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Résumeé

Cette thése développe des estimations d’erreur a posteriori et critéres d’arrét pour
les méthodes de décomposition de domaine avec des conditions de transmission de
Robin optimisées entre les interfaces. Différents problemes sont considérés: '’équation
de Darcy stationnaire puis 'équation de la chaleur, discrétisées par les éléments fi-
nis mixtes avec un schéma de Galerkin discontinu de plus bas degré en temps pour
le second cas. Pour I’équation de la chaleur, une méthode de décomposition de do-
maine globale en temps, avec mémes ou différents pas de temps entre les différents
sous domaines, est utilisée. Ce travail est finalement étendu a un modele diphasique
en utilisant une méthode de volumes finis centrés par maille en espace. Pour chaque
modele, un probleme d’interface est résolu itérativement, oli chaque itération néces-
site la résolution d'un probleme local dans chaque sous-domaine, et les informations
sont ensuite transmises aux sous-domaines voisins. Pour les modéles instationnaires,
les problémes locaux dans les sous-domaines sont instationnaires et les données sont
transmises par I'interface espace-temps.

L'objectif de ce travail est, pour chaque modele, de borner I'erreur entre la solution
exacte et la solution approchée a chaque itération de l'algorithme de décomposition
de domaine. Différentes composantes d’erreur en jeu de la méthode sont identifiées,
dont celle de l'algorithme de décomposition de domaine, de facon a définir un
critere d’arrét efficace pour cette méthode. En particulier, pour I'’équation de Darcy
stationnaire, on bornera I'erreur par un estimateur de décomposition de domaine ainsi
qu'un estimateur de discrétisation en espace. On ajoutera a la borne de I'erreur un
estimateur de discrétisation en temps pour I’équation de la chaleur et pour le modele
diphasique. L'estimation a posteriori répose sur des techniques de reconstructions
de pressions et de flux conformes respectivement dans les espaces H' et H(div)
et sur la résolution de problemes locaux de Neumann dans des bandes autour des
interfaces de chaque sous-domaine pour les flux. Ainsi, des critéres pour arréter les
itérations de I’algorithme itératif de décomposition de domaine sont développés. Des
simulations numériques pour des problemes académiques ainsi qu'un probléeme plus
réaliste basé sur des données industrielles sont présentées pour illustrer I'efficacité de
ces techniques. En particulier, différents pas de temps entre les sous-domaines sont
considérés pour cet exemple.

Mots-clés : Ecoulement et transport en milieu poreux, éléments finis mixtes,
décomposition de domaine en espace, décomposition de domaine globale en temps,
discrétisation conforme et non-conforme en temps, pas de temps locaux, conditions
d’interface de Robin, estimation d’erreur a posteriori, critere d’arrét, probleme local de
Neumann






Abstract

This work contributes to the developpement of a posteriori error estimates and stop-
ping criteria for domain decomposition methods with optimized Robin transmission
conditions on the interface between subdomains. We study several problems. First,
we tackle the steady diffusion equation using the mixed finite element subdomain dis-
cretization. Then the heat equation using the mixed finite element method in space
and the discontinuous Galerkin scheme of lowest order in time is investigated. For the
heat equation, a global-in-time domain decomposition method is used for both con-
forming and nonconforming time grids allowing for different time steps in different
subdomains. This work is then extended to a two-phase flow model using a finite vol-
ume scheme in space. For each model, the multidomain formulation can be rewritten
as an interface problem which is solved iteratively. Here at each iteration, local sub-
domain problems are solved, and information is then transferred to the neighboring
subdomains. For unsteady problems, the subdomain problems are time-dependent and
information is transferred via a space-time interface.

The aim of this work is to bound the error between the exact solution and the
approximate solution at each iteration of the domain decomposition algorithm. Differ-
ent error components, such as the domain decomposition error, are identified in order
to define efficient stopping criteria for the domain decomposition algorithm. More
precisely, for the steady diffusion problem, the error of the domain decomposition
method and that of the discretization in space are estimated separately. In addition, the
time error for the unsteady problems is identified. Our a posteriori estimates are based
on the reconstruction techniques for pressures and fluxes respectively in the spaces H'
and H(div). For the fluxes, local Neumann problems in bands arround the interfaces
extracted from the subdomains are solved. Consequently, an effective criterion to
stop the domain decomposition iterations is developed. Numerical experiments, both
academic and more realistic with industrial data, are shown to illustrate the efficiency
of these techniques. In particular, different time steps in different subdomains for the
industrial example are used.

Keywords: Flow and transport in porous media, mixed finite element method,
domain decomposition in space, global-in-time domain decomposition, conforming
and nonconforming time grids, local time steps, Robin interface conditions, a posteriori
error estimate, stopping criteria, local Neumann problem
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Introduction

Motivation

Radioactive materials are nowadays used for scientific research, electricity production,
in medecine, in national defense, and in many other fields. All these activities produce
radioactive waste. An important question is how to dispose radioactive waste safely
and without overwhelming cost for future generations?

The radioactive waste must be confined and isolated until the radioactivity has
decayed to a level that no longer poses a threat to the environment. ANDRA, the
french national radioactive waste management agency, (’Agence nationale pour la
gestion de déchets radioactifs), which funded this thesis, is a public institution founded
in 1991. The purpose of this agency is to ensure a safe long-term management of
all radioactive waste produced in France. In order to provide safe nuclear waste
management solutions, ANDRA classifies this waste according two main criteria:

* First, the level of activity (quantity of radiation), classified in 4 levels: very low
level, low level, intermediate level, high level.

* Second, the period of radioactivity, which can be from a few seconds to hundreds
of thousands of years. Here the waste is classified in 2 levels: short lived (31
years or less) and long lived (more than 31 years).

Cigéo (Centre industriel de stockage géologique), the industrial centre of geological
storage founded by ANDRA, is a deep repository for long lived and high level radioac-
tive waste, see Figure 1 for more details of the site (figure from www.anfra.fr). The
waste is first encapsulated in sealed steel casks, see Figure 2, and then stored in under-
ground areas, about 500 meters deep, in geologically stable formations, embedded in
an impermeable clay layer so that the radioactive waste will remain isolated for hun-
dreds of thousands of years. Until now, this deep storage has been the only long-term
solution for managing this type of high level waste without putting the environment at
risk.

One of the most important issues for storing nuclear waste is water resource man-
agement, since water may corrode the sealed steel casks and create a risk of leakage
and underground pollution. For this reason ANDRA carries out simulations to pre-
dict the behavior of nuclear waste underground over periods of thousands of years to
monitor the state of casks over time. More precisely, ANDRA has to perform many nu-
merical simulations to quantify flow and solute transfer from the repository to the sur-
rounding geological environment. Simulations have to take into account many physical
processes with different space-time scales: from the waste packages to the geological
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Figure 1: View of the installations of the Cigéo projet (approximately 5km? x 5km?
underground zone)

media (from centimeters to tens of kilometers) on very large time (up to one million
years).

In this work, we aim to simulate different types of flow in porous media, which is of
great importance to ANDRA. The mathematical models used for the simulations are
introduced in the next section.

Mathematical models

We consider mathematical models for a single phase and simplified two-phase fluid
flow in porous media, (see e.g. [19, 48] and the references therein). The first model
is described by the Darcy law together with the equation of conservation of mass for
steady flow (see e.g. [99]). It is written in the form of a partial differential equation as
follows:

u=-SVp, in Q, (1a)
V-u=f, in Q, (1b)

where Q is the domain, f is the source term, u is the Darcy velocity, p is the pressure
head, and S is the permeability tensor (where the fluid density is supposed to be
constant). This gives a complete problem after adding an appropriate boundary
condition.

The second model considered is the Darcy law together with the mass balance
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Figure 2: Sealed steel cask of nuclear Waste (Height:1.3m, diameter: 43 cm,
approximate weight: 500kg)

equation for the unsteady fluid flow:
u=-SVp, in Qx(0,T), (2a)
G,
¢a—1t’+v-u=f, in 0 x(0,T), (2b)

where ¢ is the porosity, T is the final time; an appropriate boundary condition and an
initial condition need to be added.

For such a model, the computational domain and data are:

» with very different spatial lengths, starting from one meter to thousands of me-
ters, leading to very different scales in space.

* with a set of sub-areas with very different physical properties such as different
materials in each area, leading to a very large heterogeneity in the geological
medium in space. Consequently, the phenomena may occur on different time
scales depending on the physical properties of the area.

Remark. Equation (2) may also be interpreted as a first step for solving the balance
equation for the transport of contaminant (quantity of a dissolved species in a fluid phase
measured by its concentration):

dc

d’at

+V-(-D(u)Vc+cu)+pic=g, in Qx(0,T),

where u is the Darcy velocity, c is the concentration of a contaminant dissolved in water,
D (u) is the diffusion-dispersion tensor, and A is the radioactive decay coefficient. More
precisely, if one uses operator splitting [100] to solve (3) with possibly different numerical
time schemes for advection and diffusion, then one solves an advection equation and
a diffusion equation of type (2).
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The third model is a simplified two-phase flow with phase appearance and dis-
appearance. We will consider a flow between one or more rock types in a porous
medium with continuous or discontinuous capillary pressure. The mathematical form
studied in Chapter 4 is exposed in [39, 63] as follows:

u—V-(Aw,x)Vr(w,x))=f, inQ2x(0,T), (3a)
u(') O) = Uy, in Q) (Sb)
ﬂ:(u5 ) =&, on o x (O, T); (30)

where the unknown scalar u € [0, 1] is the gas saturation (and therefore (1-u) is the
water saturation), u, is the initial gas saturation, f is the source term, g is a non-
homogeneous Dirichlet boundary condition, the function 7(u,x) is the capillary pres-
sure:

n(u,x) : [0,1] X Q2 —> R, C))

and A(u,x) is the global mobility of the gas:
Au,x) : [0,1] xQ2—> R, (5)

For simplicity, we consider only Dirichlet boundary condition on . This is a non-
linear degenerate parabolic problem with nonlinear and discontinuous transmission
condition on the interface.

The problems proposed above give rise to large sparse systems of linear alge-
braic equations which can be solved by different methods.

In the following section, different methods are presented.

Finding a suitable method to solve the model problem

Consider for motivation the problem (2). On each time step of a usual discontinuous
Galerkin scheme in time and a finite element discretization in space, it leads to a
linear system AX = B. When attempting to solve this system, doing the operation
X = A™!B is impossible as the size of the matrix A is typically prohibitively large.
Several methods are used in practice:

e Direct methods [53]: for example, the LU factorization. These methods are
robust in the sense that we obtain the solution in a time which can be estimated a
priori and give typically high precision (depending, though, on rounding errors that
are influenced by the problem complexity) relatively easily. The disadvantage of these
methods is that they require great deal of computer memory, and they are not well
suited to parallelization.

e Iterative methods [143]: for example, Krylov methods (conjugate gradients,
GMRES, etc.). The advantages of these methods are that they enable parallelization
and require little memory space. Unfortunately, they may lack robustness since they
may take a long time to converge or may not converge at all.
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e Domain decomposition methods [57, 125, 135, 150], where the subdomains
are constructed with some control over the size of each subdomain. These methods
solve the problem in a subdomain directly or iteratively, and they ensure the connec-
tion on the interface iteratively. They are naturally parallel and typically more robust
than purely iterative methods, though less robust than direct methods.

For highly heterogeneous problems such as (1), (2), or (3) with very different
space and/or time scales, the third method, the domain decomposition method
proposed above, is well suited. In this context, as the conservation of mass is crucial
for ANDRA’s applications, the conservative cell-centered techniques for discretization
in space such as mixed finite element methods or finite volume methods are used,
see [36, 45, 69, 142]. In particular, a mixed finite element method will be used in
Chapters 1, 2, 3 and a finite volume method will be used in Chapter 4.

On the other hand, together with the solvers and discretizations proposed above, the
theory of a posteriori estimates could be used to monitor the error and to improve
the efficiency of the method through defining an adaptive stopping criterion for the
algorithm or adaptive mesh refinement.

This thesis is based on coupling these two suitable methods, domain decomposition
and a posteriori estimates, for which we introduce the state of the art below.

Bibliography and previous studies

Domain decomposition methods

Domain decomposition methods are a family of methods which allow to solve problems
naturally on parallel machines. Referring to the books [57, 125, 135, 150] and the
references therein of Domain decomposition methods, we mention the main classes of
domain decomposition algorithms which can be used: Schwarz, Dirichlet-Neumann,
Neumann-Neumann/FETI. Schwarz iterative method is used throughout this work
and Dirichlet-Neumann iterative method is introduced in Chapter 1 in order to show
the difference between the interface operator for these two methods.

e The Dirichlet-Neumann iterative methods lead to two problems at each itera-
tion. The first problem is solved in one subdomain with the Dirichlet condition
at the interface between the subdomains, while the second problem is the solved
on the other subdomain, with the Neumann condition applied at the interface.
This interface problem can be defined in terms of the Steklov—Poincaré operator
(interface operator) that we introduce briefly in Chapter 1. This interface operator
enforce the classical Dirichlet-Neumann transmission conditions between subdomains.
For the origins of this method, see the seminal paper of Przemieniecki [133], see
also [5, 27, 33, 134, 160], and [80] for a review. The discrete counterpart of the
Steklov—Poincaré operator (namely, the Schur complement matrix) leads to an inter-
face problem solved by an iterative method. Neumann-Neumann preconditioner is
used to accelerate the convergence of such methods, where local Neumann boundary
problems are solved in the subdomains, see [30, 54, 129]. For a decomposition
into many subdomains, the Balancing Domain Decomposition (BDD) [49, 122, 123]
propagate information globally between subdomains to make the method scalable (i.e.



6 Introduction

the condition number is almost independent of the number of subdomains) and ensure
the consistency of the Neumann problems. In [60, 82], the authors extended the
Steklov—Poincaré operator to parabolic problems with uniform time grids between the
subdomains. The time-dependent Steklov—Poincaré operator leading to a “space-time”
domain decomposition method was given and analysed in [94, 95], in particular with
different time grids in different subdomains.

e Schwarz methods: introduced by H. A. Schwarz [144] in which an iterative
method (called the Schwarz alternating method) is proposed to prove existence and
uniqueness of the solution of Laplace’s equation in irregular overlapping domains
(composed of a disk and a rectangle which intersect). In the context of numerical
methods adapted to parallel computer architectures for solving partial differential
equations (PDEs), P-L. Lions [119] introduces a parallelizable nonoverlapping version
of the Schwarz method based on Robin transmission conditions (see also [117, 118]).
This approach is a strong basis of domain decomposition methods, in particular
the Optimized Schwarz method introduced in [101, 102, 103, 104], which is used
throughout this thesis. This method uses Robin or Ventcell transmission conditions
on the interfaces with optimized coefficients in order to improve the convergence
rates of the algorithm. Such transmission conditions are approximations of the
exact artificial conditions [83, 126] and are quite different from the “low frequency”
approximations [88] and reduce dramatically the convergence factor of the method.
An overview of the Optimized Schwarz method is given in [71], completed by an
extension to a diffusion problem with discontinuous coefficient in [72]. As mixed
finite elements is the central numerical method used in this thesis, we refer to [59]
(respectively [94, 98]) for the classical Schwarz algorithm with Robin (the Optimized
Schwarz method with Ventcell) transmission conditions in the mixed formulations
context.

For parabolic equations two approaches can be adopted:

e One possibility is to discretize in time first using an implicit scheme and then
employ the Schwarz method in order to solve the steady problems at each time step.
In this case, it is necessary to use the same time discretization in each subdomain.
The main drawback of this method is that it is very costly in parallel computing, as
information has to be transferred at each time discretization step and on each domain
decomposition iteration.

e Another possibility is to use the space-time domain decomposition method. This
method consists in discretizing differently the time interval for each subdomain
according to its physical properties. We solve on each subdomain the time-dependent
problem over all the time interval, and then space-time boundary information is
exchanged on the space-time interfaces between subdomains at each iteration of the
iterative method. This method allows us to use different numerical schemes in time
(and eventually in space) in different subdomains. The communication cost is then
reduced since the data is transferred over the whole time interval once for each DD
iteration.

