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Abstract

During the last decades, wireless communications have visualized an expo-
nential growth due to rapidly expanding market of wireless broadband and
multimedia users and applications. Indeed, the demand for more radio spec-
trum increased in order to support this growth which highlighted on the
scarcity and under-utilization problems of the radio spectrum resources. To
this end, Cognitive Radio (CR) technology has received an enormous atten-
tion as an emerging solution to the spectrum shortage problem for the next
generation wireless communication systems. For the CR to operate efficiently
and to provide the required improvement in spectrum efficiency, it must be
able to effectively identifies the spectrum holes. Thus, Spectrum Sensing
(SS) is the key element and critical component of the CR technology. In CR
networks, Spectrum Sensing (SS) is the task of obtaining awareness about
the spectrum usage. Mainly it concerns two scenarios of detection: (i) de-
tecting the absence of the Primary User (PU) in a licensed spectrum in order
to use it and (ii) detecting the presence of the PU to avoid interference. Sev-
eral SS techniques were proposed in the literature. Among these, Eigenvalue
Based Detector (EBD) has been proposed as a precious totally-blind detector
that exploits the spacial diversity, overcome noise uncertainty challenges and
performs adequately even in low SNR conditions. However, the complexity
of the distributions of decision metrics of the EBD is one of the important
challenges. Moreover, the use massive MIMO technology in SS is still not
explored.

The first part of this study concerns the Standard Condition Number
(SCN) detector and the Scaled Largest Eigenvalue (SLE) detector. The focus
is on the complexity of the statistical distributions of the SCN and the SLE
decision metrics since this will imply a complicated expressions for the per-
formance probabilities as well as the decision threshold if it could be derived.
We derive exact expressions for the Probability Density Function (PDF) and
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the Cumulative Distribution Function (CDF) of the SCN using results from
finite Random Matrix Theory (RMT). In addition, we derived exact expres-
sions for the moments of the SCN and we proposed a new approximation
based on the Generalized Extreme Value (GEV) distribution. Moreover, us-
ing results from the asymptotic RMT we further provide a simple forms for
the central moments of the SCN and we end up with a simple and accurate
expression for the CDF, PDF, Probability of False-Alarm (Pfa), Probabil-
ity of Detection (Pd), Probability of Miss-Detection (Pmd) and the decision
threshold that could be computed on the fly and hence provide a dynamic
SCN detector that could dynamically change the threshold value depending
on target performance and environmental conditions. On the other hand,
we proved that the SLE decision metric could be modelled using Gaussian
function and hence we derived its PDF, CDF, Pfa, Pd and decision threshold.
In addition, we also considered the correlation between the largest eigenvalue
and the trace in the SLE study.

The second part of this study concerns the massive MIMO technology
and how to exploit the large number of antennas for SS and CRs. Two an-
tenna exploitation scenarios are studied: (i) Full antenna exploitation and
(ii) Partial antenna exploitation in which we have two options: (i) Fixed use
or (ii) Dynamic use of the antennas. We considered the Largest Eigenvalue
(LE) detector if noise power is perfectly known and the SCN and SLE de-
tectors when noise uncertainty exists. For fixed approach, we derived the
optimal threshold which minimizes the error probabilities. For the dynamic
approach, we derived the equation from which one can compute the minimum
requirements of the system. For full exploitation, asymptotic approximation
of the threshold is considered using the GEV distribution. Finally, a compar-
isons between these scenarios and different detectors are provided in terms of
system performance and minimum requirements. This work presents a novel
study in the field of SS applications in CR with massive MIMO technology.
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Résumé des travaux de thèse

Motivation et chapitre 1

Le concept de la radio intelligente est apparu avec les travaux de J. Mitola
[9]. Les études menées par Mitola visaient à rendre un équipement radio
conscient de l'évolution de son environnement et aussi être capable d'adapter
son comportement afin d'en collecter des informations permettant, au fur et
à mesure des expériences, les meilleurs choix (bandes de fréquence, débits,
performances, configurations, etc.).

L'objectif principal de la radio intelligente consiste à proposer une solution
efficace et dynamique afin de palier à la politique rigide de gestion du spectre
et au problème de pénurie et de sous-exploitation du spectre. Généralement,
les allocations statiques du spectre radio conduisent à une utilisation ineffi-
cace du spectre en créant des trous dans le spectre à un instant donné et/ou
une localité donnée. Afin de favoriser une meilleure utilisation du spectre ra-
dio, la radio intelligente permet d'envisager des scénarios d'accès dynamique
au spectre permettant d'offrir plus de services. La technique d'accès dy-
namique au spectre est centrée autour de partage du spectre radio entre des
utilisateurs licenciés (utilisateurs primaires) et des utilisateurs non licenciés
(utilisateurs secondaires). Les utilisateurs primaires ont une priorité absolue
pour accéder à la bande spectrale dont ils possèdent la licence. Les utilisa-
teurs secondaires peuvent soit utiliser les bandes du spectre inutilisées par
les utilisateurs primaires ou bien coexister dans les mêmes bandes que les
utilisateurs primaires en garantissant un niveau d'interférence très faible de
façon à ne pas affecter leurs communications. Les principales fonctions d'un
équipement radio secondaire (utilisateur secondaire) sont : la détection des
bandes inutilisées, l'analyse et décision sur le spectre et ladaptation. Ainsi,
l'utilisateur secondaire doit interagir avec son environnement radio afin de s'y

xv



adapter, d'y détecter les spectres libres et de les exploiter. Il doit veiller en
priorité à minimiser ses erreurs d'observation pour réduire la probabilité de
fausse alarme, c'est-à-dire la probabilité de détecter la présence d'un utilisa-
teur primaire alors qu'il est en fait absent, et la probabilité de non-détection,
c'est-à-dire la probabilité de détecter l'absence d'un utilisateur primaire alors
qu'il est en fait présent. Généralement, les utilisateurs secondaires n'ont
presque pas d'information a priori sur les caractéristiques des signaux des
utilisateurs primaires et le taux d'occupation des bandes du spectre.

L'interaction récente entre la théorie des matrices aléatoires et le monde
des radio communications a donné lieu à un développement rapide de plusieurs
travaux théoriques tels que : la capacité asymptotique des canaux radio mo-
biles, la capacité des réseaux ad-hoc, les réseaux de neurones, l'estimation
des directions d'arrivée dans les réseaux de capteurs. Cette théorie permet
asymptotiquement la dérivation de la densité de probabilité des valeurs pro-
pres de matrices aléatoires, dont la dimension tend vers l'infini. Des progrès
ont été réalisés sur le calcul de la capacité ergodique ainsi que la capacité de
coupure. Le nombre d'antennes nécessaires pour atteindre les effets de Mas-
sive MIMO, ainsi que les aspects de l'efficacité énergétique ont été largement
étudiés. Il y a eu un intérêt pour développer des méthodes de détection de
bandes libres basées sur les valeurs propres. Les performances en terme de
la probabilité de fausse alarme et probabilité de détection s'appuient unique-
ment sur les distributions asymptotiques des valeurs propres. Ces analyses ne
sont pas exactes étant donné qu'on dispose d'un nombre fini d'échantillons.

Dans cette thèse, nous analysons l'impact de l'utilisation d'un nombre
fini d'échantillons sur les performances de différents détecteurs utilisant des
valeurs propres de la matrice de covariance.

Chapitre 2

Le chapitre 2 de la thèse constitue une introduction à la détection de spectre
dans le contexte de la radio intelligente. Après avoir introduit la notion
d'utilisateur primaire et secondaire, la notion d'hyper-espace est énoncée.
Cet hyper-espace caractérise toutes les dimensions utiles d'un utilisateur :
le temps (dans le sens temps d'occupation du canal), la fréquence (bande
d'utilisation du canal), espace (notion de cellules), les angles d'arrivée, le code
(si l'accès multi-utilisateurs est un système de type CDMA) et la polarisation
(horizontale ou verticale). Dans le contexte de la thèse, un utilisateur sera
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caractérisé par son occupation spectrale et l'objectif de la détection de spectre
est alors de décider s'il y a présence ou non d'un utilisateur dans une bande
donnée. La littérature est très abondante à ce sujet et le chapitre 2 en propose
un état de l'art très précis. Après avoir insisté sur le caractère aveugle ou
non aveugle des détecteurs, l'auteur présente un certain nombre de méthodes
classiques de la littérature : (i) le détecteur d'énergie est la méthode la plus
naturelle et la plus optimale mais nécessite la connaissance du niveau de bruit
(ii) le détecteur de cyclostationnarités : tout signal de télécommunications
étant composé de périodicités (fréquence symbole, porteuse, .), tout signature
de telles périodicités permet d'affirmer qu'il y a un utilisateur présent dans
une bande donnée. Plus complexe que le détecteur d'énergie, le détecteur
cyclostationnaire est bien plus performant (iii) les détecteurs à base de valeurs
propres : nécessitant plusieurs antennes en émission et/ou réception, ces
détecteurs très performants permettent de détecter, à travers des variations
des statistiques des valeurs propres d'une matrice de covariance du signal
reçu, s'il y a présence ou pas d'un utilisateur. Un certain nombre de métriques
sont associées à ce type de détecteur : le nombre de conditionnement, la
valeur propre maximale pondérée, la valeur propre maximale pondérée par
la variance du bruit.

Chapitre 3

Le chapitre 3 se concentre sur les performances du détecteur à base du nom-
bre de conditionnement de la matrice de covariance du signal reçu. Une
première contribution a été de proposer une formulation théorique de la dis-
tribution conjointe des valeurs propres de la matrice de corrélation dans le cas
d'une matrice de Wishart centrée semi-corrélée dans le cas où les valeurs pro-
pres sont identiques. Les cas centrés/non centrés ont été ensuite étudiés et les
résultats théoriques à faibles rapport signal à bruit sont tout à fait conformes
aux simulations. A fort rapports signal à bruit, si le nombre d'échantillons
est suffisamment grand, les relations obtenues permettent d'avoir une bonne
mesure de la probabilité de détection. De plus dans le cas fini (non asymp-
totique), des relations théoriques du nombre de conditionnement ont été
obtenues dans les cas centrés semi-corrélées et non centrés non corrélés. Pour
réduire la complexité induite pour le calcul exact du nombre de condition-
nement, nous en avons approximé la distribution grce à la distribution GEV
basé sur la méthode d'équivalence des moments. Par conséquent, des expres-
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sions simples des probabilités de fausse alarme, de probabilité de détection
et du seuil de décision ont été proposées de telle façon qu'un système radio
intelligent à grand nombre d'antennes puisse adapter en temps réel le seuil
de décision en fonction des conditions de propagation.

Chapitre 4

Le chapitre 4 constitue une étude du détecteur SLE (Scaled Largest Eigen-
value) (le SLE est le rapport de la valeur propre la plus grande et de la
moyenne des valeurs propres). Le SLE est le détecteur optimal dans le cas
d'un seul utilisateur primaire dans le cas où la valeur du bruit est incer-
taine. Dans le chapitre 4, les expressions des densités de probabilités et de
répartition ont été proposées dans le cas du SLE pour les probabilités de
fausse alarme, la probabilité de détection et pour le seuil de détection. En-
suite les expressions des corrélations entre valeurs propres ont été proposées.
Dans les deux cas (hypothèses H0 et H1), les expressions ont été validées
avec les simulations.

Chapitre 5

Le dernier chapitre de la thèse aborde le problème de la détection de spectres
dans un contexte multi-antennes (MIMO). Dans ce cas d'étude, on suppose
qu'un système radio intelligent est équipé d'un nombre important d'antennes
à la fois en émission et réception. En reprenant les détecteurs étudiés dans les
chapitres précédents (LE, SCN, SLE), l'apport d'un système multi-antennes
est abordé en considérant à la fois une exploitation totale puis partielle des
informations fournies par les antennes. Des expressions des densités de prob-
abilités et fonction de répartition du détecteur LE ont été proposées et ap-
proximées grâce à la densité GEV (à la fois dans le cas fini et asymptotique)
pour obtenir des expressions simples du seuil de décision. Ceci a alors per-
mis de détailler les caractéristiques requises par un système radio intelligent
pour les détecteurs LE, SLE et SCN. Il a enfin été montré que l'approche
dynamique aboutissait à de meilleurs résultats.
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Chapter 1

Introduction

1.1 Background and Motivation

During the last decades, wireless communications have visualized an expo-
nential growth due to fast expanding market of wireless broadband and mul-
timedia users and applications. Indeed, the demand for more radio spectrum
increased in order to support this growth. In this regard, the traditional
Static Spectrum Allocation (SSA) policy that assigns, via auctions, par-
ticular portions of the spectrum to licensees is successful in avoiding the
interference between different services. However, since the radio frequency
spectrum is a limited natural resource, this policy is not the best solution as
the spectrum scarcity is being a critical problem. Nevertheless, several spec-
trum occupancy measurements have been conducted worldwide, for example
in the U.S., Germany, Spain, China, New Zealand, Singapore, Qatar and
India, revealed that most of the allocated spectrum remains under-utilized
over a wide range of frequencies in both temporal and spatial domains [1–4].
Furthermore, measurements from the Federal Communications Commission
(FCC) share the same results where up to 70% of the allocated spectrum is
not utilized [5, 6]. In other words, the frequency in 70% of the time-area is
not exploited although there is another operator that requires a new band
but has no space to accommodate it. In this context, the need for adopting
new spectrum access techniques with capability of efficiently and effectively
exploiting the available spectrum resources arises. This motivates the intro-
duction of the Dynamic Spectrum Access (DSA), which allows the use of
part of the spectrum in a flexible manner under consideration of regularity
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and technical restrictions [7]. It is about using the spectrum wherever and
whenever it is unoccupied by allowing the unlicensed users to share or reuse
the same spectrum band, such as UHF/VHF TV bands, originally allocated
to licensed users [7, 8].

Cognitive radio (CR), firstly introduced in [9], has emerged as a novel
wireless communication technology that brings a change into how the ra-
dio spectrum could be regulated. It is an enabling technology that enables
the DSA networks to use the spectrum more efficiently in an opportunis-
tic way without interfering with the licensed users known as Primary Users
(PUs) [10]. Currently, there exists thousands of research papers in CR tech-
nology which illustrates its importance in the future. Moreover, various
standardization activities have been led toward achieving ready-for-use CR
technology. For example, IEEE 802.22 working group has published the IEEE
802.22 standards to enable spectrum sharing by using the vacant channels,
known as spectrum holes or white spaces, in the UHF/VHF TV bands [11,12].
The European Telecommunication Standard Institute (ETSI) Reconfigurable
Radio Systems (RRS) Working Group (WG1) has defined standards and op-
eration requirements for the operation of the mobile broadband systems in
the 2.3-2.4 GHz frequency band under the Licensed Shared Access (LSA)
regime [13–15]. Further, U.S. FCC and United Kingdom (U.K.) Office of
Communications (OFCOM) issued their milestone reports outlining govern-
ing regulations for unlicensed usage in TV spectrum holes and opened parts
of the TV spectrum for unlicensed TV band devices [16–18]. On the other
hand, important industry players, including Alcatel-Lucent, Ericsson and
Motorola from the mobile equipment industry, Philips and Samsung from
the consumer electronics industry, British Telecom and Orange from net-
work operators, HP and Dell from the computer industry, and Microsoft and
Google from the Internet/software industry, are putting effort toward the
realization of the CR technology [19].

For the CR to operate effectively and to provide the required improve-
ment in spectrum efficiency, it must be able to effectively detect the pres-
ence/absence of the PU to avoid interference if it exists and freely use the
spectrum in the absence of the PU. Thus, Spectrum Sensing (SS), being re-
sponsible for the presence/absence detection process, is the key element in
any CR guarantee. SS is the task of obtaining awareness about the spectrum
usage. Mainly it concerns two scenarios of detection: (i) detecting the ab-
sence of the PU in a licensed spectrum in order to use it and (ii) detecting
the presence of the PU to avoid interference. Hence, SS plays a major role

2



in the performance of the CR as well as the performance of the PU net-
works that coexist. In this regard, several SS techniques have been proposed
in the literature [10, 20]. While energy detection (ED) is the most popular
SS technique, it is indeed sensitive to noise power uncertainty which may
cause significant performance degradation [21–24]. Cyclostationary feature
detector (CFD) is robust against noise uncertainty, however, it requires the
knowledge about the PU’s signal and suffers from high computational com-
plexity [25–31]. Matched filter detector (MFD) is the optimal if PU’s signal is
known, however, it requires perfect knowledge of the PU’s signal features (i.e.
operating frequency, modulation, pulse shaping etc.) and its implementation
complexity is impractically large [32–35]. On the other hand, Eigenvalue
Based Detector (EBD) circumvent the need of knowledge about the PU or
the noise power and shows superior performance and robustness [36–43].

Eigenvalue based detector relies on the properties of the eigenvalues of
the sample covariance matrix of the received signal. Several eigenvalue based
techniques have been proposed including, but not limited to, the Largest
Eigenvalue (LE) detector [36,42], the Scaled Largest Eigenvalue (SLE) detec-
tor [40,42] and the Standard Condition Number (SCN) detector [36,37,39,44].
Like ED, LE detector needs the knowledge about the noise power but how-
ever it outperforms the ED performance [36]. SCN and SLE does not require
this information and have superior performance in noise uncertain environ-
ments [40, 44]. EBD techniques have been considered using results from the
advances in Random Matrix Theory (RMT) [45,46]. The performance prob-
abilities and the decision threshold are usually determined after the analysis
of the statistics of the detector’s metrics which involves results from the
finite and asymptotic RMT. Exact expressions could be derived in the fi-
nite case and beneficial approximations can be used in the asymptotic case.
Based on these expressions, the main drawback of the EDB is the com-
plexity of the analytical expressions of the performance probabilities and
the decision threshold in case an expression could be provided. In fact, for
a CR to dynamically change the threshold value according to certain per-
formance/requirements/capabilities then the decision threshold must have
simple analytical expression or alternatively Look-up Tables (LUT) should
be constructed. However, as discussed through this thesis the implementa-
tion of the decision threshold must be dynamic and may rely on real-time
computations rather than using LUTs. In this regard, a major part of this
thesis considers this complexity in the EBD and provides simple and accu-
rate expressions for the performance probabilities and the decision threshold
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[J1-J4, C1, C2]. The SCN detector is considered and simple approximation is
provided based on the Generalized Extreme Eigenvalue (GEV) distribution
and results from finite and asymptotic RMT. Moreover, the SLE detector is
also considered and a simple Gaussian formulation is provided.

On the other hand, the implementation of the EBD is based on certain
diversity techniques such as fractional sampling, multiple-antennas or coop-
eration. In this context, it is very likely that the SUs would be equipped
with multiple antenna technology as mentioned in Sec. 2.4.4. However, the
research community lacks of studies that considers massive Multiple-Input
Multiple-Output (MIMO) technology in CR for SS. In this regard, we have
considered a CR with massive MIMO technology and studied the efficient
way of antenna exploitation for SS and other purposes [J6].

1.2 Thesis Organization and Main Contribu-

tions

The structure of the thesis can be summarized as follows:

• Chapter 2 provides a brief discussion of the spectrum sensing in cogni-
tive radio systems.

• Chapter 3 focus on the SCN detector in finite and asymptotic cases
[J1, J2, J4, C2, C3]. Since finite case rely on exact distributions, the
joint distribution of the ordered eigenvalue of the Wishart matrices is
studied as the first step toward the exact distribution analysis of the
EBD decision metrics. The exact SCN distribution is then considered
and derivations of the exact expressions for the Probability Density
Function (PDF) and Cumulative Distribution Function (CDF) are pro-
vided. The complexity of these exact expressions and the use of extreme
eigenvalues make the motivation of the use of the GEV distribution as
a simple approximation for the SCN. The exact moments are derived
and the approximation is proposed to end up with simple forms for the
Probability of False-alarm (Pfa), Probability of Detection (Pd), Prob-
ability of Missed-Detection (Pmd) and the decision threshold (λSCN).
Asymptotically, the use of approximations due to large numbers from
RMT was advantageous. The asymptotic central moments of the SCN
are derived by the use of the asymptotic central moments of the extreme
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eigenvalues of Wishart matrices. Finally, the objective is attained by
providing a very accurate and simple form for λSCN that could be used
for dynamic and real time computations. These analytical derivations
are all validated through extensive Monte-Carlo simulations.

• Chapter 4 considers the complexity in the SLE detector as the main
objective [J3, C1]. The focus was to provide a simple form for the
distribution of the SLE decision metric which would results in simple
forms for the Pfa, Pd, Pmd and λSLE. The distribution of the trace
of the Wishart matrices was considered which is proved to be Gaus-
sian. Consequently, the SLE distribution is proved to have a Gaussian
form which is also provided. This form is a function of the means and
variances of the largest eigenvalue and the trace and the correlation
between them. Accordingly, the correlation coefficient is studied using
variable transformation. The analytical derivations are all validated
through Monte-Carlo simulations.

• Chapter 5 studies the antenna exploitation efficiency of a CR system
equipped with massive MIMO technology [J5]. Using the LE detector,
two scenarios of antenna use could be considered: (i) Full antenna ex-
ploitation scenario and (ii) Partial antenna exploitation scenario. In the
first scenario, asymptotic approximation for the LE detector’s perfor-
mance probabilities and decision threshold are derived. In the second
scenario, two options are discussed: the fixed number of antenna use
and the dynamic number of antenna use. In the fixed case, an optimal
threshold is derived to minimize the error probabilities. For the dy-
namic case, the equation after which the minimum requirement of the
system could be evaluated is provided. When the noise power is not
perfectly known, this work is extended to the SLE and SCN detectors
using result from previous chapters. The analytical derivations are all
validated through Monte-Carlo simulations and a comparison between
these different scenarios nad different detectors are also provided in
terms of performance and number of antennas involved in the sensing
process.

• Chapter 6 summarizes the thesis and draws the conclusions and the
future recommendations.
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C3. H. Kobeissi, Y. Nasser, O. Bazzi, Y. Louet and A. Nafkha, ”On the
Performance Evaluation of the Eigenvalue-Based Spectrum Sensing De-
tector for MIMO Systems”, URSI GASS 2014, Beijing, Aug. 2014.

1.4 Mathematical Notations

Vectors and Matrices are represented, respectively, by lower and upper case
boldface. The symbols |.| and tr(.) indicate, respectively, the determinant
and trace of a matrix while (.)1/2, (.)T , and (.)† are the square root, transpose,
and Hermitian symbols respectively. In is the n×n identity matrix and 1KN
is a K×N ones matrix. Symbol ∼ stands for ”distributed as” and E[.] stands
for the expected value, ‖.‖ for the Frobenius norm and ‖.‖2 for the norm.
Notation [1, · · · , K] − {m} denotes an ordered vector with K − 1 elements
from 1 to K except m.
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Chapter 2

Spectrum Sensing in Cognitive

Radios

2.1 Introduction

Radio spectrum is a limited natural resource that is coordinated by national
regularity bodies like the Federal Communications Commission (FCC) in the
United States (U.S.). The FCC assigns particular portions of spectrum to
licensees, also known as Primary Users (PUs), on a long-term basis for large
geographical regions. This approach is beneficial as it prevents from inter-
ference, guarantees adequate quality of service (QoS), and, from technical
perspectives, it is easier to manufacture a system operating in a dedicated
band rather than a system to operate in different bands over a large fre-
quency range. However, a large portion of the assigned spectrum remains
underutilized in a world that aspires for more radio resources [1]. To this end,
Cognitive Radio (CR) technology has received an enormous attention as an
emerging solution to the spectrum shortage problem for the next generation
wireless communication systems [47]. It is a technology that brings a change
in how the radio spectrum is regulated from the current static spectrum al-
location into a dynamic frequency allocation scheme known as the Dynamic
Spectrum Access (DSA) [7].

CR concept was firstly proposed by Joseph Mitola in [9]. Since then,
several definitions for the CR have been provided based on different con-
texts [48–50]. For example, FCC defines the CR as: ”A radio or system
that senses its operational electromagnetic environment and can dynamically
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and autonomously adjust its radio operating parameters to modify system
operation, such as maximize throughput, mitigate interference, facilitate in-
teroperability, access secondary markets” [6]. This is achieved by the two
main characteristics of CR: (i) cognitive capability and (ii) reconfigurability.
Cognitive capability refers to the ability to sense and gather information from
the surrounding environment while reconfigurability refers to the ability to
rapidly adapt the operational parameters according to the sensed information
in order to achieve the optimal performance.

CR users, also known as Secondary Users (SUs), are unlicensed users
that have lower priority to access the spectrum resources. They are autho-
rized to exploit the spectrum in such a way that they do not cause harmful
interference to the PUs. Hence, SUs need to be aware of their surrounding
spectrum environment and to intelligently exploit this spectrum to serve their
duty while guaranteeing the normal operation of the PUs. Being the focus
of this chapter, spectrum sensing (SS) is the most important mechanism for
the establishment of CR. It is the key to successful of CR systems in which it
is responsible of identifying the spectrum holes and the occupied bands. In
this regard, sec. 2.2 discusses the basic meaning of spectral opportunity and
the spectrum holes in a wider space known as the transmission hyperspace.
Sec. 2.3 discusses the importance of SS starting by the spectrum exploitation
techniques and passing through other spectrum awareness techniques. The
concept of SS is discussed in Sec. 2.4. Different SS categories and techniques
are also provided. In addition, this section discussed the cooperation in SS,
multiple-antenna use in SS and the main challenges facing SS techniques.
In Sec. 2.5, the concept of Eigenvalue Based Detector (EBD) is discussed
through the different diversity techniques used to implement EBD, the hy-
pothesis analysis of EBD and the different techniques that are used in the
literature. Finally, the conclusion is drawn in Sec. 2.6.

2.2 Transmission Hyperspace

The main purpose of a CR is to efficiently utilize the spectral opportunities
without interfering on the PUs. Thus, defining the term ”spectral opportu-
nity” in CR is mandatory for any awareness technique. Spectral opportunity
is, traditionally, defined as a vacant band of frequencies at a particular time
and in a particular geographic area [20]. In other words, it is a vacant hole
in the time-frequency-space dimensions. This actually borders the field of
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operation of the SUs as it could not use vacant spectrum holes in a wider
dimensional space. Based on this definition, the radio spectrum is not op-
timally utilized since it does not consider the advantage of orthogonality
schemes or diversity that permits multiple users to jointly-operate without
interference. For example, multiple-users may use the same frequency at
the same time in the same area by using different orthogonal codes so it
can be intercepted only by receivers having the same code. This additional
dimension, i.e. code dimension, can be further explored and added to the
aforementioned dimensions to form a new wider space seeking for superior
spectral opportunities. Further, other dimensions, such as polarization and
angle-of-arrival, could also be included to achieve an optimal exploration and
exploitation of the spectral opportunities.

Figure 2.1: 3-D Spectrum Hyperspace and Spectrum holes within.

In this regard, ’Transmission Hyperspace’ could be seen as an electro-
magnetic space bounded by all dimensions, i.e. time, frequency, space, code,
polarization, angle-of-arrival, etc. [51]. Consequently, a spectral opportunity
could be imagined as a vacant hole in such hyperspace in which it is still
referred to as ’spectrum hole’. An imagination of a 3-dimensional transmis-
sion hyperspace is illustrated in Fig. 2.1 where the empty blocks refer to the
spectrum holes in time-frequency-code-space dimensions. The SUs must be
aware of these spectrum holes and use suitable access techniques depending
on the available dimensions. However, the utilization of the dimensions of
the spectrum hyperspace is mainly based on the available information at the
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SUs. Here, the awareness needs not only the necessary information about the
presence/absence of the PU in certain channels but also necessitates to iden-
tify the PU’s waveform (e.g. radio access techniques, chip rates, preambles,
etc.) and others [52]. Important dimensions of the transmission hyperspace
are summarized in the following:

• Frequency Dimension: Frequency dimension is usually subdivided into
spectrum bands that are typically matching the channelization of par-
ticular services such as the frequency division multiple access (FDMA)
scheme [53]. Spectral opportunities, in this dimension, are the spec-
trum bands that are not utilized by the PUs.

