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“Your work is going to fill a large part of your life, and the only way to be truly

satisfied is to do what you believe is great work. And the only way to do great work

is to love what you do. If you haven’t found it yet, keep looking. Don’t settle. As

with all matters of the heart, you’ll know when you find it.”

Steve Jobs
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Chapter 1

Introduction

1.1 Context and Motivation

Among the critical advances in human technological evolution, transporta-

tion stands as one of the most important technologies that enables us to move

people and goods to far places in a short amount of time. Transportation

modes vary to cover different infrastructures such as highway, rail, water,

pipeline and air, while each infrastructure has its own variety of vehicle

types. Transportation modes are either public and available as services for

different users, or private for personal use, such as personal cars. In this the-

sis we focus on public transportation systems which are systems organized

by the government or private organizations and meant to provide transporta-

tion services for the public in return of some fees.

Public transportation systems are continuously evolving with new services

covering different modes of transportation to suit all passenger needs. Be-

sides the public transportation systems for the mass which are scheduled in

advance, new mobility services have emerged, such as transport on demand,

car sharing, and ride sharing. However, each system has its own units and

data which differ from the others. In fact, today planning applications work

in silo since they utilize data related to network infrastructure, timetable and

transportation units in one system.

Having multiple transportation services is a benefit for passengers. It gives

them more options that fit different profiles and trip needs. Meanwhile, since

transportation systems cover different areas, often passengers end up with
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combining multiple services with different modes to come up with more op-

timized trips. The problem is that manually doing this combination is not

easy. It requires passengers to be aware of all available services and their

schedule in addition to finding out the best combination of services that pro-

duces the optimal trip.

In order to optimize transportation services, an automatic way of integrating

different transportation modes is required. This is known as multimodal-

ity which significantly reduces the effort on the passengers’ side, since it

gives them the ability to easily plan optimized trips across different services.

Achieving multimodality is not a simple task. It requires coping with the

data heterogeneity problem in transportation data sources. There is yet no

unique standard followed by transportation systems where each one uses

different data representation for modeling its time-schedule, units, stops and

other information. Some approaches have moved into creating a public repos-

itory to integrate public transportation data (Google Transit1, Syndicat des

transports d’Ile-de-France (STIF)2). Such solutions require understanding and

translating every single relevant data source in a supported area. Even though

this task is a complicated one, it becomes even more complex when con-

sidering the evolution of the integrated data and the necessity of maintain-

ing and keeping them up to date. Moreover, they are not taking into ac-

count the new highly evolving datasets such as car sharing, bike sharing,

car pooling and so on. These datasets have more complex characteristics

other than their dynamic nature. For example, they do not have the notion

of a fixed transportation stop (i.e. no fixed location for pickup/drop-off) or

any previously-known schedule, which makes their integration more com-

plicated than scheduled transportation services.

Our goal is to enable multimodality while taking into account the new dy-

namic transportation services. To do so, we take advantage of the open data

principle [44, 11] that companies are adopting to gain themselves better mar-

ket visibility. We aim to use these public open data to provide a connection

portal that represents the transportation connections between the different

services and the means to discover them in a flexible and customized man-

ner.
1http://maps.google.com/landing/transit/index.html
2http://www.stif.info
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1.2 Objectives and Challenges

Despite the fact that the sources we are dealing with are open, integrating

them requires careful study. In transportation data, the connections between

data sources have a different meaning: rather than entity resolution, links be-

tween different transportation networks capture their physical connections

in the real world, and these connections, as we will see, are complex. They

mostly depend on spatial and temporal constraints. The second characteristic

is that the sources are rarely documented, and the geospatial data, in partic-

ular, is hard to identify due to the diversity of geolocation representation in

general. Therefore, we need to take into account both instance (for the con-

nection) and schema levels integration. In addition, the new dynamic trans-

portation services have different characteristics than the regular public trans-

portation systems. They have no notion of fixed stops and time-schedules,

thus making the integration, at the service level, a challenging task.

Next we define the three main problems we target in this thesis on multiple

levels of integration including: instance, schema and service levels.

1.2.1 Schema Level Integration

Automatic schema matching/mapping aims at proposing an automated way

of discovering matching rules between datasets. However, the domain of

transportation has some specific characteristics that existing approaches can-

not handle. Transportation data contain geospatial properties that are repre-

sented in various formats and structures. In order to detect a mapping be-

tween different representations, existing approaches use individual or com-

bined matchers that work on schema and/or instance levels using various

techniques, e.g.,linguistic, constraint-based, data-type based, etc. However,

the mathematical-based operators used to define the similarity between rela-

tions are not suitable alone to detect the complex relations in transportation

data. For instance, there is no way to find out that a combination of street1,

street2, zip-code, city and country is the same as a combination of latitude
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and longitude between two datasets by using only some mathematical func-

tions. This problem raises the question of how we can be able to automati-

cally identify and map different representations of geospatial characteristics

between two schemas. The fact that each transportation dataset may contain

different instances is a challenge since we cannot rely on the basic instance

matching techniques to know the schema mappings. Moreover, relying only

on other properties, such as column names or value types, may not be suffi-

cient by themselves.

1.2.2 Instance Level Integration

Many solutions took benefit from open data to provide rich data for smart

city applications. They use linked data techniques and data interlinking tools

to provide extended information relevant to both transportation and passen-

ger profile queries [83, 20]. These techniques address equivalence detection

between entities to establish links between data sources. This may help in en-

riching the information about entities. However, this is not always enough

in transportation data. Further complex relations are required to reflect the

nature of transportation connections. Beyond equivalence or sameAs links,

we are interested in finding connections between transportation data sources

based on the geospatial characteristics of the data, which capture the reach-

ability between different transportation networks. Furthermore, using the

given tools, we face two main limitations. The first is the restriction to a

predefined set of functions for composing linking rules, due to the lack of

flexibility of existing systems in defining custom functions. For instance, to

calculate information such as the closeness of two transportation points of

transfer (bus stop, train station, etc.), we cannot define custom functions to

calculate walking distances, driving distances, etc. The user is forced to dig

into the code (if available) and modify it directly. The second limitation is

the representation of the generated output. Supporting complex relations re-

quires more complex output patterns. As an example, let us suppose that a

link is established between two transportation points of transfers. Existing

tools can provide the output (BusStop1 nextTo TrainStation132) which does

not give information about the occurrence of this relation. They are next to

each others, but how close are they, and what are the modes of transportation

that we can use, etc.?
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1.2.3 Service Level Integration

Ridesharing is a transportation service where individual travelers share a

vehicle for a trip and split travel costs with other travelers who have similar

itineraries and time schedule [39]. These services are getting a lot of atten-

tion in the recent years as they are beneficial for both travelers and drivers,

and friendly to the environment [39]. The main problem is that these services

are still isolated from existing public transportation networks. They are pro-

posed as alternative plans if no public transportation plan is found or simply

not preferred. Integrating these services within the existing trip planning so-

lutions may vastly improve the quality of the trips and serve as a backup

plan in case some delays or unexpected events occur. The main cause behind

the isolation is that it is simpler to calculate trips with scheduled networks

due to the fact that we know in advance the departure and arrival times of

each transportation unit. This is not the case in ridesharing services where

a driver may at any time notify an intention of sharing a ride with others.

This complicates the problem because these requests will appear/disappear

dynamically on the network. In addition, the ridesharing problem is com-

plex on its own [99, 39] and adding the connection with other modes will

vastly increase the size of the search graph, and will result in more complex

calculations.

1.3 Contributions

In this context, this thesis deals with the multi-network integration problem

for an intelligent mobility. It provides different approaches for the effective

and efficient integration of heterogeneous sources and services of transporta-

tion. The main contributions can be devised at three levels: the schema level,

the instance level, and the service level.

On the schema level, we target the problem of the heterogeneous represen-

tations of geospatial data in transportation datasets and the lack of efficient

state of art solutions to automatically detect and match them. To do so, we

propose an instance-based statistical approach that uses geospatial web ser-

vices as mediators to guide the matching task. The solution uses instances

from the given datasets and constructs queries that are later matched with

the web services results to conclude the position of the geospatial informa-

tion. Using this technique and given the web service structure we are able to
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detect and match n*n matching rules between the given schemas.

On the instance level, we extend existing interlinking approaches to go be-

yond equivalence detection by enabling the discovery of customized com-

plex relations between dataset instances. This solves the problem of inte-

grating open transportation datasets with providing the necessary solution

to represent transportation connections between transportation instances.

Finally, on the service level, we deal with the problem of isolating the new

mobility services such as ridesharing from existing trip planning solutions.

These solutions propose trip plans while neglecting the integration of new

mobility services as part of their plans, leaving a possibility of potentially

more optimized trips for passengers. Integrating those services is complex

due to their dynamic nature. There is no fixed pickup/drop-off position nor

a previously-known schedule. The intuition behind our solution is to use ex-

isting trip planners as base solution and try to improve it via smart service

injection algorithm. Our approach results in better trips that are faster, more

comfortable with a small additional cost.

All these contributions have been implemented, and grouped in a framework

we call FORTIfy. FORTIfy stands for "A Framework for Transportation Data

Integration", it is a framework that alongside its components stands as a so-

lution for enabling multimodality in transportation networks. The main goal

of FORTIfy is to provide a solid foundation for building multimodal solu-

tions by allowing easy processing, matching and integration of transporta-

tion data and services. In this thesis we use trip planning as our use-case

since it is the most natural and trivial use-case on transportation data. As

seen in Figure 1.1, the framework is composed of two main modules: the

integration module and the services module. Our main solutions are repre-

sented in blue rectangles that are: AMiGO the automatic schema matching

approach, Link++ the customized flexible interlinking approach and finally

RETRy the real multimodal trip planning and its querying interface. From

trip planning point of view, the framework allows travelers to plan a trip

that integrates multiple transportation data sources and services, then mon-

itor and update the suggested plan in real-time to adapt to changes. In the

following, we will introduce the role of each module, its different compo-

nents and how they all collaborate to form the desired solution.
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1.3.2 Services Module

The services module is a collection of services that uses the integrated data

to serve as a foundation to transportation applications. It contains the neces-

sary set of external event sources to keep the data up-to-date and offer trip

planning services to travelers. Our multimodal trip planner - RETRy - is an

example of these services that integrates multiple modes of transportation

including ridesharing services to offer optimized trips for travelers. RETRy

uses existing trip planning solutions to form a baseline solution that is later

optimized with the integration of ridesharing services.

1.4 Thesis Structure

This thesis consists of five chapters apart from the introductory Chapter 1.

In Chapter 2 we discuss different approaches that falls in the category of

transportation data integration and data modeling. We start by a introduc-

ing the standardizations efforts and their limitations. This leads us to move

towards the domain of schema and instance matching were we survey the

different approaches in each domain and the reason why they are still in-

sufficient to be applied for transportation datasets. Finally, we move to-

wards transportation services integration and the different trip planning ap-

proaches. We target the isolation of the on-demand transportation services

from the existing multimodal trip planners.

In Chapter 3, we target the schema matching problem in transportation datasets.

We state why existing approaches are insufficient to be applied on transporta-

tion schemas and the specific requirements needed for this domain. We intro-

duce our instance-based automatic schema matching approach that is able to

detect the heterogeneous geospatial patterns in transportation datasets. The

approach is evaluated by matching the schemas of two different transporta-

tion sources and showing how the approach improved the matching results

compared to the state of art approaches.

In Chapter 4 we tackle the problem of data interlinking in transportation

datasets. We state why existing interlinking methods are not enough for
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transportation data interlinking. We introduce our approach that extends

the existing solutions by defining a framework that allows users to fully cus-

tomize the interlinking output and the methods to identify the relations be-

tween instances. The approach is tested by integrating two different trans-

portation modes and showing how it improved the overall trips.

In Chapter 5 we move the focus towards the integration of transportation

services. More specifically, we target the on-demand transportation services

and the problem of isolating them from existing multimodal trip planners.

We introduce an algorithm that integrates both services to introduce a real

multimodal trip planning solution that results in more optimized trips while

taking into consideration both trip duration and cost. The approach is eval-

uated by comparing different trips with different modes of transportation

according to trip duration, cost and execution time.

We end with Chapter 6 where we sum up our contributions and show how

their combination can propose a reliable solution for an improved transporta-

tion multimodality. We discuss the open problems in each solution and how

they can be approaches for future improvements.
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Chapter 2

State of the Art

2.1 Introduction

As mentioned in the introduction, the transportation domain is flooding with

many transportation systems allowing the existence of a vast amount of ser-

vices and options for travelers. Having more services is definitely better

for travelers, since it enables them to select the best services that suit their

needs. Despite the advantages of having this variety of services, the work-

in-isolation strategy stands a restriction against what a collaboration may of-

fer. Companies tend to provide separate services to their customers. In most

cases, it is hard for customers to know all the available nearby services and

find a good combination that forms the optimal trip. Obviously, connect-

ing more sources together would improve our view of the transportation

system and enable broader queries with better and more optimized plans.

However, the heterogeneity of transportation data stands a challenge behind

reaching the connection we desire. Transportation data is represented in dif-

ferent formats for each transportation category (public transportation, car

sharing services, road networks, etc.). Heterogeneity makes the communi-

cation between these systems very complex, thus requiring a lot of time and

efforts.

In order to find a solution for connecting multiple transportation systems,

many research and standardization projects were conducted. Some think of

the problem as a standardization problem e.g. OPTICITIES project1. Thus,

they focus on creating or updating standards to cover all areas of transporta-

tion. In this way we will have a unified model that represents all aspects

1http://www.opticities.com/
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of transportation data. This model will enable the unified access we aim to

achieve multimodality. However, this solution suffers from a lot of problems

as we are going to see in details in the upcoming section. But in short, the ex-

istence of many standardization organizations lead to the existence of many

proposed standards that in some cases cover the same area or overlap with

others. This affects the adoption of standards since what was supposed to be

unified turned out to be heterogeneous. Due to this, operators moved into

easier and cheaper ways to represent their data using other models [82].

Due to the standardization problems, the integration approaches targeted the

problem from another level. The focus was on finding an easy way to inte-

grate the different schemas that represent each transportation system’s data

[13]. Existing approaches proposed many techniques to solve this problem.

In the upcoming section we will have a deeper look on the latest approaches

and the techniques used in each.

Integrating the data on the schema level is important for an easier access to

the different data representations. However, the main goal is to integrate

the different transportation units/entities across the datasets. Here comes

the role of instance level integration. More specifically, finding physical con-

nections between transportation entities [2, 95]. The difficulty here lies in

the data representation problem of how entities are represented differently

across various datasets. We are going to find how instances are integrated in

the state of art approaches and their limitations concerting connecting trans-

portation data.

On the other hand, new transportation services have other issues when it

comes to integration. For example, ridesharing services nowadays are still

proposed as isolated services and not really integrated as sub-trips in an

overall plan. The main cause behind the isolation is that it is simpler to calcu-

late trips with scheduled networks due to the fact that we know in advance

the departure and arrival times of each transportation unit. This is not the

case in ridesharing services where a driver may at any time notify an in-

tention of sharing a ride with others. This complicates the problem because

these requests will appear/disappear dynamically on the network. In addi-

tion, the ridesharing problem is complex on its own [99, 39] and adding the

connection with other modes will vastly increase the size of the search graph,
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and will result in more complex calculations.

Summing up, we classify the approaches that targets transportation data in-

tegration into four main fields: data standardization, schema matching, data

interlinking and service integration. In this chapter we provide the state of

the art in the above fields, stating the latest advances in each in addition to

their limitations to support out ultimate goal of enabling multimodality.

2.2 Standards

Transportation data have many facets and could be abstract or represented

in different ways. This has motivated the development of diverse standards.

The goal of these standards is to find a unified way to represent either a

specific aspect or the overall view of the transportation system. The stan-

dards we have surveyed are diverse and supported from European organi-

zations (CEN), international organizations (ISO) and other national (French)

and general ones.

The European Committee for standardization (CEN)2 and the International

Standards Organization (ISO)3 provided many efforts to produce well de-

veloped and harmonized standards over Europe and the world. Regarding

CEN, our interest lies on the two technical committees TC278 and TC2874,

which are responsible for (Road Transport and Traffic Telematics) and (Ge-

ographic Information) respectively. In working group WG35 of TC278, four

interesting standards were produced: Transmodel [85], IFOPT [54], NeTEx

[84] and SIRI [86]. We will have a look as well on INSPIRE [42] the European

directive 2007/2/EC. On the international level, we are interested in the ge-

ographic data model - the GFD standard [53] - for representing geographic

data files and other exchange formats such as GML [41], RDS-TMC [55] and

TPEG [106]. In the following we will detail each of the mentioned standards

and state their role in the field of transportation data.

2https://www.cen.eu/Pages/default.aspx
3https://www.iso.org/home.html
4http://www.itsstandards.eu/wgs
5http://www.itsstandards.eu/pt
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2.2.1 Data Models

First we begin with the standards that target the data model of transporta-

tion data. Transmodel [85] is a conceptual data model for public transport.

