
HAL Id: tel-01669469
https://theses.hal.science/tel-01669469v5

Submitted on 5 Mar 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Energy-efficient Straggler Mitigation for Big Data
Applications on the Clouds

Tien-Dat Phan

To cite this version:
Tien-Dat Phan. Energy-efficient Straggler Mitigation for Big Data Applications on the Clouds. Per-
formance [cs.PF]. École normale supérieure de Rennes, 2017. English. �NNT : 2017ENSR0008�. �tel-
01669469v5�

https://theses.hal.science/tel-01669469v5
https://hal.archives-ouvertes.fr

THÈSE / ENS RENNES
Université Bretagne Loire

pour obtenir le titre de
DOCTEUR DE L’ÉCOLE NORMALE SUPÉRIEURE DE RENNES

Mention : Informatique
École doctorale MathSTIC

présentée par

Tien-Dat Phan
Préparée à l’unité mixte de recherche 6074
Institut de recherche en informatique
et systèmes aléatoires

 Energy-ei cient
Straggler Mitigation

for Big Data Applications
on the Clouds

Thèse soutenue le 30 novembre 2017
devant le jury composé de :

Mme PEREZ Maria / rapportrice
Professeur des universités, Universidad Politécnica de Madrid, Spain

M. LEGRAND Arnaud / rapporteur

Chargé de Recherche, Laboratoire Informatique de Grenoble, France

M. PIERSON Jean-Marc / examinateur
Professeur des universités, Université Paul Sabatier de Toulouse, France

M. BOUGÉ Luc / directeur de thèse
Professeur des universités, ENS Rennes, France

M. IBRAHIM Shadi / co-directeur de thèse

Chargé de Recherche, INRIA Rennes - Bretagne Atlantique, France

M. ANTONIU Gabriel /co-encadrant de thèse
Directeur de Recherche, INRIA Rennes - Bretagne Atlantique, France

i

Contents

1 Introduction 1

1.1 Context . 1
1.2 Contributions . 3
1.3 Publications . 6
1.4 Implementations . 7
1.5 Organization of the Manuscript . 7

2 Background: Straggler Mitigation for Big Data Applications on the Clouds 9

2.1 The Era of Big Data . 10
2.2 Big Data Processing on the Clouds . 11

2.2.1 Cloud Computing . 11
2.2.2 MapReduce Programming Model . 12

2.3 Energy Efficiency in Big Data Processing Systems 15
2.3.1 Energy-aware Data-layout Techniques 15
2.3.2 Energy-efficient Big Data Processing Using DVFS 16
2.3.3 Energy-efficient Resource Management 16
2.3.4 Energy-efficient Jobs/Tasks Scheduling 17
2.3.5 Exploiting Renewable Energy . 17

2.4 Performance Variability and Stragglers . 18
2.4.1 The Causes of Performance Variability 18
2.4.2 The Effect of Performance Variability: Stragglers 19

2.5 State-of-the-art Techniques to Mitigate Stragglers 20
2.5.1 Straggler Detection . 20
2.5.2 Straggler Handling . 23

2.6 Discussion: Paving the Way to Energy-efficient Straggler Mitigation 25

3 Impact of Straggler Mitigation on Performance and Energy Consumption 27

3.1 Performance vs. Energy Trade-off of Speculative Execution 28
3.2 Understanding the Impact on Performance and Energy Consumption of Spec-

ulative Execution . 30
3.3 Methodology Overview . 31

3.3.1 Platform . 31
3.3.2 Benchmarks . 31
3.3.3 Hadoop deployment . 33

ii Contents

3.4 Performance and Energy Footprints of Speculative Execution 34
3.5 Effectiveness of Speculative Execution . 35

3.5.1 On the Performance Penalty of Speculative Execution 35
3.5.2 On the Power Cost of Speculative Execution 38
3.5.3 Zoom in on the Energy Impact of Speculative Execution 40

3.6 Impact of Speculative Copy Scheduling on Performance and Energy Con-
sumption . 41
3.6.1 Speculative Copies Are Delayed due to Resource Unavailability 42
3.6.2 Impact of Speculative Copy Allocation on Performance and Energy

Consumption . 44
3.7 Conclusion . 44

4 Measuring and Enabling the Energy Efficiency of Straggler Detection 47

4.1 Energy Inefficiency of Existing Straggler Detection Mechanisms 48
4.2 A Framework to Evaluate Straggler Detection Mechanisms 49

4.2.1 Metrics for Characterizing Straggler Detection Mechanisms 50
4.2.1.1 Lack of evaluation metrics for straggler detection 51
4.2.1.2 Precision, Recall, Detection Latency and Undetected Time . . 52

4.2.2 Linking Straggler Detection Metrics to Performance 53
4.2.2.1 Architectural Models for Performance and Energy Consump-

tion . 53
4.2.2.2 On the Impact of Precision and Recall on Energy Consump-

tion and Execution Time . 54
4.2.3 Characterizing Straggler Detection Mechanisms via the Proposed Met-

rics . 56
4.2.3.1 Experiment Setup . 57
4.2.3.2 Evaluation of Straggler Detection Mechanisms 58

4.3 Hierarchical Straggler Detection: A Green Straggler Detection Mechanism . . 62
4.3.1 Design Principles . 63
4.3.2 Architecture . 63
4.3.3 Characterizing the Hierarchical Straggler Detection Mechanism 64
4.3.4 Evaluating the Effectiveness of Straggler Detection Mechanisms 65

4.3.4.1 Methodology . 65
4.3.4.2 Impact of Straggler Detection Mechanisms with Different Re-

source Reservation Policies . 66
4.3.4.3 Evaluation of Straggler Detection Mechanism Using Pro-

posed Metrics . 67
4.3.5 Evaluating Hierarchical with Different Applications and Slow-node

Thresholds . 70
4.3.5.1 Experimental Setup . 70
4.3.5.2 Experimental Results . 70

4.4 Conclusion . 73

5 Energy-aware Straggler Handling for Big Data Processing Systems 75

5.1 Energy-aware Speculative Execution Controller Architecture 76
5.1.1 Allocation Problem Description . 76
5.1.2 Copy Allocation Heuristic . 77

Contents iii

5.2 Evaluation . 78
5.2.1 Experimental Methodology . 78
5.2.2 Results with the WordCount Application 81
5.2.3 Results with the Kmeans Application . 86
5.2.4 Results with the Sort Application . 87

5.3 Conclusion . 89

6 Energy-efficient Resource Reservation Mechanism for Straggler Handling 91

6.1 WHEN and WHERE Questions: Impacts of the Answers 92
6.1.1 When to Launch: A Fixed Solution is Not Always Good 92
6.1.2 Where to Launch: Heterogeneity Has to be Considered 93
6.1.3 A Motivating Example . 95

6.2 Design Overview . 96
6.3 Proposed Techniques . 97

6.3.1 Window-based Resource Reservation 97
6.3.2 Heterogeneity-Aware Copy Allocation 99

6.4 Methodology . 101
6.5 Experimental Evaluation . 104

6.5.1 Comparison of Different Speculative Execution Mechanisms 104
6.5.2 Sensitivity Study . 108

6.6 Conclusion . 114

7 Conclusion 115

7.1 Achievements . 116
7.1.1 Characterizing the Impact of Straggler Mitigation on Performance and

Energy Consumption . 116
7.1.2 Measuring and Enabling Energy Efficiency of Straggler Detection . . . 117
7.1.3 Bringing Energy-awareness to Straggler Handling 118
7.1.4 Energy-efficient Straggler Handling Mechanism 118

7.2 Perspectives . 119
7.2.1 Prospects Related to the Hierarchical Straggler Detection Mechanism . 119
7.2.2 Prospects Related to Our Straggler Handling Mechanisms 120

Bibliography 123

Résumé en français 133

iv Contents

v

List of Figures

2.1 MapReduce processing overview . 13
2.2 Energy-efficient techniques for processing Big Data 18
2.3 The presence of stragglers in a production cluster 20

3.1 Potential energy cost of speculative copies . 29
3.2 The ratio of successful speculative copies in production clusters 30
3.3 Straggler mitigation in homogeneous environment 34
3.4 Straggler mitigation in heterogeneous environment 34
3.5 Number of successful and unsuccessful speculative copies. 36
3.6 Data skew of the CloudBurst application . 36
3.7 The longest task execution time in homogeneous environment 37
3.8 Average power consumption in different Hadoop clusters. 38
3.9 Extra slot occupation in homogeneous environment 39
3.10 Total idle time when speculation is enabled. 39
3.11 The longest task execution times in heterogeneous environment 41
3.12 Late speculative copies due to resource unavailability 42
3.13 Average task execution time and power consumption 43
3.14 Distribution of running tasks on a node when launching copies 45

4.1 Energy inefficiency of existing straggler mitigation techniques 49
4.2 Distribution of job sizes in CMU’s Hadoop production clusters 58
4.3 Distribution of task execution times of WordCount 59
4.4 Impact of speculative lag on straggler detection 61
4.5 Hierarchical straggler detection architecture. 64
4.6 Execution time with different straggler detection mechanisms 67
4.7 Energy consumption with different straggler detection mechanisms 67
4.8 Number of speculative copies with different detection mechanisms 68
4.9 The WordCount application with different straggler detection mechanisms. . . 71
4.10 The Sort application with different straggler detection mechanisms 72

5.1 Straggler ratio in Hadoop production clusters 79
5.2 Speculative execution with different copy allocation methods 81
5.3 Performance with different copy allocation methods 82
5.4 Energy consumption of different copy allocation methods 83

vi List of Figures

5.5 Energy efficiency of different copy allocation methods 84
5.6 Copy allocation with different copy allocation methods 85
5.7 Execution times of successful speculative copies 86
5.8 Speculative execution with the Kmeans application 87
5.9 Performance and energy when running Kmeans 88
5.10 Speculative execution with the Sort application 89
5.11 Performance and energy when running Sort . 89

6.1 Early speculative copies do not guarantee better straggler mitigation 93
6.2 Performance variability of speculative copies in Hadoop production cluster . 94
6.3 An example with different speculative execution mechanisms. 96
6.4 Design overview of the reservation-based speculative execution mechansim. 97
6.5 Reservation-based straggler handling mechansim workflow 98
6.6 Normalized execution times with different speculation mechanisms 104
6.7 Energy consumption breakdown . 105
6.8 CDF of execution time improvement . 106
6.9 CDF of energy consumption improvement . 107
6.10 Energy efficiency with different speculative execution mechanisms. 108
6.11 Sensitivity study on resource contention degree. 109
6.12 Sensitivity study on the hardware heterogeneity degree. 110
6.13 Sensitivity study on the straggler ratio: Performance and energy consumption 112
6.14 Sensitivity study on the straggler ratio: Energy efficiency 113
6.15 Sensitivity study on the window size parameter. 113
6.16 Straggler detection and straggler handling latency 114

vii

List of Tables

2.1 State-of-the-art straggler mitigation techniques 21

3.1 Workload characteristics and configurations. 32

4.1 Technical terms and definitions related to speculative execution. 50
4.2 Existing metrics for evaluating straggler detection mechanisms. 51
4.3 Misleading information from existing metrics 52
4.4 Application characteristics and configurations. 58
4.5 Straggler ratio on homogeneous environment 60
4.6 The characteristics of Default and LATE . 62
4.7 Characteristics of the Hierarchical straggler detection mechanism 65
4.8 Straggler detection with diverse resource reservation ratios 69

viii List of Tables

1

Chapter 1
Introduction

Contents

1.1 Context . 1

1.2 Contributions . 3

1.3 Publications . 6

1.4 Implementations . 7

1.5 Organization of the Manuscript . 7

1.1 Context

WE have entered the era of Big Data where the size of data, which are daily generated,
captured and processed, is increasing at an extreme rate. According to a recent
study of International Data Corporation Research [133], the total amount of data

generated until 2017 is approximately 16 zettabytes. In more familiar units, this amount
equals to 16 trillion gigabytes or 16 billion terabytes. Moreover, the aforementioned study
shows that the data size appears to stably double every two years. Accordingly, the total
amount of data generated is expected to reach 180 zettabytes by 2025.

To extract useful values from such big volume of data, new processing paradigms have
emerged [31, 57]. Amongst those, MapReduce [31] has become the de-facto programming
model for processing Big Data, due to its scalability and ease of use. Hadoop, an open-
source implementation of MapReduce, is currently used for processing Big Data in many
academic institutions and companies [91, 113]. For instance, Yahoo! processes hundreds of
petabytes of data using Hadoop annually [131]. Recently, Spark is emerging as a low-latency
data processing framework by exploiting in-memory data processing [130].

To cope with the high computation and storage demand when storing and processing Big
Data, these frameworks are usually deployed over large-scale infrastructures, such as public

2 Chapter 1 – Introduction

clouds and private datacenters [77]. As an example, Facebook operates their datacenters on
more than 60,000 machines to process hundreds of terabytes of data daily [105]. These sys-
tems, which carry Big Data processing frameworks on the top of large-scale infrastructures
to store and process big volume of data, are referred to as Big Data processing systems.

At this scale, resource heterogeneity is inevitable and it exists at different levels of the
systems. At the level of hardware, several hardware generations coexist in the cloud infras-
tructures. As a result, users have no control on the hardware components that are allocated
to them [83]. At the level of application, the hardware are physically shared between differ-
ent users. As a result, the resources allocated to an application are not guaranteed to provide
consistent performance over the application lifetime [97, 111]. This heterogeneity, in turn, re-
sults in an evident performance variability [131]. On the other hand, large-scale infrastructures
comprise of thousands of energy-hungry machines. These machines collectively consume
a huge amount of energy, which results in a high operation cost [46]. As an example, the
annual electricity consumption of Google datacenters is over 1,120 GWh, which amounts to
a bill of $67 M [92].

In the future, performance variability and energy consumption will continue to be first-
order concerns for the design and operation of Big Data processing systems [74, 97]. The
scale of underlying infrastructures shall increase to cope with the relentless increment of data
size. An increasing scale shall not only even worsen performance variability, but also dra-
matically increase energy consumption. For reference, the energy requirement for operating
such infrastructures is expected to reach the capacity of a typical nuclear power plant [82].

In the context of Big Data, a job usually consists of a very large number of elementary
tasks. The performance of a job is determined by the completion of its last finished task.
Because of the high performance variability, the execution times of tasks can vary over a
very large range within the same job. Even though the execution times of a large number
of tasks remain close to the average execution time, some of them may exhibit a very large
deviation. It is not unusual in practice to observe some tasks with execution times up to
8x longer than the average execution time [6]. This phenomenon is referred to as heavy-tail
distribution [94]. This heavy-tail has a major negative impact on the job’s performance [131].
In this domain, these penalizing tasks are called stragglers.

There exists a large body of work dedicated to avoid the occurrence of stragglers [27, 41,
104]. However, performance variability generates unexpected stragglers. In practice, it has
been shown that those stragglers have major impact on the performance [131]. As a result,
mitigating stragglers is a crucial objective to improve the performance of large-scale Big Data
processing systems.

Many straggler mitigation techniques have been introduced [4, 6, 31, 131]. Typically, they
consist of two phases: straggler detection and straggler handling. In the detection phase, slow
tasks (e.g., tasks with speed or progress below the average) are marked as stragglers [4,
6, 31, 131]. Then, the detected stragglers are handled using either kill-restart technique [6]
or speculative execution technique [31]. In the former case, the straggler is killed and then
re-launched in the future with the hope that it can run faster. In the latter case, a copy of
the detected straggler is launched in parallel with the straggler. As soon as any of them
completes, it is marked as successful and the other is killed. This copy is called speculative
copy in the sense that there is no guarantee that it can finish before the straggler. Speculative
execution has been currently used in many Big Data processing frameworks, such as Hadoop
and Spark [130, 131]. For instance, Google reports that speculative execution improves job
performance by up to 44% [31].

1.2 – Contributions 3

As we have mentioned, energy consumption is a major concern for operating Big Data
processing systems. Unfortunately, speculative execution comes at a high energy cost, even
though it can bring significant performance improvement. This is because the energy saved
by shortening the execution time of the straggler may not be able to compensate for the extra
energy consumed by the speculative copy. Even worse, the speculative copies might not fin-
ish before the stragglers and get killed. In practice, existing straggler mitigation techniques
still have high ratio of killed speculative copies. In some cases, it can be up to 80% of the
total speculative copies [93].

There are several reasons causing this issue. First, current straggler detection mecha-
nisms are equipped with simple filtering algorithms in order to quickly detect stragglers at
runtime [4, 6, 31, 131]. It may result in inaccurate detection decisions. For example, they
may overly detect normal tasks as stragglers. Consequently, unnecessary speculative copies
will be launched. These unnecessary speculative copies can negatively impact performance
and energy consumption.

Second, a major factor is where to allocate speculative copies across the infrastructure.
Performance variability can again impact the performance and energy consumption of dif-
ferent speculative copies allocations. Unfortunately, existing straggler handling mechanisms
do not take this into consideration [4, 6, 31, 131]. They may allocate the speculative copies
to non-appropriate resources, on which they have poor performance and high energy con-
sumption.

Third, the usual implementation of speculative execution makes a difference between
regular tasks and speculative copies. Once there are available resources, regular tasks are
considered before taking into account speculative copies. Speculative copies may starve
waiting for free resources [113]. Therefore, the speculative copies only have chance to run at
the end of the job execution, when all regular tasks are launched. This long delay leaves the
speculative copies less chance to be successful, while the stragglers have been running and
consuming energy for a long time.

The subject of this thesis is namely to improve straggler mitigation techniques, co-
optimizing performance and energy consumption.

1.2 Contributions

In this thesis, we introduce the notion of the performance-energy efficiency of a system. It
is defined as the pair (P, E), where P stands for the execution time of the system and E
stands for its energy consumption. A system is defined to be more efficient in this sense if
its execution time P is shorter and its energy consumption E is smaller. In the scope of this
thesis, we use the term energy efficiency to stand for this notion of efficiency.

This thesis aims to provide a better understanding of the impact of straggler mitigation
techniques on both performance and energy consumption and to further propose new solu-
tions to improve the energy efficiency of these techniques in Big Data processing systems.

Contributions Roadmap. We start by characterizing the impact of straggler mitigation
on the performance and the energy consumption of Big Data processing systems. We ob-
serve that the energy efficiency of current straggler mitigation techniques could be much

4 Chapter 1 – Introduction

improved. This motivates a detailed study of its both phases: straggler detection and straggler
handling.

In terms of straggler detection, we introduce a novel framework to characterize and
evaluate straggler detection mechanisms comprehensively. Accordingly, we propose a new
energy-driven straggler detection mechanism. This straggler detection mechanism is imple-
mented in Hadoop and is demonstrated to have higher energy efficiency compared to the
state-of-the-art mechanisms. In terms of straggler handling, we present a new method to al-
locate speculative copies, which takes into consideration the impact of resource heterogene-
ity on performance and energy consumption. Finally, we introduce a new energy-efficient
mechanism to handle stragglers. This mechanism provides more resource availability for
launching speculative copies, by leveraging a dynamic resource reservation approach. It is
demonstrated to bring a high improvement in energy efficiency using a discrete-event sim-
ulation.

Characterizing the Impact of Straggler Mitigation on Performance and Energy
Consumption

A large body of literature has been dedicated to improving straggler mitigation techniques
with respect to performance. However, little work focuses on understanding the implica-
tions of these techniques on the performance and energy consumption of Big Data process-
ing systems. In this thesis, we rely on Grid’5000 testbed [59], i.e., a highly-configurable
infrastructure that supports users to perform experiments at large scale. Using Grid’5000,
we conduct a set of experiments to evaluate the impact of straggler mitigation techniques
on the performance and energy consumption of Hadoop. Our study reveals that straggler
mitigation techniques may sometimes increase, sometimes reduce the energy consumption
of Hadoop clusters. In the former case, the increase in energy consumption partially stems
from the inaccuracy of existing straggler detection mechanisms used in Hadoop. This leads
to a large number of unnecessary speculative copies, which in turn results in lower per-
formance and higher energy consumption. In the latter case, the energy consumption of the
system is globally reduced, because the extra energy consumption introduced by speculative
copies is compensated by the energy saved by shortening the execution of the applications.
Moreover, we show that the extra energy consumption varies across applications. It is con-
tributed to by three main factors: the amount of time that speculative copies run, the idle
time of machines, and the allocation of speculative copies. This work led to a publication at
the DIDIS ’15 conference (see [89]).

Measuring and Enabling Energy Efficiency of Straggler Detection

Despite a large body of studies targeting at improving the straggler detection mechanisms,
it is unclear how to evaluate precisely them with the absence of dedicated metrics designed
for this purpose. In response, we present an extended framework to characterize and eval-
uate straggler detection mechanisms. We start with a set of metrics, which were specifically
designed to characterize straggler detection mechanisms. We then develop an architectural
model by which these metrics can be used to estimate the resulting performance and energy
consumption. We further conduct a series of experiments on Grid’5000 to characterize ex-
isting straggler detection mechanisms. The results indicate that existing straggler detection

1.2 – Contributions 5

mechanisms [31, 131] could be much improved. In certain cases, only 12% of the detected
tasks are actual stragglers. As a result, a large number of unnecessary speculative copies is
launched. These copies in turn result in a huge waste of energy. This illustrates the energy
inefficiency of existing straggler detection mechanisms.

These results motivate us to introduce an energy-efficient straggler detection mechanism,
called Hierarchical. It works as a secondary straggler filtering layer on the top of other strag-
gler detection mechanisms. It considers tasks at the node-level while detecting stragglers.
The reason for this is the fact that stragglers are mainly caused by node-level problems, e.g.,
a node with worn-out hardware or resource contentions [6]. Accordingly, Hierarchical con-
siders only the tasks on slow nodes, i.e., the nodes with performance below the average. We
implement this straggler detection mechanism in Hadoop and evaluate it using representa-
tive MapReduce benchmarks [1]. The results show that Hierarchical can reduce the energy
wasted on killed speculative copies by up to 100%, while maintaining a good performance
compared to the state-of-the-art straggler detection mechanisms. This work led to a publica-
tion at the Euro-Par ’17 conference (see [90]).

Bringing Energy-awareness to Straggler Handling: An Energy-efficient Copy Al-
location

Allocating speculative copies to different resources leads to different performance and en-
ergy consumption results. Unfortunately, very few of existing works take this into consid-
eration while allocating speculative copies. In this work, we introduce a new straggler han-
dling mechanism, which is equipped with an energy-efficient method to allocate speculative
copies. This allocation method prioritizes the most critical stragglers (i.e., the stragglers that
are expected to have the longest remaining times) to be first handled. The copies of these
critical stragglers have better chance to finish before them, compared to the copies of other
stragglers. Thus, these copies can shorten the long execution time as well as reduce the high
energy consumption of these stragglers. Besides, we present a performance model and an
energy consumption model. These two models expose the trade-off between performance
and energy consumption when allocating speculative copies on different resources. They are
used to guide our speculative copy allocation method in allocating speculative copies to the
appropriate resources, which can result in better performance with lower energy consump-
tion. This speculative copy allocation method is implemented in the Hadoop framework.
It can run with any straggler detection mechanism provided by Hadoop. We evaluate our
speculative copy allocation method on the Grid’5000 [59] testbed using three representative
MapReduce applications [1]. Experimental results show that it can reduce energy consump-
tion while guaranteeing performance comparable to state-of-the-art copy allocation meth-
ods.

A Reservation-based Approach for Improving the Energy Efficiency of Straggler
Handling

The problem of when to launch the speculative copies is crucial. Launching a speculative
copy too late leaves it no chance to finish earlier than the straggler. However, launching
copies as early as possible without considering the question of where to launch the copies
may also result in bad outcomes. The reason for this again stems from the impact of hetero-
geneity, as discussed above. Launching a speculative copy on the earliest available resource,

6 Chapter 1 – Introduction

may miss some upcoming resources, which provide better performance with lower energy
consumption. Therefore, answering the when and where questions in harmony is the key to
achieve better performance and lower energy consumption.

In this work, we introduce a new straggler handling mechanism, which adopts a
reservation-based approach to dynamically provide the relevant resources at the appropri-
ate time. With this straggler handling mechanism, our goal is to optimize both performance
and energy consumption at runtime. First, we propose a novel performance model that
relies on the execution history to estimate the execution times of new tasks or speculative
copies. We also introduce a new power consumption model that takes into consideration
the impact of resource contention while collocating different tasks. These two models are
used to estimate the performance and energy variations for different task and copy alloca-
tion solutions, in order to achieve the performance and energy co-optimization goal. This
information helps us select the best locations to launch speculative copies, hence answer the
where question. Second, we propose a window-based reservation technique to dynamically
select the best timing for launching speculative copies, considering the benefits of allocating
speculative copies onto the available resources in the current window. This in turn answers
the question of when. Our proposed solution is evaluated through a set of discrete-event
simulations. The results show that it offers significant improvement in both performance
and energy efficiency. This work was partially carried out during a 3-month internship at
National University of Singapore.

1.3 Publications

Journal Articles

• Shadi Ibrahim, Tien-Dat Phan, Alexandra Carpen-Amarie, Houssem-Eddine Chi-
houb, Diana Moise, Gabriel Antoniu. Governing Energy Consumption in Hadoop through
CPU Frequency Scaling: an Analysis. In the Journal of Future Generation Computer
Systems (FGCS), Vol. 54(C), January 2016. Impact factor 2016: 3.997.

Papers in International Conferences

• Tien-Dat Phan, Shadi Ibrahim, Gabriel Antoniu, Luc Bougé. On Understanding the
Energy Impact of Speculative Execution in Hadoop. In Proceeding of the 2015 IEEE Inter-
national Conference on Data Science and Data Intensive Systems (DSDIS ’15), Sydney,
December 2015.

• Tien-Dat Phan, Shadi Ibrahim, Amelie Chi Zhou, Guillaume Aupy, Gabriel Antoniu.
Energy-Driven Straggler Mitigation in MapReduce. In Proceedings of the 2017 Interna-
tional European Conference on Parallel and Distributed (Euro-Par ’17), Santiago de
Compostela, August 2017. CORE Rank A (acceptance rate 28%).

Posters at International Conferences

• Tien-Dat Phan. Green Big Data Processing in Large-scale Clouds: Towards Energy Efficient
Speculative Execution in Hadoop. In the 2016 IEEE International Parallel & Distributed
Processing Symposium (IPDPS ’16): PhD Forum, Chicago, May 2016.

1.4 – Implementations 7

1.4 Implementations

Hierarchical Straggler Detection. It is a novel straggler detection mechanism which was
design to work as a secondary detection layer on the top of other straggler detection
mechanisms. It processes the list of stragglers detected by the underlying straggler de-
tection mechanism as its input. Stragglers in this list is grouped by the nodes on which
they are running. Stragglers that run on slow nodes, i.e., nodes with performance be-
low average, are kept in the list. The other stragglers are removed from the list. The
final list is considered as the output of Hierarchical straggler detection mechanism. The
architecture and the design of this straggler detection mechanism are mentioned in
detail in Chapter 4. It is implemented in the Hadoop 1.2.1 and 2.7.3 versions. The im-
portant parameters of Hierarchical can be customized with Hadoop configuration files.
As of now, the Hierarchical straggler detection mechanism is implemented to work on
the top of the Default [31] and LATE [131] straggler detection mechanisms.

Size: 2000 lines of codes.

Language(s): Java, XML.

Energy-aware Copy Allocation. This is a copy allocation method which takes into consid-
eration the impact of resource heterogeneity on performance and the energy consump-
tion. The detailed design of this copy allocation method is discussed in Chapter 5. This
copy allocation method is implemented as an independent straggler handling module
in Hadoop. It can work with any straggler detection mechanism. Its major parameters
can be easily tuned using Hadoop configuration files. Currently, we implement this
copy allocation method in the Hadoop 1.2.1 version.

Size: 1500 lines of codes.

Language(s): Java, XML.

Discrete-event Straggler Mitigation Simulator. It is a discrete-event simulator which is de-
signed to evaluate straggler mitigation mechanisms. This simulator can reproduce the
behavior of a Big Data processing system, which consists of thousands of nodes and
runs thousands of tasks concurrently. Additionally, this simulator allows users to eas-
ily configure many parameters using a single configuration file. It also can analyze
execution traces of production clusters [93] to extract basic parameters, e.g., job arrival
rate, number of tasks per job, average task execution time. A detailed description of
this simulator’s design and implementation is presented in Chapter 6.

Size: 2000 lines of codes.

Language(s): Java, XML.

1.5 Organization of the Manuscript

The rest of this manuscript is organized as follows.
We discuss infrastructures and platforms for processing Big Data in Chapter 2. Then,

we mention existing energy-efficient techniques for Big Data processing systems. Later, we
discuss in detail state-of-the-art straggler mitigation techniques. Next, we discuss the energy

8 Chapter 1 – Introduction

inefficiency of existing straggler mitigation techniques. Finally, we highlight the directions
that lead to our contributions, towards high energy efficiency for straggler mitigation in Big
Data processing systems.

Chapter 3 presents an in-depth experimental study to better understand the impact of
straggler mitigation on the performance and energy consumption of Hadoop clusters. The
findings obtained from this study form a solid base, on which we develop several contribu-
tions to improve the energy efficiency of straggler mitigation techniques.

Chapter 4 addresses the straggler detection phase. In this chapter, we introduce a com-
prehensive framework to characterize straggler detection mechanisms. Using this frame-
work, we characterize and evaluate state-of-the-art straggler detection mechanisms. For in-
stance, we reveal that existing straggler detection mechanisms have low detection precision.
This results in high energy consumption due to unnecessary speculative copies. Tackling
this aspect, we propose a new straggler detection mechanism. This mechanism reduces the
ratio of unnecessary speculative copies. Thus, it reduces the energy wasted on unnecessary
speculative copies.

Chapters 5 and 6 focus on straggler straggler handling phase. In Chapter 5, we introduce
a new straggler detection mechanism. This mechanism is equipped with an energy-aware
speculative copy allocation method. This method takes into account the impact of different
speculative copies on both performance and energy consumption. As a result, it allocates
speculative copies to resources, on which speculative copies have low energy consumption
and high performance. In Chapter 6, we propose a resource reservation mechanism for
handling stragglers. This resource reservation mechanism provides timely and appropriate
resources for launching speculative copies. The major goal is to bi-optimize performance and
energy consumption of speculative execution. Thereby, it improves the energy efficiency of
straggler handling in Big Data processing systems.

Chapter 7 concludes our thesis by summarizing our contributions and discussing per-
spectives.

9

Chapter 2
Background: Straggler Mitigation for
Big Data Applications on the Clouds

Contents

2.1 The Era of Big Data . 10

2.2 Big Data Processing on the Clouds . 11

2.2.1 Cloud Computing . 11

2.2.2 MapReduce Programming Model . 12

2.3 Energy Efficiency in Big Data Processing Systems 15

2.3.1 Energy-aware Data-layout Techniques 15

2.3.2 Energy-efficient Big Data Processing Using DVFS 16

2.3.3 Energy-efficient Resource Management 16

2.3.4 Energy-efficient Jobs/Tasks Scheduling 17

2.3.5 Exploiting Renewable Energy . 17

2.4 Performance Variability and Stragglers . 18

2.4.1 The Causes of Performance Variability 18

2.4.2 The Effect of Performance Variability: Stragglers 19

2.5 State-of-the-art Techniques to Mitigate Stragglers 20

2.5.1 Straggler Detection . 20

2.5.2 Straggler Handling . 23

2.6 Discussion: Paving the Way to Energy-efficient Straggler Mitigation . . . 25

IN this chapter, we draw a global picture of the advent and development of Big Data
processing systems. Then, we dig into details about the key infrastructures and pro-
gramming models, on which the Big Data applications rely. We later discuss the energy

10 Chapter 2 – Background: Straggler Mitigation for Big Data Applications on the Clouds

efficiency of Big Data processing systems. Next, a literature study on the emerging energy-
efficient techniques for Big Data processing systems is presented. Subsequently, we discuss
the sources of performance variability in Big Data processing systems. Then, we zoom in
on stragglers, which are generated by performance variability, and their impacts on both
performance and energy consumption. Successively, we present state-of-the-art straggler
mitigation techniques and discuss their energy efficiency. Finally, we discuss the challenges
for improving the energy efficiency of straggler mitigation techniques.

2.1 The Era of Big Data

Nowadays, the increasing development of information technology facilitates our daily lives.
This results in a tremendous growth of data size. This large amount of data needs to be
processed to extract valuable information. The processing of these data is referred to as
Big Data processing. In this section, we discuss the major challenges we have to face when
processing Big Data. These challenges, which are abbreviated by V’s of Big Data according
to their names’ common first letter, including: Volume, Variety and Velocity [69, 87, 96].

Volume. This term represents perhaps the most typical attribute which relates to the Big
Data concept. This attribute, by nature, is very important as the dataset magnitude of Big
Data applications is quickly increasing. This trend is motivated by the exponential growth of
devices that increasingly capture and generate more data. For instance, Google is estimated
to manage 15 exabytes of data (i.e., 15 billion gigabytes of data) in 2015 [87]. Contributing to
this huge amount of data, Youtube is roughly storing from 0.1 to 1.0 exabytes of videos. This
volume is expected to increase upto 3 exabytes in 2025 [101]. At such data Volume, the pro-
cessing and managing operations require the power of a huge datacenter, or even multiple
datacenters together. To conclude, the large Volume of data raises the primary challenge to
Big Data processing and managing systems, i.e., the challenge of how to efficiently process
large volume of data, across large-scale infrastructures.

Variety. The adoption of Big Data processing appears in many domains, e.g., scientific ac-
tivities [21, 98, 114], industrial analysis [24], educational schemes [14] and commercial trans-
actions [106]. Besides, the raw input data are usually generated and captured from various
devices, in varied formats and forms. This, by default, results in an inevitable data hetero-
geneity. Precisely, many Big Data applications have to concurrently process input datasets,
which consist of: i) structured data (e.g., relational database [30]); ii) semi-structured (e.g.,
markup languages like XML [16], JavaScript Object Notation (JSON) [2]); and iii) unstruc-
tured data (e.g., text-heavy data, audios, videos [18, 118]). As an evident outcome, pro-
cessing Big Data most likely implies handling a large volume of data without predefined
relation structure. At this point, the increasing data Variety raises a crucial challenge of how
to quickly and adaptively process large amount of input data which are provided in diverse
formats.

Velocity. Beside the large Volume and high Variety of data, Big Data processing systems
usually have to handle data at a very fast arrival rate. For instance, a recent study has esti-
mated that the amount of data generated daily is 2.5 exabytes [133]. Facebook receives 350

2.2 – Big Data Processing on the Clouds 11

millions photos daily [78]. Disregarding this fast arrival rate of input data, many Big Data
applications require fast response time in the order of sub-seconds [15]. For example, popu-
lar multiple-player online game servers, which concurrently handle hundreds of thousands
of players, are requested for response time bound of 500 milliseconds [124]. In brief, the
response time requirements for Big Data applications appear to get more strict, while the
amount of arriving data to be processed is exponentially increasing. As a result, it raises yet
another important challenge of how to improve Big Data processing systems to cope with
this increasingly high Velocity.

2.2 Big Data Processing on the Clouds

Processing Big Data enforces a critical change in both infrastructure (to dynamically provide
more computation power) as well as programming model (to efficiently execute Big Data ap-
plications across large-scale infrastructures). Hereafter, we discuss two important paradigm
shifts in both aspects.

2.2.1 Cloud Computing

With respect to infrastructures, the advent of cloud computing [11] marked a key turning
point in the evolution path of distributed computing infrastructures. With this computing
model, users can equip their Big Data applications with significantly large computing and
storage capacities, thanks to the large-scale infrastructures provided by the cloud. For ex-
ample, Amazon provides computation as a service, i.e., Amazon Elastic Computing Cloud
(EC2) [77], which consists of millions of physical machines [36].

Besides the enormous computing and storage capacities, the cloud computing model
provides a high flexibility as it adopts the pay-as-you-go model [77]. Accordingly, the users
can easily choose the number of Virtual Machines (VMs) as needed. In addition, the speci-
fication of a VM instance, e.g., number of CPU cores, memory size, can also be customized.
For example, Amazon EC2 provides tens of different instance types, covering thirteen cat-
egories1. Each category is optimized for a specific purpose, e.g., compute optimized, mem-
ory optimized, storage optimized, etc. Furthermore, many cloud providers distribute their
infrastructures across the planet, over different continents [77]. Users can customize com-
puting VMs to be geographically close to the data locations. This can reduce the data access
latency of Big Data applications, which may need to simultaneously access geo-distributed
datasets.

Finally, the cloud computing model offers different control degrees in deploying envi-
ronments [60, 61]. Hereafter, we discuss each of these cloud service categories individually.

Infrastructure-as-a-Service — IaaS. This is considered as the most basic cloud model. With
this category of cloud, users can choose their preferred Operating Systems (OS), the
needed platforms and the relevant Graphical User Interfaces (GUI). Thus, they can
fully customize the environment to serve their needs. This cloud suits users who have
experienced in deploying customized environments. For example, Amazon EC2 pro-
vides Infrastructure-as-a-Service to millions of users worldwide [36].

1https://aws.amazon.com/ec2/instance-types/.

https://aws.amazon.com/ec2/instance-types/

12 Chapter 2 – Background: Straggler Mitigation for Big Data Applications on the Clouds

Platform-as-a-Service — PaaS. This cloud category provides a computing platform with
pre-installed Operating Systems, programming language execution environment, web
server and database. Users can deploy and run their self-defined software solutions
without the cost and complexity of managing the underlying hardware and software
layers. As an example, Apache Stratos [88] leverages the Platform-as-a-Service model
to provide a cloud service that can be easily extended to run many web services.

Software-as-a-Service — SaaS. With this type of cloud service, users are granted access to
application software and databases. Cloud providers take control on the infrastruc-
ture and platforms that run the applications. This approach ensures minimum back-
end configurations. For instance, Microsoft Office 365 is a well-known Software-as-a-
Service which is used by millions of users in academia and enterprises [115].

2.2.2 MapReduce Programming Model

Besides the advent of new computing models, new programming models have been intro-
duced targeting Big Data processing applications. These programming models were de-
signed to work efficiently with large-scale distributed infrastructures [31, 57]. Hereafter, we
discuss the most popular programming model for Big Data processing systems, i.e., MapRe-
duce, and the current state-of-the-art Big Data processing frameworks.

MapReduce Programming Model

MapReduce is a programming model which targets efficient data processing across large-
scale distributed infrastructures. It leverages the divide-and-conquer technique [12] in order
to distribute the large amount of work across a distributed infrastructure. Precisely, each
MapReduce job is split into multiple tasks. Each task is responsible to process a proportion
of the job’s input data. These tasks can run concurrently on different machines. The MapRe-
duce tasks, as the name implies, consist of the tasks belonging either Map category or Reduce
category.

MapReduce handles data in key/value structure [32]. A Map task, written dependingly
on the application, takes an input data and processes it to generate the intermediate data.
Intermediate data are structured as a set of intermediate key/value pairs. The MapReduce
library groups together all intermediate values associated with the same key. These pairs
are sent to the Reduce tasks. The execution of all job’s Map tasks is generally called Map
phase.

A Reduce task is responsible for an intermediate key or a set of keys, depending on the
scale of the total key set and the granularity of the Reduce phase. Subsequently, it merges
together the values, associated to the same key, to produce one output per key. The interme-
diate values are supplied to the user’s reduce function in sequence. When data are too large
to fit in memory, they are spilled to disks.

Figure 2.1 shows the overall flow of a MapReduce application. When the user program
calls the MapReduce function, the following sequence of actions occurs:

1. The MapReduce library evenly divides the input files into M pieces, i.e., chunks [31].
The size of these chunks is typically ranging from 16 megabytes to 512 megabytes
(MB), depending on the hardware capacity. These chunks are distributed across the
cluster in order to reduce the burden of remote data fetching.

2.2 – Big Data Processing on the Clouds 13

Figure 2.1 – MapReduce processing overview [62].

2. There are management processes running across the cluster of machines. There is one
process called master, which is responsible for globally assigning the tasks across the
system. The rest of the processes are worker processes. They are responsible for the
executions of tasks on corresponding workers. The M input chunks will be respectively
processed by M Map tasks. The master selects an idle worker node to assign it a Map
task. This Map task will be next initiated on the selected worker.

3. A Map task reads the contents of the corresponding input chunk. The contents are
parsed into key/value pairs. These pairs are next passed to the user-defined Map func-
tion, which is written depending on the application purposes. Finally, the output key/
value pairs, i.e., the output of the Map function, are stored as intermediate data.

