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Préparée à
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Abstract

The control design techniques for linear or hybrid systems under constraints lead of-
ten to off-line state-space partitions with non-overlapping convex polyhedral regions.
This corresponds to a piecewise affine (PWA) state feedback control laws associated
to polyhedral partition of the state-space. Such control laws can be effectively im-
plemented on hardwares for real-time control applications. However, the robustness
of the explicit solutions depends on the accuracy of the mathematical model of the
dynamical systems. The uncertainties in the system model pose serious challenges
concerning the stability and implementation of the piecewise affine control laws.
Motivated by the challenges facing the explicit solutions for the uncertainties in the
dynamical systems, this thesis is mostly related to their analysis and re-design.

The first part of this thesis aims to compute robustness margins for a given nominal
PWA control law obtained for a linear discrete-time system. Classical robustness
margins i.e., gain margin and phase margin, consider the gain variation and phase
variation of the model for which the stability of the closed loop is preserved. In
this thesis work, an attempt to find the same kind of margin for a piecewise affine
(PWA) controller is made. Starting from the invariance property of the closed loop
obtained involving a discrete dynamic model and PWA controller in a convex region
of the state space, we calculate the two robustness margins preserving this invari-
ance property. The first one will be denoted as gain margin corresponding to the
variation of the gain of the model guaranteeing the invariance. The second one, de-
noted the robustness margin against first order neglected dynamics will correspond
to the slowest first order neglected dynamics allowed in the system preserving the
invariance property. Next, we compute three robustness margins for a PWA con-
tractive control law and linear discrete-time system. The first robustness margin is
characterized for the polytopic uncertainty affecting the dynamical system model
parameters. The other two robustness margins are concerned with the gain and
phase variations for the contractive PWA control law for which the contractive state
trajectories are achieved.

The second part of the thesis aims to consider perturbation in the representation of
the vertices of the polyhedral regions. The idea behind this is to perform a quanti-
zation operation on the representation of the state-space regions and the associated
PWA control laws in order to reduce the hardware requirements in terms of pro-
cessor speed and memory unit. The quantized state-space partitions lose some of
the important properties of the explicit controllers: ”non-overlapping”, ”convexity”
and ”invariant characterization”. How the perturbation affects the polyhedral re-
gions and invoke overlapping to the modified polyhedral regions is first shown. The
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Abstract

major contribution of this work is to analyze to what extent the non-overlapping
and the invariance characteristics of the PWA controller can be preserved when per-
turbation takes place on the vertex representation. We determine two different sets
called vertex-sensitivity region and sensitivity margin region to characterize admis-
sible perturbation preserving the non-overlapping and the invariance property of the
controller respectively. Finally, we show how to perturb multiple vertex sequentially
and reconfigure the polyhedral regions to the perturbed vertices.

The third part aims to analyze the complexity of the explicit solutions in terms
of computational time and memory storage requirements. In order to understand
the computational complexity of the evaluation of the PWA functions, we propose
two objectives, the first objective being the comparison made between the sequen-
tial and parallel evaluations of the PWA functions for the Alternating Direction
Method of Multiplier (ADMM) algorithm. The second objective is to compare the
computational complexity of the parallel evaluations of the PWA functions for the
Progressive Hedging Algorithm (PHA) on the Central Processing Unit (CPU) and
Graphical Processing Unit (GPU).
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Résumé

Les techniques de conception de commandes pour les systèmes linéaires ou hy-
brides soumis à des contraintes linéaires conduisent souvent à des lois de commande
linéaires par morceaux. Ces lois linéaires sont calculées hors ligne et sont définies
dans des régions polyédrales convexes de l’espace d’état. Ceci correspond à des
lois de commande par retour d’état affines par morceaux (PWA) associées à une
partition polyédral de l’espace d’état. De telles lois de commande peuvent être
implémentées efficacement sur des matériels spécifiques pour des applications de
commande en temps réel. Cependant, la robustesse des solutions explicites dépend
de la précision du modèle mathématique des systèmes dynamiques. Les incertitudes
du modèle posent de sérieux problèmes concernant la stabilité et la mise en œuvre
des lois de commande affines par morceaux. Motivés par les défis auxquels font face
les solutions explicites face à des incertitudes des systèmes dynamiques, cette thèse
est principalement liée à leur analyse et à leur configuration.

La première partie de cette thèse vise à calculer les marges de robustesse pour une loi
de commande PWA nominale donnée pour un système linéaire à temps discret. Les
marges de robustesse classiques, c’est-à-dire la marge de gain et la marge de phase,
considèrent la variation de gain et la variation de phase du modèle pour lesquelles la
stabilité de la boucle fermée est préservée. Dans ce travail de thèse, une tentative de
trouver le même type de marge pour un contrôleur affine par morceaux (PWA) est
faite. En partant de la propriété d’invariance de la boucle fermée obtenue avec un
modèle dynamique discret et un contrôleur PWA dans une région convexe de l’espace
d’état, deux marges de robustesse préservant cette propriété d’invariance sont cal-
culées. La première sera noté marge de gain et correspond à la variation du gain du
modèle garantissant l’invariance. La seconde, noté marge de robustesse face à une
dynamique négligée du premier ordre, correspond à la plus lente dynamique négligée
du premier ordre préservant la propriété d’invariance. Ensuite, trois marges de ro-
bustesse sont calculées pour une loi de PWA et un système à temps discret linéaire,
avec la caractéristique d’avoir des trajectoires contractives dans l’espace d’état. La
première marge de robustesse est caractérisée pour l’incertitude polytopique affec-
tant les paramètres du modèle dynamique qui préservent la vitesse convergence des
trajectoires. Les deux autres marges de robustesse concernent les variations de gain
et de dynamique négligée de premier ordre pour lesquelles les trajectoires d’état
contractives sont préserves.

La deuxième partie de la thèse vise à considérer les perturbations dans la représentati-
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Résumé

on des sommets des régions polyédrales de la loi de commande. L’idée derrière ceci
est d”effectuer une opération de quantification sur la représentation des régions de
l’espace d’état et des lois de commande PWA associées afin de réduire les exigences
matérielles en termes de vitesse du processeur et de la capacité de mémoire. Les
partitions de l’espace d’état quantifiées perdent certaines des propriétés importantes
des contrôleurs explicites, à savoir le non-recouvrement des régions, la convexité des
partitions et l’invariance. Premièrement, comment la quantification des sommets af-
fecte les régions polyédrales et comment la propriété de non-recouvrement peut être
perdue est montré. Dans une deuxième étape, on discute dans quelle mesure les car-
actéristiques de non-recouvrement et d’invariance du contrôleur PWA peuvent être
préservées quand la perturbation a lieu sur la représentation du sommet est analysée.
Deux ensembles différents appelés région de sensibilité au sommet et région de marge
de sensibilité pour caractériser la perturbation admissible en préservant respective-
ment la propriété de non-recouvrement et d’invariance du contrôleur sont calculées.
Finalement, il est montré comment perturber séquentielle ment plusieurs sommets
et reconfigurer les régions polyédrales obtenues.

La troisième partie vise à analyser la complexité des solutions explicites en termes
de temps de calcul et de stockage mémoire. Les solutions explicites deviennent
très complexes, dès que l’ordre du modèle ou l’horizon de prédiction sont grandes.
Dans cette partie, le problème d’optimisation amenant à la loi de commande PWA
est partitionné en utilisant l’algorithme ADMM (Alternating Direction Method of
Multiplier). Afin de comprendre la complexité de calcul de l”évaluation des fonc-
tions PWA, deux objectifs sont proposés. Le premier est la comparaison entre les
évaluations séquentielles et parallèles des fonctions PWA pour l’algorithme ADMM.
Le deuxième objectif est de comparer la complexité computationnelle des évaluations
parallèles des fonctions PWA pour l’algorithme de couverture progressive (PHA) sur
l’unité centrale de traitement (CPU) et l’unité graphique de traitement (GPU).

Motivation de la thèse

Dans les travaux récents de [ONB+13,NOBRA14], les auteurs ont proposé une ap-
proche géométrique générique pour dériver la marge de robustesse pour la loi de
commande PWA par rapport aux propriétés d’invariance positive obtenue avec le
modèle nominal. Cette approche est adaptée à la particularité des caractéristiques
affines par morceaux de la dynamique en boucle fermée et diffère d’une analyse de
robustesse classique. L’objectif de cette approche géométrique est la description d’un
ensemble polyédral dans l’espace des paramètres décrivant la variation paramétrique
admissible sans perte de la propriété d’invariance. Il convient de mentionner que
cette procédure d’analyse proposée dans [ONB+13, NOBRA14] gère la robustesse
/ fragilité de l’invariance positive mais ne prolonge pas l’analyse à la convergence
(propriétés de stabilité asymptotique). En outre, les travaux mentionnés n’abordent
pas les problèmes concernant la modification du gain ou des dynamiques négligées.
L’analyse de la robustesse du contrôleur pour le système affecté par la dynamique
négligée est très importante dans le contexte de l’inadéquation du modèle ou des
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Résumé

paramètres du modèle inexacts. Par ailleurs, l’analyse des caractéristiques du cor-
recteur PWA en ce qui concerne les perturbations sur les sommets des partitions
de l’espace d’état du correcteur est considérée comme vitale à de nombreuses fins.
L’objectif est d’analyser l’effet d’une opération de ”quantification” sur la partition
de l’espace d’état donnée par la représentation de sommets des polyèdres. Cela
permet de réduire l’espace mémoire nécessaire pour stocker le correcteur. En ef-
fet, la complexité des solutions explicites augmente avec l’inclusion des contraintes
imposées aux systèmes dynamiques. Dans un tel cas, effectuer une opération de
quantification sur les sommets de la partition polyédral aidera efficacement les exi-
gences matérielles.

C’est un phénomène largement accepté que les solutions explicites souffrent encore
de la complexité computationnelle pour des systèmes dynamiques à moyenne échelle
(un système avec 5 états sera considéré comme entrant dans cette catégorie) et pour
un long horizon de prédiction, (par exemple 10).

De plus, la commande prédictive explicite a gagné en réputation pour sa simple
évaluation des lois de commande. Actuellement les, recherches ont été plus axées
sur la réduction de la complexité de la solution explicite hors ligne du problème
mp-QP. Il est avéré que la réduction de la complexité du problème mp-QP entrâıne
moins d’exigences matérielles pour la mise en œuvre mais entraine une perte de
performance. Par contre, Il n’y a pas de recherche notable à mentionner en ce qui
concerne l’évaluation en ligne des fonctions PWA pour les solutions complexes. Ces
faits ont déclenché le présent travail de recherche qui vise à analyser les méthodes
itératives de résolution de problèmes mp-QP au moyen des solutions explicites.

Objectifs

Dans cette section sont énumérés les objectifs abordés dans cette thèse et la façon
dont sont présentés dans le manuscrit.

Chapitre 3: Marges de robustesse pour une loi de commande
explicite par morceaux

Dans ce chapitre, les propriétés de robustesse inhérentes d’une commande prédictive
explicite, décrite comme une loi de commande affine par morceaux (PWA) pour
une classe de systèmes linéaires à temps discret, est considérée. Premièrement une
méthode numérique pour calculer une marge de gain définie pour un système à temps
discret stabilisé par une commande continue affine par morceaux est présentée. La
marge de gain est un polytope qui caractérise les variations des gains du système
préservant les caractéristiques d’invariance de la boucle fermée. Deuxièmement,
l’influence d’une dynamique négligée du premier ordre est analysée. La marge de
robustesse du contrôleur par rapport à la dynamique négligée du premier ordre
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Résumé

correspond à un ensemble caractérisant les paramètres de la dynamique négligée
préservant la propriété d’invariance de la boucle fermée.

Marge de gain:

Cette section, présente l’influence ’effet de la modification du gain par rapport aux
caractéristiques en boucle fermée obtenues avec la loi de commande explicite affine
par morceaux. L’énoncé du problème de la marge de gain en boucle fermée est
donné dans les équations ci-dessous et est également illustré dans la Figure 1.

x(k + 1) = Ax(k) +B(Im + diag(δK))upwa(x(k))
upwa(x(k)) = Fix(k) + gi

Figure 1: Modification du gain du système.

La construction de l’ensemble des marges de gain sera basée sur la représentation
des sommets des régions formant la partition du correcteur PWA, nommé R. R est
une polytope dans l’espace d’état où la loi de commande est définie. Par ailleurs, R
est invariant, c’est-à-dire, que les trajectoires commençant en R restent en R.

Définition 1 Considérons un système linéaire à temps discret avec une loi de com-
mande continue PWA telle que l’ensemble R dans l’espace d’état soit positivement
invariant. La marge de gain est représentée par l’ensemble K, pour lequel

x(k + 1) = Ax(k) +B(Im + diag(δK))upwa(x(k)) ∈ R, ∀x(k) ∈ R et δK ∈ K ⊂ Rm.

L’ensemble K est un ensemble qui contient les des variations de gain telles que
pour tout point à l’intérieur de l’ensemble K , les caractéristiques d’invariance de
l’ensemble R sont préservées.

Dynamique négligée du premier ordre:

Dans cette partie la robustesse du contrôleur PWA nominal, défini sur l’ensemble
polyédral R, face à des dynamiques négligées du premier ordre est analysée. L’approc-
he est de présenter un ensemble admissible pour les variations des paramètres de
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Résumé

la dynamique négligé pour lesquelles l’invariance de l’ensemble R est préservée. Le
problème est formulé pour la dynamique du premier ordre qui perturbe le système
en boucle fermée, comme le montre la Figure 2. Le système linéaire nominal en

Figure 2: Dynamique négligée dans la boucle fermée.

temps discret et la loi de commande PWA à retour d’état peuvent être écrits sous
la forme:

x(k + 1) = Ax(k) +Bu(k)
upwa(x(k)) = u∗(k) = Fix(k) + gi

La dynamique négligée peut être représentée par une équation du premier ordre et
elle peut s’écrire sous la forme:

xI(k + 1) = αxI(k) + (1− α)u∗(k)
u(k) = αxI(k) + (1− α)u∗(k)

La dynamique négligée dans le modèle en boucle fermée peut être décrite par:

x(k + 1) = Ax(k) +BxI(k + 1)
x(k + 1) = Ax(k) + αBxI(k) +B(1− α)u∗(k)

Définition 2 Considérons un système discret linéaire affecté par la dynamique
négligée du premier ordre et stabilisé via une loi de commande par retour d’état
PWA. La marge de robustesse face pour à la dynamique négligée du premier ordre
est caractérisée par un ensemble Ωα ∈ Rm qui contient les valeurs du paramètre
α(pour chaque entrée) de sorte que la propriété d’invariance de l’ensemble R soit
assurée.

Marges de robustesse pour les lois de commande explicites
affines par morceaux

Dans ce chapitre, un problème de programmation quadratique multiparamétrique
est formulé afin de calculer une loi de commande PWA qui impose la convergence des
trajectoires d’état en boucle fermé. A partir de la loi de commande λ-contractive,
nous présentons trois marges de robustesse pour le système stabilisé par cette loi
de commande affine par morceaux. Tout d’abord, la marge de robustesse pour un
système à temps discret affecté par des incertitudes paramétriques est présentée. La
marge de robustesse notée Ωrob est définie comme un sous-ensemble paramétrique
et se présente sous la forme d’un ensemble polyédral. Pour tous les modèles ap-
partenant à l’ensemble polyédral Ωrob, la convergence des trajectoires d’état est
garantie. Deuxièmement, une méthode numérique pour calculer une marge de gain
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définie pour un système à temps discret stabilisé par une commande PWA contrac-
tive est présentée. La marge de gain désirée prend la forme d’un ensemble qui car-
actérise les variations admissibles de gain du système préservant les caractéristiques
de convergence de la boucle fermée. Troisièmement, un ensemble admissible qui car-
actérise les variations de paramètres pour une dynamique négligée du premier ordre
garantissant les caractéristiques de convergence de la boucle fermée est présenté.

Marge de robustesse paramétrique pour les ensembles λ contractifs:

Dans cette section, nous considérons l”incertitude paramétrique sur les matrices A
et B du modèle du système linéaire discret. Un ensemble est introduit dans l’espace
des paramètres,

Ω = Conv{[A1 B1] · · · [AL BL]}.

Figure 3: Description polytopique du modèle.

Définition 3 Considérons un ensemble polytopique dans l’espace des paramètres
du modèle. Le problème de la marge de robustesse est de calculer le plus grand sous-
ensemble Ωrob pour lequel les trajectoires obtenues avec la loi de commande PWA
donnée par upwa(x(k)) et définie sur l’ensemble polyédrique R soient λ contractives.

Marge de gain pour les ensembles λ contractifs:

Définition de la marge de gain définie pour les systèmes linéaires à temps discret
stabilisés à l’aide d’une loi de commande PWA λ contractive. La construction de la
marge de gain est similaire à celle présentée dans la section précédente.

Définition 4 Considérons un système linéaire à temps discret avec une loi de com-
mande PWA contractive continue, telle que l’ensemble d’états R soit λ-contractif.
La marge de gain est représentée par l’ensemble K, tel que:

x(k + 1) = Ax(k) +B(Im + diag(δK))upwa(x(k)) ∈ λβR,∀x(k) ∈ R,
δK ∈ K ⊂ Rm et λ, β ∈ [0, 1].
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Marge de robustesse face à des dynamiques négligée pour les ensembles
λ contractifs:

Cette section présente une analyse de la robustesse du contrôleur PWA face à des
dynamiques négligées du premier ordre.

Définition 5 Considérons un système linéaire à temps discret affecté par la dy-
namique négligée du premier ordre commande par un contrôleur à retour d’état PWA
contractif. La marge de robustesse pour la dynamique négligée du premier ordre est
caractérisée par un ensemble Ωα ∈ R qui contient les valeurs du paramètre α pour
lesquels la propriété de λ-contractif est préservée.

Chapitre 5: Précision dans la représentation des partitions
polyédrales et la fragilité de la commande PWA

Le cadre du présent chapitre est celui d’un système linéaire à temps discret com-
mandé par une loi de commande explicite par morceaux. L’objectif est d’analyser la
modification des partitions polyédrales en cas de perturbation sur la représentation
des sommets des partitions. La contribution principale de ce travail est d’analyser
dans quelle mesure les caractéristiques de non-recouvrement et d’invariance du
contrôleur PWA peuvent être préservées lorsqu’une perturbation sur la représentation
des sommets des partitions a lieu. Le chapitre est divisé en cinq sections, qui cor-
respondent avec la procédure proposée pour la prise en compte des quantifications
dans la représentation des sommets.

1. Caractériser les perturbations admissibles sur chaque sommet pris indépendam-
ment dans la représentation des sommets. La perturbation est considérée
comme admissible si elle préserve la propriété de non-recouvrement dans l’espace
d’état. La perturbation admissible est caractérisée par un ensemble appelé
régions de sensibilité aux sommets.

2. Fournir une méthode de mise à jour de la frontière de l’ensemble faisable
pour la perturbation admissible en mettant à jour les sommets considérés
comme sensibles. La mise à jour préserve la propriété de non-recouvrement et
d’invariance.

3. Troisièmement, à partir du domaine réalisable reconfiguré, analyse des par-
titions polyédriques en considérant chacun des sommets de la partition qui
ne sont pas placés aux frontières du domaine réalisable. Un ensemble appelé
marge de sensibilité par rapport à l”invariance en boucle fermée est déterminé.
Cet ensemble caractérise les perturbations admissibles sur la représentation des
sommets préservant les caractéristiques de non- recouvrement et d’invariance
du contrôleur PWA.

4. Quatrièmement, calcule des partitions polyèdres perturbées pour tous les som-
mets internes de l’ensemble faisable terminant séquentiellement la transforma-
tion des régions polyédriques d’origine en une nouvelle région polyédrique pour
tous les sommets de l’ensemble faisable.
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5. Cinquièmement, à partir d’un système linéaire stabilisé à l’aide d’une loi de
commande affine par morceaux (PWA), tous les sommets de l’ensemble faisable
sont misent à jours. Les perturbations des sommets sont réalisées en assurant
les propriétés de non-recouvrement et de λ-contraction du contrôleur PWA.

Chapitre 6: Evaluation de la fonction PWA sur CPU et GPU
pour ADMM et PHA

Ce chapitre cherche des solutions pour la mise en œuvre des solutions explicites
pour des dynamiques linéaires discrètes avec des horizons de prédiction plus longs.
Dans une deuxième partie des modèles dynamiques linéaires avec des incertitudes
probabilistes sont considérés. Une solution basée sur des solutions explicites est
présentée. Les solutions explicites sont une fonction algébrique simple, c’est-à-dire,
qui fonctionne dans un cadre de multiplication matrice-matrice ou matrice-vecteur.
De telles expressions sont parallélisables par l’unité centrale de traitement (CPU)
et il est également possible d’activer l’unité de traitement graphique (GPU) pour
décomposer les grandes matrices en sous-processeurs disponibles, afin d’obtenir des
opérations plus rapides. Afin de permettre la mise en ouvre MPC explicite pour
un horizon de prédiction plus long, la technique sur laquelle nous nous appuyons
s’appelle le fractionnement d’opérateur (operator splitting). La division est effectuée
sur l”horizon de prédiction et nous avons un nombre de sous-problèmes égal à la
longueur de l’horizon de prédiction. En utilisant les solutions explicites, N+1 sous-
problèmes (longueur de l’horizon de prédiction) sont réduits à trois sous-problèmes.
L’approche ADMM (Alternating Direction Method of Multipliers) est utilisée pour
satisfaire les contraintes de consensus survenues lors du découplage et pour la con-
vergence. Cette approche incorporée à la formulation EMPC est résolue avec CPU.
Enfin, nous comparons la complexité computationnelle de la formulation ci-dessus
pour CPU en plus de la formulation MPC explicite générale (sans fractionnement
temporel).

La deuxième partie du chapitre étudie l’implantation de l’algorithme PHA (Pro-
gressive Hedging Algorithm) avec des solutions explicites. Ce type d’algorithme est
utilisé pour calculer la commande prédictive pour des systèmes affectés par des per-
turbations probabilistes. En résume, l’idée principale de ce chapitre est d’analyser la
complexité des solutions explicites en termes de complexité de calcul et de stockage
mémoire. L’objectif de ce chapitre est répertorié ci-dessous.

1. La comparaison des évaluations séquentielles et parallèles des fonctions PWA
pour l’algorithme ADMM.

2. La comparaison des évaluations parallèles des fonctions PWA pour le PHA sur
CPU et GPU.
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Notation

−R denotes the set of real numbers.
−R+ denotes the set of non-negative real numbers.
−Z denotes the set of integers.
−N denotes the set of non-negative integers.
−N>0 denotes the set of positive integers.

A vector is noted x ∈ Rn, x = [x1, · · · , xn]T .
For a given matrix A ∈ Rn×m, then vec(A) represents the vector composed of the
columns of the matrix A,

vec(A) = [AT (·, 1), · · · , AT (·,m)]T ∈ Rm,

here A(i, ·) denote the ith row of matrix A and A(·, j) denotes the jth column of
matrix A. Also, if n = m the matrix A is called square matrix. An identity matrix
is represented by In where the subscript n denotes the dimension of that matrix.
1 is a vector with all its components equal to 1.
I denotes an identity matrix and In means that I ∈ Rn×n.
For a given N ∈ N>0, IN denotes the set of integers of indexes,

IN = {i ∈ I>0|i ≤ N}.

A mapping function f: Rn → Rm is said to be positively homogeneous of the first
degree, if f(ax) = af(x), ∀a ∈ R+ and ∀x ∈ Rn.

The unit simplex in RL is defined as,

SL = {x ∈ RL
+|1Tx = 1}.

For a given vector x ∈ Rn, we denote the p-norm of the vector x by ||x||p. In the
following we define the norms that are used in this thesis.
-p = 1, ||x||1 = ∑n

i=1 |xi|,
-p = 2, ||x||2 =

√
xTx,

-p =∞, ||x||∞ = max
i∈In
|xi|.
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Introduction

Contents
1.1 Motivation of the Thesis . . . . . . . . . . . . . . . . . . . 4
1.2 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3 Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

The optimal control problems (OCP) [Pon87,Bel13,Ber95], represent an important
part of modern control theory, and have gained prominence in the vast field of con-
trol system research by means of several techniques and methodologies that emerged
from the original problem formulations (finite-time optimal control, receding horizon
optimal control, model predictive control) or the plethora of dynamical models to be
considered in the optimal control design (nonlinear, hybrid, impulsive, constrained,
etc). The common objective of the OCP’s is to determine a sequence of optimal
control inputs for a dynamical systems (linear or non-linear) while satisfying a set
of physical constraints.

Model Predictive Control (MPC) [MRRS00, RM12], recognized as one of the most
studied control law algorithm besides the conventional controllers, can be classified
as an advanced optimal control algorithm which has the ability to handle constraints
on inputs, states and outputs. Standard MPC or optimization-based MPC has been
widely applied to chemical and petro-chemical industries due to their handling of
multi-variable nature [CB97]. The MPC algorithm is based on receding horizon tech-
nique consisting in the resolution of a finite-time open-loop optimal control problem
(often stated in Quadratic Programming terms for linear prediction models). The
growing maturity of the stability, recursive feasibility and optimality of the MPC al-
gorithms has been implemented across the spectrum of control applications ranging
from aeronautical, electrical, automotive, etc [QB03]. Recently the MPC algorithm
has also been adopted in the areas of quantitative finance and financial engineering
for investment and stock portfolio risk reduction [HKD+06,DO15]. Moreover, such
applications are the evidence of the growing clout and prominence of the MPC in
the modern control theory and control-related applications. In reference with the
stability of the MPC problems, a vast amount of research has been conducted for
ensuring the stability of the closed-loop dynamical systems. One of the notable

1



Introduction

approaches in accordance with the stability of the MPC problems includes the ter-
minal set and terminal cost function to the optimization problem. The inclusion
of the terminal set ensures that the evolution of the state trajectories of the dy-
namical systems converge to the same set which is a subset of the state constraint
set fulfilling the physical (hard) constraints placed on the manipulated variables
(e.g., actuators, valves, breaking system, etc.,) [MRRS00]. The terminal set can be
usually represented by convex regions around the equilibrium point and takes the
form of polyhedron or ellipsoid. In general the terminal sets characterized by the
polyhedral are the most commonly used as they lead to linear constraints in the
related optimization problems. In particular, the constraints represented by polyhe-
dral sets within the optimization problem with a quadratic cost function leads to a
Quadratic Programming (QP) problem while the ellipsoidal sets and quadratic cost
function lead to a Quadratic constrained Quadratic Programming (QCQP) prob-
lem [RM12]. Both classes fall within the convex optimization framework and have
appealing structural properties (uniqueness, optimality conditions, etc).

Although there are many advantages to the standard MPC as comparison to the
conventional controllers in terms of optimality and multi-variability, implementing
an MPC algorithm to obtain the optimal control input on-line by solving for instance
Quadratic Programming (QP) problems is time consuming. Particularly, when it
comes to system with fast dynamics the real-time update of the measurements and
the resolution of optimization problems need to provide solutions at very high sam-
pling rates. This on-line computational complexity can be overcome by transform-
ing the QP problem to a multi-parametric Quadratic Programming (mp-QP) prob-
lem [PGD07] and solving it off-line at the control design stage. This approach of
solving the mp-QP problem off-line is also called Explicit MPC (EMPC), where
the computation of the optimal control input is reduced to a simple evaluation of
algebraic functions stored in a look-up table [AB09,BMDP02,SDDG00,OD04]. The
resulting solution of such problems is usually a set of linear piecewise affine (PWA)
functions defined over the system state-space partitions. EMPC control laws can be
easily evaluated and implemented on-line for systems with extremely fast dynamics
as long as the state-space models are of small dimensions. Recently, explicit so-
lutions (mp-QP) have been widely recognized for their ability of separation of the
computational complexity between off-line and on-line which is not the case with
standard MPC. The references of these works [BMDP02, AB09] show how the mp-
QP problems formulated for constrained linear discrete-time time-invariant systems
for finite or infinite horizon optimal control problem are solved off-line. In particular,
the polyhedral partition is conducted based on the critical region search satisfying
the KKT (Karush-Kuhn-Tucker) optimality conditions [BMDP02], the critical re-
gions are represented by the linear inequality constraints which can be termed as
half-space representation or simply H-representation. From a different perspective,
in the work [MJ12] it was shown how the mp-QP problem can be solved for the
piecewise affine function defined over the state-space partition enumerated using a
vertex representation. Sub-optimality of the mp-QP solution is presented in [BF02]
by relaxing the KKT optimality conditions or by approximating the polyhedral par-
tition in [SOH09]. Nevertheless, the solution set of these methods comprise state
space partition where the sub polyhedral sets are characterized by half-space repre-
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sentation.

From a purely on-line evaluation (of the optimal control law) point of view, the
polyhedral partition represented by the half-space and vertex characterization can
be compared in terms of on-line computational complexity and off-line data storage.
Speaking about the on-line evaluation of the PWA control laws, an algorithm is
employed to conduct a sequential search through the state-space regions for an
initial state or measured state (in case state estimation is considered) [BMDP02].
Usually, this way of finding the regions that contain the given point sequentially
is time consuming. The evaluation of PWA control procedure expressed in the
paper [TJB03] indicates the construction of a binary search tree and it is shown
that the binary search tree method takes less time and requires smaller storage
capacity than that of the sequential search methods. Some noticeable advantages of
the binary search tree method are (i) the computational time is logarithmic in the
number of regions associated to its PWA functions, (ii) the search is also efficient
in the event of overlapping regions and holes in the polyhedral partitions. Though
explicit control law has favorable advantages over the standard MPC, it also comes
up with high computational cost for higher order systems and/or for large prediction
horizon.

Explicit control laws can be effectively implemented on micro-controller circuits or
on Field-Programmable Gate Array (FPGA) for a wide-range of control applica-
tions [JJST07, IK15]. The cost of the micro-controller circuits or FPGA depend
on the size of the memory unit or Arithmetic and Logic Unit (ALU) associated
with it. For storing a relatively small state-space partitions and the PWA control
laws associated with each partition, the cost of the micro-controller required might
be reasonable. But for storing considerably large state-space partitions and PWA
functions, a truncation operation (interpreted also as a quantization process on the
control law parameters) should be performed on the representation of the state-
space regions and the associated PWA control laws in order to reduce the hardware
costs [KZC15]. The post-quantization state-space regions and post-quantization
affine control laws associated with the regions adversely impact the accuracy of the
control laws. Moreover, the modified regions might lose the non-overlapping prop-
erty of the state-space partition. Such a phenomenon will lead to non-uniqueness of
the feedback control, discontinuities and the associated loss in stability, performance
and real-time certifications.

