τ2

(υ2−υῡ) η(τ)
θ1(τ |υ) , υ = qiu+ q̃iũ+Qiz , (D.II.6.20)

ZΛa(τ, u, ũ, z) = i e
π
τ2

(υ2−υῡ) θ1(τ |υ)
η(τ) , υ = qau+ q̃aũ+Qaz . (D.II.6.21)

In the case of an abelian worldsheet gauge group of rank n, the contribution from
the (0, 2) gauge multiplet (V,A) is:

ZV,A(τ, u, ũ, z) =
(
−2iπη(τ)2

)n n∧
k=1

duk . (D.II.6.22)

Putting all this together, one obtains for the full one-loop determinant:

Σ1-loop = −i (2iπ)2 η5
θ1
(
(2− Q̃)ũ

)∏
a θ1 (qau+ q̃aũ+Qaz)

θ1 (u+ ũ)2 θ1 (−u)2 θ1 (−2ũ) θ1
(
Q̃ũ+ 1

2
∑
a q̃aQa z

) du ∧ dũ ,

(D.II.6.23)
where we dropped everywhere the first argument of the odd Jacobi theta functions
for clarity. The different chiral superfields define the following singular hyperplanes:

H1,2 =
{

(u, ũ) ∈ hC | u+ ũ = 0
}
, (D.II.6.24)

H3,4 =
{

(u, ũ) ∈ hC | − u = 0
}
, (D.II.6.25)

H0 =
{

(u, ũ) ∈ hC | − 2ũ = 0
}
, (D.II.6.26)

HP =
{

(u, ũ) ∈ hC | Q̃ũ+ 1
2
∑
a

q̃aQa z = 0
}
. (D.II.6.27)

A real slice of this hyperplane arrangement is represented in fig. II.4 for the case
where Q̃ = 2.

The elliptic genus reads:

Zell(τ, z) =
∑

u?∈Msing

JK-Res
u=u?

(Q(u?), η) Σ1-loop , (D.II.6.28)
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H3,4

HP

H0

H1,2

Figure II.4: Real slice of the hyperplane arrangement. Identifications by shift of
elements of the worldsheet torus lattice are understood.

where Q(u?) is the set of charges giving the pole u∗, and η is a vector in h∗ indicated
in which phase the index is computed. The result should not depend on the cone in
which η belongs, or subchamber in a given cone.

One can for instance consider the phase IV, defined y the hyperplanes HP and
H3,4 (cf. fig. II.3) for definiteness. This phase has the advantage to be non degener-
ate, in the sense that two and only two hyperplanes meet at each pole. One obtains
the final expression:

Zell =η2
Q̃−1∑
k,l=0

(−1)k+leiπl
2τ×

×

θ1
(
(2− Q̃)ũ

)
θ1 (−2ũ)

∮
du
∏
a θ1 (qau+ q̃aũ+Qaz)
θ1 (u+ ũ)2 θ1 (−u)2


∣∣∣∣∣∣
ũ= 1

Q̃
(k+τl− 1

2
∑

a
q̃aQaz)

.

(D.II.6.29)

The residue at the second order poles u = − 1
Q̃

(
k + τ l − 1

2
∑
a q̃aQaz

)
can then

be computed exactly. In the same spirit as the derivation by localization of sec-
tion B.II.3, the result computed in the various phases actually gives different repre-
sentations of the same object.

Once again, it would be very interesting to exhibit a GLSM descibing the double-
scaling limit solution.





Conclusion and outlook

We were interested in this thesis to various aspects of heterotic compactifications
with torsion flux. In part B we defined and computed the dressed elliptic genus for
N = 2 Fu-Yau compactifications. It would be extremely interesting to study in more
details the mathematical aspects related to the dressed elliptic genus, in particular
its nature as the generated function for the indices of some Dirac-like operator
graded by the left momentum pl. It would also be interesting to understand better
its nature as a modular object, since even though it’s shape is can be somehow
reminiscent of what is known in the literature as skew-holomorphic Jacobi forms, as
defined by Skoruppa [76], it fails to be one of these by not satisfying a heat equation.

A direction towards such a better mathematical understanding would be to study
deeper the interplay between the two self-dual lattices Γl and Pis(S). We initiated
this study in section II.4.3. We also believe that such a better understanding may
be of some interest in what concerns the threshold corrections to the gauge and
gravitational couplings in the low energy 4-dimensional supergravity action that we
computed in chapter C.II, maybe by allowing to simplify their computation is the
spirit of what we did in section II.4.2, but this time for a generic model.

It would be interesting to better determine the moonshine properties possibly
hidden in the Fu-Yau dressed elliptic genus. In particular, it would be interesting to
understand better if the latter could be understood as some sort of twining partition
function, beyond its similarity with the results of Gaberdiel [45]. A non negligible
obstacle to this program is the explicit momentum depence of all the integer coef-
ficients. One could therefore inspect the expression of the coefficients for a specific
model, and a given point in Γl.