In this thesis the space-time domain decomposition method is used.
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In [79, 84], the authors introduce such an approach based on classical transmis-
sions conditions. To accelerate the convergence of this method, it has been proposed
in [75, 76, 124] to use optimized transmission conditions on each space-time interface.
This method is called the Optimized Schwarz Waveform Relaxation (OSWR) method.
In [21, 73, 124], the authors analysed the optimization of the Robin or Ventcell
parameters and in [28, 91, 105] the optimization was extended to discontinuous
coefficients. Extensions to heterogeneous problems and non-matching time grids
were introduced in [29, 74]. The discontinuous Galerkin (DG) method for the time
discretization of the OSWR was introduced in [29, 90, 92, 93] to cope with non-
conforming time grids. A suitable time projection between subdomains was obtained
by a projection algorithm in order to exchange data on the space-time interfaces,
see [77, 78]. The mixed formulation was extended in the context of operator splitting
(see [94, 95, 96, 97, 98]).

The domain decomposition methods presented above can be written into an interface
problem on the interfaces between subdomains. More precisely, for space-time DD
methods, the multidomain problem is transformed into an interface problem on the
space-time interfaces between subdomains. The discrete counterpart of the interface
problem is solved iteratively using the Jacobi iterative method. A Krylov method such
as GMRES can also be used to accelerate the convergence (see [94] in the mixed finite
elements context).

A posteriori error estimates

A posteriori error estimates represent a powerful methodology and have become an
important research domain; we refer for instance to the books [9, 138, 153] and the
references therein. Recall that with a priori error estimates, we estimate the error as
a functions of mesh size and an unknown constant depending on the unknown exact
solution p which cannot generally be computed. This estimation is typically as follows:

Illp = palll < C(p)H., (6)

where h is the mesh size, [ > 0 is the order of the method, and C depends on the exact
solution p. Thus C(p)K! is typically not a computable upper bound. Unlike the a priori
error estimates, the a posteriori error estimates are based on bounding the error by
a completely computable upper bound. Indeed, the error between the exact solution
and the approximate solution in an energy norm is estimated by an a posteriori error
estimate which depends on the approximate known solution and known constants only.
For an optimal a posteriori error estimate, several important properties have to be
satisfied:

* the estimator provides a guaranteed upper bound which is fully computable and
features no unknown constant, i.e.

1P = prlll < (T, pp,up), @)

where Z, is the mesh and p;, and u,, are the known approximations (in the con-
text of problem (1)),
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* the ratio of the estimated upper bound and of the error goes to one in the limit:

L n(%vph’ Uh) -

Logr = 1, (8)
[llp — palll

* the local components of the estimator ng(hg, pylx, Unlx) where n(F, pp,uy) =
1

2
{ Z (nx (hg, prlg, ugl K))Z} must not overestimate the local error in the sense
Kez,

that they must provide a lower bound of the local error, up to a multiplicative

constant C;. This property is called local efficiency:
Cynk(hg, Prlx> unlc) < 1lIp = palllks ©)]

* the estimators 1 have to be computable locally in each element K of the
mesh Z,

* the estimates have to distinguish the different error components.

In this thesis, and as mentioned before, locally conservative methods such as the
lowest-order mixed finite elements or cell-centered finite volume methods are em-
ployed. Several studies on a posteriori error estimates for the mixed finite element
methods have been carried out. They began with Alonso [13] and Braess and
Verfiirth [32], followed by other work such as [2, 8, 43, 62, 111, 114, 120, 159, 162].
Then, in [139] the authors give a guaranteed but potentially costly bound for a hetero-
geneous diffusion tensor, without local efficiency. A posteriori error estimates are also
studied in [108] with an undetermined constant in the upper bound. In [137] the au-
thors give a posteriori error estimates for the case where the approximate solutions are
conforming in the sense that u,, € H(div,2) and pj, € H*(£). Finally, [156] presents a
guaranteed and fully computable upper bound and local efficiency on the energy norm
between the exact solution and the approximate solution for the steady diffusion equa-
tion in extension of the results from the lowest-order mixed finite element case [154].
This upper bound is only based on a conforming potential reconstruction because
the approximate flux is equilibrated and satisfies u;, € H(div,2). As the approximate
solution of p is piecewise constant in each mesh element, following Arnold and
Brezzi [17], Arbogast and Chen [15], and other references such as [34, 47, 147], a
new approximate solution p, which improves the approximation of p is used. Indeed,
an a posteriori error estimate for p — p;, is given, as p;, is more regular than p; while
being higher-degree polynomial function. The flux of this postprocessing —SVpy is
equal to uy in the lowest-order case and the mean value of p; is equal to p; on each
mesh element. Then, in order to obtain a H!-conforming potential reconstruction,
called s;,, we use the averaging operator .%,, applied on p;, following [3, 37, 61, 107]
and the references therein.

For unsteady problems, several works have also been carried out. In [67], Emn
and Vohralik derive a fully computable upper bound for the energy norm augmented
by a dual norm of the time derivative following Verfiirth [152]. They give a unified
framework for the heat equation using different numerical schemes covering non-
conforming methods such as mixed finite element methods, various finite volume
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schemes, and discontinuous Galerkin schemes in space and an implicit Euler scheme
in time. A posteriori estimates for conforming finite element methods are also derived.
This upper bound, global-in-space and in time, is established using estimates which are
based on a H!-conforming potential reconstruction in space, continuous and piecewise
affine in time, and where the mean value of the potential reconstruction has to be
linked to the approximate discrete solution on each mesh element. It is also based
on an H(div,)-conforming and locally conservative flux reconstruction in space,
which is piecewise constant in time. In the case of the mixed finite element method,
it is not necessary to build the flux reconstruction since this is already available
from the method. The ideas underlying these flux and potential reconstructions,
presented in [67], are inspired from the estimator reconstructions given for the steady
problem [10, 31, 64, 66, 109, 112, 121, 132, 154, 155, 156, 157], and the references
therein, as at each time step of the unsteady problem, a steady diffusion problem is
solved.

The a posteriori error estimates presented in this thesis are based on [156] for
the steady diffusion equation and on [65, 67] for the unsteady diffusion case. The
crucial difference is that the Robin domain decomposition method does not conserve
the conformity of the flux, nor the conformity of the potential, on the interface. We
first have to build a flux reconstruction which is globally conforming and locally
conservative in each mesh element. The potential reconstruction in the domain and
on the interface is built following the studies proposed above. Secondly, as the domain
decomposition method intervenes in our work, one of the most important questions
that we will study is the following: can we distinguish the domain decomposition
error from the discretization one?

Coupling domain decomposition and a posteriori error estimates

In [130], the authors are interested in the steady diffusion equation where the domain
of computation is divided into different subdomains and where different numerical
methods can be used in different subdomains (different discretization mesh can also
be used in each subdomain giving rise to nonmatching grids on the space interface
between the subdomains). The coupling of these method is done through the mortar
technique where the interfaces are partitioned by a coarse mesh. An equilibrated flux
reconstruction is designed in this context, and it can be seen as a pathway towards flux
reconstruction in domain decomposition methods. Indeed, the challenge is to obtain
a reconstructed flux which is globally H(div, Q)-conforming and locally conservative.
Under an assumption on the approximate flux, to be weakly continuous across the
interface a reconstructed flux is obtained by solving well-posed local Neumann prob-
lems using mixed finite element methods. It was shown that under the assumptions
proposed by the authors, the Neumann boundary conditions are in equilibrium with
the source term, which leads to well-posed problems. Different error components
are distinguished: the discretization error of the subdomains and the interface errors
coming from the mortar technique.

In [141], a posteriori analysis is introduced for the case of a linear elasticity
problem which is approximated by the finite element method and a non-overlapping
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domain decomposition method such as FETI or BDD. The authors derive an upper
bound for the error where different error components are distinguished: a discretiza-
tion error component and a domain decomposition component. Thus an a posteriori
stopping criterion for the iterative method is derived. In their article, the authors use
the potential solution provided by the Neumann-Neumann DD method to obtain a
natural potential reconstruction. Indeed, local problems with Dirichlet conditions on
the interface are first solved using the finite element method resulting in a natural
potential reconstruction. Then local Neumann problems in the subdomains, with
conforming Neumann conditions on the interface, are solved using BDD in order
to obtain the Neumann compatibility. From that, the authors distinguish the errors
coming from the DD method and the error coming from the discretization method. The
DD component distinguished through the properties of the finite element method is
the difference between the approximate potential solution given by the local Neumann
problem and the natural potential reconstruction given by the Dirichlet problems. This
approach seems to be only possible in the presence of the two types (Dirichlet and
Neumann) of local problems solved on each DD iteration.

Different related a posteriori error estimates have also recently been proposed:
multiscale discretizations [1, 87, 110, 113, 128], discretizations with mortar coupling
for the Galerkin methods and mixed finite element methods [22, 159, 161], and for
multinumerics [23, 50].

The above-described approaches open up the possibility of distinguishing the er-
rors of the DD method in the posteriori estimates, for the Robin DD method in the
mixed finite elements context, which is studied throughout this thesis. In this DD
method, there is no assumption such as that given in [130] and there is no continuity
neither of the potential nor for the flux on the interface, during the DD iterations.

Aims of this thesis

In this thesis, we start from the a posteriori analysis for the diffusion equation and
the heat equation studied respectively in [130] and [67] for the mixed finite element
method. We aim to extend the a posteriori analysis to the case of the Robin transmis-
sion conditions method and then distinguish and separate the different components of
the error in the upper bound at each Jacobi or GMRES domain decomposition itera-
tion. We also aim to extend this theory to the case of:

e different time grids used in each subdomain for the heat equation,

e the two phase flow problem with phase appearance and disappearance, where the
problem at hand is nonlinear (degenerate), so that a new error component stemming
from iterative linearization appears.

Once the estimators have been obtained, we need to answer to the following questions:

* Is the error between the exact solution and numerical solution precisely con-
trolled?

* Can we distinguish all the error components?

* Can we stop the iterations of the domain decomposition method before a usual
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stopping criterion in order to save useless iterations and computing time?

Outline

This thesis is organized as follows:

In Chapter 1, we introduce the steady diffusion equation (1) with different
boundary conditions. The optimized Schwarz domain decomposition method is then
used to solve local subdomain problems iteratively and then transfer information to
the neighbouring subdomains. The mixed finite element discretization is employed
and described since local mass conservation is required. Numerical results comparing
the one-domain solution and the solution resulting from the domain decomposition
method are presented for unstructured triangle meshes and for anisotropic and
heterogeneous diffusion tensors.

In Chapter 2 we derive a posteriori error estimates for problem (1) introduced in
Chapter 1. We derive a fully computable upper bound for the error between the exact
solution p of the partial differential equation and the approximate numerical solution
p,’f*l in an energy norm, at each iteration k + 1 of the DD algorithm. The estimates are
based on the reconstruction techniques for pressures and fluxes as described below.
In order to build the potential reconstructions, the following steps are taken (see
Figure 3): we first construct a postprocessing f)ﬁ“ of pﬁ“ at each iteration of the DD
algorithm. This postprocessing is more regular than the piecewise constant p}'fH, being
piecewise quadratic, but it does not lie in the space H'(£2). For this reason we next

construct a conforming potential Eﬁl € H'(9,) independently on each subdomain €;,

as well as a global conforming potential reconstruction sﬁ“ € H'(Q). We also have to

P RN '
/ P —k+1 1
7 Sh,i eH (Ql)
prt! Btk €PA(K), VK € F,
~ skt e HY(Q)
~ \»

Figure 3: Steps to build a potential reconstruction

construct a conforming reconstruction flux o}f“ € H(div, Q) which verifies the local
conservation with the source term in each mesh element. We have managed to separate
our estimators into two categories: estimators due to the discretization in space and
estimators due to the domain decomposition. Splitting our estimators into two parts
led us to define an a posteriori stopping criterion for the DD algorithm instead of the
usual domain decomposition stopping criterion. This a posteriori stopping criterion
is satisfied as soon as the domain decomposition error components do not con-
tribute significantly to the overall estimates. Numerical results for the Jacobi iterative
method and the GMRES method show how this technique saves unnecessary iterations.
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In Chapter 3 the unsteady diffusion equation (2) is introduced. As time scales
vary by several degrees of magnitude between different domains in our targeted ap-
plications, the classical domain decomposition method which consists in discretizing
the problem in time, and then applying a domain decomposition algorithm to solve
the stationary problem on each time step, is not well suited here. Namely, when the
same time step is applied for all subdomains, it may become prohibitively small in
terms of the overall cost. For this reason, we propose to use the global-in-time domain
decomposition method where the scales over times are adjusted (independent time dis-
cretization) for each subdomain. Here, local subdomain problems in time are solved
independently in each subdomain, then data is transferred between the neighbouring
subdomain through the space-time interface, see [95] and the references therein. In
this chapter, the heat equation is discretized using the lowest-order mixed finite el-
ement method in space and the lowest-order discontinuous Galerkin scheme in time.
Different error components are identified using the a posteriori error estimates. Bound-
ing the error between the exact solution and the approximate solution in an energy
norm, the domain decomposition, the discretization in time, and the discretization in
space components are identified for the conforming time grids. An a posteriori stop-
ping criterion is defined allowing to save numerous domain decomposition iterations.
The a posteriori estimates presented here are based on:

« a potential reconstruction, H!-conforming (piecewise second-order polynomial)
in space and continuous piecewise affine in time, together with a link between
the mean values of the potential reconstruction and the approximate discrete
solution following [67],

* a locally conservative flux reconstruction, H(div,2)-conforming (Raviart—
Thomas of lowest order) in space and piecewise constant in time.

We also extend our theory for the nonconforming time grids in different subdomains,
where the transfer of data between the neighbouring subdomain is done through a
suitable projection. Then, an extension of the a posteriori estimates to the case of
nonconforming time grids is introduced. Numerical results illustrating a nuclear waste
repository are presented both for conforming and nonconforming time grids.

In Chapter 4, we extend the a posteriori error estimates and stopping criteria to
the domain decomposition method for the two-phase flow problem (3). The work
described in this chapter was carried out in the context of the CEMRACS 2016 sum-
mer school, in the collaboration with Elyes Ahmed, Caroline Japhet, Michel Kern, and
Martin Vohralik. The aim of this projet was to extend the approach we adopted for
a posteriori error estimates and stopping criteria presented in Chapter 3 to a non-
linear degenerate parabolic problem in order to obtain significant gains in the total
number of iterations of the global-in-time domain decomposition method. This work is
motivated by ANDRA’s Cigéo project and is part of the ANR project DEDALES. The non-
linear two-phase (water/gas) flow model problem in a porous medium is discretized
by a cell-centered finite volume scheme in space with backward Euler temporal step-
ping. A guaranteed and fully computable upper bound is proven and different error
components are distinguished: discretization in space, discretization in time, domain
decomposition, and linearization, leading to a posteriori stopping criteria of both the
linearization and the DD algorithm.
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In this section, we describe the Dirichlet-to-Neumann formulation as well as the
optimized Schwarz method [71, 102, 103, 104] in the mixed formulation follow-
ing [94, 95]. For the latter, the difference with [94, 95] is that the method is presented
for unstructured meshes and some numerical results as shown for full and heterege-
neous diffusion tensor.

