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Résumé

Cette thése porte sur le comportement en temps long de solutions d’équations de type
Vlasov, principalement le modéle Vlasov-HMF. On s’intéressera en particulier au phénomeéne
d’amortissement Landau, prouvé mathématiquement dans divers cadres, pour plusieurs
équations de type Vlasov, comme I'équation de Vlasov-Poisson ou le modéle Vlasov-HMF,
et présentant certaines analogies avec le phénomeéne d’amortissement non visqueux pour
I’équation d’Euler 2D. Ce document a pour but de présenter et de prouver les principaux
résultats obtenus par 'auteur et ses directeurs, a savoir:

e Un théoréme d’amortissement Landau pour des solutions numériques du modéle Vlasov-
HMF, obtenues par discrétisation en temps de ce dernier via des méthodes de splitting,
ainsi que des estimations de convergence pour ces schémas.

e Un théoréme d’amortissement Landau pour des solutions du modéle Vlasov-HMF
linéarisé autour d’états stationnaires non-homogeénes.

e [’étude numérique du théoréme précédent au niveau non-linéaire par de nombreuses
simulations.

e La convergence d'un schéma discrétisant en temps ’équation d’Euler 2D au moyen
d’un intégrateur de Crouch-Grossman symplectique.

Mots-clés: Equations de type Vlasov, équation d’Euler, équations de transport, amor-
tissement Landau, dispersion, état stationnaire, méthodes de splitting, méthodes semi-
Lagrangiennes, intégrateur symplectique, intégrateur de Crouch-Grossman, analyse d’erreur
rétrograde, systémes hamiltoniens, coordonnées action-angle.






On Long Time Behavior of Certain

Vlasov Equations
Mathematics and Numerics.

Abstract

This thesis concerns the long time behavior of certain Vlasov equations, mainly the
Vlasov-HMF model. We shall be in particular interested in the celebrated phenomenon of
Landau damping, proved mathematically in various frameworks, for several Vlasov equa-
tions, such as the Vlasov-Poisson equation or the Vlasov-HMF model, and exhibiting certain
analogies with the inviscid damping phenomenon for the 2D Euler equation.This document
is meant to describe and prove rigorously the main results obtained by the author and his
advisors, which are the following :

e A Landau damping theorem for numerical solutions of the Vlasov-HMF model, con-
structed by means of time-discretizations by splitting methods, as well as convergence
estimates for these numerical schemes.

e A Landau damping theorem for solutions of the Vlasov-HMF model linearized around
inhomogeneous stationary states.

e The numerical confrontation of the previous result at the nonlinear level, by a large
amount of simulations.

e The convergence of a scheme that discretizes in time the 2D Euler equation by means
of a symplectic Crouch-Grossmann integrator.

Key-words: Vlasov equations, FEuler equation, transport equations, Landau damping,
scattering, stationary state, splitting methods, semi-Lagrangian methods, symplectic integra-
tor, Crouch-Grossman integrator, backward error analysis, hamiltonian systems, angle-action
variables.
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Organisation/Organization

Pour les lecteurs francophones: Le chapitre 1, rédigé en francais, contient une intro-
duction au sujet de recherche et une bréve présentation des résultats obtenus durant cette
thése. Le reste du document est écrit en anglais, et est organisé comme suit:

e Le chapitre 2 est une présentation relativement détaillée des résultats obtenus par
I’auteur et ses directeurs. Il contient les énoncés complets de ces résultats, ainsi que
des résumés de preuves retenant les arguments essentiels.

e Les chapitres 3, 4 et 6 exposent les preuves complétes des résultats présentés dans le
chapitre 2, et peuvent étre chacun lus indépendamment du reste du manuscrit.

e Le chapitre 5 contient de nombreuses simulations numériques, qui ont pour but d’étudier
numériquement les résultats du chapitre 4 au niveau non-linéaire.

For english-speaking readers:

e Chapter 1, written in french, is an introduction to the scientific context surrounding
this thesis, and to our topics of interest. It is concluded by a short presentation of
the new results obtained by the author and his advisors. The rest of the document is
written in english.

e Chapter 2 introduces separately each one of these results. It contains complete state-
ments, and sketches of proofs that retain the essential arguments.

e Chapter 3, 4 and 6 contain the complete proofs of the results presented in chapter 2.
Each one of these chapters may be read independently from the rest of the document.

e Chapter 5 contains a large number of numerical simulations, and is designed to study
numerically the main result of chapter 4 at the nonlinear level.
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On s’intéresse dans cette thése au comportement en temps long d’équations de type
Vlasov, et plus particulierement au célébre phénoméne d’amortissement Landau. Ce résumé
se veut étre une introduction générale a ce sujet, ainsi qu'une présentation du reste du
manuscrit.

Dans la premiére partie, nous décrivons le contexte physique dans lequel sont établies les
équations de type Vlasov, a savoir la théorie cinétique de la physique des plasmas. La
seconde partie est une introduction a l'amortissement Landau. Nous y en donnons une
définition, et décrivons précisément le phénomeéne dans les cas de I’équation de transport libre
et de I'équation de Vlasov-HMF'. Nous évoquerons également, dans de moindres détails, les
divers résultats d’amortissement Landau de la littérature actuelle, et discuterons de questions
ouvertes.

Nous conclurons par une présentation succincte des nouveaux résultats obtenus par I’auteur
et ses directeurs, et discuterons de futures perspectives de recherche.

1.1 Physique des plasmas & équations de Vlasov

1.1.1 Physique des plasmas

Lorsqu’un gaz est chauffé a température suffisamment haute, les collisions entre atomes sont
telles que les électrons se séparent des noyaux, donnant naissance & un ensemble hétéro-
clite de particules (ions, électrons, particules neutres, etc...), tout de méme globalement
neutre. Le mouvement des particules y est contraint par plusieurs facteurs: des champs
¢lectromagnétiques créés par les particules chargées distantes, les possibles collisions avec les
particules voisines, etc ... Par analogie avec le plasma sanguin, un tel gaz ionisé est appelé
un "plasma", nom qui est dii au physicien I. Langmuir. De par leur nature, et sans doute
leur rareté sur terre, les plasmas sont souvent considérés comme étant un quatriéme état de
la matiére, apres les liquides, les gaz, et les solides.

Les plasmas sont néanmoins treés répandus dans le reste de 'univers. Ils sont par exemple
les constituants principaux des étoiles ou des vents solaires. Sur terre ils sont utilisés pour
la fusion thermonucléaire, ie la production d’énergie par la fusion de deux particules en une
particule plus lourde, un processus nécessitant en effet de hautes températures pour détacher
les électrons des autres particules. Si les plasmas sont par exemple naturellement confinés
par la masse d’une étoile, la question de leur confinement en temps long sur terre est toujours
ouverte. Dans le cadre de la fusion thermonucléaire par exemple, le confinement est opéré
dans une chambre appelée tokamak, au moyen d’un champ magnétique extérieur. Ces ques-
tions de confinement, et plus largement la fusion thermonucléaire, sont des sujets actuels de
recherche. Dans cette optique, nous renvoyons le lecteur intéressé au site du célébre projet
ITER .

Thttps://www.iter.org
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1.1.2 Théorie cinétique: les équations de Vlasov

Un plasma contient a priori des particules de type « € {1,2,..., M}, comme les électrons, les
protons ou les particules neutres. La théorie cinétique signifie la description du plasma par
la fonction de distribution f, (¢, z,v) de chaque type de particule a, ot ¢, z,v € R x R® x R?
sont les variables de temps, position, et vitesse, respectivement. La fonction f, (¢, z,v)
représente le nombre de particules de type a se trouvant a un temps ¢t dans un volume
élémentaire dxdv centré au point (z,v).

Nous pouvons citer I'exemple typique suivant

m,|v|?
alV) = — ; 1.1.1
folw) = exp (- ) (111)
ou m, est la masse de la particule «, k la constante de Boltzmann, 7' la température
du plasma, et | - | la norme Euclidienne sur R3. Il s’agit de la distribution de Maxwell-

Boltzmann des vitesses, dans un plasma a 1’équilibre thermodynamique.

Si les collisions dans le plasma sont assez fréquentes, les distributions de particules de type
Maxwell-Boltzmann (1.1.1) sont maintenues sur des temps longs. Dans ce cas, la théorie
fluide des plasmas, qui considére essentiellement des moyennes en vitesse de la fonction de
distribution, est suffisante. Les quantités physiquement pertinentes, comme la densité ou
la vitesse du fluide, sont alors fonctions de = et t. La théorie cinétique est indispensable
dans le cas, par exemple, de plasmas a trés hautes températures, ot les collisions peuvent
étre suffisamment rares pour que la fonction de distribution de telle ou telle particule reste
¢loignée de la distribution de Maxwell-Boltzmann pendant des temps long. Dans ce cas, la
vitesse v est la variable pertinente. Nous renvoyons le lecteur intéressé a [43] pour plus de
détails.

Considérons le modeéle N-corps suivant: la dynamique des particules (z,, v,)1<n<y d'un
certain type a est donnée par les lois
dz,,(t do,, (t F(t,x,(t),v,(t
)y o Q) F(a().v) 1
dt dt m,,
ou F est la force extérieure, et m, la masse de la particule a. En ’absence de collisions, ou
lorsque les effets collectifs dominent les collisions entre particules, la force extérieure est

F(t,z,v) = qu(E(t,z) + v x B(t,v)), (1.1.3)

ol E est le champ électrique, B le champ magnétique, et q, la charge de la particule a.
La physique statistique permet d’obtenir, lorsque N tend vers I'infini, un modéle cinétique
vérifié par la fonction de distribution f,(¢,z,v) de la a-iéme particule, a savoir I’équation
de Vlasov

8tfa+v-V$fa+%(E+vxB)-vaazo. (1.1.4)

(67

La partie libre de I’équation est I’équation de transport libre

(‘3t—|—v'Vx

17



donnant le mouvement des particules en I’absence de forces extérieures. La partie potentielle

décrit 'action des forces extérieures.
Le champ électromagnétique (E, B) est produit par les particules selon les équations de
Maxwell:

Vg (EOE(ta SL’)) = 0<t, SL’), Vg - B<t7 SL’) =0,
1 (1.1.5)
V. x B(t,z) = poj(t, ) + gatE(t,x), V. x E(t,z) = —0;B(t, x),

ou €y et g désignent respectivement la permittivité et perméabilité du vide, et ot ¢ est la
vitesse de la lumiére dans le vide. Les symboles V, V- et Vx désignent respectivement les
opérateurs gradient, divergence, et rotationnel, en dimension 3. La densité de charge o et la
densité de courant j sont quant a elles données par

M M
o(t,x) = an /}RS fa(t,z,v)dv et j(t,z) = an /]R3 vfo(t,x,v)dv. (1.1.6)
a=1 a=1

Les équations (1.1.4), (1.1.5) and (1.1.6) constituent le systéme de Vlasov-Maxwell.

De I’équation de Vlasov-Maxwell, on peut obtenir celle de Vlasov-Poisson pour la fonction
de distribution f(¢,z,v) des électrons dans un plasma, lorsque 1’'on suppose que le champ
électromagnétique vérifie les équations de Maxwell stationnaires:

(1.1.7)

V.- (eoE(t,z)) =o(t,x), V,xE(t,z)=0,
V. x B(t,z) = poj(t,xz), V.- -B(t,x)=0.

Les champs électriques et magnétiques sont découplés, et si I’'on suppose de plus que la force
de Lorentz v x B(t,z) est négligeable, alors la seule force extérieure pertinente provient
du champ électrique E(t,z). Dans ce cas, on ne considére que les premiéres et quatriémes
équations de Maxwell

V.- (g0E(t,z)) =0o(t,z) et V,xE(t,z)=0.

Le rotationnel de E étant nul, il existe un potentiel ¢ tel que E(t,z) = —V,¢(t, ), et la
premiére équation de Maxwell donne ’équation de Poisson

~Ao(t, ) =gy o(t, x),

o A est le Laplacien (la divergence du gradient). En supposant que seuls les électrons
font osciller significativement la densité de charge, leur fonction de distribution f(t, z,v) est
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solution du systéme de Vlasov-Poisson

8tf+v-fo—%E-va:O

E(t,z) = —V.¢(t,2) (1.1.8)
A,o(t,x) = 6% » f(t,z,v)dv,

ou m est la masse d’un électron, et e, la charge élémentaire.

Pour conclure ce paragraphe, précisons que 1’équation de Vlasov-Poisson fait aussi sens
dans le contexte de la dynamique des galaxies (voir [18], [57], [58]), out 'interaction moyenne
est donnée par la force d’attraction gravitationnelle de Newton, au lieu de la répulsion
Coulombienne. Alors, ’équation the Vlasov-Poisson modélise la distribution d’étoiles de
masses identiques dans une galaxie. f(t,x,v) est ainsi la densité d’étoiles se situant prés
d’un point (x,v) au temps t, et vérifie

E(t,x) = —V.é(t, ) (1.1.9)

Agp(t,z) =mG | f(t,z, v)dv,

]:R?)

ou m est la masse d'une étoile, et G la constante de gravitation.

1.1.3 Le modéle Vlasov-HMF

Le modéle Vlasov-HMF (hamiltonian mean-field) est un modéle-jouet unidimensionnel qui
conserve plusieurs caractéristiques des équations de Vlasov décrites ci-dessus. Il s’agit d’une
simplification du modéle de Vlasov-Poisson particuliérement agréable pour effectuer des sim-
ulations numériques, et permettant d’effectuer un grand nombre de calcul analytiques. No-
tons qu’a cet effet ses états stationnaires sont des fonctions du Hamiltonien du pendule,
comme nous aurons 1’occasion de le voir ci-dessous. De ce point de vue, ce modéle apparait
comme trés pertinent dans la littérature physique (voir [4], [5], [6], [7], [21], [22]). Il présente
aussi de nombreuses similitudes avec le modéle de Kuramoto pour les oscillateurs couplés,
dans sa limite continue (voir [15], [32], [41]).

Le modé¢le de Vlasov-HMF est

Ouf(t,x,0) +{f, H[f]} (,2,v) = 0,

v? (1.1.10)
HIfO))(x,v) = 5 — A [ty u) cos(z — y)dydu,

2 TxR

ou (t,z,v) € R x T x R, ou T = R/Z, et ou le crochet de Poisson {-,-} est donné par
{f7 g} = amfavg - aacgavf
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Nous avons introduit un paramétre A = 1 pour couvrir les cas de potentiels répulsifs et
attractifs, par analogie avec les équations de Vlasov-Poisson qui modélisent respectivement
les plasmas sans collisions et la dynamique des galaxies.

L’équation (1.1.10) est une équation de transport unidimensionnelle associée a un champ de
vecteur hamiltonien séparable. D’un point de vue numérique, il s’agit ainsi d’un candidat
bien adapté a une discrétisation en temps par des méthodes de splitting (voir [39] ou le
chapitre 3).

1.2 Amortissement Landau: panorama

1.2.1 Deéfinition de I'amortissement Landau

Considérons ’équation de Vlasov-Poisson adimensionnée, en dimension d > 1 d’espace, avec
conditions de bord périodiques:

(O f +v-V,f — E[f](t,x) - V,f =0,

) E[f](t,r) = AV,A! [ » ft,z,v)dv — (271r)d /deIRd f(t, @, v)dzdo] (1.2.1)
f(0,z,v) = f(z,v),

LA = +1,

avec (t,7,v) € RxT4x € R, o T¢ = R?/Z?. Comme précédemment un parameétre A = +1
permet de couvrir les deux applications a la physique des plasmas et a la dynamique des
galaxies.

Dans le cadre de la régularité analytique (ou Gevrey) par exemple, on peut démontrer
I'existence locale de solutions via un Théoréme de Cauchy-Kovalevskaya (voir [62], [63]).
L’existence globale peut étre ensuite obtenue en propageant la régularité de plusieurs maniéres
possibles. Parmi I’abondante littérature sur ce sujet, nous renvoyons par exemple a [14], [42]
et [56], et également & [10] et [61] pour des discussions sur le sujet. Notre principal sujet
d’intérét est le comportement en temps long des solutions.

Les solutions de (1.2.1) qui nous intéressent sont a vrai dire celles de la forme

f(t,z,v) =n(v) +r(t, z,v), (1.2.2)

ou 7(v) est une solution stationnaire de (1.2.1) spatialement homogene, et ou la perturbation
de moyenne nulle, r, est petite dans un cadre fonctionnel convenable.

L’amortissement Landau désigne 'homogénéisation en temps long de telles solutions. Ce
phénomeéne fut prédit en 1946 par L. Landau, qui, résolvant ’équation linéarisée autour
de 7 au moyen de transformées de Fourier et Laplace, et, étudiant les singularités dans le
domaine fréquentiel, conclut que le champ électrique E[f](¢, x) décroissait vers zero, a vitesse
exponentielle (voir [51]).

Cela signifie physiquement que les oscillations de la charge sont amorties, et que le plasma
retourne a la neutralité électrique en temps long. Notons que ’équation (1.2.1) satisfait les
lois de conservations suivantes :
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e Conservation de la masse:

d

a TdxRA

f(t,x,v)dzdv = 0.

e Conservation des normes L? : pour tout 1 < p < oo,

d

— t Pdzdv = 0.
o R

e Conservation de l'energie:

d 2
T [/T U_f(t,x,v)dxdv + % /Td |E[f](t,$)|2dx} —0.

dw R4 2

La conservation de I’énergie nous dit en particulier que ’amortissement du champ électrique
est couplé & un gain d’énergie cinétique. Il est également notable que I’amortissement Landau
prédise un phénomeéne irréversible, pour une équation temporellement réversible.

La décroissance vers zero du champ électrique peut étre mathématiquement exprimée en
terme de décroissance des modes de Fourier de

pt,x) = / r(t, xz,v)dv, (1.2.3)
R4
la densité de la perturbation r. Plus précisément, définissons la transformée de Fourier d’une

fonction f sur T¢ x R par

A 1

ful€) = @) / o fz,v)e * %" vdedy, ke Z%¢c R
TaxR

Notons alors que
pA/f(t) = ’Fk(tv O)’
et que
E[r(t)](z) = A Y (@R) |k pe(t)e™.

kezd
Ainsi, nous prendrons pour définition de I'amortissement Landau la convergence vers zero
des modes (1) :

VkeZ?  lim |py(t)] = 0. (1.2.4)
t—+4o00

Notons qu’avec une telle définition la vitesse de décroissance est a priori dépendante de la
valeur de la fréquence spatiale k.

Ce type de résultat fut démontré rigoureusement au niveau non-linéaire par C. Mouhot et
C. Villani dans [61], bien que des résultats antérieurs furent obtenus dans [20] et [46]. Les
deux prochains paragraphes ont pour but d’introduire de maniére concise les mathématiques
se trouvant derriére 'obtention de résultats de type (1.2.4).
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1.2.2 Un exemple simple: le transport libre

La perturbation (de moyenne nulle) r vérifie I’équation

Or +v-Ver + Efr](t,z) - Vyr + E[r](t,z) - Vyn =0,
E[r](t,z) = AVxAgl/ r(t, z,v)dv, (1.2.5)

]Rd
r(0,z,v) = ’I“O(ZL‘,U).

Nous choisissons ici de présenter plus en détail 'amortissement Landau dans le cadre
simple de la partie libre de (1.2.5), a savoir I’équation de transport libre

Oyr +v-Vyur =0, (1.2.6)

dont la solution est (¢, z,v) = r®(z—wvt,v). Dans le cas présent ou la variable d’espace appar-
tient au tore, ’homogénéisation en temps long est la conséquence de I'effet de mélange des
phases (the phase-mixing effect): la vitesse angulaire des particules évolue exactement
comme la vitesse plane. La perturbation spirale dans I’espace des phases et s’homogénéise
en temps long.

En variables de Fourier, I’équation (1.2.6) devient

Auin(€) — k- Verr(€) = 0, (1.2.7

qui se trouve étre a nouveau une équation de transport. Dans ces variables, I’effet de mélange
des phases décrit la transmission d’énergie depuis les basses fréquences spatiales k vers les
hautes fréquences cinétiques a une vitesse proportionnelle a k, ’équation (1.2.7) ayant pour
solution 7 (&) = (& + kt).

Mathématiquement il s’agit d’un échange de régularité en vitesse contre de la décroissance
en Fourier. En effet, bien que le mode k = 0 soit préservé, pour une fréquence fixée &,
tous les autres modes 7 (¢, &) (k # 0) décroissent vers zéro lorsque t tend vers 'infini, & une
vitesse qui dépend de k et de la régularité de r° (selon v) (il suffit essentiellement d’utiliser
le Lemme de Riemann-Lebesgue). Cela implique en particulier la décroissance vers zero des
modes fi(t), & une vitesse qui dépend de k et de la régularité de r°.

1.2.3 Amortissement Landau pour Vlasov-HMF

Nous venons de présenter 'amortissement Landau pour la partie libre de ’équation (1.2.5),
et le but de ce paragraphe est de présenter brievement le cas de I’équation non-linéaire. Pour
plus de cohérence avec le reste du document, ot I'on s’intéresse principalement au modeéle
de Vlasov-HMF, nous choisissons d’évoquer ici briévement le traitement de ’amortissement
Landau non-linéaire par E. Faou et F. Rousset, dans le cadre du modéle Vlasov-HMF (1.1.10)
(voir [40]). Nous renvoyons a [10, 61] pour le cas de ’équation de Vlasov-Poisson.
Considérons les espaces de Sobolev & poids, munis de la norme
1/2

g = | X [+ 0P 0200 o) e | (128
R

Ip|+lg|<s
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avec v > 1/2 et s > 0. Mentionnons qu’il est assez aisé de prouver que le modéle Vlasov-HMF
est globalement bien posé dans ces espaces, via des techniques classiques pour les équations
de transports associées a un champ de vecteur de divergence nulle (voir par exemple [2]).
E. Faou et F. Rousset ont considéré des solutions du type

ft,z,v) =n) +er(t,r,v), f(0,2,v)=f(z,v) =n()+er’(z,v), (1.2.9)

avec 7 un état stationnaire spatialement homogene de (1.1.10), et ¢ € (0,1). L’analyse en
temps long menée dans [40] est plus & rapprocher de celle de [10] que des travaux de C.
Mouhot et C. Villani, au sens ou la premiére étape est de filtrer I'effet du transport libre en
considérant la fonction

g(t,z,v) =r(t,z + tv,v). (1.2.10)

La fonction g vérifie alors

dig = {&(t, 9),n+ g}

1.2.11
tg)e) = —A [ (eosla =y +tlo—w) gl wdydn, A= O
RxT
Le potentiel ¢(t, g) satisfait la relation
S(t.g)(w.0) =~ 37 GO, (1) = dult, k) = 74 (1.0), (1.2.12)

kil

de sorte que sa décroissance en temps est liée a celle des modes (., comme évoqué ci-dessus
pour le systéme de Vlasov-Poisson. Notons que dans le cas de Vlasov-HMF, seuls les modes
¢-1(t) et ¢;(t) sont non nuls.

Les coefficients (;(t) sont les modes de Fourier de la densité de la perturbation et jouent
pour Vlasov-HMF' le méme role crucial dans la dynamique en temps long que dans le cadre
de I’équation de Vlasov-Poisson (voir [10, 61]). Ils vérifient en effet une équation intégrale
de Volterra

Ce(t) = g (0, kt) + /tK(kz,t —0)((0)do

(1.2.13)
+eA D / Co(0)gu—i(0, kt — Lokl (t — o)do,
=41
ol le noyau K est défini par
1
K(k,t) = Aké ktno(kt) Loy, k==L (1.2.14)

Sous de bonnes hypothéses sur K(k,t), 'équation de Volterra vérifiée par les modes (j
permet de controler leur décroissance en temps par celle des termes non-linéaires. Plus
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précisément, introduisons la notion de stabilité suivante: n est dit linéairement stable s’il
vérifie I’hypothése suivante:

(H) n(v)€Hi et Ix>0, inf

Im7<0

1 —/ e‘”tK(k,t)dt‘ >k, k=%l
R

Nous appellerons "critére de Penrose" 'hypothése (H), ainsi que toute assertion de ce
type, par analogie avec les énoncés similaires utilisés pour le systéme de Vlasov-Poisson
dans [10, 61]. Dans le cas d’un potentiel répulsif (A = —1), elle est en particulier vérifiée
par les états n(v) = G(|v|) avec G décroissante, qui sont stables au sens de Lyapounov
pour l'équation non-linéaire (voir [59]). Cette hypothese de stabilité (H) permet en outre
le controle de la partie linéaire de (1.2.13) par les termes non-linéaires, en résolvant cette
équation en variable de Fourier temporelle, essentiellement.

Le point de vue d’E. Faou et F. Rousset dans [40] (voir aussi [10] pour Vlasov-Poisson) est
de traiter les équations (1.2.11) et (1.2.13) comme un systéme fermé, controlé uniformément
en temps par une norme tenant compte de la régularité Sobolev de ¢ et de la décroissance
des modes (.

Une des principales difficultés est la présence de résonances dans 'équation (1.2.13): lorsque
kt ~ Lo, (;(0) a un effet important sur (j(t) au sens ou la décroissance du terme non-linéaire
correspondant est faible comparée a celle des autres termes. Le controle de ces résonances,
appelées aussi "plasma echoes", est crucial pour prouver I'amortissement Landau non-
linéaire, comme expliqué dans [10, 61].

Posons

5> Mry(Q) = sup sup (£)7Ck(?)] (1.2.15)
te[0,7) <t> te[0,T] ke{£1}

et

QT,S,I/(g) = NT,S,V(g) + MT,S—l(C) + SU]? Hg(t)‘ HE™H (1216)
ot (x) = (14 |2[*)'/2 pour = € R.
Dans [40], le résultat suivant est démontré

Théoréme 1.2.1 (E. Faou & F. Rousset, [40]). Fizons s > 7, v > 1/2 et Ry > 0 tel que
Qo (9) < Ry, et supposons que n € HET vérifie Uhypothése (H). Alors il existe R > 0
et €9 > 0 tels que pour tout ¢ € (0,e0] et pour tout T > 0, la solution de (1.2.11) vérifie
I’estimation

QT,S,V(g) S R

La preuve du Théoréeme 1.2.1 utilise un argument de bootstrap: d'une borne a prior: sur
Qr1.5.,(g) les auteurs en obtiennent une nouvelle qui dépend de maniére adéquate de ¢, et la
propagent en temps en utilisant la petitesse de €. Des estimations d’énergie sont menées sur
I'équation (1.2.11) en bénéficiant de la structure de transport via un commutateur, perme-
ttant d’estimer les normes de Sobolev. La contribution My s_1({) est traitée via 'équation
de Volterra (1.2.13), pour laquelle le résultat suivant est prouvé:
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Lemme 1.2.1 (E. Faou & F. Rousset, [40]). Soit v > 0, et supposons que n € H'3 vérifie
(H). 1l existe C > 0 tel que pour tout T > 0,

My, (C) < CMp,(F),

ol

F.(t) = gx(0, kt) + eA Z %/ Co(0)gr—e(o, kt — Lo)kl(t — o)do.
e=+1" 70

La décroissance en temps de gx(0, kt) est une conséquence de l'effet de mélange des
phases, tandis que la seconde contribution non-linéaire dans My (F) est controlée par des
estimations intégrales tenant précisément compte des résonances localisées.

Puisque pour tout ¢t > 0,

g(t,z,v) = g(0,2,v) +/O {¢(0,9(0)),n+eg(0)} (x,v)do, (1.2.17)

le Théoréme 1.2.1 permet en fait de montrer que le comportement en temps long de g(t) est
donné par une intégrale en temps convergente. Posant

¢(,0) = g(0,2,v) + / " {6(0,9(0)) + 29(0)} (2, v)do, (1.2.18)

E. Faou et F. Rousset démontrérent en effet I'estimation de scattering suivante

Théoréme 1.2.2 (E. Faou & F. Rousset, [40]). Fizons s > 7, v > 1/2 et supposons que
n € HE™ wvérifie Uhypothése (H). Supposons que g(0,x,v) soit dans HS. Alors il existe
go > 0 et une constante C > 0 tel que pour tout ¢ € (0,g0], g°(x,v) € H™ et pour tout
r<s—4etr>1,

Vi >0, gt x,v)—g7(z,0),, < < ¢ (1.2.19)

W'
Comme conséquence de ces résultats il est possible de montrer la décroissance polynomiale
des modes de Fourier de f(t,z,v) = n(v) + eg(t,x — vt,v) : pour tout a + f =s—4,k #0

et £ € R,
5

.6 = 2 lou(t. €+ K0 S

Cela implique la convergence faible

9
f(t2.0) s n(0) + 5 [ (0}
T Jr

a vitesse polynomiale.
Il est & noter que la preuve d’E. Faou et F. Rousset ne traite en fait que le cas d’un potentiel
répulsif A = —1. Il est cependant assez aisé de voir que leur analyse persiste dans le cas

25



d’un potentiel attractif A = 1. L’article [40] ’E. Faou et F. Rousset contient aussi une
généralisation au cas d’un noyau d’interaction qui est un polynéme trigonométrique de degré
fini, ie & support compact en variables de Fourier.

Enfin, mentionnons que si 'on ne s’intéresse qu’a la dynamique linéarisée, c¢’est & dire a
I’équation

) = 0.k + [ K (k. t = 0)Gu(0)do

alors les résonances ne jouent aucun role, et la décroissance en temps des modes ((t) est
uniquement la conséquence du critére de Penrose et de I'expression explicite de la solution
du transport libre. Il suffit en effet d’appliquer le Lemme 1.2.1 pour controler la décroissance
en temps de ((t) par celle de g (0, kt), laquelle est une conséquence de 'effet de mélange
des phases, comme expliqué dans le paragraphe 1.2.2.

1.2.4 Reésultats pour I’équation de Vlasov-Poisson

Un résultat de scattering similaire au Théoréme 1.2.2 fut prouvé par J. Bedrossian, N. Mas-
moudi et C. Mouhot dans le cadre de la régularité Gevrey (voir [10]), impliquant également
un résultat d’amortissement Landau non-linéaire. Leur preuve raccourcit celle du Théoréeme
originel de C. Mouhot et C. Villani dans [61].

Parmi les différences qui peuvent étre notées avec ’analyse en temps long de E. Faou et
F. Rousset, la plus remarquable semble étre le traitement des résonances (plasma echoes).
Leur controle dans le cas de I'équation Vlasov-HMF, en utilisant la régularité Sobolev, est
essentiellement possible car le potentiel est a support compact en Fourier. Dans le cas de
Vlasov-Poisson, ot il n’y a pas cette structure particuliére, I’accumulation potentielle des
résonances peut compliquer leur controle. Les auteurs de [10] ou [61] travaillent ainsi en
régularité analytique ou Gevrey, plutdét qu’en régularité finie.

On peut ainsi se demander si le Théoréme de C. Mouhot et C. Villani dans [61] peut étre
étendu dans le cadre de solutions a régularité finie, comme la régularité Sobolev. II fut prouvé
dans [55] (en dimension d = 1) qu’il existait des ondes stationnaires a densité non nulle, ap-
pelées "ondes BGK", arbitrairement proches de la distribution de Maxwell-Boltzmann

02

nv) =e =

dans H*(T x R) avec s < 3/2. Néanmoins, il fut aussi prouvé dans [55] que cet obstacle
disparaissait pour des régularités Sobolev suffisamment hautes.

Des travaux récents de J. Bedrossian et I. Tristani (voir [8] et [73]|) ont montré que les réso-
nances pouvaient étre supprimées dans le cadre d’une régime collisionnel faible, c’est a dire
en ajoutant a I’équation de Vlasov-Poisson un petit paramétre 6 > 0 devant un opérateur
de collision. Dans ce cadre J. Bedrossian et I. Tristani ont obtenu, indépendamment, des
résultats d’amortissement Landau en régularité Sobolev, uniformes vis & vis du parameétre
de collision d.

Mentionnons également les récents travaux de J. Bedrossian, N. Masmoudi et C. Mouhot
(voir [12]) ou un résultat d’amortissement Landau est prouvé en régularité Sobolev dans le
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cadre de 1’équation de Vlasov-Poisson sur I'espace entier R? x R?, avec un champ électrique
intégrable.

Pour terminer, nous faisons briévement mention de similarités avec I’équation d’Euler bi-
dimensionnelle, pour une perturbation de I’écoulement de Couette (Couette flow). En for-
mulation vorticité, il s’agit de

{ A < (1.2.20)

U=V+A ', w(t=0m,1y)=wr,y),

ot (z,y) € T xR, V*+ = (=0,,0,), et ot wy est de moyenne nulle. 1l est prouvé dans |9]
que, si la donnée initiale wy est assez petite dans une norme de Gevrey convenable, alors
il existe u(y) telle que le champ de vecteur vitesse exhibe le phénoméne d’amortissement
non visqueux suivant

Ult,z,y) = (ux(y),0).

Ceci est a rapprocher de I’'amortissement du champ électrique dans le cadre de ’amortissement
Landau. Quelques différences sont notables, car dans ce nouveau cas la convergence est forte
et a vitesse algébrique. Nous renvoyons le lecteur intéressé a [9] pour plus de détails.

1.2.5 A propos des états non-homogénes

Fut laissée ouverte par E. Faou et F. Rousset la question de la possibilité d’amortissement
Landau autour des états stationnaires non-homogenes: on peut se demander s’il est possible
de prouver une estimation de scattering dans le style de (1.2.19) en partant d’une donnée
initiale du type

(z,v) = n(z,v) +er’(z,v), (1.2.21)

ou 7(z,v) est un état stationnaire non-homogeéne de (1.1.10). Les travaux susmentionnés
sur 'amortissement Landau pour 1’équation de Vlasov-Poisson ([8], [10], [12], [61], [73]) ne
considérent aussi que des états spatialement homogeénes.

Nous considérons des solutions stationnaires non-homogeénes de (1.1.10) du type

n(x,v) = G (ho(z,v)), ho(z,v) = % — My cos(z). (1.2.22)

pour une fonction GG donnée, et ol nous devons noter que hg est le Hamiltonien associé au
systéme du pendule. My est un réel positif, connu dans la littérature physique comme étant
la magnétisation de 1. Il est assez aisé de voir que 1 est un état stationnaire de (1.1.10) dés
que M, vérifie I’équation

2

My = /MRG <% ~ M, cos(a:)) cos(z)dzdw. (1.2.23)

Dans le chapitre 4, nous donnerons des exemples de fonctions G décroissantes pour lesquelles
une solution M, strictement positive existe, dans le cas d’'un potentiel attractif A = 1. Pour
le moment, citons les exemples suivants, abondants dans la littérature physique:
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Distributions de Maxwell-Boltzmann (voir [5], [7], [28], [29]):

n(x,v) = ae o) (1.2.24)

Distributions de Lynden-Bell (voir [27]):

(67

N 0) = T e (1.2.25)
e Distributions de Tsallis & support compact (voir [24] et [27]):
n(x,v) =a(E — ho(x,v))ﬁ]l{EZho(%v)}(x,v), with ¢ > 1. (1.2.26)
e Distributions Water-bag (voir [7]):
n(z,v) = Oz]l{Ezho(x,u)}(CE, v). (1.2.27)

Notons que des solutions non-nulles de (1.2.23) n’existent que si les divers paramétres
a, 3, q, E vérifient certaines conditions.

Il existe dans les littératures physique et mathématique des critéres de stabilité non-linéaire
(voir [53] ou [4]), qui sont utilisés dans [53] pour prouver la stabilité orbitale de ces états
stationnaires non-homogenes.

La possibilité d’'un amortissement Landau autour de ces états est néanmoins une question
ouverte, bien que récemment étudiée dans la littérature physique (voir [5] et [7]), dans le
cas de I’équation linéarisée autour de 7. L’approche est essentiellement basée sur le fait que
hqo est le Hamiltonien associé au systéme du pendule, et est donc en tant que tel intégrable.
On peut ainsi considérer les coordonnées angle-action correspondantes (voir [45] ou le
chapitre 4 pour une description précise de ces coordonnées). Le point important est que,
dans ces nouvelles variables, on peut intégrer le flot de hy comme dans le cas du transport
libre, et les auteurs de [5] et [7] peuvent alors résoudre 1'équation linéarisée dans ces variables
au moyen de transformées de Fourier et Laplace, dans le style de L. Landau ([51]). A cause
de singularités dans le changement de variable, il est prédit par les auteurs que la vitesse de
’amortissement du champ électrique est algébrique, et pas meilleure que 1/t (ou 1/t3, dans
le cas de certaines symétries).

1.3 Nouveaux résultats et quelques perspectives
Le point de départ de cette thése fut la lecture des travaux d’E. Faou et F. Rousset dans
[40] concernant "amortissement Landau pour le modeéle Vlasov-HMF, décrits dans la partie

précédente. Par sa simplicité, le modéle Vlasov-HMF est particuliérement adapté a la réali-
sation de simulations numériques.
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De ce point de vue, notre premier sujet d’intérét fut la discrétisation en temps du modéle
Vlasov-HMF (1.1.10) par des méthodes de splittings entre les parties linéaire et non-
linéaire de I’équation (voir par exemple [45] pour des généralités sur ces méthodes). Nous
avons principalement démontré que la conclusion du Théoréme 1.2.2 de E. Faou et F. Rous-
set restait vraie apres ces discrétisations temporelles, de sorte que les solutions numériques
présentaient un effet d’amortissement Landau numérique. Nous avons aussi prouvé que I'état
final numérique était proche de I’état final continu, ainsi que des estimations de convergence
pour le schéma en temps.

Bien que la littérature mathématique abonde de résultats de convergence pour ces méthodes
de splitting appliquées aux équations de type Vlasov (citons par exemple [17], [25], [34]),
nous attirons l'attention que sur le fait que les notres décrivent en fait le comportement en
temps long des solutions numériques, a savoir I’amortissement Landau numérique.

Ces travaux ont fait I'objet de la publication [39]. Ils sont présentés via une formulation
compléte des résultats et des idées de preuves dans la premiére partie du chapitre 2, et les
preuves complétes sont exposées dans le chapitre 3.

Nous laissons ouverte la possibilité d’étendre nos résultats a une discrétisation compléte,
n’ayant traité que la discrétisation en temps. Le chapitre 3 contiendra une courte discussion
sur ce sujet.

Dans un second temps nous nous sommes intéressés a la question de ’amortissement
Landau autour d’états stationnaires non-homogenes du modéle Vlasov-HMF', décrite dans
la partie précédente. Nous avons considéré des solutions de I’équation Vlasov-HMF (1.1.10)
avec un potentiel attractif (A = 1) partant d’'une donnée initiale donnée par (1.2.21) et
(1.2.22), et avons prouvé un résultat d’amortissement Landau linéaire pour les solutions de
I’équation linéarisée associée, avec une vitesse d’amortissement algébrique.

Dans le cas de solutions stationnaires homogénes (M, = 0), nous avons vu dans les para-
graphes 1.2.2 et 1.2.3 que le phénomeéne d’amortissement Landau I’équation linéarisée s’analyse
par 'usage de la transformée de Fourier et de ’expression explicite de la solution du trans-
port libre. I’amortissement Landau est alors principalement la conséquence de 'effet de
mélange des phases et du critére de Penrose.

Dans le cas présent de solutions stationnaires non-homogeénes (M, > 0), nous nous ra-
menons a une situation similaire, en considérant les coordonnées action-angle associées au
Hamiltonien hg, dans lesquelles le flot de ce Hamiltonien s’intégre. Nous pouvons dans ces
nouvelles coordonnées retrouver l'effet de mélange des phases. La contrepartie est que les
singularités du changement de variables forcent la vitesse d’amortissement a étre algébrique.
L’utilisation des coordonnées action-angle rapproche notre analyse de récents travaux de la
littérature physique ([5] et [7]), discutés dans le paragraphe précédent. Néanmoins, notre
approche différe dans le sens ot nous ne résolvons pas explicitement I’équation linéarisée au
moyen de la transformée de Fourier, mais démontrons une estimation de stabilité pour des
équations intégrales de Volterra, dans l'esprit du Lemme 1.2.1. Nous formulons un critére
de stabilité linéaire de type Penrose, analogue a (H), qui se trouve étre relié aux critéres de
stabilités utilisés pour les travaux sur la stabilité Orbitale (voir [53]).
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Ces travaux sont présentés via une formulation compléte des résultats et des idées de preuves
dans la second partie du chapitre 2, et les preuves complétes sont données dans le chapitre 4.
Dans le chapitre 5, nous proposons des simulations permettant d’observer numériquement
les vitesses d’amortissement algébriques, dans le cas de I’équation non-linéaire.

Un perspective de recherche serait ’extension de nos résultats au cas non-linéaire. A ce
sujet, nous nous attendons, d'un point de vue purement technique, a ce que les singularités
du changement en variables angle-action dans des régions précises de 'espace des phases
soient un sérieux obstacle & un résultat d’amortissement Landau non-linéaire dans le style
du Théoréme 1.2.2. En effet, 'analyse du phénoméne non-linéaire nécessite a priori de ma-
nipuler des solutions suffisamment réguliéres, comme discuté dans le paragraphe 1.2.3., pour
pouvoir controler les résonances (plasma echoes). Nous craignons une perte de régularité
qui serait uniquement due aux singularités locales du changement de variable. Cela suggeére
de s’intéresser éventuellement a des solutions a support compact, pour éviter les régions de
I’espace des phases posant probléme.

Dans cette optique, le chapitre 5 fut con¢u pour nous aider, et aider le lecteur intéressé, a
comprendre le cas non-linéaire et & mettre en lumiére ces nouveaux phénomeénes. Il contient
de nombreuses simulations numériques qui nous montrent le comportement en temps long
de plusieurs solutions numériques de ’équation de Vlasov-HMF non-linéaire. Cela illustrera
en particulier ’ébauche de discussion ci-dessus concernant les singularités dans 1’espace des
phases et les possibles avantages a utiliser des solutions a support compact.

Enfin, nous nous sommes également intéressés a la discrétisation en temps de I'équation
d’Euler bi-dimensionnelle (1.2.20), avec des conditions de bord périodiques. Plus précisé-
ment, nous construisons une approximation de la solution exacte w par un intégrateur de
Crouch-Grossman (voir [30]): sur un pas de temps, le champ de vecteur vitesse U est
d’abord figé au temps initial pour le défaire de sa dépendance en la fonction w. L’équation
de transport "élémentaire" qui en résulte est alors discrétisée en temps wvia un intégrateur
symplectique, a savoir le point-milieu implicite. Nous prouvons une estimation de con-
vergence pour de tels schémas en temps, en norme de Sobolev.