• Time Dimension: The time dimension, depending on the application, is
subdivided into periods such as the time-slots structure in time division
multiple access (TDMA) systems [53]. Hence, SUs must be aware of the
spectral opportunities available in the time domain, i.e. periods of time
the spectrum band is not occupied with respect to other dimensions.

• Space Dimension: The space dimension refers to the physical geograph-
ical location and distance of PUs. As early discussed, the spectrum is
under-utilized in the spatial domain. Hence, at a certain location, the
spectrum may be unoccupied while it is occupied at another. Hence,
spectrum opportunities could be found in some parts of the space di-
mension in which SUs can exploit.

• Angle-of-Arrival Dimension: Using advances in multiple-antenna tech-
nology, such as beamforming, the SUs can simultaneously use the same
spectrum band with the PUs at the same time in the same location
but through different direction than the direction of the PU radio sig-
nal [54]. This is usually known as the angle-of-arrival transmission in
which different transmitters can simultaneously operate on the same
frequency without interfering by forming the transmission beam in the
direction of the intended receiver. Hence, a new spectral opportunity
could be exploited if the SUs are aware of the position of the PU along
with its beam direction (i.e. azimuth and elevation angle).

• Code Dimension: The spectrum may be used at a particular time and
in a particular location and still could be considered as a spectral op-
portunity which might be used by the SUs thanks to the code division
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access technique [53]. However, this assumes that both primary and
secondary networks are using different orthogonal codes in which mul-
tiple PUs and/or SUs can access simultaneously the spectrum band
without interfering. Accordingly, the SUs must be aware of the coding
technology used (e.g. frequency-hopping, direct-sequence etc.) and the
codes used by the PUs.

• Polarization Dimension: The electric field propagation determines the
polarization of the electromagnetic wave. In general, most antennas
radiate either linear (i.e. horizontal or vertical) polarization or circular
(i.e. right-hand-circular or left-hand-circular) polarization. If the SUs
are aware of the polarization state of the PUs, then it can transmit
simultaneously in polarization state other than the polarization of the
PUs as it is not causing harmful interference. The reader can refer
to [55,56] for examples on polarization exploitation in CRs.

Consequently, spectrum sensing must consider all the transmission hy-
perspace dimensions for an optimal utilization. From spectrum utilization
efficiency perspective, the more dimensions the SUs are exploring the more
efficient is the utilization of the spectrum holes and hence, a higher success
level of the CR objective is achieved. In this regard, the focus of this the-
sis is the EBD using multiple antenna technology as discussed in Sec. 2.5.
This detector allows the SUs to be aware of the spectrum holes in the time,
frequency, space and angle-of-arrival dimensions.

2.3 Spectrum Sensing: Behind the Concept

Spectrum scarcity and under-utilization are the main motivations behind the
concept of CR technology. To overcome these spectrum shortage problems,
several spectrum exploitation models were proposed: (i) dynamic exclusive
use model which include certain flexibility to improve spectrum efficiency
while maintaining on the basic structure of the current spectrum allocation
policy [57,58] and (ii) spectrum commons model which consists of a spectrum
band for sharing between different users [59, 60]. These models improve the
spectrum efficiency by providing unlicensed shared bands or an access to the
licensed band for a certain time under the supervision of the primary network.
However, the spectrum holes are still not exploited and the licensed bands
are still considered underutilized.
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In this regard, the third model is the hierarchical access model which
is about allowing the SUs to access the PU’s licensed bands if no harmful
interference is caused. In other words, SUs are allowed to access the PU’s
band in any possible way that maintains the normal activity of the PU. This
model can be broadly categorized into: (i) Underlay, (ii) Overlay and (iii)
Interweave approaches [61]. An illustration of these approaches is considered
in Fig. 2.2. The SU, based on its access technology and awareness about the
PU, can use one or more of these techniques.

(a) Underlay approach. (b) Overlay approach.

(c) Interweave approach.

Figure 2.2: Examples of different hierarchical access model approaches.

Both underlay and overlay approaches allow the SUs to communicate at
the same time-frequency resources used by the PUs. In the underlay ap-
proach, the secondary transmitter (ST) must not significantly interfere with
the primary receiver (PR) and hence, the coexistence of the SU and PU is
realistic as the generated interference at the PR is below certain acceptable
threshold [62]. Several methods could be used to support the SU to underlay
its transmission simultaneously on the same band as the PU, such as beam-
forming [63], primary exclusion region [64,65], interference alignment [66,67]
and spread spectrum signals [68]. However, the ST must be aware of the
interference it causes to the PR which is not straightforward since it is actu-
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ally happens at the PR side. In the overlay approach, the STs use advanced
techniques in coding and transmission in order to mitigate the interference
caused by such transmission. Basically, as shown in Fig. 2.2(b), the STs
must relay the primary signals by using part of their power and the rest are
used to transmit their own signals [61]. Accordingly, overlay approach needs
advanced techniques in precoding, transmission and perfect power splitting,
interference mitigation and time and frequency synchronization. Moreover,
it also requires PU-SU cooperation, non-causal prior knowledge about the
PU and could not be applied except in very few cases [69].

On the other hand, interweave approach is about the opportunistic uti-
lization of the spectrum holes whenever and wherever it exists. It was the
basic motivation behind the introduction of the CR systems as a solution for
the under-utilization problem of the licensed spectrum bands. The SUs, in
this approach, must be aware of the PU activity in its geographical area in
order to identify the spectrum holes and exploit them for their own transmis-
sion. Further, SUs must also identify any reappearance of the PU and should,
immediately, leave the channel by switching to another spectrum hole or stop
transmission. This opportunistic use of the spectrum, ideally, causes no inter-
ference to the PU. Indeed, this is almost true if the used awareness method
is capable of correctly identifying the spectrum hole with optimal perfor-
mance. However, any incorrect identification will lead to a miss-utilization
of the spectrum hole or harmful interference to the PU. Consequently, the
performance of the awareness mechanism is a challenge in the interweave
approach.

In general, most of the aforementioned exploitation techniques could be
jointly used. For example, SUs can underlay their transmission until a spec-
trum hole is detected and then shift to the interweave approach to transmit
with higher power according to the dimensions of the spectrum hole. How-
ever, interweave is the most efficient and effective approach for exploiting the
underutilized spectrum by targeting the spectrum holes in the transmission
hyperspace. In this regard, different spectrum awareness methods exist in
order to serve the SUs and make them aware of the surrounding environ-
ment. On a large scale, spectrum awareness can be classified into passive
and active awareness [70]. In passive awareness, the SU receives the spectral
information needed from an outside agent. On the other hand, in active
awareness the SUs need to sense the radio environment and make their own
measurements.

Different passive awareness techniques are proposed to inform the SU
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about its surrounding spectrum status. Such techniques include (i) Bea-
con Signals [71–73], (ii) Control Channel [74–78], (iii) Geolocation databases
[79–82], (iv) Policy based [83] and (v) Spectrum broker [71]. In fact, pas-
sive awareness can ensure interference-free communication to the PUs and a
simple secondary transceiver. However, it may require modification to the
PU systems, control channels and the establishment of costly infrastructure.
Moreover, passive awareness leads to a static SU that strongly depends on
how frequent the outside agent is updated. On the other hand, active aware-
ness could be either detecting a PR or a PT. Methods for detecting the PR
are based on detecting the Local Oscillator (LO) leakage power [10, 84] or
the interference at the PR [85]. Since LO leakage and interference are actu-
ally happening at the receiver side, then CR active awareness based on these
approaches must focus on the receiver activity of the PU. To fulfill such ap-
proach, it is more likely that the secondary network should establish a large
grid of sensors to cover all its communication region. Hence, without PU-SU
cooperation assumption, it is easier to detect the PT than the detection of
PR. In this regard, Spectrum sensing (SS) is the active awareness approach
that is responsible on detecting the PT by taking certain measures from the
SU surrounding environment and decide whether a spectrum hole exists or
not. The main advantage of SS approach is that the SUs may not need to rely
on any external source of knowledge to take a transmit/no-transmit decision.

Based on this discussion, SS is considered as the most practical, effi-
cient and effective approach in spectrum awareness. It permits the detection
of spectrum holes in order to be exploited using the interweave approach.
This concept is basic in CR since it takes the spectrum bands from the un-
derutilized state to a more efficiently-utilized state. There exists a massive
number of researches that provide this approach with worthy different de-
tection techniques to identify the spectrum holes. In the next section, we
discuss the concept of SS and different aspects related to it.

2.4 Spectrum Sensing: literature review

Spectrum sensing is a crucial stage that must be performed by the SUs in
order to identify the spectrum holes. To this end, a variety of techniques
has been proposed in literature. In general, these techniques are based on
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detection problem with binary hypothesis model defined as:

H0 : y(n) = η(n), (2.1)

H1 : y(n) = s(n) + η(n), (2.2)

where y(n) is the sample received at instant n; η(n) represents the additive
white Gaussian noise with zero mean and variance σ2

η; s(n) is the PU’s trans-
mitted signal samples passed through a wireless channel. This represents a
binary signal detection problem in which SUs need to decide between the
two hypotheses, H0 or H1. H0 is the only noise hypothesis, i.e. the PU does
not exist, while H1 indicates that the considered spectrum band is occupied.

The detection performance is commonly determined on the basis of two
probabilities, namely, the probability of false-alarm (Pfa) and the probability
of detection (Pd). Pfa denotes the probability that the SU falsely decide that
the PU is present when actually it is absent and Pd denotes the probability
of correctly deciding the presence of the PU. An alternative to Pd and an-
other important probability is the missed-detection probability (Pmd) which
denotes the decision of a vacant band when the PU is actually presents. Pfa
represents a miss-utilization of the spectrum hole whereas Pmd results in in-
terference on the PUs. Hence, the key challenge of any SS technique is to
minimize the error probabilities, i.e. Pfa and Pmd, and, thus, maximizing
Pd. Denote by X the decision metric used by the SS technique, then these
probabilities are given by:

Pfa = P (X ≥ λX/H0), (2.3)

Pd = P (X ≥ λX/H1), (2.4)

Pmd = P (X < λX/H1) = 1− Pd, (2.5)

where λX is the decision threshold. Further, denote by fi(x) and Fi(x)
the Probability Density Function (PDF) and the Cumulative Distribution
Function (CDF) of X respectively under the hypothesis i ∈ {0, 1}, then Pfa,
Pd and Pmd, as represented in Fig. 2.3, are respectively given by:

Pfa = 1− F0(λX), (2.6)

Pd = 1− F1(λX), (2.7)

Pmd = F1(λX), (2.8)

Before getting into the details of SS methods in Sec. 2.4.2, different SS
categories are summarized in the following subsection.
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Figure 2.3: False-alarm, detection and miss-detection probabilities.

2.4.1 Spectrum Sensing Categories

Spectrum sensing techniques can be categorized upon different basis which
reflect certain requirement/property/application/target as shown in Fig. 2.4.
In the following, a summary of different categories is provided:

Figure 2.4: Different Sensing Categories.

Neyman-Pearson vs. Bayesian: These are two general approaches for
the hypothesis testing. Neyman-Pearson is a classical approach that assumes
no prior knowledge about the probabilities of occurrence of the hypotheses.
On the other had, the Bayesian approach is based on minimizing the Bayes
risk by employing prior knowledge about the probabilities of occurrence of
the hypotheses [86].

Cooperative vs. Non-cooperative: In non-cooperative based ap-
proach, SUs decide the presence/absence of the PU based on its local ob-
servations only. In contrast, the cooperative based approach is based on the
cooperation between multiple SUs, by sharing their information in a central-
ized or distributed manner, to decide about the spectrum availability. More
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about cooperation is provided by Sec. 2.4.3.
Un-blind vs. Semi-blind vs. Totally-blind: These categories reflect

the amount of prior knowledge required at the SU. Un-blind detectors require
a prior knowledge about the PU signal’s characteristics as well as the noise
power to accurately make a decision. Semi-blind detectors are more practical
as they require a prior knowledge about the noise power only. This power
could be estimated, however, a further performance study for such detectors
in the presence of noise uncertainty is required. On the other hand, totally-
blind detectors are the detectors that do not require any prior information
regarding both the PU signal and the noise power. These techniques are the
most practical and preferable techniques in SS.

Multi-antenna vs. Single-antenna: It is about the number of anten-
nas at the RF part of the SU that are used for the SS process. In comparison
with single-antenna SS, multi-antenna SS utilize the spatial correlation of PU
signal received by different antennas for spectrum holes detection. Moreover,
several multi-antenna SS techniques have been shown to be totally-blind and
thus, provide robustness against noise uncertainty problems. On the other
hand, multi-antenna SS requires additional hardware components and an
increase in the computational complexity. More about multi-antenna is pro-
vided by Sec. 2.4.4.

Wide-band vs. Narrow-band: Herein, the detectors are categorized
based on the bandwidth of the channel to be sensed. Narrow-band (NB)
SS techniques are detectors that could be used to sense a sufficiently narrow
frequency range band such that a flat channel frequency response could be
considered, i.e. the sensed bandwidth is less than the channel coherence
bandwidth [87]. On the other hand, wide-band (WB) SS techniques aim to
sense a wider frequency band. It is worth noting that the NB SS techniques
cannot be directly used in WB sensing, however, they can be extended for
WB context.

In addition, categories, such as proactive (i.e. periodic sensing) or re-
active (i.e. on-demand sensing), In-band (i.e. sensing the band currently
used by the SUs) or Out-of-band (i.e. sensing other bands for possible
backup) and sequential (i.e. sensing several bands sequentially) or parallel
(i.e. sensing several bands in parallel), also exists. However, the fundamental
of all these categories is to detect the spectrum holes in order to be used by
the SUs. In this regard, different methods were proposed in literature and
are discussed next.
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2.4.2 Spectrum Sensing Techniques

Several SS techniques exist as shown in Fig. 2.6. Each have distinct capabil-
ities, requirements, performances and complexities. A detailed survey of the
existing SS techniques could be found in [10, 20, 87, 88] and a comparative
study, in terms of performance, complexity and requirements, could be found
in [89]. In the following, we summarize methods considered in PU detection
and most of the existing SS techniques. It is worth mentioning that some
of the techniques in Fig. 2.6 are discussed in Sec. 2.5. Moreover, Fig. 2.6
considered two basis, namely the knowledge and the number of RF-chains,
in illustrating the SS techniques due to their importance in this thesis.

1. Energy Detection: The concept of energy detection is to measure
the energy of the received signal in a certain spectrum band of interest,
then compare this energy with a pre-computed threshold value to decide
whether the PU is present in this spectrum band or not [21–24,90–92].

1.1. Traditional Energy Detector : the traditional energy detector (ED) is,
usually, a single-antenna and narrowband detector and its decision met-
ric is given by:

X =
1

N

N∑
n=1

|y(n)|2. (2.9)

Figure 2.5: Traditional energy detector block diagram.

Figure 2.5 illustrates the implementation of ED. The exact distribution
of the ED decision metric is a chi-squared distribution; however, due
to the large number of samples, N , involved in the detection, it has
been shown that in practical scenarios the distribution of X, using
Central Limit Theorem (CLT), can be accurately assumed to follow the
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Gaussian distribution [93]. Consequently, one can obtain the following:

H0 : X ∼ N
(
σ2
η,
σ4
η

N

)
, (2.10)

H1 : X ∼ N
(
σ2
η + σ2

s ,
(σ2

η + σ2
s)

2

N

)
, (2.11)

where σ2
s is the energy of the signal at the SR (i.e. including chan-

nel effect). Hence, Pfa, Pd and Pmd, using (2.6), (2.7) and (2.8), are
straightforwardly formulated as follows:

Pfa = Q

(
λX − σ2

η

σ2
η/
√
N

)
, (2.12)

Pd = Q

(
λX − σ2

η(1 + ρ)

σ2
η(1 + ρ)/

√
N

)
. (2.13)

where Q(.) is the standard Gaussian complementary CDF and ρ is the
signal to noise ratio. The optimal decision threshold, λX , is selected by
minimizing both Pfa and Pmd. However, this requires the knowledge of
noise and received signal powers.

ED is the most popular technique for SS due to its low implementation
and computational complexities. In practice, the threshold is chosen
so as to maintain a predefined false-alarm probability, i.e. Constant
False Alarm Rate (CFAR) [94]. Hence, ED is considered a semi-blind
detector as it is sufficient to know the noise variance for calculating λX .
Despite the simplicity of ED, its main drawback lies in its sensitivity on
noise power uncertainty. Any small error in the noise power estimation
may cause a significant performance degradation.

The threshold of the ED, for a CFAR, is straightforward from (2.12)
as:

λX = σ2
η

(
1 +

Q−1(Pfa)√
N

)
, (2.14)

where Q−1(.) is the inverse Q-function. In perfect operating conditions,
i.e. σ2

η is perfectly known, ED can achieve any detection performance
by increasing N . For a targeted Pfa and Pd, the minimum required N
is straightforward derived from (2.12) and (2.13) as:

N =
[
Q−1(Pfa)−Q−1(Pd)(1 + ρ)

]
.ρ−2. (2.15)
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Hence, if σ2
η is known, the ED can detect any PU at arbitrarily low

SNR by increasing N . Conversely, due to noise uncertainty the PU
could not be detected if the SNR is under certain SNR wall regardless
the value of N [95,96]. To address this issue, accurate noise estimation
methods [91,97] and hybrid detectors [98] were proposed for ED.

1.2. Teager-Kaiser based ED : As presented for the ED, the most widely
used approach for the energy estimation is based on the squared energy
operator whereby the desired energy given by (2.9) or the squares of
the magnitude of the frequency samples of the same signal segment
after discrete Fourier transform (DFT). Alternatively, a simple and fast
approach is based on the Teager-Kaiser energy operator which was first
proposed by Teager in [99] and further investigated by Kaiser [100]. A
comparison between both energy estimation approaches in presence of
additive noise is reported in [101]. In CR, Teager-Kaiser based ED has
been used in detecting the wireless microphone signals in narrowband
and wideband frequency domains [24,92].

2. Feature Detection:

In general, Feature Detector (FD) distinguishes the PU by matching
features extracted from the received signal with a priori known features
that characterize the PU transmission such as Cyclostationarity, idle
guard interval of OFDM, location, channel bandwidth and its shape,
etc. [25–31,98,102–107].

2.1 Cyclostationary Feature Detector: Cyclostationary Feature De-
tector (CFD) is an effective FD that exploits the cyclostationary fea-
tures of the primary signals [27–31, 98, 102–107]. Unlike the noise, PU
signals are modulated signals that carry cyclostationary features due
to the periodicity in its statistics such as the mean and the autocor-
relation. In this regard, the cyclic spectrum density (CSD) function
is defined as the Fourier series expansion of the cyclic autocorrelation
function of the received signal. If PU is present, the CSD function
shows peak values when the cyclic frequencies are equal to the funda-
mental frequencies of the PU signals. This approach is robust against
noise uncertainty and shows high detection performance at the cost
of high computational complexity. However, CFD is very sensitive to
cyclic frequency mismatch [108].
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Figure 2.6: Spectrum sensing techniques categorized upon knowledge and
number of RF-chains.

3. Coherent Detection: Coherent detection uses a known patterns in the
PU’s signal to detect its presence [89]. If the SU has a perfect knowl-
edge about the PU’s signal then matched filter detector could be used.
However, if this knowledge is not attained and a certain pattern is still
known then waveform-based detector could be used [32–35,109–114].

3.1 Matched Filter Detector: Matched filter detector (MFD) is an un-
blind detector that correlates the apriori known PU’s signal with the
received signal to detect the presence of the PU [32–35, 109]. In com-
parison with other detectors, MFD has many advantages; it is the
optimal detector if PU’s signal is known and thus, it maximizes the
SNR in presence of additive noise. Further, it requires short time to
achieve certain performance probabilities. On the other hand, MFD is
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not considered as relevant choice in CR due to several disadvantages;
first, MFD requires perfect knowledge of PU’s signal features such as
operating frequency, bandwidth, modulation, pulse shaping etc. and
thus, it suffers from high performance degradation if wrong information
regarding PU signal is used in the detection. Moreover, its implemen-
tation complexity is impractically large as it needs a dedicated receiver
for every primary system type which also results in high power con-
sumption.

3.2 Waveform-Based Detector: Pilots, spreading codes, preambles and
midambles are examples of patterns used by most wireless communi-
cation systems for synchronization, equalization and other purposes.
If PU signal features are not perfectly known by the SU, such pat-
terns might still be a priori known. Waveform-based detector corre-
lates the received signal with a copy of the known pattern for PU
detection [110, 111]. The performance of this detector improves as the
length of the known pattern increases. It can be seen as a simplified ver-
sion of MFD however, synchronization between the primary signal and
the detector is still required and thus, any synchronization error can
degrade the detection performance. Moreover, SUs must have knowl-
edge of patterns of all primary system in its coverage area. Cyclic prefix
correlation detector [112, 113] and pilot detector [114] are examples of
waveform-based detector.

4. Covariance Based Detection: Covariance based approach is based on
the sample covariance matrix of the received signal at the SR in which
it exploits the difference in the statistical covariances of the received
signal and the noise.

4.1 Covariance Absolute Value Detector: In the covariance based ap-
proach, the authors in [115] proposed Covariance Absolute Value (CAV)
detector which is a totally-blind detector that rely on the fact that if
PU is not present then the off-diagonal elements of the covariance ma-
trix are all zeros whereas if the PU’s signal exists and the samples are
correlated then the covariance matrix is not diagonal. The distribution
of the ratio of the sum of absolute values of the non-diagonal elements
to that of the diagonal elements were further studied in [116] in order
to obtain mathematical expressions for the Pfa and Pd.
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4.2 Eigenvalue Based Detector: Eigenvalue based detector (EBD) could
be considered as an advanced method in the covariance based detection
approach. It relies on the eigenvalues of the sample covariance ma-
trix of the signal received using certain diversity technique such as the
fractional sampling, cooperation or multi-antenna [36–43, 117]. EBD
consists of several detection techniques whose properties are studied
using recent results from advances in random matrix theory (RMT).
Some of the these techniques are totally-blind and outperform the ED
especially in noise uncertain environment. A detailed description of
this approach is provided in Sec. 2.5.

5. Wide-Band Detection: Two main approaches in wide-band SS are the
Nyquist wide-band SS and the sub-Nyquist wide-band SS [87]. In
Nyquist Wide-band SS, the signal is directly acquired using a high sam-
pling rate analog-to-digital converter (ADC), i.e. at or above Nyquist
rate, and then uses some signal processing techniques to detect the spec-
trum holes. In contrast, sub-Nyquist wide-band SS detects the spec-
trum holes using acquisitions at sampling rate lower than the Nyquist
rate. Various wide-band techniques were proposed in literature and
used in SS such as:

5.1 Compressive Sensing: Compressive sensing is a powerful approach
that enables the analysis and recovery of a wideband signal while it is
sampled at a sub-Nyquist rate [27, 98, 118–123]. Compressive sensing
exploits the fact that many natural signals are sparse or compress-
ible and can be represented shortly when expressed in a proper ba-
sis. Sparsity represents the property that the ”information rate” of
a continuous-time signal could be much smaller than proposed by its
bandwidth [118].

5.2 Wavelet Based Detector: Wavelet detection is an effective technique
used in image processing for edge detection. In SS, wavelet detection
is applied on the wideband power spectral density (PSD) to detect the
edges which represents the transitions between occupied and vacant
bands [124]. Once the edges are detected, the bands between the edges
are further analyzed to identify the spectrum holes.

5.3 Filter-Bank Based Detector: In multi-carrier communication sys-
tems, spectrum sensing can be performed by measuring the power at
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the output of the sub-carrier bands [125]. In this regard, Multitaper
Based Detector can be seen as a filter-bank spectrum estimation with
multiple filter banks or filter-bank is a simplified version of the multi-
taper by using only one prototype filter for each band [10,126,127].

6. Examples of Other Detectors : In addition to the mentioned techniques,
other detectors also exists. The reader may refer to the surveys such as
[10,20] for others detection techniques. Here we refer for two examples:

6.1 Blind Source Separation detection: Blind Source Separation (BSS)
was recently proposed in CR networks for SS [128–130]. Several meth-
ods were used to separate the mixed signal of CR with the PU or to
sense multi frequency bands by separating different signals in different
frequency bands such as the independent component analysis [129] and
the Kurtosis applied on the separated signals [130]. The advantage of
such techniques is their ability to sense the channel even if the SU is
operating. However, BSS assumes the statistical independence of the
sources. Moreover, other detectors, like EBD, are used with the BSS
to improve its performance [130].

6.2 High-order statistics based detection: High-order statistics rep-
resent the third and higher order in which two basic statistics the mo-
ments and cumulants exist. While the first-order and second-order
statistics are used to detect the signals in most of the CR applica-
tions, high-order moment based detectors have been considered to de-
tect signals have certain properties. For example, second-, fourth- and
six-order moments were used in [131], ratio of the second and fourth
moments were used in [132] and the third- and higher odd moments
were used in [133].

2.4.3 Cooperation in Spectrum Sensing

In general, any wireless communication channel may be characterized by
multi-path fading, path-loss, shadowing, noise uncertainty and interference
in which the detection performance of the SS techniques may significantly
degrade. To overcome these challenges, cooperative sensing was proposed
to enhance the detection performance by exploiting the spatial location of
different SUs. By means of cooperation, SUs sense certain spectrum band
and share their sensing information toward achieving a combined and more
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accurate decision [134]. In this regard, cooperation gain is the term that de-
fines any benefit achieved due to this cooperation such as the improvement
in the detection performance and overcoming multi-path and shadowing ef-
fects such as hidden node problem (HNP) as illustrated in Fig. 2.7. Therein,
SU1 and SU3 exists in a place that shadowing effect makes no possible de-
tection of the primary transmission. This is known as the HNP and results
in harmful interference. However, SU2 has a good line of sight with primary
BS and can inform the others by means of cooperation. In contrast to the
cooperation gain, cooperation overhead refers to any additional operation
or performance degradation caused by the cooperation in comparison with
the non-cooperative sensing such as the need for a control channel and/or a
reporting channel, synchronization and reporting delays [103,135].

Figure 2.7: Shadowing Effect and Hidden Node problem.

Cooperation could be done in a centralized manner or a distributed
one [136]. In centralized cooperation, a fusion center collects the sensed
information from all the secondary nodes, decides about the spectrum holes
and then broadcasts the decision to all SUs or manages the exploitation of
the spectrum holes in the secondary network. In distributed cooperation,
SUs share information among themselves and converge to a global decision
iteratively. In both centralized and distributed approaches, the bandwidth
allocated for the reporting channel limits the amount of information trans-
mitted by the SU nodes. In this regard, three data fusion techniques are
defined: (i) Soft combining in which the SUs transmit the entire local sensed
samples or the decision metric, (ii) Quantized soft combining in which the
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SUs quantize the local sensed samples or the decision metric before sharing
and (iii) Hard combining where the shared information is a one bit local de-
cision [135]. For more information regarding cooperative SS, the reader may
refer to [135].

