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Abstract

In this thesis, we address the well-known problem of head-pose estimation
in the context of human-robot interaction (HRI). We accomplish this task
in a two step approach. First, we focus on the estimation of the head pose
from visual features. We design features that could represent the face under
different orientations and various resolutions in the image. The resulting is
a high-dimensional representation of a face from an RGB image. Inspired
from [Deleforge 15] we propose to solve the head-pose estimation problem by
building a link between the head-pose parameters and the high-dimensional
features perceived by a camera. This link is learned using a high-to-low proba-
bilistic regression built using a probabilistic mixture of affine transformations.
With respect to classic head-pose estimation methods we extend the head-
pose parameters by adding some variables to take into account variety in the
observations (e.g. misaligned face bounding-box), to obtain a robust method
under realistic conditions. Evaluation of the methods shows that our approach
achieve better results than classic regression methods and similar results than
state of the art methods in head pose that use additional cues to estimate the
head pose (e.g depth information). Secondly, we propose a temporal model
by using tracker ability to combine information from both the present and the
past. Our aim through this is to give a smoother estimation output, and to
correct oscillations between two consecutives independent observations. The
proposed approach embeds the previous regression into a temporal filtering
framework. This extension is part of the family of switching dynamic models
and keeps all the advantages of the mixture of affine regressions used. Over-
all the proposed tracker gives a more accurate and smoother estimation of the
head pose on a video sequence. In addition, the proposed switching dynamic
model gives better results than standard tracking models such as Kalman fil-
ter. While being applied to the head-pose estimation problem the methodology
presented in this thesis is really general and can be used to solve various re-
gression and tracking problems, e.g. we applied it to the tracking of a sound
source in an image.
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Résumé

Dans cette thèse, nous abordons le problème de l’estimation de pose de visage
dans le contexte des interactions homme-robot. Nous abordons la résolution
de cette tâche à l’aide d’une approche en deux étapes. Tout d’abord en nous
inspirant de [Deleforge 15], nous proposons une nouvelle façon d’estimer
la pose d’un visage, en apprenant un lien entre deux espaces, l’espace des
paramètres de pose et un espace de grande dimension représentant les obser-
vations perçues par une caméra. L’apprentissage de ce lien se fait à l’aide
d’une approche probabiliste, utilisant un mélange de regressions affines. Par
rapport aux méthodes d’estimation de pose de visage déjà existantes, nous
incorporons de nouvelles informations à l’espace des paramètres de pose,
ces additions sont nécessaires afin de pouvoir prendre en compte la diversité
des observations, comme les differents visages et expressions mais aussi les
décalages entre les positions des visages détectés et leurs positions réelles, cela
permet d’avoir une méthode robuste aux conditions réelles. Les évaluations
ont montrées que cette méthode permettait d’avoir de meilleurs résultats que
les méthodes de regression standard et des résultats similaires aux méthodes
de l’état de l’art qui pour certaines utilisent plus d’informations, comme la
profondeur, pour estimer la pose. Dans un second temps, nous développons
un modèle temporel qui utilise les capacités des traqueurs pour combiner
l’information du présent avec celle du passé. Le but à travers cela est de
produire une estimation de la pose plus lisse dans le temps, mais aussi de cor-
riger les oscillations entre deux estimations consécutives indépendantes. Le
modèle proposé intègre le précédent modèle de régression dans une structure
de filtrage de Kalman. Cette extension fait partie de la famille des modèles dy-
namiques commutatifs et garde tous les avantages du mélange de regressions
affines précédent. Globalement, le modèle temporel proposé permet d’obtenir
des estimations de pose plus précises et plus lisses sur une vidéo. Le modèle
dynamique commutatif donne de meilleurs résultats qu’un modèle de suivi
utilsant un filtre de Kalman standard. Bien qu’appliqué à l’estimation de pose
de visage le modèle presenté dans cette thèse est très général et peut être utilisé
pour résoudre d’autres problèmes de régressions et de suivis.
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Περ́ιληψη

Στην παρούσα διδακτορική διατριβή, ϑ́ιγουµε το πρόβληµα του

υπολογισµού της τοποϑέτησης του προσώπου στα πλάισια των

αλληλεπιδράσεων ανϑρώπου-ροµπότ. Θ́ιγουµε τη λύση αυτής της

εργασ́ιας µέσω µ́ιας προσέγγισης σε δύο στάδια. Εµπνεόµενοι αρχικά,
από τον [Deleforge 15], προτέινουµε έναν καινούριο τρόπο υπολογισµού

της τοποϑέτησης ενός προσώπου διδάσκοντας µ́ια σχέση ανάµεσα

σε δύο χώρους, τον χώρο των παραµέτρων της τοποϑέτησης και

ένα χώρο µεγάλης διάστασης που αντιπροσωπεύει τις παρατηρήσεις

που γ́ινονται αντιληπτές µέσω µ́ιας κάµερας. Η µαϑητέια αυτής

της σχέσης γ́ινεται µε τη βοήϑεια µ́ιας πιϑανολογικής προσέγγισης,
χρησιµοποιώντας ένα µέιγµα παλινδροµήσεων συγγένειας. Σχετικά µε τις

υπάρχουσες µεϑόδους υπολογισµού της τοποϑέτησης του προσώπου,
ενσωµατώνουµε καινούριες πληροφορ́ιες στο χώρο των παραµέτρων

της τοποϑέτησης, αυτές οι προσϑήκες έιναι αναγκάιες ώστε να

µπορέσουµε να λάβουµε υπόψη την ποικιλ́ια των παρατηρήσεων, όπως

τα διαφορετικά πρόσωπα και οι εκφράσεις αλλά επ́ισης και τις διαφορές

ανάµεσα στις ϑέσεις των προσώπων που έχουν ανιχνευτέι και τις

πραγµατικές ϑέσεις αυτών, αυτό επιτρέπει να έχουµε µ́ια εύρωστη

µέϑοδο σε πραγµατικές συνϑήκες. Οι αξιολογήσεις έχουν δέιξει ότι

αυτή η µέϑοδος επέτρεπε να έχουµε καλύτερα αποτελέσµατα από

άλλες µεϑόδους κανονικής µέιωσης και παρόµοια αποτελέσµατα από

την εφαρµογή µεϑόδων µελέτης της τρέχουσας κατάστασης που για

ορισµένους, χρησιµοποιούν περισσότερες πληροφορ́ιες, όπως το βάϑος,
για να υπολογ́ισουν την τοποϑέτηση. Κατά δεύτερον, αναπτύσσουµε

ένα χρονικό µοντέλο που χρησιµοποιέι τις ικανότητες ανιχνευτών

για να συνδυάσει την παρούσα πληροφορ́ια µε την παρελϑούσα.
Ο σκοπός ο οπόιος επιδιώκεται µέσω αυτού του µοντέλου έιναι

να παραχϑέι µ́ια εκτ́ιµηση της τοποϑέτησης περισσότερο λέια µέσα

στο χρόνο, αλλά και να διορϑωϑούν επ́ισης οι ταλαντώσεις µεταξύ

δύο ανεξάρτητων διαδοχικών εκτιµήσεων.Το µοντέλο που προτέινεται,
ενσωµατώνει το προηγούµενο µοντέλο ύφεσης µέσα σε µ́ια δοµή

φιλτραρ́ισµατος του Kalman. Αυτή η επέκταση ανήκει στην οικογένεια

των δυναµικών αντιµεταϑετικών µοντέλων και διατηρέι όλα τα

πλεονεκτήµατα του προηγούµενου µέιγµατος εξευγενισµένων υφέσεων.
Γενικά, το προτεινόµενο χρονικό µοντέλο επιτρέπει την απόκτηση

εκτιµήσεων τοποϑέτησης µε περισότερη ακρ́ιβεια και πιο λέιες σε

ένα β́ιντεο. Το δυναµικό αντιµεταϑετικό µοντέλο παρέχει καλύτερα

αποτελέσµατα από ένα µοντέλο παρακολούϑησης που χρησιµοποιέι ένα

κανονικό φ́ιλτρο του Kalman. Αν και έχει εφαρµοστέι στην εκτ́ιµηση

της τοποϑέτησης του προσώπου το µοντέλο που παρουσιάζεται στην

παρούσα διδακτορική διατριβή έιναι πολύ γενικό και µπορέι να

χρησιµοποιηϑέι για την επ́ιλυση κι άλλων προβληµάτων παλινδροµήσης

και παρακολουϑήσεων.
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CHAPTER 1

INTRODUCTION

In a social gathering, the human has the ability to extract a lot of information from visual
auditive sense, e.g. where the people are, who are they, who are the speakers, who are
they talking to, and more in order to determine the complete status of everyone. While
this for a human is natural, this task for a robot is more challenging. How can these
information be extracted from audio and video signals. A lot of works were done in
order to find different representation of these signals in order to make the extraction of
these information easier, e.g. using frequency representation of an audio signal, using
carateristic point in image or its gradient. The second task is to build models that learn
how to extract the relevant information from these features. A lot of approaches exist,
regression technics, probabilistic inference and more recently deep learning methods. In
this thesis we tackle the challenge of estimating and tracking the head pose from videos.
To do so we propose a methodology for tracking the head pose from high-dimensional
observations combining regression, probabilistic inference and tracking.
This chapter presents the context of this thesis, the inspiration to this work, the contri-
bution of this thesis and, at the end, the organization of the rest of the manuscript.

1.1 THE GLOBAL PROJECT

This thesis was part of the Vision and Hearing In Action (VHIA) project overseen by
Radu Horaud, it is a joint work among the members of the Perception team of the IN-
RIA Grenoble. The VHIA project has for objective to give humanoid companion robots
perception and knowledge about their social environment, i.e. to give a robot all the in-
formation about the people around it in order to be able to understand and communicate.
Understanding of the social environment for a social robot is the root for being able to
interact with its surrounding, and has not to be neglected and to be carefully handle. This
is achieved by building models that are able to extract from audio and visual cues the spe-
cific required low-level information, as the number of people in the scene, the orientation
of their face in order to combine them, and thus to obtain high-level information as the
main speaker the object/person of interest. This in the end gives a robot the ability to
provide the proper answer and to express the correct emotion.

1



2 CHAPTER 1. INTRODUCTION

1.2 INSPIRATION

The inspiration of the work done in this thesis comes from the work of Antoine Dele-
forge, a former PhD student of the Perception team. During his thesis he proposed a
novel method to map two spaces with different dimensions using mixture of regression.
The method was designed to map a high dimensional space of observations onto a low-
dimensional space representing the object state space. He applied it to sound source
localization in images from binaural features. Using features from a pair of microphones,
that are high-dimensional, he managed to build a mapping between these features and
their associated sound source position in the image plane. Starting from this idea, we
asked ourself with my supervisor Radu Horaud if a mapping could be done in a similar
way, but in a different context to solve other problems since its formulation is generic and
is independent to the type of data used as input and output. We were interested in building
a model for head-pose estimation, in the context of human-robot interaction, using RGB
images from a robot camera. We wished also to extend this work to make it more robust,
we thought that adding temporality would be a great extension and contribution to it.

1.3 PROBLEM OVERVIEW

The problem we wish to solve is to infer the face orientation of people, from camera
images. This is challenging in many ways. First from the context of the work, the model
has to be applied onto the Humanoid robot Nao, manufactured by SoftBank Robotics
(formely known as Aldebaran Robotics). The Nao robot has a single camera and does not
provide high resolution images, thus the resolution of the faces in the images are not of
high quality. In this context methods using landmarks detection to estimate the head pose
are not good to use. The second challenging part of head-pose estimation methods is that
they need to be able to provide accurate estimation in various cases, different background,
different lighting, faces (glasses, expressions pilosity and all the possible variations that
human offers us) and also various image resolutions. Finally the robot has to be able to
infer these informations in real time, thus the full method from the detection must be fast
enough to work online. We need to build a model that can infer accurately and quickly
the head pose, and also that does not require a lot of resources to work.

1.4 CONTRIBUTIONS OF THIS THESIS

The objective of this thesis was to build probabilistic models in the context of human-
robot social interactions. Toward this goal we focused first on the estimation and the
tracking of the head pose and in a second time on the tracking of a speaker because the
model is easily applicable to various applications thanks to its generic formulation. Why
focusing on these two problems? In social interaction these two pieces of information
are important because they can lead to an understanding of the status of social gathering.
Knowing who/where is the speaker through sound source tracking and where are the
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people looking at through their head-pose orientation. Head pose is a crucial information
to be able to estimate the visual focus of attention.

PROBABILISTIC MAPPING FOR HEAD-POSE ESTIMATION

In Chapter 2, starting from the work of [Deleforge 14], that uses probabilistic regression
for the localization of sound source in an image, we build a model for head-pose estima-
tion using the same principle. We explore the possibility offered by the model to make
the estimation robust to different realistic conditions that could appear in a real interaction
between a human and a robot. The main contribution was to be able to jointly estimate
the head-pose parameters and also the offset of the localization when the detection is not
properly aligned onto the face. The outcome of this idea is an iterative algorithm that
refined the bounding-box position while estimating the head-pose parameters. Through
this we demonstrate the existence of a mapping between the image space and the pose
parameters and face position space. We achieved similar or better results than state-of-
the-art methods on three datasets for head-pose estimation. This work was published in
[Drouard 15] and [Drouard 17b].

PROBABILISTIC TRACKING FOR HEAD-POSE AND SOUND-SOURCE ESTIMATION

In Chapter 3, we present an extension of the model used for head-pose estimation, for
temporal tracking. During the experimentations on the regression model we realized that
the output estimation of the head pose of a person in a temporal sequence was not smooth
and that sometimes the estimation can be far from the ground truth, this is due to some
errors of localization and some perturbations in the image that could alter the features.
We proposed a temporal model that combined the previous probabilistic regression with
a temporal model. The resulting can be seen as a mixture of Kalman filters with the
possibility to switch from one Kalman filter to another one. The switching makes the
model intractable with time because the number of components in the mixture model
increases too much at each time step. To overcome this we proposed two approaches
to contain the number of components. The first one is a component merging approach.
The second one is a variational approximation that fixed the number of components for
each time, thus avoiding it to increase. We compare these two methods to express their
advantages and drawbacks and compare them to other tracking methods. This work was
published in [Drouard 17a].

TEMPORAL MODEL FOR SPEAKER TRACKING

In Chapter 4, we present a tracking model for sound source direction of arrival track-
ing. The model is based on the tracking model presented in Chapter 3 and the sound
source direction of arrival estimation model of [Deleforge 14]. Natural speech signal
time-frequency representation being sparse (i.e. a lot of inactive time-frequency point
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with no energy), we adjusted the observation model of the tracking model using the ob-
servation model of [Deleforge 14]. The final model is able to track object state (in this
case the direction of arrival of a sound) from a series of sparse observations.

SOME WORK ON APPLICATION OF SPEAKER-LOCALIZATION USING HUMANOID ROBOT
NAO

In Chapter 5, we present our algorithm for speaker localization with the Nao robot. This
work was made with the engineers of the Perception team. The idea of this was to be able
to use Matlab to run algorithms with Nao. We developed the algorithm to estimate the
speaker localization, using the cameras and the microphones of the Nao, by combining
sound source localization with face detection. This demo was part of the EARS (Em-
bodied Audition for Robots) project, joint european project where the team Perception
was involved with research laboratories from United-Kingdom, Germany, Israel and also
Aldebaran robotics (the manufacturer of the NAO robot). Out of this the engineer of the
Perception team developed the NaoLab software. This software allows people to easily
develop and run algorithms with the Nao robot using various programming languages,
e.g. Python, C++ or Matlab. This demo was part of the publication [Badeig 15].

1.5 ORGANIZATION OF THIS MANUSCRIPT

The rest of the manuscript is organized in three core chapters, each one describing a
contribution of the thesis as described in previous section. Some conclusions are drawn
in Chapter 6. Appendix explaining derivations of the models, the publications related to
this thesis and the list of references are in backmatter. Enjoy your reading.



