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Abstract
Randomness is a key ingredient in cryptography. For instance, random numbers are used to
generate keys, for encryption and to produce nonces. They are generated by pseudo-random
generators and pseudo-random functions whose constructions are based on problems which
are assumed to be difficult. In this thesis, we study some complexity measures of the Naor-
Reingold and Dodis-Yampolskiy pseudo-random functions and study the security of some
pseudo-random generators (the linear congruential generator and the power generator on
elliptic curves) and some pairing-based signatures based on exponent-inversion framework.

We show that the Dodis-Yampolskiy pseudo-random functions is uniformly distributed and
that a low-degree or low-weight multivariate polynomial cannot interpolate the Naor-Reingold
and Dodis-Yampolskiy pseudo-random functions over finite fields and over elliptic curves.
The contrary would be disastrous since it would break the security of these functions and
of problems on which they are based. We also show that the linear congruential generator
and the power generator on elliptic curves are insecure if too many bits are output at each
iteration.

Practical implementations of cryptosystems often suffer from critical information leakage
through side-channels. This can be the case when computing the exponentiation in order to
compute the output of the Dodis-Yampolskiy pseudo-random function and more generally in
well-known pairing-based signatures ( Sakai-Kasahara signatures, Boneh-Boyen signatures
and Gentry signatures) based on the exponent-inversion framework. We present lattice-based
polynomial-time (heuristic) algorithms that recover the signer’s secret in the pairing-based
signatures when used to sign several messages under the assumption that blocks of consecutive
bits of the exponents are known by the attacker.
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Résumé
L’aléatoire est un ingrédient clé en cryptographie. Par exemple, les nombres aléatoires sont
utilisés pour générer des clés, pour le chiffrement et pour produire des nonces. Ces nombres
sont générés par des générateurs pseudo-aléatoires et des fonctions pseudo-aléatoires dont les
constructions sont basées sur des problèmes qui sont supposés difficiles. Dans cette thèse, nous
étudions certaines mesures de complexité des fonctions pseudo-aléatoires de Naor-Reingold
et Dodis-Yampolskiy et étudions la sécurité de certains générateurs pseudo-aléatoires (le
générateur linéaire congruentiel et le générateur puissance basés sur les courbes elliptiques)
et de certaines signatures à base de couplage basées sur le paradigme d’inversion.
Nous montrons que la fonction pseudo-aléatoire de Dodis-Yampolskiy est uniformément

distribué et qu’un polynôme multivarié de petit dégré ou de petit poids ne peut pas interpoler
les fonctions pseudo-aléatoires de Naor-Reingold et de Dodis-Yampolskiy définies sur un corps
fini ou une courbe elliptique. Le contraire serait désastreux car un tel polynôme casserait
la sécurité de ces fonctions et des problèmes sur lesquels elles sont basées. Nous montrons
aussi que le générateur linéaire congruentiel et le générateur puissance basés sur les courbes
elliptiques sont prédictibles si trop de bits sont sortis à chaque itération.
Les implémentations pratiques de cryptosystèmes souffrent souvent de fuites critiques

d’informations à travers des attaques par canaux cachés. Ceci peut être le cas lors du calcul de
l’exponentiation afin de calculer la sortie de la fonction pseudo-aléatoire de Dodis-Yampolskiy
et plus généralement le calcul des signatures dans certains schémas de signatures bien connus
à base de couplage (signatures de Sakai-Kasahara, Boneh-Boyen et Gentry) basées sur le
paradigme d’inversion. Nous présentons des algorithmes (heuristiques) en temps polynomial à
base des réseaux qui retrouvent le secret de celui qui signe le message dans ces trois schémas
de signatures lorsque plusieurs messages sont signés sous l’hypothèse que des blocs consécutifs
de bits des exposants sont connus de l’adversaire.
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Chapter 1.
Introduction
Cryptography can be defined as the practice and study of techniques for secure communication
in the presence of third parties called adversaries or eavesdroppers. Today, cryptography
is very present in our daily life: emails, credit cards, electronic banking, online shopping,
secure network communications, authentications, etc. The main goals of cryptography is to
ensure privacy, integrity and authenticity. Suppose two people usually called Alice and Bob
want to communicate through an insecure channel in the presence of an adversary called
Eve. If Alice is the sender (the person who sends the message also called the plaintext) and
Bob the receiver (the person who receives the message), then providing privacy means that
the message sent by Alice to Bob should be hidden from Eve. Providing authenticity or
integrity means that one wants Bob, upon receiving a communication supposed to be from
Alice, to have a way of assuring itself that it really did originate from Alice and was not sent
by Eve, or modified along the road by Eve. To achieve these goals (privacy, authenticity
and integrity), Alice and Bob are supplied with a set of algorithms also called a protocol
or a scheme or a cryptosystem. There is an algorithm for the sender to run also called the
encryption algorithm that allow him to encrypt the message he wants to send (the encrypted
message is also called the ciphertext) and an algorithm for the receiver that allows him to
decrypt the ciphertext and get the message together if possible with an associated message
telling him whether or not to regard it as authentic. These algorithms depends on some
cryptographic keys (the key used to encrypt a message must be known to the sender and
the one used to decrypt must be known to the receiver). The modern cryptography can be
divided into two areas of study:
• Secret-key or symmetric cryptography: secret-key cryptography refers to encryption

and decryption algorithms in which both the sender and the receiver share the same key
(or, less commonly, in which their keys are different, but related in an easily computable
way). This was the only kind of encryption publicly known until June 1976.

• Public-key or asymmetric cryptography: A significant disadvantage of symmetric
cryptography is the key management necessary to use them securely. Specifically, each
distinct pair of communicating parties must share a different key. The number of keys
required increases as the square of the number of network members, which very quickly
requires complex key management schemes to keep them all consistent and secret. The
difficulty of securely establishing a secret key between two communicating parties, when
a secure channel does not already exist between them is then a considerable practical
obstacle for cryptography users in the real world. The idea of public-key cryptography

— 1 —



2 Chapter 1. Introduction

is due to Diffie and Hellman in 1976 [DH76]. In the public-key setting, a party possesses
a pair of keys: a public key also denote pk (which is used by a sender to send a message
to the party) and an associated secret key also denoted sk (which is used by the party
to decrypt all the messages encrypted with his public key). A party’s public key is
made publicly known and bound to its identity. For example, a party’s public key might
be published in a phone book. A party’s secret key is kept secret. The computation of
one key (the private key) is computationally infeasible from the other (the public key),
even though they are necessarily related. Most public-key algorithms involve operations
such as modular multiplication and exponentiation in groups, which are much more
computationally expensive than the operations use in most secret-key algorithms. So in
practice, a fast symmetric-key protocol is used to secure communications and public-key
protocols to share the secret key used.

The following question can then be addressed:

What is a secure protocol?

Perfect security. Intuitively, a secure protocol is one for which an encrypted message remains
well hidden even after seeing its encryption. In other words, an encryption algorithm is
perfectly secure if a ciphertext produced using it provides no information about the plaintext
without knowledge of the key. That is, it cannot be broken even when the adversary has
unlimited computing power. The adversary simply does not have enough information to
break the encryption scheme. The one-time pad (given a n-bit string message m and a n-bit
string key k, the ciphertext is simply c = m⊕ k, where ⊕ denotes the bit-Xor) is known to
achieve the perfect security. However, the one-time pad is not very practical, in the sense
that the key must be as long as the message: if Alice wants to send a 10 GB file to Bob, they
must already share a 10 GB key. Unfortunately, this cannot be avoided since it is proven that
any perfectly secure cipher must have a key space at least as large as its message space. This
fact provides the motivation for developing a definition of security for which the message
remains well hidden but in the presence of limited computing power adversaries, and which
allows one to encrypt long messages using short keys. Many other notions of security (for
instance the semantic security) were then introduced and allow us to build secure schemes
that use reasonably short keys.

Computational-complexity theory By considering weaker notions of security, modern cryp-
tography now introduces adversaries who have limited computing power (probabilistic poly-
nomial time adversaries). For practice purposes, symmetric and asymmetric primitives have
security as long as adversaries do not have too much computing time. These primitives are
breakable in principle but not in practice and are most often based on the computational
complexity of hard problems, often from number theory. Among the hard problems we have:

• Discrete logarithm problem (DLP). Let g be a generator of a group G (denoted
multiplicatively) of order q. Given g, h, the discrete logarithm problem is to find a
such that h = ga. The DLP difficulty depends on the choice of the group G. In
cryptography, two interesting choices for G are a subgroup of the multiplicative group
of a (prime) finite field and a subgroup of the points of an elliptic curve defined over a
finite field. The use of elliptic curves in cryptography was suggested independently by
Neal Koblitz [N K87] in 1987 and by Victor S. Miller [Mil86] in 1985. Elliptic curves
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are increasingly used to instantiate public-key cryptography protocols, for example
encryption, digital signatures, pseudo-random generators, key agreement and other
tasks. They are also used in several integer factorization and primality testing algorithms
that have applications in cryptography. The DLP takes sub-exponential time in Fp
and is even harder in the present state (with exponential time) in elliptic curves E(Fp)
(we recall that if E is an elliptic curve over the finite field Fp, P and Q are points in
E(Fp), the elliptic curve discrete logarithm problem consists in finding n ∈ N such that
Q = [n]P ). The size of the elliptic curve determines the difficulty of the problem. The
primary benefit promised by elliptic curve cryptography is a smaller key size, reducing
storage and transmission requirements i.e. that an elliptic curve group could provide
the same level of security afforded by an RSA-based system with a large modulus
and correspondingly larger key. For example a 256-bit elliptic curve public key should
provide the same level of security as a 3072-bit RSA public key. The last record in
solving the discrete logarithm problem (16 June 2016), using the number field sieve,
is the computation of a discrete logarithm modulo a 232-digit prime which roughly
corresponds to the factoring of a 768-bits safe prime. The hardness of the DLP is the
foundation of several cryptographic systems (e.g. Diffie-Hellman key agreement [DH76],
ElGamal encryption and signature [ElG85] or the Schnorr signature[Sch90]).

• Diffie-Hellman assumptions. Given a cyclic groupG (denoted multiplicatively) generated
by some element g, the computational Diffie-Hellman assumption states that it is
difficult to compute the element gxy from known elements gx and gy (for x and y picked
uniformly at random between 1 and the order of G). This assumption is the basis of
the Diffie-Hellman key exchange [DH76] and the most efficient means known to solve
this computational problem is to solve the standard discrete logarithm problem in G.
Unfortunately, even the computational Diffie-Hellman assumption by itself is generally
not sufficient to assess the security of protocols proposed and used in cryptography.
Cryptographers have then proposed much stronger assumptions in order to analyze
the security of cryptosystems. For instance, the decision Diffie-Hellman assumption
[Bon98] states that given a cyclic group G given some elements g, gx and gy, no efficient
algorithm can distinguish between gxy and an element picked uniformly at random in G.
This assumption has been used to prove the security of many cryptographic protocols,
most notably the ElGamal [ElG85] and Cramer-Shoup cryptosystems [CS98] and in
numerous important cryptographic applications.

• Diffie-Hellman inversions assumptions. Given a cyclic group G generated by some
element g, and the tuple (g, gx, . . . , gxq), the q-Diffie-Hellman inversions assumption
([DY05] and the references there in) states that it is difficult to compute the element
g1/x. This assumption is non-standard and Cheon [Che10] proved that it is stronger
than the classical discrete logarithm assumption in G. A much stronger assumption
called the q-decisionnal bilinear Diffie-Hellman inversions assumption [DY05; SK03;
BB04a] was proposed. Given a bilinear cyclic group G generated by some element g
(that is the group action in G is efficiently computable, there exists a multiplicative
group G1 and an efficiently computable bilinear map e : G×G→ G1 and e(g, g) 6= 1G1

), and the tuple (g, gx, . . . , gxq), the q-decisionnal bilinear Diffie-Hellman inversions
assumption states that it is difficult to distinguish e(g, g) from a random element. This
assumption was shown in [DY05] to be difficult in the generic group model and it was
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used in [SK03; BB04a; Gen06] to construct secure identity based encryption schemes.

• Integer factorization problem (FACT). Given a positive integer N , the problem is to
find its prime factors, i.e., find the pairwise distinct primes pi and positive integer
powers ei such that N = pe1

1 ...p
en
n . It is generally believed that the most difficult setting

for the factorization problem is when N = pq is the product of only two primes p and q
of the same large size since the difficulty of the factorization problem is nonuniform (i.e
factoring integers N whose second largest prime factor is bounded by a polynomial in
logN can be performed in polynomial time). It is straightforward to compute N = pq
in O((logN)2) time and (presumedly) hard to invert this operation when p and q are
pairwise distinct primes chosen randomly.

• The RSA Problem . Given (N, e, c) where c ∈ ZN , e an integer and N = pq, the RSA
problem is to find x such that c = xe mod N . The RSA scheme relies on the difficulty
for solving equations of the form xe = c mod N , where e, c, and N are known and x
is an arbitrary number. In other words, the security of RSA relies on the assumption
that it is difficult to compute e-th roots modulo N .
The RSA Problem is clearly no harder than the factorization problem since an adversary
who can factor N can also compute the private key (p, q, d) from the public key (N, e),
where d is an integer satisfying the equation ed = 1 mod (p− 1)(q − 1). However, so
far there are no proofs that the converse is true meaning that the RSA problem is
apparently as difficult as factoring: Whether an algorithm for solving the RSA Problem
can be efficiently converted into an integer factoring algorithm is an important open
problem. However, Boneh and Venkatesan [BV98] have given evidence that such a
reduction is unlikely to exist when the public exponent is very small, such as e = 3 or
17.
It is important to know which parameter sizes to choose when the RSA problem serves
as the foundation of a cryptosystem. The current record for factoring general integers
was announced on December 12 in 2009, by a team including researchers from CWI,
EPFL, INRIA and NTT. The consortium factored the RSA-768 (232-digit number)
using the number field sieve (NFS) [KAF+10]. This effort required the equivalent of
almost 2000 computing years on a single core 2.2 GHz AMD Opteron. Now the NIST’s
recommendation is that future systems should use RSA keys with a minimum size of
3072 bits. In 1994, Peter Shor [Sho97] introduced a quantum algorithm solving FACT
in polynomial time.

These problems are unproven but are assumed to be difficult. And based on these problems,
many cryptographic primitives and schemes with provable security have been proposed. These
schemes and many other applications require random numbers or bits which are produced
by random number and random bit generators, RNGs and RBGs. In cryptography, these
generators are employed to:

• produce secret keys: computer cryptography uses integers for keys. The elementary
method to read encrypted data without actually decrypting it is a brute force attack
( i.e. simply attempting every number, up to the maximum length of the key). Therefore,
it is important to use a sufficiently long key bit length that is unpredictable in order to
make the brute force attack impractical.
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• encrypt messages: probabilistic encryption is particularly important when using public-
key cryptography. Suppose that the adversary observes a ciphertext, and suspects that
the plaintext is either "YES" or "NO", or has some information about the plaintext.
When a deterministic encryption algorithm is used, the adversary can simply try
encrypting each of his guesses under the receiver’s public key, and compare each result
to the target ciphertext. To prevent this attack, public key encryption schemes must
incorporate an element of randomness, ensuring that each plaintext maps into one of a
large number of possible ciphertexts.

• produce nonces: a nonce is an arbitrary number used only once in a cryptographic
communication. They are used in some authentication protocols, hashing protocols
and encryption schemes. Nonces should be unpredictable to ensure the security of the
underline protocols.

Random numbers can be generated by true random numbers generators (TRNGs). TRNGs
measure some physical phenomenon that is expected to be random and then compensates for
possible biases in the measurement process. Example sources include measuring atmospheric
noise, thermal noise, and other external electromagnetic and quantum phenomena. For
example, cosmic background radiation or radioactive decay or the noise of a semiconductor
diode as measured over short timescales represent sources of natural entropy. However
TRNGs are often biased, this means for example that on average their output might contain
more ones than zeros and therefore does not correspond to a uniformly distributed random
variable. This effect can be balanced by different means, but this post-processing reduces the
number of useful bits as well as the efficiency of the generator. Another problem is that some
TRNGs are very expensive or need at least an extra hardware device. In addition, these
generators are often too slow for the intended applications in cryptography. As a solution,
cryptographers proposed methods to efficiently generating numbers that look random for
adversaries with limited power of computations (probabilistic polynomial time adversaries)
by using little or no randomness. Among these methods we have pseudo-random generators
and pseudo-random functions.

1.1. Pseudo-random generators

Recall that for the one-time pad to be perfectly secure, the key should be as long as the
message. However, we would like to use a key that is much shorter. So the idea is to instead
use a short `-bit seed s as the encryption key, where ` is much smaller than L ( L being
the bit length of the message) and to stretch this seed into a longer, L-bit string that is
used to encrypt the message and decrypt the ciphertext. The seed s is stretched using some
efficient, deterministic algorithm G that maps `-bit strings to L-bit strings. Thus, the key
space for this modified one-time pad is {0, 1}`, while the message and ciphertext spaces are
{0, 1}L. For s ∈ {0, 1}` and m, c ∈ {0, 1}L, encryption and decryption are defined as follows:
E(s,m) := G(s) ⊕m and D(s, c) := G(s) ⊕ c. This new scheme is called a stream cipher,
and the function G is called a pseudo-random generator. A pseudo-random generator, or
PRG for short, is an efficient deterministic algorithm G that, given as input a seed s ∈ S,
computes an output r = G(s) ∈ R, where S,R are finite spaces. Our definition of security
for a PRG captures the intuitive notion that if s is chosen at random from S and r is chosen
at random from R, then no efficient adversary can effectively tell the difference between G(s)
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and r: the two are computationally indistinguishable.
More formally, let G : S → R be a function. We say that G is a secure pseudo-random
generator if G is efficiently computable and if for any polynomial-time adversary A, its
advantage in the following algorithmic game is negligible. The game starts by picking a
random challenge bit b and returns either G(s), for a randomly chosen s ∈ S if b = 0 or r, for
a randomly chosen r ∈ R if b = 1. Finally, the adversary outputs a bit b′, and its advantage
is defined by 2Pr[b = b′]− 1. Here a polynomial time adversary A is simply a non-uniform
probabilistic polynomial-time oracle Turing machine. The adversary is polynomial in the
input length bit and with a single bit output. It is not known if cryptographically secure
pseudo-random generators exist. Proving that they exist is difficult since their existence
implies P 6= NP , which is widely believed but a famously open problem. The existence of
cryptographically secure pseudorandom generators is widely believed as well and they are
necessary for many applications in cryptography. It is well-known by combining the results
of [BM84; JL99] that:

Theorem 1.1.1. Cryptographically secure pseudo-random generators exist if and only if
one-way functions exist.

1.1.1. Constructions

Many constructions of pseudo-random generators were proposed, some based on unproven
but believed hard problems and these pseudo-random generators were proved to be secure if
the underlined problem is difficult. Others constructions were proposed based on difficult
problems but have not yet been proved to be secure if the underlined problem is difficult.

1.1.1.1. Proven constructions

• The Blum Blum Shub PRG. This PRG was proposed in 1986 by Blum, Blum and Shub
[LS86]. The following sequence (xn) is defined:

xn+1 = x2
n mod N,

where N = pq is the product of two large primes p and q. At each step of the algorithm,
some intermediate output which is part of the final output is derived from xn+1: the
intermediate output is commonly either the bit parity of xn+1 or one or more of the least
significant bits of xn+1. The final output is the concatenation of all the intermediate
outputs. For instance if one bit is derived at each step, then if L is the bit length of the
output of the generator, we will need L steps to actually compute the desired number
of bits. The seed x0 6= 1 should be an integer that is coprime to N (i.e. p and q are not
factors of x0). Its security relies on the computational difficulty of solving the quadratic
residuosity problem which states that given integers a and N = pq, it is difficult to
decide whether a is a quadratic residue modulo N or not. When the primes are chosen
appropriately, and O(log logN) least significant bits of each xn are output, then if N
is sufficiently large, distinguishing the output bits from random should be at least as
difficult as solving the Quadratic residuosity problem modulo N .

• The Blum-Micali PRG. It is due to Blum and Micali [BM84] and its security relies on
the discrete logarithm problem. Let p be an odd prime, and let g be a primitive root
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modulo p. Let x0 be a seed, and let:

xn+1 = gxn mod p,

where the exponent xn is seen as an integer in {0, . . . , p − 1}. The nth intermediate
output of the algorithm is 1 if xn < p−1

2 and 0 otherwise. The final output is the
concatenation of all the intermediate outputs.

• Dual-EC PRG. This generator is based on elliptic curve and was released by the National
Institute of Standards and Technology (NIST) and the National Security Agency (NSA)
in 2006. The basic Dual-EC algorithm works as follows; given a public elliptic curve E
and two public points P and Q on E, the following sequences are defined:

si+1 = x(siP ), ri+1 = x(si+1Q) i ∈ N,

where x(A) denotes the abscissa of a point A, and s0 is the seed. For each i ≥ 1, some
output is derived from ri: for instance, for a n-bit string s0, the n least significant
bits of ri could be computed at each step. The output of the generator is then the
concatenation of the different outputs at each stage. Its security is based on the elliptic
curve discrete logarithm problem. After its publication, it was criticized by experts for
its poor design (it is very slower, its outputs are biased, it outputs too many bits and
it is mathematically guaranteed to have a skeleton key d (with P = dQ) that makes
the output entirely predictable to anyone in possession of the key). In 2007 Bruce
Schneier wrote an article about Dual-EC in Wired Magazine and a pair of Microsoft
researchers Dan Shumow and Niels Ferguson announced at the Crypto rump session
in August 2007 that there was a possibility of a back door (secret knowledge that lets
you predict outputs) in Dual-EC. By the end of 2007, for the public cryptographic
community, Dual-EC was dead and gone. In 2013, The New York Times reported that
documents in their possession appear to confirm that the backdoor was real and had
been deliberately inserted by the NSA. NIST’s list of DRBG (Deterministic Random
Bit Generator) validations showed that Dual EC was provided in dozens of commercial
cryptographic software libraries. Dual-EC was even the default pseudorandom number
generator in RSA Security’s BSafe library. How could an algorithm so criticized by
the cryptographic community be present in widely used implementations? A partial
explanation surfaced in December 2013, when Reuters reported that NSA paid RSA
10 million dollars in a deal that set Dual-EC as the preferred, or default, method for
number generation in the BSafe software. In April 21, 2014, NIST withdrew Dual-EC
from its draft guidance on random number generators.

1.1.1.2. Unproven constructions

We have some constructions based on elliptic curves which have not yet been proved to be
secure but are widely used in practice:

• the elliptic curve linear congruential generator (EC-LCG). Given a modulus m and a
multiplier a relatively prime to m, an increment b and a seed x0, the linear congruential
generator (LCG) is the sequence xn defined by:

xn+1 = axn + b mod m.
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The elements a, b and m can be secret or not and in order to increase the resistance
of the LCG, Knuth [Knu85] proposed to output only most significant bits of each xn.
In 1989, Boyar [Boy89] showed that one can recover the seed of this generator in the
bit-size of m if few least significant bits of each xi are discarded when a, b and m are
secret. Frieze et al [FHK+88] infer the LCG when few most significant bits of each
xn are output for known m and a. Joux and Stern [JS98] proposed a lattice attack on
the LCG when few most significant bits of each xn are output even for secret m and a.
Their attack constructs an appropriate lattice from known information and computes
the shortest vector in that lattice. Due to the insecurity of the LCG, Hallgren [S H94]
proposed in 1994 an elliptic curve analogue of the linear congruential generator known
as the EC-LCG. Let E be an elliptic curve defined over a prime finite field Fp and
G ∈ E(Fp), the EC-LCG is a sequence Un of points defined by the relation:

Un = Un−1 ⊕G = nG⊕ U0, n ∈ N

where U0 ∈ E(Fp) is the initial value or seed. We refer to G as the composer of the
generator. One can notice that if two consecutive values Un, Un+1 of the generator
are revealed, it is easy to find U0 and G. So only the most significant bits of each
coordinate of Un are output, n ∈ N in the hope that this makes the resulting output
sequence difficult to predict. In the cryptography setting, the initial value U0 and the
constants G, a and b may be kept secret. Gutierrez and Ibeas [GI07] consider two cases:
the case where the composer G is known and a, b are kept secret and the case where
the composer G is unknown and a, b are kept secret. In the first case, they showed that
the EC-LCG is insecure if a proportion of at most 1/6 of the least significant bits of
two consecutive values of the sequence is hidden. When the composer is unknown, they
showed heuristically that the EC-LCG is insecure if a proportion of at most 1/46 of the
least significant bits of three consecutive values of the sequence is hidden. Their result
is based on a lattice basis reduction attack, using a certain linearization technique. In
some sense, their technique can be seen as a special case of the problem of finding
small solutions of multivariate polynomial congruences by using only linear relations on
them. The Coppersmith’s methods also tackle the problem of finding small solutions of
multivariate polynomial congruences by taking products of the polynomials. Gutierrez
and Ibeas due to the special structure of the polynomials involved claimed that “the
Coppersmith’s methods does not seem to provide any advantages", and that “It may
be very hard to give any precise rigorous or even convincing heuristic analysis of this
approach". We tackle this issue in this thesis.

• the elliptic curve power generator (EC-PG). Given a modulus m, an integer e and a
seed v0, the power generator (PG) is the sequence vn defined by:

vn+1 = ven mod m.

The integer e which is typically small (e = 3 or e = 2) is known and m which can be a
prime number or an RSA modulus (the products of two prime numbers) can be secret
or not. In order to increase the resistance of the PG, only some most significant bits of
each vn are output at each iteration. For e = 2 and a prime m of bit-size n, Blackburn
et al [SS06] showed that if 2/3n bits are output at each iteration, then they are able to
recover the seed. Steinfeld et al [RW06] , uses Coppersmith’s methods and generalized
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this bound to e
e+1n. Herrmann and May [HM09] improved this bound to e−1

e n by using
Coppersmith’s methods with a new technique called the unravelled linearization. In
2005, Lange and Shparlinski [LS05] proposed an elliptic curve analogue of the PG called
the elliptic curve power generator (EC-PG). For a positive integer e > 1 and a point
V0 ∈ E(Fp) of order ` with gcd(e; `) = 1, the EC-PG is a sequence Vn of pseudo-random
numbers defined by the relation:

Vn = eVn−1 = enV0, n ∈ N

where V0 ∈ E(Fp) is the initial value or seed. At each step, the algorithm outputs some
most significant bits of each coordinate of Vn. To the best our knowledge, no result on
the cryptanalysis of the EC-PG are known.

In Chapter 6, we show that the EC-PG and the EC-LCG are insecure if too many bits are
output at each iteration. Some secure PRGs constructions collect new inputs in addition to
the seed and produce outputs that depend on the previous inputs. The designs of such secure
PRGs are based on some cryptographic primitives such as ciphers and hash functions and on
special-purposes designs (for instance the Yarrow algorithm, Fortuna algorithm, ANSI X9.17
standard etc.).

1.1.2. Applications
Pseudo-random generators have numerous applications in cryptography. As mentioned,
pseudo-random generators are used to construct stream ciphers. They may also be used to
construct symmetric-key schemes (where a large number of messages can be safely encrypted
under the same key), for key generation, for nonces and signature schemes.

1.2. Pseudo-random functions
Suppose Alice wishes to authenticate herself to Bob, by proving she knows a secret that they
share. With a PRG, they could proceed as follows. They both seed a PRG with the shared
secret. Bob picks and sends to Alice some random number i, and Alice proves she knows the
share secret by responding with the ith random number generated by the PRG. But this
solution requires state, and they both have to compute i random numbers. Instead, we would
like random access to the sequence. This is the intuition behind pseudo-random functions:
Bob gives to Alice some random i, and Alice returns FK(i), where FK is indistinguishable
from a random function. The notion of pseudo-random function family generalizes the notion
of a pseudorandom generator.
In cryptography, a pseudo-random function family is a collection of functions (that can be
evaluated efficiently using a secret-key) with the property that an adversary cannot efficiently
observe any significant difference between the input-output behavior of a random instance of
the family or that of a random function.

More formally, we consider collections of functions {Fn : Kn ×Dn → Rn}n∈N that can be
evaluated by a (deterministic) polynomial-time Turing Machine. We define an adversary as a
(non-uniform) probabilistic polynomial-time oracle Turing machine with either access to:

• an oracle implementing a function F : Dn → Rn defined by picking uniformly at random
a secret-key k ∈ Kn such that F (m) = Fn(k,m) for any m ∈ Dn;
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• or an oracle simulating a truly random function F : Dn → Rn (i.e. whose outputs are
sampled uniformly and independently at random).

This adversary can decide which queries to make to the oracle, perhaps based on answers
received to previous queries and eventually, it outputs a single bit (which is its decision as to
which function the oracle is implementing). The advantage of the adversary is the function
of n defined as the difference of the probabilities (taken over the random choices made by
the adversary and the oracle) that the adversary outputs 1 in the two cases. A collection
of functions {Fn : Kn × Dn → Rn}n∈N is a pseudo-random function family if and only if
no polynomial time adversary with advantage asymptotically larger than the inverse of a
polynomial exists.
By combining the results of Goldreich, Goldwasser and Micali [GGM84] and Goldreich and
Levin [GL89], the following result is known:

Theorem 1.2.1. Pseudo-random functions exist if and only if one-way functions exist.

1.2.1. Constructions
1.2.1.1. Pseudo-random functions from pseudo-random generators

Pseudo-random generators can be used to construct pseudo-random functions by the con-
struction proposed by Goldreich, Goldwasser and Micali [GGM84]. Let G : {0, 1}s → {0, 1}2s
be a PRG. Define G0, G1 to be the left and right halves of G, so that G(x) = G0(x)||G1(x),
for x ∈ {0, 1}s, where || denotes the concatenation of G0(x) and G1(x) . For any secret key
k ∈ {0, 1}s, define Fk : {0, 1}n → {0, 1}s by

Fk(x1 . . . xn) = Gxn(Gxn−1(. . . (Gx2(Gx1(k))))).

If G is a pseudo-random generator, then F : {0, 1}s × {0, 1}n → {0, 1}s is a pseudo-random
function.

1.2.1.2. Number-theoretic constructions

The Goldreich, Goldwasser and Micali construction is inefficient so many direct constructions
were proposed based on some hard problems.

• Naor-Reingold PRF. In 1997, Naor and Reingold [NR97; NR04] proposed a (candidate)
pseudo-random function family which takes inputs in {0, 1}n (for some parameter n)
and outputs an element in some (multiplicatively written) group G of prime order ` with
generator g. The secret key is an n-dimensional vector a = (a1, . . . , an) ∈ ((Z/`Z)∗)n
and the Naor-Reingold function is defined as:

fa : {0, 1}n −→ G
(x1, . . . , xn) 7−→ fa(x1, . . . , xn) = g

∏n

i=1 a
xi
i mod `

The evaluation of fa is thus efficient since it consists only in n modular multiplications
in Z/`Z and one modular exponentiation in G. It is shown in [NR97; NR04] that the
Naor-Reingold function is pseudo-random provided that certain standard cryptographic
assumptions about the hardness of breaking the Decision Diffie-Hellman assumption
holds. In cryptography, two interesting choices for G are a subgroup of the multiplicative



1.2. Pseudo-random functions 11

group of a (prime) finite field and a subgroup of the points of an elliptic curve defined over
a finite field. To lighten the notation, given an n-dimensional vector a = (a1, . . . , an) ∈
((Z/`Z)∗)n and a variable x that will denote indifferently an n-bit string (x1, . . . , xn) ∈
{0, 1}n or an integer x ∈ {0, 1, . . . , 2n−1} (which implicitly defines (x1, . . . , xn) ∈ {0, 1}n
the bit representation of x with extra leading zeros if necessary), we denote ax the
element in F` defined by ax = ax1

1 · · · axnn mod `. With this notation, the Naor-Reingold
function is simply defined by fa(x) = gax . Since proving that the Decision Diffie-Hellman
assumption holds seems currently to be out of reach, several number-theoretic properties
and complexity measures have been studied for the Naor-Reingold pseudo-random
functions over finite fields as well as over elliptic curves: distribution (see [LSW14;
Shp00b] and references therein), linear complexity (see [CGS10; GGI11; Shp00a; SS01])
and non-linear complexity (see [BGLS00]). These results are incomparable but they all
support the assumption of the pseudo-randomness of the Naor-Reingold function.

• Dodis-Yampolskiy PRF. In 2005, Dodis and Yampolskiy [DY05] proposed an efficient
pseudo-random function family which takes inputs in {1, . . . , d} (for some parameter
d ∈ N) and outputs an element in a group G (multiplicatively written) of prime order t
with generator g. The secret key is a scalar x ∈ Z∗t and the pseudo-random function is
defined by:

Vx : {1, . . . , d} −→ G
m 7−→ Vx(m) = g

1
x+m if x+m 6= 0 mod t and 1G otherwise.

The Dodis-Yampolskiy pseudo-random function family has found numerous applica-
tions in cryptography (e.g., for compact e-cash [CHL05] or anonymous authentication
[CHK+06]). Dodis and Yampolskiy showed that their construction is a verifiable
random function (that is a pseudo-random function that provides a non-interactively
verifiable proof for the correctness if its output) and has some very attractive security
properties, provided that some assumption about the hardness of breaking the so-called
Decision Diffie-Hellman Inversion problem holds in G [DY05]. In practice, two in-
teresting choices for the group G are a subgroup of the multiplicative group of any
finite field (in particular, for the so-called verifiable Dodis-Yampolskiy pseudo-random
function in groups equipped with a bilinear map [DY05]) or a subgroup of points of
an elliptic curve defined over a prime finite field. Very few results supporting the
Decision Diffie-Hellman Inversion assumption hardness were proven (contrary to the
Naor-Reingold pseudo-random function family [NR04] for which numerous results are
known, e.g. distribution [LSW14], linear complexity [GGI11] and non-linear complexity
[BGLS00]).

1.2.2. Applications of pseudo-random functions
Pseudo-random functions have many applications in cryptography:

• they can be used for secret-key encryption as follows: Given a PRF F , pick random r,
then for a secret key k and a message m, the ciphertext is Ek(m) = (Fk(r)⊕m, r). If
F is a PRF, then E is semantically secure.

• they can be used to construct a secure block cipher by using the Luby-Rackoff con-
struction.
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• they can be used as message authentication codes (MACs) [Gol04, Chapter 1]: MACk(m) =
Fk(m).

• they can also be used for key-exchange.

1.3. Our results
1.3.1. Polynomial Interpolation of the Naor-Reingold Pseudo-Random

Functions
The polynomial interpolation is a question which is well studied for cryptographic believed
hard functions to support their hardness. For breaking a hard function, it would be sufficient
to have an easy multivariate polynomial f (namely a polynomial of low degree and low weight
(the number of non-zero coefficients of the polynomial) which is efficiently computable) and
which from some known information can approximate the function. For instance, for the
Computational Diffie-Hellman assumption, given an element g of order ` such a polynomial
could satisfy the relation:

f(gx, gy) = gxy, for all (x, y) ∈ S,

for a large subset S ⊆ {0, . . . , `− 1}2. Lower bounds on the degree or weight of polynomials
interpolating the discrete logarithm problem (see [CS00]) or the Computational and Decision
Diffie-Hellman assumption (see [MS01; Win01; KW04; Shp03] and references therein) are
known. In order to break the security of the Naor-Reingold function, it would be sufficient
to have a k-variate polynomial f over a finite field (of low degree or low weight) with k ≥ 1
which reveals information on the functions values that is a k-variate polynomial f satisfying:
(f(gax

1
, . . . , gax

k

) = gax
k+1

, for all a = (a1, . . . , an) ∈ S for a large subset S ⊆ (F∗` )n, and for
some known values x1, . . . , xk+1 ∈ {0, · · · , 2n − 1}) or (f(gax , gax+t1 , . . . , gax+tk−1 ) = gax+tk

for many integers x ∈ {0, 1, . . . , 2n − 1}, and for some known values t1, . . . , tk and for some
known secret key a). We refer the first case to the polynomial interpolation with variable
secret key and the second case to the polynomial interpolation with fixed secret key. Our
first constribution [MV17c; MV17b] is that low weight or degree k-variate polynomial cannot
reveal information on the functions values. We consider the settings of a finite field and
an elliptic curve and in both cases, we obtain lower bounds on the degree of polynomials
interpolating the Naor-Reingold function with a fixed secret key and variable secret key.