2.4.4 Multi-antenna Spectrum Sensing

Antenna diversity or multi-antenna techniques have been widely deployed
and are used in communications to improve the transmission/reception by
increasing channel capacity without bandwidth expansion and overcoming
the effects of fading by space-time coding [137]. In CR context, one of the
major objectives and the main motivation is to improve the spectrum uti-
lization [9]. Hence, it is very likely for CRs to exploit the advantages offered
by the multiple-input multiple-output (MIMO) technologies to improve sec-
ondary communications [138, 138–143]. Further, multi-antenna techniques
are also beneficial for the SS process since it can significantly improve the
sensing performance by exploiting the spacial diversity. Methods, such as
maximum ratio combining, equal gain combining and selection combining,
are applied using energy detector to better sense the spectrum [144–146].
The resultant detectors still require the knowledge of the noise power and
their performance degrades in noise uncertain environments. However, us-
ing multiple antennas it is possible to overcome this problem. Indeed, it is
possible to derive optimal totally-blind detectors in multi-antenna scenarios
by using the properties of the covariance matrix such as in the EBD ap-
proach [40–42]. Moreover, introducing multiple antenna architecture for CR
will extend the spectrum awareness and exploitation dimensions to include
the angle-of-arrival dimension. For example, beamforming with power con-
trol in CR have been jointly considered to control the interference towards
PUs and to improve channel capacity in SUs communication [138, 141–143].
In SS, beamforming could offer solution for directed environment detection,
i.e. the angle-of-arrival [140].

2.4.5 Challenges in Spectrum Sensing

CR is an intelligent network that must be aware of the changes in its sur-
rounding to adapt its transmission parameters accordingly. Hence, SS is a
vital task among other CR tasks that represents the key element for CR real-
ization. Indeed, SS is facing a number of challenges that may cause negative
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impact on spectrum detection if they are not well considered. Such challenges
includes the hardware implementations, complexity, synchronization, uncer-
tainties, hidden node problem etc. [20]. In this regard, noise uncertainty and
very low SNR environments are critical problems that may significantly de-
grade the performance of any SS detector. To overcome these problems, SUs
must use detectors that overcome noise uncertainty problems and performs
adequately even in low SNR conditions. EBD is, in general, a totally-blind
detector that is not effected by noise uncertainty and robust in low SNR con-
ditions. Moreover, extending SS to detect spectrum holes in a wider space
as discussed in Sec. 2.2 is also a challenge. In this regard, the exploitation
the diversity of multiple antennas along with the EBD is useful for efficiently
detecting the spectrum holes in frequency, time, space and angle-of-arrival
dimensions.

In the next section, the concept of EBD is considered since it is the
focus of the thesis. Different metrics are considered and the hypothesis tests
are analyzed. Different diversity techniques are also discussed such as the
cooperation and multiple antennas.

2.5 Eigenvalue Based Detector

Spectrum Sensing techniques with superior performance and robustness can
be designed using the eigenvalues of the received signals covariance matrix.
These detectors, classified under the name of ”eigenvalue based detector”
(EBD), rely on the use of random matrix theory (RMT) and different eigen-
value properties of the sample covariance matrix in decision making. For
the implementation of the EBD, the SUs have to collect the signal’s sam-
ple matrix in the first step, determine the sample covariance matrix in the
second and then perform the EBD. Several diversity techniques have been
introduced in literature in which the SUs can collect the signal’s samples in a
K×N matrix form, where K represents the diversity order and N the num-
ber of samples collected for the sensing process. Such diversity techniques
are:

i. Fractional sampling: Fractional sampling can convert a single-input
single-output (SISO) system into a virtual single-input multiple-output
(SIMO) system and it has been exploited in the literature to acquire
diversity gains over frequency-selective fading channels [147, 148]. In
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CR, the received signal is sampled, using fractional sampling, with
the rate higher than the Nyquist rate in order to achieve diversity as
illustrated in Fig. 2.8 where TFS is the fractional sampling rate.

Figure 2.8: Eigenvalue based detector using fractional sampling.

ii. Multi-antenna: SU equipped with multiple antenna, as illustrated in
Fig. 2.9, uses these antennas to achieve diversity and acquire the signal
independently from each antenna to perform EBD.

Figure 2.9: Eigenvalue based detector using multiple antennas.

iii. Cooperation: In general, several SUs or nodes can achieve diversity
through cooperation by transmitting their raw data to the fusion center
where the EBD is performed as illustrated in Fig. 2.10.

Moreover, any combination from these diversity techniques could also be
used in performing the EBD. The use of fractional sampling at the receiver
requires a high rate ADC and results in colored noise [149]. On the other
hand, the use of cooperative approach requires a reporting channel with huge
bandwidth and the use of multiple antenna requires multiple RF chains. In
this regard, it is very likely that the SUs would be equipped with multiple
antenna technology as mentioned in Sec. 2.4.4. To this end, multi-antenna
approach is considered as the diversity technique used by SUs for implement-
ing EBD in this report. However, most of the results provided can be directly
applied for EBD using any of the mentioned diversity techniques.
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Figure 2.10: Eigenvalue based detector using cooperative technique.

2.5.1 Concept of EBD

Consider a multi-antenna CR system equipped with K receiving antennas
aiming to detect the presence/absence of a single PU in a narrowband channel
B with the central carrier frequency fc. The received signal at the SR is
sampled at the sampling frequency fs and denote by N the number of samples
acquired at each antenna for the sensing process. Hence, the sensing time,
Ts, is given by: Ts = N/fs and the received signal matrix, Y , is given by:

Y =


y1(1) y1(2) · · · y1(N)
y2(1) y2(2) · · · y2(N)

...
...

. . .
...

yK(1) yK(2) · · · yK(N)

 , (2.16)

where yk(n) is the baseband sample at antenna k = 1 · · ·K and instant
n = 1 · · ·N .

For this detection problem, the received vector, at instant n, under both
hypotheses, H0 and H1, is given by:{

H0 : yk(n) = ηk(n),

H1 : yk(n) = hk(n)s(n) + ηk(n),
(2.17)

with ηk(n) is a complex circular white Gaussian noise with zero mean and
unknown variance σ2

η, hk(n) is the channel coefficient between the PU and
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antenna k at instant n, and s(n) stands for the primary signal sample modeled
as a zero mean Gaussian random variable with variance σ2

s . Without loss of
generality, we suppose that K ≤ N and the channel is considered flat-fading,
i.e. constant during the sensing time.

Figure 2.11: General Eigenvalue based detector.

Let W be the sample covariance matrix, W = Y Y †, and denote by
λ1 ≥ λ2 ≥ · · · ≥ λK > 0 its ordered eigenvalues. Depending on these
eigenvalues and their properties, various decision metrics can be derived. The
general EBD block diagram is illustrated in Fig. 2.11. However, depending on
the decision metric used in the third block, the second block may not involve
eigenvalue decomposition (EVD) algorithm where instead another methods
could be applied to reduce the complexity such as direct computation of the
trace or the computation of the largest eigenvalue using iterative method (i.e.
Power method).

2.5.2 Hypothesis Analysis

In order to decide between the two hypothesis mentioned in (2.17), the deci-
sion metric statistics must differ from theH0 hypothesis to theH1 hypothesis.
In the following, we analyze the statistics of the sample covariance matrix
under both hypotheses.

H0 hypothesis

Consider the following definition of the central Wishart matrix [45]:

Definition 2.1. The K×K random matrixW = Y Y † is a central real/complex
Wishart matrix with N degrees of freedom and of covariance matrix Σ if the
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columns of the K × N matrix Y are zero-mean independent real/complex
Gaussian vectors with covariance matrix Σ.

Under H0 hypothesis, the entries of matrix Y are complex Gaussian with
zero mean and variance σ2

η. The interest of the Wishart matrix is primarily
due to the sample covariance matrix, W , associated with the receiver signal
random matrix Y . Consequently, and with particular importance of the
case where Σ = σ2

ηIK , W , is a K×K central uncorrelated complex Wishart
matrix and is denoted by:

W ∼ CWK(N, σ2
ηIK). (2.18)

H1 hypothesis

Under H1 hypothesis, an unknown single PU is considered and its signal
amplitude is independently drawn from a Gaussian process for every sample.
The channel is considered flat-fading during the sensing time. Accordingly,
the mean matrix, M , of the received signal matrix is given by [150,151]:

M = hsT , (2.19)

where h = [h1h2 · · ·hK ]T and s = [s(1)s(2) · · · s(N)]T .
In this regard, the definition of the non-central Wishart matrix is an

extension of that of the central Wishart matrix when it is originated from a
matrix with non-central (i.e. nonzero-mean) Gaussian entries as follows:

Definition 2.2. The K × K random matrix W = Y Y † is a non-central
real/complex Wishart matrix with N degrees of freedom, covariance matrix Σ
and non-centrality matrix Ω if the columns of the K × N matrix Y are
nonzero-mean independent real/complex Gaussian vectors with covariance
matrix Σ.

Hence, by considering the special case when Σ = σ2
ηIK then the sam-

ple covariance matrix, W , under the H1 hypothesis follows a non-central
uncorrelated complex Wishart distribution which is denoted as:

W ∼ CWK(N, σ2
ηIK ,Ω), (2.20)

then the non-centrality matrix can be derived by:

Ω = Σ−1MM † =
1

σ2
η

‖s‖2hh†, (2.21)
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where Σ is the covariance matrix of Y , defined as Σ = E[(Y −M )(Y −
M )†] = σ2

ηIK , and M is the mean matrix given by (2.19). Obviously, Ω is a
rank-1 matrix where the nonzero eigenvalue is denoted by ω1. The average
signal to noise ratio (SNR) is defined by:

ρ =
σ2
sσ

2
h

σ2
η

, (2.22)

where the PU signal power, σ2
s , could be estimated by1 (‖s‖2/N), and the

channel power σ2
h = (‖h‖2/K). As a result, and by using the property that

the trace of a matrix equals the sum of its eigenvalues, then ω1 could be
written as:

ω1 = tr(Ω) =
1

σ2
η

‖s‖2tr(hh†) =
1

σ2
η

‖s‖2‖h‖2

= NKρ. (2.23)

2.5.3 EBD decision metrics

Various decision metrics can be derived from the eigenvalues of the sample
covariance matrix. In the following, existing approaches are described.

1. Standard Condition Number Detector: Standard condition num-
ber (SCN) detector, also known as maximum-to-minimum eigenvalue
detector or the condition number detector, is the ratio of the largest
eigenvalue, λ1, to the smallest eigenvalue, λK , of the sample covariance
matrix and it is given by:

XSCN =
λ1

λK
. (2.24)

It is another total-blind detector from the EBD class where no a priori
information is required [36, 37]. Let λSCN be the decision threshold of
the SCN detector, then the decision is expressed as follows:

DSCN =

{
H0 if XSCN ≤ λSCN

H1 else
. (2.25)

1The norm of the PU signal, ‖s‖2, is still a random variable, however, this randomness
decreases fast as N increases and (‖s‖2/N) can be well approximated by σ2

s for sufficient
N.
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This detector has received a great attention in literature and an enor-
mous work has been done in its analysis. The detailed description of
this detector is provided in Ch. 3

2. Scaled Largest Eigenvalue Detector: Scaled largest eigenvalue
(SLE) detector is the ratio of the largest eigenvalue, λ1, to the normal-
ized trace of the sample covariance matrix and is expressed as follows:

XSLE =
λ1

1
K

∑K
i=1 λi

. (2.26)

It is a total-blind detector as no a priori information regarding the PU
or the noise power is required. In noise uncertainty environments, SLE
is proved to be the optimal detector under the generalized likelihood
ratio (GLR) criterion [40, 41]. Let λSLE be the decision threshold of
the SLE detector, then the decision is expressed as follows:

DSLE =

{
H0 if XSLE ≤ λSLE

H1 else
. (2.27)

A more detailed description of the SLE detector is provided in Ch. 4

3. Largest Eigenvalue Detector: Largest eigenvalue (LE) detector,
also known as Roy’s Largest Root test, is the largest eigenvalue of the
sample covariance matrix normalized by the noise power as follows:

XLE =
λ1

σ2
η

. (2.28)

It is a semi-blind detector as it requires the noise power knowledge,
however, if perfect knowledge is available then LE is the optimal de-
tector [36, 42]. Let λLE be the decision threshold of the LE detector,
then the decision is expressed as follows:

DLE =

{
H0 if XLE ≤ λLE

H1 else
. (2.29)

A more detailed description of the LE detector is provided in Ch. 5
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4. Other Total-blind EBD metrics:

4.1 Spherical Test: Spherical test (ST) detector, or the sphericity test, is
the ratio of the geometric mean to the arithmetic mean of the eigen-
values of the sample covariance matrix [39, 43, 152]. It is a total-blind
detector and its decision metric is expressed as follows:

XST =
(det(W ))

1/K

1
K
tr(W )

=
(ΠK

i=1λi)
1/K

1
K

∑K
i=1 λi

. (2.30)

4.2 Energy with Minimum Eigenvalue: Energy with minimum eigenvalue
(EME) detector is based on the ratio of the average of all eigenvalues
of the sample covariance matrix to the minimum eigenvalues which
results a total-blind detector [38]. Since the average of the eigenvalues
is almost the same as the signals energy [38], then the decision metric
is given by:

XEME =
1
KN

∑K
k=1

∑N
n=1 |yk(n)|2

λK
. (2.31)

4.3 John’s Detector: John’s detector (JD) is the ratio of the quadratic mean
to the arithmetic mean of the eigenvalues of the sample covariance
matrix [43,153]. The decision metric is given by:

XJD =

∑K
k=1 λ

2
i

(
∑K

k=1 λk)
2
. (2.32)

4.4 Demmel Condition Number Detector: Demmel condition number (DCN)
detector is defined by the ratio of the trace to the minimum eigenvalue
of the sample covariance matrix [117, 154–158]. The decision metric is
given by:

XDCN =
tr(W )

λK
=

∑K
k=1 λk
λK

. (2.33)

2.6 Conclusion

CR users use the spectral opportunities as they are not causing harmful inter-
ference to the PUs. In this regard, several spectrum exploitation techniques
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exist as provided by Sec. 2.3. Interweave approach is the exploitation tech-
nique that allows the SUs to dynamically access the spectrum holes wherever
and whenever detected in the transmission hyperspace and provide an effi-
cient and effective way in utilizing the spectrum. To do so, SUs must be
aware of their surrounding environment and the changes in the spectrum
usage instantaneously. Various spectrum awareness approaches exist in the
literature as mentioned. In passive awareness, the behavior of the SUs is
totally dependent on the outside agent that is responsible of providing the
SU by spectrum hyperspace information. This results a static SU that relies
on information that might not be up-to-date and may not be useful in the
sense of time received. Moreover, the realization of any passive awareness ap-
proach requires the establishment of a costly infrastructure, cooperation with
the primary network and a dedicated communication channel or an access
method to the information source. Likewise, the realization of active aware-
ness approach based on receiver detection, assuming no PU-SU cooperation,
may not be applicable as it requires PR position knowledge, a dedicated
sensor network and a communication channel. Spectrum sensing, the active
PT detection approach, is a powerful approach that does not necessitate the
mentioned requirements as it, may only, requires the capability to sense a
target channel.

Several SS techniques were proposed in literature as provided in sec. 2.4.2.
These techniques are facing challenges such as noise uncertainty, very low
SNR, complexities and sensing time that may degrade their performance
and shorten the transmission time of the ST. From knowledge perspective,
some of these techniques rely on a priori PU information, others rely on noise
information and few techniques do not require any a priori knowledge, de-
noted as ”Totally-blind detectors”. Totally-blind detectors are applicable in
any situation and could effectively be used in detecting spectrum holes with-
out being affected by noise uncertainty. Moreover, under non-cooperative
detection assumption, most of the mentioned SS techniques do not exploit
the spatial diversity on one hand and on the other hand cannot be extended
to new dimensions other than the time-frequency-space dimensions. In this
regard, EBD is a multi-antenna based blind detector that is efficient in low
SNR environments and could be used for detecting spectrum holes in the
time-frequency-space-angle-of-arrival transmission hyperspace without any a
prior knowledge regarding the PU and the noise variance. However, the main
disadvantage of the EBD is the complexity of its performance probabilities
and its decision threshold which cannot be evaluated on the fly. In this re-
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gard, the following chapters considers this complexity problem and provides
simple and accurate approximations for the SCN, SLE and LE detectors.
Moreover, the concept of large multiple-antenna CR systems (i.e. massive
MIMO) is considered in Ch. 5 using the EBD to study the efficient way of
antenna exploitation.
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Chapter 3

Standard Condition Number

Detector: Performance

Probabilities and Threshold

This chapter considers the performance probabilities and the decision thresh-
old of the SCN detector in finite and asymptotic cases. Consequently, it dis-
cusses the statistics of the SCN decision metric of the SCN detector. To this
end, the concept of joint distribution of the ordered eigenvalues is presented
in Sec. 3.2 where our contribution is provided. Then the contributions for
the SCN in the finite case is illustrated in Sec. 3.3. The contributions regard-
ing the SCN in the asymptotic case is illustrated in Sec. 3.4. The problem
and the general contributions of this work is illustrated in Fig. 3.1.

3.1 Standard Condition Number Detector

In the last few years, EBD has been proposed as a precious totally-blind
detector that exploits the spacial diversity, overcome noise uncertainty chal-
lenges and performs adequately even in low SNR conditions. Several EBD
decision metrics were proposed in the literature as provided in Sec. 2.5.
Among these metrics, the SCN ratio has been extensively studied and has
many applications mainly in the context of MIMO systems and SS for CR
systems [36–38,44,159–163].

Recall that the SU is equipped with K antennas and is acquiring N
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Figure 3.1: Main problem and general contributions.

samples per antenna for the sensing process where N > K. The sample
covariance matrix is W = Y Y † and Y is the received signal matrix. The
SCN is the ratio of the largest to the smallest eigenvalues of W and is given
by:

XSCN =
λ1

λK
. (3.1)

In MIMO systems, the SCN has an effective connection with MIMO re-
ceiver performance in spatial multiplexing systems [159–161] and it indicates
the multipath richness of the MIMO channel [162, 163]. In CR systems, the
SCN detector compares this ratio to a threshold to decide whether the PU
is present or not. SCN detector is totally-blind detector, not affected by
noise power uncertainty and outperform the ED in noise uncertainty envi-
ronments. For a given decision threshold, λ̂SCN , the SCN detector algorithm
is summarized in Algorithm 3.1.

Despite the mentioned characteristics of the SCN detector, its main draw-
back primarily lies in the complexity of its performance probability expres-
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Algorithm 3.1: SCN Detector

Input: Y , λ̂SCN
Output: DSCN

1 compute W = Y Y † ;
2 get λ1 and λK of eig(W ) ;
3 evaluate X = λ1/λK ;

4 decide DSCN = XSCN

H1

≷
H0

λ̂SCN ;

sions and consequently, the expression of its decision threshold. More pre-
cisely, the Pfa, Pd and Pmd expressions are directly related to the CDF ex-
pression of the decision metric as provided by (2.6), (2.7) and (2.8) respec-
tively. Hence, this drawback is indeed due to the complexities of the CDF
expressions.

Consequently, we aim to study the SCN metric and to provide the research
community with a simple and accurate forms for the SCN distribution. In
this regard, we consider the following two cases in this work:

1. Finite Case: this case represents a SU that is detecting the spectrum
holes with finite small number of antenna.

2. Asymptotic Case: this case represents a SU with a large number of
antennas aiming to detect the presents of spectrum holes.

Before getting into the details of these cases, the joint distribution of
the ordered eigenvalues of the Wishart matrix and the non-central/central
approximation are discussed first. In the following section we will consider
the Joint PDF of the ordered eigenvalues of the Wishart matrices as it is a
key element in deriving the SCN distributions. Problems and contributions
are also discussed with some numerical results.

3.2 Joint Distribution of the Ordered Eigen-

values

In the EBD, the decision metrics are the eigenvalues or a combination of
the eigenvalues of the sample covariance matrix. When the number of an-
tennas, K, takes a finite values, then results from the finite random matrix
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theory (RMT) are involved in the derivation of the decision metrics’ exact
CDF expressions. Marginal distributions, condition number distributions,
moments and several statistical characteristics of the EBD decision metrics
usually requires the joint distribution of the eigenvalues of the Wishart ma-
trix. In this regard, the joint distributions of the ordered and unordered
eigenvalues of the real/complex central/non-central correlated/uncorrelated
Wishart matrices have been derived in [164–177]. The joint distribution of
the ordered eigenvalues, denoted by λ1 ≥ λ2 ≥ · · · ≥ λK > 0, of the central
and non-central uncorrelated complex Wishart matrices are considered for
H0 and H1 hypotheses respectively.

Under H0, W is a central uncorrelated complex Wishart matrix. The
joint distribution of the ordered eigenvalues of W is given by the following
Lemma:

Lemma 3.1. Let W ∼ CWK(N, IK) be a central uncorrelated complex
Wishart matrix with N Degrees of Freedom (DoF) and correlation matrix IK.
Then, the joint distribution of the ordered eigenvalues, λ1 ≥ λ2 ≥ · · · ≥ λK,
of W is given by [178]:

f(λ) = Kcu|V (λ)|2
K∏
l=1

λN−Kl e−λl , (3.2)

with λ = [λ1, λ2, · · · , λK ]T is the vector of ordered eigenvalues of W , V (λ)
is a Vandermonde matrix with (i, j)-th entries vi(λj) = λi−1

j and Kcu is a
normalization constant given by (3.3) with Γn(m) =

∏n
i=0(m− i)!

Kcu = [ΓK(N)ΓK(K)]−1 (3.3)

Under H1, W is a non-central uncorrelated complex Wishart matrix with
rank-1 non-centrality matrix. The joint distribution of the ordered eigenval-
ues of W is given by the following Lemma:

Lemma 3.2. Let W ∼ CWK(N, σ2
ηIK ,Ω) be a non-central uncorrelated

complex Wishart matrix with N DoF, correlation matrix σ2
ηIK and non-

centrality matrix Ω of eigenvalues ω1 > ω2 = · · · = ωK = 0. Then, the
joint distribution of the ordered eigenvalues, λ1 ≥ λ2 ≥ · · · ≥ λK, of W is
given by:

f(λ) = Knu|U(λ)| × |F (λ, ω1)|
K∏
i=1

λN−Ki · e−λi (3.4)
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where U(λ) and F (λ, ω1) are K ×K matrices of (i, j)-th entries given re-
spectively by ui(λj) = λK−ij and (3.5). In (3.5), 0F1(., .) is the generalized
hypergeometric function defined in [179, Eq. 9.14.1]. Knu is defined in (3.6).

fi(λj) =

{
0F1(N −K + 1, ω1λj) i = 1
λK−ij ·(N−K)!

(N−i)! i = 2, · · · , K
(3.5)

Knu =
e−ω1 · [(N −K)!]−K

ΓK−1(K − 1) · ωK−1
1

(3.6)

Proof. Particularize [180, App. I] with Ω is a rank-1 matrix.

Under H1 hypothesis, one can sometimes obtain explicit solutions for the
distributional properties of the non-central Wishart matrices. However, these
expressions are usually more complicated than that of the central Wishart
matrices. For example, the exact general form of the distribution of SCN
of the non-central uncorrelated complex Wishart matrix with full rank non-
centrality matrix is derived in [157], however, further numerical evaluation
would either require Nuttall-Q function which could be replaced by Mar-
cum Q-function and a finite weighted sum of Bessel functions [181] or by
hypergeometric functions that could be expanded to an infinite sum (See, for
example, [182] for K = 2 and N = 2) [157]. In this regard, using certain
method that approximates a non-central Wishart distribution by a central
Wishart distribution would be practical. In this light, consider the following
Lemma that approximate the non-central Wishart distribution with a central
Wishart distribution by modifying its correlation matrix.

Lemma 3.3. [183] The non-central uncorrelated complex Wishart matrix
W ∼ CWK(N, σ2

ηIK ,Ω) and the central semi-correlated complex Wishart

matrix W ∼ CWK(N, Σ̂) with effective correlation matrix Σ̂ = σ2
ηIK + Ω/N

have the same first and second-order moments differing by Ω/N .

Yet, Lemma 3.3 was used in the approximation of several marginal dis-
tributions and condition numbers such as the LE, SCN and DCN where the
Ricean fading MIMO channel matrix has been studied [157,184]. It has been
reported that the accuracy of this approximation deteriorates at high Ricean
K-factors [157]. From SS perspective, this approximation has been also used
to replace the CDF of the SCN of the dual non-central Wishart matrices by
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that of the dual central Wishart matrices under H1 hypothesis [44]. How-
ever, the impact of CR system parameters, such as the SNR, N and K, on
the accuracy of this approximation for Pd or Pmd has not been studied.

Moreover, work done on the joint distribution of the ordered eigenval-
ues of the central semi-correlated Wishart matrices has considered that the
eigenvalues of the correlation matrix, Σ, are all distinct [157]. Indeed, these
eigenvalues may coincide as the case in SS. Recall that under H1 hypothesis
the non-centrality matrix, Ω, is a rank-1 matrix where the nonzero eigenvalue
is denoted by ω1 and is given by:

ω1 = NKρ. (3.7)

Consequently, the correlation matrix of the corresponding central semi-
correlated Wishart matrix, due to Lemma 3.3, is given by:

Σ = σ2
ηIK +

1

N
Ω. (3.8)

Accordingly, all but one eigenvalue of the eigenvalues of Σ are equal to σ2
η

while σ1, the remaining eigenvalue, is given by:

σ1 = σ2
η +

ω1

N
. (3.9)

Therefore, by considering the non-central/central approximation, results
based on assuming all the eigenvalues of the correlation matrix are distinct
could not be used. Next, we consider the joint distribution of the ordered
eigenvalues of the central semi-correlated complex Wishart matrices where
the correlation matrix have some coincide eigenvalues. Moreover, the im-
pact of the SNR, K and N on the non-central/central approximation is also
studied via simulations.

3.2.1 Central Semi-correlated Wishart Case

As mentioned, all but one of the eigenvalues of the correlation matrix are
equal. In this section, we generalize the joint distribution of the ordered
eigenvalues of the central semi-correlated Wishart matrix. This new form
considers any number L of equal eigenvalues positioned anywhere in vector
of eigenvalues of the correlation matrix σ and is given in Theorem 3.1 below.
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Theorem 3.1. Let W be a central semi-correlated complex Wishart matrix
W ∼ CWK(N,Σ), and denote by σ1 > σ2 > · · · > σp = · · · = σq >
· · · > σK > 0 the ordered eigenvalues of Σ assumed full rank with L equal
eigenvalues (from p to q with q = p+ L− 1), then the joint PDF of λ could
be written as:

f(λ) = Kcc1|V (λ)| × |E(λ,σ)|
K∏
i=1

λN−Ki , (3.10)

where Kcc1 is a normalization constant given by:

Kcc1 =

∏K
i<j σiσj

K∏
i=1

(N − i)!σNi
K∏
i<j
σi 6=σj

(σj − σi) ΓL(L)

, (3.11)

and E(λ,σ) is a K ×K matrix with (i, j)-th entry:

{E(λ,σ)}i,j =


∂q−i(e

−
λj
σp )

∂σq−ip
p ≤ i ≤ q

e
−
λj
σi otherwise

, (3.12)

where the n-th partial derivative in (3.12) is given by (3.13) and the Lah
number is defined by L(n, k) =

(
n
k

)(
n−1
k−1

)
(n− k)!.