It presents the main structures of data to be used as a basis for informa-

tion systems in the areas of network description, tactical planning, vehicle

scheduling, fare collection, multimodal operation, schedules, personal dis-

position, operation monitoring, rostering, passenger information and man-

agement information. Transmodel version 6 will also include the support for

stop places, accessibility, topography and point of interest. Transmodel has

no official implementation. IFOPT [54] can be considered as an extension

of Transmodel to support the physical components of the main transport-

related fixed objects such as: boarding positions, grouping of components

being a sop place, walking path, entrances, equipment and facilities, acces-

sibility, etc. IFOPT will be included in Transmodel version 6, so no further

versions are to be developed. Finally, GDF [53] (Geographic Data Files) pro-

vides a structured description of the road network and related static data. It

is mainly used in: car navigation systems, fleet management, dispatch man-

agement, traffic analysis, traffic management and automatic vehicle location.

Example of objects covered by GDF: road, road element, intersection, ad-

dress area, building, elevation, bridge, tunnel, traffic light, traffic sign, public

transport line and scope, etc.

2.2.2 Exchange formats

In order to exchange transportation system information, some standards were

proposed to model these information. NETEX [84] is an exchange format

based on Transmodel and IFOPT. It is divided into three parts: Network

topology, timing information and description of the tariff offer. SIRI is an-

other project launched in 2004 to provide operators with a standard frame-

work for exchanging real time information of transport data. The concepts

underlying SIRI [86] are based on Transmodel. SIRI does not provide a full

description of the planned transport offer, otherwise it supports the changes

to this offer. And so on the scope for a SIRI message is limited to a single

day. Accessing information is done using a set of SOAP web services. Some

of the services offered by SIRI: general messaging service, vehicle monitoring

service, situation exchange, facility monitoring, production timetable service,
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estimated timetable service, stop timetable service, connection time table ser-

vice and connection monitoring service.

2.2.3 Events and Traffic Information

Regarding road data events and traffic information, DATEX [52] covers six

main categories: road and traffic related events (abnormal traffic, accidents,

etc.), operator actions (network management, traffic control, road works,

etc.), non-road event information (transit service information, car parks, etc.),

measured data (travel times, traffic status, weather values, etc.), elaborated

data (predicted data based on the measured ones), variable message sign

messages(textual messages, pictogram, etc.). RDS-TMC [55] stands for Ra-

dio Data System - Traffic Message Channel using ALERT-C. Is an exchange

format for delivering traffic and travel information using the Radio Data Sys-

tem based on FM radio broadcasts. RDS-TMC is moving towards the end of

its life due to the merging of TMC-Forum (The manager for RDS-TMS) and

TPEG-Forum under the association named TISA (Traveler Information Ser-

vices). TPEG [106] stands for Traffic and Travel Information via Transport

Protocol Experts Group. Managed by TISA association as an extension for

TMC. TPEG covers real-time data and is dedicated to the communication

with end user devices. Services covered by TPEG: service and road network

information, road traffic messages, public transport information, location ref-

erencing, parking information, packing information, congestion and travel

time, conditional access information. TPEG can be transmitted by any digital

communication mean, e.g. DAB digital radio, DMB, internet. Currently two

variants exist: a binary data format for transmission over DAB and BMB, and

tpegML which is an XML implementation for Internet delivery. UTMC [107]

was launched in 1997 by the UK Department for Transport. It covers real

time road traffic data such as: traffic control, variable message signs, closed

circuit television (CCTV), car park guidance, automatic number plate recog-

nition (ANPR), air quality sensors, etc. The main focus of UTMS is to provide

standards and protocols for the communication between roadside units and

the control center, applications within the control center and between control

centers. UTMC Data can be published using DATEX-II standards.
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2.2.4 Geospatial-specific Standards

Concerning geospatial information, another set of standards were proposed

to cover the variety of shared geospatial data. INSPIRE aims to create a Ëuro-

pean union spatial data infrastructure,̈ which will enable sharing geospa-

tial information among organizations and facilitate public access across Eu-

rope. To support environmental applications 34 spatial data themes with

their meta data are addressed by INSPIRE, along with technical implementa-

tion rules. The main scope covers geographic features, maps related informa-

tion, roads, bridges, lakes, rivers, cadastral parcels, buildings, and protected

sites. GML (Geographic Markup Language) is an XML-based exchange for-

mat designed for the description and exchange of geographical features such

as: points, lines and polygons. GML provides extensions to express business

specific applications through profiles and application schema. As an exam-

ple, users can refer to "roads" instead of "line" or "polygon". The transporta-

tion infrastructure is one of the themes dealt with in the general directive

INSPIRE [42]. In this context the GML exchange format [41] is widely used

for geospatial data in all fields.

2.2.5 De facto Standards

Some projects can not be categorized as standards, however, they launched

their own initiative for representing geospatial and transportation informa-

tion e.g. OpenStreetMap and GTFS. OpenStreetMap (OSM) is a collaborative

project to create a free editable map of the world. Created by Steve Coast

in the UK in 2004 who was inspired by the success of Wikipedia. OSM is a

database generated by more than one million volunteers who perform sys-

tematic ground surveys. There are more than 43 categories of the data col-

lected by OSM as: roads, railways, paths, waterways, bicycle routes, etc.

GTFS The General Transit Feed Specification define a common format for

public transportation schedules and associated geographic information. Tran-

sit agency can publish their transit data in a GTFS feed allowing develop-

ers to write applications to consume that data in an interoperable way. In

a nutshell, a GTFS feed is composed of a series of text files collected in a

ZIP file. Each file models a particular aspect of transit information: stops,
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routes, trips, and other schedule data. GTFS can be used to produce trip

planners, time table publishers, and a variety of applications. Since GTFS

lacks the support for the real-time transport data, a new extension named

GTFS real-time was introduced. GTFS real-time allows public transportation

agencies to provide real-time updates about their fleet to application devel-

opers The real-time updates supports: Trip updates (delays, cancellations

and changed routes), Service alerts (stop moved, unforeseen events affecting

a station, route or the entire network), Vehicle positions (information about

the vehicles including location and congestion level). The ease of implemen-

tation and use of GTFS made is widely popular by transportation companies,

where many of them are publishing their data in this format.

2.2.6 Tools

Due to the large number of different formats, some tools were developed to

convert the data from one format to another. CHOUETTE [72] is an open

source software mainly financed by the French Ministry of Ecology, Sus-

tainable Development, Transport and Housing. Its main purpose is to cap-

ture and exchange data, describing the scheduled timetables of public trans-

port networks, in accordance with a standard exchange formats and profiles

(NeTEx, NEPTUNE and GTFS). CHOUETTE is complemented by IRYS for

SIRI based real-time information. GeomRDF [46] is another interesting tool

that targets transforming geospatial data into RDF (see Section 4.3). Geom-

RDF takes only geospatial representation as an input, this it is not able to

take other file formats such as CSV for example, which makes it hard to be

adopted for transforming transportation data formats.

2.2.7 Conclusion

Despite the large efforts in the field of standardization, there still exist nu-

merous problems that need reconsideration before adopting standards as a

solution. First of all, the number of standards changes rapidly, and each time

new standards cover aspects of existing standards (old ones are withdrawn in

case of overlapping paradigm shifts). Moreover, the market visibility of stan-

dards is somehow slow and this gives long time for them to be supported and

adopted. In addition, some standards have a limited lifetime (3 to 5 years)

where the same market problems apply here too. Another problem is related
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to diversity, we have seen that standards come from different organizations

and origins producing some overlapping and diverse standards, and each

supporting the same or different scope of data. This problem shows that the

standards solution to unify data diverges us into a new heterogeneity prob-

lem of unifying standards themselves.

The latter raised the adoption of defacto standards and open data models and

techniques [82] to represent transportation datasets. However, these models

are non-documented as in standards and the representations again vary from

one operator to another. To overcome this issue, approaches in schema and

instance level integration may be considered as good candidates. They are

able to identify matching rules for schemas and entities in different datasets

without the need of creating a new unified model. In the next two sections

we will dive into these fields and target the problems in each.

2.3 Schema Level Integration of Transportation

Datasets

Due to the large number of heterogeneous formats and schemas for repre-

senting transportation data, the matching of these schemas became necessary

for connecting the different services and enabling multimodality. Usually,

the matching operation is done manually. However, as schemas grow larger,

manual matching becomes tedious, time and effort consuming and very hard

to maintain. These consequences lead to many efforts on automatizing the

matching task. Many interesting surveys where provided through the past

years such as [88, 101, 59, 109, 9, 102].

Automatic schema matching is one of the approaches to solve schema het-

erogeneity. It provides the means and the necessary techniques to a uniform

access to the data. Roughly speaking, matching is the action of finding cor-

respondences between elements of two schemas.

2.3.1 The matching problem

A mapping element defines a mapping relation between entities of two dif-

ferent data sources. Based on [35, 36, 101], a mapping element is a 5-uple:

(id, e, e′, n, R) where:
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Matching dimensions

In [101] the authors introduced three matching dimensions to classify match-

ing algorithms.

• Input dimension which is related to the algorithm’s input. Algorithms

are classified based on the used data model or on the kind of the data

exploited e.g. schema level information vs instance level or both.

• Process dimension classifies matching algorithms based in their na-

ture. Matching algorithms may be exact or approximate. Exact algo-

rithms compute the precise solution of a problem, while approximate

algorithms sacrifice exactness for performance.

• Output dimensions concerns the form of the results an algorithm pro-

duce. This is related to the cardinality of the mappings, whether the

solution is final and the suitability of the relations.

Matching techniques

Another classification can be considered based on the matching techniques

used. In the following we combine both classifications of [88, 101].
Matching Approaches

Combined matchers

Composite

AutomaticManual

Hybrid

Individual matchers

Instance-based

Element-level

Schema-based

Structure-level

SemanticExternalSyntactic

Element-level

ExternalSyntactic

On the first level we may classify matchers by whether they are individual

matchers or combined ones. Individual matchers are independent matchers

that tend to solve the matching task based on some criteria e.g. matching by

string similarity. However, these individual matchers often miss some im-

portant aspect which could significantly damage the results. As an example:

Product.name matches Person.name using simple string similarity but does

not match using other techniques such as path similarity. Combined match-

ers tackles this problem by taking advantage of each supported aspect of ex-

isting matchers and combining them to provider better results. Matchers can

be combined into one algorithm (Hybrid matchers) or can be composed in-

dependently from another (Composite matchers). The advantage of Hybrid

matchers is that they are faster since they require only on pass over the data.
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While composite matchers require each matcher to traverse independently

from another. Selecting the type of matcher to be used is dependent on the

matching task. Even-though hybrid matchers are faster, composite matchers

are much more flexible.

On the other hand, matchers can be classified based on their input interpre-

tation as shown next.

• Schema vs instance Schema level techniques consider only schema in-

formation without the instance data, i.e. element names, attributes, re-

lations, cardinalities, etc. Instance level techniques take benefit of in-

stance data to guide the matching task. These techniques are used when

the given schema information is limited or to improve the matching re-

sult by using instances to validate pre-computed correspondences.

• Element-level vs structure-level Element-level techniques consider schema

elements on their own in the matching process. They try to match each

element with its corresponding element in the second schema. e.g.

S1.phone = S2.mobile. The most popular techniques in this field are:

String-based [17], Language-based [43, 69], constraint-based [62], Lin-

guistic resources [73, 12, 43, 69], Alignment reuse [88, 4, 89] and upper

levels formal ontologies [76, 40]. On the other hand, structure-level

techniques proceed with matching a combination of elements within a

structure to their corresponding element or structure. e.g. S1. f irstname+

S1.lastname = S2.name. The most popular techniques are: graph-based

[97, 70, 37], taxonomy-based [77, 34], repository of structures [89], and

model-based [71, 12, 43].

• Syntactic vs external vs semantic Syntactic matchers consider only the

sole structure of an input, and apply a given similarity algorithm, e.g.

name based matching. External information can be very helpful for

a matching algorithm. External matchers make use of such informa-

tion such as dictionaries, thesaurus, background knowledge, previous

matching results, etc.This improves the accuracy and sometimes de-

crease the matching time in case of using a previous matching result.

Semantic matchers use formal semantic for interpreting the input and

justifying results.
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2.3.3 Schema matching approaches

As we have seen, there are multiple techniques to address the problem of

schema matching. However, researchers found that combining multiple tech-

niques yield in better results than using just one technique. Based on this,

schema matching approaches are either hybrid (package multiple techniques

in one algorithm) or composite (techniques are combined independently from

each another). Even-though hybrid matchers are faster, they lack the flexi-

bility achieved by composite matchers. In this section, we survey the most

known schema matching algorithms. We decompose the section into four

main parts. The first two parts target generic hybrid and composite matchers,

the third part targets ontology matching systems since they share the same

goal as in schema matching systems. Finally, we introduce some matchers

that are specific to geospatial data and end by discussing the limitations of

the presented approaches to our main objective.

Hybrid Schema Matchers

Similarity Flooding [70] is the first hybrid matching algorithm we start with.

It is semi-automatic and based on the idea of similarity propagation. It han-

dles input schemas as directed labeled graphs and match them following the

intuition: Elements of two distinct model are similar when their adjacent elements

are similar. Example: Two elements Employee and Personnel are more likely to

be equal when their attributes pName and eName matches. Their technique

starts with string-based comparison of the graphs’ labels which produces an

initial alignment that is later refined using iterative fix-point computation.

The idea in general is that similarity floods from similar nodes to their ad-

jacent ones through propagating coefficients. The depth is increase from an

iteration to another until the fix-point is reached. Results are later filtered

to produce an optimized alignment. Cupid [69] is another hybrid matching

algorithm that combines linguistic and structural matching techniques. It

uses domain specific thesauri to guide the matching task. The algorithm en-

codes input schemas as graphs that undergoes three matching phases. The

first phase computes linguistic similarities between schema elements. The

second phase calculates structural similarity coefficients. In the final phase,

the algorithm calculates weighted similarity coefficients and a final align-

ment is generated by selecting elements with coefficients passing the defined

threshold. We end up with S-Match [43], that takes two schemas (tree-like
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structure) as an input and determines semantic relationships between the

concepts assign to nodes (equivalence, general than, etc). The algorithm is

divided into four steps based on two key notions: concept of a label and con-

cept of a node. Step one calculates the concept between both trees’ labels. Step

two calculates the concept between both trees’ nodes. Step three calculates

the relations among the concepts of all label pairs. Step four calculates the

relations among the concepts of all node pairs. The first two steps are exe-

cuted in the pre-processing phase once and for all trees while the other two

are executed at run time. S-Match uses 16 matchers with 13 element-level

and 3 structure level ones. It uses WordNet [73] as extensional information

guiding the matching.

Composite Schema Matchers

COMA [30, 4] is a composite schema matching tool that provides: an exten-

sible library of matching algorithms, a framework for combining obtained

results and an evaluation platform. COMA introduced as well the idea of

reuse-oriented matching which take benefit of previously generated align-

ments. Compared to other tools, COMA is more flexible and allows users

to perform full and fragment schema matching. COMA accepts XSD, XDR,

OWL, CSV, SQL as input schemas that are later encoded as DAGs. NOM [34]

differs from other approaches by determining similarity through rules man-

ually formulated by ontology experts. In their approach they define 17 rules.

Example of these rules are: R1 if labels are the same, then entities are probably also

the same, R2 if two entities have the same identifier they are identical. They present

many functions to integrate the results of these rules for an overall alignment.

QOM [33] is the descendant of [34]. Its goal is to present an efficient match-

ing algorithm. QOM has lower run-time complexity with the possibility for

producing high-quality results. It uses the same pre-defined rules as its pre-

decessor and follows six steps in their process: Feature Engineering, Search

Step Selection, Similarity Computation, Similarity Aggregation, Interpretation and

Iteration. In the worst-case run-time behavior QOM achieves an O(n.log(n))

complexity measure.

Ontology Matchers

Starting with ontology matching frameworks, we introduce RiMOM [67], a

dynamic multi strategy ontology alignment. It uses the textual and structural



24 Chapter 2. State of the Art

characteristics of ontologies to their feature factors. These factors help later in

dynamically selecting and combining the most relevant matching strategies.

A similarity propagation strategy is followed in order to refine the results,

and discover new alignments that can not be found using other strategies.

AgreementMaker [23] is another framework that performs, evaluates and

compares a wide range of matching methods. It supports large scale ontolo-

gies in the formats of XML, RDFS, OWL and N3 ontologies and outputs 1:1,

1:m, n:1 and n:m alignments. It provides a rich user interface allowing users

to select a manual or automatic matching configuration with the capability

of merging multiple match results. The automatic matchers combinations

is done on three layers: compare concept features (labels, comments, anno-

tations and instances), compare structural ontology properties and finally

combine results via a linear weighted combination based on thresholds and

the desired output cardinality.