1.1 The diffusion equation

This chapter presents the mathematical model (1) for a single phase fluid in a porous
medium based on Darcy’s equation:
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u=-SVp in Q, (1.1a)
Vu=f in Q, (1.1b)
P=8p on TP, (1.10)
—u-n=gy on TN, (1.1d)

In this problem, u is the Darcy fluid velocity and p is the fluid pressure head. We
consider here Q c R, d = 2,3, a polygonal (polyhedral if d = 3) domain (open,
bounded, and a connected set), and Q2 = I'"UTN is the boundary of the domain
with:

— I'P: the boundary with a Dirichlet condition g, € H p (r>n CO(fD).
— I'N: the boundary with a Neumann condition gy € L2(T'V).
We suppose that [['°| > 0. An example of domain 2 is given in Figure 1.1.

l—-D

D
Figure 1.1: Global domain Q

Furthermore, f € L?(Q) is the source term, n is the outward unit normal vector to
20 and S is a symmetric, bounded, and uniformly positive definite tensor whose terms
are functions in L*°(2). In particular, when d = 2, S is written as:
S11(x) S12(x

1) Su) 12
S12(x)  Sp(%)
In order to make use of parallel computing, we use domain decomposition methods,
which decompose Q into non-overlapping subdomains Q;, i € [1, 4], where A4 de-
notes the total number of subdomains:

xeN, S(x)= (

i=1

We denote by I'; ; the interface between two adjacent subdomains Q; and 2, and by n;
the outer normal vector to ;. The second order elliptic problem (1.1) will in particular
be reduced to smaller problems on each subdomain with appropriate coupling condi-
tions. We assume that this decomposition is geometrically conforming in the sense that
the intersection of the closure of two different subdomains is either a common vertex,
or a common edge, or a common face, or an empty set. In the following section, we
introduce some function spaces which will be used to define the method.
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1.2 Presentation of some function spaces

We present here some basic function spaces following [4, 12, 136, 148]. For a given
non-empty domain D C €2, and a real number [, 1 <[ < oo, we employ the standard
functional notations L'(D) and LY(D) := [LY(D)]? of Lebesgue spaces. We denote
by (+,-)p the scalar product for L2(D) and L?(D), associated with the norm ||-|| 12(D)>
and by |D| the Lebesgue measure of D. Let (-,-), be the scalar product for the d — 1
dimensional L2(y) on y = 8D or its subset.

Let H(D) be the Sobolev space defined as:

HY(D) :={v e L%(D); Vv € L3(D)}, (1.4)

with the associated norm:

=Ivll + Vvl (1.5)

2 . 2 2
”v”Hl(D) . LZ(D) LZ(D)

Next, H(div, D) is the space of vector functions whose weak divergence is square inte-
grable:
H(div,D) := {ve L3(D); V-ve L3(D)}, (1.6)

associated with the following norm:

”vllgl(div,D) = ”V”izw) + ”v'vlliz(D)- (1.7)

As Q is decomposed into subdomains (1.3), we introduce local spaces which are the
restrictions of these previous spaces on each subdomain, by assuming that D = Q;,
Vie[1,/]:

M; == L*(%;), (1.8a)
W, := H(div, Q;). (1.8b)
Recall that if v € H(div, D), then in general v-n ¢ L2(8D), but verify v-n € H_%(é’D).

For the coupling (Robin) conditions considered in the sequel, we need a greater regu-
larity [59]. Thus we define the following space:

W, :={veW; v-n; € L%(3Q,)}. 1.9)
We define from the Neumann condition on I'N the following sets:

ngN ={veW;v-n;=gyonINnaQ,}, (1.10a)
W :={veW;v-n;=00onTNNaQ}. (1.10b)

The space W is associated with the following norm:

IVIZ o= V122 gy + V¥ + IV el (1.11)

for Robin boundary conditions on 9 ;.
For the sake of simplicity, we will first consider a decomposition of 2 into two non-

overlapping subdomains (4 = 2) and then the case of multiple subdomains will be
presented.
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1.3 The two-subdomain DD case in the mixed formulation

In this section, we introduce two equivalent formulations of problem (1.1) using do-
main decomposition methods: the Dirichlet-to-Neumann formulation and the Robin-
to-Robin formulation. The Dirichlet-to-Neumann method is based on physical trans-
mission conditions, whereas the Robin-to-Robin method is based on Robin transmis-
sion conditions. For simplicity, we present these methods for the two-subdomain case,
where A = 2. For example, starting from Figure 1.1, we decompose 2 into two non-
overlapping subdomains Q; and 2, as illustrated in Figure 1.2. We denote the interface
by I'; 5. As the problems in the subdomains are locally similar in native to the original
problem, we will be able to solve all of them using the same solver.

I—~D

N Iy N

Figure 1.2: Partition of the domain Q into two subdomains ©; and €,

Links with the global formulation

Theorem 1.1 (Continuity of traces in H(Q)). Let Q be a domain divided into two
subdomains: Q = Q,UQ,, 9, N, = 0, and 'y =00Q,N03Q Forpe HY(Q), let
Pi =DPjo,» 1 = 1,2. Then (see [116, 135]),

pi€H(Q), i=1,2,
pEeH(Q) = l_ - 1/2 2

p1 =pponTinthe H'*(I';,) C L%(I"; ;) sense.
Theorem 1.2 (Continuity of normal traces in H(div,2)). Let  as in Theorem 1.1. For
u € H(div, ), let u; =ujq, i = 1,2. Then (see [116, 135]),

w; € H(div,Q,), i=1,2,

u <€ H(div,Q) < .
( ) { u;-n; =uy-ng; on Fl,Z in the (Hool/z(rl’z))/ sense,

where for a smooth interface I'y 5, the space (Hgo 2(1"1,2))’ denotes the dual space of
Hool/z(l"l,z). Recall that the space Hool/Z(FLZ) consists of those elements v € Hl/z(l"l,z)
whose extension 7 of v by zero to all 9Q; belongs to HY?(2 Q;) [116].
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1.3.1 Multidomain formulation with physical transmission conditions

The problem (1.1) can be reformulated as an equivalent multidomain problem consist-
ing of the following subdomain problems, Vi =1, 2:

u;,=-SVp;, in £ (1.12a)
Vu,=f in Q, (1.12b)
Pi=&p on I’naq, (1.12¢)
—u;n; =gy on I'Nnaq, (1.12d)

together with the transmission conditions on the interface, based on Theorems 1.1
and 1.2:

P1=DP2 on [I'y,, (1.13a)
u]. . n1 == U2 . n]_ on 1—‘1,2. (1.13b)
Recall that n; is the normal vector on I'; , pointing from Q; to Q, with n, = —n;.

Equations (1.13a)—(1.13b) are the physical transmission conditions for the flux u and
the pressure head p on the interface I'; 5. These equations ensure the continuity of the
global solution p and the continuity of the normal trace of uon I'y ,.

For this method, an interface operator is used to reformulate the multidomain problem
as a problem where the unkowns are located only on the interface. This operator is
called the Steklov—Poincaré (Dirichlet-to-Neumann) operator, see e.g. [135].

The Steklov-Poincaré (Dirichlet-to-Neumann) operator

In order to solve the split formulation (1.12) with the transmission conditions (1.13)
on the interface, we introduce the problem in Q;, i = 1,2, as:

u;, =-SVp; in Q (1.14a)
Vu=f in Q, (1.14b)
Pi =8&p on I'°naq,, (1.140)
—u;-n; =gy on I'Nnagq, (1.14d)
pi=A on I, (1.14e)

where A is a given function on I'; ,. Therefore, if (p1,u;) and (p, u,) are the solutions
of (1.14), for i = 1 and i = 2 respectively, then p; = A = p, on I'; 5, and thus the
condition (1.13a) is satisfied. Let ¥ = L(Q;) x L2 (T’ naQ,) x L2(TNNaQ,),i=1,2.
We introduce the following linear operator fori =1, 2:

S?tN : Lz(rl,z)X% - LZ(Fl’z)

1.15
(&1, 1) = w-nlr, (1.15)

where (p;,u;) is the solution of problem (1.14) in the L*(€;) x W5 space. Here
Fi = (fla,> &olronag,> §nlminag,) represents all the physical source terms except the
one on the interface which is represented separately by the given function A. From the
definition of S?tN, the second condition (1.13b) can be written as:

PN, Z) + 8PN, Z,) = 0. (1.16)
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By linearity;, can be separated into two parts. The first part depends on A and the
second part depends on the source term and the boundary conditions denoted by &;:

S]i)tN

2 2
DsPN(2,0)= - 8PN(0, ). 1.17)
i=1 i=1
In other words, for i = 1,2, u; can be written as:

y=u)+uj, (1.18)

where u? and u; are respectively the solutions of the following problems:

u)=-Svp} in Q (1.19a)
V=0 in Q (1.19b)
=0 on I'’naq,, (1.19¢)
—u?-n; =0 on T™Nnaq, (1.19d)
py =2 on TI'q,, (1.19e)

and
u;=-SVp; in Q (1.20a)
Vi =f in Q, (1.20Db)
p; =&p on I°naq,, (1.200)
—u; -n; =gy on ™naq, (1.20d)
p; =0 on T'p,. (1.20e)

Therefore, we can rewrite the problem (1.12)-(1.13) as the following equivalent inter-
face problem:

SPN) = 4, (1.21)
where
2
X = —ZU? ‘M, (1.22)
i=1
and
2
SPNA="u?-n;. (1.23)

Another method is to rewrite (1.13) as equivalent Robin conditions and then use a
Robin-to-Robin interface operator.
1.3.2 Multidomain formulation with Robin transmission conditions

The physical conditions (1.13a)—(1.13b) introduced previously can be replaced by
other equivalent conditions, namely Robin transmission conditions [59, 95]:

—Biuy -n;+py =—fuy-n;+py on Ty, (1.24a)
—Pgiuy Ny +py=—Pyiu;-ny+p; on Ty, (1.24b)

where f3; , > 0 and 3, ; > 0O are fixed parameters; a Robin condition is a combination
of Dirichlet and Neumann conditions.
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Proof. First, observe that the implication (1.13a)-(1.13b)=(1.24a)-(1.24b) is obvi-
ous. Next, we know that n, = —n;. Thus, we multiply (1.24a) by 3, ; and (1.24b) by
/31 2 respectively, and then subtract (1.24b) from (1.24a). We obtain:

[52,1171 - [51,21?2 = /52,11?2 - /51,2171-

Therefore, as 81 5 + 51 # 0, then (815 + B21)(p1 —p2) =0 < p; =pyonTy,. By
replacing p; by p, in the equation (1.24a), we obtain u; -n; =u, - n;.
O

The Robin-to-Robin operator

In order to solve the split formulation (1.12) with the Robin transmission condi-
tions (1.24a)-(1.24b) on the interface, we introduce the problem for Q;, i = 1,2,
and where j = 3 — i, as follows:

u;=-SVp; in Q, (1.25a)

Ve =f in Q, (1.25b)

pPi=&p on I'’naq,, (1.25¢)

—u;-n; =gy on Mnaq, (1.25d)
—Bijui-ni+p;=¢&; on Iy, (1.25e)

where &; is a given function on I'; 5. Then, for i = 1,2, we introduce the following
operator:
SR LT x ¥ — L*(T15)

(1.26)
(&, Z) = =Bl , + i

where u; and p; are the solutions of (1.25) and &; = (f g, &plronag,» &nlrvnag,) repre-
sents all the physical source terms except the one on the interface, which is represented
separately by the function &;. From the definition of S?tR, the problem (1.12) with the
Robin transmission conditions (1.24a)—(1.24b) can be written in the equivalent form:

1= SE“R(EZ,%) on I'y, (1.27a)
&y = Sfl{tR(gl,g"l) on Ty, (1.27b)
or in compact form,
SRR (51) =xr on Iy, (1.28)
P
where SRR .= —.§RtR, and
SRR gl Sg{tR(€2, 0) S;{tR(O, 92)
S = , = . (1.29)
(62) (Sﬁ*tR(al,O) Xr= | 50, 2,)

In this work, we use the domain decomposition method based on Robin transmis-
sion conditions since the parameters f3; , and 3, ; can be optimized to improve the
convergence rate of the iterative scheme [71, 102, 103, 104]. This method is known
as the Optimized Schwarz Method, see [71] for an overview of this method.
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1.4 The case of many subdomains using the Optimized
Schwarz Method

In this section, we present the optimized Schwarz method to the multidomain case [57,
51, 71, 102, 103, 104]. More precisely, the interface problem is based on [51]. We
now suppose that Q is decomposed into more than two subdomains as in (1.3), such
that Q; is a polygon for d = 2 (polyhedron if d = 3). For alli € [1, 4], let:

=r¥naQ; and TP =T"noQ;. (1.30)

Let B' be the set of neighbors of the subdomain £; that share at least one edge with Q;
(face for d = 3), let B! be the set of neighbors of the subdomain £; that share at least
one vertex with €, and let |B'| and |B'| be the cardinality of these sets. Using this
notation, we introduce:

r,;=00,n0Q;, VjeB, (1.31)
Ii= U Ty, (1.32)
JjEB!
and
2Q; =TYur’ur;. (1.33)
We also introduce the spaces:
N
P(ry) =[ [ Lr(ry;) and L2(r) = [ J22(Ty). (1.34)
jeBt i=1

Letf3;; >0, j € B!, i = [1, 47 be the Robin parameters. Then, solving the subdomain
problem for i = [1, 4 :

u; =—SVp; in Q (1.35a)

Vau,=f in Q, (1.35b)

Pi =28 on 7, (1.350)

—u;-n; = gy on TV, (1.35d)
—Biju;n+pi=—piu;-ni+p; on Ty Vj€B, (1.35¢)

is equivalent to solving the original problem (1.1). As shown on the two-subdomain
case (1.24), the two Robin conditions on T'; ; are:
—Bi v -n;+p;=—PF;;u;-n;+p; on Ty, (1.36a)
—[J’j’iuj-nj-i—pj = —[J’j’iul--nj+pl~ on Fi’j. (136b)

In order to introduce the Robin-to-Robin operator, we first make the following remark:

Remark 1.3. Note that the condition (1.36b) is the Robin condition of the subdomain
problem in Q;, j € B'. Usingn j = —n;, the right-hand side in (1.36b) can also be written
as:

[J’j,iui ‘n;+p;only;. (1.37)
Now, in (1.37), if p; € L*(Q;), then Pi|ri,j ¢ Lz(l"i,]-) and is defined through the Robin
condition in ;: —f; ju; -n;+p; =&, j, that is

pilr,; = &ij + Bijwi - ny. (1.38)
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As in the previous section, let ¥ = L?(£;) x Lz(r‘?) X LZ(F?I) fori e [1,4]. We
now introduce the subproblem solution operator for Q;, i € [1, 4], as follows:

M; o LAT)x ¥ — LA x L*(Q;) x W

1.3
&, Z) i (&i,pi>u;), (1.39)

where §; = (fi,j)jeBi, F; = (fla,> &olrp, &xlry), and where (p;,u;) is the solution of
the following problem in £;:

u; =—-SVp;, in Q (1.40a)

Ve =f in (1.40b)

Pi=8&p on r]i)’ (1.40c)

—u;n; = gy on T7, (1.40d)

_ﬁi,jui ‘n;+p; = gi,j on T;j, Vje Bl. (1.40e)

Using Remark 1.3, we also introduce:

R; LX) X LA(Q) x W — L(T;)
(1.41)
(&, pi,u;) — (ﬁj,iui n+ (& + Biju; - ni))jeBi :
We now introduce the Robin-to-Robin operator defined as:
SRR =g oy : LA(Ty) x ¥ — L*(T). (1.42)
In the case A = 2, this operator is the one of the previous section.
Then, the subproblems (1.35¢) lead to the equivalent interface problem:
Find (&1,...,€4) € L3(T) X ... % Lz(FW) such that:
(€); = (ST, &) VieB, Vie[l,A]. (1.43)

Using (&, F ;) = #;(§;,0) + #;(0,F ;) and the linearity of %;, we obtain:

S?tR(Ej,gj) = %j(-//lj(gj;gj))
= R;(M;(&;,0))+ Z;(A;(0,F ;)) (1.44)
== S?tR(EPO) +S§'{tR(O, 9])
Hence, (1.43) can be rewritten as:
(&); — (S5R(&;,00); = (SFR(0,#)));, VjeB, Vie[l,4]. (1.45)
Finally, our interface problem is:
SRRE = ¥, (1.46)

The interface problem is usually solved by iterative methods, for example: Jacobi,
GMRES. For the sake of simplicity, the Jacobi iterative method is explained in the fol-
lowing section but a numerical result for GMRES will be presented.