∂n(e
−
λj
σp )

∂σnp
=


e
−
λj
σp

n∑
k=1

(−1)k+n·L(n,k)·λkj
σn+k
p

if n > 0

e
−
λj
σp if n = 0

(3.13)

Proof. See Appendix A.1.

It can be easily shown that by taking L = 1, the parameters in theorem 3.1
will be equivalent to the case of all distinct eigenvalues in the literature [157,
Table I].

3.2.2 Numerical Results and Discussion

In this section, we discuss the analytical results through Monte-Carlo sim-
ulations. We, firstly, validate the theoretical analysis presented in Theorem
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3.1. Given the non-central/central approximation in Lemma 3.3, we study
the approximation accuracy as well as the impact of the SNR on this approx-
imation. Since the probability of detection is the main target, we study the
effect of the approximation accuracy and the impact of system parameters
on Pd. The results are discussed using Pd from the CDF expressions of the
SCN of the Wishart matrices derived in App. B.

For this purpose, we, first, generate 105 central semi-correlated Wishart
matrices. In our simulation setup, the entries of Y are complex standard
Gaussian with K = 2 and N = 20 and we have considered a correlation
matrix with eigenvalues σ1 = σ2.
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(d) Empirical Result.

Figure 3.2: Joint distribution and its corresponding contour of the ordered
eigenvalues of central semi-correlated Wishart matrix with K = 2, N = 20
and σ1 = σ2.

Figure 3.2 shows the joint distribution of the ordered eigenvalues, λ1 > λ2,
of the central semi-correlated Wishart matrix derived in Theorem 3.1. Fig-
ures 3.2(a) and 3.2(b) show the analytical joint PDF and its corresponding
empirical result respectively and Figures 3.2(c) and 3.2(d) show the corre-
sponding contours. It is clear that both figures show a perfect match between
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the empirical and analytical results.
Non-central/central approximation accuracy is shown in Figure 3.3. The

Figure shows the empirical distribution of the SCN of non-central uncorre-
lated Wishart matrices (under H1 hypothesis) and its corresponding analyt-
ical approximation using Lemma 3.3 for different SNR values (ρ). It is worth
mentioning that the analytical expressions are provided in App. B. Results
show a perfect match between the empirical results and the analytical ap-
proximation at low SNR values, however, approximation accuracy degrades
as SNR increases (ρ > −2dB).
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Figure 3.3: Empirical PDF of the SCN of non-central uncorrelated Wishart
matrices and the corresponding analytical PDF of central semi-correlated
Wishart matrices using normalized non-central/central approximation.

Figures 3.4 and 3.5 present the impact of the system parameters (K,
N , and ρ) on the approximation in terms of the performance of the SCN
detector for a preset target P̂fa. Figure 3.4 shows the Pd of SCN detector of
3-antenna CR as a function of SNR for different number of samples (N =
{10, 30, 50, 100}) while in Fig. 3.5 we vary K (K = {2, 3}) with the false
alarm being set to P̂fa = 0.1. Both figures show perfect accuracy for low SNR
values (ρ < −2dB), however, as SNR increases the approximation starts to
show dissimilarity with the empirical results until both probabilities reach 1
(both distributions, the empirical and the analytical, are totally to the right
of the considered threshold).
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Figure 3.4: Empirical Pd of the SCN metric and its corresponding analytical
Pd using normalized non-central/central approximation as a function of SNR
for K = 3 and P̂fa = 0.1.
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Figure 3.5: Empirical Pd of the SCN metric and its corresponding analytical
Pd using normalized non-central/central approximation as a function of SNR
for N = 10 and P̂fa = 0.1.

Figure 3.4 shows that the dissimilarity between the curves decreases as N
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increases and becomes very close to zero at N = 100. This is related to the
threshold selection criteria which is usually based on a constant false-alarm
rate (CFAR) [94]. As N increases, Pd is improved since the part to the right
of the threshold of the PDF under H1 increases. This reveals that, in the
sense of detection performance, the non-central/central approximation could
be considered as a good fit for the empirical distribution of the SCN for
sufficiently large values of N . Indeed, both distributions perfectly match at
low SNR values and exceed the threshold for higher SNR values where the
approximation accuracy degrades. Moreover, same result could be deduced
from Fig. 3.5 where the performance of the detector increases as K increases.
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Figure 3.6: Empirical Pd of the SCN metric and its corresponding analytical
Pd using normalized non-central/central approximation as a function of the
number of received samples for ρ = −10dB, and P̂fa = 0.1.

To stand on the previous results and to validate the approximation ac-
curacy obtained at low SNR for different values of N and K, we present in
Fig. 3.6 the Pd of SCN metric for different N and K with SNR fixed at
ρ = −10dB and P̂fa = 0.1. The figure shows a perfect match between the
empirical and the analytical results for all values of K and N . As it could be
seen from the figure, the distribution under H1 hypothesis partially exceeds
the threshold (Pd < 1), therefore, the approximation perfectly fits the em-
pirical distribution. Thus, at an acceptable SNR value, the approximation
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doesn’t show any degradation as N and K values change.

3.2.3 Section Conclusion

Through this section, we have considered the joint distribution of the or-
dered eigenvalue of different Wishart matrices. Under H1 hypothesis, the
non-central/central approximation is considered as a practical solution to
avoid the difficult manipulation and the complicated analytical results when
using the non-central uncorrelated Wishart matrix statistical properties. In
this regard, we have derived the expression of the joint PDF of the ordered
eigenvalues of the central semi-correlated complex Wishart matrices when the
correlation matrix exhibit equal eigenvalues. Based on these results, we study
the impact of system parameters on Pd when using the non-central/central
approximation. Results have shown that this approximation has perfect ac-
curacy for low SNR values and could be considered as a good fit for Pd for
sufficiently large values of N when the SNR is high.

3.3 Finite Case

Herein, we consider the SCN detector in the finite case where K > 1 takes
small values. In literature, the authors in [157] provided the exact generic
form of the distribution of the SCN based on the joint distribution of the
ordered eigenvalues of Wishart matrices. Consequently, [44] provides the
exact forms of the Pfa of the SCN detector for CR with two antenna (i.e.
dual case). In addition, the Pd for 2-dimensional systems was approximated
using the non-central/central approximation and provided in [44] following
the results in [157].

In this section, we first derive the exact distribution of the SCN metric
using the joint distributions provided by Sec. 3.2. A general nested form for
the CDF and the PDF of the SCN of the central uncorrelated, non-central
uncorrelated and central semi-correlated complex Wishart matrices are de-
rived. Consequently, it could be easily deduced that lookup tables (LUT)
must be constructed and used to avoid computational complexity. In this
regard, we provide an alternative solution as we propose a new approxima-
tion for the SCN based on the generalized extreme value (GEV) distribution.
For this purpose, we derive the exact form of the p-th moment of the SCN
to match the first three moments of the GEV distribution. This approxi-

49



mation is simple and accurate even though the computational complexity of
the SCN moments still exists. However, as we need only the first three mo-
ments, the latter could be computed offline and saved. Moreover, we show
that by using the non-central/central approximation along with the proposed
approximation, the result is still accurate with a simpler moments form.

It is worth mentioning that σ2
η = 1 is reasonable value since the SCN is

not effected by the noise power value. Moreover, the use of Lemma 3.3 for
SCN distribution approximation requires the normalization by σ2

η if it is else
than 1, i.e. Wn = σ−2

η W where Wn is normalized Wishart matrix.

3.3.1 SCN Exact Distribution

Under H0 hypothesis, the sample covariance matrix follows a central uncor-
related Wishart distribution, i.e. W ∼ CWK(N, σ2

ηIK). Then, the general
form of the CDF of the SCN of W is given by [157]:

F0(x) = Kcu
K∑
n=1

∞∫
0

|Υcu
n (x)| dλK (3.14)

with

Υcu
n (x)i,j =

{
γ(N −K + i+ j − 1, xλK)− γ(N −K + i+ j − 1, λK), i 6= n

λN−K+i+j−2
K e−λK , i = n

(3.15)
where γ(., .) is the lower incomplete gamma function [179, Eq.(8.350.1)], Kcu
defined by (3.3).

Corollary 3.1. Let W ∼ CWK(N, σ2
ηIK) be a central uncorrelated complex

Wishart matrix with N DoF and correlation matrix σ2
ηIK. Then, the exact

general form of the CDF and PDF of the SCN of W are given, respectively,
by:

F0(x) = Kcu
K∑

n,m=1

(−1)n+m
∑
δ∈P1

sgn(δ)
K−1∏
i=1

(N + rδ(i),n + ri,m −K − 2)!

×
∑
s∈S1

(−1)|s|
∑

l1···lK−1

xΣs · (Σli +N + n+m−K − 2)!

Πli! · (|s|x− |s|+K)Σli+N+n+m−K−1
(3.16)
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f0(x) = Kcu
K∑

n,m=1

(−1)n+m
∑
δ∈P1

sgn(δ)
K−1∏
i=1

(N + rδ(i),n + ri,m −K − 2)!
∑
s∈S1

(−1)|s|

×
∑

l1···lK−1

xΣs[Σsx−1(|s|x− |s|+K)− |s|(Σli +N + n+m−K − 1)]

Πli! · [(Σli +N + n+m−K − 2)!]−1 · (|s|x− |s|+K)Σli+N+n+m−K

(3.17)

where P1 and S1 are, respectively, the set of all possible permutations and
subsets of the vector [1, · · · , K−1]. sgn(δ) is the permutation sign and |s| is

the cardinality.
∑

l1···lK−1
=
∑L1

l1
· · ·
∑LK−1

lK−1
with Lj = N+rδ(j),n+rj,m−K−2;

Σs, Σli and Πli! are, respectively, the sum of the values of li ∈ s, the sum
of the values of l1≤i≤K−1 and the product of the factorial of the values of
l1≤i≤K−1. Finally, ri,j is defined as:

ri,j =

{
i i < j

i+ 1 i ≥ j
(3.18)

Proof. Refer to Appendix A.2.

Under H1 hypothesis, the sample covariance matrix follows a non-central
uncorrelated Wishart distribution, W ∼ CWK(N, σ2

ηIK ,Ω), with rank-1
non-centrality matrix Ω. Then, the exact generic form of the SCN CDF
under H1 hypothesis is given by the following Theorem:

Theorem 3.2. Let W ∼ CWK(N, σ2
ηIK ,Ω) be a non-central uncorrelated

complex Wishart matrix with N DoF, correlation matrix σ2
ηIK and non-

centrality matrix Ω of eigenvalues ω1 > ω2 = · · · = ωK = 0. Then, the
CDF of the SCN of W is given by:

F1(x) = Knu
K∑
n=1

∞∫
0

|Υnu
n (x)| dλK (3.19)

with

Υnu
n (x)i,j =

I
nu
i,j =

xλK∫
λK

fj(u)uN−ie−udu, i 6= n

fj(λK)λN−iK e−λK , i = n

(3.20)
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where fj(.) is given in (3.5) and the integral in (3.20) has analytical solution
given by:

Inui,j =


∞∑
l=0

ωl1
(N−K+1)ll!

[
γ(N − i+ l + 1, xλK)− γ(N − i+ l + 1, λK)

]
j = 1

(N−K)!
(N−j)!

[
γ(N +K − i− j + 1, xλK)− γ(N +K − i− j + 1, λK)

]
j = 2, · · · , K

(3.21)

Proof. Refer to Appendix A.3.

Corollary 3.2. Let W ∼ CWK(N, σ2
ηIK ,Ω) be a non-central uncorrelated

complex Wishart matrix with N DoF, correlation matrix σ2
ηIK and non-

centrality matrix Ω of eigenvalues ω1 > ω2 = · · · = ωK = 0. Then, the
exact general form of the CDF and PDF of the SCN of W is given, respec-
tively, by:

F1(x) = K′nu
K∑

n,m=1

(−1)n+m

∞∑
h=0

ωh1
(N −K + h)!h!

∑
δ∈P1

sgn(δ)
K−1∏
i=1

(N − rδ(i),n + gri,m,1(h,K))!

×
∑
s∈S1

(−1)|s|
∑

l1···lK−1

xΣs · (Σli +N − n+ gm,1(h,K))!

Πli! · (|s|x− |s|+K)Σli+N−n+gm,1(h,K)+1
(3.22)

f1(x) = K′nu
K∑

n,m=1

(−1)n+m

∞∑
h=0

ωh1
(N −K + h)!h!

∑
δ∈P1

sgn(δ)
K−1∏
i=1

(N − rδ(i),n + gri,m,1(h,K))!

×
∑
s∈S1

(−1)|s|
∑

l1···lK−1

xΣs[Σsx−1(|s|x− |s|+K)− |s|(Σli +N − n+ gm,1(h,K) + 1)]

Πli! · [(Σli +N − n+ gm,1(h,K))!]−1 · (|s|x− |s|+K)Σli+N−n+gm,1(h,K)+2

(3.23)

with

K′nu =

[
ΓK−1(K − 1)

K∏
i=2

(N − i)!ωK−1
1 eω1

]−1

, (3.24)

and
∑

l1···lK−1
=
∑L1

l1
· · ·
∑LK−1

lK−1
with Lj = N − rδ(j),n + grj,m,1(h,K) and we

define gi,j(a, b) as:

gi,j(a, b) =

{
a i = j

b− i i 6= j
(3.25)
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Proof. Refer to Appendix A.2.

Under H1 hypothesis and using Lemma 3.1, the sample covariance matrix
could be approximated by a central semi-correlated Wishart distribution,
W ∼ CWK(N,Σ), with correlation matrix having K − 1 equal eigenvalues.
The exact generic form of the SCN CDF for the H1 hypothesis is given by
the following Theorem:

Theorem 3.3. Let W ∼ CWK(N,Σ) be a Central Semi-Correlated Wishart
matrix with N DoF and correlation matrix Σ of eigenvalues σ1 > σ2 = · · · =
σK. Then, the CDF of the SCN of W is given by:

F1(x) = Kcc
K∑
n=1

∞∫
0

|Υcc
n (x)| dλK (3.26)

with

Υcc
n (x)i,j =

I
cc
i,j =

xλK∫
λK

ej(u)uN+i−K−1du, i 6= n

ej(λK)λN+i−K−1
K , i = n

(3.27)

where ej(.) is given in (A.6) and the integral in (3.27) has an analytical
solution given by:

Icci,j =

{[
γ(N + i−K, xλK

σ1
)− γ(N + i−K, λK

σ1
)
]
· σN+i−K

1 j = 1

(−1)K−j
[
γ(N + i− j, xλK

σ2
)− γ(N + i− j, λK

σ2
)
]
σN+i−j

2 j = 2, · · · , K
(3.28)

Proof. Refer to Appendix A.3.

Corollary 3.3. Let W ∼ CWK(N,Σ) be a Central Semi-Correlated Wishart
matrix with N DoF and correlation matrix Σ of eigenvalues σ1 > σ2 = · · · =
σK. Then, the exact general form of the CDF and PDF of the SCN of W is
given, respectively, by:

F1(x) = K′cc
K∑

n,m=1

(−1)n+m
∑
δ∈P1

sgn(δ)
K−1∏
i=1

(N + rδ(i),n − gri,m,1(K, 2i)− 1)!

σ
−(N+rδ(i),n−gri,m,1(K,2i))
ri,m

×
∑
s∈S1

(−1)|s|
∑

l1···lK−1

xΣs · (Σli +N + n− gm,1(K, 2i)− 1)!

Πli! · Πσliri,m · (Σs x
σsi,m

+ Σs̄
1

σs̄i,m
+ 1

σm
)Σli+N+n−gm,1(K,2i)

(3.29)
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f1(x) = K′cc
K∑

n,m=1

(−1)n+m
∑
δ∈P1

sgn(δ)
K−1∏
i=1

(N − rδ(i),n + gri,m,1(K, 2i)− 1)!

σ
−(N−rδ(i),n+gri,m,1(K,2i))
ri,m

∑
s∈S1

(−1)|s|

×
∑

l1···lK−1

Πli! · Πσliri,m
(Σli +N + n− gm,1(K, 2i)− 1)!

·

xΣs[Σsx−1(Σs
x

σsi,m
+ Σs̄

1
σs̄i,m

+ 1
σm

)− (Σli +N + n− gm,1(K, 2i))Σs
1

σsi,m
]

(Σs
x

σsi,m
+ Σs̄

1
σs̄i,m

+ 1
σm

)Σli+N+n−gm,1(K,2i)+1

(3.30)

with

K′cc =
(−1)(K−1)(K−2)/2σK−N−1

1 σ
(N−1)(1−K)
2

ΓK(N)ΓK−1(K − 1)(σ2 − σ1)K−1
(3.31)

Proof. Refer to Appendix A.2.

The results provided are the exact expressions of the SCN distributions.
One can easily notice the complexity of these expressions in which it is im-
possible for the system to dynamically compute the threshold online. Indeed,
it is even very complicated to find such threshold starting by these expres-
sions. Accordingly, finding a simple form approximation for the distribution
of SCN metric is extremely important. In this regard, we start by deriving
the exact p-th moment form of the SCN metric in the next section to be used
later in the approximation.

3.3.2 SCN Moments

Under H0 hypothesis, the exact expression of the p− th moment of the SCN
of the central uncorrelated complex Wishart matrix is given by the following
Theorem:

Theorem 3.4. Let W ∼ CWK(N, σ2
ηIK) be a central uncorrelated complex

Wishart matrix with N DoF and correlation matrix σ2
ηIK. Then, the p-th

moment of the SCN of W is given by:

M(p) = Kcu
∑
δ∈P0

sgn(δ)
∑
α∈P0

sgn(α)
∑

l1···lK−1

Πi(N −K − 2 + δ(i) + α(i) + li−1 + Ci,p)!

Πili! · ΠiiN−K−1+δ(i)+α(i)+li−1−li+Ci,p

(3.32)
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with

Ci,p =


p i = 1

0 1 < i < K

−p i = K

(3.33)

and
∑

l1···lK−1

=
L1∑
l1=0

· · ·
LK−1∑
lK−1=0

with Lj = N −K − 2 + δ(j) + α(j) + lj−1 + Cj,p

, Πi(.) denotes the multiplication over i = 1 · · ·K and l0 = lK = 0.

Proof. Refer to Appendix A.4.

Under H1 hypothesis, the exact expression of the p-th moment of the
SCN under H1 hypothesis is given by the following Theorem:

Theorem 3.5. Let W ∼ CWK(N, σ2
ηIK ,Ω) be a non-central uncorrelated

complex Wishart matrix with N DoF, correlation matrix σ2
ηIK and non-

centrality matrix Ω of eigenvalues ω1 > ω2 = · · · = ωK = 0. Then, the
p-th moment, M(p), of the SCN of W is given by:

M(p) = K′nu
K∑
n=1

(−1)n+1
∑
δ∈P0

sgn(δ)
∑
α∈P1

sgn(α)
∞∑
h=0

ωh1
(N −K + h)!h!

×
∑

l1···lK−1

Πi(N − δ(i) +Gi,n(h,K, α) + li−1 + Ci,p)!

Πili! · ΠiiN−δ(i)+Gi,n(h,K,α)+Ci,p+li−1−li+1
(3.34)

with

Gi,n(h,K, α) =


K − rα(i),1 i < n

h i = n

K − rα(i−1),1 i > n

(3.35)

and
∑

l1···lK−1

=
L1∑
l1=0

· · ·
LK−1∑
lK−1=0

with Lj = N − δ(j) +Gj,n(h,K, α) + lj−1 + Cj,p.

Proof. Refer to Appendix A.4.

Under H1 hypothesis and using Lemma 3.3, the sample covariance matrix
could be approximated by a central semi-correlated Wishart distribution,
W ∼ CWK(N,Σ), with correlation matrix having K − 1 equal eigenvalues.
The exact expression of the p-th moment of the SCN of W ∼ CWK(N,Σ)
is given by the following Theorem:
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Theorem 3.6. Let W ∼ CWK(N,Σ) be a Central Semi-Correlated Wishart
matrix with N DoF and correlation matrix Σ of eigenvalues σ1 > σ2 = · · · =
σK. Then, the p-th moment, M(p), of the SCN of W is given by:

M(p) =K′cc
K∑
n=1

(−1)n+1
∑
δ∈P0

sgn(δ)
∑
α∈P1

sgn(α)

×
∑

l1···lK−1

Πi(N + δ(i) +Gi,n(0, K, α) + li−1 + Ci,p −K − 1)!

Πili! · Πi[
∑i

j=1
1

σbj,n
]N+δ(i)+Gi,n(0,K,α)+Ci,p+li−1−li−K

(3.36)

with

bi,n =

{
1 i = n

2 i 6= n
(3.37)

and
∑

l1···lK−1

=
L1∑
l1=0

· · ·
LK−1∑
lK−1=0

with Lj = N + δ(j) +Gj,n(0, K, α) + lj−1 +Cj,p−

K − 1.

Proof. Refer to Appendix A.4.

Based on these moments, we propose the SCN approximation. Indeed, we
approximate the SCN distribution using moment matching method. Specif-
ically, we consider the first three central moments and match them with the
first three moments of the GEV distribution. This approximation is consid-
ered in the next subsection.

3.3.3 SCN Distribution Approximation

This section provides an approximation for the SCN distribution based on the
GEV distribution. The approximation framework is based on the moment-
matching method where the exact expressions of the moments of the SCN
are derived in previous subsection.

By considering the moments of the SCN, in Theorems 3.4, 3.5 and 3.6, the
mean, variance and skewness of the SCN of each of the considered Wishart
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matrices are written as follows:

µXSCN = M(1) (3.38)

σ2
XSCN

= M(2)− µ2
XSCN

(3.39)

SXSCN =
M(3)− 3M(2)µXSCN + 2µ3

XSCN

σ3
XSCN

(3.40)

Accordingly, we give the following Proposition that approximate the dis-
tribution of the SCN of the central uncorrelated, non-central uncorrelated
and central semi-correlated Wishart matrices using the GEV distribution as
follows:

Proposition 3.1. Let XSCN be the SCN of W and consider the following
three cases:

Case 1: W ∼ CWK(N, σ2
ηIK) is a central uncorrelated Wishart matrix.

Case 2: W ∼ CWK(N, σ2
ηIK ,Ω) is a non-central uncorrelated Wishart matrix

with Ω has only one non-zero eigenvalue ω1.

Case 3: W ∼ CWK(N,Σ) is a central semi-correlated Wishart matrix with Σ
has K − 1 equal eigenvalues (σ1 > σ2 = · · · = σK).

Then, the CDF and PDF of XSCN can be tightly approximated respectively
by:

F (x; θ, β, ξ) = e−(1+(x−θ
β

)ξ)
−1/ξ

(3.41)

f(x; θ, β, ξ) =
1

β
(1 + (

x− θ
β

)ξ)
−1
ξ
−1e−(1+(x−θ

β
)ξ)
−1/ξ

(3.42)

where ξ, β and θ are defined respectively as:

ξ = −0.06393S2
XSCN

+ 0.3173SXSCN − 0.2771 (3.43)

β =

√
σ2
XSCN

ξ2

g2 − g2
1

(3.44)

θ = µXSCN −
(g1 − 1)β

ξ
(3.45)

where gi = Γ(1 − iξ); the mean, the variance and the skewness are, respec-
tively, given by (3.38), (3.39) and (3.40) with M(p) is the p-th moment of
the SCN given, respectively for each case, by Theorems 3.4, 3.5 and 3.6.

Proof. The result comes after using Lemma C.1 in Appendix C.
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3.3.4 Performance Probabilities and Decision Thresh-
old

According to cases 1 and 2 of Proposition 3.1 and using (2.6), (2.7) and (2.8),
then Pfa, Pd and Pmd are, respectively, given by:

Pfa = 1− e−(1+(
λSCN−θ0

β0
)ξ0)
−1/ξ0

(3.46)

Pmd = 1− Pd = e
−(1+(

λSCN−θ1
β1

)ξ1)
−1/ξ1

(3.47)

where ξ0, β0 and θ0 are the shape, scale and location parameters respec-
tively under H0 hypothesis and are evaluated using (3.43), (3.44) and (3.45)
respectively by considering the moments in Theorem 3.4; ξ1, β1 and θ1 are
the shape, scale and location parameters respectively under H1 hypothesis
and are evaluated using (3.43), (3.44) and (3.45) respectively by considering
the moments in Theorem 3.5.

An alternative approximation could be provided for Pmd and Pd using
both Lemma 3.3 and case 3 of Proposition 3.1 which we refer to by the
2-step approximation. In this approach, we first approximate the SCN of
the non-central uncorrelated Wishart matrix by the SCN of central semi-
correlated Wishart matrix due to Lemma 3.3 and then we approximate the
later using GEV approximation. Then, Pmd and Pd is still given by (3.47);
however, the moments used in calculating θ1, β1 and ξ1 are given by Theorem
3.6.

Accordingly, the threshold could be calculated. For example, for a CFAR,
the threshold is given by:

λSCN = θ0 +
β0

ξ0

(
− 1 +

[
− ln(1− Pfa)

]−ξ0) (3.48)

3.3.5 Comments on the Complexity

In practice, channel conditions are not stable and K and N may frequently
change. Consequently, the implementation of the decision threshold must be
dynamic and may rely on real-time computations rather than using LUTs.

The real-time computations are satisfied using the proposed threshold
in (3.48). However, the complexity still exists in the computation of the
GEV parameters due to the complexity of the exact SCN moments. This
complexity could be avoided by an offline computations of these parameters.
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As a comparison; the exact SCN distribution needs a 1-D LUT for every
(K,N) value under H0 hypothesis whereas only three values are needed in
the proposed GEV approximation (i.e. the 3 parameters). Further step is
to approximate the SCN central moments using a simple formulation, and
thus no need for the offline computation. This approach is provided in the
Asymptotic case section.

3.3.6 Numerical Results and Discussion

In this section, the analytical results provided by Sections 3.3.1, 3.3.2, 3.3.3
and 3.3.4 are discussed and validated through Monte-Carlo simulations. The
simulation results are obtained by generating 105 random realizations of Y .
To validate the results of central semi-correlated Wishart matrices, we have
considered a correlated complex Gaussian noise with zero mean and correla-
tion matrix as defined in Lemma 3.3.

Figure 3.7 validates the analytical form of the distribution of the SCN of
the three considered Wishart cases derived in Section 3.3.1. Figures 3.7(a),
3.7(b) and 3.7(c) plot the empirical CDF of the SCN of central uncorrelated,
non-central uncorrelated and central semi-correlated complex Wishart ma-
trices respectively with the corresponding analytical form given by Theorems
3.2 and 3.3 and by Corollaries 3.1, 3.2 and 3.3. The simulations are given for
different number of antennas (K = {2, 3, 4}), N = 10 and SNR = −10dB.
Results show a perfect match between the empirical SCN distribution and
the corresponding analytical form in each case.

Table 3.3.6 validates the analytical expressions of the p-th moment of
the SCN of the central uncorrelated, non-central uncorrelated and central
semi-correlated Wishart matrices provided in Theorems 3.4, 3.5 and 3.6 by
considering the first moment. The SNR value is set to −10dB. Table 3.3.6
shows a perfect accuracy in the analytical representation in each case. More-
over, from the table and Figures 3.7(b) and 3.7(c), results also show a high
accuracy in the non-central/central approximation presented in Lemma 3.3.

Figure 3.8 shows the accuracy of the GEV approximation of the SCN of
the three considered Wishart cases in Proposition 3.1. Figures 3.8(a), 3.8(b)
and 3.8(c) plot the empirical CDF of the SCN and its corresponding GEV
approximations for different number of antennas (K = {2, 3, 4}), N = 10 and
SNR = −10dB. The results show high accuracy in the GEV approximation
in all cases for different number of sensors.

