
HAL Id: tel-01666313
https://theses.hal.science/tel-01666313v2

Submitted on 23 Apr 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Reduced-order models for blood flow in networks of
large arteries

Arthur Ghigo

To cite this version:
Arthur Ghigo. Reduced-order models for blood flow in networks of large arteries. Fluid mechanics
[physics.class-ph]. Université Pierre et Marie Curie - Paris VI, 2017. English. �NNT : 2017PA066422�.
�tel-01666313v2�

https://theses.hal.science/tel-01666313v2
https://hal.archives-ouvertes.fr


THÈSE DE DOCTORAT
UNIVERSITÉ PIERRE ET MARIE CURIE

Spécialité : Mécanique des Fluides

École Doctorale de Sciences Mécaniques, Acoustique, Electronique et
Robotique de Paris (ED 391)

Présentée par :

Arthur Ghigo
Pour obtenir le grade de

DOCTEUR DE L’UNIVERSITÉ PIERRE ET MARIE CURIE

Modèles simplifiés d’écoulements sanguins
appliqués à des réseaux de grandes artères

Reduced-order models for blood flow
in networks of large arteries

Dirigée par

D.R. CNRS Pierre-Yves Lagrée et Pr. UPMC Jose-Maria Fullana

à l’Institut Jean le Rond ∂’Alembert

Soutenue a l’UPMC le 29 Septembre 2017 devant le jury composé de

Jordi Alastruey Examinateur
Valérie Deplano Examinateur
Jose-Maria Fullana Directeur de thèse
Pierre-Yves Lagrée Directeur de thèse
Sylvie Lorthois Rapporteur
Franck Nicoud Rapporteur
Eleuterio Toro Examinateur
Irène Vignon-Clémentel Examinateur



Abstract
Every cardiac cycle, the heart contracts and ejects blood into the vascular network. This
periodic inflow translates into the propagation of a pulse wave, which, through interactions
with the elastic arterial wall, the blood and the complex arterial network, shapes itself into
the pulsatile signal clinicians observe on a daily basis. Understanding these complex wave
propagation dynamics is of great clinical relevance as large arteries are a breeding ground
for many common cardiovascular pathologies which are often triggered by hemodynamical
factors.

Unfortunately, hemodynamics in large arteries are too complex to be apprehended using
only non-invasive measurements and medical imaging techniques. Patient-specific numerical
simulations of blood flow have therefore been developed to provide clinicians with valuable
insights on pathogenesis and the outcome of surgeries. As three-dimensional models are
usually used only in small portions of the cardiovascular system due to their high modeling
and computational costs, we have used reduced-order models to reproduce complex wave
propagation behaviors in large networks of arteries.

We have first focused on one-dimensional models for blood flow and developed novel ap-
proaches that take into account the non-Newtonian behavior of blood and the viscoelastic
response of the arterial wall. Next, we have proposed a fluid-structure interaction two-
dimensional blood flow model to capture the complex flow patterns in stenoses and aneurysms
unavailable to classical one-dimensional models. Finally, we have applied these models to
compute the flow in large arterial networks and to predict the outcome of bypass surgeries.

Keywords: Blood flow – Network – 1D model – 2D model – Non-Newtonian – Viscoelasticity.

Résumé
La contraction périodique du cœur est à l’origine de l’onde de pouls qui, de part son interaction
avec les artères élastiques, le sang et le réseau artériel lui-même, devient le signal observé
quotidiennement par les médecins. Cette dynamique ondulatoire est d’une importance
primordiale dans la compréhension de la genèse de nombreuses maladies cardiovasculaires.
En effet, ce sont souvent des facteurs hémodynamiques qui sont à l’origine de la croissance
de ces pathologies.

Malheureusement, les mesures non-invasives et l’imagerie médicale sont souvent insuffisantes
pour appréhender la complexité des écoulements sanguins. La simulation numérique est
donc en plein essor car celle-ci permet d’obtenir des données précises dans des régions
vasculaires difficiles d’accès. Bien que les modèles sanguins tridimensionnels soient très précis
et permettent de reproduire fidèlement la géométrie vasculaire, leur coût, à la fois numérique
et paramétrique, est trop important pour que ceux-ci soient utilisés dans de grands réseaux
vasculaires. Nous avons donc choisi d’utiliser des modèles simplifiés qui permettent d’accéder
à cette dynamique de réseau si importante.

Premièrement, nous nous sommes intéressés aux modèles unidimensionnels et nous avons
développé de nouvelles approches permettant de prendre en compte l’aspect non-Newtonien
du sang et la viscoélasticité des parois artérielles. Secondement, nous avons proposé un
modèle bidimensionnel, que nous avons utilisé pour simuler l’écoulement dans des sténoses
et anévrismes. Finalement, nous avons utilisé ces modèles pour décrire l’écoulement du sang
dans de grands réseaux artériels et pour optimiser un pontage extracorporel.

Mots Clés: Ecoulement sanguin – Réseau – Modèle 1D – Modèle 2D – Non-Newtonien –
Viscoélasticité.
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1.1 Motivation
Since the early work of Harvey in 1628 [Harvey 1957], clinicians have made tremendous steps
forward in understanding the cardiovascular system. They are now able to propose efficient
treatment strategies at low negative outcome. Yet cardiovascular pathologies remain the
leading cause of death in developed countries, with rising risk factors such as high blood
pressure, cholesterol, overweight, tobacco and alcohol consumption, lack of physical activity.
In France, they represent more than 150.000 deaths every year and are the principal cause
of death for women and people over 65 years old.

These cardiovascular pathologies include, among others, heart failure, atherosclerosis which
leads to stenoses and embolisms, and aneurysms. They are usually slowly progressing diseases
which remain asymptomatic until their very late stages, when the patient is already in a
critical health condition. Clinicians have therefore developed a wide variety of treatment
strategies to prevent their progression. However, despite progress in the comprehension of
the cardiovascular system and advances made in medical imaging, their early and accurate
diagnosis has been and still is a pressing issue of cardiovascular medicine, a fact that is
elegantly summarized by Sir Thomas Lewis (1933): "The very essence of cardiovascular
practice is the early detection of heart failure". Indeed, the development of cardiovascular
pathologies is a complex multiscale process involving a combination of geometrical, mechani-
cal, hemodynamical and biological factors which can not be apprehended using non-invasive
pressure measurements and geometrical considerations alone.

Fortunately, there is now a widespread recognition that mathematical models and numer-
ical simulations can help to better understand physiological and pathological processes
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[Formaggia et al. 2010; Ambrosi et al. 2012]. More than complementing data obtained by
noninvasive measurements and medical imaging, they provide means to analyze and predict
the hemodynamics at a wide variety of vascular scales. They are now being progressively
integrated into modern cardiovascular medicine to help clinicians perform early diagnosis
and patient-specific surgical planning and companies such as Heart flow [Chinnaiyan et al.
2017] are now developing help-to-decision tools using these mathematical models.

However, the relevancy and accuracy of the numerical predictions of a mathematical blood flow
model are inherently conditioned by its modeling limits. And unfortunately all cardiovascular
blood flow models have their limits. The overall goal of this thesis is therefore to revisit
classical reduced-order mathematical models for blood flow and try to improve their modeling
capabilities. The emphasis is set on developing complementary models, appropriate numerical
methods and realistic boundary conditions to solve hemodynamics in networks of large arteries.
In the following, we briefly describe the cardiovascular system along with a short literature
and historical review on blood flow models, before presenting the specific aims and the
outline of the thesis.

1.2 The cardiovascular system and wave dynamics
We present here the physiology of the cardiovascular system and more specifically the wave
dynamics in the arterial systemic circulation. The content of this section can be found in
most textbooks on the cardiovascular system and we have made extensive use of the following
references [Caro et al. 1974; Thiriet 2007; Formaggia et al. 2010; Nichols et al. 2011].

1.2.1 Cardiovascular physiology

The cardiovascular system is a closed-loop circuit composed of three principal blocks (see
Figure 1.1): the heart, the pulmonary circulation and the systemic circulation.

The heart is a muscular organ made of two synchronized pumps working in parallel, each
composed of two cavities. The right pump collects deoxygenated blood from the systemic
veins in the right atrium and ejects blood into the pulmonary circulation from the right
ventricle. The left pump collects oxygenated blood from the pulmonary veins in the left
atrium and ejects blood into the systemic circulation from the left ventricle. The heart itself
is perfused by the right and left coronary arteries, originating from two of the three sinuses
of Valsalva just above the aortic valve (orifice of the left ventricle).

The pulmonary circulation is responsible for reoxygenating the blood leaving the right
ventricle and returning oxygenated blood in the left atrium. On the contrary, the systemic
circulation provides oxygenated blood from the left ventricle to the rest of the body and
returns deoxygenated blood to the right atrium.

In both the pulmonary and the systemic circulations, a network of vessels is responsible for
the transport of blood from the large vessels to the small capillaries and back. Indeed, the
large arteries connected to the ventricles progressively branch out into smaller arteries and
arterioles, who themselves divide into millions of smaller capillaries which constitute the
capillary bed present in all organs, muscles and tissues and where exchanges of oxygen and
nutrients occur. The smallest capillaries then connect to venules who progressively merge
into veins until only the largest veins remain and deliver blood to the atria.

Despite their similar network topology, the pulmonary circulation differs from the systemic
circulation. The most striking difference is that, contrary to the systemic circulation, the
pulmonary circulation is a low pressure, low resistance system [Davidson and Fee 1990].
Even within the systemic circulation, strong differences exist between the arterial system
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Figure 1.1 – Schematic of the cardiovascular system, including the heart, the pulmonary
circulation and the systemic circulation.

and the venous system. Indeed, the venous pressure in much lower than the arterial pressure
and the venous flow is essentially driven by arterio-venous pressure differences.

For these reasons, we intentionally restrict our analysis to the systemic circulation, and
more particularly to the arterial systemic circulation. The arterial systemic circulation still
represents a challenge from clinical, imaging and modeling standpoints as it involves multiple
scales (large arteries to capillaries, one heart beat to years of vascular remodeling), multiple
flow regimes (pulsatile near the heart, quasi-steady in the capillaries) and is a breading
ground for most cardiovascular pathologies. In the following, we detail the nature of blood
flow in the arterial systemic circulation and the complex interactions between blood, the
arterial wall and the arterial network.

1.2.2 Wave dynamics in a network of arteries

The flow in the arterial systemic circulation is driven by the heart. Every cardiac cycle is
constituted of four successive stages: the inflow phase, the isovolumetric contraction, the
outflow phase and the isovolumetric relaxation. The first and fourth stages constitute the
diastole, or relaxation period, during which the ventricle fills up with blood coming from the
atrium. The second and third stages correspond to the systole, or contraction period, during
which blood exits the ventricle and enters the systemic circulation.

Blood first travels in the large and small arteries. These arteries are generally elastic as
their walls are made of elastic tissue and smooth muscle cells. During systole, blood ejected
from the left ventricle causes these arteries to elastically dilate. As the ventricular flow rate
decreases during diastole, the vessel walls elastically relax towards their equilibrium state.
This dilatation-relaxation process propagates at a finite speed along the arteries in the form
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Radius [cm] Number of vessels

Large arteries 0.85 - 0.2 50
Small arteries 0.065 - 0.0075 105

Arterioles 0.0025 106

Capillaries 0.0004 109

Venules 0.005 107

Veins 0.014 - 0.7 105

Table 1.1 – Orders of magnitude of the systemic circulation, taken from Milnor 1989.

of a wave, which modifies blood pressure and flow rate and allows, in combination with fluid
inertia, to maintain blood flow during diastole.

Following the waves, blood then reaches the arterioles, which are very small arteries lined with
muscle cells. They are the primary site of both resistance and regulation of blood pressure,
which they control by changing the contraction of their muscle fibers. As a consequence of
high resistance, blood pressure drops sharply in the arterioles and blood pulsatility reduces
to a minimum as most of the incoming pulse waves are reflected back into the large and small
arteries. The passage of blood in the arterioles marks the final stage of the transformation
of the very pulsatile flow generated by the left ventricle into the steady laminar flow suitable
for the continuous exchange of oxygen and nutriments in the capillaries.

We further restrict our analysis to the study of the large and small arteries only, as the
range of scales necessary to describe both the propagation of pulse waves in elastic arteries
and the steady transfer of oxygen and nutriments through the capillary walls is to vast to
be apprehended simultaneously (see Table 1.1). Removing the systemic microcirculation
from the arterial systemic circulation, we are left with a network of large and small elastic
arteries in which pulse waves propagate. These pulse waves are a combination of forward
waves traveling from the heart and backward waves originating from the reflection of forward
waves at arterial junctions and in the arterioles [Alastruey et al. 2012].

Understanding and predicting the wave dynamics in this network of elastic arteries using
mathematical models is of great clinical relevance and is the main point of interest of this
thesis. Next, we briefly review the different mathematical models that have been used up to
now to describe blood flow in large arteries.

1.3 Existing blood flow models

Many clinicians have contributed to our understanding of the form and function of the
cardiovascular system. However, faced with the complexity of the cardiovascular system,
clinicians have progressively discarded modeling approaches to focus on a posteriori studies
of large cohorts of patients to identify statistically meaningful trends concerning risk factors,
treatments and surgical strategies. While these studies provide precious guidelines to
clinicians, they usually lack a deep understanding of the geometrical, hemodynamical and
biological factors influencing their results.

With the advent of medical imaging and computer sciences, clinicians are renewing with
the idea of cardiovascular models to represent hemodynamics at different vascular scales.
While mathematical blood flow models were initially developed to complement clinicians’
understanding of the cardiovascular system, they have now outgrown this purpose and are
being used as predictive tools for patient-specific clinical studies. In the following, we present
a brief literature and historical review on the different blood flow models, inspired from the
work presented in [Parker 2009].
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Figure 1.2 – Two examples a machines built by Marey, reproducing the contraction of the
heart and the flow in the systemic circulation. The images are taken from [Mannoni and
Marey 1999].

1.3.1 In vitro models

Étienne-Jules Marey, in collaboration with Jean-Baptiste Auguste Chauveau, are among
the first to have developed in vitro models of the heart and the arterial circulation (see
Figure 1.2) [Marey 1863]. Indeed, the initial work of Marey on the sphygmographe has
allowed him to accurately measure and analyze the nature of pulse waves. However, he felt
that the analysis of measured data is not sufficient to establish the reality of physiological
mechanisms, and that a synthetic proof-of-concept was necessary to validate the results.
These in vitro models gave him new insights on cardiovascular physiology and pathologies
and laid the groundwork for modern blood flow models and numerical simulations. The
essence of his approach is summarized by the following partial citation taken from p. 26-27
of [Marey 1863]:

. . . la plupart des phénomènes liés au mouvement du sang pouvaient être reproduits arti-
ficiellement dans une sorte de contre-épreuve synthétique. . . . Chaque fois que nous avons
supposé qu’une forme du pouls tenait à certaines conditions, nous avons essayé de la repro-
duire artificiellement en simulant, à l’aide de certains appareils, les conditions auxquelles
nous l’avions attribuée. . . . Nous espérons ainsi avoir suivi la voie la plus sûre dans ces
études, s’il est vrai, comme on s’accorde à le dire, que le plus haut degré de certitude auquel
on puisse arriver dans toute science, c’est de déduire de l’observation des faits une théorie
que l’expérience sanctionne.

Since then, such in vitro circulation models have been used to replicated in vivo conditions in
a controlled environment. In [Segers et al. 1998], the authors construct a 28-artery network
and find striking correspondence between in vivo and in vitro results. In [Saito et al. 2011],
an arterial bifurcation and a 9-artery network model are used to study the propagation
and reflection of pulse waves and the effects of blood viscosity and wall viscoelasticity. In
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[Matthys et al. 2007; Alastruey et al. 2011] a similar approach is considered but in a 37-artery
network, and the in vitro results are used as validation for in silico blood flow models.

Much can still be learned from in vitro models and they remain an active field of research.
Indeed, they accurately reproduce data unattainable in in vivo conditions, useful in particular
to validate in silico blood flow models which are the subject of the following subsections.

1.3.2 Three-dimensional models

Blood flow in the large arteries is three-dimensional (3D), pulsatile and a transition to
turbulence occurs in healthy conditions in the heart, at the root of the aorta and may occur
in pathological vessels [Nerem et al. 1972; Chnafa et al. 2014]. It is therefore natural to
describe the flow of blood using the incompressible Navier-Stokes equations. Additionally,
the behavior of the arterial wall is assumed to obey an elastic law relating stress to strain
in the arterial tissue, even though the behavior of the arterial wall is far more complex
[Holzapfel et al. 2000; Holzapfel and Ogden 2010].

These 3D blood flow models are the numerical counterpart to the in vitro models presented
above, in the sense that they enable a complete description of all relevant scales. As such,
they have been solved using a variety of fluid structure interaction (FSI) numerical methods
coupling the motion of blood and the deformation of the arterial wall [Hughes et al. 1981;
Farhat et al. 2001; Tezduyar 2003; Figueroa et al. 2006; Tezduyar et al. 2007; Mayr et al.
2015].

They are usually used to compute blood flow in small regions of interest such as arterial
bifurcations [Taylor et al. 1998], aneurysms [Cebral et al. 2005] and in small portions of the
systemic network [Vignon-Clementel et al. 2010; Sankaran et al. 2012], even though 3D FSI
blood flow simulations in large arterial network simulations are possible [Xiao et al. 2013].
In each of these applications, these 3D blood flow models provide relevant information on
the flow patterns in patient-specific geometries [Steinman et al. 2002; Cebral et al. 2005].

Despite the work proposed in [Xiao et al. 2013], 3D blood flow models are difficult to apply to
extended arterial networks due to their high computational and modeling costs. Multiscale
approaches have therefore been developed, where 3D blood flow models are coupled to
simpler reduced-order models that describe the global behavior of large portions of the
vascular tree. Such zero-dimensional (0D) and one-dimensional (1D) blood flow models are
presented in the following subsections.

1.3.3 Zero-dimensional models

Zero-dimensional (0D) blood flow models can be obtained by integrating the 3D equations
governing blood flow over the cross-sectional area and the length of an artery, assuming that
the characteristic axial lengthscale is much longer than the radial one and that the flow is
axisymmetric. In this integration process, the axial and radial dependencies are lost. Hence
0D models only describe the relations linking the inlet and outlet variables of an artery,
which provide valuable information on flow and pressure at low computational and modeling
costs.

The first 0D blood flow model is the Windkessel and was proposed by Otto Frank in [Frank
1899] to describe the systemic circulation. In this work, Frank considered the systemic
circulation as a single compliant compartment and used the conservation of mass to analyze
changes of volume during diastole and systole. While the Windkessel theory is successful in
describing pressure variations during diastole, it fails to capture the behavior of pressure
during systole and was progressively abandoned by clinicians, as is summarized by William
Milnor in [Milnor 1989]:
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Figure 1.3 – Two representations of the systemic network:
Left: Representation of an electrical circuit analogue to the systemic arterial tree taken
from [Noordergraaf et al. 1963]. Blood flow in each segment is described by the electrical
equivalent of a 0D Windkessel model.
Right: Representation of a systemic arterial tree where the flow in each segment is described
by a complex blood flow model (1D, 2D, 3D) and where 0D Windkessel models are used as
physiological terminal boundary conditions.

The great virtue of the initial Windkessel model was its simplicity, and it still has an
explanatory value as a rough approximation that is readily grasped. For almost all research
purposes, however, a more detailed and realistic model that conforms to the distribution of
properties in the vascular tree is to be preferred.

Indeed, to derive the Windkessel model, Frank assumed that pressure is uniform in all the
systemic circulation and discarded wave propagation and reflection, which play an important
role during systole. To overcome these limitations, 0D blood flow models similar to the
Windkessel were introduced the describe the flow in a single artery. Using an analogy with
the telegraph equations representing the transmission of an electrical pulse through a uniform
cable [Noordergraaf et al. 1963], these 0D blood flow models were represented using electrical
components (resistance, inductance, capacity) and connected together to form an electrical
circuit representing the systemic arterial tree with distributed properties [Noordergraaf et al.
1963; Westerhof et al. 1969]. Such an analog systemic arterial tree is illustrated in Figure 1.3
Left, taken from [Noordergraaf et al. 1963]. By actually constructing these analog systemic
arterial trees, the authors were able to reproduce electrical behaviors similar to those of an
in vivo system.

These 0D circulation models were progressively replaced by more complex blood flow
models that are now solved numerically. However, 0D models still play an important role
in cardiovascular simulations as they are now used as physiological boundary conditions
for more complex cardiovascular models (see Figure 1.3 Right) [Vignon and Taylor 2004;
Vignon-Clementel et al. 2006; Alastruey et al. 2008, 2011; Cousins and Gremaud 2012; Xiao
et al. 2013; Perdikaris and Karniadakis 2014; Guan et al. 2016] and to represent at a low
computational cost large portions of the systemic circulation [Liang et al. 2009; Sankaran
et al. 2012; Müller and Toro 2014; Audebert et al. 2017a].

Finally, the Windkessel model was recently revisited in [Tyberg et al. 2009; Westerhof and
Westerhof 2017; Parker 2017] in the reservoir-wave approach, where the pressure waveform is
no longer decomposed as a forward and backward component [Westerhof et al. 1972] but as
a reservoir pressure (the Windkessel pressure, uniform in the system) and an excess pressure,
containing the forward and backward waves.

7



Section 1.4. Specific aims and outline of the thesis

1.3.4 One-dimensional models

In the same spirit as 0D models, one-dimensional (1D) blood flow models can be obtained
by integrating the 3D equations governing blood flow over the cross-sectional area of an
artery, assuming that the characteristic axial lengthscale is much longer than the radial one
and that the flow is axisymmetric. In this integration process, only the radial dependency is
lost, and 1D blood flow models still retain the ability to propagate elastic waves. Indeed,
their hyperbolic nature is well adapted to reproduce the wave propagation phenomena in
the systemic arterial tree. These 1D models give accurate predictions of pressure and flow
waveforms in all the main arteries at a low computational cost, which offers a distinct
advantage for clinical applications using patient-specific data.

In fact, Leonhard Euler was the first to write the 1D equations for the conservation of mass
and the continuity of momentum describing blood flow [Euler 1844]. Unfortunately, he
was enable to properly solve them. Since then, the progress of mathematics (solution of
hyperbolic systems) and of computer sciences has enabled to solve the 1D equations for
blood in single arteries as well as in large networks [Sherwin et al. 2003a,b; Formaggia et al.
2003] using a wide variety of numerical methods [Delestre and Lagrée 2013; Boileau et al.
2015; Wang et al. 2015; Puelz et al. 2017].

To obtain physiological waveforms in 1D systemic network models, much effort was put
into obtaining realistic boundary conditions accurately modeling the behavior of the heart
[Mynard and Nithiarasu 2008], the flow in junctions [Fullana and Zaleski 2009; Mynard and
Valen-Sendstad 2015; Contarino et al. 2016; Müller et al. 2016b; Chnafa et al. 2017] and the
vascular network distal to the terminal vessels [Olufsen et al. 2000; Alastruey et al. 2008;
Cousins and Gremaud 2012; Perdikaris et al. 2015; Guan et al. 2016]. These 1D models
have then been extensively used to study the flow in the main systemic arteries, from the
ascending aorta to the upper and lower limbs [Matthys et al. 2007; Müller and Blanco
2015; Müller et al. 2016a]. Other studies have considered the cerebral circulation in detail
[Zagzoule and Marc-Vergnes 1986; Alastruey et al. 2007]. More recently, simulation of the
complete systemic circulation [Reymond et al. 2009; Liang et al. 2011; Reymond et al. 2011;
Watanabe et al. 2013; Blanco et al. 2014, 2015] and the complete cardiovascular system
[Müller and Toro 2014] have been performed.

Some studies have gone beyond reproducing healthy networks and have considered patholog-
ical networks with stenoses and aneurysms [Müller et al. 2013; Delestre and Lagrée 2013;
Murillo and García-Navarro 2015; Ghigo et al. 2017b; Sazonov et al. 2017] and have modeled
their treatment using endovascular or extracorporeal surgeries [Willemet et al. 2013; Drzisga
et al. 2016; Ghigo et al. 2017a; Strocchi et al. 2017]. In time, these 1D models will be inte-
grated in daily clinical practice to provide clinicians with rapid information on hemodynamics
in patient-specific networks and on the possible outcome of surgical treatments.

1.4 Specific aims and outline of the thesis
Despite their obvious success, 1D blood flow models have several limitations. Interestingly,
the limitations are not inherent to the long wave approximation which is valid in physiological
conditions, but rather to the different closure hypotheses used to solve the 1D blood flow
equations.

The first closure hypothesis concerns the Newtonian aspect of blood. Indeed, in almost all
1D simulations, blood is assumed to be Newtonian. However, in many regions of the systemic
network, low shear regimes are reached as a consequence of the pulsatility of blood flow, of
recirculation areas created by stenoses, aneurysms and bifurcations and of the decrease in
shear with vessel ramification. In such low shear regions, blood behaves as a non-Newtonian
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fluid and exhibits shear-thinning, viscoelastic and thixotropic behaviors. At low shear
rates, molecular mechanisms trigger the aggregation of red blood cells (RBCs) into long
column-like structures called "rouleaux", whereas at higher shear rates, these structures are
deformed, disaggregated and the RBCs re-align in the direction of the flow. This reversible
aggregation-disaggregation process is responsible for the shear-thinning behavior of blood.
The different timescales of the aggregation and disaggregation processes are at the origin of
the thixotropic response of blood. Finally, viscoelasticity stems from the elasticity of RBCs
and the change of dissipation mechanisms at low and high shear rates [Cross 1965; Thurston
1972, 1975; Bureau et al. 1980; Quemada and Droz 1982]. As there exists strong evidence
that this non-Newtonian behavior of blood influences the progression of many cardiovascular
pathologies, such as atherosclerosis, through local modifications of the hemodynamics [Verdier
2003], it is crucial to take into account these non-Newtonian behaviors in 1D blood flow
simulations.

The second closure hypothesis concerns the constitutive law used to describe the behavior
of the arterial wall. Many 1D simulations assume that the arterial wall is a purely elastic
material. However, the arterial wall displays both elastic and viscous behaviors [Taylor
1959; Westerhof and Noordergraaf 1970; Valdez-Jasso et al. 2009] and wall viscosity is a
key element of the mechanical response of the arterial wall. Indeed, it acts as a protection
mechanism by dissipating energy and filtering high-frequency components of the pressure
signal, preventing structural injuries of the arterial wall [Armentano et al. 2007]. Different
viscoelastic constitutive equations have been used in combination with 1D blood flow models
[Alastruey et al. 2011; Reymond et al. 2009; Raghu et al. 2011; Reymond et al. 2011;
Perdikaris and Karniadakis 2014; Montecinos et al. 2014; Müller et al. 2016b; Ghigo et al.
2017a], yet none of these have considered the nonlinear response of the arterial wall.

The third and most important closure hypothesis concerns the shape of the velocity profile,
which is lost in the averaging process used to derive 1D blood flow equations. A carefully
chosen a priori velocity profile is then selected [Ikenaga et al. 2013; Wang et al. 2016b;
Puelz et al. 2017], thereby preventing any time or spatial variations of the velocity profile.
Alternative dynamical approach have been proposed based on the Womersley theory [Lagrée
2000; Reymond et al. 2009]. However, a more general approach is necessary for which no
additional hypothesis is required, especially to compute the flow in pathological segments
[Lagrée and Lorthois 2005].

The bulk of this thesis is designed to provide new insights on the three issues raised above.
Each new model developed is extensively validated using analytic, linear and asymptotic
solutions and then tested in large network simulations when possible. Other problematics
are also addressed such as the treatment of boundary conditions, numerical methods to deal
with arteries with varying geometrical and mechanical properties and possible applications of
1D blood flow models in large networks of arteries. That being said, this thesis is organized
as follows:

Chapter 2 Chapter 2 deals with the derivation of the 1D blood flow equations, and we
carefully explicit and justify the different hypotheses made.

Chapter 3 In Chapter 3, we present a nonlinear viscoelastic constitutive law designed to
fit experimental pressure-radius hysteresis loops obtained in sheep. The experimental data
were graciously provided by Pr. Armentano and his team in Favaloro University, Argentina.
We then incorporate the viscoelastic wall model into the 1D system of equations derived in
Chapter 2.
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Chapter 4 In Chapter 4, we propose finite volume and finite difference methods to solve
in one artery the 1D viscoelastic blood flow system presented in Chapter 2 and Chapter 3.
We validate our numerical methods using exact and asymptotic solutions.

Chapter 5 In Chapter 5, we expose a numerical strategy called the hydrostatic reconstruc-
tion designed to deal with arteries that present variations of their geometrical and mechanical
properties. This method allows to accurately preserve steady states and to capture wave
reflections and transmissions. As in Chapter 4, we validate our numerical methods using
exact and asymptotic solutions.

Chapter 6 In Chapter 6, we discuss the very important issue of junction and outflow
boundary conditions used in large network simulations. Junction boundary conditions link
one parent artery with two daughter arteries, while outflow boundary conditions represent
the response of the vascular bed at the end of each terminal vessel of the network.

Chapter 7 In Chapter 7, we present three biomedical applications where we use the 1D
blood flow equations to provide insights on medical issues. We first propose a didactic
investigation of the origin of the dicrotic notch. We then study different extracorporeal
bypass graft treatments of a severe stenosis of the right Iliac artery (in the leg). Finally, we
analyze experimental data on aortic and iliac clamping.

Chapter 8 In Chapter 8, we derive what we refer to as the multiring blood flow model. It
is a two-dimensional model designed to dynamically compute the velocity profile in elastic
arteries without resorting to mesh adaptation strategies. We show that the multiring model
can compute classical blood flow solutions such as the Poiseuille and Womersley solutions as
well as recirculation areas in stenosed vessels.

Chapter 9 In Chapter 9, we propose a non-Newtonian extension of the 1D blood flow
equations, taking into account time-dependent non-Newtonian behaviors using a structure
function that describes the state of aggregation of red blood cells. We validate our model
using experimental data and analytic solutions and then study its effects in structured
arterial trees.

Chapter 10 In Chapter 10, we summarize the thesis, discuss the results and present some
perspectives.
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Chapter 2
One-dimensional equations for blood
flow in an elastic artery

We present here the derivation of the one-dimensional blood flow equations. Purpose-
fully, the presentation is synthetic to clearly highlight the successive simplification
steps.

Contents
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2 Simplified solid equations . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2.1 Simplifying hypotheses . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2.2 Thin cylinder wall law . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3 Simplified fluid equations . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.3.1 Simplifying hypotheses . . . . . . . . . . . . . . . . . . . . . . . . 16
2.3.2 The reduced Navier-Stokes-Prandtl equations . . . . . . . . . . . 17

2.4 Validity of the combined fluid and solid models . . . . . . . . . . . . . . . 19
2.4.1 The steady linear elastic Poiseuille solution . . . . . . . . . . . . 19
2.4.2 The Womersley solution . . . . . . . . . . . . . . . . . . . . . . . 20

2.5 One-dimensional equations . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.5.1 One-dimensional fluid and solid equations . . . . . . . . . . . . . 21
2.5.2 Velocity profile approximations . . . . . . . . . . . . . . . . . . . 24

2.6 Dimensional and mathematical analysis . . . . . . . . . . . . . . . . . . . 26
2.6.1 Dimensional analysis . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.6.2 Mathematical analysis . . . . . . . . . . . . . . . . . . . . . . . . 28

2.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.1 Introduction
In Chapter 1, we have introduced the context of this study and the motivations for considering
a simplified fluid structure interaction model of blood flow in large arteries. We now describe
the hypotheses and the derivation of both solid and fluid reduced-order models that we then
combine to obtain a monolithic one-dimensional blood flow model. Further details on the
hypotheses and the derivation steps are found in [Fung 2013; van de Vosse and van Dongen
1998].

Coming from a fluid mechanics background, we use dimensional analysis to simplify the
fluid and solid equations by keeping only the terms of highest orders of magnitude. We
use the centimeter-gram-second or cgs unit system to express the value of all dimensional
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Section 2.2. Simplified solid equations

variables. Indeed, the cgs unit system is the natural unit system for blood flow as the radius
of a large artery is 1 cm, blood density is 1 g · cm−3 and a heart beat lasts 1 s. It is worth
pointing out that the value of the fluid pressure is high in the cgs unit system (of the order
of 105 dyn · cm−2). Yet this poses no problem as only the pressure gradient plays a role in
blood flow dynamics.

In most of the work presented in this thesis, the equations are written in
dimensional form, contrary to the fluid mechanics common practice to write
all equations in non-dimensional form. However, as we use the cgs unit system,
most quantities are equal to 1.

In Section 2.2 we present successive simplifications of the mechanical behavior of the arterial
wall leading to the description of the arterial wall as an elastic spring (loi des chaudroniers).
In Section 2.3 we use a similar approach to derive, starting from the Navier-Stokes equations
governing the motion of blood, a simplified system of equations that we refer to as the
reduced Navier-Stokes-Prandtl equations (RNSP). Finally, in Section 2.4 and Section 2.6 we
test the validity of these hypotheses and derive the one-dimensional equations describing
blood flow in an elastic artery.

2.2 Simplified solid equations

Following ideas exposed in [Jager 1965; Westerhof 1968], we derive a simplified model of the
mechanical response of the arterial wall. We detail the hypotheses in Subsection 2.2.1 and
the derivation in Subsection 2.2.2. We recall that all dimensional quantities are expressed in
the cgs unit system.

2.2.1 Simplifying hypotheses

Axisymmetric thin cylinder

We represent the artery in its simplest form as a thin, long and straight axisymmetric cylinder
of length L, width h, neutral radius R0 and instantaneous radius R (see Figure 2.1).

Small perturbation assumption

In physiological conditions the wall displacement is small. We therefore assume that the
small perturbation assumption is valid (small displacement u and strain ε). The strain
tensor ε then writes:

ε =
1

2
[∇u+ ∇uᵀ] . (2.1)

R

h

L

Figure 2.1 – Schematics of a portion of a thin straight axisymmetric cylinder of length L,
width h and radius R.

12



Chapter 2. One-dimensional equations for blood flow in an elastic artery

Linear elasticity

We describe the arterial wall in the simplest possible way as an homogeneous, isotropic,
isothermal, linear elastic material. Consequently, the relationship between the Cauchy stress
tensor σ and the strain tensor ε is given by Hooke’s law:

σ = λwtr (ε) I + 2µwε or ε = −νw
E

tr (σ) I +
1 + νw
E

σ. (2.2)

The tensor I is the identity matrix, the coefficients λw and µw are the first and second Lamé
parameters and E and νw are respectively the Young’s modulus and the Poisson coefficient.

We do not assume that the material is incompressible. The justification for
this assumption is provided in the following.

Quasi-static equilibrium

The general momentum balance equation for an incompressible material writes:

ρw
Dv

Dt
= ρwfv + div (σ) , (2.3)

where ρw is the density of the material, v the velocity vector and fv the vector of volume
forces. To assess the importance of each term in Equation (2.3), we introduce in Table 2.1
non-dimensional variables and their respective orders of magnitude.

t = T t̄ x = R0x̄ v = R0
T v̄ σ = µwσ̄ fv = gf̄v

ρw = 1 T = 1 R0 = 1 R0
T = 1 µw = 105 g = 103

Table 2.1 – Non-dimensional solid variables and their orders of magnitude.

Injecting these non-dimensional variables into Equation (2.3), we obtain:

Dv̄

Dt̄
=

[
gT 2

R0

]
f̄v +

[
µw

ρw
R2

0
T 2

]
d̄iv (σ̄) , (2.4)

where the values of the non-dimensional numbers are:
gT 2

R0
= 103,

µw

ρw
R2

0
T 2

= 105. (2.5)

These values indicate that the acceleration and volume forces are negligible compared to the
surface forces. Equation (2.3) then simplifies to the quasi-static equilibrium equation:

div (σ) = 0. (2.6)

2.2.2 Thin cylinder wall law

Combining these hypotheses, we obtain simplified equations for the displacement of the
arterial wall, usually referred to as the Navier-Lamé equations:

[λw + 2µw]∇ (div (u))− µwrot (rot (u)) = 0. (2.7)

The final and very important step is to provide boundary conditions for Equation (2.7). We
assume that the idealized artery does not deform in the axial direction, or more accurately
that the axial displacement is small compared to the length of the artery (ux � L), and
that pressure is the only significant stress applied on the internal and external sides of the
artery:




εxx = 0

σ ·n = −pn in r = R

σ ·n = −pextn in r = R+ h,

(2.8a)
(2.8b)
(2.8c)
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Section 2.2. Simplified solid equations

where p and pext are respectively the internal and external fluid pressures. In the following,
we assume that pext is constant.

Thick wall

We solve System (2.7) by choosing a kinetically admissible form for the displacement u:
u = rf (r) er + g (x) ex. (2.9)

Injecting this expression in System (2.7) and using the boundary condition (2.8a) we obtain
the expressions for f and g:


f (r) = a+

b

r2

g (x) = c,

(2.10a)

(2.10b)
and for the strain tensor ε:

ε =



a− b

r2 0 0

0 a+ b
r2 0

0 0 c


 . (2.11)

We then find the expression for the Cauchy stress tensor σ using Equation (2.2) and the
boundary conditions (2.8b) and (2.8c):

σ =



σrr 0 0
0 σθθ 0
0 0 σxx


 , (2.12)

with:



σrr = A− B

r2

σθθ = A+
B

r2

σxx = C,

(2.13a)

(2.13b)

(2.13c)
and



A = p

[
1

[
1 + h

R

]2 −
pext
p

] [
1 + h

R

]2
[
1 + h

R

]2 − 1

B = p

[
1− pext

p

]
R2

[
1 + h

R

]2
[
1 + h

R

]2 − 1

C = 2λwa.

(2.14a)

(2.14b)

(2.14c)

Under the assumption that the displacement is given by Equation (2.9), the
boundary conditions (2.8) are sufficient to completely solve System (2.7). If we
additionally assume that the material is incompressible, the system becomes
hyperstatic. Indeed, we have in this case tr (ε) = 0 and therefore 2a− c = 0.
The boundary condition (2.8a) gives c = 0 and therefore a = 0. The Cauchy
stress writes as σ = 2µwε and the boundary conditions (2.8b) and (2.8c) are
no longer verified simultaneously.

Thin wall

In the previous paragraph, we have considered an arbitrary width of the arterial wall. In
reality, the width of the arterial wall is small compared to the radius of the artery. We
therefore introduce the small parameter εw:

εw =
h

R0
, (2.15)
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Chapter 2. One-dimensional equations for blood flow in an elastic artery

and write r and R as:{
r = R0 [1 + εwr̄] with r̄ = O (1)

R = R0

[
1 + εwR̄

]
with R̄ = O (1) .

(2.16a)
(2.16b)

We then have:



σrr = p

[
1

[1 + εw]2
−
[
1 + εwR̄

]2

[1 + εwr̄]
2 −

pext
p

[
1−

[
1 + εwR̄

]2

[1 + εwr̄]
2

]]
[1 + εw]2

[1 + εw]2 − 1

σθθ = p

[
1

[1 + εw]2
+

[
1 + εwR̄

]2

[1 + εwr̄]
2 −

pext
p

[
1 +

[
1 + εwR̄

]2

[1 + εwr̄]
2

]]
[1 + εw]2

[1 + εw]2 − 1
.

(2.17a)

(2.17b)

Keeping only terms up to order O (εw) we obtain:



σrr ≈ p
[[
r̄ − R̄− 1

]
− pext

p

[
r̄ − R̄

]]

σθθ ≈
p

εw

[
1− pext

p

]
.

(2.18a)

(2.18b)

Equation (2.18a) and Equation (2.18b) indicate that σrr � σθθ and that the transmural
pressure applied on the arterial wall is balanced only by the tangential stress σθθ.

To link σθθ to εθθ, we use the constitutive Equation (2.2), System (2.18) and the boundary
condition (2.8a):



εθθ =
1

E
[σθθ − νwσxx]

εxx = 0 =
1

E
[σxx − νwσθθ] .

(2.19a)

(2.19b)

We then obtain:

σθθ =
E

1− ν2
w

εθθ. (2.20)

Noticing that εθθ = ur
r , this relation writes in r = R:

σθθ =
E

1− ν2
w

R−R0

R
. (2.21)

Combining Equation (2.18b) and Equation (2.21), we finally obtain the linearized thin
cylinder wall law, or Hoop law (loi des chaudroniers), relating variations of the transmural
pressure with the deformation of the arterial wall:

p− pext =
E

1− ν2
w

h

R2
0

[R−R0] . (2.22)

Equation (2.22) is usually written under the more general form:

p− pext = K
[√

A−
√
A0

]
, (2.23)

where K is the rigidity of the arterial wall:

K =
E

1− ν2
w

√
πh

A0
. (2.24)

Equation (2.23) describes the arterial wall as a spring of rigidity K.

We have derived a very simple relation able to describe the elastic deformation of the arterial
with variations of the transmural pressure. A more realistic arterial wall model is presented
in Chapter 3, where viscoelastic effects are taken into account.
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Section 2.3. Simplified fluid equations

2.3 Simplified fluid equations

Following [Prandtl 1928], we derive simplified equations for blood flow in large arteries. We
detail the hypotheses in Subsection 2.3.1 and the derivation in Subsection 2.3.2. We recall
that all dimensional quantities are expressed in the cgs unit system.

2.3.1 Simplifying hypotheses

Homogeneous Newtonian fluid

In large arteries, the average size of red blood cells (RBCs) (6×10 4 in diameter) is four orders
of magnitude smaller than the average vessel size (1 in diameter). Moreover, the average
shear rate is high (γ̇ ≥ 100), preventing the aggregation of RBCs. As a first approximation,
we consider that blood is a homogeneous Newtonian fluid. The validity of this hypothesis is
discussed in Chapter 9.

Incompressible flow

The compressibility of the flow can play an important role in the propagation of waves in
elastic cylinders. Indeed, in pipe flows, which are the industrial analogue of arterial flows,
the water hammer phenomenon has been studied for many years. A water hammer describes
the wave generated when a fluid in motion is forced to stop and change direction, which
commonly occurs when a valve closes. According to water hammer theory [Allievi 1913;
Ghidaoui et al. 2005], both the compressibility of the flow and the elasticity of the arterial
wall are responsible for the propagation of the water hammer wave, even though the Mach
number Ma � 1. Indeed, the conservation of mass on a control-volume of compressible fluid
in an elastic pipe writes:
∂

∂t
[ρA] +

∂

∂x
[ρAUx] = 0, (2.25)

which can be rewritten as:
1

ρ

Dρ

Dt
+

1

A

DA

Dt
+
∂Ux
∂x

= 0. (2.26)

A rigorous derivation of Equation (2.25) for an incompressible flow is presented in Subsec-
tion 2.5.1.

As the fluid is compressible and the wall elastic, both the fluid density ρ and the cross-
sectional area A of the tube vary with the fluid pressure p (ρ (p) and A (p)). This pressure
dependence allows us to write the mass conservation equation as:

1

ρc2
wh

Dp

Dt
+
∂Ux
∂x

= 0, (2.27)

where cwh is the water hammer wave speed:
1

c2
wh

=
1
dp
dρ

+
1

A
ρ

dp
dA

. (2.28)

This formula is also obtained in [Korteweg 1878]. As the flow is slightly compressible
(dp/dρ� 1) and the pipe wall very rigid (A/ρ (dp/dA)� 1), both terms in Equation (2.28)
have the same order of magnitude.

By analogy, we assume that the pulse wave speed in an artery is given by Equation (2.28).
We therefore introduce the acoustic wave speed of blood [Szabo 2004]:

cρ =

√
dp

dρ
= 1.584× 105, (2.29)
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Chapter 2. One-dimensional equations for blood flow in an elastic artery

and the elastic wave speed in the large arteries [Moens 1878; Korteweg 1878]:

c =
A

ρ

dp

dA
≈ 1× 102. (2.30)

Applying Equation (2.28), we conclude that the acoustic wave speed cρ can be neglected
with respect to the elastic wave speed c and that blood flow is incompressible in the large
arteries.

Axisymmetric flow

In accordance with the geometrical assumptions made in Section 2.2, we assume that blood
flow is axisymmetric (∂θ = 0) and that:



∂ux
∂r

∣∣∣∣
r=0

= 0

ur|r=0 = 0

uθ = 0.

(2.31a)

(2.31b)
(2.31c)

Long wavelength

The average radius in large arteries is R0 ≈ 1, the pulse wave speed c ≈ 102 and the heart
ejection period T ≈ 1. The wavelength of the pulse wave is then λ = cT ≈ 102. We can
therefore introduce a small parameter ελ, called the long wave parameter:

ελ =
R0

λ
� 1. (2.32)

This small parameter is used in Subsection 2.3.2 to simplify the governing equations for the
motion of blood.

2.3.2 The reduced Navier-Stokes-Prandtl equations

These hypotheses, that we have briefly discussed, lead us to describe blood flow in the
idealized artery presented in Section 2.2 with the incompressible axisymmetric Navier-Stokes
equations for a homogeneous Newtonian fluid:



1

r

∂

∂r
[rur] +

∂ux
∂x

= 0

∂ur
∂t

+ ur
∂ur
∂r

+ ux
∂ur
∂x

= −1

ρ

∂p

∂r
+ ν

[
1

r

∂

∂r

[
r
∂ur
∂r

]
− ur
r2

+
∂2ur
∂x2

]

∂ux
∂t

+ ur
∂ux
∂r

+ ux
∂ux
∂x

= −1

ρ

∂p

∂x
+ ν

[
1

r

∂

∂r

[
r
∂ux
∂r

]
+
∂2ux
∂x2

]
,

(2.33a)

(2.33b)

(2.33c)

where ρ is the density of blood, ν the kinematic viscosity of blood, p the fluid pressure and
u = [ur, uθ, ux]−1 the fluid velocity vector. Equation (2.33) is completed by the following
material interface and axisymmetric conditions for a viscous fluid:



ur =
∂R

∂t
+ ux

∂R

∂x
in r = R

ux = 0 in r = R

∂ux
∂r

∣∣∣∣
r=0

= 0

ur|r=0 = 0

uθ = 0.

(2.34a)

(2.34b)

(2.34c)

(2.34d)
(2.34e)

Indeed, the equation for the interface between the fluid and the arterial wall can be written
as F = r −R (x, t) = 0. As F = 0 on the interface at all times, the derivative with respect
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to time following a material particle on the interface must be zero:
DF

Dt
= ur (x, r = R, t)−

[
∂R

∂t
+ ux (x, r = R, t)

∂R

∂x

]
= 0, (2.35)

which gives the boundary condition (2.34a).

To assess the importance of each term in System (2.33), we introduce in Table 2.2 non-
dimensional variables and their respective orders of magnitude.

t = λ
c t̄ r = R0r̄ x = λx̄ ur = Urūr ux = Uxūx p = p0+Πp̃

ρ = 1 ν = 10 2 λ
c = 1 R0 = 1 λ = 102 - 0 ≤ Ux ≤ 100 -

Table 2.2 – Non-dimensional flow variables and their orders of magnitude.

Injecting these non-dimensional variables into System (2.33), we obtain:



[
Ur
ελUx

]
1

r̄

∂

∂r̄
[r̄ūr] +

∂ūx
∂x̄

= 0

∂ūr
∂t̄

+

[
Ur
ελc

]
ūr
∂ūr
∂r̄

+

[
Ux
c

]
ūx
∂ūr
∂x̄

= −
[

Π

ρελUrc

]
∂p̃

∂r̄

+

[
νT

R2
0

] [
1

r̄

∂

∂r̄

[
r̄
∂ūr
∂r̄

]
− ūr
r̄2

+
[
ε2λ
] ∂2ūr
∂x̄2

]

∂ūx
∂t̄

+

[
Ur
ελc

]
ūr
∂ūx
∂r̄

+

[
Ux
c

]
ūx
∂ūx
∂x̄

= −
[

Π

ρUxc

]
∂p̃

∂x̄

+

[
νT

R2
0

] [
1

r̄

∂

∂r̄

[
r̄
∂ūx
∂r̄

]
+
[
ε2λ
] ∂2ūx
∂x̄2

]
.

(2.36a)

(2.36b)

(2.36c)

We then use the principle of least degeneracy [Van Dyke 1964] or significant degener-
acy [Eckhaus 2011] to retain only the leading order terms in System (2.36). Applied to
Equation (2.36a), this principle gives:
Ur = ελUx. (2.37)

Using the long wave hypothesis (2.32), we see that Ur � Ux and that the x-direction is the
main flow direction. As we know from experience that viscous and nonlinear effects are small
in the large arteries, the least degeneracy principle states that the pressure gradient must
balance the unsteady inertial term in Equation (2.36c), which gives:

Π = ρUxc. (2.38)
We can now rewrite System (2.36) as:



1

r̄

∂

∂r̄
[r̄ūr] +

∂ūx
∂x̄

= 0

∂ūr
∂t̄

+ Sh

[
ūr
∂ūr
∂r̄

+ ūx
∂ūr
∂x̄

]
= − 1

ε2λ

∂p̃

∂r̄

+
1

α2

[
1

r̄

∂

∂r̄

[
r̄
∂ūr
∂r̄

]
− ūr
r̄2

+ ε2λ
∂2ūr
∂x̄2

]

∂ūx
∂t̄

+ Sh

[
ūr
∂ūx
∂r̄

+ ūx
∂ūx
∂x̄

]
= −∂p̃

∂x̄

+
1

α2

[
1

r̄

∂

∂r̄

[
r̄
∂ūx
∂r̄

]
+ ε2λ

∂2ūx
∂x̄2

]
,

(2.39a)

(2.39b)

(2.39c)

where Sh is the Shapiro number, characterizing the importance of nonlinear effects:

Sh =

∣∣∣∣
Ux
c

∣∣∣∣, (2.40)

and α is the Womersley number, describing the competition between pulsatile and viscous
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effects:

α = R0

√
ω

ν
, (2.41)

with ω = 2π/T . The physiological orders of magnitude presented in Table 2.2 give us:

0 ≤ Sh ≤ 1

0 ≤ α ≤ 25,

(2.42a)
(2.42b)

which confirms the fact that the viscous and nonlinear effects are small compared to the
pressure gradient and the unsteady inertial term. Using the long wave hypothesis (2.32) and
keeping only terms of order O (1), System (2.39) simplifies to what we refer to as the reduced
Navier-Stokes-Prandtl equations (RNSP) [Lagrée and Lorthois 2005]:




1

r̄

∂

∂r̄
[r̄ūr] +

∂ūx
∂x̄

= 0

∂ūx
∂t̄

+ Sh

[
ūr
∂ūx
∂r̄

+ ūx
∂ūx
∂x̄

]
= −∂p̃

∂x̄
+

1

α2

[
1

r̄

∂

∂r̄

[
r̄
∂ūx
∂r̄

]]

p̃ (x̄, r̄, t̄) = p̃ (x̄, t̄) .

(2.43a)

(2.43b)

(2.43c)

System (2.43) was originally derived by Prandtl in [Prandtl 1928], hence the
name reduced Navier-Stokes-Prandtl equations.

Starting from the incompressible Navier-Stokes equations, we have derived a simplified
system of equations for blood flow. The RNSP equations (2.43) are a rich dynamical system
[Womersley 1955; Smith 1976; Lagrée and Lorthois 2005] and we show in the Section 2.4
that they contain all necessary physical ingredients to describe blood flow in large arteries.

2.4 Validity of the combined fluid and solid models

Before going any further, we assess the validity of the hypotheses made in Section 2.2 and
Section 2.3 and the ability of the combined fluid and solid models to reproduce classical
blood flow solutions. Apart from numerical solutions, there are, to our knowledge, two
analytic solutions of the Navier-Stokes equations in straight elastic tubes:

• the steady, linear and elastic Poiseuille solution, proposed in [Fung 2013] as the analogue
of the Hagen-Poiseuille solution in a rigid tube [Sutera and Skalak 1993];

• the linear and harmonic Womersley solution, proposed in [Womersley 1955] as a solution
of the linearized Navier-Stokes equations both in rigid and elastic axisymmetric tubes.

In Subsection 2.4.1 and Subsection 2.4.2, we derive both solutions from the RNSP equations
(2.43) coupled to the wall law (2.23) and thereby validate the reduced-order fluid and solid
models.

2.4.1 The steady linear elastic Poiseuille solution

Starting from the RNSP equations (2.43), we use the long wave hypothesis (2.32) and
consider a steady linear flow (∂t · = 0 and Sh � 1). We obtain using Equation (2.43b),
written here in dimensional form, the classical Poiseuille governing equation (valid both in
elastic and rigid tubes):

0 = −1

ρ

dp

dx
+
ν

r

∂

∂r

[
r
∂ux
∂r

]
. (2.44)
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Figure 2.2 – Axial evolution of the Poiseuille velocity profile and radius solutions:
Left: Velocity profile ux at x/L ∈ {0 (M) , 0.2 (?) , 0.4 (©) , 0.6 (B) , 0.8 (�) , 1 (+)}.
Right: Radius R (©).

Integrating twice Equation (2.44) and using the no-slip boundary condition (2.34b), we
recover the classical Poiseuille solution (valid both in elastic and rigid tubes):

ux = −R
2

4µ

dp

dx

[
1− r2

R2

]
= 2

Q

πR2

[
1− r2

R2

]
, (2.45)

where Q is the steady flow rate. Finally, injecting the solution (2.45) into Equation (2.44)
and using the elastic wall law (2.23), we find the expression for the elastic variation of the
radius:

R5 −R5 (x = 0) = − 40ν

π
3
2K

Qx, (2.46)

which allows us to deduce an expression for the flow rate Q:

Q =
π

3
2K

40νL

[
R5 (x = 0)−R5 (x = L)

]
. (2.47)

If K → ∞, than from Equation (2.46) we see that R = R (x = 0) and we
recover the classical Poiseuille solution in a rigid tube.

We plot in Figure 2.2 analytic Poiseuille velocity profiles at positions x/L ∈ {0, 0.2, 0.4,
0.6, 0.8, 1} and the axial variations of the radius R. We observe that the maximum velocity
increases with x to compensate the elastic decrease in radius and maintain a constant flow
rate (mass conservation).

2.4.2 The Womersley solution

Starting from the RNSP equations (2.43), we assume that the flow is linear (Sh � 1) and
periodic and search for a harmonic solution of the axial velocity ux and the pressure p:{

ux = ûx(r)ei[ωt−kx]

p = p0 + p̂ei[ωt−kx],
(2.48)
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where p0 = 0 for simplicity. Injecting these expressions into Equation (2.43b) we recover the
classical Womersley equation:
∂2ûx
∂r2

+
1

r

∂ûx
∂r
− i α

2

R2
ûx = − iω

µc
p̂, (2.49)

where α is the Womersley number (2.41) and c = ω/k is the wave celerity. The solution of
Equation (2.49) is obtained using the Bessel function J0 and the no-slip boundary condition
(2.34b), and writes:

ûx =
p̂

ρc


1−

J0

(
i

3
2α r

R

)

J0

(
i

3
2α
)


 . (2.50)

Using Equation (2.50), we compute the flow rate Q and the wall shear stress (WSS) τw:



Q = Q̂ei[ωt−kx] with Q̂ = πR2 p̂

ρc
[1− F10 (α)]

τw = τ̂we
i[ωt−kx] with τ̂w = i

να2

2R

p̂

ρc
F10 (α) ,

(2.51a)

(2.51b)

where F10 is defined as:

F10 (α) =
2

i
3
2α

J1(i
3
2α)

J0(i
3
2α)

. (2.52)

Finally, Equation (2.43a) integrated over the cross-sectional area of the artery combined
with Equation (2.23) allows us to obtain a linearized expression for the wave celerity c:

c2 =
K
√
πR0

2ρ
[1− F10 (α)] with p̂ =

√
πKR̂. (2.53)

The inlet boundary condition imposes the value of either p̂ or R̂, which closes the problem.

The Womersley solution is obtained in the frequency domain. It can therefore
be used as a validation case for blood oscillating at a single frequency. To use
this solution to describe more realistic multi-frequencies flows, knowledge of
the local flow waveform is required.

We plot in Figure 2.3 the real part of the analytic Womersley velocity profiles obtained for
T = 1 at a fixed position x/L = 0.5 at times t/T ∈ {0, 0.1, 0.2, 0.3, 0.4, 0.5} for different
Womersley numbers α ∈ {1, 10, 20, 30}. We observe that for small Womersley numbers,
at which viscous effects dominate, the velocity profiles are parabolic and similar to those
presented in Figure 2.2. On the contrary, for high Womersley numbers, at which inertial
effects dominate, the velocity profiles flatten in the center of the tube and a boundary layer
develops near the wall to match the no-slip boundary condition (2.34b).

2.5 One-dimensional equations
In Section 2.2 and Section 2.3, we have derived simplified equations governing the deformation
of the arterial wall and the flow of blood in the large arteries. These equations are summarized
in Table 2.3. The main difficulty now lies in proposing an efficient coupling of the fluid
and solid problems. To that effect, we derive in Subsection 2.5.1 the one-dimensional (1D)
monolithic fluid-structure interaction (FSI) system of equations and discuss in Subsection 2.5.2
the approximations made on the shape of the axial velocity profile.

2.5.1 One-dimensional fluid and solid equations

The elastic wall law (2.23) depends on two dynamic variables: the internal fluid pressure
p and the instantaneous radius of the artery R. Only the fluid pressure p is an explicit
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Figure 2.3 – Temporal evolution of analytic Womersley velocity profiles obtained for T = 1
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Hypotheses Non-dimensional numbers Equations

Solid

σ = λwtr (ε) I + 2µwε

div (σ) = 0

∂θ = 0

εxx = 0

εw = h/R0 � 1

gT 2/R0 = 103

µwT
2/
(
ρwR

2
0

)
= 105 ∆p = K

[√
A−

√
A0

]

K =
E

1− ν2
w

√
πh

A0

Fluid

ρ = cst

µ = cst

∂θ = 0 and uθ = 0

ur = ∂tR in r = R

ελ = R0/λ� 1

0 ≤ Sh = |Ux/c| ≤ 1

0 ≤ α = R0

√
ω/ν ≤ 25

1

r

∂

∂r
[rur ] +

∂ux

∂x
= 0

∂ux

∂t
+ ur

∂ux

∂r
+ ux

∂ux

∂x
= −

1

ρ

∂p

∂x

+
ν

r

∂

∂r

[
r
∂ux

∂r

]
p (x, r, t) = p (x, t)

Table 2.3 – Summary of the hypotheses and equations for blood flow in large elastic arteries.

variable of the RNSP equations (2.43). To introduce the variable R into the fluid equations
and simplify the coupling of the fluid and solid models, we integrate the RNSP equations
(2.43) over the cross-sectional area A of the artery:

2π∫

0

R∫

0





1

r

∂

∂r
[rur] +

∂ux
∂x

= 0

∂ux
∂t

+ ur
∂ux
∂r

+ ux
∂ux
∂x

= −1

ρ

∂p

∂x
+
ν

r

∂

∂r

[
r
∂ux
∂r

]

p (x, r, t) = p (x, t)




r dr dθ. (2.54)

Through this exact integration or averaging process, we obtain the 1D mass and momentum
equations expressed at time t in the axial position x (see [Wang et al. 2015] for details):



∂A

∂t
+
∂Q

∂x
= 0

∂Q

∂t
+

∂

∂x

[
ψ
Q2

A

]
+
A

ρ

∂p

∂x
=

2πR

ρ
τrx,

(2.55a)

(2.55b)

where A and Q are respectively the cross-sectional area and the axial flow rate:

A = 2π

R∫

r=0

rdr, Q = 2π

R∫

r=0

uxrdr. (2.56)

The coefficient ψ is the nonlinear shape factor:

ψ = 2π
A

Q2

R∫

r=0

ru2
xdr, (2.57)

and τrx is the WSS:

τrx = µ
∂ux
∂r

∣∣∣∣
r=R

. (2.58)

We can now use the elastic wall law (2.23) to couple the fluid and solid problems. Injecting
Equation (2.23) into System (2.55), we obtain:



∂A

∂t
+
∂Q

∂x
= 0

∂Q

∂t
+

∂

∂x

[
ψ
Q2

A
+
K

3ρ
A

3
2

]
=

2πR

ρ
τrx.

(2.59a)

(2.59b)
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We assume here that A0 and K are constants. However, in pathological situations such
as in stenoses and aneurysms, these quantities can vary with space and time (growth and
remodeling). The mathematical and numerical implications of these behaviors are discussed
in Chapter 5.

2.5.2 Velocity profile approximations

To close System (2.59), we need to express the nonlinear shape factor ψ and the WSS τrx in
terms of the flow rate Q and the cross-sectional area A. One-dimensional closure hypotheses
[Hughes and Lubliner 1973; Formaggia et al. 2003] suggest that we may write the axial
velocity ux as:

ux = φ
( r
R

)
U, (2.60)

where U = Q/A is the averaged velocity and φ is the dimensionless shape of the velocity
profile. Using this expression, we can rewrite ψ and τrx as:



ψ = 2

1∫

0

r̄φ2dr̄

τrx = µ
U

R

dφ

dr̄

∣∣∣∣
r̄=1

,

(2.61a)

(2.61b)

where r̄ = r/R . Unfortunately, the shape of the axial velocity profile is lost in the averaging
process and remains an unknown of the problem. An a priori shape must therefore be
carefully chosen. Indeed, in [Ikenaga et al. 2013; Wang et al. 2016b; Puelz et al. 2017] the
authors show that the choices for ψ and dr̄φ|r̄=1 significantly affect the computed numerical
results.

For blood flow in an straight artery, we can reasonably assume that the velocity profile is
given by the Womersley solution (2.50), presented in Subsection 2.4.2 and valid only for
linear harmonic flow, for which we have:

φ = <
(ux
U

)
= <




1−
J0

(
i
3
2 αr̄

)
J0

(
i
3
2 α
)

1− F10 (α)



. (2.62)

From Equation (2.62) we obtain the expressions for ψ and dr̄φ|r̄=1 using the software
Mathematica:



ψ = <




J1

(
i

3
2α
)2

+ 2J0

(
i

3
2α
)[

J0

(
i

3
2α
)
− 0F1

(
2, iα

2

4

)
Γ(2)

]

I2

(
i

1
2α
)




dφ

dr̄

∣∣∣∣
r̄=1

= <


−2

Γ (3)

Γ (2)

0F1

(
2, iα

2

4

)

0F1

(
3, iα

2

4

)


 ,

(2.63a)

(2.63b)

where 0F1 (a, z) is the confluent hypergeometric function, Γ (x) the Gamma function and
In (z) the modified Bessel function of the first kind. These expressions are parametrized by
the value of the Womersley number α (2.41) which can be estimated in experiments and
numerical simulations.

A more classical approach consists in using the power-law velocity profile introduced in
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Figure 2.4 – Evolution of the advection coefficient ψ (left) and wall friction ∂r̄φ|r=R (right)
computed with the Womersley closure (2.63) ( ) and the power-law closure relations (2.65)
( ). The straight lines correspond to the coefficients obtained in [Smith et al. 2002] ( ,
ψ = 1.1, dr̄φ = −11), with a Poiseuille profile ( , ψ = 4/3, dr̄φ = −4) and with a flat
profile ( , ψ = 1, dr̄φ = −∞). Note that the advection and wall friction coefficients obtained
in [Smith et al. 2002] correspond respectively to Womersley coefficients obtained for α = 7.4
and α = 13.2.

