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A statistical physics approach to di�erent problems
in network theory

Statistical physics, originally developed to describe thermodynamic sys-

tems, has been playing for the last decades a central role in modelling an

incredibly large and heterogeneous set of di�erent phenomena taking for

instance place on social, economical or biological systems. Such a vast

�eld of possible applications has been found also for networks, as a huge

variety of systems can be described in terms of interconnected elements.

After an introductory part introducing these themes as well as the role of

abstract modelling in science, in this dissertation it will be discussed how

a statistical physics approach can lead to new insights as regards three

problems of interest in network theory: how some quantity can be opti-

mally spread on a graph, how to explore it and how to reconstruct it from

partial information. Some �nal remarks on the importance such themes

will likely preserve in the coming years conclude the work.

Keywords: Network theory, Statistical physics, Disordered systems, In-

ference, Spreading dynamics, Extreme events
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Introduction

This dissertation will discuss how several interesting and somehow classical prob-

lems in network theory can be addressed by using tools and techniques coming from

the statistical physics. This choice is due to the fact that my doctoral program has

been part of the European project NETADIS - Statistical Physics Approaches to Net-

works Across Disciplines, funded by the People Programme � Marie Curie Actions �

of the European Union's Seventh Framework Programme. This project has involved

nine leading European institutions including among the others the King's College

in London, Sapienza University in Rome, the International Center for Theoretical

Physics in Trieste and the Technische Universität in Berlin, and it has aimed at ex-

ploring di�erent research themes such as the inference of networks from (potentially

incomplete or noisy) data and the optimisation and control of processes taking place

on a (possibly evolving during time) network.

Because of the ubiquity of systems that can be modelled as networks, the insights

gained by these projects, among which the ones I have faced during my Ph.D. studies,

have contributed to achieve a better understanding of phenomena taking place on a

variety of �elds such as system biology and neuroscience, socio-economical systems

and �nance, information technology. The statistical physics, whose main task has

historically been the analysis of macroscopic system behaviours in terms of the prop-

erties and of the interactions of their microscopic components, has been the main

conceptual framework unifying such projects. The same framework has been also

used, as it has been commonly happening since the last few years, in order to face the

so-called inverse problems that deal with the inference of the microscopic properties

of a system having access to its macroscopic behaviour.

The plan of this work is the following. In chapter 1 the general ideas of the statis-

tical physics of disordered systems are brie�y reviewed. One of the main focuses is on

the possibility of describing very di�erent systems in a common way by using abstract

models that catch only their most basic features, but which are able nevertheless to

produce useful qualitative and quantitative prediction on them. In particular, it is
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discussed how a precise microscopic description of a system is typically not needed

in order to reproduce some apparently complicated processes occurring on it such as

collective behaviours, avalanches, abrupt epidemic outbreaks; this point justi�es the

usage of very simpli�ed models throughout the work. Two general frameworks having

been used to set against a background a variety of di�erent situations and phenomena

are introduced. The �rst, originally coming from the computer science community,

allows to model systems whose components have to satisfy a certain number of con-

straints; the second, coming from physics, enables to straightforwardly understand

how a system whose elements interact only at a local level can show the emergence of

collective, global phenomena. A short review of the �elds in which the application of

tools and concepts coming from the statistical physics proved to be fruitful is going

to be proposed.

Chapter 2 is devoted to network theory and the terminology about it, extensively

used in the following chapters, is therein introduced. A particular focus is set on the

variety of systems which can be modelled as networks, and on the insights one can

get by doing this. The need for de�ning more and more complex models in order to

be able and reproduce more detailed features observed in real networks is discussed.

Two di�erent approaches to network theory are introduced, being respectively mostly

connected to mathematics and probability theory on the one hand, and with statistical

physics and critical phenomena on the other.

The three following chapters extensively describe the projects I have mainly worked

on during my Ph.D. All of them refer to very legitimate questions one can ask about

networks and processes taking place on them: respectively, what rules govern the

spreading of something on a graph, how can we explore it and, �nally, how can we

reconstruct it by having access only to few and possibly noisy measurements. Chapter

3 refers to the paper [1], reprinted in appendix A, on contagion dynamics on networks,

and in particular on how to �nd and statistically characterise minimal sets of initially

active nodes able to infect all the network in a given time.

Chapter 4 discusses how a graph exploration can be performed by making use

of a random walk on it. The project [2], reprinted in appendix B and developed in

collaboration with professor Reimer Kühn at the King's College in London, aims in

particular at statistically characterising the extreme, rare events that can take place

while exploring di�erent types of graphs in this way.

Chapter 5 will face the problem of reconstructing a network of interactions among

a set of elements, having access just to a partial knowledge of how much correlated

are the repeated measurements performed on them. After having de�ned the problem

2



in a �static� sense (how to optimally infer the network having been given a certain

knowledge about it), the situation is seen under a more innovative and challenging

perspective, by searching for some heuristics suggesting which element one should

choose to measure in order to improve his knowledge on the system as fast as possible.

Finally, in chapter 6 some conclusions and perspectives on the work are discussed.

In particular, I explain therein why I think that the problems faced in this thesis

and more speci�cally a theoretical, abstract modelling of them, will still be topics of

crucial interest in the coming years.

3
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Chapter 1

Models and frameworks

1.1 The role of models

This thesis will be mainly devoted to a theoretical and numerical study of models.

Because of their large range of validity, the insights obtained will be usable in many

di�erent contexts; on the other hand, speci�c details of real-world systems will in gen-

eral be neglected. The aim of this kind of modelling is then rather the understanding

of a common framework in which di�erent phenomena can be put than the precise

description of one of them.

According to a joke famous in the scienti�c community, the physicists try to solve

complex problems by making oversimplifying assumptions (the punchline of one of the

versions being �I've found a solution, but it works only for perfectly spherical horses in

a vacuum�). As usual, a seed of truth is nested in this quip, as the models developed

by physicists usually tend to focus on some aspects of the phenomenon under study,

neglecting many others; these oversimpli�ed models often lead nevertheless to precious

insights about the world we live in, and enable people to make predictions (accurate in

some cases, not so much in other) about it. For example, the idea of neglecting shape

and size of an object (to be seen, hence, as a single point mass) in order to facilitate the

theoretical study of its motion, could have seemed at �rst as detached from the real-

world as the spherical horse of the joke; however, the Newtonian mechanics having

been originated in this framework guaranteed a very precise quantitative explanation

for a wide range of natural phenomena.

Coming to an example closer to the topic of this thesis, it will be discussed how

a simple model of magnetic systems such as the Ising model can lead to non trivial

and somehow unexpected behaviours, similar to the ones observed in many real-world

situations. The physical modelling of a system can be seen as a search for its simplest

possible description able to reproduce some of its interesting features. The modelling

5



through magnetic systems of social ones let the community understand that there is

nothing special in obtaining a macroscopic ordering as an e�ect of local interactions, as

under some conditions an order autonomously emerges without taking into account

any speci�c details. The reasons why the collective behaviours occurring in very

di�erent systems can be modelled in sort of a uni�ed framework will be brie�y and

non-rigorously discussed in the following section 1.3.3, dedicated to the universality

of critical phenomena.

In this thesis, I will mainly deal with a sort of �extreme� modelling, similar to

considering social systems as magnetic ones as discussed above; the centrality of mod-

elling also for searching a more detailed description of a phenomenon should however

not be underestimated. According to the classical paper by Arturo Rosenblueth and

Norbert Wiener [3] �no substantial part of the universe is so simple that it can be

grasped and controlled without abstraction.� Two di�erent procedures can hence go

under the name of modelling. The �rst one, topic of this dissertation, consists in �nd-

ing di�erent systems displaying similar qualitative features; the second, in looking for

apt abstractions (i.e. systems with similar but simpler structures) in an attempt of

precisely describing the problem under study.

As said by Jean-Philippe Bouchaud in [4], �to describe necessarily means to sim-

plify, and even sometimes betray.� If this betrayal allows us to progressively approach

the reality, through successive improved approximations, this can be considered a wor-

thy compromise. At the end of the day, George Box's consideration in [5,6] represents

really the central point of this discussion: the right question about a model is not

whether it is true (as, in some sense, the answer is always no), as one should rather

ask whether it is useful.

1.2 Forward problems, inverse problems

1.2.1 Same phenomena, di�erent questions

When describing a given system, several possible questions can be addressed.

From a general point of view they can be split in two big groups. On the one hand,

one may be interested in predicting the outcome of an experiment (or, more generally,

in predicting the value of a certain observable) knowing the parameters of the model

being observed: this corresponds to solve what is called a direct or forward problem.

On the other hand, one can use as a starting point an observation or a measurement

performed on the system to infer the parameters of the model having generated it
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(backward, or inverse problem). This second type of question will be the one at the

center of this dissertation.

Inverse problems are of great interest because of several di�erent reasons. From

an engineering perspective, they are useful for designing systems that will behave in

a desired way; the framework under which these problems are addressed goes usually

under the name of control theory. Secondly, one can think of several systems (for

example, biological ones) in which the variables of interest are not easily measurable.

In such cases, being able to infer them by using the information content of other, more

convenient variables can be of the greatest importance, as it can enable the researchers

to get the same insights with much less expensive or time-consuming experiments.

This is for instance the case for the protein folding problem, as the biological functions

of a protein are mainly due to its 3D structure, which is experimentally di�cult to

measure as it requires the use of techniques such as the x-ray di�raction. Due to

the advancements in sequencing techniques, on the other hand, knowing its primary

structure (i.e. the linear sequence of its amino acid structural units) has become

since the last years a much easier task. A long-standing inverse problem on which

statistical physics has given a fundamental contribution is how to infer 3D structure

(interesting insight) knowing the linear sequence (easier measurement).

Another possible application is to reconstruction problem, where one has access

to a low-dimensional representation of the data and wants to reconstruct the input

having generated it. These problems are typically very well solved by our brain:

apart from some extreme cases of optical illusion, for example, we are very good in

inferring the 3D world around us by using the 2D visual information that our eyes

are able to collect. A prototypical example of this kind of situations can be found in

signal processing theory, and goes under the name of source separation problem. In

this case, one has access to a signal which is the combination of several components

and aim at correctly identifying these latter, assigning them to the di�erent sources.

Also this task is brilliantly performed by our brain, which is typically able to assign

each components of the sounds that we hear to its source; in particular, a very clear

example is our capability of separating the words pronounced by several people in

a crowded room (these situations going usually under the name of cocktail party

problems).

In the same framework, a topic of interest in medical research is the discrete tomog-

raphy, whose aim is to reconstruct a multi-dimensional binary image from a certain

number of lower dimensional projections. This number ought to be as small as possi-

ble, in order to let the examination be both as fast, and as non-invasive as possible.
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Important advancements, both theoretical and practical, have been recently obtained

in this �eld thanks to methods developed in the statistical physics community, going

under the name of compressed sensing [7].

Apart from these applications, it should be stressed that inverse problems play

a central role also in situations more strictly connected with the physics (and with

the statistical physics in particular). For example, a prototypical model for magnetic

systems is the Ising model that will be discussed in greater detail in the following

of this chapter. In this case, the �rst problem (and yet already highly non-trivial)

people tried to solve was the forward one, namely to determine correlations between

spins having access to information such as the external �elds acting on each spin,

and their couplings; more recently, however, also the harder inverse version of the

problem was addressed. Because of the large range of applicability of Ising models,

the advances in its understanding originated very important progresses in many �elds

among which the ones described above.

1.2.2 A more precise de�nition

In a very abstract way, a physical system can be thought of as an operator G (the

equations governing it) transforming a given state of a system (a model m de�ned

by a set of parameters) into a set of observables (the data d). In the simplest case,

such a relationship between parameters and data is linear, such that we can write

d = Gm. The inverse problem is however far from trivial even in such a simple case,

as one has typically to face ill-posed problems in which the number of equations is

smaller than the number of unknowns; if this is the case, straightforwardly solving the

inverse problem by calculating m = G−1 d is not a viable strategy, as the matrix G is

in general non invertible. Even more complicated are the non-linear inverse problems,

in which the physical law G connecting the model m with the outcome d is a generic

function, such that d = G(m).

A general framework for addressing inverse problems makes use of the fact that

for any given modelm∗ we can solve the forward problem, leading to a new set of data

d∗ = G(m∗). By iteratively changing the model, we can hence try to reproduce better

and better the original data d, aiming at the minimum of a functional measuring the

distance between the observed and the recovered data (i.e. the error of the inferred

model m∗); this latter goal can be addressed by performing a gradient descent on the

parameters.

Another issue frequently encountered in inverse problems is the risk of building

up a very complicated model perfectly reproducing the available data, but unable
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to generalise to new ones. This is true in particular for the cases in which either

we have uncertainties on the physical laws governing the process G or the data we

have access to are noisy. This phenomenon goes under the name of over�tting, and is

usually addressed by adding a penalty for the complexity of the model (i.e. by regu-

larising it). In some sense, it can be thought of as an implementation of the Occam's

razor principle, according to which we should prefer a more complex model only if

we have strong enough arguments favouring it with respect to simpler ones. This

general statement can be quantitatively implemented in a probabilistic perspective

by imposing a prior distribution on the model parameters. In this way, the functional

to be minimised becomes a linear combination of the error on the reconstructed data

on the one hand, and of the complexity of the model (calculated for instance as the

`2 norm over the model parameters) on the other:

||d−Gm∗||2 + α||m∗||2
The value of α, in the former equation, governs the trade-o� between the expla-

nation and the generalisation capabilities of the model: α = 0 corresponds to the

absence of prior on the model, whereas larger and larger α lead to the determination

of simpler and simpler models.

Another order of di�culties can be understood thinking again about the protein

structure inference problem presented in the previous section. Even if a given set

of couplings and �elds produces under the model a unique set of site frequencies

and 2-points correlations (well-posed forward problem), the converse does not hold,

as these latter can be produced by many di�erent couplings and �elds (ill-posed

inverse problem). This is due to the fact that we are for the time being disregarding

the higher-order statistics (3-points correlations etc.) that would di�erentiate them.

However, it is usual very risky to try and �t such information from the data, as the

number of parameters increases very fast and the risk of over�tting becomes high. A

typical way out of this situation is to choose, among all the models producing the

same 1-point and 2-point statistics observed in the data, the most probable one. The

methods following this idea are again, in some sense, a quantitative formulation of

the Occam's razor principle, and they are usually referred to as maximum likelihood

if they concern the choice of the parameters of a model and maximum entropy if they

concern the choice of the model itself [8].
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1.3 A physics modelling framework: the Ising model

1.3.1 Motivation

In the next sections, two frameworks playing a crucial role in providing simple

enough models for describing a variety of di�erent phenomena are going to be dis-

cussed. Both of them were originally designed for dealing with quite speci�c situa-

tions, but turned out to be of a much wider interest because of their generality. The

very common characteristics such two frameworks are going to be able and appropri-

ately describe are the possibility of stating a problem as a set of requests the variables

of a system have to satisfy, and the interest of global, collective behaviours emerging

under certain conditions in a system even if its elementary components interact only

in a local, decentralised fashion. The frameworks of interest for dealing with systems

showing such features are respectively the one of constraint satisfaction problems,

originally coming from the computer science community and described in the follow-

ing section 1.4, and the Ising model with its possible generalisations addressed in the

rest of this one.

The Ising model, originally developed in the context of ferromagnetism, has ex-

perienced an impressive increase in its range of applicability in the last decades in

reason of the ubiquity of real-world systems that, even if their components interact

just on a local scale, exhibit collective behaviours. Another important characteristic

of this model depends on the physics of the systems it had to describe in the �rst

place: the variables σi, originally representing magnetic dipole moments of atomic

spins, are binary (i.e. they can assume just two values, typically σi ∈ {−1,+1} after
a rescaling). The model is de�ned on a network, structure which is fully described

by the list of elements or nodes composing it and by the set of connections existing

among couples of them. Each node is allowed to interact with its neighbours; in par-

ticular, the Ising model on a two-dimensional lattice is one of the simplest models to

show a phase transition (collective e�ect) originated by local, pairwise interactions.

Because of this, it has become paradigmatic for understanding how a system can de-

velop an ordered structure starting from a disordered one as soon as some parameter

is conveniently tuned.

At �rst, the condition of having to deal with binary variables may seem very strict.

After some thought, one sees that in a large number of systems the feature describing

the state of their elements can be chosen out of just two possibilities. Even if a more

detailed list will be postponed to the following section, two examples coming from

completely di�erent �elds will clarify the point. In opinion dynamics, people may
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be regarded as binary variables in a lot of situations in which an in�nite range of

possible feelings about a topic has to be translated into the choice of one out of two

possibilities: the choice between Republicans and Democrats the US electors have to

make is an example of this, any referendum (where the only degree of freedom is a

yes/no answer) is another. Changing �eld, the Ising model has become a standard in

neuroscience. On the one hand, the brain is one of the most complex systems known,

on which very little is understood; on the other, at any time the state of the neuron

can be characterised, at least at a very coarse level, according to whether it is spiking

(i.e. emitting an electrical impulse) or not. Many other examples will be discussed in

the following; as will be seen, moreover, slight variants of the Ising model will enable

to study systems whose variables may assume more than two values.

1.3.2 The Ising model

The Ising model is formally de�ned on a set of N binary variables (i.e. spins)

σi ∈ {+1,−1} localised at the vertices of a d-dimensional regular lattice of total

volume Ld. A con�guration σ̄ corresponds to the assignment of a value to each spin,

and its energy is given by the following relation:

E(σ̄) = −
∑
〈i,j〉

σiσj − h
∑
i

σi (1.1)

The �rst term on the right-hand side implements the ferromagnetic interaction,

as any couple of neighbouring nodes i, j is energetically pushed towards being aligned

(i.e. σi = σj = 1 or σi = σj = −1) over being unaligned (i.e. σi = 1 and σj = −1

or vice versa). The second term takes into account the possibility of a global �eld

to act on the system, in such a way to energetically push all the spins to align

with it. Both this aspects coming from the description of the magnetic systems

are of interest also for the applications. In sociology, for instance, a qualitatively

well-known social in�uence phenomenon called homogenisation or social pressure [9]

describes the social incentives people usually feel in order to behave similarly to their

acquaintances. In such a framework, the e�ect of the external �eld can be simply

thought of as a homogenisation to some impulse coming from the outside and acting

on everybody. Also cases in which this tendency is reversed (i.e. people preferring to

behave di�erently from their friends) can be studied in the same framework, being

the equivalent of antiferromagnetic systems in physics.

As usual in statistical mechanics models, the probability for the system to be in

a given con�guration depends on the energy of the latter and on the temperature T

of the system:
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PT (σ̄) ∝ e−
E(σ̄)
T (1.2)

The role played by the temperature becomes clearer by analysing two extreme

cases. For T → ∞, the energy of a con�guration does not have any e�ect on its

probability of being realised by the system: at high temperature, all states are equally

probable and the spins are independent both among each other and on the external

�eld. At very low temperature, instead, only the states with the lowest possible

energy (i.e. the ground states of the system) have a probability larger than zero of

being seen. If the external �eld is zero, two such states exist, consisting in having

either all the spins up or all of them down. If h 6= 0, this symmetry is broken and just

one ground state survives (all spins up if h > 0, all spins down otherwise). Because of

its e�ect on the system, the temperature can be abstractly seen as a parameter tuning

the tendency to the order or to the disorder: this can be understood by noticing that

a change in temperature is completely equivalent to a rescaling of the couplings and of

the external �elds that determine the energy of the con�gurations. Such a parameter

will be present also in the other applications of statistical physics, and for instance

the reference to the �temperature� of a social system will have to be interpreted in

this sense.

This model has become paradigmatic as, even if very simple, it exhibits an inter-

play between two contrasting contributions. On the one hand, the system is pushed

towards one of the two ordered states (either all spins up or all spins down when

h = 0) because of the ferromagnetic interactions; on the other, the thermal �uctua-

tions originate an entropic contribution that favours the disordered, more numerous

con�gurations. Depending on the value of T , their respective importance is tuned,

and for instance as the temperature goes to zero the entropic contribution becomes

negligible.

The previous di�erence between an ordered and a disordered phase can be stated

in a more quantitative way by looking at the average value of the spins (i.e. at the

average magnetisation), de�ned as

m =
1

N

〈 N∑
i=1

σi

〉
T

(1.3)

where the average is taken over all the con�gurations, each of them weighted with its

probability of being found at the temperature T .

In one dimensional lattices, the model can be quite directly solved, and the average

magnetisation turns out to be zero at all T > 0: the system is in its disordered
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phase as soon as some thermal �uctuations are inserted. For larger dimensions, an

explicit solution is much harder to obtain, but the existence of transitions between

a low temperature, ordered phase showing a positive average magnetisation and a

high temperature, disordered one in which m = 0 have been proved for d ≥ 2. For

d = 2, in particular, an exact solution has been found, whereas for larger dimensions

the main features of the transition have been described by using the renormalisation

group that will be brie�y introduced in section 1.3.3. The transition between the

two regimes is smooth for �nite N , but gets steeper and steeper as N grows, so to

generate a true phase transition in the in�nite size limit; in this latter case a �nite

value of the temperature Tc exists such that the system is ordered for any T < Tc

and disordered for any T > Tc.

The model proposed has been up to now studied by looking at the probability of

�nding any given state when the system is at thermodynamic equilibrium at a given

temperature T . A slightly di�erent approach is to let the system evolve starting

from an initially out of equilibrium state. By doing so, one can explicitly appreciate

the way by which the order is established if the temperature at which the system

evolves is under the critical one; in order to see this, a dynamics determining the

evolution of such a magnetic system at any given temperature has to be de�ned. A

very natural one is the Metropolis algorithm [10], according to which the probability

of a spin to �ip is proportional to e−
∆E
T , ∆E being the di�erence in energy that it

would obtain by �ipping. This approach takes into account the thermal �uctuations,

as any energetically favourable �ipping (∆E < 0) is accepted, but at T > 0 also the

unfavourable ones are accepted with some probability: this latter is taken from the

Boltzmann distribution at temperature T , explaining the similarity with the previous

at-equilibrium formulation. By running this dynamics, some insights are reached on

how an ordered con�guration may eventually emerge from a disordered one below the

critical temperature. Even when the average magnetisation (i.e. the global ordering)

is still zero, a coarsening process can be seen, by which larger and larger ordered

clusters of both signs start to appear and merge together. Finally, this merging process

involves the system as a whole, and the globally ordered con�guration having m > 0

is reached. A slightly more mathematically detailed description of this phenomenon

will follow in section 1.3.3.

This case is really interesting to understand the importance of physical modelling.

An open problem in social systems was to understand how interactions among ac-

quaintances could eventually (even if not always) lead to the emergence of global

trends. By the Ising model, it was shown that to explain that no speci�c hypothesis
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on the system was requested: just the presence of local interactions may indeed be a

su�cient condition to generate a long-range ordered con�guration. Also the fact that

such an ordered state is not always reached can be simply understood by imagining

that certain systems are at a �temperature� higher than others (i.e. their �uctuations

are more important).

1.3.3 Universality of critical phenomena

As discussed, the Ising model for ferromagnets has become a standard for mod-

elling systems in which a transition from a disordered to an ordered state can be

obtained by appropriately tuning its temperature (or some other quantities playing

its role in di�erent systems). The similarity existing among all these transitions is

however not just qualitative, as it has been shown that such critical phenomena can

be grouped into very few classes, the elements belonging to each of them being in

some sense equivalent at the critical point. The reason why this is possible is that

when getting nearer to the phase transition, involving by de�nition the system as a

whole, larger scales start to come into play and it is no more requested to explicitly

take into account the details of the di�erent systems, since the microscopic details

are sort of averaged out. The properties of such systems at the phase transition,

therefore, becomes independent on their dynamical details, and can be expressed as

a function of some very general features such as the dimension of the space in which

they live and the symmetry broken by the phase transition [11].

In order to be more quantitative, let us consider a magnetic system showing the

emergence of an ordered state from a disordered one; this phenomenon can be seen as

a progressive enlargement of the typical length ξ over which its microscopic variables

are correlated, i.e. the typical size of the clusters by recalling the terminology used

in the previous section. In an in�nite size system such a length has to diverge, by

the de�nition itself of phase transition, as the temperature approaches its critical

value Tc. In particular, one observes that for temperatures near enough to the phase

transition, a power-law relation of the form ξ ∝ |T − Tc|−ν holds, where ν, called

critical exponent of the transition, is the parameter governing the system behaviour

in the proximity of the critical point.

The interest in such a quantity is that many phase transitions turn out to be

described by the very same set of critical exponents; they are said to belong to the

same universality class and they display identical scaling behaviour as they approach

criticality. The fundamental contribution for the understanding of these common

aspects among apparently very di�erent systems was given by the beautiful unifying
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framework of the renormalisation group, proposed by Kenneth G. Wilson [12]. I will

not enter here into the details of what has constituted one of the greatest achievements

in the modern statistical physics; one can just say that by using this method, very

appropriate in order to study systems nearby their phase transitions, it becomes clear

how di�erent starting systems eventually fall into a few universality classes, and all

the members of one of those show an identical critical behaviour as they share the

fundamental characteristics of their dynamics.

This universality is really impressive thinking about the general interest that a

small number of paradigmatic models may take on: the Ising model, for instance,

turns out to belong to the same universality class as the liquid-gas phase transition,

and a description of the critical features of the former is therefore perfectly appropriate

also for the latter. Anticipating the main theme of this thesis, it can be already

said that the Ising model will because of this be extremely useful for analysing in

these terms a series of critical phenomena taking place on networks, i.e. on systems

composed by a set of interconnected elements [13].

As a �nal remark of this section, let us stress that even if two systems belong to

the same universality class, this should not at all be considered a proof of a general

equivalence between them; what they share is indeed only their large-scale behaviours

near enough to a phase transition, whereas their microscopic characteristics clearly

have still to be described di�erently [14].

1.3.4 The generalisations

The prototypical Ising model has become during the years central in the evolu-

tion of the statistical mechanics. In reason of its somewhat restrictive hypothesis,

many di�erent generalisations have been proposed and studied in order to relax some

of them. Such generalisations, being an interesting physical problem on their own,

have also been studied in depth because of their larger range of applicability. Here

some of them will be reported: the focus will however be mostly on their importance

with respect to the possibility of modelling more and more general situations. The

technical aspects connected to the search for solutions or even to a better phenomeno-

logical understanding would require a large review on their own and will be therefore

neglected here.

A strict condition of the Ising model is that all the couplings have the same sign,

the interactions between spins being either all ferromagnetic or all antiferromagnetic.

One is on the other hand interested (especially for a series of applications where the

interactions between the elementary components have to be considered as a degree
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of freedom of the system) also in studying cases in which the interactions between

particles have di�erent signs, going generically under the name of disordered systems.

Historically, the �eld of research of these so-called spin glasses emerged in the seventies

[15] for understanding a class of magnetic alloys characterised by the coexistence

of interactions of di�erent signs. A widely accepted mathematical abstraction for

describing such systems is the Edwards-Anderson model [16], which generalises the

energy of a con�guration in the Ising model as follows:

E(σ̄) = −
∑
〈i,j〉

Jijσiσj −B
∑
i

σi (1.4)

The sum is here again on the couples of neighbouring nodes, and the J are, for

instance, extracted randomly from a given probability distribution. This generalisa-

tion led to an enormous number of works and this �eld is still very active today as

many features have still to be fully understood. What is important from a modelling

point of view, however, is that an extremely broad spectrum of phenomena can be

studied in this framework, as a huge number of problems can be stated in terms of

such a combination of di�erent sign interactions, from biological systems (such as

neural networks, or gene regulation networks) to random lasers. A particularly clear

application is to constraint satisfaction problems. Even without entering into the

details of these latter, that will be postponed to section 1.4, it can be already said

that a constraint asking two variables to take the same value will be straightforwardly

modelled with a ferromagnetic interaction Jij > 0, whereas the request for two ele-

ments to take opposite value will be implemented by imposing an antiferromagnetic

interaction between them.

The ground states, trivial to �nd in the Ising model, are on the contrary very

di�cult to determine in spin glasses; they will also have, in general, an energy larger

than zero. This can be true even for small systems: if the interaction among three

spins σi, σj, σk is for example Jij > 0, Jik > 0, Jjk < 0, it is easy to see that the

minimum energy con�guration would have σi = σj and σi = σk, but σj 6= σk which

is impossible. Such a situation is referred to as a frustration of the system and will

also have a very straightforward analogous in the theory of the constraint satisfaction

problems, corresponding to the case in which a set of constraints are in some sense

contradictory, as no assignment of the variables is able to satisfy all of them.

The di�culty in �nding ground states comes from the complex energy landscapes

of these systems. A system which starts in an excited con�guration and evolves ac-

cording to the Metropolis algorithm will for instance strive to go to lower energy
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con�gurations, as for reaching them it should change many spins states at the same

time: this feature gives raise to the presence of metastable states in which the dy-

namics gets stuck for long times. The prototypical example of such systems are the

glasses, whose properties have been massively studied for the last decades [17] but

are still far from being comprehensively understood.

Another feature of the Ising model that one can be interested in relaxing is the fact

that its variables are binary. For studying similar systems, but characterised by ele-

ments which can assume more than two states, the Potts model has been introduced.

In this latter, each spin takes value in a �nite set of q elements σi ∈ {1, . . . , q} and,
in the original version, the energy of a con�guration generalises eq. 1.1 as follows:

E(σ̄) = −
∑
〈i,j〉

Jijδ(σi, σj)−
∑
i

hσi (1.5)

With positive couplings J , as in the Ising model, two spins have still lower energy

if they are aligned. The di�erence is that now they can be unaligned in many di�erent

ways; in this case, the energy contribution depends just on the condition σi 6= σj and

not on the speci�c values taken by the two spins. Such an energy is directly connected

to the so-called q-colouring problem: in this example of a CSP, we require any node

in a graph to take a value that is di�erent from the one taken by any of its neighbours;

the interaction is hence antiferromagnetic as the neighbouring nodes are energetically

pushed to take di�erent values, but no �preference� is given on the colours by which

this misalignment is obtained. This application explains also why the q values a spin

may take are usually referred to also as �colours.�

A further generalisation of this case is the so-called clock model, in which the q

values each spin may take are thought of as angles uniformly distributed along a

circle, with possible values θn = 2πn
q
, n being an integer between 1 and q. In this

case, the spins may be represented as vectors σi ≡ (cosσi, sinσi). With a positive J ,

again, two spins are energetically favoured to be aligned; their energetic contribution

will however more generally depend on the angle between them, and reporting for

simplicity the equation in absence of external �elds, one has:

E(σ̄) = −
∑
〈i,j〉

Jijσi · σj = −
∑
〈i,j〉

Jij cos(θi − θj) (1.6)

If one is interested in modelling systems in which the energy explicitly depends on

the two colours the neighbouring nodes take and not just on the conditions of being

or not equal or on the �angular di�erence� between them, a generalised Potts model
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may be de�ned. In this latter, all the energy levels can be independently de�ned and

Jij becomes a q by q matrix. This generalisation can be useful in many contexts, as

for example in the biological applications that will be discussed in the following.

Also the discreteness of the variables may be relaxed. The most common way by

which this can be achieved is by just sending the number of possible angles in a clock

model q →∞ so that the spins may take continuous values; the XY model obtained

in this way is formally described by exactly the same equation 1.6, the di�erence

between the two being in the values each spin is allowed to take.

In many cases of interest, the interactions do not involve just two sites at a time.

The so called generalised Ising models, de�ned to take into account this possibility,

are described in the most general form by the following energy function:

E(σ̄) = −
pmax∑
p=1

∑
i1<...<ip

Ji1...ipσi1 . . . σip (1.7)

where the index p represents the order of the interaction. In all the cases discussed

until now, the maximum order of the interaction had been implicitly �xed to pmax = 2,

considering just one-body interactions (the external �elds, so far called hi) and the

two-body interactions, so far called couplings Jij. This formulation enables to study

also higher order of interactions. This generalisation, being an interesting feature

on its own, is also very useful from the applicative point of view: the constraints in

many of the CSP that will be introduced in the following involve indeed three or more

variables, and could not be modelled just by using two-body interactions.

1.3.5 Inverse problems in disordered systems

In all the models described before, a lot of e�orts have been devoted to the under-

standing of the direct problems. In this context, they typically consist in calculating

thermodynamic quantities such as magnetisations and correlation functions from the

knowledge of the interactions acting among the spins (in the simplest cases, �elds

and couplings). This problem is highly non trivial on its own, as is shown by the

fact that a solution for the d = 3 Ising model is still lacking. No simple relation

can be generally established connecting �elds and couplings with the thermodynamic

quantities they induce, and an exact estimate is not computationally feasible as it

would require a number of calculations exponential in the size of the system (because

of the sum over all the possible con�gurations).

Because of the variety of systems that can be described as Ising models, in the last

years much research has been devoted to the study of the far more complicated inverse
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Ising problem [18]. In this latter, one has access to the thermodynamic quantities

and wants to estimate the interactions having generated them. Formally, the problem

can be relatively easy stated: knowing that each set of J and h will generate certain

thermodynamic quantities, one has to �nd out which of them is more likely to have

generated the ones we observe; an exact, exhaustive search for it would again require

an exponential number of operations.

A brute force approach, giving typically good results but very slow in its conver-

gence, is a Monte Carlo simulation that, starting from an initial arbitrary choice of

�elds and couplings, iteratively calculates the thermodynamic quantities they imply

and compares them to the true ones. The parameters are then changed in order to

diminish the discrepancy between the two, for instance by using a gradient descent

on the parameters, and the procedure is repeated until a set of J and h producing

thermodynamic quantities similar enough to the observed ones is produced. This

approach is made more di�cult by the fact that in this case even the solution of the

direct problem, which has to be performed multiple times, is not trivial at all.

A comprehensive review of the methods developed in this �eld would go beyond

the scope of this thesis, and the variety of methods proposed to address this central

problem will therefore just be stressed: they go from di�erent orders of mean-�eld

approximations [19] to adaptive clustering approaches [20], from methods making use

of the linear response theory [21] to expansions for small values of the correlations [22]

to approximations of the probabilistic features of the system making use of the pseudo-

likelihood [23].

1.4 A computer science modelling framework: the

constraint satisfaction problems

1.4.1 De�nitions and examples

A modelling framework that turns out to be of particular interest for the type of

problems addressed in this thesis is the one of the constraint satisfaction problems [24].

Such problems involve a certain number of objects and a set of conditions or limi-

tations they have to satisfy. Each of these conditions involves only few variables, in

a number which remains in particular �nite and typically small even in the in�nite

system size limit. One such problem is the already brie�y mentioned q-colouring

problem, in which each constraint involves exactly two variables (i.e. two neighbour-

ing sites) and asks them not to take the same colour in the assignment proposed.
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The most natural solution one can look for in these situations is an assignment of

the variables such that all the constraints are satis�ed; in the previous example, one

would like to look for an assignment such that to none of the couples of neighbouring

nodes is assigned the same colour.

For the sake of generality, a more general de�nition is usually given. The problem

is assumed to be de�ned on a set of N variables σ1, . . . , σN , each of them taking values

in a �nite set χ; a global assignment will be indicated as σ = (σ1, . . . , σN) ∈ χN .

Because of the constraints, each assignment σ will be characterised by a cost, or

an energy (by respectively using a computer science or a physics language) E(σ)

corresponding to the number of constraints it violates. The natural request expressed

in the previous paragraph can hence be quantitatively stated as the search for a σ

such that E(σ) = 0; however, other legitimate questions can be also asked. A slight

generalisation of the previously discussed request is the optimisation problem, the

output of which is a con�guration σ with minimum total cost. In the cases in which

no assignment can satisfy all the constraints at the same time, this algorithm will

return an optimal con�guration σ∗ = arg minσ
[
E(σ)

]
; in a q-colouring problem, for

instance, it will return an assignment of colours such that the number of neighbouring

couples sharing the same colour (i.e. the number of unsatis�ed constraints) is the

smallest possible. In the decision problems, the output is a boolean variable telling

whether an assignment such that E(σ) < E0 exists for the problem under analysis,

without explicitly �nding it. If we set E0 = 0, these problems can be seen as a

sanity check on the constraints involving the variables: indeed, depending on the

output of this problem being positive or not, the CSP is respectively said to be

satis�able or unsatis�able. An evaluation problem, �nally, will determine the cost

of an optimal solution; formally, the output of an algorithm implementing it will be

E∗ = minσ
[
E(σ)

]
and this result will tell us how many constraints the best possible

assignment will be anyway forced to violate, without anyway explicitly proposing

such an assignment.

Because of the generality of this framework, a lot of situations can be stated

as constraint satisfaction problems. In more applicative �elds, for instance, one is

often interested in optimising something under some constraints. To make one out

of many possible examples, in a resource allocation problem one has to decide how to

distribute a �xed amount of resources in a system in order to optimise some outcome:

in a public transportation system, this may correspond to the goal of maximising the

number of people able to use the o�ered service and minimising their waiting time

(i.e. optimising the service in some sense) by distributing in the best possible way
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the overall availability of buses. As usual, we will mainly be concerned about more

abstract versions of such situations, nevertheless possibly generating insights about

such speci�c applications.

Many CSP are de�ned on networks and will hence be discussed in chapter 2

devoted to graph theory: the already discussed graph colouring is one such problem,

and other examples will be proposed in the following. Another class of CSP having

played a central role in the theory of computational complexity is the one of SAT

problems. Here the variables xi are boolean, meaning that their value can be either

TRUE or FALSE or, for brevity, respectively 1 or 0; each variable can also be

negated, the negation of xi = 1 being x̄i = 0 and vice versa. The variables have to

satisfy M constraints, taking the form of clauses : these latter are logical OR of a

certain number of variables (which is in general di�erent for any clause) or of their

negations. Because of the de�nition of the logical OR, in order for a clause to be

satis�ed, at least one of the variables has to appear with its correct value. Let us

consider for instance a clause involving three variables x1, x3, x7 as follows:

x1 OR x3 OR x̄7

Such an assignment is satis�ed by any choice of the three variables involved apart

from x1 = 0, x3 = 0, x7 = 1: with this assignment, the clause is said to be violated.

As expected, for a �xed number of variables the problem gets harder and harder to

satisfy as the number of clauses increases; for a large enough number of such clauses,

no possible assignments will be able to satisfy all of them any more, and the problem

will enter its unsatis�able phase. Of particular interest are the k-SAT problems, where

all the clauses the system have to satisfy involve the same number k of variables; in

3-SAT for instance all the constraints will be similar to the one discussed in the

previous example.

1.4.2 Infeasibility of the straightforward solutions

A common feature of the CSP is that �nding a solution in a non-e�cient way

is easy enough. If one thinks about the k-SAT problem, for instance, for any given

assignment of the variables the number of clauses (if any) that it violates can be

evaluated quite easily, i.e. in a time which grows just polynomially with the system

size. If one systematically tried all the possible assignments, he would be able to

answer all the possible questions on the CSP under exam in an exact way. For some of

them, one could even stop in advance, for example as soon as an assignment violating

no more than a given number of clauses would be found. Unfortunately, this turns
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out to be practically infeasible, as the number of possible assignments is exponential

in the size of the instance: for a k-SAT problem (and in general for any problem in

which the variables may take one out of two values) de�ned on N variables, there are

2N possible assignments. This exponential law is far from being a technical detail,

as it practically makes this exhaustive approach completely infeasible even for quite

small problems.

Smarter algorithms avoiding us to check all the possible solutions can be thought

of; a class of such algorithms incrementally builds potential solutions as follows. At

the beginning of the procedure all the variables are unassigned and at each step one

of them is picked up at random, and it is temporarily assigned �rst to 0 and then to

1. If just one of the assignments does not lead to any clause violation, the variable is

assigned to that value; if none of the assignments produces contradictions, the variable

is assigned at random to 0 or 1. In some cases, however, both the assignments may

lead to contradictions; without getting into the details, I will simply say that re�ned

versions of this original algorithm have been designed so to face such situations. One

of the main elements of these re�nements is the backtracking, mechanism by which

it is possible to get out of a contradiction as the one described above. In such a

situation, the backtracking consists in de-assigning some of the variables previously

�xed, and to restart. This iterative procedure is repeated until one is able to get to

a complete assignment of the variables without incurring into any contradiction.

The procedures discussed can be re�ned over and over, so to accelerate the search

for a solution, or to enlarge the probability of �nding one. For reasons that will

be clari�ed in the following section, however, all these re�nements are in general not

su�cient to be sure to �nd a solution of a problem big enough in a reasonable amount

of time.

1.4.3 The worst case scenario

Given the immense number of CSP one can think of, a question of great impor-

tance is how to design a way of comparing them. More precisely, one would like to

build a hierarchy of di�culties (i.e. of the number of operations requested) in prob-

lems, so to be able and assign each one of them to the appropriate level. Being this

framework largely independent on the details, one could imagine to use as proxies of

the �di�culty� of a problem its running time, or the number of operations requested

for solving it. The hardness of a problem may however di�er from an instance to

another, and the notion of di�culty of a CSP problem (and not of one of its speci�c

realisations) has hence still to be de�ned.
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People in the theoretical computer science community, who addressed this issue

�rst, were mostly concerned about being able to obtain performance guarantees for

each problem. In order to have them, they adopted a worst-case scenario, according

to which the di�culty of each problem was to be stated analysing its most di�cult

instance [25]. In order to let this scenario (known as computational complexity theory)

be even more universal, they organised the hierarchy in quite huge classes, looking at

the scaling law of the running time for increasing sizes N of the problem; also in this

case, a precise de�nition of what is meant by �size� of the problem is not needed, as

the following classi�cation will work for any �reasonable� 1 choice.

The P class is the one of the easiest problems, that are solvable in polynomial time.

More precisely, an algorithm exists such that the number of operations requested to

solve a problem of size N is bounded by Nk for some k. For another big class

of problems called NP the former statement cannot be proven, as all the known

algorithms are not polynomially bounded (scaling typically as the exponential of

N); but if a solution is given, its correctness can be veri�ed in polynomial time.

Demonstrating whether the two former classes are distinct is one of the major open

problems in theoretical computer science; however, it is widely believed that this is the

case (P 6= NP conjecture) and that, according to this, being able to verify a solution

in polynomial time should not be a guarantee of being able to design a polynomial

algorithm for �nding such a solution.

The NP-complete class is a subclass of NP whose members are characterised by

the fact that any other problem in NP can be polynomially reduced to each of them.

Without entering into details going beyond the scope of this thesis, I will just say

that, because of this condition, if a polynomial time solution for one of the problems

in NP-complete were found, all the problems in NP would be demonstrated to

be solvable in polynomial time. The k-SAT problem above introduced is particularly

interesting in this regards: its k = 2 version indeed is a simple P problem, whereas the

k ≥ 3 cases were the �rst to be rigorously assigned to the NP-complete class [26].

A huge number of other problems have joined them in the following years; among

them, the travelling salesman problem dealing with the exploration of a network that

will be extensively discussed in chapter 4.

The hierarchy of di�culties goes on with a class of problems which are at least

as di�cult as the ones in NP, but are not themselves in NP as a straightforward

way of verifying a solution has not been found yet: this class goes under the name

1. By reasonable here it is meant that the size should not be de�ned in such a way to be a

quantity exponential in the number of elements that contributes to �nding a solution
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of NP-hard. Of particular interest from a physicist point of view is the #P class.

In all the previous cases, indeed, the focus was on a single solution, separating the

problems according to the hardness of �nding one, or of verifying the correctness of

one. The #P class, on the other hand, typically gathers problems focused on the

entire space of the solutions. Even in cases for which �nding a solution can be an

easy task (i.e. solvable in polynomial time), asking how many possible assignments

satisfy a given property can be much harder, as the former is just a basic component

of the procedure needed for solving the latter.

1.4.4 The typical case scenario

From a modelling perspective, the classi�cation of CSP described in the previ-

ous section has two very strong positive points. Because of the worst case scenario

adopted, the guarantees it ensures on a given problem are completely independent on

the realisation: for a problem demonstrated to be in P, a polynomial time solution

can always be found, no matter what. The second point is that, as the hierarchy is

organised in large classes, this classi�cation is widely independent of any speci�city of

the problem under exam (implementation, details of the CSP, precise question asked

on it). A strict parallel among very di�erent problems is established as a plus, and for

example an (improbable) polynomial-time solution to be discovered for 3-SAT would

immediately originate a polynomial-time solution for the graph colouring problem.

In the 80's, however, people started to question this classi�cation. In fact, it

turned out that many instances of hard problems (for instance, belonging to the NP

or to the NP-complete classes) were straightforwardly solvable in polynomial time

by using quite standard algorithms. Paradoxically, one can think of a CSP built

in such a way to have just one speci�c instance only solvable in exponential time,

whereas all the others, much easier, are addressable in polynomial time. Theoretical

computer scientist would tell you that such a problem is in any case �hard�; but is it?

The former question is of course a bit provocative. The answer is clearly �yes�, as

soon as we accept the notion of worst case scenario hardness. If we think that the

answer should have been �no�, on the contrary, an alternative de�nition of hardness

has to be thought of. This alternative should address a series of questions which

the worst case scenario leaves (purposely) aside; which is the fraction of truly hard

instances in a problem classi�ed as �hard�, how di�cult is a typical instance, and how

the di�culty increases as we add more and more constraints are examples of such

unanswered questions [25]. The approach used to address these points consists in

generating a large number of instances so to look at their statistics (at their average
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hardness, for instance); for the sake of generality, these instances have to be generated

at random. In the case of k-SAT, for example, one �xes at �rst the number of variables

and the number of clauses they have to satisfy; then, an explicit instance is obtained

by selecting at random which variables have to appear in each clause, and their sign

(i.e. whether or not they are negated in the clause). Because of the stochasticity of

the generation procedure, these problems go under the name of random constraint

satisfaction problems or rCSP.

This new situation under exam having been clari�ed, it is now possible to give a

formal de�nition of the word �typical�, previously used in quite a generic way. In the

context of rCSP, a given characteristic is said to be typical if the probability for it

to occur goes to 1 as the system size grows (N → ∞). Interestingly enough, these

problems are not at all new in the scienti�c community. An entire branch of the

physics, called statistical physics, has indeed been dealing with systems characterised

by the average behaviour of their components since the end of the XIX century. The

methods developed in two very far apart �elds of the science, hence, turned out to

be applicable to the same set of problems. Another even more striking similarity can

be drawn among these problems and the physics of spin glasses introduced in section

1.3.4, and will be the main focus of the following chapter 1.5.

After this shift in the types of questions people were interested in, it became

clear that a set of concepts and tools previously developed in the community of the

statistical physics of disordered systems could have been applied to rCSP [27]. In

order to clarify this statistical approach to rCSP, I will refer again to the previously

discussed k-SAT example. By requiring a set of variables to satisfy more and more

clauses the problem will clearly become harder and harder, as any clause added to the

system at �xed N diminishes (or at most leaves unchanged) the number of satisfying

assignments. If we de�ne α = M
N

as the ratio between the number of constraints and

the number of variables, hence, we expect that the larger α is, the harder the problem

gets; in particular, for α large enough the instances will often be unsatis�able. In

order to quantitatively characterise this common sense statement, a thermodynamic

limit has to be performed so to be able and tell whether a rCSP with a given α is

typically satis�able or not: the correct thermodynamic limit will correspond in this

case to sending M and N to ∞ while keeping their ratio α = M
N

(i.e. the �di�culty�

of the problem) �xed. Formally, calling P (α,N) the probability for a random k-SAT

with N variables and clause density α to be satis�able, one can study the behaviour

of such a quantity as a function of α for several N (see �gure 1.1).
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Figure 1.1: Probability for a random 3-SAT to be satis�able as a function of the clause
density α for several system size n. As one can see, these curves are monotonically
decreasing for any n and their steepness increases for systems getting larger and larger.
In the in�nite size limit one would expect a sharp transition between a �satis�able with
high probability� and an �unsatis�able with high probability� phase in correspondence
of a critical value αs. The �gure is taken from [25]

As expected, for very low (respectively high) α almost all the instances are sat-

is�able (respectively unsatis�able) even for quite small system sizes. The most in-

teresting part of the �gure is however in between these two easily understandable

regimes. Indeed, the part of the curve connecting the �solvable with high probability�

with the �unsolvable with high probability� regions becomes steeper and steeper as N

increases. For an in�nite system size, it is expected that a sharp transition between

a SAT and an UNSAT phase will emerge in correspondence of a threshold value: an

αs will hence exist such that:

lim
N→∞

P (α,N) =

{
1 if α < αs

0 if α > αs

By using the physics language, this is a phase transition analogous to the ones

occurring in the magnetic systems that have been discussed in section 1.3. In par-

ticular, the satis�ability threshold αs plays in this case the same role of the critical

temperature Tc that was de�ned in such a way for an in�nite size system to be ordered

for any T < Tc and disordered for any T > Tc.

The discussed SAT-UNSAT transition is the most natural phase transition one

can think of for this kind of problems. The application of the statistical physics

methods, however, let people discover other very interesting phase transitions inside

the SAT phase, where solutions of the problem typically exist. These latter involve

the structure of the space of the solutions, and their discover gave both a theoretical
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and a practical contribution to the understanding of these problems (for example,

for justifying the abrupt change in the algorithmic performances in correspondence

of some values of α < αs). The discussion of such transitions will be delayed to

chapter 3, devoted to the problem of spreading dynamics optimisation on graphs,

where explicit examples of such phase transitions will be shown.

1.5 Spin glasses, rCSP and large deviations

1.5.1 Spin glasses and CSP: two languages, same problems

In the previous sections I presented two frameworks apparently very far apart

from each other. On the one hand, the constraint satisfaction problems, originally

studied in the computer science community; on the other, the Ising model for magnetic

systems and its generalisation to spin glasses and disordered systems. People realised

at a certain point that the two were intrinsically similar, and that all the machinery

developed in one community could have been fruitfully applied by the other (for

instance, the study of the worst case scenario to spin glasses and the search for a

ground state in CSP).

In some cases the connection between statistical mechanics and CSP emerges in

a very clear way, as a mapping between problems is possible: the parallel between

solving a colouring problem and �nding the ground state of an antiferromagnetic

Potts model has been for instance discussed in section 1.3.4. Even more generally,

CSP can be described in terms of spin glasses: in both cases, indeed, a con�gura-

tion of the binary variables is chosen depending on an assigned cost function. The

interactions among the variables are in both cases randomly chosen and constitute

a quenched disorder of the system; the procedure of averaging over the quenched

disorder represented by the explicit realisation of couplings and �elds in a spin glass

model is analogous to performing ensemble averages over the instances while consid-

ering rCSP. As it has been discussed, the energy level of the ground state of a spin

glass is not at all trivial to determine, and it is in general larger than zero even for

small systems because of the frustration emerging among the couplings. From a CSP

point of view, this situation is equivalent to a�rm that the system is unsatis�able

as not all of its constraints can be matched at the same time; also in this case, one

may incur in such a situation even in very small systems, such as a three variable

a, b, c CSP in which we require a = b, a = c and b 6= c. These three conditions clearly

cannot be satis�ed together and the system is said to be geometrically frustrated

because of the presence of such contradictory conditions.
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Having clari�ed the deep similarities between these two topics, a simple example

will conclude this discussion by showing how a CSP problem can be precisely trans-

lated into the language of spin glasses, so to be able and explicitly tackle it with the

methods developed in this latter �eld. The maximum cut problem is de�ned on a

graph in which to each link is assigned a given weight. If the nodes of such a graph

are partitioned in two groups V+ and V−, a certain number of links (called the cut of

the graph) will connect a node in V+ with one in V−. The solution of this problem

is a partition characterised by the sum of the weights of such links being the largest

possible. Now let us imagine the weight of any link between a couple (i, j) of sites

to be the opposite of a magnetic coupling Jij, and to represent the fact of a node be-

longing to V+ or V− by respectively assigning it a variable σi = +1 or σi = −1. The

previous problem turns hence out to be exactly the same as searching the ground state

con�guration σ minimising the spin glass energy function E(σ̄) = −∑〈i,j〉 Jijσiσj.
1.5.2 Looking for atypical events

In a sense, both of the approaches to CSP presented before are missing or neglect-

ing a very important part of the problem: on the one hand the worst-case scenario

does not tell us anything about what we could reasonably expect from a given, ran-

domly chosen instance of the CSP under exam. On the other, focusing exclusively on

typical, most probable cases �ows away all information about the extreme situations

one could encounter in such problems.

In particular, a more precise evaluation of how improbable are the non typical

events is of the greatest interest in �nance [28], where an extreme, unlikely event

could be the one triggering a global crisis. The large deviation principles that will

be presented in this section aim at exploring and characterising the �uctuations of a

random system around its most probable state. This can be thought of as a gener-

alisation of the typical-case scenario, as also the non-typical phenomena are therein

addressed in a probabilistic sense.

This framework is based on the so-called large deviation principle. In an intuitive,

non-rigorous form this principle says that the probability of an event Pn indexed by

an integer n scales for large n as Pn ≈ e−nI where I is some positive constant. More

precisely, the probability of a random variable An to take value in a set B satis�es a

large deviation principle if a rate function can be found such that

limn→∞

[
− 1

n
logP (An ∈ B)

]
= IB (1.8)
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If this latter holds and IB 6= {0,∞}, P (An ∈ B) has a leading exponential decay-

ing behaviour in n (what was meant by the �rst, non rigorous form of the principle).

If IB = 0, the piece of information we are getting is that the set B considered contains

the typical event; on the other hand, if IB = ∞ the theorem still holds, but it only

implies that the leading decaying behaviour is super-exponential in n and, in some

sense, the large deviation ansatz turns out not to be fully justi�ed in this case.

A convenient form of this principle is stated in terms of the probability density of

the variable to assume a given value a as

P (An = a) ≈ e−nI(a) (1.9)

A rigorous derivation of these statements from a mathematical point of view, which

goes beyond the scope of this work, can be obtained in the context of the theory of

probability [29].

A typical problem can in this context be split in two parts. At �rst, a variable

of interest for which a large deviation principle holds has to be �nd; secondly, a

precise form of the rate function quantitatively describing its exponentially depressed

�uctuations around the typical behaviour has to be derived.

The most natural way to address this problem is to directly calculate the prob-

ability distribution of the random variable of interest, so to be able and explicitly

study its asymptotic behaviour as n→∞. In many cases, this approach turns out to

be very hard, or even impossible: this is the case for continuous random variables, or

for variables which are not independently, identically distributed in which one cannot

use the standard approximation techniques, such as the Stirling's one.

A di�erent route can however be taken to derive the rate function in many cases

of interest, the di�erence with the previously described method being the same di�er-

entiating the use of the microcanonical and of the canonical ensembles in statistical

physics, i.e. by respectively �xing either its energy or its temperature.

Using the same notations as before, let us de�ne the scaled cumulant generating

function of An as

λ(k) = lim
n→∞

[
1

n
log〈enkAn〉

]
(1.10)

where k is a real number and the average on the right-hand side is de�ned as

〈enkAn〉 =

∫
R
enkaP (An ∈ da)

Under the condition of λ(k) existing and being di�erentiable for any value of k,

the Gärtner-Ellis theorem ensures that a large deviation principle in the form 1.9
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exists for the variable An; this latter can be easily evaluated by what is called a

Legendre-Fenchel transform as I(a) = supk∈R{ka− λ(k)}.
The former requests on λ(k) are far away from trivial. In chapter 4 a case in

which they do not hold will be discussed; the consequences of these hypotheses not

being veri�ed will be very interesting in themselves from a physical point of view, as

they will shed light on how the system behaves under some speci�c conditions.

1.5.3 The large deviations in a simple case

The previously discussed ideas can be clari�ed by looking at a standard, very basic

problem in probability theory. Let us consider a sum of n independent, identically

distributed variables extracted from a Gaussian probability distribution with average

µ and variance σ2; their sample average is de�ned by:

Sn =
1

n

n∑
i=1

Xi (1.11)

The role played in the previous section by the system size is played in this case

by the number of extracted variables, and quantities of particular interest are the

asymptotic values holding in the n→∞ limit.

This problem can be looked at according to di�erent perspectives. At a �rst

level, one could be interested in something reminiscent of the typical case scenario

above described, i.e. which value the quantity Sn is more likely to take as n → ∞.