The performance of the cognitive radio system is considered in Figures
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Figure 3.7: Empirical and analytical CDF of the SCN of Wishart matrices
for different number of sensors K = {2, 3, 4}, N = 10 and SNR = −10dB.
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Figure 3.8: Empirical CDF of the SCN of Wishart matrices and its corre-
sponding GEV approximation. 61
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Figure 3.9: Empirical performance probabilities of the SCN detector and
its corresponding GEV and 2-step approximations for different K, N and
SNR = −10dB.
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Table 3.1: Empirical and Analytical Mean of the SCN of Wishart matrices.
N 10 20

K 2 3 2 3

Central Uncorr.
Empirical 2.2527 4.002 1.7243 2.5021

Analytical 2.2560 4.0041 1.7239 2.5020

Non-central Uncorr.
Empirical 2.3025 4.1495 1.7723 2.6267

Analytical 2.3036 4.1442 1.7743 2.6271

Central Semi-corr.
Empirical 2.3041 4.1489 1.7780 2.6311

Analytical 2.3060 4.1529 1.7760 2.6308

3.9 and 3.10. Figures 3.9(a) and 3.9(b) show the empirical Pfa and Pd of
the SCN and its corresponding GEV approximation and the 2-step approxi-
mation given by Section 3.3.4. Figure 3.10(a) shows the empirical results of
the Pd as a function of SNR and its corresponding GEV approximation and
2-step approximation. Figure 3.10(b) shows the empirical Receiver Operat-
ing Characteristics of the SCN detector and its corresponding approximation
using GEV for Pfa and the GEV or the 2-step approximation for Pd. Results
show that the proposed approximations are perfect and match the empirical
results with high accuracy. In addition, results show that the 2-step approx-
imation could be used as an alternative for the GEV approximation of Pd
since both have approximately same accuracy, especially as N increases, and
since the moments of the SCN of central semi-correlated Wishart matrix are
simpler than those of non-central uncorrelated Wishart matrix.

3.3.7 Section Conclusion

In this section, we have considered the finite case of the SCN detector. We
have derived the exact distribution of the SCN of the central uncorrelated,
central semi-correlated and non-central uncorrelated Wishart matrices. In
addition, the p-th moment of the SCN is considered as we derived the ex-
act form for the pre-mentioned Wishart matrices. To overcome the com-
putational complexity of the exact SCN distribution, we have proposed to
approximate it using the GEV distribution based on moment matching cri-
teria. Accordingly, an approximation for the performance probabilities of
the SCN detector and its decision threshold are given through simple ex-
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Figure 3.10: Empirical Pd function of SNR and ROC of the SCN detector
and its corresponding GEV and 2-step approximations for different K, N
and SNR = −10dB.
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pressions. Moreover, and using the non-central/central approximation we
have proposed a 2-step approximation for the detection probability of the
SCN detector which provides analogous accuracy with simpler moment com-
plexity. The analytical results are validated through extensive Monte-Carlo
simulations with different system parameters. Results have shown that the
proposed GEV approximation perfectly fits the empirical results.

3.4 Asymptotic Case

In literature, the SCN metric was studied asymptotically in [36] and the
threshold was presented according to Marchenko-Pastur (MP) law [185]. If
the size of the receiver’s matrix is K×N , then MP law proves that the largest
and the smallest eigenvalues of the receiver’s covariance matrix converge to
constants as (K,N) → ∞ with c = K/N [46]. These constants are simply
determined by the constant c and the noise and signal powers. In [38], the
authors improved the accuracy of the asymptotic statistical distribution of
the SCN by using the Tracy-Widom (TW) distribution to model the largest
eigenvalue [186] while maintaining the MP representation of the smallest one.
TW distribution is a limiting distribution of the largest eigenvalue of a cen-
tral Wishart matrix as (K,N)→∞ [187]. This approximation of the SCN,
by TW distribution for the numerator and MP law for the denominator,
results in an approximated relation between the decision threshold and the
Pfa. This work was further extended in [37, 188] by using Curtiss formula
for the distribution of the ratio of random variables [189] where both the
largest and the smallest eigenvalues converge to Tracy-Widom distributions
when (K,N) → ∞ as shown in [186, 190]. Moreover, by the exploitation
of the normal and TW distributions and using the Curtiss formula, the au-
thors in [191] provided an analytical expression for the probability of Pmd for
sufficiently large values of K and N . However, all these expressions include
TW distribution and Curtiss formula that are hard to evaluate numerically
online.

The importance of the GEV approximation provided by the previous
section is indeed due to its accuracy and simplicity. However, the exact
expressions of the moments are still complicated and need to be computed
offline. In this section, we will show that a simple form approximation for
these moments could be derived under certain conditions. We will first con-
sider some statistical properties of the extreme eigenvalues of W and analyze
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these properties under both detection hypothesis in Sec. 3.4.1.
Since SCN is not affected by the noise power, let σ2

η = 1 and we define
the Asymptotic Condition (AC) and the Critical Condition (CC) as follows:

AC : (K,N)→∞ with K/N → c ∈ (0, 1), (3.49)

CC : ρ > ρc =
1√
KN

. (3.50)

3.4.1 Assymptotic Moments of Extreme Eigenvalues

This section considers the statistical analysis of the extreme eigenvalues, λ1

and λK , of the sample covariance matrix, W , by considering both hypotheses
H0 and H1.

H0 hypothesis

Let λH0
1 be the largest eigenvalue of W under H0 and denote the centered

and scaled version of λH0
1 of the central uncorrelated complex Wishart matrix

W ∼ CWK(N, IK) by:

λ′1 =
λH0

1 − a1(K,N)

b1(K,N)
(3.51)

with a1(K,N) and b1(K,N), the centering and scaling coefficients respec-
tively, are defined by:

a1(K,N) = (
√
K +

√
N)2 (3.52)

b1(K,N) = (
√
K +

√
N)(K−1/2 +N−1/2)

1
3 (3.53)

then, as AC is satisfied, λ′1 follows a TW distribution of order 2 (TW2) [192].
Now let λH0

K be the smallest eigenvalue ofW underH0 and denote the cen-
tered and scaled version of λH0

K of the central uncorrelated complex Wishart
matrix W ∼ CWK(N, IK) by:

λ′K =
λH0
K − a2(K,N)

b2(K,N)
(3.54)

with a2(K,N) and b2(K,N), the centering and scaling coefficients respec-
tively, are defined by:

a2(K,N) = (
√
K −

√
N)2 (3.55)

b2(K,N) = (
√
K −

√
N)(K−1/2 −N−1/2)

1
3 (3.56)
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then, as AC is satisfied, λ′K follows a TW2 [190].
Accordingly, the mean, the variance and the skewness of λ′1 and λ′K are

that of the TW2. They are given by µTW2 = −1.7710868074, σ2
TW2 =

0.8131947928 and STW2 = 0.2240842036 respectively [193]. Accordingly, us-
ing (5.17), the mean, the variance and the skewness of λH0

1 are, respectively,
given by:

µ
λ
H0
1

= b1(K,N)µTW2 + a1(K,N), (3.57)

σ2
λ
H0
1

= b2
1(K,N)σ2

TW2, (3.58)

S
λ
H0
1

= STW2, (3.59)

and using (3.51), the mean, the variance and the skewness of λH0
K are, re-

spectively, given by:

µ
λ
H0
K

= b2(K,N)µTW2 + a2(K,N), (3.60)

σ2
λ
H0
K

= b2
2(K,N)σ2

TW2, (3.61)

S
λ
H0
K

= −STW2. (3.62)

H1 hypothesis

Let λH1
1 be the largest eigenvalue of W under H1 and denote the centered

and scaled version of λH1
1 of the central semi-correlated Wishart matrix W ∼

CWK(N,Σ) by:

λ′′1 =
λH1

1 − a3(K,N,σ)√
b3(K,N,σ)

(3.63)

with a3(K,N) and b3(K,N), the centering and scaling coefficients respec-
tively, are defined by:

a3(K,N,σ) = σ1(N +
K

σ1 − 1
) (3.64)

b3(K,N,σ) = σ2
1(N − K

(σ1 − 1)2
) (3.65)

then, as AC and CC are satisfied, λ′′1 follows a standard normal distribution
(λ′′1 ∼ N (0, 1)) [194].
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On the other hand, as mentioned in [195], when Σ has only one non-unit
eigenvalue such that CC is satisfied, then only one eigenvalue of W will be
pulled up. In other words, and as it could be deduced from [196, Proof of
Lemma 2], the remaining K − 1 eigenvalues of W (i.e. λH1

2 , · · · , λH1
K ) have

the same distribution as the eigenvalues of W ∼ CWK−1(N, IK−1) under H0

hypothesis.
Now let λH1

K be the smallest eigenvalue of W under H1 and denote the
centered and scaled version of λH1

K of the central semi-correlated Wishart
matrix W ∼ CWK(N,Σ) by:

λ′′K =
λH1
K − a2(K − 1, N)

b2(K − 1, N)
(3.66)

with a2(K,N) and b2(K,N) are, respectively, given by (3.55) and (3.56).
Then, as the AC and CC are satisfied, λ′′K follows a TW2.

It is worth mentioning that as CC is not satisfied and AC is satisfied, then
λH1

1 follows TW2 distribution of λH0
1 [194]. Thus, λH1

K follows TW2 distribu-
tion of λH0

K . Accordingly, the PU signal has no effect on the eigenvalues and
could not be detected. It follows that the same analysis under H0 hypothesis
is applied for this case.

Accordingly, the mean, the variance and the skewness of λH1
1 are, due to

(3.63), given respectively by:

µ
λ
H1
1

= a3(K,N,σ), (3.67)

σ2
λ
H1
1

= b3(K,N,σ), (3.68)

S
λ
H1
1

= 0, (3.69)

and using (3.66), the mean, the variance and the skewness of λH1
K are respec-

tively given by:

µ
λ
H1
K

= b2(K − 1, N)µTW2 + a2(K − 1, N), (3.70)

σ2
λ
H1
K

= b2
2(K − 1, N)σ2

TW2, (3.71)

S
λ
H1
K

= −STW2. (3.72)

As a result, this section provides a simple form for the central moments
of the extreme eigenvalues. These moments are used, in the next section, to
derive an approximation for the mean, the variance and the skewness of the
SCN under both hypotheses.
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3.4.2 Asymptotic Central Moments of the SCN

The bi-variate first order Taylor expansion of the function X = g(λ1, λK) =
λ1/λK about any point θ = (θλ1 , θλK ) is written as:

X= g(θ) + g′λ1
(θ)(λ1 − θλ1) + g′λK (θ)(λK − θλK) +O(n−1), (3.73)

with g′λi is the partial derivative of g over λi.
Let θ = (µλ1 , µλK ) with µλ1 and µλK are the means of λ1 and λK respec-

tively, then it could be proved that:

E [X] = g(θ), (3.74)

E
[
(X − g(θ))2

]
= g′λ1

(θ)2E
[
(λ1 − θλ1)2

]
(3.75)

+ g′λK (θ)2E
[
(λK − θλK )2

]
+ 2g′λ1

(θ)g′λK (θ)E [(λ1 − θλ1)(λK − θλK )] ,

E
[
(X − g(θ))3] =g′λ1

(θ)3E
[
(λ1 − θλ1)3

]
(3.76)

+g′λK (θ)3E
[
(λK − θλK )3

]
+3g′λ1

(θ)2g′λK (θ)E
[
(λ1 − θλ1)

2(λK − θλK )
]

+3g′λ1
(θ)g′λK (θ)2E

[
(λ1 − θλ1)(λK − θλK )2

]
,

Accordingly, we give the following theorems that formulate a simple approx-
imation for the central moments of the SCN.

Theorem 3.7. Let X be the SCN of W ∼ CWK(N, σ2
ηIK). The mean, the

variance and the skewness of X, as AC is satisfied, can be tightly approxi-
mated using the mean, the variance and the skewness of the λH0

1 and λH0
K as

follows:

µX =
µ
λ
H0
1

µ
λ
H0
K

(3.77)

σ2
X =

σ2

λ
H0
1

µ2

λ
H0
K

+
µ2

λ
H0
1

σ2

λ
H0
K

µ4

λ
H0
K

(3.78)

SX =
1√
σ3
X

·


√
σ3

λ
H0
1

S
λ
H0
1

µ3

λ
H0
K

−

√
σ3

λ
H0
K

µ3

λ
H0
1

S
λ
H0
K

µ6

λ
H0
K

 (3.79)
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Proof. The result follows (3.74), (3.75) and (3.76) while considering λH0
1 and

λH0
K asymptotically independent [197]. The mean, the variance and the skew-

ness of λH0
1 and λH0

K are given in Section 3.4.1.

Theorem 3.8. Let X be the SCN of W ∼ CWK(N,Σ) where Σ has only
one non-unit eigenvalue. The mean, the variance and the skewness of X, as
the AC and CC are satisfied, can be tightly approximated using the mean, the
variance and the skewness of λH1

1 and λH1
K as follows:

µX =
µ
λ
H1
1

µ
λ
H1
K

(3.80)

σ2
X =

σ2

λ
H1
1

µ2

λ
H1
K

+
µ2

λ
H1
1

σ2

λ
H1
K

µ4

λ
H1
K

(3.81)

SX = −

√
σ3

λ
H1
K

µ3

λ
H1
1

S
λ
H1
K√

σ3
X · µ6

λ
H1
K

(3.82)

Proof. The result follows (3.74), (3.75) and (3.76) while considering λH1
1 and

λH1
K asymptotically independent [198]. The mean, the variance and the skew-

ness of λH1
1 and λH1

K are given in Section 3.4.1

3.4.3 Approximating the SCN using GEV

Following the footsteps of Sec. 3.3.3, the following two propositions provides
an approximate for the distribution of the SCN under H0 and H1 hypotheses
respectively.

Proposition 3.2. Let X be the SCN of W ∼ CWK(N, σ2
ηIK). If AC is

satisfied, then the CDF and PDF of X can be asymptotically and tightly
approximated respectively by:

F (x; θ0, β0, ξ0) = e
−(1+(

x−θ0
β0

)ξ0)
−1/ξ0

(3.83)

f(x; θ0, β0, ξ0) =
1

β0

(1 + (
x− θ0

β0

)ξ0)
−1
ξ0
−1
e
−(1+(

x−θ0
β0

)ξ0)
−1/ξ0

(3.84)
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where ξ0, β0 and θ0 are defined respectively by:

ξ0 = −0.06393S2
XSCN

+ 0.3173SXSCN − 0.2771 (3.85)

β0 =

√
σ2
XSCN

ξ2

g2 − g2
1

(3.86)

θ0 = µXSCN −
(g1 − 1)β

ξ
(3.87)

where µXSCN , σ2
XSCN

and SXSCN are defined in Theorem 3.7 and gi = Γ(1−
iξ).

Proof. The result comes after using Lemma C.1 in Appendix C.

Proposition 3.3. Let XSCN be the SCN of W ∼ CWK(N,Σ) with Σ has
only one non-unit eigenvalue. If AC and CC are satisfied, then the CDF and
PDF of XSCN can be asymptotically and tightly approximated by:

F (x; θ1, β1, ξ1) = e
−(1+(

x−θ1
β1

)ξ1)
−1/ξ1

(3.88)

f(x; θ1, β1, ξ1) =
1

β1

(1 + (
x− θ1

β1

)ξ1)
−1
ξ1
−1
e
−(1+(

x−θ1
β1

)ξ1)
−1/ξ1

(3.89)

where ξ1, β1 and θ1 are defined respectively by:

ξ1 = −0.06393S2
XSCN

+ 0.3173SXSCN − 0.2771 (3.90)

β1 =

√
σ2
XSCN

ξ2

g2 − g2
1

(3.91)

θ1 = µXSCN −
(g1 − 1)β

ξ
(3.92)

where µXSCN , σ2
XSCN

and SXSCN are defined in Theorem 3.8 and gi = Γ(1−
iξ).

Proof. The result comes after using Lemma C.1 in Appendix C.
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3.4.4 Performance Probabilities and Decission Thresh-
old

Based on Propositions 3.2 and 3.3, and using (2.6), (2.7) and (2.8), the Pfa
and Pd are respectively expressed as:

Pfa = 1− e−(1+(
λSCN−θ0

β0
)ξ0)
−1/ξ0

, (3.93)

Pmd = 1− Pd = e
−(1+(

λSCN−θ1
β1

)ξ1)
−1/ξ1

. (3.94)

The threshold could be computed using (3.93) and (3.94) according to a
required error constraint. For example, for a target false alarm probability,
the threshold is given by:

λ̂SCN = θ0 +
β0

ξ0

(
− 1 +

[
− ln(1− Pfa)

]−ξ0). (3.95)

3.4.5 Numerical Results and Discussion

In this section, we verify the analytical derivation results through Monte-
Carlo simulations. We validate the theoretical analysis presented in sections
3.4.1, 3.4.2, 3.4.3 and 3.4.4.

Table 3.2 shows the accuracy of the analytical approximation of the mean,
the variance and the skewness of the SCN provided by Theorems 3.7 and 3.8.
It can be easily seen that these Theorems provide a good approximation for
the statistics of the SCN, however, it could be noticed that the skewness is
not perfectly approximated. In fact, the skewness is affected by the slow con-
vergence of the skewness of λK that must converge to −STW2 (i.e. −0.2241)
as AC is satisfied. For example, for K = 50, the empirical skewness increases
from SλK = −0.1504 to SλK = −0.1819 as the number of samples increases
from N = 500 to N = 1000. Comparing these results with SCN results in
Table 3.2, one can notice that the empirical and approximated SCN skew-
ness become closer as λK skewness converges to that of TW2. Accordingly,
Theorems 3.7 and 3.8 are good approximations for the mean, the variance
and the skewness of the SCN under both hypotheses. It is worth noting
that one could approximate the SCN moments using second order bi-variate
Taylor series to get a slightly higher accuracy, however, this will cost higher
complexity and it is not necessary as shown in Table 3.2 and the rest of this
section.
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Table 3.2: Empirical mean, variance and skewness of the SCN under H0 and
H1 hypotheses and it corresponding proposed analytical approximation using
Theorems 3.7 and 3.8 respectively.

K ×N Empirical Proposed App.

mean variance skewness mean variance skewness

H0
50× 500

3.3946 0.0117 0.2639 3.3975 0.0114 0.1652

H1 12.3363 0.4006 0.1710 12.3139 0.3906 0.0291

H0
100× 500

6.3076 0.0386 0.2992 6.3126 0.0367 0.1740

H1 34.6345 3.2246 0.1618 34.5387 3.1154 0.0306

H0
50× 1000

2.3386 0.0026 0.2339 2.3396 0.0026 0.1619

H1 9.6702 0.1205 0.1177 9.6612 0.1184 0.024

Figure 3.11 shows the empirical CDF of the SCN and its corresponding
GEV approximation given by Proposition 3.2. The results are shown for
K = {10, 20, 50, 100} antennas and N = {500, 1000} samples per antenna.
Results show a perfect match between the empirical results and our proposed
approximation. Also, it could be noticed that the convergence of the skewness
does not affect the approximation and thus the skewness in Theorem 3.7 holds
for this approximation even though the convergence of the skewness of λK is
slow.

Figure 3.12 shows the empirical CDF of the SCN and its corresponding
GEV approximation given by Proposition 3.3. The results are shown for
K = {20, 50} antennas and N = {500, 1000} samples per antenna and ρ =
−10dB. Results show high accuracy in approximating the empirical CDF.
Also, the difference in the skewness shown in Table 3.2 does not affect the
approximation.
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Figure 3.11: Empirical CDF of the SCN and its corresponding proposed GEV
approximation for different values of K and N under H0 hypothesis.
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Figure 3.12: Empirical CDF of the SCN and its corresponding proposed
GEV approximation for different values of K and N under H1 hypothesis
with ρ = −10dB.

Figure 3.13 shows the empirical Receiver Operating Characteristic (ROC)
of the SCN detector and its corresponding proposed approximation. The
results are shown for K = {20, 25, 50} antennas and N = 500 samples per
antenna for SNR = −18dB. Results show that the proposed approximation
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matches the empirical results with high accuracy. In addition, Fig. 3.13
shows the gain in the performance as the number of antenna increases.
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Figure 3.13: Empirical ROC of the SCN detector and its corresponding pro-
posed approximation for different values of K with N = 500 and ρ = −18dB.

Figure 3.14 plots the empirical Pd versus SNR (ρ) and its corresponding
proposed analytical approximation. Pfa is fixed to 0.001 and the threshold
is calculated using (3.95) for different values of K = {20, 25, 30} and N =
{300, 400, 500}. Results show the accuracy of the approximation as a function
of the SNR for different K and N values. Figure 3.14(a) shows how the Pd
is improved as N increases while Figure 3.14(b) shows the Pd improvement
as K increases. Both Figures show a high Pd when using large number of
antennas and relatively large number of samples.
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Figure 3.14: Empirical Pd of the SCN detector as a function of SNR and its
corresponding proposed approximation for different values of N and K with
Pfa = 0.001.

It is worth mentioning that Figures 3.13 and 3.14 show high improvement
in the system performance by a simple increase of the number of antennas
or number of samples used in the sensing process. Accordingly, it is very
important to have a simple form for the performance probabilities and thus
for the decision threshold so a CR system with large number of antennas can
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dynamically adapt its threshold according to pre-defined error constraints
and channel conditions.

3.4.6 Section Conclusion

In this section, we have considered the asymptotic case of the SCN detec-
tor. We have derived the asymptotic mean, the asymptotic variance and the
asymptotic skewness of the SCN using those of the extreme eigenvalues of
the sample covariance matrix by means of bi-variate Taylor expansion. GEV
approximation for the distribution of the SCN under H0 and H1 hypotheses
were proposed. Consequently, simple forms for the false-alarm probability,
detection probability and the decision threshold are derived for real-time
computations such that a CR system with large number of antennas can
dynamically adapt its threshold according to pre-defined error constraints
and channel conditions. In addition to their simple forms, simulation results
show high accuracy of the proposed approximation for different number of
antennas and different number of samples on various SNR values.

3.5 Performance Comparison between SCN

detector and ED

This section provides an empirical performance comparison between the SCN
discussed through this chapter and the ED discussed in Sec. 2.4.2. This is
illustrated in Figures 3.15 and 3.16. In this case, we set K = 3, N = 500 and
Pfa = 0.1 with 0.1dB noise uncertainty. Fig. 3.15 shows the Pd as a function
of SNR while Fig. 3.16 shows the ROC of both detectors. Results show that
the SCN detector outperforms the ED as noise uncertainty is considered.
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Figure 3.15: Pd of the SCN detector and the ED with 0.1dB noise uncertainty
as a function of SNR for K = 3, N = 500, and Pfa = 0.1.
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Figure 3.16: ROC of the SCN Detector vs. ROC of the ED for K = 3,
N = 500, SNR = −10dB and 0.1dB noise uncertainty.

3.6 Chapter Conclusion

This chapter discusses the SCN statistics, performance and threshold. We
have first considered the joint distribution of the ordered eigenvalue of dif-
ferent Wishart matrices and derived the expression of the joint PDF of the
ordered eigenvalues of the central semi-correlated complex Wishart matrices
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when the correlation matrix exhibit equal eigenvalues. The non-central/central
approximation is empirically studied and results show that it has perfect ac-
curacy in low SNR regions and could be considered as a good fit for Pd for
sufficiently large values of N when the SNR is high. Moreover, in the fi-
nite case, We have derived the exact distribution of the SCN of the central
uncorrelated, central semi-correlated and non-central uncorrelated Wishart
matrices. In addition, the p-th moment of the SCN is considered as we
derived the exact form for the pre-mentioned Wishart matrices. To over-
come the computational complexity of the exact SCN distribution, we have
proposed to approximate it using the GEV distribution based on moment
matching criteria. Accordingly, an approximation for the performance prob-
abilities of the SCN detector and its decision threshold are given through
simple expressions. Moreover, and using the non-central/central approxima-
tion we have proposed a 2-step approximation for the detection probability of
the SCN detector which provides analogous accuracy with simpler moment
complexity. Finally, in the asymptotic case, We have derived the asymptotic
mean, the asymptotic variance and the asymptotic skewness of the SCN using
those of the extreme eigenvalues of the sample covariance matrix by means
of bi-variate Taylor expansion. GEV approximation for the distribution of
the SCN under H0 and H1 hypotheses were proposed. Consequently, simple
forms for the false-alarm probability, detection probability and the decision
threshold are derived for real-time computations such that a CR system with
large number of antennas can dynamically adapt its threshold according to
pre-defined error constraints and channel conditions. The analytical results
are validated through extensive Monte-Carlo simulations with different sys-
tem parameters. Results show high accuracy of the proposed approximation
for different number of antennas and different number of samples on various
SNR values.
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Chapter 4

Scaled largest Eigenvalue

Detector: A Simple

Formulation Approach

This chapter considers the performance probabilities and the decision thresh-
old of the SLE detector. Consequently, it discusses the statistical distribution
of the SLE decision metric of the SLE detector. First, the distribution of the
largest eigenvalue and the trace of the Wishart matrix are considered and
our contributions are presented in Sec. 4.2. Subsequently, the distribution of
the SLE decision metric is derived in Sec. 4.3. The performance probabilities
and the decision threshold are also considered. The correlation between the
largest eigenvalue and the trace is then considered in Sec. 4.4. Finally, all
our contributions are validated in Sec. 4.5 using numerical simulations.

4.1 Scaled Largest Eigenvalue

In the literature, several eigenvalue ratios have been considered as discussed
in Sec. 2.5. The SCN ratio has been extensively studied and has many
applications mainly in the context of MIMO systems and SS as mentioned
in Ch. 3. On the other hand, Scaled Largest Eigenvalue detector (SLE) is
another eigenvalue ratio measure that recently received an important atten-
tion. SLE detector is an efficient technique that is proved to be the optimal
detector under the Generalized Likelihood Ratio (GLR) criterion and noise
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uncertainty environments [40, 41]. Indeed, it is a practical scenario since in
practical systems the noise power may not be perfectly known. Moreover,
since Spectrum Sensing (SS) is the task of obtaining awareness about the
spectrum usage, as presented in Chapter 2, then it mainly concerns two sce-
narios of detection: (i) detecting the absence of the Primary User (PU) in
a licensed spectrum in order for the Secondary User (SU) to use it and (ii)
detecting the presence of the PU so the SU avoid the channel, stop transmis-
sion or switch to another channel to avoid any interference to the Primary
Receiver (PR). Hence, SS plays a major role in the performance of the CR
as well as in the performance of the PU network. In this context, an extreme
importance for a CR network is to have an optimal SS technique with high
accuracy in uncertain environments.

Recall the SLE decision metric from (2.26):

XSLE =
λ1

1
K

∑K
i=1 λi

(4.1)

Before it was introduced to CR [199], the SLE previously appeared in
signal processing [200] and statistics literature [201, 202]. SLE detector is a
totally-blind detector, which is not effected by noise power uncertainty and
which stands out as the optimal single-PU detector as mentioned. For a
given decision threshold, λ̂SLE, the SLE detector algorithm could be done by
using one of Algorithms 4.1 and 4.2 given below.