22 Chapter 1. Domain decomposition for steady diffusion in mixed formulations

1.4.1 Local solver of the Jacobi method

The Jacobi algorithm applied to the interface problem (1.46) is equivalent to solving
iteratively local subdomain problems and then transfer information to the neighboring
subdomain, at each iteration. More precisely, let Q; be a subdomain of 2, and let
k be the iteration index. Then, applying the Jacobi algorithm to (1.46) leads to the

following algorithm: for k > 0, at iteration k + 1, we are looking for the solutions pf“

and uf*l in subdomain ; such that:
wtl=—svpitl  in @ (1.47a)
Vuitl=f in Q (1.47b)
pf“ =gp on 1"?, (1.47¢0)
—uf“ ‘n; =gy on IV, (1.47d)
—[J’i,]-ui.“rl -n; +p§<+1 = gﬁ,]. on TI}j, Vje Bi, (1.47e)
where g}’i = Bi. juj.‘ ‘n;+ p;? for k > 1 is the information coming from the neighboring

subdomain Q;, j € B, at step k of the Jacobi algorithm. More precisely, pj.‘ and uj.‘ were
computed at iteration k on ;. This algorithm starts from an initial guess gg i which is
a given function in LZ(I“i, i) J € Bi,1<i <. (see [59] for the convergence analysis).

Remark 1.4. Note that the continuity of the normal traces u; - n; = u; - n; and of the

pressure p; = p; will be verified only at convergence of the DD algorithm.

In order to derive a posteriori error estimates and an acceleration technique by
defining a stopping criterion, we first make a discretization of the problem. In the next
section, we detail the discretization using the mixed finite element method at step k+1
of the domain decomposition method.

1.5 The local solver in the mixed finite element formulation

We first write the weak formulation of problem (1.47).

1.5.1 Continuous problem: weak mixed formulation

In order to write the variational formulation in the mixed form for the problem (1.47)
at iteration k + 1 of the DD algorithm, we use the following spaces defined in Sec-
tion 1.2: M;, W;, W;, W¥N, and W?. We first multiply the equation (1.47a) by a test
function v; € W? and then integrate over ;. Green’s formula is then applied:

J (7Tt v dx = f
Q; Q.

1

pf.‘HV-vi dx — J pf“vi -n; dy, (1.48)

so that,

J (S 'uft) v dx — J
Q, o

L

pz_<+1v'vi dx = — f PZ-H_lVi -n; d;}, — f pz_<+1vi n; d')/
P N

- ZJ prVi -n;dy.
Ty

jeB!

(1.49)
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In equation (1.49), we do not know the value of pk+1 onTl}; and we do not know how

to reformulate it in the mixed formulation as p; € M;. Therefore, we will use Robin
condition (1.47e), and replace karl on T ; by:

k1l _ g ket k
pi  =Piju; ni+ gy

Also, using the fact that v; € W?, thusv;-n=0o0n N, we obtain:

f Rt dx+ZJ (B jutt- i)(Vi'ni)dY—J pi Vv dx =
Q

JEB! i

- f &pV; ' n; dY Z J g{;’jvi ‘n; d'}’, Vvi S W?
Tij

jeB!

(1.50)

Problem (1.50) is the weak formulation of the local problem in ;. In order to write
the DD algorithm, we give below the computation of the second term on the right-hand
side of (1.50), for j € B":

k

gl’i,]-vi'nidY:J (=B juf -ny+pfIv; -nydy

J

IJ _ﬂi,j(u;'('ni)vi'nid)/"'f Pj-(Vi'nidY, (1.51)
r

T

i,j ij

k

where u; - n; and p defined on the interface I'; ;, were computed at iteration k and

l]’

coming from the neighboring subdomain Q;. In (1.51), the term J pj.‘vi -n;dy is

Tij

computed using the transmission condition of Q; on T ;:

J p]v ndy = f (ﬁ]lu ‘nj+gr v - mydy. (1.52)
T;

L]

Consequently, using (1.51), (1.52), and n; =—n;, we have:
(gR],v n)r,, J ﬂl](u “n;)V; Ny d)/+J (B, lu ‘n; +gRll)vi -n;dy. (1.53)

Equation (1.50) together with (1.53) correspond to the k™ iteration of the Jacobi al-
gorithm applied to the interface problem (1.46).

Remark 1.5. For a basis function v; associated to an edge on I'; ; (in particular v; = 0

on d\TI'; ;), the term J p;.‘vi -n;dy can be computed either by (1.52) or using (1.49)
Ty
(replacing i by j and replacing k + 1 by k):

J p;‘vi ‘n;dy = —f p;.‘vl- ‘n;jdy = J (S_lui?) -v; dx —f p;.‘Vvi dx. (1.54)
r r Q

ij ij Q; j
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Next, we multiply the equation (1.47b) by a test function q; € M; and we integrate
over ;. We obtain:

J Vuitlg dx = J fq;dx, Vq; € M;. (1.55)
o o

1

The dual mixed variational formulation of problem (1.47) can be written as: find
uft! € W and pft! € M; such that:

—1, k+1 k+1 k+1 k 0
(Ct i ;Vi)ﬂi+2( T ‘N, Vi M) — (P, Vv =L (v), Vv, eW],

J

jeB!
(1.56a)
(Vuit,q)o, = (f,9)q,, Y4 € M;,
(1.56b)
where Kf is a linear form defined as:
e? : W?'—>R, e?(v):_<gD)V'ni>F?_Z<gfk{’j’v'ni>l"i’j’ (1.57)

jeB!

and where (gfk{j,v . ni)l—i]_ is defined by (1.53), for j € B'. Note that, in gen-

k+1

eral, ( ;

k+

i

iju

_1 . . '
l.n, e H2(29;). But in our case, ([31»,]-u§“rl ‘n;,v; -ni)rij is well defined because we

- N,V - ny)r, . does not make sense because v; - n; € H_%(aﬂi) and
u
suppose v; - n; € L%(99;) and uf“ -n; € L2(85);), using the space W, v; € W? CW;.
Therefore, we have more regularity and the integral is defined in the L?(3(Q;) sense.

We introduce the following bilinear forms a; and b;:
a; : WigN X W? — R, a;(u,v)= (S‘lu,v)gi + Z([o’i,]-u . ni,v'ni)ri’j, (1.58a)

jeBt

b, : W? X M; — R, b;(v,p)=(p,V-v)g,. (1.58b)

The new form of the abstract variational formulation (1.56) for the mixed prob-
lem (1.47) is: find uf*l € Wi and pf*l € M; such that:

ai(ui'<+1;vi) - bi(Vi,pr) = d‘((vi); Vv, e WY, (1.59a)
bi(uf+1) ql) = (f: ql')ﬂl-) vql € Mi' (159b)

1.5.2 Discrete problem: approximation by the mixed finite element
method

Many different numerical methods for the discretization of partial differential equa-
tions can be used to approximate their solution. The conservative cell-centered tech-
niques, as the mixed finite element method, mixed hybrid finite element method, or
finite volume method are suitable here because they give the conservation of mass
which is essential in our application. In this work, we will use the mixed finite element
method with the lowest-order Raviart-Thomas—-Nédélec space [136, 142]. Therefore,
the scalar variable p is approximated in L? by a constant in each element of the mesh,
and the vector function u is approximated in H(div) by functions such that the diver-
gence is constant on each element and the normal trace is constant over the edges
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in two dimensions and faces in three dimensions. Having the weak mixed formula-
tion (1.59), we can apply the mixed finite element method, by replacing the spaces M;
and W; by their finite-dimensional subspaces M}, ; and Wy, ;.

1.5.2.1 Triangulation and notation

N
We define &, := Y Ih,i» where , ; is a regular triangulation, Vi € [1, 4], of the
i=

polygonal subdomain ;, such that Q; = < Ug K, with card(Z,;) the number of tri-
€T, ’

angles (tetrahedra if d=3) in the i-th subdomain. We suppose that 7, ; is a matching
mesh, i.e., such that if K, K’ € J,;, K # K’, then K N K’ is either an empty set or a
common vertex or edge or face. For simplicity, we also assume that %, is conforming.
We denote the set of all faces (edges if d = 2) of 7, ; by &, ;, and the set of all faces of K

int - o D N
by &. é”}‘l“lt is the set of interior faces, é”}‘f’:t = é”}f ;U é’{ . is the set of boundary faces on
L . : Ty, | ol
90N 0Q;, and &, " is the set of sides on T'; ;. We then set &,; :=( U &,")U&ETUET.
jeB ’ ’

Let hg denote the diameter of K and let h; be the largest diameter of all triangles (tetra-

hedra if d=3) in %, i.e., h; = Jmax hg. The set of vertices will be denoted by ¥},; it
’ €Thi

. . D N

, vertices located on the boundaries "Vhr , "Vhr ,

D N D N . . 1—‘1
or ”f/hr = "I/hr N ”f/hr and vertices located on the interface T'; ; denoted by ¥, “,

is decomposed into interior vertices ¥/ ™

L .. oTy;

i <j, i,j € [1,4]. We denote the set of verticies a C dT; ; by ¥}, ?and the set of
.. 6;\(0T)

verticies a C T'; ;\(0T'; ;) by %" "

on,; |
vertexa€ ¥, ", ie.

. Let I, be the set of interfaces T'; ; that share the

Ioo={Ty:i<j, Lje[LAT,ae¥ M}, (1.60)

as shown in Figure 1.3 for the case of a decomposition of Q into four subdomains,
where I, = {I'1 5, T'1 3, T'a4, I's 4, }. Let |I,| be the cardinality of this set and I the rd
interface in I, sharing a.

23 Qy
T34
I3 Io4
a
Q I Q,

Figure 1.3: Intersection of the interfaces I'; 5, I'y 3, 'y 4, and I's 4 at vertex a
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We denote the set of all the elements sharing the node a by Z,:
T, ={KeJ;aecK}

N
=V KeF;ack] (1.61)

N i
iL=J1ya’

where 9; is the set of all elements in the subdomain €2; sharing the node a. |Z,| and
Iﬂall are the number of such elements. In the example of Figure 1.4, we have :

Ta

4 .
iglgal = {K;, K;} U{K;3, K4} U{Ks, Ko} U {K7, Kg}.

Figure 1.4: Patch 7, of the elements which share the node a

As we suppose that Q; is polygonal, for each integrable function f defined on Q;,
we have:

J f(x)dx = Z Jf(x)dx. (1.62)
Q; KG%M- K

1.5.2.2 Finite-dimensional spaces for the mixed finite element method

Let Mp; X Wy,; C L?(9;) x H(div, ;) be the Raviart-Thomas-Nédélec mixed finite
element space of order 0.

> M ; space
M,,; is the space of functions pj,; in L2(£;) such that:
My := {phi € L(Q); VK € Fj, Phiy € PO(KDY, (1.63)

where P°(K) is the space of polynomials of degree 0, i.e., which are constant in K. The
dimension of this space is dim M}, ;= Card (J, ;)= number of elements in 7}, ;.



1.5. The local solver in the mixed finite element formulation 27

— A basis of M}, ; is the polynomial function of degree 0, defined on each element, and
denoted by {yx}keg, ., Where:

1 if xek,
2(x) = { 0 otherwise. (1.64)

— The approximate scalar solution py, ; € Mp,; has a unique representation:

pri(x) = Z prxx(x) for xe€Q, (1.65)
Ke,;

where pg are the unknowns over the element K for all K € 7, ;, also called the degrees
of freedom of the pressure head.
> W, ; space

We first define the Raviart-Thomas—Nédélec vectorial field space of degree zero on a
given simplex. It has dimension (d + 1) in RY and is defined locally over an element
Ke %,

RTNo(K) := [Po(K)]? +xPy(K), xeR%L (1.66)

For d = 2, a vector field v, € RTNy(K) in a point x of K where x € R? can be written

Vp = (Zi) +dg (;) ;  where (ag, by, dg) € R, (1.67)

and for d = 3, vy, is written as:

ag X
vy = bK +dK Y1, where (aK, bK,CK,dK) E]R4. (168)
Cx z

To have the property of continuity of the normal traces over the edges of the mesh 7 ;
we use the space W, ; € H(div, ;) defined as follows:

Wh,i = RTNO(‘%I,I) = {uh’l’ S H(le, QI) : uh’ilK S RTN()(K), VK e z%l’i}. (169)

The most important properties of this space are:

e dim Wy, ;= card (&, ;)=number of all the sides of 7, ;,
* Ve €Po(K) VK €T,

eu,;-n,ePyle), Ve€s&,;.

- Let K and K’ be two adjacent triangles (tetrahedrons if d=3) that share the
edge e (face if d=3). We call x¢, the vertex opposite to edge e (face if d=3) in
triangle K (tetrahedron if d=3), and xx- , the vertex opposite to edge e (face if d=3)
in triangle K’ (tetrahedron if d=3). We fix the normal n, on e, and we suppose that
it is oriented from K to K’, see Figure 1.5. There is a basis function of the space
RTNy (%), associated with the edge e € é”}i“lt (face if d=3), defined on KUK’, and
denoted 1, :

1 5 1
P (x) = MXK’eX = m(x — Xk e) forx €K, (1.70a)
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1 . 1
’l,be(X) = WXXK/,e = M(XK/’e — X) forxe K/, (170b)
Y (x) =0 otherwise, (1.70¢)

see Figure 1.6 for a representation of 1, on K, in 2D.

XK,e

Figure 1.5: The normal of the edge e of the triangle K

Let e € 9QUIQ;, and let n, = n be the normal on the edge e, where n is the
exterior normal of . In this case, ,(x) is equal to (1.70a) if x € K and (1.70c)
otherwise.

XK,e

Figure 1.6: Flux through the edge e of the triangle K
Some consequence of 1,:

e For the basis {t,}.cg,, Of the space Wy ;, we have:

f P Ngdy =0,,, e, e e Ehi- (1.71)
e/
In fact, ife=¢’ :

1
<1:be ‘N, 1>e = f /l;be ‘ne dY = <¢e ‘g, 1>8K = (v"‘pe: 1)1( = (ma 1)1( =1,
e
and 1, -n, =0if e’,e € & and ¢’ #e.
e Because of (v, 1., 1) = (Y "N, 1) = 1, the normal trace is continuous through
the edge e. Thus, the jump is zero [, -n,] = 0.

- The approximate vector solution u,; € Wj; has a unique representation as
follows:

u(X) = D Ut (x), forxeq, (1.72)

eeé’h’i
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Qpe|K’

";be K

Figure 1.7: Flux through edge e in K and K’

where u, are the degrees of freedom and are defined as the normal flux, which is an
approximation of the vector flow u; over edge e € & ;:

U, = f uy; -ndy. (1.73)
e

> Degrees of freedom in M}, ; X Wy ;

For a single mesh element K (for d = 2), the local degrees of freedom of W ; are
represented by the arrows over the edges. The degree of freedom of M}, ; is represented
by the bullet in the triangle, as illustrated in Figure 1.8.

Figure 1.8: Degrees of freedom in Mj,; X Wy, ; for a single mesh element

> M;, and W}, spaces

We set M}, := EB{‘:/th,i and Wy, := GB‘{;/IWh,i. As noticed in Remark 1.4, the normal
traces of the vectors in W, and the pressure in M, are continuous across the sides
between two triangles in each subdomain ; but not across the interfaces in I'; at each
iteration of the DD algorithm. Only at convergence of the DD algorithm, the continuity
of the normal traces and the pressure will be satisfied.