CHAPTER 2

HEAD-POSE ESTIMATION

The model for head-posed estimation developed during this thesis is inspired from the
probabilistic method for sound localization by [Deleforge 14]. The model is based on
a mixture of local regressions embedded into a probabilistic framework, training of the
model parameters is done using pairs of observations and associated head-poses. The
model offers the possibility to have partially latent output during the training. Indeed,
the output variable of the model is assumed to be a concatenation of the head-pose
parameters and some other values that can catch some variations in the images that
could affect the estimation of the head pose. The idea was to build a robust model
that could compensate some issues from images such as light conditions and also face
bounding box detection. This model goes a bit further than just a classic head-pose
estimation as the first experiments we performed revealed that the face detection had
an influence on the estimation of the head-pose. Indeed, the detection is not always
properly aligned onto a face. To correct this, we extended the output variable to have
a detection refinement part to correct the misalignment. The core of this chapter is
organized in five sections. First we define what is head-pose estimation in the context
of computer vision and this thesis, we cover a part of the literature about this. Then
we evaluate the efficiency of the methods on several datasets and compare to several
state-of-the-art methods. Finally we draw some conclusions and discussions about the
method and its limitations.

2.1 WHAT IS HEAD-POSE ESTIMATION

In computer vision, head-pose defines the orientation of a person’s head with respect to
a coordinate system. Here the coordinate system is defined by a camera, which leads to
a pretty wide range of possible orientations. In general when we talk about head pose
we refer to 2D or 3D head pose, the dimension of the vector that contains the angles that
define the orientation of a face. These parameters correspond to three angles, namely
pitch (top to bottom rotation of the face), yaw (left to right) and roll (in-plane rotation of
the face), see Fig 2.1.

5
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Figure 2.1: Representation of the head pose with the three possible egocentric rotations, source: [Murphy-
Chutorian 09]

2.2 FROM IMAGE TO HEAD POSE: SEVERAL APPROACHES (RELATED

WORK)

A complete review about head-pose estimation (until 2009) was published by [Murphy-
Chutorian 09] few years ago. We suggest any reader to look at this paper for a complete
coverage of the head-pose estimation literature pre-2009. In this section, we focus more
on the litterature about head-pose estimation post-2009. New technics were developed
and new data became available since then like 3D data based methods and methods based
on neural networks. Head-pose methods can be grouped into four categories: methods
based on depth images, methods based on manifold learning, methods based on regression
and those based on neural networks and especially using convolutional neural networks
(CNN).

§ Depth images

The recent advent of depth cameras enabled fast development of depth-based head-pose
estimation methods. Depth data are more reliable as they allow to overcome some of
the drawbacks of RGB data, such as illumination problems and facial landmarks detec-
tion, which is more reliable. One of the first methods using depth data was introduced by
[Seemann 04]. In this method, a depth map of the head region is combined with a color
histogram and used to train a neural network. [Fanelli 13] used random forest regression
to estimate both the head pose and facial landmarks location. [Peng 15] also used random
forests in their study in which RGB scale-invariant feature transform (SIFT) descriptors
are combined with 3D histogram of oriented gradients (HOG) descriptors. Finally, it
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should be highlighted that depth information is merely used to disambiguate photomet-
ric data and that depth data used alone for head-pose estimation is not as effective as
combining with RGB information.

§ Manifold learning

Several authors suggested to use manifold learning for head-pose estimation. Manifold
learning consists in finding a low-dimensional output space of head poses from a high-
dimensional input space of feature vectors. The inconvenient of manifold learning is that
the output variables do not necessarily correspond to the pose angles, which implies that
learning, in a supervised way the mapping between the manifold-learning output and the
desired space spanned by the pose parameters is also necessary. This has been achieved
in various ways, e.g. [Srinivasan 02, Raytchev 04, Hu 05, Li 07, BenAbdelkader 10,
Foytik 13, Sundararajan 15]. To conclude, these two step methods suffer from the fact
that unsupervised manifold-learning techniques do not guarantee that the predicted output
space contains the information needed for head pose.

§ Regression

Among the regression methods used for head pose are Gaussian process regression (GPR)
[Marin-Jimenez 14], support vector regression (SVR) [Murphy-Chutorian 07], partial
least squares (PLS) [Sharma 11] and kernel PLS [Haj 12]. Both technics from [Marin-
Jimenez 14] and [Murphy-Chutorian 07] estimate the pose angles independently, so sev-
eral regression functions must be learned, one for each angle. Hence correlations be-
tween the head-pose angles cannot be taken into account during the learning. Another
drawback of all kernel methods is that they require the design of a kernel function with
its hyper-parameters, which must be either manually selected or properly estimated using
non-convex optimization techniques.

PLS and kernel PLS proceed in two steps. First, both the input and the output are
projected onto low-dimensional latent subspaces by maximizing the covariance between
the projected input and the projected output. Second, a linear regression between these
two latent subspaces is estimated. The performance of PLS depends on the relationship
between the covariance matrices of input and output variables and on the eigen structure
of the covariance of the input variable [Naik 00].

§ CNN

Convolutional neural network (CNN) architectures were also proposed in the recent past
[Osadchy 07], [Ahn 14]. [Osadchy 07] considers a fixed image sub-window at all lo-
cations and scales. The network consists of 64, 000 weights and kernel coefficients that
need to be estimated, and both face and non-face samples must be considered. Altogether,
training the network with 52, 000 positives and 52, 000 negatives samples, involves non-
linear optimization and takes 26 hours on a 2GHz Pentium 4. [Ahn 14] proposed a CNN
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architecture composed of four convolutional layers with max-pooling on the first two lay-
ers. In their study, the activation function is the hyperbolic tangent which yields good
convergence during the training phase. Small input RGB images (32 × 32 pixels) and
small filters (5 × 5 pixels) are used in order to overcome the limitation of the training
dataset. The network is trained using 13, 500 face patches extracted from the dataset.
More recently, [Liu 16] suggested to simulate a dataset of head poses in order to train a
CNN. Then they use the trained network to estimate head pose from real color images
using the BIWI dataset [Fanelli 13].

2.3 PROBABILISTIC PIECEWISE REGRESSION

In this section we will present the model used to estimate the head pose from an image of
a face. The model used is referred as GLLiM (Gaussian Locally Linear Mapping). It is
a probabilistic model that learns a mapping between two spaces of different dimensions,
a high-dimenssion one (∈ RD) and a low-dimension one (∈ RL) with D � L. The
mapping is made by a mixture of local affine transformation. The pipeline for the learning
and prediction is summarized in Figure ( 2.2).

2.3.1 INVERSE REGRESSION

In a classic regression formula between two random variables X and Y , where X ∈ RL

denotes the response variable (output) and Y ∈ RD the explanatory variable (input) with
D � L, the objective is to learn the parameters of the regression from Y to X (the for-
ward predictive regression). The specifity of the GLLiM model is that it inverses the roles
of the input and output variables in the learning step, i.e. the high to low problem becomes
a low to high problem. This dramastically drops the number of parameters and thus eases
the training task. Then the parameters for the forward regression can be obtained without
difficulty, this will be covered in the next subsection. The relation between X and Y ,
possibly non-linear, is modeled using a mixture of locally affine transformations

Y =
K∑
i=1

I {Z = i} (AiX + bi + ei) , (2.1)

where I is the identicator function and Z a discrete hidden variable used to specify the
identity of the affine transformation between the two variables X and Y such that Y is
the image ofX by the ith affine transformation if and only if I {Z = i} = 1. Ai ∈ RD×L

and bi ∈ RD are the affine transformation parameters, ei ∈ RD is a vector capturing
the error due to the reconstruction using affine transformation and eventual noise in the
observation. Figure 2.3 shows the relations between the three variables of the model.

The selection variable Z allows to rewrite Equation (2.1) in a probabilistic form as a
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Figure 2.2: Pipeline of the proposed supervised head-pose estimation method. Top: the parameters of
a mixture of linear regressions are learnt from faces annotated with their poses (left). The result of this
learning is a simultaneous partitioning of both the high-dimensional input (high-dimensional feature vec-
tors shown in the middle) and low-dimensional output (two-dimensional parameter space shown on the
right), such that each region in this partition corresponds to an affine mapping between the input and the
output. Moreover, the output is modeled by a Gaussian mixture and each region corresponds to a mixture
component. This yields a predictive distribution that can then be used to predict an output from a test input.
Bottom: A face detector is used to localize a bounding box (left, shown in red) from which a HOG descrip-
tor, namely a high-dimensional feature vector, is extracted. Using the predictive distribution just mentioned,
it is then possible to estimate the head-pose parameters (yaw and pitch in this example). Additionally, it
is also possible to refine the bounding-box location such that the latter is optimally aligned with the face
(right, shown in green).

distribution of Y conditioned byX:

p(Y = y|X = x;θ) =
K∑
i=1

p(Y = y|X = x, Z = i;θ)p(Z = i|X = x;θ), (2.2)

where θ denotes the model parameters and y and x denote realizations of Y and X
respectively. Assuming that ei is a zero-mean Gaussian variable with diagonal covariance
matrix Σi ∈ RD×D with diagonal entries σi1, . . . , σiD, the conditional probability p(Y =
y|X = x, Z = i;θ) in Equation (2.2) can be expressed as Gaussian distribution of the
following form (to simplify the visibility Y = y andX = x are replaced by y and x):

p(y|x, Z = i;θ) = N (y; Aix+ bi,Σi). (2.3)

If we further assume that X follows a mixture of Gaussian distributions via the same
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Figure 2.3: Graphical model representing the relations between the variable Y ,X and Z

assignment variable Z = i, the following distributions can be defined:

p(x|Z = i;θ) = N (x; ci,Γi), (2.4)
p(Z = i;θ) = πi, (2.5)

where ci ∈ RL, Γi ∈ RL×L and
∑K

i=1 πi = 1. This assumption defines a partition of
the lower dimensional space RL into K regions Ri, moreover using the same variable Z
as in Equation (2.3) implies that if x lies in region Ri then the ith affine transformation
(Ai, bi) is going to be employed to express y. Thus the model can be considered as a
region mapping. This model is fully described by the parameter set:

θ = {ck,Γk, πk,Ak, bk,Σk}Kk=1. (2.6)

Finally, when replacing p(Y = y|X = x, Z = i;θ) and p(Z = k|X = x;θ) from
Equation 2.2 by their true values using Equations (2.3), (2.4) and (2.5), the conditional
distribution of y given x can now be expressed as follows:

p(y|x;θ) =
K∑
i=1

νiN (y; Aix+ bi,Σi), (2.7)

with νi =
πiN (x; ci,Γi)∑K

i′=1 πi′N (x; ci′ ,Γi′)
. (2.8)

The parameters θ are learned through an Expectation-Maximization (EM) algorithm
shown in appendix A.

2.3.2 LATENT OUTPUT EXTENSION

Variations in Y can be affected by other factors than X . These factors being various
and not always measurable can have an important impact in the estimation of Y from
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X . We would like to consider these factors that can affect Y as latent variables of the
model. A compelling feature of the GLLiM model is the possibility to train the inverse
regression in the presence of partially latent output X , in this case we are referencing
to hybrid-GLLiM. While the high-dimensional variable Y remains unchanged, i.e. fully
observed, the low-dimensional variable is a concatenation of an observed variable T ∈
RLt and a latent variableW ∈ RLw , namelyX = [T ;W ], where [∆; ∆] denotes vertical
vector concatenation and with Lt + Lw = L. Hybrid-GLLiM can be seen as a latent-
variable augmentation of standard regression. It can also be seen as a semi-supervised
dimensionality reduction method since the unobserved low-dimensional variableW must
be recovered from realizations of the observed variables Y and T . The decomposition of
X implies that some of the model parameters must be decomposed as well, namely ck ,
Γk and Ak . Assuming the independence of T andW given Z we obtain:

ck =

(
ctk
cwk

)
, Γk =

(
Γt
k 0

0 Γw
k

)
, Ak =

(
At
k Aw

k

)
. (2.9)

It follows that Equation (2.1) rewrites as:

Y =
K∑
k=1

I(Z = k)(At
kT + Aw

kW + bk + ek), (2.10)

While the parameters to be estimated are the same, i.e. Equation (2.6) does not change,
there are now two missing variables, Z ∈ {1 . . . K} and W ∈ RLw , associated with the
training data (Y ,T ). The means {cwi }Ki=1 and covariances {Γw

i }Ki=1 must be set in order
to avoid non-identifiability issues. Indeed, changing their values corresponds to shifting
and scaling the latent variable W which is compensated by changes in the parameters of
the affine transformations {Aw

i }Ki=1 and {bwi }Ki=1. This identifiability problem is the same
as the one encountered in latent variable models for dimension reduction and is always
solved by fixing these parameters. Following [Ghahramani 96a] and [Tipping 99], the
means and covariances are fixed to zero and to the identity matrix respectively: cwi =
0,Γw

i = I, ∀i ∈ {1 . . . K}. Derivations to obtain the final conditional distribution are the
same as in the case with no latent addition.

2.3.3 FROM INVERSE TO FORWARD

The desired high-dimensional (i.e. face descriptor) to low-dimensional (i.e. head pose)
or forward predictive distribution can be obtained from the inverse predictive distribu-
tion once its parameters have been estimated. Using Bayes’ inversion rule the forward
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predictive distribution is obtained and expressed as follows:

p(x|y;θ∗) =
K∑
k=1

ν∗kN (x; A∗ky + b∗k,Σ
∗
k) (2.11)

with ν∗k =
π∗kN (y; c∗k,Γ

∗
k)

K∑
j=1

π∗jN (y; c∗j ,Γ
∗
j)

(2.12)

which is also a Gaussian mixture conditioned by the parameters θ∗:

θ∗ = {c∗k,Γ∗k, π∗k,A∗k, b∗k,Σ∗k}Kk=1. (2.13)

The forward predictive distribution follows also a Gaussian mixture, with the same selec-
tion variable Z, a notable feature of this model is that the parameters θ∗ can be expressed
analytically from the parameters θ as follows:

c∗k = Akck + bk, (2.14)

Γ∗k = Σk + AkΓkA>k , (2.15)
π∗k = πk, (2.16)

A∗k = Σ∗kA>k Σ−1k , (2.17)

b∗k = Σ∗k
(
Γ−1k ck − A>k Σ−1k bk

)
, (2.18)

Σ∗k =
(
Γ−1k + A>k Σ−1k Ak

)
.−1 (2.19)

The desired prediction x̂ of X given a realisation y of Y is obtained using Eq. 2.11.
Two approaches can be used, the first one uses the expectation of Equation (2.11):

x̂ = f(ŷ) with:

f(y) = E [x|y;θ∗] =
K∑
k=1

ν∗k (A∗ky + b∗k) . (2.20)

The second one using the maximum a posteriori of p(Z = i|y), selecting the most prob-
able transformation given a new input y.

In most cases these two approaches are very similar because optimally only one trans-
formation should be selected. Nevertheless in the case where a new input y lies on the
edge of two adjacent regions a soft combination of transformations might be preferable
rather than a hard assignment.
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2.4 EXPERIMENTAL VALIDATION

In this section we evaluate the performance of the method presented in previous section.
Experiments are conducted on three publicly available datasets for head-pose estimation.
In the first part, we conduct experiments to determine the optimal number of affine trans-
formations. In the second part, we benchmark the method against some state of the art
methods.