Notre approche utilise essentiellement des estimations de stabilité classiques pour les équa-
tions de transport (voir par exemple [72], [69], [70] et [71]), qui nous permettent & la fois de
controler la régularité des solutions exactes et numériques, et d’estimer les erreurs de consis-
tance locales dues au figement du champ de vecteur vitesse et a la méthode du point-milieu.
La préservation de la structure symplectique par I'intégrateur du point-milieu est également
un ingrédient indispensable de notre preuve.

Ces travaux sont présentés via une formulation compléte des résultats et des idées de preuves
dans la troisiéme partie du chapitre 2, et les preuves complétes sont données dans le chapitre
6.

Nous laissons ouverte la possibilité d'une extension de notre résultat & des schémas com-
plétement discrets, n’ayant traité que la discrétisation en temps. Travaillant dans le cadre
de la régularité Sobolev avec conditions de bord périodiques, 'approche qui parait na-
turelle serait d’obtenir une discrétisation compléte via de I'interpolation par les polyndmes
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trigonométriques, en utilisant les séries de Fourier discrétes. L’erreur d’aliasing inhérente
a cette méthode d’interpolation nous empéche pour le moment de prouver la stabilité du
schéma complétement discret.
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Chapter 2

Main results of the thesis
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This chapter is meant to be a concise presentation of the results obtained by the author
and his advisors. In section 1, 2, 3, we describe the main results of chapters 3, 4, 6, respec-
tively. For each of them we shall provide the reader with complete statements, and sketches
of proofs that retain the essential arguments.

2.1 On numerical Landau damping for the Vlasov-HMF
model

In this section we introduce the reader to the main result of chapter 3, which says essentially
that the conclusion of Theorem 1.2.2 persists through time-discretization of the Vlasov-HMF
model (1.1.10) by splitting methods. This work was the subject of the journal paper [39].
This section has connections with subsections 1.1.3 and 1.2.3 of the previous chapter, and
we shall in particular use notations already defined there.

2.1.1 Time discretization of the Vlasov-HMF model

We consider time-discretizations of the Vlasov-HMF equation (1.1.10) by splitting methods
between the free part

{ Ouf (t, 2, 0) + vdu f (t,7,v) = 0, (2.1.1)

f(ov Z, U) = fo(xv U)’
whose solution is explicitly given by o4 (f°)(z,v) = f°(z — vt,v), and the potential part
O f(t,z,v) + A0, (/
R
f(07 €, U) = fo(xv U)?

whose solution is explicitly given by ©h(f0)(x,v) = fO(z,v — tE[f°, z]), where

cos(z —y) f(t,y, u)dydu) 0o f(t,,v) =0, (2.1.2)

xT

Elf, 2] = Ad, ( /}R sz —y)f(y u)dydu)

is indeed kept constant during the evolution of (2.1.2).
We consider the following Lie splittings

S = o @ (f?) or T =gl ool (), (2.1.3)

where h > 0 is the time-step. It can be shown (see for instance [25] for the Vlasov-Poisson
case) that these schemes yield an order one approximation f"(x,v) of f(t,z,v) at time
t = nh, where f(t,z,v) is the solution of the Vlasov-HMF equation (1.1.10), and for a fixed-
time horizon.

One may also consider the following Strang splitting method

n h h n
=gy o ol o P (1), (2.1.4)
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which gives an order two approximation f"(z,v) of f(t,x,v) at time ¢ = nh.
One may construct from this schemes approximations ¢"(x,v) of the function g(t,x,v) de-
fined by (1.2.9) and (1.2.10) at time ¢ = nh by setting

f(z,v) =n()+r*(x,v) and g¢"(x,v)=1r"(z+ nhv,v), (2.1.5)

where 7 is a spatially homogeneous stationary state of (1.1.10).

Such time-discretizations by splitting methods are common for transport equations associ-
ated with separable hamiltonian vector fields, and we refer for instance the reader to [37] or
[45] for more detail on splitting methods.

Full-discretization involves moreover an interpolation procedure in space (cubic splines for
instance, see [67]). These Semi-Lagrangian methods are widely used to discretize Vlasov
equations, and we refer the reader to [17], [25], [26], [33] or [34] for previous works on this
topic, where higher order splitting methods may be considered. Our work deals with time-
discretizations only.

2.1.2 Main result

In the framework of weighted Sobolev spaces (see (1.2.8)), we shall prove in chapter 3 the
following semi-discrete version of Theorem 1.2.2:

Theorem 2.1.1. Let us fix s > 7, v > 1/2 and assume that n € HT satisfies the stability
assumption (H). Assume that g(0,x,v) is in HE. For a time step h, let g™(z,v), n > 0, be the
sequence of functions defined by the formula (2.1.5) from iterations of the splitting methods
(2.1.3) (Lie), or (2.1.4) (Strang), with ¢°(x,v) = g(0,z,v). Then there exists €9 > 0, hg > 0
and a constant C' > 0 such that for every ¢ € (0,e0] and every h € (0, hy], there ezists
g7 (z,v) € HE™* such that for allr < s —4 andr > 1,

n o C
Vn>0, |g"(z,v)— g, (IL’,U)HH; < Ty (2.1.6)

If moreover v > 3/2 and s > 8, we have for the Lie splitting methods (2.1.3) the estimate

19" (z,v) — g(nh,2,v)||,.-¢ < Ch Vn €N, (2.1.7)
where g(t, x,v) is the solution defined by (1.2.9) and (1.2.10) associated with the continuous
equation with the same initial value.

In the case of the Strang splitting method (2.1.4), we have if v > 5/2 and s > 9 the second
order estimate

<Ch* Vn€N. (2.1.8)

||gn(x’ /U) - g(nha z, U)|

s—=7
HV*Q

The scattering estimate (2.1.6) shows that the nonlinear Landau damping Theorem 1.2.2
persists through time-discretization. The question of whether it still holds through space-
discretization is left open.
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The estimates (2.1.7) and (2.1.8) exhibit convergence rates in time of order 1 and 2 respec-
tively for the numerical solutions, and hold uniformly in time. That last point fails for the
functions f"(x,v) given by the splitting methods (2.1.3) and (2.1.4). It is indeed easy to
check, using the formula f"(x,v) = n(v) + €¢"(x — nhv,v) that we have an estimate of the
form

VYn>0, |[f*(z,v)— f(nh,z,v) < Ce(nh)*%h.

s5—6
Hu—l

for the Lie splitting methods (2.1.3). In the case of the Strang splitting (2.1.4), we have from
the same arguments:

Vn >0, |[f"(z,0)— fnh,z,v)],.—7 < Ce{nh)* "h?.
v—2

Hence we obtain convergence results that hold for a fixed time horizon nh < T, and the
error in H? grows like 1.

Let us point that many convergence results for splitting methods applied to Vlasov equations
may be found in the literature. We refer for instance to [34] for the case of compactly
supported data, and to [17], [25] or [26] for the Vlasov-Poisson case. The convergence
estimates (2.1.7) and (2.1.8) (and their aforementioned consequences) are specific in the sense
that they describe in fact the long time behavior of the numerical solutions (the numerical
Landau damping), with constants that are uniform in time.

Let us also mention as an easy consequence of (1.2.19), (2.1.6), (2.1.7) and (2.1.8), that the
following estimates hold for the limit state of the equation: for the Lie splitting

19> (z,v) = g5° (2, v)[l3z-s < Ch,

and for the Strang splitting

19 (,v) = gi*(2,v)||3s-7 < CR*.

Finally, let us say that the proof of Theorem (2.1.1) in [39] or in chapter 3 only deals with the
case of a repulsive potential (A = —1), though it can be adapted with any major difficulty
to the attractive case A = 1.

2.1.3 Sketch of proof for the estimate (2.1.6)

Our proof may be compared with the classical backward error analysis methods of Geometric
Numerical Integration (see for instance [45, 52|): we express the numerical solution as the
exact solution of a continuous Vlasov equation with time dependent kernel (with a poor
regularity in time). We saw (see formulae (1.2.17) and (1.2.18)) that the long time behavior
of the exact solution is essentially controlled by a time convergent integral, which ensures
the existence of the continuous limit function ¢*(z,v).

The effect of the splitting approximation is essentially to discretize this convergent integral.
As the integrand converges algebraically when the time goes to infinity, the numerical solution
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also yields a convergent time integral, even if the time appears in a discontinuous way in the
evolution equation.

We show in fact that the solution ¢"(z,v) given by the splitting method (2.1.3) (Lie) or
(2.1.4) (Strang), and formula (2.1.5) coincides at times ¢ = nh with the solution g(t, z,v) of
the equation

g = {Pn(t,g(t)), n} +e{Pn(t,g(?)), (1)}, (2.1.9)

where ®,(t,g(t)) = ¢(si(t),g(t)) with the definition of ¢ given in (1.2.12).
In the case of Lie splittings (2.1.3) , s,(t) are given by the formulae

sp(t) = {%J h+h, and s,(t) = {%J h, (2.1.10)
respectively. In the case of the Strang splitting method (2.1.4), s;(t) is given by the formula
51 (1) = H h+g. (2.1.11)

Note that
Dy (t, g(t)) = —% Z ethreithon vz (1), with  z,(t) = &u(t, ksn(t)). (2.1.12)

ke{£1}

The modes z,(t) are in fact approximations of the terms (x(¢) defined in (1.2.12), and play
the same crucial part in the dynamics for the semi-discrete equation (2.1.9). Indeed, we
prove that they satisfy a semi-discrete version of the Volterra equation (1.2.13), namely

2,(t) = /OtK(k:,t—a)zk(o) do + Fu(t) + Gy(t) k= £1, (2.1.13)

where the kernel K (k,t) has been introduced in (1.2.14), and where

Fk<t) = ék(o, ksh(t))—i—gé Z /t Zg((T)f]k_g(U, k’Sh(t)—Esh(U))k’g(Sh(t)—Sh(O'))dJ (2114)
Le{£1} 0

and
Gilt) = /0 <K(k,sh(t) —sp(0)) — K(k:,t—cr))zk(a) do. (2.1.15)

F}(t) contains the nonlinearities, where one must in particular handle the plasma echoes
(see chapter 1), ie the terms where ksp(t) ~ fs,(0). Gg(t) is the error coming from the
discretization in time of the kernel.

We consider, as in the continuous case (see [40] or chapter 1), the equations (2.1.9) and
(2.1.13) as a coupled system, which is controlled by the norm Qr,(g) (defined by (1.2.15)
and (1.2.16) in chapter 1). Note that few differences exist with the continuous case, as
one must also handle additional terms that reflect the discretization error (the terms Gy,
essentially).

In chapter 3, we prove the following result:
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Theorem 2.1.2. Let us fit s > 7, v > 1/2 and Ry > 0 such that Qo s, (g) < Ry, and assume
that n € HE satisfies the assumption (H). Then there exists R > 0, hg > 0 and gy > 0 such
that for every € € (0,e0], h € (0, ho] and for every T > 0, the solution of (2.1.9) satisfies the
estimate

QT,S,V(g) S R

Once this result is obtained, estimate (2.1.6) can be proved. Indeed, we may write

g(t,z,v) =g(0,z,v) + /0 {®(0,8(0)),n+eg(o)} (z,v)do. (2.1.16)

We can prove (see subsection 3.3.4 of chapter 3), using the bound given by Theorem 2.1.2,
that the above integral converges in appropriate Sobolev norms, and then obtain the estimate
(2.1.6) by setting

g (z,v) = g(0,z,v) + /000 {®n(0,g(0)),n+eg(o)} (z,v)do. (2.1.17)

About the proof of Theorem 2.1.2

The proof of Theorem 2.1.2 is very similar to the one of Theorem 1.2.1 from [40], that has
also been discussed in chapter 1.

It uses indeed a bootstrap argument: assuming an a priori bound on Qr,(g), we infer an
estimate on that same quantity that scales properly in €, and conclude that the bound holds
uniformly in time by using the smallness of €. The proof is organized as follows.

Using the a priori bound on Qr,(g), we first control in Proposition 3.4.1 (of chapter 3)
the factor My s_1(z). Essentially we use Lemma 1.2.1 as in the continuous case, to control
the linear part of (2.1.13) by the nonlinear terms. The term Fy(t) is controlled by integral
estimates that account carefully for the localized resonances (the plasma echoes), while Gy,
is estimated by a Taylor expansion, and scales properly with respect to h.

By using this new control on Mr,_1(z) and the a priori bound on Q7. (g), the first and
third factor in the definition of Q1 ,(g) are then respectively estimated in Propositions 3.4.4
and 3.4.6 (of chapter 3), by means of energy estimates with a commutator trick.

2.1.4 Sketch of proof for the estimates (2.1.7) and (2.1.8)

The proofs of these estimates use essentially the same arguments as above, coupled with the
fact that the electric field is discretized in time by the rectangle method for Lie splittings
(2.1.3), and by the midpoint rule for Strang splittings (2.1.4). This will yield the order one
and order two convergence estimates.

In view of Theorems 2.1.2 and 1.2.1, we can assume that for all & € {0,1,2}, Qrs,—o(g) and
Q1.5.,-a(g) are bounded by the same constant R > 0, provided that v > 5/2. Those bounds
on the exact and numerical solutions are essential to prove the convergence estimates, and
we think of it as the stability of the schemes.
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Though we aim to estimate ¢"(x,v) — g(nh, x,v), we take in fact advantage of the continuous
Vlasov equations (1.2.11) and (2.1.9) that are satisfied respectively by ¢ and g, and we shall
rather consider the continuous function 6(t) = g(t) — g(t). At the beginning of section 3.5 of
chapter 3, we derive the following equation, satisfied by the function 0 :

2() = 614501} + Lot 50, o0} -+ 101690, 50) = (ot 50D, + R
2.1.18
where the remainder R(¢) is defined by formula (3.5.2) in chapter 3. Hence the function §
satisfies an equation that is similar to the ones satisfied by ¢ and g, and thus our strategy
to prove (2.1.7) and (2.1.8) is to control the factor Qr;,(d) (with a minor modification)
uniformly in time, and to show that it scales in h or hZ.
Let us point that the remainder R reflects precisely the error attributable to the discretization
in time. The control of R brings technical complications in the proof (especially for Strang
splittings), in comparison with the proof of (2.1.6), where the errors attributable to the
discretization in time do not have a major influence. It also requires to lose regularity in
physical and Fourier variables.

Order one estimates

Let T be a positive real number, and let us consider, for s > 8 and v > 3/2, the quantity

Qrs—2-1(0) = Mrs_3(d) + Nps—2,-1(6) + sup ||0(¢)]

t€[0,T]

#H S
with Ny, and My, defined in (1.2.15), and where we set

di(t) = gr(t, kt) — gr(t, kt).
In chapter 3, we prove the following result, which implies (2.1.7):

Proposition 2.1.3. For s > 8, v > 3/2, assume that n € H3™ satisfies the assumption
(H). Then there exists Ry > 0, ho > 0 and €y > 0 such that for every h € (0, hyl, every
e € (0,&0] and every T' > 0, the solution of (2.1.18) satisfies the estimate

QT,S*Q,I/*l (6) < Rl h.

The proof of the above Proposition is made of a bootstrap argument similar to the one
presented for the control of Q7 ,(g) in the previous subsection, though it is more technical.
It is organized as follows: assuming an a priori bound on Qrs_2,—1(9), the factors My s_5(d),
supyefo 7] [|0(2)|l3:—¢ and Nrs_2,-1(9) are successively controlled, in Propositions 3.5.3, 3.5.4
and 3.5.5.

Order two estimates

The estimate (2.1.8) is proved by considering as previously the quantity Qrs—3,-2(0), for
which we prove the following result
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Proposition 2.1.4. Let us fir s > 9 and v > 5/2. Assuming that n € H3* satisfies the
assumption (H), there exists Ry > 0, hg > 0 and g9 > 0 such that for every h € (0, hg),
every € € (0,e9] and every T > 0, the solution of (2.1.18) satisfies the estimate

QT,S—S,V—Q (5) S R2h2 .

The proof of this result is similar the proof of Proposition (2.1.3), though it is more compli-
cated and technical. It is organized as follows: assuming an a priori bound on Qrs_3,-2(9),
the factors Mr—4(d), supyepoq) [|0(t)[|3:-7 and Nrps—5,-2(d) are successively controlled, in
Propositions 3.5.3, 3.5.4 and 3.5.5. The crucial point, and also the main source of technical
complications, is the cancellation provided by the midpoint rule, that must be constantly
captured throughout the estimates. We can summarize it by the following easy Lemma:

Lemma 2.1.5. Fort € R and a fized h > 0, let s (t) be given by formula (2.1.11). Then,

for all n € N,
(n+1)h
/ (0 — sp(0))do = 0.
nh

Taking advantage of this Lemma allows us to obtain an estimate on the remainder R
that scales in h?, by means of second order Taylor-expansions. Let us point that this requires
an appropriate splitting of the remainder R into

R:R1+R2,

where R, will essentially fall under the scope of Lemma 2.1.5, and R is a Taylor-remainder
that scales properly in h.

2.2 On linear Landau damping around inhomogeneous
stationary states of the Vlasov-HMF model

In this section we introduce the reader to the main result of chapter 4, where we prove a
linear Landau damping Theorem for perturbations of inhomogeneous stationary solutions of
the Vlasov-HMF model (1.1.10).

2.2.1 Notations and settings
We consider the Vlasov-HMF model with an attractive potential, that reads

Ouf(t,x,0) +{f, H[f]} (t,2,0) =0,

2

HIf](t,2,0) = 5 = ¢lf(t,2) (2.21)
ollta) = [ cosla — ) (t.p.0)dyco

TxR
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with (t,z,v) € R x T x R. The potential may be expressed as the following Fourier series

o[ f](t,x) = C[f] cos(x) + S[f] sin(x), (2.2.2)
with
clf] = / cos(y)(pv)dyde and - S[1) = / sinfy) (o o)y

We consider stationary solutions n(x,v) of (2.2.1) defined by
n(z,v) = G (Hnl(z,v)), (2.2.3)

where the function G : [—e, +o0o[— R, e > 0, has sufficient regularity. It is easy to see that
such states are stationary solutions of (2.2.1), but not clear that one may define a function
G such that a solution n of (2.2.3) exists. To that extent, up to a translation z — x + xg
one can always assume that S[n] = 0, and write that

The notation M, = C[n] will usually be used. M, is called the magnetization of 7, and one
quite easily sees that 1 solves equation (2.2.3) if and only if M satisfies the equation

2

A%zC[G(%—%%aM@)}

Note that this equation is satisfied by My = 0, whatever the choice of GG is, and in chapter
4 we shall exhibit examples of functions GG for which a solution My > 0 exists.
We fix a triplet (n, G, My) such that

n(x,v) = G (ho(z,v)), ho(x,v)= % — Mycos(z), My > 0. (2.2.4)

We consider solutions of equation (2.2.1) that are perturbations of such a stationary state,
namely

{f@w#ﬁ=n®ﬂ0+ﬂ@%“> (2.2.5)

r(0,z,v) = ’I“O(.T,U),

where % is the initial perturbation. We will retain only the linearized equation around 7,
that reads

Or(t,z,v) — {n, o[r]} (t,z,v) + {r, ho} (t,x,v) = 0. (2.2.6)
Most of our work will be to study the evolution of the coefficients C(t) = C[r(t)] and S(t) =
S[r(t)], for which we derive a closed system of Volterra equations, that will play the same

crucial part in the evolution as the closed equations for the Fourier coefficients of the density
fv fdv that are obtained in the study of the stability of homogeneous stationary states for
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the Vlasov-HMF model or the Vlasov-Poisson system (see chapter 1).
Let ¢;(z,v) be the flow of the Hamiltonian hg, that is the flow associated with the ODE

& = 0Opho(x,v)
v = —0zho(x,v),

which are the equations of motion for the celebrated pendulum system. As in the homoge-
neous case (see [40], or chapter 1), we pull-back the perturbation by the flow 1, by setting

g(t,x,v) = r(t, Y (z,v)) = roy(x,v), (2.2.7)

where r is defined by (2.2.5) and satisfies (2.2.6).
Defining the projection X : T x R — T by X(z,v) = x, we prove (see Proposition 4.1.1 in
chapter 4) that the function g satisfies the equation

0:g = C(t){n, cos(X o 1hy)} + S(t){n,sin(X o ;) }. (2.2.8)
and that the coefficients C(t) and S(t) satisfy the following Volterra equations

C<t)=Fc(t>+/0t6(s)Kc(t—s)ds and S(t)ng(t)+/()tS(s)K5(t—s)ds, (2.2.9)
with

Fe(t) = /T RCOS(X o Y (y, w))r’(y, w)dydw, Fs(t) = /T Rsin(X o Y (y, w))r (y, w)dydw,

Ke(t) = 1oy : R{n, cos(X)}cos(X o), Ks(t) =10 : R{n, sin(X) } sin(X o ).

2.2.2 Main result

The fact that S(t) and C(¢) satisfy the Volterra equations (2.2.9) will allow us to obtain decay
in time for these two coefficients, provided that the source terms Fe¢(t) and Fs(t) decay also
in time. For that we shall prove a stability result for Volterra integral equations (see Lemma
4.3.2 and Corollary 4.3.3 in chapter 6). The remaining part of the work is then to obtain
decay in time for the source terms. Now in the homogeneous case, this is in practice given
by the Lebesgue-Riemann Lemma, and the decay is the consequence of the phase-mixing
effect associated with the free transport flow, as explained in chapter 1. In the present case,
we capture the phase-mixing effect by finding an appropriate system of coordinates in which
the flow 1), is integrable. To that extent, we consider the angle-action variables associated
with hg, and for that we define the following charts U, ,U_, U, :

U ={(z,v) e TxR|v>0 and ho(z,v)> My},
U_={(z,v) e TxR|v<0 and ho(z,v) > My}, and (2.2.10)
U, ={(xz,v) € T x R|ho(x,v) < My}.

We have the following result:
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Theorem 2.2.1. For x € {£, 0}, there exists a symplectic change of variables (x,v) — (0, a)
from U, to
W, ={(0,a) e R*|a € J,, 0 € (-7, 7)},

00) and Jo, = (0, 2/My) , such that the flow of ho in the variables (0, a)
(

with J:t = (é
t) = ( ) and 6(t) = tw, a( )) 6(0), and where w,(a) = O.ho(a).

in U, is a(

For a given function f(x,v), we write f* for the restriction of f to the chart U,, and we
define the Fourier coefficients in variable 6 of f by

@) =5 [ £@lb.0),00.0)e s

for a € J,, where (6, a) and v(6, a) are given by the change of variable on U,. The notations
C;(a) and S;(a) will be employed for the Fourier coefficients of the functions

0 — cos(x(0,a)) and 6 sin(z(0,a)),

respectively, and both restricted to U,.
We shall also use the following notations: for a = (ay, ) € N2, and for functions f :
T xR — R, we will write

lal =a1 +ay and 9,f =0."0,°f.
Our main result is then the following:

Theorem 2.2.2. Let n(z,v) = G(ho(z,v)) with G a decreasing function that satisfies the
assumption

max H “G(”)(y)

n<10 HL""(R) < G,

with > 2, and assume that there exists kK > 0 such that

inf |1— K, >k and inf |1-—K > g, 2.2.11
Im(g)gol c(&) = it | s> ( )

where K(S) stands for the complex-variable Fourier transform of some function K.
Let us assume that the initial perturbation r° satisfies

max [[(v)" 95,7 (z, V)| o < Cins

laj<m

for some v > 2, and where

m>5+ —,

with
p=max{k>1 02:°0,0)=0, VI<|a|<k}.
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Then, if r° satisfies the orthogonality condition

| @i =o, (22.1)

x€{%,0} I

there exists C' > 0 such that for allt > 0

IC(t)] <

(1+1¢)
with
e a=5/2ifp>1or [ .7 (x,v)drdy =0,
e o = 3 if both conditions are satisfied
e o =2 if none of them is.

Let us point that, contrary to the homogeneous case, the damping rates for the coefficients
C(t) and S(t) are algebraic, and do not depend on the regularity of the initial perturbation
r%. The explanation is the following: the decay in time of the source terms Fy and Fs is
driven by the phase-mixing effect in action-angle variables, where 1), is integrable. However,
the change of variables has strong singularities near the origin hg ~ —M,, and these singu-
larities interfere with the phase-mixing effect, and prevent a better decay in time.

The condition (2.2.11) will be called the Penrose criterion, by analogy with the similar state-
ments in [10, 40, 61] that are stability hypothesis usually used to ensure Landau damping.
We shall relate it to a more standard stability criterion (see [53, 4]) which was used to prove
the nonlinear orbital stability of the states of type (2.2.4).

In chapter 5 we shall study numerically the damping rates predicted by Theorem 2.2.2 for
the linearized dynamics, but at the nonlinear level.

As a consequence of Theorem 2.2.2 we obtain the following scattering result for the function

g(t) =1 oy
Corollary 2.2.3. Under the assumptions of Theorem 2.2.2 with p = 0, we obtain that:

o There exists goo(x,v) such that when t — 400, we have

1
19(t) = gooll1, S ) (2.2.13)

;-

o There exists Too(x,v) that depends only on h, that is to say reo(z,v) = Reo(h(z,v))
such that for every test function ¢, we have that

/ r(t,z,v)p(x,v) dedv =100 / Too(Z,v)P(x, v) dzdu.
TxR

TxR
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Contrary to Landau damping around homogeneous steady states (see Theorem 1.2.2),
the scattering estimate (2.2.3) do not hold in some regular norm, but only in L!, and only
holds in the present case of the linearized dynamics. We leave open the question of nonlinear
Landau damping in a regular norm, as Sobolev’s or Gevrey’s. However, we shall show in
chapter 5 a quite large amount of numerical simulations performed for the nonlinear Vlasov-
HMF model, where r° will moreover be chosen small in an appropriate norm, and which
should help to understand the nonlinear case.

2.2.3 Sketch of proof for Theorem 2.2.2

Let us now explain how we prove our main Theorem 2.2.2. As in most of the papers of the
Landau damping literature (see [8, 10, 12, 40, 41, 61, 73|), we shall use the Penrose criterion
(2.2.11) to derive stability estimates on the Volterra equations (2.2.9), in the style of Lemma
1.2.1, to control the decay of C(t) or S(t) by the one of F¢(t) or Fs(t). The latter will be
captured by estimating certain oscillatory integrals in action-angle variables. More precisely,
we prove in chapter 4 the following result:

Theorem 2.2.4. Consider f(x,v) and p(x,v) two functions such that

gf%ﬁ ||<U>“8§,vf(x,v)||po < Cpu and ‘g'lg}é ||8§,vg0(x,v)||Loo < Cu,
for some p > 2, where (v) = (1 + v?)'/2,
Let p and q be defined by

p=max{n > 1, d;,f(0,0) =0, Vo, 1 < |a| < n}, ¢ = max{n > 1, d; ,»(0,0) = 0, Va, 1 < |af < n}.

Then, if
P+q

mZ5+p+T and MZmax(?—l—q—i—]%,m—i—Z),

there exists C' > 0 such that for allt > 1, we have

C

f Ol odedo = 3 [ fifa)eiada) < e

TxR xe{+£,0} J s

We prove in section 4.3 of chapter 4 that the Theorem yields the following decay estimates

1 1 1 1
Ke(t) S ——, Ks(t) S ————, Fe()) S ———, Fs(t) S ———, 2.2.14
where a depends on the initial perturbation r° in a way explained in Theorem 2.2.2. To
obtain the decay estimates claimed in Theorem 2.2.2 for the coefficients C(t) and S(t), we
use then a general result on Volterra equation, in the style of Lemma 1.2.1.

More precisely, consider the following Volterra equation

y(t) =Kx*y(t)+F(t), teR (2.2.15)

0

where K, y, I’ vanish for ¢ < 0. We prove in section 4.3 of chapter 4 the following Lemma:
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Lemma 2.2.5. Assume that K € L'(R) is such that

in |1 — K(6)] > k.
Inrl{l;)r;ol )] >~

Then the following holds:

i) There exists C' > 0 such that
1Yl < ClLF|Les

i) If (t)2K € L™ and (t)*F € L™, then there exists C > 0 such that

)%yl e < C||{)2F || oo

wi) If (£)3K € L™ and (t)*F € L™ for «a € [2,3], then there exists C > 0 such that

1)yl z < C|[{E)*F|| .

This Lemma is proved by using a Paley-Wiener Theorem, which under the assumption
on K shows the existence of a resolvent Kernel for the equation (2.2.15), that belongs in
L'(R,). The estimates of the Lemma are then obtained by using an explicit formulation
for the solution y(t) of (2.2.15), given by the resolvent Kernel. With the decay estimates
(2.2.14), and the Penrose assumption (2.2.11), we apply the Lemma to the Volterra equations
(2.2.9), and prove at the end of section 4.3 of chapter 4 the Theorem 2.2.2.

About the proof of Theorem 2.2.)

The starting point of the proof of this Theorem is the following: Fourier expanding, we have
in fact the identity

f(l', U)@(wt(l', ’U))dU - Z Z J fz<a)gp*_é(a)€it€w*(a)da'

TxR xe{+,0} tez V7

From this formula with integrate with respect to a to gain a decay with respect to ¢t. This
stationary phase argument, that typically depends on the possible cancellation of d,w.(a), is
in our case possible as J,w.(a) never approaches zero. However, the decay in time depends
also on the cancellations at the boundary points, and this is precisely where problems may
come, due to the singularities of the action-angle variables.

We can distinguish two zones: first, near the separatix hy = Mj, where the action angle
variables induce logarithmic singularities for the Fourier coefficients f;. However, near this
point, w,(a) also exhibits a logarithmic singularity, and it can be shown that d,w.(a) goes
to infinity fast enough to ensure a decay in time which is essentially driven by the regularity
of f and ¢.

In the vicinity hy ~ —M, (or, equivalently, a ~ 0, or (z,v) ~ (0,0)), the situation is more
delicate: in this zone, the Hamiltonian hg is essentially a perturbation of the Harmonic
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oscillator, for which no Landau damping is expected (w being constant). However, we can
prove that d,w,(a) does not vanish near this point. But this is not enough: indeed the action
angle variable of the harmonic oscillator involves an algebraic singularity of order /a. This
explains why the rate of decay of the integral with respect to the time is mainly driven by
the behavior of f and ¢ near (0,0), which corresponds to a local behavior of f;(a)p§(a) in
ap%q, and which yields the main contribution for the decay in the previous Theorem.

About the Penrose criterion

Written in this form, the Penrose criterion (2.2.11) is difficult to check, but we can relate it
to a more tractable statement. We prove first the following result:

Theorem 2.2.6. Let n be a state defined by (2.2.4), and assume that G satisfies the hypoth-
esis of Theorem 2.2.2. Assume moreover that G' < 0 and

1—Ke(0) >0 and 1— Ks(0)> 0. (2.2.16)
Then the Penrose criterion (2.2.11) holds true.

We should point that, as long as G is assumed to be decreasing, the proof of this Theorem

relies only on the geometry, in the sense that it depends almost exclusively on properties of
the change of variable. Indeed, in section 4.5 of chapter 4 we derive an explicit expression of
the imaginary part of K¢(€) (or Ks(€)), and we prove that, for &€ # 0, it can only vanish if
all the coefficients C}(a) (or S;(a)) vanish as well. Explicit expressions for these coefficients,
which are proved in section 4.7 of chapter 4, show that this cannot happen. So neither f(c(f )
nor Ks(f) can achieve the value 1 when £ # 0. Hence one must only check the case £ = 0,
which is ruled out by (2.2.16).
Therefore all the work now reduces to the verification of (2.2.16). The assumption is auto-
matically satisfied in the case of K, as long as G’ < 0 (see section 4.5 of chapter 4). In
the case of K¢, we prove in section 4.5 of chapter 4 that, by elementary computations, the
assumption is equivalent to the following notion of stability (see also [4, 53|):

Definition 2.2.7. A state n(x,v) defined by (2.2.4) is said to be linearly stable if

1 +/ M cos?(z)dzdv — Z / aan—(a)C’S‘(a)Qda > 0.
RxT

v cefto) e wy(a)

In chapter 4, we shall exhibit examples of stationary states n(x,v) that satisfy 2.2.7, and
thus the Penrose criterion (2.2.11).

2.3 On time-discretization of the 2D Euler equation by a
symplectic Crouch-Grossman integrator

In this section we present the main result of chapter 6. It concerns time-discretization
of the Euler equation (1.2.20) mentioned in the previous chapter, with periodic boundary
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conditions, by means of a symplectic Crouch-Grossman integrator. Our main result is a
convergence estimate for the aforementioned time scheme, in the framework of periodic
Sobolev spaces.

2.3.1 Notations and settings

We consider the two-dimensional Euler equation with periodic boundary conditions

{ Ow —U(w) - Vw =0, (2.3.1)

w(0, 2) = wo(z),

where w(t,2) € R, with t € Ry, and 2z € T?. The divergence-free velocity vector field U is
given by the formula

Ulw) = JVA  w.

using the canonical symplectic matrix

(0.

A~! stands for the inverse of the Laplace operator on functions with average 0 on T2, and
V is the two-dimensional gradient operator.

We shall work on the classical periodic Sobolev space H*(T?), s € R, equipped with the
norm

1/2
HUHHS(T2) = <Z |ﬁk‘2<k>25> ) (2.3.2)

ke72

where the Fourier coefficients of some function v : T? — R are defined by
Uk :/ v(z)e” "z, k€ 72
’]I’Q

Theorem 2.3.1 (|2]). Let s > 1 and wy € H*(T?) with average 0. There exists an unique
solution w(t,z) € CO(Ry, H*(T?)) N CY (R, HY(T?)) of equation (2.3.1) with initial data
wo-.

2.3.2 Time-discretization and main result

We shall consider the following time-discretization of (2.3.1) by a Crouch-Grossman inte-
grator (see [30]), that proceeds in two steps. First, freezing the velocity vector field at time
t = 0, which gives the hamiltonian transport equation

of — JVA Wy - V=0 (2.3.3)
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with initial data wy.
The second step is to discretize the flow of the vector field JVA~1wy by the implicit midpoint
method. More precisely, we define ®;(z) as the unique solution of the implicit equation

Dy(2) = 2z +tJVA Ly <Z++{)t(z)) ,

and if ¢ is small enough, wy o ®;(z) should be an approximation of the solution w(t,z) of
(2.3.3).
Thus the semi-discrete operator S; is defined by

Si(wo(2)) = wo (P4(2))

y(2) = 2 + tJVA  wy <

z+ @t(z)) (2.3.4)
— )

If 7 €]0, 1] is the time-step, let (w,)nen by given by

wn(2) = Sp(wn-1) = &7 (wo)
{ S%(wn) = w. (2.3.5)

Our main result is the following:

Theorem 2.3.2. Let s > 6 and wy € H*(T?) with average 0. Let w(t, z) € C° (Ry, H*(T?))
be the unique solution of equation (2.3.1) given by Theorem 2.3.1, with initial data wy. For
a time step T €]0,1], let (wn),cn be the sequence of functions starting from wy and defined

by formula (2.3.5) from iterations of the semi-discrete operator (2.3.4). For a fized time
horizon T > 0, let B = B(T) be such that

sup |lw(?)|

HS(TQ) S B
te[0,7

There exists two positive constants Ry and Ry, and an increasing continuous function R :
R, — R, such that, if T satisfies the hypothesis

1 B

the semi-discrete scheme enjoys the following convergence estimate: for all n € N such that
t,=nt <T,

||w" - w(tn)| Hs—4(T?) S TtnR(B)eRlT(l"'B)‘

Moreover

R(B) < Ry (B+B?).

The global error scales in 7, though the reader familiar with the midpoint method, which

is known to produce a global error of order two, may wonder why it does not scale in 72.
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This is due to the freezing effect, ie the fact that the error in Sobolev space between the
solution f of (2.3.3) and w at time ¢ only scales in t.

This asks the question of the interest of using the implicit midpoint method. In the problem,
it is essential due to its symplecticity: through area preservation, it ensures that for all n,
w,, has average zero, so that we may define 1, = A~'w, at each step, and then the midpoint
integrator associated with the vector field JV1,,. Although the proof uses as well extensively
the special structure of the implicit midpoint integrator, in the sense that it is the composition
of Euler’s forward and backward integrators with half time steps, it is thus possible that our
result may be extended to a larger class of symplectic integrators.

The result holds for time-discretization only. Fully discrete schemes should involve moreover
an interpolation procedure at each step. Our main idea for spatial discretization is to use
trigonometric polynomial interpolation, ¢e discrete Fourier series, whose error in periodic
Sobolev spaces is polynomial with respect to the space step size. This work is still in
progress, as aliasing errors keeps us from proving the stability of the fully discrete scheme,
for the time being.

2.3.3 Sketch of proof for Theorem 2.3.2
The prove uses an expansion of the error w, — w(t,) that reads inductively

Wnt1 — W(tny1) = §T(wn) - ST(W(tn)Z‘F:ST(W(tn)) — prr(w(tn)) +§0F,T(W<tn)) - W(tn—i-l)/a

-~ -~ -~

(1) (2) ®3)

(2.3.6)
where ¢p,(w(t,)) is the value at time ¢t = 7 of the function f(¢, z) that solves the frozen
equation

of —JIJVA~w(t,) -Vf=0,
with initial data w(t,).
In equation (2.3.6), we expect (1) to be controlled in H*™* norm by the H** norm of
wyn — w(ty), essentially, provided that the stability of the operator S, is proved. The terms
(2) and (3) represent respectively the local consistency errors attributable to the midpoint
integrator and to the freezing effect, and are expected to scale respectively in 72 and 72.
The proof may once more be related to classical backward analysis methods, as we prove that
for any function h, S;(h) coincides at time ¢ = 7 with a transport equation on [0, 7|, whose
initial data is h. From that point, any of the terms of (2.3.6) may be estimated in H*~* by
applying properly the following stability Lemma for transport equations:

Lemma 2.3.3. For any s > 0, there exists a constant C' > 0 such that, for vector fields X
and functions h, if g solves the equation

then for allt € R and o € {0,1,2}, g enjoys the estimates

d
9Oy SC [1X O gesecrsy (19O ey + 19 sz ) | 19 e

' (2.3.7)
+ IV - X oo (r2) 19 e 2y + 2 |2 (2)]

Hs(T2) lg(t)] Hs(T2) >
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where V- is the divergence operator.

That being said the application of Lemma 2.3.3 requires bounds on the regularity of w()
and of the sequence (wy,)nen-

Step 1. Stability

The stability on one time step of the Euler flow and of the flow of the frozen equation are
easily deduced from Lemma 2.3.3. Concerning the semi-discrete flow, the stability on one
time step is expressed by the following result

Proposition 2.3.4. Let s > 3, wy € H*(T?) with average 0, and T €]0,1[. There exists two
positive constants Rg, Ry, independent of wq, such that, if TRy HwOHHQ(Tz) < 1, then for all
t €[0,7],

1S (wo)| irer2) < eth(l-i-tllthoHHsmr?))HwollHS(qrz) lwo

where the operator S; is defined by formula (2.3.4).

Hs(T2)»

The proof of Proposition 2.3.4 uses the fact that the midpoint integrator is the compo-
sition of Euler’s backward and forward integrators with half time steps, namely

t
Di(2) =& o0&/ (2), with &(2)=2+ EJVA_le(Z) and & =&}

Essentially, one may express, for any function g € H*(T?), the functions g o & and g o &;
as the values at time t of two solutions of two transport equations with initial data g. Then
Proposition 2.3.4 is obtained by applying Lemma 2.3.3 to these two functions (see Lemmas
6.4.3 and 6.4.5 in chapter 6).

Step 2. Consistency
The second step is to prove an a priori consistency estimate, namely:

Proposition 2.3.5. Let s > 5, and wy € H*(T?) with average 0. Let w(t) € C° (R, H*(T?))
be the unique solution of equation (2.3.1) with initial data wo, given by Theorem 2.3.1. For
a time step T €]0, 1], let (wp)nen be the sequence of functions starting from wy and defined
by formula (2.3.5) from iterations of the semi-discrete operator (2.3.4). Assume that there
exists a time Ty > 0 and a constant L > 0 such that

sup ||w(t)llgo(pzy < B and  sup [|wpllg2epey < 2B.
+€(0,1] tn<To

Then there exists two positive constants Ry, Ry such that, if TRyB < 1,

lwn — w(ty)] Hs=4(T2) < TR(B)tneRlTO(HB),

for all t, < Ty + 7, where
R(B) < Ry (B+ B%).
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This Proposition is proved by induction using the relation (2.3.6), and applying properly
Lemma 2.3.3. It requires also the local stability in the form of Proposition 2.3.4. One of the
main tool is also the local error due to the midpoint integrator, which we capture by proving
(in Proposition 6.4.1 of chapter 6) that for any function h, we have for all ¢ € [0, 7] a relation

of the form
8tSt(h) = JVA_lh : VSt(h> + O(T2),

that holds essentially in H*~% norm.

By using this, Lemma 2.3.3, and Proposition 2.3.4, we prove in Corollary 6.4.7 and Proposi-
tion 6.5.3 (of chapter 6) that the terms (1) and (2) of (2.3.6) may be respectively controlled
in H°~* norm by

(14 0(7)) llwn — w(ta)|

pe-a(r2y  and R(B)T.

By using Lemma 2.3.3, we prove in Proposition 6.5.1 that the term (3) scales in 72, which
with the above estimates implies Proposition 2.3.5 by induction.

Step 8. Bootstrapping the numerical solution, and conclusion

Proposition 2.3.5 will essentially imply Theorem 2.3.2;, provided that one proves that the
numerical solution may be bootstrapped up to the time horizon T. For that one must, in
order to apply Proposition 2.3.4, essentially, control the H? norm of w, uniformly with
respect to n. We obtain this control in section 6.5.3 of chapter 6, using the bound on the
H? norm of the exact solution and the global a priori consistency estimate from Proposition
2.3.5. It requires also the smallness hypothesis on 7 from the Theorem.
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Chapter 3

On Numerical Landau Damping for
Splitting Methods Applied to the
Vlasov-HMF Model
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The topic of this chapter was introduced and summarized in section 2.1 of chapter 2, and
was also the subject of the journal paper [39].
We consider time discretizations of the Vlasov-HMF equation based on splitting methods
between the linear and nonlinear parts. We consider solutions starting in a small Sobolev
neighborhood of a spatially homogeneous state satisfying a linearized stability criterion. We
prove that the numerical solutions exhibit a scattering behavior to a modified state, which
implies a nonlinear Landau damping effect with polynomial rate of damping. Moreover, we
prove that the modified state is close to the continuous one and provide error estimates with
respect to the time step size.
The present chapter is self-consistent an may be read independently from the others.

3.1 Introduction

In this chapter we consider time discretizations of the Vlasov-HMF model. A long time
analysis of the Vlasov-HMF model around homogenous stationary states has been performed
in [40] where a Landau damping result is proved in Sobolev regularity. The purpose of the
present chapter is in essence to show that this result persists through time discretization by
splitting methods.