The uncertainties in model parameters and the influence of disturbances make the
plant to differ from the mathematical model. Since the mathematical model serves
the purpose of prediction, the prediction will be less accurate as compared to the
real plant. Since this millennium, much research has been devoted to tackle un-
certainties in dynamic system for standard MPC [BM99, GKMS14, MRFA06]. The
Robust MPC problem formulation for the linear discrete-time time-invariant sys-
tems affected by structured feedback uncertainty is presented in [KBM96]. The well
known research works for the Robust MPC (RMPC) problems for linear dynamical
systems with polytopic uncertainty / additive disturbance noise / bounded distur-
bances / stochastic disturbances are provided in the works of Robust Min-Max ap-
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proach [SM98,KM03], robust tube based MPC [LCRM04,MKF11], Scenario-based
or Multi-stage MPC [BB09, Luc14]. Although these Robust MPC can tackle the
uncertainty to the accepted levels in terms of stability and optimality, particularly
the later two RMPC’s problem demand great computational efforts for real-time
implementation. With regards to the impact of uncertainty in the explicit MPC,
very few research has been conducted.

From the analysis point of view, it is important to commensurate the capacity of the
control law to cope with disturbances, neglected dynamics or uncertain parameters.
These characteristics are denoted in control theory as robustness of the controller.
In the context of robustness analysis of PWA controllers, very few contributions
have been made. Some noticeable recent works include an analysis procedure pro-
posed in [ONB+13] and [NOBRA14], which handles the robustness/fragility of the
positive invariance for the dynamics affected by uncertain parameters. On the other
hand, the robustness analysis can be connected to the works on the robustification
of the explicit controllers. The reference [RAO13] for example shows how to improve
the robustness of the controller by retuning. It is worth to be mentioned that the
analysis of a nominal PWA control and its retuning is essentially different approach
from a robust control design. It is known that a robust PWA control as for exam-
ple Robust Explicit Model Predictive Control (REMPC) synthesis [PFKP09] can
account for uncertainties based on dynamic programming approach but the asso-
ciated computational complexity is exponential with respect to the nominal case.
The same thing can be said about the robust explicit model predictive control with
contractive set based on variable-structure control law for linear polytopic uncertain
system as presented in [YBHJ03].

1.1 Motivation of the Thesis

In the recent work of [ONB+13,NOBRA14], the authors proposed a generic geomet-
rical approach to derive the robustness margin for PWA control law with respect to
the positive invariance properties of the nominal system. This approach is adapted
to the particularity of the piecewise-affine characteristics of the closed loop dynam-
ics and differs from a classical robustness analysis. The ultimate objective of this
geometrical approach for computing the robustness margin for explicit MPC is the
description of a polyhedral set in the parameter space. It is worth to be men-
tioned that this analysis procedure proposed in [ONB+13, NOBRA14] handles the
robustness/fragility of the positive invariance but does not extend the analysis to
the convergence (asymptotic stability properties). Also, the mentioned works do not
tackle the problems concerning the input noise or neglected dynamics. The analysis
of the robustness of the controller for the system affected by neglected dynamics are
very important in the context of model mismatch or inaccurate system parameters.

Analyzing the PWA characteristics with respect to perturbations on vertices of the
system state partitions is considered vital for many purposes. It could help the on-
line PWA controller to tackle considerable perturbation on the system states. The
most resourceful purpose is to perform a ”quantization” operation on the state-space
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partition given by vertex representation. The complexity of the explicit solutions
increases with the inclusion of the constraints imposed on the dynamical systems.
In such a case, performing a quantization operation on the vertices of the polyhe-
dral partition will effectively help the micro-controller to bring down the memory
concerning the hardware requirements.

It is a widely accepted phenomenon that explicit solutions still suffer from the com-
putational complexity while handling a dynamical system with somewhat a low-
medium scale system (a system with 5 states will be considered to fall within this
category) and for an acceptable prediction horizon (for instance finite horizon of
length 10).

Moreover, the explicit MPC has gained reputation for its simple evaluation of control
laws, researchers/scholars have been more interested in bringing down the complex-
ity of solving the mp-QP problem off-line. It is a fact that bringing down the
complexity of the mp-QP problem will result in less requirement of the data struc-
ture of memory unit. There is no notable research to be mentioned regarding the
on-line evaluation of the PWA functions for large data.

These facts triggered the present research work which aims to extend the construc-
tive analysis procedure based on the prevalent problems that exist in the research
domain of the explicit controller.

1.2 Objectives

In the current section, we would like to list the goals that we aim to address in
this thesis work and the way they structure the document chapter-wise. In this
thesis, we consider the inherent robustness properties of explicit predictive control
described as piecewise affine (PWA) control laws for a class of linear discrete-time
systems.

Chapter 3:

1. First, we aim to develop a numerical method to compute a gain margin for
a discrete-time system stabilized by a continuous PWA affine dynamics with
respect to the invariance property. The desired gain margin is a set which char-
acterize a variations of system gains preserving the invariant characteristics of
the controller.

2. Second, we aim to establish a similar type of analysis for the linear dynamic
system affected by first order neglected dynamics. The robustness mar-
gin of the controller against the neglected dynamics is defined by a set which
characterizes a range of parameters of a first order neglected dynamics in the
model preserving the invariance of the controller.
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Chapter 4:

1. A methodological objective in relationship with MPC design is to replace the
terminal set and terminal cost function with the controlled λ-contractive sets
for constructing explicit control laws for discrete time systems assuring a λ-
contractivity of the trajectories. In this framework we aim to establish a
parametrization expressing the dependence on the state vector and use this as
an additional factor for constructing the PWA control law.

2. Secondly, the initial λ-contractive controller can be seen as a possible decision
variable to extend the explicit robustness margin to contractive framework. In
order to exploit this idea, the use of a polytopic description of the plant will
allow to express the robustness margin as a subset of parameters for which the
λ-contractivity is maintained.

3. Third goal is to compute a gain margin in this framework for a discrete-time
system controlled by a contractive PWA control law. The desired gain margin
for the contractive controller has to preserve the λ-contractive properties of
the controller.

4. Fourth, we aim to extend the first order neglected dynamics analysis presented
in Chapter 3 for the contractive controller.

Chapter 5:

In this chapter, we consider perturbation on the vertices of the polyhedral partitions
obtained from solving a mp-QP problem for a finite time OCP considering a linear
discrete-time time-invariant system. Starting from a problem formulation concern-
ing the perturbation on the vertices of the polyhedral partition, we fix the following
objectives:

1. First, we aim to derive a polyhedral set called vertex sensitivity region that
characterizes all admissible perturbations on the associated vertex. The vertex
sensitivity region has to ensure the non-overlapping property of the PWA
controller in the event of a vertex perturbation.

2. Second, the invariant property of the controller when perturbing vertices that
lie on the frontier of the feasible domain needs to be analyzed. The vertices
on the feasible domain characterize the invariant set and perturbing those
vertices have an impact concerning the invariance and the convex properties
of the PWA controller.

3. Third, we fix as objective to construct the vertex-invariant region, subset of the
vertex sensitivity region, that characterize all admissible perturbation on the
interior vertices of the polyhedral partition guaranteeing the invariant char-
acteristics of the controller. The validation of the control inputs constraints
needs to be considered at this stage.
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4. Fourth, we aim to analyze the perturbation on the vertices for the contractive
PWA controller ensuring jointly the non-overlapping and contractive proper-
ties of the controller.

Chapter 6:

In this chapter, we enable explicit solutions for longer prediction horizons and we
also treat linear dynamics with probabilistic uncertainties controlled using explicit
control laws. The objectives of this chapter are:

1. To explore a time-splitting operation carried out through a finite-time predic-
tion horizon. The mp-QP sub-problems resulting from the time-splitting oper-
ator are grouped into three sub-problems. The Alternative Direction Method
of Multipliers (ADMM) algorithm will be investigated to obtain the consen-
sus constraints occurred during the decoupling and for ensuring the convex
convergence.

2. The on-line evaluation of the control law based on the ADMM algorithm needs
to be considered. This submodule is aimed at comparing the computational
results between the sequential and the parallel evaluations of the ADMM al-
gorithm.

3. On a different perspective, we aim to treat the bounded probabilistic distur-
bance for the linear discrete-time systems. Here, a scenario tree problem for
different disturbance realizations can be constructed. The scenario tree mp-
QP problem is known to be hard to solve. In order to address the complexity
arising from the scenario tree, we propose to decompose the scenario tree into
sub-problems. Finally the Progressive Hedging Algorithm (PHA) will be con-
sidered for the satisfaction of the non-anticipativity constraints developed from
the scenario decomposition, (the PHA algorithm assures convex convergence
for the sub-problems).

4. In this framework, the ultimate goal is to compare the computational com-
plexity of the parallel evaluation of the PHA algorithm for Central Processing
Unit (CPU) and Graphical Processing Unit (GPU).

1.3 Publications

Accepted publications:

• R. Koduri, P. Rodriguez-Ayerbe and S. Olaru, Robustness margin for piecewise
affine explicit control law, IEEE 55th Conference on Decision and Control
(CDC), 2016. url: http://ieeexplore.ieee.org/document/7798610/
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• R. Koduri, P. Rodriguez-Ayerbe, S. Olaru and M. Hovd, Explicit robustness
margin for contractive piecewise affine control laws, 20th International Con-
ference on System Theory, Control and Computing (ICSTCC), 2016. url:
http://ieeexplore.ieee.org/document/7790767/

• R. Koduri, S. Olaru and P. Rodriguez-Ayerbe, Sensitivity of Piecewise Control
Laws with Respect to Perturbation of the State-Space Partition, 21st Interna-
tional Conference on Control Systems and Computer Science (CSCS), 2017.
url: http://ieeexplore.ieee.org/document/7968537/

• R. Koduri, S. Olaru and P. Rodriguez-Ayerbe, On the Precision in Polyhe-
dral Partition Representation and the Fragility of PWA Control, 56th IEEE
Conference on Decision and Control, 2017.
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• R. Koduri, H. Shukla and C. Jones, PWA function evaluations on CPU and
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Chapter 2

Background Theory
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The purpose of this chapter is to present some of the fundamental definitions, con-
cepts and notations which will be used throughout the thesis. The convex sets,
convex optimization and their applications in the constrained control theory are
well explained and presented in [Lei81, BV04]. The commonly used set theoretic
operators in this thesis are defined as well as their applications ranging from con-
structing the control law to analyzing the robustness of the control law. Next, the
definitions of the positively invariant sets and contractive sets subject to constraints
are presented. Linear Model Predictive Control (LMPC) and its advantages over the
classical linear controllers is briefly discussed along with its structural properties.
The construction of the MPC with the terminal set and terminal cost function is
summarized in this chapter. Finally, the explicit MPC is introduced with an exam-
ple and the implementation of explicit controllers on real-time application is also
briefly explained.
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2.1 Convex Sets and Convex functions

A set P is called a convex set if for any two points x, y ∈ P , their convex combination
is a point in P . Formally, the line segment between these points can be expressed
as a subset of P :

{γx+ (1− γ)y|x, y ∈ P and ∀γ ∈ [0, 1]} ⊂ P . (2.1)

Given a finite set of points x1, · · · , xd in a convex set P , then the set P must contain
any convex combination, the convex combination of those points can be expressed
as:

x =
d∑
i=1

γixi s.t ∀γi ≥ 0 and
d∑
i=1

γi = 1. (2.2)

The term ∑d
i=1 γixi in (2.2) is called a convex combination.

Let x1, · · · , xd be an arbitrary set of points, then the convex hull of these finite
points is the set obtained by taking all the possible convex combinations,

conv{x1, · · · , xd} =
{ d∑
i=1

γixi s.t ∀γi ≥ 0 and
d∑
i=1

γi = 1
}
. (2.3)

Here, conv denotes the convex hull.
Definition 2.1.1 A function f : P ∈ Rn → R defined over a convex set P is said
to be a convex function if for any x, y ∈ P and γ ∈ [0, 1], then

f(γx+ (1− γ)y) ≤ γf(x) + (1− γ)f(y). (2.4)

Definition 2.1.2 A function f : P ∈ Rn → R is said to be a strictly convex function
if for any x, y ∈ P and γ ∈ [0, 1], then

f(γx+ (1− γ)y) < γf(x) + (1− γ)f(y). (2.5)

Definition 2.1.3 Let P be a symmetric convex set in Rn, then a function MP(x)
is called a Minkowski functional of P, if

MP(x) = inf{γ ∈ R+| x ∈ γP}. (2.6)
Lemma 2.1.1
Let P be a convex set containing 0 as an interior point. Then the Minkowski func-
tional MP of P satisfies [Lue97]:
- MP is continuous,
- MP is piecewise linear 1,
- ∞ >MP(x) ≥ 0,∀x ∈ X ,
- MP(αx) = αMP(x), for α > 0,
- MP(x1 + x2) ≤ MP(x1) + MP(x2).

Note:
i) Let Ri, i ∈ Id be a finite collection of convex sets, then their intersection R =
∩i∈IdRi is also convex.
ii) Let R be a convex set, then γR is also convex for all γ ∈ R.

1A piecewise linear function is a real-valued function defined on the real numbers, whose graph
is composed of straight line sections.
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2.2 Set theoretic definitions

Definition 2.2.1 Given two sets P ∈ Rn and Q ∈ Rn,
- the intersection, denoted by P ∩Q, of P and Q is defined as

P ∩Q = {x ∈ Rn|x ∈ P and x ∈ Q}.

– the union, denoted by P ∪Q, of P and Q is defined as

P ∪Q = {x ∈ Rn|x ∈ P or x ∈ Q}.

– the set difference, denoted by P \ Q, of P and Q is defined as

P \ Q = {x ∈ P|x /∈ Q}.

Definition 2.2.2 Given two sets P ∈ Rn and Q ∈ Rn, the Minkowski sum, denoted
by P ⊕Q, of P and Q is defined as the set

P ⊕Q = {p+ q| p ∈ P , q ∈ Q}.

Definition 2.2.3 Given two sets P ∈ Rn and Q ∈ Rn, the Pontryagin Difference,
denoted by P 	Q, of P and Q is defined as the set

P 	Q = {x ∈ Rn| x+ ψ ∈ P , ∀ψ ∈ Q}.

Definition 2.2.4 Given a polyhedron P the orthogonal projection mapping of a set
P ⊂ Rc1 onto a subspace Rc1 ⊆ Rc2 for c1 > c2 is defined as

ProjRc2 P = {x ∈ Rc2|∃y ∈ Rc1−c2, s.t.
[
x
0

]
+
[
0c2
y

]
∈ P}. (2.7)

here, the projection mapping will be considered to operate on the first c2 coordinates
of Rc1.

Note:
i) The intersection of two or more convex sets is also convex.
ii) The set difference between/among two or more convex sets is not convex.
iii) The Minkowski sum of two or more convex sets is also convex.
iv) The Pontryagin Difference between/among two or more convex sets is also con-
vex.
iv) The orthogonal projection of a convex set onto a subspace is also convex.

2.3 Polyhedra and Polytope

Definition 2.3.1 A hyperplane is defined as the set {x ∈ Rn| cTx = γ s.t γ ∈
R, c ∈ Rn} and is the set of all points in Rn that divides Rn into two half-spaces.
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Definition 2.3.2 A half-space is given by the set {x ∈ Rn| cTx ≤ γ s.t γ ∈ R, c ∈
Rn} which characterizes all the points lying on one side of the hyperplane {x ∈
Rn| cTx = γ}.

Definition 2.3.3 A convex polyhedron is the intersection of a finite number of open
or closed half-spaces.

Such a definition is called half-space representation or simply H-representation of
the polyhedron.

Consider a polyhedron P whose closed half-spaces can be written as a system of
linear inequalities,

P = {x ∈ Rn|Ax ≤ b}. (2.8)

A bounded polyhedron can also be defined as a convex hull of finite set of points
x1, · · · , xd

P = conv{x1, x2, · · · , xd} (2.9)

and such a representation is called vertex representation or V-representation.

Definition 2.3.4 A closed and bounded polyhedron is called a polytope.

Definition 2.3.5 A point x in a polyhedron P is called an extreme point of P if it
can be represented as strict (0 < γ < 1) convex combination of two distant points in
P.

Definition 2.3.6 A set P ⊂ Rn is called a proper C-set if it is convex, closed,
compact and contains the origin in its interior.

Definition 2.3.7 A set P ∈ Rn is called a compact set if and only if the set P is
closed and bounded.

Notations: For a given set P ,
−int(P) denotes the interior of P .
−bd(P) denotes the set of points which lies on the boundary of the set P .
−ext(P) denotes the set of extreme points of the set P .
−Card(P) denotes the cardinal number of P .
−V(P) denotes the set of its vertices.

Proposition 2.3.1
Let P be a compact set, then the following statements hold:
- A closed subset of a compact set is also a compact set.
- A finite union of compact sets is compact.
- A finite intersection of compact sets is also compact.
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2.4 Linear Systems

In this section, we briefly describe the different classes of linear systems which are
very commonly used for practical applications.
Consider a linear discrete-time time-invariant systems with no input. Such a dy-
namical system is commonly denoted as autonomous system,

xk+1 = Axk (2.10a)
yk = Cxk (2.10b)

Next, consider a linear discrete-time time-invariant system with input variables,

xk+1 = Axk +Buk (2.11a)
yk = Cxk (2.11b)

and the counterpart affected by additive disturbance,

xk+1 = Axk +Buk + wk (2.12a)
yk = Cxk (2.12b)

Similarly, the state-space dynamical systems subject to probabilistic disturbances
will be denoted as follows,

xk+1 = Axk +Buk + Edk (2.13a)
yk = Cxk (2.13b)

this case is mainly employed in Chapter 6.

In Eq (2.10)-(2.13), xk ∈ Rn denotes the system state at time k, uk ∈ Rm denotes
the input variables, yk ∈ Rny denotes the output variables, wk ∈ Rnw denotes the
additive disturbances and dk ∈ Rnd denotes the probabilistic disturbance variables.
The matrices A ∈ Rn×n, B ∈ Rn×m, C ∈ Rny×n and E ∈ Rn×nd are given with
appropriate dimensions.

The states, control variables, additive disturbances and probabilistic disturbances
are subject to constraints :

xk ∈ X ⊂ Rn, uk ∈ U ⊂ Rm, wk ∈ W ⊂ Rnw , dk ∈ D ⊂ Rnd (2.14)

The state constraint set X , input constraint set U , bounded additive disturbances
set W and the probabilistic disturbances set D are proper C-sets.

A special class of linear discrete-time system subject to parametric uncertainty, input
constraints and state constraints will be of interest in Chapter 4. It is expressed as
follows:

xk+1 = Axk +Buk, (2.15)

where [A B] belongs to a polytopic uncertainty set Ω

Ω = conv{[A1 B1], · · · , [AL BL]}. (2.16)
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The polytopic nature of the uncertainty means that any [A B] ∈ Ω can be expressed
as:

[A B] =
L∑
i=1

γi[Ai Bi], (2.17)

for γi ≥ 0,∀i ∈ IL and ∑L
i=1 γi = 1. The system states and control variables are

subject to constraints:

xk ∈ X ⊂ Rnx , uk ∈ U ⊂ Rnm .

The state and control constraints sets X ,U are proper C-sets.

2.5 Set Invariance

Set invariance in constrained control problem has been extensively studied and de-
veloped in the past few decades [Bit88b, VB89, Bla99]. Set invariance in control
theory is widely used for restricting the state dynamics in a subset (of a state con-
straint set) for any admissible2 control input. Here, the admissible control input
indicates the control law that satisfies the relevant control constraints while keeping
the state trajectories in a precomputed subset. Remarkable results on admissible set
and feedback control law for discrete-time linear system subject to bounded input
and state constraints were presented in early 1980’s [GC86,Bit88a,BV95].

The computation of the invariant set has been further extended to uncertain dy-
namical system (2.17) with constrained control input [GG85]. The author of this
paper [San94] presented a positively invariant sets for discrete-time system with
disturbance of the form (2.13). These days, the inclusion of the invariant set for
a constrained control (generally based on LP or QP) for any classes of dynamical
system (linear or non-linear) with or without disturbances is very common. The
purpose of incorporating the invariant set in the control synthesis is to keep the
future trajectories inside the subset if the initial state belongs to that set.

In the following, we define the invariant sets for different classes of linear dynamical
systems:

Definition 2.5.1 A set P ⊂ X is called positively invariant with respect to the
system (2.10) if for all xk ∈ P, it follows Axk ∈ P, ∀k ∈ N≥0.

Definition 2.5.2 A set P ⊂ X is called controlled positively invariant with respect
to the system (2.11) in closed loop if there exists a feedback control law u∗k such that
for all xk ∈ P then Axk +Bu∗k ∈ P, ∀k ∈ N≥0.

Definition 2.5.3 A set P ⊂ X is called robustly controlled positively invariant with
respect to the system (2.12) in closed loop if there exists a feedback control law u∗k
such that for all xk ∈ P and wk ∈ W, the solution is such that Axk +Bu∗k +wk ∈ P,
∀k ∈ N≥0.

2admissible control input indicates the control law satisfies the relevant control constraints
besides keeping the state trajectories in a precomputed subset.
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2.6 Contractive Sets

The inclusion of the invariant set in control design does not necessarily ensure the
convergence of the future trajectories to the origin. It should also be noted that there
are systems, which tends to exhibit oscillating dynamics or limit cycles. For such
systems, the addition of invariant set keeps the future trajectories inside the feasible
set but the convergence of the state trajectories to the origin is not guaranteed by
the simple existence of invariant set. These drawbacks of the invariant set can be
overcome by considering a particular kind of invariant sets called contractive sets.

An interesting result on the construction of contractive sets for a discrete-time linear
system was presented in [DH99]. The results are based on iterative procedure with
respect to the bounded state and input constraint sets. This iterative procedure
to compute the contractive set is further investigated with the results published
in [HOB14]. In this work, the construction of the set is based on the eigenvectors
of the system matrix A. Such contractive sets are used in this thesis to analyze the
robustness margin for uncertain system which can be observed in Chapter 4.

In the following, we will extensively use the contractive set for different classes of
linear system based on the following definitions.

Definition 2.6.1 A C-set P ⊆ X is called λ-contractive for a discrete-time system
of the form (2.10) with contraction factor λ ∈ [0,1) if ∀xk ∈ P then Axk ∈ λP,
∀k ∈ N≥0.

Definition 2.6.2 A C-set P ⊆ X is called controlled λ-contractive with respect to
the system (2.11) and a contraction factor λ ∈ [0,1) if and only if there exists an
admissible control law u∗k, such that ∀xk ∈ αP then Axk + Bu∗k ∈ λαP, ∀α ∈
[0, 1], ∀k ∈ N≥0.

2.7 Model Predictive Control

Model predictive control (MPC) also referred to as receding horizon control is the
most popular control algorithm technique besides the conventional controllers such
as proportional integral derivative controllers (PID controllers). But unlike the PID
controllers which are often used to stabilize single-input single-output (SISO) sys-
tem, MPC has the ability to deal with multi-input multi-output (MIMO) dynamical
systems. The constraints on the system states, inputs and outputs are naturally con-
sidered at the design stage on the MPC compared to the PID controllers. These
advantages of the MPC over PID controller makes it widely acceptable and it has
been adopted in a wide range of fields including automation, electrical and chemical
industries. The objective of the MPC is to compute an optimal control sequence
over its horizon by solving an optimization problem for each time step. For linear
prediction models, the optimization problem consists of a Linear Programming (LP)
or Quadratic Programming (QP) problem incorporated with the future dynamics
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of the system states, which are predicted with the help of a system model based on
the current state measurements.

Functioning of Model Predictive Control:

In MPC, a popular term called prediction horizon is the horizon over which the
future states of the system are predicted using a mathematical model. The working
principle of the MPC is described below,

1. Starting from the current state measurement, the future dynamics of the sys-
tem are predicted over the prediction horizon.

2. Define an optimization problem with the future system dynamics and taking
the constraints on the states and inputs variables into consideration.

3. The optimization problem is solved for the optimal control sequence over the
horizon.

4. Only the first element in the control sequence is applied to the real plant and
the remaining elements in the control sequence can be discarded.

5. Recede the horizon (prediction window) to the next time step all by restarting
the procedure from step 1.

2.7.1 Mathematical Formulation of MPC

Let us consider a linear discrete-time system given by,

xk+1 = Axk +Buk (2.18a)
yk = Cxk (2.18b)

The system state and input variables are subject to constraints,

X = {x : Hxx ≤ hx, Hx ∈ Rpx×n, hx ∈ Rpx}, and (2.19a)
U = {u : Huu ≤ hu, Hu ∈ Rpu×m, hu ∈ Rpu}. (2.19b)

where the matrices Hx, Hu and the vectors hx, hu are assumed to be constant, and
X ⊂ Rn and U ⊂ Rm. Based on these definitions it becomes clear that the state
and input constraints sets X and U are polyhedral sets.
Consider now the quadratic cost function for the standard MPC,

J(xk|k, U∗) = V (xk+Np|k) +
Np−1∑
i=0

L(xk+i|k, uk+i|k) (2.20a)

s.t. xk+i+1|k = Axk+i|k +Buk+i|k, i = 0, · · · , Np − 1 (2.20b)
xk|k = xk (2.20c)

xk+Np|k ∈ Xf (2.20d)
uk+i|k ∈ U , i = 0, · · · , Np − 1 (2.20e)

xk+i|k ∈ X , i = 1, · · · , Np (2.20f)
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Here Np is the length of the prediction horizon. The variables xk+i, uk+i denote
the predicted system state and the control input to be optimized respectively at
time k + i. The state sequence xk+1|k, xk+2|k, · · · , xk+Np|k is predicted using the
model given in (2.20b) based on the state measurements available at time k. Also,
the optimal control sequence obtained from the open-loop optimal control problem
(2.20a) can be written as:

U∗ = [u∗Tk|k, u∗Tk+1|k, · · · , u∗Tk+Np−1|k]T ∈ Rm. (2.21)

The stage cost function is denoted by L(xk+i|k, uk+i|k) and it can take for example
a weighted 2-norm form (often associated with the energy of the respective signal),

L(xk+i|k, uk+i|k) = xTk+i|kQxk+i|k + uTk+i|kRuk+i|k.

In addition, the terminal cost function V (xk+Np|k) taking a similar 2-norm form is
expressed as:

V (xk+Np|k) = xTk+Np|kPxk+Np|k.

Alternatively, the stage and terminal cost functions taking an 1/2/∞-norm form is
usually expressed in the form:

L(xk+i|k, uk+i|k) = ||Qxk+i|k||p + ||Ruk+i|k||p,

V (xk+Np|k) = ||Pxk+Np|k||p,
here p=1/2/∞.

J(xk, u∗k) is the resulting optimal cost function. The weight matrices Q = QT ≥ 0
and P =P T ≥ 0 are positive semi-definite matrices, and R = RT > 0 is a positive
definite matrix which defines the performance index of the optimization problem.
The stability of the nominal MPC problem is ensured by placing a terminal con-
straint set Xf on the final state xNp given in (2.20d) and by adding the terminal
cost function V (xk+Np|k) to the optimization problem [MRRS00].

The terminal constraint set Xf and terminal cost function V (xk+Np|k) in the opti-
mization formulation (2.20) are used to ensure the recursive feasibility and subse-
quently the stability of the nominal closed-loop system x(k+1) = Ax(k) + Bu∗k over
the feasible domain of the optimization problem (2.20). One of the practical con-
structions of terminal constraint is a positively invariant set Xf and this is achieved
by adding the constraint xNp ∈ Xf to the problem (2.20). The terminal weight P
is chosen as the solution of the Algebraic Riccati equation given with the system
matrix pair (A,B) and the weights (R,Q),

P = (A+BKLQR)TP (A+BKLQR) +KT
LQRRKLQR +Q, (2.22)

here KLQR is the Linear Quadratic Regulator (LQR) gain,

KLQR = −(R +BTPB)−1BTPA. (2.23)

In summary, starting from the measured state at time k, MPC solves the following
optimization problem,

U∗ = argmin
u
J(xk|k, U∗)

subject to (2.20b)-(2.20f). From the optimal control sequence (2.21), only the first
control u∗k|k is applied to the dynamical system or real plant. The procedure is
repeated with the next measured state.
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2.8 Explicit Model Predictive Control

In recent years, Explicit MPC [AB09,BMDP02,TJB03,RAO13,GJ12,OD04,OD05,
SGDD03] has gained attention for its on-line functioning as evaluation of simple
algebraic expressions. The central idea of EMPC is to transform the standard MPC
optimization (2.20) to a multi-parameter programming problem. Such MPC prob-
lem posses a piecewise affine structure. In order to define the EMPC problem as
multi-parametric Quadratic programming (mp-QP) problem, we try to transform
the standard optimization problem, for the nominal linear time-invariant system

xk+1 = Axk +Buk

subject to the state constraint set X , control input constraint set U and the terminal
set Xf , (2.20) to a mp-QP problem taking the form,

J(x, U) = min
U

1
2U

THU + xTFU + xTY x, (2.24)

here x = xk and U = [uk, uk+1, · · · , uk+Np−1]T .

With respect to the constraints,

GU ≤ Ex+W (2.25)

Starting from the cost function (2.20a) taking a 2-norm form,

J(xk, U∗) = xTk+Np|kPxk+Np|k +
Np−1∑
i=0

[xTk+i|kQxk+i|k + uTk+i|kRuk+i|k]. (2.26)

The above cost function for the dynamical system (2.20b) can be expressed as:

J(xk, U∗) = XT
k QXk + xTkQxk + UTRU (2.27)

here
Xk = [xk+1|k, · · · , xk+Np|k]T

And Xk can be written in the form,

Xk = Axk +BU (2.28)

here, U = [uk|k, · · · , uk+Np−1|k],

A =


A
A2

...
ANp

 ∈ RnNp×n, B =


B 0 · · · 0
AB B · · · 0

... . . . ...
ANp−1B · · · · · · B

 ∈ RnNp×mNp

Q =


Q

. . .
Q

P

 ∈ R(nNp)×(nNp) and R =


R

R
. . .

R

 ∈ R(mNp)×(mNp).
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Substituting (2.28) in (2.27), we obtain:

J(xk, U) = (Axk +BU)TQ(Axk +BU) + xTkQxk + UTRU (2.29)

Rewriting (2.29) to

J(xk, U) = xTk (ATQA+Q)xk + 2xTkA
T
QBU + UT (R +B

T
QB)U (2.30)

Now equating (2.24) to (2.30), we have:

H = R +B
T
QB ∈ RmNp×mNp

Y = A
T
QA+Q ∈ Rn×n

F = 2ATQB ∈ Rn×mNp

Similarly the constraints (2.20d)-(2.20f) and the predicted output variable yk+i|k can
be transformed to the form given in (2.25).

Solving the mp-QP problem (2.24) with the constraint set (2.25) yields a finite set
of affine functions defined over the polyhedral partition of the parametric set R,
where PN(R)= [R1,R2 · · ·RN ] is called the polyhedral partition of the set R. The
polyhedral setsRi ⊂ Rn are called critical regions or components of the partition and
correspond to the activation of a particular subset of constraints in the optimization
problem. The polyhedral regions Ri are non overlapping i.e., int(Ri) ∩ int(Rj) =
∅, for i 6= j. The non-overlapping property ensures the unique solution for the state
xk ∈ Ri, ∀i ∈ IN . Two neighboring regions Ri and Rj share some vertices or facets
and thus the optimal solution over the set R enjoys continuity properties.