4. Periodically, the intermediate key/value pairs are flushed to local disks, if the memory
usage exceeds a certain threshold [31]. Typically, the key/value pairs sharing the same
key are merged in order to reduce the intermediate data size. Besides, these pairs are
sorted according to the keys, in order to facilitate the assignment to Reduce tasks. The
locations of these buffered pairs on the local disk are passed back to the master, who is
responsible for forwarding these locations to the Reduce tasks. A typical Map task ends
at this step.

5. There are R Reduce tasks. The value of R is controllable by the users. Once a Reduce

14 Chapter 2 – Background: Straggler Mitigation for Big Data Applications on the Clouds

task is notified by the master with the location of intermediate data, it connects to these
locations and reads the data. This reading process continues until all the intermediate
data for the Reduce task are read. These data, which consist of key/value pairs, are
sorted again by keys, in order to group the pairs with the same key.

6. The user-defined Reduce function is called in this step to process input data. This func-
tion returns output and add it to the final output files.

7. When all Map tasks as well as all Reduce tasks of the job are completed, the master
returns to the user program to continue the execution.

Hadoop

Hadoop is an Apache open-source implementation of MapReduce [45, 49, 50, 79, 113].
Hadoop is optimized for sequential read requests, where the processing involves scanning
a large amount of data [113]. Besides, inheriting from the MapReduce programming model,
Hadoop is well-known with its massive scalability. Nowadays, Hadoop is widely used for
Big Data processing by both academia and enterprises [91].

Hadoop runs Big Data applications on top of large-scale infrastructures. Each node is
equipped with a local file system for running MapReduce programs. By default, Hadoop
uses Hadoop Distributed File System [48] (HDFS) to manage data files. Hadoop adopts the
master/slave architecture of the MapReduce programming model. It dedicates a master pro-
cess, i.e., JobTracker, to globally manage the execution. The node hosting this JobTracker is
called master node. In addition, there are a set of worker processes, i.e., TaskTrackers, located
on every worker node. Each TaskTracker is responsible for managing the task executions on
the worker node that hosts it. A TaskTracker i) collects the execution status of all tasks; ii)
sends this information back to JobTracker through heartbeat messages; iii) listens to heart-
beat responses from JobTracker; and iv) follows JobTracker’s indication to take actions (e.g.,
task deletion, task initiation, data read, data write).

Spark

Spark [130] is a Big Data processing framework implemeted in Scala [84]. Spark targets
mainly the iterative jobs [129] (e.g., machine learning jobs) and interactive analysis [130]
(e.g., social network streams), where tasks usually use output data as input data in subse-
quent iterations. Accordingly, Spark leverages the benefits of using memory to store the
intermediate data in order to improve the data access speed.

To do so, a new data abstraction is introduced. It is called Resilient Distributed
Dataset [129] (RDD), which represents a collection of read-only data objects partitioned
across the system. These RDD objects can easily be cached in memory as needed. The cached
RDDs stay in the memory and can be reused for multiple MapReduce-like operations con-
currently.

As these RDD objects are distributed across large-scale systems, fault tolerance is a must
in order to prevent data loss and data unavailability [35]. Therefore, Spark is equipped
with a fault tolerance mechanism named lineage. This mechanism periodically stores the
execution path, which represents the sequence of operations to reproduce the RDD [129]. By
using checkpointing technique [67] to frequently store the RDDs in disks, a lost RDD can be

2.3 – Energy Efficiency in Big Data Processing Systems 15

rebuilt by applying the sequence of operations on the most recent checkpointed RDD. With
this design, RDDs represent a sweet-spot between the low latency (using memory for data
access), on the one hand, and reliability as well as scalability, on the other hand.

Flink

Apache Flink [19] is an open-source project which aims to support both stream processing
and batch processing within one single framework. It was designed with the idea that many
modules of different data processing applications (e.g., real-time analytics [15], iterative al-
gorithms [71], batch processing [113]) can be executed as pipelined dataflows.

To do so, Flink leverages a processing paradigm that unifies all types of processing (in-
cluding real-time analytics and batch processing) as one unique data-stream model. This
data-stream model can seamlessly handle i) real-time processing; ii) continuous streams; or
iii) historical data analysis. The major difference is the starting point along the data stream.
By adopting a flexible windowing mechanism, Big Data applications running with Flink can
easily compute either early and approximate results or delayed and accurate results using
the same operations.

Finally, Flink is equipped with fault tolerance mechanism. Specifically, Flink provides
reliable data processing using checkpointing and partial re-execution. The goal of Flink’s
fault tolerance mechanism is to guarantee a strict exactly-once-processing. The checkpoint-
ing mechanism periodically takes a snapshot of the current execution state. This reduces the
recovery time when a failure occurs, as it only needs to re-execute from the latest snapshot
to recover the failed process.

2.3 Energy Efficiency in Big Data Processing Systems

Energy consumption starts to severely constrain the design and the way Big Data processing
systems are operated. The energy bill contributes an increasingly significant part to the total
operational cost of a datacenter [46]. Moreover, overall energy consumption is continuously
increasing as a result of the rapidly growing demand for computing resources to cope with
the exponential growth of data.

In response, many studies have been dedicated to evaluate and improve the energy effi-
ciency of Big Data processing systems. These studies adopt different approaches and address
several levels of the systems to introduce new energy-efficient techniques. Hereafter, we
systematically describe these techniques to draw a global picture of existing energy-efficient
techniques for Big Data processing systems.

2.3.1 Energy-aware Data-layout Techniques

There have been several studies on evaluating and improving the energy consumption in
datacenters and clouds. Many of these studies focus on power-aware data-layout techniques
[3, 63, 64, 74, 103, 107], which allow servers to be turned off without affecting data availabil-
ity.

16 Chapter 2 – Background: Straggler Mitigation for Big Data Applications on the Clouds

GreenHDFS. Kaushik et al. [63] separates the HDFS cluster into hot and cold zones. The
new or high-access data are placed in the hot zone. Servers in the cold zone are transitioned
to the power-saving mode and data are not replicated. Only servers hosting the needed data
are woken up upon the arrival of data access requests.

Rabbit. Amur et al. [3] introduce an energy-efficient distributed file system that maintains
a primary replica on a small subset of always-on nodes (active nodes). Remaining replicas
are stored on a larger set of secondary nodes, which are activated to scale up the performance
or to tolerate primary failures. Rabbit provides load balancing when reading data.

Sierra. Thereska et al. [103] introduce a new power-proportional distributed storage sys-
tem named Sierra based on cluster-based object storage pattern of Google File System [58]
and Windows Azure blob store [44]. Sierra’s data replication mechanism guarantees the
servers to be turned off without hindering data availability. Therefore, Sierra allows users
to dynamically scale in/out the cluster according to the application requirements in flight.
Moreover, Sierra provides load balancing and read/write consistency.

2.3.2 Energy-efficient Big Data Processing Using DVFS

Many existing studies focus on achieving power efficiency in Hadoop clusters by using Dy-
namic Voltage Frequency Scaling technique (DVFS) [29, 99, 116].

TAPA. Li et al. [99] discuss the impact of temperature (i.e., machine heat) on performance
and energy of Hadoop clusters. This work is based on the observation that higher temper-
ature of CPUs causes higher power consumption even with the same DVFS settings. Ac-
cordingly, they propose a temperature-aware power allocation (TAPA) that adjusts the CPU
frequencies according to the CPU temperature. TAPA favors the maximum possible CPU
frequency, thus maximizing computation capacity, without violating the power budget.

Investigation on Energy Efficiency for Computation-intensive Workloads. Wirtz and
Ge [116] present a in-depth experimental study on the energy efficiency of MapReduce
computation-intensive workloads. To do so, they compare the energy consumption and
the performance of MapReduce applications in three settings: (1) fixed frequencies, (2) set-
ting the frequencies to maximum frequencies when executing Map or Reduce tasks, and
minimum otherwise, and (3) performance-constraint frequency settings that tolerate some
performance degradation while achieving better power consumption. Experimental results
indicate that significant energy savings can be achieved via judicious frequency scheduling
for computation-intensive applications.

2.3.3 Energy-efficient Resource Management

There exists a large body of work which addresses the resource management for improving
the energy effciency of Big Data processing systems [20, 23, 25, 55, 72].

2.3 – Energy Efficiency in Big Data Processing Systems 17

Energy-aware VM replacement. Cardosa et al. [20] present Virtual Machine (VM) replace-
ment algorithms that co-allocate VMs with similar execution characteristics to the same
physical machine. The goal of this replacement is to increase the utilization of available
resources. Consequently, this increases the number of idle servers that can be deactivated to
save energy.

Computation vs. I/O. Chen et al. [25] discuss the impact of computation and I/O in
MapReduce clusters on energy efficiency. They reveal that energy efficiency can be increased
when using data compression to reduce the amount of data transfer, in the case data have
high compression ratio (i.e., the ratio between the size of data before and after being com-
pressed). If data have low compression ratio, compressing data can result in low energy
efficiency due to the extra energy consumption when compressing data.

Berkeley Energy-efficient MapReduce. Chen et al. [23] present an energy-efficient MapRe-
duce workload manager motivated by empirical analysis of real-life MapReduce with Inter-
active Analysis (MIA) traces at Facebook. They show that interactive jobs operate on just
a small fraction of the data, and thus can be served by a small pool of dedicated machines,
while the less time-sensitive jobs can run in a batch fashion on the rest of the cluster.

2.3.4 Energy-efficient Jobs/Tasks Scheduling

A large number of studies has been realized to improve the energy efficiency of job/task
schedulers for Big Data processing systems [26, 43, 64, 70, 80, 81].

Energy-aware MapReduce Scheduling Algorithms. Mashayekhy et al. [80] design a
framework for improving the energy efficiency of MapReduce applications, while satisfying
the service level agreement (SLA). The proposed framework relies on a greedy algorithm.
This algorithm assigns tasks to the machine with the lowest energy consumption as long as
their execution times do not violate the service level agreement.

All-In-Strategy. Instead of covering a set of nodes, Lang and Patel propose an all-in strat-
egy (AIS) [70]. AIS saves energy in an all-or-nothing fashion: the entire MapReduce cluster
is either on or off. All MapReduce jobs are queued until a certain threshold is reached and
then all the jobs are executed with full cluster utilization.

2.3.5 Exploiting Renewable Energy

Recently, many studies exploit the benefit of renewable energy sources in powering Big Data
processing systems [42, 43]

GreenHadoop. Goiri et al. [43] present GreenHadoop, a MapReduce framework for a data-
center powered by renewable green sources of energy (e.g., solar or wind) and the electrical
grid (as a backup). GreenHadoop schedules MapReduce jobs when renewable energy is
available and only uses electricity to avoid time violations.

18 Chapter 2 – Background: Straggler Mitigation for Big Data Applications on the Clouds

Figure 2.2 – An overview of techniques to improve energy efficiency of Big Data processing systems.

GreenSlot. GreenSlot [42] schedules the workloads to maximize the green energy con-
sumption while meeting the jobs’ deadlines. To do so, it relies on an intelligent model to
predict the amount of solar energy that will be available in the near future.

Figure 2.2 summarizes existing techniques to improve energy efficiency in Hadoop.

2.4 Performance Variability and Stragglers

Different from the aforementioned energy-efficient techniques, we pay attention to perfor-
mance variability and its resulting stragglers. These stragglers have high impact on the
performance and energy consumption of Big Data processing systems. There exists a large
number of works aiming to mitigate these stragglers. These straggler mitigation techniques
are widely used in Big Data processing systems. Despite the performance benefits these
techniques can bring, they may still increase the energy consumption. Our thesis tack-
les this issue by (1) providing in-depth understanding on the impacts of these techniques
on both performance and energy consumption and (2) proposing new straggler mitigation
techniques which have higher energy efficiency. In this section, we discuss in detail the root
causes of performance variability. Then, we present stragglers, the emerging outcome of
performance variability.

2.4.1 The Causes of Performance Variability

To meet the exponential growth of data and the huge proliferation of Big Data applica-
tions [98, 114, 132], cloud infrastructures relentlessly expand with new hardware. For in-
stance, Facebook tripled the scale of their infrastructure in 18 months, increasing from 10,000
servers in April 2008 to 30,000 servers in October 2009 [68]. This expanding process, by na-
ture, brings unavoidable heterogeneity to Big Data processing systems [131].

This heterogeneity exists at several levels of Big Data processing systems, and manifests
itself in diverse forms. Regarding the hardware, the gradual upgrading process eventually
adds new hardware models to Big Data processing systems [83]. Since typical hardware have

2.4 – Performance Variability and Stragglers 19

an average lifetime of five to seven years, it is most likely that Big Data processing systems
consist of several hardware models at any arbitrary moment [33, 83]. These heterogeneous
hardware have differences in either (1) processor architectures, cores and frequencies, (2)
memory capacities and interconnect speeds, or (3) I/O capabilities. As different hardware
models have heterogeneous performance characteristics, performance variability is a norm
while executing on such infrastructures [131].

Moreover, one of the most emerging features of the cloud is multi-tenancy where many
users are collocated on the same cloud infratructure. This results in dynamic resource allo-
cation between collocated users. This in turn amplifies the performance variability [51]. It is
observed that the round trip delay of virtualized network varies within a very large range,
up to 100x difference between the minimum and the maximum values [51, 111].

Additionally, each user may concurrently execute multiple Big Data applications. By
nature, these applications have different characteristics in resource consumption and per-
formance. As a result, simultaneously executing multiple Big Data applications may lead
to a high performance variability. In practice, it is recorded that the difference between the
maximum and the minimum throughput can be up to 2.5x [126].

Performance variability may result in performance unpredictability [34, 110], when some
tasks unexpectedly take longer time to finish compared to the average task execution time [6,
39, 131]. These long running tasks are called stragglers. The execution time of a Big Data ap-
plication is dominated by the last completed task. Thus, long running stragglers can severely
prolong the execution time of Big Data applications and increase the overall energy con-
sumption.

2.4.2 The Effect of Performance Variability: Stragglers

In order to better understand the impact of these stragglers, it is important to know how
different the execution time of a straggler compared to the average task execution time. This
information is useful to further understand how much they can prolong the execution time
of Big Data applications. We analyzed the traces collected in October 2012 from a Hadoop
production cluster at Carnegie Mellon University (CMU) [93]. The trace contains the execu-
tion information of more than 1500 jobs, consisting of roughly 1,400,000 tasks. We use the
following metric to illustrate how much different the execution time of a straggler can be, in
comparison with the average task execution time [4]. This metric is calculated as follows:

maxN
i=1 ti

1
N × ∑

N
i=1 ti

(2.1)

where ti is the execution time of the ith task and N is the number of all tasks. The value of this
metric is calculated per job. Thus, there are more than 1500 values of these, corresponding to
1500 jobs. Figure 2.3 depicts the Cumulative Distribution Function (CDF) of these values. As
we can observe, stragglers occur in most of the jobs. Furthermore, more than 10% of the jobs
have stragglers which take up to 8x longer to finish compared to the average task execution
time. These stragglers can seriously prolong the execution times. As a result, they increase
the resource consumption of Big Data applications. This extra resource consumption in turn
results in additional energy consumption.

20 Chapter 2 – Background: Straggler Mitigation for Big Data Applications on the Clouds

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10 12 14 16 18

C
D

F

Longest execution time /
 Average execution time

Figure 2.3 – Analyzing the traces of CMU production cluster in October 2012: We present the ratios
between the job’s longest task execution time compared to the job’s average task execution time. The
figure depicts the cumulative distribution function of this ratio for more than 1500 jobs. We observed
that stragglers present in almost every job’s execution.

2.5 State-of-the-art Techniques to Mitigate Stragglers

Much attention has been paid to address and mitigate stragglers. In general, a straggler miti-
gation technique consists of two phases: straggler detection and straggler handling. In detection
phase, slow tasks, i.e., tasks have progress or speed well below average, are labeled as strag-
glers (see Table 2.1). Upon the detection, stragglers are handled depending on the adopted
technique. For instance, it can be either launching copies of these stragglers (i.e., speculative
execution) or killing and restarting these stragglers later (i.e., kill-restart technique). These
techniques are summarized in Table 2.1.

Hereafter, we discuss in detail the state-of-the-art straggler mitigation techniques, con-
sidering separately the straggler detection and straggler handling.

2.5.1 Straggler Detection

There existed a large number of studies dedicated to improve straggler detection [4, 6, 22,
31, 121, 122, 131]. Hereafter, we discuss these works in detail.

Default Straggler Detection Mechanism. Dean et al. [31] present a straggler detection
mechanism based on progress score. The progress score (i.e., PS) is defined as a 0-to-1 number,

2.5 – State-of-the-art Techniques to Mitigate Stragglers 21

Table 2.1 – Straggler mitigation techniques: State-of-the-art straggler detection and straggler han-
dling mechanisms.

Phases Description Approaches/Techniques
Related

works

Straggler
detection

This phase searches for
stragglers amongst the
running tasks

Progress score based
approach

[58, 86]

Progress rate based
approach

[6, 117, 122,
131]

Progress rate and
progress bandwidth at
sub-task level

[22]

Straggler
handling

This phase adopts a
specific technique to
handle detected
stragglers

Speculative execution
technique

[6, 58, 117,
131]

Task cloning technique [4, 119, 121]
Kill-restart technique [6]
Cause-aware straggler
handling

[6]

which represents the ratio of processed data over the total input data of a task (see Equa-
tion 2.2).

PS =
Sizeprocessed data

Sizetotal data
(2.2)

where Sizeprocessed data represents the size of data have been processed and Sizetotal data is the
total input data size. A task is marked as a straggler, if and only if its progress score satisfies
Inequation 2.3:

PSj < (
∑

N
i=1 PSi

N
− 0.2) (2.3)

where PSj is the progress score of the considered task and N is the number of total tasks
within the same category (i.e., Map tasks or Reduce tasks). It is important to note that the
detection threshold, which is by default set to 0.2, is customizable via the configuration file.
This straggler detection mechanism has shown to bring significant performance improve-
ment, as it can reduce the job execution times by up to 44% [31].

LATE Straggler Detection Mechanism. Zaharia et al. [131] noticed that the progress score
alone does not accurately reflect how fast a task runs as different tasks start at different
moments. Therefore, they presented a new detection mechanism (i.e., LATE) which takes
into consideration both the progress score and the elapsed time (i.e., the amount of time
during which a task has been running). These two parameters are used to calculate the
progress rate PR of a task, as shown in Equation 2.4:

PR =
PS

tcurrent − tstart
(2.4)

where tcurrent represents the current time and tstart specifies the starting time of a task. The
progress rates of all running tasks are collected at runtime. Next, these values are used to

22 Chapter 2 – Background: Straggler Mitigation for Big Data Applications on the Clouds

calculate the mean progress rate PR and the standard deviation SD (as shown in Equations 2.5
and 2.6).

PR =
1
N

N

∑
i=1

PRi (2.5)

SD =

√

√

√

√

1
N

N

∑
i=1

(PRi − PR)2 (2.6)

Using these values, LATE detects a task as straggler if and only if its progress rate satisfies
the following inequation:

PRj < PR(1 − α × SD) (2.7)

where PRj denotes the current progress rate of a task and α is called the slow task threshold.
A high value of α means that the detection mechanism considers only tasks with remark-
ably low progress rates as stragglers, and vice versa. The configuration file allows users
to customize this value. By default, this value is set to 1.0. With this setting, LATE is ex-
pected to detect 16% of the running tasks as stragglers (assuming that the execution times
of running tasks follow normal distribution [8]). It is shown that using LATE can help re-
duce the job execution times by up to 50%, compared to the case when straggler mitigation
is disabled [131].

Recent studies [6, 22, 52–54, 121, 122] have shown that there still exist several reasons that
lead to inaccurate straggler detection. For instance, Reduce tasks within the same job may
have different input data sizes [22]. As a result, a task with larger input data size requires, by
nature, more time to execute compared to other tasks. This unbalance in input data between
tasks is called data skew. Detecting a task as straggler without considering the data skew will
likely lead to inaccurate straggler detection [6].

Mantri Straggler Detection Mechanism. Ananthanarayanan et al. [6] proposed a cause-
aware straggler detection mechanism, named Mantri. It detects stragglers using the expected
execution time ETexpected of a task. The ETexpected of a task is the sum of that task’s elapsed
time and its remaining time tremaining, which is calculated as follows:

tremaining =
1 − PS

PR
(2.8)

It considers a task as straggler if its expected execution time ETexpected satisfies the following
inequation:

ETexpected > 1.5 × ETaverage (2.9)

where ETaverage represents the average execution of all tasks. Moreover, Mantri keeps mon-
itoring the performance and resource consumption of running tasks. Then, it uses this in-
formation to infer the causes, which result in the slow executions of detected stragglers. Ac-
cordingly, it classifies the detected stragglers into different categories, including i) resource
contention (i.e., the competition for resources between concurrent tasks); ii) hardware hetero-
geneity (i.e., different hardware provides different performance); iii) input unavailability (i.e.,
the unavailable input data file prevents the task from progressing); and iv) data skew (i.e.,
the unbalance in input data size between tasks). Based on this classification, Mantri intro-
duces a cause-aware straggler handling mechanism. We will discuss this straggler handling
mechanism in the next section.

2.5 – State-of-the-art Techniques to Mitigate Stragglers 23

Smart Straggler Detection Mechanism. Chen et al. [22] proposed a new straggler detection
mechanism which considers different execution stages of the tasks. Typically, Map tasks
consist of three stages, i.e., Read stage, Map stage and Merge stage. By nature, each stage
has different characteristics. Thereby, considering the progress rate of a running task at the
stage level may improve the straggler detection precision. Besides, this work also introduces
an Exponentially Weighted Moving Average (EWMA) algorithm to predict the remaining
execution time of a task. Finally, these expected execution times are used to detect stragglers
as Mantri (see Inequation 2.9).

Discussion. The aforementioned studies aim to improve the straggler detection. The ma-
jor goal of these straggler detection mechanisms is to detect more stragglers, thus reduce
the long execution tail caused by stragglers and improve the performance of Big Data appli-
cations. However, very few of these studies consider the straggler detection problem from
another perspective, namely energy efficiency. Specifically, none of these works pays atten-
tion to the impact of the inaccurately detected stragglers, despite the fact that these stragglers
may lead to a high number of killed speculative copies. These copies in turn result in a high
cost of extra energy consumption. In this thesis, we introduce a comprehensive framework
to characterize straggler detection mechanisms. The information obtained using this frame-
work provides a detailed picture of existing straggler detection mechanisms, regarding the
strengths and shortcomings of them as well as their impacts on performance and energy
consumption of Big Data processing systems. Furthermore, we propose an energy-driven
straggler detection mechanism. This mechanism targets a high detection precision to reduce
the energy cost caused by the killed speculative copies of inaccurately detected stragglers.

2.5.2 Straggler Handling

Straggler mitigation has been drawing much attention during a long time. In the context
of volunteer computing and desktop grids, resources come from different sources and have
diverse performance as well as unpredictable availability [7]. As a result, applications’ tasks
can get either failed, prolonged or finished with incorrect output. In an effort to maintain
the correctness of the output and improve the performance of applications, speculative ex-
ecution is used [9, 10, 66, 76, 100]. It launches multiple copies of a task across the system.
First, these multiple copies reduce the possibility of task failure. Second, different copies can
provide multiple outputs for correctness confrontation. Finally, it improves the performance
of the task, thus it mitigates the impact caused by stragglers.

Shortest Remaining Task First. Anglano et al. [9] proposed a new mechanism to speculate
tasks. This mechanism uses the progress rate to estimate the remaining time of all running
tasks. The task with shortest remaining time is prioritized to be speculated first. As this
mechanism attempts to finish shortest tasks faster, resources are freed faster for speculating
longer tasks.

Resource Prioritization and Resource Exclusion. Kondo et al. [66] introduce new tech-
niques for improving the effectiveness of speculative execution. First, resources are scored
according to their performance (e.g., by clock rate, by the number of cycles delivered in his-
tory). Task and its copies are prioritized to run of resources with the best scores. Second,

24 Chapter 2 – Background: Straggler Mitigation for Big Data Applications on the Clouds

resource exclusion technique avoids launching task and its copies on resources with low
scores. The low score threshold can be determined using a preset value. These techniques
are effective when there are more free resources than the number of tasks.

In Big Data processing systems, speculative execution technique continues to be the de-
facto technique to mitigate stragglers. Accordingly, much research effort [5, 6, 22, 73, 75, 117,
120, 121, 123, 131] has been dedicated to handle stragglers and improve the performance of
Big Data processing systems, mostly relying on this technique. Hereafter, we discuss these
works in order to provide a global picture of state-of-the-art straggler handling mechanisms.

Default Straggler Handling Mechanism. Dean et al. [31] propose a straggler handling
mechanism for MapReduce in 2004. It adopts the speculative execution technique to han-
dle stragglers. Upon the detection of new straggler, a speculative copy is launched. This
speculative copy is expected to finish earlier and reduce the straggler execution time. It is
important to mention that the detected stragglers are handled with no specific order. More
importantly, regular tasks have higher priority compared to speculative copies. Speculative
copies are launched only when i) there are available resources and ii) all regular tasks have
been launched.

LATE Straggler Handling Mechanism. Zaharia et al. [131] proposed a new straggler han-
dling mechanism, named Last Approximate Task to Execute (LATE), which also adopts the
speculative execution technique to handle stragglers. LATE uses the progress rates of de-
tected stragglers to estimate their expected remaining times (as shown in Equation 2.8).

Based on their expected remaining times, the detected stragglers are next sorted in de-
scending order. In other words, the straggler with longest expected remaining time is placed
first. When there are free resources to launch speculative copies, the stragglers in the sorted
list are considered, sequentially by their order.

Mantri Straggler Handling Mechanism. Ananthanarayanan et al. [6] introduced Mantri,
a resource-aware straggler handling mechanism. With this straggler detection mechanism,
each detected straggler is tagged with a specific cause, using the information provided by
the underlying straggler detection mechanism. Mantri adopts several techniques to handle
stragglers: i) killing and later restarting the straggler or ii) launching a speculative copy
of the detected straggler. For making straggler handling decisions, Mantri relies on two
estimations, (1) estimation of straggler finish time and (2) estimation of the execution time of
new copy or restarting task. Based on these estimations, Mantri launches speculative copies
or kills and restarts stragglers only when there is a fair chance of reducing the stragglers’
execution times with a low resource consumption.

GRASS Straggler Handling Mechanism. Ananthanarayanan et al. [5] proposed GRASS, a
new straggler detection mechanism addressing the approximation applications, i.e., the ap-
plications that accept inaccurate outputs within an error-bound (e.g., machine learning ap-
plications [28, 71, 95, 109]). As a result, this type of application allows killing on-going tasks
and early finishing, as long as the outputted results has satisfied the error-bound. GRASS
is a combination of two copy allocating algorithms targeting small jobs and large jobs. For
small jobs, the Greedy Speculation (GS) algorithm tries to launch as much speculative copies

2.6 – Discussion: Paving the Way to Energy-efficient Straggler Mitigation 25

as possible in order to maximize the output accuracy. Consequently, small jobs can achieve
higher accuracy with a small extra resource consumption. For large jobs, the Resource Aware
Speculative (RAS) algorithm only launches a small number of speculative copies, in order to
save the resource consumption.

Dolly Straggler Handling Mechanism. Considering that the majority of jobs in production
Big Data processing clusters are small jobs, Ananthanarayanan et al. [4] presented Dolly, a
new approach for straggler handling. Dolly launches multiple copies (i.e., clones) of all tasks
belonging to small jobs, from the beginning of the execution. As soon as the completion of
one clone, the other clones are killed to free resources. Statistically, it has been proven that
this mechanism can significantly reduce the possibility of having long running stragglers. In
practice, Dolly results in a significant performance improvement (up to 46% speed up) with
the resource budget of only 5%.

Discussion. Existing straggler detection mechanisms mainly target a better performance
improvement for Big Data processing systems. Indeed, this performance-driven approach
has shown to significantly improve performance. However, it is not true to expect that an
improvement in performance equals to a reduction in energy consumption. This is due
to the fact that straggler handling mechanisms take extra actions (e.g., launching specula-
tive copies, executing multiple clones) which come at the cost of extra energy consumption.
Nonetheless, existing studies do not pay enough attention to this. As a result, it is possible
for the existing straggler detection mechanism to bring high performance improvement and
result in high energy cost.

This thesis first of all provides an in-depth investigation to better understand the impact
of straggler mitigation on both performance and energy consumption. The obtained results
confirm that existing straggler handling mechanisms can result in a high energy cost. In
other words, existing straggler handling mechanisms have low energy efficiency. Address-
ing this, we introduce energy-aware straggler handling mechanism that takes into consid-
eration the energy cost when allocating speculative copies. Moreover, we propose a new
straggler handling mechanism, which adopts the resource reservation approach to dynami-
cally reserve the appropriate resource at the right moment for launching speculative copies.

2.6 Discussion: Paving the Way to Energy-efficient Straggler Miti-

gation

As the scale of clouds keeps expanding to cope with the increasing data explosion, energy
consumption will play more important role in shaping and orienting the way Big Data pro-
cessing systems are operated. As an example, the datacenters across the world consumed
416.2 TWh in 2015, which is higher than the total electricity consumption of United Kingdom
in the same year [17, 40, 92]. At this rate, the increasing scale of Big Data processing systems
is pushing the energy consumption to the upper bound allowance [82]. Consequently, en-
ergy consumption is expected to be not merely a constraint, but rather a limit in operating
Big Data processing systems in the near future [82].

In parallel, performance variability is a major issue at such scale. It is responsible for
a large number of stragglers. In the context of Big Data processing systems, stragglers

26 Chapter 2 – Background: Straggler Mitigation for Big Data Applications on the Clouds

can strongly impede the performance. In response, much attention has been paid to mit-
igate stragglers, proposing different straggler detection mechanisms and diverse straggler
handling mechanisms. These mechanism have been proven to bring high performance im-
provement. As a result, they are widely used in Big Data processing systems. Some of
them have become the default features of de-facto Big Data processing frameworks, such as
Hadoop [113], YARN [108] and Spark [130].

However, existing straggler mitigation techniques may come at a high cost of energy. Re-
garding the straggler detection, existing straggler detection mechanisms are equipped with
simple detection algorithms, in order to quickly detect straggler at runtime. As a result, they
may have high ratio of inaccurate detection. For instance, straggler detection mechanisms
can overly detect normal tasks as stragglers. This results in a high number of unnecessary
speculative copies, which are in turn responsible for high energy waste as they mostly get
killed. At this point, it is important to accurately characterize the existing straggler detection
mechanisms, to identify their strengths and weaknesses. Furthermore, increasing the detec-
tion accuracy will be the key to improve the energy-efficiency of existing straggler mitigation
mechanisms.

Considering straggler handling phase, few studies pay attention to the impact of differ-
ent speculative copy allocations on both performance and energy consumption. As a result,
it may reduce the potential improvements straggler mitigation can bring. Taking this impact
into consideration is the key to improve the performance and energy efficiency of strag-
gler handling mechanisms. Moreover, the success of straggler handling can be significantly
reduced when resources are unavailable. Consequently, novel solutions which can dynami-
cally provide appropriate and timely resources for launching speculative copies are needed.

Through a number of contributions, the next chapters describe in detail how we address
the aforementioned challenges, in an effort to improve the energy efficiency of straggler
mitigation in Big Data processing systems.

27

Chapter 3
Understanding the Impact of Straggler
Mitigation on Performance and Energy

Consumption

Contents

3.1 Performance vs. Energy Trade-off of Speculative Execution 28

3.2 Understanding the Impact on Performance and Energy Consumption of
Speculative Execution . 30

3.3 Methodology Overview . 31

3.3.1 Platform . 31

3.3.2 Benchmarks . 31

3.3.3 Hadoop deployment . 33

3.4 Performance and Energy Footprints of Speculative Execution 34

3.5 Effectiveness of Speculative Execution . 35

3.5.1 On the Performance Penalty of Speculative Execution 35

3.5.2 On the Power Cost of Speculative Execution 38

3.5.3 Zoom in on the Energy Impact of Speculative Execution 40

3.6 Impact of Speculative Copy Scheduling on Performance and Energy Con-
sumption . 41

3.6.1 Speculative Copies Are Delayed due to Resource Unavailability . . . 42

3.6.2 Impact of Speculative Copy Allocation on Performance and Energy
Consumption . 44

3.7 Conclusion . 44

28 Chapter 3 – Impact of Straggler Mitigation on Performance and Energy Consumption

NOWADAYS, Big Data applications are executed in large-scale clouds, which consist
of millions of machines [36]. This large number of machines collectively consume
a huge amount of energy [40, 85]. Hamilton [46] has estimated that the electricity

bill has exceeded 40% of the total of datacenters. As a result, energy consumption starts to
severely constrain the design and the way Big Data processing systems are operated.

In parallel, performance variability is also considered as a major concern for large-scale
Big Data processing systems. It results in a large number of stragglers which in turn nega-
tively affects both performance and energy consumption. Recently, much attention has been
paid to mitigate stragglers. Speculative execution is a key technique to handle stragglers
in Big Data processing systems. It launches a speculative copy of each detected straggler,
with the hope that it can finish earlier and shorten the execution time. However, specula-
tive execution is not cost-free and may result in performance degradation and extra energy
consumption. Unfortunately, very few work focuses on understanding the implications of
speculative execution on the performance and the energy consumption of Big Data process-
ing systems.

In this chapter, we provide an in-depth investigation of the impact of speculative execu-
tion on performance and energy consumption. To do so, we conduct a set of experiments
on Grid’5000 with three representative Big Data applications. The acquired results are then
analyzed in detail to reveal some insights into the impact on performance and energy con-
sumption of speculative execution.

3.1 Performance vs. Energy Trade-off of Speculative Execution

Speculative execution is the major technique to handle stragglers in Big Data processing
systems [108, 113, 130]. In practice, it can reduce the job execution time by up to 44% [31].
Although launching speculative copies may improve the performance, it comes with the
cost of extra energy consumed by speculative copies. A simple example can illustrate the
presence of this energy cost (see Figure 3.1).

Let us consider the scenario when running a Big Data job in a cluster of two nodes,
respectively N1 and N2. A normal task takes 2 time units to finish. This task in turn consumes
2 energy units. During the job execution, there exists a straggler which runs on node N2. This
straggler takes 2x times longer than the normal tasks to finish, i.e., 4 time units (this 2x ratio
is the average ratio for stragglers recorded in many systems [6, 93]). Leaving this straggler
to finish without having any mitigating action leads to a longer execution time and higher
energy consumption. Briefly, without the presence of straggler mitigation, the straggler takes
4 time units to finish and consumes 4 energy units (see Figure 3.1a).

In contrast, when straggler mitigation is used, the straggler may be detected and a specu-
lative copy may be launched. Existing straggler detection mechanisms leverage the progress
or speed of tasks to detect stragglers [6, 31, 131]. Such information (e.g., tasks’ progress or
speed) are used only if tasks have been running for a certain amount of time. In the example,
we assume that the detection mechanisms takes one time unit to detect this straggler. Once
the straggler is detected, a speculative copy of it is launched on node N1. This node executes
the copy at the normal speed. Thus, the copy finishes after two time units. Consequently, the
straggler gets killed after running for 3 time units (see Figure 3.1b). In short, the speculative
copy results in a shorter execution time of 3 time units. However, considering the energy

3.1 – Performance vs. Energy Trade-off of Speculative Execution 29

N1 ...

N2 Straggler

0 1 2 3 Finish

Time

(a) When straggler mitigation is disabled.

N1 ... Copy

N2 Straggler Killed

Detected0 2 Finish 4

Time

(b) When straggler mitigation is enabled.

Figure 3.1 – An example to illustrate the potential energy cost of launching speculative copies.

consumption, the total energy consumption is 5 energy units, which is the sum of the energy
consumed by the killed straggler (i.e., 3 energy units) and the copy (i.e., 2 energy units). At
this point, we can see that speculative execution can result in energy penalty even when it
leads to performance improvement.

Even worse, speculative execution is not always successful. In this case, speculative
copies cannot finish earlier than stragglers. Thereby, they get killed. The energy cost will
be much higher in this case. In addition, these speculative copies can lead to a performance
degradation, as they compete for resources with collocated regular tasks.

Copy ratio =
#Speculative copies

#Total tasks
(3.1)

Successful ratio =
#Successful speculative copies

#Total speculative copies
(3.2)

We analyze the traces from a production Hadoop cluster to provide more details about
the presence of unsuccessful speculative copies in Big Data processing systems. These traces
were collected during one month execution (i.e., October 2011) of 775 jobs. We use two met-
rics in this analysis. One is the ratio of speculative copies to the total tasks (see Equation 3.1).
The other metric is the ratio of successful speculative copies to the total speculative copies
launched, as shown in Equation 3.2. The values of these two metrics are calculated per job.
We then use the CDF to show the range and distribution of these values amongst the jobs
(see Figure 3.2).

The results show that speculative copies contribute a considerable proportion to the total
tasks and speculative copies of each job. This ratio is more than 20% for roughly 20% of the
jobs. For some cases, this ratio exceeds 40%. However, only a small fraction of these spec-
ulative copies were successful. Successful speculative copies contribute less than 1% to the
total speculative copies launched, in more than 60% of the jobs. This means that the major-
ity of speculative copies were unsuccessful and got killed. This high ratio of unsuccessful
speculative copies leads to a high cost of wasteful extra energy.

To this point, it is imperative to understand how much speculative execution can impact
the overall performance and energy consumption of Big Data processing systems. In the rest
of this chapter, we answer this question via an in-depth experimental study.

30 Chapter 3 – Impact of Straggler Mitigation on Performance and Energy Consumption

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100

C
D

F

Percentage

Copy ratio

Successful ratio

Figure 3.2 – Cumulative Distribution Function of the ratio of speculative copies and the successful
ones in real production Hadoop cluster of CMU: There are 775 jobs submitted during 736 hours, run-
ning on a cluster of 145 nodes. The result shows that the speculative copies constitute a considerable
part of the total tasks, but only a small fraction of them were successful.

3.2 Understanding the Impact on Performance and Energy Con-

sumption of Speculative Execution

By the mean of experiments, our goals are i) to evaluate the impact of speculative execution
in Big Data processing systems; and ii) to identify the important factors which can impact
the performance and the energy efficiency when using speculative execution. In detail, we
aim to answer the following questions:

• What are the performances and energy footprints of speculative execution? The wide adop-
tion of Hadoop MapReduce results in a huge proliferation of Big Data processing ap-
plications [98, 114]. These applications exhibit different characteristics. Besides, Big
Data processing systems are relentlessly scaling out the infrastructures to cope with
the increasing data size. This results in various hardware heterogeneity degrees. In
this study, we conduct experiments with three representative Big Data applications [1]
on three clusters: (1) homogeneous cluster, (2) heterogeneous cluster which consists of
machines with CPUs of various powers and (3) heterogeneous cluster with machines
equipped with network of various bandwidths.

• What are the factors contributing to the effectiveness of speculative execution? As discussed,
speculative execution can affect both performance and energy consumption. In this
experimental study, we aim to explore the major factors which may affect the effec-
tiveness of speculative execution. Furthermore, we quantitatively link these factors to
their impact on performance and energy consumption. Finally, impact of these factors
on the effectiveness of speculative execution is discussed with different applications
and in clusters having different hardware heterogeneity degrees.

3.3 – Methodology Overview 31

• How does speculative copy scheduling affect performance and energy consumption? Schedul-
ing speculative copies is basically answering the questions of when and where to launch
speculative copies. On the one hand, we setup experiments in which resources are
not always available to early launch speculative copies. Thereby, these experiments
provides useful insights of how late speculative copies affect performance and energy
consumption. On the other hand, we conduct a set of experiments to imitate differ-
ent speculative copy allocations. Then, we analyze the results to reveal the impact of
different copy allocations on performance and energy consumption.

3.3 Methodology Overview

The experimental investigation conducted in this study focuses on exploring the implica-
tions of straggler mitigation on the energy consumption of Hadoop cluster under different
workloads.

For this experimental study, having isolated and controllable results is essential. In the
Clouds, the energy consumption is extremely difficult to measure as it depends on many
factors (e.g., how energy is distributed across different Virtual Machines within one physical
machine), on which we have no control. As a result, we decided to conduct the experiments
on a cluster without adopting the virtualization technique. This provides a fully controllable
and highly stable environment for our experiments. However, it is important to take into
consideration the resource contention and resource heterogeneity in the clouds, which are
the main causes resulting in the occurrence of stragglers. With respect to this aspect, we
propose a simple method of tuning the number of active cores on different machines to
reproduce these two features of the cloud environment. With this method, we can produce
repeatable and controllable heterogeneous environment for our experiments. Hereafter, we
describe in detail the experimental environment: the platform, the used benchmarks, and
the deployment setup.