The Vlasov-HMF model with a repulsive potential reads

O f(t, 2,v) + vd, f(t, z,0) = ax(/

RxT

P(x — y)f(t,y,u)dudy)@vf(t,x,v), (3.1.1)

where (z,v) € T x R and the kernel P(x) is given by P(z) = cos(x). We consider initial
data under the form fo(z,v) = n(v) + erg(x,v) where ¢ is a small parameter and ry is of
size one (in a suitable functional space). This means that we study small perturbations of a
stationary solution n(v). Writing the exact solution as

ft,x,v) =n(v) +er(t,z,v),

and setting
g(t,z,v) =r(t,z + tv,v), (3.1.2)

the main result given in [40] is that if € is small enough, g(¢,z,v) converges towards some
9> (x,v) when t goes to oo in Sobolev regularity. This results implies a Landau damping
phenomenon for the solution.

In this chapter, we consider the time discretization of (3.1.1) by splitting methods based
on the decomposition of the equation between the free part

Ouf(t,x,v) + 00, f(t,x,v) =0, f(0,2,v) = fO(x,v), (3.1.3)

whose solution is given explicitely by ¢4 (f°)(x,v) := f°(z — tv,v), and the potential part
o (tn.0) =0, [ Pl )ty ddudy)auftae), F(0.0.0) = Pe0), (314)
RxT
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whose solution is explicitely given by
ep(f°) = fO(z, v+ tE(f%,x)),

where E(f,z) = 0, ( Jer P@—y) f(y, u)dudy> is indeed kept constant during the evolution
of (3.1.4).

The Lie splittings we consider are given by the formulas

[P =g o (), or M=o oh(fM), (3.1.5)

where h > 0 is the time step. The functions f™(z,v) defined above are a priori order one
approximations of f(¢,z,v) at time ¢t = nh.
We also consider the Strang splitting

f = o o ol o r (1) (3.1.6)

that should provide an order two approximation f"(x,v) of f(t,x,v) at time ¢ = nh (the
same being expected for the symmetric splitting where the roles of 7' and P are swapped).

We can then define the sequence of function 7™ (x,v) by the formula
fH(x,v) =n(v) +er(x,v), (3.1.7)

and the functions
g"(z,v) = r"(z + nhv,v) (3.1.8)

which have to be thought as approximations of g(¢,z,v) at time t = nh.

The main result of our chapter is that if ¢ and h are small enough, ¢"(x,v) converges
towards a limit function g;°(z,v) when the n goes to co. Moreover, this solution is close to
the exact limit function ¢*°(x,v) with an error estimate that scales in h for the Lie splitting,
and in h? for the Strang splitting. Note that our results also imply convergence results in
time which are uniform for positive times for ¢"(z,v) and give explicit convergence bounds
for f"(xz,v) in H* (Sobolev space, see (3.2.1) below) that depend on the final time 7" in a
polynomial way.

The main idea of our proof can be compared with the classical backward error analysis
methods widely used in Geometric Numerical Integration, see for instance [45], [52]: we
express the numerical solution as the exact solution of a continuous Vlasov type equation with
time dependent kernel (with a poor regularity in time). Usually for Hamiltonian systems,
the analysis has to be refined to make this equation independent of the time, implying
the existence of a modified energy that is preserved by the numerical scheme. This “time
averaging" introduces in general a remaining error term which is exponentially small (with
respect to the time step) for finite dimensional systems (see [16], [45], [52], [66]) or requires
the use of a CFL (Courant-Friedrichs-Lewy) condition for semilinear Hamiltonian equations
to be controlled (see [38],[37]).
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Here the situation is completely different. The long time behavior of the solution is
essentially controlled by a time convergent integral, which is a consequence of the dispersive
effect of the free flow and ensures the existence of the continuous limit function ¢*(x,v)
(The Landau damping effect, see [61], [10], [40]). As we will observe in the next section, the
effect of the splitting approximation is essentially to discretize this convergent integral. As
the integrand converges algebraically when the time goes to infinity, the numerical solution
also yields a convergent time integral, even if the time appears in a discontinuous way in the
evolution equation.

The proof of the uniform convergence estimates is based on a similar argument, but
requires slightly more regularity for the functions than for the continuous case.

3.2 Landau damping for the Vlasov-HMF model, main
result

Before stating our main result, we first recall the scattering result derived in [40] (see also
[61], [10] for similar result with analytic or Gevrey regularity that are valid for much more

singular interaction potentials).
We work in the following weighted Sobolev spaces: for a given v > 1/2, we set

/]

o X [ R, 321)
v TxR

[pl+lgl<s

and we shall denote by H; the corresponding function space. We shall denote by - or F the
Fourier transform on T x R given by

¢ 1 —ikx—ifv

(&) = — f(z,v)e dzdv. (3.2.2)

27 Jrxr

We shall need a stability property of the reference state n in order to control the linear
part of the Vlasov equation (3.3.1). Let us denote by n = n(v) the spatially homogeneous
stationary state and let us define the functions

K(n,t) = —np,ntny(nt), Ki(n,t) =-—np,ntny(nt)li>, teR, neZ, (3.2.3)

where (py,)rez are the Fourier coefficients of the kernel P(z). We shall denote by K;(n,7) =
Jp € " Kq(n,t)dt the Fourier transform of Ki(n,-). We shall assume that 7 satisfies the
following condition

(H) n(v) €H) and Ik >0, Ii1r1£0|1 — Ki(n,7)| > K, n==*l
Note that thanks to the localization property of n in the first part of the assumption, the
Fourier transform of K can be indeed continued in the half plane Im7 < 0. Here, the

assumption is particularly simple due to the fact that for our kernel, there are only two
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non-zero Fourier modes. This assumption is very similar to the one used in [61], [10] and can
be related to the standard statement of the Penrose criterion. In particular it is verified for
the states n(v) = p(|v|) with p non-increasing which are also known to be Lyapounov stable
for the nonlinear equation (see [59]).

We also use the notation (z) = (1 + |z|?)"/? for + € R. In [40], the following result is
proved:

Theorem 3.2.1. Let us firs > 7, v > 1/2 and assume thatn € H3™ satisfies the assumption
(H). Assume that g(0,x,v) is in ‘HE. Then there exists eg > 0 and a constant C' > 0 such
that for every € € (0,0] there exists g (x,v) € H5™* such that for allr <s—4 andr > 1,

Vt>0, gt z,v)— g"o(gU,U)HHZ < (3.2.4)

<t>s—r—3 ’
In this chapter, we prove the following semi-discrete version of the previous result:

Theorem 3.2.2. Let us fivs > 7, v > 1/2 and assume thatn € H™ satisfies the assumption
(H). Assume that g(0,z,v) is in ‘HE. For a time step h, let g"(x,v), n > 0, be the sequence
of functions defined by the formula (3.1.8) from iterations of the splitting methods (3.1.5)
(Lie), or (3.1.6) (Strang), with ¢°(x,v) = g(0,z,v). Then there exists ¢g > 0, hg > 0
and a constant C' > 0 such that for every ¢ € (0,e0] and every h € (0, hy], there exists
g2 (x,v) € HE such that for allr <s—4 andr > 1,

C

If moreover v > 3/2 and s > 8, we have for the Lie splitting methods (3.1.5) the estimate

lg" (2, v) = glnh, 2,0« <Ch Vn €N, (3.2.6)

where g(t,x,v) is the solution (3.1.2) associated with the continuous equation with the same
wmnitial value.

In the case of the Strang splitting method (3.1.6), we have if v > 5/2 and s > 9 the second
order estimate

< Ch®> Vn €N, (3.2.7)

||gn(x7 U) - g(nhv z, ?})|

Hy
Let us make the following comments:

a) The estimates (3.2.6) and (3.2.7) exhibit a convergence rates in time of order 1 and
2 respectively for the numerical solutions. These estimates hold uniformly in time. Note
however that these results do not imply convergence results uniform in time for the functions
f™(z,v) to f(nh,z,v) given by the splitting methods (3.1.5) and (3.1.6). It is easy to check,
using the formula f"(z,v) = n(v) + e¢"(x — nhv,v) that we have an estimate of the form

V>0, | (,0) ~ fnh,z )l < Clnh)*°h
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for the Lie splitting methods (3.1.5). In the case of the Strang splitting (3.1.6), we have from
the same arguments:

Vn >0, [f"(z,0) = fnh,z,v)],.— < Ce{nh)* "h?.
v—2

Hence we obtain convergence results which are global in time only if we measure the error
in L2, If we measure the error in H%, ¢ > 0, then for a fixed time horizon nh < T, the error
grows like 7. This is however better than the rough e’ estimate that is usually obtained
through Gronwall type arguments (Note that convergence results can be found in [34] for
the case of compactly supported data, and in [25] for the Vlasov-Poisson case).

Let us also mention as an easy consequence of (3.2.4), (3.2.5), (3.2.6) and (3.2.7), that the
following estimates hold for the limit state of the equation: For the Lie splitting

lg> (2, v) = g3 (2, v) 5z < Ch,

and for the Strang splitting

9% (,0) = 632, 0) g < OB,

b) The long time behavior of the exact solution (3.1.2) is essentially controlled by a
time convergent integral (see [40]). We shall see (Proposition 3.3.1 below) that the splitting
method provides a discretization of this integral, but essentially without changing the decay
in time of the integrand. Thus the numerical solution also yields a convergent time integral,
even if the time appears in a discontinous way, giving us the long time behavior.

Moreover, this discretization is performed by rectangle methods in the case of Lie splittings,
and by the midpoint rule in the case of Strang splitting. Estimates (3.2.6) and (3.2.7) reflect
the respective accuracies of these two methods. The second order estimate requires a more
refined analysis than the first order, for it is obtained by tracking the cancellations provided
by the midpoint rules. We mention that this result remains true for Strang splitting of the
form (3.1.6) where the role of T" and P are exchanged but the complete proof is given for
(3.1.6) only (the time integration rule being the trapezoidal rule and the arguments identical
for both cases).

Finally, let us mention that the proofs of the convergence results (for Lie or Strang) widely
use the long time behavior of both the exact and discrete solutions, in particular uniform
bounds on their regularity. This can be understood as stability results for the numerical
schemes. The convergence results are essentially the combination of these stability results,
and the accuracy of the discretization of the integral.

c) Our results hold only for time discretization of the equation. Fully discrete scheme
including for example an interpolation procedure at each step (semi-Lagrangian methods)
traditionally exhibit recurrence phenomena due the discretization in the v variable. Indeed,
the Landau damping effect reflects essentially the fact that the solution of the free Vlasov
equation is a superposition of travelling wave in the Fourier variable £&. At the discrete
level, the ¢ variable is only discretized by a finite number of points which causes numerical
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interactions of these travelling waves preventing the mixing effect to occur for very long time.
Typically, the previous result is hence valid a priori for a time of order O(1/dv) only, if dv is
the size of the mesh variable in v. Solutions exist to remedy these difficulties, for examples
by putting absorbers in the Fourier spaces, see for instance [35]. The analysis of these space
discretization effects will be the subject of further studies.

d) Our result should also hold without any major modification in the case of the Vlasov-
HMF equation with an attractive potential, namely

O f(t,x,v) + 00, f(t, x,v) = —8m</]R : P(x—y)f(t,y, u)dudy) O f(t,x,v).

The main difference is that the Penrose criterion (H) is less easier to satisfy in that case: it
is not sufficient for the stationary state to be a decreasing function of |v| anymore.

Let us finally explain how the previous scattering results imply Landau damping effects
for the solution f(¢,x,v). Let us recall the following elementary Lemma:

Lemma 3.2.3. For every o, 3,7, 5 € N with a+ = s, and v < v — L. we have the

2
following inequality:

VkeZ, VEER, |07 fiu(&) <22Cw)(k)~(€) 7| f]

s (3.2.8)

where C(v) depends only on v > 1/2.
Proof. We have by using the Cauchy-Schwarz inequality that

9008 (v f (2, v))e” " e ™ dxdv

TxR

y (/(1 +lofyran)
v R

The previous inequality with o = 8 = 0 yields the result when k£ = 0 or |§| < 1 and we
conclude by using (z) < 2%/2|x|? for |z| > 1 and the fact that v — v > 1/2. O

[kegPo fu()] =

27T

<

~

As a consequence of Theorem 3.2.2, we have the nonlinear Landau damping effect for
the semi-discrete solution: The functions ¢"(z,v) being bounded in H5™, f*(x,v) = n(v) +
er’(x,v) = n(v) + eg™(x — nhv, v) satisfy

Ce
(€ + knh) (k)8

the last estimate being a consequence of the embedding Lemma 3.2.3. This yields that for
every k # 0, f,’j(ﬁ) tends to zero when nh — oo with a polynomial rate, but with a speed
depending on k.

Moreover, by setting

VkeZ, VEER, Va+fB=s—4, |f(&)|=clgi(§+knh)| <




we have by the previous Lemma 3.2.3 that for r < s — 4,

e
RO

In other words, f"(z,v) converges weakly towards 7;°(v). Moreover, this weak limit 7;°(v)
is O(h) for Lie splittings (or O(h?) for Strang splitting) close to the exact limit

VEER, |f5(€) —nr (&) <

() = n(v) + = / §>(z,v)dz,

27

which exists by Theorem 3.2.1.

3.3 Backward error analysis
The unknown ¢(t, z,v) defined in (3.1.2) is solution of the equation

Oig = {o(t, g(1)),n} + e{o(t,9(t)), 9}- (3.3.1)

where

olt.9)(w.0) = [ (eosta =y -+ 10 = u))g(y. widucy, 32
RxT
and {f,g9} = 0,f0yg — 0, fO.g is the usual microcanonical Poisson bracket. In Fourier space,

we have the expression:
- Z cike eiktvgk (k?t) )
ke{£1}

In the evolution of the solution g(t, z, v) of (3.3.1), an important role is played by the quantity

Ce(t) = gr(t, k), k€ {£1}, (3.3.3)
such that |
otg) =5 Y MG )
ke{£1}

Note that for k # 0, (4 (t) is the Fourier coefficient in z of the density p(t,z) = [ f(t,z,v) dv.
The following result shows that semi-discrete solution g™ (z,v) also satisfies an equation
of the form (3.3.1), but with a discontinuous dependence with respect to the time:

Proposition 3.3.1. For h > 0, the solution g"(x,v) given by the splitting method (3.1.5)
(Lie) or (3.1.6) (Strang), and formula (3.1.8) coincides at times t = nh with the solution
g(t,z,v) of the equation

g = {Pu(t, (1)), n} + e{Pn(t,8(t)), &(1)}, (3.3.4)
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where ®p,(t,g(t)) = d(sn(t), g(t)) with the definition of ¢ given in (3.3.2).
In the case of Lie splittings (3.1.5) , sp(t) are given by the formulas
t t

respectively. In the case of the Strang splitting method (3.1.6), sp(t) is given by the formula

su(t) = M h+ g (3.3.6)

Proof. We prove the result in the case of Strang splitting (3.1.6)-(3.1.8), the proof being
analogous for Lie splittings.
By definition, the function f™(z,v) satisfies the recurrence relation (3.1.6). Hence, we have
(using the linearity of ¢f. and the fact that ph(n) =n for all t € R)
n+egt = w%”h(f )
h h/2, pn—
o™ oy 0 o o P (f17)
—nh+h/2 h/2 nlh —nl n—
07" 0 gl 0 R 2 "
—nh+h/2 nh—h/2
= $r o o‘PP‘“PT / (77+59 )
Now we verify that for ¢ € [0, k], the application ¢ — ng"h+h/2 o gl 0 I M2 4 egn1) s
the solution of the equation

atg - {¢(sh<t)7 g)a g}
with inital data g(0) = n+eg™!. Using the fact that 7 is a stationary state of the equation,
we easily get the result. O

For notational convenience, we will often write in the following s(¢) instead of s(t). As

n (3.3.3), we define
zp(t) = gi(t, ks(t)), ke {£1}, (3.3.7)

such that

ult,g(t) = B(s(D)8(t) = = 3 ePreisig,(p)

2
ke{£1}

Of course, we expect the zx(t) to be approximations of the terms (x(t) defined in (3.3.3).

Lemma 3.3.2. Let hg > 0 be given. There exist two constants ¢ and C' > 0 such that for
all h € (0, ho] and all t > 0,

and for all t and o,



Proof. For t € R, we can write t = nh + pu with p € [0,h). In the case of Strang splitting
(3.3.6), we thus have s(t) = nh + h/2 =t + h/2 — u. Hence we have t —s(t) € [—h/2,h/2)
which clearly implies the first inequality. The second is proved using the fact that with
similar calculations ¢ + 0 = s(t) £ s(o) + O(h). The proof is analogous for Lie splittings
(3.3.5). 0

As in [40] we introduce the weighted norms:

QI

Nrsy(g) = sup — =, Mr,(z) = sup sup (t)7|z(t)| (3.3.8)
o) (8) t€[0,7] ke{+1}
and
Qr.50(8) = Nrsu(g) + Mr s 1(2) +sup [|g(t)]] -4 (3.3.9)

(0,77

We shall prove the following result:

Theorem 3.3.3. Let us fit s > 7, v > 1/2 and Ry > 0 such that Qo s, (g) < Ry, and assume
that n € HE™ satisfies the assumption (H). Then there exist R > 0, hg > 0 and g9 > 0 such
that for every € € (0,e0], h € (0, ho] and for every T > 0, the solution of (3.3.4) satisfies the
estimate

QT,S,V(g) S R.

This result is a semi-discrete version of the main Theorem in [40] where the same norms
are used to control the solution g(¢) of the equation (3.3.1). Let us also mention that it holds
for any of the three formulas (3.3.6)-(3.3.5) defining s(), the only property being used is the
fact that s(t) satisfies Lemma 3.3.2.

3.4 Estimates

We fix now s > 7 and Ry as in the previous Theorem. In the following a priori estimates, C
stands for a number which may change from line to line and which is independent of Ry, R,
h, e and T.

3.4.1 Estimate of My, 1(z)

Towards the proof of Theorem 3.3.3, we shall first estimate z(t), k = +1.

Proposition 3.4.1. Assuming that n € H:? verifies the assumption (H), then there exist
C >0 and hy > 0 such that for every T > 0 and h € (0, ho|, every solution of (3.3.4) such
that Qrs,.(g) < R enjoys the estimate

MT’sfl(Z) < C(Ro + €R2). (341)
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Proof. The main ingredient of the proof of the previous result is to write the equation (3.3.4)
in Fourier:

gn(t. &) = 84(0,8) + /0 Pnzn(0)i0(§ — ns())(n?s(o) — né)do
+eY i / 0)gni(0,€ — ks(0))(nks(o) — k&)do, (3.4.2)

for all (n,§) € Z x R, with pj, = § for k € {£1} and py = 0 for k # £1, and where the z,(t)
are defined by (3.3.7). Setting £ = ns(t) in (3.4.2), the equation satisfied by (z,(t)),—+1 can
be written under the almost closed form

-3 n / 0Ven_p(0,15(t) — ks(0))kn(s(t) — s(o))do.  (3.4.3)

ke{x1}
Remark 3.4.2. Note that, for every m € N, we have for t € [mh,(m + 1)h] the formula

Zu(t) — gn(mh, ns(t)) = — / Puzu(0)ilo(n(s(t) — s(0)))n’(s(t) — s(o))do

mh

—€ Z pk/th )&n—i(0,ns(t) — ks(o))kn(s(t) — s(o))do.

ke{£1}
As s(t) —s(o) = 0 for almost every o € [mh,t], we notice that the function t — g, (t,ns(t)) =

z,,(t) is constant on the small intervalls [mh, (m+1)h]. This is due to the fact that the electric
field is constant during the evolution of (3.1.4).

To study the equation (3.4.3), we shall first consider the corresponding linear equation,
that is to say that we shall first see

Fo(t) = &0, ns(t) —¢ 3 pk/ 26()im_p(0, mS(E) — k(o)) ken(s(t) — s(o))do (3.4.4)

ke{£1}

as a given source term and we shall study the linear integral equation
= /t K(n,s(t) —s(0))z,(0)do + F,(t) n = =£1, (3.4.5)
0
where the kernel K(n,t) has been introduced in (3.2.3). We rewrite this equation as
/ K(n z,(0)do+ F,(t) + G,(t) n==+l, (3.4.6)

63



where
Go(t) = /0 (K(n,s(t) —s(0)) — K(n,t — 0)>zn(0) do (3.4.7)

is an error term due to the time discretization. To study the linear equation (3.4.5)-(3.4.6),
we use the result given by the following Lemma. The proof of this Lemma can be found in
[40]. For completeness, we recall it in Appendix of the present chapter.

Lemma 3.4.3. Let v > 0, and assume that n € H)'3 satisfies (H). Then, there exists
C > 0 such for every T' > 0, we have

MT,'y(Z> < CMT,,Y(F + G)
From this Lemma and (3.2.8), we first get that
MT7371(2> S C(”g(O>HHﬁ + MTjsfl(G) + EMT7S,1(F1) —+ €MT7S,1<F2)> (348)

where

FI(t) = n*p_, /O 2 () g2n (0, 0(s(t) +5(0)))(s(t) — s(0)) do, n = 1,

F2(t) = —n’p, / 20(0)80(0. n(s(t) — 5(0)))(s(t) — s(0)) do, 1= 1.

Let us estimate F!. By using again (3.2.8) and the definition (3.3.8) of N,,,, we get using
Proposition 3.3.1 that

1 " (s(t) = 5(0))(0)* Mo,s-1(2) Nos. (8) R [T 1 R?
|F,(t)] < C/o (0 (s(t) + s(0)" do < C<t>3*1 /0 oy do < O<t>571

provided s > 6. This yields that for all 7> 0

Mr, 1 (F') < CR?.
To estimate F2, we split the integral into two parts: we write
FR(t) = L (t) + I;(t)

with

o

INt) = —n’p, /02 2,(0)8o(o,n(s(t) —s(0)))(s(t) —s(o))do, n==+1,
I3 (t) = —n2pn[ z,(0)go(o,n(s(t) —s(0)))(s(t) —s(o))do, n=+1.

For I!, we proceed as previously,

|]711(t)|S0R2/02<(0>3(s(t)—sa)) 4o < CF /0+°° L




and hence since s > 6, we have

My, (I') < CR?.

To estimate I2, we shall rather use the last factor in the definition of Qr, in (3.3.9).

using again (3.2.8), we write

2 My @) @l CRE CR’
'I"“)'SC/; o i s % S e |

and hence since s > 7, we find again

My, 1(I%) < CR*.

Finally, we have

(t:!
()

s(t)—s(o) s—1
/ W
/ (0)>+2(o)1

do

s(t)=s(o)
/ |0: K (n,0)|dd

t—o

O Gu(t)] < Mraa(2) /

IN

¢
CMrs—1(2) / do,
0

where we used the fact that € H5™ and Lemma 3.2.3. Now, since

s(t)—s(o) do Ch
/t_a (0)s+

= (t — o)t

we get

As the integral

S Ul RS SISl N S
/(; <t _ O->s+2<0->371 do < C/O <t>3<0->sfld + Cf/t/2 <t _ O—>s+2d :

is uniformly bounded in time, we conclude that

MT,s—l(G) S ChMTﬁ_l(Z). (349)

By combining the last estimates and (3.4.8), we thus obtain (3.4.1).
MT75_1<Z) S C(Ro -+ hMT,S_l(Z) + €R2).
By taking A < hy small enough, this ends the proof of Proposition 3.4.1.
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3.4.2 Estimate of Ny, ,(g)

Proposition 3.4.4. Assuming that n € HET? verifies the assumption (H), then there exists
C > 0 and hg > 0 such that for every T > 0 and h € (0, ho], every solution of (3.3.4) such
that Qrs.(g) < R enjoys the estimate

NT,s,u(%) S C(RO + €R2)<1 + €R)€C€R.
Proof. To prove Proposition 3.4.4, we shall use energy estimates. We set L;[g| the operator

such that g solves the equation

g = £s(t) [g(t)](n + eg).

For any linear operator D, we thus have by standard manipulations that

%HDg(t)H; = 2e(Dg(t), D(Lsn[g(t)]g(t))) > + 2(Dg(t), D(Lsr[g(t)] (1)) L2
= 2e(Dg(t), Lo [8(t)] Dg(t)) 2 + 2¢(Dg(t), [D, Lo [g(t)]]g(t)) 12
+2(Dg(t), D(Lsr[8(1)](1))) 12

where [D, L)) denotes the commutator between the two operators D and L. The first
term in the previous equality vanishes since Lg)[g] is the transport operator associated with
a divergence free Hamiltonian vector field. Consequently, we get that

%HDg(t)Hiz < 2e [ De(@)l 2 11D Lo [s@)lg @]l 1.
+2[[DgO)]l 1 1D(Lsr ()] M)]] 1o - (3.4.10)

To get the estimates of Proposition 3.4.4, we shall use the previous estimates with the
operator D = D™P? defined as the Fourier multiplier by kP§90;" for (m,p,q) € N3 such
that p + ¢ < s, m < v and the definition (3.2.1) of the H} norm. To evaluate the right
hand-side of (3.4.10), we shall use the following Lemma, whose proof is given in Appendix
(see also [40]).

Lemma 3.4.5. For p+ q < v and r < v, and functions h(z,v) and g(x,v), we have the
estimates

1D, L, [gl]hlls < C o (Olbllg + moa(Olhlhg)s  (3:4.11)
| D"P (ﬁo[g])hHLQ < C(mm’Y—i-l(C)HhHH}, + mff,?(C)HhHH'JH)’ (3.4.12)

for all o, where the sequence (y, is defined by (, = gr(ko), k € {£1}, and where

Mo (€)= (o) (sup [Gi]).

ke{£1}

with a constant C' depending only on v, and in particular, not depending on o.
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Let us finish the proof of Proposition 3.4.4. By using the previous lemma with v = s,
o =s(t), g =g(t) and h = g(t) or h = n, we obtain from (3.4.10) that

%Ilg(tﬂ iy < O mes1(z()) (Inllse + ellg®llne) 18t 1

Ce

,HZ+1 “g(t)”yg + Wmt,sfl(z(t)) Hg<t)‘

C 2
+ Wmt,s—l(z(ﬂ)H?ﬂ Hs -

This yields, using the fact that M;,(z) = sup,¢(o4 M0(2(0)),

lg()ll2; < lIg(0)ll3e; + C{)° Mes—1(2) (|[nllyz+1 + eR) + CeR /Ot Jﬁllg(a)l g do
for t € [0, T]. From the Gronwall inequality, we thus obtain
It} s < (180} g + CUY*Mr s (@) (Inllgen +2R) )70 75
By using Proposition 3.4.1, this yields
Nroo(g) < (RO + C(Ry +eRY) (1 + 5R)>eCER.
This ends the proof of Proposition 3.4.4. O

3.4.3 Estimate of ||g||;;

To close the argument, it only remains to estimate ||g||,s-1.

Proposition 3.4.6. Assuming that n € HET? verifies the assumption (H), then there exists
C > 0 and hy > 0 such that for every T > 0 and h € (0, hy|, every solution of (3.3.4) such
that Qrs.(g) < R enjoys the estimate

Ig(*)]

Proof. We use again (3.4.10) with D = D™ but now with p+ ¢ < s —4. By using Lemma
3.4.5, we find

it < C(Ro +eR?)e ", vt €0,T).

d
(02« < O (a(6)) (Il [0 g + <8O ). (34.13)
This yields
80—+ < 16(0) s
L1 1
C s—a My o —d CeM; s — s—a do.
+Clllg Meor @) [ o+ Coblr(a) [ sl) g+ o
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By using Proposition 3.4.1, we thus get

t
1
it < C(Ro+eR%) + OsR/ Ty2lle(@)]
0

et =

Hifél d(f

From the Gronwall inequality, we finally find

()]

This ends the proof of Proposition 3.4.6.

254 < C(Ro + Z_:RQ)GCaR‘

3.4.4 Proof of Theorem 3.3.3 and estimate (3.2.5)

The proof of Theorem 3.3.3 follows from the a priori estimates in Propositions 3.4.1, 3.4.4
and 3.4.6 and a continuation argument. Indeed, by combining the estimates of these three
propositions, we get that

Qr.5.,(g) < C(Ro+eR*)(1 + eR)e“H

assuming that Qrs,(g) < R. Consequently, let us choose R such that R > C'Ry, then for ¢
sufficiently small we have R > C(Ry + R?)(1 + e¢R)e“*® and hence by usual continuation
argument, we obtain that the estimate Qr,(g) < R is valid for all times.

To prove (3.2.5), let us define ¢;°(x,v) by

+o0
g2 (w,0) = g(0,2,0) + / Lot 8(0))(n + c(0))do,

To justify the convergence of the integral, we note that thanks to (3.4.12), we have for all o

Hy? ) ;

L5 8(0)](n + €g(0)) |55+ < C (mo,s—s(Z(ff)) 11+ €8(0) |3 +1m0,2(2(0)) |1 + eg(o)]

where zx(t) = gi (¢, ks(t)), £ = +1, and

tanla(a)) = (o} (sup 2x(o)] ).

k=%1

By interpolation, we have

3 1
sl + eg(@)l3

I+ eg(o) lys—2 < Clin + eg(o)]

and thus, using the bound provided by Theorem 3.3.3, we have
3
17+ €eg(0) 45 < C(R)(0)1.
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Using again Theorem 3.3.3, we thus find that

L5 [&(0)] (1 + ()| -1 < C(R) << ! S+ 51_3_3) , (3.4.14)

o)

and ¢3°(z,v) is then well defined, and belongs to H: ™.
Since we have for all ¢

g(t) — g(@,0) = [ Luo)lg(@)](n+ cg(0))do,

t

we find by using again (3.4.14) that

wso®( [ e ) S e

In a similar way, by using again (3.4.12), we have for r < s —4 and r > 1,

Ig(t) — g5

1

+00
le) ol < CB( [ et 1,1

<t>s—r—3 <t>s—4

C(R)
<t> s—r—3"

) <

1
T da) < C(R)(

which gives the result using the fact that g(nh) = ¢ the solution given by the numerical
scheme.

3.5 Proof of the convergence estimate (3.2.6)

We shall now prove the convergence estimate (3.2.6). Note that in view of the previous result
and of the analysis in [40], the functions g(t,z,v) and g(¢,z,v) satisfy the same estimates.

In particular, we can assume that Qrs,(g), Qrs,-1(8), Qrs.(9) and Qrs,—1(g) are both
uniformly bounded by the same constant R, provided that v > 3/2.

By using the equations (3.3.1) and (3.3.4), we get that § = g — g solves the equation
0,0 (t) = {o(t, 0(t)), n}+e{o(t,6(1)), g(t) }+e{o(t, g(t)), 0(t)} —e{o(t, 0(¢)),0(t) } +R (3.5.1)
with
R(t,z,v) = {o(t,8(t)) — &(s(t),g(t), n} + e{o(t, g(t)) — &(s(t), g(t)), (1)} (3.5.2)
and with zero initial data. It will be useful to use the expression of R in Fourier which reads
R (1) = (1 m)in(§ — n)(nt — €) — & (b ms(8)n(€ — ns(B)(ms(t) — ©))
+e Y kp (ék(ta kt)gn—i(t, & — kt)(nt — &) — 8i(t, ks(t))gn—k(t, € — ks(t))(ns(t) — f))-

k==+1

(3.5.3)
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Let T be a positive real number. By using the weighted norms defined in (3.3.8), we now
consider for s > 8 and v > 3/2, the quantity

Qrs—2-1(0) = Mrs_3(d) + Nps—2,-1(6) + sup ||0(¢)]
te[0,7)

#H S
with Ny, and My, defined in (3.3.8), and where we set

di(t) = gr(t, kt) — gi(t, kt).
We shall prove the following result:

Proposition 3.5.1. For s > 8, v > 3/2, assume that n € H5™ satisfies the assumption
(H). Then there exists Ry > 0, hg > 0 and ¢y > 0 such that for every h € (0, hy|, every
e € (0,e0] and every T > 0, the solution of (3.5.1) satisfies the estimate

QT,S—Z,V—l (5) S th

Proposition 3.5.1 clearly implies the convergence estimate (3.2.6). It actually proves that
the interpolation g(t) of the sequence of functions ¢"(z,v) given by the splitting methods
(Strang or Lie) is always at least an approximation of order one of the exact solution g(t) at
all times. The proof will use the same steps as in the proof of Theorem 3.3.3.

Remark 3.5.2. We mentioned that zj(t) is expected to be an approzimation of (.(t). By
Taylor expanding in &, it is indeed clear that Proposition 3.5.1, together with the uniform
bound on Qrs,(8) and Qrs,(g), implies that

sup |Gk (t) — zi(t)| = O(h).

In fact, we could have proved without any major difference Proposition 5.5.1 using the quan-
tity dy(t) = CGi(t) — zx(t) instead of dy(t). The use of di(t) will however be crucial to prove
the second order estimate, since it is clear that the quantity di,(0) does not scale in h?.

Let us now begin the proof of Proposition 3.5.1.

3.5.1 Estimate of My 3(d)
We shall first estimate di (), k = £1.

Proposition 3.5.3. Assuming that n € H5™ satisfies the assumption (H), there exists
C >0,¢e0>0 and hg > 0 such that for every h € (0, hol, every € € (0,&o] and every T > 0,
every solution of (3.5.1) such that Qr.s—2,-1(6) < Rih enjoys the estimate

My,-3(d) < C(R)h(1 + (¢ +ch)RY),
where C(R) is a number that depends only on R (one can take C(R) = (1 + R+ R?)C).
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Proof. From (3.5.1), we obtain by taking the Fourier transform, integrating in time and
setting & = nt that

d,(t) = /Ot K(n,t —o)d,(c)do + G, (t) + H,(t) (3.5.4)

where .
H,(t) = / R (o, nt) do
0

and

Gult) = > / kpi (dk(a)gn_k(a, nt — ko) + Go(0)8n_i(0, nt — ko)
k=+1"0

~

— dp(0)0p—r (o, nt — k‘a))n(a —t)do.

The kernel K (k,t) is still defined by (3.2.3).
By using Lemma 3.4.3, we find the estimate

My 3(d) < C (Mr3(G) + My 3(H)). (3.5.5)

To estimate My _3(G), we proceed as in the proof of Theorem 3.3.3. We first split G =
G! + G? where G* corresponds to the term & = —n in the sum and G? corresponds to k = n.
For G*, we obtain

631 = Ce [ (6= ) (15 g Mas (DNl
+ L <0>3 MU7S—1<C)N0,S—2,V—1(5>

(o)=L (t 4 o)s—2
1 (o)?

T it o)

Mo,sf?) <d> No,sf2,1/71 (5)> dU7

and hence that 1

0=

IGL| < Ce(RRyh + h*R?)
since s > 8. To estimate G2, we can again write

G2 = JL+ 2

z t
J}L:/ jn do, ng/jnda
0 12

2

with

with

A A~

Jn = ENPp (dn(a)f]o(a, nt —no) + G, (0)do(o,nt — no) — d,(0)do(o, nt — na))n(a —1).
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As in the proof of Proposition 3.4.1, we can prove by using the same estimates as above that

1
oE

To estimate J2, we also proceed as in the proof of Proposition 3.4.1 and write

7| < Ce(RRyh + R2h?)

t
19215 €= [ 00) (i gy Mos-s( @l o+ o s Moo €
This yields, since s > 8,
2| < C(RR.h + R2H?) <t>153.
We have thus proven that
My, 3(G) < Ce(RRh + RIR?).
It remains to estimate My s_5(H). We shall prove that
Mrs_3(H) < C(R)h.
At first, we can write
H,=H!+eHY (3.5.6)

with
HE = /0 " <§n(0, no)io(nt — no)(no — nt) — gn (o, ns(0))io(nt — ns(o))(ns(c) — nt)) do

and

t
HP = / Z kpy, (gk(a, ko)gn_k(o,nt — ko)(no — nt)
0 k=+1

— 5(0,ks(0)gn_r(0, nt — ks(o))(ns(o) — nt))da.

We shall focus on the estimate of HY', the estimate of H! is easier to obtain since 7 can be
assumed as smooth as we need (here n € H5™ suffices).
By Taylor expanding up to the first order, we have

HP‘ <h Z pk/ sup  sup  |O¢gk(o, 5)a§gn,k(a, nt — &)| |no — nt| do.
P a+p<1 gks(o);ko]
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As previously, we distinguish the cases k =n and k = —n.
When k = —n, we have by Lemma 3.2.3

t
/ sup sup 9Egn(o, f)@?égn(a, nt — f)) lo —t|do
0

a+B<L1 ¢e[—ns(o);—no]
< C/t <0>6NT,s,u(g)NT,s,V<g) do < CR2
I T COM U stV A

since s > 8.
When k = n, we split as previously the integral into

t
/ sup sup |9 8nl(o, §)8§g0(0, nt — 5)‘ |no — nt|do
0 a+B<légns(o)no]

t)2
= / sup  sup
0 a+B<1 £€[ns(o);no]

t
+ / sup  sup  |9¢ga(o, f)@ggo(a, nt — f)‘ |no — nt|do.
t/2 a+B<1 £€ns(o);no)

080(0,€)080(0 1t — €)| Inr — nt] do

Using the same estimates as above, we have for the first term

CR?
{tys—1°

a5+ instead of Nr5.,(g). We obtain the

0 8(0. )0 80(o,nt — )| Inor — nt] dor| <

/2
/ sup sup
0 a+B<1 ¢€ns(o);no]

For the second term, we rather use the quantity ||g|
estimate

t
/ sup  sup  |9¢8a(o, f)@g@o(a, nt — £)) |no — nt|do
t/2 a+pB<1 E€ns(o);no)

<o [ DVl OF
i (0)(t — )50 ()
since s > 8.
Hence
My, 5(H") < ChR?,
and by the same arguments
My, _3(H") < ChR?.
Therefore
My 3(H) < ChR?,
which concludes the proof of proposition 3.5.3. n
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3.5.2  Estimate of [|d]|;:-

Proposition 3.5.4. Assuming that n € H*** satisfies the assumption (H), there evists
C >0,e0>0 and hg > 0 such that for every h € (0, hol, every € € (0,&o] and every T > 0,
every solution of (3.5.1) such that Qrs—2,-1(6) < Rih enjoys the estimate

sup [|6(¢)]

te[0,7

ge-¢ < C(R)h(1+ (e +eh)RY)(1 + hRy)

where C'(R) is a number that depends only on R.
Proof. By using the notation £;[glh = {¢(t,g),h}, we can rewrite (3.5.1) as

D0(t) = Ly[6(1)](n — &8) + eL[0(t)]g + eLi[g(1)]0 + R. (3.5.7)
Let D be the linear operator defined as the Fourier multiplier by k770" for (m, p,q) € N3

such that p+ ¢ < s —6, and m < v — 1. From an energy estimate as in proof of Proposition
3.4.4, we obtain that

ID5(t)]7- = /0 (— e([D, Ly[0(0)]]0(a), Dé(0)) 2 + e([D, Ls[g(0)]]0(c), DI(0)) L2
+ (D (L,[6(0)](n + 29(0))) , DS(0)) 12 + (DR, D3(0)) 2 )da. (3.5.8)

By using Lemma 3.4.5, we thus obtain that

Hjj)

sup [|8()os < C / (2 0m0s-s(dDIF@ 1z, +m02(d(0))6(0)]
] 0

[0,T
+ £(Mos—5(C(@))[16(0) l342_, + M 2(C(0))]|6(0)[|34:-0)
+ Mgs—s(d(0))lln +eg(o)llar | + moz(d(o))lln +eg(o)llzo— + HDRHm) do.

Next, we can use the fact that Q;,(g) < R and Proposition 3.5.3 to obtain that

T 1 T
sup [[5(0)l],po—s g0(R>h(1+(a+ah)3§)(1+th)/ —2d0+(]/ IR(0))
t€[0,T) v—1 o (o) 0

< C(R)h(1+ (e +eh)R3)(1 + hRy) + C/OT |R(0)]

s—6 dO’
Hu—l

s—6 dO’
Hu—l

It remains to estimate the last integral to conclude. By using the expression (3.5.3), we get
as in the proof of Lemma 3.4.5 that
Hi*5)>

1

IR(@)lhgz-g < Ch(m)_s(&(@) Il + I1g(@) ) +mE (@) (I

i G
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where we have set

m{D(h) = (o) sup  sup  (|hn ()] + 0ehn(€)])-

n==1 £€[no,ns(0)]

Note that thanks to lemma 3.2.3, we have that

o 5s—5+3 C
) (o) < 0 el < 7R (359
since Q¢ s,(g) < R. This yields
t t
1
/0 IR(@) e < CRR /0 5o < CRI (3.5.10)

Consequently, we get that

sup ||0(t)||lys—s < C(R)A(1 4+ (e + eh)R3)(1 + hRy).
te[0,7] vl
This ends the proof of Proposition 3.5.4. O

3.5.3 Estimate of Ny _2,1(9)

Proposition 3.5.5. Assuming that n € H*** satisfies the assumption (H), there exists
C >0, e0>0 and hg > 0 such that for every h € (0, hol, every € € (0,&0] and every T > 0,
every solution of (3.5.1) such that Qr.s—2,-1(6) < hRy enjoys the estimate

Nz 0,-1(6) < C(R)A(1 + (e + eh)R3)(1 + hRy)
where C(R) is a number that depends only on R.

Proof. We proceed as in the previous proof. Let D be the linear operator defined as the
Fourier multiplier by kP07 for (m,p,q) € N34 such that p+¢ < s —2, and m < v — 1.

Using (3.5.8) with this operator D, and Lemma 3.4.5, we obtain that

¢

b1 < C [ (maa @D, 130l + moaldle) [5(0)
e (€150 g, 1502 + o2 (0)50)
+ Mgaa (A0 + 29(0) g, 13(0)
+ mo2(d(0))[ln + eg(o) -1 [6(0)]

Using now Q:s,(g) < R and Proposition 3.5.3, we obtain that

16()]

16()]

)

3{5121)

5—2
Hufl

o + DR 12]16(0)]

22 SCO°RC(RP(1+ (e + eh) R} (1 4+ hRy)*+

(#)3hC(R)(1+ (¢ + eh) R2) /0 t IR ()12 dor
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[t remains to estimate the last integral to conclude. By using the expression (3.5.3), we get
as in the proof of Lemma 3.4.5 that
Hzfl))

IR(o)]

iz < Ch(mL (@)Ul +18(@) ) +m (@) (Il + lig(o)]

with
M(h)y=(o)"sup  sup  (|ha(&)] + 0chn(E)]).

n==1 £€[no,ns(0)]

As in the previous proof we have that

(1)
mo,s—l

€0) < D (o)l < Clo)R (35.11)

since Qts,(g) < R. This yields

[ 1)

Collecting all the above estimates, we obtain

sup ()~ [|(t))]

t€[0,T]

-2 < C(R)(t)’. (3.5.12)

ge-2 < C(R)W(L+ (e + eh)RY)(1 + hRy).
This ends the proof of Proposition 3.5.5. m

3.5.4 Proof of Proposition 3.5.1

From Propositions 3.5.3, 3.5.4 and 3.5.5, we have the estimate
Qr.s2,1(0) < C(R)A(1+ (e + eh)R3)(1 + hRy),
under the assumption Qrs_2,-1(6) < hRy. Choosing Ry > C(R), we have
C(R)h(1 + (e +eh)R¥)(1 + hRy) < Rih,

if ¢ and h are small enough. Hence, by an usual continuation argument, the estimate
Qrs—2.,-1(0) < Ryh is valid for all T > 0, thus proving Proposition 3.5.1 and with it the
convergence estimate 3.2.6.

