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Résumé Français

Introduction

Dans tous les domaines scientifiques, la modélisation est une activité commune qui
vise à construire une vue abstraite simplifiant un système complexe de la réalité. Les
modèles sont utilisés dans différents domaines d’études, tels que la biologie [1], le génie
civil [2], ou la description de lignes de produits [91], et sont reconus comme une so-
lution efficace pour appréhender des problèmes complexes et résoudre des questions
spécifiques. Dans le domaine de l’ingénierie et du développement logiciel, les mod-
èles sont utilisés pour décrire un système à développer, en représentant sa structure, ses
composants, et sa logique. Ces modèles sont typiquement définis à l’aide de langages de
modélisation, qui fournissent un ensemble règles permettant le partage de l’information
entre les différents intervenants. Le langage UML (Unified Modeling Language) est un
example de langage de modélisation largement adapté par l’académie et l’industrie, et qui
a été standardisé par l’OMG (Object Management Group).

L’Ingénierie Dirigée par les Modèles (IDM) est une méthode de développement logi-
cielle qui place les techniques de modélisations au centre du processus de développement.
Les modèles deviennent des artefacts de premier ordre utilisés dans toutes les activités
d’ingénierie, telles que le développement logiciel, mais également son évolution, ou la
modélisation des exigences fonctionnelles et non fonctionnelles. Les modèles sont au-
tomatiquement traités par des transformations de modèles qui permettent de les rafiner
afin de fournir différentes vues du système, générer des modèles d’implémentation spé-
cifiques à des plateformes de déploiement, de la documentation, etc. L’IDM définit en
général une dernière étape basée sur un transformation modèle vers texte, qui génère le
code applicatif, les schemas des bases de données, ainsi que l’implémentation des invari-
ants et règles métier.

La génération et l’extraction automatique de modèles sont des domaines particuliers
de l’IDM permettant de construire des modèles à partir d’artefacts existants (code source [19],
API web [56], etc). Les modèles obtenus sont ensuite utilisés pour assister le modeleur
dans sa compréhension du système étudié, construire des vues précises, générer de la
documentation, ou évaluer la qualité du système considéré. Ces techniques ont été pop-
ularisée par les techniques de rétro-ingénierie dirigée par les modèles, qui permettent de
construire automatiquement un ensemble de modèle à partir d’une base de code. Ces
modèles sont ensuite utilisés dans des processus complexes tels que l’évolution logicielle
ou la restructuration de code source, qui sont typiquement exprimés par des langage de
requêtage et de transformation de modèles.

Ces dernières années, l’IDM a été appliquée avec succès dans plusieurs scenario
industriels. En effet, les études existantes [76, 54] reportent qu’utiliser les techniques
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d’IDM améliore la productivité et la maintenabilité des logiciels créés, tout en dimin-
uant leurs coûts ainsi que les efforts nécessaires à leur construction. Cette intégration
industrielle a notamment débouché sur la création de plusieurs plateformes de modéli-
sations telles qu’EMF (Eclipse Modeling Framework) [102] et Papyrus [70], fournissant
de solides bases pour construire, stocker, et requêter des modèles. Dans la communauté
scientifique, l’IDM est reconnue comme un des sujets importants dans les conférences
d’ingénierie logicielle majeures telles qu’ICSE 1 et ASE 2, et est le sujet principal de con-
férences et journaux reconnus tels que MoDELS 3 et SoSym 4.

Description de la problématique

Bien que l’IDM ait montré ses atouts pour améliorer les processus de développement
logiciels, l’usage de plus en plus important de grands modèles complexes (en particulier
dans des contextes industriels) a montré de claires limitations entravant son adoption [55,
68]. Les évaluations empiriques en situations industriels [117] ont en effet montré que
l’une des principales raisons d’échec de l’intégration des techniques d’IDM est liée au
manque de support pour le passage à l’échelle des outils existants.

En effet, les outils de modélisation développés ces 15 dernières années ont été conçus
pour traiter des activités de modélisation basiques et mono-utilisateur, et n’ont pas été
pensés pour supporter les modèles de grandes tailles utilisés de nos jours. Par exemple,
le métamodèle BIM [2] définit un ensemble riche de concepts (environ 800) permet-
tant de décrire précisément différents aspects d’un bâtiment ou d’une infrastructure. Les
instances de ce métamodèle contiennent typiquement plusieurs millions d’éléments inter-
connectés, et habituellement stockés dans de larges fichiers monolithiques de plusieurs
gigabytes.

Un exemple typique de problèmes de passage à l’échelle concerne la modernisa-
tion automatique de logiciels patrimoniaux basée sur des techniques de rétro-ingénierie
dirigée par les modèles. Comme le montre la Figure 1.1, un processus de modernisation
d’application dirigée par les modèles est définie comme une séquence d’opérations ayant
pour but d’extraire un modèle représentant le logiciel existant (tels que son code source,
ses fichiers de configurations, ou ses schémas de bases de données), puis effectuant une
série de requêtes et de transformations dans le but de rafiner l’application existante. En-
fin, une étape de génération (en général définie par une transformation de modèles) est
utilisée pour créer —une partie de— la plateforme modernisée. Dans cet exemple, la
taille de l’application à migrer peut être de taille arbitraire, et le passage à l’échelle des
solutions techniques peut être une limitation majeure lorsque le processus est appliqué
à de grandes bases de codes (contenant plusieurs millions de lignes de codes), et avoir
des impacts à plusieurs étapes du processus: (i) l’environnement de modélisation doit
permettre de stocker efficacement le modèle représentant l’application existante, (ii) les
requêtes doivent être calculées sur les modèles créés efficacement, et (iii) les transfor-
mations doivent être effectuées de manière performante pour rafiner (potentiellement de
manière répétée) les modèles existants vers l’application modernisée. Ainsi, un ensemble

1. http://www.icse-conferences.org/
2. http://ase-conferences.org/
3. https://www.cs.utexas.edu/models2017/home
4. http://www.sosym.org/

http://www.icse-conferences.org/
http://ase-conferences.org/
https://www.cs.utexas.edu/models2017/home
http://www.sosym.org/
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de solutions de modélisation prenant en charge les modèles de grande taille est nécessaire
pour permettre d’appliquer les techniques de rétro-ingénierie dirigée par les modèles sur
des applications patrimoniales de grande taille.

Figure 1 – Legacy System Modernization using MDRE Techniques

Dans cette thèse, nous nous concentrons sur deux problèmes majeurs afin d’améliorer
la mise à l’échelle des solutions techniques existantes et permettre l’utilisation des tech-
niques d’IDM dans des contextes industriels impliquant de larges modèles.

Mise à l’échelle des techniques de persistance de modèles Historiquement, la séri-
alisation sous forme de fichiers XML (eXtensible Markup Language) a été la solution
privilégiée pour stocker et partager des modèles. Cependant, ce format a été conçu pour
supporter des activités de modélisation simples telles que la création manuelle de mod-
èles, et a montré ses limites dans le cadre de scénarios industrial actuels [48, 87] manip-
ulant de larges modèles, potentiellement générés automatiquement [19]. En particulier,
la représentation XML présente deux inconvénients majeurs limitant son efficacité dans
le cadre de l’utilisation de grands modèles: (i) elle repose généralement sur de lourds
fichiers nécessitant d’être intégralement chargés en mémoire pour être navigables, et (ii)
elle offre un support limité au (dé)charger de fragments d’un modèle. Plusieurs solutions
basées sur des bases de données relationnelles ou NoSQL [43, 87] ont été proposées pour
résoudre ces limitations, mais elles se limitent généralement à fournir des améliorations
génériques (comme des stratégies de chargements paresseux), et le choix de la base de
données est totalement découplé de l’utilisation attendue du modèle. De fait, une so-
lution donnée peut être appropriée à une tâche de modélisation spécifique, et inadaptée
à une autre. De plus, les solutions de persistance actuelles manque en général de solu-
tions avancées de mise en cache et de préchargement, qui pourraient être intégrées pour
améliorer leurs performances.

Mise à l’échelle des techniques de requêtage et de transformation de modèles Le re-
quêtage et la transformation de modèles sont les deux pierres angulaires des outils d’IDM,
et plusieurs approches ont été conçues pour permettre leur définition et exploitation sur
les platformes de modélisation existantes. Les infrastructures de requêtage et de trans-
formation fournissent en général un langage de haut niveau (tel que le standard OCL
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(Object Constraint Language)) qui est interprété en traduit en une séquence d’opérations
déléguée à la plateforme de modélisation et finalement calculé par la base de données
stockant le modèle. Bien que cette technique soit efficace lorsqu’elle est appliqué à des
modèles sérialisés en XML, elle présente deux inconvénients majeurs lorsqu’elle est ap-
pliquée aux plateformes de modélisation actuelles: (i) les APIs de modélisations ne sont
pas alignées avec les capacités de manipulation de données des solutions de stockage
actuelles, limitant leur utilité, et (ii) un temps et une consommation mémoire importants
sont nécessaire pour construire les objets intermédiaires qui peuvent être manipulés par
ces APIs. De plus, les solutions de requêtage et de transformations actuelles sont en
général implémentées en mémoire, et stockent des informations additionnelles (telles que
les traces de transformation) qui posent des problèmes de consommation mémoire sur de
grands modèles.

Pour résumer, dans cette thèse, nous soutenons que la taille et la complexité croissante
des modèles est un problème majeur qui empêche l’adoption des techniques d’IDM dans
l’industrie, et que de nouvelles approches permettant de stocker, requêter, et transformer
ces grands modèles efficacement sont nécessaires. En particulier, l’alignement entre les
solutions de stockage et les outils de modélisation doit être amélioré afin de permettre
d’utiliser à leur plein potentiel les nouvelles générations de bases de données et leurs
capacités de requêtage avancées.

Contributions

Pour pallier ces problématiques, nous proposont une nouvelle infrastructure de mod-
élisation basée sur l’utilisation de base de données NoSQL et de leurs languages de re-
quêtes avancés. La Figure 1.2 présente l’ensemble de nos contributions et montre com-
ment ils interagissent entre eux pour créer un écosystème visant à stocker, requêter, et
transformer efficacement de grands modèles.

Les prototypes développés à partir des approches présentées dans cette thèse sont
construits sur l’infrastructure EMF, l’ecosystem standard de-facto pour la construction de
langage dédiés et d’outils de modélisation dans l’environnement Eclipse. Des informa-
tions complémentaires sur l’intégration de nos solutions dans des solutions alternatives
de modélisations sont fournis dans les chapitres correspondants.

— NEOEMF est notre solution pour améliorer le stockage et la manipulation de
grands modèles. Notre approche définit une nouvelle plateforme de modélisation,
intégrée de manière transparent aux outils EMF, et fournit un ensemble de base de
données NoSQL qui peuvent être sélectionnées en fonction du scénario de mod-
élisation attendu. NEOEMF est basé sur une architecture modulaire qui permet de
facilement intégrer de nouvelles solutions de stockage, et fournit des mécanismes
d’extensions réutilisés dans nos différentes approches afin d’améliorer l’efficacité
du requêtage et des transformations de grands modèles.

— PREFETCHML est un langage dédié à la définition de règles de mise en cache
et de pré-chargement sur un modèle. Ces règles sont combinées dans des plans
qui peuvent être appliqués à des tâches de modélisation spécifiques. Les plans
sont ensuite traités par un moteur responsable du chargement et déchargement des
éléments du modèle, améliorant les performances lors des accès et le calcul de
requêtes sur le modèle.
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— MOGWAÏ est une nouvelle approche d’évaluation de requêtes basée sur un généra-
teur de requêtes NoSQL à partir d’expressions définies en OCL. Notre solution se
base sur les capacités de requêtage avancées des bases de données NOSQL (en
particulier les bases de données en graphes) pour contourner les limitations des
APIs des plateformes de modélisation actuelles. MOGWAÏ est intégré à NEOEMF ,
et nos expérimentation montrent des gains significatifs en terme de temps d’exécution
et de consommation mémoire comparé aux solutions existantes.

— GREMLIN-ATL est une extension de notre approche de requêtage ayant pour ob-
jectif de supporter le calcul de transformations de modèles. Notre approche four-
nit un nouvel environement d’exécution de transformation qui peut être paramétré
afin de supporter de grands modèles en stockant les informations de transforma-
tion dans une base de données dédiée, et fournit un ensemble de connecteurs per-
mettant d’interfacer notre moteur sur différentes sources de données.

NeoEMF

MogwaïGremlinATL

PrefetchML

Efficient Model 
Persistence

Model QueryModel Transformation

Figure 2 – NeoEMF Modeling Ecosystem

Outils et Résulats

Les approches présentées dans ce manuscrit sont implémentées sous forme de plugins
Eclipse sous licence libre, et disponibles en ligne 5. La documentation des différents
outils ainsi que des tutoriels, guides d’utilisations, et ressources pour les développeurs
sont disponibles sur les dépôts Github correspondants 6.

Dans ce manuscrit, nous évaluons la mise à l’échelle de nos solutions sur un ensemble
de cas d’études reconnus dans les domaines de la rétro-ingénierie [19] et de l’industrie
féroviaire [103]. Nous montrons qu’utiliser une base de données optimisée pour une

5. www.neoemf.com
6. https://github.com/atlanmod

www.neoemf.com
https://github.com/atlanmod
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activité de modélisation donnée permet d’augmenter significativement les performances
en terme de temps d’exécution de consommation mémoire. De plus, nous démontrons
l’intérêt des techniques de mise en cache et de préchargement et montrons qu’utiliser
un plan adapté de préchargement permet d’améliorer les performances d’un scénario de
modélisation jusqu’à ✾✺✪.

Nous évaluons également nos techniques de requêtage et de transformation en nous
basant sur des exemples industriels de rétro-ingénierie, et mettons en évidence qu’utiliser
une traduction des languages de modélisation hauts niveaux (tels qu’OCL ou ATL) vers
les languages de requêtage spécifiques aux bases de données permet d’améliorer signi-
ficativement le temps d’exécution et la consommation mémoire.

Enfin, nous illustrons dans ce manuscrit comment nos approches peuvents être com-
binées afin de créer une solution permettant de réduire le fossé entre les techniques de
modélisation conceptuelles et les bases de données NoSQL. Concrêtement, notre ap-
proche permet de générer une brique logicielle permettant d’accéder à une base de don-
nées en graphe et de vérifier automatiquement un certain nombre de contraintes d’intégrité
à partir d’un schema conceptuel défini en UML et OCL. Pour cela, nous réutilisons le
schema implicite défini dans NEOEMF permettant de sérialiser un modèle dans une base
de données particulière, ainsi que notre approche de requêtage afin de générer des re-
quêtes bas niveau permettant de vérifier les contraintes d’intégrité et d’exprimer les règles
métier au niveau base de données.



Abstract

The Model Driven Engineering (MDE) paradigm is a software development method
that aims to improve productivity and software quality by using models as primary arti-
facts in all the aspects of software engineering processes. In this approach, models are
typically used to represent abstract views of a system, manipulate data, validate proper-
ties, and are finally transformed to application artifacts (code, documentation, tests, etc).

Among other MDE-based approaches, automatic model generation processes such as
Model Driven Reverse Engineering are a family of approaches that rely on existing mod-
eling techniques and languages to automatically create and validate models representing
existing artifact. Model extraction tasks are typically performed by a modeler, and pro-
duce a set of views that ease the understanding of the system under study.

While MDE techniques have shown positive results when integrated in industrial pro-
cesses, the existing studies also report that scalability of current solutions is one of the
key issues that prevent a wider adoption of MDE techniques in the industry. This is par-
ticularly true in the context of generative approaches, that require efficient techniques to
store, query, and transform very large models typically built in a single-user context.

Several persistence, query, and transformation solutions based on relational and NoSQL
databases have been proposed to achieve scalability, but they often rely on a single model-
to-database mapping, which suits a specific modeling activity, but may not be optimized
for other use cases. For example a graph-based representation is optimized to compute
complex navigation paths, but may not be the best solution for repeated atomic accesses.
In addition, low-level modeling framework were originally developed to handle simple
modeling activities (such as manual model edition), and their APIs have not evolved to
handle large models, limiting the benefits of advance storage mechanisms.

In this thesis we present a novel modeling infrastructure that aims to tackle scalability
issues by providing (i) a new persistence framework that allows to choose the appropriate
model-to-database mapping according to a given modeling scenario, (ii) an efficient query
approach that delegates complex computation to the underlying database, benefiting of its
native optimization and reducing drastically memory consumption and execution time,
and (iii) a model transformation solution that directly computes transformations in the
database. Our solutions are built on top of OMG standards such as UML and OCL, and
are integrated with the de-facto standard modeling solutions such as EMF and ATL.
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1
Context

1.1 Introduction

Modeling is a common activity in all scientific disciplines that aims to build sim-
plified and abstract views of a real-world situation for its systematic study. Models are
used in various domains such as biology [1], civil engineering [2], product lines [91], and
are recognized as a sound solution to understand complex problems and address specific
questions. In the field of software engineering, they are widely used to describe a system
under development, and can represent its structure, components, and logic. Software en-
gineering models are typically expressed using modeling languages, defining a common
set of rules that enables to share models between stakeholders. The Unified Modeling
Language (UML) [95] is an example of such a modeling language that has been stan-
dardized by the Object Management Group (OMG).

The Model-Driven Engineering (MDE) is a software development method that puts
modeling techniques in the center of the development process. Models become primary
artifacts that drive all software engineering activities, including software development
itself, but also evolution tasks and requirement modeling. Models are automatically pro-
cessed using model transformations that refines them in order to provide views of the
system, generate platform-specific models, or documentation. MDE processes typically
define a final generation step relying on a model-to-text transformation that creates the
final software artifacts, such as the application code, database schema, and constraints
implementations.

Automatic model generation and extraction are particular fields in MDE that are used
to construct models from existing artifacts (source code [19], web API [56], etc). The ob-
tained models are used to help the modeler understand the system under study, build fine-
grained views, generate documentation, or compute quality metrics. These techniques
have been popularized by Model Driven Reverse Engineering (MDRE) approaches, that
automatically build models representing an existing code base. The generated models

13
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constitute the input of complex processes such as software evolution tasks and source
code refactoring which are typically expressed using model query and transformation
languages.

In the last decade, MDE techniques has been successfully applied to several industrial
scenario. As reported in existing studies [76, 54], using MDE techniques increases the
productivity of software development compared to traditional methods, and improves the
maintainability of the created software while decreasing the cost and effort to build it.
This industrial adoption has leveraged the creation of several modeling platforms such as
the Eclipse Modeling Framework (EMF) [102] and Papyrus [70] aiming at providing a
strong foundation for building, storing, and querying models. In the scientific community,
MDE is recognized as an important research topic in the major software engineering
conferences such as ICSE 1 and ASE 2, and is the main topic of recognized conferences
and journals such as MoDELS 3 and SoSym 4.

1.2 Problem Statement

While MDE pretended to be the silver bullet for software engineering, the growing
use of large and complex models in industrial contexts has clearly emphasized serious
limitations hampering its adoption [55, 68]. Existing empirical assessments from indus-
trial companies adopting MDE [117] have shown that the limited support for large model
management in existing technical solutions is one of the main factor in the failure of
industrial MDE processes.

Indeed, modeling tools were primarily designed to handle simple modeling activities,
and existing technical solutions are not designed to scale to large models commonly used
and automatically constructed nowadays. As an example the BIM [2] metamodel defines
a rich set of concepts (around 800) that describes different aspect of physical facilities
and infrastructures. Instances of this metamodel are typically composed of millions of
elements densely interconnected. The resulting models are stored in large monolitical
files of several gigabytes, and cannot be processed efficiently by the current modeling
infrastructures.

A typical example where scalability issues arise is the automatic modernization of
legacy systems using MDRE techniques. As shown in Figure 1.1, a model-driven soft-
ware modernization process is defined as a sequence of operations that first extract a
model representing an existing software (such as its code base, configuration files, and
database schemas), then defines a set of model queries and transformations aiming at
refining the current application. Finally, a generation step (usually defined as a model
transformation) is designed to create —part of— the modernized platform. In this exam-
ple, the input software artifact to migrate can be of an arbitrary size, and the scalability of
existing technical solutions can be a major limitation when the process is applied to sys-
tems involving very large code bases (such as several million lines of code), and impact
multiple steps of the process: (i) the modeling framework needs to efficiently store the
model representing the existing application, (ii) model queries should be computed effi-

1. http://www.icse-conferences.org/
2. http://ase-conferences.org/
3. https://www.cs.utexas.edu/models2017/home
4. http://www.sosym.org/

http://www.icse-conferences.org/
http://ase-conferences.org/
https://www.cs.utexas.edu/models2017/home
http://www.sosym.org/
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ciently to allow interactive querying, and (iii) model transformations should be computed
efficiently to refine (potentially multiple times) existing models towards their modernized
representation. Thus, a set of scalable modeling techniques is required to enable such
refactoring operation when applied to large software artifacts.

Figure 1.1 – Legacy System Modernization using MDRE Techniques

In this thesis, we focus on two major issues that have to be addressed in order to
improve the scalability of existing technical solutions and enable industrial usage of MDE
techniques applied to large models.

Model Storage Scalability In the last decade, filed-based EXtensible Markup Lan-
guage (XML) serialization has been the preferred format for storing and sharing models.
While this format was a good fit to support simple modeling activities such as human
model sketching, it has shown clear limitations when applied to nowadays industrial use
cases [48, 87], that typically manipulate large models, potentially automatically gener-
ated [19]. Indeed, XML-like representation usually rely on large monolithic files that
require to be entirely parsed to be navigable, and provides limited support to partial load-
ing and unloading of model fragments. Several solutions based on relational and NoSQL
databases [43, 87] have been proposed to address this issue, but they often focus on pro-
viding generic scalability improvements (e. g. lazy-loading strategies), and the choice of
the data-store is totally decoupled of the expected model usage. As a result, a given solu-
tion can fit a specific modeling scenario, and be unadapted for another one. Furthermore,
existing model persistence frameworks typically lack advanced caching and prefetching
mechanisms that could be integrated to improve their performance.

Model Query and Transformation Scalability Model queries and transformations are
the cornerstones of MDE processes, and multiple approaches have been designed to com-
pute them on top of existing modeling platforms. Model query and transformation frame-
works typically provide a high-level language (such as the Object Constraint Language
(OCL) OMG standard [83]) that is translated into sequences of modeling framework’s
API calls and computed by the underlying data-store. While this query computation tech-
nique is efficient on top of XML-based serialization platforms (because the entire model
has to be loaded in memory), it presents two major drawbacks when applied to current
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scalable persistence solutions: (i) the modeling framework APIs are not aligned with the
query capabilities of the data-store, limiting its benefits, and (ii) an important time and
memory overhead is necessary to reify intermediate objects that can be manipulated using
these APIs. In addition, current query and transformation solution typically store addi-
tional informations in-memory (such as transformation traces), that grow accordingly to
the model size and limit their performances when applied to large models.

To summarize, in this thesis, we argue that the increasing size and complexity of
models that is being experienced by the industry is an important issue that prevents the
adoption of MDE techniques, and thus a novel generation of scalable approaches to per-
sist, query, and transform large models is required. Specifically, the alignment between
current data-storage solutions and existing modeling frameworks should be improved in
order to fully benefit from the novel generation of databases and their advanced query
capabilities.

1.3 Approach

One way to improve the support of existing modeling frameworks for large models is
to rely on advanced storage mechanisms designed to handle large amount of highly in-
terconnected data. The NoSQL movement is a family of storage techniques that aims to
overcomes classical Relational Database Management System (RDBMS) issues (such as
horizontal scaling and support for semi and unstructured data) by providing task-specific
databases highly optimized for particular data processings. Our model persistence ap-
proach aims to benefit from NoSQL implementation specificities by integrating multiple
data storage solutions designed to fit specific modeling tasks.

In order to improve the scalability of existing model persistence solution, we propose
an approach based on existing prefetching and caching techniques that have been inte-
grated for decades in relational database and file systems. We argue that bringing these
low-level concepts at the modeling level can significantly improve the performances of
I/O intensive applications, such as model validation and model transformation, and com-
plements existing NoSQL storage solutions that typically lack such components.

Finally, to cope with scalability issues of model transformations and queries, we pro-
pose a novel approach based on a translation from high-level modeling languages into
NoSQL-specific languages. Our model query and transformation environment relies on
the advanced capabilities of NoSQL data-stores by generating efficient queries that are
directly computed by the database, bypassing the modeling framework limitations and
improving performances both in terms of execution time and memory consumption.

1.4 Contributions

Figure 1.2 summarizes the contributions of this thesis and shows how they are com-
bined into an ecosystem designed to efficiently handle the storage, query, and transfor-
mation of large models. Note that all the presented contributions are open source and
available online through the NEOEMF website 5, and additional links to code reposito-

5. www.neoemf.com

www.neoemf.com


1.5. OUTLINE OF THESIS 17

ries and tutorials are provided in the corresponding chapters. The prototypes developed
from the approaches presented in this thesis are built on top of the EMF infrastructure,
the de-facto standard framework to build Domain Specific Language (DSL)s and mod-
eling tools in the Eclipse ecosystem. Additional information on the integration of our
techniques into alternative modeling solutions are provided in the related chapters.

— NEOEMF is our solution to improve the storage and access of large models. It is
defined as a generic modeling framework that can be transparently plugged into
the EMF platform, and provides a set of NoSQL database implementations that
can be selected to suit a given modeling activity. NEOEMF is based on a modular
architecture that can be complemented with additional model storage techniques,
and provides extension mechanisms that are reused along this thesis to further
improve performances of model query and transformation computations.

— PREFETCHML is a DSL that allows modelers to define prefetching and caching
instructions over a model. The resulting PREFETCHML plan is processed by an
execution engine that takes care of loading and unloading elements, speeding-up
model accesses and query computation. Our approach aims to be generic, and can
be applied on any persistence solution that provides an EMF compatible interface,
and an advanced integration in NEOEMF has been proposed to further improve
performances.

— MOGWAÏ is a novel model query approach that generates NoSQL database in-
structions from high-level model queries expressed in OCL. Our solution relies on
the rich database query languages that are provided by NoSQL databases (in par-
ticular graph implementations) to bypass the modeling stack limitations. MOG-
WAÏ is natively integrated in NEOEMF , and our experiments show a significant
improvement in terms of execution time and memory consumption when com-
pared to state of the art solutions.

— GREMLIN-ATL is an extension of the MOGWAÏ approach that supports model
transformation expressed in the AtlanMod Transformation Language (ATL). Our
approach embeds a novel transformation execution engine that can be parameter-
ized to scale to large models by storing transformation information in a dedicated
data-store, and provides a set of low-level connectors that allow to compute trans-
formations on heterogeneous data-sources.

1.5 Outline of thesis

The rest of this thesis is structured as follow:

Chapter 2 introduce the basic concepts that are required to grasp the remaining of the
thesis. We start by presenting the MDE paradigm and its main components and standard
languages. Then, we introduce NoSQL databases, their data representation strategies,
and the query languages they embed to access stored information.

Chapter 3 presents our conceptual solution to store large models in NoSQL databases.
We introduce the different model-to-database mapping we have defined, and discuss their
benefits and drawbacks. The chapter also provides guidelines on which data-store to
choose according to a specific modeling task to execute. Finally, we present the imple-
mentation of these concepts in the NEOEMF model persistence framework, and evaluate
it on a set of industrial case studies.



18 CHAPTER 1. CONTEXT

NeoEMF

MogwaïGremlinATL

PrefetchML

Efficient Model 
Persistence

Model QueryModel Transformation

Figure 1.2 – NeoEMF Modeling Ecosystem

Chapter 4 presents our approach to enhance the efficiency of model persistence solu-
tions by applying prefetching and caching techniques at the metamodel-level. We intro-
duce a novel DSL that allows to express fine-grained prefetching and caching rules based
on modeling events, and an execution environment that computes the rules according to
the model usage. We introduce the PREFETCHML framework that implements our ap-
proach and show how it can be integrated in existing modeling applications. Finally, we
evaluate our solution on top of well-known model queries and discuss its benefits and
trade-offs.

Chapter 5 details MOGWAÏ , our scalable query approach relying on an OCL-to-
Gremlin transformation that takes as its input an OCL expression and generates a low-
level graph database query. We evaluate the efficiency of our approach on a set of well-
known MDRE queries and show that our solution can drastically improve query execution
performances on top of large models.

Chapter 6 extends the work presented in Chapter 5 with support for model-to-model
transformations. We show how model transformation language constructs are integrated
in our query generation process. The chapter also introduce our novel scalable transfor-
mation engine, and a set of data-store connectors that allow to perform model transfor-
mations on top of various persistence solution.

Chapter 7 presents an example that integrates our solutions to build a framework
aiming at generating NoSQL application code from conceptual schemas. We show how
the implicit model-to-database mappings defined in NEOEMF can be reused to translate
schema structure into database access code, and how the OCL-to-Gremlin transformation
embedded in MOGWAÏ can be used to generate code that dynamically checks constraints
and invariants in the generated application.

Finally, Chapter 8 concludes this thesis by summarizing the key points and contribu-
tions, and describes our perspectives and future work.
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1.6 Scientific Production

During this thesis, we have produced 9 articles (8 are currently published, 1 under
review): 4 international conferences, 3 international workshops, and 2 journals

— Journals

1. Daniel, G., Sunyé, G., Benelallam, A., Tisi, M., Vernageau, Y., Gómez, A., &
Cabot, J. NeoEMF: a Multi-database Model Persistence Framework for Very
Large Models. In Science of Computer Programming (SCP), 2017. Elsevier
Publishing.

2. Daniel, G., Sunyé, G., Cabot, J. Advanced Prefetching and Caching of Mod-
els with PrefetchML. Submitted to Software and Systems Modeling (SoSym),
2017. Springer Publishing.

— International Conferences

1. Daniel, G., Sunyé, G., & Cabot, J. (2016, June). Mogwaï: a Framework
to Handle Complex Queries on Large Models. In Proceedings of the IEEE
Tenth International Conference on Research Challenges in Information Sci-
ence (RCIS) (pp. 1-12). IEEE Publishing.

2. Daniel, G., Sunyé, G., & Cabot, J. (2016, October). PrefetchML: a Frame-
work for Prefetching and Caching models. (distinguished paper award) In
Proceedings of the ACM/IEEE 19th International Conference on Model Driven
Engineering Languages and Systems (MoDELS) (pp. 318-328). ACM Pub-
lishing.

3. Daniel, G., Sunyé, G., & Cabot, J. (2016, November). UMLtoGraphDB:
Mapping Conceptual Schemas to Graph Databases. In Proceeding of the
35th International Conference on Conceptual Modeling (ER) (pp. 430-444).
Springer International Publishing.

4. Daniel, G., Sunyé, G., Jouault, F., Cabot, J. (2017). Gremlin-ATL: a Scalable
Model Transformation Framework. In Proceedings of the 32nd IEEE/ACM
International Conference on Automated Software Engineering (ASE), 2017.
ACM Publishing.

— International Workshops

1. Daniel, G., Sunyé, G., Benelallam, A., Tisi, M., Vernageau, Y., Gómez, A., &
Cabot, J. NeoEMF: a Multi-database Model Persistence Framework for Very
Large Models. In Proceedings of the MoDELS 2016 Demo and Poster Ses-
sions co-located with ACM/IEEE 19th International Conference on Model
Driven Engineering Languages and Systems (MoDELS) (pp. 1-7). CEUR-
WS.

2. Brucker, A. D., Cabot, J., Daniel, G., Gogolla, M., Herrera, A. S., Hilken, F.,
Tuong, F., Willink, E., & Wolff, B. Recent Developments in OCL and Textual
Modelling. In Proceedings of International Workshop on OCL and Textual
Modeling (OCL 2016) (pp. 157-165). CEUR-WS.

3. Daniel, G. Efficient Persistence and Query Techniques for Very Large Mod-
els. In Proceedings of the ACM Student Research Competition (3rd place)
co-located with ACM/IEEE 19th International Conference on Model Driven
Engineering Languages and Systems (MoDELS) (pp. 17-23). CEUR-WS.
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1.7 Awards

1. Distinguished paper award at MoDELS 2016 for PrefetchML: a Framework for
Prefetching and Caching models.

2. 3rd place at the ACM Student Research Competition (co-located with MoDELS
2016) for Efficient Persistence and Query Techniques for Very Large Models.
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Background

In this chapter we introduce the background and the main concepts that constitute the
basis of the contributions presented in this manuscript. We first present the basis of MDE
approach and its core concepts, then we review the standard languages and technologies
we use to build our MDE solutions. Finally, we introduce the NoSQL movement and the
main database families it contains.

2.1 Model-Driven Engineering

Traditionally, models were used as initial design sketches mainly aimed for commu-
nicating ideas among engineers. On the contrary, the MDE approach has emerged as
a generalization of the Model Driven Architecture (MDA) [61] standard defined by the
OMG [80] that promotes the use of models as a primary artifacts that drive all software
engineering activities (i. e. not only software development but also also evolution, non-
functional requirements modeling, traceability). These models are then refined to create
specific views of the system to construct, generate platform-dependent software artifacts,
and can be used in a final refinement step that produces (part of) the application code.

MDE has proven to be a powerful systems engineering approach in many different ar-
chitecture domains, and existing studies have reported its benefits in terms of productivity
and maintainability compared to traditional development processes [55]. As a result, the
MDE methodology is progressively adopted as a valuable software development method-
ology in several companies, such as Sony Ericsson and Thales [117, 14].

A typical example of the successful application of MDE principles is the model-based
modernization of legacy systems (exemplified in Figure 2.1). A software modernization
process follows a systematic approach that starts by automatically building high-level
abstraction models from source code (injection). This initial task is usually performed
in a single-user context, where a modeler define the system to study and setup a set of
modeling tools to store and access the created models. The injection frameworks analyzes

21
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Figure 2.1 – Modernization process of legacy applications

the configured system, creates a set of –potentially large– models, and stores them in the
preset modeling environment. Thanks to these models, engineers are able to understand,
evaluate, and refactor legacy enterprise architectures. Using these intermediate models,
engineers are able to partially generate modernized code for a specific platform (code

generation).

The MDE methodology relies on three fundamental concepts: metamodels that repre-
sent how a model is structured and what are the possible interactions between its elements,
models that conforms to a given metamodel, and represent a particular instance of it, and
model transformations, which constitute the operational part of MDE processes that are
used to refine models and generate code. In the following we detail these core MDE
concepts.

2.1.1 Models, Metamodels, Model Transformations

Models A model is a (partial) representation of a system/domain that captures some of
its characteristics into an abstraction that can be easily understood and manipulated by
designers. Models are defined using a formal or semi-formal modeling language (such
as the UML [86]) that provides a common vocabulary to ease communication between
modelers. Models are used in various engineering fields, such as civil engineering [2],
automotive industry [11], or biology [1], and are usually designed for a specific purpose
(analysis, refactoring, maintenance, etc). In the context of MDE, models are used to drive
all software engineering activities and are considered as the unifying concept between
technologies and languages [13].

Metamodels A metamodel defines the set of concepts, relationships, and semantic rules
regulating how models can be denoted in a particular language definition. A model which
conforms to a given metamodel is an instance of it that satisfies all these rules. Metamod-
els are themselves described as models, easing the exchange of user models between
different modeling tools by providing a detailed specification of its content. Note that a
metamodel can also be seen as an abstract syntax, that can be complemented with one
or more concrete syntaxes (the graphical or textual representations that designers use to
express models in that language) to provide a complete modeling language.
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Models and metamodels are organized in multiple levels (also referred as the meta-
modeling stack) that are related by the conformance relationship. In the MDE approach,
this stack contains three levels, with a self-reflective metamodel level on top, called
meta-metamodel level, that describes the concepts and rules of every metamodel. The
MetaObject Facility (MOF) [82] is the standard meta-modeling architecture proposed by
the OMG, that is built around a set of modeling standard, namely OCL [83] for specify-
ing constraints on MOF-based models, and XML Metadata Interchange (XMI) [84] for
storing and interchanging MOF-based models in XML.

Model Transformations A model transformation is a modeling operation that consists
of the automatic production of one or more output models from one or more input models
according to a transformation specification. Model transformations are specified at the
metamodel level, and are executed by transformation engines on models conforming to
these metamodels. They have been standardized through the Query/View/Transformation
(QVT) OMG specification [85], that formally describes model transformations, and has
been implemented in a plethora of model transformation languages and frameworks [67,
58, 118].

Model transformations can be expressed through various technologies, from general
purpose programming languages such as Java to dedicated transformation DSLs like the
ATL [58], and can either define a declarative, imperative, or hybrid language. In the
declarative style, only relationships between source and target model elements are spec-
ified, and no explicit execution order is given. The declarative style relies on rules to
specify these relationships. In contrast, the imperative style explicitly specifies the execu-
tion steps. Finally, the hybrid style extends the declarative rules with optional imperative
bodies. These three variants are defined in the QVT standard.

2.2 MDE Standards and Technologies

In the following we introduce an overview of the main standards and technologies that
are used along this manuscript. Note that additional details on technologies and imple-
mentations related to a specific contribution are provided in the corresponding chapter.

2.2.1 UML/OCL

UML [86] is a standard language for object oriented modeling mainly used for soft-
ware engineering. The first version of UML (0.9) has been defined in 1996 by the OMG
as a standard aiming at the unification of existing modeling methodologies [95], such as
Booch, OMT [94], and OOSE [57]. The latest version of the specification (UML 2.5) de-
fines 14 diagrams which can be categorized in two families: (i) static views representing
the structure of a system, including Class, Package, and Object Diagrams, and (ii) dynam-

ical views emphasizing on the interaction between the system parts, inluding Sequence

and Activity Diagrams, as well as State Machines.

UML class diagram has been widely adopted as the standard solution to define mod-
els, metamodels, and conceptual schemas. As an example, Figure 6.2 shows a class
diagram representing an excerpt of a simple Java metamodel aiming to represent Java
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programs at a low-level of abstraction 1. A Package is a named container that can re-
cursively contain other Packages through its subPackages composition. A Package also
contains several Classes, which define a name attribute and an imports association repre-
senting its imported Classes. Each Class contains a set of Methods. A Method is linked
to a Modifier describing its Visibility (public, private, or protected), and a returnType that
represents the Type that is returned by the method. Finally, a Constructor is a specializa-
tion of Method.

Figure 2.2 – A Simple Java Metamodel

Figure 2.3 shows an UML object diagram representing an instance of this metamodel.
It contains a single Package instance p1 named package1 composed of two Classes c1

and c2, respectively named class1 and class2. The Class c2 imports c1, and contains a
single Method m1 named method1. This Method is linked to a private Modifier (mod1)
and the void ReturnType (t1). Note that these two examples will be used in the different
chapters of this manuscript as running examples to illustrate our solutions to efficiently
store, query, and transform large models.