1.5.2.3 Approximation of the local problem
We define the approximation g y of the function gy as a piecewise constant function
on each edge e ¢ T'N:

1
8hN|, = HJ gndy  for each e € TN of length |e]. (1.74)

We define the two following sets:

N, __ . _
th‘iN = {Wp,; EWp,;; Wp,; "R =gpx ON I“?I}, (1.75a)

Wy, o= {Wy; EWj;; Wy -n=0 on T}} (1.75b)
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The discrete counterpart of (1.59) reads: find ukJrl IS WghN and pk+1 € My,; such that:

a;(uf !, viy) = by(Vhi, pi ) = L5V, Vv, € W), (1.76a)
b; (uk+1 qh,i) = (f: qh,i)ﬂi) vqh,i € Mh,i) (176b)

where the linear form Kf is defined in (1.57) and the bilinear forms a; and b; are
defined in (1.58). Problem (1.76) can be written as an equivalent linear system that
we detail below.

1.5.2.4 System of linear equations

Foralle€ &,;, e C F?I, the discrete Neumann condition can be written as:

u’e<+1 :J k+1.p Ay = J gndy = lelgnn- (1.77)
e e

Using the basis function as a function test in (1.76):

> qh,i = XK Ke Qh,i)
/
> Vpi = "zbe” e < gh,i,

and using (1.65) and (1.72), we obtain the following system of linear equations,
where {pf™'}xes  and {uf*'},c, o are the degrees of freedom:

a | Y | b [ D pE g | = @), Ve €8y, @ 2TV,

eGé’h’i KG‘%U
(1.78a)

Z ulg—i_l’lpe’ Xk | = (f5 XK)Qis VK € ‘%l,is (178b)

eeé’h’i

k+1 _ N
gthel eegh,i} ecri;

(1.78¢)

or equivalently:

Z ai('lnbm ¢e’)ule<+l - Z l('lnbe 5XK)pk+1 = zi‘((d’e’); vel € éz,h,is 6/ ¢ 1—-1\1, (1793)

eegh,i KG%)I

D bi(e iU = (f, xi)as YK € T, (1.79b)

eeé’h,i

Ut =gy \lel, e€&ecTN.  (1.790)

where Kf is defined in (1.57) as follows:

E WO R, €)= —(gpatbe m)o — D gk L abe m)r,, k>0, (1.80)

jeB!

0 - . o e k . i
Here, gy ; is a given initial guess on T'; ; and (gR,].,z,be/ -ni)ri’j, forjeB'and k >1,
is the discrete counterpart of (1.53) when e’ C T

(gﬁ,jﬂﬁe"ni)ruzf ﬁi,j(ulﬁ,j'nj)lﬁe"nidY‘Ff (ﬁj,iuh] n; +8Rll)dY, (1.81)
Fi’j Fi’j
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and is equal to zero when e’ ¢ T Equations (1.79a) and (1.79c¢) lead to:

Z uleﬂ—lf S_lq»be "l;be’ dx
Q.

eeé’h’i i
e¢F§

+ 2wy J Bi (e ) (b -m)dy = ) p,’gHJ 2k Vb dx =
Tij Q

e€by jeB! KETy;
i (1.82)

- J _8p¥e -nydy — ZJ gh j%e - midy
I T

jeBt

-1 N
- Z gh,N|e|f S ¢e'¢e’dx, Veleéf’h’i, €/¢l—'i .
eeé”h’i Qi

ecry

Indeed, note that for j € B':

[g’i,j(gbe-ni)zdy: % if e=e¢ andecCT;

»J?

Fi,j

0 otherwise,
(1.83)

thus, E UEHJ Bij(te -n)(tpe -n;)dy = 0.
ecsy; Tij
eCFN

Equations (1.79b) and (1.79c) give:

> u’;“f xKv-wedx=f Fridx— Y gyylel f 2Vpedx, VK €Ty
Q; Q; Q;

eeé’h’i eeé”h’i
e(Zl“i.\I eCF{.\I
(1.84)
The matrix form of this linear system is:
B,Uf ™ + CP = Flop, (1.85a)
clutt! = —F, (1.85b)

where

- B, is a positive definite and sparse matrix, of dimension (n; —ny,,) X (n{ —ny;;) where
n? is the number of all edges e € J;,; and ny;, is the number of Neumann edges, i.e.,
eC I“?I :

B; = (ai('lzbe, 'lnbe/))e,e’eé"h’i, e,e’¢TN:
The term 1, - ¥, is a polynomial of degree 2. By the quadrature formula, we have in
two space dimensions:

3
f ST ppdx= f STl podx= D> > w,[S7 M, (my).ap,(m,)]
Q; K/e,e’COK

i KT Kegy; p=1
(1.86)
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|K

where w, = ?l and m, € R? is the middle of the edge e C K.

p

- Uf*l is the vector of degrees of freedom over the edges if d=2 (faces if d=3),

. . N
of dimension (n; — ny;):

k+1 _  k+1 — k+1
Ui - (ue )eegh,i: eg Ty = (J uh,i ) nedY) ’
e

eeé”h,i, e¢1"£.‘1
- C; is a matrix of dimension (n; — ny;) X |Z, ;|
Ci = (=bi(Ves xx))ees, ,, egr, ke,

To compute the terms of the matrix C;, we need to compute:

0 ife Z K,
J AV, dx = J Vap,dx = P, ngdy =1 1 if e € 0K and ny is outward,
& K oK —1 if e C K and ng is inward.

(1.87)
Hence, each column of C; contains at most three non-zero elements in two space di-
mensions.

- Pf“ is the vector of degrees of freedom on the triangles, of dimension card(J}, ;):
k+1 _ (o k+1
P =(px kes,

koo . . e_ e .
-F g is a vector of dimension (n; — ny;,):

i

k | pk
Fipr = £ (Ye) - Z 8nN
eeé’h’i
ecry

e| J S, - ap, dx , (1.88)
Q;
e’eé’h’i,e’gtl"?‘

- F; is a vector of dimension card(7 ;):

F=| (f,xx)— Z gh,N|e|J Ak V-1 dx
e€8y,; Q;

eCFN
! KeTh,;

The system (1.85) is the (k + 1)th iteration of the discrete DD algorithm (i.e. the
discrete counterpart of (1.47)), where FfDR is defined by (1.88), using (1.80).

Remark 1.6. For simplicity, we have presented one iteration of the discrete counterpart
of (1.46) solved by the Jacobi iterative method. If GMRES is used instead of the Jacobi
method, the discrete corresponding algorithm will uses similar discrete subdomain Robin
problems as above.
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1.6 Numerical results

In this section, we present the results of numerical experiments for the MFE method
in two cases. The first case is an illustration of the discretization error in the case of
one domain 2, with more general boundary conditions (Robin conditions) than the
usual Dirichlet or Neumann conditions. The second case concerns the decomposition
of Q into two subdomains Q; and , using the DD method presented in the previous
sections. An example of numbering of the vertices, edges, and triangles of the mesh, is
shown in Figure 1.9.

1| 21 e 53 ey 22 e 5/} sy 23 e 55 s, 24} e 56 s 25
g

47 48 50 51 52

.
/l / / /
43 46 49

16 17 18 19

N

3

g
3 2 34 35 37 38 39
/ @ ‘
0511 33 14 15
00 / ]
15 16 18 21 24 26

0s / ] / g / =) / =)

14 10

ol / ol
W

Figure 1.9: Global number of vertices, edges, and triangles for the domain Q

1.6.1 The MFE method in one domain with different boundary conditions

This first example focuses on using the MFE method to solve the problem (1.1) with
Robin boundary condition —u-n + p on one part of 2, where on 2 =]0,1[x]0, 1[.

We have:
3 2

2 3
o the exact solution: p(x,y) = sin(27x)sin(2ry),
o f=24n%sin(27x)sin(2my)-1672 cos(2mx) cos(2my) the corresponding source term,
e x = 0 the Neumann boundary,
e x =1 the Robin boundary,
e y =0 and y =1 the Dirichlet boundaries,
where the boundary conditions are prescribed by the exact solution.
As explained in the previous sections, the appoximate solution p; of p by the MFE
method is constant on each mesh element, see Figure 1.10 for |Z;,| = 512 triangles.

e the diffusion tensor: S =
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Figure 1.10: Approximation of p by a constant on each triangle, using the
lowest-order Raviart-Thomas—-Nédélec space

The method used to solve the system of linear equations is a direct method (LU fac-
torization). We can see in Figure 1.11, where |Z,| = 131072, that the approximate
solution (on the right) is visually very close to the exact solution represented at the
barycenter of each triangle (on the left). In Figure 1.12, we plot for |Z;,| = 131072 the
distribution of the error between the exact solution p and the approximate solution py,
on the domain 2, with a uniform mesh. In Figure 1.13, we plot the relative error of
the pressure in the L? norm as a function of h (on the left), and the relative error of
the flux in the H(div, Q) norm as a function of h (on the right). For more precision, we
also include Tables 1.1 and 1.2. The convergence rate is very close to the value 1, and
thus verifies the following a priori error estimates based on [36, 142]:

llp — prll2) = 0(h),

llu — up |l pxaiv,0) ~ @(h).
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Figure 1.11: Exact solution (on the left) and approximate solution (on the right)

number of edges | number of triangles —m convergence rate h
lpllL2)

3136 2048 0.0655 0.0442
12416 8192 0.0327 1.002 0.0221
49408 32768 0.0164 0.9891 0.0110

197120 131072 0.0082 1 0.0055
787456 524288 0.0041 1.0267 0.0028

Table 1.1: Convergence rate of the pressure error for different mesh refinements

number of edges | number of triangles = w convergence rate h
llullpdiv.)

3136 2048 0.079 0.0442
12416 8192 0.0396 0.9964 0.0221
49408 32768 0.0198 0.9935 0.0110

197120 131072 0.0099 1 0.0055
787456 524288 0.0049 1.0417 0.0028
Table 1.2: Convergence rate of the flux error for different mesh refinements




36 Chapter 1. Domain decomposition for steady diffusion in mixed formulations
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Figure 1.12: Error in the L?-norm between the exact solution p and the approximate
solution py,

1.6.2 The MFE method in the DD method: Jacobi iterative solver

Let us first consider the domain decomposition of £ =]0,1[x]0,1[ into two subdo-
mains ; =]0,0.5[x]0,1[ and 2, =]0.5,1[x]0,1[. The global numbering of the
domain 2 becomes an independent numbering in each subdomain, as shown in Fig-
ures 1.14-1.15. The same problem defined above is now solved on each subdomain.
In this part, the discrete counterpart of the interface problem (1.46) is solved with
the Jacobi algorithm. The DD stopping criteria is when the jump of Robin condition on
the interface is less than le-10. In Figure 1.16 we show the convergence rate of the
pressure error (on the left) and the flux error (on the right). The values of the error
are shown in Tables 1.3 and 1.4 again to give more precision. It is clear from Fig-
ure 1.17 that the difference between the approximate solution p; in the monodomain
case and the approximate solution pp, pp in the DD method is very small. We observe
that the DD algorithm converges up to the given tolerance 1e-10 to the discrete mon-
odomain solution (the solution of the discrete counterpart of problem 1.1). We can
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Figure 1.13: Error in the L2-norm between the exact solution p and the approximate
solution p;, (on the left) and error in the H(div, 2) norm between the exact solution u
and the approximate solution u; (on the right) for different mesh refinements
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Figure 1.14: Global numbering in the mesh &, of Q

see in Table 1.5 that this difference is also very small for different mesh refinements.
For all algebraic and domain decomposition solvers fully converged and without the
presence of rounding errors, the approximate solution and the monodomain solution
theoretically coincide. In this Chapter, the tolerance in the stopping criterion of the
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Figure 1.15: Global numbering of the mesh in the subdomain 2; (on the left) and the
subdomain €, (on the right) after domain decomposition
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Figure 1.16: Convergence rate of the pressure (on the left) and the flux (on the right)
in the DD method for different mesh refinements

DD algorithm is chosen arbitrary equal to 1e-10 which maybe a too much restrictive
stopping criterion. In the next chapter, we will develop the theory of a posteriori esti-
mates for the DD method in order to obtain an a posteriori stopping criterion with a
lower tolerance, adapted to the problem considered.
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no. of edgesin Q; /Q, | no. of triangles in €, /€, errpzzizL2 ||||1;l” zph’l”LZ(Qi) convergence rate h
L2(Q
1240/1240 800/800 0.083 “ 0.0559
19360/19360 12800/12800 0.0208 0.9996 0.0140
43440/43440 28800/ 28800 0.0138 1.0030 0.0093
59080/ 59080 39200/39200 0.0118 1.0398 0.008
173280/ 173280 115200/ 115200 0.0068 1.0363 0.0047
Table 1.3: Convergence rate of the pressure error for different mesh refinements using
the DD method for two subdomains
no. of edges in Q; /Q, | no. of triangles in Q; /Q, | err,= Zi:l’z I = e convergence rate h
llullediv.e)

1240/1240 800/800 0.09670 0.0559
19360/19360 12800/12800 0.0242 1.0005 0.0140
43440/43440 28800/ 28800 0.0161 0.9896 0.0093
59080/ 59080 39200/39200 0.0138 1.0412 0.008

173280 / 173280 115200/ 115200 0.0081 1.0017 0.0047

Table 1.4: Convergence rate of the flux error for different mesh refinements using the
DD method for two subdomains

h ||Pr,op — Prlloo
0.0559 8.415e-11
0.0140 7.485e-11
0.0093 7.16e-10
0.008 4.12e-9
0.0047 1.989¢-10

Table 1.5: Error between the approximate solution p;, in the one domain case and the
approximate solution py, pp in the DD case (with two subdomains) for different mesh
refinements
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Figure 1.17: Error between the approximate solution p; in the monodomain case and
the approximate solution py pp in the DD method with 28800 triangles in the
domains Q;,i=1,2
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In this chapter, we develop a posteriori error estimates for the discretization intro-
duced in the previous chapter. The purpose is to bound the error between the exact
solution and the approximate solution, |||u — u,1§+1|||* and |||p — p§+1|||, at each iter-
ation k + 1 of the DD method, by indicators that are completely computed from the

approximate solution (pf*!,uf™!) such that:

k+1 e k+1 k+1 e g k+1 .
ph+ |Qi '_ph:; > uh+ |Qi o uh,—i'— ) Vie |]:1)=/V:[|

In order to obtain optimal a posteriori error estimates of p and u in the mixed finite

element method, we first derive a postprocessing of pﬁ“, denoted by ﬁ’g“ . This

postprocessing improves the approximation of p. In general, our approach is based on



42 Chapter 2. Estimates and stopping criteria in steady diffusion case

the reconstruction of an equilibrated flux and a potential, following [130, 154, 156].
We also wish to distinguish the different error components, namely the subdomain
discretization error and the domain decomposition error as in [141]. This allows us
to define suitable stopping criteria. We finally note that our approach is not restricted
to the (non-preconditioned) Jacobi iteration. We use this setting only for the clarity
of exposition. Any iteration (GMRES, conjugate gradients, etc.) can be used, together
with any preconditioning.

Notation

We suppose for simplicity that gp € Po(I'®) N C%(I'P) and gy € Po(I'™N). We introduce
the broken Sobolev space H(Z},):

HY(Z,) :={vel?Q); vt €cHYK), VKeI]}. 2.1)

. . Ti; i .
For each interior edge e € ( U &, ")U &, such that the triangles K and K’ share the
jEB! ’

edge e (the order of K, K’ is arbitrary but fixed once and for all), we denote by n, the
normal vector pointing from K to K’. We also introduce the following notation for the
jump and the average. For a given function v, its jump is defined as:

: Tiin s o
Vg =Vl if ee(U §YIUET,
jEB! ?