3.6 Proof of the convergence estimate (3.2.7) for Strang
splitting

From now on, we only consider the case of Strang splitting (3.1.6), and thus s(¢) is given by
formula (3.3.6). Proposition 3.5.1 implies that, up to the loss of two derivatives, g(t, z,v) is
an approximation of order one (with respect to h) of the exact solution of the Vlasov-HMF
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equation g(t,z,v).

Getting the rate of order 2 brings technical complications in order to take advantage of the

cancellations provided by the midpoint rule.

In view of theorem 3.3.3 and the main result of [40], we can assume that for all « € {0, 1,2},

Qr.s50-a(g) and Qrs,—a(g) are bounded by the same constant R > 0, provided that v > 5/2.
To prove the result, we proceed as before and start from the equation (3.5.1) on the

error term 0(¢). From now on, using the weighted norms defined in (3.3.8), we consider the

quantity:

s—7 .
H -2

v

Qrs—3v-2(0) = My s_a(d) + Nrs_3,-2(9) + SUP] 16(2)|

telo, T

The convergence result (3.2.7) will be a consequence of the following proposition:

Proposition 3.6.1. Let us fir s > 9 and v > 5/2. Assuming that n € H3* satisfies the
assumption (H), there exists Ry > 0, hg > 0 and g9 > 0 such that for every h € (0, hg],
every € € (0,e9] and every T > 0, the solution of (3.5.1) satisfies the estimate

Qrs—3,-2(0) < Ryh2.

The crucial point of the proof of proposition 3.6.1 is the cancellation provided by the
midpoint rule. We can summarize it by the following easy lemma:

Lemma 3.6.2. Fort € R and a fized h > 0, let s(t) = su(t) be given by formula (3.3.6).

Then, for all n € N,
(n+1)h
/ (0 — s(0))do = 0.
nh

3.6.1 Estimate of My, 4(d)
Proposition 3.6.3. Assuming that n € H5™ satisfies the assumption (H), there exists
C >0, €9 > 0 and hg such that for every h € (0, hg], every e € (0,&0] and every T > 0, every
solution of (3.5.1) such that Qrs 3, 2(0) < Roh® enjoys the estimate

Mrs—4(d) < C(R)R*(1 + (¢ + eh®) R3)
Proof. From Equation (3.5.4) and Lemma 3.4.3, we still get that

Mrs4(d) < C(Mrs—4(G) + Mrs_3(H)).

By using the same arguments as in the proof of Proposition 3.5.3, we can easily obtain that

My, 4(G) < Ce(RRyh* + h*R3).

It thus remains the estimate of My _4(H) that requires a refined analysis of the cancellations
in the integral. By using again the decomposition (3.5.6), we shall focus on the term H”
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that is more difficult. By Taylor expanding up to second order, we find that

P — /0 S Epilo - S(g))<a§gk(s(a),k:s(a))gn_k(s(a),nt — ks(0))

+ 81(s(0), ks(0))Benn(s(0), nt — ks(a))) (ns(o) — nt) do + K,

where

t
K <1 p / sup sup (0707 (T, ©)[107 028k (.t — &)|Ino — nt| do.
o1 Jo atBi<2a#2 reelkoks(o)]

a+52<2, a#2

To estimate the remainder, K,,, we can again distinguish the cases £ = n and kK = —n. Since
Qr1,5.,(8) < R, by using the equation (3.3.4) and Lemma 3.4.5, we also have that

10 (2)]

Since v > 5/2, we can use Lemma 3.2.3 to obtain, by similar arguments to the ones used in
the proof of Proposition 3.5.3, that

i < C(R)(D)”.

|Kn| < th(R) ( /Ot <0.>1s—4 (t + 10>s—3 (t - 0) do + /t/; <O.>13—4 <t _ 10->s—3 (t - 0) da)

and hence that

L
ON

To estimate the main term in HP assuming that Nh < T < (N + 1)h for some N, we can

split the time integral into
t  N-1 aG+1)h t
L= -
0 =0 Jin Nh

and we observe that all the integrals [ (G+1h

jh
Lemma 3.6.2). We thus obtain that

K| < C(R)h*.

vanish due to the symmetry of o — s(o) (see

HY| < ——C(R) /t it — s(0)|do + ——C(R)R? < —— C(R)2.

1
()t Nh ()= Uk

From the same argument (slightly easier since 77 does not depend on time and is smoother),
we can also prove that

[Hy| < C(R)M*.

1
(t)s—4

Consequently, by collecting the previous estimates, we find that
My 4(G) < C(R)R*(1 + (e + eh®)R3).
This ends the proof. m
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3.6.2 Estimate of ||§]|,:-7
v—2

Proposition 3.6.4. Assuming n € H3™ satisfies the assumption (H), there exists C > 0,
g0 and hy such that for every h € (0, hy], every € € (0,&¢] and every T' > 0, every solution of
(3.5.1) such that Qrs 3, 2(0) < h*Ry enjoys the estimate

sup ||0]|s—7 < C(R)W*(1 + (e +eh®)R3)(1 + h*Ry).

[O,T] v—2

Proof. We can start as in the proof of Proposition 3.5.4. By using the energy identity (3.5.8)
with D the Fourier multiplier by kP£?0;" for (m,p,q) € N3¢ such that p +¢ < s — 7, and
m < v — 2 and Lemma 3.4.5, we first obtain that

wwm@zcéwmwm%wm&wwmwwmh+mwu@wwmmp
+ e(MaasCON s, + mna (GO e-1)
ol d(0)) 0+ 290y, + moa(d(@)) ]+ 29(0)lls ) do

t
+ /(DR, Dé(0))r2do|.
0
This yields
2 2 2\ P2 2 ' |1Dé(0) |22 '
ID6() 2, < CRYRA(1 + (= + sh)R2)(1 + & RQ)/ T o+ / (DR, DS(0)) 12 do
0 0
t
< C(R)P*(1 + (e +eh®)R3) (1 + h*Ry) sup |6(0)|l,s-7 + / (DR(0),Dé(0)) 12 do
o€[0,4] vo2 0

(3.6.1)

The main difficulty is now to use the cancellation in the midpoint quadrature rule in order
to estimate the last integral. Let us define
I(t) =

/o (DR(0),Dé(0)) 2 do

By Taylor expanding, integrating by parts once and using the estimate (3.5.10), we first
write that

t
) < T hsup 080l s sup /O IRl dor

o€l0,T)

/O (DR(c), Dé(s(0))) = do

<

/O (DR(0), D3(s(0))) 12 do

s—8.
HV*Q

+ hQC(R) sup] |0:6 ()]

o€l0,T

By using the equation (3.5.7) and Lemma 3.4.5, we have that
108(0)yems < Coma o) allsr—s + (e 1) USlir—s + 19lhg) + (O r)
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and thus by using Proposition 3.6.3 we find
10:6(8)[l3s-5 < C(R)R*(1 + (¢ + eh?)R3) + ch' Ry,

This yields

I(t) < / t(DR(o),Dé(s(U))>Lz do| + C(R)W(1 + (¢ + eh?)R2).

Next, by using the definition of R provided in (3.5.3), we observe that by Taylor expanding
in time and in the £ variable, we can write

R(t,x,v) = R'(t,z,v) + R*(t,z,v) (3.6.2)

where R! is given in Fourier by

Ro(t,€) = (t—S(t))<npn(3§én(S( ), ns(4))7(§—ns(t))+8n(s(t), ns(t)) O (§—ns(t))) (ns(t)—¢)
e ) kpn(Oegi(s(t), ns(t)gu-r(t, E—ks(t))+&r(s(t), S(t))agénfk(S(t),f—kS(t)))(nS(t)—é“))

h=t1
and the remainder R? is such that

2)

IRl < Ch2 (mi2o(e) (Inlls + lglla) + mi3 () (1]

H 6))

ys—o +€llgl

with )
mZ () =) sup  sup Y [0POCha(6)].

n==%1 £€[nt,ns(t)] a+B<2, a£2

Since v > 5/2, we have that

mi?_¢(g) < C <> SNlglls—1 + 75 <> ~llorgl

H.s4

and hence thanks to the equation (3.3.4) and Theorem 3.3.3, we obtain that

This yields

and hence

I(t) <

s—T7.
HV—Q

(3.6.3)

/t<D'R1, D6(s(0))) 2 do| + C(R)R* (1 + (e + eh*)R3) + C(R)h* sup ||6(0)

o€[0,t]
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Thanks to the definition of R', assuming that Nh < ¢ < (N + 1)h, we obtain that

/ (DR (o), Dé(s(e))) 1z dor| < CRI sup 113(0)le 1.

Nh o€l0,t] YT

/0 (DR'(0), D3(s(0))) 12 do

Here we have also used the cancellation argument of Lemma 3.6.2. Consequently, from
(3.6.1), (3.6.3) and the above estimate, we obtain that

sup (0 ;g < CUN(L+ (e + R R+ hRy)
oe|0,

+ C(R)R*(1 + (e + eh®)R3)(1 + h?Ry) sup ||0(c)]

c€[0,T]

s—7.
HU—Q

By using the Young inequality this yields
g7 < C(R)W?(1+ (e + eh?) R3) (1 + h*Ry).

sup |[0(o)]
c€[0,T]

This ends the proof.

3.6.3 Estimate of Nyy 3, 2(0)

Proposition 3.6.5. Assuming n € H*** satisfies the assumption (H), there exists C > 0,
g0 > 0, and hg such that for every h € (0, hg], every e € (0,&0] and every T > 0, every
solution of (3.5.1) such that Qrs_3,2(5) < h*Ry enjoys the estimate

NT7S_37,,_2(5) S C(R)h2(1 + (E + EhQ)RE)(l + thg).

Proof. We can start once more as in the proof of Proposition 3.5.4. By using the energy
identity (3.5.8) with D the Fourier multiplier by kP£?0;" for (m, p,q) € N3¢ such that p+¢q <
s—3,and m < v — 2 and Lemma 3.4.5, we first obtain that

H;i:i)

1D5(1)]172 < C/O D6 ()] 2 <€(ma,s72(d(0))\!5(0)|!H;_2 + o2 (d(0))]|6(0)]
+ (Mo s—2(C(@NN0(0) 1321 _, + mo2(C(@))][0(0)]

+ Mo sa(d(0)lIn +£9(0) 31, + moa(d(0))lln + g(o)]

Hj:i’,)

s—3 | do
wt)

+ /t(DR, Dé(0)) 2 do

This yields

ID6(1) |5, < C(R)*R*(1 + (¢ + eh®)R2)(1 + h*R,) /0 (0)?| D () || g2 do + ‘/o (DR, Dé(0)) 2 do

< C(R?*(°h* (14 (e + eh®)R3)*(1 + h*Ry)* + :

/0 (DR(0),Dé(0)) 2 do

(3.6.4)
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As in the previous proof we consider

I(t) = /O<DR(U),D(S(O')>L2 do

bl

and obtain as previously

1(t) < / (DR(0), D8(s(0)) 2 do

t
+h sup [3(0) g sup [ IR
o€[0,T] v 0

s—2 dU
HV—Q

< + R C(R)(t)* sup [[9:0(0)l

c€[0,1]

s—4 .
HV—Q

[ (DR(@).D5(s0))ao

Here we have used estimate (3.5.12). By using the equation (3.5.7) and Lemma 3.4.5, we
have that

1060 (t)ll3gz-1 < Cms—s(d(t) Inllggs= + & (ms—s(d(t))(||9]

pe=3 + 119llaz-2) + ms—s(OI0ll5-2)
and thus by using Proposition 3.6.3 we find
10:6(2)]

gt < C(R)()’h*(1+ (e + eh?)R3) + (t)°ch* R,

This yields

I(t) <

/O t(DR(o), D(s(0))) 2 do| + (DSC(R)*hA(1 + (e + eh®)R2)?.
As in the previous proof, we write
R(t,z,v) = R'(t,x,v) + R*(t,z,v)
where R! is given in Fourier by
Ry\(1,€) = (t—s(1)) (npn (0egn(s(t), ns(8))7(E—ns(t))+En(s(t), ns(1)) O (§—ns(t))) (ns(t) —€)
+e Xk: kpr(0¢8(s(t), ns(t))8n—n (T, E—ks(t))+8r(s(t), ns(t)) e8n—k(s(t), E—ks(t))) (ns(t)—¢ )>

and the remainder R? is such that

IR*(t)]

2 2
iy < OB (mi(8) (Inlhe + ligll) + miZ (@) (I wi?))

)

w2 +egl
with
2 aaB?
m(h) = () sup sup > |90 ha(€)].

n=%1£€(nt,ns(t)] a+B<2, a#£2

Since v > 5/2, we have that
2
M5 (g) < C)?||gllys—t + (t)]|0sgllps-1-
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and hence thanks to the equation (3.3.4) and Theorem 3.3.3, we obtain that

mi)_,(g)C(R)(t)

This yields
IR*(t)]

wmy < C(R)()?

and hence

) < /0 (DR, D3(s(0))) 1 do

s—3.
HV—Q

+CO(R)*(1)°h* (1 + (e +eh?)R3)* + C(R){t)*h? s[ul}) 6]

(3.6.5)
Thanks to the definition of R!, assuming that Nh <t < (N + 1)h, we obtain that

| (O 0). Di(s(o)) 12 do

/N (DR (@), DS(s(o)}i do| < CURYE N sup 813

Once more we have used the cancellation argument (see lemma 3.6.2). Consequently, from
(3.6.4), (3.6.5) and the above estimate, we obtain that

sup [|0][3,.-5 < C(R*(1)°A*(1 + (¢ + eh®) R3)?
o)

+ C(R){)*h*(1 + (e + eh®)R3) (1 + h*Ry) sup || 6] 13
[O,T} v—2
By using the Young inequality this yields

sup (1) |0 ]l,e-s < C(R)RA(1 + (¢ + ch?)R3)(1 + h*Ry).

t€[0,T]

This ends the proof. n

3.6.4 Proof of proposition 3.6.1
Using Propositions 3.6.3, 3.6.4 and 3.6.5, we have proven that

Qrs3.,-2(0) < C(R)R*(1+ (e +eh®)R3)(1 + h*Ry)

if Qrs 3, 2(8) < h*Ry. We can thus obtain Proposition 3.6.1 with the same bootstrap
argument as before by choosing Ry > C'(R) and then by taking e and h sufficiently small.

3.7 Appendix

3.7.1 Proof of Lemma 3.4.3

Let us first note that the equation (3.4.6) only involves K (n,t) for positive ¢, hence K(n, 1)
can be replaced here by Kj(n,t) (see (3.2.3)). Let us take 7' > 0, and let us set for the
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purpose of the proof K(t) = Ki(n,t), F(t) = (F,(t) + Gn(t))Lo<t<r. Since we only consider
the cases n = +1, we do not write down anymore explicitly the dependence in n. We consider
the equation

y(t) = Kxy(t)+ F(t), teR (3.7.1)

setting y(t) = 0 for t < 0. Note that the solution of this equation coincides with (,(t) on
[0, T'] since the modification of the source term for t > T" does not affect the past. By taking
the Fourier transform in ¢ (that we still denote by * ), we obtain

A A

g(t)=K(n)y(r)+ F(1), T7€R, (3.7.2)

with K'(7) = K(n, 7). Under the assumption (H), the solution of (3.7.2) is given explicitely

by the formula

__F0)
1—K(r)

Let us observe that since (1 4 v?)n, € H®, we have by (3.2.8) that for a < 2 and for ¢ > 0

g(7) (3.7.3)

0CK (1) < <t—C>4 c L'(R,). (3.7.4)

Note that by definition of K (t), the function K (¢) is continuous in ¢ = 0, but not C''. Using
an integration by parts on the definition of the Fourier transform, we then get that

09K (1)] < <T—C’;2 o< 2. (3.7.5)

To get this, we have used that the function ¢7y(¢) vanishes at zero.

By using this estimate on K, (H) and that F(7) € H! (the Sobolev space in 7) since
F' is compactly supported in time, we easily get that y defined via its Fourier transform by
(3.7.3) belongs to H!. This implies that (¢t)y € L? and thus that y € L;. These remarks
justify the use of the Fourier transform and that the function y defined through its Fourier
transform via (3.7.3) is a solution of (3.7.1). Moreover, thanks to (3.7.3) and (H), we get
that ¢ can be continued as an holomorphic function in Im7 < 0 and thanks to a Paley
Wiener type argument, that y vanishes for ¢ < 0. We have thus obtained an L' solution
of (3.7.1) that vanishes for ¢ < 0. By a Gronwall type argument, we easily get that there
is a unique solution in this class of (3.7.1) and thus we have obtained the expression of the
unique solution.

We can thus now focus on the proof of the estimate stated in Lemma 3.4.3. Note that a
L?-based version of this estimate would be very easily obtained. The difficulty here is to get
the uniform L in time estimate we want to prove.

We shall first prove the estimate for v = 0. Let us take x(7) € [0, 1] a smooth compactly
supported function that vanishes for |7| > 1 and which is equal to one for |7| < 1/2. We
define xg(7) = x(7/R) and xr(0;) the corresponding operator in ¢ variable corresponding
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to the convolution with the inverse Fourier transform of yg(7). Thanks to (3.7.5), we have
that for R large

(011~ xa@E O] < C S 10801~ xalr DKl <€ [ o<
and hence
C
(1= xr(O) K@) 21 m) < &S

for R sufficiently large. This choice fixes R.
To estimate the solution y of (3.7.1), we shall write that

y = x2r(0)y + (1 = x2r(:))y = y' + 9"
By applying (1 — x2r(0;)) to (3.7.1), we get that

y" = K xy" + (1 — x2r(0))F = (1 = xr(0)K) * 4" + (1 — x2r(0)) F
since (1 — xg) = 1 on the support of 1 — yor. Therefore, we obtain thanks to (3.7.6) and

the fact that x2z(0;) is a convolution operator with a L' function, that

1
1" o < §Hyhl|Lw + C[|F| g~
and hence
15" poe < 2C||F|pee.

For the low frequencies, we can use directly the form (3.7.1) of the equation: We can write
that

N . X2r(T) NE(r
g(r)= —1_K(T)XR( )E(7).

Since the denominator does not vanish thanks to (H), we obtain again that y' can be
written as the convolution of an L' function - which is the inverse Fourier transform of

x2r(7)/(1 = K(7)) - by the function xz(8,)F which is a convolution of F by a smooth
function. Thus we obtain by using again the Young inequality that
[y L < ClIF| .

Since [|y||ze < |9}z + ||y"||L=, we get the desired estimate for v = 0. To get the estimate
for arbitrary 7, we can proceed by induction. We observe that

ty(t) = K * (ty) + F*

with F!' = (tK) * y + tF. Using the result v = 0, we obtain that [[ty| 1~ < C||F'||L~. Now
since 19 € H73, for v = 1, we obtain that tK € L' and thus

1 [z < C(I[EF e + i) < ClI(L+ 1) F |

The higher order estimates follow easily in the same way.
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3.7.2 Proof of Lemma 3.4.5

We give the proof of (3.4.11), the proof of the second estimate being slightly easier. In the
Fourier side, we have for £,[g](h) the expression

(FLo[glh)n(€) = > kpwzr(0)hni(0,€ = ks(0))(ns(0) - €).

ke{£1}

Consequently, we obtain that

(F(D™7, £, [gl]))alE) =
> kpizelo) (n€ 0 (sl € — ks(0) (ns() — ) -

ke{£1}
((n = R)"(€ = 5(0))*0tha-1(0,€ = ks(@))(ns(0) — ©)) ).

For k = +1, we can thus expand the above expression into a finite sum of terms under the
form

I¥(0,€) = kpizi(s(0)) k" (n — k)PP (ks(0) ™ (€ = ks(0)) PO by _r (0, € — ks(0)
where
nglgpvongSQ7 m_lgrlgmy Oé‘i‘B:Tl—m‘i‘].,Oé,ﬂZO.

Moreover, if r; = r, then we have p; + ¢; > 0.
We have to estimate ) fg | > hess IF(0,€)]? d€ by isometry of the Fourier transform.
We note that for a fixed k € {1} then for |n — k| + |£ — ks(o)| < |k|s(o), we have

[15(0,6)| < Cs(0)" 1 zi(s(0) [0 — k||0F bk (0, & — ks(0))]
whereas for |n — k| + | — ks(c)| > |k|s(o), we have
15(0,)] < C(0)?[z(s(0)|(In — k| + |€ = ks(0)])|0F h—k(0, € — ks(0)).
Consequently by taking the L? norm, we find that

1D 1.0l < Cmonr@)IA(0) 1 + meoa2(2)[12(0)[l36m).

kexl

This ends the proof of the Lemma.
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Chapter 4

On linear Landau damping around
inhomogeneous stationary states of the
Vlasov-HMF model
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The topic of this chapter was introduced in chapter 2, section 2.2.

We consider solutions of the Vlasov-HMF equation with an attractive potential starting from
a perturbation of an inhomogeneous stationary state which satisfies a linearized stability
criterion (Penrose criterion). We prove that the solutions of the linearized equation around
the stationary state exhibit a scattering behavior to the average in the proper variables of
their initial values, which implies a linear Landau damping effect. We prove moreover that
the damping rate is algebraic, and essentially independent of the regularity of the initial
data.

The present chapter can be read independently from the others.

4.1 Introduction

In this chapter are interested in Landau damping for the Vlasov-HMF model. As discussed in
chapter 1, a long time analysis of small perturbations of a spatially homogeneous stationary
state has been recently performed in [40]|, where a nonlinear Landau damping Theorem has
been proved for these states, in Sobolev regularity. Our purpose here is to study the case of
inhomogeneous stationary states, a problem that was also subject to recent interests in the
Physics literature (see [5, 7]).

We consider the Vlasov-HMF model with an attractive potential

Ouf (t,x,0) +{f, H[f]} (,2,0) =0,

2

v
H[f](t,z,v) = 3~ o[f1(t, x) (4.1.1)
ollta) = [ cosla — ) (t.y.0)dyco

TxR
with (t,z,v) € R x T x R, where T = R/Z, and where
is the Poisson bracket. The potential will usually be expressed as the following Fourier series
of](t,x) = C[f] cos(x) + S[f]sin(x), (4.1.3)

with
)= [ cost) (g o)dude, and [ = [ sinfy) (o o)y
TxR TxR
where we use in the integration the normalized Lebesgue measure on the torus. Note that
when f is spatially even, ie f(—z,v) = f(z,v), we have S[f] = 0.

Our interest lies in stationary solutions of (4.1.1) that depend on both x and v. More

precisely, fix a function G : [—e,+o0o|— R, e > 0, with sufficient regularity, and consider a
function n(z,v) satisfying the equation
n(z,v) = G (H[nl(z,v)). (4.1.4)
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Such functions (4.1.4) are stationary states of (4.1.1), since

{n, Hnl} ={G (H[n]), H[n]} = 0.

Note that the existence of a solution 1 of (4.1.4) is a priori not clear. To that extent, note
that for any integrable function 7, we may write

’U2

Hln) = = = Cln] cos(z) — Sn] sin(z).

Up to a translation x — x + xg, one can always assume that S[n] = 0, such that

Let us indeed specify the argument: we can always define My and xy € [—m, 71| such that
o[n)(z) = My cos(z — x).
For that it suffices to set My = /C[n]? + S[n)?, and to take z, as the solution of
My cos(xg) =C[n] and Mysin(zg) = Sn].
We have then that
o[n)(x) = My cos(zg) cos(x) + My sin(zg) sin(x) = My cos(z — zo).

By the rotational invariance of the Vlasov-HMF model (4.1.1), we may then assume that,
up to the translation x — x + x(, we have

én](x) = Mycos(z), such that Cln] =M, and S[n] =0.

My is usually called the magnetization of 1, and one quite easily sees that n solves equation
(4.1.4) if and only if M, satisfies the equation

-0 (2 - et

Note that this equation is satisfied by My = 0, whatever the choice of G is, and in this
case 0,n(x,v) = 0. Landau damping being well-understood for these spatially homogeneous
states, we aim to study the case where a solution M, > 0 exists. In section 4.6, we shall
exhibit sufficient conditions on GG to ensure the existence of a strictly positive magnetization.
A typical example that we shall consider is when G is an exponential function (see also [29]).
From now on, we fix a triplet (n, G, M) such that

n(x,v) = G (ho(z,v)), ho(x,v) = % — My cos(z), My > 0. (4.1.5)
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We are interested in solutions of equation (4.1.1) that are perturbations of such a sta-
tionary state, namely

Fit0) = e ) + (02,0 "
r(0,z,v) = r°(x,v).
where 7% is the initial perturbation. Note that
H[f] = H[n] = ¢[r],
such that r(¢, z,v) satisfies the equation
atr(ta Z, U) - {777 Qb[?"]} (t7 Z, U) + {Tv H[T]]} <t7 xz, U) - {Tv ¢[T]} (ta L, U) = 0. (417)

In this paper, we will retain the linear part of this equation, namely the linearized equation
around 7, that reads

or(t,x,v) —{n, o[r]} (t,z,v) + {r, ho} (t,z,v) = 0. (4.1.8)

Let us set C(t) = C[r(t)] and S(t) = S[r(t)]. Solving equation (4.1.8) using characteristics,
one can obtain a closed system of Volterra integral equations for C(¢) and S(¢), that will play
the same crucial part in the evolution as the closed equations for the Fourier coefficients of
the density fv fdv that are obtained in the study of the stability of homogeneous stationary
states for the HMF model or the Vlasov-Poisson system (see [10, 40, 61|, or chapter 1).

Let 1¢(z,v) the flow of the Hamiltonian hg, that is the flow associated with the ODE

{:t = Oyho(x,v)
v = —0zho(z,v).

The flow 1, is globally well defined and defines a symplectic application. In particular it
preserves the Poisson bracket

{f7g} O%(%”) = {f © ¢tago¢t}<$’v)'

Note that for a given function f(x,v), the function (t,z,v) — f(t,z,v) = f(¢i(x,v)) solves
the equation

8tf(t,l‘,’0) = {fa hO}

As in the homogeneous case (see [40]), we shall pull-back the perturbation by the flow vy,
and thus consider the function

g(t,x,v) = r(t, Y (z,v)) = 1oz, v) (4.1.9)

where 7 is defined by (4.1.6) and satisfies (4.1.8). Defining the projection X : T x R — T by
X(z,v) = z, we have the following result:
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Proposition 4.1.1. The function g(t,z,v) satisfies the equation

Org = C(t){n, cos(Xo1hy)} + S(t){n,sin(X o ¢y)}. (4.1.10)
where
€)= Clr() = Clyov-d = | cos(Xlys w))g(t,v-i(y )yl (w111)
and
St)=8[rt)] =Slgov4] = /T ] sin(X(y, w))g(t, —¢(y, w))dyduw. (4.1.12)

Moreover, the coefficients C(t) = Clr(t)] and S(t) = S[r(t)] satisfy the following Volterra
integral equations

C(t) = Fe(t) + /OtC(s)Kc(t —s)ds and S(t) = Fs(t) + /OtS(s)Kg(t —s)ds, (4.1.13)
with

Fe(t) = /T Rcos(X o Yy (y, w))r’(y, w)dydw, Fs(t) = /11‘ Rsin(X o Y (y, w))r’ (y, w)dydw,

Ke(t) = o) ] R{n, cos(X)}cos(Xothy),  Ks(t) = —lio) : R{n, sin(X) } sin(X o ).

This Proposition will be proved at the beginning of subsection 4.3.2. Note that the
coefficients C(t) and S(t) exists globally in time provided that r°(x,v) is smooth enough, by
standard well-posedness results for (4.1.1).

Our main result is that, if n and r° have sufficient regularity, the coefficients S(t) and C(t)
decay in time, with algebraic rates of damping. As a consequence it will be shown that
r = g o1_; converges weakly towards a final state R, that is a function of hy.

4.2 Main results

4.2.1 Action angle variables and applications

As a one-dimensional Hamiltonian system, the system associated with the Hamiltonian
ho(z,v) is integrable (it is the classical dynamical system for the motion of a pendulum).
We will need relatively precise informations about the corresponding action-angle change of
variable. Let us define the three following zones U, , U_ and U, as follows:

Up ={(z,v) e TxR|v>0 and ho(z,v) > My},
U_={(z,v) e TxR|lv<0 and ho(z,v) > My}, and (4.2.1)
Us ={(z,v) € T x R|ho(x,v) < My}
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Recall that ho(z,v) > —M, and the center of the “eye" U, corresponds to the point (z,v) =
(0,0) which minimizes hy. The set

{(z,v) e T xR | ho(z,v) = My}
will usually be called "the separatix". Let us first recall the following Theorem:

Theorem 4.2.1. Setting h(z,v) = % — My cos(x), then for x € {£,0}, there exists sym-
plectic change of variable (x,v) — (¢, h) from U, to the set

Vi, = {(,h) € R% |h € I,, ¥ € (—=14(h),7.(h))},

where r.(h) is a positive function, I+ = (Mg, +00) and I, = (—My, My) such that the flow
of the pendulum in the variable (1, h) is h(t) = h(0) and ¥ (t) =t 4+ (0).
Moreover, there exists a symplectic change of variables (¢, h) — (0,a) from V, to

W.={(0,a) e R*|a € J., 0 € (—m,m)},
with J1 = (2v/My, +00) and J, = (0, £\/My) such that

0(v,h) = wi(h)p, and Oha(h) = o) = =YDk

so that the flow of the pendulum in the variables (0,a) in U, is a(t) = a(0) and 0(t) =
tw,(a(0)) + 6(0).

This Theorem is explicit in the sense that formulae exist for the construction of the dif-
ferent changes of variables, by involving Jacobi elliptic functions. Fourier series in variable ¢
may be in particular considered, and for a given function f(z,v), we can define the restriction
f* of f to the set U,, and the Fourier coefficients

fita) = o [ £ 00 o(0.0)e a0

for a € J,, where z(0,a) and v(f, a) are given by the change of variable on U,. Note that for
given functions f and ¢, we have the decomposition

f(z,v)p(x,v)dzdv = Z Z/J fi(a)e™ ,(a)da. (4.2.2)

RxT x€{£,0} LEL

Finally, let us notice that the jacobian of the change of variable h — a(h) is dpa(h) =
and we have in particular

o (h)

gt = [ fitet)e (o) s an (4.2.3)

We will usually write f,(h) for the quantity f;(a(h)), as natural variables to compute the
expressions and the singularities of the relevant functions in action-angle variables shall be
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indeed expressed more easily in the variables (6, k), which are not symplectic, but on which
integrals can be easily computed as well as the flow of the system. Moreover, in this case,

@) = o= [ ((00),000,1)a8

can be seen as an average of f on the isocurve {(x,v) | ho(z,v) = h}, while ¢ is the arclength

on this curve, the jacobian %(h) appearing in the standard co-area formula, which is another

way to see (4.2.2)-(4.2.3).
The notations C;(a) and S;(a) will be used for the Fourier coefficients of the functions

0 — cos(z(f,a)) and 6 sin(z(0,a)),

respectively, and both restricted to U,. These coefficients can be calculated explicitly using
elliptic functions (see Propositions 4.7.4 and 4.7.10), and we shall write

cos(z(0,a)) = Z Ci(a)e™™® and sin(z(6,a)) = Z Sy (a)e™, (4.2.4)

¢ez tez

for (0,a) € J, x (—m, 7).

Before stating our first important result, let us fix some notations. For a two-dimensional
integer a = (o, ) € N2, we shall set

la] = a1 + as.
We shall also write dy, for the operator acting on functions f : T x R — C by the formula
Opof (2, 0) = 07107 f (z, v).

In section 4.7 we prove the following result:
Theorem 4.2.2. Consider f(x,v) and ¢(x,v) two functions such that

max ||(v)*97, f (2, v)

la|<m ||L°° < me and m?]}\(/[ ||8§7vg0($, U)HLoo < Cu,

|al<

for some pu > 2, where (v) = (14 v?)Y/2.
Let p and q be defined by

p=max{n > 1, d7,f(0,0) =0, Vo, 1 < |a| < n}, ¢ =max{n >1, 9;,¢(0,0) =0, Vo, 1 < |af < n}.

Let ¢ (z,v) denote the flow of the Hamiltonian hy(z,v) = % — My cos(z). Then, if

m25—|—p+z¥ and M > max (7+q+¥,m+2) ,
there exists C' > 0 such that for allt > 1, we have
Fe)eile o)t — 3 [ fia)eiada € —Co

93



Let us explain this Theorem as follows: the starting point of the proof is the Fourier
expansion (4.2.2), which yields

fla et )de = 3737 [ gt fa)e o

{0} (€T

_ ztéw*(h)L
> Z oi(h)e o h)dh.

*€{%,0} LEZ

TxR

Now we can use a stationary phase argument by integrating with respect to h to gain a decay
with respect to t. Typically, this kind of analysis depends on the possible cancellation of
Opwy(h). In our case, the situation seems to be very favourable, as dpw.(h) never approaches
zero, as shown in Section 4.7. However, the problems come from the singularities of the
action angle variables. We can distinguish two zones: near the separatix h = M. In this
case, the action angle variables induce logarithmic singularities. Essentially it means that
the Fourier coefficients f; involve logarithmic singularities near h = M,. However, near this
point, w,(h) also exhibits a logarithmic singularity, and it can be shown that dyw.(h) goes
to infinity fast enough to ensure a decay in time which is essentially driven by the regularity
of f and ¢. So the problems are not at the separatix.

Near the point h = — M, the situation is more delicate: in this zone, the pendulum Hamil-
tonian is essentially a perturbation of the Harmonic oscillator, for which no Landau damping
is expected (w being constant). However, we can prove that dpw.(h) does not vanish near
this point. But this is not enough: indeed the action angle variable of the harmonic oscillator
involves algebraic singularity of order v/h + M,. This explains why the rate of decay of the
integral with respect to the time is mainly driven by the behavior of f and ¢ near (0,0)
which corresponds of a local behavior of f2(h)wg(h) in (h + My)*z" 3" which yields the main
contribution for the decay in the previous Theorem.

Theorem 4.2.2 will be a straightforward consequence of Propositions 4.7.6 and 4.7.12, proven
in section 4.7.

Remark 4.2.3. In view of the previous analysis, the result of the Theorem may be improved
if special cancellations occur. More precisely, if, for all ¢ € Z,

fi (@2 (h) =0,

then there is no contribution coming from the eye, and we have

f(z,v)e(Y(z,v) Z Z * (a)e @ dq,

TxR x€{+} LeZ

Therefore the singularity near the point h ~ —Mjy does not interfere, and the decay in time
15 essentially driven by the regularity of f and g. More precisely, if r is such that M > 3 +r
and m > 1+ r, then the conclusion of the Theorem becomes

C

f(z,v)e(t(x,v))dedv — Z wp(a)da| < Ao

TxR se{+} J*
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by applying Proposition 4.7.6 of section 4.7.
This is typically the situation if one takes f(z,v) = sin(x) and ¢(x,v) = cos(z) (see Propo-
sition 4.7.10).

4.2.2 Linear Landau damping
For a function F'(t), we define
F(¢) = / F(t)e dt
R
its Fourier transform.

Theorem 4.2.4. Let n(z,v) = G(ho(z,v)) with G a decreasing function that satisfies the
assumption
max || <y>uG(n)<y)HLw(R) < C,,

n<10

with > 2, and assume that there exists kK > 0 such that

[nin 1 — Kc(€)| >k and Juin, 1 — Ks(§)] > k. (4.2.5)

Let us assume that the initial perturbation r° satisfies

max [[(v)" 95,7 (z, V)| o < Cin,
laj<m ’

for some v > 2, and where
3
m > 95+ ?p,

with
p=max{k>1, 97,°0,0)=0, V1<|a|<k}.

Then, if r° satisfies the orthogonality condition

3 / i (a) ()2 (a)da = 0, (4.2.6)
x€{t,0} ¥ ¥

there exists C > 0 such that for allt > 0

C C
(1+1t)e

IC)| <
with
e a=5/2ifp>1or [ .7z v)drdy =0,
o « = 3 if both conditions are satisfied

e o =2 if none of them is.
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Let us make the following comments:

a) The damping rates of the two coefficients C(t) and S(t) are algebraic, and essentially
independent of the assumptions on the regularity of . This may be explained as follows:
through the assumptions on K¢ and K, the quantities C(¢) and S(t) inherit the decay in
time of the source terms F¢(t) and Fs(t) of the two Volterra equations that they satisfy (see
(4.1.13)), by a Paley-Wiener Theorem, essentially. Now these sources terms fall under the
scope of Theorem 4.2.2, and thus the damping rates are mainly driven by the behavior of
the functions cos(X)r® and sin(X)r? in the vicinity (z,v) ~ (0,0), and both of then have a
zero of finite order there, independently from the regularity of r°.

Note that the result may be slightly improved when special cancellations occur. Indeed, if
the perturbation r° is such that (r°)7(h) = 0 for even ¢, then by Remark 4.2.3 one may take
a = 3, even if p = 0. An example of this situation is if one considers r°(z,v) = sin(x)n(z,v),
for which the Theorem predicts that & = 5/2, and where we may in fact obtain o = 3
by using Remark 4.2.3. This will be observed numerically in chapter 5, for the nonlinear
equation.

This is of course a major difference with the existing results on Landau damping around
spatially homogeneous stationary states (see [10, 40, 61]). In this case the role of C(t) and S(¢)
in the dynamic is played by the Fourier modes of the density [ f(t,,v)dv, which satisfy as
well Volterra integral equations, for which the decay in time of the source terms is completely
driven by the regularity of r°, according the Riemann-Lebesgue Lemma, essentially.

b) The orthogonality condition (4.2.6) seems natural since this condition is propagated
by the flow of the linear equation (4.1.10). Indeed by using the action-angle variables given
by Theorem 4.2.1, we can set g*(t,6,a) = g(t,z(0,a),v(0,a)), * € {£, 0}, since the change
of variable is symplectic, we get for g* the equation

0g" = C(t){G(h),cos(x(- + tw, )} + S(){G(h),sin(z(- + tw,-))}

where the Poisson bracket is now computed in the variable (6, a). Since G(h) depends only
on a, we get from the above equation that

018y = Oy /g*(G, a)df = 0.
0

c) We shall call assumption (4.2.5) the Penrose criterion, by analogy with the stability
conditions of the same name that are usually used in the Landau damping literature. This
is a typical assumption which allows one to solve the Volterra equations on C(t) and S(¢)
in Fourier, by a Paley-Wiener Theorem. We refer to [8, 10, 12, 40, 41, 61, 73| for similar
statements.

As a corollary of Theorem 4.2.4, we get a scattering result for the solution g of (4.1.10)
and the weak convergence of r(t,x,v) = g(t,1v_+(z,v)) the solution of (4.1.8) towards an
asymptotic state r(z,v) that depends only on hg(x,v).

Corollary 4.2.5. Under the assumptions of Theorem /J.2.4 with p = 0, we obtain that:

96



o There exists goo(x,v) such that when t — +oo, we have

1

l9(t) — goollrz, S W (4.2.7)

o There exists Too(x,v) that depends only on h, that is to say reo(z,v) = Re(h(z,v))
such that for every test function ¢, we have that

/ r(t,z,v)é(x,v) dedv =400 / Too(Z,v)d(z,v) dzdw.
TxR

TxR

Let us make the following additional comments:

a) In this special case of the linearized dynamics (4.1.8), we can express 7, in terms of
the initial data r°, and obtain that

Roo(h) = /7r r(z*(0,h),v*(0,h))dd, heEl, xc{£ o}

-7

It also shows that
f(0,h) =n(h) +r(t,z*(0,h),v"(0,h)), hel,*c{£ o},

converges weakly to its initial average with respect to 6.
This is a behavior that we should relate to linear Landau damping around spatially homo-
geneous stationary states, since in this case the function

flt,z,v) =n(v) +r(t, z,v)

converges to its initial average with respect to x (see [61] for instance for a complete discussion
on linear Landau damping).

b) The first estimate of Corollary 4.2.5 shows that g exhibits a scattering behavior, which
is also the case in both linear and nonlinear Landau damping around spatially homogeneous
stationary states. The difference is that the present scattering estimate (4.2.7) holds in L'
norm, whereas in the homogeneous case scattering estimates may be proved in regular norm,
such as Sobolev’s ([40]) or Gevrey’s ([10]). The question of linear (and nonlinear) Landau
damping around inhomogeneous stationary states in regular norms is left open, though we
shall provide the reader with numerical simulations to investigate this matter, in chapter 5.

4.2.3 About the Penrose criterion

Written in this form, the Penrose criterion (4.2.5) is difficult to check, but we can relate
it to a more classical condition that was found in [53| or [4] to ensure orbital stability of
inhomogeneous stationary states in the nonlinear equation.

First we shall prove that the verification of Penrose criterion (4.2.5) a the frequency £ = 0
is sufficient, by proving the following Theorem.
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Theorem 4.2.6. Let n be a state defined by (4.1.5), and assume that G satisfies the hypoth-
esis of Theorem 4.2.4. Assume moreover that G' < 0 and

1—Ke(0) >0 and 1— Ks(0)> 0. (4.2.8)
Then the Penrose criterion (4.2.5) holds true.
Let us now define the following notion of stability (see also [4, 53]).

Definition 4.2.7. A state n(x,v) defined by (4.1.5) is said to be linearly stable if

1+ / avﬁ( v) cos? x)dzdv —
RxT v

d>0

x€{+,0}

Now this condition is easier to verify than the Penrose criterion (4.2.5), and in section 4.6
we shall exhibit examples of states 1) that satisfies it, typically Maxwell-Boltzmann stationary
states. They will also satisfy the Penrose criterion (4.2.5), because of Theorem 4.2.6, and of
the following

Proposition 4.2.8. Let n be a state defined by (4.1.5). Assume that G satisfies the hypoth-
esis of Theorem 4.2.4, and that G' < 0. Then (4.2.8) holds true if and only if n is stable in
the sense of Definition 4.2.7.