2.4.1 FACE REPRESENTATION

The proposed head-pose estimation method is implemented as follows. Faces were ex-
tracted using the Matlab computer vision toolbox implementation of the face detector of
[Viola 01] as this method yields good face detections and localizations for a wide range of
face orientations, including side views. The Matlab implementation of [Viola 01] offers
three different trained classifiers for face detection: two of them for frontal-view detection
and one for profile-view detection. These three classifiers yield different results for face
detection in terms of bounding-box location and size. The results of face detection using
these three classifiers are then combined for both training and testing of our method. For
each face detection the associated bounding box is resized to patches of 64 × 64 pix-
els, and converted to a grey-level image. Then histogram equalization is then applied to
the gray-level image. A HOG descriptor is extracted from this resized and histogram-
equalized patch. To do so, a HOG pyramid (p-HOG) is built by stacking HOG descriptors
at multiple resolutions. The following parameters are used to build p-HOG descriptors:

• Block resolution: 2× 2 cells;

• Cell resolutions: 32× 32, 16× 16 and 8× 8 pixels,

• Number of orientation bins: 8

Three HOG descriptors are computed, one for each cell resolution, which are then stacked
to form a high-dimensional vector y ∈ RD, with D = 1888, see Figure 2.4.

2.4.2 THE DATASETS

The experiments are carried out with three publicly available datasets: the Prima dataset
[Gourier 04], the Biwi Kinect dataset [Fanelli 13], and the McGill real-world face video
dataset [Demirkus 13, Demirkus 15]: Sample images from the different datasets are dis-
played in Figures 2.5-2.7.

• The Prima head pose dataset consists of 2790 images of 15 persons recorded
twice. Pitch values lie in the interval [−60◦, 60◦], and yaw values lie in the inter-
val [−90◦, 90◦] with a 15◦ step. Thus, there are 93 poses available for each person.
Every recording was achieved with the same background. One interesting feature
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Figure 2.4: Processus to obtain the pyramidal HOG features from a face image. First gradient orientation is
computed in each cell, with different resolution of cells, and then the histograms are concatenated to form
the final feature representation

of this dataset is that the pose space is uniformly sampled. The dataset is annotated
such that a face bounding box (manually annotated) and the corresponding yaw and
pitch angle values are provided for each sample.

Figure 2.5: Samples from the McGill real-world face video dataset

• The Biwi Kinect head pose dataset consists of video recordings of 20 people (16
men, 4 women, some of them recorded twice) using a Kinect camera. During the
recordings, the participants freely move their head and the corresponding head an-
gles lie in the intervals [−60◦, 60◦] (pitch), [−75◦, 75◦] (yaw), and [−20◦, 20◦] (roll).
Unlike the Prima dataset, the parameter space is not evenly sampled. The face cen-
ters (nose tips) were detected on each frame in the dataset, which allow to automati-
cally extract a bounding box for each sample.
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Figure 2.6: Samples from the Biwi Kinect head pose dataset

• The McGill real-world face video dataset consists of 60 videos (a single partici-
pant per video, 31 women and 29 men) recorded to study unconstrained head-pose
estimation. The videos were recorded in different environments (both indoor and
outdoor). This results in arbitrary illumination conditions and background clutter.
Furthermore, the participants were completely free in their behaviors and move-
ments. Yaw angles range in the interval [−90◦, 90◦]. Yaw values corresponding to
each video frame are estimated using a two-step labelling procedure that provides
the most likely angle as well as a degree of confidence. The labelling consists of
showing images and possible angle values to human experts, i.e. [Demirkus 13].

Figure 2.7: Samples from the McGill real-world face video dataset
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2.4.3 THE PROTOCOL

Experiments were carried out using the leave-one-out evaluation protocol at the individual
person level. This implies that all the images/frames associated with one participant were
left aside and used for testing, while the remaining ones were used to train the models.
Performance of the evaluation between the estimated angles with respect to the ground-
truth one was done using the mean absolute error (MAE) and standard deviation (STD)
over several tests, the following variations of the proposed method were experimented:

• GLLiM pose learns and predicts the pose parameters;

• hGLLiM pose-d learns and predicts the pose parameters as well as partially latent
output, where d is the dimension of the extra latent part added to the output variable,
d varies between 1 and 4;

• GLLiM pose&bb learns and predicts both pose angles and bounding-box shifts, and

• hGLLiM pose&bb-d learns and predicts pose angles, bounding-box shifts and par-
tially latent output.

An important aspect of any head-pose method is the way faces are detected in im-
ages. Manually annotated bounding boxes were used whenever they are available with
the datasets. Otherwise, we used bounding boxes provided with a face detector, e.g. [Vi-
ola 01]. To evaluate the robustness in the presence of inaccurate face localization, random
shifts, drawn from a Gaussian distribution, on the annotated face bounding-boxes were
introduced, and we used these shifts in conjunction with GLLiM pose&bb and with
hGLLiM pose&bb-d to learn the regression parameters and to predict the correct bounding-
box location. In the case of the latter algorithms, the prediction is run iteratively. i.e. the
algorithm extracts a HOG vector, predicts the pose and the shift, then it extracts a HOG
vector from the shifted bounding box and predicts the pose and the shift, etc. This stops
when the shift becomes very small. This scheme is explained in Algorithm 1.

The dimension of the output variable x ∈ RL depends on the number of pose pa-
rameters (up to three angles: yaw, pitch and roll), the bounding-box shift parameters
(horizontal and vertical shifts) and the dimension of the extra latent part added. Hence
the output dimension may vary from L = 1 (one angle, no shift, no extra latent part) to
L = 9 (three angles, two shifts, four latent variables).

The joint estimation of the head-pose angles and bounding-box shift is achieved itera-
tively in the following way. The current bounding-box location, u ∈ R2, and size s ∈ R2,
are used to build a feature vector y from which both a head pose xh and a bounding-box
shift xb are predicted. The latter is then used to update the bounding-box location, to build
an updated feature vector and to predict an updated head pose and a new bounding-box
shift. This iterative prediction is described in detail in Algorithm 1.
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Algorithm 1 Iterative prediction

Require: Bounding-box location u and forward model parameters θ∗

1: procedure HEADPOSEESTIMATION(u,θ∗)
2: repeat
3: Build y from current bounding-box location u
4: Predict x = [xh;xb] from y using 2.20
5: Update the bounding-box location u = u+ xb
6: until ‖xb‖ ≤ ε
7: return head-pose xh and bounding-box location xb
8: end procedure

Figure 2.8: The Bayesian information criterion (BIC) as a function of the number of affine transformations
in GLLiM. These experiments use the Prima dataset with the leave-one-out protocol.

2.4.4 RESULTS

§ Number of affine transformation

The number K of Gaussian components is an important parameter, as it corresponds, in
the model to the number of affine mappings. Several experiments were carried out to
evaluate the quality of the results obtained by our method as a function of the number of
affine transformations in the mixture. To do that, we used the GLLiM pose variant of our
algorithm with three different face detection options: manual annotation (AFP), manual
annotation perturbed with additive Gaussian noise (MNA), and automatic face detection
(FD). These three versions of GLLiM pose were trained with K varying from 1 to 100.
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Table 2.1: The BIC score for several models learned with different values of K using the Prima dataset.
GLLiM pose is used to learn each model with different input data (Fig. 2.8): annotated face position (AFP),
adding manual noise to the face position (MNA) and using a face detector (FD), The optimal BIC scores
are in bold.

Data K = 1 K = 5 K = 25 K = 50 K = 100

AFP −6.0608 −6.5845 −6.822 −6.8429 −6.8173

MNA −5.4554 −5.6018 −5.6491 −5.6688 −5.6455

FD −4.0596 −4.2602 −4.3144 −4.3366 −4.2307

In order to determine the optimal number of affine mappings, K, associated with GLLiM,
we use two measures. First, the Bayesian information criterion (BIC) which is a theoretic
criterion generally used for model selection, [Schwarz 78], and an experimental figure of
merit based on the mean absolute error (MAE). Several models were learned for different
values of K using the Prima dataset. We seek the model that yields low BIC and MAE
scores. The BIC and MAE values are plotted as a function of K in Table 2.1, in Fig. 2.8
and Fig. 2.9. These curves show the same behavior: as the number of affine mappings in-
creases from K = 1 to approximatively K = 30, both the BIC and MAE scores decrease,
then the curve slopes become almost horizontal. Both BIC and MAE reach the lowest
score for K = 50. This behavior can be explained as follows. When K < 5 the model is
not flexible enough to take into account the apparently non-linear mapping between HOG
features and head-pose parameters. It can be observed from Fig. 2.9 that a large value for
K increases the model accuracy. As expected, the computational complexity increases
with K as well. Indeed, the number of model parameters is linear in the number of mix-
ture components and hence the size of the training dataset must be increased as well. It
is well known that a large number of components in a mixture model presents the risk of
overfitting. It is interesting to notice that BIC (derived from information theory) and MAE
(based on experiments with the data) yield the same optimal value, namely K ≈ 50.

§ Comparison

The proposed algorithms (GLLiM pose, hGLLiM pose, ...) were compared with the fol-
lowing state-of-the-art head-pose estimation methods: the neural-network based methods
of [Stiefelhagen 04], [Gourier 07] and of [Ahn 14] , the method of [Demirkus 12] based
on dictionary learning, the graphical-model method of [Demirkus 14], the template based
method of [Zhu 12], the supervised non-linear optimization method of [Xiong 13], the
optimization method of [Ghiass 15], and the random-forest methods of [Fanelli 13] and
of [Wang 13]. Additionally, the method was benchmarked with the following regres-
sion methods: support vector regression (SVR) [Smola 04], Gaussian process regression
(GPR) [Rasmussen 06], and partial least squares (PLS) [Abdi 03]. We chose to compare
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Figure 2.9: Mean absolute error (MAE) in degrees, for pitch (top) and yaw (bottom), as a function of the
number of affine transformations in the mixture of linear regression model. GLLiM pose is used to learn the
model parameters independently for pitch and yaw. The three curves correspond to the following face de-
tection cases: manual annotation (red curve), manual annotations with additive noise (blue), and automatic
face detection (magenta). These experiments use the Prima dataset with the leave-one-out protocol.

our methods with these other methods for two reasons: they are widely known and com-
monly used regression methods. Some of these methods estimate only one parameter, i.e.
the yaw angle [Demirkus 12, Demirkus 14, Zhu 12, Xiong 13], while the random-forest
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methods of [Fanelli 13], [Ghiass 15] and [Wang 13] use depth information available with
the BIWI (Kinect) dataset.

Table 2.2, Table 2.3, and Table 2.4 show the results of head-pose estimation obtained
with the Prima, Biwi Kinect, and McGill datasets, respectively. The † symbol indicates
that the results are those reported by the authors while the ‡ symbol indicates that the
results are obtained using either publicly available software packages or our own imple-
mentations. In the case of the Prima dataset, GLLiM pose and hGLLiM pose yield the
best results. We note that hGLLiM pose&bb variants of the algorithm (simultaneous pre-
diction of pose, bounding-box shift and partially-latent output) increase the confidence
(low STD). Table 2.3 shows the results obtained with the BIWI datasets. As already men-
tioned, [Fanelli 13] uses depth information and [Wang 13], [Ghiass 15] use of depth and
color information. Overall, the proposed algorithms compare favorably with [Fanelli 13].
hGLLiM pose-4 yields the best MAE for the roll angle, while [Ghiass 15] yields the best
MAE for pitch and yaw, but with a high standard deviation. Our algorithms estimate the
parameters with the highest confidence (lowest standard deviation). Table 2.4 shows the
results obtained with the McGill dataset. The ground-truth yaw values in this dataset are
obtained by human experts that must choose among a discrete set of 7 values. Clearly,
this is not enough to properly train our algorithms. The method of [Demirkus 14] yields
the best results in terms of RMSE while hGLLiM pose-2 yields the best results in terms
of MAE. Note that PLS yield the highest confidence in this case.
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Table 2.4: Root mean square error (RMSE), mean absolute error (MAE) and standard deviation (STD) (in
degrees) obtained with various head-pose methods, regression methods, and our methods using the McGill
Real-World dataset. This dataset contains annotated yaw angles. Bounding boxes are located with a face
detector. The best results are in bold.

Bounding boxes based on face detection

Yaw

Method RMSE MAE STD

Demirkus et al. [Demirkus 12]‡ > 40 - -

Xiong and De la Torre [Xiong 13]‡ 29.81 - -

Zhu and Ramanan [Zhu 12]‡ 35.70 - -

Demirkus et al. [Demirkus 14]‡ 12.41 - -

GPR [Rasmussen 06]† 23.18 16.22 16.71

PLS [Abdi 03]† 22.46 15.56 16.2

SVR [Smola 04]† 21.13 15.25 18.43

GLLiM pose 26.62 13.1 23.17

hGLLiM pose-2 24.0 11.99 20.79

hGLLiM pose-4 24.25 12.01 21.06
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Figure 2.10: Examples of simultaneous estimation of head-pose angles and of bounding-box shifts. The
initial bounding box (found with an automatic face detector) is shown in red. The estimated bounding box
is shown in green.
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2.5 CONCLUSION

In this chapter, we introduced a new method to estimate the head pose from the bounding
box of a face. Inspired by [Deleforge 15], we used the idea of mapping two spaces of
different dimension through a combination of local affine transformations and applied it
for head-pose estimation. The method model the mapping between the low-dimensional
head-pose space through a Gaussian mixture model. The missing data variable, of the
mixture of Gaussian model, selects the optimal transformation to use given an observa-
tion. To facilitate the learning of the parameters, the method learns the inverse regression
from pose to features, and then followed by Bayesian inversion to obtain the forward re-
gression parameters. Misalignment of the face detection leads to wrong estimation of the
head-pose, we improve the robustness of the estimation by estimating both the head pose
and the misalignment offset simultaneously. These two piece of information are concate-
nated together to form the object state vector. We designed a recursive algorithm using
this combination, that estimates the head pose and refines the face bounding box until
convergence of the latter. Some results can be visualized on Figure 2.10. The algorithm
to solve head-pose estimation presented has not been tuned for this particular application.
The formulas are generic and can easily be applied, with minor modifications, to other
high-dimensional to low-dimensional mapping problems, e.g. [Deleforge 14] used the
method for sound source localization in a image. In the present model, each estimation is
based on single image, this leads to estimation on a sequence that is not smooth, by incor-
porating information from past, the estimation on sequence could be ameliorated. In the
next chapter we introduce a temporal dynamic on the state variables to solve the tracking
problem. Two publications came out of this work, [Drouard 17b] and [Drouard 15] which
received the best student paper award (2nd place) at the IEEE International Conference
on Image Processing (ICIP) in 2015.





CHAPTER 3

SWITCHING DYNAMICAL MODEL FOR

HEAD-POSE ESTIMATION

This chapter addresses the problem of head-pose tracking. The work presented inside
is an extension of the model presented in Chapter 2. It combines the regression model
with a dynamic model in the same probabilistic framework. This is achieved by embed-
ding the Gaussian mixture of linear inverse-regression model into a dynamic Bayesian
model, this combination is called a switching linear temporal model. The idea through
this model is to build a robust temporal estimation, using past to improve present predic-
tion. The resulting is a smoother transition between two consecutive estimations with
less variation and to overcome possible bad estimation due to noisy observations in a
frame. We formally derive the equations of the proposed switching linear regression
model. Unfortunatelly the tracking becomes quickly intractable due to an exponentially
increment of the number of components in the final mixture model with time. Thus
we propose two approximations that are both identifiable and computationally tractable,
two EM procedures were designed to estimate the model parameters with closed-form
expressions. Experiments and comparisons were carried out with other methods on two
publicly available datasets.

3.1 HEAD POSE AND PROBABILISTIC TRACKING

The proposed method combines high-dimensional to low-dimensional mixture of linear
regressions with a switching state-space model. In practice we adopt two approximations
of the obtained temporal model, that yield closed-form expressions for the estimation of
the tracked parameters. Hence, it is more efficient than sampling techniques which are
often used in conjunction with generative tracking methods.