UML diagrams can be complemented with OCL [83] expressions, an OMG standard
allowing to define textual descriptions of invariants, operation contracts, derivation rules,
and query expressions over models and metamodels. OCL is a declarative, side-effect
free language that is used to extend UML diagrams — and any MOF model since the
release of OCL 2.0 — with constraints and precise semantic that cannot otherwise be
expressed by diagrammatic notation.

Each OCL expression is written in the context of an instance of a specific type, and de-
fines the reserved keyword self to refer to the contextual instance currently manipulated.
In addition, the language offers advanced support for collection operations, model navi-
gations, and attribute value analysis. The complete reference of the language constructs

1. The complete metamodel is available on MoDisco git repository at http://git.eclipse.
org/c/modisco/org.eclipse.modisco.git/tree/org.eclipse.gmt.modisco.

java

http://git.eclipse.org/c/modisco/org.eclipse.modisco.git/tree/org.eclipse.gmt.modisco.java
http://git.eclipse.org/c/modisco/org.eclipse.modisco.git/tree/org.eclipse.gmt.modisco.java
http://git.eclipse.org/c/modisco/org.eclipse.modisco.git/tree/org.eclipse.gmt.modisco.java
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Figure 2.3 – A Simple Instance

is available online 2.

As an example, Listing 1 presents three OCL invariants that can be defined on our
example metamodel presented in Figure 6.2. The first one, validClassName is a typical
OCL constraint that ensures that a Class name is not empty. The second invariant (pack-

ageHierarchyCycle) is applied on Package instances, and checks that a Package does not
contain itself in its subPackages association. Note that UML associations can be navi-
gated in OCL using their label, and multi-valued expressions can be filtered according to
the select operation that returns the elements of a collection satisfying a given condition.
Finally, the third invariant (invalidConstructorReturnType) checks that a Constructor al-
ways returns a Type that has the same name as its containing Class. These expressions
can be provided to an OCL evaluation environment such as Model Development Tools
(MDT)-OCL [42] that takes care of the validation of a given model and returns the results
to the modeler.

Listing 1 – Sample OCL Invariants
c o n t e x t C l a s s
inv va l idC la s sName : s e l f . name <> ’ ’

c o n t e x t Package
inv p a c k a g e H i e r a r c h y C y c l e : s e l f . subPackages�> s e l e c t ( p | p = s e l f )�> isEmpty ( )

c o n t e x t C o n s t r u c t o r
inv i n v a l i d C o n s t r u c t o r R e t u r n T y p e : s e l f . r e t u r n T y p e . name = s e l f . c l a s s . name

2.2.2 Modeling Frameworks

Modeling frameworks are development platforms that offer technical solutions to cre-
ate, manipulate, and persist (meta) models. They usually provide a low-level program-
ming interface that allows to interact with models, and a set of high-level graphical tools
that ease (meta) model definitions, constraint specifications, or model element creations.
In addition, current modeling frameworks typically embeds a code generator that creates

2. http://www.omg.org/spec/OCL/

http://www.omg.org/spec/OCL/
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a set of software artifacts representing a given model that can be easily integrated in client
applications.

In the last decade, EMF [102] has become the de-facto standard baseline framework
to build DSLs and modeling tools within the Eclipse ecosystem. The growing popularity
of EMF is attested by the large number of available EMF-based tools on the Eclipse
marketplace [104], coming from both industry and academia.

EMF embeds Ecore as its own metamodeling language which consist of a subset of
the UML class diagram, and thus, can be considered as the reference implementation of
the Essential MOF language —a subset of MOF that closely corresponds to the facil-
ities found in object oriented programming languages— proposed by the OMG. In the
EMF environment, an Ecore model is a model of the classes of a software application
(i.e. the structural description), and is used to generate Java code that allows to manipu-
late conceptual elements at the application level. This straightforward mapping between
Ecore and Java allows to bring several benefits of modeling in standard Java develop-
ment environment: part of the application code is generated by the framework, reducing
development costs, and Ecore model updates can be safely propagated to the Java side
thanks to the efficient code generation algorithm, improving maintainability of existing
applications.

Alternative implementations of the MOF modeling stack have been proposed, such as
Epsilon [65] or the Kevoree Modeling Framework (KMF) [46], that provide similar tool-
ing to define, manipulate, and query models. While these approaches differ on specific
features (multi-language integration for Epsilon and native model distribution for KMF),
they are all based on a similar architecture, that provides a low-level, element-centered
API to manipulate models, and compute queries and transformation by expressing them
as sequences of atomic calls.

2.3 NoSQL Databases

The increasing popularity of web-based services, open API initiatives, and distributed
cloud-based applications has emphasized the need to provide solutions to efficiently store
and query the renowned Big Data [114], that describes large volume of heterogeneous
data that are frequently updated and queried [120]. Practically, applications have to han-
dle huge amounts of structured, semi-structured, and unstructured data that is fastly pro-
duced and updated, and does not have a fixed schema.

In the last decades, RDBMS have been the preferred solutions to store and query infor-
mation. However, the strict relational schema has not been designed to handle efficiently
this amount of data. Indeed, processing huge volume of unstructured information (such as
JavaScript Object Notation (JSON) documents, Resource Description Framework (RDF)
triples, etc) coupled with the frequent update and concurrent access operations has em-
phasized the limitations of RDBMS, that are not flexible enough to handle both reactivity
and scalability required by Big Data applications. In addition, the distributed nature of
current (cloud-based) applications requires high availability and concurrent read/write
operations that are typically limiting RDBMS scalability.

These limitations has led to the popularization of the NoSQL movement that provides
task-specific databases to overcome RDBMS issues in specific data processing contexts



2.3. NOSQL DATABASES 27

(such as querying highly interconnected data or semi-structured information). Compared
to traditional relational databases that rely on the ACID consistency model that ensures
database consistency using a sophisticated locking mechanism, NoSQL databases often
rely on the BASE consistency model, that relaxes ACID properties (in particular full
consistency at any time) to support other properties such as horizontal scaling, fault tol-
erance, or massive concurrency. This has lead to the development of several NoSQL
database implementations, dedicated to specific tasks. They are usually classified into
four categories based on their data model [77, 60]: document databases, key-value stores,
graph databases, and wide-column stores. In the following, we introduce these categories
by highlighting their specificities and the workflow they are designed to handle.

2.3.1 Key-Value Stores

Key-value stores such as Redis 3 and Amazon DynamoDB 4 rely on a simple data
model that represent information using associative arrays. In a key-value store, a record
is accessed using a unique identifier (the key). Store values can hold any kind of in-
formation, usually serialized as a byte array. This low-level representation makes the
information opaque to the database system, meaning that no metadata or internal struc-
tures are maintained. The serialization/deserialization of the information is delegated to
the application level.

Since values can contain any arbitrary information, key-value stores are by definition
able to handle unstructured data, and are highly optimized to retrieve elements given
their unique identifier. This simple data model also allows key-value stores to support
high distribution features such as database partitioning, replication, and fault tolerance.

Compared to most of the RDBMS, key-value stores does not represent optional val-
ues with placeholders, limiting the memory required to store the same information, and
improving input/output operations in data intensive workflows.

2.3.2 Document Databases

Document databases are a subclass of key-value stores that adds the concept of doc-

ument to structure data on top of the raw key-value pairs representation. A document is
stored as a first-class citizen in the database, and contains a set of key-value pairs defining
its attribute. An attribute can be a primitive type supported by the database (e. g.integers,
strings, or arrays), or a nested document, allowing to represent composition association
between documents. Documents are organized in collections, that groups related infor-
mation in order to reduce I/O operations and optimize query execution.

Most document databases implementations (such as Apache CouchDB 5 and Mon-
goDB 6) rely on a JSON-like data model, that easily supports data evolution such as the
addition of new concepts, property updates, and multiple versions of the same concept.
This data model is particularly popular in web-based applications, that are subject to data
model changes among time, and where the speed of deployment is an important issue.

3. https://redis.io/
4. https://aws.amazon.com/dynamodb/
5. http://couchdb.apache.org/
6. https://www.mongodb.com

https://redis.io/
https://aws.amazon.com/dynamodb/
http://couchdb.apache.org/
https://www.mongodb.com
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2.3.3 Column Databases

Wide column databases are another subclass of key-value stores that organize records
in tables handling dynamic column definition. Originally designed by Google’s Bigtable
project [27], this database family is designed to store huge amount of structured data in
a highly distributed environment. Wide column databases can be seen as bi-dimensional
key-value stores: records are organized in tables, where each line is defined by a unique
identifier, and specific attributes can be accessed using its containing column name.
Columns are grouped into column families that are used to structure the database and im-
prove access performance on columns frequently queries together, and support dynamic
updates such as the addition or deletion of a specific column.

The distributed nature of wide column database makes them promising candidates for
parallel and cloud-based data computation. They are used as the low-level persistence
solutions of MapReduce [38] processings, a distributed programming model designed to
compute queries on semi-structured data stored in large clusters.

Wide column databases (such as Facebook’s Cassandra 7 and Apache HBase 8, the
open source implementation of Bigtable) are used in social networks and large scale
cloud-based applications, that typically require to store and process large amount of data
efficiently. Some implementations, such as Cassandra, provide a high-level, Structured
Query Language (SQL)-like query language that allows to query and update the store
efficiently.

2.3.4 Graph Databases

Graph databases are a different kind of NoSQL database that provide graph primitives
to store and structure information. In a graph database, records are stored as nodes and
connected together using edges. Most of the current implementations (such as Neo4j 9 and
Titan 10) rely on a property graph data model which allows to store additional attributes
as key-value pairs in nodes and edges. Graph databases are designed to handle complex
hierarchy structures and highly interconnected data: the database engine is optimized to
navigate efficiently from one node to another, and to compute complex navigation patterns
involving large volume of nodes.

These complex navigation queries are expressed using dedicated query languages,
that provide constructs to navigate a graph, match specific node and edge patterns, filter
properties, etc. Cypher and Gremlin are two popular graph query languages: the former
expresses graph queries using a sophisticated pattern matching language, the later de-
scribes finely graph traversals using navigation steps that can be combined into complex
processings.

Note that graph databases and their query languages constitute the cornerstone of the
model query and transformation approaches we present in this manuscript (Chapters 5
and 6), and additional details of their structure and language constructs are provided in
the corresponding chapters.

7. http://cassandra.apache.org/
8. https://hbase.apache.org/
9. https://neo4j.com/

10. http://titan.thinkaurelius.com/

http://cassandra.apache.org/
https://hbase.apache.org/
https://neo4j.com/
http://titan.thinkaurelius.com/
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2.4 Conclusion

In this chapter we have introduced the main concepts and standards that constitute the
basis of our work. We first introduced the MDE method, and we have shown that it has
been succesfully applied in several industrial contexts with positive results in terms of
productivity and maintainability.

Then, we have explored the core components of MDE techniques (models, metamod-
els, and model transformations), and we have shown how these concepts are articulated
into a global process. Note that these components are defined at the same level of ab-
straction as the solutions proposed along this manuscript.

We have presented a set of standards and tooling approaches that are widely used
in the community to represent model, constrain them, and query them. Among other
solutions, we presented an overview of modeling frameworks, that constitute the basic
component of nowadays MDE tools, and are also the core component of the solutions pre-
sented in this thesis. Note that the solutions presented in the remaining of this manuscript
are largely based on EMF, the de-facto modeling framework in the Eclipse environment.

Finally, we have introduced the NoSQL database environment, and detailed the dif-
ferent data representation approaches they use. Note that this chapter introduce the four
main families of NoSQL database, whereas the solutions detailed in the remaining of this
manuscript only focus on three of them: graph, key-value, and wide-column databases.
Further details on the selected database families can be found in Chapter 3.

Note that additional details related to the proposed contributions can also be found in
the corresponding chapters, as well as the state of the art sections that explore, for each
contribution, the existing work and extract a set of problematic and research challenges
to tackle.





3
Scalable Model Persistence

Model persistence is one of the cornerstone in MDE processes: input models are
loaded in memory from an existing source, navigated and updated using model queries
and transformations, and stored into a dedicated format to be accessed later on by client
applications or shared between modelers.

In the last decades, the progressive adoption of MDE techniques in the industry [117,
55] has emphasized the need to provide persistence solutions that are able to address scal-
ability issues to store, query, and transform large and complex models. Indeed, existing
modeling frameworks were first designed to handle simple modeling activities, and often
relied on an XML serialization to store models. While this format is a good fit for small
models, it has shown clear limitations when scaling to large ones [88].

To overcome these limitations, several persistence frameworks based on relational
and NoSQL databases have been proposed [43, 88]. These solutions typically provide
a intermediate mechanism to serialize in-memory models into an on-disk representation
by describing a model mapping that allows to save and access model elements from a
dedicated persistence solution (file, RDBMS, NoSQL databases, etc).

Most of the existing approaches rely on a lazy-loading mechanism, which reduces
memory consumption by loading only accessed objects. While persistence framework
have globally improved the support for large models in existing MDE toolchains, they
are often tailored to a specific data-store implementation, and their integration usually
implies to update the code base to integrate their advanced modeling API.

In this chapter we introduce NEOEMF , the first brick of our scalable modeling
ecosystem (introduced in Section 1.4) that is able to store very large models in multi-
ple databases, allowing designers to choose the one that fits a given modeling scenario.
Our approach is based on a modular architecture allowing model storage into multiple
data stores. NEOEMF provides three new model-to-database mappings that complement
existing persistence solutions and enable model persistence in graph, key-value, and col-
umn databases, each one optimized for a specific modeling task. The framework provides
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two APIs, one strictly compatible with the EMF API, easing its integration into existing
modeling applications, and an advanced API that provides specific features complement-
ing the standard EMF API to further improve scalability of particular modeling scenarios.

The rest of this chapter is structured as follows: Section 3.1 provides an overview
of existing model persistence solutions and emphasizes the existing issues we aim to ad-
dress. Section 3.2 presents an overview of our solution’s architecture and its core features.
Section 3.3 introduces the datastores that are currently supported by our approach and the
model-to-database mappings we have defined. Section 3.4 and 3.5 presents our imple-
mentation and evaluates it against state of the art solutions. Finally, Section 3.6 wraps up
this chapter, draws conclusions, and discusses the benefit and drawbacks of our solution.

3.1 State of the Art

Since the publication of the XMI standard [84], file-based XML serialization has been
the preferred format for storing and sharing models and metamodels. This choice was
driven by the fact that modeling frameworks were originally designed to handle human-
produced models, whose size does not cause significant performance concerns. However,
the adoption of MDE practices in the industry [117] as well as the development of gener-
ative framework such as MDRE approaches [19] has popularized the need to handle large
and complex (potentially generated) models, emphasizing XMI’s limitations.

Indeed, XML-based serialization presents two drawbacks: (i) it sacrifices compact-
ness in favor of human-readability and (ii) XML files need to be completely parsed and
loaded in memory to obtain a navigational model of their contents. The former reduces
efficiency of I/O accesses, while the later increases the memory required to load and query
models, and limits the use of proxies and partial loading to inter-document relationships.
In addition, XMI persistence layers do not provide advanced features such as transactions
or collaborative edition, and large monolithic model files are challenging to integrate in
existing versioning systems [3].

As a result, scalability of model persistence framework has been an active field of
research in the last decade [68], and several approaches have been proposed to reduce
their memory consumption and enable support for very large models. They can be clas-
sified into two categories based on their low-level model representations: (i) RDBMS-
based solutions that store models in relational tables, and (ii) NoSQL solutions that uses
semi-structured databases. Existing approaches usually expose an interface that is semi-
compliant with the de-facto standard modeling APIs, and provide a lazy-loading mecha-
nism which reduces the memory consumption by loading model elements from the data-
store only when they are accessed.

3.1.1 Relational Persistence Layers

Historically, RDBMS have been the preferred solution to store large models. Exist-
ing approaches derive a relational schema from an existing metamodel, for example by
creating tables to store the instances of each metamodel’s class and columns for every
class attribute. This schema is then used to store model elements, access attributes, or
navigate associations using low-level query languages such as SQL. Existing frameworks
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implements the de-facto standard EMF API, and can be transparently integrated (once
configured) into existing modeling applications to enhance their scalability.

The Connected Data Objects model repository (CDO) [43] was the first attempt de-
signed to handle large models by relying on a client-server repository structure. A CDO
application can connect to a CDO server using a specialized interface, and a dedicated
implementation of the EMF API is provided to manipulate the model. CDO is based on a
lazy-loading mechanism and supports transactions, access control policies, and provides
a collaborative modeling environment allowing concurrent editing of a model. CDO’s
default implementation uses a relational database connector to serialize models into SQL
compatible databases, but the modular architecture of the frameworks can be extended to
support different data storage solutions. However, in practice only relational connectors
are used and regularly maintained.

Teneo [106] is another approach based on relational databases to store EMF models.
It relies on a dedicated mapping that allows to store EMF models using the Hibernate
Object Relational Mapping (ORM) [5]. Teneo uses metamodel information to derive
a relational schema and an EMF-compatible API that allows to access the model at a
high level of abstraction. The Hibernate implementation provides an additional API to
express model queries using the Hibernate Query Language (HQL) 1 query language,
improving performance by lowering the level of abstraction. Teneo is embedded in the
default Hibernate connector provided by CDO.

While these solutions have proven their efficiency w.r.t XMI-based implementations,
the highly interconnected nature of models often requires multiple table join operations
to compute complex model queries, limiting the performance both in terms of execution
time and memory consumption [4]. In addition, the strict schema used in RDBMS makes
them hard to align with metamodel updates which can define new types, associations, etc.
Finally, the extraction of the relational schema from an existing metamodel requires to
integrate platform-specific initialization code, that can be a limiting factor for the adoption
of the solution into existing applications.

3.1.2 NoSQL Persistence Layers

NoSQL-based solutions have been proposed to tackle the limitations of relational
databases to handle large models. The proposed approaches are based on the schema-less
nature of NoSQL data-stores to handle metamodel modifications efficiently, and rely on
the database’s query performance to compute complex model navigations efficiently.

Morsa [88] is the first approach designed to take benefit of the scalability features
provided by NoSQL document databases to store and access large models in an efficient
way. As CDO, Morsa relies on a lazy-loading mechanism to limit memory consumption,
and supports incremental updates. The framework is based on MongoDB, and uses the
document hierarchy capabilities of the data-store to represent model elements and their
associations. Morsa models can be created and accessed transparently using the stan-
dard EMF mechanisms. However, model queries have to be expressed using a dedicated
query language —MorsaQL [89]— to fully benefit from the underlying data-store perfor-
mances.

1. http://docs.jboss.org/hibernate/orm/4.2/manual/en-US/html/ch16.html
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Mongo EMF [21] is another alternative to store EMF models in a MongoDB database.
Mongo EMF provides the same standard API than previous approaches, however, ac-
cording to the documentation, the storage mechanism behaves slightly different than the
standard persistence backend (for example, for persisting collections of objects or sav-
ing bi-directional cross-document containment references). For this reason, Mongo EMF
cannot be plugged without performing any modification to replace another data-store in
an existing system.

Hawk [3] is a model indexer framework that stores models in graph data-stores and
provides an efficient model query API. The framework allows modelers to define spe-
cific indexes that will be reused during the query computation to speed-up element and
attribute access. While Hawk can be considered as a NoSQL persistence layer for large
models, it is not designed to handle EMF-based query computation efficiently, and re-
lies on the Epsilon Object Language (EOL) [66] to efficiently navigate and manipulate
models.

EMF fragments [96] is another NoSQL-based persistence layer for EMF that aims to
achieve fast storage of new data and fast navigation of persisted models. EMF fragments
principles are simpler than in other similar approaches and reuse the existing proxy mech-
anism of EMF. In EMF fragments, models are automatically partitioned in several chunks
(fragments). Unlike CDO and Morsa, the granularity of the lazy-loading mechanism is
defined at the fragment level, that are entirely parsed and loaded when they are accessed.
Another difference with other approaches is that additional information have to be speci-
fied in the metamodel to benefit from the partitioning capabilities of the framework. This
approach makes EMF fragments both dependent on the quality of the provided partitions
and the size of individual fragments.

EMFStore [63] is a model repository that relies on a client-server infrastructure to
store models. The framework provides a default XMI implementation to manipulate
standard EMF models, and a MongoDB connector that aims to manage larger models.
EMFStore focuses on providing collaborative modeling support, using a git-like approach
supporting model versioning, branching, and history tracking. Thus, scalability is not the
primary objective of the framework, and the underlying data-stores are not optimized to
support very large models.

These solutions typically improve the performance for storing and accessing large
models when compared to relational database persistence layers. However, they also
require a specific initial step to start the database server and open a connection before
allowing model manipulations. In addition, the use of an additional query language is
often required to fully benefit from the database capabilities. Finally, to the best of our
knowledge only document and graph data-stores have been explored to store large mod-
els, while key-value and wide-column stores could also be interesting candidates because
of their capabilities to store huge amount of semi-structured data.

3.1.3 Problematic & Requirements

In most of these approaches, scalability is achieved by using a client-server archi-
tecture that provides an additional API that has to be integrated in client code to access
the model (e.g. to create the server, open a new connection, commit changes, etc). Fur-
thermore, the choice of the data-store is totally independent of the expected model usage
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(for example complex querying, interactive editing, or complex model-to-model trans-
formation): the persistence layer offers generic scalability improvements, but it is not
optimized for a specific scenario. For example, a graph-based representation of a model
can improve scalability by exploiting databases’ facilities to handle complex relationships
between elements, but will have poor execution time performance in scenarios involving
repeated atomic value accesses, or a given model partitioning policy can be a good fit to
a modeling task and be inefficient for another one.

Our previous work on model persistence [47, 48, 35] has shown that providing a well-
suited data store for a specific modeling scenario can dramatically improve performance
of modeling applications [98]. Based on these observations and the current state of the
art in large model persistence, we define a set of requirements that have to be addressed
in order to provide an efficient model persistence framework for large models. We divide
these requirements into two categories: (i) iteroperability requirements that define the
level of integration to make the solution usable in existing applications, and (ii) perfor-

mance requirements that define a new solution’s scalability performances w.r.t existing
approaches.

Interoperability Requirements:

IR1 The persistence layer must be fully compliant with the modeling framework’s
API. For example, client code should be able to manage models persisted with
an alternative persistence manager as if they were persisted using the standard
serialization.

IR2 The underlying persistence data-store engine should be easily replaceable to avoid
vendor lock-ins.

IR3 The persistence layer must provide extension points for additional (e.g., domain-
specific) caching mechanisms independent from the underlying engine.

Performance Requirements:

PR1 The persistence layer must be memory-friendly, by using on-demand element
loading and unloading unused objects from the memory.

PR2 The persistence layer must provide at least one model-to-database mapping that
outperforms the execution time of current persistence layers when executing queries
on large models using the standard modeling API.

In the following we introduce NEOEMF , our solution that addresses these issues by
providing a modular, easy to integrate solution allowing designers to customize the model
storage according to the expected modeling scenario. The framework embeds three new
model-to-database mappings enabling model persistence in popular NoSQL databases.
NEOEMF is released as a set of open-source Eclipse projects available online 2.

3.2 NeoEMF: a Multi-Database Persistence Framework

This section presents NEOEMF , our persistence framework that aims to manage
large models efficiently by using task-specific data-stores. We first introduce an overview
of the framework architecture, then we detail its main functionalities and the integration
in the modeling ecosystem, and finally we introduce the advanced capabilities that allow
to fully benefit from the underlying data-stores.

2. www.neoemf.com

www.neoemf.com
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3.2.1 Architectural Overview

Figure 3.1 describes the architecture of NEOEMF in a typical modeling environ-
ment. Modelers typically manipulate models using Model-based Tools, which provide
high-level modeling features such as a graphical interface, interactive console, or query
editors. These features internally rely on a Model Access API to navigate the models, per-
form CRUD operations, check constraints, etc. The modeling framework delegates the
operations to a persistence manager using its Persistence API, which is in charge of the
(de)serialization of the model. This Persistence API can be complemented by a low-level
connector that interacts directly with the data-store API. This generic architecture is used
in popular modeling frameworks such as EMF and KMF [46] which typically provide a
default XML connector to store models.

The NEOEMF core component implements the Persistence API, and provides a set
of methods allowing the modeling framework to interact with it as a regular persistence
layer. This design makes NEOEMF both transparent to the client application, and the
modeling framework itself, that simply delegates the calls without taking care of the
actual storage.

Once the NEOEMF core component has received the request of the modeling oper-
ation to perform, it forwards the operation to the appropriate Backend Connector (/Map,
/Graph, or /Column), which is in charge of handling the low-level model-to-database
mapping of the model. These connectors translate modeling operations into Backend API

calls, store the results, and reify database records into high-level modeling framework
elements when needed. NEOEMF also embeds a set of default caching strategies that are
used to improve performance of client applications, and can be configured transparently
at the EMF API level.

In addition to this integration in the classical modeling toolchains, NEOEMF also ex-
poses an advanced API that provides additional operations to customize the data-stores,
compute model queries efficiently, and define custom caching policies. This API pro-
vides methods that are typically missing or not efficient at current modeling frameworks
(such as the allInstances operation [116]), a set of efficient model importers that
are able to convert XMI files into NEOEMF databases with a low memory footprint, and
additional APIs developed in the remaining of this manuscript to allow efficient model
queries, transformations, and model prefetching.

3.2.2 Integration in the Modeling Ecosystem

As shown in Figure 3.1, NEOEMF is designed to be easily pluggable into existing
modeling frameworks. Specifically, it provides an API that is compatible with EMF,
the de-facto standard framework for building modeling tools. NEOEMF reimplements
the EMF modeling API and ensures that calling a NEOEMF method produces the same
behavior (including potential side effects) as standard EMF API calls. Note that EMF-
based implementation is self-contained, and does not require specific code to setup a
database server of start a transation. As a result, existing applications can easily integrate
NEOEMF and benefit immediately from scalability improvements.

Precisely, NEOEMF supports all typical EMF features including: (i) a dedicated
code generator that allows client applications to manipulate models using generated java
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Figure 3.1 – NEOEMF Integration in the Modeling Ecosystem

classes, (ii) support of Reflective/Dynamic EMF API, and (iii) a Resource API implemen-
tation.

Figure 3.2 shows how NEOEMF (blue) is integrated in the EMF infrastructure (or-
ange): the PersistentResource class implements the EMF Resource interface, which rep-
resent the global API to manipulate a model. A PersistentResource contains a set of Per-

sistentEObjects through the top-level elements containment reference that corresponds
to the root elements of the model. PersistentEObject implements the standard EObject

interface, that provides a set of generic method to access model element’s attributes, ref-
erences, and containment hierarchy. A PersistentResource also embeds a PersistentStore

that implements the EStore interface that defines the low-level persistence API that is in-
ternally used by EMF to persist models. The PersistentStore contains a PersistenceBack-

end, that maintain a connection to the data-store and translate EMF calls into database
ones. Note that for the sake of clarity we did not put all the methods defined in the inter-
faces and their implementations, but the can be retrieved in EMF and NEOEMF online
documentations.

As other model solutions, NEOEMF achieves scalability using a lazy-loading mech-
anism, which loads into memory objects only when they are accessed. Lazy-loading

is defined at the core component: NEOEMF implementation of EObject consists of a
lightweight wrapper delegating all its method calls to an EStore, that directly manipulates
elements at the database level. Using this technique, NEOEMF benefits from datastore
optimizations (such as caches or indices), and only maintains a small amount of elements
in memory (the ones that have not been saved), reducing drastically the memory con-
sumption of modeling applications.

Finally, NEOEMF provides a set of caching strategies that can be plugged on top of
the data store according to specific memory and execution time requirements. For exam-
ple, the framework provides caching capabilities for model element’s attributes, reference
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Figure 3.2 – NEOEMF Integration in EMF Infrastructure

collections, or result of standard EMF operations such as size and isSet. These caching
strategies are provided as resource options, and can be configured using a set of dedicated
option builders. Note that additional option builders are available to tune the underlying
data store.

3.2.3 Advanced Capabilities

In addition to its native integration in the modeling ecosystem, NEOEMF provides a
set of utility features that bypasses modeling framework’s limitations to further improve
performances. These features are accessible using a dedicated Advanced API, and can be
used to improve memory consumption and execution time of critical part of client appli-
cation. While these features usually require to be integrated, they also provide connection
points to the modeling framework ecosystem (e. g.by returning regular EMF objects) to
limit the integration cost.

The io module is composed of a set of dedicated importers that are able to store XMI-
based models into NeoEMF databases. They are based on an efficient XML parser, that is
designed to limit the memory consumption. Compared to a standard model import using
the EMF API, the io module operates directly at the database level, bypassing the EMF
workflow that forces to fully load in memory the input XMI file into a navigable resource
and transfer its content to a NEOEMF resource. The resulting database conforms to
the internal NEOEMF mapping (detailed in Section 3.3), and can be loaded as a regular
resource. Our experiments have shown that using the io module to import an existing
model significantly speeds-up the execution time and reduces the memory consumption.

NEOEMF also provides utility methods to manipulate a model, such as the allInstances
method, which is added on top of the standard Resource interface. This feature tackles
the well-known performance issues of allInstances computation in EMF (which has to
traverse the entire resource [116]) by delegating it to the data store, allowing to retrieve
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requested elements fast, using data store indices, or specific data representations.

Finally, NEOEMF embeds a lazy model editor, that provide a graphical interface to
explore models stored in NEOEMF with a small memory footprint. Compared to classical
model editors that typically load the entire model fefore allowing navigation and update
operations, NEOEMF ’s implementation heavily relies on the lazy-loading nature of the
framework to only load in memory the elements that are visible in the editor. Elements are
dynamically unloaded when they are not presented anymore (e. g.when the designer close
a view or navigate in another part of the model). This editor can be used to navigate very
large models transparently, and supports all the model to data-store mappings provided
with NEOEMF .

3.3 Model-to-Database Mappings

The features presented in the previous section are defined at the core component level,
and are available for a variety of data stores supported by NEOEMF . In this section we
introduce the supported backends used to persist models: we first present their model
to data-store mapping, then we detail how this mapping can be used to better address a
specific modeling scenario. Note that both standard and advanced features presented in
the previous section are implemented in all of them.

3.3.1 NeoEMF/Graph

NEOEMF/GRAPH is a graph-based connector designed to efficiently compute com-
plex model navigations [6]. It relies on the graph database structures (detailed in Sec-
tion 2.3) to represent models, where each element is represented as a database node, and
connections between elements (associations, compositions, etc) are represented as edges.
Using this graph-based representation, the NEOEMF/GRAPH connector benefits from the
database engine that is designed to efficiently compute complex edge-based navigations.
Our model query and transformation approaches (detailed in Chapter 5 and 6) are based
on this particular connector, and leverage the capabilities of the graph representation to
compute complex model queries and transformation efficiently.

Figure 3.3 describes how the instance model presented in the running example (Sec-
tion 2.2.1) is persisted in a graph database using the NEOEMF/GRAPH connector. Fig-
ures 2.3, 6.2, and 3.3 show that:

— Model elements are represented as nodes. Nodes p1, c1, c2 are examples of this,
and correspond to the elements p1, c1, and c2 shown in Figure 2.3.

— Element attributes are represented as properties stored in the node corresponding
to the containing element. Node properties are represented using key-value pairs
❤♣r♦♣❡rt②_♥❛♠❡❀ ♣r♦♣❡rt②_✈❛❧✉❡✐. For example, nodes p1, c1, and c2 contain
a name property that contains the value of the name attribute in Figure 2.3.

— Metamodel elements are also represented in the database as (grey) nodes, that
are indexed to ease their access. Metamodel nodes contain two properties: the
first one hold the name of the metamodel element, and the second one the meta-
model unique identifier (nsURI). Package and Class are examples of meta-
model nodes.
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— Type conformance relationships are represented as instanceof edges between
the node representing the metamodel element and the one representing the in-
stance of thie particular type.

— References are represented as edges between the nodes corresponding to the con-
nected elements. These edges are labeled with the name of the association defined
in the metamodel, and can contain a position property that defines the index of the
relationship if the base association is multi-valued. This is emphasized in Fig-
ure 3.3 by the two classes edges between p1 and c1/c2. For example the
edge imports that links c1 and c2 corresponds to the imports association
in Figure 2.3. Note that EMF compositions are implicitly bidirectional, and are
translated into one edge representing the composition itself, and an opposite one
labeled eContainer (green edges in Figure 3.3) that represent this implicit con-
tainment link.

The resulting database contains all the model’s information as well as part of the
metamodel structure to optimize type based operations. For example, the allInstances

method can be easily computed by searching the indexed node representing the metaclass
to compute the instances of, and by navigating all its outgoing instanceof edges.

NEOEMF/GRAPH intensively relies on the interconnected nature of models to ef-
ficiently compute navigation queries. However, this representation also intensively uses
node properties to store attribute information, that are typically costly to access in existing
graph database implementations. In addition, the efficient navigation capabilities of the
database engine are restricted by the high-level modeling framework APIs, that typically
generate low-level fragmented queries that are hard to optimize and have a significant
impact on the engine’s performances.

3.3.2 NeoEMF/Map

NEOEMF/MAP is a key-value store connector designed to provide fast access to
atomic operations, such as accessing a single element/attribute and navigating a single
reference. Compared to NEOEMF/GRAPH , this implementation is optimized for mod-
eling framework API-based accesses, which typically generate this kind of atomic and
fragmented calls on the model. NEOEMF/MAP embeds a key-value store, which main-
tains a set of in-memory/on disk maps to speed up model element accesses. Our previous
experiments [48] show that using this particular model to data-store mapping is the most
suitable solution to improve performance and scalability of EMF API based tools that
need to access very large models on a single machine.

We have designed the underlying data model of NEOEMF/MAP to reduce the com-
putational cost of each method of the EMF model access API. The design takes advantage
of the key-value nature of the underlying store to map each model element to a unique
identifier that allows to retrieve a specific element efficiently using map-based lookups.
Using this approach, the model structure is flattened into a set of key-value mappings that
provides constant model element access time regardless its localization in the model.

NEOEMF/MAP uses three different maps to store models’ information: (i) a property

map, that keeps all objects’ data (such as attributes and associations) in a centralized
place; (ii) a type map, that tracks how objects interact with the metamodel-level (such
as the instance of relationships); and (iii) a containment map, that defines the models’
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Figure 3.3 – Running example persisted in NEOEMF/GRAPH

structure in terms of containment references. Tables 3.1, 3.2, and 3.3 show how the
sample model in Figure 2.3 is represented using a key-value structure.

As Table 3.1 shows, keys in the property map are a pair, the object unique identifier,
and the property name. The values depend on the property type and cardinality (i.e., up-
per bound). For example, values for single-valued attributes (like the name of a Package)
are directly saved as a single literal value as the entry ❤❤✵♣✶✵❀✵ ♥❛♠❡✵✐ ❀✵ ♣❛❝❦❛❣❡✵✐ shows;
while values for many-valued attributes are saved as an array of single literal values. Val-
ues for single-valued references, such as the modifier reference from m1 to mod1, are
stored as a single value (corresponding to the id of the referenced object). Finally, multi-
valued references are stored as an array containing the literal identifiers of the referenced
objects. An example of this is the classes reference, from Package to Class, that for
the case of the p1 object is stored as ❤❤✵❝✶✵❀♠❡t❤♦❞s✵✐ ❀ ❢✵❝✶✵❀✵ ❝✷✵❣✐.

Table 3.2 shows the structure of the type map. The keys are again the identifier of the
persisted objects and the values are named tuples containing the basic information used
to identify the corresponding meta-element. For example, the second row of the table
specifies that the element p1 is an instance of the Package class of the Java metamodel
(that is identified by the http://java nsUri). This map is used to efficiently compute the
type of a given object and access its metamodel-related information.

Structurally, EMF models are trees (a characteristic inherited from its XML-based
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representation). That implies that every object (except the root object a.k.a top level con-
tainer) must be contained within another object (i.e., referenced from another object via
a containment reference). The containment map is the data structure in charge of main-
taining a record of which is the container for every persisted object. Keys in the structure
map are the identifier of every persisted object, and the values are named tuples that
record both the identifier of the container object and the name of the property that relates
the container object with the child object (i.e., the object to which the entry corresponds).
Table 3.3 shows in the first row that, for example, the container of the Class c1 is p1
through the classes association.

Key Value

❤✵♣✶✵❀✵ ♥❛♠❡✵✐ ’package1’
❤✵♣✶✵❀✵ ❝❧❛ss❡s✵✐ ’c1’, ’c2’
❤✵❝✶✵❀✵ ♥❛♠❡✵✐ ’class1’
❤✵❝✷✵❀✵ ♥❛♠❡✵✐ ’class2’
❤✵❝✷✵❀✵ ✐♠♣♦rts✵✐ ’c1’
❤✵❝✷✵❀✵ ♠❡t❤♦❞s✵✐ ’m1’
❤✵♠✶✵❀✵ ♥❛♠❡✵✐ ’method1’
❤✵♠✶✵❀✵ ♠♦❞✐❢✐❡r✵✐ ’mod1’
❤✵♠✶✵❀✵ r❡t✉r♥❚②♣❡✵✐ ’t1’
❤✵♠♦❞✶✵❀✵ ✈✐s✐❜✐❧✐t②✵✐ ’private’
❤✵t✶✵❀✵ ♥❛♠❡✵✐ ’void’

Table 3.1 – Property Map

Key Value

’p1’ ❤♥s❯❘■ ❂✵ ❤tt♣ ✿ ❂❂❥❛✈❛✵❀ ❝❧❛ss ❂✵ P❛❝❦❛❣❡✵✐
’c1’ ❤♥s❯❘■ ❂✵ ❤tt♣ ✿ ❂❂❥❛✈❛✵❀ ❝❧❛ss ❂✵ ❈❧❛ss✵✐
’c2’ ❤♥s❯❘■ ❂✵ ❤tt♣ ✿ ❂❂❥❛✈❛✵❀ ❝❧❛ss ❂✵ ❈❧❛ss✵✐
’m1’ ❤♥s❯❘■ ❂✵ ❤tt♣ ✿ ❂❂❥❛✈❛✵❀ ❝❧❛ss ❂✵ ▼❡t❤♦❞✵✐
’mod1’ ❤♥s❯❘■ ❂✵ ❤tt♣ ✿ ❂❂❥❛✈❛✵❀ ❝❧❛ss ❂✵ ▼♦❞✐❢✐❡r✵✐
’t1’ ❤♥s❯❘■ ❂✵ ❤tt♣ ✿ ❂❂❥❛✈❛✵❀ ❝❧❛ss ❂✵ ❚②♣❡✵✐

Table 3.2 – Type Map

Key Value

’c1’ ❤❝♦♥t❛✐♥❡r ❂✵ ♣✶✵❀ ❢❡❛t✉r❡◆❛♠❡ ❂✵ ❝❧❛ss❡s✵✐
’c2’ ❤❝♦♥t❛✐♥❡r ❂✵ ♣✶✵❀ ❢❡❛t✉r❡◆❛♠❡ ❂✵ ❝❧❛ss❡s✵✐
’m1’ ❤❝♦♥t❛✐♥❡r ❂✵ ❝✷✵❀ ❢❡❛t✉r❡◆❛♠❡ ❂✵ ♠❡t❤♦❞s✵✐
’mod1’ ❤❝♦♥t❛✐♥❡r ❂✵ ♠✶✵❀ ❢❡❛t✉r❡◆❛♠❡ ❂✵ ♠♦❞✐❢✐❡r✵✐
’t1’ ❤❝♦♥t❛✐♥❡r ❂✵ ♠✶✵❀ ❢❡❛t✉r❡◆❛♠❡ ❂✵ r❡t✉r♥❚②♣❡✵✐

Table 3.3 – Containment Map
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3.3.3 NeoEMF/Column

NEOEMF/COLUMN has been designed to enable the development of distributed MDE-
based applications by relying on a distributed column-based datastore [47]. In contrast
with NEOEMF/MAP and NEOEMF/GRAPH implementations, NEOEMF/COLUMN of-
fers concurrent read/write capabilities and guarantees ACID properties at model element
level. It exploits the wide availability and distributed nature of column stores to efficiently
distribute intensive read/write workloads across datanodes.