The answer, even being in this case quite simple, is a result of major importance in

probability theory and goes under the name of law of large numbers : it says that Sn
converges in probability to its mean, such that formally:

lim
n→∞

P
(
Sn ∈

[
µ− δ, µ+ δ

])
= 1 (1.12)

If one is, on the other hand, interested in determining also the probability with

which Sn will take an arbitrary value s, in general di�erent from its mean, one can

study its complete probability distribution. As expected, the average of Gaussian

i.i.d. variables is still a Gaussian variable, and more precisely one obtains:

P (Sn = s) =

√
n

2πσ2
e−

n(s−µ)2

2σ2 (1.13)

Having obtained this result, one can quite straightforwardly follow the route de-

scribed in the previous section so to determine the large deviation function of Sn. By
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neglecting the sub-dominant for n→∞ term of order
√
n, one gets a large deviation

formula for the quantity of interest of the same form as eq. 1.9:

P (Sn = s) ≈ e−nJ(s) with J(s) =
(s− µ)2

2σ2
(1.14)

where J(s) is therefore the rate function. The possibility of deriving the rate

function governing the exponential decay was in this case particularly simple, as

it made use of the gaussianity of the variables Xi entering into play. However, a

classical and crucial result of probability theory going under the name of Cramér's

theorem states that the same is true for partial sums of i.i.d. variables extracted

from some arbitrary probability distribution (which has nevertheless to satisfy some

not-so-restrictive hypothesis) and that in all such cases the probabilities of realising

�large deviations� away from the mean decay exponentially with a rate given by the

so-called Cramér function [29].

1.6 Statistical mechanics for non-physics problems

1.6.1 A common framework, many �elds of interest

Such a connection between di�erent �elds has during the years become more and

more common. In particular, some of the most exotic phenomena in many applicative

�elds such as biology, �nance, social systems may be quite easily understood in a

physical framework, letting the statistical physics become a common language for

very diverse problems. In the theory of complexity developed over the last forty

years, indeed, physics has developed several models allowing one to understand how

small perturbations can lead to large e�ects in systems in which the natural notion

of linearity (small actions leads to small e�ects) does not hold. In some optimisation

problems, for instance, the algorithmic performances were known to fall abruptly for

some values of the parameters, and the experience of physicists in glassy systems for

which the optimal solution may either not exist or not being reachable in a �nite

amount of time turned out to be useful. Many �elds started to show a non trivial

and almost unexpected connection with fundamental issues in statistical physics like

the presence of phase transitions and the existence of glassy phases. The former, in

particular, were good representatives of how a macroscopic, collective behaviour may

emerge in a large system following simple microscopic laws [27]. These considerations

becoming more and more evident led to the birth and to the rapid expansion of a

new, interdisciplinary �eld of research at the crossroad between statistical physics,
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information theory and combinatorial optimisation [18]. The most advanced tools

and concepts coming form the statistical physics community, in particular, allowed to

solve and to gain fruitful insights on very large constraint satisfaction problems like

random satis�ability, colouring, or error correction codes. Among them, techniques

such as message passing, survey propagation, cavity method will be presented in

reason of their application to the speci�c case of the spreading dynamics in chapter

3.

1.6.2 Social systems

A �eld in which the usage of prototypical Ising-like models has been particularly

successful is the one of the social sciences. A lot of hardly understood collective

behaviours turned out to be quite simple phase transitions if thought in terms of

magnetic systems. The emergence of global ordered states in the way crowds [30] or

�ocks of birds [31] move showed that the same principles hold both for humans and

for animals, as soon as the number of elements is large enough to justify a statistical

treatment. According to the Newton maxim reported in [28], indeed, �modelling the

madness of people is more di�cult than the motion of planets�, but as soon as large

populations are involved statistical regularities begin to emerge. In other interesting

studies, the understanding of vehicular and pedestrian tra�c has been addressed [32]

by making very few �realistic� assumptions on the characteristics of the basic elements.

As already partly discussed, many interesting results have been obtained by mak-

ing use of statistical physics methods as regards the opinion dynamics [30]; in partic-

ular, how a global agreement on a certain topic may emerge even if every person has

the possibility of discussing only with a very limited number of friends, or acquain-

tances. In this case, the �nite number of states a component may assume appears

a natural choice, and the model obtained in this way is maybe less abstract than in

other cases.

Another situation in which the use of discrete values is very natural is in the

models of segregation. By using variables taking two values as in the Ising model,

Thomas Schelling showed in his foundational paper [33] how even a small preference

of any person to have a minimal percentage of neighbours similar to him may result in

a globally ordered structure (i.e. a complete segregation of the positive and negative

�spins�). This model, at �rst carried out at a sociological level, received afterwards

much more rigorous treatments from a statistical physics point of view [34]. The

important insights obtained by these abstract models are con�rmed by the Nobel

prize in Economics attributed to T. Schelling for �having enhanced our understanding
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of con�ict and cooperation.� In particular, the absence of a simple correspondence

between individual incentives and collective results was shown for the �rst time.

Finally, also the linguistics has been approached with these methods [30] in order

to try and quantitatively understand how an agreement about the words to be used

to describe a given concept can be eventually reached, as well as how languages evolve

during time.

1.6.3 Economics and �nance

The possibility of studying economical systems according to statistical physics

should not be surprising, as they can be seen in a sense as an extension of the pre-

viously discussed social systems. Even if the consequences are typically much more

severe, crisis are for instance in the simplest modelling framework not far away from

the emergence of an agreement in an opinion dynamics context. The necessity to

start using in economics studies physical models able to explain how wild conse-

quences could be obtained by apparently innocuous perturbations on the system was

claimed by J.P. Bouchaud in his provocative paper [28]. The modelling of hetero-

geneous agents interacting in a �nancial market in the framework of the statistical

mechanics of disordered systems has been proposed and deeply studied [35].

Also the �nancial system has been addressed by the statistical physics community.

The usefulness of a quantitative approach is in this case out of discussion as, according

to the L. Bachelier maxim reported in [4], �the market, without knowing it, obeys to

a law which overwhelms it: the law of probability.� The possibility of using statistical

physics methods has been relatively straightforward in this case as the �nance has

been a data-rich system for many decades now. A quantitative approach to the

�nancial instruments gave rise to the �eld known as econophysics [36], and a more

precise study of the statistical properties of �nancial time series has been proposed

for example in [28].

1.6.4 Neural networks

The biological application of statistical mechanics models are several and varie-

gate. This depends probably on the fact that in many cases the precise functioning of

the systems underlying biological processes is not well understood and simple models

reproducing some features can be therefore of interest. As regards the Ising model,

the most natural and already brie�y discussed application is to the neural networks;

a statistical physics approach has been used also in order to address other topics of
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interest in biological systems, which are for simplicity discussed in the following sec-

tion 1.6.5. A neuron, that at a given time is mainly characterised by the fact of either

being �ring or not, can be easily modelled as a an indicator variable (a spin) taking

value +1 or 0. In his classical paper [37] J. J. Hop�eld tried to explain the ability

of a large network of neurons to perform computational tasks just as a spontaneous,

collective consequence of local, pairwise interactions; that is, by the same mechanisms

that in magnetic systems are able to originate collective, global phenomena such as

stable magnetic orientation as an outcome of local interactions among large number of

elementary components. The study of the brain according to such models, that never

stopped, forked into two main �elds of research. On the one hand, people tried to

understand better and better the functioning of the brain (natural neural networks),

for instance by making use of data coming from experiments. On the other, the basic,

abstract models of neural networks have become a standard in the machine learning

community, for automatically performing tasks such as image recognition and nat-

ural language processing (i.e. arti�cial neural networks). Many results have been

obtained in this �eld, and more and more complex frameworks have been analysed

(the most recent and fashionable being probably the one of deep learning [38], on

which relatively little is known for now).

1.6.5 Other biological systems

The amount of sequencing data available has been constantly and dramatically

increasing over the last twenty years; in reason of that, the interest of being able to

statistically modelling such data has more and more increased. In protein folding [39]

there is a discrepancy between the data biologically and structurally important (the

three dimensional folded structures) and the ones we can more easily have access

to (the linear sequences of amino acids known as primary structures). A statistical

connection between the two has been found, as by looking at the substitution patterns

of the amino acids in all the members of a given protein family, one should in principle

be able to infer the couples of sites most stable during the evolution, stability which

is in turn a proxy for the structural importance of such couples (i.e. for �nding

the contact points in the folded structure). This problem is intrinsically inverse,

as the quantities of interest are the couplings between sites, whereas the observable

quantities are the frequency counts generated by them. For solving it, one would

like to build up the most likely statistical model for the complete sequence able to

reproduce the correct (measured) marginals.

34



A lot of study has also been devoted to the evolutionary dynamics from a statistical

physics perspective [40]: among the others, topics such as the statistics of adaptive

processes, the population genetics and the evolution of �tness landscapes have been

touched. These �elds have observed a real revolution during the last century, going

from a qualitative to a quantitative approach. Even if already in 1924 J.B.S. Haldane

began his classical paper [41] saying that �a satisfactory theory of natural selection

must be quantitative�, this approach has become more and more fundamental with

the avalanche of data that has started to be available for statistical analysis since the

last couple of decades.

1.6.6 Signal processing

The problem of optimally reconstruct high dimensional signals using a limited

number of measurements is of great interest in many di�erent �elds such as image

processing, astronomy or biology. More generally, a central topic in signal processing

theory is how to minimise the sampling of a sparse signal (i.e. with many components

equal to zero) in such a way to be nevertheless able, later on, to reconstruct it either

exactly or approximately. Compressed sensing triggered in this context a major

evolution, as it enabled to record only the information needed for the reconstruction

[42]. If with more traditional techniques one was forced to perform an acquisition not

as sparse as the true signal, by using statistical physics methods on large systems it

was possible to take a number of measurements approaching the theoretical limit [43].

Both the algorithms implemented for the reconstruction of the signal and for the

design of the measurement matrix rely on statistical physics, the �rst being message-

passing inspired, the second coming from the theory of crystal nucleation.

More generally, statistical physics methods have given a major contribution in

analysing and understanding the performances of a class of algorithms used in signal

processing [24] in order to decide how to perform the encoding, these latter methods

going under the name of error correcting codes [44].

1.6.7 Computer science

The connection between statistical physics and problems of interest for the com-

puter science community [24], and in particular to CSP [45], has already been dis-

cussed in some details: I will just remind that, in this context, statistical mechanics

methods turned out to be of extreme utility in understanding the performance of

well-known algorithms, in determining the theoretical thresholds for these problems
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and in designing new procedures able to approach such limits. These discussion will

be further detailed in chapter 3, where a statistical mechanics approach to the solu-

tion of the spreading dynamics on networks (which is generally speaking a constraint

satisfaction problem) and the results obtained by it will be described.
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Chapter 2

The network theory

2.1 Motivations and de�nitions

2.1.1 Ubiquity of networks

Networked systems consisting in a set of interconnected elements are really ubiq-

uitous. They go from the intricate food webs of central importance in the functioning

of ecosystems to the neurons which compose the brain, from the cell that performs its

tasks thanks to complicated interactions among proteins, genes and other molecules

to social system with individuals either collaborating or being in competition with

the people they are in contact with. Depending on the context, the network can be

embedded in the real space, with edges representing spatial proximity, or in a more

generally de�ned space in which two nodes do not need to be really near to each other

in order to be in contact (two far apart airports being in this sense in contact if at

least one �ight between them exists).

An ambitious task is to better understand the laws governing all these systems.

In order to do this, one �rstly has to imagine a way of consistently describing all of

them as special cases of a more abstract model. This can be achieved by inserting

into the model only the features common to all the networked systems and neglecting

all the ones speci�c of some realisations. What one obtains by doing this is a graph or

a network consisting in a set of elements called nodes. The possible interconnection

between a couple of them is represented by a link or an edge joining them.

This very abstract modelling framework is a huge �eld on its own, and a compre-

hensive discussion of it is far beyond the scope of this thesis. However, very complete

books and papers addressed the topic both from a more rigorous and mathematical

perspective [46] and from a more applicative, physical one [14]. The aim of this chap-

ter will be mainly to introduce some speci�c terminology that will be used in the
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Figure 2.1: On the left hand side, a realistic representation of the position of the
landmasses composing the town of Königsberg and of the bridges connecting them.
On the right hand side: abstract graph representation of the situation under exam.
Figure taken from [25].

following when discussing explicit cases of problems on networks and to give some

intuition about the variety of interesting features one can look at when analysing a

networked structure.

2.1.2 The birth of graph theory

The birth of the graph theory is very illuminating from the perspective of the

importance of abstract models to improve our knowledge on apparently complicated

systems.

In the XVIII century, the city of Königsberg was composed by four landmasses

connected by seven bridges as can be seen in the left panel of �gure 2.1. A curi-

ous question intriguing the inhabitants was whether it was possible to �nd a path

through the city so to use each bridge exactly once. Leonard Euler understood that

in order to solve this problem, the system was exactly describable just in terms of the

landmasses and of the information telling which of them were connected by a bridge

(see right panel of �gure 2.1). All the other details such as the explicit position of

the bridges, their length, the dimension and the location of the landmasses etcetera

were completely irrelevant. The solution was indeed found in terms of such synthetic

description, as Euler showed [47] how the path with the desired characteristics was

impossible in Königsberg and, more generally, in any city in which an odd number of

bridges converged on more than two nodes.

It is worthy to stress that in this case, and in general in this kind of combinatorial

problems, the description obtained via the graph is exact. In other cases this is no
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more possible, but the more or less re�ned approximations one obtains by abstractly

studying the geometry of the problem are nevertheless useful for better understanding

the situation under exam. In some situations (for instance in biological systems) the

simple collection of nodes and links is a very rude description; even if in such cases

it is typically hard to produce quantitatively accurate estimates of the outcomes of

the system, the use of the network metaphor [48] allows one to have an idea about

the kind of processes and phenomena that will possibly take place on it. More than

the possibility of modelling a system through a network, however, one should ask

himself whether this modelling really enriches our knowledge on the system and, in

particular, which questions it will help us answering. Applying a highly simplifying

network metaphor to a real system is something to do with caution and having clear

in mind what features of this simpli�cation one is going to look at.

2.1.3 The main features of a graph

An elegant way of abstractly de�ning networked structures is by using graph

theory which speci�es relationships among a collection of items. Communication

networks (for instance set of routes, interconnections among computers or infrastruc-

tures for transporting energy), social networks, information networks (as web pages

connected by hyperlinks) are all examples of systems describable in this way. One of

the �rst characterisation of such systems one can think of is based on the reachability

of its vertices, meaning by this the possibility of going from a node to another by

travelling over the network links; if any node is reachable from any other, the graph

is said to be connected. More quantitatively, one can look at the minimum number

of steps needed to connect any couple of nodes on the graph. The mean of these

values goes under the name of average shortest path length, and it is nothing but the

distance that typically separates two vertices; the maximum among all the distances

is instead usually referred to as the diameter of the network.

One of the most important local features of a graph is probably the degree k of

each of its nodes, de�ned as the number of links converging on it. The average of

all these values gives again a very useful global characterisation of the graph, as it

is equivalent, after a rescaling by the system size N , to the density of connections

among the network elements. Two extreme cases in this respect are of particular

interest. Firstly, one can be interested in graphs featuring very few connections, and

in particular with the lowest possible number of links. If one restricts to connected

graphs, the smallest possible number of edges is N − 1 and corresponds to the graph

being a tree. In this case, no multiple paths exist between any couple of nodes and
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hence no closed loops can be drawn by following the edges. As will be discussed in the

following, on trees the exact solution of many problems can be found by making use

of iterative methods. Approximated versions of these methods can be nevertheless

used also on graphs that, even without being strictly speaking trees, show very rare

loops so that any node sees, around it, a structure that is very similar to a tree; they

are called locally tree-like networks and constitute a class much broader than the

one comprehending only trees. They can indeed be obtained by randomly choosing

a small enough number of connections among the nodes, whereas the probability of

getting a tree with such a procedure is negligible.

At the other extreme, one has the graphs where all the nodes are connected with

all the others; they are said to be complete or fully connected or cliques, and for such

a network of N nodes, the number of edges is
(
N
2

)
. Also this case is important from a

modelling perspective. A well-known approximation of networked systems is indeed

the so-called mean �eld where one makes the approximation of everybody being

connected with everybody else [49]; in other words, the underlying graph is supposed

to be a complete network. This approximation turns out to be extremely valuable

in many situations; for instance, the Curie-Weiss model of ferromagnetism, relying

on such assumption, enabled to exactly study the properties of the thermodynamic

functions in the neighbourhood of the critical temperature. Many real-world networks

are nevertheless very far away from this assumption; they are said to be sparse and

only few of the possible links actually exist. Several quantitative de�nitions can be

proposed for precisely saying what one means by �few�. However, since an N -nodes

connected graph has always a number of edges between N − 1 (if is is a tree) and(
N
2

)
(if it is fully connected), every network having a number of edges E scaling as

E ∼ Nα with α < 2 can be considered sparse; according to other works, instead, a

graph is considered sparse if it has a number of edges linear in the system size, i.e.

E ∼ N .

The global description taking into account only the average degree of the nodes

is clearly very partial. In particular, it is not able to distinguish two very di�erent

situations, in which the same mean connectivity is obtained in one case by nodes

having all the same degree, and in the other by a network where highly and lowly

connected nodes coexist. In order to see this di�erence, one has to look at more

detailed quantities, and in particular at the complete degree distribution or at the

least at higher moments concerning it.
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2.1.4 Enriching the network metaphor

The description of a networked system as a set of interconnected elements has to

be seen as a basic framework that can be enriched when dealing with systems with

speci�c characteristics. Even without entering into the huge variety of such details

that can be inserted in a network de�nition, a couple of features are worthy to be

recalled. Depending on the interaction one wants to model being symmetrical or not,

one can model the system via respectively an undirected or a directed graph. In this

latter case, the relationship existing between a couple of nodes is speci�ed by an arrow

going from one of the two to the other; if the graph is undirected, instead, they are

simply joined by an edge. Put another way, in an undirected graph the connections

between nodes can be listed according to unordered pairs of vertices, whereas in

directed graphs they are speci�ed by ordered pairs such that (a, b) and (b, a) are not

equivalent. The network of scienti�c collaborations is for instance symmetrical (i.e.

undirected) whereas the links telling whom eats whom in a food web necessarily need

to be considered as directed. In biological systems, the gene regulation networks

are typically asymmetrical as the fact of gene a regulating gene b does not imply

the other way round. When inferring the protein structure, on the other hand, the

couplings are by de�nition symmetrical as the link is considered as a proxy of the

spatial proximity of two sites, this latter being a symmetrical quantity. If the graph

is directed, the metrics by which a network is characterised have to be appropriately

modi�ed, for instance by de�ning an in-degree and a out-degree for any node telling

the number of links coming into and going out of a vertex, instead of a single quantity

representing the number of neighbours it has.

Another hypothesis one can be interested in relaxing is the equivalence among the

role played by any of the edges. Thinking about the brain, it has been experimentally

shown how two neurons can be connected more or less strongly; the same holds for

social systems, in which some of the people we are linked to are great friends of ours,

whereas others are just acquaintances. This feature is modelled by assigning a weight

to each of the links in the graph that can even be, in general, a negative quantity; this

is for instance the case if one wants to take care of inhibitory relationships occurring

in neural networks.
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2.2 A path towards more realistic networks

2.2.1 The comparison between observed and reproduced fea-

tures

From a modelling perspective, very interesting is the situation in which the real

data are found to be dramatically di�erent from the ones one obtains by generating

a graph according to a simple model. For instance, in absence of strong a priori ele-

ments against this hypothesis, one can suppose that the degrees of two neighbouring

nodes are not correlated. If this was the case, however, in a heterogeneous network

the probability of a very highly connected node (also called a hub in the following)

being connected to another one would be almost negligible; there are indeed largely

more low-degree than high-degree nodes to which it could link. Looking for instance

at the Internet graph, nevertheless, one discover what has been called a rich-club

phenomenon, as the hubs are very well connected among each other [50]. This con-

tradiction is enlightening as it shows that the former independence hypothesis has to

be relaxed: in order for the description to be reliable, one has to allow a high-degree

node to preferentially attach to another one of the same kind. If this is true, the net-

work is said to be assortative. Also disassortative graphs where a high-degree node

preferentially links to low-degree ones and vice versa are found in applications. This

is the case for instance of the network composed by the personal computers and by

the machines working as servers; the disassortativity can be seen as a soft version of a

bipartite graph where the nodes are divided into two groups and all the links connect

a node of one type to one of the other.

Another such case of discordance of a simple model with the real data appears

when analysing triplets of nodes. If nodes A and B are both connected to a node

C, a legitimate question to ask is the probability for A and B of being themselves

linked to each other. In a random graph where all links exist with probability p, the

answer is trivially p again. Even before proposing a rigorous description, one can see

how this feature is unrealistic in many real cases; in social networks, for instance, two

people being both friends to a third one are much more likely to be friend to each

other than two randomly selected individuals.

A way for quantitatively analysing the structure of local neighbourhoods is by

studying the clustering coe�cient of a node i. Supposing it to have ki neighbours,

the maximum possible number of connections among them is ki(ki−1)
2

; if this is the

case, the subgraph constituted by i and its neighbourhood is a clique. The clustering

coe�cient is de�ned as the ratio between the number of actually existing links ei
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connecting one of the �rst neighbours of i to another and the maximum possible

value such a number can take:

C(i) ≡ ei
ki(ki−1)

2

As discussed, this quantity appears very naturally when analysing social networks

and it was indeed �rstly proposed in the sociology community under the name of

transitivity [51]. The fact that the clustering coe�cient of a real network is typically

much higher than the one of a random graph in which all the links exist with the same

probability is a sign of some non-trivial mechanism regulating the construction of the

graph, and in particular of the impossibility of modelling the local neighbourhood of

a node by a completely stochastic model. More complicated models able to reproduce

such a feature will have to be thought of if one wants a reliable description of the

system.

The principle discussed so far can be generalised. Any characteristic signi�cantly

deviating from the one obtained by a simpli�ed model is a mark of some rule govern-

ing the system that has been neglected. The same remark exposed on the clustering

coe�cient could be applied to any geometric feature being over-represented (or even

under-represented) with respect to what one would expect on random graphs. Such

local structures are referred to as network motifs [52], and they have been particularly

used to gain more insights on the mechanisms governing the formation of biological

networks. When analysing the transcriptional regulating network of E. Coli, for in-

stance, several patterns were found to be atypically represented in many distinct

components of the network. Their study enabled to better understand which biolog-

ical process each of them was associated to, and in reason of which it was preserved

and selected during the evolutionary process [53].

In some sense, the iterative enrichment of the model needed to reproduce some

observed characteristics has to be understood as a journey towards a better compre-

hension of the most important structural features in a network; at each step, one

looks at the features its null model is not able to reproduce, and tries to modify it

so to obtain them. The most important this deviation from randomness is, the most

one should be convinced of the role played by it in the system. However, one has to

be careful about the possible over�tting of the data, resulting in the determination of

an extremely complex model able to perfectly reproduce the data already gathered,

but not to generalise to yet unseen ones.
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2.2.2 Reproducing the observed average distance and cluster-

ing coe�cient

A comprehensive review of the networks topologies proposed during the last

decades both as simple mathematical models and in order to reproduce di�erent sys-

tems is far beyond the scope of this introductory chapter. Following the discussion of

the previous section, it is interesting to see how more and more complicated graphs

were progressively introduced so to be able and understand some features found in

the real data that were impossible to reproduce with the simpler models. In relation

to chapter 1, the question usually asked is what is the minimal set of conditions one

has to impose on the model so to be able and reproduce some features observed in

real systems.

When thinking about networks, the two most simple cases one can imagine are

characterised by either a completely regular or a completely random structure; both

these extremes have been extensively studied, but it turned out that none of them

was able to reproduce at the same time the clustering coe�cient and the average path

length typical of real-world networks, and more complex networks had hence to be

proposed.

A completely determined structure one can think of is a regular lattice. Given the

loopiness typically characterising these graphs, their clustering coe�cient is usually

high. The mean length of the shortest path connecting two nodes is also large, as no

long-range link exists and for connecting two far apart regions of the network many

small steps are needed. The degree distribution is in this case a trivial δ function, as

by de�nition all the nodes have the same number of neighbours.

The completely stochastic model, on the other hand, corresponds to a Erd®s�Rényi

graph in which any couple of nodes is connected with the same probability p [54].

This model has been widely used, and it is in some sense the most appropriate choice

for modelling systems for which any knowledge of the principles guiding the creation

of edges between the nodes is lacking. All the edges being independently drawn, the

probability of a node to have degree k corresponds in this case to the probability of

�extracting� k of the links (each of these events having probability p) and at the same

time �not extracting� the other ones (events with probability 1− p). By considering

all the possible permutations among nodes one easily sees the degree distribution for

such a graph of size N to take the following form:

P (k) =

(
N − 1

k

)
pk(1− p)N−1−k (2.1)
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Figure 2.2: In order to obtain �small-world� networks, one can start from a regular
ring lattice and redirect the links with a certain probability. If the rewiring happens
with probability 1, a Erd®s�Rényi graph is obtained. The �gure is taken from [14].

A case that is often considered is the large system size limit N → ∞ where

the average connectivity of the nodes is kept �xed to a given 〈k〉 by scaling the

probability for a link to be drawn according to p = 〈k〉
N
. In this case, the binomial

degree distribution of eq. 2.1 can be approximated by a Poisson law as follows:

P (k) = e−〈k〉
〈k〉k
k!

(2.2)

Any two couples of nodes are typically linked by quite a short path, of order

log(N) for large systems. The clustering coe�cient is in this case almost a meaningless

quantity, as the probability for two nodes of being connected is always p independently

on them being both linked to a third one or not.

Any graph for which the rule determining the presence of links deviates from the

exposed very simple examples can be generically referred to as a complex network.

Almost all the real-world networks fall into this class, as for instance they show the

coexistence of nodes with very high and with very low degree that neither a lattice nor

an Erd®s�Rényi graph features. Studying the features of real networks, it appears that

they show a mixture of the previously described characteristics. Networks of social

interactions, for instance, were known to exhibit high clustering coe�cient (because

of the transitivity phenomenon [51]) and short paths connecting couples of nodes, as

shown already in the original S. Milgram's experiment [55].

A slightly more complex topology able to explain the discussed features was pro-

posed in their seminal paper [56] by Duncan Watts and Steve Strogatz. They noticed

that the existence of short paths seemed to depend on the presence of long-range links

connecting far apart regions of the network, whereas the high clustering coe�cient

was originated by the locally highly ordered structure. The small-world network they
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Figure 2.3: For an intermediate range of the rewiring probability the small-world net-
works feature the coexistence of two of the characteristics observed in real networks:
the high clustering coe�cient and the typically short path connecting any couple of
nodes. The �gure is taken from [14].

proposed aimed at joining these two features, by starting from a regular lattice and

rewiring some of the links at random, so to create the looked-for long-range connec-

tions. As can easily be seen in �gure 2.2, the two previously discussed ensembles are

just special cases of this, as for a rewiring probability p = 0 one stays in the lattice

case, whereas for p = 1 all the links are randomly reassigned and one obtains again a

Erd®s�Rényi graph.

In �gure 2.3 the curves of the clustering coe�cient and of the mean distance

between nodes are reported as a function of the rewiring probability p. As one can

see, the networks obtained when p is in an intermediate range have both the features

one was looking for (short paths and high clustering). A minimal model able to

reproduce these features observed in real networks was hence found.

2.2.3 Reproducing the observed degree distribution

As one can imagine, this is not the end of the story. Just two features were

considered, and more and more complex models have to be considered as soon as

one is interested in reproducing more detailed characteristics. At a certain point, a

trade-o� between the simplicity and the generality of the model on the one hand, and

its ability to accurately simulating complex networks has to be evaluated according

to the principles exposed in chapter 1. Another step in this progressive re�nement is

anyway worthy of being recalled.
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Figure 2.4: A variety of real-world networks features a scale-free degree distribution.
Starting from the top left corner and proceeding clockwise, the distribution refers to
the worldwide airport network, to the actors' collaboration network, to a mapping of
systems connected to the Internet and to data referring to the WWW structure. The
�gure is taken from [14].

The degree distribution of a small-world network cannot be written in a form as

simple as the one of the Erd®s�Rényi graph of eq. 2.1. Its shape is however quite

similar to this latter as it features a pronounced peak in correspondence of the degree

K of the original lattice and it exponentially decays for degrees di�erent enough from

this value, i.e. for large values of |K − k| [57]. In real networks, instead, one usually

observes the very di�erent power-law degree distribution of the form:

P (k) ∝ k−ν (2.3)

The fact of such a distribution holding for a variety of di�erent real system can be

seen in �gure 2.4 where very clear linear relations appear by plotting the distribution

on a double logarithmic scale. This distribution is heavy-tailed, where this latter

feature can be intuitively connected to the fact that it generates a coexistence of

few very high degree nodes, called hubs, with a multitude of low degree ones. This

heterogeneity leads to quite dramatic outcomes: the average degree is for instance

typically no more a representative quantity of the system, as most identi�ed power

laws in nature have exponents 2 < ν < 3 such that the mean is well-de�ned but the

variance diverges [58].
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Again, a minimal model able to produce this feature was needed. In [59] A. L.

Barabási and R. Albert showed how a more than reasonable mechanism governing the

wiring of new nodes joining the network was able to generate graphs with the desired

heavy-tailed degree distribution. This mechanism, called preferential attachment, can

be intuitively stated by saying that each new-comer links to one of the already existing

nodes with a probability that is proportional to the degree of this latter. This �rich-

get-richer� dynamics, originally referred to also as Matthew e�ect or accumulated

advantage [60] had been conjectured in sociology since many decades as a process

governing the relative easiness by which already rich or famous people could further

increase their richness or popularity. This very reasonable rule for studying a growing

network was then quantitatively related to a speci�c feature one wanted the model

to be able to reproduce, as it was shown that the degree distribution of networks

growing according to such a rule spontaneously evolved towards a stationary power-

law distribution of the form P (k) ∼ k−3, particular case of the more general equation

2.3.

2.3 Studying graphs as a branch of probability the-

ory

2.3.1 A mathematical description

The possibility of directly looking at the graphical representation of a graph is use-

ful as it enables to intuitively have an idea about several of its features; how dense are

its connections, whether non-trivial structures can be found and whether the degree

distribution is homogeneous or highly connected hubs and low-degree nodes coexist.

For more quantitative analysis, however, it turns out that a synthetic description of

nodes and links via a unique matrix A is fundamental. This latter is called adjacency

matrix and it is in its simplest form boolean, its generic Aij element being either 1

if a link between i and j exists or 0 otherwise. In particular, if the network one is

considering is undirected A will be symmetrical as by de�nition Aij = Aji for any

couple (i, j). The adjacency matrix representation can be naturally extended so to

deal with weighted graphs: in this case, it is no more boolean as the value of the ele-

ment Aij represents the strength of the link connecting i and j. A non-existing link

can be formally interpreted in this framework as a link with 0 weight. The usefulness

of this mathematical representation will be discussed as regards two di�erent classical

problems.
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The most basic way of exploring the structure of a network is by a random walk

that starts from a node, follows one of its out-going links chosen at random and then

iterates the procedure for a given number of steps. In this simplest case, a random

step leaving from any given node will drive the walker to one of its �rst neighbours

with equal probability and the sum of these latter probabilities has to be set equal to

1, as we impose the random walker to actually go somewhere at each time step. This

process, that will be also at the core of the work discussed in chapter 4 and reprinted

in appendix B, can be naturally described in terms of the adjacency matrix above

introduced by de�ning a transition matrix Wij = Aij/kj whose Wij element tells the

probability of a transition from the node j to the node i.

Always in the context of the network exploration, one may be interested in knowing

whether it is possible to reach a given node starting from another one in p steps. In

some sense, this can be seen as a generalisation of the information contained in the

adjacency matrix, as the links can be de�ned as paths of length 1 connecting couples

of nodes. For p > 1 one has also to consider that if the graph is not a tree multiple

paths can be found. Also this information can be obtained very easily in terms of

the adjacency matrix: after some simple algebraic passages, indeed, one understands

how the value of the (i, j)th element of the pth power of A corresponds to the number

of di�erent paths of length p connecting i and j. In particular, if (Ap)ij = 0 no such

path exists.

2.3.2 Combinatorial problems on graphs

The �rst massive usage of graph theory was as a substrate for combinatorial

problems naturally living on networks. These latter, very numerous, can be split into

di�erent classes; some examples will be given so to clarify their heterogeneity. A

problem of interest in many real applications is to determine the maximum possible

�ow between a source and a destination that an infrastructure is able to sustain. This

situation can be modelled in graph theory by choosing two nodes playing the role of

the source and of the sink, and by associating each edge to a capacity which can be

seen as the maximum amount of �ow that can pass through it. The maximal �ow

problem aims at �nding the maximum �ow that can be distributed among allowed

paths going from the source to the sink. Any acceptable solution to the problem has

to satisfy two conditions. First of all, the capacity constraints have to be satis�ed so

that the �ow passing through any of the links is not larger than its capacity. Secondly,

the �ows have to be conserved, meaning by this that the sum of the �ows entering

into any node must equal the sum of the �ows exiting it (the sink and the source

49



nodes being clearly excepted from this constraint). A big class of problems deals with

routing: among them, the determination of a Eulerian cycle as the one discussed

in section 2.1.2 or the travelling salesman problem, where one looks for the shortest

path connecting a set of vertices. A number of variations can be proposed around the

problem of �nding so-called spanning trees with given characteristics, the simplest one

aiming at �nding the minimal set of edges on a graph that touches all of its vertices.

One can also look at subgraphs with given features, for instance by searching the

largest clique in the graph. Other combinatorial problems aim at �nding matchings

on a graph, these latter being de�ned as set of non-adjacent edges (i.e. no two

edges belonging to a matching share a common vertex). In particular, optimisation

problems are typically interested in �nding maximum matchings characterised by the

fact that the addition of any single edge to it is going not to be a matching any more,

as any possible extra edge is adjacent to some already chosen one.

One of the �rst questions about these problems was to understand their computa-

tional complexity. This analysis showed that a large number of them are di�cult in

the sense of section 1.4.3: in [61] the authors report a list of problems demonstrated

to belong to the NP-complete class, and more than one hundred are listed in the

�network theory� or �network design� categories. Because of the principle of problem

reduction, the importance of graph theory in this context is even greater, as very

di�erent combinatorial problems can be shown to be equivalent to problems de�ned

on networks. One of the simplest such examples is the mapping existing between the

request of �nding a perfect matching on a bipartite graph and the apparently very

far away determination of the maximal �ow on a network [25]. This latter is also

equivalent to the problem of �nding a minimum cut, corresponding to the smallest

set of edges that one has to remove in order to prevent going from a source node to

a target by moving on the links of the network.

Even if these problems are very abstract, they are strictly connected to real-world

situations such as the optimal design of large scale IT systems, the minimisation of

congestion in road tra�c or the increase in e�ciency of electrical grids [48]. Fol-

lowing the parallel introduced in chapter 1, a statistical physics approach aiming at

understanding the features of the typical cases has become more and more studied in

addition to the original worst-case perspective proposed in the theoretical computer

science. Because of the practical interest of such problems, moreover, fast even if

suboptimal solutions can be of interest in several contexts. Just to discuss one of the

clearest examples, it is evident how matching problems are crucial for many applica-

tions [62], as they can be seen for instance as the search of the optimal allocation of
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a set of available resources. This problem is worst-case intractable in its stochastic

variant, in which the decisions have to be taken knowing just probabilistically the

features of the graph one is working on. The statistical physics approach allowed to

obtain numerically e�ective approximations, these latter being also generalisable to

other problems of optimisation under uncertainty [63].

2.4 Phase transitions, critical phenomena and sta-

tistical physics approach

2.4.1 Dynamics on networks, dynamics of networks

When discussing the connection between dynamics and network theory, one has

�rst of all to clarify that two di�erent meanings can be given to the former in this

context. A vast �eld of interest is in the dynamical processes occurring on networks.

Of peculiar interest is the understanding of how the features of such processes change

by changing the structure of the networks on which they take place. The results of

quite classical dynamical processes models on complex networks have recently received

a great deal of attention. For instance, one can remember the works on the voter model

[64] and on the agreement dynamics [65] on small-world networks, or the epidemic

spreading [66] and the random walks [67] on scale-free networks. The works reprinted

in appendix A and B, that will be extensively discussed respectively in chapters 3

and 4, are also of this kind.

Another type of problems regards the dynamical evolution of the network itself

[68]. Many di�erent situations can be studied in this context. One can study a �xed

number of nodes, and look at how characteristics such as connectivity, average path

length, clustering coe�cient and so on change as more and more links are added to

the system. On the other hand, one may study the features of networks growing

in size, where each new-comer links to some already existing node according to the

preferential attachment rule discussed in 2.2.2 or following some other mechanism.

Also a better understanding of whether a network can break down in disconnected

components as a certain number of links (or of nodes) are removed from the system

is a crucial point, especially because it can enable to design e�cient strategies apt to

protect critical infrastructures both from random failures and from targeted attacks.

This topic was comprehensively tackled in [69], a comparative study carried out to

verify the resilience of networks with di�erent topologies to either random or selective
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removal of nodes; the degree distribution being homogeneous or heterogeneous was

found to be an element leading to very di�erent results in this context.

These two aspects of the dynamics (on networks and of networks) should be con-

sidered as coexisting in real cases, as a dynamical process takes place on a network

which typically, far from having been �xed once and forever, is itself changing over

time. This latter evolution, however, takes usually place on longer time scales; the

study of a process on a quenched network can hence be seen as aiming to understand

the behaviour of the system on a shorter time scale on which the network structure

can be thought of as �xed.

2.4.2 Statistical physics and network theory

As discussed, the graph theory was born as an abstract mathematical topic, mostly

connected to combinatorial problems. However, it turned out more recently that prin-

ciples and tools of the statistical physics could be useful in several aspects. The rea-

son of this interchange can be understood by thinking about a Erd®s�Rényi network

where each link exists with probability p; an instance of this type is just a randomly

extracted element of the ensemble comprehending all such graphs. A parallel can be

easily drawn with the canonical ensemble in thermodynamics representing the possi-

ble states of a system in thermal equilibrium with a heat bath at a �xed temperature;

the role of the �uctuating energy is played in this case by the number of edges in

the graph, which is not �xed. By slightly changing the rule according to which the

random graph is generated, one is also able to obtain a network resembling the state

of a mechanical system having an exactly speci�ed total energy (i.e. extracted from

the microcanonical ensemble): when dealing with a N -nodes network, it is indeed

enough to randomly choose which couples of nodes to join by drawing a �xed number

M of edges [70]. If one is interested in understanding the features of the networks

with given characteristics rather than a speci�c realisation, the notion of statistical

ensemble taken from the statistical physics is hence really powerful. Secondly, the

ability discussed in chapter 1 of the statistical physics to focus on the characterisation

of emergent phenomena in terms of the dynamical evolution of the basic components

of the system is clearly of great interest in many of the applications naturally living

on the networks that have been described so far. Thirdly, many real-world networked

systems are very large, and the asymptotic properties that the statistical physics usu-

ally tries to understand (i.e. the ones holding in the thermodynamic limit) are usually

the crucial ones.
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Figure 2.5: Second order phase transition in a Erd®s�Rényi graph signalling the
birth of a giant component including a �nite fraction of the nodes for a large enough
connectivity.

Even more generally, networks are composed by a huge number of interacting

microscopic units, and are hence clear examples of systems in which a statistical

mechanics approach may lead, as discussed in chapter 1, to interesting insights about

the global, collective behaviour emerging from such local interactions. As extensively

discussed in [48], many problems on networks can be considered as disordered systems,

as the interactions between variables (i.e. the links) are quenched and do not evolve

in time, whereas the dynamics involves the system variables. Because of this parallel,

all the considerations introduced in chapter 1 may be more or less directly translated

so to be of interest also in the context of network theory.

2.4.3 Critical phenomena on networks

According to the discussion of the previous section 2.4.1 on the di�erent meanings

the word �dynamics� can take when talking about networks, two classes of critical

phenomena may take place on graphs. On the one hand, one can �nd structural phase

transitions in the network architecture when this latter is modi�ed, for instance by

adding or by removing nodes or edges; on the other, sharp transitions in cooperative

models living on networks can be observed [13]. These two classes will be discussed

separately.

One of the �rst structural changes on evolving networks to be described was found

on Erd®s�Rényi graphs when edges are added little by little while keeping �xed the

number of nodes. The two limits of this process are trivial, as for very few links

the graph is fragmented in many components, each of them connecting very few

nodes; on the other hand, for a large enough number of edges the probability for the

graph of being disconnected will become smaller and smaller. What is interesting,
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however, is the transition between these two regimes. To see this, one has to de�ne the

probability for a node to belong to the largest component γ1(c), equivalent to the size

of the network largest component divided by the system size N , as a function of the

average connectivity of the graph c. In the large size limit, indeed, one �nds a critical

value cp such that γ1(c∗) is equal to zero for any c∗ < cp but becomes larger than zero

for c∗ > cp (see �gure 2.5). This phenomenon is usually referred to as the emergence

of a giant cluster in an Erd®s�Rényi graph with connectivity density large enough.

By using the language of thermodynamics, this is a second order phase transition, as

the quantity under exam is continuous at the critical point but its derivative is not.

A similar problem is the site percolation, in which one activates a certain fraction p

of the nodes in a regular lattice and wants to determine whether a path touching only

activated nodes and connecting the top with the bottom of the lattice exists [71]. Also

in this case, in the large system limit a critical behaviour is found in correspondence

of a pc such that the probability of such a path to exist is 0 for p < pc and 1 otherwise.

It is worthy to stress how this problem is interesting also from a physical point of

view, as it can be considered an abstract model for determining the probability for a

liquid particle to entirely cross a porous material.

Another example of criticality emerging during the structural modi�cation of a

network is the emergence of scale-free architectures in graphs growing according to

the preferential attachment principle. As discussed in 2.2.2, if this growing rule is

applied the degree distribution converges to a power-law that can be written down

as f(x) = ax−k with k = 3. The systems for which such a functional relation holds

(for a generic value of the exponent k) are critical in the sense exposed in chapter 1,

as by rescaling the variable one obtains the following:

f(x) = ax−k ⇒ f(cx) = c−kf(x)⇒ f(cx) ∝ f(x) (2.4)

meaning that all power laws sharing a particular scaling exponent are equivalent

up to a scaling factor. In terms of the critical phenomena language introduced in

section 1.3.3, they are said to belong to the same universality class; this is also the

reason for these distributions to be called �scale-free�.

The second class of critical behaviours is found while analysing processes taking

place on a �xed network. The transition between di�erent regimes in cooperative

models such as the Schelling model for the segregation, introduced in the previous

chapter 1, are examples of such phenomena. Other cases that that will be extensively

described in the next chapter 3 are the phenomena occurring near epidemic thresholds

in spreading dynamics.
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In the study of abstract models of avalanches, critical behaviours were found in

the distribution both of the size and of the duration of such events [72]. Also models

enabling to understand how synchronisation phenomena can happen in large popula-

tion of interacting elements have received a great deal of attention in the last decades

and they have been investigated in the context of physical, biological, chemical, and

social systems [73]. A successful approach to the problem of synchronisation consists

in modelling each member of the population as a phase oscillator. By introduc-

ing strong enough coupling among these latter (for instance by using the Kuramoto

model [74]) one is able to reproduce the looked-for phase transition leading to their

synchronisation [75].

It is also worthy to stress that recent advancements in this �eld [13] showed how

much critical phenomena taking place on complex networks [76] may di�er from the

ones, having been studied for many decades, happening on regular lattices [77] or on

random graphs.

2.5 Examples of other problems

2.5.1 The detection of communities

Understanding whether a graph is composed by a combination of fairly indepen-

dent compartments and being able to separate them is a task of primary relevance in

network theory. Many real networks are indeed organised according to such a commu-

nity structure, which when unveiled is likely to reveal some useful information about

the internal structure of the elements, as vertices belonging to the same community

probably share some common properties or play a similar role in the overall network.

From a more quantitative point of view, the community structure is de�ned as a

natural partition of network nodes into subgroups such that the nodes inside a group

are much more densely connected among them than they are with nodes belonging

to other groups [78]. One of the di�cult parts of this problem is that typically

the number of communities (also known as clusters or modules) is not known in

advance, and one has to choose it according to some rational which has a component

of arbitrariness. Many community detection methods have been proposed [79] and

estimating their accuracy is not a trivial task. Ideally, one would like to have access

to some examples of networks with a well de�ned and known in advance community

structure so to test whether the proposed algorithms are able to recover it. Since

this is usually not possible, one is forced to use generative models de�ned is such

a way to build modular networks [80]. One of the most popular generative model
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is the stochastic block model [81], a generalisation of Erd®s�Rényi graphs where all

the links are randomly assigned, but the probability for two nodes to be connected

is higher if they belong to the same community (or �block�) and lower otherwise.

This model is of particular interest as critical phenomena were detected on it; as

expected, indeed, if the probabilities of having in-group and out-group links become

very similar the detection of the community structure becomes harder and harder.

This common sense consideration has been recently shown to correspond to a phase

transition between a region of the parameters in which one can hope to recover the

modules, and another one in which any algorithm is doomed to fail in detecting the

underlying block model [82].

The topicality of this �eld is proven by the amount of work still proposed on it;

recent improvements [83] on well-established spectral methods were for instance able

to recover clusters almost up to the theoretical detectability transition rigorously de-

termined. The detection of communities is moreover of central importance in many

di�erent applications. In marketing, for instance, one is typically interested in group-

ing users with similar characteristics so to be able and propose them tailored special

o�ers. In the so-called recommender systems [62], that will be extensively discussed

in chapter 5, one has an extra degree of freedom; the graph underlying such systems

is indeed bipartite, as one has a set of users on one side and a list of product on

the other. Based on explicit or implicit ratings given by somebody, one could be

interested both in extracting a set of users similar to each other, and a set of product

similar to the ones a given user already has shown to appreciate.

The modular structure can even help one to understand how scienti�c communities

evolve during in time. By looking at the communities in the network of the citations

in scienti�c papers [84], one can for instance remark the emergence of interdisciplinary

new �elds: a higher and higher number of crossed references between the computer

science and the biology community can be used as a threshold for signalling the birth

of the new �eld known as computational biology. In a similar way, the most advanced

research engines exploit the network topology of the web so to infer which pages are

connected to a same topic [85].

Finally, one has to recall that in some cases the clusters correspond to a real

structure underlying the system. In neuroscience, running algorithms related to the

community detection on data coming from neural activity recordings can shed light

on clusters of neurons spiking at the same time, this latter information being useful

in order to identify the functional modules of the brain. More generally, because

of the structural and functional systems having features of complex networks that
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constitutes the brain, advancements in quantitative analysis of complex networks

rapidly translate to studies of brain organisation [86].

2.5.2 Networked versions of other problems

Network theory can be also considered as a substrate for attacking problems of

other branches of the science. A very interesting generalisation of game theory, for

instance, is to a case in which each player, instead of being able to interact with

anybody else, is allowed to play only with his neighbouring nodes on the network

structure on which the problem is de�ned [87]. Possible applications of these problems

are quite easy to �nd. Especially when thinking about real-world networks, indeed,

it is clear how nowadays a comprehensive, centralised information is typically lacking

and the unique possible control on the system has to emerge as a result of the agents

acting independently and even, in most of the time, sel�shly (i.e. having in mind

their own objective rather than the well functioning of the system). The interaction

of these multiple independent decision-makers on a networked structure de�nes a new

interesting �eld at the boundary of game theory and graph theory, whose results may

be of interest in a variety of di�erent �elds. Just to make a couple of examples,

they could be used to optimally design social or economical incentives in a framework

more realistic than the ones obtained by applying the standard economical theoretical

principles, or to study the mechanisms regulating the resource allocation (for instance

in communication networks) among sel�sh agents and how to avoid congestions in

realistic tra�c conditions.

The previous is just one out of many possible such examples. Apart from being

considered a speci�c �eld per se, hence, network theory can be also seen as a way

to quantitatively characterise the geometry of the systems on which other processes

(also studied on their own) occur. Processes such as the spreading dynamics or the

synchronisation among elements have indeed been studied on several types of graphs

leading sometimes to very di�erent results depending on the features of the underlying

network. This generated a pro�table interchange between the results obtained in

network theory and the ones reached in the general study of the dynamical processes

one is interested in.
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Chapter 3

Contagion dynamics on graphs

3.1 General framework

3.1.1 The problem and its range of applicability

A point of great interest in the context of the network theory is to improve our

knowledge of the mechanisms regulating the spreading dynamics on graphs. A better

understanding of how some characteristics of the nodes can propagate through a

network via its edges would be indeed applicable to several domains: because of the

level of abstraction of such a problem, by appropriately de�ning the graph and the

features spreading on it one could get fruitful insights in many di�erent processes.

The �rst �eld of interest one can think of is the study of epidemic processes,

where a disease spreads on a network whose links represent the spatial proximity of

individuals. As this is in some sense really the most natural application, all these

dynamical processes are sometimes referred to epidemic processes, even when they

refer to very di�erent systems.

A very rich variety of applications for such considerations can be found in the social

sciences. In this case, again, the nodes represent the individuals. The links, on the

other hand, may be more generally interpreted than in the previous case. Two people

do not need to be physically near in order for a rumour to circulate: any connection

by phone or mail is enough. It is also enough for them to be connected to the same

�information hub� such as a newspaper, an Internet page, a television channel. The

very same dynamics may concern how people start to use a new technology, or more

generally a new product; because of the mechanism known as social contagion, indeed,

people tend to conform to what their friends and acquaintances do [88]. In this sense,

a better understanding of these processes would be of great interest for developing
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better marketing strategies. More recently, also the problem of how emotions can

propagate through the links of a social network has been addressed [89].

Several completely di�erent �elds can be touched just by changing the de�nition of

the spreading quantity. As well as being in contact with a certain number of ill people

let us become more likely to get ourselves the disease, an infrastructural element in

touch with several damaged ones is likely not to work properly. This processes are

connected to avalanche phenomena, as the failure of a very small number of elements

may in the end lead to major, global system malfunctioning. What makes the most

simple models unreliable in these cases is that they do not take into account the

interdependence of the components. Even if the failure of many elements at the same

time is extremely unlikely, indeed, this is no more necessarily true if one consider the

non-linearity of the system (each failure making many elements much more fragile).

In general, these e�ects are di�cult to forecast; an accurate estimate of their potential

impact is nevertheless fundamental as the two following examples will demonstrate.

The infrastructural networks, such as the transportation or the energetic ones,

are typical cases in which such avalanche failures may occur; a good understanding of

them is fundamental in order to know in advance what needs to be done to prevent

large scale damages. The so-called North-East blackout of 2003, a cascade failure

of the electric grid a�ecting more than 50 million people in the US and in Canada,

is a spectacular example of such damages. In some sense, one has to forecast also

second-order avalanches: the systemic breakdown of the electric network temporarily

disrupted in that case also the communication network, blocked the industries, paral-

ysed the transportations; in some regions even the restaurants were a�ected, because

of possible contaminations of their water supply.

Another system in which these phenomena may (and do) occur is the economical

one, in which they potentially lead to cascade defaults [90]. Because of the complex

network of reciprocal exposures, the bankruptcy of any institution puts lots of others

in a much riskier position. The analysis of such systemic risk is further complicated

by the presence of highly non trivial connections among the elements. The credit

default swaps are for instance, in their simplest form, �nancial agreements saying

that the seller will compensate the buyer (usually the creditor of a loan) if the debtor

having subscribed this latter defaults. Even without entering into technical details, it

appears clear how the introduction of such three body interactions involving insurers,

insurance buyers and reference entities leads to an extremely rich phenomenology;

the events these interconnections may generate can be thought of as a factor of risk
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themselves, as a precise forecast of what will happen under certain conditions becomes

very di�cult.

3.1.2 Epidemic processes and compartmental models

The focus of this chapter will be on epidemic processes, technically de�ned as

dynamical evolutions of the states of the nodes of a graph [91]. The rules according

to which a node changes its state may assume di�erent forms, but they generally

depend in some way on the state of its neighbours. As discussed in chapter 1, our aim

is to study quite abstract models: the speci�c features of each node will be generally

neglected, and all the information about an element will be condensed in a very

schematic characterisation, according to which a node will for instance be referred to

as infected, recovered, vaccinated or susceptible. In such compartmental models, each

node can at each time take one in a �nite (and usually small) set of possible values:

using the formalism already introduced, σti = {1, . . . , q}. This de�nition is very near

to the one of the cellular automata on grids in the computer science community,

originally introduced as simple models to study self-organization, and in particular

self-replicating systems [92].

In the simplest version, each element may take two values and its state evolves

deterministically according to a de�nite rule involving its nearest neighbours; the

rule for updating the state of cells, applied to all the network at the same time, is

the same for each cell and does not change over time. Several generalisations have

been proposed, for instance relaxing the binary states to �nite sets, allowing a time

dependency of the rules or even de�ning di�erent rules for di�erent nodes, studying

asynchronous updates of the states or dynamics occurring on complex topologies [91],

approaching more and more the compartmental models and the cellular automata

studies. All these models have been faced during the years also from a statistical

physics point of view [93].

3.1.3 The choice of the dynamics

In order to obtain quantitative results, one speci�c dynamics has to be de�ned. In

a compartmental model framework, this is equivalent to specify the rules according

to which a node changes its state [14]. The �rst big class of such rules is the one

of the irreversible dynamics, so called as once a node goes from a state to another

it will nevermore be able to return to the former. These dynamics are also called
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monotonous, as the number of infected elements is forced to be non-decreasing over

the time, or unidirectional since the state of a variable does not show any loop.

The simplest case is the susceptible-infected SI model, where an infected node

will stay so for all the following part of the dynamics. This request on the dynamics

may at the beginning seem very restrictive, but enables nevertheless to study very

interesting problems. Thinking about the disease spreading, this condition is equiva-

lent to study the evolution of the contagion on a time-scale shorter than the typical

recovery time. For avalanche damages in infrastructural network, a logic hypothesis

is that the cascade failures will occur in a very short time delay: the recovery of the

system (for instance the arrival of people trying to �x the damages) will typically

start when the avalanche has already reached all the available targets.

More general irreversible dynamics may be de�ned by considering variables taking

more than two values. In the SIR model, a node can recover some time after

having been infected; when this happens, it will no more be susceptible and it will

never contract the disease any more. This aspect is of interest for studying diseases

guaranteeing an immunity after the �rst time they are contracted. In the SEIR

model it is introduced an exposed state one needs to be into in order to be infected.

In the same context, one can also introduce vaccinated nodes, not participating to the

dynamics, in order to see how their presence in�uences the spreading of the disease.

A di�erent class of models considers the possibility for a node to go back to a state

it has already left: they go under the name of reversible processes. The prototypical

example is the SIS model, useful for modelling the long-term spreading of diseases

not giving immunity; in such cases, after some time spent in the infected compartment

an element becomes susceptible again.

Depending on the features of the system one wants to model, di�erent combina-

tions of the previous basic elements may be proposed. Just to let the idea be clearer,

one can think a mixture of the SIS and the SIR model, in which the nodes �nishing

their infected period may or not acquire an immunity to a further contraction of the

disease.

Another big di�erence in the evolution rules stands between deterministic and

stochastic ones. In the former, each node in a given condition (de�ned by the state

it and its neighbours are in) will behave in the same way; in the latter, the evolution

from such a condition will be probabilistically de�ned, and may hence lead to di�erent

outcomes for undistinguishable nodes.
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3.1.4 The characteristics of the graph

Having in mind the dynamics one wants to study, the features of the networks on

which such a process takes place have to be de�ned. In particular, di�erent choices for

these latter will lead to di�erent situations one may study. The graph being weighted,

for instance, enables to describe the situation in which not all the links between nodes

have the same importance; the same holds for the choice of a directed or a symmetric

graph. If one aims at having reasonable numerical forecasts for systemic risks in the

�nancial market, the graph has clearly to be supposed asymmetric as an institution

being exposed to another one does not necessarily imply the other way round: even

if this is the case, the two exposures should in general be considered di�erent and

quantitatively estimated separately.

The topology of the network underlying the dynamics has to be de�ned. When

the objective is to obtain an accurate numerical description of the epidemic process,

one is forced to explicitly run the dynamics either on the real network, or on a re-

construction as precise as possible if the former is not possible. In economics, the

cascade failures of the institutions are simulated by using all the available information

on who is exposed to whom, and how. During the last years, data are starting to be

available also for many �elds in which such a precise description has historically not

been possible. This is the case of the social sciences, in which up to some years ago

very controversial hypothesis on the interaction networks had to be made in absence

of detailed information. The SocioPatterns project [94] o�ered reliable data on the

structural characteristics of the face-to-face proximity network in real-world environ-

ments by using wireless wearable sensors. This project enabled to gain insights about

how these networks di�er by changing environments: among these, large medical con-

ferences [95] and hospitals [96]. This collection enabled also to quantitatively compare

the spreading dynamics in situations as di�erent as a scienti�c conference and a mu-

seum exhibition [97]. Having access to these data allowed a better understanding of

some phenomena. In [98] the authors noticed that in real-world networks the spread-

ing is slower than one would expect in graphs in which couples of nodes are typically

connected by short paths (small-world e�ect); by creating modi�ed datasets without,

for instance, clusters of nodes or temporal correlations among the links they were able

to isolate the structural features the most important as causes of this slowing-down.