27
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3.1.1 RELATED WORK

Head-pose tracking is not new and has been an actively investigated topic; head-pose es-
timation and tracking methods were surveyed [Murphy-Chutorian 09]. Many approaches
rely on extracting facial landmarks, then tracking these landmarks over the image se-
quence to finally estimate a rigid transformation between consecutive images, e.g. [Gee 96,
Uřičář 12], or between consecutive image pairs, e.g. [Yang 02]. Similarly, [Maurer 96]
builds a face graph based on the landmarks and tracks this graph over the image se-
quence. Another landmark-based approach [Yao 01] consists of using a 3D model of a
generic face that embeds model-centered coordinates of facial landmarks, e.g. nose tip,
eyes, lip corners, etc. The model is first fitted to the face detected in the first image and
then fitted to the subsequent faces by tracking the landmarks. These methods heavily
rely on landmark detection and tracking as well as on the robust estimation of the 2D-
landmark-to-3D-landmark rigid transformation, i.e. the pose parameters. Therefore these
methods are limited and not working effiently in the presence of non-frontal frontal views
of faces, because the landmarks are partially or totally occluded in side views of faces.
Moreover, they track the facial landmarks instead of the pose parameters, hence they do
not yield smooth pose trajectories. The advantage of the proposed method is that it relies
neither on facial landmark detection nor on landmark tracking. The proposed method,
once trained based on pairs of feature descriptors and pose parameters, can deal with side
views of faces, unlike landmark-based methods. Head-pose tracking was also addressed
using sampling methods based on particle filters, which allow to sample the temporal
predictive distribution e.g. [Ba 04]. A principled way of combining a latent-variable
temporal filter with the observed data is an important issue. In [Tu 06] it is proposed to
extract a high-dimensional feature vector from a face and then to apply PCA to reduce
its dimensionality. This assumes that the high-dimensional to low-dimensional mapping
is linear (which may not be the case) and it does not guarantee that the PCA output con-
tains pose information. Particle filtering can also be combined with a 3D deformable
model and with facial landmarks, e.g. [Dornaika 04, Taheri 13]. As already outlined,
landmark extraction is not always possible. The advantage of the proposed method over
these particle-filter trackers is both theoretical and methodological: the feature-space to
parameter-space mapping is combined with a dynamic model, and the estimation of the
model parameters yields closed-form EM procedures.

Switching state space models have also been used to solve tracking problems. For ex-
ample, [Ghahramani 96b], [Oh 05] and [Kooij 12] show that the use of switching linear
models helps tracking. In [Pavlovic 00] switching models are applied for tracking peo-
ple in videos in order to obtain motion-capture data, and three different approaches for
inferring the parameters are compared, namely the Viterbi algorithm, variational infer-
ence, and the generalized pseudo Bayesian algorithm of order 2 (GPB2). The reported
results obtained with these three approaches are quite similar. Viterbi has the lowest com-
plexity, GPB2 yields the smoothest parameter trajectories, while the variational inference
achieves a good compromise between low complexity and smooth trajectories.
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Figure 3.1: The temporal graphical model, temporal extension of Figure 2.3 with a dynamic on the latent
variableX and Z

3.2 TEMPORAL MIXTURE OF LINEAR REGRESSIONS

We wanted to have a global framework that could use the estimation model presented in
Chapter 2 but that would also incorporate information from the past. In this context, we
focus on probabilistic models for tracking and especially switching temporal models for
tracking. Using as observation model, the model previously presented, we incorporate
a new temporal equation to model the temporal relation between two consecutive object
state values. We wish to extend the model of Chapter 2 to a temporal model for tracking
the head pose over time. The main difference between the probabilistic regression model
presented in Chapter 2 Section 2.3 and the proposed temporal model is that the conditional
distribution p(x|y) is replaced with p (xt|y1:t), where t is the time index. The proposed
graphical model is shown on Figure 3.1, where Zt is the discrete latent variable associated
with the Gaussian mixture of linear regression,X t and Y t are the latent head pose and the
observed high-dimensional feature vector at t, respectively. Using marginalization rule to
make appear the latent variables X and Z at time t − 1, the new posterior conditional
distribution is expressed as follows:

p(xt|y1:t) =
K∑
j=1

K∑
i=1

∫
Xt−1

p(xt,xt−1, Zt = j, Zt−1 = i|y1:t)dxt−1. (3.1)

Under the Markovian assumption and using the conditional independencies associated
with the proposed graphical model of Figure 3.1, the term insides the integral of Equation



30 CHAPTER 3. SWITCHING DYNAMICAL MODEL FOR HEAD-POSE ESTIMATION

(3.1) can be decomposed as follows:

p(xt,xt−1,Zt = j, Zt−1 = i,yt|y1:t−1)

=p (yt|xt, Zt = j) p (xt|xt−1, Zt = j)

p (Zt = j|Zt−1 = i) p
(
xt−1|Zt−1 = i,y1:t−1

)
p
(
Zt−1 = i|y1:t−1

)
. (3.2)

Among the right hand side probabilities of this equation, p (yt|xt, Zt = j) is the observa-
tion model introduced in Equation (2.3). The other distributions are defined as follows:

p(xt|xt−1, Zt = j) = N (xt; Cjxt−1,Qj), (3.3)

p(xt−1|Zt−1 = i,y1:t−1) = N (xt−1;η
i
t−1,Vi). (3.4)

Equations 3.3 and 3.4 are addition due to the dynamic model on x. Where Cj is the
dynamic transition matrix between xt, xt−1 and Qj its associated covariance, ηit−1 and
Vi the estimation mean and associated covariance at t − 1 given Zt−1 = i. The other
terms of the right side of Equation (3.2) replace Equations (2.4) and (2.5) and are defined
as follows:

p(Zt = j|Zt−1 = i) = τij, (3.5)

p(Zt−1 = i|yt−1) = νit−1. (3.6)

p(Zt = j|Zt−1 = i) is called the switching probability. p(xt−1|y1:t−1) is defined as
a mixture of Gaussian with Zt−1 as the selection discrete latent variable and with K
components. The parameters related to the temporal model will be jointly denoted by φ:

φ = {Cj,Qj, τij, i, j = 1 . . . K}. (3.7)

By substituting Equations (2.3), (3.3) and (3.4) into Equation (3.2), the final posterior
distribution is now:

p(xt|y1:t) =
K∑
j=1

K∑
i=1

τijν
i
t−1N (yt; Ajxt + bj,Σj)

×
∫
Xt−1

N (xt; Cjxt−1,Qj)N (xt−1;η
i
t−1,Vi)dxt−1. (3.8)

The product of Gaussian distributions inside the integral can be rewritten as a product of
two Gaussian distributions as follows (proof can be found in Chapter 2 of [Bishop 07],
Equations 2.113-2.117):

N (xt; Cjxt−1,Qj)N (xt−1;η
i
t−1,Vi)

= N (xt; Cjη
i
t−1,Qj + CjViC>j )N (xt−1;h,H), (3.9)

where:

H =
(
C>j Q−1j Cj + V−1i

)−1
,

h = H
(
Q−1j Cjxt + V−1i η

i
t−1
)
.
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The first Gaussian in Equation (3.9) is called the predictive distribution, it does not depend
on xt−1 anymore, thus it can be put outside of the integral. The second one is a Gaussian
distribution over xt−1 and thus integrating it over xt−1 will make it disappear from the
posterior distribution:

p(xt|y1:t)

=
K∑
j=1

K∑
i=1

τijν
i
t−1N (yt; Ajxt + bj,Σj)N (xt; Cjη

i
t−1,Qj + CjViC>j ). (3.10)

The multiplication of the two remaining Gaussian distributions will result on a Gaus-
sian distribution on xt and a residual term that is also a Gaussian distribution but does
not depend on xt. This term can be understood as the distance between the true obser-
vation and the predicted observation given xt−1 if the value of Zt is j. This term is the
probability of Zt being equal to j given the current observation and the estimated value
of xt−1.

N (yt; Ajxt + bj,Σj)N (xt; Cjη
i
t−1,Qj + CjViC>j )

= N (dijt|t−1; 0,Sijt|t−1)N (xt;µ
ij
t|t−1,W

ij
t|t−1). (3.11)

The parameters of the Gaussian distributions are expressed as a function of θ and φ:

Wij
t|t−1 =

(
Σ∗j
−1 + Pijt−1

)−1
, (3.12)

µijt|t−1 = Wij
t|t−1

(
Σ∗j
−1 (A∗jyt + b∗j

)
+ Pijt−1Cjη

j
t−1
)
, (3.13)

dijt|t−1 = yt − Aj(Cjη
i
t−1)− bj, (3.14)

Sijt|t−1 = Σj + Aj(Qj + CjVi
t−1C

>
j )A>j . (3.15)

with

Pijt−1 =
(
Qj + CjVi

t−1C
>
j

)−1
, (3.16)

A∗j = Σ∗jA
>
j Σ−1j , (3.17)

b∗j = −A∗jbj, (3.18)

Σ∗j = (A>j Σ−1j Aj)
−1. (3.19)

One interesting consequence of replacing Equations (2.4) and (2.5) with Equations (3.3)
to (3.6) is that the formulas in Equations (2.17) to (2.19) are now simplified (Equations
(3.17) to (3.19)) and thus the parameters set θ can be reduced to θr = {Aj, bj,Σj}Kj=1.

Finally the posterior distribution can be fully expressed as:

p(xt|y1:t) =
K∑
i=1

K∑
j=1

πijt|t−1N (xt|µijt|t−1,W
ij
t|t−1), (3.20)
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Figure 3.2: The method starts by learning a mixture of linear regression that allows the prediction of a head-
pose from a feature vector obtained from the bounding box of a face. Hence, Equation 2.11 (2) is applied at
t−1 (top) and at t (bottom) and head poses are thus predicted, they are denoted A on the figure. Notice that,
because of various perturbations in the data and of inherent flaws in face detection, the two predictions use
two different affine transformations and hence they are associated with two different Gaussian components
in the mixture, i.e magenta and green on the figure. The proposed dynamic model combines the temporal
prediction of the filter from t−1 to t, denoted B on the figure, with the pose predicted at t, to yield a filtered
pose estimate, denoted C on the figure. The mixture of linear regression is plugged in the SKF model in a
principled way.

where:

πijt|t−1 = ρit−1τijN (dijt|t−1; 0,Sijt|t−1), (3.21)

ψt|t−1 = {πijt|t−1,µ
ij
t|t−1,W

ij
t|t−1, i, j = 1 . . . K}. (3.22)

The mean defined in Equation (3.13) can be seen as a “weighted” linear combination of
the dynamical prediction Cjη

j
t−1 and of the prediction based on observation A∗jyt + b∗j ,

where the “weights” are covariance matrices. Thus the confidence related to the covari-
ance matrices defines the weights of the dynamical prediction and the observation predic-
tion in the final estimation. Eq. (3.12) is the associated covariance matrix, which is the
inverse of the sum of the precision matrix of the temporal prediction Pijt−1 and precision
matrix Σ∗j

−1 of the observation yt. The GMM proportions in Equation (3.21) are defined
as a product between three terms: the proportions of the ith components at t − 1, ρit−1,
the switching filter transition probabilities τij , and N (dijt|t−1; 0,Sijt|t−1). The pipeline is
summarized in Figure 3.2
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3.3 HANDLING THE COMPONENTS GROWTH

The underlying problem with switching temporal models is the exponentially growth of
the number of components in the posterior distribution. Equations (3.4) and (3.6) defines
a mixture of K Gaussians a time t − 1 but the posterior at time t, p(xt|y1:t;ψt|t−1), is a
mixture of K2 Gaussians, Equation (3.20). This growth of the number of components is
due to the dynamic model on Zt, Equation (3.5).

The number of Gaussian components in the posterior distribution increases exponen-
tially at each time step, making the model intractable with time. Computing the parame-
ters for each Gaussian will be more and more time consuming and also the storage of these
parameters can be difficult in some cases. For example in the case where the algorithm
is running embedded on a robot with few memory space and limited computing capacity
it becomes necessary to contain the number of components in the mixture to avoid the
exponential explosion of this number.

Two approaches were invertigated to overcome this issue. First using the general-
ized pseudo Bayesian algorithm of order 2 (GPB2) and using a variational approximation
to estimate the posterior distribution and fixing the number of components in the mix-
ture for each time step. These two approaches give different estimations, according to
[Pavlovic 00], the GPB2 gives a smoother output but the variational approximation has
lower computational time and complexity.

3.3.1 APPROXIMATION USING THE GPB2 ALGORITHM

The GPB2 algorithm is an algorithm that reduces components in a mixture model by
merging moments. The order of the algorithm (in this case step 2) will define how the
components will be merged together. When the order is 2 all the components that diverge
in the history from 2 steps are merged, i.e. the components with the same value for Zt
will be merged together and thus the resulting will be a distribution with K components.
Using the mixture reduction scheme explained in [Salmond 09], the parameters of the
K2-component GMM ψt|t−1 can be fused together using the following scheme to form a
new GMM posterior distribution with K-component:

ηjt =
K∑
i=1

π̃ijt|t−1µ
ij
t|t−1, (3.23)

Vj
t =

K∑
i=1

π̃ijt|t−1
(
Wij

t|t−1 + (µijt|t−1 − η
j
t)(µ

ij
t|t−1 − η

j
t)
>), (3.24)

ρjt =
K∑
i=1

πijt|t−1, (3.25)

with π̃ijt|t−1 = πijt|t−1/
k∑
k=1

πkjt|t−1. (3.26)



34 CHAPTER 3. SWITCHING DYNAMICAL MODEL FOR HEAD-POSE ESTIMATION

Algorithm 2 Tracking with GPB2 algorithm
Require: posterior distribution at time t− 1

1: procedure HEADPOSETRACKING(y1:T , θ, φ)
2: λ1 ← HeadPoseEstimation(y1,θ)
3: t = 2
4: repeat
5: Compute parameters of Equation (3.20) ψt|t−1 from yt, λt−1 using θr, φ
6: Compute λt using GPB2 from ψt|t−1
7: until t = T
8: return head-pose estimation η1:T

9: end procedure

The approximate posterior distribution is now:

p(xt|y1:t;λt) ≈
K∑
j=1

ρjtN (xt;η
j
t ,V

j
t). (3.27)

with the parameters set:
λt = {ρjt ,η

j
t ,V

j
t , j = 1 . . . K}. (3.28)

ρjt defines the posterior distribution of Zt = j, p(Zt = j|y1:t) and N (xt;η
j
t ,V

j
t) corre-

sponds to p(xt|Zt = j,y1:t). The K-component GMM approximation (Equation (3.27))
of the K2-component GMM (3.20) guarantees the computational tractability of the tem-
poral model.

3.3.2 VARIATIONAL APPROXIMATION

The GPB2 algorithm allows to handle the growing number of components in the mixture
though it still requires at each step to compute the parameters for K2 components and this
is cumbersome. To avoid the computation of so many Gaussian parameters we proposed
a variational approximation whose goal is to find a simpler distribution to the original one
that is computationally tractable using the Kullback–Leibler divergence:

DKL (p(x)||q(x)) =

∫ +∞

−∞
p (x) log

(
p(x)

q(x)

)
dx, (3.29)

with p(x) is the original distribution and q(x) the approximated one. Variational approx-
imation allows us to control the posterior distribution. To reduce the complexity with
respect to the approximation using the GPB2 algorithm we decided to break the time
dependency and the dependency between the two latent variables. Thus we define the
following variational approximation for the joint posterior distribution:

p(x1:t, Z1:t|y1:t) ≈
t∏
t=1

q(xt)
t∏
t=1

q(Zt), (3.30)
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where q(xt) and q(Zt) are the variational aproximation of the posterior probability of xt
and Zt. The optimal values for q∗ (Zt) and q∗ (xt) that minimize the Kullback-Leibler
divergence have the following expression:

log q∗ (Zt) = Eq(x1:t,Z1:t\Zt) [log p (x1:t, Z1:t|y1:t)] , (3.31)
log q∗ (xt) = Eq(x1:t\xt,Z1:t) [log p (x1:t, Z1:t|y1:t)] . (3.32)

To compute Equations (3.31) and (3.32) we need first to express the log likelihood:

log p (x1:t, Z1:t,y1:t) ≈
t∑
t=2

K∑
j=1

αt,j

[
log p(yt|xt, Zt = j) + log p(xt|xt−1, Zt = j)

+
K∑
i=1

αt−1,i log p(Zt = j|Zt−1 = i)

]
,

(3.33)

where αt,j = 1 if Zt = j, 0 otherwise.