[Hughes and Lubliner 1973]:

φ =
ξ + 2

ξ

[
1− r̄ξ

]
, (2.64)

for which we have:



ψ = 1 +
1

1 + ξ

dφ

dr̄

∣∣∣∣
r̄=1

= − [2 + ξ] .

(2.65a)

(2.65b)

These expressions are parametrized by the user-defined value of ξ.

To compare both the Womersley and power-law closure relations, we plot in Figure 2.4 the
variations of the coefficients ψ and dr̄φ|r̄=1 given by System (2.63) and System (2.65). We
notice that both the Womersley and power-law closure relations recover the classical bounds
for ψ and dr̄φ|r̄=1:{

1 ≤ ψ ≤ 4/3

dr̄φ|r̄=1 ≤ −4.

(2.66a)
(2.66b)

However, we observe that their respective variations with α and ξ differ, whether for ψ or
dr̄φ|r̄=1. Indeed, the Womersley closure relations (2.63) are based on a physical analysis
of blood flow equations and are able to capture the complex behavior of the flow near the
arterial wall. Furthermore, they are parametrized by the Womersley number α, which is
the natural blood flow non-dimensional parameter and can be estimated in experiments and
numerical simulations. On the contrary, the power-law closure relations (2.65) stem from an
ad hoc expression for the shape of the velocity profile designed to match the no-slip condition
(2.34b), the axisymmetric condition dr̄φ|r̄=0 = 0, the Poiseuille velocity profile for ξ = 2
(α = 0) and a flat velocity profile (plug flow) for ξ � 1 (α� 1). They are parametrized by
the variable ξ, which has no physical meaning and can not be measured experimentally or
numerically. The Womersley closure relations (2.63) are therefore the better choice.

Despite this analysis, we conform to the literature on 1D blood flow and set ψ = 1 and use
the power-law closure relations (2.65) in the following to compute dr̄φ|r̄=1. These hypotheses
allow us to write the final closed form of System (2.59):
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



∂A

∂t
+
∂Q

∂x
= 0

∂Q

∂t
+

∂

∂x

[
Q2

A
+
K

3ρ
A

3
2

]
= −Cf

Q

A
,

(2.67a)

(2.67b)

where Cf is the friction coefficient, defined as:
Cf = 2πν [2 + ξ] . (2.68)

The value ξ = 9, proposed in [Smith et al. 2002], is commonly used in the literature on 1D
blood flow [Alastruey et al. 2011; Montecinos et al. 2014; Wang et al. 2016c; Ghigo et al.
2017a]. We observe in Figure 2.4 that the advection and wall friction coefficients computed
with this value correspond to Womersley coefficients obtained for a Womersley number
7 ≤ α ≤ 13, which is a physiological Womersley number range.

However, as blood flow is a strongly multiscale problem, a realistic model can not assume
that ψ and dr̄φ|r̄=1 are fixed in space and time and must allow for their dynamic evolution.
The Womersley closure relations (2.65) could be used to dynamically update ψ and dr̄φ|r̄=1

using the Womersley number computed in all positions for all times. Other dynamical
approach also based on the Womersley theory are proposed in [Lagrée 2000; Reymond et al.
2009]. However, a more general approach is necessary for which no additional hypothesis is
required. In Chapter 8, we propose such an approach where we dynamically compute the
velocity profile and therefore completely eliminate the need for a velocity profile closure.

2.6 Dimensional and mathematical analysis

To better understand the behaviors of System (2.67), we propose its dimensional analysis in
Subsection 2.6.1 and its mathematical analysis in Subsection 2.6.2.

2.6.1 Dimensional analysis

We perform here a dimensional analysis of System (2.67), similar to the analysis performed
in Subsection 2.3.2. To assess the importance of each term in System (2.67), we introduce in
Table 2.4 non-dimensional variables.

ρ = 1 Cf = Cf t = T t̄ x = Xx̄ R = R0

[
1 + ∆RR̄

]
Q = QQ̄ p = pext+Πp̃

Table 2.4 – Non-dimensional 1D variables. The parameter ∆R represents the deformation
amplitude of the radius of the artery and the parameter Π characterizes the fluid pressure
variations.

Using these non-dimensional variables, the wall law (2.23) rewrites:
Πp̃ =

√
πKR0∆RR̄, (2.69)

which gives:
Π = 2ρc2∆R. (2.70)

The variable c is the Moens-Korteweg wave speed [Moens 1878; Korteweg 1878], introduced
in Equation (2.30) in Subsection 2.3.1:

c =

√
K

2ρ

√
A. (2.71)

Then, injecting these non-dimensional variables into System (2.67), we obtain the 1D blood
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flow equations written in non-dimensional form (see [Saito et al. 2011] for details):



[
2∆R

X

UT

] [
1 + ∆RR̄

] ∂R̄
∂t̄

+
∂Q̄

∂x̄
= 0

∂Q̄

∂t̄
+

[
UT

X

]
∂

∂x̄

[
Q̄2

[
1 + ∆RR̄

]2

]

+

[
2∆R

c2T

UX

] [
1 + ∆RR̄

]2 ∂p̃
∂x̄

= −
[

1

α2

]
Q̄

[
1 + ∆RR̄

]2 ,

(2.72a)

(2.72b)

where U = Q/
[
πR2

0

]
is the average flow velocity and α2 = πR2

0/ [CfT ] is the 1D analogue
of the Womersley number (2.41). The least degeneracy principle applied to Equation (2.72a)
gives:

2∆R
X

UT
= 1, (2.73)

which allows us to rewrite System (2.72) as:



[
1 + ∆RR̄

] ∂R̄
∂t̄

+
∂Q̄

∂x̄
= 0

∂Q̄

∂t̄
+ [2∆R]

∂

∂x̄

[
Q̄2

[
1 + ∆RR̄

]2

]

+

[
2

∆R

Sh

]2 [
1 + ∆RR̄

]2 ∂p̃
∂x̄

= −
[

1

α2

]
Q̄

[
1 + ∆RR̄

]2 ,

(2.74a)

(2.74b)

where Sh = |U/c| is the Shapiro number (2.40).

Linear wave propagation regime

We consider a linear pulsatile flow regime. The least degeneracy principle applied to
Equation (2.74b) states that in the linear wave propagation regime the pressure gradient
must balance the unsteady inertial term, which gives:
{

∆R � 1

Sh = 2∆R.

(2.75a)
(2.75b)

Nonlinear Wave propagation regime

We now consider a nonlinear pulsatile flow regime. The least degeneracy principle applied to
Equation (2.74b) states that in the nonlinear wave propagation regime the pressure gradient
must balance the inertial terms, which gives:
{

∆R = 1

Sh = 2∆R.

(2.76a)
(2.76b)

For both linear and nonlinear flow regimes, we show using Equation (2.73) and Equa-
tion (2.75b) (or Equation (2.76b)) that the characteristic length scale is the wavelength of
the pulse wave:
X = cT. (2.77)

This analysis is an a posteriori confirmation that the 1D equations (2.67) are valid in the
long wave approximation framework used to derive the RNSP equations (2.43) and that in
this framework blood flow dynamics are indeed governed by a balance between the inertial
and pressure forces. The dimensional analysis also shows that viscous effects are of secondary
importance as long as the Womersley number α ≥ 1, which highlights the importance of
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Section 2.6. Dimensional and mathematical analysis

choosing correct velocity profile closure relations as they directly influence the value of Cf
and therefore the importance of viscous effects.

Equation (2.75a) and Equation (2.76a) show that the nonlinearity of blood
flow, characterized by the Shapiro number Sh (2.40), is also represented by
the deformation amplitude of the wall ∆R, which is easily measurable in in
vitro and in vivo experiments.

2.6.2 Mathematical analysis

In the continuity of the dimensional analysis performed in Subsection 2.6.1, we analyze
here the mathematical properties of System (2.67). Indeed, the mathematical structure of
System (2.67) provides valuable information on the nature of the flow it describes and aids
in the choice of its numerical treatment. As viscous effects are second-order behaviors (see
Subsection 2.6.1), we simplify the analysis and consider the inviscid form of System (2.67),
rewritten as a system of conservation laws:
∂U

∂t
+
∂F

∂x
= 0. (2.78)

The vectors U and F are respectively the vector of conservative variables and the vector of
mass and momentum fluxes:

U =

[
A
Q

]
, (2.79)

and:

F =

[
FA
FQ

]
, (2.80)

where FA is the mass flux and FQ the momentum flux:




FA = Q

FQ =
Q2

A
+
K

3ρ
A

3
2 .

(2.81a)

(2.81b)

The conservative System (2.78) has been thoroughly studied by many authors and we
only briefly recall its properties. Additional details can be found in [Formaggia et al. 2003;
Sherwin et al. 2003a; Alastruey et al. 2012; Müller et al. 2013].

The Jacobian matrix of the flux vector F (2.81) is:

J =
∂F

∂U
=

[
0 1

c2 − Q2

A2 2QA

]
, (2.82)

and has two real eigenvalues λ1 and λ2:



λ1 =
Q

A
− c

λ2 =
Q

A
+ c,

(2.83a)

(2.83b)

respectively associated to two right eigenvectors R1 and R2:



R1 =

[
1
λ1

]

R2 =

[
1
λ2

]
.

(2.84a)

(2.84b)

where c is the Moens-Korteweg wave speed (2.71).

The hyperbolicity of System (2.78) is characterized by the Shapiro number Sh, defined in
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Chapter 2. One-dimensional equations for blood flow in an elastic artery

[Shapiro 1977] and introduced in Subsection 2.3.2:

Sh =

∣∣∣∣
U

c

∣∣∣∣ =

∣∣∣∣
1

c

Q

A

∣∣∣∣. (2.85)

The Shapiro number Sh is the analogue of the Froude number Fr for the shallow-water
equations or of the Mach number Ma for compressible flows. Depending on the value of Sh,
we distinguish two flow regimes, represented respectively by the subcritical velocity domain
Usub and the supercritical velocity domain Usup:



Usub =

{
Q

A
∈ R |A > 0, K > 0, Sh < 1

}

Usup =

{
Q

A
∈ R |A > 0, K > 0, Sh > 1

}
.

(2.86)

In both regions Usub and Usup, system (2.78) is strictly hyperbolic as λ1 6= λ2 and the right
eigenvectors R1 and R2 are linearly independent. When Sh = 1, the flow is critical and the
system looses its strict hyperbolicity. In this case resonance phenomena can occur, leading
to a possible loss of uniqueness of the solution [Liu 1987; Isaacson and Temple 1992; LeVeque
2002; Han et al. 2012]. However, in physiological conditions blood flow is always subcritical,
except maybe in very specific pathologies. Hence only subcritical solutions of system (2.78)
are considered here.

For solutions of system (2.78) in Usub, linear algebra shows that the Jacobian matrix J
(2.82) is diagonalizable in the form J = R∆R−1, where R = [R1, R2] and ∆ is a diagonal
matrix containing the eigenvalues of J . Introducing a new vector W = [W1,W2]ᵀ such that
∂UW = R−1, system (2.78) can be written as:
∂W

∂t
+ ∆

∂W

∂x
= 0. (2.87)

Finally, by integrating the equation ∂UW = R−1, an expression for W is obtained:

W =

[
W1

W2

]
=



Q
A − 4c

Q
A + 4c


 . (2.88)

The vector W is often referred to as the Riemann invariant vector and is linked to the
conservative variables through the relations:



A =

(
2ρ

K

)2(W2 −W1

8

)4

Q = A
W1 +W2

2
.

(2.89)

In Chapter 6, the relations (2.89) are useful to define the boundary conditions at the inlet
and outlet of the computational domain.

If ψ 6= 1:

λ1 = ψ
Q

A
−
√

[ψ2 − ψ]
Q2

A2
+ c2, λ2 = ψ

Q

A
+

√
[ψ2 − ψ]

Q2

A2
+ c2. (2.90)

Then, since 0 ≤ ψ2 − ψ ≤ 4/9 as 1 < ψ ≤ 4/3 and Q2/A2 � c2 as Sh � 1, we
write:√

[ψ2 − ψ]
Q2

A2
+ c2 ≈ c. (2.91)
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This simplification allow us to solve solve ∂UW = R−1 and obtain:

W =

[
W1

W2

]
=




Q
Aψ
− 4

[5−4ψ]Aψ−1 c

Q
Aψ

+ 4
[5−4ψ]Aψ−1 c


 . (2.92)

However, in this case, System (2.67) does not verify a Galilean invariance.

The vector U also satisfies an entropy inequality linked to the entropy pair (η,G):
∂η

∂t
+
∂G

∂x
≤ 0, (2.93)

where η is the entropy and G is the entropy flux:



η =
Q2

2A
+

2

3

K

ρ
A

3
2

G =

[
Q2

2A
+
K

ρ
A

3
2

]
Q

A
.

(2.94)

This entropy inequality is closely linked to the variation of the physical energy of the system.
The existence of such an inequality is essential in order to select the correct physical solution
across discontinuities [Gosse 2013].

2.7 Conclusion
In Chapter 2, we have carefully presented the hypotheses for the solid and fluid problems
that have allowed us to derive simplified equations for the mechanical response of the
arterial wall (spring law, Equation (2.23)) and for the flow of blood in an axisymmetric
artery (RNSP equations, System (2.43)). We have shown that both Equation (2.23) and
System (2.43) form the minimal system of equations necessary to accurately describe blood
flow in large elastic arteries (they reproduce the Poiseuille and Womersley solutions). Then,
we have coupled both fluid and solid simplified equations and obtained the 1D system of
equations (2.67) describing simultaneously the flow of blood in an axisymmetric artery and
the elastic deformation of the arterial wall. Finally, we have shown through a dimensional
and mathematical analysis that System (2.67) is able to describe wave propagation in an
elastic artery (hyperbolic system). System (2.67) is the origin from which all work presented
in this thesis departs from, with the objective of improving its ability to describe the flow of
blood in large elastic arteries.
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Chapter 3
One-dimensional equations for blood
flow in a viscoelastic artery

We present here an extension of the one-dimensional model presented in Chapter 1,
where we include viscoelastic effects. First we propose a nonlinear viscoelastic wall
model designed to fit experimental pressure-radius hysteresis loops obtained in sheep.
The experimental data were graciously provided by Pr. Armentano and his team in
Favaloro University, Argentina. We then incorporate this viscoelastic wall model into
the 1D system of equations. The text in this chapter is greatly inspired from the
following published article:

• A.R. Ghigo, X.-F. Wang, R. Armentano, J.-M. Fullana, and P.-Y. Lagrée. Linear
and nonlinear viscoelastic arterial wall models: application on animals. Journal of
Biomechanical Engineering, 139(1):011003, 2017e.
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3.1 Introduction

In Chapter 2, we have proposed a model (Equation (2.23)) describing the elastic deformation
of the arterial wall through variations of the transmural pressure. We have shown that
this model is suitable for the propagation of pulse wave in an artery. However, the arterial
wall displays both elastic and viscous behaviors [Taylor 1959; Westerhof and Noordergraaf
1970; Valdez-Jasso et al. 2009]. Indeed, wall viscosity is a key element of the mechanical
response of the arterial wall and acts as a protection mechanism by dissipating energy and
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filtering high-frequency components of the pressure signal, preventing structural injuries of
the arterial wall [Armentano et al. 2007].

Considerable efforts have been made to accurately model the three characteristic viscoelastic
properties of the arterial wall: stress relaxation, creep and hysteresis. The proposed
viscoelastic models fall roughly into three categories:

Integer-order model They describe the arterial viscoelastic strain-stress relation using
an arrangement of spring (purely elastic response) and dashpots (purely viscous response)
[Armentano et al. 1995]. Integer-order models include the Maxwell, Voigt, Kelvin-Voigt
and Standard Linear Solid (SLS) viscoelastic models.

Quasi-linear model They relate the strain and stress in the arterial wall through a convo-
lution between a normalized relaxation (or creep) function and a nonlinear elastic function
[Holenstein et al. 1980; Fung 1993].

Fractional-order model They describe the viscoelastic properties of the arterial wall using
fractional-order differential equations [Craiem and Armentano 2007; Craiem et al. 2008]
and are in fact a subcategory of quasi-linear models. Using the fractional order 0 ≤ αf ≤ 1,
a new flexible element is created, called the spring-pot, which can be viewed of as a large
set of weighted integer-order spring (zero order element) and dashpot (first order element)
pairs arranged in parallel.

Each of these models depends on a set a parameters that must be estimated in order to
correctly describe the viscoelastic properties of the arterial wall. Therefore difficulties arise
when performing patient-specific simulations as the number of model parameters increases
with the number of simulated arterial segments. This is especially true for quasi-linear models,
as their parameters can exhibit dynamic variations during a cardiac cycle. Additionally, the
parameters describing the viscoelasticity of the arterial wall are difficult to measure and are
often hard to distinguish from those characterizing the viscoelastic properties of blood. For
the reasons, most existing 1D blood flow simulations adopt an elastic wall model such as
Equation (2.23).

Nonetheless, quasi-linear models have been successfully used in combination with a 1D blood
flow model. In [Reymond et al. 2009, 2011], comparison between numerical results and in
vivo measurements reveal a considerable impact of the viscoelasticity on the pulse waves.
Similar results are obtained in [Raghu et al. 2011]. In [Perdikaris and Karniadakis 2014] a
fractional-order model is used to compute blood flow in a patient-specific cranial network
and the sensitivity of the model to the fractional order is quantified.

Simpler integer-order model have also been used in 1D blood flow simulations. In [Alastruey
et al. 2011; Montecinos et al. 2014; Müller et al. 2016b; Ghigo et al. 2017a], a Kelvin-Voigt
model is adopted and used to simulate the pulsatile flow in an in vitro experimental setup.
The success of the Kelvin-Voigt viscoelastic model is greatly due to its mathematical and
modeling simplicity (it has only two parameters). Unfortunately, when confronted with
experimental data, the Kelvin-Voigt model fails to capture the nonlinearities in the response
of the arterial wall (see Figure 3.2). We therefore propose in this chapter a modified Kelvin-
Voigt model in which a nonlinear viscoelastic component is added. A similar nonlinear
viscoelastic term is used in [Erbay et al. 1992] to study wave propagation in nonlinear
viscoelastic tubes, and the theoretical basis of the approach is described in [Bird et al. 1977].
We use experimental pressure-radius hysteresis loops acquired in a group of sheep at different
arterial sites (experimental data from [Valdez-Jasso et al. 2009] provided by Pr. Armentano
and his team for Favaloro University, Argentina) to estimate the parameters of the model
and to assess the quality of the numerical results.

In Section 3.2, we present the experimental protocol for data acquisition, the proposed
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Chapter 3. One-dimensional equations for blood flow in a viscoelastic artery

Figure 3.1 – Arterial tree of a sheep. Experimental data are collected from eleven sheep
at the following seven locations: Ascending Aorta (AA), Proximal Descending aorta (PD),
Medial Descending aorta (MD), Distal Descending aorta (DD), Brachiocephalic Trunk (BT),
Carotid Artery (CA) and Femoral Artery (FA). There are three virtual arteries (VA), which
are indicated by dashed lines, to model the side branches when pulse waves are simulated.
Parameters for all the arteries are shown in Table 3.3.

nonlinear Kelvin-Voigt model and the optimization approach to estimate the model parame-
ters. In Section 3.3, we discuss the optimization results and numerical findings. Finally, in
Section 3.4, we integrate the Kelvin-Voigt model into the 1D blood flow equations (2.67).

3.2 Material and methods

3.2.1 Data acquisition

The experimental data were provided by Pr. Armentano and his team in Favaloro University,
Argentina. We describe in this subsection the protocol they used to acquire the data.

The experimental data were obtained from a group of eleven sheep (male Merino, between 25
and 35 kg). Before each surgery, the animals were anesthetized with sodium pentobarbital (35
mg/kg). The arterial segments of interest (6 cm long) were separated from the surrounding
tissues. To measure the diameter, two miniature piezoelectric crystal transducers (5 MHz, 2
mm in diameter) were sutured on opposite sides into the arterial adventitia. The animals
were then sacrificed and the arterial segments of interest were excised for ex vivo tests.

The arterial segments were mounted on a test bench where a periodical flow was generated
by an artificial heart (Jarvik Model 5, Kolff Medical Inc., Salt Lake City, USA). The input
signal was as close as possible to a physiological waveform. We obtained the desired pressure
waveforms by simple adjustments of tuning resistances and Windkessel chambers.

The circulating liquid was an aqueous solution of Tyrode. In each arterial segment the
internal pressure was measured using a solid-state pressure micro-transducer (Model P2.5,
Konigsberg Instruments, Inc., Pasadena, USA), previously calibrated using a mercury
manometer at 37◦C. The arterial diameter signal was calibrated in millimeters using the
1 mm step calibration option of the sono-micrometer (Model 120, Triton Technology, San
Diego, USA). The transit time of the ultrasonic signal with a velocity of 1580m · s−1 was
converted to the vessel diameter. The experimental protocol was in agreement with the
European Convention for the Protection of Vertebrate Animals used for Experimental and
Other Scientific Purposes. For more details on the animal experiments, please refer to
[Valdez-Jasso et al. 2009].

Simultaneous synchronized measurements of transmural pressure and diameter were per-
formed on the following seven anatomical locations as shown in Figure 3.1: Ascending Aorta
(AA), Proximal Descending Aorta (PD), Medial Descending Aorta (MD), Distal Descending
Aorta (DD), Brachiocephalic Trunk (BT), Carotid Artery (CA) and Femoral Artery (FA).
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That experimental data were acquired from blood vessels that were extracted
from their surrounding tissue, which affects the experimental pressure-radius
hysteresis loops. Other modifying factors are listed in [Cabrera Fischer et al.
2006] where it is shown that the viscosity and elasticity of the arterial wall are
influenced by adventitia removal in in vivo studies, possibly due to a smooth
muscle mechanism.

3.2.2 Nonlinear wall model

In Section 2.2, we have described the arterial wall as an homogeneous, isotropic, isothermal,
linear elastic material and we have carefully derived the hoop law relating variations of the
transmural pressure with the elastic deformation of the arterial wall, written here in its
general form:
[
1− ν2

w

] R
h

[p− pext] = Eεθθ. (3.1)

Conforming to the experimental setup, we set pext = 0 and write the strain εθθ = ε for
simplicity.

We now include viscoelastic behaviors using a linear Kelvin-Voigt model and add the
viscoelastic term φε̇ to the right hand side of Equation (3.1):
[
1− ν2

w

] R
h
p = Eε+ φε̇, (3.2)

where φ is the wall viscosity coefficient and ε̇ = ∂tε. We then construct a more general
nonlinear Kelvin-Voigt model by performing a second-order expansion of Equation (3.2) in
both ε and ε̇, which writes:
[
1− ν2

w

] R
h
p = Eε+ Enlε

2 + φε̇+ φnlε̇
2. (3.3)

We show in Section 3.3 that the strain ε measured in the experimental data is small,
confirming the hypothesis of small perturbation made in Section 2.2. We therefore assume
that the nonlinear term in ε2 does not play an important role in the pressure dynamics and
set Enl = 0. A similar assumption is made in [Segers et al. 1997].

In order to use the measured pressure and radius experimental data, we rewrite Equation (3.3),
recalling that:

ε =
R−R0

R0
, (3.4)

and obtain the following relationship connecting the pressure p and the radius R:

p =
Eh

[1− νw]2
1

R0
− Eh

[1− νw]2
1

R
+

φh

[1− νw]2R0

Ṙ

R
+

φnlh

[1− νw]2R2
0

Ṙ2

R
. (3.5)

3.2.3 Parameter estimation

Equation (3.5) shows that the pressure p is a linear combination of the quantities 1, 1/R,
Ṙ/R and Ṙ2/R. We therefore estimate the coefficients of Equation (3.5) using a linear
regression method. As the thickness h and the neutral radius R0 are measured experimentally,
the optimization process provides the values of the Young’s modulus E and the viscosity
coefficients φ and φnl. However, we assume that the value of R0 is also unknown and we
show that the measured and optimized values for R0 are equivalent, which validates our
method. Written in matrix form, the problem is:
p = MC, (3.6)
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where M is a N × 4 matrix:

M =




1 1
R

∣∣∣∣
1

Ṙ
R

∣∣∣∣
1

Ṙ2

R

∣∣∣∣
1

...
...

...
...

1 1
R

∣∣∣∣
N

Ṙ
R

∣∣∣∣
N

Ṙ2

R

∣∣∣∣
N



, (3.7)

with N the number of experimental data points, C the unknown coefficient vector:

C =




Eh
[1−νw]2

1
R0

− Eh
[1−νw]
φh

[1−νw]R0
φnlh

[1−νw]R2
0



, (3.8)

and p the vector of experimental pressure values. We assume that the columns of M
are independent in the linear space and that the measurement errors are independent and
identically distributed. Then, according to the theory of the least square method the optimal
value of C is:
Copt = [MᵀM ]−1Mᵀp. (3.9)

Unfortunately, the experimental data contains high-frequency noise that prevents us from
accurately computing the time derivative of R in the temporal domain, which is required
to compute the matrix M (3.7). We therefore evaluate the time derivative of R using a
spectral numerical method. Given a time series R(t) with a period T , we can expand it in
Fourier series:

R =

∞∑

k=−∞
R̂ke

i2kπ t
T , (3.10)

where R̂k is the kth Fourier coefficient, defined as:

R̂k =
1

T

T∫

t=0

R(t)e−i2πk
t
T dt. (3.11)

The time derivative of R can then be computed as:

Ṙ =
∞∑

k=−∞

i2πk

T
R̂ke

i2πk t
T . (3.12)

In the computation, we take advantage of the Discrete Fourier Transform (DFT). We also
filter out the experimental noise using an optimization approach based on a criterion γ,
selected to minimize the following cost function:

J(C) =
1

N

√√√√
N∑

i

[pm, i − pi]2, (3.13)

with pm the pressure vector predicted by Equation (3.5).

The pseudo-code for the parameter estimation procedure is:

• Step 1: Evaluate the DFT of R (assume N as an even number without loss of generality)
:

R̂k =
1

N

N
2∑

n=−N
2

+1

Rne
− 2πi

N
nk with k ∈

{
N

2
+ 1, . . . ,

N

2

}
. (3.14)

• Step 2: |R̂k| represents the amplitude of the kth wave. To filter out the high frequency
experimental noise, we impose a criterion γ such that if |R̂k| < γ, R̂k is set to 0. The
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value of γ is optimized by minimizing the cost function J (C) (3.13).
• Step 3: Multiply R̂k by i2πk

T to obtain D̂Rk.
• Step 4: Evaluate the inverse DFT of D̂R:

Ṙk =

N
2∑

k=−N
2

+1

D̂Rei2πk
n
N . (3.15)

• Step 5: Solve the least square problem and evaluate the objective function J(C) (3.13).
• Step 6: Change γ and return back to Step 2 until the value of the objective function
J(C) (3.13) stops decreasing.

We have performed the optimization process using the frequency imposed
by the Jarvik device. However, we know that the model parameters are
frequency-dependent. Therefore, we assume here that the models (both linear
or nonlinear) are valid for all frequencies. This is a strong hypothesis as we use
only one frequency to obtain the experimental data. To confirm this hypothesis,
we should design an optimization process for large band frequencies and show
that the optimal parameters are independent of the input frequency.

3.3 Results and discussion

3.3.1 Comparison of the linear and nonlinear Kelvin-Voigt models

We discuss here the differences in the numerical results obtained with the linear and nonlinear
Kelvin-Voigt models (Equation (3.2) and Equation (3.3)) and assess the relative importance
of the elastic nonlinear term Enlε

2.

In Figure 3.2, we represent experimental pressure-radius hysteresis loops obtained in the
Ascending Aorta (AA) and compare them to the predictions of the linear and nonlinear
Kelvin-Voigt models (Equation (3.2) and Equation (3.3)). The estimated viscoelastic pa-
rameters of the linear and nonlinear models are presented in Table 3.1. We observe that
the linear model fits poorly the curvature observed in the experimental data (Figure 3.2
Left) whereas the nonlinear model accurately predicts the experimental pressure-radius loops
(Figure 3.2 Right). A similar observation is made in [Valdez-Jasso et al. 2009], where a stress
relaxation constant is integrated into a linear Kelvin-Voigt model.

E × 107 φ× 104

Linear (3.2) 1.475 26.156
Nonlinear (3.3) 1.539 25.451

Table 3.1 – Viscoelastic parameters of the linear and nonlinear Kelvin-Voigt models in the
Ascending Aorta.

Furthermore, from the experimental data presented Figure 3.2, we evaluate the order of
magnitude of ε and find that ε ≈ 10 1, confirming the observation made in [Segers et al.
1997] that the nonlinear elastic term Enlε

2 is small and therefore can be neglected.

This preliminary analysis shows the necessity of using a nonlinear Kelvin-Voigt model
(Equation (3.3)) to describe the viscoelastic properties of the arterial wall.

3.3.2 Validation of the parameter estimation strategy

In Figure 3.3 we present the estimated values of the neutral radius R0 with error bars. These
values compare extremely well the experimentally measured neutral radius represented by
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Figure 3.2 – Pressure-radius loop in the Ascending Aorta.
Left: Experimental data (?) and prediction of the linear Kelvin-Voigt model ( ).
Right: Experimental data (?) and prediction of the nonlinear Kelvin-Voigt model ( ).
Only the nonlinear Kelvin-Voigt model is able to reproduce the curvature of the experimental
data.

crosses (×) in Figure 3.3 and detailed in Table 3.2. In combination with the data presented
in Subsection 3.3.1, these results validate the linear regression strategy used to estimated
the model parameters.

AA PD MD DD BT CA FA

Experimental R0 0.9360 0.8600 0.8500 0.8250 0.8900 0.4060 0.2810
Estimated R0 0.9489 0.8809 0.8554 0.8286 0.9002 0.4069 0.2826

Table 3.2 – Measured and estimated neutral radius R0 in the seven arterial sites.

As experimental measurements of neutral vessel radii are only possible in in vitro experiments
(impossible in vivo), this approach could be used in an in vivo study to accurately estimate
the neutral radius R0.

3.3.3 Analysis of the nonlinear Kelvin-Voigt model

In Figure 3.2 and Figure 3.4, we present experimental pressure-radius hysteresis loops
obtained in 7 different arterial sites of sheep: the Proximal Descending Aorta, the Medial
Descending Aorta, the Distal Descending Aorta, the Brachiocephalic Trunk, the Carotid

Figure 3.3 – Estimated and measured neutral radius R0 in the seven arterial sites (Ascending
Aorta, Proximal Descending Aorta, Medial Descending Aorta, Distal Descending Aorta,
Brachiocephalic Trunk, Carotid Artery, Femoral Artery).
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Figure 3.4 – Experimental data (?) and the fitted nonlinear Kelvin-Voigt model ( ).
Parameter values are found in Table 3.3.

Artery, and the Femoral Artery. For each arterial site, we compare the experimental results to
those obtained with the nonlinear Kelvin-Voigt model (3.3). The geometrical and mechanical
parameters describing the arterial wall in each arterial site are presented in Table 3.3. We
find good agreement everywhere which validates the ability of the nonlinear Kelvin-Voigt
model to describe the viscoelastic properties of the arterial wall in large arteries and confirms
the validity of the linear regression method used to estimate the model parameters. Finally,
we observe that the nonlinearity decreases from the proximal to the distal end of the Aorta
and that in the peripheral arteries, represented here by the Carotid and Femoral Arteries,
the nonlinearity is negligible.

Next, we perform a detailed analysis of the parameters estimated using the linear regression
method and presented in Table 3.3. In Figure 3.5, we plot the estimated values of the Young’s
modulus E and the viscous coefficient φ in the seven selected arterial sites. We observe that
the smaller arteries tend to be stiffer, as pointed out by previous studies [Valdez-Jasso et al.
2009, 2011], and that the variations of E and φ are similar.
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L R0 h× 10 1 E × 107 φ× 104

AA 4 0.948 0.38 1.539 25.451
PD 10 0.880 0.91 0.842 12.746
MD 10 0.855 1.26 0.617 11.651
DD 15 0.828 1.10 1.427 24.514
BT 4 0.900 1.06 0.683 12.048
CA 15 0.406 0.78 4.142 77.082
FA 10 0.282 0.31 2.260 43.426

Table 3.3 – Geometrical and mechanical parameters of the simulated arterial tree. The
length L is from literature and the thickness h is directly measured. From the optimization
process we computed the Young’s modulus E and the viscosity coefficients φ and the neutral
radius R0.

Figure 3.5 – Mean values of the reference Young’s modulus E (Left), and viscosity coefficient
φ (Right) with standard deviations among the group of sheep at the seven arterial sites.

We therefore represent in Figure 3.6 the ratio φ/E and observe that this quantity is indeed
constant. This ratio is in fact the relaxation time tr = φ/E of the linear Kelvin-Voigt,
characterizing the viscous time delay in the response of the arterial wall to external forcing.
Assuming that the wall is submitted to a pressure perturbation oscillating at a frequency ω,
two mechanical response are expected:

• if ωtr � 1, then the perturbation frequency is too high and the arterial wall filters out
these high frequency oscillations;

• if ωtr � 1, the opposite occurs and the wall deforms at the frequency ω, with a phase
shift δ = arctan (ωtr) introduced by viscous wall effects.

Therefore, should the coefficient φ remain unchanged, the arteries would be submitted
to higher frequency deformations as the Young’s modulus increases when moving distally
in the network. The fact that the relaxation time tr remains constant indicates that the
arteries increase their viscous dissipation to compensate the increase in Young’s modu-
lus and maintain the same high-frequency damping behavior. This damping effect may
be a protective mechanisms to eliminate high-frequencies before reaching the microcirculation.

AA PD MD DD BT CA FA
φnl
φ -0.915 -0.999 -0.888 -0.975 -1.380 0.524 -0.395

Table 3.4 – Estimated ratio φnl/φ in the seven arterial sites.

Finally the mean values of the ratio φnl/φ are presented in Table 3.4 and we observe that:
φnl
φ
≈ −1. (3.16)
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Figure 3.6 – Relaxation time φ/E with standard deviations in the seven arterial sites.

This result allows us to estimate the order of magnitude of the viscoelastic linear and
nonlinear terms. Writing φε̇+ φnlε̇

2 as:

φε̇

[
1 +

φnl
φ
ε̇

]
, (3.17)

and ε̇ = iωε ≈ iω/10, we conclude that linear and nonlinear effects are comparable as long
as ω/10 ∼ 1.

3.4 One-dimensional viscoelastic blood flow equations

In Section 3.2, we have showed the importance of linear and nonlinear viscoelastic effects to
accurately capture the deformation of the arterial wall. We must therefore include these
effects in the 1D blood flow equations (2.67). We therefore rewrite Equation (3.5) as:

p− pext = K
[√

A−
√
A0

]
+Kν

∂A

∂t
+Kν, nl

[
∂A

∂t

]2

, (3.18)

where K is given by Equation (2.24) and Kν and Kν, nl are defined as:



Kν =
φ

1− ν2
w

√
πh

2
√
A0

1

A

Kν, nl =
φnl

1− ν2
w

√
πh

4A0

1

A
3
2

.

(3.19a)

(3.19b)

As in Subsection 2.5.1, we couple the fluid and solid problems by injecting Equation (3.18)
into System (2.55):



∂A

∂t
+
∂Q

∂x
= 0

∂Q

∂t
+

∂

∂x

[
ψ
Q2

A
+
K

3ρ
A

3
2

]
=

2πR

ρ
τrx +

A

ρ

∂

∂x

[
Kν

∂Q

∂x
−Kν, nl

[
∂Q

∂x

]2
]
.

(3.20a)

(3.20b)

Unfortunately, contrary to the linear elastic coefficient K, both Kν and Kν, nl depend on
the variable A which prevents us from writing System (3.20) in a conservative form.

However, we have shown in Subsection 2.6.1 that the deformation of the arterial ∆R = 2Sh
(2.75b), where Sh is the Shapiro number (2.85). In physiological conditions, the flow is
subcritical (or quasi-linear) and therefore Sh � 1. Consequently, we linearize the viscoelastic
coefficients Kν and Kν, nl around the neutral cross-sectional area A0 and obtain:



∂A

∂t
+
∂Q

∂x
= 0

∂Q

∂t
+

∂

∂x

[
ψ
Q2

A
+
K

3ρ
A

3
2

]
=

2πR

ρ
τrx + Cν

∂2Q

∂x2
− Cν, nl

∂

∂x

[
∂Q

∂x

]2

,

(3.21a)

(3.21b)
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where:



Cν =
φ

ρ [1− νw]2

√
πh

2
√
A0

Cν, nl =
φnl

ρ [1− νw]2

√
πh

4A
3
2
0

.

(3.22a)

(3.22b)

Typically Cν ≈ 104 and Cν, nl ≈ 104. Note here that Cν, nl is a non-dimensional number.

Finally, using the same velocity profile closure assumptions as in Subsection 2.5.2, we obtain
the closed form of the 1D viscoelastic blood flow equations (3.21):




∂A

∂t
+
∂Q

∂x
= 0

∂Q

∂t
+

∂

∂x

[
Q2

A
+
K

3ρ
A

3
2

]
= −Cf

Q

A
+ Cν

∂2Q

∂x2
− Cν, nl

∂

∂x

[
∂Q

∂x

]2

.

(3.23a)

(3.23b)

An alternative to this linearized approached is proposed in [Montecinos et al.
2014]. The idea is to use a relaxation approach and rewrite System (3.23) in a
quasi-linear form using the variables Ψ = ∂xQ and Ψnl = [∂xQ]2 governed by
the following equations:



∂Ψ

∂t
=

1

ε

[
∂Q

∂x
−Ψ

]

∂Ψnl

∂t
=

1

εnl

[[
∂Q

∂x

]2

−Ψnl

]
.

(3.24a)

(3.24b)

A similar dimensional analysis than the one performed in Subsection 2.6.1 allows us to write
System (3.23) in the following non-dimensional form:



[
1 + ∆RR̄

] ∂R̄
∂t̄

+
∂Q̄

∂x̄
= 0

∂Q̄

∂t̄
+ [2∆R]

∂

∂x̄

[
Q̄2

[
1 + ∆RR̄

]2

]

+

[
2

∆R

Sh

]2 [
1 + ∆RR̄

]2 ∂p̃
∂x̄

= −
[

1

α2

]
Q̄

[
1 + ∆RR̄

]2

+

[
1

α2
ν

]
∂2Q̄

∂x̄2
−
[
ελ

2Cν, nlSh
] ∂
∂x̄

[
∂Q̄

∂x̄

]2

,

(3.25a)

(3.25b)

where αν is the non-dimensional number characterizing the linear viscoelastic effects:

αν = c

√
T

Cν
. (3.26)

The orders of magnitude previously defined enable us to show that αν ≈ 1, which confirms
the importance of viscoelastic effects in large arteries. Concerning the nonlinear viscoelastic
effects, a similar analysis shows that ελ2Cν, nlSh ≈ Sh. This proves that the nonlinear
viscoelastic effects must be accounted for when the flow is critical or supercritical (nonlinear)
and Sh ≥ 1. However, as stated in Subsection 2.6.2, in physiological conditions blood flow is
almost always subcritical. We therefore neglect nonlinear viscoelastic effects in the following
and set Cν, nl = 0.
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Section 3.5. Conclusion

Neglecting the nonlinear viscoelastic effects is not in complete contradiction
with the results presentend in Section 3.3. Indeed, these results where acquired
ex vivo in flow conditions more nonlinear than physiological flow conditions.

3.5 Conclusion
In Chapter 3, we have estimated the viscoelasticity of the arterial network of a sheep
by examining pressure-radius hysteresis loops. We have found good agreement between
the experimental measurements and the proposed nonlinear Kelvin-Voigt model, where
the parameters were estimated using a linear regression method. We have shown the
damping effect of the wall viscosity on the high frequency waves, especially in the peripheral
arteries, and explained this behavior as a defense mechanisms against the rigidification
of the peripheral arteries. Finally, we have integrated linear viscoelastic effects into the
1D equations (2.67) governing blood flow in large arteries. Overall, we have shown the
importance of viscoelastic effects.
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Chapter 4
Numerical methods

We present here the finite volume and finite difference methods we use in practice to
solve the 1D viscoelastic blood flow system presented in Chapter 2 and Chapter 3.
The text in this chapter deals therefore almost exclusively with numerical methods,
and is partly inspired from the following published articles:

• O. Delestre, A.R. Ghigo, J.-M. Fullana, and P.-Y. Lagrée. A shallow water with
variable pressure model for blood flow simulation. Networks and Heterogeneous
Media, 11(1):69–87, 2016;

• A.R. Ghigo, O. Delestre, J.-M. Fullana, and P.-Y. Lagrée. Low-Shapiro hydrostatic
reconstruction technique for blood flow simulation in large arteries with varying
geometrical and mechanical properties. Journal of Computational Physics, 331:
108–136, 2017b.
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4.1 Problem splitting

In Chapter 2 and Chapter 3, we have derived the 1D viscoelastic equations (3.23) governing
blood flow in large arteries. Unfortunately, System (3.23) is nonlinear and can not be solved
analytically. We therefore propose numerical methods to obtain a numerical approximation of
the solution of System (3.23) in an artery. To simplify the notations, we write System (3.23)
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x = 0 x = L

x 1
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Figure 4.1 – Representation of the spatial mesh with the inlet and outlet ghost cells Cin and
Cout.

in vectorial form:
∂U

∂t
+
∂F

∂x
= Sf + Sν . (4.1)

Vectors U = [A, Q]ᵀ and F = [FA, FQ]ᵀ are respectively defined by Equation (2.79) and
Equation (2.80). The vectors Sf and Sν represent the viscous and viscoelastic source terms
and write:

Sf =

[
0

−Cf QA

]
, (4.2)

and

Sν =

[
0

Cν
∂2Q
∂x2

]
. (4.3)

The first step towards obtaining a numerical approximation of the solution of System (4.1)
is to discretize both time and space. We first divide the time domain using a constant time
step ∆t and the discrete times are defined as:
tn = n∆t, n ∈ {0, · · · , Nt} , (4.4)

and the final time tf = Nt∆t. We note Un = U (tn). We then introduce a mesh in the axial
direction and divide the length L of the artery in a series of cells Ci defined as:

Ci =
[
xi− 1

2
, xi+ 1

2

]
= [[i− 1] ∆x, i∆x] for i ∈ {1, · · · , Nx} , (4.5)

where ∆x is the cell size, supposed constant for simplicity, and L = Nx∆x. This spatial
mesh is represented in Figure 4.1.

In Subsection 2.6.2, we have shown that System (4.1), in the absence of friction and
viscoelastic source terms, is hyperbolic. On the contrary, the viscoelastic source term Sν
has a parabolic mathematical structure. We therefore decompose System (4.1) into three
subproblems:

Hyperbolic subproblem
∂U

∂t
+
∂F

∂x
= 0. (4.6)

Parabolic subproblem
∂U

∂t
= Sν . (4.7)

Reaction subproblem
∂U

∂t
= Sf . (4.8)

Following [Wang et al. 2015], we use a first-order Godunov operator splitting technique
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[LeVeque 2002] to combine the solution of each subproblem and update the numerical solution
from time tn to time tn+1 in each cell Ci:


Ani

Sys. (4.6)−−−−−→ An+1
i

Qni
Sys. (4.6)−−−−−→ Q∗i

Sys. (4.7)−−−−−→ Q∗∗i
Sys. (4.8)−−−−−→ Qn+1

i .
(4.9)

4.2 Hyperbolic subproblem

We first solve the hyperbolic System (4.6) describing pulse wave propagation. Multiple
approaches have been used and include essentially finite element methods such as Galerkin
[Sherwin et al. 2003a; Mynard and Nithiarasu 2008] and Taylor-Galerkin [Martin et al.
2005; Formaggia et al. 2006; Melicher and Gajdošík 2008] methods, discontinuous Galerkin
methods [Xiu and Sherwin 2007; Willemet et al. 2011; Alastruey et al. 2011; Puelz et al.
2017], finite difference methods [Saito et al. 2011; Fullana and Zaleski 2009; Wang et al.
2015] and finite volume methods [Cavallini et al. 2008; Cavallini and Coscia 2010; Delestre
and Lagrée 2013; Müller and Toro 2014; Montecinos et al. 2014; Murillo and García-Navarro
2015; Audebert et al. 2017b]. These methods are compared in [Wang et al. 2015; Boileau
et al. 2015] in a series of test cases and give similar results. The choice of the numerical
method used to solve System (4.6) is therefore left to the user’s preference. Coming from
a fluid mechanics background, we select a finite volume approach allowing us to derive a
robust, conservative and shock-capturing numerical scheme preserving the positivity of the
numerical solution if the chosen numerical flux is positive [Bouchut 2004].

To obtain a finite volume numerical scheme, we first derive the integral form of the conserva-
tive System (4.6) by integrating it with respect to t and x over ]tn, t∗[× Ci:
∫

Ci

[U∗ −Un] dx+

t∗∫

tn

[
F |x

i+ 1
2

− F |x
i− 1

2

]
dt = 0. (4.10)

We then approximate the integrals in System (4.10) using the discrete vector of conserva-
tive variables Uni and the numerical flux vector Fn

i+1
2

, corresponding respectively to an
approximation of the space average of the exact solution vector U over the cell Ci at time
tn:

Uni ≈
1

∆x

∫

Ci

Undx, (4.11)

and to an approximation of the time average of the flux vector F at the cell interface xi+ 1
2
:

Fn
i+1

2
≈ 1

∆t

t∗∫

tn

F |x
i+ 1

2

dt. (4.12)

Using these definitions, we obtain the explicit finite volume numerical scheme:

U∗
i = Uni −

∆t

∆x

[
Fn
i+1

2
− Fn

i−1
2

]
. (4.13)

We define Fn
i+1

2

as a two-points numerical flux vector, namely:

Fn
i+1

2
= F (UL,UR) =

[
FA (UL,UR)
FQ (UL,UR)

]
. (4.14)

The vectors UL and UR correspond respectively to numerical approximations of the vector
Un at the left and right of the cell interface xi+ 1

2
and are defined in Subsection 4.2.2. The

vector function F is the numerical flux and is defined in Subsection 4.2.1.

45



Section 4.2. Hyperbolic subproblem

4.2.1 Kinetic numerical flux

We choose to compute the vector function F using a kinetic approach, and a review of
this method applied to different systems of equations can be found in [Bouchut 1999]. The
kinetic method was first introduced for shallow water equations in [Perthame and Simeoni
2001] and adapted to the blood flow in [Delestre and Lagrée 2013; Audebert et al. 2017b;
Ghigo et al. 2017b]. Our principal motivation for choosing a kinetic numerical flux is that
it does not require information on the characteristic structure of the jacobian matrix J
(2.82), which proves useful in Chapter 8 to solve the multiring system of equations (8.21).
Additionally, the kinetic flux is suitable for the computation of venous blood flow [Audebert
et al. 2017b]. Other possible numerical fluxes are presented in [Delestre and Lagrée 2013;
Müller et al. 2013; Wang et al. 2015; Murillo and García-Navarro 2015; Müller et al. 2016a;
Audebert et al. 2017b].

Following [Perthame and Simeoni 2001; Audusse and Bristeau 2005], we introduce the real,
positive, even and compactly supported function χ, verifying the properties:

χ (−w) = χ (w) and

∫

R

χ (w) dw =

∫

R

w2χ (w) dw = 1. (4.15)

We choose the function χ as:

χ (w) =





1

2
√

3
if |w| ≤

√
3

0 else.
(4.16)

We then define the kinetic Maxwellian, or so-called Gibbs equilibrium, which represents the
density of microscopic particles moving at the velocity ξ ∈ R:

M (x, t, ξ) = M (A, ξ − u) =
A (x, t)

c̃
χ

(
ξ − u
c̃

)
, (4.17)

where:

c̃ =

√
K

3ρ

√
A. (4.18)

Noticing that the integral and the first and second moments on R of M respectively allow to
recover A, Q and F , it can be proved [Perthame and Simeoni 2001] that U is solution of
System (4.6) if and only if M satisfies the following linear kinetic equation:
∂M

∂t
+ ξ

∂M

∂x
= Q (x, t, ξ) , (4.19)

where Q is a collision term that satisfies:∫

R

Qdξ =

∫

R

ξQdξ = 0. (4.20)

As Equation (4.19) is linear, it can be approximated by a simple upwind scheme. The flux
function F is then obtained using the integral and the first moment of the upwind numerical
flux used to solve the linear kinetic equation (4.19), and writes:
F (UL, UR) = F+ (UL) + F− (UR) , (4.21)

where fluxes F+ and F− are defined as:

F+ =

∫

ξ≥0

ξ

[
1
ξ

]
M (A, ξ − u) dξ and F− =

∫

ξ≤0

ξ

[
1
ξ

]
M (A, ξ − u) dξ. (4.22)

Using Equation (4.17), we find that:

F+ =
A

2
√

3c̃




1
2

((
ξ+
p

)2 − (ξ+
m)

2
)

1
3

((
ξ+
p

)3 − (ξ+
m)

3
)

 and F− =

A

2
√

3c̃




1
2

((
ξ−p
)2 − (ξ−m)

2
)

1
3

((
ξ−p
)3 − (ξ−m)

3
)

 , (4.23)
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with:



ξ+
p = max

(
0, u+

√
3c̃
)
, ξ+

m = max
(

0, u−
√

3c̃
)

ξ−p = min
(

0, u+
√

3c̃
)
, ξ−m = min

(
0, u−

√
3c̃
)
.

(4.24a)

(4.24b)

The stability of the scheme is ensured if at each time tn, the time step ∆t verifies the
following CFL (Courant, Friedrichs and Lewy) [Courant et al. 1967] condition:

∆t ≤
N

min
i=1

∆x

|uni |+ c̃ni
. (4.25)

4.2.2 Second-order extensions

We describe here the numerical strategies we use to increase the temporal and spatial order
of the numerical scheme (4.13).

Second-order MUSCL reconstruction

The choice of the vectors UL and UR defines the spatial order of the numerical scheme.
Indeed, most hyperbolic numerical fluxes (such as the Rusanov flux [Rusanov 1961]) can be
rewritten as:
F (UL, UR) = F (UL) + F (UR) +C [UR −UL] , (4.26)

where C is the characteristic hyperbolic speed matrix. The last term in Equation (4.26) can
be interpreted as a numerical dissipation term, and is proportional to the jump between
the left and right values UL and UR. High-order reconstruction strategies aim therefore at
reducing the jump UR −UL to increase the spatial accuracy of the numerical scheme.

A first-order scheme is obtained by simply choosing at the cell interface xi+ 1
2
:

{
UL = Uni

UR = Uni+1.

(4.27a)
(4.27b)

This choice maximizes the jump between UL and UR and introduces important numerical
dissipation. In the case of blood flow, numerical dissipation greater than viscous dissipation
prevents the correct propagation of pulse waves in an artery.

Variable reconstruction strategies have therefore been proposed to limit the jump between
UL and UR at each cell interface and effectively increase the spatial order of accuracy of
the numerical scheme. Following [Wang et al. 2015], we choose the second-order monotonic
upwind scheme for conservation law (MUSCL) linear reconstruction but other high-order
reconstructions strategies are also possible (ENO, WENO, ADER ...) [Cavallini et al. 2008;
Müller and Blanco 2015; Wang et al. 2016c; Müller et al. 2016a]. Given a scalar function
s ∈ R, its MUSCL linear reconstruction in the cell Ci writes:



s−
i− 1

2

= si −
∆x

2
D (si)

s+
i+ 1

2

= si +
∆x

2
D (si) .

(4.28a)

(4.28b)

The operator D is defined as:

D (si) = minmod

(
si − si−1

∆x
,
si+1 − si

∆x

)
, (4.29)
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and the function minmod is a slope limiter defined as:

minmod (x, y) =





min (x, y) if x, y ≥ 0

max (x, y) if x, y ≤ 0

0 else

. (4.30)

and designed to prevent non-physical oscillations of the numerical solution. We finally obtain
a second-order scheme by choosing at each cell interface xi+ 1

2
:





UL = U+, n

i+1
2

UR = U−, n
i+1

2

.

(4.31a)

(4.31b)

where U+, n

i+1
2

and U−, n
i+1

2

are obtained using the MUSCL reconstruction previously defined.
As a reminder, vector U contains the conservative variables A and Q, which are therefore
the variables we reconstruct here. We also reconstruct the arterial wall rigidity K as it plays
a role in the computation of the numerical flux (4.14).

Second-order time integration

To increase the temporal order of accuracy of the numerical scheme, we use a second-order
Adam-Bashforth (AB2) integration scheme initialized by a Strong Stability Preserving
second-order Runge-Kutta (SSPRK2 or Heun) integration scheme [Gottlieb 2005]:

SSPRK2



U∗, 1
i = Uni + ∆tRHSSys. (4.6) (Uni )

U∗, 2
i = U∗, 1

i + ∆tRHSSys. (4.6)

(
U∗, 1
i

)

U∗
i = Uni +

∆t

2

[
RHSSys. (4.6) (Uni ) +RHSSys. (4.6)

(
U∗, 1
i

)]
.

(4.32)

AB2

U∗
i = Uni + ∆t

[
3

2
RHSSys. (4.6) (Uni )− 1

2
RHSSys. (4.6)

(
Un−1
i

)]
. (4.33)

We choose the AB2 integration scheme (4.33) to facilitate the use of time-dependent boundary
conditions. Indeed, it does not require any intermediate boundary condition, contrary to the
SSPRK2 integration scheme (4.32). Moreover, AB2 requires one less time integration step
than SSPRK2.

Once U∗
i is computed, we use the discrete parabolic and reaction schemes, described in

Subsection 4.3.1 and Subsection 4.3.2, to compute U∗∗
i and then Un+1

i .

4.2.3 Subcritical boundary condition

The hyperbolic System (4.6) describes the leading-order wave propagation behavior of blood
flow. Boundary conditions must therefore be imposed in the hyperbolic framework of
System (4.6). In each artery at time tn, we impose these hyperbolic boundary conditions in
inlet and outlet ghost cells, respectively noted Cin and Cout, by setting the value of their
associated vector of conservative variable Unin = [Anin, Q

n
in]ᵀ and Unout = [Anout, Q

n
out]
ᵀ. As

we compute subcritical solutions of system (4.6) in Usub, one boundary condition is imposed
in the inlet ghost cell Cin and one boundary condition is imposed in the outlet ghost cell
Cout, respectively allowing to determine one component of Unin and one component of Unout.
To compute the remaining unknown components of Unin and Unout, we follow methodologies
proposed in [Bristeau and Coussin 2001; Alastruey et al. 2008], assuming that in each cell Ci
at time tn, the discrete vector of conservative variables Uni is known. As the implementation
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of inlet and outlet boundary conditions is very similar, we describe only the derivation of
the inlet boundary conditions.

Imposed flow rate Qin

We describe here a methodology to impose the flow rate Qin (tn) = Qnin at the interface
between the first cell of the computational domain C1 and the inlet ghost cell Cin, namely:
FA (Unin, U

n
1 ) = Qnin. (4.34)

Taking advantage of the fact that the kinetic flux function FA can be split in two parts,
Equation (4.34) rewrites:
FA+ (Unin) + FA− (Un1 ) = Qnin. (4.35)

To ensure the stability of the scheme, this condition is imposed in an upwind manner.
Following [Bristeau and Coussin 2001], we define the quantity:
a1 = Qnin −FA− (Un1 ) , (4.36)

and distinguish two cases:

• If a1 ≤ 0, the dominant part of the information is coming from inside the computational
domain. As we are performing an upwind evaluation of the inlet boundary condition, we
impose:
{
FA+ (Unin) = 0

FQ+ (Unin) = 0.

(4.37a)
(4.37b)

• If a1 > 0, the dominant part of the information is coming from outside the computational
domain. In this case, we impose:
{
FA+ (Unin) = a1

W1 (Unin) = W1 (Un1 ) .

(4.38a)
(4.38b)

Equation (4.38b) translates the fact that the Riemann invariant W1 (Unin) (2.88) is
constant along the outgoing characteristic and that it can be correctly estimated by
W1 (Un1 ).

The vector Unin is obtained by solving either System (4.37) or System (4.38) using a Newton’s
method in a limited number of iterations (∼ 5).

Imposed cross-sectional area Ain.

We describe here a methodology to impose the cross-sectional area Ain (tn) = Anin at the
inlet of the computational domain. We first set this value in the inlet ghost cell Cin. We
then compute Qnin to completely determine the inlet vector of conservative variables Unin.
To do so, we use Equation (4.38b) and solve the following system:
{
W1 (Unin) = W1 (Un1 )

W2 (Unin) = W1 (Unin) + 8cnin.

(4.39a)
(4.39b)

We then compute Unin using the relations (2.89).

Imposed characteristic reflection Rt, in

We propose here a methodology to reflect part of the outgoing information at the inlet of the
computational domain. In practice, we estimate the incoming Riemann invariant W2 (Unin)
as a fraction Rt of the outgoing Riemann invariant W1 (Unin) [Wang et al. 2015; Alastruey
et al. 2008, 2009; Murillo and García-Navarro 2015]. To do so, we use Equation (4.38b) and
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solve the following system:
{
W1 (Unin) = W1 (Un1 )

W2 (Unin)−W2

(
U0
in

)
= −Rt

[
W1 (Unin)−W1

(
U0
in

)]
.

(4.40a)

(4.40b)

where W1

(
U0
in

)
and W2

(
U0
in

)
are the initial Riemann invariants of the ghost cell Cin. We

then compute Unin using the relations (2.89).

The methodologies described here are only first-order accurate, preventing ever
reaching second-order accuracy in boundary-dominated problems.

4.3 Parabolic and reaction subproblems

4.3.1 Parabolic subproblem

We now solve the parabolic System (4.7) describing viscoelastic effects. Following [Wang
et al. 2015], we choose a semi-implicit unconditionally stable second-order Crank-Nicolson
finite difference scheme, which writes in the cell Ci as:
−αcnQ∗∗i−1 + [1 + 2αcn]Q∗∗i − αcnQ∗∗i+1 = αcnQ

∗
i−1 + [1− 2αcn]Q∗i + αcnQ

∗
i+1, (4.41)

where:

αcn = Cν
∆t

2∆x2
. (4.42)

We then provide homogeneous Neumann boundary conditions in the cells C1 and CNx ,
written here in discrete form:{

Q∗, ∗∗in = Q∗, ∗∗1

Q∗, ∗∗out = Q∗, ∗∗Nx
.

(4.43a)
(4.43b)

Combining Equation (4.41) and the boundary conditions 4.43, we write the Crank-Nicolson
finite difference scheme in matrix form:

AQ∗∗ = BQ∗, (4.44)

where:

A =




1 + 2αcn −2αcn
−αcn 1 + 2αcn −αcn

. . . . . . . . .
−αcn 1 + 2αcn −αcn

−2αcn 1 + 2αcn



, (4.45)

and:

B =




1− 2αcn 2αcn
αcn 1− 2αcn αcn

. . . . . . . . .
αcn 1− 2αcn αcn

2αcn 1− 2αcn



. (4.46)

We solve System (4.44) using the Thomas algorithm [Thomas 1949], well-suited for solving
tridiagonal matrix systems.

The boundary conditions (4.43) are more or less equivalent to neglecting
viscoelastic effects in the boundary cells. In [Müller et al. 2016b], this approxi-
mation is shown to give small inconsistencies of the physical solutions at the
inlet and outlet of the artery.
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4.3.2 Reaction subproblem

We finally solve the reaction System (4.8) describing viscous effects. As the source term Sf
(4.2) does not involve any spatial gradients, we simply solve System (4.8) using the explicit
time integration scheme presented in Subsection 4.2.2. Such an approach is possible as the
viscous effects are always dissipative (opposite to the flow direction), the arteries do not
collapse and the cross-sectional area A never goes to zero. For shallow-water equations, such
an explicit numerical treatment is not possible as transitions between wet and dry states
occur. Overall, our main motivation to use this approach is consistency with the treatment
of the time-dependent non-Newtonian viscous model presented in Chapter 9.

Other approaches are possible, such as the semi-implicit formulation:

Qn+1
i =

Q∗∗i

1 +
Cf∆t

An+1
i

. (4.47)

4.3.3 Initial condition

Most numerical simulations presented in this study are initialized by the following solution
of System (4.1):
Q = 0 and A = A0, (4.48)

and the initial vector of conservative variable in the cell Ci is then:

U0
i =

[
A0,i

0

]
. (4.49)

4.4 Validation examples in one artery
We present a series of test cases in a single uniform artery, designed to assess the implemen-
tation of the different numerical schemes and their respective boundary conditions. In each
test case, we systematically compare the results obtained with the first-order and MUSCL
variable reconstructions and assess the accuracy of both methods using the following L1, L2

and L∞ errors:



L1 [s] =
1

L

L∫

x=0

|s− sref |dx

L2 [s] =

√√√√√ 1

L

L∫

x=0

|s− sref |2dx

L∞ [s] = max
x∈L

(|s− sref |) .

(4.50a)

(4.50b)

(4.50c)

which represent the differences between a reference solution and the corresponding numerical
solution. More particularly, we plot the evolution of these errors with the number cells Nx

to assess the convergence and accuracy of the numerical schemes. The convergence error
of a first-order numerical solution is expected to decrease at the rate 10 Nx , whereas the
convergence error of a second-order numerical scheme is expected to decrease at the rate
10 2Nx .

4.4.1 Inviscid tourniquet

A tourniquet (garrot in french) is a compressing device used to temporarily occlude arteries
and veins. We describe here the inviscid elastic relaxation of an artery initially occluded by
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a tourniquet:



A (x, t = 0) =





AL = A0 [1 + Sh]2 if x ∈
[
−L

2
, 0

]

AR = A0 if x ∈
]
0,
L

2

]

Q (x, t = 0) = 0.

(4.51a)

(4.51b)
We recall that the Shapiro number Sh = 2∆R (2.76b), which explains the parametrization of
Equation (4.51). This test case is in fact a Riemann problem, first introduced in compressible
gas dynamics with the Sod tube (see [Lighthill 1978; LeVeque 1992]) and extended to blood
flow in [Delestre and Lagrée 2013]. The inviscid nonlinear solution of this Riemann problem
is obtained using the method of characteristics and we refer the reader to [Delestre and
Lagrée 2013; Delestre et al. 2016] for further details.

In addition to the initial condition (4.51), we impose non-reflecting boundary conditions at
each end of the artery to remove any backward traveling wave and suppress the effect of
boundary conditions. The parameters used in this test case are described in Table 4.1.

ρ L R0 K Cf Cν Sh Rt ∆t t order

1 10 1 104 0 0 10 1 0 10 5 2

Table 4.1 – Geometrical, mechanical, numerical and boundary parameters used in the
inviscid tourniquet test case.

In Figure 4.2 Left, we compare at times t ∈ {0, 0.001, 0.002, 0.003, 0.004} the spatial
evolution of the analytic solutions for the cross-sectional area A, the flow rate Q and the
average velocity U with the spatial evolution of the first-order and MUSCL numerical
solutions obtained with Nx = 100. We observe that for each variable, the analytic solution is
correctly described and the MUSCL solution is more accurate than the first-order solution.