3.3.1 Platform

The experiments are carried out on the Grid’5000 [59] testbed. The Grid’5000 project pro-
vides the research community with a highly-configurable infrastructure that enables users
to perform experiments at large scales. The platform is spread over 10 geographical sites.
For our experiments, we used nodes belonging to the Nancy site of Grid’5000. These nodes
are outfitted with a 4-core Intel Xeon X3440 2.53 GHz CPU and 16 GB of RAM. Intra-cluster
communication is done through a 1 Gb/s Ethernet network. As many as 40 nodes of the
Nancy site are equipped with power monitoring hardware which consists of 2 Power Distri-
bution Units (PDUs), each hosting 20 outlets. Since each node is mapped to a specific outlet,
we are able to acquire coarse and fine-grained power monitoring information using the Sim-
ple Network Management Protocol (SNMP). It is important to state that Grid’5000 allows us
to create an isolated environment in order to have full control over the experiments and the
obtained results.

3.3.2 Benchmarks

MapReduce applications are typically categorized as CPU-intensive, I/O bound, or both.
For our analysis, we selected two applications that are commonly used for benchmarking

32 Chapter 3 – Impact of Straggler Mitigation on Performance and Energy Consumption

Table 3.1 – Workload characteristics and configurations.

Application WordCount Sort CloudBurst

Dominating

phase
Map Reduce Reduce

Resources CPU Network CPU
Input size 24.6 GB 24.5 GB 0.1 GB
Shuffle size 0.4 GB 24.5 GB 0.1 GB
Output size 0.2 GB 24.5 GB 9.7 GB

MapReduce frameworks: distributed WordCount and distributed Sort [1].

WordCount. This application counts the occurrences of each word in a large set of input
files. Each Map task of WordCount application handles one fraction of the total input files.
Each word in the input data of this Map task is used to create a key/value pair, where the
key is the word and the value is 1. The Reduce tasks collect all the key/value pairs within
their assigned key range. Then, they accumulate all pairs sharing the same key to return the
final results. WordCount is a CPU-intensive application and it has a high input/output ratio.
In other words, the output data size is typically small compared to the size of input data.

Sort. This application rearranges the order of data in a large collection of documents. Sim-
ilar to WordCount application, each Map task is assigned with a fraction of the total input
data. It simply reads the input data and creates the key/value pairs. The Reduce tasks col-
lect their assigned pairs. Finally, they sort these key/value pairs and emit the output. This
application consumes mainly I/O resources. It maintains the input/output data size ratio at
1 throughout its execution.

For our experiments, we used the HTML dataset collected from Wikipedia site as input
data for both WordCount and Sort1.

Real-life application. In addition to the two aforementioned benchmarks, we selected a
real-life application, named CloudBurst [98]. CloudBurst is a MapReduce application de-
signed to facilitate biological analysis. It leverages an optimized algorithm for mapping
next-generation sequence data to the human genome and other reference genomes. Cloud-
Burst spends most of the time in the Reduce phase to analyze the different mapping possibili-
ties between the input and the reference genome data. During Reduce phase, this application
mainly consumes CPU resources. In our experiments, we use the human genome sequence
produced by the Genome Reference Consortium2 as input data3.

Table 3.1 summarizes the characteristics and the configurations of the three aforemen-
tioned applications. In this table, the shuffle size represents the total size of data transfer
from Map tasks to Reduce tasks.

1http://dumps.wikimedia.org/enwiki/.
2http://www.ncbi.nlm.nih.gov/projects/genome/assembly/grc/.
3The human genome data is available at http://hgdownload.cse.ucsc.edu/goldenPath/hg38/chromosomes/.

http://dumps.wikimedia.org/enwiki/
http://www.ncbi.nlm.nih.gov/projects/genome/assembly/grc/
http://hgdownload.cse.ucsc.edu/goldenPath/hg38/chromosomes/

3.3 – Methodology Overview 33

3.3.3 Hadoop deployment

On the testbed described in Section 3.3.1, we configured and deployed a Hadoop cluster
using the Hadoop 1.2.1 stable version [45]. The Hadoop cluster consists of 21 nodes. 20
nodes were used to serve as worker nodes, which store data and execute the tasks. The 21st

node was configured to serve as the master node that is responsible for scheduling tasks and
managing data read/write requests. In Hadoop, it leverages the notion of slot to specify the
resource unit on which a map/ reduce task can run. We applied the default configuration of
Hadoop to set the number of Map/Reduce slots that each node is capable of (2 Map slots per
CPU core and 2 Reduce slots per node). Accordingly, each worker node was configured with
8 Map slots and 2 Reduce slots. The CloudBurst application is a reduce-intensive application
and it requires mainly CPU resources. Consequently, each worker node was configured
with 8 Reduce slots. Regarding the file system, we used the default file size of 64 MB and
the default replication factor of three for input and output data, i.e., the number of replicas
of each file to be stored in the file system.

Heterogeneous Environment. Stragglers are mainly caused by resource contention and
heterogeneity in Hadoop clusters. Therefore, we conduct the experiments on both homo-
geneous cluster and heterogeneous cluster. The homogeneous cluster, that we used, was
the original cluster provided by Grid’5000. In order to produce repeatable heterogeneous
environments, we created two heterogeneous Hadoop clusters.

In the first cluster, we vary the number of active cores per node from one to four. We di-
vided the cluster into four groups. Each group consists of 25% of the total cluster nodes. All
nodes in the first group were configured with 1 active core. The second group’s nodes were
set with 2 active cores, and so on. This setting brings a heterogeneity in CPU performance to
our cluster.

In the second cluster, we vary the available network bandwidth to 25%, 50%, 75% and
100% of the maximum network bandwidth (1 Gb/s in our testbed). Similarly, we divide the
cluster into four groups and the nodes in each group are configured with one of the four
aforementioned network bandwidths.

While the tasks within the first cluster will exhibit variable performance due to differ-
ent CPU capacities of the nodes, the tasks in the second cluster will exhibit different network
access patterns according to the available network bandwidth. We run CloudBurst and Word-
Count on the first cluster and Sort on the second one.

It is important to note that the total time used to conduct our experiments exceeded 40
hours on 21 nodes in Grid’5000. Each experiment was repeated three times and the average
values are used in the subsequent analysis. The results presented in this chapter mainly fo-
cus on comparing between two cases, including when straggler mitigation is disabled and
when straggler mitigation is enabled. For the rest of this chapter, the results when straggler
mitigation is not used are denoted as Disabled and the results in the other case are denoted
as Enabled. For clarification, the term straggler mitigation in this chapter is considered equal
to the term speculative execution, as Hadoop adopts speculative execution technique to mit-
igate stragglers.

34 Chapter 3 – Impact of Straggler Mitigation on Performance and Energy Consumption

 0

 1

 2

 3

 4

 5

 6

 7

CloudBurst

E
x
e
c
u
ti
o
n
 t
im

e
 (

1
0

3
s
)

Disabled
Enabled

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

Sort WordCount

(a) Execution time.

 0

 2

 4

 6

 8

 10

 12

CloudBurst

E
n
e
rg

y
 c

o
n
s
u
m

p
ti
o
n
 (

1
0

6
J
)

Disabled
Enabled

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

Sort WordCount

(b) Total energy consumption.

Figure 3.3 – Application execution times and energy consumption when disabling and enabling
straggler mitigation in homogeneous environment.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

CloudBurst

E
x
e
c
u
ti
o
n
 t
im

e
 (

1
0

3
s
)

Disabled
Enabled

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

Sort WordCount

(a) Execution time.

 0

 5

 10

 15

 20

 25

CloudBurst

E
n
e
rg

y
 c

o
n
s
u
m

p
ti
o
n
 (

1
0

6
J
)

Disabled
Enabled

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

Sort WordCount

(b) The total energy consumption.

Figure 3.4 – Application execution times and energy consumption when disabling and enabling spec-
ulative execution in heterogeneous environment.

3.4 Performance and Energy Footprints of Speculative Execution

In this section, we provide a high-level analysis of the experimental results we obtained. Our
goal is to study the impact of speculative execution on the energy consumption of Hadoop
cluster, when running the three aforementioned applications in both homogeneous and het-
erogeneous environments.

Homogeneous cluster. Figure 3.3b depicts the total energy consumption of the three ap-
plications when enabling and disabling straggler mitigation feature in homogeneous envi-
ronments. The total energy consumption of our Hadoop cluster with straggler mitigation

3.5 – Effectiveness of Speculative Execution 35

enabled increases by 9.8%, 4.2% and 10.1% when running CloudBurst, Sort and WordCount
applications, respectively. Note that the running time of both CloudBurst and WordCount ap-
plications is slightly shorter when straggler mitigation is used. Hence, these results confirm
our intuition on the importance of understanding the extra energy cost of straggler mitiga-
tion in Hadoop.

Heterogeneous clusters. On the other hand, as shown in Figure 3.4b, using speculative
execution as a straggler handling technique results in a significant reduction in the energy
consumption of Hadoop cluster when running CloudBurst application. This is due to the
improvement in the execution time. Surprisingly, speculative execution leads to longer ex-
ecution time of both Sort and WordCount applications and therefore increases the energy
consumption of Hadoop cluster.

In summary, we observe that:

• In a homogeneous environment, in contrast to expectations, speculative execution does not
always reduce the execution time and results in an increase in the energy consumption of
Hadoop cluster regardless of the running application.

• In a heterogeneous environment, speculative execution may substantially impact (positively
or negatively) the energy consumption, depending on the application characteristics (map-
intensive, shuffle-intensive, reduce-intensive) and on the type of resource heterogeneity (CPU,
network bandwidth).

3.5 Effectiveness of Speculative Execution

The previous section suggests that using speculative execution results in higher energy con-
sumption of Hadoop cluster in homogeneous environment. We take a deeper look at these
results to identify the main factors contributing to the energy cost of speculative execution.
Then, we study the energy (reduction/increase) when using speculation by analyzing the
results obtained in heterogeneous environments.

3.5.1 On the Performance Penalty of Speculative Execution

As shown in Figure 3.3a, CloudBurst and WordCount experience small improvements in terms
of performance. In contrast, Sort suffers a slight degradation in performance when specula-
tion is used.

Although the three applications run on homogeneous environment, Hadoop triggers
a noticeable number of speculative copies, as shown in Figure 3.5a: 23% Reduce specula-
tive copies for CloudBurst, 4.4% Map speculative copies for Sort, and 13.1% Map speculative
copies for WordCount. However, the ratios of successful speculative copies are very low for
the three applications. To understand these phenomena, we now discuss the results of each
application separately.

CloudBurst application. CloudBurst is a CPU-intensive application and the execution time
is dominated by the Reduce phase. CloudBurst exhibits an explicit skew between different

36 Chapter 3 – Impact of Straggler Mitigation on Performance and Energy Consumption

 0

 10

 20

 30

 40

 50

MAP REDUCE MAP REDUCE MAP REDUCE

CloudBurst Sort WordCount

N
u
m

b
e
r

o
f
s
p
e
c
u
la

ti
v
e
 c

o
p
ie

s

Successful copies
Unsuccessful copies

(a) Homogeneous environment.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

MAP REDUCE MAP REDUCE MAP REDUCE

CloudBurst Sort WordCount

N
u
m

b
e
r

o
f
s
p
e
c
u
la

ti
v
e
 c

o
p
ie

s

Successful copies
Unsuccessful copies

(b) Heterogeneous environment.

Figure 3.5 – Number of successful and unsuccessful speculative copies.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1000 2000 3000 4000 5000 6000

M
e

d
ia

n

C
D

F

Task execution time (s)

Figure 3.6 – Reduce tasks’ skew in CloudBurst application: The longest Reduce task can take 100x
times longer to finish compared to the shortest Reduce task, depending on their input data.

Reduce tasks (a similar observation is reported in [52]). Figure 3.6 clearly shows this phe-
nomenon as the minimum and the maximum task execution times in homogeneous cluster
can be up to 100x different. Disregarding this, Hadoop blindly considers long-running Re-
duce tasks as stragglers and therefore launches unnecessary speculative copies. As a result,
Hadoop does not reduce the long execution time of stragglers in Reduce phase, as shown in
Figure 3.7b.

Sort application. Sort is a network-intensive application. The network load strongly af-
fects the execution time. As shown in Figure 3.7b, the gap between the longest Reduce tasks
and average task runtimes is relatively small, when running in homogeneous cluster. Con-
sequently no Reduce speculative copy is launched. On the other hand, the gap between the

3.5 – Effectiveness of Speculative Execution 37

 0

 10

 20

 30

 40

 50

 60

Disabled Enabled Disabled Enabled Disabled Enabled
CloudBurst Sort WordCount

E
x
e

c
u

ti
o

n
 t

im
e

 (
s
)

Average Longest

(a) The average and longest Map task execution times.

 0

 1

 2

 3

 4

 5

 6

 7

Disabled Enabled

E
x
e

c
u

ti
o

n
 t

im
e

 (
1

0
3
s
)

Average

 0

 0.05

 0.1

 0.15

 0.2

 0.25

Disabled Enabled Disabled Enabled
CloudBurst Sort WordCount

Longest

(b) The average and longest Reduce task runtimes.

Figure 3.7 – The average and longest task execution times with speculative execution disabled and
enabled in homogeneous environment.

longest Map tasks and average task runtimes is big. This is mainly due to the non-local Map
tasks (i.e., non-local Map tasks take longer time to complete because they need to fetch their
input data from remote nodes). Moreover, non-local Map tasks cause a big variation in Map
task runtimes (similar observations are reported in [54]) according to the network load and
the progress of the data transfer between Map tasks and Reduce tasks. Hadoop considers
non-local Map tasks, which have long running times, as stragglers and launches speculative
copies of them. However, 75% of the launched speculative copies are unsuccessful. Even
worse, the resulted network contention leads to longer data shuffling phase of Reduce tasks
(as shown in Figure 3.7b), and ends up in a longer execution time of the whole application.

WordCount application. The execution time of WordCount is dominated by the Map phase.
The gaps between the longest Map/Reduce tasks and average Map/Reduce task execution
times are relatively small (as shown in Figure 3.7a and Figure 3.7b). However, the straggler
detection mechanism used in Hadoop again considers non-local Map tasks as stragglers.

38 Chapter 3 – Impact of Straggler Mitigation on Performance and Energy Consumption

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

CloudBurst Sort WordCount

A
v
e
ra

g
e
 p

o
w

e
r

c
o
n
s
u
m

p
ti
o
n

 (
W

a
tt
/N

o
d
e
)

Disabled Enabled

(a) Homogeneous environment.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

CloudBurst Sort WordCount

A
v
e
ra

g
e
 p

o
w

e
r

c
o
n
s
u
m

p
ti
o
n

(W
a
tt
/N

o
d
e
)

Disabled Enabled

(b) Heterogeneous environment.

Figure 3.8 – Average power consumption in different Hadoop clusters.

Consequently, a large number of speculative copies are launched, as shown in Figure 3.5a.
The majority of these copies are unsuccessful. As a result, they do not reduce the gap of
execution time between the longest task and the average task of WordCount application.

In summary, we observe that:

• Straggler detection mechanism in Hadoop relies on a too simplistic criterion, which does not
consider the root cause of the variation in task execution times. We find that reduce-skew and
non-local map tasks can lead to excessive unnecessary speculative copies.

• Unfortunately, these unnecessary speculative copies may slow down other running tasks as
they compete for the resources and may result in a performance degradation.

3.5.2 On the Power Cost of Speculative Execution

A common trend can be observed: speculative execution leads to higher energy consump-
tion in homogeneous environment. Hereafter, we present a detailed comparative discussion
of the various running applications.

CloudBurst vs. WordCount. These two applications are CPU-intensive applications and
their execution times are negligibly impacted by speculative execution. As shown in Fig-
ure 3.8a, the average power consumption of a node increases by 11% (from 84.1 to 93.6 W)
and 12% (from 87.4 to 97.9 W) for CloudBurst and WordCount applications when speculative
execution is used, respectively. This is unexpected as the cluster resources are occupied by
speculative copies contribute up to 18% of the total resource occupation time for CloudBurst
application, and only 8% of the total resource occupation time for WordCount application, as
shown in Figure 3.9. Intuitively, higher slot occupation will result in higher average power
consumption. Furthermore, given that the idle time (i.e., the time that nodes do not carry any
tasks) when running CloudBurst decreases by 25% while it decreases by 12% when running

3.5 – Effectiveness of Speculative Execution 39

 0

 5

 10

 15

 20

 25

 30

CloudBurst Sort WordCount

P
ro

p
o
rt

io
n
 o

f
s
lo

t
o
c
c
u
p
a
ti
o
n

Figure 3.9 – Extra slot occupation due to speculative copies in homogeneous environment.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

CloudBurst Sort WordCount

P
ro

p
o
rt

io
n
 o

f
th

e
 i
d
le

 t
im

e

to
 t
h
e
 t
o
ta

l
e
x
e
c
u
ti
o
n
 t
im

e

Disabled
Enabled

(a) Homogeneous environment.

 0

 10

 20

 30

 40

 50

 60

 70

CloudBurst Sort WordCount

P
ro

p
o
rt

io
n
 o

f
th

e
 i
d
le

 t
im

e

to
 t
h
e
 t
o
ta

l
e
x
e
c
u
ti
o
n
 t
im

e

Disabled
Enabled

(b) Heterogeneous environment.

Figure 3.10 – Total idle time when speculation is enabled.

WordCount (as shown in Figure 3.10a), it is expected to obtain higher increase when run-
ning CloudBurst application compared to WordCount. This leads us to the observation that
the power cost of launching speculative copies varies according to the load of nodes. This in
turn can strongly impact energy cost of speculative execution. This observation motivates us
to further look at the power cost of launching speculative copies across nodes with different
loads (see Section 3.6).

Sort. On the other hand, the slots which are occupied by speculative copies account for
11% of the execution times of the Sort application and results in only 1.8% increase in the
average power consumption. This can be explained due to the increase in the idle time (as

40 Chapter 3 – Impact of Straggler Mitigation on Performance and Energy Consumption

shown in Figure 3.10a) and to low CPU usage exhibited in Sort (i.e., the average CPU usage
is almost 25% [56]). Thus, the increase in energy consumption when running Sort is strongly
related to the increase in execution time.

In summary, we observe that:

• The energy consumption of a Hadoop cluster varies according to the running time of the ap-
plications and to the energy cost of speculation execution.

• The energy cost of speculative execution is proportional to the increase in the average power
consumption in the cluster, which strongly depends on the duration of the unnecessary spec-
ulative copies (i.e., extra slot occupation), on the resulted idle time, and on the allocation of
speculative copies.

• The extra slot occupation and idle time are the major contributors to the extra power cost of
speculative execution when running I/O bound application (i.e., Sort), but they have less im-
pact on the extra power cost of speculative execution when running CPU-intensive applications
(i.e., CloudBurst).

3.5.3 Zoom in on the Energy Impact of Speculative Execution

Speculative execution results in a significant reduction in the energy consumption of
Hadoop cluster when running CloudBurst in heterogeneous clusters. We observe 28.7% en-
ergy reduction (as shown in Figure 3.4b). The significant reduction in execution time is the
major contributor to this energy reduction (i.e., the execution time is decreased by 47.6% as
shown in Figure 3.4a). This is due to the high ratio of successful speculative copies (see Fig-
ure 3.5b): the ratio of successful speculative copies is 54.5% and 70.2% for Map tasks and
Reduce tasks, respectively. More importantly, these successful speculative copies improve
the average task execution times of Reduce tasks (the average task runtime is decreased by
32.7%) and reduce the execution time of the longest task by 48.7% (see Figure 3.11b). How-
ever, we can still see the natural skew-reduce issue: the gap between the longest Reduce task
and the average Reduce task execution time is almost the same as in homogeneous cluster
(see Figure 3.7b and 3.11b).

It is clear that the reduction in the energy consumption is not proportional to the execu-
tion time reduction. This is due to the 32% increase (i.e., from 64.9 to 88.4 W as shown in
Figure 3.8b) in average power consumption (i.e., extra power consumption caused by spec-
ulative execution) and the significant decrease in idle time, see Figure 3.10b.

On the other hand, we can observe that in the case of Sort and WordCount, the Hadoop
cluster consumes more energy when speculative execution is used. These results can be
explained by the increase in the execution time of the two applications and by the increase
in average power consumption per node due to the executions of speculative copies. The
average power consumption increases from 63.9 to 64 W when running Sort and from 80.7
to 81.7 W when running WordCount application.

It is important to mention that speculative execution successfully reduces the longest
map task by almost 80% in case of the Sort application, see Figure 3.11a. But, due to the
high number of speculative Reduce tasks (all were not successful) and the resulted network
contention, we observe an increase in the execution time of the longest Reduce task by almost
12%. As Sort is dominated by the completion of the last Reduce tasks, this results in longer
execution time.

3.6 – Impact of Speculative Copy Scheduling on Performance and Energy Consumption 41

 0

 50

 100

 150

 200

 250

Disabled Enabled Disabled Enabled Disabled Enabled
CloudBurst Sort WordCount

E
x
e

c
u

ti
o

n
 t

im
e

 (
s
)

Average Longest

(a) The average and longest map task execution times.

 0

 2

 4

 6

 8

 10

 12

 14

 16

Disabled Enabled

E
x
e

c
u

ti
o

n
 t

im
e

 (
1

0
3
s
)

Average

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

Disabled Enabled Disabled Enabled

CloudBurst Sort WordCount

Longest

(b) The average and longest reduce task execution times.

Figure 3.11 – The average and longest task execution times in heterogeneous environment.

In summary, we confirm that speculative execution — when necessary — can effectively mitigate
stragglers, but may not necessarily reduce the overall execution times of the applications. Moreover,
we observe that the reduction in energy consumption is only achieved when the execution time of
the application is noticeably reduced. However, this reduction is not proportional to the performance
improvement.

3.6 Impact of Speculative Copy Scheduling on Performance and

Energy Consumption

When and Where to allocate speculative copies affect the performance and energy consump-
tion of speculative execution. In this section, we first discuss how existing speculative ex-
ecution mechanisms answer the question of when. Then, we discuss the resulting impact
on performance and energy consumption. Second, we leverage the importance of how to
answer the where question to the effectiveness of speculative execution. Accordingly, we in-

42 Chapter 3 – Impact of Straggler Mitigation on Performance and Energy Consumption

 0

 20

 40

 60

 80

 100

 120

 140

 160

 10 20 30 40 50 60

T
a

s
k
 I

D

Time (s)

Regular Tasks Speculative Copies

Figure 3.12 – WordCount application in heterogeneous environment. This figure uses lines to depict
the executions of regular tasks and speculative copies. Due to the unavailability of slots, speculative
copies has to wait until the completion of some regular tasks.

vestigate the impact of different copy allocations on performance and energy consumption.

3.6.1 Speculative Copies Are Delayed due to Resource Unavailability

In Hadoop, regular tasks are first considered to be launched when there are free slots. Specu-
lative copies are only considered when all regular tasks have been launched. With this policy,
speculative copies can be delayed due to resource unavailability as all slots are occupied by
regular tasks. To illustrate this phenomenon, we conduct an experiment with WordCount ap-
plication in our heterogeneous cluster. The input size of this WordCount job is 10 GB of data.
Accordingly, this WordCount job comprises 160 Map tasks. These regular tasks occupy the
whole cluster, which has 160 Map slots. As Figure 3.12 shows, the speculative copies have
to wait until the completion of some regular tasks to be able to start.

This delay leaves the speculative copies less chance to successfully finish, as the strag-
glers have been running for a long time. Moreover, these stragglers also consume energy
during that time. As a result, this delay also affects the effectiveness of speculative execu-
tion, with respect to energy consumption. As shown in Figure 3.12, speculative execution
has to wait for 34 seconds until the first speculative copies can be launched. These spec-
ulative copies take in average 30 seconds to finish. As a result, stragglers are killed after
running for 64 seconds in average. Assume that resources are earlier available. For instance,
resources are available after 15 seconds of running. In this case, stragglers are killed after 45

3.6 – Impact of Speculative Copy Scheduling on Performance and Energy Consumption 43

 0

 20

 40

 60

 80

 100

 120

1 2 3 4 5 6 7 8
 0

 5

 10

 15

 20

 25

 30

 35

P
o

w
e

r
c
o

n
s
u

m
p

ti
o

n
 (

W
a

tt
/N

o
d

e
)

A
v
e

ra
g

e
 t

a
s
k
 e

x
e

c
u

ti
o

n
 t

im
e

 (
s
)

Number of concurrent map tasks

Power consumption Execution time

(a) Map tasks in the WordCount application.

 0

 20

 40

 60

 80

 100

 120

 140

1 2 3 4 5 6 7 8
 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

P
o

w
e

r
c
o

n
s
u

m
p

ti
o

n
 (

W
a

tt
/N

o
d

e
)

A
v
e

ra
g

e
 t

a
s
k
 e

x
e

c
u

ti
o

n
 t

im
e

 (
s
)

Number of concurrent reduce tasks

Power consumption Execution time

(b) Reduce tasks in the CloudBurst application.

Figure 3.13 – The average task execution time and power consumption when varying the number of
concurrent running tasks.

seconds of running. This equals to an improvement of 30%. Besides, the energy consumed
by stragglers are also reduced. Unfortunately, the unavailability of resources prevents spec-
ulative execution from reaching this improvement.

Even worse, Big Data jobs can consist of thousands of tasks [93]. The regular tasks of
these large jobs can occupy the cluster for a very long time. As a result, the delay for specu-
lative copies will be more significant in this case. This raises yet another important problem
of resource unavailability for speculative execution.

We notice that the execution of speculative copies may be delayed when regular tasks occupy the
whole cluster. This delay can lead to unsuccessful speculative copies which have negative impact on
both performance and energy consumption.

44 Chapter 3 – Impact of Straggler Mitigation on Performance and Energy Consumption

3.6.2 Impact of Speculative Copy Allocation on Performance and Energy Con-
sumption

In this section, we study the impact of speculative copy allocation on power consumption at
node level. To do so, we first study the average power consumption of a node in a homoge-
neous Hadoop cluster when varying the number of concurrent running tasks for the same
application. Here we show the results when varying the number of concurrent reduce tasks
for CloudBurst. As shown in Figure 3.13b, our results indicate that the average power usage
of a node gradually increases when increasing the number of concurrent tasks from 1 to 4
and it remains the same when the number of concurrent tasks is > 4. On the contrary, the
average task execution time slightly increases when the number of concurrent tasks is ≤ 4.
The difference is higher when the number of concurrent tasks is > 4. The same behavior is
observed while varying the number of concurrent map tasks of WordCount application (as
shown in Figure 3.13a).

In summary, we find a clear trade-off between performance and power consumption when schedul-
ing a speculative copy. Launching speculative copies on idle nodes or nodes with a small number
of running tasks result in lower average task execution time but leads to higher additional power
consumption per node. In contrast, launching speculative copies on nodes with larger number of
running tasks results in higher average task execution time but lower additional power consumption
per node.

Thus, as Section 3.5.1 suggested, speculative copy allocations can significantly impact
the energy impact of speculative execution. We now focus on CloudBurst and WordCount
applications and study their sensitivity to speculative copy allocation.

We plot the CDF of the number of current running tasks on a node when launching spec-
ulative copies. Figure 3.14b shows that 62% of speculative copies are launched on nodes each
of which hosts at least four running Reduce tasks. As shown in Figure 3.13b, these specu-
lative copies have minor impact on the average power consumption of the nodes on which
they run. However, the same observation does not apply to the WordCount application, as we
can see in Figure 3.14a. Only 24% of speculative copies are launched on nodes each of which
hosts at least four running tasks. 76% of speculative copies are launched on nodes with low
number of running tasks. These copies result in high additional power consumption to the
nodes which host them. This explains the results in Section 3.5.1.

In summary, we conclude that an energy-aware speculative execution mechanism, or straggler han-
dling mechanism in general, is necessary to reduce the energy consumption of Hadoop cluster. The
energy-aware approach must consider the impact of launching speculative copies on the overall en-
ergy consumption of Hadoop clusters. That is, to find where to schedule speculative copies in order
to achieve the best trade-off between performance (i.e., reducing the long-running stragglers) and
energy consumption (i.e., minimizing the extra energy consumption).

3.7 Conclusion

With the increasingly large scale of Big Data processing systems, energy consumption has
become a major concern in recent years. Similarly, straggler mitigation has become the key
feature of Big Data processing systems.

3.7 – Conclusion 45

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 3 4 5 6 7

C
D

F

Number of Map tasks running per node
when launching speculative copies

(a) WordCount application: Map tasks.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 3 4 5 6 7

C
D

F

Number of Reduce tasks running per node
when launching speculative copies

(b) CloudBurst application: Reduce tasks.

Figure 3.14 – The distribution of the current running tasks per node when launching speculative
copies.

In this chapter, by means of experimental evaluation, we have shown the impact of strag-
gler mitigation on the energy consumption of Hadoop clusters. We have observed that the
default straggler detection mechanism in Hadoop is not accurate and may lead to excessive
unnecessary speculative copies. Therefore, it increases the energy consumption of Hadoop
clusters. We have quantified the energy cost of speculative execution. We find that the
average power consumption in the cluster, when enabling speculative execution, strongly
depends on the duration of the speculative tasks (i.e., extra slot occupation), on the idle time,
and on the allocation strategy for speculative copies. We conclude that speculative execu-
tion may result in a reduction in the energy consumption if and only if the running time of
the application is noticeably reduced to compensate the energy cost of speculative execu-
tion. Furthermore, we demonstrate that existing speculative execution mechanisms launch
speculative copies very late due to resource unavailability. This can strongly degrade the
effectiveness of speculative execution. Finally, we discussed the trade-off between perfor-
mance and energy consumption when scheduling a speculative copy.

It is important to note that the findings that we present in this chapter are not limited to
Hadoop and can be applied to different Big Data processing frameworks that are featured
with speculative execution to handle stragglers (e.g., Spark [130]).

In the next chapters, we discuss in detail our contributions addressing the aforemen-
tioned issues, towards energy-efficient straggler mitigation for Big Data processing systems.

47

Chapter 4
Measuring and Enabling the Energy

Efficiency of Straggler Detection

Contents

4.1 Energy Inefficiency of Existing Straggler Detection Mechanisms 48

4.2 A Framework to Evaluate Straggler Detection Mechanisms 49

4.2.1 Metrics for Characterizing Straggler Detection Mechanisms 50

4.2.2 Linking Straggler Detection Metrics to Performance 53

4.2.3 Characterizing Straggler Detection Mechanisms via the Proposed
Metrics . 56

4.3 Hierarchical Straggler Detection: A Green Straggler Detection Mechanism 62

4.3.1 Design Principles . 63

4.3.2 Architecture . 63

4.3.3 Characterizing the Hierarchical Straggler Detection Mechanism . . . 64

4.3.4 Evaluating the Effectiveness of Straggler Detection Mechanisms . . . 65

4.3.5 Evaluating Hierarchical with Different Applications and Slow-node
Thresholds . 70

4.4 Conclusion . 73

EXISTING straggler mitigation techniques do not always improve performance and may
result in high energy consumption [93]. Therefore, it is imperative to quantitatively
characterize existing straggler mitigation techniques in order to estimate their impact

on performance and energy consumption. This information is the stepping stone to improve
existing straggler mitigation techniques, with respect to performance and energy efficiency.

In this chapter, we introduce a comprehensive framework to characterize and evaluate
existing straggler detection mechanisms. We start with a set of metrics that can be used to

48 Chapter 4 – Measuring and Enabling the Energy Efficiency of Straggler Detection

characterize straggler detection mechanisms, including Precision, Recall, Detection Latency,
Undetected Time and Fake Positive. Then, we develop an architectural model by which these
metrics can be linked to execution time and energy consumption. In addition, we conduct
a set of experiments on Grid’5000 and use these metrics to characterize the state-of-the-art
straggler detection mechanisms.

Based on the proposed metrics, we introduce an energy-driven straggler detection mech-
anism. This mechanism, called Hierarchical, targets a high Precision in order to reduce the
wasteful energy consumption on unnecessary speculative copies. As its name suggests, it
works as a secondary straggler detection layer on the top of regular straggler detection mech-
anisms. It considers tasks at the node-level. Only tasks on nodes with relatively low perfor-
mance, compared to the average cluster performance, are taken into consideration while
detecting stragglers. We evaluate our Hierarchical straggler detection mechanism through a
set of experiments on Grid’5000 with representative Big Data applications.

The rest of this chapter is organized as follows. Firstly, we analyze the traces of Hadoop
production cluster to illustrate the inefficiency of existing straggler mitigation techniques.
Then, the metrics for characterizing straggler detection mechanisms are presented in detail.
Subsequently, we introduce our Hierarchical straggler detection mechanism.

4.1 Energy Inefficiency of Existing Straggler Detection Mecha-

nisms

Currently, the common wisdom applied in existing straggler detection mechanisms is to
detect as many stragglers as possible in order to cut the long running tail in job execution.
For example, Default [31] decides a task with progress less than 80% of the average progress
as straggler. LATE [131] marks the tasks with speed less than the mean speed minus the
standard deviation as stragglers. Mantri [6] considers tasks with 1.5x times longer execution
time than average execution time as stragglers.

Killed ratio =
#Killed speculative copies
#Total speculative copies

(4.1)

Resource on killed copies =
#Resource consumption of killed copies

#Total job’s resource consumption
(4.2)

We have analyzed the traces from a Hadoop production cluster at CMU collected in
Octobar 2012 [93]. Figure 4.1 shows the ratio of killed speculative copies, i.e., unsuccessful
copies, over all copies for each Hadoop job, as well as the ratio of resources consumed by the
killed copies over the total resource consumption of a job. Equations 4.1 and 4.2 demonstrate
how to calculate these metrics. We observe that many speculative copies are unsuccessful.
These unsuccessful speculative copies in turn waste a lot of resources, which in other words
can be converted into energy waste. For example, among the total 568 jobs, there are 370
jobs which have speculative execution with zero successful copies. For some jobs, the killed
speculative copies consume more than 40% of the job’s total resource consumption.

There exists several reasons which can cause this high ratio of killed copies. Amongst
them, late detection and wrongly detection are two major sources causing this. Identifying
the root causes is essential to any further improvement. Unfortunately, there exists no ded-
icated measuring metric for straggler detection mechanisms which can specifically indicate

4.2 – A Framework to Evaluate Straggler Detection Mechanisms 49

 0

 0.2

 0.4

 0.6

 0.8

 1

 100 200 300 400 500

K
il
le

d
 r

a
ti
o

Job ID

(a) Ratio of killed speculative copies.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 100 200 300 400 500

R
e

s
o

u
rc

e
 o

n
 k

ill
e

d
 c

o
p

ie
s

Job ID

(b) Resource consumption ratio on killed copies.

Figure 4.1 – Hadoop production trace analysis: The ratio of killed speculative copies to the total
speculative copies launched is high. For more than 65% of the jobs, all speculative copies, which
were launched, are killed. These unsuccessful speculative copies consume wastefully resources while
running. The ratio of resource consumption on these killed speculative copies can be more than 40%
of the total job resource consumption.

the characteristics of these mechanisms. In the next section, we introduce a set of dedicated
metrics designed for characterizing straggler detection mechanisms.

4.2 A Framework to Evaluate Straggler Detection Mechanisms

Most of the existing work on straggler detection focuses on the impact of their detection
mechanisms by evaluating the reduction in the job’s execution time [4, 6, 22, 31, 58, 131] or
the reduction in execution time of long-running stragglers [4, 6]. Other studies assess the
impact of the straggler detection mechanisms through evaluation metrics such as the total
number of successful speculative copies [6, 122, 123], extra resource usage [6, 122]. Those
metrics are insufficient, imprecise, and sometimes even result in incorrect interpretations.

To illustrate this observation, assume a scenario where a Big Data job consists of 100
tasks. Amongst these tasks, there exists 10 stragglers. In this scenario, the straggler detection
mechanism A detects 50 tasks as stragglers. Amongst these detected stragglers, there are 5
actual stragglers. The other 45 detected stragglers are actually normal tasks, which were
overly detected as stragglers. The straggler detection mechanism B detects only 5 stragglers.
These 5 detected stragglers are actual stragglers. At the end, both A and B result in the same
execution time. If execution time is used as a metric to evaluate these two straggler detection
mechanisms, the conclusion is they have similar characteristics. However, this conclusion is
clearly inadequate and misleading. Moreover, the conclusion obtained by using this metric
may be dramatically changed when these two detection mechanisms are used in different
systems.

In this section, our study tackles this issue by introducing a list of evaluation metrics
to comprehensively characterize straggler detection mechanisms. The following sections

50 Chapter 4 – Measuring and Enabling the Energy Efficiency of Straggler Detection

Table 4.1 – Technical terms and definitions related to speculative execution.

Terms Definitions

Execution time
The time that a task/job takes from the moment
it starts until it finishes.

Slot/container
The resource unit which executes the Map/Re-
duce tasks.

Wave

This term refers the ratio of job size, represented
by the tasks number, to the cluster capacity. If the
tasks number of a job equals x times the cluster
capacity, we can say that the job’s execution con-
sists of x waves.

Detected straggler
The task that is detected by the straggler detec-
tion as straggler.

Speculative copy
The replica instance of the task, which is detected
as straggler.

Successful

speculative copy

The speculative copy that can finish before its
original task. This task is marked as successful.
The original task is killed upon the finish notifi-
cation of the copy.

Unsuccessful

speculative copy

In contrast, the unsuccessful copy is the copy that
cannot finish before its original task. It gets killed
upon the completion of its original task.

Speculative lag

This parameter is used to trigger the straggler
detection and handling. The straggler detection
mechanism starts to look up for stragglers if: (i)
there are no waiting unscheduled tasks and (ii)
the job has been running for longer than the Spec-
ulative Lag. In Hadoop, the default value for this
parameter is 60 seconds.

describe these metrics and provide hints to use them in characterizing straggler detection
mechanisms.

Technical Terms and Definitions. For the sake of references, we gather all related technical
terms as well as their definitions in Table 4.1.

4.2.1 Metrics for Characterizing Straggler Detection Mechanisms

In this section, we discuss in detail the shortcomings of existing metrics in evaluating strag-
gler detection mechanisms. Then we present a list of new metrics to characterize stragglers
and evaluate the effectiveness of detection mechanisms.

4.2 – A Framework to Evaluate Straggler Detection Mechanisms 51

Table 4.2 – Existing metrics for evaluating straggler detection mechanisms.

Goal Metric Description
Related

work

Efficiency

Execution time

Measurement of the
impact of speculative
execution on reducing the
execution time

[4, 6, 22,
58, 131]

Resource
consumption

Measurement of the
reduction in total resource
consumption

[4, 6,
122]

Heavy-tail
reduction

Reduction of the ratio
between the longest and
average tasks’ execution
time

[4, 6]

Wasteful resource
occupation

The amount of resource
consumed by
unsuccessful copies

[131]

Characterizing

Number of
speculative copies

The number of
speculative copies
launched throughout the
execution

[6, 117,
131]

Number of
successful copies

Total number of
speculative copies
successfully finished

[6, 117]

4.2.1.1 Lack of evaluation metrics for straggler detection

Many studies have concerned improving the speculative execution in Big Data processing
systems. In order to measure the impact of the proposed solutions, as well as characterize
the straggler detection mechanisms, some individual metrics have been proposed. Table 4.2
lists some existing metrics which are used in studies related to straggler mitigation.

While efficiency metrics can measure the impact of a straggler detection mechanism on a
given system, the characterizing metrics are insufficient to explain this efficiency and may re-
sult in incorrect interpretations. Furthermore, they cannot be used in a mathematical model
to predict performance.

As an example, we analyzed a one-month trace of three production Hadoop clusters [93]
and studied the correlation between the number of successful speculative copies and the
heave-tail execution reduction. Although this number of successful copies metric is used to
explain the impact in reducing the execution time [117] of speculative execution, Table 4.3
shows that the absolute value of the correlation coefficient only ranges between 0.04-0.14 for
the three clusters (while the maximum absolute value of the correlation coefficient is 1.0).
This means that there is no strong correlation between this metric and the effectiveness of
speculative execution. This demonstrates that it is not sufficient to use these metrics to eval-
uate the efficiency of straggler detection. Thus, we need to consider a complete framework
for straggler detection and mitigation. Such framework can allow system administrators to

52 Chapter 4 – Measuring and Enabling the Energy Efficiency of Straggler Detection

Table 4.3 – Traces of three Hadoop production clusters. The table presents the correlation coefficient
between the successful speculative copy ratio and the ratio of the longest and the average task’s
execution time for each job. The results show that the correlation is not significant.