NEOEMF/COLUMN uses a single table with three column families to store models’
information: (i) a property column family, that maintains all objects’ attributes and asso-
ciations stored together; (ii) a type column family, that tracks how objects interact with
the metamodel-level; and (iii) a containment column family, that defines the models’
structure in terms of containment references. This column families have been designed
to group information that is usually queried together in order to improve data distribution
and reduce access time.

Table 3.4 shows how the sample instance in Figure 2.3 is represented using this struc-
ture: as in the NEOEMF/MAP mapping, row keys are a unique identifier that allows to
retrieve a specific model element. The property column family stores the objects’ actual
data, where each column corresponds to a specific attribute or association. As it can be
seen, not all rows have a value for a given column. Data representation depends on the
property type and cardinality (i.e., upper bound). For example, values for single-valued
attributes (like the name, which stored in the name column) are directly saved as a sin-
gle literal value; while values for many-valued attributes are saved as an array of single
literal values. Values for single-valued references, such as the modifier reference from
m1 to mod1, are stored as a single value corresponding to the identifier of the referenced
object. Finally, multi-valued references are stored as an array containing the literal iden-
tifiers of the referenced objects. An example of this is the classes reference from p1

to c1 and c2, that is stored as { ’b1’, ’b2’ } in the ❤♣✶❀ ❝❧❛ss❡s✐ cell.

The containment column family maintains a record of which is the container for every
persisted object. The container column records the identifier of the container object, while
the feature column records the name of the containing association. Table 3.4 shows that,
for example, the container of the Class c1 is p1 through the classes association.

The type column family groups the type information by means of the metamodel
unique identifier and EClass columns. The former represents the metamodel the element
is an instance from, and the later describe the specific class it conforms to. For exam-
ple, the table specifies the element p1 is an instance of the Package class of the Java
metamodel (that is identified by its nsURI).

NEOEMF/COLUMN has been designed to benefit from the distributed nature of the
underlying column store, and is the basis of the ATL-MR framework [7] that reuses the
database capabilities to efficiently compute ATL transformations on top of the Map-
Reduce programming model. ATL-MR has shown positive results in terms of execu-
tion time when computing complex model-to-model transformations on top of very large
models distributed among a HBase cluster.
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Property

Key name classes methods imports modifier visibility returnType

’p1’ ’package1’ {’c1’, ’c2’}
’c1’ ’class1’
’c2’ ’class2’ {’m1’} {’c1’}
’m1’ ’method1’ ’mod1’ ’t1’

’mod1’ ’private’
’t1’ ’void’

Containment Type

Key container feature nsURI EClass

’p1’ ’http://java’ ’Package’
’c1’ ’p1’ ’classes’ ’http://java’ ’Class’
’c2’ ’p1’ ’classes’ ’http://java’ ’Class’
’m1’ ’c2’ ’methods’ ’http://java’ ’Method’

’mod1’ ’m1’ ’modifier’ ’http://java’ ’Modifier’
’t1’ ’m1’ ’returnType’ ’http://java’ ’Type’

Table 3.4 – Examples instance stored as a sparse table in NeoEMF/Column

3.4 Tooling

NEOEMF is developed as a set of open source Eclipse plugins distributed under the
EPL license 3. The NEOEMF website 4 presents an overview of the key features and
current ongoing work. The source code repository and wiki are available on GitHub 5.
NEOEMF has been used as the persistence solution of the MONDO European project [69]
and is used to store large models automatically extracted from reverse engineering pro-
cesses. Details on dependencies and library versions are provided in Table 3.5.

Up-to-date benchmark results are available on the project wiki, and can be com-
puted from the latest version of the tool by running the benchmarks available on the
project repository. In addition, a convenience docker image is provided 6 to quickly in-
stall NEOEMF in a dedicated environment and run the benchmarks locally.

NEOEMF wiki provides a set of examples and resources for beginners and advanced
users: a tutorial showing how to install and get started with NEOEMF (also available in
Appendix A of this manuscript), a ready to use demonstration, code examples, database
configuration snippets, and specific backend configurations. An additional demonstration
video is available online 7.

3. https://www.eclipse.org/legal/epl-v10.html
4. http://www.neoemf.com
5. http://www.github.com/atlanmod/NeoEMF
6. https://hub.docker.com/r/atlanmod/neoemf/
7. http://hdl.handle.net/20.500.12004/1/U/293557

https://www.eclipse.org/legal/epl-v10.html
http://www.neoemf.com
http://www.github.com/atlanmod/NeoEMF
https://hub.docker.com/r/atlanmod/neoemf/
http://hdl.handle.net/20.500.12004/1/U/293557
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Software metadata Description

Current Software Ver-
sion

1.0.2

Permanent link to exe-
cutables
of this version

Eclipse Update Site: https:

//atlanmod.github.io/

NeoEMF/releases/1.0.2/

plugin/

Maven Repository https:

//mvnrepository.com/

search?q=neoemf

Legal Software License EPL (NeoEMF)
GPL (Neo4j convenience bundle)

Computing Platform /
Operating System

Java 8-compatible platform
Eclipse users: Eclipse Luna or later

Installation requirements
& dependencies

Java 8

Software code lan-
guages, tools, and
services used

Java, Eclipse, Neo4j 1.9.6, MapDB
3.0.2, HBase 1.2.4

If available, link to user
manual - if formally pub-
lished include a refer-
ence to the publication in
the reference list

Website: www.neoemf.com
Tutorial: https://github.

com/atlanmod/NeoEMF/wiki/

Get-Started

Support email for ques-
tions

neoemf@googlegroups.com

Table 3.5 – Software metadata

https://atlanmod.github.io/NeoEMF/releases/1.0.2/plugin/
https://atlanmod.github.io/NeoEMF/releases/1.0.2/plugin/
https://atlanmod.github.io/NeoEMF/releases/1.0.2/plugin/
https://atlanmod.github.io/NeoEMF/releases/1.0.2/plugin/
https://mvnrepository.com/search?q=neoemf
https://mvnrepository.com/search?q=neoemf
https://mvnrepository.com/search?q=neoemf
www.neoemf.com
https://github.com/atlanmod/NeoEMF/wiki/Get-Started
https://github.com/atlanmod/NeoEMF/wiki/Get-Started
https://github.com/atlanmod/NeoEMF/wiki/Get-Started
neoemf@googlegroups.com
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3.5 Empirical Evaluation

In this section we evaluate the performance of our proposal by comparing it against the
de-facto standard model persistence solutions. Based on our experience with industrial
partners, we have reverse-engineered three models (set1 to set3) of increasing sizes from
open source Java projects whose sizes resemble those one can find in real world scenarios
(see Table 3.6). We compare the different solutions by using a set of model queries
extracted from real reverse-engineering use cases, and compare the results of the different
solutions in terms of execution time and memory consumption.

3.5.1 Benchmark Presentations

We consider four persistence solutions in our benchmarks: NEOEMF/GRAPH , NEOEM-
F/MAP , CDO, and the default XMI serialization mechanism of EMF. The executed
queries access the model using the standard EMF API, making them agnostic of which
backend they are running on. Other persistence solutions have been discarded of this com-
parison because they do not strictly comply with the standard EMF behavior (e. g.MongoEMF),
they require manual modifications in the source models and metamodels (e. g.EMF Frag-
ments), or because we were only able to execute a small subset of the experiments on
them (e. g.Morsa). Note that persistence solutions that does not aim to handle very large
models are also discarded (e. g.NEOEMF/COLUMN and EMF Store).

The executed model queries retrieve, and are ordered by their computation complexity
(i. e.number of model element to traverse and properties to access):

— ClassAttributes computes the attributes of all the Class instances in the model
— SingletonMethods find static methods returning their containing Class (singleton

pattern)
— InvisibleMethods find all the methods that have a private or protected modifier
— UnusedMethods computes the set of methods that are private and not internally

called
Queries are executed using two memory configurations: the first one uses a large

Java Virtual Machine (JVM) of ✽GB that is used to evaluate the performance of our
approach when there is enough memory to compute the query and garbage collection is
negligible. The second configuration uses a small JVM of ✺✶✷MB that is used to evaluate
how the benchmarked solutions behave in a highly constrained memory environment.
Note that this benchmark focuses on evaluating query execution time, and does not take
into account model loading and unloading.

Experiments are executed on a computer running Fedora 20 64 bits. Relevant hard-
ware elements are: an Intel Core I7 processor (✷✿✼GHz), ✶✻GB of DDR3 SDRAM
(✶✻✵✵MHz) and a SSD hard-disk. Experiments are executed on Eclipse 4.5.2 (Mars)
running Java SE Runtime Environment 1.8. Note that if not specified, this setup is used
by default to evaluate our different contributions in the remaining of this manuscript.
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Model # Elements XMI Size (MB)

set1 ✻✼✺✻ ✶✿✼
set2 ✽✵ ✻✻✺ ✷✵✿✷
set3 ✶ ✺✺✼ ✵✵✼ ✹✷✵✿✻

Table 3.6 – Benchmarked Models

3.5.2 Results

Table 3.7 to 3.10 present the results of executing the presented queries over the bench-
marked persistence frameworks. Each table presents the result of a specific query, and
each cell contain both the execution time in the large and the small JVM. Note that ex-
ecution time is measured in milliseconds, and the correctness of the results have been
checked by comparing the results obtained by running the queries on the different imple-
mentations with the ones obtained from the standard XMI-based implementation using
EMF Compare [18].

Model XMI CDO NEOEMF/GRAPH NEOEMF/MAP

set1 ✷ ✷ ✷✾✹✺ ✷✾✾✽ ✷✵✷✹ ✷✷✻✼ ✶✶✷✹ ✶✷✷✻
set2 ✶✸ ✶✹ ✶✶ ✶✷✺ ✶✷ ✷✺✻ ✾✻✸✵ ✶✵ ✼✷✼ ✹✻✻✵ ✹✽✽✵
set3 ✸✵✹ OOM1 ✶✹✽ ✷✶✽ ✻✶✾ ✵✵✽ ✾✺ ✸✶✹ ✻✸✽ ✵✹✶ ✺✼ ✵✶✶ ✺✽ ✽✷✼

1 OutOfMemory Error

Table 3.7 – ClassAttributes Results in milliseconds (Large VM / Small VM)

Model XMI CDO NEOEMF/GRAPH NEOEMF/MAP

set1 ✹ ✹ ✸✹✽✶ ✸✺✶✹ ✶✾✺✺ ✶✼✽✹ ✶✶✸✵ ✶✵✼✹
set2 ✷✼ ✷✽ ✶✷ ✼✺✾ ✶✷ ✺✹✽ ✼✹✷✶ ✶✵ ✻✺✼ ✹✺✼✻ ✹✸✾✸
set3 ✸✶✷ OOM ✶✺✾ ✶✼✵ ✺✺✸ ✶✹✶ ✽✼ ✻✽✵ ✻✸✺ ✷✺✹ ✺✼ ✷✽✽ ✺✼ ✵✶✵

Table 3.8 – SingletonMethods Results in milliseconds (Large VM / Small VM)

3.5.3 Discussion

The analysis of the results show that both NEOEMF/GRAPH and NEOEMF/MAP are
interesting candidates to store and access large models in constrained memory environ-
ments. Both NEOEMF implementations perform better than CDO in the evaluated sce-
narios, and are able to handle set3 in a constrained memory environment while XMI-
based implementation crashes with an OutOfMemory error. However when the model to
query fits in memory, the XMI serialization outperforms all the existing solutions in terms
of execution time. This result is expected because XMI initially loads the full model, al-
lowing to compute the entire query in memory while lazy-loading approaches bring into
memory elements when they are needed, and usually have to perform more input/output
operations to enable element unloading and improve memory consumption.
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Model XMI CDO NEOEMF/GRAPH NEOEMF/MAP

set1 ✹ ✹ ✸✶✹✸ ✸✷✹✽ ✶✽✼✽ ✶✼✽✾ ✶✶✾✷ ✶✶✼✻
set2 ✶✽ ✶✼ ✶✷ ✹✾✻ ✶✶ ✷✾✵ ✽✺✵✺ ✾✾✹✵ ✹✽✺✻ ✺✵✺✻
set3 ✺✺✶ OOM ✶✼✻ ✾✷✽ ✺✹✾ ✽✾✷ ✾✼ ✶✵✹ ✻✾✸ ✺✸✼ ✼✽ ✺✼✹ ✼✽ ✺✽✹

Table 3.9 – InvisibleMethods Results in milliseconds (Large VM / Small VM)

Model XMI CDO NEOEMF/GRAPH NEOEMF/MAP

set1 ✼ ✼ ✸✷✶✷ ✷✾✷✹ ✶✾✹✷ ✷✸✹✻ ✶✹✷✺ ✶✹✸✼
set2 ✹✻ ✹✷ ✶✷ ✷✺✺ ✶✷ ✶✻✾ ✶✵ ✷✼✹ ✶✶ ✻✺✷ ✼✷✽✸ ✼✶✼✼
set3 ✻✺✹ OOM ✶✼✶ ✺✺✽ ✶ ✶✻✵ ✾✽✵ ✾✼ ✼✽✷ ✶ ✸✻✽ ✸✾✾ ✶✶✹ ✺✸✾ ✶✶✽ ✹✾✽

Table 3.10 – UnusedMethods Results in milliseconds (Large VM / Small VM)

In the presented results NEOEMF/MAP outperforms other scalable persistence frame-
works in terms of exectution time. In addition, the constrained memory environment does
not have a significant impact on the connector’s performance, enabling very large model
querying. This can be explained by the model to data-store mapping used in NEOEM-
F/MAP that is optimized to access a single feature from a modeling element. Technically,
the framework does not require any complex in-memory structure to represent the model,
and only keeps in memory one key-value pair representing the element currently pro-
cessed. This architecture allows to remove from memory elements as soon as they have
been processed, thus reducing the memory consumption.

NEOEMF/GRAPH also outperforms CDO when a large virtual machine is allocated to
the computation, but is less interesting in constrained memory environment. This can be
explained by the underlying model to graph mapping, which allows efficient model navi-
gations, while CDO’s relational schema requires multiple table join operations to compute
a complex navigation. However, the nature of the EMF API that performs low-level and
fragmented queries implies a lot of database lookups to find a node corresponding to a
given element, which is typically costly in terms of memory in graph databases, limiting
NEOEMF/GRAPH benefits in highly constrained memory environment.

As a summary, NEOEMF/MAP is a good solution to query very large models in
a constrained memory environment. The underlying model to data-store mapping has
been designed to handle the typical query patterns generated by the high-level EMF API,
improving both execution time and memory consumption.

Note that our experimentations does not evaluate the cost in terms of execution time
of additional framework’s features that are not directly related to model persistence. For
example, some of the CDO core features such as transaction support, collaborative edit-
ing, and versioning cannot be disabled and potentially have an impact on the results. To
provide a fair comparison between the presented solution we should either evaluate this
feature-specific overhead or provide the same capabilities for other implementations.
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3.6 Conclusion

In this chapter we introduced NEOEMF , a multi-datastore model persistence frame-
work. It relies on a lazy-loading capability that loads model element individually, allow-
ing very large model navigation in a reduced amount of memory, by loading elements
when they are accessed. NEOEMF provides three implementations that can be plugged
transparently to provide an optimized solution to different modeling use cases: atomic
accesses through interactive editing, complex query computation, and cloud-based model
transformation.

Our solution fulfill all the requirements presented in Section 3.1. Interoperability re-
quirements are addressed by (i) the EMF API implementation that allows to plug NEOEMF into
existing EMF-based applications, (ii) the modular architecture presented in Section 3.2
that allows to switch from one data-store to another according to the modeling scenario,
and (iii) an extensible architecture that eases new data-store connector integration. Perfor-

mance requirements are addressed by NEOEMF ’s lazy-loading mechanism that allows
to manipulate large models, and our experiments have shown that NEOEMF/MAP is an
interesting persistence solution that outperforms state of the art frameworks in highly
constrained memory environments.

In the rest of this manuscript we show how NEOEMF can be complemented by
caching and prefetching strategies to further improve performances, and we investigate
the use of efficient graph query languages to efficiently compute model queries and trans-
formations.





4
Model Prefetching and Caching

Prefetching and caching are two well-known techniques used to improve performance
of applications that rely intensively on I/O accesses. Prefetching consists in bringing ob-
jects into memory before they are actually requested by the application to reduce per-
formance issues due to the latency of I/O accesses. Fetched objects are then stored in
memory to speed-up their access later on. In contrast, caching aims at speeding up the
access by keeping in memory objects that have been already loaded.

Prefetching and caching have been part of database management systems and file sys-
tems for a long time and have proven their efficiency in several use cases [99, 90]. In
particular, P. Cao et al. [26] showed that integrating prefetching and caching strategies
together dramatically improves the performance of I/O-intensive applications. In short,
prefetching mechanisms work by adding —dynamic or static— load instructions (ac-
cording to prefetching rules derived by static [62] or execution trace analysis [33]) into
an existing program. Caches are usually controlled by global policies such as Least Re-
cently Used (LRU) or Most Recently Used (MRU) that define in which order elements
are discarded (i. e. removed from memory) and replaced by new ones.

Currently, there is lack of support for prefetching and caching at the model level.
As we stated in Chapter 3, model-driven engineering (MDE) is progressively adopted in
the industry [54, 76], and such support is required to raise the scalability of MDE tools
dealing with large models where storing, editing, transforming, and querying operations
are major issues [68, 115].

Existing approaches, including the NEOEMF framework presented in the previous
chapter, have proposed scalable model persistence frameworks on top of relational and
NoSQL databases [43, 88, 63, 35]. The lazy-loading strategy usually provided by these
approaches helps dealing with large models that would otherwise not fit in memory. How-
ever, it also adds an execution time overhead due to the latency of I/O accesses to load
model excerpts from the database, specially when executed in a distributed environment,
where this I/O delay is amplified by the network latency.

51
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In this sense, we propose a new prefetching and caching framework for models.
We present PREFETCHML , a domain specific language and execution engine, to spec-
ify prefetching and caching policies and execute them at run-time in order to optimize
model access operations. This DSL allows designers to customize the prefetching rules
to the specific needs of model manipulation scenarios, even providing several execution
plans for different use cases. PREFETCHML also includes a monitoring component that
provides insights on the execution performance to guide modelers on improving their
prefetching plans. Finally our framework also embeds a set of caching strategies and
consistency policies allowing modelers to finely adapt the cache behavior to a particular
execution scenario. Our framework is built on top of the EMF infrastructure and therefore
it is compatible with existing scalable model persistence approaches, regardless whether
those backends also offer some kind of internal prefetching mechanism. A special ver-
sion tailored to the NeoEMF/Graph [6] engine is also provided for further performance
improvements. The empirical evaluation of PREFETCHML highlights the significant time
benefits it achieves.

The remaining of this chapter is organized as follows: Section 4.1 introduces fur-
ther the background of prefetching and caching techniques in the modeling ecosystem
while Section 4.2 introduces the PREFETCHML DSL. Section 4.3 describes the frame-
work infrastructure, its basic rule execution algorithm, and the consistency policies we
have implemented. Section 4.4 presents our monitoring component and how it can be
used to optimize an existing PREFETCHML plan. Section 4.5 introduces the editor that
allows the designer to define prefetching and caching rules, and the implementation of
our tool and its integration with the modeling environment. Finally, Section 4.6 presents
the benchmarks used to evaluate our prefetching tool and associated results. Section 4.7
summarizes the key points of the chapter and draws conclusions.

4.1 State of the Art

Prefetching and caching techniques are common in relational and object databases [99]
in order to improve query computation time. Their presence in NoSQL databases is much
more limited, which contrasts with the increasing popularity of this type of databases
as model storage solution. Moreover, database-level prefetching and caching strategies
do not provide fine-grained configuration of the elements to load according to a given
usage scenario —such as model-to-model transformation, interactive editing, or model
validation— and are often strongly connected to the data representation, making them
hard to evolve and reuse.

4.1.1 Prefetching and Caching in Current Modeling Frameworks

Most of the existing scalable model persistence frameworks are built on top of rela-
tional or NoSQL databases to store and access large models [35, 43]. These approaches
are often based on lazy-loading strategies to optimize memory consumption by load-
ing only the accessed objects from the database. While lazy-loading approaches have
proven their efficiency in terms of memory consumption to load and query very large
models [34, 88], they generate a lot of fragmented queries on the database, thus adding a
significant execution time overhead. For the reasons described above, these frameworks
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cannot benefit from database prefetching solutions nor they implement their own mech-
anism, with the partial exception of CDO [43] that provides some basic prefetching and
caching capabilities 1. For instance, CDO is able to bring into memory all the elements of
a list at the same time, or load nested/related elements up to a given depth. Nevertheless,
alternative prefetching rules cannot be defined to adapt model access to different contexts
nor it is possible to define rules with complex prefetching conditions.

Caching is a common solution used in current scalable persistence frameworks to
improve query execution involving repeated accesses of model elements. They are inte-
grated in several solutions such as CDO [43], Morsa [88], and NEOEMF [35]. However,
these caches are tailored to a specific solution, and they typically lack of advanced con-
figurations such as the replacement policy to use, the maximum size of the cache, or the
number of elements to drop when the cache is full. In addition, persistence framework
caches are usually defined as internal components, and do not allow client applications to
access the content of the cache.

Hartmann et al. [49] propose a solution to tackle scalability issues in the context of
models@run.time by splitting models into chunks that are distributed across multiple
nodes in a cluster. A lazy-loading mechanism allows to virtually access the entire model
from each node. However, to the best of our knowledge the proposed solution does not
provide a prefetching mechanism, which could improve the performance when remote
chunks are retrieved and fetched among nodes.

Optimization of query execution has also been targeted by other approaches not re-
lying on prefetching but using a variety of other techniques. EMF-IncQuery [11] is an
incremental evaluation engine that computes graph patterns over an EMF model. It relies
on an adaptation of the RETE algorithm, and results of the queries are cached and in-
crementally updated when the model is modified using the EMF notification framework.
While EMF-IncQuery can be seen as an efficient EMF cache, it does not aim to pro-
vide prefetching support, and cache management cannot be tuned by the designer. The
Hawk [3] model indexer also aims at improving model query computation by providing
an efficient backend-independent query language built on top of the Epsilon platform.
However, Hawk has been primarily designed to handle model queries, and does not pro-
vide constructs to define prefetching and caching plans on top of the indexed models.

4.1.2 Problematic and Requirements

In the presented approaches, prefetching and caching components are usually de-
signed (when they exist) to generically improve application’s performance by relying on
a preset cache policy, that can be complemented, in the case of CDO, with a predefined
simple prefetching strategy. However, we believe that these generic, statically defined
techniques should be adaptable regarding the expected modeling scenario and query ac-
cess patterns on the model. Finally, the presented approaches are specific to the chosen
persistence solution, and can not be reused from one solution to another.

Thus, we define a set of requirements to address in order to provide an efficient and
configurable prefetching and caching component to complement modeling and persis-
tence frameworks:

1. https://wiki.eclipse.org/CDO/Tweaking_Performance

https://wiki.eclipse.org/CDO/Tweaking_Performance
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Rq1 Ability to define/execute prefetching rules independently of the database back-
end.

Rq2 Ability to define/execute prefetching rules transparently from the persistence
framework layered on top of the database backend.

Rq3 A prefetching language expressive enough to define rules involving conditions
at the metamodel and instance model levels (i.e. loading all instances of a class A
that are linked to a specific object of a class B).

Rq4 A context-dependent prefetching language allowing the definition of alternative
prefetching and caching plans for specific modeling scenarios.

Rq5 A readable prefetching DSL enabling designers to easily create, tune, and main-
tain prefetching and caching rules.

Rq6 A monitoring/quality component providing feedbacks on the prefetching and
caching plan execution to guide modelers on improving their prefetching rules.

In the following sections, we present PREFETCHML , our prefetching and caching
framework that tackles these challenges.

4.2 The PrefetchML DSL

The PREFETCHML DSL is a high-level, event-based language that describes prefetch-
ing and caching rules over models. Rules are triggered when an event satisfying a par-
ticular condition is received. These events can be the initial model loading, an access to
a specific model element, the update of a value, or the deletion of an element. Events
can be parameterized with OCL guards that express conditions are validated to trigger
prefetching and caching instructions.

Loading instructions are also defined in OCL. The set of elements to be loaded as a re-
sponse to an event is characterized by means of OCL expressions that navigate the model
and select the elements to fetch and store in the cache. Not only loading requests can be
defined, the language also provides an additional construct to control the cache content
by removing specific elements from the cache when a particular event is received. We
choose OCL as our model navigation language because it is a well-known OMG standard
intensively used in the MDE community that expresses sophisticated model constraints,
invariants, and queries independently of the low-level model persistence solution.

Prefetching and caching rules are organized in plans, that are sets of rules that should
be used together to optimize a specific usage scenario for the model, since different kinds
of model accesses may require different prefetching strategies. For example, a good
strategy for an interactive model browsing scenario is to fetch and cache the containment
structure of the model, whereas for a complex query execution scenario it is better to have
a plan that fits the specific navigation path of the query.

Beyond a set of prefetching rules, each plan defines a cache that can be parametrized,
and a consistency policy that defines the strategy to use to manage the life-cycle of cached
elements when the model is updated.

In what follows, we formalize the abstract and concrete syntax of the PREFETCHML DSL
and introduce them by extending the running example presented in section 2.2.1. Next
Section will introduce how these rules are executed as part of the PREFETCHML engine.
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4.2.1 Abstract Syntax

Figure 4.1 – Prefetch Abstract Syntax Metamodel

This section describes the main concepts of PREFETCHML focusing on the different
types of rules it offers and how they can be combined to create a complete prefetching
and caching specification.

Figure 4.1 depicts the metamodel corresponding to the abstract syntax of the PrefetchML
language. A PrefetchSpecification is a top-level container that imports several Metamod-

els. These metamodels represent the domain on which prefetching and caching rules are
described, and are defined by their Unified Resource Identifier (URI).

The imported Metamodel concepts (classes, references, attributes) are used in prefetch-
ing Plans, which are named entities that group rules that are applied in a given execution
context. A Plan can be the default plan to execute in a PrefetchSpecification if no execu-
tion information is provided.

Each Plan contains a CacheStrategy, which represents the information about the cache
policy the prefetcher applies to keep loaded objects into memory. Currently, available
cache strategies are LRUCache (Least Recently Used) and MRUCache (Most Recently
Used). These Caches define four parameters: (i) the maximum number of objects they
can store (size), (ii) the number of elements to free when the cache is full (chunkSize), (iii)
the consistency policy used to manage model modifications, and (iv) the integration of the
cache with the running application (details on cache consistency/integration are provided
in Section 4.3). In addition, a CacheStrategy can contain a tryFirst OCL expression 2. This

2. OCLExpression is defined in the Eclipse MDT OCL metamodel
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expression is used to customize the default cache replacement strategy with additional
knowledge: it returns a set of model elements that should be removed from the cache if it
is full, overriding the selected caching policy.

Plans also contain the core components of the PrefetchML language: Prefetchin-

gRules that describe tracked model events and the loading and caching instructions. We
distinguish two kinds of PrefetchingRules:

— StartingRules that are prefetching instructions triggered a single time when the
prefetching plan is loaded

— ObjectRules that are triggered when an element satisfying a given condition is
accessed, deleted, or updated

ObjectRules can be categorized in three different types: Access rules, that are triggered
when a particular model element is accessed, Set rules that correspond to the setting
of an attribute or a reference, and Delete rules, that are triggered when an element is
deleted or simply removed from its parent. When to fire the trigger is also controlled by
the sourceContext class (from the imported metamodels), that represents the type of the
elements that could trigger the rule. This is combined with the sourceExpression (i.e. the
guard for the event) to decide whether an object matches the rule.

All kinds of PrefetchingRules contain a targetExpression, that represents the elements
to load when the rule is triggered. This expression is an OCLExpression that navigates
the model and returns the elements to load and cache. Note that if self is used as the tar-

getExpression of an AccessRule the framework will behave as a standard cache, keeping
in memory the accessed element without fetching any additional object.

It is also possible to define removeExpressions in PrefetchingRules, that are executed
after targetExpressions to finely control the cache contents. When a removeExpression is
evaluated, the prefetcher marks as free all the elements it returns from the cache. Each
removeExpression is associated to a removeContext Class, that represents the context of
the OCL expression. A remove expression can be coupled with the tryFirst expression
contained in the CacheStrategy to finely tune the default replacement policy of the cache.

4.2.2 Concrete Syntax

We introduce now the concrete syntax of the PREFETCHML language, which is de-
rived from the abstract syntax metamodel presented in Figure 4.1. Listing 2 presents the
grammar of the PREFETCHML language expressed using XText [44], an EBNF-based
language used to specify the grammar and generate an associated toolkit containing a
metamodel of the language, a parser, and a basic editor. The grammar defines the key-
words associated to the constructs presented in the PREFETCHML metamodel. Note that
OCLExpressions are parsed as strings, the model representation of the queries presented
in Figure 4.1 is computed by parsing them using the Eclipse MDT OCL toolkit 3.

Listing 2 – PrefetchML Language Grammar
grammar f r . i n r i a . a t l anmod . P r e f e t c h i n g
wi th org . e c l i p s e . x t e x t . common . T e r m i n a l s
i m p o r t " h t t p : / / www. i n r i a . f r / a t lanmod / P r e f e t c h i n g "

P r e f e t c h S p e c i f i c a t i o n :
metamodel=Metamodel

3. http://www.eclipse.org/modeling/mdt/?project=ocl

http://www.eclipse.org/modeling/mdt/?project=ocl
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p l a n s += P lan +
;

Metamodel :
’ impor t ’ nsURI=STRING

;

P l an :
’ p lan ’ name=ID ( d e f a u l t ?= ’ d e f a u l t ’ ) ? ’{ ’

cache = C a c h e S t r a t e g y
r u l e s +=( S t a r t i n g R u l e | AccessRule )*

’} ’
;

C a c h e S t r a t e g y :
( LRUCache{LRUCache} | MRUCache{MRUCache } )

( p r o p e r t i e s = C a c h e P r o p e r t i e s ) ? ( ’ when f u l l remove ’ t r y F i r s t E x p =OCLExpression ) ?
;

LRUCache :
’ use cache ’ ’LRU’

;

MRUCache :
’ use cache ’ ’MRU’

;

C a c h e P r o p e r t i e s :
’ [ ’ ’ s i z e = ’ s i z e =INT ( ’ chunk = ’ chunk=INT ) ? s h a r e d = ’ sha red ’ ? ’ p o l i c y = ’ p o l i c y = C o n s i s t e n c y P o l i c y ’ ] ’

;

enum C o n s i s t e n c y P o l i c y :
DROP_ALL = ’ d r o p _ a l l ’ |
DROP_LINE = ’ d r o p _ l i n e ’ |
UPDATE = ’ upda te ’

;

P r e f e t c h i n g R u l e :
( S t a r t i n g R u l e | AccessRule | D e l e t e R u l e | S e t R u l e )

;

S t a r t i n g R u l e :
’ r u l e ’ name=ID ’ : ’ ’ on s t a r t i n g ’
’ f e t c h ’ t a r g e t P a t t e r n E x p =OCLExpression
( ’ remove ’ ’ type ’ removeType= C l a s s i f i e r E x p r e s s i o n r e m o v e P a t t e r n E x p =OCLExpression ) ?

;

AccessRule :
’ r u l e ’ name=ID ’ : ’ ’ on a c c e s s ’
’ type ’ sou rceType = C l a s s i f i e r E x p r e s s i o n ( s o u r c e P a t t e r n E x p =OCLExpression ) ?
’ f e t c h ’ t a r g e t P a t t e r n E x p =OCLExpression
( ’ remove ’ ’ type ’ removeType= C l a s s i f i e r E x p r e s s i o n r e m o v e P a t t e r n E x p =OCLExpression ) ?

;

D e l e t e R u l e :
’ r u l e ’ name=ID ’ : ’ ’ on d e l e t e ’
’ type ’ sou rceType = C l a s s i f i e r E x p r e s s i o n ( s o u r c e P a t t e r n E x p =OCLExpression ) ?
’ f e t c h ’ t a r g e t P a t t e r n E x p =OCLExpression
( ’ remove ’ ’ type ’ removeType= C l a s s i f i e r E x p r e s s i o n r e m o v e P a t t e r n E x p =OCLExpression ) ?

;

S e t R u l e :
’ r u l e ’ name=ID ’ : ’ ’ on s e t ’
’ type ’ sou rceType = C l a s s i f i e r E x p r e s s i o n ( s o u r c e P a t t e r n E x p =OCLExpression ) ?
’ f e t c h ’ t a r g e t P a t t e r n E x p =OCLExpression
( ’ remove ’ ’ type ’ removeType= C l a s s i f i e r E x p r e s s i o n r e m o v e P a t t e r n E x p =OCLExpression ) ?

;

OCLExpression : STRING ;

C l a s s i f i e r E x p r e s s i o n : ID ;
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4.2.3 Running Example

In order to better illustrate the features of PREFETCHML , we reuse the running ex-
ample presented in Section 2.2.1. Listing 3 presents three sample OCL queries that can
be computed over an instance of our example metamodel (Figure 6.2): the first one re-
turns the Package elements that do not contain any Class through their classes reference.
The second one returns from a given Class all its contained Methods that have a private
Modifier, and the third one returns from a Class a sequence containing the returnTypes of
all its imported Methods that contain ’Mock’ in their name.

c o n t e x t Package
d e f : isAnEmptyPackage : Boolean =
s e l f . c l a s s e s✦ i sEmpty ( )

c o n t e x t C l a s s
d e f : p r i v a t e M e t h o d s : Sequence ( C l a s s ) =
s e l f . methods
✦ s e l e c t (mm | mm. m o d i f i e r = V i s i b i l i t y K i n d : : P r i v a t e )

c o n t e x t C l a s s
d e f : i m p o r t e d R e t u r n T y p e s : Sequence ( Type ) =
s e l f . i m p o r t s . methods . r e t u r n T y p e
✦ s e l e c t ( t | t . name . c o n t a i n s ( ’Mock ’ ) ) )

Listing 3 – Sample OCL Query

Listing 4 provides an example of a PrefetchSpecification written in PREFETCHML .
To continue with our running example, the listing displays prefetching and caching rules
suitable for a scenario where all the queries expressed in Listing 3 are executed in the
order they are defined.

The PrefetchSpecification imports the Java Metamodel (line 1). This PrefetchSpec-

ification contains a Plan named samplePlan that uses a LRUCache that can contain up
to 100 elements and removes them by chunks of 10 (line 4). The cache also defines the
shared property, meaning that elements computed by the prefetching rules and the run-
ning application will be cached together. Finally, the cache uses the drop_line consistency
policy, that removes lines from the cache corresponding to updated elements. Note that
the consistency policy is not important in this example, because OCL expressions are
side-effect free and do not generate update notifications.

The plan also defines three PrefetchingRules: the first one, r1 (5-6), is a starting rule
that is executed when the plan is activated, and loads and caches all the Package classes.
The rule r2 (7-8) is an access rule that corresponds to the prefetching and caching ac-
tions associated to the query PrivateMethods. It is triggered when a Class is accessed,
and loads and caches all the Methods and Modifiers it contains. The rule r3 (9-11) corre-
sponds to the query ImportedReturnTypes: it is also triggered when a Class is accessed,
and loads the type name of each Method of its imported Classes. The rule also defines
a remove expression, that removes all the Package elements from the cache when the
loading instruction is completed.
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1 i m p o r t " h t t p : / / www. example . o rg / J a va "
2
3 p l a n s a m p l e P l a n {
4 use cache LRU[ s i z e =100 , chunk =10 , sha red , p o l i c y = d r o p _ l i n e ]
5 r u l e r1 : on s t a r t i n g f e t c h
6 Package . a l l I n s t a n c e s ( )
7 r u l e r2 : on a c c e s s t y p e C l a s s f e t c h
8 s e l f . methods . m o d i f i e r
9 r u l e r3 : on a c c e s s t y p e C l a s s f e t c h

10 s e l f . i m p o r t s . methods . r e t u r n T y p e . name
11 remove t y p e Package
12 }

Listing 4 – Sample Prefetching Plan

4.3 PrefetchML Framework Infrastructure

Prefetching and caching plans defined from the grammar presented in the previous
section constitute the input of an execution engine that parses, evaluates, and triggers
PREFETCHML rules over models. In this section we present the infrastructure of the
PREFETCHML engine and its integration in the modeling ecosystem (integration details
into specific modeling frameworks are provided in Section 4.5). We also detail how
prefetching rules are handled and executed using the running example presented in the
previous section, and we present the different cache consistency policies and integration
levels that can be defined to tune the prefetching and caching behavior.

4.3.1 Architecture

Figure 4.2 shows the integration of the PREFETCHML framework in a typical model-
ing framework infrastructure: orange nodes represent standard model access components:
a User uses a model-based tool that accesses a model through a modeling API, which del-
egates to a persistence framework in charge of handling the physical storage of the model
(for example in XML files, or in a database). The elements in this modeling stack are
typically set-up by a Modeler who configures them according to the application’s work-
load (for example by selecting a scalable persistence framework if the application aims
to handle large models).

The PREFETCHML framework (red nodes) receives events from the modeling frame-
work. When an event triggers a prefetching rule, the framework delegates the actual
computation to its Model Connector. This component interacts with the modeling frame-
work to retrieve the objects to load and cache, typically by translating the OCL expres-
sions in the PREFETCHML rules into lower level calls to the framework API 4. The PRE-
FETCHML framework also provides monitoring information that gives useful insights
on the execution to help the Modeler to customize the persistence framework and the
prefetching and caching plans. The monitoring component and the feedbacks it provides
are detailed in the next section.