Anchor-PROMPT [77] is a tool dedicated to aligning and merging ontologies

by finding semantically similar terms between their entities. It is a hybrid

matching algorithm that takes an input of two ontologies and a set of anchors

defined by the user or automatically detected (via lexical matching). The al-

gorithm proceeds by analyzing the paths of the input ontologies limited by

the anchors in favor of determining frequently appearing terms in similar

positions or paths. The algorithm terminates by determining the matching

candidates based on the frequency and the user feedback.

Falcon [50] operates on RDFS and OWL and mainly targets large ontologies.

It uses divide-and-conquer strategy operating in three phases: partitioning,

matching blocks, and aligning blocks. Falcon uses a structure based parti-

tioning for the first phase. In the first phase, Falcon uses a structure based

partitioning to separate entities of each ontologies into clusters that are later

handled as blocks. In the second phase, the generated blocks are matched

based on anchors. Anchors are discovered using I-SUB string comparison

technique [105]. The selected blocks is determined by a cutoff threshold

based on the number of common anchors found. In the final phase, the re-

sults are combined by a sequential composition to discover alignments be-

tween block pairs.

Some approaches focus on enriching the mappings using external knowl-

edge. BLOOMS [57] is one of those approaches that targets the fact that
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linked open data are mostly matched at the instance level ignoring schema-

level information. The approach is based on using Wikipedia as a back-

ground knowledge to detect semantic relationships between linked open data

classes. The matching process proceeds as follows. First the input ontologies

are pre-processed by removing property restrictions, individuals and prop-

erties, then by tokenizing class names and removing stop words. In a second

step, constructs what is called the BLOOMS forest, which is a set of trees de-

scribing the hierarchical related concepts for each class. Later the generated

trees are compared to derive the relevant semantic relationships. Discovered

relations can be: subClassOf and equivalentClass. The final step post-process

the results using the Alignment API [35] and a reasoner. STORMA [1] is an-

other approach towards providing richer semantic ontology mappings. They

extend the existing is-a and related correspondences provided by most of the

tools, to new part-of relationship. The approach proceeds by using a state-of-

art matching tool, then taking the results and applying linguistic techniques

enriched with a background knowledge to detect the semantic relatedness

between elements. The advantage is that this approach reduces the search

space and can be much faster on bigger ontologies. However, it is depen-

dent on how well the first matcher behave and the assumption that the first

matcher will discover all the required links is somehow weak.

ASMOV [58] is an algorithm for automatic matching and verification of on-

tologies. It operates on OWL ontologies and their approach is two step fold.

In the first step the similarity is calculated using lexical, structural and exten-

sional matchers. The results are then aggregated using a weighted average.

Step two derives an alignment and verifies it by checking for semantic incon-

sistencies. The process is repeated until no new correspondences are found.

OLA [37] proposed a family of distance measures for ontology matching that

encompasses all OWL-Lite features. The system looks for a matching be-

tween the ontologies that minimizes the computed distances. The algorithm

starts with a basics distance measure comparing labels and their data types,

and improves with a fix-point algorithm.

The large support for ontology matchers is promising. However, it is rarely

the case of having transportation data backed-up with such ontological rep-

resentations of its entities, making the use of such approaches infeasible.
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Geographic Matchers

As we have mentioned in the introduction, new data representation are be-

ing adopted to represent transportation information. The Open Data’s Re-

source Description Framework [82] (more details in the next section) is one

of those representations that models data as entities and relations between

them. For this reason, some tools were proposed to match relations between

these entities. For instance, Taxomap [47] is match tool developed for de-

tecting such relations in the geographic domain. It uses linguistic and struc-

tural techniques accompanied with background resources to detect rich 1:m

correspondences between concepts. The relations Taxomap can detect are:

Equivalence (isEq), subclass (isA) and semantically related (isClose) relationships.

Taxomap uses ontologies partitioning as well in order to support large scale

ontologies [45]. The problem is as stated in the previous section, the ontolog-

ical representation is rarely the case in the published transportation datasets.

They are often represented in defacto standards or simple open data rep-

resentations [82] that do not have such complex back-support of meta-data

representation.

Brauner et al. [13] propose an instance-based approach for schema matching.

The main goal is to match export schemas of geographical database Web ser-

vices. They assume the webservice to be well described so that their input

and output is known. The matching process proceeds as follows. A query

formulator queries the webservices WS1 and WS2 based on a set of global

instances defined based on a global schema. The results conforming and out-

put schemas OS1 and OS2 are then collected and store in local tables. An

occurrence matrix is constructed showing the number of elements found in

common between the global schema and each input schema instances. Based

on it, the system assumes that the columns with the largest common num-

ber of occurrences match. Finally, by using the transitivity characteristic the

input schemas are matched based on their correspondence with the global

schema. This approach is simple and effective in case the databases shares

the same instances. Otherwise, it does not consider the possible different

data type or structural representation between the input schemas. Consid-

ering our domain, applying this technique can not be valid since we can not

have a set of global instances for all transportation operators units if they are

not already integrated in the first place. This renders the use of this approach

to be infeasible in our focus of study.
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Conclusion

Transportation datasets contain many complex properties such as geospa-

tial information and time schedules that can significantly vary in represen-

tations between one data source and another. These representations differ

in data types, geographical scale, schema composition and many other com-

plex properties that are mainly present as many-to-many mappings between

the different schemas. An example of such properties is the geographical

location of a transportation unit. This location can be represented in many

different ways such as a street address (street, zipcode, city, country), a geo-

graphical point (latitude, longitude) or a more complex geographical shape

as a polygon.

Analyzing existing automatic schema matching approaches shows that they

are insufficient for detecting the different geospatial representations in trans-

portation data sources. These systems mainly use mathematical similarity

metrics to detect linguistic or structural similarities between entities. These

metrics are not sufficient to detect the complex relations between transporta-

tion schemas. There is no mathematical way that alone can detect a rela-

tion between two schemas where the first represents a location by a latitude

and longitude while the second represents it via a normal textual street ad-

dress. In addition, there is no much support for many-to-many alignments,

otherwise systems mostly focus on one-to-one matching rules. Considering

approaches that use background knowledge (e.g. [13, 47]) such as a global

knowledge base, these techniques are not applicable to transportation sys-

tems since each system has its own data and units that is not common with

others. The evaluation in [57] shows the limitations of existing tools when

matching geospatial datasets. The results show very low numbers while

matching geospatial properties between DBpedia and Geonames schemas.

The transportation field is still not targeted specifically by any approach. It

requires more powerful matchers that are able to detect the complex geospa-

tial properties represented within it schemas. Different geospatial patterns

are still not detected in current systems and the existing matchers lack the

ability to match them. As an example: a schema S1 may consider an ad-

dress based on a set of zip code, street name and a city name, while another

schema S2 represents addresses as lat,lon couples. Matching transportation
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systems requires techniques that are automatically able to detect this many-

to-many mapping rules with different scales, data types and representations,

with no prior knowledge about the geospatial properties. We focus on the

localization which can have completely different type and structure.

2.4 Instance Level Integration of Transporta-

tion Datasets

Enabling multimodality requires integrating more and more services together.

In transportation systems, this can be viewed from two dimensions, linking

the same entity across different datasets in order to enrich the knowledge

about a single entity or linking different entities across different datasets to

enable wider access to the different provided services. The first dimension

is useful for linking data represented in different scopes. This is called data

conflation [27, 26, 92] that is popular in geospatial data where a spatial object

might have multiple geometric representations due to the precision or to the

scale, e.g., a building is represented as a polygon in the first dataset and a

simple point in the other. Our focus in this study is on the second dimension,

that means connecting together different units from different services. In or-

der to achieve this, data from all different services is needed. Fortunately,

data is becoming more and more easily accessible and available with the

introduction of the Open Linked Data concept [10]. In short, it means rep-

resenting data from different sources in a unified model that can be linked

together to resemble a huge graph that describes the semantic relations be-

tween its entities. With the introduction of this concept, many approaches

proposed the means and methods of exposing their data in order to join this

huge knowledge representation. In the category of transportation data and

smart cities, the authors in [3, 83, 20] did this integration by following the

linked data principles [10, 11] and they succeeded in connecting data from

different sources to produce applications with wider-scope services. In [61],

the authors tackled the problem of cataloging, exploring, integrating, under-

standing, processing and transforming urban information. They proposed

an approach for incremental and continuous integration of static and stream-

ing data, based on Semantic Web technologies, while they tested their system

to a traffic diagnosis scenario.
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The GeoKnow [64] project and DataLift [95] platform came as a solution to

help transforming data from isolated silos into linked data. They provide the

necessary tools to transform data into linked data compatible format (the re-

source description framework RDF [82]), link data from multiple sources us-

ing interlinking frameworks [75, 108], publish the new links and query them

[87]. The result is a unified access with a rich querying framework (SPARQL)

[87] over data extracted from multiple different sources with different for-

mats.

2.4.1 Geometric Based Data Integration

As mentioned in the section’s introduction, an interesting domain in geo-

metric data integration is conflation. It targets detecting the same geographic

instances described in different datasets. Knowing that the are many differ-

ent ways of representing geographical entities, it is important to know the

identical entities for the purpose of integration. For an instance, a building

can be represented by a circle on the map, a point, a line, a polygon or any

other shape representation.

Having these different representations describing the same entity in different

datasets is what defines the conflation problem. Conflation aims to identify

the identical entities no matter how they are represented. From an appli-

cation point of view, conflation is important for combining maps to enable

complex query-ability for solving spatial queries and developing a spatial

analysis.

There are many approaches that target this problem. Basically, the approaches

use geometric, topologic and/or semantic characteristics in the data to indi-

cate the similarity of two entities. Geometric matching is based on the de-

tection of corresponding objects in different datasets by comparing their geo-

metric characteristics [92, 15]. Topologic matching uses composition or topo-

logic relationships between different objects to match a given object. If two

relationships correspond, then this correspondence can be used to find ho-

mologous objects linked by this relationship [26]. Semantic matching works

according to the proximity degree of the semantic attributes between two ob-

jects from different datasets [26, 18]. It is used to find corresponding objects

from different datasets that share some common or comparable attributes

[112]. The simplest case is that two datasets have the same attributes whose
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meanings or value ranges are defined in the same way. The semantic similar-

ity can be also identified even when the objects from various datasets have

significant representational differences [100].

Going back to our main problem, we see that conflation targets a different

aspect of integrating geospatial data. The approaches aim to detect similar

geospatial entities in different datasets. However, our aim is to detect re-

lationships between different geospatial entities in transportation datasets.

That is why we move in the next section to the domain of data interlinking,

to study the proposed approaches and see how they can fit to our problem.

2.4.2 Data Interlinking

Links are created for open data datasets are through data interlinking/link

discovery approaches [75, 108]. Data interlinking in general is a way to iden-

tify entities that represent the same real world object across different RDF

data sources in a semi-automatic fashion. The process of linking requires

two datasets a source and a target, a distance measure and a threshold. A

link between two entities of a dataset is successfully assigned if a distance

measure between them exceeds a selected threshold. The main goal is to link

similar instances – that are scattered between different data sources – in or-

der to expand the knowledge graph. The MeLinDa survey [93] described

data interlinking in more details and highlighted the characteristics of the

most popular approaches.

We can divide the link discovery frameworks into two categories: domain

specific and generic ones. The domain specific frameworks aim to discover

the links between knowledge bases of a particular domain. The second cate-

gory is designed to consider the linking tasks regarding the knowledge base

domain. Based on [93], table 2.1 shows the most popular interlinking tools

with their properties. In the domain specific category, RKB-CRS short for

co-reference resolution system [56], proposed an architecture for managing

URI equivalences on the Web of Data by using Consistent Reference Ser-

vices. Their approach requires a JAVA program to be written for each pair

of datasets to integrate. In each program, the resources are selected along

with their comparison functions. Those functions are defined by string sim-

ilarity metrics on property values. GNAT [90] is an automatic interlinking

tool that works on music datasets described within the Music Ontology [91].
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Similarity
Tech-
niques

Output Domain

RKB-CRS [56] String owl:sameAs Publications
GNAT [90] String,

similarity-
propagation

owl:sameAs Music

ODD-Linker [49] String link set Independent
RDF-AI [94] String,

WordNet
alignment format Independent

Silk [108] String,
numerical,
date

owl:sameAs,
user-specified

Independent

LIMES [75] String, geo-
graphical,
numerical,
date

owl:sameAs,
user-specified

Independent

Table 2.1: Comparison between different interlinking tools

It is implemented in prolog and based on similarity aggregation algorithm to

detect relations based on resource’s neighbors in a graph.

Regarding approaches with limiting output representations, ODD-Linker [49]

proposed an extensible framework for interlinking relational data with high

quality links. Linking rules are expressed in LinQL that is later translated to

SQL queries in order to compare and identify links. LinQL supports many

string matching algorithms, synonyms, hyponyms and other conditions on

attributes. RDF-AI [94] is a dataset matching and fusion architecture. It

takes two files, the datasets to be linked and a set of XML files describing

the linking process (pre-processing, matching configuration, dataset struc-

ture, merge configuration). A local copy of the datasets is needed, and the

matching is based on string similarity with an external resource (WordNet).

Moving to the more flexible systems with independent domains and user

specific outputs, Silk [108] input datasets are inserted via a SPARQL endpoint

URI, a local copy, or a database access. Matching configuration can be done

either with a GUI toolbox or the Silk Link Specification Language (Silk LSL).

User specifies the properties to be matched, the pre-processing functions

and the matching technique to be used. Matching function are combined

via aggregation functions (MAX, MIN, AVG). Silk provides a load of pre-

processing function on Literals and numeric data types. Many comparison
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functions are defined including string similarity, numerical distance, date-

time. The only distance function available for matching geospatial datasets,

is the geometric distance — based on the Euclidean distance. It takes the

latitude and the longitude of both entities and matches them according to a

given threshold. The good thing in this distance function is that the thresh-

old is well formatted, the user can define the minimal distance in meters or

kilo-meters. LIMES [75] is one of the tools provided by the GeoKnow [2]

project, it handles the matching in a very fast speed compared to other link

discovery frameworks. LIMES provide better distance functions for geospa-

tial data, thus we have more options to match. It supports basic string met-

rics, numeric vectors such as Euclidean and Orthodromic distance metrics

and many other similarity metrics e.g. Hausdorff, Sum of minimum, Fréchet,

etc. Writing a linkage rule in LIMES is done via XML, and no GUI is avail-

able to support the process. Although many distance metrics are supported,

these functions are only good for geographical data. Geographical data is a

subset of transportation data, so more powerful functions are needed, those

who enable richer linking between transportation units or objects.

2.4.3 Conclusion

Existing link discovery approaches aim at detecting same instances scattered

between different datasets, thus making them targeted towards equivalence

detection. To do so, they provide functions and aggregations to detect owl:sameAs,

part-of, subClass and other similar relationships as seen in the previous sec-

tion.

The presented approaches may be suitable in some use-cases for detecting

similar geographical entities in geospatial datasets such as the GeoKnow [2]

and LinkedGeoData [104] projects. However, these characteristics are not

enough for the case of transportation data. In transportation data, the links

we aim to create represent physical connections between transportation enti-

ties. This adds additional requirements to the existing solutions to go beyond

equivalence detection. More complex link types are required which in turn

need different ways for detecting and representing them. A transportation

link requires more suitable functions to be detected between one entity and

another. Such functions must consider timetable information, geographical
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and road network constraints, cost information and many other characteris-

tics. In addition, the classical owl:sameAs output is not enough to represent

what a transportation connection really is. A transportation connection must

represent many information in order to allow further post-processing by ap-

plications such as trip planners.

Consider that we want to connect two transportation data sources with the

intention of discovering how we can reach one stop from another. The links

we want to detect are the physical links from one stop to the second. What

we really expect is a rich linking rule that links stops based on timetable

schedules and the reaching feasibility based on road network constraint. The

output we seek is a rich link that represents how much time is required to

reach one stop from another, the time the link is available at, the fees or using

this link, the transportation mode and many other characteristics that may

be helpful for later decision making and planning. The problem is that doing

so with existing tools limits us to equivalence detection due to the provided

functions and output format. This results in an unsuitable way of defining

the linking rule which may lead to false results in addition to insufficient link

representation that does not suffice for later processing. What is required is a

more representative and semantic way to connect these sources [6] showing

how they can be connected from a transportation point of view.

As a conclusion, the output of an interlinking process mainly focuses on de-

tecting a set of owl:sameAs links. However, we need to have more infor-

mation in the generated links to enable better post-processing and analysis

and to reduce re-calculation costs (e.g., include information about a connec-

tion status and the distance between two connected entities in transportation

links).

2.5 Service Level Integration of Transportation

Datasets

Up till now, we have seen studied approaches of integrating data on the

schema level and on the instance level. Relating them to transportation data,

the schema level integration may help in matching different data represen-

tations adopted by different transportation operators. This indeed help with
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the heterogeneity problem and makes it easier to work with all the different

datasets. The instance level integration is important to find relations between

the entities of the transportation operators. This is necessary to find physical

real-world connections between the transportation units or stops for enabling

the planning of multimodal solutions. This leaves us with one more interest-

ing integration problem, the service level integration.