Definition 2.8.1 A mapping function

fpwa : Rn → Rm, fpwa(x) = Aix+ bi,∀x ∈ Ri, i ∈ IN (2.31)

defined over the polyhedral partition of the set R is called a piecewise affine function
on the polyhedral partition.

Theorem 2.8.1 [BMDP02] Consider the multi-parametric quadratic programming
problem (2.24), the constraint set (2.25) and let H > 0. Then the set of feasible
parameters R is a closed and bounded convex set, the optimizer function U∗ : R →
Rm is continuous and piecewise affine.

Theorem 2.8.2 [BMDP02] Consider the piecewise affine function defined over
the polyhedral partition of the set R. Then the set R is closed and bounded, the
polyhedral regions Ri, i ∈ IN are closed, bounded and non empty sets, the regions
are non overlapping int(Ri) ∩ int(Rj) = ∅, for i 6= j, i, j ∈ IN .

The proof for the continuity of the piecewise affine controller and the convexity of
the set R are shown in [BMDP02] and is not recalled here.

The explicit control law or the state feedback PWA control law, solution of (2.20),
is synthesized in terms of the piecewise affine function defined over the polyhedral
partition of the set R and it can be described by

upwa(xk) = Fixk + gi, ∀xk ∈ Ri. (2.32)
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where Ri ={x | Hix ≤ wi}, i ∈ IN , Fi ∈ Rm×n and gi ∈ Rm.

By substituting the piecewise affine state feedback control law (2.32) in the equation
(2.18), we obtain

xk+1 = (A+BFi)xk +Bgi, ∀xk ∈ Ri, i ∈ IN . (2.33)

To illustrate the explicit MPC, consider this linear time-variant system:

xk+1 =
[
1.2 0
0.5 1

]
xk +

[
1
0

]
uk,

yk = [1 0]xk.

The input and output variables are subject to constraints:

−5 ≤ yk ≤ 5 and − 5 ≤ uk ≤ 5

The input and state weighing matrices are given as follows:

Q =
[
1 0
0 1

]
and R = 1.

The positively invariant set Xf (Xf is the polytopic approximation of the maximal
admissible ellipsoidal invariant set obtained with infinite horizon) is chosen to be
the terminal set for the optimization problem. The terminal matrix P computed
from the Algebraic Riccati equation (2.22) is given below as:

P =
[
3.456 2.111
2.111 4.085

]

The length of the prediction horizon chosen is 5, and the constrained finite time
optimal control problem for the discrete time system is rewritten as follows:

J(xk, U∗) = xTk+5|kPxk+5|k +
4∑
i=0

[xTk+i|kQxk+i|k + uTk+i|kRuk+i|k].

The cost function matrices H,Y and F computed from (2.30) are as follows:

H =


162.126 116.136 79.562 49.599 25.667
116.136 88.211 59.606 37.519 19.635
79.562 59.606 44.977 27.453 14.599
49.599 37.519 27.453 21.064 10.407
25.666 19.635 14.599 10.400 8.913


Y =

[
140.827 26.557
26.557 9.085

]
and F =

[
210.914 152.047 103.508 64.095 32.912
37.524 25.366 16.067 9.151 4.222

]
Now solving the mp-QP problem with all these informations mentioned above and
the constraint set (2.25), we obtain state feedback piecewise affine controller defined
over the state-space partitions. The state partitions and the piecewise affine con-
troller are illustrated in the Figure 2.1. The red polytope in the center of the set R
represents the terminal set Xf and it is shown in Figure 2.1a. Note: Only the first
optimal control input uk|k from the optimal control sequence U is defined over the
state space partitions and it is illustrated in the Figure 2.1b.
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H (a) Polyhedral partition for Np = 5. (b) Piecewise affine controller.

Figure 2.1: An illustrative example for explicit model predictive control.

2.8.1 Real-time implementation of EMPC solutions:

The optimal solution of the explicit controllers, as mentioned before, is a simple
algebraic expression. But, the computational complexity of the explicit controllers
increases with the number of the controllers defined over the state space. For small
number of controllers, finding the region that contains the given state x is compu-
tationally faster than solving a QP problem for the standard MPC for the optimal
control input with the measured state. This advantage of the explicit controller has
increased the attention in a wide range of fields.
Such controllers can be easily implemented on FPGA’s or micro-controller chips.
For example consider the dynamical example mentioned above. The solution set
of the explicit controller consists of 39 continuous and piecewise affine controllers
defined over 39 bounded polyhedral regions.
The optimal control input for the above dynamical system is given as follow:

upwa(xk) =


F1xk + g1 if xk ∈ R1
F2xk + g1 if xk ∈ R2

...
F39xk + g39 if xk ∈ R39



Definition 2.8.2 Consider x ∈ R and the polyhedral partitions R = ∪Ni=1Ri, then
the point location function of the polyhedral partition of R is given by,

i(x) = min
i

i s.t x ∈ Ri. (2.34)

In order to implement the explicit solutions on FPGA’s or micro-controller for any
real-time applications, the following procedure has to be followed:

1. Off-line: Store all the polyhedral regions Ri, the PWA control gains Fi and
the constant components gi in the memory unit of the micro-controllers.
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2. On-line: The point location function is employed to find the polyhedral regions
for the given parameter x. The position of the region that contains x is given
by i(x).

3. On-line: Evaluate the PWA control law upwa(xk) = Fi(xk)xk + gi(xk) based on
the current state xk.

The step 2 of this procedure is the one which deserves a careful implementation. Sev-
eral methods have been proposed in the literature, from sequential search [TJB02],
to binary search trees [TJB03], hash trees [BJJ12] or alternative solutions based on
the resolution of a simple LP problem [NOBRA14].

2.9 Tools for multi-parametric programming

The multi-parametric programming emerged at the beginning of the years 2000 and
has been accompanied by several numerical implementations available under differ-
ent free or commercial packages. In the present thesis, the main package used in
this respect is MPT Toolbox. MPT Toolbox was developed by a team of researchers
leaded currently by M. Kvasnica and is publicly available [HKJM13]. The objective
of this toolbox is to allow researchers/students to solve parametric programming
problems in the Matlab environment. The toolbox covers a wide range of optimiza-
tion solvers such as QP solvers, mp-QP solvers and allows the specification of dy-
namical models as either linear models, linear with parameter uncertainties, Hybrid
system and allows different problem formulations as MPC, dynamic programming
etc. The set theoretic operators such as set difference, intersection, Minkowski sum
and etc. are also available in the toolbox. Throughout this thesis work, we use this
toolbox extensively in order to solve the multi-parametric Quadratic Programming
problem for explicit MPC but also as basic tool for polyhedral manipulation.

2.10 Conclusion

In this chapter, some of the fundamental definitions and notations of the convex sets,
polyhedra and linear systems have been presented. A brief introduction on the set
invariance theory and contractive sets has been presented with the definitions of the
invariant set and contractive set for different classes of linear discrete-time systems.
The objective, advantages, working principle and construction of the linear MPC
have been briefly discussed. The transformation of the QP cost function of the MPC
problem into mp-QP for the explicit MPC has been briefly explained. The toolbox
that will be used extensively throughout this thesis has been also introduced.
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Robustness margins for piecewise
affine explicit control law

Contents
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.3 Gain Margin . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.3.1 Problem Formulation . . . . . . . . . . . . . . . . . . . . 26
3.3.2 Construction/Constructive results . . . . . . . . . . . . . 28
3.3.3 Computation results . . . . . . . . . . . . . . . . . . . . . 29
3.3.4 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.4 First order neglected dynamics . . . . . . . . . . . . . . . 39
3.4.1 Problem Formulation . . . . . . . . . . . . . . . . . . . . 40
3.4.2 Construction of vertex representation for the augmented

state . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.4.3 Controller for extended state system . . . . . . . . . . . . 41
3.4.4 Admissible set for the first order neglected dynamics: . . . 42
3.4.5 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.1 Introduction

Classical robustness margins i.e., gain margin and phase margin, consider the gain
variation and phase variation of the model for which the stability of the closed loop
is preserved. The gain margin and phase margin have been in use for decades to
understand the closed-loop behavior of any linear system given in the form of trans-
fer functions [Oga01]. Such margins are also used to study the degree of robustness
to process variations and model uncertainties [Oga01]. From the analysis point of
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view, it is important to take into account the capacity of the control law to cope with
disturbances, neglected dynamics or uncertain parameters. This characteristics is
termed in control theory as robustness of the controller. In the context of robustness
analysis of explicit PWA controller, very few contributions have been made. Few
noticeable works include an analysis procedure proposed in [ONB+13, NOBRA14]
handling the robustness/fragility of the positive invariance for the dynamics affected
by uncertain parameters. On the other hand, there is a substantial work on the
robustification of the explicit controllers. The reference [RAO13] shows how to im-
prove the robustness of the controller taking disturbances into account in the design
phase. In a different perspective [PFKP09] presented a robust explicit predictive
control synthesis approach which accounts for uncertainties based on dynamic pro-
gramming. The authors of [dlPBF04] show how the approximate multi-parametric
programming problem can be implemented as robust MPC controller for linear sys-
tems with polytopic uncertainty. M.V Kothare et al [KBM96] incorporate the plant
model/polytopic uncertainty in the description of robust MPC problem formulation
involving LMI (Linear Matrix Inequalities) for robustly stabilizing the set of uncer-
tain plants. However, these last developments can be considered mainly as robust
design methodologies and not as robustness analysis tools ”per se”.

In this chapter, we consider the inherent robustness properties of an existing ex-
plicit predictive control described as piecewise affine (PWA) control law for a class
of linear discrete-time systems. First, we present a numerical method to compute
a gain margin set for a discrete-time system stabilized by a continuous PWA affine
dynamics with respect to the invariance property. The desired gain margin set is a
polytope which characterize the variations of system gains preserving the invariant
characteristics of the closed-loop. Second, we analyze the dynamic system affected
by first order neglected dynamics. The robustness margin of the controller against
first order neglected dynamics correspond to a set characterizing the neglected dy-
namics parameters preserving the invariance property.

3.2 Preliminaries

Let us introduce some matrices which will be used to store the vertices (elements
of the polyhedral regions) of the polyhedral sets Ri and their corresponding local
control laws. These matrices are used throughout this chapter for the problem
formulation.

Consider a polyhedral partition of the set R = ∪Ni=1Ri. The vertex representation
of the polyhedral sets R and Ri are given by,

R = conv{w1, w2 · · ·wr}, (3.1a)
Ri = conv{wi1, wi2 · · ·wiri}, i = 1 · · ·N. (3.1b)

A matrix W ∈ Rn×r will be used to store the vertices of the polyhedron R ⊂ Rn.
An illustration of the polyhedron R is depicted in Figure 3.1.

W = [w1, w2, · · · , wr]. (3.2)
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Figure 3.1: Illustration of the set R with its vertices.

Here, r represents the number of vertices in the set R. We introduce a matrix V

Figure 3.2: Illustration of the set Ri with its vertices

∈ Rn×
∑N

i=1 ri to store the vertices of all the partition in the state space Ri ⊂ R,
∀i ∈ IN .

V = [w11, w12, · · · , wiri , · · · , wNrN ]. (3.3)

An illustration of the polytope Ri is shown in Figure 3.2 with its member vertices
and for this particular example the matrix V has 2 rows and 52 columns. As stated
before, neighboring partitions have vertices in common, and therefore, the repeated
vertices are removed from the matrix and therefore V contains non-identical column
vectors.

V = [w1, w2, · · · , wp] ∈ Rn×p, (3.4)

where, p denotes the number of distinct vertices within the partition. With the help
of affine mapping f(x(k)) = upwa(x(k)), a matrix U ∈ Rm×p is used to store the
control input for each column vector of the matrix V .

U = upwa(V ). (3.5)
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3.3 Gain Margin

In this section, we examine the effect of the gain modification with respect to the
closed-loop characteristics obtained with the piecewise affine explicit control law.

3.3.1 Problem Formulation

This subsection presents the formulation of a robustness measure in terms of a mp-
QP problem. The criterion is the robustness margin notion which is understood as an
allowable gain margin of a closed-loop PWA control law. The problem statement of
the gain margin in closed-loop is given in the equations below and is also illustrated
in Figure 3.3.

x(k + 1) = Ax(k) +B(Im + diag(δK))upwa(x(k)) (3.6a)
upwa(x(k)) = Fix(k) + gi (3.6b)

Figure 3.3: Representation of Gain Margin in closed-loop

In the following, we describe the gain margin set for the system (3.6a) stabilized
with the help of a state feedback explicit control law (3.6b). The construction of
the gain margin set will be based on vertex representation of the regions forming
the partition R.

Definition 3.3.1 Consider a discrete time linear system (3.6a) with a continuous
PWA control law (3.6b), such that the set R in the state-space is positively invariant.
The Gain Margin is represented by the set K ⊂ Rm, for which x(k + 1) = Ax(k) +
B(Im + diag(δK))upwa(x(k)) ∈ R, ∀x(k) ∈ R and δK ∈ K ⊂ Rm.

The set K ⊂ Rm is a set which contains the input channels gain variations δK such
that for any point inside the set K, the invariance characteristics of the set R is
preserved.

Theorem 3.3.1 Consider a discrete-time linear system (3.6a) with full column rank
B and a piecewise affine state feedback control law defined in (3.6b). The gain margin
K of the controller is represented by the set,

K = ∩pq=1Kq (3.7)
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Where K represents the gain margin set and Kq the local gain margin for the vertex
wq for some q ∈ Ip.

Proof 3.3.1 Starting from the PWA closed loop dynamics assuring the invariance
of the set R given by,

x(k + 1) = Ax(k) +Bupwa(x(k)) ∈ R (3.8)

with the addition of δK in (3.8), ∀δK ∈ K we obtain:

x(k + 1) = Ax(k) +B(Im + diag(δK))upwa(x(k)) ∈ R. (3.9)

It is also possible to exploit the structure of the PWA closed-loop dynamics, by intro-
ducing the parametric variations on the control gains preserving the invariance and
boundedness properties of the controller. Suppose that û = upwa(x(k)) + δu, where
the term δu ∈ Rm describes admissible control input variations,

x(k + 1) = Ax(k) +Bupwa(x(k)) +Bδu ∈ R. (3.10)

By relating (3.9) and (3.10) we obtain:

Ax(k) +Bupwa(x(k)) +Bδu =
Ax(k) +B(Im + diag(δK))upwa(x(k)).

(3.11)

Actually,
B(upwa(x(k)) + δu) = B(Im + diag(δK))upwa(x(k)). (3.12)

And, considering B full column rank, we obtain:

upwa(x(k)) + δu = (Im + diag(δK))upwa(x(k)). (3.13)

By rewriting (3.13), by analogy to each column vector of the matrix V , ∀q ∈
Ip(vertices in Ri), we obtain:

δuq = diag(δKq)upwa(wq). (3.14)

The admissible input δuq belongs to a set ∆Uq ⊂ Rm and δKq ∈ Kq. A matrix
Mq = diag(upwa(wq)) ∈ Rm×m is uniquely defined based on the value of the control
action upwa(wq) such that

∆Uq ⊇MqKq. (3.15)

Exploiting the polyhedral structure of the admissible input variations,

∆Uq = {u : |Ĥuu ≤ ĥu}, (3.16)

where Ĥ ∈ Rdu×m and ĥ ∈ Rdu one can obtain the local set of gain variation for the
vertex wq as:

Kq = {z ∈ Rm|∃u ∈ ∆U ,Mqz = u}. (3.17)
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Equation (3.17) leads to:

Kq = {z ∈ Rm|ĤuMqz ≤ ĥu}. (3.18)

Finally,
K = ∩pq=1Kq. (3.19)

The collection of sets Kq are independent of each vertex of the set in Ri and the
intersection of these independent sets gives the global set K. In order to compute
Kq, we first need to compute explicitly the sets ∆Uq.

Corollary 3.3.1 The set K representing the gain margin is not empty.

Proof 3.3.2 Even if no control gain variation is admissible in (3.9), the null vector
0m ∈ K is admissible as long as it corresponds to the set invariance of the original
PWA control law.

3.3.2 Construction/Constructive results

In this subsection, a description for the ∆Uq set is constructed based on forward
mapping of the vertex in the PWA partition.
Theorem 3.3.2 Consider a linear discrete-time system (3.6a) stabilized by a piece-
wise affine control law (3.6b). The set ∆Uq of admissible input variations at the
vertex wq is obtained by

∆Uq = ProjUHq, (3.20)

here, U ∈ Rm denotes the input space. The polyhedral set Hq is described by:

Hq =
{

(δu, γ) ∈ Rm × Rr, and [A B]
[

x(k)
upwa(x(k))

]
+Bδu = Wγ|1Tγ = 1

}
.

(3.21)

Proof 3.3.3 Let us recall the equation (3.10) which resumes the positive invariance
for the set R,

[A B]
[

x(k)
upwa(x(k))

]
+Bδu ∈ R. (3.22)

From the definition of invariance, (3.22) can be expressed using the vertices of the
set R as convex combination and corresponding variables γ = [γ1, γ2, · · · , γr] and
equality constraints 1Tγ = 1 such that

[A B]
[

x(k)
upwa(x(k))

]
+Bδu = Wγ. (3.23)

Remark 3.3.1 The set in (3.20) characterizes input variations guaranteeing the
positive invariance. The control action in itself is not modified but the variations
of the system gain is related to the set defined in (3.20). This is the reason for not
taking into account explicitly the input constraints in (3.21).
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3.3.3 Computation results

Based on the value of the control action upwa(wq), consider the objective of finding
the ∆Uq set for each column vector of the matrix V independently, ∀q ∈ Ip.

Awq +Bupwawq +Bδu = Wγ, (3.24)

here γ = [γ1, γ2, · · · , γr] and 1Tγ = 1 with γi ≥ 0 ∀i ∈ Ir.
Clearly (3.24) can be represented by a system of linear equalities with the variable
vector Γ, where the vector Γ contains the required variable δu along with the variables
[γ1, · · · , γr−1].

Γ = [δu, γ1, γ2, · · · , γr−1] ∈ Rm+r−1, (3.25a)

γr = 1−
r−1∑
i=1

γi, γi ≥ 0. (3.25b)

A linear programming problem with (3.24) and (3.25) as linear equality constraints
can be setup, 


B(1, ·)

...
B(n, ·)

 − Ŵ

Γ = wr − (Awq +Bupwa(wq)), (3.26)

where Ŵ is defined by the notation W = [w1 · · ·wr],

Ŵ = [w1 − wr, · · · , wr−1 − wr] ∈ Rn×r−1.

The system of linear equalities (3.26) is defined in the form HΓ = h, where H ∈
Rn×(m+r−1) and h ∈ Rn×1, and has the solution

Γ = Hzt+ hz, (3.27)

here Hz ∈ Rm is nothing but the orthonormal basis for the null space of matrix
H and hz is a particular solution for the linear programming problem presented in
(3.26). Subsequently, we establish a polyhedral set from the matrices Hz, hz with a
variable t.

The set ∆Uq can be determined by splitting (3.27) in two parts. The first part
corresponds to H(1)

z t + h(1)
z = δu. And recall the non-negativity constraints defined

in (3.25b). A polyhedron is defined with the non-negativity property of the elements
in the solution vector,

Γ(m+ 1 : m+ r − 1) = [γ1, · · · , γr−1].

The polyhedron is given in the form,

H(2) = {t| −H(2)
z t ≤ h(2)

z }. (3.28)

The matrices appearing in (3.27) are related to a decomposition:
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H(1)
z = Hz(1 : m, :),
h(1)
z = hz(1 : m),

H(2)
z = Hz(m+ 1 : m+ r − 1, :) and,
h(2)
z = hz(m+ 1 : m+ r − 1).

And finally the set ∆Uq is nothing but a linear transformation of the set H(2),

∆Uq = H(1)
z H(2) ⊕ h(1)

z . (3.29)

The vertices of ∆Uq are computed by applying the transformation to all the vertices
of the set H(2).

Corollary 3.3.2 The set Kq representing the gain matrix set is polyhedral ∀q ∈ Ip.

Proof 3.3.4 The set Hq and ∆Uq used in the description of Kq are polyhedral and,
by this virtue, Kq inherits this property.

Remark 3.3.2 We note the analogy between the results reported in [NOBRA14]
and (3.20). The work of [NOBRA14] focuses on the computation of fragility margin
which is characterized for the parametric variations in the space of δFi for each
individual region. However, in the present framework we interpret those findings to
compute the variations in the control input for each individual vertex in the set R.

Remark 3.3.3 Regarding the computation of the set K, one needs to solve p LP
problems with a set of linear equations given in (3.26), where p is the number of
non-identical vertices in the set R.

3.3.4 Example

Single Input system:

Consider a linear discrete-time system,

x(k + 1) =
[
1.2 0
0.8 −1.1

]
x(k) +

[
1.0
0.3

]
uk,

yk = [1 0] x(k).

The weighing matrices of the states and input are chosen

Q =
[
1 0
0 1

]
and R = 1

in the problem formation of the open-loop optimal control problem considered for
Explicit MPC.
The prediction horizon chosen is 2 for simplicity of the partition and readability
of the graphical illustrations. The input constraint −5 ≤ uk ≤ 5 and the output
constraint −5 ≤ yk ≤ 5 are given as box constraints. Solving the mp-QP problem

30



Gain Margin

Figure 3.4: Illustration of the Optimal feedback law.

yields 11 controllers. Figure 3.4 shows the optimal feedback law upwa as a function
of the states, the states partition is represented in x and y axis and the feedback
control law imposed over the states is in z axis respectively.

The state partition of 11 resulting regions obtained as the solution of the mp-QP
is presented in Figure 3.5. The state partition is invariant with respect to the
obtained PWA control law and this is because the feasible set R is invariant to the
PWA controller upwa(x(k)). The gain margin set K in (3.7) is computed and the

Figure 3.5: Representation of Polyhedral partition.

value of δK lies in the interval [−0.2178, 0.3051]. For any gain in the set K with
respect to the PWA closed-loop formulation the invariance characteristics of the
controller is preserved. In the Figure 3.6 the state trajectories simulated in closed
loop with δK = 0 for all the vertex entries of the matrix V as initial states are
illustrated. State trajectories are simulated in closed loop with δK value such that
x(k + 1) = Ax(k) + B(1 + δK)upwa(x(k)). Figure 3.7 shows the state trajectories
for δK = 0.3 which is a value inside the computed gain margin and it is observed
that the trajectories are inside the invariant set thus confirming the theoretical
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Figure 3.6: state trajectories for δK = 0.

Figure 3.7: state trajectories for δK = 0.3.

result. From Figure 3.8, it is noticeable that the controller is no more invariant
for δK = −0.25. Next, we simulate the state trajectories and control input for
different gains δK ∈ K in closed-loop. The gains considered for simulations are
δK = 0.3, δK = 0 and δK = −0.2. The state and control simulations for these gains
in closed-loop are illustrated in Figure 3.9. The performance changes with gain
because the response time will significantly vary for different gains. The range of
gain variation that the system can tolerate is also observed from the Figure 3.9.
For the gain δK = 0.3, the state trajectories are converging relatively fast to the
origin whereas the state trajectories for gain δK = −0.2 in closed-loop are slowly
approaching to the origin. The number of time samples taken for the system with
δK = 0.3 in closed-loop to settle to the origin is approximately 22. This performance
can be observed from the subplots in the Figure 3.9. Finally, we compute the gain
margin for the same system dynamics for different prediction horizons and with the
same weight matrices Q and R. The different prediction horizons Np considered
for gain margin analysis are provided in the Table 3.1. The number of regions, the
number of unique vertices in the set Ri, computational time for obtaining the gain
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(a) Full Image of the state trajectories. (b) Zoomed Image of 3.8a.

Figure 3.8: state trajectories for δK = −0.25

Table 3.1: Gain Margin for different prediction horizons

Np
Number of
regions(N)

Number of
vertices(p)

Computational T ime
in seconds

Gain Margin
K

2 11 20 0.3 [-0.2178, 0.3051]
5 43 58 0.97 [-0.1231, 0.1611]
10 137 162 5.4 [-0.0945, 0.1280]

margin set K and the gain margin range for different prediction horizons are also
mentioned in the Table 3.1.

It can be observed that the gain margin set K shrinks with the increase in prediction
horizon. It is a fact that the number of polyhedral regions increases with higher
prediction horizon. The polyhedral partitions for prediction horizon 5 and 10 are
illustrated in the Figure 3.10.

Note: For large prediction horizon the system in closed loop is usually slower and
more robust than those of small ones. Similarly the feasible region is large for
large prediction horizon and the feasible set R for different prediction horizons is
illustrated in Figure 3.11.

From the gain margin analysis, it should be stressed out the fallacious conclusion
that if prediction horizon is large the gain margin will be small as it can be observed
in the previous Table. It is important to recall that the margins are related to dif-
ferent PWA controllers and as a result their domain of validity is different rendering
the comparison of gain margins for different horizon highly dependent on the topol-
ogy of the partition. In order to illustrate that for large prediction horizon the gain
margin is in fact large, we conduct an analysis based on different controller for dif-
ferent state partitions. Let us denote R2 and R10 as the feasible sets for prediction
horizons Np = 2 and Np = 10 respectively. Similarly we denote u2

pwa and u10
pwa as
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(a) State trajectories for the state x1 for different
gains.

(b) State trajectories for the state x2 for different
gains.

(c) Control simulation for different gains.

Figure 3.9: States and control input simulations for different gains.

PWA controllers for Np = 2 and Np = 10 respectively. In the following, we establish
two analysis:
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(a) Polyhedral partition for Np = 5 . (b) Polyhedral partition for Np = 10 .

Figure 3.10: Polyhedral partitions for different prediction horizons.

Analysis 1 : Compute the Gain Margin for the following problem:

x(k + 1) = Ax(k) +B(Im + diag(δK))u10
pwa ∈ R10,∀x(k) ∈ R2, δK ∈ K.

The gain margin K is computed and the value of δK lies between [−0.4436, 0.4697].

Analysis 2 : Compute the Gain Margin for the following problem:

x(k + 1) = Ax(k) +B(Im + diag(δK))u10
pwa ∈ R2,∀x(k) ∈ R2, δK ∈ K.

The gain margin K is computed and the value of δK lies between [−0.2178, 0.4697].

Thus it can be observed that the gain margin obtained, for the above two analysis
(Analysis 1 and Analysis 2), is larger as the prediction horizon increases than the
gain margin obtained for Np = 2 as shown in the Table 3.1.

Figure 3.11: Illustration of set R for different prediction horizons

35



Robustness margins for piecewise affine explicit control law

Multi Input system

Consider a linear discrete system with two inputs and two outputs,

x(k + 1) =

1.2 −1. 0
0 −1.2 0.5

0.2 0.4 0

x(k) +

1.0 0.2
0.5 0
0 0.7

uk,

yk =
[
1 0 0
0 0 1

]
x(k).

The weight applied on the control inputs and state vectors are

Q =

5 0 0
0 1 0
0 0 1

 and R =
[
0.5 0
0 1

]
.

The input constraints are
[
−2
−2

]
≤ uk ≤

[
2
2

]
and,

the output constraints
[
−2
−2

]
≤ yk ≤

[
2
2

]
.

The prediction horizon chosen is 2. The resulting controller has 37 regions and
it is illustrated in Figure 3.12a. The set R is illustrated in the Figure 3.12b.

(a) Representation of the state partition. (b) Representation of set R.

Figure 3.12: Illustration of sets Ri and R

Figure 3.13 shows the Gain margin set K and for all the points in this set the in-
variance property of the set R is guaranteed. However, the invariance property of
the controller is fragile to unmeasured input perturbation. For instance, choosing
δK = diag(−0.01,−0.01) results in the controller loosing the invariance.

To prove the positive side of gain margin analysis, a new explicit controller is chosen
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Figure 3.13: K set for upwa(x(k))

by adapting the gain with an admissible variation from the set K, shown in Fig-
ure 3.13, and which preserves its definition domain over the set R.

Figure 3.14: K set for uµpwa(x(k))

The new controller is adapted in a straightforward manner to:

uµpwa(x(k)) = (Im + diag(δK)) ∗ (Fix(k) + gi), ∀i ∈ IN (3.30)

and δK = diag(0.2, 0.2). Subsequently, we computed the gain margin set for this
controller and present an illustration of its corresponding admissible variation.
It is noticeable from the Figure 3.14 that the new controller is more robust to input
disturbances and practically we obtained a translation of the point corresponding
to the nominal controller without altering the shape of the set R. The invariance
property of the controller uµpwa(x(k)) is preserved. The new controller may violate
the input constraints but the violation can be handled by saturating the control
inputs.
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Np
No of

Regions(N)
No of

V ertices(p)
Computational T ime

in seconds
Gain Margin

K
2 37 110 5.1 Ref Figure 3.13
5 137 376 60.5 Ref Figure 3.15b
10 374 943 1400 Ref Figure 3.16b

Table 3.2: Information of the gain margin computation for different prediction hori-
zons.

(a) Polyhedral partition for Np = 5. (b) K set for Np = 5.

Figure 3.15: Polyhedral partition and the gain margin set K for prediction horizon
Np = 5.

(a) Polyhedral partition for Np = 10. (b) K set for Np = 10.

Figure 3.16: Polyhedral partition and the gain margin set K for prediction horizon
Np = 10.

The mp-QP problem yields 137 controllers, for Np = 5 and with same weight matri-
ces Q and R, and its corresponding polyhedral partition is shown in Figure 3.15a.
The gain margin set for this controller is computed and it is illustrated using the
Figure 3.15b. Comparing the gain margin set from Figures 3.13 and 3.15a, it can
be seen that the gain margin set for Np = 5 is smaller than those obtained for
Np = 2. Similarly, prediction horizon length of 10 and the same weight matrices
Q and R are considered and solving the mp-QP problem produces 374 controllers.
The polyhedral partition and the gain margin set obtained for these configurations
are illustrated in Figure 3.16. We use Table 3.2 to provide information about the
number of vertices in the set Ri and the computation time taken to obtain the gain
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margin sets for different prediction horizons. Finally, we simulate for the state tra-
jectories and control inputs, for the controller obtained with Np = 5, with different
gain margins for the initial state x(0) = [2 3 2]T . The state trajectories and the con-
trol input simulations for different gain margins are presented using the Figure 3.17.

Figure 3.17: State trajectories and control input simulation for Np = 5 for different
gain margins

3.4 First order neglected dynamics

In the following, we analyze the robustness of the nominal PWA controller defined
over the polyhedral set R affected by a first order neglected dynamics in closed
loop. Our approach is to present an admissible set for the variations of the neglected
parameters or variables in the dynamical model assuring the invariance of the set
R.
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3.4.1 Problem Formulation

In this section, a problem is formulated for the first order dynamics that perturb
the closed loop system as shown in Figure 3.18. The nominal linear discrete-time

Figure 3.18: Closed loop system with first order neglected dynamics

system and the nominal feedback PWA control law can be written in the form,

x(k + 1) = Ax(k) +Bu(k) (3.31a)
upwa(x(k)) = u∗(k) = Fix(k) + gi (3.31b)

The neglected dynamics can be represented by a first order equation and it can be
written in the form,

xI(k + 1) = αxI(k) + (1− α)u∗(k) (3.32a)
u(k) = αxI(k) + (1− α)u∗(k) (3.32b)

The neglected dynamics in closed loop model can be described by,

x(k + 1) = Ax(k) +BxI(k + 1) (3.33a)
x(k + 1) = Ax(k) + αBxI(k) +B(1− α)u∗(k) (3.33b)

The augmented model is

xe(k + 1) = Aexe(k) +Beu(k) (3.34a)
ye(k) = Cexe(k) (3.34b)

and,

xe =
[
x
xI

]
, Ae =

[
A αB

01×n α

]

Be =
[
B(1− α)

1− α

]
, Ce = [C, 0]

(3.35)

where xe ∈ Rne , Ae ∈ Rne×ne and Be ∈ Rne×m. In this study, we consider a single-
input single-output system and therefore ne = n+ 1 and m = 1.