1.3.2. Distribution and Polynomial Interpolation of the Dodis-Yampolskiy
Pseudo-Random Function

The second contribution [MV16] of this thesis is about the distribution of the Dodis-
Yampolskiy pseudo-random function over finite fields and over elliptic curves and the lower
bounds on the degree of polynomials which interpolate these functions.
We prove that for almost all values of parameters, the Dodis-Yampolskiy pseudo-random
function produces a uniformly distributed sequence. Our result is based on some recent
bounds on character sums with exponential functions. We also prove that a low-degree
univariate polynomial cannot reveal the secret key x when evaluated at Vx(m) (for some
integer m ∈ {1, . . . , d}) for all x. These results can be regarded as first complexity lower
bounds on the pseudo-randomness of the Dodis-Yampolskiy function families.
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1.3.3. Inferring a Linear Congruential Generator and a Power Generator on
Elliptic Curves

As a third contribution [Mef16], we analyze the security of the elliptic curve linear congruential
generator and of the elliptic curve power generator. We infer the EC-LCG sequence and the
EC-PG sequence using Coppersmith’s method for calculating the small roots of multivariate
polynomials modulo an integer. In the case where the composer is known, we showed that
the EC-LCG is insecure if a proportion of at most 1/5 of the least significant bits of two
consecutive values U0 and U1 of the sequence is hidden. This improves the previous bound
1/6 of Gutierrez and Ibeas [GI07]. We further improve this result by considering several
consecutive values of the sequence. We showed that the EC-LCG is insecure if a proportion of
at most 3/11 of the least significant bits of these values is hidden. To prevent the attacks of
[GI07], one could output only the most significant bits of the abscissa of consecutive multiple
values Ukn (for some fixed integer k) of the sequence. We consider this setting and use
summation polynomials to infer the EC-LCG. These polynomials were used to solve elliptic
curve discrete logarithm problem and we use it in this thesis to infer the EC-LCG when the
attacks of [GI07] cannot work. We then showed that the EC-LCG is insecure if a proportion
of at most 1/8 of the least significant bits of two values X(U0) and X(Uk) is hidden, where
X(P ) denotes the abscissa of the point P on the curve. We further improve this result by
considering several values Ukn, n ∈ N of the sequence. We showed that the EC-LCG is
insecure if a proportion of at most 1/4 of the least significant bits of the abscissa of these
values is hidden. In the case where the composer is unknown, we showed that the EC-LCG is
insecure if a proportion of at most 1/24 of the least significant bits of two consecutive values
U0 and U1 of the sequence is hidden. This improves the previous bound 1/46 of Gutierrez
and Ibeas [GI07]. We further improve this result by considering sufficiently many consecutive
values of the sequence. We showed that the EC-LCG is insecure if a proportion of at most
1/8 of the least significant bits of these values is hidden. Finally, we also showed that the
EC-PG is insecure if a proportion of at most 1/2e2 of the least significant bits of the abscissa
of two consecutive values V0 and V1 of the sequence is hidden. We improve this bound by
considering several consecutive values of the sequence and we showed that the EC-PG is
insecure if a proportion of at most 1/e2 of the least significant bits of the abscissa of these
values is hidden. To our knowledge such a result is not known in the literature for the EC-PG.

1.3.4. Lattice Attacks on Pairing-Based Signatures

The pairing-based signature schemes are very well-suited for resource-limited devices since
they produce short signatures and their generation involves only one scalar multiplication on
an elliptic curve. In the recent years, theoretical attacks against elliptic curves have shown
little improvements whereas side-channel attacks became a major threat against elliptic
curves implementations [Koc96; KJJ99]. These attacks are based on information gained
from the physical leakage of a cryptosystem implementation (such as timing information,
power consumption or electromagnetic leaks). For public-key cryptography on embedded
systems, the core operation is usually group exponentiation – or scalar multiplication on
elliptic curves – which is a sequence of group operations derived from the private-key that
may reveal secret bits to an attacker (on an unprotected implementation). This can be the
case when computing the exponent in order to compute the output of the Dodis-Yampolskiy
pseudo-random function and more generally in well-known pairing-based signatures (Sakai-
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Kasahara signatures [SK03], Boneh-Boyen signatures [BB04a] and Gentry signatures [Gen06])
based on the exponent-inversion framework. Our last contribution [MV17a] is concerned
with lattice attacks on these well-known Pairing-Based signatures and our approach is similar
to lattice attacks [HS01; NS02; NS03] combined with template attacks [MHMP13] that were
proposed against the standardized signature scheme DSA and ECDSA. We present lattice-
based polynomial-time (heuristic) algorithms that recover the signer’s secret in popular
pairing-based signatures when used to sign several messages under the assumption that
blocks of consecutive bits of the corresponding exponents are known by the attacker. Our
techniques relies upon Coppersmith’s methods and apply to all signatures in the so-called
exponent-inversion framework in the standard security model (i.e. Boneh-Boyen and Gentry
signatures) as well as in the random oracle model (i.e. Sakai-Kasahara signatures). The
efficiency of our (heuristic) attacks has been validated experimentally.

1.4. Organization
This thesis is divided in two parts. The first part deals with some complexities measures of
Naor-Reingold and Dodis-Yampolskiy Pseudo-Random Function and the second part deals
with lattice attacks on pseudo-random generators and on pairing-based signatures based
on exponent-inversion framework. The first part includes Chapters 2 , 3 and 4. Chapter
2 introduces some mathematical notions used throughout this thesis. Chapter 3 study
the polynomial interpolation of the Naor-Reingold pseudo-random functions. Chapter 4 is
about the distribution and polynomial interpolation of the Dodis-Yampolskiy pseudo-random
function. The second part includes Chapters 5, 6 and 7. Chapter 5 provides short descriptions
of Coppersmith’s methods and some analytic combinatorics to ease the methods. Chapter 6
presents the attacks on the linear congruential generator and the power generator on elliptic
curves and Chapter 7 deals with lattice attacks on some pairing-based signatures. Finally,
Chapter 8 concludes this thesis and raises some open questions.
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Chapter 2.
Preliminaries
In this Chapter, we introduce the notation used throughout this manuscript. We recall some
results on finite fields and elliptic curves that we use in Chapters 3 and 4. We also provide
explicit upper-bounds for exponential sums with consecutive modular roots over a finite field
and for analogous exponential sums over elliptic curves. These bounds will help us to study
the distribution of the Dodis-Yampolskiy pseudo-random function in Chapter 4. We conclude
this Chapter by recalling some known lower bounds on the polynomial interpolation on the
discrete logarithm modulo a prime number p since the techniques will help us study the
polynomial interpolation of the pseudo-random functions we consider in Chapters 3 and 4.
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2.1. Notation

In this section, we recall the general notations that we use throughout this thesis. We denote
by Z the set of integers and by N the set of non-negative integers. If z is a positive real
number, log z denotes its binary logarithm and |z| its absolute value. If X,Y are two real
numbers, X = O(Y ) and X � Y denote that |X| ≤ cY , where c is a positive constant. If S
is a finite set, |S| or ]S denotes its size. Fq denotes a finite field of q elements and if q is a
prime number, then the elements of Fq are identified with the set of integers {0, · · · , q − 1}.
F∗q denotes the multiplicative group of Fq that is the set of the invertible elements of Fq which
is of size q − 1. If Fq is a finite field, Fq denotes the algebraic closure of Fq. For a positive
integer m ≥ 2 , (Zm,+, ·) or Zm denotes the ring of integers modulo m which can be identified
with the set of integers {0, . . . ,m− 1} and by Z∗m the set of the invertible elements of Zm
which consists of integers k ∈ Zm, with gcd(k,m) = 1. If R is a ring, then R[X1, . . . , Xn]
denotes the ring of multivariate polynomials with n indeterminates with coefficients in R.
When n = 1, R[X] denotes the ring of univariate polynomials with coefficients in R. If
f ∈ R[X1, . . . , Xn], then w(f) denotes its weight (or sparsity) that is the number of its
non-zero coefficients and deg(f) its degree.
For a real z, we use the notation e(z) = exp(2πiz) and em(z) = exp(2πiz/m)

2.2. Finite fields

In this section, we collect some statements about finite fields that we will need throughout
this thesis. The following lemma gives a lower bound of the weight of a univariate polynomial
and we will need it in the next two chapters.

Lemma 2.2.1 ([LW02]). Let γ ∈ Fp be an element of order ` and F (X) ∈ Fp[X] be a non-
zero polynomial of degree at most `− 1 with at least b zeros of the form γx with 0 ≤ x ≤ `− 1.
The weight of F (X) satisfies

w(F ) ≥ `

`− b

We will use the two following lemmas (see [KW04]) in Chapter 3 where Lemma 2.2.3 is a
generalization of Lemma 2.2.1.

Lemma 2.2.2. Let D be an integral domain, n ∈ N and f ∈ D[X1, . . . , Xn] a polynomial of
total degree d with at least N zeros in Sn. If f is not the zero polynomial, then we have

d ≥ N

|S|n−1 .

Lemma 2.2.3. Let γ ∈ Fq be an element of order d, G the group generated by γ, n a positive
integer, and f ∈ Fq[X1, . . . , Xn] be a nonzero polynomial of local degree at most d− 1 in each
variable with at least N zeros in Gn. Then for the weight w(f) of f , we have :

w(f) ≥ dn

dn −N .
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2.3. Elliptic Curves
In this section, we collect some results on elliptic curves. Later we will consider the settings
where the pseudo-random functions in Chapters 3 and 4 are defined over an elliptic curve
over a prime finite field and a pseudorandom number generator defined over an elliptic curve
in Chapter 6.

2.3.1. Definition and addition law
Let p > 3 be an odd prime number, an elliptic curve E defined over Fp (for more details on
elliptic curves, see [BSS99; Was08]) is a rational curve given by the following Weierstrass
equation

y2 = x3 +Ax+B, A,B ∈ Fp, 4A3 + 27B2 6= 0.

The set E(Fp) of the points of the curve defined over Fp (including the special point O at
infinity) has a group structure (denoted additively ) with an appropriate composition rule
⊕ where O is the neutral element. Let E/Fp : y2 = x3 + ax + b be an elliptic curve over
Fp. For two points P = (xP , yP ) and Q = (xQ, yQ), with P,Q 6= O, the point R = P ⊕Q is
geometrically obtained as follows:

• Draw the line L through P and Q or (the tangent to the curve E at P if P = Q)

• L intersects E in a third point R′

• Reflect R′ across the x-axis to obtain R.
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Figure 2.1.: Adding two points on an elliptic curve over R

The formulas for xR and yR with P ⊕Q = R = (xR, yR) are given as follows:
• If xP 6= xQ, then

xR = m2 − xP − xQ, yR = m(xP − xR)− yP , where m = yQ − yP
xQ − xP

(2.1)

• If xP = xQ but yP 6= yQ, then R = O

• If P = Q and yP 6= 0, then

xR = m2 − 2xP , yR = m(xP − xR)− yP , where m =
3x2

Q + a

2yP
• If P = Q and yP = 0, then R = O.
Given a P point of a curve E with prime order ` (with ` | | E(Fp)|), we denote [r]P the

scalar multiplication, i.e. the adding of the point P to itself r times:
[r]P = P ⊕ · · · ⊕ P︸ ︷︷ ︸

r times

(and [r]P = −([−r]P ) for r ≤ 0).

2.3.2. Division polynomials of elliptic curves
We recall some basic facts on division polynomials of elliptic curves (see [Was08], Section
3.2). They provide a way to calculate multiples of points on elliptic curves. The division
polynomials ψm(X,Y ) ∈ Fp[X,Y ]/(Y 2 −X3 −AX −B), m ≥ 0, are recursively defined by:

ψ0 = 0
ψ1 = 1
ψ2 = 2Y
ψ3 = 3X4 + 6AX2 + 12BX −A2

ψ4 = 4Y (X6 + 5AX4 + 20BX3 − 5A2X2 − 4ABX − 8B2 −A3)
ψ2m+1 = ψm + 2ψ3

m − ψm−1ψ
3
m+1 , m ≥ 2

ψ2m = ψm(ψm+2ψ
2
m−1 − ψm−2ψ

2
m+1)/ψ2 , m ≥ 3,
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where ψm is an abbreviation for ψm(X,Y ). If m is odd, then ψm(X,Y ) ∈ Fp[X] is univariate
and if m is even then ψm(X,Y ) ∈ ψ2(X,Y )Fp[X] = 2Y Fp[X]. Therefore, as ψ2

2(X,Y ) =
4(X3 + AX + B), we have ψ2

m(X,Y ) ∈ Fp[X] and ψm−1(X,Y )ψm+1(X,Y ) ∈ Fp[X]. In
particular, we may write ψ2m+1(X) and ψ2

m(X).
As mentioned above, the division polynomials can be used to calculate multiples of a point

on the elliptic curve E. Let P = (x, y) ∈ E with P 6= O, then the coordinates of [m]P if
[m]P 6= O are given by

[m]P =
(
θm(x)
ψ2
m(x) ,

ωm(x, y)
ψ3
m(x, y)

)
,

where θm(X) = Xψ2
m − ψm−1ψm+1 and ωm(X,Y ) = (4Y )−1(ψm+2ψ2

m−1 − ψm−2ψ2
m+1). The

zeros of the denominator ψ2
m(X) are exactly the first coordinates of the non-trivial m-torsion

points, i.e, the points Q = (x, y) ∈ Fp
2 \ {O} on E with [m]Q = O. Note, that these points

occur in pairs Q = (x, y) and −Q = (x,−y), which coincide only if 2Q = O, i.e, if x is a zero
of ψ2

2(X).
We recall that the group of m-torsion points E[m], for an elliptic curve E defined over

a field of characteristic p, is isomorphic to (Z/mZ)2 if p - m and to a proper subgroup of
(Z/mZ)2 if p | m. If m is a power of p then E[m] is either isomorphic to (Z/mZ) or to {O}.
Accordingly, the degree of ψ2

m(X) is m2 − 1 if p | m and strictly less than m2 − 1 otherwise.
By induction one can show that θm(X) ∈ Fp[X] is monic of degree m2.

In the next two chapters, we will make use of the two following technical lemmas.

Lemma 2.3.1. Let E : y2 = x3 +Ax+B be an elliptic curve over Fp with A 6= 0 and B 6= 0.
Let F (X) ∈ Fp[X] be a non-constant polynomial with F (X) 6= X and deg(F ) < p. Then
there exists α ∈ Fp such that ψ2

2(F (α)) = 0 and ψ2
2(α) 6= 0.

Proof. There are exactly three distinct zeros α1, α2, α3 ∈ Fp of ψ2
2(X) = 4(X3 + AX +B).

For all index i ∈ {1, 2, 3}, there exists at least one βi ∈ Fp such that F (βi) = αi, because F
is not a constant polynomial. Since for all i, j ∈ {1, 2, 3}, i 6= j, we have αi 6= αj , then the
system F (X) = αi and F (X) = αj has no solution. It follows that the polynomial ψ2

2(F (X))
has at least three different zeros.
Let d < p denote the degree of F and let us suppose that there does not exist α ∈ Fp

such that ψ2
2(F (α)) = 0 and ψ2

2(α) 6= 0. Then we have that ψ2
2(F (X)) has exactly three

zeros which are the zeros of ψ2
2(X). If d = 1, putting F (X) = aX + b, we obtain that the

polynomials X3 +AX +B and a3X3 + 3a2bX2 + (3ab2 + aA)X + b3 +Ab+B have exactly
the same three zeros. We then have 3a2b = 0 and a 6= 0. Thus b = 0, and if we suppose
A 6= 0 and B 6= 0, we have a = 1 which is impossible since F (X) 6= X. If d ≥ 2, for all
i ∈ {1, 2, 3}, the equation F (X) = αi has exactly one solution γi of multiplicity d which is
one of {α1, α2, α3}. Then γ1 and γ2 are the zeros of the (d−1)-derivative of F (X) which is of
degree 1 and this is impossible because γ1 6= γ2. Hence in all cases, we obtain a contradiction.
So there exists α ∈ Fp such that: ψ2

2(F (α)) = 0 and ψ2
2(α) 6= 0.

Lemma 2.3.2. Let E : y2 = x3 +Ax+B be an elliptic curve over Fp. Let k = 2i for i > 0
an integer. Let F (X) ∈ Fp[X] be a non-constant polynomial with deg(F ) ≥ 2. Then there
exists α ∈ Fp such that ψ2

k(F (α)) = 0 and ψ2
k(α) 6= 0.

Proof. The univariate polynomial ψ2
k(X) has at least k2/2 distinct zeros because p - k. For

all α such that ψ2
k(α) = 0, there exists at least one β ∈ Fp such that F (β) = α and two such
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roots β (corresponding to two different α) are different. Let us suppose that there does not
exist α ∈ Fp such that ψ2

k(F (α)) = 0 and ψ2
k(α) 6= 0. Since deg(F ) ≥ 2, it follows that the

equation F (X) = α, for some α zero of ψ2
k(X) has at least two different solutions using the

ideas of the later proof. Thus we obtain a contradiction and the desired result follows.

2.3.3. Summation polynomials
Index calculus algorithm [Adl79] is used to solve the discrete logarithm problem (DLP) over
finite fields in sub-exponential time. For the elliptic curve discrete logarithm problem (EC-
DLP), only exponential time algorithms were known to solve the problem. The idea of using
index calculus to solve the EC-DLP was proposed by Semaev [Sem04] and Gaudry [Gau09].
They proposed to decompose points by computing the zeroes of summation polynomials
(which were first introduced in 2004 by Semaev [Sem04]). For some curves over extension finite
fields, Gröbner basis were used to compute zeroes of such polynomials or their generalizations
and sub-exponential algorithms solving the EC-DLP were obtained (see [Gau09; Die11;
JV12; FPPR12]). For elliptic curves over prime fields or binary fields of prime extension
degree, [Sem15] proposed improved algorithms solving the EC-DLP which compute the
zeroes of summation polynomials by solving a system of boolean equations. In this thesis,
we use summation polynomials in another context, namely to infer the elliptic curve linear
congruential generator in Chapter 6. Below, we recall the summation polynomials (see
[Sem04] for details and proofs). Let E : y2 = x3 +ax+ b be an elliptic curve over a finite field
Fq (where q is a power of a prime number p 6= 2, 3). For n ∈ N, n ≥ 2, the nth summation
polynomial fn(X1, X2, . . . , Xn) ∈ Fq[X1, . . . , Xn] for E which is related to the arithmetic
operation on E has the following property:
fn(x1, . . . , xn) = 0, xi ∈ Fq if and only if (there exists y1, . . . , yn ∈ Fq such that
(x1, y1), . . . , (xn, yn) ∈ E and (x1, y1)⊕ · · · ⊕ (xn, yn) = O), where O is the point at infinity.

Lemma 2.3.3 ([Sem04]). Let E : y2 = x3 + ax+ b be an elliptic curve over a finite field Fq
(where q is a power of a prime number p 6= 2, 3)). The summation polynomials for E are
given as follows:

f2(X1, X2) = X1 −X2
f3(X1, X2, X3) = (X1 −X2)2X2

3 − 2 ((X1 +X2)(X1X2 + a) + 2b)X3+
(X1X2 − a)2 − 4b(X1 +X2)

fn(X1, . . . , Xn) = ResX(fn−k(X1, . . . , Xn−k−1, X), fk+2(Xn−k, . . . , Xn, X)), n ≥ 4

where the last equality holds for any constant k with 1 ≤ k ≤ n− 3. The nth summation
polynomial fn is an irreducible symmetric polynomial of degree 2n−2 in each variable Xi for
any n ≥ 2.

2.4. Exponential Sums
In this section, we collect some statements about exponential sums over finite fields and elliptic
curves that we use to study he distribution of the Dodis-Yampolskiy pseudo-random function
in Chapter 4. We provide explicit upper bounds for exponential sums with consecutive
modular roots over a finite field and for analogous exponential sums over elliptic curves
[Shp09a; OS11]. The bound for exponential sums with consecutive modular roots over a
general finite field is easily derived from [Shp09a] and may be of independent interest.
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2.4.1. Finite Fields and Exponential Sums
Let p be an odd prime number, r ≥ 1 an integer. Let g ∈ F∗pr of order t, and ψ be a non-trivial
character of Fpr . For a ∈ F∗pr and b ∈ Zt, we define the sum:

Sa,b =
∑
n∈Z∗t

ψ(ag1/n)et(bn).

In the following lemmas, the implied constants in the symbols "�" may occasionally depend
on the integer parameters k, ` but are absolute otherwise.
In [BS08] Bourgain and Shparlinski proved, when r = 1, that for any ε > 0, there exists

δ > 0 such that for t ≥ pε, we have the bound Sa,b � t1−δ. Shparlinski [Shp09a](Theorem
3.1) gave an explicit form of this result (again when r = 1) for relatively large values of t; in
the case t = p1+o(1), it takes the form Sa,b � t127/128+o(1). Using Shparlinski’s methods, we
generalize this bound on Sa,b for any r ≥ 1.
Proposition 2.4.1. For any integers k ≥ 2, ` ≥ 1 we have for t ≥ q1/2(log q)2:

Sa,b ≤ t1−αk,`qβk,`+o(1),

where αk,` = 1
2(2k+`) − 1

4k` and βk,` = 1
4(2k+`) .

The proof follows the one of [Shp09a]). In the proof of the Proposition 2.4.1, we use the
two following lemmas.

Lemma 2.4.2 is the classical Weil bound for exponential sums which can be found in [Wei48;
NW01].
Lemma 2.4.2. Let F (x) be a non constant polynomial in Fq[x] such that F (x) 6= h(x)p−h(x)
for any h(x) ∈ Fq(x), where q is a power of p. We have∣∣∣∣∣∣

∑
x∈Fq

ψ(F (x))

∣∣∣∣∣∣ ≤ (deg(F )− 1)q1/2

We then deduce the following simple lemma:
Lemma 2.4.3. For any pairwise distinct positive integers 1 ≤ r1, . . . , rυ ≤ R, we have

max
(a1,...,aυ)∈Fυ

pr

(a1,...,aυ)6=(0,...,0)

∣∣∣∣∣
t∑

n=1
ψ

(
υ∑
i=1

aig
rin

)∣∣∣∣∣ ≤ Rq1/2.

Proof. Let s = (q − 1)/t. We have g = θs, where θ is a primitive root in Fq and
t∑

n=1
ψ

(
υ∑
i=1

aig
rin

)
=

t∑
n=1

ψ

(
υ∑
i=1

aiθ
srin

)
= 1

s

q−1∑
n=1

ψ

(
υ∑
i=1

aiθ
srin

)

= 1
s

∑
x∈Fq

ψ

(
υ∑
i=1

aix
sri

)
− 1


Applying Lemma 2.4.2 with the polynomial F (x) = ∑υ

i=1 aix
sri , we obtain :

max
(a1,...,aυ)∈Fυ

pr

(a1,...,aυ)6=(0,...,0)

∣∣∣∣∣
t∑

n=1
ψ

(
υ∑
i=1

aig
rin

)∣∣∣∣∣ ≤ 1
s

((Rs− 1)q1/2 + 1) ≤ Rq1/2.



24 Chapter 2. Preliminaries

Now we are ready to prove Proposition 2.4.1.

Proof. For any integer k ≥ 2, we have

Sa,b
k =

∑
n1,...,nk∈Z∗t

ψ

a k∑
j=1

g1/nj

 et
b k∑

j=1
nj

 .
For m ∈ Zt, we collect together the terms with n1 + · · ·+ nk ≡ m mod t, getting:

|Sa,b|k ≤
∑
m∈Zt

∣∣∣∣∣∣∣∣∣
∑

n1,...,nk∈Z∗t
n1+···+nk≡m mod t

ψ

a k∑
j=1

g1/nj


∣∣∣∣∣∣∣∣∣ .

By the Cauchy inequality, we can upper-bound |Sa,b|2k by

t
∑
m∈Zt

∣∣∣∣∣∣∣∣∣
∑

n1,...,nk∈Z∗t
n1+···+nk≡m mod t

ψ

a k∑
j=1

g1/nj


∣∣∣∣∣∣∣∣∣
2

= t
∑

(n1,...,n2k)∈Nk

ψ

a 2k∑
j=1

(−1)jg1/nj



where the outside summation is taken over the set of vectors

Nk = {(n1, . . . , n2k) ∈ (Z∗t )2k : n1 + · · ·+ n2k−1 ≡ n2 + n4 + · · ·+ n2k mod t)}.

One can see that for any m ∈ N with gcd(m, t) = 1, we have

∑
(n1,...,n2k)∈Nk

ψ

a 2k∑
j=1

(−1)jg1/nj

 =
∑

(n1,...,n2k)∈Nk

ψ

a 2k∑
j=1

(−1)jgm/nj
 .

Let us fix some parameter Q with Q ≥ 2 log t. Let Q be the set of primes m ≤ Q with
gcd(m, t) = 1. Averaging over all m ∈ Q, we obtain

|Sa,b|2k ≤
t

]Q
∑
m∈Q

∑
(n1,...,n2k)∈Nk

ψ

a 2k∑
j=1

(−1)jgm/nj
 .

The number w(t) of prime divisors of t satisfies w(t) ≤ (1 + o(1))(log t)/(log log t) (which can
be seen from the trivial inequality w(t)! ≤ t and the Stirling formula). By the prime number
theorem, we have (since Q ≥ 2 log t):

]Q ≥ (1 + o(1)) Q

logQ − (1 + o(1)) log t
log(log t) ≥ 0.5 Q

logQ,

provided that t is large enough. We have ]Nk ≤ t2k−1. Using the Hölder inequality and then
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extending the region of summation, we obtain that for any integer ` ≥ 1:

|Sa,b|4k` ≤ t2`

]Q2` (]Nk)2`−1 ∑
n1,...,n2k∈Z∗t

∣∣∣∣∣∣
∑
m∈Q

ψ

a 2k∑
j=1

(−1)jgm/nj
∣∣∣∣∣∣

2`

� t4k`−2k+1 log2`Q

Q2`

t∑
n1,...,n2k=1

∣∣∣∣∣∣
∑
m∈Q

ψ

a 2k∑
j=1

(−1)jgmnj
∣∣∣∣∣∣

2`

= t4k`−2k+1 log2`Q

Q2l

t∑
n1,...,n2k=1

∑
m1,...,m2`∈Q

ψ

a 2k∑
j=1

2∑̀
h=1

(−1)j+hgmhnj


= t4k`−2k+1 log2`Q

Q2`
∑

m1,...,m2`∈Q

∣∣∣∣∣
t∑

n=1
ψ

(
a

2∑̀
h=1

(−1)hgmhn
)∣∣∣∣∣

2k

.

For O(]Q`)=O(Q` log−`Q) tuples (m1, . . . ,m2`) ∈ Q2` such that the tuple of the elements
on the odd positions (m1, . . . ,m2`−1) is a permutation of the elements on the even positions
(m2, . . . ,m2`), we estimate the inner sum trivially as t.
For the remaining O((]Q)2`) = O(Q2`(logQ)−2`) tuples, we use the bound of Lemma 2.4.3.
Therefore,

|Sa,b|4k` �
t4k`−2k+1 log2`Q

Q2l (Q` log−`Qt2k +Q2` log−2`Q(Qq1/2)2k)

= t4k`−2k+1(Q−` log`Qt2k +Q2kqk).

Taking Q = 2t2k/(2k+`)q−k/(2k+`)(log q)`/(2k+`) and if t ≥ q1/2(log q)2, one can see that
Q ≥ 2 log t and we obtain

|Sa,b|4k` � t4k`−(2k`−2k−`)/(2k+`)qk`/(2k+`)(log q)`/(2k+`)

and the result follows.

2.4.2. Elliptic Curves and Exponential Sums

Let E be an elliptic curve and P ∈ E(Fp) be a point of order t ≥ 1. For a ∈ F∗p and b ∈ Zt,
we define the following exponential sum which is an analogous of the sum Sa,b over an elliptic
curve:

Ŝa,b =
∑
n∈Z∗t

ep

(
aX

([ 1
n

]
P

))
et(bn),

where X(P ) denotes the abscissa of the point P .
In [OS11, Theorem 6], Ostafe and Shparlinski obtained an upper-bound on Ŝa,b (with

H(X) = X−1 following the notation from [OS11]):

Proposition 2.4.4 ([OS11]). For any integers k ≥ 2, ` ≥ 1 we have for t ≥ q1/2(log q)2:

Ŝa,b ≤ t1−αk,`pβk,`+o(1),

where αk,` = 1
2(4k+`) − 1

4k` and βk,` = 1
4(4k+`) .
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In the proof, we need the following lemma which is a special case of the bound of Bombieri
see [Bom66]:

Lemma 2.4.5. Let s ≥ 1 be an integer. For any integers 1 ≤ u1 < · · · < us ≤ U and
elements c1, . . . , cs ∈ Fp with cs 6= 0, the following bound holds:

∑
R∈H,R 6=O

ep

(
s∑
i=1

ciX(uiR)
)
� U2p1/2

where H is a subgroup of E(Fp) of order t such that gcd(t, u1, . . . , us) = 1.

Next we then prove Proposition 2.4.4.

Proof. Following the same path as in the finite fields case by replacing the multiplicative law
by an additive one and applying the Lemma 2.4.5 rather than Lemma 2.4.3, we obtain:

|Sa,b|4k` � t4k`−2k+1(Q−` log`Qt2k +Q4kpk).

Taking
Q = 2t2k/(4k+`)p−k/(4k`+`)(log p)`/(4k+`),

we obtain ∣∣∣Ŝa,b∣∣∣4k` � t4k`−2k+1+8k2/(4k+`)pk`/(4k+`)(log p)4k`/(4k+`)

and the result follows.

2.5. Polynomial Approximation of the Discrete Logarithm
In Chapters 3 and 4, we study the polynomial interpolation and we use the same techniques
as in the polynomial approximation of the discrete logarithm problem. In this section, we
recall some known lower bounds on the degree and weight of polynomial interpolating the
discrete logarithm modulo a prime number p due to Coppersmith and Shparlinski (see [CS00]
for details). The technique works as follows: from the initial polynomial, one constructs
a non zero polynomial having a certain number of roots and whose lower bounds on its
degree or weight (which can be obtained from some known lemmas) allow us to obtain lower
bounds on the degree or weight of the initial polynomial . Let us fix a primitive root g
modulo a prime number p ≥ 3. For an integer x such that gcd(x, p) = 1, we denote by ind x
its discrete logarithm, that is, the smallest non-negative integer u with gu = x mod p. In
public-key cryptography, the discrete logarithm problem is considered as a hard problem
and to break this problem modulo p, it would be sufficient to have a univariate polynomial
f polynomial over Fp of low degree which computes the discrete logarithm for almost all
elements in {1, . . . , p − 1}, that is, f(x) = ind x mod p, for x ∈ S ⊆ {1, . . . , p − 1} of the
same size as p. It has been shown in [MD86] that the polynomial

f(x) = −1 +
p−2∑
k=1

(g−k − 1)−1xk mod p

is the unique interpolation polynomial of the discrete logarithm modulo p for S = {1, . . . , p−1}.
Noting that any function over Fp can be approximated at p− 1 points by a polynomial of
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degree at most p− 2, this polynomial is actually of the largest possible degree and is dense
(namely it contains p− 1 monomials). The two following results (see [CS00]) show that a
low degree and low weight univariate polynomial cannot interpolate the discrete logarithm
for sufficiently large sets S. These results do not guarantee the hardness of the discrete
logarithm problem but they can be considered as a good indication that this problem is
indeed a computationally hard problem.

Theorem 2.5.1. Let f(X) ∈ Z[X] be a polynomial of degree n = deg(f) ≤ p − 2 and of
weight t = w(f) such that

ind x = f(x) mod p, x ∈ S,
for a set S ⊆ {1, . . . , p− 1} of cardinality |S| = p− 1− s. Then

deg(f) ≥ p− 2− 2s, w(f) ≥ (p− 1)/(2s+ 1)− 1.

Proof. Let R be the set of x ∈ {1, . . . , p− 1} for which both

ind x = f(x) mod p and ind gx = f(gx) mod p.

We have |R| ≥ p − 1 − 2(p − 1 − |S|) = p − 1 − 2s. Indeed for x ∈ {1, . . . , p − 1}, x /∈ R if
and only if (x /∈ S or gx /∈ S ). So there are at most 2s elements x ∈ {1, . . . , p− 1} such that
x /∈ R and thus |R| ≥ p− 1− 2s. We have ind gx = 1 + ind x if x 6= gp−2 mod p. Hence

f(gx) = 1 + f(x) mod p,

for x ∈ R with x 6= gp−2 mod p. Therefore the polynomial h(X) = f(gX) − f(X) − 1 has
at least |R| − 1 zeros modulo p and is not identical to zero modulo p (since h(0) = −1).
Thus n ≥ deg(h) ≥ |R| − 1. Also if f contains t monomials, then h contains at most t+ 1
monomials. Applying Lemma 2.2.1, we see that p− 1− (|R| − 1) ≥ (p− 1)/(t+ 1) and the
desired result follows.

In particular, if s = o(p), then deg(f), w(f) ∼ p. Theorem 2.5.1 is non trivial if the set S
is dense enough (|S| > p/2). The next result is applicable to quite sparse sets S beginning
with |S| > (2p)1/2.

Theorem 2.5.2. Let f(X) ∈ Z[X] be a polynomial of degree n = deg(f) ≤ p− 2 such that

ind x = f(x) mod p, x ∈ S,

for a set S ⊆ {1, . . . , p− 1}. Then

deg(f) ≥ |S|(|S| − 1)
2(p− 2) .

Proof. Let us consider the set

D = {a = yx−1 mod p, 2 ≤ a ≤ p− 1, x, y ∈ S}.

Then |D| ≤ p − 2. There is a ∈ D such that there are at least |S|(|S|−1)
|D| representations

a = yx−1 mod p, x, y ∈ S; Select this a and let R be the set of x ∈ {1, . . . , p− 1} for which
both

ind x = f(x) mod p and ind ax = f(ax) mod p.
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Thus |R| ≥ |S|(|S|−1)
2(p−2) . Indeed for each representation a = yx−1 mod p, we get a pair x

and y = ax mod p of elements of S. We also have ind ax = ind x + ind a or ind ax =
ind x+ ind a− p+ 1. Hence either

f(ax) = ind ax = ind x+ ind a = f(x) + ind a mod p

or
f(ax) = ind ax = ind x+ ind a− p+ 1 = f(x) + ind a+ 1 mod p mod p

for x ∈ R. Therefore at least one of the polynomials h1(X) = f(aX) − f(X) − ind a and
h2(X) = f(aX)− f(X)− ind a− 1 has at least |R|/2 zeros modulo p. Because of our choice
of D neither of these polynomials is identical to zero modulo p. Indeed,

h1(0) = −ind a− 1 6= 0 mod p

since a 6= 1, and
h2(0) = −ind a 6= 0 mod p

since 0 ≤ ind a ≤ p− 2. Thus n ≥ |R|/2 and the desired result follows.

The polynomial interpolation is a question which is well studied in general for cryptographic
hard functions. For instance, lower bounds on the degree or weight of polynomials interpolating
the discrete logarithm problem imply some lower bounds on the “sequential arithmetic
complexity of the discrete logarithm in the computational tree model and in the random
access machine model over real numbers” and lower bounds on the degree or weight of
polynomials interpolating the Computational Diffie-Hellman assumption or the Decision
Diffie-Hellman assumption have been obtained as well (see [MS01; Win01; KW04; Shp03]
and references therein).