The framework also intercepts model element accesses, in order to search first in its
Cache component if the requested objects are already available. If the cache already

4. Section 4.5 discusses two specific implementations of this component
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contains the requested information (i. e. if it has been prefetched before), it is returned to
the modeling framework, bypassing the persistence layer and improving execution time.
Model modification events are also intercepted by the framework to update/invalidate
cached values in order to keep the cache content consistent with the model state.

Figure 4.2 – PREFETCHML Integration in MDE Ecosystem

Figure 4.3 describes the internal structure of the PREFETCHML Framework.

As explained in Section 4.2, a PrefetchMLSpecification conforms to the PREFETCHML meta-
model. This specification imports also the metamodel/s for which we are building the
prefetching plans.

The Core component of the PrefetchML framework is in charge of loading, parsing
and storing these PrefetchMLSpecifications and use them to find and retrieve the prefetch-
ing / caching rules associated with an incoming event, and, when necessary, execute
them. This component also contains the internal cache that retains fetched model ele-
ments in memory. The core component ensures cache consistency, by invalidating part or
all cached records when update, create, or delete events are received. The Rule Store is a
data structure that stores all the object rules (access, update, and delete) contained in the
input PrefetchML description and allows to easily retrieve rules that can be applied for a
given object and event.

The Model Connector component is in charge of the translation and the execution
of OCLExpressions in the prefetching rules. This connector can work at the modeling
framework level, meaning that it executes fetch queries using the modeling API itself, or
at the database level, translating directly OCL expressions into database queries.

The CacheAPI component gives access to the cache contents to client applications.
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Figure 4.3 – PREFETCHML Framework Infrastructure

It allows manual caching and unloading operations, and provides configuration facilities.
This API is an abstraction layer that unifies access to the different cache types that can
be instantiated by the Core component. By default, the core component manages its own
cache where only prefetched elements are stored, providing a fine-grain control of the
cache content. While this may result in keeping in the cache objects that are not going to
be recurrently used, using a LRU cache strategy allows the framework to get rid off them
when memory is needed. In addition, the grammar allows to define a minimal cache that
would act only as a storage mechanism for the immediate prefetched objects.

The EventAPI is the component that receives events from the client application. It
provides an API to send access, delete, and update events to the core component. These
events are defined at the object level, and contain contextual information of their encapsu-
lated model element, such as its identifier, the reference or attribute that is accessed, and
the index of the accessed element. This information is then used by the Core Component

to find and execute the rules that match the event.

In particular, when an object event is sent to the PrefetchML framework (1), the Event

API handles it and forwards it to the Core Component, which is in charge of triggering
the associated prefetching and caching rule. To do that, the Core Component searches
in the Rule Store the rules that correspond to the event and the object that triggered it
(3). Each OCLExpression in the retrieved rules is translated into fetch queries sent to the
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Model Connector (4), which is in charge of the actual query computation over the model
(5). Query results are handled back by the PREFETCHML Core, which caches them and
frees the cache from previously stored objects if necessary (6).

As prefetching operations can be expensive to compute, the PREFETCHML Frame-
work runs in the background, and contains a pool of working threads that perform the
fetch operations in parallel with the application execution. Model elements are cached
asynchronously and are available to the client application through the CacheAPI.

Note that this infrastructure is not tailored to any particular data representation and
can be plugged in any kind of model persistence framework that stores models conform-
ing to the Ecore metamodel and provides an API rich enough to evaluate OCL queries.
This includes for example EMF storage implementations such as XMI, but also scalable
persistence layers built on top of the EMF, like NeoEMF [35], CDO [43], and Morsa [88].
However, the efficiency of PrefetchML (in particular the prefetcher throughput) can vary
from one persistence solution to another because of synchronization feature and the per-
sistence framework/database ability to handle multiple queries at the same time. This
differences are highlighted in the experiments we discuss in Section 4.6.

4.3.2 Rule Processing

We now look at the PREFETCHML engine from a dynamic point of view. Figure 4.4
presents the sequence diagram associated with the initialization of the PrefetchML frame-
work. When initializing, the prefetcher starts by loading the PrefetchSpecification to exe-
cute (1). To do so, it iterates through the set of plans and stores the rules in the RuleStore

according to their type (2). In the example provided in Listing 4 this process saves in
the store the rules r2 and r3, both associated with the Class type. Then, the framework
creates the cache (3) instance corresponding to the active prefetching plan (or the default
one if no active plan is provided). This creates the LRU cache of the example, setting its
size to ✶✵✵, its chunkSize to ✶✵, and the drop line consistency policy.

Next, the PREFETCHML framework iterates over the StartingRules of the specifi-
cation and computes their targetExpression using the Model Connector (4). Via this
component, the OCL expressions are evaluated (in the example the target expression is
Package.allInstances()) and the traversed elements are returned to the Core

component (5) which creates the associated identifying keys (6) and stores them in the
cache (7). Note that starting rules are not stored in the Rule Store, because they are
executed only once when the plan is activated, and are no longer needed afterwards.

Once this initial step has been performed, the framework awaits object events. Fig-
ure 4.5 shows the sequence diagram presenting how PREFETCHML handles incoming
events. When an object event is received (8), it is encapsulated into a working task which
contains contextual information of the event (accessed object, navigated feature, and in-
dex of the accessed feature) and asynchronously sent to the prefetcher (9) that searches in
the RuleStore the object rules that have the same type as the event (10). In the example, if
a Class element is accessed, the prefetcher searches the corresponding rules and returns
r2 and r3. As for the initialization diagram, the next calls involve the execution of the
target expressions for the matched rules and saving the retrieved objects in the cache for
future calls. Finally, the framework evaluates the remove OCL expressions (17) and frees
the matching objects from the memory. In the example, this last step removes from the
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cache all the instances of the Package type.

Figure 4.4 – PREFETCHML Initialization Sequence Diagram

Figure 4.5 – PREFETCHML Access Event Handling Sequence Diagram
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4.3.3 Cache Consistency

The PREFETCHML DSL presented in Section 4.2 allows to define prefetching rules
when an element in the model is Accessed, Set, and Deleted. However, these events
are simply used to trigger prefetching rules, and updating the model may create incon-
sistencies between the PREFETCHML cache and the actual model state. While this is
not a problem for side-effect free computation such as OCL queries (where no element
is modified), it becomes an issue when using PREFETCHML on top of model-to-model
transformation frameworks, or EMF-API based applications.

To overcome this limitation we have defined a set of cache consistency policies that
can be plugged to tune how the engine keeps the cache consistent with the running ap-
plication. They all ensure that the content of the cache is consistent w.r.t the model, by
handling updates with different strategies in order to improve the prefetching throughput
or increase cache hits. Available policies retrieve:

— Drop all: drop the entire cache every time the model is updated
— Drop line: drop the cache lines corresponding to the updated element and all its

cached references
— Update: update the cache lines corresponding to the updated element with the

new value, including referenced elements

Drop all is the simplest cache consistency policy: it drops the entire cache each time
a model update event is received. Dropping the entire cache is fast and does not have a
significant impact on the prefetcher throughput. However, this policy drops elements that
are still consistent with the model, and has an important impact on the prefetcher hit score.
Full drop policy is typically used when model modifications are localized at a specific
point of the execution, and concern an important part of the model. This consistency
strategy can be specified in the cache parameters of a prefetching plan with the drop-all

keyword.

Drop line removes from the cache the updated element and all the elements referenc-
ing it. This approach is adapted to query scenarios where few model modifications are
performed at multiple steps of the execution, and dropping the entire cache would have
an important impact on the number of hits. However, dropping multiple lines is more
expensive in terms of execution time because the framework has to inspect the cache to
find all the elements to remove. This policy is used by default if no consistency policy is
defined in the executed PREFETCHML plan.

Update policy keeps the cache consistent with the model by updating all the lines cor-
responding to the modified objects. This policy is interesting if a small amount of model
modifications are performed, and the updated objects are reused later and should stay in
the cache. Updating the cache requires to find the cache lines to update, and navigate
the model to find the updated values. This operation is costly (especially because it re-
quires additional model navigations), and may have a significant impact on the prefetcher
performances if too many objects are updated during the query execution.

These different cache policies can be selected by the modeler to tune PREFETCHML ac-
cording to its application workload. For example, an interactive model editor can benefit
from the Update policy, because this kind of application usually has a low workload,
with localized model modifications. On the other hand, in the context of a model-to-
model transformation that typically creates and updates a lot of model elements, using a
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lightweight policy such as drop line is more appropriated.

Figure 4.6 shows the sequence diagram presenting how PREFETCHML handles model
modifications. When an element is updated, an updateEvent describing the old (o) and
new (n) versions of the updated element is sent to the EventAPI (8). This event is for-
warded to the Core component (9) that retrieves the consistency policy to use (10), and
tells the Cache to update its content according to it (11). Depending on the used pol-
icy, the Cache will drop all its content, invalidate the lines corresponding to the updated
element, or update its content. The rest of the sequence diagram is similar to the one
presented in Figure 4.5, with the particularity that rules are found and computed from the
new version of the element instead of the old one.

Figure 4.6 – PrefetchML Update Event Handling Sequence Diagram

4.3.4 Global shared cache

PREFETCHML embeds a cache that is dedicated to prefetched elements, providing a
lot of control on the cache content to the modeler who knows that every object in the cache
has been loaded by a prefetching rule. This approach is interesting when designers want
to choose a cache size that perfectly fits their needs, and are not concerned by persistence
and application level caches. However, this strict distinction between application and
PREFETCHML caches relies on the correctness of the prefetching plan: if the plan is good
the cache contains elements that will improve the computation time, if not the application
could not benefit from the cached elements.



66 CHAPTER 4. MODEL PREFETCHING AND CACHING

To overcome this limitation, we have defined a shared cache strategy, that contains
elements loaded by prefetching rules and by the application itself. It can be enabled by
setting the cache parameter shared in a PREFETCHML plan. Sharing the cache between
the prefetcher and the application provides two benefits: (i) elements that are accessed
multiple times are cached even if they are not part of a prefetching rule, improving query
execution time, and (ii) the prefetcher throughput is optimized when both prefetching
rules and application-level queries are loading the same elements. In this last scenario
the PREFETCHML algorithm will be notified that the element has been cached by the
application, allowing it to move on the next rule to compute, reducing concurrency issues
and improving the prefetching algorithm efficiency. We show in our experiments (Sec-
tion 4.6) that sharing the cache in the context of OCL query computation has a positive
impact on query execution time.

4.4 Plan Monitoring

The presented DSL and execution engine provides several constructs to create and
tune PREFETCHML plans according to an expected modeling scenario. However, our
experiments when using the framework have shown that an important knowledge of its
internal components is required to efficiently tune an existing plan. In this section we in-
troduce the monitoring component we have integrated into the PREFETCHML framework
to help modelers tune their prefetching plans by providing feedbacks on the execution.
We first introduce the new language constructs and framework updates, then we present
an example of the information a modeler can get from the framework and how it can be
used to customize an existing PREFETCHML plan. Finally, we show how this same mon-
itoring information can be employed to dynamically adapt the PREFETCHML algorithm
and automatically define an appropriate cache integration.

4.4.1 Language Extensions for Plan Monitoring

As we demonstrated in our previous work [36], prefetching and caching can signifi-
cantly improve model query computation, but this improvement is tightly coupled to the
quality of the plan to execute. Intuitively, a good prefetching plan is a plan that loads
elements before they are needed by the application, and keeps them in memory for a
sufficiently long time to make later accesses faster, without polluting cache content with
irrelevant objects.

While this intuitive approach is easy to conceptualize, it can be hard to apply in real-
life scenarios: the modeler does not know the exact content of the cache, and multiple
rules may interact with each other, filling/freeing the cache with different expressions
at the same time. Moreover, comparing the quality of two prefetching plans and/or the
impact of an update on a specific rule is not a straightforward task, and requires to have
a close look at the cache content and a deep knowledge on how PREFETCHML rules are
evaluated and executed. To help designers evaluate the quality of their prefetching plans
we have defined a monitoring component that presents execution information allowing
them to detect problematic and missing rules, guards, and interaction between prefetching
and caching instructions.
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Figure 4.7 – PREFETCHML Abstract Syntax Metamodel with Monitoring Extensions

Figure 4.7 shows the extended abstract syntax of the PREFETCHML DSL with the
new constructs dedicated to monitoring (grey nodes). In addition to its CacheStrategy,
now a PREFETCHML Plan can define an optional MonitoringStrategy that collects exe-
cution information such as the number of hits and misses for each rule. Current available
monitoring strategies are SimpleMonitoring that provides these metrics to the modeler
under request (Section 4.4.2), and AdaptativeMonitoring that uses them together with
a set of user-defined thresholds to optimize the prefetching algorithm at runtime (Sec-
tion 4.4.3).

These new language constructs are used to initialize a new monitoring layer integrated
into the PREFETCHML core component through the MonitorAPI. This API defines a set
of methods to instantiate and parameterize a monitor, and to access computed metrics.
These metrics are updated each time an element is loaded by a prefetching rule or ac-
cessed from the cache. Monitoring information can be displayed to end-users to help
them improve their PREFETCHML plans, or used at runtime by the framework itself to
adapt the plan dynamically.

In the following, we detail the metrics computed by the monitoring component and
how they can be used by a modeler to improve her PREFETCHML plans.

4.4.2 Simple Monitoring

SimpleMonitoring is the first monitoring strategy we have added to the PREFETCHML gram-
mar (Figure 4.7). It can be defined in a PREFETCHML plan by using the keywords use
simple monitoring. Once activated, the framework will collect information during
the execution, and computes a set of metrics that will be presented on demand to the
modeler to help in the quality evaluation of the plan. The metrics are the following:
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1. HitScore: the total number of elements found and accessed from the cache

2. MissScore: the number of elements the persistence framework had to load be-
cause of cache misses

3. MissPerFeature: categorize the cache misses score per accessed element feature

4. CachedByRule: the number of elements cached by each prefetching rule

5. HitPerRule: the number of cache hits generated by each prefetching rule

6. CachedTimestampPerRule: the list of caching instruction timestamps for each
prefetching rule

7. HitTimestampPerRule: the list of cache hit timestamps for each prefetching rule

8. TotalPrefetchingTime: the total time spent on prefetching/caching actions

Metrics 1-3 correspond to global accuracy information that represents the entire prefetch-
ing plan usefulness. A good plan will typically generate a high HitScore and a low MissS-

core. Misses are categorized by feature (attribute or reference), providing insights on a
potential new rule to add to the plan. Metrics 4 and 5 provide fine information for each
rule within the PREFETCHML plan: the number of cached elements per rule and the num-
ber of hits generated by each rule. This information can be used to evaluate the usefulness
of a specific rule (for example by comparing the ratio ❍✐tP❡r❘✉❧❡❂❈❛❝❤❡❞❇②❘✉❧❡ to
a given threshold). Finally, metrics 6-8 provide time-based information, showing the im-
pact of a given rule over time. This information can be used to find rules that are applied at
some point of the computation where they should not allowing modelers to tune the OCL
conditions to control when they are triggered. The total prefetching time shows which
part of the computation was dedicated to prefetching and caching instructions. This in-
formation is particularly interesting when PREFETCHML is applied on top of a backend
that does not handle multi-threaded accesses, emphasizing execution time bottlenecks.

Listing 5 shows a possible output of the monitoring component after the execution
of the queries presented in the running example (Listing 3) with the PrefetchML plan
presented in Listing 4 enabled over a sample model. The table shows, for each rule,
the number of executions, the total and average computation time, the number of cached
elements, and the number of generated hits. This output format is the default one provided
by PREFETCHML , note that time-based metrics are not displayed, but can be accessed
through the monitor API.

The table shows that three rules were executed: r1,r2, and r3. Rule r1 was executed
one time, which is the expected behavior for starting rules, that are executed when the
prefetching plan is loaded. The table also shows that r1 cached 45000 elements, but only
generated 3000 hits which is low compared to the total hit score (around ✶✪). Load-
ing these 45000 elements required 6900 milliseconds (✶✺✪ of the total execution time),
which is high compared to the benefit. Removing the rule from the plan would allow
the framework to use this execution time to increase the throughput of the other rules.
Compared to r1, rules r2 and r3 cached less elements, but generated most of the global
hit score (respectively ✺✷✪ and ✹✼✪).

The last part of the presented listing shows the features that generated cache misses.
In our example, there is only one feature (Package. classes ) that generated all the misses.
This information shows that adding a prefetching rule for this feature would improve the
global hit score and thus improve the efficiency of the prefetching plan.
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Based on the monitoring information, we were able to detect that r1 should be re-
moved, and that a new rule r4 should be added to prefetch the feature that generated the
misses. Listing 6 shows the new version of the PREFETCHML plan.

1 === Prefe tchML M o n i t o r i n g ===
2 M o n i t o r i n g s t a r t e d a t 1 2 : 3 0 : 3 4 : 1 4 5
3 # H i t s : 234 000
4 # Misses : 125000
5 # T o t a l P r e f e t c h i n g Time : 45000 ms
6
7 == Rule ✦ # E x e c u t i o n | Tot . Time | Avg . Time | # Cached | # H i t s ==
8 r1 ✦ 1 | 6900 | 6900 | 45000 | 3000
9 r2 ✦ 1493 | 14500 | 10 | 12500 | 120000

10 r3 ✦ 5890 | 23600 | 4 | 30456 | 111000
11
12 == F e a t u r e ✦ # Misses ==
13 Package . ownedElements ✦ 125000

Listing 5 – PREFETCHML Monitoring Example

1 p l a n s a m p l e P l a n {
2 use cache LRU[ s i z e =100 , chunk =10]
3 r u l e r2 : on a c c e s s t y p e C l a s s f e t c h
4 s e l f . methods . m o d i f i e r
5 r u l e r3 : on a c c e s s t y p e C l a s s f e t c h
6 s e l f . i m p o r t s . methods . t y p e . name
7 remove t y p e Package
8 r u l e r4 : on a c c e s s t y p e Package f e t c h
9 s e l f . c l a s s e s

10 }

Listing 6 – Tuned PREFETCHML Plan

4.4.3 Adaptative Monitoring

Adaptative Monitoring is the second monitoring strategy we have added to the PRE-
FETCHML language (Figure 4.7). It can be defined within a PREFETCHML plan using the
keywords use adaptative monitoring. When this strategy is set, the framework
collects runtime information (as for the SimpleMonitoring strategy) and uses a set of
heuristics and user-defined thresholds to dynamically adapt prefetching plans to the query
computation.

We have defined five heuristics that are used by the framework to disable prefetching
rules that are not benefitial for the application. We consider that a rule is harmful if
it pollutes the cache content with useless objects and/or if it reduces the throughput of
the prefetcher by spending execution time computing loading instructions that are not
caching relevant elements. These heuristics can be parametrized by setting the threshold

values of the AdaptativeMonitoring component, and retrieve:

1. RuleEfficiency: ❍✐tr❂❈❛❝❤❡r ❁ t❤r❡s❤♦❧❞✦ ❞✐s❛❜❧❡✭r✮

2. Time-based RuleEfficiency: ❍✐tr❂❈❛❝❤❡r ❁ t❤r❡s❤♦❧❞ during a period of time
t✦ ❞✐s❛❜❧❡✭r✮

3. RuleImpact: ❍✐tr❂❍✐t❙❝♦r❡ ❁ t❤r❡s❤♦❧❞✦ ❞✐s❛❜❧❡✭r✮

4. Time-based RuleImpact: ❍✐tr❂❍✐t❙❝♦r❡ ❁ t❤r❡s❤♦❧❞ during a period of time
t✦ ❞✐s❛❜❧❡✭r✮

5. TimeImpact: ❚♦t❛❧❚ ✐♠❡ ❃ t❤r❡s❤♦❧❞✦ ✽r❀ ❞✐s❛❜❧❡✭r✮
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RuleEfficiency evaluates the rule efficiency by comparing the number of hits it has
generated with the number of cached objects. The rule is disabled when this value goes
under a given threshold, meaning that the rule cached too many objects compared to the
number of hits it generated. While this strategy can be interesting for simple prefetching
plan, it is not adapted to plan involving rules that cache elements that are accessed late
in the query computation (typically starting rules). To handle this kind of rules we have
defined Time-based RuleEfficiency, that extends RuleEfficiency by disabling a rule if
its computed ratio is below a threshold for a given period of time t. The RuleImpact

heuristic computes the impact of a rule by comparing the number of hits it generates
w.r.t the global HitScore, and disables the rule if this value goes below a given threshold.
This strategy disables low-impact rules, giving more execution time to other rules that are
generating more hits. Time-based RuleImpact is similar, but it only disables a rule if its
computed ratio is below a threshold for a given period of time. Finally, TimeImpact is
a plan-level strategy that disables all rules if the prefetching time increases over a given
threshold.

All the thresholds and time intervals used to define the presented heuristics can be con-
figured in PREFETCHML plans as parameters of the monitoring strategy using their corre-
sponding keywords: efficiencyThreshold, efficiencyPeriod, impactThreshold,
etc.

Note that in this initial version of the Adaptative Monitoring component rules can
only be disabled. Indeed, re-enabling rules is a more complicated task, because computed
ratios do not evolve once a rule has been disabled. To allow rules re-activation, we plan
to add another monitoring layer that keeps traces of accessed elements and computes
which rules would have prefetched them. Monitoring information could also be used to
create new rules based on the feature misses. While creating a rule for a single feature is
simple, the key point is to find the optimal rule(s) to reduce the number of misses, without
polluting the cache content and the prefetcher throughput. This could be done by using
constraint solving techniques in order to find the optimal set of rules to create from a set
of misses.

4.5 Tool Support

In this Section we present the tool support for the PREFETCHML framework. It is
composed of two main components: a language editor (presented in Section 4.5.1) that
supports the definition of prefetching and caching rules, and an execution engine with two
different integration options: the EMF API and the NeoEMF/Graph persistence frame-
work (presented in Sections 4.5.2 and 4.5.3). The presented components are part of a set
of open source Eclipse plugins available on Github 5.

4.5.1 Language Editor

The PREFETCHML language editor is an Eclipse-based editor that allows the creation
and the definition of prefetching and caching rules. It is partly generated from the XText
grammar presented in Section 4.2.2 and defines utility helpers to validate and navigate

5. https://github.com/atlanmod/Prefetching_Caching_DSL

https://github.com/atlanmod/Prefetching_Caching_DSL
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the imported metamodel. The editor supports navigation auto-completion by inspecting
imported metamodels, and visual validation of prefetching and caching rules by checking
reference and attribute existence. Note that monitoring constructs defined in Section 4.4
are available in the editor, allowing to choose a monitoring strategy and define its optional
thresholds.

Figure 4.8 shows an example of the PREFETCHML editor that contains the prefetch-
ing and caching plan defined in the running example of Section 4.2. The plan contains an
additional use simple monitoring line that enables simple monitoring capabili-
ties, providing execution information to the modeler.

Figure 4.8 – PrefetchML Rule Editor

4.5.2 EMF Integration

Figure 4.9 shows the integration of PREFETCHML into the EMF ecosystem. Note
that only two components must be adapted (light grey boxes). The rest are either generic
PREFETCHML components or standard EMF modules.

In particular, orange boxes represent the standard EMF-based model access architec-
ture: an EMF-based tool accesses the model elements through the EMF API, that dele-
gates the calls to the PersistenceFramework of choice (XMI, CDO, NeoEMF,...), which
is responsible of the model storage and element access.

The two added/adapted components are:
— An Interceptor that wraps the EMF interface and captures the calls (1) to the EMF

API (such as eGet, eSet, or eUnset). EMF calls are then transformed into
EventAPI calls (2) by deriving the appropriate event object from the called EMF
method. For example, an eGet is translated into the accessEvent method call (8)
in Figure 4.5. Once the event has been processed, the Interceptor also searches in
the cache the requested elements (3). If they are available in the cache, they are
directly returned to the EMF-based tool, avoiding a costly database access from
the persistence framework. Otherwise, the Interceptor passes on the control to the
EMF API to continue the normal process.
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— An EMF Model Connector that translates the OCL expressions in the prefetching
and caching rules into lower-level EMF API calls. The results of those queries are
stored in the cache, ready for the Interceptor to request them when necessary.

This integration makes event creation and cache accesses totally transparent to the
client application. In addition, it does not make any assumptions about the mechanism
used to store the models, and therefore, it can be plugged on top of any EMF-based
persistence solution such as CDO, NEOEMF , or the standard XMI persistence layer.

Figure 4.9 – Overview of EMF-Based Prefetcher

4.5.3 NeoEMF/Graph Integration

The prefetcher implementation integrated in NeoEMF/Graph (Figure 4.10) uses the
same mechanisms as the standard EMF one: it defines an Interceptor that captures the
calls to the EMF API, and a dedicated Graph Connector. While the EMF Connector
computes loading instructions at the EMF API level, the Graph Connector performs a
direct translation from OCL into graph database queries, and delegates the computation
to the database, enabling back-end optimizations such as uses of indexes, or query opti-
mizers. The Graph Connector caches the results of the queries (i.e. database vertices)
instead of the EMF objects, limiting execution overhead implied by object reifications.
Since this implementation does not rely on the EMF API to navigate the model, it is able
to evaluate queries significantly faster than the standard EMF prefetcher (as shown in our
experimental results in Section 4.6), thus improving the throughput of the prefetching rule
computation. Database vertices are reified into EMF objects when they are accessed from
the cache, limiting the initial execution overhead implied by unnecessary reifications.

4.6 Evaluation

In this Section, we evaluate the performance of the PREFETCHML Framework by
comparing the performance of executing a set of OCL queries on top of two different
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Figure 4.10 – Overview of NeoEMF-Based Prefetcher

backends: NEOEMF/GRAPH and NEOEMF/MAP when (i) no prefetching is used and
(ii) EMF-based prefetching is active. Models stored in NEOEMF/GRAPH are also eval-
uated with a third strategy using the dedicated graph-based prefetching presented in the
previous section.

Queries are executed in two modeling scenarios: single query execution where queries
are evaluated individually on the models, and multiple query execution where queries are
computed sequentially on the models. The first one corresponds to the worst case scenario
where the prefetcher and the query itself compete to access the database and retrieve the
model elements. The second benchmarked scenario corresponds to the optimal prefetch-
ing context: rules target all the queries at once, and the workflow contains idling intervals
between each evaluation (due to OCL constraint parsing and syntactic validation), giving
more execution time to the prefetcher to load elements from the database.

Note that we do not compare the performance of our solution with existing tools
that can be considered related to ours because we could not envision a fair comparison
scenario. For instance, Moogle [73] is a model search approach that creates an index to
retrieve full models from a repository, where our solution aims to improve performances
of queries at the model level. EMF-IncQuery [11] is also not considered as a direct
competitor because it does not provide a prefetch mechanism. In addition, EMF-IncQuery
was primarily designed to execute queries against models already in the memory which
is a different scenario with different trade-offs.

4.6.1 Benchmark Presentation

The executed queries are adapted from the Train Benchmark [103], which is a bench-
mark used to evaluate the performance of model transformation tools. It defines the Rail-

way metamodel, which describes classes to represent railway networks, such as Routes,
Tracks, Semaphores, and Switches. A complete description of this metamodel can be
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found on the benchmark repository 6 and in the corresponding publication [103]. In this
experiment we use four queries adapted from the ones defined in the benchmark:

— RouteSensors: computes a subset of the sensors contained in a given route.
— RegionSensors: accesses all the sensors contained in a given region.
— ConnectedSegments: navigates all the track elements connected to a sensor.
— SwitchSet: retrieves for each entry of a route its corresponding switch elements.
The first query navigates multiple references from a Route element in order to retrieve

the Sensors it directly and indirectly contains. The second one performs a simple naviga-
tion to retrieve all the Sensor elements contained in a Region. The third query performs
a long navigation sequence to retrieve all the Track elements connected to a given Route.
Finally, the last query (detailed in Listing 7) computes for a Route with a Semaphore

signal set to GO the Switch elements that have a different currentPosition than the one
prescribed in the Route’s SwitchPosition list 7.

Note that we choose these specific queries among the ones available in the benchmark
repository because of their diversity in terms of their number of input, traversed, and
returned elements.

1 c o n t e x t Route
2 d e f : S w i t c h S e t : S e t ( Swi tch ) =
3 s e l f . e n t r y✦ s e l e c t ( s i g n a l = S i g n a l : : GO)✦ c o l l e c t (
4 semaphore | s e l f . f o l l o w s✦ c o l l e c t (
5 s w i t c h P o s i t i o n | s w i t c h P o s i t i o n . t a r g e t✦ s e l e c t ( s w i t c h | s w i t c h . c u r r e n t P o s i t i o n ❁❃

s w i t c h P o s i t i o n . p o s i t i o n )
6 )
7 )

Listing 7 – SwitchSet OCL Query

The prefetching plans used in this benchmark have been created by inspecting the
navigation path of the queries. The context type of each expression constitutes the source
of AccessRules, and navigations are mapped to target patterns. The queries have been
executed with a MRU cache that can contain up to ✷✵✪ of the input model. We choose this
cache replacement policy according to Chou and Dewitt [29] who stated that MRU is the
best replacement algorithm when a file is being accessed in a looping sequential reference
pattern. Another benchmark presenting different cache configurations is available in our
previous work [36]. In addition, we compare execution time of the queries when the are
executed for the first time and after a warm-up execution to consider the impact of the
cache on the performance.

As an example, Listing 8 shows the PREFETCHML specification we have defined
from the query shown in Listing 7. It imports the TrainBenchmark metamodel and defines
a single plan SwitchSetPlan. This plan contains a MRU cache that can contain up to
✷✵✵✵✵ elements, and three prefetching rules based on the query navigation paths. The
first one, r1, is triggered when a Route element is accessed and fetches the Semaphore it
contains through the entry reference and its associated signal. The rule r2 is also triggered
when a Route element is accessed, and loads in memory the currentPosition of all the
Switch elements it contains. Finally, r3 is executed when a SwitchPosition element is
accessed, and fetches its position. Note that comments showing the mapping between
PREFETCHML rules and query navigation paths have been added for the sake of clarity.

6. https://github.com/FTSRG/trainbenchmark
7. Details of the queries can be found at https://github.com/atlanmod/Prefetching_

Caching_DSL

https://github.com/FTSRG/trainbenchmark
https://github.com/atlanmod/Prefetching_Caching_DSL
https://github.com/atlanmod/Prefetching_Caching_DSL
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Table 4.1 – Experimental Set Details

Query #Input #Traversed #Res

RouteSensors ✸✷✵ ✷✽ ✹✾✸ ✶✷✾✻
RegionSensors ✸✷✵ ✷✺ ✹✸✶ ✶✺ ✽✵✺
ConnectedSegments ✶✺ ✽✵✺ ✾✽ ✾✷✷ ✻✼ ✷✹✺
SwitchSet ✸✷✵ ✶✹ ✾✺✼ ✷✺✷

1 i m p o r t " h t t p : / / www. semant icweb . o rg / o n t o l o g i e s / 2 0 1 5 / t r a i n b e n c h m a r k "
2
3 p l a n S w i t c h S e t P l a n {
4 use cache MRU[ s i z e = 20000]
5
6 �� s e l f . e n t r y✦ s e l e c t ( s i g n a l = S i g n a l : : GO)
7 r u l e r1 : on a c c e s s t y p e Route
8 f e t c h s e l f . e n t r y . s i g n a l
9

10 �� s e l f . f o l l o w s✦ c o l l e c t ( s w i t c h P o s i t i o n | s w i t c h P o s i t i o n . t a r g e t
11 �� ✦ s e l e c t ( s w i t c h | s w i t c h . c u r r e n t P o s i t i o n [ . . . ]
12 r u l e r2 : on a c c e s s t y p e Route
13 f e t c h s e l f . f o l l o w s . t a r g e t . c u r r e n t P o s i t i o n
14
15 �� [ . . . ] ❁❃ s w i t c h P o s i t i o n . p o s i t i o n )
16 r u l e r3 : on a c c e s s S w i t c h P o s i t i o n
17 f e t c h s e l f . p o s i t i o n
18 }

Listing 8 – PREFETCHML Plan for The SwitchSet Query

Prefetching plans are evaluated in two cache settings: a first one with an embedded
cache dedicated to prefetched objects, meaning that only elements that have been loaded
by the framework are in the cache, and a second one using a shared cache storing elements
of both the prefetcher and the running application.

The experiments are run over one of the model provided with the benchmark, which
contains ✶✵✷ ✽✼✺ elements, and corresponds to a ✶✾MB XMI file. The model is initially
stored in the benchmarked persistence layers, and queries are evaluated over all the in-
stances of the model that conform to the context of the query. In order to give an idea
of the complexity of the queries, we present in Table 4.1 the number of input elements
for each query (#Input), the number of traversed element during the query computation
(#Traversed) and the size of the result set for each query (#Res).

4.6.2 Results

This section describes the results we obtained by running the experimentation pre-
sented above. We first introduce the results for the single query execution scenario, then
we present the results for the multiple query execution scenario. Note that the correctness
of query results in both scenarios has been validated by comparing the results of the dif-
ferent configurations with the ones obtained by computing the queries on the initial XMI
file without any prefetching and caching enabled using EMFCompare. 8 Presented results
have been obtained by using the Eclipse MDT OCL toolkit to run the OCL queries on the
different persistent frameworks.

8. https://www.eclipse.org/emf/compare/

https://www.eclipse.org/emf/compare/
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Tables 4.2 and 4.3 present the average execution time (in milliseconds) of 10 execu-
tions of the presented queries over the benchmarked model stored in NeoEMF/Graph and
NeoEMF/Map, using the single query execution scenario. Note that due to garbage col-
lection operations and the concurrent nature of the PREFETCHML engine, as well as the
impact of the operating system scheduler, the result for a single execution can vary from
another one. However, we found that after five consecutive runs the results tend to stabi-
lize, and we chose to report in this experimentation the average results for ten executions
of each query.

we choose to run multiple times the queries to limit the impact of garbage collection
operations and concurrency issues on the average result, as well as the impact of the
operating system itself on the performances.

Each line presents the result for the kind of prefetching that has been used: no
prefetching (NoPref.), EMF-Prefetching with dedicated cache (EMF Pref.), and EMF-
Prefetching with shared cache (EMF-Pref. (Shared)). Note that Table 4.2 contains an
additional line corresponding to the graph specific prefetcher.

Table 4.4 shows the average execution time (in milliseconds) of 10 executions of
all the queries over NeoEMF/Graph and NeoEMF/Map in the multiple query execution

scenario.

In the first part of the tables, the cells show the execution time in milliseconds of
the query the first time it is executed (Cold Execution). In this configuration, the cache
is initially empty, and benefits of prefetching depend only on the accuracy of the plan
(to maximize the cache hits) and the complexity of the prefetching instructions (the more
complex they are the more time the background process has to advance on the prefetching
of the next objects to access). In the second part, results show the execution time of a
second execution of the query when part of the loaded elements has been cached during
the first computation (Warmed Execution).

Table 4.2 – NeoEMF/Graph Query Execution Time in milliseconds

(a) Cold Execution

Route Region Connected Switch

Sensors Sensors Segments Set

No Pref. ✸✵ ✷✾✹ ✶✻✸✸ ✶✹ ✽✵✶ ✾✶✺
EMF Pref. ✸✵ ✵✷✽ ✶✾✽✷ ✶✹ ✻✷✺ ✶✵✹✼
EMF Pref. (Shared) ✷✽ ✾✵✷ ✶✽✵✸ ✶✸ ✽✺✵ ✾✾✽
Graph Pref. ✷✺ ✶✹✸ ✶✹✼✼ ✶✶ ✽✶✶ ✽✸✵

(b) Warmed Execution

Route Region Connected Switch

Sensors Sensors Segments Set

No Pref. ✶✻ ✵✽✼ ✾✵✽ ✽✽✽✼ ✺✷✽
EMF Pref. ✷✺✾ ✶✽✸ ✽✼✹ ✶✸✵
EMF Pref. (Shared) ✷✸✻ ✶✼✾ ✽✼✼ ✶✸✵
Graph Pref. ✶✶✹✵ ✹✹✺ ✷✵✽✶ ✷✻✹
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Table 4.3 – NeoEMF/Map Query Execution Time in milliseconds

(a) Cold Execution

Route Region Connected Switch

Sensors Sensors Segments Set

No Pref. ✸✸ ✼✼✵ ✶✸✵✼ ✶✶ ✾✸✺ ✹✾✾
EMF Pref. ✷✺✶✺ ✶✷✶✵ ✶✵ ✶✻✻ ✹✶✵
EMF Pref. (Shared) ✶✻✹✵ ✶✵✾✵ ✼✹✽✽ ✸✺✸

(b) Warmed Execution

Route Region Connected Switch

Sensors Sensors Segments Set

No Pref. ✸✸ ✷✼✾ ✶✶✷✾ ✶✶ ✸✽✾ ✷✼✶
EMF Pref. ✷✵✸ ✶✻✼ ✼✽✸ ✶✵✺
EMF Pref. (Shared) ✷✷✶ ✶✻✶ ✽✸✼ ✶✵✺

Table 4.4 – Multiple Query Execution Time in milliseconds

(a) Cold Execution

NeoEMF/Graph NeoEMF/Map

No Pref. ✹✼ ✸✶✷ ✹✺ ✾✻✺
EMF Pref. ✸✽ ✺✾✼ ✶✻ ✽✾✼
EMF Pref. (Shared) ✸✹ ✺✷✷ ✶✸ ✼✹✷
Graph Pref. ✸✶ ✹✼✾ �

(b) Warmed Execution

NeoEMF/Graph NeoEMF/Map

No Pref. ✷✸ ✹✼✶ ✹✼ ✽✷✸
EMF Pref. ✶✻✾✽ ✶✽✾✻
EMF Pref. (Shared) ✶✻✽✶ ✶✼✾✸
Graph Pref. ✸✹✽✾ �
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4.6.3 Discussion

The main conclusions we can draw from these results (Tables 4.2 to 4.4) are:

— PREFETCHML improves the execution time of all the queries on top of NEOEM-
F/MAP for both scenarios. Execution time is improved by around ✶✻% for Re-

gionSensor, and up to ✾✺% for RouteSensors. These results can be explained
by the concurrent nature of the backend, that can be accessed by the query com-
putation and the PREFETCHML framework at the same time without execution
time bottleneck. In addition, NEOEMF/MAP does not contain any model ele-
ment cache, and the second execution of the queries directly benefits from the
cache embedded in PREFETCHML , showing execution time improvement up to
✾✾% for the RouteSensor query.

— EMF-based prefetching improves the execution time of first time computation of
queries that perform complex and multiple navigations (RouteSensors and Con-

nectedSegments queries) on top of NEOEMF/GRAPH . The EMF-Prefetcher also
drastically improves the performance of the second execution of the queries: an
important part of the navigated objects is contained in the cache, limiting the
database overhead. However, when the query is simple such as RegionSensors

or only contains independent navigations such as SwitchSet, the EMF prefetcher
results in a small execution overhead since the prefetching task takes time to ex-
ecute and with simple queries it cannot save time by fetching elements in the
background while the query is processed.