4.2.4 Organization

For the sake of clarity, let us explain how the rest of the chapter is organized. In section
3, we collect and prove some results concerning Volterra integral equations, and use them
to prove Theorem 4.2.4. In section 4, we prove corollary 4.2.5. Section 5 is dedicated to
the Penrose criterion, and we prove there Theorem 4.2.6 and Proposition 4.2.8. In section
4.6 we exhibit examples of inhomogeneous stationary states which are stable in the sense
of definition 4.2.7. Finally, section 7 contains all the technical results that we shall need
concerning angle-action variables, and we prove there Theorem 4.2.2.

4.3 Proof of Theorem 4.2.4

The proof proceeds as follows: we prove that the kernels K. and Ks have sufficient decay in
time, which, with the Penrose criterion, will allow us to apply a Paley-Wiener Theorem to
the Volterra equations (4.1.13). This Theorem will yield a control of the decay in time of C(t)
and S(t) by the one of the source terms Fp(t) and Fs(t), and the latter will be guaranteed
by Theorem 4.2.2.
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4.3.1 Study of the kernels K and Kg

As a preliminary, we shall first use Theorem 4.2.2 in order to get the decay rates of the
kernels. We shall prove the following result.

Proposition 4.3.1. Let n(x,v) = G(ho(x,v)) with G a decreasing function that satisfies the
assumption

max [ ()" G (Y)]| oo gy < Ci

n<10

with > 2, Then there exist a constant C' such that

C
(141t)%

|Ke(t)] < and |Ks(t)| <

(1+1)?
Proof. Recall that
Ke(t) = 1oy / {n, cos(X)} cos(X o 1).

TxR
We notice that, as

{n, cos(X)} dedv = — / vsin(X)G' (ho(z,v))dzdv = 0,

TxR TxR

by oddness, we actually may write that

Relt) = Loy | {:cos(X0} (1 = cos(X 0 4)

TxR

We apply Theorem 4.2.2 with the functions {7, cos(X)} (z,v) and 1 — cos(X(x,v)). We have
p=1and ¢ =1, and we have that for all x € {o,+},

1

fih) = o " P (a(h,0), v(h, 0))d6 — w /W y(cos(z(h, 0)))do = 0.

Applying Theorem 4.2.2 yields then

1

Concerning Ks(t), it suffices to apply Theorem 4.2.2 with the functions {n,sin(X)} (z,v)
and sin(X(x,v)). We have this time p = ¢ = 0, and Si(h) = 0 for all x € {o, £} (see (4.7.22)
and (4.7.35)). Hence the application of Theorem 4.2.2 yields

1
(1+1t)2

[Ks(t)] <



4.3.2 Study of the magnetization

We shall now start the proof of Theorem 4.2.4. First we shall prove Proposition 4.1.13.
Proof of [Proposition 4.1.1]. Let us first prove (4.1.10). If r solves (4.1.8), the function

g(t,z,v) = r(t,Y(x,v)) =1 oh(x,v)

satisfies

atg(tv Z, U) = {T’ hO}(ta wt(xv U)) + {777 ¢[T]} (ta wt(xv U)) - {7’, h’O} (tv wt('T? ’U))
= {7]7 gb[g © w—t]}(ta Tﬁt(% ’U))

Hence as 7 is invariant by the flow 1y, g solves

atg<t7 Z, U) = {77’ ¢[9 © ¢—t] © 1/%:}(75’ €, U)'

Since 1y preserves the volume,

dlgo_y| ohy(z,v) = /T i cos(X o y(x,v) — y)g(t, ¥_4(y, w))dydw

- / cos(X o v, v) = X(ow))g(t, s (v, )y
= cos(X oYz, v))C(t) + sin(X o ¢y (z,v))S(1),
with C(t) = Clg o $_i] = Clr(t)] and S(t) = Slg o ¥_i] = Sr(1)].

Thus we can write

g = C(t){n, cos (X o¢n)} + S(t){n,sin (X o)},

which proves (4.1.10).
We deduce that

g(t,z,v) = r’(z,v) + /0 C(s){n,cos (X o)} + S(s){n,sin (X o 1)) }ds.

Using this formula and the fact that 1; preserves the Poisson bracket, we calculate that

ct) = / cos(X (g )t -(y w)dyd = / cos(X(y, w))r® (%o(y, w))dyduw

TxR

v c(s) [ cost0) . cos(x o vo)ds
# [86) [ cort0imsimx o gds

Note that the flow 9, is reversible with respect to the transformation v(x,v) = (z, —v), that
is we have 1, ov = —v o1_;. But as the Hamiltonian is even in z, the flow is also reversible
with respect to (z,v) — (—z,v). Hence the transformation p(z,v) := (—z, —v) satisfies
Yy o = p oy, and this transformation preserves the Poisson bracket and is an isometry.
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Let us apply this to the last term in the previous equation. We thus have for any ¢ € R

/T i cos(X){n,sin(Xo1p,)} = /1r . cos(X o u){n,sin(X o,)} opn

= /T . cos(X){n,sin(X o o v,)}

= —/Tr Rcos(X){n,Sin(Xo@Dg)}ZO,

as X o u = —X. For the same reason, we have

/T i sin(X){n, cos(X o ¢,)} = 0.

Now using the identities n o v =1 and X o v = X, and the evenness of the cosine function,
we have

/T i cos(X){n,cos(Xohs_¢)} = — / cos(X o v){n,cos(Xots_sov)}

TxR

= —/T Rcos(X){n,cos(Xo (—v)oth—s)}
— —/T Rcos(X){n,COS(Xoﬁbt—s)}‘

Integrating by parts that last integral yields then

/T i cos(X){n, cos(X o hs_¢)} = cos(X o Yy_s){n, cos(X)}.

TxR
Using the oddness of the sine function, we have by similar manipulations

/T X sin(X){n,sin(X o1, 4)} = — / sin(X o ¢y_s){n, sin(X)}.

TxR
This ends the proof. [ |

To study the coefficients C(t) and S(t), we shall use general results on Volterra integral
equations written under the form

y(t) = K +y(t) + F(t), teR (4.3.1)

where K, y, ' vanish for t < 0. Let us first recall the following Paley-Wiener result on
Volterra integral equations (Theorem 4.1 of [44], see also [32, 65]).

Lemma 4.3.2 (Paley-Wiener). Assume that K € L'(R) is such that

in |1 — K(6)]> k.
ﬁ&%' >~

Then there exists a unique resolvent kernel R € L'(R.) which vanishes for t <0 such that

R(t) = —K(t) + K = R(t). (4.3.2)
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Note that using R, the solution of (4.3.1) can be written as
y(t) = F(t) — R« F(t). (4.3.3)
We shall then use the following corollary.
Corollary 4.3.3. Under the assumptions of Lemma 4.3.2, the following holds:

i) There exists C > 0 such that
[Yllree < C||F |1 (4.3.4)

i) If (t)2K € L™ and (t)*F € L™, then there exists C > 0 such that
()"l < ) F 1.
i) If (1)K € L™ and (t)*F € L™ for a € [2,3] , then

1) Yl < Ol F|ee.

Proof. To get i) it suffices to use (4.3.3) and the Young inequality.
Let us prove ii). We first observe that

D=

t2y(t) :K*(téy)Jr/Ot(t — sT)K(t — s)y(s)ds + t2 F.

By using i), we obtain that
1 t 1 1 1 1
12yl S llylloee Sgp/ (t2 = s2)|[K(t = s)[ds + [[(t)2 Fll e S [[(8)2 Flle.  (4.3.5)
0

Next, we can write that

D=

ty(t) = K * (ty) + /0 (t% - s%)K(t —5) s%y(s) ds + t= /o (t% —s2)K(t — s)y(s)ds + tF.

Consequently, by using i) and the assumptions on K, we obtain that

t 1 t 1

(t—s)2 1 1/ (t—s)z 1 A
t o < d t)2 oo+ t2 1d 12 oo+ |[{t) F'|| oo
il S s (/ gt Nhlessu (8 [ g s ) Iyl sl

and by (4.3.5),

[tyllzee S (0 Flzoe- (4.3.6)

~Y

Note that we have used that

t(t—s)%151t18318
L s gr) gre ) o

=

t

(NI



We then estimate t>y, and for that we write
ty = K« t’y + Fy

where by similar manipulations as above, the source term F, may be estimated as follows

B St ((ORED) « (Olh) + (3E]) « (1))
e ((B1E]) + (Ol)) + 68 () = (yl) + 2P
By using again i) and (4.3.5), and similar arguments as above, we obtain that
12yl S 1682yl + 116)* Fll o
To conclude, we can use first the interpolation inequality
165yl S 1l Il

Then we apply the Young inequality: for any 6 > 0,

eyl Ol il
26 2

1 1
Iyl 2118yl 2 <

Choosing ¢ small enough, we conclude that
[yl S IOYllzee + [18)*F |

and the result follows by using (4.3.6).
To prove iii), we can use the same arguments. We first write

ty = K « (ty) + Fy

with
Fi(t) = tF + (tK) % y.

Since tK € L', we get by using (4.3.4) that
[yl S N Fillpee S IO F ]| Loe-

Next, we write
ty =K xty +Fy, Fy=(tK)xty+tF?

and by Young’s inequality
1Follzee S K o lltyll oo + 12 Fl oo +E(EE) #9) [ 2o S NEE | oo+ [ F || oo +[[E((EK) %) || e

It remains to see that

05) 31 5 | 7=l Oulimds S gl
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such that
|Bsllie S I1(62F 1.

~

We conclude by using again (4.3.4) that

[yl <

~Y

1) F | oo
3y is estimated in the same way as above. O]

We shall then apply the Corollary to the two Volterra equations (4.1.13) to prove Theorem
4.2.4, starting with the one satisfied by C(t). Note that by using Proposition 4.3.1, and the
Penrose criterion (4.2.5), we get that the kernel K¢ matches the assumptions of Corollary
4.3.3 iii). We have moreover that

can be estimated by

with o € {2,5/2,3}. Indeed, we apply Theorem 4.2.2 (using the orthogonality condition
(4.2.6)) with the functions cos(X(z,v)) and r°(x,v), for which we have p > 0 and ¢ = 0.
Now without further assumptions this implies that o = 2. If we assume that p > 1, then we
obtain o = 5/2. If we assume that 7° has average zero, then

Fe(t) = / (eos(X o il w) = sy, wdyd

and we apply Theorem 4.2.2 with the functions cos(X(z,v)) — 1 and r°(z,v), for which we
have now p > 0 and ¢ = 1, which implies that a = 5/2, and that a = 3 if we assume
moreover that p > 1.
Therefore the application of Corollary 4.3.3 to the first Volterra equation of (4.1.13) yields
the estimate on C(¢) claimed in Theorem 4.2.4.

In the case of the second Volterra equation of (4.1.13), satisfied by S(t), we have

Fs(t) = /E Rsin(X o Yy (y, w))r’(y, w)dydw.

The application of Theorem 4.2.2 with the functions sin(X(z,v)) and 7°(x,v), for which we
have p > 0 and ¢ = 0, yields the estimate

1
[Fs(t)] S 757

{t)*

As the kernel K falls under the scope of Corollary 4.3.3 ii), the estimate on S(t) claimed
in Theorem 4.2.4 follows.
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4.4 Proof of Corollary 4.2.5

Let us first study the asymptotic behavior of ¢, and define g..(x,v) by

gl ) =)+ [ (€6 freo(X)} o vt
S(s) {n,sin(X)} o v, (z, U)) ds. (4.4.1)
Note that the above integral is convergent in Lijv. Indeed, by using that ), is measure
preserving and Theorem 4.2.4, we get that
IC(s) {n, cos(X)} 0 hs(x, v) + S(s) {n,sin(X)} o Y (x, V)| 1 S &
As

g(t,z,v) = r°(x,v) + /0 (C(s) {n, cos(X)} o s(z,v)
S(s) {n,sin(X)} o (x, v)) ds,

this also yields that

19(t) — goollzr, S/t ) <1> EBS % (4.4.2)

Now, let us study the weak convergence of r(t,z,v). Let us observe that for every test
function ¢(z,v), we have by volume preservation that

/T (b)) dado = /T ot 0)0(w(, ) dady = /

TxR

0 (2, 0) (1 (x, 0) v+ O (%) |

Therefore, we only need to study the limit when t — 400 of
I(t) = / Goo(,0) (Vi (z,v))dzdo.
TxR

Let us define
ool 0) = Roo (2, 0))

with
Roo(h) = / r(z(0,h),v(0,h))d0, h €L, x € {0}
(=)

By using the expression (4.4.1), we obtain that
+oo
I(t) :/ ro(x,v)gb(wt(x,v))dxdv—l—/ (C(s) {n, cos(X) }o(y_s(x,v)) dedv
TxR 0 TxR

+S5(s) {n,sin(X) }o(_s(x,v)) dxdv) ds.

TxR
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Now, thanks to Theorem 4.2.2, we obtain that

/TX]R 02, 0)p(Yy(m,v))drdv —¢ 100 Z / a)da = AXRTOO(HJ,UW(JC,v)dxdv.

x€{+,0}

Next, we observe that {1, cos(X)}§ = {n,sin(X)}§ = 0. Consequently, by using again Theo-
rem 4.2.2, we obtain that

{n, cos(X)}d(Y;—s(x,v)) dedv| +

{n,sin(X) }(1r_s(x, v)) dzdv

TxR

S

(t—s)*

TxR

Consequently, we find that

/0 h (C(s) ] R{n,cos(X)}aS(wt_s(a:,v))dxdv+S(3) g R{n,sin(X)}qﬁ(@bt_s(x,v))dxdv) ds

oo q 1 1
5/0 R U R e

/ r(t, x,v)p(x,v) dedv — 4o / Too(Z,v) 0 (2, v)dzdu,
TxR

TxR

We have thus proven that

which concludes the proof of corollary 4.2.5.

4.5 Proofs of Theorem 4.2.6 and Proposition 4.2.8

Proof of Theorem 4.2.6.

Case of K¢
Let us start with the study of K¢, which is given by

Ke(t) = 10 /TXR {n, cos(X)} cos(X o 1y).

From Proposition 4.3.1, we have that K, € L'(R,) N L*(Ry). Therefore K¢(€) defines an
analytic function on {Im(¢) < 0} which is continuous on {Im(¢) < 0}.

Moreover, the Riemann-Lebesgue Lemma shows that lim¢_ 4o kc(f) =0 with £ = vy + 17,
7 < 0. The criterion (4.2.5) is thus automatically satisfied for large £ and it suffices to study
if 1 — Kc(€) can vanish for ¢ in a compact set (by uniform continuity if it does not vanish
for every ¢ in this compact set then it will not vanish uniformly).

That being said we shall first calculate a rather convenient expression of K¢(t) in terms of
angle-action variables, and then take its complex-variable Fourier transform to check the
Penrose criterion (4.2.5) on a compact set.
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Step 1. Computing K¢
Using the preservation of the Poisson bracket we have that
Ke(t) = —20) sy Y / cos(X o 11(0, a))Dun(a)dy cos(x(0, a))dadd.
x€{o, £} 7" X (=)
By using for (0,a) € J, X (—m, 7) the identity ¢,(6, a) = 0 +tw.(a) and the Fourier expansion

(4.2.4) for the cosine function, we infer that

Kc(t) _ 27r ]l{t>0} Z Z/ zé’Cg,( )OZ(a)eitﬂw*(a)ei(f-i-e/)@dadg
7rTr)

x€{£,0} LLET

= —lyso Z Z/ dan(a C* /(a)C; (a)e™™+ W dq

x€{+£,0} £#0

= Ly 3 Y [ amitici@per

*€{t,0} £#0

where we have also used the identity C*,(a) = C;(a). Note that as n(a) = G(ho(a)) and
wi(a) = O,ho(a), we can write that

Ke(t) = —20psey > > / G (ho(a))lw,(a)|Ci (a) | sin(tlw, (a))da.

x€{%,0} £>0

Therefore
d
Ke(t) = Lizoy 3, Qc(t),

with

)=2 > Z/ G (ho(a))|Cs (a)]? cos(tlw,(a))da.

x€{%,0} £>0

Taking the Fourier transform we may write that,

A +oo . +oo .
Ke(€) = /0 e‘“E%Qc(t)dt:—Qc(O)Jrif /0 e Qe (t)dt

where we have integrated by parts (this is at least legitimate for Im(§) < 0).
Note that Q¢(0) < 0 if G is decreasing and that the assumption (4.2.8) can actually be
restated as

1 — Ke(0) = 1+ Qe(0) > 0.

Now we calculate that

+o0 o
| esea =2 3 3 [ @i [ e cositto. (@)

0 «€{£,0} £>0 0
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However,

1

> < 1 [ .
| e ottt andr = 5 [ e tng g o [ et gy
0 2 0 2 0

o (é —éma) " gwi*(a)) |

Hence we can write

Ke©) = —Qe(0)+¢ Y. Z/ G (ho(a))ICi(a >’sz< —élw*() £+ei*<a>>da

we{Eo} (50
- *E{Zio}#zo G'(ho(a))|Cs (a)|? (gfwg—a%)da.

Step 2. Verification of the Penrose criterion

We shall now check assumption (4.2.5) on a compact set, by showing that the imaginary
part of K¢ does not vanish. We use the notation £ = v+ i1, with 7 < 0. Note that from the
above computations we have

Imf(c(f) = Z Z/ G (ho(a))|C7 (a)*Tlw.(a )(fy—éw*(la))z—l—TQ

se{x,0} (40
! * 2 1 1
T2 &) o) o) (G~ )
i} , : (3 . (0))? — (7 o (0)
o {Z}Z/ (@G 0o (e o O )
/ 22 1
-- o ¥ [ ctocere e (Ggmrramr )

£>0

Hence we see that the sign of Im Kc(f) is the same as the one of v. Moreover, as long as
v £ 0,7 #0, (=)' Im K¢ (€) is a sum of strictly positive terms, as the coefficients Cf (a)
explicitly given in section 4.7 are non-zero everywhere (see Propositions 4.7.4 and 4.7.10).
Therefore f(c(f ) does not achieve the value 1 when £ is neither real nor purely imaginary. It
remains to see if this still holds when £ crosses the axis, and for that we shall calculate the
limit lim,_,q Kd’y + 1) for v # 0.

We shall use the fact that d,w. does not vanish on each chart U* (see section 4.7). As a
matter of fact d,w, is strictly negative on U, and strictly positive on U, and U_.Thus we
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can make the change of variable u = —fw(a) to get that
v+ u—T
= X2 [ ot
xe{+,0} L0 ’y—i—u T

with

GOt/ O) G/ )R
el = utafufy) e

with the notation a(u) = (w,)~'(—u). Defining then the Poisson kernel P by
T

P:u—)P(u):m.

we have in fact obtained that the imaginary part of K¢(y 4 i) is given by

= 3 S (Prb)(—)

x€{+t,0} £#0

There we can use the well-known approximation result
lim (P ¢u0)(=7) = ¢(=)-
Consequently, we find that

(—=v/ONIC; (a(—~/0))I?
> Z Iﬁf)aw*(a(—v/f))l '

Again since G’ does not vanish and since the coefficients C} (a) are non-zero everywhere, the
above sum can vanish only if v = 0, such that KC(’Y + i7) cannot achieve the value 1 when
v # 0 and 7 = 0. Consequently, it only remains to check that IA(C(’y + i7) does not achieve
the value 1 when v = 0 and 7 = 0, and this is ruled out by the assumptions of the Theorem.

hm Im Kc
x€{%,0} £#0

Case of Kg

For Ks we start the computations as previously, using the preservation of the Poisson bracket,
which shows that

Ks(t) = 2m) Mgy 3 / X0 (6,0 im0, )

x€{o,+}
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By using for (0,a) € J, x (—m, 7) the identity ¢,(6, a) = 0 +tw.(a) and the Fourier expansion
(4.2.4) for the sine function, we infer that

Ks(t) = @2m) 'lyso Z Z/ (a)il' S} (a) S} (a)e™(@ e+ a0

se{t,0} Loz S X (=mm)

= ]]-{t>0} Z Z/ aaT] (a)SZ(a)eitfw*(a)da

x€{x,0} £#0

= ey 3 / Dun(@)it]|S; (a)|2e - @)

x€{t,0} £#0
where we have used as previously the identity S*,(a) = S;(a). We conclude that

Ks(t) =21g=0p Y Z G’ (ho(a))lw,(a)|S; (a)|? sin(tlw, (a))da,

xe{£,0} £>0
such that

d
Ks(t) = ﬂ{tEO}EQS(t);

with

) = —2 Z Z/ G’ (ho(a))|S; (a)|? cos(tlw,(a))da.

x€{%,0} £>0

As in the previous case the assumption 1 — Kg(0) > 0 is the same as 1 + Qs(0) > 0.
From then the argument is identical as for the case of K¢, since the coefficients S} (a) are
non-zero everywhere (see Propositions 4.7.4 and 4.7.10).

Proof of Proposition 4.2.8. In the case of K¢, we saw in the previous proof that
1—Kc(0)>0< 1+ Qc(0) >0,
with

)=2 ) Z G’ (ho(a))|C; (a)|? cos(tlw,(a))da.

xe{£,0} £>0

Now we can use Parseval’s identity

S ICiH @) = o /(_M) cos?(2(0, a))d6

LET
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to write that

= ) Z/ G (ho(a))|Cs (a))*da

x€{%,0} £#£0

1 : \
-, > / . )G(ho( a)) cos®(x(6,a))dfda — /G (ho())|C5(a)]*da

T x€{+,0} J*x x€{+,0}

:/TXRG’(hO(x v)) cos”(x)dadv — > /G’ (ho(a))|Ci(a)*da

*€{t,0}

Aon(z, v)
= cos? x)dzdv —
/’JI‘XR v Z

x€{£,0}

a)|*da,

where we have also used area preservation. Hence we have

1+ Qc(0) >0(:)1—|—/ (3v77(:£ v) cos?(x)drdv — Z /
J.

TxR x€{+,0}

|C* )*da > 0,

*

which proves the result in the case of K.
Now in the case of Kg, we saw in the previous proof that

1— Ks(0) > 041+ Qs(0) >0,
with

j=-2 > 3 / G (ho(a))|S; (a)]? cos(tlw, (a))da.

x€{%,0} £>0

Using Parseval’s formula as previously, and as Sj(a) = 0 on each chart, we obtain this time

that
1+Qs(0)>0<:>1—/ (@, v)

sin?(z)dadv > 0,
TxR v

which is guaranteed by the assumption G’ < 0. [ |

4.6 Examples of stable stationary states

In this section we study the existence of stationary states of the kind (4.1.5), and exhibit
examples of such states that satisfy the stability hypothesis (4.2.7).

4.6.1 Sufficient conditions of existence and stability

The following Proposition provides a sufficient condition on the function G such that an
inhomogeneous state of the kind (4.1.5) exists.
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Proposition 4.6.1. Let G : [—e, +o00o[— Ry be a C! function such that G, G’ € L'([—e, +0]).
Assume that there exists ( > 0 such that

2
/ G <U— — Ccos(az)) cos(z)dzdv > (, (4.6.1)
TxR 2
and that )
1 —i—/ G’ (U—> cos?(x)dxdv > 0. (4.6.2)
TxR 2

Then there exists a solution My > 0 to the equation

2

M,y = / G (% — M, cos(a:)) cos(z)dzdv.
TxR

v

5 — My cos(az)) is an inhomogeneous stationary solution of

In particular, n(x,v) = G’(
(4.1.1).

Proof. The proof is very easy: consider the function

F(z) = /T G (“; - zcos(x)) cos(z)dzdv — 2.

We have F'(0) = 0 (as the cosine function has average 0 on (—m,)), and the hypothesis
imply that F({) > 0 and F’(0) < 0. Hence either F'({) = 0 and the proof is done, or
F(¢) > 0, and the intermediary value Theorem shows that there exists My € (0, () such that
F(My) = 0. O

The next Proposition gives a sufficient condition to fulfill the stability assumption of
definition 4.2.7, which is moreover independent of the angle-action variables.

Proposition 4.6.2. Let G : [—e, +oo[— Ry be a C! function such that G, G’ € L*([—e, +o0|),
and n be defined by (4.1.5) with My > 0. Assume that G' < 0, and that n satisfies

2
Dol ) (/ Cos(x)dem))
1+ / LML) cos?(z)dady — B e Z)
Tk Y / DR dedv
TxR

v

> 0.

Then n is stable in the sense of definition .2.7.

Proof. By area preservation, one has that
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where we should point that the denominators do not vanish since G’ < 0. Hence it suffices
to check that

> | Gylay

x€{o,+}

Oui(a) . oula) dun(a) .\
(@ s *E%:i} /J Cola) Ty e *E%:i} / o]
(4.6.3)

1

Now for * € {o, £}, we define on J, a function

-1

ra)=| 3 /&m(a) do | Genl@)

2 ) @ w.(a)

which is positive, since G’ < 0. The Cauchy-Schwarz inequality implies then that for all

* € {o,+}
2

> [ ciwrr@aoz | 3 [ ciwriada)

x€{o,+} x€{o,+}

where we have also used the preservation of the area. Multiplying both sides of the inequality

by the real number
Dy
Z / n(a) da,
x€{o,+} 7 I* w.(a)

which is negative (since G’ < 0), we obtain that (4.6.3) is true, and the proof is done.  [J

4.6.2 Example of stable stationary states: Maxwell-Boltzmann dis-
tributions

Here we study the case where the function G is an exponential. As we consider averages of
G against cosine functions, we introduce the modified Bessel functions of the first kind:

1 ™
I,(z) = —/ e cos(nz)de = / e* @) cos(nz)dw.
T Jo T
We shall use the following assymptotics (see formulae 9.6.10 and 9.7.1 of [1]):
1,(2) (2)" L2 o] when 20 (4.6.4)
n — — —_ _— W 5 .0.
2) |l " 4n+ 1) s
e* 4n? —1 1
I,(z) = <\/%) [1 i +0 (;)} when 2z — 400. (4.6.5)

We shall also use the following result
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Proposition 4.6.3 ([50]). For alln € N and z € R, we have

I I 1)2 2 1
BE) s hen() | JEEIPE Rt 1)
I.(z) I,(z2) z

We shall prove the following easy result, which shows there exists inhomogeneous Maxwell-

Boltzmann distributions
n(z,0) = ae o)
that are stationary solutions of (4.1.1) of the kind (4.1.5) (see also [29]).

Proposition 4.6.4. Let a,3 € R, and G(s) = ae 5. Then if ay/B < \/iz?, G satisfies
(4.6.1) and (4.6.2).

Proof. We have for any z > 0

2 o2 2
/ G (U— - zcos(:z:)) cos(z)dxdv = a/ e 7 P75 cog(z)dad = ay 111(Bz),
TxR 2 TxR 5

and (4.6.1) is clearly guaranteed by (4.6.5) for z sufficiently large.
Using the first formula of (4.7.9)

1+ /mg G’ (7’2—2) cos?(z)dzdv = 1 — an/BV2r {w} —1- aﬂ@.

That last quantity is positive when ay/3 < \/%, and this concludes the proof. O

Now we shall prove that the inhomogeneous states given by Proposition 4.6.4 are stable
in the sense of definition 4.2.7

Proposition 4.6.5. Let n be a stationary solution of (4.1.1) given by

77(33, 'U) = ae_ﬁ(é_MO COS(:U)),

with a, 8, My € R%, a/B < \/%, and My given by Proposition 4.6.1, and satisfying

v2
M, = a/ 67’8(77% cos()) cos(x)dxdv.
TxR

Then n is stable in the sense of definition 4.2.7.

Proof. We shall prove that the assumptions of Proposition 4.6.2 are fulfilled, which will imply
the result. First, we have

A (z, 5
/ N 0) o2 () dndy = —af [ e P FMoeos(@) cog? () dadu
RxT v TxR

= —@\/B(%;)l/z [[o(ﬂMo) + [2(BMO)] )
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using the first formula of (4.7.9). Then have also

2
/ cos(x)mdvdx = —af cos(z)e” 7 Moo qpdy = —an/B(2m) V21 (M)
TxR

v TxR

and

v

/ Mdvdx = —Oé\/B(QW)lﬂ]O(BMO)'
TxR

Hence, by Proposition 4.6.2, it is sufficient to verify that

a L(BM,)*
1= OB o122 (1y(800) + L(3My) + ay/Blam) 2 ROMD g
2 Ih(BM,)
Note that 1 (8M 1(8M
[Lo(BMo) + L(5Mo)] — 1/(BMy).
2
Moreover, we know that
2
M, = a/ e_ﬁ(T_MO cos()) cos(x)dzdv,
TxR
which is equivalent to
127
MO =« Ell(ﬁMo)
In other words,
(2m)H2 1 (BMo)
Hence it is sufficient to show that
| _ BML(BMo) | BMoli(BMo) _
L(8Mo) Io(8Mo) '
But Proposition 4.6.3 implies that
Mol (B M,
BMoL1(5Mo) > /14 (BM)? — 1
Io(BMp)
and VAT (M
_BMoI1(BMo) > —/1+ (BMy)2.
I (BMo)
Hence
| BML(AMy) | BMoL(BMo)
1, (BMy) Io(BMy) ’
and the proof is done. O
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4.7 Action-angle variables

In this section we shall recall how angle-action variables are constructed on each chart U,.
It will involve elliptic integrals and Jacobi’s elliptic functions, whose definitions and main
properties are summarized in the following subsection.

4.7.1 Elliptic integrals, elliptic functions, and elliptic trigonometry

For k € (0,1) and ¢ € (—7/2,7/2), we define the incomplete elliptic integrals by

¢ é
Bo, k) = /0 VI Rsm(y)dy and F(é k) = /0 L

1 — k2sin(y)

and the complete elliptic integrals by

E(k)=E (g k:) and K(k)=F (g k> .

We will use the following standard notations: The complementarity modulus & = /1 — k2,
K'(k) = K(k') and Jacobi’s nome

q(k) = exp(—7K'(k)/ K (k)).
We collect below some useful results for these functions.

Proposition 4.7.1. The functions E(z), K(z) and q(z) extend as analytic functions of z*

for |z| < 1, satisfying E(0) = K(0) = % and q(0) = 0, and we have

1
E(z) ~ g (1 + 122) when z — 0,
1
K(z) ~ g (1 — 122) when 2z — 0, (4.7.1)
22
q(z) ~ 1 when z — 0.

Moreover, these functions have logarithmic singularities in z = 1:

1
E(z)~1- 5(1 —2)log(l —2) when z—1,

1
K(z) ~ —5 log(l —z) when z—1, (4.7.2)
2
~]l4+ — h 1.
q(z) + Tog(1 = 2) when z —
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More precisely, for all n > 1 there exists constants C,, such that

(1= 20 By ) < O
(1= 20K () s < Co
1
log(1 — 2)*(1 — 2)"o” < C,,
=202 (g5)],..,, 013

|log(1 — 2)*(1 — z)”@?q(z)HLm(%J) < Cy,

‘(1 ) (L)

<C,.
1—q(z)

Lee(5,1)

Proof. The statements of (4.7.1), (4.7.2) and (4.7.3) concerning E(z) and K(z) are conse-
quences of the power series expansions (900.00) and (900.05) of [19] for the function K (z),
and (900.07) and (900.10) for the function E(z) . In particular, near z = 1, we have

K(2) = log(4/2)Ky(+') + Kal2)

where K and K, are smooth functions of (2')*> =1 — 2? and K;(0) = 1. In other words, we
have for z € (1/2,1),
K(z) =log(l —2)A(z) + B(z) > 0

with A and B smooth functions of 2% and A(1) = —3. The estimates on 1/K(z) follow from
this formula.

The first statement (4.7.1) concerning the function ¢(z) is a consequence of formula (900.05)
of [19]. The second (4.7.2) of the expansion

a(2) = exp(—TK (V1= 22)/K(2)) = ) |

n>0

that holds near z = 1. Note that as K(z) is an analytic function 2%, K(v/1 — 22) is an
analytic function of z for |z| < 1 which is bounded as well as its derivatives in the vicinity
of z = 1. This completes the proof of (4.7.3). O

The Jacobi elliptic functions are then defined as follows: first, we define the amplitude
am(u, k) by the formula
F(am(u, k), k) = u.

The first Jacobi elliptic function is then
sn(u, k) = sin(am(u, k)). (4.7.4)

The second and third Jacobi elliptic functions are defined by the formulae

en(u, k) = /1 —sn2(u, k) and dn(u, k) = /1 — k2sn2(u, k).
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We have the following Fourier series for these functions (see formulae (908.00)—(908.03) of
[19]):

T < q(k)"* - i
() = 55 22 T 0+ g ((m " 1>K<k>> |

o & dBh T
sn(u, k) = FK(F) mzﬂ 1= g sin ((Qm — 1)F(k;)) , s,

The following formulae will also be useful (see (2.14), (2.24) in [60]):

(k) = K (k) — E(k) 2m? i mq(k)mm s <mﬂ>

RK(E)  RPK(k)? 2= 1—q(k)? K (k)
22 = mq(k)" U
sn(u, k)en(u, k) = R (2 mZ:1 T gk sin <mK(k:)> (4.7.6)

™ N (2m— )gk)™ 2 U
sn(u, k)dn(u, k) = AGE mZ:l T+ qUyen sin ((Qm — 1)m) .

We shall also need the following elliptic trigonometry identities (see formulae 120.02, 122.00,
122.03 in [19])

sn(—u, k) = —sn(u, k), cn(—u,k)=-cn(u,k), dn(—u,k)=dn(u,k),
sn(u, kj) (4.7.7)
dn(u, k)’

sn(u+ K(k), k) =sn(K (k) —u, k), cen(u+ K(k),k)=—F

of which two straightforward consequences are the following equalities
—sn(u— K(k),k) =sn(u+ K(k),k) and —cn(u— K(k),k)=cn(u+ K(k), k). (4.7.8)

Finally, we recall for completion some classical trigonometry identities which we often use:
for a real number z,

2cos?(z) = 1 +cos(2z), 2sin*(z) =1 —cos(22), sin(2z) = 2sin(z) cos(z),

4.7.9

arcsin(cos(z)) = V1 — 22 ( )
4.7.2 Action-angle variables on U, or U_.

We will use the following notations: e, = 1, and e = —1. The action-angle coordinates are

constructed on U as follows.
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Proposition 4.7.2. Forx € {£}, there exists a symplectic change of variable (z,v) +— (1, h)
from U, to the set

Vi :i={(¥,h) € R* |h € (Mo, +00), 1 € (—r.(h), ()},

with

1 1 h + M,
r*(h):k:(h)\/ﬁoK (k(h))’ where  k(h) = N

such that the flow of the pendulum in the variables (1, h) is h(t) = h(0) and (t) = t+1(0).
There exists then a second symplectic change of variables (1, h) — (6, a) from V, to

4
W, = {(«9,&) € RQ, ‘a cJ, = (— MO,—i—OO) , 0 € (—7@71')}7
T
such that

{a(h) = SVIRE () o = THANTT
oW.h) = w.(h)y X ()

and so that the flow of the pendulum in the variables (6,a) is a(t) = a(0) and 0(t) =
tw,(a) + 6(0).

Moreover, we can easily express © and v as functions of the variables (0, h) with the formulae

20,h) = .2am (%K (ﬁ) 0, ﬁ) | (4.7.10)
v(0,h) = e.2k(h)\/Mydn (%K (ﬁ) 0, ﬁ) . (4.7.11)

Proof. Setting h(x,v) = % — My cos(z), we have on U,

v(x, h) = e,\/2(h + My cos(z)).

Note that v(z, h) = 0,5(x, h), where

S(z,h) = e /Ox V2(h + My cos(y))dy

/2 IM.
= 6*2\/2<h—|—M0)/ \/1 - °_ sin®(y)dy
0

h+ M

w2 sin(y)
— 6*4\/ﬁ0k(h)/0 1— E)? dy

= e 4k(h)\/ME (g %h)) .
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We define then the variable ¢ (z, h) by

* 1 1 r 1
P(z, h —85:15,]1—6*/ dy—g—F(—,—).
(2, 1) = 0,5 (z,h) 0 /2(h+ Mycos(y)) k(h)vMy  \2" k(h)
By construction, the variables (¢, h) are symplectic, and S is the mixed-variable generatrix
function (see formula (5.5) p197 of [45]). We have by the above formulae
€x

\/Q(h(x(t), v(t)) + My cos(x(t)))

and the preservation of the hamiltonian reads h = 0, such that the flow associated with hg
is in these new variables ¥ (t) = 1, h(t) = 0.
Setting now

U(t) = & (£)0p1(z(t), h(z(t),v(t))) = v(t) =1

Y

T 1 1 1
ri(h) = /o V2(h + My cos(y))dy N k(h)\/WoK <k(h)) 7

we have ¢ € [—r.(h),r.(h)], and the orbits of the flow are periodic with period 2r,(h), which
is unsatisfying for us. Thus the second step is to perform another transformation which shall
force all trajectories to evolve in a torus. If we define

0
- on”

g.(h) = dy h) >0,

1 L[ 1
;r*(h) = /0 V2(h + My cos(y))

with

) = 2 [ "V ety = TH0VIRE ().

and set 0(x,h) = ﬁw(x, h), then for each x € {£}, the variables (0, a) belong to J, x (—m, )
and are symplectic. Moreover the flow reduces to

()
g+(h)
where w,(a.(h)) = 1/g«(h) = 1/0,a.(h). Note that we have

ot) =

=w,(a) and a(t) =0,

gu(h) = Wk(h)lmf( (k(lh)) |

which gives the formula for w.(h).
We can express x in terms of 6 and h using the formula

f= e*%zﬁ (g %) .
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Using the definition
sn(u, k) = sin(am(u, k)) for F(am(u,k),k) = u,

we obtain

et = con (1 (i) 1)

and hence

o e (Lo () ).

Moreover, we have

v(0,h) = e/2(h+ Mycos(z))

N T Mo)\/l - ﬁ sin(z(6, ) /2)

= ,2k(h)\/Mydn (%K (ﬁ) 0, ﬁ) ,

and this ends the proof. O

We consider now the asymptotics of these functions. Note that the variables (0, h) are
not symplectic, but we will use them to examine these asymptotics. Note moreover that
the change a.(h) defined above allows to compute easily integrals in (6, h) by using da =
g«(h)dh = %(h)dh.

Proposition 4.7.3. For x € {£}, the functions w.(h), (0,h) and v(0,h) are analytic for
0 € (—m,m) and h € (My, +00).
The function w, exhibits the following asymptotic behavior

wie(h) ~ V2h when h — +o0,

27/ M,
wi(h) ~ 7T—10 when h — M, (4.7.12)
log ((h—M@)
and there exists constants, C,., w, # 0 and o, # 0 such that for all r > 1,
|Va[n o) - ]| <,
L>(2Mp,+00) (4.7.13)

<C,.

Hlog(h — My)? [log(h — My)*(h — Mo)" 0w, (h) — O‘T] HL°°(M0,2M0) =

The change of variable (h,0) — (x,v) satisfies the following estimates: for large h it con-
verges towards the "identity" in the sense that
xz(0,h) ~ €. when h — 400,

4.7.14
v(0,h) ~ €. V2h when h — +o0. ( )
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More precisely, for r,s > 0 there exist constants C, s such that
|h" 0,05 (x(0, h) — €.0)||
H\/_ [h= 2 0p0(6,h) — e,

((=m,m)x(2Mo,+00)) < Crs,

<C,, and
’LOO((TFJT)X(QMQ +o0)) (4.7.15)

for s>1, Hﬁ[hwa,ga;v(e,h)] H <C,,.

L% (=) X (2Mo,+00))

Finally, we have for r,s > 1,
I[(h — Mo)"[log(h — Mo)|~* 20,9 (x(0, h) — e.0)]|
[[(h — Mo)"[log(h — Mo)|~* 20,05 (v(0, 1)) |

<C,s and

((=m,m)x(Mo,2Mo) —

< Cr,s

Loo ((7Tl',7l')>< (M0,2M0) -

(4.7.16)

for some constants C, 5, and

|| log(h — My)| 0, (x(6, h) — €.0 < C

* )||L°°((—7r,7r)x(M0,2MO) -
for s > 1 and some constant Cs.

Proof. We begin with the study of the function w,, and prove (4.7.12) and (4.7.13).
When h — +o0, k(h) goes to +o0, and 1/k( ) goes to 0. Hence as K (z) extends near
z ~ 0 as a smooth function in 2? with K(0) = Z, we have that

k(W) ’
K (i)
_ alh+ M) (1 e (h+1MO>) |

where €2 is analytic in a neighborhood of 0. This shows that on (2M,, +00), we have w,(h) =
V2h(1 + Q(1/h)) for some analytic function Q on (0, ﬁ) This gives the first asymptotic
of (4.7.12), and also the first estimate of (4.7.13).

When h — M, 1/k(h) goes to 1 and is smooth in a neighborhood of M,. Moreover

1— ﬁ ~ 5ig (h — Mp) when h — M. Asymptotics (4.7.2) show that

w.(h)

i) = RONTE /it
K (i)

from which we infer the asymptotics of w,. The second estimate of (4.7.13) is easily deduced
using the estimate on 1/ K from (4.7.3), and also the fact that 1/k(h) is smooth on (M, 2M).

Let us now study the functions x(6,h) and v(6, h). Using the expansions of (4.7.5), and
the expressions of (0, h) and v(#, h) from Proposition 4.7.2, we write

) a(1/k(n)
z(0,h) = €.0 + 6*47;) (m + 1)(1 + q(1/k(h))2m+D)

hen h — My
—log (1-— ﬁ)) e 0’

sin((m + 1)0)
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and

v(0,h) = ewi(h <1 +4 Z - qll/;fk?})l)m o cos((m + 1)9)>

= wi(h)0pz(, h).

Note that by construction, x(é, h) is bounded for (0, h) € (—m,m) x (My,+00). It is then
clear that we have to consider and study the auxiliary function

m+1

z (m+1)0
=4 Zo 1+ q2(m+1 :

This function is well defined for |¢| < 1 and when ¢ — 0, we have
R(0,q) ~ 4qe™. (4.7.17)
Moreover, we have the estimate

10,05 R(6. q) 1 < G (4.7.18)

o,

for all , s > 0 and some constant C, ;. To prove this, note that as (1+x2)_1 and its derivatives
are bounded near x = 0, we can write that

a;"agR(q’ 9) _ Z (m + 1>r+sqm+lfrei(m+1)9R:;Ls<q)

m>r—1

where R*(q) < C,, for all m and ¢ € (0, 3). Estimate (4.7.18) follows easily. In addition,
when ¢ — 1, we have

IR0y <130 <1 (7). (4.7.19)

m=0 1_q

We also want to estimate the derivatives of this function. We can proceed as previously, and
use the fact that = — (1 + 2?)~! is bounded as well as all its derivatives near x = 1, so that
we can write for r > 1 and s > 0;

o0

8;65R<07 q) — Z (m + 1>T+sqm+1—r6i(m+1)ﬂR:ﬁs(q)

m>r—1
where R7:*(q) < C, for all m and ¢ € (1,1). We deduce that

Or,s

10505 (6, q) n S A =gyt (4.7.20)
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for some constant C, ;.