For larger values of Nx such as Nx = 3200, the analytic and numerical solutions
are almost indiscernible.

In Figure 4.2 Right, we plot at time t = 0.002 the evolution with the number of cells Nx

of the first-order and MUSCL L1, L2 and L∞ errors for the cross-sectional area A, the
flow rate Q and the average velocity U . We observe that for each variable, the L1 and
L2 errors decrease with an increasing number of cells Nx, indicating that the first-order
and MUSCL numerical solutions converge towards the analytic solution. However, only
first-order accuracy is achieved as the analytic solutions are discontinuous. This is highlighted
in particular by the L∞ error that does not decrease when the number of cells Nx is increased
as the error at the discontinuities remains constant.

4.4.2 Inviscid wave propagation

We reproduce a test case presented in [Delestre and Lagrée 2013; Delestre et al. 2016]
describing the linear inviscid propagation of a pulse wave starting from an initial perturbation
of the cross-sectional area A of the artery:



A (x, t = 0) =




A0

[
1 + Sh cos

(
π + 2π

x− xs
xe − xs

)]
if xs ≤ x ≤ xe

A0 else

Q (x, t = 0) = 0,

(4.52a)

(4.52b)
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Figure 4.2 – The inviscid tourniquet test case:
Left: Comparison between the analytic solution ( ) and the first-order (©) and MUSCL
(�) numerical solutions obtained with Nx = 100 at times t ∈ {0, 0.001, 0.002, 0.003, 0.004}.
Right: Spatial convergence of the first-order (©, M, +) and MUSCL (�, O, ×) L1, L2 and
L∞ errors obtained at time t = 0.002 with Nx ∈ {50, 100, 200, 400, 800, 1600}.

The first-order and MUSCL solutions converge towards the analytic solution. However, only
first-order accuracy is achieved as the analytic solution is discontinuous.
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where xs = 2
5L and xe = 3

5L . Once again, we use the Shapiro number Sh (2.85) to
parametrize the perturbation of the cross-sectional area A, chosen small to remain in the
linear regime. The solution described here is a linear inviscid solution of System (3.23),
which reduces in this case to the well-known d’Alembert equation.

In addition to the initial condition (4.52), we impose non-reflecting boundary conditions at
each end of the artery to remove any backward traveling wave and suppress the effect of
boundary conditions. The parameters used in this test case are described in Table 4.2.

ρ L R0 K Cf Cν Sh Rt ∆t t order

1 10 1 104 0 0 {10 3, 10 4, 10 5} 0 10 5 2

Table 4.2 – Geometrical, mechanical, numerical and boundary parameters used in the
inviscid wave propagation test case.

In Figure 4.3 Left, we compare at times t ∈ {0, 0.001, 0.002, 0.003, 0.004} the spatial
evolution of the linear wave solution for the cross-sectional area A, the flow rate Q and
the average velocity U with the spatial evolution of the first-order and MUSCL numerical
solutions obtained with Nx = 100 for Sh = 10 3. We observe that for each variable, the
linear wave solution is correctly described and the MUSCL solution is more accurate than
the first-order solution.

In Figure 4.3 Right, we plot at time t = 0.002 the evolution with the number of cells Nx of
the first-order and MUSCL L1 errors for the cross-sectional area A, the flow rate Q and the
average velocity U obtained for Sh ∈ {10 3, 10 4, 10 5}. We observe that for each variable
and each value of Sh, the L1 errors decrease with an increasing number of cells Nx, indicating
that the first-order and MUSCL numerical solutions converge towards the analytic solution.
However, only first-order accuracy is achieved. Indeed, for large values of Nx, the MUSCL L1

error saturates and remains constant as the error reaches the amplitude of the nonlinearity of
the numerical solution, proportional to Sh. Indeed, the analytic wave propagation solutions
described here are linear whereas the numerical solutions are intrinsically nonlinear.

4.4.3 Inviscid particular solution

We derive an inviscid particular solution of System (3.23) driven mainly by the inlet and
outlet boundary conditions. We search for a solution of the form:
{
A = a (t)x+ b (t)

U = c (t)x+ d (t) ,

(4.53a)
(4.53b)

describing the elastic relaxation of an artery towards it equilibrium state. Injecting the
expressions (4.53a) and (4.53a) in the inviscid System (3.23), rewritten in nonconservative
form, we obtain the following ordinary differential equations for the quantities a, b, c and d:



a = 0

b′ + bc = 0

c′ + c2 = 0

d′ + dc = 0.

(4.54)

Finally, we obtain the expressions for the cross-sectional area A and the average velocity U :



A =
C2

C1 + t

U =
C3 + x

C1 + t

Q = AU,

(4.55a)

(4.55b)

(4.55c)
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Figure 4.3 – The inviscid wave propagation test case:
Left: Comparison between the linear wave solution ( ) and the first-order (©) and MUSCL
(�) numerical solutions obtained with Nx = 100 at times t ∈ {0, 0.001, 0.002, 0.003, 0.004}
for Sh = 10 3.
Right: Spatial convergence of the first-order (©, M, +) and MUSCL (�, O, ×) L1 errors
obtained at time t = 0.002 with Nx ∈ {50, 100, 200, 400, 800, 1600, 3200} for Sh ∈ {10 3,
10 4, 10 5}.

The first-order and MUSCL solutions converge towards the linear wave solution and first-
order accuracy is achieved. For large values of Nx, the L1 errors saturate as the analytic
wave propagation solutions described here are linear whereas the numerical solutions are
intrinsically nonlinear.
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where C1, C2 and C3 are chosen constants, imposed through the inlet and outlet boundary
conditions.

We start from the initial condition U0 = [A (t = 0) , Q (x, t = 0)]ᵀ and impose the flow rate
Q (x = 0, t) (4.55c) at the inlet of the artery and the cross-sectional area A (t) (4.55a) at the
outlet. The parameters used in this test case are described in Table 4.3. With this choice of
parameters, System (4.55) indeed describes the elastic relaxation of an artery towards its
equilibrium state.

ρ L R0 K Cf Cν C1 C2 C3 ∆t t order

1 10 1 104 0 0 −1 −π L
2 10 5 2

Table 4.3 – Geometrical, mechanical, numerical and boundary parameters used in the
inviscid particular solution test case.

In Figure 4.4 Left, we compare at times t ∈ {0, 0.1, 0.2, 0.3, 0.4} the spatial evolution of
the inviscid particular solutions (4.55) for the cross-sectional area A, the flow rate Q and
the average velocity U with the spatial evolution of the first-order and MUSCL numerical
solutions obtained with Nx = 50. We observe that for each variable, the inviscid particular
solution is correctly described and the MUSCL solution is more accurate than the first-order
solution.

In Figure 4.4 Right, we plot at time t = 0.3 the evolution with the number of cells Nx of the
first-order and MUSCL L1, L2 and L∞ errors for the cross-sectional area A, the flow rate Q
and the average velocity U . We observe that for each variable, the L1, L2 and L∞ errors
decrease with an increasing number of cells Nx, indicating that the first-order and MUSCL
numerical solutions converge towards the analytic solution. Only first-order accuracy is
achieved as this particular solution is driven by the boundary conditions and boundary
conditions are only implemented at first-order (see Subsection 4.2.3).

4.4.4 Viscous and viscoelastic wave propagation

We reproduce two linear asymptotic solutions of system (3.23) presented in [Wang et al.
2015] and describing the propagation of a pulse wave perturbed by viscous and viscoelastic
effects. These solutions are obtained by considering small perturbations of System (3.23)
linearized around the equilibrium state U0 = [0, A0]ᵀ and are summarized in Table 4.4.

Viscous wave propagation Viscoelastic wave propagation





p = pin (ξ) exp
(
−τ

2

)

ε =
1

α2
.





p =

∞∫

−∞

pin (η)G (τ, ξ − η) dη

G =
1√
2πτ

exp

(
− ξ

2

2τ

)

ε =

√
π

α2
ν

.

Table 4.4 – Summary of the viscous and viscoelastic asymptotic wave propagation solutions
presented in [Wang et al. 2015], where ξ = 1

T

[
t− x

c0

]
and τ = ε tT .

Before proceeding to the presentation of the numerical results, we briefly recall the strategy
to derive asymptotic solutions. Given a small parameter, here referred to as ε, the idea is
to search for solutions using an asymptotic expansion of the variables (here A and Q) in
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Figure 4.4 – The inviscid particular solution test case:
Left: Comparison between the inviscid particular solution ( ) and the first-order (©) and
MUSCL (�) numerical solutions obtained with Nx = 50 at times t ∈ {0, 0.1, 0.2, 0.3, 0.4}.
Right: Spatial convergence of the first-order (©, M, +) and MUSCL (�, O, ×) L1, L2 and
L∞ errors obtained at time t = 0.3 with Nx ∈ {50, 100, 200, 400, 800, 1600}.

The first-order and MUSCL solutions converge towards the analytic solutions. Only first-order
accuracy is achieved as boundary conditions are only implemented at first-order.
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powers of ε:
{
A = A0 + εA1 + ε2A2 + . . .

Q = Q0 + εQ1 + ε2Q2 + . . . ,

(4.56a)

(4.56b)
where Ai|∞i=0 = O (1) and Qi|∞i=0 = O (1). These expressions are then injected into the
governing equations, here System (3.23), and the terms of similar order in ε are collected,
starting from the terms O (1) and so on. As the governing equations usually are nonlinear
and explicitly depend on the small parameter ε, non-trivial combinations of the functions
Ai|∞i=0 = O (1) and Qi|∞i=0 = O (1) are obtained and lead to the derivation of an asymptotic
solution.

To compute the numerical solutions, we impose at the inlet of the artery the pressure wave
pin:

pin (t) =





p̂

2

[
1 + cos

(
π + 2π

t

T

)]
if 0 ≤ t

T
≤ 1

0 else
(4.57)

where p̂ =
√
A0KSh (see Equation (2.53)). The Shapiro number Sh (2.85) is chosen small to

remain in the linear regime. At the outlet of the artery, we impose a non-reflecting boundary
condition to remove any backward traveling wave. The parameters used in these two test
cases are described in Table 4.5.

ρ L R0 K α αν Sh T Rt ∆t t order

1 200 1 104 5 5.6 {10 3, 10 4, 10 5} 1 0 10 4 2

Table 4.5 – Geometrical, mechanical, numerical and boundary parameters used in the
asymptotic wave propagation test cases.

In Figure 4.5 Left, we compare at times t ∈ {0.5, 1, 1.5, 2, 2.5}T the spatial evolution of the
viscous and viscoelastic asymptotic solutions for the pressure p with the spatial evolution of
the first-order and MUSCL numerical solutions obtained with Nx = 100 for Sh = 10 3. We
observe that the viscous and viscoelastic asymptotic solutions are correctly described and
that the MUSCL solutions are more accurate than the first-order solutions.

In Figure 4.5 Right, we plot at time t = 1.5T the evolution with the number of cells Nx of
the first-order and MUSCL L1 errors for the pressure p obtained for Sh ∈ {10 3, 10 4, 10 5}.
We observe that for each value of Sh, the L1 errors initially decrease with an increasing
number of cells Nx, indicating that the first-order and MUSCL numerical solutions converge
towards the analytic solution. However, the L1 errors then saturate as the viscous and
viscoelastic solutions presented here are linear asymptotic solutions and therefore not exact
solutions of System (3.23). The values at which the L1 errors saturate are proportional
to the Shapiro number of Sh and to the value of the small parameter ε used to derive the
asymptotic solutions.

4.4.5 Asymptotic front propagation

This test case describes the propagation of a wave front created when filling an elastic tube.
This phenomenon is studied in [Kamm and Shapiro 1979; Fullana et al. 2003; Flaud et al.
2012]. We present here an asymptotic solution of System (3.23) describing the moving front
of a wave propagating in an infinitely long artery initially rest.
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Figure 4.5 – The viscous and viscoelastic asymptotic wave propagation test cases:
Left: Comparison between the asymptotic ( ), first-order (©) and MUSCL (�) waveforms
obtained with Nx = 100 at times t ∈ {0.5, 1, 1.5, 2, 2.5}T for Sh = 10 3.
Right: Spatial convergence of the first-order (©, M, +) and MUSCL (�, O, ×) L1 errors
obtained at time t = 1.5T with Nx ∈ {50, 100, 200, 400, 800, 1600} for Sh ∈ {10 3, 10 4,
10 5}.

The first-order and MUSCL solutions initially converge towards the asymptotic solutions
and then saturate. Indeed, the viscous and viscoelastic solutions presented here are linear
asymptotic solutions and therefore not exact solutions of System (3.23).
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Asymptotic solution

Near the front of the wave, the inertial effects are negligible and System (3.23) simplifies to:



∂A

∂t
+
∂Q

∂x
= 0

∂

∂x

[
K

3ρ
A

3
2

]
= −Cf

Q

A
,

(4.58a)

(4.58b)

Combining Equation (4.58a) and Equation (4.58b), we obtain:
∂A

∂t
= Cwf

∂

∂x

[
A

3
2
∂A

∂x

]
, (4.59)

where:

Cwf =
K

2ρCf
. (4.60)

We complete Equation (4.59) with the following inlet and outlet boundary conditions:
{
A (x = 0, t) = A|x=0 = cst

lim
x→∞

A (x, t) = A0.

(4.61a)
(4.61b)

We then introduce in Table 4.6 non-dimensional variables.

t = τ t̄ x = Xx̄ A = A|x=0Ā

Table 4.6 – Wave front propagation non-dimensional variables.

Injecting these non-dimensional variables into Equation (4.59) and Equation (4.61), we
obtain:



∂Ā

∂t̄
=
[
CwfA

3
2 |x=0

τ

X2

] ∂

∂x̄

[
Ā

3
2
∂Ā

∂x̄

]

Ā (x̄ = 0, t̄) = 1

lim
x̄→∞

Ā (x̄, t̄) = Ψ,

(4.62a)

(4.62b)
(4.62c)

where Ψ = A0/A|x=0. The least degeneracy principle applied to Equation (4.62a) states
that:
X√
τ

=

√
CwfA

3
2 |x=0. (4.63)

We now search for a self-similar solution of System (4.62). A classical analysis (not detailed
here) shows that the variable of similitude is:

η =
x̄√
t̄
, (4.64)

and that System (4.62) rewrites as:



− 1

2
η
∂Ā

∂η
=

∂

∂η

[
Ā

3
2
∂Ā

∂η

]

Ā (η = 0) = 1

lim
η→∞

Ā (η) = Ψ.

(4.65a)

(4.65b)
(4.65c)

To solve System (4.65), we assume that ψ ≈ 1, which allows us to linearize System (4.65)
around the neutral cross-sectional area ψ:



− 1

2
η
∂Ā

∂η
= Ψ

3
2
∂2Ā

∂η2

Ā (η = 0) = 1

lim
η→∞

Ā (η) = Ψ.

(4.66a)

(4.66b)
(4.66c)
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Figure 4.6 – The wave front propagation test case:
Left: Comparison between the linear ( ), first-order (©) and MUSCL (�) waveforms
obtained with Nx = 25 at time t = 3.9 for Sh = 10 3.
Right: Spatial convergence of the first-order (©) and the MUSCL (�) L1 errors obtained
at time t = 3.9 with Nx ∈ {10, 25, 50, 100, 200, 400} for Sh = 10 3.

The first-order and MUSCL solutions converge towards the linear wave front solution. The
L1 errors decrease with an increasing number of cells Nx and then saturate as the wave front
propagation solution is only a linear solution of System (3.23).

Finally, the solution of System (4.66) is:

Ā = 1− [1−Ψ] erf

(
η

2Ψ
3
4

)
, (4.67)

where the function erf is the classical error function.

Numerical simulations

We impose at the inlet of the artery a constant cross-section area A|x=0, defined as:
A|x=0 = A0 [1 + Sh]2 . (4.68)

The Shapiro number Sh (2.85) is chosen small to remain in the linear regime. At the outlet,
we impose a non-reflecting boundary condition to mimic an infinitely long elastic tube. The
parameters used in this test case are described in Table 4.7.

ρ L R0 K Cf Cν Sh Rt ∆t t order

1 400 1 104 10 0 10 3 0 10 4 2

Table 4.7 – Geometrical, mechanical, numerical and boundary parameters used in the wave
front propagation test case.

In Figure 4.6 Left, we compare at time t = 3.9 the linear wave front solution for the cross-
sectional area A with first-order and MUSCL numerical solutions obtained with Nx = 25 for
Sh = 10 3. We observe that the linear solution is correctly described and that the MUSCL
solution is more accurate than the first-order solution.

In Figure 4.6 Right, we plot at time t = 3.9 the evolution with the number of cells Nx of the
first-order and MUSCL L1 errors for the cross-sectional area A obtained for Sh = 10 3. We
observe that the L1 errors decrease with an increasing number of cells Nx and then saturate
as the wave front propagation solution is only a linear solution of System (3.23).

In Section 4.4, we have presented a series of test cases in a single uniform artery that have
enabled us to validate the hyperbolic, parabolic and reaction numerical schemes as well

61



Section 4.5. Conclusion

as the implementation of the different boundary conditions and assess the accuracy of the
MUSCL reconstruction strategy.

4.5 Conclusion
In Chapter 4, we have presented and validated numerical methods to solve the 1D viscoelastic
blood flow system of equations (3.23) in one artery using an operator splitting technique.
We have used a finite volume kinetic numerical scheme to solve the hyperbolic System (4.6)
describing the propagation of elastic waves. Then, we have described the Crank-Nicolson
finite difference scheme we use to solve the parabolic System (4.7) describing viscoelastic
diffusion. Finally, we have briefly commented on the temporal scheme we use to solve
the reaction System (4.8) describing viscous dissipation. To limit numerical dissipation of
propagating pulse waves, we have also described a MUSCL reconstruction strategy to achieve
second-order accuracy for smooth solutions. We have implemented each of these numerical
methods in our in-house code and then tested their accuracy in different test cases. The
results show that our implementation is second-order accurate except when:

• the analytic solution is driven by boundary conditions;
• the analytic solution is discontinuous;
• the numerical solution is compared to a linear or asymptotic solution, which is therefore

not an exact solution of System (3.23).

Overall, MUSCL solutions have proven to be always more accurate and less dissipative than
first-order solutions.

We are now working towards numerical reconstruction techniques better suited to capture
discontinuities using the boundary-value diminishing (BVD) reconstruction framework
proposed in [Sun et al. 2016]. This is particularly important when considering bolus
injections of passive tracers in an artery, since sharp interfaces naturally exist at each end of
the bolus. We are also studying numerical strategies to increase the order of accuracy of our
boundary conditions implementation strategies.
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Chapter 5
Hydrostatic reconstruction

We present here a numerical strategy called the hydrostatic reconstruction designed
to deal with arteries that present variations of their geometrical and mechanical
properties (typically A0 and K). As in Chapter 4, this chapter deals exclusively with
numerical methods and is greatly inspired from the following published articles:

• O. Delestre, A.R. Ghigo, J.-M. Fullana, and P.-Y. Lagrée. A shallow water with
variable pressure model for blood flow simulation. Networks and Heterogeneous
Media, 11(1):69–87, 2016;

• A.R. Ghigo, O. Delestre, J.-M. Fullana, and P.-Y. Lagrée. Low-Shapiro hydrostatic
reconstruction technique for blood flow simulation in large arteries with varying
geometrical and mechanical properties. Journal of Computational Physics, 331:
108–136, 2017b.
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5.1 Introduction
Up to now, we have only considered uniform arteries, in which the geometrical and mechanical
properties of the arterial wall are constant. However, in physiological situations, these prop-
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Figure 5.1 – Schematic representations of possible arterial geometrical configurations. Left:
Taper; Center: Stenosis; Right: Aneurysm.

erties vary locally. The variations are caused by tapering (Figure 5.1 left), pathologies such
as stenoses (Figure 5.1 center) or aneurysms (Figure 5.1 right) and endovascular prosthesis
(stent). Mathematically, they result in a source term in the momentum conservation equation
that prevents from writing the system in a conservation-law form. A naive discretization of
this nonconservative source term can lead to spurious oscillations of the numerical solution
and the failure of the numerical method, especially close to steady states [Delestre and
Lagrée 2013]. This problem was originally pointed out by Roe [Roe 1987] for the scalar
equation with source terms and reflects a truncation error between the discretization of
the conservative flux gradient and the nonconservative source term that does not vanish
close to steady states. Since the works of Bermúdez and Vázquez [Bermúdez and Vázquez
1994] and LeRoux [Gosse and LeRoux 1996; Greenberg and LeRoux 1996] in the context of
shallow-water equations, numerical schemes that preserve some steady states at a discrete
level are called well-balanced.

The aim of this chapter is to propose a simple, robust and efficient well-balanced numerical
method for blood flow in an artery with variations of its mechanical and geometrical
properties. As blood flow equations are mathematically similar to shallow water equations,
several well-balanced numerical schemes have been derived for 1D blood flow equations with
varying geometrical and mechanical properties. A popular approach consists in expressing
the system in terms of primitive variables, namely the cross-sectional area (A) and the flow
velocity U . The resulting system can be written in a conservation-law form, even in the
presence of varying geometrical and mechanical properties. However, it has been proved
for shallow water equations that this formulation is not mass-conservative and can lead
to erroneous estimations of the wave celerity [Toro 2001]. This analysis is also valid for
blood flow equations and the numerical solutions obtained with a nonconservative system
will be incorrect in the presence of elastic jumps. Indeed, the Rankine-Hugoniot jump
relation of the nonconservative form is different from the one of the conservative form.
C̆anić [Čanić 2002] and Sherwin [Sherwin et al. 2003a] were among the first to address
the issue of the nonconservative source term for blood flow simulation. C̆anić proposed
to treat the nonconservative product in this source term through jump conditions, while
Sherwin used a two-rarefaction Riemann solver when the material properties vary abruptly.
More recently, Toro and Siviglia [Toro and Siviglia 2013] reformulated the 1D conservative
system with varying geometrical and mechanical properties as a homogeneous quasi-linear
system and solved the associated Riemann problem. To do so, they introduced an auxiliary
steady variable containing the geometrical and mechanical properties of the artery, and also
included variations of the external pressure. In the framework of path-conservative methods
[Parés 2006], Müller and Toro [Müller et al. 2013] used this augmented quasi-linear system
to propose an exactly well-balanced numerical scheme for all steady states (subcritical,
transcritical and supercritical). Murillo and García-Navarro [Murillo and García-Navarro
2015] derived an energy balanced numerical scheme in the framework of augmented solvers
for arteries with varying mechanical and geometrical properties, and also variations of the
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external pressure. In [Delestre and Lagrée 2013], Delestre and Lagrée successfully applied
the hydrostatic reconstruction (HR), proposed in [Audusse et al. 2004] for shallow water
equations, to compute blood flow in arteries with varying cross-sectional area. In more recent
work [Delestre et al. 2016], Delestre extended the hydrostatic reconstruction (HR) to arteries
with varying cross-sectional area and arterial wall rigidity.

The hydrostatic reconstruction (HR) meets the simplicity and efficiency requirements for 1D
blood flow simulation and is the reference well-balanced method used in this study. HR can
be used with any finite volume numerical flux for a conservative problem and guarantees the
following natural properties of shallow water flows:

• well-balanced for the steady states at rest, or hydrostatic equilibria;
• the conservation of mass;
• the non-negativity of the water-height h;
• the ability to compute dry states and transcritical flows;
• a discrete or semi-discrete entropy inequality, which enables to compute the entropic

solution in the presence of a discontinuity.

Unfortunately, the steady states at rest preserved by HR are not relevant for blood flow
as they only occur in "dead men" [Delestre and Lagrée 2013]. We therefore propose two
extensions of the hydrostatic reconstruction adapted to blood flow simulation in large arteries.

By relaxing some of the properties of HR such as the ability to compute dry states, we
derive an extension of the hydrostatic reconstruction, that we refer to as the "low-Shapiro"
hydrostatic reconstruction (HR-LS). HR-LS accurately preserves low-Shapiro number steady
states that may occur in large network simulations. We also adapt the subsonic hydrostatic
reconstruction (HR-S), proposed by Bouchut [Bouchut and Morales De Luna 2010], to blood
flow equations with variable geometrical and mechanical properties. HR-S exactly preserves
all subcritical steady states, including low-Shapiro number steady states. By construction,
both HR-LS and HR-S are able to accurately compute wave reflections and transmissions.
The different numerical methods are then tested and compared in a series of steady and
unsteady physiological flow configurations, where both the geometrical and mechanical wall
properties vary.

5.2 Mathematical model

5.2.1 One-dimensional equations with varying geometrical and mechani-
cal properties

In Subsection 2.2.2, we have derived the thin cylinder wall law (2.23) valid for a uniform
elastic artery. If we now consider that the neutral cross-sectional area A0 and the arterial
rigidity K vary in the x-direction, Equation (2.23) simply rewrites:

p− pext = K (x)
[√

A−
√
A0 (x)

]
. (5.1)

The variations of the geometry of the arterial wall should remain small to stay
in the long wavelength asymptotic limit.

Following the derivation presented in Section 2.5, we obtain the 1D system of equations
describing blood flow in an artery with varying geometrical and mechanical properties:



∂A

∂t
+
∂Q

∂x
= 0

∂Q

∂t
+

∂

∂x

[
Q2

A
+
K

3ρ
A

3
2

]
= ST ,

(5.2a)

(5.2b)
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where ST is a source term taking into account the possible variations of the geometrical
and mechanical properties of the arterial wall:

ST =
A

ρ

[
∂

∂x

[
K
√
A0

]
− 2

3

√
A
∂K

∂x

]
. (5.3)

Notice that System (5.2) does not include viscous or viscoelastic terms that we neglect in
this chapter.

5.2.2 Additional mathematical properties

To simplify the analysis, we write System (5.2) as a system of balance laws:
∂U

∂t
+
∂F

∂x
= S

∂σ

∂x
. (5.4)

The vectors U = [A, Q]ᵀ and F = [FA, FQ]ᵀ are respectively defined by Equation (2.79)
and Equation (2.80). The vector σ and the matrix S are defined as:

σ =

[
K
Z

]
=

[
K

K
√
A0

]
, (5.5)

and:

S =

[
0 0

−2
3
A

3
2

ρ
A
ρ

]
. (5.6)

The main difficulty with System (5.4) lies in the presence of the nonconservative source
term S∂xσ. This nonconservative term vanishes when the neutral cross-sectional area A0

and the arterial wall rigidity K are constant, and System (5.4) reduces to System (2.78).
The mathematical properties of System (2.78) have been presented in Subsection 2.6.2. We
therefore only recall the modifications introduced by the presence of the nonconservative
source term S∂xσ.

The entropy inequality (2.93) is extended to solutions of System (5.4) through a new entropy
pair

(
η̃, G̃

)
taking into account the vector σ:





η̃ = η − Z

ρ
A

G̃ = G− Z

ρ
Q,

(5.7)

that verify the following entropy inequality:
∂η̃

∂t
+
∂G̃

∂x
≤ 0. (5.8)

Most importantly, System (5.4) now admits non-trivial steady solutions, verifying the
following steady state system of equations:




Q = C1

E =
1

2

Q2

A2
+

1

ρ

[
K
√
A− Z

]
= C2,

(5.9a)

(5.9b)

where C1 and C2 are two constants and E is the energy discharge. A particular family of
steady states are the steady states at rest, or "man at eternal rest" equilibria, defined by:
{
Q = 0

p = K
√
A− Z = C2.

(5.10a)

(5.10b)
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For shallow water flows, steady states mainly occur in "lakes at rest", which are the analogue
of the "man at eternal rest" equilibria (5.10). In arteries, steady or quasi-steady flow regimes
are observed in small segments when the frequency of the pulse wave is greatly reduced due
to a high resistance of the flow, for example after severe stenoses or in smaller arteries. In
these cases, the relevant equilibria are no longer the steady states at rest but the non-zero
flow steady states described by System (5.9).

5.3 Hydrostatic reconstruction

To prevent spurious oscillations of the numerical solution of system (5.4) close to steady
states, a well-balanced numerical scheme is required to properly balance the source term
S∂xσ and the flux gradient ∂xF . To make an explicit analogy with the well-balanced
methods derived for shallow water equations, we introduce the following notations:



P =
K

3ρ
A

3
2

E =
2K

3ρ

√
A

H = K
√
A.

(5.11)

With these notations, the flux vector F (2.80) is expressed as:

F =

[
Q

Q2

A + P

]
, (5.12)

and the steady state System (5.9) and System (5.10) respectively write:




Q = C1

1

2

Q2

A2
+ E +

P
A
− Z

ρ
= C2,

(5.13a)

(5.13b)

and:
{
Q = 0

H − Z = C2.

(5.14a)
(5.14b)

In the context of shallow water equations, Equation (5.13b) is a generalized Bernoulli
equation and Equation (5.14b) describes the hydrostatic equilibria.

5.3.1 The hydrostatic reconstruction: HR

The hydrostatic reconstruction (HR) was introduced by Audusse [Audusse et al. 2004] for
shallow water equations and applied to blood flow equations by Delestre [Delestre and Lagrée
2013; Delestre et al. 2016]. Through a reconstruction of the conservative variables, HR allows
to obtain a simple and efficient well-balanced numerical scheme given any finite volume
numerical flux for the conservative System (2.78). It is simple to implement and can easily
be adapted to different pressure laws with multiple varying parameters, which is useful
when considering veins, collapsible tubes and external pressure variations [Pedley et al. 1996;
Cavallini and Coscia 2010; Müller and Toro 2014]. This technique allows to preserve at a
discrete level the steady states at rest (5.14) and guarantees that the scheme verifies some
natural properties of the shallow water equations (listed as bullets in the introduction),
such as the positivity of the water height (equivalent of the cross-sectional area A), the
ability to compute dry states and transcritical flows and a discrete entropy inequality with
an error term that tends to zero when the mesh size decreases [Audusse et al. 2016]. This
last property is necessary to select the admissible entropy solution across a discontinuity, as
explained in [Gosse 2013].
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Section 5.3. Hydrostatic reconstruction

On both sides of each cell interface xi+ 1
2
, reconstructed conservative variables are defined to

preserve the following system of equations, which coincides with the steady states at rest
(5.14) when the flow rate Q or the velocity U are zero:


U =

Q

A
= C1

H − Z = C2.

(5.15a)

(5.15b)
Details on the derivation of HR for blood flow in an artery with variable neutral cross-
sectional area A0 and variable arterial wall rigidity K are found in [Delestre et al. 2016].

In large arteries, the steady states at rest preserved by HR only occur for "dead men" or
distal to an obliterated segment and are of little interest when simulating blood flow in
the systemic network. However, in regions of large flow resistance such as small arteries,
arterioles or arteries severely constricted by a stenosis, the flow looses its pulsatility and
reaches steady or near-steady states with a non-zero flow rate. These quasi-steady flow
configurations can occur in large network simulations when the level of arterial precision
extends to small arteries and arterioles or in the presence of a very severe stenosis. They are
described by the steady state System (5.13). Therefore, a modification of HR is necessary to
capture these relevant steady states for blood flow in large arteries.

5.3.2 The low-Shapiro hydrostatic reconstruction: HR-LS

System (5.13) is nonlinear and difficult to solve in practice. However, in physiological
conditions, blood flow is subcritical with a Shapiro number of the order of Sh ≈ 10 2 (2.85).
Therefore, the nonlinear advection term U2 = Q2/(2A2) in System (5.13) can be neglected
at first-order with respect to the term E + P/A − Z/ρ that scales as c2, where c is the
Moens-Korteweg celerity (2.71). Doing so, we obtain the following simplified low-Shapiro
number steady state system of equations:
{
Q = C1

H − Z = C2.

(5.16a)
(5.16b)

System (5.16) coincides with the steady state at rest (5.14) when Q or U are zero and is
an asymptotically correct approximation of the steady state system (5.13) in low-Shapiro
number flow regimes. It also contains the correct conservation properties to obtain low-
Shapiro number wave reflections if a change of impedance occurs at the interface between two
cells of the computational domain. Indeed, the conservation properties of System (5.16) are
identical to those of System (6.1), which prove to be adequate to compute wave reflections and
transmissions at junction points [Alastruey et al. 2009; Wang et al. 2015] (see Subsection 6.2.1
for more details). System (5.16) is the basis for the derivation of the modification of HR we
propose in this study, referred to as the low-Shapiro hydrostatic reconstruction (HR-LS) and
better suited to compute blood flow in physiological conditions.

HR-LS aims at preserving low-Shapiro number steady states (5.16) in an artery with a
varying neutral cross-sectional area A0 and arterial wall rigidity K. Similarly to HR, the
well-balanced property is enforced by defining reconstructed variables on both sides of the
interface xi+ 1

2
according to the reconstruction procedure (5.16). In the following, variables

noted with ”∗” will refer to the reconstructed variables. Given the vectors of conservative
variables UL and UR and the vectors σL and σR on the left and right of the interface xi+ 1

2

68



Chapter 5. Hydrostatic reconstruction

between cells Ci and Ci+1, the discrete analogue of System (5.16) writes:




Q∗L = QL

H∗L − Z∗ = HL − ZL
Q∗R = QR

H∗R − Z∗ = HR − ZR.

(5.17)

By solving System (5.17) and preserving the positivity of H, we obtain the following
reconstructed variables:



H∗L = max (0, Z∗ +HL − ZL)

Q∗L = QL

H∗R = max (0, Z∗ +HR − ZR)

Q∗R = QR.

(5.18)

The reconstructed variable Z∗ is chosen considering nonlinear stability arguments that
require that:{

0 ≤ H∗L ≤ HL

0 ≤ H∗R ≤ HR,

to preserve the positivity of H. A simple choice is the downwind value:
Z∗ = min (ZL, ZR) . (5.19)

In order to obtain the reconstructed values A∗L and A∗R, we select a reconstruction for K∗.
Following [Bouchut 2004; Delestre et al. 2016] we choose:
K∗ = max(KL, KR). (5.20)

Therefore, we directly have:



A∗L =

(
H∗L
K∗

)2

A∗R =

(
H∗R
K∗

)2

.

(5.21)

Finally, we obtain the reconstructed conservative vectors:



U∗L =

[
A∗L
Q∗L

]

U∗R =

[
A∗R
Q∗R

]
,

(5.22)

that are used to compute the numerical flux F (U∗
L,U

∗
R) (4.14). This reconstruction process

is represented in Figure 5.2.

A finite volume formulation for the source term ST (5.3) is obtained by integrating over
the cell Ci the steady flux gradient in which the nonlinear advection term is neglected.
This approximation is valid in low-Shapiro number flow regimes, and therefore particularly
appropriate for blood flow in large arteries. The following finite volume expression for ST is
obtained, expressed in terms of the reconstructed conservative vector U∗:

ST, i =
1

∆x

∫

Ci

STdx = P
(
A∗
L,i+ 1

2

, K∗
i+ 1

2

)
− P

(
A∗
R,i− 1

2

, K∗
i− 1

2

)
, (5.23)

where
[
A∗
L,i+ 1

2

, A∗
R,i− 1

2

]
are the reconstructed cross-sectional areas on the left of the cell

interface xi+ 1
2
and on the right of the cell interface xi− 1

2
respectively and

[
K∗
i+ 1

2

, K∗
i− 1

2

]
are

the reconstructed arterial wall rigidities on the cell interfaces xi+ 1
2
and xi− 1

2
respectively.
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xi+ 1
2

ZL

ZR

HR

HL

HL � ZL

HR � ZR

H�
L = Z� + HL � ZL

H�
R = Z� + HR � ZR

Z� = min (ZL, ZR)

Figure 5.2 – Schematics of the HR-LS reconstruction. Given the vectors of conservative
variables UL and UR and the vectors σL and σR on the left and right of the interface xi+ 1

2
,

we reconstruct the variables H∗L and H∗R using Equation (5.18).

For consistency reasons, we modify the previous expression and write:

ST,i=P
(
AL,i+ 1

2
, A∗

L,i+ 1
2

,KL,i+ 1
2
,K∗

i+ 1
2

)
P
(
AR,i− 1

2
, A∗

R,i− 1
2

,KR,i− 1
2
,K∗

R,i− 1
2

)
, (5.24)

with the notation:
P (A, A∗, K, K∗) = P (A∗, K∗)− P (A, K) . (5.25)

With these notations, the first-order well-balanced finite volume scheme (4.13) proposed in
Section 4.2 and applied to System (5.4) is simply:

Un+1
i = Uni −

∆t

∆x

[
Fn∗
i+1

2
− Fn∗

i−1
2

]
, (5.26)

with:



Fn∗
i+1

2
= F

(
U∗
L,i+1

2
,U∗

R,i+1
2
,K∗

i+ 1
2

)
+

[
0

P
(
AL,i+ 1

2
, A∗

L,i+ 1
2

,KL,i+ 1
2
,K∗

i+ 1
2

)
]

Fn∗
i−1

2
= F

(
U∗
L,i−1

2
,U∗

R,i−1
2
,K∗

i− 1
2

)
+

[
0

P
(
AR,i− 1

2
, A∗

R,i− 1
2

,KR,i− 1
2
,K∗

i− 1
2

)
]
.

(5.27a)

(5.27b)

It is straightforward to see that HR-LS is well-balanced for the steady states at rest (5.14)
and provides a good approximation of the steady states (5.13) in low-Shapiro number flow
regimes. It also guarantees the following natural properties of blood flow equations:

• the conservation of mass;
• the non-negativity of the cross-sectional area A;
• correct reflection and transmission conditions when variations of vessel impedance occur.
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In physiological conditions, the arteries never completely collapse, therefore the numerical
scheme no longer needs to be able to compute dry states. Furthermore, as the flow is
subcritical and the heart input signal is not discontinuous, transcritical or supercritical
regimes and discontinuities of the conservative variables do no occur. Hence the discrete
entropy inequality as well as the ability to compute transcritical flows are no longer crucial
requirements of the numerical scheme. Finally, the viscosity of the blood and of the arterial
wall, that are not taken into account here, are of great importance in arteries and have
diffusive and dissipative effects that remove high frequency components and therefore any
discontinuity in the conservative variables.

5.3.3 The subsonic hydrostatic reconstruction: HR-S

In [Bouchut and Morales De Luna 2010], an extension of HR was proposed, referred to as
the subsonic hydrostatic reconstruction (HR-S), ideal for blood flow simulations in large
arteries. HR-S is well-balanced for all subcritical steady states (5.13) and also preserves the
good properties of HR (listed as bullets in the introduction), that is the positivity of the
water height (equivalent of the cross-sectional area A), the ability to compute dry states
and transcritical flows and a semi-discrete entropy inequality. HR-S is also able to correctly
capture wave reflections and transmissions in regions where the impedance of the arterial wall
changes. Indeed, the subcritical steady states (5.13) coincide with the junction conservation
properties (6.1). However, HR-S requires the resolution of the nonlinear System (5.13) at
each time step at every cell interface presenting a gradient of the artery’s geometrical or
mechanical properties. This increases the computational cost compared to HR and HR-LS,
especially if the region requiring a well-balanced treatment is not limited to a few mesh cells.

In this section, we present the derivation of HR-S adapted to blood flow in an artery where
both variations of cross-sectional area at rest A0 and variations of the arterial wall rigidity
K are taken into account. HR-S serves as the reference exactly well-balanced method to be
compared to HR and HR-LS. In particular, HR-S allows us to assess if relaxing the dry-state
property and the semi-discrete entropy inequality in HR-LS impacts solutions of blood flow
in physiological conditions. With the notations (5.11), we are in the framework introduced
in [Bouchut and Morales De Luna 2010] and therefore we only briefly recall the main steps
of the derivation of HR-S. Additional details can be found in the cited publication.

Well-balanced subsonic positivity-preserving reconstruction procedure for the
cross-sectional area A.

Similarly to HR and HR-LS, the well-balanced property is enforced by defining reconstructed
variables on both sides of each cell interface xi+ 1

2
according to the reconstruction procedure

(5.13). Variables noted with ”∗” will refer to the reconstructed variables. Following [Bouchut
and Morales De Luna 2010], we introduce the function f :

f : R×
(
R+∗)2 −→R

(Q,A,K) −→1

2

Q2

A2
+ E (A,K) +

P (A,K)

A
,

(5.28)

and given the vectors of conservative variables UL and UR and the vectors σL and σR at
the left and right of the interface xi+ 1

2
, the discrete analogue of system (5.13) writes:





Q∗L = QL

f (Q∗L, A
∗
L,K

∗) = f (QL, AL,KL) + δL

Q∗R = QR

f (Q∗R, A
∗
R,K

∗) = f (QR, AR,KR) + δR,

(5.29)
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with:



δL =
1

ρ
(Z∗ − ZL)

δR =
1

ρ
(Z∗ − ZR) .

(5.30)

Similarly to HR-LS, the reconstruction of the flow rate Q∗ is straightforward. However,
contrary to HR and HR-LS, System (5.29) is nonlinear in A∗ and is difficult to solve
analytically. To help with the resolution of System (5.29), we recall the following properties
(see [Bouchut and Morales De Luna 2010] for details).

For fixed values of Q and K, the function f admits a minimum in As (Q,K) and ms (Q,K)
is the minimum value of f :



As (Q,K) =

[
2ρ

K
Q2

] 2
5

ms (Q,K) =
5

4

K

ρ

[
2ρ

K
Q2

] 1
5

.

(5.31)

For fixed values of Q and K and since the function f is convex, System (5.29) admits
a subcritical and a supercritical solution for the cross-sectional area A if f (Q,A,K) >
ms (Q,K). Furthermore, if A > As (Q,K) the flow is subcritical with U ∈ Usub and
inversely if A < As (Q,K) the flow is supercritical with U ∈ Usup (see Figure 5.3).

Using these properties, a reconstruction procedure for the cross-sectional area is proposed
in [Bouchut and Morales De Luna 2010]. The first step is to select reconstructions of the
variables Z∗ and K∗ that preserve the positivity of A and select the subcritical solution of
System (5.29). These conditions are met if the following inequalities are verified:{

A∗L ≤ AL
A∗R ≤ AR,

(5.32)

Q

As(QL,K*)

ms(QL,K*)

A

f

f(QL,AL,KL)

δL<0:   f(QL,AL*,K*)  

ALAL*

QL

|δL|

|δL|

AL**

Supercritical Subcritical

Positivity preserving Not Positivity preserving

δL>0:   f(QL,AL*,K*)  

Figure 5.3 – Representation of the function f (QL, · , · ). The abscissa of the intersections
between function f and the straight lines representing the different values of f (Q∗L, A

∗
L,K

∗)
give the possible values of A∗L. A graphical analysis shows that conditions (5.32) and (5.33)
are met only for δL < 0.

72



Chapter 5. Hydrostatic reconstruction

and:{
As ≤ A∗L
As ≤ A∗R.

(5.33)

The inequalities (5.33) are naturally verified as we consider only subcritical flow configurations.
On the contrary, the inequalities (5.32) are verified if inequalities (5.33) are true and if Z∗

and K∗ are chosen such that δL,R ≤ 0. A simple choice for Z∗ and K∗ is:{
Z∗ = min (ZL, ZR)

K∗ = max(KL,KR).
(5.34)

Given the expressions (5.34) for Z∗ and K∗, we adapt the reconstruction procedure for the
cross-sectional area A∗ proposed by Bouchut [Bouchut and Morales De Luna 2010] to blood
flow in arteries with variable neutral cross-sectional area A0 and variable arterial wall rigidity
K. The procedure is summarized in Figure 5.3 and is presented in the Algorithm (5.1). The
Algorithm (5.1) describes the steps that need to be followed to obtain the reconstructed
cross-sectional area A∗L, solution of system (5.29). The same algorithm can be applied to
reconstruct A∗R.

Algorithm 5.1 Algorithm to compute the reconstructed cross-sectional area A∗L to enforce
the well-balanced property by interface for the steady states (5.13).

if δL = 0 then
A∗L ← AL

else
if uL ≥ cL then

A∗L ← AL

else
if f (QL, AL,KL) + δL > ms (QL,K

∗) then{
Q∗L = QL

f (Q∗L, A
∗
L,K

∗) = f (QL, AL,KL) + δL
The solution of the system can be obtained numerically using a recursive procedure.

else
A∗L ← As(QL,K

∗)

Well-balanced subsonic first-order numerical scheme.

Similarly to HR and HR-LS, a finite volume formulation for the source term ST is obtained
by integrating over the cell Ci the steady flux gradient. However, the nonlinear advection
term is no longer neglected and an additional flux term TL,R is introduced to take it into
account:

ST, i =P
(
AL,i+ 1

2
, A∗L,i+ 1

2
,KL,i+ 1

2
,K∗i+ 1

2

)
+ TL

(
UL,i+ 1

2
,U∗L,i+ 1

2
,U∗R,i+ 1

2
,K∗i+ 1

2

)
−

P
(
AR,i− 1

2
, A∗R,i− 1

2
,KR,i− 1

2
,K∗i− 1

2

)
− TR

(
UR,i− 1

2
,U∗L,i− 1

2
,U∗R,i− 1

2
,K∗i− 1

2

)
,

(5.35)

where
[
A∗
L,i+ 1

2

, A∗
R,i− 1

2

]
are the reconstructed cross-sectional areas on the of left the cell

interface xi+ 1
2
and on the right of the cell interface xi− 1

2
respectively and

[
K∗
i+ 1

2

,K∗
i− 1

2

]
are

the reconstructed arterial wall rigidities at the cell interfaces xi+ 1
2
and xi− 1

2
respectively.

The additional fluxes TL and TR are chosen such that the numerical scheme satisfies an
entropy inequality by interface (see [Bouchut and Morales De Luna 2010] for details). The
computation of TL and TR is presented in the Algorithm (5.2). Only the steps that need to
be followed to obtain TL are detailed in Algorithm (5.2) but similar results are obtained for
TR.
With these notations, the first-order well-balanced finite volume scheme (4.13) proposed in
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Algorithm 5.2 Algorithm to compute the flux TL used in HR-S to balance the nonlinear
advection term Q2/A and the source term ST .
To simplify the expression of TL we use the following notations:{
FA = FA (U∗

L,U
∗
R,K

∗) , FQ = FQ (U∗
L,U

∗
R,K

∗)

P = P (AL, A
∗
L,KL,K

∗) , ∆f = f (Q∗L, A
∗
L,K

∗)− f (QL, AL,KL)− δL.
if δL = 0 then
TL ← 0

else
if uL ≥ cL then
TL ← −AL

QL
FA δL

else
if f (QL, AL,KL) + δL > ms (QL,K

∗) then
TL ← AL−A∗

L

A∗
L

[
FQ − P − Q∗

L

A∗
L
FA
]
−FA

[
Q∗

L

A∗
L
− QL

AL

]

else
TL ← AL−A∗

L

A∗
L

[
FQ − P − Q∗

L

A∗
L
FA
]
−FA

[
Q∗

L

A∗
L
− QL

AL

]
+ AL

QL
FA∆f

Section 4.2 and applied to System (5.4) is:

Un+1
i = Uni −

∆t

∆x

[
Fn∗
i+1

2
− Fn∗

i−1
2

]
, (5.36)

with:




Fn∗
i+ 1

2
= F

(
U∗L,i+ 1

2
,U∗R,i+ 1

2
,K∗i+ 1

2

)
+

[
0

P
(
AL,i+ 1

2
, A∗

L,i+ 1
2

,KL,i+ 1
2
,K∗

i+ 1
2

)
+ TL

(
UL,i+ 1

2
,U∗

L,i+ 1
2

,U∗
R,i+ 1

2

,K∗
i+ 1

2

)
]

Fn∗
i− 1

2
= F

(
U∗L,i− 1

2
,U∗R,i− 1

2
,K∗i− 1

2

)
+

[
0

P
(
AR,i− 1

2
, A∗

R,i− 1
2

,KR,i− 1
2
,K∗

i− 1
2

)
+ TR

(
UR,i− 1

2
,U∗

L,i− 1
2

,U∗
R,i− 1

2

,K∗
i− 1

2

)
]
.

(5.37a)

(5.37b)

In the following section, we present a series of numerical test-cases where we systematically
compare the first-order results obtained with HR, HR-LS and HR-S.

5.4 First-order validation examples in one artery
In this section we present a series of numerical computations designed to evaluate the
performances in physiological conditions of the low-Shapiro hydrostatic reconstruction (HR-
LS) in comparison with the hydrostatic reconstruction (HR) and the subsonic hydrostatic
reconstruction (HR-S).

The following numerical simulations are performed in a single artery representative of a large
artery such as the aorta. Table 5.1 summarizes the values of the characteristic properties of
blood and of the artery, namely the blood density ρ, the length L of the artery and the inlet
neutral radius and arterial wall rigidity Rin and Kin.

ρ L Rin Kin

1 10 0.5 105

Table 5.1 – Parameters describing the artery used in the different test-cases: the density ρ,
the length L, the inlet radius Rin and the inlet rigidity Kin.

We study two geometrical configurations in which both the neutral cross-sectional area
A0 and the arterial wall rigidity K vary. Both are idealized representations of variations
of arteries’ geometrical and mechanical properties encountered in arterial networks. The
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Figure 5.4 – Representation of the neutral radius R0 and the arterial wall rigidity K for the
smooth stenosis (5.38) and the decreasing step (5.39) configurations obtained for ∆G = 10%:
Left: R0 for the stenosis.
Center: R0 for the step.
Right: K for the stenosis ( ) and the step ( ).

first configuration is a smooth stenosis and corresponds to a local reduction of the neutral
cross-sectional area A0. It is a classical arterial pathology caused by the formation of plaque
that deposits on the arterial wall and slowly obliterates the vessel. The stenosis is represented
in Figure 5.4 and is defined by the following neutral radius R0 and arterial wall rigidity K:




R0 =





Rin if x < xs or x > xe

Rin

(
1− ∆G

2

[
1 + cos

(
π + 2π

x− xs
xe − xs

)])
if xs ≤ x ≥ xe

K =





Kin if x < xs or x > xe

Kin

(
1 +

∆G
2

[
1 + cos

(
π + 2π

x− xs
xe − xs

)])
if xs ≤ x ≥ xe.

(5.38)

We choose xs = 3L
10 and xe = 7L

10 . The second configuration we investigate is a decreasing step,
or decreasing discontinuity. It is an idealized representation of a pointwize transition between
a parent artery and a smaller daughter artery and is useful to evaluate the wave reflection
behavior of a numerical method. A similar configuration is studied is Subsection 6.2.3. The
decreasing step is represented in Figure 5.4 and is defined by the following neutral radius R0

and arterial wall rigidity K:



R0 =

{
Rin if x < xm

Rin (1−∆G) if x ≥ xm

K =

{
Kin if x < xm

Kin (1 + ∆G) if x ≥ xm.

(5.39)

We choose xm = L
2 . In both configurations, the amplitude of the geometrical and mechanical

variations depends on the wall deformation parameter ∆G. The values of ∆G used in the
following simulations are taken from Table 5.2 and are chosen to test the limits of the
well-balanced methods while staying in the subcritical flow regime. From a well-balanced
point of view, each of these two configurations has a different behavior with respect to the
cell size ∆x. Indeed, the step configuration is a discontinuity of the neutral cross-sectional
area A0 and of the arterial wall rigidity K, and therefore the amplitude of the variations of
the geometrical and mechanical properties of the artery, proportional to ∆G, is independent
of ∆x. On the contrary, the stenosis configuration describes smooth variations of A0 and K,
and therefore the local variations of the artery’s geometrical and mechanical properties at
each cell interface decrease with a decreasing cell size ∆x.

We now provide the values of the conservative variables at the inlet and outlet of the
computational domain. We impose the flow rate Qin at the inlet, in x = 0. To control the
flow regime, we parametrize the inlet flow rate Qin using the inlet Shapiro number Sh, in
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(2.85):
Qin = Sh,inAincin. (5.40)

where Ain and cin are respectively the inlet cross-sectional area and Moens-Korteweg wave
speed (2.71) and are unknown. However, the dimensional analysis of System (2.67) performed
in Subsection 2.6.1 shows that the inlet Shapiro number Sh,in = 2∆R (2.76b). With this
scaling law, we estimate a value of the inlet cross-sectional area Ain consistent with the inlet
Shapiro number Sh,in:
Ain = A0|x=0 [1 + Sh,in]2 . (5.41)

At the outlet of the computational domain, in x = L, we either impose the reflection
coefficient Rt = 0 or the cross-sectional area Aout, depending on the test case. Similarly to
the inlet cross-sectional area Ain, we compute the outlet cross-sectional area as a function of
Sh,in:
Aout = A0|x=L [1 + Sh,in]2 . (5.42)

The values of the inlet Shapiro number Sh,in and the wall deformation parameter ∆G used in
the following simulations are presented in Table 5.2. They cover a wide range of physiological
configurations, allowing us to assess the behavior of the three hydrostatic reconstruction
techniques in the limit of the low-Shapiro number flow regime. We recall that in arteries the
average Shapiro number is Sh ≈ 10 2.

Sh,in 0 10 3 10 2 10 1

∆G 1% 10% 30%

Table 5.2 – Values of the inlet Shapiro number Sh,in and the wall deformation parameter
∆G used in the single artery test-cases. These values are chosen to test the well-balanced
methods in the limits of the low-Shapiro number flow regime.

5.4.1 Inviscid steady solutions

We evaluate the well-balanced properties of HR, HR-LS and HR-S by computing steady
solutions of System (5.2) in the smooth stenosis (5.38) and the decreasing step (5.39). Steady
flow configurations in arterial geometries similar to the stenosis (5.38) are studied by Müller
[Müller et al. 2013], where only variations of the wall rigidity K are taken into account. In
[Murillo and García-Navarro 2015], the authors compute steady solutions in tapered tubes.
In the context of the shallow water equations, steady flow solutions over a bump (analogue
of the stenosis) or a step are studied by many authors [Castro et al. 2007; Noelle et al. 2007;
Castro Díaz et al. 2013; Delestre et al. 2013].

The steady numerical solutions are obtained for t = 200. The time step ∆t is constant and
chosen such that the CFL condition (4.25) is always satisfied. We impose the flow rate Qin
(5.40) at the inlet and the cross-sectional area Aout (5.42) at the outlet. We therefore select
a specific steady state characterized by its associated flow rate Qst and energy discharge Est.
These values can be computed analytically and provide exact solutions to compare with our
numerical results:



Qst = Qin

Est =
1

2

Q2
st

A2
out

+
K|x=L

ρ

[√
Aout −

√
A0|x=L

]
.

(5.43)

In both configurations (5.38) and (5.39), we perform a series of 12 numerical computations
for all combinations of the inlet Shapiro number Sh,in and the wall deformation parameter
∆G taken from Table 5.2. Table 5.3 shows L1 relative errors between the analytic solutions
and the results obtained with HR, HR-LS and HR-S for a fixed number of cells Nx = 50.
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Stenosis Step

∆G 1% 10% 30% 1% 10% 30%

Sh,in = 0
HR 0 0 0 0 0 0

L1 [Q] HR-LS 0 0 0 0 0 0
HR-S 0 0 0 0 0 0

HR 0 0 0 0 0 0
L1 [E] HR-LS 0 0 0 0 0 0

HR-S 0 0 0 0 0 0

Sh,in = 1× 10 3

HR 4.0× 10 4 4.2× 10 3 1.4× 10 2 2.2× 10 4 2.3× 10 3 7.4× 10 3

L1 [Q] HR-LS 3.6× 10 7 4.1× 10 6 1.9× 10 5 1.8× 10 7 2.1× 10 6 9.4× 10 6

HR-S 5.4× 10 13 5.3× 10 13 4.2× 10 14 2.9× 10 13 3.1× 10 13 5.8× 10 13

HR 3.0× 10 4 5.1× 10 3 4.2× 10 2 2.1× 10 4 9.4× 10 3 1.3× 10 1

L1 [E] HR-LS 2.1× 10 7 2.6× 10 6 1.5× 10 5 1.1× 10 7 1.4× 10 6 1.0× 10 5

HR-S 4.6× 10 13 4.9× 10 13 6.1× 10 13 6.7× 10 13 6.5× 10 13 1.4× 10 12

Sh,in = 1× 10 2

HR 4.0× 10 4 4.2× 10 3 1.4× 10 2 2.3× 10 4 2.3× 10 3 7.4× 10 3

L1 [Q] HR-LS 3.6× 10 6 4.1× 10 5 1.9× 10 4 1.8× 10 6 2.1× 10 5 9.4× 10 5

HR-S 2.6× 10 13 2.7× 10 13 9.6× 10 14 2.4× 10 13 9.5× 10 14 1.8× 10 13

HR 3.0× 10 4 5.1× 10−3 4.2× 10 2 2.1× 10 4 9.4× 10 3 1.2× 10 1

L1 [E] HR-LS 2.1× 10 6 2.6× 10 5 1.5× 10 4 1.1× 10 6 1.4× 10 5 8.1× 10 5

HR-S 2.7× 10 13 2.7× 10 13 3.3× 10 13 2.7× 10 13 3.4× 10 13 5.9× 10 13

Sh,in = 1× 10 1

HR 4.0× 10 4 4.2× 10 3 1.4× 10 2 2.3× 10 4 2.3× 10 3 7.5× 10 3

L1 [Q] HR-LS 3.6× 10 5 4.1× 10 4 1.8× 10 3 1.8× 10 5 2.1× 10 4 9.0× 10 4

HR-S 2.6× 10 13 3.4× 10 13 2.0× 10 13 2.8× 10 13 2.4× 10 13 1.4× 10 13

HR 3.2× 10 4 5.4× 10 3 4.4× 10 2 2.2× 10 4 9.9× 10 3 1.2× 10 1

L1 [E] HR-LS 2.2× 10 5 2.8× 10 4 1.8× 10 3 1.2× 10 5 2.0× 10 4 2.2× 10 3

HR-S 2.3× 10 13 2.4× 10 13 2.9× 10 13 2.3× 10 13 2.9× 10 13 3.4× 10 13

Table 5.3 – Relative errors L1[Q] and L1[E] for the steady case computed in the stenosis
(5.38) and the step (5.39) configurations for Nx = 50 cells for all combinations of values of
the inlet Shapiro number Sh,in and the wall deformation parameter ∆G taken for Table 5.2.
Only HR-S is exactly well-balanced, but HR-LS is more accurate than HR.
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Stenosis Step

Nx L1 [Q] Order L1 [E] Order L1 [Q] Order L1 [E] Order

HR
50 4.22× 10 3 5.09× 10 3 2.34× 10 3 9.41× 10 3

100 2.11× 10 3 1.01 2.56× 10 3 1.01 1.17× 10 3 1.01 8.64× 10 3 0.12
200 1.05× 10 3 1.01 1.28× 10 3 1.01 5.86× 10 4 1.01 8.26× 10 3 0.07
400 5.26× 10 4 1.00 6.38× 10 4 1.00 2.93× 10 4 1.00 8.07× 10 3 0.03

HR-LS
50 4.14× 10 5 2.61× 10 5 2.08× 10 5 1.39× 10 5

100 2.07× 10 5 1.01 1.31× 10 5 1.01 1.04× 10 5 1.01 7.24× 10 6 0.96
200 1.04× 10 5 1.01 6.58× 10 6 1.00 5.19× 10 6 1.01 3.91× 10 6 0.90
400 5.19× 10 6 1.00 3.30× 10 6 1.00 2.59× 10 6 1.00 2.24× 10 6 0.80

HR-S
50 2.68× 10 13 2.73× 10 13 9.53× 10 14 3.43× 10 13

100 1.40× 10 15 3.39× 10 13 9.20× 10 14 3.97× 10 13

200 1.94× 10 12 7.30× 10 13 2.26× 10 12 8.44× 10 13

400 8.83× 10 12 1.45× 10 12 1.01× 10 11 1.63× 10 12

Table 5.4 – Relative convergence errors L1 [Q] and L1 [E] for the steady case computed
in the stenosis (5.38) and the step (5.39) for Sh,in = 10 2 and ∆G = 10% obtained for
Nx ∈ {50, 100, 200, 400}. HR and HR-LS converge with order 1 whereas HR-S is exactly
well-balanced up to machine precision.

In both the stenosis (5.38) and the step (5.39) configurations, the results are similar and
indicate that, as expected, each numerical method is exactly well-balanced for the steady
states at rest (Sh,in = 0). Only HR-S is exactly well-balanced for all considered subcritical
steady states. For the low-Shapiro number steady states (Sh,in ∈ {10 3, 10 2, 10 1}), HR-LS
is more accurate than HR. However, the accuracy of HR-LS diminishes when the values
of Sh,in and ∆G increase, and for Sh,in = 10 1 and ∆G = 30%, in the limit of the low-
Shapiro number flow regime, HR-LS is only one order of magnitude more accurate than
HR. Interestingly, the errors obtained with HR are independent of the inlet Shapiro number
Sh,in, but increase significantly with the wall deformation parameter ∆G.

To test the consistency and the accuracy of the different methods, we perform a convergence
study for the average low-Shapiro steady configuration Sh,in = 10 2 and ∆G = 10% in
both the stenosis and the step configurations. L1 relative errors with analytic solutions are
presented in Table 5.4 for the following number of cells Nx ∈ {50, 100, 200, 400}.

In the stenosis configuration (5.38), both HR and HR-LS converge with order 1, whereas in
the step configuration (5.39), they do not achieve order 1 convergence. Indeed, in the stenosis
configuration, the variations of the artery’s geometrical and mechanical properties at each
cell interface decrease when the number of cells Nx increases, enabling the convergence of
both methods. On the contrary, the geometrical and mechanical variations remain unchanged
in the step configuration when the number of cells Nx increases. These observations are
illustrated by Figure 5.5 and Figure 5.6, where we respectively plot the spatial evolution of
the flow rate Q and the energy discharge E obtained with increasing values of the number
of cells Nx in the stenosis and step configurations.

In both configurations, the values of the errors obtained in Table 5.4 with HR-S are of the
order of machine precision, indicating that HR-S is exactly well-balanced for the considered
low-Shapiro steady state. However, the errors increase slightly with the number of cells.
Similar behaviors are observed in convergence studies presented in [Castro Díaz et al. 2013]
for an exactly well-balanced method. In our case, this phenomenon is due to a small error
between the computed boundary conditions and those required to obtain the desired steady
state, and is not caused by HR-S.
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Figure 5.5 – Spatial evolution of the flow rate Q (top) and the energy discharge E (bottom)
for the steady case in the stenosis configuration (5.38), at t = 200 for Sh,in = 10 2 and
∆G = 10% obtained with different numbers of cells Nx = {50, 100, 200, 400} and compared
to the analytic solution (5.43) (�):
Left: HR.
Right: HR-LS.
We observe that for both HR and HR-LS, the errors with the analytic solution decrease when
the number of cells Nx increases, indicating the convergence of the method.

The results indicate that among the three well-balanced methods considered, HR is the
least accurate when computing low-Shapiro number steady solutions in an artery presenting
smooth and discontinuous variations of its neutral cross-sectional area A0 and of its arterial
wall rigidity K. On the contrary, HR-S is the only exactly well-balanced method for the
considered low-Shapiro number steady states. Finally, even though HR-LS is not exactly
well-balanced for the considered low-Shapiro number steady states, it allows to compute
with satisfying accuracy steady solutions for smooth and discontinuous variations of the
artery’s geometrical and mechanical properties. These results show that System (5.16) is a
better approximation than System (5.15) of the steady state system (5.13) in low-Shapiro
flow configurations.