As we already mentioned, genuine compact SU(3)-structure vacua of the het-
erotic string a quite rare. It would be very interesting to be able to discover new
solutions to the BPS system of equations and Bianchi identity, for instance by trying
to fiber higher-genus Riemann surfaces over positive curvature compact algebraic
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surfaces. The absence of continuous isometries of higher genus Riemann surfaces
seems to forbid a GLSM construction à la Adams and collaborators, but constuc-
tions as in [109,112] involving logarithmic Fayet-Iliopoulos couplings may provide a
different construction.

We exposed in part D work in progress concerning new non-compact heterotic
flux solutions. As a step towards truly giving them the status of genuine heterotic
flux backgrounds, one should completely solve the existence problem of stable holo-
morphic vector bundles over the Kähler-Einstein base. As we already stated, we
expect that the generic answer will involve some Futaki invariants-type reasoning.
This topic being quite involved, it will require more work. Therefore, at least ex-
hibiting one bundle satisfying thegood requirement would already be satisfactory.
Extension of line bundles may allow to build non-abelian bundles on the T 1,1 cone
for instance.

An obvious direction would be to try and generalize the worldsheet CFT con-
structions in the double-scaling limit of the warped Eguchi-Hanson and cone over
T 1,1 [96–98], allowing to elevate the solution to a genuine heterotic string solution,
even outside the large charge regime. As we tried to sketch out in section D.II.6,
it would be very interesting to write out (0, 2) GLSMs flowing in the IR to the
geometries of part D, in particular GLSMs describing the geometry in the doubled
scaling limit, and to compute by localization the corresponding non-holomorphic el-
liptic genus, which we expect to be Mock modular. We do not expect however these
GLSMs to be related directly to those introduced in section D.II.6, since no marginal
deformation allows to deform their respective IR superconformal fixed points into
one another. A first step would therefore be to understand better the warped Eguchi-
Hanson case in the doule-scaling limit, before trying to generalize. We expect that
a construction à la Hori and Kapustin [113] using compensator fields and extending
the GLSM for the cigar SL2(R)/U(1) may be a good direction.

Another work in progress involves another class of heterotic flux solutions on non-
compact hyper-Kähler manifolds, for instance on generic ALE and ALF Gibbons-
Hawking spaces, as well as solutions with a R1,1 factor, typically on a product of
hyper-Kähler 4-folds, and allowing for the inclusion of fundamental strings along
R1,1 sourcing electrically the three-form flux.

In the completely different perspective of studying more abstractly the moduli of
heterotic compactifications, different approaches have been adopted. Among them,
some extension of the Atiyah algebroid [114,115] was constructed in order to account
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for the presence of the Bianchi identity. Another approach, which coincides with
the former provided some topological restrictions are met rather has a generalized
geometry flavor [116]. On another hand, recent techniques have been developed
in order to broadly generalize the type of sigma models one can construct [117],
by allowing for theories with target algebroid-type geometrical structures. Very
hypothetically and somehow marrying the above developments on sigma models
and heterotic moduli could shed some light on the latter by probing the geometrical
structures underlying the Hull-Strominger system with an adapted sigma model.





Part E

Appendices
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Appendix I

Modular forms and hypergeometric
functions

I.1 Poisson resummation, Theta functions and modular forms

For a general n-dimensional lattice Γ, with A a symmetric positive definite n×n

matrix defining its bilinear form, one has the Poisson resummation formula

∑
p∈Γ

e−π(p+x)·A(p+x)+2iπy·(p+x) = 1
vol(Γ)

√
detA

∑
p∈Γ∨

e−2iπp·x−π(y+p)·A−1(y+p) ,

(E.I.1.1)

which reduces in the case Γ = Z to

∞∑
n=−∞

e−πan
2+2iπbn = 1√

a

∞∑
n=−∞

e−
π
a

(n−b)2
. (E.I.1.2)

The Dedekind eta function is defined by

η(τ) = q
1
24

∞∏
n=1

(1− qn) , (E.I.1.3)

with q = e2iπτ . Its modular properties are

η(τ + 1) = ei
π
12 η(τ) , (E.I.1.4a)

η

(
−1
τ

)
= (−iτ)1/2η(τ) . (E.I.1.4b)
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The Jacobi theta functions with characteristics are defined by

θ [ab ] (τ |u) =
∑
n∈Z

q
1
2 (n+a

2 )2
e2iπ(n+a

2 )(u+ b
2 ) . (E.I.1.5)

One defines
θ1 = −θ

[
1
1

]
θ2 = θ

[
1
0

]
θ3 = θ

[
0
0

]
θ4 = θ

[
0
1

]
. (E.I.1.6)

One can rewrite the Jacobi theta functions in terms of an infinite product. In
particular, θ1 writes:

θ1(τ |u) = −iq
1
8w

1
2

∞∏
n=1

(1− qn) (1− wqn)
(
1− w−1qn−1

)
, (E.I.1.7)

with w := exp(2iπu). One has the following properties

∂

∂u
θ1(τ |u)|u=0 = 2πη(τ)3 , (E.I.1.8a)