§ Estimation of the posterior distribution of Zt

The optimal log posterior distribution of Zt can now be obtained by replacing the loglike-
lihood by its true value (Equation (3.33)) in Equation (3.31):

log q∗ (Zt) ≈Eq(x1:t,Z1:t\Zt) [log p (x1:t, Z1:t−1, Zt = j,y1:t)] ,

≈
K∑
j=1

αt,j

[
Eq(xt) [log p(yt|xt, Zt = j)] + Eq(xt)q(xt−1) [log p(xt|xt−1, Zt = j)]

+
K∑
i=1

αt−1,iEq(Zt−1) [log p(Zt|Zt−1)]
]
. (3.34)

By replacing each element of Equation (3.34) by their true value we obtain:

q∗ (Zt) ∝
K∏
j=1

[
N (yt; AjE[xt] + bj,Σj) exp

(
−1

2
Tr
[
A>j Σ−1j AjCov(xt)

])
×N

(
E[xt]; CjE[xt−1],Qj

)
exp

(
−1

2
Tr
[
C>j Q−1j CjCov(xt−1)

])
× exp

(
−1

2
T
[
Q−1j Cov(xt)

]) K∏
j=1

a
E[αt−1,i]
ij

]αt,j

, (3.35)

Tr is the expression of the trace of a matrix. Using the results of Equation (3.35) we can
express q∗ (Zt = j) as follows:

q∗ (Zt = j) ≈ q∗ (Zt|αt,j = 1)∑K
i=1 q

∗ (Zt|αt,i = 1)
. (3.36)
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§ Estimation of the posterior distribution of xt

With the GPB2 algorithm, the posterior probability of xt is defined as a mixture of Gaus-
sians with Zt the discrete latent variable, but with the variational approximation, because
the dependency between xt and Zt no longer exists a posteriori, q(xt) is expressed as a
single Gaussian distribution:

q∗ (xt) ∝ N (X t;ηt,Vt) (3.37)

The derivation of Equation (3.32) follows the same principle as the one of Equation (3.31),
we want:

log q∗ (xt) =Eq(x1:t\xt,Z1:t) [log p (x1:t, Z1:t|y1:t)] (3.38)

≈
K∑
j=1

Eq(Zt) [αt,j]

[
log p(yt|xt, Zt = j) + Eq(xt−1) [log p(xt|xt−1, Zt = j)]

]
,

(3.39)

by deriving this probability we obtained the desired Gaussian distribution with the param-
eters expressed as follows:

Vt =

[
K∑
j=1

E[αt,j]
(
A>j Σ−1j Aj + Q−1j

)]−1
, (3.40)

ηt =Vt

[ K∑
j=1

E[αt,j]
(
A>j Σ−1j (yt − bt) + Q−1j CjE[xt−1]

)]
. (3.41)

We define E[xt] = ηt, Cov(xt) = Vt and E[αt,j] = q∗(Zt = j). It is important to notice
that q(xt) and q(Zt) depend on the future, indeed E[xt+1] and E[αt+1,i] appear in the final
expressions, for an online estimation one can remove the part with future in q(xt) and
q(Zt).

The complete derivation of the variational distribution of xt and Zt can be found in
Appendix B.

3.3.3 DISCUSSION

With respect to the GPB2 approximation, our variational approximation strongly de-
creases the time required to compute the parameters of the posterior distribution of xt.
While the approximation using the GPB2 algorithm requires to compute K2 Gaussian
parameters Equations (3.12), (3.13) and (3.21) before reducing them to K Gaussian ones
Equations (3.62-3.64), the proposed variational approximation only requires the compu-
tation of the parameters of a single Gaussian Equations (3.40) and (3.41), thus reducing
considerably the time required to compute the posterior distributions.
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3.4 PARAMETERS ESTIMATION

The parameters of the model θ and φ are learned separately. First θ are learned using the
algorithm described in Chapter 2 and Appendix A. We use an EM procedure to learn the
parameters φ. We present the two steps of the algorithm for both approximations.

3.4.1 E STEP USING GBP2 APPROXIMATION

The E-step will compute the posterior distributions of the latent variables of the model
namely xt and Zt. For the learning phase we are not limited, we can use the full sequence
of observations (y1:T , 1 ≤ t ≤ T ). Using all the observations will result in giving more
information, thus more accurate estimation. We first need to derive the posterior distribu-
tion using the full sequence of observation p (xt|y1:T ), we will refer it as the smoothing
distribution. Using Equations (13.32) and (13.33) from [Bishop 07] the smoothing distri-
bution can be expressed as:

p (xt|y1:T ) =
K∑
j=1

p (xt, Zt = j|y1:T ) , (3.42)

=
K∑
j=1

p(xt, Zt = j|y1:t)p(yt+1:T |xt, Zt = j), (3.43)

where p (xt, Zt = j|y1:T ) is obtained from Equation (3.27) and is called the forward dis-
tribution, p(yt+1:T |xt, Zt = j) is called the backward distribution and is derived using the
same principles as the forward one:

p(yt+1:T |xt, Zt = j) =
K∑
i=1

∫
xt+1

p(yt+1:T ,xt+1, Zt+1 = i|xt, Zt = j)dxt+1 (3.44)

=
K∑
i=1

p(Zt+1 = i|Zt = j)

∫
xt+1

p(yt+1|xt+1, Zt+1 = i)

× p(xt+1|xt, Zt+1 = i)p(yt+2:T |xt+1, Zt+1 = i)dxt+1 (3.45)

where p(yt+2:T |xt+1, Zt+1 = i) = N (xt+1;η
i,b
t+1,V

i,b
t+1), the other distributions have been

defined in Section 3.2. We wish to express the 3 distributions inside the integral differently
in order to isolate xt+1 and thus remove the integral. We rewrote the product of Gaussian
as follow, first:

p(yt+1|xt+1, Zt+1 = i)p(yt+2:T |xt+1, Zt+1 = i)

=N (xt+1;η
i,b
t+1,V

i,b
t+1)N

(
yt+1; Aixt+1 + bi,Σi

)
(3.46)

∝N
(
yt+1; Aiη

i,b
t+1 + bi,

(
AjVi,b

t+1A>j + Σ−1i

))
N
(
xt+1;m

i
t+1,Mt+1

)
(3.47)
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with

Mi
t+1 =

(
Vib
t+1

−1
+ A>i Σ−1i Ai

)−1
(3.48)

mi
t+1 = Mt+1

(
Vib
t+1

−1
ηibt+1 + A>i Σ−1i

(
yt+1 − bi

))
(3.49)

The dynamical distribution of xt+1 can be rewritten as follows:

p(xt+1|xt, Zt+1 = i) = N (xt+1; Cixt,Qi) (3.50)
∝ N (xt; C∗ixt+1,Q∗i ) . (3.51)

with:

Q∗i =
(
C>i QiCi

)−1
, (3.52)

C∗i = Q∗iC
>
i Q−1i . (3.53)

Finally the last product:

N
(
xt+1;m

i
t+1,M

i
t+1

)
N (xt; C∗ixt+1,Q∗i )

∝ N
(
xt; C∗im

ib
t+1,

(
Q∗i + C∗iM

i
t+1C

∗
i
>
))
N
(
xt+1;n

i
t+1,N

i
t+1

)
. (3.54)

The last Gaussian distribution will disappear in Equation (3.45) thanks to the integration
over xt+1, thus the parameters nit+1,N

i
t+1 don’t need to be expressed. Now the backward

distribution becomes:

p(yt+1:T |xt, Zt = j) ∝
K∑
i=1

τijN
(
yt+1; Aiη

i,b
t+1 + bi,

(
AjVi,b

t+1A>j + Σ−1i

))
×N

(
xt; C∗im

ib
t+1,

(
Q∗i + C∗iM

i
t+1C∗i

>
))

. (3.55)

By replacing the smoothing distribution in Equation (3.45) by its true value (Equa-
tion (3.55)), the final posterior distribution is:

p (xt|y1:T ) ∝
K∑
j=1

K∑
i=1

ρjtτijN
(
yt+1; Aiη

i,b
t+1 + bi,

(
AjVi,b

t+1A>j + Σ−1i

))
×N

(
xt;η

j
t ,V

j
t

)
N
(
xt; C∗im

ib
t+1,

(
Q∗i + C∗iM

i
t+1C∗i

>
))

(3.56)

∝
K∑
j=1

K∑
i=1

πijt|t+1N
(
xt;µ

ij
t|t+1,W

ij
t|t+1

)
, (3.57)

where the parameters of the mixture are defined as follows:

πijt|t+1 = ρjtτijN
(
yt+1; Aiη

i,b
t+1 + bi,

(
AjVi,b

t+1A
>
j + Σ−1i

))
(3.58)

Wij
t|t+1 =

(
Vj
t

−1
+
(

Q∗i + C∗iM
i
t+1C

∗
i
>
)−1)−1

(3.59)

µijt|t+1 = Wij
t|t+1

(
Vj
t

−1
ηjt +

(
Q∗i + C∗iM

i
t+1C∗i

>
)−1

C∗im
i
t+1

)
(3.60)
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Like in the posterior distribution is also a mixture of K2 Gaussian, we apply the GBP2
algorithm to reduce to mixture of K Gaussian distributions to obtain:

p(xt|y1:T ) ≈
K∑
j=1

ρjbt N
(
xt;η

jb
t ,V

jb
t

)
, (3.61)

where:

ηjbt =
K∑
i=1

π̃ijt|t+1µ
ij
t|t+1, (3.62)

Vj
t =

K∑
i=1

π̃ijt|t−1
(
Wij

t|t+1 + (µijt|t+1 − η
jb
t )(µijt|t+1 − η

jb
t )>

)
, (3.63)

ρjbt =
K∑
i=1

πijt|t+1, (3.64)

with π̃ijt|t+1 = πijt|t+1/
k∑
k=1

πkjt|t+1. (3.65)

3.4.2 E STEP USING VARIATIONAL APPROXIMATION

The smoothing distribution for xt and Zt for the variational approximation is obtained by
solving the following equations:

log q∗ (Zt) = Eq(X,Z\Zt) [log p (x1:T , Z1:T |y1:T )] , (3.66)
log q∗ (xt) = Eq(X,Z\xt) [log p (x1:T , Z1:T |y1:T )] . (3.67)

The derivations follow the same step as in the filtering case, and we obtain the following
expression for Zt:

q∗ (Zt) ∝
K∏
j=1

[
N (yt; AjE[xt] + bj,Σj) exp

(
−1

2
Tr
[
A>j Σ−1j AjCov(xt)

])
×N

(
E[xt]; CjE[xt−1],Qj

)
exp

(
−1

2
Tr
[
C>j Q−1j CjCov(xt−1)

])
× exp

(
−1

2
Tr
[
Q−1j Cov(xt)

]) K∏
j=1

a
E[αt−1,i]
ij

K∏
j=1

a
E[αt+1,i]
ij

]αt,j

. (3.68)

Which allows us to express q∗ (Zt = j) as follows:

q∗ (Zt = j) ≈ q∗ (Zt|αt,j = 1)∑K
i=1 q

∗ (Zt|αt,i = 1)
. (3.69)



40 CHAPTER 3. SWITCHING DYNAMICAL MODEL FOR HEAD-POSE ESTIMATION

And for xt we obtain for the parameters of the Gaussian the following expressions:

Vt =

[
K∑
j=1

E[αt,j]
(
A>j Σ−1j Aj + Q−1j

)
+

K∑
i=1

E[αt+1,i]C>i Q−1i Ci

]−1
(3.70)

ηt =Vt

[ K∑
j=1

E[αt,j]
(
A>j Σ−1j (yt − bt) + Q−1j CjE[xt−1]

)
+

K∑
i=1

E[αt+1,i]C>i Q−1i E[xt+1]

]
. (3.71)

3.4.3 M STEP

The parameters φ are updated by maximizing the expected complete data loglikelihood
with respect to the posterior distribution of xt computed in the E-Step. This is achieved
by solving the following formula:

∂Ep(x1:T ,Z1:T |y1:T ) [L]

∂φ
= 0, (3.72)

where φ represents a parameter of φ and L the complete data loglikelihood:

L = log p (x1:T , Z1:T ,y1:T ; θ)

≈
T∑
t=1

logN (yt; AZtxt + bZt ,ΣZt) +
T∑
t=2

logN (xt; CZtxt−1,QZt
)

+
T∑
t=2

log τZt−1,Zt + log p (x1, Z1) . (3.73)

The posterior distribution of xt and Zt being different for each approximation, the nu-
merator in Equation (3.72) expression varies between the GPB2 and variational approxi-
mation, when one is using the GPB2 approximation the expected loglikelihood is defined
as:

Ep(x1:T ,Z1:T |y1:T ) [L] ≈ E∏T
t=1 p(Zt|y1:T )

[
E∏T

t=1 p(xt|Zt,y1:T ) [L]
]
. (3.74)

and for the variational approximation:

Ep(x1:T ,Z1:T |y1:T ) [L] ≈ E∏T
t=1 q

∗(Zt)

[
E∏T

t=1 q
∗(xt)

[L]
]
. (3.75)

§ Estimation of Cj and Qj

The update formulas of Cj and Qj are obtained by using Equation (3.72) and replacing φ
by Cj and Qj and the expected loglikelihood by its value. For the approximation using
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the GPB2 approach we use the expected loglikelihood defined in Equation (3.74) and we
obtain the following expressions:

Cj =

(
T∑
t=2

p(Zt = j|y1:T )E[xtx
>
t−1]

)

×

(
T∑
t=2

p(Zt = j|y1:T )E[xt−1x
>
t−1]

)−1
, (3.76)

Qj =
1∑T

t=2 p(Zt = j|y1:T )

×

(
T∑
t=2

p(Zt = j|y1:T )
(
E[xtx

>
t ]− CjE[xtx

>
t−1]
))

. (3.77)

where:

E
[
xtx

T
t−1
]

= Vt,t−1 + ηtη
>
t−1, (3.78)

E
[
xt−1x

T
t−1
]

= Vt−1 + ηt−1η
>
t−1, (3.79)

E
[
xtx

T
t

]
= Vt + ηtη

>
t (3.80)

For our proposed variational approximation, we use the expected loglikelihood defined in
Equation (3.75) and we obtain the following update formulas:

Cj =

(
T∑
t=2

q∗ (Zt = j)ηtη
>
t−1

)

×

(
T∑
t=2

q∗ (Zt = j)E
[
xt−1x

T
t−1
])−1

, (3.81)

Qj =
1∑T

t=2 q
∗ (Zt = j)

×

(
T∑
t=2

q∗ (Zt = j)
(
E
[
xtx

T
t

]
− Cjηtη

>
t−1
))

. (3.82)

§ Estimation of τij

The estimation of the transition parameter τij follows the same logic as the one for Cj and
Qj but adds the stochasticity constrain:

τij = argmax
τij

Ep(xt|y1:T ) [L] ,

s.t.
k∑
j=1

τij = 1. (3.83)
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To solve this we employ the Lagrange multiplier method. Finally by solving Equa-
tion (3.72) for τij with the Lagrange multiplier we obtain the following expression for
the update of τij , with the GPB2 approximation:

τij =

∑T
t=2 p(Zt = j|y1:T )p(Zt−1 = i|y1T )∑T

t=2 p(Zt−1 = i|y1:T )
(3.84)

and with our variational approximation:

τij =

∑T
t=2 q

∗(Zt = j)q∗(Zt−1 = i)∑T
t=2 q

∗(Zt−1 = i)
(3.85)

The complete derivation for the E-step and M-step for both approximation (GPB2 and
variational) can be found in Appendix B.