— Graph-based prefetcher is faster than the EMF one on the first execution of the
queries in both scenarios because prefetching queries can benefit from the database
query optimizations (such as indexes), to quickly load objects to be used in the
query when initial parts of the query are still being executed, i.e. the prefetcher
is able to run faster than the computed query. This increases the number of cache
hits in a cold setup, improving the overall execution time. Conversely, graph-
based prefetcher is slower than the EMF-based one on later executions because it
stores in the cache the vertices corresponding to the requested objects and not the
objects themselves, therefore an extra time is needed to reify those vertices into
EMF-compatible objects.

— Sharing the cache between the PrefetchML framework and the running applica-
tion globally improves the performances for all the queries, w.r.t the performances
without sharing the cache. This is particularly true for simple queries such as Re-

gionSensors, where the prefetcher and the query are computing the same informa-
tion at the same time, and sharing the fetched elements reduces the concurrency
bottlenecks.

To summarize our results, the PREFETCHML framework is an interesting solution
to improve execution time of model queries over EMF models. The gains in terms of
execution time are always positive for NEOEMF -based implementations. Using PRE-
FETCHML on top of the standard EMF interface is also always better on a warmed execu-
tion scenario, but for ad hoc scenarios where most queries may be executed a single time
and may not be related to each other, PREFETCHML adds sometimes a small overhead to
the overall the query computation time. A tuning process, taking into account the kind of
ad hoc queries typically executed (e.g. their likely footprint), may be needed to come up
with an optimal prefetching strategy.
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4.7 Conclusions

We presented the PREFETCHML DSL, an event-based language that describes prefetch-
ing and caching rules over models. Prefetching rules are defined at the metamodel level
and allow designers to describe the event conditions to activate the prefetch, the objects to
prefetch, and the customization of the cache policy. Since OCL is used to write the rule
conditions, PREFETCHML definitions are independent from the underlying persistence
back-end and storage mechanism.

Rules are grouped into plans and several plans can be loaded/unloaded for the same
model, to represent fetching and caching instructions specially suited for a given usage
scenario. Note that some automation/guidelines could be added to help on defining a
good plan for a specific use-case in order to make the approach more user-friendly. PRE-
FETCHML embeds a monitoring component that partially addresses this issue by helping
modelers to detect those undesired scenarios and optimize their existing plans. The ex-
ecution framework has been implemented on top of the EMF as well as on NEOEMF/-
GRAPH , and experimental results show a significant execution time improvement com-
pared to non-prefetching use cases.

PREFETCHML satisfies all the requirements listed in Section 4.1. Prefetching and
caching rules are defined using a high-level DSL embedding the OCL, hiding the un-
derlying database used to store the model (Rq1). The EMF integration also provides
a generic way to define prefetching rules for every EMF-based persistence framework
(Rq2), like NEOEMF and CDO. Note that an implementation tailored to NEOEMF is
also provided to enhance performance. Prefetching rules are defined at the metamodel
level, but the expressiveness of OCL allows to refer to specific subset of model elements
if needed (Rq3). In Section 4.2 we presented the grammar of the language and empha-
sized that several plans can be created to optimize different usage scenario (Rq4). The
PREFETCHML DSL is a readable language that eases designers’ tasks on writing and
updating their prefetching and caching plan (Rq5). Since the rules are defined at the
metamodel level, created plans do not contain low-level details that would make plan
definition and maintenance difficult. Finally, we have integrated a monitoring component
in our framework that can provide a set of metrics allowing modelers to finely optimize
their PREFETCHML plans (Rq6). This monitoring component is also used to automati-
cally disable harmful rules during the execution.





5
Efficient Queries

Model queries are one of the cornerstones of MDE processes. They constitute the
basis of several modeling activities, such as model validation [10], where model queries
are used to retrieve part of the model to verify and check constraints over, or model
transformations [58], where queries are used to navigate source models, create target
elements, and build the output model.

In the current modeling toolchains, queries are defined using high-level, expressive
languages such as the OCL [83] standard. Existing technical solutions typically embed
an editor that helps modelers to define their queries, and an interpreter that translates high-
level language constructs into sequences of low-level API calls which are then handled
by the modeling framework.

While the evolution of model persistence layers —such as NEOEMF — has improved
the support for managing large models by using advanced storage mechanism, lazy-

loading techniques, and prefetching/caching components to handle large models [88, 43,
35], they are just a partial solution to the scalability problem in current modeling frame-
works. In its core, all frameworks are based on the use of low-level model handling APIs
that are focused on manipulating individual model elements and do not provide support
for generic model query computation. This is clearly inefficient because (i) the API gran-
ularity is too fine to benefit from the advanced query capabilities of the data-store and (ii)
an important time and memory overhead is necessary to construct navigable intermediate
objects that can be used to interact with the API.

Based on our experience on the alignment of modeling-level constructs and NoSQL
database primitives, we have defined a set of requirements that should be addressed to
overcome the modeling frameworks’ API limitations and enable efficient query support
for the novel generation of model persistence solutions:

Rq1 the solution should generate database queries in order to benefit from the NoSQL
database structures and optimizations, and limit network overhead

Rq2 the framework should support queries expressed using a state of the art model
query language such as OCL or EOL

81
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Rq3 the framework must outperform existing querying solutions relying on low-level
model handling APIs when applied on actual scalable model persistence tech-
niques

Rq4 low-level details such as the generated database query and intermediate transla-
tion steps should be hidden from the end user

In the following, we present MOGWAÏ , an efficient and scalable query framework
that addresses these requirements to enable complex query computation on top of large
models stored in actual model persistence frameworks. MOGWAÏ translates model queries
written in OCL into expressions of a graph traversal language, Gremlin [109] 1, which is
directly used to query models stored in a NoSQL backend. A prototype implementation of
MOGWAÏ integrated into the Eclipse Modeling Framework is also provided and evaluated.
We show that bypassing the framework API (the EMF API in our case) to delegate the
query to the database is more efficient and scalable than existing solutions relying on the
EMF API when applied to large model and/or complex queries. To evaluate our solution,
we perform a set of queries extracted from existing software modernization use-cases [19]
and compare the results against full EMF API and existing query frameworks over several
persistence solutions.

This chapter is organized as follows: Section 5.1 presents the existing model query so-
lutions and emphasizes the research problem to address. Section 5.2.1 introduces Grem-
lin, a language to query multiple NoSQL databases, Section 5.2 presents the architecture
of the MOGWAÏ framework and its query translation process. Section 5.3 introduces
the implementation of our solution and its integration in the NEOEMF framework. We
evaluate our approach and compare it with existing solutions in Section 5.4. Finally,
Section 5.5 summarizes the contributions and draws conclusions.

5.1 State of the Art

Several solutions have been proposed to efficiently compute queries, define contraints,
and express derived features over models. Most of the existing approaches rely on OCL,
the OMG standard model query language, and are integrated in existing modeling frame-
works. In this section we present the different model query solutions, focusing on their
specific features and the way they access the underlying model. Finally, we summarize
the benefits and drawbacks of existing approaches, and we propose a research problem to
address in order to improve query computation over large models.

5.1.1 Model Query Solutions

Few solutions have been proposed to query models efficiently by translating high-
level model query specifications into database-specific languages. These approaches usu-
ally target the database itself, bypassing the standard modeling APIs to enhance query
performance and benefit from the low-level database optimizations.

The Model Query Translator (MQT) framework [37] is a persistence and query solu-
tion for EMF models built on top of the Epsilon platform. MQT is designed to compute
EOL queries efficiently, by relying on a model to RDBMS mapping that stores models

1. "Mogwaï" is inspired by the species of Gizmo, the main character of the Gremlins movie
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in relational databases, and analyzes input EOL expressions to create equivalent SQL
queries. This query pre-processing analyses the entire EOL expression to compute, and
group the query operations into SQL expressions that can be efficiently handled by the
database, limiting the memory consumption of the application and improving query com-
putation performances. However, MQT only targets relational databases, and therefore
is not the best solution for the new generation of NoSQL persistence frameworks used
nowadays.

Also relevant to our work are the approaches targeting the translation of OCL expres-
sions to other languages/technologies [24]. For example, Heidenreichin et al. [40, 51]
proposed a solution to automatically build a relational database from a UML represen-
tation of an application, and translates the OCL invariants into database constraints and
triggers. A similar approach was proposed by Brambilla and Cabot [17] in the field of
web applications. In that case, model-level queries and constraints could be translated
into triggers or as views that are used to ensure data consistency at the database level.
Note that in all these scenarios the goal is to use OCL for code-generation purposes as
part of a data validation component but does not focus on computing model queries effi-
ciently. In addition, the proposed solutions aim to generate code that ensures consistency
at the data level, and are not designed to operate at the metamodel-level required by model
query languages.

Alternative approaches relying on the use of modeling framework APIs to compute
model queries have been proposed to decouple the data representation strategy from the
actual query solution. The use of these APIs allows to evaluate model queries inde-
pendently of the underlying storage solution, at the cost of an execution and memory
overhead to align the intermediate model access layer to the concrete data-store interface.

The MDT OCL framework is an Eclipse project that provides an environment to de-
fine, parse, and evaluate OCL invariants and queries over models. It provides an EMF-
based OCL metamodel and a query editor that allows to define and evaluate OCL ex-
pressions over an existing metamodel. The MDT OCL project is tightly integrated in the
Eclipse platform, and provides a set of views and perspectives to interactively compute
queries on an EMF model, check constraints on the fly, and validate models dynamically.
The framework itself relies on the EMF API to navigate the underlying model, and there-
fore it is compatible with all the EMF-based persistence solutions listed in chapter 3, such
as NeoEMF [35] and CDO [43].

In addition, CDO also embeds a server-side OCL query interface that takes benefit of
the CDO database structure to evaluate OCL queries efficiently. CDO-OCL provides a
server-side API that translates model queries into low-level modeling API calls that are
computed by the data-store, limiting network overhead. The produced query fragments
can benefit from the database internal structures (such as indexes), and generated queries
are partially optimized by a simple translation mechanism (such as combining navigation
operations into a single database query). However, CDO-OCL still relies on the low-level
modeling API to compute the final query, that generates fragmented database accesses
which cannot be handled efficiently and optimized by the database.

EOL is the base query language provided by the Epsilon modeling framework. It
is designed as a superset of OCL that provides side-effect operations and an imperative
syntax. EOL is the foundation language of a variety of Epsilon technologies, such as
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EML [64] for model merging, and ETL [67] for model transformations 2. The Epsilon
framework provides an EOL interpreter that relies on the Epsilon API to compute and
evaluate model queries and can be extended by data-store specific solutions.

Hawk [3] is a model indexer built on top of the Epsilon platform that computes EOL
queries on top of EMF models stored in graph databases (Neo4j and OrientDB). The
framework provides its own implementation of the EOL execution engine that directly
targets the underlying database instead of using the EMF API. This approach allows to
use database querying facilities (in particular indexes and caches) to improve execution
performances and limit the memory consumption. However, Hawks suffers from the
same issue as CDO-OCL: it still relies on the low-level EOL API to compute queries,
that generates fragmented and inefficient database accesses. This is particularly true for
the Neo4j backend, that is optimized to compute complex queries expressed with its dedi-
cated pattern matching language Cypher, but is not designed to compute atomic, low-level
accesses.

EMF Query [105] is a framework that provides an internal Java DSL to query a model
with a SQL like language. It includes a set of tools to ease the definition of queries and
manipulate results as a model. EMF Query can be seen as a wrapper around the standard
EMF API: it allows to express complex queries with database-related constructs (such as
select, from, group by, etc) that are then computed using the modeling framework API.
As for MDT OCL, the solution strongly relies on the EMF API to access and manipulate
the model, making it compatible with EMF-based persistence solutions, at the cost of a
performance and memory overhead when combined with current lazy-loading persistence
solutions.

Finally, EMF-IncQuery [11] is an incremental pattern matching engine to query EMF
models. It relies on a RETE network [45] that provides efficient incremental (re)computation
of model queries. EMF-IncQuery is integrated into the Viatra platform [9], a reactive
model transformation framework that aims to optimize model transformations by pro-
viding event-based, incremental re-computation of transformations. This query solution
tackles the modeling API limitations by only using its internal structures to evaluate
model queries, propagate changes, and return results. While EMF-IncQuery has shown
impressive results to perform queries multiple times on a model [10], it also presents
two major drawbacks when moving to large models: (i) the framework still relies on the
model handling APIs to initialize its internal data structures by performing a complete
model traversal, and (ii) the cache that receives the events and propagates the changes is
fully stored in memory to improve query re-computation. The former has a significant
impact in terms of performances when coupled with lazy-loading solutions that are typi-
cally inefficient to handle model traversals [116], and the later limits the scalability of the
approach to models that can actually fit in the available memory 3.

Table 5.1 summarizes the main features of the state of the art solutions. We base our
analysis on four criterias: (i) if the solution is based on a modeling API (for example
EMF) to access the underlying model or if (ii) it is based on a translational approach that
generates low-level database queries from high-level modeling languages. We also distin-
guish if (iii) the approach computes queries in memory or (iv) if it delegates the compu-

2. A complete list of Epsilon-based languages is available online at https://eclipse.org/
epsilon/

3. Note that partial solutions are provided to improve large model supports on the framework’s wiki at
https://wiki.eclipse.org/VIATRA/Query/FAQ

https://eclipse.org/epsilon/
https://eclipse.org/epsilon/
https://wiki.eclipse.org/VIATRA/Query/FAQ
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Query Solution API-based Translation In-memory In database
Relational NoSQL

MDT-OCL
EMF-Query
EOL
CDO-OCL
Hawk
EMF-IncQuery
MQT
SQL generators1

1 We generalize the features of the UML/OCL to SQL generative approaches
detailed in [51] and [17].

Table 5.1 – Features of existing query solutions

tation to the database layer. Note that we differentiate solutions that target relational and
NoSQL databases. For each presented tool, fully supported features are represented with
green checks, partially supported features are shown as grey checks, and unsupported
features are represented as red crosses.

5.1.2 Summary and Research Problem

Our analysis emphasizes that most of the proposed solutions rely on the usage of
modeling API to compute queries. While this architecture allows to easily integrate query
solutions into existing tool chains, the low-level model handling APIs usually provided by
the modeling frameworks have not been designed to fit the new schema-less architecture
of the current scalable persistence solutions. Query translation approaches address this
issue by generating database queries that bypass the modeling layer to directly compute
them on the backend side. However, to the best of our knowledge the existing solutions
are either focused on ensuring consistency at the data level or are not designed to generate
NoSQL query language expressions to target the current persistence solutions.

In addition, there is currently no querying solution that fully addresses the require-
ments listed above, and there is a need to provide a translation solution that produces

optimized NoSQL expressions from high-level model query languages. In the fol-
lowing, we present MOGWAÏ , a query framework that aims to address the presented
requirements by proposing a translational approach that takes as its input OCL expres-
sions and translates them into efficient NoSQL database queries expressed in Gremlin.
We detail the translation process from model-level queries to database languages, and
present the integration of the framework in existing modeling tool chains. Finally, we
compare the MOGWAÏ framework with state of the art solutions and discuss the benefits
and drawbacks of the approach.
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5.2 The Mogwaï Framework

The MOGWAÏ framework is our proposal for handling model queries on large models
stored in NoSQL persistence solutions. It relies on a model-to-model transformation that
generates queries expressed using the Gremlin traversal language, a high-level NoSQL
query language that targets multiple databases . At the modeling level, we assume that
model queries are expressed using the OCL language, the OMG standard to describe in-
variants, operation contracts, and query expressions 4. Note that the approach we present
in this section can also be applied to different input and output languages, such as EOL
for the modeling side and Hibernate Object/Grid Mapper (OGM) JPQL on the database
side.

In this Section, we first introduce Gremlin, the NoSQL query language we choose as
the target for our MOGWAÏ framework, and we present our query approach and compare
it with standard API-based query solution. Then we detail the different components of
our proposal: the Gremlin metamodel we have defined to represent the abstract syntax
of Gremlin traversals, the individual mapping from OCL expressions to Gremlin steps,
and finally the transformation process that combines the generated steps into a complete
Gremlin traversal.

5.2.1 The Gremlin Query Language

Motivation

As we emphasize in Chapters 2 and 3, NoSQL databases have proven their efficiency
to store and manipulate large models. Nevertheless, their diversity in terms of primitive
constructs (key-value pairs, documents, nodes and relationships, etc) and supported fea-
tures makes them hard to unify under a standard interface to be used as a generic query
solution. Specifically, some NoSQL databases such as Cassandra and Neo4j provide a
high-level query language to manipulate data efficiently, while key-value stores such as
Redis typically provide a simpler API to access values from specific keys.

Several approaches have been proposed to unify NoSQL database accesses. UnQL 5

is a prototype of language developed by CouchBase and SQLite that is designed to query
document and RDBMS databases. The language extends SQL with additional constructs
to query and navigate semi-structured data, and provides features to select and manipulate
complex document structures. However, according to the UnQL wiki, the project has not
been updated since 2013.

The Hibernate OGM 6 is a persistence framework that implements the Java Persis-
tence API (JPA) for multiple NoSQL solutions. It is based on the well-known Hibernate
ORM persistence framework [5] and supports several types of databases, such as key-
value stores (Infinispan, EhCache), document databases (MongoDB), and graph database
(Neo4j). Hibernate OGM provides an implementation of JPQL, a SQL-like query lan-
guage that allows to access and update persisted elements. While this abstraction is a first
step in bridging the gap between different NoSQL data representations, recent studies

4. Details on OCL are provided in Chapter 2.
5. http://unql.sqlite.org
6. http://hibernate.org/ogm)

http://hibernate.org/ogm)
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have shown that there is a mismatch between JPA and NoSQL that leads to significant
execution time overheads compared to native solutions [92].

Blueprints [107] is an initiative developed by the Apache Tinkerpop project [110], that
aims to create an interface to unify NoSQL database accesses under a common API. Ini-
tially designed for graph databases, Blueprints has been implemented by a large number
of databases such as Neo4j 7, OrientDB 8, and MongoDB 9. Blueprints is, to our knowl-
edge, the only active project unifying several NoSQL databases 10.

Blueprints is the base of the Tinkerpop stack, a set of tools to store, serialize, ma-
nipulate, and query databases based on a graph representation of their content. When
a database implements the Blueprints API, it automatically benefits of these high-level
features, and can be manipulate using Gremlin [109], the query language designed to
access Blueprints databases. Gremlin relies on a lazy data-flow framework [108] and is
able to navigate, transform, or filter elements in a graph. It can express graph traversals
finely using navigation steps, and shows positive performance results when compared to
Cypher, the pattern matching language used to query natively the well-established Neo4j
graph database [52].

The generic nature of the Gremlin language, as well as our experience on model per-
sistence in graph databases (detailed in section 3.3) has motivated our choice to use it
as the target language in our query approach. Furthermore, the adoption of the Tinker-
pop stack by several major actors in the NoSQL community makes Gremlin an interest-
ing candidate to target additional model data stores such as MongoDB-based persistence
frameworks [88, 21].

Language

Gremlin is a Groovy 11 domain-specific language built on top of Pipes [108], a data-
flow framework based on process graphs. A process graph is composed of vertices repre-
senting computational units and communication edges which can be combined to create a
complex processing. In the Gremlin terminology, these complex processing are called
traversals, and are composed of a chain of simple computational units named steps.
Gremlin defines four types of steps:

— Transform steps: functions mapping inputs of a given type to outputs of an-
other type. They constitute the core of Gremlin: they provide access to adjacent
vertices, incoming and outgoing edges, and properties. In addition to built-in nav-
igation steps, Gremlin defines a generic transformation step that applies a function
to its input and returns the computed results.

— Filter steps: functions to select or reject input elements w.r.t. a given condition.
They are used to check property existence, compare values, remove duplicated
results, or retain particular objects in a traversal.

— Branch steps: functions to split the computation into several sub-traversals and
merge their results.

— Side-effect steps: functions returning their input values and applying side-effect

7. http://neo4j.com/
8. http://orientdb.com/
9. https://www.mongodb.org/

10. Implementation list is available at https://github.com/tinkerpop/blueprints
11. http://www.groovy-lang.org/

http://neo4j.com/
http://orientdb.com/
https://www.mongodb.org/
https://github.com/tinkerpop/blueprints
http://www.groovy-lang.org/
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operations (edge or vertex creation, property update, variable definition or assig-
nation).

In addition, the step interface provides a set of built-in methods to access meta infor-
mation: number of objects in a step, output existence, or first element in a step. These
methods can be called inside a traversal to control its execution or check particular ele-
ments in a step.

Gremlin allows the definition of custom steps, functions, and variables to handle query
results. For example, it is possible to assign the result of a traversal to a table and use it
in another traversal, or define a custom step to handle a particular processing.

In what follows, we describe some simple Gremlin examples based on the graph rep-
resentation of the running example presented in Chapters 2 and 3. A Gremlin traversal
begins with a Start step. It gives access to graph level informations such as indexes, vertex
and edge lookups, and property based queries. For example, the traversal below performs
a query on the index classes that returns the vertices indexed with the name Package,
representing the Package class in the Figure 6.2. In our example, this class corresponds
to vertex Package. The results of a start step constitute the input of next steps in the
traversal.

g . i d x ( " c l a s s e s " ) [ [ name : " Package " ] ] ; / / v ( Package )

The most common steps are transform steps, that allow navigation in a graph. The
steps outE(rel) and inE(rel) navigate from input vertices to their outgoing and incoming
edges, respectively, using the relationship rel as filter. inV and outV are their opposite:
they compute head and tail vertices of an edge. For example, the following traversal
returns all the vertices that are related to the vertex 3 by the relationship classes. The
Start step used to access it is a vertex lookup.

g .V( p1 ) . outE ( " c l a s s e s " ) . inV ; / / [ v ( c1 ) , v ( c2 ) ]

Filter steps are used to select or reject a subset of input elements given a condition.
They are used to filter vertices given a property value, remove duplicate elements in the
traversal, or get the elements of a previous step. For example, the following traversal
returns all the vertices related to vertex 3 by the relationship classes that have a property
name with a value longer than 10 characters. The local variable it in the filter closure is
a Groovy feature representing the element the closure is applied to.

g .V( p1 ) . outE ( " c l a s s e s " ) . inV
. has ( " name " ) . f i l t e r { i t . name == ’ c1 ’ } ; / / [ v ( c1 ) ]

Branch steps are particular steps used to split a traversal into sub queries, and merge
their results. As an example, the following traversal collects all the id and name properties
for the vertices related to vertex 3 by the relationship classes. The computation is split
using the copySplit step and merged in the parent traversal using exhaustMerge.

g .V( p1 ) . outE ( " c l a s s e s " ) . inV . c o p y S p l i t (
_ ( ) . name , _ ( ) . i d ) . exhaus tMerge ( ) ; / / [ ’ c l a s s 1 ’ , ’ c l a s s 2 ’ , ’ c1 ’ , ’ c2 ’ ]

Finally, side-effect steps modify a graph, compute a value, or assign variables in a
traversal. They are used to map elements to computed values, fill collections with step
results, update properties, or create elements. For example, it is possible to store the result
of the previous traversal in a table using the step Fill.
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d e f t a b l e = [ ] ;
g .V( p1 ) . outE ( " c l a s s e s " ) . inV . c o p y S p l i t (

_ ( ) . name , _ ( ) . i d ) . exhaus tMerge ( ) . f i l l ( t a b l e ) ;
/ / t a b l e = [ ’ c l a s s 1 ’ , ’ c l a s s 2 ’ , ’ c1 ’ , ’ c2 ’ ]

5.2.2 The Mogwaï Query Approach

Figure 5.1 shows the overall transformation and query process of the MOGWAÏ frame-
work (top part) and compares it with standard EMF 12 API based approaches such as
Eclipse MDT OCL or EMF Query (bottom part).

An initial textual OCL expression is parsed into a model of its abstract syntax con-
forming to the OCL metamodel. This model constitutes the input of a model-to-model
transformation that analyzes the query and translates its operations to generates an equiva-
lent Gremlin traversal. The resulting Gremlin query is then sent to the Blueprints database
for its execution, and query results are returned to the modeler.

The main difference with existing query frameworks is that the MOGWAÏ framework
does not rely on the EMF API to perform a query. As we detailed in Section 5.1, API
based query frameworks generally translate OCL queries into a sequence of low-level
API calls, which are then performed one after the other on the database. While this
approach has the benefit to be compatible with every EMF-based application, it does
not take full advantage of the database structure and query optimizations. Furthermore,
each object fetched from the database has to be reified to be navigable, even if it is not
going to be part of the end result. Therefore, execution time of the EMF-based solutions
strongly depends on the number of intermediate objects reified from the database (which
depends on the complexity of the query but also on the size of the model, bigger models
will need a larger number of reified objects to represent the intermediate steps) while for
the MOGWAÏ framework, everyhting is computed in the database itself, and there is no
need to reify intermediate elements, limiting execution time and memory consumption
overhead.

Once the Gremlin traversal has been executed on the database side, the results are
handled by the MOGWAÏ framework that delegates their reification to the persistence side
if necessary (i. e. if the query results can be reified as model elements). Note that this
reification phase is performed after the entire query computation, and does not reify any
intermediate element. Using this architecture, it is possible to plug the MOGWAÏ frame-
work on top of any persistence framework that uses a Blueprints-compatible database
and provides a mechanism to reify database records into modeling elements, such as
NEOEMF and CDO.

To sum up, the translation process embedded in our solution generates a single Grem-
lin traversal from an OCL query and runs it over the database. This solution provides three
main benefits: (i) it delegates the query computation to the database, taking full advan-
tage of the built-in caches, indexes, and query optimizers, (ii) queries are executed once
and are not fragmented into low-level, atomic accesses, and (iii) it reduces the network
overhead by sending an entire traversal at once instead of fragmented queries.

12. We focus the explanation on the EMF framework but results are generalizable to all other modeling
frameworks we are familiar with.
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(a) Mogwaï Query Framework

(b) EMF-based Query Frameworks

Figure 5.1 – Comparison of OCL execution

5.2.3 Gremlin Metamodel

The output of our model-to-model transformation is a model representing the abstract
syntax of the Gremlin traversal to compute. Since the Gremlin project does not provide a
formal representation of its grammar we propose our own Gremlin metamodel (presented
in Figure 5.2) based on the language constructs’ documentation provided online 13. Note
that since Gremlin is a Groovy based language, it could have been possible to reuse
existing Java or Groovy metamodels to express our queries, however, these metamodels
are too complex for our needs, and they miss an easy way to define the step concept, a
core feature in the Gremlin language.

Figure 5.2 presents an exerpt of the Gremlin metamodel we have defined. A Grem-

linTraversal contains a set of Instructions that can be either TraversalElements or Ex-

pressions. Supported Expressions retrieve Literal values, UnaryExpressions, and Bina-

ryExpressions (such as boolean or mathematic operators). UnaryExpressions and Bina-

ryExpressions contain respectively one and two inner Instructions. A TraversalElement

is a single computation step in a Gremlin traversal that can be either a native Gremlin
Step or a Groovy MethodCall. TraversalElements are organized through a composite
pattern: each Step in a traversal has a next containment reference that links to the next
TraversalElement to compute, allowing to create complex Gremlin traversal expressions
by chaining simple computation Steps together. We have represented all the Step types
of the grammar in our metamodel: InEStep and OutEStep are respectively incoming and
outgoing edge navigation steps that retrieves for a given vertex the edges containing the
label relName, InVStep and OutVStep perform that same kind of navigations from edges
to vertices, and FilterStep instances allows to express filtering condition through a Clo-

13. http://gremlindocs.spmallette.documentup.com/

http://gremlindocs.spmallette.documentup.com/
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sure that contains a set of Instructions. Note that for the sake of readability we do not
present all the supported Steps and MethodCalls in this excerpt, but a complete definition
is provided in the project repository 14.

Figure 5.2 – Extract of Gremlin Metamodel

5.2.4 Mapping of OCL expressions

The MOGWAÏ transformation process that generates Gremlin traversal relies on an ini-
tial low-level translation of individual OCL expressions into their corresponding Gremlin
steps. This mapping is presented in Table 7.1 and shows, for each supported OCL expres-
sion, the corresponding Gremlin statement(s). We have divided the supported expressions
into four categories based on Gremlin step types: transformations, collection operations,
iterators, and general expressions. Note that other types of OCL expressions not explic-
itly listed in the table can be first expressed in terms of those that have been defined by
Cabot and Teniente [25] and therefore be also covered by our mapping.

Expressions in the first group, transformation expressions, return a computed value
from their input. OCL operations that navigate the model elements are mapped to naviga-
tion steps: Type access is translated into an index call returning the vertex representing
the type, assuming the type exists. AllInstances collection is mapped to a traversal
returning adjacent vertices on the Type vertex having an instanceof outgoing edge. Ref-
erence and attribute collect operations are respectively mapped to an adjacent vertex
collection on the reference name and a property step accessing the attribute. Type confor-
mance is checked by comparing the adjacent instanceof vertex with the type one using a
generic transform step. Finally, attribute and reference collects applied after a type
casting operation are mapped as regular collect operations, because each vertex in the
database contains its inherited attributes and edges.

The second group, operations on collections, has a particular mapping, because Grem-
lin is an iterator-based language that does not allow to modify the content of a step dur-

14. https://github.com/atlanmod/Mogwai

https://github.com/atlanmod/Mogwai
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ing the computation of a traversal. Therefore, OCL expressions that change the content
of a collection have to be handled in a specific way to provide the same behavior at
the Gremlin level. Union, intersection and set difference expressions are
mapped to the fill step, which puts the result of the traversal into a variable. We have
extended the Gremlin language by adding union, intersection, and subtract methods that
compute the result of those operations from the variables storing the traversed elements.
These additional methods return a step instance, that allows to manipulate their result
in a new traversal if necessary. Including and excluding operations can be com-
puted by transforming the step content into a collection and by calling the corresponding
Groovy operation. The same collection transformation is done to handle includes and
excludes operations, which are translated into containment checks. Finally, functions
returning the size and the first element of a collection are mapped to count and first step
methods. Note that there is no specific method to check if a collection is empty in Gremlin
but this can be achieved by calling a Groovy collection transformation.

Iterator expressions are OCL operations that evaluate a condition over a collection,
and return either the filtered collection or boolean value. The Select operation is
mapped to a filter step that defines a closure containing the translation of the select con-
dition. Reject expressions are mapped the same way with a negation of its condition.
The mapping of exists and forAll operations follows the same schema: a filter step
with the condition or its negation is generated and the number of results is analyzed using
an hasNext step method call.

Finally, general expressions such as arithmetic and boolean operations, variable dec-
larations, and literal values are simply mapped to their Groovy equivalent. Note that
the transformation takes care of mapping OCL primitive types (such as String, Integer,
Sequence, etc) into equivalent Groovy types when necessary.

5.2.5 Transformation process

Once the initial low-level mapping has been applied on the input OCL expression, the
MOGWAÏ frameworks needs to combine the generated steps to create a complete Gremlin
query. This operation is performed by analyzing the input OCL syntax tree and linking
steps into traversal chains. To better illustrate this combination process, we introduce an
example OCL query (Figure 5.3) and show how it is transformed into the final Gremlin
expression shown in Figure 5.4 (abstract syntax tree) and Listing 10 (final textual expres-
sion). Listing 9 shows a simple query that selects the Packages instances which are not
empty (i. e. does not contain any element through its classes association). Figure 5.3
shows an excerpt of the abstract syntax tree for this query. The top level element Con-

straint contains the context of the query, its return type and an ExpressionInOCL element
representing the query itself. Its body contains the root expression of the query. Each ex-
pression in the OCL metamodel has a link to its source. In the example, the source chain
starts with the select iterator, that has the allInstances operation as its source, which is
linked to the type Package. Iterators are particular expressions that contains an itera-
tor variable and a body representing the expression to apply on each element. As other
expressions, the body tree also starts with the root operation in the expression, in our
example the isEmpty operation inside the select.

As an initial step, the transformation pre-processes the OCL query model to first col-
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Table 5.2 – OCL to Gremlin mapping

OCL expression Gremlin step

Type g.idx(’classes’)[[name:’Type’]]
allInstances() inE(’instanceof’).outV
collect(attribute) attribute
attribute (implicit collection) attribute
collect(reference) outE(’reference’).inV
reference (implicit collection) o.outE(’reference’).inV
oclIsTypeOf(C) o.outE(’instanceof’).inV.transform(it.next() == C)
oclAsType(C).attribute attribute
oclAsType(C).reference outE(’reference’).inV
col✶ ✦union(col✷) col✶.fill(var✶); col✷.fill(var✷); union(var✶, var✷);
col✶ ✦intersection(col✷) col✶.fill(var✶); col✷.fill(var2); intersection(var✶, var✷);
col✶�col✷ (Set subtraction) col✶.fill(var✶); col✷.fill(var✷); subtract(var✶, var✷);
including(object) toList().add(object)
excluding(object) toList().removeAll(object)
includes(object) toList().contains(object)
excludes(object) !(toList().contains(object))
size() count()
first() first()
isEmpty() toList().isEmpty()
select(condition) c.filter{condition}
reject(condition) c.filter{!(condition)}
exists(expression) filter{condition}.hasNext()
forAll(expression) !(filter{!condition}.hasNext())
❂❀ ❃❀❃❂❀ ❁❀❁❂❀ ❁❃ ❂❂❀ ❃❀❃❂❀ ❁❀❁❂❀ ✦ ❂
✰❀�❀ ❂❀✪❀ ✄ ✰❀�❀ ❂❀✪❀ ✄
and,or,not &&,❦,!
variable variable
literals literals

lect all the accessed types and creates variables storing the result of the corresponding
index calls generated by the mapping in order to optimize index lookups when a type is
accessed multiple times. In our example, Package type is transformed into an instruc-
tion that declares a variable (packageV) containing the corresponding vertex retrieved
from the index. Besides this, union, intersection, and set difference operations are also
collected to generate the intermediate variables used to store their results.

Once this initial processing has been performed, the transformation navigates in the
OCL query model to find the first step of the traversal to build. This operation searches
for the root expression in the OCL expressions’ source chain and transforms it according
to the mapping presented in Table 7.1. In our example this operation maps the root
Package type to an access to the variable packageV (defined during the pre-processing
phase). Then, the transformation navigates in the source containment tree in a postorder
traversal and transforms each OCL operation into its Gremlin equivalent, and links it to
the previously generated step using the next association. In our example, this processing
generates the Gremlin nodes inE(’instanceof’) and outV corresponding to the allInstance

expression.
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s a m p l e S e l e c t : S e t ( Package ) =
Package . a l l I n s t a n c e s ( )

✦ s e l e c t ( e | e . c l a s s e s✦ i sEmpty ( ) )

Listing 9 – Sample OCL Query

Figure 5.3 – OCL Syntax Tree

OCL iterators have to be processed in a dedicated way because they define a body

expression that is not part of the source containment tree. In our example the select

iterator is transformed to a filter step containing a closure that represents its body. The
body expression is parsed as a regular OCL expression by starting from the root element
and generated steps are linked together. In Figure 5.4, body expression is mapped to
variableAccess, outE(’classes’) and inV, toList and isEmpty, corresponding respectively
to the iterator access, collect(classes), and isEmpty OCL expressions. Note that if the
OCL expression defines an explicit iterator variable (e in our example), a corresponding
Gremlin variable declaration instruction is created in the closure with the same label. This
variable contains the closure it value, that represents the current element processed. This
dedicated variable is used to support iterator scoping in nested closures.

Finally, each expression in union, intersection, and set subtraction operations gener-
ates a single traversal that ends with a fill step that puts the results in the dedicated variable
previously defined. The result of the OCL operation is computed from those variables by
calling the additional Gremlin method we have defined to support collection operations.
These intermediate accumulators are necessary because Gremlin branching mechanism
requires that each sub-traversal starts with the same input, which is not always true for
OCL collection operations.

Once the abstract syntax tree of the Gremlin traversal to compute has been created
(Figure 5.4), it is sent to a model-to-text transformation that generates the final textual
representation query (Listing 10). Finally, the MOGWAÏ framework delegates the query
computation to the Blueprints database and reifies the results into model-level objects if
necessary.

v a r packageV = g . i d x ( " c l a s s e s " ) [ [ name : Package ] ] ;
packageV . inE ( " i n s t a n c e o f " ) . outV . f i l t e r { e= i t ;

e . outE ( " c l a s s e s " ) . inV . t o L i s t ( ) . i sEmpty ( ) } ;

Listing 10 – Generated Gremlin Textual Traversal
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Figure 5.4 – Generated Gremlin Syntax Tree

5.3 Tooling

The MOGWAÏ framework is distributed as a set of open source Eclipse plugins un-
der the EPL license 15. The source code repository and the framework’s documentation
are publicly available on Github 16. MOGWAÏ is integrated in the NEOEMF [35] envi-
ronment, and provides its own implementation of the PersistentResource interface with
dedicated methods to support query translation, execution, and result reification from
Blueprints’ persisted models.

Initial OCL queries are parsed using the Eclipse MDT OCL toolkit 17 and the output
OCL models constitute the input of a set of 70 ATL [58] transformation rules and helpers
implementing the mapping presented in Table 7.1 and the associated transformation pro-
cess.

As an example, Listing 11 shows the transformation rule that generates a filter step
from an OCL select operation. The next step is computed by the getContainer helper,
which returns the parent of the element in the OCL source containment tree. The instruc-

tions of the closure are contained in an ordered set, to ensure the instruction defining the
iterator variable is generated before the body instructions. Finally, the select body is gen-
erated, using the helper getFirstInstruction that returns the root element in an
OCL source tree.

15. https://www.eclipse.org/legal/epl-v10.html
16. https://github.com/atlanmod/Mogwai
17. www.eclipse.org/modeling/mdt/?project=ocl

https://www.eclipse.org/legal/epl-v10.html
https://github.com/atlanmod/Mogwai
www.eclipse.org/modeling/mdt/?project=ocl
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r u l e s e l e c t 2 f i l t e r {
from
s : OCL! I t e r a t o r E x p ( s . getOpName ( ) = ’ s e l e c t ’ )
t o
f : Greml in ! F i l t e r S t e p (

c l o s u r e ✥ c l ,
n e x t ✥ s e l e c t . g e t C o n t a i n e r ( ) ) ,

c l : Greml in ! C l o s u r e (
i n s t r u c t i o n s ✥ O r d e r e d S e t {}

. append ( t h i s M o d u l e . v a r 2 d e f ( s e l e c t . i t e r a t o r . f i r s t ( ) ) )

. append ( s e l e c t . body . g e t F i r s t I n s t r u c t i o n ( ) ) )
}

Listing 11 – Select to Filter ATL Transformation Rule

Once the Gremlin model is generated by the transformation, it is expressed using its
textual concrete syntax and the resulting script is sent to an embedded Gremlin engine,
which executes the traversal on the database and returns the result back to NEOEMF that
reifies it to create a navigable EMF model. The reification process is done once the
query has been entirely executed, and the constructed model only contains the result of
the query, limiting the memory consumption implied by intermediate object reifications
performed in API-based query solutions.