θ1(τ | − u) = −θ1(τ |u) , (E.I.1.8b)∮
u=k+τl

du
2iπ

1
θ1(τ |u) = i

(−1)k+leiπl
2τ

η(τ)3 . (E.I.1.8c)

Under modular transformations, the Jacobi theta functions transform as

θ [ab ] (τ + 1|u) = e−
iπ
4 a(a−2)θ

[ a
a+b−1

]
(τ |u) , (E.I.1.9a)

θ [ab ]
(
−1
τ

∣∣∣∣ uτ
)

= −
√
−iτe

iπ
2 ab+

iπu2
τ θ

[
b
−a

]
(τ |u) . (E.I.1.9b)

For m,n ∈ Z, they satisfy the quasi-periodicity property

θ [ab ] (τ |u+m+ τn) = exp
(
iπma− iπτn2 − 2iπn

(
u+ b

2

))
θ [ab ] (τ |u) . (E.I.1.10)

The ŝu(2)k theta functions are defined by

Θs,k(τ |z) =
∑

n∈Z+ s
2k

qkn
2
e2iπzkn , (E.I.1.11)

with s ∈ Z2k. Under modular transformations, one has

Θs,k(τ + 1|z) = eiπ
s2
k Θs,k(τ |z) , (E.I.1.12a)

Θs,k

(
−1
τ

∣∣∣∣ zτ
)

= (−iτ)1/2 1√
2k
e
iπ
τ
kz2
2

∑
s′∈Z2k

e−
iπ
k
ss′Θs′,k(τ |z) . (E.I.1.12b)
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They also satisfy a quasi-periodicity property

Θs,k(τ |z +m+ τn) = (−1)k(m+n)e
−iπk

(
n2
2 τ+nz

)
Θs,k(τ |z) . (E.I.1.13)

Following [118], one defines the theta function related to a lattice Γ by

ΘΓ
µ(τ |λ) =

∑
γ∈Γ+µ

q
1
2 〈γ,γ〉e2iπ〈γ,λ〉 . (E.I.1.14)

Under modular transformations, one has

ΘΓ
µ(τ + 1|λ) = eiπ〈µ,µ〉ΘΓ

µ(τ |λ) , (E.I.1.15a)

ΘΓ
µ

(
− 1
τ

∣∣∣∣ λτ
)

= (−iτ)
rank(Γ)

2

|Γ∨/Γ|
1
2

e
iπ
τ
〈λ ,λ〉 ∑

µ′∈Γ∨/Γ
e−2iπ〈µ,µ′〉ΘΓ

µ′(τ |λ) . (E.I.1.15b)

Let us define the Kronecker delta on the lattice Γ by:

δb,b′ = 1
|Γ∨/Γ|

∑
a∈Γ∨/Γ

e2iπ〈a,b−b′〉 . (E.I.1.16)

Given a triplet (Γl,Γr, ϕ), with ϕ being an isometry between the discriminant group

of the two lattices Γl and Γr, let us determine the modular behaviour under a S-

transformation of the quantity

∑
µ∈Γ∨l /Γl

ΘΓl
µ (τ |λ) Θ̄Γr

ϕ(µ) ( τ̄ | 0) . (E.I.1.17)

One has

∑
µ∈Γ∨l /Γl

ΘΓl
µ

(
−1
τ

∣∣∣∣ λτ
)

Θ̄Γr
ϕ(µ)

(
−1
τ̄

∣∣∣∣ 0) =

|τ |rank(Γ)

Mathieu|Γ∨l /Γl|
e
iπ
τ
〈λ,λ〉∑

µ

∑
ρ,ρ̄

e−2iπ(〈µ,ρ〉−〈ϕ(µ),ρ̄〉)ΘΓl
ρ (τ |λ) Θ̄Γr

ρ̄ ( τ̄ | 0)

(E.I.1.18)
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Since ϕ is an isometry, one has 〈ϕ(µ), ρ̄〉 = 〈µ, ϕ−1(ρ̄)〉. Permuting the sums, using

eq. (E.I.1.16), and the fact that δρ,ϕ−1(ρ̄) = δρ̄,ϕ(ρ), one obtains finally

∑
µ∈Γ∨l /Γl

ΘΓl
µ

(
−1
τ

∣∣∣∣ λτ
)

Θ̄Γr
ϕ(µ)

(
−1
τ̄

∣∣∣∣ 0) = |τ |rank(Γ)e
iπ
τ
〈λ,λ〉×

×
∑

µ∈Γ∨l /Γl

ΘΓl
µ (τ |λ) Θ̄Γr

ϕ(µ) ( τ̄ | 0) .
(E.I.1.19)

The weight 2k (k > 1) Eisenstein series are holomorphic modular forms given by

E2k(τ) = − (2k)!
(2iπ)2kB2k

∑
(m,n)6=(0,0)