Chapter 3.
Polynomial Interpolation of the
Naor-Reingold Pseudo-Random
Functions

Many efficient public key cryptographic protocols are constructed using some assumptions
which are believed to be hard, for instance the Computational Diffie-Hellman assumption
or the Decision Diffie-Hellman assumption. In 1997, based on the Decision Diffie-Hellman
assumption, Naor and Reingold [NR97; NR04] proposed an efficient pseudo-random function
family. Since proving that the Decision Diffie-Hellman assumption holds seems currently
to be out of reach, several number-theoretic properties and complexity measures have been
studied for the Naor-Reingold pseudo-random functions over finite fields as well as over
elliptic curves: distribution (see [LSW14; Shp00b] and references therein), linear complexity
(see [CGS10; GGI11; Shp00a; SS01]) and non-linear complexity (see [BGLS00]). These
results are incomparable but they all support the assumption of the pseudo-randomness of
the Naor-Reingold function. In order to break the security of the Naor-Reingold function,
it would be sufficient to have a k-variate polynomial f over a finite field (of low degree
or low weight) with k ≥ 1 which reveals information on the functions values that is a
k-variate polynomial f satisfying: (f(gax

1
, . . . , gax

k

) = gax
k+1

, for all a = (a1, . . . , an) ∈ S
for a large subset S ⊆ (F∗`)n, and for some known values x1, . . . , xk+1 ∈ {0, · · · , 2n − 1}) or
(f(gax , gax+t1 , . . . , gax+tk−1 ) = gax+tk for many integers x ∈ {0, 1, . . . , 2n − 1}, and for some
known values t1, . . . , tk and for some known secret key a), where for x ∈ {0, 1, . . . , 2n − 1}
ax is defined in the next section. We refer the first case to the polynomial interpolation with
variable secret key and the second case to the polynomial interpolation with fixed secret key.
We prove that a low weight or degree k-variate polynomial cannot reveal information on the
functions values. We consider the settings of a finite field and an elliptic curve and in both
cases, we obtain lower bounds on the degree of polynomials interpolating the Naor-Reingold
function with a fixed secret key and variable secret key. This Chapter is organized as follows:
we first recall the Naor-Reingold pseudo-random function and some known results that
we need in the rest of the Chapter. Then we study the polynomial interpolation of the
Naor-Reingold function defined over a finite field with fixed secret key and variable secret key.
We conclude this Chapter by the polynomial interpolation of the Naor-Reingold function
defined over an elliptic curve with fixed secret key and variable secret key.

— 29 —
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3.1. Naor-Reingold pseudo-random function
In cryptography, a pseudo-random function family is a collection of functions (that can be
evaluated efficiently using a secret-key) with the property that an adversary cannot efficiently
observe any significant difference between the input-output behavior of a random instance of
the family or that of a random function.

More formally, we consider collections of functions {Fn : Kn ×Dn → Rn}n∈N that can be
evaluated by a (deterministic) polynomial-time Turing Machine. We define an adversary as a
(non-uniform) probabilistic polynomial-time oracle Turing machine with either access to:

• an oracle implementing a function F : Dn → Rn defined by picking uniformly at random
a secret-key k ∈ Kn such that F (m) = Fn(k,m) for any m ∈ Dn;

• or an oracle simulating a truly random function F : Dn → Rn (i.e. whose outputs are
sampled uniformly and independently at random).

This adversary can decide which queries to make to the oracle, perhaps based on answers
received to previous queries and eventually, it outputs a single bit (which is its decision as to
which function the oracle is implementing). The advantage of the adversary is the function
of n defined as the difference of the probabilities (taken over the random choices made by
the adversary and the oracle) that the adversary outputs 1 in the two cases. A collection
of functions {Fn : Kn ×Dn → Rn}n∈N is a pseudo-random function family if and only if no
adversary with advantage asymptotically larger than the inverse of a polynomial exists.

In 1997, Naor and Reingold [NR97; NR04] proposed a (candidate) pseudo-random function
family which takes inputs in {0, 1}n (for some parameter n) and outputs an element in some
(multiplicatively written) group G of prime order ` with generator g. The secret key is an
n-dimensional vector a = (a1, . . . , an) ∈ (Z∗` )n and the Naor-Reingold function is defined as:

fa : {0, 1}n −→ G
(x1, . . . , xn) 7−→ fa(x1, . . . , xn) = g

∏n

i=1 a
xi
i mod `

The evaluation of fa is thus efficient1 since it consists only in n modular multiplications in
Z` and one modular exponentiation in G. To lighten the notation, given an n-dimensional
vector a = (a1, . . . , an) ∈ (Z∗`)n and a variable x that will denote indifferently an n-bit
string (x1, . . . , xn) ∈ {0, 1}n or an integer x ∈ {0, 1, . . . , 2n − 1} (which implicitly defines
(x1, . . . , xn) ∈ {0, 1}n the bit representation of x with extra leading zeros if necessary),
we denote ax the element in Z` defined by ax = ax1

1 · · · axnn mod `. With this notation,
the Naor-Reingold function is simply defined by fa(x) = gax . Two interesting candidates
for G are a subgroup of the multiplicative group of a finite field and a subgroup of the
points of an elliptic curve defined over a finite field. In the setting of an elliptic curve
E defined over Fp for p > 3, we also define the function f̃a(x) = [ax]P ∈ E ⊂ F2

p, for a
secret key a = (a1, . . . , an) ∈ (F∗`)n where again x will denote indifferently an n-bit string
(x1, . . . , xn) ∈ {0, 1}n or an integer x ∈ {0, 1, . . . , 2n − 1}. Because of the algebraic structure
of E, this function is not pseudo-random and the Naor-Reingold pseudo-random function
over E(Fp) is thus defined as, fa(x) = X(f̃a(x)), where X(P ) denotes the abscissa of P ∈ E.

1More efficient candidates of pseudo-random function families are known, but the Naor-Reingold function
family is among the most efficient ones with strong security guarantees under a standard computational
assumption.
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3.2. Auxiliary results
In the forthcoming sections, we also need the following lemmas from [WS99] and [GGI11]
about the distribution of products ax in F∗` to obtain concrete lower bounds on the weight
and degree of polynomials interpolating the Naor-Reingold pseudo-random function with
fixed secret key.

Lemma 3.2.1 ([WS99]). Let m ≥ 1 be an integer. For any ∆ > 0 and for all but at most
2−m∆−1(`− 1)m+2 vectors a = (a1, . . . , am) ∈ (F∗`)m, the products ax for x ∈ {0, 1}m take
at least `− 1−∆ values in F∗` .

Lemma 3.2.2 ([GGI11]). Let n ≥ j > 0 be two integers. For all but at most
(3j − 1)(` − 1)n−1/2 vectors a = (a1, . . . , an) ∈ (F∗`)n the products ax for x ∈ {0, 1}n
take at least 2j values in F∗` .

3.3. Polynomial Interpolation of the Naor-Reingold
Pseudo-Random Function over Finite Fields

In this section, we study the polynomial representation of the Naor-Reingold pseudo-random
function over finite fields. From the known lower bounds on the polynomial interpolation
on the discrete logarithm and the Diffie-Hellman Problem in the groups we considered
(e.g. [CS00; KW06; LW02; LW03a; MW08; KW04; Shp03] and references therein) and the
known result on the non-linear complexity of the Naor-Reingold pseudo-random function
(see [BGLS00]), we prove that a low weight or degree k-variate polynomial cannot reveal
information on the functions values.

3.3.1. Polynomial Interpolation with variable secret key
In this section, q is a prime power, n is an integer and g ∈ F∗q is an element of prime order
` (with ` | q − 1). We prove results on the multivariate polynomial approximation of the
Generalized Diffie-Hellman and the Naor-Reingold functions over a finite field. We consider
polynomials that approximate values of these functions for fixed values in {0, · · · , 2n− 1} and
a large set of keys. First, we consider an approximation by a polynomial with k variables,
with k ≤ n.
Theorem 3.3.1. Let 1 ≤ k ≤ n be an integer. Let S ⊆ (F∗`)n, with |S| = (` − 1)n − s
with |S| > k(` − 1)n−1. Let x1, . . . , xk+1 ∈ {1, · · · , 2n − 1} be pairwise distinct and let
f ∈ Fq[X1, . . . , Xk], be a polynomial satisfying:

f

(
gax

1
, . . . , gax

k
)

= gax
k+1

, for all a = (a1, . . . , an) ∈ S. (3.1)

If the elements xi, i ∈ {1, . . . , k} seen as vectors over Fn2 are linearly independent over F2,
then:

deg(f) ≥ `− 1
2 − s

(`− 1)n−1

and if degXi(f) ≤ `−1
2 , for all i ∈ {1, . . . , k}, we have

w(f) ≥ `k/2

21/2(`k − (`− 1)k + 2s/(`− 1)n−k)1/2 .
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In particular, for s = o(`n), we have deg(f) = Ω(`) and if degXi(f) ≤ `−1
2 , for all

i ∈ {1, . . . , k}, we have w(f) = Ω(`k/2).

Proof. For any i ∈ {1, . . . , k + 1}, we denote xi = xi1 . . . x
i
n its binary representation and

put x̃i = xi1 . . . x
i
k0 . . . 0 which is obtained from xi by considering the k first positions of

its binary representation and replacing the n− k last positions by 0. We suppose without
loss of generality that the elements x̃i, i ∈ {1, . . . , k} seen as vectors over Fn2 are linearly
independent over F2.

Since |S| > k(`− 1)n−1, we have w(f) ≥ 2 by the following claim:

Claim 3.3.2. If w(f) = 1 then (3.1) holds for at most k(`− 1)n−1 keys a ∈ (F∗` )n.

Proof. If w(f) = 1, then f is a monomial and there exists (α1, . . . , αk) ∈ {0, . . . , ` − 1}k
such that α1ax

1 + · · · + αka
xk = ax

k+1 mod ` (where f is the monomial f(X1, . . . , Xk) =
Xα1

1 . . . Xαk
k ). We prove by induction on k that the number of a ∈ (F∗`)n such that α1ax

1 +
· · ·+ αka

xk = ax
k+1 does not exceed k(`− 1)n−1 .

1. For k = 0, the equation ax
k+1 = 0 has no solution and the statement is clearly true.

2. Otherwise, because xk+1 6= xk, there exists j such that the j-th component of xk+1 is
different from the j-th component of xk. Then the above equation can be written in
the form A = Baj where A and B do not depend on aj . If B 6= 0, then for any vector
(a1, · · · , aj−1, aj+1, · · · , an) ∈ (F∗`)n−1, the value of aj is defined uniquely. If B = 0,
then A = 0 and by induction, the number of (a1, · · · , aj−1, aj+1, · · · , an) ∈ (F∗`)n−1

does not exceed (k − 1)(`− 1)n−2. Therefore, the number of solutions does not exceed
(k − 1)(`− 1)n−1 + (`− 1)n−1 = k(`− 1)n−1, and the result follows.

There is some t ∈ {1, . . . , n} such that xk+1
t = 1 and let T = {i : xit = 1} ⊆ {1, . . . , k} that

we denote T = {i1, . . . , iv}, with ij < ij+1 for j ∈ {1, . . . , v − 1}. Let

W =
{

a ∈ (F∗` )n : a = (a1, . . . , an) ∈ S
and (a1, . . . , at−1, 2at, at+1, . . . , an) ∈ S

}
,

then by the union bound, |W | ≥ (` − 1)n − 2s. By the pigeonhole principle, there exists
(bk+1, . . . , bn) ∈ (F∗` )n−k such that the set

T = {(a1, . . . , ak) ∈ (F∗` )k : a′ = (a1, . . . , ak, bk+1, . . . , bn) ∈W}

satisfies |T | ≥ (` − 1)k − 2s/(` − 1)n−k. For all a0 = (a1, . . . , ak) ∈ T , putting a′ =
(a1, . . . , ak, bk+1, . . . , bn), we have:

f

(
ga′x1

, . . . , ga′xk
)

= ga′xk+1

f

(
ga′x1

, . . . , ga′xi1−1
, g2a′xi1

, ga′xi1+1
, . . . , gax

iv−1
, g2ax

iv

, gax
iv+1

, . . . , gax
n
)

= g2a′xk+1

Since the elements x̃i, i ∈ {1, . . . , k} seen as vectors over Fn2 are linearly independent over F2,
one can verify that the set{(

ga′x1
, . . . , ga′xk

)
∈ (F∗q)k : a′ = (a0, bk+1, . . . , bn) ∈W, anda0 ∈ T

}
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is of the same cardinality as T . Hence the polynomial

F (X1, . . . , Xk) = f(X1, . . . , X
2
i1 , . . . , . . . , X

2
iv , . . . , Xk)− f2(X1, . . . , Xk)

has at least |T | ≥ (` − 1)k − 2s/(` − 1)n−k zeros. Since w(f) ≥ 2, one can see that F is a
nonzero polynomial and degF ≤ 2 deg f . By Lemma 2.2.2, we obtain:

deg(f) ≥ `− 1
2 − s

(`− 1)n−1 .

Furthermore if degXi(f) ≤ `−1
2 , for all i ∈ {1, . . . , n}, and since w(F ) ≤ 2w(f)2, then by

applying Lemma 2.2.3 we have:

w(f) ≥ `k/2

21/2(`k − (`− 1)k + 2s/(`− 1)n−k)1/2 .

Now we consider an approximation by a polynomial with k variables and k > n with some
technical conditions on the input values xi ∈ {0, · · · , 2n − 1} for i ∈ {1, . . . , k}.

Theorem 3.3.3. Let k > n be some integer. Let S ⊆ (F∗`)n, with |S| = (` − 1)n − s.
Let x1, . . . , xk+1 ∈ {0, · · · , 2n − 1} be pairwise distinct such that x1 = 2n−1 = (1, 0, . . . , 0),
xk+1

1 = 1 and xi1 = 0 for i ∈ {2, . . . , k} and let f ∈ Fq[X1, . . . , Xk], with k > n be a polynomial
satisfying:

f

(
gax

1
, . . . , gax

k
)

= gax
k+1

, for all a = (a1, . . . , an) ∈ S.

We have
deg(f) ≥ `− 1

2 − s

(`− 1)n−1 .

Proof. LetW be the set of vectors a ∈ (F∗` )n such that a = (a1, . . . , an) ∈ S, (a1+1, . . . , an) ∈
S and a′ = (1, a2, . . . , an) satisfies a′xk+1 6= α mod ` for all α ∈ {1, . . . , d}, where d denotes
the degree of f .

Claim 3.3.4. We have

|W | ≥ (`− 1)n − 2s− deg(f)(`− 1)n−1.

Proof. Let α ∈ {1, . . . , d}, the number of a ∈ (F∗`)n such that a′xk+1 = α mod ` does not
exceed (`− 1)n−1.
Indeed, since xk 6= x1, there exists j ∈ {2, . . . , n} such that xk+1

j = 1, then for any vector
(a1, . . . , aj−1, aj+1, · · · , an) ∈ (F∗`)n−1, the value of aj is defined uniquely by this equation.
Since the number of vectors a = (a1, . . . , an) ∈ S such that (a1 + 1, . . . , an) /∈ S does not
exceed s, the result follows.

By the pigeonhole principle, there exists b = (1, b2, . . . , bn) ∈ (F∗` )n such that the set

T = {a1 ∈ F` : a = (a1, b2, . . . , bn) ∈W}

satisfies |T | ≥ `− 1− deg(f)− 2s
(`−1)n−1 . Then for all a1 ∈ T , putting a = (a1, b2, . . . , bn), we

have:
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
f

(
ga1 , gbx

2
. . . , gbx

k
)

= gax
k+1

f

(
ga1+1, gbx

2
, . . . , gbx

k
)

= g(a1+1,b2,...,bn)xk+1
= gbx

k+1
.gax

k+1

We have for all a1 ∈ T

f

(
g.ga1 , gbx

2
, . . . , gbx

k
)
− gbx

k+1
f

(
ga1 , gbx

2
. . . , gbx

k
)

= 0 (3.2)

and the polynomial

F (X) = f

(
gX, gbx

2
, . . . , gbx

k
)
− gbx

k+1
f

(
X, gbx

2
. . . , gbx

k
)

has at least `− 1− deg(f)− 2s
(`−1)n−1 zeros.

The polynomial f(X, gbx
2
, . . . , gbx

k

) is a nonzero polynomial by the first equation of the
previous system and has degree smaller than deg(f). Let d0 its degree, then bx

k+1 6= d0
mod ` by construction of W and it follows that the leading monomial of F is nonzero which
implies that the polynomial F is nonzero. We also have deg(F ) ≤ deg(f) and hence, by
Lemma 2.2.2, we obtain:

deg(f) ≥ `− 1− deg(f)− 2s
(`− 1)n−1 ,

and the result follows.

Theorem 3.3.3 can be applied to give lower bounds on the degree of interpolating polynomials
for several generalized Diffie-Hellman problems (with k > n variables) from [BCP07].

Since the weight of a polynomial is a more discerning complexity estimate, we now prove a
lower bound on the weight of an approximation by a polynomial with k variables and k > n
(and without any condition on the input values xi ∈ {0, · · · , 2n − 1} for i ∈ {1, . . . , k}).

Theorem 3.3.5. Let k > n be some integer. Let S ⊆ (F∗`)n, with |S| = (` − 1)n − s. Let
x1, . . . , xk+1 ∈ {1, · · · , 2n−1} be pairwise distinct and let f ∈ Fq[X1, . . . , Xk] be a polynomial
satisfying:

f

(
gax

1
, . . . , gax

k
)

= gax
k+1

, for all a = (a1, . . . , an) ∈ S,

for some different values x1, . . . , xk+1 ∈ {1, · · · , 2n − 1}. Then

w(f) ≥
(
`− 3− s

(`−1)n−1

2 + 2k + s
(`−1)n−1

)1/2

.

Proof. Let I = {i ∈ {1, . . . , k} : xin = 1} that we denote I = {i1, . . . , iv} with i1 < i2 <
· · · < iv. Let A = {αi = (α1

i , . . . , α
v
i ) ∈ {0, . . . ,deg(f)}v} be a set of cardinality at most w(f)

which will be given explicitly later in the proof and WA be the set of vectors a ∈ (F∗` )n such
that:

1. a = (a1, . . . , an) ∈ S
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2. a satisfies α1
ia

xi1−1 + · · ·+ αvia
xiv−1 6= ax

k+1−1 for all αi ∈ A
Claim 3.3.6. We have |WA| ≥ (`− 1)n − T0, where T0 = s+ w(f)k(`− 1)n−1.

Proof. For a fixed tuple αi ∈ A, by proceeding exactly as in the proof of Claim 1 one can prove
by induction in v that the number of a ∈ (F∗` )n such that α1

ia
xi1−1 + · · ·+αviax

iv−1 6= ax
k+1−1

does not exceed v(`− 1)n−1. Since the cardinality of A is at most w(f) and v ≤ k, we thus
have |WA| ≥ |S| − kw(f)(`− 1)n−1.

There exists by the pigeonhole principle b = (b1, . . . , bn−1, 1) ∈ (F∗` )n such that

T = {an ∈ F` : a = (b1, . . . , bn−1, an) ∈WA}

satisfies |T | ≥ `− 1− T0
(`−1)n−1 . Then for all an ∈ T , we have:

f

(
gbx

1
, . . . , gbx

i1−1
, gbx

i1 an , gbx
i1+1

, . . .

. . . , gbx
iv−1

, gbx
iv−1an , gbx

iv+1
, . . . , gbx

k
)

= gbx
k+1−1an .

Let
H(X) = f

(
gbx

1
, . . . , gbx

i1−1
, Xbx

i1−1
, gbx

i1+1
, . . .

. . . , gbx
iv−1

, Xbx
iv−1

, gbx
iv+1

, . . . , gbx
k
)
−Xbx

k+1−1

and K(X) the polynomial obtained from H(X) by reducing the exponents of every monomial
modulo `. If we choose A to be the set of vectors obtained from the multivariate polynomial
f by considering the monomials with variables Xi1 , . . . , Xiv from each monomial of f , then
A is of cardinality at most w(f) and does not depend on b. One can see that K(X) is a
nonzero polynomial by the choice of b and has degree less than ` with at least |T | zeros.
Hence by Lemma 2.2.3, we obtain:

w(f) + 1 ≥ w(K) ≥ `

1 + T0
(`−1)n−1

,

and (w(f) + 1)
(
2(`− 1)n−1 + s+ w(f)k(`− 1)n−1) ≥ (`− 1)n. We thus have:

w(f)2
(
2(`− 1)n−1 + s+ 2k(`− 1)n−1

)
≥ (`− 1)n − 2(`− 1)n−1 − s,

and the result follows.

Theorem 3.3.5 gives a lower bound on the weight of explicit polynomials approximating
the Naor-Reingold pseudo-random function and it immediately gives a lower bound on the
weight of explicit polynomials approximating the n-partite Diffie-Hellman problem by some
well chosen inputs:

Corollary 3.3.7. Let S ⊆ (F∗` )n, with |S| = (`− 1)n − s.
Let f ∈ Fq[X1, . . . , Xn] be a polynomial satisfying f(ga1 , . . . , gan) = ga1...an for all a =
(a1, . . . , an) ∈ S. We have

w(f) ≥
(
`− 3− s

(`−1)n−1

2 + 2n+ s
(`−1)n−1

)1/2

.
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The next theorem extends the previous approach and gives a lower bound on the weight of
implicit polynomials approximating the generalized Diffie-Hellman problem.

Theorem 3.3.8. Let S ⊆ (F∗` )n, with |S| = (`− 1)n − s.
Let f ∈ Fq[X1, . . . , Xn+1] be a polynomial satisfying:

f(ga1 , . . . , gan , ga1...an) = 0, for all a = (a1, . . . , an) ∈ S,

then

w(f) ≥
(

`(`− 1)n−1

2(`− 1)n−1 + s

)1/2

.

Proof. Let (α, β) ∈ {0, . . . ,deg(f)}2} with (α, β) 6= (0, 0).
Let A = {(α′, β′) ∈ {0, . . . ,deg(f)}2} be a set of cardinality at most w(f) with (α, β) /∈ A
and let WA be the set of vectors a ∈ (F∗` )n such that:

1. a = (a1, . . . , an) ∈ S

2. a satisfies α+ β(a2 . . . an) 6= α′ + β′(a2 . . . an) mod ` for all (α′, β′) ∈ A

Claim 3.3.9. We have |WA| ≥ (`− 1)n − s− w(f)(`− 1)n−1.

Proof. Given (α′, β′) ∈ A, the number of a ∈ (F∗` )n such that

α+ β(a2 . . . an) = α′ + β′(a2 . . . an) mod `

does not exceed (`− 1)n−1. Indeed, we have

α− α′ + (β − β′)(a2 . . . an) = 0 mod `,

and we can easily see that β − β′ 6= 0 mod ` (since otherwise, we have α− α′ = 0 mod `).
Therefore, for any vector (a1, a3, · · · , an) ∈ (F∗` )n−1, the value of a2 is defined uniquely.

Since the total number of couples (α′, β′) does not exceed w(f), the number of a ∈ S such
that a /∈WA does not exceed w(f)(`− 1)n−1.

There exists by the pigeonhole principle b = (b2, . . . , bn) ∈ (F∗`)n−1 such that T = {a1 ∈
F` : a = (a1, b) ∈WA} satisfies |T | ≥ `− 1− w(f)− s

(`−1)n−1 . Then for all a1 ∈ T , we have:

f(ga1 , gb2 , . . . gbn , ga1b2...bn) = 0.

Let H(X) = f(X, gb2 , . . . , gbn , Xb2...bn) and K(X) the polynomial obtained from H(X) by
reducing the exponents of every monomial modulo `. If we choose A independent of b and of
cardinality at most w(f), as in the proof of Theorem 3.3.5 (but this time with variables X1
and Xn+1) , then K(X) is not a zero polynomial by the choice of b and has degree less than
` with at least |T | zeros. Hence by Lemma 2.2.3, we obtain:

w(f) ≥ w(K) ≥ `

1 + w(f) + s
(`−1)n−1

,

and the result follows.
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3.3.2. Polynomial Interpolation with fixed secret key
In this section, p is an odd prime number, n is an integer and g ∈ F∗p is an element of prime
order ` (with ` | p − 1). We prove results on the univariate and multivariate polynomial
interpolation of the Naor-Reingold pseudo-random function over finite fields. We consider
polynomials that interpolates values of the Naor-Reingold pseudo-random function for a
fixed secret key a ∈ (F∗`)n. The values considered are evaluation of the function at integers
x ∈ {0, · · · , 2n − 1} and translates of these values by some fixed constants t1, t2, · · · , tk ∈ N.
This setting is interesting for applications in cryptography. Note that if one value x+ ti is
larger than 2n for some i ∈ {1, . . . , k} then, the Naor-Reingold function is not defined at x+ti.
In the following, we consider simple sets where all translates belong to the Naor-Reingold
function domain but our method can be adapted to other settings.

First, we consider multivariate polynomial interpolation over large sets of values.

Theorem 3.3.10. Let t ≥ 1 be an integer. Let t1, t2, · · · , tk be fixed distinct integers such
that t1, t2, · · · , tk < 2t and let A ⊆ {0, · · · , 2n−1}. For some a ∈ (F∗` )n, let Fa(X1, . . . , Xk) ∈
Fp[X1, · · · , Xk] such that

Fa(fa(x), fa(x+ t1), · · · , fa(x+ tk−1)) = fa(x+ tk) (3.3)

for all x ∈ A. For all but at most 2k(`− 1)n−1 vectors a ∈ (F∗` )n, we have
(

deg(Fa) + k

k

)
≥ `

2∆ + 1 − 1

w(Fa) ≥ `

2∆ + 1 − 1

where ∆ = `− 1− ]S for the set S = {a2tx ∈ F∗` : 2tx ∈ A},

It is worth noting that the conclusion of Theorem 3.3.10 cannot hold for all vectors
a ∈ (F∗`)n. For instance, if we consider a secret key a = (a1, . . . , an) ∈ (F∗`)n such that
an−1 = an and the simple case k = 1 and t1 = 1, we have fa(x+ t1) = fa(x) for all integer
x in the set A = {x ∈ {0, · · · , 2n − 1}, x ≡ 1 mod 4}, (since x = (x1, x2, . . . , xn−2, 0, 1) and
x + t1 = (x1, x2, . . . , xn−2, 1, 0)). The polynomial Fa(X1) = X1 of degree 1 and weight 1
therefore satisfies (3.3) for all x ∈ A where the set A is very large since ]A = 2n/4. However,
Theorem 3.3.10 ensures that the lower bounds on the degree and the weight of F hold with
probability 1− 2k/(`− 1) when the secret key a is picked uniformly at random (and hence
with overwhelming probability for k polynomial in the security parameter).

In Theorem 3.3.10 statement, it is also necessary to consider the cardinality of a subset
of {ax ∈ F∗` , x ∈ A} and not the cardinality of A itself since it is possible that for some
secret key a, the latter is “large” while the former is “small”. For instance, for a secret key
a = (a, . . . , a) ∈ (F∗`)n (where all components are equal to some constant value a ∈ F∗`), we
have fa(x) = gax = gahw(x) where hw(x) denotes x’s Hamming weight (i.e., its number of
non-zero coordinates). In this case, even if the set A is very large, {ax ∈ F∗` , x ∈ A} is of
cardinality at most n and one can construct a small degree multivariate polynomial that
interpolates the values of the Naor-Reingold pseudo-random function.

Proof. Since t1, t2, · · · , tk < 2t, we have

a2tx+ti = a2txati
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for all x ∈ A such that 2tx ≤ 2n − 1 and i ∈ {1, · · · , k}. The relation (3.3) thus becomes

Fa(gu, guat1 , · · · , guatk−1 ) = guatk ,

for all u ∈ S. Let R = {u ∈ S|u(atk)−1 ∈ S}. We put ∆ = ` − 1 − ]S and, by the union
bound, we have ]R ≥ `− 1− 2∆ and

Claim 3.3.11.
Fa(gu(atk )−1

, · · · , guatk−1 (atk )−1) = gu,

for all u ∈ R.
Let Ha(X) = Fa(X(atk )−1

, · · · , Xatk−1 (atk )−1) − X ∈ Fp[X] and Ka(X) the polynomial
obtained from Ha(X) by considering the degree of monomials of Ha(X) modulo `.

Claim. The polynomial Ka(X) is not a zero polynomial for all but at most 2k(`− 1)n−1

vectors a ∈ (F∗` )n.

Proof. Indeed if Ka(X) is a zero polynomial, then

• either Fa is a monomial of the form Xα1
1 · · ·Xαk

k , with (α1, · · · , αk) 6= (0, · · · , 0)

• or Fa would be a sum of at least two monomials Xα1
1 · · ·Xαk

k and Xβ1
1 · · ·Xβk

k and there
would exist (α1, · · · , αk) 6= (β1, · · · , βk) such that

α1(atk)−1 + · · ·+ αka
tk−1(atk)−1 = β1(atk)−1 + · · ·+ βka

tk−1(atk)−1

in F`.

If Fa is of the form Xα1
1 · · ·Xαk

k , then from (3.3), it will follows that

α1ax + · · ·+ αka
x+tk−1 = ax+tk in F`, for all x ∈ A. (3.4)

Let x such that (3.4) is satisfied. Then we can easily prove for all n ≥ 1 by induction in k
that the number of a ∈ (F∗` )n solutions of (3.4) does not exceed k(`− 1)n−1.

1. For k = 0, the equation ax+tk = 0 has no solution and the statement is clearly true.

2. Otherwise, let j = max({i ∈ {1 . . . , k}|αi 6= 0}). Because x+ tk 6= x+ tj , there exists
i such that i-th component of x + tk is different from the i-th component of x + tj .
Then the above equation can be written in the form T1 = T2ai where T1 and T2 do
not depend on ai. If T2 6= 0, then for any vector (a1, · · · , ai−1, ai+1, · · · , an) ∈ (F∗` )n−1,
the value of ai is defined uniquely. If T2 = 0, then by induction, the number of
(a1, · · · , ai−1, ai+1, · · · , an) ∈ (F∗` )n−1 does not exceed (k− 1)(`− 1)n−1. Therefore, the
number of solutions does not exceed (k − 1)(`− 1)n−1 + (`− 1)n−1 = k(`− 1)n−1, and
the result follows.

In the second case, if there exists (α1, · · · , αk) 6= (β1, · · · , βk) such that

α1(atk)−1 + · · ·+ αka
tk−1(atk)−1 = β1(atk)−1 + · · ·+ βka

tk−1(atk )−1

in F` then we have
(α1 − β1)a0 + · · ·+ (αk − βk)atk−1 = 0

in F`. Then by proceeding as previously by induction on k, for all n, one can see that the
number of solutions a ∈ (F∗` )n does not exceed (k − 1)(`− 1)n−1.
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For a ∈ (F∗`)n such that Ka(X) is not a zero polynomial, we have by Lemma 2.2.1, that
w(Ka(X)) ≥ `

`−(`−1−2∆) , since deg(Ka(X)) ≤ `− 1 and Ka(X) has at least `− 1− 2∆ roots
of the gu. Therefore, by Lemma 2.2.1, we have

(
deg(Fa) + k

k

)
≥ `

2∆ + 1

w(Fa) ≥ `

2∆ + 1 − 1

for all but at most 2k(`− 1)n−1 vectors a ∈ (F∗` )n and the result follows.

Remark 3.3.12. Theorem 3.3.10 is non-trivial only when ]S ≥ (3`− 2)/4. Since ]S ≤ 2n−t,
Theorem 3.3.10 only applies to settings where the message length n is greater than the sum
of the bit-length of the underlying group order and t.

The cardinality of the set S depends on A and on the secret key a = (a1, . . . , an) ∈ (F∗` )n.
In the following lemma for certain condition on A and on n, we show that ]S is close to ` for
almost all secret key a. This allows us to obtain Corollary 3.3.14 and for the forthcoming
theorems in this Chapter to obtain non trivial lower bounds.

Lemma 3.3.13. Let γ > δ > 0 such that n ≥ (1 + γ) log(`− 1).
Let t = bmin (1, (γ − δ)/2) log(`− 1)c − 1 and let A ⊆ {0, · · · , 2n − 1} such that {2tx : x ∈
{0, . . . , 2n−t − 1}} ⊆ A. Putting Γ = b(`− 1)2−tc, we obtain:

]S ≥ `− 1− Γ,

for all but at most (`− 1)n−δ vectors a ∈ (F∗` )n.

Proof. We denote again S = {a2tx ∈ F∗` : 2tx ∈ A}.
Putting Γ = b(`− 1)2−tc and applying Lemma 3.2.1, we have ]S ≥ `− 1− Γ for all but at

most 2t−nΓ−1(`− 1)n+2 ≤ (`− 1)n−δ vectors a ∈ (F∗` )n.

We apply Lemma 3.3.13 to Theorem 3.3.10 to obtain the following corollary:

Corollary 3.3.14. Let γ > δ > 0 such that n ≥ (1+γ) log(`−1). Let t = bmin (1, (γ − δ)/2) log(`−
1)c − 1 and t1, t2, · · · , tk be fixed distinct integers such that t1, t2, · · · , tk < 2t and let
A ⊆ {0, · · · , 2n − 1}. For some a ∈ (F∗`)n, let Fa(X1, . . . , Xk) ∈ Fp[X1, · · · , Xk] such
that Relation (3.3) holds for all x ∈ A. If {2tx : x = 0, . . . , 2n−t − 1} ⊆ A, we have

(
deg(Fa) + k

k

)
≥ 1

8(`− 1)min(1,(γ−δ)/2)

w(Fa) ≥ 1
8(`− 1)min(1,(γ−δ)/2) − 1

for all but at most 2k(`− 1)n−1 + (`− 1)n−δ vectors a ∈ (F∗` )n.

The proof is straightforward since, with the previous notation, we have in this case ∆ < Γ.
Likewise Lemma 3.3.13 can be applied to the next theorems of this paper to obtain non-trivial
lower bounds for almost all vectors a ∈ (F∗` )n.

For the cases where the cardinality of the set S is smaller than (3`− 2)/4, Theorem 3.3.10
does not give a non-trivial lower bound on F ’s degree. In the next theorem, we obtain such
a lower bound for much smaller sets S with #S ∈ [

√
`+ 1, (3`− 2)/4]. Theorem 3.3.15 only

applies for univariate interpolation (i.e. k = 1).
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Theorem 3.3.15. Let t ≥ 1 be a fixed integer and let A ⊆ {0, · · · , 2n − 1}. For some
a ∈ (F∗` )n, let Fa(X) ∈ Fp[X] such that

Fa(fa(x)) = fa(x+ t) (3.5)

for all x ∈ A. For all but at most 2(`− 1)n−1 vectors a ∈ (F∗` )n, we have

deg(Fa) ≥ ]S(]S − 1)
`− 1 .

where S = {a2tx ∈ F∗` : 2tx ∈ A}.

Proof. As in the previous proof, we have

Fa(gu) = guat for all u ∈ S.

Consider
D = {1 ≤ b ≤ `− 1 : b ≡ y − x mod `, x, y ∈ S}.

There exists b ∈ D such that there are at least

]S(]S − 1)
]D

≥ ]S(]S − 1)
`− 1

representations b ≡ y − x mod `, with x, y ∈ S. We choose this b and put

R = {x ∈ S : b+ x ≡ y mod `, y ∈ S}.

Then we have
]R ≥ ]S(]S − 1)

`− 1 .