From a more abstract point of view, one can study spreading dynamics taking

place on several types of topologies. A lot of work has been devoted to the study

of spreading on examples of the so-called complex networks [99] and in particular on

scale-free [100] and on small-world networks [101]. Also the dynamics occurring on
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simpler topologies such as random regular graphs, lattices, or Erd®s�Rényi graphs is

far from trivial, and may lead to a rich phenomenology.

The focus on di�erent topologies is useful to stress some qualitative di�erences

in the spreading phenomena. The scale-free graphs are, for instance, very fragile if

the most connected nodes are touched during a targeted attack, but very resistant to

random attacks that will most likely damage peripheral nodes. In more homogeneous

networks such as Erd®s�Rényi graph, on the other hand, it is very di�cult to plan a

targeted attack as all the nodes have more or less the same structural importance in

the overall network [14].

3.1.5 One spreading phenomenon, many possible questions

After having de�ned the dynamical rules and the topology, one still has to think

about what to investigate. In such a general context, many di�erent problems, both

direct and inverse, may be of interest. One can for instance try to determine how a

contagion will evolve from a given initial condition. This forward problem is central

in public health studies: accurately forecasting the fraction of the population likely

to be touched by the Ebola outbreak having access to data regarding the beginning of

the contagion in western Africa has been recently a topic of the greatest importance.

To the theoretical interest in understanding how an epidemics evolves one has to

add a more practical one, as a quantitative estimate of the evolution of a spreading

knowing a snapshot at a given time is essential in many cases.

The same holds also for the economical predictions. The stress tests performed by

governmental bodies on some �nancial institutions may be seen as instances of the

direct formulation of the spreading problem so to assess whether they would be able

to cover losses induced by extreme, but still plausible, situations. These �what-if�

simulations assign a certain initial condition on the system (for instance, the default

of one country) and look at the possible outcomes of such a situation. If with some

non-negligible probability one obtains an avalanche of credit defaults, for instance, a

very dangerous element of systemic risk has been discovered, and some actions need

to be taken in order to stabilise it.

A very wide spectrum of inverse problems can be addressed. A �rst typology

makes use as before of the snapshot of the infection at a given time; instead of

trying to determine its evolution in time, one searches in this case to reconstruct, for

instance, the location and the time at which the spreading has originated. These zero

patient problems has been recently addressed in many variants, for instance dealing
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with the possibility of having access just to partial observation [102] or to noisy

measurements [103].

Another group of interesting questions can be found in the general context of the

optimisation problems. Since the aim of the dynamics introduced is to describe the

spreading of a given characteristic on a network, the �rst big distinction is among

the cases in which we want to hinder this propagation and the ones in which we

want to facilitate it; the studies on marketing or on information dissemination belong

to this latter group, the ones on the disease epidemics to the former. In order to

understand the types of questions addressable it is useful to stress the two extreme and

complementary forms an optimisation problem may take in both cases. It is worthy

to stress that all these inverse problems are typically hard from a computational point

of view, requiring a number of operations exponential in the system size to be exactly

solved; ways of obtaining approximated solutions needs hence to be thought of.

In the �rst typology of problems one has some constraints on the initial state of the

system, and wants to realise them in such a way to make the system be afterwards

led by the dynamics to a desired and �optimal� in some sense �nal state. This is

the case, for instance, when in a spreading disease process we have the possibility

of vaccinating only a �nite fraction of the population: the solution of this type of

optimisation problems in this framework will tell us whether we can select the elements

to vaccinate so to block a global outbreak, and how to choose them so to obtain such

a result. The very same holds also for the situation in which we wish to reach the

largest possible audience by addressing a message to a �xed and much smaller number

of initial spreaders.

The second typology consists in the cases in which the desired �nal state is �xed.

Thinking again about a public health problem, one may wish to prevent the outbreak

of a disease; in this case, the central issue is to evaluate the minimal number of people

to vaccinate (and how to choose them) in order to obtain such a result. The same

in a viral marketing campaign, in which the interest is in the understanding of how

many initial targets should be addressed so to propagate the message to the desired

fraction of the population.

These problems should not be seen as juxtaposed. Because of the generality of

the statistical physics approach, they can be addressed in very similar way. Even

more interestingly, also intermediate cases can be studied, in which penalties may

be assigned for instance both to the nodes chosen as initial spreaders (so to look for

con�gurations with a low enough number of them) and to the nodes not touched by

the spreading (so to �nd the initial targets of a marketing campaign able to e�ciently
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propagate the message). In some sense, the problem of interest is how to �nd the best

possible trade-o� between these two components; a very natural way of addressing

this problem will be discussed in the following.

Another parameter of central importance (especially when thinking about appli-

cations) is the time requested by the spreading to occur. In marketing campaigns, for

instance, one is interested in reaching the largest possible number of customer in a

short enough time delay. For �nding initial con�gurations satisfying such a principle,

one may wish to add a constraint �xing the maximal time during which the spreading

has to take place.

Using a constraint optimisation terminology, all the aspects described so far may

be imposed either as soft or as hard constraints. In the former case, penalties may

be imposed to the number of seeds or to the number of untouched nodes at the end,

and also initial con�gurations leading to slow spreading may be penalised in favour

of faster ones. In the latter, for instance, we restrict to the spreading dynamics

reaching a given fraction of the nodes in no longer than a �xed time period T , or to

the �percolating� con�gurations (i.e. the ones leading to a complete activation of the

network).

3.1.6 Di�erent approaches

As discussed, the spreading dynamics is of great interest in many context, and on

which many di�erent questions may be asked. Not surprisingly, it has been addressed

in many di�erent ways.

In [104] a large deviation approach has been proposed to quantitatively describe

the credit contagion in economical system, and in particular to better assess the

systemic risk at given conditions. Because of feedbacks, indeed, the interactions

among �rms may in situations of economic stress be much stronger than the typical

ones.

For obtaining the most possible accurate estimate of the spreading of a given dis-

ease, one can run stochastic dynamics on real-world networks, taking into account

both long-range (i.e. airline communications) and short-range (i.e. commuting) trans-

portation systems, as well as precise demographic information on the di�erent regions

of interest [105]. These studies typically rely more on numerical simulations than on

analytical results.

A somewhat completely opposite approach is to completely ignore the real net-

worked structure of the systems, and to make the simplifying hypothesis of fully mixed

populations. In this case, an infective individual is equally likely to spread the disease
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to any other one. This strong (and questionable) assumption allows to write down

systems of di�erential equations governing the dynamics of large systems; by solving

these latter, one can monitor the number of infected as a function of time, search for

the equilibria of the system at given conditions, or infer the typical fraction of the

population touched by the infection [106].

In the spreading optimisation problem, one can try to characterise the nodes which

are going to be the most e�ective initial spreaders. Intuitively, one may to infer such

a piece of information from a local topological analysis: a node with many neighbours

should be a better spreader than a very isolated one. It turns out that such a local

information may not be enough, and to precisely identify the best spreaders a global

information as a whole is needed. The di�erentiation of a core and a periphery of

the network proposed by the authors of [107] does not lead to the same results as a

local, degree-based description. The global topological importance of each node can

be assessed also in other ways, for instance by counting the number of shortest paths

passing trough it as done in [88] by de�ning the betweeness centrality of each element.

As will be brie�y described in the following, �nally, many speci�c instances of

spreading phenomena can be mapped to problems of interest in probability theory.

In such a context, mathematically rigorous results (for instance giving bounds on

the minimal fraction of spreaders needed to obtain a complete contagion on a given

network) can be looked for [108].

3.2 Minimal contagious sets in random regular graphs

In the following sections, the work presented in A will be discussed. Since all the

technical details can be found therein, the aim of the rest of this chapter will mostly be

to give some keys to interpretation, especially in connection with the general concepts

discussed so far.

3.2.1 De�nition of the problem

The work reprinted in A is focused on how to �nd minimal contagious sets on

random graphs. The dynamical rule of the SI type, each node being either susceptible

σi = 0 or infected σi = 1. The rule chosen to determine when the state of a node has

to switch from susceptible to infected goes under the name of bootstrap percolation or

threshold model [109]. According to it, each susceptible node i is infected as soon as a

su�cient (i.e. larger than a �xed threshold li) number of its neighbours are infected.

The evolution of the system under such a dynamical rule, occurring in discrete time,
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is deterministically �xed for any assigned initial con�guration of spreaders (also called

seeds of the infection in the following), and the state of each node i at time t is a

function of the state that i itself and its �rst neighbours were into at time t− 1:

σti =


1 if σt−1i = 1

1 if σt−1i = 0 and
∑

j∈∂i σ
t−1
j ≥ li

0 otherwise

(3.1)

In this case, a very useful simpli�cation in how to describe the state of each node

during the process can be introduced; instead of studying the complete trajectory

formed by the σti for all t, one can equivalently describe each node by a single number,

its activation time ti(σ̄) = min{t : σti = 1} at which it moves from the susceptible

to the infected compartment. A second crucial simpli�cation is that the interactions

are in this formalism local, as the activation time of a node will depend just on

the activation times of its neighbours (and, generally speaking, on the value of its

threshold). The extension to more involved irreversible processes such as SIR models

may be proposed [110]; on the other hand, the reversible dynamics such as SIS are

much harder to deal with, as such simpli�cations cannot be used and one is forced

to explicitly study the complicate relationships regulating the state of each node at

each time, as a function of (in principle) all the other nodes.

These dynamical processes are very generally de�ned, and the features of such

spreading phenomena may be studied on any type of networks. An interesting exten-

sion is to weighted graphs: in such cases each active node sends a given activation

contribution to its neighbours. A susceptible node is hence activated if the sum of

its incoming contribution exceeds its threshold. This model is of particular interest

in neuroscience, the weights being representatives of the strengths of the links con-

necting couples of neurons in the integrate-and-�re model [37]. Another interesting

possible extension is to directed graphs, as in many applications the networks are

intrinsically asymmetric: the fact that a node i may contribute to the infection of a

node j does not always imply the other way round.

In order to obtain analytical results, infections on random regular graphs where

all the nodes have the same number of neighbours and the same activation threshold

has been addressed in this work. This case is very simple, and yet it leads to very

interesting phenomena; some possible ways to relax such conditions are nevertheless

discussed as future work perspectives.
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3.2.2 The energy function

Dealing with such a de�ned dynamics on a graph, one can very naturally intro-

duce an optimisation problem where the variable to be optimised upon is the initial

condition of the system and the objective function, minimised by the optimal choice

of the initial con�guration, that depends both on the initial and on the �nal state of

the system. Both of them will have to be the most possible similar to a conditions

de�ned as �optimal� for the problem, and the relative strength by which we require

such similarities to hold will lead to slightly di�erent formulations of the problem. In

order for the equations to be more easily readable, one can de�ne a shorthand for the

initial condition of the dynamics by calling (σt=0
1 , · · · , σt=0

N ) = σ̄t=0 ≡ σ̄. Since the

time evolution is deterministic, a cost can be assigned to any initial con�guration σ̄

as follows:

E(σ̄) =
∑
i

[
µσ0

i − ε(1− σTi )
]

(3.2)

where σti represents the state of the node i at the time t. Each node gives to the

con�guration cost a contribution µ if it is chosen as a seed, and ε if it is still inactive

at time T , the maximum time allowed for the spreading to take place.

This formulation has various interesting limit cases. If ε = 0, no optimisation

is performed on the seeds, which are independent identically distributed Bernoulli

random variables parametrised by µ. If ε =∞, on the other hand, the con�gurations

in which not all the nodes get eventually activated have an in�nite cost; this is

equivalent to set the complete activation of the network as a hard constraint. The

problem we mainly focused on in this paper consists in taking to take this ε →
∞ limit, and then the µ → −∞ one: in this way, just the minimal percolating

con�gurations are considered as possible solutions. For �nite values of ε and µ, on

the other hand, the trade-o� between number of initial spreaders and the fraction

of the system activated may be analysed. Another limit of particular interest, even

if not easily implementable in some cases, is T → ∞: this corresponds indeed to

�nding the minimal con�gurations able to activate all the system without stopping

the system evolution at some �nite time T .

3.2.3 Mapping to other standard problems in graph theory

Many special cases of the spreading optimisation problem may be mapped to well-

known problems in graph theory. This can be very useful as some rigorous results
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obtained in the mathematical community may be easily translated in properties of the

spreading phenomena, for instance in terms of minimal fraction of seeds needed for

a complete activation of a graph under certain conditions. In some cases, moreover,

one can con�dently look for some interesting features of the spreading dynamics, by

knowing that they hold in graph theoretical problems that are just special cases of

the former. I will describe in this section some interesting examples, while referring

to A for a complete list.

The �rst equivalence can be seen if, on an arbitrary graph, each node gets activated

only if all of its neighbours are themselves active. In such a case, it is easy to see how,

in order to reach a global contagion, no couple of neighbouring, inactive nodes has

to be present in the initial con�guration; if this is the case, moreover, the complete

activation will take place in just one time step, regardless of the �xed temporal

bound T . In the graph theory terminology, this condition is expressed by saying that

the initially inactive nodes have to form an independent set [46]. The optimisation

problem is hence equivalent to the problem of �nding the largest independent set on

the given graph.

In some sense opposite to this case is the one in which all the threshold are equal

to 1 and we impose the spreading to take place in one time step. For a complete

activation to be reached, all the nodes should either be seeds, or have at least one

of their neighbours that is so. This condition is expressed in the graph theory by

saying that the seeds have to form a domination set of the graph, and the spreading

optimisation problem under these conditions is equivalent to the search for a minimal

dominating set of a graph.

3.3 The cavity method treatment

3.3.1 The replica symmetric RS formalism

Without entering into technical details extensively discussed in A, I will intuitively

explain how this optimisation problem may be addressed by using a cavity method

approach [111]. In order to do that, one needs �rst of all to write down the situation

under exam in a form more reminiscent of statistical mechanics problems. This can

be achieved by introducing a probability distribution on the initial conditions σ̄ with

a weight given by the 3.2 such that

η(σ̄) ∝ e
∑N
i=1[µσi−ε(1−σTi )] (3.3)
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This expression is quite tough to deal with, as it contains the variables σTi de-

pending in a complicated way on all the variables σj at a distance from i smaller than

T . By exploiting the fact that the dynamics is both deterministic and monotonous,

the previous can however be rewritten in a simpler form in terms of the activation

time ti of each of the variables i. This having being done, one can introduce on each

link of the graph a message, i.e. a probability distribution over the activation times

of the two nodes involved ηi→j(tij, tji). These quantities obey recursive relations, as

any message is a function of the messages �incoming� from the other neighbouring

nodes:

ηi→j = ĝ({ηk→i}k∈∂i\j) (3.4)

If the iterative implementation of these conditions converges, from the self-consistent

messages the quantities of interest can be calculated: among them, the probability

for a node of being active at time t = 0 (i.e. its probability of being a seed in an

optimal seed con�guration) and the minimal density of seeds needed to activate all

the network at time T . This approach, called replica symmetric, is based on the

assumption of the {ηk→i}k∈∂i\j being independent on j. This is true for all messages

only if the underlying graph is a tree; however, if the graph is locally tree-like and

the correlations between the messages decreases fast enough, this approximation is

still good and the equations obtained this way go under the name of loopy belief

propagation.

3.3.2 The breaking down of the RS assumption

The previously written equations in the previous sections are very general and

could refer to any kind of graph, any node having an arbitrarily chosen degree and

activation threshold. All the results reported in appendix A refer nevertheless to the

speci�c case of a k+1 random regular graph with homogeneous activation thresholds

li = l ∀i.
The prediction of the density of seeds for di�erent values of µ one obtains from

the converged messages in the k = l = 2, T = 3 case are reported in the left panel of

�gure 3.1 and seems at �rst very reasonable. As µ becomes more and more negative,

percolating initial con�gurations with fewer and fewer seeds are looked for, and the

optimisation becomes stricter and stricter: the fraction of seeds θ is monotonically

increasing with µ, but it seems possible to extrapolate a minimal θ for µ → −∞.

The situation is however quite di�erent for other observables. For strong enough
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Figure 3.1: The density of the seeds of the infection θ (in the left panel) and of the
entropy s (in the right one) as a function of the parameter µ playing the role of
a chemical potential. The plots refer to the results obtained by making use of the
replica symmetric ansatz on a 3-random regular graph with homogeneous activation
thresholds l = 2 and maximum time allowed for the dynamics T = 3.

optimisation, indeed, the entropy of the system becomes negative: this is a clear

proof of the RS assumption not being satis�ed any more for µ negative enough.

This feature, observed in several rCSP such as kSAT [112] and qCOL [113] for

large enough values of k and q, is due to a phase transition leading to a drastic

reorganisation in the structure of the space of the solutions in the satis�able phase, in

which solutions to the problem typically exist. Intuitively, one can think that as soon

as the constraints get very hard to satisfy, long-range correlations among far-away

variables start to appear because of the stronger and stronger frustration present in

the system. In order to implement such constraints, hence, the knowledge of local

information on the neighbourhood of a node are not enough any more, and a global

knowledge of the system is requested.

More precisely, several phase transitions of this kind have been found in rCSP.

They tend to show the same pattern (�gure 3.2) regardless of the speci�c de�nition

of the CSP under study. Using the terminology of the optimal spreading problem,

if solutions with a large enough fraction of seeds θ are looked for, the problem is

not very much frustrated, and the RS assumption of correlation decay holds. If

this θ value is decreased, a �rst dynamical transition is found at θd. The space

of the solution is split into clusters, but the thermodynamic predictions obtained

by making use of the RS ansatz still hold. However, for even smaller values of θ

(i.e. for even harder constraints) another threshold is encountered at θc: below this

condensation transition, the RS prediction are no more true, and is in this phase that

unphysical results such as the negative entropy described above may be �nd. In order

to study this phase, hence, another approach able to take into account the long-range
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Figure 3.2: Pictorial representation of the phase transitions pattern usually observed
in random CSP, as they get harder to solve (in this case, for the initial density
of seeds θ in a percolating con�guration getting smaller). For θ > θd, the replica
symmetric ansatz is correct and there is no non-trivial solution of the 1RSB equations.
For θc < θ < θd the system enters a dynamics 1RSB phase characterised by an
exponential number of clusters contributing to the Gibbs measure; the RS estimates
are still correct in this parameter region. For an even smaller value of θ (i.e. even
harder optimisation problem) the number of cluster contributing to the Gibbs measure
becomes sub-exponential and the RS predictions of the thermodynamic quantities are
no more correct. For θ < θmin, �nally, no solution can be found any more and the
problem enter in its unsatis�able phase.

correlations emerging in the system has to be used.

3.3.3 1RSB and energetic 1RSB formalism

The �rst extension of the RS assumptions able to take into account such correla-

tions is the one step symmetry breaking formalism. In this latter, the con�guration

space is supposed to be broken into clusters such that the correlation decay assump-

tion holds inside each of them separately. In this formalism, the iterative equations

get harder compared to the RS ones, as each link is represented by a distribution of

messages: it will assume di�erent values according to the cluster it belongs to. As

before, each of these probability distributions may be written as a function on the

incoming ones, giving self-consistency equations of the form P̂i→j = Ĝ({P̂k→i}k∈∂i\j).
The veri�cation of the existence of a non-trivial 1RSB phase is one of the main

contribution of the work in A with respect to previous works such as [114]. Such

a result was however in some sense expected. As well as for the cases described in

section 3.2.3, also for T = 1 the spreading problem can be mapped to another one.

This latter, known as the Biroli-Mézard model [115], is used to calculate the closest

possible packing of spheres on a lattice in presence of repulsive interactions among

particles. Since this model was already demonstrated to show a 1RSB phase, such a
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feature in the more general spreading dynamics was sure for the T = 1 case and very

likely also for larger temporal boundaries.

3.3.4 The �energetic� 1RSB formalism

The resolution of the 1RSB equations is quite complicated, since as already dis-

cussed they refer to probability distributions. Practically, they can be addressed by

using a population dynamics approach, corresponding to represent the probability dis-

tributions P (h) as weighted samples of �elds hi [111]. It turns out that for a case of

particular interest, a simpli�cation going under the name of energetic 1RSB formal-

ism is possible. The equations discussed above allow one to study a very general case

of the spreading dynamics, i.e. to �nd the initial density of seeds θ as a function of

arbitrarily chosen µ and ε. As discussed, however, the original optimisation problem

consisted in the limit ε→ +∞ and µ→ −∞, so to select just the minimal percolating

con�gurations. After some technical passages described in A, the energetic formalism

allows one to directly study such limits. In this way, it is no more possible to obtain

for instance the complete curve of θ as a function of µ: the estimation at the 1RSB

level of the most important quantity θmin may on the other hand be derived in a

much easier way.

3.4 Main results

3.4.1 The solutions of the problem

Di�erent types of analysis can be performed on the presented problem. The �rst

one goes under the name of single link analysis and makes use of the symmetry

of the system (all the nodes of the graph having the same degree and the same

threshold). Thinking about the RS case, we saw how each message can be written

as a function of the incoming ones; this leads to recursive equations of the type

3.4, formally expressible as η = f(η1, η2, . . . , ηk) in the case of a k + 1 regular graph.

Because of the symmetry of the system, one can look for a single value of η satisfying a

self-consistency equation of the type η = f(η, η, . . . , η): if such a value can be found,

the thermodynamic quantities of interest such as the fraction of seeds in minimal

percolating con�gurations can be determined. The same approach can be used also

within the 1RSB formalism, in which a unique probability distribution P able to

satisfy an equation of the type P = G(P, P, . . . , P ) has to be looked for. In both

cases, the �nal goal will be to obtain some analytical results in the large system size
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limit. Some of the results obtainable in this way will be discussed in the following

section 3.4.2; of particular interest is the determination of the minimal fraction of

seeds needed to have a percolating con�guration in the thermodynamic limit, and the

comparison with rigorous results obtained following completely di�erent paths in the

mathematical community.

Another approach, discussed in section 3.4.3, is to algorithmically study �nite size

systems. In these cases, explicit con�gurations able to activate the whole network are

eventually found, and di�erent strategies for selecting the seeds to be added can be

compared. Also in this case, both the RS and the 1RSB levels can be studied.

3.4.2 Analytical results

One of the major analytical achievements of this work has been the explicit so-

lution in the T → ∞ limit of the RS and of the 1RSB cases. This special case is

of particular interest as it corresponds in some sense to the original maximisation

problem, in which no constraint on the time taken to activate the whole graph is im-

posed. Considering k+1 random regular graphs in which every node has an activation

threshold equal to l, it turns out that the k = l and the k > l cases are qualitatively

di�erent. Interestingly, this is the case also without optimising the choice, as discussed

in A; also a much more di�use discussion on the results can be found therein.

If k = l, every node needs all but one neighbours active in order to get activated.

An already known [116] lower bound on the fraction of seeds θmin(k) needed for a

complete activation in this case is the following:

θmin(k) ≥ k − 1

2k
(3.5)

More recent works in the mathematical community [108] proved such a bound to

hold tightly for k = 2, and the same property was conjectured also for k = 3. With

our approach, we con�rmed the conjecture for k = l = 2 and for k = l = 3, and we

found 1RSB estimates of θmin for larger values of k. Since RS and 1RSB results for

θmin are di�erent in these latter cases, it is not clear yet whether these estimates are

correct or further levels of replica symmetry breaking are needed.

Also for the k > l case a lower bound for the initial seed density was known:

θmin(k, l) ≥ 2l − k − 1

2l
(3.6)

Also in this case, we managed to verify this bound to hold with an equal sign both

for k = 3, l = 2 and for k = 4, l = 3, results that were not even conjectured before;

we were also able to obtain 1RSB estimates for other values of k and l.
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3.4.3 Numerical results

An alternative approach to determine the thermodynamic limit of quantities such

as the minimal fraction of seeds in percolating con�gurations is the explicit construc-

tion of such con�guration on �nite size graphs. These are known as single instance

results, as they do not refer to statistical ensembles of graphs, but to speci�c realisa-

tions.

The core of the procedure is as follows. Firstly an explicit instance of the graph

of interest (for instance a k+1 random regular graph with 10000 nodes) is generated.

Then the �rst seed is chosen according to some rule, and the direct dynamics is

performed so to see which �nal state it leads to; for instance, whether or not it leads

to the complete activation in a given number of time steps. If one is looking for

minimal percolating con�gurations and the answer to the previous question is no,

another seed is added according to the same rational as before, and the procedure is

repeated until an initial set of spreaders rich enough to percolate is found. In order

to obtain more stable results, this single instance analysis can be repeated both on

multiple realisations of graphs with �xed characteristics, and on several run on the

same instance. The interest of this framework is that it can be applied to di�erent

strategies, so to compare their results. In A two of them are taken into account, and

the initial densities of seeds respectively obtained are compared.

The �rst one belongs to the class of the greedy algorithms, generally speaking

used to solve problems step-by-step by iteratively doing what seems best in the short

term [25]; more precisely, the rule according to which the nodes to be set as seeds are

chosen is the following. Let us suppose that the current seed con�guration is not able

to activate all the network, and hence we have to add at least one extra seed. All the

seeds con�gurations composed by all the previous seeds plus one are tried, and the

number of nodes they are able to activate during the process is recorded. If one of the

con�gurations built in this way percolates, the algorithm stops; otherwise, the node

leading to the greater improvement in the �nal fraction of activated nodes is added to

the seed con�guration, and the procedure is iterated. An element of interest of this

algorithm is its straightforward generalisation to T →∞ limit. In this case, indeed,

it turns out that it is possible to avoid the study of the e�ect of the extra seed on the

complete process, as it can be equivalently studied its e�ect on the con�guration of

the nodes activated at the end of the previous iteration. The densities found by this

algorithm are not guaranteed to be optimal, and indeed in many cases the number

of seeds needed to get a complete activation is quite larger than the one one would

expect by looking at the bounds discussed above.

76



The other tested algorithm makes use of the statistical physics description of the

problem. This is an extension of the maxsum message-passing procedure proposed

in [114, 117] in which just the replica symmetric description was taken into account,

obtained by considering also the replica symmetry breaking e�ects. Referring for the

details to A, I will just brie�y describe here the main idea. As described before,

from the converged messages in the 1RSB formalism is possible to derive estimates

of quantities such as the initial density of seeds. Calculating the contribution of each

node to this latter, the tendency of every node to be a seed in a minimal percolating set

can be evaluated. The decimation procedure [118] used consists hence in iteratively

calculating this tendency for all the nodes not yet �xed to seeds, and eventually to

set the one with the highest contribution as an initial spreader. This approach leads

to very good results for small T , as the density of the percolating con�gurations

built in such a way is very near to the theoretical bound; in particular such densities

are smaller than the ones obtained by algorithms not taking into account replica

symmetry breaking e�ects. For larger T some convergence issues start to appear, and

expansions for directly studying the large T limit should be probably looked for in

the future.

3.5 Future perspectives

The present study led to some interesting insights on the contagion dynamics

on random graphs, and stressed some features that should be better studied and

understood in the future.

Having shown that the assumption of replica symmetry does not hold under some

conditions is not enough to a�rm that the 1RSB approach is correct; indeed, one

should verify the stability of such an ansatz with respect to further levels of replica

symmetry breaking. This is true in particular for the cases in which the estimates of

the minimal density of seeds at the RS and 1RSB are di�erent, as the value obtained

by the 1RSB description could again be just a lower bound on the true value.

Secondly, some asymptotic expansions should be tried, so to be able and analyt-

ically address some limits of interest. Among these latter, one can think about the

large connectivity one k →∞, performed so far just in the special case k = l. Several

non-trivial cases can be thought of in such a limit, for instance by keeping �nite the

threshold l, or by keeping �xed either the threshold k
l
or the di�erence k − l.

Even if we restricted our study to the random regular graphs, the single sample

equations derived are very general and can be applied to any type of network with
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arbitrarily �xed degree distribution and activation thresholds. In particular, one

would like to assess the e�ect on the minimal density of seeds induced by �uctuations

on these quantities. Completely di�erent types of graphs, for instance showing scale-

free degree distribution, could be studied with the same methods; in principle, one

could also run the very same equations on real-world networks, for example to better

understand the systemic risk in economic systems.

Finally, one can address di�erent questions of interest in the same framework, as

discussed in section 3.1.5. Many of these extensions can be very straightforwardly

obtained from the results obtained in this work: one such example is how to opti-

mally choose a �xed number of spreaders in order to maximize the fraction of nodes

eventually getting activated. A better understanding of this problem could be for

instance central for designing viral-marketing campaigns in which just a �xed budget

can be spent for the kick-o� of the message.
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Chapter 4

Exploring networks

4.1 Graph exploration and random walks

4.1.1 Exploring a graph, a very general problem

When thinking about the variety of systems modelable as networks, a large set of

possible questions about them could go under the name of the ways by which it is

possible to explore them. How long does it take to reach a point from another one,

how is probable to fall again on the starting point when randomly travelling over

the links or what is the best possible route connecting a set of points are all speci�c

instances of such questions.

Understanding the characteristics of paths on graphs is a very classical task. Both

the forward and the inverse versions of such a problem are of great interest. Among

the former we could insert the problem faced in appendix B, in which the statistics

of rarely observed paths are studied. Among the latter, one can think of many

important optimisation problems; the design of a transportation network able to

minimise the average time needed to join two locations is just one out of many possible

examples [48], some others will be discussed in the following sections.

The comprehension of how to navigate through a network is all but a precise task;

indeed, it has been addressed in many di�erent ways [91]. Some historical examples

of these diverse approaches will be presented: the main goal of this chapter will

nevertheless be to stress the richness of problems of interest in this context more

than to give an exhaustive review of all such problems.

4.1.2 Interest and applications in di�erent �elds

The desire of understanding how the exploration of a network can be performed has

been present since the very beginning of this �eld. The Konigsberg bridges problem,
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having been presented in chapter 2 as the one which gave birth to the network theory,

is essentially one such problem since it asks whether it is possible to completely explore

a given graph by following a route with some speci�c characteristics. The problem

of searching for Hamiltonian cycles over a graph is similar but much harder to solve,

being an NP-complete problem in the worst case scenario analysis discussed in section

1.4.3.

A problem whose applications to real-world situation are even simpler to imag-

ine is the so-called traveling salesman problem, aiming at �nding the shortest path

connecting a series of nodes in a network. This problem has been deeply studied

in theoretical computer science [119], and it has been shown to belong to the NP-

complete class. Since the exact solutions of such problems is practically impossible

even for quite small system sizes, several heuristics have been proposed to obtain at

least approximate solutions [120]. As could be expected after the discussion on the

connection between constraint satisfaction problems and statistical physics of chapter

1, this problem has been deeply analysed also under this perspective [121].

As already stated, one can try to reach a better understanding of how networks

may be explored following di�erent paths. One of the most interesting inverse prob-

lems in such a framework is how to build a system so to minimise the time spent

for moving from one point to another: this is of central interest in the planning of

infrastructures and of IT systems. A very rich phenomenology is known to emerge in

these situations, including some counterintuitive e�ects. By analysing the problem as

a game theoretical one, it has been for instance observed that adding extra routes to

a system may lead to an increase in the average time needed for moving, this latter

having supposed to be for each road a function of some �xed features (its length or

its quality for instance) and of the number of cars travelling on it (in order to take

into account possible congestion e�ects). In particular, if all the drivers are sel�shly

performing an optimal self-interested decision as regards which route to choose, the

presence of a short cut could convince a very large part of them to use it, so to obtain

as a �nal collective result the emergence of tra�c jams along the short cut itself. The

paradox is in the fact that by removing this latter and by therefore forcing the drivers

to more homogeneously split among the slower routes, the average time requested for

the travel can signi�cantly decrease. This feature, going under the name of Braess's

paradox [88], demonstrated that adding resources to a transportation network without

performing an a priori forecast of their e�ects can in fact create unwanted incentives

seriously undermining its e�ciency. Such counterintuitive phenomena may happen

also on di�erent types of networks such as electrical power grids or biological systems
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and show that, in principle, a malfunctioning network could be improved by removing

certain (apparently fundamental) parts of it.

The last example of exploration in networks that I will propose is particularly

clear when thinking about social systems. The mechanisms regulating the search,

in this case, are the ones by which �people can explore chains of social contacts

for information or referrals to others [88].� The �rst quantitative analysis of these

aspects was probably tried by the American psychologist Stanley Milgram in the

sixties [55]. In his famous experiment, 296 randomly chosen people (the starters)

were given a letter and some details such as the name and the address of a unique

target to reach. Everybody participating in the experiment had to forward the letter

to somebody they knew on a �rst-name basis in order to try and reach the target

in the smallest possible number of steps. Many of the letters never arrived to the

�nal target; however, the median length of the 64 chains which closed successfully

was six. The presence of short paths connecting any pair of nodes facilitating a very

fast navigation of the network has been con�rmed by more recent experiments of this

kind; these latter have become much easier during the years, as for instance the list

of personal contacts of each of us is nowadays explicitly recorded in many databases

such as our friendships on the social networks.

4.1.3 Random walks on graphs

A well studied statistical problem is to understand the features of a random walk.

This is de�ned as the path covered by a particle hopping on a lattice, randomly

choosing at each time step which of its neighbours to jump onto. The easiest case

of such a path consisting of random steps takes place on a single axis, on which the

random walker decides at each time step whether to move rightwards or leftwards by

one length unit. This problem, far from being trivial, has continuously received a great

deal of attention since its �rst appearance [122]. Formally, indeed, it is equivalent to

the stochastic process built by successively adding independent, identically distributed

random variables [123]. The random walk was hence just another way of looking at

one of the most basic and well-studied topics in probability theory. If in the previously

de�ned process one assigns a variable +1 to each step on the right and −1 to each

step on the left, it is easy to see how the �nal position of the random walker on the

axis will correspond to the sum of such randomly extracted variables.

Even this very simple model can be applied to situations of interest. The successive

bets of a gambler having originally a certain amount of money, indeed, can be seen

as events leading to the winning or to the losing of one unit of its total wealth. A
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well-posed question is how long will the gambler survive, i.e. how many bets will

it take on average to exhaust his money reservoir. This parallel is not as naive as

it could seem: random walks are indeed one of the basic elements for modelling the

price of a �uctuating stock in the �nancial market [124].

The applications of random walks are really ubiquitous. This is probably due

to the fact that by them it is possible to model a dynamics occurring on a given

graph without needing any precise assumptions on the reasons because of which such

a dynamics takes place: at a �rst level of abstraction, hence, many dynamics can

be modelled as random walks, even if it is very reasonable to imagine that they

are not purely governed by randomness. I will brie�y discuss two other examples,

very di�erent from the �nancial one already mentioned. Firstly, random walks are

largely used for modelling biological systems [125]. In particular, they are used to

model how bacteria can move to regions where the density of nutrients is higher,

process known as chemotaxis [126]. Secondly, they may be used to understand how

gas particles move. The path traced by a travelling molecule can indeed be thought

of as a random walk as, in this case, the interactions with all the other particles

are extremely complicated. A useful though simplifying approach to this situation

is hence to model such interactions as random events changing the direction of the

molecule under observation.

Especially this second application is important in order to understand the relation

of random walks to di�usion models known as Wiener processes : in the limit of

in�nitely small (and in�nitely numerous) steps, the random walk is indeed equivalent

to a Brownian motion [127] occurring in continuous time. Many other insightful

extensions have been proposed and studied. Steps of variable size, trends or bias

pushing the system in one direction preferentially, quantum implementations of the

random walks algorithms [128] are all deeply studied generalisations.

4.1.4 Joining the two: graph exploration through random walks

In many applications, the two ideas presented in the previous sections are strictly

related, as random walks have become a privileged way of exploring networks. In

many cases, indeed, one does not have access to global information on the system un-

der exploration, and has hence to rely only on local characteristics. In many contexts,

even having such a global knowledge would not be enough to explore the graphs ac-

cording to system-wide heuristics, unmanageable from a computational point of view

for large enough system sizes.
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As usual in this context, also as regards search ine�cient solutions may be imple-

mented quite easily. For instance, the breadth-�rst search [129] algorithms start from

a randomly selected node, and examine all of its neighbours. All this information is

stored, and the neighbourhood of the previously reached nodes is explored (getting

an exact knowledge of the portion of the graph at distance smaller or equal than two

from the starting node). This solution is potentially very slow and very demanding in

terms of the quantities that one needs to keep into memory, especially for the gigantic

graphs (such as the Web) one would like to analyse by such algorithms. The problems

get even worse if the graph under exam is changing over time: in this case, because

of the long time requested by the procedure, this exhaustive search is not even guar-

anteed any more to produce the correct result. These strategies can be re�ned if one

has access to slightly less local information. For instance, if one knows the degree

of all the neighbours of the node examined at a given time, a so-called maximum-

degree-strategy [130] may be implemented, by exploring only the part of the graph

we can reach by going to the neighbour with the largest degree. This heuristics is

particularly e�cient on scale-free graph, as few steps are typically needed for reaching

a hub, connected with almost anybody else in the network.

Searching with very local information is hence useful in two di�erent types of

situations. In the �rst, including for instance the optimal routing in IT infrastructure,

it can be shown to be su�ciently e�cient [48]. In the second, for instance on the

Internet, it is just impossible to do anything else as nobody knows the entire network

structure, and even if somebody knew it, it would not be manageable to use all the

information.

The PageRank algorithm [85], introduced in the Google research engine in order to

measure the importance of the web pages, is basically an application of random walks

to the Internet graph. An intuitive explanation of this algorithm can be given in terms

of random surfers, which move through the web pages by following random links on

each page they fall onto. If, as it appears reasonable, we accept the hypothesis that

the most reliable pages are the one with more incoming links from other ones, then

the time spent on each page by the random surfer is a proxy of the importance of the

page. This very basic principle has been re�ned over and over again, for example by

implementing an iterative procedure following the idea that a page is important if it

has many incoming links from other important pages, and so on. Other improvements

were for instance the teleportation of the random surfer with some probability to any

other web page, so to obtain signi�cant results also in case of web pages with no

out-link. Such an application enabled to drastically improve the performances of the
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engines, at the same time signi�cantly lowering the noise introduced by spam pages

or links [62].

The principle of random surfers is used also for performing other functions. Among

these, an iterative update of the knowledge on the structure of the Internet. In this

case, since both the web pages and the links connecting them are appearing and

disappearing continuously, one would in principle like to update our prior knowledge

almost in real time, so to always have the most accurate possible vision of the network

one has to deal with. In this sense, the random walk ideas are really used in order

to explore the graph under exam. The same basic mechanisms are also useful for

estimating the tra�c on a given page, or on a given portion of the Web [85].

As usual for problems in graph theory, also the exploration of a network by random

movements has been addressed in a more abstract way, trying to quantitatively de-

termine some features of these phenomena. For instance, the return time after which

a random walk returns on the node from which it originally left, the hitting time after

which it is able to reach an arbitrarily selected node, the cover time after which it

has been able to explore the entire network or the e�ort needed to reach some regions

di�cult to see with just local information are all problems having been addressed in

a theoretical sense. The questions addressed in appendix B are also of this kind, not

dealing directly to the solution of a practical problem such as the removal from the

search results of spam pages. In this context is however particularly easy to see how

an improvement in the understanding of these phenomena could immediately lead to

the design of better algorithms or procedures in the many �elds in which the random

walks are used as basic elements.

4.2 Rare event statistics on random walks on net-

works

4.2.1 The problem

In the rest of this chapter the paper [2] reprinted in appendix B will be dis-

cussed. This work is somehow the �rst to investigate the large deviation phenomena

occurring while networks are explored through random walks. As discussed, ran-

dom walks are widely used for analysing, organising or performing tasks on networks;

since rare events may lead to severe consequences in such situations, an accurate and

quantitative forecast of the possible large deviations is of particular relevance for a

comprehensive assessment of the performance of optimisation and search algorithms.
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The understanding of the rare events is of interest in all the �elds already mentioned

in which the exploration of a graph via a random walk is used, from marketing to

data transport. A case of peculiar interest is the cybersecurity, as worms and viruses

typically perform random walks on networks. In this situation, a rare event could

consist in a path hitting an atypically large number of sensible nodes, whose damage

can block the functioning of the entire network. In this work, a statistical character-

isation of such events has been addressed for the �rst time; even if much works has

still to be done as will be discussed in the future perspectives section, the �rst results

obtained are already very promising.

More speci�cally, we study systems in which a variable is associated to each node.

These variables are in principle completely arbitrary: in particular, they can be uncor-

related or correlated with the degree of the node, or deterministically determined by

this value. The quantity characterising each path will be the sum of all the variables

encountered by the random walker during the path, and averages over all the possible

paths will be performed. The rare paths can be more easily studied as the ones which

are typical if the probabilities of hopping from one site to another are opportunely

deformed. As will be seen, paths exploring preferentially highly connected or sparsely

connected regions can be generated by making use of such deformations.

By tuning the level of deformation imposed to the paths, two di�erent types of

phase transitions have been observed. The �rst, somehow expected, is a localisation

transition telling us that the very extreme �uctuations are events taking place on a

small subset of the nodes in the systems (for instance, paths just exploring the core of

the network, its most highly connected part). The second one, of even greater interest,

is a mode-switching transition, telling that there can be abrupt changes in the way

rare events are realised by changing the parameter regulating the deformations of the

paths.

4.2.2 The model

As discussed in chapter 2, a generic graph can be represented in a compact form

via its adjacency matrix A, whose (i, j) element is 1 if a link between i and j exists

and 0 otherwise. This representation is particularly useful in the context of random

walks. The transition matrix W , whose element Wij is the probability of a transition

from j to i during a random walk, is indeed simply obtained by dividing the adjacency

matrix by the degree, such that Wij =
Aij
kj
.

A path of length ` can be written down as the sequence of the nodes on which

it passes, i` = (i0, i1, · · · , i`). By calling ξi the quenched random variable associated
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with the ith node of the graph, the variables of interest are empirical path-averages

of the form φ̂` = 1
`

∑`
t=1 ξit .

In the paper in appendix B some simple cases are considered since the features

one would like to look at already appear in these situations. The networks used

are extracted from the Erd®s�Rényi ensemble with �xed mean connectivity and the

variable sitting on each node are just the degree of the node itself normalised by the

average degree, such that

ξi = f(ki) =
ki
〈k〉 (4.1)

The formalism used is however very general, and possible extensions to other

interesting cases, both as regards the value assigned the each variable and the topology

of the graph, will be discussed. In what follows, the long path limit `→∞ for which

the large deviation theory holds has to be understood whenever the value of ` is not

speci�ed.

4.2.3 The large deviations

Following the large deviation framework introduced in chapter 1, for studying in

a convenient way the rare events is useful to de�ne the cumulant generating function.

With the previous de�nitions, and by calling P (i`) the probability of observing a

given path i`, this latter is de�ned in this case as:

ψ(s) = lim
`→∞

1

`
log
∑

i`

[
P (i`)e

s
∑`
t=1 ξit

]
(4.2)

The parameter s, playing the role of an inverse temperature, is very important. If

s = 0 the probability distribution is undeformed: by evaluating the derivative of the

cumulant in this point, the typical behaviour is obtained as

φ̄` ≡
〈1

`

∑̀
t=1

ξit

〉
= ψ′`(s)|s=0

On the other hand, by using values of s larger than 0, the random walks are biased

towards the paths characterised by a large value of φ. If the variable on each node

is proportional to its degree, this allows us to study the walks touching nodes with

degrees atypically large. The larger the value of s, the largest weight is given to the

path with largest φ, up to eventually assign a non-zero weight only to the path with

maximal φ for s → ∞. The same holds for negative values of s, for which a larger

weight is assigned to the paths with a smaller value of φ.

86



By tuning the value of s one can get the rate function containing the information

about the �uctuations around the typical behaviour, as by formally writing P (φ) ∼
e−`I(φ) one has I(φ) = sups{sφ− ψ(s)} [29].

Just to recap, it turns hence out that a simpler alternative to studying rare events

according to the transition probabilityW is to study the typical events in the deformed

ensemble Wij(s) = esξiWij. By tuning s, di�erent levels of extreme events may be

stressed. This deformed matrix enables also to a spectral-based approximation of the

cumulant generating function, as by calling λ1(s) the leading eigenvalue of W (s), one

has ψ(s) ∼ log λ1(s).

4.3 Main results

4.3.1 A degree-based approximation

As discussed, in order to get the leading behaviour of ψ it is enough to calculate

the largest eigenvalue of the deformed transition probability matrix W (s). This is

computationally important for large system sizesN , as one does not need the complete

diagonalisation of the matrix: some procedures enable indeed to e�ciently evaluate

just the largest (or a certain number of the largest) eigenvalues [131]. For large enough

N , nevertheless, even these optimised techniques are not enough to obtain the result

in a reasonable amount of time. If the average degree of the graph is su�ciently

large and the degree distribution is not too heterogeneous, however, one can use

a simplifying degree-based approximation. This latter consists in assuming the ith

component of the leading eigenvector of W to depend just on the degree of the node.

In this way, a sum over all the nodes is translated into a sum over all the possible

values of the degree, computationally much easier if the set of such possible values is

small enough; this is the reason behind the request of having a not too heterogeneous

degree distribution. On the other hand, the average degree has to be large enough

for this approximation, that makes use of the law of large numbers, to give sensible

results.

The results of this approximation have been veri�ed on an Erd®s�Rényi graph

with N = 1000 and 〈k〉 = 30, where both the previous requests are known to hold:

as can be seen in �gure 4.1, the exact and the approximated curves are in very

good accordance averaging over one thousand instances both for Ψ(s) and for I(φ).

Another type of approximation possibly allowing to study large systems in which the

degree-based assumptions are not allowed will be discussed in the �nal section of this

chapter.
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Figure 4.1: Cumulant generating function Ψ(s) for a N = 1000 Erd®s�Rényi networks
with 〈k〉 = 30 and f(ki) = ki

〈k〉 , comparing the average results obtained by using the
large-degree approximation and by running explicit numerical simulations on 1000
samples. In the inset, the same comparison is reported as regards the rate functions.

4.3.2 Localisation transition

Before discussing the localisation transitions found for this problem, one needs

to precisely de�ne what is meant by localisation. If one thinks of an N -component

vector, a perfectly localised vector will have non-zero component on just one position

(and this component will be equal to 1 after a normalisation). At the other extreme, a

perfectly delocalised vector will be homogeneously spread among all its components,

each of them taking value 1
N
. This idea is condensed in the inverse participation ratio

of the vector v, de�ned as

IPR[v] =

∑
i v

4
i

[
∑

i v
2
i ]

2
(4.3)

This ratio is by de�nition between 0 and 1, and the highest it is the most localised

the vector is. In particular, for increasing system size, this quantity will scale as 1
N
if

v is delocalised and as O(1) if it is not.

It is known [62] that the eigenvector associated to the largest eigenvalue (also called

leading or principal eigenvector in what follows for brevity) of the transition matrix

represents the equilibrium distribution of the unbiased random walk. This latter is

generally delocalised, as it is free to explore the entire graph, and for s = 0 the

component of the leading eigenvector associated to a node is just proportional to its

degree. As the transition matrix is deformed by setting s to non-zero values, a larger

and larger weight is assigned to speci�c paths, and for |s| large enough the leading
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Figure 4.2: Visualisation of the localisation transition occurring for large and negative
values of s on a 〈k〉 = 3 Erd®s�Rényi graph. The nodes whose component in the
leading eigenvector is at least 0.1 times the largest one are highlighted. The three
�gures refer, going from the left to the right, to s = −0.42, s = −0.5 and s = −50,
values in correspondence of which one can respectively see a delocalisation of the
leading eigenvector across the network, a localisation on a sparsely connected part of
it and, �nally, a localisation on just a single leaf node (corresponding to the values of
s for which the IPR goes to 1).

eigenvector may localise on a portion of the graph. By considering the function

de�ned above assigning to each node a value proportional to its degree, for instance,

it may happen that for large enough s only the paths touching nodes with very high

degrees are given a non-negligible weight; as a consequence, the most connected nodes

will have a component much larger than the other ones in the equilibrium distribution

represented by the component of the principal eigenvector.

This intuition is supported by the �gure 4.2, in which the nodes whose component

of the leading eigenvector is at least 0.1 times the largest one have been coloured

in red. The �gures refer to negative s, for which one expects the localisation to

occur on nodes with low degree. Indeed, for s small enough in absolute value the

leading eigenvector is still quite delocalised, with many components comparable to

the largest one. As s becomes large and negative, however, the random walks localise

on a subgraph characterised by atypically small degree, and for a further decreasing

of s one component is dramatically larger than all the other ones, with a localisation

becoming sharper and sharper. Analogous results can be obtained for positive s; in

this case, for stronger and stronger deformation of the transition matrixW a stronger

and stronger localisation on the core (i.e. on the most connected part) of the graph

and, eventually, on the node with highest degree is observed.
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In order to have a more quantitative description, the average IPR over a large

number of graph realisations is plotted as a function of the deformation parameter s.

Such curves are reported for several system sizes N so to be able and extrapolate the

asymptotic behaviour in the large system size limit N →∞.

As can be seen in the left panel of �gure 4.3, in the ξi ∝ ki case a localisation

transition occurs both for positive and for negative values of s. For negative s, in

correspondence of s ∼ −4 the IPR value is around 0.5 for every system size: for such

a deformation, the paths having non-negligible weight are the ones exploring chains

of nodes, in which the random walker can land in one out of two nodes from any

position. For even stronger deformations a further increasing IPR is observed. In the

inset, the qualitatively di�erent way by which the IPR scales for increasing N in the

localised and in the delocalised regime is reported.

This double localisation is not completely trivial, as by using di�erent quenched

variables on the nodes di�erent behaviours are observed. A case potentially very

interesting also for applications is the one in which each node i take a value 1 if its

degree is larger than the average degree of the graph, and 0 otherwise:

ξi = f(ki) = Θ(ki − 〈k〉) (4.4)

The interest of this (and similar) de�nitions is that the path averages φ̄` one

obtains count the fraction of touched nodes with a degree atypically large. Of course

also the symmetric version can be used, where paths on lower-than-average nodes

assume a larger statistical weight. As can be seen in the right panel of �gure 4.3,

the localisation transition takes place just for negative values of s and the potential

localisation on the core of the graph for positive s is not observed; in the inset, it is

shown as before the region in which the localisation occurs, the average IPR switching

from a 1
N
to a O(1) scaling for increasing system sizes.

4.3.3 Mode-switching transition

The Gärtner-Ellis theorem discussed in chapter 1 can be used to obtain the real

rate function only if this latter is convex, as the Legendre-Fenchel transforms used

therein yields functions that are necessarily convex. The rate functions obtained by

using this theorem when the di�erentiability hypothesis holds are necessarily strictly

convex (i.e. convex and with no linear parts).

If this is not the case, and the cumulant generating function shows one or more

non-di�erentiable points, the rate function one gets by applying the inverse transform

will contain a linear region: this latter will not be interpretable as a part of the rate
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Figure 4.3: Average IPR curves on 1000 sample of N = 103 Erd®s�Rényi graphs
with 〈k〉 = 6. On the left, the quenched random variable associated to each node is
proportional to its degree, f(ki) = ki

〈k〉 ; a localisation transition is spotted for large
enough both negative and positive values of the deformation parameter s. On the right
panel the same is reported in the case where the random variable is f(ki) = Θ(ki−〈k〈),
for which a single localisation transition for negative values of s is observed. In the
insets the curves of the IPR as a function of 1/N in correspondence of di�erent s are
reported in double logarithmic scales, so to let the di�erence between the two regimes
be clearer.

function. As can be seen in �gure 4.4, indeed, there is not any more a univocal rela-

tion between the rate function and the cumulant generating function, the cumulant

generating function λ(k) being the same for all the non-convex rate functions I(φ)

sharing the same complex hull.

As can be seen in the left panel of �gure 4.5, the emergence of a linear region of

the rate function, becoming more and more pronounced for increasing N , has been

spotted: as already said, the linear part is just the convex envelop of the actual rate

function, that cannot be explicitely determined under these conditions. As expected,

this linear region corresponds to a non-di�erentiable point of the cumulant generating

function that can be seen in the inset of the same �gure.

This phenomenon depends on a non-analyticity in the largest eigenvalue λ1, and

can be better understood by looking also at the second one λ2. In particular, one can

de�ne a correlation length as follows:

τ(s) ≡ 1

log λ1(s)
λ2(s)

(4.5)

These curves as a function of the deformation parameter are reported in the right

panel of �gure 4.5 for several system sizes, and it is clear how two points exist

where this correlation length asymptotically diverges as N → ∞. When looking

91



Figure 4.4: When a Legendre-Fenchel transform (represented by an arrow in the
�gure) is applied on a non-convex rate function I(s) as the one on the right, a non-
di�erentiable cumulant generating function λ(k) is obtained (see central panel). This
latter, however, is the same for all non-convex rate functions having the same convex
hull as I(s). The only information one can get from a λ(k) such as the one reported
in the central panel is hence the shape of the convex hull of the rate function, but
not its precise form (see right panel). The �gure is taken from [29].

at Erd®s�Rényi graphs with the same average connectivity, the discontinuity in the

derivative of the cumulant has been veri�ed to correspond to the negative value of s

for which τ(s) diverges. The presence of another, positive critical value of s is a clue

that probably another linear regime in the rate function has to be looked for, even if

it is not as clearly recognisable as the other one. Terms such as �correlation length�

and �critical� value of s have not been used by chance: indeed, it has been seen that

τ(s)|s∗ scales as log(N), this latter being the characteristic length of a N -nodes graph.

A more precise characterisation of this critical behaviour has yet to be performed (for

instance, by determining the critical exponents).

By looking at the de�nition of τ(s), one easily sees that its divergence in cor-

respondence of s∗ implies a degeneracy (at least) in the two largest eigenvalues

λ1(s
∗) = λ2(s

∗) in the in�nite system size limit. The situation induced by this de-

generacy is a well-studied situation in quantum mechanics called level crossing. The

modes corresponding to the �rst and to the second eigenvalue indeed crosses, and

the leading mode (the one corresponding to the largest eigenvalue) is a di�erent one

before and after the critical point. This is seen also in very simple two-level quantum

systems [132], in which depending on the sign of E1 − E2 the ground state energy

changes, and in particular for E1 = E2 the two eigenvalues are degenerate.

In �nite systems, however, this crossing is impossible for the so-called level repul-

sion. In an intuitive way, a region around the critical point exists where the modes

corresponding to λ1 and to λ2 are hybridised, so that one observes a so-called avoided

level crossing. Nevertheless, before and after this mixed zone the leading modes still

correspond to di�erent eigenvalues; such a feature can be obtained in quantum system
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Figure 4.5: On the left panel: rate function I(φ) for Erd®s�Rényi graphs with 〈k〉 = 3
and f(ki) = ki

c
for system sizes ranging from N = 100 to N = 6400. In the inset,

the behaviour of Ψ(s) in the vicinity of the non-di�erentiable point is shown. For
the largest system size are plotted as well a linear �t of the convex envelope of the
left branch of I(φ) and a quadratic �t of its the right branch. On the right panel the
divergence in correspondence of two s values of the correlation length τ de�ned in
eq. 4.5 is shown for 〈k〉 = 6 Erd®s�Rényi graphs of sizes ranging from N = 200 to
N = 3200.

by inserting an o�-diagonal perturbation, avoiding a a degeneracy in correspondence

of E1 = E2 [133].

We have been able to start and con�rm this mode-switching transition in s∗ as

follows. The IPR of the eigenvectors v1 and v2, respectively associated to λ1 and to

λ2, can be separately studied. If one looks at them before and after the hybridised

zone, one can see that the IPR of v1 before the transition is more similar to the IPR

of v2 after it, and vice versa. By looking at these kind of observables, hence, one can

see that there has really been a switching between the leading mode and the second

one in correspondence of s∗, and in a non-rigorous way one could say that the second

eigenvector after s∗ in some sense �is� the proper continuation of the �rst before that

point.

The discussed level crossing implies that the mode which realises the typical rare

event changes at the critical s∗ to another mode, and the original one is no longer

representative of the dominant rare events. Because of this, one has good reasons to

call this a dynamical phase transition in the rare event ensemble, this being probably

the most interesting result obtained so far as regards this project.
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4.4 Summary and future perspectives

4.4.1 Summary

In this project several promising results have been obtained. In particular, the

problem of understanding the statistics of extreme events in random walks on graphs

was addressed by looking at the spectral properties of a transition matrix appro-

priately deformed. By doing that and studying the scaling with N of the leading

eigenvector IPR, it has been found that localisation transitions may occur, so that

the large deviations are realised by modes of the biased transition matrix living on

small subsets of the nodes. Finally, a mode-switching transition has been detected,

implying that by changing the large deviation scale (i.e. by tuning the deformation

parameter s) the rare events may be realised in terms of di�erent eigenvectors. In

the rest of this chapters some possible extensions of this work (some of which already

started, or quite straightforwardly implementable) are going to be presented.