1
(mτ + n)2k , (E.I.1.20)

with B2k the Bernoulli numbers. In terms of Jacobi theta functions, one has

E4(τ) = 1
2
(
θ2(τ)8 + θ3(τ)8 + θ4(τ)8

)
. (E.I.1.21)

In particular, E4/η
8 is modular invariant. Finally, a weak Jacobi form of weight k

and index t with character χ is a holomorphic function φ on H × C which satisfies

for g =
(
a b

c d

)
∈ SL(2,Z):

φ

(
aτ + b

cτ + d
,

y

cτ + d

)
= χ (g) (cτ + d)ke2iπtc y2

cτ+d φ(τ, y) , (E.I.1.22a)

φ(τ, y + λτ + µ) = (−1)2t(λ+µ)e−2iπt(λ2t+2λy) φ(τ, y) , λ, µ ∈ Z , (E.I.1.22b)

and with a Fourier expansion containing only positive powers of q.

We define the odd Jacobi theta function and the Dedekind eta function by the

following infinite products:

θ(τ, z) := −i q
1
8 y

1
2

∞∏
n=1

(1− qn) (1− yqn)
(
1− y−1qn−1

)
. (E.I.1.23a)

η(τ) := q
1
24

∞∏
n=1

(1− qn) , (E.I.1.23b)

with q := exp(2iπτ) and y := exp(2iπz). The discriminant modular form is given

in terms of the Dedekind eta function by:

∆(τ) := η(τ)24 . (E.I.1.24)
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Given an even integral lattice Γ, whose pairing we denote:

〈·, ·〉 : Γ× Γ→ Z , (E.I.1.25)

and an element µ ∈ Γ?/Γ in its discriminant group, we define its associated theta-
function with characteristic µ as a refined generated function:

ΘΓ
µ : H× (Γ⊗C)→ C

(τ, z) 7→
∑

v∈Γ+µ
eiπ(〈v,v〉τ+2〈v,z〉) .

(E.I.1.26)

Let us recall the definition of the SL2(Z) normalized Eisenstein series of weight 2w:

E2w(τ) := 1
2ζ(2w)

∑
(m,n)∈(Z∗)2

1
|m+ τn|2w

. (E.I.1.27)

We define the following weight-2 modular covariant derivative acting on the space
of weight w modular forms:

Dw : Mw →Mw+2

f 7→
(
i

π

∂

∂τ
+ w

2πτ2

)
f .

(E.I.1.28)

Notice that this modular covariant derivative satisfies the Leibniz rule:

Dw+r(ψwφr) = (Dwψw)φr + ψwDr(φr) . (E.I.1.29)

We give two identities due to Ramanujan involving the Eisenstein series:

D4E4 = 2
3
(
E6 − Ê2E4

)
, (E.I.1.30a)

D6E6 = E2
4 − Ê2E6 (E.I.1.30b)

I.2 Hypergeometric and modified Bessel function

The confluent hypergeometric function 1F1 (a; c; z) is defined by:

1F1 (a; c; z) :=
∞∑
n=0

(a)n
(c)n

zn

n! , (E.I.2.1)
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with (q)n the Pochhammer symbol, or rising factorial. The hypergeometric function

2F1 (a, b; c; z) is defined by:

2F1 (a, b; c; z) :=
∞∑
n=0

(a)n(b)n
(c)n

zn

n! . (E.I.2.2)

We give the expression of the hypergeometric function 2F1 for some specific values

of its arguments:

2F1(2, 4, 6, t−1) = −10
3 t

2
(

24t2 + 6(4t− 3)t2 log
(
t− 1
t

)
− 6t− 1

)
, (E.I.2.3a)

2F1(1, 3, 4, t−1) = −3
2 t
(

2t2 log
(
t− 1
t

)
+ 2t+ 1

)
, (E.I.2.3b)

2F1(2, 2, 4, t−1) = −6t2
(

(2t− 1) log
(
t− 1
t

)
+ 2

)
, (E.I.2.3c)

2F1(1, 1, 2, t−1) = −t log
(
t− 1
t

)
, (E.I.2.3d)

2F1(2, 3, 6, t−1) = 10t2
(

12t2 + 6
(
2t2 − 3t+ 1

)
t log

(
t− 1
t

)
− 12t+ 1

)
,

(E.I.2.3e)

2F1(1, 2, 4, t−1) = 3t
(

2t+ 2(t− 1)t log
(
t− 1
t

)
− 1

)
, (E.I.2.3f)

2F1(3, 3, 6, t−1) = −30t3
((

6t2 − 6t+ 1
)

log
(
t− 1
t

)
+ 6t− 3

)
. (E.I.2.3g)

In this appendix, we define various functions defined by an integral involving mod-

ified Bessel functions, and relevant for the computation of the Fourier series rep-

resentation of the various threshold corrections in section C.II.4. To obtain the

expressions below, one extensively makes use of the following Bessel functions iden-

tity:

2 d

dx
Cα(x) = Cα−1(x) + Cα+1(x) , (E.I.2.4)

where Cα denotes Iα or eiπαKα.