It is trivial that transportation trip planners are by far the most popular ap-

plications on transportation data. They provide calculations of trip that best

fit a traveler’s needs. Current trip planners are mostly focused around the

standard scheduled transportation services. However, there are many new

transportation services that differ from these services e.g. Ridesharing, Car-

pooling, etc. These new services are being highly adopted by people but

unfortunately not by integration approaches. Integrating such services is im-

portant to allow real multimodality and more customized trip plans. For

this purpose, this section shows a study of trip planning approaches on the

timetable networks and on the new transportation services.

Regarding the new transportation services, we focus on ridesharing. Rideshar-

ing is a transportation service where individual travelers share a vehicle for

a trip and split travel costs with other travelers who have similar itineraries

and time schedule. These services are getting a lot of attention in the re-

cent years as they are beneficial for both travelers and drivers, and friendly

to the environment [39]. We will study how ridesharing applications plan

their trips, see the main problem ridesharing approaches target and finally

conclude what makes integrating ridesharing with existing trip planning a

problem.

Many trip planning algorithms were developed along the years. They can be

decomposed based on the way they approach the problem and the solutions

they provide. Some algorithms only target the problem as a routing prob-

lem on road networks. These algorithms are suitable for walking or driv-

ing passengers who seek a guide on how to traverse their routes efficiently.

Other approaches target trips including public transportation services such

as trains, buses, etc. They use timetable and infrastructure data to plan op-

timized trips for passengers. Passengers may use these trips to reach their

destinations using a combination of public transportation services. On the
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other hand, with the appearance of on demand transportation services such

as ridesharing, new algorithms were developed. The goal of these algorithms

is to match service requests with service offers.

In this section we introduce the latest approaches in the fields of route plan-

ning, timetable trip planning, and ridesharing matching algorithms.

2.5.1 Route Planners

Route planning is an extensively studied field with a lot of contributions that

are aimed at building fast and optimized algorithms for navigating routes.

The shortest path problem is one of the most popular problems in this field,

especially in trip planning since the shortest trip is generally the most re-

quested query in such applications. In the following we will present some of

the most used approaches for solving the shortest path problem.

Dijkstra’s algorithm [29] is a well-known shortest path algorithm. It works

by maintaining a priority queue of vertices ordered by distance from a source

point. The algorithms begins with initializing all distances to infinity except

the distance to the source which is initialized to zero and added to the queue.

After the initializing phase the algorithm stars the iteration phase. On each

iteration the algorithm extracts from the queue the vertex with the minimum

distance and scans it. It looks at all of its neighbors and determines the dis-

tance to them. If the value improves the distance it is then updated and the

edge is relaxed. Dijkstra is a label setting algorithm meaning that labels are

only scanned once and the algorithm terminates once reaching the target.

Bellman-Ford [7] is another well-known shortest path algorithm. It does not

use priority queues as in Dijkstra. Instead, it works in rounds by scanning all

vertices whose distance labels have improved. The vertices to be scanned are

stored in a simple FIFO queue. Bellman-Ford is a label correcting algorithm

meaning that labels can be scanned more than once. It is often much faster

than Dijkstra and has an advantage of working on graphs with negative edge

weights.
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Another algorithm is Floyed-Warshall algorithm [38]. It works by computing

the distances between all pairs of vertices. Even though it may sound expen-

sive, it is efficient for use on dense graphs.

A* algorithm [48] is a well-known algorithm that uses goal oriented tech-

niques. In short, these techniques aim to target the search towards the goal

to avoid the scan of unnecessary vertices. It uses a potential function on the

vertices then runs a modified version of Dijkstra. In addition, it can be run

bidirectionally to speed up the process.

Many other contributions were presented in the field of route planning. They

are classified based on: i) basic techniques that work by scanning all ver-

tices as in the top three mentioned algorithms, ii) goal oriented techniques

as seen in A*, iii) separator techniques that uses separators to decompose the

graphs into sub graphs, iv) hierarchical techniques that exploits the hierarchy

of road networks, v) Bounded-Hop techniques that use pre-computation to

add virtual shortcuts to the graph speeding up the search process and finally

vi) approaches that use combinations of the above techniques. Readers are

advised to look at [5] for deeper insights on the mentioned techniques and

approaches.

2.5.2 Timetable-based Planners

Timetable planners [28, 25, 8, 110] aim to find trips from a source to a desti-

nation using a combination of nearby services using transit stops. In general,

the timetable information require remodeling the network graph to be able to

represent timetable information. Two main approaches have been proposed

for modeling the shortest path problems in timetable systems: the time ex-

panded approach and the time dependent approach.

In the time expanded approach, multiple nodes are constructed that corre-

spond to a specific time event (departure or arrival) at a station while the

edges are the connections between two events in the network. The result is a

very large graph that contains all possible connections at different times ac-

cording to the timetable. The authors in [96] adopted the time expanded

approach to optimally solve the shortest path problem on a static graph.
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Furthermore, the time expanded approach was extended in to solve multi-

criteria problems in [74].

The time dependent approach avoids the existence of multiple nodes per sta-

tion. It models the network as one node per station with multiple edges rep-

resenting the possible different times for events between two stations. The

authors in [21] were the first to target the shortest path problem on time-

dependent graphs. Later, the approach was generalized to support multi-

criteria by the authors in [60]. An important study was presented in [79, 78]

to investigate the complexity of the shortest path problems and give the re-

quired algorithms.

The connection scan algorithm (CSA) [28] is a shortest path algorithm that

uses the time expanded model. It works by receiving a stream of connections

ordered by departure time and chooses the fastest way to reach one stop

from another. Due to the fact that the connections are pre-sorted and can be

accessed one by one in a single iteration, CSA is faster and more scalable than

other existing algorithms. RAPTOR [25] is an another interesting algorithm

that optimizes the number of transfers in the Pareto-sense in addition to the

arrival time. SUBITO [8] is an accelerated version of Dijkstra applied to the

time dependent graph model. Instead of scanning all the nodes, SUBITO uses

lower bounds on the travel time to prune the search space. The authors in

[110] proposed a preprocessing-based algorithm to this problem. It computes

all possible transfers between trains in order to speed up the query time.

However, the preprocessing time is large which leads to an extension of the

approach in [111] to achieve higher speedups.

2.5.3 Ridesharing Matching Algorithms

A ridesharing request consists of two points and two constraints. The points

specify the pick-up and drop-off positions and the constraints specify the

waiting time and a service constraint. The waiting time constraint is the max-

imal time the rider can wait after making the request. The service constraint

is the acceptable extra detour time from the shortest possible trip duration.

The main problem in ridesharing is: given a set of cars on the road network,

we need to match a rider’s request to a car that can satisfy all the constraints
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we previously mentioned.

The main challenge in dynamic sharing systems is the ability to handle large

number of trip request and cars in real-time. This is due to the dynamic

movement of cars and riders and the requirements of handling requests in

matter of seconds. The Filter and Refine framework [99] facilitates the prob-

lem by splitting it into two main problems and allowing us to conquer the

problem on a smaller scale. In the Filter phase, the framework filters all the

drivers that do not match the request criteria. While in the Refine phase, an

appropriate algorithm is applied to get the matching pairs taking into ac-

count the constraints.

An example of a filtering approach can be viewed in [68], where the authors

use a grid-based index to partition the map. A grid distance matrix is con-

structed to fill-out all the distances between the grids. Each grid index con-

tains three main sets: a spatial set indicating a set of grids from nearest to

furthest from a geospatial point of view, a temporal set indicating the set

of grids from the nearest to the furthest from a temporal point of view and

finally a set of vehicles that will enter the grid in the future with a time win-

dow of two hours. These indexes are then used to quickly filter-out cars that

can not be matched to requests. The limitation of this approach is that the

pre-computations are costly are not suitable for large scale ridesharing.

In SHAREK [14], the authors proposed three main pruning techniques to

minimize the need for shortest path calculations. The used pruning tech-

niques are: Euclidean temporal pruning that performs a range query to filter

far cars, Euclidean cost pruning that filters-out cars that do not match the

given cost constraints and finally a Semi-Euclidean skyline-aware pruning

that selects candidates by balancing the cost vs time constraints.

Some approaches use techniques such as Branch and Bound [81] or Integer

Programming [19], however, the problem with these approaches is the fact

that each request requires the rescheduling of all previously computed sched-

ules. Therefore, there is no use of previous computations.
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The authors in [51] propose a tree structure to preserve previous computa-

tions and handle new requests as an insertion to the tree. The resulting solu-

tion may not be the optimal. However, it is very fast to compute. This reduces

the complexity of the matching algorithms from O(k!) to O(k2) where k is the

number of requests. The limitation of this approach is that once the tree is

computed, it is not updated in real time which makes the computation to be

outdated.

2.5.4 Discussion

The domain of route planning has been a target of extensive research to pro-

vide passengers with optimal trips as fast as possible. Approaches in this

domain differ to support different kinds of trips starting from the classical

shortest path problem to more complex ones that handle public transporta-

tion networks and their timetable information. Timetable planners solve the

timetable problem by introducing time-dependent graphs and the required

algorithms to optimally traverse and plan trips on top of them. These al-

gorithms are used in various trip planning applications that integrate other

public transportation systems in order to provide more optimal trip plans.

On the other hand, planners that target the new on-demand transportation

services are still offered as isolated solutions without being integrated within

existing public transportation plans. This lead to non-optimal trips that may

be improved when integrated with other services. In addition to finding a

route plan, these approaches target the problem of matching a candidate

driver with each trip request while satisfying the specified constraints [99,

68, 14, 51]. This problem is challenging and considered as NP-hard problem.

The main advantage of ridesharing services is their flexibility and availabil-

ity which makes them perfect backup plans in case of delays or cancella-

tions in public transportation systems. However, they are more expensive

which makes them less preferable. Integrating both ridesharing services and

timetable planners may lead to better trips that are faster, more reliable and

comfortable with a little additional cost that is cheaper than using rideshar-

ing alone.



40 Chapter 2. State of the Art

Many challenges arise from this goal. In ridesharing services there is no fixed

notion of stop place and time schedule where we can easily know the time

and position of each car in the future. In addition, when considering both

services, everything will be moving including both the passenger and the

driver, which makes it difficult to detect the best place and time to issue a

request. Moreover, unexpected cancellations and delays by the ridesharing

service may result in a poorly planned trips that will result in an increased

traveling time. Finally, more services means more search space which may

greatly affect the execution time of the algorithms.

What is required is a system that is able to integrate ridesharing services and

existing public transportation trip planners with a feasible execution time

and reliable plans. This integration may greatly improve the trip plans and

result in better trips cover more areas and satisfy different travelers profiles.

2.6 Conclusion

In this chapter we discussed the different approaches that targets transporta-

tion multimodality. We have seen the standards approaches that mainly fo-

cus on finding a unified model to represent the different aspects in trans-

portation systems. The main limitation in such approaches is the various

number of organizations that propose standards leaving another problem of

standardizing standards themselves. In addition, standards have short life

cycle and take a lot of time to be integrated in the market

On the other hand, we have seen another approach that targets automatic

matching of different transportation schemas. In these approaches they try

to match the existing transportation schemas in order to find a way of ac-

cessing different information scattered across different sources. The problem

with existing approaches is their limitations in handling geospatial data that

is one of the most important characteristics in transportation data. This is

mainly due to the used techniques that rely on mathematical similarity met-

rics to find a match between on representation and another which is not the

case in geospatial data. This leaves us with a need for a smart approach that

is able to automatically detect different representation of geospatial data in

different schemas.
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Digging deeper into the instance level, we found a limitation in linking dif-

ferent data instances from different transportation services using the exist-

ing open data interlinking approaches. Existing approaches are more suit-

able to instance matching which is finding the same instance across different

datasets and not finding links between different entities in different datasets.

Moreover, we noticed that the interlinking output is not mature enough to

represent transportation data links. What is required is a more rich way to

discover and represent transportation links.

Finally, we targeted the service level integration. More specifically, we no-

ticed the isolation of new mobility services such as ridesharing in existing

multimodal journey planners. This isolation was mainly due to the different

characteristics these services hold e.g. dynamicity, no notion of fixed stops

or schedules. This makes the integration very complex and requiring more

search space an time expensive computations. Therefore, a new approach is

needed to integrate these mobility services with existing ones allowing more

flexible trips that suit different passengers preferences.

As a conclusion, this work mainly targets three different aspects of trans-

portation data integration. The first is on the schema level to enable an au-

tomatic way of matching transportation data schemas, the second is on the

instance level to create links between different transportation units across

different services and finally on the service level by enabling the integration

of new mobility services within existing journey planners. In the upcoming

chapters we will dig forward into each problem and the proposed solutions

to solve them.
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Chapter 3

Automatic Schema Integration

for Geospatial Datasets

3.1 Introduction

Enabling multimodal solutions requires access to a large set of transporta-

tion datasets for all the considered transportation modes. The information in

these datasets is large and complex. A transportation dataset must contain

information for describing its entities (buses, trains, stops, etc.), fares, sched-

ules, real-time information and much more depending on the services they

offer. As we have seen in Chapter 2, there exist a large amount of transporta-

tion standards and exchange formats that are continuously evolving, making

the adoption of only one universal standard an impossible objective. As a

result, there is no way of uniquely representing transportation information

across different datasets. This leads each company to adopt different data

representations for modeling their data. Therefore, transportation datasets

are highly heterogeneous, standing a big challenge against enabling multi-

modal solutions.

In order to integrate the data, companies need to find matching rules that

map their data representation to other representations in the datasets that

needs to be integrated. These matching rules are relations that describe how

one or more elements from one schema can be matched with one or more

elements from the second schema. Doing this task manually is error prone

and time consuming. Meanwhile, the field of automatic schema matching

may serve a good solution for our problem by proposing an automated way

of discovering the desired matching rules. Chapter 2 highlights the exist-

ing approaches in this domain and how the problem is targeted via multiple
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65] use reference knowledge. Others require either identical values or rep-

resentations, and will therefore fail in identifying matching rules between

WKT and address for example - where the instances are different. This makes

the typical instance based matching inapplicable. Moreover, relying only on

other properties such as column names or value types may not be sufficient

as well. In order to overcome these limitations, automatic identification and

matching of geospatial characteristics is required.

The main problem we target in this chapter is the problem of automatically

detecting different representations of geospatial data in transportation datasets.

The challenges lie in the limitation of existing techniques in detecting the

matching rules due to the problems seen above.

Our main goal is to find a solution that helps in detecting these complex re-

lations in an automated manner. To do so, we propose AMiGO, an instance

based approach to identify and match geospatial properties of transportation

datasets by the use of geospatial web services. The intuition behind our so-

lution is to use existing geospatial web services as a base knowledge. Then,

query this base knowledge with the dataset instances in order to get a hint

on how the data is represented in each of them. After knowing the represen-

tation in each dataset, we will be able to conclude the matching rules auto-

matically.

In this chapter we introduce AMiGO in more details, giving more insight on

the matching process and its different phases. We later evaluate the approach

in a real-case scenario that walks-through each step and how it is executed.

3.2 Problem Statement

Transportation data sources use different representations to describe their

data. Knowing that integrating those sources is essential to support multi-

modality, the integration task remains a complicated task due to the com-

plex properties held by transportation data sources. Being more specific, the

geospatial information in transportation data are highly heterogeneous, they

can be represented in various formats and structures. Manually integrating
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these data is doable, however it is very time consuming and error prone due

to the large sets of data present. What is required is an automatic way of

discovering those complex geospatial characteristics across the various data

sources.

State of art matching tools rely mostly on similarity-based functions that fail

detecting the different structures of geospatial data. Therefore, our main

problem is to enable an automatic way for detecting the different represen-

tations of geospatial properties in transportation data sources. Consider two

transportation data sources A and B with each schema consisting of n and

m elements respectively. Each schema contains a set of elements ei that rep-

resent different transportation properties which differ in data type, repre-

sentation, scale or any other characteristics. Knowing that there is no direct

mathematical similarity function that detects the relationship between the el-

ements, the problem is to find a set of mapping rules mi that indicate how

elements from schema A refer to element from schema B. In addition, it is

required to find a mapping function fi that accompany each mapping rule

and indicates how we can reach one representation from another in order to

automatically switch from one representation to another.

The problem can be summarized as the following: Given two transportation

data sources A and B that are implicitly geo-referenced i.e. with no informa-

tion about the geo-location representation. Knowing that there exist some

geospatial information in both data sources’ schemas, it is required to detect

those information, know what they represent and finally how they can be

matched with those of the second dataset and vice-versa.