4.4.2 Better understanding of the critical behaviour

As discussed, the mode-switching transition could be thought of as an actual

critical behaviour. In order to do that, however, a more precise scaling with the system

size has to be performed. In particular, one would like to reach larger system sizes so to

have a more reliable N → ∞ extrapolation. Doing that is computationally di�cult

even by studying just the leading eigenvector (i.e. by calculating only the largest

eigenvalue instead of diagonalising the complete matrix). One could however try some

approximation schemas such as the cavity-based method proposed in [134]. Having

such a precise extrapolation for larger sizes, one could try and estimate quantities

of interest such as the critical exponents of the phase transitions. Moreover, if one

looks at the right panel of �gure 4.5, two questions have still to be answered. Firstly,

for increasing N the correlation length τ diverges, but also the position of the peak

slightly moves towards smaller and smaller values of s in modulus: also this position

should be extrapolated in the in�nite size limit, so to obtain the value of s∗ where

the real phase transition occurs when N → ∞. Secondly, another critical points is

observed for positive s, and possibly another mode-switching is occurring: the linear

regime corresponding to this second transition has not been spotted yet in the rate

function. Finally, one would like to associate these mode-switching transitions to

some observables associated to the modes. By doing that, one would have a clearer

representation of how the rare events are realised in di�erent ways before and after
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these transitions; one possible idea is to use as such a variable the IPR, but even

better observables to look at could be probably thought of.

4.4.3 Di�erent functions

As discussed at the beginning of the chapter, the analysis proposed can be straight-

forwardly applied to any function assigning a value to each node of the graph. Both

this chapter and the paper reprinted in B focused almost exclusively on such variable

being for any node proportional to its degree.

Even in the context of variables deterministically assigned depending on the nodes

of the network, other interesting cases have already been addressed, even if a com-

prehensive set of results has still to be produced. In particular, the binary function

4.4 taking value 1 on the nodes with degree larger than the average is of clear interest

for biasing just towards paths connecting nodes with �atypically� large or small de-

grees, but without caring too much about the precise value of the degree itself. When

studying di�erent topologies, one could substitute the average with the median, so to

obtain signi�cant results also on graphs with very heterogeneous degree distributions

such as the scale-free ones.

On the other extreme case, some results have been obtained by assigning the

quenched variables at random, independently on the degree of the node they refer

to. If the variable assigned in this way is binary, this situation is of interest in the

cybersecurity context. One can imagine the nodes taking value 1 as random nuggets

hidden on the graph, and one is trying to understand the statistics of rare events able

to reach a very large number of such nuggets. In this case, the Ψ′(s) appears to be

in extremely good accordance with a straight line, and the parametric reconstruction

of the rate function is hence very di�cult to obtain.

In order to get a better understanding of this extreme case, one can �rstly examine

an intermediate situation where the variable assigned to a node is correlated to its

degree. One could in particular assign the seeds by using a sigmoid function, smooth

version of the step function 4.4 that is of great interest for biological applications [52].

ξi(ki) =

1 with probability 1
2

(
1 + tanh

(
β(ki − c)

))
0 with probability 1

2

(
1− tanh

(
β(ki − c)

)) (4.6)

β is in this case a control parameter playing the role of an inverse temperature in

thermodynamic systems; its function is to allow the tuning of the level of correlation

between the degrees and the values the function takes on the sites. In particular, one
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can see that the two cases studied so far are just special cases of this formulation.

In the �high temperature regime�, the variable is not correlated with the degree any

more and one recover the random nuggets case:

β → 0⇒ P(ξi(ki) = 1) = P(ξi(ki) = 0) =
1

2
, ∀ki (4.7)

On the other hand, the sigmoid function becomes steeper and steeper as β in-

creases. Eventually, as β → ∞ the step function deterministically assigning a value

1 to the nodes with degree larger than the average and 0 to the others is recovered:

β →∞⇒ ξi(ki) =


1 if ki > 〈k〉
0 if ki > 〈k〉
1
2

if ki = 〈k〉
(4.8)

4.4.4 Functions taking value on the links

In all the cases discussed quenched value, �xed once for all before starting to ex-

plore the network, was assigned to each node. A very interesting extension, reachable

by just some minor technical changes with our approach, would be on the other hand

to study functions taking value on the links of the graph. As before, the observables

of interest would be path-averages dependent on the links covered during the random

walks.

The possibility of simply enough writing down this extension (and a fortiori the

results it will lead to) has not to be taken for granted in general. The formulation

and the solution of even very similar problems can be indeed very di�erent depending

on whether they concern the nodes or the edges of a network. In the context of graph

exploration, for instance, determining whether a Eulerian cycle can be spotted on

a network is a relatively easy task, whereas determining if a Hamiltonian cycle is

possible is computationally hard.

Similarity and di�erences between the two cases would be interesting to look at

on their own; moreover, by looking at observables taking values on the edges between

nodes one can approach potential applications such as a better comprehension of the

extreme event statistics in information or tra�c �ows.

4.4.5 Di�erent topologies

All the results reported refers to Erd®s�Rényi random graphs. However, the ap-

proach proposed can be directly applied to any kind of networks, and some preliminary

results have already been obtained for instance on scale-free graphs, or on random
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regular graphs. By looking at di�erent topologies, one could try and imagine a more

complete theoretical framework able to explain the critical behaviours observed, the

characteristics of such behaviours that are observed regardless of the type of graph

the random walk is performed onto and the ones that depends on some speci�c fea-

tures, etcetera. The scale-free graph are expected to produce particularly interesting

results, as they show a very broad degree distribution; in some sense is therefore

reasonable to forecast that the rare events on such graphs will be qualitatively very

di�erent from the ones occurring on Erd®s�Rényi networks. Some preliminary results

con�rming this idea have already been obtained.

4.4.6 Improvement of clustering techniques

As discussed in chapter 2, one of the problems mostly studied in network theory

is the clustering of nodes according to some characteristics. In this work, by simply

looking at the spectral properties of biased transition matrices we have been able

to somewhat perform this task. As discussed in the localisation transition, indeed,

the leading eigenvector lives under some conditions on a subset of the nodes (for

instance, on the ones with large degree). Also thinking about the richness of both

well-established [79] and more advanced [83] clustering techniques making use of

spectral properties of the network, one could suspect that some improvements to these

methods could be obtained by therein inserting in some way the insights obtained by

our large deviation approach. This is however a very rough idea, and a much deeper

understanding will be needed in order to see whether such approach could actually

be doable and fruitful.
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Chapter 5

Inferring the graph

5.1 Motivation, applications and connection to other

problems

5.1.1 Motivation

In both the chapters 3 and 4, respectively devoted to the spreading dynamics

and to rare events in network exploration, a complete knowledge of the graph on

which the phenomenon under study is occurring has been taken for granted. This

assumption is not at all always guaranteed, and in many interesting cases one wants

to estimate some quantities of a process even without perfectly knowing its structure.

A possible approach to this problem is to try and infer the graph from the partial

knowledge one has at his disposal, and then to suppose the process to take place on

this estimated network. The estimation may in general be re�ned over time for two

di�erent orders of reasons. Firstly, one can simply have access to more and more

information on the network structure as more measurements are performed on it. It

is also possible, secondly, that by simulating some process taking place on the real,

unknown graph on the reconstructed network one obtains results disagreeing with the

ones observed on the former; such a situation can be considered as a hint showing us

that the previous inference was not accurate enough for obtaining reliable estimates

of the process under exam. If this is true, an iterative improvement of the model so

to approach more and more the features observed in the real system can be tried.

The object of this chapter is to discuss the task of inferring a graph from just a

partial knowledge about it. It is expected that, in general, the more information one

has, the better the reconstruction will be. A part of the work will consist in evaluating

how the quality of the reconstruction depends on the amount of available information

under di�erent conditions. The most interesting part of the work, however, will make
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use of the hypothesis that one is able to choose how to enrich the set of information

currently available (i.e. what to measure on the system): in this case, one would

like to de�ne a strategy for choosing the information to add in a optimal way. For

instance, one may look at the heuristics enabling to understand the graph structure

with the smallest possible number of measurements.

The problem addressed in this project is of very general interest. In all the sit-

uations that can be modelled as networks, the hypothesis of perfectly knowing the

graph on which some dynamics takes place is very strong. Developing methodologies

for e�ciently and reliably producing estimates of how elements are linked among each

other is a high-level problem, and any advancement in this direction may be exploited

in a variety of �elds (as the ones discussed in chapter 2) and for addressing a variety

of problems (the ones discussed in chapter 3 and 4 being just two examples among

many possible others).

5.1.2 The matrix completion problem

As discussed in section , a graph can be comprehensively represented in a con-

densed form by making use of an adjacency matrix; all the information contained in

�gure 5.1, for instance, can be resumed in the following adjacency matrix Atrue:

Atrue =



A B C D E

A 0 5 0 0 3

B 0 0 0 0 0

C 0 0 0 0 0

D 4 0 1 3 0

E 0 3 0 0 0

 (5.1)

The graph is completely described by the value of its N2 = 25 adjacency matrix

elements, some of which being equal to zero: because of this mapping, in the following

of this section the terminology referring to matrices will be preferred to the one

referring to graphs. The matrix completion problem consists in trying to optimally

estimate the missing entries of a given matrix having just some partial information

[135]. For instance, if one has already measured the value of 10 elements of Atrue, the

current knowledge he has about the system is something as the following Ameas:
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Figure 5.1: Graphical representation of the directed graph whose adjacency matrix
is the one of equation 5.1. The width of each link represents its weight.
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Ameas =



A B C D E

A ? ? 0 ? 3

B ? 0 ? 0 ?

C ? ? ? 0 0

D 4 ? ? ? ?

E ? 3 0 ? 0


In order to try a reconstruction of the missing elements, some hypothesis about

the system have clearly to be formulated. In the most general situation, indeed,

the value of each matrix element is completely independent from all the others, and

nothing can be said about it before actually performing a measurement. [136]

A mathematical ansatz typically used is to assume the matrix that has to be

reconstructed to be low-rank; from a general perspective, this idea can be understood

in terms of the discussion of chapter 1 about minimal models. A natural question when

dealing with high-dimensional data characterised by a large number of attributes, is

whether they could be generated by a much simpler model (i.e. by a model in which

the number of free parameters is much smaller than the total number of features of

the system) [137]. The reasonableness of this hypothesis will be further discussed in

the following section when introducing the collaborative �ltering, speci�c example in

which the matrix completion problem is of interest.

Even having to deal with a matrix for which the low-rank approximation is not

justi�ed, the discussed ideas are still of interest. How to �nd an as accurate as possible

low-rank approximation for a generic matrix to obtain a more synthetic description

of the system is a very classical problem [138]. The methods for tackling it, among

which one can at least remember the principal components analysis, are especially

needed for data-rich �elds, such as for instance the genomics and, more generally, the

bioinformatics [139]. In these cases, indeed, dealing with the true data matrices is

computationally una�ordable. Even �nding such approximations in an e�cient way

has become a topic of interest per se [137].

The matrix completion problem has straightforward applications in information

theory, and in particular in signal processing. In image reconstructions, one can imag-

ine situations where many of the pixels composing an image are corrupted, and they

have to be reconstructed using the information one has. In this sense, the advance-

ments in matrix reconstruction problems can be connected to the compressed sensing

discussed in section 1.6.6. A prior knowledge of the characteristics of signals enabling

to perfectly reconstruct it having just a partial set of measurements can directly con-

tributes also in designing optimal procedures on how to take such measurements.
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The main result in this framework is the determination of thresholds telling how

many measurements are needed for the exact reconstruction of a matrix with a given

rank [140]. Also of interest is the design of algorithms remaining tractable for large

system sizes and able to reconstruct the matrices with a number of measurements

approaching the information theoretical bound analytically determined.

Another aspect deeply studied in this context is the robustness of the reconstructed

matrix in presence of noisy entries [141, 142]. Especially for real-world applications,

indeed, any measurement taken on a system will unavoidably include some �uctu-

ations. A procedure able to produce reasonably accurate estimates of the elements

even in the presence of noise is hence preferable to another whose results strongly

depend on the precise value of the measured elements. Spectral methods able to

reliably estimate the rank of the matrix from few available entries have also been

proposed [143].

5.1.3 The collaborative �ltering

A task strictly connected to the matrix completion problem is the collaborative

�ltering. This idea was originally introduced as the key component of an experimen-

tal mail system able to select the most interesting messages for a given user in a

stream of incoming electronic documents [144]. It assumed afterwards a much more

general meaning, and any system aiming at automatically making predictions about

the interests of a user by making use of similar information regarding other users is

nowadays referred to as a collaborative �ltering, even if no explicit �collaboration�

among people comes into play.

The originally proposed active action of suggesting items to other users has pro-

gressively been substituted by an assumption that can be expressed in its simplest

form as follows: two users having behaved (for instance, having bought, watched or

listened) in a similar way in the past, or having rated similarly a set of items, are

likely to agree also on the actions they will take or on the ratings they will give in

the future [140]. One of the most celebrated examples of these ideas is the algorithm

implemented by NetFlix in order to predict users' �lm preferences just by using the

few ratings each user typically gives [136]. The accuracy of such predictions is of

the greatest importance for this and similar companies for augmenting their sales,

increasing their incomings from advertisements and allowing the design of targeted

o�ers. As a proof of this, it is enough to recall the so-called NetFlix challenge dur-

ing which a one million dollars reward was assigned to the �rst contestant able to
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Figure 5.2: Example taken from [145] of a rating matrix whose reconstruction is of
interest in the context of the recommendation systems. As one can see, in this case
binary ratings have been given to some of the �lms by any user. In general, they can
also be integer, for instance in a range between one and �ve �stars� or even implicit
and based, for instance, on the pages previously visited and on the items already
bought.

produce an algorithm improving by 10 % the NetFlix's own system to predict �lm

ratings given by users [62].

Looking at �gure 5.2, it is clear how strictly this application is related to the

matrix completion problem, regarding in its most general form the recovery of a data

matrix from incomplete or corrupted information. In this context, moreover, the

mathematical assumption of dealing with low-rank matrices assumes a clear meaning:

it corresponds to the reasonable hypothesis of the taste of a user being describable at

least approximately by a small enough number of factors. If this was not the case, the

whole task described in this section would be doomed to failure, as the ratings will

be more or less independent the ones on the others. The precise number of factors

needed for describing the system has to be chosen so to build the simplest model

able to catch the complexity of the data (i.e. it has to avoid both over�tting and

under�tting).

When dealing with recommendations, it turns out that a central problem is how to

choose between two di�erent types of suggestions. On the one hand, one may suggest

an item very close to the preferences already expressed by the user. Alternatively,

one could make a riskier recommendation, choosing something further away from the

previously chosen items; this way is potentially more pro�table as the user could

discover a new set of items he is interested into and start purchasing in this direction.

This point is referred to as exploration-exploitation trade-o� [146]; apart from this

interesting application to recommendation systems, it is a long standing problem

in the �eld of control in uncertain environments, where one has to choose between

doing exploratory actions improving the knowledge on the system, and exploiting the

information already collected in an optimal way [147].
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5.2 The inference of a network of interactions from

a partial knowledge of the correlations

5.2.1 De�nition of the problem

The rest of this chapter will be devoted to the discussion of a problem on which a

paper is currently under redaction; for this reason, the discussion will be a bit longer

and technically developed compared to the ones given in the previous chapters. In

order to better follow the main ideas of the project, in particular, the discussion on

some further details will be postponed to the appendices 5.10. Leaving aside for the

time being the technical details, one is interested in studying a set of variables that are

coupled and whose values are measured multiple times. Because of the interactions

acting in the system, the result of such measurements will not be independent, and

correlations will start to appear among the values one gets during the di�erent ob-

servations performed on the system. The aim of this project supervised by professor

Rémi Monasson is to try and optimally infer the interactions acting on the system by

knowing just a subset of the correlations between variables during the observations.

Two di�erent orders of problems can be thought of in this framework. On the one

hand, one is interested in the �static� problem: knowing a �xed subset of correlations

among the values taken by the variables in the di�erent measurements, one would

like to obtain the optimal estimate of the unknown interactions. Even if this problem

is connected to the matrix completion one, as the available information is �xed once

and for all, many important di�erences between the two are anyway present: the

main is that in this case the matrix one wants to infer and the one on which one

has some partial information live in two separate spaces, and no direct measurement

can be made on the interactions one wants to recover. A very interesting point is

to analyse how the quality of the inference improves as more and more correlations

among variables are known, as this could give some useful hints on the optimal num-

ber of correlations to measure before trying the inference of the interactions. One

could for instance imagine a situation of �retarded learning� where up to a certain

number of measurements the inference is really bad, and only after that transient the

couplings can be reasonably predicted; on the other hand, one can �nd out that a

number of measures are enough to obtain good predictions, and making any follow-

ing measurement is not so useful any more as the quality of the prediction somehow

saturates.

The most innovative part of this work is however connected to a �dynamic� version

of the problem, where one has the possibility of choosing the couples of elements
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about which one wants to know the correlation during di�erent measures on the

system. This is particularly important on sparse networks where the number of

signi�cant couplings between variables is small; in this case, by randomly choosing

which measure to perform one is almost sure to select a couple of sites not linked,

and hence not to improve that much the quality of the inference. We will discuss

some possible heuristics aiming at augmenting the probability of performing �good�

measurements (i.e. improving the most the quality of the inference) for any level of

knowledge about the correlations.

5.2.2 Motivation, applications and previous work

The problem introduced is �rst of all of interest from a theoretical point of view,

as it is at the boundary of several very well studied topics. Among them the graph

theory, as the set of couplings constitutes a network of interactions, the non-trivial

relationship between correlations and direct couplings, the optimal reconstruction of

missing data. Nevertheless, it seems like this problem has not been studied in detail

so far; the work the most similar to the one we discuss is probably [148] where the

authors face the problem of completing a correlation matrix. The methodologies

they propose, though, are quite near to the ones of the matrix completion works

above described: the matrix to complete is supposed low-rank, and thresholds on the

number of requested measures to reach an exact reconstruction are derived. There are

at least two major di�erences with this project. Firstly, the matrix whose elements

are measured is in their case the same one wants to complete; secondly, the dynamic

part of the problem aiming at optimally choosing the measures to take is completely

missing.

The problem as it has been de�ned is not just a mathematical exercise: in many

situations, indeed, one has direct access only to correlations between variables whereas

the quantities of interest are the direct couplings among them. One of the most natu-

ral examples of such systems is the �nance, where one can see the correlations between

the value of shares during time and is interested in understanding relationships among

companies and sectors. Others can be found in biology: for instance, one would like

to reliably infer the gene regulatory network controlling the gene expression levels,

but what can be typically measured is the correlation between these latter. In this

sense, this project is again strictly connected also to the discussion of the previous

chapters on inverse problems.
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5.3 The model

5.3.1 Statistical context of the project

Even without entering into details about the di�erent possible approaches to statis-

tics, a short reminder of the main features of Bayesian methods is worthy in order to

better understand the following discussion. Such methods are particularly useful in

the context of the inverse problems generically discussed in section 1.2, as they allow

to express the posterior probability that a certain model θ is the one that describes a

system having generated the data y (inverse problem) as a function of the sampling

distribution telling the probability of such model to generate the data (direct prob-

lem) and on a prior probability we assign to the model itself, independently from the

observations [149]. Such a probabilistic treatment of the problem allows to deal both

with its possible underdetermination (if the number of equations is smaller than the

number of unknowns) and with the presence of noise letting the relationship between

the model θ and the data y writable in the form y = G(θ) + η. θ, y and η are treated

as random variables, and one considers as a �solution� of the inverse problem the

determination of the probability of having θ given y.

The arbitrariness of the prior has been widely debated since the proposition of this

approach. Even without entering into this discussion, one can just remark that, in a

sense, all statistical methods are subjective as they rely on mathematical idealisation

of the system examined [149]. Intuitively, this prior can be thought to be a quantity

allowing one to specify in advance which kind of solutions one believes to be more

likely, so to assign di�erent weights to the multiple solutions that can be found, all

of them able to explain the observed data [150].

The data y being considered as �xed, the three introduced quantities are related

(apart from a normalisation) through the Bayes' rule as follows:

P (θ|y) ∝ P (θ)P (y|θ) (5.2)

the | symbol indicating as usual the probability of an event conditioned on another
one. The data y a�ect the posterior only through P (y|θ); this latter, for �xed y, can
be seen as a function of θ and it gives the likelihood function of the models.

Let us now make use of this framework to more precisely state the problem faced

in this work. Dealing with a N -spin system, the role of the model θ is played by the N

by N matrix J whose (i, j)th element speci�es the coupling between sites i and j. A

single measurement x on the system will consist in a vector of N elements (also called

spins in the following for brevity) corresponding to the values taken by the spins in
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presence of the interaction matrix J . The connection between the two is supposed to

follow a Gaussian law, such that the probability of obtaining a measurement array

x = (x1, · · · , xN)T can be written down as follows:

P (x|J) ∝ e−
1
2
xT Jx (5.3)

A single measurement on such a system is expected not to be su�ciently informa-

tive in order to determine the couplings acting among the variables; one can never-

theless perform multiple measurements on it. The results obtained in this way can be

gathered in aM by N matrix X, where each of theM rows is a di�erent measurement

on the system, i.e. an independently drawn N -dimensional array extracted from the

distribution 5.3. As the interaction matrix J is the same for all measurements, the

rows of X will be correlated. One can hence de�ne an N by N empirical correlation

matrix C in which each position (i, j) corresponds to the value of the empirical aver-

age among all the rows of X of the product of the ith and of the jth measurements on

the system; by indexing with m the rows of X, one has Cij = 〈xmi xmj 〉m. This matrix

will play the role of the data θ in the previous general formulation 5.2 and will follow

in this Gaussian framework a Wishart distribution [151], which is a generalisation of

the χ2
k distribution describing the sum of the squares of k independently drawn stan-

dard normal variables. The Wishart distribution arises very naturally in the context

of multidimensional Bayesian analysis [152], as it is the one followed by the scatter

matrix XTX, this latter being the maximum likelihood estimate for the covariance

matrix of the model. As anticipated, by setting the dimension of the system p equal

to 1 one recover the well-known χ2 distribution.

In what follows, not all the elements of the correlation matrix will be known. In

order to let this point be clear, the correlation matrix will be referred to as Ctrue, the

set of its elements already having been measured will be called C̃. The ones not yet

measured will be called on the other hand C⊥, and by C we will refer to a matrix

where the elements belonging to C̃ correspond to their true value, and the others,

still unknown, have been estimated in some way.

5.3.2 Prior, posterior and optimal estimate of the model

By explicitly writing down the equations regulating the direct problem in the

Gaussian model before discussed, the sample distribution of the correlations Ctrue for
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a given interaction matrix J turns out to be the following:

P (Ctrue|J) ∝ e−
M
2

Tr
[
(−J)Ctrue

]
+M−N−1

2
log detCtrue+

M
2

log det(−J) ≡ e−
M
2
Fdirect(Ctrue,J)

(5.4)

having called M the number of performed measurements in the N -spin system

with couplings J examined. For brevity, a ratio between these parameters telling

how well sampled the system is is de�ned as α ≡ N+1
M

.

The observed data is not in this case the matrix Ctrue, but just some elements of

it. By calling C̃ the subset of measured correlation, the sample distribution of interest

is hence P (C̃|J) which can be obtained by integrating eq. 5.4 over all the unknowns

components C⊥. This integration is highly non-trivial; however, under the reasonable

hypothesis of a large enough number of measurements it can be approximated by

using the saddle-point method so to keep only the dominant term:

P (C̃|J) =

∫
dC⊥P

[
C = (C̃, C⊥)|J

]
∝ e−

M
2

minC⊥ Fdirect

[
C=(C̃,C⊥),J

]
(5.5)

In order to address the inverse problem, one has to reverse this relation; to do this,

according to the Bayesian theory above introduced, a prior probability distribution

over the model J has to be de�ned. This choice is quite arbitrary; there is however a

natural option typically used in absence of strong elements favouring di�erent ones. In

the Gaussian world in which this problem lives, it is not surprising to imagine also the

parameters to follow a Gaussian distribution around zero. This choice is implemented

by using a so-called weight decay regulariser [153] penalising the parameters according

to their `2 norm. This can be seen also as a parameter shrinkage method as by using

this prior the parameters are shrunk towards zero; the risk of over�tting by selecting

very large couplings is hence also avoided as the elements of J are forced not to be

too large.

If this prior is used, the application of the Bayes' rule leads to the following

posterior distribution:

P (J |C̃) ∝ e−
M
2
{minC⊥ (Fdirect)+

γ
2
Tr(J2)} (5.6)

γ being the parameter controlling the strength of the imposed regularisation. The

model J having generated the observed C̃ with the highest probability can hence be

found by minimising with respect to C⊥ and to J the quantity:

F
[
C = (C̃, C⊥), J

]
= Tr(JC)− (1− α) log detC − log det J +

γ

2
Tr(J2) (5.7)
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The minimisation with respect to J enables to write down the couplings J as a

function of the correlations C, as

∂F

∂J
= 0⇒ C − J−1 + γJ = 0⇒

⇒ J(C) =
1

2γ
(C −

√
C2 + 4γI)

(5.8)

Because of this, the F can be more conveniently expressed as a function of C only,

so to let the minimisation with respect to C⊥ being of easier solution; indeed, the

result can be formally written down as:

∂F

∂C⊥
= 0⇒ J⊥ = −(1− α)(C−1)⊥ (5.9)

What this relation means is that in order to obtain the couplings J⊥ associated to

the correlations not measured yet, one has at �rst to complete somehow the matrix

C. This completion can be performed in the simplest case as a gradient descent on

the unknown elements of C, aiming at obtaining a minimal discrepancy between the

two sides of eq. 5.9 J⊥ and −(1 − α)(C−1)⊥. The completed C has hence to be

inverted and the corresponding J elements can be obtained after the rescaling given

by the constant term −(1− α).

A particularly interesting case of these general formulas is the limit α → 0 cor-

responding to an ideal situation in which an in�nite number of measurements has

been performed on a �nite system: this assumption is equivalent to imagine that the

measurements are completely noise-free. The following of this work will mainly deal

with this limit, that even if quite unrealistic in real applications enables to obtain

useful insights on the problem.

5.4 Choosing the couplings and evaluating the per-

formances

5.4.1 Arti�cial models

Before starting to explain the details of the cases studied, a methodological re-

mark is needed. As already said, the aim of this project is to infer an unknown set

of couplings from correlation measurements. As usual in these cases, however, the

heuristics and the algorithms proposed have �rst of all to be tested on arti�cial models

whose characteristics are known in advance, so to verify whether they actually give
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results which are better compared to the ones obtained by already existing methods.

The situation has already been discussed in section 2.5.1 as regards the problem of

community detection.

In all the cases that will be referred to in the rest of the chapter, hence, the

inference procedure will be run knowing already the true answer from the beginning,

as this latter has been itself generated by us. In particular, some of the proposed

heuristics will be evidently self-referential and not applicable to real situations, as

they will make use of the real value of the very same quantities one wants to estimate.

These algorithms will be used as null models with which the more realistic heuristics

are compared so to better understand their behaviour. Once the methods will be

proven to reliably work at least under certain conditions on these arti�cial models,

one will be ready to use them in more realistic scenarios where one really wants to

improve in the most e�cient way the knowledge on instances that are not known a

priori.

5.4.2 The geometry of J

It is somehow expected that the results of the procedure will depend on the geom-

etry of the interaction matrix. In order to quantitatively evaluate these di�erences,

the proposed heuristics will be used on several arti�cial models; each of them will be

characterised by a given structure of the contact map, meaning by this term the set of

couples connected by a coupling di�erent from zero. In other words, the interaction

networks will be extracted from di�erent statistical ensembles. The geometries will

be chosen so to take into account the features most likely to a�ect the result of the

inference procedure: cases with di�erent degree distributions, with links being chosen

at random or according to some overall structure, and with diverse loopiness (i.e.

number of paths connecting any couple of nodes) will be considered.

In all the cases, we impose the network induced by the couplings that are di�erent

from zero to be connected on the set of nodes of the system. If this is not the case and

for instance the J separately spans two components of the graph, then the problem can

be without loss of generality split into two smaller ones concerning them separately.

The only thing still to be veri�ed as �nal check will be whether in this case the

procedures proposed are able to fast enough see the presence of two disconnected

subgraphs.

In order to comprehensively understand the behaviour of the heuristics, quite a

wide range of topologies has been studied. At one extreme, one has a completely

random Erd®s�Rényi graph. On the other, one can study completely ordered square
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Figure 5.3: 3-level hierarchical geometries with N = 16 on the left panel and N = 33
in the right one. Such contact topologies are composed by a highly connected hub,
a set of leaves with degree 1 and an intermediate level of nodes connecting the other
two. The nodes have been coloured so to let the three hierarchical levels be more
easily visible.

lattices ; for these latter, a feature expected to in�uence the results is their strong

�loopiness�.

A di�erent and potentially interesting case is the one in which the degree distri-

bution is homogeneous, but a global structure is lacking; this can be modelled via

a random regular graph, where each node has a �xed number of neighbours which

are randomly chosen among all the other vertices. Of particular interest is the spe-

cial case where the number of neighbours is �xed to two, as it corresponds up to a

permutation of the vertices indexes to a ring.

All the geometries above introduced are characterised by a degree distribution that

is either a δ function in correspondence of the average value, or is peaked around it.

Since this more or less strict homogeneity in the connectivity is expected to be a cru-

cial factor in determining the results, one wants to consider also graphs where nodes

with very large and with very low degree coexist (i.e. network with a heavy-tailed

degree distribution). In principle, and especially thinking about possible applications,

one would like to study scale-free graphs. The heuristics used in this project are how-

ever for the time being quite computationally expensive, and one is forced to study

small systems: generating them by a preferential attachment procedure originates

a geometry not that far away from a star, with a central node attached to all the

others and some very sparse connections among the remaining vertices. In order to
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understand the e�ect of a more complex level of organisation, it has been chosen to

run the algorithms on hierarchical structures as the one in �gure 5.3. These latter

can give precious insights on the way the heuristics work, for instance by telling us

whether they are able to �rst infer a small part of the structure and then to enlarge

such local knowledge or, vice versa, they approximatively catch the global structure

and then re�ne the estimates on the actual value of the connections.

5.4.3 Generating synthetic J

From now on, whenever no misunderstanding is possible the non-zero elements of

J will be simply referred to as to the couplings of the system. As discussed in 5.4.1

one is interested in testing the performances of the heuristics over already known J

with di�erent geometries so to check their e�ectiveness. In order to do that, one has

to �rst of all �nd a J with a �xed geometry for which the Ctrue maximising P (Ctrue|J)

is a well de�ned correlation matrix. Both the two matrices entering into this relation

have to satisfy some properties. First of all, the J has to be positive de�ned in order

for the Gaussian law expressed in equation 5.3 to be well de�ned. The correlations

between variables need moreover to be in the range between −1 and 1 and with

diagonal elements Cii (i.e. the correlation of a spin with itself) always equal to 1.

As shown above, such correlation matrix has to satisfy the relation Ctrue = −(1−
α)J−1. In particular, one is interested in �nding the Ctrue that would maximise the

previous probability in the case of an in�nite precision of the measurements; this is

the α = 0 case, in which the particularly simple relation Ctrue = −J−1 is found.
A procedure to generate the looked for J is the following. First of all, one has

to de�ne an interaction network having an arbitrary geometry (i.e. with arbitrarily

chosen non-zero elements) and to assign some values to the couplings of the couples

belonging to this network. Then, one veri�es whether such a matrix is positive de�ned;

if not, one calculates the most negative eigenvalue −µ of J and modi�es J according

to J ←− J + (µ + ε) I, so to obtain a new matrix with minimum eigenvalue ε. The

matrix obtained in this way is invertible, and one can hence calculate C = −J−1;
in general, this latter will not have all ones on the diagonals. In order to impose

also this constraint, one can rescale the elements of J according to the following rule:

Jij ←− Jij
√
Cii · Cjj. One is at this point able to de�ne the synthetic data to work

on as Ctrue = −J−1.
The described procedure for obtaining a synthetic J shows some drawbacks, in

particular as regards the lack of control one has on the actual values taken by the

element of the coupling matrix itself. Such drawbacks, potentially creating inference
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problems whose di�culty is di�cult to predict, and even generating convergence issues

in cases where some of the interactions get very large, are presented in some details

in section 5.10.1, to be considered as a �nal appendix to this discussion. In 5.10.2,

some further discussions on the possible choices regarding the explicit values initially

assigned to the couplings is �nally given.

5.4.4 The observables

All the arti�cial models used in this project are designed in such a way to be able

and assess the algorithmic performances on already completely known instances. One

still needs to de�ne however how to quantitatively perform this assessment; in some

sense, this is an arbitrary choice, as depending on the features we are most interested

in the same results could be considered good or not. The �rst possible observable to

look at directly comes from the Bayesian approach discussed in section 5.3.2, as one

considers the value of F of the most probable con�guration, this latter having been

obtained as a result of the gradient descent procedure. The highest this value is, the

most probable is that the inferentially found coupling con�guration corresponds to

the true one.

A sanity check is done in order to verify this observable to lead to reasonable

results. Three heuristics are de�ned for this. The �rst, null one consists in simply

randomly choosing the next correlation element to measure; in some sense, this will be

for all the project a natural baseline to which all the smarter heuristics will have to be

compared. Other two strategies, on the other hand, can be used as a comparison only

on arti�cial models, as they make use of the same elements one is aiming to retrieve.

The order by which the measurements are taken corresponds in these cases to either

a descending or an ascending order of the absolute value of the couplings (which will

be unknown in a real situation). These strategies will be referred to respectively as

high couplings �rst and low couplings �rst and, for brevity, often abbreviated inHCF

and LCF. In order to check the reasonableness of the proposed observable, one has

to verify these �fake� strategies to lead to very good (respectively, very bad) results.

At a �rst sight, it looks like the low couplings �rst and high couplings �rst strate-

gies are respectively unbeatably good and bad. In some of the results reported in

the following this apparently straightforward extremality feature will not be satis-

�ed. After some thought, one sees that this is not an inconsistency. Because of the

sparseness of the J , indeed, many couplings are degenerate and exactly equal to zero:

under these conditions, the low coupling �rst and the high coupling �rst heuristics

choose the next element to measure at random, and the possibility of another more
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Figure 5.4: In order to evaluate the reasonableness of the chosen observable, the value
of the minimum of F are reported for the two fake strategies LCF and HCF and for
a random choice of the element to measure on a single instance as a function of the
number of measurements already taken. In this latter case, the results obtained by
averaging over 15 runs are reported. In all the cases, γ is �xed to 0.2 and no prior
knowledge on the system is assumed. The results are very homogeneous: starting
from the top left panel and proceeding clockwise, the �gures refer to a N = 15 ring,
to a N = 15 random regular graph with k = 3, to a N = 15 Erd®s�Rényi network with
average degree 〈k〉 = 2.2, and to the smallest of the hierarchical structures proposed
in �gure 5.3.
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complicated strategy to perform better than this random choice has not to be a priori

excluded.

The results of these three strategies are found to be almost equivalent in all the

analysed geometries. As can be seen in �gure 5.4, when averaging over multiple runs

the random choice corresponds to the straight line connecting the initial and the �nal

point of F as a function of the number of measurements. These latter are by de�nition

equal for all the strategies, as they corresponds to the inference respectively made on

a completely unknown or on a completely known matrix, and so there is no di�erence

among the di�erent heuristics. The HCF leads instead to a very fast increase in F at

the beginning, when the correlations corresponding to real couplings are measured,

and virtually no further improvements when one starts to measure the positions of

Ctrue associated to zero couplings. A specular situation holds for LCF, telling us that

the chosen observable is, at least at this level of check, reasonable.

Other two observables are considered; they are a bit further away from an abstract,

Bayesian de�nition of the problem but can be more easily related to the quantities

one would be interested in in a real case. They can be considered as ways of better

understanding the features of the arti�cial models, as they again are calculated by

using information on the systems that one would not know in a real situation. As the

�nal objective is to reconstruct the interaction matrix J , a very legitimate quantity

to look at for assessing the performance of the di�erent heuristics is the mean squared

error on the elements of the Jinf which is the estimate of the coupling matrix at any

level of knowledge of the correlations.

In some situations, however, one may be not so interested in recovering the actual

values of the elements of J , as determining the positions having a di�erent from zero

coupling (i.e. the �geometry� of the interaction) can already be a su�cient insight on

the system. In order to take into account that the mistakes made in the inference of

the values of J are not so serious as soon as one has understood where the contacts are,

one can look at the true positive rate of the inferred coupling matrix. For doing this

on a network where the number of true contacts is M , at each step of the procedure

one looks at the fraction of the largestM elements of Jinf corresponding to J elements

di�erent from zero. The value one obtains in this way is in a range between zero and

one; when it is one, in particular, all the M true couplings are among the M largest

values of Jinf , the order among them being however irrelevant.

The three previously de�ned observables have been seen to produce very consistent

results in all the cases having been looked at. As can be seen in �gure 5.5, in particular,

when choosing at random the elements to measure it appears clear that, modulo
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Figure 5.5: Linear relationships holding among the observables proposed to evaluate
the performances of the di�erent heuristics. All the results refer to a random choice
of the elements to measure averaged over 50 runs on a N = 30 single instance of a
ring and of a Erd®s�Rényi graph. No initial knowledge on the system is assigned.
On the left panel, the relationship between true positive rate and value of Fmin is
reported, whereas on the right panel the same is shown for the mean squared error
on the reconstructed Jinf and, again, the value of Fmin.

some minor �uctuations, simple linear relationships connect the values of the di�erent

observables. I will typically refer in the following to the true positive rate as it is what

most directly connects to the physical problem one is interested in solving.

5.5 Main analytical results

5.5.1 Reasons justifying the study of the Hessian

The most innovative strategies that will be proposed will make use of what could

be called a geometrical characterisation of the probability space under exam. An-

ticipating a discussion that will be more detailed in section 5.8.2, one can say that

when partial information on a system have been used to infer some of its features,

two ways of improving our knowledge about it can be thought of. Firstly, one can go

to the less known region (i.e. by using a Bayesian language the one in which our prior

is weaker) and perform some measurements therein so to be able to let the inferred

quantities be more accurate. Another possible strategy is, on the other hand, to verify

the correctness of the variables on which our prior is stronger, so to improve a lot our

knowledge on the system if we �nd out that our previous estimate about them did

not correspond to their actual value.

For implementing both of these strategies in our problem, it is needed to evaluate

the N2 by N2 Hessian matrix, whose position
(
(i, j), (k, l)

)
corresponds to the value

117



of ∂2F
∂Cij∂Ckl

. Such a matrix contains indeed the information about how the F one is

trying to optimise so to obtain the most possible reliable estimate of J depends on

the values of the elements of C, and more in particular it describes its local curvature

as a function of these latter. Connecting this matrix to the intuitive reasoning of the

previous paragraph, hence, if one chooses to measure the couple (i, j) minimising the

Hessian, he is looking at the variable around which F is the ��attest�; in some sense,

one is choosing to measure a correlation characterised by our lack of information

or intuition on how F depends on it. On the other hand, measuring the element

corresponding to the maximum of the Hessian can be thought of as going and checking

the actual value of a correlation on which we have the strongest prior; the reasoning

behind this choice is that if it turns out that our estimate was incorrect, our knowledge

on the system suddenly improves.

At the beginning of the project, we suspected that one out of the two previous

reasoning was correct whereas the other was not, and hence that one had better

always choose to measure respectively the unknown element of C in correspondence

of which the distribution of F was either the �attest or the most peaked. This ansatz

has however been proven to be false, and which one out of the two ideas was the one

leading to the best quality of the inference turned out to depend on speci�c features

of the system under exam, and in particular on the geometry of its interactions.

5.5.2 Derivation of the Hessian

In what follows, several heuristics using some features of the geometry of F (C)

in order to decide which element to measure next will be de�ned and their results

will be compared to the ones obtainable by using more naive methods. In order to

implement these ideas we have �rst of all to derive the expression of the Hessian of F

with respect to the elements of the correlation matrix C. The main elements of this

calculations will be reported here, even if a precise description of all the passages will

be neglected in favour of a more detailed discussion on the results.

In order to obtain the Hessian, one has �rst of all to write down the �rst derivative

of F . The generic form of the equation already discussed in eq. 5.9 is the following:

∂F

∂Cij
= −Jij − (1− α)

(
C−1

)
ij

(5.10)

The second derivative with respect to a (in general) di�erent element of C will

then read:
∂2F

∂Cij∂Ckl
= − ∂Jij

∂Ckl
− (1− α)

∂
(
C−1

)
ij

∂Ckl
(5.11)
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Both the terms on the right-hand side can be written in a more explicit way. The

main ingredients of this somehow involved derivation are brie�y summarised. First of

all, one has to remember that the correlation matrix is symmetric; because of this, the

self-derivative relations entering into the calculations assume the following non-trivial

form:

∂Cbc
∂Ckl

= δbkδcl + δblδck − δbcδbkδcl (5.12)

As before, one has to make use of the relation 5.8 connecting J and C so to

eliminate the explicit dependency of the formulas on the correlation matrix.

The presence of a square root in 5.8 makes the matrix di�erentiation quite hard.

This problem is bypassed by making use of the power expansion of such square roots

so to be able to di�erentiate separately each term in the in�nite sum. At the end of

the algebraic passages, it turns out that these terms can be summed up again, and

the �nal results will be written down in a much more convenient (also thinking about

algorithmic implementations) way.

In order to more easily deal with the power expansion of the terms involving

C, a eigendecomposition of this latter is intensively used. This consists in writing

down the symmetric matrix C in terms of a diagonal matrix Λ whose entries are the

eigenvalues of C and an orthogonal matrix Q whosemth column vm corresponds to the

mth eigenvector of C. The relation connecting these three quantities is Q = V ΛV T

and in particular the (i, j) element of the correlation matrix is expressed as:

Cij =
N∑
m=1

vimλmv
j
m (5.13)

The �nal formulation of the Hessian can be written in a synthetic way by intro-

ducing an auxiliary matrix I: the Imm′ elements of this latter take di�erent values

depending on the corresponding eigenvalues to be equal to each other or not, and in

particular:

Imm′ =


λm√
4γ+λ2

m

, if λm = λm′
√

4γ+λ2
m′−
√

4γ+λ2
m

λm′−λm
if λm 6= λm′

(5.14)

Resumming all the pieces together, one obtains the following formula for a generic

element of the Hessian, characterised by four indices (i, j, k, l):
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∂2F

∂Cij∂Ckl
= − 1

2γ

{[
(1− δij)δikδjl + δilδjk

]
+

−
N∑
m=1

N∑
m′=1

{
vimv

j
m′

[(
1− δkl

)
vkmv

l
m′ + vlmv

k
m′

]
I(m,m′)

}}
+

+ (1− α)
[
(1− δkl)

(
C−1

)
ik

(
C−1

)
lj

+
(
C−1

)
il
C−1kj

]
(5.15)

Of particular interest for what concerns the heuristics that will be used in the

following are the diagonal elements of the Hessian:

∂2F

∂C2
ij

= − 1

2γ

(
1−

N∑
m=1

N∑
m′=1

{
vimv

j
m′

[(
1− δij

)
vimv

j
m′ + vjmv

i
m′

]
I(m,m′)

})
+

+ (1− α)

[(
1− δij

)(
C−1

)
ii

(
C−1

)
jj

+
(
C−1

)
ij

(
C−1

)
ij

]
(5.16)

In order to obtain more readable equations, a change of basis turns out to be

useful. Since the decomposition on the basis of the eigenvectors of C has been deeply

used in the derivation, it is not unreasonable to imagine that also the �nal result will

be easier to read in the same basis. Indeed, by moving to it with the following change

of coordinates:

Mm1,m2;m′1,m
′
2
≡
∑
i,j,k,l

vim1
vjm2

∂2F

∂Cij∂Ckl
vkm′1v

l
m′2

(5.17)

and working again separately on the terms of eq. 5.15, one is able to reach the

following very compact relation:

Mm1,m2;m′1,m
′
2
≡
(
δm1,m′1

δm2,m′2
+δm1,m′2

δm2,m′1

)[
− 1

2γ
+
I(m1,m2)

2γ
+

1− α
λm1λm2

]
(5.18)

5.5.3 Derivation of the Hessian in the eigenbasis of C

In the eigenbasis of C, the Hessian can be written in a block-diagonal form after

a permutation of rows and columns. In particular, it is composed by some diagonal

elements corresponding to the (m1,m1) elements, and some 2 by 2 blocks associated

with a couple (m1,m2); these four elements are moreover equal to each other because

of the symmetry properties of the Hessian. The eigenvalues of such a matrix are

its diagonal elements, called for brevity fm1,m1 , and for any block one of the block
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elements fm1,m2 and a zero. These values can hence be organised in a N ×N matrix

where the dimensions correspond respectively to m1 and to m2.

One is able to recover the elements in the original basis by doing the following:

Hij,kl =
∑
m1,m2

fm1,m2〈ij|m1m2〉〈m1m2|kl〉 =

=
∑
m1,m2

fm1,m2

(
vim1

vjm2
+ vjm1

vim2

)(
vkm1

vlm2
+ vlm1

vkm2

)
(5.19)

A computationally convenient way of performing this calculation has been found

in terms of Kronecker products [154]. This latter, not reported here for the sake of

brevity, has been veri�ed to produce the very same results of a direct, and much more

ine�cient, calculation of the Hessian in the original (i, j) basis.

5.5.4 Perturbative approximation of the Hessian

As will be discussed in the following section 5.6, the explicit use of the complete

Hessian to select the next correlation to measure is extremely heavy from a computa-

tional point of view. Another strategy therein de�ned will need as a key component

the evaluation of how the eigenvalues of the Hessian change as the line and the column

associated to a given couple of sites (i, j) are removed. The perturbative calculation

discussed in this section allows to e�ciently get approximate estimates of such quan-

tities.

Let us start by de�ning the modi�ed Hessian Ĥ(i,j) as the one in which all the

elements in the row and in the column corresponding to (i, j) are set equal to zero,

except the diagonal one which is set to one. The eigenvalues of Ĥ(i,j) are the same

as the ones of the restricted Hessian one gets by removing the (i, j) row and column,

plus a 1. This calculation will enable the design of a much more e�cient procedure

that will substitute the explicit diagonalisation of all the N2 reduced matrices with

the calculation of the perturbed eigenvalues of the complete Hessian in absence of a

row and of a column.

The previously introduced modi�cation of the Hessian can be written down as

follows:

Ĥ ij
ab,cd = Hab,cd −∆ij

ab,cd (5.20)

where ∆ is element-wise de�ned as follows:

121



∆
(i,j)
ab,cd = (δab,ij + δcd,ij)Hab,cd − δab,cdδab,ij(Hab,cd + 1) (5.21)

The �rst order perturbative approximation of the eigenvalues λ̂(i,j) of the modi�ed

Hessian, whose validity has still to be evaluated, can be derived as:

λ̂(i,j)m1,m2
' λm1,m2 − 〈vm1,m2|∆(ij)

ab,cd|vm1,m2〉 (5.22)

One of the convenient features of working with the eigenvalues and not with the

complete matrices is that the former are the same in the original basis (a, b, c, d) and

in the eigenbasis (m1,m2,m
′
1,m

′
2). One is hence not forced to explicitly move between

the two.

The di�erent contributions of ∆ to 5.22 can be separately evaluated, leading to

the following �nal result:

λ̂(i,j)m1,m2
' λm1,m2 +

1

2

(
vim1

vjm2
+ vjm1

vim2

)[
Hij,ij + 1− 2λm1,m2

]
(5.23)

This expression is quite convenient as the only information needed are the values

of the original eigenvalues and the diagonal elements of the Hessian. Moreover, in the

eigenvector basis the eigenvalues can be directly written, without having to explicitly

write down and diagonalise the complete Hessian matrix.

5.6 The heuristics

5.6.1 Choices based on inference

First of all, two strategies for choosing which correlation to measure based in

a very direct way on the inferential procedure described in section 5.3 are studied.

They have been de�ned in order to be able and compare the more involved heuristics

that will be discussed in the following sections to null strategies a bit smarter than a

simple random selection of the elements to measure.

These heuristics make use of the results of the gradient descent performed on the

correlation elements still unknown after each measurement on Ctrue. As a result of this

part of the procedure, one obtains a Cinf and a Jinf corresponding to the minimum

of F . The simplest thing one can do as a following step is hence to measure the

maximum element of Cinf or of Jinf among the yet unmeasured correlation elements.

In some sense, one relies on the inference procedure itself and chooses to measure the

elements which are going to be the most informative according to it.
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For brevity, these procedures will be referred to as high inferred C or high inferred

J in the following, and sometimes abbreviated asHIC orHIJ respectively. As will be

discussed in the following, both these strategies reach results typically slightly better

than a random choice, but especially HIJ gives on some geometries (in particular on

hierarchical structures) really impressive results; the reasons explaining this feature

have still to be fully understood, but clearly they depend on the characteristics of the

topology of J .

5.6.2 Heuristics making use of the Hessian

As discussed in section 5.5.1, a potentially interesting way of rapidly improving

our knowledge on the system under exam is by exploiting the information contained

in the Hessian matrix of F with respect to the correlation matrix C. Two slightly

di�erent heuristics can be proposed, based on the results of section 5.5.2 thanks to

which one can easily enough have access to the Hessian values. The most intuitive

is to write down the elements of the Hessian in the basis of the eigenvectors of C,

in which they are particularly simple. By considering the leading eigenvector of

this matrix, one should be able to identify the most important element. However,

by doing this a couple (m1,m2) of eigencomponents of C is found, rather than a

couple of sites (i, j) ready to give a hint on what correlation to measure next. One

can nevertheless write again this vector in the original basis, and decide to measure

the couple (i, j) contributing the most to the principal eigenvector. This strategy

has a set of interesting possible extensions; k measurements at the same time could

for instance be straightforwardly implemented by selecting the k largest components

of this vector. This idea turned out, however, to be quite di�cult to apply. When

translating the leading eigenvector back into the original basis, its largest components

typically correspond to already measured couples; as on the other hand one is forced

to measure some still unknown correlations, in the end the couple which the heuristics

suggests us to measure is one not contributing so much to the leading eigenvector of

the Hessian. This strategy, hence, does not work as nicely as one would have naively

expected.

An alternative route is proposed by making use of the results reported in section

5.5.3 on how to conveniently write down the elements of the Hessian matrix in the

eigenbasis of the correlation matrix C. By exploiting that result, indeed, one can de-

�ne a greedy strategy as follows. For all the couples (i, j) not having been measured

yet, one removes the corresponding row and column from the Hessian and calculates
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the determinant of the reduced matrix. A possible way for selecting the next mea-

surement is hence to choose the couple which, when removed, leaves the determinant

of the Hessian the largest or the smallest possible. They will be respectively referred

to as high Hessian �rst and low Hessian �rst, and often abbreviated as HHF and

LHF. For reasons still to be completely understood, it appears that in most cases

the latter choice leads to better results; a brief, intuitive discussion on this point will

be presented in section 5.8.2.

5.6.3 Intractability of the complete Hessian

Even after having introduced the simpli�cation connected to studying the Hessian

in the much simpler eigenbasis of the correlation matrix, the previously discussed

strategy shows still two major drawbacks. The �rst one is that one needs to explicitly

write down the complete N2 × N2 Hessian, and hence runs into memory problems

even for quite small values of N . The second one is that all the Hessians reduced

by removing a row and a column have to be explicitly diagonalised, even if one

reasonably expects the corresponding eigenvalues to be quite similar among each

other. This task is terribly heavy from a computational point of view. At any time

one needs to choose which correlation to measure next, indeed, one has to calculate

the complete Hessian and then to diagonalise an O(N2) number of reduced Hessians

of size (N2 − 1) by (N2 − 1) each. Recalling that the diagonalisation of matrix of

size p is a task of computational complexity of order O(p3), each measurement would

require approximatively the intractable number O(N2 · (N2)3) ∼ O(N8) operations.

These issues are addressed by proposing in the following two di�erent approaches.

In the �rst, only the diagonal elements of the Hessian will be used. This approximation

whose validity is not at all guaranteed has two important positive features. On the

one hand, it reduces the size of the matrices one has to deal with, and on the other

it shows a very straightforward mapping between the elements of such matrices and

the couples (i, j) of sites; because of this, deciding which correlation to measure next

will be particularly easy as no further operation will be needed to go back into that

basis.

Secondly, the perturbative calculation discussed in section 5.5.4 will be exploited.

Having at our disposal the perturbative expansion of the eigenvalues of the Hessian

in absence of one row and column, one can again sum these values so to obtain an

approximation of the determinant for each of the reduced Hessians, and then choose

the next element to measure by following the same principle adopted when dealing

with the explicit calculation of all the reduced Hessians.
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5.6.4 Diagonal elements of the Hessian

Using the calculations of section 5.5.2, two more strategies to choose the measure-

ments that could be implemented also during an inference procedure on real, unknown

data and not only on arti�cial ones will be de�ned according to the diagonal values of

the Hessian matrix. In section 5.5.1 the reason why the use of the Hessian can be of

interest have been discussed. Two elements makes di�cult an explicit implementation

of such principles. On the one hand, the intractability of the complete Hessian from

a practical point of view even for quite small systems has been discussed in section

5.6.3. Secondly, and at an even more fundamental level, the elements of the Hessian

depend on four indices, whereas one is interested in determining a couple of sites (i.e.

two indices) whose correlation is not known yet and which is more likely to improve

the most our knowledge of the interactions among the sites.

A possible way to address both these problems, whose e�cacy has to be tested, is

to suppose that the best part of the information of the Hessian one wants to exploit

is contained in its diagonal part, whose elements can be determined according to

equation 5.16. The validity of this ansatz will depend on the relative importance

of the out-of-diagonal terms, this latter being associated with the curvature of the

Hessian as a function of two di�erent elements of the correlation matrix C. We

suspect this reasoning to be strongly dependent on the geometry of the system under

exam; in some cases, indeed, it has been seen that analogous results can be obtained

by using the information contained in all the Hessian or just the ones included in

its diagonal part. As a future perspective, one would like to get a more quantitative

characterisation of the networks for which the hypothesis holds, probably in terms of

spectral properties of the graph de�ned by the couplings di�erent from zero.

It is however easy to see why the validity of this ansatz would be a good news

for approaching more realistic ways of solving the problem. This is �rst of all true

from a computational point of view, as the diagonal of the Hessian is a vector of N2

elements of the type ∂2F
∂C2

ij
that can even be reorganised in a very intuitive form in a

N by N matrix where the two indices refer to the two sites i and j. The di�erence of

this latter with the complete N2 by N2 Hessian matrix is really signi�cant in terms of

the size of the system one can hope to deal with. Secondly, each element of this N by

N matrix is univocally associated to a couple of sites, and the elements maximising

or minimising it can be very naturally and directly chosen as the ones to measure in

the following iteration of the inference procedure.

The two strategies consist in recalculating after each measure all the diagonal

elements of the Hessian matrix corresponding to couples (i, j) not yet measured, and
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Figure 5.6: Validity of the approximation of the Hessian for rings of di�erent sizes.
Even if on the smallest N = 20 ring the strategy using the perturbed Hessian seems
not to work as well as the one using the complete Hessian, by analysing a N = 40 ring
(on which a direct comparison is not possible as it is too large for explicitly running the
LHF heuristics) one sees that, after having rescaled the curves, the results obtained
with the perturbed Hessian are almost equivalent to the ones obtained with the LHF
strategy on the smaller ring. The true positive rates obtained by selecting at random
the elements to measure in the two cases is reported for comparison.

then to select the couple for which ∂2F
∂C2

ij
is respectively the largest or the smallest.

These two strategies will be referred to in the following as high Hessian diagonal and

low Hessian diagonal, and respectively abbreviated as HHD and LHD.

5.6.5 Validity of the perturbative approximation

As discussed in section 5.6.3, strategies making use of a perturbative expansion

of the Hessian can be really convenient. In particular, after having calculated the

approximated determinant of all the reduced Hessians obtained by removing one row

and one column, two heuristics are de�ned choosing the following measurements in

exactly the same way as the previously discussed HHF and LHF. They will be referred

to as low perturbed Hessian and high perturbed Hessian and abbreviated as LPH and

HPH respectively.