Zero-frequency mode: Let us first define ∀(B,C, ν, n) ∈ C ×R × C ×N such

that Re(B) > C:

F (0)
n,ν(B,C) := (−1)n ∂n

∂Bn

∫ ∞
0

dt
t
Iν(Ct) e−Bt , (E.I.2.5)
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relevant for the computation of the zero mode component of the Fourier series ex-
pansion. Following Erdelyi, one can compute F (0)

n,ν explicitely:

F
(0)
0,ν (B,C) =

Cν
(
B +

√
B2 − C2

)−ν
ν

, (E.I.2.6a)

F
(0)
1,ν (B,C) =

Cν
(
B +

√
B2 − C2

)−ν
√
B2 − C2

, (E.I.2.6b)

F
(0)
2,ν (B,C) =

Cν
(
B +

√
B2 − C2

)−ν (
B + ν

√
B2 − C2

)
(B2 − C2)3/2 . (E.I.2.6c)

Positive frequency modes: We also define ∀(A,B,C, ν, n) ∈ C2 ×R×C×N:

Fn,ν(A,B,C) := (−1)n ∂n

∂Bn

∫ ∞
0

dt
t
Iν(Ct) e−Bt−A/t , (E.I.2.7)

relevant for the computation of the positive frequency modes of the Fourier series
expansion. One then computes the following expressions:

F0,ν(A,B,C) = 2Iν(u−)Kν(u+) , (E.I.2.8a)

F1,ν(A,B,C) = 4A
u2
− − u2

+

(
u−Iν−1(u−)Kν(u+) + u+Iν(u−)Kν−1(u+)

)
, (E.I.2.8b)

F2,ν(A,B,C) = 8A2

u−
(
u2
− − u2

+
)3(2u2

−u+
(
u2
− − u2

+

)
Iν−1(u−)Kν−1(u+)

+ u−Iν−2(u−)
(
u4
−Kν(u+)− 2(ν + 1)u2

−u+Kν−1(u+)− u4
+Kν−2(u+)

)
− 2u2

+Iν−1(u−)
(
(ν + 1)u2

− − (ν − 1)u2
+

)
Kν−2(u+)

)
, (E.I.2.8c)

where we have introduced the following convenient combinations:

u± :=
√
A
(√

B + C ±
√
B − C

)
. (E.I.2.9)





Appendix II

Rational Narain lattices

II.1 Generic torus

We discuss in some detail quantization of the two-torus moduli and compatibility
of the latter with the two-forms ω1,2 characterizing the principal torus bundle. We
consider first that there is no Abelian bundle, i.e. that ’Wilson lines’ are turned off.

Quantization of the torus moduli follows from single-valuelessness of exp(iS) in
any instanton sector [52, 53], or from H-flux quantization in supergravity [75]. It
was shown in [53] to derive from covariance of the model under T-duality along the
torus fiber. Moreover it was noticed there that these quantization conditions imply
that the underlying c = 2 CFT with a two-torus target space is rational.

The Narain Lattice Γn ⊂ R2,2 corresponding to the two-torus of metric and
B-field:

g = U2
T2

(
1 T1

T1 |T |2

)
, b =

(
0 U1

−U1 0

)
. (E.II.1.1)

is spanned by

1√
2U2T2


 T2
−T1
T2
−T1

n1 +

 0
1
0
1

n2 +

 U2
−U1
−U2
−U1

w1 +

 T1U2 + T2U1
−U1T1 + U2T2
−T1U2 + T2U1
−U1T1 − U2T2

w2


= e1n1 + e2n2 + ẽ1w

1 + ẽ2w
2 . (E.II.1.2)

where n` (resp. w`) are the integer-valued momenta (resp. winding numbers). The
inverse of the two-torus metric eq. (E.II.1.1) is gij = 2〈ei, ej〉

∣∣∣
R2,0

.
The underlying conformal field theory is a rational CFT (i.e. with an extended

chiral algebra), if Γl := Γn ∩ R2,0 and Γr := Γn ∩ R0,2 are rank two (even and
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positive-definite) lattices [55]. It is equivalent to require that the space of solutions
over the integers of the equations

T2n1 − U2w1 + (U1T2 − T1U2)w2 = 0 , (E.II.1.3a)

−T1n1 + n2 + U1w1 − (U1T1 + U2T2)w2 = 0 . (E.II.1.3b)

has maximal rank (i.e. rank two). This is satisfied if and only if U, T ∈ Q(
√
D),

where D is a discriminant of a positive-definite even quadratic form, in other words

D = b2 − 4ac < 0 , a, b, c ∈ Z , a > 0 . (E.II.1.4)