For u ∈ R, (since gx = gx+`, for all x), we have

Fa(gu+b) = g(u+b)at

= guat × gbat

= Fa(gu)× gbat

Let Ha(X) = Fa(gbX)− gbatFa(X). Then Ha(X) has at least ]R zeros. As in the previous
proof, Ha(X) 6= 0 for all but at most 2(`− 1)n−1 vectors a ∈ (F∗` )n and deg(Ha) ≤ deg(Fa),
we have

deg(Fa) ≥ ]S(]S − 1)
`− 1 .

for all but at most 2(`− 1)n−1 vectors a ∈ (F∗` )n.

In the following lemma, we show that there exists numerous sets A and corresponding S
such that #S ∈ [

√
`+ 1, (3`− 2)/4]. For such sets Theorem 3.3.10 does not give a non-trivial

lower bound on F ’s degree.
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Lemma 3.3.16. Let 1
log(3) − 1

2 > δ > 0 (with 1
log(3) − 1

2 ' 0.1309 . . . ).
Let t ≥ 1 and n be integers such that n = t+ d(1/2 + δ) log(`− 1)e+ s for some integer s
such that 0 ≤ s ≤ log(3`− 2)− 2− d(1/2 + δ) log(`− 1)e. Let A ⊆ {0, · · · , 2n − 1} such that
{2tx : x ∈ {0, . . . , 2n−t − 1}} ⊆ A. Putting γ = 1− log(3)(1/2 + δ) we obtain:

(3`− 2)/4 ≥ ]S ≥ (`− 1)(1/2+δ)

for all but at most 3/2(`− 1)n−γ vectors a ∈ (F∗` )n.

Proof. We denote again S = {a2tx ∈ F∗` : 2tx ∈ A}.
Putting j = d(1/2 + δ) log(` − 1)e and applying Lemma 3.2.2, we obtain readily ]S ≥
(`− 1)(1/2+δ) for all but at most (3j − 1)(`− 1)n−1 ≤ 3/2(`− 1)n−γ vectors a ∈ (F∗` )n. Since
]S ≤ 2j+s ≤ (3`− 2)/4, we obtain the desired result.

For such sets A and S and parameters n, t, s given in Lemma 3.3.16, we have (using
the notation of Theorem 3.3.15), that the degree of polynomial Fa satisfying (3.5) verifies
deg(Fa) ≥ c · `2δ for all but at most 2(`− 1)n−1 + 3/2(`− 1)n−γ vectors a ∈ (F∗` )n (where c
is an absolute constant close to 1).

Remark 3.3.17. This proof technique cannot be used to obtain a lower bound on the weight
of a univariate polynomial F or on the degree of a multivariate polynomial F for k ≥ 2 and it
remains an open problem to improve Theorem 3.3.10 for smaller sets S with #S ≤ (3`− 2)/4
in these settings.

3.4. Polynomial Interpolation of the Naor-Reingold
Pseudo-Random Function over Elliptic Curves

3.4.1. Polynomial Interpolation with fixed secret key
3.4.1.1. Univariate Interpolation of the Naor-Reingold Pseudo-Random Function over

Elliptic Curves

In this section, p is an odd prime number, n is an integer, E is an elliptic curve over Fp
and P is a point of the curve E with prime order ` (with ` | #E(Fp)). We prove results
on the univariate polynomial interpolation of the Naor-Reingold pseudo-random function
from elliptic curves defined by fa(x) = X([ax]P ) for a secret key a ∈ (F∗`)n and an integer
x ∈ {0, 1, . . . , 2n − 1} (where X(Q) denotes the abscissa of a point Q ∈ E(Fp)). First, we
consider interpolation over large sets of values.

Theorem 3.4.1. Let E : y2 = x3 + γx + δ be an elliptic curve over Fp with γδ 6= 0. Let
t ≥ 1 be a fixed integer and let A ⊆ {0, · · · , 2n − 1}. For some a ∈ (F∗` )n, let Fa(X) ∈ Fp[X]
such that

Fa(fa(x)) = fa(x+ t) (3.6)

for all x ∈ A. For all but at most 2(`− 1)n−1 vectors a ∈ (F∗` )n, we have

deg(Fa) ≥ 2]S − (`− 1)
14 .

where S = {a2tx ∈ F∗` : 2tx ∈ A}.
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Proof. We have Fa(xu) = xuat for all u ∈ S, where xt = X([t]P ), for all t ∈ F`. We consider
the R = {u ∈ S : 2u ∈ S} with ]R ≥ `− 1− 2∆. For all u ∈ R, 2u ∈ S and [2u]P 6= O and
Fa(x2u) = x2uat is well-defined in Fp and xuat is thus not a root of ψ2. Therefore, we have:

Fa(x2u) = x2uat

= θ2(xuat)/ψ2
2(xuat)

= θ2(Fa(xu))/ψ2
2(Fa(xu)), for all u ∈ R.

We thus get
Fa

(
θ2(xu)
ψ2

2(xu)

)
= θ2(Fa(xu))
ψ2

2(Fa(xu))
for all u ∈ R. Finally, we consider the polynomial:

Ha(X) = ψ2d
2 (X)ψ2

2(Fa(X))
(
Fa

(
θ2(X)
ψ2

2(X)

)
− θ2(Fa(X))
ψ2

2(Fa(X))

)
,

where d = deg(Fa). The polynomial Ha(X) has at least ]R/2 zeros. If at 6= ±1, we will
have Fa(X) 6= X and by Lemma 2.3.1, it will imply that there exists α ∈ Fp such that
ψ2

2(Fa(α)) = 0 and ψ2
2(α) 6= 0. Hence, we have Ha(α) = −θ2(Fa(α))ψ2d

2 (α) 6= 0, since θ2(X)
and ψ2

2(X) have no common zeros.
Therefore, Ha(X) is a non-zero polynomial and deg(Ha) ≤ 7d. Then we get that 7d ≥ ]R/2

and then d ≥ `−1−2∆
14 . Since at 6= ±1 for all but at most 2(`− 1)n−1 vectors a ∈ (F∗`)n, the

result follows.

Theorem 3.4.1 is only non-trivial if ]S ≥ (`+ 13)/2. Again, the cardinality of the set S
depends on A and on the secret key a = (a1, . . . , an) ∈ (F∗` )n, but using again Lemma 3.3.13,
we can easily obtain (as in Corollary 3.3.14) non-trivial lower bounds for specific sets A and
parameter n.

In the following theorem, we obtain a lower bound for smaller sets S.

Theorem 3.4.2. Let t ≥ 1 be a fixed integer, A ⊆ {0, · · · , 2n − 1}, 0 < ε < 1 and
S = {a2tx ∈ F∗` : 2tx ∈ A} with ]S ≥ 2(`−1)

ε log(`) . For some a ∈ (F∗`)n, let Fa(X) ∈ Fp[X] such
that

Fa(fa(x)) = fa(x+ t) (3.7)
for all x ∈ A. For all but at most 2(`− 1)n−1 vectors a ∈ (F∗` )n, we have

deg(Fa) ≥ ]S

4ε log(`)× `2ε .

Proof. We have Fa(xu) = xuat for all u ∈ S where, as above, we denote xt = X([t]P ), for all
t ∈ F`. Let K be an integer and let us consider the sets

Si = {1 ≤ b ≤ `− 1 : 2im ≡ b mod `, m ∈ S},

for 0 ≤ i ≤ K, and Ri,j = Si ∩ Sj for 0 ≤ i < j ≤ K. We have

(K + 1)]S −
∑

0≤i<j≤K
]Ri,j ≤ ]

(
K⋃
i=0

Si

)
≤ `− 1.
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Therefore, there is a pair 0 ≤ i < j ≤ K such that

]R0,j−i = ]Ri,j ≥
2((K + 1)]S − (`− 1))

K(K + 1) .

For u ∈ R0,j−i, there exists a unique m ∈ S such that 2j−im ≡ u mod `, with u ∈ S and the
corresponding m’s are distinct for two different u’s. Since xk = xk+l for all k, then we have
Fa(x2j−im) = x2j−imat for at least ]R0,j−i different m ∈ S. For each such m, we have

Fa

(
θ2j−i (xm)
ψ2

2j−i
(xm)

)
= x2j−imat

= θ2j−i(xmat)/ψ2
2j−i(xmat)

= θ2j−i(Fa(xm))/ψ2
2j−i(Fa(xm)),

since m ∈ S. Finally, we consider the polynomial

Ha(X) = ψ2d
2j−i(X)ψ2

2j−i(Fa(X))
(
Fa

(
θ2j−i(X)
ψ2

2j−i(X)

)
− θ2j−i(Fa(X))
ψ2

2j−i(Fa(X))

)
,

where d = deg(Fa).
The polynomial Ha(X) has at least ]R0,j−i zeros. Since d ≥ 2 and 2j−i and p are coprime,

then by Lemma 2.3.2, there exists α ∈ Fp such that ψ2
2j−i(Fa(α)) = 0 and ψ2

2j−i(α) 6= 0.
Hence, we have Ha(α) = −θ2j−i(Fa(α))ψ2d

2j−i(α) 6= 0, since θ2j−i(X) and ψ2
2j−i(X) have no

common zeros.
Therefore Ha(X) is a non-zero polynomial and deg(Ha) ≤ d(2(2j−i)2 − 1) and we get

d ≥ ]R0,j−i
2(22(j−i)+1 − 1)

≥ (K + 1)]S − (`− 1)
K(K + 1)(22(j−i)+1 − 1)

.

Since j − i ≤ K, then we have

d ≥ (K + 1)]S − (`− 1)
K(K + 1)(22K+1 − 1) ≥ 1

22K+1 − 1

(
]S

K
− `− 1
K(K + 1)

)
≥ ]S

K(22K+1 − 1)

(
1− `− 1

]S(K + 1)

)
.

Letting K = bε log(`)c, for any 0 < ε < 1, we have

d ≥ ]S

2ε log(`)× `2ε
(

1− `− 1
]Sε log(`)

)
≥ ]S

4ε log(`)× `2ε .

Theorem 3.4.2 also applies to numerous sets A and S for which Theorem 3.4.1 does not
apply. For instance, we can consider parameters n, t, s given in Lemma 3.3.16 such that
2n−t−s ≥ 2(`−1)

ε log(`) .
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3.4.1.2. Bivariate Interpolation of the Naor-Reingold Pseudo-Random Function over
Elliptic Curves

It seems rather difficult to obtain an analogue of Theorem 3.3.10 in the case of elliptic
curves. In this section, we use the methods from [LW03b] and we prove results on bivariate
interpolation of the Naor-Reingold pseudo-random function from elliptic curves (but in a
slightly different setting). We use the notation from the previous section and, as before, we
consider first interpolation over large sets of values.
Theorem 3.4.3. Let A1, A2 ⊆ {0, · · · , 2n− 1} and t ≥ 1 be an integer. For some a ∈ (F∗` )n,
let Fa(X,Y ) ∈ Fp[X,Y ] such that

Fa(fa(x), fa(x′)) = fa(x+ x′) (3.8)

for all (x, x′) ∈ A1 ×A2. We have

deg(Fa) ≥ min
(
b(`− 1)/∆c − 2; d(]S2 − 1)1/3e − 2

)
.

where ∆ = `− 1− ]S1 for the set S1 = {ax : x ∈ A1 , x < 2t} and where S2 = {a2tx′ ∈ F∗` :
2tx′ ∈ A2}.
Proof. We may suppose ]S2 ≥ 10 since otherwise the result is trivial. We denote

d = min
(
b(`− 1)/∆c − 2; d(]S2 − 1)1/3e − 2

)
.

We have
Fa(xu, xu′) = xuu′ , for all u ∈ S1 and u′ ∈ S2.

Let R be the set of u ∈ S1 such that

ia mod ` ∈ S1, ∀i ∈ {1, · · · , d+ 1}.
The cardinality of R is at least `− 1−∆(d+ 1). Let u ∈ R, then we have

Fa(x(i+1)u, xvj ) = x(i+1)uvj , for all 0 ≤ i, j ≤ d,
where v0, · · · , vd are any distinct elements of S2.

Let us suppose that degX(Fa), degY (Fa) ≤ d namely

Fa(X,Y ) =
d∑

i,j=0
ci,jX

iY j ,

then we have for 0 ≤ k, ` ≤ d,

x(k+1)uv` =
d∑

i,j=0
ci,jx

i
(k+1)ux

j
v`
.

Then Fa’s coefficients are determined by the following matrix equation:

C =

 c0,0 . . . c0,d
...

...
cd,0 . . . cd,d



=


x0
u . . . xdu
...

...
x0

(d+1)u . . . xd(d+1)u


−1 xuv0 . . . xuvd

...
...

x(d+1)uv0 . . . x(d+1)uvd


 x0

v0 . . . x0
vd...
...

xdv0 . . . xdvd





46 Chapter 3. Polynomial Interpolation of the Naor-Reingold Pseudo-Random Functions

The matrix C is non-singular if and only if the middle matrix on the right hand is non-singular.
A subset {v0, · · · , vd} of S2 with this property exists if and only if the vectors Tk = (xkub)b∈S2

for k ∈ {1, · · · , d+ 1} are linearly independent. If these vectors were linearly dependent, then
there would exist an integer ω with 1 ≤ ω ≤ d+ 1 and coefficients d1, · · · , dω ∈ Fp, dω 6= 0,
such that

ω∑
k=1

dkxkub = 0, b ∈ S2.

As at most two points with first coordinate equal to 0 exist on the elliptic curve and ]S2 ≥ 3,
we get ω ≥ 2. Since xkub = θk(xub)/ψ2

k(xub), the polynomial

H(X) =
ω∑
k=1

dkθk(X)
ω∏

j=1,j 6=k
ψ2
j (X)

has at least b]S2/2c zeros and degree at most

1 +
ω∑
k=1

(k2 − 1) = (2ω3 + 3ω2 − 5ω + 6)/6 ≤ ω3/2 ≤ (d+ 1)3/2.

Since p - ω, then points of order ω on E exist over Fp. Let α ∈ Fp be the first coordinate
of a point of order ω. Then we have ψ2

ω(α) = 0 and H(α) = dωθω(α)∏ω−1
j=1 ψ

2
j (α) 6= 0.

The polynomial H(X) is a non-zero polynomial and we have (d + 1)3/2 ≥ b]S2/2c in
contradiction with the definition of d. This shows that C is not singular and in particular
each row of C has at least one non-zero entry and we have deg(Fa) ≥ degX(Fa) ≥ d.

Theorem 3.4.3 is non-trivial only for ]S1 ≥ (`− 1)/2 and we can obtain (as in Corollary
3.3.14) non-trivial lower bounds on the degree of the interpolating polynomial for specific
sets A1 and A2 and parameter t.

Lemma 3.4.4. Let m ≥ 1 be an integer, δ > 0 and t be an integer such that t ≥ (1 +
δ) log(`− 1) +m+ 1 and n− t ≥ (1 + δ) log(`− 1) + 2.
Let A1, A2 ⊆ {0, · · · , 2n − 1} be two sets such that {0, . . . , 2t − 1} ⊆ A1 and {2tx′ : x′ ∈
{0, . . . , 2n−t− 1}} ⊆ A2 . Let S1 = {ax : x ∈ A1, x < 2t} and S2 = {a2tx′ ∈ F∗` : 2tx′ ∈ A2},
we have

]S1 ≥ `− 1− b(`− 1)2−mc and ]S2 ≥ (`− 1)/2 + 1,
for all but at most 2(`− 1)n−δ vectors a ∈ (F∗` )n.

Proof. Let ∆ = b(`− 1)2−mc. Applying Lemma 3.2.1, we have ]S1 ≥ `− 1−∆ for all but at
most 2−t∆−1(`− 1)t+2(`− 1)n−t ≤ (`− 1)n−δ vectors a ∈ (F∗` )n.

Likewise, applying Lemma 3.2.1 with ∆′ = (`− 1)/2− 1 , we have ]S2 ≥ (`− 1)/2 + 1 for
all but at most 2t−n∆′−1(`− 1)n−t+2(`− 1)t ≤ (`− 1)n−δ vectors a ∈ (F∗` )n.

We apply Lemma 3.4.4 to Theorem 3.4.3 to obtain the following corollary:

Corollary 3.4.5. Let m ≥ 1 be an integer and δ > 0 such that t ≥ (1 + δ) log(`− 1) +m+ 1
and n− t ≥ (1 + δ) log(`− 1) + 2.
Let A1 ⊆ {0, · · · , 2n − 1} such that {0, . . . , 2t − 1} ⊆ A1 and A2 ⊆ {0, · · · , 2n − 1} such that
{2tx′ : x′ ∈ {0, . . . , 2n−t − 1}} ⊆ A2. For some a ∈ (F∗` )n, let Fa(X,Y ) ∈ Fp[X,Y ] such that

Fa(fa(x), fa(x′)) = fa(x+ x′) (3.9)



3.4. Polynomial Interpolation of the Naor-Reingold Pseudo-Random Function over Elliptic
Curves 47

for all (x, x′) ∈ A1 ×A2. We have

deg(Fa) ≥ min
(
2m − 2; ((`− 1)/2)1/3 − 2

)
,

for all but at most 2(`− 1)n−δ vectors a ∈ (F∗` )n.

The proof is straightforward since, with the of notation of Theorem 3.4.3, we have in this
case ∆ ≤ (`− 1)2−m and ]S2 − 1 ≥ (`− 1)/2.

To conclude this section, we obtain a simple result for smaller sets S1.

Theorem 3.4.6. Let A1, A2 ⊆ {0, · · · , 2n− 1} and t ≥ 1 be an integer. For some a ∈ (F∗` )n,
let Fa(X,Y ) ∈ Fp[X,Y ] such that

Fa(fa(x), fa(x′)) = fa(x+ x′) (3.10)

for all (x, x′) ∈ A1 ×A2. We have

deg(Fa) ≥ ]S1
8 .

where S1 = {ax : x ∈ A1 , x < 2t} and S2 = {a2tx′ ∈ F∗` : 2tx′ ∈ A2} if there exists v ∈ S2
such that 2v ∈ S2.

Proof. We have

Fa(xu, xv) = xuv and Fa(xu, x2v) = x2uv for all u ∈ S1.

Hence
Fa

(
xu,

θ2(xv)
ψ2

2(xv)

)
= θ2(xuv)
ψ2

2(xuv)
= θ2(Fa(xu, xv))
ψ2

2(Fa(xu, xv))
for all u ∈ S1.

Finally, we consider the polynomial

U(X) = ψ2
2(Fa(X,xv))

(
Fa(X, θ2(xv)

ψ2
2(xv)

)− θ2(Fa(X,xv))
ψ2

2(Fa(X,xv))

)
.

We have deg(U) ≤ 4 deg(Fa). Let γ be a root of ψ2
2(X) and β such that Fa(β, xv) = γ. Then

U(β) = −θ2(Fa(β, xv)) 6= 0,

and U is non-zero polynomial. Since U has at least ]S1/2 zeros, it follows that 4 deg(Fa) ≥
]S1/2 i.e. deg(Fa) ≥ ]S1

8 .

The condition on S2 in the statement of Theorem 3.4.6 is achieved trivially when ]S2 >
`−1

2 .
It is worth mentioning that Theorem 3.4.6 also applies to many other sets. In the following
lemma, we show that there exists numerous sets A1, A2 and corresponding S1, S2 such that
]S1 ∈ [

√
`+ 1, (`− 1)/2] and ]S2 > (`− 1)/2. For such sets Theorem 3.4.6 gives a non-trivial

lower bound on the degree of the interpolating polynomial while Theorem 3.4.3 does not
give a non-trivial lower bound on it. We apply Lemmas 3.2.1 and 3.2.2 like in the proof of
Lemmas 3.3.13, 3.3.16 and 3.4.4 to obtain the following lemma:
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Lemma 3.4.7. Let 1
log(3) − 1

2 > δ1 > 0 (with 1
log(3) − 1

2 ' 0.1309 . . . ) and δ2 > 0.
Let t and n be integers such that t = d(1/2 + δ1) log(`− 1)e+ s for some integer s such that
0 ≤ s ≤ log(` − 1) − 1 − d(1/2 + δ1) log(` − 1)e and n − t ≥ (1 + δ2) log(` − 1) + 2. Let
A1 ⊆ {0, · · · , 2n − 1} such that {0, . . . , 2t − 1}} ⊆ A1 and A2 ⊆ {0, · · · , 2n − 1} such that
{2tx : x ∈ {0, . . . , 2n−t − 1}} ⊆ A2. Putting γ = 1− log(3)(1/2 + δ1) we obtain:

(`− 1)/2 ≥ ]S1 ≥ (`− 1)(1/2+δ1) and ]S2 ≥ (`− 1)/2 + 1,

for all but at most 3/2(`− 1)n−γ + (`− 1)n−δ2 vectors a ∈ (F∗` )n.

We then apply Lemma 3.4.7 to Theorem 3.4.6 to obtain the following corollary:

Corollary 3.4.8. Let 1
log(3) − 1

2 > δ1 > 0, δ2 > 0 and γ = 1− log(3)(1/2 + δ1).
Let t and n be integers such that t = d(1/2 + δ1) log(`− 1)e+ s for some integer s such that
0 ≤ s ≤ log(` − 1) − 1 − d(1/2 + δ1) log(` − 1)e and n − t ≥ (1 + δ2) log(` − 1) + 2. Let
A1 ⊆ {0, · · · , 2n − 1} such that {0, . . . , 2t − 1}} ⊆ A1 and A2 ⊆ {0, · · · , 2n − 1} such that
{2tx : x ∈ {0, . . . , 2n−t − 1}} ⊆ A2. For some a ∈ (F∗` )n, let Fa(X,Y ) ∈ Fp[X,Y ] such that

Fa(fa(x), fa(x′)) = fa(x+ x′) (3.11)

for all (x, x′) ∈ A1 ×A2. We have

deg(Fa) ≥ (`− 1)(1/2+δ1)/8,

for all but at most 3/2(`− 1)n−γ + (`− 1)n−δ2 vectors a ∈ (F∗` )n.

The proof is straightforward since, with the notation of Theorem 3.4.6, we have in this
case ]S1 ≥ (`− 1)(1/2+δ1) and there exists v ∈ S2 such that 2v ∈ S2 since ]S2 > (`− 1)/2

3.4.2. Polynomial Interpolation with variable secret key

In this section, p is an odd prime number and we prove results on the approximation by a
polynomial with k ≥ 1 variables of the Naor-Reingold pseudo-random function from elliptic
curves. For a positive integer t, we denote X(tP ) by xt.

Theorem 3.4.9. Let n be an integer, S ⊆ (F∗`)n, with |S| = (` − 1)n − s. Let f ∈
Fp[X1, . . . , Xk], be a polynomial satisfying:

f(x
ax1 , . . . , x

axk
) = x

axk+1 , for all a = (a1, . . . , an) ∈ S,

for some values x1, . . . , xn ∈ {0, · · · , 2n − 1} such that x1
1 = 1, xk+1

1 = 1 and xi1 = 0 for
i ∈ {2, . . . , k}. Then

deg(f) ≥ `− 1
14 − s

7(`− 1)n−1 .

Proof. Let W = {a ∈ (F∗`)n : a = (a1, . . . , an) ∈ S and (2a1, . . . , an) ∈ S}, then |W | ≥
(`− 1)n − 2s. Then there exists b = (b2, . . . , bn) ∈ (F∗l )n−1 such that the set T = {a1 ∈ (F∗l ) :
a′ = (a1, b2, . . . , bn) ∈W} satisfies |T | ≥ (`− 1)− 2s/(`− 1)n−1. Thus for all a1 ∈ T , putting
a′ = (a1, b2, . . . , bn), we have:{

f(x
a′x1 , . . . , x

bxk
) = x

a′xk+1

f(x2a′x1 , . . . , x
bxk

) = x2a′xk+1
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Hence for all a1 ∈ T , we have:

f

(
θ2(x

a1bx1 )
ψ2

2(x
a1bx1 ) , . . . , xbxk

)
=
θ2(f((x

a1bx1 , . . . , x
bxk

)))
ψ2

2(f((x
a1bx1 , . . . , x

bxk
)))

We consider the polynomial:

H(X) = ψ2d
2 (X)f

(
θ2(X)
ψ2

2(X) , . . . , xbxk

)
ψ2

2(f(X, . . . , x
bxk

))− ψ2d
2 (X)θ2(f(X, . . . , x

bxk
))

where d = degX1 f . Let γ be a root of ψ2
2(X),then H(γ) = cθd2(γ) 6= 0, for some coefficient

c ∈ F∗p. Thus H is a nonzero polynomial and we have degH ≤ 7d ≤ 7 deg f . Since H has at
least |T |/2 ≥ (`− 1)/2− s/(`− 1)n−1) zeros, we obtain:

deg(f) ≥ `− 1
14 − s

7(`− 1)n−1 .





Chapter 4.
Distribution and Polynomial
Interpolation of the Dodis-Yampolskiy
Pseudo-Random Function
In 2005, Dodis and Yampolskiy [DY05] proposed an efficient pseudo-random function family
which takes inputs in {1, . . . , d} (for some parameter d ∈ N) and outputs an element in a
group G (multiplicatively written) of prime order t with generator g. The secret key is a
scalar x ∈ Z∗t and the pseudo-random function is defined by:

Vx : {1, . . . , d} −→ G
m 7−→ Vx(m) = g

1
x+m if x+m 6= 0 mod t and 1G otherwise.

The Dodis-Yampolskiy pseudo-random function family has found numerous applications in
cryptography (e.g., for compact e-cash [CHL05] or anonymous authentication [CHK+06]).
Dodis and Yampolskiy showed that their construction has some very attractive security
properties, provided that some assumption about the hardness of breaking the so-called
Decision Diffie-Hellman Inversion problem holds in G [DY05]. This assumption is non-
standard and Cheon [Che10] proved that it is stronger than the classical discrete logarithm
assumption in G. In this Chapter, we study the distribution of the Dodis-Yampolskiy
pseudo-random function over finite fields and over elliptic curves and prove lower bounds
on the degree of polynomials which interpolate these functions. The first section deals with
the distribution of the Dodis-Yampolskiy pseudo-random function over finite fields and over
elliptic curves. In the second section, we prove lower bounds on the degree of polynomials
interpolating this pseudo-random function over finite fields and we conclude the chapter by
proving lower bounds on the degree of polynomials interpolating this pseudo-random function
over an elliptic curve.
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4.1. Distribution of the Dodis-Yampolskiy Pseudo-Random
Functions

For a sequence of N points Γ = (γ0,n, . . . , γs−1,n)n∈{1,...,N} in the s-dimensional unit cube,
we define its discrepancy by DΓ:

DΓ = sup
B⊆[0,1)s

∣∣∣∣TΓ(B)
N

− |B|
∣∣∣∣ ,

where TΓ(B) denotes the number of points of the sequence Γ in a box B (i.e. a polyhedron
[α0, β0)× · · · × [αs−1, βs−1) ⊆ [0, 1)s) of volume |B| and the supremum is taken over all such
boxes. For an integer vector a = (a0, . . . , as−1) ∈ Zs, we define |a| = maxν∈{0,...,s−1}|aν |
and r(a) = ∏s−1

ν=0 max{|aν |, 1}. A critical issue with a pseudo-random sequence Γ in the
s-dimensional unit cube is that it may not be perfectly equidistributed namely spread in a
given volume of the s-dimensional unit cube (as it is the case in quasi-Monte Carlo methods
). Sequences in [0, 1)s with low discrepancy will spread over [0, 1)s as uniformly as possible,
reducing gaps and clustering of points. In order to show that a sequence Γ is uniformly
distributed, we need to show that its discrepancy DΓ is very small (i.e. tends to 0). The
following lemma is our main tool for finding non-trivial upper bound for the discrepancy. It
is a slightly weaker form of the Koksma-Szüsz inequality [DT97, Theorem 1.21]. The implied
constant in the symbol "�" depends on the integer s.

Lemma 4.1.1. For any integer L > 1 and any sequence Γ of N points, we have

DΓ �
1
L

+ 1
N

∑
0<|a|<L

1
r(a)

∣∣∣∣∣
N∑
n=1

e

(
s−1∑
ν=0

aνγν,n

)∣∣∣∣∣ ,
where the sum is taken over all integer vectors a ∈ Zs with 0 < |a| < L.

We also need the well-known orthogonality relation:

m−1∑
η=0

em(ηλ) =
{

0 if λ 6= 0 mod m
m otherwise (4.1)

and the inequality [[IK04], Bound (8.6)] (which holds for any integers m and M with
1 ≤M ≤ m):

m−1∑
η=0

∣∣∣∣∣
M∑
λ=1

em(ηλ)
∣∣∣∣∣� m log m. (4.2)

4.1.1. Distribution of the Dodis-Yampolskiy Pseudo-Random Function over
Finite Fields

Let q = pr be a prime power for some integer r > 1, let g ∈ F∗q be an element of
prime order t. For x ∈ Zt and d ≤ t, we denote by Dx(d) the discrepancy of the
points (Vx,1(n)/p, . . . , Vx,r(n)/p) for 1 ≤ n ≤ d, where Vx(n) = g

1
x+n ∈ Fpr and Vx(n) =

Vx,1(n)β1 + · · ·+ Vx,r(n)βr, where {β1, . . . , βr} is an ordered basis of Fpr over Fp.
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Theorem 4.1.2. For any x ∈ Zt, any integers k ≥ 2, ` ≥ 1 and 1 ≤ d ≤ t, we have:

Dx(d) ≤ t1−αk,lqβk,l+o(1)

d
,

where αk,l = 1
2(2k+l) − 1

4kl and βk,l = 1
4(2k+l) .

Proof. From Lemma 4.1.1, we derive

Dx(d)� 1
p

+ 1
d

∑
0<|a|<p

1
r(a)

∣∣∣∣∣∣
d∑

n=1
ep

 r∑
j=1

ajVx,j(n)

∣∣∣∣∣∣ ,
where a = (a1, . . . , ar). Set

Sd(a) =
d∑

n=1
ep(

r∑
j=1

ajVx,j(n)).

Let {δ1, . . . , δr} be the dual basis of the given ordered basis {β1, . . . , βr}. For j ∈ {1, . . . , r}
and n ∈ {1, . . . , d}, we have Vx,j(n) = Tr(δjVx(n)), where Tr denotes the trace of Fpr over
Fp (namely Tr(x) = x+ xp + · · ·+ xp

r−1). Therefore,

Sd(a) =
d∑

n=1
ep

Tr

 r∑
j=1

ajδjVx(n)

 =
d∑

n=1
ep(Tr(αaVx(n)))

where αa = ∑r
j=1 ajδj ∈ Fpr .

Let χ be defined by χ(z) = ep(Tr(z)). Then χ is a non trivial additive character on Fpr .
Since there exists j ∈ {1, . . . , r} such that aj 6= 0, then αa 6= 0. We have:

Sd(a) =
d∑

n=1
χ(αaVx(n)) with αa 6= 0.

We have

Sd(a) =
x+d∑

n=x+1
n∈Z∗t

χ(αag1/n) = 1
t

∑
n∈Z∗t

χ(αag1/n)×
t−1∑
c=0

x+d∑
v=x+1
v∈Z∗t

et(c(n− v))

= 1
t

t−1∑
c=0

∑
n∈Z∗t

χ
(
αag

1/n
)
et(cn)

× x+d∑
v=x+1
v∈Z∗t

et(−cv).

By applying Proposition 2.4.1 and (4.2), we obtain

Sd(a) ≤ 1
t

t−1∑
c=0

∣∣∣∣∣∣∣∣
x+d∑
v=x+1
v∈Z∗t

et(−cv)

∣∣∣∣∣∣∣∣× t
1−αk,`qβk,`+o(1) ≤ t1−αk,`qβk,`+o(1).
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By applying this bound to Dx(d), we have

Dx(d)� 1
p

+ t1−αk,lqβk,`+o(1)

d

∑
0<|a|<p

1
r(a) � 1

p
+ t1−αk,`qβk,`+o(1)

d
logr p

≤ t1−αk,`qβk,`+o(1)

d

With the choice k = 4, l = 8, t = q1+o(1) and d = t
127
128 +ε, we obtain

Dx(d) ≤ pr(−ε+o(1)) = q−ε+o(1).

4.1.2. Distribution of the Dodis-Yampolskiy Pseudo-Random Function over
Elliptic Curves

Let E : y2 = x3 +Ax+B, be an elliptic curve over Fp. For P ∈ E(Fp) of prime order t, for
x ∈ Zt, and for 1 ≤ d ≤ t we denote by Dx(d) the discrepancy of the points (X(Vx(n))/p)
for n ∈ {1, . . . , d} where Vx(n) =

[
1

x+n

]
P ∈ E(Fp). We obtain the following theorem.

Theorem 4.1.3. For any x ∈ Zt, any integers k ≥ 2, l ≥ 1 and 1 ≤ d ≤ t, we have:

Dx(d) ≤ t1−αk,`pβk,`+o(1)

d
,

where αk,` = 1
2(4k+`) − 1

4k` and βk,` = 1
4(4k+`) .

Proof. From Lemma 4.1.1, we derive

Dx(d)� 1
p

+ 1
d

∑
0<|a|<p

1
|a|

∣∣∣∣∣
d∑

n=1
ep (aX(Wx(n)))

∣∣∣∣∣ ,
where a is an integer. Set Sd(a) = ∑d

n=1 ep(aX(Wx(n))), we have

Sd(a) =
x+d∑

n=x+1
n∈Z∗t

ep

(
aX

([ 1
n

]
P

))

= 1
t

∑
n∈Z∗t

ep

(
aX

([ 1
n

]
P

))
×

t−1∑
c=0

x+d∑
v=x+1
v∈Z∗t

et (c(n− v))

= 1
t

t−1∑
c=0

∑
n∈Z∗t

ep

(
aX

([ 1
n

]
P

))
et(cn)

× x+d∑
v=x+1
v∈Z∗t

et(−cv)

By applying Proposition 2.4.4 and (4.2), we obtain

Sd(a) ≤ 1
t

t−1∑
c=0

∣∣∣∣∣∣∣∣
x+d∑
v=x+1
v∈Z∗t

et(−cv)

∣∣∣∣∣∣∣∣× t
1−αk,`pβk,`+o(1)

≤ t1−αk,`pβk,`+o(1)



56 Chapter 4. Distribution and Polynomial Interpolation of the Dodis-Yampolskiy
Pseudo-Random Function

By applying this bound to Dx(d), we have

Dx(d) � 1
p

+ t1−αk,`pβk,`+o(1) × 1
d

∑
0<|a|<p

1
|a|

� 1
p

+ t1−αk,`pβk,l+o(1) × 1
d

log p

≤ t1−αk,`pβk,`+o(1) × 1
d

With the choice k = 4, ` = 16, t = p1+o(1) and d = t
255
256 +ε, we obtain Dx(d)� p−ε+o(1).

Remark 4.1.4. If d = t− 1, with t = p
1
2 +ε, 0 < ε ≤ 1

2 , then Sa(d) can be estimated easily,
and we have Dx(d)� p−ε+o(1).

4.2. Polynomial Interpolation of the Dodis-Yampolskiy
Pseudo-Random Function over Finite Fields

Let g ∈ F∗pr for some integer r > 1, be an element of prime order t | pr − 1. In this
section, we prove a lower bound on the degree of univariate polynomial interpolation of the
Dodis-Yampolskiy pseudo-random function over finite fields. We consider polynomials that
interpolate values of the Dodis-Yampolskiy pseudo-random function for a fixed secret key
x ∈ F∗t . The values considered are evaluation of the function at integers n ∈ {1, . . . , d} for
some integer 1 ≤ d ≤ t and translates of these values by some fixed constants λ ∈ N. This
setting is interesting for applications in cryptography [CHL05; CHK+06]. Note that if one
value n is larger than d then, the Dodis-Yampolskiy function is not necessarily defined at
n+ λ. In the following, we consider simple sets where all translates belong to the function
domain but our method can be adapted to other settings.

Theorem 4.2.1. Let λ be a fixed integer and let A ⊆ {1, . . . , d}. For some x ∈ F∗t , let
F (X) ∈ Fp[X] be such that F (g

1
x+n ) = g

1
x+n+λ for all n ∈ A. We have

deg(F ) ≥ t− 2s
4 and w(F ) ≥

(
t

4s

)1/2
where ]A = t− s.