We can now study the asymptotic behaviors of x(6,h) and v(6,h), starting with the
case when h — +o0. In this case 1/k(h) goes to 0, and ¢(1/k(h)) is a smooth function of
1/k(h)* = 2My/(h + My) — 0. As we have

o= poan(a oo ()}

we deduce from then (4.7.17), (4.7.18) and the Faa di Bruno formula that
0,0 (x(0,h) — e.0) = O(A™"7)

uniformly in #. The results for v are obtained from the previous result and the fact that
v(h,0) = w.(h)dxz(0,h) ~ exw,(h) ~ €,v/2h when h — 0. In other words asymptotics
(4.7.14) and estimates (4.7.15) are proved.

It remains to study the behaviors of x(#, h) and v(#, h) when h — M. Using the prop-
erties of 1/(1 — ¢q(2)) (see (4.7.2) and (4.7.3)) near z = 1, we obtain from (4.7.20)

. 1 r+s+1
10508 A1 /KA) O ey < Clo8 (=7 )

and moreover, from (4.7.3)

a1k =0 (=57 ) i)

This shows that for s > 1,

95(a(0.h) — .0) = O <log = MOY“) ,

and using the Faa di Bruno formula, we see that for s > 1 and r» > 1,

005 (2(0,h) — e.0) = O ((h _1M0)T log <h _1MO)H> |

As v(0,h) = wi(h)Oyx(0,h), we deduce from the estimates on w,(h) that

o 1 r 1 s—3
8h89v(0,h)—0<<h_M0) log (h—MO> ),

and this proves estimates (4.7.16). To conclude the proof, let us say that the analyticity of
wi(h), z(0, h) and v(0, h) stated in the Proposition follows from the analyticity properties of
the special functions stated at the beginning of section 4.7. O]
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Now let us consider a function f(z,v) that is continuous and its restriction f* to U,. We

are interested in the behavior of the Fourier coeflicients

1 2

fi(a) = o ), f(x(0,a),v(0,a))e a0,

Note that by a slight abuse of notation, we will also denote by

1 2w

fé‘(h>=% i (6, h),v(0,h)e*dg

these coeflicients in the variable h.

In the special cases where f is either the cosine or the sine function, we have the following

explicit expressions:

Proposition 4.7.4. For x € {+}, and (0,a) € J, X (=7, 7),

cos(z(0,a)) = ZCZ(a)eW and sin(z(0,a)) = ZSZ(@)@MH.

LeZ L€

with, in terms of the variable h,

and

Si(h) =0

Sy(h) = =S5%,(h) = e.(—1)

Proof. Recall that we have

sin(z(0, h)/2) = e.sn (%K (—> 0, —) |
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Hence using the expansion of sn? in (4.7.6) and the second formula of (4.7.9), we obtain

cos(w(0,h)) = 1-2sn® (%K <ﬁ) eﬁ)

ke & ma ()
1 2 1 2m

Formulae (4.7.21) follow easily. Moreover, we have

o e (L2 () ).

Hence, using the third formula of (4.7.9), the definitions of the functions sn(u, k) and en(u, k),
and the expansion of sn(u, k)cn(u, k) from (4.7.6), we infer

sin(z(0,h)) = 2e.n (%K (ﬁ) 6. ﬁ) en (%K (ﬁ) Z ﬁ)
2k(h)?m? o~ mq(1/k(h))™

K (1/k(h))? 2= 1+ q(1/k(R))?

= 2e, — sin(mf).

m=1

Formulae (4.7.22) follow easily. O

For some smooth function f, we can estimate the generalized Fourier coefficients f;(a)
in the following way.

Proposition 4.7.5. Assume that f is a function satisfying

ma [ (0)0%, £l gz < Com

la|<m

for some m > 1 and p > 0. Then, we have

9 fr(h) = O (Iﬁll (h _1M0>T10g (h _1MO)S> when h — Mg

1 1
ohfi(h)y=0 (MSW) when h — +00

(4.7.23)

forr+s<m.
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Proof. We have

1 1

Ofih) = 5= 0 /( ORI a0. 1), 00, W),

and using Faa di Bruno formula, the hypothesis on f, and (4.7.16), we infer that when

o M 1 1\ 1 \s
Ohfith) =0 (W(h_—MO) o (7=37,) ) -

Moreover, by the same arguments, and using also (4.7.15), we obtain
ey 1 1
Oty (h) = O(W_hm)’

when h — “+o0. O

From this result, we obtain the following:

Proposition 4.7.6. Assume that f an ¢ are real functions satisfying

H A < a <
‘g'lf_’% [{v) az,UfHLoo(U*) <Cum and E@}é ”aﬂ%v@HLm(U*) < Cy.

for somem >1+r, u>2 and M > 3+ r. Then we have for all t > 1,
+oo

| et [ pmen i < e

In this statement, ¢ has to be thought as a test function so that we can think M to be
as big as we need. Note that ¢ is not assumed to be localized in v since we shall mainly use
this result for test functions that do not depend on v like cos(z) or sin(z).

Proof. Recall that for x € {£}, we have by formulae (4.2.2) and (4.2.3), and the identity
(0, h) = 6 + tw,(h),

/ oW (z,v)) f(x,v)dvde = Z/

* ez, Y (Mo, 400

*

: 1
(W o* (h lt&u*(h)—dh.
)f@( )907£< )6 w*(h)

We shall then integrate by parts with respect to h, using in particular the fact that Jyw,
does not vanish on Uy. For ¢ # 0, we may thus define two operators Dy, and DZh acting on
function F' of h by

1 F
Dy F = OF and D/,F = -0 :
= o, MG e h (wahw*)
We shall in particular consider iterations of the operator DZh, and use the special notation
F
D, ,)F = — :
( f,h) Zgahw*

We have the following useful Lemma (whose proof is postponed to the end of the current
one):
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Lemma 4.7.7. For all0 < <r+1,
(Den)” (f (W)@t y(Mwi(h)™Y) = O] Ph™"%)  when  h — +oo,

and

1 m(B)
(D))" (f7 ()™ (h)w.(h) ™) = O <|£|—5(h — M) log (h — MO) ) when h — M,

for some integer m(B) > 0.

This Lemma says essentially that the singularities coming from f; and ¢*, at the sepa-
ratix are cancelled by the one of d,w,. This shows in particular that for all 0 < g <r +1,

im (DL (5 (06 (b (1)) 5= =0
Jdim (D7) (5 ()" (W (0)) 5 s = 0.

and that C
0077 (5 e 10 sy < i

using also (4.7.13) and the hypothesis p > 2.
Integrating by parts r + 1 times while using Lemma 4.7.7, we have for ¢ # 0

, dh 1 dh
“(hWo* (h tltws (h) _ = iltws (h)
/(MW) Fi ()" (e = 4 /<M0,+m>ff( )& (D)o
= = [ (DR (7 () (e () ) 0]
e [ DL (e () b
(Mo, +00)
1

= —/ Dy (e M) (Dg,,) (7 (W)= o(R)w.(h)") dh,
(Mo, +00)

t

1 iltw T * * —
o [ O (f ) (e ) )
(Mo, +00)

such that

dh 1 C
iltws (h) 'r+1 -1 r+1
'/MO +oo ff )SO Z( ) w*(h)‘ S tr+1 H DZh (fé( ) (h/)w*(h/) )||L1((Mo,+oo)) S tT+1|€|T+17

and summing in ¢ gives the result. O
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Proof of [Lemma 4.7.7]. Let us first prove the estimate when h ~ M. We shall rather
prove by induction on f < r + 1 that

1 m(B)
(D) (f7 ()¢ (R)w.(h) ™) = O <|e|—ﬁ(h — My) log ( — MO) ) : (4.7.24)
and, if 8 <,
1 n(B)
0n(DL) (1 () (h)eon(B) ™) = O (W log ( i) ) , (4.7.25)

for some integers m(f3), n(5).
When § = 0, we have by Proposition 4.7.5, (4.7.12) and (4.7.13)

DL (7 (e () = JEDEAT) o (“’ - 0os (57 > |

and
Jr()et (k) 0w (f7(R)e* o(R)) ey s 1
o (i) = () o )

For g > 1, if (4.7.24) and (4.7.25) hold at rank 5 — 1, then by using the formula

T C . (D)7t (fr(h)e* y(h)w.(h)™)
(Df,h>ﬂ (fé (h)p~e(h)ws(h) ) = —0h ( E izéahw*(;b) ) ’

and the estimate (4.7.13) for dyw.(h)™!, one easily proves (4.7.24) at rank . As long as
B < r, one deduces then (4.7.25) at rank 8 by writing that

1 ! _m(B)DTﬁ S (h)e™ (Ww.(h)™) = O (€| (h — M
o8 (=) L (et (™) =0 (1470 - b))

which shows that

1 —m(B)
O <1°g () o (fé‘(h)soig(h)w*(h)‘l)> = 0(¢ ),

and gives the result.
The asymptotics when h — 400 are easier to obtain, as for any s < 3 < r + 1, Proposition
4.7.5 implies that

O (fi (MeZe(h) = O(h™472),
while (4.7.13) shows that
1

(G =~ oW

such that Leibniz’s formula yields the result. Note that the contribution |¢|=® comes obvi-
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ously from iterations of the operator D,. n

4.7.3 Action-angle in U,

In this subsection we provide a rather complete description of the change of variable in U,.

Proposition 4.7.8. There exists a symplectic change of variable (x,v) — (¢, h) from U, to

the set
Vo :={(¢,h) € R* |h € (—My, My), ¥ € (—ro(h),ro(h))},
with
_ 2k(h) ~[h+ My
ro(h) = \/MK(k(h)), where  k(h) = N,

such that the flow of the pendulum in the variable (v, h) is h(t) = h(0) and ¥ (t) =t + 1(0).
There exists then a second symplectic change of variables (1, h) — (6, a) from V, to

{(0.0) €R |ac J, = (0, SM) e (—mm),

such that
{a(h) = 2 Bw) - - KRGO /T
o h) = b 2R

and so that the flow of the pendulum in the variables (6,a) is a(t) = a(0) and 0(t) =
two(a(0)) + ¥(0).

Moreover, we can easily express (x,v) as functions of the variables (0, h) with the formulae

x(0,h) = 2arcsin (k;(h)sn (%K(k:(h)) (0 + g) ,k(h))) ) (4.7.26)
v(0,h) = 2k(h)/Mycn (%K(kz(h)) (9 + g) ,k(h)) . (4.7.27)

Proof. In this case, we have h € (=M, M,) and we can write

v(z, h) = e,\/2(h + M, cos(x))

defined for h + Mjycos(x) > 0, where ¢, = 1 if v > 0 and ¢, = —1 if v < 0. Using this
representation, both sets U, . = U, N{v > 0} and U, - = U, N {v < 0} can be parametrized
as
Usw = {(z,h) € T x (=My, My) | h > —Mjycos(z)}
= {(:E, h) | h x <_M07M0)7x S <_x0<h)7x0(h))}>
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where z((h) is the solution in [0, 7] of the equation h + M cos(zo(h)) = 0. Note that have
sin®(zo(h)/2) = k(h)>.
For z € (—xo(h),zo(h)), let us define ©(x,h) € (—n/2,7/2) as the unique solution of
k(h)sin(©(x, h)) = sin(z/2).

This solution is well defined when = € (—zo(h), zo(h)) as k(h) sin(5) € (0,1) in this interval.
Note that ©(0,h) = 0, ©(—xo(h),h) = =5 and O(xo(h), h) = 5. Moreover, by taking the

2
derivative with respect to x, we have

k(h) cos(O(z, h))0,0(x, h) — é cos(x/2)

= —\/1 - 2sin(©(x, h))2.

In particular, we have

V1 - sin?(©(x, b)) = %(h)aj@w V1= R sin(O (e R

Then we have
UO,* = {(I, h)’h € (_M07 MU)? @(CC, h‘) € <_7T/277T/2)}7

and we can define the generatrix function S(x, h) on U, . by the formula

S(z,h) = e V/2(h + My cos(y))dy
xzo(h)

= / \/2 h + My) — 4My sin(y/2)dy

2),
= e.2k(h)/M, 1— S”; (v/2)

xO

= e2k(h)\/ M, 1—sm Yy, h

_ E*mh)m " \/ 1 - sin*(O(y, h))m

O(x,h) a2
N 6*4k(h>2m/w \/11_ o (s(i)l Ol

0,0(y, h)dy

Whence

S(w, h) = edv/Mo(E(O(x, ), k(h)) — E(k(h)))
— 4/ Mo(1 = k(h)*)(F((, h), k(h)) — K (k(h))).
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Note that this function is equal to zero on the axis {v = 0,z € [0, 7]} and has a discontinuity
in the axis {v =0,z € [-7,0]}. We can then define
0

Uz, h) = %S(JJ, h)

x 1
/:vo(h) V2(h + My cos(y))
1 r 1

— 0,9(x, h)d
V MO zo(h) \/1 - k<h)2 sin2(@(y, h)) ( ) !
1
— G*M(F(@(L k(h)),k(h)) — K (k(h))),

where we used the fact that h + M cos(zg(h)) = 0.
On a period, we thus see that ¢ (x,h) € (—2K(k(h)) , 2K(k(h))> . Hence the function

Vil 2V
o= VM TEO@kh) kE) _ T
2K (k(R) "2 K(k(h)) *3

belongs to (—m, ), and is such that the point xo(h) correspond to the angle # = 0. The
frequency is

1) = T = 10,0
The action is given by
o) = 2 k() — (1 = ki) K (k)
o) = Y Tt (i () = (1= KL (K(h) + 241 K ((1)
8vM, 1
- S SRR () = (0.

Using the properties of the elliptic functions, we have
2
O(a(6.1), 1) = e ( 2K(k(1) (647 ) k()
T

hence

sin(z(0, h)/2) = e k(h)sn (%K(l@(h)) (8 + e*g) ,k(h)) . (4.7.28)

Now using the first formula of (4.7.8) we see that the expression (4.7.28) does actually not
depend on the value of ¢ = 41, and thus

sin(x(6, h)/2) = k(h)sn (%K(k(h)) (9 + g) ,k:(h)) ,
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which yields
(6, h) = 2 arcsin (kz(h)sn (—K(k:(h)) (9 + f) ,k:(h))) .

Moreover, we have

v(0,h) = e/2(h+ Mycos(z(,h))
= e&vV2(h+ MO)\/I - k‘(}z)? sin?(x(6,h)/2)

= e.v/2(h + Mo)y/1 — sin®(O(a(6, h), h)

= ,2k(h)\/Mycn (%K(k(h)) (0 + eg) ,k(h)> ;

and using the second formula of (4.7.8), it yields

(8, h) = 2k(h)\/Mycen (%K(k(h)) (9 + —) ,k(h)> ,

and concludes the proof. n

Proposition 4.7.9. The function w.(h), (0, h) and v(0, h) are analytic for 0 € (—m, ) and
h € (—My, My).
The function w, exhibits the following asymptotic behavior

T
woll) ~ iog(ady — 1)

when h — M,

] (4.7.29)
wo(h) =/ My — —=(h+ My) when h — —Mo,
( ) 0 4\/5( 0) 0
and there exists constants, C,, w, with w; = ﬁi and a, # 0 such that for allr > 1,
h+ M *1[’”%}@—%” <,
H< o) [Fhiwa(h) L%(— Mo ,0) (4.7.30)

[log(h — Mo)? [log(h — Mp)*(h — M) dwa(h) — <G,

a] HLoo(o,Mo) =

The change of variable (h,0) — (x,v) satisfies the following estimates: When h — —M, it
converges towards the action-angle variable of the harmonic oscillator %(02 + Mox?) in the

sense that
[h + M,
x(0,h) ~ 2 Mo cos(f) when h — —My,
2My

h + M,
v(0,h) ~ —2+/ Mo/ 2+M Osin(f) when h — —M.
0
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More precisely, for r,s > 0 there exist constants C, s such that

(h + My) 38105 [m(@, h) — 2 h;Mj‘jo cos(e)} <0,
L7 ()< (=Mo.0)) (4.7.32)
w+%WMﬁMWWMﬂ%h$%ﬁMﬂ < Chy
’ L (~ ) x (= Mo.0))
Finally, we have for r,s > 1,
I1(My — h)"|log(My — h)|~*+20;05((0, h))||L°°((—7r,7r)><(0,Mo) <C,s and (47.3)

(Mo — h)"|og(Mo — h)|=*"*0;05(v(6, h)) < Crs

||L°O((—7T,7r)><(O,M0) —
for some constants C, 5, and

[[log(Mo — h)[~°05(x(0, h)) <G,

HLoo((—7r,7r)><(0,Mo) -
for s > 1 and some constant Cs.

Proof. Let us first prove (4.7.29) and (4.7.30), starting with the study of w, when h — M .
We have, by using (4.7.2), that

T\/MO 7T\/M0

wo(h) = 2K (k(h)) ~ (—log(1 —k(h)))

and we obtain the result using

h—My, My—h
2M, 4My

This proves the first part of (4.7.29). Note that the second estimate of (4.7.30) follows from
the estimate on the function 1/K of (4.7.3), and the smoothness of k(h) in the vicinity
h ~ Mo.

When h — — My, w,(h) is an analytic function of k(h)? = %t " and we have using (4.7.1)

1—k(h)=1—4/1+

wo(h) = ;T% = /M, (1 - ik(hf) + O((h+ My)?)

1
= /My — ——=(h+ M) + O((h + M,)?).
0 4\/5( 0) (( 0) )
The first estimate of (4.7.30) follows easily.

Let us now study the functions x(6,h) and v(6,h). Using (4.7.5) and the expression
(4.7.26) and (4.7.27) of z(0, h) and v(6, h), we obtain the expansions

dr S qk(n)m .
v(0,h) = \/MOK(k(h)) T (k) Ccos ((2m~|— 1) (9 + 5))

m=0
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and
sin(z(6, h)/2) = k(h)sn (zK(k(h)) (9 + g) ,k(h))

_ Z : Efé:()]i;;ﬂ sin ((Qm +1) (6’ + g)) .

This, together with the fact that arcsin(z) ~ z is analytic in the vicinity of z = 0 and the
expansions (4.7.1), shows that v(6, h) and (6, h) are analytic functions of v/h + My when
h — —M,, and that

(8, h) ~ 8\/q(k(R)) /M cos (9 + g) ~ —2k(h) /Mo sin(6)

and

£(0, h) ~ 8v/q(k(R))sin (0 + g) ~ 2k(h) cos()

which yields asymptotics (4.7.31), and estimates (4.7.32) follow easily.
It remains to prove (4.7.33). The analysis is similar to what we did for U, and U_, as we
have

o(0.1) = m%w,qwm

with
s

R(0,q) = i WCOS ((Zm—i- 1) (9—1— g)) .

m=0

By doing an analysis similar to the one performed for U, and U_, we have

B 1 r+s+1
10505 R0, q(k(ID| o g 10y < C'log (Mo - h) |

Moreover (4.7.3) shows that

i) =0 ((1755) =)

and

;W -9 ((Mol— h)’" log(Mi - W) |

We deduce from these estimates that we have the same asymptotics as in the case of U, and

2/7:
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Now we can perform a similar analysis for
. T
sin(x(0, h)/2) = k(h)sn (—K(k‘(h)) (9 + 5) ,k:(h))
7r

= K(Zh)) D1 —Q(j((:()i)z;r;Q;H sin ((2m +1) (¢ +3) )

after noticing that

(N 1-¢q \__C 1
I—g2mtl 1 —qg\1—¢>+ ) = 2m+1\1—¢q

when ¢ € (%, 1). To obtain the conclusion for z(#, h), we just have to be careful as arcsin
has singularities in £1: recall that we have the expansion (see (4.4.41) in [1])

2n+1

arcsin(z) = —7m/2 4+ /2(1 + x) (ZS”( (2n))( )(1—1—33)")

and

arcsin(z) = 7/2 — 1/2(1 — x) (2% 8”(2n(i_ni!)(n!)2 (1-— x)”) :

In our context, it will happen at the point +z(h) and the singularity will be of order
vV My — h. However, this singularity is weaker than the other one coming from functions
q(z) and K (z) in the vicinity z ~ 1 (see (4.7.2)). This finishes the proof of (4.7.33). O

Now let us consider a function f(z,v) that is smooth and its restriction f° to U,. We
are as previously interested in the behavior of the Fourier coefficients

1

HOEE=

/( , fo(x(6,a),v(0,a))edo.

With the usual abuse of notation, we will also denote by

1

HOEE

/ fo(x(6,h),v(0,h))e *do
(=m,m)

these coefficients in the variable h. In the case where f is the sine or cosine function we have
as previously explicit expressions of these coefficients:

Proposition 4.7.10. For (0,a) € (—7,m) X J,

cos(x Z Cy(a)e™  and sin(z(6,a)) = Z Sy (a)e'

LETL LET
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with, in terms of the variable h,

Co(h) = —1+2E(’“(Z))

K (k(h))
o (1) — 2 [lg (K (h))" (4.7.34)
Cse(h) = (_W'K(k(h))? (1 - q(k(h))w> A
C§£+1 =0,
and
Sge(h) =0

555—1(h) = 53(25—1)(h) =

(—1) w2 (20— 1)g(k(h))" > P (4.7.35)
2K (k(h)* \  1—q(k(h))*=* J° =

Proof. Recall that we have

sin(z(6,h)/2) = k(h)sn (%K(k(h)) (9 + g) ,k:(h)) |

By using the third formula of (4.7.9), the definition of the function dn(u, k) and the expansion
of sn(u, k)dn(u, k) in (4.7.6), we have

sin(e(6,h)) = 2sin(e(8, h)/2)y/1 - sin®(x(9, h)/2)

— 2k(h)sn <%K(k(h)) (0+73). k;(h)) dn <%K(k(h)) (0+7) ,k:(h))

* (2m — glh(h)"d (em-1)(9+3)).

7T

M

h 2 — 1 + q h ) m—1
2 > 2m — 1 k(h )m—% e(2m—1)if ,(2m— nE e~ (2m—1)if ,—(2m— 1)in
= k h 2 Tnzl 1 + q h ) m—1 22 9

which yields (4.7.35).
Using now the first and fourth formulae of (4.7.9), and the expansion of sn?(u, k) from (4.7.6),
we obtain

cos(z(6,h)) = cos (2 arcsin (k:(h)sn (EK(k(h)) <9 + g) ,k(h))))

™

— 2cos? (arcsin (k(h)sn (%K(k(h)) (6+7) ,k(h))>> 1

— 1 2k(h)%n? (%K(k(h)) (e + g) ,k(h)>
K (k(h)) — E(k(h))

K (k(h))
42 K ma(k(h)™
K (k(h))? mZ:l 1 —q(k(h))*m

= 1-2

+

cos(2mé + mm),



which yields (4.7.34). O

As in the case of UL we can establish estimates for general Fourier coefficients f° as
follows:

Proposition 4.7.11. Assume that f is a function satisfying

e’
<
lgllg}ri Hax,foLoo(Uo) — Cm

for some m > p+ 2, with p defined by
p=max{n > 1, 92,£(0,0) = 0, Ya, 1 < |a| < n}

(and with the convention that p = 0 if this set is empty). Then, as long as r + s < m and
s+ p+ 2 < m, we have that for £ # 0,

RS BV 1\ .
arfe(h) = O (|€|5<h—Mo> log (h_MO) ) when h— Mj (4.7.36)
and that .
f2h) = o <c£ (h+ My)"= + (h+ M) rg(\/h+M0)), (4.7.37)

where ¢ is a number uniformly bounded in ¢ and ro € W= P+2=50 yniformly in L.

Proof. The estimates near the separatix are exactly the same as in the case of U, and U_.
Let us then focus on the asymptotic near h = —M,. Taylor-expanding, we can always write
that

f(z,v) = £(0,0) + F*(z,v) - (z,v) = f(0,0) + F*(0,0) - (z,v) + F*(z,v) - (x,v)@)

where F'(z,v) is linear and F?(z,v) is bilinear. We may write for £ # 0 that

1

fila) = 5-

/<— [FH0.0) - (2 0) + FA(x(0, ), 0(6,0)) - (2(6, 0), (0, @) P] 7 0.

(4.7.38)
We obtain then from Proposition 4.7.9 that U(0, a) = (z(6,a),v(#,a)) can be expanded when
h is near — M, as
Z CLn h + MO %

n>1

where the functions a,, are smooth since (z(0,a),v(6,a)) is an analytic function of v/h + M,
uniformly in #. By plugging this expansion in (4.7.38) and by integrating by parts s times
we get (4.7.37) for p = 0. If p > 0, we just notice that by further Taylor expansion, we have

Fz,v) = £(0,0) + FPTH(0,0) - (z,v)? + FPT2(z, v)(z, v) P+,

where FP™!(x,v) is p+1-linear and FP™2 p+2 linear. It suffices then to proceed as above. [J
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From this result, we obtain the following:

Proposition 4.7.12. Assume that f an ¢ are real functions satisfying

8] < o <
ﬁ;}gﬁ Ha,z’,’ufHLoo(Uo) -~ Om (I’I”Ld |g‘1§a]>\(4 HameOHLOO(UO) -~ 07-75

for some m > 0. Let p and q defined as
p=max{n > 1, d;,f(0,0) =0, Vo, 1 < |a| < n}, ¢ = max{n > 1, d; ,»(0,0) = 0, Va, 1 < |af < n}.
Then, form25+p+’¥, M27+q+%, M > m + 2, we have fort > 1

TR S

e, v - dh' e

Proof. We begin as in Proposition 4.7.6 and write that
f(z,v)o(W(r,v))drdy = Z/ F2 ()@ ()it dh.
v ez, ¥ —Mo

By taking a smooth nonnegative function x(s) such that y = 1 for s < § and xy = 0 for
s > 20 with ¢ small enough, we can split the integral into

M() . 1 M() h+M ' 1
P(h)2 (e ——<dh = / (—0) P(h)@® y(h)e =) —dh
e Je (h)eZy(h) wo(h) _MOX M, Je (h)e2(h) oo ()

Mo h + My o o itlwo (h) 1
[ (o (507 e e s

=1, +1I;.

As in the proof of Proposition 4.7.6, the idea is again to integrate by parts as long as we can,
ie as long as the contributions from the boundary points i ~ 4+M; vanish. The term I} can
be handled as before for U, and U_ : as J,w, does not vanish, only the contribution at the
separatix h ~ M, matters, and this yields a decay by (1 + ¢)~" assuming enough regularity.
As a matter of fact, we just need to take m large enough in order to choose r > % + 2.
We shall now focus on I} which contains the contribution from the center h ~ —M,. By
using Proposition 4.7.11, we can expand I} under the form

1 Mo vra  (h+ Mo\ 1
-[gl — _68/ (h 4 MO)I—i—%X ( + 0) eztfwo(h) dh

1415 J M, wo(h)
1 ~ Mo 1+p+q h + M - .
+ —SCg/ (h_|_ M0)1+ +2+ Y 0 ré( /h—i— MO) ezt&uo(h)dh’
’€| — My MO CLJO(h)

where 7 is uniformly in ¢ in W™ P~2 (since we always assume that M is much bigger than
m, M > m + s), and where the constant ¢, is uniformly bounded in /. It is important to
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notice that w,(h) and all its derivatives are non-zero smooth functions in | — My, ] for any
c € (0, My), so that during the integration by parts, w, will not play any major part.

Let us first consider the case where p+ ¢ is even, and write p 4+ ¢ = 2k. Then the polynomial
contributions in (h + Mp) are (h + My)**! in the first integral and (h + My)*+2 in the
second integral above. We can thus integrate by parts k+2 times in each of the two integrals
(as in the proof of Proposition 4.7.6), in order to obtain that

1 1
0] (1 4 t)k+2

Taking s = 2 and summing with respect to ¢, we get the result.

In the case p+ ¢ = 2k + 1, the polynomial contributions in (h+ M) are (h+ My)¥2 in the
first integral and (h + M;y)**2 in the second integral. For the latter we can thus integrate by
parts k + 3 times as previously to get a decay like 1/(1 + t)*+3, which is 1/(1 + ¢)"2**3, and
is already faster than the expected decay. For the first integral, we can integrate by parts
k + 3 times, except for the most singular term where we can integrate by parts only k + 2
times without boundary terms to obtain integrals under the form

1 Mo v (h+ M,
I}=——— ¢ h+ My) 2
¢ (1+t)k+2’g|scf/ (h+ M) QX(

— M,

1] S

) X(h + My)etMdp,
0

where Y is a smooth function. Next, since dyw, does not vanish, we can make the change
of variable u = ws(h) — wo(—My). By observing that this allows to write h + My = uA(u)
where A is smooth and does not vanish (so in particular, we have that A(0) # 0), we can
thus write

jl 1 ~ /X 1 \P( ) itZud
= —F—C —_— u)e u
CT Ry us

1

2
where ¥ is smooth and compactly supported in [0, X'). Taylor-expanding the function ¥, we
obtain that

It 1 = /X 1 it 1y, 4 1 = /X %q,l( ) itlu
= ———5.C —e€ U+ —— 5 -C u u)e u.
ORI Sy b (TR0 o

For the second integral above, we can integrate by parts once to obtain an estimate by

W' To handle the first integral we use Lemma 4.7.13 below, which yields the decay

1/(1 + t)k+2+%.
By noticing that k + 1 +2 = ’% + 2, we finally get the result. ]
Lemma 4.7.13. Consider the integral

Then we have that fort > 1,



Proof. Let us set v = tu in the integral, we obtain that
I IR IRV I
I(t) = / —1€w dU = 0 —1€w dU + -1 —lew dU
tz Jo w2 t2 Jo v2 t2 J1 w2

(assuming that ¢ is sufficiently large so that tX > 1). The first integral in the RHS above is
clearly uniformly bounded by 1/ t3. For the second integral in the above right hand side, we

can integrate by parts once to get that

IRV I 1 oo

—1/ —1ewdv §—1<1+/ —de)
t2 J1 vz t2 1 V2
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Chapter 5

Numerics
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In this chapter we study the Vlasov-HMF model from the numerical point of vue. It
contains a large amount of numerical simulations, and was designed first to study at the
nonlinear level the damping rates predicted by Theorem 4.2.4 for the linearized dynamics.
Our aim is also to understand whether further extensions of Theorem 4.2.4 for the nonlinear
dynamics are possible.

This chapter is of course deeply related to chapter 4, and should not be read independently
from the latter. We shall in particular use notations introduced there.
This is a joint work with Pierre Navaro (University of Rennes 1).

5.1 Introduction & notations

Most of the notations of this chapter were used in chapter 4. For the reader’s convenience,
we shall however specify once again some of them. We consider the Vlasov-HMF' equation
with an attractive potential

O f(t,x,v) +{f, H[f]} (t,z,v) =0
v? (5.1.1)
H[f](x,v) = ? - ¢[f]($),

where the potential ¢ is expressed as the following Fourier series

¢[f1(x) = C[f] cos(x) + S[f]sin(x),

with
= [ costy)fpudydu and Sl = [ sim)fwdde. (512)
TxR TxR
We consider an initial data of the kind
(x,v) = n(z,v) +er’(z,v), (5.1.3)

with 0 < € << 1, and where 7 is a stationary solution of (5.1.1). More precisely, we fix a
function G : R — R and consider a state n(z,v) satisfying the equation

n(x,v) = G (ho(z,v)), (5.1.4)
with )
ho(z,v) = % — My cos(z), (5.1.5)

where My = C[n] > 0 is the magnetization of n (see chapter 4). We will moreover impose
that,

/ n(x,v)dedv = 1. (5.1.6)
TxR

The existence of such states was discussed in the section 6 of chapter 4. In this chapter, we
shall consider the following examples
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e Maxwell-Boltzmann distributions (see [5], [7], [29] and [28]):
n(z,v) = ae 0@ (5.1.7)
e Lynden-Bell distributions (see [27]):
0z, v) = % (5.1.8)
e Tsallis distributions with compact support (see [24] and [27]):
n(z,v) = a(E — hO(x7U))ﬁ:ﬂ-{ho(x,v)<E}a with ¢ > 1. (5.1.9)
e Smooth distributions with compact support:
n(x,v) =G (ho(z,v)), G e CF(] — My,+00]). (5.1.10)

Conditions should exist on the parameters «, (8, E, or ¢, for the self-consistent equation
(5.1.4) to be satisfied (see for instance section 6 of chapter 4 in the case of Maxwell-Boltzmann
distributions).

The solution f(t,z,v) of (5.1.1) associated with the initial data (5.1.3) is written
flt,z,v) =n(x,v) +er(t,z,v), (5.1.11)
where r satisfies the equation

O+ {r, ho} — {n, olr]} —e{r, olr]} = 0.

The linearized equation around 7 reads

or +{r,ho} — {n, o[r]} = 0. (5.1.12)

In chapter 4, we studied the long time behavior of the coefficients

ClA®) =Clf(®)] and  S[f](t) = S[f(?)]

for the linearized dynamics, and under suitable assumptions on r° and 7, Theorem 4.2.4

states that . )
Clflt) — My| £ ———— d [S[flt)] S —— 5.1.13
€0 = Mol S s ond IS0 S e (5113
where o takes his values in {2, g, 3} (we refer to Theorem 4.2.4 for a classification of the
values of «).

We consider two examples of initial perturbations that were also subject of recent interests in
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the Physics literature (see [5] for instance), and for which numerical experiments similar to
those that we will show in this chapter were conducted. The first case is a cosine perturbation:

r(z,v) = cos(x)n(z,v).

Now we should point that this perturbation does not satisfy the orthogonality condition of
Theorem 4.2.4, but we actually expect to see the coefficient C[f](t) being damped to its
long-time average, with a rate 1/¢> (and note that the coefficient S[f](t) vanishes as the
initial data is spatially even). Let us explain our theory.

We may in fact write the initial data as

Oz, v) = n(z,v)(1 + ecos(x)) = n(x,v)(1 +¢) + e(cos(x) — )n(z,v).

Our theory is then that, if € is small enough, there exists a magnetization My(e) = My+O(e)
such that n(z,v)(1+¢) is a stationary state of the Vlasov-HMF equation whose magnetization
is My(g). If we assume this to be true, then we are actually considering a small perturbation
of this new steady state that is e(cos(xz) — 1)n(z,v), and which satisfies the orthogonality
condition of Theorem 4.2.4. Then the application of the latter predicts, for the linearized

dynamics, that
1

(141¢)%
The second type of initial perturbation that we consider is a sine perturbation:

CLAE) — Mo = O(e)| S (5.1.14)

r(z,v) = sin(z)n(z,v).

The application of Theorem 4.2.4 predicts the estimates (5.1.13) with a = 3 (see also the
discussion a) below the Theorem 4.2.4 about special cancellations for sine perturbations.)
The first goal of this chapter is to verify numerically the damping rates of (5.1.13) for a
sine perturbation, as well as the estimate (5.1.14) for a cosine perturbation, for the nonlin-
ear equation. Our interest is indeed to understand if Theorem 4.2.4 can be extended to the
nonlinear level. The smallness of €, an usual hypothesis for nonlinear Landau damping (see
[10, 61, 40]) that was not needed in linearized analysis of chapter 4, should be necessary in the
nonlinear case. The numerical tests that we shall employ to confront Theorem 4.2.4 will be
specified in section 2, and the study of the numerical damping rates will be done in section 3.

Theorem 4.2.4 concerns the decay in time of the Fourier modes of the potential, which we
proved for the linearized equation. For the nonlinear dynamics we strongly expect this decay
in time to be linked with the regularity of the function g(t) = r(t) o 1y, where ¢, (z,v) is the
flow of the Hamiltonian hg, an usual feature of nonlinear Landau damping (see [8, 10, 40, 61]).
Now recall that the linear analysis of chapter 4 uses the expression of the flow v; in angle-
action variables, where we are able to capture a phase-mixing effect that is essential for
Landau damping. It was moreover shown in chapter 4 that the aforementioned change of
variables requires the division of the space into the three following charts

U,={(h,v) e TxR | ho(z,v) €] — My, Mo[}
Ui ={(h,v) e T xR | ho(x,v) €My, +oo[,v > 0} (5.1.15)
U_={(h,v) e TxR | ho(z,v) €My, +oo[,v <0}.
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Velocity V

The figure below shows the division of the box [—m, 7| x [—3, 3] into the three areas. The
separatix is {(h,v) € T xR | ho(z,v) = My}.

5.126
4.487
43.848
43.209
42.570

41930

Value of ho

1.291

0.652

0.013

-0.626

-1 0 1 2 3
Space variable X

(a) Contour lines (b) 8D plot

Figure 5.1: Plot of ho(x,v) with My = 0.946. The eye U, corresponds to the blue ellipse-shaped
trajectories in the phase space (LHS figure), and Uy, U_ correspond respectively to the above and
below trajectories.

Corollary 4.2.5 shows in the case of the linearized dynamics the existence of a function

g such that
1

19(8) = 9%l 1 ram) S m, (5.1.16)

implying the existence of a final state n* € L'(T x R) such that

f(&) =n> and ||n™ =nll 1 pem) S € (5.1.17)

Note moreover that 7> is a function of hy. The chapter will contain simulations describing
the evolution of f(t), to observe whether the weak convergence result (5.1.17) may hold at
the nonlinear level.

Nevertheless, justifying (5.1.16) for the nonlinear dynamics could be very difficult mathemat-
ically. Based on the existing Landau damping literature, in which trades between regularity
and decay are crucial, we expect in fact any extension of Theorem 4.2.4 at the nonlinear level
to require uniform-in-time bounds on g in a regular norm, as Gevrey’s or Sobolev’s. If true,
this should imply that the scattering estimate (5.1.16) holds in a regular norm as well, and,
at the end, that > is close to n (with respect to ¢) in a regular norm. However, the flow
1, expressed in angle-action variables has a singularity near the separatix (the singularity of
the frequency w,, see chapter 4, section 7), and we fear that this singularity may interfere
with other mechanisms of Landau damping , such that n* is far from 7 in regular norm.

A possible solution to prevent this would be to start from an initial data f° that is compactly
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supported in U, to keep the poor behavior of 1;(x,v) at the separatix from interfering, as
long as the support stays included in U, in the long time. If this is the case, we might expect
1> to be close to n in a regular norm.

Besides the numerical nonlinear confrontation of Theorem 4.2.4, the aim of the chapter will
be as well to show, in section 4, 5 and 6, numerical simulations plotting the evolution of the
distribution function f(t), with various initial data, and discuss the possibility of nonlinear
Landau damping for each example. We shall analyse the possible obstacles to nonlinear
Landau damping, and illustrate in particular the above discussion on singularities near the
separatix.

5.2 Numerical experiments

In this section we provide the reader with a rather complete description of the numerical
scheme that we shall use, as well as a detailed formulation of the tests that we shall perform
to confront the theory, such that our numerical experiments should be reproducible.

5.2.1 Semi-Lagrangian scheme

We employ a time discretization of (5.1.1) by a Lie splitting method (see also chapter 3),
based on the decomposition of the equation between the free part

{@f(t,:z;,v) + 00, f(t,x,v) =0

f(0,z,0) = fO(x,v), (5.2.1)

whose solution is explicitly given by ©!(f%)(z,v) = fO(x — vt,v), and the potential part

O f(t,,v) + 0.0 f(1)](2)0, f(t, 2, v) = 0
f(O,:E,U) = fo(xvv)a

whose solution is explicitly given by ¢%(f°)(z,v) = fO(z,v — tE[f°](x)), with E[f%(x) =
0,0 (x)

Starting from an initial data f°, the Lie splitting that we consider is given by the iterative
relation

(5.2.2)

=k ol (f"), neN, (5.2.3)

where ¢, is the time step.

The functions f™(z,v) defined above are approximations of f(t,z,v) at time ¢ = nd; (see
[39] or chapter 3).

The fully-discrete scheme involves in addition an interpolation procedure at each step, using
cubic splines. More precisely, we confuse the space T x R with [—7, 7] X [-3, 3]. This domain
is then discretized into N x N uniform grid, which we shall write (z;,v;) Let us
set

0<i,j<N—1 "
2 6

5x—ﬁ and 511:N-
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We choose N = 2™ with m large, in order to use the fast Fourier transform (FFT), and the
reverse fast Fourier transform (IFFT).

Indeed, the computation of the electric field E[f] is done by a spectral method. If, for a
function on T x R, we set

py(@) = /]R f(z,v)do,

then for k = +1,

- ik |

Elflk = 5 sy (5.2.4)
where (g )kez is the Fourier transform of a function g(z) on T.

The practical implementation of the fully-discrete scheme associated with the Lie splitting
(5.2.3) reads:

e Assume that f} is given as a two-dimensional distribution on the grid. Interpolate

x — fR(x,-) at the points (z; — dv;, - )o<i<n—1, and let f;\l,ﬂ/z be the corresponding
two-dimensional distribution.
e Compute
N-1
n+1/2
Pf;\zf+1/2($i) = 0y fN+ / (i, v5),

I
=)

J
and then, using (5.2.4),

ikn

n+1/2
<E[ N+ / ](Ii))OSiSN_l =IFFT (TFFT ((pf;-Fl/?(xi))OSiSN—l)) ,
where ky represents the sequence of discrete Fourier modes.

e Interpolate then v f;\l,H/Q(-,U) at the points (-,Ui — 0 E| ]T\L,H/Q](xi)) , and
0<i<N—1
let f©™! be the corresponding two-dimensional distribution.

This defines a sequence (f%)nen of two-dimensional distributions, such that fu!(z;, v;) is a

priori an approximation of f(nd;, z;,v;), when é; — 0, and N — +o0.

5.2.2 Tests to study the damping rates

The result of Theorem 4.2.4 may be tested numerically by computing at each step of the
time-loop the coefficients C[fy] and S[fx]. More precisely, once fx is constructed, then
compute

CIfN) =0:00 D> cos(w:) fr(wiv;)

0<i,j<N-1

and

SN =080, Y sin(w) (i, vy).

0<ij<N-1
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Saving the results at each step, and denoting by ny the number of iterations, we have then
at our disposal the two sequences (C[fm)ogngnf and (S[f]\@])ogngnf :
Once the stationary state n(x, v) is chosen, we will have the two following examples of initial
perturbations:

r(z,v) = n(z,v) cos(x) (5.2.5)

r(z,v) = n(z,v)sin(z). (5.2.6)

In the case of a cosine perturbation 5.2.5, we perform the following tests

e The sequence
IClSx] = Mo
5 .
should converge towards a non-zero constant as n — ny. This should illustrate the
above discussion around estimate (5.1.14).

e The sequence
CLfx] = ClAV]]

should decay towards zero at a rate 1/(nd;)*, when n increases.
In the case of a sine perturbation 5.2.5, the tests are the following

e The sequence
ICL/N] = Mol

should converge towards zero as n — ny.

e The sequence
CLIN] = CLAV]

should decay towards zero at a rate 1/(nd;)*, when n increases.

e The sequence
|SIfR] = SIY]]

should decay towards zero at a rate 1/(nd;)?, when n increases.