The perturbative approximation of the Hessian of F is expected to be more and

more accurate as the system size increases. The truth of this statement is di�cult

to evaluate in this framework, as the calculation of the complete Hessian becomes

computationally intractable for small enough values of N . An indirect proof has
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nevertheless been obtained. When the inference is performed on couplings having

a ring geometry, for small N it is possible to obtain very good results by using

the strategies exploiting the complete Hessian, whereas by using the perturbative

expansion the results are no more so impressive. For increasing N , on the other

hand, it is not possible to calculate the complete Hessian any more, but as can be

seen in �gure 5.6 the approximated one leads to good results, probably because of its

greater consistency with the analytical result for large enough system sizes.

5.7 Initial knowledge and e�ects of measurements

5.7.1 Choice of the initial condition

A last point needs to be de�ned before explicitly running the simulations, that is

the knowledge on the system one already has before starting the inference procedure.

The simplest case is to imagine that none such knowledge is a priori available. In

this case, however, one has to deal with an initial transient in which the inference

will concern only the components on which some information is available. After the

very �rst correlation measurement involving sites i and j is performed, also the Cinf
one obtains at the end of the gradient descent will be equal to zero everywhere apart

from the position Cij, because of the regularisation term. This is very reasonable, as

we have in some sense no clue whatsoever letting us imagine that other parts of that

matrix are di�erent from zero.

The previous feature can be extended as follows. Let us suppose that the m taken

measurements can be partitioned in p groupsm1, ...,mp such that each node is present

in at most one of them. If this condition holds and the group m1 includes at least

one correlation involving node 1, for instance, in groups m2, ...,mp there will be no

correlations including it. Let us call Ik the set of nodes spanned by the correlations

in mk. Considering a N = 15 graph, one such situation can be found if the �rst 7

measurements can be partitioned as follows:{
m1 = {(Ctrue)1,2, (Ctrue)1,4, (Ctrue)2,5}
m2 = {(Ctrue)10,11, (Ctrue)11,15, (Ctrue)10,13, (Ctrue)13,15}

where I1 = {1, 2, 4, 5}, I2 = {10, 11, 13, 15} and all the other nodes have not been

touched by any correlation measurement yet.
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Again in reason of the regularisation imposed on the system, the C found as a

result of the gradient descent is found to show the following block structure:

Cij

{
6= 0 if i, j ∈ Ik for some k ∈ {1, p}
= 0 otherwise

Also in this case, thus, the results of the inference do not concern the entire system,

but rather some of its components separately.

A possible solution in order to bypass this initial transient is to start from a C̃

already having information on the system as a whole. For example one could include

in the initial C̃ a set of elements (Ctrue)ip,jp such that the ensemble of links {(ip, jp)}
forms a spanning tree on the graph. Another choice that will be used in what follows

is to begin the procedure from a star-like knowledge of the system with respect to a

given node i, that is C̃ 3 (Ctrue)ij ∀j. In the geometries heterogeneous in the degree

of the nodes as the Erd®s�Rényi graphs, the dependence of the results on the choice

of the node i selected for the initial knowledge is going to be discussed; it is possible,

in fact, that a star-like knowledge around a node with a higher degree will be more

informative, and will therefore induce a better inference of the coupling matrix J .

Also the tree-like initial knowledge has, nevertheless, some drawbacks that need

to be carefully considered. In particular, if the tree over the nodes of the system is

selected at random, it could consist in a set of couples of nodes none of which being

linked by a coupling. In this case, the �rst measurements will probably modify very

abruptly the estimated J and C, possibly creating some convergence issues in the

gradient descent. Two other initial conditions have been studied to address this issue.

In the �rst one, the initial knowledge on the correlation consists in a �xed percentage

of the couples actually interacting through J . Also in this case, however, the initial

estimates will be very di�erent from the true matrices, as it is legitimate to expect

a very dense interaction matrix if all the measured correlations are strong. Another

initial knowledge potentially solving this problem is what will be referred to as a rich

initial condition. In this latter, we imagine to have a good knowledge of the links in

a given region of the system. In the network of the interaction, one selects one of the

nodes at random and measures the correlations of this nodes with its neighbours and,

if these latter are too few, iterates by also measuring some of the correlations they

have with their own neighbours (i.e. arriving at distance 2 from the initially selected

node).

In conclusion, no �nal answer has been reached on which initial condition is the

most appropriate to assign. This study has to be considered as an attempt to under-

stand the e�ects of di�erent initial knowledge on the algorithmic performances of the
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proposed heuristics on each geometry. Thinking about applications, moreover, one

has to consider that in many cases one has to work with initial conditions of a given

type, without having the possibility of arbitrarily choosing them.

5.7.2 Update of C after a measurement

A discussion on the issues emerging when trying to complete di�erent types of

initial conditions is delayed to appendix 5.10.5. Another moment in which a somehow

arbitrary choice has to be made is after any given measurement. After that the

gradient descent has led us to the previous estimate of C, one chooses which of the

still unknown elements to measure next, by enriching of one element the current C̃.

Before iterating the procedure by running again the gradient descent, however, the

correlation matrix has again to be completed by assigning some value to the still

unknown elements, i.e. to the positions still belonging to C⊥. In principle, one could

do this by treating at every iteration the C̃ as the initial condition and by using the

completion procedure described in 5.10.5. After some thoughts, however, it turns out

that this is not probably the most e�cient choice as one is wasting all the information

obtained as a result of the previous gradient descent, even if the matrix has typically

not changed very much and we hence expect the result of this new minimisation to

be quite similar to the former. In order to make use of this intuition, one can use as

a starting point of the new gradient descent on the still unknown elements the result

of the previous one after having �xed the measured correlation to its true value. The

matrix so obtained is strictly speaking no more guaranteed to be positive de�nite,

and if it is not the gradient descent will not even start. This procedure has been

however veri�ed to be much more e�cient than the other and to typically work. For

the sake of generality, as a future perspective one would like to insert a switch so to

use the least e�cient procedure if the smartest has convergence issues.

5.8 Results

The problem introduced is far from being completely understood. In the following,

the main results obtained are reported. Even if some of them can be given a non-

rigorous justi�cation or can intuitively be related the ones to the others, it is clear

how a uni�ed framework producing these results as particular cases is still missing.
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Figure 5.7: True positive rate averaged over multiple instances and runs on N = 33
hierarchical networks for several strategies. The left panel refers to an initial complete
ignorance about the system, whereas in the right panel a tree-like initial knowledge
is assigned. For reasons still to be fully understood, some of the strategies appears to
be much stabler than others with respect to the initial knowledge of the system.

5.8.1 Dependency on the initial condition

It turns out that the e�ectiveness of the di�erent heuristics depends in a non-trivial

way on the initial conditions.

In �gure 5.7 the averaged curves of the true positive rates both for none initial

knowledge and for a tree-like initial knowledge on hierarchical networks with N = 33

nodes are shown. As one can see, some strategies appears to be stabler as they almost

do not change by incrementing the initial knowledge on the system; this is true for

a random choice of the elements to measure, and for the heuristics previously called

HHD and HPH. Others such as HIJ, instead, dramatically improve by enriching the

initial knowledge. It is worthy to say that the fact of a heuristics being stable with

respect to the initial condition appears to depend on the geometry on which the

couplings are de�ned.

5.8.2 The exploration-exploitation trade-o�

The way of calculating the complete Hessian, its diagonal part and a perturbative

approximation of it have been discussed. One has still to decide how to practically

make use of the information contained in such matrices. After having calculated the

diagonal element of the Hessian, for instance, it appears reasonable to measure the

couple that either corresponds to the maximum or to the minimum of this matrix. A

rigorous understanding of this point is still missing, but the reasons why both these

idea could be a reasonable choice have been intuitively presented in section 5.5.1.
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Figure 5.8: Analysis of the opportuneness of measuring the couple corresponding to
the largest or the smallest diagonal element of the Hessian respectively on a ring (left
panel) or on a hierarchical network (right panel). The same is studied also for the
strategies making use of the approximated version of the complete Hessian.

After some thought, one sees how the opportuneness of following the former or the

latter principle depends on how often the inferences made on the system are wrong.

If this happens often, indeed, verifying our estimates is going to improve the results

more than given them for granted and going on to measure other parts of the system.

From the simulations it turns out that for J with di�erent geometries the situation

may be very di�erent, and in some cases almost specular. In �gure 5.8, one can see

that on the ring (left panel) the strategies measuring the elements corresponding to

the smallest element of the Hessian lead to very good results, whereas if one measures

the couples with largest Hessian the inference of the underlying interaction network

is slower than by taking random measurements. On the right panel the results on a

hierarchical structure are reported, and the e�ectiveness of the di�erent strategies is

reversed.

In some sense, this feature can be connected to the well-known problem in machine

learning going under the name of exploration-exploitation trade-o� that has already

been brie�y addressed in the previous section 5.1.3. Having already collected some

information on a system, it is not trivial at all to decide whether the best option

is to explore what one does not know yet about it, or rather to exploit what one

already knows. A mixed strategy alternating the two approaches has been imagined

and some preliminary results about it have been obtained; however, more work is

needed to better understand the theoretical reason at the basis of this discrepancy

that one gets by changing the topology of the couplings.
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Figure 5.9: Average true positive rate curves for di�erent heuristics on N = 20 rings,
without any initial knowledge on the system (left panel) or with a tree-like initial
knowledge (right panel).

5.8.3 Di�erent heuristics on a �xed geometry

By looking at the performances of the di�erent proposed heuristics on networks

on which the topology of the couplings is �xed, we have not been able yet to draw a

comprehensive picture. Some common features of the results have nevertheless been

found and will be exposed in this section.

The ring and the random regular graphs seem to o�er the most easily interpretable

framework. In both the cases, indeed, the strategies preferring to measure the still

unknown parts of the graph (for instance LHD) systematically lead to an inference

that is faster and more reliable than the ones that go and verify the potential errors

in what has already been estimated with a certain degree of con�dence during the

procedure (for instance HHD).

As can be seen in �gure 5.9, already on a small enough graph this trend can

be appreciated. By assigning a richer, tree-like initial knowledge on the system,

moreover, the strategies can be ranked quite easily according to their performances

already from the very �rst measures, whereas starting from no knowledge at all there

is a more di�cult to evaluate initial transient in which the performances are all

similar. In the former case, it is worthy to remark how the results obtained via the

two strategies more directly based on the previous inference results, and especially

HIJ, improve a lot; nevertheless, they do not get as good as the heuristics based on

the Hessian.

What has been said is still true for larger systems, even if in this case it is no

more possible to run the strategies using the true Hessian because of computational

intractability; for brevity, in this case only the results obtained by imposing a tree-like

132



 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  100  200  300  400  500  600  700  800

T
ru

e
 p

o
s
it
iv

e
 r

a
te

Number of measurements

Rand
HCF
LCF
HIJ
HIC
LHD
HHD
LPH
HPH

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  100  200  300  400  500  600  700  800

T
ru

e
 p

o
s
it
iv

e
 r

a
te

Number of measurements

Rand
HCF
LCF
HIJ
HIC
LHD
HHD
LPH
HPH

Figure 5.10: Average true positive rate curves for di�erent heuristics with a tree-like
initial knowledge on a N = 40 ring (left panel) and on a N = 40 random regular
graph with k = 3 (right panel).
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Figure 5.11: Average true positive rate curves for di�erent heuristics with (right panel)
and without (left panel) a tree-like initial knowledge on a N = 36 square lattice.

initial knowledge are reported. In the left panel of �gure 5.10 one can see how the

two strategies based on the Hessian LHD and LPH are still the best. For the random

regular graph the situation appears to be very similar; in the case reported in the

right panel of �gure 5.10, however, for a high enough number of measurement the

inferential strategy HIJ gets almost as good as the one using the perturbed Hessian,

whereas the LHD heuristics is still the most e�ective.

Also as regards square lattices, two di�erent sizes have been studied in order to

be able and evaluate the e�ect of using the complete Hessian on the smallest one;

the N = 16 networks proposed for this reason where the couplings form a 4 by 4

square lattice led however to very noisy results. Leaving as a future perspective the

comprehension of why for such small networks the results are so worse compared for

instance to rings or random regular graphs, the results on 6 by 6 lattices are reported
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Figure 5.12: Average true positive rate curves for di�erent heuristics with (right
panel) and without (left panel) a tree-like initial knowledge on a N = 33 hierarchical
network of interactions.

in �gure 5.11. The right panel, where an initial tree-like knowledge is assigned before

starting to use the heuristics, seems indeed to be very similar to the equivalent �gure

on random regular graphs. What is interesting and still to be understood is that in

absence of an initial knowledge, and di�erently from what happened on rings and

random regular graphs, the perturbed Hessian strategy leads to results that are just

equivalent to the ones obtained by measuring couples at random. Having a richer

initial knowledge of the system seems thus to be particularly crucial for this topology.

As mentioned in section 5.8.2, when considering hierarchical structures the sit-

uation slightly changes. In particular, in this case the optimal trade-o� between

exploration and exploitation could be di�erent from before; because of the structure

having a highly connected node, a certain number of leaves and a second layers of

elements connecting the two, as soon as one has some information about the system

it is possibly more pro�table to continue and sample the same region than to look

for information elsewhere. By looking at the left panel of �gure 5.12 that refers to

the inference in absence of a prior knowledge on a N = 33 hierarchical network, one

easily sees how measuring the couple with the highest diagonal element of the Hessian

(HHD heuristics) is the unique strategy signi�cantly improving the results obtainable

by a trivial random choice of the measures; interestingly, the same strategy led on

all the other topologies to results even worse than the ones got by such a trivial se-

lection. Another feature of interest is the e�ect of adding an initial knowledge on

the system (right panel of �gure 5.12). By doing this, indeed, the performance of

HHD seems to stay almost unchanged, whereas the simpler inferential heuristics HIJ

improves dramatically and becomes the most e�cient. Also the heuristics making use
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Figure 5.13: Average true positive rate curves for di�erent heuristics with (right
panel) and without (left panel) a tree-like initial knowledge on a N = 20 Erd®s�Rényi
network of interactions.

of the highest element of the perturbed Hessian, whose results are compatible with

a random choice if no initial knowledge on the system is given, remarkably improves

with a tree-like initial condition.

The last case to analyse is the one of interaction networks de�ning Erd®s�Rényi

graphs on the nodes of the system. For reasons that will be discussed in appendix

5.10.1, one has some right to believe that the inference will be more di�cult than the

one on the other geometries. In particular, we found several convergence issues when

looking at larger system size; for these latter, smarter procedures for de�ning the

Jtrue to be recovered have probably to be thought of in such a way to obtain arti�cial

models one can afterwards deal with from a computational point of view. For smaller

networks, such problems were found to be not as severe and the results can be seen

in �gure 5.13. As in the other cases, in absence of a prior knowledge it is not easy

to determine which strategy leads to the best results. For a large enough number of

measurements the LHF and the LPH heuristics seem to be the most e�ective; this

is in accordance, for instance, with the results found for random regular graphs and

rings, even if in this case the improvement with respect to a random choice is much

reduced. The �rst part of the curves, however, associated to the situation in which few

correlation measures have been taken, reveals an apparently contradictory behaviour,

as the HHD and HPH heuristics seem to be the most e�ective. This feature could

depend in a non-trivial way on the geometry of the couplings, as it is not eliminated

by using a tree-like initial knowledge on the system (see the right panel of �gure 5.13)

which gives as usual, much less noisy and much easier to read results. By looking

at these latter, the good performances of the LHF and LPH strategies in a wide
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range of number of measurements is con�rmed; as before, if the initial knowledge

of the system is richer also the simpler �inferential� strategies HIJ and HIC become

signi�cantly more e�ective than a random choice of which element to measure next.

5.8.4 Di�erent graphs, di�erent features

Even if one can somehow accept the fact that the proposed algorithms work dif-

ferently depending on the geometry of the interaction, what is still missing from our

framework is a more quantitative explanation of the features of the graphs that are

the most signi�cant in order to determine such di�erences. Various attempts have

been made by trying to connect the e�cacy of the heuristics to the sparseness of the

network, to its loopiness or to its degree heterogeneity, but no satisfactory answer has

been found yet in this regards.

What follows should be seen as the beginning of a work aiming at understand-

ing this point. As has been seen, on some geometries the heuristics consisting in

measuring the correlation connected to the smallest diagonal element of the Hessian

appears to work very well. This implies that one could expect the couples for which

this quantity is smaller to be more often associated to true couplings than the other

ones. For letting this intuitive reasoning be more quantitative, one can study several

instances supposing that a certain number of measurements has already been taken.

For all of them, the elements of J are ordered according to the value of the diagonal

part of the Hessian; all these permuted lists of couplings are �nally averaged.

If the previous assumption is correct, one would expect the mean array of the

interactions to be increasing; this would mean that, for instance, the couple whose

diagonal element is the 10th smallest in magnitude is more likely to be a real coupling

than the one associated to the 20th, and less likely to be so than the 3rd one. Un-

fortunately, by looking at the results it turns out that the situation is more involved

than that.

In �gure 5.14 it can be seen a situation in which the heuristics has been veri�ed not

to work so much better than a random choice. As expected, there is no monotonicity

whatsoever; it almost looks like the elements that most frequently correspond to real

couplings are the intermediate ones.

Even in cases where the heuristics works, however, it appears not to be a very clear

global tendency (see �gure 5.15 for the results on rings and on random regular graphs);

still, the couple with the smallest diagonal element of the Hessian has typically a

coupling larger than the others. Such a quantity clearly contains some information

about the system and on the ring, in particular, it is associated to a value of average J
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Figure 5.14: An analysis of the average relationship between value of the diagonal
part of the Hessian and value of the coupling is proposed by looking at the average
value of J of the couple having the xth smallest diagonal element of the Hessian. The
�gure refers to 100 N = 25 Erd®s�Rényi instances; on each, 50000 di�erent initial
conditions of the type called �rich� in section 5.7.1 have been studied, with the 20
percent of the correlations corresponding to true couplings known from the beginning.
The two quantities plotted appear not at all to be monotonically related.

that is almost the double of the second largest one; since in this case all the couplings

are quite homogeneous among each other, this feature can be translated in a more

intuitive form by saying that the highest ranked couple corresponds to a real coupling

twice more often than the second highest does.

The global trend one was hoping to see in this kind of graph is missing. This could

potentially be a problem when one is interested in taking multiple measurements at

the same time. Since the second ranked element on the couples does not seem to

show qualitatively di�erent features, one can suspect that for instance measuring the

two couples associated to the two smallest diagonal elements of the Hessian would

produce results similar to the ones obtained by measuring the �rst one plus another

one randomly chosen among all the others.

By better looking at the results, it looks like the situation is not as hopeless as

that. Even if a clear global trend is lacking, one founds that, on average, it is not

only the highest ranked element to contain some information about the system. Out

of 317 elements, on random regular graphs the four most highly ranked couples are

all among the 19 having the largest average value of J . The same holds also for the

ring, where out of 295 elements the four highest ranked are among the 17 with largest

average coupling.

What has been discussed in this section has to be seen as a preliminary work in

order to understand the in�uence of the topological characteristics of the couplings
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Figure 5.15: The same as in �gure 5.14, but related to random regular graphs (left
panel) and rings (right panel), again of size N = 25. The information contained in
the highest ranked couple is clear in both cases.

on the results of the di�erent heuristics. As a perspective for future work, one would

like to determine at least leading order analytical estimates of the Hessian (or of its

diagonal) for several geometries; this would be of interest also as a way of getting

some clues about which heuristics could work the best on the di�erent topologies

considered.

5.9 Future perspectives

5.9.1 Biological applications

As discussed in the general introduction of this chapter, the reconstruction of

a coupling matrix from a partial knowledge of the correlations is a theme of great

interest in several �elds. Before imagining a real application, however, one would need

a very abrupt improvement of the performances of the proposed heuristics, as we have

been able so far to study systems composed by some tens of nodes, whereas a real

network could comprehend thousands (for instance for a gene regulatory network) if

not millions (for a recommendation system) of nodes. Some of the strategies, as the

ones using the full Hessian, scale very badly with an increasing system sizes both in

the memory needed and in the computational time requested for the algorithm to

converge. For very large systems, one would probably need even more approximated

heuristics based on the fundamental ideas discussed in this work. Just to make

an example, one could exploit the fact that the global inference of a 106 by 106

coupling matrix will remain virtually unchanged by any single extra measurement:

in such conditions, one could for instance try and locally update only the part of the
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inference that has been touched by the last measurement taken, without running a

global gradient descent on all the elements not measured yet.

For larger systems that are of interest for real-world applications, also the point

of allowing multiple measurements at the same time becomes crucial. As brie�y dis-

cussed, the methods described in this chapter are quite straightforwardly generalisable

to such a situation; the goodness of the results on di�erent geometries and by using

di�erent heuristics has however still to be carefully evaluated.

5.9.2 Theoretical challenges

The core of the project on which the heuristics proposed have been based is the

analytical analysis of the problem described in the �rst sections of this chapter. Many

theoretical questions have still to be answered. Firstly and expectedly, it has been

veri�ed that the coupling topology is crucial in determining the performances of the

di�erent strategies, even if some common features have been found and discussed.

In order to better understand this point, a spectral analysis of di�erent geometries

could be tried so to �nd out more precisely which are the elements the most important

in di�erentiating the results. Any improvement in this theoretical understanding of

the problem could give very useful hints about how to de�ne e�cient heuristics on a

given network being characterised by a set of features. Among the latter, the ones

suspected to be the more in�uential in determining the e�ectiveness of the di�erent

procedures are the homogeneity or the non homogeneity in the degree distribution,

the loopiness, the sparseness, the typical distance between any couple of nodes. All of

these could also interact in a non trivial way, and determining a priori how a strategy

will work on a given system is not at all expected to be an easy task.

Another quite separate part of the project that is still missing is to start and

take into account the possibility of having noisy measurements, with α 6= 0. All

the analysis so far performed will need to be repeated for di�erent levels of noise,

and some of the di�culties that will arise can be already forecast. As shown in the

appendix 5.10.4, for instance, for a high enough level of noise the F will no more have

a unique minimum, and the result of the gradient descent will typically depend on its

starting point. Even knowing since now these complications, it is clear how crucial

is the generalisation to α 6= 0, as the hypothesis of having at our disposal perfectly

accurate measurements is clearly an absurd in many real-world contexts such as the

biological one.
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5.9.3 More complicated heuristics

It has been seen how a richer initial condition typically leads to much better

results. This insight can be turned the other way round by saying that if the initial

knowledge on the system is not rich enough, the best one can do is to perform some

measurements designed in such a way to obtain a �rst understanding of the structure

of the system and just in a second moment starting to use the real strategies discussed.

Depending on the features of the system under study, an optimal subdivision between

the measurements to be taken during this initial transient and the ones following the

real heuristics could be determined.

Another aspect to go into in more depth is the e�ect of the regularisation param-

eter γ; on this aspect some preliminary work has been done and the results referring

to it are reported in appendix 5.10.3. In addition to those, it is reasonable to imag-

ine that the more information on the system we have, the smaller a regularisation

is needed for the algorithms to converge. A way of practically implementing such a

principle would be to perform an annealing on γ, that is decreasing its value as more

and more measurements are taken on the system. Some promising results have been

obtained in this direction, but a comprehensive understanding of the e�ects of such

an annealing on the inference quality of the di�erent heuristics is still missing.

5.10 Appendices

5.10.1 Caveat on the procedure for creating synthetic J

The point one has to consider when using the strategy discussed in section 5.4.3

is that a rescaling of the values of J is performed, and this latter is not guaranteed

to be uniform along the elements of the matrix. The procedure needed to obtain

a C = J−1 with the characteristics speci�ed above will produce a �nal Jtrue with

elements potentially very di�erent from each other even if the starting J had all

the elements equal. This is the case, for instance, on a severely inhomogeneous

network as a Erd®s�Rényi graph where a very strong variability among the couplings

is introduced, whereas on a network with a higher symmetry such as a ring this e�ect

is not observed.

This makes di�cult the comparison among di�erent geometries, as in some sense

one looses the control on the actual value of the couplings. Even starting from anal-

ogous conditions, it has been veri�ed that on some geometries one ends up with

couplings much larger than the ones observed on others, and hence with an inference
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Figure 5.16: Value of the average of the couplings (left panel) and of the di�erence
between the largest and the smallest element of J (right panel) after the rescaling
procedure. The reported results refer to single instance of the di�erent topologies of
di�erent sizes N .

task that has to be expected easier. As a future perspective, one would like to test

the possible use of an inverse problem also at this stage, for instance by appropriately

assign the value of J from which the procedure described has to start in order to

obtain similar Jtrue for di�erent geometries.

In order to quantitatively estimate the impact of this issue, some analyses on single

instances have been performed; in all the cases that will be discussed, the starting

point has been set as a network with all the couplings equal to 0.7 in modulus, with

the sign randomly assigned with probability 0.5. All this study has to be considered

preliminary as more stable results will be obtained by considering ensemble averages

for the di�erent types of geometry. The more natural observable one can look at is

the average value of J after the rescaling and at the range between the minimum

and the maximum value. The results as a function of the system size N can be seen

respectively in the left and in the right panel of �gure 5.16.

As regards the ring, for any size the elements of J are very homogeneous and

very similar to the originally assigned value of 0.7. For random regular graphs and

two dimensional lattices, the situation appears to be quite similar. In both cases, the

average value of the couplings is smaller than the input one, possibly a�ecting the

performances of the algorithms as, all the other factors being constant, the inference

is going to be more di�cult if the di�erence between contacts and non-contacts is

smaller. This worsening should be true in particular for the lattice, as the obtained

average coupling value is systematically smaller if compared to the other geometries.

The rescaling procedure, however, does not introduce a strong inhomogeneity for

these geometry, probably because of their intrinsic symmetry; as can be seen in the
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Figure 5.17: Value of the smallest (left panel) and of the largest (right panel) coupling
after the rescaling procedure. For both, the absolute values are considered. The
reported results refer to single instance of the di�erent topologies of di�erent sizes N .

right panel, the deviation between the largest and the smallest element is still quite

small.

As expected, the Erd®s�Rényi case shows some qualitatively di�erent features.

Looking at the average value, it looks like the couplings are even bigger than the ones

of the already discussed geometries. However, one should not be too con�dent in the

algorithm performances, as the couplings are for this topology much more diverse as

can be seen by looking at the di�erence between the smallest and the largest element

of J , bigger than the one found for all the other geometries by almost one order of

magnitude.

The hierarchical structures, de�ned only for N = 16 and N = 33, seem to produce

results intermediate between the two extremes so far discussed as regards the di�er-

ence between minimum and maximum coupling. Especially for the larger system the

average of J is much smaller than the original 0.7 value and one should not expect a

very easy inference task.

Other interesting insights can be obtained by looking at the maximum and mini-

mum absolute values of the couplings after the rescaling (see �gure 5.17). As regards

the maximum value, one can see that all the geometries apart from the Erd®s�Rényi

graphs behave similarly and have a maximum J not too far away from the input

value of 0.7. The Erd®s�Rényi case is again quite di�erent, as its largest coupling is

found to be around 3. This feature turns out to be quite central in analysing some

convergence issues that emerged in the simulations. It has been seen, indeed, that

a trade-o� between the easiness of the problem from a statistical physics and from

a numerical point of view has to be looked for. For chosen couplings that are too
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small, the di�erence between couplings and non-couplings becomes tinier and tinier,

and the former are detectable with more and more di�culty. If too large couplings

are chosen, on the other hand, the gradient descent procedure is very unstable. In

particular, by measuring an extra element there is a non-negligible probability that

the technique that will be described in section 5.7.2 for updating the estimate of C

will produce a matrix not invertible any more. In order to avoid convergence issues in

such a case, one should set very small learning rates, leading in turn to an extremely

slow convergence even for very small networks. The fact that in Erd®s�Rényi graphs

one indirectly obtains such extremely large couplings via the rescaling procedure can

be regarded as one of the reasons of the observed convergence lack.

Also the minimum absolute value of J (see left panel in �gure 5.17) gives us some

useful insights as it can be connected to the detectability of the weakest contacts.

The ring appears to be the easiest case also in this respect, all its couplings being

practically identical with each other. Going towards more di�cult cases, one found

respectively random regular graphs, lattices and hierarchical structures. The most

di�cult geometry, also in this case, is the Erd®s�Rényi, its smallest J being between

0.2 and 0.3. For a N = 49 network, for instance, this means that we should be able

to detect couplings that are one third of the corresponding ones on the ring: it is

not unexpected, then, that the performances on random graphs will be worse, all the

other parameter being equal.

These di�erences can lead to very di�erent results, especially as regards the ability

of identifying where the true contacts are. In this case, indeed, all of them are consid-

ered in a sense on the same level, independently on the magnitude of the coupling. If

some of them, nevertheless, are much smaller than the others, they will be much more

di�cult to identify; in an extreme case, a �true� contact whose coupling is exactly 0

is by de�nition impossible to detect. Such paradoxical e�ects should not be regarded

as signs of poor performances of the algorithms.

5.10.2 The value of the couplings

Being interested in recovering a set of couplings, the �rst point to be �xed is

whether these latter should be equal to each other. Since this possible symmetry is

anyway broken by the procedure described in 5.4.3, the couplings will for the sake of

generality not be assumed to be equal. Another interesting point is how to decide

the sign of the couplings. In the �rst part of the project, the simplest case where

all the couplings are positive has been considered. Especially when thinking about

possible applications, however, it is important to be able and deal with situations in
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which positive and negative couplings coexist so that some couples are energetically

favoured to be aligned, and some are not. This is far from being a technicality, as

this choice let the problem enter in the �eld of the disordered systems discussed in

chapter 1. The reason why this case is expected to be harder than the �rst one is

that the balancing e�ects between positive and negative couplings will lead to smaller

e�ective correlations between sites, diminishing the information content of the taken

measurements on C.

Since for the time being we are not yet thinking about a speci�c application, the

couplings are extracted from a normal distribution with a given mean and standard

deviation (small enough so to avoid too spread values), and afterwards a randomly

chosen half of them is assigned a negative sign. Another possibility having been ex-

amined is to have bigger couplings on the selected geometry and smaller, but di�erent

from zero, couplings elsewhere. As one is typically more interested in coupling matri-

ces that are really sparse, however, this possible generalisation has been considered

not to be really enriching and has been neglected in the simulations.

5.10.3 Regularisation and noise

Considering the Bayesian approach to the problem proposed in section 5.3, before

actually starting to run simulations and look at the results one needs to de�ne the

value of the regularisation parameter and the noise level of the system by assigning a

value to the parameters previously called γ and α. As regards this latter, given that

this work is quite preliminary in its approach and no established results were found

in the literature, we restricted to the noiseless case where α = 0; after having better

understood this simpler case dealing with perfectly accurate measurements on the

system, anyway, one would like to extend the analysis performed also to noisy case.

This has to be considered as a future extension of this project.

The possible values of γ have been, on the other hand, more carefully studied. It

has been found out that this regularisation on the model has to be neither too small

nor too big. In the former case, the strategies start to show convergence issues, as a

large enough regularisation on the matrices is needed in order to be able and invert

them. If γ is too large, on the other hand, one is throwing away some information

about the system, as the �at prior on the system given by the regularisation starts to

take more and more importance in the inference procedure compared to the results

of the measurements actually performed on the system. As can be seen in �gure

5.18, however, it looks like a large enough range of possible γ values exists such

that both these problems are avoided. In particular, the curves of the error on Jinf
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Figure 5.18: For decreasing values of the regularisation γ, one is able and reconstruct
more and more reliably the actual values of the J matrix. Even for a large enough
value of γ, however, one is able to correctly determine the couples connected by a
coupling di�erent from zero, as can be seen by looking at the true positive rates on the
right panel, very stable with respect to di�erent choice of the regularisation parameter.
Both the �gures refer to a combination of geometry and heuristics producing good
inference results, so to be able and more clearly pinpoint the feature under discussion.
The geometry chosen is a N = 25 ring, and the elements to measure are chosen
according to their value on the diagonal part of the Hessian matrix: this strategy will
be introduced in section 5.6 and will be referred to as LHD, standing for low Hessian
diagonal. The curves are averages over 5 instances of the network, on each having in
turns performed 5 runs of the procedure.

for γ in this range appear to be simply rescaled; errors on the reconstruction of J

smaller than the ones reported in the �gure get however more and more di�cult

to obtain as one would need smaller and smaller γ, incurring in the convergence

issues previously introduced. The true positive rates, on the other hand, seem to be

practically independent on the choice of a regularisation in this range. This needed

trade-o� has anyway to be considered as a possible explanations for the bad results

obtained under some conditions: especially on Erd®s�Rényi graphs, where some of the

couplings get very large because of the mechanism discussed in section 5.10.1, from

the numerical studies it looks like the minimal γ for which the procedures converge

is still too large to obtain reliable inferences.

5.10.4 Uniqueness of the minimum

As discussed in eqs. 5.8 and 5.9, the solution of the inference problem is found

by looking at the model minimising the value of F . In order for this idea to be more

rigorously de�ned and independent on the initial knowledge of the system, one would

like to check under which conditions such a minimum is uniquely de�ned.
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This task is achieved by looking at the quadratic form of the Hessian in the

compact form found in eq. 5.18 de�ned as follows:

Q
({
Xm1,m2

})
≡

∑
m1,m2;m′1,m

′
2

Xm1,m2Mm1,m2;m′1,m
′
2
Xm′1,m

′
2

(5.24)

The uniqueness of the minimum will hence be veri�ed for the parameters for

which such a quadratic form is positive de�ned. After some calculations involving

the quadratic form of the di�erent components of M as they are de�ned in 5.18, one

gets the following relation:

Q({Xm1,m2}) =
∑
m1,m2

(
Xm1,m2

)2[1

γ

(
Im1,m2 − 1

)
+

2(1− α)

λm1λm2

]
(5.25)

First of all, one can study the small γ limit. The result one obtains in this case is

the following:

lim
γ→0

Q
(
{m1,m2}

)
=
∑
m1,m2

X2
m1,m2

(
− 2α

λm1λm2

)
(5.26)

This limit is hence unfortunately quite uninformative. For γ → 0, the Hessian is

found to be negative de�nite for any value of α > 0 and completely �at for α = 0.

This is consistent with the fact that, in order to run the gradient descent discussed

above, one has to put a regularization parameter γ strictly larger than 0.

A direct study of the formulas for generic γ is hence needed. In order to obtain an

even more compact form of the Hessian, one can call G the term multiplying Xm1,m2

in eq. 5.25. By doing that, one obtains the following formally very simple relation

for the quadratic form Q:

Q(m1,m2) ≡
∑
m1,m2

X2
m1,m2

G(λm1 , λm2 , γ, α) (5.27)

The uniqueness of the minimum is therefore directly related to the positivity of

the function G. In order to study how the positivity is connected to the value of the

parameters, G is separately looked at as a function of γ for several values of α and

vice versa. The values of the two eigenvalues λm1 and λm2 are in this case arbitrarily

�xed, as the goal is to understand the general features of the curves. However, the

true values of the eigenvalues could be inserted in the relations so to obtain the correct

positivity thresholds in some speci�c cases of interest.

As one can see in the left panel of �gure 5.19, the behaviour of G as a function of α

for increasing γ appears to be very reasonable. In the limit of perfect sampling α = 0,
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Figure 5.19: On the left panel: curves of G as a function of γ for several values of
the noise level α. On the right panel: G as a function of α for several regularisation
parameters γ.

indeed, G is always positive for any γ ≥ 0 (i.e. even in absence of regularisation). For

larger α, on the other hand, it can be found a value of γc(α) such that G is positive

for γ > γc and negative otherwise. As expected, γc(α) is an increasing function of

α; the noisier the measurements, the stronger we need a regularisation to obtain a

positive de�nite Hessian and to have a well-de�ned minimisation problem as regards

the original function F .

By examining the dependency of G on the noise α, it turns out that this latter is

linear for any value of γ. Indeed, by de�ningA ≡ − 2
λm1λm2

and B ≡ 1
γ

(
I(λm1 , λm2 , γ)−

1
)

+ 2
λm1λm2

one can write G(α) = Aα +B.

Also in this case, a critical αc in correspondence of which the quadratic form is

equal to zero can be found for any choice of the regularisation γ. As one can see from

the right panel of �gure 5.19, such a value is increasing with γ. This feature can be

intuitively understood, as by choosing larger and larger regularisations, one is able to

study noisier and noisier systems.

5.10.5 Completion of the initial condition

In order to run the gradient descent, the initial knowledge C̃ one has on the

system has to be completed in some way, by assigning values also to the elements

still belonging to C⊥. The most simple idea we checked was to assign all the missing

elements to zero, and to recover a more appropriate estimate of them as a result

of the optimisation procedure. After some thoughts, however, one sees that this

is actually a very strong assumption, creating some major convergence issues. For

better understanding the point, let us imagine that two correlation measurements Cij
and Cjl have been taken, and that both of them were found to be strong. Even if

Cil has not been measured yet, setting it equal to 0 is clearly straining, as the most
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natural hypothesis one can make in this case is that also this element will be quite

strong. From a more technical point of view, it turns out that the matrix obtained

by setting equal to zero the unknown elements is not at all guaranteed to be positive

de�ned, and this prevents the gradient descent to correctly run as the matrix cannot

be inverted. Even in the parameter regions where the minimum of F is unique and

the outcome of the gradient descent does not depend on the initial condition, this

latter has nevertheless to be at least invertible for the procedure to work.

Following the idea discussed above, another way of completing C̃ so to obtain

an invertible C is introduced as follows. Let us focus �rst of all on the case where

the initial knowledge on the correlation is star-like around the ith node, in which

the proposed procedure can be shown to give an invertible matrix. Without loss of

generality, let us �x i = 1, imagining that the �rst row and column of C have been

measured. In order to overcome the previously discussed di�culties, a reasonable

way of guessing one of the missing correlations Ci,j with i, j ≥ 2, i 6= j is to set

Ci,j = C1,i C1,j. If the node 1 is strongly correlated both with i and with j, for

instance, setting Cij = 0 requests clearly a stronger hypothesis than setting it to a

larger value. If on the other hand at least one of the two correlations C1,i or C1,j is

weak, the prior guess about Ci,j will be a weak value as well.

The elements of C are thus de�ned as follows:
Ci,i = 1 ∀i ∈ [1, N ]

Ci,1 = C1,i ≡ Ci ∀i ∈ [2, N ] : measured correlations

Ci,j = Cj,i = CiCj ∀i, j ∈ [2, N ], i 6= j : unknown correlations

(5.28)

In order to show the matrix built in such a way to be invertible, one can demon-

strate the quadratic form associated to it to be always positive. After some calcula-

tions and substituting the matrix elements one is able to obtain the following:

N∑
j,k=1

xjCj,kxk =

=
N∑
j=1

xjCj,jxj +
N∑
j=2

xjCj,1x1 +
N∑
k=2

x1C1,kxk +
∑
j,k≥2
j 6=k

xjCj,kxk = · · · =

=
N∑
j=2

x2j(1− C2
j ) +

(
x1 +

N∑
j=2

Cjxj

)2

≥ 0 (5.29)

which is indeed positive for an arbitrary choice of x as |Cj| ≤ 1. A possible

generalisation of the previously described procedure of completion of the initial C is
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proposed as follows, even if in the most general case this is no more guaranteed to

generate a positive de�nite matrix.

The generalisation goes as follows: when the initial knowledge on C is a star

around a node i, we discussed in the previous section that a sensible choice for setting

a �rst estimate of the element Ckl, k, l 6= i is Ckl = Cki ·Cil. A possible interpretation

of this choice makes use of the fact that, considering the graph induced by the initial

knowledge on the N nodes graph, all the couples of nodes k, l with k, l 6= i are

connected by a unique path, that is the one that passes through i. The shortest (and

unique) path from k to l is then formed by the two links (k, i) and (i, l), and hence

the correlation between k and l can be evaluated using this path according to eq.

5.28.

This reasoning can immediately be extended to a tree-like initial knowledge on C:

also in this case, indeed, there is a unique path connecting any pair of nodes, even if

it can be longer than in the previous case. However, if the path connecting nodes k

and l passes through the nodes k1, k2, ...., kp−1, kp the estimate of Ck,l will be de�ned

as Ck,l = Ck,k1 · Ck1,k2 · ... · Ckp−1,kp · Ckp,l.
Even in a more general case, in which the initially known elements of C do not

form a tree over the original graph, this method can be applied. In this case, however,

there could be multiple paths connecting a pair of nodes: the missing C can be hence

estimated by applying the above described procedure on the shortest one. In order

to take into account also the case of an initial knowledge whose elements do not

form a connected graph on the original system, the estimate for a Cj,l with j and l

belonging to disconnected components of the graphs is set equal to zero. This is also

consistent with the idea above discussed of setting all the initial estimates equal to

zero in absence of a prior knowledge of the system.
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Chapter 6

Conclusions and perspectives

6.1 The network theory in the �big data� era

6.1.1 The end of theory?

In a provocative essay [155] published in 2008 Chris Anderson claims that, because

of the deluge of data at our disposal (and of the increasing rate at which we are able to

collect and analyse them), our need for models will irreversibly shrink during the next

few years. When the accessible sets of data were small, a model for generalising them

was fundamental, and the disentanglement between correlations and causations was

an aspect of particular importance. This could be less evident when, from a practical

point of view, all the data are accessible, as in this case he claims that knowing

the correlations may be enough. He reports Google's research director Peter Norvig

paraphrasing the famous George Box maxim, saying that �All models are wrong, and

increasingly you can succeed without them.� The example of what Google did in the

online advertising market is enlightening: without pretending to know its mechanisms,

conventions and culture, Google's researchers and engineers were nevertheless able

to conquer it by using the best analytical tools on the best and richest available

data. No speci�c model was involved, no causal e�ect was claimed to have been

rigorously determined. According to Anderson no �science�, in a traditional sense,

was performed.

I believe this attitude to be way too extreme for several reasons. First of all, even

if it is true that our ability to analyse data has exponentially (literally, according to

Moore's law) increased over the last decades, the same holds also for the quantity of

collected data. In a sense, is to be expected that also in the next years we will be

forced to analyse just a small fraction of the data we will have, and that modelling will

therefore keep its central place in science. Looking at one of the �rst truly big data
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�elds of research, the astronomy, one can see that the Large Synoptic Survey Telescope

(LSST), planned to enter operation in 2022, will gather 30 TB a night [156,157]. The

same order of magnitude of data will be collected by the largest particle physics

experiments, such as the ones running at the LHC [158]. For the time being, just

the data that seem at a �rst sight to be the most informative are actually analysed,

all the rest being either stored (waiting for increased analytical abilities) or directly

discarded.

Apart from this technical inability, that as far as we know could even be overcome

in the future, there is probably also a somewhat more fundamental aspect at play.

I am indeed convinced that we will keep on feeling the necessity of having more

simple and �understandable� models. Trying a risky metaphor, I would say that

the modelling capabilities in the big data era will be as important as the Newtonian

laws of motions after the discovery of the quantum mechanics and of the relativity

theory. The frameworks discussed by C. Anderson, hence, will probably survive as

two complementary approaches, more then being in a real juxtaposition.

Most of the problems described in this thesis will be central also in the growing

�eld of the data science, even if they will probably be seen under a slightly di�erent

perspective. A �rst di�erence with what has been discussed will be quantitative: the

solutions needed to deal with big data are already, and will be for the next years, of the

greatest interest for the computer science and for the engineering communities [159].

More strictly connected with the modelling approach kept in this work will however

be their qualitative features (that are sometimes referred to by talking about rich

data [160]), that will request a lot of theoretical work to try and better understand

the underlying mechanisms; the following example will clarify the point.

6.1.2 An example of �rich data� analysis: Quora

Let us consider the social network Quora [161], which main idea is to let the users

ask more or less any kind of question, and to let other ones (experts or not in the

�eld) propose their answers. Put this way, the situation could seem similar to the

matching problem discussed in chapter 2, the objective being to build a mapping

between the questions on the one hand, and the people able to answer them on the

other. The �rst issue comes when one quantitatively analyses the situation, as there

are several millions of users (and, therefore, of questions and answers proposed) and

the e�ciency of the proposed algorithm is therefore really crucial.

A fundamental part of the data scientists' job at this company is to maintain high

the signal over noise ratio, in order to keep the users interested; to do so, the �quality�
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of each user both in asking and in answering questions has to be assessed. A system

of up and down votes makes this possible by exploiting an iterative procedure similar

to the PageRank used by the Google research engine; the quality of a user has to be

understood as a dynamical quantity, as it is obviously not �xed once and for all for a

user.

As regards the people aiming to answer questions, the system should propose

good ones to them: question they can and they are willing to answer. Assigning a

set of �interesting� questions to a user is a huge problem on its own: it depends on

constraints both global (the topics considered interesting by the whole community in

a given day) and local (what are my expertises?). Even grouping questions posed in

a free form is a big problem, as it requires cutting-edge natural language processing

capabilities applied to sort of a community detection problem as the ones discussed

in chapter 2.

As usual in social networks, also in this case there is the possibility to follow other

users, so to preferentially see the questions they propose and the answers they give;

one can also endorse another user by con�rming his competences in a �eld. The well

known exploration-exploitation phenomenon discussed in chapter 5 is also a crucial

point: if I say to be fond of music, for instance, the system should propose me several

contents related to it in order to exploit the piece of information I have given to the

system; nevertheless, to avoid the boredom that naturally would arise if the questions

proposed to me are too homogeneous, it should also be able to change the topic now

and then, guessing another �eld which I am likely to appreciate so to explore my

personal tastes.

What at a �rst sight could have seemed just a standard, computer science text-

book matching problem, turned thus out to be both quantitatively and qualitatively

extremely involved. In the following section, it will be shown how also the problems

tackled in chapters 3, 4 and 5 will still be of central importance in the next years

(and probably even decades). In conclusion, it seems to me that we are still quite

far away from �the end of theory�; probably, rather, a big issue will be how to try

and unify the insights one can have by for instance making use of a machine learning

approach on the one hand, and of a more theoretical, modelling framework on the

other. This di�culty, however, has already been faced in other �elds such as the

biology, leading to the coexistence of several levels of abstraction; the same natural

processes can indeed be described both by very abstract, mathematical models and

by more precise, quantitatively accurate, data-oriented approaches.
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6.1.3 New solutions to old questions

The introduced �data deluge� is going to let the traditional ways of solving a

large number of problems rapidly become obsolete. Let us think about the cluster-

ing problem introduced in chapters 2 and more extensively discussed as regards the

recommendation systems in chapter 5, having a clear application in the search for

an accurate market segmentation. This latter is a long-standing goal, as it is needed

in order to better understand the common features of the groups of people taking

advantage of a given service.

The standard strategies adopted in marketing to address this task up to some

years ago (and still now in some cases) made use of some coarse graining of the

customers according to very basic and structured features such as their age, sex, level

of instruction or city of residence. In a �data-rich� era, this kind of classi�cation will

appear extremely rough, as for instance any web service (from the ones for reserving

hotel rooms to the ones for buying books or clothes) is already making personalised

suggestions based on our previous buying history or on our activity on the social

networks. Even the preferences therein expressed by some friends of ours can be

pro�tably taken into account, as anybody is more likely to buy a product that his

acquaintances have already shown to like, as already known since many years in the

sociology community [51].

This switching from a regime in which one has to do the best he can with the few

data available to another in which, on the other hand, the main question is which part

out of the immense quantity of data continuously collected one is going to exploit,

and according to which principles, has already been observed in some �elds and is to

be expected in many others. The heterogeneity of data will also be a very interesting

aspect coming into play. Even in a historically data-rich �eld such as �nance, the

data to analyse have always been quite homogeneous and easy to assemble; this is

not going to be true any more when for instance messages written on Twitter in a

natural-language, unstructured form and regarding a company are going to be used

as one of the factors determining its stock market value.

In other sectors, such as the sociology, the data were up to some years ago very

hard and expensive to collect, as this operations required for instance surveys among

the population. The dramatic fall in the cost and time needed for obtaining such

information has already a�ected these �elds, quite abruptly shifting their focus from

a mainly qualitative to a much more quantitative perspective.
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6.1.4 The future of network theory

When trying to forecast the evolution of network theory during the next years,

one has to take into account at least three practical di�erences that will drastically

modify the way it was approached in the past [76]. Firstly, the data acquisition is

going to become more and more automatised, and very large databases regarding the

topologies of several real-world networks will become almost e�ortless available. This

dynamics has been already at least partially observed in economics and in biology, but

many other �elds are going to join this ever-increasing �data�cation� [162]. Secondly,

the computing power one will have access to will continue to increase; even if the

�intractable� combinatorial problems discussed in chapter 2 will remain so up to

a major revolution (the most probable seeming to be at the moment the reliable

availability of quantum information technologies), larger and larger systems will be

analysable, and better and better approximations will be obtained in a reasonable

amount of time. Last but not least, the already started breakdown of boundaries

among disciplines will very likely go on; the possibility of looking at features shared

by very di�erent phenomena and at other ones seeming to be, on the contrary, speci�c

of a given �eld or process will surely shed light on the basic mechanisms regulating

these systems.

6.2 More data, same problems

6.2.1 Optimisation of spreading on networks

Especially in the introductions of the previous chapters, the general interest of the

problems faced during my Ph.D. has been discussed, even if in a way far from having

been exhaustive. As a �nal conclusion of the work, I would like to brie�y describe

the importance such themes will still have in a world that will be change as forecast

in the previous section 6.1.

In chapter 3, the problem of how to induce and control optimal spreading on

networks has been extensively discussed. This optimality is going to be (and, partly,

it already is) a very crucial task to realise in the practical implementation of the so-

called smart cities. In order to minimise wastes, diminish the costs for the population,

avoid cascade failures and not overcharge the city infrastructures, the �ows on the

energy or on the water supply grids will be automatically modi�ed using data coming

from smart meters that will continuously transmit data to be analysed and exploited.

The very same will hold for the tra�c regulation in which, recalling the discussion of
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chapter 1, both the inverse and the direct problems will be of interest: designing new

routes so to minimize the risk of tra�c jam and handling extreme events in real time

will be examples of the two typologies respectively.

The problem of optimal spreading information in a complex network will very

likely remain of central interest also in the IT area, especially by considering the

larger and larger importance taken by the study and the application of distributed

computing systems [163]. These latter, composed by several autonomous compu-

tational entities each of which having its own local memory, have to communicate

among each other and to coordinate their actions in order to achieve a common goal.

It is therefore clear how the design of e�cient methods to optimally transfer across

the entities pieces of information needed for accomplishing such a coordination is

going to be crucial for these systems to improve their performances. When dealing

with very large networks of computing units, moreover, one will also need to take

care of the possible failure of some of the nodes; again, the discussion of chapter 3

on cascade failures and on how to possible predict and avoid them is going to be of

straightforward application to this �eld.

6.2.2 Extreme events in network exploration

In chapter 4 the exploration of graphs, and in particular the quantitative determi-

nation of how improbable extreme events are in these processes, has been discussed.

The applications therein described will continue to be of interest, and a number of

new ones will likely emerge as a result of the �data�cation� process taking place in

many �elds. As soon as new or larger datasets concerning networks become available,

the question on how it is possible to navigate through them by following their links

very naturally arises.

A topic of particular relevance will emerge from a mixture of the problems having

been faced, in this work, in chapters 4 and 5. Many systems one will want to explore,

indeed, will be very rapidly changing over time, and therefore a complete knowledge

of them at any given moment will be quite an unrealistic hypothesis. Google research

engine, for instance, will need to explore a network whose size is becoming more and

more impressive as time passes by. According to the data referring to 2013 reported

in [164], in particular, every minute more than �ve hundred websites are created

and therefore join the previously existing nodes. In this framework, one will need

to determine algorithms and procedures able to optimally explore incredibly large

networks which are just partially known, and for which the information one has at
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his disposal are not completely reliable and are dramatically changing over quite small

time scales.

6.2.3 Inferring networks with partial information

Also as regards the inference of a network of interactions from a sparse or unre-

liable knowledge about the correlations among its components, some of the reasons

of interest in applicative �elds have been described in chapter 5, for instance the im-

portance this problem has in order to optimally suggest items to a user based on his

tastes by making use of the recommendation systems. These problems were however

thought to take place on a given dataset with a certain number of either noisy or even

completely missing entries. The challenge one will have to face in the future is that

one will need in some sense to play on di�erent �elds at the same time. This aspect

is again connected to the increased richness of the data one will have to work with in

the next years.

Referring again to the data collected by Quora, one sees how they refer to several

distinct areas such as the topics of interests, the ratings given to other users and

received by them or the number of days or hours elapsed on average between two

connections to the website. All of these datasets are typically only sparsely known,

but in principle one would like to exploit the information contained in any of them in

order to improve the knowledge we have about any other; in some sense, one would

therefore like to perform crossed inferences referring to di�erent datasets. These

latter are moreover highly heterogeneous, as some of them are structured and some

are not, and the variables they store can be real, categorical or boolean. Achieving

a theoretically rigorous comprehension on how to optimally perform this kind of

crossed inferences is going to be probably out of reach for many years; one could

expect however that the insights having been obtained in simpli�ed frameworks may

help in designing better heuristics so to improve the results obtainable in real-world,

extremely involved cases.

The reason why these studies will likely remain of interest is that such systems

are going to become more and more ubiquitous during the next few years. NetFlix

was probably one of the �rst companies in which a more scienti�c approach to this

problem was tried; nowadays, however, recommendation systems are implemented

in various form by many di�erent companies. Amazon, since many years suggesting

our next book to buy depending for instance on which books we have already looked

at or bought and on the ratings we have given to other items; companies o�ering

musical streaming services such as Deezer or Spotify, interested in proposing us a
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set of songs that we perhaps do not know yet, but that we are likely to appreciate;

websites selling clothing such as Zalando, able to propose us a pair of shoes matching

with the trousers we just bought; news sites regulating the feeds of news appearing

when we open their homepages according to our interests and on the trending topics

of the moment. All these companies have nowadays quite large �data science� groups

and are developing and implementing cutting-edge machine learning techniques to

improve their results in this crucial area.

These systems will very likely become also useful for improving current web search

engines, that are going to get more and more personalised, by starting to increasingly

take into account our previous search history and our similarity with other users. The

pages that will be proposed to us will be in this case no more be the ones �tting the

best, in an abstract way, to our research; rather, such systems will be able to consider

also the typology of the pages we (and users similar to us) have most often opened

in the past, and the results we are most likely going to appreciate are going to be the

ones preferentially suggested to us.
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Abstract The bootstrap percolation (or threshold model) is a dynamic process modelling the
propagation of an epidemic on a graph, where inactive vertices become active if their number
of active neighbours reach some threshold. We study an optimization problem related to it,
namely the determination of the minimal number of active sites in an initial configuration
that leads to the activation of the whole graph under this dynamics, with and without a
constraint on the time needed for the complete activation. This problem encompasses in
special cases many extremal characteristics of graphs like their independence, decycling
or domination number, and can also be seen as a packing problem of repulsive particles.
We use the cavity method (including the effects of replica symmetry breaking), an heuristic
technique of statistical mechanics many predictions of which have been confirmed rigorously
in the recent years. We have obtained in this way several quantitative conjectures on the size
of minimal contagious sets in large random regular graphs, the most striking being that 5-
regular random graph with a threshold of activation of 3 (resp. 6-regular with threshold 4)
have contagious sets containing a fraction 1/6 (resp. 1/4) of the total number of vertices.
Equivalently these numbers are the minimal fraction of vertices that have to be removed
from a 5-regular (resp. 6-regular) random graph to destroy its 3-core. We also investigated
Survey Propagation like algorithmic procedures for solving this optimization problem on
single instances of random regular graphs.

Keywords Bootstrap percolation · Optimization problems · Cavity method ·
Random graphs

1 Introduction

Models of epidemic spreadings as dynamical processes occurring on a graph appear in various
contexts besides epidemiology [15,23,34,42,63]; for instance social sciences study viral
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marketing campaigns aimed at propagating new social trends, and in economy it is crucial to
understand cascading effects potentially leading to the bankrupt of financial institutions. In
these models individual agents are located on the vertices of a graph, and their state (healthy
or contaminated for instance) evolve in time according to the state of their neighbours, the
edges of the graph representing the contacts between agents that can possibly transmit the
illness from one contaminated agent to an healthy one.