Proof. Let R = {(n+x)mod t : n ∈ A}. Then R ⊆ Ft and ]R = t−s. We have F (g 1
n ) = g

1
n+λ

for all n ∈ R. Noticing that 1
n+λ = 1

λ(1− 1
λ
n

+1), we obtain F (g uλ ) = g
1
λ

(1− 1
u+1 ) for all u = λ

n ,
n ∈ R.
Let R0 = {u = λ

n : n ∈ R \ {0}} and T = {u ∈ R0 : 2u+ 1 ∈ R0}. Since ]R0 = t− s, we
have ]T ≥ t− 2s. Then

F
(
g

2u+1
λ

)
= g

1
λ

(1− 1
2u+2 ) = g

1
λ

( 1
2 + 1

2 (1− 1
u+1 )) = g

1
2λ × g 1

2λ (1− 1
u+1 )

for all u ∈ T . We thus have

F 2
(
g

2u+1
λ

)
= g

1
λ × g 1

λ
(1− 1

u+1 ) = g
1
λ × F (g

u
λ ), for all u ∈ T .
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Let H(X) = F 2(g 1
λX2) − g 1

λF (X). The polynomial H(X) is a non-zero polynomial and
deg(H) ≤ 4 deg(F ). Since H(X) has at least ]T = t− 2s zeros, we have 4 deg(F ) ≥ t− 2s
and then deg(F ) ≥ t−2s

4 . Moreover, if deg(H) ≤ t− 1, since the zeros of H are the powers of
g

1
λ , then we have by Lemma 2.2.1, w(H) ≥ t/(t− (t− 2s)), and since w(H) ≤ 2(w(F ))2, it

follows that w(F ) ≥ (t/4s)1/2.

Remark 4.2.2. Theorem 4.2.1 is non-trivial only when ]A > t/2. It remains an open
question to obtain non-trivial lowers bounds for smaller sets A.

4.3. Polynomial Interpolation of the Dodis-Yampolskiy
Pseudo-Random Function over Elliptic Curves

In this section, p is an odd prime number, E is an elliptic curve defined over Fp and P
is a point of the curve E(Fp) with prime order t. We prove lower bounds on the degree
of polynomial interpolation of the Dodis-Yampolskiy pseudo-random function over elliptic
curves defined by Vx(n) = X

([
1

x+n

]
P
)
for a secret key x ∈ F∗t and an integer n ∈ {1, . . . , d},

with 1 ≤ d ≤ t.
Theorem 4.3.1. Let S ⊆ {1, . . . , d}, ]S = t− s. We suppose X(P ) 6= 0. For some x ∈ F∗t ,
let F (X) ∈ Fp[X] be such that ψ2

2(F (X(P ))) 6= 0 and F (Vx(n)) = Vx(n+ 1) for all n ∈ S.
We have

deg(F ) ≥ t− 2s
176 .

Proof. Let R = {(n + x) mod t : n ∈ S} ⊆ Ft. We have ]R = t − s. Let us denote
xk = X([k]P ) and R0 = { 1

n : n ∈ R}, then we have F (xu) = x1− 1
1+u

for all u ∈ R0. We
consider the set T = {u ∈ R0 : 2u+ 1 ∈ R0}, then ]T ≥ t− 2s. For all u ∈ T , we have:

F (x2u+1) = x1− 1
2(u+1)

= x1/2+1/2(1−1/(u+1)) and F (xu) = x1−1/(u+1) (4.3)

Using division polynomials (see Section 2.3.2), we can write:

x1+1− 1
(u+1)

= θ2(F (x2u+1))
ψ2

2(F (x2u+1)) (4.4)

Using the elliptic curve addition law, we have

x1+α = a(xα)− 2y1yα
(xα − x1)2 where a(X) = x1X

2 + (x2
1 +A)X +Ax1 + 2B,

and for any polynomial G of degree m ≥ 1, we have

G(x1+α) = u(xα)− yαv(xα)
(xα − x1)2m and lc(u) = G(x1)

with uniquely determined polynomials u(X) and v(X) with deg(u) ≤ 2m (deg(u) = 2m if
G(x1) 6= 0) and deg(v) ≤ 2m− 2 and where lc(u) is the leading coefficient of the polynomial
u(X). Since F (xu) = x1− 1

u+1
, we can rewrite (4.4) as:

a(F (xu))− y1y1− 1
u+1

(F (xu)− x1)2 = θ2(F (x2u+1))
ψ2

2(F (x2u+1)) .
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Since the point (x1− 1
u+1

, y1− 1
u+1

) ∈ E(Fp) and F (xu) = x1− 1
u+1

, the polynomial y2
1(F (xu)3+

A · F (xu) + B)ψ4
2(F (x2u+1)) is equal to the polynomial [(F (xu) − x1)2θ2(F (x2u+1)) −

a(F (xu))ψ2
2(F (x2u+1))]2. We thus obtain

y2
1(F (xu)3 +A · F (xu) +B)× p1(x2u)− y2up2(x2u)

(x2u − x1)12d0
= Q(xu, x2u, y2u),

where d0 = deg(F ) and Q(xu, x2u, y2u) denotes a polynomial of the form
[
(F (xu)− x1)2 p3(x2u)− y2up4(x2u)

(x2u − x1)8d0
− a(F (xu))p5(x2u)− y2up6(x2u)

(x2u − x1)6d0

]2

such that deg(p1) ≤ 6d0, deg(p2) ≤ 6d0 − 2, deg(p3) ≤ 4d0, deg(p4) ≤ 4d0 − 2, deg(p5) ≤ 3d0
and deg(p6) ≤ 3d0 − 2. We obtain:

y2
1(F (xu)3 +AF (xu) +B)(x2u − x1)4d0(p1(x2u)− y2up2(x2u)) = P (xu, x2u, y2u),

where P (xu, x2u, y2u) = [(F (xu)− x1)2p3(x2u)− a(F (xu))(x2u − x1)2d0p5(x2u)
− y2u((F (xu)− x1)2p4(x2u)− a(F (xu))(x2u − x1)2d0p6(x2u))]2.
We then proceed as previously by trying to eliminate y2u. We obtain an expression in

function of xu and x2u and we replace x2u by θ2(xu)
ψ2

2(xu) . We finally obtain a rational function in
xu of the form:

Q(xu)
ψ40d0

2 (xu)
= 0, where Q(X) ∈ Fp[X] and deg(Q) ≤ 88d0.

Claim 4.3.2. We have

Q(X) 6= 0 if ψ2
2(F (x1)) 6= 0 and x1 6= 0

Proof. We have deg(P5) = 3d0 iff ψ2
2(F (x1)) 6= 0. If deg(P5) = 3d0, One can then verify that

the leading coefficient of Q is the leading coefficient of the numerator of the rational function
obtained from [(F (xu)− x1)2p3(x2u)− a(F (xu))(x2u − x1)2d0p5(x2u)]4 after replacing x2u by
θ2(xu)
ψ2

2(xu) .
Therefore, if deg(P5) = 3d0, then the leading coefficient of Q is (f2 × x1 × ψ2

2(F (x1)))4

which is non zero if x1 6= 0 since deg(P5) = 3d0 iff ψ2
2(F (x1)) 6= 0, where f is the leading

coefficient of F . Then if ψ2
2(F (x1)) 6= 0 and x1 6= 0, Q(X) is a non-zero polynomial.

If ψ2
2(F (x1)) 6= 0 and x1 6= 0, Q(X) is a non-zero polynomial with at least ]T/2 different

zeros. We thus have 88d0 ≥ (t− 2s)/2 and the claimed result.

The condition X(P ) 6= 0 in the statement of Theorem 4.3.1 holds obviously for almost all
point P . The lower bound then holds if the group order ]E(Fp) is odd since in this case, the
technical condition ψ2

2(F (X(P ))) 6= 0 is always satisfied. However, we obtain a weaker lower
bound for the polynomial degree which holds for every curve E.
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Theorem 4.3.3. Let 1 ≤ d ≤ t be a fixed integer and let A ⊆ {1, . . . , d}, ]A = t − s. For
some x ∈ F∗t , let F (X) ∈ Fp[X] such that F (Vx(n)) = Vx(n + 1) for all x ∈ A. We have
deg(F ) ≥ (t− 3s)1/2/6.

Proof. Let R = {(n + x) mod t : n ∈ A}. Then R ⊆ Ft and ]R = t − s. The equation
F (Vx(n)) = Vx(n+ 1) then becomes:

F

(
X

([ 1
n

]
P

))
= X

([ 1
n+ 1

]
P

)
,

for all n ∈ R. Denoting xk = X([k]P ) = X([k mod t]P ) and considering the set T = {n ∈
R : n/2, n+ 1 ∈ R}, we have

F
(
x 2
n

)
= F

(
x 1
n/2

)
= x 1

n/2+1
= x 2

n+2
=

θ2(x 1
n+2

)
ψ2

2(x 1
n+2

)

=
θ2(F (x 1

n+1
))

ψ2
2(F (x 1

n+1
))

=
θ2(F (F (x 1

n
)))

ψ2
2(F (F (x 1

n
))) ,

hence we have

F

 θ2(x 1
n

)
ψ2

2(x 1
n

)

 =
θ2(F (F (x 1

n
)))

ψ2
2(F (F (x 1

n
))) , for all n ∈ T.

Finally, we consider the polynomial

H(X) = ψ2d0
2 (X)ψ2

2(F (F (X)))
(
F

(
θ2(X)
ψ2

2(X)

)
− θ2(F (F (X)))
ψ2

2(F (F (X)))

)
.

The polynomial H(X) has at least ]T/2 zeros. We have F (F (X)) 6= X and by Lemma
2.3.2, it will imply that there exists α ∈ Fp such that ψ2

2(F (F (α))) = 0 and ψ2
2(α) 6= 0. Hence,

we have H(α) = −θ2(F (F (α)))ψ2d0
2 (α) 6= 0, since θ2(X) and ψ2

2(X) have no common zeros.
Therefore, H(X) is a non-zero polynomial and deg(H) ≤ 9d2

0. Then we get that 9d2
0 ≥ ]R/2

and the result follows.





Part II.

Lattice-Based Cryptanalysis of
Pseudo-Random Generators and

Signatures

— 61 —





Chapter 5.
Preliminaries
In this Chapter, we recall two short descriptions of Coppersmith’s methods that we use in
the next two Chapters. These methods have been introduced in 1996 by Don Coppersmith
for polynomial of one or two variables see [Cop96b; Cop96a]. Because of its importance in
cryptanalysis, these methods have been reformulated [How97] and extended for multivariate
polynomials [JM06]. They have been used in cryptography to attack many schemes (see
[BD00; BM03; HM10] for RSA and its variants, [HM09; BVZ12] for pseudorandom generators).
We also recall the analytic combinatorics proposed by [FS09] and used by [BCTV16] to ease
the Coppersmith’s methods and we conclude the Chapter by presenting some useful examples
that enable to understand the analytic combinatorics.
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5.1. Coppersmith’s methods
In this section, we give two short descriptions of Coppersmith’s methods for solving a
multivariate modular polynomial system of equations modulo an integer N . We refer the
reader to [JM06] for details and proofs.

5.1.1. First method
5.1.1.1. Problem definition.

Let f1(y1, . . . , yn), . . . , fs(y1, . . . , yn) be irreducible multivariate polynomials defined over Z,
having a root (x1, . . . , xn) modulo a known integer N , namely fi(x1, . . . , xn) ≡ 0 mod N .
We want this root to be small in the sense that each of its components is bounded by a
known value Xi. We also need to bound the sizes of Xi allowing to recover the desired root
in polynomial time.

5.1.1.2. Polynomials collection.

In a first step, one generates a collection P of polynomials {f̃1, . . . , f̃r} linearly inde-
pendent having (x1, . . . , xn) as a root modulo N . Usually, multiples and powers of
products of fi, i = 1, . . . , s are chosen , namely f̃` = y

α1,`
1 · · · yαn,`n f

k1,`
1 · · · fks,`s for some

integers α1,`, . . . , αn,`, k1,`, ks,`. Such polynomials satisfy the relation f̃`(x1, . . . , xn) ≡ 0
mod N

∑s

i=1 ki,` , i.e., there exists an integer ci such that f̃i(x1, . . . , xn) = ciN
∑s

j=1 kj,` .

5.1.1.3. Matrix construction.

We denote as M the set of monomials appearing in collection of polynomials P. Then each
polynomial f̃i can be expressed as a vector with respect to a chosen order on M . We hence
construct a matrixM as follows and we define as L the lattice generated by its rows:

M =



1
X−1

1
. . .

X−a1
1 . . . X−an

n

0

f̃1 . . . f̃r
↓ ↓ ↓

N

∑s

i=1
ki,1

. . .

N

∑s

i=1
ki,r



1
y1
...

ya1
1 . . . yan

n

On that figure, every row of the upper part is related to one monomial of M (we assume in
the figure that M contains 1, y1, and ya1

1 . . . yann among other monomials). The left-hand
side contains the bounds on these monomials (e.g., the coefficient X−1

1 X−2
2 is put in the row

related to the monomial y1y2
2). The right-hand side is formed by all vectors coming from P.

5.1.1.4. A short vector in a sublattice.

Let us now consider the row vector

r0 = (1, x1, . . . , x
a1
1 . . . xann ,−c1, . . . ,−cr) .
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By multiplying this vector by the matrixM, one obtains:

s0 =
(

1,
(
x1
X1

)
, . . . ,

(
x1
X1

)a1

· · ·
(
xn
Xn

)an
, 0, . . . , 0

)
.

s0 ∈ L is sufficient to recover the root we are searching for and its norm is very small since
‖s0‖2 6

√
]M . Thus, the recovery of a small vector in L, will likely lead to the recovery of

the desired root (x1, . . . , xn). To this end, we first restrict ourselves in a more appropriated
subspace. Indeed, noticing that the last coefficients of s0 are all null, we know that this
vector belongs to a sublattice L′ whose last coordinates are composed by zero coefficients.
By doing elementary operations on the rows ofM, one can construct that sublattice and its
determinant is the same as the one of L.

5.1.1.5. Method conclusion.

To finally compute all the small solutions (x1, . . . , xn) of the original modular polynomial
system, we require n independent polynomials having as root (x1, . . . , xn) over the integers.
To this end, we combine the two following lemmas, where Lemma 5.1.1 is due to Coppersmith
see [Cop96a] and Lemma 5.1.2 is due to Jutla see [Jut98].

Lemma 5.1.1. Let (b1, . . . , bω) be an LLL -reduced basis of a lattice L. If a lattice element
s satisfies ‖s‖ 6 ‖b?i ‖ for all i ∈ {k+ 1, . . . , ω}, then s lies in the space spanned by b1, . . . , bk.

Lemma 5.1.2. Let A = (v1, . . . , vω) be a basis of a lattice L. If bmax denotes the maximal
length of the Gram-Schmidt orthogonalized basis (b?1, . . . , b?ω) of A, namely bmax = maxi ‖b?i ‖.
For an LLL -reduced basis B = (b1, . . . , bω) of the lattice L , it holds that:

‖b?i ‖ > 2−
i−1

4

(det(L)
bω−imax

) 1
i

.

In order to obtain n polynomials over the integers having as root (x1, . . . , xn) , one computes
an LLL-reduced basis of the lattice L′ and computes the Gram-Schmidt’s orthogonalized
basis (b?1, . . . , b?t ) of the LLL output basis (b1, . . . , bt), with t = ]M . s0 belongs to L′ and
if its norm is smaller than those of b?i for i ∈ {t − n + 1, . . . , t}, then s0 is orthogonal to
b?i for i ∈ {t − n + 1, . . . , t} by Lemma 5.1.1. Extracting the coefficients appearing in b?i
for i ∈ {t − n + 1, . . . , t}, one can construct n polynomial p1, . . . , pn defined over Z such
that {p1(x1, . . . , xn) = 0, . . . , pn(x1, . . . , xn) = 0}. Under the (heuristic) assumption that all
created polynomials define an algebraic variety of dimension 0, the previous system can be
solved (e.g., using elimination techniques such as resultant computation or Gröebner basis)
and the desired root recovered in polynomial time.

By Lemma 5.1.2, putting t = ]M the condition on the bounds Xi that make this method
work is:

‖s0‖ 6
√
t 6 2−

t−n
4

(det(L)
bn−1

max

) 1
t−n+1

,

which can be rewritten as:

1 6 t−
t−n+1

2 2−
(t−n)(t−n+1)

4 b1−nmax det(L),
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in the next Chapter, for large dimensions lattices we let bn−1
max and t− t−n+1

2 2−
(t−n)(t−n+1)

4

contribute to an error term (see [M R10] for details) to obtain the simplified condition:

1 < det(L)

The condition on the bounds Xi that make this method work is then given by the following
(simplified) inequation : ∏

y
k1
1 ...yknn ∈M

Xk1
1 · · ·Xkn

n < N
∑r

`=1

∑s

i=1 ki,` . (5.1)

For such techniques, the most complicated part is the choice of the collection of polynomials,
what could be a really intricate task when working with multiple polynomials.
Remark 5.1.3. In practice, for small dimensions lattices, the experimental bounds on Xi

could be worse than the expected one due to the fact that we cannot give useful estimates for
the value bmax in general.

5.1.2. Second method
5.1.2.1. Problem definition.

Let f1(y1, . . . , yn), . . . , fs(y1, . . . , yn) be irreducible multivariate polynomials defined over Z,
having a root (x1, . . . , xn) modulo a known integer N namely fi(x1, . . . , xn) ≡ 0 mod N .
Our goal is to recover the desired root (x1, . . . , xn). This problem is generally intractable but
becomes solvable (under some conditions) in polynomial time log(p)O(1) (for constant n and
constant total degree of the input polynomials) if the root (x1, . . . , xn) is upper-bounded by
some values (X1, . . . , Xn) that depends on N and the degree of the polynomials f1, . . . , fs.

5.1.2.2. Polynomials collection.

In a first step, one generates a larger collection P of polynomials {f̃1, . . . , f̃r} linearly
independent having (x1, . . . , xn) as a root modulo Nm, for some positive integer m. Usually,
the technique consists in taking product of powers of the modulus N , the polynomials fi for
i ∈ {1, . . . , s} and some well-chosen monomials, such as

f̃` = p
m−
∑s

j=1 kj,`y
α1,`
1 · · · yαn,`n f

k1,`
1 · · · fks,`s

for some positive integers α1,`, . . . , αn,`, k1,`, ks,`. Such polynomials satisfy the relation
f̃`(x1, . . . , xn) ≡ 0 mod pm.

5.1.2.3. Lattice construction.

In a second step, one denotes as M the set of monomials appearing in collection of polynomials
P, and one writes the polynomials f̃i(y1X1, . . . , ynXn) for i ∈ {1, . . . , r} as a vector bi ∈ (Z)ω,
where ω = ]M . One then constructs a lattice L generated by the vectors b1, . . . , br and
computes its reduced basis using the LLL algorithm [LLL82].
Lemma 5.1.4. Let L be a lattice of dimension ω. In polynomial time, the LLL algorithm
given as input of basis of L outputs a reduced basis of L formed by vectors vi, 1 6 i 6 ω that
satisfy:

‖v1‖ 6 ‖v2‖ 6 · · · 6 ‖v2‖ 6 2
ω(ω−1)

4(ω+1−i) det(L)
1

ω+1−i .
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5.1.2.4. Generating new polynomials.

In a third step of the method, one combines Lemma 5.1.5 below (from [How97]) and
Lemma 5.1.4 to obtain n multivariate polynomials g1(y1, . . . , yn), . . . , gn(y1, . . . , yn) having
(x1, . . . , xn) as a root over the integers.

Lemma 5.1.5. (Howgrave-Graham Let h(y1, . . . , yn) be a polynomial over Z having at
most ω monomials. Suppose that:

1. h(x1, . . . , xn) = 0 mod W for some |x1| < X1, . . . , |xn| < Xn and,

2. ‖h(X1y1, . . . , Xnyn)‖ 6 W√
ω
. Then h(x1, . . . , xn) = 0 holds over the integers.

The LLL algorithm run on the lattice L to obtain n reduced vectors vi, i ∈ {1, . . . , n}
that we see as some polynomials h̃i(y1X1, . . . , ynXn), i ∈ {1, . . . , n}. One can see that for
i ∈ {1, . . . , n}, h̃i(x1, . . . , xn) = 0 mod pm, since h̃i is a linear combination of f̃1, . . . , f̃r.
Then if the following condition holds:

2
r(r−1)

4(r+1−n) det(L)
1

r+1−n <
pm√
ω
,

by Lemmas 5.1.4 and 5.1.5, h̃i(x1, . . . , xn) = 0, i ∈ {1, . . . , n} holds over the integers and we
then obtain n polynomials having (x1, . . . , xn) as a root over the integers.

5.1.2.5. Condition.

In our attacks, the number of polynomials in the first step is equal to the number of monomials
that appears in the collection, so r = ω = ]M . In the analysis, we let (as usual in this
setting) terms that do not depend on N contribute to an error term ε, and the simplified
condition becomes:

det(L) < Nm(ω+1−n).

Under the (heuristic) assumption that all created polynomials in the third step define an
algebraic variety of dimension 0, the previous system can be solved (e.g., using elimination
techniques such as resultant computation or Gröbner basis) and the desired root recovered
in polynomial time 1 log(p)O(1) (for constant n and constant total degree of the input
polynomials). We assume that these polynomials define an algebraic variety of dimension 0
and we justify the validity of our attacks by computer experiments.

5.2. Analytic Combinatorics

We now recall the analytic combinatorics results (see [FS09; BCTV16] for more details) that
we need in the next two Chapters.

1It is well known that the computational complexity of Gröbner basis algorithm may be exponential or even
doubly exponential. In our setting, the number of variables and the total degree of the input polynomials
are fixed and the theoretical complexity is polynomial in the field size (and thus in the security parameter).
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5.2.1. Introduction
To make things clear, we will explain the method with one multivariate modular polynomial.
As explained in the former section, Coppersmith’s method requires polynomials which are
usually constructed as fk = yk1

1 . . . yknn fk` (with f being a polynomial of degree e in the
variables y1, . . . , yn). In the following, we thus consider a set of polynomials looking like

P = {fk = yk1
1 . . . yknn fk` mod Nk` | 1 6 k` < t

and deg(fk) = k1 + · · ·+ kn + k`e < te} ,

where the notation modNk` is only here to recall that the considered solution verifies
fk ≡ 0 mod Nk` (to make things clearer). We suppose that f is not just a monomial (i.e., is
the sum of at least two distinct monomials) and therefore each k corresponds to a distinct
polynomial fk.

The set of monomials appearing in the collection P will usually look like

M = {yk = yk1
1 . . . yknn | 0 6 deg(yk) = k1 + · · ·+ kn < te} .

By construction, since (x1, . . . , xn) is a modular root of the polynomials fk, there exists
an integer ck such that fk(x1, . . . , xn) = ckN

k` (see Section 5.1). Furthermore, this root is
small in the sense that each of its components is bounded by a known value, namely |x1| <
X1, . . . , |xn| < Xn. These considerations imply that for the final condition in Coppersmith’s
method (see Equation (5.1)), one needs to compute the values

ψ =
∑
fk∈P

k` and ∀i ∈ {1, . . . , n}, αi =
∑
yk∈M

ki .

These values correspond to the exponent of N and Xi (for i ∈ {1, . . . , n}) in Equation (5.1)
respectively.
For the sake of readability for the reader unfamiliar with analytic combinatorics, we first

show how to compute the number of polynomials in P or M of a certain degree and then
how to compute these sums ψ and αi but only for polynomials in P or M of a certain degree.
These computations are of no direct use for Coppersmith’s method but are a warm-up for
the really interesting computation, namely these sums ψ and ai for polynomials in P or M
up to a certain degree.

5.2.2. Combinatorial Classes, Sizes, and Parameters
A combinatorial class is a finite or countable set on which a size function is defined, satisfying
the following conditions: (i) the size of an element is a non-negative integer and (ii) the
number of elements of any given size is finite. Polynomials of a “certain” form and up to
a “certain” degree can be considered as a combinatorial class, using a size function usually
related to the degree of the polynomial.
In the following, we can consider the set P as a combinatorial class, with the size

function SP defined as SP (fk) = deg(fk) = k1 + · · ·+ kn + k`e. In order to compute the sum
of the k` as explained in Section 5.2.1, we define another function χP , called a parameter
function, such that χP(fk) = k`. This function will enable us, instead of counting “1” for
each polynomial, to count “k`” for each polynomial, which is exactly what we need (see
Section 5.2.4 for the details).
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As for the monomials, we will also consider the set M as a combinatorial class, with the
size function SM defined as SM (yk) = k1 + · · ·+ kn. In the case the bounds on the variables
are equal (X1 = · · · = Xn = X), the parameter function corresponding to the exponent α1
of X1 in the final condition in Coppersmith’s method will be set as χM (yk) = k1 + · · ·+ kn.
Otherwise, one will be able to define other parameter functions in case the bounds are not
equal .

5.2.3. Counting the Elements: Generating Functions
The counting sequence of a combinatorial class A with size function S is the sequence of
integers (Ap)p>0 where Ap = |{a ∈ Ap | S(a) = p}| is the number of objects in class A that
have size p. For instance, if we consider the set M defined in 5.2.1, we have the equality
M1 = n since there are n monomials in n variables of degree 1.

Definition 5.2.1. The ordinary generating function (OGF) of a combinatorial class A
is the generating function of the numbers Ap, for p > 0, i.e., the formal2 power series
A(z) = ∑+∞

p=0Apz
p.

For instance, if we consider the set M (1) = {yk1
1 | 1 6 k1 < t} of the monomials with one

variable, then one gets M (1)
p = 1 for all p ∈ N, implying that M (1)(z) = ∑+∞

p=0 z
p = 1

1−z .
In the former example, we constructed the OGF A(z) from the sequence of numbers Ap

of objects that have size p. Of course, what we are really interested in is to do it the other
way around. We now describe an easy way to construct the OGF, and we will deduce from
this function and classical analytic tools the value of Ap for every integer p. We assume
the existence of an “atomic” class, comprising a single element of size 1, here a variable,
usually denoted as Z. We also need a “neutral” class, comprising a single element of size 0,
here 1, usually denoted as ε. Their OGF are Z(z) = z and E(z) = 1. We show in Table 5.1
the possible admissible constructions that we will need here, as well as the corresponding
generating functions.

Table 5.1.: Combinatorics constructions and their OGF

Construction OGF
Atomic class Z Z(z) = z
Neutral class ε E(z) = 1
Disjoint union A = B + C (when B ∩ C = ∅) A(z) = B(z) + C(z)
Complement A = B \ C (when C ⊆ B) A(z) = B(z)− C(z)
Cartesian product A = B × C A(z) = B(z) · C(z)
Cartesian exponentiation A = Bk = B × · · · × B A(z) = B(z)k
Sequence A = Seq(B) = ε+ B + B2 + . . . A(z) = 1

1−B(z)

One then recovers the formula M (1)(z) = 1
1−z from Z(z) = z and the construction Seq(Z)

to describe M (1). Similarly, if we now consider the set M (2) = {yk = yk1
1 y

k2
2 | 0 6 k1+k2 < t}

of the monomials with two variables, with the size function S(yk) = k1 + k2, then one
gets M (2)(z) = M (1)(z) · M (1)(z) = 1

(1−z)2 from M (2) = M (1) ×M (1). Finally, since

2We stress that it is a “formal” series, i.e., with no need to worry about the convergence.
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1
(1−z)2 = ∑+∞

p=1 pz
p−1, one gets, for all p > 1, (M2)p = p+ 1, which is exactly the number of

monomials with two variables of size p.
When the class contains elements of different sizes (such as variables of degree 1 and

polynomials of degree e), the variables are represented by the atomic element Z and the
polynomials by the element Ze, in order to take into account the degree of the polynomial f . If
we consider for instance the set P(1,2) = {fk = yk1

1 f
k` | 1 6 k` < t and deg(fk) = k1 + 2k` <

2t}, with f a polynomial of degree 2, this set is isomorphic to Seq(Z)×Z2Seq(Z2), since
deg(f) = 2. This leads to an OGF equals to

1
1− z

z2

1− z2 =
+∞∑
q=0

qzq
+∞∑
r=1

rz2r =
+∞∑
p=0

bp/2c∑
r=1

(p− 2r)rzp ,

which gives P (1,2)
p = ∑bp/2c

r=1 (p− 2r)r, which is exactly the number of polynomials of degree p
contained in the class.

5.2.4. Counting the Parameters of the Elements: Bivariate Generating
Functions

As seen in the former section, when one considers a combinatorial class A of polynomials
and computes the corresponding OGF A(z), classical analytic tools enable to recover Ap as
the coefficient of zp in the OGF. As explained in the introduction of this section, however,
Coppersmith’s method requires a computation a bit more tricky, which involves an additional
parameter. For the sake of simplicity, we describe this technique on an example.
For instance, consider our monomial set example M (2), but now assume that X1 6= X2.

Our goal is to compute ∑ k1, where the sum is taken over all the monomials in M (2) of
size p. We set a parameter function3 χ(yk) = k1 and we do not compute M (2)

p (for p > 1)
anymore, but rather

χp(M (2)) =
∑

yk∈M (2)|S(yk)=p

χ(yk) =
∑

yk∈M (2)|S(yk)=p

k1

where, informally speaking, instead of counting for 1, every monomial counts for the value of
its parameter (here the degree k1 in y1).

The value χp(M (2)) cannot be obtained by the construction of M (2) as Seq(Z)× Seq(Z)
that we used in the former section, since the two atomic elements Z do not play the same
role (the first one is linked with the parameter, whereas the second one is not). The classical
solution is simply to “mark” the atomic element useful for the parameter, with a new
variable u: With this new parameter function, M (2) is seen as Seq(uZ)× Seq(Z), defining
the bivariate ordinary generating function (BGF)4 M2(z, u) = 1

1−uz
1

1−z . We remark that
when we set u = 1, we get the original non-parameterized OGF. Informally speaking, the
BGF of a combinatorial class A with respect to a size function S and a parameter function χ
is obtained from the corresponding OGF by replacing each z by ukz where k is the value

3Note that it is possible to count the exponents of both X1 and X2 at once using two parameters, but it is
usually easier to count them separately, which often boils down to the same computation. See concrete
examples in Section 5.3.

4In complex cases, the marker u can be put to some exponent k, for instance if the parameter considered has
a value equal to k for the atomic element.
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of the parameter taken on the atomic element Z. We then obtain χp(A) via the following
result:

Theorem 5.2.2. Assume A is a combinatorial class with size function S and parameter func-
tion χ, and assume A(z, u) is the bivariate ordinary generating function for A corresponding
to this parameter (constructed as explained above). Then, if we define

χp(A) =
∑

a∈A|S(a)=p
χ(a)

the ordinary generating function of the sequence (χp(A))p>0 is equal to the value (∂A(z, u)/∂u)u=1,
meaning that we have the equality

∂A(z, u)
∂u

∣∣∣∣
u=1

=
+∞∑
p=0

χp(A)zp def= χ(A)(z) .

Coming back to our example, one then gets

χ(M (2))(z) =
+∞∑
p=0

χp(M (2))zp = ∂M (2)(z, u)
∂u

∣∣∣∣∣
u=1

= z

(1− z)3 =
+∞∑
p=1

p(p− 1)
2 zp−1.

meaning that χp(M (2)) = p(p+ 1)/2 (remind that it is an equality on formal series). Finally,
the sum of the degrees k1 of the elements of size p is p(p + 1)/2, which can be checked
by enumerating them: yp2 , y1y

p−1
2 , y2

1y
p−2
2 , . . . , yp−1

1 y2, y
p
1. It is easy to see that the result is

exactly the same for X2, without any additional computation, by symmetry.

5.2.5. Counting the Parameters of the Elements up to a Certain Size

We described in the former section a technique to compute the sum of the (partial) degrees
of elements of size p, but how about computing the same sum for elements of size up to p?
Using the notations of the former section, we want to compute

χ6p(A) =
∑

a∈A|S(a)6p
χp(a) .

The naive way is to sum up the values χi(A) for all i between 0 and p:

χ6p(A) =
p∑
i=0

∑
a∈A|S(a)=i

χi(a) ,

but an easier way to do so is to artificially force all elements a of size less than or equal to p
to be of size exactly p by adding enough times a dummy element y0 such that χ(y0) = 0.
In our context of polynomials, the aim of the dummy variable y0 is to homogenize the

polynomial. If we consider again the set M (2) of monomials of two variables y1 and y2, with
size function equal to S(yk) = k1 + k2 and parameter function equal to χ(yk) = k1, and if we
are interested in the sum of the degrees k1 of the elements in this set of size up to p, we now
describe this set as Seq(uZ)× Seq(Z)× Seq(Z), the last part being the class of monomials
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in the unique variable y0. This variable is not marked, since its degree is not counted. One
obtains the new bivariate generating function M (2)(z, u) = 1

1−uz
1

(1−z)2 and

χ6(M (2))(z) =
+∞∑
p=0

χ6p(M (2))zp = ∂M (2)(z, u)
∂u

∣∣∣∣∣
u=1

= z

(1− z)4

=
+∞∑
p=2

p(p− 1)(p− 2)
6 zp−2 ,

meaning that χ6p(M (2)) = p(p+ 1)(p+ 2)/6 (remind that it is an equality on formal series).
Finally, the sum of the degrees k1 of the elements of size up to p (i.e., the exponent of X1 in
Coppersmith’s method) is p(p+ 1)(p+ 2)/2, which can be checked by the computation

p∑
i=0

i(i+ 1)
2 = p(p+ 1)(p+ 2)

6 .

Again, it is easy to see that the result is exactly the same for X2, without any additional
computation.

5.2.6. Asymptotic Values: Transfer Theorem
Finding the OGF or BGF of the combinatorial classes is usually an easy task, but finding
the exact value of the coefficients can be quite painful. Coppersmith’s method is usually
used in an asymptotic way. Singularity analysis enables us to find the asymptotic value of
the coefficients in an simple way, using the technique described in [FS09], Corollary V I.1
(sim-transfer), page 392. Adapted to our context, their transfer theorem can be stated as
follows:

Theorem 5.2.3 (Transfer Theorem). Assume A is a combinatorial class with an ordinary
generating function F regular enough such that there exists a value c verifying

F (z) ∼
z→1

c

(1− z)α

for a non-negative integer α. Then the asymptotic value of the coefficient Fn is

Fn ∼
n→∞

cnα−1

(α− 1)! .

5.3. Some useful applications of the technique
We now describe how to use the generic tools recalled in the former section to count the
exponents of the bounds X1, . . . , Xn and of the modulo N .

5.3.1. Counting the Bounds for the Monomials (Useful Examples)
5.3.1.1. First Example.

In this example, we consider

M = {y1
i1 · · · ynin | 1 6 i1 + · · ·+ in < t}
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with the bounds |yj | < Xj for 1 6 j 6 n. In order to obtain the exponent for the bound Xj ,
we consider M as a combinatorial class, with the size function S(y1i1 . . . ynin) = i1 + · · ·+ in
and the parameter function χXj (y1i1 . . . ynin) = ij .

We then describe M as
n∏
k=1
k 6=j

Seq(Z)︸ ︷︷ ︸
yk

×Seq(uZ)︸ ︷︷ ︸
yj

×Seq(Z)︸ ︷︷ ︸
y0

\ε

(the last Seq(Z) being for the dummy value y0), which leads to the OGF

F (z, u) =
( 1

1− z

)n ( 1
1− uz

)
− 1 .