5.4.2 Inviscid wave propagation

The wave-capturing properties of HR, HR-LS and HR-S are now evaluated. We simulate
the propagation of a single wave in the smooth stenosis (5.38) and decreasing step (5.39)
configurations. The step configuration is studied in [Delestre and Lagrée 2013; Delestre et al.
2016; Wang et al. 2016c] for an artery with only variations of its neutral cross-sectional area
A0.

The results are obtained for t = 0.045. The time step ∆t is constant and chosen such that
the CFL condition (4.25) is always satisfied. We impose a single pulse of flow at the inlet of
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Figure 5.6 – Spatial evolution (zoom for 0.4 ≤ x
L ≤ 0.6) of the flow rate Q (top) and the

energy discharge E (bottom) for the steady case in the step configuration (5.39), at t = 200 for
Sh,in = 10 2 and ∆G = 10% obtained with different numbers of cells Nx = {50, 100, 200, 400}
and compared to the analytic solution (5.43) (�):
Left: HR.
Right: HR-LS.
We observe that for both HR and HR-LS, the maximal amplitude of the errors with the
analytic solution remains unchanged when the number of cells Nx increases. However, the
region of error is more localized when the number of cells increases, explaining why the error
decreases.
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Figure 5.7 – Comparison between the linear solution ( ) and the reference solution ( )
in the wave propagation case for the step configuration (5.39), obtained using HR-S for
Nx = 25600, for the flow rate Q at t = 0.045 for ∆G = 10%.
Left: Sh = 10 3.
Center: Sh = 10 2.
Right: Sh = 10 1.

the computational domain and the unsteady inlet flow rate Qin (t) is defined as:

Qin (t) =




Qpulse sin

(
2π

t

Tpulse

)
if t ≤ Tpulse

2

0 else .

(5.44)

We choose Tpulse = 0.04 to artificially reduce the wave length of the pulse for visualization
purposes and the value of Qpulse is a function of the inlet Shapiro number Sh,in and is
defined by Equation (5.40). At the outlet of the computational domain, we set the reflection
coefficient Rt = 0 to remove any terminal reflection.

The step configuration

We focus on the decreasing step configuration (5.39). Given the inlet condition (5.44),
the pulse wave propagates in the artery starting from the left-hand side of the domain
until it reaches the step. The change of impedance of the vessel creates reflected and
transmitted waves that need to be captured by the numerical scheme. A linear analytic
solution was proposed in [Raines et al. 1974] and validated in [Delestre and Lagrée 2013;
Delestre et al. 2016; Wang et al. 2015], and gives the expression of the reflection coefficient
Rt and the transmission coefficient Tt, based on the point junction conservation properties
(6.1) presented in Subsection 6.2.1:


Rt =

YL − YR
YL + YR

Tt = 1 +Rt,

(5.45)

where Y = A/ [ρc] is the vessel admittance. Subscripts L and R respectively refer to the
values at the left and right of the step. As the coefficients Rt and Tt do not depend on
the frequency of the incoming wave, we can analytically predict the position, shape and
amplitude of the linear reflected and transmitted waves. However, as the inlet Shapiro
number Sh,in is non-zero, the flow is nonlinear and the linear analytic solution (5.45) is only
valid in the linear limit Sh,in → 0. To evaluate the quality of the results obtained with HR,
HR-LS and HR-S, we compute reference solutions, obtained with HR-S for Nx = 25600
and values of Sh,in and ∆G taken from Table 5.2. To assess the validity of these reference
solutions, we compare them to the linear analytic solutions (5.45) in Figure 5.7. We observe
that for low values of the inlet Shapiro number Sh,in (Figure 5.7 Left), for which the linear
approximation is valid, the analytic and reference solutions match. As expected, for higher
values of Sh,in, the flow is no longer linear and the propagation speed as well as the amplitude
of the reflected and transmitted waves change (Figure 5.7 Center and Right).

We present results only for the flow rate Q to reduce the number of variables and simplify
the analysis of the results. Similar conclusions to those presented hereafter would have been

81



Section 5.4. First-order validation examples in one artery

drawn if we had considered the pressure p or the wall perturbation R−R0.

We perform a series of 9 numerical computations with different combinations of the non-zero
inlet Shapiro number Sh,in and the wall deformation parameter ∆G taken from Table 5.2.
Table 5.5 shows L1 [Q] relative errors between the reference solutions and the results obtained
with HR, HR-LS and HR-S for a fixed number of cells Nx = 1600. We choose a high value of
Nx to reduce the numerical dissipation and highlight the effects of the well-balanced methods.

∆G 1% 10% 30%

Sh,in = 1× 10 3

HR 2.3× 10 2 5.5× 10 2 5.5× 10 1

L1 [Q] HR-LS 2.3× 10 2 2.8× 10 2 6.6× 10 2

HR-S 2.3× 10 2 2.8× 10 2 6.6× 10 2

Sh,in = 1× 10 2

HR 2.3× 10 2 5.5× 10 2 5.5× 10 1

L1 [Q] HR-LS 2.3× 10 2 2.8× 10 2 6.6× 10 2

HR-S 2.3× 10 2 2.8× 10 2 6.6× 10 2

Sh,in = 1× 10 1

HR 2.9× 10 2 6.1× 10 2 5.1× 10 1

L1 [Q] HR-LS 2.9× 10 2 3.5× 10 2 7.6× 10 2

HR-S 2.9× 10 2 3.5× 10 2 7.5× 10 2

Table 5.5 – Relative error L1[Q] for the wave propagation case computed in the step (5.39)
for values of Sh,in and ∆G taken from Table 5.2 obtained for Nx = 1600. HR, HR-LS and
HR-S present similar results except for ∆G = 30%.

The results obtained with HR, HR-LS and HR-S are almost identical and indicate that each
method is able to correctly compute the expected reflected and transmitted waves. For each
method, the error L1 [Q] is independent of the inlet Shapiro number Sh,in but increases with
the wall deformation parameter ∆G. However, the error obtained with HR increases faster
with ∆G than with the other methods. In particular, for ∆G = 30%, the value of L1 [Q]
obtained with HR is one order of magnitude higher than the one obtained with HR-LS or
HR-S.

This last point is corroborated by Figure 5.8, Figure 5.9 and Figure 5.10, where we represent
the spatial evolution of the flow rate Q at t = 0.045, obtained using Nx = 100 (Left) and
Nx = 1600 (Right) for Sh,in = 10 2 and ∆G ∈ {10%, 30%, 60%}. In each figure, we compare
the results obtained using HR, HR-LS and HR-S to the corresponding reference solution
and observe if increasing the number of cells allows the numerical solution to converge
towards the reference solution. In Figure 5.8, the results obtained for ∆G = 10% with HR,
HR-LS and HR-S are similar and indicate that each numerical solution converges towards
the reference solution. On the contrary, in Figure 5.9 for ∆G = 30% and in Figure 5.10
for ∆G = 60%, only the solutions obtained with HR-LS and HR-S converge towards the
reference solution. HR is unable to compute the expected amplitude of the reflected and
transmitted waves and overestimates the amplitude of the reflected wave and underestimates
the amplitude of the transmitted wave

The results indicate that HR-LS and HR-S are able to compute wave reflections and transmis-
sions in an artery presenting arbitrary large discontinuous variations of its cross-sectional area
at rest A0 and arterial wall rigidity K. On the contrary, HR is unable to compute the correct
amplitude of the reflected and transmitted waves when the discontinuous variations of the
artery’s geometrical and mechanical properties are too large, independently of the number of
cells Nx. Moreover, these results show that System (5.16) has the appropriate conservation
properties to compute wave reflections for arbitrary large discontinuous geometrical and
mechanical variations in low-Shapiro number flow regimes. On the contrary, HR, using
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Figure 5.8 – Flow rate Q for the wave propagation case in the step configuration (5.39) at
t = 0.045 for the reference solution ( ), HR (©), HR-LS (�) and HR-S ((M)) for Sh = 10 2

and ∆G = 10%:
Left: Nx = 100.
Right: Nx = 1600.
For Nx = 100 and Nx = 1600, all solutions are comparable, and for Nx = 1600, HR, HR-LS
and HR-S converge towards the reference solution.
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Figure 5.9 – Flow rate Q for the wave propagation case in the step configuration (5.39) at
t = 0.045 for the reference solution ( ), HR (©), HR-LS (�) and HR-S ((M)) for Sh = 10 2

and ∆G = 30%:
Left: Nx = 100.
Right: Nx = 1600.
HR-LS and HR-S converge towards the reference solution while HR does not.
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Figure 5.10 – Flow rate Q for the wave propagation case in the step configuration (5.39) at
t = 0.045 for the reference solution ( ), HR (©), HR-LS (�) and HR-S ((M)) for Sh = 10 2

and ∆G = 60%:
Left: Nx = 100.
Right: Nx = 1600.
HR-LS and HR-S converge towards the reference solution while HR does not.

System (5.15), is only able to compute wave reflections for small discontinuous variations of
the artery’s properties (∆G = 10%, see Figure 5.8). This last point can be problematic as
large variations of the artery’s geometrical and mechanical properties can be encountered
when modeling arterial pathologies such as stenoses.

The stenosis configuration

In this subsection we focus on the stenosis configuration (5.38). To evaluate the quality of
the results obtained with HR, HR-LS and HR-S, we compute reference solutions, obtained
with HR-S for Nx = 25600 and values of Sh,in and ∆G taken from Table 5.2. As the variation
of geometrical and mechanical properties of the artery is smooth, the observed flow rate is
constituted of a continuum of reflected and transmitted waves that are created at each cell
interface, where the artery’s geometrical and mechanical properties are discontinuous.

Similar results to those of the previous paragraph are obtained, and therefore we do not
completely repeat the previous analysis. In Figure 5.11, Figure 5.12 and Figure 5.13, we
present the spatial evolution of the flow rate Q at t = 0.045, obtained using Nx = 100 (Left)
and Nx = 1600 (Right) for Sh,in = 10 2 and ∆G = {10%, 30%, 60%} respectively. In each
figure, we compare the results obtained using HR, HR-LS and HR-S to the corresponding
reference solution and observe if increasing the number of cells allows the numerical solution
to converge towards the reference solution. Contrary to the step configuration studied in
Subsection 5.4.2, the results obtained with HR, HR-LS and HR-S are similar and indicate that
each numerical solution converges towards the reference solution. However, for ∆G = {30%,
60%} and Nx = 100, HR is less accurate than HR-LS and HR-S.

These results are coherent with those of the previous paragraph. Indeed, when studying
the step configuration, we showed that contrary to HR-LS and HR-S, HR overestimates the
amplitude of the reflected wave and underestimates the amplitude of the transmitted wave
when a large discontinuous variation of the artery’s geometrical and mechanical properties
is considered (∆G = {30%, 60%}). As the stenosis is a smooth variation of the neutral
cross-sectional area A0 and of the arterial wall rigidity K, discontinuous variations of the
arterial wall’s geometrical and mechanical properties occur at each cell interface and the
amplitude of these variations decreases with the number of cells Nx. Hence, for ∆G = {30%,
60%} and Nx = 100, the local discontinuous variations of the artery’s properties are large
enough for HR to be inaccurate. On the contrary, for Nx = 1600, the local discontinuous
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Figure 5.11 – Flow rate Q for the wave propagation case in the stenosis configuration
(5.38) at t = 0.045 for the reference solution ( ), HR (©), HR-LS (�) and HR-S ((M)) for
Sh = 10 2 and ∆G = 10%:
Left: Nx = 100.
Right: Nx = 1600.
For Nx = 100 and Nx = 1600, all solutions are comparable, and for Nx = 1600, HR, HR-LS
and HR-S converge towards the reference solution.
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Figure 5.12 – Flow rate Q for the wave propagation case in the stenosis configuration
(5.38) at t = 0.045 for the reference solution ( ), HR (©), HR-LS (�) and HR-S ((M)) for
Sh = 10 2 and ∆G = 30%:
Left: Nx = 100.
Right: Nx = 1600.
For Nx = 100 and Nx = 1600, all solutions are comparable, and for Nx = 1600, HR, HR-LS
and HR-S converge towards the reference solution.

variation of the artery’s geometrical and mechanical properties are sufficiently small for HR
to be as accurate as HR-LS and HR-S.

We have studied the wave capturing behavior of HR, HR-LS and HR-S. We showed that for
arbitrary large smooth or discontinuous variations of the artery’s neutral cross-sectional area
A0 and arterial wall rigidity K, both HR-LS and HR-S are able to compute the expected
reflected and transmitted waves. On the contrary, HR is unable to correctly compute
reflected and transmitted waves when large discontinuous variations of the artery’s properties
are considered. In particular, HR overestimates the reflected wave and underestimates the
transmitted wave. Therefore, HR-LS and HR-S are good choices to compute wave reflections
and transmissions in low-Shapiro flow regimes.

The analysis conducted in this section allows us to conclude that both HR-LS and HR-S
are adequate well-balanced methods to compute blood flow in large arteries with varying
cross-sectional area at rest and arterial wall rigidity. However, in large networks where many
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Figure 5.13 – Flow rate Q for the wave propagation case in the stenosis configuration
(5.38) at t = 0.045 for the reference solution ( ), HR (©), HR-LS (�) and HR-S ((M)) for
Sh = 10 2 and ∆G = 60%:
Left: Nx = 100.
Right: Nx = 1600.
For Nx = 100, HR is less accurate than HR-LS and HR-S, and for Nx = 1600, HR, HR-LS
and HR-S converge towards the reference solution.

arteries present variations of their geometrical and mechanical properties, the additional
iterations required by HR-S increase the computational cost compared to HR-LS. We therefore
recommended using HR-LS in this case, as it is a good compromise between simplicity,
numerical accuracy and efficiency. In the following section, we present the extension of
HR-LS to second-order, using the methodology presented in Subsection 4.2.2.

5.5 Second-order extension
We describe here the numerical strategy we use to increase the spatial accuracy of the
HR-LS well-balanced numerical scheme (5.26). As in Subsection 4.2.2, we use the monotonic
upwind scheme for conservation law (MUSCL) linear variable reconstruction strategy. At
each cell interface xi+ 1

2
, we define the vectors UL and UR at time tn based on the MUSCL

reconstruction (4.28):



UL = U+, n

i+1
2

UR = U−, n
i+1

2

.

(5.46a)

(5.46b)

However, the neutral cross-sectional area A0 and the arterial wall rigidity K also vary with
the axial position. They must therefore be reconstructed as they play a role in the HR-LS
numerical flux (5.27) and their reconstruction should account for the low-Shapiro steady
states (5.16). Following [Bouchut 2004], we reconstruct the variables A, Q, A0 and K at the
cell interface xi+ 1

2
using the procedure described bellow:

Step 1: We reconstruct the variables Q and K using the MUSCL reconstruction (4.28) and
their respective MUSCL reconstructions at the left and right of the cell interface xi+ 1

2
are:




QL = Q+, n

i+ 1
2

, QR = Q−, n
i+ 1

2

KL = K+, n

i+ 1
2

, KR = K−, n
i+ 1

2

.
(5.47)

Step 2: We reconstruct the following intermediate variables that preserve the low-Shapiro
steady states (5.16):
{
H = K

√
A

[H − Z] = H − Z,
(5.48a)
(5.48b)
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and their respective MUSCL reconstructions at the left and right of the cell interface xi+ 1
2

are:


HL = H+, n

i+ 1
2

, HR = H−, n
i+ 1

2

[H − Z]L = [H − Z]+, n
i+ 1

2

, [H − Z]R = [H − Z]−, n
i+ 1

2

.
(5.49)

Step 3: We finally reconstruct the variables A0 and A as:



A0, L =




[H − Z]+, n
i+ 1

2

−H+, n

i+ 1
2

K+, n

i+ 1
2




2

, A0, R =




[H − Z]−, n
i+ 1

2

−H−, n
i+ 1

2

K−, n
i+ 1

2




2

AL =



H+, n

i+ 1
2

K+, n

i+ 1
2




2

, AR =



H−, n
i+ 1

2

K−, n
i+ 1

2




2

.

(5.50)

If used, the variable U is reconstructed using a variant of the MUSCL procedure
(4.28) to conserve mass [Bouchut 2004]:

U−
i− 1

2

= Ui −
∆x

2
D (Ui)

A−
i− 1

2

Ai
, U+

i+ 1
2

= Ui +
∆x

2
D (Ui)

A+
i+ 1

2

Ai
. (5.51)

We finally obtain a second-order well-balanced scheme by applying the HR-LS reconstruction
presented in Subsection 5.3.2 to the MUSCL reconstructed variables (5.46) and then using
the following modified well-balanced finite volume scheme:

Un+1
i = Uni −

∆t

∆x

[
Fn∗
i+1

2
− Fn∗

i−1
2

+

[
0
Fc, i

]]
, (5.52)

where the momentum centered flux Fc is added for consistency reasons and is defined in the
cell Ci as:

Fc, i = P
(
AL, i+ 1

2
, Ac, L, i+ 1

2
,KL, i+ 1

2
,Kc, i

)
−P

(
AR, i− 1

2
, Ac, R, i− 1

2
,KR, i− 1

2
,Kc, i

)
. (5.53)

The centered variables Kc and Zc are defined in the cell Ci as:



Kc, i =
√
KL, i+ 1

2
KR, i− 1

2

Zc, i =
1

2

[
ZL, i+ 1

2
+ ZR, i− 1

2

]

Ac, L, i+ 1
2

=

[
Zc, i + [H − Z]L, i+ 1

2

Kc, i

]2

Ac, R, i− 1
2

=

[
Zc, i + [H − Z]R, i− 1

2

Kc, i

]2

.

(5.54)

5.6 Second-order validation examples in one artery
We present a series of test cases in an artery with varying geometrical and mechanical
properties. Theses test cases are designed to assess the accuracy of the MUSCL reconstruction
procedure presented in Section 5.5 for HR-LS. In each test case, we systematically compare
the results obtained with the first-order and MUSCL variable reconstructions used in
combination with HR-LS and evaluate the accuracy of both methods using the errors (4.50).

5.6.1 Inviscid steady solutions

This steady test case is identical to the one presented in Subsection 5.4.1. We use the same
parameters, presented in Table 5.1, and the same inlet (5.40) and outlet (5.41) boundary
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conditions, computed for ∆G = 10 1 and Sh ∈ {10 3, 10 2, 0}. However, contrary to the
steady test case presented in Subsection 5.4.1, we use the inviscid steady solution (5.43) as
an initial condition to accelerate the convergence towards the steady state.

In Figure 5.14 Left, we compare at time t = 2.49 the spatial evolution of the steady solutions
(5.43) for the energy discharge E, the pressure p and the flow rate Q with the spatial
evolution of the first-order and MUSCL numerical solutions obtained with Nx = 100 for
∆G = 10 1 and Sh = 10 3. We observe that for each variable, the steady solution is correctly
described and the MUSCL solution is more accurate than the first-order solution.

In Figure 5.14 Right, we plot at time t = 2.49 the evolution with the number of cells Nx

of the first-order and MUSCL L1 errors for the energy discharge E, the pressure p and the
flow rate Q obtained for ∆G = 10 1 and Sh ∈ {10 3, 10 2, 0}. We observe that for each
variable, the L1 errors decrease with an increasing number of cells Nx, indicating that the
first-order and MUSCL numerical solutions converge towards the steady solution. Moreover,
first-order and second-order accuracy is achieved. Note that for Sh = 0, the errors reach
machine precision as HR-LS is exactly well-balanced for the steady state at rest (5.14).

5.6.2 Wave propagation in a tapered tube

This test case describes the propagation of a pulse wave in a slightly tapered artery, where the
neutral cross-sectional area A0 and the arterial wall rigidity K vary slowly in the x-direction.
We derive an asymptotic solution following the work presented in [Bois 2000], where similar
solutions are obtained for acoustic or river waves. This solution is relevant as a validation
test case but is not physiologically significant as takes place at large x, far from the inlet of
the artery. Such a long unperturbed propagation length is never encountered in physiological
conditions.

Asymptotic solution

To capture the perturbations induced by vessel tapering, we introduce in Table 5.6 non-
dimensional variables.

t = T t̄ x = Xx̄ R0 = R0f̄ R = R0

[
f̄ + ∆RR̄

]
K = K0ḡ Q = QQ̄ p = p0+Πp̃

Table 5.6 – Tapering non-dimensional variables.

The geometrical and mechanical functions f and g characterize the slow tapering of the
artery and therefore vary slowly in the x-direction. A dimensional analysis similar to the
one performed in Subsection 2.6.1 allows us to write System (5.2) as:



[
f̄ + ∆RR̄

] ∂R̄
∂t̄

+
∂Q̄

∂x̄
= 0

∂Q̄

∂t̄
+ [2∆R]

∂

∂x̄

[
Q̄2

[
f̄ + ∆RR̄

]2

]
+

[
2

∆R

Sh

]2 [
f̄ + ∆RR̄

]2 ∂

∂x̄

[
ḡR̄
]

= 0.

(5.55a)

(5.55b)

We then consider a linear pulsatile regime, and using the relations (2.75) derived in
Subsection 2.6.1, we linearize System (5.55) and obtain:



f̄
∂R̄

∂t̄
+
∂Q̄

∂x̄
= 0

∂Q̄

∂t̄
= −f̄2 ∂

∂x̄

[
ḡR̄
]
.

(5.56a)

(5.56b)

We finally rewrite System (5.56) as a single equation by combining Equation (5.56a) and
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Figure 5.14 – The inviscid steady test case:
Left: Comparison between the steady solution ( ) and the first-order (©) and MUSCL (�)
numerical solutions obtained with Nx = 100 at time t = 2.49 for ∆G = 10 1 and Sh = 10 3.
Right: Spatial convergence of the first-order (©, M, +) and MUSCL (�, O, ×) L1 errors
obtained at time t = 2.49 for ∆G = 10 1 and Sh ∈ {10 3, 10 2, 0} with Nx ∈ {50, 100, 200,
400}.

The first-order and MUSCL solutions converge towards the steady solution and first-order
and second-order accuracy is achieved.
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Equation (5.56b):
1

f̄ ḡ

∂2Q̄

∂t̄2
− ∂2Q̄

∂x̄2
=

[
1

ḡ

∂ḡ

∂x̄
− 1

f̄

∂f̄

∂x̄

]
∂Q̄

∂x̄
. (5.57)

Introducing the dimensionless wave speed:

c̄ =

√
f̄ ḡ, (5.58)

Equation (5.57) rewrites:
1

c̄2

∂2Q̄

∂t̄2
− ∂2Q̄

∂x̄2
=

[
1

ḡ

∂ḡ

∂x̄
− 1

f̄

∂f̄

∂x̄

]
∂Q̄

∂x̄
. (5.59)

As Equation (5.59) is linear in t, we search for a wave solution of the form:
Q̄ = Q̃ (x̄) exp (iωt̄) , ω ∈ R. (5.60)

Injecting the expression (5.60) into Equation (5.59), we obtain:
d2Q̃

dx̄2
+
ω2

c̄2
Q̃ = −

[
1

ḡ

dḡ

dx̄
− 1

f̄

df̄

dx̄

]
dQ̃

dx̄
. (5.61)

To keep track of the slowly varying neutral radius R0 and arterial wall rigidity K, we use
the following change of variables, to place ourselves at long x while keeping track of local
variations of the wave speed:
dξ

dx̄
= Φ′ (X) , X = εx̄, (5.62)

where ε is the small parameter characterizing the slow variations of the neutral radius R0

and the arterial wall rigidity K. The function Φ′ represents the wave distortion. Using this
change of variables, we have:



∂

∂x̄
=
∂ξ

∂x̄

∂

∂ξ
+
∂X

∂x̄

∂

∂X
= Φ′

∂

∂ξ
+ ε

∂

∂X

∂2

∂x̄2
= Φ′2

∂2

∂ξ2
+ 2εΦ′

∂2

∂X∂ξ
+ εΦ′′

∂

∂ξ
+O

(
ε2
)
,

(5.63)

and Equation (5.61) rewrites:

Φ′2
∂2Q̃

∂ξ2
+
ω2

c̄2
Q̃ = −ε

[
2Φ′

∂2Q̃

∂X∂ξ
+ Φ′′

∂Q̃

∂ξ
+ Φ′

[
ḡ′

ḡ
− f̄ ′

f̄

]
∂Q̃

∂ξ

]
+O

(
ε2
)
. (5.64)

We now use an asymptotic expansion of Q̄ in ε:
Q̃ = Q̃0 + εQ̃1 + ε2Q̃2 + ... (5.65)

Injecting expression (5.65) into Equation (5.64) and regrouping the terms of order O (1), we
obtain:

Φ′2
∂2Q̃0

∂ξ2
+
ω2

c̄2
Q̃0 = 0. (5.66)

The solution of Equation (5.66) writes:
Q̃0 = A (X) eiΩξ + C.C., (5.67)

where C.C. refers to the complex conjugate and:

Ω =
ω

cΦ′
. (5.68)

Without loss of generality, we set Ω = 1 ( if this is not the case, we use the change of variables
η = Ωξ). Using expression (5.67) and regrouping the terms of order O(ε) we obtain:

Φ′2
∂2Q̃1

∂ξ2
+
ω2

c̄2
Q̃1 = −i

[
2Φ′A′ + Φ′′A+ Φ′A

[
ḡ′

ḡ
− f̄ ′

f̄

]]
eiξ + C.C. (5.69)

Since eiΩξ (here Ω = 1) is solution of Equation (5.66), the right hand side of Equation (5.69)
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is a secular term that we set to zero to keep the solution bounded. Therefore we have:

2Φ′A′ + Φ′′A+ Φ′A

[
ḡ′

ḡ
− f̄ ′

f̄

]
= 0, (5.70)

and the solution to Equation (5.70) writes:

A = B

√
f̄

ḡΦ′
=

B√
ω

f̄
3
4

ḡ
1
4

, B = cst. (5.71)

Finally, the first-order solution Q̄0 writes:

Q̃0 =
B√
ω

f̄
3
4

ḡ
1
4

exp


iω


t̄− 1

ε

X∫

0

1

c
dX




+ C.C. (5.72)

Numerical solution

We consider a tapered artery for which:
{
f̄ = 1 + εRx̄

ḡ = 1 + εK x̄.

(5.73a)
(5.73b)

We impose at the inlet the flow wave Qin:

Qin (t) =





Q̂

2

[
1 + cos

(
π + 2π

t

T

)]
if 0 ≤ t

T
≤ 1

0 else.
(5.74)

At the outlet, we impose a non-reflecting boundary condition to remove any backward
traveling wave. The parameters used in this test case are described in Table 5.7.

ρ L R0 K εR εK Q̂ T Rt ∆t t order

1 200 1 104 -0.1 0.1 1 1 0 10 4 2

Table 5.7 – Geometrical, mechanical, numerical and boundary parameters used in the taper
test case.

In Figure 5.15 Left, we compare at times t ∈ {0.5, 1, 1.5, 2, 2.5}T the spatial variations of
the inviscid asymptotic taper solution for the flow rate Q with the spatial variations of the
first-order and MUSCL numerical solutions obtained with Nx = 100 for [εR = −0.1, εK = 0]
and [εR = 0, εK = 0.1]. In both cases, we observe that the inviscid asymptotic solutions are
correctly described and that the MUSCL solutions are more accurate than the first-order
solutions.

In Figure 5.15 Right, we plot at time t = 1.5T the evolution with the number of cells
Nx of the first-order and MUSCL L1, L2 and L∞ errors for the flow rate Q obtained
for [εR = −0.1, εK = 0] and [εR = 0, εK = 0.1]. In both cases, the L1, L2 and L∞ errors
decrease with an increasing number of cells Nx, indicating that the first-order and MUSCL
numerical solutions converge towards the analytic solution. For 50 ≤ Nx ≤ 400, first-order
accuracy is achieved. However, for larger values of Nx, the MUSCL L1, L2 and L∞ errors
saturate as the taper solution is a linear asymptotic solution of System (5.2).

5.6.3 Inviscid Thacker solution

This test case describes inviscid pressure oscillations in a parabolic aneurysm and is greatly
inspired from the solutions of Thacker [Thacker 1981] and Sampson [Sampson et al. 2006],
well-known in the shallow water community.
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Figure 5.15 – The inviscid taper test cases:
Left: Comparison between the asymptotic ( ), first-order (©) and MUSCL (�) waveforms
obtained with Nx = 100 at times t ∈ {0.5, 1, 1.5, 2, 2.5}T for [εR = −0.1, εK = 0] (top)
and [εR = 0, εK = 0.1] (bottom).
Right: Spatial convergence of the first-order (©, M, +) and MUSCL (�, O, ×) L1, L2

and L∞ errors obtained at time t = 1.5T with Nx ∈ {50, 100, 200, 400, 800, 1600} for
[εR = −0.1, εK = 0] (top) and [εR = 0, εK = 0.1] (bottom).

The first-order and MUSCL solutions converge towards the asymptotic solutions. Only
first-order accuracy is achieved and the MUSCL L1, L2 and L∞ errors saturate as the taper
solution is a linear asymptotic solution of System (5.2).
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Analytic solution

We look for a regular solution of System (5.2) rewritten in its nonconservative form:



∂

∂t

[
πR2

]
+

∂

∂x

[
πR2U

]
= 0

∂U

∂t
+ U

∂U

∂x
+

1

ρ

∂p

∂x
= 0.

(5.75a)

(5.75b)

We first assume that:
U (x, t) = U0 (t) . (5.76)

This strong assumption enables us to rewrite Equation (5.75b) as:

p = F0 (t)− ρxdU0

dt
, (5.77)

where F0 (t) ∈ R. We then obtain from Equation (5.75a) and Equation (5.77) combined
with the thin wall law (5.1) the following simplified governing equation:

dF0

dt
− d

dt

[
ρU2

0

2

]
− ρxd2U0

dt2
+K ′U0

dR0

dx
− U0

p

K ′
dK ′

dx
= 0, (5.78)

where K ′ =
√
πK. To describe aneurysms (expansions) as well as stenoses (constrictions),

we choose the following spatial variations of the neutral cross-sectional area A0 and the
arterial wall rigidity K ′ in the domain x ∈ [−a, a]:


R0 = R̄0

[
1 + ∆G

[
1− x2

a2

]]
with R̄0 > 0, a > 0, ∆G > −1

K ′ = cst with K ′ > 0.

(5.79a)

(5.79b)
Injecting the expressions (5.79a) and (5.79b) into Equation (5.78) and identifying the powers
of x, we obtain for (x, t) ∈ [−a, a]× [0, +∞]:



d2U0

dt2
+ ∆Gω2U0 = 0

dF0

dt
− d

dt

[
ρU2

0

2

]
= 0.

(5.80a)

(5.80b)

The parameter ω = 2c/a is the characteristic pulsation and c =
√

K′

2ρ R̄0 is the Moens-
Korteweg celerity (2.71). We complete System (5.80) with the initial condition:
U0 (t = 0) = 0. (5.81)

To describe aneurysms, we choose ∆G > 0 and simple analysis allows us to obtain the
solution of System (5.80):



U0 = U sin

(
t

τ

)
with U = cst

p = −1

4
ρU2 cos

(
2
t

τ

)
− ρx

τ
U cos

(
t

τ

)
,

(5.82a)

(5.82b)

where:
τ = |∆Gω2|− 1

2 . (5.83)
Finally, we choose U with respect to the following nonlinear stability arguments, namely
that the radius R remains positive:
R (x, t) > 0, ∀ (x, t) ∈ [−a, a]× [0,+∞] , (5.84)

and that the flow remains subcritical:
S2
h (x, t) < 1, ∀ (x, t) ∈ [−a, a]× [0,+∞] . (5.85)
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Numerical solution

We use the inviscid Thacker solution (5.82) as an initial condition for the numerical simula-
tions and to impose the flow rate at the inlet and the cross-sectional area at the outlet. The
parameters used in this test case are described in Table 5.8.

ρ a R0 ∆G K U T = 2πω ∆t t order

1 4 1 10 1 104 10 0.42 10 5 2

Table 5.8 – Geometrical, mechanical, numerical and boundary parameters used in the
inviscid Thacker test case.

In Figure 5.16 Left, we compare at times t ∈ {0, 0.1, 0.3, 0.6, 0.8}T the spatial evolution of
the inviscid Thacker solutions (5.82) for the pressure p, the average speed U and the flow
rate Q with the spatial evolution of the first-order and MUSCL numerical solutions obtained
with Nx = 100. We observe that for each variable, the inviscid Thacker solution is correctly
described.

In Figure 5.16 Right, we plot at time t = 0.8T the evolution with the number of cells Nx

of the first-order and MUSCL L1, L2 and L∞ errors for the pressure p, the average speed
U and the flow rate Q. We observe that for the average speed U and the flow rate Q, the
L1, L2 and L∞ errors decrease with an increasing number of cells Nx, indicating that the
first-order and MUSCL numerical solutions converge towards the steady solution. However,
only first-order accuracy is achieved as boundary conditions are implemented at first-order
and the Riemann invariants (2.88) do not account for geometrical and mechanical variations
of the properties of the arterial wall.

The Thacker solution is a excellent test case as it is very sensitive to errors in the implemen-
tation of the numerical scheme and the boundary conditions. Therefore, even though we do
not recover the expected order of accuracy and the errors for the pressure p behave poorly,
the fact that visually the numerical results match the analytic solutions is satisfactory.

A viscous Thacker solution can be derived by modifying the friction term such
that CfQ/A = C̄fQ. This solution writes:



U0 = U sin

(
t

τ

)
e−

C̄f
2
t, U = cst

p = −1

2
ρ
U2

δω2τ2
H
(
C̄f , τ, t

)2 − ρxU
τ
H
(
C̄f , τ, t

)
,

(5.86a)

(5.86b)

with:

τ =
2√

|C̄f 2 − 4δω2|
, (5.87)

and:

H =

[
cos

(
t

τ

)
+
C̄fτ

2
sin

(
t

τ

)]
e−

C̄f
2
t. (5.88)

5.7 Conclusion
In Chapter 5, we have introduced three well-balanced hydrostatic reconstruction techniques
for blood flow in large arteries with varying geometrical and mechanical properties, designed
to treat the nonconservative source term introduce in the 1D blood flow momentum equation
due to these variations. The first is the classical hydrostatic reconstruction (HR) originally
proposed for shallow water equations to preserve steady states at rest. The second is the
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Figure 5.16 – The inviscid Thacker test case:
Left: Comparison between the inviscid Thacker solution ( ) and the first-order (©) and
MUSCL (�) numerical solutions obtained with Nx = 100 at times t ∈ {0, 0.1, 0.3, 0.6,
0.8}T .
Right: Spatial convergence of the first-order (©, M, +) and MUSCL (�, O, ×) L1, L2 and
L∞ errors obtained at time t = 0.8T with Nx ∈ {50, 100, 200, 400}.

The first-order and MUSCL solutions converge towards the steady solution and first-order
accuracy is achieved.
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low-Shapiro hydrostatic reconstruction (HR-LS), which is a simple and efficient variation
of HR, designed to accurately preserve low-Shapiro number steady states. These steady
states may occur in large network simulations and also characterize the wave reflections and
transmissions occurring at discontinuities of the geometrical and mechanical properties of the
artery. The third is the subsonic hydrostatic reconstruction (HR-S), introduced in [Bouchut
and Morales De Luna 2010] and adapted here to blood flow. HR-S exactly preserves all
subcritical steady states. We have performed a series of numerical computations to compare
the properties of HR, HR-LS and HR-S. In all numerical computations, HR was the least
accurate method and was unable to correctly compute wave reflection and transmission when
large variations of the artery’s geometrical and mechanical properties were considered. HR-S
proved to be exactly well-balanced for all low-Shapiro number steady states and the most
accurate reconstruction technique. We showed that HR-LS is well-balanced only for steady
states at rest, but provides satisfactory approximations of low-Shapiro steady states. HR-LS
is also able to capture wave reflections and transmissions for arbitrary large variations of the
artery’s geometrical and mechanical properties, which is an essential property to compute
realistic flow and pressure waveforms. We therefore concluded that both HR-LS and HR-S
are adequate well-balanced methods to compute blood flow in large arteries with varying
cross-sectional area at rest and arterial wall rigidity. However, in large networks where many
arteries present variations of their geometrical and mechanical properties, the extra iterations
required by HR-S increase the computational cost compared to HR-LS. We have therefore
recommended using HR-LS in this case, as it is a good compromise between simplicity,
numerical accuracy and efficiency. We have then proposed a second-order extension of HR-LS
using the MUSCL variable reconstruction strategy proposed in Subsection 4.2.2. Using a
series of test cases for blood flow in one artery, we have validated the second-order extension
in arteries presenting both variations of the neutral cross-sectional area A0 and the arterial
wall rigidity K.

We are now working towards a simpler well-balanced strategy that does not required the
introduction of reconstructed variable. This well-balanced strategy uses the HLL numerical
flux and a linearization of the equilibrium states (5.13) and is well suited for arteries
presenting geometrical and mechanical property variations.
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Chapter 6
Networks and boundary conditions

We present here what we refer to as network boundary conditions, which allow us
to construct an arterial network as an ensemble of single arteries connected together.
The first boundary conditions we study are bifurcation boundary conditions, that
typically link one parent artery with two daughter arteries. The second boundary
conditions we consider are zero-dimensional outflow models (resistance, Windkessel),
representing the response of the vascular bed at the end of each terminal vessel of
the network. Once again, our approach is rather numerical but we also focus on the
physical and mechanical aspects of these network boundary conditions.
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6.1 Introduction
In Chapter 4 and Chapter 5, we have presented numerical methods and validation test cases
for the 1D blood flow system of equations (3.23) in a single artery. However, waveforms
observed in vivo can not be reproduced by considering only one artery. Indeed, these
waveforms are greatly influenced by the topology of the arterial network [Westerhof et al.
1972], as reflections occur at each arterial bifurcation and in the arterioles (see Chapter 1).

To reproduce physiological waveforms, we therefore construct large networks by connecting
different arteries together using two types boundary conditions:
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• bifurcations boundary conditions, which link parent arteries with their daughter arteries;
• terminal boundary conditions, which essentially represent the resistive response of the

distal vascular bed not taken into account in the model network.

Indeed, the computational and modeling costs are too high to consider all vessels of systemic
circulation. Moreover, the assumptions used to derive the 1D blood flow equations become
less valid as the radius of the vessels decreases. Consequently, any 1D network model must
be truncated after a few generation of vessels and the response of the truncated vascular
bed must be taken into account through terminal boundary conditions. The behavior of
these vessels beyond the modeled arteries is usually simulated using lumped parameter or
zero-dimensional (0-D) models [Alastruey et al. 2008]. Alternatively, structured-tree models
can also be used [Olufsen 1999; Olufsen et al. 2000; Cousins and Gremaud 2012; Perdikaris
and Karniadakis 2014].

Bifurcation and terminal boundary conditions are responsible for the reflection of pulse
waves generated by the heart [Alastruey et al. 2009, 2011; Politi et al. 2016a]. The terminal
boundary conditions are particularly important as they represent the principal sites of
reflection and govern the pressure levels in the arterial network. Moreover, as the wave
length of the pulse wave is at least one order of magnitude larger than the average length
of an artery (see Chapter 1), these boundary conditions essentially drive large network
numerical simulations.

In this context, we present in Section 6.2 classical and novel bifurcation models and in
Section 6.4 a comparison between 0D and structured-tree outflow boundary conditions.

6.2 Bifurcation boundary conditions

A bifurcation is a characteristic network structure where parent arteries (proximal or closest
to the heart) connect to their daughter arteries (distal or furthest from the heart). A typical
bifurcation connects one parent artery to two daughter arteries. The flow in a bifurcation
is complex and intrinsically 3D. Nevertheless, it can still be represented by means of a 1D
blood flow model if one is not interested in the flow details in the bifurcation. We present
two methods to impose bifurcation boundary conditions compatible with the 1D framework
we have described in the previous chapters. We refer to these two methods as the point
bifurcation model and the control-volume bifurcation model.

6.2.1 Point bifurcation model

Bifurcation modelization

The most commonly used bifurcation boundary condition in the 1D blood flow literature
assumes that a bifurcation is a single point where the general conservation principles of fluid
mechanics still apply. These conservation principles are the conservation of mass and the
continuity of the energy discharge E, defined in Subsection 5.2.2. They are used to link the
flow in each p ∈ [1, Np] parent and d ∈ [1, Nd] daughter arteries connecting at a bifurcation
J and are written in this case as:



Np∑

p=1

Qp −
Nd∑

d=1

Qd = 0

Ep = Ed + ∆ploss ∀ [p, d] ∈ [1, Np]× [1, Nd] .

(6.1a)

(6.1b)

The variable ∆ploss represents the pressure losses in the bifurcation and is thoroughly studied
in [Mynard and Valen-Sendstad 2015]. However, we set ∆ploss = 0 as in practice, these
losses have only secondary effects on the pulse waves [Alastruey et al. 2011]. System (6.1) is
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successfully used in [Segers et al. 1997; Formaggia et al. 2003; Sherwin et al. 2003a; Matthys
et al. 2007; Liang et al. 2009; Müller and Toro 2014; Müller and Blanco 2015; Mynard and
Valen-Sendstad 2015; Quarteroni et al. 2016; Ghigo et al. 2017a]. As the Shapiro number Sh
(2.85) is small in physiological conditions, System (6.1) can be linearized and reduces to:



Np∑

p=1

Qp −
Nd∑

d=1

Qd = 0

pp = pd + ∆ploss ∀ [p, d] ∈ [1, Np]× [1, Nd] ,

(6.2a)

(6.2b)

where Equation (6.2b) represents the continuity of pressure. System (6.2) is used in
[Alastruey et al. 2009; Wang et al. 2015] and gives satisfying results. It is also a generalization
of the low-Shapiro steady states (5.16) preserved by HR-LS.

System (6.1) (and System (6.2)) allows to accurately compute wave reflections and transmis-
sions if a change of impedance occurs between the parent and the daughter arteries, which is
crucial to obtain physiological wave forms in large network simulations [Sherwin et al. 2003a;
Alastruey et al. 2012]. Indeed, it is identical to the steady state system of equations (5.9).

In the following, we propose a classical numerical strategy to implement the point bifurcation
model.

Numerical method

We consider a point bifurcation where Np parent arteries [p]
Np
p=1 connect to Nd daughter

arteries [d]Ndd=1. As in Subsection 4.2.3, we impose the bifurcation boundary conditions by
setting the value of the vectors of conservative variables Unout|

Np
p=1 and of Unin|

Nd
d=1 in the ghost

cells Cout|Npp=1 and Cin|Ndd=1. In total, 2 [Np +Nd] unknown variables must be determined.

Np +Nd equations are obtained by estimating the outgoing Riemann invariants of the parent
and daughter arteries using Equation (4.38b):
{
W2 (Unout)|p = W2

(
UnNx

)
|p, for p ∈ [1, Np]

W1 (Unin)|d = W1 (Un1 )|d, for d ∈ [1, Nd] .

(6.3a)
(6.3b)

The Np +Nd missing equations are provided by System (6.1). The global system is solved
using a Newton’s method in a limited number of iterations (∼ 5) in every bifurcation at
every time step.

Other implementation strategies are proposed in [Contarino et al. 2016], based on a gener-
alized Riemann problem, which has no accuracy limit, both in space and time. Here, the
implementation is only first-order accurate.

Despite its success, the point bifurcation model lacks any compliant behavior and requires
a time-consuming resolution of System (6.1) to update the boundary properties of each
artery connecting at the bifurcation. Moreover, its lack of volume poses difficulties when
considering the transfer of passive scalars through the bifurcation. We therefore propose an
alternative approach based on a time-dependent control-volume bifurcation model inspired
from the bifurcation model for veins proposed in [Fullana and Zaleski 2009].

6.2.2 Control-volume bifurcation model

Bifurcation geometrical and mechanical properties

Following [Fullana and Zaleski 2009], we consider a bifurcation J connecting Np parent
[p]

Np
p=1 arteries and Nd daughter arteries [d]Ndd=1. We define bifurcation J as an elastic volume
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of undefined shape characterized by a length LJ , a neutral cross-sectional area A0, J and a
arterial wall rigidity KJ . See Figure 6.1 for a schematic of the control-volume bifurcation
model.

We define A0, J as:

A0, J =





max
d∈[1, Nd]

A0, d if max
d∈[1, Nd]

A0, d ≤ min
p∈[1, Np]

A0, p

1

2


 1

Np

Np∑

p=1

A0, p +
1

Nd

Nd∑

d=1

A0, d


 else ,

(6.4)

where A0, p (resp. A0, d) is the neutral cross-sectional area of the parent artery p (resp.
daughter artery d). This choice provides a smooth transition at the bifurcation between the
larger parent arteries and the smaller daughter arteries. We then define the length LJ and
the arterial wall rigidity KJ as:



LJ = CL



Np∑

p=1

∆xp +

Nd∑

d=1

∆xd




KJ =
1

2


 1

Np

Np∑

p=1

Kp +
1

Nd

Nd∑

d=1

Kd


 ,

(6.5a)

(6.5b)

where ∆xp and Kp (resp. ∆xd and Kd) are the mesh size and arterial wall rigidity of parent
artery p (resp. daughter artery d). The parameter CL allows us to control the length and
volume of bifurcation J . Finally, the neutral volume V0, J of bifurcation J is:
V0, J = LJA0, J . (6.6)

With these definitions, bifurcation J provides a smooth geometrical and mechanical transition
between the parent and daughter arteries connecting at bifurcation J . Bifurcation J is
parametrized only by the length scaling factor CL, and its influence on numerical solutions
is studied in Subsection 6.2.3.

Bifurcation governing equations

During a cardiac cycle, multiple reflected and transmitted pulse waves pass through bifur-
cation J and modify its volume and flow patterns. To account for these time-dependent
behaviors, we introduce the time-dependent cross-sectional area AJ , volume VJ and flow rate
QJ of bifurcation J . As for the point bifurcation model, the time evolution of the quantities
AJ , VJ and QJ should respect the general conservation principles of fluid mechanics.

To that effect, we first derive the governing equation for VJ based on the 1D mass conservation
equation (2.67a). Using a control-volume approach, we integrate Equation (2.67a) over the
characteristic length LJ of bifurcation J and obtain the integral mass conservation equation
for bifurcation J :

dVJ
dt

+

Np∑

p=1

FA, p −
Nd∑

d=1

FA, d = 0. (6.7)

where FA = Q is the mass flux (2.81a). Equation (6.7) enables us to dynamically update the
volume VJ depending on the incoming and outgoing mass fluxes. For parent artery p, the
mass flux is counted positively (FA, p > 0) coming into bifurcation J , whereas for daughter
artery d, the mass flux are counted negatively (FA, d < 0) coming into bifurcation J . From
the volume VJ we obtain the cross-sectional AJ using the following relation:

AJ =
VJ
LJ

. (6.8)
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Qp Qp

Qd1

Qd1

Qd2
Qd2

∆xp

∆xd1

∆xd2

AJ

Figure 6.1 – Representation of the control-volume bifurcation model, connecting the parent
artery p to the daughter arteries d1 and d2. The blue surface represents the bifurcation J
containing the ghost cells of the parent and daughter arteries. The cross-sectional area AJ
of the bifurcation is updated using the mass conservation equation (6.7) and homogeneous
Neumann boundary conditions are used to update the flow rate.

Whereas the volume VJ is a scalar quantity, the flow rate QJ is a vector (or directional)
quantity. It is therefore difficult to derive a control-volume equation for QJ from the 1D
momentum continuity equation (2.67b) or the 1D entropy equation (2.93) without precise
knowledge on the bifurcation’s geometry and flow patterns. We therefore choose to discard
the variable QJ and prescribe boundary conditions for the flow rate at each of bifurcation’s
inlets and outlets. We use the long wave framework described in Subsection 2.3.1 and assume
that local spatial variations of the flow rate are small at the inlets and outlets of bifurcation
J . This assumption leads us to impose homogeneous Neumann boundary conditions for the
flow rate at each of bifurcation J ’s inlets and outlets:



∂Qp
∂x

= 0, ∀p ∈ [1, Np]

∂Qd
∂x

= 0, ∀d ∈ [1, Nd] .

(6.9)

The boundary conditions (6.9) are valid only in a subcritical flow regime. Indeed, in
the presence of shocks the solution becomes discontinuous. Fortunately, in physiological
conditions blood flow is always subcritical.

In the following, we present a numerical strategy to implement the control-volume bifurcation
model.

Numerical method

We consider a control-volume bifurcation J where Np parent arteries [p]
Np
p=1 connect to

Nd daughter arteries [d]Ndd=1. As in Subsection 6.2.1, we impose the bifurcation boundary
conditions by setting the value of the vectors conservative variables Unout|

Np
p=1 and of Unin|

Nd
d=1

in the ghost cells Cout|Npp=1 and Cin|Ndd=1.
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We first define the geometrical and mechanical properties of bifurcation J using Equation (6.4)
and System (6.5). We then replace the values of A0 and K in the ghost cells Cout|Npp=1 and
Cin|Ndd=1 by the computed bifurcation values A0, J and KJ . Doing so, the bifurcation’s
geometrical and mechanical properties are now uniformly distributed in the ghost cells
Cout|Npp=1 and Cin|Ndd=1 and the bifurcation’s volume is preserved.

We then update the bifurcation volume VJ by discretizing Equation (6.7) with an explicit
Euler integration scheme:

V n+1
J = V n

J −∆t


−

Np∑

p=1

FAn|p +
∑

d=1

FAn|d


 , (6.10)

where ∆t is the time step presented in Section 4.1 and FAn|p (resp. FAn|d) is the mass
numerical flux (4.14) defined at the interface between the last cell of artery p (resp. the
first cell of artery d) and ghost cell Cout|p (resp. Cin|d). We then compute An+1

J using
Equation (6.8) and impose this value in the ghost cells Cout|Npp=1 and Cin|Ndd=1.

Finally, we use the boundary conditions (6.9) to impose the flow rate in the ghost cells
Cout|Npp=1 and Cin|Ndd=1:


Qn+1
out |p = FQn|Nx+ 1

2
, p for p ∈ [1, Np]

Qn+1
in |d = FQn| 1

2
, d for d ∈ [1, Nd] ,

(6.11)

where FQn|Nx+ 1
2
, p (resp. FQn| 1

2
, d) is the momentum numerical flux (4.14) defined at the

interface between the last cell of artery p (resp. the first cell of artery d) and ghost cell
Cout|p (resp. Cin|d). The use of FQn|p, d guarantees a well-balanced treatment of the flux at
the bifurcation’s inlets and outlets.

Viscous effects are easily included in the control-volume bifurcation model
following the methodology presented in Subsection 4.3.2.

6.2.3 Validation and comparison

To validate both bifurcation models and their implementation, we propose a series a test cases
where we study the propagation of pressure pulse waves in simplified arterial networks and
systematically compare the results obtained with the point and control-volume bifurcation
models.

Two arteries

We consider a single artery of length 2L described by the following neutral radius R0 and
arterial wall rigidity K:



R0 (x) =

{
R0 if x < xm

R0 (1−∆R) if x ≥ xm

K (x) =

{
K if x < xm

K (1 + ∆K) if x ≥ xm.

(6.12)

where xm = L. This artery is identical to the step configuration presented in Section 5.4.
We divide this artery in two at x = xm and connect the resulting two arteries with the
point bifurcation and control-volume bifurcation models and compare the computed results
with those obtained with the low-Shapiro hydrostatic reconstruction technique (HR-LS,
see Subsection 5.3.2) in the single artery of length 2L. In all configurations, we impose a
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pressure wave pin at the inlet:

pin (t) =





p̂

2

[
1 + cos

(
π + 2π

t

T

)]
if 0 ≤ t

T
≤ 1

0 else ,
(6.13)

where p̂ =
√
A0KSh (see Equation (2.53)), and a non-reflecting boundary condition at the

outlet. To assess the long wave and wave propagation properties of both bifurcation models,
we choose T ∈ {0.1, 1}, ∆R ∈ {0, 0.5} and ∆K ∈ {0, 2}. The other parameters used in this
test case are described in Table 6.1.

ρ L R0 K Cf Cν Sh T Rt Nx x order ∆t t order

1 10 1 104 0 0 {10 3, 10 1} {0.1, 1} 0 50 2 10 4 2

Table 6.1 – Geometrical, mechanical, numerical and boundary parameters used in the
inviscid two arteries bifurcation comparison test cases.

In Figure 6.2, we consider a straight artery for which ∆R = ∆K = 0 and we compare at
times t ∈ {0.06, 0.12, 0.19, 0.25} for T = 0.1 (Left) and times t ∈ {0.25, 0.5, 0.75, 1} for
T = 1 (Right) the spatial evolution of the pressure p and flow rate Q solutions obtained for
Sh ∈ {10 3, 10 1} with the single artery configuration, the point bifurcation configuration
and the control-volume bifurcation configuration with CL = 0.1. We observe that for each
variable, both values of T and both Shapiro numbers Sh, the single artery solutions match the
point and control-volume bifurcations solutions. These results indicate that both bifurcation
models do not create spurious reflections at a bifurcation connecting two identical arteries
and that the homogeneous Neumann conditions (6.9) used in the control-volume bifurcation
model are valid outside of the long wave framework, when T = 0.1.

We now assess the influence of the length scaling factor CL. In geometrical and flow
conditions identical to those of Figure 6.2, we compare in Figure 6.3 the spatial evolution of
the pressure p and flow rate Q solutions obtained with the single artery configuration and the
control-volume bifurcation configuration, where we choose CL ∈ {1, 0.1, 0.01}. We observe
that for each variable, both Shapiro numbers Sh and T = 1, the single artery solutions match
the control-volume bifurcation solutions for all values of CL. However, for T = 0.1, the single
artery solutions match the control-volume bifurcation solutions only for CL ∈ {0.1, 0.01}.
Indeed, for CL = 1, the control-volume bifurcation model generates a flow aspiration that
propagates towards the inlet of the artery. This aspiration behavior is probably due to the
pulse wave that takes too long to go through the length of the bifurcation. Based on these
results, we choose CL = 0.1 in the following test-cases.

Finally, in Figure 6.4, we consider a step (∆R = 0.5, ∆K = 2) and we compare at times
t ∈ {0.06, 0.12, 0.19, 0.25} for T = 0.1 (Left) and times t ∈ {0.25, 0.5, 0.75, 1} for T = 1
(Right) the spatial evolution of the pressure p and flow rate Q solutions obtained for
Sh ∈ {10 3, 10 1} with the single artery configuration, the point bifurcation configuration
and the control-volume bifurcation configuration with CL = 0.1. We observe that for each
variable, both values of T and Sh = 10 3, all solutions match and the wave reflections
and transmissions are correctly computed (represented by the dashed lines in Figure 6.4).
For Sh = 10 1, the single artery and the point bifurcation solutions are similar as they
preserve similar conservation properties at the bifurcation, described by System (6.1). On
the contrary, the control-volume bifurcation solutions differ due to the compliance of the
bifurcation and additional reflections introduced by the chosen definition of KJ (6.5).
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Figure 6.2 – The straight two arteries test case. Comparison between the single artery
solutions ( ), the point bifurcation solutions (M) and the control-volume bifurcation solutions
(�) with CL = 0.1 for the pressure p and the flow rate Q obtained in a straight artery
(∆R = ∆K = 0):
Left: T = 0.1 at times t ∈ {0.06, 0.12, 0.19, 0.25}.
Right: T = 1 at times t ∈ {0.25, 0.5, 0.75, 1}.
Top: Sh = 10 3.
Bottom: Sh = 10 1.
The single artery solutions match the point and control-volume bifurcation solutions.
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Figure 6.3 – Effect of the length scaling factor CL in the two arteries test case. Comparison
between the single artery solutions ( ) and the control-volume bifurcation solutions with
CL ∈ {1 (M), 0.1 (�), 0.01 (?)} for the pressure p and the flow rate Q in a straight artery
(∆R = ∆K = 0):
Left: T = 0.1 at times t ∈ {0.12, 0.19}.
Right: T = 1 at times t ∈ {0.5, 0.75}.
Top: Sh = 10 3.
Bottom: Sh = 10 1.
The single artery solutions match the control-volume bifurcation solutions for CL ∈ {0.1,
0.01}. For CL = 1, the control-volume bifurcation model generates a flow aspiration due to
its larger control-volume.
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Figure 6.4 – The step two arteries test case. Comparison between the single artery solutions
( ), the point bifurcation solutions (M) and the control-volume bifurcation solutions (�) with
CL = 0.1 for the pressure p and the flow rate Q obtained in a step (∆R = 0.5, ∆K = 2):
Left: T = 0.1 at times t ∈ {0.06, 0.12, 0.19, 0.25}. The point line ( ) represents the
expected amplitude of the reflected wave and the point-dashed line ( ) the expected amplitude
of the transmitted wave.
Right: T = 1 at times t ∈ {0.25, 0.5, 0.75, 1}.
Top: Sh = 10 3.
Bottom: Sh = 10 1.
For Sh = 10 3, all solutions match and the reflections are correctly computed. For Sh = 10 1,
only the single artery and the point bifurcation solutions are similar.
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Three arteries

We consider an elementary arterial bifurcation where one parent artery p connects to two
daughter arteries d1 and d2. We impose the pressure pulse wave pin (6.13) at the inlet of
the parent artery and non-reflecting boundary conditions at the outlet of the two daughter
arteries. As in the two arteries test case, we choose T ∈ {0.1, 1}. The other parameters
used in this test case are described in Table 6.2 (geometrical and mechanical properties) and
Table 6.1 (boundary and numerical parameters).

ρ L R0 K Cf Cν

Artery p 1 10 1 1× 104 0 0
Artery d1 1 10 0.5 3× 104 0 0
Artery d2 1 10 0.5 3× 104 0 0

Table 6.2 – Geometrical and mechanical parameters used in the inviscid three arteries
bifurcation comparison test case.

In Figure 6.5, we compare at times t ∈ {0.06, 0.12, 0.19, 0.25} for T = 0.1 (Left) and times
t ∈ {0.25, 0.5, 0.75, 1} for T = 1 (Right) the spatial evolution of the pressure p and flow rate
Q solutions obtained in the parent artery p and the daughter artery d1 for Sh ∈ {10 3, 10 1}
with the point bifurcation configuration and the control-volume bifurcation configuration
with CL = 0.1. We observe that for each variable, both values of T and Sh = 10 3, both
bifurcation models give similar results and the wave reflections and transmissions are correctly
computed (represented by the dashed lines in Figure 6.5). As in the two arteries test case,
the point bifurcation solutions and the control-volume bifurcation solutions slightly differ for
Sh = 10 1.

These test cases show that both the point bifurcation model and the control-volume bifurca-
tion model are able to accurately compute long and short wave reflections and transmissions
in linear flow regimes. As expected, their solutions differ in nonlinear flow regimes due to
the control-volume and compliant aspects of the control-volume bifurcation model. The
control-volume bifurcation model therefore provides an interesting alternative to the classical
point bifurcation model and is particularly well suited for the transport of passive scalars.
Further comparison against experimental and 3D numerical results is necessary to determine
which bifurcation model is best suited to describe blood flow in large arteries.

6.3 Outflow boundary conditions

The systemic network is constituted of millions of arteries that can be categorized as large
arteries, arterioles and capillaries. For obvious computational and modeling reasons, blood
flow in the entire systemic network can not be numerically computed. Network numerical
simulations are usually restricted to large arteries and eventually arterioles [Watanabe et al.
2013; Blanco et al. 2014; Perdikaris et al. 2015] and the terminal arteries in these numerical
networks do not represent the actual end of the systemic network but are rather arbitrarily
chosen end points. The boundary conditions at the outlet of these terminal vessels must then
model the response of the vascular bed distal to these terminal segments. These boundary
conditions usually take the form of zero-dimensional (0D) models, which can be interpreted
as electrical circuits formed of resistances, capacities and inductances. In the following
sections, we first derive from the 1D blood flow equations (2.67) a 0D artery model to better
understand the different constituents of classical outflow models. We then present and
compare different outflow models for arterial networks. In Figure 6.6, we represent the three
outflow models we consider here: the resistance, the Windkessel and the structured-tree.
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Figure 6.5 – The three arteries test case. Comparison between the point bifurcation solutions
(M) and the control-volume bifurcation solutions (�) with CL = 0.1 for the pressure p and
the flow rate Q obtained in parent artery p and daughter artery d1:
Left: T = 0.1 at times t ∈ {0.06, 0.12, 0.19, 0.25}. The point line ( ) represents the
expected amplitude of the reflected wave and the point-dashed line ( ) the expected amplitude
of the transmitted wave.
Right: T = 1 at times t ∈ {0.25, 0.5, 0.75, 1}.
Top: Sh = 10 3.
Bottom: Sh = 10 1.
For Sh = 10 3, all solutions match and the reflections are correctly computed. For Sh = 10 1,
the two bifurcation models give different results.
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Figure 6.6 – Representation of the three principal outflow models applied to a model network:
Left: Resistance (see Figure 6.8).
Middle: Windkessel (see Figure 6.9).
Left: Structured-tree (see Figure 6.12).

6.3.1 Zero-dimensional blood flow equations

We derive here 0D blood flow equations to better understand the different building blocks of
the classical 0D outflow models. We first linearize System (2.67) around the reference state
U = [A = A0, Q]ᵀ and obtain:



C
∂p

∂t
+
∂Q

∂x
= 0

I
∂Q

∂t
+
∂p

∂x
= −RfQ,

(6.14a)

(6.14b)

where Rf is the viscous resistance, C the vessel compliance and I the flow inertia which are
defined as:



Rf =
ρCf
A2

0

C = 2

√
A0

K
=
A0

ρc2
0

I =
ρ

A0
.

(6.15a)

(6.15b)

(6.15c)

To simplify the problem even further, we integrate System (6.14) over the length L of the
artery and obtain 0D blood flow equations linking the inlet (x = 0) and outlet (x = L) of
the artery:



C
dp̂

dt
+Q|x=L −Q|x=0 = 0

I
dQ̂

dt
+ p|x=L − p|x=0 = −Rf Q̂,

(6.16a)

(6.16b)
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where:

p̂ =
1

L

L∫

x=0

pdx and Q̂ =
1

L

L∫

x=0

Qdx. (6.17)

To close System (6.16), we follow [Alastruey et al. 2012] and assume that:{
p̂ = p|x=0

Q̂ = Q|x=L.
(6.18)

This allows us to rewrite System (6.16) as a single equation that depends only on p|x=0,
p|x=L and Q|x=0:
(

1 +RfC
d ·
dt

+ CI
d2 ·
dt2

)
p|x=0 − p|x=L =

(
Rf + I

d ·
dt

)
Q|x=0. (6.19)

Equation (6.19) connects the inlet flow rate and pressure with the outlet pressure of the
artery and shows that a resistance, a capacity and an inductance are sufficient to describe
blood flow in an artery. In Figure 6.7, we represent the electrical circuit equivalent to the
0D blood flow equation (6.19).

Rf
I

C

p|x=0 p|x=L

Q|x=0 Q|x=L

Figure 6.7 – Electrical representation of the 0D blood flow equation (6.19).

Due to the integration of System (2.67) over the length L of the artery, the
viscoelastic effects that involve a spatial gradient can not be represented by
the 0D Equation (6.19). We reach here the limitations of such a simplified
approach.