Algorithm 4.1: SLE Detector using EVD

Input: Y , λ̂SLE
Output: DSLE

1 compute W = Y Y † ;
2 get λ1≤i≤K of W in descending order;

3 evaluate XSLE = λ1
1
K

∑
λi

;

4 decide DSLE = XSLE

H1

≷
H0

λ̂SLE ;

The results on the statistics of the SLE, in the literature, are relatively
limited. They are based on tools from Random Matrix Theory (RMT)
[40, 203, 204] and Mellin transform [204–206]. SLE was considered, asymp-
totically, to follow the LE distribution (i.e. TW distribution) [40]. However,
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Algorithm 4.2: SLE Detector using Power method

Input: Y , λ̂SLE
Output: DSLE

1 compute W = Y Y † ;
2 compute tr(W ) ;
3 get λ1 of W using Power method;

4 evaluate XSLE = λ1
1
K
tr(W )

;

5 decide DSLE = XSLE

H1

≷
H0

λ̂SLE ;

a non-negligible error still exists and a new form was derived based on the
TW distribution and its second derivative [203]. Using Mellin transform, The
distribution of the SLE was derived by the exploitation of the distribution
of LE and the distribution of the trace [204–206]. However, all the findings
on SLE are too complex to be considered in real-environments and hence are
not easily scalable. This is due to either a complexity in the original distri-
butions used to model the SLE (e.g. the TW distribution) or in the methods
used to derive the thresholds. Hence, there is a necessity to propose novel
yet simple forms in both SS cases (presence and absence of PU activity).

In this chapter, we tackle this problem by considering simple solution
deduced from the properties of the LE and trace of the Wishart matrices. In
this regard, we start by considering the LE of the Wishart matrices under
H0 and H1 hypothesis. After that the distribution of the trace is considered
to end up with a new form distribution of the SLE decision metric.

4.2 LE and Trace Distributions

This section considers the distributions of the LE and of the trace under H0

and H1 hypothesis. We prove that the LE and the trace follow Gaussian
distributions for which the means and variances are formulated. Since the
SLE does not depend on the noise power, we suppose, in this section, that
σ2
η = 1. Based on the results of this section, we derive the distribution of the

SLE in the next section.
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4.2.1 Largest Eigenvalue Distribution

It has been shown that, for a fixed K and as N →∞, λH0
1 follows a normal

distribution under H0 hypothesis [150, 207]. The mean and the variance of
λH0

1 could be approximated using TW2 and they are, respectively, given by :

µ
λ
H0
1

= b1(K,N)µTW2 + a1(K,N), (4.2)

σ2
λ
H0
1

= b2
1(K,N)σ2

TW2, (4.3)

where µTW2 = −1.7710868074 and σ2
TW2 = 0.8131947928 are, respectively,

the mean and variance of TW2 distribution; a1(K,N) and b1(K,N) are re-
spectively given by (3.52) and (3.53) as follows:

a1(K,N) = (
√
K +

√
N)2, (4.4)

b1(K,N) = (
√
K +

√
N)(K−1/2 +N−1/2)

1
3 . (4.5)

This approximation is very efficient and it achieves high accuracy for K
as small as 2 [150].

On the other hand, Recall that the Asymptotic Condition (AC) and the
Critical Condition (CC) are defined as follows:

AC : (K,N)→∞ with K/N → c ∈ (0, 1), (4.6)

CC : ρ > ρc =
1√
KN

, (4.7)

then as mentioned in Sec. 3.4.1, as AC and CC are satisfied, λH1
1 follows a

normal distribution under H1 hypothesis [194]. The mean and the variance
of λH1

1 are due to (3.64) and (3.65) given respectively by:

µ
λ
H1
1

= σ1(N +
K

σ1 − 1
), (4.8)

σ2
λ
H1
1

= σ2
1(N − K

(σ1 − 1)2
). (4.9)

4.2.2 Distribution of the Trace

As shown earlier, the distributions of λH0
1 and λH1

1 converge to Gaussian
distribution. On the other hand, let T =

∑
λi be the trace of the Wishart

matrix W then the following theorem holds:
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Theorem 4.1. Let T be the trace of central semi-correlated complex Wishart
matrix W ∼ CWK(N,Σ) where the vector of eigenvalues of Σ, not necessary
equal, is given by [σ1, σ2, · · · , σK ]. Then, as N → ∞, T follows a Gaussian
distribution as follows:

P (
T −N

∑K
i=1 σi√

N
∑K

i=1 σ
2
i

≤ x) =
1√
2π

∫ x

−∞
e−

u2

2 du, (4.10)

Proof. Let D be an orthogonal matrix that diagonalizes Σ, then we write:

T = tr(Y Y †) = tr(DDTY Y †) = tr(DTY Y †D)

= tr(ZZ†) =
K∑
i=1

[
N∑
j=1

|zi,j|2
]

(4.11)

with zi,j is the (i, j)-th element of matrix Z = DTY . Let Z = [z1 z2 · · · zN ]
with zj = [z1j z2j · · · zKj]T . Since the vectors z1, z2, · · · zN are independent
and zj ∼ CNK(0,DTΣD) then the elements zij are independent and form
a circularly symmetric complex normal random variable (zi,j ∼ CN (0, σi)).
Accordingly, the square of the norm, |zi,j|2, is exponentially distributed with
parameter σ−1

i and hence, the mean and variance are σi and σ2
i respectively.

According to CLT, as N → ∞ the term in the square bracket of (4.11)
follows the Gaussian distribution with mean and variance given by Nσi and
Nσ2

i respectively.

To the best of our knowledge, the result in Theorem 4.1 is new. The
distribution of the trace T ofW underH0 is given by the following Corollary:

Corollary 4.1. Let T be the trace of central uncorrelated complex Wishart
matrix W ∼ CWK(N, σ2

ηIK). Then, as N →∞, T follows Gaussian distri-
bution as follows:

P (
T −NKσ2

η√
NKσ4

η

≤ x) =
1√
2π

∫ x

−∞
e−

u2

2 du, (4.12)

Proof. It follows from Theorem 4.1.

Under H1 hypothesis, after using the non-central/central approximation
in Lemma 3.3, the distribution of the trace T of W is given by the following
Corollary:
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Corollary 4.2. Let T be the trace of central semi-correlated Wishart matrix
W ∼ CWK(N,Σ) where the eigenvalues of Σ are given by σ1 > σ2 = · · · =
σK . Then, as N →∞, T follows Gaussian distribution as follows:

P (
T −N(σ1 + (K − 1)σ2)√

N(σ2
1 + (K − 1)σ2

2)
≤ x) =

1√
2π

∫ x

−∞
e−

u2

2 du, (4.13)

Proof. All the eigenvalues of Σ are equal except σ1. Then, the result follows
from Theorem 4.1.

4.2.3 Normalized Trace

Let Tn = 1
K
T be the normalized trace. Then Tn, following Theorem 4.1, is

normally distributed.
Denote the normalized trace of W under H0 hypothesis by TH0

n , then,
following Corollary 4.1, TH0

n is normally distributed with mean and variance
given respectively, when σ2

η = 1, by

µ
T
H0
n

= N, (4.14)

σ2
T
H0
n

= N/K, (4.15)

Denote the normalized trace of W under H1 hypothesis by TH1
n , then,

following Corollary 4.2, TH1
n is normally distributed with mean and variance

given respectively, when σ2
η = 1, by:

µ
T
H1
n

=
N

K
(σ1 +K − 1), (4.16)

σ2
T
H1
n

=
N

K2
(σ2

1 +K − 1), (4.17)

4.3 Scaled Largest Eigenvalue Detector

This section provides a new formulation for the SLE distribution for H0 and
H1 hypotheses as follows:

4.3.1 H0 Hypothesis

Under H0 hypothesis, both the largest eigenvalue and the normalized trace
follow the Gaussian distribution as N → ∞ which is realistic in practical
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spectrum sensing scenarios. Herein, we show that the SLE could be formu-
lated using standard Gaussian function as stated by the following theorem:

Theorem 4.2. Let XSLE be the SLE of central uncorrelated complex Wishart
matrix W ∼ CWK(N, σ2

ηIK). Then, for a fixed K and as N →∞, the CDF
and the PDF of XSLE are, respectively, given by:

Fi(x) = Φ(
xµ

T
Hi
n
− µ

λ
Hi
1√

σ2
λ
Hi
1
− 2xci + x2σ2

T
Hi
n

) (4.18)

fi(x) =
µ
T
Hi
n
σ2

λ
Hi
1
− ciµλHi1

+ (µ
λ
Hi
1
σ2

T
Hi
n
− ciµTHin

)x

(σ2
λ
Hi
1
− 2xci + x2σ2

T
Hi
n

)
3
2

× φ(
xµ

T
Hi
n
− µ

λ
Hi
1√

σ2
λ
Hi
1
− 2xci + x2σ2

T
Hi
n

) (4.19)

with

Φ(v) =

∫ v

−∞
φ(u)du and φ(u) =

1√
2π
e−

u2

2 (4.20)

where i = 0 denoting the H0 hypothesis; thus, µ
λ
H0
1

, µ
T
H0
n

and σ2
λ
H0
1

, σ2
T
H0
n

are, respectively, the means and the variances of λH0
1 and TH0

n given by (4.2),
(4.14) and (4.3), (4.15) respectively. The parameter c0 is given by c0 =
σ
λ
H0
1
σ
T
H0
n
r0 where r0 is the correlation coefficient between λH0

1 and TH0
n .

Proof. Let λ1 and Tn be two normally distributed random variables with
means µλ1 , µTn , and variances σ2

λ1 and σ2
Tn receptively and let % be their

correlation coefficient. Since W is positive definite then Pr(Tn > 0) = 1 and
the CDF of X could be written as:

FX(x) = Pr(λ/t < x) = Pr(λ1 − xt < 0) (4.21)

Accordingly, its CDF is given by (4.18) and the PDF is its derivative in
(4.19) [208].

4.3.2 H1 Hypothesis

Under H1 hypothesis, both the largest eigenvalue and the normalized trace
follow the Gaussian distribution as AC and CC are satisfied. Accordingly,
the distribution of the SLE is given by the following Theorem:
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Theorem 4.3. Let XSLE be the SLE of central semi-correlated complex
Wishart matrix W ∼ CWK(N,Σ). Then, as AC and CC satisfied, the CDF
and PDF of XSLE are, respectively, given by (4.18) and (4.19) where i = 1
denoting the H1 hypothesis; thus, µ

λ
H1
1

, µ
T
H1
n

and σ2
λ
H1
1

, σ2
T
H1
n

are, respec-

tively, the means and the variances of λH1
1 and TH1

n given by (4.8), (4.16) and
(4.9), (4.17) respectively. The parameter c1 is defined by c1 = σ

λ
H1
1
σ
T
H1
n
r1

where r1 is the correlation coefficient between λH1
1 and TH1

n .

Proof. Same as the proof of Theorem 4.2.

4.3.3 Performance Probabilities and Threshold

Using (2.6) and (4.18), then Pfa is given by:

Pfa(λSLE) = Q(
λSLEµTH0

n
− µ

λ
H0
1√

σ2
λ
H0
1
− 2λSLEc0 + λSLEσ2

T
H0
n

) (4.22)

where Q(.) is the Q-function. Pd can be derived the same way using H1

hypothesis.
Using Pfa and Pd, the threshold could be set according to a required error

constraint. For example, and based on (4.22), we can derive a simple and
accurate form for the threshold as a function of the means and variances of
the λ1 and Tn and the correlation coefficient between them as well as the
false alarm probability. That is, for a CFAR, the equation of the threshold
of the SLE detector will be:

λSLE =
µH0

12 −∆2r0σ
H0
12 + ∆

√
mH0
v − 2r0µ

H0
12 σ

H0
12 + ∆2[σH0

12 ]2(r2
0 − 1)

µ2

T
H0
n

−∆2σ2

T
H0
n

(4.23)

where µH0
12 = µ

λ
H0
1
µ
T
H0
n

, σH0
12 = σ

λ
H0
1
σ
T
H0
n

, mH0
v = µ2

T
H0
n
σ2

λ
H0
1

+ µ2

λ
H0
1

σ2

T
H0
n

and

∆ = Q−1(Pfa) with Q−1(.) is the inverse Q-function.

4.4 Correlation Coefficients ri

Theorems 4.2 and 4.3 give the form of the distribution of the SLE as a
function of the mean and the variance of λHi1 and THin as well as the correlation
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coefficient between them (ri). Consequently, Pfa, Pd, Pmd and the threshold
are functions of these same parameters.

The mean and the variance of λ1 and Tn are provided in Sections 4.2.1
and 4.2.3. In this section, we will give a simple analytical form to calculate
the correlation coefficient ri between the largest eigenvalue and the trace of
Wishart matrix based on the mean of the SLE. In the following, we calculate
the mean of SLE in two different ways such that a simple form for ri could
be derived.

4.4.1 Mean of SLE using λ1 and Tn

Under both hypotheses (H0 andH1), the mean of the SLE could be computed
using the means of λ1 and Tn as follows:

H0 case: using independent property

Under H0, the SLE and the trace of central uncorrelated Wishart matrices
are proved to be independent [200]. Accordingly, and using (2.26), the mean
of λH0

1 could be written as:

E[λH0
1 ] = E

[
XH0
SLE × T

H0
n

]
= E[XH0

SLE] · E[TH0
n ] (4.24)

Recall that the mean of λH0
1 and the mean of TH0

n are given respectively
by (4.2) and (4.14), then based on (4.24), the mean of the SLE is given by:

µ
X
H0
SLE

=
µ
λ
H0
1

µ
T
H0
n

=
b1(K,N) · µTW2 + a1(K,N)

N
(4.25)

H1 case: using Taylor series

Using Taylor series, discussed in Sec. 3.4.2, then the mean of the SLE under
H1 hypothesis could be approximated by:

µ
X
H1
SLE

=
µ
λ
H1
1

µ
T
H1
n

=
σ1(N + K

σ1−1
)

N
K

(σ1 +K − 1)
, (4.26)

It is worth mentioning that it is more accurate to use higher order Taylor
series. However, this will increase the complexity for a slightly more accurate
values which is not necessary.
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4.4.2 Mean of SLE using variable transformation

Using SLE distribution, it is difficult to find numerically the mean of the
SLE, however, it turns out that a simple and accurate approximation could
be found.

An approximation of the mean of the ratio (u + Z1)/(v + Z2) could be
found when u and v are positive constants and Z1 and Z2 are two independent
standard normal random variables. It is based on approximating formula for
E[1/(v + Z2)] when v + Z2 is normal variate conditioned by Z2 > −4 and
v + Z2 is not expected to approach zero as follows [208]:

E

[
1

v + Z2

]
=

1

1.01v − 0.2713
(4.27)

By using the transformation of the general ratio of two jointly normal
random variable λ1/Tn into the ratio (u+ Z1)/(v + Z2), which has the same
distribution, we have:

λ1

Tn
∼ 1

q
(
u+ Z1

v + Z2

) + s (4.28)

with s = r
σλ1

σTn
, v =

µTn
σTn

and

u =
µλ1 − %

µTn ·σλ1

σTn

(±σλ1

√
1− %2)

(4.29)

q =
σTn

(±σλ1

√
1− %2)

(4.30)

where the ± sign (in both u and q) are chosen such that u and v have the
same sign (i.e. positive). As the left-side and the right-side of (4.28) must
have the same mean, we can write:

E[
λ1

Tn
] =

u

q
E[

1

v + Z2

] + s (4.31)

therefore the mean of the SLE could be approximated as follows:

µ
X
Hi
SLE

=
µ
λ
Hi
1
− si µTHin

θi
+ si (4.32)

with θi = 1.01µ
T
Hi
n
− 0.2713σ

T
Hi
n

and si = ri
σ
λ
Hi
1

σ
T
Hi
n

.

This practical approximation shows high accuracy; however, it could be
noticed from (4.31) that as the factor u increases the error due to this ap-
proximation increases.
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4.4.3 Deduction of the Correlation coefficients ri

Based on these results, the correlation coefficient under H0 and H1 hypothe-
ses is considered as follows:

H0 case

Using (4.32), then r0, after some algebraic manipulation, is given by:

r0 =
σ
T
H0
n

σ
λ
H0
1

·
θ0 µXH0 − µλH0

1

θ0 − µTH0
n

(4.33)

where µ
λ
H0
1

, µ
T
H0
n

and µXH0 are respectively the means of the λH0
1 , the nor-

malized trace and the SLE given by (4.2), (4.14) and (4.25) respectively.
σ
λ
H0
1

and σ
T
H0
n

are respectively the standard deviations of the λH0
1 and the

normalized trace and are the square root of (4.3) and (4.15) respectively.

H1 case

Under H1 hypothesis, results show the u increases as K or N increases be-
cause of the high correlation between λH1

1 and TH1
n . Accordingly, results show

a small error in the value of the mean of SLE with respect to the true value.
Consequently, and using (4.32), then r1 is given by:

r1 =
σ
T
H1
n

σ
λ
H1
1

·
θ1 (µH1

X + ε)− µ
λ
H1
1

θ1 − µTH1
n

(4.34)

where µ
λ
H1
1

, µ
T
H1
n

and µXH1 are respectively the means of the λH1
1 , the nor-

malized trace and the SLE given by (4.8), (4.16) and (4.26) respectively.
σ
λ
H1
1

and σ
T
H1
n

are respectively the standard deviations of the λH1
1 and the

normalized trace and are the square root of (4.9) and (4.17) respectively.
Finally, ε is a variable used to model the mean error.

4.5 Numerical Results and Discussion

In this section, we discuss the analytical results through Monte-Carlo sim-
ulations. We validate the theoretical analysis presented in sections 4.2, 4.3
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Table 4.1: The Empirical and Approximated value of the correlation coeffi-
cient r0 under H0 hypothesis for different values of {K,N}.

K ×N 2× 500 4× 500 2× 1000 4× 1000 50× 1000

r0-Emp. 0.849 0.6974 0.839 0.6915 0.3353

r0-Ana. 0.8548 0.6957 0.8623 0.6967 0.3356

and 4.4. The simulation results are obtained by generating 105 random real-
izations of Y .

Table 4.1 shows the accuracy of the analytical approximation of the cor-
relation coefficient (r0) of the SLE under the H0 hypothesis in (4.33). The
results are shown for K = {2, 4, 50} antennas and N = {500, 1000} samples
per antenna. Table 4.1 shows that the accuracy of this approximation is
higher as the number of antennas increases, however, we can also notice that
we have very high accuracy even when K = 2 antennas. Also, as expected, it
is easy to notice that the correlation between the largest eigenvalue and the
trace decreases as the number of antenna increases, however, this correlation
could not be ignored even if the number of antennas is large.

For the H1 hypothesis, Fig. 4.1 shows the accuracy of the mean of the
SLE as well as the correlation coefficient between the largest eigenvalue and
the trace. The results are shown for different values of K where N = 500 and
ρ = −10dB. Figure 4.1(a) plots the empirical mean and its corresponding
Taylor series approximation in (4.26). In addition, the figure shows the mean
error (ε) between the Taylor approximation and the mean expression provided
using variable transformation in (4.32). the results show a high accuracy in
the approximation of the mean using Taylor series, however, it also shows
a small error, ε, that increases as K increases. Another important point
here concerns the error value ε. Indeed, one can easily observe the ε is small
however its effect on correlation coefficient r1 is relatively high as shown in
Fig. 4.1(b) , hence corrective action should be taken to yield correct results.
The corrected version is considered (i.e. Fig. 4.1(a)) then the results show
high accuracy. We should mention that modeling the mean error is out of
the scope of this work but it is worth mentioning it for future research.
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Figure 4.1: Empirical and analytical results underH1 hypothesis for different
values of K where N = 500 sample and ρ = −10dB.

Figure 4.2 shows the empirical CDF of the SLE and its corresponding
approximation under H0 hypothesis given by Theorem 4.2. The results are
shown for K = {2, 4, 10, 20} antennas and N = 1000 samples per antenna.
Results show a perfect match between the empirical results and our Gaussian
formulation.
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Figure 4.2: Empirical CDF of the SLE under H0 hypothesis and its corre-
sponding Gaussian approximation for different values of K with N = 1000.
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Figure 4.3: Empirical CDF of the SLE under H1 hypothesis and its cor-
responding proposed approximation for K = 50 with N = {500, 100} and
ρ = −10dB.

Figure 4.3 shows the empirical CDF of the SLE and its corresponding
approximation (before and after mean correction) given by Theorem 4.3. The
results are shown for K = 50 antennas, N = {500, 1000} samples per antenna
and ρ = −10dB. Again, the results show a perfect match between the
empirical results and the proposed approximation after the mean correction
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Figure 4.4: Empirical Pfa for the SLE detector and its corresponding pro-
posed form in (4.22) for different values of K with N = 500 samples.

in (4.34). However if the we consider ε = 0, results show a slight difference
between empirical and the proposed distributions in comparison with the big
error in r1 (see Fig. 4.1(b) when K = 50 and N = 500).

Figure 4.4 shows the accuracy of the proposed false alarm form in (4.22).
Here, we have considered multi-antenna CR with different number of anten-
nas and N = 500 samples. The considered number of antennas is as small as
K = 2 and as large as K = 50. Simulation results show a high accuracy in
our proposed form which increases as K increases. It is worth reminding the
reader, that in addition to the accuracy, the form given in (4.22) is a simple
Q-function equation.

The empirical and analytical Pd is illustrated in Fig. 4.5 for different
number of antennas, N = 500 samples and ρ = −10dB. The analytical Pd
is considered before and after mean error correction. Results show perfect
match between the empirical results and its corresponding analytical expres-
sions after mean error correction and as K increases. The small difference
between the empirical and analytical results when K is very small, such as
K = 2 in the figure, is due to the AC that must be satisfied for the largest
eigenvalue to converge to Gaussian distribution. On the other hand, the effect
of the mean error could be noticed as K increases. In this regard, modelling
the mean error is very important to achieve high accuracy for large K values.

94



1 1.5 2 2.5 3 3.5 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Threshold (λ
SLE

)

P
d

 

 

 Empirical
Before Correction
After Correction K=2
After Correction K=5
After Correction K=10
After Correction K=30

Figure 4.5: Empirical Pd for the SLE detector and its corresponding proposed
form for different values of K with N = 500 samples and ρ = −10dB before
and after mean error correction.

4.6 Conclusion

SLE detector is the optimal single-PU detector in noise uncertain environ-
ments. In this chapter, we have considered the SLE detector and its statisti-
cal distribution. We proved that the SLE could be modelled using standard
Gaussian function and we have derived its CDF and PDF. The false alarm
probability, the detection probability and the threshold were also considered
as we derived new simple and accurate forms. These forms are simple func-
tions of the means and variances of the largest eigenvalue and of the trace as
well as the correlation coefficient between them. The correlation between the
largest eigenvalue and the trace is studied and simple expressions are pro-
vided. Simulation results have shown that the proposed expressions achieve
high accuracy. Further, the approximation of the correlation coefficient un-
der H0 shows high accuracy while under H1 hypothesis, small mean error
correction must be applied in order to achieve high accuracy. In addition,
results have shown that the correlation between the largest eigenvalue and
the trace, under H0, decreases as the number of antenna increases but it
could not be ignored even for large number of antennas.
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Chapter 5

Multi-Antenna Based

Spectrum Sensing:

Approaching Massive MIMOs

This chapter considers a cognitive radio (CR) equipped with massive MIMO
technology that uses the EBD for SS. Sec. 5.1 introduces the problem and
discusses the different scenarios and cases considered in this chapter. The
LE detector in the finite case is considered in Sec. 5.2 where we derive exact
expressions and approximated ones. The full exploitation of the antennas
are discussed in 5.3 and the partial exploitation is discussed in 5.4 for LE,
SCN and SLE detectors. Finally, the conclusion is derived in Sec. 5.6.

5.1 Introduction

The fifth generation (5G) of mobile network is expected to be deployed by
2020. As 5G has to accommodate new demands and high data-rates growing
at an unprecedented pace, a large amount of radio frequency resources is
still under-utilized. For instance, by exploiting the spatial domain, massive
MIMO is introduced to increase the network capacity for the next generation
wireless systems [209–211]. A massive MIMO system uses up to few hundred
of antennas to gain all the benefits of the conventional MIMO but on a much
larger scale. As such, CR could be combined with massive MIMO through
the additional degree of freedom offered by the large number of antennas
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to identify the unused channels while achieving a significant increase in the
performance of the SS detector. In this regard, it is very likely to consider
the EBD to detect the spectrum holes in CR with massive MIMO technology.

In fact, a CR system with massive MIMO technology could use all anten-
nas for the SS and achieve an enormous performance enhancement. However
it might be enough to use a fewer number of antennas for the sensing process
and thus define a more efficient way for antenna exploitation. In this regard,
two scenarios could be considered:

1. Full antenna exploitation scenario: Therein, the CR module may use all
of its antennas in the SS and hence may reduce the number of samples
required for SS.

2. Partial antenna exploitation scenario: In this scenario, the CR may fix
certain number of antennas to a given SS process and use the others
for other purposes (such as transmission) or it may dynamically change
the number of antennas K and/or the number of samples N according
to predefined performance and also use the rest for other purposes.

In this chapter, the EBD is used due to its importance in multi-antenna
SS. Specifically, we will consider the LE detector which is proved to be the
optimal if noise power is perfectly known. Accordingly, we suppose that the
noise power is perfectly known. Moreover, LE detector could be evaluated
without the need of the EVD and thus avoid some computational complexity
by using the power method. From here, let us differentiate between the
following cases:

Case 1: Finite K and finite N : In this case, the CR module utilizes a small
finite number of antennas K and a relatively small finite number of
samples N for partial exploitation.

Case 2: Finite K and asymptotic N : Here, the CR module utilizes a finite
number of antennas K and a relatively large number of samples N for
partial exploitation.

Case 3: Asymptotic K and asymptotic N : In this case, the CR uses a Large
number of antennas K and a large number of samples N such that
N > K for full antenna exploitation.

It is worth mentioning that in case 1, the performance analysis and the
decision threshold selection could not rely on any asymptotic approximations.
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Indeed, the use of finite RMT analysis to study the statistics of the LE
detector is the best solution. On the other hand, in cases 2 and 3 the use of
approximations related to large number of antenna and/or large number of
samples are extremely beneficial.

On the other hand, when noise power is not perfectly known then the
SCN and SLE detectors discussed in previous chapters could be considered.
Accordingly, an extension to the SCN and SLE detectors is done by using
the results derived in Chapters 3 and 4. The dynamic antenna exploitation
case is considered for the mentioned three detectors (i.e. LE, SCN and SLE
detectors) and the minimum requirements needed to achieve a target perfor-
mance is considered. Accordingly, a comparison between these detectors is
provided in terms of sensing performance and minimum requirements.

5.2 LE Detector in Finite Case: Small num-

ber of antennas and samples

In this section, we will consider the LE detector in the finite case (i.e. Case
1). The CDF of the LE decision metric is considered since it is directly re-
lated to the performance probabilities as provided by (2.6), (2.7) and (2.8).
Consequently, we show that the computational complexity of these expres-
sions increases as K or N increases. Moreover, it is difficult to derive a
threshold using such expressions. Accordingly and since we are dealing with
the extreme eigenvalue, we propose to approximate the distribution of the
LE decision metric using the GEV approximation described in Appendix
C. Based on this approximation, a simple expression of the decision thresh-
old is provided by which a CR system using small number of antennas and
relatively small number of samples for SS can compute the threshold value
online.