The next step is to compute the partial derivative in u at u = 1:

∂F (z, u)
∂u

∣∣∣∣
u=1

=
( 1

1− z

)n ( z

1− uz

)2
∣∣∣∣∣
u=1

= z

(1− z)n+2

and take the equivalent value when z → 1:

∂F (z, u)
∂u

∣∣∣∣
u=1

∼
z→1

1
(1− z)n+2 ,

which finally leads, using Theorem 5.2.3, to χXj,<t(M ) ∼ (t−1)n+1

(n+1)! ∼ tn+1

(n+1)! .
This set of monomials used in Coppersmith’s method (first method) thus leads to the

bound ∏n
i=1X

tn+1
(n+1)!
i .

Concrete bounds. For n = 2, we give in the table below the exponent for the bound Xj

for smaller t by computing the Taylor series at 0 of the function ∂F (z,u)
∂u

∣∣∣
u=1

. One can verify
that each value in the table equals ∑t−1

j=1
j(j+1)

2 which is the exponent for the bound Xj by
direct computations.

t 2 3 4 5 6 7 8 9 10
exponent 1 4 10 20 35 56 84 120 165

In the case where X1 = · · · = Xn = X, the bound becomes X
ntn+1
(n+1)! . In this same case, one

could consider M as a combinatorial class, with the size function S(y1i1 . . . ynin) = i1+· · ·+in
and the parameter function χXj (y1i1 . . . ynin) = i1 + · · ·+ in (since the bound X is the same
for all variables) and then obtain the same bound.

5.3.1.2. Second Example.

In this example, we consider

M = {y1
i1 . . . yn

in | (i1 = 0 or 0 6 i2 6 e)
and 1 6 i1 + · · ·+ in < t}

with the bounds |yi| < X for 1 6 i 6 n. We use the size function S(y1i1 . . . ynin) = i1 +· · ·+in
and the parameter function χ(y1i1 . . . ynin) = i1 + · · ·+ in.
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The first step is to split M into disjoint subsets. In our case, the three disjoint subsets
correspond to (i1 = 0and 0 6 i2 6 e), (i1 6= 0and 0 6 i2 6 e) and (i1 = 0and e + 1 6 i2).
Taking into account the dummy value y0, we describe them as

(ε+ Z + · · ·+ Ze)×
n−2∏
i=1

Seq(uZ)× Seq(Z)

for the first one and

(uZ)× Seq(uZ)× (ε+ Z + · · ·+ Ze)×
n−2∏
i=1

Seq(uZ)× Seq(Z)

for the second one and

(uZ)e+1 × Seq(uZ)×
n−2∏
i=1

Seq(uZ)× Seq(Z)

for the third one. This leads to the OGF

F (z, u) =
((

1 + uz

1− uz

)
(1 + z + · · ·+ ze) + (uz)e+1

1− uz

)( 1
1− uz

)n−2 1
1− z

= 1 + z + · · ·+ ze + (uz)e+1

(1− uz)n−1
1

1− z ,

which gives, after computations,

∂F (z, u)
∂u

∣∣∣∣
u=1

= (e+ 1)(1− uz)ueze+1 + (n− 1)z(1 + z + · · ·+ ze + (uz)e+1)
(1− uz)n

1
1− z

∣∣∣∣∣
u=1

,

and take the equivalent value when z → 1:

∂F (z, u)
∂u

∣∣∣∣
u=1

∼
z→1

(e+ 2)(n− 1)
(1− z)n+1 ,

which finally leads, using Theorem 5.2.3, to χ<t(M ) ∼ (e+2)(n−1)tn
n! . This set of monomials

used in Coppersmith’s method (first method) thus leads to the bound X
(e+2)(n−1)tn

n!

5.3.2. Counting the Bounds for the Polynomials

5.3.2.1. First Example.

We now consider the set

P = {fk = yk1
1 . . . yknn fk` mod Nk` | 1 6 k` < t

and deg(fk) = k1 + · · ·+ kn + k`e < te}

with the bounds X1 = · · · = Xn = X for the variables. In order to obtain the exponent for
the modulus N , we consider the size function S(y1k1 . . . yn

knfk`) = k1 + · · ·+ kn + k` and
the parameter function χN (y1k1 . . . yn

knfk`) = k`.
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For the sake of simplicity, we can consider 0 6 k` < t since the parameter function is equal
to 0 on the elements fk such that k` = 0. We describe P as∏n

i=1 Seq(Z)×Seq(uZe)×Seq(Z)
(the last one being for the dummy value y0), since only f needs a marker and its degree is e.
This leads to the OGF

F (z, u) =
( 1

1− z

)n+1 1
1− uze .

The next step is to compute the partial derivative in u at u = 1:

∂F (z, u)
∂u

∣∣∣∣
u=1

= ze

(1− uze)2

( 1
1− z

)n+1
∣∣∣∣∣
u=1

= ze

(1− ze)2

( 1
1− z

)n+1

and take the equivalent value when z → 1, using the formula 1− ze ∼ e(1− z):

∂F (z, u)
∂u

∣∣∣∣
u=1

∼
z→1

1
e2(1− z)n+3 ,

which finally leads, using Theorem 5.2.3, to χN,<te(P) ∼ (te)n+2

e2(n+2)! .

5.3.2.2. Second Example.

Let f1(y1, . . . , yn), . . . , fs(y1, . . . , yn) be multivariate polynomials defined over Z of degree
e1, . . . , es respectively, we now consider the set

P = {f̃` = y
α1,`
1 . . . y

αn,`
n f

k1,`
1 · · · fks,`s mod N

∑s

j=1 kj,` | 1 6
s∑
j=1

kj,`

and deg(f̃`) =
n∑
j=1

αj,` +
s∑
j=1

ejkj,` < te}

where e = max(e1, . . . , es). In order to obtain the exponent for the modulus N at the end of
Coppersmith’s method, we consider the size function S(f̃`) = ∑n

j=1 αj,` +∑s
j=1 ejkj,` and

the parameter function χ
fj

(f̃`) = kj,`, for j ∈ {1, . . . , s}.
For the sake of simplicity, we can consider 0 6

∑s
j=1 kj,`. Since the degree of each fj is ej ,

we describe P as
n∏
k=1

Seq(Z)︸ ︷︷ ︸
yk

×
s∏

k=1
k 6=j

Seq(Zek)︸ ︷︷ ︸
fk

×Seq(uZej )︸ ︷︷ ︸
fj

× Seq(Z)︸ ︷︷ ︸
dummy var.

which leads to the following generating function

Fj(u, z) =
( 1

1− z

)n( s∏
k=0
k 6=j

1
1− zek

)
1

1− uzej
1

1− z .

The next step is to compute the partial derivative in u at u = 1:

∂Fj
∂u

(u, z)
∣∣∣∣
u=1

=
( 1

1− z

)n+1
×
(

s∏
k=0
k 6=j

1
1− zek

)
× zej

(1− zej )2 .
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We take the equivalent when z → 1, using the formula 1− zm ∼ m(1− z):

∂Fj
∂u

(u, z)
∣∣∣∣
u=1

∼
z→1

1
ej(
∏s
k=1 ek)(1− z)n+s+2 ,

which finally leads, using Theorem 5.2.3, to

χ
fj ,<te

(P) ∼ (te)n+s+1

ej(
∏s
k=1 ek)(n+ s+ 1)! .

This set of polynomials used in Coppersmith’s method thus leads to the bound

N

(te)n+s+1

(n+s+1)!
∏s

k=1 ek

∑s

j=1
1
ej .



Chapter 6.
Inferring a Linear Congruential
Generator and a Power Generator on
Elliptic Curves
In this Chapter, we analyze the security of the Elliptic Curve Linear Congruential Generator
(EC-LCG) and of the Elliptic Curve Power Generator (EC-PG). We use the Coppersmith’s
methods to show that these generators are insecure if sufficiently many bits are output at each
iteration. Gutierrez and Ibeas showed that the EC-LCG is insecure given a certain amount
of most significant bits of some consecutive values of the sequence. Using the Coppersmith’s
methods, we are able to improve the security bounds of this generator in their setting and in
other settings. We also show that the EC-PG is insecure if sufficiently many bits are output
at each iteration using the same techniques. The Chapter is organized as follows, in the
first section we present the Linear Congruential Generator and Power Generator on Elliptic
Curves. In the second and third sections, we infer the EC-LCG when the composer is known
or unknown and we conclude the Chapter by inferring the EC-PG.
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6.1. Linear Congruential Generator and Power Generator on
Elliptic Curves

In cryptography, a pseudo-random number generator is a deterministic algorithm which
takes as input a short random seed and output and output a long pseudo-random sequence.
Random numbers have found a number of applications in the literature. For instance they are
useful for privacy, randomized algorithms and key generation. In 1994, S. Hallgren see [S H94]
proposed a pseudo-random numbers generator based on a subgroup of points of an elliptic
curve defined over a prime finite field. This generator is known as the Linear Congruential
Generator on Elliptic Curves (EC-LCG). If E is an elliptic curve defined over a prime finite
field Fp, for a given point G ∈ E(Fp), the Linear Congruential Generator on Elliptic Curves,
EC-LCG is a sequence (Un) of pseudo-random numbers defined by the relation:

Un = Un−1 ⊕G = nG⊕ U0, n ∈ N

where U0 ∈ E(Fp) is the initial value or seed. We refer to G as the composer of the generator.
For a positive integer e > 1 and a point G ∈ E(Fp) of order ` with gcd(e; `) = 1, the Elliptic
curve power generator, EC-PG is a sequence (Vn) of pseudo-random numbers defined by the
relation:

Vn = eVn−1 = enG n ∈ N

where V0 ∈ E(Fp) is the initial value or seed. The EC-LCG and the EC-PG provide a very
attractive alternative to linear and non-linear congruential generators and they have been
extensively studied in the literature, see [Shp08; HS05; GL01; GBS99; MS02; PJ02; Shp09b]
and the references therein. In Cryptography, we want to use the output of the generator as a
stream cipher. One can notice that if two consecutive values Un, Un+1 of the generator are
revealed, it is easy to find U0 and G. So, we output only the most significant bits of each
coordinate of Un, n = 0, 1, . . . in the hope that this makes the resulting output sequence
difficult to predict. Likewise we output only the most significant bits of each coordinate of
Vn, n = 0, 1, . . . . We show that the EC-LCG and the EC-PG are insecure if sufficiently many
bits are output at each stage. Therefore a secure use of these generators requires to output
much fewer bits at each iteration and the efficiency of the schemes is thus degraded. Our
attacks used the well-known Coppersmith’s methods for finding small roots on polynomial
equations. These methods have been used to infer many pseudorandom generators and to
cryptanalyze many schemes in Cryptography (see [BCTV16; BVZ12] and the references
therein). Throughout this chapter, ∆ < pδ, with 0 < δ < 1, corresponds to the situation
where a proportion of at most δ of the least significant bits of the output sequence remain
hidden.

6.2. Predicting EC-LCG Sequences for Known Composer
In the cryptographic setting, the initial value U0 = (x0, y0) and the constants G, a and b are
supposed to be the secret key. In the following we infer the EC-LCG in the case where the
composer G is known and the curve is kept secret. We consider two cases: the case where the
most significant bits of consecutive values Un of the sequence is output and the case where
the most significant bits of the abscissa of consecutive multiple values Ukn (for some fixed
integer k) of the sequence is output. In the first case, we show that the generator is insecure
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if at least a proportion of 4/5 of the most significant bits of two consecutive values U0 and
U1 of the sequence is output. In the second case, We show that the generator is insecure if
at least a proportion of 7/8 of the most significant bits of two values X(U0) and X(Uk) is
output, X(P ) denoting the abscissa of the point P .

Theorem 6.2.1. (two consecutive outputs) Given ∆-approximations W0, W1 to two
consecutive affine value U0, U1 produced by the EC-LCG, and given the value of the composer
G = (xG, yG). Under the heuristic assumption that all created polynomials we get by applying
Coppersmith’s method with the polynomial set P below define an algebraic variety of dimension
0, one can recover the seed U0 in heuristic polynomial time in log p as soon as ∆ < p1/5.

Proof. We suppose U0 /∈ {−G,G}. Then, clearing denominators in 2.1, we can translate

U1 = U0 ⊕G

into the following identities in the field Fp:

L1 = L1(x0, y0, x1) = 0mod p, L2 = L2(x0, y0, x1, y1) = 0mod p

where U0 = (x0, y0), U1 = (x1, y1) and

L1 = x3
G + x1x

2
G − x0x

2
G − 2x1xGx0 − xGx2

0 + x3
0 + 2yGy0 + x1x

2
0 − y2

G − y2
0,

L2 = y1xG − y1x0 − yGx0 + yGx1 − y0x1 + y0xG.

Set W0 = (α0, β0) and W1 = (α1, β1). Then using the equalities xj = αj + ej and
yj = βj + fj , for j = 0, 1, where |ej |, |fj | < ∆ leads to the following polynomial system:{

f(e0, e1, f0) = 0 mod p
g(e0, e1, f0, f1) = 0 mod p .

where f(z1, z2, z3) = A1z1 + A2z2 + A3z3 + A4z2
1 + A5z1z2 + z3

1 + z2
1z2 − z2

3 + A6 and
g(z1, z2, z3, z4) = B1z1 + B2z2 + B3z3 + B4z4 + z1z4 + z2z3 + B5 are polynomials whose
coefficients Ai and Bi are functions of xG, and the approximations values α0, α1, β0, β1. If we
fix u = z3

1 + z2
1z2 − z2

3 and v = z1z4 + z2z3, then the polynomial f becomes f1(z1, z2, z3, u) =
A1z1 + A2z2 + A3z3 + A4z2

1 + A5z1z2 + u + A6 and g becomes g1(z1, z2, z3, z4, v) = B1z1 +
B2z2 +B3z3 +B4z4 + v +B5.

Description of the attack The adversary is therefore looking for the small solutions of the
following modular multivariate polynomial system:{

f1(z1, z2, z3, u) = 0 mod p
g1(z1, z2, z3, z4, v) = 0 mod p .

With |zj | < ∆, |u| < X = ∆3 and |v| < Y = ∆2. The attack consists in applying
Coppersmith’s methods for multivariate polynomials with one modulo. From now, we use
the following collection of polynomials (parameterized by some integer t ∈ N):

P =
{
zj11 . . . zj44 f

i1
1 g

i2
1 mod pi1+i2 : i1 + i2 > 0 and j1 + · · ·+ j4 + 2i1 + i2 < 2t

}
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The list of monomials appearing within this collection can be described as:

M =
{
zi11 z

i2
2 z

i3
3 z

i4
4 u

i5vi6 mod ∆i1+i2+i3+i4Xi5Y i6 : i1 + · · ·+ i4 + 2i5 + i6 < 2t
}
.

If we use for instance the monomial order lex (with zi < u < v) on the set of monomials,
then the leading monomial of f1 is LM(f1) = u and LM(g1) = v. Then the polynomials in
P are linearly independent since we have prohibited the multiplication by u and v.

Bounds for the polynomials modulo p. We consider the set P as a combinatorial class,
with the size function S(zj11 . . . zj44 f

i1
1 g

i2
1 ) = j1 + · · ·+ j4 + 2i1 + i2 and the parameter function

χ(zj11 . . . zj44 f
i1
1 g

i2
1 ) = i1 + i2. The degree of each variable zi, u, v is 1, whereas the degree of

f1 is 2 and the degree of g1 is 1. For the sake of simplicity, we can consider 0 6 i1 + i2, since
the parameter function equals 0 for elements zj11 . . . zj44 f

i1
1 g

i2
1 with i1 + i2 = 0.

We can described P as:
4∏
i=1

Seq(Z)× Seq(uZ2)× Seq(uZ)× Seq(Z),

where the last one is for the dummy value z0.
This leads to the generating function:

F (z, u) =
( 1

1− z

)5
× 1

1− uz2 ×
1

1− uz .

We have
∂F

∂u
(u, z)

∣∣∣∣
u=1

= z2(1− z) + z(1− z2)
(1− z)7(1− z2)2 ,

as z → 1 , 1− zn ∼ n(1− z) leads to:

∂F

∂u
(u, z)

∣∣∣∣
u=1

∼
z→1

3(1− z)
4(1− z)9 ∼

3
4(1− z)8 ,

since 2t ∼ 2t− 1, this leads to:

χ<2t(P) ∼ 3
4 ×

(2t)7

7!

Bounds for the monomials modulo ∆. We consider the set M as a combinatorial class,
with the size function S(zi11 . . . zi44 u

i5vi6) = i1 + · · ·+ i4 + 2i5 + i6 and the parameter function
χ(zi11 . . . zi44 u

i5vi6) = i1 + · · ·+ i4. As z1, z2, z3, z4, u, v "count for" 1, 1, 1, 1, 2 and 1 respectively
in the condition of the set, we can described M as:

Seq(Z2)× Seq(Z)×
4∏
i=1

Seq(uZ)× Seq(Z),

where the last one is for the dummy value z0.
Which leads to the generating function:

F (z, u) = 1
(1− z2)(1− z)2 ×

( 1
1− uz

)4
.
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We have
∂F

∂u
(u, z)

∣∣∣∣
u=1

= 4z
(1− z)7(1− z2) ,

as z → 1 , 1− zn ∼ n(1− z) leads to:

∂F

∂u
(u, z)

∣∣∣∣
u=1

∼
z→1

2
(1− z)8 ,

since 2t ∼ 2t− 1, this leads to:

χ<2t,∆(M) ∼ 2(2t)7

7!

Bounds for the monomials modulo X. We consider the set M as a combinatorial class,
with the size function S(zi11 . . . zi44 u

i5vi6) = i1 + · · ·+ i4 + 2i5 + i6 and the parameter function
χ(zi11 . . . zi44 u

i5vi6) = i5. As z1, z2, z3, z4, u, v "count for" 1, 1, 1, 1, 2 and 1 respectively in the
condition of the set, we can described M as:

5∏
i=1

Seq(Z)× Seq(uZ2)× Seq(Z),

where the last one is for the dummy value z0.
Which leads to the generating function:

F (z, u) = 1
(1− z)6 ×

( 1
1− uz2

)
.

This leads to:

χ<2t,X(M) ∼ (2t)7

4× 7!

Bounds for the monomials modulo Y . We consider again the set M as a combinatorial
class, with the size function S(zi11 . . . zi44 u

i5vi6) = i1 + · · ·+ i4 + 2i5 + i6 and the parameter
function χ(zi11 . . . zi44 u

i5vi6) = i6. As z1, z2, z3, z4, u, v "count for" 1, 1, 1, 1, 2 and 1 respectively
in the condition of the set, we can described M as:

4∏
i=1

Seq(Z)× Seq(Z2)× Seq(uZ)× Seq(Z),

where the last one is for the dummy value z0.
Which leads to the generating function:

F (z, u) = 1
(1− z)5(1− z2) ×

( 1
1− uz

)
.

This leads to:

χ<2t,Y (M) ∼ (2t)7

2× 7!
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Condition. If we denote by ν1 = χ<2t,∆(M), ν2 = χ<2t,X(M), ν3 = χ<2t,Y (M) and ε =
χ<2t(P), the condition for Coppersmith’s method is pε > ∆ν1Xν2Y ν3 , ie ∆ < p

ε
ν1+3ν2+2ν3 ,

where:
ε

ν1 + 3ν2 + 2ν3
∼ χ<2t(P)
χ<2t,∆(M) + 3χ<2t,X(M) + 2χ<2t,Y (M) ∼

1
5 ,

this leads to the expecting bound:
∆ < p

1
5 .

Complexity of the attack. The dimensions of the matrix used in Coppersmith’s methods
depend on the cardinalities of the set of polynomials and monomials. To compute the cardi-
nalities of the sets P and M, we make used of the parameters functions χ(zj11 . . . zj44 f

i1
1 g

i2
1 ) = 1

and χ(zi11 . . . zi44 u
i5vi6) = 1. This leads to the generating functions:

F1(z) =
( 1

1− z

)5
×
( 1

1− z2 ×
1

1− z − 1
)

and

F2(z) =
( 1

1− z

)5
× 1

1− z2 ×
1

1− z ,

for P and M respectively.
Asymptotic bounds. We have:

F1(z), F2(z) ∼
z→1

1
2(1− z)7 ,

which leads when t goes to infinity to the asymptotic bound:

1
2 ×

(2t)6

6!
Concrete bounds. We give in the table below the cardinalities of the sets P and M for
smaller t.

t 1 2 3 4 5 6 7 8 9
number of polynomials 1 27 188 776 2393 6111 13664 27672 51897
number of monomials 6 62 314 1106 3108 7476 16044 31548 57882

This bound improves the known bound ∆ < p1/6. Next we further improve the previous
bound and we show that the generator is insecure if at least a proportion of 8/11 of the most
significant bits of an infinite consecutive values Ui of the sequence is output.
Experimental Results.

We have implemented the attack in Sage 7.6 on an elliptic curve over Fp for a 256-bit prime p
on a MacBook Air laptop computer (2,2 GHz Intel Core i7, 4 Gb RAM 1600 MHz DDR3, Mac
OSX 10.10.5). Our theoretical bound is δtheo = 1

5 (δ < pδ) and we denote the experimental
bound by δexp. We consider the family of polynomials Pt with t = 2 which corresponds to a
lattice of dimension 89 and we could not increase the value of t (which allows us to obtain a
better theoretical bound) because of the large dimension of the corresponding lattice. After
the computations of the LLL reduced basis and Gram-Schmidt orthogonalized basis which
takes a few seconds, we obtain:
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• a polynomial system over the integers of dimension 0 if δexp < 0.08 and we can then
recover the seed U0

• a polynomial system over the integers of dimension 1 if δexp 6 0.1. After the computation
of the Gröbner basis, we add the two polynomials u− z3

1 + z2
1z2− z2

3 and v− z1z4 + z2z3
to the polynomials obtained with the computation of the Gröbner basis and we are
able from the new system to obtain the seed U0.

Theorem 6.2.2. (more consecutive outputs)
Given ∆-approximations W0, W1,. . . ,Wn (for some integer n > 1) to n + 1 consecutive
affine values U0, U1,. . . ,Un produced by the EC-LCG, and given the value of the composer
G = (xG, yG). Under the heuristic assumption that all created polynomials we get by applying
Coppersmith’s method with the polynomial set P below define an algebraic variety of dimension
0, one can recover the seed U0 in polynomial time in log p as soon as ∆ < p

3n
11n+4

Proof. Let us assume, for instance that the adversary has access to n+1 ∆-approximationsW0,
W1,. . . ,Wn of U0, U1,. . . ,Un produced by the EC-LCG. Then using the equalities xj = αj +ej
and yj = βj + fj , for j = 0, . . . , n, where |ej |, |fj | < ∆ and Wj = (αj , βj) and Uj = (xj , yj)
leads to the following polynomial system:

f ′1(e0, e1, f0) = 0 mod p
g′1(e0, e1, f0, f1) = 0 mod p

...
f ′n(en−1, en, fn−1) = 0 mod p

g′n(en−1, en, fn−1, fn) = 0 mod p .

Where for i = 1, . . . , n, f ′i(zi−1, zi, zn+i) = A1zi−1 + A2zi + A3zn+i + A4z2
i−1 + A5zi−1zi +

z3
i−1 + z2

i−1zi− z2
n+i+A6 and g′i(zi−1, zi, zn+i, zn+i+1) = B1zi−1 +B2zi+B3zn+i+B4zn+i+1 +

zi−1zn+i+1 + zizn+i +B5 are polynomials whose coefficients Ai and Bi are functions of xG,
and the approximations values αk, βk, (k = i− 1, i). If we fix ui = z3

i−1 + z2
i−1zi − z2

n+i and
vi = zi−1zn+i+1 + zizn+i, then the polynomial f ′i becomes fi(zi−1, zi, zn+i, ui) = A1zi−1 +
A2zi + A3zn+i + A4z2

i−1 + A5zi−1zi + ui + A6 and g′i becomes gi(zi−1, zi, zn+i, zn+i+1, vi) =
B1zi−1 +B2zi +B3zn+i +B4zn+i+1 + vi +B5. The adversary is then looking for the solutions
of the modular multivariate polynomial system:

f1(z0, z1, zn+1, u1) = 0 mod p
g1(z0, z1, zn+1, zn+2, v1) = 0 mod p

...
fn(zn−1, zn, z2n, un) = 0 mod p

gn(zn−1, zn, z2n, z2n+1, vn) = 0 mod p .

With |zj | < ∆, j = 0, . . . , 2n + 1, |ui| < X = ∆3 and |vi| < Y = ∆2, i = 1, . . . , n. We
consider the following collection of polynomials:

P =
{
f̃j0,...,j2n+1,i1,...,in,l1,...,ln = zj00 . . . z

j2n+1
2n+1 f

i1
1 . . . f inn g

l1
1 . . . g

ln
n mod pi1+l1···+in+ln

s.t. i1 + l1 + · · ·+ in + ln > 0 and j0 + · · ·+ j2n+1 + 2(i1 + · · ·+ in) + l1 + · · ·+ ln < 2t

}
.
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The list of monomials appearing within this collection can be described as:

M =
{
zj00 . . . z

j2n+1
2n+1 u

i1
1 v

l1
1 . . . u

in
n v

ln
n mod ∆j0+···+j2n+1Xi0+···+inY l0+···+ln

s.t. j0 + · · ·+ j2n+1 + 2(i1 + · · ·+ in) + l1 + · · ·+ ln < 2t

}
.

Bounds for the Polynomials modulo p. We consider the set P as a combinatorial class, with
the size function S(f̃j0,...,j2n+1,i1,...,in,l1,...,ln) = j0 + · · ·+j2n+1 +2(i1 + · · ·+in)+l1 + · · ·+ln and
the parameter function χ(f̃j0,...,j2n+1,i1,...,in,l1,...,ln) = i1 + l1 + · · ·+ in + ln. We can described
P as:

2n+1∏
i=0

Seq(Z)×
n∏
j=1

Seq(uZ2)×
n∏
k=1

Seq(uZ)× Seq(Z),

where the last one is for the dummy variable.
This leads to the generating function:

F (z, u) = 1
(1− z)2n+3 ×

1
(1− uz2)n ×

1
(1− uz)n .

We have

∂F

∂u
(u, z)

∣∣∣∣
u=1

∼
z→1

3n
2n+1(1− z)4n+4 ,

since 2t ∼ 2t− 1, we get:

χ<2t(P) ∼ 3n
2n+1 ×

(2t)4n+3

(4n+ 3)!

Bounds for the monomials modulo ∆. We consider the set M as a combinatorial class,
with the size function
S(zj00 . . . z

j2n+1
2n+1 u

i1
1 v

l1
1 . . . u

in
n v

ln
n ) = j0 + · · · + j2n+1 + 2(i1 + · · · + in) + l1 + · · · + ln and the

parameter function
χ(zj00 . . . z

j2n+1
2n+1 u

i1
1 v

l1
1 . . . u

in
n v

ln
n ) = j0 + · · ·+ j2n+1. We can described M as:

n∏
i=1

Seq(Z2)×
n∏
i=1

Seq(Z)×
2n+1∏
i=0

Seq(uZ)× Seq(Z),

where the last one is for the dummy value y0.
Which leads to the generating function:

F (z, u) = 1
(1− z2)n(1− z)n+1 ×

1
(1− uz)2n+2 .

As z → 1 , 1− zn ∼ n(1− z) leads to:

∂F

∂u
(u, z)

∣∣∣∣
u=1

∼
z→1

2n+ 2
2n(1− z)4n+4 ,

since 2t ∼ 2t− 1, this leads to:

χ<2t,∆(M) ∼ 2n+ 2
2n × (2t)4n+3

(4n+ 3)!



6.2. Predicting EC-LCG Sequences for Known Composer 85

Bounds for the monomials modulo X. We consider the set M as a combinatorial class,
with the size function
S(zj00 . . . z

j2n+1
2n+1 u

i1
1 v

l1
1 . . . u

in
n v

ln
n ) = j0 + · · · + j2n+1 + 2(i1 + · · · + in) + l1 + · · · + ln and the

parameter function
χ(zj00 . . . z

j2n+1
2n+1 u

i1
1 v

l1
1 . . . u

in
n v

ln
n ) = i1 + · · ·+ in. We can described M as:

2n+1∏
i=0

Seq(Z)×
n∏
i=1

Seq(Z)×
n∏
i=

Seq(uZ2)× Seq(Z),

where the last one is for the dummy value y0.
Which leads to the generating function:

F (z, u) = 1
(1− z)3n+3 ×

1
(1− uz2)n .

This leads to:
χ<2t,X(M) ∼ n

2n+1 ×
(2t)4n+3

(4n+ 3)!

Bounds for the monomials modulo Y . We consider the set M as a combinatorial class,
with the size function
S(zj00 . . . z

j2n+1
2n+1 u

i1
1 v

l1
1 . . . u

in
n v

ln
n ) = j0 + · · · + j2n+1 + 2(i1 + · · · + in) + l1 + · · · + ln and the

parameter function
χ(zj00 . . . z

j2n+1
2n+1 u

i1
1 v

l1
1 . . . u

in
n v

ln
n ) = l1 + · · ·+ ln. We can described M as:

2n+1∏
i=0

Seq(Z)×
n∏
i=1

Seq(Z2)×
n∏
i=

Seq(uZ)× Seq(Z),

where the last one is for the dummy value y0.
Which leads to the generating function:

F (z, u) = 1
(1− z)2n+3(1− z2)n ×

1
(1− uz)n .

This leads to:
χ<2t,Y (M) ∼ n

2n ×
(2t)4n+3

(4n+ 3)!

Condition. If we denote by ν1 = χ<2t,∆(M), ν2 = χ<2t,X(M), ν3 = χ<2t,Y (M) and ε =
χ<2t(P), the condition for Coppersmith’s method is pε > ∆ν1Xν2Y ν3 , ie ∆ < p

ε
ν1+3ν2+2ν3 ,

where:

ε

ν1 + 3ν2 + 2ν3
∼ χ<2t(P)
χ<2t,∆(M) + 3χ<2t,X(M) + 2χ<2t,Y (M) ∼

3n
11n+ 4 ,

this leads to the expecting bound:

∆ < p
3n

11n+4 →
n→∞

∆ < p3/11.



86Chapter 6. Inferring a Linear Congruential Generator and a Power Generator on Elliptic
Curves

To prevent the attacks of [GI07] and the previous attacks on the EC-LCG, one could
output only the most significant bits of the abscissa of consecutive multiple values Ukn (for
some fixed integer k) of the sequence. We consider this setting here and use summation
polynomials to infer the EC-LCG. These polynomials were used to solve elliptic curve discrete
logarithm problem and we use it below to infer the EC-LCG when the attacks of [GI07]
and the previous attacks on the EC-LCG cannot work. In the first time, we show that the
generator is insecure if at least a proportion of 7/8 of the most significant bits of two values
X(U0) and X(Uk) is output, X(P ) denoting the abscissa of the point P .

Theorem 6.2.3. (two outputs) Given ∆-approximations w0, wk to two values X(U0),
X(Uk) produced by the EC-LCG. Under the heuristic assumption that all created polynomials
we get by applying Coppersmith’s methods with the polynomial set P below define an algebraic
variety of dimension 0, one can recover the seed U0 in polynomial time in log p as soon as
∆ < p1/8.

Proof. We set U0 = (x0, y0), Uk = (xk, yk) and G = (xG, yG). We then have the equalities:

xi = wi + ei where |ei| < ∆, i = 0, k.
We have U0 ⊕ (−Uk) = −kG, thus U0 ⊕ (−Uk)⊕ kG = O. Hence:

f3(x0, xk, X(kG)) = 0,

where f3 is the polynomial defined in section 2.3.3. Using the equalities xi = wi + ei, i = 0, k
we obtain the polynomial equation:

f(e0, ek) = 0,

where f(y1, y2) = f3(w0 + y1, w0 + y2, X(kG)) is a polynomial of degree 4. We consider
monomials with respect to a monomial ordering such that LM(f) = y2

1y
2
2. We consider the

following collection of polynomials:

P = {f̃j1,j2,i = yj11 y
j2
2 f

i mod pi : i > 0 and j1 + j2 + 4i < 4t
and (j1 < 2 ∨ j2 < 2)} ,

One can check that the polynomials f̃j1,j2,i are linearly independent since LM(f) 6= yj11 y
j2
2

for each f̃j1,j2,i from P. The list of monomials appearing within this collection can be
described as:

M =
{
zj11 z

j2
2 mod ∆j1+j2 : j1 + j2 < 4t

}
,

Bounds for the Polynomials modulo p. We consider the set P as a combinatorial class,
with the size function S(f̃j1,j2,i) = j1 + j2 + 4i and the parameter function χ(f̃j1,j2,i) = i.
Since the degree of each variable zi is 1 and the degree of f is 4, we can described P as:

Seq(uZ4)×
(
(ε+ Z)(Seq(Z) + Z2Seq(Z))

)
× Seq(Z),

where the last one is for the dumming value y0.
This leads to the generating function:

F (z, u) = (1 + z)(1 + z2)
(1− z)2 × 1

1− uz4 .



6.2. Predicting EC-LCG Sequences for Known Composer 87

We have
∂F

∂u
(u, z)

∣∣∣∣
u=1

= z4(1 + z)(1 + z2)
(1− z)2(1− z4)2

as z → 1 , 1− z4 ∼ 4(1− z) leads to:

∂F

∂u
(u, z)

∣∣∣∣
u=1

∼
z→1

1
4(1− z)4 ,

since 4t ∼ 4t− 1, this leads to:

χ<4t(P) ∼ 1
4 ×

(4t)3

3!

Bounds for the monomials modulo ∆. We consider the set M as a combinatorial class,
with the size function S(yj11 y

j2
2 ) = j1 + j2 and the parameter function χ(yj11 y

j2
2 ) = j1 + j2.

Since the degree of each zi is 1, we can then described M as:

2∏
i=1

Seq(uZ)× Seq(Z),

where the last one is for the dumming value y0.
Which leads to the generating function:

F (z, u) =
( 1

1− uz

)2
× 1

1− z .

We have
∂F

∂u
(u, z)

∣∣∣∣
u=1

= 2z
(1− z)4 ,

as z → 1 , 1− zn ∼ n(1− z) leads to:

∂F

∂u
(u, z)

∣∣∣∣
u=1

∼
z→1

2
(1− z)4 ,

since 4t ∼ 4t− 1, this leads to:

χ<4t(M) ∼ 2(3t)3

3!

Condition. If we denote by ν = χ<4t(P), and ε = χ<4t(M), the condition for Coppersmith’s
method is pν > ∆ε, ie ∆ < p

ν
ε , where:

ν

ε
∼ χ<4t(P)
χ<4t(M) ∼

1
8 ,

this leads to the expecting bound:
∆ < p

1
8 .



88Chapter 6. Inferring a Linear Congruential Generator and a Power Generator on Elliptic
Curves

Experimental Results.
We have implemented the attack in Sage 7.6 on an elliptic curve over Fp for a 256-bit prime p
on a MacBook Air laptop computer (2,2 GHz Intel Core i7, 4 Gb RAM 1600 MHz DDR3, Mac
OSX 10.10.5). Our theoretical bound is δtheo = 1

8 (δ < pδ) and we denote the experimental
bound by δexp. We consider the family of polynomials Pt with t = 2 which corresponds to a
lattice of dimension 40. After the computations of the LLL reduced basis and Gram-Schmidt
orthogonalized basis which takes a few seconds, we obtain a polynomial system over the
integers of dimension 0 if δexp < 0.085 and we can then recover the seed U0.
We further improve the previous bound and we show that the EC-LCG is insecure if at

least a proportion of 3/4 of the most significant bits of an infinite consecutive multiple values
Ukn of the sequence is output.

Theorem 6.2.4. (more outputs) Given ∆-approximations w0, wk,. . . ,wkn to n+ 1 values
X(U0), X(Uk),. . . ,X(Ukn) produced by the EC-LCG. Under the heuristic assumption that
all created polynomials we get by applying Coppersmith’s method with the polynomial set P
below define an algebraic variety of dimension 0, one can recover the seed U0 in polynomial
time in log p as soon as ∆ < p

n
4(n+1) .