[v]) = : 22)
vl,—gp if eeé’;{i,
and its average on e is defined as:
1 . Tij int
5(V|K+V|K/) if ee(_%ié"h )Ué"h’i,
fvi = € (2.3)

E(V|e+gD) if e Eé’i’lft.

In Sections 2.1 and 2.2, we give the ingredients which allow the general a posteriori
estimates of Section 2.3. Then in Sections 2.5 and 2.6, we propose a specific construc-
tion of these tools based on the discretization and the DD method used in this thesis,
to achieve as sharp as possible bounds.

The a posteriori analysis of the domain decomposition method presented below
is applied for any locally conservative method, such as the mixed finite element and
the cell-centered finite volume schemes.

2.1 Postprocessing of p}’f“ in the lowest-order Raviart-

Thomas case

Here, we consider what happens in a given subdomain ;. In the continuous case,
there is a direct link between u; and p;, the constitutive law:

u; = —SVpl



2.2. Concept of potential and flux reconstructions 43

This link does not hold in the discrete case in the MFE method, i.e. uy,; # —SVpy, ;. This

inspires us to perform a postprocessing karl of karl at each iteration k + 1 of the DD

k+1

algorithm, for all k > 0. The following postprocessing of p, 7" was proposed in [154]:

we construct p}]fl’l € Py(F,;), where Py(J}, ;) is the space of piecewise polynomials of

total degree less than or equal to 2, such that:
—SVp Tk =uitk, VK €T, (2.42)
mo(Br ) =pr k. VK €Ty, (2.4b)

where 7 is the projection of pk+1 |x on constants:

(pl;ﬁl, )k

2.5
K| (2.5)

~k+1 —
Tfo(phj{ k) ==

Thus, pk+1 is constructed element by element on 7, ;. In general, karl is not conform-

ing in the sense that karl ¢ H'(Q,). It has been shown in [154] that ﬁ’,ﬁl € Wo(F),
where:
Wo(Th) = {w € H'(Fh); (L]l 1) =0, Ve € &} (2.6)

This is the space such that the trace of jumps on the edges are orthogonal to a constant

for all edges e é’ﬁ“lt In other words, there is a weak continuity, in the sense that the

k+1

mean of p p,; on the left is equal to the mean on the right of the interior edges of 7, ;:

([5EF D 1), =0, Yee g™
& (Bt Deex = (Bp1 s Deerrs Ye =KNK's.t. KK € T . 2.7)
If p;|, = gp is a Dirichlet condition on e C ar?, then (ﬁﬁl, 1), = (gp,1)e-

Remark 2.1. In the case of one domain Q, this postprocessing leads to the continuity of the
means of the traces of ﬁ 1 on interior domain sides. In the case of a decomposition into
two or more subdomains, karl and karl are constructed separately and independently in

Q; and ;. Hence, there is a priori no reason to have ([[pk+1]], 1), =0 forec é”}l;i’j. In
general:

([pE'T],1), #0, Ve &,
(p’,ﬁl,l) 7&(karl 1), for e=KNK' st. Ke€F;, K'€ J,;. (2.8)

2.2 Concept of potential and flux reconstructions

The goal of this section is to present our potential and flux reconstructions at each
iteration k + 1 of the DD algorithm, k > 0, which will be the central tool used in
Theorem 2.5 and 2.7.

2.2.1 Potential reconstruction

Definition 2.2 (Potential reconstruction). We will call a potential reconstruction any
function sk constructed from pftY, uftY, as proposed in [58, 130, 154], which satisfies:

skt e HY(Q) N CO(q), (2.92)
s’,;+ lr> = gp. (2.9b)
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2.2.2 Subdomain potential reconstruction

Definition 2.3 (Subdomain potential reconstruction). Let i € [1, A4 ]. We will call
a subdomain potential reconstruction any function E}ﬁrl constructed from pytt, uft,
which satisfies:

sl e HY(Q,) N Co(y), (2.10a)
Shi o = golro. (2.10b)

In contrast to sﬁ“ of Definition 2.2, EEF is constructed locally subdomain by sub-
domain to capture the nonconformity from the numerical scheme only and not that
from the domain decomposition method. Thus, Eﬁj{l is close to [);;.’1 independently in
each subdomain and EIgjllri’j is close to [)ﬁ.’lh—i’j, Vie [1, 47, j € B' in the sense that

the estimator (2.17) and (2.28) are as small as possible.

2.2.3 Equilibrated flux reconstruction

Definition 2.4 (Equilibrated flux reconstruction). We will call an equilibrated flux re-

construction any function o-}f“ constructed from pﬁ“, u’gH, as proposed in [58, 130,

156, which satisfies:

ot € H(div, Q), (2.11a)
(VoL g =(f, g, VK€, (2.11b)
with P
N
_ (U;;H ‘ng, 1), = (gn, Do, Ve e U g,{i ) (2.12)
k+1

The construction of o, ™" is more complex than the construction of sﬁ“ because
it must satisfy both of the above requirements (2.11a) and (2.11b). We present it in
details in Section 2.6.

2.3 General a posteriori error estimates for p, € H'(%,) and
u, € L*(Q)

Because we use the MFE method inside the Robin-to-Robin domain decomposition
method, we obtain:

u’gH ¢ H(div,Q), Vk >0, in the DD algorithm,

pi ¢ HI(Q), VpKT!¢H(div,Q), and V-(-SVpfTh)#f,

where Vp’,f+1 is the broken (elementwise) gradient. Also, in order to evaluate the en-

ergy error between the unknown exact solution and the known approximate solution,
p’};H does not sum suitable. In fact:

1 1 1
IS2v(p - pfHIP = Y 152V (p — pf)II2 = (182 Vpl|? because pf | € Po(K).
Keg,

That is one of the reasons to introduce the postprocessing [9’};“ of p}]f’l such

that [)EHI x € Py(K), VK € Z,. In this section, we present a general framework for
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the a posteriori error estimate independently of the discretization method used in each
subdomain and based on the results given in [130] and [156]. In particular, this gen-
eral theory of a posteriori estimates is valid at each iteration k + 1 of the DD algorithm,
for the Robin-to-Robin domain decomposition with the MFE method. We first define
the energy semi-norm on H'(%,):

1
el :=1S2Vel?, ¢ €H'(F), (2.13)
and the energy norm on L?(2):
IVIIZ:=1s72vI2,  vel(@). (2.14)

For D C Q, we denote respectively cs p, Cs p the smallest and the largest eigenvalue of
the tensor S in D. For the forthcoming theorems, we will use the Poincaré inequality:

1
for K € 93, and a constant Cp i := — (since K is convex), we have:
’ T

lle — mopllx < CoxhllVeollxk, Ve €HY(K). (2.15)

Theorem 2.5 (A posteriori error estimates for the flux). Let u be the weak solution of

the initial problem (1.1) and let u’gH € L%(Q) be an arbitrary approximation, in par-

ticular u’gH can be solution of the problem (1.76) at iteration k + 1 of the Optimized
Shwarz (Robin-to-Robin) algorithm. Let s}]frl be the potential reconstruction of Defini-
tion 2.2, Eﬁl be the subdomain potential reconstruction of Definition 2.3, and O'}If—i—l be

the equilibrated flux reconstruction of Definition 2.4. We have:

1

N 3 N 3 p
lIlu— )], < gfH1 = {Z > néR,K} +{Z > n%Dp,K} +{Z n%DF,K}

i=1 K€D, i=1 K€D Ke,
1
5 2
+ { Z T’osc,K} 4
Keg,
(2.16)
where
NeRK := |||u§Jl.rl +S V§lg;1|||*’K “constitutive relation”, (2.17)
MNDpDPK := |||SV(§}]§J1.rl - sﬁl)|||*,K “DD potential non conformity”, (2.18)
MNDDFK ‘= |||u}]frl — a’}:+1|||*,K “DD flux non conformity”, (2.19)
_1

Nose.x ‘= Cpxhics zllf — V'a}’fHIIK “data oscillation”. (2.20)

For this theorem, we denote I é‘;f’l the effectivity index, which is the ratio of the estimated
and the actual error at the iteration k 4+ 1 of the DD algorithm, given as:

k+1

n
o L S (2.21)
e L [°



46 Chapter 2. Estimates and stopping criteria in steady diffusion case

Proof. It follows readily from [130] Section 3, Therorem 3.1, that for the DD method
where the flux and the potential are not continuous on the interface we have:

1 1 1
2 2 2 2
lu—uf ], < = {Z |||uk+1+SVs’}§+1|||*’K} +{Zn%DF,K} +{Zn§sc,1<} :

Keg, Keg, Keg,

(2.22)
Moreover, we have:

N
2
>l +SUsEIZ = D0 Y Ik S UsEIE
i=1

KeZ, =1KeT;
X 2
= § Nt + SVsit —SVs T +SVsEH|
s * K
i=1 KEF,;

N
-k -k
<D . Ul + sVl +1lIsvsyT! = svsk il

N
= Z (Nerx + Moo k)

i=1 K€,
(2.23)
Using the triangle inequality on the space [ on RIZ we obtain the same terms as
in (2.16):
1 1
k+1 k+1y112 2 2 2
DU SV b <4 D (ere + Nooe)
Kez, Kez,
. . (2.29)
N 2 N 2
2 2
= {Z Z nCR,K} +{Z Z nDDP,K} .
i=1 K€, i=1 KET;;
O

Lemma 2.6. Theorem 2.5 bounds the error in each subdomain due to the discretization
and the error on the interface due to the decomposition of the domain. The discretization
error estimator 1gis. (also called subdomain estimator) is:

Y 1 1
Ndise *= {Z > néR,K}ZjL{ > nisC,K}z (2.25)

i=1 K€, Keg,

and the domain decomposition estimator Mpp (also called the interface estimator) is:

A 3 3
Npp = {Z > nzDDP,K} +{Z nzDDF,K} : (2.26)

i=1 KET; KEZ,

Theorem 2.7 (A posteriori error estimates for the potential). Let p be the weak solution
of the problem (1.1) and let p Nk“ € HY(Z,) be an arbitrary solution, in particular karl
can be the postprocessing of pk+1 solution of the problem (1.76) at iteration k + 1 of the
Optimized Schwarz algorithm described in Section 2.1. Let uf*! = —SVp 1. Let 55! be

K)2



2.3. General a posteriori error estimates for p, € H'(J,) and u,, € L*(Q2) 47

the potential reconstruction of Definition 2.2, sh ! be the subdomain potential reconstruc-

tion of Definition 2.3, and ak+1 be the equilibrated flux reconstruction of Definition 2.4.
We have:
1 k+1 . & 2 : S 2 : 2 :
k+ ~k+
P =B <A =4 " > Mlepx t +120 2. Mhoe | T 2. Movrk
i=1 KET; i=1 KeT; KeZ,
, 2
+ Z nosc,K 2
KeZ,
(2.27)
where nycp k 1S the “potential non conformity” estimator:
<k+1
NNCPK ‘= |||karl ShT Ik (2.28)

Nosex 18 defined in (2.20), Mppp  is defined in (2.18), and nppg g is defined in (2.19).
For this theorem, we denote I é‘;f’l the effectivity index, which is the ratio of the estimated
and the actual error at the iteration k 4+ 1 of the DD algorithm, given as:

k1

k+1 . n
et 5l *22

Proof. It follows readily from [130] Section 3 Therorem 3.3 that for the DD method
where the flux and the potential are not continuous in the interface we have:

1 1
. 2|2 . 2|2
lllp = Bl < 7+ {ank“ ’<+1|||K} +{Z|||sv ’<+1+a,’:+1|||*,1<}

Ke, Key,
, 3
+ Z nosc,K .
KeZ,
(2.30)
Note that |||SV~k+1 + O';If+1|||*,1< can be divided into two parts:
NISVEL + o Ik < ISVEL T +wp Lk + I —of PILg. (23D

The first term above disappears by assumption. Inserting now the subdomain potential

reconstruction Eﬁl we obtain:
N
2 k1 _ gkt | cktl k+1
Z NNepx = Z Z |||P —Spi TSpi T ”lK
Keg;, i=1 K€
s (2.32)
k+1 _ =k+1 —k+1 k 1 2
Z D AIBET =55 e + sy = sEE )2
i=1 egill

Thus,

N
Z TIIZ\ICP,K < Z Z (Mncpx + Moop.c)*- (2.33)
Kegy i=1Ke%;
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|7l

Using the triangle inequality on the space 1> on R'7t | we obtain the same terms as

in (2.27):
1

3 (X 3 (X 3
{Z nIZ\ICP,K} = {Z Z nIZ\ICP,K} + {Z Z nzDDP,K} . (2.34)

Ke, i=1 KET; i=1 KET;

O

Lemma 2.8. Theorem 2.7 bounds the error in the subdomains due to the discretization
error and the error on the interface due to the decomposition of the domain. The dis-
cretization estimator 1g;s. (also called the subdomain error estimator) is:

1 1
N 2 2
- 2 2
Ndisc *— {Z Z nNCP,K} +{ Z nosc,K} 3 (2'35)

i=1 K€ ; KeZ,
and the domain decomposition estimator mpp is defined in (2.26).

Remark 2.9. In the MFE method for a single domain, we do not need to construct oy,
because the approximate flux uy is equilibrated and in H(div,2), see (1.76b). Thus,
NMpprx = llup — oplll, x =0, VK € Fy. In the two or more subdomains case, Nppg x Will
be equal to 0 in the triangles not touching the interface T'; ;, for the construction of oy,
given below.

52

k+1
h

k+1

N in Q at each iteration of the

2.4 Properties of u
DD algorithm

and p

At iteration k + 1 of the DD algorithm for the Robin-to-Robin domain decomposition
using the MFE method, we have the two following Robin conditions on the interface

l"i’j:

k+1 k+1 _ k k

—[J’i,]-uh,i n+py = _ﬁi,juh,j N+ py on I, (2.36a)
k+1 k+1 _ k oo ok N

—fo’j,iuh’j nypy = ﬂj,iuh,i n;+py; on I ;. (2.36b)

However, the physical quantities are not conserved at each iteration on T'; ;:

k+1 k+1
uh,—i'— |e n; # uhj |e ny, Ve e 1—‘i,j

and
k+1 k+1
Ppi |, #ph’j le, Ve€eTl,;.

The continuity of the normal component of the flux is only obtained at convergence.
Indeed, at each iteration k + 1 of the DD algorithm, the MFE method gives locally
uﬁl € H(div,Q,) for all i € [1, 4. Thus, u’gH ¢ H(div, Q). For this reason, we will
construct a flux a’}:*l that satisfies both conditions (2.11a) and (2.11b) in Section 2.6.

We also need to build a potential reconstruction s’,f“ and a subdomain potential recon-

struction EI}:Tl. Once O'}I;—H, s}]f’l, and Eﬁl have been constructed at each iteration, we

can compute the error estimators in Theorems 2.5 and 2.7.
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2.5 Potential reconstructions for the Robin DD in the MFE
method

2.5.1 Potential reconstruction

In order to build the potential reconstruction s’,f“ which is H!(Q)-conforming as indi-

cated in Section 2.2.1, we first introduce the averaging operator (interpolation opera-
tor) acting on the nodes of the mesh:

St Po(T) — P (T)NHY(Q), (2.37)

where P,,(%,) is the space of polynomials of maximal degree m on each K € &,. This
operator .%,, associates to a piecewise m-th order discontinous polynomial ¢} € P,,(%,)
a piecewise m-th order continuous polynomial on £ (H'(£2)-conforming), equal to gp
on I'°. The value of the function .%,,(¢;,) is prescribed at each Lagrangian node a by
the average of the values of (y at this node:

1
Inlo)(@) = = > eux(a), (2.38)
al ke,

where 7, is the set of all the elements sharing the node a, see (1.61). In particular, if
m = 2 and d = 2, the Lagrangian nodes are the vertices of triangles and the nodes in
the midpoints of the edges. At the Dirichlet boundary nodes ap, the value of .,,(¢y,)
is set to gp(ap).