These three electrical elements are therefore the building blocks of any relevant outflow model.
Next, we follow the literature and construct two classical outflow models as combinations of
resistances, capacities and inductances. We refer to these models as the resistance and the
Windkessel outflow models.

6.3.2 Resistance outflow model

The resistance outflow model is obtained by considering that the response of the distal
vascular bed is purely resistive. This is equivalent to assuming that each artery in this
distal network is rigid and that blood flow behaves as a Poiseuille flow, therefore neglecting
any compliant or inertial effect. The governing equation for the resistance outflow model
writes:

p|x=0 − p|x=L = RfQ|x=0. (6.20)

In Figure 6.8, we represent the electrical circuit equivalent to this resistance model.

A characteristic analysis of System (6.14), presented in detail in [Vignon and
Taylor 2004; Alastruey et al. 2012], enables to link the resistance Rf and the
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Rf

p|x=0 p|x=L

Q|x=0 Q|x=L

Figure 6.8 – Electrical representation of the resistance 0D outflow model (6.22).

reflection coefficient Rt:

Rt =
Rf − Z0

Rf + Z0
, (6.21)

where Z0 is the impedance of the terminal vessel.

The resistance outflow model is the equivalent of the reflection boundary condition presented
in Subsection 4.2.3 and is responsible for the reflection of incoming waves, which is one of
the most important feature of any network outflow boundary condition. The value of the
resistance also governs the mean pressure levels for a given mean flow rate.

6.3.3 Windkessel outflow model

The Windkessel outflow model is a modified version of the 0D blood flow equation (6.19),
where an additional resistance is added at the inlet, before the capacity, to model the resistive
behavior of the terminal vessel itself. It is the most common 0D outflow model used in the
literature on 1D blood flow.

The governing equation of the Windkessel outflow model linking the inlet flow rate and
pressure with the outlet pressure writes:
(

1 +R2C
d ·
dt

+ IC
d2 ·
dt2

)
p|x=0 − p|x=L =

(
[R1 +R2] +R1

[
R2C

d ·
dt

+ IC
d2 ·
dt2

]
+ I

d ·
dt

)
Q|x=0.

(6.22)

Equation (6.22) contains the resistance model (6.20) if C = I = 0, in which case Rf = R1+R2.
In Figure 6.9, we represent the electrical circuit equivalent to this Windkessel outflow model.

I

C

p|x=0 p|x=L

Q|x=0 Q|x=L
R1 R2

Figure 6.9 – Electrical representation of the Windkessel 0D outflow model (6.22).

To better understand the behavior of the Windkessel model (6.22), we compute its response
to a constant flow input which is essentially a crude approximation of the flow in a terminal
vessel. Considering a constant inlet flow rate Q|x=0 and a zero outlet pressure p|x=L = 0,
Equation (6.22) writes:(

1 +R2C
d ·
dt

+ IC
d2 ·
dt2

)
p|x=0 = [R1 +R2]Q|x=0. (6.23)
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The solution of Equation (6.23) is:

p|x=0 = [R1 +R2]Q|x=0 +A exp

(
−t τC

2τI2

[
1 +

√
1− 4

τ2
I

τ2
C

])

+B exp

(
−t τC

2τ2
I

[
1−

√
1− 4

τ2
I

τ2
C

])
,

(6.24)

where τC = R2C and τI =
√
CI. In physiological conditions, we have τI/τC < 0.5 and

therefore:
lim

t→+∞
p|x=0 = [R1 +R2]Qin (6.25)

This analysis shows that the Windkessel outflow model is essentially a resistance model
where inertia and compliance introduce delays in the resistive response, characterized by τC
and τI .

In the following, we propose a numerical strategy to implement the Windkessel outflow
model (6.22).

6.3.4 Numerical method

We propose here a numerical method to implement the Windkessel outflow model (6.22). As
in Subsection 6.2.1, we impose the Windkessel outflow boundary condition by setting the
value of the vector conservative variables Unout in the ghost cell Cout placed at the outlet
of the considered terminal vessel. We consider here that I = 0 for simplicity, which is a
common assumption used in the literature on 1D blood flow equations.

The first equation is obtained by estimating the outgoing Riemann invariant using Equa-
tion (4.38b):

W2

(
Un+1
out

)
= W2

(
Un+1
Nx

)
. (6.26)

The second equation is derived by discretizing Equation (6.22) with an implicit Euler
integration scheme:

pn+1
out +R2C

pn+1
out − pnout

∆t
− p|x=L = [R1 +R2]Qn+1

out +R1R2C
Qn+1
out −Qnout

∆t
, (6.27)

where ∆t is the time step presented in Section 4.1 and p|x=L is the constant pressure at
the distal end of the terminal vascular bed. Usually, we assume that p|x=L = 0. The global
system is solved using a Newton’s method in a limited number of iterations (∼ 5) in every
terminal artery at every time step.

6.3.5 Validation and comparison

We use two network test cases presented in [Boileau et al. 2015] to validate the resistance
and Windkessel outflow models and continue the comparison between the point and control-
volume bifurcation models.

Aortic bifurcation

We consider the arterial bifurcation test case presented in [Boileau et al. 2015] and describing
blood flow in an aortic bifurcation between the thoracic aorta and the two iliac arteries.
Following [Boileau et al. 2015], we impose the flow rate at the inlet and Windkessel outflow
conditions at the outlet of both iliac arteries. The geometrical, mechanical and boundary
parameters are found in [Boileau et al. 2015] and the numerical parameters are described in
Table 6.3.
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Nx x order ∆t t order

50 2 10 5 2

Table 6.3 – Numerical parameters used in the aortic bifurcation test case presented in
[Boileau et al. 2015].
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Figure 6.10 – Aortic bifurcation test case. Comparison between 3D solutions ( ), the 1D
point bifurcation solutions (M) and the 1D control-volume bifurcation solutions (�) with
CL = 0.1 for the time evolution of the pressure p (Left) and the flow rate Q (Right) obtained
in the aorta, the bifurcation and one iliac artery. Both 1D solutions perfectly match the 3D
solutions, but only the control-volume bifurcation model can describe the variation of pressure
inside the bifurcation.

In Figure 6.10, we compare the time evolution of the pressure p and flow rate Q solutions
obtained in the aorta, the bifurcation and the iliac artery with a 3D model to results
computed with the 1D point bifurcation model and the 1D control-volume bifurcation model
with CL = 0.1. We observe that for each variable, both 1D bifurcation models (point and
control-volume) give results identical to those obtained with the 3D model. The pressure in
the bifurcation is correctly captured by the control-volume bifurcation model, whereas the
point bifurcation model by definition does not have a bifurcation pressure.

In this test case, the length of each artery is small compared to the wavelength
of the pulse wave. The flow is therefore mainly driven by the Windkessel
outflow boundary conditions, which explains the perfect match between the 3D
and 1D solutions. This somewhat reduces the pertinence of this test case as
we are essentially testing the implementation of the inlet and outlet boundary
conditions more than the blood flow and bifurcation models.

37-artery network

We now consider a 37-artery in vitro network presented in [Matthys et al. 2007; Alastruey
et al. 2011] and benchmarked in [Boileau et al. 2015]. Following [Boileau et al. 2015], we
impose the flow rate at the inlet and use both resistance and Windkessel outflow condi-
tions at the outlet of each terminal segment. The geometrical, mechanical and boundary
parameters are found in [Boileau et al. 2015] and the numerical parameters are described in
Table 6.4. The capacity of the Windkessel outflow model is set to 10 5 in all terminal segments.

In Figure 6.11, we plot the time evolution of the pressure p and flow rate Q solutions
obtained in different arteries (Aortic Arch 2, Left Subclavian 1, Right Anterior Tibial) with
the 1D point bifurcation model and the 1D control-volume bifurcation model with CL = 0.1
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Nx x order ∆t t order

3 2 10 5 2

Table 6.4 – Numerical parameters used in the 37-artery in vitro test case used in [Boileau
et al. 2015] and presented in [Matthys et al. 2007; Alastruey et al. 2011].

where we apply both resistance and Windkessel boundary conditions. These results are
compared to the experimental data measured in the in vitro network and to numerical
solutions computed with a 1D finite volume model presented in [Boileau et al. 2015] coupled
to resistance outflow conditions. We observe that for each variable computed with resistance
outflow conditions, both 1D bifurcation models give the same results as the 1D finite volume
model. However only the experimental pressure p is well-matched by the numerical solutions.
Finally, the effects of the Windkessel outflow conditions are noticeable in the flow rate signal.
In addition to the expected smoothing effect, the Windkessel outflow condition increases flow
rate during systole and consequently decreases flow rate during diastole in the arteries close
to the terminal segments (Left Subclavian 1, Right Anterior Tibial). However, the solutions
obtained with the Windkessel outflow conditions do not provide a better estimation of the
experimental flow rate signal.

These results validate the implementation of the resistance and Windkessel outflow conditions
and again show the potential of the control-volume bifurcation boundary condition.

6.4 Structured-tree outflow boundary condition

In physiological conditions the wavelength of the pulse wave is large, therefore outflow
boundary conditions greatly influence the shape and amplitude of the numerical pulse wave.
Fortunately, the 0D outflow models presented in Section 6.3 give satisfactory results in large
network simulations. However, they depend on parameters that are difficult to estimate
in the absence of local measurements and the numerical results are highly sensitive to the
value of these parameters. Data assimilation and parameter estimation strategies are being
developed to numerically determine the value of these outflow parameters for specific patients
and show very promising results [Alastruey et al. 2008; Pant et al. 2014; Lal et al. 2016].

Other approaches are also considered that focus on finding alternative outflow models that
do not depend on a large number of unknown parameters. To that effect, the structured-tree
outflow model was originally proposed in [Olufsen 1999; Olufsen et al. 2000] and then applied
in [Vignon and Taylor 2004; Olufsen et al. 2012; Cousins and Gremaud 2012; Perdikaris
et al. 2015; Qureshi et al. 2014; Guan et al. 2016]. The idea is to replace at the outlet of
each terminal vessel the classical resistance and Windkessel outflow flow models by a user-
defined structured network representing the vascular bed distal to each terminal segment
(see Figure 6.7 Right and Figure 6.12). In practice, the flow is not computed in these
very large structured-trees. Rather, their frequency response is evaluated and represented
through their root impedance ZST , representing the impedance response at the outlet of their
corresponding terminal vessel, which also their first (or root) artery. The root impedance
then links the outlet pressure and flow rate pout and Qout in the ghost cell Cout, similarly to
the resistance outflow condition (6.20).

In the following, we detail the construction of a structured tree and the methodology to
compute the root impedance ZST of a terminal vessel. As the structured-tree outflow model
is computationally more expensive then the Windkessel outflow model, we investigate if the
frequency response of the structured-tree can be accurately represented by a Windkessel
model.
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Figure 6.11 – 37-artery in vitro network test case. Comparison between experimental
measurements ( ), a 1D finite volume solution (resistance ), the 1D point bifurcation
solutions (resistance M, Windkessel ?) and the 1D control-volume bifurcation solutions
(resistance �, Windkessel ©) with CL = 0.1 for the time evolution of the pressure p and the
flow rate Q.
Top: Aortic Arch 2.
Middle: Left Subclavian 1.
Bottom: Right Anterior Tibial.
The 1D solutions coupled to resistance outflow conditions perfectly match the 1D finite volume
solutions and are a good approximation the experimental pressure solutions.
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6.4.1 Construction of a structured-tree

A structured tree is constructed based on the simple rule stating that each vessel in the
structured tree divides into two daughter arteries until a minimum radius Rmin is reached.
The properties of the daughter arteries are computed using the following relationships, fitted
from data presented in [Avolio 1980]:

• the structured-tree bifurcates up to a minimal radius Rmin, usually chosen as:
10 µm ≤ Rmin ≤ 100 µm. (6.28)

• the radii of the two daughter arteries are proportional to the radius of the parent artery:
Rα = αSTRp ; Rβ = βSTRp, (6.29)

and usually αST = 0.9 and βST = 0.6.
• the radius-length ratio is constant, but varies from one vascular region to the other [Zamir
1999]:

λST =
L

R
= cst, (6.30)

and usually λST = 50 .
• the rigidity increases towards the more distal arteries according to the expression:

K =
4

3

1√
πR

[
k1ek2R + k3

]
, (6.31)

where k1 = 2 × 107, k2 = −22.53 and k3 = 8.65 × 105. In [Perdikaris et al. 2015], the
authors point-out that Equation (6.31) should be truncated when R < 500 µm to prevent
abnormally high rigidity values.

Assuming that the properties propagation laws described above are valid, the structured-tree
model depends on four parameters: Rmin, αST , βST , λST . This may seem as more unknown
parameters than the 0D outflow models described in Section 6.3, but these parameters, once
chosen, can be used to describe terminal vessels in large regions of the network. The entire
outflow boundary conditions are then parametrized by only a few parameters.

6.4.2 Terminal vessel impedance

We follow the methodology proposed in [Cousins and Gremaud 2012] to compute the root
impedance ZST of the terminal segment at the root of the structured tree. The impedance
ZST represents the response of the structured-tree distal to the considered terminal vessel.
Rather than computing ZST in the time domain, we use the natural periodicity of blood
pressure and flow rate to write the equations in the frequency domain and compute the
Fourier coefficients ZST, ω of ZST .

Starting from the linear System (6.14), we assume that the pressure and flow signals are
periodic, which allows us to rewrite System (6.14) in the frequency domain as:



jωCp̂ω +
∂Q̂ω
∂x

= 0

jωIQ̂ω +
∂p̂ω
∂x

= −Rf Q̂,

(6.32a)

(6.32b)

where p̂ω and Q̂ω are the Fourier coefficients of the pressure p and the flow rate Q associated
to the characteristic frequency ω and j =

√
−1. Following [Cousins and Gremaud 2012], we
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solve System (6.32) for x ∈ [0, L] and find:



p̂ω = p̂ω (L) cos

(
[L− x]

√
ωC [ωI − jRf ]

)

+ Q̂ω (L) j

√
ωI − jRf

ωC
sin

(
[L− x]

√
ωC [ωI − jRf ]

)

Q̂ω = Q̂ω (L) cos

(
[L− x]

√
ωC [ωI − jRf ]

)

+ p̂ω (L) j

√
ωC

ωI − jRf
sin

(
[L− x]

√
ωC [ωI − jRf ]

)
.

(6.33a)

(6.33b)

We then obtain an expression derived in [Cousins and Gremaud 2012] linking the inlet and
outlet impedances of the artery:

ZST, ω (0) =
ZST, ω (L) cos

(
L
√
ωC [ωI − jRf ]

)
+ j

√
ωI−jRf
ωC sin

(
L
√
ωC [ωI − jRf ]

)

cos
(
L
√
ωC [ωI − jRf ]

)
+ ZST, ω (L) j

√
ωC

ωI−jRf sin
(
L
√
ωC [ωI − jRf ]

) ,

(6.34)
where ZST, ω is the Fourier coefficient of ZST associated to the frequency ω. In particular,
we have for ω = 0:
ZST, 0 (0) = ZST, 0 (L) + LRf . (6.35)

which gives the link between the impedance ZST and the viscous resistance Rf . Finally, we
connect at each bifurcation of the structured-tree the parent and daughter arteries together
by imposing as in Subsection 6.2.1 the conservation of mass and the continuity of pressure
at the bifurcation, which translates as:

ZST, ω, p (L) =
ZST, ω, α (0)ZST, ω, β (0)

ZST, ω, α (0) + ZST, ω, β (0)
. (6.36)

Methodologies are then proposed in [Olufsen et al. 2000; Cousins and Gremaud 2012] to
update the pressure and flow rate at each time step in the ghost cell Cout of the terminal
vessel. Essentially, these methods use the Fourier coefficients of the root impedance ZST to
compute in a discrete manner the pressure pout in the ghost cell Cout as a function of the
flow rate Qout:

pout =

∞∑

k=−∞
p̂out, ωke

iωkt =

∞∑

k=−∞
ZST, ωkQ̂out, ωke

iωkt (6.37)

Note that in [Perdikaris et al. 2015], this frequency approach is not used and the 1D
nonlinear blood flow equations (2.67) are solved in each terminal structured-trees using a
highly parallelized numerical code.

6.4.3 Equivalent Windkessel outflow model

Using the structured-tree outflow model following the methodologies proposed in [Olufsen
et al. 2000; Cousins and Gremaud 2012] has a higher computational cost than using classical
0D outflow models. Alternatively, directly solving the 1D equations in each structured-tree
is computationally expensive and requires very large computational resources and well
parallelized code [Perdikaris et al. 2015]. The structured-tree outflow model comes therefore
at a higher computational cost than the other classical 0D outflow models. Moreover, its
complex structure does not permit the simple understanding of the parameter effects we are
able to achieve with the resistance or Windkessel outflow models (see Subsection 6.3.2 and
Subsection 6.3.3). This renders the interpretation of the results difficult.
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Figure 6.12 – Schematic of the equivalent Windkessel approach.
Top: Model arterial network using structured-tree outflow conditions. Each structured-tree
is an assemblage of 0D arteries governed by the 0D blood flow equation (6.19).
Bottom: Same model arterial network using equivalent Windkessel outflow conditions
designed to match the behavior of their corresponding target structured-tree.

However, recent studies [Cousins and Gremaud 2012; Guan et al. 2016] that compare the
results obtained using a structured-tree outflow model and an equivalent Windkessel model
find a very good match between the results computed with both models. We seek to confirm
these results and propose a methodology to estimate the parameters of the Windkessel
outflow model (6.22) to match the response of a target structured-tree. We then evaluate the
sensitivity of the resistances R1 and R2, the compliance C and inductance I of the equivalent
Windkessel model to variations of the parameters of the target structured-tree outflow model,
namely Rroot and Rmin. A schematic of our approach is presented in Figure 6.12.

Terminal Windkessel impedance

We derive from Equation (6.22) the root impedance ZWK of the Windkessel outflow model
and express here its Fourier coefficient associated to the frequency ω:

ZWK,ω = R1 +
R2 + jωI

1− ω2IC + jωR2C
(6.38)

The modulus of ZWK,ω writes:

|ZWK,ω|2 = R2
1

I2ω2 + 2R1R2 +R2
2

1 + Cω2
[
CR2

2 + I [CIω2 − 2]
] (6.39)

and its asymptotic behaviors are:




lim
ω→0
|ZWK,ω| = R1 +R2

lim
ω→+∞

|ZWK,ω| = R1

(6.40a)

(6.40b)
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We recover here the limit behavior (6.25). This analysis confirms that the resistances R1

and R2 govern the asymptotic response of the Windkessel, whereas the compliance C and
the inductance I characterize the transition between the two asymptotic regimes.

Parameter estimation algorithm

Based on the analysis performed in the previous subsections, we propose an algorithm to
estimate the parameters R1, R2, C and I of the Windkessel model (6.22) such that the
Fourier coefficients ZWK,ω (6.38) of the Windkessel impedance ZWK match the Fourier
coefficients ZST, ω (6.34) of the root impedance of the structured-tree ZST for a large band
of frequencies ω. We proceed as follows:

1. We compute the Fourier coefficients ZST, ωk for different frequencies ωk = 2kπ
T , assuming

that the impedance Zleaf of the vessels at the distal end of the structured-tree is 0. This
process can be time-consuming when the difference between Rroot and Rmin is great.

2. We compute the resistances R1 and R2 using a bounded limited-memory Broyden-Fletcher-
Goldfarb-Shanno (L-BFGS-B) minimization algorithm [Byrd et al. 1995], taken form the
Python2.7 scipy library, which minimizes the cost-function:

F =
1

N

√√√√
N−1∑

k=0

< [ZST, ωk − ZWK,ωk ]2 + = [ZST, ωk − ZWK,ωk ]2, (6.41)

within the bounds:
1 ≤ R1 ≤ ∞ 1 ≤ R2 ≤ ∞. (6.42)

3. We compute the compliance C and inductance I using a bounded Brent minimization
algorithm [Brent 2013], taken form the Python2.7 scipy library, which minimizes the
cost-function:

F =
1

N

√∑N−1
k=0 [< [ZST, ωk − ZWK,ωk ]]2 + [= [ZST, ωk − ZWK,ωk ]]2

maxk∈[1, N ]

√
[< [ZST, ωk − ZWK,ωk ]]2 + [= [ZST, ωk − ZWK,ωk ]]2

(6.43)

within the bounds:

0 ≤ C ≤ 10 3 0 ≤ I ≤ R2C

4
. (6.44)

Both C and I are computed in separate minimization procedures as their values are of
different magnitude rendering a common minimization procedure difficult (different step
size in the phase space or line search).

From experience, k ∈ [0, 50] is sufficient to capture the asymptotic behaviors of the impedance
of the structured tree.

Validation

As a precaution, we first assess the performances of the parameter estimation algorithm
and compute an equivalent Windkessel model for a given target structured-tree outflow
model. We set αST = 0.9, βST = 0.6 and λST = 50 and vary the value of Rmin and Rroot,
defined as the radius of the terminal vessel, which corresponds to the root (or first vessel)
of the structured tree. We choose Rroot ∈ {0.05, 0.15, 0.25, 0.35} and Rmin ∈ {30, 50, 70,
90} × 10 4.

In Figure 6.13, we compare the frequency response of the modulus |Z| of both the structured-
tree impedance ZST and the Windkessel impedance ZWK . We observe a good match between
|ZST | and |ZWK | and recover similar results to those presented in [Cousins and Gremaud
2012; Guan et al. 2016]. We note that the quality of the Windkessel approximation essentially
depends on the value of Rroot. Indeed, as Rroot increases (from left to right in Figure 6.13),
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Figure 6.13 – Comparison between the frequency response of the modulus of the structured-
tree impedance |ZST | (M) and the modulus of the Windkessel impedance |ZWK | (�) obtained
with αST = 0.9, βST = 0.6 and λST = 50 for Rroot ∈ {0.05, 0.15, 0.25, 0.35}.
Top: Rmin = 0.009.
Middle top: Rmin = 0.007.
Middle bottom: Rmin = 0.005.
Bottom: Rmin = 0.003.
The Windkessel and structured-tree impedance moduli are well-matched and the quality of the
Windkessel approximation essentially depends on the value of Rroot.

a local minimum of |ZST | appears for k ≈ 5 and oscillations occur for k ≥ 20, which are
frequency-dependent behaviors that the Windkessel model is enable to reproduce.

These results are confirmed in Figure 6.14 where we plot the final value of the cost-function F
(6.43) as a function of Rroot and Rmin. Indeed, a global minimum is reached for {Rroot ≈ 0.05,
Rmin ≈ 0.008} and the error increases with Rroot, all the while remaining acceptably low.
The values of Rroot and Rmin used in Figure 6.14 are presented in Table 6.5.

Overall, the results presented in Figure 6.13 and Figure 6.14 establish the validity of the
parameter estimation algorithm and confirm the results presented in [Spilker et al. 2007;
Cousins and Gremaud 2012; Guan et al. 2016] indicating that an equivalent Windkessel
model can accurately describe the frequency response of a structured-tree.

Parameter sensitivity

All studies on structured-tree outflow conditions show that among the parameters αST ,
βST , λST and Rmin, the cutoff radius Rmin is the most important parameter [Cousins and
Gremaud 2012; Perdikaris et al. 2015]. We therefore perform a detailed analysis of the
sensitivity of the estimated Windkessel parameters to variations of Rmin and of the root
radius Rroot. The values of the structured-tree parameters we use are presented in Table 6.5.
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Figure 6.14 – Phase diagram representing the final value of the cost-function F (6.43) as
a function of Rroot and Rmin. The marks (M, �, ?, ©) represent the data points used in
Figure 6.13. The final value of F increases with Rroot and a global minimum is reached for
{Rroot ≈ 0.05, Rmin ≈ 0.008}

αST βST λST Rroot × 10 2 Rmin × 10 4

0.9 0.6 50 5 30
...

...
40 100

Table 6.5 – Values of the structured-tree parameters.

Figure 6.15 describes how variations of Rroot and Rmin affect the values of the Windkessel’s
resistances R1 and R2. We observe that the value of R1 decreases only when Rroot increases,
whereas R2 decreases as Rroot and Rmin increase. Indeed, the variations of R1 are accurately
fitted by the functions:{

fRmin = a1 exp (−b1Rroot) + c1 for Rmin = cst and a1, b1, c1 > 0

fRroot = a2x
2 + b2x+ c2 for Rroot = cst and a2, b2, c2 > 0,

(6.45)

and the variations of R2 by the functions:{
fRmin = a3 exp (−b3Rroot) + c3 for Rmin = cst and a3, b3, c3 > 0

fRroot = a4 exp (−b4Rmin) + c4 for Rroot = cst and a4, b4, c4 > 0.
(6.46)

These results are coherent with the fact that smaller vessels have a larger impedance and
that the impedance matching conditions (6.36) favor vessels of small impedance ( if Zα � Zβ
then Zp ≈ Zβ), i.e. of large radius. We note, both from the orientation of the isolines and
the slopes of the fitted curves, that the influence of Rroot is stronger than the influence of
Rmin. These results confirm the observation made in [Alastruey et al. 2008] concerning the
Windkessel outflow model, stating that the resistance R1 essentially represents the impedance
of the terminal vessel whereas the resistance R2 characterizes the impedance of the distal
vascular bed.

Figure 6.16 describes how variations of Rroot and Rmin affect the values of the Windkessel’s
compliance C and inductance I. We observe that the compliance C increases only when
Rroot increases and remains constant when Rmin changes. Indeed, the variations of C are
accurately fitted using the functions:{

fRmin = a5 exp (−b5Rroot) + c5 for Rmin = cst and a5, c5 < 0, b5 > 0

fRroot = a6R
2
min + b6Rmin + c6 for Rroot = cst and a6, c6, b6 > 0.

(6.47)
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Figure 6.15 – Evolution of the Windkessel’s resistances R1 (top) and R2 (bottom) depending
on the values of Rroot and Rmin.
Left: Phase diagram where the marks (M, �, ?, ©) represent the data points used in
Figure 6.13.
Middle: Evolution of the Windkessels’ resistances with Rroot for fixed values of Rmin ∈
{30M, 50�, 70 ?, 90©}× 10 4. The dotted lines ( ) represented the fitted curves for each
value of Rmin using System (6.45) and System (6.46).
Right: Evolution of the Windkessels’ resistances with Rmin for fixed values of Rroot ∈ {5M,
15�, 25 ?, 35©}× 10 2. The dotted lines ( ) represented the fitted curves for each value
of Rroot using System (6.45) and System (6.46).

The resistance R1 decreases only when Rroot increases whereas the resistance R2 decreases
as Rroot and Rmin increase.

On the contrary, the inductance I exhibits a maximum for intermediate values of Rroot and
Rmin and its variations are accurately fitted using the functions:{

fRmin = a7R
2
root + b7Rroot + c7 for Rmin = cst and a7, c7 < 0, b7 > 0

fRroot = a8R
2
min + b8Rmin + c8 for Rroot = cst and a8, c8 > 0, b8 < 0.

(6.48)

Indeed, from System (6.15) we have C ∝
√
A0
K and I ∝ 1

A0
, which explains the previous

results.

Finally, we plot in Figure 6.17 the variations of the characteristic time of the Windkessel
model τ2

I /τC (see Equation (6.24)) with Rroot and Rmin. We observe that τ2
I /τC increases

with Rroot but remains smaller than the pulse period T = 1. This indicates that the
Windkessel and structured-tree models essentially behave as pure resistances, which is
expected as resistance is the essential behavior of any outflow model. This also means that
in the parameter range considered here, using a pure resistance outflow condition rather
than a Windkessel outflow condition generates a 10% error at the most (see Figure 6.11).
We note that for large radius values with Rroot ≈ 1, τ2

I /τC → T and the compliant and
inertial effects become significant.

The analysis conducted here allows us to conclude that the root radius Rroot is the most
influential parameter, as it dictates the values of R1, R2 and C. Fortunately, the radius Rroot
is not a parameter of the structured-tree outflow model but rather a geometrical parameter
of the numerical network considered. These results therefore indicate that the value of
Rroot must be correctly estimated from medical imaging data to prevent non-physiological
behaviors of the structured-tree outflow model. Variations of Rmin are also important as
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Figure 6.16 – Evolution of the Windkessel’s compliance C (top) and inductance I (bottom)
depending on the values of Rroot and Rmin.
Left: Phase diagram where the marks (M, �, ?, ©) represent the data points used in
Figure 6.13
Middle: Evolution of the Windkessel’s compliance and inductance with Rroot for fixed values
of Rmin ∈ {30M, 50�, 70 ?, 90©}×10 4. The dotted lines ( ) represented the fitted curves
for each value of Rmin using System (6.47) and System (6.48).
Right: Evolution of the Windkessel’s compliance and inductance with Rmin for fixed values
of Rroot ∈ {5M, 15�, 25 ?, 35©}× 10 2. The dotted lines ( ) represented the fitted curves
for each value of Rroot using System (6.47) and System (6.48).

The compliance C increases only when Rroot increases and the inductance I exhibits a
maximum for intermediate values of Rroot and Rmin.

they lead to small but significant variations of the resistance R2, which lead to small but
significant changes in the total resistance R1 + R2 and therefore in the value of pressure.
Indeed, a change by a factor of 2 in the pressure amplitude is significant when trying to
match experimental measurements.

77-artery network

To conclude the analysis on the structured-tree outflow model, we consider the 77-artery
network used in [Boileau et al. 2015] and originally presented in [Blanco et al. 2014, 2015],
representing the 55 principal arteries of the systemic circulation.

We do not use the 37-artery network presented in Subsection 6.3.5 as it is an
in vitro network. Therefore, its boundary conditions can not be represented
by structured-tree outflow conditions using the propagation law presented in
Subsection 6.4.1, as they are fitted to in vivo data.

As before, we impose the flow rate at the inlet and Windkessel outflow conditions at the outlet
of each terminal segment. However, the Windkessel parameters are now computed to match
an equivalent structured-tree outflow model using the algorithm described previously. The
geometrical and mechanical properties are found in [Boileau et al. 2015] and the boundary
and numerical parameters are described in Table 6.6, where we vary the cutoff radius Rmin
to assess its influence on the numerical results.
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Figure 6.17 – Phase diagram representing the value of the Windkessel’s characteristic time
τ2
I /τC depending on the values of Rroot and Rmin. The marks (M, �, ?, ©) represent the
data points used in Figure 6.13. The characteristic time τ2

I /τC is much smaller than the
pulse period T = 1, which indicates that the Windkessel and structured-tree models essentially
behave as pure resistances.

αST βST λST Rmin × 10 4 Nx x order ∆t t order

0.9 0.6 50 {100, 75, 50} 3 2 10 5 2

Table 6.6 – Numerical parameters used in the 77-artery network test case used in [Boileau
et al. 2015] and presented in [Blanco et al. 2014, 2015].

In Figure 6.18, we plot the time evolution of the pressure p and flow rate Q solutions obtained
in different arteries (Aortic Arch 1, Right Posterior Interosseus, Right Internal Iliac) with
the 1D point bifurcation model coupled to structured-tree Windkessel boundary conditions
computed with Rmin ∈ {100, 75, 50} × 10 4. These results are compared to numerical
solutions computed with a 1D finite volume model coupled to Windkessel boundary conditions
and presented in [Boileau et al. 2015]. We observe that in each artery, the pressure p levels
predicted by the structured-tree Windkessel outflow model are higher than those obtained
in [Boileau et al. 2015] with a Windkessel model, and, as expected, they increase when Rmin
decreases. On the contrary, the flow rate Q is correctly matched in both the Aortic Arch 1
and the Right Internal Iliac arteries, and the value of Rmin has very little influence on the
computed flow rates. An exception must be made for the flow rate computed in the Right
Posterior Interosseus, which is much lower than the one computed in [Boileau et al. 2015]
with Windkessel boundary conditions. In conclusion, the structured-tree Windkessel outflow
conditions generate different but overall similar results to those obtained the Windkessel
outflow condition.

The increased pressure levels obtained with the structured-tree Windkessel
outflow model can also originate from a high value of the input stroke volume.

6.5 Conclusion
In Chapter 6, we have studied what we refer to as network boundary conditions, that is
bifurcation and terminal boundary conditions. We have first proposed a control-volume
bifurcation model that we have compared to the classical point bifurcation model. We have
shown that in linear flow regimes, both model give identical results. In nonlinear flow regimes,
their behaviors differ due to the compliant and control-volume aspects of the control-volume
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Figure 6.18 – 77-artery network test case with structured-tree equivalent Windkessel bound-
ary conditions. Comparison between a 1D finite volume solution ( ) presented in [Boileau
et al. 2015] obtained with Windkessel boundary conditions and 1D point bifurcation solutions
obtained with structured-tree equivalent Windkessel boundary conditions using Rmin ∈ {100M,
75�, 50?} × 10 4 for the time evolution of the pressure p and the flow rate Q.
Top: Aortic Arch 1.
Middle: Right Posterior Interosseus.
Bottom: Right Internal Iliac.
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bifurcation model. We have then studied different 0D outflow models, namely the resistance
and the Windkessel, designed to represent the behavior of the vascular bed distal to a
terminal segment. In particular, we have shown that Windkessel model with well-chosen
parameters can accurately represent the frequency response of the structured-tree outflow
model.

We are now implementing the structured-tree outflow condition and trying to add a non-
Newtonian blood model to reduce the pressure in the structured-tree due to the Fahreus
and Fahreus-Lindquist effects [Pries et al. 1992].
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Chapter 7
Biomedical applications

We present here three biomedical applications where we use the one-dimensional blood
flow equations to provide insights on different medical problematic. We first propose
a didactic investigation of the origin of the dicrotic notch. We then study different
extracorporeal bypass graft treatments of a severe stenosis of the right Iliac artery (in
the leg). Finally, we analyze experimental data on aortic and iliac clamping. The text
in this chapter is greatly inspired from the following published articles:

• M.T. Politi, A.R. Ghigo, J.M. Fernández, I. Khelifa, J. Gaudric, J.-M. Fullana, and
P.-Y. Lagrée. The dicrotic notch analyzed by a numerical model. Computers in
Biology and Medicine, 72:54–64, 2016a;

• A.R. Ghigo, S. Abou Taam, X. Wang, P.-Y. Lagrée, and J.-M. Fullana. A one-
dimensional arterial network model for bypass graft assessment. Medical Engineering
& Physics, 2017a;

• M.T. Politi, S.A. Wray, J.M. Fernández, J. Gaudric, A.R. Ghigo, P.-Y. Lagrée,
C. Capurro, J.-M. Fullana, and R. Armentano. Impact of arterial cross-clamping
during vascular surgery on arterial stiffness measured by the augmentation index
and fractal dimension of arterial pressure. Health and Technology, 6(3):229–237,
2016b.
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Section 7.1. The dicrotic notch analyzed by a one-dimensional numerical model

7.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

7.1 The dicrotic notch analyzed by a one-dimensional numer-
ical model

7.1.1 Introduction

The dicrotic notch is a small and brief increase in arterial blood pressure that appears when
the aortic valve closes. This landmark has been widely referred to in the descriptive analysis
of the arterial waveform (especially of aortic and radial arteries) and is commonly used as an
equivalent of end-systolic left ventricular pressure [Dahlgren et al. 1991; Hébert et al. 1995].

Most medical textbooks explain the origin of the dicrotic notch as caused by the aortic
valve closure itself [Boulpaep et al. 2009; Guyton and Hall 2006; Mann et al. 2014; Pinsky
et al. 2006; Zundel et al. 2015]. These authors claim that towards the end of the ejection
phase, blood flow across the aortic valve falls to very low values, until it actually reverses,
producing a backflow that closes the aortic valve. As both flow and pressure are strongly
coupled, this momentary backflow would produce a small positive shift in the aortic pressure
trace. The dicrotic notch would therefore be the result of a short period of backward flow
of blood immediately before the aortic valve closes. Many studies support this theory and
have stressed that both events occur simultaneously [Higashidate et al. 1995; Hirschfeld et al.
1977].

On the other hand, there are clinical data that emphasize that the morphology of the dicrotic
notch is related to the value of mean arterial pressure and, therefore, to peripheral vascular
resistance [Chemla et al. 1996; Hébert et al. 1995]. Peripheral vascular resistance is mainly
influenced by the vascular tone of small distal arteries (diameter smaller than 500 µm), called
arterioles [Levy et al. 2005]. Pressure waves created by the heart travel through the arteries
and reflect back towards the heart at places with high-vascular tone (such as the arterioles)
and also at every vascular bifurcation [Marino 2013]. Hence, blood pressure waveforms
can be viewed as a large addition of the forward pressure waves generated by the heart
and the backward components due to multiple reflections, in particular, from the sites of
distal resistance [Latham et al. 1985; O’Rourke and Avolio 1980; Westerhof et al. 2006].
This backward component would modify the mean arterial pressure and also change the
morphology of the forward pressure wave, resulting in the creation of the dicrotic notch. The
speed of these reflected waves depends on the mechanical and geometrical characteristics
of the vessels [O’Rourke et al. 2002] but their amplitude depends directly on the value
of peripheral resistance, that is, on the degree of vasoconstriction or vasodilation of the
arterioles [Van den Bos et al. 1982; Westerhof et al. 1972]. In the following, the influence of
the peripheral resistance will be quantified by a reflection coefficient (Rt = Ra/Ia), which is
the ratio of the reflected amplitude (Ra) to the incident amplitude (Ia). Some authors state
that a high vascular tone also increases the speed of the reflected waves [Zundel et al. 2015].
We consider that this would only change the amplitude of the reflected waves, not the speed,
and will be addressing this matter in our experiments.

Based on this hypothesis, the presence of the dicrotic notch, created by the reflected waves,
would induce a secondary pressure peak in the aorta, interrupting the aortic pressure
downslope during end-systole. The increased pressure gradient between the aorta and the
left ventricle would be sufficient to create a momentary backflow and close the aortic valve
at higher diastolic levels, explaining why both the dicrotic notch and the aortic valve closure
occur at the same time. We have arguments to put forward that this second approach
responds to a better understanding of how the cardiovascular system actually works.
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Understanding the dicrotic notch as a result of reflected pressure waves suggests that this
landmark contains valuable information on the peripheral vascular network. We believe that
this is an important concept to underline in cardiovascular physiology courses; therefore we
present a teaching example that combines theoretical reasoning, numerical modeling and
human experimental data. We propose a 1D model to study the role of reflected waves
in the origin of the dicrotic notch, and compare the results from numerical simulations to
experimental data from adult patients.

7.1.2 Methods

Invasive arterial pressure measurements in representative patients

Experimental data were obtained from continuous invasive arterial pressure measurements
with a fluid-filled catheter from the right radial artery of adult patients undergoing peripheral
vascular surgery at the Hôpital Universitaire Pitié-Salpêtrière in Paris, France. The study
was approved by the IRB of the Hôpitaux Universitaires La Pitié-Salpêtrière, adheres to
the requirements of the U.S. Federal Policy for the Protection of Human Subjects (45 CFR,
Part 46), and is in accordance with the ethical principles of the Declaration of Helsinki. We
used a disposable pressure transducer (TruWave, Edwards Lifesciencesr) with a natural
frequency of 40 Hz for a standard kit, which has shown to be appropriate for measuring
blood pressure [Falsetti et al. 1974; Shinozaki et al. 1980]. Data were registered using an
analog-digital converter (MP150, BIOPAC Systems Inc.) and the AcqKnowledge software.
Data acquisition rate was 100 Hz.

Quantitative waveform analysis was done by measuring the time between the minimum value
of the original radial pressure wave and the peak value of the reflection wave. Additionally,
the relative time-position of the reflected wave within the pressure cycle (i.e., time between
the minimum value of the original pressure wave and the peak value of the reflection wave
divided by the overall cycle length) was studied to test the hypothesis of the reflection wave
traveling faster as a result of the increased vascular tone. Systolic and diastolic arterial
pressure values were computed from the maximum and minimum values of the original radial
pressure wave. The amplitude of the dicrotic notch was computed from the peak value of the
reflection wave. After defining a time window for each of these points by visual assessment,
exact locations were identified using the first time-derivative of the pressure signal (dp/dt).
Values were averaged over a 10 second interval. We compared data from before and after an
intravenous bolus of phenylephrine (50−100 µg), which is a selective alpha 1-receptor agonist
and thus a potent vasoconstrictor without any direct effect on heart rate and contractility.
A brief transitional period was allowed between one state and the other. To better compare
the dicrotic notch before and after the phenylephrine IV bolus, time was normalized to
the duration of one cycle and pressure was normalized to the nearest inflexion point before
the dicrotic notch (identified as the local minimum of the first time-derivative). Statistical
analysis involved paired-Student’s t-test (two-tailed) for before-after testing and independent
Student’s t-test (two-tailed) for comparisons among groups (α = 0.05) using R studio free
statistical software. Data are presented as mean ± standard deviation.

Theoretical reasoning and numerical model

The aim of the numerical model is to accurately describe the flow of blood in the systemic
network. In the previous chapters, we have shown that despite its simplification, the 1D
viscoelastic system of equations (3.23) contains all the necessary physical behaviors to
accurately describe blood flow in a network. The most important feature is its ability to
capture the propagation of waves along the arteries, as a result of the elastic properties (or
compliance) of the arterial wall, represented by the coefficient K in Equation (3.23b). As
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Rt = {0, 0.4, 0.8}
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Rt = 0 Rt = 0

A B C
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Figure 7.1 – Three different artery models used in our simulations.

A A human arterial network of 55 segments based on vascular nuclear magnetic resonance images. The
influence of the peripheral vascular bed was taken into account through terminal reflection coefficients (Rt),
which could be modified and, for the sake of simplicity, had the same value for all terminal segments.

B A single segment model considering one straight artery without bifurcations, where the terminal coefficient
(Rt) could be modified. The mechanical and geometrical parameters of this single segment were identical to
those of the aorta of the 55 arteries model and can be found in Table 7.1.

C A single bifurcation model formed of one parent artery that divides into two identical daughter arteries.
The geometrical and mechanical parameters of the parent artery were the same as the single artery model.
The two daughter arteries were identical and their parameters are presented in Table 7.2. The terminal
coefficient (Rt) of the daughter arteries were set to 0 in order to study the value of the reflection coefficient
(Rb) at the bifurcation, which could be modified.

these waves propagate in the network, the viscosity of the wall (described by the coefficient
Cν in Equation (3.23b)) and the viscosity of the fluid (described by the coefficient Cf in
Equation (3.23b)) are responsible respectively for the diffusion of the signal in the axial
direction and its attenuation. The model also describes the reflection of the waves at each
junction and terminal segment. The reflections occurring at junctions are characterized by
the coefficient Rb which depends on the geometrical and mechanical properties of the parent
and daughter arteries of the bifurcation. On the contrary, terminal reflection coefficients (Rt)
are imposed numerically. These terminal reflection coefficients are set to model the reflective
(or resistive) behavior of the peripheral vascular network. It is important to note that both
internal and terminal reflections play an important role in modifying the waveforms as they
propagate in the network.

In the following numerical computations, we used three different simplified models of the
systemic network (Figure 7.1). The first was taken from the literature and represents the 55
principal segments of the human arterial network, which is a simplified construction based
on vascular nuclear magnetic resonance images. The geometrical and mechanical parameters
for each of the 55 segments were taken from the literature [Wang et al. 2015]. For the sake of
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simplicity, the reflection coefficients for all terminal segments had the same value, Rt. The
second model describes a single artery. The mechanical and geometrical parameters of this
single segment are identical to those of the aorta of the 55 arteries model and can be found
in Table 7.1. The third model is a single bifurcation formed of one parent artery and two
daughter arteries. The geometrical and mechanical parameters of the parent artery are those
of the single artery model. The two daughter arteries are identical and their parameters are
presented in Table 7.2.

L R h E

20-100 1.47 0.163 4× 106

Table 7.1 – Geometrical and mechanical parameters describing the single artery network
model and the parent artery of the bifurcation network model.

The governing equations are solved using the finite volume method presented and validated
in Chapter 4.

L R h E

10 0.5 0.1 4× 106

Table 7.2 – Geometrical and mechanical parameters describing the daughter arteries of the
bifurcation network model.

7.1.3 Results

Experimental data

In order to test the hypothesis that the presence of the dicrotic notch is related to the
degree of peripheral vasoconstriction, we recorded the arterial pressure waveform registered
continuously from the arterial line of patients undergoing peripheral vascular surgery. Data
were taken from short, stable periods during the surgery, in which the only modification
introduced was the injection of an intravenous bolus of phenylephrine. No vascular clamping
or additional drug modifications were taking place at the time. Periodic oscillations in
pressure waves were due to respiratory variations, which may be emphasized in patients
under mechanical ventilation.

Figure 7.2 A shows data from Patient 1, an 81 year-old female smoker with arterial hy-
pertension undergoing abdominal aorta prosthetic replacement after the diagnosis of an
infrarenal abdominal aortic aneurysm. After an IV bolus of 100 µg of phenylephrine, not
only did the systolic arterial pressure increase significantly from 94.1/52.3 to 109.5/56.1
mmHg (p < 0.01), but also the peak value of the dicrotic notch became higher (56.2± 2.9
vs. 60.2 ± 2.8 mmHg; p < 0.01) (Figure 7.2 A; left and middle panels). To additionally
compare the dicrotic notch before and after the phenylephrine IV bolus, time was normalized
to the duration of one cycle and pressure was normalized to the nearest inflexion point
before the dicrotic notch. There was a statistically significant increase in the normalized
peak value of the main wave (1.28± 0.04 vs. 1.31± 0.03; p < 0.03) and in the normalized
peak value of the dicrotic notch (0.71± 0.01 vs. 0.76± 0.02; p < 0.01) after the IV bolus of
phenylephrine. The proportional increase in the normalized peak value of the main wave
(2%) was significantly smaller than the proportional increase in the normalized peak value
of the dicrotic notch (6%) (p < 0.01) (Figure 7.2 A; right panel). The time between the
minimum value of the original pressure wave and the peak value of the dicrotic notch did
not change after phenylephrine injection (0.40± 0.02 vs. 0.41± 0.03 s ; p < 0.35) nor did
the relative time-position of the dicrotic notch within the pressure cycle (0.69 ± 0.03 vs.
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A. Patient 1 

Before IV bolus of phenylephrine After IV bolus of phenylephrine Dicrotic notch close-up 

 
 

  

B. Patient 2 

Before IV bolus of phenylephrine After IV bolus of phenylephrine 

 
 

 

Figure 2. A. Left and middle panel: Invasive arterial pressure-time waves for Patient 1 undergoing 
abdominal aorta prosthetic replacement. Periodic oscillations in pressure waves were due to 
respiratory variations, which were enhanced due to mechanical ventilation settings. Initially the 
patient had a small dicrotic notch. Notice that, after an IV bolus of phenylephrine, the dicrotic 
notch increased its peak amplitude without changing its relative time-position within the pressure 
cycle. This could indicate that vasoconstriction induced by phenylephrine increases the amplitude 
of the dicrotic notch without modifying pressure wave travel time. Right panel: Comparison of 
mean pressure tracings over a 10-second interval before (continuous line) and after (dotted line) 
an IV bolus of phenylephrine with time normalized to the duration of one cycle and pressure 
normalized to the nearest inflexion point. B. Invasive arterial pressure-time waves for Patient 2 
undergoing a right femoral-popliteal bypass. Initially the patient had a monophasic waveform that 
lacked any noticeable dicrotic notch. After an IV bolus of phenylephrine, blood pressure increased 
significantly and waveform morphology changed, with the dicrotic notch interrupting the end of 
the diastolic slope. 
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Figure 7.2 –
A Left and middle panel: Invasive arterial pressure-time waves for Patient 1 undergoing abdominal aorta

prosthetic replacement. Periodic oscillations in pressure waves were due to respiratory variations, which
were enhanced due to mechanical ventilation settings. Initially the patient had a small dicrotic notch.
Notice that, after an IV bolus of phenylephrine, the dicrotic notch increased its peak amplitude without
changing its relative time-position within the pressure cycle. This could indicate that vasoconstriction
induced by phenylephrine increases the amplitude of the dicrotic notch without modifying pressure wave
travel time. Right panel: Comparison of mean pressure tracings over a 10-second interval before (continuous
line) and after (dotted line) an IV bolus of phenylephrine with time normalized to the duration of one
cycle and pressure normalized to the nearest inflexion point before the dicrotic notch. The proportional
increase in the normalized peak value of the main wave (2%) was smaller than the proportional increase in
the normalized peak value of the dicrotic notch (6%).

B Invasive arterial pressure-time waves for Patient 2 undergoing a right femoral-popliteal bypass. Initially
the patient had a monophasic waveform that lacked any noticeable dicrotic notch. After an IV bolus of
phenylephrine, blood pressure increased significantly and waveform morphology changed, with the dicrotic
notch interrupting the end of the diastolic slope.
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0.69± 0.04; p < 0.88). These results indicate that, after vasoconstriction, the dicrotic notch
only increases its amplitude; it does not appear earlier in the cycle.

Figure 7.2 B shows the arterial pressure waveform of Patient 2, a 56 year-old obese female
without any known history of heart disease, undergoing a right femoral-popliteal bypass.
Continuous invasive pressure measurements show that with an initial blood pressure of
124.5/82.4 mmHg the patient had a monophasic waveform that lacked any noticeable dicrotic
notch. After an IV bolus of 50 µg of phenylephrine, blood pressure increased significantly
up to 195.6/105.2 mmHg (p < 0.01) and waveform morphology changed showing a clear
dicrotic wave interrupting the end of the diastolic slope.

Since in both cases the only modification introduced between the two states was the addition
of a powerful and selective vasoconstrictor, phenylephrine, the presence (or the increased
amplitude) of the dicrotic notch could be attributed to an increase in the peripheral vascular
tone. These experimental results suggest that the presence and the amplitude of the dicrotic
notch are correlated with the value of peripheral resistance. Nevertheless, since we did
not measure cardiac output or pulse wave velocity, we cannot assure there is a causal
relationship between the two, based on our experimental data. Given the complexity of a
human experimental model, a theoretical model of the human vascular network is required
to explore the relationship between the amplitude of the dicrotic wave and the value of
peripheral resistance.

Numerical simulations

In order to explore the hidden mechanisms behind the relationship between the amplitude of
the dicrotic notch and vascular tone, while overcoming the difficulties of obtaining invasive
data from humans under different conditions, we propose a numerical model of the human
systemic arterial tree.

We first present the results obtained using the arterial network of 55 segments, then with the
single segment model considering one straight artery without bifurcations, and finally with a
single segment model with a bifurcation (one parent artery that divides into two daughter
arteries).

55-artery model Numerical simulations compute the flow rate (Q) and the pressure
(P ) at every chosen record point of the 55-artery vascular network. The time evolution of
these variables was studied in the proximal aorta, as to correlate with experimental data
from other studies. To study the influence of the shape of the signal as well as backflow,
three different inlet flow rate signals were considered in order: a parabolic signal without
backflow (normal), a parabolic signal with backflow (backflow), and a triangular signal
without backflow (triangular) (Figure 7.3). The amplitude of the different signals was set so
that the total volume of blood ejected during each cycle is identical for each input signal
considered. Backflow was simulated considering a maximum amplitude that is one fifth of
overall aortic flow (Qmax/5) and a period that is one sixth of overall aortic flow period (Tc/6),
which probably overestimates real values. Results show that for each inlet signal considered,
a terminal coefficient of Rt = 0 yields a monophasic pressure-time curve that perfectly
mirrors flow-time curves and lacks a dicrotic notch. On the other hand, a terminal coefficient
of Rt = 0.4 results in a clear dicrotic notch which interrupts the downward pressure slope.
An even higher terminal coefficient of Rt = 0.8 produces a higher dicrotic notch that is
overimposed on the first pressure wave.

These numerical results from entire network simulations suggest that
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Figure 7.3 – Numerical simulation of flow rate (Q) and pressure (P) time curves in the proximal aorta
of the 55-artery vascular network, using different terminal reflection coefficients (Rt).

A A terminal coefficient of Rt = 0 yields a monophasic pressure-time curve that practically mirrors flow-time
curves. Note that the dicrotic notch is undetectable.

B A terminal coefficient of Rt = 0.4 results in a clear dicrotic notch which interrupts the downward pressure
slope of the original pressure wave.

C A high terminal reflection coefficient of Rt = 0.8 produces a higher dicrotic notch that is overimposed on
the original pressure wave nearly at its peak.

Three different inlet flow rate signals are illustrated: a parabolic signal without backflow (normal), a parabolic
signal with backflow (blackflow), and a triangular signal without backflow (triangular). The presence of
backflow, as well as the shape of the inlet signal, modifies the shape but not the time-position of the dicrotic
notch.
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1. the presence and the amplitude of the dicrotic notch can be modified by simply changing
the terminal reflection coefficient

2. the presence of the dicrotic notch does not depend on the shape of the inlet flow signal.

Backflow in the aorta is not required to create a dicrotic notch. However, using different
inlet signals will modify the shape of the dicrotic notch, since the reflected waves will not be
the same.

These results are in good accordance with our hypothesis that inlet backflow does not create
the dicrotic notch by itself. In the following simulations, we will therefore consider only
parabolic inlet signals without backflow.

Single segment model without bifurcations In real experiments as well as in numerical
simulations using the 55-artery model, it is difficult to understand the underlying mechanism
responsible for the creation of the dicrotic notch, since so many effects come into play. To
simplify the problem, we used a very reduced model of the 55-artery network, considering
only one artery without bifurcations. In this situation, the variables of interest that influence
wave morphology (such as terminal reflection (Rt) coupled with classical compliant (K),
viscous (Cf ) and viscoelastic (Cν) effects) can be easily modified, identified and therefore
studied. We sought to evaluate the influence of each of these variables on the dicrotic notch
through numerical simulation.

We computed the pressure-time curve of a single-beat impulse in arteries of different lengths
(L = 100 cm, 60 cm, 40 cm, 20 cm) and plotted these curves in the same figure. We chose
this strategy because the reflection waves resulting from the original pressure wave can be
clearly identified in single-beat simulations. Likewise, individual reflection waves can be
easily pointed out in longer vessels, since the increased vessel length prolongs the traveling
time between the original pressure wave and the reflection point, separating the waves
apart. Regardless of the overall length of the artery, the signal was always measured in the
same location (i.e., at 15 cm from the beginning of the artery). Since the heart signal is
periodic and has two phases (systole and diastole) and ejection occurs only during systole,
we considered that ejection time was half the pulse period by supposing that each phase
occupies half of the entire pulse period and that the systolic phase is mainly occupied by the
ejection period (which is only slightly different from physiologic findings).

Pure wave propagation

We considered first a pure wave propagation, suppressing all source of attenuation and
diffusion (meaning that no viscous or viscoelastic effects were taken into account, that is,
both coefficients Cf and Cν = 0), with a pulse period of 0.1 s (i.e., ejection time= 0.05 s). We
initially considered a reflection coefficient (Rt) of 0. As expected, our simulation showed a
single original pressure wave, that was identical regardless of the vessel length, and no reflected
waves (Figure 7.4 A). When we increased the reflection coefficient up to Rt = 0.4 (Figure 7.4
B), two additional reflected pressure waves appeared, which had identical amplitudes but
were recorded at different times for each vessel length. These two waves are the result of
the reflection of the original pressure wave at the end of the artery and the reflection of
the first reflected wave at the beginning of the artery. In shorter vessels the two reflection
waves are much closer to the original pressure wave than in longer vessels (e.g., compare the
reflection waves from the 60 cm vessel and the 100 cm vessel). As the length of the artery
decreases, the two reflection waves move closer and closer to the original pressure wave, since
the first reflection wave is traveling a smaller distance at the same speed. Eventually, at
very short vessel lengths, the two reflection waves merge together with the original wave by
forming a notch (i.e., the 20 cm vessel). This clearly shows how the final morphology of the
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Figure 7.4 – Pressure-time curve of a single beat impulse in a one-artery model without bifurcations,
measured at 150 mm from the beginning of the artery, in arteries of different lengths. These simulations
considered a pulse period of 0.1 s and only pure wave propagation.

A Considering a reflection coefficient of Rt = 0, our simulation shows a single original pressure wave that is
similar regardless of the vessel length, and no reflected waves at all.

B At an Rt = 0.4, our simulation shows two reflected waves that are much closer to the original pressure
wave in shorter vessels than in longer vessels (e.g., compare the reflected waves from the 60 cm vessel and
the 100 cm vessel). Eventually, at very short vessel lengths, the two reflection waves merge together with
the original wave by forming a notch (i.e., the 20cm vessel).

C At an Rt = 0.8 our simulation shows that by increasing the reflection coefficient, only the amplitudes of
the waves change. The reflected waves do not get closer to one another or to the original pressure wave,
indicating that they do not change their propagation velocity.
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pressure-time waveform is the addition of the original pressure wave and several reflection
waves. When we increased again the reflection coefficient up to Rt = 0.8 (Figure 7.4 C),
the pressure-time waveform was similar to Figure 7.4 B but had a higher amplitude. It
is important to note that by increasing the reflection coefficient, only the amplitudes of
the waves change. The reflected waves do not get closer to one another nor to the original
pressure wave, that is, they do not increase their propagation velocity: the waves arrive at
15 cm at the same time, regardless of the reflection coefficient.

These numerical simulations show that the reflection waves originated at the terminal
reflection site can create a notch on the original pressure and that the amplitude of these
waves depends on the value of the terminal coefficient (Rt).

Up to this point, we have considered a pulse period of 0.1 s, since this allows us to identify
individual waves more easily. Nevertheless, this would imply a heart rate of 600 beats per
minute. A pulse period of 0.8 s would be a more realistic approach, yielding a heart rate of
75 beats per minute. Pressure–time curve simulations considering a pulse period of 0.8 s (i.e.,
ejection time = 0.4 s) show that, once again, reflected waves disappear when the terminal
reflection is zero (Figure 7.5 A) and increase in amplitude as the terminal reflection does
(Figure 7.5 B and C). With a longer pulse period, the reflected waves merge with the original
pressure wave even in vessels with long lengths (e.g., in the 60 cm vessel they are almost
completely merged together) (Figure 7.5 B) and the individual elements of these pressure
waves are harder to point out.

Considering only the propagation of a wave without viscous attenuation or viscoelastic
diffusion, we were able to show that in the scope of our experiments, it was possible to
form a dicrotic notch through positive interactions between reflected waves originated at
the terminal reflection site and the original pressure wave. Furthermore, we showed that
when considering a realistic pulse period of 0.8 s, the interactions between the forward and
backward traveling wave were strengthen.

Viscous and viscoelastic effects

The influence of viscous and viscoelastic effects (respectively governed by the coefficients Cf
and Cν) was added in the following series of simulations. Once again, we considered a pulse
period of 0.1 s in order to compare with pure wave propagation curves. Figure 7.6 A shows
that with a reflection coefficient (Rt) of 0 there is a single original pressure wave and no
reflected waves. Figure 7.6 B and C represent numerical solutions for reflection coefficients
(Rt) of 0.4 and 0.8, respectively, and we observe reflected waves that have higher amplitude
for higher reflection coefficient. In comparison to pure wave propagation, the reflected waves
merge with the original pressure wave at longer lengths (e.g., in the 40 cm vessel) when
influenced by viscous and viscoelastic effects.

These simulations show that the presence of viscosity and viscoelasticity “smoothens the
curves out”, resulting in the overlap of waves that previously were identified as individual
elements when considering only pure wave propagation. These results show that, when
considering viscous and viscoelastic effects, the overlap between waves is greater but still
dependent on the reflection terminal coefficient.

Changes in elasticity

The effects of changing the vessel elasticity (E) were studied using the same single artery
model as before, this time with a length of 60 cm. Figure 7.7 A indicates how, as the
elasticity increases, the incoming pressure wave appears earlier (since the propagation speed
is increased) and reaches higher values; however since the reflection coefficient (Rt) is 0, the
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Figure 7.5 – Pressure–time curve of a single beat impulse in a one-artery model without bifurcations
measured at 15 cm from the beginning of the artery, in arteries of different lengths. These simulations
considered a pulse period of 0.8 s and only pure wave propagation.

A At an Rt = 0, once again our simulation shows a single original pressure wave that is similar regardless
of the vessel length, and no reflected waves at all.

B At an Rt = 0.4 and a longer pulse period than in Figure 7.4, our simulation shows two reflected waves
that merge with the original pressure wave even in vessels with long lengths (e.g., in the 60 cm vessel they
are almost completely merged together).

C At an Rt = 0.8, by increasing the reflection coefficient, the amplitudes of the waves change. With a longer
pulse period, the individual elements of these pressure waves are harder to point out.
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Figure 7.6 – Pressure–time curve of a single beat impulse in a one-artery model without bifurcations
measured at 15 cm from the beginning of the artery, in arteries of different lengths. These simulations
considered a pulse period of 0.1 s and the influence of viscous and viscoelastic effects on wave propagation.

A At an Rt = 0 our simulation shows a single original pressure wave that is similar regardless of the vessel
length, and no reflected waves.

B At an Rt = 0.4, in comparison to pure wave propagation, reflected waves merge with the original pressure
wave at longer lengths (e.g., in the 40 cm vessel).

C . At an Rt = 0.8 the compliant effect of viscoelasticity “smoothens the curves out”, resulting in the
overlap of waves that previously were identified as individual elements when considering only pure wave
propagation.
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Figure 7.7 – Pressure (p) time curves of a single beat impulse in a one-artery model without bifurcations
measured at 15 cm from the beginning of an artery with a length of 60cm. These simulations considered a
pulse period of 0.1 s and only pure wave propagation.

A Considering a reflection coefficient (Rt) of 0 – therefore, in the absence of reflection waves – increases in
vessel elasticity (E) raised the propagation speed but did not create a dicrotic notch.

B Considering a reflection coefficient (Rt) of 0.4, reflection waves appear. An increase in the vessel’s
elasticity (E) increased the amplitude and the propagation speed of both the original pressure wave and the
reflected wave, which therefore appear earlier.

C Considering a reflection coefficient (Rt) of 0.8, reflection waves increased their amplitude and reduced
their timing.
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Figure 7.8 – Pressure–time curve of a single beat impulse in an artery model with bifurcations, measured
at 15 cm from the beginning of the parent artery, in arteries of different lengths. These simulations considered
a pulse period of 0.1 s, a bifurcation reflection coefficient (Rb) of 0.4 and only pure wave propagation. Our
simulation is identical to that obtained for the single-artery model without bifurcations (Figure 7.4 B) and
demonstrates that internal reflection can also play an important role and influence the shape of the dicrotic
notch.

shape of the signal remains the same and does not form a dicrotic notch. Figure 7.7 B and
C consider a reflection coefficient (Rt) of 0.4 and 0.8, respectively; thus reflected waves now
appear and modify the shape of the signal, creating a dicrotic notch. In both these figures,
vessels with a higher elasticity have higher and earlier reflected waves.

These results suggest that an increase in the vessel elasticity could change the overall
morphology of the wave by increasing the propagation speed and therefore changing the
timing of interaction between the incoming and the reflected waves. However, this depends
on the creation of reflected waves, which are caused by terminal reflections – and not changes
in elasticity.