Starting from a piecewise affine control (3.31b) defined over the polyhedral par-
tition of the set R with Ri ∈ R ∀i ∈ IN for the linear discrete time system (3.31a)
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the aim is to investigate the robustness of the control synthesis (3.31b) for the sys-
tem (3.34) and (3.35) affected by the neglected dynamics.

The objective being to find the largest set of α assuring the invariance of the set
R, first we construct vertices for the augmented state with the help of the vertices
in the set Ri ∀i ∈ IN . Second, we analyze the robustness of the control synthesis
(3.31b) with respect to the invariance characteristics for the set R.

3.4.2 Construction of vertex representation for the augmented
state

Before entering into the technical details of the construction, we discuss about the
extension of extreme point (vertices) for the augmented state (3.34).
Recall that in the previous subsection the vertices of the setR andRi defined by the
column vectors of matrices (3.2) and (3.4) were instrumental in the construction of
the robustness analysis. The piecewise affine control law upwa(x(k)) for the column
vectors of the matrix V is given by the matrix U (3.5) in the nominal case.

The construction of vertices for the augmented state xI (which includes the neglected
dynamics) can be done in two ways. Recall that the augmented state correspond to
the past input u(k − 1) for α = 0.

• Method 1: Initialize the values of the state xI(k) for each vertex corresponding
to the column vectors of matrix V with the value given by the correspond-
ing nominal piecewise affine control law. For instance, wIp = upwa(wp) ∀p ∈ Ip.

• Method 2: Initialization of the state xI(k) for each vertex corresponding to
the column vectors of matrix V can be carried out with the help of minimum
and maximum values of the control input.

Method 2 produces twice the number of vertices as compared to method 1. For
each column vector of matrix V , we obtain two different vertices i.e., the values
of augmented state vector xe for each non-identical vertices in Ri is [wp, umin] and
[wp, umax] ∀p ∈ Ip. In the following, we investigate the robustness problem for
method 1.

3.4.3 Controller for extended state system

The controller for the extended model (3.34) can be represented by,

uepwa(xe(k)) = F e
i xe(k) + gei (3.36)

where F e
i = [Fi 0] ∈ Rm×ne and gei = gi ∈ Rm×1.
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This is just an extension of (3.31b) to accommodate the extended state and there-
fore the characteristics of the original controller (3.31b) are preserved.

3.4.4 Admissible set for the first order neglected dynamics:

We introduce few matrices which will be used in the construction.
The extended model (3.34)-(3.35) can be written as a convex combination of the
extreme realizations obtained with α = 0 and α = 1.

For α = 0,

Ae1 =
[
A 0n×m

0m×n 0m×m

]
, Be

1 =
[
B

1m×m

]
. (3.37)

For α = 1,

Ae2 =
[
A B

0m×n 1m×m

]
, Be

2 =
[

0n×m
0m×m

]
. (3.38)

Therefore,
Ae = (1− α)Ae1 + αAe2, Be = (1− α)Be

1 + αBe
2. (3.39)

Since our objective follows the computation of all the values of α assuring the in-
variance of the set R, we need to analyze the state and input values in order to
evaluate for the state vector x(k + 1) in (3.33).

A1 =
[
A 0n×m

]
∈ Rn×ne , A2 =

[
A B

]
∈ Rn×ne , B1 = B, and B2 = [0n×m].

(3.40)
Similar to (3.4), we introduce a matrix V (1)

e ∈ Rne×p which stores the vertices of the
state vector x(k) within the given partition and the PWA control input associated
with it for all the non-identical vertices in Ri ∈ Rn, i ∈ IN in order to create a
matrix that contains the vertices for the extended state vector xe.

V (1)
e = [V, U ] (3.41)

In a second step, the values of the state vector xe(k + 1) are found by exploiting
(3.41) and (3.36) for column vectors of the matrix V (1)

e in a closed loop formulation.
This leads to the matrix V (2)

e ∈ Rne×p.

V (2)
e = Ae1V

(1)
e +Be

1U (3.42)

Similar to the notation in (3.5), a PWA image for the matrix V (2)
e can be found with

the control law (3.36) and stored in a matrix U (2)
e ∈ Rm×p.

U (2)
e = uepwa[V (2)

e ] (3.43)
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Definition 3.4.1 Consider a linear discrete time system affected by the first order
neglected dynamics (3.34)-(3.35) and stabilized via a PWA state feedback control law
(3.36). A margin for first order neglected dynamics is characterized by a set Ωα ∈
Rm which contains the values of parameter α (for each input channel) such that the
invariance property of the set R is assured.

Theorem 3.4.1 Consider the extended system (3.34) subject to first order neglected
dynamics stabilized by a piecewise affine control law (3.36). The admissible set of
parameters for the neglected dynamics is given as the projection,

Ωα = ProjαT (3.44)

where T denotes the polyhedral set:

T =
{

(α,Γ) ∈ R× Rr×p| (1− α)(A1V
(2)
e +B1U

(2)
e )+

α(A2V
(2)
e +B2U

(2)
e ) = WΓ|Γ = [γ1, · · · , γp], γi ∈ Sr,∀i ∈ Ip

}
(3.45)

Proof 3.4.1 Ωα describes admissible set for neglected dynamics if ∀α ∈ Ωα and se-
lection of (xe(0), ue(0)) we have ((1−α)A1+αA2)xe(k)+((1−α)B1+αB2)uepwa ∈ R,
∀k ∈ N.

We remark that the computation of the admissible set Ωα corresponds to the vari-
ations between the nominal model (3.31a) and the model affected by the neglected
dynamics (3.34). In an equivalent form,

(1− α)(A1xe(k) +B1(F e
i xe(k) + gei )) +

α(A2xe(k) +B2(F e
i xe(k) + gei )) ∈ R

(3.46)

By replacing xe(k) with the column elements of the matrix V (2)
e and similarly the

PWA function uepwa = F e
i x

e(k)+gei with the column vectors of matrix U (2)
e . Equation

(3.46) is further modified into:

(1− α)(A1V
(2)
e (:, q) +B1U

(2)
e (:, q)) +

α(A2V
(2)
e (:, q) +B2U

(2)
e (:, q)) ∈ R

(3.47)

For q ∈ Ip, by representing the state vector x ∈ R as the convex combination of
column vector of the matrix W (3.2), one can write ∑r

l=1 γlW (:, l) and ∑r
l=l γl = 1

and introducing this term in (3.47) obtain

(1− α)(A1V
(2)
e (:, q) +B1U

(2)
e (:, q)) +

α(A2V
(2)
e (:, q) +B2U

(2)
e (:, q)) = Wγ

(3.48)

with a solution vector γ = [γ1, · · · , γr] ∈ Rr.

If (3.48) holds for one column vector of matrix V (2)
e , then it holds for all the column

vectors of the matrix V (2)
e and with the image of the piecewise affine control law

defined by the matrix U (2)
e .

Equation (3.48) can be written as,

(1− α)(A1V
(2)
e +B1U

(2)
e ) + α(A2V

(2)
e +B2U

(2)
e ) = WΓ (3.49)

with Γ ∈ Rr×p and the proof is completed.
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3.4.5 Example

Consider the discrete-time linear system given by,

x(k + 1) =
[
1 1
0 1

]
x(k) +

[
0
1

]
u(k),

y(k) = [1 0].

The output variable and control input are subject to the following polytopic con-
straints −5 ≤ y(k) ≤ 5 and −1 ≤ u(k) ≤ 1. The weight matrices on the states and

control input considered in the MPC problem are given by Q =
[
1 0
0 0

]
and R = 0.1

respectively. The prediction horizon chosen for this example is 2 and a positively
invariant set as a terminal constraint set is added to the optimization formulation.

Figure 3.19: Representation of polyhedral partition with 13 regions.

The resulting mp-QP solution consists of 13 PWA control laws defined over the
state-space partition. Figure 3.19 shows the state-space partition of 13 regions.

The robustness margin for the first order neglected dynamics is represented by the
set Ωα = [0, 0.3255]. The invariance property of the controller is preserved for any
input filter with parameters in these values.

Figure 3.20 illustrates the state trajectories for the system (3.39) with α = 0.325.
The state trajectories for all the vertices are strictly inside the set R thus proving
the Theorem 3.4.1. The states and control input simulations with α = 0, α =
0.15 and α = 0.3 for the same initial condition x0 = [−5, 2.73]T are presented in
the Figure 3.21.

3.5 Conclusion

In this work the gain margin set assuring the invariance of the closed-loop for a linear
discrete time system controlled by a piecewise affine control law has been computed.
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Figure 3.20: State trajectories for α = 0.325.

Figure 3.21: Simulations of state trajectories and control input for different α values.

For a discrete time system affected by first order neglected dynamics, a robustness
margin has been also deduced assuring the invariance property. It is worth to
be mentioned that the proposed analysis procedure does not extend to analysis of
the convergence (asymptotic stability properties). For the systems affected by time-
varying parametric uncertainty, it is important to analyze the convergence properties
of the controller. This can be done by considering a contractive set as feasible
domain. In the next chapter the robustness margin for contractive PWA controller
for discrete-time systems influenced by parametric uncertainty is analyzed.
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Chapter 4

Robustness margins for
contractive piecewise affine
explicit control laws
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4.1 Introduction

In the context of stability of the model predictive control, the terminal cost function
and the terminal set are widely adopted in the problem formulation of the MPC at
the design stage to ensure the state trajectories converge to the origin. A remark-
able study on the control invariant characterization of linear systems is proposed
in [DH99]. In this reference, the construction of successively tighter outer approxi-
mations for controlled λ-contractive set is obtained via an iterative algorithm. This
approach was further extended to construct a non-iterative controlled contractive
set based on some conservative assumptions [HOB14]. In this chapter, we advocate

47



Robustness margins for contractive piecewise affine explicit control laws

the use of a controlled λ-contractive set that guarantees contractivity for each time
step of the closed loop.

Starting from these framework, from the analysis point of view, it is important to
commensurate the capacity of the control law to cope with disturbances, neglected
dynamics or uncertain parameters. This characteristic is denoted in control theory
as robustness of the controller.

It is worth to be mentioned that the analysis of a nominal PWA control and its
retuning is essentially different approach from a robust control design. It is known
that a robust PWA control as for example robust explicit predictive control syn-
thesis [PFKP09] can account for uncertainties based on dynamic programming ap-
proach but the associated computational complexity is exponential with respect to
the nominal case. The same thing can be said about the robust explicit model pre-
dictive control with contractive set based on variable-structure control law for linear
polytopic uncertain system as presented in [YBHJ03].

In this chapter, a multi-parametric quadratic programming problem is formulated
in order to compute a PWA control law which enforces contractivity for the class of
linear discrete-time systems. Starting from the λ-contractive control law, we present
three robustness margins for the system stabilized by a contractive piecewise affine
control law. First, the robustness margin for a discrete-time system affected by
polytopic uncertainty is presented. The robustness margin denoted Ωrob is defined
as a subset of the parametric uncertainty set Ω and is shown to take the form
of polyhedral set. For all the models belonging to the polyhedral set Ωrob, the
contractivity of the state trajectories is guaranteed in the presence of time-varying
uncertainties. Second, we propose a numerical method to compute a gain margin
set for a discrete-time system stabilized by a contractive PWA affine control. The
desired gain margin takes the form of a set which characterizes admissible variations
of system gains preserving the contractive characteristics of the controller. Third,
we compute an admissible set which characterizes the parameter variations for the
discrete-time system affected by first order neglected dynamics. For all the variations
in this polyhedral set the contractive properties of the controller is preserved.

4.2 Control design for controlled λ-contractive set

Consider the discrete-time linear time-invariant system given by,

x(k + 1) = Ax(k) +Bu(k). (4.1)

Considering the class of PWA feedback laws in the large, we are interested in defining
the notion of λ-contractiveness.

Definition 4.2.1 A C-set P ⊆ R is called controlled λ-contractive with contraction
factor λ ∈ [0,1) if there exists an admissible control law upwa(x(k)) such that ∀x(k) ∈
βP then Ax(k) +Bupwa(x(k)) ∈ λβP, ∀β ∈ [0, 1] [HOB14].
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The controlled λ-contractive set represents an important notion that can be em-
ployed for stabilizing a constrained discrete-time linear systems. The properties
of λ-contractive sets are enhanced versions of the positively invariant set. The
polytopes generated from the contractive set are simpler than the reachable set and
provide compact representations for the optimization based control design [HOB14].

In the context of constrained control, in which a contractive PWA control law sta-
bilizes for the full range of state space, the sequence of control actions is given for
each vertex, thus steering the extreme vertex of the contractive set polytopes to a
strict subset of the contractive set. The contractive set P ⊆ R recursively shrinks
for each time step.

In this section, we discuss control design based on the explicit MPC law, but with an
additional λ-contractive constraint imposed on the problem formulation. To facili-
tate an explicit control with controlled λ-contractive set, it is desirable to compute
an initial contractive set that does not violate the original state constraints.

The controlled contractive sets of the shape specified in [HOB14] are considered.
To calculate an initial set, let us consider the system (4.1) and the state constraints,
with a matrix A = VADAV

−1
A . Here VA and DA denote the matrices of eigenvectors

and diagonal matrix with diagonal entries being the real eigenvalues of A correspond-
ing to the Jordan decomposition of matrix A. The obtained initial set is symmetric
and can be represented as,

P =
{
x :

[
V −1
A

−V −1
A

]
x ≤

[
bx
bx

]
, VA ∈ Rn×n, bx ∈ Rn

}
. (4.2)

Imposing contractiveness does not inherently require the set to be described in the
form (4.2), this being a particular choice used in the present work to find a particu-
larly simple controlled contractive set. The quadratic cost function for the controller
stabilizing a linear discrete-time system given by (4.1) subject to constraints is for-
mulated as,

J(x(k), U∗) = min
U∗

Np∑
i=1
||Qx(k + i)||22 +

Np−1∑
i=0
||Ru(k + i)||22 (4.3a)

s.t. x(k + 1) = Ax(k) +Bu(k), k = 0, · · · , Np − 1 (4.3b)
x0 = x(0) (4.3c) V

−1
A

−V −1
A

x(k + 1) ≤ λβ

bx
bx

 (4.3d)

u(k) ∈ U , k = 0, · · · , Np − 1 (4.3e)
x(k) ∈ X , k = 1, · · · , Np (4.3f)

Here λ is a pre-defined contractive factor, λ ∈ [0, 1) and β ∈ [0, 1] will be considered
as a parameter. The weight matrices Q = QT ≥ 0 and R = RT > 0 are positive
semi-definite and positive definite respectively which define the performance index
of the optimization problem (4.3) following the classical predictive control design
[MRRS00].
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In (4.3a) we use an optimization criterion spanning over a multiple-time step horizon,
while the contraction is only imposed for the first time step. The lack of supple-
mentary state constraints is related to the fact that the contractive set constraint
in (4.3d) should be designed to make (4.3f) redundant.

Now, one has to transform the problem (4.3) into a multi-parametric programming
problem including the full vector of parameters. This complete mp-QP problem is
formulated for the state vector x and β as an augmented parameter vector x̂ = [x,
β]T leading to the compact cost formulation:

J(x(k), U∗) = min
U∗

1
2U
∗THU∗ + x̂TETU∗ + 1

2 x̂
TY x̂. (4.4)

The constraints for the state and input variables can be appended to the inequality
constraint given below,

GU∗ ≤ D + Sx̂. (4.5)

In (4.4) and (4.5), x̂ = x̂(k). Subsequently, the initial contractive set given in (4.2)
is also extended to x̂ space, by setting the bounds of β parameter between 0 and
1. This set is herewith denoted as P̂ ∈ Rn+1. It inherits the polyhedral structure
and will be included in the problem formulation via a set of linear constraints with
a linear dependence of the right hand side on the extended parameter vector x̂.

The contractive set (4.3d) represented by the inequality constraints can be written
within (4.5):

G =


 V

−1
A

−V −1
A

B,
0

0


2n×Np−1

 ,

S =


−V

−1
A

V −1
A

A, λ
bx
bx


 and

D =

0

0


2n×1

From the problem formulation it can be noted that the state vector x and β are the
new parameters of the mp-QP problem. The state space partition obtained from
the problem (4.4) and (4.5) can be represented as a finite collection of regions in the
extended [x, β] space. This will be denoted next as

R̂ = ∪i∈IN̂ R̂i (4.6)

The control law obtained from the mp-QP formulation is given by,

ûpwa(x̂(k)) = F̂ix̂(k) + ĝi, i ∈ IN̂ (4.7)

In Eq (4.6)-(4.7), N̂ represents the number of controllers.

In the following, we further explore the parametric dependence on β by exploiting
the extended vector [x, β]-space and reduce it to the initial x-space by preserving the
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piecewise affine formulation. This can be done with a particular choice of β which
can be interpreted as an implicit function of x using in practice the Minkowski
function Mp with respect to the initial contractive set P . We recall here some of
the basic properties.

Now, introduce a subset H ⊂ Rn+1 defined as the graph of the Minkowski function
with respect to the set P ⊂ Rn.

H =
{[
x
β

]
:MP(x) = β

}
(4.8)

The PWA function (4.7) can be restricted to the subset H ∩ R̂ and subsequently
projected onto the original state space. This results in an explicit PWA function:

upwa(x(k)) = Fix(k) + gi, i ∈ IN , for x(k) ∈ Ri (4.9)

defined over a partition R, R = ⋃
i∈IN Ri. This design procedure is summarized in

Algorithm 4.2.1.

Algorithm 4.2.1 Algorithm for the control law in x space
Input: R̂ ∈ Rn+1, H ∈ Rn+1, F̂j ∈ Rm×n+1, ĝj ∈ Rm

Output: R ∈ Rn, Fi ∈ Rm×n, gi ∈ Rm

1: Initialization : i = 0
2: Obtain the polyhedral regions,
3: R̂ = ⋃

j∈IN̂ R̂j, R̂j ∈ Rn+1

4: for j = 1 to N̂ do
5: Pint = R̂j

⋂ H.
6: Pproj = Proj(Pint, 1 : n)
7: if (dim(Pproj == n)) then
8: i = i + 1
9: Ri = Pproj

10: Fi = F̂j(:, 1 : n) + MP(x) * F̂j(:, n+ 1)
11: gi = ĝj
12: end if
13: end for

The piecewise affine control law obtained for (4.4) and (4.5) ûpwa(x̂(k)) = F̂jx̂(k) +
ĝj, j ∈ IN̂ is modified to upwa(x(k)) =Fix(k) + gi, i ∈ IN as given in Algorithm 4.2.1.
The projected polyhedron R, R = ⋃

i∈IN Ri is obtained from the Algorithm.

Before entering into the robustness-related developments, let us explore that the
projected polyhedron satisfies the following properties:
i) R = ∪i∈IN Ri,
ii) int(Ri) 6= ∅,∀i ∈ IN ,
iii) int(Ri) ∩ int(Rj) = ∅,∀(i, j) ∈ I2

N , and i 6= j.
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4.3 Main Results

4.3.1 Parametric margin for λ-controlled contractive sets

In this section, we consider parametric uncertainty on the A and B matrices of the
system model (4.1). A set Ω is introduced in the parameter space,

Ω = Conv{[A1 B1] · · · [AL BL]}. (4.10)

The nominal system is given by a convex combination,

[A B] =
L∑
i=1

ζi[Ai Bi] (4.11)

where ζ = [ζ1, · · · , ζL]T ∈ SL and ζi is a non-negative scalar.

Definition 4.3.1 Consider a polytopic set Ω in the model parameter space, the
robustness margin problem is to compute the largest subset Ωrob ⊂ Ω for a given
PWA control law upwa(x(k)) defined over the polyhedral set R such that this set is
controlled λ-contractive with the system model (4.1).

Figure 4.1: Illustrative representation of the sets Ω and Ωrob.

The robustness margin for the projected polyhedral set R can be constructed by
using the vertex or half-space representation. In this work we focus on the vertex
representation and start by recalling the nominal system (4.1) subject to the con-
straint sets, X and U , used for the design of a contractive piecewise affine control
law.

The matrices [A B] belong to the polytopic uncertain set Ω as defined in (4.10).
Following the Definition 4.3.1, the robustness margin problem is to compute the
subset Ωrob ⊂ Ω such that the closed loop dynamics obtained with the PWA control
law defined over R is λ-contractive, that is:

x(k + 1) = (A+BFi)x(k) +Bgi ∈ λβR, ∀x(k) ∈ βR (4.12)
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and i ∈ IN .
Let us define few important matrices which will be used in the following.

Recall the matrix V defined in (3.4) which stores all the non-identical vertices of
the Ri with a cardinal number p. The value of parameter β is computed for each
column vector in the matrix V ,

βi(wi) =MP(wi), i ∈ Ip. (4.13)

It is possible to express (4.12) as a convex combination of the vertices of the poly-
hedral set R,

r∑
j=1

γjvj, γ = [γ1, · · · , γr]T ∈ Sr,1Tγ = 1.

Rewriting (4.12) we obtain:

(A+BFi)x(k) +Bgi = λβ(x(k))Wγ. (4.14)

Replacing (4.13) within (4.14) one can compute for each column vector in the matrix
V with the corresponding vector γi. Storing the column vectors γi, i = 1, . . . , p, a
matrix Γ ∈ Rr×p will be obtained

Γ = [β1γ1, β2γ2, · · · , βpγp]. (4.15)

Finally, after defining a matrix M ∈ Rn×r as a simple scaling of the vertices of the
feasible set M = λW one can state the main result with respect to the robustness
margin characterization.

Theorem 4.3.1 Consider a discrete-time system (4.1) subject to a polytopic uncer-
tainty and subject to the states and input constraints. The robustness margin for a
given contractive piecewise affine control law is given by

Ωrob = ProjSLT (4.16)

where T represents the polyhedral set,

T =


{(ζ,Γ) ∈ SL × Rr×p|1TΓ = [β1, · · · , βp],

∑L
j=1 ζj(AjV +BjU) = MΓ}.

 . (4.17)

Proof 4.3.1 To prove the existence of robustness margin for the polyhedral set R
whose control law is associated with controlled λ-contractive set, let us consider the
closed loop formulation of the piecewise affine control law with the λ-contraction.

(A+BFi)x+Bgi ∈ λβR (4.18)
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where λ denotes the contractive factor and the parameter β(x) =MP(x). We recall
that ∀(A,B) ∈ Ωrob,∀x ∈ Ri, ∀i ∈ IN and considering the polytopic uncertainty set
Ω we can show that Ωrob ⊂ Ω. And clearly, (4.18) can be written as

L∑
j=1

ζj(Aj +BjFi)x+ ζjBjgi ∈ λβR. (4.19)

Now, simply the state vector, x ∈ Ri, can be expressed as a convex combination of
the vertices, x = ∑ri

l=1 βlwil for ∑ri
l=1 βl = 1, with ζj the elements of a vector ζ ∈

SL, ∀i ∈ IN and ∀l ∈ Iri.

Subsequently replacing x with wil, the β parameter for the vertex wil is computed by
βil =MP(wil). Equivalently (4.19) is followed by,

L∑
j=1

ζj(Aj +BjFi)wil + ζjBjgi ∈ λβilR. (4.20)

Moreover, the inclusion can be explicitly described by the existence of yil ∈ λβilR
such that:

L∑
j=1

ζj(Aj +BjFi)wil + ζjBjgi = yil. (4.21)

The vector yil ∈ Rn can be expressed as,

yil = λβil[V(R)]γil for γil ∈ Sr. (4.22)

Substituting (4.22) in (4.21) and introducing a matrix M ∈ Rn×r, where M = λW
we obtain,

L∑
j=1

ζj(Aj +BjFi)wil + ζjBjgi = Mβilγil. (4.23)

From (4.23) it can be stated that if it holds ∀l ∈ Iri, consequently it will hold for
all the columns of the matrix V as given in (3.4). Exploiting the admissible input
mapping of the columns of V as in U leads to the matrix formulation,

L∑
j=1

ζjAjV + ζjBjU = MΓ. (4.24)

It can be noticed that γil ∈ Sr, that is, each column of matrix Γ is restricted to the
simplex Sr multiplied by βi, ∀i ∈ Ip. The above derivations prove that the polyhedral
set T in (4.17) represents a parametrized set of all the model uncertainties guar-
anteeing the controlled λ-contractivity of the closed loop for the dynamical system
affected by uncertainties. Further the polyhedral set T is projected on the simplex
function SL.

54



Main Results

4.3.2 Gain margin for λ-controlled contractive sets

In the following, we describe an analysis of the gain margin set for the system (4.1)
stabilized with the help of a state feedback contractive PWA control law. The
construction of the gain margin is similar with the one presented in the previous
section and the proofs will be omitted.

Definition 4.3.2 Consider a discrete time linear system (4.1) with a continuous
contractive PWA control law, such that the state space setR is controlled λ-contractive.
The Gain Margin is represented by the set K ⊂ Rm, such that x(k + 1) = Ax(k) +
B(Im + diag(δK))upwa(x(k)) ∈ λβR,∀x(k) ∈ R, δK ∈ K ⊂ Rm and λ, β ∈ [0, 1].

where λ denotes the contractive factor and the parameter β(x) =MP(x). The set
K ⊂ Rm is a set which contains the input channels gain variations δK such that for
any point inside the set K, the λ-contractive characteristics of the setR is preserved.

Theorem 4.3.2 Consider a discrete-time linear system (4.1) with a contractive
piecewise affine state feedback control. The gain margin K of the controller is defined
by the set,

K = ∩pq=1Kq, (4.25)

where K represents the gain margin set and Kq the local gain margin for the vertex
wq for some q ∈ Ip.

Kq = {z ∈ Rm|∃u ∈ ∆Uq, Mz = u} (4.26)

with
∆Uq = {u |Ĥuu ≤ ĥu} (4.27)

where Ĥu ∈ Rdu×m and ĥu ∈ Rdu. ∆Uq represents the set of admissible input
variation for the vertex wq preserving the contractivity.

The collection of sets Kq are independent for each vertex of the set in Ri and the
intersection of these independent set gives the global set K. In order to compute
Kq, we first need to compute explicitly the sets ∆Uq.

Theorem 4.3.3 Consider a linear discrete-time system (4.1) stabilized by a con-
tractive piecewise affine control law. The set ∆Uq of admissible input variations at
the vertex wq is obtained by

∆Uq = Proj UHq (4.28)

U ∈ Rm denotes the input constraint set. The polyhedral set Hq is described by:

Hq =
{

(δu, γ) ∈ Rm × Rr, and [A B]
[

x(k)
upwa(x(k))

]
+Bδu = λβWγ,1Tγ = 1

}
(4.29)
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Proof 4.3.2 Let us recall the equation which resumes the contractive property for
the set R,

[A B]
[

x(k)
upwa(x(k))

]
+Bδu ∈ λβR (4.30)

Equation (4.30) can be expressed using the vertices of the set R as convex combina-
tion and corresponding variables γ = [γ1, γ2, · · · , γr] and equality constraints 1Tγ =
1 such that

[A B]
[

x(k)
upwa(x(k))

]
+Bδu = λβWγ. (4.31)

4.3.3 Neglected dynamics margin for λ-controlled contrac-
tive sets

In the section, we describe an analysis of the robustness of the nominal contractive
PWA controller affected by a first order neglected dynamics in closed-loop formula-
tion. Recall the augmented model given in (3.34) and (3.35).

xe(k + 1) = Aexe(k) +Beu(k) (4.32a)
ye(k) = Cexe(k) (4.32b)

Also, recall the extension of the PWA controller (for invariance) for the augmented
model (4.32) given in (3.36). Similarly, we extend the contractive PWA control law
given in (4.9) for the extended model,

uepwa(xe(k)) = F e
i xe(k) + gei . (4.33)

Similarly, recall all the supporting matrices A1, A2, B1, B2, V
(2)
e , U (e)

e mentioned in
(3.40), (3.42) and (3.43) which will be used in the problem formulation.

Definition 4.3.3 Consider a discrete-time linear system affected by the first order
neglected dynamics (4.32) controlled via a contractive PWA state feedback controller
(4.33). A margin for first order neglected dynamics is characterized by a set Ωα ∈ R
which contains the values of parameter α such that ((1− α)A1 + αA2)xe(k) + ((1−
α)B1 + αB2)uepwa(xe(k)) ∈ λβR,∀α ∈ Ωα.

Recall the definition of the matrix Γ given in (4.15) and let M = λW . Now we
present the theorem which characterize the variation of the parameter α for the
dynamical system affected by first order neglected dynamics.

Theorem 4.3.4 Consider the extended dynamical model (4.32) subject to the first
order neglected dynamics controlled with the help of a contractive piecewise affine
control law (4.33). The admissible set of parameters for the neglected dynamics is
given by the set,

Ωα = ProjαT , (4.34)
where T denotes the polyhedral set:

T =
{
{(α,Γ) ∈ R× Rr×p|1TΓ = [β1, · · · , βp], (1− α)(A1V

(2)
e +B1U

(2)
e )

+ α(A2V
(2)
e +B2U

(2)
e ) = MΓ

}
(4.35)

Proof 4.3.3 The proof of this theorem is similar to the one presented in Proof 3.4.1.
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4.4 Examples

4.4.1 Robustness parametric margin

Consider a discrete-time linear system constructed from the uncertainty set de-
scribed by:

Ω = conv



[A1 B1] =
[
0.4546 −0.0913 0.0849
0.1836 0.5389 0.0064

]

[A2 B2] =
[
0.7326 −0.0767 0.0609
0.1557 0.9909 0.0114

]

[A3 B3] =
[
1.0866 −0.0861 0.0823
0.1722 1.4323 0.0076

]


with the nominal model chosen to be:

xk+1 = Ax(k) +Buk

with,
A = 0.3A1 + 0.2A2 + 0.5A3 and
B = 0.3B1 + 0.2B2 + 0.5B3.

The input constraint is given by −2 ≤ uk ≤ 2 and the state constraints are -100 ≤
[0 1]x(k) ≤ 100. The contractive factor λ chosen is 0.99. Unity weights are applied
to the inputs and states penalties and the prediction horizon chosen is 2. Multi-
Parametric Toolbox is used to obtain the state space partition. Figure 4.2 shows
the state space partition of the above system and it has 11 regions.