In our case, we take [);j*l € Py (%) from (2.4) and we define the pontential recon-
struction at iteration k + 1 as follows:

skthi= g, (BFTH e HY(Q). (2.39)

2.5.2 Subdomain potential reconstruction

As explained in Remark 2.1, the means of the traces of [)SH on the edges belonging

the interface are not continuous during the DD algorithm:
([BEHT,1), #0, VYees,”. (2.40)

The purpose of this section is to construct a subdomain potential reconstruction which
is different from .#,, of (2.38) at the beginning of the DD algorithm because of (2.40),
but close to .#,, at convergence of the DD algorithm where both the subdomain po-
tential reconstruction and .#,, satisfy ([[ﬁ’g“]], 1), =0, Vee é”{ “_ To do so, we first

(BT, 1)

bound the mean value from above as follows:

KB I, el (BT ).
le| '

(2.41)

We next define weights on edges (faces) and vertices belonging the interface at each
iteration k + 1 of the DD algorithm as follows:
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Definition 2.10 (Weights on edges belonging to the interface). We define the weight of
the edge (face) e € é’; “ using (2.41) by:

SESI] 3
e IK[[By, +1]] el ‘ (2.42)
(B, 1),
We know that at convergence, when k — oo we obtain ([[p}]frl]], e — 0, and so
[(l[p k+1]] 1),] — 0. Thus, at convergence we have:

wktl =0, (2.43)

e

Conversely, W’;H is typically close to 1 at the beginning of the DD algorithm, and alto-
gether:
0<wttl<1. (2.44)

Definition 2.11 (Weights on Lagrangian nodes belonging to the interface). Using the

. . . . Ty
notation (1.60), we define the weight on the Lagrangian node a € ¥, "' located on the
interface, in two space dimensions for simplicity, by:

1 . I, A\ ; T,
2( k+1+wk,+1) lfae”f/h”\( ”)Where e,e/eé’hl”/ene’:a,
whtl .= IL,|
a —k+1 r
|I| E lfaE"V 7 where ac€e, cr,

(2.45)
where we recall that 1" is the r'™ interface in I, that shares a. We note that W’;H has
similar properties to WeH. It is close to 1 at the beginning of the DD algorithm and close
to O at convergence.

Remark 2.12. In the case of the standard averaging operator .%,, from (2.37), the Weights

are distributed uniformly on each element K € &, sharing the node a, being equal to — 7

see (2.38). Recall that for a given vertex a on the interface, the patch Z, is a union
of subdomains subpatchs 9;, see (1.61). For the subdomain potential reconstruction of
Definition 2.3, we now want to define weights so that all elements sharing the same node
in the interface do not have the same weight during the iterations of the DD algorithm.

Definition 2.13 (Weight of verticies a on the interface for each 9; in ,). In order
to construct the subdomain potential reconstruction on the subdomain 2;, we now define
a weight of elements in 7, and the weight of elements in J,\7,, for a belonging the

interface. The elements K € 7 ! have the same weight Wk+1 on the node a:

1
k+1

Wt = — . (2.46)
N AR GRS DI

The weight of the elements K € 93\9i on the node a is:
k+1(1 k+1) (2.47)
Lemma 2.14. The sum of the weights (2.46) and (2.47) is equal to 1 on each node a:
k+1|9 |+wk+1(1 —k+1)2|9]|_1 (2.48)

jeBt
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Proof.
k+1|ﬂ |+Wk+1(1 _k+1)2|ﬂ]|— k+1(|9 |+(1 —k+1)2|9]|)
jeBi jeBt (2.49)
=1 (from (2.46)).
O
Remark 2.15. This distribution of the weight on the patch 7, is the way to obtain weight

located only in the elements K € 9; at the begining of the DD algorithm. Indeed, we have
(1- W’;H) = 0 and the weight at the node a for the elements K € 7,\7, disappears;

whi (1 -with) = (2.50)
Therefore K € 7, \9’1 do not contribute, whereas WkJrl becomes WkJrl =7
a
k+1)gri| — _
Wia |Tal= |91| EAE (2.51)
At convergence of the DD algorithm, WkJrl = 0, which leads to (1 — kH) = 1. Thus,
kel 1
, i —k j
O - Y 1)
1
= - F (2.52)
|9;| + Zjef}i |<% |
_ 1
FAN
and 1
k+1 —k+1
w:(1—w = —. 2.53
A=W = (2.53)

Then, at convergence, the weight on a node a is distributed uniformly on each element
K € J, and we return to the case as in (2.38). In particular, we obtain:

Wi ]+ wkil (1 - —k“)ZLm_|9||9|+|9|Z|91|
jEB!

1 (2.54)
= 17l
Zal 7

=1.

Finally, the subdomain pontential reconstruction sﬁ at iteration k 4+ 1 of the DD
algorithm is defined as follows:

§}I§-:-1(a): k+1 Z ﬁlﬁllK(a)_,_WkH(l k+1)Z Z Pl;f+1|1<(a) acr,
Keﬂl JGBlKeﬂ’ (255)

EETI(a) = sk+1(a) otherwise.

This construction leads to a subdomain potential reconstruction s’gH where at the be-

ginning of the DD method the elements of 9; of the subdomain Q; contribute more,
i.e. with high weights, whereas the elements in K € Z,\7," do not contibute because
their weights are (close to) zero. At convergence, all elements contribute and have the

same weights. Thus, sﬁl converges to ﬂav(th)I
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2.6 Flux reconstruction for the Robin DD in the MFE method

In this section, we suppose that for all e C T'; ;, n, has the same direction as nr, where

i,j>
nr, . is set arbitrarily, pointing either from §; to Q;, or from Q; to Q;, with j € B', i < j,

le[[l A].

2.6.1 Construction of o+ € H(div, )

Proposition 2.16. For any decomposition of Q in many subdomains, we can build a flux

reconstruction a}’fH € H(div, Q) by taking the average of the normal trace of the flux, on

: L,
the left and on the right of each edge e € jlgj;i &

fuft!-n,}, Vee U &y
‘n,= jeBt (256)

k+1 int ext
wt-n,, Ve € EiUET

Using this construction, we obtain [[Uk+1 n,]] =0, Ve € §,. Thus, we obtain the first
required property (2.11a):
ot € H(div, Q) (2.57)

as well as the third property (2.12).
It remains to verify the balance (2.11b) in all the elements K € ;..

Lemma 2.17. The property (2.11b) does not hold for o, constructed as in (2.56). Indeed,
oy, 1s not balanced with the source term in the triangles having a face on the interface T';
but oy, is balanced in the other triangles of I, ;, Vi € [1, 4].

l]’

Proof. In the mixed formulation (1.76b), we take the space M, ; of piecewise constant
functions. We thus have:

(V'Uh, 1)K = (f, 1)K, VK c%l- (258)

This leads to the balance with the term source in every K € 7 ;, Vi € [1, 4]. We note
that, with this construction of the flux a}’fH in the triangles which have no edges on
the interface T'; ;, (white triangles in Figure 2.1 for a domain decomposition into two

subdomains), we do not change the normal traces of the fluxes, thus
(Voor ™ Dk =(f, 1)k, VK €T (2.59)
It remains to verify this property on the triangles (tetrahedra if d=3) that have one
side on the interface. Let K be a triangle such that e; € T'; ;, see Figure 2.2 for i = 1,
j = 2. Let ng be the outward normal vector to K and n, = ny for e € &.
(V-of ™ D= Y (of - ng, 1),

e€by

k+1 k+1 k+1
:<uh+ 'ne151)el+<uh+ 'ne251)ez+(ah+ 'ne351)e3

1
2 ( +1|K n,, + uk+1|K’ ‘N, 1)63
(in general for the Robin DD: (u’g+1|K Ny, 1), # (u’}:*llkﬂ ‘N, 1),,)

# 3 (o, 1), = (f, D

e€by

=(utn, 1), + (uft ng,, 1), + 2

(2.60)
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NP

Figure 2.1: Triangles in &, having a face on the interface (triangles in color)

I
€1
K| K
€2 eq

Figure 2.2: Triangles K et K’ on each side of the interface

Thus, there is no balance between the normal traces on the edges & of K and the
source term f. Therefore, the choice of this flux reconstruction oy, verifies (2.11a) but
does not verify (2.11b). O

2.6.2 Improving o-}'fH to obtain the balance with the source term

We will now define an area, called a band, which contains triangles that share an edge
or a vertex with T; ;. Inspired by [130], we will construct U}I:H € H(div, Q), which
is the solution of a local Neumann problem in the band. We use the MFE method to
solve this local problem in order to obtain a}f“. The crucial point is to find Neumann
conditions on the boundary of the band that are in equilibrium with the prescribed
source term whereas in [130] the equilibrium is the result of a fixed assumption which
is not valid in our case. For simplicity, we first consider the case of the DD where
any subdomain touches the boundary 2. To explain the idea, we start with the two-
subdomain case Q; and Q,: for i = 1,2, we split ; into two parts Qf"t and Qi.m
such that @UQ%‘“ = ;. Note that I'| ; C @ C €, and also T'1 5, C Q5 C Q,
see Figure 2.3. The band Q*" is made up of triangles that have an edge or a vertex on
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the interface I'; 5. We also denote Ff fori =1,2and b = 1,2 the intersections of dQ*
with Q; N dQ of nonzero (d — 1)-dimensional measure.

ry Iy
\ \
|
|
@'/\
1—‘1

RN

4 A
rz r?
Qint Qext 1 2Qext Qint
1 1 2 2

Figure 2.3: The band Q‘i"t (blue) of the subdomain 2, and the band Qg"t (red) of the
subdomain Q,, on each side of the interface I'; ,

Starting with a{f“ given by (2.56), we do not have equilibrium with the source
term in the band Qf for i = 1,2. On each egde e C I'y ; for i = 1,2, there appears
a difference between the normal trace of the original flux and the reconstructed flux.
This difference is a constant function on each edge e C I'; ;, which is as follows:

k+1

1
wtton, — fult! = nr,, -nm?xti[[u'g*l ‘n,Jl, VecT,. (2.61)

ext

In particular, using the Green’s theorem in a given ;™, we have:

Corollary 2.18. In the band Qth, for i = 1,2, the misfit of mass balance due to the
averaging on the interface I'y 5 is:

1
nr,, "Nggex Z J 5 [[uf*t-n Jdy = (f, Dge — (fuit? Naqee}, 1)ggec.  (2.62)

eCrl'y 5

Remark 2.19. In the case where all the subdomains touch the boundary 9%, we can com-
pute for each band Qf"ta correction which is equal to (f, 1)ngxt — ({{u}':+1 ‘n aQ?XtB, 1), Qs

and which we distribute on I“ll? for b =1,2. Then this enables us to have equilibrium in
the band Qf’“, when i = 1, 2. For example, in Figure 2.3, we add a correction cl]ffl on Fl.l

and cllf;H on 1"1.2 such that:

3

el = (f, Daex — (fup ™ - nggend, 1) ogex. (2.63)
b=12 '

Note that we do not make a correction on dQ N an?t or on T’y j, in order to keep the
property H(div, Q;) of o"fl. We then solve local Neumann problems in the two bands
Q" and Q5 following the process given in the general case, see problem (2.79) in Sec-

tion 2.6.2.3 below, in order to obtain o-,]fﬂlmxt -n, forall e C Qth, Vi = 1,2. The
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disadvantage of this manual method of distribution is that for a general domain decom-
position, for many subdomains where at least one of the subdomains does not touch the
boundary 9%, it does not work. The difficulty is with subdomains which do not touch 9,
where we can not push the misfit onto the boundary 9.

A possibility to solve this problem is to use a Balancing (BDD) method [49, 122,
123] where we obtain one unknown in each subdomain by using a coarse grid. This
coarse problem with one unknown per subdomain would allow us to obtain the balanc-
ing in each subomain. However, we choose to adopt a simpler new method that makes
the connection between subdomains in order to rebalance the flux independently of
the number of subomains, and can also be applied in the case where at least one sub-
domain does not touch the boundary. The aim of this method is to find one correction
through a simple coarse balancing problem.

2.6.2.1 The two-subdomain case

We first present our general approach for two-subdomains, and then we generalize it
for any domain decomposition. In the situation of Figure 2.3, we want to find five

corrections to the averaged flux {{uk+1 n aQeXtB‘ which will lead to equilibrium in each
band Q5 and Q5. We denote these corrections by: ckH, cllffl, ’lfj e ’lffl and ckH,
1 1
defined respectively on T’y o, I“l, F%, Fé and F%, see Figure 2.3, such that:
it ~0fori=1,2and b=1,2, (2.64a)
ey ~0. (2.64b)

We keep the same value of the flux uﬁ“ ‘NMggenngqn located on 90 N Q™ where i
1 13

represents the number of the subdomain ;. Thus, we set:

k+1
c =0 (2.65)
ot naqin ’

k+1 —
Congenonin = 0. (2.66)
There are as many balancing conditions as bands ™, i.e. as many as the subdomains.
In the case of two subdomains, the two balancing conditions to satisfy are:

(nr,, Mook + 3k = (f, Voo — (! -npgecd, Dogee,  (2672)
’ b=1

(nr, - nanext)cr +Z = (f, Dage — ({upt - npged, 1) ager, (2.67b)

where (f, 1)Qext — ({{uk+1 ‘n aﬂ?m}}, 1) aqe is the mistfit of mass balance of the averaging
in each subdomain for i = 1,2.

Remark 2.20. This problem is a non-square linear system with 5 single-valued unknowns

cl]ffl, cllfjl, c’15+1 c’lffl, and ck+1 and 2 equations (2.67a) and (2.67b), to ensure that the
2

bands Qe’“ and Q5 will be m balance with the source term. Moreover, our construction

will ensure the continuity of the flux on the interface I'; 5 because we reused ck+1 in the

condition (2.67b).
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Rectangular linear system:

Using the notation of Figure 2.3, this non-square linear system reads:

k+1
rl

Ck-‘rl

FZ
111 0 0} ki (f, Dgex — (fu - noqex§, 1)pgen (2.68)
Cr F1 . .
00 -1 11 K s 1)96“ — (fu,™ - ngeed, D) agen
l—~1
K1
\r;
The rectangular matrix contains integers which are 0, 1 or -1. We note that in the
second line of the matrix, two new unknowns appear compared to the first line. Thus,
these two lines are linearly independent. Consequently, this linear system has an in-
finite number of solutions. We must choose between all these solutions. For this, we
take into account that we do not want the values to differ too greatly from what we had
before, i.e., the corrections should be as small as possible, see (2.64). To achieve this,
we use the classical least squares algorithm to minimize between all of the solutions,
in order to find the nearest solutions to (2.64), in the sense:

c

(Ck+1)2 + (Ck-i-l)Z + (CF+1)2 + (Ck-i-l)Z + (Ck+1)2 — min. (269)

The resulting boundary fluxes of this method are as follows:

1
fu " on B} + — k“ Ve CTy,,

c
1|r1 ol
okt _
oy M= uﬁl ‘n, + ——ckrL, VecT? Vi=1,2and b=1,2, 2.70)
) |1—-b| r; L
1 .
utten, Ve Cc9Q™NaQ™ fori=1,2.