§ Discussion

Even though the two EM procedures follow a similar procedure, the resulting formulas
to update the parameters φ are different. In the formulas to update Cj (respectively Qj),
with our proposed variational approximation E

[
xtx

>
t−1
]

in Equations (3.76) and (3.77),
is replaced by ηtη>t−1 in Equations (3.81) and (3.82), respectively. This is due to the
design of our variational approximation, by breaking the temporal depency, we remove
dependencies between variables. While this might affect the accuracy it also reduces the
computation complexity by avoiding to compute the joint covariance of xt and xt−1.

3.5 EXPERIMENTAL VALIDATION

In this section we evaluate the performance of the tracking methods presented in Sec-
tion 3.2. Experiments are carried out on two publicly available datasets, the Biwi Kinect
head pose dataset [Fanelli 13] and the Vernissage dataset [Jayagopi 12]. First We conduct
experiments to compare the performances of the two approaches against each other and
also against non tracking method of Chapter 2. In a second time we compare against other
tracking methods to evaluate the advantages of the model with respect to classic tracking
technics.

3.5.1 FACE REPRESENTATION

To gauge the performance of the proposed method we used two datasets: the Biwi Kinect
head pose dataset [Fanelli 13], previously described with details in Chapter 2 Section 2.4.4
and the Vernissage dataset. The Vernissage dataset, [Jayagopi 12], consists of ten record-
ings of people in an exhibition. Each recording is composed of two people. The dataset
is composed of ten-minute recordings involving 20 different persons. The scene was
recorded with a camera mounted onto the robot head and with a network of infrared cam-
eras placed on the walls. These cameras are used in conjunction with optical markers,
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placed onto both the robot and person heads, to provide accurate head positions and head
orientations in a common reference frame. The robot-head camera is synchronized with
the infrared cameras at 25 FPS, hence there is a total of 90, 000 frames, sample from the
Vernissage dataset is shown in Figure 3.3.

Figure 3.3: Samples from the McGill real-world face video dataset

Face regions are extracted from images with a face detector [Viola 01]. This detector
is efficient and robust with both frontal- and side-views of faces. Using the detection we
run a face tracker using particle filtering to extract a face at each frame of the videos.
Nevertheless, the obtained face regions are noisy, i.e. the bounding boxes are not always
nicely aligned onto the faces. This yields extremely realistic input data for the tested
methods.

From each face region thus detected, we extract a feature vector. We conducted the ex-
periments using HoG based features. The HoG based features are obtained by computing
HoG for several different cell resolutions, namely 32× 32, 16× 16 and 8× 8 pixels, with
block size of 2 × 2 cells and 8 bins to quantize the gradient orientation. This results in a
pyramidal model that is represented by a feature vector of size D = 1888.

3.5.2 PROTOCOL

The regression parameters θ (Equation (2.6)) and the filtering parametersφ (Equation (3.7))
are learned separately. First, the regression parameters θ are estimated using the EM al-
gorithm described in Appendix B. Second, the filtering parameters φ are estimated using
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Table 3.1: Comparison between the GPB2 and Variational approximation, for each angle and complexity
(Cpx), average time in second use for 1 time step implementation on Matlab using Intel Xeon CPU

Pitch Yaw Roll Time

Avg. Std. Avg. Std. Avg. Std.

GLLiM 10.54 13.38 11.15 17.93 5.23 5.99 −

GPB2 9.03 10.89 8.77 13.42 4.75 5.11 9.55

Variational 9.25 11.21 9.10 14.9 4.44 4.76 3.45

the methods described in 3.2. For all experiments K is fixed to be equal to 25, as it
provides lower error and less parameters to estimate compared to other values of K, Fig-
ures 2.8 and 2.9. The parameters θ are intitialized using GMM model. The parameters{

Cj,Qj

}K
j=1

of φ are initialized with identity matrices and the transition matrix {τij}Ki,j=1

is initialized with the Bhattacharrya distance [Bhattacharyya 43] between two subspaces
obtained using the parameters θ of the low dimensional space defined by Z. For the vari-
ational approximation, q(xt) is needed to compute q(Zt) thus we initialize the parameters
ηt and Vt of q(xt) as follows:

ηt = ηt−1,Vt = Vt−1, (3.86)

after computing q(Zt) we update q(xt). The performance are measured using the absolute
error to the ground truth, mean (MAE) and standard deviation (Std.) to compare the
estimation between methods.

3.5.3 EVALUATION OF THE TWO APPROACHES

Table 3.1 summarizes the comparison of the GBP2 and variational approximations in
terms of accuracy and complexity on the Biwi Kinect dataset. Both tracking methods
reduce the average estimation error and standard deviation with respect to the static esti-
mation. Figure 3.4 shows the estimation for yaw angle on a full sequence of each tracking
approximation compared to the estimation with GLLiM. Over a sequence the tracking
methods make the estimation closer to the ground truth and smoother compared to the
estimation with GLLiM, this can be seen in Figure 3.5 as well. The GBP2 approximation
gives more accurate estimation than the variational approximation, but the time complex-
ity is much higher than the variational approximation. The estimation of the filtering
distribution is more than two times faster with the variational approximation than the
GPB2. For the problem of head-pose estimation with K = 25, the accuracy gained by
using approximation with the GPB2 algorithm is not so much compared to the one gained
with the variational approximation. But the computational time saved with the variational
approximation is non negligeable. In a case where K is much bigger using the variational
approximation over the GBP2 one will be more relevant. The results of Table 3.1 confirm
what was described in [Pavlovic 00].
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3.5.4 BENCHMARK

The proposed model is compared to the following tracking methods: (i) a landmark-
based approach that uses the facial landmark localization method of [Uřičář 12] (Fland-
marks) combined with 2D-to-3D landmark-based pose estimation method, namely the
PnP (perspective n-point) algorithm available with OpenCV, (ii) a second landmark-based
approach [Baltrušaitis 16] (iii) the GLLiM-based method presented in Chapter 2 and
in [Drouard 15] which is referred to as HPE-GLLiM, and (iv) the regression method
[Drouard 15] combined with a standard Kalman filter [Arulampalam 02, Bishop 07].

Table 3.2: Average (Avg.) and standard deviation (Std.) of the absolute error (in degrees) for the pitch, yaw
and roll angles (when applicable) on the Biwi Kinect dataset. Head bounding boxes are extracted using a
face detection algorithm.

Pitch Yaw Roll

Methods Avg. Std. Avg. Std. Avg. Std.

[Uřičář 12] 13.12 10.79 21.1 14.16 − −

openFace [Baltrušaitis 16] 9.23 15.69 29.43 25.74 10.72 11.33

[Drouard 17b] 10.54 13.38 11.15 17.93 5.23 5.99

[Drouard 17b] + KF 10.35 13.19 10.97 17.75 5.12 5.93

SKF GPB2 9.03 10.89 8.77 13.42 4.75 5.11

SKF variational 9.25 11.21 9.10 14.9 4.44 4.76

Table 3.3: Average (Avg.) and standard deviation (Std.) of the absolute error (in degrees) for the pitch and
yaw angles on the Vernissage dataset. Head bounding boxes are extracted using a face detection algorithm
combined with a face tracker.

Pitch Yaw

Methods Avg. Std. Avg. Std.

openFace [Baltrušaitis 16] 21.3 24.82 13.18 10.67

[Drouard 17b] 22.94 21.49 12.28 9.42

[Drouard 17b] + KF 22.92 21.49 12.27 9.41

SKF GPB2 19.96 19.28 11.71 8.78

SKF variational 20.04 19.97 10.77 7.86

The results (average and standard deviations of the absolute error) obtained are shown
in Table 3.2. The proposed tracking method improves head-pose parameter tracking,
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compared to all the other methods. For example, the average error for the yaw angles in
Table 3.2 is of 8.77◦ using GPB2 approximation and 9.10◦ using variational approxima-
tion while all other methods yield an error larger than 10◦. We observe the same behavior
for the pitch and roll angles. Moreover, our method also reduces the standard deviation.
In Table 3.3 we also observed that our tracking approaches reduces the estimation error
and standard deviation on the Vernissage dataset, though on the Vernissage dataset both
approaches yield really close results. Estimation using GPB2 approach gives a slightly
better estimation for the pitch angle while our approach using variational approximation
gives a better estimation for the yaw angle. Compared to the landmark-based method
of [Uřičář 12], the proposed method is able to provide an estimation for each test input,
whereas the method based on landmarks is unable to provide an output when some of the
landmarks are not visible due to extreme head orientations. In this case [Uřičář 12] yields
very large errors, e.g. first row of Table 3.2. We also note that the proposed HPE SKF
method performs much better than a standard Kalman filter. From the results presented
in Tables 3.1, 3.2 and 3.3 for the problem of head-pose tracking, using the variational
approximation seems the optimal solution since it provides a estimation really close to
the one using GBP2 approximation with a smaller time complexity. The results presented
are preliminary, and we wish to extend them by testing on more challenging datasets and
also to use deep features obtained using convolutional neural networks.
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Figure 3.4: Comparison between the estimated yaw angle (top) and yaw angle (bottom) with three different
methods: HPE GLLiM (red), Kalman Filter (blue), and the proposed HPE SKF (green) for the Biwi-Kinect
dataset.
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Figure 3.5: Results of the tracking method (left column) and the estimation method of Chapter 2 (right
column) on a sequence of the Biwi dataset
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Figure 3.5: Results of the tracking method (left column) and the estimation method of Chapter 2 (right
column) on a sequence of the Biwi dataset
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3.6 CONCLUSION

In this chapter, we extented the model presented in Chapter 2 by incorporating tem-
poral information. We combined the mixture of affine transformations with a dynamic
model, the latter being also a mixture model. This temporal model is defined as a switch-
ing Kalman filter, it can be seen as a mixture of Kalman filters with the possibility to
switch between filters at each time step. This possibility of switching makes the model
intractable, the number of components increases exponentially with time. We derived two
approaches to overcome this issue. The first one using the GPB2 algorithm that combines
components of the mixture together. The second one being a variational approximation
that forces the model to keep a fixed number of components at each time step, by breaking
the time dependencies in the model.

Trackers have the advantage of combining information from both past and present,
and hence they avoid oscillations between consecutive estimations simply based on in-
dependent observations. Overall, the output of the tracking methods (SKF with GPB2
and variational) presented are both more accurate and smoother than the output of sev-
eral head-pose methods (with and without tracking). Moreover, noisy observations, e.g.
due to badly aligned bounding boxes or to partial occlusions, do not impact too much the
proposed trackers because the temporal models, once properly trained, do not allow oscil-
lations between consecutive estimations. In the future, we wish to use CNN based features
for the method. They have proved to be really efficient for computer vision problem, as
detection, recognition and pose estimation. They might give a better representation of the
faces and improve the accuracy of the model and the robustness to the estimation.

One publication emerges from this work [Drouard 17a] in the IEEE Winter Conference
on Applications of Computer Vision in 2017.



CHAPTER 4

TEMPORAL MODEL FOR SPEAKER

TRACKING

Originally the GLLiM model was developped for infering the direction of arrival (DOA)
of a sound source in an image using binaural features from a pair of microphones, [Dele-
forge 14]. With respect to the generic version of the GLLiM model presented in Chap-
ter 2, we modify the observation model to compensate for the sparsity of the audio
observations. We formally derive the equations of the switching linear regression model
to integrate the new observation model adapted to the problem of DOA estimation. The
learning procedure to estimate the model parameters reuses the one for the generic ver-
sion presented in Chapters 2 and 3.

4.1 NATURAL SPEECH REPRESENTATION

In audio processing working directly with signals recorded by microphones is not always
the most efficient way. Most of the applications use a time-frequency representation since
it conveys richer information than time representation and also is independent from the
speech content. The time-frequency representation is obtained using short term Fourier
representation (STFT). In this study we are using a pair of microphones, namely left and
right microphone. So for each microphone we compute the associated complex-value
spectrogram on audio signal of 320ms, we used a window length of 128ms with an over-
lap of 87.5% to compute the STFTs. The second step consists in computing the interaural
level and phase differences (ILD and IPD) between the left and right microphone spectro-
grams. The matrix containing the phase difference values is transformed into 2 matrices
one for the real part of the phase and one for the imaginary part. Changing from polar
coordinates to Cartesian coordinates is necessary to overcome possible ambiguity due to
circular data (a given point of the plan has multiple representation in polar coordinates
but only one in Cartesian ones). The resulting will be two real values matrices that will be
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Figure 4.1: A recorded natural speech spectrogram, gray area means frequency is inactive at the time
frequency point

concatenated together, thus forming a single matrix of size (D × S) where D represents
the number of frequency bins and is equal to 1534, and S the number of time-window
used to compute the STFTs. When the audio signal is a recording of a natural speech
most of the frequencies will be inactive (i.e. the energy of the signal at these frequencies
will be null), see Figure 4.1.

The inconvenient now resides in the physical property of a natural speech signal. For
speech signals, time-frequency representations are extremely sparsed, i.e. many time-
frequency points have no energy and are unusable (considered as missing values). To
only work with active time-frequency points of the speech signal we build a binary mask
by thresholding the energy of the resulting STFT matrix. The binary mask has the same
size as STFT matrix and each of its entries is equal to 0 if the value is null and 1 otherwise.