5.2.1 LE Detector in Finite Case

The Largest eigenvalue detector is a semi-blind detector since it requires the
knowledge of noise power, however, if perfect knowledge is available then
LE is the optimal detector [42]. LE is the largest eigenvalue of the sample
covariance matrix and its exact distribution is derived in literature (see, for
instance, [178, 212]) in the form of matrix determinant whose complexity
increases as the number of antenna increases. Asymptotically, LE is proved
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to follow a Tracy-Widom (TW) distribution for central uncorrelated Wishart
matrices and a Gaussian distribution for sample covariance matrices of spiked
population model [192,195]. Moreover, as mentioned in Ch. 4, for a fixed K
and as N →∞ then the LE converges to a Gaussian distribution [150,207].
For a given decision threshold λ̂LE, the LE detector algorithm is given as
follows:

Algorithm 5.1: LE Detector using Power method

Input: Y , σ2
η, λ̂LE

Output: DLE

1 compute W = Y Y † ;
2 get λ1 of W using EVD or Power method;

3 evaluate XLE = λ1

σ2
η

;

4 decide DLE = XLE

H1

≷
H0

λ̂LE ;

According to the LE algorithm, the problem is to find the threshold. To
do so, it is then required to have the CDF of the LE decision metric. In
this regard, the exact CDF of the LE metric under H0 hypothesis is given
by [212]:

F0(x) = Kcu|Υcu|. (5.1)

where Υcu is a K×K matrix with entries Υcu
i,j = γ(i+ j+N −K− 1, x) and

Kcu is given by (3.3). γ(., .) is the lower incomplete gamma function [179,
Eq.(8.350.1)].

Under H1 hypothesis, the exact CDF of the LE metric (as shown in
Lemma 3.3) could be approximated by the CDF of the LE metric of central
semi-correlated complex Wishart matrix with correlation matrix of eigenval-
ues σ1 > σ2 = · · · = σK . In this regard, we provide the following Theorem:

Theorem 5.1. Let W ∼ CWK(N,Σ) be a central semi-correlated complex
Wishart matrix with N DoF (N > K) and correlation matrix Σ with eigen-
values σ1 > σ2 = · · · = σK. Then, the CDF of λ1 of W is given by:

F1(x) = Kcc|Υcc| (5.2)

where Kcc is given by (A.7) and Υcc is K ×K matrix with entries:

Υcc
i,j =

{
σN+i−K
j γ(N + i−K, x/σ1) j = 1

(−1)K−jσN+i−j
j γ(N + i− j, x/σ2) j > 1

(5.3)
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Proof. Starting from the joint distribution in (A.5), the CDF of the largest
eigenvalue, using [176, Corollary 2], is given by:

F1(x) =

∫ x

0

· · ·
∫ x

0

f(λ)dλ (5.4)

= Kcc
∣∣∣∣∫ x

0

vi(u)ej(u)uN−Kdu

∣∣∣∣
i,j=1,··· ,K

, (5.5)

then, the integral of (5.5) is evaluated using [179, Eq. 3.351.1].

Note that γ(n, x) = (n − 1)!e−x
∑n−1

m=0
xm

m!
[179], then the evaluation of

these exact CDFs is more complicated as K or N increases. However, the
target is to find a simple threshold form which is not straightforward since
it requires the inverse of the CDF function. Next, we show that the LE
distribution could be perfectly approximated using the GEV distribution
and thus a simple threshold form could be derived.

5.2.2 Approximating LE

Herein, the approximation of the LE distribution is considered. First, the
moments of the LE are derived and then an approximation of the LE distri-
bution with the GEV distribution will follow using Lemma C.1. We should
mention that this approximation is feasible if the moments are derived. Thus,
the exact form of the p-th moment of the LE under hypothesis H0 is provided
by the following Theorem.

Theorem 5.2. Let W ∼ CWK(N, σ2
ηIK) be a central uncorrelated complex

Wishart matrix with N DoF and correlation matrix σ2
ηIK. Then, the p-th

moment of the LE of W is given by:

M(p) = pKcu
∑
δ∈P0

sgn(δ)
K∏
i=1

(δ(i) + i+N −K − 2)!

×
∑
s∈S∗0

(−1)|s|+1(Σs+ p− 1)!

Πs! · |s|Σs+p
(5.6)

with P0 is the set of all possible permutations of the vector [1, · · · , K] and the
sum is taken over all possible permutations. sgn(δ) is the permutation sign
of the permuted vector δ. S∗0 is the set of all subsets of the vector [l1, · · · , lK ]
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and the sum is taken over all possible subsets except the null subset such

that
∑
s∈S∗0

=
∑L1

l1
· · ·
∑L|s|

l|s|
with |s| is the cardinality of the subset s and

Lj = δ(j) + j +N −K − 2.

Proof. See App. A.5.

Under H1 hypothesis and following the results in Ch. 3, the use of the
moments of the central semi-correlated Wishart matrices provide good ap-
proximation for the LE. Hence, the exact form of the p-th moment of the
largest eigenvalue of the central semi-correlated Wishart matrices of spiked
population is provided by the following Theorem:

Theorem 5.3. Let W ∼ CWK(N,Σ) be a central semi-correlated complex
Wishart matrix with N DoF (N > K) and correlation matrix Σ with eigen-
values σ1 > σ2 = · · · = σK. Then, the p-th moment of λ1 of W is given
by:

M(p) = pK′cu
∑
δ∈P0

sgn(δ)
K∏
i=1

(N + δ(i)− bi,K − 1)!

σ
bi,K−δ(i)−N
i

×
∑
s∈S∗0

(−1)|s|+1(Σs+ p− 1)!

Πs! · Πσss · |Σ 1
σs
|Σs+p

, (5.7)

with K′cu is a modified normalization constant as follows:

K′cc =
(−1)

(K−1)(K−2)
2 σK−N−1

1 σ
(N−1)(1−K)
2

ΓK(N)ΓK−1(K − 1)(σ2 − σ1)K−1
, (5.8)

and we define bn,m as:

bn,m =

{
m n = 1

n n 6= 1
(5.9)

Proof. See App. A.5.

Same as for the CDF case, the p-th moment of the LE metric is provided
by (5.7) after the normalization of W by σ2

η. Now by exploiting the mo-
ments of the LE given by Theorems 5.2 and 5.3, we can approximate the LE
distribution by the GEV distribution as given by the following proposition.
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Proposition 5.1. The CDF and PDF of the LE, under hypotheses H0 and
H1, can be accurately approximated by:

F (x; θ, β, ξ) = e−(1+(x−θ
β

)ξ)
−1/ξ

(5.10)

f(x; θ, β, ξ) =
1

β
(1 + (

x− θ
β

)ξ)
−1
ξ
−1e−(1+(x−θ

β
)ξ)
−1/ξ

(5.11)

where the shape, scale and location parameters are defined by (3.43), (3.44)
and (3.45) with the mean, variance and skewness of LE given by:

µLE = M(1) (5.12)

σ2
LE = M(2)− µ2

LE (5.13)

SLE =
M(3)− 3M(2)µLE + 2µ3

LE

σ
3/2
LE

(5.14)

with M(p) is the p-th moments of the LE given by Theorems 5.2 and 5.3 for
H0 and H1 cases respectively.

Using (5.10), the performance probabilities and the decision threshold
could be derived as in Sec. 3.3.4. It should be noted that the computational
complexity of the moments of the LE in (5.6) and (5.7) is higher than that
of the CDF in (5.1) and (5.2). This is obvious since the determinant could
be calculated using LU decomposition algorithm (O(K3)) and we use the
Leibniz formula which requires n!n operations. However, as mentioned in
Ch. 3, this approximation only requires the values of the location, scale and
shape parameters of the GEV distribution that could be computed off-line.

We should here mention that the approximation of the LE using GEV is
for any K and N (i.e. finite and asymptotic). However, in the particular case
when K is finite and N asymptotic, the LE could be modelled as a Gaussian
RV, as mentioned in Ch. 4, which is simple and useful as discussed later in
this chapter.
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5.3 LE Detector with Asymptotic Regime:

Full antenna exploitation

In this scenario, the CR will use all of its antennas for the SS process. Ac-
cordingly, recall the asymptotic and critical conditions as follows:

AC : (K,N)→∞ with K/N → c ∈ (0, 1), (5.15)

CC : ρ > ρc =
1√
KN

, (5.16)

Again, in asymptotic regime, the problem turns out to find the distribu-
tion and the threshold. By considering the AC, then under H0 hypothesis,
LE, properly centered and scaled, follows a TW distribution of order 2 (TW2)
as follows [192]:

LE ′ =
LE − a1(K,N)

b1(K,N)
∼ TW2, (5.17)

where a1(K,N) and b1(K,N) are respectively the centering and scaling co-
efficients defined by (3.52) and (3.53).

The CDF of the TW2, first considered in [186], is given by (5.18) where
q(x) is the solution to the Painlevé II differential equation q′′(x) = xq(x) +
2q3(x) satisfying the boundary condition q(x) ∼ Ai(x) as x → ∞ where
Ai(x) is the Airy function.

FTW2(y) = e−
∫∞
y (x−y)q2(x)dx. (5.18)

On the other hand, if both AC and CC are met then LE under H1 hy-
pothesis and using Lemma 3.3 follows a normal distribution as follows [195]:

P (
LE − a3(K,N,σ)√

b3(K,N,σ)
≤ x) =

1√
2π

∫ x

−∞
e−

u2

2 du, (5.19)

with a3(K,N,σ) and b3(K,N,σ) are defined in (3.64) and (3.65) respectively
with σ2

η = 1.
It is worth mentioning that the TW2 distribution could not be evaluated

numerically online. In fact, the cognitive radio system needs to evaluate the
threshold which requires the inverse of the CDF. In the next subsection, we
approximate the LE distribution with the GEV distribution in the asymptotic
regime.
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5.3.1 Approximating LE in asymptotic regime

Under H0 hypothesis and when AC is satisfied, the distribution of the LE
metric could be approximated through GEV using the mean, the variance and
the skewness provided in (3.57), (3.58) and (3.59) respectively. Accordingly,
we give the following proposition:

Proposition 5.2. Let N and K obey AC in (5.15), then the CDF and PDF
of the LE under H0 hypothesis can be accurately approximated by (5.10) and
(5.11) respectively. The shape, scale and location parameters are defined by
(3.43), (3.44) and (3.45) where the mean, the variance and the skewness of
LE are given by (3.57), (3.58) and (3.59) respectively.

It follows from Proposition 5.2 that the GEV approximation could also
be used to approximate the TW2 distribution by considering the mean, the
variance and the skewness of TW2 given by µTW2 = −1.7710868074, σ2

TW2 =
0.8131947928 and STW2 = 0.2240842036 respectively.

Based on Proposition 5.2, the threshold expression is simple and have the
same form of (3.95) for CFAR. On the other hand under H1 hypothesis, the
distribution is Gaussian and it is indeed simple and any approximation in
this case is useless.

5.4 Partial Exploitation of Massive MIMO

antennas

This scenario could be decomposed into two different options; The first is
the fixed number of antenna approach where the CR will fix a predefined
number of antennas for the SS and thus uses the rest for other purposes
as it will be discussed in this section. The other approach is the dynamic
approach in which the CR does not fix a predefined number of antennas but
it dynamically allocates a certain number of antennas for SS according to
certain constraints such as a target performance. The rest of the antennas is
used for other purposes.

The division in this case into approaches could be simply justified by
the simple fact that a tradeoff between SS performance and exploitation of
available of antennas for other use could exist. This depends on the different
metrics and outcomes expected in this case. For instance, fixing predefined
number of antennas for the SS or knowing the minimum number of antennas
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necessary to reach a prescribed performance within a given time has many
advantages such as:

• Sensing multi-channels simultaneously: in this case, the antennas are
clustered and each cluster of antennas is ordered to sense certain chan-
nel and/or certain direction. Accordingly, several spectrum holes could
be found at the same time which results in a more efficient utiliza-
tion of the spectrum bands. Moreover, several techniques have been
proposed in literature to sense a wide-band channel such as the filter-
bank, compressive sensing, wavelet decomposition as mentioned in Ch.
2. Alternatively, massive MIMO could be used to sense a wide-band
channel by dedicating the clusters to sense several narrow-band chan-
nels simultaneously.

• Sense and transmit simultaneously: conventional SS could be either
done in a periodic sensing approach or in a simultaneous sensing and
transmission approach. In periodic sensing, the CR operates in a time-
slots model where it senses for a short time duration and transmits data
in the remaining time of total frame duration [213]. On the other hand,
simultaneous sensing and transmission approach could be considered as
a full duplex approach in which two RF chains are required at the CR
receiver [214]. Likewise, the CR could maintain a set antennas for SS
and the others for the transmission in a full duplex scenario.

• Green radio: green radio concept has received a great attention in re-
cent years. It is one of the most important considerations in the present
scenario of global warming. From an energy efficiency perspective, it
makes sense to put inactive antenna elements into sleep mode and thus
reduce energy consumption [215].

• Reduce the sensing time: sensing time is the time required for the CR
to make a decision. It indeed includes the required sampling duration
and the time the sensing algorithm needs to make a decision. Accord-
ingly, the full antenna exploitation scenario may not be the optimal for
sensing time reduction. Indeed, if a trade-off between the complexity of
the algorithm and the required number of samples to make a decision
is done this may decrease the total sensing time.

• Increase system throughput: In general, using some or all of these
methods, i.e. sense multi-channels simultaneously, sense and transmit
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simultaneously and reducing the sensing time, would increase the total
system throughput.

Consequently, the use of a fixed number or dynamic number of antennas
for SS is extremely important for CR with massive MIMO technology. In
fixed number case, the CR may define any number of antenna K and samples
N for SS. Accordingly, and based on our derivations for LE, SLE and SCN
detector through this thesis, the threshold could be computed according to
maintain a CFAR or an optimized threshold could be used as to minimize the
total error probabilities. The threshold optimization criteria is considered for
the LE detector in Sec. 5.4.2. On the other hand, the minimum number of
antennas and/or the minimum number of samples required to reach a target
performance is very important for the dynamic approach. These values are
directly related to the statistics of the SS decision metric being used and the
environmental information. This is considered in Sec. 5.4.3 while using the
LE detector and in Sec. 5.4.4 for the SCN and SLE detectors.

5.4.1 Performance Probabilities

To model the system, we should first define the performance probabilities of
the detector used. In the partial antenna exploitation scenario, we consider
the following:

• Fixed number of antenna approach: in this case, the CR will use certain
fixed number K and N > K. If K is large, then N is obviously
large and hence the results of asymptotic regime, in previous section,
could be applied. On the other hand, if K is small, then N may be
relatively small and hence the results of finite case in Sec. 5.2 are
applied. However, it is more likely that N will be relatively large.

• Dynamic number of antenna approach: here, the CR will use dynamic
number of antenna K and N > K. If K is large, then N is obviously
large and the asymptotic results are applied. Also, if K is small and N
is relatively small then the results of finite case are applied. However,
it is more likely to have certain number K and relatively large N .

Consequently, we will consider the case in which K is finite and N is
relatively large which is more practical. Hence the LE metric could be mod-
eled as Gaussian RV under H0 hypothesis. Under H1 hypothesis, results
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in [150] shows that LE metric could be approximated by Gaussian even if
K is small and N is relatively large and CC is satisfied. Accordingly, if we
denote the decision threshold of the LE detector by λLE, then Pfa, Pd and
Pmd are expressed as follows:

Pfa = 1− Φ(
λLE − µ0

σ0

) (5.20)

Pmd = 1− Pd = Φ(
λLE − µ1

σ1

) (5.21)

where Φ(.) is the CDF of the standard normal distribution; µ0, σ0 are the
mean and the standard deviation of the LE metric under H0 hypothesis and
are given by (5.22) and (5.23) (recalled from Ch. 3); µ1, σ1 are the mean and
the standard deviation of the LE metric under H1 hypothesis and are given
by (5.24) and (5.25) (recalled from Ch. 3).

µ0 = b1(K,N)µTW2 + a1(K,N), (5.22)

σ2
0 = b2

1(K,N)σ2
TW2, (5.23)

µ1 = σ1(N +
K

σ1 − 1
), (5.24)

σ2
1 = σ2

1(N − K

(σ1 − 1)2
), (5.25)

where µTW2 = −1.7710868074, σ2
TW2 = 0.8131947928 and

a1(K,N) = (
√
K +

√
N)2, (5.26)

b1(K,N) = (
√
K +

√
N)(K−1/2 +N−1/2)

1
3 . (5.27)

5.4.2 Optimal Threshold

The performance probabilities depend on the decision threshold (λLE), and
hence it is necessary to choose an appropriate value based on system require-
ments. The typical approach for setting the threshold is given by the CFAR
strategy in which the threshold is chosen in order to guarantee a target false-
alarm rate (P̂fa). Hence, for finite K and relatively large N and based on
the CFAR scenario, the decision threshold is expressed using the inverse of
Pfa as follows:

λ̂LE = µ0 + σ0Φ−1(1− P̂fa) (5.28)
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It is worth mentioning that the threshold for other cases (i.e. asymptotic
and finite) is previously derived and given by (3.95). Another threshold
optimization approach would be to minimize the total error probability of the
system. Accordingly, the optimized threshold could be expressed as follows:

λ̂LE = argmin
λLE

(p0Pfa + p1Pmd) (5.29)

where p0 and p1 are weighting coefficients that are chosen according to sys-
tem priority. To solve this minimization problem, one can simply take the
derivative equals to zero and the second derivative positive (i.e. concave).
One can choose p0 = 0 or p1 = 0 to minimize one of the error probabili-
ties. However, it is typical to choose p0 = p1 = 0.5 to minimize the sum of
the error probabilities. Then λLE should be selected such that it minimizes
Pfa + Pmd, i.e. its derivative equal to zero such that:

(
1

2σ2
0

− 1

2σ2
1

)λ2
LE + (

µ1

σ2
1

− µ0

σ2
0

)λLE + (
µ2

0

2σ2
0

− µ2
1

2σ2
1

− ln(
σ1

σ0

)) = 0 (5.30)

and finally the optimal threshold is given by:

λ̂LE =

µ1σ
2
0 − µ0σ

2
1 +

√
σ2

0σ
2
1

(
(µ0 − µ1)2 − 2(σ2

0 − σ2
1)ln(σ1

σ0
)
)

σ2
0 − σ2

1

(5.31)

The same derivation procedure could be done for any value p0 and p1. The
optimal threshold in (5.31) requires the knowledge of the SNR value. It could
be used in any of the scenarios to minimize the error probabilities. However,
in the dynamic case, i.e. when K and/or N are to be selected dynamically,
the designer should set up the target Pfa and Pmd to be obtained while the
optimization will consist in finding the minimal K and N . Accordingly, we
choose a fixed (P̂fa, P̂d) performance to evaluate the required K and N to
achieve this performance. This will be discussed next.

5.4.3 Minimum Requirements

For a target (P̂fa, P̂d) and at a given SNR, the CR system should optimize
certain number of antennas for a certain number of samples. By eliminating
λLE from Pfa and Pd in (5.20) and (5.21) respectively, one can solve for K
(or N) the following equation:

σ0Φ−1(1− P̂fa)− σ1Φ−1(1− P̂d) + µ0 − µ1 = 0 (5.32)
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Now, let us substitute µ0, µ1, σ0 and σ1 to get a single equation involving the
parameters: K, N , P̂fa, P̂d and ρ. Hence, at a certain SNR value and for a

target detection performance (P̂fa, P̂d) the system can dynamically choose the
couple (K,N) that most enhances its global performance (i.e. throughput,
power saving etc.). In is worth mentioning that finding a general solution for
(5.32) is not straightforward and thus we solve for numerical values. Consider
the following example:

Example 1: Consider the following example, P̂fa = 0.1, P̂d = 0.9 and
ρ = −15dB, then we get Tables 5.1 and 5.2.

Table 5.1: Required K for a given N in Example 1.

N 200 300 350 400 450 500 600 1000
K 14 10 8 8 7 6 5 4

Table 5.2: Required N for a given K in Example 1.

K 20 18 15 10 8
N 132 147 177 273 349

Table 5.1 shows different values of N and its corresponding required num-
ber of antennas K that should be involved in the sensing process to achieve
the performance illustrated in Example 1. On the other hand, Table 5.2
shows different values of K and its corresponding required number of sam-
ples N that should be acquired by each antenna in the sensing process to
achieve the considered performance. It is worth mentioning that the values
of K and N evaluated using (5.32) are real valued numbers and thus are
rounded to +∞. Consequently, for a target performance as illustrated in
Example 1 it is enough for a CR to use K = 8 and N = 350. However, using
a greater number of antennas is inefficient and a waste of resources.

The system may also be expected to have dynamic behaviour in case of
the change of the SNR values. This could be also achieved using (5.32). This
kind of dynamical behaviour is extremely important to any multi-antenna
system. This will be considered in the simulations.
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5.4.4 Extension to SCN and SLE

In this subsection, we use the results provided in Chapters 3 and 4 to extend
this work for both SCN and SLE detectors. Let us consider the SCN detector
and by eliminating λSCN from both (3.93) and (3.94) we get:

θ0−
β0

ξ0

− θ1 +
β1

ξ1

+
β0

ξ0

[
− ln(1− P̂fa)

]−ξ0 − β1

ξ1

[
− ln(1− P̂d)

]−ξ1 = 0 (5.33)

where P̂fa and P̂d are target false-alarm and detection probabilities; θi, βi
and ξi are the location, scale and shape parameters of the GEV distribution
where i = 0 refers to H0 hypothesis and i = 1 refers to H1 hypothesis. Their
expressions are provided by Theorems 3.2 and 3.3.

For the SLE detector, the probability of detection could be derived in a
similar manner used for the derivation of Pfa in Sec. 4.3.3. Accordingly, by
eliminating λSLE from the performance probabilities we get:

µH0
12 −∆2r0σ

H0
12

µ2

T
H0
n

−∆2σ2

T
H0
n

− µH1
12 − Λ2r1σ

H1
12

µ2

T
H1
n

− Λ2σ2

T
H1
n

+
∆
√
mH0
v − 2r0µ

H0
12 σ

H0
12 + ∆2[σH0

12 ]2(r2
0 − 1)

µ2

T
H0
n

−∆2σ2

T
H0
n

−
Λ
√
mH1
v − 2r1µ

H1
12 σ

H1
12 + Λ2[σH1

12 ]2(r2
1 − 1)

µ2

T
H1
n

− Λ2σ2

T
H1
n

= 0 (5.34)

where ∆ = Q−1(P̂fa) and Λ = Q−1(P̂d); the expressions of the parameters in
(5.34) are provided in Ch. 4.

Similar to the LE detector case, using (5.33) and (5.34) we can determine
the minimum requirements of the system that could be used to achieve target
performance.

5.5 Simulation and Discussion

In this section, we verify the analytical derivation results through Monte-
Carlo simulations. We validate the theoretical analysis presented in sections
5.2, 5.3 and 5.4. The simulation results are obtained by generating 105

random realizations of Y . In addition, we compare the results of different
scenarios of antenna exploitation for different considered detectors. More-
over, a comparison between the LE, SCN and SLE detectors is considered
from the performance perspective and the minimum requirements needed to
achieve target performance.
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5.5.1 Validation of Analytical Results

Figure 5.1 shows the CDF expression derived in Theorem 5.1 and its use
in approximating the H1 hypothesis. Different small number of antennas K
and different relatively small values of N are considered with ρ = −10dB.
Simulation results show perfect match with the analytical expressions. More-
over, empirical results of non-central uncorrelated Wishart (H1 hypothesis)
present show perfect match with the provided expressions.
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Figure 5.1: Empirical CDF of LE metric of central semi-correlated Wishart
matrix and its corresponding Analytical expression and the empirical CDF of
LE metric of non-central uncorrelated Wishart matrix under H1 hypothesis
for different values of K and N .

The analytical expressions of the p-th moments in Theorems 5.2 and
5.3 are validated in Table 5.3 by considering the first moment. Table 5.3
provides the empirical and corresponding analytical mean of central uncor-
related Wishart (H0 hypothesis) and central semi-correlated Wishart (ap-
proximation of H1 hypothesis). Results show perfect match with the values
evaluated using the derived expressions.

Figure 5.2 plots the empirical Pfa and Pd of the LE detector in the finite
case and its corresponding analytical values using GEV approximation pro-
vided by Proposition 5.1, (2.6) and (2.7). The results are taken for different
values of K and N and ρ = −10dB. Results show perfect match between the
empirical results and the proposed approximation under both hypothesis.

Asymptotic approximation provided by Proposition 5.2 is validated in
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Figure 5.2: Empirical Pfa and Pd of the LE detector and its corresponding
GEV approximation for different values of K and N with fixed ρ = −10dB.
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Table 5.3: Empirical and Analytical Mean of the LE metric of central uncor-
related and semi-correlated Wishart matrices.

N 10 20

K 2 3 2 3

Central Uncorr.
Empirical 13.5195 16.3636 25.0133 28.8718

Analytical 13.5239 16.3287 25.0148 28.8535

Central Semi-corr.
Empirical 14.9668 18.2241 27.8013 32.4138

Analytical 14.9718 18.19 27.8008 32.3977
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Figure 5.3: Empirical Pfa of the LE detector in the asymptotic case and its
corresponding GEV approximation for K = 100 and different values of N .

Fig. 5.3. The results are taken for different values of N while fixing K = 100
and ρ = −10dB. Results show perfect match between empirical results and
the proposed approximation.

5.5.2 Full and Partial antenna exploitation scenarios

Figure 5.4 shows the empirical Pfa and Pd of the LE detector and its cor-

responding target values (P̂fa = 0.01, P̂d = 0.9) while changing the other
parameters. In Fig. 5.4(a) we set the SNR ρ = −20dB and we consider a
variable N while in Fig. 5.4(b) we set N = 500 and we consider a variable
ρ, as summarized by Algorithm 5.2. Simulation results show high accuracy
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of the analytical results evaluated using (5.32). The empirical Pfa is indeed
0.01 while the accuracy of the Pd increases as K increases which reflects the
effect of AC under H1 hypothesis. However, one can use the proposed GEV
approximation instead of the Gaussian which may result in better accuracy
for small K values. In addition, this small difference between the empirical
and the target Pd is also due to the rounding of K to +∞. The effect of
rounding of K could be clearly noticed in Fig. 5.4(b) when ρ = −12dB where
the exact value is K = 3.3 and the rounded value will be K = 4. Moreover,
the results also show that as N increases or ρ decreases the number of an-
tennas required to achieve the target performance decreases and hence these
antennas could be exploited for other use. This is the main idea behind
this dynamic use, for example if the CR is monitoring a good environmental
condition then it can easily lower the number of antennas used to sense the
channel and vice versa.