Cluster Date #Jobs #Tasks
#Successful

copies
Correlation

M45 04-2010 1735 1759434 6085 0.055
OPENCLOUD 01-2011 989 1310160 26746 0.042
WEB MINING 10-2012 1074 1000427 5136 -0.14

predict the performance of straggler detection mechanisms in different scenarios and thus
help them to select the detection mechanism which best fits their needs.

4.2.1.2 Precision, Recall, Detection Latency and Undetected Time

We now discuss new metrics to evaluate the effectiveness of straggler detection mechanisms.
First, it is important to understand the status of each task post-execution. A task T can be
either a straggler (T ∈ stg) or not (T ∈ stg), and detected as a straggler (T ∈ det) or
not (T ∈ det). There exists several definitions of stragglers. For instance, Dean et al. [31]
defines a straggler as a task which takes at least 20% longer time to complete compared to
the average task execution time. When detecting stragglers, the natural idea that comes to
mind is what was indeed detected. In particular it is very natural to consider the following
parameters:

False Negative : A straggler that occurred but was not detected by the mechanism (stg ∧
det).

True Positive : A detected straggler (stg∧ det).

False Positive : A task detected that in the end was not a straggler (stg∧ det).

Note that False Negative, True Positive and False Positive are parameters that are well-
known in the detection community (see for example in failure detection [13, 37]). Based
on these, we can define the Precision p and Recall r of a straggler detection mechanism, that
are:

p =
|stg∧ det|

|det|
=

|True positive|
|True positive + False positive|

(4.3)

r =
|stg∧ det|

|stg|
=

|True positive|
|True positive + False negative|

. (4.4)

Simply put, the Precision is the number of correct straggler detected amongst all detected
tasks, and the Recall is the ratio of detected stragglers amongst all stragglers that are present
in the system.

However, while these parameters are sufficient in the failure detection community, they
do not suffice for straggler detection. While a failure is a very punctual event that you either
detect or not, a straggler is a long-lasting event. It seems important to reward detectors
that could detect stragglers very early. Intuitively, there is major a difference between a

4.2 – A Framework to Evaluate Straggler Detection Mechanisms 53

straggler detection mechanism that detects a straggler after 60 seconds of execution and one
that detects it after 10 minutes.

To measure this, we introduce a new parameter, namely the Detection Latency. For a
detected straggler, Detection Latency expresses how fast the straggler is detected compared
to its normal execution time, that is:

Detection Latency =
∑stg∧det

Time to detection
Normal execution time

|stg∧ det|
(4.5)

In existing studies on straggler detection, the average task execution time is widely con-
sidered as normal execution time [6, 31]. However, recent studies have demonstrated that
this approach results in misleading information [52, 54]. For instance, the execution times of
different tasks might not be identical [52]. In this case, considering average task execution
time as normal execution time of an arbitrary task may be inaccurate. In Section 4.2.3.2, we
discuss in detail this issue and introduce a more accurate method to estimate the normal
execution time of each task.

In addition, similarly there is a difference for a non-detected straggler between one that
finishes in twice its normal execution time, and one that finishes after ten times its normal ex-
ecution time. Intuitively, this gives an idea of the cost of a non-detected straggler. To measure this,
we introduce a new parameter, namely the Undetected Time. For a non-detected straggler,
Undetected Time expresses how long does it take to execute compare to its normal execution
time.

Undetected Time =
∑stg∧det

Execution Time
Normal execution time

|stg∧ det|
(4.6)

For Detection Latency and Undetected Time, the smaller the better, while for Precision and
Recall, the higher the better.

4.2.2 Linking Straggler Detection Metrics to Performance

In this section, we propose a model to predict the energy consumption and slowdown of a
node. Then, we use this model to illustrate the relationship of our metrics with execution
time and energy consumption.

4.2.2.1 Architectural Models for Performance and Energy Consumption

We start by providing a very simple model for a multi-threaded, multi-core machine. We
argue that this model, although simple, is realistic enough to allow for improvements in the
manipulation of stragglers.

Assume that we have a multi-core node with c cores that support t tasks each. The
maximum number of tasks for the node is then c × t. In the following, we assume scattered-
thread strategies (hence the number of tasks between any two cores on each node differ at
most by one).

54 Chapter 4 – Measuring and Enabling the Energy Efficiency of Straggler Detection

Power Consumption. A multi-core node has different states in which the power-
consumption may differ: it can be turned off hence not consuming any power, or turned
on and having a static power consumption (Pstatic). Then depending on the number of cores
that are active, a dynamic power (Pdyn) is added that we assume proportional to the number
of active cores. With n being the number of tasks running concurrently, the power P is:

P =

0 for n = 0 (turned off)

Pstatic + n ×Pdyn for 1 ≤ n ≤ c

Pstatic + c ×Pdyn for c < n ≤ ct

Based on this, we can divide the nodes into three categories depending on the number of
tasks running concurrently:

• A: The nodes that are turned off, adding a task on them would increase the current
power consumption by Pstatic + Pdyn.

• B: The nodes that have between 1 and c − 1 tasks running on them, adding a task on
them would increase the current power consumption by Pdyn.

• C: The nodes that have between c and c× t− 1 tasks running on them, adding a task on
them would not increase the power consumption as all the cores are running already.

Average Slowdown Factor and Interference Model. Hereafter, we model the slowdown to
a task caused by resource contention between concurrent tasks running on the same node.
We denote the average slowdown factor as α. We observe that α equals to one when the
number of concurrent tasks is less than the number of cores c. This is because each task can
be executed on a dedicated core and there is hardly any contention between the tasks. When
the number of tasks increases beyond c, the contention also increases. Let n be the number
of running tasks. We define the average slowdown factor α as below.

α =

{

1 for 1 ≤ n ≤ c
n
c for c < n ≤ ct

(4.7)

4.2.2.2 On the Impact of Precision and Recall on Energy Consumption and Execution

Time

In this section we give a mathematical intuition to help understanding the impact of different
characteristics of a detection mechanism on the performance of the system.

Let us consider an application of n tasks, on an architecture with 2n nodes each with a
single core. We assume that amongst those, we have a ratio φ of stragglers. We use a very
simple algorithm to deal with stragglers:

(i) It schedules speculative copies of all detected stragglers on new nodes as soon as they
are detected.

(ii) For a handled stragglers, when either the straggler or the speculative copy finishes, the
other one get killed.

4.2 – A Framework to Evaluate Straggler Detection Mechanisms 55

We now do the following assumption as first-order approximations (FOA):

• For a detected straggler, we assume that the speculative copy finishes before the strag-
gler (otherwise the detection is useless and one could count it as non-detected, note
that we discuss this hypothesis in Section 4.2.3.2 with the introduction of Fake Positive
metric).

• We assume that the detection of a non-straggler occurs on average at 50% its execution.
In Section 4.2.3, we observe that the average Detection Latency of existing straggler de-
tection mechanisms is 45% of normal execution time.

We can evaluate the performance and energy of a task depending on different param-
eters, namely whether it is a straggler (stg) or not (stg), and whether it was detected as a
straggler (det) or not (det). Then we can determine FOA for both the time overhead and
energy consumption of tasks based on these, namely:

Detected Stragglers. They occur with probability:

P(stg∧ det) = P(stg)P(det|stg) = Recall× φ (4.8)

Time Overhead ≈ 1 + Detection Latency

Energy cost ≈ (2 + Detection Latency)× (Pstatic + Pdyn)

The time overhead is the time it takes to detect the straggler (Detection Latency) and the
time for a normal task execution (normalized by 1). A high Detection Latency results in late
speculative execution. Consequently, it leads to longer execution time. With respect to en-
ergy consumption, as both the straggler and the speculative copies are running, it comes
with the energy cost. Moreover, high Detection Latency results in extra energy cost, as strag-
glers consume more energy during the time detection mechanism takes to detect them.

Non-detected Stragglers. They occur with probability:

P(stg∧ det) = P(stg)P(det|stg) = (1 − Recall)× φ (4.9)

Time Overhead ≈ Undetected Time

Energy cost ≈ Undetected Time × (Pstatic + Pdyn)

The time overhead is the time it takes for the non-detected straggler to execute (Unde-
tected Time). A long-running non-detected straggler can severely prolong the whole job’s
execution. A better straggler detection mechanism should have smaller Undetected Time.
The same holds for the energy. High value of Undetected Time results in long execution time
during which non-detected stragglers consume energy.

56 Chapter 4 – Measuring and Enabling the Energy Efficiency of Straggler Detection

Detected Non-stragglers. They occur with probability:

P(stg∧ det) =
FalseP

n
= Recall× φ ×

1 − Precision

Precision
(4.10)

Time Overhead ≈ 1

Energy cost ≈ 1.5 × (Pstatic + Pdyn)

Our first order approximation states that we detect (and handle) the False Positive at half
its execution on average, hence during half it’s execution the energy cost is doubled. A
higher Precision reduces this energy cost.

Non-detected Non-stragglers. They occur with probability:

P(stg∧ det) = 1 − P(stg∧ det)− P(stg∧ det)− P(stg∧ det)

= 1 − φ × (1 +
Recall× (1 − Precision)

Precision
)

(4.11)

Time Overhead ≈ 1

Energy cost ≈ (Pstatic + Pdyn)

Simply put, one can see it as:

• Recall impacts performance. A higher Recall results in higher performance improve-
ment as more stragglers are detected.

• False Positive (and with this, Precision) impacts energy efficiency. A higher Precision
results in lower number of detected non-stragglers (i.e., wrongly detected stragglers).
This in turn reduces the wasteful energy consumed by unnecessary speculative copies
of these detected non-stragglers.

Again, we want to stress out that this is a very naïve model. For instance False Positive can
also impact performance, in the case when there are not enough nodes to duplicate all de-
tected stragglers. In this case, False Positive will delay the speculative copies of real stragglers.
Nonetheless, this intuition still provides useful information for linking the proposed metrics
to performance and energy consumption. In Section 4.2.3, we use this intuition to interpret
the results of existing straggler detection mechanisms when using our evaluation metrics.

4.2.3 Characterizing Straggler Detection Mechanisms via the Proposed Metrics

In this section, a set of experiments will be conducted in order to illustrate the usage of
our proposed metrics, e.g., Precision, Recall, on characterizing the straggler detection mech-
anisms. We start with the detailed description of the experimental setups used throughout
our experiments. Then, the evaluation metrics are used to characterize existing straggler
detection mechanisms. Finally, we analyze the obtained characteristics of each straggler de-
tection mechanism in order to provide in-depth straggler detection mechanism evaluation
and characterization.

4.2 – A Framework to Evaluate Straggler Detection Mechanisms 57

4.2.3.1 Experiment Setup

Testbed. All the experiments conducted throughout the evaluation were executed on
Grid’5000 testbed [59], i.e., a scientific testbed that enables the run of experiments at large
scales with highly-configurable infrastructure located across 10 sites in France. For our ex-
periments, we used a 21-node cluster on Nancy site. Each node is equipped with 4-core
CPU Intel Xeon X3440, 16 GB of memory, 300 GB of storage and 1 Gb/s Ethernet network
for intra-cluster communication. Moreover, each node on this cluster is attached with power
monitoring hardware, i.e., Power Distribution Units (PDUs)). They allow us to acquire fine-
grained power consumption information on each node individually during the experiments.

Platform. We deployed Linux Ubuntu 16.04 LTS on our cluster. Moreover, Hadoop
2.7.3 [108], i.e., the stable version released in August 2016, was used for running our ex-
periments. We configured Hadoop with one dedicated node as the master node. The rest 20
nodes were worker nodes. Each worker node was set to have maximum 8 Map slots and 8
Reduce slots. Regarding the file system configuration, we kept the default setting, where the
replication factor was 3 and the chunk size was 64 MB.

Application. As precision is part of the evaluation, we wanted to fully control the behav-
ior of the application and to avoid the unexpected deviation which can impact the results.
Therefore, we chose WordCount, a simple yet representative MapReduce application. More-
over, the experiments with only this application took more than 100 hours to finish.

The basic characteristics of the WordCount job are presented in Table 4.4. The cluster ca-
pacity is 160 Map slots. This job, which consists of 320 Map tasks, runs two waves of Map
tasks. We decide this setting based on the real-life Hadoop production cluster traces [93].
As we observed, there were roughly 25% of the jobs which are 2-wave+. More importantly,
these 25% 2-wave+ jobs contribute roughly 90% to the total launched Map tasks. Figure 4.2
illustrates the high ratio of the multiple-wave jobs in a real-life production Hadoop clus-
ter. Therefore, our setting can accurately reflect the jobs’ execution in real-life MapReduce
systems.

Straggler Injection. We propose a scheme to proactively control the straggler ratio injected
throughout the experiments. We divide the 20 workers into four groups Gi, i = 1..4. Each
group Gi consists of pi percent of the total 20 nodes. A node belonging to group Gi has i
active cores out of four. Each value of this four-dimension vector makes a specific scenario
Cj = 〈p1, p2, p3, p4〉. Throughout our experiments, we vary this straggler injection ratio
to present different scenarios covering a broad range of straggler occurrence, which are:
C1 = 〈35, 35, 5, 25〉, C2 = 〈25, 25, 25, 25〉, C3 = 〈10, 10, 5, 75〉 and C4 = 〈5, 5, 0, 90〉. Simply put,
in configuration C4, 5% of the nodes have only one active core, 5% have two active cores, and
90% have four active cores. Hence for an identical load on all nodes, 10% of the tasks should
be stragglers.

Straggler Detection Mechanisms. Throughout our experiments, we examined two strag-
gler detection mechanisms, two from the literature: Default [31] and LATE [131] mechanisms.
These two mechanisms are available in existing Hadoop [113] and YARN [108] implementa-
tions.

58 Chapter 4 – Measuring and Enabling the Energy Efficiency of Straggler Detection

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5000 10000 15000 20000

C
lu

s
te

r c
a
p
a
c
ity

C
D

F

Number of map tasks per job

Figure 4.2 – The distribution of Map task number in the production Hadoop cluster for the jobs
submitted in October 2012: This cluster is equipped with 64 machines, 8-core CPU and 16GB of
memory each. By default, the cluster capacity is 1024 Map slots. We noticed that there were roughly
30% of the jobs having more than 1024 Map tasks. In other words, 30% of the jobs run multiple Map
waves. Moreover, 25% of the jobs run more than 2 waves. It is important to emphasize that these 25%
2-wave+ jobs contribute almost 90% to the total launched Map tasks.

Table 4.4 – Application characteristics and configurations.

Feature Value

Dominant phase Map
Dominant resources CPU
Input size 20 GB
Shuffle size 400 MB
Output size 100 MB
No. Map tasks 320
No. Reduce tasks 160

4.2.3.2 Evaluation of Straggler Detection Mechanisms

In this section, a set of experiments is conducted in order to illustrate the usage of our pro-
posed metrics on characterizing straggler detection mechanisms. First of all, we present the
method for classifying the stragglers. Subsequently, we characterize the straggler detection
mechanisms Default [31] and LATE [131] using our metrics.

Detecting a Straggler. The key problem here is to detect after each run which tasks were
stragglers and which were not in order to determine the characteristics of the straggler de-
tection mechanisms. According to the straggler definition [31], a straggler is a task that takes
more than 1.2 times the time it normally takes to be executed.

We propose a method to determine the normal execution time of a task. Intuitively, ho-
mogeneous environment is an environment (i) with very few stragglers, and (ii) where the
stragglers can be manually detected. By running enough executions of an application in

4.2 – A Framework to Evaluate Straggler Detection Mechanisms 59

10000

20000

30000

40000

0 100 200 300

Task ID

E
x
e

c
u

ti
o

n
 t
im

e
 (

m
ill

is
e

c
o

n
d

)

Figure 4.3 – Distribution of execution times (in milliseconds) per task ID for the WordCount applica-
tion on a homogeneous platform.

a homogeneous environment, one can compute the normal execution time of each task by
taking the X quantile (i.e., a proportion X of the execution times were below this value and
1 − X above), where X can be defined according to those results. By comparing the task’s
execution time to the normal execution time, this method targets a high straggler detection ac-
curacy and eliminates the wrong stragglers detected caused by the non-local task execution
or the task execution skewness [6, 22].

Based on this, we ran 10 times the WordCount application with identical input setups and
measured the execution time of each task individually. We plot these results in Figure 4.3.

In this case, we could then evaluate that the normal execution time is the 0.5 quantile time
(meaning that 50% of the execution times are below this value and 50% above this value)
amongst the different execution times. We determined it based on the hypothesis that in
the homogeneous case, the stragglers correspond to the outliers observed. For instance, in
Figure 4.3, there are 21 outliers. We give in Table 4.5 the number of supposed stragglers
depending on the quantile chosen.

Limitations. We want to point out that we do not believe that there is a perfect way to
determine the normal execution time. In particular, we expect that the threshold for stragglers
will differ according to the application studied. However one does not need the exact value
of execution time to detect a straggler. Let us consider the following values:

• Ttask the normal execution time (unknown).

• smin the minimum slowdown of stragglers.

• εsetting the possible variation in time due to settings (depends on the application and
the machine).

Therefore, one can compute a sufficient condition for εguess the error authorized in the
normal execution time guessed:

1.2Ttask(1 + εguess) ≤ sminTtask(1 − εsetting) (4.12)

Ttask(1 + εsetting) ≤ 1.2Ttask(1 − εguess) (4.13)

60 Chapter 4 – Measuring and Enabling the Energy Efficiency of Straggler Detection

Table 4.5 – Straggler ratio on an homogeneous platform for the WordCount application, based on the
definition of the normal execution time: the normal execution time is the time for the X quantile of
execution time.

Quantiles of execution time 0.25 0.5 0.6 0.7 0.9

Ratio of stragglers 8.16% 0.66% 0.31% 0.16% 0.06%

Equation 4.12 ensures that a straggler is detected as a straggler and Equation 4.13 ensures
that a non-straggler will not be detected as a straggler. Such a value only exists if:

εsetting ≤
smin − 1
smin + 1

(4.14)

which means that the variation due to settings is not too big. In fine, this says that εguess

should satisfy the following condition

εguess < min
(

smin(1 − εguess)

1.2
− 1,

0.2 − εguess

1.2

)

(4.15)

This provides a sufficient condition for the imperfection in determining the execution time. It
should be noted that in our case, the threshold that we chose (0.5 quantile) allowed to closely
determine the expected number of stragglers in homogeneous environment (see Table 4.5)
as well as in all heterogeneous configuration scenario Ci=1..4.

Impact of the Speculative Lag on the Straggler Detection Effectiveness. For detecting
the stragglers, it is important to decide at which moment of the execution to trigger the
detection process. For instance, making the decision at the very early stage of the execution
is not efficient as there is not much information about the execution at that time. On the
contrary, triggering the detection at the very end of the task executions can strongly reduce
the chance of the speculative copy to successfully finish.

In Hadoop, there is a parameter called Speculative lag which specifies the waiting time
after the job triggers the straggler detection. This value is set to 60 seconds by default [113].
However, this static parameter does not work well with different applications having differ-
ent execution characteristics. Therefore, it is possible for a real straggler to be detected too
late, so that its speculative copy has no chance to finish before the straggler. We call this Fake
Positive detection. In the scope of this work, we define a straggler is Fake Positive detected, if
it is detected at the moment such that its remaining time is smaller than its normal execution
time.

Fake positive =
|Fake positive|

|True positive + False positive|
(4.16)

Thus, the presence of this metric reduces the value of the Precision p.

Precision =
|True positive − Fake positive|
|True positive + False positive|

(4.17)

4.2 – A Framework to Evaluate Straggler Detection Mechanisms 61

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 10 20 30 40 50 60 70

F
a
k
e
 p

o
s
it
iv

e
 r

a
ti
o

Speculative lag (s)

Figure 4.4 – Impact of Speculative lag on the Fake Positive ratio with Default straggler detection mech-
anism while running WordCount application.

In order to understand the impact of the Speculative lag parameter on causing the Fake
Positive detection, we conduct a set of experiments with WordCount application while mon-
itoring the Fake Positive ratio (calculated by the Equation 4.16). We run the Default straggler
detection mechanism with various values of Speculative lag. Figure 4.4 illustrates that the
default value of 60 seconds of the Speculative lag parameter can result in a high Fake Positive
ratio (0.14 in this case). As Map tasks normally take 30 seconds to finish. Triggering the
detection only after 60 seconds of running is too late.

The presence of this parameter with a high value reduces the Precision of the detection
mechanism. For instance, if the Precision is 0.5 (without considering the Fake Positive), and
the Fake positive is 0.14. The real Precision accordingly is reduced down to 0.36 (re-calculated
using Equation 4.17). This equals to a reduction of 28%.

In contrast, a 20- value of Speculative lag keeps the Fake positive ratio stable at a small
value. For the rest of our experiments, we set the Speculative lag to 20 seconds. This Speculative
lag configuration, which is calibrated according to the WordCount application, can assure a
negligible impact of the Fake Positive ratio on our experimental results. For other applica-
tions with different execution characteristics, the relevant Speculative lag values should be
adjusted accordingly.

Characterization of the Straggler Detection Mechanisms. On Table 4.6, we present the
characteristics of the two straggler detection mechanisms — Default - D and LATE - L. The
metrics that we use to characterize the mechanisms are: Precision, Recall, Detection Latency -
DL, Undetected Time - UT and Fake Positive - FP. We study each of the two mechanisms in four
different scenarios.

The Default straggler detection mechanism has quite low Precision. In the C4 scenario,
Precision is only 0.12, which means 88% of detected tasks were not actual stragglers. The

62 Chapter 4 – Measuring and Enabling the Energy Efficiency of Straggler Detection

Table 4.6 – The characteristics of two state-of-the-art straggler detection mechanisms when running
in four different scenarios. The evaluation metrics are: Precision, Recall, Detection Latency - DL, Fake
Positive - FP and Undetected Time - UT.

〈p1, p2, p3, p4〉 Mechanism Precision Recall DL FP UT

〈35, 35, 5, 25〉
D 0.64 0.48 0.55 0.05 2.10
L 0.83 0.61 0.44 0.04 1.80

〈25, 25, 25, 25〉
D 0.64 0.46 0.41 0.02 1.80
L 0.82 0.60 0.38 0.04 1.60

〈10, 10, 5, 75〉
D 0.22 0.41 0.49 0.07 1.90
L 0.24 0.55 0.48 0.06 1.80

〈5, 5, 0, 90〉
D 0.12 0.50 0.51 0.01 2.10
L 0.31 0.62 0.48 0.03 2.00

Recall metric has moderate values in most of the cases. However, there exists fairly low
values in some cases (0.41 in the C3 scenario). This observation suggests that there exists
some potential to significantly improve the Default mechanism, in both Precision and Recall.

The LATE straggler detection mechanism is based on progress rate to detect stragglers.
This detection mechanism results in a better Precision as well as Recall compared to Default.
However, in the C4 scenario, we notice a Precision of 0.31. Besides, the Recall values of LATE
are only a little higher compared to the Recall values of Default. This again implies that LATE
mechanism also can still be improved targeting higher Precision or Recall.

In addition, we also discuss the Detection Latency and the Undetected Time metrics. Re-
garding the Detection Latency, we notice that it usually takes from 30% to 60% of the normal
execution time for the two mechanisms to detect stragglers. These values of Detection Latency
imply that speculative copies only have chance to successfully finish if the straggler takes at
least 130%–160% of the normal execution time to finish. This provides useful information
for improving straggler handling mechanisms.

The Undetected Time metric specifies the impact of non-detected stragglers in causing the
long-running tasks to the job. As we can observe, the difference in the Undetected time values
of the two straggler detectors is negligible. Which means that the non-detected stragglers
have similar execution time. As a result, the overhead in execution time and energy con-
sumption of non-detected stragglers is similar for both Default and LATE.

In brief, our metrics can easily indicate the characteristics of stragglers detection mechanisms.
More importantly, the results show that there is still room for further improving existing straggler
detection mechanisms.

4.3 Hierarchical Straggler Detection: A Green Straggler Detection

Mechanism

The experimental results in previous section illustrate that the existing straggler detection
mechanisms have low Precision. In this section, we introduce a novel straggler detection
mechanism which adopts the hierarchical approach to detect stragglers. This mechanism
aims at a higher Precision in order to reduce the wasteful energy consumed by unnecessary

4.3 – Hierarchical Straggler Detection: A Green Straggler Detection Mechanism 63

speculative copies. We then conduct a set of experiments to illustrate and evaluate the im-
pact of this new straggler detection mechanism on both performance and energy consump-
tion.

4.3.1 Design Principles

In response to the drawbacks of existing straggler detection mechanisms, we introduce
in this section a novel straggler detection mechanism adopting the hierarchical approach,
called Hierarchical. The main goal of this Hierarchical straggler detection mechanism is to
reduce the energy consumption while guaranteeing comparable performance. The design
objectives are as follows.

(i) The Hierarchical straggler detection mechanism is designed to improve the Precision
(reducing the number of wrongly detected stragglers). The increment in Precision is
expected to improve the energy efficiency, as the number of wasteful speculative copies
for wrongly detected stragglers is reduced.

(ii) The Hierarchical aims to keep a low Undetected Time by focusing on the stragglers
which are expected to have longest execution times. This improves performance as
the longest stragglers are the most harmful stragglers to the job performance.

In parallel, it is expected that this comes at the following costs:

(i) The Hierarchical straggler detection mechanism is designed to reduce the number of
wrong detection. However, it may also reduce the number of True Positives. As a result,
the Hierarchical is expected to have lower Recall.

(ii) The Hierarchical straggler detection mechanism computes extra information in order to
detect a stragglers. This may increase the time to detect a straggler. This can result
in a higher Detection Latency. However, this additional latency is expected to be in the
order of milliseconds.

4.3.2 Architecture

In this section, we present the architecture of the Hierarchical straggler detection mechanism.
The Hierarchical mechanism works as a secondary straggler detection layer on top of an ex-
isting straggler detection mechanism. The goal of this detection layer is to select the critical
stragglers, i.e., the long-running stragglers which strongly affect the job execution time, from
the list of stragglers detected by an existing detection mechanism.

The secondary detection layer considers the performance of nodes, on which tasks are
running, to detect stragglers. That means, it detects only the stragglers on very slow nodes.
The reason for this strategy is that most stragglers are caused by node-level problems, such
as a node with worn-out hardware and node-level resource contentions which lead to slow
tasks [6]. We identify all the nodes with performance less than β times of the average node
performance as slow nodes. This parameter is called slow-node threshold. In the evaluation, we
discuss the impact of this parameter on the speculative execution results.

64 Chapter 4 – Measuring and Enabling the Energy Efficiency of Straggler Detection

Secondary straggler detection layer

(1)

(2)

(3)
(3

’)

(4)

Output of
underlying

straggler
detection

Master
information

Detected
stragglers

Node’s
performance

Filter the
stragglers

according to
the node’s

performance

List of
sorted

stragglers

Figure 4.5 – Hierarchical straggler detection architecture.

Figure 4.5 shows the design of the secondary straggler detection layer. Specifically, it
takes the stragglers detected by the underlying straggler detection layer as input. Then, it
calculates the performance of each node and filters out the stragglers that are not hosted on
slow nodes. We calculate the performance of a node using the following equation.

Perfnode =
1
n
× α ×

n

∑
i=1

Perfi
task (4.18)

where α is the slowdown factor and

Perfi
task =

progress × input
duration

(4.19)

Equation 4.19 evaluates the performance for a specific task, where progress represents the
ratio of finished work over the task’s total work, input is the size of the task’s input data in
bytes and duration is the time from the starting moment of the task. This information of each
task is extracted from the Master node’s database. Equation 4.18 means that the performance
of a host is defined as the sum of the performances of all tasks running on the host.

After filtering, the final list of stragglers are sorted according to their respective perfor-
mance and the most critical straggler (with the worst performance) is placed in the beginning
of the list. We filter and sort the stragglers according to Equations 4.18 and 4.19 to optimize
the energy efficiency of speculative execution. Actually, a long-running straggler executing
on a slow node is expected to be more critical. Such stragglers are the main reason of caus-
ing heavy tails in job executions and as a result wasting energy. Thus, handling those critical
stragglers first can potentially lead to better energy efficiency.

It is important to note that our secondary straggler detection layer is independent from
the underlying detection layer, and therefore it can be easily integrated with any existing
straggler detection mechanisms.

4.3.3 Characterizing the Hierarchical Straggler Detection Mechanism

We implemented Hierarchical in two stable versions of Hadoop (1.2.1 and 2.7.3 versions).
These implementations consist of roughly 2000 lines of Java codes. Our straggler detection
mechanism is implemented as extra module to allow users to easily enable or disable Hier-
archical using the Hadoop configuration file. It can be used on the top of existing straggler
detection mechanisms in Hadoop, e.g., Default or LATE. The results that we present in the

4.3 – Hierarchical Straggler Detection: A Green Straggler Detection Mechanism 65

Table 4.7 – The characteristics of Hierarchical when running in four different scenarios. In comparison
with Default and LATE, Hierarchical has higher Precision and lower Recall (see Table 4.6).

〈p1, p2, p3, p4〉 Precision Recall DL FP UT

〈35, 35, 5, 25〉 1.00 0.47 0.65 0.00 2.10
〈25, 25, 25, 25〉 1.00 0.33 0.57 0.01 1.80
〈10, 10, 5, 75〉 0.88 0.37 0.55 0.04 1.90
〈5, 5, 0, 90〉 0.98 0.38 0.53 0.02 2.10

rest of this chapter are obtained when running with Hierarchical on the top of the Default
straggler detection mechanism in the 2.7.3 version.

In this section, we use our proposed metrics to characterize the Hierarchical straggler
detection mechanism. To do so, we conduct a set of experiments on Grid’5000 with Hierar-
chical. Then, we compare the obtained results to the characteristics of Default and LATE, as
shown in Table 4.6. For this set of experiments, we use the same infrastructure, platform and
application setting as mentioned in Section 4.3.3.

We firstly notice that Hierarchical has very high Precision, up to 1.0 in most of the cases.
These values are very high compared to Default and LATE. On the other hand, it has fairly
low Recall values. This indeed reflects the design goal of Hierarchical mechanism, which
mainly focuses on improving the accuracy and efficiency while accepting a lower Recall as
the cost.

Regarding the Detection Latency, we notice that the values of Detection Latency of Hierar-
chical are similar to LATE and Default. This shows that the overhead caused by extra cal-
culation in Hierarchical is negligible. Regarding the Undetected Time metric, the Hierarchical
mechanism has similar Undetected Time compared to Default. This means the non-detected
stragglers when using Hierarchical have similar execution time in average, compared to when
Default is used. Disregarding the low Recall of Hierarchical, this result suggests that Hier-
archical can have comparable performance with Default. We will examine this in the next
evaluation.

4.3.4 Evaluating the Effectiveness of Straggler Detection Mechanisms

In this section, we conduct a set of experiments to evaluate the effectiveness of two state-
of-the-art straggler detection mechanisms Default and LATE, as well as our Hierarchical. By
analyzing the results, we demonstrate that existing evaluation metrics can result in mis-
leading information. Finally, we illustrate how the characteristics, which are obtained using
our metrics, can be used to accurately indicate the performance and energy consumption of
straggler detection mechanisms.

4.3.4.1 Methodology

In this evaluation, speculative copies can be early launched. Hereafter, we discuss the impor-
tance of early speculative copy launching for our evaluation. Then, we present the method-
ology of providing early available resource.

66 Chapter 4 – Measuring and Enabling the Energy Efficiency of Straggler Detection

Early Launching Speculative Copies. By default, Hadoop triggers the speculative execu-
tion at the end of the execution when there are available resource. However, as the stragglers
can occur at any moment of the execution, this policy can lead to the case when some early
stragglers cannot be detected or handled [6, 122, 123]. For instance, a detected straggler
might not be handled because all resources are occupied. The results obtained in this case
cannot precisely reflect the effectiveness of straggler detection mechanisms. By triggering
the straggler detection at early stage of the execution, we expect to provide the compre-
hensive information about the effectiveness of straggler detection mechanisms in various
scenarios.

Cluster Configuration for Resource Availability. In order to provide early available re-
source, we allocate a fraction x of the total resources for launching regular tasks. The spec-
ulative copies run on 100 − x of reserved resource. This 100 − x percent of cluster capacity
is evenly reserved across the nodes. Which implies that each node will reserved 100 − x
percent of its total capacity.

Setup. We vary the reservation resource percentage x from 50 to 100 (x =
{100; 95; 90; 75; 50}). Our goal is to cover as much as possible the diversity of the scenarios
when having different resource quotas for early launching speculative copies. At x = 100,
there are no reserved resource for early launching speculative copy. Thus, the copies can
only start at the end of the execution. For the other values, speculative copies are launched
on the 100 − x percent reserved resource as soon as there are stragglers detected. Moreover,
a sharing resource reservation policy, called Shared, is also presented in the evaluation. With
this policy, regular tasks and speculative copies are sharing the free resource from the very
beginning of the execution. Last but not least, when there are no waiting regular tasks, all
free slots are used for launching speculative copies. This is applied for all of the aforemen-
tioned policies.

Hereafter, we present the results when running with 6 different speculative reservation
policies, including Shared and x, where x = {100; 95; 90; 75; 50}. We compare the behav-
iors of our cluster when running three different straggler detection mechanisms, i.e., De-
fault, Hierarchical and LATE. In this evaluation, we present the results when running in
C2 = (25, 25, 25, 25) scenario.

4.3.4.2 Impact of Straggler Detection Mechanisms with Different Resource Reservation

Policies

First of all, we present the results in Figures 4.6, 4.7 and 4.8. The values in Figures 4.6 and 4.7
are normalized to the result when using Default mechanism in the 100 reservation scenario.

Regarding execution time, having available resource for launching early speculative
copies can result in a considerable reduction in execution time. This reduction can be up to
10% in the case of the Shared resource reservation policy with the Hierarchical straggler detec-
tion mechanism (see Figure 4.6). Regarding energy consumption, Shared reservation policy
similarly results in a 6% of reduction. This illustrates the importance of providing early and
enough resource for improving the effectiveness of straggler detection mechanisms.

4.3 – Hierarchical Straggler Detection: A Green Straggler Detection Mechanism 67

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

100 95 90 75 50 Shared

N
o
rm

a
li
z
e
d
 e

x
e
c
u
ti
o
n
 t
im

e

Default Hierarchical LATE

Figure 4.6 – Execution time comparison.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

100 95 90 75 50 Shared

N
o
rm

a
liz

e
d
 e

n
e
rg

y
 c

o
n
s
u
m

p
ti
o
n

Default Hierarchical LATE

Figure 4.7 – Energy consumption comparison.

Amongst the reservation policies, the Shared policy appears to have the best effective-
ness, especially when the Hierarchical is used. This is due to the nature of this sharing reser-
vation policy where (i) the speculative copies can have early resource to run and (ii) the
regular tasks take the remaining resources and maximize the resource utilization. However,
both Default and LATE result in longer execution time (up to 35% and 23% respectively) and
higher energy consumption (up to 38% and 27% respectively) when Shared is used. In the
next section, we use the characteristics, obtained when using our metrics, to explain these
results.

In brief, we can conclude that the resource reservation policy can strongly impact the performance
and energy efficiency of straggler detection mechanism.

4.3.4.3 Evaluation of Straggler Detection Mechanism Using Proposed Metrics

In this section, we discuss why existing metrics cannot provide the relevant explanation for
various execution behaviors of different straggler detection mechanisms. Subsequently, we
demonstrate that our metrics can easily interpret these behaviors.

68 Chapter 4 – Measuring and Enabling the Energy Efficiency of Straggler Detection

 0

 50

 100

 150

 200

 250

D H L D H L D H L D H L D H L D H L

N
u
m

b
e
r

o
f
s
p
e
c
u
la

ti
v
e
 t
a
s
k
s

100 95 90 75 50 Shared

Successful speculative tasks
Unsuccessful speculative tasks

Figure 4.8 – Number of speculative copies.

Misleading Existing Metrics. We have discussed existing evaluation metrics in Table 4.2.
First, we consider the number of speculative copies. Comparing the results shown in Figures
4.6, 4.7 and 4.8, we observe that there is no clear correlation between the number of specu-
lative copies and the reduction in execution time or energy consumption. As an example,
the higher number of speculative copies launched does not result in shorter execution time.
Especially in the case of Default mechanism with 50 scenario, it launches 2.9x more copies
than the Hierarchical, but the job takes roughly 36% longer time to finish.

At this point, we might think that the number of successful copies could be a better metric
for evaluating the effectiveness of straggler detection mechanisms. However, results show
that this metric again does not accordingly reflect the execution time reduction nor the en-
ergy consumption contraction. For instance, although LATE mechanism has a high number
of successful speculative copies in many scenarios, it does not come with a high execution
time reduction, (see Figure 4.6 and 4.8 at 90, 50 and Shared scenarios).

To this end, it is insufficient and sometimes even imprecise to use the existing metrics on inter-
preting the effectiveness of straggler detection mechanisms.

Interpreting Results With Our Metrics. Hereafter, we illustrate how to use our metrics to
interpret the impact of different straggler detection mechanism on performance and energy
consumption.

First, we provide the characteristics of the three straggler detection mechanisms in Ta-
ble 4.8. We observe that the characteristics of each straggler detection mechanism mostly
stay the same through different resource reservation scenarios. These values will be used as
primary guidelines to explain and understand the impact of each straggler detection mech-
anism on the cluster’s behavior.

As shown in Figure 4.6, the Default results in a longer execution time compared to LATE
and, especially, to Hierarchical in most of the cases. This is due to its low Precision which
results in a high number of unsuccessful speculative copies (Figure 4.8). These unsuccessful
copies compete with regular tasks and lead to a significant degradation in performance (up
to 36% degradation in the case of 50). These copies also result in a high amount of wasteful
energy consumption (31% extra energy consumption with the 50 policy).

4.3 – Hierarchical Straggler Detection: A Green Straggler Detection Mechanism 69

Table 4.8 – The characteristics of the three straggler detection mechanisms with different resource
reservation ratios. These data are computed using the monitoring information of all running tasks
during the execution.

Ratio Mechanism Precision Recall
Detection
Latency

Undetected
Time

100
D 0.62 0.36 0.41 2.50
H 1.00 0.22 0.50 2.52
L 0.69 0.45 0.36 2.26

95
D 0.55 0.41 0.17 2.00
H 0.99 0.29 0.23 2.08
L 0.68 0.60 0.18 2.00

90
D 0.53 0.42 0.15 2.03
H 1.00 0.30 0.03 2.10
L 0.63 0.63 0.16 2.01

75
D 0.58 0.57 0.08 2.08
H 0.99 0.29 0.05 2.12
L 0.67 0.65 0.18 2.02

50
D 0.57 0.68 0.01 2.08
H 0.96 0.32 0.03 1.99
L 0.60 0.70 0.09 2.04

Shared
D 0.55 0.56 0.32 2.01
H 0.99 0.29 0.65 2.03
L 0.65 0.60 0.17 2.28

Considering LATE, it results in a slightly lower number of unsuccessful copies (see Fig-
ure 4.8), as it has a higher Precision. However, as we have mentioned, its Precision and Recall
are still relatively low. As a result, LATE can sometimes result in an increment of 31% in
execution time and 23% in energy consumption, with 50 policy.

On the other hand, Hierarchical mechanism, which targets a high Precision, results in a
more efficient speculation with a low unsuccessful number (see Figure 4.8). More impor-
tantly, as Hierarchical is designed to target the potentially longest stragglers, it has closely
similar Undetected Time compared to Default. Thus, the non-detected stragglers of Hierar-
chical have small impact on execution time. Consequently, Hierarchical leads to an efficient
execution in terms of both performance and energy consumption. Figure 4.6 and 4.7 show
that it can result in a reduction of 10% and 6% in execution time and energy consumption,
respectively, when Shared policy is used, compared to Default in 100 scenario. Compare be-
tween three straggler detection mechanisms in Shared scenario, Hierarchical can result in a
reduction of 32% in execution time, and 31% energy consumption reduction, compared to
Default mechanism. This result proves that the Hierarchical, which was designed targeting
high Precision and energy efficient, has successfully accomplished its goals.

In summary, the diverse behaviors of the cluster, caused by the impact of different detection mech-
anisms, are clearly explainable with the help from our evaluation metrics.

70 Chapter 4 – Measuring and Enabling the Energy Efficiency of Straggler Detection

4.3.5 Evaluating Hierarchical with Different Applications and Slow-node
Thresholds

In this section, we evaluate Hierarchical in Hadoop cluster. Hierarchical is configured to
run on the top of two state-of-the-art straggler detection mechanisms: Default [31] and
LATE [131]. We choose to run two representative Big Data applications from the Puma
benchmark suite [1]. We also tune the value of the slow-node threshold beta and evalu-
ate the impact of different values on performance and energy consumption. Hereafter, we
mention in detail the experiment methodology of our evaluation.