Single segment model with a bifurcation

As we mentioned previously, reflection can also occur at vessel bifurcations. We considered
only one parent artery that divides into two daughter arteries. We studied the pressure-
time curve of a single-beat impulse in parent arteries of different lengths (100 cm, 60 cm,
40 cm and 20 cm), keeping the geometrical and mechanical properties of the two daughter
arteries constant. Furthermore, we set the reflection coefficients at the end of the daughter
arteries to zero (Rt = 0), ensuring that if a reflection occurred, it could only come from the
bifurcation. The value of the reflection coefficient produced by the bifurcation depends on
the geometrical and mechanical properties of the parent and the two daughter arteries, and
in the configuration we consider its value is Rb = 0.4. Regardless of the overall length of the
artery, the signal was always measured in the same location (i.e., at 15 cm from the beginning
of the parent artery) and a pulse period of 0.1 s (i.e., ejection time= 0.05 s) was used. As
for the single-artery model without bifurcations, we considered only pure wave propagation
(Figure 7.8). The results presented in Figure 7.8 are identical to those obtained for the
single-artery model without bifurcations with a non-zero reflection coefficient (Figure 7.4
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B). Hence we demonstrated that internal reflection could also play an important role in the
reflective behavior of the network and influence the shape of the dicrotic notch.

7.1.4 Discussion

Although the dicrotic notch withholds valuable information on cardiovascular hemodynamics,
medical textbooks and literature explain its origin in very different ways, often leading to
divergent interpretations among medical professionals.

We have shown through both numerical simulations and experimental data from adult
patients that reflected waves may have a role in the origin of the dicrotic notch. Our
results also suggest that increases in peripheral resistance increase the amplitude but not
the propagation speed. A commonly considered etiology of the dicrotic notch is that it is a
manifestation of aortic valve closure [Boulpaep et al. 2009; Guyton and Hall 2006; Mann
et al. 2014; Pinsky et al. 2006]. However, this explanation could be incomplete. While the
closure of the aortic valve generates a transient reversal of blood flow in the aorta which can
contribute slightly to the shape of the notch (Figure 7.3), the only reasonable explanation for
the aortic valve to close at all is the presence of a pressure gradient in that direction. This
pressure gradient may be caused by the declining ventricular pressure during diastole and by
the transient increase in aortic pressure caused by reflection waves, commonly referred to as
the dicrotic notch. We therefore believe that even though the appearance of the dicrotic
notch is simultaneous to the aortic valve closure, this explanation on its own may not be
enough, and could be a lost chance for reinforcing important hemodynamic concepts.

Other authors do recognize the role of reflected waves in the origin of the dicrotic notch,
but consider that a rise in the value of the reflection coefficient increases not only the
amplitude of the reflection waves but also the speed at which they travel Zundel et al. [2015].
Our experiments in patients undergoing vascular surgery show that after an IV bolus of
phenylephrine the dicrotic notch either appeared if it was previously absent or it increased
its amplitude if it was previously present (Figure 7.2). Nevertheless, in our experiments
the relative time-position of the reflection wave in the overall pressure wave cycle remained
unchanged. Although our experimental data have some limitations, since continuous pressure
was not recorded using a high-fidelity transducer (only a fluid-filled system) and did not asses
other variables in the cardiovascular system (such as cardiac output, pulse wave velocity or
vasoactive responses), these findings are in accordance with our numerical simulations and
with the concept that the speed at which pressure waves travel in a vascular network depends
only on the structural characteristics of the network. For example, in elderly patients with
vascular stiffening, reflected waves may move faster and reach the original arterial pressure
waveform before it has time to decrease, which causes an amplification of the systolic pressure
and, as a consequence, isolated systolic hypertension. This clinical condition illustrates
clearly how changes in vascular elasticity can have an influence on the time-position and the
amplitude of the dicrotic notch. Indeed, several studies have used the dicrotic notch as a
time-reference point to measure pulse wave velocity and as an indicator of arterial stiffness
[Hermeling et al. 2009, 2010]. However, our results suggest that this effect would be greatly
influenced by modifications in reflected waves, as shown in Figure 7.7, where, in the absence
of reflected waves, changes in elasticity do not generate a dicrotic notch.

This problem was approached using a 1D model, which has been previously used to study
the effects of reflected waves on vascular networks both numerically [Alastruey et al. 2009;
Segers et al. 1997] and experimentally [Khir and Parker 2002; Borlotti et al. 2014; Matthys
et al. 2007; Murgo et al. 1980]. Alastruey et al. used this method to conclude that the
dicrotic notch is a combination of several mechanisms –mainly left ventricle outflow, arterial
junction reflections and aortic valve closure. However these results were obtained through a
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linear model that did not include viscoelasticity, complementary experimental data, or a
systematical study of the dicrotic notch [Alastruey et al. 2009]. Mynard et al. also studied
arterial wave reflections using a 1D model, this time introducing a heart model [Mynard and
Nithiarasu 2008]. However these authors did not systematically study the dicrotic notch
either. These previous studies support the accuracy of this modeling approach for wave
reflection analysis. The main contribution of our research is the systematical study of the
role of reflected waves in the origin of the dicrotic notch, starting from experimental data
from adult patients, and then complementing our analysis with data from a 1D numerical
model – first with a 55 artery model and then with a single artery, progressively making the
system simpler.

There are some limitations in the 1D numerical model. First, it does not include a heart
model, so it does not take into account any feedback between the heart and the vascular
network. A possible solution for this problem could be the heart model pro- posed by Mynard
et al. [Mynard and Nithiarasu 2008]. Second, the arterioles, capillaries and veins are all
simulated by the terminal reflection coefficient (Rt). A more accurate alternative would be
to use a Windkessel model to estimate systemic resistance and characteristic impedance,
with the additional costs in complexity.

Both our experimental and numerical data show that increased vasoconstriction is related
to a higher dicrotic notch. This study is proof of concept that the dicrotic notch is mainly
determined by the reflection waves and their characteristics.

We propose these experimental and numerical examples as a conceptual and educational tool
to illustrate how changes in reflection waves can produce modifications in the morphology of
the dicrotic notch.
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7.2 A one-dimensional arterial network model for bypass graft
assessment

7.2.1 Introduction

Arterial diseases such as stenoses are frequent clinical pathologies, and their prevalence is
evaluated from 3% to 10% in the global population with a significant growth from 15% to
20% in persons over 70 years old [Norgren et al. 2007]. Stenoses correspond to the partial or
total obstruction of an artery and can cause symptoms going from intermittent claudication
to severe ischemia. These symptoms result from a decrease in blood supply as the diseased
vessel providing vascularization is narrowed or occluded. When untreated, stenoses can have
severe consequences and can lead to the amputation of the stenosed member, especially
when they occur in the arteries of the lower members, such as in the Iliac arteries.

When the symptoms are too severe or when medical treatment fails, surgery is necessary to
restore blood flow downstream of the stenosed member. This can be done by angioplasty
stenting, where the obstructed segment is replaced by a prosthesis (stent) during an endovas-
cular substitution surgery. An alternative solution consists in inserting a bypass graft to
redirect the flow of blood from a healthy artery to bypass the obstructed vessel and restore
blood flow downstream of the stenosis. In both cases, the mechanical role of these grafts or
conduits is to replace or bypass vessels that have become occluded or severely obstructed by
a disease process [Abbott et al. 1993].

Numerical studies of local endovascular graft replacements have been reported previously (e.g.,
[Marchandise et al. 2009; Willemet et al. 2013]). We propose to study instead extracorporeal
bypass graft procedures. To do so, we consider a detailed model of the systemic network
which presents a stenosis of the Right Iliac artery. In this pathological case, the most
common bypass graft configurations are: Aorto-Femoral, Axillo-Femoral and cross-over
Femoral, defined by the combination of the name of the healthy or donor artery (Aorto for
Aorta, Axillo for Axillary and cross-over for the opposite artery, the Left Femoral Artery)
and the name of the receptor artery, in our case the Right Femoral artery which follows
distally the narrowed site.

The aim of this section is to use the 1D model (3.23) to compute blood flow in each segment
of the considered model network before and after extracorporeal bypass graft surgery. To help
clinicians optimize surgical repair, we evaluate the viability of each bypass graft by computing
the flow rate and pressure downstream of the stenosed member, which is an a posteriori
evaluation of the quality of the surgery. Clinicians often prefer the Aorto-Femoral bypass
graft. However, for weak patients who can not tolerate the aortic clamping required to insert
the Aorto-Femoral bypass graft, the preferred solution is an extra-anatomic Axillo-Femoral
bypass graft [Appleton et al. 2010]. Furthermore, it has the shortest graft survival time
among the three previously named bypass grafts ([Greenwald and Berry 2000; Musicant et al.
2003]). We therefore study in detail the optimization of the geometrical and mechanical
characteristics of the Axillo-Femoral bypass graft. We hope that this numerical approach will
be used in the future to define the optimal parameters of new prosthesis and help clinicians
plan surgeries.

In the following, we present the numerical model and the model arterial network, as applied
to the study of flow through three different arterial bypass graft configurations, along
with the results of a parametric study of the Axillo-Femoral bypass graft. We propose
only hemodynamic predictions based on fluid mechanics equations, regardless of biological
phenomena and their consequences. Nevertheless, we are aware that short term graft failures
can be caused by infections or hemorrhages, while long-term failures are the result of intimal
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hyperplasia of the graft site, with a proliferation and a migration of vascular smooth muscle
cells near the arterial wall [Greenwald and Berry 2000].

7.2.2 Numerical model

To compute the hemodynamics in an artery, we use the one-dimensional (1D) viscoelastic
blood flow equations (3.23). The network used in the numerical simulations is constructed
by connecting different arterial segments together using the point junction model described
in Subsection 6.2.1. To drive the flow through the network, we prescribe inlet and outlet
boundary conditions. These boundary conditions are:

1. an imposed physiological flow rate at the inlet of the ascending aorta;
2. reflection coefficients imposed at the outlet of each terminal segment and characterizing

the resistance of the vascular bed that is not taken into account in our model. Theses
values are given in the last column of the table presented in [Ghigo et al. 2017a].

The input flow rate signal we use in the numerical simulations is:

Q =




Qmax sin

(
2π

T
t

)
if t ≤ T

2

0 else ,
(7.1)

where T is the period of the heart cycle. To define the maximum flow rate Qmax, we
introduce the ejection fraction EF , defined as:

EF =
EDV − ESV

EDV
× 100, (7.2)

where EDV is the End Diastolic Volume and ESV is the End Systolic Volume. Healthy
patients typically have an EF between 50% and 65%. On the contrary, people with heart
muscles damages (principally on the myocardium) have a low EF . The ejected volume
Ve = EDV − ESV during one period is computed by integrating Q(t) over one period,
which gives here:

Ve = Qmax
T

π
. (7.3)

Finally we have:

Qmax = EF π
EDV

T
, (7.4)

and we can now define Qmax, for a given period T and a given EDV as a function of EF .
With this approach we propose a simple heart model that allows us to define a pathological
heart by reducing EF . This behavior is physiologically meaningful if in the case of a
pathological heart, the system reacts by either increasing EDV by expanding the muscle
fibers or by reducing the period T by increasing the cardiac rhythm.

7.2.3 Numerical methods and results

In this section we present the numerical protocol and detail the numerical results obtained
with the healthy network, the pathological network presenting an obstruction of the Right
Iliac artery and the pathological network treated with three different bypass grafts (Axillo-
Femoral, Femoral-Femoral and cross-over Femoral bypass grafts). The numerical protocol is
the following:

1. we first simulate blood flow in a healthy network (Figure 7.9 (a)). We use the computed
numerical data as the target blood flow we compare the other numerical results to;

2. we then build the pathological network by narrowing the cross-sectional area of the Right
Iliac artery (Figure 7.9 (b)). As we record all hemodynamic variables everywhere in the
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network for different degrees of obstruction of the stenosis, we are able to observe the
global changes depending on the degree of obstruction;

3. we finally build three repaired networks by introducing in the pathological network the
Axillo-Femoral, Femoral-Femoral and cross-over Femoral bypass grafts using elastic tubes
inserted between the donor and the receptor arteries of each bypass graft (Figure 7.9 (c)
for the Axillo-Femoral, the other two are presented in Figure 7.11). We then compare
the numerical results obtained with the three repaired networks to those obtained with
pathological and healthy networks.

The key points of clinical repair are:

1. first the ability of the bypass graft to restore blood flow in the previously non-perfused
region (here the network downstream of Right Femoral artery, number 52 in Figure 7.9);

2. second, ensuring that the repair does not ill-balance the rest of the hemodynamic circula-
tion.

In the following, both key points are systematically tested for each repaired network.

Healthy case

The healthy network we consider represents the principal arteries of the great circulation
(55 segments). It is used in the literature as the basic model of the systemic network. Its
topology is presented in Figure 7.9 (a), where every artery is given a number (ID) useful
to understand the numerical results. Each artery of the healthy network is described by
geometrical and mechanical parameters adapted from [Sherwin et al. 2003a] and presented
in the table in [Ghigo et al. 2017a]. Compared to [Sherwin et al. 2003a], we have added a
viscoelastic term to the wall model. This viscoelastic term exists in physiological conditions
and is very important from the hemodynamic point of view [Alastruey et al. 2011; Wang
et al. 2016b]. Without it, high frequency components would be present in the pulse wave
signal [Wang et al. 2016b]. In the literature on 1D network models, this viscoelastic term is
usually not included as its coefficients are hard to evaluate experimentally. Here, we use the
work of [Armentano et al. 1995], where the viscosity of the aortic walls of dogs was modeled
by a Kelvin-Voigt model and where the values of φ range between 3.8± 1.3× 103 Pa · s and
7.8± 1.1× 103 Pa · s. Hence, in all numerical simulations we assume φ = 5× 103 Pa · s to
calculate the coefficient Cv.

The flow in each arterial segment is computed using the 1D numerical model presented in
Chapter 4. The simulations are performed over 10 heart periods T . Any data we present is
taken from the final period to ensure that a permanent state is reached, where each heart
period is identical to the next. The recorded data for the healthy network contains the values
of the blood flow rate Qhealthy, the cross-sectional area Ahealthy and the blood pressure
Phealthy in every artery and at every recorded time of the final period. These numerical
results are the target values we use from now on to evaluate the severity of the pathological
situation with respect to the healthy reference case and to assess the curative properties of
each bypass graft.

Pathological case

Numerical protocol We model the stenosis by narrowing the cross-sectional area of a
portion of the Right Iliac artery (number 50 in Figure 7.9 (b)). The length of the occlusion
is 5 cm and the degree of obstruction is directly related to the ratio of the cross-sectional
area of the stenosed artery A% over the cross-sectional area of the healthy artery Ahealthy.
We define this ratio as:

Is =
Ahealthy −A%

Ahealthy
× 100. (7.5)
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Figure 7.9 – Arterial tree. (a) "Healthy" network. (b) Pathological network. (c) "Repaired"
network. The pathological network (b) is modeled by narrowing the cross-sectional area of
the Right Iliac artery (number 50, green) and the extracorporeal bypass graft by an elastic
tube (purple). In each segment, a 1D model of fluid flow with viscoelastic wall is solved
numerically. The flow is imposed by given heart pulses, with a realistic reflection coefficient
at the end of each terminal arteries. The geometrical and mechanical data used in numerical
computations are presented in the table in [Ghigo et al. 2017a].

The data presented here were obtained before the development of the well-
balanced methods presented in Chapter 5. The stenosis is therefore not treated
with a well-balanced method. It is created by dividing the artery into three
parts (2 healthy, 1 stenosis) connected with the point junction model.

Four control sites are chosen to evaluate the hemodynamical influence of the stenosis on the
flow rate and pressure waveforms. Two are located in the lower legs, in the Right Femoral
artery (number 52) and in Left Femoral artery (number 46). The other two are located
in the arms, in the Right Subclavian artery (number 7) and in the Left Subclavian artery
(number 21). The Right Femoral artery (number 52) is the principal assessment point of
our numerical study as the flow rate passing through it characterizes the leg’s perfusion
and therefore the degree of ischemia. The other control sites (Left Femoral, Left and Right
Subclavian) are used in clinical routines to evaluate if a bypass graft surgery is successful.

Results Figure 7.10 (a) shows the variation with the degree of obstruction Is of the blood
flow rate Q averaged over the final period at the four previously defined control sites. The
first observation is that under 60% to 70% of obstruction there is no significant variation of
flow rate with respect to the healthy state (Is = 0%). This behavior is well known in the
medical community (i.e. renal arteries in pigs and human carotid arteries [Lanzino et al.
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Figure 7.10 – (a) Flow rate averaged over a cycle as function of the obstruction degree Is
for the following arteries: Right Femoral, (number 52), Left Femoral, (number 46), Right
Subclavian (number 7) and Left Subclavian, (number 21). As the ratio Is increases, the flow
rate drops in the Right Femoral artery, distal to the stenosis, whereas the flow rate increases
in all other segments to compensate this drop. (b) Instantaneous flow rate as function of
time over a cycle in the Right Femoral artery (number 52) for different degree of obstruction.
As the ratio Is increases, the waveform looses its pulsatility and flattens and the average flow
rate drops.

2009; Rognant et al. 2010]). Above 70% of obstruction, the flow rate drastically decreases in
the Right Femoral artery (number 52) due to the obstruction of its proximal artery, the Right
Iliac artery (number 50). We note that for an occlusion of 90% there is almost no blood flow
in the Right Femoral artery (number 52). Conversely, the flow rate moderately increases in
the other control sites to compensate for the reduction of flow rate in the network distal to
the stenosis. This as a clear example of how we can monitor global variations in the network
caused by a local perturbation.

Figure 7.10 (b) presents the time evolution of the blood flow rate Q over the final period in
the Right Femoral artery (artery 52). These results are correlated to those of Figure 7.10
(a) but provide additional information: first, as expected, the flow rate decreases in average
as the ratio Is increases; second the positions of the maximum and minimum peaks are
shifted, due to a time shift in the traveling waves; third the maximum amplitude decreases
significantly as the ration Is increases and we observe that for Is = 70% the amplitude drops
by 30% and for Is = 80% it drops by 60%. For Is = 90%, the amount of blood perfusion
in the leg is minimal and the waveform is a flat line. This last point indicates that as the
degree of obstruction Is increases, the signal looses its pulsatility and flattens.

Bypass grafts

Numerical protocol We study here the three most commonly used bypass grafts to treat
a stenosis of the Right Iliac arteries: the Axilo-Femoral (AxF) where the donor artery is the
Axillary artery (artery 7), the cross-over Femoral (FF) where the donor artery is the opposite
Common Femoral artery (artery 44) and the Aorto-Femoral (ArF) where the donor artery is
the Abdominal Aorta (artery 39). Each bypass graft is connected to the pathological network
using two connection points: the proximal anastomosis, connecting the bypass graft to the
donor artery, and the distal anastomosis, linking the bypass graft to the receptor artery.
For each of these three bypass grafts, the distal anastomosis is located downstream of the
stenosis, in the distal part of the Right Iliac artery (artery 50). In Figure 7.11 we represent
the topology of the three different pathological network treated with a bypass graft.

Each bypass graft we study is made of the same composite material which is constituted
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Figure 7.11 – Sketch of three bypasses with the donor artery : (left) Axillo-Femoral (AxF)
and donor artery, Right Axillary artery (number 7), (center) cross-over-Femoral (FF) and
donor artery, Left Femoral artery (number 44) and (right) Aorto-Femoral (ArF) and donor
artery, Abdominal Aorta (numer 39).

principally of polyethylene terephthalate (Dacron). From the literature [Sarkar et al. 2006],
we obtain their mechanical and geometrical characteristics, that is a Young’s modulus equal
to 9 × 106 Pa, an internal diameter of 0.8 cm and a thickness of 0.05 cm. The length L
of each bypass graft depends on the geometric distance between the proximal and distal
anastomoses: Axillo-Femoral, 40 cm, cross-over-Femoral, 20 cm and Aorto-Femoral, 20 cm.

To assess the performances of each bypass graft, we define three control sites where we
compare the healthy, pathological and repaired data. The first is located in the Right
Femoral artery (number 52), downstream of the stenosis and the distal anastomosis, and is
identical to the control site used previously to analyze the pathological network. The second
and third control sites are respectively situated in the upstream and downstream segments
of the proximal anastomosis.

Results For each bypass graft we first study the predicted perfusion hemodynamics in the
first control site located downstream of the stenosis, in the Right Femoral artery (number 52).
Figure 7.12 (a) presents the evolution with the degree of obstruction Is of the time-averaged
blood flow rate in the pathological network (same as Figure 7.10 (a) for the artery 52) and in
the three repaired networks obtained using the AxF, ArF and FF bypass grafts. Figure 7.12
(b) shows the temporal evolution of the blood flow rate over the final heart cycle for Is = 90 %.
These figures should be compared to Figure 7.10 (a) and Figure 7.10 (b). We observe in
Figure 7.12 (a) that for all three bypass grafts configurations, we retrieve in average the
blood flow rate of the healthy case for every value of Is considered. Figure 7.12 (b) indicates
that the repaired waveforms are similar to the target healthy ones, although the amplitudes
of the peaks are slightly underestimated. The delay in the position of the maximum and
minimum flow rate peaks is caused by a change in the length of vessel traveled by the wave
starting from the heart. Overall we retrieve for all three bypass graft configurations the
target average blood flow rate as well as the approximate shape of the waveform. From the
analysis of Figure 7.12 we conclude that all three bypass graft are successful in retrieving the
healthy flow rate in the first control site distal to the obstructed segment (Right Femoral
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Figure 7.12 – (a) Averaged flow rate over a cycle as function of the degree of obstruction
Is (Artery 52 : Right Femoral) (b) Instantaneous flow rate as function of time over a cycle
(Artery 52 : Right Femoral) for healthy, pathological with Is = 90% and for the three bypasses.
We observe that for all three bypass graft configurations, we are able to recover the target
healthy flow rate (average values and waveform) distal to the stenosis.

artery 52).

We complete our study by analyzing the time-averaged blood flow rate in each donor artery.
In the subsequent numerical results we focus on the remaining two control sites: the upstream
and downstream segments of the proximal anastomosis, which differ from one bypass graft
configuration to the next. We expect that each bypass graft will supply the missing blood
flow rate to the diseased lower leg (Right Femoral artery 52) whilst maintaining a healthy
perfusion in the donor site (downstream segments of the proximal anastomosis).

For the FF bypass graft the donor artery is the opposite Femoral artery (Left Femoral artery,
number 44 in Figure 7.9). Figure 7.13 presents the evolution of the time-averaged blood flow
rate with the degree of obstruction Is in the two control sites, upstream and downstream of
the proximal anastomosis. We observe that upstream of the donor site the flow rate increases
proportionally to the degree of obstruction. Indeed the donor artery must now supply blood
to both its downstream segment and the stenosed member and therefore increases its flow
rate, in comparison with the healthy case (Is = 0%). The downstream blood flow rate does
not change compared to the healthy case (Is = 0%) indicating that the opposite lower leg,
downstream of the proximal anastomosis, is correctly supplied. We note that for a severe
stenosis (obstruction of 90 %) the upstream blood flow rate is twice the basal one.

For the ArF bypass graft the donor artery is the Abdominal Aorta (artery 39), the principal
path carrying blood to both lower legs. Figure 7.14 presents the evolution of the time-
averaged blood flow rate with the degree of obstruction Is in the two control sites, upstream
and downstream of the proximal anastomosis. We observe that upstream of the proximal
anastomosis, the blood flow rate does not change with the degree of obstruction Is, contrary to
the FF bypass graft configuration. Indeed, in the healthy configuration the Abdominal Aorta
already carries blood the the Right Femoral artery, therefore no compensation mechanism
is required upstream of the donor site. Conversely we observe that the downstream of the
proximal anastomosis, the blood flow rate decreases as the degree of obstruction increases,
in comparison to the healthy configuration (Is = 0%). Indeed, since the blood that supplies
the stenosed member (Right Femoral artery 52) now flows through the bypass graft, only
the blood supply for the left leg remains downstream of the donor site. This behavior shows
that the bypass graft is indeed carrying blood the stenosed member. Finally, we note that in
absence of stenosis (Is = 0%) the downstream blood flow is symmetrically shared between
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Figure 7.13 – Cross-over Femoral bypass graft: average flow rate over a cycle in the opposite
Femoral artery (Artery 44). Upstream of the proximal anastomosis, the flow rate increases to
properly vascularize the bypass graft, depending on the degree of obstruction Is. Downstream
of the proximal anastomosis, we recover the healthy (Is = 0%) flow rate.
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Figure 7.14 – Aorto-Femoral bypass graft: average flow rate over a cycle at the donor artery
(Artery 39). Upstream of the proximal anastomosis, the flow rate remains unchanged since
blood flow passing through the bypass graft to vascularize the right leg was already supplied
by the Aorta in the healthy case. Downstream of the proximal anastomosis, the flow rate
decreases with the degree of obstruction Is since now only the blood supplying the left leg is
passing downstream of the proximal anastomosis.
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Figure 7.15 – Axillo-Femoral bypass graft: averaged flow rate over a cycle at the donor
artery (number 7). Upstream of the proximal anastomosis, the flow rate increases to properly
vascularize the bypass graft, depending on the degree of obstruction Is. Downstream of the
proximal anastomosis, we recover the healthy (Is = 0%) flow rate.

the two legs and that for a severe stenosis (Is = 90%) the downstream blood flow rate is
half the basal one.

Figure 7.15 presents the evolution for the AxF bypass graft of the time-averaged blood flow
rate with the degree of obstruction Is in the two control sites, upstream and downstream of
the proximal anastomosis. The results are identical to those obtained with the FF bypass
graft (Figure 7.13). The same analysis can be performed and we conclude that this bypass
graft configuration correctly supplies the stenosed member while maintaining the healthy
flow rate downstream of the donor site. We also note that for an obstruction of 90% the
upstream blood flow rate is twice the basal one.

These results show that for all three bypass graft configurations, the target behaviors are
obtained and the bypass graft surgery is successful.

Optimization

Of the three bypass grafts considered here, the AxF has the highest chance of graft failure.
Indeed, the AxF is the longest bypass graft. Moreover, the AxF bypass graft surgery is
performed on patients who are not healthy enough to survive the more invasive surgical
procedures required to implement the FF or ArF bypass grafts.

For these reasons we choose to perform a detailed analysis to determine the optimal mechanical
(the Young modulus E) and geometrical (the radius R) parameters of the AxF bypass graft.
In order to give arguments for discussion we perform hundreds of simulations where we vary
the values of the Young modulus [0.1 − 50 MPa] and radius R [0.01 − 5 cm] of the AxF
bypass graft. As before, we use as a target the healthy data in the Right Femoral artery
(number 52 in Figure 7.9).

Figure 7.16 presents a log-log scale contour plot of the normalized flow rate Q/Qhealthy in

152



Chapter 7. Biomedical applications

0.01 0.10 1.00

R (cm)

0.1

1.0

10.0

E
(M

P
a

)

Artery 52: Right Femoral – AxF Is = 90 %

Dacron

0

20

40

60

80

100

120

Q
Q
h
ea
lt
h
y

(%
)

Figure 7.16 – Contour plot for the normalized time-averaged flow rate Q/Qhealthy as a
function of the Young modulus E and the radius R for a stenosis of Is = 90 %. The red circle
corresponds to the actual values of the Young modulus E and the radius R used in numerical
simulations, which are situated in an optimal zone (100%). When the radius decreases, the
resistance of the tube increases and therefore less flow is bypassing through the bypass graft.
When the Young’s modulus decreases, the tube becomes more compliant and stores more flow.
Both behaviors reduce the quality of the bypass graft.

the AxF bypass graft obtained for different values of the Young modulus E and the radius
R in a pathological network with Is = 90 %. The red circle in the middle of the Figure 7.16
indicates the actual values of the bypass graft’s Young’s modulus E and radius R. For these
values the normalized flow rate Q/Qhealthy ≈ 100% indicating that the healthy flow rate
is restored in average downstream of the stenosis. Starting from this point we analyze the
results by moving along the horizontal and vertical directions, that is for E constant and
varying R (horizontal) and for R constant and varying E (vertical).

For a constant Young’s modulus E, we analyze the effect of changing the radius R of the
bypass graft. Moving along the horizontal direction towards the left starting from the red
circle, the radius R decreases. Consequently the hydraulic resistance of the bypass graft
increases leading to a decrease of the the normalized flow rate Q/Qhealthy. Moving now
towards the right, the radius R increases. Even though for a large range of values of the
Young’s modulus E the value of Q/Qhealthy is close to 100%, it is clear that as the radius
increase the blood volume inside of the bypass also increases. This results in a decrease
of the flow rate distal to the proximal anastomosis and could lead to the ischemia of the
right hand. Increasing the radius R also implies decreasing blood flow velocity in the bypass
graft which results in a smaller shear rate along the bypass. This increases aggregation and
coagulation processes which are key factors in the onset of graft failure. From a physiological
and mechanical point of view for a given value of the Young’s modulus E, the optimal radius
R should be taken from a Q/Qhealthy ≈ 100% region and be as small as possible to ensure
an optimal distal and proximal blood perfusion.
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Figure 7.17 – Contour plot for the normalized peak to peak flow rate Qmax−Qmin
Qhealthymax −Qhealthymin

Qhealthy
Q

as function of the Young modulus E and the radius R for a stenosis of 90 %. The red circle
corresponds to the actual values of the Young modulus E and the radius R used in numerical
simulations.

For a constant radius R, we analyze the effect of changing the Young’s modulus E of the
bypass graft. Moving along the vertical direction towards the top or the bottom starting
from the red circle, Q/Qhealthy ≈ 100% for every value of the Young’s modulus E. However,
the bypass graft’s Young’s modulus E should be taken as close as possible to the arteries’
Young’s modulus since elasticity jumps lead to impedance discontinuities and therefore
higher reflected pressure waves. Moreover, if the bypass graft’s elasticity is too small, the
bypass graft will become more compliant and inflate, increasing the blood volume inside the
bypass graft. Conversely, if the bypass graft’s elasticity is too large, high pressure peaks will
be generated due to increased wave reflections.

Figure 7.17 presents a log-log scale contour plot of the normalized peak to peak flow rate
Qmax−Qmin

Qhealthymax −Qhealthymin

Qhealthy
Q in the AxF bypass graft obtained for different values of the Young

modulus E and the radius R in a pathological network with an obstruction degree of
90 %. This quantity measures the pulsatility of the flow rate signal (and consequently
the pressure signal). We observe that both Figure 7.16 and Figure 7.17 are similar, and
the previous analysis of Figure 7.16 can be applied. Nevertheless, Figure 7.17 provides
additional information especially in the region of large radii. For a fixed Young’s modulus
E, increasing the radius significantly decreases the value of Qmax−Qmin

Qhealthymax −Qhealthymin

Qhealthy
Q . We

previously described this situation as a correlation between an increase of radius and an
increase of the blood volume inside the bypass graft. We prove here that this increase in
blood volume in the bypass graft reduces its quality as the signal looses its pulsatility.
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7.2.4 Conclusion

We have presented a model network comprising 55 viscoelastic arteries in which we modeled
blood flow using a 1D fluid-structure system of equations. We performed simulations of this
complex nonlinear dissipative system in a healthy and a pathological network presenting a
stenosis of the Right Iliac artery. We then computed blood flow in a repaired network where
we considered the three classical bypass grafts used to treat a stenosis of the Iliac artery.
Our numerical results showed that all three bypass grafts are able to retrieved the healthy
hemodynamics downstream of the stenosed member whilst maintaining a global healthy
circulation.

However, little is known about the evolution of the hemodynamics in a bypass graft when
its geometrical and mechanical characteristics are changed. We therefore studied the
optimization of the geometrical and mechanical characteristics of the Axillo-Femoral bypass.
Indeed, this bypass graft is used on unhealthy weak patients who can not sustain other types
of bypass graft surgeries and because it has the smallest graft survival time of the three
studied bypass grafts. The optimization results (Figure 7.16 and Figure 7.17) indicated that
the mechanical characteristic of the bypass grafts used by clinicians are optimal and allow to
retrieve the healthy circulation in the pathological network. Moreover, the numerical findings
showed that choosing another set of parameters would lead to diminished performances of
the bypass graft.

Besides the numerical approach, our numerical findings over an "averaged patient" proved that
numerical hemodynamic predictions could be used to optimize or plan surgeries for specific
patients, under the conditions that the pathologies were well defined and the physiological
parameters known. Indeed, the numerical tool is very fast in terms of computing time, and
therefore is suited for computational intensive simulations such as parametric analyses and
error propagation tasks, and for the evaluation of new bypass procedures.
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7.3 Impact of arterial cross-clamping during vascular surgery
on arterial stiffness measured by the augmentation index
and fractal dimension of arterial pressure

7.3.1 Introduction

Arterial cross-clamping is a necessary strategy for vascular surgery procedures, such as
aortic aneurysm repair or peripheral vascular bypass [Dalman 2015]. Within the human
vascular network, the aorta is the most thoroughly studied vessel during cross-clamping
procedures [Gelman 1995]. Both arterial clamping and unclamping can produce several
clinical disturbances, such as myocardial infarction, heart failure, acute lung injury, co-
agulopathies, visceral ischemia, acute kidney failure, and eventually, postoperative multiorgan
failure and death [Katseni et al. 2015; Lim et al. 2016; Wartman et al. 2014; Wynn et al.
2015; Kotake et al. 2012]. In clinical studies, the clamping time of aortic cross-clamping has
shown to be an independent predictor of overall surgical outcomes [Svensson et al. 1993].
Some of the proposed pathophysiological mechanisms behind these clinical outcomes are
ischemia and reperfusion injury, oxidative stress damage, systemic inflammatory response,
and microcirculatory dysfunction [Erkut and Onk 2015; Charles et al. 2011; Pottecher et al.
2013; Guillot et al. 2014; Kalder et al. 2012]. However, the impact of arterial cross-clamping
on the viscoelastic properties of the arterial system and its underlying mechanisms remain
unclear. Furthermore, the comparative effects of clamping and unclamping in common
vascular surgery sites (such as the aorta and the iliofemoral artery) on the biomechanical
characteristics of the vascular system have not been systematically studied.

We hypothesized that arterial clamping and unclamping would produce significant changes
in the viscoelastic properties of the vascular system, mainly affecting arterial stiffness. A
practical approach towards studying arterial stiffness is to analyze the morphology of the
arterial pressure wave under different hemodynamic states. The Augmentation Index (AIx)
and the Fractal Dimension (FD) of arterial pressure are indexes that are commonly used as
indirect measures of wave reflections and arterial stiffness [Armentano et al. 2013]. One of
the main advantages of these vascular indexes is that they can be assessed with pressure
wave morphology only [Swillens and Segers 2008].

The augmentation index (AIx) is a ratio calculated from the analysis of blood pressure
waveform morphology. It is defined as the augmentation pressure (i.e., the difference between
the late systolic pressure shoulder and the early systolic pressure shoulder) divided by the
pulse pressure (i.e., the difference between the maximum systolic pressure and the end
diastolic pressure), and is usually expressed as a percentage (Figure 7.18) [Fantin et al. 2007].
The AIx is a measure of the relative contribution of wave reflection to the systolic arterial
pressure [Liao and Farmer 2014]. Under normal conditions, the arterial pressure waveform is
determined by the sum of a forward traveling wave coming from the heart, and backward
reflected waves coming from the periphery vessels. The amplitude and propagation speed of
the reflected waves depend on the peripheral resistance and on the functional and structural
characteristics of the arterial network [O’Rourke et al. 2002; Westerhof et al. 1972, 2006].
For example, arterial stiffening increases the speed of propagation of both forward and
backward waves, resulting in an earlier return of reflected waves, a higher degree of overlap
among forward and backward waves, and a change in the morphology and amplitude of the
waveform [Politi et al. 2016a; Borlotti et al. 2014; Khir and Parker 2002]. Therefore, both the
magnitude and the sign of the AIx provide information on arterial pressure wave morphology
and, indirectly, on arterial stiffness and the influence of wave reflections [Beckmann et al.
2015].

Arterial pressure waves can be classified into three different wave types according to wave
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Figure 7.18 – Classification of arterial pressure waves according to wave morphology. In
type A waves the early systolic pressure shoulder is lower than the late systolic pressure
shoulder and the Augmentation Index (AIx) has a positive value, which is above 0.12. Type B
waves are similar to type A waves except for the fact that the AIx has a positive value below
0.12. In type C waves the early systolic pressure shoulder is higher than the late systolic
pressure shoulder and the AIx has a negative value.

morphology, which can be quantified through their AIx value (Figure 7.18) [Murgo et al.
1975]. A study of the aortic input impedance (i.e., a measure of effective hemodynamic
resistance) in human subjects undergoing catheterism, proposed that the variations in
pressure waveforms are due to differences in wave reflections in the arterial tree. Type A
waves suggest considerable reflection in the arterial system, while type C waves imply smaller
or more diffuse reflections. Type B waves would be an intermediate pattern between the two
[Murgo et al. 1980].

The Fractal Dimension (FD) of arterial pressure in another indirect index for arterial stiffness.
A fractal is a set of data that shows self-similarity throughout a certain dimension (e.g. time
or space), which means it has a repeating pattern at every scale. The vascular system may
have a fractal architecture related to its open tree structure, which is based on repeated
bifurcations [Mandelbrot 1977]. The fractal character of the vascular system is produced
by a) the fact that the same general rule or pattern of dichotomous divisions is applied in
the growth of each portion of the tree from the previous portion, and b) a self-similarity
shown at many different levels; for example, in the fact that any portion of the tree, taken
as a whole, has the same branching structure as the overall tree [Zamir 2001]. Similarly,
flow distributions in the systemic circulation may also follow a fractal pattern since its
arrangement is heterogeneous, although not random. A fractal characterization of blood flow
may arise from the logarithmic relation between flow dispersion and element size, showing
an increase in the degree of heterogeneity as the size of the elements decrease. The fractality
of blood flow could be related to the fact that flow is delivered through a branching vascular
tree, which appears to have a fractal structure itself [Bassingthwaighte 1992]. Arterial blood
pressure may also have an underlying fractal structure that could describe the multiple
changes in the waveform complexity of arterial pressure time series [Cymberknop et al. 2015,
2012].

Daily physiological variations and adjustments of the cardiovascular system have a complex
behavior that is related to the inherent complexity of its own structure [Sharma 2009]. A
straightforward way of measuring this complex behavior is by determining the FD of a
given time-based parameter of the cardiovascular system. Conceptually, the FD is a way of
quantifying the self-similarity of a parameter (e.g. blood pressure) throughout a dimension
(e.g. time), that is, a measure of resemblance at different observation scales [Cymberknop

157



Section 7.3. Impact of arterial cross-clamping during vascular surgery on arterial stiffness
measured by the augmentation index and fractal dimension of arterial pressure

et al. 2011]. Fractal physiological signals –such as blood pressure– may lose their fractal
nature (i.e., decrease their FD) in pathological states, thus making FD an indicator of
cardiovascular health. Previous in-vitro studies show that the loss of fractal complexity
of blood pressure is related to an increase in arterial stiffness. [Cymberknop et al. 2012]
Clinical studies have also suggested that FD may be have diagnostic and prognostic value in
patients with heart failure and could be a predictor of mortality [Sharma 2009].

The aim of this study is to evaluate the impact of arterial cross-clamping on the biomechanical
properties of the vascular system by using data from continuous radial arterial pressure
tracings during vascular surgery. We chose AIx and FD as indirect indicators of the arterial
stiffness of the vascular network for several hemodynamic states. We proposed that the
clamping and unclamping events during vascular surgery would have a significant impact
on these indicators. We additionally sought to explore the relationship between these two
indicators throughout the vascular surgery.

7.3.2 Methods

Study design

A cross-section, observational, analytical, before-after study was designed. We evaluated
the effect of arterial clamping and unclamping during vascular surgery at two different
locations n the vascular network: iliofemoral and infrarenal abdominal aorta. The effect of
these interventions on arterial stiffness was estimated indirectly by the Augmentation Index
normalized to 75 beats-per-minute (AIx@75) and the Fractal Dimension (FD) of invasive
radial arterial pressure tracings during each clamping condition.

Patient enrollment

The study enrolled adult patients undergoing peripheral vascular surgery at the Hôpital
Universitaire Pitié-Salpêtrière in Paris, France. Exclusion criteria were having:

a) an irregular heart rhythm;
b) an undetectable pressure notch.

The study protocol was approved by the IRB of the Hôpital Universitaire Pitié-Salpêtrière.
The study is in accordance with the ethical principles of the Declaration of Helsinki [34].

Invasive radial arterial pressure measurements

Experimental data were obtained from continuous invasive arterial pressure measurements
using a fluid-filled catheter from the radial artery of adult patients undergoing peripheral
vascular surgery. We used a disposable pressure transducer (TruWave, Edwards Lifesciencesr)
with a natural frequency of 40 Hz for a standard kit for measuring blood pressure. Data
were registered using an analogue-digital converter with internal hardware filters ((low pass
frequency set at 20 kHz, high pass frequency set at 0.05 Hz, MP150, BIOPAC Systems Inc.)
and the AcqKnowledge software. Data acquisition rate was 100 Hz.

Waveform analysis

A stable set of beats from radial arterial pressure tracings were chosen manually throughout a
20-s interval immediately before and after each clamp and unclamp event. A brief transitional
period was allowed after each event. The time values for end diastolic, end systolic, early
systolic shoulder, late systolic shoulder and maximum pressure were computed for each
beat with a custom software developed in Matlab (R2014b, The MathWorks, Inc., Natick,
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Massachusetts). The median heart rate (HR) was calculated using the foot-to-foot time
differences of the radial arterial pressure.

In order to identify the early and late systolic pressure shoulders, a two-term Gaussian model
was used to separate the first and second components of the systolic portion of each beat,
where the modeled systolic pressure (PS(t)) for each beat was expressed as [Liu et al. 2013]:

PS (t) = a1e
−
(
t−b1
c1

)2

+ a2e
−
(
t−b2
c2

)2

. (7.6)

This method has shown to yield good results when modeling peripheral pressure waveforms
[Liu et al. 2013, 2014]. In our data, we estimated for each beat the coefficient of determination
(R2) between the model and the data. The minimum value for all beats from all patients in
all states was R2 = 0.987.

The time centroids b1 and b2 were recorded and their difference was established as the
time-distance between the early and late systolic pressure shoulders. The maximum pressure
was assigned to one of the shoulders, depending on the wave morphology (i.e., type A,
type B or type C) (Figure 7.18) [Murgo et al. 1980]. The other shoulder was located by
using the time difference between centroids (e.g., in a type C beat, the maximum pressure
matches the early shoulder, while the late shoulder is found |b2 − b1| seconds later). This
technique produced successful results that were visually validated, and double-checked using
the method described by Takazawa et al. [Armentano et al. 2013; Takazawa et al. 1995].

The Augmentation Index (AIx) was calculated as following:

AIx =
Plate − Pearly
Pmax − Ped

× 100. (7.7)

where Plate, Pearly, Pmax and Ped are late systolic pressure, early systolic pressure, maximum
systolic pressure, and end diastolic pressure, respectively. All AIx values were normalized
to a heart rate of 75 beats-per-minute (AIx@75), using the well-known conversion formula
[Gallagher et al. 2004]:

AIx@75 = AIx− 0.39 (75−HR) . (7.8)

The Fractal Dimension (FD) was calculated for each set of data using a custom software
developed in Matlab following the Higuchi method [Higuchi 1988]. The software was validated
using several fractal signals with a known FD, yielding acceptable mean and SD values (test
signal: FD = 1.2; calculated FD = 1.231 ± 0.069; test signal: FD = 1.5; calculated FD =
1.514 ± 0.134).

The Higuchi method uses different scales to measure the length of the curve of a given
parameter [Higuchi 1988]. The log-log relationship between the resulting lengths and their
corresponding scales is given by:

L (k) ∝ k−FD. (7.9)

where L(k) is the measured length with the scale k.

As in most natural phenomena, FD may not be constant over all time scales. Instead, there
are two ranges in which the property of self-similarity holds, which are separated by a critical
breaking point [Higuchi 1988]. FD was calculated for all scales, and the critical point where
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lower and higher ranges break was detected by optimizing the linear adjustments of the
length L(k). The reported FD value is the median FD for the lower range scales.

Statistical analysis

Since FD and AIx@75 distributions deviate from normal when tested formally (AIX@75 has
a skewed distribution and FD has a logarithmic distribution), data are presented as median
and interquartile range (IQR) and non-parametric tests were chosen. The statistical analysis
involved Wilcoxon matched-pairs signed-ranks test for before-after testing and Spearman’s
rank-order correlation using R studio free statistical software. All statistical tests were
two-tailed. Statistical significance was considered at 5 % (α = 0.05).

7.3.3 Results

Patient clinical data

The radial arterial pressure tracings of 9 patients undergoing vascular surgery were evaluated
in this study; one patient was excluded for having an irregular heart rhythm. The arterial
pressure tracings from a total final of 8 patients were analyzed. The surgeries involved were
4 infrarenal abdominal aorta prosthesis placements and 4 iliofemoral bypass surgeries. Some
surgeries required more than one arterial intervention; overall, there were 4 aortic and 11
iliofemoral interventions. Mean age was 69 years. Most patients were non-diabetic males
with hypertension who were current or former smokers. All patients had a baseline type
C waveform. Of the 60 hemodynamic states analyzed, 58 hemodynamic states had type C
waveforms; only one patient switched to a type A waveform during two hemodynamic states.
Table 7.3 displays main patient clinical characteristics. Figure 7.19 illustrates the results of
one representative patient.

(n = 8)

Age -years 68.9± 14.5
Males - no (%) 5 (62.5)
Hypertension 6 (75.0)
Hypercholesterolemia 7 (87.5)
Diabetes 0 (0.0)
Smokers 5 (62.5)
Pack-year among smokers 46.3± 24.3
BMI – kg ·m2−1 23.8± 3.3
Baseline type C waveform – no (%) 8 (100.0)

Table 7.3 – Patient clinical characteristics. Data are presented as mean ± SD. BMI =body
mass index

Augmentation index normalized to 75 beats-per-minute (AIx@75)

Experimental data included continuous invasive radial arterial pressure tracings from 4
infrarenal abdominal aorta clamps and unclamps, and from 11 iliofemoral artery clamps and
unclamps.

Table 7.4 presents the overall results for the median AIx@75 over a 20-s interval before and
after aortic clamping and unclamping for all aortic interventions. After infrarenal abdominal
aorta clamping, the median AIx@75 increased sig- nificantly (-14.8 to -14.2; ∆AIx@75 + 4.1
%; p < 0.01), while after unclamping, it decreased significantly (-0.142 to -0.177; ∆AIx@75
–24.6 %; p < 0.001). Notice that the sign of the median AIx@75 remained unchanged after
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Figure 7.19 – Average arterial radial pressure tracings over 20-s intervals before and after
each event (clamping/unclamping) for one representative patient undergoing vascular surgery.
The end of diastole, end of systole, early systole and late systole pressures were detected
on arterial pressure tracings. The Augmentation Index normalized to 75 beats-per-minute
(AIx@75) and the Fractal Dimension (FD) were calculated for each state.

Pre-clamp Post-clamp Pre-unclamp Post-unclamp

Median -14.8 -14.2 -14.2 -17.7
IQR -20.7 to -2.9 -20.6 to -10.6 -20.9 to 10.0 -34.1 to -7.4
∆AIx@75 (%) +4.1 -24.6
p < 0.01 < 0.001

Table 7.4 – Changes in Augmentation Index normalized to 75 beats-per-minute (AIx@75)
following aortic clamp and unclamp. IQR interquartile range. ∆AIx@75 (%): relative
percentage change in AIx.

both clamping and unclamping events.

Pre-clamp Post-clamp Pre-unclamp Post-unclamp

Median -15.9 -13.9 -15.3 -15.7
IQR -19.8 to -11.0 -17.3 to -5.5 -17.5 to -8.8 -19.0 to -10.8
∆AIx@75 (%) +12.6 -2.6
p < 0.001 < 0.001

Table 7.5 – Changesin Augmentation Index normalized to 75 beats-per-minute (AIx75)
following iliofemoral clamp and unclamp. IQR interquartile range. ∆AIx@75 (%): relative
percentage change in AIx.

Table 7.5 presents the overall results for the median AIx@75 over a 20-s interval before and
after iliofemoral artery clamping and unclamping for all iliofemoral interventions. After
iliofemoral artery clamping, the median AIx@75 increased significantly (-15.9 to -13.9;
∆AIx@75 + 12.6 %; p < 0.001), while after unclamping, it decreased significantly (-15.3 to
-15.7; ∆AIx@75 –2.6 %; p < 0.001). Once again, the sign of the median AIx@75 remained
unchanged after both clamping and unclamping events.
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Fractal dimension (FD)

Table 7.6 shows data for the median FD over a 20-s interval before and after aortic clamping
and unclamping for all aortic interventions. After infrarenal abdominal aorta clamping, the
median FD was reduced significantly (1.039 to 1.027; ∆FD -1.2 %; p < 0.01), while after
unclamping, it increased significantly (1.031 to 1.040; ∆FD + 0.9 %; p < 0.001).

Pre-clamp Post-clamp Pre-unclamp Post-unclamp

Median 1.039 1.027 1.031 1.040
IQR 1.006 to 1.154 1.004 to 1.135 1.004 to 1.138 1.007 to 1.178
∆FD (%) -1.2 +0.9
p < 0.01 < 0.001

Table 7.6 – Changes in Fractal Dimension (FD) following aortic clamp and unclamp. IQR
interquartile range. ∆FD (%): relative percentage change in FD.

Table 7.7 shows data for the median FD over a 20-s interval before and after iliofemoral
artery clamping and unclamping for all iliofemoral interventions. After iliofemoral artery
clamping, the median FD was reduced significantly (1.032 to 1.029; ∆FD -0.3 %; p < 0.01),
while after unclamping, it increased significantly (1.029 to 1.033; ∆FD + 0.4 %; p < 0.001).

Pre-clamp Post-clamp Pre-unclamp Post-unclamp

Median 1.032 1.029 1.029 1.033
IQR 1.005 to 1.154 1.003 to 1.138 1.004 to 1.143 1.005 to 1.151
∆FD (%) -0.3 +0.4
p < 0.01 < 0.001

Table 7.7 – Changes in Fractal Dimension (FD) following iliofemoral clamp and unclamp.
∆FD (%): relative percentage change in FD.

Correlation between augmentation index normalized to 75 beats-per-minute
(AIx@75) and fractal dimension (FD)

In the light of these results, we decided to explore the relationship between the two indicators,
median AIx@75 and FD, during different hemodynamic states through Spearman’s rank-
order correlation. The relation between these variables was monotonic, though non-linear, as
assessed by visual inspection of a scatterplot. A strong significant negative correlation between
median AIx@75 and FD for each hemodynamic state was found for aortic interventions
(rs = −0.95; p < 0.05), though not for iliofemoral interventions nor overall data. These
results are illustrated in Figure 7.20

7.3.4 Discussion

The results show that arterial clamping and unclamping during vascular surgery have a
significant impact on the biomechanical properties of the vascular system, as assessed by the
Augmentation Index normalized to 75 beats-per-minute (AIx@75) and the Fractal Dimension
(FD), calculated from radial arterial pressure tracings. After arterial clamping, median
AIx@75 rises and median FD drops; the opposite occurs after arterial unclamping. This
effect was observed in both aortic and iliofemoral interventions.

The increase in the median values of AIx@75 during arterial clamping may indicate a higher
arterial stiffness during this hemodynamic state [Armentano et al. 2013; Laurent et al. 2006].
However, the magnitude of this effect on median AIx@75 was relatively small (4.1 % in aortic
interventions and 12.6 % in iliofemoral interventions). Additionally, the sign of the median
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Figure 7.20 – Spearman’s rank-order correlation between the Augmentation Index normalized
to 75 beats-per-minute (AIx@75) and the Fractal Dimension (FD). A strong significant
correlation between median AIx@75 and FD for each hemodynamic state was found for aortic
interventions (rs = −0.95; p < 0.05), though not for iliofemoral interventions nor overall
data.

AIx@75 did not change, which possibly indicates that the increase in arterial stiffness was
not large enough to change the wave morphology into a type A or B wave. The decrease in
median FD during arterial clamping also suggests a higher arterial stiffness [Cymberknop
et al. 2012, 2011]. Once again, the magnitude of this effect on median FD was small (1.2 %
in aortic interventions and 0.3 % in iliofemoral interventions). Despite the small effect size,
our results are consistent at many levels:

a) opposite events (i.e., clamping and unclamping) produce changes in different directions;
b) two different indicators (i.e., AIx@75 and FD) suggest the same underlying phenomenon;
c) similar results are observed at different vascular locations (i.e., aortic and iliofemoral).

Overall, our data consistently suggests an increase in arterial stiffness during clamping and
a reduction in arterial stiffness during unclamping.

Similar results were published by Armentano et al. by measuring the simultaneous aortic
pressure and diameter in 14 conscious dogs before and after occluding the distal descending
aorta with a pneumatic cuff [Armentano et al. 2013]. These authors observed that, during
aortic occlusion, the aortic pressure FD decreased and the pressure-strain elastic modulus (E)
of the aortic wall increased (i.e., the aorta became stiffer). The magnitude of the FD drop
reported by these authors was -4.7 %, which is only slightly higher than our own findings,
-1.2 % (1.039 to 1.027; p < 0.01), especially when taking into account that:

a) our protocol involved a more distal occlusion site (infrarenal aorta instead of descending
aorta);

b) our protocol involved a larger distance between the pressure measurement site (i.e.,
radial artery) and the occlusion site (i.e., infrarenal aorta or iliofemoral artery) whereas
Armentano et al. measured the aortic pressure just proximal to the occlusion site.

Therefore, these results would be in accordance with our own findings.

Given this apparent association between changes in arterial stiffness and changes in AIx@75
and FD, what remains to be addressed are the possible underlying mechanisms involved.
Armentano et al. suggest that reflected waves may participate in changes in FD during
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arterial occlusion. Through wave separation analysis, these authors studied the forward and
backward traveling components of the aortic pressure wave before and after the occlusion of
the descending aorta in dogs. The authors analyzed only the first two heartbeats after aortic
occlusion, as to avoid the participation of regulation mechanisms (which take place around
the fifth heartbeat after occlusion) in the resulting waveform. They proposed that, during
total occlusion of the descending aorta, aortic incident waves reflect almost completely and
immediately at the descending aorta occlusion site, thus overlapping the incident wave with
the reflected wave and increasing overall aortic pressure and modifying waveform morphology.
Since multiple branching reflection sites are avoided during aortic occlusion, the fractal
complexity of the aortic pressure wave is reduced (i.e., aortic FD decreases). The authors
conclude that arterial pressure fractality depends highly on the wave reflection [Armentano
et al. 2013]. In the light of these conclusions, in our results, the decrease in median FD
during clamping could be associated to loss in the complexity of the pressure waveform due
to reduced reflection sites during clamping. Additionally -and since in our own protocol
both AIx@75 and FD were calculated from 20-s intervals before and after each event- reflex
regulation mechanisms (i.e., reduced heart rate and increased contractile force) probably
pay a contribution to the waveform structure in our analysis, as in actual real-life patients.

Murgo et al. also studied the aortic pressure waveform after arterial occlusion [Murgo et al.
1980]. These authors invasively measured pressure in the ascending aorta of 4 patients
undergoing coronary catheterism after the external occlusion of the iliac artery. These
authors describe significant changes in the aortic waveform related to an increase in the late
systolic pressure shoulder, without observing changes in the end-diastolic pressure. Just as
in our protocol, the authors measure the arterial pressure at a distant site from the vascular
occlusion; however, it is still a central arterial pressure measurement. Therefore, the effect
of reflection waves may be larger than on peripheral arterial pressure measurements [Nichols
and Edwards 2001]. Through the study of the impedance spectral patterns, these authors
suggest that type A waveforms are associated to a stiffer vascular profile, with considerable
wave reflections returning from the periphery; whereas type C waves imply smaller or more
diffuse reflections [Murgo et al. 1980]. Our results are in accordance with these reports, since
clamping increased the magnitude of AIx@75, although the waveform type did not change.

Cymberknop et al. studied the variation of the complexity of the arterial pressure waveform
in relation to its anatomical location. The authors compared the continuous arterial pressure
waveforms of the carotid and femoral arteries through non-invasive applanation tonometry
in human subjects. They found that the arterial pressure FD of the carotid artery was
higher than the arterial pressure FD of the femoral artery (+56.51± 13.62%). Though the
authors did not evaluate clamping or unclamping interventions, these findings could possibly
indicate that the higher pressure FD reported in the carotid artery is related to a higher
waveform complexity, due to a higher exposure to multiple wave reflection at central vascular
sites. The lower pressure FD reported in the femoral artery could be related to the loss of
complexity at vascular sites distant from the heart pump, a process often described as an
"unwrinkling" phenomenon [Cymberknop et al. 2015]. This "unwrinkling" phenomenon or
loss of complexity could also possibly occur during arterial clamping, and would explain the
decrease in pressure FD during clamping and its increase during unclamping.

Finally, although wave reflections occur at multiple locations in the arterial system, in human
subjects the "effective" reflection site is the region of the terminal abdominal aorta and the
bifurcation of the iliac and femoral arteries [Murgo et al. 1980; Mills et al. 1970; Latham
et al. 1985]. These vessels would produce reflections that dominate over those arising from
other locations. The fact that the surgical interventions of our study are located at the
dominant reflection sites suggests that reflection waves could participate in the observed
changes in AIx@75 and FD.
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As opposed to others, our results have demonstrated changes in arterial pressure AIx@75 and
FD during clamping with an effect size smaller than previously reported [Armentano et al.
2013; Murgo et al. 1980]. However, these studies involved intraortic measurements in invasive
animal experiments or in human subjects undergoing coronary catheterization. Our study
analyzed the arterial pressure AIx@75 and FD through a radial artery catheter, which is a
minimally-invasive monitoring instrument that is widely used in surgical settings. Despite
the large distance from the event taking place at the aortic or iliofemoral intervention sites,
radial artery pressure monitoring was still able to detect consistently these vascular events.

The question on the role of FD in hemodynamic monitoring and in the study of the viscoelastic
properties of the vascular network is yet to be answered. Due to the influence of peripheral
reflected waves on this index, the FD may be able to address issues related to peripheral
microcirculation, such as the skin or retinal vessels [Crystal et al. 2016; Gryglewska et al.
2011; Takahashi 2014]. As a measure of complexity, it may also have a higher capacity than
the AIx to discriminate the incident wave and the reflected wave in the overall waveform.

In summary, in both the aorta and the iliofemoral artery, arterial clamping and unclamping
significantly modify the Augmentation Index normalized to 75 beats-per-minute (AIx@75)
and the Fractal Dimension (FD) measured by invasive radial arterial pressure monitoring,
suggesting changes in arterial stiffness. After arterial clamping, median AIx@75 rises and
median FD drops; the opposite occurs after arterial unclamping. A strong significant negative
correlation between median AIx@75 and FD for each hemodynamic state was found for
aortic interventions (rs = 0.95; p < 0.05), though not for iliofemoral interventions nor overall
data. Overall, our data consistently suggests an increase in arterial stiffness during clamping
and a reduction during unclamping.

7.4 Conclusion
In Chapter 7, we have studied three biomedical situations. We have first investigated the
origin of the dicrotic notch, which is a small and brief increase in arterial blood pressure
occurring at the end of systole, creating a notch in the pressure signal. In a didactic
approach, we have used the 1D blood flow equations (3.23) to show that the dicrotic notch
could be explained by the overlap of the incoming pressure wave generated by the heart
and the reflected waves originating from the distal vasculature. We then have presented
a numerical study of the consequences of a stenosis of the Iliac artery on global network
hemodynamics and showed that the 1D blood flow equations (3.23) are able to provide
information on the design of extracorporeal bypass grafts used to treat such a pathology.
Finally, we have analyzed experimental data on aortic clamping and showed that clamping
affects both the augmentation index and the fractal dimension. The first two applications
are proof that the 1D blood flow equations (3.23) can and are necessary to capture wave
propagation and reflection dynamics at the scale of the systemic network. Moreover, the
second applications shows that even a local perturbation such as a stenosis of the Iliac artery
generates perturbation in the whole network, and that therefore any relevant blood flow
application should consider a large network to capture these effects.

We are now performing the numerical equivalent of the experiments analyzed in the third
application, in the hope of recovering similar results for the augmentation index.
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Chapter 8
Two-dimensional multiring model for
blood flow

We present here a two-dimensional multiring blood flow model designed to solve the
RNSP equations (8.1) in an elastic axisymmetric artery. The text in this chapter deals
with the derivation and numerical resolution of the multiring model and is greatly
inspired from the following published article:

• A.R. Ghigo, J.-M. Fullana, and P.-Y. Lagrée. A 2D nonlinear multiring model for
blood flow in large elastic arteries. Journal of Computational Physics, 350:136–165,
2017c.
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8.1 Introduction
The numerical simulation of blood flow in large elastic arteries requires the resolution of a
complex fluid-structure interaction (FSI) problem (see Chapter 2). Indeed, the motion of
blood is governed by the three-dimensional (3D) Navier-Stokes equations for an incompressible
homogeneous Newtonian fluid [Quarteroni et al. 2016] and the deformation of the arterial
wall is described by a nonlinear elastic constitutive law [Holzapfel et al. 2000]. Several
numerical methods have been proposed to solve this nonlinear 3D FSI problem [Hughes et al.
1981; Farhat et al. 2001; Tezduyar 2003; Figueroa et al. 2006; Tezduyar et al. 2007; Mayr
et al. 2015]. Due to their modelling complexity and high computational cost, they have only
been used to accurately compute blood flow in small regions of interest such as in arterial
pathologies or small portions of the systemic network [Taylor et al. 1998; Vignon-Clementel
et al. 2010; Sankaran et al. 2012]. However, an accurate local analysis is not sufficient
to obtain physiological results (see Chapter 6). Indeed, the observed waveforms in large
arteries are the result of the reflection, damping and diffusion throughout the systemic
network of the waves emanating from the heart [Alastruey et al. 2009; Politi et al. 2016a].
Realistic waveforms can only be computed by performing a global simulation taking into
account a large portion of the arterial network. Unfortunately, such large network 3D FSI
simulations are too computationally expensive. Reduced-order models have therefore been
proposed to compute physiological waveforms at a lower modeling and computational cost
[Kim et al. 2010; Müller and Toro 2014; Ramachandra et al. 2016; Arthurs et al. 2016;
Audebert et al. 2017b]. The aim of this paper is to propose a novel two-dimensional (2D)
reduced-order model that accurately computes linear and nonlinear blood flow features in
rigid and axisymmetric elastic arteries at a reasonable computational cost with minimal
modeling parameters and could prove to be an alternative to 3D FSI simulations in simple
arterial configurations.

In [Xiao et al. 2013], a 3D FSI simulation in a large network is performed to
prove that such simulations are possible. Nevertheless, the computational and
modeling costs are high and these 3D FSI simulations are still inadapted to
real-time medical applications.