There is a great diversity in the details of these models: the dynamics can occur in contin-
uous (asynchronous) or discrete time, according to deterministic or random rules, the state
of an agent can be boolean (healthy or contaminated) or describe several levels of conta-
mination, and finally the dynamics can be monotonous or not. To precise this last point, a
dynamics is said monotonous if the states of an agent always occur in the same order in time,
for instance in the Susceptible-Infected-Recovered (SIR) model the only allowed transitions
are S→ I and I→R, a Recovered individual being immune forever, whereas in the SIS model
an agent can become infected several times in a row. In this paper we will concentrate on
a simple monotonous dynamics, that evolve deterministically in discrete time, with inactive
(Susceptible) variables becoming active (Infected) when their number of active neighbours
reach some threshold, and then remain active for ever. For this reason it is called the threshold
model, see [39] for a version introduced in sociology with an underlying complete graph,
and [27] for its first appearance in physics under the name of bootstrap percolation (on random
regular graphs).

Given one specific dynamical model there are many different questions that can be asked.
The first, a priori simplest, issue concerns the time evolution of the system from a random
initial condition, taking the initial state of each agent as an independent random variable.
For monotonous dynamics a stationary state is reached after some time, and one can wonder
whether the epidemic has invaded the whole graph (in other words whether it percolates) in
this final state. The probability of this event obviously depends on the fraction of infected
vertices in the initial condition, and this may lead to phase transitions for certain class of
graphs; see [5,11,43] for such a study of the bootstrap percolation on finite-dimensional
lattices, and [12,25,27,44–46,50,73] for various type of dynamics on random graphs. In
particular one finds for the bootstrap percolation on random regular graphs a phase transition
at some initial critical density θr (dependent on the degree of the graph and the threshold
of activation): with high probability initial conditions with a fraction θ of active vertices
(without correlations between the sites) are percolating if and only if θ > θr .

Besides these studies of the “forward” (or “direct”) time evolution, which are somehow
simplified by the independence assumption for the initial state variables, one can also for-
mulate more difficult inference and optimization questions. An example of the former type
is to infer some information on the initial state given a snapshot of the epidemic after some
time evolution [6,51,66,72]; this “inverse problem” is particularly relevant in epidemiology
in the search of the “zero patient” who triggered the spreading of an illness. For what regards
the latter type of questions, the design of an efficient vaccination campaign can indeed be
seen as an optimization problem: find the smallest set of nodes (to minimize the economical
and social cost) whose vaccination will prevent the epidemic to reach a given fraction of the
population [7]. We shall actually consider in this paper the somehow reverse optimization
problem, namely targeting a small set of initially active sites that lead to the largest possible
propagation of the contagion. This obviously makes more sense in the perspective of viral
marketing, in which it was first considered [47] than in the epidemiological one; the initial
adopters of a new product, that can be financially incited to do so, are expected to convince
most of their acquaintances and progressively the largest possible part of the population.
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302 A. Guggiola, G. Semerjian

From this point of view the additional constraint that the propagation should be as fast as
possible is also a relevant one.

More precisely, one can define two versions of this optimization problem: (i) given a fixed
number of initially active agents, choose them in order to maximize the number of active
agents at some fixed later time, or in the final state of the propagation; (ii) find the minimal
number of initially active agents such that all the agents are active, again after some time
or in the final state. We will concentrate on the latter version of the problem but part of our
analysis applies to both. These optimization problems are known to be hard from a (worst-
case) computational complexity point of view [28,35,47], even to approximate. Exhibiting
minimal percolating sets for bootstrap percolation on finite dimensional lattices is relatively
easy thanks to their regular structures, but more refined extremal problems are also relevant in
this case, see for instance [20,62]. The understanding of these optimization problems seems
less advanced in the case of sparse random graphs. There exist upper and lower bounds on
the size of minimal contagious sets [4,35,67], some based in particular on the expansion
properties of such graphs [31]. One particular case of the optimization problem (when the
threshold of activation is equal to the degree of the vertex minus one) is actually equivalent
to the decycling number problem of graph theory [19] (also known as minimal Feedback
Vertex Set), which was settled rigorously for 3-regular random graphs in [17] (this paper
also contains bounds for higher degrees). As this last point unveils the notion of minimal
contagious sets is connected in some special cases to many other problems in graph theory;
one way to see this connection is to picture the inactive sites of the initial condition as
particles to be put on the graph. One wants to pack as many as possible of them (to obtain a
contagious set of minimal size), yet they do have some kind of repulsive interactions because
of the constraint of complete percolation at a later time. This is particularly clear when the
threshold of activation is equal to the degree for all vertices: the problem is then exactly
equivalent to the hard-core particle model, also known as independent set or vertex cover.

The strategy we shall follow to determine the minimal size of contagious sets of sparse
random graphs will be the same as in [8,9], namely a reformulation under the form of a
statistical mechanics model which can be treated with the so-called cavity method [53–56].
This (heuristic) method yields predictions for any interacting model defined on a sparse
random graph; its use in the context of random constraint satisfaction problems led to the
discovery of a very rich phenomenology of phase transitions [48,56], with many of these
predictions later confirmed rigorously [1,3,13,30,32,57]. Let us emphasise in particular the
determination of the maximal size of independent sets of random regular graphs (which as we
saw is a problem related to the present one), for which the predictions of the cavity method
(see [14] and references therein) have been recently rigorously confirmed (for graphs of large
enough but finite degree) in [33]. Another example in the context of graph theory is the study
of matchings in random graphs, where the cavity method [75] has also been proved to be
correct [26]. The main originality of our contribution with respect to [8,9] is the use of a
more refined version of the cavity method (i.e. incorporating the effects of replica symmetry
breaking), and an analytical study of the limit where the time at which the complete activation
is required is sent to infinity.

The rest of the article is organized as follows. In Sect. 2 we define precisely the dynamics
under study, recall briefly some known results for random initial conditions, formulate the
optimization problem and propose various interpretations of it, and for the convenience of
the reader we summarize the main results to be obtained in the following. In Sect. 3 we derive
the cavity method equations, both at the replica symmetric and one step of replica symmetry
breaking level. The solution of these equations for random regular graphs is presented in
Sect. 4, which contains the main analytical results of this work. Section 5 is devoted to
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single sample numerical experiments, where we confront the analytical predictions with the
optimized initial configurations obtained with two kind of algorithms (a simple greedy one and
a more involved procedure based on message passing). We finally draw our conclusions and
present perspectives for future work in Sect. 6. The most technical parts of the computations
are deferred to two Appendices.

2 Definitions and Main Results

2.1 Definition of the Dynamics

Let us consider a graph on N vertices (or sites), G = (V, E), with the vertices labelled as
V = {1, . . . , N }, and the number of edges denoted |E | = M . The dynamical process under
study concerns the evolution of variables σ t

i on the vertices, σ t
i = 0 (resp. 1) if the vertex i is

inactive (resp. active) at time t . We shall denote σ t = (σ t
1, . . . , σ

t
N ) the global configuration

at time t . The latter is determined by the initial condition σ at the initial time, σ 0 = σ , and
then evolves subsequently in a deterministic and parallel way, in discrete time, according to
the rules:

σ t
i =

⎧
⎪⎪⎨

⎪⎪⎩

1 if σ t−1
i = 1

1 if σ t−1
i = 0 and

∑

j∈∂i
σ t−1

j ≥ li

0 otherwise

, (1)

where ∂i is the set of neighbours of i on the graph, and li is a fixed threshold for each vertex;
we will also use di = |∂i | to denote the degree of vertex i . The dynamics is monotonous
(irreversible), an active site remaining active at all later times, an inactive site i becoming
active if its number of active neighbours at the previous time crosses the threshold li . Note
that the configuration σ t at time t is a deterministic function of the initial condition σ = σ 0,
and that by monotonicity one can define the final configuration σ f = lim

t→∞ σ t , this stationary

configuration being reached in a finite number of steps for all finite graphs.
It turns out that the final configuration σ f is also the one reached by a sequential dynamics

in which at each time step only one site i with at least li active neighbours is activated; a
moment of thought reveals the independence of the final configuration with respect to the
order of the updates. σ f is indeed the smallest configuration (considering the partial order
σ ≤ σ ′ if and only if σi ≤ σ ′

i for all vertices) larger than the initial condition σ , such that
no further site can be activated. It will sometimes be useful in the following to think of this
process in a dual way, corresponding to the original presentation of bootstrap percolation
in [27], namely to consider that inactive sites are sequentially removed if they have less than
a certain number of inactive neighbours. An equivalent definition of σ f is thus given by the
inactive sites it contains, that form the largest set (with respect to the inclusion partial order)
contained in the set of inactive sites of σ , and such that in their induced graph the degree of
site i is larger or equal than di − li +1; they form thus a (generalized inhomogeneous version
of the) core of the initially inactive sites.

2.2 Reminder of the Behaviour for Random Initial Conditions on Random Regular Graphs

To put in perspective the optimization problem to be studied in this paper it is instructive to
first recall briefly some well-known results for the evolution from a random initial config-
uration [12,27]. For the sake of simplicity let us consider G to be a k + 1-random regular
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graph (i.e. a graph drawn uniformly at random among all graphs in which every vertex has
degree k + 1), with a uniform threshold for activation set to li = l for all vertices. Suppose
that the states of the vertices in the initial condition are chosen randomly, independently and
identically for each vertex, with a probability θ (resp. 1 − θ ) for a vertex to be active (resp.
inactive). The probability for one vertex i0 to be active at some time t + 1, denoted xt+1, can
be computed from the following equation:

xt+1 = θ + (1 − θ)

k+1∑

p=l

(
k + 1

p

)

x̃ p
t (1 − x̃t )

k+1−p . (2)

Indeed such a vertex was either active in the initial condition, or has seen at least l of
its neighbours activate themselves before time t , and without the participation of i0. The
probability x̃t of this last event obeys the recursive equation

x̃t+1 = θ + (1 − θ)

k∑

p=l

(
k

p

)

x̃ p
t (1 − x̃t )

k−p, (3)

with a number of participating neighbours reduced from k + 1 to k as i0 has to be supposed
inactive here. The initial condition for these equations is x0 = x̃0 = θ . In the limit t → ∞
of large times x̃t → x̃∞(θ), the smallest fixed-point in [0, 1] of the recursion (3). For each
k ≥ 2 and l with 2 ≤ l ≤ k there exists a threshold θr(k, l) such that x̃∞(θ) is equal to
1 for θ > θr , strictly smaller than 1 for θ < θr . From Eq. (2) one realizes that the same
statement applies to x∞(θ), hence θr is the threshold for complete activation (percolation)
from a Bernouilli random initial condition with probability θ for each active site. Studying
more precisely Eq. (3) one realizes that for l = k the transition is continuous (x∞(θ−

r ) = 1),
with an explicit expression for the threshold, θr(k, k) = k−1

k . For 2 ≤ l ≤ k −1 the transition
is discontinuous (x∞(θ−

r ) < 1), the threshold θr is obtained as the solution of the equations:
⎧
⎪⎨

⎪⎩

x̃r = θr + (1 − θr)
k∑

p=l

(k
p

)
x̃ p

r (1 − x̃r)
k−p

1 = (1 − θr)l
(k

l

)
x̃ l−1

r (1 − x̃r)
k−l

, (4)

where x̃r = x̃∞(θ−
r ) is the value of the fixed-point of (3) at the bifurcation where it disappears

discontinuously. For l = 2 these equations can be solved explicitly and yield

θr(k, l = 2) = 1 − (k − 1)2k−3

kk−1(k − 2)k−2 . (5)

For generic values of the parameters k, l there is no explicit expression of θr , as (4) are
algebraic equations of arbitrary degree; some numerical values of θr will be given in Table 4.
For a given value of k the threshold θr(k, l) is growing with l: if an initial condition leads to
complete activation for some parameter l it will also be activating under the less constrained
dynamics with l ′ < l.

The relevant range for the threshold parameter l in this study of random initial conditions
is 2 ≤ l ≤ k. Indeed for l = 0 after one step the configuration is completely active regardless
of σ 0, for l = 1 a single active site (per connected component) in the initial configuration
is enough to activate the whole graph, hence in these two cases θr = 0. On the other hand
if l = k + 1 one has θr = 1: any pair of adjacent inactive sites in the initial condition will
remain inactive for ever, and the number of such pairs is linear in N as soon as θ < 1.

Note that the recursion equations (2, 3) are exact if the neighbourhood up to distance t
of the vertex i0 is a regular tree of degree k + 1. The limit t → ∞ can be taken in this way
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only if the graph considered is an infinite regular tree. A rigorous proof that this reasoning is
in fact correct also for the large size limit of random regular graphs (that converge locally to
regular trees) can be found in [12].

2.3 Definition of the Optimization Problem Over Initial Conditions

Let us now come back to a general graph G with some thresholds li for vertex activation,
and consider the minimal fraction of active vertices in an initial configuration that activates
the whole graph, i.e.

θmin(G, {li }) = 1

N
min

σ

{
N∑

i=1

σi | σ f
i = 1 ∀i

}

. (6)

This corresponds to the minimal size of a contagious (or percolating) set, divided by the total
number of vertices. Following [8,9] it will turn out useful to introduce another parameter
T (a positive integer) in this optimization problem, and impose now that the fully active
configuration is reached within this time horizon T :

θmin(G, {li }, T ) = 1

N
min

σ

{
N∑

i=1

σi | σ T
i = 1 ∀i

}

. (7)

Obviously for any finite graph θmin(G, {li }, T ) decreases when T increases and has
θmin(G, {li }) as its limit for T → ∞. To turn the computation of θmin into a form more
reminiscent of statistical mechanics problems we shall introduce a probability measure over
initial configurations:

η(σ ) = 1

Z(G, {li }, T, μ, ε)
e

N∑

i=1
[μσi −ε(1−σ T

i )]
, (8)

where σ T is as above the configuration obtained after T steps of the dynamics starting from
the configuration σ = σ 0, the μ and ε are for the time being arbitrary parameters, and the
partition function Z ensures the normalization of this law. The parameter μ is a “chemical
potential” that controls the fraction of initially active vertices (if ε = 0 the measure η reduces
to the Bernouilli measure), while ε is the cost to be paid for each site i inactive at the final
time T . In particular if ε = +∞ one has

η(σ ) = 1

Z(G, {li }, T, μ, ε = +∞)
e
μ

N∑

i=1
σi

N∏

i=1

I(σ T
i = 1), (9)

with I(A) is the indicator function of the event A, the measure is thus supported by activating
initial configurations (within the time horizon T ). It is then obvious that the knowledge of Z
allows to deduce the sought-for minimal density θmin, as

θmin(G, {li }, T ) = lim
μ→−∞

1

μ

1

N
ln Z(G, {li }, T, μ, ε = +∞). (10)

Actually one can gain more information from the whole dependency of the partition function
on μ. Suppose indeed that the number of initial configurations with a fraction θ of active
vertices that activate the whole graph in T steps is, at the leading exponential order, eNs(θ),
with an entropy density s(θ) of order one with respect to N . Then this entropy density can
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be computed, in the large N limit, as a Legendre transform of the logarithm of the partition
function. More precisely, defining the free-entropy density φ as

φ(G, {li }, T, μ, ε = +∞) = 1

N
ln Z(G, {li }, T, μ, ε = +∞), (11)

the evaluation of the sum over configurations in the definition of Z via the Laplace method
yields in the large N limit:

φ(G, {li }, T, μ, ε = +∞) = sup
θ∈[θmin,1]

[μθ + s(θ)], (12)

hence s(θ) can be obtained by an inverse Legendre transform of φ(μ), with s(θ) = φ(μ)−μθ

and θ = φ′(μ).
For completeness let us also make a similar statement when ε is finite, i.e. when one does

not impose strictly the constraint of complete activation at time T . Denoting s(θ, θ ′) the
entropy density of initial configurations that have a fraction θ of initially active vertices and
that lead after T steps of evolution to a configuration with a fraction θ ′ of active sites, one
has

φ(G, {li }, T, μ, ε) = 1

N
ln Z(G, {li }, T, μ, ε) = sup

θ,θ ′
[μθ − ε (1 − θ ′) + s(θ, θ ′)]. (13)

Varying the parameters μ and ε thus allows to reconstruct the function s(θ, θ ′), and hence to
solve the optimization problem denoted (i) in the introduction, namely for a fixed value of θ

find the maximal reachable θ ′. We will mainly concentrate in the following of the paper on the
optimization problem denoted (ii) in the introduction, that is imposing the full activation of
the graph at time T (θ ′ = 1), which as explained above can be studied via the computation of
s(θ) = s(θ, θ ′ = 1) from the inverse Legendre transform of the free-entropy with ε = +∞.

The definitions above were valid for any graph and any choice of the activation thresholds;
we shall however be particularly interested in the case of large random regular graphs with
uniform thresholds, we thus define

θmin(k, l)= lim
N→∞E[θmin(G, {li = l})], θmin(k, l, T )= lim

N→∞E[θmin(G, {li = l}, T )],
(14)

where the average is over uniformly chosen regular graphs of degree k+1 on N vertices, with
the same threshold for activation l on every vertex. The fact that the limit in the definition of
θmin(k, l, T ) exists could actually be proven rigorously using the method developed in [18],
and it is expected that θmin(G, {li = l}, T ) is self-averaging (i.e. concentrates around its aver-
age in the large N limit). The existence of θmin(k, l) might be a more difficult mathematical
problem that we shall not discuss further; it is a reasonable conjecture that it coincides with
the limit of θmin(k, l, T ) when T → ∞, i.e. that the large size and large time limits commute.
We will see in Sect. 4.2.1 one argument in favour of this conjecture. Let us emphasize that
θmin(k, l) < θr(k, l), with a strict inequality. This is indeed a large-deviation phenomenon:
even if most initial configurations with density smaller than θr do not activate the whole graph
some very rare ones (with a probability exponentially small in N in the Bernouilli measure
of parameter θ < θr) are able to do so. Note also that θmin(k, l) is growing with l at fixed
k, for the same reasons as explained above in the discussion of θr . The computations of θmin

we shall present will follow the strategy explained above on an arbitrary graph, namely the
computation of a free-entropy density, that we define in the case of random regular graphs
as the quenched average over the graph ensemble,
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φ(k, l, T, μ, ε) = lim
N→∞

1

N
E[ln Z(G, {li = l}, T, μ, ε)] . (15)

2.4 Equivalence with Other Problems and Bounds

As mentioned in the introduction the problem of minimal contagious sets can be related,
for appropriate choices of the threshold parameters li , to other standard problems in graph
theory.

Consider first the case of an arbitrary graph where the thresholds li are equal to the
degrees di for all vertices. An inactive site in the initial configuration will be activated only
if it is surrounded by active vertices, and it will do so in a single step. In other words in any
percolating initial condition, whatever the time horizon T , the inactive vertices must form an
independent set (no two inactive vertices are allowed to be neighbours). For regular random
graphs one has thus θmin(k, k + 1, T ) = θmin(k, k + 1) for all T , and this quantity is equal
to 1 minus the density of the largest independent sets of a k + 1-regular random graph.

Another correspondance with previously studied models arises when T = 1, for any
choice of the thresholds li . Indeed in this case the vertex i can be inactive in a percolating
initial configuration only if its number of inactive neighbours is smaller than some value
(namely, ≤ di − li ). These generalized hard-core constraints (repulsion between inactive
vertices) correspond exactly to the so-called Biroli–Mézard (BM) model [21,70] (with the
correspondance inactive vertex ↔ vertex occupied by a particle in the BM model, and di −
li ↔ �i of the BM model). Hence for T = 1 the minimal density θmin is 1 minus the density
of a close packing of the corresponding BM model. Further specializing this T = 1 case by
setting li = 1 on each vertex leads to the constraint that every inactive site in a percolating
initial configuration has to be adjacent with at least one active site, in other words that the
active sites form a dominating set of G. The minimal density θmin is thus the domination
number (divided by N ) of G.

Consider now the thresholds of activation to be 1 less than the degrees, i.e. li = di − 1 on
all vertices, with no constraint on the time of activation (T = ∞). As explained at the end
of Sect. 2.1, the inactive vertices in the final configuration form the 2-core of the inactive
ones in the initial configuration. A percolating initial configuration must be such that this
2-core is empty, in other words the subgraph induced by the inactive sites of the initial
configuration must be acyclic (a tree or a forest), i.e. the active sites have to form a decycling
set [19] (also known as a Feedback Vertex Set), and Nθmin is the decycling number of G. This
characterization leads to the following bound for every k + 1-regular graph with thresholds
k of activation on every site,

θmin(k, k) ≥ k − 1

2k
. (16)

Indeed if A denotes the number of active vertices in a percolating initial configuration, the
N − A other vertices induces a forest, the number of edges between inactive vertices is thus
at most N − A − 1. On the other hand this number is at least k+1

2 N − (k + 1)A (the first
term being the total number of edges, and the number of edges incident to at least one active
site being at most (k + 1)A). The decycling number of random regular graphs was studied
in [17], proving in particular that the bound (16) is actually tight for 3-regular large random
graphs, i.e. θmin(2, 2) = 1/4, and it was conjectured to be also the case for 4-regular ones (i.e.
θmin(3, 3) = 1/3). An asymptotic lowerbound on θmin(k, k) for large values of k was worked
out in [41], we will come back on this result in Sect. 4.2.1. Note also that the decycling
number of arbitrary sparse random graphs was studied with physics methods in [71,76].
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For general thresholds smaller than the degrees minus one the active sites of a percolating
initial configuration must form a “de-coring” set instead of a “de-cycling” set (i.e. their
removal has to provoke the disappearance of a q-core with q > 2). A generalization of the
lower bound (16) to any k + 1-regular graph with uniform threshold l was given in [35], and
reads

θmin(k, l) ≥ 2l − k − 1

2l
. (17)

Its proof goes as follows. Consider the sequential process explained at the end of Sect. 2.1
in which at each time t a single vertex gets activated, and denote E(t) the number of edges
between active and inactive vertices after t steps of this process. By definition of the activation
rule E(t + 1) − E(t) ≤ k + 1 − 2l. If as above A denotes the number of active sites in a
percolating initial configuration, by definition E(N − A) = 0, hence E(0) ≥ (N − A)(2l −
k −1). On the other hand E(0) ≤ (k +1)A, which gives the lower bound (17) on the possible
values of A.

We should also mention an upper bound on the minimal sizes of contagious sets derived
in [4,67] for graphs of arbitrary degree distributions, which yields in the case of k +1-regular
graphs:

θmin(k, l) ≤ l

k + 2
. (18)

To conclude this discussion let us mention that the “de-coring” perspective on the minimal
contagious set problem is somehow reminiscent (even if not directly equivalent), to the
Achlioptas processes [2,69] (more precisely of their offline version [24]) where one looks
for an extremal event avoiding the appearance of an otherwise typical structure (a giant
component in the Achlioptas processes, a core in the minimal contagious set case).

2.5 Main Analytical Results

Let us draw here a more detailed plan of the rest of the paper to make its reading easier
and faster for someone not interested in the technical details of the statistical mechanics
method (who can browse quickly over the next section and jump to the results announced in
Sect. 4). In order to compute the minimal density θmin of contagious sets we shall rephrase this
problem as a statistical mechanics model and apply to it the cavity method. The latter is based
on self-consistent assumptions of various degrees of sophistication, parametrized by the so-
called level of replica symmetry breaking. We will study the first two levels of this hierarchy,
named replica symmetric (RS) and one step of replica symmetry breaking (1RSB). These two
approaches will lead to two predictions for θmin, to be denoted respectively θmin,0(k, l, T )

and θmin,1(k, l, T ). From general bounds established in the context of disordered statistical
mechanics models (first for the Sherrington-Kirkpatrick model [40,64,74] and later for some
models on sparse random graphs [36,37,65]) it is expected that the different levels of the
cavity method provide improving lower bounds on θmin, namely

θmin,0(k, l, T ) ≤ θmin,1(k, l, T ) ≤ θmin(k, l, T ). (19)

Our computation of θmin,0(k, l, T ) and θmin,1(k, l, T ) relies on the resolution of a set of
roughly 2T algebraic equations on 2T unknowns, explicit numbers will be given in Sect. 4.
We managed to perform analytically the T → ∞ limit and reduce the determination of
θmin,0(k, l) and θmin,1(k, l) (their limit when T → ∞) to a finite number of equations, that
will also be presented along with numerical results in Sect. 4. We found four particular cases
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in which the predictions of the first two levels of replica symmetry breaking coincide when
T → ∞, which led us to conjecture that they are the exact ones, namely:

θmin(2, 2) = 1

4
, θmin(3, 3) = 1

3
, θmin(4, 3) = 1

6
, θmin(5, 4) = 1

4
, (20)

all these cases saturating the lower bounds of (16, 17). The first (resp. second) equality was
actually proven (resp. conjectured) in [17]. We have also performed a large degree expansion
of the decycling number of random regular graphs, yielding the conjecture

θmin(k, k) = 1 − 2 ln k

k
− 2

k
+ O

(
1

k ln k

)

. (21)

3 Cavity Method Treatment of the Problem

3.1 Factor Graph Representation

As explained in Sect. 2.3 the central quantity to compute is the free-entropy density defined
from the partition function normalizing the probability law (8), that for completeness we shall
generalize to possibly site dependent chemical potentials μi and costs for non-activation εi :

η(σ ) = 1

Z(G, {li }, T, {μi , εi })e

N∑

i=1
[μi σi −εi (1−σ T

i )]
. (22)

This expression is not very convenient to handle directly because the variables σi have
complicated interactions under this law: σ T

i is indeed a function of all variables σ j on the
vertices j at distance smaller than T from i . A way to circumvent this difficulty and to turn
the interactions of the model into local ones has been proposed in [8,9], and we shall follow
the same approach here.

Let us first define ti (σ ) as the time of activation of site i in the dynamical process generated
by the initial configuration σ , i.e. ti (σ ) = min{t : σ t

i = 1}, with conventionally ti (σ ) = ∞
if this time is strictly greater than the time horizon T . These variables obey the following
equations:

ti (σ ) = f (σi , {t j (σ )} j∈∂i ; li ) ∀ i ∈ V, (23)

where the function f is defined as

f (σ, t1, . . . , tn; l) =

⎧
⎪⎪⎨

⎪⎪⎩

0 if σ = 1

1 + min
l

(t1, . . . , tn) if σ = 0 and 1 + min
l

(t1, . . . , tn) ≤ T

∞ otherwise

. (24)

Here min
l

(t1, . . . , tn) is the l-th smallest ti , i.e ordering the arguments as t1 ≤ t2 ≤ · · · ≤ tn

one has min
l

(t1, . . . , tn) = tl . This translates the dynamic rules (1) in terms of the activation

times, a site i activating at the time following the first time where at least li of its neighbours are
active. In the following f (0, t1, . . . , tn; l) will be abbreviated in f (t1, . . . , tn; l). Reciprocally
one can show that if a set of {ti }i∈V verifies the condition that for all i either ti = 0 or
ti = f ({t j } j∈∂i ; li ), then they correspond to the activation times for the dynamics started
from the initial condition σ such that σi = 1 if and only if ti = 0. These two descriptions
in terms of (σ1, . . . , σN ) and (t1, . . . , tN ) are thus equivalent, yet the great advantage of the
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Fig. 1 A portion of the factor
graph corresponding to the
measure (25)

σi

σj

σk

wi

wj

wk

tij , tji

tik, tki

latter is that the conditions to enforce among the ti are local along the graph, and that they
contain in an obvious way the information on σ T

i that was lacking to deal with (22).
Finally a last twist on Eq. (22) will be to “duplicate” the activation time ti on all edges

connecting i to one of its neighbour j , introducing redundant variables ti j to be finally
constrained to be all equal to ti . Let us denote t the collective configurations of all these 2M
variables ti j , t j i on each edge 〈i, j〉 of the graph, that take values in {0, 1, . . . , T,∞}, and
consider the following probability measure on (σ , t):

η(σ , t) = 1

Z(G, {li }, T, {μi , εi })
N∏

i=1

wi (σi , {ti j , t j i } j∈∂i ), (25)

where the functions wi are defined by

wi (σi , {ti j , t j i } j∈∂i )=eμi σi e−εi I( f (σi ,{tki }k∈∂i ;li )=∞)
∏

j∈∂i

I(ti j = f (σi , {tki }k∈∂i ; li )). (26)

The above observations imply that the marginal of σ under η(σ , t) is precisely the desired
one from Eq. (22), and that in the support of the law the t are strictly constrained to be the
activation times for the dynamics starting from σ . This correspondance being one-to-one the
partition function is the same in (22) and (25). A portion of the factor graph [49] associated
to the probability law (25) is sketched in Fig. 1, with black squares representing the function
nodes (interactions) wi , black circles the variables σi , and white circles the variables ti j , t j i .
One notes that if the original graph G is a tree (resp. is locally a tree) then the corresponding
factor graph is a tree (resp. is locally a tree). This fact was the motivation for the “duplication”
of the ti variables on the surrounding edge, without it short loops of interactions would still
be present in the factor graph.

3.2 Replica Symmetric (RS) Formalism

Let us now explain how the probability law (25) and its associated normalization Z can be
handled within the cavity formalism, first at the simplest, so called Replica Symmetric (RS),
level.
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3.2.1 Single Sample Equations

If the graph G were a finite tree the factor graph associated to (25) would be a tree, hence Z and
the marginals of η could be computed exactly via the recursive equations that we are about to
write down. If the graph is only locally tree-like these equations are only approximate, they
correspond to the (loopy) Belief Propagation equations, valid under some assumptions of
long-range correlation decay under the measure η. This recursive computation of Z amounts
to introduce on each directed edge i → j of the graph a “message” ηi→ j (ti j , t j i ), which
is a normalized probability distribution over a pair of activation times. These messages
obey recursion relations of the form ηi→ j = ĝ({ηk→i }k∈∂i\ j ; li , εi , μi ), where the mapping
η = ĝ(η1, . . . , ηk; l, ε, μ) is given by

η(t, t ′) = 1

ẑiter(η1, . . . , ηk; l, ε, μ)

[

δt,0eμ
k∏

i=1

(
∑

t ′′
ηi (t

′′, 0)

)

+ e−εδt,∞
∑

t1,...,tk

η1(t1, t) . . . ηk(tk, t)I(t = f (t1, . . . , tk, t ′; l))

]

. (27)

Here and in the following unprecised summations over a time index go along {0, . . . , T,∞}.
The function ẑiter(η1, . . . , ηk; l, ε, μ) is defined by normalization, in such a way that
∑

t,t ′ η(t, t ′) = 1.
The knowledge of the messages ηi→ j on all edges of the graph allows to compute the

free-entropy density, according to the Bethe formula:

φ= 1

N
ln Z = 1

N

N∑

i=1

ln ẑsite({η j→i } j∈∂i ; li , εi , μi ) − 1

N

∑

〈i, j〉∈E

ln ẑedge(ηi→ j , η j→i ),

(28)

where the second sum runs over the (undirected) edges of the graph, and the local partition
functions are

ẑsite(η1, . . . , ηk+1; l, ε, μ) = eμ
k+1∏

i=1

(
∑

t ′
ηi (t

′, 0)

)

+
T∑

t=1

∑

t1,...,tk+1

η1(t1, t) . . . ηk+1(tk+1, t)I(t = 1 + min
l

(t1, . . . , tk+1))

+ e−ε
∑

t1,...,tk+1

η1(t1,∞) . . . ηk+1(tk+1,∞)I(min
l

(t1, . . . , tk+1) ≥ T ) (29)

ẑedge(η1, η2) =
∑

t,t ′
η1(t, t ′)η2(t

′, t) . (30)

The marginals of the law (25) can also be deduced from the messages, for instance
the probability distribution of the activation time ti for the vertex i reads η(ti ) =
η̂site({η j→i } j∈∂i ; li , εi , μi )(ti ), where
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η̂site(η1, . . . , ηk+1; l, ε, μ)(t) = 1

ẑsite(η1, . . . , ηk+1; l, ε, μ)

{

δt,0eμ
k+1∏

i=1

(
∑

t ′
ηi (t

′, 0)

)

+ (1 − δt,0 − δt,∞)
∑

t1,...,tk+1

η1(t1, t) . . . ηk+1(tk+1, t)I(t = 1 + min
l

(t1, . . . , tk+1))

+ δt,∞e−ε
∑

t1,...,tk+1

η1(t1,∞) . . . ηk+1(tk+1,∞)I(min
l

(t1, . . . , tk+1) ≥ T )

⎫
⎬

⎭
. (31)

The probability that the vertex i is active in the initial condition is then deduced as η(σi =
1) = η(ti = 0). As explained above in Eq. (13), one can deduce from the above results the
entropy density s(θ, θ ′) for initial configurations with a fraction θ of active sites leading to
a fraction θ ′ of active sites after T steps, taking μi = μ and εi = ε for all sites, with

s(θ, θ ′) = φ(μ, ε) − μθ + ε(1 − θ ′), θ = 1

N

N∑

i=1

η(ti = 0), θ ′ = 1

N

N∑

i=1

η(ti ≤ T ).

(32)

Note that the derivatives of φ with respect to μ and ε can be taken only on the explicit depen-
dence in (28), the recursion equations on the messages ηi→ j being precisely the stationarity
condition of φ with respect to the η’s.

3.2.2 A More Compact Parametrization of the Messages

Each probability distribution η(t, t ′) is a priori described by (T + 2)2 − 1 independent real
numbers (the times run over T + 2 values, including ∞, and there is a global normalization
constraint). We shall see however that a much more compact parametrization is possible,
which will be very useful for the further analytical treatment of the model. From now on we
shall assume that μi = μ and εi = ε for all vertices. To unveil these simplifications let us
first rewrite Eq. (27) more explicitly:

η(0, t ′)= 1

ẑiter
eμ

k∏

i=1

(ηi (0, 0) + ηi (1, 0) + · · · + ηi (T, 0) + ηi (∞, 0)) (33)

η(t, t ′)= 1

ẑiter

∑

t1,...,tk

η1(t1, t) . . . ηk(tk , t) I(t = 1 + min
l

(t1, . . . , tk , t ′)) for t ∈ {1, . . . , T }

(34)

η(∞, t ′) = 1

ẑiter
e−ε

∑

t1,...,tk

η1(t1, ∞) . . . ηk(tk , ∞) I(min
l

(t1, . . . , tk , t ′) ≥ T ) (35)

where in all the three cases t ′ can take any value in {0, 1, . . . , T,∞}. Now the condition
“min

l
(t1, . . . , tk, t ′) = t −1” is easily seen to be equivalent to “at least l of the time arguments

are ≤ t−1 and at most l−1 of them are ≤ t−2”. Similarly the condition “min
l

(t1, . . . , tk, t ′) ≥
T ” is equivalent to “at most l − 1 times are ≤ T − 1”. This observation allows to rewrite the
above equations under the following form:

η(0, t ′) = 1

ẑiter
eμ

k∏

i=1

(ηi (0, 0) + ηi (1, 0) + · · · + ηi (T, 0) + ηi (∞, 0)) (36)
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η(t, t ′) = 1

ẑiter

∑

I,J,K
|I |+I(t ′≤t−2)≤l−1

|I |+|J |+I(t ′≤t−1)≥l

∏

i∈I

(
t−2∑

t ′′=0

ηi (t
′′, t)

)
∏

i∈J

ηi (t − 1, t)
∏

i∈K

⎛

⎝
∑

t ′′≥t

ηi (t
′′, t)

⎞

⎠

(37)

η(∞, t ′) = 1

ẑiter
e−ε

∑

I,J
|I |+I(t ′≤T −1)≤l−1

∏

i∈I

(
T −1∑

t ′′=0

ηi (t
′′,∞)

)
∏

i∈J

⎛

⎝
∑

t ′′≥T

ηi (t
′′,∞)

⎞

⎠ (38)

where the summation in the second (resp. third) line is over the partitions I, J, K (resp. I, J ) of
{1, . . . , k}. These expressions reveal a first simplification, as already noticed in [8,9]: among
the (T + 2)2 elements of η(t, t ′) only 3T + 2 are distinct. Indeed η(0, t ′) is independent of
t ′, for a given value of t ∈ {1, . . . , T } η(t, t ′) takes at most three distinct values, whether
t ′ ≥ t , t ′ = t − 1, or t ′ ≤ t − 2 and finally η(∞, t ′) takes two values whether t ′ ≤ T − 1 or
t ′ ≥ T . There is however a further simplification to perform: in the right hand sides of the
above equations the ηi ’s always appear under the form of particular linear combinations. In
particular the elements under the diagonal of the matrices ηi , i.e. ηi (t, t ′) with t ≥ t ′, always
intervene under the form

∑
t≥t ′ η(t, t ′). This allows to reduce further the number of relevant

linear combinations of elements of the η’s. A convenient parametrization of the messages η

is thus provided by the numbers at for t ∈ {0, 1, . . . , T } and bt for t ∈ {1, . . . , T }, defined
by:

eμat = η(0, 0)
∑

t ′ η(t ′, t)
, eμbt = η(0, 0)

∑t
t ′=0 η(t ′, t)

= η(0, 0)
∑t

t ′=0 η(t ′, t ′′)
∀t ′′ ≥ t . (39)

One can consistently extend these definitions with b0 = 0, and it will be useful to adopt
the convention e−μb−1 = 0 in order to simplify some expressions. Let us denote h =
(a0, a1, . . . , aT , bT −1, . . . , b1) the vector of 2T reals encoding in this way a matrix η; h will
be called a cavity field in the following (note that we excluded bT which disappears from the
final expressions). The recursion relations (36–38) should now be transformed into a relation
between cavity fields, i.e. h = g(h1, . . . , hk), with hi = (a(i)

0 , a(i)
1 , . . . , a(i)

T , b(i)
T −1, . . . , b(i)

1 ).
Inserting the definitions (39) into the Eqs. (36–38) leads to the explicit form for g,

e−μat = 1 + e−μ
T∑

t ′=1

∑

I,J,K
|I |+I(t ′≥t+2)≤l−1

|I |+|J |+I(t ′≥t+1)≥l

P t ′(h1, . . . , hk; I, J, K ) + e−μ−ε

×
∑

I,J,K
|I |+|J |+I(t≤T −1)≤l−1

PT (h1, . . . , hk; I, J, K )

e−μbt = 1 + e−μ
t∑

t ′=1

×
∑

I,J,K
|I |≤l−1

|I |+|J |≥l

Pt ′(h1, . . . , hk; I, J, K ) (40)
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where we defined

Pt (h1, . . . , hk; I, J, K ) = e
μ

k∑

i=1
a(i)

0 ∏

i∈I

e−μb(i)
t−2

∏

i∈J

(e−μb(i)
t−1 − e−μb(i)

t−2)

×
∏

i∈K

(e−μa(i)
t − e−μb(i)

t−1) . (41)

It can be checked that for T = 1 and ε = +∞ these equations correspond, as they should, to
the one of the Biroli–Mézard model (see Eqs. (108, 109) of [70]). One can also express the
partial partition functions ẑsite and ẑedge in terms of these fields. It will be more convenient
to factor out a common part in the site and edge contributions to the free-entropy. Denoting
r(η) = ∑

t η(t, 0), we define zedge as:

zedge(h1, h2) = ẑedge(η1, η2)

r(η1)r(η2)
(42)

= eμ(a(1)
0 +a(2)

0 )

{

e−μ(a(1)
T +a(2)

T ) +
T −1∑

t=0

[(
e−μa(1)

t − e−μa(1)
t+1

)
e−μb(2)

t

+ e−μb(1)
t

(
e−μa(2)

t − e−μa(2)
t+1

)]
}

,

where the explicit expression is obtained from Eq. (30). Similarly, exploiting Eq. (29), we
get for the site term (factoring also a contribution from the chemical potential):

zsite(h1, . . . , hk+1; l, ε;μ) = e−μ ẑsite(η1, . . . , ηk+1; l, ε;μ)

r(η1) . . . r(ηk+1)
(43)

= 1 + e−μ
T∑

t=1

∑

I,J,K
|I |≤l−1

|I |+|J |≥l

Pt (h1, . . . , hk+1; I, J, K ) + e−μ−ε

×
∑

I,J,K
|I |+|J |≤l−1

PT (h1, . . . , hk+1; I, J, K )

where as above in the summations I, J, K denotes a partition of {1, . . . , k + 1}.
To summarize the results of this reparametrization, on a given graph one has cavity

fields hi→ j on each directed edge, obeying the Belief Propagation equations hi→ j =
g({hk→i }k∈∂i\ j ), with the g defined in Eq. (40), and the Bethe free-entropy density is com-
puted from these cavity fields according to

φ = μ + 1

N

∑

i

ln zsite({h j→i } j∈∂i ; li , ε, μ) − 1

N

∑

〈i, j〉∈E

ln zedge(hi→ j , h j→i ), (44)

with zsite and zedge defined in Eqs. (43) and (42) respectively. Note that the factors r introduced
in the definitions of zsite and zedge compensate because in the expression of the Bethe free-
energy of Eq. (28) the messages on each directed edge appear exactly once in the site term
and once in the edge term. The marginals of the law η(σ , t) can also be computed from
the cavity fields h, in particular from the expression (31) one obtains the marginal of one
activation time from the incident cavity fields as
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ηsite(h1, . . . , hk+1; l, ε;μ)(t) = 1

zsite(h1, . . . , hk+1; l, ε;μ)

×

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

δt,0 + (1 − δt,0 − δt,∞)e−μ
∑

I,J,K
|I |≤l−1

|I |+|J |≥l

Pt (h1, . . . , hk+1; I, J, K )

+ δt,∞ e−μ−ε
∑

I,J,K
|I |+|J |≤l−1

PT (h1, . . . , hk+1; I, J, K )

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

. (45)

3.2.3 Random (Regular) Graphs

The replica symmetric cavity method, for generic models defined on sparse random graphs,
postulates the asymptotic validity of the above computations, exact on finite trees, thanks to
the local convergence of random graphs to trees and an assumption of correlation decay at
large distance. The order parameter is then a probability distribution over cavity fields, the
randomness arising from the fluctuations of the degrees of the vertices in the graph and/or
the randomness in the local interactions.

In the case of random regular graphs with no disorder in the coupling the situation is even
simpler, as one can look for a “factorized” solution with all cavity fields equal. In particular
for the model at hand on a k + 1 random regular graph, with the same threshold of activation
l for all vertices, the RS prediction for the typical free-entropy density in the thermodynamic
limit defined in Eq. (15) reads

φ(k, l, T, μ, ε) = μ + ln (zsite(h, . . . , h)) − k + 1

2
ln
(
zedge(h, h)

)
, (46)

which is easily obtained from (44) noting that 2M = (k + 1)N in a regular graph. The field
h is the fixed-point solution of the cavity recursion (40),

h = g(h, . . . , h). (47)

The marginal law for the activation time is obtained from (45) by setting all the fields to h,
which allows finally to compute the entropy density from the Legendre inverse transform
discussed in (13).

We shall discuss the results obtained from this RS prediction in the next Section, more
explicit formulas for the RS equation in this case, along with some technical details on
their resolution being displayed in the Appendix 1. One can however anticipate that in some
regime of parameters the RS hypothesis will be violated. This is for instance known for
T = 1, ε = +∞, which corresponds to the Biroli–Mézard model; it was indeed shown
in [70] that for large negative values of μ the predictions of the RS ansatz are unphysical, the
frustration arising from the contradictory constraints of putting as few active vertices in the
initial condition as possible while imposing that all vertices become active at a latter time
induces long-range correlations between variables that are incompatible with the RS ansatz.
This limit μ → −∞ being the interesting case for the computations of the minimal density
of contagious sets, we shall now see how to include the effects of replica symmetry breaking
in this model.
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3.3 One Step of Replica Symmetry Breaking (1RSB) Formalism

The long-range correlation decay assumption underlying the RS cavity method breaks down
for models with too much frustration. In this case one has to picture the configuration space as
fractured into pure states, or clusters, that we shall index here by γ , such that the correlation
decay assumption only holds for the Gibbs–Boltzmann probability law restricted to one
pure-state. The partition function restricted to a given pure-state is denoted Zγ , in such a
way that Z = ∑

γ Zγ . The replica symmetry breaking version of the cavity method then
postulates some properties of this decomposition into pure states, which are compatible with
the local convergence of the graph under study to a tree. In the first non-trivial version of the
RSB formalism, so called one-step RSB (1RSB), one assumes the existence of a complexity
function, also called configurational entropy in the context of glasses, �(φ), such that the
number of pure states with an internal free-entropy density φγ = 1

N ln Zγ close to some
value φ is, at the leading exponential order, eN�(φ). The computation of �(φ) is performed
via the 1RSB potential with a parameter m (known as the Parisi breaking parameter), related
to � through a Legendre transform structure [58]:

�(m) = 1

N
ln
∑

γ

Zm
γ = sup

φ

[�(φ) + m φ]. (48)

The function �(φ) can be reconstructed in a parametric way varying m, with

�(φint(m)) = �(m) − mφint(m), φint(m) = �′(m), (49)

φint(m)denoting the internal free-entropy density of the clusters selected by the corresponding
value of m. The value m = 1 plays a special role in this approach, as it corresponds a priori
to the original computation of the free-entropy density of the model. However a so-called
condensation (or Kauzmann) transition can occur, signaled by the vanishing of the complexity
� associated to m = 1. In this case the Gibbs–Boltzmann measure is dominated by a sub-
exponential number of pure-states, corresponding to a parameter ms < 1 with �(ms) = 0.
In the following paragraphs we shall derive the 1RSB equations and the expression of the
1RSB potential for the model under study, before discussing the concrete results for random
regular graphs in the next Section.

3.3.1 Single Sample Equations

Let us first discuss the 1RSB formalism with the basic messages represented in terms of the
matrices η(t, t ′). In the RS description one had a message ηi→ j on each directed edge of the
graph, solution of the recurrence equations ηi→ j = ĝ({ηk→i }k∈∂i\ j ; li , ε, μ), see Eq. (27).
At the 1RSB level one introduces instead a distribution P̂i→ j (η) on each directed edge, the
randomness being over the choice of the pure-state γ with a weight proportional to Zm

γ . These

distributions are thus found to obey the recurrence equations P̂i→ j = Ĝ[{P̂k→i }k∈∂i\ j ],
where P̂ = Ĝ(P̂1, . . . , P̂k) means

P̂(η)= 1

Ẑiter(P̂1, . . . , P̂k)

∫

d P̂1(η1). . .d P̂k(ηk) δ(η− ĝ(η1, . . . , ηk)) ẑiter(η1, . . . , ηk)
m,

(50)
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with ĝ and ẑiter defined in Eq. (27), and Ẑiter normalizes the distribution P̂ . The 1RSB potential
�(m) defined above is then computed from the solution of these equations, according to

�(m) = 1

N

N∑

i=1

ln Ẑsite({P̂j→i } j∈∂i ; li , εi , μi ) − 1

N

∑

〈i, j〉∈E

ln Ẑedge(P̂i→ j , P̂j→i ), (51)

where

Ẑsite(P̂1, . . . , P̂k+1) =
∫

d P̂1(η1) . . . P̂k+1(ηk+1) ẑsite(η1, . . . , ηk+1)
m, (52)

Ẑedge(P̂1, P̂2) =
∫

d P̂1(η1)P̂2(η2) ẑedge(η1, η2)
m (53)

are weighted averages, over the pure-states distribution, of the site and edge contributions to
the free-entropy defined in (29, 30). Similarly the marginal distribution of an activation time
can be computed as a weighted average of the RS expression in the various pure-states, i.e.

η(t) = 1

Ẑsite(P̂1, . . . , P̂k+1)

∫

d P̂1(η1) . . . P̂k+1(ηk+1) η̂site(η1, . . . , ηk+1)(t)

ẑsite(η1, . . . , ηk+1)
m . (54)

Note that the derivative �′(m), which plays an important role to compute the complexity
from Eq. (49), can be taken in (51) on the explicit dependence on m only, the recursion
relations on the P̂i→ j being the stationarity conditions of (51) with respect to the P̂’s.

As we have seen in the discussion of the RS cavity method the matrices η can be parame-
trized in a more economic way by the fields h (vectors of 2T real numbers). The expressions
of the 1RSB quantities can also be rewritten using this parametrization. After a few lines of
algebra one finds that the potential �(m) reads

�(m) = μm +
N∑

i=1

ln Zsite({Pj→i } j∈∂i ; li , ε, μ) −
∑

〈i, j〉∈E

ln Zedge(Pi→ j , Pj→i ), (55)

with

Zsite(P1, . . . , Pk+1) =
∫

dP1(h1) . . . Pk+1(hk+1) zsite(h1, . . . , hk+1)
m, (56)

Zedge(P1, P2) =
∫

dP1(h1)P2(h2) zedge(h1, h2)
m, (57)

the weighted averages of the quantities defined in (42, 43). The field distributions Pi→ j (h)

are solutions of the recurrence equations Pi→ j = G({Pk→i }k∈∂i\ j ), where the mapping
P = G(P1, . . . , Pk) is given explicitly by

P(h)= 1

Ziter(P1, . . . , Pk)

∫

dP1(h1) . . . dPk(hk) δ(h−g(h1, . . . , hk))ziter(h1, . . . , hk)
m .

(58)

Ziter is a normalizing factor ensuring that the left hand side is a probability distribution, g is
the function defined in Eq. (40), and the reweighting factor reads

ziter(h1, . . . , hk) = e−μ ẑiter(η1, . . . , ηk)r(ĝ(η1, . . . , ηk))

r(η1) . . . r(ηk)
= e−μa0(h1,...,hk ), (59)

the last equality following from Eqs. (36, 39).
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3.3.2 Random Regular Graphs

For the reasons explained in the context of the RS ansatz in Sect. 3.2.3 one can look for a
simple factorized solution of the 1RSB equations in the case of a k +1 regular random graph
with all thresholds of activation equal to l. In this case one has to find a distribution P(h)

solution of

P(h) = 1

Ziter

∫

dP(h1) . . . dP(hk) δ(h − g(h1, . . . , hk)) ziter(h1, . . . , hk)
m, (60)

where m ∈ [0, 1] is the Parisi breaking parameter and the functions g and ziter are the ones
defined in Eqs. (40, 59). The 1RSB potential is then computed as

�(m) = μm + ln

(∫

dP(h1) . . . dP(hk+1) zsite(h1, . . . , hk+1)
m
)

− k + 1

2
ln

(∫

dP(h1)dP(h2) zedge(h1, h2)
m
)

, (61)

with the functions zsite, zedge defined in Eqs. (42, 43). As already mentioned above �′(m)

can be computed by taking into account only the explicit dependence on m of (61).

3.4 “Energetic” 1RSB Formalism

Even within the simplified case of the factorized ansatz for regular graphs the 1RSB equations
are relatively complicated, as they involve the resolution of a distributional equation on P(h).
However we are ultimately interested in a particular limit for the computation of the minimal
density of contagious sets, namely the case where ε = +∞ (to take into account only the
fully activating configurations), and in the limit μ → −∞ (to select the initial configurations
with the minimal number of active sites). It turns out that a simplified version of the 1RSB
formalism can be devised in this case, corresponding to the “energetic” version of the 1RSB
cavity method, first developed in [55,56], see in particular Sect. 5 of [70] for such a treatment
of the related Biroli–Mézard model. This simplified treatment amounts to take simultaneously
the limit m → 0 and μ → −∞, with a fixed finite value of a new parameter y = −μm. To
explain the meaning of this limit let us rewrite more explicitly the expression of the 1RSB
potential of Eq. (48) in the case ε = +∞, introducing the complexity �(s, θ) counting
the (exponential) number of clusters containing a number of order eNs of activating initial
configurations with a fraction θ of active sites, hence with a free-entropy density φ = μθ +s:

�(m) = sup
θ,s

[�(s, θ) + m(μθ + s)] . (62)

In the limit m → 0, μ → −∞ with y = −μm this function becomes

�e(y) = sup
θ

[�e(θ) − yθ ], �e(θ) = sup
s

�(s, θ) . (63)

The “energetic” complexity �e(θ) can thus be computed via an inverse Legendre transform
of the potential �e(y),

�e(θ(y)) = �e(y) + yθ(y), θ(y) = −�′
e(y) . (64)

As we shall see the “energetic” 1RSB cavity equations leading to the computations of �e(y)

are much simpler than the initial 1RSB ones at finite values of μ and m. The price to pay for
this simplification is the loss of information on the entropy of the clusters when going from
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�(s, θ) to �e(θ). However this is not a problem for the determination of θmin: its estimate at
the 1RSB level, to be denoted θmin,1, is the smallest value of θ with �e(θ) ≥ 0. Indeed the
least dense activating configurations have to be in some pure states, whatever their entropy.

3.4.1 Simplification of the Cavity Field Recursion (Warning Propagation Equations)

We want to simplify the Eq. (40) giving h = g(h1, . . . , hk) with ε = +∞ and in the limit
μ → −∞. First let us make some remarks, valid when ε = +∞ for any value of μ. From
the definition (39) of the fields bt , or from their expressions in (40), it is obvious that

e−μbT ≥ e−μbT −1 ≥ · · · ≥ e−μb1 ≥ e−μb0 = 1. (65)

One can also notice that for ε = +∞ one has, for any μ, the equality aT = bT : this appears
both from the definition (39) of the fields, as η(∞, t) = 0 when ε = +∞, and from the
recursion relations (40), the last term in the first line of (40) disappearing when ε = +∞. To
continue the above chain of inequalities let us first compute from (40)

e−μaT −1 − e−μaT = e
−μ+μ

k∑

i=1
a(i)

0 ∑

I,J
|I |=l−1

∏

i∈I

e−μb(i)
T −1

∏

i∈J

(
e−μb(i)

T − e−μb(i)
T −1

)
, (66)

where I, J forms a partition of {1, . . . , k}. This shows that e−μaT −1 ≥ e−μaT = e−μbT ,

because in the right-hand side e−μb(i)
T ≥ e−μb(i)

T −1 . These inequalities can then be continued
by recurrence, as for t ∈ {0, . . . , T − 2} one obtains from (40)

e−μat − e−μat+1 = e
−μ+μ

k∑

i=1
a(i)

0 ∑

I,J
|I |=l−1

∏

i∈I

e−μb(i)
t

(
∏

i∈J

(e−μa(i)
t+1 − e−μb(i)

t )

−
∏

i∈J

(e−μa(i)
t+2 − e−μb(i)

t )

)

, (67)

hence

e−μa0 ≥ a−μa1 ≥ · · · ≥ e−μaT −1 ≥ e−μaT

= e−μbT ≥ e−μbT −1 ≥ · · · ≥ e−μb1 ≥ e−μb0 = 1, (68)

and for any μ ≤ 0:

a0 ≥ a1 ≥ · · · ≥ aT −1 ≥ aT = bT ≥ bT −1 ≥ · · · ≥ b1 ≥ b0 = 0 . (69)

Let us now take the limit μ → −∞ in the Eq. (40), assuming that at and bt have finite
limits. Treating (40) at the leading exponential order one obtains

at = max

⎛

⎜
⎜
⎜
⎝

0, max
t ′∈[1,T ]

max
I,J,K

|I |+I(t ′≥t+2)≤l−1
|I |+|J |+I(t ′≥t+1)≥l

St ′(h1, . . . , hk; I, J, K )

⎞

⎟
⎟
⎟
⎠

, (70)

bt = max

⎛

⎜
⎜
⎜
⎝

0, max
t ′∈[1,t]

max
I,J,K

|I |≤l−1
|I |+|J |≥l

St ′(h1, . . . , hk; I, J, K )

⎞

⎟
⎟
⎟
⎠

, (71)
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where

St (h1, . . . , hk; I, J, K )=1−
∑

i∈I

(a(i)
0 −b(i)

t−2)−
∑

i∈J

(a(i)
0 − b(i)

t−1)−
∑

i∈K

(a(i)
0 − a(i)

t ). (72)

Now from the inequalities (69) it appears that St ≤ 1, hence that the a’s and b’s belong
to the interval [0, 1]. It is however natural to assume that they are integers, as in the limit
μ → −∞ they can be interpreted as differences between number of particles in constrained
groundstate configurations (see [55,70] for more details). Within this ansatz the a’s and b’s
can only be equal to 0 or 1; using in addition the inequalities (69) one realizes that the fields
h can only take 2T + 1 possible values, that we shall call At for t ∈ {0, 1, . . . , T − 1}
and Bt for t ∈ {0, 1, . . . , T }. These are defined as follows; At denotes the case where
a0 = · · · = at = 1, all the other a’s and b’s vanishing. For t ∈ {2, . . . , T }, Bt means that
b1 = · · · = bt−1 = 0, all the other a’s and b’s being equal to 1. Finally B1 corresponds to
the case where all a’s and b’s are equal to 1, and B0 to the case where they all vanish. Note
that one can consistently extend these definitions to AT = BT , as by definition aT = bT .