3.3 An Instance-based Approach for Automatic

Schema Matching

Transportation data instances always refer to real-world objects, e.g., bike

stations, bus or train stops, etc. These data are characterized by the descrip-

tion of an object’s geographical location, represented by properties, such as

coordinates, shapes, addresses, etc. The problem we are faced with is the

different representations of these information. We aim at investigating a way

to automatically identify and match geospatial information in transportation

datasets despite their heterogeneity.



https://developers.google.com/maps/documentation/geocoding/intr
http://dev.virtualearth.net/REST/v1/Locations/
http://cloudmade.com/documentation/geocoding/
http://www.mapquestapi.com/geocoding/
https://developer.yahoo.com/boss/placefinder/
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Based on the schema description of input and output, we exploit these ser-

vices to guide the matching to automatically identify geospatial character-

istics in the datasets. The idea is to use an instance information to query a

web service which will in turn return more detailed information about the

instance. These information will contain richer details about the instance

and more specifically more detailed geospatial information. In other words,

we get more information on how the queried instance can be represented in

other geospatial formats from the web service and the goal is to match the dif-

ferent formats together. Since we know already the format of the web service

result, we try to match the web service result with the queried instance and

try to figure out what each characteristic in the data means. By doing so, we

will know what each column represent, hence, we will be able to represent

it in other formats all because of the web service result. Here is the general

plan of the approach: First we query a geocoding/reverse-geocoding web

service with existing instances in order to get richer information about the

given instance. Using those information we can find matching rules between

the queried instances and the web service response. The schema of the web

service must be known in advance, so a match between the queried instance

and the web service instance will give us some information about the schema

of the queried instance. This enables us to detect complex relations between

two different representations by using the web service as a mediator. Data

sources are mapped to the mediator at first, then by previously-known in-

formation about the structure of the mediator, we can detect the required

matching rules. Due to the fact that we know how a web service is defined,

we can detect n to m relations between the schemas.

To materialize this idea, we need to target three main issues. The first is how

to construct queries from the given instances to the selected web service, the

second is how to match the query results with the original instances to figure

out an intermediate matches, the last one is how to generate the final match-

ings between the given sources. For this sake we came up with the AMiGO

framework which consists of multiple components that tackle the mentioned

problems. The AMiGO framework is composed of the three main compo-

nents: web service selector and query formulator, co-occurrence matrix con-

structor and, finally, the matching rules generator. In short, the goal of the

first component is to define the web service to be used and how its schema is

structured. Then, the query formulator takes the instances from the datasets

and issues a query to the webservices. Later the second component takes
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the web service results and construct a co-occurrence matrix that defines the

statistical relation of the dataset schema and the web service schema. Finally,

the final component uses the co-occurrence matrices from both datasets to

conclude the mapping between them.

It is important to note that a pre-processing step precedes our approach in

order to unify the structural representations in each data source and to do

some filtering and/or modifications on the data. The main reason for pre-

processing is that some input data may contain irrelevant information while

querying leading to false results or irrelevant data. Moreover, since some

columns on their own cannot provide meaningful input for a web service

query, pre-processing can perform some random combination/split of columns

as additional data that may improve the web service query results, e.g., com-

bine street name with city name to get more precise results from the web

service. Since automation is the whole concern of this approach, the com-

bination is done automatically and blindly without any prior information

about the dataset schema. In this approach, we transform the instance data

to CSV format since it allows easier query formulation. In addition, we note

that even after the unification of the format, the representation may be to-

tally different which is the main purpose of our approach. For example, both

files are in CSV format, but each represents addresses differently. Figure 3.3

shows a global view of our framework.

In the following we discuss in details each component and the steps required

to reach the final matching process.

3.4 Web Service-Based Query Formulation

A web service acts as the mediator that maps the schemes of our data sources.

The web service takes one input and generates one output that is a rich rep-

resentation of the given query e.g. The web service takes as input the string

"Place de l’étoile" then outputs in a semi-structured format rich geospatial

information about the queried instance such as location in longitude and lat-

itude pairs, street name, postal code, city, country, etc. In this approach, a

well-defined geospatial web service is required since it will form the base

knowledge that we map our schemes with. The idea of using a web service

as a mediator could apply in different domains where several representa-

tions exist for the same entity, but its effectiveness of depends on the way
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Input: Datasource D, webservice W
Result: A set of query responses containing rich information about the dataset

instances
1 // Initialize an empty map

2 results = empty;
3 for i← 0 to D.nbRows do
4 for j← 0 to D.nbColumns do
5 // Query the web service with each column and add the

response to the results map given the key as the column

value

6 results[j].add(W.query(D[i][j]);
7 end
8 end
9 return results;

Algorithm 1: Query formulation algorithm

3.5 Co-Occurrence Matrix Construction

The following step is to use the web service results and the dataset instances

in order to construct a co-occurrence matrix. A co-occurrence matrix signifies

statistically how much elements from one schema corresponds to another.

Definition 1. A co-occurrence matrix M is a matrix of n * m rows, where n and m

are respectively the number of columns in the dataset and the web service schema.

Each entity in this matrix corresponds to the number of times an element ai j

appears at the same time in the column i of the dataset schema and the column j

of the web service result schema.

The element comparison is done via a similarity metric [16, 66] in which each

time a similarity is detected, the corresponding value in the matrix is incre-

mented by one. The higher the value, the higher the probability that these

two columns map to each other. An example of what precedes is shown in

Figure 3.5 with the elements in red representing common occurrences. We

see two schemes, one representing a dataset schema and the second repre-

senting the web service schema. In the dataset schema, a street is represented

by its name and zip-code written in English words, while it is in the web ser-

vice schema represented by the set {Rue, Code Postal and Ville} that stands

for {Street, Postal code and City} in French. The co-occurrence matrix lists

the columns of both schemes as rows and columns of the array, and each

element in the matrix represents the number of times the same value ap-

pears in row/column combination. For example, we see that the columns
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source schema and the web service schema. It starts with an empty initializa-

tion of the matching array (line 1). Then it iterates over each co-occurrence

matrix value (lines 2 and 3) in order to compare the value with the prede-

fined matching threshold (line 4). If the value is higher than the threshold

then the algorithm concludes a matching between the related columns of the

web service and data source schemas (line 6). The algorithm terminates by

returning the matches array on line 10.

Input: Data source - D, Web service schema - W, Co-Occurrence matrix -
cooccurrenceMatrix, matching threshold - mThreshold

Result: A set of mappings between the data source and the and web service
result schema

1 matches = empty;
2 for i← 0 to cooccurrenceMatrix.nbRows do
3 for j← 0 to cooccurrenceMatrix.nbColumns do
4 if cooccurrenceMatrix[i][j] > mThreshold then
5 // mappings is the list of matched elements between D

ans W

6 matches.add(D.getColumn(i),W.getColumn(j));
7 end
8 end
9 end

10 return matches;
Algorithm 3: Matching rules generation algorithm

Summing up, the idea is to query each dataset element with a web service

that has a known schema and inner mapping rules. We then use the result-

ing instances to create co-occurrence matrices for each dataset. The matrices

are then used to define a matching between each dataset and the web service

schema. Finally, using the inner mapping rules of the web service we are able

to create matching rules between the input datasets.

This process is done twice for both datasets. Using the matching rules from

D1 to WS and from D2 to WS in addition to the inner mapping rules of WS,

the process terminates by showing the matching between D1 and D2.

3.7 Evaluation

We evaluate our approach using two datasets representing transportation

services in the Paris area, RATP and Autolib, a public transportation services
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group and a car sharing service respectively. The goal is to automatically

match RATP and Autolib schemas.

Input data are collected from the open data portals for RATP7 and Autolib8

in CSV representations. The number of instances in each of the RATP and

Autolib datasets is 1067 and 869, respectively. Figure 3.7 shows the original

schema of the datasets.

Figure 3.7: The original schemas of RATP and Autolib datasets.

Following the steps described in the previous section, we evaluate our ap-

proach on the input data. In a pre-processing phase, we pass the data to an

automatic simple pre-processor that splits columns containing special char-

acters (commas, semi-colons) into two or more columns named by the orig-

inal column’s name with an incremented value concatenated to its end. For

example, in the given dataset the Autolib’s column "Cordonnees geo" is split

into two columns "Cordonnees geo 0" and "Cordonnees geo 1".

For the web service selection, we chose Google’s geocoding web service 9

with one function on top implemented by us to filter out the results in a sim-

ple schema that consists of three columns: formatted-address (representing

7http://gtfs.s3.amazonaws.com/transilien-archiver_20160202_0115.zip
8http://opendata.paris.fr/explore/dataset/stations_et_espaces_autolib_de_

la_metropole_parisienne/
9https://developers.google.com/maps/documentation/geocoding

http://gtfs.s3.amazonaws.com/transilien-archiver_20160202_0115.zip
http://opendata.paris.fr/explore/dataset/stations_et_espaces_autolib_de_la_metropole_parisienne/
http://opendata.paris.fr/explore/dataset/stations_et_espaces_autolib_de_la_metropole_parisienne/
https://developers.google.com/maps/documentation/geocoding
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a textual address representation), lng (longitude) and lat (latitude).

The query formulator queries the web service with each column’s value for

all of the existing rows, then groups the results by column names and saves

them into a repository, as presented in the previous section. The total num-

ber of issued queries is 20,185 divided into 8536 and 11,649 for RATP and

Autolib, respectively.

One co-occurrence matrix is constructed for each column ignoring columns

that gave no results from the web service. The used similarity metric is the

Levenshtein distance [113] in order to show how a basic similarity metric

can give us good results. However, more complex metrics can be used to

increase the precision of the similarity calculation. The resulting matrices for

RATP and Autolib are shown in Tables 3.1 and 3.2. In order to generate the

Table 3.1: RATP’s co-occurrence matrix.

- Formatted_Address Lat Lng

stop_id 0 35 39
stop_code 0 0 0
stop_name 11 0 0
stop_desc 1 0 0
stop_lat 0 296 5
stop_lon 0 0 14

location_type 0 0 0
parent_station 0 0 0

Table 3.2: Autolib’s co-occurrence matrix.

- Formatted_Address Lat Lng

ID 0 12 0
Identifiant Autolib’ 18 0 0

Rue 2 0 0
Code postal 0 0 0

Ville 27 0 0
Coordonnees geo_0 0 5876 523
Coordonnees geo_1 0 545 916

Emplacement 0 0 0
Autolib’ 1397 0 0
Tiers 0 0 0
Abri 0 0 0
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matching rules, we iterate over each row, get the maximum value and assign

a matching between the corresponding row/column pair. Using Tables 3.1

and 3.2, we obtain the following matching rules between each of them and

the web service; for RATP: (stop-id, lng), (stop-name, formatted-address),

(stop-desc, formatted-address), (stop-lat, lat) and (stop-lon, lng); for Autolib:

(ID, lat), (Identifiant Autolib’, formatted-address), (Rue, formatted-address),

(Ville, formatted-address), (Cordonnees geo-0, lat), (Cordonnees geo-1, lng)

and (Autolib’, formatted-address). The execution time took around 3.5 min

on the given datasets, including a one-second cool-down per each ten queries

to comply with the restrictions of the web service.

Analyzing the results for RATP, our system correctly obtained matching of

the latitude and longitude properties. Moreover, since the stop-name and

stop-dec are normally names of the corresponding area, they were detected

as geospatial properties, as well. Regarding the stop id, this false positive

matching rule can be solved by combining the results with some constraint-

based approaches.

Regarding Autolib, the matching rules detected correct relations between

the columns "rue" and "formatted-address" and the same for the "latitude"

and "longitude" with "cordonnees geo 0" and "cordonees geo 1". The false

positive matches were: (ville, formatted-address), (ID, lat), (Identifiant Au-

tolib’, formatted-address) and, finally, (Autolib’, formatted-address). The

false negatives’ matching rules can also be discarded using constraint-based

approaches, for example by removing matching from repeated column val-

ues or id columns, etc.

The results show a 100% precision and 80% recall for RATP and 100% pre-

cision 42% and recall for Autolib. Matching results could be improved in

different ways: (i) choosing richer web services; (ii) refining the preprocess-

ing of the output; or (iii) using alternative similarity metrics. Combining both

matching rules, we can deduce the following valid rules between RATP and

Autolib: "Cordonnees geo" from Autolib maps to the combination of (stop-

lat,stop-lon) in SCNF; "Rue" from Autolib maps to "stop-desc" in RATP.

We tested the algorithm on other datasets to validate it. The chosen datasets

are hospital locations in the U.K. and points of interests (POI) in Paris, in
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addition to the previous train and car stations. The idea here is that this ap-

Table 3.3: Evaluation of the matching algorithm.

Precision Recall F-Measure

RATP 1 1 0.8 0.88
Autolib 2 1 0.42 0.59

Hospitals 3 1 0.8 0.88
POI 4 1 1 1

1 http://gtfs.s3.amazonaws.com/transilien-archiver_20160202_0115.zip
2 http://opendata.paris.fr/explore/dataset/stations_et_espaces_autolib_de_la_

metropole_parisienne/
3 https://data.gov.uk/dataset/hospitals

4 http://opendata.paris.fr/explore/dataset/

zones-touristiques-internationales/export/

proach can help in checking if the datasets contain geospatial information in

addition to the ability to identify them and the relation to other datasets. This

can be used in uses cases such as finding the nearest hospital from an acci-

dent location or finding some POIs near a hotel, etc. The results are shown in

Table 3.3.

3.8 Conclusion

The problem of schema heterogeneity is essential when handling transporta-

tion data integration. Since operators use different data representation to

describe their content, it is crucial to find a way of matching those different

representations together. Manually executing such task is error prone and

highly time consuming, especially when the amount of data to be integrated

is large. Due to this, we investigated the automatic schema matching domain

for a solution. However, our studies showed that existing automatic schema

matching approaches fail to detect the complex characteristics in transporta-

tion schemas. More specifically, the diverse and complex representations of

geospatial characteristics which play a main role in representing transporta-

tion information and units.

In this chapter we introduced an instance based approach for automatic de-

tection and matching of geospatial information. Our approach uses web ser-

vices as mediators to help guiding the matching task. In short, the web ser-

vice is queried with the dataset instances and the results are then matched to

http://gtfs.s3.amazonaws.com/transilien-archiver_20160202_0115.zip
http://opendata.paris.fr/explore/dataset/stations_et_espaces_autolib_de_la_metropole_parisienne/
http://opendata.paris.fr/explore/dataset/stations_et_espaces_autolib_de_la_metropole_parisienne/
https://data.gov.uk/dataset/hospitals
http://opendata.paris.fr/explore/dataset/zones-touristiques-internationales/export/
http://opendata.paris.fr/explore/dataset/zones-touristiques-internationales/export/
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the queried instances. By doing so, we are able to know what each column

represents and the way to match it with the others. This enables us to dis-

cover complex n * m matching rules that can not be detected using existing

techniques.

Our approach is suitable for the current open data transportation representa-

tions, since they use defacto standards for their exchange formats. However,

more complex formats such as in standards requires combining our matcher

with more complex ones. It is important to improve the query formulation

approach in order to decrease the number of web service requests and more

importantly optimize the query itself to make sure we get correct query re-

sults.
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Chapter 4

Instance Level Integration of

Transportation Datasets

4.1 Introduction

In order to enable multimodality, we are now aware of the need to integrate

multiple transportation modes and services. The integration will allow us to

form links between different services in order to provide richer and more op-

timized planning solutions. What is interesting about transportation data is

that these links are translated to real physical links between the transporta-

tion entities. For example, when we say that there is a relation between a

railway stop and a bus stop - a link from a railway stop S1 and a bus stop

S2 - we mean that there is a physical path at a specific moment that connects

these two stops, i.e. there is a way for the passenger to drop off at the railway

station S1 then take the bus service at station S2. Therefore, we give passen-

gers the ability to use this path as a transit service to switch from one mode

to another. This switch may be very important in many cases. This combi-

nation of services may be better than using only one mode, since it allows

for improvement in trip time, maybe the cost and for sure in extending trip

planning possibilities and options.

In general, existing approaches tend to solve the integration problem by map-

ping the data they need into a unified model, then storing the unified data

into a repository supported by an API e.g. Google Transit1, STIF2. How-

ever, besides the huge amount of work this integration requires, existing

1http://maps.google.com/landing/transit/index.html
2http://www.stif.info

http://maps.google.com/landing/transit/index.html
http://www.stif.info
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approaches still do not take into consideration the new transportation ser-

vices such as car sharing, bike sharing, car pooling, etc. These services have

different characteristics than the public transportation systems. They are dy-

namic and often do not have the notion of a fixed transportation stop. While

a public transportation service has a pre-defined schedule and known ge-

ographical stops, some of the new services operate in a complete different

manner. They have neither fixed stops nor pre-defined schedule and their

units are dynamic (new offers from time to time). In turn, the need to handle

these new characteristics in the integration task makes the integration prob-

lem more challenging than before.

Our goal is to find a simple way that identifies and links nearby transporta-

tion services to enable multimodality. We aim for a solution that enables

the identification of links between the entities of transportation data sources.

What is required is a homogeneous light-weighted representation of trans-

portation links (transfer points from one stop to another) and the means to

discover them in a flexible and customized manner. With this representa-

tion we can connect different types of transportation services regardless the

mode or service they offer. All what transportation solution providers need

to know is just how to handle these light links and use them to plan op-

timized multimodal trips, which is much simpler than handling heteroge-

neous data and maintaining them.

