M Vianney

M Marc Shapiro

Keywords: Replication, Geo-Distribution, File System, Eventual Consistency, CRDT, Conflict

Geo-distributed systems suffer from high latency and network partitions. Because of this, and to ensure high availability, such systems typically commit updates locally, with no latency, and propagate them in the background. Such optimistic replication faces two major challenges: (i) detecting conflicts between concurrent updates and resolving them in a way meaningful for users, while maintaining system integrity invariants; and (ii) supporting legacy applications that are not prepared to deal with concurrency anomalies.

Our PhD research addresses these challenges for the specific use case of a largescale geo-distributed file system. This is a good showcase: indeed, a geo-distributed file system has a complex hierarchical structure; maintaining the file-system invariants (e.g., tree structure) against parallel updates is challenging; and applications view the file system through the legacy POSIX API.

Existing optimistic geo-distributed file systems fall short of addressing the challenges. For instance, Dropbox does not support hard links; Andrew File System fails on some concurrent renaming of directories; and all existing systems use automatic conflict resolution that violates the legacy POSIX semantics.

We present our solution to the above problems in the design and implementation of a prototype geo-distributed file system, named Tofu. Its design includes a new session abstraction to support the legacy API, while allowing optimistic updates. Unlike previous approaches, our solution is based on a formal model covering all aspects of a Unix-like file system, including directories, inodes, hard links, etc. It is able to detect all conflicts on those data structures, and resolves them in a way that we believe users will find generally reasonable. Experiments show that Tofu is highly scalable, and incurs linear overhead, improving over existing academic and industrial systems.

Introduction

A geo-distributed file system typically spans multiple replicas that are remote from each other. The inter-replica network of a geo-distributed file system has limited bandwidth and high latency, especially compared to the intra-replica fabric. In order to be available, a geo-distributed file system must address the inherent trade-off between consistency and availability, underscored by the CAP theorem [START_REF] Brewer | Towards Robust Distributed Systems[END_REF][START_REF] Gilbert | Brewer's conjecture and the feasibility of consistent, available, partition-tolerant web services[END_REF].

Many large scale geo-distributed file systems opt for the Eventual Consistency (EC) approach [START_REF] Terry | Managing Update Conflicts in Bayou, a Weakly Connected Replicated Storage System[END_REF][START_REF] Vogels | Eventually Consistent[END_REF][START_REF] Vogels | Eventually Consistent[END_REF]. In an EC system, an update commits locally on its original replica, before being propagated to the other replicas asynchronously; EC ensures that, when all replicas have received and applied all updates from each other, they will all have the same state. Because a commit is local, without coordination between replicas, users experience low latency. A user can modify a replica, even if that replica remains disconnected for a long time, thus ensuring high availability.

This EC approach has to deal with conflicts between concurrent updates from different replicas. A geo-replicated file system using the EC approach faces two major challenges: (i) detecting (all) conflicts between concurrent updates, and resolving them in a meaningful way for users, while maintaining system integrity invariants; and (ii) supporting legacy applications, which are not prepared to deal with concurrency anomalies.

Detecting and resolving conflicts in a geo-distributed file system is difficult because of the complex hierarchical structure of the file system. A file system typically consists of a tree of directories; a directory can contain other directories or files; however, a file may be included in multiple directories, thanks to hard links. This complex structure is ruled by strict invariants, such as uniqueness of names within a directory, or absence of directory cycles.

Because of the difficulty of detecting and resolving conflicts in such complex sys-1 CHAPTER 1. INTRODUCTION tems, existing approaches often forgo some system invariants, or limit the conflict detection and resolution ability. Some, including Dropbox [START_REF][END_REF] or Unison [START_REF] Balasubramaniam | What is a file synchronizer[END_REF], simplify the file system model by ignoring hard links, treating multiple links to the same file as if they were different files, thus results in diverged file system replicas and unnecessary network/storage usage. Others, including Ficus [START_REF] Peter L Reiher | Resolving file conflicts in the Ficus file system[END_REF], Coda [START_REF] James | Disconnected operation in the Coda file system[END_REF], or Microsoft OneDrive [START_REF]OneDrive[END_REF], leave reconciliation of difficult conflict cases to users; they might move the directories and files involved in a conflict into a special directory, expecting users to resolve issues manually. Some others, including AFS [START_REF] John | An Overview of the Andrew File System[END_REF] and Google Drive [START_REF]Drive[END_REF], opt for a simple Last-Writer-Wins (LWW) approach which chooses an arbitrary update to win over conflicting ones; this approach forgoes update durability.