5.2.3 Some remarks on the numerical scheme

Doing some numerical simulations with the method described above, we quickly realized that
the quantities C[f](t) and S[f](t) (minus their long time averages) are actually decaying as
oscillatory damped waves, and that there exists a transitory regime before the expected decay
in time may be observed. This means that, to confront with good accuracy the predicted
rates 1/t% and 1/t®, we must reach the long time regime, so that the effect of the oscillations
becomes sufficiently weak. Moreover, and it will be illustrated below, the accuracy of the
numerical damping rates depends on the resolution that we choose. In other words, the
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larger we choose N, the more the numerical damping rates will be close to the predicted
ones, 1/t* and 1/t.

As each step of the time-loop requires two interpolation procedures in space, choosing large
values for both N and ny results in very heavy computations to reach the long-time regime.
To give the reader an idea of the cost: the scheme was first implemented using the Python
language, with N = 1024, §; = 0.1, and n; = 10*. Even after an optimization of the code, it
took us about 90 minutes to reach an acceptable long-time regime.

To remedy these computational difficulties a practical solution would be to use parallelization
methods, and take advantage of the available computer architecture. In particular we draw
the reader’s attention to the semi-Lagrangian library SeLalib ', which we consulted, and
where such methods can be found. The interpolation and advection procedures were already
implemented, so our contribution was to add an HMF-Poisson solver, ie the discrete version
of (5.2.4), and an initial data f° with a proper value for Mj.

Another solution would be to use Particle-In-Cell methods (PIC), and take advantage of
its efficiency and simplicity. The idea is to "throw" the particles (z;,v;)o<ij<n—1 on the
grid according the initial distribution function f°, and follow them in time by solving the
canonical equations of motions. More precisely:

e Assign to each particle (x;,v;) the initial weight w; ; = C'f°(z;,v;), where C' is deter-
mined by the normalization condition

Z Wij = 1.

0<i,j<N—1

e The particles move then on the grid according to the canonical equations of motion for
the HMF model:

Ui (t) = M, (t) cos(;(t)) — M,(t) sin(x;(t)), (5.2.7)

with

My(t)= > wijcos(ai(t) and M,(t)= Y wijsin(z(t)).

0<i,j<N-1 0<i,j<N-1

e Discretize in time the canonical equations of motion (5.2.7), using a symplectic inte-
grator, such as the semi-implicit Euler method or the implicit midpoint method (see
[45]).

e Here M, and M, play the role of C[f] and S[f], and it suffices then to follow the evo-
lution of those quantities during the time-loop, to confront the theoretical predictions.

! http://selalib.gforge.inria.fr
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e The distribution function f(¢,x,v) is approximated (at times ¢ = nd;) by a sum of
Dirac masses:

flt,x,v) ~ fy(t,x,v) = Z Wij Lo—ay ) () Lymy, (1) (V). (5.2.8)

0<i,j<N-1

PIC methods allow one to follow the canonical evolution of the particles, instead of the
evolution of the distribution function, but this is sufficient to compute M, and M,,.
Amongst the main advantages, it is much more faster than the semi-Lagrangian scheme,
since no interpolation procedure is needed. The numerical experiments seem however to
show that, to confront Theorem 4.2.4 with comparable accuracies, PIC methods requires a
higher resolution than the semi-Lagrangian scheme. One could argue that PIC methods are
highly parallelizable, such that choosing high resolutions is possible, but then again, paral-
lelized semi-Lagrangian methods are available as well (see ! as previously).

In addition, as foretold, PIC methods do not give us the evolution of the (numerical) dis-
tribution function, contrary to the semi-Lagrangian scheme, although one could construct
another approximation of the exact solution using (5.2.8).

Our first goal is of course to confront Theorem 4.2.4, but we also are interested in the
long-time behavior of the distribution function, as an illustration of the discussion of the in-
troduction on a possible nonlinear theory. For that reason, it seemed us preferable to chose
the semi-Lagrangian scheme over PIC methods. Nonetheless, let us mention the paper [5],
where the damping rates are verified numerically with a PIC method.

5.3 Confrontation of Theorem 4.2.4

In this section we confront numerically Theorem 4.2.4 using small perturbations of Maxwell-
Boltzmann stationary states.

5.3.1 Inhomogeneous Maxwell-Boltzmann stationary states

As foretold the initial data will read (5.1.3). In this section, n will be a Maxwell-Boltzmann
distribution

n(x,v) = aeiﬁ(ngo Cos(x)>.

Recall that My must solve the self-consistent equation
1)2
My = / aeiﬁ(T*MOCOS(m)) cos(x)dzdw. (5.3.1)
TxR

In theory (see [29] or section 6 of chapter 4), it can be shown that this equation, with the
normalization condition (5.1.6), has a positive solution M, if and only if § > 2. Otherwise
My = 0 is the only solution of the equation. We solve numerically (5.3.1) using dichotomy.
The following figure shows the evolution of M, as a function of 3 :
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Figure 5.2: Evolution of My as a function of 5. 8 = 2 is the critical value, below which My is zero.

We shall choose the same initial data as the authors of [5], to compare the present
numerical experiments, obtained with the semi-Lagrangian scheme, with theirs, obtained
with a PIC method. Our first choice of initial data is

£z, 0) = ae PG =Moeos@) (1 42 co5(2)), (5.3.2)

with ¢ = 0.1, § = 10, and M, as the numerical positive solution of (5.3.1) (we find My ~
0.946). « is a normalization factor to satisfy (5.1.6).
Next we will consider

P, 0) = aeP(F=M00@) (1 | 2 in9), (5.3.3)

with ¢ = 0.1, 8 = 10, and My ~ 0.946 as previously, and « is still a normalization factor.

5.3.2 First numerical test

f9 is given by (5.3.2), hence the symmetry in variable x shows that S[f](t) = 0 for all ¢, and
thus we only have to study the long time behavior of C[f](¢). We choose ¢, = 0.1, n;y = 10000,
and N = 2048.

Plotted below are the evolution in time of (C[f](t) — My)/e and C[f](¢t) minus its long
time average:

153



|(CIF(t)-MO)/eps|

0.96 r T T T 104 T T T
107 b | — JCIFIE)-CIAILT]] |4

oos Ay ] 102N | — B(3)
: 10t
1001
10
1072}
1031
104
101 i
108 L T li o

108 b L T

nbiter*deltat

091 H

[CIfE)-CIFAT. T

0.90

0.89 |-l S R o ] 10°h
: : : : 1010}
0.88 I I 1 I 101t I I I
0 20 40 60 80 100 0 10° 101 102 10°

t t

(a) Ewvolution of (C[f](t) — Mp)/e. (b) Ewolution of C[f](t) — C[f](T).

Figure 5.3: Ewolution of (C[f](t) — Mo)/e and C[f](t) — C[f|(T), T = ns x 6;. Comparison with
expected decay (red curve).

The above figure on the LHS shows that C[f](t) converges to My + O(¢), as expected.
To obtain the rate of convergence, we subtract from C[f](¢) its long time average, and plot
the corresponding evolution in the above RHS figure, with the expected decay ¢=3.

The above plots seem to be in perfectly good accordance with our expectations, and also
with the numerical experiment conducted in [5].

We draw the reader’s attention to the choice of N. Numerically, we observed that the decay
of C[f](t) towards its long time average seems to be related to N : the larger N is, the closer
the decay is to the theoretical one, that is ¢t=3. For instance, the two figures below show the
evolution of C[f](t) — C[f](T) with N = 512 and N = 1024, with still §, = 0.1 :
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(a) Evolution of C[f](t) — C[f](T), N = 512. (b) Ewolution of C[f](t) — C[f](T), N = 1024.

Figure 5.4: Ewolution of (C[f](t) — Mo)/e and C[f](t) — C[f|(T), T = ns x 6;. Comparison with
expected decay (red curve).

We also observed that choosing smaller values for 9, does not improve significantly the
accuracy of the present simulations, nor does changing the Lie splitting for higher order
splitting methods (see [25]). One must moreover take into consideration the time and cost
of the computations when choosing NV, keeping in mind that we need to reach the long-time
regime. As regards all these constraints, N = 2048 seemed to be an acceptable choice.

5.3.3 Second numerical test

/Y is now given by (5.3.3). As previously we have &; = 0.1, n; = 10000, and N = 2048.
To confront the theory, we first plot the evolution of C[f](t) — My, and as previously, we
subtract from C[f](t) its long time average, and plot the corresponding evolution:
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Figure 5.5: Evolution of C[f](t) — My and C[f](t) —=C[f|(T), T = ns x &;. Comparison with expected
decay.

Next, we subtract also from S[f](¢) its long time average, and plot the corresponding
curve:
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Figure 5.6: Evolution of S[f](t) — S[f)(T), T = ny x &. The red curve is the expected decay 1/t2.

As previously the simulations are in perfectly good accordance with our expectations
(and also with the the conclusions of [5]).
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Velocity V

5.4 Evolution of the distribution function - The case of
Maxwell-Boltzmann Stationary States

The aim of this section is to present numerical illustrations of the evolution in time of
the distribution fonction f, starting from a small perturbation of a Maxwell-Boltzmann
stationary state. In this entire section the values of the scheme parameters are §; = 0.1 and
N = 1024. We reduced the value of N for the purpose of time and cost of computations.
Indeed, our goal is now to observe the long-time behavior of the distribution function, not
to confront with high accuracy of the damping rates as previously, and in order to do so, the
choice N = 1024 appeared perfectly acceptable. We perform 10000 iterations in time.

5.4.1 The homogeneous case

As a first example, and for the purpose of comparison with the inhomogeneous examples to
come, we give an illustration of the situation in the homogeneous case. That is, the initial
data is:

Oz, v) = ae_ﬁé(l + e cos(x)),

with ¢ = 0.1 and g = 1. With this choice of parameters the stability criterion is satisfied.
Below we plot the evolution of the distribution function in contour lines and in 3D plot.

Vlasov-HMF, iter=0

Vlasov-HMF, iter=0
T T T

0.06310

[T

0.05616

—0.04922

-0.04228

—40.03534

-0.02840

0.02147

0.01453

0.00759

(I

L L L L L 0.00065
-2 -1 0 1 2 3
Space variable X

(a) Contour lines.

Figure 5.7: Initial distribution
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Vlasov-HMF, iter=1000
T T T

Space variable X

(a) Contour lines.
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0.03536
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Vlasov-HMF, iter=1000

(b) 8D plot

Figure 5.8: Distribution function after 1000 iterations in time.

Vlasov-HMF, iter=10000
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Space variable X

(a) Contour lines.

0.00067

Vlasov-HMF, iter=10000

(b) 3D plot

Figure 5.9: Distribution function after 10000 iterations in time.

We observe indeed the Landau damping effect as proved in [40] : the distribution func-
tion exhibits a scattering behavior to a spatially homogeneous modified state, close to the
stationary state in a regular norm. Moreover, since we started from a smooth initial data
f°, the weak convergence occurs at a high rate.
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5.4.2 Inhomogeneous case - first example

Here we are interested in the long-time behavior of the distribution function associated with
the initial data (5.3.2), for which we already observed the decay of the electric field. We draw
the reader’s attention to the fact that the mass of the initial data is highly concentrated in
the area U,, almost as if f° was compactly supported in it.
The evolution of the distribution function is plotted bellow:

Vlasov-HMF, iter=0

Vlasov-HMF, iter=0
T T T
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—2Fi i [ [ L . o
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(a) Contour lines.

Figure 5.10: Initial distribution.
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(a) Contour lines. (b) 3D plot

Figure 5.11: Distribution function after 1000 iterations in time.
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Vlasov-HMF, iter=2000

a

(b) 8D plot
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Distribution function after 2000 iterations in time.
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Figure 5.12:
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Figure 5.13:

Vlasov-HMF, iter=5000
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(b) 3D plot
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Distribution function after 5000 iterations in time.
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Vlasov-HMF, iter=10000

Vlasov-HMF, iter=10000
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(a) Contour lines. (b) 8D plot

Figure 5.14: Distribution function after 10000 iterations in time.

The first comment that we can make is that the present simulations seem to be in perfectly
good accordance with (5.1.16) and (5.1.17).
Moreover it seems reasonable to think that the final state is bounded and close to the
stationary state in some regular norm, so (5.1.16) and (5.1.17) may in this case hold in a
regular norm.
This may be a confirmation of our analysis on the concentration of the distribution function in
U,. Of course, neither f nor f° are compactly supported in the eye, but perhaps their masses
are sufficiently concentrated in it such that they behave as compactly supported functions,
at least numerically. It is also possible that the extremely good regularity properties of the
distribution function (which is a Maxwellian, essentially) overcome the singularities at the
separatix.
Anyhow, it seems that the singularities of ¢y (x,v) near the separatix do not have a major
influence on the behavior of f, and we observe a scattering behavior towards some small
perturbation of n(x,v), close in regular norm.

5.4.3 Inhomogeneous case - second example

We provide here the reader with illustrations of the long-time behavior of the distribution
function associated with the initial data (5.3.3), plotted on the following figures:

161



Velocity V

Velocity V

Y

2L

-3

Vlasov-HMF, iter=0

Vlasov-HMF, iter=0
T T T

. 40.763

1.374

1221

-41.069

40.916

40.611

0.458

0.305

0.153

L ==0.000

5 2 0 1 2 3
Space variable X
(a) Contour lines.
Figure 5.15: Initial distribution.
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Figure 5.16:

Distribution function after 1000 iterations in time.
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Vlasov-HMF, iter=5000
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Figure 5.17: Distribution function after 5000 iterations in time.

Vlasov-HMF, iter=10000
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Figure 5.18: Distribution function after 10000 iterations in time.

Thus the situation is analogous to the previous example, and seems to confirm that in
the case of Gaussian functions, the poor behavior of ¢(z,v) near the separatix from does
not have a major influence.

5.4.4 Inhomogeneous case: the case of a small magnetization

The two previous examples were similar in the sense that the initial distribution, because
of the choice of the parameters, is highly concentrated in the eye U,. As regards as our
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above analysis on the effect that this might have on a potential Landau damping result, we
wish to study now a more "spreaded" Maxwell-Boltzmann stationary state 7, which has a
non-negligible part of its mass on the neighborhood of the separatix. In order to do so, 3
must be chosen as small as possible, keeping in mind that it must be strictly larger than 2,
so that My can be chosen strictly positive. Here the initial data is then

fO>z,v) = ae ™ P@(1 4 ¢ cos(z)),

with g = 2.1, e = 0.1, and My ~ 0.3. « is still a normalization coefficient.
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Figure 5.19: Initial data.
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Figure 5.20: Distribution function after 500 iterations in time.
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Figure 5.21: Distribution function after 1000 iterations in time.
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Figure 5.22: Distribution function after 5000 iterations in time.
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Figure 5.23: Distribution function after 10000 iterations in time.

We observe that the situation is similar to the previous examples: the distribution func-
tion seems to scatter to a modified state which appears to be close in a regular norm.
Although the distribution function clearly interferes with the separatix, it is possible that
its extremely good regularity properties of the distribution function overcome the singular-
ities of the flow ¢y (z,v). Anyhow, the examples of this section seems to show a Gaussian
stationary state is an ideal candidate to a nonlinear Landau damping Theorem.

5.5 Evolution of the distribution function - The case of
Lynden-Bell distributions

In this section we present illustrations of the situation where the distribution function starts
from an initial data of the kind (5.1.3), with 1 a Lynden-Bell distribution. The parameters
are still ; = 0.1 and N = 1024, and we perform 10000 iterations in time.

5.5.1 Lynden-Bell distributions - first example

We pick here

. «
- 14+ eBho(z,v)

Oz, v) (1 + ecos(z)),

with e = 0.1, 8 = 10, My ~ 0.7, and where « is obtained by normalization.
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Figure 5.24:
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Figure 5.25: Distribution function after 500 iterations in time.
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Figure 5.26: Distribution function after 1000 iterations in time.
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Figure 5.27: Distribution function after 5000 iterations in time.
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Figure 5.28: Distribution function after 10000 iterations in time.

This example shows the possible obstacle to nonlinear Landau damping that we did
expect: singularities at the separatix seem to show that the final distribution is not close in
regular norm, though it is in L' norm.

5.5.2 Lynden-Bell distributions - second example

We pick here

«

0 —
[, v) = 1 +eﬁho(:r,v)(1 + e cos(x)),

with e = 0.1, 8 =4, My ~ 0.47, and where « is obtained by normalization.
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Figure 5.29: Initial data.
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Figure 5.30: Distribution function after 500 iterations in time.
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Figure 5.31: Distribution function after 1000 iterations in time.
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Figure 5.32: Distribution function after 5000 iterations in time.
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Figure 5.33: Distribution function after 10000 iterations in time.

The situation seems more comfortable here, and the behavior of f(t) is comparable to
the case of Maxwell-Boltzmann distributions, and it is thus possible that we have nonlinear
Landau damping.

5.6 Evolution of the distribution function - The case Com-
pactly Supported Stationary States

This section is dedicated to the confrontation of the discussion of the introduction on com-
pactly supported solutions.

We will first consider an initial data of the kind (5.1.3), with  a compactly supported Tsal-
lis distribution (see (5.1.9)), and we will choose the support properly. These states have of
course singularities (when hy(z,v) ~ E), so nonlinear Landau damping should not be ex-
pected. However, they are interesting in the sense that to have any hope of proving nonlinear
Landau damping for compactly supported distributions, as discussed in the introduction, we
should observe, somehow, a preservation property of the support. That is our expectation
for these Tsallis distributions, which are moreover orbitally stable (see [53]).

In a second time we shall consider initial data of the kind (5.1.3), with 1 a compactly sup-
ported in U, and smooth, and we expect to observe nonlinear Landau damping.

In this section we have as previously ¢, = 0.1 and N = 1024.

5.6.1 The case where Supp(n) C U,

We begin with the case where the initial data is
fo(w,v) = n(z,v)(1 + € cos(x)),
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where

77(%“) =« (E - ho(iﬁ,v))+ )

with e = 0.1, E = 0.5 and My ~ 0.6643. Therefore, n and f° have compact support in UL.
Hence the support of the distribution does not intersect the separatix, and our goal is to see
if this continues to be true in the long time.
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Figure 5.34: Initial data.
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Figure 5.35: Distribution function after 500 iterations in time.
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Figure 5.36: Distribution function after 1000 iterations in time.
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Figure 5.37: Distribution function after 5000 iterations in time.
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Figure 5.38: Distribution function after 10000 iterations in time.

We observe that the support of f seems to stay included in U, at all times. The final
state is close to the stationary state in L! norm, and as expected we do not have nonlinear
Landau damping due to singularities at the boundary of the support.

5.6.2 The case where Supp(n) = U,

The second example is the initial data is

Pz, v) = n(z,v)(1 + e cos(x)),

where

n(z,v) = a(E — hy(z,v))

+

with ¢ = 0.1, £ = 0.6 and My ~ 0.6. This time the support of the initial data coincides
perfectly with U,.

175



Velocity V

Velocity V

Vlasov-HMF, iter=0

0.1797

0.1598

0.1398

0.1198

0.0999

0.0799

0.0599

0.0400

0.0200

-3 -2 -1 0 1 2 3
Space variable X

(a) Contour lines.

Figure 5.39: Initial data.
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Figure 5.40: Distribution function after 500 iterations in time.
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Figure 5.41: Distribution function after 1000 iterations in time.
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Figure 5.42: Distribution function after 5000 iterations in time.
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Figure 5.43: Distribution function after 10000 iterations in time.

The situation remains the same as in the previous example: its seems that the support
is preserved over long times, and the final state is close to 7 in L' norm only. As previously,
singularities at the boundary of the support are an obstacle to nonlinear Landau damping.

5.6.3 The case where U, C Supp(n)

The last compactly supported initial data is

Pz, v) = n(z,v)(1 + e cos(x)),

where

n(z,v) = a(E — hy(z,v))

+

withe = 0.1, £ = 0.7 and M ~ 0.3937. The support of f° intersects all the zones U, ,U_, U,,
and we expect to observe the effect of the singularities at the separatix.
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Figure 5.44: Initial data.
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Figure 5.45: Distribution function after 500 iterations in time.
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Figure 5.46: Distribution function after 1000 iterations in time.
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Figure 5.47: Distribution function after 5000 iterations in time.
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Figure 5.48: Distribution function after 10000 iterations in time.

As previously the support seems to be preserved over long times. Moreover, this exemple
clearly exhibits the singularities at the sepratix (see in the above picture how the distribution
function flattens near this region), and the final state is clearly far from 7 in regular norm,
though it is as previously close in L' norm.

5.6.4 Smooth stationary state with compact support, first example

We consider the function gg g : R — R defined by

z)=Bh(R—2)x h(z+ R
95.0(2) = (R = 2) (= + F) o)
h(z) = e V1m0,
and initial data of the kind
Oz, v) = agp.r (ho(z,v) + Mp) (1 + & cos(x)), (5.6.2)

with e = 0.1, R = 1, 8 = 10, My = 0.986, and a a normalization coefficient as usual.
This initial data is smooth and compactly supported in U,, and as regards as the previous
discussions, we expect to observe nonlinear Landau damping.
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Figure 5.49: Initial data.
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Figure 5.50: Distribution function after 500 iterations in time.
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Figure 5.51: Distribution function after 1000 iterations in time.
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Distribution function after 5000 iterations in time.
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Figure 5.53: Distribution function after 10000 iterations in time.

As previously the support seems to be preserved, and the final state seems to be close
to the stationary state in regular norm, though is is not completely clear form the above
LHS figure (possibly due to numerical complications). Thus it seems that, as in the case
of Maxwell-Boltzmann distributions, we might expect nonlinear Landau damping for these
smooth compactly supported states.

5.6.5 Smooth stationary state with compact support, second exam-
ple

As the final example of this section, we consider an initial data defined by formulas (5.6.1)
and (5.6.2), with e = 0.1, R =5, 8 = 5, My = 0.678, and « a normalization coefficient as
previously.
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Figure 5.54: Initial data.
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Figure 5.55: Distribution function after 500 iterations in time.
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Figure 5.56: Distribution function after 1000 iterations in time.
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Figure 5.57:

Distribution function after 5000 iterations in time.
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Figure 5.58: Distribution function after 10000 iterations in time.

It seems that as previously we have indeed a nonlinear Landau damping phenomenon.
As a conclusion of this section we may say that a nonlinear Landau damping Theorem may
be proved for smooth compactly supported states, as discussed in the introduction. This
appears to be confirmed by the example of subsection 5.6.4 and of the present subsection.
Moreover, the figures from subsections 5.6.1 to 5.6.3 seem to show that the Vlasov-HMF
model preserves quite well the support of the states over long times, which is encouraging
for further investigations on nonlinear Landau damping for smooth compactly supported
states.

5.7 Examples of instability

In the previous sections we exhibited solutions of the Vlasov-HMF equation for which a
nonlinear Landau damping behavior may perhaps be proved, and also solutions for which
it definitely cannot, due to the singularities of the flow ;(z, v) near the separatix. In this
last subsection, we shall show other examples of instability, caused by other obstacles to
nonlinear Landau damping. The parameters are still 6; = 0.1 and N = 1024.

5.7.1 Bump-on-tail instability
The first example is the well-known bump-on-tail instability. The initial data is

(v—2 2

(z,0) = a (6_2U2 +0.15e 7 ) (14 ecos(z)),

with ¢ = 0.1 and « a normalization coefficient.
We are in the homogeneous case (My = 0, n(z,v) = n(v)). The Penrose criterion (H) (see
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chapter 1) reflects then essentially the fact that the state 1 has one bump, when v = 0.
Instability occurs when 7 has a secondary bump, which implies that the stability criterion is
violated. Below we present numerical illustrations of this so-called "bump-on-tail" instability.
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Figure 5.59: Initial data.
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Figure 5.60: Distribution function after 500 iterations in time.
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Figure 5.61: Distribution function after 1000 iterations in time.
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Figure 5.62: Distribution function after 5000 iterations in time.
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(a) Contour lines. (b) 8D plot
Figure 5.63: Distribution function after 10000 iterations in time.
5.7.2 Violation of the Penrose criterion
The initial data is here ,
foz,v) = ae 7 (1 4 € cos(x)),
with ¢ = 0.1, § = 100, and o a normalization coefficient. With this choice of S the Penrose
criterion (H) (see chapter 1, subsection 1.2.3) is violated, and we have instability, as it is
shown in the simulations below.
Vlasov-HMF, iter=0 Viasov-HMF, iter=0
T T T T T ) Baowe
= -
| Hee
—40.3492
: : : : : : 10.2794
i 201095
Y T =
20.0699
N U TN T T M

Space variable X

(a) Contour lines.

Figure 5.64: Initial distribution
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Vlasov-HMF, iter=1000

0.6689

.5949

=0.5210

40.4470

40.3731

40.2992

Velocity V

0.2252

11513

L0773

.0034

Space variable X

(a) Contour lines. (b) 8D plot

Figure 5.65: Distribution function after 1000 iterations in time.

Vlasov-HMF, iter=5000

Vlasov-HMF, iter=5000
: : f 0.6686

.5939

0.5192

J0.4445

40.3699

40.2952

Velocity V
o

1
—

2L

e ; ; ; ‘ ‘ ‘

2ce .0
-3 -2 -1 0 1 2 3 ace Var; 1
Space variable X "able x 34 -3
(a) Contour lines. (b) 3D plot

Figure 5.66: Distribution function after 1000 iterations in time.
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Velocity V

Velocity V

Vlasov-HMF, iter=10000
T T T

-3 -2 -1 0 1 2 3
Space variable X

(a) Contour lines.

Vlasov-HMF, iter=10000

0.6617

0.5884

([T

0.5150

10.4416

10.3682

40.2949

0.2215

0.1481

0.0747

0.0013

(b) 8D plot

Figure 5.67: Distribution function after 10000 iterations in time.

5.7.3 "Big" perturbations

The initial data is

Fo(x,v) = ae @ (1 4 £ cos(x)),

with g = 2.1, My ~ 0.3, and ¢ = 2. Here the value of ¢ is too large, and we dot not observe
Landau damping as the initial data is not a small perturbation of a stationary state anymore.

Vlasov-HMF, iter=0
T T T

o
-

2L

L . . . ‘ ‘ ‘
-3 -2 -1 0 1 2 3
Space variable X

(a) Contour lines.

Vlasov-HMF, iter=0
0.3186

0.2787

[T

0.2387

-0.1988

40.1588

40.1189

40.0789

0.0389

-0.0010

-0.0410

Figure 5.68: Initial distribution
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Velocity V

Velocity V

3L

R Viasov-HMF, iter=1000 Viasgy HMF, iter=1000
.

Space variable X

(a) Contour lines. (b) 8D plot

Figure 5.69: Distribution function after 1000 iterations in time.

Vlasov-HMF, iter=5000

-3 -2 -1 0 1 2 3
Space variable X

(a) Contour lines. (b) 3D plot

Figure 5.70: Distribution function after 1000 iterations in time.
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Velocity V

Vlasov-HMF, iter=10000

Vlasov-HMF, iter=10000
: : ‘ 0.3075

0.2691

0.2307

401924

40.1540

40.1156

0.0773

0.0389

0.0006

—-0.0378

-2

-1 0 1 2 3
Space variable X

(a) Contour lines. (b) 8D plot

Figure 5.71: Distribution function after 10000 iterations in time.
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Chapter 6

On time-discretization of the 2D Euler
equation by a symplectic
Crouch-Grossman integrator
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The topic of this chapter was introduced in the third section of chapter 2.
We consider a discretization in time of the two-dimensional Euler equation, with periodic
boundary conditions, by means of a symplectic Crouch-Grossman integrator. Our purpose is
to prove the convergence of this time scheme in periodic Sobolev norms, with a convergence
rate of order one with respect to the time step size.
This chapter may be read independently from the others.

6.1 Introduction

In this chapter we consider time-discretizations of the two-dimensional Euler equation for
perfect incompressible fluids, written in vorticity form, and with periodic boundary condi-
tions. It is a transport equation associated with an hamiltonian vector field, whose flow
hence preserves the symplectic structure. Our purpose is to construct a time-discretization
which preserves as well the symplectic structure, and to prove the convergence of the semi-
discrete scheme.

The time-discretization will employ a Crouch-Grossman integrator (see [30]). By this de-
nomination we mean that the time scheme requires two steps. As we consider a transport
equation with a time-dependent velocity vector field, the first step is indeed to freeze this
vector field at a fixed-time, and thus obtain an "elementary" transport equation associated
with an autonomous hamiltonian vector field. The second step is to discretize in time the
flow of this hamiltonian by means of a symplectic integrator, namely the celebrated implicit
midpoint method (see [37], [45]).

The two-dimensional Euler equation in a periodic box, written in vorticity form, reads

{@w—U(w) -Vw =0, (6.1.1)

w(0, 2) = wo(2),
where w(t,z) € R, with t € R, and z € T?, the two-dimensional torus defined by
T? = (R/277Z)*
The divergence-free velocity vector field U is given by the formula
Uw) = JVA .

using the canonical symplectic matrix

(0.

A~ stands for the inverse of the Laplace operator on function with average 0 on T? (see
appendix A), and V is the two-dimensional gradient operator.

Note that the vorticity form (6.1.1) is formally equivalent to standard formulations of the
Euler equation that may be found in the literature (see [2| for instance). Note moreover that
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a more usual, but equivalent, convention may be found throughout the literature, where J
is replaced by —J, and where the sign in front of U(w) in (6.1.1) has to be changed.

In this chapter we consider the time-discretization of (6.1.1) by a Crouch-Grossman
integrator (see [30]), that proceeds in two steps. First, freezing the velocity vector field at
time ¢t = 0, which gives the hamiltonian transport equation

{atf—Jw-Vf:o

A= (6.1.2)

with initial data wy.
The second step is to discretize the flow of the vector field JV1 by the implicit midpoint
method. More precisely, we define ®;(z) as the unique solution of the implicit equation

SO

and if ¢ is small enough, wy o ®;(z) should be an approximation of the solution w(t, z) of
(6.1.2).
Therefore we define the semi-discrete operator S; by

Si(wo(2)) = wo (Pi(2))

O,(2) = 2 + IV (%‘Dt(g)) , (6.1.3)

Aw = Wwy.
If 7 €]0, 1] is the time-step, we define a sequence (w,)nen by

{ wa(2) = Sr(wn1) = S (wo)

S0(e) = (6.1.4)

The main result of the chapter is that, if 7 is small enough, w,(2) = S/ (wp)(z) is an order
one approximation in H* (Sobolev space, see definition 6.2.1) of w(t, 2) at time ¢,, = n7, where
w solves (6.1.1).

6.2 Main result

6.2.1 Notations

We shall consider functions defined on the two-dimensional torus, also seen as periodic
functions on R?2, with period 27 in each variables. Therefore a function f on T? will be
usually written as

f(z) = f(z,y), with z=(z,y)€]0,2n]

197



If ) is the Lebesgue measure on R?, then (27)~2) induces a measure A on T? such that,

~ 1
[ SE0C) = g [ 0

We shall rather use the notation
f)dz = [ f(z)dA(z).
T2 T2

The notation | - | will refer to any norm on T2,
If @ = (ay, as) belongs to N2, we will write

lal = a1 +ay and 97 f(z) = 070, f(2).
The operators V, A, and A- are defined by
V() = (0 (20,0 (2)T, Af(z) = 02f(2) + BF(2), VX = 0,X) +0,%s,
where X is two-dimensional vector field X = (X1, X,) : T? — T2 In particular, V2f will

be the Hessian matrix of f.
We shall also write

X = (9°X,,0°X,)" .
The differential of X shall be denoted by 0, X, as follows

9.X = (0"9x,00V X)) .

For an element k = (ky, ko) € Z*, we define the quantities |k| and (k) by

k) = k2 4+ k2, (k) = (1+ K2 +k2)"72.

The scalar product between k = (ky, ko) € Z? and z = (z,y) € T? is defined by
k-z=kyx+ koy.

In preparation of computations involving Fourier coefficients, it is rather useful, for a =
(a1, az) € N2 to define the following notations:

(ik)™ = (iky)™ (ik2)®> and  |k|* = k1| [ks]®2.

Finally, the notation C' will always refer to a positive constant of which the exact value has
no interest in our eyes.
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6.2.2 Functional framework

For p € [1, 400, ¢P(Z?) and LP(T?) are the classical Lebesgue spaces on Z? and T?, respec-
tively equipped with the norms

L/p 1/p
H(uk)kezzumz(va’) d Jullp = ([ paz)

keZ?

We shall use the notation

(U, v) 2(12) = - f(2)g(2)dz

for the usual inner product associated with the norm || - || (2.
We will also consider the Lebesgue spaces ¢*°(Z?) and L>°(T?), respectively equipped with
the norms

H(Uk)keZQHeoo(W) = sup |ug|
kez?
lull sy = sup {M € R | X({= | Ju(2)] > M}) =0}

The two-dimensional Fourier series are a natural tool for functions on T2. Let u be such a
function. The Fourier coefficients of u are given by

Uy, :/ u(z)e”**dz, ke 72
T2

The Fourier series of u is defined by

We refer to [47] for basic convergence properties of Fourier series.
For s € R, H*(T?) is the classical periodic Sobolev space, equipped with the norm

1/2

1/2
HUHHS(T?) - (Z mk’2<k>25> ~ Z Ha:UHiZ(TQ) . (6.2.1)

0<a|<s

We refer to [47] for basic properties of the Sobolev spaces. We shall essentially use the
Sobolev embeddings
HY(T?) — L*(T?), (6.2.2)

and
H*(T?) — L>(T?), forall s> 1. (6.2.3)

Note that, using the Bochner integral, the L” and Sobolev norms are naturally extended for
vector-valued functions on T2, for which the above Sobolev embeddings still hold. We shall
also use in addition the following Lemma (see |72] for instance):
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Lemma 6.2.1. Assume that F : U — My(R) is a C* map satisfying F(0) = 0, where U
is an open subset of My(R) containing 0. For any s > 1 and A € H*(T?), such that A € U
almost everywhere,

IFA) oy < CFIC, (1A ez ) (14 1Al )

where Cs : Ry — Ry s an increasing continuous function.

The two-dimensional Euler equation is globally well-posed in these Sobolev spaces. More
precisely, we have the following result (see for instance [2| for a complete proof):

Theorem 6.2.2. Let s > 1 and wy € H*(T?) with average 0. There exists an unique solution
w(t,z) € CO(Ry, H*(T?) N CY Ry, HY(T?)) of equation (6.1.1) with initial data wo.

6.2.3 Statement of the main result

Our goal is to prove the following convergence Theorem:

Theorem 6.2.3. Let s > 6 and wy € H*(T?) with average 0. Let w(t, z) € C° (R, H*(T?))
be the unique solution of equation (6.1.1) given by Theorem 6.2.2, with initial data wy. For
a time step T €]0,1], let (wn),cn be the sequence of functions starting from wy and defined

by formula (6.1.4) from iterations of the semi-discrete operator (6.1.3). For a fized time
horizon T' > 0, let B = B(T') be such that

sup [jw(?)]

HS(TQ) S B
te[0,7

There exists two positive constants Ry and Ry, and an increasing continuous function R :
Ry — Ry, such that, if T satisfies the hypothesis

1 B

the semi-discrete scheme enjoys the following convergence estimate: for all n € N such that
t,=nt <T,

llwn — w(ty)| Ho—4(T2) < TtnR(B)GRlT(I—FB)'

Moreover

R(B) < Ry (B+ B?).
Let us make the following comments:

a) The convergence estimate depends on B = B(T'), the bound for the H® norm of the
exact solution on [0,7]. The best known upper bound for B(T') is a double exponential in

time, namely
cr
HS(T2))> e’ — 1,

In(B(T)) < (1 +n* (||w0|
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where In*(z) = In(z) L1
We refer to [31] for more details on this type of estimate.

b) Although we used the implicit midpoint integrator, which is known to produce in

general a global error that scales in 72, the global error scales in 7. This is due to the freezing
effect, ie the fact that the error in Sobolev space between the solution f of (6.1.2) and w
at time t only scales in ¢. However the use of a symplectic integrator is essential in our
problem: through area preservation, it ensures that for all n, w, has average zero, so that
we may define 1), = A~lw, at each step, and then the midpoint integrator associated with
the vector field JV,.
The restriction on the regularity s > 6 comes from the fact that we shall prove that the
local error attributable to the midpoint integrator scales in 7. Smaller values of s should
be admissible if we are willing to let the local midpoint error to scale in 72 only, which is
the case for the freezing error anyway. In view of (6.1.3), one should require the numerical
velocity vector field U(w,) to be at least Lipschitz, in order to solve the implicit midpoint
equation. This should impose at least the restriction s > 4.

c¢) Our proof may be compared with the classical backward error analysis methods widely
used in geometric numerical integration (see [37], [45]): the semi-discrete operator S, (wp)
coincides, at time t = 7, with S;(wp). and it turns out that Si(wp) satisfies a transport
equation. The local consistency errors are then obtain by means of standard energy estimates
for transport equations, essentially. From that perspective our proof may be related to the
paper [25], where convergence estimates are proved for time-discretizations of the Vlasov-
Poisson equation by splitting methods, by means of stability estimates for the associated
transport operator.

d) The main difficulty of the proof is to obtain stability estimates for the operator
Si(wo) = wp o Py, essentially because @, does not satisfy an ODE of the type

0 Py(2) = F(Py(2)).

The trick is to use the fact that the implicit midpoint integrator is the composition of the
forward and backward Euler integrators, with half-time step. More precisely, set

Ei(z) =2+ %va(z) and & =E7}(2),

then
O, =& o0&

One may then easily derive ODE’s like
0:&(2) = Fi(t,z) and 0:.&](2) = Fy(t, & (2)),

and obtain stability estimates for go & and go & in H®, for any function g € H*, by means
of standard energy estimates on transport equations.
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e) The proof proceeds in three steps. In section 3 we derive general stability estimates
for certain transport equations, which will be the main tool of the chapter. In section 4 we
prove stability estimates for the semi-discrete operator using the ideas described in d). In
section 5, we analyse the local errors attributable to the freezing of the velocity vector field
and to the midpoint discretization, by means described in c), and prove the main result.

6.3 Stability estimates for the exact flows

6.3.1 Notations

Let s > 2 and wy € H*(T?). The solution w(t, z) of the Euler equation with initial data wy
given by Theorem 6.2.2, namely

Ow — JVA T w - Vw=0
(6.3.1)
w(t=0,z2) =wy(2),
will be from now on written
pp(wo)(z) = w(t, 2). (6.3.2)

Let 1 be the solution of the Poisson equation Ay = wqg. Proposition 6.6.2 and the Sobolev
embedding (6.2.3) imply that

sup (|09 e < Cll9|

0<||<s

wore(r2) < O lwoll o ey -

The Cauchy-Lipschitz Theorem ensures then that the flow W!(z) associated with the vector
field JV is well-defined and exists globally in time, and the function f(¢,2) = wo(¥*(2))
solves globally in time the frozen equation

of—JVyY-Vf=0

A = wy (6.3.3)

f(t = 072) = wO(’Z)

with initial data wy. We shall write as previously

QDF,t(wO)(Z) = f(tv 2)7 (634)

6.3.2 A stability Lemma for some transport equations

We first prove, in the Lemma below, estimates for transport operators, that will in particular
apply to Euler’s equation and to the frozen equation.

For a two-dimensional vector field X : T? — T? let L(X) be the operator defined for
functions g by

L(X)g=X-Vy, (6.3.5)
and let us define for o € N? the commutator
09, L(X)] = 0¢L(X) — L(X)o. (6.3.6)
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Lemma 6.3.1. For any s > 0, there exists a constant C > 0 such that, for indices o € N?
with |a| < s, vector fields X and functions g, we have

1102, LN ey < CUX ey [lgllezny + Iollzen s (637)
1192, LN luz) < CUXgoraas) [lolleany + Iollmen] s (6:38)
102, XN 9l agez) < C UK gocazy 19 sz + gl | (6.3.9)
and
||63L(X)9||L2(T2) <C ||X| Hs+1(T2) [”gl Hs+1(T?2) + ||gHH2(T2)] . (6-3-10)

Proof. We will prove estimates (6.3.7), (6.3.8) and (6.3.9). The proof of estimate (6.3.10) is
almost identical to the proof of estimate (6.3.7), and easier, so we will not detail it.

All of this is obvious when |a| = 0, and for |o| > 1, the starting point is to use Leibniz’s
formula as follows

02, L(X)] g = 02(X - Vg) = X -02Vg = 3 (g)afxazw
Bty=a
yFo

Any term of the sum may be estimated using the Sobolev embeddings (6.2.2) or (6.2.3) in
several ways, which will produce the three estimates (6.3.7), (6.3.8) and (6.3.9).

Proof of estimate (6.3.7)
When |v| > 1, we have by the Sobolev embedding (6.2.3)

Hafx ' 8ZVQ||L2(T2) < ||8§XHLO<>(T2) ”angHIﬂ(T?) < C HXHHW\+2(T2) ||g||HI7I+1(T2)
<C ||X||H\a|—w|+2(qr2) 9] He(T2) < C'[|X]

HS+1(T2) ||g| HS(TQ) .

When || = 0, we have by Holder’s inequality and the Sobolev embedding (6.2.2)

Han ' VgHLZ(TQ) < HanHL‘l(TZ) ||v9|lL4(T2) < ¢ ||X||H\5I+1(qr2) ||g||H2(T2)
< Ol X grat+r(r2) 19l g2epey < C 1 X]

Hs+1(T2) HQHHQ(T?) :

This proves estimate (6.3.7).

Proof of estimate (6.3.8)

It suffices to use Sobolev’s embedding (6.2.3) for any v # «, as follows

102X - 0V o) < 19X ooy 192982 my < C X lgonsncaoy 9] mios oo

< ClIX N iai-iisaerzy 190 e erzy < C X gaea-ii ) 19l e 2 -
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For any || > 0, the RHS is

¢ ||XHHS+2—|'Y\(T2) ||gHH\’Y\+1(T2) < C|X]
and for |y| =0, it is

Hs+2(T?2) gl Hs(T2)

ClIX]

Hs+2(T?2) ||g||H1(T2) :
This proves (6.3.8).