One can eliminate n` in eq. (E.II.1.2) using eq. (E.II.1.3) and express any element
of the lattice Γl as an element of the ’winding lattice’ (the sublattice of Γn defined
by n1 = n2 = 0):

pL =
√

2U2
T2

(
1
0

)
w1 +

√
2U2
T2

(
T1

T2

)
w2 , (E.II.1.5)

where, to ensure that it is actually an element of Γl, w` have to satisfy the ’quanti-
zation conditions’

U2
T2

(w1 + T1w2)− U1w2 ∈ Z , (E.II.1.6a)

U2
T2

(T1w1 + |T |2w2) + U1w1 ∈ Z , (E.II.1.6b)

The data required to specify a RCFT consists of a triple (Γl,Γr, ϕ), with ϕ being
an isometry between the discriminant group of the two lattices Γl and Γr. The
corresponding modular-invariant partition function reads:

Z = 1
η2(τ)η2(−τ̄)

∑
µ∈Γ?l/Γl

ΘΓl
µ (τ | 0) ΘΓr

ϕ(µ) (−τ̄ | 0) . (E.II.1.7)

where
ΘΓ
µ(τ |λ) =

∑
γ∈Γ+µ

q
1
2 〈γ,γ〉e2iπ〈γ,λ〉 (E.II.1.8)

is the theta function with characteristics associated with the lattice Γ. µ is an
element of the discriminant group Γ∨/Γ of the lattice and ϕ is an isometry between
the discriminant groups of Γl and Γr.

In order to specify the principal two-torus bundle over the S, one should further
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choose two anti-self-dual (1, 1)-forms ω1 and ω2 on the K3 base S which define two
different integer cohomology classes [ω1], [ω2] ∈ H2(S,Z). In other words, one should
specify a rank-two sublattice Γω of the Picard lattice Pic(S) = H2(S,Z) ∩H1,1

∂̄
(S).

The metric on this lattice is given by their intersection form:∫
S
ωi ∧ ωj = dij . (E.II.1.9)

We remind that the intersection matrix on the lattice of anti-self dual two-forms on
K3 can be brought to the form

(−E8)⊕ (−E8)⊕−2


1 0 0
0 1 0
0 0 1

 . (E.II.1.10)

One is thus endowed with two quadratic even lattices Γl and Γω. We define first the
following element of a formal extension of the winding lattice, valued in H2(S,Z)×
H2(S,Z), as:

pω =
√

2U2
T2

(
1
0

)
ω1 +

√
2U2
T2

(
T1

T2

)
ω2 . (E.II.1.11)

One should impose that pω belongs actually to a formal extension Γl ⊗ Pic(S) of
the left lattice, i.e. one should impose ’compatibility conditions’, of the same form
as eq. (E.II.1.6):

U2
T2

(ω1 + T1ω2)− U1ω2 ∈ H2(S,Z) , (E.II.1.12a)

U2
T2

(T1ω1 + |T |2ω2) + U1ω1 ∈ H2(S,Z) . (E.II.1.12b)

Importantly, these conditions depends on Γn and not of Γl only.
To summarize, for a given pair of anti-self dual two-forms and (ω1, ω2), defining

a rank two (generically) lattice Γω ∈ H2(S,Z), one needs to choose the metric and
B-field of the two torus such that two conditions are satisfied:

1. The compatibility condition eq. (E.II.1.12),

2. The tadpole condition N − 24 =
∫
S〈pω, pω〉, where N = −

∫
S ch2(E) is the

instanton number.

In order to include Abelian bundles, or ’Wilson lines’, one first consider an em-
bedding of the toroidal (2, 2) lattice into a (10, 2) lattice which includes also the
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contribution from the E8 weight lattice. The moduli V a in eq. (B.III.1.2) corre-
sponds then to off-diagonal deformations of this lattice. Quantization of (T,U), as
well as the compatibility conditions eq. (E.II.1.12), are not affected. The ’physi-
cal’ two-torus metric is not given anymore by eq. (B.II.1.11), but is of the form
gIJ + α′

4 Tr(AIAJ), as for ordinary Wilson lines, however the tadpole and compati-
bility conditions remains unchanged.

II.2 Orthogonal torus

For illustration let us consider an orthogonal torus with radii R1 =
√
p1/q1 and

R2 =
√
p2/q2 hence

U = i

√
p1p2
q1q2

, T = i

√
p2q1
q2p1

. (E.II.2.1)

The quantization conditions eq. (E.II.1.6) read then

p1w1 ≡ 0 mod q1 , p2w2 ≡ 0 mod q2 . (E.II.2.2)

Assuming that gcd (q`, p`) = 1 this is solved by choosing w1 = q1W1 and w2 = q2W2.
Elements of the lattice Γl are then of the form

pL =
√

2p1q1

(
1
0

)
W1 +

√
2p2q2

(
0
1

)
W2 , (E.II.2.3)

with W` ∈ Z. A basis of Γl is then provided by

el
1 =

√
2p1q1

(
1
0

)
, el

2 =
√

2p2q2

(
0
1

)
. (E.II.2.4)

The modular-invariant partition function associated with this rational Narain lattice
reads:

Z = 1
η2(τ)η2(−τ̄)

2∏
`=1

∑
r`∈Z2p`

∑
s`∈Z2q`

Θq`r`+p`s`,2p`q` (τ | 0) Θq`r`−p`s`,2p`q` (−τ̄ | 0) .