Finally, the framework also allows to define query parameters to check invariants,
compute a value, or navigate a model from a particular model element. An additional
binding mechanism is also provided to set the value of OCL variables (such as self) in
order to evaluate queries on specific model element instances.

5.4 Evaluation

In this section, we evaluate the performance of the MOGWAÏ framework in terms of
execution time and memory consumption and compare it with the state of the art solu-
tions presented in Section 5.1. Note that we have discarded existing solutions that provide
their own dedicated backend (such as CDO and MQT), because we could not envision a
fair comparison scenario that would differentiate the generic data-store scalability im-
provements from the query solution itself. In addition, we have also discarded existing
solutions that focus on database consistency (such as UML/OCL to SQL generative ap-
proaches) and does not primarily aim to compute queries efficiently.

The considered solutions (MDT OCL, EMF-IncQuery, and MOGWAÏ ) are evaluated
on top of models stored in a common persistence solution —NEOEMF/GRAPH — in or-
der to provide a comparison that is not biased by the underlying data-store performances.
EMF-based query solutions such as Eclipse MDT OCL and EMF-IncQuery manipulate
the model through the standard EMF API provided by the persistence framework. Note
that the evaluations of model data-store and persistence strategies have been covered in
Chapter 3, and therefore are not presented in this query framework comparison.
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5.4.1 Benchmark presentation

Our benchmark complements the one presented in Section 3.5 and reuses the input
models and queries we designed to evaluate model persistence solutions. The queries
have been implemented in the native frameworks’ languages (OCL and EMF-IncQuery
graph patterns), and retrieve:

— ClassAttributes computes the attributes of all the Class instances in the model
— SingletonMethods finds static methods returning their containing Class (single-

ton pattern)
— InvisibleMethods finds all the methods that have a private or protected modifier
— UnusedMethods computes the set of methods that are private and not internally

called

Note that SingletonMethods, InvisibleMethods, and UnusedMethods have been imple-
mented with an initial allInstances call, which is an important bottleneck for EMF
API based query frameworks [116]. The ClassAttributes query has been implemented
using a partial model navigation from the input Model element in order to compare the
behavior of the query solution when only part of the model needs to be processed. Ta-
ble 5.3 shows the number of intermediate objects traversed to compute each query and
the size of their result sets to give an intuition on the complexity of the executed queries.

The experiments are run over the set2 and set3 models used in the benchmark pre-
sented in Section 3.5. All the queries are executed under two memory configurations:
the first one uses a large virtual machine of ✽GB and the second a small-one of ✷✺✵MB.
These configurations allow us to compare the different approaches both in normal and
stressed memory conditions.

Table 5.3 – Query Intermediate Loaded Objects and Result Size per Model

#Interm.

MoDisco

#Res.

MoDisco

#Interm.

JDT

#Res.

JDT

ClassAttributes ✷✽ ✺✵✺ ✶✷ ✸✺✾ ✶✸✻ ✼✺✸ ✺✹ ✷✵✶
SingletonMethods ✽✵ ✻✻✹ ✵ ✶ ✺✺✼ ✵✵✻ ✾✷
InvisibleMethods ✽✵ ✻✻✹ ✶✸✹ ✶ ✺✺✼ ✵✵✻ ✸✾✷✼
UnusedMethods ✽✵ ✻✻✹ ✵ ✶ ✺✺✼ ✵✵✻ ✶✶✺✺

5.4.2 Results

Experiment results for both benchmarked sets are listed in Tables 5.4 and 5.5. Each
table is divided into two parts, showing respectively the time in seconds to perform the
queries, and the memory consumption implied by the query computation. Table cells
present the results for both the large and small JVM configurations.

5.4.3 Discussion

Experiment results show that the MOGWAÏ framework outperforms all the query
frameworks executed over NEOEMF/GRAPH both in terms of memory consumption and
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Query Execution Time (s) Mem. Consumption (MB)

OCL IncQuery Mogwaï OCL IncQuery Mogwaï

ClassAttributes ✻/✻ ✶✸/✶✹ ✺/✺ ✾/✶✶ ✹✾/✹✽ ✶✷/✶✷
SingletonMethods ✶✶/✶✶ ✶✹/✶✹ ✺/✹ ✷✶/✷✹ ✺✼/✺✹ ✶✾/✶✽
InvisibleMethods ✶✷/✶✶ ✶✹/✶✺ ✹/✹ ✷✺/✷✻ ✻✷/✻✸ ✶✽/✶✾
UnusedMethods ✶✷/✶✷ ✶✹/✶✹ ✹/✹ ✷✷/✷✻ ✺✺/✺✹ ✶✼/✶✽

Table 5.4 – Query Results on Set 2

Query Execution Time (s) Mem. Consumption (MB)

OCL IncQuery Mogwaï OCL IncQuery Mogwaï

ClassAttributes ✶✽/✶✽ ✷✹✶/✻✸✺ ✶✵/✶✵ ✹✶/✹✸ ✻✵✻/✶✻✶ ✸✶/✸✷
SingletonMethods ✶✸✻/✶✼✹ ✷✸✽/✶✵✻✽ ✽/✼ ✸✾✷/✶✹✸ ✻✶✹/✶✾✼ ✹✼/✹✽
InvisibleMethods ✶✹✶/✶✼✺ ✷✸✵/✻✵✻ ✽/✽ ✸✾✷/✶✹✸ ✻✶✹/✶✾✼ ✹✼/✹✽
UnusedMethods ✶✸✻/✶✽✷ ✷✷✶/✹✸✷ ✻/✻ ✸✾✺/✶✶✶ ✺✻✻/✶✻✺ ✹✺/✺✶

Table 5.5 – Query Results on Set 3

execution time. The difference in terms of execution time is up to 20 times better than the
Eclipse MDT OCL framework, and up to 8 times better in terms of memory consumption.
This difference is reduced for small models and simple queries (such as ClassAttributes),
where the number of intermediate objects loaded from the data-store is not significant.

Comparing the presented results with the ones obtained by computing the same queries
over multiple persistence solutions (Section 3.5) shows that the MOGWAÏ framework is
faster and consumes less memory than NEOEMF/MAP —the best solution to evaluate
EMF API based queries— when the query implies a lot of intermediate object creation
and the targeted model is large. This improvement is explained by (i) the absence of
intermediate objects creation that consume time and memory and (ii) the use of indexes
and query optimizations on the database side, avoiding a complete traversal of the model
elements.

Conversely, if the query traverses a small subset of the model and has an important
result set (such as the ClassAttributes query), the benefits of using MOGWAÏ are reduced
compared to existing solutions. The result of the first query confirms this observation,
where an important part of the intermediate elements are part of the final result set. The
memory consumption may be even more important than other approaches for small mod-
els because the framework consumes memory to instantiate the transformation engine
that handle the OCL to Gremlin translation.

Note that the comparison only considers a single execution of each query over the
models. In case where the query is executed several times over a slightly different ver-
sion of the same model, an incremental approach like the one provided by EMF-IncQuery
could complement our approach, for example by using the MOGWAÏ framework to per-
form the initialization queries of the incremental engine, which are an important bottle-
neck in terms of memory consumption and execution time when applied to a lazy-loading

persistence framework.
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To summarize these results, the MOGWAÏ approach is an interesting solution to per-
form complex queries over large models. Using the query translation approach, gains in
terms of execution time and memory consumption are positive, but the results also show
that our approach is not the best solution for all kinds of queries. For example, it is more
interesting to use API based queries on NEOEMF/MAP if the model is relatively small
and/or if the query does not traverse an important part of the model.

The main disadvantage of the MOGWAÏ framework concerns its integration to the
standard EMF environment. While persistence frameworks can be plugged transparently
to EMF-based applications to improve their scalability, our solution requires to update
the application code to translate EMF API calls into OCL expressions. However, we
believe that this trade-off can be interesting for critical queries that need to be computed
efficiently. In addition, we designed our query API to transparently reify results into EMF
compatible objects, reducing the cost of integrating the MOGWAÏ framework in existing
applications.

5.5 Conclusion

In this chapter we presented MOGWAÏ , an efficient query framework that translates
model queries expressed in OCL into Gremlin expressions that can be directly computed
by a Blueprints-compatible data-store. Our solution relies on a model-to-model trans-
formation that maps OCL operations into Gremlin steps, and compose them to create a
single query that can be optimized by the underlying database. Our experiments show
that the MOGWAÏ query solution outperforms alternative approaches in terms of memory
consumption and execution time to perform complex queries over large models.

MOGWAÏ addresses all the requirements introduced in 5.1: our solution generates
Gremlin traversals —a NoSQL query languages— that manipulate database internal struc-
tures such as indices to improve computation performances (Rq1). The MOGWAÏ API
accepts queries expressed in the OCL language, the OMG standard to define model in-
variants and queries (Rq2), and our evaluation shows that our query translation approach
outperforms existing EMF API-based solutions as well as other query solutions (Rq3).
Finally, the architecture of the framework makes the low-level Gremlin query execution
totally transparent to the end user, because of the reification feature that convert returned
database records into model-level elements that can be manipulated using the standard
modeling APIs.

In the following we show how the MOGWAÏ approach can be extended to improve the
performance of computing complex model transformations on top of large models stored
in NoSQL data-stores.





6
Efficient Transformations

Model transformations have been characterized by Sendall and Kozaczynski as the

heart and soul of Model Driven Development [97]. Indeed, model transformations are
one of the core concept of most MDE processes: they are used to refine models, ex-
tract view of complex systems that can be understood by a modeler, generate code, or
perform formal verification on an input model [58]. For exemple, model transforma-
tions constitute the operational part of the OMG’s MDA development methodology [80],
that promotes the use of a high-level Platform Independent Model (PIM) representing the
specification of a system that is refined using model transformations into several Platform
Specific Model (PSM) used to generate the final software artifacts. In the field of MDRE,
model transformations are vastly used to detect problematic code, apply refactoring op-
erations on existing applications, or generate documentation [19] from an existing code
base.

As we stated in the previous chapters, the progressive adoption of MDE techniques in
the industry [55, 117], coupled with the growing accessibility of big data (such as national
open data programs [53]) has led to a situation where the volume and diversity of data to
model has grown to such an extent that the scalability of existing technical solutions to
store and manipulate models has become a major issue [68]. This is particularly true in
the context of model transformations, that often define global processes that are applied
on an entire (and potentially large) model.

Model transformation tools suffers from the same issues as query frameworks pre-
sented in the previous chapter: they rely on the low-level model handling API provided
by the modeling framework that are focused on manipulating individual model elements
and do not offer support for generic queries and transformation operations. As a result,
model transformation tools are not efficient with current model persistence framework
based on lazy-loading mechanisms, because (i) the granularity of the API is too fine and
is not able to express complex model transformation patterns efficiently on the database
side, and (ii) an important time and memory overhead is necessary to construct navigable
objects that can be manipulated by the modeling framework. As shown in Figure 6.1,
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this is particularly true in the context of model transformations, which heavily rely on
high-level model navigation queries (such as the allInstances() operation return-
ing all instances of a given type) to retrieve source elements to transform and create the
corresponding target model. This mismatch between high-level modeling languages and
low-level model access APIs generates a lot of fragmented queries that cannot be opti-
mized and computed efficiently by the database[116].

Figure 6.1 – Model Transformation Engine and Modeling Framework Integration

Based on our experience on using NoSQL data-stores to persist and query large mod-
els (emphasized by the approaches presented in Chapter 3 and 5), we have defined five
requirements that need to be addressed in order to provide an efficient transformation so-
lution for the novel generation of NoSQL model persistence frameworks. Note that these
requirements are similar to the ones presented in Chapter 5, because model transforma-
tion are intrinsically related to model query computation, and they suffer from the same
alignment issue between high-level model operations and low-level modeling APIs:

Rq1 the solution should generate database queries in order to benefit from the database
structures and optimizations, and limit network overhead

Rq2 the framework should support transformation expressed using a state of the art
model query language such as the ATL or the QVT standard

Rq3 the framework must outperform existing transformation solutions relying on
low-level model handling APIs

Rq4 the framework should be extensible to support new persistence solutions and
model mappings

Rq5 the transformation computation should be customizable to fit the modeler con-
straints in terms of execution time and memory consumption

In this chapter, we propose GREMLIN-ATL , that aims to address these issues by pro-
viding a novel transformation framework to compute complex model transformations on
top of actual persistence frameworks efficiently. GREMLIN-ATL is based on a translation
from high-level model transformation specification into efficient database queries that are
directly executed on the underlying persistence framework’s database. Our approach is
generic and aims to target multiple data representation, using a flexible architecture that
allows to define mappings that describe the alignment between high-level, transformation
specific constructs and existing database APIs. Our experiments show that GREMLIN-
ATL can bring a significant execution time and memory improvement when applied to
large and complex models.

The rest of this chapter is structured as follow: Section 6.1 introduces the state of the
art of model transformation tools, presenting their benefit and drawbacks when moving to
large models. Section 6.2 presents GREMLIN-ATL and its key components, Section 6.4
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presents how a transformation is executed from a user point of view. Sections 6.5 and 6.6
present our prototype and the benchmarks used to evaluate our solution. Finally, Sec-
tion 6.7 summarizes the key points of the paper and draws conclusion.

6.1 State of the Art

Model transformation languages and engines have been an active field of research for
the last 15 years, and several solutions have been proposed to define, evaluate, and ex-
ecute model transformation efficiently. Existing approaches usually provide a DSL that
lets modelers define their transformation using a high-level language that is used to access
a source model, express transformation conditions, and create the target elements. In this
section we first review the most well-known model transformation approach nowadays,
then we detail how these solutions have been extended and complemented with enhanced
support for large models and complex transformation computations. Finally, we summa-
rize the benefits and issues of the existing solutions and propose a research problem to
address in order to improve the computation of model transformations over large models.

6.1.1 Model Transformation frameworks

Originally, model transformations were expressed using general purpose program-
ming languages (such as Java or XTend [12] for the EMF ecosystem) manipulating model
elements through the modeling framework APIs. While these low-level approaches al-
low to precisely define the transformation execution, the lake of abstraction and language
construct to define transformation operations make them hard to reuse and maintain. Mul-
tiple solutions have been proposed to tackle these issues by providing high-level DSLs
focused on transformation definition and hiding execution details from the modeler.

ATL [58] is a declarative, rule-based language that defines transformations over an
arbitrary number of source and target metamodels. An ATL transformation is composed
of a set of transformation rules that map source elements from an input model according
to a given condition and produce target elements stored in an output model. The ATL
framework is integrated in the Eclipse ecosystem, and provides native support to EMF
models. However, the current implementations rely on the low-level model handling
APIs to navigate the source and the target models, and keeps them in memory along with
transformation specific informations, limiting the application performances in modeling
scenarios involving large models and scalable persistence frameworks.

The QVT standard [85] is an OMG specification that defines the architecture, the
language, and the operational mapping of the QVT transformation language. It has been
implemented in multiple frameworks, such as QVTo and QVTd, that respectively provide
an imperative and a declarative implementation of the language. The internal transforma-
tion algorithm embedded in existing QVT engines is designed to be efficient in terms
of memory consumption and execution time, and recent work [118] reported that QVT
scales better than ATL when moving to large models. However, in its core QVT relies on
the same low-level modeling APIs as ATL to access and manipulate models, reducing its
performances on top of existing scalable persistence solutions.

The Epsilon Transformation Language (ETL) [67] is a transformation language built
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on top of the Epsilon platform that aims to provide enhanced integration with languages
that support additional modeling tasks, such as model validation [65] or merging [64].
ETL has been designed as a hybrid language that implements a task-specific rule defi-
nition and execution scheme, but which also inherits the imperative features of EOL to
handle complex transformations when necessary. ETL enables specification of transfor-
mations involving an arbitrary number of source and target models. Compared to ATL
and QVT, ETL is based on the Epsilon infrastructure, that provides enhanced support for
high-level modeling operations compared to EMF. However, the Epsilon API is not ded-
icated to model transformation computation, and also suffers of the low-level definition
of its model handling API, that generates a lot of fragmented queries and intermediate
object creations that have a significant impact on the memory consumption when moving
to larger models.

Finally, The Viatra project [31] is an event-driven and reactive model transformation
platform that relies on an incremental pattern matching language to access and transform
models. The framework benefits of the incremental feature of EMF-IncQuery [11] to
efficiently recompute model navigation and update transformed models. Viatra receives
model update notifications and incrementally re-compute queries and transformations in
an efficient way at the cost of a higher memory consumption. Compared to other ap-
proaches, Viatra proposes a different solution that only requires to use low-level model-
ing APIs to initialize its internal structure: it performs a traversal of the source model
to transform and initialize its caches with the objects that have to be monitored and in-
crementally updated. These internal structures are then manipulated to compute model
transformations, decoupling the computation from the low-level modeling APIs. How-
ever, the framework presents two issues that limits its performance in the context of large
models: (i) the internal structures providing the incremental feature of the engines are
stored in the memory, and are not designed to scale to very large models, and (ii) while
the transformation computation is not tailored to a specific modeling APIs, the cost of
the initial traversal used to initialize the Viatra structures can be an important bottleneck,
especially in lazy-loading persistence solutions.

6.1.2 Towards Scalable Model Transformations

While the presented solutions have been used for years in MDE processes, several
studies reported that the scalability of MDE tools (and especially model transformation
engines) is an important factor that hampers the adoption of MDE techniques in industrial
processes involving large and complex models [54, 55].

Several solutions have proposed to parallelize and distribute model transformations
to tackle this issue and improve the efficiency and scalability of existing transformation
engines. ATL-MR [7] is a map-reduce based implementation of the ATL engine that com-
putes transformations on top of models stored in a distributed cluster running HBase 1.
The approach is based on a data partitioning strategy that assign each model element to
a node in the cluster in order to maximize data locality and reduce network communi-
cation overhead [8]. The tool benefits from the distributed nature of the data-store and
its integration in the Map/Reduce ecosystem to distribute the computation, improving the
overall execution time.

1. https://hbase.apache.org/

https://hbase.apache.org/
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Query Solution API-based Translation In-memory In database
Relational NoSQL

Java / XTend
ATL
QVT
ETL
Viatra
Parallel-ATL
ATL-MR
Lintra

Table 6.1 – Features of existing transformation solutions

Parallel-ATL [113] is an alternative implementation of the ATL engine that enables
parallel computation of ATL rules. Compared to ATL-MR, Parallel-ATL is based on a
task distribution algorithm that takes benefit from the multicore environment provided
by current machines by inspecting the input transformation and splitting the execution
into several workers that access a global shared model asynchronously. The framework
relies on the declarative aspect of ATL to compute transformation rules in parallel, and as
shown positive results compared to the standard ATL execution engine.

The LinTra [23] platform is another solution that relies on the Linda coordination
model to parallelize and distribute model transformations. Compared to Parallel-ATL
and ATL-MR, the framework does not rely on the low-level modeling framework API to
compute the transformation, but provides an intermediate access API that enable support
of various NoSQL data-stores, such as Oracle Coherence 2 or Infinispan 3. While this
flexible approach allows to compute transformation on multiple data-sources, it assumes
that the input models are provided in a Lintra-compatible format, and does not specify
how to build these models from state of the art modeling languages such as UML or
Ecore. In addition, the transformation itself is expressed using a Java internal DSL, that
can be hard to reuse and modularize, and requires some knowledge on the underlying
coordination model to fully benefit from the approach.

Table 6.1 summarizes the main features of the state of the art solutions listed above.
We classify them using the same four criterias as the one presented in Chapter 5: (i) if the
solution is based on a modeling API (for example EMF) to access the underlying model
or if (ii) it is based on a translational approach that generates low-level database queries
from high-level transformation languages. We also distinguish if (iii) the approach com-
putes the transformation in memory or (iv) if it delegates the computation to the database
layer. For each presented tool, fully supported features are represented with green checks,
partially supported features are shown as grey checks, and unsupported features are rep-
resented as red crosses.

2. http://www.oracle.com/technetwork/middleware/coherence/overview/
index.html

3. http://infinispan.org

http://www.oracle.com/technetwork/middleware/coherence/overview/index.html
http://www.oracle.com/technetwork/middleware/coherence/overview/index.html
http://infinispan.org
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6.1.3 Summary and Research Problem

The vast majority of existing solutions rely on the usage of modeling APIs to compute
transformations and directly suffers of the alignment mismatch between transformation
primitive and model persistence frameworks. Furthermore, existing solutions usually
use an in-memory transformation engine that keeps in memory part of the manipulated
model along with transformation specific constructs, and are not designed to scale to large
models.

In addition, there is no solution that currently fulfills all the requirements listed above,
especially Rq1. Based on these observations, we state that there is currently a need to

provide a translation approach that handles model transformations on top of large

models efficiently by generating optimized NoSQL database scripts.

In the following we present GREMLIN-ATL , our scalable transformation engine that
aims to address these requirements by generating low-level database scripts from high-
level model transformations expressed in ATL.

6.2 Gremlin-ATL Framework

The approach we propose relies on a two step process: (i) a model-to-model trans-
formation that takes as its input an ATL transformation and generates the corresponding
Gremlin traversals (Section 6.3), and (ii) an execution envinronment that allows to plug
GREMLIN-ATL on top of various data-store and tune the transformation execution (Sec-
tion 6.4). Once the transformation has been executed, the resulting model can be trans-
lated back to the modeling framework level, allowing client applications to manipulate it
transparently.

In this section we first introduce and motivate the choice of ATL as our input language,
then we present an overview of the framework and its query translation process. Note that
the motivations for using Gremlin as our target language are similar to the ones presented
in Section 5.2.1.

6.2.1 The ATL Transformation Language

Before introducing the internal components of our approach, we detail the ATL [58]
language, that is used to define the transformation to compute with the GREMLIN-ATL frame-
work. The choice of using ATL as our input language is motivated by the fact that it is a
wide-spread technology in the EMF ecosystem used to express and compute model trans-
formations, as emphasized by the various frameworks based on the ATL engine [7, 113],
as well as the growing amount of transformations referenced in the ATL Zoo 4. Note that
while this chapter focuses on ATL, our solution could be adapted to other rule-based trans-
formation languages, notably by reusing the work proposed by Jouault and Kurtev [59]
on the architectural alignment of ATL and the QVT standard [85].

ATL is a declarative, rule-based model transformation language that lets modelers
express transformation rules defined at the metamodel level. An ATL transformation

4. https://www.eclipse.org/atl/atlTransformations/

https://www.eclipse.org/atl/atlTransformations/
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is defined between an arbitrary number of source and target metamodels, and contains
a set of rules matching source elements and creating the corresponding target model.
Transformations are organized in modules, that represent semantic containers used to
group related rules and define libraries. ATL provides three types of rules: (i) matched

rules that are declarative and automatically executed by the engine, (ii) lazy rules that are
also declarative but are explicitly invoked from another rule, and (iii) called rules which
contain imperative code 5 used to provide additional behavior such as logging execution
traces, code generation, or specific element modifications.

The language embeds its own implementation of the OCL standard [83] as its lan-
guage to express transformation rule conditions, source and target model navigations,
and attribute/reference bindings in the target model. These OCL expressions can be mod-
ularized in helpers, that are reused along the transformation to compute information in
a specific context, provide global functions, and runtime attributes computed on the fly.
OCL helpers can be invoked multiple times in a transformation, and related helpers can
be grouped in library modules that can be shared between multiple transformations.

Finally, ATL programs are themselves described as models that conform to the ATL
metamodel representing the grammar of the language. This feature allows to define
higher-order transformations [112], that take an ATL transformation as their input and
manipulate it to check invariant properties that should hold during the transformation [28],
verify the transformation by dynamically inferring and checking types [32], or refine it
into another language or technology [111]. GREMLIN-ATL relies on this higher-order
transformation capabilities to refine existing ATL transformations and produce efficient
database queries.

Note that the semantic of the language does not assume any order in the matched rule
executions, meaning that a target model can contain proxy values that will be resolved
later in the process. Current implementations of the ATL engine rely on a trace link

mechanism to provide this feature by keeping traces between the source and target model
elements in order to resolve proxies and set target values that have not been transformed
yet. Tisi et al. [113] have shown that this independence between rules can be used, for
example, to efficiently parallelize ATL transformations.

To better illustrate the ATL concepts that are used in this chapter, we introduce a
simple transformation example that will be used through the following sections to explain
the GREMLIN-ATL approach. Our example transformation is based on the metamodel
presented in this manuscript’s running example (Chapter 2), as a remainder, Figure 6.2
presents our simple metamodel representing Java programs in terms of a hierarchy of
Packages, Classes, Methods, Constructors (a subclass of methods), and Types that are
returned by Methods. A simple instance of this metamodel is provided in Figure 2.3.

Listing 12 shows a simple ATL transformation defining the module example (line 1)
that takes as its input an instance of the Java metamodel shown in Figure 6.2, and creates
an output model conforming to the Knowledge Discovery Model (KDM) metamodel [81],
an OMG standard that represents software artifacts independently of their platform (line
3). The example module contains a single transformation rule MethodToMethodUnit (line
15) that matches all the Method elements from the input model that does not contain the
Test string in their name and creates the corresponding MethodUnit in the target model.
The attributes and references of the created elements are set using binding specifications:

5. Note that imperative constructs are not discussed in this chapter
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Figure 6.2 – A Simple Java Metamodel

the first one (line 18) contains an OCL expression that checks if the source element is a
Method or a Constructor and sets the KDM kind attribute accordingly. The second bind-
ing (line 20) sets the value of the export attribute by calling the OCL helper getVisibility

on the source element. Finally, the type reference is set with the Type element contained
in the returnType reference of the source Method. Note that an additional rule has to
be specified to map Type instances to their corresponding output elements, that will be
resolved by the ATL engine using its trace links mechanism.

1 module example ;
2
3 c r e a t e OUT: KDM from IN : Ja va ;
4
5 �� r e t u r n s a S t r i n g r e p r e s e n t i n g t h e v i s i b i l i t y o f a Method
6 h e l p e r c o n t e x t J a va ! Method d e f : g e t V i s i b i l i t y ( ) : S t r i n g =
7 l e t r e s u l t : V i s i b i l i t y K i n d = s e l f . v i s i b i l i t y i n
8 i f r e s u l t . o c l I s U n d e f i n e d ( ) t h e n
9 " unknown "

10 e l s e
11 r e s u l t . t o S t r i n g ( )
12 e n d i f ;
13
14 �� T r a n s f o r m s a Ja va Method i n t o a KDM Method u n i t
15 r u l e MethodToMethodUnit {
16 from s r c : J a va ! Method ( n o t s r c . name . c o n t a i n s ( ’ T e s t ’ ) )
17 t o t g t : KDM! MethodUnit (
18 k ind ✥ i f ( s r c . o c l I s K i n d O f ( j a v a ! C o n s t r u c t o r ) )
19 t h e n ’ c o n s t r u c t o r ’ e l s e ’ method ’ e n d i f ,
20 e x p o r t ✥ s r c . g e t V i s i b i l i t y ( ) ,
21 t y p e ✥ s r c . r e t u r n T y p e
22 }

Listing 12 – Simplified Java2KDM Rule Example
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6.2.2 Framework Overview

Figure 6.3 presents an overview of the GREMLIN-ATL framework that creates and
computes Gremlin Traversals from ATL Transformations. An input transformation is
parsed into an ATL Transformation Model conforming to the ATL metamodel. This model
constitutes the input of our ATLtoGremlin high-order transformation that creates an output
Gremlin Traversal representing the query to compute (details on the traversal construc-
tion are provided in the following sections) and sends it to the database for execution.
Note that the generated Gremlin traversal conforms to the Gremlin metamodel defined in
Section 5.2.

The ATLtoGremlin transformation uses two generic libraries to produce the output
query: (i) a Model Mapping Definition providing an abstraction layer that decouples
the transformation computation from the low-level database access, allowing to access
several data-sources as a model by mapping its implicit schema to modeling primitives,
and (ii) a Transformation Helper Definition defining an API to redefine transformation-
specific operations, enabling to tune the transformation algorithm according to memory
and execution time requirements 6. Note that this generic approach is an extension of the
one presented in Chapter 5 that only focuses on generating Blueprints-compatible queries.

Figure 6.3 – Overview of the GREMLIN-ATL Framework

The generated traversal can be returned to the modeler and used as stored procedures
to execute in the future, or directly computed in a Gremlin engine that uses specific im-
plementations of the Model Mapping and Transformation Helpers libraries to access the
underlying data-store and operates the transformation. In addition, GREMLIN-ATL also
provides support to compute directly the generated query in a preset NEOEMF database
and generates EMF compatible target models. This advanced integration is detailed in
Section 6.5.

In the following we detail the ATLtoGremlin transformation, and we show how the

6. Details on these libraries are provided in Section 6.4
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generated Gremlin traversal interacts with the Model Mapping and Transformation Helper

Definitions to support multiple model storage solutions and allow fine-grained customiza-
tion of the transformation process. A complementary user point of view is provided in
Section 6.4. Note that details on the Gremlin language, as well as our motivations to
select it as our target database language has been provided in Section 5.2.1.

6.3 ATLtoGremlin Transformation

Figure 6.4 presents an overview of our ATLtoGremlin transformation process that
generates Gremlin traversals from ATL transformations. An ATL transformation rule is
composed of four elements: (i) a rule definition containing the name of the rule and the
matched type in the metamodel (red), (ii) a guard representing the condition to check
against matched elements (green), (iii) an out pattern representing the element to create
(blue), and (iv) a set of binding operations that set the attributes and references of the
created element. The Gremlin script generated by our approach is constructed by mapping
these individual constructs into their Gremlin equivalent, and assembles them to respect
the transformation semantic. In the following we present the details of our mapping and
we show how the generated query fragments are combined to create the final Gremlin
traversal to execute.

Figure 6.4 – ATLtoGremlin Transformation Overview

6.3.1 ATL Operations Mapping

Table 6.2 shows the mapping used by GREMLIN-ATL to translate individual ATL
constructs into Gremlin steps. An ATL module, that represents the top-level container
holding the transformation rules, is translated into an equivalent Gremlin script that con-
tains all the instructions of the traversal to execute.

Matched Rules Definitions contained in the ATL module are mapped to a sequence
of steps that access all the elements of the type matched by the rule. For example, the
matched rule definition MethodToMethodUnit in Listing 12 is translated into the Gremlin



6.3. ATLTOGREMLIN TRANSFORMATION 111

expression g.allOfKind("Method") that searches in the input data-store all the elements
representing Method instances. Abstract Rule Definitions are not translated, because they
are called only when a specialized rule is matched. Lazy rule definitions are translated into
function definitions named with the rule’s identifier and contains their translated body.

Matched rule bodies are mapped to a transform step containing the translated expres-
sions representing rule’s out pattern and bindings. This transform step is followed by an
iterate step that tells the Gremlin engine to execute the query for each source elements.
Abstract rule bodies are directly mapped without creating a transform step, and gener-
ated Gremlin steps are added to the ones of the translated bodies of the corresponding
specialized rules. This approach flattens the inheritance hierarchy of a transformation by
duplicating parent code in each concrete sub-rule.

Rule Guards defining the set of elements matched by a rule are translated into a Grem-
lin filter step containing the translated condition to verify. For example, the guard of the
rule MethodToMethodUnit is translated into the following Gremlin expression that first
navigates the name attribute and checks if it contains the Test string: filter {!( src . getAtt
("name"). contains (" Test ")}.

Rules’ body expressions contain two types of ATL constructs: out patterns represent-
ing the target element to create, and attribute/reference bindings describing the attribute
and references to set on the created element. Out patterns are mapped to a variable defini-
tion storing the result of the createElement function which creates the new target instance
and the associated source to target trace links. This instruction is followed by a resolve-

Traces call that tells the engine to resolve the potential proxies associated to the created
element using the trace links mechanism. In our example, this step generates the sequence
tHelper . createElement ("MethodUnit", src ) that creates a new MethodUnit instance in the
target model and associates it with the src element from the source model. Attribute and
Reference Bindings are respectively translated into the mapping operation setAtt and a
transformation helper’s link call 7.

Our mapping translates helper definitions into global methods, which define a self

parameter representing the context of the helper and a list of optional parameters. This
global function is dynamically added to the Object metaclass to allow method-like invo-
cation, improving query readability. Global helper definitions are also mapped to global
methods, but do not define a self parameter. Finally, Global Variables are translated into
unscoped Gremlin variables that can be accessed in every instruction.

ATL embeds its own implementation of OCL, which is used to navigate the source
elements to find the objects to transform, express the guard condition of the transfor-
mation rules, and define helpers’ body. We have adapted the mapping defined in the
MOGWAÏ framework (see Chapter 5) to fit the OCL metamodel embedded in ATL. In
addition, we integrated our Model Mapping Definition component in the translation in
order to provide a generic translation based on an explicit mapping. The current version
of GREMLIN-ATL supports an important part of the OCL constructs, allowing to express
complex navigation queries over models. As an example, the inline if construct used in
MethodToMethodUnit to check whether the source element represents a constructor can
be translated into the equivalent Gremlin ternary operator: src . isKindOf(" Constructor ") ?
" constructor " : "method" that uses the isKindOf Model Mapping operation to perform

7. Reference bindings are handled by the Transformation Helper component to enable proxy element
creation and trace links management
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the type conformance checking.

Table 6.2 – ATL to Gremlin mapping

ATL expression Gremlin step

module Gremlin Script
matched_rule definition g.allOfType(type)
abstract_rule definition not mapped
lazy_rule definition def name(type) { body }
matched_rule body transform{ body }.iterate()
abstract_rule body body 8

specialized_rule body transform{ ❜♦❞② ❬ ♣❛r❡♥t✿❜♦❞② }.iterate()
rule_guard(condition) filter{condition}
out_pattern(srcEl, tgtEl) var out = thelper

.createElement(tgtEl.type, srcEl)
tHelper.resolveTraces(srcEl,tgtEl);

attribute_binding e1.setAtt(exp)
reference_binding e1.link(exp)
helper_definition def name(var self, params){ expression }

Object.metaClass.name = {
(params)✦ name(delegate, params)}

obj.helper(params) obj.helper(params)
global_helper_definition def name(params) { expression }
global_helper_computation name(params);
global_variable def name = expression
OCL_Expression Mogwaï 9

6.3.2 Operation Composition

Once the individual ATL constructs have been mapped to their corresponding Grem-
lin steps using the presented mapping, our framework composes the generated query
fragments to create the complete traversal to execute. This section details the GREMLIN-
ATL composition process by reusing the running example’s transformation presented in
Listing 12 and shows how the generated steps are assembled to create the final Gremlin
output presented in Listing 13.

In order to generate a complete Gremlin query, our transformation has to navigate
the input ATL model and link the generated elements together. First, the ATLtoGremlin

transformation searches all the helper definitions (including global ones) and translates
them according to the mapping shown in Table 6.2. The generated functions are added
to the Gremlin script container, making them visible for the translated ATL rules. This
first step generates the function definition and its body expression shown in lines 1 to
8 corresponding to the getVisibility helper presented in Listing 12. Note that this initial

8. The body of abstract rules is duplicated in the transform step of all its sub-rules
9. OCL expression are translated by an improved version of the Mogwaï framework presented in Chap-

ter 5
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phase also generates the function that registers contextual helpers to the Object metaclass
(lines 10-13), allowing method-like invocation of the function in generated expressions.

Lazy_rule definitions are then translated into global functions, and added to the Grem-
lin script container. Their out pattern and binding expressions are translated into their
Gremlin equivalent following the mapping presented in the previous section and ap-
pended in the generated function body. This pre-processing generates the Gremlin con-
structs that corresponds to the ATL expressions that are explicitly called during the trans-
formation, and ensures that all these auxiliary functions are defined when computing the
traversal parts corresponding to the matched rules.

1 / / g e t V i s i b i l i t y ( ) h e l p e r
2 d e f g e t V i s i b i l i t y ( v a r s e l f ) {
3 v a r r e s u l t = s e l f . g e t A t t ( " v i s i b i l i t y " ) ;
4 i f ( r e s u l t == n u l l )
5 r e t u r n " unknown " ;
6 e l s e
7 r e t u r n r e s u l t ;
8 }
9

10 / / Add g e t V i s i b i l i t y t o Ve r t e x method l i s t
11 Ve r t e x . m e t a C l a s s . g e t V i s i b i l i t y =
12 { ✦ g e t V i s i b i l i t y ( d e l e g a t e ) }
13
14 / / MethodToMethodUnit
15 g . a l l O f K i n d ( " Method " ) . f i l t e r {
16 d e f s r c = i t ;
17 ! ( s r c . g e t A t t ( " name " ) . c o n t a i n s ( " T e s t " ) )
18 } . t r a n s f o r m {
19 d e f s r c = i t ;
20 v a r t g t = t H e l p e r . c r e a t e E l e m e n t ( " MethodUnit " , s r c ) ;
21 t H e l p e r . r e s o l v e T r a c e s ( s r c , t g t ) ;
22 t g t . s e t A t t ( " k ind " , s r c . i sKindOf ( " C o n s t r u c t o r " ) ? " c o n s t r u c t o r " : "

method " ) ;
23 t g t . s e t A t t ( " e x p o r t " , s r c . g e t V i s i b i l i t y ( ) ) ;
24 t g t . s e t R e f ( " t y p e " , s r c . g e t R e f ( " r e t u r n T y p e " ) ) ;
25 } . i t e r a t e ( ) ;

Listing 13 – Generated Gremlin Traversal

Once this initial step has been performed the transformation searches all the matched

rules definitions and creates the associated Gremlin instructions. If the rule defines a
guard the generated filter step is directly linked after the allOfKind operation in order to
select the elements that satisfy the guard’s condition. Then, the transform step and the
associated iterate call corresponding to the matched rule body are created and added at
the end of the traversal. In our example this operation generates lines 15 to 18.

The Out pattern elements contained in the matched rule body are retrieved and the
corresponding Gremlin instructions (lines 20 and 21) are added to the transform step clo-
sure. Finally, the rule’s bindings expressions are transformed following the same mapping
and appended at the end of the closure’s instruction, ensuring that all the manipulated el-
ements have been created before they are accessed (lines 22 to 24). Note that helper calls
inside binding’s expressions are also translated into the corresponding method calls (that
have been added to the Object metaclass) during this operation.
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6.4 Execution Environment

Figure 6.5 shows the execution environment provided by our approach: a modeler
provides an ATL transformation to the Query Translation component (1), which com-
piles the query into a generic Gremlin script according to the mapping presented above,
and returns it back to the modeler (2). The generated script is then sent to the Query Ex-

ecution API with a concrete implementation of the Model Mapping and Transformation

Helper libraries (3) that specify the transformation behavior and the source and target
data-stores. The internal Gremlin engine finally computes the transformation using these
implementations (4) and returns the result (such as execution traces, or transformation
errors if any) to the modeler (5).