Proof of estimate (6.3.9)

For any |y| > 2, we may use the Sobolev embedding (6.2.3) as previously

Han : 8;v9||Lz(qp2) < ||3§XHL00(T2) ||33V9||L2(qr2) <C ||X||H\B\+2(T2) ||9||le|+1(qr2)

< Ol X grai-rrszepey 19l v rey < CNX e ey 191 g ey -

When || = 1, we may use the Sobolev embedding (6.2.2) and Hoélder’s inequality
Han ' 8ZVQ||L2(T2) < ||8§XHL4(T2) ||82V9”L4(T2) < C ||XHHI13I+1(T2) HgHH3(T2)

< CNI X gret-rier cr2y 191l a2y < C 11X

Finally, when |y| = 0, Sobolev’s embedding (6.2.3) gives us the estimate

Haz’BX : VgHLz(Tz) < Haz’BXHLz(Tz) HVQHLoo(T2) <C ”XHHlm(qrz) H9HH3(T2)
< ClIX | giaierey 191l gserey < CIX]

Collecting the three previous estimates yields (6.3.9).

Hs(T2) ||g||H3(']I‘2)'

H3(T2) ||g||H3(T2)‘

]

The previous Lemma allows us to obtain the following stability result, which will be the

main technical tool of the chapter.

Lemma 6.3.2. For any s > 0, there exists a constant C' > 0 such that, for vector fields X

and functions h, if g solves the equation
Og—X -Vg=h.
then for allt € R, g enjoys the estimates

; ] i
e llg(t)] ?{s(@) <C ||X(t)| He1(T2) (Hg(t)l He(T2) T “g(t>HH2(T2)>_ 19N s a2y (6.3.11)
IV - X O oo gr) 19 zsrz) + 2 1RO sy 19O a2y
. ] i
3 9 Her) <C [RG] v <||g(t)| Ho(r2y ||g(t)||H1(qrz)>_ g £ 2y (6.3.12)
+ IV X Ol ez 19O ey + 2 1) | ooy N9z 2y
and

d
9Oy <C [1X O ey (19O ey + 19 sz ) |19 e
IV - X Ol ) N9 e oy + 2R (D)

Hs(T?2) lg(t)] H3(T2) *
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Proof. We prove the Lemma by an energy estimate. With the notations introduced in (6.3.5)
and (6.3.6), we have for all |a| < s,

02g(t )Hi?(TZ) = <63L(X)gaa?g>L2(T2 (07h,0%g) 2 (T2)
= <[837L(X)] ga8?g>L2(T2) ‘|‘< ( )8?973(1 >L2 T2) <8 h, 8 9>L2 (T2)-

The last term is obviously controlled as follows

2dt‘

(021,02 g) r2cr2) | < 1A ooy g ()]

Hs(T2) *
Also,
_— 1
(L(X)079,079) 212y = | X(t,2)-VO7g(t, 2)02g(t, 2)dz = —5/ V-X(t,2)|[02g(t, 2)[Pdz,
T2 T2
such that )
(L(X)02g,029) 12(12)| < 3 IV - X ()| oo 2y [19(2)] qus(qr?) :
Finally,

([0, L(X)) g, 02g) 2wy | < 1102, LX) gl 22 9 (2) )
such that estimates (6.3.7), (6.3.8) and (6.3.9) from Lemma 6.3.1 yields respectively the
estimates (6.3.11), (6.3.12) and (6.3.13). O

6.3.3 Stability estimates

We will prove in the Proposition below the stability in H* of the flows ¢g; and ¢r,;, defined
respectively by (6.3.1) & (6.3.2), and (6.3.3) & (6.3.4).

Throughout this subsection we shall use the following property: for any s > 0 and function
g € H*(T?), the vector field JVA™!g enjoys the estimate

l7vaTig|

Hst+1 ']I‘Z) — C ||g| Hs ']I‘Z) (6314)

This is an easy consequence of Proposition 6.6.2.

Proposition 6.3.3. Let s > 2, wy € H*(T?) with average 0, and B > 0 such that [woll grs(2) <
B. There exists two positive constants Ly and Ly, both independent of wy, such that, if

1

T R
0o < L(]B’

then for all t € [0, Ty],

Bth)

lom0(w0) Loy < min (2,€555) [l (6.3.15)

and

< min (2, P"17) [l

1 re(wo)ll s ro) Ho(T?) - (6.3.16)
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Proof. We begin with the stability estimate (6.3.15). ¢g+(wo) satisfies the equation

atSOEJ(wO) - JVA_ISOE,t(WO) Vg i(wy) = 0.

Applying Lemma 6.3.2 with the divergence-free vector field X (t) = JVA~ pp(wp), estimate
(6.3.11) (with s > 2) implies that for all ¢ > 0,

t
2 2 2
HSOEJ(('UO)HHS(TZ’) < Jlwo] Hs(T2) C/ ||80E,U(W0)||H3(T2) “‘PE,U(WO)HHS(@N) do.
0

Here we have also used the inequality (6.3.14) with the function g = g +(wo).
If Ty > 0 is such that the following estimate holds,

< 2wl

sup ||90E,t(wo) |

te[0,To] HS(TQ)

He(T2) )

the previous inequality implies then that

(1 -2BCTy) sup |l¢gt(wo)l

te[0,To]

2 2
Ho(T?) S HWOHHs(TQ)-

Hence if Tj is chosen such that 2BCT, < 3/4, we obtain the estimate

sup |[|og,(wo)l

s < 2 WO s X
t€[0,To) Hs(T2) llwoll g7 (T?)

By a bootstrap argument this implies that a time 7, > 0 can be chosen such that, if
2BCTy < 3/4, vrt(wp) enjoys the estimate

< 21|

sup ||90E,t(w0) |

tE[O’TO] Hs(’]I‘2) = HS(TQ) .
Using Gronwall’s Lemma we infer easily that
loE.4(wo)] Heo(T2) S P11 [l Hs(T?) >

which proves estimate (6.3.15), with Lo = 8C'/3, and Ly = 2C.
To prove estimate (6.3.16), we use the fact that pr:(wp) satisfies the equation

8,5(,0]:7,5(&}0) — JVA_l(A)O . Vgpp;t(wo) = 0,

with initial data wy. Applying once more Lemma 6.3.2 with the divergence-free vector field
X(t) = JVA~ Wy, estimate (6.3.11) yields as previously

¢
2
H3(T?) +O/o [[wol

where we have also applied the inequality (6.3.14) with the function g = wp.
Hence if 2BCTy < 3/4, it implies that for all ¢ € [0, Tp),

2 2
l@re(wo) s (z2) < llwol #o(2) 19F0 (@) [ 37s (2 do

< 2wl

o pe(wo)] Hs(T2) Hs(T?)
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On the other hand, Gronwall’s Lemma implies that

H#(T?2) < Pt ||CU()|

||()0F,t(w0)| Hs(T?2) -

Therefore,

o7t (wo) 722y < min (2, €75) o]

H(T?) >

and estimate (6.3.16) is proven. O

6.4 Numerical stability

6.4.1 Properties of the midpoint flow

Proposition 6.4.1. Let s > 3, wy € H*(T?) with average 0. Let ¢ be the solution of the
Poisson equation A = wy, and let T €]0, 1[. There exists a positive constant Ry, independent
of wo, such that, if T ||w0||H2(T2) Ry < 1, the following properties hold:

i) For allt € [0,7] and z € T2, there exists an unique solution ®,(z) of the implicit

equation
D,(2) = 2 + LIV (%‘Dt(g)) . (6.4.1)

ii) The function ®(z) : [0,7] x T? — T2 is C*71, and for all t € [0,7], z +— ®(2) is a
symplectic global diffeomorphism on T?. Moreover, ;1 = ®_,.

iii) For all t € [0, 7], the mappings
t
Ei(z) =2+ §JV@/J(Z) and & (2) = E7}(2)

are as well global diffeomorphisms on T2, and

q)t:gtog;(.

iv) Let V (t,z) be the vector field defined by
V(t, z) = 0y®_y 0 Dy(2).
If s > 4, there exists a C*~* vector field (t,z) — R(t, z) such that
V(t,z) = —JV(z) + t*R(t, 2).
Proof.
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Proof of assertion i)

Let us first note that, using Proposition 6.6.2 and the Sobolev embedding (6.2.3), we have
for any o > 0,

0<S‘1l|[i Ha?iﬁHLoo(qr?) <C ||¢”Ho+2(1r2) <C ||W0||HG(T2) : (6.4.2)
The existence (and uniqueness) of ®;(z) follows then easily: for ¢t € [0,7], and z € T?, we
define a function F; , : T? — T? by

Fil(C) = 2 + tJV (Z ; C) .

For any (i, (s € T?, we have by the mean-value Theorem

Fon(G) = FonlGo)| = 1 'va (F5) - v (“;@)‘ < 7C 5 WUl =l < 1G=Go,

provided that, using (6.4.2), 7R [|wo|| y2(g2) < 1, for some appropriate constant Ry = Ro(C).
In that case F;, is a contraction mapping on T2, such that Banach’s fixed point Theorem
gives us an unique solution ®(z) to the equation

Fi, (9:(2)) = Pu(2).

This proves the assertion i).

Proof of assertion ii)

Let us now consider, for € €]0, 1[, the function G :] — ¢, 7 + ¢[xT? x T? — T? defined by

Gt,¢,2) = C — 2 — tIVi) (Z;C> (6.4.3)

Then by (6.4.2), V4 belongs to H*™!, which is continuously embedded in C*~!, such that G
has class C*~! and, in addition, for all (¢,2) € [0, 7] x T2,

G(t,Pi(2),2) =0.

Moreover,
8<G(ta q)t(z)v Z) = At (JYt(Z)> )
with o
Yi(z) = V3 (—t(ZQ) - 2) : (6.4.4)
and where, if Y is a 2 x 2 square matrix,
t



Thanks to (6.4.2),
|51‘1p ||aa¢||Loo(T2 < Clwoll 772 (T2) >
and thus it is well-known that, if (7 + €)C ||lwo|| go(p2y < 2, A¢ (JY(2)) is invertible for all
(t,z) € [0,7] x T? and
_ tm
A (JYH2) :Z (JY*t(2)". (6.4.6)

2n
n=0

We may assume that this is true, given the assumption on 7, and choosing € small enough.
As s—1 > 1, we can apply the implicit function Theorem, which shows then that the function
(t,z) — ®4(2) has C*~! regularity on | — e, 7 + e[ xT?.

In addition we are allowed to differentiate the equation

G(t, ®i(2),2) =0
with respect to z, and it implies that
A(JYH(2))0.D4(2) = A, (JY(2)), (6.4.7)

Since Ay(JY*(2)) and A_;(JY'(2)) are invertible, then so is 9,®,(z). By the local inverse
Theorem and the open mapping Theorem, ®,(-) is therefore a local diffeomorphism on T?,
and an open mapping. In particular ®; (T?) is open, and, by continuity, also compact, thus
closed. By connectedness, we conclude that ®,(-) is onto. It is also one-to-one, since if
®y(z1) = Dy(22), then by the mean-value Theorem

z1 + th(Zl)) LIV (22 + (I)t(21)>’ < tC HWOHHQ(TQ)
—_— 5 <

2 2 |Zl_22’,

|21 — 20| = ‘UViﬁ (

which implies that 2z = 25 if ¢ ||lwol|g2(p2) € < 2. Thus @4(-) is a global diffeomorphism
mapping T? to itself.
It remains to show that it is symplectic, 7e that

0.®,(2)1JO.®y(2) = J.
Using (6.4.7), the identity J' = J~! = —J and the symmetry of the matrix Y(z), we have

0.0,(2)"J0,Dy(2) = J

& AL (JYHR)T (AtuYf(z))T) LT (AIY(2) AL (m ) =J

& (AWYE)T) T (AGY(2) T = (ALY ) T) T (ALIYH(2)
o At(JYt(z))JAt(JYt(z))T:A_t(JYt( ))JA (JYt(z))

& A (JYH2)JAL (YU (2)]) = A (JY'(2)JA(Y'(2)J])

s J=J,
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the last line being easily obtained by expanding each sides of the penultimate equality.
Finally, as we have for all z € T?,

By(2) = 2+ LIV (LW> ,

2

one infers that for all z € T?,

2 =01 (2) + tJV (M) :

2
which shows that ®; ' = &_,.

Proof of assertion iii)
The mappings & and & are defined by
E(2) = = + %va(z) and E£1(2) = = + %va(é’f(z)).
Thus, using the above notation (6.4.5),
0:E:(2) = A (JV*P(2))  and  Al(JV*Y(E[(2)))0:E (2) = I,

such that we may repeat the previous arguments (local inverse Theorem, open mapping
Theorem) to conclude that £ and £* are global diffeomorphisms on T2.
Moreover, ( = £/(z) is by definition the unique solution of the equation

(= 2+ 5IVH(C),

which is also solved by ¢ = 22 Hence Ez) = %t(z), and

2
(I)t:gtog;.

Proof of assertion iv)

In that part of the proof we shall need the following derivatives of the function G defined by
(6.4.3):

;

0,G(t,C,2) = — IV <Z ; C)

8CG(ta ¢ Z) =1 - %JVQQ/} (%C)

2 (6.4.8)

0,0G(t,¢, 2) = 0:0,G(t,¢,2) = —%JVQQﬂ <Z —; C)

0.0.G(t,C, 2) = —iJv% (Z—;r(>
| 02G(1,¢,2) = (0,0)T.
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We will write the second order Taylor-expansion in time of 0;(®_;(z)) o ®;(z), and for that
we will need the expressions of

Di(2), 0Pi(z), OPi(2)) 0 Pe(2), %[@(@_t(z))o@t(is)]

at time ¢ = 0.
First of all, using (6.4.3) and (6.4.8) and evaluating the identities

G(t,P(2),2) =0 and O,G(t, P(2),2) + O.G(t, Py(2),2)0,P(2) =0

at t = 0 gives us

P0(z) =2 and 0,P(2)=0 = JVY(2). (6.4.9)

In addition, we know that
G(—t,P_4(2),2) = 0. (6.4.10)

Differentiating (6.4.10) with respect to the time, we obtain
—0G(—t, P_4(2), 2) + O G(—t, P_4(2), 2) 0 (P_¢(2)) = 0.

It holds for all > € T2, and thus, pulling-back by the map z s ®;(2), we infer that

— 0,G(—t,2,04(2)) + 0:G(—t, 2, y(2)) [0(P_4(2)) 0 Dy(2)] = 0. (6.4.11)
Evaluating (6.4.11) at ¢t = 0 and using (6.4.8), we obtain

[04(@—4(2)) 0 Py(2)]mg = —IV(2). (6.4.12)
Differentiating (6.4.11) with respect to ¢ we have,
— 0.0,G(—t, 2, D4(2)) 0, P4 (2) — 010 G(—t, 2, P4(2)) [01(P_1(2)) 0 Py(2)]
+ 0,0.G(—t, 2, D4(2)) 0 Ps(2) - [04(P_t(2)) 0 D(2)]
FOG(, B(2),2) T [(@(2)) 0 Bi(2)] = 0

Evaluating this expression at ¢t = 0 with the help of (6.4.8), (6.4.9) and (6.4.12) gives us

d
3 [0(®—e(2)) 0 Po(2)] =g = 0.
Using this and (6.4.12), we conclude by a Taylor expansion that for all ¢ € [0, 7],
t2
0(2-i(2)) 0 ®u(2) = = IVU(2) + SR, 2)-
Moreover the Taylor remainder has the regularity of

12
e [0i(P_4(2)) 0 Dy(2)],

which is C*74 as (¢, 2) = 0y(P_4(2)) is C°72 and (¢, 2) — Py(2) is C*L. O
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Remark 6.4.2. In particular, if a function g has average 0, then the function g o ®; has
also average 0, as ®; preserves the volume.

This justifies our choice of a symplectic integrator, as it implies that at each step of the
scheme (6.1.4), w, = S*(wy) has average 0, and we may define the divergence-free vector
field IV A~Yw,, and thus compute wy1, and so on.

6.4.2 Stability estimates

Our analysis of the stability of the semi-discrete operator defined by (6.1.3) is based on
the fact that the implicit midpoint rule is the composition of Euler’s backward and forward
methods, with half time-steps, as it was shown in the third point of Proposition 6.4.1.
Therefore, to control the regularity (in space) of some function g o ®;, we shall first analyse
the effect of & (Lemma 6.4.3 below), and then the effect of & (Lemma 6.4.5 below).

Lemma 6.4.3. Let s > 3, wy € H*(T?) with average 0, and 7 €]0,1[. Let ¢ be the solution
of the Poisson equation A = wy, and let & be the half time-step forward Euler integrator
defined for t € [0, 7] by the formula

ENz) =z + %JV@/J(Z’)

There exists two positive constants Ro and Ry, independent of wo, such that, if T ||wo|| g2 ey o <
1, then for all g € H*(T?) and all t € [0, 7],
lg 0 Eulsquzy < €U nwcm il g .

Proof. The idea of our proof is to derive a transport equation whose initial data is g and
whose final data is g o £, and to obtain the conclusion by Lemma 6.3.2.
Let us consider the transport equation

or(t,z) — X(t,z) - Vr(t,z) =0
{ o0.9) = g2), (6.4.13)
with .
X(t,2) = % (12 + %Jv%(z)) IVY(2). (6.4.14)

Note that the inversion of the above matrix has already been justified in the proof of Propo-
sition 6.4.1, under the hypothesis 7 [|wol| yr2(2) o < 1. As

£2(2) = 2 = LIVY(EL(2),

we have

O(E2,(2)) = =X(1, €2,(2)),
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such that for all (¢,2) € [0, 7] x T?

d .
Er(ta g—t(z)) = Oa

and thus for all (¢,2) € [0,7] x T?,

r(t, €2,(2) = 9(2).
In other words, as £*,(z) = & '(z), we have

T(t, Z) =go° gt(z)

That being said, using estimate (6.3.13) from Lemma 6.3.2 (with the inequality s > 3), we
may write that for all ¢ € [0, 7],

d 2 2 2
3 17 Mareerey < CUXE )z s ey + 1V - X ooy 17 e 2y -
Using Lemma 6.4.4 below and Gronwall’s Lemma, we infer that

eth(1+t|\wo||HS(T2>)||wo||H5(T2)7

Mgz rzy < 17005 s 2y

which gives the desired conclusion, as r(0) = g and r(t) = g o &. ]

Lemma 6.4.4. Lets > 3. Fort € [—7,7|, with T satisfying the hypothesis T Rg |wo| 2 (p2y < 1

of Proposition 6.4.1 and Lemma 6.4.3, and z € T?, let us consider the vector field X (t, z)
defined by (6.4.14). There exists a constant C' > 0 such that

X (2, )]

oz < C (14 18] ol

HS(T2)> ||W0| Hs(T?2) (6415)

and

IV X () pmecey < € (1 1] Il ey ) ol o (6.4.16)

Proof. From definition (6.4.14), we may write that
2X (t,2) = JVY(2) + F(tIV*Y(2))IVY(2),

where F' : U C My(R) — My(R) is a smooth function defined on a sufficiently small
neighborhood U of 0y, the zero element of the vector space M3(RR), by the formula

71 o0

F(A) = (12 + %A) — I, = Z %An.

Since (see (6.4.2))
TV ooy < COT ol ey »
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we way assume, up to a proper modification of Ry, that tJV?) belongs to U almost every-
where. Applying Lemma 6.2.1, we infer that

19y < 1TV ey + C (79| gy ) (25 8TV )

where Cs : Ry — R, is an increasing continuous function. In view of the hypothesis
TRy [[woll 22y < 1 and of estimate (6.4.2), we may assume that for all [¢| < 7,

C. (|19 ey ) < €.

for some appropriate constant C. Thus we obtain the estimate

X, )]

[PAYE

Hs(T2) 1

ey < C (14 [t] ol o)

HS(T2)> [[wol

which is precisely estimate (6.4.15).
Estimate (6.4.16) follows quickly using the Sobolev embedding (6.2.3) as follows

I X ey < CIXE sy < IXE sy < C (1 18] el ey ) o)

since s > 3. n

Hs(T2) s

Lemma 6.4.5. Let s > 3, wy € H*(T?) with average 0, and 7 €]0,1[. Let ¢ be the solution
of the Poisson equation AY = wy, and let E be the half time-step backward Euler integrator
defined for t € [0, 7] by the formula

£4(z) = = + %Jw(gg(z)).

There exists two positive constants Ry, Ry, independent of wy, such that, if TRy HonHz(Tz) <
1, then for all g € H*(T?) and t € [0, 7],

Hg o gt*| S eth(l—i—t”wO“H‘s(TQ))HUJOHHS<T2) Hg|

Hs(T?2) Hs(T2) *

Proof. Our proof ressembles the proof of Lemma 6.4.3, as we take advantage of the fact that
one travels from g o & to g along the flow £ ; = & ~1. Thus, instead of deriving a new
equation that will transport us from g to g o &, we shall use once more equation (6.4.13)
(with the time reversed, essentially), with this time g o & for initial data, and ¢ for final
data, and we shall conclude by Lemma 6.3.2.

Let us consider the transport equation

{ O,1(0,t,2) + X(—0,2) - Vr(o,t,2) =0 (6.4.17)

r(0,t,z) =go &' (z),

where the auxiliary variable o belongs to [0,¢], and where X was defined by (6.4.14). Note
that, as

Ex(z) = 2+ SIVU(E(2)),
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we have the identity
0,E:(2) = X(—0,E(2)).

o 'Y o

Therefore,

d .
Er(o, t,€:(z)) =0,

such that for all o € [0,¢] and 2z € T?,
r(o,t,E,(2)) = 7(0,1,2) = go & (2),
and thus
r(t,t,z) = go& o€ y(2) = g(2).

Therefore the transport equation (6.4.17) has the expected initial and final data. However,
it will be more convenient to deal with the function

u(o,t,z) =r(—o,t, z),

with o € [—t,0]. (Essentially, we do this to apply Gronwall’s Lemma in its usual statement
at the end of the proof.)
u satisfies on [—t, 0] the transport equation
Oyu(o,t,z) — X(0,2) - Vu(o,t,z) =0
uw(0,t,2) =7(0,t,2) = go & (2), (6.4.18)
u(—t, t,z) =r(t,t, z) = g(z).

That being said, estimate (6.3.13) from Lemma 6.3.2 shows that for any o € [—t, 0],

= Jufor )

Gronwall’s Lemma and Lemma 6.4.4 above imply then that

mer2) < [ X(0,0)]

2 2
HS(T2)+||V - X (o, ')HLOO(T?) Ju(o.t, )] H3(T2) "

() [[u(o, ;)]

Hu<o-7t7 )’

2 2 7
by < =6y 0 (20 (1416 Bl ool ey 00)

Taking o = 0 gives us the estimate

Rut(1+tl|woll grs (p2) ) lwoll s (2
Y

Hu(O?tv )’

no(re) < Ju(=t,1,-)]

which gives the desired conclusion, using the second and third lines of (6.4.18). O

Hs(T2) €

Proposition 6.4.6. Let s > 3, wy € H*(T?) with average 0, and 7 €]0,1[. There exists two
positive constants Rg, Ry, independent of wq, such that, if TRy HwOHHQ(Tz) < 1, then for all
t €[0,7],

1S (o) frer2) < eth(l-i-tllthoHHsmﬂ))HwollHS(qrz) lwo

where the operator S; is defined by formula (6.1.3).

Hs(T2)»
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Proof. As already seen, we may write
St(wo) = wp o Py Zw005t05:7

with & and &, defined in Proposition 6.4.1. We shall apply Lemma 6.4.5 and 6.4.3. However,
note that in these Lemmas, we derived a bound for g o & (or g o &) where g is a function
that depends only on z. Hence, to apply these Lemmas, we shall consider the function

flo,t,2) =wyo & 0&f(2),
with t, 0, € [0, 7].

In view of the hypothesis 7Ry ||wo|| ;2 (r2) < 1, we may apply Lemma 6.4.5, which shows that
for all ¢,0 € [0, 7],

||f(0-7 t’ )| HS(’]I‘Q) S eCt(l-‘y—tHWO“HS(']I‘Q))”UJO“HS(']I‘z) ||CL)0 o ga’| HS(’]I‘Q) 7
for some constant C' > 0.
Applying now Lemma 6.4.3, we may also write that for all o € [0, 7],
oo © ol gegey < € Hobobirscan) ollns 52 g . .
Hence, for all ¢,0 € [0, 7],
||f(0-7 t7 )| HS(’]I‘Q) S 60t(2+(t+0)||W0||HS(']I‘2))HUJOHHS(’]I‘Q) ||CUO| HS(TQ) )
This gives the result by taking o = ¢, and Ry = 2C. O

Corollary 6.4.7. Let s > 5, and u,v € H*(T?) with average 0. Let T €]0,1[. There exists
two positive constants Ry, Ry, independent of u and v, such that, if

TRy max (H’LLHHQ(TQ) s H’UHHS—B(TQ)> < 17
for allt € [0, 7],

TRy (14|ull ys—3(y2))

156 (u) = Se(0)llrs-a¢w2y < llw = vl gro-sgpzy € + By |l grasre)

where the operator S; is defined by formula (6.1.3).

Proof. We may apply Proposition 6.4.1 and define on [0, 7| the midpoint integrator associated

with u, namely
q)t
Oy(2) = 2+ tJVA (HT(Z)) .

St(u) = Uuo (I)t,
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we have

d
T [Si(u) o ®_4] =0,

such that S;(u) satisfies the transport equation

OiSy(u) + Vi (t) - VS,(u) = 0,
vu(t7 Z) - atq)—t o q)t<2).

Moreover, assertions ii) and iv) from Proposition 6.4.1 show that V, has C*~? regularity,
and that there exists a C*~ vector field R,(t, 2) such that for all (¢, z) € [0, 7] x T?,

Vit 2) = —JVA ' u + 1R, (1, 2).
With the same arguments, there exists a C*~2 vector field V, (¢, z) such that

@tSt(U) + ‘/v(t) . VSt(U) = O,
Vi(t,z) = —JVA 0+ 2R, (1, 2).

Moreover R,(t,z) has C*~* regularity. Therefore S;(u) — S;(v) solves the equation
O(Se(u) = Si(v)) + Vu(t) - V(Si(u) = Si(v)) = (Vo(t) = Vau(t)) - VSi(v).
Applying estimate (6.3.12) from Lemma 6.3.2, we infer that

2
Hs—4(']r2)

d
a [St(u) — St(v)]

2574(T2) S C ||Vu(t)| Hs=2(T?2) ||St(U) — St(v)|

F IV VaO)ll o 2y [Si(w) = Si(v)]
+2[[(Vu(t) = Vu(?)) - VSi(v)]

2
HS_4(T2)

Hs—4(T2) [Se(u) — Si(v)]

Since V,(t) has class C*72, with s > 5, we may write that for all ¢ € [0, 7],

H574(’][‘2) .

Vel ooy €€ and V- VD) eny < €
Also, we may find a C*~ vector field R(t,z) such that
Vo(t) — Vu(t) = JVA™ 'u — JVA™ v + 2R(t, 2).

Using estimate (6.3.10) from Lemma 6.3.1, this implies that

[(Va(t) = Viu(#)) - VS,(v)]

oy < C ([[IVATu = VA |

ey + ) 1S go-sze)
o) + ) [Si)
Using Proposition 6.4.6, we may write, under the hypothesis 7R [|v[| jo-s(p2) < 1,

[EAGH

H573(T2) .

<C (fju-vl

wo-s(r2) < O 0| gro-s ey -
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Collecting the previous estimates, and applying Lemma 6.5.2, we infer that

t
1Se(w) = Se(0)l| pro-awzy < [l = V[l ro-a ey + /0 C18s(u) = So (V)| o112y do

+ O ||ul

Hs=3(T?2) <Hu — | ms-1(T2) 72) :

Applying Gronwall’s Lemma we conclude that

IS¢ () = Se(V)l| -2y < [Ju =2 .

Hs—4(T?) (1+Cr ||UHHS*3(T2)>6TC +Cr° HU’HHS*S('IW) €
One obtains then the desired conclusion with the inequality
14+z<e”

that holds for any x > 0, and with an appropriate choice of the constant R; = R;(C). O

6.5 Convergence estimates

6.5.1 Local errors

Proposition 6.5.1. Let s > 2 and wy € H*(T?) with average 0. There exists two positive
constants Ry, Ry independent of wy, such that, if TRy HonHS(TQ) < 1, then for all t € [0, 7],

||90E,t(WO) - SOF,t<W0)| Hs=1(T?2) S RIT2 ||WO| Zs(q{@) .

Proof. ¢p(wo) and pp(wy) satisty respectively the transport equations

Orpri(wo) — JVA op(wo) - Vg i(wy) =0

and
8,5@}3(&)0) — JVA_I(A)O . V(,ORt(w()) = 0,

with initial data wy.
Hence

O (ppi(wo) — eri(wo)) — JIVA g i(wo) - V (pEpi(wo) — pri(wo))
= JV (A wy — A pp(wo)) - Vor(wo).

Therefore, using estimate (6.3.12) from Lemma 6.3.2, applied with the divergence-free vector
field
X(t) = JVA™ pp (wo),

which satisfies (using Proposition 6.6.2)

HJVA_I(,OE’t(wO)‘

Hs+1(T2) < C HQOE,t(WOH Hs(T?) -
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we obtain the estimate

d
dt lpEt(wo) = @ri(wo)] ?{s*l(ﬂﬂ) < Cllepi(wo) = re(wo)l ZS*l(TQ) lom.¢(wo)l
+2[|JV (A wo — A ppa(wo)) - Vere(wo)|

Hs(T?2)

Hs—1(T?2) loE.t(wo) — pri(wo)| Hs=1(T2) *

In view of the hypothesis 7R ||wo|
that

He(T2) < 1 we may apply Proposition 6.3.3, which shows

lom0(w0) Loy < € ol gecsy -

Also, using estimate (6.3.10) form Lemma 6.3.1, and Propositions 6.3.3 and 6.6.2, we have

|7V (A wo — A g (wo)) - V@F,t(WO)HHS_I(Tz) < C||A™ (wo — @E,t(wo))HH5+1(Tz) ¢ r(wo)|

< Clwo = @p,(wo) [l o1 (2 llwol

Hs(T?2)

Hs(T?2)

However, using once more Proposition 6.3.3 and estimate (6.3.10) from Lemma 6.3.1,

Hs—1 ("]I‘Z) dO'

t
< / lop.0 (o)
0

t
l@m.4(wo) — woll gro—1(q2) < / | IVA™ vpq(wo) - Vg (w)]
0

2 2
o2y < Ot [|woll s (2 -

Collecting the previous estimates, we infer that

% lepi(wo) — @F,t(wo)Hi;s—l(Tz) < Cllwoll s a2y lleE,e(wo) — @F,t(wo)Hi;s—l(Ta)
+ C [lwolls g2y 1.6 (wo) — ©re(@o) | o (2 -
Using Lemma 6.5.2 below, we conclude that
t
s t(wo) — SOF,t(W(])HHs—l(qIQ) < O |lwol HS(T2)/O l¢E.0(wo) = @ro(wo)l Hs=1(T2) do

t
+C ol [ odo.
0

Thus, if 7C'||wo|

meaer2) < 1, which we may assume, choosing if necessary Ry > C, we have

Sl[ép] HSDE,t(WO) - SOF,t(WO)‘ Hs—1(T?2) < R ”UJOH?}Is(Tz) 7_2,
te|0,7
for some appropriate constant R;(C). ]

The previous proof uses the following result, inspired by Lemma 2.9 of [36].
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Lemma 6.5.2. Let f : R — R be a continuous function, andy : R — R be a differentiable
function satisfying the inequality

VEE R, SLylt) <20u(1) + 205D

where C7 and Cy are two positive constants. Then

VieR, yt) <+y0)+C /Ot Vy(o)do + Cy /Otf(a)do

Proof. For € > 0, we define y. = y + €. We have then

d 1 d Cry(t) | Con/y(t)
—VYe(t) = —y(t) < + f(@).
d 2/y.(t) dt Ye (t) ye(t)
Therefore
" Vylo)
\/ya < \/ya + Cy / d + 02/ f(a)da.
\V/ ya 0 ya(a)
Taking then the limit ¢ — 0 proves the Lemma. O]

Proposition 6.5.3. Let s > 5 and wy € H*(T?), with average 0. There exists two positive
constants Ry and Ry, independent of wy, such that, if T |jwo| we-s(r2) o < 1, then for all
t €0, 7],

HSDF,t(wO) — Si(wo)| Hs=4(T2) < Ry7? [|wol Hs=3(T?2) -

Proof. In view of the hypothesis T ||wp| pa-3(r2) Bo < 1 and s > 5, we may assume that we
are in the frame of Propositions 6.4.1 and 6.4.6, and thus that their respective conclusions
hold.

That being said, it was shown in the proof of Corollary 6.4.7 that there exists a C*~2 vector
field V (¢, z) such that S;(wp) solves the equation

8,:8,(wo) + V(L,-) - VSi(wo) = 0,

on [0, 7], with initial data wy. Moreover, it was also shown with the help of Proposition 6.4.1,
that there exists a C*~* vector field R : [0, 7] x T? — T? such that

V(t,2) + JVA  wy(z) = *°R(¢, 2). (6.5.1)
Meanwhile, pp,(wp) satisfies the equation
Oori(wo) — IVA™ wy - Vor,(wy) = 0.
Hence we have

O (pr(wo) — Si(wo)) — JVAT wy - V (pri(wn) — Se(wo)) = (V + JVA  wy) - VS, (wp).
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Therefore, using estimate (6.3.12) from Lemma 6.3.2, applied to the vector field
X = JVA_IWO,
that satisfies (using Proposition 6.6.2)

| TV A |

) <C ||W0| Hs=3(T2) >

HS_Z(T2
we obtain the estimate

d
— [lere(wo) = Si(wo) | re-sr2) < C llwollgros ey lori(wo) — Si(wo)|

dt
+ 2 || ri(wo) — Se(wo)]

2
Hs—4 (TZ)

s [[(V 4 IVA wo) - VSi(wo)|

H5*4(T2) N
Moreover, using identity (6.5.1) and the C*~* regularity of R, we have

|(V + JVA™ wp) - VS, (wy )< Ct? ||S; (wo)|

)HHS—4(T2 HS_3(T2) .

By Proposition 6.4.6 and the hypothesis 7Ry ||wo|

ISk (wo)

He-3(12) < 1, we may write that

Hs=3(T2) < C'wol Hs=3(T2) *

Collecting the previous estimates, we infer that

d
T | r(wo) — S(wo)]

2
Hs—4(T?2) S C ”W0|

2
Hs—3(T?2) ||(,0F}t(bd0) - St<W0)| Hs—4(T?2)

+ C [|woll gro-s w2y £l ma(wo) — Se(wo) | go—sgr2) -
Lemma 6.5.2 gives us then the estimate
t
leri(wo) — Si(wo) Hs—4(T?2) < C|wol Hs—fﬂ(qr?)/o l¢ro(wo) — Sowo)] Hs—4(T?2) do
+C7° ||wol Hs=3(T2) -

Therefore, if 7C'||wo|
conclude that

e-3(p2) < 1, which we may assume, choosing if necessary Ry > C', we

tSEP} leri(wo) — St(W0)||Hs—4(qr2) < Ry7? [|wol Hs=3(T2) s
€|0,7
for some appropriate constant R;(C). ]

6.5.2 An a priori global error estimate

Proposition 6.5.4. Let s > 5, and wy € H*(T?) with average 0. Let w(t) € C° (R, H*(T?))
be the unique solution of equation (6.1.1) with initial data wo, given by Theorem 6.2.2. For
a time step T €]0,1[, let (wy)nen be the sequence of functions starting from wy and defined
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by formula (6.1.4) from iterations of the semi-discrete operator (6.1.3). Assume that there
exists a time Ty > 0 and a constant B > 0 such that

sup ||lw(t)|| gro(pzy < B and  sup [|wpl| gz gy < 2B.
tE[O7T0} tn<To

Then there exists two positive constants Ry, Ry such that, if TRyB < 1,

e = ()l < TROBtge 04,
or allt, <Ty+ T, where R : — 1S an increasing continuous function that satisfies
for all t, < T here R: Ry — Ry ¢ ' ' ti function that satisfi

R(B) <R, (B+B’).

Proof. We shall use the notations introduced previously
wp =8 (wo) and  w(t,) = g4, (Wo)-

We may choose Ry such that, if TRyB < 1, Proposition 6.4.6 holds when applied to any
term of the sequence S (wyp), for ¢, < Tj. This implies that S”(wo) belongs to H* for all
tn S T(] + 7.

That being said, the semi-discrete error is inductively expanded as follows

HS:H (wo) — @E»tn+1(w0)HHs—4(T2) < [|S5 (87 (wo)) = S- (@E,tn (wo))| Hs=4(T2)
+ |87 (et (wo)) — @R (0B, (@Wo)) | gro-aep2)
+ [|orr (PB4 (W) — 9Er (B (Wo))]

Hs—4(']I‘2) )

for all t,,1 < Ty + 7.
Applying Corollary 6.4.7, and using the hypothesis TRyB < 1, we may find a positive
constant R, such that

1S5 (82 (w0)) = S5 (95,10 (@) | o2y < €IS (o) = @t (o)
Applying now Propositions 6.5.3 and 6.5.1, we may moreover write that

S RlBT3

Hs=4(T2) + Ry BT,

|S7 (0Bt (wo)) = ¢rr (PE L, (Wo))]

H574(']T2)
and
< Rl B3T2.

H574(T2) =

lprr (PE L, (Wo)) — 0B (PEL, (W0))|
Therefore,

|87 (Wo) = @t (wo)|

with

H5*4(']I‘2) S 67R1(1+B) ||S:—l(w0) - QOE,tn (w0)||Hs—4(T2) + R(B)7_27

R(B) <R, (B+ B’).
which implies by induction that for all ¢,, < Ty + 7,

n—1
HS:_L(WO) — 9By, (W0)||Hs—4(qr2) < R(B)TQ Z 6t¢R1(1+B) < TR(B)tn6R1T0(1+B),
i=0
which concludes the proof. O]
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6.5.3 Convergence of the semi-discrete scheme

Here we shall prove our main result, namely Theorem 6.2.3. It will be a consequence of
Proposition 6.5.4, and the only remaining task is to bootstrap controls of the same order on
the H*® norm of the exact solution and on the H? norm of the numerical solution up to a
fixed time horizon.

Proof of Theorem 6.2.3.
Let T and B = B(T) be such that
sup [|lw(t)| <2y < B.
t€[0,T]
We shall first prove by induction on n € N, with ¢,, < T, that
sup ||Wk:||H2(T2) <2B.
tkStn

This clearly holds for n = 0. Let now n > 1, with ¢, < T, and assume that the following
induction hypothesis holds:

sup ||wk||H2(T2) <2B.
tkgtn

By applying Proposition 6.5.4 with s = 6 and T = t,,, we may find two positive constants
Ry, Ry such that, if TRyB < 1, then for any ¢, < t,.1,
HWkHH2(T2) < Hw(tk)Hm(T?) + Jwr = W(tk)Hm(T?) <B+ TtkeRlTO(HB)R(B)a
with
R(B) <R, (B+ B’).

If 7 satisfies
B

TR(B)eTh(+B)’

T <

this yields
HwkHH?(T?) < 2B,

for any t; < t,,1. This concludes the induction and shows that
Sup ||Wn”H2(T2) <2B.
tn<T
One obtains then the conclusion of Theorem 6.2.3 by applying Proposition 6.5.4 with T =
T—rT.
[
6.6 Appendix A: Solving Poisson’s equation

Proposition 6.6.1. Let f € L*(T?). Assume that
f(z)dz =0.
T2
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Then there exists an unique uw € H*(T?) such that

Au=f

/T u(=)dz = 0.

Proof. Assume first that u € H(T?) satisfies the equation. Since the average of f on the
torus is 0, we can write

keZ2*

Setting also

the Poisson equation simply reads
k2 = fu, keZ

Reciprocally, if the coefficients 4y, are defined by the above formula (for k& € Z*), and if we
set

then v € H(T?) (this will be precisely proven in the next Proposition), has average 0, and
satisfies Au = f. m

Proposition 6.6.2. Assume that u and f satisfy
Au = f.
Then for all s > 2,

sup H&?U“m(qr?) < C|fl
0<||<s

R (6.6.1)
Proof. For any 0 < |a| < s, we have

Q 2 o |~ 2 a— ~ 2
|02l Fagrey = D P [anl* < C Y KPP kI ||

keZ? kez?

<CY (k)= ‘fkr = O | flljre-2(r2) -

keZ?
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Résumé

Cette these porte sur le comportement en temps long de solutions d’équations de type

Vlasov, principalement le modele Vlasov-HMF. On s’intéresse en particulier au phénomene
d’amortissement Landau, prouvé mathématiquement dans divers cadres, pour plusieurs
équations de type Vlasov, comme I’équation de Vlasov-Poisson ou le modele Vlasov-HMF,
et présentant certaines analogies avec le phénomene d’amortissement non visqueux pour
I’équation d’Euler 2D. Les résultats qui y sont décrits sont les suivants.
Le premier est un théoreme d’amortissement Landau pour des solutions numériques du
modele Vlasov-HMF', obtenues par discrétisation en temps de ce dernier via des méthodes de
splitting. Nous prouvons en outre la convergence des schémas numériques. Le second est un
théoreme d’amortissment Landau pour des solutions du modele Vlasov-HMF linéarisé autour
d’états stationnaires inhomogenes. Ce théoreme est accompagné de nombreuses simulations
numeériques destinées a étudier numériquement le cas non-linéaire, et semblant mettre en
lumiere de nouveaux phénomeénes. Enfin, le dernier résultat porte sur la discrétisation en
temps de I'équation d’Euler 2D par un intégrateur de Crouch-Grossman symplectique. Nous
prouvons la convergence du schéma.

Abstract

This thesis concerns the long time behavior of certain Vlasov equations, mainly the Vlasov-

HMF model. We are in particular interested in the celebrated phenomenon of Landau damp-
ing, proved mathematically in various frameworks, for several Vlasov equations, such as the
Vlasov-Poisson equation or the Vlasov-HMF model, and exhibiting certain analogies with
the inviscid damping phenomenon for the 2D Euler equation. The results described in the
document are the following.
The first one is a Landau damping theorem for numerical solutions of the Vlasov-HMF
model, constructed by means of time-discretizations by splitting methods. We prove more-
over the convergence of the schemes. The second result is a Landau damping theorem for
solutions of the Vlasov-HMF model linearized around inhomogeneous stationary states. We
provide moreover a quite large amount of numerical simulations, which are designed to study
numerically the nonlinear case, and which seem to show new phenomenons. The last result
is the convergence of a scheme that discretizes in time the 2D Euler equation by means of a
symplectic Crouch-Grossmann integrator.
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