Proof. We set Ukt = (xkt, ykt), for t = 0, . . . , n and G = (xG, yG). We then have the equalities:

xi = wi + ei where |ei| < ∆, i = 0, k, . . . , nk.
We have Ukt − Uk(t+1) = −kG, for t = 0, . . . , n− 1. Thus Ukt − Uk(t+1) + kG = O. Hence:

f3(xtk, xk(t+1), X(kG)) = 0,

where f3 is like in the previous proof the polynomial defined in section 2.3.3. Using the
equalities xi = wi + ei, i = 0, k, . . . , kn we obtain the polynomial system:

fj(e(j−1)k, ejk) = 0, j = 1, . . . , n

where fj(yj−1, yj) = f3(w(j−1)k + yj−1, wjk + yj , X(kG)) is a polynomial of degree 4. We
consider monomials with respect to a monomial ordering such that LM(fk) = y2

j−1y
2
j . We

consider the following collection of polynomials:

P = {f̃j0,...,jn,ik = yj00 . . . yjnn f
ik
k mod pik : k = 1, . . . , n; (jk−1 < 2 ∨ jk < 2)

(ik > 0) and (j0 + · · ·+ jn + 4ik) < 4t} ,

One can check that the polynomials f̃j0,...,jn,ik are linearly independent. The list of
monomials appearing within this collection can be described as:

M =
{
zj00 . . . zjnn mod ∆j0+···+jn : j0 + · · ·+ jn < 4t

}
,

Bounds for the Polynomials modulo p. We consider the set P as a combinatorial class, with
the size function S(f̃j0,...,jn,ik) = j0+· · ·+jn+4ik and the parameter function χ(f̃j0,...,jn,ik) = ik.
Since the degree of each variable zi is 1 and the degree of f is 4, we can described P as:

n∑
k=1

Seq(uZ4)×
(
(ε+ Z)(Seq(Z) + Z2Seq(Z))

)
×

n∏
j=0,j 6=k−1,k

Seq(Z)× Seq(Z),
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where the last one is for the dumming value z0.
This leads to the generating function:

F (z, u) =
n∑
k=1

(1 + z)(1 + z2)
(1− z)n+1 × 1

1− uz4 .

We have
∂F

∂u
(u, z)

∣∣∣∣
u=1

= nz4(1 + z)(1 + z2)
(1− z)n+1(1− z4)2

as z → 1 , 1− z4 ∼ 4(1− z) leads to:
∂F

∂u
(u, z)

∣∣∣∣
u=1

∼
z→1

n

4(1− z)n+3 ,

since 4t ∼ 4t− 1, this leads to:

χ<4t(P) ∼ n

4 ×
(4t)n+2

(n+ 2)!

Bounds for the monomials modulo ∆. We consider the set M as a combinatorial class,
with the size function S(yj11 y

j2
2 ) = j0 + · · ·+ jn and the parameter function χ(yj00 . . . yjnn ) =

j0 + · · ·+ jn. Since the degree of each zi is 1, we can then described M as:
n∏
i=0

Seq(uZ)× Seq(Z),

where the last one is for the dumming value z0.
Which leads to the generating function:

F (z, u) =
( 1

1− uz

)n+1
× 1

1− z .

We have
∂F

∂u
(u, z)

∣∣∣∣
u=1

= 2z
(1− z)n+3 ,

as z → 1 , 1− zn ∼ n(1− z) leads to:
∂F

∂u
(u, z)

∣∣∣∣
u=1

∼
z→1

n+ 1
(1− z)n+3 ,

since 4t ∼ 4t− 1, this leads to:

χ<4t(M) ∼ (n+ 1)(4t)n+2

(n+ 2)!

Condition. If we denote by ν = χ<4t(P), and ε = χ<4t(M), the condition for Coppersmith’s
method is pν > ∆ε, ie ∆ < p

ν
ε , where:

ν

ε
∼ χ<4t(P)
χ<4t(M) ∼

n

4(n+ 1) ,

this leads to the expecting bound:

∆ < p
n

4(n+1) →
n→∞

∆ < p
1
4 .
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6.3. Predicting EC-LCG Sequences for Unknown Composer
In this section, we infer the EC-LCG in the case where the composer G is unknown and the
curve is kept secret. In the following, We show that the generator is insecure if at least a
proportion of 23/24 of the most significant bits of three consecutive values U0 and U1 and U2
of the sequence is output.

Theorem 6.3.1. (three consecutive outputs) Given ∆-approximations W0, W1, W2 to
three consecutive affine values U0, U1, U2 produced by the EC-LCG. Under the heuristic
assumption that all created polynomials we get by applying Coppersmith’s method with the
polynomial set P below define an algebraic variety of dimension 0, one can recover the seed
U0 and the composer G in polynomial time in log p as soon as ∆ < p1/24.

Proof. We set U0 = (x0, y0), U1 = (x1, y1), U2 = (x2, y2), W0 = (α0, β0), W1 = (α1, β1) and
W2 = (α2, β2). We then have the equalities:

xi = αi + ei, yj = βj + fj , where |ei|, |fi| < ∆, i = 0, 1, 2. (6.1)

We also have: 
y2

0 = x3
0 + ax0 + b

y2
1 = x3

1 + ax1 + b

y2
2 = x3

2 + ax2 + b .

Eliminating the curve parameters a, b and assuming that U2 6= ±U1(that is, x2 6= x1), we
obtain the following equation:

y2
2(x0 − x1) + x3

2(x1 − x0) + x3
0(x2 − x1) + y2

0(x1 − x2) + x3
1(x0 − x2) + y2

1(x2 − x0) = 0

Using the equalities 6.1, leads to the equation:

f(e0, e1, e2, f0, f1, f2) = 0 mod p

where f is a polynomial of degree 4 whose coefficients are functions of α0, α1, α2, β0, β2, and
β2.

Description of the attack The adversary is therefore looking for the solutions smaller than
∆ of the following modular multivariate polynomial equation:

f(z1, . . . , z6) = 0 mod p

The attack consists in applying Coppersmith’s methods as in the former subsection. We
consider monomials with respect to a monomial ordering such that LM(f) = z3

1z2. From
now on, we use the following collection of polynomials:

P = {f̃j1,...,j6,i = zj11 . . . zj66 f
i mod pi : i > 0 and j1 + · · ·+ j6 + 4i < 4t

and (0 6 j1 < 3 ∨ j2 = 0)} ,
One can check that the polynomials f̃j1,...,j6,i are linearly independent since LM(f) 6=

zj11 . . . zj66 for each f̃j1,...,j6,i from P. The list of monomials appearing within this collection
can be described as:

M =
{
zj11 . . . zj66 mod ∆j1+···+j6 : j1 + · · ·+ j6 < 4t

}
.
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Bounds for the Polynomials modulo p. We consider the set P as a combinatorial class, with
the size function S(f̃j1,...,j6,i) = j1 + · · ·+ j6 + 4i and the parameter function χ(f̃j1,...,j6,i) = i.
Since the degree of each variable zi is 1 and the degree of f is 4, we can described P as:

4∏
i=1

Seq(Z)× Seq(uZ4)×

(ε+ Z + Z2︸ ︷︷ ︸
z1

)(ε+ ZSeq(Z)︸ ︷︷ ︸
z2

) + Z3Seq(Z)︸ ︷︷ ︸
z1

× Seq(Z),

where the last one is for the dummy value z0.
This leads to the generating function:

F (z, u) =
( 1

1− z

)5
× 1

1− uz4 ×
(

(1 + z + z2)(1 + z/(1− z)) + z3

1− z

)
.

We have
∂F

∂u
(u, z)

∣∣∣∣
u=1

= 1 + z + z2 + z3

(1− z)6 × z4

(1− z4)2

as z → 1 , 1− z4 ∼ 4(1− z) leads to:

∂F

∂u
(u, z)

∣∣∣∣
u=1

∼
z→1

1
4(1− z)8 ,

since 4t ∼ 4t− 1, this leads to:

χ<4t(P) ∼ 1
4 ×

(4t)7

7!

Bounds for the monomials modulo ∆. We consider the set M as a combinatorial class,
with the size function S(zj11 . . . zj66 ) = j1 + · · ·+ j6 and the parameter function χ(zj11 . . . zj66 ) =
j1 + · · ·+ j6. Since the degree of each zi is 1, we can then described M as:

6∏
i=1

Seq(uZ)× Seq(Z),

where the last one is for the dummy value z0.
Which leads to the generating function:

F (z, u) =
( 1

1− uz

)6
× 1

1− z .

We have
∂F

∂u
(u, z)

∣∣∣∣
u=1

= 6z
(1− z)8 ,

as z → 1 , 1− zn ∼ n(1− z) leads to:

∂F

∂u
(u, z)

∣∣∣∣
u=1

∼
z→1

6
(1− z)8 ,

since 4t ∼ 4t− 1, this leads to:

χ<4t(M) ∼ 6(3t)7

7!
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Condition. If we denote by ν = χ<4t(P), and ε = χ<4t(M), the condition for Coppersmith’s
method is pν > ∆ε, ie ∆ < p

ν
ε , where:

ν

ε
∼ χ<4t(P)
χ<4t(M) ∼

1
24 ,

this leads to the expecting bound:
∆ < p

1
24 .

This bound improves the known bound ∆ < p1/46.

6.3.1. Complexity of the attack

To compute the cardinalities of the sets P and M, we make used of the parameters functions
χ(f̃j1,...,j6,i) = 1 and χ(zj11 . . . zj66 ) = 1. This leads to the generating functions:

F1(z) =
( 1

1− z

)5
× z4

1− z4 ×
1 + z + z2 + z3

1− z

and

F2(z) = 1
(1− z)7 ,

for P and M respectively.
Asymptotic bounds. We have:

F1(z), F2(z) ∼
z→1

1
(1− z)7 ,

which leads when t goes to infinity to the asymptotic bound:

(4t)6

6!

Concrete bounds. We give in the table below the cardinalities of the sets P and M for
smaller t.

t 1 2 3 4 5
number of polynomials 0 84 1716 12376 54264
number of monomials 84 1716 12376 54264 177100

Next, we further improve the previous bound and we show that the generator is insecure if
at least a proportion of 7/8 of the most significant bits of an infinite consecutive values Ui of
the sequence is output.

Theorem 6.3.2. (more consecutive outputs)
Given ∆-approximations W0, W1,. . . ,Wn+1 (for some integer n > 1) to n + 2 consecutive
affine values U0, U1,. . . ,Un+1 produced by the EC-LCG. Under the heuristic assumption that
all created polynomials we get by applying Coppersmith’s method with the polynomial set
P below define an algebraic variety of dimension 0, one can recover the seed U0 and the
composer G in polynomial time in log p as soon as ∆ < pn/4(2n+4).
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Proof. Let us assume, for instance that the adversary has access to n+ 1 ∆-approximations
W0, W1,. . . ,Wn+1 of U0, U1,. . . ,Un+1 produced by the EC-LCG. Then using the equalities
xj = αj + ej and yj = βj + fj , for j = 0, . . . , n, where |ej |, |fj | < ∆ and Wj = (αj , βj) and
Uj = (xj , yj) and the fact that y2

j = x3
j + axj + b, j = 0, . . . , n + 1 and eliminating the

curve parameters from three consecutive points Uj , Uj+1, Uj+2,j = 0, . . . , n− 1 leads to the
following polynomial system:

f1(e0, e1, e2, f0, f1, f2) = 0 mod p
...

fn(en−1, en, en+1, fn−1, fn, fn+1) = 0 mod p .

Where fj are polynomials of degrees 4 and LM(fi) = z3
i−1zi. The adversary is then looking

for the solutions of the modular multivariate polynomial system:
f1(z0, z1, z2, zn+2, zn+3, zn+4) = 0 mod p

...
fn(zn−1, zn, zn+1, z2n+1, z2n+2, z2n+3) = 0 mod p .

We consider the following collection of polynomials:

P =


f̃j0,...,j2n+3,αi = zj00 . . . z

j2n+3
2n+3 f

αi
i mod pαi

s.t. i = 1, . . . , n; (ji−1 < 3 ∨ ji = 0)
(αi > 0) and (j0 + · · ·+ j2n+3 + 4αi) < 4t

 .
The list of monomials appearing within this collection can be described as:

M =
{
zj00 . . . z

j2n+3
2n+3 mod ∆j0+···+j2n+3 : j0 + · · ·+ j2n+3 < 4t

}
,

Bounds for the Polynomials modulo p. We consider the set P as a combinatorial class,
with the size function S(f̃j0,...,j2n+3,αi) = j0 + · · ·+ j2n+3 + 4αi and the parameter function
χ(f̃j0,...,j2n+3,αi) = αi. We can described P as:

n∑
i=1

2n+3∏
j=0

j /∈{i−1,i}

Seq(Z)× Seq(uZ4)

× ((ε+ Z + Z2)(ε+ ZSeq(Z)) + Z3Seq(Z)× ε)× Seq(Z),
where the last one is for the dummy variable.

This leads to the generating function:

F (z, u) =
( 1

(1− z)2n+3 ×
1

1− uz4

)
× n

(
(1 + z + z2)(1 + z/(1− z)) + z3

1− z

)
.

We have

∂F

∂u
(u, z)

∣∣∣∣
u=1

∼
z→1

n

4(1− z)2n+6 ,

since 4t ∼ 4t− 1, this leads to:

χ<4t(P) ∼ n

4 ×
(4t)2n+5

(2n+ 5)!
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Bounds for the monomials modulo ∆. We consider the set M as a combinatorial class,
with the size function S(zj00 . . . z

j2n+3
2n+3 ) = j0 + · · · + j2n+3 and the parameter function

χ(zj00 . . . z
j2n+3
2n+3 ) = j0 + · · ·+ j2n+3. We can described M as:

2n+4∏
i=1

Seq(uZ)× Seq(Z),

where the last one is for the dummy variable.
This leads to the generating function:

F (z, u) =
( 1

1− uz

)2n+4
× 1

1− z .

We get

∂F

∂u
(u, z)

∣∣∣∣
u=1

∼
z→1

2n+ 4
(1− z)2n+6 ,

since 4t ∼ 4t− 1, this leads to:

χ<4t(M) ∼ (2n+ 4)× (4t)2n+5

(2n+ 5)!

Condition. If we denote by ν = χ<4t(P), and ε = χ<4t(M), the condition for Coppersmith’s
method is pν > ∆ε, ie ∆ < p

ν
ε , where:

ν

ε
∼ χ<4t(P)
χ<4t(M) ∼

n

4(2n+ 4) ,

This leads to the expecting bound:

∆ < p
n

4(2n+4) →
n→∞

∆ < p1/8.

6.4. Predicting the Elliptic curve power generator
We infer the EC-PG in the case where the constants a, b and e are known. We show that
this generator is insecure if at least a proportion of 1− 1

2e2 of the most significant bits of two
consecutive values X(V0) and X(V1) is output.

Theorem 6.4.1. (two consecutive outputs) Given ∆-approximations w0, w1 to two
consecutive values X(V0), X(V0) produced by the EC-PG and under the heuristic assumption
that all created polynomials we get by applying Coppersmith’s method with the polynomial set
P below define an algebraic variety of dimension 0, one can recover the seed V0 in heuristic
polynomial time in log p as soon as ∆ < p

1
2e2

Proof. We put V0 = (x0, y0), V1 = (x1, y1). We have x1 = θe(x0)
ψ2
e(x0) (where the polynomials

θe(X) and ψ2
e(X) are defined in section 2.3.2) since V1 = eV0. Using the equalities x0 = w0+α0

and x1 = w1 + α1 with αi < ∆, we have f(α1, α0) = 0, where f(y1, y2) = (y1 + w1)ψ2
e(y2 +
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w0)− θe(y2 + w0) s a polynomial of degree e2. We are looking for small modular modulo p.
We consider monomials with respect to a monomial ordering such that the leading monomial
of f is LM(f) = y1y

e2−1
2 . We consider the following collection of polynomials (parameterized

by some integer t ∈ N):

P =
{
f̃j1,j2,i = yj11 y

j2
2 f

i mod pi : i > 0 and j1 + j2 + e2i < e2t
and (j1 = 0 ∨ 0 6 j2 6 e2 − 2)

}
.

One can check that the polynomials f̃j1,j2,i are linearly independent since LM(f̃j1,j2,i) 6=
yj11 y

j2
2 for each f̃j1,j2,i. The list of monomials appearing within this collection can be described

as:
M =

{
yj11 y

j2
2 mod ∆j1+j2 : j1 + j2 < e2t

}
.

Bounds for the Polynomials modulo p. We consider the set P as a combinatorial class,
with the size function S(f̃j1,j2,i) = j1 + j2 + e2i and the parameter function χ(f̃j1,j2,i) = i.
Since the degree of each variable zi is 1 and the degree of f is e2, we can described P as:

Seq(uZe2)×

(ε+ Z + · · ·+ Ze
2−2︸ ︷︷ ︸

y2

)(ε+ ZSeq(Z)︸ ︷︷ ︸
y1

) + Ze
2−1Seq(Z)︸ ︷︷ ︸

y2

× Seq(Z),

where the last one is for the dumming value y0.
This leads to the generating function:

F (z, u) =
( 1

1− z

)2
× 1

1− uze2 ×
(
1 + z + · · ·+ ze

2−1
)
.

We have
∂F

∂u
(u, z)

∣∣∣∣
u=1

= ze
2(1 + z + · · ·+ +ze2−1)

(1− z)2(1− ze2)2

as z → 1 , 1− ze2 ∼ e2(1− z) leads to:
∂F

∂u
(u, z)

∣∣∣∣
u=1

∼
z→1

1
e2(1− z)4 ,

since e2t ∼ e2t− 1, this leads to:

χ<e2t(P) ∼ 1
e2 ×

(e2t)3

3!

Bounds for the monomials modulo ∆. We consider the set M as a combinatorial class, with
the size function S(zj11 . . . zj66 ) = j1 + · · ·+ j6 and the parameter function χ(yj11 y

j2
2 ) = j1 + j2.

Since the degree of each zi is 1, we can then described M as:
2∏
i=1

Seq(uZ)× Seq(Z),

where the last one is for the dumming value y0.
Which leads to the generating function:

F (z, u) =
( 1

1− uz

)2
× 1

1− z .
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We have
∂F

∂u
(u, z)

∣∣∣∣
u=1

= 2z
(1− z)4 ,

which leads to:
∂F

∂u
(u, z)

∣∣∣∣
u=1

∼
z→1

2
(1− z)4 ,

since e2t ∼ e2t− 1, this leads to:

χ<e2t(M) ∼ 2(e2t)3

3!

Condition. If we denote by ν = χ<e2t(P), and ε = χ<e2t(M), the condition for Copper-
smith’s method is pν > ∆ε, ie ∆ < p

ν
ε , where:

ν

ε
∼ χ<e2t(P)
χ<e2t(M) ∼

1
2e2 ,

this leads to the expecting bound:
∆ < p

1
2e2 .

Theorem 6.4.2. (more consecutive outputs) Given ∆-approximations w0, w1,. . . ,wn
(for some integer n > 1) to n + 1 consecutive values X(V0), X(V1),. . . , X(V1) produced
by the EC-PG and under the heuristic assumption that all created polynomials we get by
applying Coppersmith’s method with the polynomial set P below define an algebraic variety
of dimension 0, one can recover the seed V0 in heuristic polynomial time in log p as soon as
∆ < p

n
(n+1)e2

Proof. We put Vi = (xi, yi), i = 0, . . . , n. We have xj+1 = θe(xj)
ψ2
e(xj) since Vj+1 = eVj for

j = 0, . . . , n − 1. Using the equalities xi = wi + αi, i = 0, . . . , n with αi < ∆, we have
fj(αj , αj−1) = 0, for j = 1, . . . , n where fj(yj−1, yj) = (yj−1+wj)ψ2

e(yj+wj−1)−θe(yj+wj−1).
We are then looking for small modular modulo p. We use the Coppersmith’s methods to
recover the desired solution in polynomial time. The monomials are ordered with respect to a
monomial ordering such that the leading monomial of each fj is yj−1y

e2−1
j . fj is a polynomial

of degree e2. We consider the following collection of polynomials (parameterized by some
integer t ∈ N):

P =
{
f̃j1,...,jn,ik = yj11 . . . yjnn f

ik
k mod pik : ik > 0, k ∈ {1, . . . , n}, and

j1 + · · ·+ jn + e2ik < e2t and (jk−1 = 0 ∨ 0 6 jk 6 e2 − 2)

}
.

One can check that the polynomials f̃j1,...,jn,ik are linearly independent since LM(f̃j1,...,jn,ik) 6=
yj11 . . . yjnn for each f̃j1,...,jn,ik . The list of monomials appearing within this collection can be
described as:

M =
{
yj00 . . . yjnn mod ∆j0+···+jn : j0 + · · ·+ jn < e2t

}
.
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Bounds for the Polynomials modulo p. We consider the set P as a combinatorial class,
with the size function S(f̃j1,...,jn,ik) = j1 + · · · + j2 + e2ik and the parameter function
χ(f̃j1,...,jn,ik) = ik. Since the degree of each variable zi is 1 and the degree of fk is e2, we can
described P as:

n∑
k=1

Seq(uZe2)×

(ε+ Z + · · ·+ Ze
2−2︸ ︷︷ ︸

yk

)(ε+ ZSeq(Z)︸ ︷︷ ︸
yk−1

) + Ze
2−1Seq(Z)︸ ︷︷ ︸

yk


×

n∏
j=0

j /∈{k−1,k}

Seq(Z)× Seq(Z),

where the last one is for the dumming value z0.
This leads to the generating function:

F (z, u) =
n∑
k=1

( 1
1− z

)n+1
× 1 + z + · · ·+ ze

2−1

1− uze2 .

We have
∂F

∂u
(u, z)

∣∣∣∣
u=1

= nze
2(1 + z + · · ·+ +ze2−1)
(1− z)n+1(1− ze2)2

as z → 1 , 1− ze2 ∼ e2(1− z) leads to:
∂F

∂u
(u, z)

∣∣∣∣
u=1

∼
z→1

n

e2(1− z)n+3 ,

since e2t ∼ e2t− 1, this leads to:

χ<e2t(P) ∼ n

e2 ×
(e2t)n+2

(n+ 2)!

Bounds for the monomials modulo ∆. We consider the set M as a combinatorial class,
with the size function S(zj11 . . . zj66 ) = j1 + · · ·+ j6 and the parameter function χ(yj00 . . . yj2n ) =
j1 + · · ·+ jn. Since the degree of each yi is 1, we can then described M as:

n∏
i=0

Seq(uZ)× Seq(Z),

where the last one is for the dumming value z0.
Which leads to the generating function:

F (z, u) =
( 1

1− uz

)(n+1)
× 1

1− z .

We have
∂F

∂u
(u, z)

∣∣∣∣
u=1

= (n+ 1)z
(1− z)n+3 ,

which leads to:
∂F

∂u
(u, z)

∣∣∣∣
u=1

∼
z→1

n+ 1
(1− z)(n+ 3)

,

since e2t ∼ e2t− 1, this leads to:

χ<e2t(M) ∼ (n+ 1)(e2t)(n+ 2)
(n+ 2)!
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Condition. If we denote by ν = χ<e2t(P), and ε = χ<e2t(M), the condition for Copper-
smith’s method is pν > ∆ε, ie ∆ < p

ν
ε , where:

ν

ε
∼ χ<e2t(P)
χ<e2t(M) ∼

n

(n+ 1)e2 ,

this leads to the expecting bound:

∆ < p
n

(n+1)e2 →
n→∞

∆ < p
1
e2 .



Chapter 7.
Lattice Attacks on Pairing-Based
Signatures
The present Chapter deals with lattice attacks on some well-known Pairing-Based signatures.
Practical implementations of cryptosystems often suffer from critical information leakage
through side-channels (such as their power consumption or their electromagnetic emanations).
For public-key cryptography on embedded systems, the core operation is usually group
exponentiation – or scalar multiplication on elliptic curves – which is a sequence of group
operations derived from the private-key that may reveal secret bits to an attacker (on an
unprotected implementation). We present lattice-based polynomial-time (heuristic) algorithms
that recover the signer’s secret in popular pairing-based signatures when used to sign several
messages under the assumption that blocks of consecutive bits of the corresponding exponents
are known by the attacker. Our techniques relies upon Coppersmith’s methods and apply
to all signatures in the so-called exponent-inversion framework in the standard security
model (i.e. Boneh-Boyen and Gentry signatures) as well as in the random oracle model (i.e.
Sakai-Kasahara signatures). The Chapter is organized as follows: we start by recalling the
Sakai-Kasahara, Boneh-Boyen and Gentry’s Pairing-Based Signatures Schemes. We then
present the attack on Gentry’s signatures. Next, we present the attack on Boneh-Boyen’s
signatures and we conclude by the attack on Sakai-Kasahara’s signature.
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7.1. Sakai-Kasahara, Boneh-Boyen and Gentry’s Pairing-Based
Signatures Schemes

An identity-based encryption (IBE) scheme is a public key encryption scheme in which a
user public key is its identity which may be an arbitrary string such as an email address,
a phone number or any other identifier and the user private key is generated by a trusted
authority called the private-key generator. In their seminal paper proposing the first IBE
scheme, Boneh and Franklin [BF01] mentioned an interesting transform from an IBE scheme
to a signature scheme (whose observation was attributed to Naor). The transformation is as
follows: the private-key generator public key and secret key correspond to the public key
and secret key of the signature scheme and the user private key generation correspond to
signatures generation. The well-known short signature scheme proposed by Boneh, Lynn and
Shacham [BLS01; BLS04] can be seen as an application of Naor transformation to Boneh
and Franklin IBE [BF01].
Pairings (or bilinear maps) are powerful mathematical constructs which have been used

since 2000 to design numerous complex cryptographic protocols. There are three known
pairing-based approaches to design identity-based encryption schemes [Boy08]: full-domain-
hash [BF01], commutative-blinding [BB04b] and exponent-Inversion [BB04b; BB04a; BB08].
In this Chapter, we focus on the latter framework which gives rise to several short signature
schemes thanks to Naor transformation. We consider several pairing-based signature schemes
in the exponent-inversion framework. In [SK03], Sakai and Kasahara presented the first such
scheme (whose security was analyzed in the random oracle model by Zhang, Safavi-Naini
and Susilo in [ZSS04]). Boneh and Boyen [BB04a] then presented the first pairing-based
signature whose security can be proven in the standard security model. In 2006, Gentry
[Gen06] proposed yet another scheme using the exponent-inversion paradigm, with a tighter
security proof than the earlier proposals.
These schemes can be described in a general simplified form as follows. Let G and GT

be two cyclic groups of the same prime order p and let g be a generator of G. We suppose
that (G,GT ) are equipped with an efficiently computable bilinear map e : G × G → GT .
Let H : {0, 1}∗ → Zq be a collision-resistant hash function. Let f, g ∈ Zp[X,Y,M,R] be
two polynomials of degree at most one in X and Y . The key generation picks uniformly at
random two integers (x, y) ∈ Zp as the signing secret key and outputs (gx, gy) ∈ G2 as the
public-key. To sign a message m ∈ {0, 1}∗, the signer picks uniformly at random r ∈ Zp,
computes

σ = gf(x,y,H(m),r)/g(x,y,H(m),r)

and outputs the pair (σ, r) as the signature. The validity of a signature is checked by verifying
whether the following equality holds:

e(σ, gg(x,y,H(m),r) = e(gf(x,y,H(m),r), g)

where the elements gf(x,y,H(m),r) and gg(x,y,H(m),r) can be computed publicly from gx, gy, m
and r. The three schemes use the following specific polynomials:

• Sakai-Kasahara1 [SK03]: f(X,Y,M,R) = 1, g(X,Y,M,R) = X +M

• Boneh-Boyen [BB04a]: f(X,Y,M,R) = 1, g(X,Y,M,R) = X +M + Y R

1Sakai-Kasahara scheme actually does not use the secret key y and is deterministic.
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• Gentry [Gen06]: f(X,Y,M,R) = Y +R, g(X,Y,M,R) = X +M

We present lattice-based polynomial-time algorithms that recover the signer’s secret
(x, y) ∈ Z2

p in these pairing-based signatures when used to sign a constant number of messages
under the assumption that blocks of consecutive bits of the corresponding exponents
f(x, y,H(m), r)/g(x, y,H(m), r) mod p are known by the attacker. We consider known-
message attacks and chosen-message attacks (i.e. where the atacker is allowed to choose the
message m). The method of this paper is heuristic and uses Coppersmith’s lattice technique.
Let ` denote the bit-length of p and N denote the number of unknown blocks of each signing
exponent. In a nutshell, we show that one can recover the secret key if the number of
consecutive bits of each unknown block is smaller than the following theoretical values:

• Sakai-Kasahara: `/2N2

• Boneh-Boyen: `/2N2

• Gentry: `/N

provided that the number of signatures is sufficiently large (see the corresponding sections in
the chapter for more precise bounds). It is interesting to note, that Gentry scheme which
provides the best classical security (tight security reduction in the standard security model),
is the weakest against our class of attacks.
More generally, our lattice-based algorithms can be seen as methods to solve variants of

the modular inversion hidden number problem which was introduced by Boneh, Halevi and
Howgrave-Graham in 2001 [BHH01]. This problem is to find a hidden number given several
integers and partial bits of the corresponding modular inverse integers of the sums of the
known integers and that unknown integer. It was used in [BHH01] to built a pseudo-random
number generator and a message authentication code scheme. In [LSSW12], the authors
mentioned that it is interesting to study a general problem of recovering of an unknown
rational function. One can see our results as a first step towards solving this problem.

The efficiency of our (heuristic) attacks has been validated experimentally.

7.2. Lattice Attack On Gentry Signatures
7.2.1. Gentry Signatures
Gentry introduced in [Gen06] an IBE scheme without random oracles with short public
parameters and tight security reduction in the standard security model. In this paragraph,
we describe the signature scheme obtained by applying Naor transformation to Gentry’s IBE.
The resulting scheme achieves existential unforgeability under chosen-message attacks in the
standard security model.
Let G and GT be two cyclic groups of the same prime order p (where p > 22λ for a

security parameter λ) and let g be a generator of G. We suppose that (G,GT ) are equipped
with an efficient computable bilinear map e : G × G → GT . Let H : {0, 1}∗ → Zq be a
collision-resistant hash function. Gentry signature scheme is defined by the three following
algorithms:

• Key generation. The user picks uniformly at random (x, y) ∈ Z2
p, computes h1 = gx

and h2 = gy and sets sk = (x, y) and pk = (h1, h2) ∈ G2.
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• Signature generation. Given a message m ∈ {0, 1}∗, the user computes its hash
value H(m), and picks uniformly at random r ∈ Zp. It computes the signing exponent
σ = (y + r)/(x +H(m)) mod p and the group element s = gσ. The signature is the
pair (r, s) ∈ Zp ×G.

• Signature verification. Given (r, s) ∈ Zp ×G, a verifier accepts it as a signature on
m ∈ {0, 1}∗ if and only if the following equality holds:

e(s, h1g
H(m)) ?= e (g, h2g

r)

7.2.2. Description of the Attack
In this section, we use Coppersmith’s methods to attack Gentry’s signatures when the attacker
learns some blocks of consecutive bits of the signing exponents.

Let n > 1 be some integer. We suppose that the attacker is given (n+2) message/signature
pairs (mi, (ri, si))i∈{0,...,n+1} as described above (where n does not depend on the security
parameter λ). To simplify the notation in the following, instead of the hash values H(mi),
we assume that the mi belongs to Zp (for i ∈ {0, . . . , n+ 1}).

We assume that the attacker knows some blocks of consecutive bits of the corresponding
signing exponents σi for i ∈ {0, . . . , n + 1} and its goal is to recover the secret keys x
and y. From the knowledge of two different signing exponents σi and σj for integers
i, j ∈ {0, . . . , n+ 1} with i 6= j, the attacker can actually recover the secrets x and y. Its goal
is therefore to recover the hidden bits of two σi’s in order to obtain x and y.

We have σi = (y + ri)/(x+mi) mod p for i ∈ {0, . . . , n+ 1} which can be rewritten as:

σi(x+mi)− y − ri = 0 mod p, i ∈ {0, . . . , n+ 1}.

We consider a chosen-message attack where the attacker uses an arbitrary unique message
m for all signatures (i.e. mi = m for all i ∈ {0, . . . , n + 1}). Eliminating x and y, in the
previous equation, we obtain for a, b, i ∈ {0, . . . , n+ 1} with 0 6 a < b < i 6 n+ 1:

(ra − rb)σi + (ri − ra)σb + (rb − ri)σa = 0 mod p (7.1)

Putting σi = ∑N
j=1 xi,j2ki,j + γi, i ∈ {0, . . . , n + 1}, where γi is known to the attacker and

xi,j , j ∈ {1, . . . , N} are unknown and |xi,j | < 2µi,j for some integer µi,j and with the choice
a = 0, b = 1, we obtain a polynomial

fi(z0,1, . . . , z0,N , . . . , zn+1,1, . . . , zn+1,N )

having as root X0 = (x0,1, . . . , x0,N , . . . , xn+1,1, . . . , xn+1,N ) modulo p with:

fi = zi,N +
N−1∑
j=1

ai,jzi,j +
N∑
j=1

bi,jz1,j +
N∑
j=1

ci,jz0,j + γi(r0 − r1) + di mod p (7.2)

for i ∈ {2, . . . , n+ 1}, where
ai,j = 2ki,j/2ki,N mod p
bi,j = 2k1,j (ri − r0)/((r0 − r1)2ki,N ) mod p
ci,j = 2k0,j (r1 − ri)/((r0 − r1)2ki,N ) mod p
di = (γi(r0 − r1) + γ1(ri − r0) + γ0(r1 − ri))/((r0 − r1)2ki,N ) mod p
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for i ∈ {2, . . . , n+ 1} and j ∈ {1, . . . , N}.
We consider the following collection of polynomials (parameterized by some integer m ∈ N

that does not depend on the security parameter λ):

Pm =
{
fi0,1,...,in+1,1,i0,2,...,in+1,2,...,i0,N ,...,in+1,N

}
,

for all vectors of integers (i0,1, . . . , in+1,1, i0,2, . . . , in+1,2, . . . , i0,N , . . . , in+1,N ) verifying

0 6 i0,1 + · · ·+ in+1,1 + · · ·+ i0,N , . . . , in+1,N 6 m

and where the polynomial fi0,1,...,in+1,1,i0,2,...,in+1,2,...,i0,N ,...,in+1,N is defined by:

z
i0,1
0,1 . . . z

in+1,1
n+1,1 . . . z

i0,N−1
0,N−1 . . . z

in+1,N−1
n+1,N−1z

i0,N
0,N z

i1,N
1,N f

i2,N
2 . . . f

in+1,N
n+1 pm−(i2,N+···+in+1,N ).

One can see that fi0,1,...,in+1,1,i0,2,...,in+1,2,...,i0,N ,...,in+1,N (X0) = 0 mod pm for all such vector of
integers.
If we use for instance the lexicographical monomial order (with zi,j < zi′,j′ if (j < j′ or

(j = j′ and i < i′)) on the set of monomials, we can define an order over the set of polynomials
as:

fi0,1,...,in+1,1,i0,2,...,in+1,2,...,i0,N ,...,in+1,N < fi′0,1,...,i′n+1,1,i
′
0,2,...,i

′
n+1,2,...,i

′
0,N ,...,i

′
n+1,N

if zi0,10,1 . . . z
in+1,1
n+1,1 . . . z

i0,N
0,N . . . z

in+1,N
n+1,N < z

i′0,1
0,1 . . . z

i′n+1,1
n+1,1 . . . z

i′0,N
0,N . . . z

i′n+1,N
n+1,N .