Figure 6.5 – GREMLIN-ATL Execution Environment

This architecture allows to pre-compile transformations into Gremlin scripts that can
be executed multiple times without recompilation. In addition, the same generated script
can be computed on top of several data-stores and using different transformation strategies
by providing different implementations of the generic libraries to the Query Execution

component, avoiding complex and costly transformation re-computations. Note that the
framework can also process and compile new input transformations on the fly, generating
the corresponding Gremlin scripts dynamically.

In the following, we introduce the auxiliary libraries used in the Query Execution

component to evaluate the generated script and perform the transformation. We first intro-
duce the low-level model mapping that provides an API to access a model through high-
level modeling operations, then we present our transformation helper component that
provides an API to tune the transformation computation. Note that GREMLIN-ATL em-
beds a set of preset model mappings and transformation helpers that can be used to access
and transform models stored in the NEOEMF framework.
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6.4.1 Model Mapping

The Model Mapping library defines the high-level modeling operations that can be
computed by a given data-source storing a model. It provides a simple API allowing
designers to express the implicit schema of their data-store with modeling primitives,
and enables operation specific optimizations on the database side. Model Mapping can
be manually implemented for a given database, or automatically extracted using schema
inference techniques such as the NoSQLDataEngineering framework [93]. This mapping
is used within the generated Gremlin query to access all the elements of a given type,
retrieve element’s attribute values, or navigate references.

Compared to existing modeling framework APIs like EMF that focuses on providing
low-level, atomic operations (such as retrieving a specific attribute or reference of a model
element), our Model Mapping defines high-level operations extracted from the OCL and
ATL syntax. These complex operations can be translated into optimized database queries,
reducing low-level query fragmentation and improving computation performances com-
pared to the standard modeling solutions.

Table 6.3 summarizes the mapping operations used in GREMLIN-ATL and groups
them into two categories: metamodel-level and model-level operations. The first group
provides high-level operations that operate at the metamodel level, such as retrieving the
type of an element, type conformance checks, new instances creation, and retrieving all
the elements conforming to a type. The second group provides methods that compute
element-based navigation, such as retrieving a referenced element, computing the paren-
t/children of an element, and access attributes. Finally, these model-level methods allow
to update and delete existing references and attributes.

Note that the ATLtoGremlin transformation only relies on the definition of these op-
erations to generate a Gremlin query, and is not tailored to a specific Model Mapping

implementation, making our approach independent of the low-level persistence solution.

6.4.2 Transformation Helper

The second component used by our ATLtoGremlin transformation is a Transformation

Helper library that provides transformation-related operations called within the generated
Gremlin traversal. Compared to the Model Mapping API presented above that focuses on
accessing a data-source through modeling primitives, this library is based on the ATL
syntax and execution engine, and provides a set of methods wrapping a Model Mapping

with transformation specific operations. Note that this library aims to be generic and can
be used directly in ad-hoc Gremlin scripts to manually express transformation rules.

Using an external library to compute transformation-specific operations allows to de-
fine alternative transformation algorithms that are optimized for a specific execution sce-
nario. For example, an in-memory implementation of the trace links mechanism can be a
good solution to improve the execution time of a transformation, while storing them in an
on-disk persistence solution can be selected to reduce the memory consumption. To pro-
vide these specific implementations of the transformation algorithm, our Transformation

Helper defines the following interface:
— createElement(type, source): creates a new instance of the given type mapped to

the provided source element.
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Table 6.3 – Model Mapping API

Operation Description

allOfType(type) Returns all the strict instances of the given type

allOfKind(type) Returns all the instances of the given type or one of its sub-
types

getType(el) Returns the type of the element el

isTypeOf(el, type) Computes whether el is a strict instance of type

isKindOf(el, type) Computes whether el is an instance of type or one of its sub-
types

newInstance(type) Creates a new instance of the given type

getParent(el) Returns the element corresponding to the parent of el

getChildren(el) Returns the elements corresponding to the children of el

getRef(from, ref) Returns the elements connected to from with the reference ref

setRef(from, ref, to) Creates a new reference ref between from and to

delRef(from, ref, to) Deletes the reference ref between from and to

getAtt(from, att) Returns the value of the attribute att contained in the element
from

setAtt(from, att, v) Set the value of the attribute att of the element from to the
given value v

delAtt(from, att) Deletes the attribute att contained in the element from

— link(from, ref, to): creates a link between from and to.
— resolveTraces(source, target): resolves the trace links connected to source with

the target.
— getTarget(source, bindingName): retrieves the target element mapped to source.

If multiple target elements are created from a single source one an optional bind-

ingName can be specified to tell the engine which one to choose.
— isResolvable(el): computes whether an element can be resolved.
— isTarget(el): computes whether an element is in the target model.
— isSource(el): computes whether an element is in the source model.
The two first operations are wrappers around Model Mapping operations that add

model transformation specific behavior to the mapping. The createElement ( type , sourceElement
) operation delegates to the mapping operation newInstance(type), and adds a trace link
between the created element and the source one. The link (from, ref , to ) method dele-
gates to the mapping operation setRef to create a regular reference between from and to

or a proxy link if to is not yet part of the target model (i. e. if it has not been transformed
so far).

The five last operations define transformation specific behaviors, such as retrieving
the target element from a source one, resolve trace links, or compute whether an ele-
ment is part of the source or the target model. Note that GREMLIN-ATL embeds two
implementations of the Transformation Helper library: the first one uses an in-memory
representation of the trace links to speed-up transformation computations, and the second
one is optimized for in-place transformations (where the source database is used to store
the result of the transformation) that can be directly plugged to customize the transfor-
mation execution. Alternative versions of this library can be defined by implementing the
Transformation Helper API presented above.
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6.5 Tool Support

As the other solutions presented in this manuscript, GREMLIN-ATL is released as a
set of open source Eclipse plugins publicly available on GitHub. 10. The framework is
provided as a component of the MOGWAÏ query solution that aims to be merged in the
future into a global model query and transformation solution.

The current implementation provides a simple transformation API to load an input
ATL transformation, translate it into the equivalent generic Gremlin script, and execute
it on a given data-source. The framework embeds a set of Model Mappings that can
be plugged to access Neo4j and relational databases, and provides two Transformation

Helpers for convenience purposes that can be extended to specify how transformation-
related operations are computed.

ATL models are obtained from the input transformation by using the standard ATL
parser, which creates a model conforming to the ATL grammar representing the abstract
syntax of the transformation to compute. The resulting model is sent to the ATLtoGrem-

lin transformation, which is itself defined using the ATL language (with the help of the
higher-order transformation feature introduced in Section 6.2.1) and contains around ✶✷✵
rules and helpers implementing the mapping and operation composition presented in Sec-
tion 6.2.

As an example, Listing 14 shows the rule that creates the Gremlin instructions cor-
responding to an ATL attribute binding. An attribute binding b is translated into a vari-

ableAccess followed by a setAtt call (represented as a CustomStep in our Gremlin meta-
model) containing the name of the attribute and the associated value to set. The value ex-
pression is generated using the getFirstInstruction helper, that returns the root
element in the expression tree, and delegates the translation to the corresponding ATL
rule.

r u l e a t t r i b u t e B i n d i n g 2 s t e p {
from

b : ATL! Bind ing ( b i n d i n g . i s A t t r i b u t e B i n d i n g ( ) )
t o

v a r i a b l e A c c e s s : Gremlin ! V a r i a b l e A c c e s s (
name ✥ b . getBindedElementName ( ) ,
n e x t E l e m e n t ✥ s e t A t t S t e p

) ,
s e t A t t S t e p : Greml in ! CustomStep (

name ✥ ’ s e t A t t ’ ,
params ✥ Sequence { a t t N a m e L i t e r a l , b . v a l u e . g e t F i r s t I n s t r u c t i o n ( )

}
) ,
a t t N a m e L i t e r a l : Greml in ! S t r i n g L i t e r a l (

v a l u e ✥ b . proper tyName
)

}

Listing 14 – AttributeBinding2Step ATL Rule

Once the generic Gremlin model has been generated, it is transformed into a textual
Gremlin query using a model-to-text transformation. A final step binds the Model Map-

10. https://github.com/atlanmod/Mogwai

https://github.com/atlanmod/Mogwai
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ping and the Transformation Helper definitions to the concrete implementations provided
by the modeler, and the resulting script is sent to a Gremlin script engine, which is re-
sponsible of computing the query on top of the data-store. The resulting database (or
the updated one in case of in-place transformations) is finally saved with the transformed
content.

Additionally, a pre-configured implementation of GREMLIN-ATL is bundled with
the NEOEMF model persistence framework that extends the standard Resource API
with transformation operations. ATL transformations are computed using the GREMLIN-
ATL engine transparently, on top of a preset NeoEMF Model Mapping implementation.
The resulting model is compatible with the NEOEMF framework and its content can be
reified and manipulated using the standard EMF modeling API if needed. This trans-
parent integration allows the use of GREMLIN-ATL for critical model transformations,
while keeping the rest of the application code unchanged and compatible with existing
tools based on the EMF API. We believe that this approach can ease the integration of
GREMLIN-ATL into existing modeling applications that have to compute complex trans-
formations on the top of large models.

6.6 Evaluation

In this section we evaluate the performance of the GREMLIN-ATL framework by
comparing the execution performance of the same set of ATL transformations using the
standard ATL engine and the GREMLIN-ATL framework. Note that we do not consider
alternative transformation frameworks in this preliminary evaluation, because they are
either based on the same low-level modeling API as ATL (such as QVT), or are not
designed to compute transformation on top of large models (such as Viatra), and we
could not envision a fair comparison scenario with our solution.

We run two transformations, a toy one created on purpose for this analysis and a more
complex one taken from an industrial project involving a reverse engineering scenario.
Transformation computations are evaluated in terms of execution time and memory con-
sumption on a set of models of increasing size, stored in Neo4j using the NEOEMF map-
ping. Resulting models are also stored in NEOEMF using the same mapping.

6.6.1 Benchmark Presentation

Experiments are run over the three models presented in Section 3.5 plus an additional
larger one that allows to test our approach on top of very-large models. As a remainder,
Table 6.4 presents the size of the input models in terms of number of elements they contain
and XMI file size. These models are migrated to NEOEMF/GRAPH before executing the
benchmark using the NEOEMF io module to enable scalable access of their contents.

In order to evaluate our approach, we perform two transformations that take as their
input models conforming to the MoDisco Java metamodel, and translate them into a KDM
model [81]. The AbstractTypeDeclaration2DataType transformation matches all the Ab-

stractTypeDeclaration elements (declared classes, interfaces, enumerations, etc.) of the
input model and create the corresponding KDM DataType. It is composed of a single
rule that matches all the subtypes of AbstractTypeDeclaration, and is used as the basis to
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Table 6.4 – Benchmarked Models

Model # Elements XMI Size (MB)

set1 ✻✼✺✻ ✶✿✼
set2 ✽✵ ✻✻✺ ✷✵✿✷
set3 ✶ ✺✺✼ ✵✵✼ ✹✷✵✿✻
set4 ✸ ✻✵✾ ✸✺✹ ✾✽✸✿✼

evaluate if the transformation complexity (i.e. the number of rules) has an impact on the
overall execution time and memory consumption.

The second benchmarked transformation is a subset of the Java2KDM transformation
embedded in the MoDisco platform itself. It is extracted from an existing industrial trans-
formation that takes a low-level Java model and creates the corresponding abstract KDM
model. This transformation is typically the first step of MoDisco-based reverse engineer-
ing processes, and produces a generic model that can be manipulated by the framework
regardless of its concrete implementation (Java, JavaScript, etc), and used to compute
metrics, perform refactoring operations, and generate updated software artifacts.

The two transformations are run in a ✺✶✷MB Java virtual machine with the arguments
-server and -XX:+UseConcMarkSweepGC that are recommended by the Neo4j
documentation.

6.6.2 Results

Tables 6.5 and 6.6 present the results of executing the transformations on top of the
input model sets. First columns contain the name of the input model of the transformation,
second and third columns present the execution time and the memory consumption of the
standard ATL engine and GREMLIN-ATL , respectively. Execution times are expressed
in milliseconds and memory consumption in megabytes.

The correctness of the output models are checked by comparing the results of our
approach with the ones generated by running the ATL transformation on the original in-
put XMI files using a large Java virtual machine able to handle it. The comparison is
performed using EMF Compare [18], an open-source Eclipse plugin that aims to provide
efficient comparison of EMF models. Note that the presented results have been obtained
by computing the average execution time and memory consumption values after 30 exe-
cutions of the transformations.

6.6.3 Discussion

The results presented in Tables 6.5 and 6.6 show that GREMLIN-ATL is a good can-
didate to compute model transformations on top of large models stored in NEOEMF/-
GRAPH . Our framework is faster than the standard ATL engine for the two benchmarked
transformations, outperforming it both in terms of execution time and memory consump-
tion for the larger models.

The results also show that the complexity of the transformation has a significant im-
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Table 6.5 – AbstractTypeDeclaration2DataType Results

Model Execuction Time (ms) Memory Consumption (MB)

ATL Gremlin-ATL ATL Gremlin-ATL

set1 ✸✺✵✺ ✶✶✸✾ ✸✿✷ ✶✵
set2 ✶✶ ✹✽✵ ✶✻✹✾ ✶✼✿✻ ✶✶✿✼
set3 ✻✼ ✷✵✹ ✸✹✷✼ ✾✾✿✸ ✷✸
set4 OOM1 ✶✶ ✽✹✸ OOM ✶✵✵

1 The application threw an OutOfMemory error after two hours

Table 6.6 – Java2KDM Results

Model Execuction Time (ms) Memory Consumption (MB)

ATL Gremlin-ATL ATL Gremlin-ATL

set1 ✹✽✼✹ ✷✹✻✾ ✶✶ ✶✷✿✽
set2 ✸✸ ✹✵✼ ✹✸✷✶ ✹✺✿✷ ✷✸✿✷
set3 ✺ ✶✺✻ ✼✾✽ ✸✽ ✹✵✷ ✺✵✹✿✺ ✺✷
set4 OOM ✶✷✾ ✾✵✽ OOM ✾✻

pact on ATL’s performances. This is particularly visible when the transformations are
evaluated on the larger models: Java2KDM is ✷✿✾ times slower than AbstractType2DataType

on set2, and up to ✼✻ times on set3. This difference is explained by the large number of
low-level modeling API calls that are generated by the Java2KDM transformation in or-
der to retrieve the matching elements, compute rules’ conditions, and helpers’ body.

GREMLIN-ATL ’s execution time is less impacted by the transformation complexity,
because the generated Gremlin query is entirely computed at the database level, bypass-
ing the modeling API and reducing the number of intermediate object reification. The
database engine optimizes the query to detect access patterns and cache elements effi-
ciently, and allows to benefit from the built-in indexes to retrieve elements efficiently.
Results on set3 show that GREMLIN-ATL ’s approach is faster than ATL by a factor of
✶✾ and ✶✸✹ for AbstractType2DataType and Java2KDM, respectively.

The presented tables also emphasize that ATL’s performance on set3 and set4 is
tightly coupled to the memory consumption. Indeed, in our experiments we measured
that most of the execution time was spent in garbage collection operations. This high
memory consumption is caused by the in-memory nature of the engine, that keeps in
memory all the matched elements, as well as the trace links between source and target
models. When the input model grows, this in-memory information grows accordingly,
triggering the garbage collector, which blocks the application until enough memory has
been freed. In addition, the intensive usage of the low-level model handling API in-
creases the memory overhead, by reifying intermediate modeling elements that also stay
in memory.

Conversely, GREMLIN-ATL does not require these complex structures, because trace
links are stored within the database itself, and can be removed from the memory if needed.
This implementation avoids garbage collection pauses, and allows to scale to very large
models. Our approach operates on the optimized database structures, and thus does not
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have to reify modeling elements, improving the memory consumption. Looking at the
Java2KDM transformation, this strategy reduces the memory consumption by a factor of
✶✵ for set3.

Finally, ATL requires less memory than GREMLIN-ATL to compute the transforma-
tions on top of smaller models (set1). This difference is caused by the initialization of
the Gremlin engine (and its underlying Groovy interpreter) used to evaluate the generated
scripts. However, this extra memory consumption has a fixed size and does not depend
on the evaluated transformation nor on the transformed model.

Note that the presented results only show execution time and memory consumption
related to the computation of the transformations. We did not take into account the time
and memory required to generate an executable file that can be interpreted by the ATL
engine nor the time needed to produce the Gremlin script to compute, because this extra
costs is fixed for a given transformation and does not depend on the model size. In
addition, GREMLIN-ATL allows to pre-compile and to cache existing Gremlin queries in
order to limit script generation.

6.7 Conclusion

In this chapter we presented GREMLIN-ATL , a framework that computes rule-based
model transformations by reexpressing them as database queries written in the Gremlin
traversal language. Our approach is based on a modular architecture which allows to
compute transformations on top of several data stores, and we presented a simple use case
where GREMLIN-ATL is used to migrate data from an existing Neo4j data store into a
relational database, thanks to the modularity provided by the Model Mapping component.

GREMLIN-ATL also embeds a Transformation Helper that allows to define finely
how to compute transformation operations. We use this component to further improve
the scalability of our approach by storing the information related to the transformation
itself within the database, limiting the memory consumption. Our evaluation shows that
using GREMLIN-ATL to transform large models significantly improves the performance
both in terms of execution time and memory consumption.

Finally, our frameworks fulfill all the requirements listed in Section 6.5: GREMLIN-
ATL bypasses the existing modeling APIs to generate Gremlin traversals that are com-
puted on the database side, benefiting of its low-level features such as index lookups
and query optimizations (Rq1). Our ATLtoGremlin component takes as its input an ATL
transformation that is parsed and translated into an equivalent Gremlin traversal, allowing
to use the high-level constructs provided by the language to express the transformation
(Rq2). Our preliminary experiments report that using GREMLIN-ATL to compute a well-
known MDRE transformation outperforms the standard ATL engine when applied on top
of large models stored in current model persistence frameworks. However, additional
experiments are required to assess the benefits of GREMLIN-ATL when compared to
alternative transformation solutions such as QVT or ETL. Finally, our Model Mapping

and Transformation Helper components allow to dynamically adapt the transformation
computation to fit a specific data-store and use a dedicated implementation of the trans-
formation algorithm that fits the modeler needs (Rq 4 and 5).

In the following we show how NEOEMF , MOGWAÏ , and GREMLIN-ATL can be
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reused and combined in a complete application example that aims to generate graph
database access code and invariant verifications from high-level conceptual schemas.



7
A NeoEMF/Mogwaï Infrastructure to

Generate Database Software

In the previous chapters we have introduced solutions that enable to efficiently persist,
query, and transform large models stored in NoSQL databases. The presented approaches
are integrated into the modeling ecosystem (especially the EMF environment), and our
experiments have shown that relying on the data-store facilities to store and access large
models can significantly improve applications’ execution time and memory footprint.

While these NoSQL-based techniques are promising in the context of MDE, we also
believe that bringing modeling techniques at the data-store level can ease the definition,
development, and maintenance of NoSQL applications. Indeed, NoSQL data-stores have
become a promising solution to enhance scalability, availability, and query performance
of data intensive applications. Their schemaless infrastructure offers great flexibility since
it is possible to use different representations of a same concept (non-uniform data), but
client applications still need to know (at least partially) how conceptual elements are
stored in the database in order to access and manipulate them. Acquiring this implicit
knowledge of the underlying schema can be an important issue, for example in data in-
tegration processes, where each data source has to be inspected to find its underlying
structure [56].

In order to take full benefit of NoSQL solutions, designers must be able to integrate
them into current code-generation architectures and use them as target persistence back-
end for their conceptual schemas. Unfortunately, while several solutions provide transfor-
mations from Entity Relationship (ER) and UML models to relational database schemas,
the same is not true for NoSQL databases as discussed in detail in the related work. More-
over, NoSQL databases present an additional challenge: data consistency is a big problem
since the vast majority of NoSQL approaches lack any advanced mechanism for integrity
constraint checking [79].

In this chapter we emphasize how the contributions of this thesis that are designed
to solve core MDE issues can be combined into a solution dedicated to bridging the gap
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between conceptual modeling and NoSQL (especially graph database) infrastructures.
UMLTOGRAPHDB is a model-driven approach that translates conceptual schemas ex-
pressed using UML [86] into a graph representation, and generates database-level queries
from business rules and invariants defined using OCL [83]. Our approach reuses the im-
plicit model to database mapping embedded in NEOEMF (chapter 3), and integrates the
MOGWAÏ framework (chapter 5) to generate database queries ensuring data integrity. The
framework relies on a new GraphDB metamodel, as an intermediate representation to fa-
cilitate the integration of several kinds of graph databases. Enforcement of (both OCL
and structural) constraints is delegated to an intermediate software component (middle-
ware) in charge of maintaining the underlying database consistent with the conceptual
schema. External applications can then use this middleware to safely access the database.
This is illustrated in Figure 7.1.

Figure 7.1 – Conceptual Model to Graph database

The rest of the chapter is structured as follows: Section 7.1 presents the UML-
TOGRAPHDB framework and its core components, Section 7.2 introduces the GraphDB
metamodel and details the model-to-model transformation which creates an instance of
GraphDB from a UML model. Section 7.3 presents the transformation that creates graph
database queries from OCL expressions, and Section 7.4 introduces the code generator.
Finally, Section 7.5 describes our tool support, Section 7.6 presents the related work and
Section 7.7 summarizes the key points and draws conclusions.

7.1 UMLtoGraphDB Approach

UMLTOGRAPHDB is aligned with the OMG’s MDA standard [80], proposing a
structured methodology to systems development that promotes the separation between
a specification defined in a platform independent way (PIM), and the refinement of that
specification adapted to the technical constraints of the implementation platform (PSM).
In our scenario, the initial UML and OCL models would conform to the PIM level.
UMLTOGRAPHDB takes care of generating the PSM and the middleware code from
them. Figure 7.2 presents the different components of the UMLTOGRAPHDB frame-
work (light-grey box).
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In particular, Class2GraphDB (1) is the first model transformation of the UML-
TOGRAPHDB framework. It is in charge of the creation of a low-level graph representa-
tion (PSM) from the input UML class diagram (PIM). The output of the Class2GraphDB
transformation is a GraphDB Model (2), conforming to the GraphDB metamodel (Sec-
tion 7.2). This metamodel is defined at the PSM level, and describes data structures in
terms of graph primitives, such as vertices or edges. The OCL2Gremlin transforma-
tion (3) is the second transformation applied on the input models. It is in charge of the
translation of the OCL constraints, queries, and business rules defined at the PIM level
into graph-level queries. The transformation produces a Gremlin Model, conforming to
the Gremlin language metamodel defined in Section 5.2, that complements the previous
GraphDB one with low-level queries representing constraints and invariants to check.

The last step in MDA process is a PSM-to-code transformation, which generates the
software artifacts (database schema, code, configuration files . . . ) in the target platform.
In our approach, this final step is handled by the Graph2Code (5) transformation (Sec-
tion 7.4) that processes the generated GraphDB and Gremlin models to create a set of Java
Classes wrapping the structure of the database, the associated constraints, and the busi-
ness rules. These Java classes compose the Middleware layer (6) presented in Figure 7.1,
and contain the generated code to access the physical Graph Database 1 (7).

Figure 7.2 – Overview of the UMLTOGRAPHDB Infrastructure

To better illustrate the different transformation steps of our framework, we introduce
as a running example the conceptual schema presented in Figure 7.3 representing a simple
excerpt of an e-commerce application. This schema is specified using the UML notation,
and describes Client, Orders, and Products concepts. A Client is an abstract class defined
by a name and an address. PrivateCustomers and CorporateCustomers are subclasses of
Client. They contain respectively a cardNumber and a contractRef attribute. Clients own
Orders, that are defined by a reference, a shipmentDate, and a deliveryDate. In addition,
an Order maintains a paid attribute, that is set to true if the Order has been paid. Products

are defined by their name, price, a textual description, and are linked to Orders through

1. While this work is focused on graph database access code generation, the same architecture could be
applied to document, key-values, or wide-column data-stores.
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the OrderLine association class, which records the quantity and the price of each Product

in a given Order.

Figure 7.3 – Class Diagram of a Simple e-commerce Application

In addition, our conceptual data model defines three OCL constraints (presented in
Listing 15), which represent basic business rules. The first one checks that the price of
a Product is always positive, the second one verifies that the shipmentDate of an Order

precedes its deliveryDate, and the last one ensures a Client has less than three unpaid
Orders.

c o n t e x t P r o d u c t i n v v a l i d P r i c e : s e l f . p r i c e > 0
c o n t e x t Order i n v v a l i d O r d e r : s e l f . s h i p m e n t D a t e < s e l f . d e l i v e r y D a t e
c o n t e x t C l i e n t i n v maxUnpaidOrders :

s e l f . o r d e r s✦ s e l e c t ( o | n o t o . p a i d )✦ s i z e ( ) < 3

Listing 15 – Textual Constraints

In the following we introduce the internal components in our approach and we de-
tail how the example conceptual schema presented in Figure 7.3 is mapped into a PSM
dedicated to graph databases. Then we show how the business rules and invariants ex-
pressed in Listing 15 are mapped to Gremlin steps and assembled into efficient database
queries. We finally show how these low-level models are weaved by our model-to-text
transformation to generate the application code wrapping the database.

7.2 Mapping UML Class Diagram to GraphDB

We now present the Class2Graph transformation, which is the initial step in the ap-
proach presented in Figure 7.2. We first introduce the GraphDB metamodel that aims
to represent graph database’s implicit schema, then we focus on the transformation that
generates a GraphDB instance from a conceptual model defined in UML.
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7.2.1 GraphDB Metamodel

The GraphDB metamodel presented in Figure 7.4 is our proposal to represent the pos-
sible internal structures of a graph database. It is based on Blueprints, the generic NoSQL
API presented in Section 5.2.1 that constitutes the basis of the Tinkerpop stack [110], in-
cluding the Gremlin traversal language. Note that the version of Blueprints used in this
chapter slightly differs from the one used in Chapter 3 and 6 for compatibility reasons:
UMLTOGRAPHDB relies on the latest Blueprints version that supports Neo4j 2/3, while
NEOEMF -compatible tools are based on a previous version in order to provide historical
support for Neo4j 1 2.

Our metamodel defines a GraphSpecification element that represents the top-level
container that owns all the database objects. It contains a baseDB attribute, that de-
fines the concrete database to instantiate under the Blueprints API. In our prototype, the
baseDB can be either Neo4j or OrientDB, two well known graph database implementa-
tions. A GraphSpecification also contains all the VertexDefinitions and EdgeDefinitions

—representing the possible vertex and edge constructs in the graph— through the asso-
ciations vertices and edges.

A VertexDefinition can be unique, meaning that there is only one vertex in the database
that conforms to it. VertexDefinitions and EdgeDefinitions can be linked together using
outEdges and inEdges associations, meaning respectively that a VertexDefinition has out-
going edges and incoming edges. In addition, VertexDefinition and EdgeDefinition are
both subtypes of GraphElement, which can define a set of labels 3 that describe the type
of the element, and a set of PropertiesDefinition through its properties reference. In graph
databases, properties are represented by a key (the name of the property) and a Type. In
the first version of this metamodel we define four primitive types: Object, Integer, String,
and Boolean.

Figure 7.4 – GraphDB Metamodel

2. Migrating all the presented solutions to Blueprints 3 is planned in a future release
3. Labels are specific to Blueprints 3
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7.2.2 Class2GraphDB Transformation

The Class2GraphDB transformation is responsible for creating instances of the GraphDB
metamodel presented above from conceptual schemas expressed in UML. It is adapted
from the implicit mapping between Ecore operations and Blueprints constructs embed-
ded in NEOEMF/GRAPH , as well as the NEOEMF Model Mapping introduced in Sec-
tion 6.5.

Intuitively, the transformation consists of mapping UML Classes to VertexDefinitions,
Associations to EdgeDefinitions, and AssociationClasses to new VertexDefinitions con-
nected to the ones representing the involved classes. The mapping also creates Proper-

tyDefinitions for each Attribute in the input model, and adds them to the corresponding
mapped element.

Note that our GraphDB metamodel has no construct to represent explicitly inheri-
tance, and thus, the mapping has to deal with inherited attributes and associations. To
handle them, the translation flattens the inheritance hierarchy by finding all the attributes
and associations in the parent hierarchy of each class, and adding them to the mapped
VertexDefinition. While this creates duplicated elements in the GraphDB model, it is the
more direct representation to facilitate queries on the resulting database.

Specifically, a class diagram CD is defined as a tuple ❈❉ ❂ ✭❈❧❀❆s❀❆❝❀ ■✮, where
Cl is the set of classes, As is the set of associations, Ac is the set of association classes,
and I the set of pairs of classes such as ✭❝✶❀ ❝✷✮ represents the fact that ❝✶ is a direct or
indirect subclass of ❝✷. Support for more advanced concepts such as enumarations and
interfaces is planned for future work.

A GraphDB diagram GD is defined as a tuple ●❉ ❂ ✭❱❀❊❀ P ✮, where V is set of
vertex definitions, and E the set of edge definitions, and P the set of property definitions
that compose the graph. Based on these defninitions, we can define our transformation
through the following rules:

— R1: each class ❝ ✷ ❈❧❀ ♥♦t ❝✿✐s❆❜str❛❝t is mapped to a vertex definition ✈ ✷
❱ , where ✈✿❧❛❜❡❧ ❂ ❝✿♥❛♠❡ ❬ ❝♣❛r❡♥ts✿♥❛♠❡, with ❝♣❛r❡♥ts ✚ ❈❧ and ✽♣ ✷
❝♣❛r❡♥ts❀ ✭❝❀ ♣✮ ✷ ■ .

— R2: each attribute ❛ ✷ ✭❝❬ ❝♣❛r❡♥ts✮✿❛ttr✐❜✉t❡s is mapped to a property definition
♣, where ♣✿❦❡② ❂ ❛✿♥❛♠❡, ♣✿t②♣❡ ❂ ❛✿t②♣❡, and added to the property list of its
mapped container ✈ such as ♣ ✷ ✈✿♣r♦♣❡rt✐❡s.

— R3: each association ❛s ✷ ❆s between two classes ❝✶❀ ❝✷ ✷ ❈❧ is mapped to an
edge definition ❡ ✷ ❊, where ❡✿❧❛❜❡❧ ❂ ❛s✿♥❛♠❡, ❡✿t❛✐❧ ❂ ✈✶, and ❡✿❤❡❛❞ ❂ ✈✷,
where ✈✶ and ✈✷ are the VertexDefinitions representing ❝✶ and ❝✷. Note that ❡✿t❛✐❧
and ❡✿❤❡❛❞ values are set according to the direction of the association. If the
association is not directed, a second edge definitions ❡♦♣♣♦s✐t❡ is created, where
❡♦♣♣♦s✐t❡✿❧❛❜❡❧ ❂ ❛s✿♥❛♠❡, ❡♦♣♣♦s✐t❡✿t❛✐❧ ❂ ✈✷, and ❡♦♣♣♦s✐t❡✿❤❡❛❞ ❂ ✈✶, represent-
ing the second possible direction of the association. Aggregation associations are
mapped the same way, but their semantic is handled differently in the generated
code. In order to support inherited associations, EdgeDefinitions are also created
to represent associations involving the parents of ❝.

— R4: each association ❛s ✷ ❆s between multiple classes ❝✶✿✿✿❝♥ ✷ ❈❧ is mapped to
a vertex definition ✈❛ss♦ such as ✈❛ss♦✿❧❛❜❡❧ ❂ ❛s✿♥❛♠❡ and a set of EdgeDefini-

tions ❡✐✿t❛✐❧ ❂ ✈✐ and ❡✐✿❤❡❛❞ ❂ ✈❛ss♦, associating the created vertex definition to
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the ones representing ❝✶✿✿✿❝♥.
— R5: each association class ❛❝ ✷ ❆❝ between classes ❝✶✿✿✿❝♥ is mapped like an asso-

ciation between multiple classes using a vertex definition ✈❛❝ such as ✈❛❝✿❧❛❜❡❧ ❂
❛❝✿♥❛♠❡. As for a regular class, ✈❛❝ contains the properties corresponding to the
attributes ❛❝✿❛ttr✐❜✉t❡s, and a set of EdgeDefinitions ❡✐ ✷ ❊ where ❡✐✿t❛✐❧ ❂ ✈✐
and ❡✐✿❤❡❛❞ ❂ ✈❛❝.

To better illustrate this mapping, we now describe how the GraphDB model shown
in Figure 7.5 is created from the example presented in Figure 7.3. Note that for the sake
of readability we only show an excerpt of the created GraphDB model. To begin with,
all the classes are translated into VertexDefinition instances following R1. This process
generates the elements v1, v2, v3, and v4, with the labels (Client, PrivateCustomer),
(Client,CorporateCustomer), Order, and Product. Then, R2 is applied to transform at-
tributes into PropertyDefinitions. For example, the attribute name of the class Client

is mapped to the PropertyDefinition p1, which defines a key name and a type String.
These PropertyDefinition elements are linked to their containing VertexDefinition using
the properties association. Once this first step has been done, R3 is applied on the as-
sociation orders, mapping it to the EdgeDefinitions e1 and e2, containing the name of
the association. VertexDefinitions representing PrivateCustomer and CorporateCustomer

classes are then linked to the one representing Order, respectively with e1 and e2. Since
the association orders is directed, the transformation puts v1 and v2 as the tail of the
edge, and v3 as its head. Then, the association class OrderLine is transformed by R5 to
the VertexDefinition v5, and its attributes productPrice and quantity are transformed into
the PropertyDefinitions p6 and p7. Finally, two EdgeDefinitions (e3 and e4) are also
created to link the VertexDefinition v3 and v4 to it.

Figure 7.5 – Excerpt of the Mapped GraphDB Model

These mapping rules have been specified as an ATL transformation [58] containing
45 helpers and rules that match the supported UML constructs and create their GraphDB
equivalent. As an example, Listing 16 shows the ATL transformation rule that maps
a UML Class to a VertexDefinition. It is applied for each non-abstract Class element,
excepted AssociationClasses, which are mapped according to R5. The rule creates a Ver-
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texDefinition element, and sets its label attribute with the name of each Class in its parent
hierarchy. The set of parent Classes is computed by the helper getParentClassHierarchy,
which returns a sequence containing all the parents of the current Class. Finally, Ver-

texDefinition properties are set, by getting all the attributes from the parent hierarchy,
and are transformed by the abstract lazy rule GenericAttribute2Property. The
complete ATL transformation is available in the project repository 4.

r u l e C l a s s 2 V e r t e x D e f i n i t i o n {
from

c l a s s : UML! C l a s s ( n o t ( c l a s s . o c l I s T y p e O f (UML! A s s o c i a t i o n C l a s s ) )
and n o t ( c l a s s . a b s t r a c t ) )

t o
v e r t e x : Graph ! V e r t e x D e f i n i t i o n (
l a b e l s ✥ c l a s s . g e t P a r e n t C l a s s H i e r a r c h y ( )✦ c o l l e c t ( cc | cc . name )
�� G e n e r a t e a p r o p e r t y f o r each A t t r i b u t e i n t h e c l a s s h i e r a r c h y
p r o p e r t i e s ✥ c l a s s . g e t P a r e n t C l a s s H i e r a r c h y ( )
✦ c o l l e c t ( cc | cc . a t t r i b u t e )
✦ c o l l e c t ( a t t | t h i s M o d u l e . G e n e r i c A t t r i b u t e 2 P r o p e r t y ( a t t ) )

)
}

Listing 16 – Class2VertexDefinition ATL Transformation Rule

7.3 Translating OCL Expressions to Gremlin

Once the GraphDB model has been created, another transformation is performed to
translate the OCL expressions defined in the conceptual schema into a Gremlin query
model. The mapping presented in this Section is adapted from the MOGWAÏ translation
presented in Chapter 5 dedicated to OCL query evaluation on top of models stored in
NEOEMF/GRAPH . Note that this translation is updated to fit the UMLTOGRAPHDB ar-
chitecture that relies on Blueprints 3.

Table 7.1 presents an excerpt of the mapping between OCL expressions and Grem-
lin concepts. Compared to the mapping presented in Section 5.2, this implementation
handles type conformance and allInstances operations using the label mechanism
provided by Blueprints 3 databases. Other operations are simply mapped the same way
they are in the MOGWAÏ framework, and are simply presented here as a remainder.

These mappings are systematically applied on the input OCL expressions, following
a postorder traversal of the OCL Abstract Syntax Tree. Note that the transformation
reuses the same composition process to assemble the final query as the one presented
in Section 5.2. As an example, Listing 17 shows the Gremlin queries generated from
the OCL constraints of the running example (Section 7.1). The v variable represents the
vertex that is being currently checked (i. e. the self context variable in OCL constraints),
and the following steps are created using the mapping. Note that generated expressions
are queries that return a boolean value. These queries are embedded in checking methods
during the final code generation phase (Section 7.4).

4. https://github.com/atlanmod/UML2NoSQL

https://github.com/atlanmod/UML2NoSQL
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Table 7.1 – OCL to Gremlin mapping

OCL expression Gremlin step

Type "Type.name"
C.allInstances() g.V().hasLabel("C.name")
collect(attribute) property(attribute)
collect(reference) outE(’reference’).inV
oclIsTypeOf(C) o.hasLabel("C.name")
col✶ ✦union(col✷) col✶.fill(var✶); col✷.fill(var✷); union(var✶, var✷);
including(object) gather{it ❁❁ object;}.scatter;
excluding(object) except([object]);
size() count()
isEmpty() toList().isEmpty()
select(condition) c.filter{condition}
reject(condition) c.filter{!(condition)}
exists(expression) filter{condition}.hasNext()
❂❀ ❃❀❃❂❀ ❁❀❁❂❀ ❁❃ ❂❂❀ ❃❀❃❂❀ ❁❀❁❂❀ ✦ ❂
✰❀�❀ ❂❀✪❀ ✄ ✰❀�❀ ❂❀✪❀ ✄
and,or,not &&,❦,!
variable variable
literals literals

v . p r o p e r t y ( " p r i c e " ) > 0 ; / / v a l i d P r i c e
v . p r o p e r t y ( " s h i p m e n t D a t e " ) < s e l f . p r o p e r t y ( " d e l i v e r y D a t e " ) ; / /

v a l i d O r d e r
v . outE ( " o r d e r s " ) . inV . f i l t e r { i t . p r o p e r t y ( " p a i d " ) == f a l s e }

. c o u n t ( ) < 3 ; / / maxUnpaidOrders

Listing 17 – Generated Gremlin Queries

7.4 Code Generation

The last step in our UMLTOGRAPHDB infrastructure is a model-to-text transforma-
tion that processes the generated GraphDB and Gremlin models and creates the middle-
ware component that wraps database accesses. Our code-generator relies on the Blueprints
API for interacting with the graph database in a vendor neutral way. We first briefly re-
view the Blueprints concepts used in our middleware, then we show how we leverage
them to enforce that any application aiming to query/store data through the created mid-
dleware does it so according to the its initial UML/OCL conceptual schema.