(E.II.2.5)
The isometry ϕ : Γ?L/ΓL → Γ?r/Γr can be determined explicitly by mapping q`r` ±
p`s` into the ’fundamental domain’ {0, . . . , 2p`q` − 1}.

The compatibility condition between Γω and the orthogonal lattice of moduli
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eq. (E.II.2.1) amounts to

ω`l := 1
q`
ω` ∈ H2(S,Z) , ` = 1, 2 . (E.II.2.6)

Notice that the partition function eq. (E.II.2.5) differs from the partition function
for an orthogonal torus with radii R` =

√
2p`q` precisely in the choice of the isometry

ϕ. In the latter case one has indeed simply

Z = 1
η2(τ)η2(−τ̄)

2∏
`=1

∑
m`∈Z2p`q`

Θm`,2p`q` (τ | 0) Θm`,2p`q` (−τ̄ | 0) . (E.II.2.7)

Moreover in this case the chiral lattices Γl and Γr coincide such that the compatiblity
condition is trivial.

One can also consider examples obtained from the above by T-duality along
the two circles, each of these cases corresponding to a different choice of isometry ϕ.
Satisfying the compatibility condition eq. (E.II.2.1) is then equivalent to considering
in each case a different sublattice of Pic(S). This is one of the dualities studied
in [53], which induces a duality action on Pic(S), leaving the tadpole condition
invariant by construction.





Appendix III

Coefficients for the Fourier repre-
sentation

In this appendix, we will determine the exact coefficients entering in the compu-

tation of the Fourier expansion representation of the integral eq. (C.II.4.10):

If (s) :=
∫
F
dν F(s, 1,−2) τ2

∑
µ,pl,pr

q
1
2p

2
l q̄

1
2p

2
rf(pl, ω) , (E.III.0.1)

with quadratic momentum insertion:

f(pl, ω) = d̃ijp
i
lp
j
l −

n− 24
2πτ2

, (E.III.0.2)

with the metric d̃ defined in section II.4.3.

As mentioned in section II.4.1, the first step in deriving the Fourier representa-

tion is to first perform the integral over the Lagrange multiplier τ1 to impose the

constraint on the lattice momenta, solve explicitely the constaint, and perform a

suitable Poisson resummation.

Let us now introduce some notation for the lattice. First, the Γ2,2(T,U) Narain

lattice elements can be written in a complex basis as

pL = 1√
T2U2

(
m2 − Tm1 + Ū(n1 + Tn2)

)
pR = 1√

T2U2

(
m2 − Tm1 + U(n1 + Tn2)

)
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In complex notation the scalar product becomes

〈pL, p′L〉 = 1
2
(
|pL + p′L|2 − |pL|2 − |pR|2

)
= Re (pLp̄′L) . (E.III.0.3)

The BPS constraint 1
4(|pL|2 − |pR|2) = m1n

1 + m2n
2 = 1 is solved, for coprime

(n1, n2), as
m1 = m?

1 + M̃n2 , m2 = m?
2 − M̃n1 , (E.III.0.4)

where m?
1 is a modular inverse of n1 modulo n2, and m?

2 a modular inverse of n2

modulo n1.

As mentioned in section II.4.1, after solving the constraint on momenta as above,
one ends up with an expression of the following form:

∑
M̃∈Z

e−πaM̃
2+2iπbM̃

(
cM̃2 + dM̃ + e

)
, (E.III.0.5)

to be Poisson resummed over the variable M̃ .

The Poisson resummation formula on Z:
∞∑

n=−∞
f(n) =

∞∑
k=−∞

f̃(k) , (E.III.0.6)

gives the following general formulae:

∑
n∈Z

e−λn
2 =

√
π

λ

∑
k∈Z

e−π
2k2/λ ,

∑
n∈Z

n e−λn
2 = −i

√
π

λ

∑
k∈Z

πk

λ
e−π

2k2/λ ,

∑
n∈Z

n2 e−λn
2 =

√
π

λ

∑
k∈Z

(
1

2λ −
π2k2

λ2

)
e−π

2k2/λ .

(E.III.0.7)

Using these results, one obtains the Poisson resummed expression:∑
M̃∈Z

e−πaM̃
2+2iπbM̃

(
cM̃2 + dM̃ + e

)

= 1√
a

∑
M∈Z

e−
π
a

(M−b)2
{(

1
2πa −

(
b−M
a

)2)
c+ i(b−M)

a
d+ e

}

= 1√
a

∑
M∈Z

e−
π
a

(M−b)2
{(

1
2πac−

b2

a2 c+ ib

a
d+ e

)
+ 1
a

(2b
a
c− id

)
M − c

a2M
2
}
.