Furthermore, existing EC geo-distributed file systems do not support legacy applications well. These systems automatically change the file system at unexpected times and in non-intuitive ways. Adapting legacy applications to cope with this behavior would require complex logic. For example, when two users concurrently write to a same file, both Dropbox and Google Drive resolve the conflict by creating new files with somewhat arbitrary names; this can even happen while the file is in active use. Legacy applications are not prepared to cope with such sudden and unpredictable changes. This thesis addresses these issues: to support both concurrent updates and compatibility with legacy applications. Accordingly, we designed a geo-distributed file system, named Tofu. Our contributions are as follow.

1. The design and implementation of a conflict detection and resolution mechanism that identifies and resolves all conflicts, based on: our formal file system model (Chapters 2 and 3) which supports all file system components including hard links, and our conflict resolution semantics (Chapters 7 and 8) that preserves all concurrent updates, while presenting meaningful conflict resolution results. The implementation of Tofu (Chapter 9) is based on the concept of Conflict-free Replicated Data Type (CRDT) [START_REF] Shapiro | A comprehensive study of Convergent and Commutative Replicated Data Types[END_REF][START_REF] Shapiro | Conflict-free Replicated Data Types[END_REF] to ensure convergence and correctness.

2. The session concept that isolates legacy POSIX applications from unexpected automatic changes in the file system. Our session system (Chapters 4 and 5) divides the usage of a distributed file system into sessions. A session is a kind of a long transaction, within which applications enjoy the strong sequential semantics of a traditional POSIX file system. Multiple sessions may co-exist concurrently, each one being isolated from the others. A session makes a consistent snapshot of the whole file system at the beginning, and atomically merges all its changes into the file system at the end. Tofu automatically resolves any concurrent updates between the committing session and any other prior committed session. Manual intervention is required only if automatic conflict resolution has made changes that would be incompatible with applications in later sessions. Such a manual intervention is limited to renaming directories and files.

Experimental results

showing the completeness of our approach compared to those existing with respect to the conflict resolution ability. We show through experiments (Chapter 10) that Tofu detects and resolves all conflicts, including those which have been a difficulty for previous systems. Tofu's session system is able to provide the low latency for the updates of the eventual consistency approach. We also show that the commit of a session has minimal impact on the latency of the other ongoing sessions.

Part I

Sequential Semantics

Chapter 2

Sequential File System Model

In this chapter, we describe our model of sequential file systems; a sequential file system is one that commit updates having the same target sequentially. Our model includes file system data objects, file system layout, and file system invariants. Our model is inspired by POSIX; we will comment on the similarities and differences between POSIX and other file system variants whenever applicable.

File System Data Objects

A file system is a collection of data objects called inodes. 1 An inode is identified by a unique2 identifier called its inode number. 3 Each inode has three components, namely, stat, names, and data (Figure 2.1).