Enabling such solution requires access to transportation sources which can

be obtained from open data [44, 11]. Open data is gaining a great deal of

popularity and numerous transportation operators are using it to publish

their data to the web3,4,5. The main cause behind publishing the data is to

increase the market visibility for each service by allowing others to refer to

or include their services in their solutions. Many solutions took benefit from

this to enrich the data for smart cities applications by linking data from one

or more sources about a specific topic, e.g. collecting data about city events

or points of interest. They use linked data techniques and data interlinking

tools to provide extended information relevant to both transportation and

3http://opendata.paris.fr/page/home/
4http://www.strasbourg.eu/ma-situation/professionnel/open-data/donnees/

mobilite-transport-open-data
5http://www.uitp.org/tags/open-data

http://opendata.paris.fr/page/home/
http://www.strasbourg.eu/ma-situation/professionnel/open-data/donnees/mobilite-transport-open-data
http://www.strasbourg.eu/ma-situation/professionnel/open-data/donnees/mobilite-transport-open-data
http://www.uitp.org/tags/open-data
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passenger profile queries [83, 20]. These techniques address equivalence de-

tection between entities to establish links between data sources. This may

help in enriching data about entities. However, this is not always enough

for linking transportation data. Further complex relations are required to re-

flect the nature of transportation connections. Indeed, beyond equivalence

or sameAs links as in existing approaches, we are interested in finding other

types of links between transportation data sources based on the geospatial

characteristics of the data which capture, for example, the reachability be-

tween different transportation networks. Furthermore, using the given tools

we face two main limitations. The first is the limitation in defining the link-

ing rule that triggers link generation between entities. Existing approaches

allow rule creation by a simple composition of a set of predefined functions.

For an instance, to calculate information such as the closeness of two trans-

portation points of transfer (bus stop, train station, etc), we are bounded to

use some predefined geospatial distance metrics which may be infeasible in

transportation networks due to infrastructure constraints and network sta-

tus. As an example, we may define a rule that measures the geometric dis-

tance between two stops and assign a link if the distance is feasible for walk-

ing. However, due to the network infrastructure, stops maybe very close in

geometry but very far according to a road network e.g. two stops on the

opposite banks of a river are very near, however unreachable on foot. The

second limitation is the representation of the generated link between enti-

ties. Supporting complex relations requires more complex link representa-

tions. As an example, let us suppose that a link is established between two

transportation points of transfer. Existing tools can provide the link BusStop1

nextTo TrainStation132 which does not provide enough information about this

relation. They are next to each others but how close are they? and what are

the modes of transportation that we can use? How much will it cost? etc.

Based on what precedes, there is no way of creating links that are suitable to

many complex interlinking tasks other than the standard equivalence inter-

linking tools. Our main goal is to provide a system that is flexible and rich

enough to allow users to define their own way of linking data sources. Users

must be given the power to use rich interlinking rules and define any form

of output needed in their tasks.
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In this chapter we introduce our framework for enabling richer and cus-

tomizable links for Open Data instances. These links can be applied to fill

the connections gap between transportation operators and services. With this

approach, we can generate rich semantic links between entities published as

open data in the sense of improving re-usability and reducing the need for

re-calculation. We evaluate our approach using a real use case on connect-

ing two transportation modes and checking how this affects the time of trips.

We also extend an existing trip planning algorithm called CSA which exploits

the resulting inter-connected transportation network, mixing scheduled (e.g.,

trains) and unscheduled (e.g., bikes) modes.

4.2 Problem Statement

In order to enable multimodality and allow more advanced and customized

usage of transportation services, it is required to integrate data from mul-

tiple transportation operators. By transportation data integration we mean

forming links between different transportation entities such as transportation

stop points. These links will extend the view of the transportation network

and the various services present in each area. This integration will allow bet-

ter trip planning and monitoring of the overall transportation network. For

example, planning trips using one transportation service will limit the trip

plans to the scope of the covered area, therefore, limiting passengers to reach

their desired destinations efficiently. By increasing the number of services

and combining them together, passengers will have the power to form the

best trips that suit their needs.

We aim at using the recently popular open data concept [11] and the pub-

lished transportation datasets to provide the view we imagine. However,

this integration is not simple due to data heterogeneity between the datasets.

Transportation datasets represent their information in different formats, mak-

ing it difficult to easily detect relations between different instances.

Link discovery [93] techniques are approaches that target discovering links

between open data sources. They work by first taking a linking rule as an

input then applying it on different datasets instances in order to generate the

required links [108, 75, 56, 49, 94]. However, the problem is that the scope of
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existing link discovery techniques is targeted for equivalence detection, that

is, detecting similar instances represented differently across datasets e.g. de-

tect an event that is represented differently in two different datasets. There-

fore, the supported link identification rules and the final representation of

the output are suitable for equivalence detection and thus are simple and not

suited to transportation data integration. This is because a transportation

link is more complex than a simple equivalence link. A transportation link

represents transportation/travel information between transportation entities

e.g. the reachability between one station and another. As an example, con-

sider two data sources representing a bus and a train service operators. Using

the current tools, the only way to link both sources is to define a rule that cal-

culates the geometric distance between the entities and generate a link if the

distance is feasible for walking. By this, we say that we can use the other stop

as a transit stop in the trip. The generate link is a simple link that may be rep-

resented as BusStop1 nextTo TrainStation132., which is very simple and does

not show any information such as the required walking time for example.

In addition, the defined linking rule is not sufficient to reflect the existence

of a transportation connection between the stops. The reason is that a close

geometric distance does not mean that the stops are reachable simply due to

the nonexistence of a path according to the transportation infrastructure (e.g.

road network).

The problem we target is how to extend the scope of interlinking tools to go

beyond equivalence detection. The goal is the following: Given two trans-

portation data sources each containing a number of instances representing

real physical stops or transportation units, find links between these datasets’

instances that reflect possible relations between them from a transportation

point of view. The links must be suitable to represent the necessary infor-

mation describing the nature of the connection from transportation point of

view.

4.3 Resource Description Framework

Before going in details into our model, we have first to understand one im-

portant model used to represent entities and relations in the open data con-

cept. This model is known as the Resource Description Framework (RDF).

RDF is based on a model representing triples made of resource, property and
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value. A resource is an entity that is accessible by an URI on the Web. A

resource is described by RDF statements (set of triples). A property defines

a binary relation between resources and/or atomic values. By properties we

are able to attach information or descriptions to resources. A value can be

either a simple character string or a resource. An RDF statement specifies a

value for a property of a resource. RDF has an XML syntax and can be seen

as an object-oriented formalism for meta-data statements. These meta-data

can rely on common ontologies represented using RDF Schema (RDFS). RDF

statements can be considered as triples (resource, property, value). The vo-

cabulary used in these triples can be defined using RDFS, by a hierarchy of

classes and a hierarchy of properties. Contrary to object-oriented or frame-

based representations, RDF relies on a property-centric approach. Anyone

can define properties about Web resources, in order to offer descriptions for

these resources [22].

Through the chapter, we are going to use RDF as our base model for our

data representation with the problem of detecting and representing complex

relations between them.

4.4 Model Definition

As indicated in Chapter 2, discovering links between transportation points

of transfer can not be done using existing interlinking tools. A more com-

plex link discovery and generation process is needed to enable richer and

more flexible link representation. Therefore, in order to cope with the limita-

tions of existing approaches, we introduce a new model that is able to form

a rich and flexible solution for creating transportation data links. Our model

consists of the following concepts: a link that is the connection between the

dataset instances, a linking rule that represents when to create a connection

and finally an output pattern that is the final representation of the gener-

ated connection. These concepts serve a unique task named the Linking Task

which we will see later. In the following, we define in details the different

concepts and their role in the overall approach.

4.4.1 Link Definition

A link is a relationship between two instances in two different datasets. This

relation goes beyond the sameAs relationship, by allowing wider semantics
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and assigning richer information to the generated link. A link is represented

by a relation name and relation attributes. A relation name represents the

semantics or the concept behind a specific link instance e.g. reachable-from,

walkable-from, next-to. It can be used for better understanding of the link

type between entities. On the other hand, the relation attributes can be con-

sidered as a meta-data to a specific link. They describe the characteristics of

a link and the details required to use it. For example, we consider the link

"reachable-from" between a bus station A and a train station B that has the

following attributes: "duration": "10 minutes", "cost": "4 euros", "departure-

time": "14:00". The relation name "reachable-from" indicates the semantic

meaning of the relation which represents the reachability of one station from

another. This may be very important for later understanding of relationships

and their meanings. The attributes "duration", "cost" and "departure-time"

give more insights about the link instances and more details on how it can be

used. This is very helpful for later post-processing in trip-planning applica-

tions for example.

Definition 2. We say that there is a link/relation between two entities e1 and e2

of two datasets D1 and D2, if there exist a link li such that:

li = (e1, e2, n, pi)|e1 ∈ D1, e2 ∈ D2, n ∈ String, pi ∈ P

Where, e1 and e2 are instances, n is the relation name, and pi is a set of relation

attributes.

Definition 3. A set of relation attributes is a set of key/value pairs corresponding

to a given link li to describe the characteristics of the link.

pi = [(k, v)|k ∈ String, v ∈ Any]

Where, k is the attribute name and v is the attribute value.

4.4.2 Linking Rule

A linking rule specifies the conditions required to generate a link between a

pair of instances. It is a combination of boolean expressions packed in a way

to describe a specific condition that decides whether to form a link between

a pair of entities or not. An example of a rule: If the distance between Stop A

and Stop B is less than 2 kilo-meters and there are no road works, then form

a link between Stops A and B. The main goal is to apply this rule to each

instance pair and generate a link if the rule holds.
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A linking rule is defined by a chain of functions that can either be preprocess-

ing or metric functions. Preprocessing functions are simple functions that al-

ter an input to reformat or convert them into a specific format e.g. convert

letters from lowercase to uppercase. A metric is a function that evaluates

the relationship between instances. It can be mathematical, linguistic or of

any other form that returns a real value (from the range zero to one, where

zero indicates no similarity while one indicate high similarity) e.g. calculate

the walking distance between stops A and B and compare it to a predefined

threshold.

4.4.3 Output Pattern

An output pattern is the answer to how the final links are represented and

what are the properties they should hold. Therefore, it is important to be

precise when defining an output pattern. A pattern specifies the structure of

the generated links and the required information they must contain. In other

words, it represents a template that will be filled when a link is instantiated.

An output pattern is composed of a set of properties, where each property

is defined by a function that calculates it. Function parameters can be the

inputs from the data sources or predefined by the rule composer e.g. The

output link should contain the distance attribute that is calculated by the

walkingDistance function given the parameters l1 from the entity A and l2

from the entity B. An output pattern is freely chosen by a user according to

the interlinking task and the post-processing needs.

Definition 4. Given D1 and D2 two data sources with instances ei, ej respectively.

We define Pr as the set of properties that describe the relation between ei and

ej where each property is represented by a property name n and a corresponding

function f from a set of functions F. The functions f is represented by its name

and the set of parameters it needs.

Pr = {(n,f) | n ∈ String, f ∈ F}

Definition 5. An output pattern is the set of these properties between a pair of

instances. Therefore it is represented as the following:

O= (d1,d2,pr) | d1 ∈ D1, d2 ∈ D2, pr ⊆ Pr
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4.4.4 Transportation Link

We have introduced the general definition of a link. Here we move to a more

specific type of links that is the transportation link our main focus in this

study. A transportation link can be described as an accessible path from one

transportation point of transfer to another. A point of transfer is any stop

that allows users to change a transportation unit or mode. A transportation

link contains properties describing both the departure and arrival stops in

addition to other properties. There are two types of transportation links: a

scheduled timetable link and a non-scheduled link.

• Scheduled transportation links have specific departure and arrival times

defined by the network operator. As an example they can have the

following properties: departure-time, arrival-time, departure-stop and

arrival-stop.

• Non scheduled transportation links are other links that have no sched-

ule information and for which availability is not restricted by timing

constraints. A an example these links have the following properties:

departure-stop, arrival-stop and distance.

To better define our transportation links for being used in open data. We

we propose a new ontology named the "Multimodal Transportation Link on-

tology" compliant with the definition above. Our ontology extends exist-

ing ones [24] by adding more properties to the link. It is mainly focused

on the connection between transportation datasets, taking into consideration

the temporal and geospatial aspects. Figure 4.1 shows a summarized graph-

ical view of the ontology (we omit the data properties of classes for space

purpose, e.g. time). Each link must specify two nodes (source and destina-

tion node) as well as a set of properties which explicit its semantics. A node

represents a stop which is a geospatial entity that can be linked to larger

pre-exiting ontologies for further description. The multimodal transporta-

tion link ontology includes the following properties: transportation mode,

distance between the nodes, required cost, accessibility and the availability

of the connection (represented by the schedule). The distance and the trans-

portation mode are important for analysis purposes. The cost can be used

as a filter for users queries. The accessibility describes the services avail-

able for handicap or people require special care. And finally, the availability

describes the schedule (day and time) a link is available on, which can be
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4.6 Design Phase

Enabling users to define their own functions is crucial for a complete system

that supports all required matching tasks. Thus, the first task is to enable

users to write any functions to be used in their linking rules or similarity cal-

culations. A user can simply do it with Link++ by implementing his own

code, using external libraries or a combination of both.

The user specified functions play an important goal in the matching tasks

since they can form a linking rule, a metric, a transformation/preprocessing

operations or any other function based on users’ needs. The functions are

gathered in a file accompanied by the used libraries, then they are compiled

at run time and used when needed. To reference each method the user simply

address the function as follows: "class-name"."method-name". For example:

MyClass.walkingDistance.

4.7 Defining a Linking Rule

As mentioned in the model definition, the linking rule states whether the

system should create a link between a pair of entities or not. To recall, the

rule can be visualized as a chain of functions that returns a boolean expres-

sion stating whether a link should be formed or not between two entities. As

an example: consider an interlinking task of linking entities from two trans-

portation stations the first being a bus station and the second being a metro

station. The rule can be defined as a travel distance function that calculates

how much does it take to go from one station to the other. However, since

data is collected from different datasets we may use some pre-processing

functions to convert or combine some values from one format to another e.g.

transform a combined value f latitude/longitude into separate variables.

In Link++, we define the structure of interlinking rule as a Data Type Defi-

nition (DTD) that is shown below. The rule is the root node that has either

an aggregation or a comparison function. An aggregation is composed of an-

other aggregation function (to allow chaining) or a comparison function. A

comparison function takes its parameters either from a property or another

transformation operator. A property is a value directly taken from the dataset
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or specified by the user. It has a name, a data source and a value. The trans-

formation function is either a function applied on a property or a function

applied over other transformation functions. To define a rule, the user needs

to define a file that conforms with the specified DTD. A real example on how

a linking rule is defined is shown in the evaluation section in Figure 4.3.

<!DOCTYPE rule [

<!ELEMENT rule (aggregation|comparison)?>

<!ELEMENT aggregation

(aggregation|comparison)+>

<!ELEMENT comparison

(property|transformation)*>

<!ELEMENT transformation

(property|transformation)*>

<!ELEMENT property (#PCDATA)>

<!ATTLIST aggregation function

CDATA #REQUIRED>

<!ATTLIST aggregation threshold

CDATA #REQUIRED>

<!ATTLIST comparison function

CDATA #REQUIRED>

<!ATTLIST comparison threshold

CDATA #REQUIRED>

<!ATTLIST transformation function

CDATA #REQUIRED>

<!ATTLIST property name

CDATA #REQUIRED>

<!ATTLIST property datasource

CDATA #REQUIRED>

<!ATTLIST property value CDATA #IMPLIED>

]>

4.8 Defining an Output Pattern

To recall, the output pattern defines the final representation of the the link

discovery output and the properties each link should contain. To define an

output pattern, the user must define all the properties a link must have and
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the functions required to calculate their values.

In Link++, the structure of an output pattern is defined in a DTD that is

shown below. The output pattern is a set of links where each link is a set

of properties. A property is function that has a name and parameters. Func-

tion’s parameters have a name which is their name in the dataset, the data

source they are taken from and the corresponding value that is either speci-

fied as a constant or filled later after the link is instantiated. In the evaluation

section we will see a real example of how to define an output pattern and the

instantiated links at the end of the discovery process (Figure 4.4).

<!DOCTYPE output-pattern [

<!ELEMENT link (properties?)>

<!ELEMENT properties (property*)>

<!ELEMENT property (function)>

<!ATTLIST property name CDATA #REQUIRED>

<!ELEMENT function (params*)>

<!ATTLIST function name CDATA #REQUIRED>

<!ELEMENT params (param*)>

<!ELEMENT param (#PCDATA)>

<!ATTLIST param name CDATA #REQUIRED>

<!ATTLIST param value CDATA #IMPLIED>

<!ATTLIST param datasource CDATA #REQUIRED>

]>

4.9 Link Discovery Process

Once the design phase is completed, the link discovery process starts as de-

scribed in the sequel. Algorithm 4 represents the pseudo-code of the im-

plemented linking process. The algorithm iterates over each pair of entities

(lines 2 and 4) in the two data sources and evaluates the linking rule between

them (line 6). Based on the rule evaluation, the algorithm decides if a link

must be created or not. If a rule is triggered, a new link is generated by eval-

uating the output pattern and applying the corresponding function of each

property (line 8). The values are calculated by the specified functions in the

output pattern, and their parameters are filled from the currently-compared
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entities (lines 10-14). Here, we instantiate the connection and fill in its in-

formation from the return values of the functions. The link is stored in a

specified repository (line 16), and the algorithm continues on the remaining

pairs until all are treated.