2.6.2.2 The case of many subdomains, not necessarily touching the boundary 9

The above method can be generalized for many subdomains. We want to find correc-
tions to the averaged flux {{ukJrl Nyaext §, which will lead to the equilibrium in each
band Qf*, such that:

c]lfjl ~0 forie [1,4] and b =1,2 such that [0 N Q| >0, (2.71a)

i

ka0 fori,j e [1, 47, i <j such that j € B. (2.71b)

i,j

As previously, we keep the same value of the flux u}]f’l " Magenaqin located on the

boundary 905 N 39?“, where i represents as usual the number of the subdomain ;.
Thus, we set:

k+1 — .
Caﬂ?xtﬁaﬂint =0 VQi, LE I]:]-ﬂ/‘/]] (272)

There are again as many balancing conditions as bands Qf’“ and consequently as
the number of subdomains. The A" balancing conditions that have to be satisfied,
Vie [1, /], are:

Z k+1+2(nr nagext)CrH (f, Dgex — (fup ™! -nggeed, Dages,  (2.73)

b=1,2/ jeB!
|09;n20[>0
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Figure 2.4: Nine bands located close to the interface I'

where the term

(f, Dage — (Al mogek, Doger, i € [1,4] (2.74)

is the mistfit of mass balance of the averaging of uﬁ*l ‘Nggex in each subdomain for
1

i € [1,47]. Equations (2.73), for i € [1, 4] lead to a rectangular linear system,
that we detail below in the case of the example of nine subdomains given in Figure 2.4.

Rectangular linear system:

In the case of Figure 2.4 (where one of the subdomains does not touch the boundary),
equation (2.71a) gives 16 corrections and equation (2.71b) gives 12 corrections. Thus,
this problem is a non-square linear system with 28 unknowns (which is very few and
independent of the number of mesh elements) and 9 equations (2.73), to ensure the
balance in the bands Q7 ....., Q5 with the source term:

(e
T,
’ ((f, Dgex — (fuy ™ - nagecd, 1) gee )
(f Dage — ({u ' - ngged, 1) e
1 1 00 : (f, Dage — (fug ™ -ngge}, 1) ggen
0 -1 11 ki (f, Dgge — ({uit! - nggen, 1) gz
’151“ = | (f, Ve« — (ﬁugf ‘Mageed, 1)agen
ek (f, Dgee — (fup ™ - nggec}, 1)agen
h (f, Daee — (g™ -ngge}, 1) ggen
(f, Dage — (Fu ™ -ngge}, 1) ggee
CI;;H \ (/> Dage — (ﬁuﬁﬂ "Moo, 1)39;’“}
9
i)

(2.75)
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The rectangular matrix contains integers which are 0,1 or -1. Each line of this matrix
corresponds to one subdomain. With a simple geometric representation, by making
the path of the subdomains as shown in Figure 2.5, we remark that there is always
at least one new unknown that appears on the next line. Thus, it is not possible to
make a linear combination with the previous lines, and the vector lines are linearly
independent. Consequently, this linear system has an infinity of solutions. We will

ext ext ext
Q7 Q8 Q9

ext
2

%

ext ext ext
Q 1 QZ QB

Figure 2.5: Path of the subdomains: each point represents a new unknown compared
to the previous subdomains, following the path: Q-, Qg, Qg, 24, 5, 4, 21, 2y, Q3

again make a choice of these unknowns taking into account that we do not want the
values to differ too greatly from what we had before, see (2.71). We use the classical
least squares algorithm to minimize between all of the solutions, in order to find the
nearest solution to (2.71) in the sense:

N 2 N
> Z(cl’fjl)z + . (cf1)? = min. (2.76)
i=1/ b=1 i=1/jeBl,i<j

|092;n2Q[>0

The resulting boundary fluxes of this method are as follows:

jeBLi<j,ie[1,4],

1
fult!n B} + k1 VecrT;

T J?
1|Fi,j| v !
utlon, £ — kL VecTlforie[[1,#] and b=1,2
k+1 h,i byt L
o, 'n,= |1—‘i | !

such that [9Q5 N Q| >0,

ukrl.

h,i n

Ve caQ™naQM™ i=1,.,4.

e’

2.77)

2.6.2.3 Solving local Neumann problem in each band

These boundary fluxes, once computed, lead to the mass balance on each domain Qf"t,
Vie [1,47], see (2.73). Thus, we can solve a well-posed local Neumann problem in
each band, which actually redistributes the boundary corrections.
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Definition 2.21 (Spaces of local Neumann problem). Inspired by [130] Section 3.3.3,
we define for i € [1, 4] the spaces on Q5

_ k+1 exty .
Wh,Z,Q?Xt = {Vh (S Wh,i(Ql’X ) .

ket
k+1 —_ rl’J by 0 h Bi
V' Rgee =2+ Magpe My, Tr > fz#0¢, jEB,
i.j
k+1 (2.78)
Cop

—, ifz # 0}, for b=1,2 such that |09 N 9Q| >0,

k+1 _ i
\ 'ngfxt—2+{|rb|
1

k+1 _ ext int
V' Rget =z on o7 NIy }

We also define the space Mh,i(Qth), which is the restriction of Mj,; on Qf"t.

Definition 2.22 (Local Neumann problem). Find olflmfxt IS Wh,{{uﬁJrl_nﬂgxtB,Q?xt and

q’}:H € M, () such that (q’};H, Djgex = 0, Vi € [1, 4], solution of the following
mixed problem:

(5_1(0';:—1—1 - ulg+1),vh)gizxt — (ql}§+1, V'Vh)ﬂ?xt = 0, ‘v’vh S Wh,O,Qth) (2793)

(V'O'}I;—i_l, Wh)ngXt = (f, Wh)ngXt, VWh (S Mh,i(Q?Xt); Where (Wh) 1)|QfXt =0. (279b)

Remark 2.23. If we introduce ;"' defined in Q> as the difference between the re-

constructed equilibreated flux O'}If—i—l and the mixed finite element approximate flux uﬁ*l,

G gen = O'}I:+1|Q§Xt — u§+1|ﬂgxt, then (&hk+1,q£+l)|ﬂgxt is the approximation by the
L L L L

MFE method of the following local Neumann problem on Q™ Vi € [1, 4]:

—V-(SVgt) = f — Ve, i in Q™ (2.80a)
k+1
Cr,. .
—SVqlifH ‘Naqew = Nggex N, , IF’J | onTy;, Vje B’ (2.80b)
L,j
ck+l
—SVq}’frl ‘Rgext = |Fib| on 1"? for b=1,2 such that |09 N 9Q| >0,
i
(2.800)
—SVgt! - ngec =0 on dQ N oM™, (2.80d)
(gt 1gen = 0. (2.80¢€)

Lemma 2.24. A necessary condition for the existence of a solution to a Neumann problem
is that the source term f and boundary data satisfy the compatibility condition. Here,
problem (2.79), i € [1, 4], satisfy the Neumann compatibility.

Proof. It is easy to show that the Neumann conditions on the boundary are in equilib-
rium with the source term (i.e. the data) , from the A" equilibrium conditions imposed.
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This is, however, immediate from (2.73):

int

s D agenag

L

L

1

)+ (! ngecd

k+1
rb

,1)1-;; +c

2
D0 (fuft nged

3

b=1/
|rbnan|>0

3

+>(

k+1
+ cr,; )

Dr,,

>

. nQ;ext B’

k+1
fuy,

(

jeBt

ext +

o0

L

)

3

‘Nygex§, 1

k+1
fuy,

(

L

~~

(f,l)ﬂgxt —({{uk“ 'naﬂgxt H’,l)aﬂgxt fI‘OII‘l (2.73)

h

L

(2.81)

Remark 2.25. Following the notation, problem (2.79) is equivalent to the constrained

minimisation problem. In other words, the reconstructed equilibrated flux U,EHIQ@« that

3

qexe Which satisfies

3

h

V-V}Ii-’—l = 7o(f ) and minimizes the distance to the flux uﬁ“ ¢ H(div, Q):

we find in each band Q" is that among all V}E-H S Wh’{ukﬂ,nmxtﬁ’
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2.7 Numerical results

In this section, we give some numerical illustrations of the a posteriori error estimators
of Theorems 2.5 and 2.7. In this example, ) is decomposed into nine subdomains.
The nine bands where the local Neumann problem are solved are illustrated in Fig-

ure 2.6 (on the right).
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Figure 2.6: DD with 9 subdomains (on the left) and the bands Qf"t (on the right)
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2.7.1 Example 1 with the Jacobi solver

We take the same example as in Chapter 1 where on 2 =]0,1[x]0, 1[, we have:
3 2
2 3)°
e The exact solution: p(x,y) = sin(27x)sin(27y),
o f=24n%sin(27x)sin(2my)-1672cos(2mx)cos(2my) is the corresponding source
term,
e x =0 is the Neumann boundary,
e x =1 is the Robin boundary,
e y =0 and y =1 are the Dirichlet boundaries.

e The diffusion tensor: S =

9
The number of triangles in the domain Q = 'U1 Q; after discretization is 115 200. The
i

Robin parameters are optimized following [75].

Number of triangles in Q 115 200
Number of subdomains 9
Subdomain solver Direct
DD solver Jacobi
Original DD stopping criterion le-12
A posteriori stopping criterion Npp < 0.1Mgisc
Total number of iterations 209
Number of iterations with the a posteriori stopping criterion 47
Unnecessary iterations 162

Table 2.1: Example 1 with the Jacobi solver

102 : ,
N —o—total. est.
—-—-disc. est

DD. est.

10°F 1

Potential error components estimators

10-8 1 !
10° 10* 10? 10°
Number of DD iterations

Figure 2.7: Example 1: error component estimates with the Jacobi solver

In Figure 2.7, we plot the evolution of npp, Ngise» Of Theorem 2.7 and of their
sum as a function of the number of iterations of the DD Jacobi solver. The original
DD stopping criteria is when the residual of the jump of the Robin condition is lower
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than le-12 on the interface as mentioned in Table 2.1. At the beginning we see that
Npp dominates up to roughly 35 iterations and then gets smaller compared to 74;,. and
then vanishes. A stopping criterion for the iterative solver that we propose instead is
when the domain decomposition error does not contribute significantly to the overall
error, i.e., Npp < YMgise» With ¥ & 0.1. Here, we can stop the iterations at 47, and avoid
162 unnecessary iterations. We also plot the energy error and the total estimator as

102

10t

10°

10t

—+4-error.
—o—total. est.

Potential energy error and potential total estimator

107
10°

10t

Number of DD iterations

10?

10°

Figure 2.8: Example 1: energy error and total estimator with the Jacobi solver

a function of the number of iterations, see Figure 2.8. Consequently, we can obtain
the effectivity index I é‘;frl defined in (2.29) at each iteration of the DD algorithm, see
Figure 2.9. We observe that the effectivity index is close to the optimal value of 1.

15 . .
/./‘*i —%-- effectivity ind.
£ ‘\_
L 4

< A
8 ARV
£10f ¥ Gty :
> A
= ta **I
8 *
5 *
H
g 5t % 1
E L

0 1 1

10° 10t 10?

Number of DD iterations

10°

Figure 2.9: Example 1: effectivity index with the Jacobi solver

Below, we give a general description of what happens at iteration 4 and at itera-

tion 47 of the Jacobi algorithm.
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At iteration 4

We can see in Figure 2.10 that we have a discontinuous approximation solution p?l on
the interface. Thus, at iteration 4, we intuitively can not stop the iterations because
the error on the interface is very large. In Figure 2.11, we can see that estimator
distribution npp (on the right) on a uniform mesh is very much concentrated around
the interface, whereas 14;,. (on the left) is rather uniform and smaller. Consequently,
the sum of the estimators 14, and npp, see Figure 2.12 (on the left), overestimates
importantly the potential energy error, which is less concentrated around the interface.

RTO0-DD solution p during iterations

Figure 2.10: Example 1: pressure at the 4th iteration with the Jacobi solver

etadist:

-40.025

4 0.02

Figure 2.11: Example 1: the two components of the a posteriori estimates 74;,. (on
the left) and npp (on the right) on each element K of  at the 4th iteration with the
Jacobi solver
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etatotal

Energy error

Figure 2.12: Example 1: the total error estimator (on the left) and the distribution of
the energy error (on the right) at the 4th iteration with the Jacobi solver

At iteration 47

At iteration 47, the solution p}‘? does not present any visually discontinuity, see Fig-
ure 2.13. Figure 2.14 shows that the elements contributions of ng4;. are about 5e-4
and distributed rather uniformly on the hole domain, while npp is about 10~ and
distributed only around the interfaces. Thus, if we sum the values of npp and 14,
we remark that 71y, dominates. Consequently, we can see in Figure 2.15 (on the left)
that the total error estimator distribution is very close to the error distribution of 14q,.
Finally, we see that the energy error distribution shown on Figure 2.15 (on the right)
matches well with the total error estimator distribution, see Figure 2.15 (on the left).

RT0-DD solution p during iterations

Figure 2.13: Example 1: pressure at the 47th iteration with the Jacobi solver
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ot x10

disc x10°

1.4

Figure 2.14: Example 1: the two components of the a posteriori estimates 74;,. (on
the left) and npp (on the right) on each element K of €, at the 47th iteration with the
Jacobi solver

%10 Energy error <10

Figure 2.15: Example 1: the total error estimator (on the left) and the distribution of
the energy error (on the right) at the 47th iteration with the Jacobi solver

Convergence rates

In Figure 2.16 we plot the convergence rates of the total potential estimator, nycp and
Nosc at different discretizations. These convergence rates are part of the factors which
play role in the efficiency of the method. We can see that the convergence rate of
“total. est.”, which corresponds to 7j in (2.27), and nycp is h as for the solution p of
the lowest-order Raviart-Thomas method. We can remark that the convergence rate of
Nosc is 2.
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Figure 2.16: Example 1: convergence rate of the different estimators

2.7.2 Example 1 with the GMRES solver

We take the same example as before but using the GMRES solver now, see Table 2.2.
One particular advantage of the GMRES solver is that we can make less iterations than
Jacobi. As shown in Figure 2.17, npp dominates up to roughly 12 iterations and then
gets small compare to 7g;,. and then vanishes. A resulting stopping criterion is when
NMpp < YNdise» With ¥ & 0.1. Here, we can stop the DD algorithm at iteration 17,
and thus save 44 unnecessary iterations. We also plot the energy error and the total
estimator as a function of the number of iterations, see Figure 2.18. Consequently,
we can obtain the effectivity index I é‘f;“l defined in (2.29) at each iteration of the DD
algorithm, see Figure 2.19. We observe that the effectivity index is close to the optimal
value of 1.

Number of triangles in Q2 115 200
Number of subdomains 9
Subdomain solver Direct
DD solver GMRES
Original DD stopping criterion le-12
A posteriori stopping criterion MNpp < 0.17Ngisc
Total number of iterations 61
Number of iterations with the a posteriori stopping criterion 17
Unnecessary iterations 44

Table 2.2: Example 1 with the GMRES solver



2.7. Numerical results 67

102 .

—e—total. est.
—.—-disc. est
—w~- DD. est.

100 L

10»4 L

Potential error components estimators

108 .
10° 10* 102
Number of DD iterations

Figure 2.17: Example 1: error component estimates with the GMRES solver
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Figure 2.18: Example 1: energy error and total estimator with the GMRES solver

2.7.3 Example 2 with the GMRES solver

The second example focuses on the resolution of the problem (1.1) by the MFE method,
where Q =[0,1] x [0,1] and:

e the exact solution is p(x,y) =x(1—x)y(1 —y),

e the diffusion tensor is

S .= 15 —10sin(107tx)sin(10wy)I, x,y<€(0,1/2)or x,y €(1/2,1), 2.83)
" | 15-10sin(27x)sin(2my)I , otherwise, '
where I is the identity matrix (2 by 2),
e J() is the Dirichlet boundary.
4
We consider a domain decomposition of €2 into 4 subdomains Q = 'U1 Q;. In this
1=
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Figure 2.19: Example 1: effectivity index with the GMRES solver

Number of triangles in Q2 12800
Number of subdomains 4
Subdomain solver Direct
DD solver GMRES
Original DD stopping criteria le-11
A posteriori stopping criteria Npp = 0.17M4isc
Total number of iterations 40
Number of iterations with a posteriori stopping iteration 6
Unnecessary iterations 34

Table 2.3: Example 2 with the GMRES solver

example, we can see from Figure 2.20 that we can stop the