Figure 4.2: State space partition with β as parameter

Figure 4.3 shows the regions of the initial contractive set with the projected states
[x1, x2]. Here the initial contractive set is divided into four regions and the hyper-
plane for the β parameter is calculated for each region. The projection is done using
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Figure 4.3: Projected state space partition x1, x2.

Figure 4.4: Robustness margin for contractive and invariant set in the plane of ζ1,
ζ2.

the proposed algorithm in section IV. Figure 4.4 shows the robustness margin Ωrob

for the controlled λ-contractive set presented by the blue polytope and robustness
margin for the controlled positively invariant set by the green polytope. The red dot
denotes the considered nominal system where ζ1 = 0.3 and ζ2 = 0.2. For simplicity,
the simplex function is presented only for ζ1 and ζ2 such that ζ3 = 1 - ζ1 - ζ2.

It is observed that the given control law guarantees the contractivity of the fea-
sible region R only if the system is inside the blue polytope. Similarly, the control
law cannot guarantee either the positive invariance or contractivity of R if the sys-
tem parameters are away from the blue and green polytopes. For system inside
the green polytope and outside the blue polytope the control law guarantees the
invariance of the operating region R.

Figure 4.5 shows the state trajectories for the same initial state x0 = [−70 98]T
for different systems. The contractive state trajectories for a system chosen from
the robustness margin set with ζ1 = 0.4, ζ2 = 0.4 and ζ3 = 0.2 is illustrated in the
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Figure 4.5. The state trajectories for the system with ζ1 = 0.6, ζ2 = 0.4 and ζ3 = 0,
a system which belongs to the green polytope and does not exist in blue polytope,
are invariant with respect to the invariant PWA controller. Similarly, the state tra-
jectories for the system, which neither belongs to the blue and red polytope, are
shown to be neither invariant nor contractive in the Figure 4.5. Figure 4.6, depicts

Figure 4.5: Trajectories for different nominal systems for the same initial state.

Figure 4.6: Simulation for the state trajectories and control input for an initial state
x0 = [60 − 80]T .

the simulation for the state trajectories and control input for a nominal system with
ζ1 = 0.3, ζ2 = 0.2 and ζ3 = 0.5 and, for an initial state x0 = [60 − 80]T . In
the next, we obtain the polyhedral partitions on the [x β]T parameter space for the
mp-QP problem for the prediction horizon Np = 10 with the same system dynamics
mentioned above. The contractive factor λ = 0.99 and the same weight matrices Q
and R are considered for the mp-QP problem. The original polyhedral partition on
the [x β]T space consists of 175 regions and it is illustrated in the Figure 4.7a. After
projecting the [x, β]T state-space partition on the x-plane, we obtained 136 regions
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(a) State space partition with β as parame-
ter for Np = 10.

(b) Projected state space partition x1, x2
for Figure 4.7a.

Figure 4.7: State space partition for Np = 10

Figure 4.8: Robustness margin for contractive and invariant set for Np = 10.

and the new controller for the projected polyhedral sets are also computed using the
Algorithm 2.4.1. The projected state partition is depicted in the Figure 4.7b. Now,
we compute the robustness margin for the projected state partition with the new
controller with respect to both the invariance and the contractiveness as depicted in
the Figure 4.8. The nominal system is marked with a red dot in the Figure 4.8. For
all the systems in the contractive set denoted by the blue polytope the contraction
of the state trajectories are guaranteed.

Note: For the MPC problem with the controlled-invariant set, it is a fact that the
volume of the feasible region grows with the increase in the length of the prediction
horizon. Unlike the invariant set, the objective of the contractive set that we consider
here is to provide a one-step contractivity for the system dynamics. The contrac-
tive set is constructed based on the system state matrix A, and the length of the
prediction horizon has no influence over the contractive feasible region. The results
mentioned here for the different prediction horizon length (Np = 2 and Np = 10)
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are intended to show the complexity of the PWA controller. It is shown from the
above analysis that the robustness margin for the contractive set with Np = 10 is
smaller than that of the margin with Np = 2.

4.4.2 Gain Margin

Consider a discrete-time linear system,

x(k + 1) =
[
0.9 0.5
0.2 0.8

]
x(k) +

[
1.0
0.2

]
u(k)

The input constraint is given by −2 ≤ u(k) ≤ 2 and state constraint by −5 ≤
[0 1]x(k) ≤ 5. The prediction horizon chosen is 2 and unity weights are applied on
the inputs and states penalties . The contraction factor λ = 0.98 is considered.

The gain margin set K in (4.25) is computed for the PWA control law assuring
the contractivity characteristics of the controller. As a term of comparison, with
respect to the invariance, the value of δK lies between [−0.524, 1.554] while for the
contractive controller, the value of δK lies between [−0.467, 1.445].

Figure 4.9 shows the projected state partition on the x−plane with state simulations
in closed loop for an initial state x(0) = [0.355 5.0]T for different δK values.

Figure 4.9: Projected state space partition with state trajectories for different δK
values.

State trajectories, control inputs and β values are simulated in closed loop for an
initial state x0 = [0.355 5.0]T with different δK values, such that x(k+1) = Ax(k)+
B(1 + δK)upwa(x(k)), for the contractive controller and it is shown in Figure 4.10.
It is observed that the trajectories are λ-contractive thus confirming the theoretical
result.
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Figure 4.10: Simulation for state trajectories, control input and β for different δK
values.

Finally, we simulate the state trajectories for the vertices on the frontier as initial
states for different gain margins δK = −0.45, δK = −0.52, δK = 1.4, and δK = 1.55
and it is presented with the help of the Figure 4.11. For the state trajectories
simulated with the gain margins δK = −0.45 and δK = 1.4 in closed-loop, the
trajectories are λ-contractive. Similarly, for the trajectories with the gain margins
δK = −0.52 and δK = 1.55, the invariance of the contractive properties of the PWA
controller are guaranteed.

4.4.3 Robustness Margin for First order neglected dynamics

Consider the nominal system example given in the section 4.4.1 and we use the
same weight matrices and same contractive factor λ. Then the margin for the
first order neglected dynamics is represented by the set Ωα = [0, 0.4745]. For all
the α parameter values in the set Ωα, the contractive property of the controller is
preserved.
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(a) (b)

(c) (d)

Figure 4.11: Representation of the set R with the simulation of state trajectories
for all the frontier vertices as initial states for different gain margins δK .

4.5 Conclusions

In this work the robustness margin assuring the contractivity of trajectories for
a linear uncertain system controlled by a piecewise affine control law has been de-
duced. Starting with a nominal contractive PWA control law, this robustness margin
consists in a subset of the uncertain polytopic description of the plant. For all the
parameters within this set and the associated dynamical models, the trajectories are
contractive. Moreover a gain robustness margin has also been computed. Finally,
we also computed the margin for first order neglected dynamics for the contractive
PWA controller.
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Chapter 5

Precision in polyhedral partition
representation and the fragility of
PWA control
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5.1 Introduction

Explicit PWA control laws can be efficiently implemented on hardware circuits for
systems with fast dynamics and relatively small dimension of system states. Re-
cently, such control laws have gained popularity for a wide range of real-time control
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applications [JJST07, IK15,TBGRI16,LWM08,MDM09]. However, the adoption of
such control laws pertains to the numbers of state space partitions and the piece-
wise affine control laws associated with those partitions. In order to exploit the
computational advantages of the explicit controller, a ”truncation or quantization
operation” must be performed on the representation of the state space partitions
and on their associated PWA controls. The implications of the quantized state
partitions and the quantized PWA gains and offsets extend to affect control in-
put accuracy, whose computations are based on point location functions, and the
properties of the PWA controller. The quantized state partitions might also ad-
versely affect the non-overlapping and non-emptiness characteristics of the PWA
controller. In recent work [ONB+13, NORA+16], a geometrical approach to deter-
mine robustness/fragility margins with respect to the invariance characteristics of
the PWA controller has been proposed. However their approach does not extend
to the quantized state space partitions. In a recent study [KZC15], the accuracy of
the explicit control input for the quantized regions and the quantized PWA control
laws is analyzed in general to prove the scale of quantization required in order to
obtain a certain degree of control accuracy. However, all these references build the
control input analysis on the assumption that the modified state space regions are
non-overlapping and thus they do not address one of the essential characteristics of
the representation of the state partitions: the well-posedness and completeness of
the polyhedral partition of the feasible domain.

The framework of the present chapter is the one of a linear discrete-time system
controlled by piecewise affine explicit control law. It will be analyzed how the
regions or polyhedral partitions change in the event perturbation on the vertex
representation of the partitions occurs. The main contribution of this work is to
analyze to what extend the non-overlapping and the invariance characteristics of the
PWA controller can be preserved when a perturbation on the vertex representation
of the partitions takes place. The following list is the proposed procedure or a list
of parts of the chapter. The chapter is divided in five sections:

• Characterize admissible perturbations on each vertex taken independently in
the vertex representation. The perturbation is considered admissible if it pre-
serves the non-overlapping property of the state space. The admissible per-
turbation is characterized by a set called vertex-sensitivity regions.

• Provide a method for updating the frontier of the feasible set for admissible
perturbation by updating the vertices which are considered to be sensitive.
The updating preserves the non-overlapping and the invariance property of
the controller.

• Third, starting from the updated feasible domain, we analyze the polyhedral
partitions by considering each of the vertices of the partition which are not
placed on the frontiers of the feasible domain. A set called sensitivity margin
with respect to the closed-loop invariance is determined. This set charac-
terizes admissible perturbations on the vertex representation preserving the
non-overlapping and the invariance characteristics of the PWA controller.

• Fourth, we compute the perturbed polyhedral partitions for all the inner ver-
tices of the feasible set sequentially completing the transformation of the orig-
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inal polyhedral regions to a new polyhedral regions for all the vertices in the
feasible set.

• Fifth, starting from a linear system stabilized with the help of a contractive
piecewise affine (PWA) control law, all the vertices of the feasible set are
perturbed. The perturbation of the vertices are conducted by assuring the
non-overlapping and λ-contractive properties of the PWA controller.

The mathematical framework will be the same as in the previous chapter, we consider
a linear discrete-time system given by,

xk+1 = Axk +Buk. (5.1)

Definition 5.1.1 Consider for a given x ∈ Rn and the polyhedral partitions R =
∪Ni=1Ri, the point location function of the polyhedral partition of R is given by,

x→ i(x) with i : R → N≤N . (5.2)

Practically, i(x) indicates (the unique) polyhedral region that contains x within the
partition. Whenever x lies on the frontiers, there might be several polyhedral sets
containing the point. In such cases, without loss of generality i(x) is selected as the
minimal index.

The feedback control law takes the form of a mapping upwa: R → Rm

upwa(xk) = Fi(x)xk + gi(x), xk ∈ Ri(x). (5.3)

defined over the polyhedral partition of the set R = ∪i∈INRi.

Assumption 5.1.1
1. The set R is a bounded polyhedron and IN is finite.

2. Ri are polyhedral.

3. int(Ri) ∩ int(Rj) = ∅, ∀i 6= j, i, j ∈ I2
N .

With respect to the PWA function, the following assumptions hold

Assumption 5.1.2
1. R is positively invariant with respect to xk+1 = Axk +Bupwa(xk).

2. The control law upwa(xk) is continuous.

By construction of the standard MPC, the positive invariance is considered to be
guaranteed and thus the assumptions above hold for the explicit MPC law (5.3).
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5.2 Motivation and Problem Formulation

For real-time implementation of the PWA control law, three stages need to be con-
sidered:

(A) Off-line: Storage of the polyhedral regions Ri, the PWA control gains Fi and
affine components gi.

(B) On-line: Use of a point location mechanism with respect to the parameter x and
the polyhedral partitions R = ∪Ni=1Ri, This can be assimilated to a function
xk → i(xk).

(C) On-line: Evaluation of the PWA control law upwa(xk) = Fi(xk)x + gi(xk) based
on the current state xk and the result of the previous stage of positioning.

In practice this evaluation procedure can fail due to several reasons.

(i) The precision of Ri representation.

(ii) Due to point location mismatch.

(iii) PWA control accuracy inflicted by the precision of representation of the control
gain Fi and offset gi.

The PWA control accuracy and the fragility issues of the gains and affine terms
Fi and gi have been extensively discussed in [ONB+13, NORA+16, KZC15]. The
resulting solution obtained from the EMPC problem is a set of PWA functions
defined over the polyhedral partition PN(R) and their analysis in the point iii)
above can be handled in the respective framework. However, the issues related with
the representation and the closely related point location problems (items i) and ii)
above) remain largely uncovered and will represent the main goal of the present
chapter.

Before entering into the details of the main results, let us motivate the chosen
approach by considering a polyhedral region Ri ⊂ R ∈ Rn, i ∈ IN , and its half-
space representation given by,

Ri = {x | hi,jx ≤ bi,j,∀i ∈ IN , j = 1, · · · , ri}. (5.4)

Here, ri denotes the number of closed half-spaces of the region Ri. In order to
analyze the sensitivity of the polyhedral partition representation and its implication
on the PWA control, a perturbation in the representation of the half-space {hi,rb ≤
bi,rb}, for one of the indices rb ∈ Iri of the region Ri will be considered,

ĥi,rb = hi,rb + ∆hi,rb and b̂i,rb = bi,rb + ∆bi,rb (5.5)

which leads to a new polyhedral set:

R̂i = {x | ĥi,rbx ≤ b̂i,rb}. (5.6)

68



Motivation and Problem Formulation

The perturbation of the half-space representation of the regionRi will concomitantly
affect all the neighbor regions Rj sharing the respective frontier. As several neigh-
boring regions are affected, the analysis of the effects on the partition will encounter
structural problems:

1. Invalidation of the polyhedral partitions definition due to the violation of the
property: int(R̂i) ∩ int(R̂j) = ∅, ∀i 6= j.

2. R\
{
∪Ni=1R̂i

}
6= ∅ even if conv(R) = conv(∪i∈IN R̂i) posing an well-possessedness

issue in the characterization of the polyhedral partition and subsequently in
the PWA function evaluation (5.3).

The first type of problem arises from the asymmetric consideration of the pertur-
bation in between neighboring regions while the second can take place even if the
perturbation is treated similarly among the neighboring regions. Moreover, both
phenomena lead to invalidation of the PWA control law defined over the partition
R̂ = ∪i∈IN R̂i. Particularly the second phenomenon leaves the point location func-
tion seemingly untraceable and this case is shown in Figure 5.1.

(a) 2-D Polyhedral with four regions R =
∪4
i=1Ri before perturbation of the half-

space representation.

(b) Illustration of regions R̂1, R̂2, R̂3 and
R̂4 after perturbation of h3,1x = b3,1. Such
a reconfiguration produces holes in the fea-
sible domain that will undermine the well-
possessedness characteristics.

Figure 5.1: 2-D polyhedral representation before and after perturbation on the half-
space representation.

The drawbacks demonstrated by the perturbation on the half-space representation
are the consequence of the fact that the perturbations are not considered jointly
for all half-spaces. This is due to the fact that the closed half-spaces of the regions
Ri are treated independently at the level of each neighboring region and address-
ing perturbation on such representation is missing the interplay between regions in
composing the polyhedral partition. These drawbacks lead us to the duality of the
polyhedron representation where the problem can be reformulated.
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Eq (5.4) can be given with equivalent vertex representation by virute of Motzkin
duality [MRTT53]:

Ri = Conv{vi,1, · · · , vi,ri}, ∀i ∈ IN (5.7)
here ri is the number of vertices of Ri. Now, consider a perturbation with respect
to the vertex representation vi,j, j ∈ Iri of the region Ri,

v̂i,j = vi,j + ∆vi,j, i ∈ IN , j ∈ Iri (5.8)

this will lead to a new polyhedral set:

R̂i = Conv{vi,1 + ∆vi,1, · · · , vi,ri + ∆vi,ri}. (5.9)

It becomes obvious that in this case R\
{
∪i∈IN R̂i

}
= ∅ if the vertices on the frontier

of R are not perturbed.

In order to provide a graphical interpretation of the problem under study let us
consider the example of a simple continuous PWA function fpwa(x) defined over the
interval [−µ, µ] = [v2,1, v3,2] = R ⊂ Rn.

fpwa(x) =


αx for x ∈ R1 = Conv{v1,1, v1,2},
β̄ for x ∈ R2 = Conv{v2,1, v2,2},
γ̄ for x ∈ R3 = Conv{v3,1, v3,2}.

 (5.10)

which can be simplified by the continuity between the neighboring regions: v1,2 = v3,1
and v2,2 = v1,1.

In Figure 5.2, the regions representation before and after the perturbation on the
vertices is presented. In Figure 5.2a, the nominal three regions obtained from EMPC
denoted by R1,R2 and R3, R = R1 ∪ R2 ∪ R3 satisfy by definition the property
int(Ri) ∩ int(Rj) = ∅, ∀i, j ∈ I3, i 6= j.

The vertices of the regions are denoted by vi,ri , here i and ri denote the index of
regions and the index of vertices for each region respectively. After introducing a
perturbation ∆v on the vertex v1,2 and v3,1 (recall that v1,2 = v3,1) which falls in
the regions R1 and R3, the perturbed vertex is denoted by v̂1,2 and v̂3,1 (v̂1,2 =
v1,2 + ∆v1,2, v̂3,1 = v3,1 + ∆v3,1, v̂1,2 = v̂3,1) as depicted in Figure 5.2b.

Consequently, one vertex displacement will influence the topology of the regions R1
and R3 leading to R̂1 and R̂3, while region R2 = R̂2 remains unchanged. It can
be noticed from Figure 5.2b that even after the perturbations of the regions, the
polyhedral partition is preserved R̂ = R̂1 ∪ R̂2 ∪ R̂3 and in this particular example
the non-overlapping property holds: int(R̂i) ∩ int(R̂j) = ∅,∀i, j ∈ I3, i 6= j.

A consequence of the perturbation is the loss of continuity for the PWA function
fpwa(x) defined over R = R̂1 ∪ R̂2 ∪ R̂3. Moreover, the control input depends
on which region the state vector x falls into and in particular with the regions R̂1
and R̂3, the loss of continuity leads to a control action which is multivalued at the
frontier of these regions. It is obvious that the modifications of the geometry of
partition will lead to a loss of precision with respect to the nominal control input
and consequently to a loss of performances. The loss of continuity is the price to be
paid for the loss of precision in the partition representation and can be acceptable as
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(a) 1-D Polyhedral with three regions
R1,R2 and R3 and the corresponding
PWA functions before perturbation.

(b) Three regions R1,R2 and R3 before
perturbation of the vertex representation
in black. Illustration of regions R̂1, R̂2 and
R̂3 after perturbation preserving the prop-
erty, int(R̂i)∩ int(R̂j) = ∅, ∀i, j ∈ I3, i 6=
j.

(c) Three regions R1,R2 and R3 before pertur-
bation in black. Illustration of the regions R̂1, R̂2
and R̂3 after perturbation with the particular
configuration leading to: int(R̂i) ∩ int(R̂j) 6=
∅, ∀i, j ∈ I3, i 6= j.

Figure 5.2: 2-D polyhedral representation before and after perturbation of the vertex
representation.

long as the control action is uniquely defined on the interior of the full-dimensional
regions within the partition.

In the same framework, in Figure 5.2c, the vertex v1,2 and v3,1 are perturbed to
v̂1,2 and v̂3,1 and moved onwards the region R2 adversely affecting all the three
regions. The new regions denoted by R̂1, R̂2 and R̂3 are now overlapping, i.e.,
int(R̂1) ∩ int(R̂2) 6= ∅, int(R̂2) ∩ int(R̂3) 6= ∅ and int(R̂1) ∩ int(R̂3) 6= ∅.

This possible overlapping due to changes in the vertices of the polyhedral partition
represents a critical structural change because the unicity of the control law is lost
on a compact full-dimensional region of the state space. The non-uniqueness of
the control action leads to behaviors which are difficult to characterize in terms
of determinedness and loss of performance and thus should be avoided in the first
place. This issue forms the basis for investigation in the present chapter and can be
resumed by the need to characterize the limits of the perturbation which preserve
the ”non-overlapping” property of the polyhedral partition. In order to illustrate
the partitions in this framework and present the obvious advantages of considering
perturbation on the vertex representation, a similar partition to the one presented
in Figure 5.1 is depicted in the Figure 5.3. This time it is obvious that using the
dual representation of polyhedra and their perturbed version, the completeness of
the partition is not lost. In general terms, the case R \

{
∪Ni=1R̂i

}
6= ∅ is avoided
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from the consequences of the perturbations in the polyhedral partition.

To resume, starting from the existence of the system in the form (5.1) stabilized by
a PWA control law, the main objective is to discuss the impact of perturbations on
the vertex representation of the polyhedral region by proposing:

• An analysis of the admissible perturbations with respect to the overlapping
characteristics of the PWA controller,

• An analysis of the admissible perturbations with respect to the invariance
properties of the PWA controller.
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(a) 2-D Polyhedral with four regions R =
∪4
i=1Ri before perturbation of the vertex

representation.

(b) Illustration of regions R̂1, R̂2, R̂3 and
R̂4 = R4 after perturbation preserving the
property, int(R̂i) ∩ int(R̂j) = ∅, ∀i, j ∈
I4, i 6= j. Such a reconfiguration of the
partition is admissible from the point of
view of point-location.

(c) Illustration of regions R̂1, R̂2, R̂3 and R̂4 =
R4 after perturbation with the particular config-
uration leading to: int(R̂i)∩ int(R̂j) 6= ∅, ∀i, j ∈
I4, i 6= j.

Figure 5.3: 2-D polyhedral representation before and after perturbation of the vertex
representation

5.3 Treatment of a vertex considered indepen-
dently - Polyhedral overlapping

In the following, a formal definition of the vertex sensitivity is provided focusing
on the non-overlapping property of the polyhedral regions under the assumption
that all the other vertices are fixed and only the vertex under study is subject to
perturbations.

Definition 5.3.1 Consider the partition PN(R) ∈ Rn with each region given by its
vertex representation Ri = Conv{vi,1, · · · , vi,ri}, i ∈ IN . Let v ∈ Rn be a vertex
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within PN(R) and denote Θv as the set of indexes of polyhedral regions having v as
a vertex:

Θv = {j ∈ IN | v ∈ V(Rj)} (5.11)
A compact set Ψ ⊂ R ⊂ Rn is describing a vertex sensitivity for the vertex v if
v ∈ Ψ and for all (v + ∆v) ∈ Ψ the collection of sets R̂j = Conv{V(Rj) \ {v}, v + ∆v}, ∀j ∈ Θv,

R̂j = Rj, ∀j ∈ IN \Θv
(5.12)

represents a polyhedral partition: P̂N(R) = {R̂1, · · · , R̂N}. The sensitivity mar-
gin for the vertex v is defined as the set Ψv containing any valid vertex sensitivity
Ψ ⊂ Ψv.

Given this formal definition, we concentrate next on the structural properties of this
set and on its practical construction.

5.3.1 Characterization of the vertex sensitivity

In the next result, the structure of the sensitivity margin is stated while the proof
will be constructed in such a way that the two scenarios of infeasible perturbations
are enumerated and fully characterized. More than that, the set characterization
will be constructive thus allowing the statement of a finite algorithmic procedure.

Theorem 5.3.1 Consider the subset of regions Rj, j ∈ Θv of PN(R) such that
v ∈ V(Rj), ∀j ∈ Θv, then the vertex sensitivity margin Ψv is represented by a
polyhedral set.

Proof 5.3.1 Let us describe the possible overlapping scenarios and collect the linear
constraints imposed in order to avoid such configurations. We will concentrate on
the set of indices within Θv identifying the polyhedral regions having v as a vertex.
They will be used as long as the perturbation of the vertex v will directly affect these
regions and consequently Ψv ⊆ ⋃

j∈Θv Rj. For each Rj, j ∈ Θv, the half-space
representation is given by:

Rj = {x | Hjx ≤ bj} or implicitly, (5.13a)
Rj = {x | hj,rbx ≤ bj,rb , rb = {1, · · · , rj}}. (5.13b)

Where rj represents the number of half-space inequalities of Rj.

Let us introduce a set Γ which collects the restrictions on the vertex perturbation.
This set will be initialized with Γ← R.

First overlapping scenario: Consider all the hyperplanes hj,rbx = bj,rb , j ∈
Θv, rb = 1, · · · , rj taken sequentially for each region Rj described by the half-space
representation in (5.13b) and retain the inequalities hj,rbx ≤ bj,rb that are not satu-
rated by the vertex v. ∀j ∈ Θv, rb = 1, · · · , rj if hj,rbv 6= bj,rb − then

Γ← Γ ∩ {hj,rbx ≤ bj,rb}.
(5.14)
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Each of the linear inequalities in Γ represents a constraint for the sensitivity set.
Indeed, whenever the vertex v will be perturbed to a value v̂ /∈ Γ it will violate one
of these half-spaces hj,rb v̂ ≤ bj,rb for some j ∈ Θv and rb ∈ {1, . . . , rj}. Such a
constraint violation will make one of the vertices of Rj redundant. Moreover, there
exists at least one index j ∈ Θv such that the vertex representation is perturbed
and v̂ /∈ ⋃

j∈Θv
Rj. The consequence is that v̂ ∈ ⋃

j∈IN\Θv
Rj or v̂ /∈ R. The first

case leads to overlapping and thus needs to be reinforced in the description of the
admissible perturbation set Ψv. The second case invalidates the polyhedral partition
of the original polytope PN(R).

Second overlapping scenario: Consider a set constructed based on the region Rj

and denote it as Rj, ∀ j ∈ Θv using the following definition

Rj = Conv
{
{vj,1, · · · , vj,rnj }\v

}
(5.15)

here rnj denotes the number of vertices of Rj. Based on this definition, the equivalent
half-space representation of Rj is

Rj = {x |hj,bix ≤ bj,bi , bi = 1, · · · , tj}. (5.16)

Each of the closed half-space inequalities hj,bix ≤ bj,bi , j ∈ Θv, bi ∈ {1, · · · , tj} from
(5.16) will be analyzed with respect to Γ.

If the intersection between the closed half-space given by the linear inequalities hj,bix ≤
bj,bi and the set Γ alters the shape of Γ then the elements of the opposite half-space
i.e., −hj,bix ≤ −bj,bi will be stored as a restriction for the sensitivity set: ∀j ∈ Θv, bi = 1, · · · , tj if Γ ∩ {hj,bix ≤ bj,bi} 6= Γ−

then Γ← Γ ∩ {−hj,bix ≤ −bj,bi}.
(5.17)

Whenever a perturbation is chosen so that v̂ ∈ int{Rj}, it invalidates (makes re-
dundant) at least one vertex of Rj. This leads to an overlapping phenomenon and
thus it is excluded by the mechanism described in (5.17).

In order to complete the proof that Γ represents the sensitivity set Ψv, it remains to
show that there is no overlapping configuration excluded from the above scenarios.
By the fact that the only perturbed vertex is v̂, the overlapping can be evaluated
exclusively by the positioning of v̂ within ⋃

j∈Θv
Rj. The two scenarios are covering

the case when the vertex itself is redundant or it renders redundant one of the existing
vertices.

Finally, the compact set that contains all possible variations for the given vertex
v preserving the overlapping property of the polyhedral partition with respect to the
above scenarios can be resumed as:

Ψv ← Γ. (5.18)

In order to illustrate the result Figure 5.4a presents a polyhedral partition with four
regionsRi, i = 1, · · · , 4 and the vertex of interest v = [−1 −1]T is denoted by a black
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dot. The vertex v belongs to three regions. In Figure 5.4b, the vertex sensitivity
region Ψv is represented by a pink polytope and the vertex v can be settled to any of
the points in the polytope Ψv in the event of reduced precision in the representation
of the polytopic region.

(a) Polyhedral with four regions
R1,R2,R3,R4 and the black dot
represents v.

(b) The vertex of interest v and the vertex
sensitivity region Ψv is shown.

Figure 5.4: Polyhedral partition with four regions, the vertex of interest v and the
vertex sensitivity region Ψv are shown.

According to the structural result in Theorem 5.3.1, the vertex sensitivity region Ψv

is a polytopic set. For any perturbed vertex v̂ or point outside the red polytope in
Figure 5.4, the non-overlapping property of the PWA control law is lost.

(a) After perturbation v̂ ∈ Ψv the re-
gions are changed and int(R̂i)∩ int(R̂j) =
∅, ∀i, j ∈ Jv, i 6= j.

(b) After perturbation v̂ /∈ Ψv int(R̂i) ∩
int(R̂j) 6= ∅, ∀i, j ∈ Jv, i 6= j.

Figure 5.5: The vertex v denoted by a black dot in Fig. 3.4 (a) is perturbed to v̂
changing the regions R1,R2,R3,R4 to R̂1, R̂2, R̂3, R̂4.

As expected, the new regions formed with the displaced vertex v̂ guarantees the
”non-overlapping” property of the polyhedral partition if v̂ ∈ Ψv. This observation
is validated with the help of the Figure 5.5a and Figure 5.5b, where the polyhedral
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regions are recreated by the displacement of vertex v̂. In Figure 5.5a the vertex
v = [−1 − 1]T is displaced to vertex v̂ = [−1 0]T ∈ Ψv which alters all the
four regions with indices in Θv but still preserves the overlapping property i.e.,
int(R̂i) ∩ int(R̂j) = ∅, ∀i, j ∈ I4, i 6= j. Conversely, in Figure 5.5b, it is clearly
visible that the overlapping of the regions takes place since v̂ = [−1 1]T /∈ Ψv.

The procedure for computing the vertex sensitivity region Ψv is resumed in Algo-
rithm 5.3.1.

Algorithm 5.3.1 Algorithm for computing the vertex sensitivity set Ψv

Input: R = ∪Ni=1Ri, i ∈ IN and v ∈ PN(R).
Output: Ψv

1: Initialization : M = [ ], W = [ ]. {% matrices storing the half-space description
of Ψv}

2: Find the regions Rj that contain v, and store the indices j in Θv.
3: % Compute the half space representation of Rj.
4: Rj = {x | hj,rix ≤ kj,ri , ri = 1, · · · , rj}
5: LOOP Process
6: for each j ∈ Θv do
7: V = [ ]
8: for ri = 1 to rj do
9: if hj,ri × v < kj,ri then

10: M = [M ; hj,ri ]; W = [W ; kj,ri ]
11: end if
12: if vj,ri 6= v then
13: V = [V ; vj,ri ]
14: end if
15: end for
16: % Compute Rj by vertex representation
17: Rj = Polyhedron(V )
18: end for
19: % Compute R̃ by half-space representation
20: R̃ = Polyhedron(M,W )
21: % tj is the number of closed half-spaces of Rj

22: for ∀j ∈ Θv do
23: for bi = 1 to tj do
24: if ({h̄j,bi , k̄j,bi} ∩ R̃) /∈ R̃ then
25: M = [M ;−h̄j,bi ]
26: W = [W ;−k̄j,bi ]
27: end if
28: end for
29: end for
30: % Compute Ψv by half-space representation
31: Ψv = Polyhedron(M, W )
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5.3.2 Admissibility restriction with respect to the input con-
straints

In this section, we discuss the violation of the control law occurred due to the
perturbation of the vertices in the PWA control law definition. Let us consider the
1-D example from section 5.2. From Figure 5.2c, it can be inferred that when the
vertex v1,2 is perturbed to v̂1,2 the displaced vertex v̂1,2 /∈ R1 but v̂1,2 ∈ R̂1. The
corresponding control law for the region R1 is given in the form of a gain αx as
shown in (5.10). The feedback control law defined over the polyhedral partition of
the set R̂ takes the form of a mapping ûpwa : R̂ → Rm,

ûpwa(xk) = Fixk + gi, xk ∈ R̂. (5.19)

As a consequence, the displacement of the vertex v1,1 outside the region R1 will
cause the new control law ûpwa(xk) to violate the input constraint set U . In order
to tackle such control violation issues, inflicted by the displacement of the vertex,
we need to take into account the margin of control admissibility.