(E.III.0.8)
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In order to determine the various coefficients (a, b, c, d, e), let us expand the left

momentum as

pL = 1√
T2U2

m?
2 − Tm?

1 + Ū(n1 + Tn2)︸ ︷︷ ︸
P ?L

−M̃ (n1 + Tn2)︸ ︷︷ ︸
P̂

 (E.III.0.9)

In the following one will consider the SL(2;Z) transformation related to the solution

of the BPS constraint:

T̃ = m?
1T −m?

2
n1 + n2T

, (E.III.0.10)

implying in particular that:

T̃2 = T2
|n1 + n2T |2

= T2

|P̂ |2
. (E.III.0.11)

We remark also that:
P ?L
P̂

= Ū − T̃ (E.III.0.12)

Now we consider the vector of two-forms that appears in the insertion. Considering

a basis {$`} of Pic(S), we expand, in complex notation

pw =
√
U2
T2

(
N `

1 + TN `
2

)
︸ ︷︷ ︸

N`

$` , (E.III.0.13)

and introduce the intersection form d`k =
∫
$`∧$k. Notice that (N `

1 , N
`
2) transforms

as a doublet under SL(2;Z)T . From this one can compute the scalar products that

appear in the insertion. One obtains for the quadratic momentum insertion:

f(pl, ω) =
∫
S
〈pω, pl〉2 −

1
4πτ2

〈pω, pω〉

= 1
T̃ 2

2

{
d`k Re

(
Ñ `
(
U − ¯̃T − M̃

))
Re

(
Ñk

(
U − ¯̃T − M̃

))
− U2T̃2

4πτ2
d`k Re

(
Ñ `Ñk

)} (E.III.0.14)

Out of this expression one can first collect the term in M̃2, namely:

c = d`k

T̃ 2
2
Re

(
Ñ `
)
Re

(
Ñk
)
, (E.III.0.15)
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then term linear in M̃ , which reads (using the symmetry of the intersection form):

d = −2d`k
T̃ 2

2

[
(U1 − T̃1)Re

(
Ñ `
)
− (U2 + T̃2) Im

(
Ñ `
)]

Re
(
Ñk
)
, (E.III.0.16)

and finally the constant term given by:

e = d`k

T̃ 2
2

[
(U1 − T̃1)Re

(
Ñ `
)
− (U2 + T̃2) Im

(
Ñ `
)]
×

×
[
(U1 − T̃1)Re

(
Ñk
)
− (U2 + T̃2) Im

(
Ñk
)]

− U2

4πτ2T̃2
d`k Re

(
Ñ `Ñk

)
.

(E.III.0.17)

We are now ready to consider the Poisson resummation of the result, organised in
powers of the dual variable M . In the exponential, we have:

exp
(
−πτ2

2 (|pL|2 + |pR|2)
)

= exp
(
− πτ2
T2U2

|P ?L − M̃P̂ |2 + 2πτ2

)
= exp

(
− πτ2

T̃2U2
|Ū − T̃ − M̃ |2 + 2πτ2

)
= exp

(
2πτ2 −

πτ2

T̃2U2
|Ū − T̃ |2

)
×

× exp
(
− πτ2

T̃2U2
M̃2 + 2iπM̃ iτ2

T̃2U2
(T̃1 − U1)

)
,

(E.III.0.18)

from which one can once again extract the coefficient of the quadratic and linear
terms in M̃ to obtain a and b. Adding up the terms quadratic, linear and constant
in the dual dummy variable M , one can finally read up the summand of the Poisson
resummed momentum insertion:√

T̃2U2
τ2

∑
M∈Z

{
− U2

2
τ2

2
d`k

[
Re

(
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|Ū − T̃ |2

}
,

(E.III.0.19)

to be used in section C.II.4.
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Sujet : Compactifications hétérotiques avec flux

Résumé : Nous étudions différents aspects liés aux compactifications hétérotiques avec
torsion. Nous définissons et calculons le genre elliptique vêtu associé aux compactifications
Fu-Yau, et exploitons ce résultat pour calculer les corrections de seuil à une boucle de
différents couplages BPS-saturés dans l’action effective de supergravité à quatre dimen-
sions. Enfin nous nous intéressons à des solutions supersymétriques non-compactes qui
généralisent, entre autres, les solutions hétérotiques connues sur le conifold.

Mots clés : Corde hétérotique, torsion, GLSM, Genre elliptique vêtu, solutions non-
compactes

Subject : Heterotic compactifications with flux

Abstract : We study various aspects of heterotic compactifications with torsion. We de-
fine and compute the dressed elliptic genus associated to Fu-Yau compactifications, and
use this result to compute one-loop threshold corrections to various BPS-saturated cou-
plings in the four-dimensional effective supergravity action. Finally, we study non-compact
supersymmetric solutions which generalize, among others, the known heterotic solutions
on the conifold.

Keywords : Heterotic string, torsion, GLSM, dressed elliptic genus, non-compact solutions