Using this order, we can write Pm = {f̃i, i ∈ {1, . . . , ω}}, with f̃1 < f̃2 < · · · < f̃ω
where ω is the number of polynomials. Putting U = 2maxi,j µi,j , we define the lattice L
generated by b1, . . . , bω, where for i ∈ {1, . . . , ω}, bi is the coefficient vector of the polynomial
f̃i(Uz0,1, . . . , Uzn+1,1, . . . , Uz0,N , . . . , Uzn+1,N ).

One can easily verify that the basis matrix is lower triangular and the diagonal elements are
Uapm−(i2,N+···+in+1,N ), where the integer a is equal to i0,1 + · · ·+ in+1,1 + i0,N + · · ·+ in+1,N .
The number of variables is N(n+ 2) and the success condition of Coppersmith’s method is
det(L) < pm(ω−N(n+2)), where ω = ∑

i∈I 1 is the dimension of the lattice with

I = {i = (i0,1, . . . , i0,N , . . . , in+1,N )|0 6 i0,1 + · · ·+ in+1,N 6 m}.

We have det(L) = Uηpmωp−µ with

µ =
∑
i∈I

i2,N + · · ·+ in+1,N and η =
∑
i∈I

i0,1 + · · ·+ in+1,N .

If m is large, we can neglect the N(n+ 2) term in Coppersmith success condition and the
asymptotic condition becomes:

Uη < pµ.

Using analytic combinatorics methods (see below for details), one can verify that when m
tends to ∞, we have η = N(n+ 2)β(m,N, n) and µ = nβ(m,N, n), with

β(m,N, n) = mN(n+2)+1

(N(n+ 2) + 1)! + o(mN(n+2)+1).

Therefore, the attacker can recover x and y as long as the sizes of each unknown block in
the signatures σi for i ∈ {0, . . . , n+ 1} satisfies:

U < p
n

(n+2)N →
n→∞

p
1
N .
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We can thus heuristically recover (using large2 constant parameters n and m) the secret key
(x, y) if the number of consecutive bits of each unknown block is smaller than dlog2(p)e/N .

• In order to compute η, we consider M (the set of monomials appearing in the collection
Pm ) as a combinatorial class, with the size function
S(zi0,10,1 . . . z

in+1,1
n+1,1 . . . z

i0,N
0,N . . . z

in+1,N
n+1,N ) = i0,1 + · · ·+ in+1,1 + · · ·+ i0,N + · · ·+ in+1,N and

the parameter function
χ(zi0,10,1 . . . z

in+1,1
n+1,1 . . . z

i0,N
0,N . . . z

in+1,N
n+1,N ) = i0,1 + · · ·+ in+1,1 + · · ·+ i0,N + · · ·+ in+1,N .

We describe M as
N(n+2)∏
k=1

Seq(uZ)× Seq(Z)

the last Seq(Z) being for the dummy value. This then leads to the OGF

F (z, u) =
( 1

1− uz

)N(n+2) ( 1
1− z

)
.

We get

∂F

∂u
(u, z)

∣∣∣∣
u=1

∼
z→1

N(n+ 2)
(1− z)N(n+2)+2 ,

this leads to:
χ<m(M ) = η ∼ N(n+ 2)× (m)N(n+2)+1

(N(n+ 2) + 1)! .

• To compute µ, we consider M as a combinatorial class, with the size function
S(zi0,10,1 . . . z

in+1,1
n+1,1 . . . z

i0,N
0,N . . . z

in+1,N
n+1,N ) = i0,1 + · · · + in+1,1 + · · · + i0,N + · · · + in+1,N

and the parameter function χ(zi0,10,1 . . . z
in+1,1
n+1,1 . . . z

i0,N
0,N . . . z

in+1,N
n+1,N ) = i2,N + · · ·+ in+1,N .

We describe M as
N(n+2)−n∏

k=1
Seq(Z)×

n∏
k=1

Seq(uZ)× Seq(Z)

the last Seq(Z) being for the dummy value. This then leads to the OGF

F (z, u) =
( 1

1− uz

)n ( 1
1− z

)N(n+2)−n+1
.

We get

∂F

∂u
(u, z)

∣∣∣∣
u=1

∼
z→1

n

(1− z)N(n+2)+2 ,

this leads to:
χ<m(M ) = µ ∼ n× (m)N(n+2)+1

(N(n+ 2) + 1)! .
2In order to reach this asymptotic bound, the constructed matrix is of huge dimension and the resulting
polynomial system has a very large number of variables and the computation which is theoretically
polynomial-time becomes in practice prohibitive.
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N n δtheo δexp dimension m LLL time(s) Gröbner basis time(s)
1 1 0.333 0.32 35 4 3.804 4.603
1 3 0.6 0.49 21 2 0.250 0.699
1 5 0.714 0.49 36 2 0.871 38.374
2 1 0.166 0.16 28 2 1.438 0.650
2 5 0.33 0.29 91 2 191.906 556.715

Table 7.1.: Lattice Attack on Gentry signatures. Average running time (in seconds) of the
LLL algorithm and the Gröbner basis computation.

Remark 7.2.1. In [GV14], Galindo and Vivek analyzed the security of an ElGamal-based
public-key encryption scheme (with stateful decryption) proposed by Kiltz and Pietrzak [KP10]
which was conjectured to resists lunch-time chosen ciphertext attacks in the so-called only
computation leaks model. They disprove the conjecture by proposing an algorithm to solve a
new computational problem, deemed Hidden Shares - Hidden Number Problem, which is less
general but has some similarities with the problem investigated in this section.

7.2.3. Experimental Results
We have implemented the attack in Sage 7.6 on a MacBook Air laptop computer (2,2 GHz
Intel Core i7, 4 Gb RAM 1600 MHz DDR3, Mac OSX 10.10.5). Table 7.1 lists the theoretical
bound δtheo = n

(n+2)N and an experimental bound δexp for a 512-bit prime p (corresponding
to a 256-bit security level) with (n+ 2) signatures (for n ∈ {1, 3, 5}) and a few number of
unknown blocks (N 6 2). We consider the family of polynomials Pm with m = 4 and m = 2.
We ran 27 experiments for all parameters and Table 7.1 gives the average running time (in
seconds) of the LLL algorithm and the Gröbner basis computation.

We denote α the maximum number of least significant bits that the attacker knows in each
signature σj , for all j 6= 0 (for instance α = 0 means that it does not know any least significant
bits of the signatures σj , for all j ∈ {1, . . . , n + 1}). If we know at least δexpdlog2(p)e + α
least significant bits of the signature σ0 then the Gröbner basis always gives us a system of
dimension 0 and we are able to find the N unknown block of sizes pδexp in each signature σi
for i ∈ {0, . . . , n+ 1}. Otherwise, Gröbner basis computations gives us a system of dimension
1 and we are a priori unable to find the unknown blocks (though it is possible in some
cases to obtain additional information). This system of dimension 1 occurs because the
constructed system admits a large number of “small” solutions. We give an example of this
in Appendix 7.3. However, If the condition mentioned above is satisfied, we obtain for N = 1
and n + 2 = 3, the success rates given in Table 7.2 (over 250 attacks performed for each
parameter pair (m, δexp)).
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m = 2 m = 3 m = 4
δexp = 0.3225 100 100 100
δexp = 0.3250 98.4 98.4 99.2
δexp = 0.3275 90.4 92.8 94.4
δexp = 0.3300 66.0 65.2 72.8
δexp = 0.3325 10.0 15.2 17.2
δexp = 0.3350 0 0 0

Table 7.2.: Lattice Attack on Gentry signatures. Success rates (over 250 attacks performed
for each parameter pair (m, δexp)).

7.3. Concrete Attack Examples against Gentry signatures

In this section, we present two attack examples on Gentry signatures for a 256-bit prime p
with 3 signatures (r0, σ0), (r1, σ1) and (r2, σ2) and one T -bit unknown block in each signature,
with T = b0.3 log2(p)c.

We recall that for i ∈ {0, 1, 2}, σi = gsi where si = (y + ri)/(x+m) mod p, x and y are
the secret keys and p, m and ri, i ∈ {0, 1, 2} are public information. In this example, we took
the following random values:

• p = 9b814891e89496e776bfeeebcac5c74130862914fe2b928d40c3a88323dcbaaf

• m = 440f4a9df2936c4aad3856ed0ea5cf3d131ef658fc36c2fa56763373288d5519

• x = 57a7b0913f5202e31555ec9538ff90f38a5e6c53b359edfe1106c8ee9518029a

• y = 259b67be7de53e0546860379bc31ab9bb30caf68c314a956a1719e18d4a24ae2

• r0 = 75c471becf6a9d86aa5480985a95702617892ba84b7662d6bdf3a3c1931abf3b

• r1 = 675e28ffbf96b29365ebda463c3a0a4290a284f9fed9ddd0ccdada587c1f0152

• r2 = 7961b0df3f0a286547f25da59a7c2a7c28764f4335a0aa2cd5a72ba2393a6cd3

• s0 = 45f185a8ce35c2b95b3e1aef9fc516ec9e840c9a5b6b36c70532b10145790401

• s1 = 8f63fe87fd0d67f6594ff44ba86a2755b2b6ad6a0b7ab4aafecae41fca50c713

• s2 = 57de02b444bb7716c021d21162c3727ba904ae6e4d44aca2ad9f4406669e8744

and T = b0.3 log2(p)c = 76.
In the first case, we suppose that we do not know any least significant bits of each signature

and show that we are unable to find the unknown blocks since the Gröbner basis gives us a
system of dimension 1.
In the second case, we suppose that we know T + 2 least significant bits of σ0 but do

not know any least significant bits of s1, and s2. We also suppose that we do not know T
intermediate bits of s0 and we show that in this case we are able to find the unknown blocks
since the Gröbner basis gives us a system of dimension 0.
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7.3.0.1. First case

• We can write the signatures as:

s0 = 2T · 45f185a8ce35c2b95b3e1aef9fc516ec9e840c9a5b6b3 + z0,

s1 = 2T · 8f63fe87fd0d67f6594ff44ba86a2755b2b6ad6a0b7ab + z1,

s2 = 2T · 57de02b444bb7716c021d21162c3727ba904ae6e4d44a + z2,

where the T -bit numbers z0, z1 and z2 are the unknown blocks.

• We get the polynomial f(y0, y1, y2) defined by:

y2 + 86acc2de9d15dab4df6a8114243623f246376c1103c29ee97a0dd7490f87eb33 y1

+ 14d485b34b7ebc3297556dd7a68fa34eea4ebd03fa68f3a3c6b5d13a1454cf7b y0

+ 11f10fbe97565b062acfb71c6d98f596de6c1e236edaa9168d891d78d66e8c4a

having as root (z0, z1, z2) modulo p.

• Constructing the lattice with m = 4, after the LLL reduction and the Gröbner basis
computation, we obtain the system of polynomials{

f1(y0, y1, y2) = y2 − y0 − 5dba86c930521258343
f2(y0, y1, y2) = y1 − y0 + 21c0667cce17b283cee

having indeed (z0, z1, z2) as root over the integers. However, the dimension of the
system is 1 and then we are a priori unable to find the unknown blocks.

7.3.0.2. Second case

• We can write the signatures as:

s0 = 36c70532b10145790401 + 279 · z0 + 279+T · 8be30b519c6b8572b67c35df3

s1 = 2T · 8f63fe87fd0d67f6594ff44ba86a2755b2b6ad6a0b7ab + z1

s2 = 2T · 57de02b444bb7716c021d21162c3727ba904ae6e4d44a + z2

where the T -bit numbers z0, z1 and z2 are the unknown blocks.

• If one proceeds like in the attack, we obtain the polynomial f(y0, y1, y2) defined by
y2 + 86acc2de9d15dab4df6a8114243623f246376c1103c29ee97a0dd7490f87eb33 y1

+ 78836c7dbcc6bee53ea07b359a07fa111e09607336b452976acd0f0ec2a0c985 y0

+ 77b82eec348f27f19cb7a6c1cc895cf7261093b80d067ea4eb7b8da90e1ae306

having as root (z0, z1, z2) modulo p.

• Constructing the lattice with m = 4, after the LLL reduction and the Gröbner basis
computation, one obtains the system of polynomials

f1(y0, y1, y2) = y2 − ca2ad9f4406669e8744
f2(y0, y1, y2) = y1 − 4aafecae41fca50c713
f3(y0, y1, y2) = y0 − f8a2dd93d081934b6d6

having (z0, z1, z2) as root over the integers. The dimension of the system is 0 and one
finds readily the unknown blocks.
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7.4. Lattice Attack on Boneh-Boyen Signatures

7.4.1. Boneh-Boyen Signatures

Two years before the proposal of Gentry’s IBE, Boneh and Boyen proposed two IBE schemes
in [BB04a] and described one signature scheme obtained using the Naor transformation in
[BB04b]. Their scheme has comparable efficiency properties and also achieves existential
unforgeability under chosen-message attacks in the standard security model.
With the same notation as above, Boneh-Boyen signature scheme is defined by the three

following algorithms:

• Key generation. The user picks uniformly at random (x, y) ∈ Z2
p, computes h1 = gx

and h2 = gy and sets sk = (x, y) and pk = (h1, h2) ∈ G2.

• Signature generation. Given a message m ∈ {0, 1}∗, the user computes its hash
value H(m), and picks uniformly at random r ∈ Zp. It computes the signing exponent
s = 1/(x+H(m) + yr) mod p and the group element σ = gs. The signature is the pair
(r, σ) ∈ Zp ×G.

• Signature verification. Given (r, σ) ∈ Zp ×G, a verifier accepts it as a signature on
m ∈ {0, 1}∗ if and only if the following equality holds:

e(σ, h1 · gH(m) · hr2) ?= e (g, g)

7.4.2. Description of the Attack

In this section, we use the Coppersmith’s methods to attack Boneh-Boyen’s signature. Let
n > 1 be some integer. We suppose that the attacker is given (n+ 2) message/signature pairs
(mi, (ri, si))i∈{0,...,n+1} as described above (where n does not depend on the security parameter
λ). As above, to simplify the notation, we replace H(mi) by mi ∈ Zp (for i ∈ {0, . . . , n+ 1}).
We assume that the attacker knows some blocks of consecutive bits of the corresponding
signing exponents σi = 1/(x + m + yri) mod p, for i ∈ {0, . . . , n}, where p, ri and mi are
known to the attacker and x and y are kept secret.
As for Gentry signatures, from the knowledge of two different signing exponents, the attacker
can actually recover the secrets x and y and its goal is to recover the hidden bits of two σi’s
in order to recover x and y.

We have σi = 1/(x+mi + yri) mod p for i ∈ {0, . . . , n+ 1} and we have:

x+mi + yri −
1
σi

= 0 mod p, i ∈ {0, . . . , n+ 1}.

Eliminating x and y and assuming again that the attacker chooses a unique message m
(namely mi = m, for all i ∈ {0, . . . , n + 1}), we obtain, for a, b, i ∈ {0, . . . , n + 1} with
0 6 a < b < i 6 n+ 1:

(rb − ri)σiσb + (ri − ra)σiσa + (ra − rb)σaσb = 0 mod p. (7.3)

Putting σi = ∑N
j=1 xi,j2ki,j + γi, i ∈ {0, . . . , n + 1}, where γi is known to the attacker

and xi,j , j ∈ {1, . . . , N} are unknown with |xi,j | < 2µi,j for some integer µi,j and a = 0,
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we obtain a polynomial f0,b,i(z0,1, . . . , z0,N , . . . , zn+1,1, . . . , zn+1,N ) having as “small” root
X0 = (x0,1, . . . , x0,N , . . . , xn+1,1, . . . , xn+1,N ) modulo p, where :

f0,b,i =
N∑
j=1

N∑
k=1

αb,i,j,kzi,jzb,k +
N∑
j=1

N∑
k=1

α0,i,j,kzi,jz0,k +
N∑
j=1

N∑
k=1

α0,b,j,kzb,jz0,k

+
N∑
j=1

α0,b,i,jzi,j +
N∑
j=1

β0,b,i,jzb,j +
N∑
j=1

γ0,b,i,jz0,j + δ0,b,i mod p (7.4)

for b, i ∈ {1, . . . , n+ 1}, b < i and with known coefficients , where αb,i,N,N = 1. The set of
monomials appearing in the polynomials f0,b,i is:

M =
{

1, za,jzb,k, zi,j : i ∈ {0, . . . , n+ 1}
∣∣∣∣∣ a, b ∈ {0, . . . , n+ 1}; a < b
j, k ∈ {0, . . . , N}

}
.

We consider the following set of polynomials:

P = {pm̃, m̃ ∈M1} ∪ {f0,b,i : b, i ∈ {1, . . . , n+ 1}; b < i} ,
where M1 = M \M2 with M2 = {zb,Nzi,N : b, i ∈ {1, . . . , n + 1}; b < i}. One can see
that for any polynomial f̃ ∈ P, f̃(X0) = 0 mod p. We can define an order on the set of
monomials such that all the monomials in M1 are smaller than any monomial in M2 and for
zb,Nzi,N , zb′,Nzi′,N ∈M2, zb,Nzi,N < zb′,Nzi′,N if (b < b′ or (b = b′ and i < i′)).
Using that order, we can order the set of polynomials from the smallest element to the

greatest as follows:

P = {pm̃1, . . . , pm̃ω1 , f0,1,2, . . . , f0,1,n+1, f0,2,3, . . . , f0,2,n+1, . . . , f0,n,n+1}
= {f̃1, . . . , f̃ω}

where m̃1 < · · · < m̃ω1 , ω1 is the cardinality of M1 and ω is the cardinality of M.
Putting U = 2maxi,j µi,j , we define the lattice L generated by b1, . . . , bω, where for each

i ∈ {1, . . . , ω}, bi is the coefficient vector of the polynomial

f̃i(Uz0,1, . . . , Uz0,N , . . . , Uzn+1,1, . . . , Uzn+1,N ).

One can verify that the basis matrix is lower triangular. The number of variables is N(n+ 2)
and the success condition for the Coppersmith’s method is:

det(L) < pω−N(n+2)+1, with ω = ]M = N2 (n+ 1)(n+ 2)
2 + (n+ 2)N + 1.

We have det(L) = U2N2 (n+1)(n+2)
2 +(n+2)Npω−

n(n+1)
2 and the success condition becomes:

U < p

n(n+1)
2 −N(n+2)+1

2N2 (n+1)(n+2)
2 +(n+2)N .

If n is large and since N is small, we can neglect −N(n+ 2) + 1 which contribute to a small
error term. So the attacker can recover x and y as long as the sizes of each unknown block in
the signatures σi, i ∈ {0, . . . , n+ 1} satisfies:

U < p
n(n+1)

2N2(n+1)(n+2)+2(n+2)N →
n→∞

p
1

2N2 .

We can thus heuristically recover the secret key if the number of consecutive bits of each
unknown block is smaller than dlog2(p)e/(2N2).
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N n δtheo δexp dimension LLL time(s) Gröbner basis time(s)
1 4 0.277 0.293 22 0.205 0.048
1 6 0.306 0.31 29 1.961 1.008
1 10 0.382 0.38 79 75.086 39.669
2 4 0.076 0.08 73 9.185 3.078
2 6 0.087 0.09 129 232.698 397.900

Table 7.3.: Lattice Attack on Boneh-Boyen signatures. Average running time (in seconds) of
the LLL algorithm and the Gröbner basis computation.

7.4.3. Experimental results

Table 7.3 lists the theoretical bound δtheo = n(n+1)
2N2(n+1)(n+2)+2(n+2)N and an experimental

bound δexp for a 512-bit prime p with (n + 2) signatures for a few values of n ∈ {4, 6, 10}
and one or two unknown blocks per signatures.
We ran 27 experiments for all parameters and in all cases (for the bound δexp), the

assumption that the created polynomials define an algebraic variety of dimension 0 was
verified. The constructed system was solved using Gröbner basis and the desired root
recovered. Table 7.3 gives the average running time (in seconds) of the LLL algorithm and
the Gröbner basis computation (using the same configuration as above).

7.5. Lattice Attack on Sakai-Kasahara Signatures
7.5.1. Sakai-Kasahara Signatures
In [SK03], Sakai and Kasahara presented the first pairing-based signature scheme in the
exponent-inversion framework. Their scheme is very close to Boneh-Boyen signature schemes
but produces shorter signatures (at the cost of relying on the random oracle heuristic [ZSS04]).

With the same notation as above, Sakai-Kasahara signature scheme is defined by the three
following algorithms:

• Key generation. The user picks uniformly at random x ∈ Zp, computes h = gx and
sets sk = x and pk = h ∈ G.

• Signature generation. Given a message m ∈ {0, 1}∗, the user computes its hash
value H(m). It computes the signing exponent s = 1/(x+H(m)) mod p and the group
element σ = gs. The signature is the group element σ ∈ G.

• Signature verification. Given σ ∈ G, a verifier accepts it as a signature on m ∈
{0, 1}∗ if and only if the following equality holds:

e(σ, h · gH(m)) ?= e (g, g)

We present in the following an attack on this scheme when the attacker learns some blocks
of consecutive bits of the signing exponents. This computational problem is related to the
Modular Inversion Hidden Number Problem which was introduced in 2001 by Boneh, Halevi
and Howgrave-Graham [BHH01]. In this problem, the attacker does not know exactly one
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block of least significant bits of the signing exponents σi while our attack considers the setting
where the attacker does not know N > 1 different blocks in each σi (for any N).

7.5.2. Description of the Attack
In this section, we use the Coppersmith’s methods to attack Sakai-Kasahara signatures. Let
n > 1 be some integer. We suppose that the attacker is given (n + 1) message/signature
pairs (mi, si)i∈{0,...,n} as described above (where n does not depend on the security parameter
λ). Again, to simplify the notation, we replace H(mi) by mi ∈ Zp (for i ∈ {0, . . . , n}). We
assume that the attacker knows some blocks of consecutive bits of the corresponding signing
exponents σi = 1/(x+mi) mod p for i ∈ {0, . . . , n} and its goal is to recover x. One can see
that from the knowledge of a value σi, the attacker can actually recover the hidden number
x and it is thus sufficient to recover the hidden bits of a single σi’s in order to recover x.

We have σi = 1/(x+mi) mod p for i ∈ {0, . . . , n} which can be rewritten as:

x+mi −
1
σi

= 0 mod p, i ∈ {0, . . . , n}.

Eliminating x, we obtain:

(mi −ma)σiσa + σi − σa = 0 mod p a, i ∈ {0, . . . , n}, 0 6 a < i 6 n. (7.5)

Putting, for i ∈ {0, . . . , n+ 1}, σi = ∑N
j=1 xi,j2ki,j + γi, where γi is known to the attacker and

xi,j for j ∈ {1, . . . , N} are unknown with |xi,j | < 2µi,j for some integer µi,j , we obtain a polyno-
mial fa,i(z0,1, . . . , z0,N , . . . , zn,1, . . . , zn,N ) having as rootX0 = (x0,1, . . . , x0,N , . . . , xn,1, . . . , xn,N )
modulo p with:

fa,i =
N∑
j=1

N∑
k=1

αa,i,j,kzi,jza,k +
N∑
j=1

βa,i,jzi,j +
N∑
j=1

γa,i,jxa,j + δa,i mod p (7.6)

for a, i ∈ {0, . . . , n}, a < i and with known coefficients, where αa,i,N,N = 1. The set of
monomials appearing in the polynomials fa,i is:

M = {1, za,jzb,k, zi,j : i ∈ {0, . . . , n}; a, b ∈ {0, . . . , n}; a < b; j, k ∈ {1, . . . , N}} .

We consider the following set of polynomials:

P = {pm̃, m̃ ∈M1} ∪ {fa,i : a, i ∈ {0, . . . , n}; a < i} ,

where M1 = M \M2 with M2 = {za,Nzi,N : a, i ∈ {0, . . . , n}; a < i}. One can see that
for any polynomial f̃ ∈ P, f̃(X0) = 0 mod p. We can define an order on the set of
monomials such that all the monomials in M1 are smaller than any monomial in M2 and for
za,Nzi,N , za′,Nzi′,N ∈M2, za,Nzi,N < za′,Nzi′,N if (a < a′ or (a = a′ and i < i′)).
Using that order, we can order the set of polynomials from the smallest element to the

greatest as follows:

P = {pm̃1, . . . , pm̃ω1 , f0,1, . . . , f0,n, f1,2, . . . , f1,n, . . . , fn−1,n} = {f̃1, . . . , f̃ω}

where m̃1 < · · · < m̃ω1 , ω1 is the cardinality of M1 and ω is the cardinality of M. Putting
U = 2maxi,j µi,j , we define the lattice L generated by b1, . . . , bω, where bi is the coefficient
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N n δtheo δexp dimension LLL time(s) Gröbner basis time(s)
1 4 0.4 0.39 16 0.015 0.009
1 6 0.4285 0.425 29 0.934 0.267
1 10 0.4545 0.45 67 5.082 4.247
2 4 0.1111 0.1111 51 0.728 0.292
2 6 0.1153 0.1153 99 15.308 14.482

Table 7.4.: Lattice Attack on Sakai-Kasahara signatures. Average running time (in seconds)
of the LLL algorithm and the Gröbner basis computation.

vector of f̃i(Uz0,1, . . . , Uz0,N , . . . , Uzn,1, . . . , Uzn,N ) for i ∈ {1, . . . , ω},. One can easily verify
that the basis matrix is lower triangular. The number of variables is N(n+ 1) and the success
condition for the Coppersmith’s method is:

det(L) < pω−N(n+1)+1,

with ω = ]M = N2 n(n+1)
2 + (n + 1)N + 1 and det(L) = U2N2 n(n+1)

2 +(n+1)Npω−
n(n+1)

2 . The
success condition then becomes:

U < p

n(n+1)
2 −N(n+1)+1

2N2 n(n+1)
2 +(n+1)N .

If n is large and since N is small, we can neglect −N(n+ 1) + 1 which contributes to a small
error. The attacker can recover x and y as long as the sizes of each unknown block in the
signatures σi, i ∈ {0, . . . , n} satisfies:

U < p
n(n+1)

2N2n(n+1))+2(n+1)N →
n→∞

p
1

2N2 .

We can heuristically recover the secret key of Sakai-Kasahara signatures if the number of
consecutive bits of each unknown block is smaller than dlog2(p)e/(2N2).

7.5.3. Experimental results

Table 7.4 gives the theoretical bound δtheo = n(n+1)
2N2n(n+1))+2(n+1)N and an experimental bound

δexp for a 512-bit prime p with (n+ 1) signatures for a few values of n ∈ {4, 6, 10} and one or
two unknown blocks per signatures.
We ran 27 experiments for all parameters . As in the attack on Boneh-Boyen signatures,

the assumption that the created polynomials define an algebraic variety of dimension 0 was
verified (in all cases for the bound δexp) and the constructed system was solved using Gröbner
basis and the desired root recovered. Table 7.4 gives the average running time (in seconds)
of the LLL algorithm and the Gröbner basis computation (using the same configuration as
above).





Chapter 8.
Conclusion and Open Questions

8.1. Conclusion
In this thesis:

• We proved lower bounds on the degree and weight of multivariate polynomial represen-
tations of the Naor-Reingold function over a finite field and over the group of points on
an elliptic curve over a finite field for fixed secret keys and variable secret keys. For
fixed secret keys, we showed that a low-weight or low-degree multivariate polynomial
cannot reveal information on the functions values over finite fields and that a low-degree
univariate and bivariate polynomial cannot reveal information on the functions values
over elliptic curves. For variable secret keys, we showed that a low-weight or low-degree
multivariate polynomial cannot reveal information on the functions values over finite
fields and that a low-degree multivariate polynomial cannot reveal information on the
functions values over elliptic curves in certain cases.

• We studied the distribution of the Dodis-Yampolskiy pseudo-random function values
over finite fields and over elliptic curves. We showed that for almost all values of
parameters, the Dodis-Yampolskiy pseudo-random function produces a uniformly
distributed sequence. We also proved lower bounds on the degree of polynomials
interpolating the values of these functions in these two settings of practical interest. We
showed that a low-weight or low-degree univariate polynomial cannot reveal the secret
key x when evaluated at Vx(m) (for some integer m ∈ {1, . . . , d}) for all x over finite
fields and that a low-degree univariate cannot reveal the secret key x when evaluated
at Vx(m) over elliptic curves.

• We analyzed the security of the elliptic curve linear congruential generator (EC-LCG)
and of the elliptic curve power generator (EC-PG). In the case where the composer
is known, we showed that the EC-LCG is insecure if at least a proportion of 8/11 of
the most significant bits of an arbitrary large number of consecutive values Ui of the
sequence is output. We also tackled the case where the most significant bits of an
arbitrary large number of non consecutive values (namely the most significant bits of the
abscissa of values Uki for some fixed integer k) of the sequence is output and we showed
that the EC-LCG is insecure if at least a proportion of 3/4 of the most significant bits
is output. Furthermore, we consider the cryptographic setting where the composer is
unknown and we showed that this generator is insecure if at least a proportion of 7/8
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of the most significant bits of an arbitrary large number of consecutive values Ui of the
sequence is output. Finally, we showed that the EC-PG is insecure if a proportion of at
least 1− 1/e2 of the most significant bits of the abscissa of an arbitrary large number
of consecutive values Vi of the sequence is output. Our results are theoretical since in
practice, the performance of Coppersmith’s method in our attacks is bad because of
large dimension of the constructed lattice but they are good evidences of the weaknesses
of these generators. These generators should then be used with great care.

• We presented lattice-based polynomial-time algorithms that recover the signer’s secret in
popular pairing-based signatures (Gentry signature, Boneh-Boyen signature and Sakai-
Kasahara signature) when used to sign several messages under the assumption that N
blocks of consecutive bits of the corresponding exponents are known by the attacker.
This partial information can be obtained in practice easily through side-channels (such
as the power consumption or the electromagnetic emanations of the device generating
the signature). We considered known-message attacks and chosen-message attacks.
We show that one can recover the secret key if the number of consecutive bits of each
unknown block is smaller than the following values:
– Sakai-Kasahara: dlog2(p)e/2N2

– Boneh-Boyen: dlog2(p)e/2N2

– Gentry: dlog2(p)e/N
provided that the number of signatures is sufficiently large. The efficiency of our
(heuristic) attacks has been validated experimentally.

8.2. Open questions
Many open questions still remain:

• For the Naor-Reingold pseudo-random functions: the first question which is natural is
Question 8.1. Can we generalize our bounds to smaller interpolating sets?
the second question is
Question 8.2. Can we obtain lower bounds on the weight of multivariate polynomial
representations of the Naor-Reingold functions over elliptic curves?
and the third question
Question 8.3. Can we obtain lower bounds on the non-linear complexity of the Naor-
Reingold functions over elliptic curves?

• For the Dodis-Yampolskiy pseudo-random functions: the first question is
Question 8.4. Can we study the distribution of k-tuples (Vx(m), . . . , Vx(m+ k))m?
and the second one
Question 8.5. Can we study linear complexity, non-linear complexity and minimal
polynomials of the sequence generated by the Dodis-Yampolskiy functions over finite
fields and over elliptic curves?

• For lattice attacks on pairings-based schemes: In order to prevent the leakage of partial
information on the exponent, it is customary to use a probabilistic algorithm to encode
the sensitive values such that the cryptographic operations only occur on randomized
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data. In [Cor99], Coron proposed notably to randomize the exponent and the projective
coordinates of the base point. The first question is:
Question 8.6. Can we extend our attacks in such setting (as it was done recently for
ECDSA in [GRV17])?
Our attacks are heuristic and it would be very interesting to give proven version of our
attacks (as it was done in [NS02; NS03] for ECDSA signatures). It is also interesting
to study further the attack against Gentry signatures when the unknown blocks of
consecutive bits overlap. Finally, it would be nice to improve our attacks on Boneh-
Boyen and Sakai-Kasahara signatures and to show that one can recover the secret key
if the number of consecutive bits of each unknown block is smaller than dlog2(p)e/(cN)
for some constant c.
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Résumé
L’aléatoire est un ingrédient clé en cryptographie. Par
exemple, les nombres aléatoires sont utilisés pour gé-
nérer des clés, pour le chiffrement et pour produire
des nonces. Ces nombres sont générés par des gé-
nérateurs pseudo-aléatoires et des fonctions pseudo-
aléatoires dont les constructions sont basées sur des
problèmes qui sont supposés difficiles. Dans cette
thèse, nous étudions certaines mesures de complexité
des fonctions pseudo-aléatoires de Naor-Reingold et
Dodis-Yampolskiy et étudions la sécurité de certains
générateurs pseudo-aléatoires (le générateur linéaire
congruentiel et le générateur puissance basés sur les
courbes elliptiques) et de certaines signatures à base
de couplage basées sur le paradigme d’inversion.

Nous montrons que la fonction pseudo-aléatoire
de Dodis-Yampolskiy est uniformément distribué et
qu’un polynôme multivarié de petit dégré ou de pe-
tit poids ne peut pas interpoler les fonctions pseudo-
aléatoires de Naor-Reingold et de Dodis-Yampolskiy
définies sur un corps fini ou une courbe elliptique. Le
contraire serait désastreux car un tel polynôme casse-
rait la sécurité de ces fonctions et des problèmes sur
lesquels elles sont basées. Nous montrons aussi que le
générateur linéaire congruentiel et le générateur puis-
sance basés sur les courbes elliptiques sont prédictibles
si trop de bits sont sortis à chaque itération.

Les implémentations pratiques de cryptosystèmes
souffrent souvent de fuites critiques d’informations à
travers des attaques par canaux cachés. Ceci peut
être le cas lors du calcul de l’exponentiation afin
de calculer la sortie de la fonction pseudo-aléatoire
de Dodis-Yampolskiy et plus généralement le calcul
des signatures dans certains schémas de signatures
bien connus à base de couplage (signatures de Sakai-
Kasahara, Boneh-Boyen et Gentry) basées sur le pa-
radigme d’inversion. Nous présentons des algorithmes
(heuristiques) en temps polynomial à base des réseaux
qui retrouvent le secret de celui qui signe le message
dans ces trois schémas de signatures lorsque plusieurs
messages sont signés sous l’hypothèse que des blocs
consécutifs de bits des exposants sont connus de l’ad-
versaire.

Mots Clés
fonctions pseudo-aléatoires, générateurs pseudo-
aléatoires, signature à base de couplage, discrépance,
interpolation polynomiale, attaques à base de
réseaux.

Abstract
Randomness is a key ingredient in cryptography. For
instance, random numbers are used to generate keys,
for encryption and to produce nonces. They are
generated by pseudo-random generators and pseudo-
random functions whose constructions are based on
problems which are assumed to be difficult. In
this thesis, we study some complexity measures of
the Naor-Reingold and Dodis-Yampolskiy pseudo-
random functions and study the security of some
pseudo-random generators (the linear congruential
generator and the power generator on elliptic curves)
and some pairing-based signatures based on exponent-
inversion framework.

We show that the Dodis-Yampolskiy pseudo-random
functions is uniformly distributed and that a low-
degree or low-weight multivariate polynomial cannot
interpolate the Naor-Reingold and Dodis-Yampolskiy
pseudo-random functions over finite fields and over el-
liptic curves. The contrary would be disastrous since
it would break the security of these functions and of
problems on which they are based. We also show that
the linear congruential generator and the power gen-
erator on elliptic curves are insecure if too many bits
are output at each iteration.

Practical implementations of cryptosystems often suf-
fer from critical information leakage through side-
channels. This can be the case when computing
the exponentiation in order to compute the out-
put of the Dodis-Yampolskiy pseudo-random function
and more generally in well-known pairing-based sig-
natures ( Sakai-Kasahara signatures, Boneh-Boyen
signatures and Gentry signatures) based on the
exponent-inversion framework. We present lattice-
based polynomial-time (heuristic) algorithms that re-
cover the signer’s secret in the pairing-based signa-
tures when used to sign several messages under the
assumption that blocks of consecutive bits of the ex-
ponents are known by the attacker.

Keywords
pseudo-random functions, pseudo-random generators,
pairing-based signatures, discrepancy, polynomial in-
terpolation, lattice attacks.
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