It remains to determine the value of h = g(h1, . . . , hk) in this μ → −∞ limit, when all
the fields h1, . . . , hk belong to the set {A0, A1, . . . , AT −1, AT = BT , BT −1, . . . , B1, B0}
of “hard fields”, or Warning Propagation messages. Some algebra, sketched in Appendix 1,
leads to:

g(Bt1 , . . . , Btn , Atn+1 , . . . , Atk )

=

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

B1+min
l

(t1,...,tn) if n ≥ l and min(tn+1, . . . , tk) ≥ 1 + min
l

(t1, . . . , tn)

Amin(tn+1,...,tk )−1 if n ≥ l − 1 and

1 + min
l−1

(t1, . . . , tn) ≤ min(tn+1, . . . , tk) ≤ min
l

(t1, . . . , tn)

B0 otherwise

(73)

where t1, . . . , tn ∈ {0, . . . , T −1} and tn+1, . . . , tk ∈ {0, . . . , T }. We assumed conventionally
that min

l
(t1, . . . , tl−1) = ∞.

The Eq. (73) can be given a very intuitive interpretation. The messages h ∈
{A0, . . . , AT −1, B0, . . . , BT } can be interpreted as “warnings” sent from one vertex of the
graph to one of its neighbours, with the following meanings. A vertex i sends a message
hi→ j = Bt to one of its neighbour j to say: “if j is kept inactive at all times the configuration
of i and of its sub-tree (the one rooted at i and excluding j) leads to complete activation of the
sub-tree within the time horizon T , and i activates itself at time t”. In particular hi→ j = B0

means that i is activated in the initial configuration. On the contrary i sends the message
hi→ j = At to j to express: “the complete activation of i and its sub-tree requires that j
becomes activated at time t”. The rules of Eq. (73) for the combination of these messages
are then obtained by finding the configuration compatible with them, containing the minimal
number of active sites in the initial configuration (because of the μ → −∞ limit):

• if strictly less than l −1 incoming messages are of the type Bti , with ti ∈ {0, . . . , T −1},
the central site i will never have more than l active neighbours (even with the participation
of the receiving site j) if it is initially inactive, hence the only way for i to be active at
time T is to be active in the initial configuration, which implies hi→ j = B0.

• if at least l of the incoming messages are of the type Bti , with ti ∈ {0, . . . , T − 1}, say
(Bt1 , . . . , Btn ), the central site i will become active at time t = 1 + min

l
(t1, . . . , tn),

without the “help” of the activation of the site j receiver of the message. This situation
thus leads to a message of type Bt , at the condition that all other incoming messages
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of type {A0, . . . , AT } do not require the activation of the central site i at a time strictly
earlier than t = 1 + min

l
(t1, . . . , tn).

• the participation of the activation of the receiving site j is required at some time t when
the above condition is not fulfilled, i.e. when the incoming messages (Atn+1 , . . . , Atk )

require the activation of the central site at some time tact = min(tn+1, . . . , tk) < 1 +
min

l
(t1, . . . , tn). This mechanism is possible if at time tact − 1 already l − 1 of the

neighbours sending messages of type B are active, i.e. it requires min
l−1

(t1, . . . , tn) ≤
tact − 1. The “help” needed from the receiving site is that it is active at some time before
tact − 1; in the limit μ → −∞ the least dense configurations, and thus the least stringent
constraint on the time of activation is privileged, hence the message sent in this case is
hi→ j = Atact−1.

• all cases not fulfilling one of the conditions above require that i is active in the initial
configuration to be active at time T , hence the message sent is hi→ j = B0.

3.4.2 Energetic 1RSB Single Sample Equations

Within this ansatz the 1RSB distributions P(h) greatly simplify, as they are supported on the
discrete set h ∈ {A0, A1, . . . , AT −1, AT = BT , BT −1, . . . , B1, B0}. We shall denote pt the
weight in P(h) of the event h = At , and similarly qt for h = Bt (with again the convention
pT = qT to simplify notations), i.e.

P(h) =
T −1∑

t=0

pt δ(h − At ) +
T∑

t=0

qt δ(h − Bt ). (74)

The 1RSB recursion relation (58) now reduces to a recursion between these finite-
dimensional vectors of probabilities; inserting the definition (74) in the right hand side of
(58) and exploiting the combination rule (73) between hard fields, one obtains the following
limit for the recursion relation P = G[P1, . . . , Pk]:

pt = 1

Z [P1, . . . , Pk]ey p̃t , p̃t =
∑

I,J,K
|I |=l−1
|J |≥1

∏

i∈I

(
t∑

t ′=0

q(i)
t ′

)
∏

i∈J

p(i)
t+1

∏

i∈K

×
⎛

⎝
T∑

t ′=t+1

q(i)
t ′ +

T −1∑

t ′=t+2

p(i)
t ′

⎞

⎠ for t ∈ {0, . . . , T − 1}

qt = 1

Z [P1, . . . , Pk]eyq̃t , q̃t =
∑

I,J,K
|I |≤l−1

|I |+|J |≥l

∏

i∈I

×
(

t−2∑

t ′=0

q(i)
t ′

)
∏

i∈J

q(i)
t−1

∏

i∈K

(
T∑

t ′=t

q(i)
t ′ +

T −1∑

t ′=t

p(i)
t ′

)

for t ∈ {1, . . . , T }

q0 = 1

Z [P1, . . . , Pk]

[

1 −
T −1∑

t=0

p̃t −
T∑

t=1

q̃t

]

,

Z [P1, . . . , Pk] = 1 + (ey − 1)

[
T −1∑

t=0

p̃t +
T∑

t=1

q̃t

]

(75)
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the reweighting term of Eq. (59) becoming indeed ziter(h1, . . . , hk)
m = eya0(h1,...,hk ), hence

the factor ey multiplying the probabilities of all warnings except B0; this is indeed the only
case where an active site has to be inserted in the initial configuration.

To compute the 1RSB potential we have to study the limit of the contribution of site and
edge terms in the limit μ → −∞, m → 0. We have from Eq. (43)

zsite(h1, . . . , hk+1)
m →exp

⎡

⎢
⎢
⎢
⎣

y max

⎛

⎜
⎜
⎜
⎝

0, max
t∈[1,T ] max

I,J,K
|I |≤l−1

|I |+|J |≥l

St (h1, . . . , hk+1; I, J, K )

⎞

⎟
⎟
⎟
⎠

⎤

⎥
⎥
⎥
⎦

,

(76)

which can be simplified following the same reasoning than the one which led to (73). This
yields

Zsite(P1, . . . , Pk+1) → 1 + (ey − 1)

T∑

t=1

∑

I,J,K
|I |≤l−1

|I |+|J |≥l

∏

i∈I

(
t−2∑

t ′=0

q(i)
t ′

)
∏

i∈J

q(i)
t−1

∏

i∈K

(
T∑

t ′=t

q(i)
t ′ +

T −1∑

t ′=t

p(i)
t ′

)

, (77)

where I, J, K is a partition of {1, . . . , k +1}. This expression can be interpreted intuitively in
terms of the warnings defined above; the factor multiplying (ey −1) is indeed the probability
of complete activation, at time t ∈ {1, . . . , T }, for an initially empty site receiving messages
(h1, . . . , hk+1) from its neighbours, with their respective distributions P1, . . . , Pk+1. As a
matter of fact, for its activation to occur at time t at least l neighbours must have activated
without any help from the central site at time t − 1, no more than l − 1 must be active at
time t − 2 (otherwise the activation time would be strictly less than t), and the neighbours
sending messages of type At ′ should not require activation at a time t ′ < t .

For the edge term we obtain from Eq. (42)

zedge(h1, h2)
m → exp

[

−y min
t∈[0,T ] min((a(1)

0 − b(1)
t ) + (a(2)

0 − a(2)
t ), (a(1)

0 − a(1)
t ) + (a(2)

0 − b(2)
t ))

]

, (78)

hence

Zedge(P1, P2) → e−y + (1 − e−y)
[(

T∑

t=0

q(1)
t

)(
T∑

t=0

q(2)
t

)

+
T −1∑

t=0

p(1)
t

t∑

t ′=0

q(2)

t ′ +
T −1∑

t=0

p(2)
t

t∑

t ′=0

q(1)

t ′

]

. (79)

One can interpret the factor multiplying (1 − e−y) as the probability of complete activation
when two messages (h1, h2) drawn with the probabilities P1, P2 are sent in the two opposite
directions of an edge.

Let us summarize the main findings of this subsection. In the limit μ → −∞, m → 0 with
y = −μm the 1RSB formalism simplifies in the following way. The cavity field distributions
Pi→ j (h) have now a discrete support with 2T possible values, each of them is thus described
by a (normalized) vector of 2T probabilities denoted {pt , qt }. These vectors are solutions of
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recurrence equations of the form Pi→ j = G({Pk→i }k∈∂i\ j ), the mapping G being defined in
Eq. (75). The energetic limit of the 1RSB potential is then computed as

�e(y) = −y + 1

N

N∑

i=1

ln
(
Zsite({Pj→i } j∈∂i )

) − 1

N

∑

〈i, j〉
ln
(
Zedge(Pi→ j , Pj→i )

)
, (80)

with the expression of Zsite and Zedge given in Eqs. (77, 79). This expression of �e is
variational, its derivative with respect to y (which is needed in the computation of the inverse
Legendre transform in (64)) can be taken on the explicit dependence only.

3.4.3 Random Regular Graphs

For the reasons already exposed in the context of the RS and of the full 1RSB cavity formalism
a factorized solution of the energetic 1RSB equations can be searched for when dealing with
random k + 1 regular graphs with a constant threshold of activation l. One has thus a single
vector of probabilities P = ({pt , qt }), fixed-point solution of Eq. (75), from which the
energetic 1RSB potential is obtained as

�e(y) = −y + ln (Zsite(P, . . . , P)) − k + 1

2
ln
(
Zedge(P, P)

)
, (81)

with Zsite and Zedge defined in Eqs. (77, 79).

4 Results of the Cavity Method for Random Regular Graphs

We shall present now the results of the resolution of the cavity equations for random regular
graphs of degree k + 1, with an activation threshold equal to l for all vertices. In all this
discussion it will be understood that ε = +∞, i.e. we only consider initial configurations
that activate the whole graph in T steps. We will first present in Sect. 4.1 the results for finite
values of T , which are qualitatively the same for all values of k, l and T ; the behaviour of
the replica symmetric cavity method are first displayed, then we turn to the effects of replica
symmetry breaking, in particular in the “energetic” limit to compute the minimal density of
initially active sites in activating configurations. In a second part (Sect. 4.2) we shall discuss
the limit T → ∞, in which some further analytical computations can be performed. In this
case several qualitatively distinct phenomena emerge, depending on the values of k and l.

4.1 Finite T Results

4.1.1 Replica Symmetric Formalism

The technical details of the resolution of the RS equation h = g(h, . . . , h), where g is given
in Eq. (40), and of the computation of the free-entropy density, are deferred to the Appendix 1.
From a numerical point of view it is an easy task, as it corresponds essentially to the resolution
of a set of 2T equations on 2T unknowns. Let us discuss the numerical results obtained in
this way. On the left panel of Fig. 2 we display the curve θ(μ) of the average fraction of
initially active sites as a function of the chemical potential μ; the curve is for k = l = 2
and T = 3, the qualitative features are independent of these precise values. This function is
increasing as it should, and reaches a finite limit when μ → −∞, that would be the candidate
value for θmin if the RS computation was correct in this limit. This however cannot be true,
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Fig. 2 The density of initially active sites θ (left panel) and the entropy s (right panel) as a function of the
chemical potential μ, computed from the replica symmetric cavity equations, for k = l = 2 and T = 3
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Fig. 3 The RS entropy s(θ) of configurations with a fraction θ of initially active sites able to activate
completely the graph within time T , for k = l = 2 (left panel) and k = 3, l = 2 (right panel). The curve
labelled “random” is the binary entropy function −θ ln θ − (1 − θ) ln(1 − θ) that counts all configurations
with such an initial density. The curves in the limit T → ∞ are computed analytically, from Eq. (82) for the
left panel and (101) for the right panel, see Sect. 4.2 for a further discussion of this limit

as revealed from the computation of the entropy, displayed in the right panel of Fig. 2: for
μ < μs=0 the RS entropy becomes negative, which is a certain indication of the inadequacy
of the RS theory in this regime. In Fig. 3 we display the results for the entropy s(θ) of the
number of configurations with a fraction θ of initially active sites, for the regime of positive
entropies where the RS prediction cannot be ruled out at once (for the cases k = l = 2
and k = 3, l = 2). For increasing values of T these curves converge to a limit, this will be
further discussed in Sect. 4.2.1. The numerical values of the chemical potential and of the
fraction of active sites at the point of entropy cancellation, which would be the best guess
from the RS computation of the value of θmin, denoted respectively μs=0 and θmin,0, can be
found for various values of T in the Tables 1, 2, and 3 for the cases k = l = 2, k = l = 3
and k = 3, l = 2 respectively. For T = 1 they reproduce, as they should, the results of the
Biroli–Mézard model given in [70].

4.1.2 1RSB Results

As we have seen above the hypothesis underlying the RS computation must go wrong when μ

is decreased towards −∞, as the entropy computed within the RS scheme becomes negative
for μ < μs=0; a 1RSB computation is thus required to investigate the limit μ → −∞ and
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Table 1 Numerical results from the cavity computations at finite T for k = l = 2; the results in the limit
T → ∞ are explained in Sect. 4.2

RS 1RSB Energetic 1RSB

T μs=0 θmin,0 μd θd μc θc ys θmin,1

1 −7.403996 0.422251 −6.49 0.4292 −6.69 0.4275 5.563433 0.424257

2 −11.374979 0.325742 −9.89 0.3291 −11.23 0.3260 10.826348 0.325882

3 −17.292682 0.289093 −13.7 0.2922 −17.28 0.2890 17.232166 0.289097

4 −24.936318 0.271564 −20.9 0.2731 −24.93 0.2715 24.933659 0.271564

5 −34.966263 0.262167 −31.3 0.2628 −34.63 0.2622 34.966225 0.262167

6 −49.901175 0.256844 49.901175 0.256844

7 −74.984724 0.253779 74.984724 0.253779

8 −120.79085 0.252036 120.79085 0.252036

10 −378.44778 0.250553 378.44778 0.250553

15 −1.069 × 104 0.250018 1.069 × 104 0.250018

20 −3.4 × 105 0.250000 3.4 × 105 0.250000

∞ −∞ 1
4 +∞ 1

4

Table 2 Numerical results from the cavity computations at finite T for k = l = 3; the results in the limit
T → ∞ are explained in Sect. 4.2

RS 1RSB Energetic 1RSB

T μs=0 θmin,0 μd θd μc θc ys θmin,1

1 −6.113951 0.479455 −5.35 0.4906 −5.39 0.4900 4.644980 0.482712

2 −8.175902 0.397326 −7.38 0.4027 −7.95 0.3988 7.485437 0.397922

3 −10.381917 0.366187 −8.63 0.3725 −10.33 0.3663 10.077681 0.366291

4 −13.140888 0.351221 −9.59 0.3583 −13.11 0.3513 13.037666 0.351234

5 −17.249334 0.343205 −10.3 0.3507 −17.36 0.3432 17.232334 0.343206

6 −24.322138 0.338721 24.321721 0.338721

7 −35.739653 0.336191 35.739653 0.336191

8 −54.198587 0.334760 54.198587 0.334760

∞ −∞ 1
3 +∞ 1

3

hence the properties of the least dense activating initial conditions, in particular their density
θmin.

We have thus solved numerically the 1RSB equations (60) using population dynam-
ics methods [54], i.e. representing P(h) as a weighted sample of fields hi . This method
has become fairly standard and we shall not give more details on the procedure, see for
instance [53,54] for detailed presentations. In the particularly important m = 1 case we used
a version of this procedure, inspired by the tree reconstruction problem, that allows to get
rid of the reweighting terms in (60) and is thus much more precise and efficient numerically,
see [52,61] for more technical details.

The results of these investigations follow the usual pattern encountered in constraint
satisfaction problems [48]: for large enough values of μ (i.e. for dense enough initial config-
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Table 3 Numerical results from the cavity computations at finite T for k = 3, l = 2; the results in the limit
T → ∞ are explained in Sect. 4.2

RS 1RSB Energetic 1RSB

T μs=0 θmin,0 μd θd μc θc ys θmin,1

1 −7.730059 0.362794 −7.06 0.3681 −7.38 0.3654 6.778540 0.363813

2 −10.21534 0.236821 −9.16 0.2416 −10.12 0.2372 9.873120 0.237009

3 −11.90150 0.182272 −10.38 0.1875 −11.85 0.1824 11.72892 0.182338

4 −13.03158 0.151659 −11.45 0.1563 −13.00 0.1517 12.92114 0.151693

5 −13.80059 0.132014 −12.47 0.1354 −13.78 0.1321 13.71834 0.132036

6 −14.33193 0.118324 14.26439 0.118341

7 −14.70251 0.108237 14.64332 0.108251

8 −14.96150 0.100498 14.90729 0.100510

10 −15.26375 0.089415 15.21429 0.089425

15 −15.42086 0.074242 15.37163 0.074251

20 −15.27922 0.066569 15.22489 0.066579

30 −14.85174 0.058995 14.78367 0.059008

∞ −12.72072 0.046283 12.54796 0.046328

Fig. 4 The complexity at m = 1
as a function of the chemical
potential μ, for k = l = 2 and
T = 1. The function is defined
for μ < μd ≈ −6.49, the
complexity being positive for
μ > μc ≈ −6.69

μ

Σ
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-0.025

-0.03

urations) there is no non-trivial solution of the 1RSB equation with m = 1; decreasing μ a
non-trivial solution appears discontinuously at a threshold μd (the “dynamic” transition). Its
complexity (or configurational entropy) � is positive in an interval μ ∈ [μc, μd], which thus
corresponds to a “dynamic 1RSB phase” with an exponential number of clusters contributing
to the Gibbs measure, see Fig. 4 for an illustration in the case T = 1. The numerical values of
μd and μc (as well as the associated densities of initially active sites θd and θc), can be found
for several values of T in the Tables 1, 2, and 3. For the values of μ in the interval [μc, μd]
the thermodynamic predictions of the RS computations are correct. Note that in all the cases
we investigated (k = 2, 3, 2 ≤ l ≤ k and T ≤ 5) we always found a discontinuous transition
with μc < μd; we cannot rule out the possibility that for other values of the parameters the
replica symmetry breaking transition is continuous with μc = μd (as happens for instance
in the independent set problem at low degrees [14]).
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Fig. 5 Study of the condensed phase for k = l = 2 and T = 1. Left panel complexity as a function of m for
μ = −7.5 < μc, the complexity vanishes for ms ≈ 0.84. Right panel Parisi parameter ms as a function of
−1/μ, departing from 1 for μ < μc; the dashed line corresponds to the linear behaviour −μms = 5.56 that
fits the μ → −∞ limit

Lowering further the chemical potential, i.e. in the regime μ < μc, the complexity at
m = 1 becomes negative. This is thus a true replica symmetry breaking phase with only a
sub-exponential number of clusters contributing to the Gibbs measure; μc corresponds to the
“condensation” transition. In this phase the thermodynamic properties of the model differ
from the RS prediction and are given by the properties of the clusters selected by the static
value of the Parisi parameter, ms(μ), for which the complexity vanishes. This value can be
determined by computing the complexity as a function of m, for a fixed value of μ, see left
panel of Fig. 5 for an example.

To compute the minimal density θmin(T ) one has to take the limit μ → −∞; we have
introduced above in Sect. 3.4 a simplifying ansatz in this limit, assuming in particular a
finite value of −μm. To check the consistency of this ansatz we solved the complete 1RSB
equations for T = 1 and several values of μ large and negative. The Parisi parameter ms is
plotted as a function of −1/μ in the right panel of Fig. 5; in the limit μ → −∞ one obtains
indeed a linear behaviour, corresponding to a finite limit of −μms.

4.1.3 Energetic 1RSB Results

We turn now to the results obtained via the energetic 1RSB cavity method, i.e. taking simul-
taneously the limits μ → −∞ and m → 0 with a finite value for y = −μm. The equations
to solve in this case amounts to find the fixed point of Eq. (75), from which one obtains
the 1RSB potential (81) and the energetic complexity �e(θ) from the Legendre transform
structure explained in (64), as a parametric plot varying the parameter y. The computational
complexity of this problem is drastically reduced compared to the complete 1RSB equations:
as in the RS case one has a set of (roughly) 2T equations on 2T real unknowns, instead of
an equation on a probability distribution of fields. More technical details on the procedure to
solve these equations can be found in Appendix 1.

Figure 6 displays the energetic complexity �e(θ) for a few values of T , in the cases
k = l = 2 and k = 3, l = 2. The expert reader will notice that we restricted the range of y
used in this plot to the so-called physical branch, in such a way that �e is a concave function
of θ . The most important characteristics of these curves are the values of θmin,1 where the
complexity vanishes, and the corresponding values ys of the parameter y; these are reported
for several values of T in the last columns of the Tables 1, 2, and 3. Indeed θmin,1 is the
1RSB prediction for θmin, as it corresponds to the smallest density of active sites in initial

123



328 A. Guggiola, G. Semerjian

T → ∞
T = 7
T = 5
T = 3
T = 1

θ

Σe

0.450.40.350.30.250.2

0.4

0.35

0.3

0.25

0.2

0.15

0.1

0.05

0

T → ∞
T = 8
T = 4
T = 1

θ

Σe

0.40.350.30.250.20.150.10.050

0.2

0.15

0.1

0.05

0

Fig. 6 The complexity �e(θ) obtained from the energetic 1RSB cavity formalism, for k = l = 2 (left panel)
and k = 3, l = 2 (right panel); see Sect. 4.2 for explanations on the T → ∞ result

configurations belonging to clusters with a non-negative complexity. For T = 1 these values
can be successfully cross-checked with the results of the Biroli–Mézard model [70], and the
parameter ys agrees with the fit of −μms(μ) in the limit μ → −∞ obtained from the full
1RSB equations (cf. right panel of Fig. 5).

4.2 The Large T Limit

The limit case T → ∞ is particularly interesting as it corresponds to the original influence
maximization problem with no constraint on the time taken to activate the whole graph. This
limit can be performed analytically for the RS and energetic 1RSB formalism; the technical
details of these computations can be found in Appendix section “The Large T Limit”, we
present here the results of these analytical simplifications. It turns out that the case k = l is
qualitatively different from the case k > l, we shall thus divide this section according to this
distinction.

4.2.1 The Case k = l

Let us first recall that when k = l the dynamics from a random initial configuration of
density θ has a continuous transition at θr(k, k) = k−1

k (see Sect. 2.2); we also saw in
Sect. 2.4 that minimal contagious sets (with no constraint on the activation time) correspond
to minimal decycling sets, which led to the bound θmin(k, k) ≥ k−1

2k = θr(k,k)
2 . In the rest of

this subsection we shall for simplicity abbreviate θr(k, k) by θr .
As suggested by the left panel of Fig. 3 in the case k = l = 2, the RS entropy s(θ) converges

to a limit curve when T → ∞. This limit curve can actually be computed analytically for
all k; we defer the details of the computation to Appendix section “Asymptotics for l = k”
and only state here the properties of this limit curve. For θ ≥ θr it coincides with the binary
entropy function −θ ln θ − (1−θ) ln(1−θ); this is a posteriori obvious. Indeed by definition
of θr typical configurations in this density range do activate the whole graph, hence the
number of activating initial configurations coincide (at the leading exponential order) with
the total number of configurations of this density. A non-trivial portion of the limit curve
arises in the density range [θr/2, θr], where it is given by

s(θ)=−k

2
(2θ − θr) ln(2θ − θr)+kθ ln θ+(1 − θ) ln(k − 1) − k + 1

2
ln

(
k − 1

k

)

. (82)
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This function has the same value and the same first derivative than the binary entropy function
in θr , while at the lower limit θr/2 of its range of definition it has an infinite derivative with
a finite value

s(θr/2) = ln k − k − 1

2k
ln(k − 1) − k − 1

2
ln 2 . (83)

The parametric plot of s(θ) also contains a vertical segment for θ = θr/2, from −∞ to the
value given in (83).

The complexity �e(θ) of the energetic 1RSB formalism also converges to a limit curve
when T → ∞, as shown in Fig. 6 and obtained analytically in Appendix section “Asymptotics
for l = k”. This limit curve has the same vertical segment in θr/2 from −∞ to the value
(83); the non-trivial part of the curve is given in a parametrized form as follows:

�e (̃λ) = ln Zsite (̃λ) − k + 1

2
ln Zedge (̃λ) − y(̃λ)(1 − θ (̃λ)) , (84)

θ (̃λ) = 1 − ey(̃λ)

ey(̃λ) − 1

Zsite (̃λ) − 1

Zsite (̃λ)
− k + 1

2

1

ey(̃λ) − 1

1 − Zedge (̃λ)

Zedge (̃λ)
, (85)

where λ̃ is the positive parameter along the curve, the Parisi parameter

y(̃λ) = ln

(
(1 + λ̃)k − k λ̃k−1 − λ̃k

(k − 1) λ̃k

)

, (86)

is the slope of the tangent to the curve �e(θ), and

Zsite (̃λ) = 1 + (k + 1 + λ̃)((1 + λ̃)k−1 − k λ̃k−1)

(k − 1)(1 + λ̃)k
, (87)

Zedge (̃λ) = λ̃

1 + λ̃

(

1 + (1 + λ̃)k−1 − λ̃k−1

(1 + λ̃)k − k λ̃k−1 − λ̃k

)

. (88)

When λ̃ → 0+ this part of the curve connects with the vertical segment in θr/2. The large
values of λ̃ yield a non-concave branch of �e that has to be discarded.

Depending on the value of k qualitatively different behaviours emerge from the analysis
of the RS entropy and 1RSB energetic complexity:

• For k = l = 2 the entropy of the endpoint in θr/2 given in (83) is strictly positive (it is
equal to (ln 2)/2); moreover the energetic complexity curve converges, in the T → ∞
limit, to a vertical segment (the non-trivial part parametrized by λ̃ is convex and has
thus to be discarded). This leads to the conclusion that θmin = θr/2 = 1/4 in this
case, saturating the lowerbound of (16), and recovering the rigorous result of [17] on
the decycling number of 3-regular graphs. This is a reassuring evidence in favour of the
validity of the approach, in particular on the interversion of the T → ∞ and N → ∞
limit. It would be an even more challenging computation to determine the limit of θd

and θc as T diverges; we are however tempted to conjecture that they both go to 1/4
and that the effects of replica symmetry breaking are irrelevant in this limit. A numerical
argument in favour of this conjecture will be presented in Sect. 5, where it is shown that
a simple greedy algorithm is able to find contagious sets of these densities. Assuming
this is true, the expression (82) would give for k = 2 the typical (quenched) entropy
of the decycling sets of 3-regular random graphs in their non-trivial regime of densities
[1/4, 1/2]. Note that the coincidence of the RS entropy and 1RSB energetic complexity
at θmin is reminiscent of the phenomenology discussed for the matching problem in [75],
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which might suggest that the minimal density activating configurations are at a large
Hamming distance in configuration space one from the other.

• For k = l = 3 the expression (83) of the entropy in θr/2 is still positive (equal to
ln 3 − (4/3) ln 2), hence the endpoint of the non-trivial part of both the RS entropy and
the 1RSB complexity curves occurs in θmin,0 = θmin,1 = θr/2 = 1/3, saturating again
the bound (16). This leads to the conclusion that θmin = 1/3 in this case, as was also
conjectured in [17]. However, at variance with the previous case, the energetic complexity
curve has a non-trivial part for θ > θmin, as shown in the left panel of Fig. 7. We thus
expect that the limits of θd and θc when T → ∞ are strictly greater than 1/3, hence that
simple algorithms would have difficulties to find the minimal contagious sets (see Sect. 5
for a numerical check of this statement), and that the RS entropy (82) is incorrect for
some regime of densities close to 1/3.

• Finally when k = l ≥ 4 the entropy in (83) is negative, the cancellation of s occurs at
a value θmin,0 strictly between θr/2 and θr , see the right panel of Fig. 7. The energetic
complexity vanishes on its non-trivial part parametrized by λ̃, at a value θmin,1 slightly
larger than θmin,0, see Table 4 for some numerical values. Whether θmin,1 should be taken
as a conjectured exact value for θmin or simply as a lowerbound is dubious and might
depend on the value of k. Indeed one should test the stability of the 1RSB ansatz against
further levels of replica symmetry breaking. This computation is in principle doable along
the lines of [59,60,70], but has not been performed yet. It is however relatively easy to
set up an asymptotic expansion at large k of the thresholds θmin,0 and θmin,1 from the
expressions (82, 84). One finds that the first terms of the expansion are equal at the RS
and 1RSB level, it is thus natural to conjecture that they are indeed the correct expansion
of θmin, namely

θmin(k, k) = 1 − 2 ln k

k
− 2

k
+ O

(
1

k ln k

)

. (89)

This conjecture is in agreement with the rigorous lowerbound proven in [41],

θmin(k, k) ≥ 1 − 2 ln k

k
− 4 − 2 ln 2

k
+ o

(
1

k

)

. (90)

It can also be compared with the asymptotic expansion in the case l = k + 1 [38] where
the inactive vertices have to form an independent set of the graph:

θmin(k, k + 1) = 1 − 2 ln k

k
+ 2 ln ln k

k
+ 2 ln 2 − 2

k
+ o

(
1

k

)

. (91)

The third term of this expansion is of a larger order; indeed the condition imposed on the
graph induced by the inactive vertices is much more stringent when l = k + 1 (it has to
be made of isolated vertices) with respect to the case l = k (it only has to be acyclic).

Let us mention at this point that θmin(T ), the minimal density of initial configuration
percolating within T steps of the dynamics, reaches its asymptotic value θmin as T → ∞
with different finite T corrections in the various cases listed above. The analysis of Appendix
section “Asymptotics for l = k” shows that for k = l = 2 (resp. k = l = 3) these corrections
are of order 2−T (resp. 3−T ), which is in agreement with a numerical fit of the data in Table 1
(resp. Table 2). On the contrary for k = l ≥ 4 these corrections are only polynomially small
in T .

Finally, we could also compute analytically the distribution of activation times, within the
RS formalism, for the initial configurations with a non-trivial density θ of active vertices in
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Fig. 7 The RS entropy s(θ) and energetic 1RSB complexity �e(θ) in the T → ∞ limit, for k = l = 3
(left panel) and k = l = 4 (right panel). The binary entropy function is also plotted for comparison (the RS
entropy coincides with it for θ ≥ θr). The physical part of the complexity extends on a small range of θ , on
which it is only slightly smaller than the RS entropy, the inset allows to see this small difference at the end of
the domain of definition of �e

Table 4 The predictions of the RS and energetic 1RSB cavity method in the T → ∞ limit

k l θr μs=0 θmin,0 ys θmin,1

2 2 1
2 −∞ 1

4 ∞ 1
4

3 2 0.111111 −12.720727 0.046283 12.547960 0.046328

3 3 2
3 −∞ 1

3 ∞ 1
3

4 2 0.050781 −9.633812 0.013108 9.125975 0.013258

4 3 0.275158 −∞ 1
6 ∞ 1

6

4 4 3
4 −14.904539 0.378463 14.883293 0.378465

5 2 0.029096 −9.499859 0.005715 8.891066 0.005820

5 3 0.165116 −12.395257 0.076228 12.333754 0.076247

5 4 0.397212 −∞ 1
4 ∞ 1

4

5 5 4
5 −9.786306 0.422619 9.647302 0.422695

6 2 0.018854 −9.675930 0.003098 9.026488 0.003166

6 3 0.112870 −10.396651 0.042825 10.234248 0.042894

6 4 0.269022 −16.484079 0.150054 16.480311 0.150055

6 5 0.486312 −40.532392 0.300090 40.532392 0.300090

6 6 5
6 −8.403727 0.460014 8.191036 0.460228

the interval [θr/2, θr]. Their cumulative distribution function Pt = η(ti ≤ t) obtained from
the marginals of the law (25) reads in the T → ∞ limit with t kept fixed:

Pt+1 = θ + (2θ − θr)(1 − θr)

θr
wk+1

t + (1 − θr)(k + 1)wk
t

(
θ

θr
− 2θ − θr

θr
wt

)

, (92)

where wt is a series defined recursively by

w0 = θr , wt+1 = θr + (1 − θr)w
k
t . (93)

Examples of this cumulative distribution are displayed in Fig. 8. As explained above the
predictions of the RS cavity method are not expected to be correct for θ < θc; in the particular
case k = l = 2 we however expect this result to be true down to θ = θmin = 1/4. Note that Pt
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Fig. 8 The integrated distribution of activation times (92) for percolating initial conditions of density θ ∈
[θr/2, θr]. The curves are presented in the case k = l = 2

goes to 1 when t → ∞, in other words in the limit T → ∞ the support of the distribution of
activation times does not scale with T and remains of order 1. One can also check that when
θ = θr , the prediction Pt of (92) coincides, as it should, with the distribution of activation
times for random initial conditions of density θr given in Eq. (2); to see this one can notice
that wt is equal to the series x̃t defined in Eq. (3) for the study of random initial conditions,
when k = l and θ = θr . At the lower limit of the interval of density, θ = θr/2, one obtains
instead a simple expression,

Pt+1 = θr

2
+ (k + 1)

1 − θr

2
wk

t . (94)

A straightforward analysis of (92, 93) reveals that for all θ < θr the cumulative distribution
Pt reaches 1 with corrections of order 1/t , in other words the probability Pt − Pt−1 that a
vertex activates precisely at time t has a power-law tail with exponent −2. On the contrary
the random initial conditions of density θr have 1 − Pt of order 1/t2, hence the exponent of
the tail is −3; random initial conditions with θ > θr have instead an exponentially decaying
tail for their distribution of activation times.

4.2.2 The Case k > l

We shall now turn to a description of the limit as T → ∞ of the RS and energetic 1RSB results
when k > l, with again the technical details relegated in the Appendix section “Asymptotics
for l < k”. The RS entropy s(θ) coincides with the binary entropy function for θ ≥ θr , for
exactly the same reasons as explained above in the case k = l (here and in the rest of this
subsection we denote θr the threshold θr(k, l)). The non-trivial part of s(θ) and �e(θ) are
obtained in a parametric way, with unfortunately rather long expressions that we shall now
progressively describe. We keep implicit below the dependency of all quantities on k and l
when there is no risk of confusion.

This parametrization is given in terms of a real λ in the range ]0, λr], where this upper
limit is expressed in terms of the threshold θr for activation from a random initial condition
as λr = (1 − θr)θ

k−1
r . We need first to introduce some auxiliary functions û(λ), v̂(λ), u∗(λ)
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and v∗(λ). The first two are given explicitly as

û(λ) =
(

1 − θr

λ

) 1
k−1

, v̂(λ) = x̃r

(
1 − θr

λ

) 1
k−1

, (95)

where we recall that x̃r is the fixed-point of Eq. (3) at the bifurcation θr , see also (4). The last
one, v∗(λ), is defined as the smallest positive solution of

v = 1 + λ

k∑

p=l

(
k

p

)(

λl

(
k

l

))− k−p
k−l

v
p(k−1)−k(l−1)

k−l , (96)

then u∗(λ) can be deduced as the solution of

1 = λl

(
k

l

)

v∗(λ)l−1(u∗(λ) − v∗(λ))k−l with u∗(λ) ≥ v∗(λ) . (97)

One can check that u∗(λ) ≥ û(λ) ≥ v̂(λ) ≥ v∗(λ) on the interval λ ∈]0, λr], and that
u∗ = û = 1/θr and v∗ = v̂ = x̃r/θr in λ = λr . We then define two functions Fsite(λ) and
Fedge(λ) through

Fsite(λ) = λ

u∗

⎡

⎣ûk+1 + (k + 1)

k∑

p=l

(
k

p

)[
l − 1

k − l
Ip−1 − Ip

]
⎤

⎦ (98)

Fedge(λ) = 1

u∗

[

(̂u − v̂)2 + 2u∗v∗ − v2∗ + 2λl

(
k

l

)

Il−1

]

(99)

where for clarity we kept implicit the λ dependency of û, v̂, u∗ and v∗, and we introduced

Ip =
(

λl

(
k

l

))−k−p
k−l

∫ v̂

v∗
dv v

p(k−1)−k(l−1)
k−l ,=

(

λl

(
k

l

))−k−p
k−l

(100)

×

⎧
⎪⎨

⎪⎩

ln
(

v̂
v∗

)
if p= l − 1 and k =2l−1 ,

k−l
(p+1)(k−1)−(k+1)(l−1)

(

v̂
(p+1)(k−1)−(k+1)(l−1)

k−l − v
(p+1)(k−1)−(k+1)(l−1)

k−l∗
)

otherwise .

We can finally give the parametric form of the RS entropy s(θ):

s(λ) = ln(1 + Fsite(λ)) − k + 1

2
ln

(
Fedge(λ)

u∗(λ)

)

+ μ(λ)(1 − θ(λ)) ,

θ(λ) = 1

1 + Fsite(λ)
,

μ(λ) = − ln(λ u∗(λ)k) , (101)

where μ(λ) is the opposite of the derivative of s(θ) in the point θ(λ). Thanks to the values
û, v̂, u∗ and v∗ assume in λr this curve joins the binary entropy function in θr with a continuous
slope.
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Fig. 9 The RS entropy s(θ) and energetic 1RSB complexity �e(θ) in the T → ∞ limit, for k = 3, l = 2,
from the analytical formulas given in (101, 102)

Similarly the 1RSB entropic complexity �e(θ) is obtained parametrically as

�e(λ)= ln

(

1+
(

1− 1

λ u∗(λ)k−1

)

Fsite(λ)

)

− k+1

2
ln

(
1+(λ u∗(λ)k−1−1) Fedge(λ)

λ u∗(λ)k −u∗(λ)+1

)

−y(λ)(1 − θ(λ)) ,

θ(λ) =
1 − 1

λ u∗(λ)k Fsite(λ)

1 +
(

1 − 1
λ u∗(λ)k−1

)
Fsite(λ)

− k + 1

2

1 − 1
u∗(λ)

Fedge(λ)

1 + (λ u∗(λ)k−1 − 1)Fedge(λ)
,

y(λ) = ln(λ u∗(λ)k − u∗(λ) + 1) , (102)

with y(λ) giving the slope of the tangent of �e(θ) in the point θ(λ).
An example of the limit for the RS entropy can be found in the right panel of Fig. 3 for

k = 3, l = 2, along with some finite T curves, and a similar plot for the energetic complexity
is displayed in the right panel of Fig. 6. The entropy and energetic complexity for this case
in the limit are compared in Fig. 9. The values θmin,0 and θmin,1 where s(θ) and �e(θ) vanish
are easily determined numerically from the above representation, and are collected in Table 4
for various values of k and l. For most of the cases one finds θmin,1 to be slightly larger than
θmin,0; as explained above the exactness of this 1RSB prediction has still to be assessed from
a computation of the stability with respect to further replica symmetry breaking.

There are however two special cases which stand on a different footing, namely (k, l) =
(4, 3) and (k, l) = (5, 4). Indeed in these two cases one has the same phenomenology than
for k = l = 3, namely a coincidence of θmin,0 and θmin,1 due to a vertical segment in the
curves s(θ) and �e(θ) extending to positive values. This phenomenon can be understood by
studying the limit λ → 0 of the above representation of these curves. After some algebra
one finds indeed that for k < 2l − 1,

lim
λ→0

θ(λ) = 2l − k − 1

2l
, lim

λ→0
s(λ) = lim

λ→0
�e(λ) = k + 1

2l
ln

(
ll

(l − 1)l−1

(
k

l

))

−k − 1

2
ln

(
2l

2l − k − 1

)

, (103)
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Fig. 10 An example of the cumulative distribution of activation times for k = 3, l = 2, obtained with the
numerical resolution of the RS equations for a large but finite value of T = 400, with a parameter λ = 0.005,
corresponding to an initial density of active sites of 0.089. The two horizontal lines corresponds to P(s = 0+)

and P(s = 1−) from Eq. (104), delimiting the fraction of vertices that activate within a finite time after the
beginning of the process (resp. before its end)

the limiting value for θ being valid both for the RS (101) and 1RSB (102) expressions. It
turns out that for k = 4, l = 3 and k = 5, l = 4, the latter expression for the entropy s and
complexity �e is strictly positive, hence the simple predictions 1/6 and 1/4 for θmin in these
two cases respectively, that saturate the lowerbound of (17). We did not find any other values
of k, l that produce the same phenomenon.

Finally the distribution of activation times in the RS formalism exhibits a very different
pattern with respect to the case k = l (see Fig. 10 for an illustration). As a matter of fact, in
the limit T → ∞ the activation times t of the vertices have to be divided in three categories,
each of them comprising a finite fraction of the N vertices: (i) t = O(1) (ii) t = O(T )

(iii) t = T − O(1). The category (ii) of vertices can be described by a scaling function
for the cumulative distribution, P(s) = Pt=sT , with s ∈]0, 1[ a reduced time. One has
P(s = 0+) > 0 and 1 − P(s = 1−) > 0, these two numbers representing the fractions
of vertices of type (i) and (iii) respectively. They can be computed following the techniques
of the Appendix section “Asymptotics for l < k”, yielding for initial configurations with a
fraction θ(λ) < θr of active vertices:

P(s = 0+) = θ + θ
λ

u∗

k+1∑

p=l

(
k + 1

p

)

v
p∗ (u∗ − v∗)k+1−p ,

1 − P(s = 1−) = θ
λ

u∗

(
1 − θr

λ

) k+1
k−1

⎡

⎣1 −
k+1∑

p=l

(
k + 1

p

)

x̃ p
r (1 − x̃r)

k+1−p

⎤

⎦ . (104)

5 Algorithmic Results

We shall present in this Section the results of numerical experiments performed on finite size
random regular graphs, for which we have constructed explicitly some activating initial con-
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figurations. We have used two strategies to do so, one based on a simple greedy heuristic, the
other inspired by the results of the cavity method. Both of them build iteratively a percolating
initial configuration, starting from the configuration with all vertices inactive, and adding one
active vertex at a time (another route would be to start from the all active configuration and
sequentially reduce the number of active vertices, but we did not investigate this alternative
strategy). We shall denote τ the number of addition steps performed by the algorithm, and
σ(τ) the initial configuration considered at this point (that contains by definition τ active
vertices). The configuration denoted σ T (τ ) (resp. σ f (τ )) is thus the configuration obtained
after T (resp. an infinite) number of steps of the dynamics defined in (1) from the initial con-
figuration σ(τ); we will denote |σ T (τ )| the number of active vertices in this configuration.
The algorithm stops when this number reaches N , as σ(τ) is then the first percolating initial
configurations encountered. The difference in the two algorithms to be presented below lies
in the rule used to choose which additional active vertex to add in the initial configuration in
a step τ → τ + 1.

5.1 A Greedy Algorithm

Let us first consider the case of a finite time horizon T , i.e. the problem of finding an initial
configuration σ with σ T the fully active configuration and σ containing the smallest possible
number of active vertices. The simplest strategy is to choose at each time step τ → τ + 1 the
inactive vertex of σ(τ) whose activation leads to the largest possible value of |σ T (τ + 1)|,
and stop at the first time τ such that σ T (τ ) is the fully active configuration. This can be
immediately generalized to the case T = ∞ by including at each time step the vertex whose
activation increases most |σ f (τ +1)|; this version of the greedy procedure was actually a tool
in the rigorous bounds on θmin for graphs with good expansion properties of [31]. If several
vertices lead to the same increase the ties can be broken arbitrarily. The time complexity
of the greedy algorithm is a priori cubic in the number N of vertices: a linear number of
steps τ → τ + 1 have to be performed before finding a percolating initial configuration.
For each of these steps a number of order N of candidate new configurations σ(τ + 1)

have to be considered, the computation of σ T (τ + 1) requiring itself a linear number of
operations for each configuration. It is however easy to reduce significantly this complexity
when T = ∞. As explained at the end of Sect. 2.1, in this case the final configuration of the
dynamical process can be obtained sequentially, regardless of the order of the activations.
By monotonicity the configuration σ f (τ + 1) can be computed by adding one active vertex
to σ f (τ ) (instead of σ(τ)) and determining the number (of order 1) of additional activations
that can be triggered by this addition. This reduces the total complexity to a quadratic scaling
with N .

In Fig. 11 we plot the fraction of active vertices in the configuration σ T (τ ) as a function of
the density τ/N of the active vertices in the initial configuration obtained after τ steps of this
greedy procedure; when the curve reaches 1 we have thus obtained an initial configuration
that percolates within T steps (note that the part of the curve for smaller τ corresponds
to the alternative optimization problem labelled (i) in the introduction). The density of the
contagious sets reached in this way are summarized in Table 5; as expected these densities
are strictly greater than the prediction θmin,1 of the 1RSB cavity method, and also than
the ones reached by more involved message-passing algorithms (see the discussion in next
subsection).

One can clearly see a qualitative difference between the cases k = l and k > l in the two
panels of Fig. 11: in the latter case as T gets larger the last active vertices added in the initial
configuration before finding a percolating one provoke a very steep increase in the final size
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Fig. 11 The density of active vertices in the configuration σ T (τ ) after τ steps of the greedy algorithm, for
k = l = 2 (left panel) and k = 3, l = 2 (right panel). Each curve corresponds to a single run of the algorithm
on a graph of N = 104 vertices

Table 5 The density of (finite time) contagious sets reached by the greedy and message-passing algorithms,
compared to the predictions of the cavity method for their minimal size

k = l = 2 k = 3, l = 2
T θmin,1 θsp θmaxsum [10] θgreedy θmin,1 θsp θmaxsum [10] θgreedy

1 0.424257 0.426 0.427 0.482 0.363813 0.366 0.370 0.426

2 0.325882 0.328 0.330 0.376 0.237009 0.240 0.243 0.291

3 0.289097 0.291 0.293 0.335 0.182338 0.185 0.190 0.233

4 0.271564 0.273 0.275 0.311 0.151693 0.156 0.164 0.197

5 0.262167 0.263 0.266 0.296 0.132036 0.142 0.146 0.174

7 0.253779 0.257 0.278 0.108251 0.127 0.125 0.144

10 0.250553 0.251 0.265 0.089425 0.108 0.119

The data for the algorithmic results correspond to averages over ten graphs of size N = 104

of the activated set. As said above the greedy procedure can easily be generalized to T = ∞;
the density of the smallest contagious sets constructed in this way are presented in Table 6
for various values of k and l. As these results demonstrate the greedy algorithm is able, in
all cases we investigated, to find contagious sets with a density strictly smaller than θr , the
density above which typical uncorrelated configurations are percolating. However in general
the density reached by this simple procedure is strictly greater than the prediction θmin,1 of
the cavity method for their minimal size; this is in agreement with the interpretation of the
replica symmetry breaking creating metastable states that trap simple local search procedures
and prevent them from reaching global optima of the cost function landscape in which the
search moves. The only exception is the case k = l = 2, for which the minimal density 1/4
(corresponding to the decycling number of 3-regular random graphs [17]) is actually reached
by the greedy procedure; this result is in line with the analysis of Sect. 4.2.1, which revealed
a disappearance of the RSB phase in the large T limit for this peculiar case.

Further information on the minimal contagious sets produced by the greedy algorithm
with T = ∞ can be obtained from the distribution of the activation times of the vertices
they induce, which are plotted in Fig. 12. Of course as the graphs under study are finite
the support of these distributions is bounded; in all cases we investigated we found that the
time to reach total activation from these initial configurations scales logarithmically with the
number of vertices of the graph (see also Fig. 13 for a comparison between two different
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Table 6 The density of (infinite time) contagious sets reached by the greedy algorithm, compared to the
predictions of the cavity method

k l θr θmin,1 θgreedy

2 2 1
2

1
4 0.250

3 2 0.111111 0.046328 0.070

3 3 2
3

1
3 0.387

4 4 3
4 0.378465 0.482

5 5 4
5 0.422695 0.551

The algorithm was run on ten graphs of size N = 104, the last column is the average over these repetitions.
Experiments with graphs of different sizes revealed a very clear 1/N dependency of the finite-size corrections
of θgreedy in the cases with k = l. We could not get such a clear dependency when k > l, slower finite-size
corrections might be at play in these cases
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Fig. 12 The “numerical” curves represent the distribution of activation times for the least dense activating
initial configurations found by the greedy algorithm for T = ∞, for k = l = 2 (left panel) and k = 3,
l = 2 (right panel). In both cases the graph studied contained N = 8 × 104 vertices, in the left panel the
complete activation is reached in 93 steps, in the right one it takes 367 steps. For comparison in the left panel
the analytical prediction is plotted both for T = ∞ (see Eq. (94)) and for T = 93, in the right panel the
analytical curve corresponds to T = 367

sizes of the graph). The qualitative difference between the cases k = l and k > l expected
from the discussion of the T → ∞ limit of Sect. 4.2 is indeed apparent on these curves; in
the latter case a finite fraction of the vertices are activated at the very end of the dynamical
process. However the activation time distributions induced by the configurations produced
by the greedy algorithm are not in quantitative agreement with the RS analytical predictions
(with a value of T and θ chosen to fit the numerical ones). A possible explanation for this
discrepancy is that the greedy algorithm is a very “out-of-equilibrium” algorithm, hence the
configurations it reaches are not the typical ones of the “equilibrium” measure (8).

5.2 Survey Propagation

The second algorithmic procedure we investigated is based on the insight provided by the
statistical mechanics analysis on the structure of the configuration space of the problem; it
corresponds indeed to the Survey Propagation algorithm introduced in [56] for the analysis
of random satisfiability problem (and more precisely to its variant introduced in [16] for
the energy minimization in the unsatisfiable phase of such problems). An idealized thought
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Fig. 13 The distribution of activation times for the least dense activating initial configurations found by the
greedy algorithm for T = ∞, for k = 3, l = 2, and two different sizes N of the graph. For N = 4 × 104 the
complete activation took place after T = 248 steps, while for N = 8 × 104 it occured at T = 367

experiment for the construction of minimal contagious sets would be to sequentially assign
the values of the σi according to their marginal probabilities in the law (8), with ε = +∞ and
μ = −∞; the exact determination of such marginals is in general a very hard computational
tasks, and in practice one has to content oneself with approximations provided for instance
by message passing procedures. This is the road we have followed here, by implementing
the single-sample energetic 1RSB equations (75), i.e. assigning to each directed edge i → j
of the graph under study a vector Pi→ j of 2T probabilities. At each step τ of the algorithm
the Eq. (75) are iterated several times to look for a global solution of these equations; the
presence of τ active (decimated) vertices in the current configuration σ(τ) is implemented
as a boundary condition in these equations, easily seen to be Pi→ j (h) = δ(h − B0) for the
outgoing messages from an activated vertex i . The information contained in such a solution
of the 1RSB equations can be a priori exploited in several ways; we chose to compute, for
each vertex i not yet activated, the quantity

Wi = 1 − ∂

∂y
ln Zsite({Pj→i } j∈∂i ) + 1

2

∑

j∈∂i

∂

∂y
ln Zedge(Pi→ j , Pj→i ) , (105)

i.e. the contribution of the site i to the derivative of the potential �e given in Eq. (80). This
number measures indeed the tendency of i to be active in all configurations belonging to
the clusters considered in the energetic 1RSB formalism. Accordingly we choose the vertex
i with the largest value of Wi to be the new active vertice to be added to σ(τ) in order to
form σ(τ + 1). For simplicity we fixed the value of y in the whole procedure to the value
ys determined analytically, that leads to a vanishing complexity before the decimation; we
also tried to recompute this value of y during the course of the decimation but did not obtain
significant improvement of the performances in the cases considered.

The values of the density of the percolating initial configurations we managed to construct
in this way are presented in Table 5 for the two cases k = l = 2 and k = 3, l = 2, for several
(relatively small) values of T . The results are better than the simple greedy algorithm, and in
most of the cases also than the maxsum replica-symmetric algorithm [8–10], but in some cases
deviate significantly from the prediction θmin,1 for the density of minimal contagious sets.
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An analytical understanding of the performances of such decimation procedures is actually
a challenging open problem (see [29,68] for partial results in the simpler case of the Belief-
Propagation guided decimation). We did not study much larger values of T because we faced
in this case convergence issues for the iterations of the Eqs. (75), that a simple damping did
not seem to alleviate efficiently. A pragmatic, even if not completely satisfactory, position
we adopted for the results at T ≥ 4 for the case k = 3, l = 2, was to ignore somehow
the convergence problems, stopping the iterations of (75) after a time fixed beforehand, and
computing the value of Wi from these unconverged messages. As Table 5 demonstrates this
attitude is not unreasonable as the densities reached are still better than the one of the greedy
algorithm (yet can get worse than the maxsum procedure [8–10]).

6 Conclusions and Perspectives

In this paper we have continued the study initiated in [8,9] of the minimal contagious sets for
the bootstrap percolation (or threshold model) dynamics on random graphs. We have shown
the importance of taking into account the phenomenon of replica symmetry breaking in the
determination of the minimal density θmin of active vertices in percolating initial conditions,
and could simplify analytically the equations determining θmin in the limit T → ∞ where the
constraint on the time to reach a complete activation of the graph disappears. Reformulating
the problem as the minimal number of vertices to be removed in a graph in order to destroy
some specific subgraphs (its cycles or more generically its q-core) we recovered a previously
known result for the decycling number of 3-regular random graphs [17] as well as a conjecture
for 4-regular ones [17], and proposed new quantitative conjectures for the sizes of the minimal
“de-coring” sets for all pairs of degree of the graph and minimal degree of the targeted core.
These take a particularly simple rational form for the removal of the 3-core in 5- and 6-
regular random graphs.

Let us sketch now some possible directions for future study. A first project would be to test
the stability of the 1RSB ansatz we used to compute θmin,1, to assess for which values of (k, l)
this number should be expected to be the exact value θmin and not only a lowerbound. This
computation should be doable following the techniques of [59,60,70] for all finite T , and
might even be simplified in the large T limit. By analogy with the independent set problem
which is a marginal case of the problem investigated here one could surmise to find that the
1RSB ansatz is stable for large enough values of the degree k (and maybe also of the threshold
l). This is also the regime where one can hope to see a mathematically rigorous proof of these
predictions, as recently obtained for the independent sets in [33]. Asymptotic expansions of
θmin,0(k, l) and θmin,1(k, l) in the large k limit for k > l should also be performed, considering
either l fixed in this limit, l proportional to k, or k − l fixed.

For the sake of concreteness and simplicity we presented explicit results only for regular
random graphs, however we gave the intermediate equations of the RS and 1RSB cavity
method under a form that can be directly applied to any sparse random graph ensembles with
arbitrary prescribed degree distribution, and possibly fluctuating thresholds for activation.
The latter could naturally be correlated with the degree of the vertices, triggering for instance
the activation if the fraction of active neighbours reaches some fixed proportion (instead of a
fixed number). It would be interesting to see how the results presented here are qualitatively
modified by the local fluctuations in the graph structure, which would be particularly severe
in the case of power-law tails in the degree distribution.

We also concentrated exclusively in this paper on the problem of optimizing the number of
initially active vertices, imposing that all vertices are active at a later time. The variant of this
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problem where one puts a constraint on the maximal number of active vertices allowed in the
initial configuration and try to maximize the level of activation at a later time is also relevant,
in particular for applications to real-world situations. At the RS level we have sketched how
to do this by controlling the parameter ε (the cost to be paid for finally inactive vertices) that
we kept arbitrary in the first steps of the computations, a systematic study and the inclusion
of the effects of replica symmetry breaking remains to be done.