4.2 NEW OBSERVATION MODEL

Sound signals are described by a time series Y of length S, namely Y = {y1, . . .yS}with
y a vector of dimension D = 1534. This time series Y is viewed as a D×S matrix where
each entry point yd,s represents a time-frequency point. The associated binary mask,
that indicates active time-frequency points, is called χ and has the same size as Y. The
audio feature is now represented by {Y, χ} = {yd,s, χd,s}D,Sd,s=1. The observation model
presented in Chapter 2 can not be used as it is anymore. If we assume that each time-
frequency points of the matrix are independent to each other, the observation distribution
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p(yt|xt, Zt = j) = N (yt; Ajxt + bj,Σj) can be replaced by:

p ({Yt, χt} |xt, Zt = j) =

D,S∏
d,s

p(yd,st |xt, Zt = j)χ
d,s
t , (4.1)

=

D,S∏
d,s

N
(
yd,st |;ad,jxt + bd,j, σd,j

)χd,s
t

. (4.2)

4.3 INTEGRATING THE NEW OBSERVATION MODEL

We are now trying to express the tracking model presented in Chapter 3 Equation 3.20 for
the new observation model. The derivations to obtain the filtering forward distribution are
similar to the ones presented in Chapter 3, starting from Equation (3.10):

p(xt| {Y, χ}1:t)

=
K∑
j=1

K∑
i=1

τijν
i
t−1N (yt|Ajxt + bj,Σj)

∫
Xt−1

N (xt|Cjxt−1,Qj)N (xt−1|νit−1,Vi)dxt−1,

(4.3)

we replace the observation distribution by the new one defined in Equation (4.2):

p(xt|y1:t) =
K∑
j=1

K∑
i=1

τijν
i
t−1

D,S∏
d,s

N
(
yd,st |ad,jxt + bd,j, σd,j

)χd,s
t

×
∫
Xt−1

N (xt|Cjxt−1,Qj)N (xt−1|νit−1,Vi)dxt−1 (4.4)

=
K∑
j=1

K∑
i=1

τijν
i
t−1

D,S∏
d,s

N
(
yd,st |ad,jxt + bd,j, σd,j

)χd,s
t

×N (xt|Cjη
i
t−1,Qj + CjViC>j ). (4.5)

The exponential part of the product of Gaussian distributions is rearranged as follows:

D,S∑
d,s=1

χd,st
σ2
d,j

(
yd,st − ad,jxt − bd,j

)2
+
(
xt − Cjη

i
t−1
)> (Qj + CjViC>j

)−1 (
xt − Cjη

i
t−1
)

= x>t

(
D,S∑
d,s=1

χd,st
σ2
d,j

a>d,jad,j +
(
Qj + CjViC>j

)−1)
xt − 2x>t

(
χd,st
σ2
d,j

a>d,j

(
yd,st − bd,j

))
+ c,

(4.6)

with c being a residual that doesn’t contain xt. Following this, the product of Gaussian
distributions can be rewritten as a single Gaussian distribution over x times a term C and
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is expressed as:

D,S∏
d,s

N
(
yd,st |ad,jxt + bd,j, σd,j

)χd,s
t

N (xt|Cjη
i
t−1,Qj + CjViC>j )

= C ×N (xt;µ
ij
t|t−1,W

ij
t|t−1), (4.7)

with the parameters of the Gaussian distribution equals to:

Wij
t|t−1 =

(
D,S∑
d,s=1

χd,st
σ2
d,j

a>d,jad,j +
(
Qj + CjViC>j

)−1)−1
(4.8)

µijt|t−1 = Wij
t|t−1

(
χd,st
σ2
d,j

a>d,j

(
yd,st − bd,j

)
+
(
Qj + CjViC>j

)−1 Cjη
i
t−1

)
(4.9)

and the term C:

C =

D,S∏
d,s=1

1√
2πσ2

d,j

√
2π|Wij

t|t−1|√
2π|Qj + CjVi

t−1C
>
j |

× exp

(
−1

2

(
D,S∑
d,s=1

χd,s
σ2
d,j

(yd,s − bd,j) + ηit−1C>j
(
Qj + CjViC>j

)−1 Cjη
i
t−1

−µijt|t−1W
ij
t|t−1µ

ij
t|t−1

))
. (4.10)

Thus the filtering distribution is now expressed as:

p(xt|y1:t) =
K∑
j=1

K∑
i=1

πijt|t−1N (xt;µ
ij
t|t−1,W

ij
t|t−1), (4.11)

where:

πijt|t−1 = τijν
i
t−1 × C (4.12)

Here also the filtering distribution number of components is multiplied by K over a time
step. The GPB2 algorithm is applied to reduce the number of components in the mixture
to K to finally obtain:

p(xt|y1:t) =
K∑
j=1

K∑
i=1

ρjtN (xt;η
j
t ,V

j
t), (4.13)

where ηjt , Vj
t and ρjt are obtained from µijt|t−1, Wij

t|t−1 and πijt|t−1 using Equations (3.62) to
(3.64).
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Figure 4.2: popeye

4.4 EXPERIMENTAL VALIDATION

Experiments were run on the AVDIAR dataset, a dataset for audio-visual analysis of con-
versational scenes recorded by members of the Perception team at Inria Grenoble [Ge-
bru 17]. The dataset comprises 5 scenarios recorded in two different environments, a
living room and a meeting room, each scenario is recorded multiple times with a differ-
ent set of participants. The recordings were done using the Popeye recording setting, a
dummy head with 6 microphones and two wide-angle cameras attached to it. Figure 4.2
shows the disposition of cameras and microphones on the dummy head.

For the experiments we used one scenario of the dataset in which a single person is
speaking and moving at the same time in the field of view of the camera. Six recordings
of this scenario were made, 4 in the living room condition and 2 in the meeting room, sub-
jects were equally distributed between men and women. The dataset provides annotations
for the face positions, this was used to determine the ground truth position of the sound
source. The model parameters θ are learned using the EM-algorithm of Appendix A and
white noise sounds, because they have the property to be activated at each frequency. The
dataset provides 1600 white noise recordings and their associated ground truth positions
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in the images for each room setup. The whit noise sound positions span the all fields of
view with depth of 2 and 3 meters away from the popeye robot. The value of K was
set to 16. During the testing, each video were split into sequences were the person was
speaking and for each sequence a sliding window of 320 ms (8 visual frames) was used to
determine the sound DOA, the window is shifted of 40 ms (1 visual frame) for each time
step. Binaural features were computed on this 320 ms signal window. Sound signals were
sampled at a frequency of 16KHz, from the 320 ms signal, spectrogram is computed with
a sliding window of 128 ms and an overlap of 87.5%. The size of the final observations is
3073× 21.

The performances are measured in terms of absolute pixel error to the face center, im-
ages were recorded in Full HD format, i.e. with a width of 1920 pixels, the field of view
of the images span 97◦ approximately. Because we used only 1 pair of microphones that
are positioned at the same height, thus only the azimuth of the sound direction of arrival
is estimated. The method is compared to the estimation GLLiM regression, the GLLiM
regression combined with a Kalman filter. Table 4.1 summarizes the results, with average
and standard deviation of the absolute error. As in the head-pose tracking experiments
the same behavior is observed, the tracking model helps to improve the estimation using
GLLiM in terms of average error and standard deviation. The tracking method keeps in-
formation about previous position, thus being less affected by reverbations that introduce
error in the estimations. The error is also lower compared to the Kalman filter.

Table 4.1: Average (Avg.) and standard deviation (Std.) of the absolute error (in pixel and degrees) for the
azimuth of the direction of arrival of the sound.

Azimuth

Pixels degrees

Methods Avg. Std. Avg. Std.

SSL GLLiM [Deleforge 14] 107.2 135.6 6.89 8.06

Kalman filter [Arulampalam 02, Bishop 07] 106.8 135.1 6.87 8.03

SSL SKF 91.3 105.2 5.97 6.46

Figure 4.3 shows visualization of the results on consecutive frames. Ground truth and
estimations using GLLiM regression and the switching Kalman filter are displayed using
a vertical line to represent the azimuth of the sound direction or arrival in the image. As
in the case of head-pose estimation, the estimation with the tracking method stays closer
to the ground truth and correct bad estimation due to noisy observation.
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4.5 CONCLUSION

In this chapter, we demonstrate the ability of the switching dynamical model to be applied
to various unrelated problems (head pose tracking and sound direction of arrival tracking).
Starting from our previous work on sound source direction of arrival estimation in [Dele-
forge 14], we adjust the observation model presented in Chapters 2 to take into account
the sparsity of natural speech signals. This new observation model is combined with the
tracking framework of Chapter 3 to provide a sound DOA tracking from sparse obser-
vations. The results we obtained on speaker DOA tracking follow the same tendency as
for the head-pose tracking problem, the temporal model helps to smooth and improve the
estimation over a temporal sequence of observations. Tracking speaker from audio can
help to overcome the limitation of visual tracking. The audio field of view being larger
than the visual field of view (except with a 360 camera), it provides information about the
position of a speaker when he is outside the field of view. In the future we plan to use this
for multi-person tracking with companion robot.
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Figure 4.3: Results of the tracking method for DOA tracking, yellow line indicates ground truth position,
red DOA estimation using method from [Deleforge 14], blue results using the tracking method
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Figure 4.3: Results of the tracking method for DOA tracking, yellow line indicates ground truth position,
red DOA estimation using method from [Deleforge 14], blue results using the tracking method





CHAPTER 5

APPLICATION TO ROBOTICS

In the context of the EARS project with the engineers of the Perception Team we devel-
oped a speaker localization module for the Nao robot. The module is using the NaoLab
framework, [Badeig 15], to send and receive information from the robot. The speaker
localization module is running in real-time and implemented with Matlab. We choose
Matlab because of the demand of the partners for using methods implemented with Mat-
lab for the robot.

5.1 THE NAO ROBOT

The Nao robot is a small humanoid companion robot, it has been developed for human-
robot interaction tasks. For this work only the head was used, the rest of the body was
static. Its head is equipped with 4 microphones, 2 cameras and 2 loud speakers, the
position of all these elements on the head can be found in Figure 5.1.

Figure 5.1: Configuration of the head of the Nao robot. M1-4 are the microphones positions, C1-2 the
cameras ones and LS1-2 the loud speakers ones
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5.2 FOLLOWING A SPEAKER WITH THE NAO ROBOT

Our goal was to allow Nao to find a speaker in a scene. We developed a module that
combines both audio and visual cues to achieve this task. Combining these two cues will
help to reduce the limitation of each one. Indeed the field of view of the robot is quite
small, thus using audio cues helps to enlarge the visual field of view to find people using
the sound they emits. And because the visual detection is more precise to find a person
than just using the sound that the person emits, using audio and vision will result in a more
robust speaker localization method. The method was running using Matlab on a remote
computer. The computer was receiving audio and video feed from the Nao, processing
them to estimate the position of the speaker and then sending commands to the robot’s
head in order to make him turn it head to face the speaker. The front microphones were
used and because they are at the same heights only the azimuth of the direction of arrival
of the sound can be estimated, elevation was estimated using face detector in the region
of the sound direction of arrival. Face detection is running embedded on the Nao using
Viola-Jones face detection method. The algorithm implemented in Matlab for Nao is
presented in Algorithm 3 and summarized in Figure 5.2.

Algorithm 3 Audio Visual Speaker Loacalization with Nao
Require: Connection to Nao Robot

1: procedure SPEAKERLOCALIZATION(audio,video)
2: Learn background noise statistics
3: repeat
4: Grab audio signal from Nao
5: Grab image from Nao
6: if Sound detected then
7: Remove background noise
8: x← Direction of sound using TDOA
9: if x in image then

10: Detect face close to sound direction
11: Move Nao’s head to center the face
12: else
13: Move Nao’s head
14: Grab new image
15: Detect face close to sound direction
16: Move Nao’s head to center the face
17: end if
18: end if
19: until True
20: end procedure
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Figure 5.2: Speaker localization module on the Nao robot
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5.3 CONCLUSION

This module was the first application of the NaoLab project. Later Perception team mem-
bers improved and extended the method with more robust sound localization method
and added a multiperson tracker to keep track of all the people in the scene around
Nao. A publication came out of this project at the International Conference on Mul-
timodal Interaction in 2015, [Badeig 15], the paper was accepted for a demonstration
where this algorithm was presented. More details can be found at the following link
team.inria.fr/perception/naolab-toolbox/.



CHAPTER 6

CONCLUSION

6.1 SUMMARY AND DISCUSSION

In this chapter, I would like to go back through all the work done and presented in this
thesis, from the starting idea 3 years ago to the final results obtained some days ago. We
started with my supervisor Radu Horaud on the idea that a mixture of linear regressions,
inspired by [Deleforge 15] and [Deleforge 14], could model the relation between the head
pose and the visual representation of a face.

Under Radu’s guidance we investigated how this model behaves for head-pose estima-
tion, how the parameters influence the estimation accuracy under realistic conditions. We
ended up with an algorithm that is able to estimate jointly the head pose and the possi-
ble face bounding-box misalignment due to face detection. Experiments showed that the
head-pose estimation gives better results than most of regression methods and similar or
better than state-of-the-art methods.

After achieving this step, we decided to extend the regression model for two reasons,
first we wanted to improve the accuracy and we had the belief that a temporal model
will manage this, the addition of information from the past will lead in a more accurate
estimation. Secondly a temporal model could smooth the estimation output and correct
some inaccurate estimations due to errors from the input. We embeded the mixture of
affine regressions into a Kalman filter framework and ended up with a switching dynamic
model. The issue with switching dynamic model is that the number of components in
their final mixture model increases exponentially at each time step. A solution for this
problem is to use a merging moments method. We select the GPB2, that is a merging that
combines the components at each step by merging components moments which value ofZ
diverges at time t−1. This merging of components keeps the number of components in the
mixture fixed to K at each time step. Unfortunately using the GPB2 approximation arises
a new problem, the estimation was too slow to work real time for head-pose estimation
problem. Indeed at each time step, parameters of K2 +K Gaussian distributions have to
be estimated making it difficult for high enough values of K to work in real time. Thus
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we looked at the literature of switching dynamic models, to see the alternative, variational
approximation came out. We defined an approximation that breaks the time dependencies
between the variables, thus avoiding any increase of the number of components in the
mixture. Experiments revealed that these two tracking methods achieved better results
than the GLLiM regression method and than tracking with a Kalman filter.

These two contributions presented separatly in the manuscript are working into the
same unified framework in order to solve the problem of head-pose tracking for human
robot interaction.

6.2 DIRECTION FOR FUTURE RESEARCH

This is not the end, we would like to see the work done in this thesis as an opening to
new research, we defined a non-exhaustive list of the possible new directions of research
derived from this work:

• A nice direction to explore would be to look more in the geometry of the low dimen-
sional space. Transforming the parameter C into a temporal variable of the model,
that would depend on Zt, xt−1 and the velocity of xt. Adding this to the model
could help to improve the prediction part of the model to obtain more accurate and
smoother estimation.

• Using the strength of deep learning and convolutional neural networks model to pro-
vide good feature representation and also good accuracy for regression. Combining
a CNN for head-pose estimation with a tracking algorithm of the type as the ones
presented in this thesis or developing a recurrent neural networks for head pose.

• Staying in the robot perception by combining the head-pose tracking and the sound
source tracking into a general framework for scene analysis and then jump to in-
teraction step and the decision making, using the perception as the observation of
scene. Combining the head-pose estimation and the sound source tracking in a sin-
gle framework.

• To go to the next level, in the thesis we focus on the perception, but the straightfor-
ward next step is the interaction, the communication. Being able from head pose,
speaker position and other cues to determine which action the robot has to do. For
example to start a conversation if a person is looking at the robot, to call a person to
look at it, or to look at the focus of attention of the scene, or even to enter within the
conversation.



APPENDIX A

This appendix details the EM algorithm that estimates the parameters θ of the regression
method described in Chapter 2. The algorithm is separated in 2 steps: the E step serves to
estimate the posterior distribution of the latent variables of the model and the M step that
updates the parameters of the model φ. Once initialized, at each iteration i, the algorithm
alternates between the E-step and the M-step.

E-STEP

For the hybrid GLLiM (hGLLiM), the E-step is split into two expection steps, the E-W-
step computes the posterior of the latent part x and the E-Z-step computes the posterior
of the assignment latent variable Z. Given a training set of pairs {tn,yn}

N
n=1, t the target

and y the observation.

E-W-STEP

Given the current parameter estimates θ, the posterior probability is fully determined by
the distributions p(wn|Zn = k, tn,yn;θ) for all n and k, which can be shown to be
Gaussian. Their covariance matrices Swk and vector means µwnk are given by

Swk =
(
I + Aw

k
>Σ−1k Aw

k

)−1
, (1)

µwnk = Swk Aw
k
>Σ−1k

(
yn − At

ktn − bk
)
. (2)

E-Z-STEP

The posterior of Zn is determined by:

rnk = p(Zn = k|tn,yn;θ) =
πkp(yn, tn|Zn = k;θ)∑K
j=1 πjp(yn, tn|Zn = j;θ)

(3)

for all n and k, where

p(yn, tn|Zn = k;θ) = N (tn; ctk,Γ
t
k)N (yn;dk,Φk), (4)
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with:

dk = At
ktn + bk,

Φk = Aw
k Aw

k
> + Σk.

The maximization can then be performed using the posterior probabilities p(Zn = k|tn,yn;θ)

and its parameters µwnk and Swk . We use the following notations: ρnk = rnk/
∑N

n=1 rnk
and xnk = [tn;µwnk] ∈ RL.

M-STEP

The M-step is also divided in two parts, the M-GMM-step updates the parameters of the
model related to x and the M-Mapping-step updates the parameters of the affine transfor-
mations.