Definition 5.3.2 The PWA function upwa : R → U and the counterpart ûpwa :
R̂ → Rm obtained by the perturbation of a single vertex v → v̂ is admissible if
ûpwa(x) ∈ U , ∀x ∈ R̂.

Theorem 5.3.2 Let upwa(x) : R → U and v a vertex of V(PN(R)). The point v̂
is admissible as a perturbation of v if it belongs to the set

Ψv
u = {v̂ ∈ Ψv| Fiv̂ + gi ∈ U ,∀i ∈ Θv}. (5.20)

Proof 5.3.2 For any given vertex in the set V(PN(R)) it follows that v ∈ V(Ri)
and there exists a PWA control law upwa(v) = Fiv+ gi, that satisfies the constraints
upwa(v) ∈ U and moreover Av + Bupwa(v) ∈ R, based on the controlled-invariance
of the closed loop [Bla99].

Now, let us introduce perturbation on any vertex v, such that for v → v̂, we have
PN(R)→ PN(R̂). With respect to the existing control law Fiv̂ + gi defined over the
new polyhedral partitions PN(R̂), it cannot be assured that the control laws for the
new set satisfy the control constraints at all times as long as all the PWA functions
valid on the point v̂ do not satisfy the input constraints. In other words, not all
control laws for all the points in the vertex sensitivity set Ψv belong to the input
constraint set U . In order to guarantee the control law upwa(v̂) is admissible at all
times for any point in the set Ψv, we need to eliminate the points that violate the
constraint set and remove them from the set Ψv which leads to the definition of the
set Ψv

u in the statement of the theorem.

Ψv
u = {v̂ ∈ Ψv| Fiv̂ + gi ∈ U ,∀i ∈ Θv}. (5.21)

Corollary 5.3.1 The set Ψv
u defining the perturbations of the vertex v which are

admissible and non-overlapping from the point of view of partition R is a polyhedral
set.

Proof 5.3.3 The set Ψv and U used in the description for Ψv
u are polyhedral and

given the piecewise affine structure of the control mapping, it follows that Ψv
u inherits

the convexity and the polyhedral structure.

78



Impact of Vertex Perturbation on the invariance characterization

5.4 Impact of Vertex Perturbation on the invari-
ance characterization

In this section, we bring into discussion the set invariance characterization in rela-
tionship with the PWA controller. The positive invariance of the closed-loop dynam-
ics will be considered on top of the non-overlapping property of the PWA control
function (Theorem 5.3.1) which retains a well-possessedness structural property. It
is important to mention that we preserve the assumption that only one vertex is
perturbed at the time, all the other vertices being maintained at the nominal values.
This strong hypothesis will be relaxed later in section 5.5.

From Theorem 5.3.1, it is understood that the vertex sensitivity can be analyzed with
respect to the admissible perturbation related to the non-overlapping characteristics
for any single vertex of the polyhedral partition PN(R). In order to incorporate the
analysis of vertex sensitivity with respect to the invariance property of the PWA
control law, we will have to make a difference among the vertices and the impact
of their perturbation. The vertices that represent extreme points of the set R are
particularly sensitive to perturbation taking into account that they characterize the
controlled-invariant properties per se. Indeed, any perturbation to these vertices
will change the topology of the boundary of the set R and potentially invalidate
the positive invariance. The second class of vertices are those that are included in
the strict interior of the set R. In Figure 5.6, the classification of the vertices are
illustrated.

Figure 5.6: Classification of the vertices of PN(R).

5.4.1 Perturbations of vertices on the frontier of the feasible
domain R

In the following we analyze the perturbation of vertices that represent extreme points
of the set R (placed on the frontier of R) and thus, by their repositioning lead to a
reconstruction of the polyhedral partition PN(R) = {R1, · · · ,RN}.

Consider the set R = ∪Ni=1Ri, with Ri = Conv{vi,1, vi,2, · · · , vi,ri}. Let us define the
set of vertices on the frontier of R as:

V = {v ∈ R : ∃i such that v ∈ V(Ri) and v /∈ int(R)}. (5.22)
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For the sake of notation, the set will be represented as, V = {v1, v2, · · · , vr} with r
the number of vertices, lying on the frontier of the set R.

The analysis of perturbations in the representation of the set R all by assuring the
non-overlapping and invariance characteristics of PN(R) is directly related to the
positioning of the frontier vertices and will be considered for each vertex in V taken
independently. We start by recalling the closed-loop mapping for any point in the
set R preserving the invariance characteristics of the PWA controller:

fpwa(x) = Ax+Bupwa(x) ∈ R. (5.23)

Using (5.23), we can represent the image of the set R by,

Fpwa(R) = {y ∈ Rn|∃x ∈ R such that y = fpwa(x)}. (5.24)

In the work of Scibilia et al [SOH11], it has been shown that any approximation
of R denoted by Rα and which satisfies Rα ⊆ R and Rα ⊇ Fpwa preserves the
invariance property of the closed loop. We aim to exploit the same principle in the
framework of the vertex perturbations of the PWA control functions. We are inter-
ested in guaranteeing that the invariance holds with respect to a set Rα defined in
relationship with the existing PWA controller by perturbation of one of the frontier
vertices v ∈ V towards a point v̂ ∈ R thus leading to a novel (perturbed) set:

Rα
i (v, v̂) = conv{V(Ri) \ v, v̂}, ∀i ∈ IN ,
Rα(v, v̂) = ∪Ni=1Rα

i (v, v̂),
PN(Rα(v, v̂)) = {Rα

1 (v, v̂), . . . ,Rα
N(v, v̂)}.

(5.25)

Theorem 5.4.1 Let a dynamical system in the form (5.1) and the PWA control law
upwa(x) (5.3) defined over the set R and assuring its positive invariance in closed-
loop. Given a set Rα ⊂ R, the function ûpwa : Rα → U defined as ûpwa(x) =
upwa(x), ∀x ∈ Rα ensures the positive invariance of Rα with respect to xk+1 =
Ax+Bûpwa(x) if Rα ⊇ Fpwa.

Proof 5.4.1 See [SOH11] for the proof.

Unfortunately, the theorem 5.4.1 is not offering the appropriate guarantees for the
positive invariance of Rα in closed loop with the perturbed PWA control law. The
main reason is that after perturbation of a vertex of the set Rα(v, v̂), the new PWA
function is not guaranteed to preserve the relationship upwa(x) = ûpwa(x), ∀x ∈ Rα

as stated in the Theorem above. The new partition PN(Rα) 6= PN(R) and it differs
in the regions affected by the perturbation of the vertex v as long as Rα

i (v, v̂) 6=
Ri,∀i ∈ Θv. Explicitly, after perturbation, we have:

ûpwa(x) = Fix+ gi for x ∈ Rα
i (v, v̂), (5.26)

and ûpwa(x) 6= upwa(x) when x ∈ Ri but x /∈ Rα
i . This observation leads us to the

statement of the main result where the following notation will be used:

F̃(Rα) = {y ∈ R|∃x ∈ Rα such that y = Ax+Bûpwa(x)}. (5.27)
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Theorem 5.4.2 Let v ∈ V and its perturbation v̂ = (v + ∆v) ∈ Ψv. The positive
invariance properties of the set Rα(v, v̂) with respect to xk+1 = Ax + Bûpwa(xk) is
guaranteed if Rα(v, v̂) ⊇ Fpwa and F̃(Rα) ⊂ Fpwa.

Proof 5.4.2 From Theorem 5.3.1, it is known that the disturbances in Ψv guaran-
tees the non-overlapping property of the partition for the vertex v ∈ V . This property
ensures the well-possessedness of the PWA mapping xk+1 = Ax+Bûpwa(xk). From
hypotheses, the PWA control law upwa defined over the set R assures the positive
invariance characteristics of the set R i.e.,

xk+1 = Axk +Bupwa(xk) ∈ R. (5.28)

Let us consider the perturbation on the vertex v, v → v̂ and the modified partition
PN(R) → PN(Rα). Even if the new PWA function ûpwa loses the continuity over
Rα, it preserves the piecewise continuity. Thus the positive invariance can be anal-
ysed by considering the image of the vertex v̂ ∈ Ψv and particularly by analyzing its
image with respect to the set Fpwa. In order to ensure the invariance characteristics
of the approximated set Rα, we must ensure that the control law corresponding to
the polyhedral regions of the set Rα

i satisfy:

Ax+Bûpwa(x) ∈ Fpwa,∀x ∈ Rα. (5.29)

or equivalently if
F̃ (Rα) ⊂ Fpwa. (5.30)

Taking into account that only one vertex v is affected by the perturbation, the vari-
ations that guarantee f̃pwa(v̂) ∈ int(Fpwa) and v̂ ∈ Ψv preserve the invariance. The
collection of all the feasible vertex perturbation leads to the set:

Πv = {v̂ ∈ {Ψv \ Fpwa}|f̃pwa(v̂) ∈ Fpwa}. (5.31)

The compact set Πv ⊂ Ψv is describing the invariance-margin for a frontier vertex
v ∈ V and leads to the redefinition of the regions of the partition: Rα

i = conv{V(Ri) \ v, v̂}, ∀i ∈ Θv,
Rα
i = Ri,∀i ∈ IN \Θv (5.32)

all by guaranteeing that Av̂ +B(Fiv̂ + gi) ∈ Fpwa.

Thus, we complete the proof that R ← Rα(v, v̂) represents the approximation of the
set R whose vertices are perturbed and positioned in a way that the set Rα assures
the non-overlapping and the invariance property of the controller.

Remark 5.4.1 The set Πv in (5.31) provides a characterization of the disturbances
for any vertex v ∈ V but it should be noted that it is not a convex set. However,
being constructed as the set difference of two polyhedral sets, it can be represented
as a finite union of polyhedra.

Remark 5.4.2 The Theorem 5.4.2 provides a guarantee of positive invariance after
the perturbation of a vertex v ∈ V but does not guarantee the convexity of the
set Rα(v, v̂). This is particularly problematic as long as the polyhedral partition
properties of the nominal PWA control might be lost. The next section provides a
formal description of the conditions which enforce the convexity all by remaining
tractable from the construction point of view.
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5.4.2 Margin of Convexity

Next, we define the set of vertices of the polyhedral set R as:

V̆ = V(R). (5.33)

The set will be represented as V̆ = {v1, v2, · · · , vr̆} with r̆ represents the number of
vertices of R. Note that the set V and V̆ are not equivalent as long as there exist
vertices of Ri which are located on the frontier of R but do not represent vertices of
this later set. Now, we classify the vertices on the frontier of the set R into two sets.
The first set is already defined in (5.33) while the second represents its complement
with respect to V . This last set will contain the vertices which are not in the set V̆
because they are not representing vertices of R even if they are positioned on the
frontier of R:

Ṽ = V \ V̆ . (5.34)
Similarly, in order to facilitate the notation Ṽ = {v1, v2, · · · , vr̃} with r̃ the number
of vertices in this set.

It can be observed from Theorem 5.4.2 that although the invariance is preserved
after the perturbation, the polyhedral structure of the set Rα is not necessarily
preserved. This is due to the fact that perturbing any vertices from the frontier
and particularly those for the set Ṽ will result in lost of convexity when taking the
poly-union of the polyhedral partition Rα = ∪Ni=1Rα

i .

In order to exemplify this phenomenon, consider a polyhedral partition with 13
regions Ri as represented in Figure 5.7a. Next, we classify the frontier vertices into
extreme and non-extreme vertices (contained in Ṽ ) denoted with the help of red and
blue dots respectively (those contained in V̆ ). This classification can be observed
from the Figure 5.7b along with the representation of the set R. Now, we aim to
analyze the perturbation of a non-extreme point v ∈ Ṽ that satisfies v̂ ∈ Πv as
given in (5.31). The non-extreme point v to be perturbed is denoted by a black
dot and the perturbed vertex v̂ is denoted by a red + symbol as illustrated in the
Figure 5.7c. After the perturbation, the perturbed polyhedral regions Rα

i (v, v̂) are
computed and it is shown in the Figure 5.7d. It can be inferred from Figure 5.7d
that the overall convexity of the poly-union of the regions Rα is lost.

Theorem 5.4.3 Let the system (5.1) and the PWA function (5.3). The positive
invariance with respect to the closed loop and the convexity of the feasible domain is
guaranteed if a vertex v ∈ V is perturbed towards v̂ ∈ Πv \ int(conv(V \ v)).

Proof 5.4.3 The condition v̂ ∈ Πv was shown to guarantee the invariance. Sec-
ondly, v̂ /∈ int(conv(V \ v)) implies that v̂ is not redundant after perturbation.
More than that, Rα(v, v̂) ⊂ R and by virtue of the convexity of R it follows that
R ⊃ conv{Rα(v, v̂)}. Ultimately, conv{Rα(v, v̂)} = Rα(v, v̂) as any point in the
convex hull is part of R and it can be expressed as a convex combination involving
the vertices of (V \ v) and v̂ all by preserving the non-overlapping property of the
partition.

The previous Theorem offers a condition for preserving the convexity of the partition
after perturbation. However, for the vertices in Ṽ this reduces the set of admissible
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(a) Polyhedral partition with 13 regions
Ri, R = ∪Ni=1Ri.

(b) Illustration of set R with extreme and
non extreme points are denoted by red and
black dots respectively.

(c) The pink polytope denotes the image
set Fpwa. The green polytope represents
the sensitivity margin Ψv for the non ex-
treme point v given in black dot. The red
+ symbol represents a point v̂ chosen for
exemplification v̂.

(d) Illustration of Rα = ∪Ni=1Rαi after per-
turbation.

Figure 5.7: Illustration for perturbation of the non-extreme vertex.

perturbations to a degenerate set. In order to offer a certain degree of freedom in the
treatment of these vertices, the idea is to consider the perturbation of the vertices
in the set V̆ in a first stage and then to consider the perturbation of the vertices in
the set Ṽ . Consider the convexity problem as stated for the example in Figure 5.7,
we assume that all the vertices in the set V̆ are perturbed and we have computed
the final approximated set Rα after perturbing the vertices sequentially. Starting
from this approximated set given by the extreme points in vertex representation:

Rα = {vα1 , · · · , vαrα}. (5.35)

In a second stage, the vertices in the set Ṽ individually preserving the non-overlapping
and the invariance property are constructed based on (5.31). Exploiting the geo-
metrical structure of Π and the set Rα, we directly write down the constraints that
satisfy the convexity property of the set Rα and its polyhedral partition PN(Rα)
for the vertices v ∈ Ṽ .

Π = {x ∈ R|v̂ ∈ Πv \ int(conv(V \ v))}. (5.36)
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Figure 5.8: Representation of the set R and its image Fpwa are represented by
contour in dashed lines and the contour in full lines respectively. The colored poly-
topes apart from white and gray ones represent the vertex sensitivity for the vertices
depicted in blue dots

From Figure 5.8, it can be noted that several boundary vertices of the image set Fpwa
lie on the frontier of the set R and perturbing those vertices will result in violating
the relation Rα ⊇ Fpwa, here Rα denotes the approximated set for the perturbed
vertex. These vertices have no full dimensional set of admissible perturbation in the
first stage of the procedure if the respective vertices are treated in the first stage.
It is worth to be mentioned that not all the points in V fall in this category. There
after, we perturb any vertices v ∈ V that satisfies the relation Rα(v, v̂) ⊇ Fpwa and
also satisfying the condition that the vertex to be strictly inside the vertex sensitiv-
ity region and preserve the convexity.

Remark 5.4.3 Consider two vertices [v1, v2] ∈ V , the vertex sensitivity set Ψv1

for the vertex v1 is computed assuming that the vertex v2 is fixed and vice versa.
Perturbing the vertex v1 inside its vertex sensitivity set may invalidate the vertex
sensitivity set computed for the vertex v2. There after, we fix the position for the
vertex after perturbation assuring the invariance and convexity, then recompute the
set Rα with its partition PN(Rα), here the perturbed set is assumed to be Rα. We
proceed to deriving the image set for the new Rα and recompute the vertex sensitivity
sets for all the untreated vertices that lie on the boundary of the set Rα and likewise
perturb the vertices sequentially.
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Algorithm 5.4.1 Algorithm for computing the perturbed set Rα

Input: R = ∪Ni=1Ri, i ∈ IN , V /∈ int(R)
Output: Rα

1: Initialization : Rα = R
2: LOOP Process
3: for γ = 1 to r do
4: for b1 = 1 to r − γ − 1 do
5: Compute the vertex sensitivity set Ψvb1

6: end for
7: Compute the Image set F
8: for b2 = 1 to r − γ − 1 do
9: vαb2 = quantify(vb2)

10: if vαb2 ∈ (Ψvb2 ∩R) and vαb2 /∈ int(F) then
11: break
12: end if
13: end for
14: for t = 1 to length(Θvb2 ) do
15: Rα

j = Conv{V(Rj) \ {vb2}, vαb2} ∀j ∈ Θvb2

16: end for
17: V (b2, :) = [ ]
18: R = Rα

19: end for

The Algorithm 5.4.1 is responsible for computing the perturbed set Rα. In Algo-
rithm 5.4.1, r denotes the number of vertices lying on the frontier of the set R.
Figure 5.9 illustrates the set R in dashed red line along with the image F for each
outer approximation vertex for each iteration in Algorithm 5.4.1. The image set F
from the last iteration of the Algorithm is depicted by a green polytope in Figure 5.9.
The final approximated set Rα is given by a red polytope illustrated in Figure 5.10.

The polyhedral partition PN(R) of the setR with 13 regions is shown in Figure 5.11a
and the polyhedral partition of the set Rα (outcome of the Algorithm 5.4.1) with
all the displaced vertices is given in Figure 5.11b. The approximated set Rα for the
nominal PWA control law validates the invariance properties for all the displaced
frontier vertices. Possible alternatives on the characterization of the PWA control
law are enumerated in the following,

1. Starting from the PWA state-feedback dynamics that assures the controlled-
invariance of the set R for the nominal system (1). Determine the maximum
admissible set that allows perturbation on the state-space partition given by
vertex representation, such that A(vi + ∆vi) + Bupwa(vi + ∆vi) ∈ R, ∀(vi +
∆vi) ∈ R, i ∈ Ir. This particular problem leads to the computation of the
robustness margin [ONB+13, NOBRA14, NORA+16]. However, this problem
does not implicitly take into account the non-overlapping characterization of
the PWA controller.
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Figure 5.9: Representation of the set R given by contour in dashed red line. The
solid polytopes inside the set R are the images F of the set R for each iteration in
Algorithm 5.4.1.

Figure 5.10: Representations of the set R and the output of the Algorithm 5.4.1 Rα

are depicted in blue and red polytope respectively.

2. Extend the EMPC problem to controlled-λ contractivity with respect to the
nominal system [HOB14]. The perturbation on the vertices should be chosen,
such that A(vi + ∆vi) + Bupwa(vi + ∆vi) ∈ λR, v̂i = vi + ∆vi ∈ R, ∀i ∈ Ir
and the magnitude of perturbed numerical value should be lesser than 1− λ.
This methodology is discussed later in this chapter.

In the following we assume R ≡ Rα and we introduce a matrix V̄ ∈ Rn×p to store
all the vertices of all the polyhedral regions Ri,∀i ∈ IN excluding the vertices on
the boundary of the polyhedron R,

V̄ = [v̄1, v̄2, · · · , v̄p]. (5.37)
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(a) Polyhedral partitions with 13 regions
(Input for the Algorithm 5.4.1).

(b) Polyhedral partition of the setRα after
perturbing all the frontier vertices (Out-
put from Algorithm 5.4.1).

Figure 5.11: Polyhedral partition with 13 regions, before and after perturbation of
all the frontier vertices.

5.4.3 Treatment of one inner vertex for non-overlapping and
invariance

In this subsection, we characterize the sensitivity margin with respect to the in-
variant property of the PWA controllers for the interior vertices of the polyhedral
partition PN(R) ∈ Rn. Recall the vertex sensitivity margin Ψv from (5.18) which
preserves the non-overlapping property of the polyhedral partition.

Definition 5.4.1 Consider the polyhedral partition PN(R) ∈ Rn with

Ri = Conv{vi,1, · · · , vi,ri}, i ∈ IN , (5.38)

V̄ = [v̄1, · · · , v̄p] and R is assumed to be controlled-invariant. For any v̄ ∈ V̄ denote
Λv̄ ⊂ IN the subset of indexes of regions that satisfies (Ψv̄ ∩Rj) 6= ∅:

Λv̄ = {j ∈ IN |(Ψv̄ ∩Rj) 6= ∅}. (5.39)

The set Υv̄ ⊆ Ψv̄ ⊂ R is representing the invariance-vertex sensitivity for a given
vertex v̄ if ∀(v̄ + ∆v̄) ∈ Υv̄, the following properties hold for the newly constructed
polyhedral partition PN(R̂(v̄, v̄ + ∆v̄)):

1. R̂ is controlled-invariant.

2. R̂ = ∪Ni=1 R̂i is a polytope.

3. int(R̂i) ∩ int(R̂j) = ∅, ∀i, j ∈ IN , i 6= j.

Theorem 5.4.4 Consider the subset of regions Rj, j ∈ Λv̄ that satisfies (Ψv̄∩Rj) 6=
∅, of PN(R) and R is assumed to be controlled-invariant then the invariance-vertex
sensitivity for v̄ is represented by a polyhedral set Υv̄.

Υv̄ = Ψv̄ ∩ {v̄ | Av̄ +B(Fj v̄ + gj) ∈ R, Fj v̄ + gj ∈ U , ∀j ∈ Λv̄} (5.40)
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Proof 5.4.4 Starting from the PWA state-feedback control assuring the invariance
characteristics of the set R,

Av̄ +B(Fiv̄ + gi) ∈ R,∀i ∈ IN , (5.41)

and the vertex sensitivity described by the set Ψv̄.
Now, locate the subset of regions of PN(R) assuring the non-overlapping behavior
for the vertex v̄ and index it using a set Λv̄.

Using (5.41) and the description of Λv̄, we are able to compute the sets denoted by
S v̄j containing all the admissible points for the PWA controllers, given by the indexes
in the set Λv̄, such that the invariance property is preserved. By simply intersecting
the set S v̄j and Ψv̄ sequentially we obtain the invariance-vertex sensitivity set:

Υv̄ =
⋂
j∈Λv̄

(S v̄j ∩Ψv̄) (5.42)

It should be noted from the structural point of view that Υv̄ is a polyhedral set.
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5.5 Treatment of multiple vertex perturbation

In the section, the objective is to relax in a sequential procedure the assumption
of single vertex perturbation. Such an approach allows to perturb multiple vertices
inside the polyhedral partition PN(R). From the theoretical point of view we will
relay on the proofs presented in the previous subsections for the perturbation of
a single vertex assuring the non-overlapping characteristics of the set R and the
invariance property of the PWA closed-loop dynamics hold, under the assumption
that all the other vertices are fixed.

We propose an algorithm to consider perturbing the position of all the inner vertices
sequentially as resumed in Algorithm 5.5.1. In the algorithm, p denotes the number
of interior vertices of the set R. The steps involved in transforming the set R to
R̂ with respect to relocating the position of the vertices to the perturbed ones are
described in the following.

• The first inner loop involving to compute the vertex sensitivity, sensitivity
margin and Chebychev radius for the sensitivity margin set for all the inner
vertices yet to be perturbed.

• Identify the vertex, also called as candidate, that has the least fragility by
identifying the vertex that has the smallest Chebychev radius associated to its
invariance-vertex sensitivity.

• The next step is to consider a quantization function as f(v̄) = v̄ + ∆v̄, here
∆v̄ is a random vector satisfying ‖∆v̄‖∞ ≤ 10−ε, ε ∈ N+.

• Update of the regions that satisfy the perturbed (quantized) vertex threshold.

• Reconstruct the set R and remove the candidate vertex from the matrix V̄
that has been treated now and restart the same procedure for the remaining
vertices.
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Algorithm 5.5.1 Algorithm for computing the perturbed set R̂
Input: R = ∪Ni=1Ri, i ∈ IN , V̄ ∈ int(R).
Output: R̂

1: Initialization : R̂ = R
2: LOOP Process
3: for γ = 1 to p do
4: Rad = [ ]
5: for b1 = 1 to p− γ − 1 do
6: Compute the vertex sensitivity set Ψv̄b1

7: Compute the sensitivity margin Υv̄b1

8: Rad(b1) = Υv̄b1 .chebychev.radius()
9: end for

10: [, R] = sort(Rad)
11: % Set the quantified value for v̄R(1)
12: vqn = quantify(v̄R(1))
13: if vqn /∈ Υv̄R(1) break end if
14: for t = 1 to length(Θv̄R(1)) do
15: R̂j = Conv{V(Rj) \ {v̄R(1)}, vqn} ∀j ∈ Θv̄R(1)

16: end for
17: V̄ = V̄ \ v̄R(1)

18: R = R̂
19: end for

5.6 Example

Consider the discrete-time linear system,

xk+1 = Axk +Buk (5.43)

where,

A =
[
1.4 0
1.8 −1.1

]
and B =

[
0.5
0.7

]

The constraints on the states are −5 ≤ [1 0 ]xk ≤ 5 and input constraint −5 ≤

uk ≤ 5 will be considered in an MPC design. The weighing matrices Q =
[
1 0
0 1

]
and R = 1 are considered in the open-loop finite time optimization problem with
prediction horizon Np = 2.

Solving the EMPC problem using MPT 3.0 toolbox yields 13 affine controllers and
its associated state space partitions. First, we approximated the set R by per-
turbing the vertices on the boundary of the set. A quantization function f(vj) =
vj + ∆vj, ∀j ∈ Ir with a random variable ‖∆vj‖∞ ≤ 10−2 is considered for per-
turbing the frontier vertices. A smaller quantizer function is chosen concerning the
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volume of the operating domain. Choosing an aggressive quantizer may approxi-
mate the outer representation of the set R but the freedom of displacing the inner
vertices closer to those of the outer ones should be taken into consideration from the
performance point of view. However, the objective of the present numerical example
is not to provide a minimal perturbation type of solution but to prove the validity
of the proposed perturbation margins.

In the next step, we assume that the vertices on the boundary are fixed and we
proceed to perturb the inner vertices in the set R sequentially as described in Al-
gorithm 5.5.1. In the set R there are 8 inner vertices and we choose to manually
displace them for this analysis and illustrative purpose (with quantizer we presented
an analysis depicted in Figure 5.14). Figure 5.12 shows the functioning of the algo-
rithm for each iteration. In the subplots from Figure 5.12, the polyhedral regions
R̂i are presented with the vertex sensitivity and invariance-vertex sensitivity sets
depicted in red and green color respectively, for the vertex that has the smallest
Chebychev radius. The symbols dot and × in the subplots are the vertex candidate
and the new position where the candidate will end up after perturbation. The posi-
tions of the vertex candidate for each iteration and their new position are presented
in the TABLE 5.1. The regions that undergo transformation for each iteration are
also given in the table along with the Chebychev radius for the candidate vertex.
The numerical values of the vertices v̄ are originally double precision representation
but in the table we restricted the values to four decimal places due to space con-
straint.

Starting from Figure 5.12a, for the first vertex candidate, we perturb the vertex
from [−1.3314 8.1440]T to the position [−4.0, 1.6]T there by affecting three regions
with indexes 8, 12, 13. The next subplot shows the new polyhedral regions after
perturbation. After the 8th iteration, the subplot 5.12i represents the final set R̂
that is the output of the algorithm 5.5.1.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i)

Figure 5.12: In the subplots, the polyhedral regions R̂i are presented with the
vertex sensitivity and invariant-vertex sensitivity sets depicted in red and green
color respectively. The dot and the × in the subplots are the vertex candidate and
their new positions
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γ v̄
Chebychev
radius

v̄ + ∆v̄ Θv̄R(1)

1
[−1.3314,
8.1440]T 0.706 [−4.0, 1.6]T {8, 12, 13}

2
[−0.2162,
8.5668]T 0.54 [0.2, 8]T {7, 11, 12}

3
[1.3314,
−8.1440]T 0.706 [2,−6]T {4, 6, 9}

4
[0.2162,
−8.5668]T 0.70 [−0.2,−8]T {1, 3, 4}

5
[0.6361,
−6.5235]T 2.128 [−1,−4]T {1, 2, 4, 6}

6
[−3.7291,
−0.9076]T 1.395 [−3, 2]T {1, 2, 5, 8}

7
[−0.6361,
6.5235]T 1.02 [1, 6]T {2, 7, 8, 12}

8
[3.7291,
0.9076]T 0.87 [3.5, 3]T {2, 6, 7, 10}

Table 5.1: This table represents the vertex candidates for each iteration and their
new position along with their Chebychev radius. The last column shows the indexes
of the subset of regions that are impacted by the perturbation of the vertex

From Figure 5.12, it is obvious from the subplots that no overlapping took place
although a very aggressive perturbation has been tested for illustration. This val-
idates one part of our work. In order to conclude on the closed loop behavior, we
simulated for the state trajectories for the PWA controller for the outer vertices as
initial states and this is presented in Figure 5.13. In the second analysis, we assume
that the vertices on the frontier of the set R are fixed. A quantization function
f(v̄j) = v̄j + ∆v̄j, ∀j ∈ Ip with a random variable ‖∆v̄j‖∞ ≤ 0.2 is considered
for all the inner vertices in the set R. In Figure 5.14, the polyhedral partition
outlined with red lines are the ones from the approximated feasible set and the per-
turbed polyhedral regions PN(R̂) assuring the non-overlapping and the invariance
properties for the inner vertices are illustrated in blue lines.
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Figure 5.13: The states trajectories for the polyhedral partition, outcome of the
Algorithm 5.5.1 as show in Fig 5.12i, for the vertices that lie on the boundary of
the polytope.

Figure 5.14: The perturbed polyhedral regions PN(R̂) for the quantization function
with a random variable ‖∆v̄j‖∞ ≤ 0.2 are outlined with blue lines. The polyhedral
regions PN(R) are given in red lines.

Figure 5.15 depicts the state trajectories for the perturbed polyhedral partition
controlled by the nominal PWA control law for all the frontier vertices.
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Figure 5.15: The states trajectories for the polyhedral partition, outcome of the
Algorithm 5.5.1 as show in Figure 5.14, for the vertices that lie on the boundary of
the polytope.