Data: D1, D2, O, R, F
Result: Discover the list of link and add them to the connections store

1 /* iterate over the elements of D1 */

2 foreach e1 in D1 do
3 /* iterate over the elements of D2 */

4 foreach e2 in D2 do
5 /* evaluate the linking rule */

6 if evaluateRule(e1, e2, R) is true then
7 /* if the rule holds, create new connection based on the

output pattern */

8 c ← createLink(e1, e2, O);
9 /* calculate the value of each property in the pattern

based on the specified function */

10 foreach p in c.properties do
11 f ← F.getFunction(p.getFunction);
12 value ← f.calculate(p.getProperties);
13 c.addProperty(p.name, value);
14 end
15 /* the link is instantiated and ready to be added to the

connection store */

16 add c to connections store;
17 end
18 end
19 end

Algorithm 4: Link discovery algorithm.

4.10 Algorithm Complexity

In the worst cases, the time complexity of the algorithm is O(n * m * k) where

n and m are the sizes of the input datasets and k is the complexity of the

user’s custom function, which is constant, and Since k is constant, the cost

is equivalent to O(n * m). The storage complexity (in terms of data pages)

is the same as a nested loop join in databases that is equal to the size of the

smallest dataset in addition to one page, which usually fits in memory [80].

This complexity may be reduced by using some pre-filtering techniques that

the system may offer in a future version; for instance, using a spatial index
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to replace the inner loop by a search in an index, which reduces the cost to

O(m * Log(n)). Then, the specific rules and function defined by the user will

be applied in a refinement phase automatically by the system.

4.11 Experimentation

Link++ framework is implemented as a JAVA project that can be downloaded

and executed from the GitHub link 6. To recall, in transportation networks, a

link can be described as an accessible path from one transportation point of

transfer to another. It contains properties describing both the departure and

arrival stops in addition to other properties. The goal in this evaluation is

to integrate, using our framework, two different transportation network by

creating rich links between them.

As in the previous chapter, we evaluate the approach using the datasets from

RATP7 and Autolib8 companies in GTFS and CSV formats respectively. The

number of instances in each of dataset is 1067 for RATP and 869 for Autolib.

The goal is to create links between every stop in the transportation network.

To do so, we need to create links between RATP and Autolib as different

systems in addition to internal links between the stops of each system (RATP

and Autolib). The internal links are required to build a global repository of

links that contains every connection between all the stops in the datasets. In

the following, we describe the evaluation phases from preparing the data,

configuring the required parameters and visualizing the generated output.

4.11.1 Data Preparation

Since RATP’s data is described in timetables, we can extract links between

RATP stops from the given timetable information. The first task is to refor-

mat the data from timetable representation into link representation. To this

6https://github.com/alimasri/link-plus-plus.git
7http://gtfs.s3.amazonaws.com/transilien-archiver_20160202_0115.zip
8http://opendata.paris.fr/explore/dataset/stations_et_espaces_autolib_de_

la_metropole_parisienne/

https://github.com/alimasri/link-plus-plus.git
http://gtfs.s3.amazonaws.com/transilien-archiver_20160202_0115.zip
http://opendata.paris.fr/explore/dataset/stations_et_espaces_autolib_de_la_metropole_parisienne/
http://opendata.paris.fr/explore/dataset/stations_et_espaces_autolib_de_la_metropole_parisienne/
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end, we have proposed an algorithm that transforms timetable data from

GTFS files into scheduled links. The algorithm iterates over the timetable in-

formation for each stop and creates a link that starts from a departure stop at

a departure time and ends with an arrival stop with the specified time.

In case of Autolib, we do not have timetable information, so we need a way to

discover the links between its stops. Using our approach, we can match Au-

tolib’s dataset with itself (in order to know when a Autolib station is reach-

able from an another) to discover these unscheduled connections between.

Since the configuration task is common and independent, the following sec-

tion describes how to use our approach to discover the unscheduled connec-

tions for Autolib-Autolib and Autolib-RATP.

Two tasks are required one for Autolib-Autolib connections and one for Autolib-

RATP connections. In this example, unscheduled links are driving or walk-

ing links between Autolib-Autolib and Autolib-RATP, respectively. We use

our approach to search for links that match a predefined criteria. Since our

approach works on RDF data, we have used the DataLift [95] platform to

transform both RATP stops and Autolib CSV files into RDF turtle formats.

In the sequel, we describe in detail all of the required tasks to achieve the

needed integration.

4.11.2 Defining custom functions

Our system is flexible as it allows users to create any custom function or

external library to be used in the linking task. This is important to extend

the existing interlinking solutions and allow better interlinking options. In

our example, we define the functions getWalkingDistance, getWalkingTime,

getDrivingDistance and getDrivingTime. In a real scenario, we get this infor-

mation from a web service, such as Google’s distance matrix API9. However,

due to the query limit, we have chosen to implement them by local functions

based on mathematical calculations10.
9https://developers.google.com/maps/documentation/distance-matrix/

10http://www.movable-type.co.uk/scripts/latlong.html

https://developers.google.com/maps/documentation/distance-matrix/
http://www.movable-type.co.uk/scripts/latlong.html
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4.11.3 Defining the linking rule

Recall that the linking rule describes the condition that triggers the creation

of a connection. Two rules are required, one for Autolib-Autolib and the

other for Autolib-RATP. For the first one, the condition of the defined rule

is the following: ”If a driving path exists within 200 km (the time before the

battery is totally discharged), create a connection”. For Autolib-RATP con-

nections, the rule is: ”If a walking path exists from one stop to another within

one kilometer, create a connection”.

Rules are written in XML format in compliance with the DTD we have seen in

the model definition. The functions that calculate the walking distance and

time are referenced from the custom functions file. The parameters of the

max driving and walking distances are customized by the user responsible

of the configuration and according to his/her preferences. In this example we

have chosen ”200 km” and ”1 km” for driving and walking time respectively.

We set these parameters as the maximum feasible scope for a person to ride

the car or walk from one station to another. Figure 4.3 shows an example

of how a rule can be defined. We see that the rule starts with a comparison

operator being the root. The comparison operator is a custom function called

geometricDistance. The threshold of the comparison function is specified by

the value 2. This means that the rule is valid if the returned value from the

function is less than 2. geometricDistance takes five parameters. The first

two parameters represent the latitude and longitude information from the

first data source. The third parameter is the position parameter from the

second data source. Finally, the last parameter represents returned unit of

comparison which is chosen here in Kilometers.

4.11.4 Defining the connection pattern

We define the output generated by the system at each valid rule. We have

chosen the following properties to be represented in a connection pattern:

source-id, target-id, walking/driving distance and walking/driving time.

This pattern is the same for both tasks, and an example is shown in Figure

4.4.
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section.

However, CSA has some limitations in our case. Firstly, it only supports

timetable networks, which makes it unable to compute trips, including other

services. Secondly, it does not support unscheduled connections. It only

supports one footpath transition between two points of transfers. It is there-

fore not possible to combine scheduled connections, unscheduled connec-

tions and footpaths to create a more optimized trip.

4.12.2 CSA Extension

CSA handles only public transportation networks and footpaths. In order

to support multimodality, we have introduced unscheduled links beside the

ones based on timetables. We have also enabled multiple unscheduled links

between multiple points of transfer. The unscheduled links are created when

a link is reached. For each iteration, all of the available unscheduled links

from an arrival stop are checked to create scheduled links by setting the de-

parture time to be equal to the arrival time at the station; to this is added the

minimum transfer duration and the arrival time for the unscheduled link.

The process is shown in Algorithm 5. In line 1 the algorithm sets up the labels

variable which will contain the final results. It is an object that contains the

stop id and its respective estimated arrival time (eta) starting from the depar-

ture stop. It is initialized as an empty array (line 1). This array is filled with

the first loop on line 2. This loops iterates over the stops and sets up their eta

to infinity except the initial departure stop which is equal to the departure

time subtracted from the minimum change time at the stop. The minimum

change time is the time needed to take the corresponding train/bus at the

stop(more in [28]). After that the algorithm generates the initial set of sched-

uled links from the unscheduled ones. This is done on line 13 where the

generateScheduedLinks function takes the departureStop, lists all the nearby

unscheduled links, then generate scheduled links out of them. The generated

scheduled link has the departure time equals to the arrival time to the stop.

On line 14 all the generated links are added to the beginning of existing links

collection (since they have the closest departure time). On line 15, the algo-

rithms starts iterating over the links. It checks if the link is reachable or not

(line 16). In short it checks whether we can reach the link starting from the

departure time plus the link’s trip duration (For more details refer to [28]).
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In case the link is reachable, we compare the eta of the existing link with the

existing eta of the arrival stop (line 19). If the eta is improved we replace

the existing label with the new one (line 23). After that, since we are sure

that we will use this link to reach the arrival stop, we generate the scheduled

links from arrival stop starting from the eta (lines 25 and 25). The algorithm

continues with the rest of the links and finally returns the labels array that

contains the final results (line 28).

Data: departureStop, departureTime, stops, links
Result: A list of the estimated arrival time (eta) from an origin stop to all the

other stops in the network
1 labels ← empty;
2 foreach stop in Stops do
3 label ← new label;
4 label.stop = stop;
5 if stop == departureStop then
6 label.eta ← departureTime - stop.changeTime
7 end
8 else
9 label.eta ← Infinity;

10 end
11 labels.add(label);
12 end
13 nearbyLinks ← generateScheduledLinks(departureStop);
14 links.add(nearByLinks);
15 for link in links do
16 if isReachable(link) then
17 arrivalStop ← link.arrivalStop;
18 eta = labels.get(arrivalStop).eta;
19 if connection.eta < eta then
20 label ← new label;
21 label.eta ← eta;
22 label.stopId ← connection.departureStop;
23 labels.add(label);
24 nearbyLinks ← generateScheduledLinks(departureStop);
25 links.add(nearbyLinks);
26 end
27 end
28 end
29 return labels;

Algorithm 5: Extended CSA Algorithm
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Compared to the existing link discovery frameworks, our approach succeeded

in discovering links with richer representations and extended properties that

can be used for numerous tasks (Earliest Arrival Time in our example).

4.13 Conclusion

Enabling multimodality requires forming relations between different trans-

portation services and units. To do so, creating connections between trans-

portation data instances is essential to reach our desired goal. Many opera-

tors are embracing the use of open data concept and are pushing their data

to the web. Taking advantage of these published data is a chance to reach the

connected dataset we aim for and enable multimodal solutions. However, ex-

isting open data techniques for linking datasets are suitable and focused on

equivalence detection or entity resolution. Linking transportation datasets

required another type of links. The links we aim for represent real physical

links between transportation units and the rules to define their availability

and characteristics.

In this chapter, we have introduced the means and methods to represent

homogeneous connections between transportation networks. We have pro-

posed an approach named Link++ that enables a flexible and customizable

way of generating connections between data sources. This enables a better

way for transportation systems to access information about nearby services

and integrate them with their own network. We have described the pro-

cess of defining custom connections, and used these connections to expand a

transportation network containing trains and bike networks. We have eval-

uated the effect of the newly introduced connections by providing an exten-

sion of the CSA algorithm for the estimated arrival time problem.

In the future we will focus on the dynamic part of the connections since they

are not always static and may be affected by some external events. On the

other hand, the rules that decides when to generate connections can vary

according to the user profile. Taking into account these profiles while gener-

ating rules is essential for our approach to be more customizable. Finally, the

introduction of the new unscheduled connections to the CSA algorithm has
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decreased its performance which should be taken into account to be better

optimized for multimodal purposes.
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Chapter 5

Service Level Integration of

Transportation Operators

5.1 Introduction

Trip planning applications are becoming one of the essential applications we

regularly use in our daily lives. They help us plan better trips that are faster,

cheaper and more secure. Many research works were conducted over the

years to provide better trip planning algorithms. Up to this point, the algo-

rithms gave good results on the data especially when they are bounded to

public transportation networks. However, with the need of integrating new

transportation data and services, existing algorithms became insufficient to

support the new requirements. Many new services are proving to be very

efficient for travelers. Ridesharing is an example of these services and the

scope of this work.

Ridesharing is a transportation service where individual travelers share a

vehicle for a trip and split travel costs with other travelers who have simi-

lar itineraries and time schedule. These services are getting a lot of attention

in the recent years as they are beneficial for both travelers and drivers, and

friendly to the environment [39].

Ridesharing can be a solution for areas not covered by public transport or a

backup plan in case of some perturbations. It has many advantages that ben-

efit travelers, drivers and the environment. Some of ridesharing advantages

include cost saving, lower parking demand, lower emissions, better urban
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and arrival times of each transportation unit. It is not possible in rideshar-

ing services where a driver may at any time notify an intention of sharing a

ride with others. This complicates the problem because these requests will

appear/disappear dynamically on the network. In addition, the ridesharing

problem is complex on its own [99, 39] and adding the connection with other

modes will vastly increase the size of the search space, and will result in more

complex time consuming calculations.

In this work, we seek for a way that integrates the complex characteristics

of ridesharing services with existing trip planning algorithms. Our goal is to

provide an algorithm that is able to handle efficiently the dynamic nature of

these services. Many challenges arise from this goal which we summarize as

follows: 1) adding the new services will enormously enlarge the search space,

2) there is no fixed pickup and drop-off stops for ridesharing services as in

public transportation services, 3) there is no information about the future po-

sition of the ridesharing cars, 4) the additional cost added by integrating the

new services should be taken into account and finally 5) there is no clear way

on where we should integrate the services on the trip timeline.

This chapter introduces RETRy, an approach enabling the integration of rideshar-

ing transportation services with existing multimodal public transportation

networks while reducing the search space. The idea in general is to calcu-

late a trip - named reference trips - using existing trip planners and use it as

a baseline. We then use the passenger’s location, passenger’s destination

and the location of public transportation stops in the reference trip as possible

pickup and drop-off parameters for ridesharing services, trying to optimize

the trip by introducing more optimal sub-trips by using ridesharing mode.

The resulting trip forms the initial plan for a passenger to follow. During the

trip execution the trip can be re-planned as a response to unplanned events,

which makes it adaptive and reliable. The feasibility of the trip is calculated

by the time both drivers and passengers may wait for the pickup. Two ap-

proaches are proposed for reference trip generation and are discussed later

in the chapter. The first uses only the base plan generated by trip planners,

while the second uses the K-nearest trips as base plans. We have evaluated

the approach by issuing random trips with different modes and compar-

ing the gain we have got in each mode. The evaluated modes are: public

transportation only, public transportation with ridesharing and ridesharing
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only. The comparison between the different modes shows that integrating

ridesharing with public transportation networks results in faster trips with

little additional cost especially with the K-nearest trips approach.

5.2 Problem Statement

Enabling more optimal transportation trips requires the integration of all the

available transportation services in a given area. This integration is diffi-

cult when it comes to the variety of transportation modes and the charac-

teristics each one holds. Up to the moment, transportation trip planners

work on timetable networks that are driven with a pre-known schedule and

fixed transportation departure/drop-off locations allowing easy trip plan-

ning. This becomes harder when considering the new transportation ser-

vices, such as ridesharing, which do not have this notion of fixed stops or

fixed schedule. This type of services is dynamic and unpredictable. We

can not know in advance the availability nor the location of a service which

makes it very difficult to consider them in our plans. The main focus in

ridesharing solutions is on matching a passengers request with a driver. This

problem is complex and considered NP-hard [99, 39] due to the dynamic

nature of the service, the big search space and the complex constraints it fol-

lows. Therefore, integrating ridesharing services leads to complex time con-

suming calculations due to the huge search space resulted from both types of

transportation services.

The problem is as follows: consider a passenger traveling from an origin

O to a destination D at a specified departure time t. Given a set of public

transportation and ridesharing services Si, the goal is to effectively generate

a multimodal trip T that utilizes the different transportation modes. T is a

set of sub trips li where each can be served by a transportation service Si or a

simple walking trip. The generated trip must be optimized in terms of both

speed and cost. Since ridesharing services have no notion of fixed stops, the

challenge is to integrate them within the trip plan while taking into account

their unique characteristics.
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5.3 Integrating Ridesharing into Trip Planning

Integrating new transportation services with current trip planning solutions

will add many challenges and performance issues to the standard trip plan-

ning problem. The search space will be a huge and dynamic with services

appearing/disappearing at random. There will be no clear location to issue

a service from especially when the stops are not fixed. In order to solve this

problem we introduce RETRy. RETRy is a framework enabling the integra-

tion of ridesharing and public transportation services. The general idea is to

use existing public transportation trip planning algorithms [5] to generate a

base plan that we call a reference trip. Then we try to improve the reference

trip by injecting ridesharing services when possible. By doing so, the search

space is reduced a lot and the positions of the requests is bounded to the

transit transportation stops. In addition, RETRy makes it possible to adapt to

changes by a repeated execution of the process over the course of the trip.