Inode Stat

The stat of an inode stores an inode's metadata attributes, including both so-called system attributes and extended attributes. The former are predefined, and are created and maintained by the file system, although some can be updated by users. For example, the attribute st_atime of an inode records the time when the inode was last accessed; this attribute is automatically updated by the file system. On the other hand, the attribute st_mode, which stores the inode's ownership information, is initialized by the file system, but it can be manually updated by users. Extended attributes are manually defined and maintained by users only, and are opaque to the file system semantics. These attributes are interpreted only by users or applications, such as those to keep the geo-location of an image contained in the data part of the inode. Some of the system attributes play a minor role (e.g., st_atime); hereafter we focus on the ones that are essential to file system correctness. [START_REF] Amazon | GET Bucket (List Objects) Version 1[END_REF] The type of an inode is indicated by attribute st_mode. There are two main inode types, directory and file. 4An inode of type directory stores the directory contents (a mapping of string names to inode numbers) in its data part (next section). An inode of type file contains arbitrary (opaque) data in its data part, such as a text document or an image. 5 (2) Security information is stored in the st_mode (access permissions), st_uid (owner), and st_gid (group) attributes. This dictates who (user, group) will have which kind of access (read, write, execute) to the inode. 6 (3) The remaining attributes contain accounting information for the inode, such as timestamps (st_atime: last-accessed time, st_mtime: last-modified time, and st_atime: created time), its location (st_dev and st_rdev: the identifier of the device containing the inode, st_ino: inode number), its size on disk (st_size, st_blksize, st_blocks: inode's real-and on-disk-size information), and its number of associated hard links st_nlink (more on hard link in the next section).

Inode Data

The data part of an inode stores the useful contents of this inode. 7 Depending on inode type, its data part may be meaningful or opaque to the file system. For example, symbolic link's data part is a string representing the location of another inode; the file system reads this information and forwards access towards its destination. A directory's data part is a map of names (strings) to inode numbers (called target inodes). Each such mapping constitutes a hard link to the target inode. The file system uses this mapping information in its hierarchical structure (Section 2.2). Hereafter, we call the data part of a directory its child map or just map, and a mapping entry (hard link) as a mapping. The data part of a file is opaque and is of arbitrary type, such as the sequence of characters of a text document, or the set of pixels of an image.

Inode Names

The names part of an inode keeps a reverse reference to all of the hard links that have been mapped to the inode. We represent names as a map of directory inode numbers to the (string) names of the current inode in these directories. Clearly, this information should be consistent with st_nlink and with the contents of directories (this is formalized by Invariant 5 in Section 2.3). The names part is implicit in POSIX and not explicitly materialized in previous implementations. Our model (and implementation) makes it explicit because it plays an important role in file system correctness.

File System Structure

A file system can be considered as a graph where an inode constitutes a node, and a mapping constitutes a vertex. In common file systems, the directory sub-graph is actually a tree. An inode linked from a directory is called a child of that directory.

Conversely, an inode's names part consists of the reverse reference to its parents and its own name within the parents.

A directory may have multiple children, but has only a single parent (the root has no parent). Therefore the names part of a directory must always have a single entry, and a directory's st_nlink is always 1. 8 The data part of a directory may have multiple mapping entries. In contrast, a file may have multiple names and a higher link count.

No two children of a given directory are allowed to have the same name (a name is unique within its directory).

There can be no cycles in a directory tree. A sequential file system ensures this invariant by making it illegal to create a hard link from a directory to one of its ancestors. In particular, the rename operation checks this precondition, as discussed later (Section 2.3).

A directory tree has a distinguished 'root directory' (often identified by a specific inode number, such as '2' in Linux's Ext file systems). Although the contents of the root directory can change, the root itself cannot be deleted or replaced by a different inode. In POSIX tradition, the root is noted "/". The path from the root to some inode is called an absolute path of that node. An absolute path is a string represented by the concatenation of the names of all directories on the path, separated by "/" 9 ; for example the path /foo/bar indicates that foo is a child of the root / and bar is a child of foo. The inode named by /foo/bar can either be a directory or a file; this cannot be deduced from the name alone. At any point in time, no two nodes have the same absolute path. Because a directory has a single parent, a directory thus has a single absolute path.

A file may have multiple names, and thus multiple absolute paths. Therefore, the full graph of both directories and files is not a tree, but a special case of a partial order set (poset). and 2 are directories (1 being the root), and inode 3 is a file. The child map of 1 maps 8 We exclude the self pointer and back pointer (identified by the names '.' and '..' respectively) of existing POSIX implementations, which would make the st_nlink of a directory be equal to the number of its child directories plus 2 (its name from its parent and its self pointer). 9 We use throughout this thesis the UNIX notation with / for both the root and the hierarchy relation. Microsoft NTFS uses the device name for the root, e.g., C:, and the backward slash \ for the hierarchy relation. In Microsoft NTFS, the path bar in this example might be denoted C:\foo\bar. With (a) describes the data structure of the file system with a collection of inodes and their data structure (inodes are in simplified representation with only important bits described; the parts of an inode represent its stat, data, and names), and (b) visually presents the file system. the name foo and bar to 2 and 3, respectively. Inode 2 also maps the name qux to 3.