4.3.5.1 Experimental Setup

Testbed. All of our experiments were conducted on a cluster of 21 nodes from the Nancy
site of Grid5000 testbed [59]. We configured the cluster with one master and 20 workers.
Each node in the cluster is equipped with 4-core Intel 2.53 GHz CPU, 16 GB of RAM and
1 Gbps Ethernet network. The power consumption of the nodes is monitored by Power
Distribution Units. Thereby, we can acquire fine-grained and accurate power consumption
values during the experiments. All experiments are run for 10 times and the average values
are reported.

Applications. We adopt two widely-used MapReduce applications chosen from the well-
known Puma MapReduce benchmark suite [1]. The two applications have different charac-
teristics, where Sort is an I/O-intensive application, WordCount mainly consumes the com-
putation resources. The input data sizes of the two applications are set to 10 GB. The number
of Map and Reduce tasks are both set to 160. It is important to note that CloudBurst is not
available in Hadoop 2.7.3. Therefore, we do not use it in our experiments.

Straggler Injection. In order to inject stragglers, we use the Dynamic Voltage-Frequency
Scaling technique (DVFS) [29] to tune the CPU frequencies (hence the computation capabil-
ities) of nodes. According to the Hadoop production cluster traces at CMU [93], the number
of stragglers varies from 0 to 40% of the total number of tasks. We choose a straggler ratio
of 20% in our experiments. Thus, we set four nodes out of the 20 workers in our cluster to
lower CPU frequencies, which are 1.20 GHz, 1.33 GHz, 1.46 GHz and 1.60 GHz.

Comparisons. We compare the Hierarchical straggler detection mechanism with the Default
straggler detection [31] and LATE [131] straggler detection mechanisms. We also compare
the results while tuning the value of the slow-node threshold β (from 0.2 to 1.0).

4.3.5.2 Experimental Results

Figure 4.9 shows the performance and energy results of a single WordCount job running
with different straggler detection mechanisms. We use the default copy allocation method
in this experiment. In the x-axis, “D” stands for the Default straggler detection mechanism,
“L” stands for the LATE detection mechanism, “D+Hx” and “L+Hx” stand for using the
Hierarchical straggler detection mechanism on top of Default and LATE, respectively, where
“x” stands for the value of the slow-node threshold β.

4.3 – Hierarchical Straggler Detection: A Green Straggler Detection Mechanism 71

 0

 10

 20

 30

 40

 50

 60

 70

D
D

+
H

1
.0

D
+

H
0

.9
D

+
H

0
.7

5
D

+
H

0
.6

D
+

H
0

.5
D

+
H

0
.4

D
+

H
0

.2 L
L

+
H

1
.0

L
+

H
0

.9
L

+
H

0
.7

5
L

+
H

0
.6

L
+

H
0

.5
L

+
H

0
.4

L
+

H
0

.2

N
u

m
b

e
r

o
f

s
p

e
c
u

la
ti
v
e

 c
o

p
ie

s

Successful copies
Killed copies

(a) #Speculative copies.

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

D
D

+
H

1
.0

D
+

H
0

.9
D

+
H

0
.7

5
D

+
H

0
.6

D
+

H
0

.5
D

+
H

0
.4

D
+

H
0

.2 L
L

+
H

1
.0

L
+

H
0

.9
L

+
H

0
.7

5
L

+
H

0
.6

L
+

H
0

.5
L

+
H

0
.4

L
+

H
0

.2

R
e

s
o

u
rc

e
 o

c
c
u

p
a

ti
o

n

 (
s
lo

t
x
 s

)

(b) Resource on killed copies.

 0

 20

 40

 60

 80

 100

 120

 140

D
D

+
H

1
.0

D
+

H
0

.9
D

+
H

0
.7

5
D

+
H

0
.6

D
+

H
0

.5
D

+
H

0
.4

D
+

H
0

.2 L
L

+
H

1
.0

L
+

H
0

.9
L

+
H

0
.7

5
L

+
H

0
.6

L
+

H
0

.5
L

+
H

0
.4

L
+

H
0

.2

E
x
e

c
u

ti
o

n
 t

im
e

 (
s
)

(c) Execution time.

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

D
D

+
H

1
.0

D
+

H
0

.9
D

+
H

0
.7

5
D

+
H

0
.6

D
+

H
0

.5
D

+
H

0
.4

D
+

H
0

.2 L
L

+
H

1
.0

L
+

H
0

.9
L

+
H

0
.7

5
L

+
H

0
.6

L
+

H
0

.5
L

+
H

0
.4

L
+

H
0

.2

E
n

e
rg

y
 c

o
n

s
u

m
p

ti
o

n
 (

M
J
)

(d) Energy consumption.

 0

 0.001

 0.002

 0.003

 0.004

 0.005

 0.006

 0.007

 0.008

 0.009

 0.01

D
D

+
H

1
.0

D
+

H
0

.9
D

+
H

0
.7

5
D

+
H

0
.6

D
+

H
0

.5
D

+
H

0
.4

D
+

H
0

.2 L
L

+
H

1
.0

L
+

H
0

.9
L

+
H

0
.7

5
L

+
H

0
.6

L
+

H
0

.5
L

+
H

0
.4

L
+

H
0

.2

T
h

ro
u

g
h

p
u

t
(#

jo
b

/s
)

(e) Throughput.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

D
D

+
H

1
.0

D
+

H
0

.9
D

+
H

0
.7

5
D

+
H

0
.6

D
+

H
0

.5
D

+
H

0
.4

D
+

H
0

.2 L
L

+
H

1
.0

L
+

H
0

.9
L

+
H

0
.7

5
L

+
H

0
.6

L
+

H
0

.5
L

+
H

0
.4

L
+

H
0

.2

E
n

e
rg

y
 e

ff
ic

ie
n

c
y

 (
T

h
ro

u
g

h
p

u
t

/
e

n
e

rg
y
)

(f) Energy efficiency.

Figure 4.9 – The WordCount application with different straggler detection mechanisms.

We have the following observations. First, Figure 4.9a shows that the Hierarchical strag-
gler detection mechanism can greatly reduce the number of unsuccessful speculative copies,
and the reduction increases with the decrease of β. As a result, the amount of resources
wasted on the killed copies is reduced (see Figure 4.9b) by up to 100% compared to Default
and LATE (when β = 0.4and0.2). The total energy consumption is also reduced (see Fig-
ure 4.9d) by up to 12% compared to Default at β = 0.5 and up to 11% compared to LATE at

72 Chapter 4 – Measuring and Enabling the Energy Efficiency of Straggler Detection

 0

 10

 20

 30

 40

 50

 60

 70
D

D
+

H
1

.0
D

+
H

0
.9

D
+

H
0

.7
5

D
+

H
0

.6
D

+
H

0
.5

D
+

H
0

.4
D

+
H

0
.2 L

L
+

H
1

.0
L

+
H

0
.9

L
+

H
0

.7
5

L
+

H
0

.6
L

+
H

0
.5

L
+

H
0

.4
L

+
H

0
.2

N
u

m
b

e
r

o
f

s
p

e
c
u

la
ti
v
e

 c
o

p
ie

s

Successful copies
Killed copies

(a) #Speculative copies.

 0

 50

 100

 150

 200

 250

 300

D
D

+
H

1
.0

D
+

H
0

.9
D

+
H

0
.7

5
D

+
H

0
.6

D
+

H
0

.5
D

+
H

0
.4

D
+

H
0

.2 L
L

+
H

1
.0

L
+

H
0

.9
L

+
H

0
.7

5
L

+
H

0
.6

L
+

H
0

.5
L

+
H

0
.4

L
+

H
0

.2

R
e

s
o

u
rc

e
 o

c
c
u

p
a

ti
o

n

 (
s
lo

t
x
 s

)

(b) Resource on killed copies.

 0

 20

 40

 60

 80

 100

 120

 140

 160

D
D

+
H

1
.0

D
+

H
0

.9
D

+
H

0
.7

5
D

+
H

0
.6

D
+

H
0

.5
D

+
H

0
.4

D
+

H
0

.2 L
L

+
H

1
.0

L
+

H
0

.9
L

+
H

0
.7

5
L

+
H

0
.6

L
+

H
0

.5
L

+
H

0
.4

L
+

H
0

.2

E
x
e

c
u

ti
o

n
 t

im
e

 (
s
)

(c) Execution time.

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0.09

D
D

+
H

1
.0

D
+

H
0

.9
D

+
H

0
.7

5
D

+
H

0
.6

D
+

H
0

.5
D

+
H

0
.4

D
+

H
0

.2 L
L

+
H

1
.0

L
+

H
0

.9
L

+
H

0
.7

5
L

+
H

0
.6

L
+

H
0

.5
L

+
H

0
.4

L
+

H
0

.2

E
n

e
rg

y
 c

o
n

s
u

m
p

ti
o

n
 (

M
J
)

(d) Energy consumption.

 0

 0.001

 0.002

 0.003

 0.004

 0.005

 0.006

 0.007

 0.008

D
D

+
H

1
.0

D
+

H
0

.9
D

+
H

0
.7

5
D

+
H

0
.6

D
+

H
0

.5
D

+
H

0
.4

D
+

H
0

.2 L
L

+
H

1
.0

L
+

H
0

.9
L

+
H

0
.7

5
L

+
H

0
.6

L
+

H
0

.5
L

+
H

0
.4

L
+

H
0

.2

T
h

ro
u

g
h

p
u

t
(#

jo
b

/s
)

(e) Throughput.

 0

 2

 4

 6

 8

 10

 12

 14

D
D

+
H

1
.0

D
+

H
0

.9
D

+
H

0
.7

5
D

+
H

0
.6

D
+

H
0

.5
D

+
H

0
.4

D
+

H
0

.2 L
L

+
H

1
.0

L
+

H
0

.9
L

+
H

0
.7

5
L

+
H

0
.6

L
+

H
0

.5
L

+
H

0
.4

L
+

H
0

.2

E
n

e
rg

y
 e

ff
ic

ie
n

c
y

 (
T

h
ro

u
g

h
p

u
t

/
e

n
e

rg
y
)

(f) Energy efficiency.

Figure 4.10 – The Sort application with different straggler detection mechanisms.

β = 0.6.

Second, adding the Hierarchical mechanism does not sacrifice the performance too much
(except when β = 0.2 and 0.4) as shown in Figure 4.9c and 4.9e. In such cases, Hierarchical
results in a performance degradation. This is mainly because that when β is too small, some
of the real stragglers are not detected. For example, when β = 0.5, almost all speculative
copies of detected stragglers are successful. With smaller values of β, the number of detected

4.4 – Conclusion 73

stragglers reduces and the number of successful copies reduces.

Third, the Hierarchical straggler detection mechanism can obtain better energy efficiency
compared to Default and LATE (except again when β = 0.2 and 0.4), as shown in Figure 4.9f.
When β = 0.5, we obtain the best energy efficiency, which is 14% higher than Default. With
LATE, the best energy efficiency is achieved when β = 0.6 as the energy efficiency is increase
by 12.5%.

Similar observations are obtained with the Sort application. Figure 4.10 shows the results
obtained when running this application. When β = 0.6, Hierarchical improves the energy
efficiency by 14.5% compared to Default. When Hierarchical is used with β = 0.5, the energy
efficiency is increased by 16.5% compared to LATE.

In summary, these results demonstrate that the Hierarchical straggler detection mechanism can
greatly improve the energy efficiency while guaranteeing a comparable performance.

4.4 Conclusion

In this chapter, we demonstrate that existing evaluation metrics can result in misleading
information while evaluating straggler detection mechanisms. Targeting this issue, we in-
troduce a set of dedicated metrics to evaluate straggler detection mechanisms. Besides, we
present a mathematical intuition for linking the proposed metrics to the performance and
energy consumption overheads.

The proposed metrics indicate that state-of-the-art straggler detection mechanisms are
not accurate in detecting the real stragglers. They may overly detect normal tasks as strag-
glers, which results in a high amount of extra energy consumption caused by unnecessary
speculative copies. Tackling this aspect, we introduce a new energy-driven straggler detec-
tion mechanism. This mechanism focuses on detecting the stragglers which run on slow
nodes. This can reduce the chance of mis-detecting stragglers. As a result, it improves the
detection accuracy. The evaluation results indicate that this mechanism indeed can improve
the accuracy and reduce by up to 100% of wasteful energy consumption by killed copies.

75

Chapter 5
Energy-aware Straggler Handling for

Big Data Processing Systems

Contents

5.1 Energy-aware Speculative Execution Controller Architecture 76

5.1.1 Allocation Problem Description . 76

5.1.2 Copy Allocation Heuristic . 77

5.2 Evaluation . 78

5.2.1 Experimental Methodology . 78

5.2.2 Results with the WordCount Application 81

5.2.3 Results with the Kmeans Application 86

5.2.4 Results with the Sort Application . 87

5.3 Conclusion . 89

ENERGY consumption is an important concern for Big Data processing systems, which
results in huge monetary cost for Big Data processing system operators [46]. Due to
the hardware heterogeneity and contentions between concurrent workloads, strag-

gler mitigation is important to many Big Data applications running in Big Data processing
systems. The speculative execution technique is widely used to handle stragglers.

Allocating speculative copies to different nodes can result in different performance and
energy consumption results [89]. For instance, launching speculative copies on nodes with a
small number of running tasks can result in short execution time but can lead to high power
consumption (as shown in Chapter 3). Unfortunately, existing copy allocation methods do
not consider this aspect.

In this chapter, we take a step forward to improve the energy efficiency of straggler han-
dling in Big Data processing systems. Accordingly, we introduce an energy-aware copy

76 Chapter 5 – Energy-aware Straggler Handling for Big Data Processing Systems

allocation method. This method takes into consideration the difference in performance as
well as energy consumption of different copy allocations. Consequently, it allocates specu-
lative copies to the resources which offer low energy consumption with high performance.
Our straggler handling mechanism is implemented in Hadoop. Experimental results show
that our energy-aware copy allocation method can reduce energy consumption while guar-
anteeing performance comparable with state-of-the-art copy allocation methods.

Speculative Copy Allocation Matters

We have observed that there is a trade-off between performance and energy consumption for
speculative copies executing on different nodes, according to the current status of the nodes.
This trade-off was discussed in detail in Chapter 3. Unfortunately, existing copy allocation
methods do not pay much attention on this aspect. For instance, Default [31] follows the
simple First Come First Serve (FCFS) policy to allocate copies to the first available resource,
without considering any of the performance and energy objectives. In Mantri [6], the task
placement is mainly based on the performance objective. A speculative copy is launched on
resource only if there is a fair chance that it can finish earlier than the original task. As a
result, these copy allocation methods may result in high energy consumption for Big Data
processing systems.

In the following sections, we present a novel straggler handling mechanism. This mech-
anism is equipped with an energy-aware method to allocate speculative copies.

5.1 Energy-aware Speculative Execution Controller Architecture

In this section, we firstly describe the notion of speculative copy allocation. Then, the de-
tailed design of our speculative copy allocation method is discussed. Finally, the implemen-
tation of the this allocation method is introduced.

5.1.1 Allocation Problem Description

Let us consider a list of detected stragglers. A speculative copy allocation method is needed
to handle these stragglers. Its mission is to map each straggler to a node with available
slots and start a copy of the straggler on that node, in order to optimize the overall energy
efficiency of speculative execution. Let us assume that there are S copies (si, i ∈ [1, S]) to be
launched and N nodes (nj, j ∈ [1, N]) with available slots to execute these copies. We can
easily formulate the copy allocation problem as a variant of the classic Bin-Packing problem,
where the size of each bin (i.e., a node) equals to the number of available slots in the bin.
Thus, the copy allocation problem is a NP-hard problem. In the next subsection, we propose
a heuristic to obtain a good solution to this problem.

Resource Availability. When the value of N is small, there are not many choices to allo-
cate speculative copies. As a result, it limits the improvement in energy efficiency which is
brought by the copy allocation method. Thus, we adopt the same methodology as Delay
scheduling [128]. That is, we first check the value of N when allocating speculative copies.
If N is small, then we wait for a few seconds to have more idle nodes. By default, N = 1 is
considered as small. In our experiments, we wait three seconds when N = 1.

5.1 – Energy-aware Speculative Execution Controller Architecture 77

5.1.2 Copy Allocation Heuristic

There are many existing heuristics to solve Bin-Packing problems (e.g., First-Fit and Best-
Fit heuristics). In this work, we propose a heuristic similar to Best-Fit heuristic to address
our copy allocation problem. At first, there is a set of detected stragglers, provided by the
underlying straggler detection mechanism. Then, the speculative copy allocation method
searches the node that can best fit each straggler sequentially.

Let us define the fitness of mapping a straggler to a node according to the energy effi-
ciency of the mapping. The energy efficiency is affected by both the energy consumption
and the performance of job. Given any map from Straggler i to Node j, we first provide two
models to estimate the job execution time variation and the energy consumption variation
caused by launching a speculative copy of Straggler i on Node j.

Execution Time Variation Estimation. At first, we sort the list of detected straggler ac-
cording to their criticalness. A straggler, which is expected to finish further in the future, is
considered more critical. The most critical straggler by nature dominates the job execution
time. Handling critical stragglers can directly contribute to the reduction of job execution
time. The most critical straggler is placed at the top of the list. This sorting is similar to the
sorting algorithm we used for the Hierarchical straggler detection mechanism as described in
Chapter 4.

Thus, we can estimate the job execution time variation ∆Tij caused by launching a copy
of Straggler i on Node j using the difference between the task execution time of Straggler i
before and after launching the copy. Assume that Straggler i is running on Node k.

∆Tij = αk ×
(1 − progressi)× inputi

Perfk
host

− αj ×
inputi

Perfj
host

(5.1)

where the first term stands for the left over time for the straggler to finish if no copy is
launched and the second term stands for the execution time of the copy on Node j. In this
Equation, α is the average slowdown ratio, which was introduced in Chapter 4.

Energy Consumption Variation Estimation. Executing a new copy consumes more energy.
However, it at the same time saves energy as it shortens the execution time of the straggler.
We can formulate the energy consumption variation caused by launching a copy of Straggler
i on Node j as follows.

∆Eij = (Pk + Pj)× Ts − (Pk + P ′
j)× Tc

= Pk × ∆Tij + Pj × Ts −P ′
j × Tc (5.2)

where Ts equals to the first term of Equation 5.1 and Tc equals to the second term of Equa-
tion 5.1. Pj and P ′

j are the power consumption of Node j before and after adding a copy of
Straggler i, which are computed using Equation 4.2.2.1 in Chapter 4.

Best-fit Copy Allocation Heuristic. Given the above two models and the definition of en-
ergy efficiency, we can select the map which yields the best ∆Eij result as the Best-Fit solution,
i.e., the highest improvement to energy efficiency. Algorithm 1 presents the general flow of
our copy allocation heuristic.

78 Chapter 5 – Energy-aware Straggler Handling for Big Data Processing Systems

Initiation: Straggler i at the head of the straggler list is selected (line 2). The initial value of
energy consumption variation ∆E is set to zero (line 3).

Searching for the best copy-node mapping: Straggler i is mapped to each idle Node j (line
4). The energy consumption variation ∆Eij is calculated for this mapping (line 5). If
the value of ∆Eij for this mapping is higher compared to the best energy consumption
variation ∆E, Node j is selected as new best mapping and the best energy consumption
variation is set with ∆Eij (line 6–9).

Allocating speculative copies: Straggler i is removed from straggler list (line 11). A specu-
lative copy of Straggler i is launched on the node that is labeled as best mapping (line
12).

1 while straggler_list is not empty do
2 Straggler i is the head of straggler_list;
3 best_fitness = 0;
4 for Node j in idle_nodes do
5 calculate ∆Eij using Equation 5.2;
6 if ∆Eij > best_fitness then

7 best_map = j;
8 best_fitness = ∆Eij;
9 end

10 end
11 remove Straggler i from straggler_list;
12 launch a copy of Straggler i to Node best_map;
13 end

Algorithm 1: Speculative copy allocation heuristic.

5.2 Evaluation

In this section, we evaluate our copy allocation method in real Hadoop cluster and com-
pare it with existing copy allocation methods. We implement our allocation method in the
Hadoop 1.2.1 stable version, with roughly 1500 lines of Java code. Users can easily enable or
disable our method using the Hadoop general configuration file.

5.2.1 Experimental Methodology

In this section, we discuss in detail our experimental methodology.

Testbed

All of our experiments were conducted on a cluster of 21 nodes from the Nancy site of
Grid5000 testbed [59]. We configured the cluster with one master and 20 workers. Each
node in the cluster is equipped with 4-core Intel 2.53 GHz CPU, 16 GB of RAM and 1 Gb/s
Ethernet network. The power consumption of the nodes is monitored by Power Distribution
Units. Thereby, we can acquire fine-grained and accurate power consumption values during
the experiments. All experiments are run 10 times and the average values are reported.

5.2 – Evaluation 79

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

C
D

F

Straggler ratio

Figure 5.1 – The CDF of straggler ratio per job extracted from the traces of Hadoop production clus-
ters at CMU

Straggler Detection Mechanisms

In our experiments, we use the Hierarchical straggler detection mechanism (introduced in
Chapter 4). Hierarchical is configured to run on top of state-of-the-art straggler detection
mechanisms Default and LATE. The slow-node threshold β of Hierarchical is set to 0.5. With
this setting, Hierarchical is expected to significantly reduce the number of unnecessary spec-
ulative copies (as shown in Chapter 4). All copy allocation methods run with this straggler
detection setup throughout our experiments.

Applications

We adopt three widely-used MapReduce applications chosen from the well-known Puma
MapReduce benchmark suite [1]. Two of them, which are WordCount and Sort, are used in
the evaluations of Chapters 3 and 4. The third application is Kmeans. This is a compute-
intensive application which classifies input data into multiple clusters. In our experiments,
we use Kmeans to classify movies based on the ratings from anonymous users [1].

The input data sizes of the three applications are all set to 10 GB [1]. The numbers of Map
and Reduce tasks are both set to 160.

Straggler Injection

For injecting stragglers in our experiments, we study the ratio of straggler occurrence in
Hadoop production clusters. Specifically, we analyze the traces from Hadoop production
clusters at CMU [93]. These traces were collected in October 2012. Figure 5.1 depicts the
CDF of straggler ratio (i.e., the ratio of stragglers over total number of tasks per job) for more
than 1000 jobs. We observe that the straggler ratio varies within a large range, from 0.05 up
to 0.45.

80 Chapter 5 – Energy-aware Straggler Handling for Big Data Processing Systems

In our experiments, we set the straggler ratio at 0.2, which is close to the average straggler
ratio as shown in Figure 5.1. In order to inject stragglers, we use the Dynamic Voltage-
Frequency Scaling technique (DVFS) to tune the CPU frequencies (hence the capabilities) of
nodes. Given the straggler ratio of 0.2, we set four nodes out of 20 workers in our cluster to
lower CPU frequencies, which are 1.20 Ghz, 1.33 GHz, 1.46 GHz and 1.60 GHz (the default
frequency is 2.53 GHz).

Comparisons

We compare our proposed copy allocation heuristic (denoted as Smart) with the default spec-
ulative copy allocation method of Hadoop, denoted as Default. In addition, we implemented
in Hadoop the following two copy allocation methods:

Performance-driven Copy Allocation. It differs from Smart in that it launches specula-
tive copies on nodes which yield the best performance. Specifically, the general flow of
this method is similar to Smart (as shown in Algorithm 1). The major difference is that the
Performance-driven copy allocation method considers only the performance of speculative
copies (as computed by Equation 5.1).

Power-driven Copy Allocation. With this copy allocation method, speculative copies are
launched on nodes such that the speculative copies yield the lowest additional power con-
sumption. The additional power consumption ∆Pij for launching copy i on node j is com-
puted as follows:

∆Pij = P ′
j −Pj (5.3)

where P ′
j is the power consumption of Node j after launching Copy i and Pj is the power

consumption of Node j before launching Copy i (as computed in Equation 5.2).

Metrics

The metrics that we use in our evaluation are listed as follows:

Number of successful speculative copies. This is the total number of speculative copies
which successfully finish during the job execution.

Number of killed speculative copies. In contrast with the aforementioned metric, this metric
represents the total number of speculative copies which could not finish before their
original tasks and get killed.

Resource consumption on killed speculative copies. This is calculated by summing up the
amount of time that killed speculative copies occupy resources (i.e., slots).

Execution time. The amount of time from the start of the first task until the completion of
the last task.

Energy consumption. The total energy consumed by the cluster during the execution of a
job.

5.2 – Evaluation 81

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

D
+H

0.
5+

D

D
+H

0.
5+

Per

D
+H

0.
5+

Pow

D
+H

0.
5+

Sm
t

L+
H
0.

5+
D

L+
H
0.

5+
Per

L+
H
0.

5+
Pow

L+
H
0.

5+
Sm

t

N
u

m
b

e
r

o
f

s
p

e
c
u

la
ti
v
e

 c
o

p
ie

s

Successful copies
Killed copies

(a) Number of speculative copies.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

D
+H

0.
5+

D

D
+H

0.
5+

Per

D
+H

0.
5+

Pow

D
+H

0.
5+

Sm
t

L+
H
0.

5+
D

L+
H
0.

5+
Per

L+
H
0.

5+
Pow

L+
H
0.

5+
Sm

t

R
e

s
o

u
rc

e
 o

c
c
u

p
a

ti
o

n

 (
s
lo

t
x
 s

)

(b) Resource on killed copies.

Figure 5.2 – The WordCount application with different copy allocation methods: Comparison on num-
ber of successful speculative copies, number of killed copies and resource consumption on killed
copies.

Energy efficiency. This metric is calculated as the ratio of performance over energy con-
sumption. The performance of a job is computed as the inverse of the job’s execution
time.

Hereafter, we compare four speculative copy allocation methods when running Word-
Count, Kmeans and Sort applications. We start the evaluation with results when running the
WordCount application.

5.2.2 Results with the WordCount Application

We evaluate in total eight combinations of the straggler detection mechanisms and copy
allocation methods. Specifically, we denote the Default straggler detection mechanism by D
and LATE by L. The Hierarchical straggler detection, which is denoted by H, is applied on top
of these detection mechanisms. For copy allocation methods, we again denote Default copy
allocation method by D. Our energy-aware copy allocation method is denoted by Smt. The
Power-driven copy allocation is denoted by Pow and the Performance-driven copy allocation
method is denoted by Per.

Number of Speculative Copies. Figure 5.2 displays the results of running a single Word-
Count job with different speculative copy allocation methods. We observe that the number
of successful speculative copies are very close between the four copy allocation methods (as
shown in Figure 5.2a). Similarly, the difference in number of killed speculative copies be-
tween four methods is small. This is because Hierarchical with β of 0.5 has eliminated a large
number of inaccurate straggler detection (as shown in Chapter 4). As a result, the detected

82 Chapter 5 – Energy-aware Straggler Handling for Big Data Processing Systems

 0

 20

 40

 60

 80

 100

 120

 140

D
+H

0.
5+

D

D
+H

0.
5+

Per

D
+H

0.
5+

Pow

D
+H

0.
5+

Sm
t

L+
H
0.

5+
D

L+
H
0.

5+
Per

L+
H
0.

5+
Pow

L+
H
0.

5+
Sm

t

E
x
e
c
u
ti
o
n
 t
im

e
 (

s
)

(a) Execution time.

Figure 5.3 – The WordCount application with different copy allocation methods: Comparison on exe-
cution time.

stragglers are mostly actual stragglers with significantly longer execution time, compared to
average task execution time. This explains the low number of killed speculative copies.

We further dig into the small difference between the four copy allocation methods, with
respect to the number of speculative copies and the resource consumption of killed copies.
We notice that this small difference between allocation methods has its own meaning. For
instance, Power-driven and Default have higher number of killed copies as well as higher re-
source consumption on killed copies, compared to Performance-driven and Smart. The Power-
driven copy allocation method launches speculative copies on the nodes with the lowest
power cost. Usually, this will lead the speculative copies to be launched on nodes that are
already hosting many on-going tasks. As a result, the performances of these copies are low.
At the end, these copies can get killed. This explains the high resource consumed by killed
copies of Power-driven. For Default, it does not take into account either performance or en-
ergy consumption while allocating copies. The speculative copies may be allocated to nodes
which have poor performance. Consequently, this result in higher resource wasted on killed
speculative copies.

Performance Evaluation. We continue the evaluation with results related to execution
time. Figure 5.3 presents these results. We observe that the Power-driven copy allocation
method has a relatively long execution time (as shown in Figures 5.3a). This is expected
since the Power-driven copy allocation method does not take into account the performance
when launching speculative copies. As a result, it can launch speculative copies to resources
with low performance. These copies take long time to finish. Thereby, they increase the job’s
execution time. Similarly, the Default copy allocation method has also relatively long execu-
tion time, since it does not take into consideration the performances of different speculative
copy allocations.

5.2 – Evaluation 83

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

D
+H

0.
5+

D

D
+H

0.
5+

Per

D
+H

0.
5+

Pow

D
+H

0.
5+

Sm
t

L+
H
0.

5+
D

L+
H
0.

5+
Per

L+
H
0.

5+
Pow

L+
H
0.

5+
Sm

t

E
n
e
rg

y
 c

o
n
s
u
m

p
ti
o
n
 (

M
J
)

Figure 5.4 – The WordCount application with different copy allocation methods: Comparing overall
energy consumption.

In contrast, Smart and Performance-driven have slightly shorter execution time. The
Performance-driven method aims to allocate speculative copies to resources on which the
copies can have the highest performance. As a result, they finish earlier and shorten the
job’s execution time. The Smart copy allocation method reduces the resource occupation of
killed speculative copies by up to 36% compared to Default (as shown in Figure 5.2b). Con-
sequently, it reduces the resource contention caused by these copies. As a result, successful
speculative copies as well as regular tasks can finish earlier. This in turn reduces the execu-
tion time of the WordCount application.

Energy Consumption Evaluation. Let us take a look at the overall energy consumption of
WordCount job with different copy allocation methods (as shown in Figure 5.4). We observe
that the Smart copy allocation method results in the lowest energy consumption amongst
four copy allocation methods. Compared to Default, the energy reduction is up to 9%. Be-
sides, the Power-driven copy allocation method has fairly high energy consumption. It can
be up to 8.5% higher energy consumption compared to Smart.

This is because Power-driven only considers the power cost and omits the performance of
speculative copies. Since energy consumption is the product of power and execution time,
the overall energy consumption can still be higher (the reduction in power consumption can-
not compensate the increase in execution time when allocating speculative copies). Besides,
the Performance-driven copy allocation method can result in high energy consumption. This
is because the speculative copy allocations with the best performance may have high energy
consumption (as described in detail in Chapter 3). This result emphasizes the important im-
pact of different speculative copy allocation on both performance and energy consumption.

Energy Efficiency Comparison. Figure 5.5 presents the comparison on energy efficiency of
four copy allocation methods. As we can observe, Default and Power-driven both have rela-

84 Chapter 5 – Energy-aware Straggler Handling for Big Data Processing Systems

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

D
+H

0.
5+

D

D
+H

0.
5+

Per

D
+H

0.
5+

Pow

D
+H

0.
5+

Sm
t

L+
H
0.

5+
D

L+
H
0.

5+
Per

L+
H
0.

5+
Pow

L+
H
0.

5+
Sm

t

E
n
e
rg

y
 e

ff
ic

ie
n
c
y

Figure 5.5 – The WordCount application with different copy allocation methods: Comparing energy
efficiency.

tively low energy efficiency. The energy efficiency of Performance-driven is only 2% higher.
On the other hand, Smart can increase the energy efficiency by up to 12%, compared to the
Default copy allocation method.

Getting Deeper: Speculative Copy Allocation. In order to better understand how dif-
ferent methods allocate speculative copies, we dig into the status of the nodes on which
speculative copies are launched. Figure 5.6 depicts the CDF of the number of concurrent
tasks per node when launching speculative copies, with different copy allocation methods.
First, we notice that the number of concurrent tasks per node distributes evenly from 1 to 6,
when speculative copies are launched by Default (as shown in Figure 5.6a). This reflects ex-
actly how Default was implemented, which does not imply any specific constraint on which
nodes speculative copies should be launched.

Second, Power-driven copy allocation method tends to launch speculative copies on
nodes, which already have a high number of running tasks. For instance, more than 70%
of speculative copies are launched on nodes with at least 6 on-going tasks (as shown in Fig-
ure 5.6b). Power-driven launches copies mainly on this type of nodes because it will cause
small extra power consumption to the node.

Third, Performance-driven copy allocation method prioritizes launching speculative
copies to the nodes that host a small number of on-going tasks. More than 70% of specu-
lative copies are launched on nodes, which is hosting less than 3 on-going tasks. On such
nodes, speculative copies can run faster since there is small contention between tasks. As a
result, Performance-driven reduces the execution times of speculative copies. This results in a
shorter job execution time (as shown in Figure 5.3a).

Fourth, Smart launches speculative copies mostly on nodes with moderate number of
on-going tasks. 80% of speculative copies are launched on nodes that host from 3 to 5 on-
going tasks. On these nodes, speculative copies can run with a high performance, whereas

5.2 – Evaluation 85

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 3 4 5 6 7

C
D

F

Number of concurrent tasks

(a) Default copy allocation method.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 3 4 5 6 7
C

D
F

Number of concurrent tasks

(b) Power-driven copy allocation method.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 3 4 5 6 7

C
D

F

Number of concurrent tasks

(c) Performance-driven copy allocation method.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 3 4 5 6 7

C
D

F

Number of concurrent tasks

(d) Smart copy allocation method.

Figure 5.6 – The WordCount application: Comparing the speculative copy allocations of diffent allo-
cation methods.

the energy consumption of these speculative copies are expected to be minimal.

Zoom in on the Execution Time of Successful Speculative Copies. Finally, we focus on
the execution time of successful speculative copies between three copy allocation methods,
including Performance-driven, Power-driven and Smart. Figure 5.7 presents the CDF of the
execution time of successful speculative copies with these methods when using either De-
fault+Hierarchical or LATE+Hierarchical.

As expected, we find that the Performance-driven copy allocation method has the shortest

86 Chapter 5 – Energy-aware Straggler Handling for Big Data Processing Systems

 0

 0.2

 0.4

 0.6

 0.8

 1

 15 20 25 30

C
D

F

Execution time of successful copies (seconds)

Performance-driven
Power-driven

Smart

(a) When the Default and Hierarchical straggler de-
tection mechanisms are used.

 0

 0.2

 0.4

 0.6

 0.8

 1

 10 15 20 25 30 35
C

D
F

Execution time of successful copies (seconds)

Power-driven
Smart

Performance-driven

(b) When the LATE and Hierarchical straggler de-
tection mechanisms are used.

Figure 5.7 – The WordCount application: The number of concurrent tasks per node when allocating
speculative copies with different copy allocation methods.

median execution time for successful speculative copies. On average, the execution time of
successful speculative copies is 25% and 33% shorter compared to Smart and Power-driven,
respectively. However, we can notice that Performance-driven also has some long running
speculative copies. This is due to the fact that there may be no nodes with high performance
when speculative copies are allocated. In this case, Performance-driven may have to allocate
speculative copies to nodes with a high number of on-going tasks. On such nodes, specula-
tive copies have longer execution time. This phenomenon is also observed in Figure 5.6c.

The Smart copy allocation method results in medium execution time of successful spec-
ulative copies. As shown in Figures 5.7a and 5.7b, the execution time of successful copies
varies in smaller range, compared to the cases when Performance-driven or Power-driven is
used. This is because Smart launches speculative copies mainly on nodes with moderate
number of on-going tasks. Speculative copies running on these nodes have good perfor-
mance while resulting in a low energy consumption. This is the major factor that leads to
the high energy efficiency of Smart.

5.2.3 Results with the Kmeans Application

Figures 5.8 and 5.9 present the results when running with Kmeans application. We record
very similar results compared to what we observe when running with WordCount.

In general, Performance-driven and Smart have relatively higher number of successful
speculative copies and lower number of killed copies, compared to Default and Power-driven
(see Figure 5.8a). As a result, Performance-driven and Smart reduce the resource consumption
on killed copies.

In particular, the resource consumption on killed copies of Performance-driven is reduced
by 56% compared to Default and 55% compared to Power-driven, when Hierarchical is used on

5.2 – Evaluation 87

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

D
+H

0.
5+

D

D
+H

0.
5+

Per

D
+H

0.
5+

Pow

D
+H

0.
5+

Sm
t

L+
H
0.

5+
D

L+
H
0.

5+
Per

L+
H
0.

5+
Pow

L+
H
0.

5+
Sm

t

N
u

m
b

e
r

o
f

s
p

e
c
u

la
ti
v
e

 c
o

p
ie

s

Successful copies
Killed copies

(a) Number of speculative copies.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

D
+H

0.
5+

D

D
+H

0.
5+

Per

D
+H

0.
5+

Pow

D
+H

0.
5+

Sm
t

L+
H
0.

5+
D

L+
H
0.

5+
Per

L+
H
0.

5+
Pow

L+
H
0.

5+
Sm

t

R
e

s
o

u
rc

e
 o

c
c
u

p
a

ti
o

n

 (
s
lo

t
x
 s

)

(b) Resource on killed copies.

Figure 5.8 – The Kmeans application with different copy allocation methods: Comparison on number
of successful speculative copies, number of killed copies and resource consumption on killed copies.

the top of LATE (as shown in Figure 5.8b). In this case, Performance-driven also has 25% lower
resource on killed speculative copies, compared to Smart. As a result, Performance-driven
results in a relatively lower execution time, compared to the other three copy allocation
methods, as shown in Figure 5.9a.

With regard to energy consumption, Performance-driven has a high energy consumption.
Even worse, it has the highest energy consumption when Hierarchical is used on the top of
LATE (see Figure 5.9b). In the same case, Smart has the lowest energy consumption, with
8.5% lower energy consumption compared to Performance-driven. This result emphasizes
on the important impact of different copy allocations, not only on performance but also on
energy consumption.

Finally, Smart has the best energy efficiency amongst four copy allocation methods, with
up to 10% higher energy efficiency compared to Power-driven (as shown in Figure 5.9c). In
contrast, Performance-driven has relatively low energy efficiency. When Hierarchical is used
on the top of LATE, it even has the lowest energy efficiency, with 9% lower energy efficiency
compared to Smart.

5.2.4 Results with the Sort Application

Figures 5.10 and 5.11 display the results when running with Sort. In general, we again record
trends similar to what we observed for WordCount and Kmeans.

As shown in Figure 5.10a, the Default, Performance-driven and Smart allocation methods
have no killed speculative copies. The only exception is Power-driven. It has a small num-
ber of killed copies. This is because Power-driven allocates copies to nodes with the lowest
additional power cost. Speculative copies on these nodes are most likely to have low perfor-
mance. As a result, these speculative copies may get killed. Accordingly, these copies with

88 Chapter 5 – Energy-aware Straggler Handling for Big Data Processing Systems

 0

 20

 40

 60

 80

 100

 120

D
+H

0.
5+

D

D
+H

0.
5+

Per

D
+H

0.
5+

Pow

D
+H

0.
5+

Sm
t

L+
H
0.

5+
D

L+
H
0.

5+
Per

L+
H
0.

5+
Pow

L+
H
0.

5+
Sm

t

E
x
e

c
u

ti
o

n
 t

im
e

 (
s
)

(a) Execution time.

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

D
+H

0.
5+

D

D
+H

0.
5+

Per

D
+H

0.
5+

Pow

D
+H

0.
5+

Sm
t

L+
H
0.

5+
D

L+
H
0.

5+
Per

L+
H
0.

5+
Pow

L+
H
0.

5+
Sm

t

E
n

e
rg

y
 c

o
n

s
u

m
p

ti
o

n
 (

M
J
)

(b) Energy consumption.

 0

 1

 2

 3

 4

 5

 6

 7

D
+H

0.
5+

D

D
+H

0.
5+

Per

D
+H

0.
5+

Pow

D
+H

0.
5+

Sm
t

L+
H
0.

5+
D

L+
H
0.

5+
Per

L+
H
0.

5+
Pow

L+
H
0.

5+
Sm

t

E
n

e
rg

y
 e

ff
ic

ie
n

c
y

(c) Energy efficiency.

Figure 5.9 – The Kmeans application with different copy allocation methods: Comparison on execu-
tion time, energy consumption and energy efficiency.

low performance also result in relatively long execution time when Power-driven is used, as
shown in Figure 5.10b. In contrast, Performance-driven and Smart have slightly shorter exe-
cution time.