This process is not straightforward for many reasons. First of all, reference

trips do not always exist. Furthermore, the future positions of the ridesharing

cars are not known in advance since a ridesharing service is dynamic. Finally,

optimizing the selection of pick-up and drop-off positions for the ridesharing

request is a combinatory problem which is complex in its nature.

To cope with these problems, our proposal uses a heuristic approach. In the

following, we present the approach in details. The first section discusses

the first part of the algorithm, which is generating the reference trip. The

second section targets the optimization of the generated reference trip with

the injection of ridesharing services.

5.3.1 Bootstrapping

We define reference trips as those that can be calculated by existing trip plan-

ning algorithms [5] are already optimized for public transportation routing

problems.

Definition 7. A reference trip T is a set of sub-trips li, where each sub-trip is

assigned to different transportation services Si.

Definition 8. A sub-trip is composed of: departure stop dStop, departure time

dTime, arrival stop aStop, arrival time aTime and trip cost.
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Given a user’s location and destination, our planner asks the existing trip

planner to generate a reference trip combining a set of sub-trips to match the

user’s query.

However, it is not always possible to find a reference trip simply due to lack

of existence of nearby services. To cope with the problem, we provide an

alternative method. We propose to calculate a sub-reference trip, which is a

trip enabling the traveler to reach the closest point of his destination from the

closest point of his origin. A sub-reference trip is intended to utilize public

transportation as much as possible, thus reducing the walking time for pas-

sengers.

To generate a sub-reference trip we propose two different approaches. In the

first one, the planner performs two range queries. The first query selects all

source’s nearby public transportation stops as starting points. The second

range query selects the destination’s nearby public transportation stops to be

considered as destination points. After having both source and destination

points, we issue trip requests from the combination of both points until a trip

is found. The nearby stops can be obtained from a dataset of stop locations.

Here we use the Google Places API1.

The second approach is to choose the midpoint of the origin and destination,

then issue two queries from the starting point to the midpoint then from the

midpoint to the destination. This process is done recursively until a solu-

tion is found. The midpoint can be obtained using two main methods. The

first is via a simple mathematical calculation - which is fast - using the po-

sitions of the two stops. In this case, the midpoint can appear anywhere

in space, even outside a road network. The second is using a web service

(http://geomidpoint.com/) that automatically calculates the road midpoint

between two stops. In this approach, we used the mathematical one since it

is faster especially for the evaluation since we issued many queries over time.

In some cases, the midpoint does not fall on a road network, and this is not

a problem for our algorithm. The reason is that the trip planner will plan the

trips automatically based on the nearest road network from the given source

location (exactly like when we plan a trip using our mobile phones from a

location far from roads). Our approach is inspired by the idea of selecting

1https://developers.google.com/places/documentation
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nearby grids in [68] and the time-dependent range query introduced in [14].

We note that, at this step, these trips are not optimized and may contain a lot

of walking gaps that are infeasible for the traveler. for this reason, we intro-

duce the next step of the core planner which tries to optimize this reference

trip using the ridesharing component.

Algorithm 6 shows the trip generation algorithm according to the midpoint

method described above. The algorithm starts by calculating a reference trip

(line 1). The caclulateTrip function calls a public transportation trip planner

with the source and destination points in addition to the departure time. If

the reference trip was successfully found, the algorithm terminates by return-

ing the calculated trip. Otherwise, the algorithm gets the midpoint between

the source and destination (line 5). Two more trips are issued on lines 6 and

7 that represent a trip from the source to the midpoint (left trip) starting from

the departure time and a trip from the midpoint to the destination (right trip)

starting from the left trip’s arrival time. It is important to note the recursive

calls for these trips. This is due to the possibility of also not finding trips for

these two parts, thus the algorithm works recursively by computing the mid-

point in each part and calculating left and right trips. Finally, the algorithm

combines both left and right trips and return the results (lines 8 and 9).

Input: source: src, destination: dst, time: departure time
Result: a trips from a source to a destination

1 /* Calculate a trip from source to destination using existing

multimodal planner */

2 trip← calculateTrip(src, dst, time);
3 if trip not empty then
4 return trip;
5 end
6 /* If no trips were found, get the midpoint of the trip and issue

the queries from source to midpoint and from midpoint to

destination recursively */

7 midpoint← getMidpoint(src, destination);
8 le f ttrip← calculateTripRecursive(src, midpoint, time);
9 righttrip← calculateTripRecursive(midpoint, dst, le f ttrip.arrivaltime);

10 /* Combine both sub-trips to get the overall one */

11 overalltrip← combinetrips(le f ttrip, righttrip);
12 return overalltrip;

Algorithm 6: Trip Generation Algorithm
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and check if ridesharing can be a better alternative. Since it is complicated

to find a random pickup point for a future ridesharing request, we use the

fact that the sub-trips start and end at public transportation stops. Hence, we

choose the pick-up and drop-off stations among these stops for the service re-

quests. In addition to serving as a good pick-up and drop-off locations, this

facilitates the request parameters by knowing the right timing that is derived

from the transportation stop’s schedule. Therefore, a ridesharing request is

issued given the parameters (source, destination and departure time). After

a service is found, we connect it to the overall trip. And the gap is filled with

the newly found more efficient alternative mode.

It is worth noticing that the added service will improve the arrival time since

the new generated sub-plan makes use of the time gained by the ridesharing

service. For example, since we will use a service to fill the gap then it is pos-

sible that we may arrive in a shorter time. To deal with this case, the planner

issues another trip request from the drop-off station to the destination given

the new departure time. The new trip will in turn be an input to the core

planner for further optimizations.

The proposed algorithm is shown in Algorithm 8. It starts by iterating over

the edges of the reference trip, starting from the origin point to the destina-

tion. For each edge, the algorithm queries a ridesharing service giving the

source and destination points as the departure and arrival stops of the cur-

rent edge (line 2). Later, the cost of the original edge is compared with the

cost of adding the new ridesharing service (line 3). The cost(service) function

here is a function that calculates the trip cost of a specific service. The cost in

the current implementation is the trip duration, however in the future work

we plan on a more complex cost. The idea is to check if injecting the new ser-

vice will improve the trip or not. If yes, it will be added and will be discarded

otherwise (line 4). The addition of the new edge will cause a better arrival

time since the cost is lower. Therefore, the algorithm calculates another trip

staring from the arrival stop in order to make benefit of the gained time (line

5). Finally, the path originating from the next edge is replaced with the new

trip and the algorithm continues iterating over the new edges. When the it-

eration is completed the algorithm terminates with the reference trip being

optimized with the added ridesharing edges.
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Input: reference trip: trip
Result: Optimized trip with gaps filled

1 /* Iterate over each edge in the trip */

2 for current, next in trip.getPaths() do
3 /* Query for a ridesharing service between the endpoints of

the edge */

4 service← selectService(current, next);
5 /* Check if the ridesharing service is faster than the

existing solution */

6 if (cost(service) < cost(edge(current, next)) then
7 /* Replace the existing edge with the ridesharing service

*/

8 replaceEdge(current, next, service);
9 /* Issue a new query from the edge endpoint to the

destination */

10 newTrip← calculateTrip(next, rtrip.dest);
11 /* Replace the sub-trip from the edge endpoint to the

destination by the new sub-trip */

12 replaceTrip(next, trip.tail, newTrip);
13 end
14 end

Algorithm 8: Inject Service Algorithm

5.3.4 Selecting the Driver/Service

Drivers are moving in real time and finding their future positions is somehow

complex. We may use some learning or probabilistic approaches to calculate

the future position of a car. However, this is unnecessary due to the fact that

in ridesharing services the driver must confirm the request. This means that

a candidate driver can simply reject a trip request if it is not along his way.

As emphasized above, a ridesharing service is highly dynamic, which re-

quires adjusting the plan by requesting it in real-time. However, the request

should anticipate the future positions of the potential drivers. To overcome

this problem, we propose the use of a range query around the arrival stop

(pick-up location) so as to select, as candidates for ridesharing, cars that may

reach this stop in a specific time in the near future. We send these cars the

request with the passenger’s waiting time constraint, then we choose the one

who accepts it. In case some candidates were chosen but moved away from

the stop, the problem can be easily fixed by the driver simply discarding the

request.
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The range query must take into account two main constraints. The rider pick-

up time window constraint and the driver waiting time constraint. The rider

pick-up time window constraint is the acceptable interval of time the rider

should be picked up at. This is translated into the radius of the range query

that covers all the cars that can reach the pick-up position while satisfying the

time window. The driver waiting time constraint is the time a driver can wait

in the area for the rider to arrive. This is taken into account by first querying

the drivers that can reach the rider’s pick-up location before the pick-up time

window. Then filter them based on the waiting time each driver can wait.

The final set of filtered drivers receive the request to be accepted or rejected.

5.3.5 Triggering the Service Injection

An important question that arises here is where to inject these ridesharing

services? There is no direct answer to this question because it depends on the

user preferences. If a user wishes to minimize the travel cost, then it is better

to limit the services injection to only the long distance gaps. Ridesharing

services usually cost more than public transportation systems, thus limiting

their use to only long gaps is helpful. If the user favors optimizing time, then

more services are to be injected whenever possible. A balanced approach is

to check the overall cost that is composed of both time and money after each

service injection. Then select the one with the lowest cost. Another approach

is to track the reference trip in real-time, and only inject a ridesharing service

when some unexpected delay is detected. In this case, the trip will be flexible

to events and adapt in real-time to offer an optimized service to the user.

5.3.6 Customizing RETRy

It is crucial to note that RETRy is highly customizable and does not depend

only on external services and data on the web. Instead, RETRy may work in

different configurations based on each need. For example, it may work on lo-

cal data and local functions provided by the user. To do so, we introduce two

functions in algorithms 6 and 8, calculateTrip and selectService. These func-

tions are they key functions behind customizing RETRy. Users may extend

those functions to write their own implementation of calculating the trips

and selecting the ridesharing functions. Therefore, users are not limited to

any service mentioned in the paper and the framework is generic to support
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different usages.

Adding custom services or functions must be taken with deep caution. The

more optimized the algorithm, the better the performance of the framework.

Users may rely on quick shortest path algorithms like CSA [28] and lightweight

connections representations as proposed in Chapter 4.

On the other hand, it is important to note that using external services makes

the framework lighter, thus able to be integrated on small devices with lim-

ited memory capabilities.

5.4 Evaluation

In this section we evaluate the different implementations of RETRy and its

core algorithm. We first evaluate the use of a single reference trip as a base

plan (as in Algorithm 6), then we study the effect of including the K-nearest

trips (as in Algorithm 7). The evaluation criteria is based on comparing dif-

ferent trip plans with and without integrating ridesharing services.

The implementation of RETRy is carried out using Python 3 programming

language. The execution environment is a Windows 10 machine with 8GB of

RAM and a core i5 processor with 1.70 GHz of processing power.

5.4.1 Query and Service Selection

The trip queries were formed by randomly choosing different source and

destination points. Each query set consists of 200 queries representing ran-

dom trips in the Ile-de-France region, which is one of the most crowded ar-

eas in France. First, we chose a random source and destination for a query.

Then, we issue a car driving trip and a multimodal public transportation

trip. Later RETRy optimizes the trip by injecting the ridesharing service and

finally comparing the results. We have run our queries over one week with

a one hour time window each day. The time window choice is to be able

to visualize how trips vary with respect to different query hours (morning,
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mid-day and night).

We chose Google Transit as our trip planning service since it integrates mul-

tiple public transportation modes and provides a practical use via an API2.

Uber3 was selected as our ridesharing service since the API provides meth-

ods to estimate a ridesharing request and get an estimate of both cost and

duration. Notice that the algorithm is independent of the services used.

5.4.2 Single Reference Trip

At first we evaluate the approach by creating a reference trip at a time in

each query as in Algorithm 6. In order to optimize the trip, we iterate over

each sub-trip and try to inject the ridesharing service in its place. However,

since we are injecting the ridesharing service on each edge, we may some-

times have consecutive trips that use a ridesharing mode e.g. trip A→ B→

C → D where the edges between (A and B) and (B and C) are ridesharing

services. Therefore, we aggregate the whole sequence by replacing it with

one trip from the from the first departure location to the last arrival location

(from A to C). This may lead to an earlier arrival, lower cost and thus a more

optimized trip.

The mentioned steps were executed on RETRy and the results are shown in

figures 1 to figure 4. It is worth to mention that calculating the reference trip

and injecting the ridesharing services takes around 8 seconds.

Duration with respect to Transportation Mode

Figure 5.4 shows the trip duration with respect to the hours when the queries

were issued. For each hour, a group of different transportation modes are

shown with their corresponding values. Analyzing the figure, we notice that

the average trip duration (92 minutes) using public transportation is opti-

mized using the injection of ridesharing services (70 minutes) with a gain of

approximately 22 minutes in average. This result is better optimized when

aggregating the trip (63 minutes) with an average total gain of 29 minutes.

2https://developers.google.com/maps/documentation/directions/
3https://www.uber.com
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Chapter 6

Conclusion

This thesis targeted the problems that rise from transportation data integra-

tion. At first we have seen how standardization solutions fail to support

the ultimate goal of a unified model to represent transportation information.

The solution turned quickly into another problem with many organizations

rushing to propose new standards and pushing it to the market. The result

was loads of standards that are scattered among its adopters resulting in a

new diverse representation problem. We moved into the domain of auto-

matic schema matching, which seemed a possible solution to handle schema

heterogeneity of transportation datasets. However, our studies showed that

existing approaches fail to detect the complex characteristics in transporta-

tion schemas. More specifically, the diverse and complex representations of

geospatial characteristics which play a main role in representing transporta-

tion information and units. On this manner, we proposed an approach for an

automatic detection of these properties by using geospatial web services as

mediators that guide the matching task. The approach uses dataset instances

and a statistical similarity matrix to find relations between the dataset and

the web service response. This similarity is then used to conclude the map-

pings from one dataset to another via transitivity. The results showed good

improvement compared with state of art approaches.

After the schema level integration, we focused on how to identify links be-

tween different transportation services and their entities. The links we search

for represent the physical links that connect different services together. To

this end, we explored using the open data techniques as the fuel to build

the giant connections between all the given services. However, we noticed

limitations in the existing interlinking tools that are suitable to equivalence

detection other than finding richer types of links. Existing tools miss the sup-

port for complex types of links and the methods to detect them. On this be-

half, we proposed a new model that enables a flexible and customized way of
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discovering and generating links between transportation datasets. The new

model and the corresponding framework were able to improve the quality of

the links, thus enabling a richer network graph that connects all the added

transportation services together.

Moving to the service level, we noticed an isolation of the new mobility ser-

vices from existing journey planners. New mobility services are proposed

as alternative solutions and not really as part of the multimodal planned

journeys. This isolation was mainly because of the complex characteristics

held by these services. Unlike the known public transportation services,

these services have no notion of fixed timetables and fixed boarding stops,

which complicates the integration a lot with many complex computations

and search space. Our approach handled this problem with a set of algo-

rithms that enables this integration by building trips above what we intro-

duced as reference trips to solve the problems of unknown timetable and

missing fixed pickup stops. The evaluation showed an interesting improve-

ment on both cost and travel time dimensions with a very small acceptable

additional cost due to the addition of ridesharing services.

Summing up, we handled three problems related to transportation data in-

tegration at three levels: schema level integration, instance level integration

and finally service level integration. The experiments showed that the solu-

tions may provide passengers with better trips that integrates all the nearby

services to provide them with the optimal trip plan.

Our work still has high potential for future improvements. On the schema

level, it is required to solve the problem of data sampling to select the top

queries that will be matched with the web service response. This will im-

prove the speed of the algorithm by decreasing the number of web service

calls. In addition a smarter query formulator is needed to efficiently get more

relevant information from the web service. Integrating geospatial querying

solutions shown in [103] may help increasing the accuracy of the query for-

mulator. It is worth stating that the use of a web service to bridge the gap

between different dataset representations could apply to other domains as

long as web services are provided for these datasets.

Regarding the instance level, a possible extension to the work is to adapt the

approach to handle the dynamicity of the connections. This will make us

able to maintain the status of existing connections and handle new services,

such as dynamic ride-sharing, car sharing, etc. The problem here is how to

track connections’ evolution in real time. How can we make use of exter-

nal events that may affect their use, etc.? Furthermore, some performance
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optimization is to be considered for both the automatic matching and inter-

linking approaches.

Finally, on the service level, future work target enabling multi-criteria query-

ing (such as number of transfers, preferred modes and locations) which is

challenging, especially across different services. In addition, we also propose

targeting the integration of a real-time travel monitor with the ability to au-

tomatically detect delays or unexpected events and adapt the trip based on

them.
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