M-GMM-STEP

The updating of parameters πk, ctk and Γt
k correspond to those of a standard Gaussian

mixture model on T 1:N , so that we get straightforwardly:

ctk =
N∑
n=1

ρ
(i)
nktn, (5)

Γt
k =

N∑
n=1

ρnk(tn − ctk)(tn − ctk)> (6)

πk =

∑N
n=1 rnk
N

. (7)

M-MAPPING-STEP

The updating of mapping parameters {Ak, bk,Σk}Kk=1 is also in closed-form. The affine
transformation matrix is updated with:

Ak = YkXk
>(Sx

k + XkXk
>)−1 (8)
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where:

Xk = (
√
ρ1k(x1k − xk), . . . ,

√
ρnk(xNk − xk)) ,

Yk = (
√
ρ1k(y1 − yk), . . . ,

√
ρnk(yN − yk)) ,

xk =
N∑
n=1

ρnkxnk,

yk =
N∑
n=1

ρnkyn,

Sx
k =

(
0 0
0 Swk

)
.

The intercept parameters are updated with:

bk =
N∑
n=1

ρnk(yn − Akxnk). (9)

The noise covariance matrices are updated with:

Σk = diag
{

Aw
k Swk Aw

k
>+ (10)

N∑
n=1

ρnk(yn − Akxnk − bk)(yn − Akxnk − bk)>
}

where the diag{·} operator sets all the off-diagonal entries to 0. Initial parameters θ are
obtained by fitting a GMM with K components to the joint output-input training dataset
{tn,yn}Nn=1.
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This appendix details the derivation of the EM algorithm that estimates the parameters φ
of the temporal model presented in Chapter 3. The algorithm is separated in 2 steps: the E
step serves to estimate the posterior of the latent variables, in the case of the model using
GPB2 approximation, this is derived in Chapter 3. Therefore here we only derived the E
step for the variational approximation. The M step is derived for both approximations.

E STEP

The E step of the algorithm computes the posterior distribution of the latent variables
xt and Zt. The E step is separated in two parts, E-Z step that computes the posterior
distributions of Z and E-X step that does the same for X. The posterior distributions are
obtained using the following formulas:

log q∗(Zt) = Eq(x1:T ,Z1:T \Zt) [log p (x1:T , Z1:T ,y1:T )] (11)
log q∗(xt) = Eq(x1:T ,Z1:T \xt) [log p (x1:T , Z1:T ,y1:T )] (12)

with the loglikelihood log p (x1:T , Z1:T ,y1:T ) defined as:

log p (x1:T , Z1:T ,y1:T ) ≈ log

[ T∏
t=2

p(yt|xt, Zt)p(xt|xt−1, Zt)p(Zt|Zt−1)
]

(13)

≈ log

[ T∏
t=2

K∏
j=1

(
p(yt|xt, Zt = j)p(xt|xt−1, Zt = j)

×
K∏
i=1

p(Zt = j|Zt−1 = i)αt−1,i

)αt,j
]

(14)

≈
T∑
t=2

K∑
j=1

αt,j

(
log p(yt|xt, Zt = j) + log p(xt|xt−1, Zt = j)

×
K∑
i=1

αt−1,i log p(Zt = j|Zt−1 = i)

)
(15)
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E-Z STEP

Replacing the loglikelihood in Equation (11) by its true value and keeping only the term
that contains Zt, and using that q (X, Z \ Zt) =

∏T
t=1 q(xt)

∏T
t=1 q(Zt) the optimal log

posterior distribution of Zt becomes:

log q∗ (Zt) ≈Eq(xt) [log p(yt|xt, Zt = j)] + Eq(xt)q(xt−1) [log p(xt|xt−1, Zt = j)]

+
K∑
i=1

Eq(Zt−1) [αt−1,i log p(Zt|Zt−1)] +
K∑
i=1

Eq(Zt+1) [αt+1,i log p(Zt+1|Zt)]
]
.

(16)

Eq(xt) [log p(yt|xt, Zt = j)] =Eq(xt)

[
−1

2
(log |2πΣj|

+ (yt − Ajxt − bj)>Σ−1 (yt − Ajxt − bj)
)]

(17)

=− 1

2
(log |2πΣj|

+Eq(xt)

[
(yt − Ajxt − bj)>Σ−1j (yt − Ajxt − bj)

])
(18)

=− 1

2
(log |2πΣj|

+
(
yt − AjEq(xt) [xt]− bj

)>
Σ−1j

(
yt − AjEq(xt) [xt]− bj

)
+Tr

[
A>j Σ−1j AjCov(xt)

])
(19)

Eq(xt)

[
Eq(xt−1) [log p(ct|xt−1, Zt = j)]

]
=Eq(xt)

[
Eq(xt)

[
−1

2

(
log |2πQj|+ (xt − Cjxt−1)

>Q−1 (xt − Cjxt−1)
)]]

(20)

=Eq(xt)

[
−1

2

(
log |2πQj|+

(
xt − CjEq(xt−1) [xt−1]

)>Q−1
(
xt − CjEq(xt−1) [xt−1]

)
+Tr

[
C>j Q−1j CjCov(xt−1)

])]
(21)

=− 1

2

(
log |2πQj|

+
(
Eq(xt) [xt]− CjEq(xt−1) [xt−1]

)>Q−1
(
Eq(xt) [xt]− CjEq(xt−1) [xt−1]

)
+Tr

[
C>j Q−1j CjCov(xt−1)

]
+ Tr

[
Q−1j Cov(xt)

])
(22)

Eq(Zt−1) [αt−1,i log p(Zt = j|Zt−1 = i)] =Eq(Zt−1) [αt−1,i] log p(Zt = j|Zt−1 = i) (23)
=q∗(Zt−1 = i) log τij (24)
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Eq(Zt+1) [αt+1,i log p(Zt+1 = i|Zt = j)] =Eq(Zt+1) [αt+1,i] log p(Zt+1 = i|Zt = j) (25)
=q∗(Zt+1 = i) log τji (26)

Therefore the posterior distribution of Zt can be finally written as:

q∗ (Zt) =
K∏
j=1

[
N (yt; AjE[xt] + bj,Σj) exp

(
−1

2
tr
[
A>j Σ−1j AjCov(xt)

])
×N

(
E[xt]; CjE[xt−1],Qj

)
exp

(
−1

2
tr
[
C>j Q−1j CjCov(xt−1)

])
× exp

(
−1

2
tr
[
Q−1j Cov(xt)

]) K∏
j=1

τ
q∗(Zt−1=i)
ij

K∏
j=1

τ
q∗(Zt+1=i)
ji

]αt,j

. (27)

Which allows us to express q∗ (Zt = j) as follows:

q∗ (Zt = j) =
q∗ (Zt|αt,j = 1)∑K
i=1 q

∗ (Zt|αt,i = 1)
. (28)

E-X STEP

The derivations to obtain the log posterior distribution of xt follow the same principle as
for Zt,

log q∗ (xt) ≈
K∑
j=1

Eq(Zt) [αt,j]

[
log p(yt|xt, Zt = j) + Eq(xt−1) [log p(xt|xt−1, Zt = j)]

]

+
K∑
j=1

Eq(Zt+1) [αt+1,j]

[
Eq(xt+1) [log p(xt+1|xt, Zt+1 = j)]

]
(29)

Eq(Zt) [αt,j] = q∗(Zt = j) (30)
Eq(Zt+1) [αt+1,j] = q∗(Zt+1 = i) (31)

Eq(xt−1) [log p(xt|xt−1, Zt = j)]

=− 1

2

(
log |2πQj|+

(
xt − CjEq(xt−1) [xt−1]

)>Q−1j
(
xt − CjEq(xt−1) [xt−1]

)
+ Tr

[
C>j Q−1j CjCov(xt−1)

])
(32)
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Likewise:

Eq(xt+1) [log p(xt+1|xt, Zt+1 = i)]

=− 1

2

(
log |2πQi|+

(
Eq(xt+1) [xt+1]− Cixt

)>Q−1i
(
Eq(xt+1) [xt+1]− Cixt

)
+ Tr

[
Q−1i Cov(xt+1)

])
(33)

Therefore

log q∗ (xt) ≈−
1

2

[
x>t

(
K∑
j=1

q∗(Zt = j)
(
A>j Σ−1j Aj + Q−1j

)
+

K∑
i=1

q∗(Zt+1 = i)C>i Q−1i Ci

)
xt

− 2x>t

(
K∑
j=1

q∗(Zt = j)
(
A>j Σ−1j (yt − bj) + Q−1j CjEq(xt−1) [xt−1]

)
+

K∑
i=1

q∗(Zt+1 = i)C>i Q−1i Eq(xt+1) [xt+1]

)

+
K∑
j=1

q∗(Zt = i)
(
log |Qj|+ log |Σj|+ (yt − bj)>Σ−1j (yt − bj)

+Eq(xt−1) [xt−1]
>C>j Q−1j CjEq(xt−1) [xt−1]

)
+

K∑
i=1

q∗(Zt+1 = i)
(

log |Qi|+ Eq(xt+1) [xt+1]
>Q−1i Eq(xt+1) [xt+1]

)]
(34)

q∗ (xt) ∝ N (xt;ηt,Vt) (35)

with the parameters of the distribution expressed as:

Vt =

[
K∑
j=1

E[αt,j]
(
A>j Σ−1j Aj + Q−1j

)
+

K∑
i=1

E[αt+1,i]C>i Q−1i Ci

]−1
(36)

ηt =Vt

[ K∑
j=1

E[αt,j]
(
A>j Σ−1j (yt − bt) + Q−1j CjE[xt−1]

)
+

K∑
i=1

E[αt+1,i]C>i Q−1i E[xt+1]

]
. (37)
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M STEP

The parameters φ are updated by maximizing the expected log likelihood for each param-
eter:

φnew = argmax
φ

(Ep(x1:T ,Z1:T |y1:T ) [L]) (38)

where L represents the complete data loglikelihood. Maximizing the expected log likeli-
hood is done by solving:

∂Ep(x1:T ,Z1:T |y1:T ) [L]

∂φ
= 0. (39)

The complete data loglikelihood is defined as follows:

L = log p (x1:T , Z1:T ,y1:T ; θ)

=
T∑
t=1

logN (yt; AZtxt + bZt ,ΣZt) +
T∑
t=2

logN (xt; CZtxt−1,QZt
)

+
T∑
t=2

log τZt−1,Zt + log p (x1, Z1) . (40)

The posterior distribution of xt and Zt being different for each approximation, the nu-
merator in Equation (3.72) expression varies between the GPB2 and variational approxi-
mation, when one is using the GPB2 approximation the expected loglikelihood is defined
as:

Ep(x1:T ,Z1:T |y1:T ) [L] ≈ Ep(Z1:T |y1:T )

[
Ep(x1:T |Z1:Ty1:T ) [L]

]
. (41)

and for the variational approximation:

Ep(x1:T ,Z1:T |y1:T ) [L] ≈ E∏T
t=1 q

∗(Zt)

[
E∏T

t=1 q
∗(xt)

[L]
]
. (42)

ESTIMATION OF Cj

The update formula for Cj is obtained in 3 steps. First by expressing the part of the
expected log likelihood that contains Cj:

Ep(x1:T ,Z1:T |y1:T )

[
LCj

]
≈Ep(Z1:T |y1:T )

[
Ep(x1:T |Z1:T ,y1:T )

[
−

T∑
t=2

1

2
(xt − Cjxt−1)

>Q−1j (xt − Cjxt−1)

]]

≈− 1

2

T∑
t=2

p(Zt = j|y1:T )Ep(xt,xt−1|Zt=jy1:T )

[
(xt − Cjxt−1)

>Q−1j (xt − Cjxt−1)
]
.

(43)
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Then by deriving it with respect to the parameter Cj:

∂E
[
LCj

]
∂Cj

≈
T∑
t=2

p(Zt = j|y1:T )E
[
Q−1j (xt − Cjxt−1)x

>
t−1
]

≈
T∑
t=2

p(Zt = j|y1:T )Q−1j
(
E
[
xtx

>
t−1
]
− CjE

[
xt−1x

>
t−1
])

(44)

And finally by solving Equation (39) using previous equation:

Cj ≈

(
T∑
t=2

p(Zt = j|y1:T )E[xtx
>
t−1]

)

×

(
T∑
t=2

p(Zt = j|y1:T )E[xt−1x
>
t−1]

)−1
, (45)

where:

E
[
xtx

T
t−1
]

= Vt,t−1 + ηtη
>
t−1, (46)

E
[
xt−1x

T
t−1
]

= Vt−1 + ηt−1η
>
t−1, (47)

E
[
xtx

T
t

]
= Vt + ηtη

>
t (48)

The variational approximation by breaking the time dependency between xt and xt−1
simplifys the update formula for Cj . Because xt and xt−1 are independent, E

[
xtx

T
t−1
]

is
equals to the outer product of the means. Therefore for the variational approximation the
update formula for Cj is expressed as:

Cj ≈

(
T∑
t=2

q∗ (Zt = j)ηtη
>
t−1

)

×

(
T∑
t=2

q∗ (Zt = j)ηt−1η
>
t−1

)−1
, (49)
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ESTIMATION OF Qj

The derivations for the update formula of Qj follow the same logic as the ones for Cj , the
expected log likelihood part that contains Qj is:

Ep(x1:T ,Z1:T |y1:T )

[
LQj

]
≈Ep(Z1:T |y1:T )

[
Ep(x1:T |Z1:Ty1:T )

[
−

T∑
t=2

1

2
(xt − Cjxt−1)

>Q−1j (xt − Cjxt−1)

]]

≈− 1

2

T∑
t=2

p(Zt = j|y1:T )

(
Ep(xt,xt−1|Zt=jy1:T )

[
(xt − Cjxt−1)

>Q−1j (xt − Cjxt−1)
]

+ log |Qj|
)

(50)

By deriving with respect to Qj we obtain:

∂E
[
LQj

]
∂Q−1j

≈
T∑
t=2

p(Zt = j|y1:T )

(
E
[
(xt − Cjxt−1) (xt − Cjxt−1)

>
]
−Qj

)
(51)

Finally the update formula is expressed as:

Qj ≈
1∑T

t=2 p(Zt = j|y1:T )

×

(
T∑
t=2

p(Zt = j|y1:T )
(
E[xtx

>
t ]− CjE[xtx

>
t−1]
))

. (52)

Likewise for Cj , using the variational approximation the update formula becomes:

Qj ≈
1∑T

t=2 q
∗ (Zt = j)

×

(
T∑
t=2

q∗ (Zt = j)
(
ηtη

>
t − Cjηtη

>
t−1
))

. (53)

ESTIMATION OF τij

The estimation of the transition parameter τij follows the same logic as the one for Cj and
Qj but adds also a condition term:

τij = argmax
τij

Ep(x1:T ,Z1:T |y1:T ) [L] ,

s.t.
k∑
j=1

τij = 1. (54)
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This is solved using the Lagrange multiplier, which consists of adding to the Expected
loglikelihood −λ

(∑K
j=1 τij − 1

)
, where λ is the Lagrange multiplier:

Ep(x1:T ,Z1:T |y1:T )

[
Lτij

]
≈

T∑
t=2

p(Zt = j|y1:T )p(Zt−1 = i|y1:T ) log τij − λ

(
K∑
j=1

τij − 1

)
(55)

∂E
[
Lτij

]
∂τij

≈
T∑
t=2

1

τij
p(Zt = j|y1:T )p(Zt−1 = i|y1:T )− λ (56)

Finally by solving Equation (39) for τij with the Lagrange multiplier using the GPB2
approximation we obtain the following expression for the update of τij:

τij ≈
∑T

t=2 p(Zt = j|y1:T )p(Zt−1 = i|y1:T )∑T
t=2 p(Zt−1 = i|y1:T )

(57)

And for the variational approximation:

τij ≈
∑T

t=2 q
∗(Zt = j)q∗(Zt−1 = i)∑T
t=2 q

∗(Zt−1 = i)
(58)
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