Algorithm 5.2: Dynamic K simulation algorithm for LE detector

Input: Y , σ2
η, (P̂fa0.01, P̂d = 0.9), ρ, N

Output: (Pfa, Pd)
1 evaluate K w.r.t. ρ or N ;

2 compute λ̂LE w.r.t. K and N ;
3 generate (K ×N) matrix Y for H0 and H1 ;
4 get λ1 of W = Y Y † for H0 and H1;

5 evaluate XLEi = λ1

σ2
η

for H0 and H1;

6 if XLE0 > λ̂LE → Pfa;

7 if XLE1 > λ̂LE → Pd;
8 repeat;

Figure 5.5 shows a comparison between different scenarios, full use, dy-
namic use and fixed use. We suppose that the CR is equipped with 200
antennas where they are all used in the full exploitation scenario and only 5
antennas are used in the fixed exploitation scenario and the choice of K for
the dynamic scenario depends on the SNR value and calculated using (5.32).
It is obvious that the full exploitation of the antenna scenario achieves the
best performance, however it is exploiting all the antennas all the time even
if it not necessary. In this case, the threshold is calculated using the GEV ap-
proximation in Sec. 5.3. Using fixed number of antennas will lead to a worst
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Figure 5.4: Empirical Pfa and Pd of the LE detector and its corresponding
target values by using dynamic method.
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performance as the environmental conditions gets worst. On the other hand,
if the system performance is well defined then we can achieve the desired
performance all the time while efficiently exploiting all the antennas and/or
relaxing the system. From the figure, results show high decrease in the value
of K as SNR increases with approximately stable Pd = 0.9. Using dynamic
exploitation scenario, CR system will gain around 115 antennas that could
be used for other purposes. In addition, the computational complexity of the
sample covariance matrix and the eigenvalues in the detection algorithm will
be decreased since the received matrix size, (K × N), is decreased. More-
over, results show that it is enough to use K = 2 for N = 500 starting from
ρ = −10dB. Indeed, since K = 2 is the smallest value for the EBD then, for
ρ ≤ −10dB, the designer can fix K = 2 and starts to minimize N accord-
ingly. In this case, as N decreases the threshold could be computed using
the GEV approximation in the finite case.
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Figure 5.5: Empirical Pd of the LE detector and the corresponding number
of antennas, K, used for sensing in Full, Dynamic and Fixed methods w.r.t
ρ and fixing N = 500.

The SCN and SLE detector are considered next and an algorithm similar
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to Algorithm 5.2 is applied. The results are shown in Figures 5.6, 5.7, 5.8 and
5.9. Figures 5.6 and 5.8 show the Pd and Pfa of the SCN and SLE detectors
respectively for different values of K which is changed according to the target
(P̂fa = 0.01, P̂d = 0.9) and the variation of SNR or N . Figures 5.7 and 5.9
show the variation of Pd with respect to SNR and K in the aforementioned
scenarios for SCN and SLE detectors respectively. In the SLE detector case,
we suppose that the mean error ε = 0. Results show high accuracy of the
analytical results evaluated using (5.33) and (5.34). Like the LE case, when
K takes small values, the difference between the empirical and target Pd is
due to both the AC and the rounding of K. Moreover, it could be noticed
from Fig. 5.7 that at ρ = −22dB and using N = 500 then the required value
of K is 203. In this case and since the CR is equipped with 200 antennas,
then the designer must fix K = 200 and starts to increase N accordingly
to achieve the target performance. Finally, these expressions are very useful
and accurate to make a dynamic system in which the antennas are efficiently
utilized.

5.5.3 LE, SCN and SLE comparison

In this section, we provide a comparison between the considered detectors.
For the LE detector, the noise power is supposed to be perfectly known while
SCN and SLE detectors are totally-blind and do not require this knowledge.
Figure 5.10 plots the ROC of these detectors for N = 500, K = 5 and
ρ = −15dB. Simulation results show that the LE detector outperforms the
SLE detector and the SLE detector in turn outperforms the SCN detector.
However, if noise power is not perfectly known, the performance of the LE
detector will degrades and it might be worst than the performance of SLE
and SCN detectors as shown in Fig. 5.10 where 0.2dB noise uncertainty is
considered. These results are expected as discussed through this thesis.

Figures 5.11 and 5.12 show the minimum required number of antenna K
for the LE, SCN and SLE detectors to achieve a target (P̂fa = 0.01, P̂d =
0.9) when changing ρ and N respectively. As expected, due to the superior
performance of the LE detector followed by the SLE detector and the SCN
detector, the required K to acheive the target performance for LE detector is
smaller than that for the SLE detector which in turn is also smaller than that
for the SCN detectors. In addition, it is also noticeable that the difference in
K for LE and SLE are close whereas K required of the SCN detector is larger.
Indeed, LE and SLE detectors are optimal when the noise power is perfectly
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Figure 5.6: Empirical Pfa and Pd of the SCN detector and its corresponding
target values by using dynamic method.
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Figure 5.7: Empirical Pd of the SCN detector and the corresponding number
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Figure 5.8: Empirical Pfa and Pd of the SLE detector and its corresponding
target values by using dynamic method.
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Figure 5.9: Empirical Pd of the SLE detector and the corresponding number
of antennas, K, used for sensing in Full, Dynamic and Fixed methods w.r.t
ρ and fixing N = 500.
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Figure 5.11: Required K of the LE, SCN and SLE detectors for dynamic
antenna exploitation w.r.t ρ and fixing N = 500, Pd = 0.9 and Pfa = 0.01.

known and noise power uncertain environments respectively. In this regard,
it is worth mentioning that by considering LE detector with noise uncertain
environment the performance of the LE detector will degrade and thus the
number of required K will increase. This case is considered in the future
recommendations.

5.6 Conclusion

CR equipped with massive MIMO technology will achieve a significant in-
crease in the performance of the multi-antenna SS detector. However, it
might be enough to use a much fewer number of antennas for the sensing
process and achieve a desired performance. We considered the LE, SCN and
SLE detectors with two exploitation scenarios: (i) Full exploitation of the
antennas and (ii) Partial exploitation of the antenna. The latter is further
decomposed into two options: (i) Fixed use and (ii) Dynamic use. We de-
rived the exact CDF of LE metric and its moments then we approximate this
distribution using GEV distribution for both finite and asymptotic cases to
get a simple form for the decision threshold. An optimized decision threshold
is derived for the fixed use approach that minimizes the error probabilities
of the LE detector. Finally, we illustrated a way to compute the minimum
requirements of the CR system to achieve the desired performance in the
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Figure 5.12: Required K of the LE, SCN and SLE detectors for dynamic
antenna exploitation w.r.tN and fixing ρ = −20dB, Pd = 0.9 and Pfa = 0.01.

dynamic use approach for the LE, SCN and SLE detectors. Simulation tests
have been done to validate the derived expressions and to study the dif-
ferent approaches. It has been shown that using the dynamic approach is
the best solution for an efficient antenna exploitation. In addition, compar-
ison between LE, SCN and SLE detectors is illustrated in terms of detector
performance and minimum requirements.
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Chapter 6

Conclusions and Future

Recommendations

In this thesis, we have considered the EBD in a multiple-antenna CR systems.
EBD is usually a blind detector that overcomes noise uncertainty problems
and is efficient in low SNR environments. Moreover, the use of multi-antenna
technology in CR further extends the detection of spectrum holes from the
conventional frequency-time-space dimensions to a wider space that includes
the angle-of-arrival dimension. However, the main disadvantage of the EBD
is the complexity of its performance probabilities and the threshold which
cannot be evaluated on the fly. Moreover, the concept of massive MIMO in
SS and CRs still needs to be explored. There are various contributions in the
areas presented in this thesis and detailed in [J1-J5, C1-C3] and summarized
as follows:

In Chapter 3, we considered the SCN detector and discussed the com-
plexity of its decision metric distribution expressions, i.e. PDF and CDF.
This would result in complicated forms for the probability and the deci-
sion threshold which could not be computed online. In this regard, we have
started by deriving the analytical expression of the joint distribution of the
ordered eigenvalues of the central semi-correlated Wishart matrices when the
some of the eigenvalues of the correlation matrix are equal. We studied the
non-central/central approximation empirically and showed that it has per-
fect accuracy for low SNR values and could be considered as a good fit for
Pd for sufficiently large values of N when the SNR is high. The finite case
of the SCN detector is considered next. We derived the exact distribution of
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the SCN of the central uncorrelated, central semi-correlated and non-central
uncorrelated Wishart matrices. In addition, the p-th moment of the SCN
is considered as we derived the exact form for the pre-mentioned Wishart
matrices. To overcome the computational complexity of the exact SCN dis-
tribution, we proposed to approximate it using the GEV distribution based
on moment matching criteria. Accordingly, an approximation for the perfor-
mance probabilities of the SCN detector and its decision threshold are given
through simple expressions. Moreover, and using the non-central/central
approximation we have proposed a 2-step approximation for the detection
probability of the SCN detector which provides similar accuracy with sim-
pler moment complexity. Finally, in the asymptotic case, We derived the
asymptotic mean, the asymptotic variance and the asymptotic skewness of
the SCN using those of the extreme eigenvalues of the sample covariance
matrix by means of bi-variate Taylor expansion. GEV approximation for
the distribution of the SCN under H0 and H1 hypotheses were proposed.
Consequently, simple forms for the false-alarm probability, detection proba-
bility and the decision threshold are derived for real-time computations such
that a CR system with large number of antennas can dynamically adapt its
threshold according to pre-defined error constraints and channel conditions.

In Chapter 4, we considered the SLE detector which is an optimal detector
for detecting a single-PU in uncertain noise environments. We discussed the
complexity of its decision metric distribution expressions in literature that
are based on TW2 distribution or derived using Mellin transform. We proved
that the SLE could be modeled using standard Gaussian function under some
constraints. We showed that the trace is a Gaussian RV using the CLT. We
derived the CDF and the PDF of the SLE based on the distributions of the
largest eigenvalue and the trace. The false alarm probability, the detection
probability and the decision threshold were also considered as we derived new
simple and accurate forms. These forms are simple functions of the means
and variances of the largest eigenvalue and the trace as well as the correlation
coefficient between them. The correlation between the largest eigenvalue and
the trace is studied and simple expressions are provided.

In Chapter 5, we considered a CR equipped with massive MIMO tech-
nology. We discussed different scenarios for SS using these large number
of antennas. In the first scenario, we considered that the CR will use all
these antennas for SS and thus we approximate the LE using the GEV ap-
proximation under H0 hypothesis while keeping the Gaussian approximation
under H1 hypothesis. Accordingly, the threshold could be set. In the second
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scenario, we considered two approaches: (i) fixed resource and (ii) dynamic
resources. For this scenario, an optimal threshold for the LE detector was
derived and the minimum required resources are discussed for the LE detec-
tor if noise power is perfectly known and for SCN and SLE detectors when
noise uncertainty exists. we showed that the dynamic approach is the best
solution for an efficient antenna exploitation while maintaining on a target
performance. We showed the importance of this scenario from different as-
pects.

Finally, we present open research problems and future recommendations
related to the topics discussed in this thesis:

1. Noise power uncertainty: In practical scenarios, the cognitive receiver
is affected by several factors such as interference, noise uncertainty,
channel uncertainty etc.. It is still an open challenge to model the LE
detector in noise uncertain environments.

2. Noise correlation: In practice, the noise is never white and noise correla-
tion is indeed a big challenge for EBD. Modelling the noise correlation
and studying their effect on different decision metrics of the EBD is
highly recommended for future work.

3. Hardware implementation and real scenario comparison: As mentioned,
several factors will affect the detection performance for any detector
in practical scenarios. Hence, it would be interesting to implement
the mentioned detectors using USRPs and study their performances
in real scenario. Moreover, performance comparison of these detectors
and others, like ED and CFD, in real environments is very important
for future use of any of the mentioned detectors.

4. Massive MIMO:

– Antenna Selection: as discussed in Ch. 5, dynamic antenna ex-
ploitation is very important for an efficient exploitation of the huge
number of antenna that a CR is equipped with. Thus, the antenna
selection criteria is worth considered in future work. Moreover, the
exploitation of beam-forming for detecting the angle-of-arrival of
the signal must be considered in the antenna clustering or selection
criteria.
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5. Hybrid Cooperative Detectors: As discussed in Ch. 2, cooperative spec-
trum sensing has several benefits such as avoiding HNP and increasing
the sensing performance. On the other hand, different devices may have
different capabilities and may face different environmental conditions.
Here, according to device capability, to the amount of knowledge and
environmental conditions, the SU may use different detector for spec-
trum sensing. For example, if the SU device is equipped with single
antenna then it may use ED whereas a multi-antenna device with per-
fect noise power knowledge may use LE detector and so on. Then, the
cooperation between different SUs using different detectors is worth
considered and modeled.
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Appendix A

Proofs

A.1 Proof of Theorem 3.1

Before we start the proof, it is required to give the following Lemma present-
ing the nth derivative of any function of the form e−

a
x with respect to the

variable x.

Lemma A.1. let us define the function f(x) = e−
a
x , then the nth derivative

of f(x) is given by:

f (n)(x) =
a

x2n
· e−

a
x ·
[ n∑
k=1

(−1)k+nL(n, k)xn−kak−1

]
(A.1)

where the Lah number defined by L(n, k) =
(
n
k

)(
n−1
k−1

)
(n− k)!.

Proof. It should be noted that, for any value of n, the nth derivative of e−
a
x

will result into the function e−
a
x multiplied by sum of (a/x) with different

powers for a and x. Regardless of the sign, it is found that the number mul-
tiplied by each component of this sum is exactly equals to the Lah number.

Following the pattern seen by calculating the derivative of f(x) for small
values of n, and matching the numbers at each derivative level, ”n”, with the
Lah number L(n, k), it can be proved, by recurrence, that the nth derivative
of the function f(x) of the form e−

a
x is given by (A.1).

Now, we proceed in proving theorem A.2. If we have L equal eigenvalues
(σp = · · · = σq), we must generalize the result of central semi-correlated
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Wishart with distinct correlation eigenvalues for arbitrary number of coinci-
dent eigenvalues by taking the limit of joint distribution given by [157, Eq.
6] as follows:

lim
σp,q→σp

f(λ)= |Φ(λ)|
K∏
i=1

ξ(λi) lim
σp,q→σp

(C×|E(λ,σ)|) (A.2)

= |Φ(λ)|
K∏
i=1

ξ(λi) lim
σp,q→σp


∏K

i<j σiσj
K∏
i=1

σNi (N − i)!
· |E(λ,σ)|
K∏
i<j

σj − σi


with σp,q = [σp, · · · , σq], and C the normalization constant, Φ(λ) is a Van-

dermonde matrix of entries λi−1
j , E(λ,σ) is matrix of entries e

−λj/σi , and

ξ(λi) = λN−Ki [157, Table I]. To evaluate the limit in (A.2) we apply lemma
2 from [216] to obtain:

lim
σp,q→σp

|E(λ,σ)|
K∏
i<j

σj − σi
=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

e(λ1, σ1) · · · · · · e(λK , σ1)
...

. . . . . .
...

e(λ1, σp−1) · · · · · · e(λK , σp−1)
e(L−1)(λ1, σp) · · · · · · e(L−1)(λK , σp)

...
. . . . . .

...
e(0)(λ1, σp) · · · · · · e(0)(λK , σp)
e(λ1, σq+1) · · · · · · e(λK , σq+1)

...
. . . . . .

...
e(λ1, σK) · · · · · · e(λK , σK)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
K∏
i<j
σi 6=σj

(σj − σi) · ΓL(L)

(A.3)

with e(λi, σj) = e
− λi
σj , the required derivatives are evaluated using (A.1) and

Γs(l) =
∏s

i=1(l − i)!. Then, the result is obtained by substituting (A.1) and
(A.3) into (A.2) and simplifying.

In the case we have several coincidence (eg. σp,q = σp, σt,s = σs, etc.),
the same analysis could be applied and the limit must be taken over all
coincidence cases.
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A.2 Proof of Equations 3.16-3.17, 3.22-3.23,

3.29-3.30.

Consider the equations (3.14), (3.19) and (3.26) and apply Laplace expansion
followed by Leibniz formula of the determinant [217] we get:

F (x) = K{.}
K∑

n,m=1

(−1)n+m
∑
δ∈P1

sgn(δ)

∫ ∞
0

Υ{.}n,m(λK)
K−1∏
i=1

∫ xλK

λK

Υ{.}rδi,n,ri,m
(u)du dλK

(A.4)
where {.} refers to one of these cases (cu: central uncorrelated, nu: non-
central uncorrelated, or cc: central semi-correlated).

Knowing that γ(n, λ) = (n − 1)!
(

1− e−λ
∑n−1

l=0
λl

l!

)
and 0F1(n, λ) =∑∞

l=0
λl

(n)ll!
, then (3.16), (3.22) and (3.29) are derived as follows:

• substitute (3.15), (3.20) or (3.27) in (A.4) for (3.16), (3.22) and (3.29)
respectively.

• algebraic manipulation and integrate.

Equations (3.17), (3.23) and (3.30) are, respectively, the derivatives of
(3.16), (3.22) and (3.29).

A.3 Proof of Theorems 3.2 and 3.3

Starting by particularizing the joint distribution of the ordered eigenvalues
of the central semi-correlated Wishart matrices when the correlation matrix
has K − 1 equal eigenvalues, then we have the following Lemma:

Lemma A.2. Let W ∼ CWK(N,Σ) be a central semi-correlated complex
Wishart matrix with correlation matrix Σ of eigenvalues σ1 > σ2 = · · · = σK.
Then, the joint distribution of the ordered eigenvalues of W is given by:

f(λ) = Kcc|V (λ)||E(λ,σ)|
K∏
l=1

λN−Kl , (A.5)

with (i, j)-th entries of E(λ,σ) and Kcc are given respectively by:

ei(λj) =

e−
λj
σ1 i = 1

(−λj)K−ie−
λj
σ2 1 < i ≤ K

(A.6)

130



Kcc =
σK−N−1

1 σ
(N−1)(1−K)
2

ΓK(N)ΓK−1(K − 1)(σ2 − σ1)K−1
(A.7)

Now, Using joint distribution in (3.4) and (A.5), then the result in (3.19)
and (3.26) follows the analytical derivation of (3.14) while considering the
different cases of fi(λj) and ei(λj). Finally, substitute the hypergeometric
function for the non-central case and integrate using [179, Eq.(3.351.1)].

A.4 Proof of Theorems 3.4, 3.5 and 3.6.

The pth moment of the SCN is given by:

M(p) =

∫ ∞
0

∫ ∞
λK

· · ·
∫ ∞
λ2

(
λ1

λK
)p · f(λ) dλ1 · · · dλK (A.8)

then the result is derived as follows:

• substitute the joint distribution of the ordered eigenvalues for the cen-
tral uncorrelated, non-central uncorrelated, and central semi-correlated
Wishart cases.

• apply Laplace expansion.

• apply Leibniz formula

• algebraic manipulation to transform the product into sum then collect
common terms

• integrate using [179, Eq.(3.351.2)] and [179, Eq.(3.351.3)] and watch
the recurrence.

A.5 Proof of Theorems 5.2 and 5.3.

Using integration by parts, the p-th moment of the LE could be written as
follows:

MLE
p =

∫ +∞

0

xpd(FLE(x))

= xpFLE(x)

∣∣∣∣+∞
0

−
∫ +∞

0

pxp−1FLE(x)dx, (A.9)
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now, using the alternative sum of determinant (Leibniz formula) [217] and
the definition of lower incomplete gamma function [179, Eq. 8.352.1], then
FLE(x) of central uncorrelated and central semi-correlated Wishart matrices,
after some algebraic manipulation, could be written, respectively, as follows:

F cu
λ1

(x) =Kcu
∑
δ∈P0

sgn(δ)
K∏
i=1

(δ(i) + i+N −K − 2)!

×
∑
s∈S0

(−1)|s|e−|s|xxΣls

Πls!
(A.10)

F cc
λ1

(x) =K′cc
∑
δ∈P0

sgn(δ)
K∏
i=1

(N + δ(i)− bi,K − 1)!

σ
bi,K−δ(i)−N
i

×
∑
s∈S0

(−1)|s|e−Σ 1
σs
xxΣs

Πs! · Πσss
(A.11)

Finally, equations (5.6) and (5.7) results after substituting (A.10) and
(A.11), respectively, in (A.9) and integrate using [179, Eq. 3.351.3].
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Appendix B

SCN Distribution for SU

equipped with 3 antennas

Consider a SU equipped with only 3 antennas, then the CDF formulas of the
SCN for this particular case under the hypothesesH0 andH1 are provided by
the following theorems. In Theorem B.1, we derive the exact CDF expression
for the SCN under H0 hypothesis. In Theorem B.2, we derive the approxima-
tion of the CDF for the SCN under H1 hypothesis using non-central/central
approximation in Lemma 3.3.

Theorem B.1.

F0(x) = Kun[δ1(x,N − 1, N + 1, N − 3)− δ1(x,N,N,N − 3)+

δ1(x,N − 3, N − 1, N + 1)− δ1(x,N − 2, N − 2, N + 1)−
2δ1(x,N − 2, N + 1, N − 2) + 2δ1(x,N − 1, N,N − 2)+

2δ1(x,N − 2, N,N − 1)− 3δ1(x,N − 1, N − 1, N − 1)+

δ1(x,N − 3, N + 1, N − 1)− 2δ1(x,N − 3, N,N)+

2δ1(x,N − 1, N − 2, N)] (B.1)

where Kuc and δ1(x, L,M, P ) are respectively given by:

Kuc =
1

2(N − 1)!(N − 2)!(N − 3)!
(B.2)

δ1(x, L,M, P ) = L!M !
L∑
l=0

M∑
m=0

[
(α− 1)!

l!m!
(

1

3α
− xl + xm

(x+ 2)α
+

xl+m

(2x+ 1)α
)] (B.3)
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where α = l +m+ P + 1.

Proof. The proof could be summarized as follows:

1. Considering (3.14) and setting K = 3.

2. Expanding the summation and using (3.15).

3. Expanding the determinant and integrating using [179, Eqs. (3.351.1)
and (3.351.3)].

Then the result comes after simplification.

Theorem B.2. The CDF of the SCN of a 3 × 3 central semi-correlated
Wishart matrix W ∼ CWK(N,Σ3) whose Σ3 has 2 equal eigenvalues (σ1 >
σ2 = σ3) is given by:

F1(x) = Csc[R1(N, x)−G1(N, x)] (B.4)

where R1(N, x) is defined in (B.5), G1(N, x) in (B.6), S1(r, s, t, µ, ν, x) in
(B.7), ∆1(r, s, t, µ, ν, ε, x) in (B.8) and Csc in (B.9).

Ri(N, x) =Si(N−3, N,N−2, σ−1
1 , σ−1

2 , x) + Si(N−2, N−2, N−1, σ−1
1 , σ−1

2 , x)

+ Si(N − 1, N − 1, N − 3, σ−1
1 , σ−1

2 , x), i = 1, 2 (B.5)

Gi(N, x) =∆i(N− 2, N− 1, N− 2, σ−1
2 , σ−1

2 , σ−1
1 , x)

+∆i(N− 2, N,N− 3, σ−1
2 , σ−1

2 , σ−1
1 , x)

+∆i(N− 3, N− 1, N− 1, σ−1
2 , σ−1

2 , σ−1
1 , x), i = 1, 2 (B.6)

Si(r, s, t, µ, ν, x)=∆i(r, s, t, ν, ν, µ, x) + ∆i(t, r, s, ν, µ, ν, x)−∆i(r, t, s, ν, µ, ν, x)

−∆i(r, s, t, ν, µ, ν, x) + ∆i(t, s, r, ν, µ, ν, x), i = 1, 2 (B.7)

∆1(r, s, t, µ, ν, ε, x) = −µ2∆3(r, s, t, ν, ε, µ, x) (B.8)

Csc =
(σ2 − σ1)−2

(N − 1)!(N − 2)!(N − 3)!σN−2
1 σ

2(N−2)
2

(B.9)

where ∆3 defined by:

∆3(r, s, t, µ, ν, ε, x)=

(
r!s!

µr+1εs+1

) r∑
k=0

s∑
u=0

[
(k + u+ t)!

k!u!µ−kε−u
·
(

1

(µ+ ε+ ν)k+u+t+1

− xu

(µ+ εx+ ν)k+u+t+1
− xk

(µx+ ε+ ν)k+u+t+1
+

xk+u

(µx+ εx+ ν)k+u+t+1

)]
(B.10)
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Proof. The proof could be summarized as follows:

1. Considering (3.26) and setting K = 3.

2. Substituting the parameters from Lemma A.2.

3. Expanding the summation and using (3.28).

4. Expanding the determinant and integrating using [179, Eqs. (3.351.1)
and (3.351.3)].

Then the result comes after simplification.

It is worth mentionning that the PDF expressions are the derivative of
the CDF expressions w.r.t x.
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Appendix C

Generalized Extreme Value

Distribution

Generalized Extreme Value (GEV) is a flexible 3-parameter distribution used
to model the extreme events of a sequence of i.i.d random variables. The GEV
parameters are the location parameter (µ εR), the scale parameter (σ > 0),
and the shape parameter (ξ εR). Various values of the shape parameter yield
to a type of the extreme value distributions [218].

Let X be a GEV distributed random variable, then the CDF and the
PDF of X are given by [218]:

F (x;µ, σ, ξ) = e−t(x), (C.1)

f(x;µ, σ, ξ) =
1

σ
t(x)ξ+1e−t(x), (C.2)

with t(x) given by (C.3).

t(x) =

{
e−

x−µ
σ ξ = 0

(1 + (x−µ
σ

)ξ)
−1/ξ ξ 6= 0

. (C.3)

The mean, variance and skewness of the X are given in Table C.1 where
gk = Γ(1− kξ), γ is Euler’s constant, and ζ(.) is the Riemann zeta function,
with Γ(.) is the gamma function [219].

Finding the inverse function of the skewness in Table C.1 is not straight-
forward, thus, applying non-linear least squares change this inversion into
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Table C.1: Mean, Variance and Skewness for GEV

ξ Mean (µ) Variance (σ2) Skewness (S)

< 0 δ − (1− g1)β
ξ

(g2 − g2
1)β

2

ξ2 −g3−3g1g2+2g3
1

(g2−g2
1)

3/2

= 0 δ + βγ β2 π2

6
12
√

6ζ(3)
π3

]0, 1
2
[ δ − (1− g1)β

ξ
(g2 − g2

1)β
2

ξ2

g3−3g1g2+2g3
1

(g2−g2
1)

3/2

[1
2
, 1[ δ − (1− g1)β

ξ
∞ g3−3g1g2+2g3

1

(g2−g2
1)

3/2

≥ 1 ∞ ∞ g3−3g1g2+2g3
1

(g2−g2
1)

3/2

squared error minimization problem as follows:

θ̂ = min
θ

d∑
i=1

(ξi − f(SX,i,θ))2, (C.4)

where f(SX,i,θ) is a pre-chosen inverse function and θ is a vector of p pa-
rameters to be estimated. (SX,i, ξi) are d data points calculated using the
skewness in Table C.1.

Defining a proper inverse function and refining θ iteratively for each in-
terval1, then the inverse of the skewness is given by (C.5). Accordingly,
the inverse of the mean and variance are straightforward as provided by the
following Lemma:

Lemma C.1. Let X be a GEV random variable with mean, variance and
skewness given by µX , σ2

X and SX respectively. Then, the shape, scale and

1We decompose ξ axis as follows: ξ < −0.5, ξ ∈ [−0.5, 0[, ξ = 0, and ξ ∈]0, 13 [ and the
resulting RMSE is of order 10−5. However, for the interval ξ < −0.5, the error increases
as ξ decreases.
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location of X are given, respectively, by:

ξ =


a1 ln(b1S2

X + c1SX + d1) SX < −0.63

a2S2
X + b2SX + c2 −0.63 ≤ SX < 1.14

0 SX = 1.14
a3S2

X+b3SX+c3
S2
X+d3SX+e3

SX > 1.14

(C.5)

β =


√

σ2
Xξ

2

g2−g2
1
SX 6= 1.14√

6σ2
X

π
SX = 1.14

(C.6)

δ =

{
µX − (g1−1)σ

ξ
SX 6= 1.14

µX − σγ SX = 1.14
(C.7)

where the constants in (C.5) are given in Table C.2.

Table C.2: Constants of Eq. (C.5), Lemma C.1

i ai bi ci di ei

1 −0.43544 2.3227 −0.97563 1.3781 −
2 −0.06393 0.3173 −0.2771 − −
3 0.333 −0.09862 −0.3195 0.9553 1.599
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