Regarding energy consumption, Smart again has a relatively low energy consumption,
compared to the other three allocation methods. In contrast, the energy consumption is
slightly higher when Performance-driven is used. This high energy consumption reduces the
energy efficiency of Performance-driven, disregarding its short execution time. Compared to
Performance-driven, Smart increases the overall energy efficiency by 3.5% (see Figure 5.11b).

5.3 – Conclusion 89

 0

 5

 10

 15

 20

 25

 30

D
+H

0.
5+

D

D
+H

0.
5+

Per

D
+H

0.
5+

Pow

D
+H

0.
5+

Sm
t

L+
H
0.

5+
D

L+
H
0.

5+
Per

L+
H
0.

5+
Pow

L+
H
0.

5+
Sm

t

N
u
m

b
e
r

o
f
s
p
e
c
u
la

ti
v
e
 c

o
p
ie

s

Successful copies
Killed copies

(a) Number of speculative copies.

 0

 20

 40

 60

 80

 100

 120

 140

D
+H

0.
5+

D

D
+H

0.
5+

Per

D
+H

0.
5+

Pow

D
+H

0.
5+

Sm
t

L+
H
0.

5+
D

L+
H
0.

5+
Per

L+
H
0.

5+
Pow

L+
H
0.

5+
Sm

t

E
x
e
c
u
ti
o
n
 t
im

e
 (

s
)

(b) Execution time.

Figure 5.10 – The Sort application with different copy allocation methods: Comparison on number of
successful speculative copies, number of killed copies and execution time.

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0.09

D
+H

0.
5+

D

D
+H

0.
5+

Per

D
+H

0.
5+

Pow

D
+H

0.
5+

Sm
t

L+
H
0.

5+
D

L+
H
0.

5+
Per

L+
H
0.

5+
Pow

L+
H
0.

5+
Sm

t

E
n
e
rg

y
 c

o
n
s
u
m

p
ti
o
n
 (

M
J
)

(a) Energy consumption.

 0

 2

 4

 6

 8

 10

 12

D
+H

0.
5+

D

D
+H

0.
5+

Per

D
+H

0.
5+

Pow

D
+H

0.
5+

Sm
t

L+
H
0.

5+
D

L+
H
0.

5+
Per

L+
H
0.

5+
Pow

L+
H
0.

5+
Sm

t

E
n
e
rg

y
 e

ff
ic

ie
n
c
y

(b) Energy efficiency.

Figure 5.11 – The Sort application with different copy allocation methods: Comparison on energy
consumption and energy efficiency.

5.3 Conclusion

The increasing trend towards Big Data processing in the clouds [34, 77], the inevitable re-
source heterogeneity in the clouds [34, 97], and the proliferation of MapReduce applica-
tions [98, 101, 114] elevate straggler mitigation to a key issue. Straggler mitigation tech-
niques have been shown to have a potentially high impact on both performance and energy
consumption. Thereby, more attention must be paid on improving existing straggler miti-

90 Chapter 5 – Energy-aware Straggler Handling for Big Data Processing Systems

gation techniques, not only from the performance point of view, but also from an equally
important aspect, namely, energy efficiency.

In this chapter, an energy-aware copy allocation method is introduced, taking into con-
sideration this aspect. The evaluation results illustrate that this method can significantly
improve the energy efficiency of Big Data processing clusters. The presence of this copy al-
location method provides users with more options to select an appropriate speculative copy
allocation method, depending on their specific goals and constraints.

What remains to study? The speculative copy allocation method that we present in this
chapter can work effectively if there are many resources available. However, having a large
amount of free resources to select at the exact moment when stragglers are detected is not
trivial. In many cases, the regular tasks of very large jobs fully occupy the resources until
the very last wave [93]. In this scenario, passively waiting for free resources will not help.
It requires a proactive mechanism to provide appropriate and timely resources for launch-
ing speculative copies. In the next chapter, we introduce a new reservation-based straggler
handling mechanism to address this issue.

91

Chapter 6
Improving the Energy Efficiency of

Straggler Handling: A
Reservation-based Approach

Contents

6.1 WHEN and WHERE Questions: Impacts of the Answers 92

6.1.1 When to Launch: A Fixed Solution is Not Always Good 92

6.1.2 Where to Launch: Heterogeneity Has to be Considered 93

6.1.3 A Motivating Example . 95

6.2 Design Overview . 96

6.3 Proposed Techniques . 97

6.3.1 Window-based Resource Reservation 97

6.3.2 Heterogeneity-Aware Copy Allocation 99

6.4 Methodology . 101

6.5 Experimental Evaluation . 104

6.5.1 Comparison of Different Speculative Execution Mechanisms 104

6.5.2 Sensitivity Study . 108

6.6 Conclusion . 114

WHEN and WHERE to launch the task across a large cluster are the classic ques-
tions for task scheduling problem in general [80]. How to answer these questions
determines the overall performance and energy consumption. The problem of

speculative copy scheduling shares the same concerns. How to answer these two questions
can strongly affect the impact of the speculative execution on both performance and energy
efficiency.

92 Chapter 6 – Energy-efficient Resource Reservation Mechanism for Straggler Handling

In Chapter 5, we have proposed a solution that answers the question of where by taking
into consideration the impact of resource heterogeneity. However, this solution only works
when there are enough free resources to consider. Unfortunately, this scenario is not al-
ways true in Big Data processing systems. In large Big Data jobs, regular tasks dominate the
resources, leaving the speculative copies to be starved until the final wave [93]. This phe-
nomenon has been discussed in Chapter 3. The long delay of speculative execution limits the
potential improvement that speculative copies can bring. Even worse, these late speculative
copies may get killed. This results in wasteful extra energy consumption. Therefore, only
addressing the question of where is not sufficient, while ignoring the question of when.

In this chapter, we firstly demonstrate how insufficient answers to the questions of when
and where can negatively impact the performance and energy consumption. Subsequently,
we discuss the deficiencies of existing studies in answering these questions. Our goal is to
optimize both the execution time and energy consumption for Big Data processing applica-
tions by smartly handling stragglers at runtime. Accordingly, we introduce a new straggler
handling mechanism, which adopts the resource reservation approach to proactively pro-
vide appropriate and timely resources to speculative copies. First, we introduce a novel
resource reservation mechanism for launching speculative copies. The resources with low
energy consumption and high performance are proactively reserved for speculative copies.
This aims to answer the question of where to launch speculative copies. Second, we propose
a window-based straggler handling mechanism to dynamically decide the best timing for
launching speculative copies. This in turn answers the when question.

6.1 WHEN and WHERE Questions: Impacts of the Answers

For speculative executions, there are two main design factors, namely when to launch a spec-
ulative copy and where (i.e., on which node) to launch it. We study existing speculative
mechanisms and analyze their effectiveness in addressing the two questions.

6.1.1 When to Launch: A Fixed Solution is Not Always Good

Concerning the question of when, we analyzed the well-known CMU traces [93]. We define
the Earliness of a speculative copy as:

Earliness = 1 −
StartTimec − StartTimes

Median Execution Time
(6.1)

where StartTimec denotes the starting moment of speculative copy, StartTimes denotes the
starting moment of straggler and Median Execution Time is the median task execution time.
The value of this parameter indicates how early the speculative copy is launched, with re-
spect to the starting moment of straggler. Besides, we consider the execution time of specu-
lative copies. Only successful speculative copies are considered, as they successfully finish
and we can compute their execution time. Figure 6.1 depicts the correlation between the
earliness of speculative copies and their execution time. In this figure, the execution time of
speculative copies is normalized by the median task execution time. We present the results
on roughly 400 out of the total 1000 jobs.

6.1 – WHEN and WHERE Questions: Impacts of the Answers 93

 0

 0.5

 1

 1.5

 2

 0 0.2 0.4 0.6 0.8 1

C
o

p
y
 n

o
rm

a
liz

e
d

 e
x
e

c
u

ti
o

n
 t

im
e

Earliness

Figure 6.1 – Early speculative copies do not always result in higher performance for speculative
copies.

On one hand, the late speculation handling leads to long execution time as shown by the
blue stars in the top left corner of the figure. This can result in low performance improve-
ment. Ren et al. [93] reported that many reduce tasks are speculated too late, resulting in
wasteful speculative copies running for less than 10% of the tasks’ normal execution time
before being killed.

On the other hand, one may expect that early speculation handling should result in better
straggler mitigation, as it can reduce the execution time of stragglers. Indeed, many studies
aim to introduce early speculation handling solutions [6, 22, 117, 120, 121, 123]. However,
this is not always true referring to the data plotted in orange squares in the top right corner
of the figure. Some of these early copies, although launched right after the stragglers, have
very bad performance. Actually, their execution time is at least 1.5x longer than the median
task execution time. Thus, we conclude that existing speculative execution techniques with a
fixed solution (either early or late) to the when question cannot always lead to good straggler
mitigation results.

6.1.2 Where to Launch: Heterogeneity Has to be Considered

Concerning the question of where to launch the speculative copies, we study how different
copy allocations differ regarding performance and energy efficiency.

Since the clusters are usually shared by multiple jobs concurrently, resource contention
can lead to performance degradation when collocating tasks with similar critical resource
requirement on the same node. For example, Yildiz et al. [125] have shown that resource
contention can lead to up to 2.5x slowdown. We also observe from the CMU traces that the
performance variation between different speculative copies within one job can be large.

94 Chapter 6 – Energy-efficient Resource Reservation Mechanism for Straggler Handling

 0 1 2 3 4 5

 0
 2

0
 4

0
 6

0
 8

0
 1

0
0

 1
2
0

Speculative copy’s execution time /
 Median task execution time

J
o
b

F
ig

u
re

6
.2

–
P

er
fo

rm
an

ce
va

ri
ab

ili
ty

of
sp

ec
u

la
ti

ve
co

p
ie

s
in

th
e

H
ad

oo
p

p
ro

d
u

ct
io

n
cl

u
st

er
at

C
M

U
.

6.1 – WHEN and WHERE Questions: Impacts of the Answers 95

Figure 6.2 displays a box-and-whisker diagram to show the performance variation of spec-
ulative copies in the CMU traces. We only consider Map tasks in this figure. For each job, we
compute the ratios between copy execution time and the median task execution time. The
box-and-whisker diagrams show the distribution (the minimum, 25th quantile, 50th quantile,
75th quantile and the maximum values) of these ratios per job. The execution time ratio be-
tween speculative copies and median task execution time is preferred to be less than 1 (the
diagonally crossed zone on Figure 6.2). However, results demonstrate that some speculative
copies take up to 5x longer compared to the median task execution time. Moreover, we find
that the difference between the execution time of two copies within the same job can reach
up to 50x.

Regarding energy consumption, we have observed that there is a trade-off between the
performance and energy consumption for tasks executing on different nodes, according to
the current status of the nodes. This has been discussed in Chapters 3 and 5. Allocating
speculative copies to different locations, which may have different numbers of running tasks,
can result in different performance and energy consumption results. Thus, it is important to
take into consideration the impact of heterogeneity on performance and energy consumption
when making speculative copy allocation decisions.

6.1.3 A Motivating Example

To better explain the two deficiencies mentioned above, we present an illustrative example
on Figure 6.3. Let us consider a cluster with four nodes and one running job. The job con-
sists of multiple tasks and the tasks perform differently on different nodes due to hardware
heterogeneity. During runtime, we detect that T3 is a straggler. Thus, we need to decide the
right time and location to launch Copy C3 to handle the straggler.

The Early copy allocation mechanism launches C3 at the first freed slot in node N1 (see
Figure 6.3a). The execution time of C3 on N1 is 16. As a result, T3 finishes at time 18. With
Late copy allocation, C3 is launched after all regular tasks in the queue (i.e., T5 and T6) have
been scheduled (see Figure 6.3b). Although the execution time of C3 on N3 is shorter than on
N1 (14 unit of times), the finish time of T3 is later (i.e., 22) due to the late start of the copy.

In comparison, we propose a reservation-based straggler handling mechanism, which
adaptively decides both the start time and location of C3 as shown in Figure 6.3c. The de-
tailed design of this mechanism is introduced in below. The execution time of C3 in this case
is only 11 and the finish time of T3 is 15.

From the perspective of resource consumption, the reservation-based mechanism also
achieves the best result. The resource consumption (computed as number of slots multiplied
by the execution time) of speculative executions with Early, Late and Reservation-based copy
allocations are 72, 77 and 70, respectively. This example demonstrates that an adaptive and
heterogeneity-aware speculative mechanism can achieve both better performance and en-
ergy consumption.

From the example, we conclude that the when and where questions are actually correlated
with each other. We cannot make the best decision when considering them separately.

96 Chapter 6 – Energy-efficient Resource Reservation Mechanism for Straggler Handling

Pending tasks

T5 T6 ...

Pending copies

C3

N1 ... T1 C3

N2 ... T3 Killed

N3 T6... T2

N4 ... T4 T5

...

...

...

Detection moment

Time

10 18 20 30

(a) Early allocation.

Pending tasks

T5 T6 ...

Pending copies

C3

N1 ... T1 T5

N2 ... T3 Killed

N3 ... T2 C3

N4 ... T4 T6

...

...

...

Detection moment

Time

10 20 22 30

(b) Late allocation.
Pending tasks

T5 T6 ...

Pending copies

C3

N1 ... T1 T5

N2 ... T3 Killed

N3 ... T2 T6

N4 ... T4 C3

...

...

...

Detection moment

TimeTime

10 15 20 30

(c) Reservation-based allocation.

Figure 6.3 – An example with different speculative execution mechanisms.

6.2 Design Overview

Consider the scenario where multiple MapReduce jobs are running concurrently in a cluster
with N nodes. Each node hosts multiple slots for task executions. Assume the job sizes
are large and the cluster is highly utilized. Assume a fraction φ of the tasks in each job are
stragglers. We study the straggler handling problem under this scenario, with the objective
of optimizing both the performance and energy consumption of each job.

To achieve this goal, we propose a task-level speculative copy scheduler which works
on top of the built-in schedulers of Hadoop, such as the Capacity and Fair schedulers. Dur-
ing job executions, the Hadoop built-in scheduler is responsible for selecting the next job to
schedule in order to satisfy job-level requirements, such as fairness. Our task-level sched-
uler is responsible for launching regular tasks and speculative copies, in order to satisfy the
performance and energy optimization objectives. Our scheduler has two main components,
namely (1) the window-based resource reservation which periodically reserves resources
to launch early speculative copies (Section 6.3.1) and (2) the resource selection component
which decides on which resources to schedule speculative copies (Section 6.3.2). Figure 6.4
shows an overview of our design.

As the Hadoop built-in scheduler working at the job-level, we discuss the design of our
scheduler using a single job for simplicity. However, it is important to note that our design
works for both single job and multiple jobs scenarios.

6.3 – Proposed Techniques 97

Figure 6.4 – Design overview of the reservation-based speculative execution mechansim.

6.3 Proposed Techniques

As discussed above, the speculative execution problem can be divided into two sub-
problems: i) when to make reservations for launching speculative copies; and ii) where to
launch the copies. In the following, we propose a window-based resource reservation tech-
nique and a heterogeneity-aware copy allocation technique to solve the when and where
sub-problems, respectively.

6.3.1 Window-based Resource Reservation

Existing straggler handling mechanisms are triggered once stragglers are detected and slots
are available for launching speculative copies. However, in highly utilized clusters, re-
sources are not always available for launching speculative copies. Therefore, reservations
have to be made in advance to make sure the speculative copies get executed. In this study,
we propose a dynamic resource reservation technique, which considers the resources poten-
tially free in a near future (i.e., in a time window) to make efficient resource reservation plans
at runtime.

Specifically, we define a time window size w, which is set to be shorter than the aver-
age task execution time. The average task execution time can be calculated using runtime
information collected from the last time window or all previous windows. At the beginning
of each time window, we perform straggler detection and store the detected stragglers in a
set S. The set of regular tasks to be scheduled is denoted as T. We assume that the execu-
tion speed of a task remains constant within a time window and preemption is not allowed.
Based on this assumption, we can estimate the finish time of the running tasks. Based on
this information, we can estimate when slots are available. Let us denote the set of freed
slots ordered by their starting time as V. Then, in each time window, the resource reserva-
tion problem is to reserve slots from V for speculative copies of stragglers in S, in order to
optimize the overall performance and energy efficiency of the job.

Given |V| free slots and |S| detected stragglers, we can reserve from 0 (do not execute
any speculative copy in the current time window) to min(|V|, |S|) slots (execute as many
speculative copies as we can). Thus, the solution space to the resource reservation problem is

∑
min(|V|,|S|)
n=0 P(|V|, n), where P(|V|, n) stands for the permutation of selecting n slots from V.

With the large number of stragglers in Big Data processing systems, the time for exhaustively

98 Chapter 6 – Energy-efficient Resource Reservation Mechanism for Straggler Handling

Figure 6.5 – An example of window-based resource reservation. In the current window, S is the set
of detected stragglers ordered by criticalness, V is the set of available slots and T is the set of regular
tasks to schedule.

searching the solution space is prohibitively long. Thus, we propose the following heuristic
to quickly obtain a good solution to the problem.

• We first order the stragglers according to their criticalness. A critical straggler is a strag-
gler which has better potential of saving resources. It is given higher priorities when
being considered for copy allocations. This was discussed in detail in Chapter 5. Note
that a speculative copy is only launched when the residual time of the straggler is
longer than the expected execution time of the copy.

• Given the set of ordered stragglers, we sequentially search for a slot from V for each
straggler in S to run the copies, as shown on the left side of Figure 6.5. When searching
for a slot for each straggler, we consider the impact of different allocation choices to
the performance and energy efficiency of the job. This searching is processed using
our heterogeneity-aware copy allocation technique. The target of this searching is to
bi-optimize the overall energy consumption and performance when launching specu-
lative copies. As will be introduced in the next subsection, the time complexity of this
technique is O(|V|min{|S|,|V|}).

• After making copy allocation decisions for all speculative copies, the non-reserved
slots in V are used for executing the regular tasks in T. Regular tasks are scheduled
using the default Hadoop built-in scheduler, as shown on the right side of Figure 6.5.

The benefits of our window-based design are two-fold. First, compared to real-time
reservation methods, it provides the ability of looking-ahead when reserving resources and
thus provides a larger space of choices for copy allocations. Second, compared to offline
optimization methods, our resource reservation and copy allocation decisions are made pe-
riodically using the up to date runtime information from the latest time window, and thus
are more likely to lead to better optimization results.

6.3 – Proposed Techniques 99

Discussion on window size. The reason why we constrain the window size to be shorter
than the average task execution time is to perform one-step look-ahead when estimating
the number of available slots. If the window size is too large, the |V| and |S| values are also
likely to be large and thus the optimization overhead is large for one time window. Also, our
assumption of constant task speed in one window is more reasonable with a small window
size. However, if the window size is too small, the number of available slots in one time
window is also small. As a result, space of choices is also small. Thus, the improvement,
which is brought by our mechanism, can be reduced. In the evaluation section, we dedicate
one part to illustrate the impact of different window sizes on the space of choices.

6.3.2 Heterogeneity-Aware Copy Allocation

Given a list of ordered stragglers S (Si, where i = 0, · · · , k − 1) and a list of slots V (Vi, where
i = 0, · · · , m − 1) to be freed in the current window, we need to decide which speculative
copies of stragglers should be launched and where to launch them. In order to answer the
where question, we first present a performance and an energy model to estimate the job per-
formance and energy consumption yielded by different copy allocation solutions. Relying
on those model-based estimations, we propose a copy allocation heuristic to smartly map
speculative copies onto different slots.

Performance Model. The performance of a task (either a regular task or a speculative copy)
on a slot can be affected by multiple factors. In this study, we mainly consider three factors,
namely resource contention, data locality and capability of slots, which are usually the major
impacting factors to task performance. We can divide the execution time of a task into the
following three components:

t = treq + tcont + tdata (6.2)

where treq is the shortest time required to execute the task (with local data and no con-
tention), tcont is the execution time penalty of the task due to resource contention and tdata is
the time spent on loading data from remote location if data locality is not achieved.

Given a mapping of straggler Si to slot Vj, we estimate the performance of the speculative
copy of Si, denoted as Ci, using Equation 6.2. First, for Map tasks running on the same slot,
treq is almost the same, assuming that the input data is evenly assigned to different Map
tasks. For Reduce tasks running on the same slot, we assume that the treq depends linearly
on the input size. Second, as the resource contention is mainly caused by concurrent tasks,
the tcont value of Ci can be considered as the same as that of the latest task running on Vj.
Lastly, the tdata component can be easily estimated as tdata = D

B , where D is the size of the
input data to be loaded by Ci and B is the network bandwidth between the location where
the data resides and Vj.

With the above analysis, we can estimate the execution time of Ci using the runtime
history of the latest non-straggling task (either a regular task or a speculative copy) executed
on Vj, denoted as Th. There are three cases for estimation.

• Case 1: if Ci and Th execute either (1) with input data locally available or (2) without
input data locally available, then we have tCi

= tTh
.

100 Chapter 6 – Energy-efficient Resource Reservation Mechanism for Straggler Handling

• Case 2: if Ci runs with data locally available and Th does not, then we have tCi
=

tTh
−

DTh
B .

• Case 3: if Th runs with data locally stored and Ci has to fetch input data from remote

node, then we have tCi
= tTh

+
DCi

B .

As has been discovered in existing studies [131], the ratio of local task over the number of
total tasks is small in real clusters. For example, 58% of Facebook’s jobs have only 5% tasks
that are local tasks [131]. As a result, tasks most likely run with remote data. Thus, case 1
is the most common one in real clusters, which makes the performance estimation for copy
allocations light-weight.

Assume that Si is currently the first straggler in S that has not been handled. Si runs on
slot Vk. As stragglers are ordered according to their criticalness, we estimate that by handling
Si, the job execution time can be reduced by:

∆tij = tSi
+ tVk

− tCi
− tVj

(6.3)

where tSi
and tCi

are the estimated execution time of straggler Si and its copy, respectively.
tVj

and tVk
are the starting time of slot Vj and Vk, namely the starting time of Ci and Si,

respectively.

Energy Model. To estimate the energy consumption of executing Ci on Vj, we first propose
the node-level power model. The power consumption of a running node is composed of
two parts, namely the fixed static power consumption Ptotal

static and the dynamic power con-
sumption Ptotal

dyn . The dynamic power consumption is proportionally related to the usage of
resources, including the number of active cores, the number of memory accesses and the
amount of data transferred through the network [38]. Assume a node is equipped with a
CPU of c cores, a memory with m GB capacity and a Network Interface Card (NIC) pro-
viding b Gb/s bandwidth. Then, Ptotal

dyn can be defined as the sum of the dynamic power
consumption of all active resources as shown below.

Ptotal
dyn = P

cpu
dyn + Pmem

dyn + Pnet
dyn (6.4)

The CPU dynamic power consumption of a running node mainly depends on the number
of tasks simultaneously running on the node. We use Pdyn to denote the power consumption
for one active core and n to denote the number of tasks running on the node. Thus, P

cpu
dyn can

be modeled as shown in Equation 6.5. This is the second term of the power consumption
model mentioned in Chapter 4.

P
cpu
dyn =

{

n × Pdyn for 0 ≤ n ≤ c

c × Pdyn for c < n
(6.5)

The dynamic power consumption of the memory is strongly related to the number of
data accesses per second [38]. It has been observed that this value can be estimated using the
runtime history of tasks of the same job. The dynamic memory power consumption of a task
is modeled as its average data accesses per second multiplied by the energy consumption of

6.4 – Methodology 101

one data access. Pmem
dyn is modeled as the sum of the dynamic memory power of all running

tasks [38].
Pnet

dyn can be modeled in a similar way, using the total amount of data transfer of each
task [38]. Note that if a task achieves data locality, then the dynamic network power con-
sumption of the task is zero.

Finally, the static power consumption is composed by the idle power consumption of
CPU, memory and network resources [38]. We model Ptotal

static as the sum of P
cpu
static, Pmem

static and
Pnet

static, which are considered as architecture constants and can be estimated with hardware
specifications or measured through profiling [38]. Thus, the total power consumption P of
a running node can be modeled as the sum of Ptotal

static and Ptotal
dyn . The power consumption of

a running task can be computed as the difference of the node power consumption between
after and before running the task.

The energy consumption E of a node is its power integrated over time and thus can be
modeled as E =

∫ T
0 P(t)dt. We use T to denote the execution time of tasks running on

the node. The energy efficiency EE is defined as the ratio of the performance to the energy
consumption, where the performance is defined as the number of jobs finished per second.

Executing a new copy consumes more energy, whereas it saves at the same time energy
by shortening the execution time of the straggler task. We can formulate the saved energy
consumption caused by launching a copy of straggler Si on slot Vj as follows.

∆Eij = Pk × ∆tij − Pj × tCi
(6.6)

where Pk and Pj are the power consumption of slots Vk and Vj which execute the straggler Si

and copy Ci, respectively.

Copy Allocation Heuristic. Given the performance and energy models, we define two
metrics (∆tij, ∆Eij) to decide the fitness of each allocation of straggler Si to slot Vj. Let us
assume that there are m reserved slots in V. Given any straggler, there can be m + 1 different
copy allocation choices (i.e., choosing one of the m slots to launch a copy and do not launch
any copy). The objective of our copy allocation heuristic is to find the allocation decision
that maximizes both the performance and energy metrics for each straggler in S.

Following the order of stragglers sorted in the window-based resource reservation step,
we iteratively search all the slots in V and select a copy allocation with the highest value of
(∆t,∆E). When comparing two sets of metrics, e.g., M1 = (∆t1, ∆E1) and M2 = (∆t2, ∆E2),
we use the skyline comparison to decide which one is better. Specifically, we define M1 >

M2 only when both ∆t1 > ∆t2 and ∆E1 > ∆E2 are satisfied. Algorithm 2 presents the
general flow of our copy allocation heuristic. The worst-case complexity of this heuristic is
O(|V|min{|S|,|V|}).

6.4 Methodology

In the following, we present the experimental methodology of our evaluation. We start
with a detailed description of the discrete-event simulation. Then, we list the speculative
execution mechanisms under study. Finally, we discuss the configurations that are used
throughout the evaluation.

102 Chapter 6 – Energy-efficient Resource Reservation Mechanism for Straggler Handling

1 while S is not empty do

2 Straggler i is the head of S;
3 best_fitness = (0,0);
4 foreach Slot j in V do

5 calculate ∆tij and ∆Eij using Equations 6.3 and 6.6;
6 if (∆tij, ∆Eij) > best_fitness then

7 best_slot = j;
8 best_fitness = (∆tij, ∆Eij);
9 end

10 end

11 launch a copy of Straggler i in Slot best_slot;
12 remove Straggler i from S;
13 end

Algorithm 2: Copy allocation heuristic.

Discrete-event Simulation. We decide to adopt the simulation approach for evaluating
our window-based resource reservation mechanism. The simulation approach allows us to
dynamically tune diverse parameters (e.g., hardware heterogeneity, straggler ratio, etc.) in
order to comprehensively evaluate our solution under different scenarios. Regarding the
simulator, the straggler mitigation techniques must be accurately simulated with this simu-
lator. Besides, the simulator should be able to extract essential parameters from production
traces for the simulation. Many of existing simulators are capable of simulating a large-
scale Big Data processing system (e.g., MRPerf [112], MRSG [65], SimMapReduce [102], MR-
Sim [47]). However, none of them provides fully these functionalities, which are essential
for our evaluation. Due to the absence of such a simulator, we decide to implement a new
discrete-event simulator. It is important to notice that this simulator was designed to fully
satisfy the aforementioned functionalities with minor implementation overhead. Addition-
ally, it can be used to evaluate upcoming straggler mitigation solutions, which requires a
comprehensive evaluation in large-scale simulation with different parameters.

We develop a our simulator in Java with 2000 lines of code. There are two essential
components in the simulator, including nodes and jobs. Each node is configured to have a
specific number of slots, which represents the number of tasks the node can run concurrently.
A node is set with a specific execution time ratio. This execution time ratio determines how
long a task takes to complete on this node. For instance, if a node is set with the execution
time ratio of 2.0x, the tasks running on this node may take 2.0x to finish, compared to the
average task execution time. By varying the value of this ratio across nodes, we can emulate
hardware heterogeneity in terms of performance in typical Big Data processing clusters.

Moreover, a node is equipped with a given number of CPU cores, a given capacity of
memory as well as network bandwidth. When it executes concurrently multiple tasks, these
resources are distributed across the tasks evenly. For instance, a node executes two concur-
rent tasks, which heavily consume network to transfer data. Each task runs with 50% of
maximum network bandwidth. As a result, these two tasks take 2 times longer to finish
compared to the case when each of them runs separately. This feature emulates resource
contention in Big Data processing systems. We discuss in detail this feature below.

The implementation of job object implementation simulates Big Data job in real systems.

6.4 – Methodology 103

A job contains a list of tasks. Moreover, it has specific parameters, which can be customized.
For instance, we can tune the ratio of stragglers when running a job. These parameters can
be manually set, or extracted from the production traces, e.g., CMU traces [93]. For each
job, its tasks have specific resource usage characteristics (e.g., CPU, memory and network
usages).

There are three important parameters in our simulation: the resource contention degree,
the hardware heterogeneity degree and the straggler ratio. The resource contention degree
parameter indicates how much resource contention can affect the job performance. For in-
stance, two data-intensive applications may greatly suffer from network contention, which
leads to a high performance slowdown. If nodes have a low network bandwidth and tasks
transfer a large amount of data, this slowdown is increased. The hardware heterogeneity de-
gree parameter indicates how differently the same task can perform on different nodes. The
straggler ratio parameter indicates the percentage of the total tasks can be stragglers while
running.

We use the traces [93] collected in January 2012 of a Hadoop production cluster from
CMU to extract the basic parameters: job arrival rate, job sizes, task average execution time,
straggler ratio, etc. This Hadoop production cluster consists of 64 nodes. Each node in the
cluster has a 2.8 GHz two quad-core CPUs, 16 GB of memory, 10 Gb/s Ethernet network
connection, and four 7200 RPM SATA disk drives. During the 30 days execution, more than
1500 jobs (1.5 million tasks) were submitted to the cluster by 78 different users.

Compared Straggler Handling Mechanisms. In our evaluation, our reservation-based
speculative execution mechanism is denoted as Window. noSpec is used to denote the case
when speculative execution mechanism is disabled. The state-of-the-art speculative execu-
tion mechanism, which is currently used in Hadoop, is denoted as Default. This mechanism
allocates speculative copies at the end of the job execution, when all regular tasks have been
launched.

In addition, we include in our evaluation another speculative copy allocation method,
called Hete-aware. This mechanism also allocates speculative copies on available resources at
the end of the job execution. However, it takes into account the impact on both the perfor-
mance and energy consumption of different slots. It uses the same copy allocation heuristic
as shown in Algorithm 2. Its goal is to bi-optimize the performance and energy consumption
of speculative copies.

Configurations. We divide our evaluation into two parts. The first part is used to compare
different speculative execution mechanisms. In this evaluation, we set the resource con-
tention to 2.5x, straggler ratio to 0.2, hardware heterogeneity to 3.0x and window size to 0.2.
The second part of the evaluation focuses on examining the impact different values of these
parameters on the behaviors of our proposed speculative execution mechanism.

Metrics. The execution time metric is calculated for each job. It is determined by the
amount of time from the moment the job’s first task starts until its last task finishes. The en-
ergy consumption metric is the sum of energy consumption of a job’s tasks and copies. The
energy consumption of a task or copy is determined by its power consumption multiplied
by it execution time. The detailed energy and power consumption models are discussed in
Section 6.3.2.

104 Chapter 6 – Energy-efficient Resource Reservation Mechanism for Straggler Handling

 0

 0.2

 0.4

 0.6

 0.8

 1

noSpec Default Hete-aware Window

N
o

rm
a

liz
e

 e
x
e

c
u

ti
o

n
 t

im
e

Speculative execution mechanisms

Figure 6.6 – Normalized execution times when using different speculative execution mechanisms.

In our experiment, when the results are normalized, they are normalized to those of
noSpec.

6.5 Experimental Evaluation

In this section, we evaluate the effectiveness of our speculative execution mechanism by
comparing it with state-of-the-art speculative execution mechanisms. Then, we perform
sensitivity studies to evaluate the impact of various parameters on the effectiveness of our
speculative execution mechanism.

6.5.1 Comparison of Different Speculative Execution Mechanisms

In this section, we start with a comparison in overall job performance and energy consump-
tion. Then, we take a deeper look at the behaviors of different speculative execution mecha-
nisms to better understand the results.

Overall Performance Comparison. Figure 6.6 shows the normalized average job execution
times obtained with different speculative execution mechanisms. We have the following
observations.

First, our speculative execution mechanism obtains the best results with respect to execu-
tion time. Specifically, Window reduces the average job execution time by 27.4%, 21.5% and
20.4% compared to noSpec, Default and Hete-aware, respectively. This is because early spec-
ulative copies can better mitigate stragglers. Moreover, reserving the appropriate resources
provides speculative copies with better performance. On average, the execution times of

6.5 – Experimental Evaluation 105

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

noSpec Default Hete−aware Window

N
o
rm

a
liz

e
 e

n
e
rg

y
 c

o
n
s
u
m

p
ti
o
n

Speculative execution mechanisms

Normal−Success
Strag−Success

Strag−Killed

Copy−Success
Copy−Killed

Figure 6.7 – Energy consumption breakdown with different speculative execution mechanisms.

speculative copies when using Default and Hete-aware are respectively 48% and 41% higher
compared to Window. In the sensitivity evaluation, we discuss this in more detail.

Second, Default and Hete-aware can improve execution time. However, these improve-
ments are modest in comparison with Window. Specifically, Default and Hete-aware can re-
duce the average execution time by 7.5% and 8.8% compared to noSpec, respectively. This
is because both Default and Hete-aware launch speculative copies at the end of the execu-
tion. At this stage, stragglers have been running for a long time. Even if speculative copies
are successful, the time reduction is significantly smaller. These results emphasize on the
importance of early speculative execution in mitigating stragglers.

Third, we notice that the execution time reductions of Default and Hete-aware are very
close. Specifically, the difference is only 1.3% between Default and Hete-aware. Hete-aware is
designed targeting a lower energy consumption while maintaining performance comparable
to Default.

106 Chapter 6 – Energy-efficient Resource Reservation Mechanism for Straggler Handling

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50

C
D

F

Improvement in job execution time (%)
 compared to noSpec

Default
Hete-aware

Window

Figure 6.8 – CDF of execution time improvements of different speculative execution mechanisms
with respect to noSpec.

Energy Consumption Comparison. Figure 6.7 represents the average energy consumption
when using different speculative execution mechanisms. Overall, we notice that Window can
significantly reduce the energy consumption by 21.1%, 23.0% and 20.0% compared to noSpec,
Default and Hete-aware, respectively.

To better understand this high reduction, we provide the detailed energy breakdown
with different speculative execution mechanisms. There are five different task categories: (1)
normal tasks which successfully finish (denoted as Normal-Success); (2) stragglers which suc-
cessfully finish (denoted as Strag-Success); (3) stragglers which get killed (denoted as Strag-
Killed); (4) successful speculative copies (denoted as Copy-Success); and (5) speculative copies
which get killed (denoted as Copy-Killed).

We notice that Window significantly reduces the energy consumption of stragglers. These
stragglers are shortened thanks to early speculative copies. However, the speculative copies
consume extra energy and contribute to the total energy consumption. Nonetheless, the in-
crease (i.e., in energy consumed by successful speculative copies) are compensated by the
large reduction in the energy consumption of stragglers. These results emphasize on the
importance of early speculative copies allocation in reducing a large amount of energy con-
sumed by stragglers.

Regarding Hete-aware, we notice that it has slightly better energy consumption compared
to Default. The energy reduction is up to 5% in this case.

Performance and Energy Consumption at the Job-level. Figure 6.8 and 6.9 depict the CDF
of the reductions in execution time and energy consumption at the job-level. First, we notice
that Window still shows good improvement over the other mechanisms. For example, as
shown in Figure 6.8, Window obtains over 30% reduction in job execution time for more
than 90% of the jobs when compared to noSpec. Similar trend is recorded in the energy
consumption comparison. Window can reduce more than 20% energy consumption in 80%
of the jobs, compared to noSpec.

Second, Default and Hete-aware again have close improvements in both execution time
and energy consumption. This explains their close results in both average execution time

6.5 – Experimental Evaluation 107

 0

 0.2

 0.4

 0.6

 0.8

 1

-5 0 5 10 15 20 25 30 35

C
D

F

Improvement in job energy consumption (%)
 compared to noSpec

Default
Hete-aware

Window

Figure 6.9 – CDF of energy consumption improvements of different speculative execution mecha-
nisms with respect to noSpec.

and average energy consumption.

Third, we notice that Default, and sometimes Hete-aware, can have negative improve-
ments, in both execution time and energy consumption for some jobs. This is due to their
way of launching speculative copies at the end of the job execution. Late speculative copies
may get killed as they cannot finish before the stragglers which have been running for a long
time. Once the speculative execution is not successful for one job, the unsuccessful specula-
tive copies occupy slots for long time and affect the execution of the next jobs. As a result,
this negative impact may be amplified.

Energy Efficiency Comparison. Figure 6.10 represents the comparison in energy efficiency
with different speculative execution mechanisms. The energy efficiency is calculated as
throughput divided by energy consumption. The throughput is defined as the number of
jobs finished per second. We observe that our speculative execution mechanism, i.e., Win-
dow, results in significantly higher energy efficiency. Specifically, it has 75%, 70% and 61%
higher energy efficiency compared to noSpec, Default and Hete-aware, respectively.

Regarding Defaut, late speculative execution only improves the energy efficiency by 5%
compared to noSpec. With Hete-aware, thanks to the heterogeneity-aware copy allocation
method, it has 9% higher energy efficiency compared to Default. In comparison with noSpec,
it obtains an improvement of 14% in energy efficiency.

Conclude. We observe that dynamically reserving resources makes speculative execution
more effective. This leads to significant performance improvement and energy consumption
reduction. It results in a substantial increase in energy efficiency. In contrast, launching
speculative copies at the end of the execution limits the potential benefits of speculative
execution, as stragglers have been running and consuming energy for a long time. In a high-
utilization cluster, dynamic resource reservation is the key to better answer both questions
of when and where in order to achieve the maximum benefits.

108 Chapter 6 – Energy-efficient Resource Reservation Mechanism for Straggler Handling

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

noSpec Default Hete-aware Window

N
o

rm
a

liz
e

 e
n

e
rg

y
 e

ff
ic

ie
n

c
y

Speculative execution mechanisms

Figure 6.10 – Energy efficiency with different speculative execution mechanisms.

6.5.2 Sensitivity Study

In this subsection, we evaluate four speculative execution mechanisms in improving the
performance and energy efficiency while tuning different parameters, including the resource
contention, straggler ratio, hardware heterogeneity and window size. Those results can be
used as guidance for users to select the best parameters which suit with their needs.

Resource Contention. We manually change the resource contention degree between dif-
ferent jobs to simulate the scenario of running different types of applications in the cluster.
Specifically, we vary the contention degree from 1.0x (no contention), 1.5x, 2.0x to 2.5x (se-
vere contention). For example, when the parameter is 1.5x, collocating different tasks can
result in a maximum slowdown of 1.5x, compared to the task normal execution time. In Big
Data processing systems, it is common for this contention to happen [6, 126]. Figure 6.11
shows the results of the four mechanisms under different contention degrees. We make the
following observations.

First, when the contention degree increases, the average job execution time also increases
for the four mechanisms. However, Window keeps outperforming the other mechanisms,
and the performance improvement increases with the increase of the contention degree,
from 27.4%, 21% and 16% compared to noSpec, Default and Hete-aware, respectively. Simi-
lar trend is observed for energy consumption. In all cases, Window performs the best among
all compared algorithms, with 21%, 23.5% and 21% reduction compared to the total energy
consumption of noSpec, Default and Hete-aware, respectively.

Second, we notice that Hete-aware performs better with respect to the increase of resource
contention. When contention increases, the differences in performance and energy consump-
tion also increase. As a result, the heterogeneity-aware copy allocation method of Hete-aware
can benefit more from these increasing differences.

6.5 – Experimental Evaluation 109

 0

 500

 1000

 1500

 2000

 2500

1.0x 1.5x 2.0x 2.5x

E
x
e
c
u
ti
o
n
 t
im

e
 (

s
)

Inter-task resource contention degree

noSpec
Default

Hete-aware
Window

(a) Average job execution time.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

1.0x 1.5x 2.0x 2.5x

E
n
e
rg

y
 c

o
n
s
u
m

p
ti
o
n
 (

k
J
)

Inter-task resource contention degree

noSpec
Default

Hete-aware
Window

(b) Total energy consumption.