5.7 Contractivity

In this section, we aim to extend the sensitivity margin problems to the PWA control
laws obtained based on controlled λ-contractivity sets. Starting from the contrac-
tive piecewise affine controller, with parameter β as a Minkowski functional of the
contractive set R, constructed upon the optimization-based formulation provided
in Chapter 3 and characterized by the vertex margin set Ψv (5.18), we define the
problem to be solved in the following.

Definition 5.7.1 Consider a linear system and PWA control law defined over the
polyhedral partition PN(R) ∈ Rn, where R is controlled λ-contractive set with respect
to the closed-loop dynamics. Let v ∈ V(PN(R)) and denote Jv as the subset of
indexes of regions having v as vertices:

Jv = {θ ∈ IN |v ∈ V(Rθ)}. (5.44)

The set Υv
c ∈ Ψv is describing the sensitivity of the vertex v ∈ V(Ri) with respect to

the controlled λ-contractive set R if for any point v̂ = v + ∆v ∈ Υv
c , the collection

of sets
R̂θ = Conv{V(Rθ) \ {v}, v + ∆v}, ∀θ ∈ Jv,
R̂θ = Rθ,∀θ ∈ IN \ Jv

(5.45)

represents a polyhedral partition: P̂N(R̂) = {R̂1, · · · , R̂N}, and the approximated
set R̂ = ∪Ni=1R̂ is controlled λ-contractive and convex.

Theorem 5.7.1 Consider a linear system and the PWA control law defined over
PN(R) where R is assumed to be controlled λ-contractive. The contractive-vertex
for v is guaranteed within the set Υv

c ,

Υv
c = {v̂ ∈ Ψv| v̂ /∈ int(βλR) with β =MR(v̂)}. (5.46)
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Proof 5.7.1 Starting from the contractive characterization of the PWA closed loop
system, suppose that v ∈ βR. Then it holds that

Av +Bupwa(v) ∈ βλR. (5.47)

From (5.47), it follows that for any vertex v ∈ βR the closed-loop successor state
belongs to the set βλR. A simple way to enforce the λ-contractivity is to restrict the
displacement of the vertex v such that

v + ∆v ∈ βR and v + ∆v /∈ int(βλR). (5.48)

Finally, taking the vertex sensitivity margin Ψv into consideration for avoiding the
overlapping scenarios, the contractive margin set preserving the λ-contractivity prop-
erties can be given by:

Υv
c = {v̂ ∈ Ψv| v̂ /∈ int(βλR) with β =MR(v̂)}. (5.49)

Figure 5.16: The contractive set βR is given by a polytope outlined in blue color
and the vertex of interest is denoted by a black dot. The polytope outlined in red
color is representing the set βλR. The green polytope is the vertex sensitivity region
Ψv for the vertex given in black dot.

Figure 5.16 illustrates the computation of the contractive margin set for a fron-
tier vertex of the set R, where the contractive margin set Υv

c is given by the set
intersection Ψv ∩ (βR \ int(βλR)).
Remark 5.7.1 Perturbing the frontier vertices of the contractive set R may re-
sult in the loss of convexity while taking the poly-union of the polyhedral regions.
The convexity of the poly-union R̂ = ∪Ni=1R̂ is preserved by following the procedure
mentioned in the section 5.4.2 (Margin of Convexity).

Example

Consider the discrete-time linear system,

xk+1 = Axk +Buk (5.50)

where,
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A =
[
0.9 0.5
0 0.8

]
and B =

[
0.4
0.2

]

and the constraints on the states are −10 ≤ [0 1 ]xk ≤ 10 and input constraint

−2 ≤ uk ≤ 2. The weighing matrices Q =
[
1 0
0 1

]
and R = 1 are considered in the

finite time optimization problem. The contractive factor λ chosen is 0.99 for this
example.

Figure 5.17: Representation of polyhedral partitions with 11 regions in the [x, β]-
space.

Figure 5.18: The projection of Figure 5.17 onto x-space, now the newly formed
polyhedral partitions has 24 regions.

Figure 5.17 shows the polyhedral partition with 11 regions obtained from the mp-QP
problem. This polyhedral partition is represented on an [x, β]-space. The projec-
tion of this polyhedral representation is carried out on x-plane with the help of the
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algorithm mentioned in Chapter 3. The projected polyhedral partition consists of 24
regions and is shown in Figure 5.18. Starting from the polyhedral partition PN(R)

Figure 5.19: The approximated polyhedral partition PN(R̂) after displacing all the
vertices in the set V(R).

illustrated in Figure 5.18, the displacement of the vertices are carried out such that
the vertices vj, j ∈ Ir, where r is the total number of vertices in the set V(Ri),
belongs to the contractive-vertex sensitivity set Υvj

c . The newly constructed polyhe-
dral partition after displacing all the vertices simultaneously is shown in Figure 5.19.
The contraction factor being close to 1, the displacement of vertices is reduced. For
exemplification we provide some vertices co-ordinates before the displacement, the
factor β for these vertices and the vertices co-ordinates after displacement in Ta-
ble 5.2

The quantized polyhedral partition PN(R̂) is controlled λ-contractive for the nom-
inal PWA control law and this is proved by certificating the states trajectories em-
anating from all the vertices of the set V(R̂). The state trajectories considering
all the vertices in the set V(R̂i) as initial states is illustrated in Figure 5.20. The
contraction of the state trajectories given by the parameter β with respect to the
time is show in Figure 5.21.

v β v + δv
[−7.2595, 10.0000]T 1.0 [−7.2611, 9.9911]T
[−15.5547, 10.0000]T 1.0 [−15.5510, 9.9953]T
[100.0000, −9.9020]T 1.0 [99.9962, −9.9004]T
[−4.4460, 0.2616]T 0.0615 [−4.4354, 0.2607]T

Table 5.2: This table represents the vertex co-ordinates for each iteration and their
new position. The second column shows the values of the β parameter associated
to the vertex co-ordinates.
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Figure 5.20: The state trajectories for the vertices in the approximated polyhedral
partition showing all the trajectories are λ-contractive.

Figure 5.21: The time-simulation presenting the evolution of the β parameters for
all the state trajectories depicted in Figure 5.20.

5.8 Conclusion

In this work the analysis on the perturbation of the vertex representation has been
presented. The vertex sensitivity that characterizes the admissible perturbation for
assuring the non-overlapping properties has been derived. The sensitivity set that
preserve the invariance characteristics in the event of perturbation for the PWA
control has been computed. It was shown that a perturbed polyhedral partition can
be constructed by treating sequentially each vertex with a higher priority on those
with a small sensitivity margin.

99



100



Chapter 6

PWA function evaluations on CPU
and GPU for ADMM and PHA
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6.1 Introduction

Explicit model predictive control (EMPC) belongs to a class of constrained model
based optimization methods whose solution is synthesized in the form of a set of
piecewise affine (PWA) feedback laws [AB09, BMDP02]. This kind of control law
is easily implemented for real-time systems with small state-space models and rel-
atively fast dynamics. Although explicit control law has advantages over standard
MPC, it also comes with high computational cost for higher order systems and/or
for large prediction horizon due to the important complexity of the state-space par-
tition.

In this chapter, we aim to enable explicit solutions for the linear discrete-time
dynamics with longer prediction horizons and we also treat linear dynamics with
probabilistic uncertainties controlled using explicit control laws. Explicit solutions
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are simple algebraic functions (i.e), operate within matrix-matrix or matrix-vector
multiplication framework. Such expressions are parallelizable by the Central Pro-
cessing Unit (CPU) and it is also possible to enable the Graphical Processing Unit
(GPU) to breakdown large matrices to the available sub processors, to obtain com-
putationally faster operations. In order to empower explicit MPC for longer pre-
diction horizon, the technique we rely on is called operator splitting [SKW13].
The splitting is carried out over the prediction horizon and we have number of
subproblems equal to the length of the prediction horizon. Using the Explicit
MPC framework, we reduce the N + 1 (prediction horizon length) subproblems
into three subproblems. We use ADMM (Alternating Direction Method of Multi-
pliers) [SKW13, NLR+15, Lu14, AHW12, DLM15, BPC+11] approach to satisfy the
consensus constraints occurred during the decoupling and for convex convergence.
This ADMM approach incorporated with the EMPC formulation is solved with
CPU. Finally, we compare the computational complexity for the above mentioned
formulation for CPU besides the general explicit MPC formulation (without time
splitting).

The uncertainties in model parameters, neglected parameter dynamics and distur-
bances make the plant (real system) differ from the mathematical model. Since the
mathematical model is used to make predictions for the future system states, these
predicted states will be less accurate as compared to that of the plant. Therefore,
to improve the accuracy of prediction, the uncertainties have to be modeled. Re-
cently much research has been devoted to tackle uncertainties in dynamical system
for standard MPC [GKMS14,MRFA06]. Robust Min-Max approach [SM98,KM03],
Robust tube based MPC [MKF11], and Multi-stage MPC [LFE13], are few of them.
In this chapter we consider a discrete-time linear system affected by probabilis-
tic uncertainty. This probabilistic uncertainty is modeled with a scenario tree ap-
proach also called multi-stage MPC. The scenario tree is designed with different
uncertainties or disturbances realizations. However, the scenario tree approach
for the MPC problem comes with huge computational complexity, arising from
the modeling of the disturbance realizations. Therefore, we employ a decompo-
sition algorithm for the scenario tree termed as Progressive Hedging Algorithm
(PHA) [LFE13, RW91, HW91, BBG14]. The reason behind the adoption of this
algorithm is to decompose the scenario tree into different individual scenarios. The
decomposition leads to a finite number of low-complexity scenarios which can be
solved either sequentially or parallely. The idea is to parallelize all the scenarios
with mp-QP cost functions and to explore the advantages of using explicit solutions
on GPU over CPU.

The main idea of this chapter is to analyze the complexity of the explicit solutions
in terms of computational complexity and memory storage. The objective of this
chapter is listed in the following.

1. The comparison of the sequential and parallel evaluations of the PWA func-
tions for the ADMM algorithm.

2. The comparison of the parallel evaluations of the PWA functions for the PHA
on CPU and GPU.
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Consider a linear discrete-time system given by,

xt+1 = Axt +But (6.1a)
yt = Cxt, (6.1b)

where, xt ∈ Rn, ut ∈ Rm and yt ∈ Rs denote the state vector, input variables and
output variables respectively at time t. The constraints on the system states and
input variables are represented by,

X = {x : Hxx ≤ hx, Hx ∈ Rnx×n, hx ∈ Rnx}, (6.2a)
U = {u : Huu ≤ hu, Hu ∈ Rmu×m, hu ∈ Rmu}. (6.2b)

The state and input constraints are bounded polytopic sets. For explicit MPC,
the quadratic cost function with the terminal and stage costs is transformed into a
multi-parametric Quadratic Programming (mp-QP) problem as shown in Chapter
2. Considering a discrete-time system given by (6.1) subject to constraints (6.2),
the equivalent mp-QP problem is given as

J(x, z) = min
z

1
2z

THz + xTF T z + 1
2x

TY x, (6.3a)

s.t Gz ≤ W + Sx. (6.3b)

The optimal solution for (6.3) is represented by a finite set of affine functions defined
over the polyhedral partition of the set R, where PM(R)= [R1,R2 · · ·RM ].

The explicit control law, corresponding to the optimum argument of (6.3), is synthe-
sized in terms of the piecewise affine function defined over the polyhedral partition
of the set R and it can be described by,

upwa(xt) = Fixt + gi, ∀xt ∈ Ri. (6.4)

Consider the polyhedral set R and its partition sets [R1, · · · ,RM ], the half-space
representation of the set Ri, i ∈ IM can be written as:

R1 = {x : H1x ≤ h1, H1 ∈ Rp1×np , h1 ∈ Rp1}
R2 = {x : H2x ≤ h2, H2 ∈ Rp2×np , h2 ∈ Rp2}

...
RM = {x : HMx ≤ hM , HM ∈ RpM×np , hM ∈ RpM}

(6.5)

Definition 6.1.1 Consider for a given x ∈ Rn and the half-space representation of
the set Ri given in (6.15), the point location function of the polyhedral partition of
R is given by,

all ([Hi hi].[x;−1] < 10−ε)1, ∀i ∈ IM , ε ∈ N+, (6.6)

where i indicates the set which contains x.

1For a given vector A, the function all(A) returns logical 1 (true) if all the elements are nonzero
and returns logical 0 (false) if one or more elements are zero.
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6.2 Time-splitting approach for Explicit MPC

We consider the generic finite-time open loop optimal control formulation given in
the form,

min
N∑
t=0

c(xt, ut) (6.7a)

subject to: x0 = x(t), t = 0. (6.7b)

with the extended-valued cost c(xt, ut) given by

c(xt, ut) = xTt Qxt + uTt Rut (6.8a)
We consider also the constraints:: xt+1 = Axt +But, (6.8b)

xt ∈ X , ut ∈ U (6.8c)

We are splitting the problem (6.7) into N + 1 smaller stage-wise subproblems. In
the following, the subscript t of the decision variables x(t)

t , u(t)
t denotes the time and

the superscript (t) denotes the index of the subproblems (subproblems for each time
instant).

In order to conduct the time splitting, we need to ensure the coupling constraints,
that occurred due to the decomposition over time are satisfied. The coupling con-
straints can be overcome by introducing a copy of each variable that arises from
coupling and thereafter imposing the consensus constraints on the global variables
and their associated copies. Rewriting the extended-valued cost (6.8) for the time-
splitting, we obtain:

min c(x(t)
t , u

(t)
t ) = x

(t)T
t Qx

(t)
t + u

(t)T
t Ru

(t)
t (6.9a)

subject to: x
(t)
t+1 = Ax

(t)
t +Bu

(t)
t , t = 0, · · · , N − 1 (6.9b)

ẑt+1 = x
(t+1)
t+1 , t = 0, · · · , N − 1 (6.9c)

ẑt+1 = x
(t)
t+1, t = 0, · · · , N − 1 (6.9d)

x
(t)
t ∈ X , u

(t)
t ∈ U (6.9e)

The global variable ẑ brings the local subproblem copies x(t)
t and x

(t+1)
t in accor-

dance, for example x(0)
1 should be equal to x

(1)
1 and we enforce this by using the

global variable ẑ1 = x
(0)
1 = x

(1)
1 . Therefore each subproblem has two variables, the

current state and the input. Now, we introduce and define the dual variables used
to deal with consensus equality constraints:

1. ŵt related with x
(t)
t = ẑt, ∀t = 1, · · · , N,

2. v̂t related with x
(t−1)
t = ẑt, ∀t = 1, · · · , N .

For the time instant t = 0, we need to solve for the coupling constraint for the
succeeding state x(0)

1 = x
(1)
1 = ẑ1. But for time instant t = 1 · · ·N − 1, we need

to satisfy two coupling constraints: one for the preceding state with the (t − 0)th
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subproblem and one for the succeeding state with the (t + 1)th subproblem. By
consequence in this case we need two slack variables. For time instant t = N ,
we need to solve only for the preceding state x

(N)
N and link it to the (N − 1)th

subproblem. For further details on time splitting operator for standard MPC, the
interested author is referred to [SKW13].

The optimization variables for each subproblem is represented compactly by the
vector,

x̂t = (x(t)
t , u

(t)
t ), t = 0, · · · , N, (6.10)

here x̂t ∈ Rn+m.

Remark 6.2.1 In [SKW13], the optimization variables of each subproblem are
(x(t)

t , u
(t)
t , x

(t)
t+1). The state x(t)

t+1 is only needed for the dual updates. In this work we
consider only (x(t)

t , u
(t)
t ) as optimization variables in order to reduce complexity of the

explicit solutions. Further the state x(t)
t+1 is computed using the variables (x(t)

t , u
(t)
t )

during the dual update stage.

Before pursuing with the developments, let us introduce some matrices obtained
from rewriting the finite-time optimal control problem,

Pt = diag(Qt, Rt) ∈ R(n+m)×(n+m),∀t = 0, · · · , N (6.11a)
Â = [A B] ∈ Rn×(n+m) (6.11b)
G0 = [In×n 0] ∈ Rn×(n+m) (6.11c)

and note that we refer to ρ > 0 as the step-size parameter. Now, we write the
cost function of the ADMM problem with dual variables for these subproblems. It
should be noted that the N + 1 subproblems can be represented by three different
cost functions given in (6.12).
For subproblem at the time instant t = 0, the optimization problem is constructed
based on the optimization variable x̂T0 ∈ Rn+m and the parameters [ẑT1 v̂T1 ]T ∈
R2n. For the subproblems at the time instant t = 1, · · · , N − 1, we have the same
optimization problem given with the optimization variable x̂Tt ∈ Rn+m ∈ Rn+m and
the parameters [ẑTt ẑTt+1 v̂

T
t+1 ŵ

T
t ]T ∈ R4n. Similarly for the subproblem at time

instant t = N , the optimization problem consists of x̂TN ∈ Rn+m as optimization
variable and [ẑTN ŵTN ]T as parameters.
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for t = 0
J = min

x̂0

1
2 x̂

T
0 P0x̂0 − ρ v̂T1 (Âx̂0 − ẑ1) + ρ/2

||Âx̂0 − ẑ1||22
subject to: x̂0 ∈ X × U

G0x̂0 = xint

x
(0)
1 = Ax

(0)
0 +Bu

(0)
0

ẑ1 = x
(0)
1 = x

(1)
1 , ρ > 0

Optimization variables: x̂T0

Parameters: [ẑT1 v̂T1 ]T

for t = 1, · · · , N-1
J = min

x̂t

1
2 x̂

T
t Ptx̂t − ρ v̂Tt+1(Âx̂t − ẑt+1) + ρ/2||Âx̂t

−ẑt+1||22 − ρŵTt (G0x̂t − ẑt) + ρ/2||G0x̂t − ẑt||22
subject to: x̂t ∈ X × U

x
(t)
t+1 = Ax

(t)
t +Bu

(t)
t

ẑt+1 = x
(t)
t+1 = x

(t+1)
t+1

ẑt = x
(t−1)
t = x

(t)
t , ρ > 0

Optimization variables: x̂Tt

Parameters: [ẑTt ẑTt+1 v̂
T
t+1 ŵ

T
t ]T

for t = N
J = min

x̂N

1
2 x̂

T
NPN x̂N − ρ ŵTN(G0x̂N − ẑN)+

ρ/2||G0x̂N − ẑN ||22
subject to: x̂N ∈ X × U

x
(N)
N+1 = Ax

(N)
N +Bu

(N)
N

ẑN = x
(N−1)
N = x

(N)
N , ρ > 0

Optimization variables: x̂TN

Parameters: [ẑTN ŵTN ]T

(6.12)

6.2.1 Off-line Computation

The resulting mp-QP solutions, for the cost functions in (6.12), are given by three
finite sets of affine functions defined over the partition of the sets R0,Rt and RN

whose solutions are associated with the time instants t = 0, t = 1, · · · , N −
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1 and, t = N .

R0 = [R0
1, · · · ,R0

i , · · · ,R0
M0 ], i ∈ IM0

Rt = [Rt
1, · · · ,Rt

i, · · · ,Rt
Mt

], i ∈ IMt

RN = [RN
1 , · · · ,RN

i , · · · ,RN
MN

], i ∈ IMN

(6.13)

Figure 6.1: Representation of ADMM algorithm

The schematic view of the ADMM algorithm based on the explicit solution of the
problems described in (6.12) can be found in Figure 6.1. The associated PWA
function matrices are given by,

F 0 = [F 0
1 , · · · , F 0

M0 ] ∈ R(n+m)×(2n×M0)

G0 = [G0
1, · · · , G0

M0 ] ∈ R(n+m)×M0

F t = [F t
1, · · · , F t

Mt
] ∈ R(n+m)×(4n×Mt)

Gt = [Gt
1, · · · , Gt

Mt
] ∈ R(n+m)×Mt

FN = [FN
1 , · · · , FN

MN
] ∈ R(n+m)×(2n×MN )

GN = [GN
1 , · · · , GN

MN
] ∈ R(n+m)×MN

(6.14)
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Consider the polyhedral set R0 and its partition sets [R0
1, · · · ,R0

i , · · · ,R0
M0 ], the

half-space representation of the set R0
i , i ∈ IM0 can be written by,

R0
1 = {x : H0

1x ≤ h0
1, H0

1 ∈ Rp0
1×2n, h0

1 ∈ Rp0
1},

...

R0
M0 = {x : H0

M0x ≤ h0
M0 , H0

M0 ∈ Rp0
M0
×2n, h0

M0 ∈ Rp0
M0}.

(6.15)

Now we introduce a matrix Hall
0 that stores all the half-spaces for the polyhedral

partition set R0,

Hall
0 =


H0

1 h0
1

...
H0
M0 h0

M0


here Hall

0 ∈ RHhyp
0 ×(2n+1) and Hhyp

0 = p0
1 + p0

2 + · · · + p0
M0 denotes the total num-

ber of half-spaces of the polyhedral partition of the set R0. Similarly, matrices
Hall
t ∈ RHhyp

t ×(4n+1) and Hall
N ∈ RHhyp

N ×(2n+1) store all the half-spaces for the polyhe-
dral partition sets Rt and RN respectively. The dimension Hhyp

t and Hhyp
N denote

the total number of half-spaces of the polyhedral partition of the set Rt and RN

respectively.

Binary matrices H ind
0 ∈ RHhyp

0 ×M0 , H ind
t ∈ RHhyp

t ×Mt and, H ind
N ∈ RHhyp

N ×MN are
employed to index the half-spaces for the associated polyhedral partitions of the
set R0, Rt and RN respectively. Where, M0,Mt and MN denote the number of
polyhedral partition of the sets R0, Rt and RN respectively.

The integer row vectors, H tot
0 ∈ R1×M0 , H tot

t ∈ R1×Mtand H tot
N ∈ R1×MN are used to

store the total number of half-spaces for all polyhedral partition of the polyhedral
sets R0, Rt and RN respectively. For example, the vector H tot

0 can be represented
by:

H tot
0 = [p0

1, p
0
2, · · · , p0

M0 ].

6.2.2 On-line computation and evaluation

Evaluation of PWA functions for parameters given in vector form

For the mp-QP problems associated with time instant t = 0 and t = N , we are able
to evaluate PWA functions by considering the given parameters in a vector form.

Consider for a given vector ŝ the PWA optimal solution is given by the following
evaluations,

H tmp
t = Hall

t ∗ [ŝ; −1], t = 0 or N,
Ht = H tmp

t < 10−ε, ε ∈ N+, t = 0 or N,
H in
t = Ht ∗H ind

t , t = 0 or N,
Hwhich
t = find((H in

0 == H tot
t ) > 0), t = 0 or N,

[u(t)
t x

(t)
t ]T = F t(:, :, Hwhich

t (1)) ∗ ŝ+Gt(:, Hwhich
t (1)),

t = 0 or N,

(6.16)
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Note that for the time instant t = 0, the vector ŝ = [ẑT1 v̂T1 ]T while for t = N , the
vector ŝ = [ẑTN ŵTN ]T .

6.2.3 Evaluation of PWA functions for Matrix Input

For the mp-QP problems associated with time instant t = 1, · · · , N − 1, we can
evaluate the PWA function for all the subproblems at the same time.

Consider for a given matrix Ŝ = [Ŝ1, · · · , ŜN−1] ∈ R4n×(N−2) with
Ŝt = [ẑTt ẑTt+1 v̂

T
t+1 ŵ

T
t ]T , t = 1, · · · , N−1 , the PWA solution is given by the following

steps

H tmp
t = Hall

t ∗ [Ŝ; (−1 ∗ I1×N−2)],
Ht = H tmp

t < 10−ε, ε ∈ N+,

H in
t = Ht ∗H ind

t ,

Hwhich
t = (((H inT

t == (H tot
t ∗ I(1×size(Hin

t ,1))) > 0))[
u

(1)
1 · · · u

(N−1)
N−1

x
(1)
1 · · · x

(N−1)
N−1

]
=

F t(:, :, Hwhich
t ) ∗ Ŝ +Gt(:, Hwhich

t ).

(6.17)

Figure 6.1, depicts the functioning of the ADMM algorithm. We first initialize an
iteration counter i.e, k = 0, and then evaluate the explicit solution for the N + 1
subproblems in parallel or sequentially. Once we have all the information necessary,
the process proceeds to averaging and dual update. In the next step, the iteration
counter is incremented and the explicit solutions of the subproblems are evaluated
again if the termination criterion or the consensus is not reached. For the interested
readers, the dual update, averaging and the convergence criteria of the ADMM
algorithm is presented in [SKW13].

In the following, we briefly discuss about the evaluation of the PWA control law for
the ADMM algorithm given in [SKW13] for three different platforms,

1. MTS (MATLAB sequential evaluation of the PWA control law for the N + 1
subproblems).

2. MTP (MATLAB parallel evaluation of the PWA control law for the N + 1
subproblems).

3. C-S (Sequential evaluation of the PWA control law in C programming for the
N + 1 subproblems).

MTS- MATLAB sequential: Here, the evaluation of explicit solutionss for the N + 1
subproblems are done sequentially using the point location function defined in (6.6)
with the help of a for Loop.
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MTP- MATLAB parallel: Here, the evaluation of the explicit solutions, for the N+1
subproblems, are carried out in parallel using the functional statements given in
(6.16) and (6.17).

C-S- C programming in sequential: Here, we export the sequential controller MAT-
LAB file to C using the following syntax available in MPT 3 toolbox.

”ctrl.optimizer.toC(’primal’,’file’,’obj’)”

In the following examples section, we discuss the computational and memory com-
plexity for these platforms.

6.2.4 Examples

Example 1

Consider a linear discrete-time system given by,

xt+1 = Axt +But (6.18)

where,

A =


−0.0151 −60.5651 0 −32.174
−0.0001 −1.3411 0.9929 0
0.00018 43.2541 −0.86939 0

0 0 1 0



B =


−2.516 −13.136
−1.689 −0.2514
−17.251 −1.5766

0 0


The states and inputs are bounded by the box constraints, −5 ≤ xi ≤ 5 , i ∈
{1, · · · , 4} and −5 ≤ uj ≤ 5, j ∈ {1, 2} respectively. The system (6.18) is solved for
explicit problem without time-splitting operator using MPT toolbox 3.0 to compute
the polyhedral regions and their associated PWA control laws.

The explicit problems solved for different prediction horizons considered in the reced-
ing horizon optimization is presented in Table 6.1 with the total number of regions
and total number of half-spaces. It can be inferred from Table 6.1 that when the
prediction horizon gets longer the explicit controller yields higher number of re-
gions. Moreover, the time taken to solve the explicit problem becomes a long road
of misery and not to mention the memory space consumed by the half-spaces and
its associated PWA control laws for longer prediction horizon.

These limitations can be overcome by considering time-splitting over the horizon.
The explicit solution for the time-splitting operation yields three sets of affine con-
trollers with critical regions and their PWA functions. Table 6.2 shows the total
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Table 6.1: EMPC without time splitting

N
No of
regions

Total numberof
halfspaces

T ime taken
to solve in (mins)

5 4,755 39,100 ∼ 7
7 10,174 85,578 ∼ 16
10 24,740 205,342 ∼ 47

Table 6.2: EMPC with time splitting

N
No of regions Total no of

halfspacesP1 P2 P3
∀ 115 2231 722 86626

number of regions for the three ADMM cost function given in (6.12) and these three
affine controllers are denoted as P1, P2 and P3 respectively. The total time taken
to solve the mp-QP with primal and dual variables for these subproblems is approx-
imately 16 minutes that is considerably equal to the time taken to solve the explicit
problem without time splitting for a horizon 7.

Table 6.3 represents the running time and the iteration numbers for different predic-
tion horizons for different platforms. This table is presented for prediction horizon
from 2 to 1000 with iterations and computational time taken for the ADMM con-
vergence. It can be noticed from the table that the C simulations are faster than
those of MATLAB. The computation time obtained for the MATLAB parallel ap-
proach can be compared with the MATLAB sequential approach but it lags very
much behind the C simulations.

Table 6.3: Computational time and the ADMM final iteration counter number for
MTS, MTP and C-S for different prediction horizon

N ρ
No of

Iterations
Comp Time in(s)

MTS MTP C-S
2 10 38 0.0933 0.127 0.0017
5 10 179 4.495 11.0691 0.0144
10 10 284 14.12 19.86 0.0331
20 10 298 42.01 44.45 0.0597
50 10 356 126.11 89.85 0.1454
100 10 326 241.25 146.73 0.2744
200 10 329 553.47 321.49 0.549
500 10 329 1255.1 798.63 1.1287
1000 10 329 2755.9 1474.5 2.7532

Remark 6.2.2 The argument that the MATLAB parallel approach could not bring
down the running time as expected can be related to the following aspect: The binary
matrices H ind

0 , H ind
t and H ind

N , and the integer matrices H tot
0 , H tot

t and H tot
N are stored

as double floating point precision. We recall that for the PWA function evaluation
of a matrix input (6.17), most of the evaluation computation is based on the binary
and integer matrices. Moreover, it should be noted that approximately 92% of the
running time is consumed by evaluating the third line of statements given in (6.17).
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It is possible to scale down the computational time to a very large extent by shift-
ing the software platform from MATLAB to C programming, that we determine to
discuss in the coming example. Based on the results obtained through simulations
for EMPC problems with and without time splitting for the C files, we can say that
the explicit solutions with ADMM cost function is worth implementing real-time for
any system that requires larger prediction horizon for on-line control law evaluation.

In the next, we consider an rigorous example with two unstable and two complex
eigenvalues.

Example 2

Consider a linear discrete-time system given by,

xt+1 = Axt +But (6.19)

where,

A =


1.1939 0 0 0 0

0 1.1148 0 0 0
0 0 0.9994 0 0
0 0 0 0.4151 0.6319
0 0 0 −0.6319 0.4151



B =


−0.6274 0.6224
0.0530 −0.1658
0.0274 −0.0987
−1.7005 −0.1149
−0.2190 0.0084


The states and inputs are bounded by the box constraints, −25 ≤ xi ≤ 25 , i ∈
{1, · · · , 5} and − 5 ≤ uj ≤ 5, j ∈ {1, 2} respectively. Table 6.4 presents the
number of critical regions, total number of half-spaces and time taken to solve the
EMPC problem for different prediction horizons. From the table it can be seen
that as the prediction horizon increases, the off-line computational complexity and
the system memory requirements are drastically increased. Therefore, implementing
such an explicit controller that has 1846254 half-spaces with double precision floating
point, for an on-line control application, indeed demands a micro-controller or FPGA
hardware with large memory size and capable processor, that can execute a greater
number of instructions per clock cycle. Table 6.5 shows the number of regions

Table 6.4: EMPC without time splitting

N
No of
regions

Total numberof
halfspaces

T ime taken
to solve in (min)

2 395 4638 < 1
5 16914 176740 ∼ 34
10 172161 1846254 ∼ 1850
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obtained from the explicit controller for three subproblems for different ρ values. It
can be found from the table that the total number of partitions varies by tunning
the ρ constant in the control design formulation.