Reduced-order models for blood flow rely on a simplified system of equations for the motion
of blood and a single equation for the deformation of the arterial wall, both of which are
thoroughly discussed in Chapter 2. As a reminder, the reduced Navier-Stokes-Prandtl
equations (RNSP) (2.43) are derived from the Navier-Stokes equations assuming that the
flow is axisymmetric and noticing that the characteristic length scale in the axial direction
is much larger than the one in the radial direction. The RNSP equations describe the
conservation of mass and the balance of axial momentum of blood flow in an axisymmetric
artery in which the pressure is hydrostatic (a function of x at t only):

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p (x, r, t) = p (x, t) .

(8.1a)

(8.1b)

(8.1c)
The axial and radial boundary conditions for System (8.1) are described in Chapter 2 (see
System (2.34)) and are recalled in the next section. Similarly, using simplifying assumptions,
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different hydrostatic pressure laws p(x, t) can be found linking the motion of the fluid and the
displacement of the wall. Depending on the problem addressed, they can describe for example
the behavior of flexible viscoelastic rubber tubes in hydraulic systems, the propagation of
a water hammer (Allevi’s equations, see Subsection 2.3.1) or the deformation of an elastic
artery. The later is used in this study and its exact form is given by Equation (5.1). See
Section 2.2 for further details.

System (8.1) is a rich dynamical system able to describe many asymptotic flow regimes in
rigid tubes [Womersley 1955; Smith 1976; Lagrée and Lorthois 2005] and is numerically
solved in [Barrenechea and Chouly 2009; Chouly and Lagrée 2012] in a rigid axisymmetric
tube using a variety of numerical methods. However, similar numerical difficulties to those
encountered in 3D FSI problems arise when solving System (8.1) in a deformable elastic
tube.

One-dimensional (1D) models were therefore introduced as simple and efficient methods to
obtain averaged quantities in elastic arteries [Euler 1844; Lambert 1958; Formaggia et al.
2003; Müller et al. 2013; Wang et al. 2015]. They are obtained by averaging over the cross-
sectional area of the artery the mass (8.1a) and momentum (8.1b) equations. A detailed
derivation of the 1D blood flow equations (2.67) is performed in Section 2.5. Unfortunately,
they depend on coefficients which themselves depend on the shape of the velocity profile,
lost in the averaging process. These coefficients are therefore estimated a priori, which
often results in unrealistic viscous dissipation and pressure losses. This issue is discussed in
Subsection 2.5.2.

One-and-a-half-dimensional (3/2D) models were then proposed as intermediates between 1D
models and the complete resolution of the RNSP equations (8.1). In [Čanić et al. 2005, 2006],
the authors used an asymptotic analysis of the RNSP equations (8.1) and homogenization
theory to propose a 3/2D model for blood flow in an elastic artery. This model allows to
compute, without any a priori coefficient estimation, the zero-th and first order components
of the wall displacement and the axial and radial velocities. In [Bessems et al. 2007], an
approximate velocity profile function was obtained depending on the instantaneous pressure
gradient and the thickness of the boundary layer. This function was then used in a 1D
model to compute the velocity profile-dependent coefficients. In [Lagrée 2000], a Von
Kármán-Polhlausen integral method closed using the Womersley velocity profiles was studied.
This integral method accurately computes linear solutions such as the Womersley solution
[Womersley 1955] (see Subsection 2.4.2) but is limited by the chosen linear closure relation.
More recently, in [Flores et al. 2016], the authors proposed an analytic model for blood
flow in an elastic artery based on a generalized Darcy’s model and the linear Womersley
theory. Despite their added modeling precision, 3/2D models still only provide approximate
solutions of the RNSP equations (8.1).

Several authors have therefore proposed numerical methods to directly solve the RNSP
equations (8.1) in elastic arteries. A noteworthy attempt was presented in [Ling and Atabek
1972] but the problem was simplified by introducing an explicit dependence with experimental
data. In [Lagrée 2000], the author derived a boundary layer method which gives good results
in the linear regime but behaves poorly in the nonlinear regime. To our knowledge, the most
advanced numerical method was proposed in [Casulli et al. 2012]. There, a semi-implicit
efficient numerical method was introduced based on an Eulerian-Lagragian method to treat
the advection term and a nested Newton algorithm to iteratively compute the pressure
matching the desired wall displacement. The main drawback of this approach is that it
can not deal with arbitrary large wall deformation and requires that the flow stays mildly
nonlinear.

In this work, we propose a novel 2D model to solve without any approximations the
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RNSP equations (8.1) in elastic arteries for arbitrary large arterial wall deformations. By
decomposing the fluid domain in concentric rings, we derive what we refer to as the "multiring
model with mass exchange". This model is inspired from the multilayer model with mass
exchange presented in [Audusse et al. 2011] in the context of shallow water equations. This
multiring system of balance laws provides a unified framework in which both the motion of
the fluid and the displacement of the wall are dealt with simultaneously. Its mathematical
structure allows us to use a finite volume numerical method that guarantees the conservation
of mass and the positivity of the numerical solution and can deal with nonlinear flows and
large deformations of the arterial wall. We will show that the multiring model can compute
all relevant flow features in elastic arteries.

In the first section, we present the derivation of the multiring model. Next, we discuss
its mathematical properties and details of the numerical method. In the last sections, we
propose a series a examples where we compare the solution of the multiring model to reference
solutions in elastic and quasi-rigid arteries.

8.2 A multiring discretization of the RNSP equations

We describe a multiring model with mass exchange for blood flow based on the axisymmetric
RNSP equations (8.1) coupled to the elastic wall model (5.1). As stated in the introduction,
this multiring model is the analog of the multilayer model with mass exchange for shallow
water flows [Audusse et al. 2011].

8.2.1 Radial decomposition of the fluid domain

In the framework of the axisymmetric RNSP equations (8.1), the arteries are modeled as
axisymmetric cylinders of radius R, cross-sectional area A = πR2 and length L. Therefore,
we can divide the fluid region delimited by the arterial wall into Nr concentric axisymmetric
rings of width hα, with α = 1, ..., Nr. This decomposition of the fluid domain is illustrated
in Figure 8.1.

L

A�

A�+1

A��1

Q�+1

Q�

Q��1

R

Rα+ 1
2

Rα− 1
2

Figure 8.1 – Representation of the decomposition in several concentric rings of the fluid
domain contained in an axisymmetric cylindrical artery. For clarity, only one-fourth of
the artery of length L is represented. The springs in the arterial wall represent its elastic
behavior. The variable Qα is the flow rate in the ring α and Aα is the area delimited by the
radii Rα− 1

2
and Rα+ 1

2
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To simplify the notations, we refer to the fluid ring of width hα as the ring α. Each ring α
is delimited by an upper and lower interface, respectively defined by the radii Rα+ 1

2
and

Rα− 1
2
, with:

hα = Rα+ 1
2
−Rα− 1

2
. (8.2)

The interface position Rα+ 1
2
and the radius of the artery R can now respectively be written

as:

Rα+ 1
2

=
α∑

j=1

hj , and R =

Nr∑

j=1

hj . (8.3)

We also define the cross-sectional area of the ring α, noted Aα, the average flow rate in the
ring α, noted Qα, and the mean velocity in the ring α, noted uα:
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(8.4a)

(8.4b)

(8.4c)

Finally, we note lr,α the proportion of the total radius R occupied by the ring α:

hα = lr,αR, with
Nr∑

α=1

lr,α = 1, (8.5)

and lα the proportion of the total cross-sectional area A occupied by the ring α:

Aα = lαA, with lα =
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. (8.6)

Without loss of generality, we prescribe the radial decomposition of the artery in concentric
rings and set the proportion lr,α in each ring α. This proportion is therefore a given constant
number which can differ from one ring to another:
∀t ≥ 0, ∀x ∈ [0, L] , lr,α = cst with α = 1, . . . , Nr. (8.7)

As a consequence, we have:
∀t ≥ 0, ∀x ∈ [0, L] , lα = cst with α = 1, . . . , Nr. (8.8)

Assumption (8.7) indicates that the interfaces Rα− 1
2
and Rα+ 1

2
of the ring α are not

impermeable interfaces but rather interfaces of a radial mesh, and therefore mass exchanges
exist between neighboring rings. This radial mesh automatically adapts itself to the movement
of the arterial wall and can sustain arbitrary large wall deformation as long as R > 0.

In the following, we use this decomposition of the fluid domain in concentric rings to
introduce a finite volume discretization of the axisymmetric RNSP equations (8.1) in the
radial direction.

8.2.2 System of equations for one layer

Inspired by finite volume methods and the 1D approach presented in Subsection 2.5.1, we
integrate the axisymmetric RNSP equations (8.1) over the cross-sectional area the ring α.
Using the Leibniz integration rule, we obtain an integral form of the axisymmetric RNSP
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mass (8.1a) and momentum (8.1b) equations in the ring α:

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The term Gα+ 1
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The source term SM,α characterizes the momentum associated to the radial mass exchanges
in the ring α and writes:
SM,α = ux,α+ 1

2
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2
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2
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, (8.11)

where ux,α+ 1
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, t
)
is the axial velocity in Rα+ 1

2
. The source term Sν,α describes

the viscous dissipation in the ring α and writes:
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

[
r
∂ux
∂r

]

R
α+ 1

2

−
[
r
∂ux
∂r

]

R
α− 1

2


 . (8.12)

Finally, the nonlinear advection correction coefficient ψα writes:

ψα =
Aα
Q2
α

R
α+ 1

2∫

R
α− 1

2

2πr u2
xdr. (8.13)

It is important to note that up to this point, the integration process is exact and no
approximation has been made in this finite volume radial discretization of the axisymmetric
RNSP equations (8.1). We now derive the system of equations governing the motion of
blood in the entire artery.

8.2.3 System of equations for the artery

To obtain the system of equations governing blood flow in the entire artery, we must combine
the Nr systems of equations (8.9) describing the conservation of mass and axial momentum
in each ring α. The unknowns of the global system are therefore the cross-sectional area Aα
and the flow rate Qα of each ring α.

However, an important consequence of assumption (8.7) is that the local cross-sectional area
Aα can be deduced from the cross-sectional area A using the prescribed proportion lα. The
unknowns of the system are then reduced to the cross-sectional area A and the flow rate Qα
of each ring α. Similarly, by adding the Nr mass conservation equations (8.9a), we obtain a
single mass conservation equation depending on the cross-sectional area A and the flow rate
Qα of each ring α:

∂A

∂t
+

∂

∂x



Nr∑

j=1

Qj


 = GNr+ 1

2
−G 1

2
. (8.14)

Performing the same operation but adding only up to the ring α, we obtain the following
expression for the mass exchange term Gα+ 1

2
:

Gα+ 1
2
−


GNr+ 1

2

α∑

j=1

lj +G 1
2

Nr∑

j=α+1

lj


 =

α∑

j=1


∂Qj
∂x
− lj

Nr∑

p=1

[
∂Qp
∂x

]
 . (8.15)

Finally, by combining the previous remarks, we obtain a simplified global system of equations

171



Section 8.2. A multiring discretization of the RNSP equations

describing the conservation of mass in the artery and the balance of axial momentum in
each ring α. We refer to this system as the multiring system of equations, which depends on
the variables [A,Q1, ..., Qα, ..., QNr , p] and writes:



∂A

∂t
+

∂

∂x



Nr∑

j=1

Qj


 = GNr+ 1

2
−G 1

2

∂Qα
∂t

+
∂

∂x

(
ψα

Q2
α

lαA

)
+ lα

A

ρ

∂p

∂x
= SM,α + Sν,α, for α = 1, ..., Nr.

(8.16a)

(8.16b)

8.2.4 Radial boundary conditions

To complete the description of System (8.16), we provide boundary conditions at the center
of the artery, in r = R 1

2
= 0, and at the arterial wall, in r = RNr+ 1

2
= R. These boundary

conditions are identical those described in System (2.34).

In the center of the artery, in r = R 1
2
, the velocity must verify the following axisymmetric

boundary conditions:
∂ux
∂r
|R 1

2

= 0 and ur|R 1
2

= 0. (8.17)

At the arterial wall, in r = RNr+ 1
2
, the following classical kinematic boundary condition is

verified stating that the arterial wall is a material interface:

2πRNr+ 1
2
ur,Nr+ 1

2
− ∂

∂t

[
πR2

Nr+
1
2

]
− ux,Nr+ 1

2

∂

∂x

[
πR2

Nr+
1
2

]
= 0. (8.18)

Finally, a no-slip boundary conditions is also verified at the arterial wall:
ux,Nr+ 1

2
= 0. (8.19)

As a result, the expressions of the mass exchange terms G 1
2
and GNr+ 1

2
can be simplified

using the boundary conditions (8.17) and (8.18):
G 1

2
= 0, GNr+ 1

2
= 0. (8.20)

Equation (8.20) indicates that there is no mass exchange at the arterial wall due to its
impermeability and that there is no mass exchange in the center of the artery due to the
axisymmetry of the flow.

8.2.5 Multiring system of equations

We use the thin wall pressure law (5.1) as a closure relation linking the pressure p with the
cross-sectional area A. Injecting this pressure law and the boundary conditions (8.20) in the
multiring system of equations (8.16), we obtain the final closed-form of the multiring system
of equations describing the conservation of mass and the balance of axial momentum in an
elastic impermeable axisymmetric artery:

∂A

∂t
+
∂FA
∂x

= 0

∂Qα
∂t

+
∂FQα
∂x

= SM,α + Sν,α + lαST , for α = 1, ..., Nr,

(8.21a)

(8.21b)

where:



FA =

Nr∑

j=1

Qj

FQα = ψα
Q2
α

lαA
+ lα

K

3ρ
A

3
2 ,

(8.22a)

(8.22b)
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and:

ST =
A

ρ

(
∂

∂x

(
K
√
A0

)
− 2

3

√
A
∂K

∂x

)
. (8.23)

The source term ST is the geometrical and mechanical source term and is non-zero when the
neutral cross-sectional area A0 or the arterial wall rigidity K vary with the axial position x.
The mass exchange source term SM,α is defined by Equation (8.11) and the viscous source
term Sν,α by Equation (8.12). The Equation (8.15) for the mass exchange term Gα+ 1

2
in

each ring α can be simplified using the boundary conditions (8.20):

Gα+ 1
2

=

α∑

j=1


∂Qj
∂x
− lj

Nr∑

p=1

[
∂Qp
∂x

]
 (8.24)

In the remainder of the study, we assume that the advection correction coefficient ψα = 1 in
each ring α. Doing so, we suppose that the velocity profile is a piece-wise constant function
of the variable r. This classical finite volume hypothesis is the only one used in the derivation
of the multiring system of equations and is reasonable if we use a sufficiently large number
of rings Nr.

8.2.6 Radial velocity

We compute the radial velocity ur using the incompressibility condition (8.1a). By integrating
equation (8.1a) over the cross-sectional area of the ring α, we obtain:

[rur]R
α+ 1

2

= [rur]R
α− 1

2

−

R
α+ 1

2∫

R
α− 1

2

r
∂ux
∂x

dx. (8.25)

The axisymmetric boundary condition (8.17) imposes that:
ur, 1

2
= 0. (8.26)

We then iteratively compute the radial velocity ur,α+ 1
2
in each ring α using equation (8.25),

and then an approximation of ur,α as:

ur,α =
ur,α− 1

2
+ ur,α+ 1

2

2
. (8.27)

8.2.7 Link to the one-dimensional blood flow equations

The multiring system of equations (8.21) is a generalization of the classical 1D system of
equations for blood flow (2.67). Indeed, by adding the momentum balance equations (8.21b)
of all the rings α, we obtain the following global momentum balance equation:

∂Q

∂t
+

∂

∂x

[
Nr∑

α=1

FQα

]
=

Nr∑

α=1

[SM,α + Sν,α + lαST ] , (8.28)

where:

Q =

Nr∑

α=1

Qα. (8.29)

Using the boundary conditions (8.20), Equation (8.28) simplifies to:

∂Q

∂t
+

∂

∂x

[[
Nr∑

α=1

Q2
α

lαA

]
+
K

3ρ
A

3
2

]
= 2πν

[
r
∂ux
∂r

]

R
Nr+ 1

2

+ ST . (8.30)

Combining the mass conservation equation (8.21a) with Equation (8.30), we obtain the
following 1D system of equations for blood flow, describing the conservation of mass and
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axial momentum in an elastic artery:



∂A

∂t
+
∂Q

∂x
= 0

∂Q

∂t
+

∂

∂x

[[
Nr∑

α=1

Q2
α

lαA

]
+
K

3ρ
A

3
2

]
= 2πν

[
r
∂ux
∂r

]

R
Nr+ 1

2

+ ST .

(8.31a)

(8.31b)

System (8.31) is a discrete analogue of System (5.2). The remaining unknowns are the
nonlinear advection term

∑Nr
α=1Q

2
α/ [lαA] and the viscous term 2πν [r∂rux]R

Nr+ 1
2

. They

depend of the shape of the axial velocity profile ux. As it can not be computed by 1D models,
it is classical to close system (8.31) by prescribing an a priori shape of the velocity profile
(see Subsection 2.5.2 for details). As an example, if we assume that the velocity profile is a
Poiseuille profile, we have as in [Saito et al. 2011]:

Nr∑

α=1

Q2
α

lαA
≈ 4

3

Q2

A
and 2πν

[
r
∂ux
∂r

]

R
Nr+ 1

2

= −8πν
Q

A
. (8.32)

Unfortunately, in the vast majority of flow configurations, the shape of the velocity profile
is an unknown function of time and position and a correct estimation of the coefficients∑Nr

α=1Q
2
α/ [lαA] and 2πν

[
r ∂ux∂r

]
R
Nr+ 1

2

is impossible. We propose the multiring model (8.21)

to overcome those difficulties. Indeed, by integrating over concentric rings of fluid the
axisymmetric RNSP equations (8.1) coupled to the elastic pressure law (5.1), we have
derived a quasi-analytic radial discretization of the RNSP equations (8.1). The resulting
multiring system of equations can compute the velocity profile and therefore does not depend
on unknown coefficients like all 1D models. It is a system of balance laws, where the left
hand side is written as a system of conservation laws and the right hand side contains the
mass, viscous and geometrical and mechanical source terms. This mathematical structure
guarantees the conservation of mass, the balance of axial momentum and is conductive to a
finite volume axial discretization.

Next, we study the mathematical properties of this system of balance laws.

8.3 Mathematical properties

We study the mathematical properties of both the single layer system of equations (8.9) and
the multiring system of equations (8.21).

8.3.1 Single layer system of equations

We consider here the homogeneous form of the single layer system of equations (8.9):



∂Aα
∂t

+
∂Qα
∂x

= 0

∂Qα
∂t

+
∂FQα
∂x

= 0.

(8.33a)

(8.33b)

This conservative system has been thoroughly studied by many authors and we only briefly
recall its properties. Additional details can be found in [Formaggia et al. 2003; Wang et al.
2015; Ghigo et al. 2017b] and in Subsection 2.6.2.

The Jacobian matrix of System (8.33) has two real eigenvalues λ1,α and λ2,α, respectively
associated to two right eigenvectors R1,α and R2,α:

λ1,α =
Qα
Aα
− c, λ2,α =

Qα
Aα

+ c, R1,α =

[
1
λ1,α

]
, R2,α =

[
1
λ2,α

]
, (8.34)

174



Chapter 8. Two-dimensional multiring model for blood flow

where c (2.71) is the Moens-Korteweg celerity [Moens 1878; Korteweg 1878] and corresponds
to the celerity of a pulse wave:

c =

√
K

2ρ

√
A. (8.35)

The hyperbolicity of System (8.33) is characterized by the Shapiro number Sh,α, introduced
by Shapiro in [Shapiro 1977]:

Sh,α =
uα
c
. (8.36)

The Shapiro number Sh,α is the analog of the Froude number Fr for the shallow water
equations or of the Mach number Ma for compressible flows. Depending on the value of
Sh,α, we distinguish two flow regimes in the ring α: if Sh,α < 1, the flow is subcritical and
if Sh,α > 1 the flow is supercritical. In both cases, System (8.33) is strictly hyperbolic
as λ1,α 6= λ2,α and the right eigenvectors R1,α and R2,α are linearly independent. In
physiological conditions, blood flow is almost always subcritical [Siviglia and Toffolon 2013],
and therefore we only consider the case Sh,α < 1. The Riemann invariant vector Wα

associated with System (8.33) is:

Wα =

[
W1,α

W2,α

]
=



Qα
Aα
− 4c

Qα
Aα

+ 4c


 . (8.37)

The vector Wα is linked to the conservative variables through the following relations:



Aα =

(
2ρ

K

)2(W2,α −W1,α

8

)4

Qα = Aα
W1,α +W2,α

2
.

(8.38)

The relations (8.38) are useful when defining the boundary conditions at the inlet and outlet
of the computational domain.

8.3.2 Two layers system of equations

We now focus on the more complicated inviscid two layers system of equations:



∂A

∂t
+
∂FA
∂x

= 0

∂Q1

∂t
+
∂FQ1

∂x
= SM,1

∂Q2

∂t
+
∂FQ2

∂x
= SM,2.

(8.39a)

(8.39b)

(8.39c)

To simplify the analysis, we suppose that the geometrical and mechanical properties of the
artery do not vary (ST = 0). System (8.39) can then be written in the following quasi-linear
form:

M (X)
∂X

∂t
+H (X)

∂X

∂x
= 0. (8.40)

The vector X and the matrices M and H are respectively defined as:

X =



A
Q̄1

Q̄2


 , M (X) =




1 0 0
−u 1 0
−u 0 1


 , H =




0 l 1− l
c2 − Q̄2

1
A2 2 Q̄1

A − u 0

c2 − Q̄2
2

A2 0 2 Q̄2

A − u


 , (8.41)

where l = l 3
2
, u = ux, 3

2
, Q1 = lQ̄1 and Q2 = (1− l) Q̄2. System (8.40) is identical to the

quasi-linear strictly hyperbolic system obtained in [Audusse et al. 2011] for the two layers
shallow water model with mass exchange. Therefore, the two layers system (8.39) is also
strictly hyperbolic.
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8.3.3 Multiring system of equations

In [Audusse et al. 2011], the authors have studied the hyperbolicity of the multilayer shallow
water system with mass exchange. They performed numerous numerical tests showing that
for a given number of layers, the multilayer system is hyperbolic when small shear flows
are considered. In regions of high shear, some eigenvalues can become complex and lead to
the development of a Kelvin-Helmotz-like instability [Audusse et al. 2014]. This behavior is
expected as the RNSP equations (8.1) are not a system of conservation laws. By analogy,
this analysis is valid for the multiring system of equations (8.21) and we assume that in
physiological conditions the multiring system (8.21) is hyperbolic.

8.4 Numerical methods

For simplicity, we rewrite system (8.21) in the following vectorial form:
∂U

∂t
+

∂

∂x
[F (U)] = SM (U) + Sν (U) + ST (U) , (8.42)

where:

U =




A
Q1
...

QNr


 , F =




FA
FQ1

...
FQNr


 , (8.43)

and:

SM =




0
SM,1
...

SM,Nr


 , Sν =




0
Sν,1
...

Sν,Nr


 , ST = ST




0
l1
...
lNr


 . (8.44)

The structure of the multiring system of equation (8.42) as a system of balance laws naturally
leads us to propose a finite volume numerical scheme to obtain an approximate solution
of System (8.42). Doing so, we ensure that the numerical scheme is robust, conservative
and shock-capturing and that the numerical solution is positive if the chosen numerical flux
preserves the positivity of the solution.

8.4.1 Problem splitting

The first step towards obtaining a numerical approximation of the solution of System (8.42)
in the finite volume framework is to discretize both the temporal and spatial domains. We
use the same discretization as in Section 4.1 and divide the time domain using a constant
time step ∆t and the discrete times are defined as:
tn = n∆t, n ∈ N. (8.45)

We note Un = U (tn). We then introduce a mesh in the axial direction and divide the length
L of the artery in a series of cells Ci defined as:

Ci =
[
xi− 1

2
, xi+ 1

2

]
= [[i− 1] ∆x, i∆x] , for i = 1, ..., Nx, (8.46)

where ∆x is the cell size, supposed constant for simplicity, and L = Nx∆x.

Finally, we discretize the multiring system of equations (8.42) using a time splitting method,
similar to the one introduced in Section 4.1:

Convective subproblem
U∗ −Un

∆t
+

∂

∂x
[F (Un)] = SM (Un) + ST (Un) . (8.47)
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Viscous (or reaction) subproblem
Un+1 −U∗

∆t
= Sν

(
Un+1

)
. (8.48)

Both the convective and viscous subproblems (resp. eq. (8.47) and (8.48)) are solved
numerically in the following subsections.

8.4.2 Explicit convective numerical scheme

We first solve the convective system of equations (8.47) using an explicit finite volume scheme,
which includes the mass exchange source term SM and the geometrical and mechanical
source term ST .

Integrating System (8.47) over the cell Ci, we obtain the explicit finite volume scheme:
U∗i −Un

i

∆t
+

1

∆x

[
Fn
i+1

2
− Fn

i−1
2

]
= Sn

M,i + Sn
T,i, (8.49)

where Uni is the space-average approximation of the vector U in the cell Ci at the time tn:

Uni ≈
1

∆x

∫

Ci

U (x, tn) dx. (8.50)

The vector Fn
i+1

2

is the two-points numerical flux vector, and corresponds to the numerical
approximation of the flux vector F at interface xi+ 1

2
of the cell Ci at time tn:

Fn
i+1

2
= F

(
Un
i+1

2
,L
,Un

i+1
2
,R

)
=




FA
(
Un
i+1

2
,L
,Un

i+1
2
,R

)

FQ1

(
Un
i+1

2
,L
,Un

i+1
2
,R

)

...
FQNr

(
Un
i+1

2
,L
,Un

i+1
2
,R

)



. (8.51)

The flux FA can also be written as the sum of the contribution of each ring α:

FA
(
Un
i+1

2
,L
,Un

i+1
2
,R

)
=

Nr∑

j=1

FAj
(
Un
i+1

2
,L
,Un

i+1
2
,R

)
(8.52)

The choice of the vector function F defines the numerical flux and thus the finite volume
scheme. As we use only a first-order finite volume numerical scheme, the vectors Un

i+1
2
,L

and Un
i+1

2
,R

at the left and right of the interface xi+ 1
2
of the cell Ci at time tn are defined

as:


Un
i+1

2
,L

= Uni

Un
i+1

2
,R

= Uni+1.
(8.53)

The vectors SnM,i and S
n
T,i correspond respectively to the discretization of the mass exchange

source term SM (Uni ) and of the geometrical and mechanical source term ST (Uni ) and will
be specified in the following subsections.

Kinetic flux

As shown previously, there is no analytic expression for the eigenvalues of System (8.42).
We therefore choose to use a kinetic flux function, which does not require the computation
of the eigenstructure of System (8.42). Other approaches are possible, see [Fernández-Nieto
et al. 2013; Audusse et al. 2014]. A review of the kinetic method applied to different systems
of equations can be found in [Bouchut 1999] and more particularly to the 1D blood flow
system in [Audebert et al. 2017b; Ghigo et al. 2017b] and in Subsection 4.2.1 and to the
multilayer shallow water system with mass exchange in [Audusse et al. 2011].
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In the following, we briefly present the derivation of the expression of the kinetic vector
function F for the multiring system of equations (8.42). This derivation is very similar to
the one presented in Subsection 4.2.1.

According to kinetic theory, the vector function F is defined as:
F (UL,UR) = F+ (UL) + F− (UR) , (8.54)

where F+ (U) and F− (U) are:

F+ (U) =




∑Nr
j=1F+

Aj
(U)

F+
Q1

(U)
...

F+
QNr

(U)




F− (U) =




∑Nr
j=1F−Aj (U)

F−Q1
(U)
...

F−QNr (U)



.

(8.55)

The fluxes F±Aα (U) and F±Qα (U) in each ring α are defined as:
[F+

Aα
(U)

F+
Qα

(U)

]
=

∫

ξ≥0

ξ

[
1
ξ

]
Mα (A, ξ − uα) dξ

[F−Aα (U)

F−Qα (U)

]
=

∫

ξ≤0

ξ

[
1
ξ

]
Mα (A, ξ − uα) dξ.

(8.56)

The function Mα is the kinetic Maxwellian, or so-called Gibbs equilibrium, and represents a
distribution function of the microscopic particle velocity ξ ∈ R in the ring α:

Mα (A, ξ − uα) =
lαA

c̃
χ

(
ξ − uα
c̃

)
, (8.57)

where:

c̃ =

√
K

3ρ

√
A. (8.58)

We choose the function χ as:

χ (w) =





1

2
√

3
if |w| ≤

√
3

0 else.
(8.59)

Injecting the expressions of the functions χ and Mα in the definition of the fluxes (8.56), we
obtain after some computation the expressions for the fluxes F±Aα (U) and F±Qα (U) in each
ring α:
[F+

Aα
(U)

F+
Qα

(U)

]
=

lαA

2
√

3c̃




1
2

((
ξ+
p,α

)2 −
(
ξ+
m,α

)2)

1
3

((
ξ+
p,α

)3 −
(
ξ+
m,α

)3)



[F−Aα (U)

F−Qα (U)

]
=

lαA

2
√

3c̃




1
2

((
ξ−p,α

)2 −
(
ξ−m,α

)2)

1
3

((
ξ−p,α

)3 −
(
ξ−m,α

)3)

 ,

(8.60)

with:


ξ+
p,α = max

(
0, uα +

√
3c̃
)
, ξ+

m,α = max
(

0, uα −
√

3c̃
)

ξ−p,α = min
(

0, uα +
√

3c̃
)
, ξ−m,α = min

(
0, uα −

√
3c̃
)
.

(8.61)

178



Chapter 8. Two-dimensional multiring model for blood flow

Mass exchange source term

We define the discrete mass exchange source term SnM,i as:

SnM,i =




0
un3

2
,i
Gn3

2
,i

...
un
α+ 1

2
,i
Gn
α+ 1

2
,i
− un

α− 1
2
,i
Gn
α− 1

2
,i

...
−un

Nr− 1
2
,i
Gn
Nr− 1

2
,i




. (8.62)

Following [Audusse et al. 2011] and by analogy with expression (8.24), we compute Gn
α+ 1

2
,i

in each ring α as:

Gn
α+ 1

2
,i

=
1

∆x

α∑

j=1

{[
FAj

(
Un
i+1

2
,L
,Un

i+1
2
,R

)
−FAj

(
Un
i−1

2
,L
,Un

i−1
2
,R

)]
−

lj

[
FA
(
Un
i+1

2
,L
,Un

i+1
2
,R

)
−FA

(
Un
i−1

2
,L
,Un

i−1
2
,R

)]}
.

(8.63)

We define un
α+ 1

2
,i
in an upwind manner:

un
α+ 1

2
,i

=




unα,i if Gn

α+ 1
2
,i
≤ 0

unα+1,i if Gn
α+ 1

2
,i
> 0.

(8.64)

This choice is motivated by the analysis of expression (8.10) for the mass exchange term
Gα+ 1

2
. Indeed, Gα+ 1

2
> 0 if the cross-sectional area πR2

α+ 1
2

increases with time or if the
interface velocity ur,α+ 1

2
< 0. In both cases, from the perspective of the interface Rα+ 1

2
, the

flow is coming from the upper ring α+ 1 and the upwind velocity is therefore uα+1.

Hydrostatic reconstruction of the source term ST

The considered kinetic flux function does not take into account the geometrical and mechanical
source term ST , which results from axial variations of the neutral cross-sectional area A0

or the arterial rigidity K. This source term must be treated using a well-balanced method
to prevent spurious oscillations of the numerical solution close to steady states [Roe 1987;
Bermúdez and Vázquez 1994; Gosse and LeRoux 1996; Greenberg and LeRoux 1996].

To that effect, we use the well-balanced hydrostatic reconstruction technique (HR) introduced
in [Audusse and Bristeau 2005] for shallow water equations and discussed in Chapter 5. This
technique was then applied to blood flow equations in [Delestre and Lagrée 2013; Delestre
et al. 2016] and to the multilayer shallow water system with mass exchange in [Audusse
et al. 2011]. Through a reconstruction of the conservative variables, HR allows to obtain a
simple and efficient well-balanced numerical scheme given any finite volume numerical flux.
We briefly recall the derivation of HR applied to the multiring system of equations (8.42).

We define the discrete geometrical and mechanical source term SnT,i as:
SnT,i = SnT,i [0, l1, . . . , lNr ]

ᵀ , (8.65)
where SnT,i is:

SnT,i =
1

3ρ∆x

[
K∗
i+ 1

2

[
A∗n
i+ 1

2
,L

] 3
2 −Ki+ 1

2
,L

[
An
i+ 1

2
,L

] 3
2

−K∗
i− 1

2

[
A∗n
i− 1

2
,R

] 3
2

+Ki− 1
2
,R

[
An
i− 1

2
,R

] 3
2

]
.

(8.66)
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The reconstructed variables A∗n
i+ 1

2
,L
, A∗n

i+ 1
2
,R

and K∗
i+ 1

2

are defined such that the steady states
at rest are preserved as well as the positivity of the cross-sectional area A:



A∗n
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2
,L
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2
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2




2
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2
,R
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
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2
,R

K∗
i+ 1

2




2

K∗
i+ 1

2

= max
(
Ki+ 1

2
,L,Ki+ 1

2
,R

)
,

(8.67)

with:



H∗n
i+ 1

2
,L
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(
0, Z∗

i+ 1
2

+
[
K
√
A
]
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2
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−
[
K
√
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2
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,R
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+
[
K
√
A
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2
,R
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[
K
√
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2
,R

)

Z∗
i+ 1

2

= min

([
K
√
A0

]
i+ 1

2
,L
,
[
K
√
A0

]
i+ 1

2
,R

)
.

(8.68)

Finally, we obtain a well-balanced numerical scheme by replacing each occurrence of the
conservative vectors Un

i+1
2
,L

and Un
i+1

2
,R

in the vector function F by the reconstructed
conservative vectors U∗n

i+1
2
,L

and U∗n
i+1

2
,R
, defined as:

U∗n
i+1

2
,L

=




A∗n
i+ 1

2
,L

Qn
1,i+ 1

2
,L

...
Qn
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1
2
,L



, U∗n

i+1
2
,R

=


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A∗n
i+ 1

2
,R

Qn
1,i+ 1

2
,R

...
Qn
Nr,i+

1
2
,R



. (8.69)

CFL condition

The stability of the convective numerical scheme is ensured if at each time tn, the time step
∆t verifies the following CFL (Courant, Friedrichs and Lewy) [Courant et al. 1967] condition:

∆t ≤
Nx

min
i=1

Nr
min
j=1

ljA
n
i ∆x

ljAni

(
|unj,i|+ c̃ni

)
+ ∆x

(
Gn
j+ 1

2
,i
−Gn

j− 1
2
,i

) . (8.70)

This CFL condition ensures that the kinetic scheme preserves the positivity of the cross-
sectional area A (for a detailed proof see [Audusse et al. 2011]). Note that it is more
restrictive than the classical CFL condition used in 1D models as the flow can now exit the
ring through both its axial and radial interfaces.

8.4.3 Implicit viscous numerical scheme

We now solve the viscous system of equations (8.48) using an implicit numerical scheme.
The implicit form of the scheme is chosen for stability reasons.

Integrating System (8.48) over the cell Ci, we obtain the following implicit viscous numerical
scheme:
Un+1
i −U∗

i

∆t
= Sn+1

ν,i , (8.71)

where U∗
i is the solution of the system of equations (8.49) and Sn+1

ν,i is the discretization of
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the viscous source term Sν

(
Un+1
i

)
and writes:

Sn+1
ν,i =




0

Sn+1
ν,1,i
...

Sn+1
ν,Nr,i


 . (8.72)

In each ring α of the cell Ci at time tn+1, we define Sn+1
ν,α,i as the discrete analog of Sν,α (8.12).

To compute Sn+1
ν,α,i, we use a centered finite difference discretization of the term

[
r ∂ux∂r

]
R
α+ 1

2

:
[
r
∂ux
∂r

]

R
α+ 1

2

= Jr,α

[
un+1
α+1,i − un+1

α,i

]
for α = 1, . . . , Nr − 1, (8.73)

where:

Jr,α = 2

∑α
j=1 lr,j

lr,α + lr,α+1
. (8.74)

At the interfaces R 1
2
and RNr+ 1

2
, the previous discretization (8.73) of r∂rux is not possible

and the boundary conditions (8.17) and (8.19) must be taken into account. At the ring
interface r 1

2
, the axisymmetric boundary condition (8.17) imposes that:

[
r
∂ux
∂r

]

R 1
2

= 0. (8.75)

To express [r∂rux]R
Nr+ 1

2

using only the conservative vector U , we first perform the following

asymptotic expansion of ux in the ring Nr:

ux (x, r, t) = ux

(
x,RNr+ 1

2
, t
)

+
[
r −RNr+ 1

2

] ∂ux
∂r
|R
Nr+ 1

2

+O

([
RNr+ 1

2
− r
]2
)
. (8.76)

Neglecting the higher-order terms and using the no-slip boundary condition (8.19), we obtain
the following expression:

ux (x, r, t) ≈
[
r −RNr+ 1

2

] ∂ux
∂r
|R
Nr+ 1

2

. (8.77)

We then integrate the previous expression over the cross-sectional area of the ring Nr and
we obtain:[

r
∂ux
∂r

]

R
Nr+ 1

2

= Jr,ν
Qn+1
Nr,i

An+1
i

, (8.78)

with:

Jr,ν =
1

−1
3 + [1− lr,Nr ]2 − 2

3 [1− lr,Nr ]3
. (8.79)

It is important to note that the discretization (8.78) of
[
r ∂ux∂r

]
R
Nr+ 1

2

imposes the no-slip

boundary condition (8.19) at the wall, which is the natural boundary condition for viscous
flows.

Finally, noticing that the first component of the source term Sν is zero, we obtain the
following trivial solution of the system of equations (8.48) for the first component of Un+1

i :
An+1
i = A∗i , for i = 1, ..., Nx. (8.80)

We can therefore rewrite the implicit viscous scheme (8.71) in the following matrix form:
[
I + ∆tM∗

ν,i

]
·
[
Qn+1

1,i , . . . , Q
n+1
α,i , . . . , Q

n+1
Nr,i

]ᵀ
=
[
Q∗1,i, . . . , Q

∗
α,i, . . . , Q

∗
Nr,i

]ᵀ
, (8.81)
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where I is the identity matrix and M∗
ν,i is the following tridiagonal matrix:

M∗
ν,i =

2πν

A∗i




Jr,1
l1

−Jr,1
l2

0 . . . 0
. . . . . . . . . . . .

...
0 −Jr,α−1

lα−1

Jr,α−1+Jr,α
lα

− Jr,α
lα+1

0
...

. . . . . . . . . . . .
0 . . . 0 −Jr,Nr−1

lNr−1

Jr,Nr−1

lNr
− Jr,ν



. (8.82)

We then invert the System (8.81) using the Thomas algorithm [Thomas 1949], well-suited
for solving tridiagonal matrix systems.

Next, we provide algorithms to impose classical inlet and outlet boundary conditions for
blood flow.

8.5 Boundary conditions

As we compute subcritical solutions of System (8.21), boundary conditions are required at
both ends of the computational domain, in the inlet and outlet ghost cells of the artery,
respectively noted Cin and Cout. In both cells Cin and Cout, the corresponding conservative
vectors Unin and Unout must be prescribed in order to update the numerical solution from time
tn to time tn+1 in each cell Ci of the computational domain. We propose here algorithms
to impose boundary conditions in the inlet and outlet ghost cells of the artery. As the
implementation of inlet and outlet boundary conditions is very similar, we describe only the
derivation of the inlet boundary conditions.

8.5.1 Imposed flow rate

We wish to impose the flow rate Qne,α at the interface between the first cell C1 and the inlet
ghost cell Cin of each ring α, namely:
FAα (Unin,U

n
1 ) = Qne,α for α = 1, ..., Nr. (8.83)

Following the methodology proposed in [Bristeau and Coussin 2001] and taking advantage
of the fact that the kinetic flux function FAα can be split in two, Equation (8.83) can be
expressed as:
F+
Aα

(Unin) + F−Aα (Un1 ) = Qne,α for α = 1, ..., Nr. (8.84)
To ensure the stability of the scheme, the condition (8.84) in each ring α is imposed in an
upwind manner. Consequently, we define the quantity:

a =

Nr∑

α=1

Qne,α −F−Aα (Un1 ) , (8.85)

and distinguish two cases:

• If a ≤ 0, the dominant part of the information is coming from inside the computational
domain. As we are performing an upwind evaluation of the inlet boundary condition, we
impose:
F+
A (Unin) = 0

F+
Qα

(Unin) = 0 for α = 1, ..., Nr.
(8.86)

• If a > 0, the dominant part of the information is coming from outside the computational
domain. In this case, we impose:
F+
Aα

(Unin) = Qne,α −F−Aα (Un1 ) for α = 1, ..., Nr

W1 (Unin) = W1 (Un1 ) .
(8.87)
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W1 (U) is the 1D analog of the Riemann invariantW1,α (U) in the ring α and characterizes
the global outgoing characteristic. It writes:

W1 =

∑Nr
α=1Qα
A

− c. (8.88)

Similarly, we write W2 (U) as:

W2 =

∑Nr
α=1Qα
A

+ c. (8.89)

Unin is obtained by solving either System (8.86) or System (8.87). This can be done using a
classic Newton’s method in a limited number of iterations.

8.5.2 Imposed cross-sectional area

We wish to impose the cross-sectional area Ane in the inlet ghost cell Cin. Therefore, we set:
Anin = Ane . (8.90)

To completely determine the inlet vector of conservative variables Unin, we estimate the
outgoing Riemann invariant W1,α (Unin) in the ring α as:
W1,α (Unin) = W1,α (Un1 ) for α = 1, ..., Nr, (8.91)

and using Equation (8.37) and Equation (8.38), we compute W2,α (Unin) and then Qnin,α in
each ring α:


W2,α (Unin) = W1,α (Unin) + 8cnin

Qnin,α = lαA
n
in

W1,α (Unin) +W2,α (Unin)

2
.

(8.92)

8.5.3 Imposed reflection coefficient

We wish to impose the reflection coefficient Rt in the inlet ghost cell Cin. The inlet reflection
coefficient Rt is defined as:
W2 (Unin)−W2

(
U0
in

)
= −Rt

[
W1 (Unin)−W1

(
U0
in

)]
, (8.93)

and characterizes the proportion of the outgoing information reflected back into the compu-
tational domain. When we wish to remove any reflection of the outgoing information, we set
Rt = 0. We first estimate the outgoing Riemann invariant W1 (Unin) as:
W1 (Unin) = W1 (Un1 ) , (8.94)

and using Equation (8.93), we compute W2 (Unin) and then Anin:

Anin =

(
2ρ

Kin

)2(W2 (Unin)−W1 (Unin)

8

)4

. (8.95)

Finally, we use the algorithm presented in the previous subsection to completely determine
the inlet vector of conservative variables Unin.

In the following sections, we perform a series of numerical tests to validate the multiring
model (8.21), the numerical scheme and the boundary conditions previously described.

8.6 Linear examples in an elastic artery

8.6.1 The Womersley solution

In [Womersley 1955], Womersley proposed an analytic harmonic solution of the linearized
Navier-Stokes equations which is also a solution of the linearized RNSP equations (8.1). The
Womersley solution is an important test case for numerical methods simulating blood flow
in elastic arteries as it includes pulsatile effects, elastic deformation of the arterial wall and
viscous dissipation. In [Lagrée 2000; Casulli et al. 2012; Dumbser et al. 2015], the authors
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used the Womersley solution in a rigid axisymmetric tube to validate their numerical method.
In this section, we compute the Womersley solution in an elastic artery as a first validation
case of the multiring model (8.21). For a detailed description of the Womersley solution, see
Subsection 2.4.2.

We consider a straight artery initially at rest:{
A (x, t = 0) = A0

Qα (x, t = 0) = 0 for α = 1, . . . , Nr.
(8.96)

We impose at the inlet a sinusoidal oscillation of the pressure:

p (x = 0, t) = p̂ sin

[
2π

t

Tc

]
, p̂ =

√
πKR̂, (8.97)

and at the outlet a zero reflection coefficient Rt to remove any backward traveling waves.
The values of the geometrical and mechanical parameters describing the artery as well as
those describing the inlet and outlet boundary conditions are presented in Table 8.1. The
final time tf is large enough to reach a periodic regime. The geometrical and mechanical
parameters mimic physiological conditions and the value of R̂ is small enough such that the
linear approximation required to obtain the Womersley solution is valid.

L R0 K ρ µ R̂ Rt Tc tf α

200 1 104 1 2π ρ
Tc

R2
0

α2 10−3 0 0.5 12Tc {5, 20}
Table 8.1 – Geometrical and mechanical parameters describing the artery and the inlet and
outlet boundary conditions for the elastic Womersley example.

For the sake of illustration, we consider only two different Womersley numbers, α = 5 and
α = 20, chosen to respectively represent flow conditions in small and large arteries. At
small Womersley numbers (α = 5), the viscous effect dominates, whereas at large Womersley
numbers (α = 20) the unsteady advection effect is dominant.

In Figure 8.2, we plot the velocity profiles obtained in x = 25 at t ∈ {0.2, 0.4, 0.5, 0.7}Tc +
11Tc for α = 5 (Figure 8.2 Left) and α = 20 (Figure 8.2 Right). We use Nx = 1600 cells and
Nr = 128 rings. We observe that in both cases (α = 5 and α = 20) the Womersley and the
multiring solutions are in good accord for each recorded time. Small discrepancies between
both solutions appear near the maximums of the velocity due to the numerical dissipation of
the kinetic scheme and the nonlinearity of the numerical solutions.

In Figure 8.3, we represent the spatial evolution of the flow rate Q, the pressure p and the
wall shear stress (WSS) τw obtained at time t = 0.3Tc + 11Tc for α = 5 (Figure 8.3 Left)
and α = 20 (Figure 8.3 Right). Once again, we use Nx = 1600 cells and Nr = 128 rings. For
α = 20, the Womersley and the multiring solutions overlap except at the local maximums
and minimums of Q, p and τw, which are slightly dissipated by the numerical viscosity of
the scheme. For α = 5, both solutions match almost perfectly as the viscous dissipation is
much larger than the numerical dissipation.

Next, we perform a convergence analysis in both the number of cells Nx and the number
of rings Nr. In Figure 8.4, we plot the L2 spatial error between the Womersley and the
multiring solutions as a function of the dimensionless number of cells N̄x = λNx/L, where λ
is the wavelength of the pressure pulse, and of the dimensionless number of rings N̄r = Nr/α
for α = 5 (Figure 8.4 Left) and α = 20 (Figure 8.4 Right). We focus only on the flow rate Q
and the WSS τw taken at time t = 0.3Tc + 11Tc. For both α = 5 and α = 20, we observe
that increasing N̄x or N̄r is not equivalent. For low values of N̄x, increasing N̄r does not
decrease the error significantly, whereas increasing N̄x does. On the contrary, for high values
of N̄x, increasing N̄r significantly decreases the error, whereas increasing N̄x does not. This
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Figure 8.2 – Comparison between the velocity profiles obtained with the analytic Womersley
solution ( ) and with the multiring model using Nx = 1600 cells and Nr = 128 rings in
x = 25 at times t ∈ {0.2 (M) , 0.4 (♦) , 0.5 (©) , 0.7 (B)}Tc + 11Tc.
Left: α = 5.
Right: α = 20.
We observe that the multiring solution agrees well with the analytic Womersley solution.

behavior is expected as wave propagation in the axial direction is the dominant physical
mechanism of the Womersley solution and can only be captured if a sufficient number of cells
N̄x is used. Only once a sufficient number of cells N̄x is used can we increase the number of
rings N̄r to compute in detail the velocity profile. However, the behavior of the WSS τw for
α = 20 is different from the behavior of the other quantities. Indeed, the effect of increasing
the number of rings N̄r for low values of N̄x is more significant than for the other quantities.
This is due to the fact that for α = 20, the boundary layer is thin, therefore increasing N̄r

immediately allows to better capture the viscous behavior of the flow and therefore the WSS
τw. As a rule of thumbs, we observe that N̄x = 500 and N̄r = 2 is the minimum mesh and
ring refinements to obtain an accurate description of the Womersley solution.

To conclude this analysis, we study three additional flow configurations where we increase
the nonlinearity of the elastic Womersley solution by changing the amplitude of the wall
perturbation R̂. We choose R̂ ∈

{
10−3, 10−2, 10−1, 3× 10−1

}
. In Figure 8.5, we plot

snapshots of the spatial evolution of the axial velocity profile ux in the artery at time
t = 0.3Tc + 11Tc obtained for α = 20 and using Nx = 1600 cells and Nr = 128 rings.
The values of the other geometrical and mechanical parameters describing the artery are
identical to those of Table 8.1. We observe that the multiring model (8.21) is able to compute
with identical computational costs linear and nonlinear flow behaviors with small and large
deformations of the arterial wall.

8.6.2 The steady linear elastic Poiseuille solution

In [Fung 2013], the author proposed a steady analytic solution of the linearized RNSP
equations (8.1) in an elastic artery. As the Poiseuille solution, it describes the steady balance
between the pressure gradient and the viscous radial dissipation term and is presented
in Subsection 2.4.1. In [Casulli et al. 2012; Dumbser et al. 2015], the authors used this
solution to validate their numerical code solving the axisymmetric RNSP equations (8.1).
We reproduce here this solution using the multiring model (8.21).

We consider a straight artery initially at rest. We impose the pressure gradient by setting at
the inlet and outlet constant pressures consistent with the analytic solution (2.46):{

p (x = 0) = p0 +
√
πKR0R̂

p (x = L) = p0 −
√
πKR0R̂.

(8.98)
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Figure 8.3 – Comparison between the flow rate Q, the pressure p and the WSS τw obtained
with the analytic Womersley solution ( ) and with the multiring model (©) using Nx = 1600
cells and Nr = 128 rings, at time t = 0.3Tc + 11Tc.
Left: α = 5.
Right: α = 20.
We observe that the multiring solutions agree well with the analytic solutions.
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Figure 8.4 – Phase diagram of the L2 spatial error between the Womersley and the multiring
solutions as a function of λNx/L and of Nr/α at time t = 0.3Tc + 11Tc.
Left: α = 5.
Right: α = 20.
Top: Flow rate Q.
Bottom: WSS τw.
For low values of λNx/L, increasing Nr/α does not decrease the error significantly, whereas
increasing λNx/L does. On the contrary, for high values of λNx/L, increasing Nr/α
significantly decreases the error, whereas increasing λNx/L does not.
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Figure 8.5 – Snapshots of the spatial evolution of the axial velocity ux at t = 0.3Tc + 11Tc
obtained using Nx = 1600 cells and Nr = 128 rings for α = 20.
Top: R̂ ∈

{
10−3, 10−2

}
.

Bottom: R̂ ∈
{

10−1, 3× 10−1
}
.

We observe that the multiring model is able to compute linear and nonlinear flow behaviors
with small and large wall deformations.

For simplicity we set p0 = 0. The values of the geometrical and mechanical parameters
describing the artery as well as those describing the inlet and outlet boundary conditions
are presented in Table 8.2. The final time tf is large enough to reach a steady flow regime
and the value of R̂ is small enough such that the linear approximation required to obtain
the elastic Poiseuille solution is valid.

L R0 K ρ µ R̂ tf

10 1 102
√
π

1 1 10−1 20

Table 8.2 – Geometrical and mechanical parameters describing the artery and the inlet and
outlet boundary conditions for the steady linear elastic Poiseuille example.

In Figure 8.6, we plot the spatial evolution of the steady radius R (Figure 8.6 Left) and the
steady axial velocity profiles taken in x ∈ {0, 0.2, 0.4, 0.6, 0.8, 0.99}L (Figure 8.6 Right).
We use Nx = 800 cells and Nr = 64 rings. We observe that for each recorded point the
steady multiring numerical solution is in agreement with the steady analytic solution.

As this analytic solution is smooth enough, we perform a convergence analysis to deter-
mine the order of accuracy of the scheme. We consider the following mesh refinements
[Nx, Nr] ∈ {[100, 8] , [200, 16] , [400, 32] , [800, 64]} and focus only on the radius R for simplic-
ity. In Table 8.3, we compute the L1, L2 and L∞ spatial errors between the analytic solution
(2.46) and the steady numerical solution for the radius R. We observe that the numerical
solution converges at order 1, which is the expected order of convergence.
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Figure 8.6 – Comparison between the steady analytic Poiseuille solution ( ) and the
multiring solution (marks) using Nx = 800 cells and Nr = 64 rings.
Left: Steady radius R.
Right: Steady axial velocity profiles ux taken in x ∈ {0 (M) , 0.2 (♦) , 0.4 (©) , 0.6 (B) ,
0.8 (�) , 0.99 (+)}L.

We observe a good agreement between the analytic and the multiring numerical solutions.

Nx Nr L1 (R) OL1(R) L2 (R) OL2(R) L∞ (R) OL∞(R)

100 8 1.29× 10−3 - 7.35× 10−4 - 5.36× 10−4 -
200 16 5.93× 10−4 -0.56 3.37× 10−4 -0.56 2.46× 10−4 -0.56
400 32 2.25× 10−4 -0.70 1.27× 10−4 -0.70 9.33× 10−5 -0.70
800 64 4.54× 10−5 -1.15 2.49× 10−5 -1.18 2.05× 10−5 -1.09

Table 8.3 – L1, L2 and L∞ spatial errors between the steady analytic solution (2.46)
and the steady multiring numerical solution for the radius R obtain using [Nx, Nr] ∈
{[100, 8] , [200, 16] , [400, 32] , [800, 64]} cells and rings. We observe that the numerical solution
converges at order 1, which is the expected order of convergence.

In the two previous examples, we have shown that the multiring model (8.21) is able to
accurately capture steady and unsteady linear blood flow in a straight artery. We are
therefore confident that the multiring model (8.21) can compute all relevant linear flow
features encountered in large straight axisymmetric elastic arteries. However, the RNSP
system of equations (8.1) is a rich dynamical system and is not limited to describing
linear harmonic and steady solutions in elastic arteries. In the following sections, we will
continue to validate the multiring model, the numerical scheme and the boundary conditions
using nonlinear steady examples in rigid arteries with varying geometrical and mechanical
properties.

8.7 Nonlinear examples in a rigid artery

8.7.1 Nonlinear transition from a flat to a Poiseuille velocity profile

In [Lagrée and Lorthois 2005], the authors studied the behavior of the RNSP system of
equations (8.1) when computing steady flows in a rigid axisymmetric cylinder. They showed
that it is able to describe the steady spatial transition from the Blasius [Schlichting 1968]
to the Poiseuille flow regime, starting from a flat velocity profile at the inlet and evolving
towards a fully developed Poiseuille velocity profile at the outlet. We reproduce here this
phenomenon using the multiring model (8.21). The relevant dimensionless number in this
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example is the Reynolds number Re,R, defined as:

Re,R =
ux|x=0R|x=0

ν
, (8.99)

and used to determine the relevant length and time scales in order to observe the steady
spatial transition from the Blasius to the Poiseuille flow regime. Details on the determination
of theses scales can be found in [Lagrée and Lorthois 2005].

We consider a straight artery initially at rest. We impose at the inlet a steady velocity profile.
We can not impose a flat velocity profile as it is not compatible with the no-slip boundary
condition at the wall (8.19). Therefore we impose at the inlet a Von Kármán-Pohlhausen
velocity profile [Pohlhausen 1921], describing a fourth-order approximation of the axial
velocity profile in the viscous boundary layer:
ux (x = 0, r, t) = Uin φPohlhausen (r) , (8.100)

where:

φPohlhausen (r) =





1− [1− η]3
[
1 +

[
1 + ∆

6

]
η
]

1
30

[
30− 3

[
6 + ∆

6

]
δBL +

[
4 + ∆

6

]
δ2
BL

] if η < 1

1
1
30

[
30− 3

[
6 + ∆

6

]
δBL +

[
4 + ∆

6

]
δ2
BL

] if η ≥ 1,

(8.101)

with ∆ = 12 and η =
[
1− r

R(x,t)

]
/δBL. The parameter δBL is the estimated width of the

boundary layer, that we choose here equal to δBL = lr,Nr + lr,Nr−1. We impose at the outlet
a zero reflection coefficient Rt to remove any backward traveling waves. The values of the
geometrical and mechanical parameters describing the artery as well as those describing the
inlet and outlet boundary conditions are presented in Table 8.4. The final time tf is large
enough to reach a steady flow regime. The geometrical and mechanical parameters mimic
physiological conditions at the root of the aorta, where Re,R ≈ 100.

L R0 K ρ µ Uin Rt tf Re,R

0.25 Re,RR|x=0 1 107 1 ρ
UinR|x=0

Re,R
100 0 0.5

Re,RR|x=0

Uin
100

Table 8.4 – Geometrical and mechanical parameters describing the artery and the inlet and
outlet boundary conditions for the steady rigid Poiseuille example.

As the multiring model (8.21) is intrinsically elastic, it is not possible to exactly simulate
the flow of blood in a rigid cylinder. Nevertheless, by artificially increasing the arterial wall
rigidity K (here K = 107), we penalize the wall’s displacement and place ourselves in a
quasi-rigid wall configuration.

To assess the quality of the multiring numerical results, we compare them to those of the
steady numerical code presented in [Lagrée and Lorthois 2005]. This steady code was used
to solve the steady RNSP system of equations (8.1) in a rigid tube and compared well with
the results of an integral interactive boundary layer (IBL) code. In the following examples,
all results of the steady code used as reference solutions are obtained using Nx = 50000 cells
in the axial direction and Nr = 1000 cells in the radial direction, which is a very fine mesh.

In Figure 8.7, we plot the steady spatial evolution of the centerline velocity ux|r=0
(Figure 8.7

Left) and of the pressure p (Figure 8.7 Right). We use Nx ∈ {800, 1600, 3200} cells and
Nr = 32 rings. We observe that as we increase the number of cells Nx, the steady multiring
numerical solution converges towards the steady numerical solution and is able to describe
the spatial transition from a flat velocity profile to a Poiseuille velocity profile. The number
of cells Nx required to match the steady solution is relatively high due to the numerical
dissipation of the kinetic scheme and since the transition from of flat to a Poiseuille velocity
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Figure 8.7 – Comparison between steady Poiseuille solutions obtained with the steady code
[Lagrée and Lorthois 2005] ( ) and with the multiring model using Nx ∈ {800 (M) , 1600 (♦) ,
3200 (©)} cells and Nr = 32 rings.
Left: Steady centerline velocity ux|r=0

. The dashed lines represent the value of the flat
centerline velocity (ux|r=0

= ux|x=0
) and the Poiseuille centerline velocity (ux|r=0

= 2ux|x=0
).

Right: Steady pressure p. The dashed line represents the pressure drop −8x/
(
Re,RR|x=0

)

of a Poiseuille flow.
For each quantity, the steady multiring numerical solution converges towards the steady
numerical solution and we observe the transition from a flat to a Poiseuille velocity profile.

profile is a nonlinear phenomenon occurring on a short length scale (between x = 0 and
x = 0.15Re,RR|x=0).

In Figure 8.8, we represent the steady velocity profiles taken in x ∈ {0.005, 0.01, 0.025,
0.05, 0.1, 0.2}Re,RR|x=0. We use Nx ∈ {800, 3200} cells and Nr = 32 rings. For each
recorded position, the steady multiring numerical velocity profiles converge towards the
steady numerical velocity profiles as we increase the number of cells Nx. These results are
coherent with the results presented in Figure 8.7.

8.7.2 Rigid wall stenosis and aneurysm

Stenoses and aneurysms are commonly encountered pathologies and correspond respectively
to local constrictions and expansions of the neutral radius of the artery. The flow patterns
in rigid stenoses and aneurysms have been studied by many authors [Wille 1981; Wille
and Walløe 1981; Perktold 1987; Deplano and Siouffi 1999; Di Achille et al. 2014; Zaman
et al. 2015; Wang et al. 2016a]. In [Lagrée and Lorthois 2005], the authors computed the
numerical solution of the steady RNSP system of equations (8.1) in an axisymmetric rigid
artery presenting a stenosis. They used the steady code presented in the previous section and
were able to compute flow recirculations in case of severe stenoses. We use here the multiring
model (8.21) to compute the steady flow in a rigid stenosis and in a rigid aneurysm. As in
the previous section, the relevant dimensionless number is the Reynolds number Re,R (8.99).

We consider an artery initially at rest (eq. (8.96)). We impose at the inlet a steady Poiseuille
velocity profile:

ux (x = 0, r, t) = 2Uin

[
1− r2

R (x, t)2

]
, (8.102)

and at the outlet a zero reflection coefficient Rt to remove any backward traveling waves.
The values of the geometrical and mechanical parameters describing the artery as well as
those describing the inlet and outlet boundary conditions are presented in Table 8.5. The
final time tf is large enough to reach a steady flow regime. The geometrical and mechanical
parameters mimic physiological conditions at the root of the aorta, where Re,R ≈ 100. The
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Figure 8.8 – Comparison between the steady velocity profiles obtained with the steady code
[Lagrée and Lorthois 2005] ( ) and with the multiring model for the steady rigid Poiseuille
example taken in x ∈ {0.005 (M) , 0.01 (♦) , 0.025 (©) , 0.05 (B) , 0.1 (�) , 0.2 (+)}Re,RR|x=0.
Left: Nx = 800 cells and Nr = 32 rings.
Right: Nx = 3200 cells and Nr = 32 rings.
We observe that the steady multiring velocity profiles converge towards the steady velocity
profiles and accurately reproduce the transition from the Blasius to the Poiseuille flow regime.

stenosis and aneurysm considered here are described by the following variation of the neutral
radius R0:

R0 =





R0 if x < xs or x > xf

R0

(
1 +

∆R

2

[
1 + cos

(
π + 2π

x− xs
xf − xs

)])
if xs ≤ x ≥ xf .

(8.103)

We choose xs = L/5 and xf = 3L/5 to satisfy the long-wave hypothesis. We set ∆R = −0.4
to define the stenosis and ∆R = +0.4 to define the aneurysm. We artificially increase
the arterial wall rigidity K (here K = 107) to penalize the wall’s displacement and place
ourselves in a quasi-rigid wall configuration.

L R0 K ρ µ Uin Rt tf Re,R

0.25 Re,RR|x=0 1 107 1 ρ
UinR|x=0

Re,R
100 0 0.5

Re,RR|x=0

Uin
100

Table 8.5 – Geometrical and mechanical parameters describing the artery and the inlet and
outlet boundary conditions for the steady rigid stenosis and aneurysm examples.

We compare the results of the multiring model (8.21) to those of the steady numerical code
presented in [Lagrée and Lorthois 2005]. In [Chouly and Lagrée 2012], this steady code was
used to solve the steady RNSP system of equations (8.1) in a rigid stenosis and compared
well to the results of a finite element code for the incompressible Navier-Stokes equations. In
the following examples, all results of the steady code used as reference solutions are obtained
using Nx = 50000 cells in the axial direction and Nr = 1000 cells in the radial direction,
which is a very fine mesh.