 0

 0.5

 1

 1.5

 2

1.0x 1.5x 2.0x 2.5x

N
o
rm

a
liz

e
d
 e

n
e
rg

y
 e

ff
ic

ie
n
c
y

Inter-task resource contention degree

noSpec
Default

Hete-aware
Window

(c) Normalized energy efficiency (compared to
noSpec).

Figure 6.11 – Sensitivity study on resource contention degree.

Regarding the energy efficiency, Window increases the overall energy efficiency by up to
75% compared to noSpec as shown in Figure 6.11c. In comparison with Default and Hete-
aware, Window has up to 70% and 63% higher energy efficiency, respectively.

These results indicate that our proposed speculative execution mechanism works well
with diverse resource contention degrees. Besides, Hete-aware results in higher improvement
compared to Default along with the increase of resource contention degree.

Hardware Heterogeneity. Hardware heterogeneity is yet another major feature of Big Data
processing systems. Nathuji et al. [83] record that 90% of Big Data processing systems up-
grade their infrastructures within 2 years with new machines. This leads to an inevitable
hardware heterogeneity. In this evaluation, we vary the hardware heterogeneity degree from
1.0x, 1.5x, 2.0x, 2.5x to 3.0x to simulate different types of commodity clusters. For example,
when the parameter is 1.5x, the performance of the same task running on different nodes can

110 Chapter 6 – Energy-efficient Resource Reservation Mechanism for Straggler Handling

 0

 500

 1000

 1500

 2000

 2500

1.0x 1.5x 2.0x 2.5x 3.0x

E
x
e
c
u
ti
o
n
 t
im

e
 (

s
)

Hardware heterogeneity degree

noSpec
Default

Hete-aware
Window

(a) Average job execution time

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

1.0x 1.5x 2.0x 2.5x 3.0x

E
n
e
rg

y
 c

o
n
s
u
m

p
ti
o
n
 (

k
J
)

Hardware heterogeneity degree

noSpec
Default

Hete-aware
Window

(b) Total energy consumption

 0

 5

 10

 15

 20

 25

 30

1.0x 1.5x 2.0x 2.5x 3.0x

S
p
e
c
u
la

ti
v
e
 c

o
p
y
 r

u
n
ti
m

e
 (

s
)

Hardware heterogeneity degree

Default
Hete-aware

Window

(c) Average copy execution time with different
hardware heterogeneity degrees.

 0

 0.5

 1

 1.5

 2

1.0x 1.5x 2.0x 2.5x 3.0x

N
o
rm

a
liz

e
d
 e

n
e
rg

y
 e

ff
ic

ie
n
c
y

Hardware heterogeneity degree

noSpec
Default

Hete-aware
Window

(d) Normalized energy efficiency (compared to
noSpec).

Figure 6.12 – Sensitivity study on the hardware heterogeneity degree.

vary 1.5 times of its normal execution time. Figure 6.12 shows the results of the compared
mechanisms under different heterogeneity degrees.

As the hardware heterogeneity degree increases, the straggler problem becomes more
important. The Window mechanism is able to obtain higher improvement in performance
and energy compared to the other mechanisms. For example, Window reduces the average
job execution time by 16%–22% and the total energy consumption by 17%–23% compared to
Default. When taking a closer look at the execution of speculative copies (Figure 6.12c), we
find that the average execution time of speculative copies increases much slower in Window
than in Default, when the hardware heterogeneity degree increases. This is mainly due to a
heterogeneity-aware resource reservation of Window to early launch speculative copies.

Hete-aware also performs better with the increase of hardware heterogeneity degree.
However, we observe that this increase is small compared to Window. This is due to the
small number of available slots when Hete-aware allocates copies. We observe that when

6.5 – Experimental Evaluation 111

Hete-aware copy allocation method allocates speculative copies, the average number of free
slots is less than 5. This small set of slots might not contain the slots with good performance
and energy consumption. This limits the number of options for Hete-aware, and thus hinders
the effectiveness of Hete-aware. In contrast, Window is not limited by this as it can dynami-
cally reserve the relevant slots for speculative copies. As a result, the speculative copies are
launched on the slots with high performance and low energy consumption.

With respect to the energy efficiency, Window again appears to have significantly high
energy efficiency. It can increases the overall energy efficiency by up to 75% compared to
noSpec as shown in Figure 6.12d. This increase in energy efficiency increases when the hard-
ware heterogeneity degree increases. This result demonstrates that our speculative execution
mechanism works even better with higher hardware heterogeneity degree. We observe the
same trend with the Hete-aware speculative execution mechanism.

Straggler Ratio. In Big Data processing systems, the occurrence of stragglers is common.
By analyzing the traces from CMU, we observe that the straggler ratio, i.e., ratio of the num-
ber of stragglers over the number of total tasks, varies from 0.0 to 0.40 per job. In this evalua-
tion, we vary the straggler ratio from 0.05 up to 0.40 to study the behavior of four speculative
execution mechanisms.

Figures 6.13 and 6.14 depict the results of these mechanisms. With the increase of strag-
gler ratio, Window can reduce the average job execution time and total energy consumption
more than the other mechanisms. For example, Window reduces the average execution time
by 6.5%–30% and the energy consumption by 6%–34% compared to Hete-aware. This means
that our algorithm can work better in systems with serious straggler problems. This is be-
cause Window provides timely resources to mitigate more stragglers. As a result, the higher
the ratio of stragglers is, the better the improvement Window can achieve. Accordingly, Win-
dow can significantly increase the overall energy efficiency. As shown in Figure 6.14, the
increase can be up to 140%, 135% and 130% compared to noSpec, Default and Hete-aware, re-
spectively. More importantly, the increase in energy efficiency substantially improves with
the increase of straggler ratio.

In contrast, the improvements when using Hete-aware or Default do not show significant
increase when the straggler ratio increases. This is because both Hete-aware and Default mit-
igate stragglers at the end of job execution. A large number of stragglers, which run and
finish before the final wave, are not mitigated by these mechanisms.

To conclude, Window can successfully mitigate a large number of stragglers in highly
utilized cluster.

Window Size. In contrast with the aforementioned parameters, window size is a specific
parameter of Window. This parameter allows users to define the amount of time between two
consecutive resource reservations. This parameter is calculated per job. In this evaluation,
the window size is computed as the ratio between the window time and the execution of the
fastest task of the job. We vary it from 0.1 to 1.0 to study the impact on performance and
energy efficiency.

We can observe on Figure 6.15 that a larger window size leads to a better performance of
speculative copies. With the window size of 0.1, speculative copies take 16% longer time to
finish compared to the results when window size is set at 1.0. This is because a large window

112 Chapter 6 – Energy-efficient Resource Reservation Mechanism for Straggler Handling

 0

 500

 1000

 1500

 2000

 2500

 3000

0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40

E
x
e
c
u
ti
o
n
 t
im

e
 (

s
)

Straggler ratio

noSpec
Default

Hete-aware
Window

(a) Average job execution time

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40

E
n
e
rg

y
 c

o
n
s
u
m

p
ti
o
n
 (

k
J
)

Straggler ratio

noSpec
Default

Hete-aware
Window

(b) Total energy consumption

Figure 6.13 – Sensitivity study on the straggler ratio: Comparison on execution time and energy
consumption.

time makes the reservation look further into future. This increases the number of resources
which will be available within the next window time. Accordingly, the reservation has more
options to select when launching speculative copies.

However, the energy consumption does not show the same trend with the increase of the
window size parameter. We observe that energy consumption only decreases when increas-
ing the window size from 0.1 to 0.2. The energy reduction is 4% in this case. From that value
of the window size, a larger window sizes results in a higher energy consumption. For in-
stance, the energy consumption increases by 9% when increasing the window size from 0.2
to 1.0. This increase can be explained when we take a deeper look at the impact of window
size on detection and handling latency.

Figure 6.16 depicts the average detection and handling latency when increasing the win-
dow size parameter. We observe that the latency increases linearly with the increase of win-

6.5 – Experimental Evaluation 113

 0

 0.5

 1

 1.5

 2

 2.5

0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40

N
o
rm

a
liz

e
d
 e

n
e
rg

y
 e

ff
ic

ie
n
c
y

Straggler ratio

noSpec
Default

Hete-aware
Window

Figure 6.14 – Sensitivity study on the straggler ratio: Comparison on energy efficiency.

 0

 5

 10

 15

 20

 25

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

S
p
e
c
u
la

ti
v
e
 c

o
p
y
 e

x
e
c
u
ti
o
n
 t
im

e
 (

s
)

Window size ratio (compared to fastest task)

(a) Average copy execution time

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

E
n
e
rg

y
 c

o
n
s
u
m

p
ti
o
n
 (

k
J
)

Window size ratio (compared to fastest task)

(b) Total energy consumption

Figure 6.15 – Sensitivity study on the window size parameter.

dow size. The total latency increases 560% when increasing the window size from 0.1 to 1.0.
This is because a larger window size decreases the frequency of handling straggler actions.
For instance, a window size of 0.1 triggers the straggler detection and resource reservation
10 times more compared to a window size of 1.0. A larger window size further delays both
straggler detection and the straggler handling. As a result, stragglers can run and consume
energy for longer times before they are mitigated. In contrast, this larger window time can
improve the performance of speculative copies of Window. This trade-off results in the low-
est energy consumption at window size of 0.2 in our evaluation.

To conclude, the window size parameter can impact performance and energy consump-
tion. A relevant value of window size can result in the best performance and energy con-
sumption, depending on the characteristics of cluster and attributes of running applications.

114 Chapter 6 – Energy-efficient Resource Reservation Mechanism for Straggler Handling

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

L
a

te
n

c
y
 (

m
s
)

Window size ratio (compared to fastest task)

Detection Handling

Figure 6.16 – Straggler detection and straggler handling latency of the window-based approach.

6.6 Conclusion

As having shown, how to answer the when and where questions strongly affects the perfor-
mance and energy consumption. In this chapter, we aim to provide a speculative execution
mechanism which can answer these two questions jointly. On the one hand, our speculative
execution mechanism is equipped with a resource reservation mechanism. This mechanism
searches for resources which are soon available. These resources are reserved for launching
speculative copies as soon as they get freed. On the other hand, our speculative execution
mechanism adopts a window-based scheduling technique. With this technique, the resource
reservation is triggered at the beginning of each window time. Only the resources, which
are expected to be freed within the current window time, are considered. The size of this
window time can be dynamically changed to determine the straggler handling latency.

Through a detailed evaluation using discrete-event simulations, we observe that our
speculative execution mechanism offers a significant performance increase and energy con-
sumption reduction. As a result, it leads to a substantial improvement in energy efficiency.
Moreover, we provide a detailed sensitivity study to illustrate the impacts of different pa-
rameters on how our speculative execution mechanisms and state-of-the-art mechanisms
work.

115

Chapter 7
Conclusion

Contents

7.1 Achievements . 116

7.1.1 Characterizing the Impact of Straggler Mitigation on Performance
and Energy Consumption . 116

7.1.2 Measuring and Enabling Energy Efficiency of Straggler Detection . . 117

7.1.3 Bringing Energy-awareness to Straggler Handling 118

7.1.4 Energy-efficient Straggler Handling Mechanism 118

7.2 Perspectives . 119

7.2.1 Prospects Related to the Hierarchical Straggler Detection Mechanism 119

7.2.2 Prospects Related to Our Straggler Handling Mechanisms 120

ENERGY consumption has become the major concern in operating large-scale Big Data
processing systems. Moreover, this concern is quickly becoming crucial as Big Data
processing infrastructures are relentlessly expanding to cope with the ever-growing

data size. In parallel, the increasingly large scale of Big Data infrastructures raises another
emerging issue which cannot be ignored, namely performance variability. This performance
variability is in turn responsible for a large number of stragglers, which have significantly
longer execution time compared to the average task execution time. Stragglers can have a
significantly negative impact on the performance and energy consumption of Big Data pro-
cessing systems. In response, much attention has been paid to mitigate stragglers. Unfortu-
nately, these studies do not pay enough attention on the additional energy consumption of
their straggler mitigation techniques. As a result, it may lead to a high energy cost.

1. Current straggler detection mechanisms are equipped with simple algorithm in order
to quickly detect stragglers at runtime. These simplistic straggler detection mecha-
nisms may make inaccurate detection decisions. For instance, they can overly detect

116 Chapter 7 – Conclusion

normal tasks as stragglers. The speculative copies of the overly detected normal tasks
are most likely to get killed. This results in a large amount of extra energy consump-
tion.

2. Heterogeneity exists in large-scale Big Data processing systems. Actually, it is the orig-
inal cause of performance variability. It strongly affects the executions of Big Data
applications. In other words, executing the same task on different nodes lead to dif-
ferent performance and energy consumption results. The same phenomenon can be
observed when allocating speculative copies to different locations. Unfortunately, ex-
isting straggler handling mechanisms do not pay enough attention to this. As a result,
they may lead to a high energy consumption.

3. By default, regular tasks have higher priority compared to speculative copies. Conse-
quently, speculative copies are left in the queue until all regular tasks are launched. In
the context of Big Data processing systems, many Big Data jobs can consist of thou-
sands of tasks. Thereby, Big Data infrastructures may have to execute them in multiple
waves. In this case, speculative copies are not launched until the final wave. As a re-
sult, stragglers are left to be running for a long time, while consuming a large amount
of wasteful energy. Existing straggler mitigation techniques do not take in to con-
sideration the impact of this scenario. Thus, the improvement that they can bring is
significantly reduced.

Targeting these issues, our work improves the energy efficiency of straggler mitigation
through a number of contributions. Hereafter, we collectively describe these contributions.

7.1 Achievements

7.1.1 Characterizing the Impact of Straggler Mitigation on Performance and En-
ergy Consumption

Much attention has been paid to mitigate stragglers in Big Data processing systems. To de-
tect stragglers, straggler detection mechanisms are typically equipped with simple detection
algorithm in order to quickly detect straggler at runtime. To handle stragglers, speculative
execution is a widely-used technique. A copy of the detected straggler is launched with the
expectation that it can finish earlier and reduce the long execution time of that straggler.

Even though benefits exist, launching speculative copies is not cost-free due to the extra
energy consumed by them. Even worse, speculative copies may get killed if they cannot
finish earlier than the stragglers. In this case, speculative copies result in a high energy
cost while bringing no performance improvement. To conclude, speculative execution can
strongly impact the performance and energy consumption of Big Data processing systems.
Unfortunately, very few of existing work can provide a detailed understanding of this aspect.
In response, we present an in-depth study to understand the impact of speculative execution
on performance and energy consumption in Big Data processing systems.

Understanding the Impact of Speculative Execution on Performance and Energy Con-

sumption of Hadoop Clusters. By means of experiments, we investigate the impact of

7.1 – Achievements 117

speculative execution on the performance and the energy consumption. A set of experi-
ments are conducted on large-scale clusters with three representative Big Data applications.
We consider three different clusters: (1) homogeneous cluster; (2) cluster with nodes hav-
ing different CPU powers; and (3) cluster consisting of nodes with different network band-
widths. Three applications are executed with and without speculative execution enabled on
these clusters. The results are then analyzed to provide more insights into the behaviors of
speculative execution in different environments with different applications.

We observe that speculative execution can sometimes result in performance improve-
ment, sometimes lead to performance degradation. In the case that speculative execution
improves performance, it is due to a high number of successful speculative copies. This par-
tially stems from the inaccurate detection of straggler detection mechanism in Hadoop. In
terms of energy consumption, a performance improvement does not entail a proportional
energy reduction. This is due to the extra energy consumed by speculative copies. In the
case of performance degradation, the ratio of unsuccessful speculative copies is high. These
copies result in a higher energy cost. Finally, we observe that there exists a fundamental
trade-off between performance and energy consumption while allocating speculative copies
to different nodes.

7.1.2 Measuring and Enabling Energy Efficiency of Straggler Detection

As we have shown, inaccurate detection leads to unnecessary speculative copies, which are
most likely to get killed. These killed copies result in a high energy cost. In an attempt to
improve the energy efficiency of straggler mitigation, we first of all address the straggler
detection phase.

Dedicated Metrics to Characterize Straggler Detection Mechanisms. As a first stepping
stone towards improving the energy efficiency of straggler detection, we introduce a set of
dedicated metrics to characterize and evaluate straggler detection mechanisms. This set in-
cludes some well-known metrics, i.e., Precision and Recall, as well as novel metrics, which
we have introduced to specifically deal with stragglers: Detection Latency, Undetected Time
and Fake Positive. In order to demonstrate the use of our metrics, we conduct a set of experi-
ments on Grid’5000. Successively, we explain in detail the methods to calculate the metrics,
as well as the important parameters which can be tuned by users to suit their scenarios. Fi-
nally, we introduce a mathematical intuition to link each metric to the resulting performance
and energy consumption. Finally, our proposed metrics allow users to easily and effectively
characterize and evaluate straggler detection mechanisms.

Evaluating State-of-the-art Straggler Detection Mechanisms. Using the proposed met-
rics, we conduct a set of experiments to evaluate two state-of-the-art straggler detection
mechanisms, i.e., Default and LATE. The goal of this evaluation is to provide more insights
into these widely-used straggler detection mechanisms. This information is important to
either (1) users who want to select the relevant straggler detection mechanisms for their
systems, or (2) researchers who aim to improve these straggler detection mechanisms. Our
evaluation results indicate that these two mechanisms could be significantly improved. Re-
garding Default, it has low Precision. In some cases, the Precision is only 12%. This means 88%
of detected stragglers were not actually stragglers. Regarding LATE, although it has higher

118 Chapter 7 – Conclusion

Precision compared to Default, the values of Precision are still low in general. These results
motivated us to introduce a new straggler detection mechanism towards a higher Precision.

Hierarchical Straggler Detection: A Green Straggler Detection Mechanisms. This strag-
gler detection mechanism adopts a hierarchical approach to detect straggler. It works as a
secondary straggler detection layer on the top of regular straggler detection mechanisms.
Our straggler detection mechanism detects stragglers by considering them at the node-level.
Specifically, only stragglers that run on slow nodes (i.e., nodes with performances below a
threshold, configurable by users) are finally kept in the detected straggler list. Using our
characterizing metrics, Hierarchical is shown to have very high Precision. In many cases, the
values of Precision are 100%. Correspondingly, Hierarchical can significantly reduce the num-
ber of killed copies by up to 100%. Thus, the wasteful energy consumed by these copies is
also reduced. In brief, Hierarchical achieves a higher energy efficiency compared to state-of-
the-art straggler detection mechanisms. This straggler detection mechanism is implemented
in Java with roughly 2000 lines of code, in the Hadoop stable versions 1.2.1 and 2.7.3.

7.1.3 Bringing Energy-awareness to Straggler Handling

Once detected, stragglers are usually handled with speculative execution technique. As
shown, allocating speculative copies to different locations results in different performance
and energy consumption. By taking this into account, one can improve the overall energy
consumption while handling stragglers.

Energy-aware Speculative Copy Allocation. By means of experiments, we demonstrate
that different speculative copy allocations can result in considerably different outcomes. In
some cases, two different copy allocations result in similar performance, but have a large
difference in energy consumption, by up to 25%. Targeting this issue, we introduce a new
straggler handling mechanism, which is equipped with an energy-aware copy allocation
method. This copy allocation method takes into account the impact on both performance
and energy consumption of different speculative copies allocations. Thus, it allocates spec-
ulative copies to the resources which result in less energy consumption. This speculative
copy allocation method is evaluated with different Big Data applications on Grid’5000. The
results indicate that it can greatly improve the energy efficiency while guaranteeing compa-
rably good performance, compared to state-of-the-art speculative copy allocation methods.
It is implemented in the Hadoop stable version 1.2.1 with more than 1500 line of Java code.

7.1.4 Energy-efficient Straggler Handling Mechanism

Task scheduling in general aims at answering two classical questions: where to allocate the
task and when to launch the task. Handling straggler using speculative execution basically
shares a similar story, which is how to answer two questions of where and when to launch
speculative copies. Regarding the question of when, speculative execution technique is
strongly driven by the resource availability. Without available resources, speculative copies
cannot be launched and have to wait until the release of resources. This makes speculative
copies to be launched late. A late speculative copy has less chance to successfully finish.
Even if it can successfully finish, the improvement that it brings is smaller as the straggler

7.2 – Perspectives 119

has been running for long time and consuming a large amount of energy. With respect to
the question of where, the resource unavailability again limits the possibilities that specula-
tive copy allocation method can have. Thus, it reduces the benefits brought by speculative
execution.

Energy-efficient Straggler Handling Adopting Resource Reservation Approach. In the
context of Big Data processing systems, it is usual that jobs include thousands of tasks [93].
These large jobs usually have to execute in multiple waves to be finished. By default, regular
tasks have higher priority with respect to speculative copies. As a result, speculative copies
are starved waiting for resources until the last regular task is launched. In this scenario, the
resource unavailability makes the straggler handling problem more challenging. Tackling
this problem, we introduce a novel straggler handling mechanism, which jointly answers
where and when questions to improve energy efficiency. Specifically, this straggler handling
mechanism is equipped with a performance model and an energy consumption model. The
goal is to bi-optimize both performance and energy consumption. Therefore, these two mod-
els are used to indicate a suitable location for speculative copies to be launched, satisfying the
performance and energy consumption bi-optimization goal. On the other hand, our strag-
gler handling mechanism adopts a window-based approach to dynamically decide the best
timing for launching speculative copies. At the beginning of each window time, the straggler
handling mechanism looks for upcoming free resources within the window time. Accord-
ingly, the best resources are reserved for the speculative copies. Once resources are freed,
corresponding speculative copies are launched. Through a set of evaluations using trace-
driven simulation, our straggler handling mechanism is shown to significantly improve the
energy efficiency by up to 61%.

7.2 Perspectives

Our work opens a number of perspectives. In this section, we discuss in details the most
promising ones. We separate these perspectives into two sections: (1) directions addressing
straggler detection phase; and (2) potential contributions regarding our straggler handling
mechanisms.

7.2.1 Prospects Related to the Hierarchical Straggler Detection Mechanism

In Big Data processing systems, there exists two major categories of jobs. On the one hand,
interactive jobs consist of several up to tens of tasks [4]. These small interactive jobs have
strict response time requirements. On the other hand, batch data analysis jobs typically
consist of thousands of tasks [31]. These batch jobs have mostly loose response time require-
ments.

With the presence of stragglers, the execution time of interactive jobs may be significantly
increased. This long execution time can violate the strict response time requirement. Con-
sequently, this job category demands effective straggler mitigation, with respect to perfor-
mance improvement. Considering long-running batch jobs, the pressure on early finishing
is significantly smaller. With this job category, straggler mitigation should rather focus on
reducing the energy consumption of extremely long-running stragglers.

120 Chapter 7 – Conclusion

Adaptive Straggler Detection Mechanism for Big Data Processing Systems. With Hierar-
chical straggler detection mechanism, the slow-node parameter β can be easily tuned. A high
value of β equals to a loose detection criteria, which means more stragglers are detected. In
contrast, a small β makes Hierarchical detect only stragglers which have significantly longer
execution time, compared to the average task execution time. In a system that executes mul-
tiple jobs, Hierarchical should be used with relevant value of β, depending on the job char-
acteristics. High values of β can be used when detecting stragglers on interactive jobs with
strict response time requirements. For this setting, more speculative copies are launched to
better improve the job performance. This may lead to extra energy consumed by unneces-
sary copies. However, as these interactive jobs are very small, the number of unnecessary
copies is expected to be also small. On the other hand, small values of β are used when
detecting stragglers of long-running batch jobs. Small β reduces the number of inaccurate
detection. Thereby, it reduces the energy cost on unnecessary copies. The major challenge
for this approach is how to adaptively determine the optimal value of β for each job, given
its size and its response time requirement. Therefore, a model which accurately exposes the
trade-off between energy consumption and performance is needed. Finally, it requires an
algorithm to determine the value of β which leads to the lowest energy consumption while
satisfying the job’s response time requirement.

7.2.2 Prospects Related to Our Straggler Handling Mechanisms

In general, the questions of When and Where are key questions for task scheduling problem.
In Chapter 5 and Chapter 6, we introduce new mechanisms to comprehensively answer
these questions with respect to the speculative copy scheduling problem, towards a higher
energy efficiency. These mechanisms can also be applied to answer similar scheduling prob-
lems in Big Data processing systems. Hereafter, we discuss two promising directions.

A Resource Reservation Approach for Failure Recovery in Big Data Processing Sys-

tems. Failure is an inherent feature while operating large-scale Big Data processing sys-
tems [35]. Therefore, Big Data processing frameworks are equipped with fault tolerance
mechanisms [31]. Once a failed task is detected, a new instance of this task is launched
on the earliest available resource [113]. On the one hand, resources are not always avail-
able. Thereby, this failed task may need to wait for long time for free resources [125, 127].
This can delay the failure recovery process. On the other hand, the earliest resource might
not be the most appropriate to execute the failed task. As a result, this task can show low
performance and high energy consumption. Our resource reservation mechanism can com-
prehensively solve this problem. With our mechanism, we can proactively reserve resources
for early re-launching failed tasks. Our mechanism is aware of the performance and energy
consumption of the resources and the availability of resources. Thus, it can select resources
for early re-launching failed tasks, with high performance and low energy consumption.

Energy-efficient Speculative Execution for Approximate Applications. Approximation
applications accept inaccurate output within a error-bound (e.g., machine learning appli-
cations [71]). For this type of application, speculative execution is used not only to mitigate
stragglers but also to increase the chance of achieving higher accurate output. A speculative
copy and its straggler can be killed if the current job’s output satisfies the error-bound. This

7.2 – Perspectives 121

scenario happens if a speculative copy does not have short enough execution time. In this
case, speculative copy results in extra energy consumption while having zero contribution
to improving the output accuracy. This type of killed speculative copies further increases
the killed ratio. This in turn results in lower energy efficiency of speculative execution. At
this point, our speculative execution mechanism can be applied to this type of applications
in order to improve energy efficiency. The major challenge to adopt our mechanism is that
it requires a model to predict the output accuracy of a job. Using the information indicated
by this model, the speculative execution mechanism knows whether speculative copies can
finish before the job’s output satisfies the error-bound or not. If yes, speculative copies can
be launched to improve further the output accuracy. Otherwise, speculative copies should
not be launched, as they most likely get killed.

122 Chapter 7 – Conclusion

123

Bibliography

[1] F. Ahmadand, S. Lee, M. Thottethodi, et al., “PUMA: Purdue MapReduce
benchmarks suite”, Purdue University, Tech. Rep., 2012. [Online]. Available:
http://docs.lib.purdue.edu/cgi/viewcontent.cgi?article=1438&context=ecetr/.

[2] A. V. Aho, R. Sethi, and J. D. Ullman, Compilers, Principles, Techniques. Addison
Wesley, 1986.

[3] H. Amur, J. Cipar, V. Gupta, et al., “Robust and flexible power-proportional
storage”, in ACM Symposium on Cloud Computing (SoCC ’10), 2010, pp. 217–228.

[4] G. Ananthanarayanan, A. Ghodsi, S. Shenker, et al., “Effective straggler mitigation:
attack of the clones”, in USENIX Symposium on Networked Systems Design and
Implementation (NSDI ’13), 2013, pp. 185–198.

[5] G. Ananthanarayanan, M. C.-C. Hung, X. Ren, et al., “GRASS: trimming stragglers in
approximation analytics”, in USENIX Symposium on Networked Systems Design and
Implementation (NSDI ’14), 2014, pp. 289–302.

[6] G. Ananthanarayanan, S. Kandula, A. Greenberg, et al., “Reining in the outliers in
MapReduce clusters using Mantri”, in USENIX Symposium on Operating Systems
Design and Implementation (OSDI ’10), 2010, pp. 1–16.

[7] D. P. Anderson, J. Cobb, E. Korpela, et al., “SETI@ home: an experiment in
public-resource computing”, Communications of the ACM (CACM), vol. 45, no. 11,
pp. 56–61, 2002.

[8] T. W. Anderson, T. W. Anderson, T. W. Anderson, et al., An introduction to multivariate
statistical analysis. Wiley, 1958, vol. 2.

[9] C. Anglano, J. Brevik, M. Canonico, et al., “Fault-aware scheduling for bag-of-tasks
applications on desktop grids”, in ACM/IEEE International Conference on Grid
Computing (GRID ’06), 2006, pp. 56–63.

[10] C. Anglano and M. Canonico, “Scheduling algorithms for multiple bag-of-task
applications on desktop grids: a knowledge-free approach”, in IEEE International
Parallel and Distributed Processing Symposium (IPDPS ’08), IEEE, 2008, pp. 1–8.

[11] M. Armbrust, A. Fox, R. Griffith, et al., “A view of cloud computing”,
Communications of the ACM (CACM), vol. 53, no. 4, pp. 50–58, 2010.

[12] M. J. Atallah, R. Cole, and M. T. Goodrich, “Cascading divide-and-conquer: a
technique for designing parallel algorithms”, SIAM Journal on Computing (SICOMP),
vol. 18, no. 3, pp. 499–532, 1989.

http://docs.lib.purdue.edu/cgi/viewcontent.cgi?article=1438&context=ecetr/

124 BIBLIOGRAPHY

[13] G. Aupy, Y. Robert, F. Vivien, et al., “Checkpointing algorithms and fault
prediction”, Journal of Parallel and Distributed Computing (JPDC), vol. 74, no. 2,
pp. 2048–2064, 2014.

[14] A. T. Bates, Technology, e-learning and distance education. Routledge, 2005.

[15] F. Bonomi, R. Milito, J. Zhu, et al., “Fog computing and its role in the Internet of
Things”, in Workshop on Mobile Cloud Computing (MCC ’12), 2012, pp. 13–16.

[16] T. Bray, J. Paoli, C. M. Sperberg-McQueen, et al., “Extensible markup language
(XML)”, World Wide Web Journal (WWW), vol. 2, no. 4, pp. 27–66, 1997.

[17] D. J. Brown and C. Reams, “Toward energy-efficient computing”, Communications of
the ACM (CACM), vol. 53, no. 3, pp. 50–58, 2010.

[18] P. Buneman, S. Davidson, G. Hillebrand, et al., “A query language and optimization
techniques for unstructured data”, in ACM SIGMOD International Conference on
Management of Data (SIGMOD ’96), 1996, pp. 505–516.

[19] P. Carbone, A. Katsifodimos, S. Ewen, et al., “Apache Flink: stream and batch
processing in a single engine”, Bulletin of the IEEE Computer Society Technical
Committee on Data Engineering, vol. 36, no. 4, pp. 28–38, 2015.

[20] M. Cardosa, A. Singh, H. Pucha, et al., “Exploiting spatio-temporal tradeoffs for
energy-aware MapReduce in the cloud”, in IEEE International Conference on Cloud
Computing (CLOUD ’11), 2011, pp. 251–258.

[21] H. Chen, R. H. Chiang, and V. C. Storey, “Business intelligence and analytics: from
big data to big impact”, Management Information Systems Quarterly (MISQ), vol. 36,
no. 4, pp. 1165–1188, 2012.

[22] Q. Chen, C. Liu, and Z. Xiao, “Improving MapReduce performance using smart
speculative execution strategy”, IEEE Transactions on Computers (TC), vol. 63, no. 4,
pp. 29–42, 2014.

[23] Y. Chen, S. Alspaugh, D. Borthakur, et al., “Energy efficiency for large-scale
MapReduce workloads with significant interactive analysis”, in ACM European
Conference on Computer Systems (EuroSys ’12), 2012, pp. 43–56.

[24] Y. Chen, S. Alspaugh, and R. Katz, “Interactive analytical processing in Big Data
systems: a cross-industry study of MapReduce workloads”, Proceedings of the VLDB
Endowment (VLDB), vol. 5, no. 12, pp. 1802–1813, 2012.

[25] Y. Chen, A. Ganapathi, and R. H. Katz, “To compress or not to compress - compute
vs. IO tradeoffs for MapReduce energy efficiency”, in ACM SIGCOMM Workshop on
Green Networking (Green Networking ’10), 2010, pp. 23–28.

[26] Y. Chen, L. Keys, and R. H. Katz, “Towards energy efficient MapReduce”, EECS
Department, University of California, Berkeley, Tech. Rep., 2009. [Online]. Available:
http://www.eecs.berkeley.edu/Pubs/TechRpts/2009/EECS-2009-109.html.

[27] D. Cheng, C. Jiang, and X. Zhou, “Heterogeneity-aware workload placement and
migration in distributed sustainable datacenters”, in IEEE International Parallel and
Distributed Processing Symposium (IPDPS ’14), 2014, pp. 307–316.

[28] V. K. Chippa, D. Mohapatra, A. Raghunathan, et al., “Scalable effort hardware
design: exploiting algorithmic resilience for energy efficiency”, in Annual Design
Automation Conference (DAC ’10), 2010, pp. 555–560.

http://www.eecs.berkeley.edu/Pubs/TechRpts/2009/EECS-2009-109.html

BIBLIOGRAPHY 125

[29] K. Choi, R. Soma, and M. Pedram, “Fine-grained dynamic voltage and frequency
scaling for precise energy and performance tradeoff based on the ratio of off-chip
access to on-chip computation times”, IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems (TCAD), vol. 24, no. 1, pp. 18–28, 2005.

[30] E. F. Codd, “Relational database: a practical foundation for productivity”,
Communications of the ACM (CACM), vol. 25, no. 2, pp. 109–117, 1982.

[31] J. Dean and S. Ghemawat, “MapReduce: simplified data processing on large
clusters”, Communications of the ACM (CACM), vol. 51, no. 1, pp. 107–113, 2008.

[32] G. DeCandia, D. Hastorun, M. Jampani, et al., “Dynamo: Amazon’s highly available
key-value store”, ACM SIGOPS Operating Systems Review (OSR), vol. 41, no. 6,
pp. 205–220, 2007.

[33] W. Deng, F. Liu, H. Jin, et al., “Lifetime or energy: consolidating servers with
reliability control in virtualized cloud datacenters”, in IEEE International Conference
on Cloud Computing Technology and Science (CloudCom ’12), 2012, pp. 18–25.

[34] M. D. Dikaiakos, D. Katsaros, P. Mehra, et al., “Cloud computing: distributed
Internet computing for IT and scientific research”, IEEE Internet Computing (IC),
vol. 13, no. 5, pp. 10–13, 2009.

[35] F. Dinu and T. E. Ng, “Understanding the effects and implications of compute node
related failures in Hadoop”, in ACM International Symposium on High-Performance
Parallel and Distributed Computing (HPDC ’12), 2012, pp. 187–198.

[36] D. Florescu and D. Kossmann, “Rethinking cost and performance of database
systems”, ACM Sigmod Record, vol. 38, no. 1, pp. 43–48, 2009.

[37] A. Gainaru, F. Cappello, and W. Kramer, “Taming of the shrew: modeling the
normal and faulty behaviour of large-scale HPC systems”, in IEEE International
Parallel and Distributed Processing Symposium (IPDPS ’12), 2012, pp. 1168–1179.

[38] M. Gamell, I. Rodero, M. Parashar, et al., “Exploring power behaviors and trade-offs
of In-situ data analytics”, in IEEE International Conference for High Performance
Computing, Networking, Storage and Analysis (SC ’13), 2013, pp. 1–12.

[39] P. Garraghan, X. Ouyang, P. Townend, et al., “Timely long tail identification through
agent based monitoring and analytics”, in IEEE International Symposium on Real-Time
Distributed Computing (ISORC ’15), 2015, pp. 19–26.

[40] L. Gillam and M. Zakarya, “Energy efficient computing, clusters, grids and clouds: a
taxonomy and survey”, Sustainable Computing: Informatics and Systems, vol. 14,
pp. 13–33, 2017.

[41] I. Gog, M. Schwarzkopf, A. Gleave, et al., “Firmament: fast, centralized cluster
scheduling at scale”, in USENIX Symposium on Operating Systems Design and
Implementation (OSDI ’16), 2016, pp. 99–115.

[42] Í. Goiri, K. Le, M. E. Haque, et al., “GreenSlot: scheduling energy consumption in
green datacenters”, in IEEE International Conference for High Performance Computing,
Networking, Storage and Analysis (SC ’11), 2011, pp. 1–11.

[43] I. Goiri, K. Le, T. D. Nguyen, et al., “GreenHadoop: leveraging green energy in
data-processing frameworks”, in ACM European Conference on Computer Systems
(EuroSys ’12), 2012, pp. 57–70.

126 BIBLIOGRAPHY

[44] T. Gunarathne, T.-L. Wu, J. Qiu, et al., “MapReduce in the clouds for science”, in
IEEE International Conference on Cloud Computing Technology and Science
(CloudCom ’10), 2010, pp. 565–572.

[45] The Apache Hadoop project. [Online]. Available: https://hadoop.apache.org/ (visited on
2017-06-25).

[46] J. Hamilton, Cost of power in large-scale data centers, 2015. [Online]. Available:
http://perspectives.mvdirona.com/2008/11/cost-of-power-in-large-scale-data-centers/.

[47] S. Hammoud, M. Li, Y. Liu, et al., “MRSim: a discrete event based MapReduce
simulator”, in International Conference on Fuzzy Systems and Knowledge Discovery
(FSKD ’10), vol. 6, 2010, pp. 2993–2997.

[48] HDFS architecture guide. [Online]. Available:
https://hadoop.apache.org/docs/r1.2.1/hdfs_design.html (visited on 2017-07-15).

[49] A. Holmes, Hadoop in practice. Manning Publications, 2012.

[50] D. Huang, X. Shi, S. Ibrahim, et al., “MR-scope: a real-time tracing tool for
MapReduce”, in ACM International Symposium on High Performance Distributed
Computing (HPDC ’10), 2010, pp. 849–855.

[51] S. Ibrahim, B. He, and H. Jin, “Towards pay-as-you-consume cloud computing”, in
IEEE International Conference on Services Computing (SCC ’11), 2011, pp. 370–377.

[52] S. Ibrahim, H. Jin, L. Lu, et al., “Handling partitioning skew in MapReduce using
LEEN”, Peer-to-Peer Networking and Applications, vol. 6, no. 4, pp. 409–424, 2013.

[53] S. Ibrahim, H. Jin, L. Lu, et al., “LEEN: locality/fairness-aware key partitioning for
MapReduce in the cloud”, in IEEE International Conference on Cloud Computing
Technology and Science (CloudCom ’10), 2010, pp. 17–24.

[54] S. Ibrahim, H. Jin, L. Lu, et al., “Maestro: replica-aware map scheduling for
MapReduce”, in IEEE/ACM International Symposium on Cluster, Cloud and Grid
Computing (CCGrid ’12), 2012, pp. 435–442.

[55] S. Ibrahim, D. Moise, H.-E. Chihoub, et al., “Towards efficient power management in
MapReduce: investigation of CPU-frequencies scaling on power efficiency in
Hadoop”, in Workshop on Adaptive Resource Management and Scheduling for Cloud
Computing (ARMS-CC ’14), 2014, pp. 147–164.

[56] S. Ibrahim, T.-D. Phan, A. Carpen-Amarie, et al., “Governing energy consumption in
Hadoop through CPU frequency scaling: an analysis”, Future Generation Computer
Systems (FGCS), vol. 54, no. C, 2016.

[57] M. Isard, M. Budiu, Y. Yu, et al., “Dryad: distributed data-parallel programs from
sequential building blocks”, in ACM European Conference on Computer Systems
(EuroSys ’07), 2007, pp. 59–72.

[58] D. Jeffrey, “Large-scale distributed systems at Google: current systems and future
directions”, in ACM SIGOPS International Workshop on Large Scale Distributed Systems
and Middleware (LADIS ’09), 2009.

[59] Y. Jégou, S. Lantéri, J. Leduc, et al., “Grid’5000: a large scale and highly
reconfigurable experimental grid testbed”, International Journal of High Performance
Computing Applications (IJHPCA), vol. 20, no. 4, pp. 481–494, 2006.

https://hadoop.apache.org/
http://perspectives.mvdirona.com/2008/11/cost-of-power-in-large-scale-data-centers/
https://hadoop.apache.org/docs/r1.2.1/hdfs_design.html

BIBLIOGRAPHY 127

[60] H. Jin, S. Ibrahim, T. Bell, et al., “Cloud types and services”, in Handbook of Cloud
Computing. Springer, 2010, ch. 14, pp. 335–355.

[61] H. Jin, S. Ibrahim, T. Bell, et al., “Tools and technologies for building clouds”, in
Cloud Computing. Springer, 2010, ch. 1, pp. 3–20.