Table 6.5: EMPC with time splitting for different ρ constants

N ρ
No of regions Total no of

halfspacesP1 P2 P3

∀
10
100
1000

260
260
260

7551
7557
7564

3441
3409
3405

417797
418086
418388

Table 6.6: Computational time and the ADMM final iteration counter number for
MTS and C-S for different prediction horizon and for different ρ constants

N ρ
No of

Iterations
Comp Time in(s)
MTS C-S

2
10
100
1000

52
26
18

0.5642
0.2846
0.2052

0.0032
0.0014
0.0011

5
10
100
1000

189
392
486

22.147
42.146
58.64

0.0391
0.0809
0.0784

10
10
100
1000

276
1125
1902

83.471
336.25
587.1

0.1251
0.5051
0.6234

20
10
100
1000

648
1826
5548

560.84
1235.5
3662.7

0.6155
1.7524
3.758

50
10
100
1000

1912
1868
9253

3549.5
3378.9
16242

4.4689
4.4048
15.502

100
10
100
1000

2387
2106
7848

9876.3
7691.1
29406

10.9652
9.654
25.96

The simulation results of the MTS and C-S approaches for different ρ constants
with computational time and the iterations taken for acceptable error in the con-
vergence criteria is given in Table 6.6. It can be seen from the Table 6.6 that the
computational time of the C-S approach makes it suitable and deployable for real-
time implementations even for a prediction horizon of 100. On the other hand,
the iteration of MTP approach is infeasible because of insufficient memory during
the computation of huge matrix structure involved in the PWA evaluation of ma-
trix input (6.17). This problem of insufficient memory is strongly attributed to the
MATLAB programming and this is slated to discuss in the follows.
Drawback of using MATLAB programming: In the MATLAB programming, arith-
metic operations on binary and integer matrices or vectors are not straightforward
to compute. It is only possible to allow MATLAB to perform standard matrix mul-
tiplication and convert the result to either binary or integer. For instance, from
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Table 6.6, only to store the matrix H ind
t which is of size (294585 × 7551) as double

precision floating point requires 17.7953 GB memory size whereas for the original bi-
nary matrix it only takes approximately 278 MB. This drawback can be overcome in
the C programming. For information, we have not yet implemented PWA function
evaluation of the matrix input on C.

6.3 Multi-Stage Stochastic Programming

Many real-time optimization problems with dynamical systems involve uncertainty.
The uncertainty in the system model could arise from the poor approximation of the
plant neglecting an important part of the plant dynamics. From the optimization
point of view, predicting the future dynamics of the plant with the help of such
uncertain model makes the predicted states to differ drastically from the plant. In
this section, we address the probabilistic uncertainty in the system model.
Consider a linear discrete-time system affected by probabilistic uncertainty,

xt+1 = Axt +But + Edt, (6.20)

where xt ∈ X is the state vector, ut ∈ U is the input vector and dt ∈ D is the
probabilistic disturbance vector. The state and input constraint sets are bounded
in the form (6.2) and the disturbance/uncertain constraint set D is bounded and
assumed to admit a box constraint. In this work we adopt the scenario tree approach
to model the probabilistic uncertainty. Scenario tree approach is one of the popular
method for modeling the stochastic problem. The quadratic cost function for the
scenario tree [LFE13] approach is given by,

min
S∑
s=1

psJs

Js =
N−1∑
t=0

xsTt+1Qx
s
t+1 + usTt Ru

s
t

subject to: xst+1 = Axst +Bust + Edst ,

xst ∈ X ,
ust ∈ U ,
dst ∈ D
s ∈ S

(6.21)

where Js denotes the cost for each scenario, N represents the prediction horizon, S is
the number of scenarios and ps represents the probability of each individual scenario.
Finally, X ,U and D represents state, control and uncertain disturbance constraint
sets respectively. Here S = {1, · · · , s, · · · , S} denotes the set that contains the
indexes of the scenarios.

The goal of the multistage model is to make decisions for different time periods in a
sequence, while optimizing the expected objective function value of the current and
future stages. For further information for scenario tree MPC, the interested readers
are referred to [LFE13].
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6.3.1 Decomposition of Scenario tree

Even thought the scenario tree approach is one of robust methods for modeling the
uncertainty, the complexity of the problem grows exponentially with the number of
uncertain parameters and by increasing the robust horizon. Solving such problems
demand huge computational efforts and memory size. To overcome the compu-
tational complexities arising from the scenario tree, a decomposition approach is
essential by decomposing a huge problem into several small problems also called
scenarios.

Figure 6.2: Scenario tree decomposition for robust horizon Nr = 3.

From Figure 6.2, it can be inferred that the scenario tree is decomposed into S
independent scenarios. For this example, the scenario tree is generated for one
uncertain parameter with two possible realizations of uncertainty and for robust
horizon of 3. In the decomposition approach, the only constraints which have to be
satisfied are the non-anticipativity constraints and this can be done by forcing all
the inputs originating from the same node to be equal. For further information for
scenario tree MPC, the interested reader is referred to [LFE13].

6.3.2 Progressive Hedging Algorithm

Progressive hedging algorithm is one of the popular techniques for solving linear
discrete-time stochastic problems. Progressive hedging algorithm was proposed by
Rockafellar and Wets [RW91]. The basic idea of the PHA is to place the non-
anticipativity constraints to the objective function and this can be achieved by
adding the Lagrange multiplier to the objective functions of each individual scenar-
ios. The objective function consists of a quadratic term which ensures the primal
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feasibility. The penalty term ρw is multiplied with the quadratic term to make
the primal feasibility search faster. Then all the scenarios are solved in parallel or
in sequence with some convergence criteria. The modified cost function for each
individual scenario with an iteration counter denoted by k can be written:

min
us
k

J(xsk, usk, dsk) + λsk(usk − u
Avg
k ) + ρw

2 ||u
s
k − u

Avg
k ||2,

subject to: J(xsk, usk, dsk) = ∑N
t=0 x

sT
t Qx

s
t + usTt Ru

s
t ,

xst+1 = Axst +Bust + Edst ,
usk ∈ U , xsk ∈ X , s ∈ S.

(6.22)

116



Multi-Stage Stochastic Programming

Algorithm 6.3.1 Progressive Hedging Algorithm
Input: ρw > 0
Output: usk

1: Initialization: λsk = [0, 0, · · · , 0] ∈ Rm×Nr , uAvgk = [0, 0, · · · , 0] ∈ Rm×Nr , ε >
0, k = 0.

2: Solve: ∀s ∈ S,min
us
k

J(xsk, usk, dsk).

3: Calculate: uAvgk = 1
Ns

∑Ns
s=1 u

s
k.

4: Check criterion: ∀s ∈ S,
5: if (usk − u

Avg
k )2 > ε then

6: Iteration counter: k = k + 1.
7: else terminate
8: end if
9: Update: ∀s ∈ S, λsk = λsk−1 + ρw(usk−1 − u

Avg
k−1).

10: Solve: ∀s ∈ S,min
us
k

J(xsk, usk, dsk) + λsk(usk − u
Avg
k ) + ρw

2 ||u
s
k − u

Avg
k ||2.

11: Go to step 3.

Algorithm 6.3.1 is the standard Progressive Hedging Algorithm. This algorithm is
given for the standard MPC problem with QP cost functions. The only input for the
algorithm is the penalty term ρw. For the standard MPC problem, the algorithm
solves S number of QP cost functions for the first iteration k = 0 and this is shown
in the second line of the Algorithm 6.3.1. In the third step, the parameter uAvgk is
updated with the aggregated value of the control inputs from all scenarios. In the
fourth step, a convergence criterion is established with the accepted level of error by
using the scalar term ε. If the accepted level of convergence is not reached for the
control input, the iteration counter k is incremented by one unit and continue with
the ”Update” function as given in the ninth line of the Algorithm. The convergence
criterion ensures the fulfillment of the non-anticipativity constraints by forcing the
control inputs originating from the same root to be identical. Next, the cost function
with the Lagrange multiplier and the quadratic term is solved for the input variables
for S number of scenarios. The algorithm is continued by jumping to the third line.
Parallelization of the PHA for standard MPC: The PHA can be parallelized
by solving the scenarios in parallel. For the Algorithm 6.3.1, the expressions given
in lines 2 and 10 are parallelized for all the scenarios.

PHA for Explicit MPC

It is clear from the Algorithm 6.3.1 that for the Explicit MPC, two cost functions
(given in lines 2 and 10) should be solved off-line. The first problem denoted by P0
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is the same for all the scenarios for the iteration counter k = 0,

P0 min
ut|t,ut+1|t,···

J(xt, ut, dt)
subject to: J(xt, ut, dt) = ∑N−1

t=0 xTt+1Qxt+1 + uTt Rut,
xt+1 = Axt +But + Edt,
xt ∈ X , ut ∈ U , dt ∈ D, t = 0, · · ·N − 1,

Optimization variables: [uTt|t, · · · , uTN−1|t]T ,
Parameters: [xTt|t, dTt|t, · · · , dTN−1|t]T .

(6.23)

The second problem with the Lagrange multiplier and the quadratic term denoted
by P1 is the same for all scenarios for the iteration counter k > 0

P1 min
ut|t,ut+1|t,···

J(xt, ut, dt) + λt|t(ut|t − uAvgt|t ) + ρw
2 ||ut|t − u

Avg
t|t ||2

+ · · ·+ λNr−1|t(uNr−1|t − uAvgNr−1|t) + ρw
2 ||uNr−1|t − uAvgNr−1|t||2

subject to: J(xt, ut, dt) = ∑N−1
t=0 xTt+1Qxt+1 + uTt Rut,

xt+1 = Axt +But + Edt,
xt ∈ X , ut ∈ U , dt ∈ D, t = 0, · · ·N − 1,

Optimization variables: [uTt|t, · · · , uTN−1|t]T ,
Parameters: [xTt|t, dTt|t, · · · , dTN−1|t, λ

T
t|t, · · · , λTNr−1|t, u

AvgT
t|t , · · · , uAvgTNr−1|t]T .

(6.24)
The explicit controllers for the problems P0 and P1 in (6.23) and (6.24) are com-
puted. The resulting mp-QP solutions are given by two sets of affine functions
defined over the partition of the sets R0 and R1 for the problems P0 and P1 re-
spectively. Next, the evaluation of the PWA functions are done using the functional
evaluation for the matrix input given in (6.17). For both P0 and P1, the parame-
ters of the optimization problem for all the scenarios are given as the matrix input
(similar to the one discussed in the previous section). The resulting output from
the functional evaluation are the control input sequence for all the scenarios and it
can be written in the form, 

u1
t|t, u

1
t+1|t, · · · , u1

t+N |t
...

uSt|t, u
S
t+1|t, · · · , uSt+N |t)

 . (6.25)

Note: In the previous section, the matrix input block is used to compute the PWA
control laws for N−2 subproblems for the time-splitting approach. Here, the matrix
input block is used to evaluate the PWA control laws for all the scenarios in one
shot.

6.3.3 Example

Consider a linear double integrator system affected by probabilistic uncertainty. The
linear discrete-time state space representation of the system is given by,

xt+1 = Axt +But + Edt, (6.26)

where,
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A =
[
1 1
0 1

]
, B =

[
1

0.5

]
and E =

[
1
1

]
.

The states, input and disturbance are bounded by the constraints, −50 ≤ xi ≤
50, i ∈ {1, 2}, −10 ≤ u ≤ 10 and − 2 ≤ d ≤ 2 respectively. For both P0 and P1,
the weighting matrices of the states and input are chosen

Q =
[
1 0
0 1

]
and R = 1

in the problem formulation of the open-loop optimal control problem considered for
Explicit MPC.

In the following, we conduct some experiments based on different length of ro-
bust horizon, for different uncertain realization, but the same system dynamics and
weighting matrices are applied for all the cases.

Result I: Solving the EMPC problem for different robust horizons:
Solving the EMPC problem for P0 and P1 for different robust horizon yields dif-
ferent number of affine controllers and their associated PWA control laws and it is
shown in the Table 6.7. Here the term Nr denotes the length of the robust horizon.
For this result, the length of the robust horizons are same as that of the prediction
horizons. The penalty term ρw = 100 is chosen.

Table 6.7: EMPC with PHA

N Nr

No of
regions(P1)

No of
regions(P0)

2 2 33 17
3 3 89 39
4 4 358 88
5 5 1203 123

Result II: Evaluation of PWA functions for PHA for different robust hori-
zons on CPU and GPU
For this result, we consider that 3Nr scenarios are generated. The different real-
izations associated to the uncertain parameter dt are [−2, 0, 2]T . For instance the
realizations for the problem Nr = 2 are provided with the help of a matrix,



−2 −2
−2 0
−2 2
0 −2
0 0
0 2
2 −2
2 0
2 2


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The simulation results for the PHA, executed with the help of evaluation of PWA
functions for matrix input, are presented for different robust horizons computed on
CPU and GPU in Table 6.8. The computational time of CPU beats that of GPU
when we have a smaller number of scenarios to parallelize as it can be inferred from
the Table 6.8. When the number of scenarios and the number of regions get bigger,
the running time of the GPU eventually beats that of CPU. The average number of
iterations taken to achieve a acceptable converge criteria per simulation time is also
mentioned in the table.

Figure 6.3 is plotted for the computational time obtained from the CPU and GPU.

Table 6.8: EMPC with PHA

Nr

No of
scenarios

Computational T ime
in seconds

Avg
iterations

MTP-CPU MTP-GPU
2 9 0.009 0.1916 39
3 27 0.032 0.4276 47
4 81 0.58 1.102 52
5 243 19.96 11.56 53

Figure 6.3: Computational time comparison between CPU and GPU

Result III: Comparison of the simulation results between the EMPC
problem with PHA and the EMPC problem with standard QP (uncer-
tainty ignored)
This result aims to compare the simulation of the the state trajectories and control
input for the EMPC problem with PHA and the EMPC problem with standard
QP. The prediction and robust horizon chosen for the EMPC problem with PHA
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is Nr = Np = 3. The penalty term ρw = 100 applied to the optimization problem.
For the sake of comparison, the prediction horizon of length 3 is chosen for the
standard EMPC problem and the random disturbances for the parameter dt over
the simulation time are also the same for both problems. Figure Figure 6.4 presents

Figure 6.4: Simulation results of the states, input and random disturbance for the
EMPC problem with PHA and the standard EMPC. The initial condition x0 =
[40, −20]T is chosen for the simulations.

the simulation results of the state trajectories, control input, random disturbance
dt for the EMPC problem with and without stochastic programming for the initial
condition x0 = [40,−20]T . It can be inferred from the Figure 6.4 that the state tra-
jectories of the state x1 is oscillating for the standard EMPC problem. The explicit
controller based on stochastic method is robust in terms of keeping the states closer
to the origin.
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6.4 Conclusions

In this work, we enabled the explicit solutions for a finite-time optimal control
problem with long prediction horizons and also we use the explicit solution to the
synthesis of a robust predictive controller. For control problems with long prediction
horizon, this was achieved by incorporating the MPC problem formulation with
Alternative Direction Method of Multipliers. The comparison of the computational
complexity between the parallel and sequential evaluations of the PWA functions
has been discussed. Next, we have employed a scenario tree problem formulation for
treating the probabilistic uncertainties arising from the linear dynamical systems.
Progressive Hedging Algorithm is used to decompose the scenario tree into a finite
number of individual scenarios. Finally, the comparison of the evaluation of the
PWA functions on the CPU and GPU for the PHA has been achieved. In conclusion,
it is shown that with the increasing of the computation capabilities the explicit
solutions are not only useful for small problems, but can be also used for larger
problems and robust synthesis.

122



Chapter 7

Conclusion

This thesis has discussed certain topics related to robustness/fragility analysis, pre-
cision in polyhedral partition representation and evaluation of the PWA control
laws, the results being primarily intended for the application in relationship with
the well known Model Predictive Control paradigm.

7.1 Summary of Thesis Achievements

Robustness Analysis of PWA control laws

• The third chapter of this thesis has discussed the characterization and compu-
tation of the gain margin and robustness margin against first order neglected
dynamics for a given nominal continuous PWA control law. The gain margin
considers the gain variations in the system assuring the invariance property
obtained with the PWA control law. A method to compute this gain margin
is proposed. The robustness against first order neglected dynamics, consists
in characterizing a first order dynamic included in the closed loop preserving
the invariance. This robustness margin tries to approach the classical phase
margin. In fact, slower the dynamic of the first order system included in the
closed loop preserving the invariance is, bigger is phase margin. This robust-
ness margin has been computed using the polyhedral description of the PWA
controller. These results can be used for the analysis of constraints fulfillment
in MPC whenever the prediction model is over-simplified or gain variations
are expected in the actuation channel.

• The fourth chapter has discussed the contractive characterization and compu-
tation of the several robustness margin of the continuous PWA control law.
A gain margin has been derived guaranteeing the contractive properties of
the feedback PWA control law. A robustness margin has been computed
for the nominal PWA controller assuring the contractive characteristics for a
linear dynamical systems whose system matrices are affected by polytopic un-
certainty. In addition, the robustness margin against the first order neglected
dynamics has been evaluated preserving the contractive properties of the PWA
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controller. All these results can complement the study of MPC feedback by
providing stability guarantees.

Perturbation on the vertices of the polyhedral partition

• The fifth chapter of this thesis has discussed the impact of the perturbation on
the vertices of the polyhedral partitions. We showed how the polyhedral re-
gions change when a perturbation on the vertex representation of the regions
takes place. We characterized the vertex perturbation by computing a set
called vertex sensitivity which preserves the non-overlapping property of the
polyhedral partition. We also computed a set called vertex-invariant region
which preserves the invariant characteristics of the polyhedral partition. The
convexity of the polyhedral partitions has been discussed for the vertices that
lie on the frontier of the feasible domain. Starting from the vertex-invariant
regions for the vertices of the polyhedral partition of a contractive PWA con-
troller, we computed a region called contractive-vertex sensitivity to preserve
the contractive properties of the PWA control law. All these results can be
seen as a MPC retuning framework, whenever the quantization of reduced
representation is expected in real-time implementation.

Sequential and parallel evaluation of the PWA functions

• The sixth chapter of this thesis discussed the complexity of the PWA controller
for optimal control problems with longer prediction horizon. We proposed to
incorporate the mp-QP problem formulation with the ADMM approach. The
comparison of the sequential and parallel evaluation of the PWA functions
for the computational complexity has been discussed. We modeled the proba-
bilistic uncertainty of the dynamical systems using the scenario-tree approach.
PHA has been adopted to decompose the complex scenario tree into individual
scenarios and for the convergence of the coupling constraints. The computa-
tional time comparison for the sequential and parallel evaluation of the PWA
functions executed on the CPU and GPU for the PHA has been presented.

7.2 Future Works

The procedure and methodology of the robustness analysis, re-tuning and evalua-
tion of the PWA control laws which have been discussed and developed in this thesis
work is based on the mp-QP problem whose solution set consists of PWA functions
defined over the polyhedral partitions of the state-space. The robustness sets com-
puted in chapters 3 and 4 are based on the vertex representation of the polyhedral
partitions. Similarly, the main results developed in chapters 5 and 6 are based on
the assumption that the explicit solutions for the open-loop OCP yields the poly-
hedral partitions. Recently, there are some major developments in the construction
of the PWA control laws without the off-line computation of the polyhedral parti-
tion [KTHC15]. The construction of the PWA controllers without the polyhedral
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partition is briefly discussed in the Appendix. The idea behind bypassing the com-
putation of the critical regions is to scale down the memory of the data structure
which is often used to store the off-line solution of the mp-QP problem. In addition
to the memory, the computational time required to solve the region free explicit
solutions are much faster than that of the solutions with critical regions and this
observation is presented in [KTHC15]. From the point of robustness analysis of
explicit solution with critical regions, new methodologies have to be developed in
order to analyze the stability and robustness of such controllers.

From a different perspective, the authors of this work [SLKC14] have developed a de-
sign methodology for the Explicit MPC in the presence of finite precision arithmetic.
In order to make explicit solutions viable to the real-time control applications, it
is essential to bring down the complexity of the solutions. There is further scope
in conducting future research regarding the presence of finite precision arithmetic.
The future objective will be based on the stability analysis of the closed-loop system
controlled by the explicit solution under finite precision. Starting from the controller
design with the finite precision arithmetic, the goal will be to find the minimum num-
ber of finite precision digits required in order to obtain a certain degree of optimality
of the explicit solutions.

In chapter 6, it has been shown that the evaluation of the PWA solution in C-
programming language is very effective in terms of computational time and memory
space required. Also, the C language empowers the programmer to store the binary
numbers as a single bit. The objective will be to develop the evaluation of the PWA
function in parallel based on C-programming.
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acterisation of receding horizon control for constrained linear systems.
Asian Journal of Control, 5(2):271–286, 2003.

[SKW13] G. Stathopoulos, T. Keviczky, and Y. Wang. A hierarchical time-
splitting approach for solving finite-time optimal control problems. In
2013 European Control Conference (ECC), pages 3089–3094, July 2013.

[SLKC14] Andrea Suardi, Stefano Longo, Eric C. Kerrigan, and George A. Con-
stantinides. Robust explicit mpc design under finite precision arith-
metic. IFAC Proceedings Volumes, 47(3):2939 – 2944, 2014. 19th IFAC
World Congress.

[SM98] P. O. M. Scokaert and D. Q. Mayne. Min-max feedback model pre-
dictive control for constrained linear systems. IEEE Transactions on
Automatic Control, 43(8):1136–1142, Aug 1998.

[SOH09] F Scibilia, Sorin Olaru, and M Hovd. Approximate explicit linear mpc
via delaunay tessellation. In Control Conference (ECC), 2009 Euro-
pean, pages 2833–2838. IEEE, 2009.

[SOH11] Francesco Scibilia, Sorin Olaru, and Morten Hovd. On feasible sets for
mpc and their approximations. Automatica, 47(1):133 – 139, 2011.
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Appendix A

Appendices

A.1 Explicit MPC

Let us begin with the multi-parametric Quadratic Programming (mp-QP) problem
of the form:

min
U

1
2U

THU + xTFU (A.1a)

subject to : GU ≤ W + Ex (A.1b)

The parametric solution to (A.1) is a piecewise affine function of the form,

U∗ = Fix+ gi (A.2)

A.1.1 Explicit solutions with Critical regions

Now find all the possible combinations of constraints active in (A.1) to construct
the PWA solution in (A.2). To do this, we first rewrite (A.1) into the form:

min
z

1
2 zTHz (A.3a)

subject to : Gz ≤ W + Sx (A.3b)

with z = U + H−1F Tx and S = E + GH−1F T . Next we regroup (A.3) into active
and inactive constraints,

min
z

1
2z

THz (A.4a)

subject to : GAz = WA + SAx (A.4b)
GN z < WN + SNx (A.4c)

where, A ⊂ {1, · · · , p} is the index set of active constraints and P ⊂ {1, · · · , p} is
the index set of inactive constraints. The index sets A and P are disjoint sets. The
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Karush Kuhn Tucker conditions for (A.4) are given by,

Hz∗ +GT
Aλ
∗ +GT

Aµ
∗ = 0 (A.5a)

GAz
∗ = WA + SAx (A.5b)

GN z
∗ < WN + SNx (A.5c)

λ∗T (GAz∗ −WA − SAx) = 0 (A.5d)
µ∗T (GN z∗ −WN − SNx) = 0 (A.5e)

λ∗ ≥ 0 (A.5f)
µ∗ ≥ 0 (A.5g)

Since GN z∗ −WN − SNx < 0 for all inactive constraints from (A.5d), we assume
that µ∗ = 0. Then we can derive the optimal z∗ from (A.5a), we get:

z∗ = −H−1GT
Aλ
∗ (A.6)

Now by substituting (A.6) into (A.5b), we obtain

λ∗ = −(GAH−1GT
A)−1(WA + SAx) (A.7)

To simply the equation (A.7) we can write it as,

λ∗ = Q(A)x+ q(A) (A.8)

where,

Q(A) = −(GAH−1GT
A)−1SA (A.9a)

q(A) = −(GAH−1GT
A)−1WA (A.9b)

(A.9c)

Substituting (A.7) into (A.6) we finally obtain

z∗ = −H−1GT
A(GAH−1GT

A)−1(WA + SAx) (A.10)

which can be written as
z∗ = F (A)x+ g(A) (A.11)

F (A) = −H−1GT
A(GAH−1GT

A)−1SA (A.12a)
g(A) = −H−1GT

A(GAH−1GT
A)−1WA (A.12b)

The subset of the parametric space where z∗ and λ∗ satisfy primal feasibility and
dual feasibility forms the critical region

P(A) = {x | GN z∗ < WN + SNx, λ
∗ ≥ 0} (A.13)

which is a polyhedron in half-space representation. We replace the strict inequalities
in (A.13) by non-strict:

P(A) = {x | A(A)x ≤ b(A)} (A.14)

with
A(A) =

[
GNF (A)− SN
−Q(A)

]
, b(A) =

[
WN −GN g(A)

q(A)

]
(A.15)
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A.1.2 Explicit solutions without Critical regions

The other way to obtain the PWA affine solution for the problem (A.1) is based on
the extensive enumeration method [GBN11, FJO13, AMJO16, KTHC15], where we
can generate all optimal active sets without having to construct the critical regions.
The procedure enumerates all possible active combinations of active constraints and
group them like a tree structure and giving each node of the tree with a cardinal
number. To determine the optimality of a particular candidate A. We solve the
linear program with decision variables z, x, λ and t.

max
t,z,x,λ

t (A.16a)

subject to : Hz +GT
Aλ = 0, (A.16b)

GAz = WA + SAx, (A.16c)
t ≤ WN + SNx−GN z, (A.16d)

λ ≥ t, (A.16e)
t ≥ 0 (A.16f)

− Enumerate all possible combinations of active constraints with cardinality M =
{0, · · · ,m}.
− For each candidate active set solve the LP (A.16). If the LP is feasible, add
the active candidate to the list of optimal active set. If the LP is infeasible, drop
(A.16b). IF the new LP is infeasible, discard the candidate as well as all other
candidates which are its supersets.

To compute the optimal control for a given x, We follow the below Algorithm.

Algorithm: Explicit solutions without critical regions

INPUT: Matrices Qi, qi, i = 1, · · · ,M from (A.9),
list of optimal active sets {A1, · · · ,AM} data H−1,
G, W and S and the state vector x.
OUTPUT: z* or U* for given x.

1. for i =1,· · · ,M do

2. λ ← Qix + qi

3. if λ ≥ then

4. z ← -H−1GT
Aiλ

5. Ni ← {1, · · · , p}Ai

6. if GNiz < WNi + SNix then

7. return z∗ ← z

8. end if

9. end if
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10. end for

The (A.16) solves for the combination of active constraint set. Since there are
p constraints (in G matrix) and m decision variables in (A.4), the root node A
= ∅ (where no constraints would be active) and at the final stage of the tree, m
constraints would be active (the dimension of the decision variable). With increase
in p and m, the number of combinations of constraints will also increase. However,
not all candidates are considered, for example, we know that the 2nd and the 4th
constraints cannot be simultaneously active, then all the subsets containing the 2nd
and 4th constraints will be infeasible as well. Thus we can eliminate all the supersets
that contains this combination.
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Title: Robustness of Explicit MPC Solutions
Keywords: Robustness, predictive, control, explicit, robustness/fragility margin
Abstract: The control design techniques for linear or hybrid systems with constraints lead often
to off-line state-space partitions with non-overlapping convex polyhedral regions. This corresponds
to a piecewise affine (PWA) state feedback control laws associated to polyhedral partition of the
state-space. Such control laws can be effectively implemented on hardwares for real-time control
applications. However, the robustness of the explicit solutions depends on the accuracy of the
mathematical model of the dynamical systems. The uncertainties in the system model poses se-
rious challenges concerning the stability and implementation of the piecewise affine control laws.
Motivated by the challenges facing the explicit solutions for the uncertainties in the dynamical
systems, this thesis is mostly related to their analysis and re-design. The first part of this thesis
aims to compute robustness margins for a given nominal PWA control law obtained for a linear
discrete-time system. Classical Robustness margin i.e., gain margin and phase margin, considers
the gain variation and phase variation of the model for which the stability of the closed loop is
preserved.
The second part of the thesis aims to consider perturbation in the representation of the vertices
of the polyhedral regions. The quantized state-space partitions lose some of the important prop-
erty of the explicit controllers: “non-overlapping”, “convexity” and “invariant” characterization.
Two different sets called vertex-sensitivity and sensitivity margin are defined and determined to
characterize admissible perturbation preserving the non-overlapping and the invariance property
of the controller respectively. The third part analyse the complexity of the explicit solutions in
terms of computational time and memory storage. Sequential and parallel evaluations of the PWA
functions for the Alternating Direction Method of Multiplier (ADMM) algorithm are compared.
In addition a comparison of the computational complexity of the parallel evaluations of the PWA
functions for the Progressive Hedging Algorithm (PHA) on the Central Processing Unit (CPU)
and Graphical Processing Unit (GPU) is made.

Titre: Robustesse de la commande prédictive explicite
Mots-clés: Robustesse, prédictive, commande, explicite, marges de robustesse/ fragilité
Résumé: Les techniques de conception de lois de commande pour les systèmes linéaires ou hy-
brides avec contraintes conduisent souvent à des partitions de l’espace d’état avec des régions
polyédriques convexes. Ceci correspond à des lois de commande par retour d’état affine (PWA)
par morceaux associées à une partition polyédrale de l’espace d’état. De telles lois de commande
peuvent être effectivement mises en œuvre sur des plateformes matérielles pour des applications de
commande en temps réel. Cependant, la robustesse des solutions explicites dépend de la précision
du modèle mathématique des systèmes dynamiques. Les incertitudes dans le modèle du système
posent de sérieux défis en ce qui concerne la stabilité et la mise en œuvre des lois de commande
affines par morceaux. Motivé par les défis auxquels font face les solutions explicites par rapport
aux incertitudes dans les modèles des systèmes dynamiques, cette thèse est principalement axée
sur leur analyse et à leur retouche. La première partie de cette thèse vise à calculer les marges de
robustesse pour une loi de commande PWA nominale donnée obtenue pour un système de temps
discret linéaire. Les marges de robustesse classiques, c’est-à-dire la marge de gain et la marge de
phase, considèrent la variation de gain et la variation de phase du modèle pour lequel la stabilité
de la boucle fermée est préservée.
La deuxième partie de la thèse vise à considérer des perturbations dans la représentat-ion des
sommets des régions polyédriques. Les partitions de l’espace d’état quantifiées perdent une partie
des propriétés importantes des contrôleurs explicites: “non-chevauchement”, “convexité” et/ou “
invariance”. Deux ensembles différents appelés sensibilité aux sommets et marge de sensibilité
sont déterminés pour caractériser les perturbations admissibles, en préservant respectivement la
propriété de non-chevauchement et d’invariance du contrôleur. La troisième partie vise à analyser
la complexité des solutions explicites en termes de temps de calcul et de mémoire. Une première
comparaison entre les évaluations séquentielles et parallèles des fonctions PWA par l’algorithme
ADMM (Alternating Direction Method of Multiplier) est faite. Ensuite, la complexité computa-
tionnelle des évaluations parallèles des fonctions PWA pour l’algorithme de couverture progressive
(PHA) sur l’unité centrale de traitement (CPU) et l’unité de traitement graphique (GPU) est
comparée.
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