7.4.1 Blueprints API

The Blueprints API is composed of a Java layer that allows to manipulate graph
databases in a generic way, and is the basis of the Gremlin language. It is composed
of a set of classes that wraps database-level elements, such as vertices and edges, pro-
viding methods to access, update, and delete them. A Blueprints database is instantiated
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using a GraphFactory instance, that takes a configuration file containing the proper-
ties of the databases (the type of the underlying graph engine, the allocated memory for
vertices and edges caches, etc) and creates the corresponding graph store.

The Blueprints Vertex class provides the methods addEdge(String label,

Vertex otherEnd) and removeEdge(otherEnd) that allow to connect/discon-
nect two vertices by creating/deleting an edge between the current vertex and otherEnd

with the given label. Blueprints also defines the vertex method property(String

key), that retrieve the value of the vertex property defined by the given property key. In
addition, the Blueprints API provides the traversal() method, that allows to com-
pute Gremlin traversals —expressed using an internal Java DSL— and returns the result-
ing record wrapped in Blueprints constructs 5.

7.4.2 Graph2Code Transformation

Figure 7.6 – Generated Infrastructure

Figure 7.6 presents the infrastructure generated by the Graph2Code transformation.
In short, the generator processes the GraphDB model to retrieve all the VertexDefinition

elements and, for each one, it creates a corresponding Java class with the relevant getters

and setters for its attributes (derived from the properties definitions linked to the vertex)
and associations (derived from the input/output edges of the vertex).

Listing 18 presents an excerpt of the Java class generated from the Client element.
Note that this class extends BlueprintsBean, which is a generic class that we provide as
part of the UMLTOGRAPHDB infrastructure. BlueprintsBean provides auxiliary meth-
ods to connect the class with the Graph database via the Blueprints API and facilitates the
creation and management of graph elements.

Once this basic Java class structure have been generated, the transformation starts
processing the Gremlin Model to create additional methods. Each method is in charge
of checking one of the OCL constraints (or queries) in the conceptual schema. As usual,

5. A complete reference of the Blueprints API is available in the Tinkerpop documentation [110]
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checking methods return a boolean value (false if the constraint is violated). As an exam-
ple, Listing 18 includes the method checkMaxUnpaidOrder executing the Gremlin
traversal mapped from the OCL expression self . orders✦ select (o | not o.paid)✦size ()
< 3. The generated expression follows the Java internal DSL of the Gremlin language

and not the Groovy-based syntax presented in Section 5.2.1, yet both versions can be
generated by our infrastructure. Note that the task of calling the generated constraint-
checking method is responsibility of the client application. Automatic and incremental
checking of these constraints is left for future work.

Finally, the Graph2Code generator creates a Configuration File that contains the graph
and database properties, and is used by the Blueprints API to instantiate the concrete
graph engine.

p u b l i c c l a s s C l i e n t e x t e n d s B l u e p r i n t s B e a n {
p u b l i c S t r i n g getName ( ) {

r e t u r n ( S t r i n g ) t h i s . v e r t e x . p r o p e r t y ( " name " ) . v a l u e ( ) ;
}
p u b l i c S t r i n g g e t A d d r e s s ( ) {

r e t u r n ( S t r i n g ) t h i s . v e r t e x . p r o p e r t y ( " a d d r e s s " ) . v a l u e ( ) ;
}
p u b l i c vo i d setName ( S t r i n g newName ) {

t h i s . v e r t e x . p r o p e r t y ( " name " , newName ) ;
}
p u b l i c vo i d s e t A d d r e s s ( S t r i n g newAddress ) {

t h i s . v e r t e x . p r o p e r t y ( " a d d r e s s " , newAddress ) ;
}
p u b l i c vo i d addOrder ( Order o r d e r ) {

t h i s . v e r t e x . addEdge ( " o r d e r s " , o r d e r . g e t V e r t e x ( ) ) ;
}
p u b l i c vo i d removeOrder ( Order o r d e r ) {

t h i s . v e r t e x . removeEdge ( o r d e r . g e t V e r t e x ( ) ) ;
}
p u b l i c b o o l e a n checkMaxUnpaidOrders ( ) {

r e t u r n t h i s . g raph . t r a v e r s a l ( ) .V( t h i s . v e r t e x ) . outE ( " o r d e r s " )
. inV ( ) . f i l t e r ( v ✦ v . g e t ( ) . < Boolean > p r o p e r t y ( " p a i d " ) . v a l u e ( ) )

. c o u n t ( ) . i s ( P . l t ( 3 ) ) . hasNext ( ) ;
}

}

Listing 18 – Generated Client Java Class

7.5 Tool Support

A prototype of the UMLTOGRAPHDB framework has been implemented as a col-
lection of open-source Eclipse plugins, available on Github 6. UMLTOGRAPHDB takes
as input the UML and OCL files (defined, for instance, using Eclipse-based UML edi-
tors such as Papyrus 7), that are then translated, respectively, by the Class2GraphDB and
OCL2Gremlin ATL transformations seen before. These transformations add up to a total
of 110 rules and helper functions.

Our code-generator is implemented using the XTend platform [12], that provides a
template-based language for model-based code generation. The language itself is ex-
pressed as a superset of Java that provides syntactic sugar, lambda expressions, and other
useful extensions to process input models and generate the final software code efficiently.
The generator takes the GraphDB and Gremlin models and processes them as described

6. https://github.com/atlanmod/UML2NoSQL
7. https://eclipse.org/papyrus/

https://github.com/atlanmod/UML2NoSQL
https://eclipse.org/papyrus/
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in Section 7.4, and produces the middleware containing our Blueprints-based classes that
wraps the database and ensures data consistency.

The time needed by the entire transformation chain to produce the Java code from
the input UML and OCL specifications is in the order of a few seconds for the several
examples we have tested. A precise analysis of the scalability of the transformation per-
formance according to the size of the input for very large conceptual model is left for
future work.

7.6 Related Work

Mapping conceptual schemas to relational databases is a well-studied field of research[74].
A few research efforts also cover schemas that include (OCL) constraints. For exam-
ple, Demuth and Hussman [39] propose a mapping from UML (augmented with OCL
constraints) to SQL that covers most of the OCL specification and implements it via a
code generator [40] that automates the process. Brambilla and Cabot [17] propose a
methodology to implement integrity constraints into relational databases recommending
alternative implementations based on performance parameters. While these approaches
are well-suited for relational databases, they all rely on the generation of database con-
straints to ensure data consistency. However, in the NoSQL ecosystem —and especially
for graph databases—, there is a lack of support for built-in constraint constructs, and data
validation must be delegated to the application layer, such as the middleware component
generated by our approach.

Li et al. propose an approach to transform UML class diagrams into a HBase data
models [72], by mapping classes to tables, attributes to columns, and providing trans-
formation rules for associations, compositions, and generalizations. Still, it is only ap-
plicable to column-based datastores, and does not support the definition of custom OCL
constraints and business rules.

More specific to NoSQL databases, the NoSQL Schema Evaluator [75] generates
query implementation plans from a conceptual schema and workload definition. For now,
the approach is limited to Cassandra, but authors intend to adapt it to different data mod-
els, such as key-values and document stores. However, this solution does not take into
account constraints specified in the conceptual model. Sevilla et al. [93] presented a tool
to infer versioned schemas from NoSQL databases. The resulting model is then used to
automatically generate a viewer and validator for the schema but they do not aim to pro-
vide support for a full-fledged application nor consider the addition of constraints on the
reversed schema. Bugiotti et al. [22] propose a database design methodology for NoSQL
databases. It relies on NoAM, an abstract data model that aims to represent NoSQL
data-stores in a system-independent way. NoAM models can be implemented in sev-
eral NoSQL databases, including key-value stores, document databases, and extensible
record stores. Instead, we focus on generating NoSQL databases from higher-level UML
models, and thus, designers do not need to learn a new language/platform. Nevertheless,
NoAM could be integrated in our approach if we manage to extend it with constraint sup-
port. In that case, NoAM could be seen as a PSM derived from UML models and OCL
constraints, and can be used to implement non-graph databases, which are not supported
by our approach for now.
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7.7 Conclusion

In this chapter we have presented the UMLTOGRAPHDB framework, a MDA-based
approach to implement (UML) conceptual schemas in graph databases, including the
generation of the code required to check the OCL constraints defined in the schema. Our
approach is specified as a chain of model transformations that use a new intermediate
GraphDB metamodel to specify graph database schemas 8, and reuses the Gremlin meta-
model embedded in the MOGWAÏ framework to express database queries generated from
OCL invariants.

We showed how our existing work on aligning modeling level constructs and graph
database primitives can be reused to provide a functional solution enabling to design
schema-less graph databases using high-level conceptual languages. UMLTOGRAPHDB is
based on the implicit model-to-graph mapping embedded in NEOEMF/GRAPH to create
the GraphDB instance representing the structure of the database to create, and reuses the
MOGWAÏ translation approach to generate efficient Gremlin traversals enabling efficient
computation of buisiness rules and data integrity constraints. A prototype implementation
of UMLTOGRAPHDB supporting Neo4j and OrientDB is available on Github.

8. Note that this metamodel can also be regarded as a kind of UML profile (and could be easily reex-
pressed as such) for graph databases
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Conclusion

8.1 Summary

In this manuscript, we have drawn the basis of a new modeling infrastructure that
aims to address the scalability issues experienced in the application of MDE techniques in
industrial processes. Specifically, we have described a family of approaches that provide
efficient persistence, query, and transformation of large models typically manipulated in
generative MDE processes such as MDRE techniques.

We have presented NEOEMF , a multi-database persistence backend that provides a
set of persistence solutions adapted to specific modeling scenarios. Our approach is based
on a generic architecture that allows to easily plug a new data-store, and provides exten-
sion points that can be used to further improve performances and memory consumption
of existing applications. NEOEMF is built on top of the EMF platform, and embeds three
preset novel model to database mappings (graph, map, and column) that enable to benefit
from the advanced capabilities of the backends.

In order to further improve the performances of lazy-loading model persistence solu-
tions, we have proposed an approach aiming at integrating prefetching and caching tech-
niques. We introduced PREFETCHML , a DSL and execution engine that allows to define
prefetching and caching rules over models using a high-level declarative language. Our
experiments have shown that applying prefetching and caching techniques on top of ex-
isting model persistence framework can significantly improve execution time while finely
controlling the memory consumption by tuning the cache policy. A dedicated implemen-
tation of PREFETCHML is embedded in NEOEMF to further improve performances by
computing prefetching instruction at the database level, bypassing the modeling API.

We have shown how the scalability issues encountered in existing model query frame-
works can be addressed with a translational approach. We proposed MOGWAÏ , a novel
model query solution that generates Gremlin traversals from OCL queries in order to
maximize the benefits of using a NoSQL backend to store large models. OCL queries
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are translated using model-to-model transformation into Gremlin traversals that are then
computed on the database side, reducing the overhead implied by the modeling API and
the reification of intermediate objects.

Finally, we coped with the similar issues faced by the current model transformation
frameworks by proposing GREMLIN-ATL , an extension of our model query solution
dedicated to model transformations. We designed a new transformation engine that pro-
vides an abstraction layer to access heterogeneous data-sources and tune the transforma-
tion algorithm to fit memory and execution time requirements.

All the presented solutions have been implemented as a set of open source Eclipse
plugins released under the EPL 1 license, and available online on the NEOEMF website 2.

8.2 Impact of the Results

In this thesis we have reported several improvements both in terms of execution time
and memory consumption when using the presented approaches to store, access, query,
and transform large models. We have shown through our experiments that these im-
provements are conceptually valuable to any MDE process aiming at manipulating large
models. In this section we explore the specific fields where execution time and mem-
ory consumption are critical aspects, and thus could be significantly improved by our
techniques.

The model❅run.time approach [78] is a development method that relies on models
to describe an application and its behavior. Models are then used as primary artifacts
during the application execution, and are interpreted to perform specific operations. In
this context, model queries and transformation are heavily used to dynamically retrieve
execution information, check invariants and constraints on the fly, or represent the control
flow of the application. Thus, our work presented in Chapters 5 and 6 could be an inter-
esting solution to enhance the execution time and memory consumption of these specific
operations, improving the performances of the entire application.

Interactive model manipulations are specific modeling scenarios that are typically
performed by a modeler to manually check a generated model, define and validate con-
straints, or inspect an existing model to better understand it. In these applications, the
user’s experience is tightly coupled to the reactivity of the entire system, that should be
able to load, navigate, and query large models efficiently. In this sense, our solutions
constitute an improvement compared to the state of the art tools, and constitute a first step
towards a fully interactive model edition platform managing large models.

Finally, the reported results based on existing MDRE applications show that our ap-
proaches are interesting solutions to improve the support of large models in such pro-
cesses. As introduced in Chapter 2, these processes are typically facing execution time
and memory consumption issues when dealing with large applications to analyze and
refactor. In addition, MDRE processes are typically iterative approaches where a mod-
eler defines and refines a set of modeling steps to perform (including model store, queries,
and transformations), and performs some interactive model manipulation to check the in-
termediate results. In this context, enhancing the support of large models could have a

1. https://www.eclipse.org/legal/epl-v10.html
2. www.neoemf.com

https://www.eclipse.org/legal/epl-v10.html
www.neoemf.com
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significant impact on the process computation as well as its maintainance when dealing
with large models.

8.3 Perspectives and Future Work

Modeling issues currently encountered in industrial scenarios are one of the conse-
quences of the increasing amount and diversity of data to model. Indeed, we believe
that the new generation of connected devices (such as the well known Internet of Things
(IoT) [119]) as well as the development of open data programs [53] and cloud-based
computing will further emphasize the need to provide efficient modeling techniques to
represent, store, and query these complex systems.

In this section we present the perspectives and future work of our solutions that could
be explored to try to deal with this new generation of modeling techniques and their inher-
ent scalability requirements. Then, we enlarge the discussion to the possible applications
of our work outside the MDE ecosystem, and we conclude with some thoughts on the
available channels to disseminate our contributions and improve their visibility.

8.3.1 Model Storage Scalability

In the context of NEOEMF , we plan to study the integration of new data-stores and
evaluate how specific data representation techniques and database implementations (such
as in-memory key-value stores or temporal databases [100]) behave in specific modeling
scenarios. Such a study would complement the one proposed by Shah et al. [98] on
benchmarking NoSQL data-stores for large models.

We also want to improve our multi-database architecture by allowing designers to
use and combine multiple databases at the same time to store a model. Indeed, typi-
cal modeling scenarios are usually composed of different processes (such as interactive
model edition, model queries, transformations) that can be efficiently handled by differ-
ent data-store. Integrating them would allow to dynamically select the one that fit a given
modeling task, however, this integration raises performance and consistency issues that
need to be addressed.

We are also exploring how collaborative modeling techniques can be integrated in our
approach. Indeed, while automatic model generation techniques are usually single-user
tasks performed in an homogeneous context (same tools / family of tools), they usually
constitute the first step of complex processes such as software modernization scenar-
ios, that require multiple modelers and developers manipulating, querying, and updating
a shared set of models concurrently. The data distribution provided by the NEOEMF/-
GRAPH and NEOEMF/COLUMN connectors could be used as a baseline to enable collab-
orative modeling, but additional work is required to support multiple modeling solutions
concurrently, in particular in heterogeneous modeling contexts. We plan to study how
existing collaborative modeling approaches such as ModelBus[15, 101] and the CDO
collaboration component 3 could be adapted to NEOEMF .

3. https://help.eclipse.org/mars/topic/org.eclipse.emf.cdo.doc/html/
users/Doc08_Collaborating.html?cp=13_1_7

https://help.eclipse.org/mars/topic/org.eclipse.emf.cdo.doc/html/users/Doc08_Collaborating.html?cp=13_1_7
https://help.eclipse.org/mars/topic/org.eclipse.emf.cdo.doc/html/users/Doc08_Collaborating.html?cp=13_1_7
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Collaborative modeling usually requires additional security and access control layers
to ensure that the manipulated model stay consistent and that each modeler can only
access the parts of the model corresponding to its access rights. In this sense, we plan to
study how we can integrate access control rule definition and computation in NEOEMF .
Model view extraction frameworks such as EMF Views [20] can be an interesting solution
to filter an existing metamodel according to a given access policy, but the view extraction
mechanism has to be tuned to support large models and lazy-loading persistence solutio
efficiently.

On the PREFETCHML side, we plan to work on the automatic generation of prefetch-
ing and caching scripts based on static analysis of available queries and transformations
for the metamodel we are trying to optimize. Indeed, while our DSL is a first step
to ease the specification of prefetching and caching plans, the creation of good PRE-
FETCHML plans still implies low-level knowledge on the PREFETCHML engine as well
as the expected query execution.

We also plan to perform additional experiments evaluating the user’s experience when
using PREFETCHML in existing modeling scenarios. Indeed, our experience on defining
PREFETCHML plans to use in our experiments has shown that creating an optimized
plan is not a trivial task, and implies to have a good understanding of the prefetching and
caching algorithms as well as the model structure. Thus, an evaluation focused on the
cost of defining a good PREFETCHML plan is needed to fully assess the benefits of the
approach.

Finally, we plan to improve our monitoring component to support the creation of
new prefetching rules on the fly based on model access traces. This could be done, for
example, by integrating existing work aiming at improving application performances by
detecting frequent access patterns in server logs [16] and machine learning techniques to
automatically derive high-level prefetching and caching rule.

8.3.2 Model Query and Transformations Scalability

First, we plan to improve our translation techniques to fully support the set of con-
structs of their input languages. As discussed along this thesis, some constructs are not
targeted by our solutions, such as the OCL tuple data type and ATL imperative code
blocks. Integrating them would align our solutions with state of the art tools, and enable
advanced comparisons. Furthermore, we plan to study the transformation of alternative
input languages, such as EOL and QVT, and study how their common features can be
generalized into a common infrastructure.

Looking at the performance of our solutions, we plan to study the impact of semantically-
equivalent OCL expressions [25] on generated traversals. With this information, it could
be possible to improve the quality of the generated database queries by first applying
an automatic refactoring on the OCL side. Additional experiments on semantically-
equivalent ATL transformations (for example using imperative blocks instead of matched
rules) also has to be performed.

Finally, we plan to extend our transformation and query approaches into a family
of mappings adapted to different NoSQL backends in order to provide a set of mod-
eling frameworks able to both store and manipulate models "natively". This mapping
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definition could be partially generated by schema inspection techniques such as JSonDis-
coverer [56] or the NoSQLDataEngineering framework [93], and would leverage the ca-
pabilities of model query and transformation languages on top of various data storage
solutions.

8.3.3 On the application of our work outside the MDE

In chapter 7 we have shown how our contributions can be combined to develop UML-
TOGRAPHDB , a solution aiming at bridging the gap between conceptual modeling and
graph databases. This first step was primarily designed to emphasize the versatility of our
tools and their usefulness outside the core MDE ecosystem, however, additional work is
required to extend our solution and provide a sound infrastructure to generate data access
applications from conceptual schemas.

First, we plan to align our framework with nowadays industry requirements by cover-
ing the combination of multiple database types. Indeed, existing software environments
usually provide multiple data-source aiming at storing part of the application data (such
as relational databases storing client records, raw text files containing application logs,
or document database representing the business logic). To handle these heterogeneous
infrastructures, we plan to support conceptual schema fragmentation between several
databases. This requires a mechanism to evaluate constraints over several persistence so-
lutions and query languages. Apache Drill [50] or Hibernate OGM [71] could be reused
for this.

We also study the integration of refactoring operations on top of the PSM model
generated by our approach to allow designers to tune the data representation according
to specific needs, such as query execution performance or memory consumption. While
providing these operations would allow fine grain tuning of the generated applications,
we need to define a set of refactorings that does not break the alignment between the
GraphDB models and the conceptual schema. In addition, the transformation generating
the data consistency checks should be aware of these refactorings.

Our solutions could be also used to improve data migration processes. Indeed, the
model mapping developed along this manuscript can be seen as modeling APIs used to
describe the implicit schema of an existing database. With this information, data migra-
tion operations can be expressed using high-level model transformation languages such as
ATL, hiding low-level details to the modeler and reducing the technical cost. In this sense,
we performed preliminary experiments in our existing work [] that shows that the impact
in terms of performance for a simple case study is acceptable compared to the gains in
terms of readability. Still, additional experiments are required to assess the benefits and
drawbacks of the approach.

Finally, these model to database mappings could be reused in the context of the PRE-
FETCHML framework, in order to define prefetching and caching instruction on top of
multiple data-sources, even if they do not explicitly contain a model. This could be
interesting in the context of NoSQL databases, which typically lack advanced prefetching
components [79].
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8.3.4 Dissemination

The NEOEMF framework is one of the model persistence solutions embedded in the
MONDO platform [69], an European project aiming at improving scalability of MDE
solutions. In the future, we plan to continue to push our solutions in projects that could
benefit from our advanced scalability features, such as the MegaMart2 European project 4,
that aims to provide a scalable model-based framework for continuous development and
runtime validation of complex systems.

On the technical side, we plan to continue our work on presenting NEOEMF related
technologies in demonstration and tutorial sessions during the modeling conferences. In
addition, our website is regularly updated with the latest releases and changelog, and
several discussion channels are available to let users and designers interact with us.

Finally, we believe that integrating gamification techniques [41] in our approaches
could be an interesting solution to improve their adoption by end users. Recent work
on gamifying the learning of modeling techniques through the Papyrus platform [30] are
a promising start in this direction, that could be extended to the learning of advanced
concepts such as PREFETCHML plan definition and NEOEMF configuration.

4. https://megamart2-ecsel.eu/

https://megamart2-ecsel.eu/
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NeoEMF	Tutorial

The	goal	of	this	tutorial	is	to	present	NeoEMF	through	a	simple	example.	You	can	download	a	zipped	version

of	the	project	here,	or	import	it	in	your	Eclipse	workspace	using	the		File->New->Example->NeoEMF->NeoEMF

Tutorial	Project		menu.

Introduction

In	this	tutorial	you	will	create	a	persistent	EMF	resource	using	the	Neo4j	database	as	a	backend.	To	do	so,

you	will	define	a	simple	Ecore	model,	create	instances	of	this	model	and	then	store	these	instances	in	the

persistent	EMF	resource.

Audience

This	tutorial	is	designed	for	the	Eclipse	Modeling	Framework	(EMF)	users	with	a	need	to	handle	large-scale

models	in	Java	programs.

This	tutorial	will	bring	at	intermediate	level	of	expertise,	where	you	will	be	able	to	use	the	Neo4j	graph

database	to	store	EMF	models.	From	this	level,	you	can	take	yourself	at	higher	level	of	expertise,

understanding	how	to	use	NeoEMF	with	different	databases.

Prerequisites

Before	proceeding	with	this	tutorial	you	should	have	a	good	understanding	of	EMF.	If	you	need	more

information	about	EMF,	please	follow	the	tutorial	available	here.

A	basic	understanding	of	Eclipse	IDE	is	also	required	because	the	examples	have	been	compiled	using

Eclipse	IDE.

There	is	no	need	to	understand	Neo4j	not	graph	databases	to	follow	this	tutorial.	However,	a	basic

understanding	of	Neo4j	may	help	you	to	manipulate	your	models	directly	from	the	database.

Installing	NeoEMF

NeoEMF	is	available	as	an	Eclipse	plugin.	Install	it	by	choosing	Help	→	Install	New	Software….	You	will	need

to	add	the	following	software	site:

https://atlanmod.github.io/NeoEMF/releases/latest/plugin/

Select	and	install	all	items.

Installing	Emfatic



Emfatic	will	be	used	as	a	text	editor	to	create	a	simple	Ecore	model.	It	is	also	available	as	an	Eclipse	plugin.

Install	it	by	choosing	Help	→	Install	New	Software….	You	will	also	need	to	add	the	following	software	site:

http://download.eclipse.org/emfatic/update

Select	and	install	all	items.

Creating	a	new	EMF	Project

Now	create	a	new	EMF	project	by	choosing	File	→	New	→	Project…	from	the	main	menu.	The	dialog	offers

a	couple	of	different	project	types.	Select	Empty	EMF	Project	from	the	category	Eclipse	Modeling

Framework	and	continue	via	Next.

Feel	free	to	use	any	name	for	youy	project	("NeoEMF	Tutorial"	would	be	great),	and	finish	the	wizard.

Creating	a	Simple	Ecore	Model

To	create	and	save	an	EMF	resource,	you	first	need	an	ECore	Model.	There	are	several	ways	to	create	an

Ecore	Model,	here	we	use	EMFatic,	a	textual	syntax	for	ECore	models.

From	the	main	menu,	choose	File→	New	→	Other…	and	select	Emfatic	file	from	the	category	Example	EMF



Creation	Wizard.	Name	your	file	"graph.emf".

Edit	your	file	to	create	a	simple	model	specifying	a	simple	graph	structure,	containing	Edges	and	Vertices,	and

described	below:

@namespace(uri="http://atlanmod.neoemf.tutorial",	prefix="graph")

package	graph;

	

class	Graph	{

				val	Vertice[*]	vertices;

				val	Edge[*]	edges;

}

	

class	Vertice	{

				attr	String	label;

}

	

class	Edge	{

				ref	Vertice	from;

				ref	Vertice	to;

}

An	alternative	textual	syntax	to	create	an	Ecore	Model	is	OclInEcore,	which	is	quite	similar	to	EMFatic.

Creating	an	Ecore	File

Once	the	Emfatic	file	is	ready,	you	need	to	generate	a	.ecore	file.	From	the	contextual	menu	(righ-click	on	the

graph.emf	file),	choose	Generate	Ecore	Model.

Creating	an	EMF	Generator	Model

Now	create	a	new	EMF	Generator	Model	by	choosing	File	→	New	→	Other…	from	the	main	menu.	The

dialog	offers	a	couple	of	different	wizards.	Select	EMF	Generator	Model	from	the	category	Eclipse	Modeling

Framework	and	continue	via	Next.



Migrating	the	Generator	Model

After	generating	the		graph.genmodel		file,	you	need	to	migrate	it	to	NeoEMF.	From	the	contextual	menu,

choose	NeoEMF	→	Migrate	EMF	Generator	Model.

The	migration	will	modify	several	properties	in	the		graph.genmodel		file.	Basically,	it	will	set	the	root	Class	and

the	root	Interface	of	EMF	Classes	and	Interfaces	to	use	the	NeoEMF	persistent	implementations.



Generating	EMF	Model	Code

After	generating	the		graph.genmodel		file,	you	will	be	able	to	generate	the	Java	underlying	code	for	this	model.

Select	Generate	Model	Code	from	the	Project	Explorer	contextual	menu	(right	click	the		graph.genmodel		file)

The	generation	will	add	three	new	packages	to	your	project.	If	you	are	familiar	to	the	EMF	generated	code,

you	can	browse	the	generated	code	to	observe	the	differences	between	the	defaut	generated	code	and	the

NeoEMF	one.



Creating	a	new	Neo4j	EMF	resource

Once	the	Ecore	model	is	ready,	we	can	create	instances	of	this	model	and	store	them	in	a	NeoEMF

persistent	resource.

Since	NeoEMF	can	use	different	backends,	you	first	need	to	register	a	persistence	backend	factory,	which	is

responsible	of	the	creation	of	the	persistence	backend	that	is	in	charge	of	the	model	storage.

Write	down	the	following	line	to	use	the	Neo4j	database	under	the	Blueprints	API:

PersistenceBackendFactoryRegistry.register(BlueprintsURI.SCHEME,

																						BlueprintsPersistenceBackendFactory.getInstance());

Registering	the	Persistent	Resource	Factory

As	for	regular	EMF	initialization,	you	need	to	register	a		ResourceFactory		implementation	in	the	resource	set

specifying	the	URI	protocol.	This	is	done	in	two	steps:

1.	 Create	a	new		ResourceSet	.

2.	 Register	a		ResourceFactory	with	the	corresponding	URI	protocol.

In	NeoEMF,	each	backend	implementation	provides	a	subclass	of	URI	to	ease	protocol	definition.	Note	that

the	associated		PersistentResourceFactory		and	the	created		PersistentResource		do	not	depend	on	the

selected	backend.

ResourceSet	resSet	=	new	ResourceSetImpl();



resSet.getResourceFactoryRegistry().getProtocolToFactoryMap().put(BlueprintsURI.SCHEME,	PersistentResourceFactory

Creating	a	resource

Creating	a	resource	in	NeoEMF	is	similar	to	standard	EMF.	Write	down	the	following	line	to	create	a	resource

named	"models/myGraph.graphdb"	in	your	current	Eclipse	project.

Resource	resource	=	resSet.createResource(BlueprintsURI.createFileURI(new	File("models/myGraph.graphdb"

Populating	the	resource

Now,	write	a	simple	code	to	create	instances	of	the	Graph	model	and	to	save	the	resource:

GraphFactory	factory	=	GraphFactory.eINSTANCE;

Graph	graph	=	factory.createGraph();

for	(int	i	=	0;	i	<	100;	i++)	{

				Vertice	v1	=	factory.createVertice();

				v1.setLabel("Vertice	"	+	i	+	"a");

				Vertice	v2	=	factory.createVertice();

				v2.setLabel("Vertice	"	+	i	+	"b");

				Edge	e	=	factory.createEdge();

				e.setFrom(v1);

				e.setTo(v2);

				graph.getEdges().add(e);

				graph.getVertices().add(v1);

				graph.getVertices().add(v2);

}

resource.getContents().add(graph);

resource.save(BlueprintsNeo4jOptionBuilder.newBuilder().asMap());

Reading	the	resource

resource.load(BlueprintsNeo4jOptionBuilder.newBuilder().asMap());

Graph	graph	=	(Graph)	resource.getContents().get(0);

for	(Edge	each	:	graph.getEdges())	{

				System.out.println(each.getFrom().getLabel()	+	"--->"	+	each.getTo().getLabel());

}

Creating	EMF	Resources	on	a	MapDB	Database

The	process	for	registering	a	MapDB	persistence	backend	is	similar	the	one	presented	above.



Write	down	the	following	code	to	create	a	persistent	EMF	resource	using	MapDB:

PersistenceBackendFactoryRegistry.register(MapDbURI.SCHEME,

																																											MapDbPersistenceBackendFactory.getInstance());

	

resSet.getResourceFactoryRegistry().getProtocolToFactoryMap()

		.put(MapDbURI.SCHEME,PersistentResourceFactory.getInstance());

Resource	mapResource	=	resSet.createResource(MapDbURI

	.createFileURI(new	File("models/myGraph.madb")));

First,	an	instance	of	the	MapDB	factory	is	registered	in	NeoEMF.	Then,	NeoEMF	factory	is	registered	in	the

EMF	Resource	Set.	Finally,	a	resource	named	"myGraph.mapdb"	is	created	in	folder	"models"	of	the	current

Eclipse	project.

Conclusion

In	this	tutorial,	you	have	learned	how	to	create	a	persistent	EMF	resource	with	NeoEMF	and	how	to	store	this

resource	in	a	Neo4j	database.
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Thèse de Doctorat

Gwendal DANIEL
Persistance, Requêtage, et Transformation Efficaces de Grands modèles

Efficient Persistence, Query, and Transformation of Large Models

Résumé
L’Ingénierie Dirigée par les Modèles (IDM) est une méthode de
développement logicielle ayant pour but d’améliorer la productivité
et la qualité logicielle en utilisant les modèles comme artefacts de
premiers plans durant le processus développement. Dans cette
approche, les modèles sont typiquement utilisés pour représenter
des vues abstraites d’un système, manipuler des données, valider
des propriétés, et sont finalement transformés en ressources
applicatives (code, documentation, tests, etc). Bien que les
techniques d’IDM aient montré des résultats positifs lors de leurs
intégrations dans des processus industriels, les études montrent
que la mise à l’échelle des solutions existantes est un des freins
majeurs à l’adoption de l’IDM dans l’industrie. Ces problématiques
sont particulièrement importantes dans le cadre d’approches
génératives, qui nécessitent des techniques efficaces de stockage,
requêtage, et transformation de grands modèles typiquement
construits dans un contexte mono-utilisateur. Plusieurs solutions de
persistance, requêtage, et transformations basées sur des bases de
données relationnelles ou NoSQL ont été proposées pour améliorer
le passage à l’échelle, mais ces dernières sont souvent basées sur
une seule sérialisation model/base de données, adaptée à une
activité de modélisation particulière, mais peu efficace pour d’autres
cas d’utilisation. Par exemple, une sérialisation en graphe est
optimisée pour calculer des chemins de navigations complexes,
mais n’est pas adaptée pour accéder à des valeurs atomiques de
manière répétée. De plus, les frameworks de modélisations
existants ont été initialement développés pour gérer des activités
simples, et leurs APIs n’ont pas évolué pour gérer les modèles de
grande taille, limitant les performances des outils actuels. Dans
cette thèse nous présentons une nouvelle infrastructure de
modélisation ayant pour but de résoudre les problèmes de passage
à l’échelle en proposant (i) un framework de persistance permettant
de choisir la représentation bas niveau la plus adaptée à un cas
d’utilisation, (ii) une solution de requêtage efficace qui délègue les
navigations complexes à la base de données stockant le modèle,
bénéficiant de ses optimisations bas niveau et améliorant
significativement les performances en terme de temps d’exécution
et consommation mémoire, et (iii) une approche de transformation
de modèles qui calcule directement les transformations au niveau
de la base de données. Nos solutions sont construites en utilisant
des standards OMG tels que UML et OCL, et sont intégrées dans
les solutions de modélisations majeures telles que ATL ou EMF.

Abstract
The Model Driven Engineering (MDE) paradigm is a software
development method that aims to improve productivity and software
quality by using models as primary artifacts in all the aspects of
software engineering processes. In this approach, models are
typically used to represent abstract views of a system, manipulate
data, validate properties, and are finally transformed to application
artifacts (code, documentation, tests, etc).
Among other MDE-based approaches, automatic model generation
processes such as Model Driven Reverse Engineering are a family
of approaches that rely on existing modeling techniques and
languages to automatically create and validate models representing
existing artifact. Model extraction tasks are typically performed by a
modeler, and produce a set of views that ease the understanding of
the system under study.
While MDE techniques have shown positive results when integrated
in industrial processes, the existing studies also report that
scalability of current solutions is one of the key issues that prevent a
wider adoption of MDE techniques in the industry. This is
particularly true in the context of generative approaches, that
require efficient techniques to store, query, and transform very large
models typically built in a single-user context.
Several persistence, query, and transformation solutions based on
relational and NoSQL databases have been proposed to achieve
scalability, but they often rely on a single model-to-database
mapping, which suits a specific modeling activity, but may not be
optimized for other use cases. For example a graph-based
representation is optimized to compute complex navigation paths,
but may not be the best solution for repeated atomic accesses. In
addition, low-level modeling framework were originally developed to
handle simple modeling activities (such as manual model edition),
and their APIs have not evolved to handle large models, limiting the
benefits of advance storage mechanisms.
In this thesis we present a novel modeling infrastructure that aims to
tackle scalability issues by providing (i) a new persistence
framework that allows to choose the appropriate model-to-database
mapping according to a given modeling scenario, (ii) an efficient
query approach that delegates complex computation to the
underlying database, benefiting of its native optimization and
reducing drastically memory consumption and execution time, and
(iii) a model transformation solution that directly computes
transformations in the database. Our solutions are built on top of
OMG standards such as UML and OCL, and are integrated with the
de-facto standard modeling solutions such as EMF and ATL.

Mots clés
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Key Words
MDE, Scalability, Model Queries, Model Transformations, NoSQL,
OCL, Gremlin

L’UNIVERSITÉ NANTES ANGERS LE MANS


	Context
	Introduction
	Problem Statement
	Approach
	Contributions
	Outline of thesis
	Scientific Production
	Awards

	Background
	Model-Driven Engineering
	Models, Metamodels, Model Transformations

	MDE Standards and Technologies
	UML/OCL
	Modeling Frameworks

	NoSQL Databases
	Key-Value Stores
	Document Databases
	Column Databases
	Graph Databases

	Conclusion

	Scalable Model Persistence
	State of the Art
	Relational Persistence Layers
	NoSQL Persistence Layers
	Problematic & Requirements

	NeoEMF: a Multi-Database Persistence Framework
	Architectural Overview
	Integration in the Modeling Ecosystem
	Advanced Capabilities

	Model-to-Database Mappings
	NeoEMF/Graph
	NeoEMF/Map
	NeoEMF/Column

	Tooling
	Empirical Evaluation
	Benchmark Presentations
	Results
	Discussion

	Conclusion

	Model Prefetching and Caching
	State of the Art
	Prefetching and Caching in Current Modeling Frameworks
	Problematic and Requirements

	The PrefetchML DSL
	Abstract Syntax
	Concrete Syntax
	Running Example

	PrefetchML Framework Infrastructure
	Architecture
	Rule Processing
	Cache Consistency
	Global shared cache

	Plan Monitoring
	Language Extensions for Plan Monitoring
	Simple Monitoring
	Adaptative Monitoring

	Tool Support
	Language Editor
	EMF Integration
	NeoEMF/Graph Integration

	Evaluation
	Benchmark Presentation
	Results
	Discussion

	Conclusions

	Efficient Queries
	State of the Art
	Model Query Solutions
	Summary and Research Problem

	The Mogwaï Framework
	The Gremlin Query Language
	The Mogwaï Query Approach
	Gremlin Metamodel
	Mapping of OCL expressions
	Transformation process

	Tooling
	Evaluation
	Benchmark presentation
	Results
	Discussion

	Conclusion

	Efficient Transformations
	State of the Art
	Model Transformation frameworks
	Towards Scalable Model Transformations
	Summary and Research Problem

	Gremlin-ATL Framework
	The ATL Transformation Language
	Framework Overview

	ATLtoGremlin Transformation
	ATL Operations Mapping
	Operation Composition

	Execution Environment
	Model Mapping
	Transformation Helper

	Tool Support
	Evaluation
	Benchmark Presentation
	Results
	Discussion

	Conclusion

	A NeoEMF/Mogwaï Infrastructure to Generate Database Software
	UMLtoGraphDB Approach
	Mapping UML Class Diagram to GraphDB
	GraphDB Metamodel
	Class2GraphDB Transformation

	Translating OCL Expressions to Gremlin
	Code Generation
	Blueprints API
	Graph2Code Transformation

	Tool Support
	Related Work
	Conclusion

	Conclusion
	Summary
	Impact of the Results
	Perspectives and Future Work
	Model Storage Scalability
	Model Query and Transformations Scalability
	On the application of our work outside the MDE
	Dissemination


	Appendices
	NeoEMF Tutorial