[62] H. Jin, S. Ibrahim, L. Qi, et al., “The MapReduce programming model and
implementations”, in Cloud Computing: Principles and Paradigms. Wiley, 2011, ch. 14,
pp. 373–390.

[63] R. T. Kaushik and M. Bhandarkar, “GreenHDFS: towards an energy-conserving,
storage-efficient, hybrid Hadoop compute cluster”, in USENIX International
Conference on Power Aware Computing and Systems (HotPower ’10), 2010, pp. 1–9.

[64] J. Kim, J. Chou, and D. Rotem, “Energy proportionality and performance in data
parallel computing clusters”, in International Conference on Scientific and Statistical
Database Management (SSDBM ’11), 2011, pp. 414–431.

[65] W. Kolberg, P. D. B. Marcos, J. C. Anjos, et al., “MRSG–a MapReduce simulator over
SimGrid”, Parallel Computing, vol. 39, no. 4, pp. 233–244, 2013.

[66] D. Kondo, A. A. Chien, and H. Casanova, “Resource management for rapid
application turnaround on enterprise desktop grids”, in ACM/IEEE Conference on
High Performance Computing Networking, Storage and Analysis (SC ’04), 2004,
pp. 17–30.

[67] R. Koo and S. Toueg, “Checkpointing and rollback-recovery for distributed
systems”, IEEE Transactions on Software Engineering (TSE), no. 1, pp. 23–31, 1987.

[68] M. Kryczka, R. Cuevas, C. Guerrero, et al., “A first step towards user assisted online
social networks”, in ACM Workshop on Social Network Systems (SNS ’10), 2010,
pp. 1–6.

[69] D. Laney, 3D data management: controlling data Volume, Velocity and Variety, 2001.
[Online]. Available: https://blogs.gartner.com/doug-laney/files/2012/01/ad949-3D-
Data-Management-Controlling-Data-Volume-Velocity-and-Variety.pdf.

[70] W. Lang and J. M. Patel, “Energy management for MapReduce clusters”, Proceedings
of the VLDB Endowment (VLDB), vol. 3, no. 1-2, pp. 129–139, 2010.

[71] P. Langley and H. A. Simon, “Applications of machine learning and rule induction”,
Communications of the ACM (CACM), vol. 38, no. 11, pp. 54–64, 1995.

[72] G. Lee, B.-G. Chun, and H. Katz, “Heterogeneity-aware resource allocation and
scheduling in the cloud”, in USENIX Conference on Hot Topics in Cloud Computing
(HotCloud ’11), 2011, pp. 1–5.

[73] L. Lei, T. Wo, and C. Hu, “CREST: towards fast speculation of straggler tasks in
MapReduce”, in IEEE International Conference on e-Business Engineering (ICEBE ’11),
2011, pp. 311–316.

[74] J. Leverich and C. Kozyrakis, “On the energy (in)efficiency of Hadoop clusters”,
ACM SIGOPS Operating Systems Review (OSR), vol. 44, no. 1, pp. 61–65, 2010.

[75] Y. Li, Q. Yang, S. Lai, et al., “A new speculative execution algorithm based on C4.5
decision tree for Hadoop”, in International Conference of Young Computer Scientists,
Engineers and Educators (ICYCSEE ’15), 2015, pp. 284–291.

https://blogs.gartner.com/doug-laney/files/2012/01/ad949-3D-Data-Management-Controlling-Data-Volume-Velocity-and-Variety.pdf
https://blogs.gartner.com/doug-laney/files/2012/01/ad949-3D-Data-Management-Controlling-Data-Volume-Velocity-and-Variety.pdf

128 BIBLIOGRAPHY

[76] L. Lu, H. Jin, X. Shi, et al., “Assessing MapReduce for internet computing: a
comparison of Hadoop and BitDew-MapReduce”, in ACM/IEEE International
Conference on Grid Computing (GRID ’12), 2012, pp. 76–84.

[77] J.-Z. Luo, J.-H. Jin, A.-B. Song, et al., “Cloud computing: architecture and key
technologies”, Journal of China Institute of Communications, vol. 32, no. 7, pp. 3–21,
2011.

[78] A. Malik, A. Malik, K. Hiekkanen, et al., “Impact of privacy, trust and user activity
on intentions to share Facebook photos”, Journal of Information, Communication and
Ethics in Society, vol. 14, no. 4, pp. 364–382, 2016.

[79] MapReduce tutorial. [Online]. Available:
https://hadoop.apache.org/docs/r1.2.1/mapred_tutorial.html (visited on 2017-06-30).

[80] L. Mashayekhy, M. M. Nejad, D. Grosu, et al., “Energy-aware scheduling of
MapReduce jobs”, in IEEE International Congress on Big Data (BigData Congress ’14),
2014, pp. 32–39.

[81] L. Mashayekhy, M. M. Nejad, D. Grosu, et al., “Energy-aware scheduling of
MapReduce jobs for Big Data applications”, IEEE Transactions on Parallel and
Distributed Systems (TPDS), vol. 26, no. 10, pp. 2720–2733, 2015.

[82] O. A. Mukhanov, “Energy-efficient single flux quantum technology”, IEEE
Transactions on Applied Superconductivity (TAS), vol. 21, no. 3, pp. 760–769, 2011.

[83] R. Nathuji, C. Isci, and E. Gorbatov, “Exploiting platform heterogeneity for power
efficient data centers”, in IEEE International Conference on Autonomic Computing
(ICAC ’07), 2007, pp. 1–10.

[84] M. Odersky, P. Altherr, V. Cremet, et al., “An overview of the Scala programming
language”, École Polytechnique Fédérale de Lausanne, Tech. Rep., 2004. [Online].
Available: https://infoscience.epfl.ch/record/52656/files/ScalaOverview.pdf.

[85] A.-C. Orgerie, M. D. d. Assuncao, and L. Lefevre, “A survey on techniques for
improving the energy efficiency of large-scale distributed systems”, ACM Computing
Surveys (CSUR), vol. 46, no. 4, pp. 1–31, 2014.

[86] X. Ouyang, P. Garraghan, D. McKee, et al., “Straggler detection in parallel computing
systems through dynamic threshold calculation”, in IEEE International Conference on
Advanced Information Networking and Applications (AINA ’16), 2016, pp. 414–421.

[87] R. Patgiri and A. Ahmed, “Big Data: the V’s of the game changer paradigm”, in IEEE
International Conference on High Performance Computing and Communications
(HPCC ’16), 2016, pp. 17–24.

[88] P. Pawluk, B. Simmons, M. Smit, et al., “Introducing STRATOS: a cloud broker
service”, in IEEE International Conference on Cloud Computing (CLOUD ’12), 2012,
pp. 891–898.

[89] T.-D. Phan, S. Ibrahim, G. Antoniu, et al., “On understanding the energy impact of
speculative execution in Hadoop”, in IEEE International Conference on Data Science
and Data Intensive Systems (DSDIS ’15), 2015, pp. 396–403.

[90] T.-D. Phan, S. Ibrahim, A. Zhou, et al., “Energy-driven straggler mitigation in
MapReduce”, in International European Conference on Parallel and Distributed
Computing (Euro-Par ’17), 2017, pp. 385–398.

https://hadoop.apache.org/docs/r1.2.1/mapred_tutorial.html
https://infoscience.epfl.ch/record/52656/files/ScalaOverview.pdf

BIBLIOGRAPHY 129

[91] Powered by Hadoop. [Online]. Available: http://wiki.apache.org/hadoop/PoweredBy/
(visited on 2017-06-18).

[92] A. Qureshi, “Power-demand routing in massive geo-distributed systems”,
PhD thesis, Massachusetts Institute of Technology, 2010.

[93] K. Ren, Y. Kwon, M. Balazinska, et al., “Hadoop’s adolescence: an analysis of
Hadoop usage in scientific workloads”, Proceedings of the VLDB Endowment (VLDB),
vol. 6, no. 10, pp. 853–864, 2013.

[94] S. I. Resnick, Heavy-tail phenomena: Probabilistic and statistical modeling. Springer, 2007.

[95] P. Roy, R. Ray, C. Wang, et al., “ASAC: automatic sensitivity analysis for
approximate computing”, in SIGPLAN/SIGBED Conference on Languages, Compilers
and Tools for Embedded Systems (LCTES ’14), 2014, pp. 95–104.

[96] P. Russom, Big Data analytics, 2011. [Online]. Available: https://vivomente.com/wp-
content/uploads/2016/04/big-data-analytics-white-paper.pdf.

[97] J. Schad, J. Dittrich, and J.-A. Quiané-Ruiz, “Runtime measurements in the cloud:
observing, analyzing, and reducing variance”, Proceedings of the VLDB Endowment
(VLDB), vol. 3, no. 1-2, pp. 460–471, 2010.

[98] M. C. Schatz, “CloudBurst: highly sensitive read mapping with MapReduce”,
Bioinformatics, vol. 25, no. 11, pp. 1363–1369, 2009.

[99] L. Shen, T. Abdelzaher, and M. Yuan, “TAPA: temperature aware power allocation
in data center with MapReduce”, in IEEE International Green Computing Conference
and Workshops (IGCC ’11), 2011, pp. 1–8.

[100] M. Silberstein, A. Sharov, D. Geiger, et al., “Gridbot: execution of bags of tasks in
multiple grids”, in ACM/IEEE Conference on High Performance Computing Networking,
Storage and Analysis (SC ’09), 2009, 11:1–11:12.

[101] Z. D. Stephens, S. Y. Lee, F. Faghri, et al., “Big Data: astronomical or genomical?”,
PLOS Biology, vol. 13, no. 7, pp. 1–11, 2015.

[102] F. Teng, L. Yu, and F. Magoulès, “SimMapReduce: a simulator for modeling
MapReduce framework”, in International Conference on Multimedia and Ubiquitous
Engineering (MUE ’11), 2011, pp. 277–282.

[103] E. Thereska, A. Donnelly, and D. Narayanan, “Sierra: practical
power-proportionality for data center storage”, in ACM European Conference on
Computer Systems (EuroSys ’11), 2011, pp. 169–182.

[104] P. Thinakaran, J. R. Gunasekaran, B. Sharma, et al., “Phoenix: a constraint-aware
scheduler for heterogeneous datacenters”, in IEEE International Conference on
Distributed Computing Systems (ICDCS ’17), 2017, pp. 977–987.

[105] A. Thusoo, Z. Shao, S. Anthony, et al., “Data warehousing and analytics
infrastructure at Facebook”, in ACM International Conference on Management of Data
(SIGMOD ’10), 2010, pp. 1013–1020.

[106] A. Toshniwal, S. Taneja, A. Shukla, et al., “Storm@ Twitter”, in ACM International
Conference on Management of Data (SIGMOD ’14), 2014, pp. 147–156.

http://wiki.apache.org/hadoop/PoweredBy/
https://vivomente.com/wp-content/uploads/2016/04/big-data-analytics-white-paper.pdf
https://vivomente.com/wp-content/uploads/2016/04/big-data-analytics-white-paper.pdf

130 BIBLIOGRAPHY

[107] N. Vasić, M. Barisits, V. Salzgeber, et al., “Making cluster applications
energy-aware”, in ACM Workshop on Automated Control for Datacenters and Clouds
(ACDC ’09), 2009, pp. 37–42.

[108] V. K. Vavilapalli, A. C. Murthy, C. Douglas, et al., “Apache Hadoop YARN: yet
another resource negotiator”, in ACM Annual Symposium on Cloud Computing
(SoCC ’13), 2013, pp. 1–16.

[109] S. Venkataramani, A. Raghunathan, J. Liu, et al., “Scalable-effort classifiers for
energy-efficient machine learning”, in Annual Design Automation Conference
(DAC ’15), 2015, pp. 1–6.

[110] R. L. Villars, C. W. Olofson, and M. Eastwood, Big Data: what it is and why you should
care?, 2011. [Online]. Available:
http://www.tracemyflows.com/uploads/big_data/idc_amd_big_data_whitepaper.pdf.

[111] G. Wang and T. S. E. Ng, “The impact of virtualization on network performance of
Amazon EC2 data center”, in IEEE International Conference on Computer
Communications (INFOCOM ’10), 2010, pp. 1–9.

[112] G. Wang, A. R. Butt, P. Pandey, et al., “A simulation approach to evaluating design
decisions in MapReduce setups”, in IEEE International Symposium on Modeling,
Analysis and Simulation of Computer and Telecommunication Systems (MASCOTS ’09),
2009, pp. 1–11.

[113] T. White, Hadoop: The definitive guide. O’Reilly Media, 2012.

[114] K. Wiley, A. Connolly, J. P. Gardner, et al., “Astronomy in the cloud: using
MapReduce for image coaddition”, in Annual Conference on Astronomical Data
Analysis Software and Systems (ADASS ’11), 2011, pp. 93–96.

[115] K. Wilson, Microsoft Office 365. Springer, 2014.

[116] T. Wirtz and R. Ge, “Improving MapReduce energy efficiency for computation
intensive workloads”, in IEEE International Green Computing Conference and
Workshops (IGCC ’11), 2011, pp. 1–8.

[117] H. Wu, K. Li, Z. Tang, et al., “A heuristic speculative execution strategy in
heterogeneous distributed environments”, in IEEE International Symposium on
Parallel Architectures, Algorithms and Programming (PAAP ’14), 2014, pp. 268–273.

[118] X. Wu, X. Zhu, G. Q. Wu, et al., “Data mining with Big Data”, IEEE Transactions on
Knowledge and Data Engineering (TKDE), vol. 26, no. 1, pp. 97–107, 2014.

[119] H. Xu and W. C. Lau, “Optimization for speculative execution in Big Data
processing clusters”, IEEE Transactions on Parallel and Distributed Systems (TPDS),
vol. 28, no. 2, pp. 530–545, 2017.

[120] H. Xu and W. C. Lau, Optimization for speculative execution of multiple jobs in a
MapReduce-like cluster, 2014. [Online]. Available: https://arxiv.org/pdf/1406.0609.pdf.

[121] H. Xu and W. C. Lau, “Task-cloning algorithms in a MapReduce cluster with
competitive performance bounds”, in IEEE International Conference on Distributed
Computing Systems (ICDCS ’15), 2015, pp. 339–348.

[122] H. Xu and W. C. Lau, “Resource optimization for speculative execution in a
MapReduce cluster”, in IEEE International Conference on Network Protocols (ICNP ’13),
2013, pp. 1–3.

http://www.tracemyflows.com/uploads/big_data/idc_amd_big_data_whitepaper.pdf
https://arxiv.org/pdf/1406.0609.pdf

BIBLIOGRAPHY 131

[123] H. Xu and W. C. Lau, “Speculative execution for a single job in a MapReduce-like
system”, in IEEE International Conference on Cloud Computing (CLOUD ’14), 2014,
pp. 586–593.

[124] Y. Xu and S. Mao, “A survey of mobile cloud computing for rich media
applications”, IEEE Wireless Communications, vol. 20, no. 3, pp. 46–53, 2013.

[125] O. Yildiz, S. Ibrahim, T. A. Phuong, et al., “Chronos: failure-aware scheduling in
shared Hadoop clusters”, in IEEE International Conference on Big Data (BigData ’15),
2015, pp. 313–318.

[126] O. Yildiz, M. Dorier, S. Ibrahim, et al., “On the root causes of cross-application I/O
interference in HPC storage systems”, in IEEE International Parallel and Distributed
Processing Symposium (IPDPS ’16), 2016, pp. 750–759.

[127] O. Yildiz, S. Ibrahim, and G. Antoniu, “Enabling fast failure recovery in shared
Hadoop clusters: towards failure-aware scheduling”, Future Generation Computer
Systems (FGCS), vol. 74, pp. 208–219, 2017.

[128] M. Zaharia, D. Borthakur, J. Sen Sarma, et al., “Delay scheduling: a simple technique
for achieving locality and fairness in cluster scheduling”, in ACM European
Conference on Computer Systems (EuroSys ’10), 2010, pp. 265–278.

[129] M. Zaharia, M. Chowdhury, T. Das, et al., “Resilient distributed datasets: a
fault-tolerant abstraction for in-memory cluster computing”, in USENIX Conference
on Networked Systems Design and Implementation (NSDI ’12), 2012, pp. 15–28.

[130] M. Zaharia, M. Chowdhury, M. J. Franklin, et al., “Spark: cluster computing with
working sets”, in USENIX Conference on Hot Topics in Cloud Computing
(HotCloud ’10), 2010, pp. 1–7.

[131] M. Zaharia, A. Konwinski, A. D. Joseph, et al., “Improving MapReduce performance
in heterogeneous environments”, in USENIX Symposium on Operating Systems Design
and Implementation (OSDI ’08), USENIX Association, 2008, pp. 29–42.

[132] A. C. Zhou, B. He, and S. Ibrahim, “A taxonomy and survey of scientific computing
in the cloud”, in Big Data: Principles and Paradigms. Morgan Kaufmann, 2016, ch. 18,
pp. 431–455.

[133] M. Zwolenski and L. Weatherill, “The digital universe: rich data and the increasing
value of the Internet of Things”, Australian Journal of Telecommunications and the
Digital Economy, vol. 2, no. 3, pp. 1–9, 2014.

133

Résumé en français

Contexte

NOUS sommes entrés dans l’ère de Big Data où la taille des données qui sont géné-
rées, capturées et traitées quotidiennement augmente de manière effrénée. Selon
une étude récente d’International Data Corporation [133], la quantité totale de don-

nées générée jusqu’en 2017 est approximativement de 16 zettaoctets. Dans des unités plus
familières, ce montant correspond à 16 billions de gigaoctets ou à 16 milliards de téraoctets.
De plus, cette étude montre que la taille des données double tous les deux ans. En consé-
quence, la quantité totale de données générées devrait atteindre 180 zettaoctets d’ici 2025.

Pour extraire de la valeur d’un tel volume de données, de nouveaux paradigmes de trai-
tement sont apparus [31, 57]. Parmi ceux-ci, MapReduce [31] est devenu le modèle de pro-
grammation de référence pour le traitement Big Data en raison de son évolutivité et de sa
facilité d’utilisation. Hadoop, une implémentation open source de MapReduce, est actuelle-
ment utilisée pour le traitement Big Data dans de nombreuses institutions, sociétés et uni-
versités [91, 113]. Par exemple, Yahoo ! traite des centaines de petaoctets de données annuel-
lement en utilisant Hadoop [131]. Récemment, Spark a émergé en tant que système de trai-
tement de données à faible latence en exploitant le traitement de données en mémoire [130].

Pour faire face à la demande élevée de calcul et de stockage lors du traitement Big
Data, ces systèmes sont généralement déployés dans des infrastructures à grande échelle,
par exemple des clouds publics ou des datacenters privés [77]. À titre d’exemple, Facebook
exploite des datacenters regroupant plus de 60.000 machines pour traiter des centaines de
téraoctets de données quotidiennement [105].

À une telle échelle, l’hétérogénéité des ressources est inévitable. Elle apparaît à différents
niveaux des systèmes. Au niveau du matériel, plusieurs générations de matériel coexistent
dans les infrastructures des clouds. Par conséquent, les utilisateurs n’ont aucun contrôle sur
les matériels qui leur sont attribués [83]. Au niveau de l’application, le matériel est réparti
physiquement entre différents utilisateurs. De ce fait, les ressources allouées à une applica-
tion ne garantissent pas de fournir des performances constantes pendant la durée de vie de
cette application [97, 111]. Cette hétérogénéité, à son tour, aboutit à une évidente variabilité de
performance [131]. D’autre part, les infrastructures à grande échelle se composent de milliers
de machines qui consomment collectivement une énorme quantité d’énergie, ce qui entraîne

134 Résumé en français

un énorme coût opérationnel [46]. Par exemple, la consommation annuelle d’électricité des
datacenters de Google dépasse 1.120 GWh, ce qui correspond à une facture d’électricité de
67 M $ [92].

À l’avenir, la variabilité de performance et la consommation d’énergie continueront
d’être des préoccupations majeures pour la conception et l’exploitation des systèmes de trai-
tement Big Data [74, 97]. L’échelle des infrastructures sous-jacentes doit augmenter pour
faire face à l’augmentation implacable de la taille des données. Cette échelle croissante aug-
mentera non seulement la variabilité de performance mais aussi la consommation d’éner-
gie. À titre indicatif, les besoins en énergie pour le fonctionnement des systèmes de trai-
tement Big Data devraient atteindre l’equivalent de la production d’une centrale nucléaire
moyenne [82].

Dans le contexte du Big Data, un calcul se compose généralement d’un très grand nombre
de tâches élémentaires. La performance d’un calcul est déterminée par la fin de sa dernière
tâche. En raison de la variabilité élevée de performance, les temps d’exécution des tâches
peuvent varier de manière importante au sein du même calcul. Même si les temps d’exé-
cution d’un grand nombre de tâches restent proches du temps d’exécution moyen, certains
d’entre eux peuvent présenter une très grande déviation. Il n’est pas rare dans la pratique
d’observer certaines tâches avec des temps d’exécution jusqu’à huit fois plus longs que le
temps d’exécution moyen [6]. Ce phénomène est appelé distribution heavy-tail [94]. Il a un
impact négatif sur la performance du calcul [131]. Dans le domaine du Big Data, ces tâches
nuisibles sont appelées stragglers.

Il existe un grand nombre de travaux consacrés à la réduction de la fréquence d’appari-
tion de stragglers [27, 41, 104]. Cependant, la variabilité de performance entraine l’apparition
de stragglers inattendus. Dans la pratique, il a été démontré que ces stragglers ont un impact
majeur sur la performance [131]. En conséquence, la prévention des stragglers est un objectif
crucial pour améliorer les performances des grands systèmes de traitement Big Data.

De nombreuses techniques de prévention des stragglers ont été introduites [4, 6, 31, 131].
Généralement, elles se composent de deux phases : la détection des stragglers et le traitement
des stragglers. Dans la phase de détection, les tâches lentes (e.g., tâches avec la vitesse ou
le progrès en dessous de la moyenne) sont marquées comme stragglers [4, 6, 31, 131]. En-
suite, les stragglers détectés sont traités en utilisant la technique de kill-restart [6] ou la tech-
nique d’exécution spéculative [31]. Dans la première approche, le straggler est arrêté et puis
relancé à partir de son état initial avec l’espoir qu’il puisse terminer plus rapidement. Dans la
deuxième approche, une copie du straggler est lancée en parallèle avec le straggler. Dès lors
que l’un d’entre eux achève son traitement, il est marqué comme réussi et l’autre est immé-
diatement supprimé. Cette copie est appelée copie spéculative dans le sens où il n’y a aucune
garantie qu’elle puisse se terminer avant le straggler. L’exécution spéculative a été utilisée
dans de nombreux environnements de traitement Big Data, tels que Hadoop et Spark [130,
131]. Par exemple, Google mentionne que l’exécution spéculative améliore les performances
des calculs jusqu’à 44% [31].

Comme nous l’avons mentionné, la consommation d’énergie est une préoccupation ma-
jeure pour l’exploitation des systèmes de traitement Big Data. Malheureusement, l’exécution
spéculative a un coût énergétique élevé, même si elle peut apporter une amélioration signifi-
cative de la performance. En effet, l’énergie économisée en raccourcissant le temps d’exécu-
tion du straggler peut ne pas compenser l’énergie supplémentaire consommée par la copie
spéculative. Pire encore, les copies spéculatives peuvent ne pas terminer avant les stragglers

135

et être supprimées. Dans la pratique, les techniques actuelles de prévention des stragglers
ont encore un ratio élevé de copies spéculatives supprimées. Dans certains cas, il peut s’agir
de 80% des copies spéculatives [93].

Plusieurs causes sont à l’origine de ce problème. Premièrement, les mécanismes actuels
de détection des stragglers sont équipés d’algorithmes de filtrage simples afin de détecter
rapidement les stragglers durant l’exécution [4, 6, 31, 131]. Ceux-ci peuvent entraîner des
décisions de détection inexactes. Par exemple, ils peuvent détecter de trop nombreux en tant
que stragglers. Par conséquent, des copies spéculatives inutiles sont lancées, et de ce fait les
performances et la consommation d’énergie en souffrent.

Deuxièmement, la répartition des copies spéculatives au sein de l’infrastructure peut
avoir un impact négatif. La variabilité de performance peut encore une fois avoir une inci-
dence sur la performance et la consommation d’énergie des différentes répartitions de co-
pies spéculatives. Malheureusement, les mécanismes existants de traitement de stragglers
ne tiennent pas compte de cela [4, 6, 31, 131]. Ils peuvent déployer les copies spéculatives
sur des ressources non appropriées, sur lesquelles les copies spéculatives auront de faibles
performances et une forte consommation d’énergie.

Troisièmement, la mise en œuvre habituelle de l’exécution spéculative différencie les
tâches régulières des copies spéculatives. Une fois que les ressources sont disponibles, les
tâches régulières sont prises d’abord en considération, car ayant une priorité plus élevée,
avant de prendre en compte les copies spéculatives. Par conséquent, les copies spéculatives
ont seulement la possibilité de s’exécuter à la fin de l’exécution du calcul, lorsque toutes
les tâches régulières ont été lancées [113]. Ce long délai peut rendre l’exécution spéculative
moins efficace, car les stragglers continuent de s’exécuter et consomment de l’énergie pen-
dant une période prolongée.

L’objet de cette thèse est d’améliorer les techniques de prévention des stragglers pour
d’optimiser les performances des calculs et la consommation d’énergie.

Contributions

Dans cette thèse, nous introduisons la notion d’efficacité de performance-énergie d’un système.
Il est défini comme la paire (P, E), où P représente le temps d’exécution du système et E
représente sa consommation d’énergie. Un système est défini comme plus efficace dans ce
sens si son temps d’exécution P est plus court et sa consommation d’énergie E est plus petite.
Dans le cadre de cette thèse, nous utilisons le terme d’efficacité énergétique pour cette notion
d’efficacité.

Cette thèse vise à offrir une meilleure compréhension de l’impact des techniques de pré-
vention des stragglers, à la fois sur la performance et la consommation d’énergie. L’objectif
est de proposer de nouvelles solutions pour améliorer l’efficacité énergétique de ces techniques
dans les systèmes de traitement Big Data.

Résumé des contributions. Nous commençons par caractériser l’impact de la prévention
des stragglers sur la performance et la consommation d’énergie des systèmes de traitement
Big Data. Nous observons que l’efficacité énergétique des techniques actuelles de prévention
des stragglers pourrait être considérablement améliorée. Cela motive une étude détaillée des
deux phases : détection des stragglers et traitement des stragglers.

136 Résumé en français

En ce qui concerne la détection de straggler, nous introduisons un cadre novateur pour
caractériser et évaluer les mécanismes de détection des stragglers existants. Nous proposons
un nouveau mécanisme de détection de straggler. Ce mécanisme de détection est implé-
menté dans Hadoop et se révèle avoir une efficacité énergétique plus élevée par rapport
aux mécanismes les plus récents. En ce qui concerne le traitement des stragglers, nous pré-
sentons une nouvelle méthode de répartition des copies spéculatives qui prend en compte
l’impact de l’hétérogénéité des ressources sur la performance et la consommation d’énergie.
Enfin, nous introduisons un nouveau mécanisme éconergétique pour gérer les stragglers.
Ce mécanisme fournit plus de ressources disponibles pour lancer des copies spéculatives en
utilisant une réservation dynamique de ressources. Il est démontré qu’elle améliore considé-
rablement l’efficacité énergétique en utilisant une simulation.

Caractériser l’impact de techniques de prévention des stragglers sur la perfor-
mance et consommation d’énergie

De grands efforts ont été consacrées à l’amélioration des techniques de prévention de strag-
gler en ce qui concerne la performance. Cependant, peu de travail se concentre sur la
compréhension des implications de ces techniques sur la performance et la consomma-
tion d’énergie des systèmes de traitement Big Data. Dans cette thèse, nous appuyons sur
Grid’5000 [59], une infrastructure configurable qui permet d’effectuer des expériences scien-
tifiques à grande échelle. En utilisant Grid’5000, nous menons un ensemble d’expériences
pour évaluer l’impact de techniques de prévention de stragglers sur la performance et la
consommation d’énergie de Hadoop. Notre étude révèle que les techniques de prévention
de stragglers peuvent parfois augmenter, parfois réduire la consommation d’énergie de Ha-
doop. Dans le premier cas, l’augmentation de la consommation d’énergie provient en partie
de l’inexactitude des mécanismes existants de détection de stragglers utilisés dans Hadoop.
Cela conduit à un grand nombre de copies spéculatives inutiles, ce qui entraîne des per-
formances inférieures et une consommation d’énergie plus élevée. Dans le second cas, la
consommation d’énergie du système est globalement réduite, car la consommation d’énergie
supplémentaire introduite par les copies spéculatives est compensée par l’énergie économi-
sée en raccourcissant l’exécution des applications. De plus, nous montrons que la consom-
mation d’énergie supplémentaire varie selon les applications. Elle est déterminée par trois
facteurs principaux : le temps d’exécution de copies spéculatives, le temps d’inactivité des
machines et la répartition de copies spéculatives. Ce travail a conduit à une publication à la
conférence DIDIS 2015 (voir [89]).

Mesure et activation de l’efficacité énergétique de la détection des stragglers

En dépit d’un grand nombre d’études visant à améliorer les mécanismes de détection de
stragglers. Les évaluer précisément reste un défi à cause de l’absence de mesure spécifique.
En réponse à ce défi, nous présentons un cadre étendu pour caractériser et évaluer les mé-
canismes de détection de stragglers. Nous commençons par un ensemble de mesure, spécia-
lement conçues pour caractériser les mécanismes de détection de stragglers. Ensuite, nous
développons un modèle architectural par lequel ces mesures peuvent être utilisées pour es-
timer la performance et la consommation d’énergie. Nous menons en outre une série d’expé-
riences sur Grid’5000 pour caractériser les mécanismes existants de détection de stragglers.

137

Les résultats indiquent que les mécanismes existants [31, 131] pourraient significativement
être améliorés. Dans certains cas, seulement 12% des tâches détectées sont des stragglers
réels. En conséquence, un grand nombre de copies spéculatives inutiles sont lancées. Ces
copies entraînent à leur tour un énorme gaspillage d’énergie. Cela illustre l’inefficacité éner-
gétique des mécanismes existants de détection de stragglers.

Ces résultats nous motivent à introduire un mécanisme de détection de stragglers éco-
nome en énergie, appelé Hierarchical. Il fonctionne comme une couche secondaire de filtrage
au dessus des autres mécanismes de détection de stragglers. Étant donné que les stragglers
sont principalement causés par l’architecture des nœuds de calcul [6], Hierarchical ne consi-
dère que les tâches sur les noeuds lents, les nœuds avec une performance bien inférieure
à la moyenne. Nous mettons en œuvre ce mécanisme de détection de stragglers dans Ha-
doop et l’évaluons à l’aide de tests représentatifs MapReduce [1]. Les résultats montrent
que Hierarchical peut réduire considérablement l’énergie gaspillée sur des copies spécula-
tives supprimées, tout en maintenant une bonne performance par rapport aux mécanismes
de détection de stragglers les plus récents. Ce travail a abouti à une publication lors de la
conférence Euro-Par 2017 (voir [90]).

Méthode d’allocation de copie spéculative vers une haute efficacité énergétique

Les choix des ressources pour lancer les copies spéculatives conduisent à des résultats diffé-
rents de performance et de consommation d’énergie. Malheureusement, très peu d’études en
tiennent compte. Dans ce travail, nous présentons un nouveau mécanisme de traitement de
stragglers équipé d’une méthode éconergétique pour allouer des copies spéculatives. Cette
méthode d’attribution traite en priorité les stragglers les plus critiques, ceux qui devraient
avoir les plus longs temps restants. Les copies de ces stragglers critiques ont une plus grande
chance de se terminer avant eux. Ainsi, ces copies peuvent significativement réduire le temps
d’exécution et la consommation élevée d’énergie de ces stragglers. En outre, nous présentons
un modèle de performance et un modèle de consommation d’énergie. Ces deux modèles
mesurent le compromis entre la performance et la consommation d’énergie lors de la répar-
tition de copies spéculatives entre différentes ressources. Ils sont utilisés pour guider notre
méthode d’allocation de copie spéculative aux ressources appropriées, ce qui peut entraîner
de meilleures performances avec une consommation d’énergie plus faible. Cette méthode
d’allocation de copie spéculative est implémentée dans Hadoop. Elle peut fonctionner avec
n’importe quel mécanisme de détection de stragglers fourni par Hadoop. Nous évaluons
notre méthode d’allocation de copie spéculative sur Grid’5000 [59] en utilisant trois applica-
tions représentatives de MapReduce [1]. Les résultats expérimentaux montrent qu’elle peut
réduire la consommation d’énergie tout en garantissant des performances comparables aux
méthodes les plus récents d’allocation de copies spéculatives.

Un mécanisme de réservation pour améliorer l’efficacité énergétique du traite-
ment des stragglers

Le problème de savoir quand lancer les copies spéculatives est crucial. Lancer une copie spé-
culative trop tard ne lui laisse aucune chance de terminer plus tôt que le straggler. Cepen-
dant, le lancement des copies le plus tôt possible sans considérer la question de l’emplace-
ment des copies peut également entraîner de mauvais résultats. La raison en est à nouveau

138 Résumé en français

l’hétérogénéité, comme indiqué ci-dessus. Le lancement d’une copie spéculative sur la pre-
mière ressource disponible peut laisser inutilisées certaines ressources à venir qui offrent
de meilleures performances avec une consommation d’énergie plus faible. Par conséquent,
répondre en harmonie aux questions quand et où est la clé pour obtenir de meilleures perfor-
mances et réduire la consommation d’énergie.

Dans ce travail, nous introduisons un nouveau mécanisme de traitement de stragglers
qui adopte une approche basée sur les réservations pour fournir dynamiquement les res-
sources pertinentes au moment opportun. Notre objectif est d’optimiser la performance et la
consommation d’énergie durant l’exécution. Tout d’abord, nous proposons un nouveau mo-
dèle de performance qui repose sur l’historique d’exécution pour estimer les temps d’exécu-
tion de nouvelles tâches ou des copies spéculatives. Nous introduisons également un nou-
veau modèle de consommation d’énergie qui tient compte de l’impact de la contention des
ressources tout en associant différentes tâches. Ces deux modèles sont utilisés pour estimer la
performance et la variation d’énergie des répartitions différentes de tâches et de copies spé-
culatives, afin d’atteindre l’objectif d’optimisation de la performance et de l’énergie. Cette
information nous aide à sélectionner les meilleurs ressources pour lancer des copies spécu-
latives, et donc répondre à la question où. Deuxièmement, nous proposons une technique de
réservation basée sur des fenêtres de temps pour sélectionner dynamiquement le meilleur
moment pour lancer des copies spéculatives. Ceci répond à la question de quand. Notre so-
lution proposée est évaluée à l’aide d’un ensemble de simulations. Les résultats montrent
qu’elle offre une amélioration significative de la performance et de l’efficacité énergétique.
Ce travail a été partiellement réalisé au cours d’un stage de 3 mois à l’Université Nationale
de Singapour.

Publications

Articles de journaux internationaux

• Shadi Ibrahim, Tien-Dat Phan, Alexandra Carpen-Amarie, Houssem-Eddine Chihoub,
Diana Moise, Gabriel Antoniu. Governing Energy Consumption in Hadoop through CPU
Frequency Scaling : an Analysis. In the Journal of Future Generation Computer Systems
(FGCS), Vol 54(C), January 2016. Impact factor 2016 : 3.997.

Communications en conférences internationales

• Tien-Dat Phan, Shadi Ibrahim, Gabriel Antoniu, Luc Bougé. On Understanding the
Energy Impact of Speculative Execution in Hadoop. In Proceeding of the 2015 IEEE Inter-
national Conference on Data Science and Data Intensive Systems (DSDIS ’15), Sydney,
December 2015.

• Tien-Dat Phan, Shadi Ibrahim, Amelie Chi Zhou, Guillaume Aupy, Gabriel Antoniu.
Energy-Driven Straggler Mitigation in MapReduce. In Proceedings of the 2017 Internatio-
nal European Conference on Parallel and Distributed (Euro-Par ’17), Santiago de Com-
postela, August 2017. CORE Rank A (acceptance rate 28%).

139

Posters en conférences internationales

• Tien-Dat Phan. Green Big Data Processing in Large-scale Clouds : Towards Energy Efficient
Speculative Execution in Hadoop. In the PhD Forum of the 2016 IEEE International Paral-
lel & Distributed Processing Symposium (IPDPS ’16), Chicago, May 2016.

140 Résumé en français

	Introduction
	Context
	Contributions
	Publications
	Implementations
	Organization of the Manuscript

	Background: Straggler Mitigation for Big Data Applications on the Clouds
	The Era of Big Data
	Big Data Processing on the Clouds
	Cloud Computing
	MapReduce Programming Model

	Energy Efficiency in Big Data Processing Systems
	Energy-aware Data-layout Techniques
	Energy-efficient Big Data Processing Using DVFS
	Energy-efficient Resource Management
	Energy-efficient Jobs/Tasks Scheduling
	Exploiting Renewable Energy

	Performance Variability and Stragglers
	The Causes of Performance Variability
	The Effect of Performance Variability: Stragglers

	State-of-the-art Techniques to Mitigate Stragglers
	Straggler Detection
	Straggler Handling

	Discussion: Paving the Way to Energy-efficient Straggler Mitigation

	Impact of Straggler Mitigation on Performance and Energy Consumption
	Performance vs. Energy Trade-off of Speculative Execution
	Understanding the Impact on Performance and Energy Consumption of Speculative Execution
	Methodology Overview
	Platform
	Benchmarks
	Hadoop deployment

	Performance and Energy Footprints of Speculative Execution
	Effectiveness of Speculative Execution
	On the Performance Penalty of Speculative Execution
	On the Power Cost of Speculative Execution
	Zoom in on the Energy Impact of Speculative Execution

	Impact of Speculative Copy Scheduling on Performance and Energy Consumption
	Speculative Copies Are Delayed due to Resource Unavailability
	Impact of Speculative Copy Allocation on Performance and Energy Consumption

	Conclusion

	Measuring and Enabling the Energy Efficiency of Straggler Detection
	Energy Inefficiency of Existing Straggler Detection Mechanisms
	A Framework to Evaluate Straggler Detection Mechanisms
	Metrics for Characterizing Straggler Detection Mechanisms
	Lack of evaluation metrics for straggler detection
	Precision, Recall, Detection Latency and Undetected Time

	Linking Straggler Detection Metrics to Performance
	Architectural Models for Performance and Energy Consumption
	On the Impact of Precision and Recall on Energy Consumption and Execution Time

	Characterizing Straggler Detection Mechanisms via the Proposed Metrics
	Experiment Setup
	Evaluation of Straggler Detection Mechanisms

	Hierarchical Straggler Detection: A Green Straggler Detection Mechanism
	Design Principles
	Architecture
	Characterizing the Hierarchical Straggler Detection Mechanism
	Evaluating the Effectiveness of Straggler Detection Mechanisms
	Methodology
	Impact of Straggler Detection Mechanisms with Different Resource Reservation Policies
	Evaluation of Straggler Detection Mechanism Using Proposed Metrics

	Evaluating Hierarchical with Different Applications and Slow-node Thresholds
	Experimental Setup
	Experimental Results

	Conclusion

	Energy-aware Straggler Handling for Big Data Processing Systems
	Energy-aware Speculative Execution Controller Architecture
	Allocation Problem Description
	Copy Allocation Heuristic

	Evaluation
	Experimental Methodology
	Results with the WordCount Application
	Results with the Kmeans Application
	Results with the Sort Application

	Conclusion

	Energy-efficient Resource Reservation Mechanism for Straggler Handling
	WHEN and WHERE Questions: Impacts of the Answers
	When to Launch: A Fixed Solution is Not Always Good
	Where to Launch: Heterogeneity Has to be Considered
	A Motivating Example

	Design Overview
	Proposed Techniques
	Window-based Resource Reservation
	Heterogeneity-Aware Copy Allocation

	Methodology
	Experimental Evaluation
	Comparison of Different Speculative Execution Mechanisms
	Sensitivity Study

	Conclusion

	Conclusion
	Achievements
	Characterizing the Impact of Straggler Mitigation on Performance and Energy Consumption
	Measuring and Enabling Energy Efficiency of Straggler Detection
	Bringing Energy-awareness to Straggler Handling
	Energy-efficient Straggler Handling Mechanism

	Perspectives
	Prospects Related to the Hierarchical Straggler Detection Mechanism
	Prospects Related to Our Straggler Handling Mechanisms

	Bibliography
	Résumé en français