Finally we believe that the message passing procedure inspired by the energetic 1RSB
equations presented in Sect. 5.2 would be worth investigated further. One should try to study
(and cure) the convergence issues that arise for larger values of T , maybe changing the way
the information provided by the messages is used. One could in particular exploit them in a
softer way by implementing a reinforcement technique [8,9] instead of a direct decimation.
A more extensive comparison with the maxsum message passing procedure studied in [8,9]
could also be interesting.
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Appendix 1: The Limit µ → −∞ of the Fields Recursion

We justify here the Eq. (73) for the recursion h = g(h1, . . . , hk) between “hard fields”
hi ∈ {A0, A1, . . . , AT −1, AT = BT , BT −1, . . . , B1, B0}. We can first notice that in Eqs. (70,
71) the (constrained) maximum over the partitions I, J, K ofSt is always reached for |I |+|J |
and |I | as small as possible (because a(i)

t ≥ b(i)
t−1 ≥ b(i)

t−2), which allows to rewrite

at = max

⎛

⎜
⎝0, max

t ′∈[1,T ]
max
J,K

|J |=l−I(t ′≥t+1)

St ′(h1, . . . , hk; ∅, J, K )

⎞

⎟
⎠ , (106)

bt = max

⎛

⎝0, max
t ′∈[1,t]

max
J,K

|J |=l

St ′(h1, . . . , hk; ∅, J, K )

⎞

⎠ , (107)

where J, K forms a partition of {1, . . . , k}. In addition one realizes that

max
J,K

|J |=l

St (h1, . . . , hk; ∅, J, K ) = 1

⇔
(

k∑

i=1

I(hi ∈ {A0, . . . , At−1})=0 and
k∑

i=1

I(hi ∈ {B0, . . . , Bt−1}) ≥ l

)

, (108)
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which by logical negation leads to

max
J,K

|J |=l

St (h1, . . . , hk; ∅, J, K ) ≤ 0

⇔
(

k∑

i=1

I(hi ∈ {A0, . . . , At−1}) ≥ 1 or
k∑

i=1

I(hi ∈ {B0, . . . , Bt−1}) ≤ l − 1

)

. (109)

Combining these logical rules leads after a short reasoning to

g(h1, . . . , hk) = At ⇔ (at = 1 and at+1 = 0) (110)

⇔

⎧
⎪⎨

⎪⎩

∑k
i=1 I(hi ∈ {B0, . . . , Bt }) = l − 1

and
∑k

i=1 I(hi ∈ {A0, . . . , At }) = 0

and
∑k

i=1 I(hi = At+1) ≥ 1

, (111)

and

g(h1, . . . , hk) = Bt ⇔ (bt = 1 and bt−1 = 0) (112)

⇔

⎧
⎪⎨

⎪⎩

∑k
i=1 I(hi ∈ {B0, . . . , Bt−1}) ≥ l

and
∑k

i=1 I(hi ∈ {B0, . . . , Bt−2}) ≤ l − 1

and
∑k

i=1 I(hi ∈ {A0, . . . , At−1}) = 0

. (113)

Considering the various possible cases leading to a field of type At or Bt yields finally (73).

Appendix 2: Technical Details on the Resolution of the Factorized RS and Energetic
1RSB Equations

We shall present in this Appendix the details of the RS and energetic 1RSB cavity equations in
the particular case of random k +1 regular graphs with an uniform threshold l of activations.
It turns out that despite their different interpretations these two version of the cavity method
can be treated in an unified way. We thus begin by introducing this common formulation,
then we unveil the simplifications that arise in the case l = k, before finally discussing the
limit T → ∞, both in the case l = k and l < k.

Common Formulation

RS Cavity Method

Consider the fixed-point RS equation h = g(h, . . . , h), with g defined in Eq. (40); alter-
natively we saw in Eqs. (66, 67) an expression for the differences e−μat − e−μat+1 . Setting
hi = h in the right-hand sides of these equations, and using the identity

∑

I,J,K
|I |≤l−1

|I |+|J |≥l

f (I, J, K ) =
∑

I,J,K
|I |+|J |≥l

f (I, J, K ) −
∑

I,J,K
|I |≥l

f (I, J, K ) , (114)
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for any function f of a partition I, J, K , allows to show the equivalence of the fixed-point
equation on h = (a0, . . . , aT , bT −1, . . . , b1) with:

e−μat − e−μat+1 = e−μ+μka0

(
k

l − 1

)

e−μ(l−1)bt

×
[(

e−μat+1 −e−μbt
)k−l+1−

(
e−μat+2 − e−μbt

)k−l+1
]

, (115)

e−μbt+1 − e−μbt = e−μ+μka0

k∑

p=l

(
k

p

)

×
[

e−μpbt
(

e−μat+1 −e−μbt
)k−p −e−μpbt−1

(
e−μat+1 − e−μbt−1

)k−p
]

.

(116)

These equations are valid for t ∈ {0, . . . , T − 1}, with the boundary conditions e−μb−1 = 0,
b0 = 1, aT = bT , aT +1 = bT −1. The thermodynamic quantities can also be simplified in
this factorized case, the site contribution to the RS free-entropy reading from Eq. (43):

zsite = 1 + e−μ+μ(k+1)a0

T∑

t=1

k+1∑

p=l

(
k + 1

p

)

[

e−μpbt−1
(

e−μat − e−μbt−1
)k+1−p − e−μpbt−2

(
e−μat − e−μbt−2

)k+1−p
]

, (117)

while the edge contribution of Eq. (42) becomes

zedge = e2μa0

[

e−2μaT + 2
T −1∑

t=0

(
e−μat − e−μat+1

)
e−μbt

]

. (118)

Let us introduce some new notations and define a change of parameters on the unknowns
at , bt , as ut = e−μat , vt = e−μbt . We also define a new parameter λ, with λ = e−μ+μka0 . In
terms of these new quantities the above set of equations becomes

ut − ut+1 = D(ut+1, vt ) − D(ut+2, vt ) , (119)

vt+1 − vt = S(ut+1, vt ) − S(ut+1, vt−1) , (120)

with v−1 = 0, v0 = 1, uT = vT , uT +1 = vT −1, and

D(u, v) = λ

(
k

l − 1

)

vl−1(u − v)k−l+1 , S(u, v) = λ

k∑

p=l

(
k

p

)

v p(u − v)k−p. (121)

In other words the u’s and v’s are solutions of a set of polynomial equations, and as such
should be viewed as a function of λ and T (and of course of k and l). They also obey, on top
of the boundary conditions, the inequalities u0 ≥ u1 ≥ · · · ≥ uT = vT ≥ vT −1 ≥ · · · v1 ≥
v0 = 1. The chemical potential μ has disappeared from this set of equations, but actually
it is now implicitly a function of λ and T , as from the definition of λ one recovers μ with
μ = − ln(λuk

0).
For future use we emphasize here an identity between the derivatives of D and S and

introduce a new function C(u, v):

C(u, v) = ∂ D

∂u
= ∂S

∂v
= λl

(
k

l

)

vl−1(u − v)k−l . (122)
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Let us also rewrite the thermodynamic quantities in terms of these new variables. The
expressions (117) and (118) become

zsite = 1 + Fsite , zedge = 1

u0
Fedge , (123)

where we introduced the two functions

Fsite(λ, T )= λ

u0

T∑

t=1

k+1∑

p=l

(
k + 1

p

)[
v

p
t−1(ut −vt−1)

k+1−p −v
p
t−2(ut −vt−2)

k+1−p
]
,

(124)

Fedge(λ, T )= 1

u0

[

v2
T +2

T −1∑

t=0

(ut −ut+1)vt

]

. (125)

We emphasize here the dependency on λ and T , which was kept implicit in the ut and vt ’s.
One has then the final expressions of all RS thermodynamic quantities as:

φ = μ + ln(zsite) − k + 1

2
ln(zedge), μ = − ln(λuk

0), s = φ − μθ, θ = 1

zsite
. (126)

One can also express the probability distribution of the activation times in terms of these new
variables. Denoting Pt the cumulative distribution, i.e. the probability that the activation time
of one vertex is smaller or equal than t , one has from Eq. (45):

Pt = 1

zsite
[1 + Fsite(λ, T, t)] , (127)

where we defined

Fsite(λ, T, t) = λ

u0

t∑

t ′=1

k+1∑

p=l

(
k + 1

p

)[
v

p
t ′−1(ut ′ −vt ′−1)k+1−p − v

p
t ′−2(ut ′ − vt ′−2)k+1−p

]
.

(128)

One can check that, as it should, P0 = θ the fraction of initially active sites (summations
over empty sets being equal to zero by convention), and PT = 1 (as ε = +∞ all vertices are
active at the final time).

Energetic 1RSB Cavity Method

We now turn to a similar study of the energetic 1RSB equations in the factorized case, namely
the determination of the normalized vector of probabilities P = (p0, . . . , pT −1, qT , . . . , q0),
solution of the fixed-point equation P = G(P, . . . , P), with the mapping G defined in
Eq. (75).

Let us first note that in general the normalization Z [P1, . . . , Pk] of (75) can be expressed
in terms of q0,

Z = 1 + (ey − 1)(1 − Zq0) ⇒ ey

Z
= 1 + q0(e

y − 1) . (129)
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This remark allows to rewrite the fixed-point equation P = G(P, . . . , P) as

pt = (1 + q0(e
y − 1))

(
k

l − 1

)(
t∑

t ′=0

qt ′

)l−1

×
⎡

⎢
⎣

⎛

⎝
T∑

t ′=t+1

qt ′ +
T −1∑

t ′=t+1

pt ′

⎞

⎠

k−l+1

−
⎛

⎝
T∑

t ′=t+1

qt ′ +
T −1∑

t ′=t+2

pt ′

⎞

⎠

k−l+1
⎤

⎥
⎦,

qt = (1 + q0(e
y − 1))

k∑

p=l

(
k

p

)

×
⎡

⎢
⎣

(
t−1∑

t ′=0

qt ′

)p ( T∑

t ′=t

qt ′ +
T −1∑

t ′=t

pt ′

)k−p

−
(

t−2∑

t ′=0

qt ′

)p
⎛

⎝
T∑

t ′=t−1

qt ′ +
T −1∑

t ′=t

pt ′

⎞

⎠

k−p
⎤

⎥
⎦,

where in the first line t ∈ {0, . . . , T − 1} and in the second t ∈ {1, . . . , T }. These two sets of
equations are supplemented by the normalization condition q0+· · ·+qT + pT −1+· · ·+ p0 =
1.

The site and edge contributions of the energetic 1RSB potential, defined in (77, 79),
become in the factorized case:

Zsite = 1 + (ey − 1)

T∑

t=1

k+1∑

p=l

(
k + 1

p

)

×
⎡

⎢
⎣

(
t−1∑

t ′=0

qt ′

)p ( T∑

t ′=t

qt ′ +
T −1∑

t ′=t

pt ′

)k+1−p

−
(

t−2∑

t ′=0

qt ′

)p
⎛

⎝
T∑

t ′=t−1

qt ′ +
T −1∑

t ′=t

pt ′

⎞

⎠

k+1−p
⎤

⎥
⎦,

Zedge = e−y + (1 − e−y)

⎡

⎣

(
T∑

t=0

qt

)2

+ 2
T −1∑

t=0

pt

t∑

t ′=0

qt ′

⎤

⎦.

Now let us change variables and trade the unknowns pt , qt for some variables ut , vt , and
the parameter y for some parameter λ, according to

ut = 1

q0

(
T∑

t ′=0

qt ′ +
T −1∑

t ′=t

pt ′

)

, vt = 1

q0

t∑

t ′=0

qt ′ , λ = (1 + q0(e
y − 1))qk−1

0 . (130)

Inserting these definitions in the above equations one realizes that the quantities ut and vt are
solutions of exactly the same set of Eqs. (119, 120) defined in the RS case, and obey the same
boundary conditions and inequalities. From the solution of these equations, for a given value
of the parameter λ, one recovers the parameter y noting that by the normalization condition
one has u0 = 1/q0, hence y = ln(λuk

0 − u0 + 1). The expressions of Zsite and Zedge within
this parametrization are easily obtained from the above equations and read:

Zsite = 1 +
(

1 − 1

λuk−1
0

)

Fsite , Zedge = 1 + (λuk−1
0 − 1)Fedge

λuk
0 − u0 + 1

, (131)
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with the same functions Fsite and Fedge defined in Eqs. (124, 125) for the RS case. One has
finally an expression for the thermodynamic quantities of the energetic 1RSB formalism as

�e = −y + ln Zsite − k + 1

2
ln Zedge, y = ln(λuk

0 − u0 + 1), �e = �e + yθ, (132)

where θ is here the opposite of the derivative of �e with respect to y, which after a short
computation reads

θ = 1 − ey

ey − 1

Zsite − 1

Zsite
− k + 1

2

1

ey − 1

1 − Zedge

Zedge
(133)

=
1 − 1

λuk
0

Fsite

1 +
(

1 − 1
λuk−1

0

)

Fsite

− k + 1

2

1 − 1
u0

Fedge

1 + (λuk−1
0 − 1)Fedge

.

Simplifications for l = k

In the case l = k further simplifications arise. Indeed the function S(u, v) defined in (121)
is in this case independent of u, and the Eqs. (119, 120) can be rewritten as:

v0 = 1 , (134)

vt = 1 + λ vk
t−1 for t ∈ {1, . . . , T } , (135)

uT −1 = vT + λk vk−1
T −1 (vT − vT −1) , (136)

ut = ut+1 + λk vk−1
t (ut+1 − ut+2) for t ∈ {0, . . . , T − 2}. (137)

This set of equations is particularly simple to solve, and admits a single solution for each
value of λ. One can indeed compute by recurrence the value of the vt for increasing values
of t from 0 to T , then deduce the value of uT −1, and finally by a downward recurrence the
values of ut for t from T − 2 to 0. The thermodynamic observables are then deduced from
(126) in the RS case or (132) in the energetic 1RSB case, where the site contributions can be
simplified from (124), yielding

Fsite(λ, T ) = λ

u0

[

vk+1
T −1 + (k + 1)

T∑

t=1

(ut − ut+1)v
k
t−1

]

. (138)

These simplifications can also be performed for the function (128) giving the distribution of
activation times, which reads in the case k = l:

Fsite(λ, T, t)= λ

u0

[

vk+1
t−1 +(k + 1)vk

t−1(ut+1 − vt−1)+(k + 1)

t∑

t ′=1

(ut ′ − ut ′+1)v
k
t ′−1

]

.

(139)

Numerical Resolution for l < k

In the case l < k we did not find a simple change of variables on the unknowns ut , vt that
would put the system of Eqs. (119, 120) in the triangular form that appeared naturally when
k = l and led to a direct resolution by successive substitutions. We therefore resorted to the
Newton-Raphson iterative method for solving (119, 120), taking care of choosing a good
initial condition for the iterations to be convergent. This guess on the solution was provided
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by analytical asymptotic expansions, either in the limit λ → 0 or with T → ∞ (see next
paragraph). Depending on the values of λ and T we found either 0, 1 or 2 relevant solutions
of (119, 120), but this multi valuedness has no physical meaning and comes only from the
arbitrary choice of the parametrization in terms of λ. Indeed there is a single solution for
each value of the chemical potential μ (or y in the energetic 1RSB formalism).

The Large T Limit

In the rest of this Appendix we shall justify analytically the claims made in Sects. 4.2.1 and
4.2.2 on the behaviour of the RS and energetic 1RSB solutions as T goes to infinity.

The Trivial Solution

As anticipated in Sect. 4, in the large T limit the portion of the curve s(θ) corresponding to
θ > θr should coincide with the entropy −θ ln θ−(1−θ) ln(1−θ) counting all configurations
with a fraction θ of initially active sites, as such configurations are typically activating (see
the reminder on random initial configurations of Sect. 2.2). Let us see how to prove this
statement. A moment of thought, considering for instance the form of the RS equations at
ε = 0, reveals that this situation should correspond to a solution of (119, 120) with ut = ũ,
independently of t . This ansatz is indeed consistent with Eq. (119), and with this substitution
Eq. (120) becomes

vt+1 = 1 + S(̃u, vt ) . (140)

This last equation is a simple recursion on the v’s, with the initial value v0 = 1. For the
boundary condition uT = vT , uT +1 = vT −1 to be asymptotically (when T → ∞) verified
one has to impose the values of ũ and λ such that the vt solution of (140) converge to ũ when
t → ∞, in other words that the smallest fixed point solution v ≥ 1 of v = 1 + S(̃u, v)

is precisely equal to ũ. The condition ũ = 1 + S(̃u, ũ) imposes the following relationship
between ũ and λ, ũ = 1 + λũk . Using this condition one can then rewrite (140) as

vt+1

ũ
= 1

ũ
+
(

1 − 1

ũ

) k∑

p=l

(
k

p

)(vt

ũ

)p (
1 − vt

ũ

)k−p
. (141)

Comparing this equation with (3) one realizes that by definition of θr , all the values of ũ in
the interval [1, 1/θr[ are such that the condition vt → ũ is fulfilled (with the value of λ fixed
by ũ = 1 + λũk). Let us now compute the RS thermodynamic quantities associated with
this solution. As the ut are independent of t the summation in Eq. (124) can be performed
with a telescopic identity, and yields after a short computation Fsite = ũ − 1. Similarly
one sees easily from (125) that Fedge = ũ for this solution. This gives indeed the function
s(θ) = −θ ln θ − (1 − θ) ln(1 − θ) for θ > θr upon replacing in the expression of the
RS thermodynamic potential (cf. Eq. (126)). In addition the cumulative distribution Pt of
activation times defined in Eq. (127) coincides on this solution with the series xt of Eq. (2)
obtained as the activation time cumulative distribution of a random initial condition.

In the following we shall describe the non-trivial part of the resolution of the RS and
energetic 1RSB equations in the large T limit, i.e. in the RS case the part of the curve s(θ)

for θ < θr . The cases l = k and l < k are technically rather different, we shall thus divide
the discussion according to this distinction.
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Fig. 14 A graphical representation of the recursion vt+1 = 1 + λvk
t (here for k = 2). The dashed straight

line corresponds to vt+1 = vt , the three solid curves are, from bottom to top, for λ < λc, λ = λc and λ > λc

Asymptotics for l = k

As explained in Sect. 1 in the case l = k the equations on vt decouple, these quantities become
independent of T and are solutions of the recurrence vt+1 = 1+λvk

t . A straightforward study
of this equation (see Fig. 14 for an illustration) reveals the existence of a critical value λc such
that vt converges to a finite value when t → ∞ if λ ≤ λc, while it diverges when λ > λc.
This critical parameter and the associated fixed-point vc of the recurrence are solution of the
equations:

vc = 1 + λcv
k
c , 1 = λck vk−1

c , (142)

which are easily solved and yield λc = (k−1)k−1

kk , vc = k
k−1 .

The case λ < λc corresponds actually to the trivial solution already discussed above,
let us thus consider the alternative situation, λ > λc. The divergence of vt is then actually
very steep, with a double exponential form. Indeed when vt � 1 the recurrence becomes
approximately vt+1 ≈ λvk

t , which reveals that (ln ln vt )/t converges to ln k. As u0 ≥ vT one
also has a divergence of u0 with T in this regime; from (126) (resp. (132)) this implies that
the chemical potential μ of the RS formalism (resp. the parameter y of the energetic 1RSB
one) go to −∞ (resp. +∞), i.e. that the parametric curve s(θ) (resp. �e(θ)) has a vertical
tangent in this regime. Furthermore we shall prove now that the corresponding density θ of
initially active sites converges to (k − 1)/(2k) (both in the RS and energetic 1RSB cases),
hence this branch corresponds to a vertical segment. This is actually a consequence of the
following statement on the behaviour of the functions Fsite and Fedge of Eqs. (138, 125):

∀λ > λc , lim
T →∞ Fsite(λ, T ) = k + 1

k − 1
, lim

T →∞ Fedge(λ, T ) = 2k

k − 1
, (143)

as can be easily deduced from the expressions of θ given in (123, 126) and (133), along with
the divergence of u0 in the latter case. To prove the claim of Eq. (143), let us first note that,
iterating (137), one obtains
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ut − ut+1 = (u0 − u1)
1

kt

1

(λvk−1
0 )(λvk−1

1 ) . . . (λvk−1
t−1 )

(144)

= (u0 − u1)
1

kt

v1v2 . . . vt−1

(v1 − 1)(v2 − 1) . . . (vt − 1)
, (145)

where we used (135) to go from the first to the second line. We can thus write

ut − ut+1 = (u0 − u1)
1

kt
αt

1

vt
, (146)

where we introduced the sequence αt (note its independence on T ) as

αt =
t∏

t ′=1

vt ′

vt ′ − 1
, α0 = 1. (147)

We also have, in terms of this series,

u0 − u1 = kT 1

αT
vT (vT − vT −1) . (148)

Using these relations, along with the representation u0 = vT +∑T −1
t=0 (ut − ut+1), allows to

rewrite the definition of (125) as:

Fedge =
αT

1
kT

vT
vT −vT −1

+ 2
T −1∑

t=0
αt

1
kt

αT
1

kT
1

vT −vT −1
+

T −1∑

t=0

αt
vt

1
kt

. (149)

The sum in the denominator can be transformed by noting that, from the definition of αt ,
αt/vt = αt − αt−1. This yields

Fedge =
αT

1
kT

vT
vT −vT −1

+ 2
T −1∑

t=0
αt

1
kt

αT
1

kT
1

vT −vT −1
+ 1

kT αT −1 + k−1
k

T −1∑

t=0
αt

1
kt

. (150)

Notice now that αt has a finite limit when t → ∞, thanks to the divergence of vt (for the
limit of αt to exists it is actually enough that vt � t). Hence the summations in the above
equation converge when T → ∞ thanks to the exponentially decaying factor 1/kt , and all
other terms in the numerator and denominator are neglectible in this limit. This proves the
limit 2k/(k − 1) for Fedge (one could also compute the main correction, of order k−T , from
this expression). The statement on Fsite is proved with similar manipulations, that brings
from (138) to the expression (exact for all T ),

Fsite =
αT

1
kT

vT −1(vT −1)
vT (vT −vT −1)

+ k+1
k

T −1∑

t=0
αt

1
kt

αT
1

kT
1

vT −vT −1
+ 1

kT αT −1 + k−1
k

T −1∑

t=0
αt

1
kt

. (151)

As above the limit T → ∞ can now be taken safely, the converging summations being the
only non-vanishing terms of the numerator and denominator, hence the convergence of Fsite

to (k + 1)/(k − 1), with corrections of order k−T . These corrections actually contribute to
the non-trivial dependence on λ of s and �e (which are both finite) in this regime; we did not
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push their determination further, and merely observe here that their order k−T explains the
statement on the finite T corrections to θmin for k = l = 2 and k = l = 3 made in Sect. 4.2.1.

We have just seen that in the T → ∞ limit the cases λ < λc and λ > λc describe,
respectively, the trivial branch θ > θr of the RS entropy and its vertical segment at θr/2. To
describe the range [θr/2, θr] of non-trivial densities of initially active sites one has thus to
investigate a regime where λ is in a T -dependent scaling window around λc.

Let us denote ṽt the solution of the recursion right at the critical point, i.e. ṽt+1 = 1+λcṽ
k
t ,

with ṽ0 = 1. This series converges to vc, with an asymptotic behaviour which is easily found
to be

ṽt = vc − 2k

(k − 1)2

1

t
+ O

(
1

t2

)

. (152)

Now if λ = λc + δ, with an infinitesimal positive value of δ, the solution vt of the recursion
vt+1 = 1+λvk

t spends a time of order δ−1/2 around the avoided fixed-point vc before crossing
over to the doubly exponentially growing regime investigated above (this is a general feature
of such recursive equations in the neighbourhood of a bifurcation, see for instance [22]). It
is thus natural to investigate the scaling window parametrized by λ̂ as

λ = λc + 2π2 (k − 1)k−2

kk−1

λ̂2

T 2 , (153)

the numerical prefactor and the square on λ̂ being chosen to simplify the following
expressions. One can then look for a solution of the recurrence equation under the form
vt = vc + 1

T V (t/T ), with V (s) a scaling function. Expanding at the leading order in T one
obtains a differential equation on V ,

V ′(s) = 2π2kλ̂2

(k − 1)2 + (k − 1)2

2k
V (s)2 . (154)

The latter can be integrated into

V (s) = − 2k

(k − 1)2

πλ̂

tan(πλ̂s)
, (155)

the constant in the solution of the differential equation being obtained by a matching argument
between the regime s → 0 and the large t asymptotics of the critical series ṽt given in (152).
Note that this form is only valid for λ̂ < 1, otherwise one enters the regime where vT diverges
with T . One can furthermore assume a similar scaling ansatz for the ut , introducing a scaling
function U (s) under the form ut = vc + U (t/T ). Inserting these forms in Eq. (137) yields
a differential equation on U ,

U ′′(s)
U ′(s)

= − (k − 1)2

k
V (s) , (156)

which is integrated in

U ′(s) = B sin2(πλ̂s) , U (s) = A + B

2

(

s − sin(2πλ̂s)

2πλ̂

)

, (157)

with A and B two constants of integration. These can be fixed by imposing the boundary
conditions uT = vT and uT +1 = vT −1, which translates here in U (1) = V (1)/T and
U ′(1) = −V ′(1)/T . Solving these equations yield A and B; considering in particular u0

= vc + U (0) one obtains, at the leading order in a large T expansion,
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u0 = vc + 1

T

λ̂2

sin4(πλ̂)

(

1 − sin(2πλ̂)

2πλ̂

)
π2k

(k − 1)2 − 1

T

λ̂

tan(πλ̂)

2πk

(k − 1)2 . (158)

One realizes at this point that for any fixed λ̂ < 1, the limit of u0 coincides with vc, in
other words we are describing in this regime the end of the trivial branch, with θ ≈ θr .
To describe the non-trivial regime of densities [θr/2, θr] one has thus to further refine the
scaling window, taking now λ̂ approaching 1 in a T -dependent way. The inspection of (158)
reveals that the correct scaling that allows to obtain a non-trivial limit of u0 corresponds to
λ̂ = 1 − O(T −1/4). We shall thus set

λ̂ = 1 − 1√
π

(
λ̃

(k − 1)T

) 1
4

, (159)

with λ̃ > 0 the new parameter describing this scale, the numerical prefactor being cho-
sen for convenience. After a short computation one obtains the limit as T → ∞ of the
thermodynamic quantities in this scaling regime of λ as

u0 (̃λ) = k

k − 1

1 + λ̃

λ̃
, Fsite (̃λ) = 1

k − 1

k + 1 + λ̃

1 + λ̃
, Fedge (̃λ) = k

k − 1

2 + λ̃

1 + λ̃
, (160)

the last two expressions being obtained by inserting the scaling ansatz on ut and vt in the
definitions (125, 138); at the lowest order one can actually replace the vt ’s by vc there. This
yields a parametric representation of the thermodynamic quantities of the RS (resp. energetic
1RSB) formalism in terms of λ̃, by inserting these last results in Eq. (126) (resp. (132,
133)). In the RS case one can check that λ̃ → 0 corresponds to θ → θr/2, while λ̃ → ∞
yields θ → θr , hence this scaling regime allows to cover the desired range [θr/2, θr] for the
densities of initially active sites. It is furthermore possible to invert the relation θ (̃λ), which
yields finally the formula (82) announced in the main text for the entropy of activating initial
configurations of density in the non-trivial interval [θr/2, θr]. In the energetic 1RSB case this
last step does not seem possible and the final result (84) is presented in a form parametrized
by λ̃. We did not embark in a systematic study of the finite T corrections in this regime, it is
however clear that they are polynomially small in T , which justifies the statement made in
Sect. 4.2.1 on the corrections to θmin(T ) for k = l ≥ 4.

Let us finally justify the results presented at the end of Sect. 4.2.1 on the distribution of
activation times. Assuming a finite value of t , the expression of (139) becomes in the regime
parametrized by λ̃:

Fsite (̃λ, t) = λc

u0 (̃λ)

[
ṽk+1

t−1 + (k + 1)̃vk
t−1(u0 (̃λ) − ṽt−1)

]
, (161)

the last summation in (139) yielding a subdominant correction of order 1/T . Note that
Fsite (̃λ, t) tends to Fsite (̃λ) as t → ∞, which means that the support of the distribution
of the activation times does not scale with T in this regime. The expression (92) for the
cumulative distribution of activation times follows then easily from its generic definition
given in Eq. (127), upon expressing all the quantities depending on λ̃ as a function of the
corresponding θ . In the main text we introduced for clarity the series wt = θr ṽt , to allow for
an easier comparison with the distribution of activation times from a random initial condition.
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Asymptotics for l < k

Let us now discuss the solution of the set of Eqs. (119, 120) in the limit T → ∞, in the case
l < k, and justify the statements made in Sect. 4.2.2; as we shall see their behaviour and the
method of study is qualitatively different compared to the case l = k.

We shall first rephrase Eqs. (119, 120) as a single recursive equation, by introducing a
four-dimensional vector wt defined by

wt =

⎛

⎜
⎜
⎝

ut

ut+1

vt

vt−1

⎞

⎟
⎟
⎠ . (162)

The recursive equations (119, 120) on the ut ’s and vt ’s become a single recursion on wt , of
the form wt+1 = R(wt ) where the function R is given by

R

⎛

⎜
⎜
⎝

u
u+
v

v−

⎞

⎟
⎟
⎠ =

⎛

⎜
⎜
⎝

u+
E(u, u+, v)

v + S(u+, v) − S(u+, v−)

v

⎞

⎟
⎟
⎠ . (163)

The function S was defined in (121), while E(u, u+, v) is given implicitly as
D(E(u, u+, v), v) = D(u+, v) + u+ − u, with the function D of (121). Inverting this
relation one obtains an explicit expression of E :

E(u, u+, v) = v +
(

(u+ − v)k−l+1 + 1

λ
( k

l−1

)
u+ − u

vl−1

) 1
k−l+1

. (164)

We have thus a representation of the time evolution of w as the flow of a discrete dynamical
system in a four-dimensional space. The boundary conditions on the ut ’s and vt ’s translate
into conditions on the allowed values of w0 and wT . The former must indeed lie in the
two-dimensional manifold with v = 1 and v− = 0, while the latter is restricted to the two-
dimensional manifold defined by u = v and u+ = v−. When T → ∞, for a fixed value of
λ, the solution wt of the recursion wt+1 = R(wt ) must find a way to go infinitely slowly
from the first manifold at t = 0 to the second one at t = T → ∞. It must in consequence
remains as close as possible to the fixed points of the evolution map R.

The study of the equation w = R(w) is very simple and shows that these fixed points span
the two-dimensional subspace with u = u+, v = v−. One can then compute the Jacobian
matrix of R on such a fixed-point, and realizes that this matrix has two eigenvalues equal
to 1 (corresponding to the invariance of the fixed-point subspace under u → u + δu and
v → v+δv), and two eigenvalues C(u, v) and 1/C(u, v), where C is the function defined in
(122). All the fixed points have thus an unstable direction, except the one-dimensional set of
fixed points obeying the further condition C(u, v) = 1, which constitutes a line of marginal
fixed points. In the T → ∞ limit the solution wt is thus expected to remain close to this line,
otherwise the flow along the unstable directions forbid to go from one boundary manifold at
t = 0 to the other one at t = T � 1. This analysis is corroborated by the numerical results
presented in Fig. 15, where we show the solution ut , vt determined numerically for some
large but finite value of T . In particular the right panel demonstrate that for most values of t
(i.e. excluding both t finite and T − t finite in the large T limit), the couple (ut , vt ) falls on
the marginal fixed-point line C(u, v) = 1.
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Fig. 15 The solution of the Eqs. (119, 120) for k = 3, l = 2, with λ = 0.005 and T = 400. Left panel the
solid curves are ut (top) and vt (bottom) as functions of t ; the dashed horizontal lines correspond, from top to
bottom, to u∗, û, v̂ and v∗, solutions of (166, 167). Right panel parametric plot of the same data, with symbols
instead of lines to appreciate the discreteness in t . Dashed line is the solution of the equation C(u, v) = 1,
almost superimposed with most of the points (vt , ut ). The arrows point to the beginning (v∗, u∗) and end
(̂v, û) of the scaling regime along the curve C(u, v) = 1

More precisely, the solution ut , vt can be described in the large T limit by two scaling
functions U (s) and V (s), function of a rescaled time s = t/T ∈]0, 1[, such that at the leading
order,

ut = U

(
t

T

)

, vt = V

(
t

T

)

. (165)

Inserting this ansatz in the Eqs. (119, 120), one realizes that the condition C(U (s), V (s)) = 1,
that we obtained intuitively above, is indeed precisely what is needed to enforce (119, 120) at
the leading order in the large T limit. Note that the explicit dependency of U and V on s can
be determined from the sub-dominant corrections in this limit; however we shall not need it
in what follows. It will indeed be enough to compute the value of U and V for t small and t
close to T , i.e. for s around 0 and 1. As revealed by the numerical data presented in Fig. 15,
the matching between the scaling regime described by the functions U, V (i.e. for s strictly
between 0 and 1) and the boundary conditions at t = 0 and t = T affects the series vt but
not ut . In other words, for t finite while T → ∞ one has ut → u∗ = U (0) independently
of t , where u∗ is some (λ dependent) constant still to be determined, while vt converges
to the solution of the recursion vt+1 = vt + S(u∗, vt ) − S(u∗, vt−1) obtained from (120)
by replacing ut by its limit u∗. Equivalently one has in this regime vt+1 = 1 + S(u∗, vt ).
When t → ∞ (after the large T limit) this series vt converges to v∗ = V (0), the smallest
fixed-point solution of this recursion on v; for this behaviour to match the beginning of the
scaling regime (i.e. s → 0) one must impose simultaneously

C(u∗, v∗) = 1 , and v∗ = 1 + S(u∗, v∗) . (166)

The first equation allows to express u∗ as a function of v∗; replacing in the second one leads
to the single equation on v∗ given in Eq. (96), while (97) is nothing but an explicit version
of the condition C(u∗, v∗) = 1. A similar reasoning in the regime T − t finite reveals that
U (1) = û and V (1) = v̂ have to obey

C (̂u, v̂) = 1 , and v̂ = S(̂u, v̂) + û − S(̂u, û) . (167)

It is easy to check that the expressions of û and v̂ given in (95) are indeed solutions of these
two equations, using the equations on θr and x̃r of Eq. (4). By definition for λ ∈]0, λr] one
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Fig. 16 The functions u∗, û, v̂ and v∗ (from top to bottom) solutions of Eqs. (166, 167) as a function of λ

for k = 3, l = 2. The upper two and lower two curves meet in λ = λr . When λ → 0 the upper three curves
diverge, while v∗ converges to l/(l − 1)

has u∗ ≥ û ≥ v̂ ≥ v∗, see Fig. 16 for a representation of the solution of the Eqs. (166, 167)
as a function of λ. In λr , where one recovers the trivial solution studied in Appendix section
“The Trivial Solution”, one has u∗ = û = 1/θr and v∗ = v̂ = x̃r/θr .

Let us now deduce the value of Fsite and Fedge in the large T limit from the above
characterization of the behaviour of the ut ’s and vt ’s. From Eq. (125) one has in this limit

lim
T →∞ Fedge(λ, T ) = 1

u∗

[

û2 − 2
∫ 1

0
ds U ′(s)V (s)

]

, (168)

the matching regimes of t finite and T − t finite having neglectible contributions to the
summation. The integral above can be computed even if we have not determined the time-
dependency of the scaling functions U (s) and V (s): using ds U ′(s) = du and the condition
C(U (s), V (s)) = 1, one has

−
∫ 1

0
ds U ′(s)V (s) =

∫ u∗

û
du v(u) = u∗v∗ − û v̂ +

∫ v̂

v∗
dv u(v) , (169)

where u(v) (resp. v(u)) is the solution of C(u(v), v) = 1 (resp. C(u, v(u)) = 1). The
equation C(u(v), v) = 1 can be explicitly solved into

u(v) = v +
(

λl

(
k

l

))− 1
k−l

v− l−1
k−l . (170)

This allows to compute the integral in (169) and to obtain (99).
We shall now compute similarly the limit of Fsite that was defined in Eq. (124). In that

equation we shall exploit the fact that ut −ut+1 is of order 1/T to perform the approximation

(ut − vt−2)
k+1−p = (ut−1 − vt−2)

k+1−p + (k + 1 − p)

(ut − ut−1)(ut−1 − vt−2)
k−p + O

(
1

T 2

)

. (171)
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Within this approximation the first term leads to a telescopic summation, we then get

Fsite ∼ λ

u0

k+1∑

p=l

(
k + 1

p

)

×
[

v
p
T −1(uT −vT −1)

k+1−p −(k+1 − p)

T∑

t=1

v
p
t−2(ut − ut−1)(ut−1 − vt−2)

k−p

]

(172)

As uT = vT −1 + O(1/T ) in the first summation only the term p = k + 1 survives; the
second term can be rearranged as above in terms of integrals of the scaling functions, namely

lim
T →∞ Fsite(λ, T ) = λ

u∗

⎡

⎣ûk+1 − (k + 1)

k∑

p=l

(
k

p

)∫ 1

0
ds U ′(s)V (s)p(U (s) − V (s))k−p

⎤

⎦

(173)

= λ

u∗

⎡

⎣ûk+1 + (k + 1)

k∑

p=l

(
k

p

)∫ u∗

û
du v(u)p(u − v(u))k−p

⎤

⎦ (174)

= λ

u∗

⎡

⎣ûk+1 + (k + 1)

k∑

p=l

(
k

p

)∫ v̂

v∗
dv (−u′(v))v p(u(v) − v)k−p

⎤

⎦ (175)

Inserting the expression of u(v) given in Eq. (170) yields easily to the value of Fsite written
in (98). The parametric representations of s(θ) and �e(θ) given in Sect. 4.2.2 are then direct
consequences of Eqs. (126, 132, 133).

For what concerns the distribution of activation times, one has in the regime t = sT with
s ∈]0, 1[ the following limit for the function Fsite defined in (128):

lim
T →∞ Fsite(λ, T, t = sT ) = λ

u∗

⎡

⎣
k+1∑

p=l

(
k + 1

p

)

V (s)p(U (s) − V (s))k+1−p

− (k + 1)

k∑

p=l

(
k

p

)∫ s

0
ds′ U ′(s′)V (s′)p(U (s′) − V (s′))k−p

⎤

⎦.

(176)

Studying the limit s → 0+ and s → 1− of this expression leads to the expressions (104)
for the fraction of vertices which activate at the very beginning and at the very end of the
process.
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Rare events statistics of random walks on networks: localization
and other dynamical phase transitions
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Rare event statistics for random walks on complex networks are investigated using the large deviations for-
malism. Within this formalism, rare events are realized as typical events in a suitably deformed path-ensemble,
and their statistics can be studied in terms of spectral properties of a deformed Markov transition matrix. We
observe two different types of phase transition in such systems: (i) rare events which are singled out for suffi-
ciently large values of the deformation parameter may correspond tolocalizedmodes of the deformed transition
matrix; (ii) “mode-switching transitions” may occur as thedeformation parameter is varied. Details depend on
the nature of the observable for which the rare event statistics is studied, as well as on the underlying graph
ensemble. In the present letter we report on the statistics of the average degree of the nodes visited along a
random walk trajectory in Erdős-Rényi networks. Large deviations rate functions and localization properties are
studied numerically. For observables of the type considered here, we also derive an analytical approximation
for the Legendre transform of the large-deviations rate function, which is valid in the large connectivity limit. It
is found to agree well with simulations.

Random walks are dynamical processes widely used to an-
alyze, organize or perform important tasks on networks such
as searches [1, 2], routing or data transport [3–5]. Their pop-
ularity is due to their cheap implementation, as they rely only
on local information, such as the state of the neighborhood
of a given node of the network. This ensures network scala-
bility and allows fast data transmission without the need for
large storage facilities at nodes, such as big routing tables in
communication networks. These features make random walks
an efficient tool to explore networks characterized by a high
cost of information. Examples are sensor networks [6] where
many signaling packets are needed to acquire wider networks
status information. In peer-to-peer networks the absence of a
central server storing file locations requires users to perform
repeated local searches in order to find a file to download, and
various random walk strategies have been proposed as a scal-
able method [7–9] in this context. Less attention has been paid
to characterize rare events associated with random walks on
networks. Yet the occurrence of a rare event can have severe
consequences. In hide-and-seek games for instance [10], rare
events represent situations where the seeker finds either most
(or unusually many) of the hidden targets, or conversely none
(or unusually few). In the context of cyber-security, where
one is concerned with worms and viruses performing ran-
dom walks through a network, a rare event would correspond
to a situation where unusually many sensible nodes are suc-
cessfully attacked and infected, which may have catastrophic
consequences for the integrity of an entire IT infrastructure.
Characterizing the statistics of rare events for random walks
in complex networks and its dependence on network topology
is thus a problem of considerable technological importance. A
variant of this problem was recently analyzed for biased ran-
dom walks in complex networks [11]. That paper addressed
rare fluctuations in single node occupancy for an ensemble
of independent (biased) walkers in the stationary state of the

system. By contrast, our interest here is in rare event statis-
tics of path averages, or equivalently of time integrated vari-
ables. Rare event statistics of this type has been looked at for
instance in the context of kinetically constrained models of
glassy relaxation [12]; relations to constrained ensembles of
trajectories were explored in [13] for Glauber dynamics in the
1d Ising chain. While these studies were primarily concerned
with the use of large deviations theory as a tool to explore dy-
namical phase transitions in homogeneous systems, our focus
here is on the interplay between rare event statistics and the
heterogeneity of the underlying system.

In the present Letter we use large deviations theory to study
rare events statistics for path averages of observables asso-
ciated with sites visited along trajectories of random walks.
Within this formalism, rare events are realized as typical
events in a suitably deformed path-ensemble [12, 14]. Their
statistics can be studied in terms of spectral properties ofa de-
formed version of the Markov transition matrix for the orig-
inal random walk model, the relevant information being ex-
tracted from the algebraically largest eigenvalue of the de-
formed transition matrix. Such deformation may direct ran-
dom walks to subsets of a network with vertices of either
atypically high or atypically low coordination. It also ampli-
fies the heterogeneity of transition matrix elements for large
values of the deformation parameter and we observe that, as
a consequence, the eigenvector corresponding to the largest
eigenvalue of the deformed transition matrix may exhibit alo-
calization transition, indicating that rare large fluctuations of
path averages are typically realized by trajectories that remain
localized on small subsets of the network. Within localized
phases, we also encounter a second type of dynamical phase
transition related toswitching between modesas the defor-
mation parameter used to select rare events is varied. Our
methods allow us to study the role that network topology and
heterogeneity play in selecting these special paths, as well as



2

to infer properties of paths actually selected to realize extreme
events.

The model. We consider a complex network with adja-
cency matrixA, with entriesai j = 1 if the edge (i j ) exists,
ai j = 0 otherwise. The transition matrixW of an unbiased
random walk has entriesWi j = ai j/k j wherek j is the degree
of node j andWi j is the probability of a transition fromj to i.

Writing iℓ = (i0, i1, · · · , iℓ) a path of lengthℓ, quantities of
interest are empirical path-averages of the form

φ̂ℓ =
1
ℓ

ℓ∑

t=1

ξit , (1)

where theξi are quenched random variables associated with
the verticesi = 1, . . . ,N of the graph, which could be inde-
pendent of, be correlated with, or be deterministic functions
of the degreeski of the vertices. It is expected that theφ̂ℓ are
for largeℓ sharply peaked about their mean

φ̄ℓ =
1
ℓ

∑

iℓ

P(iℓ)
ℓ∑

t=1

ξit =

〈
1
ℓ

ℓ∑

t=1

ξit

〉
(2)

whereP(il) denotes the probability of the pathil .
The average (2) can be obtained from thecumulant generat-

ing functionψℓ(s) = ℓ−1 ln
∑

iℓ P(iℓ) es
∑ℓ

t=1 ξit asφ̄ℓ = ψ′ℓ(s)|s=0.
Here, we are interested in rare events, for which the empiri-
cal averageŝφℓ take valuesφ which differ significantly from
their meanφ̄ℓ. Large deviations theory predicts that forℓ ≫ 1
the probability densityP(φ) for such an event scales exponen-
tially with path-lengthℓ, P(φ) ∼ e−ℓI (φ), with a rate function
I (φ) which, according to the Gärtner-Ellis theorem [14] is ob-
tained as a Legendre transformI (φ) = sups{sφ − ψ(s)} of the
limiting cumulant generating functionψ(s) = limℓ→∞ ψℓ(s),
provided that this limit exists and that it is differentiable. We
shall see that the second condition may be violated, and that
the derivativeψ′(s) may develop discontinuities at certains-
values, entailing that we observe regions whereI (φ) is strictly
linear and only represents the convex hull of the true rate func-
tion [14].

In order to evaluateψℓ(s), we express path probabilities us-
ing the Markov transition matrixW and a distributionp0 =

(p0(i0)) of initial conditions asP(iℓ) =
[∏ℓ

t=1 Wit it−1

]
p(i0),

entailing thatψℓ(s) can be evaluated in terms of a de-
formed transition matrixW(s) =

(
esξi Wi j

)
as ψℓ(s) =

ℓ−1 ln
∑

iℓ ,i0[W
ℓ(s)] iℓ i0 p(i0). Using a spectral decomposition of

the deformed transition matrix one can write this as

ψℓ(s) = ln λ1+
1
ℓ

ln

[
(1, v1

)(
w1, p0

)
+

∑

α(,1)

(
λα
λ1

)ℓ
(1, vα

)(
wα, p0

)]
.

(3)
Here theλα are eigenvalues ofW(s), the vα andwα are the
corresponding right and left eigenvectors,1 = (1, . . . , 1), and
the bracket notation (·, ·) is used to denote an inner prod-
uct. Eigenvalues are taken to be sorted in decreasing order
λ1 ≥ |λ2| ≥ |λ3| · · · ≥ λN, with the first inequality being a

consequence of the Perron-Frobenius theorem [15]. This con-
cludes the general framework. For the remainder of this Let-
ter, we will restrict our attention to the case whereξi = f (ki).

For long paths, the value of the cumulant generating func-
tion is dominated by the leading eigenvalueλ1 = λ1(s) of the
transition matrixW(s), soψ(s) = logλ1(s). In thes = 0 case,
the eigenvalue problem is trivial, as the column-stochasticity
of the transition matrix yields a left eigenvectorwi ≡ 1 corre-
sponding to the maximal eigenvalueλ1 = 1. The associated
right eigenvector isvi ∝ ki . For nonzeros, such closed form
expressions are in general not known. Performing a direct
matrix diagonalization is quite daunting for large system sizes
N, even if one exploits methods that calculates only the first
eigenvalue [16]. Hence we are interested in fast viable approx-
imations. Here we describe one such approximation expected
to be valid for networks in which vertex degrees are typically
large.

Degree-based approximation.We start by considering the
left eigenvectorsw instead of the right eigenvectors, for which
the eigenvalue equation can be written as

λw j =
1
k j

∑

i∈∂ j

wi es f(ki ) . (4)

This system of equations can be simplified by considering
a degree-based approximation for the first eigenvector, where
one assumes that the values ofwi only depend on the degree
of the nodei: wi = w(ki). If the average degree is large enough
and the degree distribution is not too heterogeneous, we can
write the eigenvalue equation (4) by appeal to the law of large
numbers as

λ1(s) w(k) =
∑

k′
P(k′|k) w(k′) es f(k′) (5)

whereP(k′|k) is the probability for the neighbor of a node of
degreek to have degreek′.

In an Erdős-Rényi (ER) ensemble [17], and more gener-
ally in any configuration model ensemble, we haveP(k′|k) =
P(k′) k′

〈k〉 . In this case the right-hand side of (5) does not depend
on k and thew(k) are in factk-independent. The eigenvalue
equation then simplifies to

λ1(s) =

〈
k
〈k〉e

s f(k)

〉
, (6)

where the average is over the degree distributionP(k). This
approximation yields excellent results for large mean connec-
tivities c = 〈k〉 on ER graphs, and more generally for configu-
ration models without low degree nodes. This is illustratedin
figure 1, where we plot a comparison with numerical simula-
tions for ER graphs withc = 30. In figure 1 and throughout
the remainder of the paper simulation results are obtained as
averages over 1000 samples.

Eigenvector localization. Because of the heterogeneity of
the underlying system, one finds the random walk transition
matrix to exhibit localized states, both for fast and slow relax-
ation modes [18], even in the undeformed system, although
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FIG. 1. (Colour online) Cumulant generating functionψ(s) for ER
networks withc = 30 and f (ki) = ki/c, comparing the large-degree
approximation (6) (blue line) with results of a numerical simulation
(green line). The inset shows the corresponding rate functions.

the eigenvector corresponding to the largest eigenvalue (the
equilibrium distribution) is typically delocalized. However,
given the nature of the deformed transition matrix, one expects
the deformed random walk for large|s| to be localized around
vertices wheres f(ki) is very large; hence we anticipate that in
the deformed system, even the eigenvector corresponding to
the largest eigenvaluemaybecome localized for sufficiently
large |s|. In order to investigate this effect quantitatively we
look at the inverse participation ratio of the eigenvector corre-
sponding to the largest eigenvalueλ1 of W(s). Denoting byvi

its i-th component, we have

IPR[v] =

∑
i v4

i[∑
i v2

i

]2 (7)

One expects IPR[v] ∼ N−1 for a delocalized vector, whereas
IPR[v] = O(1) if v is localized.

Results on random graphs.We performed numerical sim-
ulations to evaluateλ1(s) and the IPR[v1(s)] for several types
of network, defined by their random graph topology. In the
present letter we restrict ourselves to discussing resultsfor
ER networks. We found that other network ensembles such
as scale-free random graphs give qualitatively similar results;
we will report on these in an extended version of this letter.

We looked at various examples for the functionf (ki) but
in the present letter we only report results for the normal-
ized degreef (ki) = ki/c; other deterministic types of degree-
dependent functions exhibit similar behavior, thus focusing
on the normalized degree is sufficient to capture the impor-
tant aspects of this problem. We restrict our simulations tothe
largest (giant) component of the graphs, in order to prevent
spurious effects of isolated nodes or small disconnected clus-
ters (e.g. dimers) dominatingλ1(s) and the IPR for negatives,
as these would represent trivial instances of rare events, where
a walker starts, and is thus stuck on a small disconnected com-
ponent of the graph. From here on, the network size given

must be understood as the size of the networks from which
the giant component is extracted.

Fig. 2 shows the existence of two localized regimes for suf-
ficiently large values of|s|, with IPRs on the localized side of
both transitions increasing with system size. Results can be
understood, as for large|s| the deformed random walk is nat-
urally attracted to the nodes with the largest (resp. smallest)
degrees for positive (resp. negative)s. Thus for large nega-
tive s the deformed walk tends to be concentrated at the end
of the longest dangling chain, whereas for large positives it
will be concentrated at the site with the largest available co-
ordination. On an ER network where the large-degree tail of
the degree distribution decays very fast, such a high degree
vertex is likely to be connected to vertices whose degrees are
lower, even significantly lower, than that of the highest degree
vertex in the network, which leads to IPRs approaching 1 in
the largeN limit. Conversely, for negatives, the deformed
random walk will be attracted to the ends of dangling chains
in the network, with the probability of escape from a chain
decreasing with its length (with the length of the longest dan-
gling chain increasing with system size). This can explain
that IPRs initially saturate at 1/2 for large systems. Only upon
further decreasings to more negative values will the asym-
metry of the deformed transition matrices, to and away from
the end of a dangling chain, induce that further weight of the
dominant eigenvector to become concentrated on the end-site,
leading to a further increase of the IPR.
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FIG. 2. IPR[v] as a function of the deformation parameters for ER
graphs withc = 6, and f (ki) = ki/c. The inset exhibits theN−1-
scaling of IPRs for 4 different values of the deformation parameters,
chosen in pairs on either side oftwo localization transitions, one at
negative, and one at positives.

From the values ofλ1(s) we also derived the large devia-
tion rate functions for path averages of the normalized degree
f (ki) = ki/c, for various systems sizes and average connec-
tivities. In fig. 3 we reportI (φ) for an ER network at a low
connectivity ofc = 3. While the right branch ofI (φ) is for
large N well approximated by a parabola, our results show
the emergence of a linear region on the left branch, which
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becomes more pronounced as the system size is increased.
This is a signature of a non-differentiable point ofψ(s) at
a point s∗ estimated to be ats∗ = −0.060± 0.002: at this
point the Gärtner-Ellis theorem cannot be used to evaluatethe
rate function, and the linear branch only represents the con-
vex envelope of the trueI (φ) [14]. The latter can either coin-
cide with its convex envelope, or it can indeed be non-convex.
However this information cannot be accessed by the theorem.
The emergence of a jump-discontinuity inψ′(s) is due to a
level crossing of the two largest eigenvalues, where the system
switches between two modes that correspond to the largest
eigenvalue on either side ofs∗. In finite systems the crossing
is an ‘avoided crossing’ due to level repulsion, but the two
largest eigenvalues become asymptotically degenerate ats∗ in
the N → ∞ limit, leading to a divergence of the correlation
lengthξ(s) = [ln(λ1(s)/λ2(s)]−1 at s∗, in close analogy with
phenomenology of second order phase transitions, the diver-
gence being logarithmic inN in the present case.
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FIG. 3. Rate functionI (φ) for ER graphs withc = 3, andf (ki) = ki/c
for system sizes ranging fromN = 100 toN = 6400. In the inset,
we showψ(s) in the vicinity of the non-differentiable point. For the
largest system size, a linear fit of the convex envelope of theleft
branch and a quadratic fit of the right branch ofI (φ) are shown as
well.

Conclusions and future perspectives.In this Letter we
have analyzed rare events statistics for path averages of ob-
servables associated with sites visited along random walk tra-
jectories on complex networks. Results are obtained by look-
ing at spectral properties of suitably deformed transitionma-
trices. The main outcome of our analysis is the possible emer-
gence of two types of dynamical phase transitions in low mean
degree systems: localization transitions which entail that large
deviations from typical values of path averages may be real-
ized by localized modes of a deformed transition matrix, and
mode-switching transitionssignifying that the modes (eigen-
vectors) in terms of which large deviations are typically real-
ized may switch as the deformation parameters and thus the
actual scale of large deviations are varied. Results of numer-
ical simulations consistently support these claims. We also
developed an analytical approximation valid for networks in

which degrees are typically large.
Our work opens up the perspective to study a broad range of

further interesting problems. On a technical level, one would
want to implement more powerful techniques, such as derived
in [19], to obtain the largest eigenvalue in the present problem
class for larger system sizes. Then there is clearly the need
to systematically study the dependence of the phenomena re-
ported here on the degree statistics, and on the nature of the
observables for which path averages are looked at. We have
gone some way in this direction and will report results in an
extended version of the present paper. In particular one might
wish to look at observables which, rather then being determin-
istic functions of the degree, are only statistically correlated
with the degree, or at observables taking values onedges be-
tweennodes [13, 14]. This could be of interest in applications
such as traffic or information flows on networks subject to ca-
pacity constraints on edges. Moreover, given the nature of the
mode-switching transition observed in the present letter,it is
clearly conceivable thatseveral such transitionscould be ob-
served in a single system, depending of course on the nature
of the observables studied and on the topological properties of
the underlying networks. Finally, critical phenomena associ-
ated with the localization transition and with mode-switching
transitions also deserve further study. We believe that this list
could go on.

This work was supported by the Marie Curie Training Net-
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[2] R. Guimerà, A. Dı́az-Guilera, F. Vega-Redondo, A. Cabrales,
and A. Arenas. Optimal network topologies for local search
with congestion.Phys. Rev. Lett., 89(24):248701, 2002.

[3] S. D. Servetto and G. Barrenechea. Constrained random walks
on random graphs: routing algorithms for large scale wireless
sensor networks. InProceedings of the 1st ACM international
workshop on Wireless sensor networks and applications, pages
12–21. ACM, 2002.
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Abstract

Statistical physics, originally developed to describe thermodynamic systems, has been

playing for the last decades a central role in modelling an incredibly large and hetero-

geneous set of di�erent phenomena taking for instance place on social, economical or

biological systems. Such a vast �eld of possible applications has been found also for

networks, as a huge variety of systems can be described in terms of interconnected

elements. After an introductory part introducing these themes as well as the role of

abstract modelling in science, in this dissertation it will be discussed how a statisti-

cal physics approach can lead to new insights as regards three problems of interest

in network theory: how some quantity can be optimally spread on a graph, how to

explore it and how to reconstruct it from partial information. Some �nal remarks on

the importance such themes will likely preserve in the coming years conclude the work.

Keywords: Network theory, Statistical physics, Disordered systems, Inference,

Spreading dynamics, Extreme events

Résumé

La physique statistique, développée à l'origine pour décrire les systèmes thermody-

namiques, a joué pendant les dernières décennies un rôle central dans la modélisa-

tion d'un ensemble incroyablement vaste et hétérogène de di�érents phénomènes qui

ont lieu par exemple dans des systèmes sociaux, économiques ou biologiques. Un

champ d'applications possibles aussi vaste a été trouvé aussi pour les réseaux, comme

une grande variété de systèmes peut être décrite en termes d'éléments interconnec-

tés. Après une partie introductive sur les thèmes abordés ainsi que sur le rôle de la

modélisation abstraite dans la science, dans ce manuscrit seront décrites les nouvelles

perspectives auxquelles on peut arriver en approchant d'une façon physico-statistique

trois problèmes d'intérêt dans la théorie des réseaux: comment une certaine quantité

peut se répandre de façon optimale sur un graphique, comment explorer un réseau

et comment le reconstruire à partir d'un jeu d'informations partielles. Quelques re-

marques �nales sur l'importance que ces thèmes préserveront dans les années à venir

conclut le travail.

Mots clés: Théorie des réseaux, Physique statistique, Systèmes désordonnés, In-

férence, Dynamique de propagation, Événements extrêmes