Flow in a stenosis

We first compute the steady flow in a rigid stenosis (∆R = −0.4). In Figure 8.9, we plot
the steady spatial evolution of the centerline velocity ux|r=0

(Figure 8.9 Left) and of the
wall shear stress (WSS) τw (Figure 8.9 Right). We use Nx ∈ {800, 1600, 3200} cells and
Nr = 32 rings. We observe that as we increase the number of cells Nx, the steady multiring
numerical solution for the centerline velocity ux|r=0

converges towards the steady numerical
solution. On the contrary, the steady multiring numerical solution for the WSS τw is already
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Figure 8.9 – Comparison between the solutions in the steady rigid stenosis obtained with
the steady code [Lagrée and Lorthois 2005] ( ) and with the multiring model using Nx ∈
{800 (M) , 1600 (♦) , 3200 (©)} cells and Nr = 32 rings.
Left: Steady centerline velocity ux|r=0

. The dashed line represents the value of the Poiseuille
centerline velocity (ux|r=0

= 2ux|x=0
).

Right: Steady WSS τw. The dashed line represents the value of the Poiseuille WSS (τw =
4µux|x=0

/R|x=0).
For each quantity, the steady multiring numerical solution converges towards the steady
numerical solution.

converged for Nx = 800. Indeed, the number of rings Nr used is sufficient to obtain an
accurate description of the shape of the velocity profile near the wall. We also note that the
WSS τw becomes negative after the stenosis, indicating that the multiring model is able to
capture flow recirculations. Finally, the steady WSS τw is similar to the one obtained in
[Morgan and Young 1974; Smith 1976; Siegel et al. 1994].

In Figure 8.10, we represent the steady velocity profiles taken in x ∈ {0.05, 0.075, 0.1,
0.125, 0.15, 0.175}Re,RR|x=0. We use Nx = 3200 cells and Nr = 32 rings. For each recorded
position, the steady multiring numerical velocity profiles agree well with the steady numerical
velocity profiles. We observe that after the stenosis, a small jet-like region of high velocities
forms in the center of the artery and a region of low and negative velocities is created near
the wall. These results are coherent with the results presented in Figure 8.9 and with the
velocities profiles obtained in [Morgan and Young 1974].

Flow in an aneurysm

We compute here the steady flow in a rigid aneurysm (∆R = +0.4). In Figure 8.11, we plot
the steady spatial evolution of the centerline velocity ux|r=0

(Figure 8.11 Left) and of the
wall shear stress (WSS) τw (Figure 8.11 Right). We use Nx ∈ {800, 1600, 3200} cells and
Nr = 32 rings. For each quantity, the steady multiring numerical solution converges towards
the steady numerical solution. We also note that even though the aneurysm is not large
enough to create a flow recirculation, the WSS τw is almost negative in the center of the
aneurysm. Finally, the steady WSS τw is similar to the one obtained in [Budwig et al. 1993;
Finol and Amon 2002].

In Figure 8.12, we represent the steady velocity profiles taken in x ∈ {0.05, 0.075, 0.1,
0.125, 0.15, 0.175}Re,RR|x=0. We use Nx = 3200 cells and Nr = 32 rings. For each recorded
position, the steady multiring numerical velocity profiles agree well with the steady numerical
velocity profiles.

The results presented previously indicate that for a high arterial wall rigidity, the multiring
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Figure 8.10 – Comparison between the steady velocity profiles obtained with the steady code
[Lagrée and Lorthois 2005] ( ) and with the multiring model for the steady rigid stenosis
example using Nx = 3200 cells and Nr = 32 rings.
Left: Velocity profiles taken in x ∈ {0.05 (M) , 0.075 (♦) , 0.1 (©) , 0.125 (B) , 0.15 (�) ,
0.175 (+)}Re,RR|x=0.
Right: 2D visualization of the steady flow in the rigid stenosis.
We observe that the multiring velocity profiles are in good accord with the steady velocity
profiles.
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Figure 8.11 – Comparison between the solutions in the steady rigid aneurysm obtained
with the steady code [Lagrée and Lorthois 2005] ( ) and with the multiring model using
Nx ∈ {800 (M) , 1600 (♦) , 3200 (©)} cells and Nr = 32 rings.
Left: Steady centerline velocity ux|r=0

. The dashed line represents the value of the Poiseuille
centerline velocity (ux|r=0

= 2ux|x=0
).

Right: Steady WSS τw. The dashed line represents the value of the Poiseuille WSS (τw =
4µux|x=0

/R|x=0).
For each quantity, the steady multiring numerical solution converges towards the steady
numerical solution.
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[Lagrée and Lorthois 2005] ( ) and with the multiring model for the steady rigid aneurysm
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We observe that the steady multiring velocity profiles are in good accord with the steady
velocity profiles.

model (8.21) is able to compute the characteristic steady nonlinear flow features in a rigid
artery. Indeed, we have shown that it can describe the nonlinear steady transition from a
flat to a Poiseuille velocity profile, the acceleration of the flow in a stenosis, the deceleration
of the flow in a aneurysm as well as small flow recirculations after the stenosis. It can also
correctly compute the variation of the WSS and the pressure loss. We are therefore assured
that the multiring model (8.21) correctly describes all relevant steady and unsteady, linear
and nonlinear blood flow features in quasi-rigid and elastic straight, constricted (stenosis)
and expanded (aneurysm) arteries.

Next, we use the multiring model to compute unsteady blood flow in an elastic stenosis.

8.8 Unsteady flow in an elastic stenosis
In physiological conditions, the arteries are elastic and the flow of blood is pulsatile in nature.
Hence we compute here with the multiring model (8.21) a periodic flow in an elastic artery.
The Womersley number α (2.41), the Reynolds number Re,R (8.99) and the Shapiro number
Sh (8.36) are the relevant dimensionless numbers in this example. Here Sh is defined as:

Sh =
Uin
c

with c =

√
√
π
K

2ρ
R. (8.104)

We consider an artery initially at rest. We impose at the inlet a periodic Pohlhausen velocity
profile (eq. (8.101)), mimicking the flow ejected by the heart in the aorta:

ux (x = 0, r, t) = Uin φPolhlausen (r) max

(
0, sin

(
2π

t

Tc

))
, (8.105)

where Tc is the period of the flow. At the outlet we impose a zero reflection coefficient Rt
to remove any backward traveling waves. The values of the geometrical and mechanical
parameters describing the artery as well as those describing the inlet and outlet boundary
conditions are presented in Table 8.6 and are given in "cgs". The final time tf is large
enough to reach a periodic flow regime. The geometrical and mechanical parameters mimic
physiological conditions at the root of the aorta, where Re,R ≈ 100, α ≈ 15 and Sh ≈ 10−2.
As in the previous section, the stenosis is described by the neutral radius R0 (8.103) with
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xs = L/5, xf = 3L/5 and ∆R = −0.4.

L R0 K ρ µ Uin Rt Tc tf Re,R α Sh

0.25 Re,RR|x=0 1 105 1 ρ
UinR|x=0

Re,R
Shc 0 2π

ν
R2

0
α2 5Tc 100 15 10−2

Table 8.6 – Geometrical and mechanical parameters describing the artery and the inlet and
outlet boundary conditions for the unsteady elastic stenosis example.

In Figure 8.13, we plot the temporal evolution of the pressure p (Figure 8.13 Top Left), of
the pressure gradient ∂xp (Figure 8.13 Top Right), of the flow rate Q (Figure 8.13 Bottom
Left) and of the WSS τw (Figure 8.13 Bottom Right) in x ∈ {0.025, 0.1, 0.175}Re,RR|x=0.
We use Nx = 3200 cells and Nr = 32 rings. We observe that for each recorded positions, a
periodic flow regime is reached after 4 periods. During systole

(
nTc < t < 3

2nTc, n ∈ N
)
, the

pulse wave propagates in the artery and the pressure p is higher upstream of the stenosis, in
x = 0.025Re,RR|x=0. The pressure gradient ∂xp is therefore negative and the flow rate Q as
well as the WSS τw are positive. On the contrary, during diastole

(
3
2nTc < t < 2nTc, n ∈ N

)
,

the pulse wave exits the artery and the pressure p is higher downstream of the stenosis,
in x = 0.175Re,RR|x=0. The pressure gradient ∂xp is then positive and the flow rate Q
and the WSS τw are negative. Moreover, the presence of the stenosis creates a reflection
of the incoming pulse wave, resulting in higher pressure values and a smaller flow rate Q
upstream the stenosis, in x = 0.025Re,RR|x=0. Finally, the WSS is maximum in the stenosis,
in x = 0.1Re,RR|x=0, as the flow is accelerated due to the constriction.

In Figure 8.14, we decompose the flow motion over one period (the fourth period) and focus
on four different instants of the cycle: the end of diastole (or the beginning of systole) at
t = 4Tc, the peak of systole at t = 0.25Tc + 4Tc, the end of systole (or the beginning of
diastole) at t = 0.5Tc + 4Tc and the middle of diastole at t = 0.75Tc + 4Tc. For each instant,
we plot the velocity profiles in the artery (Figure 8.14 Left) and the spatial evolution of
the pressure p (Figure 8.14 Center) and the WSS τw (Figure 8.14 Right). At times t = 4Tc,
t = 0.5Tc + 4Tc and t = 0.75Tc + 4Tc, we observe that the shapes of the pressure p waveforms
are almost identical. The same can be said of the WSS τw. At these times, the pressure
gradient ∂xp is positive, indicating that the pulse wave has left the artery. This positive
pressure gradient reverses the flow, but only near the wall, as indicated by the negative WSS
τw. Indeed, the inertia of the flow in the core of the artery is too strong to observe a complete
flow reversal in one period. At t = 0.25Tc + 4Tc, the pressure p and WSS τw resemble the
steady pressure and WSS observed in Figure 8.9. This indicates that a quasi-steady flow
regime is reached at the peak of systole since the period Tc of the flow is larger than the
characteristic time of propagation of the pulse wave.

The results presented in Figure 8.13 and Figure 8.14 are similar to those obtained in [Young
et al. 1975]. They indicate that the multiring model (8.21) is capable of describing the
unsteady flow in a elastic stenosis and that it computes the expected unsteady flow behaviors
such as wave reflections and flow recirculations.

8.9 Conclusion
In Chapter 8, we have presented a two-dimensional (2D) nonlinear axisymmetric multiring
model to compute blood flow in elastic arteries. This model results from the integration
of the RNSP equations (8.1) over concentric rings of fluid in an elastic artery, providing a
unified framework where both the motion of the fluid and the displacement of the arterial
wall are dealt with simultaneously. Its mathematical structure as a system of balance laws
allowed us to use a robust, conservative and positive finite volume numerical method to
compute steady and unsteady linear and nonlinear flows in quasi-rigid and elastic arteries.
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Figure 8.13 – Unsteady flow in the elastic stenosis computed in x ∈
{0.025 ( ) , 0.1 ( ) , 0.175 ( )}Re,RR|x=0 obtained using Nx = 3200 cells and Nr = 32
rings.
Top Left: Pressure p.
Top Right: Pressure gradient ∂xp.
Bottom Left: Flow rate Q.
Bottom Right: WSS τw.
We observe that after four cycles a periodic state is reached. We notice evidence of wave
propagation and reflection as well as flow recirculation.
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Figure 8.14 – Snapshots of the spatial evolution of the unsteady flow in the elastic stenosis
taken at times t ∈ {0, 0.25, 0.5, 0.75}Tc + 4Tc and obtained using Nx = 3200 cells and
Nr = 32 rings.
Left: Axial velocity ux.
Center: Pressure p.
Right: WSS τw.
We observe a backflow near the wall created by the positive pressure gradient at t ∈
{0, 0.5, 0.75}Tc + 4Tc. However, the inertia in the core of the artery is too strong to
observe a complete flow reversal in one period. At the peak of systole t = 0.25Tc + 4Tc, the
shapes of the pressure p and the WSS τw resemble those obtained in Figure 8.9, indicating
that a quasi-steady flow regime is reached.
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The multiring model and the numerical method were validated on multiple physiological
blood flow examples. For each of the considered test cases, the multiring solution agreed
very well with the reference solution for the velocity profiles, the wall shear stress (WSS) and
other averaged quantities such as the flow rate or the pressure, even when large arterial wall
deformations were considered. In the presence of pathologies such as stenoses or aneurysms,
the multiring model captured the expected flow behaviors, and in particular flow recirculation,
downstream of the stenosis and in the aneurysm. In comparison, classical one-dimensional
(1D) models can only compute average quantities such as the flow rate or the pressure and
can not describe flow recirculations. This study shows that the multiring model can serve
as a superior alternative to 1D models to accurately compute blood flow in large elastic
arteries at a reduced computational cost and could also prove to be a reliable substitute
to three-dimensional (3D) models when simple arterial configurations are considered. This
method can be extended to other pressure laws to describe the flow in veins and viscoelastic
tubes or the propagation of a water hammer (Allevi’s equation).

In future works, we plan to compare the 2D multiring model with a 1D model and to couple
both models. Indeed, through our collaboration with Pr. Matsukawa from the University of
Doshisha in Kyotanabe, Japan, we have access to a simple experimental setup described in
Figure 8.15. This experiment allows us to measure at two different points the pressure and
flow waveforms and therefore capture the propagation and reflection of pulses in straight
and stenosed vessels (see Figure 8.16). This is the perfect framework to truly assess the
differences between the 1D and 2D blood flow models.

28 200 20 40 224

Figure 8.15 – Experimental setup allowing us to measure the pressure and flow waveforms
in straight or stenosed tubes closed at the outlet (stainless rod).

Figure 8.16 – Flow visualizations in straight and stenosed tubes.
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Chapter 9
One-dimensional non-Newtonian
blood flow equations

We present here a non-Newtonian extension of the 1D blood flow equations. We take
into account time-dependent non-Newtonian behaviors using a structure function that
describes the state of aggregation of red blood cells. The text in this chapter deals
with the derivation of the model and the numerical method used to solve it and is
greatly inspired from the following article, currently in revision in the Journal of
non-Newtonian Fluid Mechanics:

• A.R. Ghigo, P.-Y. Lagrée, and J.-M. Fullana. 1D generalized time dependent
non-newtonian blood flow model. 2017d.
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Chapter 9. One-dimensional non-Newtonian blood flow equations

9.1 Introduction

One-dimensional (1D) blood flow models, presented in Chapter 2, are used in medical
applications to provide physiological insights on hemodynamics in large networks of the macro-
and micro-circulations (see Chapter 7). They capture the pulse wave propagation dynamics
in large networks and enable for example patient-specific surgical planning [Marchandise et al.
2009; Audebert et al. 2017b; Ghigo et al. 2017a]. The success of 1D modelling relies on the
speed and accuracy at which 1D models compute blood pressure, flow rate and cross-sectional
area in elastic arteries and arterioles. In comparison, three-dimensional approaches are much
more costly and time-consuming, especially in deformable elastic vessels and are therefore
restricted to small networks of only a few arteries [Blanco et al. 2009; Vignon-Clementel
et al. 2010; Sankaran et al. 2012; Cuomo et al. 2017]. Reduced-order models such as 1D
models are then used to provide physiological boundary conditions to these 3D approaches
[Formaggia et al. 2001; Blanco et al. 2007, 2009; Formaggia et al. 2013].

In many regions of the systemic network, low shear regimes are reached (typically the shear
rate γ̇ ≤ 1) as a consequence of the pulsatility of blood flow, of recirculation areas created by
stenoses, aneurysms and bifurcations and of the decrease in shear with vessel ramification. In
such low shear regions, blood behaves as a non-Newtonian fluid and exhibits shear-thinning,
viscoelastic and thixotropic behaviors. At low shear rates, molecular mechanisms trigger the
aggregation of red blood cells (RBCs) into long column-like structures called "rouleaux",
whereas at higher shear rates, these structures are deformed, disaggregated and the RBCs
re-align in the direction of the flow. This reversible aggregation-disaggregation process
is responsible for the shear-thinning behavior of blood. The different timescales of the
aggregation and disaggregation processes are at the origin of the thixotropic response of
blood. Finally, viscoelasticity stems from the elasticity of RBCs and the change of dissipation
mechanisms at low and high shear rates [Cross 1965; Thurston 1972, 1975; Bureau et al.
1980; Quemada and Droz 1982].

There exists strong evidence that this non-Newtonian behavior of blood influences the
progression of many cardiovascular pathologies, such as atherosclerosis, through local mod-
ifications of the hemodynamics [Verdier 2003]. Developing constitutive models of blood
rheology is therefore of critical importance in cardiovascular simulations.

Existing non-Newtonian constitutive models can be roughly categorized as either time-
independent or time-dependent models. Time-independent constitutive models describe only
for the shear-thinning behavior of blood and are particularly relevant in shear-dominated
steady flows [Cho and Kensey 1991; Yilmaz et al. 2008; Apostolidis and Beris 2014]. Due
to their simplicity, they are the most commonly used non-Newtonian blood flow models in
two-dimensional (2D) and three-dimensional (3D) numerical simulations. Time-independent
models have been applied to study intracranial aneurysms [Bernsdorf and Wang 2009; Tian
et al. 2013], stenoses [Nandakumar et al. 2015; Jahangiri et al. 2017], coronary arteries
[Apostolidis et al. 2016], idealized arterial trees [Gijsen et al. 1999b,a; Weddell et al. 2015;
Moreau and Mauroy 2015] and heart valves [De Vita et al. 2016]. In most of these works,
non-Newtonian effects were observed proving the relevance of modeling the complex rheology
of blood. Time-dependent constitutive models include viscoelastic and thixotropic effects
as well as shear-thinning effects in the steady flow limit. They were developed based on
an analogy between blood and a viscoelastic Maxwell material [Bird 1976]. In [Owens
2006; Moyers-Gonzalez et al. 2008a], a generalized Maxwell model was derived based on
polymer network theory, and successive improvements enabled the description of the Fahreus
and Fahreus-Lindquist effects. In [Yeleswarapu et al. 1998; Anand and Rajagopal 2004;
Anand et al. 2013], a generalized Oldroyd-B model was proposed and improved based on
a thermodynamics approach. Time-dependent models were successfully incorporated into
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3D simulations [Fang and Owens 2006; Duarte et al. 2008; Moyers-Gonzalez et al. 2008b;
Bodnár et al. 2011; Anand et al. 2013] and good agreement was found with experimental
data in simple steady and pulsatile flows.

However, in almost every application previously mentioned, the mechanics and distensibility
of the vessel wall were neglected. Moreover, non-Newtonian effects in large networks of
arteries have seldom been studied. Even in 1D applications blood is almost always assumed
Newtonian. Only in [Perdikaris et al. 2015; Sochi 2016] have the authors considered its
non-Newtonian behavior, respectively using a model proposed in [Pries et al. 1992] and a
power-law model. In [Apostolidis et al. 2015], the authors have proposed a reduced-order
non-Newtonian model with a particular focus on the thixotropic behaviors of the yield stress.
However, the authors obtained a semiquantitative agreement with experimental data from
Bureau [Bureau et al. 1979, 1980] and Sousa [Sousa et al. 2013] and the model was not
coupled to a blood flow numerical solver.

The goal of this work is to provide a simple and accurate 1D time-dependent non-Newtonian
blood flow model and apply it to study large networks of elastic arteries. The rheological
model we propose involves a simplified viscoelastic Maxwell model with shear and structure
dependent coefficients and a kinetic equation describing the aggregation-disaggregation of
RBCs which are considered as a homogeneous single phase.

In Section 9.2 we recall the 1D blood flow model (2.67) and present the non-Newtonian
shear stress model and its integration in the 1D blood flow model (2.67). In Section 9.3, we
describe analytic solutions of the rheological model in different flow conditions and exhibits
its shear-thinning, thixotropic and viscoelastic behaviors. Then, in Section 9.4 we compare
the results of the model to published experimental rheological data. Finally, in Section 9.5
and Section 9.6 we investigate the influence of the non-Newtonian model on blood flow in
synthetic arterial networks with and without stenoses.

9.2 1D time-dependent non-Newtonian blood flow model

9.2.1 The 1D blood flow model

A thorough derivation of the 1D blood flow model starting from the Navier-Stokes equations
is performed in Chapter 2. Two main hypotheses are involved in this derivation. First, the
flow is assumed to be axisymmetric, implying that the geometry and both the inlet and
outlet boundary are also axisymmetric. Second, the radius R of the artery is considered
small with respect to the wavelength λ of the cardiac pulse wave, which is the characteristic
axial lengthscale. In Chapter 2, we refer to this assumption as the long-wave hypothesis.
Combining both hypotheses we obtain the reduced Navier-Stokes-Prandtl (RNSP) equations
(2.43), that we then integrate over the cross-sectional area of an artery of length L (see
Figure 9.1). Through this exact integration or averaging process, we obtain the 1D mass
and momentum equations expressed at time t in the axial position x:



∂A

∂t
+
∂Q

∂x
= 0

∂Q

∂t
+

∂

∂x

[
ψ
Q2

A

]
+
A

ρ

∂p

∂x
=

2πR

ρ
τrx|r=R.

(9.1a)

(9.1b)

The variables A and Q are respectively the cross-sectional area and the axial flow rate and
are defined as:

A = 2π

R∫

r=0

rdr and Q = 2π

R∫

r=0

uxrdr, (9.2)
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Q

A

R

L

Figure 9.1 – One-dimensional representation of the fluid domain contained in an axisym-
metric cylindrical artery. For clarity, only one-fourth of the artery of length L is represented.
The variable Q is the flow rate and A = πR2 is the cross-sectional area of the artery.

where R is the instantaneous radius of the artery. Finally, the coefficient ψ, defined as:

ψ = 2π
A

Q2

R∫

r=0

ru2
xdr, (9.3)

is the nonlinear shape factor. This coefficient depends on the axial velocity profile which is
lost in the averaging process. We therefore assume an a priori shape of the velocity profile
and set ψ = 1, which corresponds to a flat velocity profile assumption. See Subsection 2.5.2
for more details.

The closure relation connecting the cross-sectional area A and the pressure p is provided by
viscoelastic thin-wall law (3.18), that we recall here:

p = pext +K
[√

A−
√
A0

]
+Kν

∂A

∂t
, (9.4)

where pext is the external pressure and A0 is the neutral cross-sectional area. The coefficients
K and Kν are respectively the arterial rigidity and the viscoelastic coefficient. More details
on the viscoelastic behavior of the arterial wall can be found in Chapter 3.

The last remaining unknown is the wall shear stress (WSS) τrx|r=R and its definition is the
subject of the following Subsection 9.2.2 and Subsection 9.2.3.

9.2.2 Stress model: Newtonian

We briefly recall here the definition of the WSS τrx|r=R in the case of a Newtonian fluid in
the 1D framework. Under Newtonian hypothesis, the shear stress τrx can be expressed as a
function of a constant viscosity µ and the shear rate:

τrx = µ

[
∂ur
∂x

+
∂ux
∂r

]
. (9.5)

The long-wave approximation allows us to simplify the expression for the shear rate at the
wall γ̇|r=R:

γ̇|r=R ≈
∂ux
∂r
|r=R, (9.6)

and we obtain the following Newtonian WSS model:
τrx|r=R = µγ̇|r=R. (9.7)
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Furthermore, 1D closure hypotheses suggest that we may rewrite the axial velocity ux as:

ux = φ

(
r

R (x, t)
, t

)
U (x, t) , (9.8)

where U = Q/A is the averaged velocity and φ is the shape of the velocity profile. The
expression for the wall shear rate then becomes:

γ̇|r=R = U
∂φ

∂r
|r=R. (9.9)

The average velocity U can be computed using the 1D model (9.1). However, as was
mentioned in Subsection 9.2.1, the shape of the velocity profile φ is lost in the integration
process and remains an unknown of the problem. We must therefore once again assume
an a priori shape of the velocity profile. For example, for a Couette flow γ̇ = −U/R, for a
Poiseuille flow γ̇ = −4U/R and it is common in large arteries to use γ̇ = −11U/R [Sherwin
et al. 2003a; Wang et al. 2016b]. Without loss of generality, we assume in the following that
γ̇ = −U/R.
Combining the previous equations, we finally obtain a closed-form expression for the Newto-
nian WSS:

τrx|r=R = −µU
R
, (9.10)

and we recover the classical viscous contribution CfU in the 1D momentum equation (2.67b),
with Cf = −2πν. For clarity reasons, we drop the subscript |r=R in the following and write
the WSS as τrx and the shear rate as γ̇.

9.2.3 Stress model: non-Newtonian

Following the approach proposed in [Owens 2006], we build a transient reduced-order
constitutive model for blood. We first split the WSS into a structural and a Newtonian
component:
τrx = τst + µ∞γ̇, (9.11)

where τst represents the structure dependent stress and µ∞ the viscosity of blood in the high-
shear asymptotic limit. Following [Owens 2006], we describe the time and space evolution
of τst using the generalized Maxwell equations involving the Jaumann derivative of τst.
Using the 1D long-wave and axisymmetric hypotheses, these equations simplify into a 1D
viscoelastic Maxwell equation, representing the combined contributions of an elastic spring
and a viscous dashpot:

λst
∂τst
∂t

+ τst = µstγ̇ (9.12)

where λst is a characteristic elastic relaxation time and µst is the structural viscosity.

Next, we introduce a structure dependence in the Maxwell equation (9.12). We assume that
the whole structure of blood, comprising of RBCs and rouleaux, can be described by a single
parameter f varying between 0 for a completely disaggregated structure and 1 for a fully
aggregated one. We then hypothesize that both λst and µst linearly depend on this structure
parameter f :
{
λst = λaf

µst = [µ0 − µ∞] f.

(9.13a)
(9.13b)

where λa is a characteristic aggregation time and µ0 is the viscosity of blood in the low
shear asymptotic limit. The equations (9.13a) and (9.13b) express the simplest possible
dependence between the structure parameter f and the blood parameters.

Using an approach inspired from polymer theory [Cross 1965; Owens 2006], we describe the
evolution of f using a kinetic equation representing the transport of f and the competition
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between aggregation and disaggregation of blood structure:
∂f

∂t
+ U

∂f

∂x
=

1− f
λa

− f

λd
, (9.14)

where λd is a characteristic disaggregation time. As shear is the driving disaggregation
mechanism, we define λd as the inverse of the shear rate γ̇:

λd =
1

δ|γ̇| , (9.15)

where δ is a fitting coefficient. Compared to other existing simplified structural models, we
incorporate advection in the kinetic equation as structure can be transported in the arteries.

Finally, yield stress can be taken into account through the change of variables τ ′st = τst − τy,
where τy is the yield stress. However, we assume that τy = 0 in the following. We also
neglect the effects of hematocrit variations and suppose a fixed hematocrit H = 0.45 (45%
of blood volume occupied by RBCs). Nevertheless, these effects could be included in the
model through a transport equation for H and hematocrit dependent coefficients (see [Pries
et al. 1992] for details).

9.2.4 Time-dependent 1D non-Newtonian blood flow model

Replacing the pressure p by its expression (9.4), we obtain the closed-form 1D system of
equations, describing the conservation of mass and the balance of momentum in a viscoelastic
artery:




∂A

∂t
+
∂Q

∂x
= 0

∂Q

∂t
+

∂

∂x

[
Q2

A
+
K

3ρ
A

3
2

]
=

2πR

ρ
τrx + Cν

∂2Q

∂x2
.

(9.16a)

(9.16b)

with Cν = AKν/ρ and:




γ̇ = −U
R

τrx = τst + µ∞γ̇

λst
∂τst
∂t

+ τst = µstγ̇

∂f

∂t
+ U

∂f

∂x
=

1− f
λa

− f

λd
µst = [µ0 − µ∞] f

λst = λaf

λd =
1

δ|γ̇| ,

(9.17a)

(9.17b)

(9.17c)

(9.17d)

(9.17e)
(9.17f)

(9.17g)

where µ0, µ∞, λa and δ are constants to be determined using available rheological data.

9.2.5 Numerical scheme

System (9.16) is dominantly hyperbolic. In physiological conditions, the flow speed is smaller
than the wave speed, therefore the flow is always subcritical and shock-like phenomena
do not occur. To capture the propagation of pulse waves, we solve System (9.16) using a
second-order Adam-Bashforth time-integration scheme coupled to a finite-volume kinetic
numerical scheme [Audebert et al. 2017b; Ghigo et al. 2017b] presented in Chapter 4. The
rheological System (9.17) is explicitly updated using the same time integration scheme as
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the hyperbolic System (9.16) and the transport equation is solved using an upwind scheme,
where the velocity is given by the kinetic numerical flux [Bouchut 2004]. The treatment
of inlet and outlet boundary conditions as well as bifurcations is classical and we refer the
readers to Chapter 4, Chapter 6 and [Wang et al. 2015; Murillo and García-Navarro 2015;
Ghigo et al. 2017b] for more details.

9.3 Analysis of the non-Newtonian stress model

We analyze the time-dependent behavior of the 1D non-Newtonian stress model (9.17) derived
in the previous section. To simplify the analysis, we consider idealized flow conditions where
we assume that all quantities are independent of the axial position x, and hence decouple
the rheological model (9.17) from the 1D blood flow model (9.16).

9.3.1 Steady flow: Analogy with the simplified Cross model

We consider here a steady flow, for which the rheological model (9.17) simplifies to:


fs =

1

1 + λa
λd

τs = µstγ̇ = [µ0 − µ∞] fsγ̇

(9.18a)

(9.18b)
This steady state is the result of the balance between aggregation and disaggregation, and
the equilibrium value of the structure function (9.18a) explicitly depends on the aggregation
time scales λa and λd:

• If λa � λd, than f ≈ 0 and structure disaggregation is dominant;
• If λa � λd, than f ≈ 1 and structure aggregation is dominant.

In this steady case, we can explicitly define the apparent viscosity µ (γ̇) = τrx
γ̇ using equations

(9.18a) and (9.18b):

µ (γ̇) = µst + µ∞ = µ∞ +
µ0 − µ∞
1 + λa

λd

, (9.19)

which exhibits the expected shear-thinning behavior. Equation (9.19) is identical to the
simplified Cross constitutive model [Steffan et al. 1990]:

µ = µ∞ +
µ0 − µ∞
1 + λcγ̇

. (9.20)

By analogy with (9.19) we have:
λc = λaδ. (9.21)

Table 9.1 summarizes the parameter values of the simplified Cross constitutive model taken
from [Cho and Kensey 1991].

µ∞ µ0 λc

0.05 1.3 8

Table 9.1 – Parameter values of the simplified Cross constitutive model taken from [Cho
and Kensey 1991]

In the following, we use the values of µ0 and µ∞ presented in Table 9.1. We determine the
remaining unknown parameters λa and δ using the value of the constant λc and experimental
data presented in [Quemada and Droz 1982]. The complete set of parameters of the rheological
model (9.17) is presented in Table 9.2.
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9.3.2 Constant shear rate

We study here the disaggregation under a constant shear rate γ̇c of a fluid initially at rest.
At t = 0, we assume that f = 1 and τst = 0. The kinetic equation for the structure function
writes:

df

dt
=

1− f
λa

− f

λd
. (9.22)

The solution of the previous equation (9.22) is:

f = f∞ + [1− f∞] e−
t
λc , (9.23)

where f∞ = λc/λa and 1/λc = 1/λa + 1/λd. Injecting expression (9.23) in equation (9.12)
we obtain the following expression for the structure stress τst:

τst = [µ0 − µ∞] γ̇c
[1− f∞] t

λa
+ [f∞]2

[
e
t
λc − 1

]

1 + f∞

[
e
t
λc − 1

] . (9.24)

When t→∞, we find the following asymptotic values of f and τst:{
ft→∞ = f∞

τst,t→∞ = [µ0 − µ∞] γ̇cf∞.

(9.25a)
(9.25b)

System (9.25) is identical to the steady system (9.18). The model therefore exhibits a
characteristic viscoelastic property, that is the transitions from an initially aggregated
state (f = 1, τst = 0) towards a steady equilibrium state (9.25), where aggregation and
disaggregation are perfectly balanced.

At intermediate times 0 < t <∞, the model exhibits a thixotropic behavior depending on
the choice of the characteristic aggregation and disaggregation timescales λa and λd. Indeed,
for given values of λa and λd, it is possible to find the analytic expression for the time tτ,max
at which the maximum value of τst is reached:

tτst,max = λc


1 +

1

1− λc
λa

+W



[
λa
λc
− 1

]
e
−
[

1+ 1

1− λc
λa

]



 , (9.26)

with:

τst,max = τst,t→∞


1 +W



[
λa
λc
− 1

]
e
−
[

1+ 1

1− λc
λa

]



 , (9.27)

where W is the Lambert-W function, which is the inverse function of f (w) = wew. From
expressions (9.26) and (9.27), simple calculations allow us to show that 0 < tτst,max < ∞
and τst,max ≥ τst,t→∞. We can therefore conclude that in this case the model exhibits
a characteristic thixotropic behavior at finite times, represented by an overshoot of the
structure shear stress τst with respect to the asymptotic steady value τst,t→∞. The magnitude
of the overshoot depends on the value of the characteristic aggregation times λa and λd:

• if λa � λd (equivalently γ̇ � 1 s−1), than λc ≈ λd and we have:
τst,max � τst,t→∞. (9.28)

Disaggregation occurs at a much smaller timescale than aggregation due to the high shear
rate value. This results in large variations of the structure of blood at small times (t ≤ td)
and therefore a large overshoot of the structure shear stress τst before the system relaxes
towards the steady state.

• if λa � λd (equivalently γ̇ � 1 s−1), than λc ≈ λa and we have:
τst,max ≈ τst,t→∞. (9.29)

Aggregation occurs at a much smaller timescale than disaggregation due to the low shear
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Section 9.4. Comparison with experimental data

rate value. This results in almost no variation of the structure of blood and therefore no
overshoot of the structure shear stress τst.

9.3.3 Zero shear rate
We study here the reaggregation of a fluid at rest. At t = 0, we assume that f = f0 and
τst = τst,0. The kinetic equation for the structure function writes:

df

dt
= −1 + f

λa
. (9.30)

The solution of equation (9.30) writes:

f = 1 + [f0 − 1] e−
t
λa . (9.31)

Injecting expression (9.31) in equation (9.12) we obtain the following expression for the
structure stress τst:

τst = τst,0
f0

f0 − 1 + e
t
ta

. (9.32)

When t→∞, we find the asymptotic values of f and τst :{
ft→∞ = 1

τst,t→∞ = 0.

(9.33a)
(9.33b)

The model exhibits here another characteristic viscoelastic property, that is the relaxation
towards a fully aggregated state. The phenomenon is driven only by the characteristic
aggregation timescale λa as in the absence of shear λd →∞.

The asymptotic analysis conducted in this section highlights the shear-thinning, viscoelastic
and thixotropic behaviors of the rheological model (9.17) proposed in the previous section.
In the following sections, we compare the numerical results, where spatial variations occur,
to the analytic results previously obtained and to experimental results in order to assess if
the model is able to quantitatively describe the flow behavior of blood.

9.4 Comparison with experimental data
We propose to compare the numerical results of the 1D non-Newtonian model (9.16)–(9.17)
to experimental data available in the literature. We use the results of Bureau et al. [Bureau
et al. 1980] and McMillan [McMillan et al. 1987], where the authors systematically studied
using a coaxial cylinder microviscometer the response of blood to step and triangular shear
solicitations.

In Subsection 9.4.1, Subsection 9.4.2 and Subsection 9.4.3, we consider a single artery in
which we impose the flow rate at the inlet and a non-reflecting boundary condition at the
outlet. The time-evolution of the inlet flow rate depends on the considered experimental
test case. Its magnitude is given by the following expression, designed to impose a chosen
shear rate γ̇in:

Qin (γ̇in) =
1
∂φ
∂r

Aγ̇in (9.34)

We recall that without loss of generality, we use ∂φ
∂r |r=R = − 1

R . We assume that blood enters
the artery in a fully disaggregated state (f = 0). For each simulation, the initial conditions
are the following, describing the asymptotic behavior of a fluid at rest:
{
Q = 0 and A = A0

f = 1 and τst = 0.

(9.35a)
(9.35b)

The parameters of the blood constitutive model (9.17) are summarized in Table 9.2.
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ρ µ∞ µ0 λa δ

1 0.05 1.3 5 1.5

Table 9.2 – Parameters of the blood constitutive model (9.17), based on an analogy with the
simplified Cross constitutive model [Steffan et al. 1990] and experimental data from [Quemada
and Droz 1982].
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Figure 9.2 – Time evolution of the shear stress τrx with a step-change in shear rate:
comparison between experimental data from Bureau [Bureau et al. 1979] (?), results of the
1D blood flow model (9.16) ( ) and analytic solutions (9.24) (©) and (9.32) (�).
Left: Low shear viscoelastic regime with γ̇1 = 0.05 for ∆t1 = 30 and then γ̇1 = 0.
Right: High shear thixotropic regime (overshoot) with γ̇2 = 1 for ∆t2 = 8.5 and then γ̇2 = 0.
There is a qualitative and quantitative match between experimental data and numerical results,
and a perfect match between analytic and numerical results.

The geometrical and mechanical parameters describing the artery are given in Table 9.3.

L A K Cv

10 1 104 0

Table 9.3 – Geometrical and mechanical parameters describing the artery.

Finally, the time- and space-discretization parameters are described in Table 9.4.

∆t ∆x Order

10−4 5× 10−2 2

Table 9.4 – Numerical parameters describing the time discretization and the mesh.

9.4.1 Single shear-step

In a series of experiments, Bureau et al. [Bureau et al. 1979] obtained experimental data on
the behavior of a blood sample in controlled flow conditions. They subjected the sample to
a step-change in shear rate:

γ̇ (t) =

{
γ̇1,2 for 0 ≤ t < ∆t1,2

0 for ∆t1,2 ≤ t.
(9.36)

To highlight the viscoelastic and thixotropic behaviors of blood separately, they considered
a low shear regime for which γ̇1 = 0.05 and ∆t1 = 30 and a high shear regime for which
γ̇2 = 1 and ∆t2 = 8.5.

In Figure 9.2, we compare the measured experimental shear stress to the 1D numerical shear
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Figure 9.3 – Time evolution of the structure function f with a step-change in shear rate,
computed using the 1D blood flow model (9.16).

Low shear viscoelastic regime with γ̇1 = 0.05 for ∆t1 = 30 and then γ̇1 = 0.
High shear thixotropic regime with γ̇2 = 1 for ∆t2 = 8.5 and then γ̇2 = 0.

In the high shear regime, there is a large decrease of the structure function on a short
timescale, leading to the thixotropic behavior observed in Figure 9.2 Right.

stress computed by mimicking the experimental flow conditions. As these flow conditions
are similar to those studied analytically in Subsection 9.3.2 and Subsection 9.3.3, we also
compare the experimental and numerical shear stresses to the analytic solutions (9.24) and
(9.32). We observe that for both flow conditions γ̇1 and γ̇2, the experimental data from
Bureau [Bureau et al. 1979] agree qualitatively and semiquantitatively with the 1D numerical
results. Moreover, the analytic and 1D numerical results are perfectly matched. The data
presented in Figure 9.2 Left are characteristic of a viscoelastic material: the shear stress
rises continuously towards the equilibrium steady value, and then relaxes in the absence
of shear towards a fully aggregated state. On the contrary, the data plotted in Figure 9.2
Right present the characteristic overshoot of a thixotropic material. These two behaviors of
blood are analyzed in Subsection 9.3.2 and can be explained focusing on the evolution of the
structure f , presented in Figure 9.3. At low shear values (γ̇1), the structure of blood is not
significantly altered. At higher shear rates (γ̇2), large variations of the structure of blood
occur on a short timescale, leading to memory effects and a thixotropic overshoot of the
shear stress.

The comparison with analytic solutions validates the 1D numerical scheme and the agreement
with experimental results indicates that systems (9.16)-(9.17) using the set of parameters
presented in Table 9.2 provide a satisfactory description of the time-dependent behavior of
blood.

9.4.2 Multiple shear-steps

Experimental data from McMillan et al. [McMillan et al. 1987] describe the time-dependent
shear stress response of blood to two successive shear-steps of amplitude γ̇ = 8 and of length
∆t = 2.5. The experiment was repeated three times, each time decreasing the time delay
∆td between the consecutive shear-steps, during which no shear was applied.

In Figure 9.4 Left, we compare the time evolution of the experimental and 1D numerical
shear stresses for different time delays ∆td ∈ {1.5, 1, 0.5}. Both solutions are qualitatively
and quantitatively comparable and we observe the expected viscoelastic relaxation and
thixotropic transient overshoot. Results in Figure 9.4 Right correlate the increase of the
overshoot amplitude with larger variations of the structure, as blood has more time to
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Figure 9.4 – Comparison between experimental data from McMillan [McMillan et al.
1987] and numerical results of the 1D blood flow model (9.16) describing two successive
step-changes in shear rate of amplitude γ̇ = 8 and of length ∆t = 2.5 for a time delay
∆td ∈ {1.5 (exp.©, 1D ) , 1 (exp.�, 1D ) , 0.5 (exp. M, 1D )}.
Left: Shear stress τrx.
Right: Structure function f .
There is a qualitative and quantitative agreement between experimental and numerical data.
The thixotropic overshoot increases with ∆td as structure variations are more important.

reaggregate when ∆td increases.

9.4.3 Triangle shear solicitation

Bureau et al. [Bureau et al. 1980] also obtained experimental hysteresis curves for blood by
imposing a triangular shear rate solicitation to the sample:

γ̇ (t) =





γ̇1,2
t

t1,2
for 0 ≤ t < t1,2

γ̇1,2

[
2− t

t1,2

]
for t1,2 ≤ t ≤ 2t1,2.

(9.37)

To highlight the viscoelastic and thixotropic behaviors of blood separately, the authors
considered a low shear regime (γ̇1 = 0.12 and t1 = 13) and a high shear regime (γ̇2 = 1.03
and t2 = 47.6).

In Figure 9.5, we plot the experimental and numerical variations of the shear stress τrx
with respect to the shear rate γ̇. In the low-shear regime γ̇1 plotted in Figure 9.5 Left, the
viscoelastic behavior of blood is highlighted and the experimental and numerical results
match very well. In the high-shear regime displayed on Figure 9.5 Right, thixotropic effects
are dominant. For the increasing shear part of the curve, the experimental and numerical
results are well matched. However, for the decreasing shear part, the experimental behavior
is not reproduced, even though the shear stress amplitudes are similar.

The results presented in Subsection 9.4.1, Subsection 9.4.2 and Subsection 9.4.3 indicate
that the 1D blood flow model (9.16) coupled to the rheological model (9.17) allows us to
compute numerical results similar to well-known experimental data form [Bureau et al. 1979,
1980; McMillan et al. 1987]. We can now move towards more complex simulation in large
networks of elastic arteries.

9.5 Elementary bifurcation
Bifurcations are elementary constituents of an arterial network and connect a parent artery
p to two daughter arteries d1 and d2. They are responsible for the reflection of the incoming
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Figure 9.5 – Hysteresis curves of the evolution the shear stress τrx as a function of the
shear rate γ̇ under a triangular shear solicitation: comparison between experimental data
from Bureau [Bureau et al. 1980] (?) and 1D numerical results ( ).
Left: Low shear viscoelastic regime with γ̇1 = 0.12 and t1 = 13.
Right: High shear thixotropic regime with γ̇2 = 1.03 and t2 = 47.6.
There is a qualitative and quantitative match between experimental data and numerical results.

pulse wave as they represent impedance discontinuities in the network. Due to the complex
flow patterns they generate, the non-Newtonian behavior of blood can be particularly
important in these configurations.

In a symmetric bifurcation, we compare here the 1D non-Newtonian blood flow model
(9.16)–(9.17) with its Newtonian counterpart. The geometrical and mechanical properties
of the bifurcation are presented in Table 9.5 and correspond to average properties of large
arteries. At the inlet of the parent artery p, we impose the flow rate Qin to mimic the
behavior of the heart:

Qin (t) = Qh max

(
0, sin

(
2π

t

Th

))
, 0 ≤ t ≤ 10Th, (9.38)

with Th = 1. We choose the maximum flow rate Qh ∈ {1, 10, 100} to describe the flow in
different regions of the systemic network. We also assume that blood enters the artery in a
fully disaggregated state (f = 0). At the outlet of the daughter arteries d1 and d2, we set a
non-reflecting boundary condition as in Section 9.4. Finally, the initial conditions are (9.35)
and the time- and space-discretization parameters of the network are described in Table 9.4.
We present data obtained after 4 periods to ensure that the system has reached a periodic
state.

Lp,d1,d2 Rp,d1,d2 Kp,d1,d2 Cv

10 1 104 0

Table 9.5 – Geometrical and mechanical parameters describing the properties of the parent
artery p and the daughter arteries d1 and d2.

In Figure 9.6, we compare the structure f (Left), shear stress τrx (Center) and pressure
p (Right) waveforms computed with the Newtonian and non-Newtonian 1D blood flow
models in the middle of the parent artery p and the daughter artery d1. We do not present
results for the artery d2 as they are identical to those of artery d1 due to the symmetry of
the bifurcation. As we decrease the flow rate (Q = 100 to Q = 1 from top to bottom in
Figure 9.6), the shearing forces decrease allowing the RBCs to aggregate. As a consequence,
in both arteries the structure function f and the shear stress |τrx| increase compared to
the Newtonian case, with up to 100% differences for Qh = 1. The pressure then rises to
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Figure 9.6 – Temporal evolution of the flow waveforms in an arterial bifurcation taken in
the middle of parent artery p and the daughter artery d1: comparison between the Newtonian
(artery p , artery d1 ) and the non-Newtonian (artery p ◦, artery d1 �) 1D blood flow
models.
Left: Structure function f .
Center: Shear stress τrx.
Right: Pressure p.
Top: Q = 100.
Middle: Q = 10.
Bottom: Q = 1.
As the flow rate decreases, the aggregation increases, leading to a higher shear stress |τrx|
and an increase of the pressure p.

compensate the increased viscous stresses and maintain a normal flow. Note that the value
of f is higher and the value of |τrx| is lower in artery d1 than in artery p as the flow coming
from artery p splits in two to vascularize both daughter arteries.

These results indicate that non-Newtonian effects are important in certain bifurcations and
can lead to modification of the WSS stress patterns and an increase of pressure. They
are corroborated by similar data obtained in different 3D studies [Weddell et al. 2015;
Apostolidis et al. 2016] of bifurcations. In the following, we build on this analysis and study
non-Newtonian effects in large networks of arteries.

9.6 Idealized asymmetric network
Reduced-order 1D blood flow models have been designed to capture the wave propagation
dynamics in large networks. In this framework, we analyze how non-Newtonian effects affect
the network hemodynamics using the 1D time-dependent non-Newtonian model (9.16)–(9.17).
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Section 9.6. Idealized asymmetric network

We consider an idealized asymmetric arterial tree made only of elementary bifurcations
linked together to form a network. In each elementary bifurcation a parent artery p connects
to two daughter arteries dα and dβ. Given the mechanical and geometrical properties of
the parent artery p, we construct the daughter arteries using the following relationships,
presented in [Olufsen 1999; Olufsen et al. 2000] and used more recently in [Blanco et al. 2014;
Perdikaris et al. 2015], which describe the physiological evolution the arteries’ geometrical
and mechanical properties along the network:




Rα = αRp

Rβ = βRp

L = 50R

K =
4

3

R√
pi

[
k1ek2R + k3

]

γ̇ = −4
U

R
,

(9.39a)
(9.39b)
(9.39c)

(9.39d)

(9.39e)

where α = 0.9 and β = 0.6 are asymmetry coefficients and k1 = 2 × 107 dyne · cm−4,
k2 = −22.53 cm−1 and k3 = 8.65× 105 dyne · cm−4. The aim of this study is to understand
how the size of the network, dependent on the level nl of vessel ramifications, influences
the aggregation process. For a given value of nl, we construct the network by adding the
corresponding number nb of bifurcations and the number na of arteries. Table 9.6 presents
the values of nl, na and nb used in the following.

nl nb na

2 3 7
4 15 31
6 63 127
n 2n − 1 2n+1 − 1

Table 9.6 – Number nl of level of vessel ramifications, number nb of bifurcations and number
na of arteries of an idealized asymmetric network

At the root of the network, the radius of the artery is R0 = 1 cm and we impose the
same pulsatile the flow rate (9.38) as in the previous Section 9.5, with Qh = 100 and
Th = 1. We also assume that blood enters the artery in a fully disaggregated state (f = 0).
At the leaves of the network (terminal segments), we set as in the previous Section 9.5
non-reflecting boundary conditions. We therefore detach ourselves from classical resistive
boundary conditions and construct the network dynamics by adding successive levels of
vessel ramifications. These boundary conditions are invariant with nl and provide us with
the adequate framework to study network-size effects.

Finally, the initial conditions are (9.35) and the time- and space-discretization parameters of
the network are described in Table 9.7. We present data obtained after 9 periods to ensure
that the system has reached a periodic state.

∆t ∆x Order

10−5 10−1 2

Table 9.7 – Numerical parameters describing the time discretization and the mesh

9.6.1 Healthy network

We construct three healthy networks with nl ∈ {2, 4, 6}. In Figure 9.7, we plot the
distribution of the structure function f in the three networks at 4 characteristic times of the
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last cardiac cycle: t1 = 9Th, t2 = 9.25Th, t3 = 9.5Th and t4 = 9.75Th.

We observe clear effects of network size and asymmetry on the aggregation of RBCs. At
t = 9Th, the aggregation is stronger for nl = 2, as the reflective behavior of the network is
smaller due to the smaller number of bifurcations. At t = 9.25Th, the inlet flow rate reaches
its maximum value and blood is globally disaggregated for nl = {2, 4, 6}. Nevertheless, for
nl = 4 and nl = 6, aggregated regions remain in the left hand side (l.h.s.) large extremity
arteries. These regions belong to high ramification levels and have not yet been reached by
the incoming pulse wave. At t = 9.5, all RBCs have been disaggregated by the incoming
pulse. Finally at t = 9.75, RBCs reaggregate in the l.h.s. large arteries since there is no
flow coming from the heart and the reflected waves have been damped by viscous effects.
Furthermore, the shear rate γ̇ is lower in these larger arteries. Overall, aggregation dynamics
depend on the size and asymmetry of the network and aggregation occurs principally in
the large arteries of the l.h.s. and their immediate daughter arteries. In these arteries, the
structure function reaches the critical value of f ≈ 0.1, at which blood displays viscoelastic
and thixotropic effects (see Subsection 9.4.2).

These results indicate that we must take into account non-Newtonian effects in networks
presenting large arteries or a high level of vessel ramifications. Furthermore, these results
highlight the importance of vessel topology as the asymmetry of the network influences the
aggregation dynamics.

9.6.2 Pathological network

In the literature, non-Newtonian blood effects have been particularly studied in elementary
pathological networks [Fan et al. 2009; Weddell et al. 2015; Apostolidis et al. 2016]. However,
as observed before, the size and asymmetry of the network plays and important role in the
aggregation dynamics. To characterize how pathologies can modify the flow and aggregation
in a large network, we introduce two sever stenoses of 90% of obstruction each in the 3
networks presented above. One is located on the l.h.s., in the large radius branch of the
network and the other is on the r.h.s, in the small radius branch. The exact position of both
stenoses is represented in Figure 9.8 by a circle (◦).
As previously, we plot in Figure 9.8 the distribution of the structure function f in the
three networks (nl ∈ {2, 4, 6}) at the same 4 characteristic times of the last cardiac cycle:
t1 = 9Th, t2 = 9.25Th, t3 = 9.5Th and t4 = 9.75Th. For nl ∈ {4, 6}, the presence of the
stenoses results in a higher aggregation in the arteries downstream of the stenoses compared
to Figure 9.7. On the contrary for nl = 2, the value of the structure f is lower than in
Figure 9.7 as the stenoses create reflections that contribute to the disaggregation process.
Theses results show that aggregation effects are amplified in pathological networks as the
flow is reduced downstream of the stenoses. Upstream of the stenoses, aggregation is reduced
due to additional reflected waves produced by the stenoses.

The numerical results presented in this section demonstrate that non-Newtonian behaviors
can exist in healthy and pathological networks. Even if these non-Newtonian behaviors are
small, they are non-negligible. They affect in particular the WSS distribution in the networks,
which plays an important role in cardiovascular pathogenesis. The non-Newtonian aspect of
blood must therefore be taken into account to accurately compute network hemodynamics,
especially in pathological networks.

9.7 Conclusion
In Chapter 9, we have proposed 1D generalized non-Newtonian blood flow model, based
on a classical 1D approach for the conservation mass and the balance of momentum, but
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Figure 9.7 – Snapshots at t1 = 9Th, t2 = 9.25Th, t3 = 9.5Th and t4 = 9.75Th of the
distribution of the structure function f in three healthy networks with increasing levels of
ramification nl ∈ {2 (Left) , 4 (Center) , 6 (Right)}. Aggregation occurs mainly in the large
arteries on the l.h.s of the network and in their immediate daughter arteries. Aggregation
depends on the pulsatility of the flow, the size and the asymmetry of the network.
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Figure 9.8 – Snapshots at t1 = 9Th, t2 = 9.25Th, t3 = 9.5Th and t4 = 9.75Th of the
distribution of the structure function f in three pathological networks with increasing levels of
ramification nl ∈ {2 (Left) , 4 (Center) , 6 (Right)}, presenting two stenosis marked by the
black circles (◦). Aggregation now occurs in the large arteries on the l.h.s of the network and
in their immediate daughter arteries but also on the r.h.s, downstream of the stenosis. In
the arteries upstream of the stenoses, aggregation is reduced due to the additional reflections
created by the stenoses.
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including time- and structure-dependent viscous effects. The evolution of the shear stress is
governed by a Maxwell equation with coefficients depending on the state of aggregation of
RBCs. The balance between aggregation and shear-dependent disaggregation is described
by a kinetic equation, which is a particular case of a structural model for viscoelastic fluids.
We note that this approach is not restricted to blood rheology and could be applied to other
structured fluids.

We have confronted the numerical predictions of our 1D blood flow model to experimental
data available in the literature [Bureau et al. 1979, 1980; McMillan et al. 1987], and we have
shown that the model reproduces qualitatively and quantitatively the rheology of blood. We
have further investigated the non-Newtonian effects in arterial networks of increasing size
and demonstrated how the pulsatility of the flow and the network topology contribute to the
aggregation process, which occurs mainly in the large arteries and their immediate daughter
arteries. The aggregation of RBCs is further increased downstream of pathologies such as
stenoses.

In the entire study, we have assumed, in a 1D framework, that the wall shear rate γ̇|r=R solely
contributes to the disaggregation process as structure is represented by a single homogeneous
phase. The shear rate γ̇|r=R therefore governs the evolution of the blood structure near the
wall and in the bulk of the flow. In reality, the axial velocity profile varies with time and
space leading to variations of γ̇ along the radius of the artery. In particular, for axisymmetric
flow, γ̇|r=0 = 0. By using the wall shear rate γ̇|r=R to govern the disaggregation process in
the entire artery we have overestimated the shearing effects and therefore underestimated
the non-Newtonian effects. However, we have also assumed an a priori shape of the velocity
profile, which is valid for experimental validation (see Section 9.4) but an approximation for
network flows. In Section 9.5 and Section 9.6, we have assumed a Poiseuille flow everywhere
in the network, as is classically done in 1D applications, and therefore underestimated the
value of γ̇. To overcome those limitations due to the loss of the velocity profile in the 1D
averaging process, we plan in future works to use the 2D multiring framework developed
in Chapter 8 to compute the axial velocity profile and introduce radial variations in the
aggregation process.

Keeping in mind these limitations inherent to the 1D framework, the 1D generalized non-
Newtonian blood flow model presented here will be useful in the future to help understanding
the hemodynamics in healthy and pathological networks of the micro- and macro-circulation.
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This thesis dealt with mathematical modeling and numerical simulations of blood flow in
large arteries through the use of reduced-order blood flow models. These models capture at
low computational and modeling costs the wave propagation dynamics in large networks of
arteries which are essential to reproduce in vivo waveforms. However, their simplicity stems
from modeling assumptions that partially hinder their ability to accurately reproduce the
hemodynamics in specific pathological situations.

The overall goal of this thesis was therefore to revisit the main hypotheses used to derive
the reduced-order models and to propose improvements through numerical methods and
complementary models. Our focus was set on three particular issues:

• the viscoelasticity of the arterial wall (Chapter 3);
• the shape of the velocity profile, especially in pathological vessels (Chapter 8);
• the non-Newtonian behavior of blood (Chapter 9).

Additionally, through fruitful collaborations with the clinicians Dr. Salam Abou Taam
(Hôpital Privé Claude Galien, Quincy-sous-Sénart, France), Dr. Julien Gaudric (Hôpital La
Pitié Salpêtrière, Paris, France) and especially Dr. Teresa Politi (Faculdade de Medecina,
Buenos Aires, Argentina), we also addressed more clinical issues concerning the origin of the
dicrotic notch, extracorporeal bypass surgeries and aortic and Iliac clamping (Chapter 7).
These clinical issues led to a reflection on outflow boundary conditions (Chapter 6) and to
the development of well-balanced numerical methods able to capture 1D hemodynamics in
pathological vessels (Chapter 5). Concerning this last point, the method was introduced to
us by Dr. Olivier Delestre (Université de Nice Sophia-Antipolis, Nice, France) with which
we have collaborated since then. We were also greatly helped by Pr. Jacques Sainte-Marie
(UPMC, Paris, France) and Dr. Emmanuel Audusse (Université Paris 13, Villetaneuse,
France) on mathematical and numerical issues. Finally, a lasting collaboration with Pr.
Mami Matsukawa and her students, Shimpei Ono and Shinya Shimada, has allowed us to
collect experimental data on wave propagation in straight and stenosed tubes that we will
use to validate our numerical methods.

219



Section 10.1. Conclusion

As each part of this thesis was ended with a specific conclusion, we propose here a global
conclusion and some perspectives.

10.1 Conclusion
Blood in the large and small elastic arteries is driven by the periodic contraction of the
heart. This periodic inflow generates waves that elastically propagate in the arterial network
and are subjected to reflection at arterial junctions and in the peripheral vascular sites
(arterioles), to viscous dissipation and to viscoelastic diffusion (viscosity of the arterial wall).
The speed at which these waves propagate is large, allowing us to simplify the governing
equations for blood flow and derive a one-dimensional (1D) long wave blood flow model.
This 1D model naturally accounts for wave propagation through its hyperbolic mathematical
structure and has been extensively used in the literature. However, modeling assumptions
are required to describe the viscous effect of blood, the viscoelastic effect of the arterial wall
and the rheology of blood itself.

Indeed, 1D blood flow models are unable to describe the spatial and temporal evolution of
the velocity profile in the artery, and therefore can not properly evaluate the wall shear stress
(WSS), which is an important hemodynamical factor in the development of cardiovascular
pathologies. To overcome this limitation, we have proposed a two-dimensional (2D) extension
of the 1D model, able to dynamically compute the velocity profile and provide an accurate
estimation of the WSS. We have shown that this 2D model can compute flow recirculation
in stenoses (constrictions) and aneurysms (expansions), can account for large deformation
of the arterial wall and does not require an adaptation of the radial mesh. Obviously, the
computational costs of the 2D model is greater than those of the 1D model, yet its modeling
cost are lower as there a no unknown parameters linked to the velocity profile. Moreover,
the computational and modeling costs of the 2D blood flow model are still greatly inferior to
those of three-dimensional (3D) fluid-structure interaction (FSI) models.

The viscosity of the arterial wall is also an important feature of arterial wall dynamics
that is often discarded in 1D blood flow simulations. Indeed, it is difficult to measure the
viscosity of the wall without direct access to arterial wall samples. Fortunately, using ex
vivo measurements provided by our collaboration with Pr. Armentano (Favaloro University,
Buenos Aires, Argentina), we were able to evaluate the viscoelastic behavior of the arterial
wall of sheep, which allowed us to show that a nonlinear Kelvin-Voigt viscoelastic model
is necessary to accurately capture the deformation of the arterial wall under pressure
solicitations.

Finally, we have dealt with the issue of blood rheology by proposing a 1D non-Newtonian
blood flow model as an alternative to the classical 1D Newtonian blood flow models. This
model takes into account the time-dependent aggregation of red blood cells (RBCs) into long
column-like structures called rouleaux and is therefore able to describe the viscoelastic, shear-
thinning and thixotropic behaviors of blood. These non-Newtonian behaviors contribute to a
better description of blood, particularly in low-shear flow regimes (diastole, severe stenoses,
aneurysms, . . .).

The combination of these three approaches provides valuable tools to improve the modeling
of blood flow in large elastic arteries, leading to better hemodynamical predictions and
improved clinical diagnosis.

10.2 Perspectives
There are multiple perspectives for the work presented in this thesis, and we have organized
them into short and long term perspectives.
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10.2.1 Short term perspectives

The work presented in this thesis has essentially dealt with blood flow in the large and
small arteries. However, the cardiovascular system is a closed-loop circuit. Therefore, it is
imperative to implement a heart model, organ models and models for the pulmonary and
venous circulations in order to obtain a complete numerical model of the cardiovascular
system. This model could then be applied to study medical issues such as arterio-venous
fistula and compensation mechanisms of the heart during clamping, bypass surgeries and
extracorporeal circulation procedures. A parameter estimation strategy should also be
implemented in order to apply the model to patient-specific clinical issues. Finally, the code
should be made open-source to create a community of users that would contribute to its
improvement and increase the chances of producing a clinically relevant help-to-decision tool
for clinicians.

On a more technical note, the 2D multiring model we have proposed should be efficiently
coupled to the 1D model and their differences should be compared using analytic test cases
such as the Womersley solution as well as experimental data. The work on control-volume
junction modeling should also be continued and improved by considering for example that the
2D Shallow water equations are valid in junctions, thereby enabling the proper description
of the flow rate.

Overall, interactions with clinicians should be increased to guide the research towards
clinically relevant problematics.

10.2.2 Long term perspectives

Concerning the long term perspectives, we think that the future of cardiovascular modeling
does not lie in full 3D simulations of blood flow in large networks. Indeed, even if the issues
of 3D computational and modeling costs were resolved, clinicians are usually only interested
in small portions of the arterial network and regions far from the points of interest do not
require a 3D detailed treatment. We therefore think that a model adaptation strategy is more
relevant, similar to mesh adaptation strategies commonly used in numerical simulations. Far
from the region of interest, we would use reduced-order models to provide global information
to more detailed models used only in the region of interest. Contrary to studies that have
already used such an approach, the choice of model refinement would be dynamical and
guided by modeling error estimators and the complete panel of blood flow models would
be used (0D, 1D, 2D and 3D). This approach is particularly appropriate for cardiovascular
modeling as blood flow is periodic and the arterial network is naturally segmented. This
model adaptation strategy would drastically reduce the modeling costs as reduced-order
models require much less parameters than full 3D FSI models and would provide an efficient
and accurate blood flow modelization tool for clinicians that could be applied to strongly
multiscale problems such as the study of lower-extremity arterial disease.

Growth and remodeling models should also be considered, especially of the microcirculation,
as they play an important part in the development of cardiovascular diseases and peripheral
circulation. The study of drug transport is also an interesting field of research, with the
objective of determining the optimal injection point in order to reach a specific target. This
could potentially reduce the doses at which antibiotics are administered and slow down the
increasing resistance of bacteria.

At very long term, a full body model should be developed, including the cardiovascular
system as well as bones, muscles, the digestive system, . . . However, this global human model
raises many modeling and numerical issues, including estimating the colossal amount of
parameters it implies, that must be resolved before ever hoping to reach such an objective.
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