These mappings are reflected in the names part of inode 2's 1:foo, and of inode 3's {1:bar, 2:qux}. Figure 2.2b visualizes how this structure is perceived from the users' point of view. Directory 2 in this structure has a single absolute path /foo, whereas file 3 has two absolute paths /bar and /foo/qux.

File System Invariants

This section describes the invariants that characterize the correctness of a file system.

Notations

We denote the child map in a directory as a set of (name, ino) pairs, representing the string name and the inode number of a target inode respectively. We use the dot notation, for example: m.name and m.ino, where m is an entry in the child map.

We use shorthands i.ino for i.stat.st_ino, the inode number of an inode i; i.nlink for i.stat.st_nlink, the number of links to the inode i; i.type for its type, which is DIR if the inode is a directory, or FILE otherwise; and d.map to represent the child map of directory d.

We denote the set of all inodes as I, which is ranged over by i, i 1 , i 2 , . . . ; the set of all inodes minus the root as I * ; the set of all directories as D, ranged over by root, d, d 1 , d 2 , . . . ; the set of all directories minus the root as D * ; and the set of all files as F. The relations I = D ∪ F and D ∩ F = ∅ hold.

We define the relation reachable to indicate whether a directory is a descendant of another, and parent to indicate if a directory is the parent of an inode; parents(i) denotes the set of all parent directories of inode i.

parent(d , i) =    TRUE ∃m ∈ d.map : m.ino = i.ino FALSE otherwise parents(i) = {d|parent(d, i)} reachable(d , i) =    TRUE parent(d , i) ∨ (∃d : parent(d , i) ∧ reachable(d , d))
FALSE otherwise .

Invariants

The following invariants characterize the safety properties of a correct file system.

Any violation of these invariants would constitute an error. For simplicity, we restrict ourselves to a single file system.

Invariant 1 (fixed root) A file system has a unique, non-changing root inode. Invariant i.

Chapter 3

File System Operations POSIX is a standard set of specifications for UNIX-compliant operating systems (OSes)

to ensure their interoperability. File systems for those OSes need to implement the same set of 'system calls', e.g., open and close, to perform some common file system operations. In this chapter, we present the sequential semantics of some representative file system operations, such as (in Linux's VFS parlance) mkdir, write, or rename.

Preliminaries

Helper Functions

To simplify the descriptions of the operations, we use the following helper functions:

newInode to create a new inode with a unique inode number, and lookup to find the inode object from inode number. These functions are defined below.

newInode() = i : (∀i = i, i .ino = i .ino) lookup(ino) = i : (i.ino = ino) . (3.1)

Path Resolution

The interface between a file system and its users/applications is based on absolute paths; users/applications perform operations targeting these paths. A file system has to translate a path used in an operation to the inode object. This process is called "path resolution" and is described by Algorithm 1. We use the function split to get the array of the names (not including the root) in a path using "/" as the delimiter, and we use the bracket notation to access individual names in the path. The inputs are: the path, the index of the next name to resolve, and the current parent directory. let names = split(path, "/) split path into an array of names if index = -1 then begin path resolution process from the root 7:

return PathResolution(path, 0, root) return PathResolution(path, index + 1, lookup(ino)) next name

Read Operations

A read operation returns either the contents or the metadata of an inode. For example readdir returns the child map of a directory; getattr returns the attributes (stat).

Read operations are also useful to verify file system integrity by checking if file system invariants hold. In this section, we present operation traverse which helps ensuring that the tree structure of a file system has no cycles; we can assert so by checking if the set of all directories traverse can visit is equal to the set of all directories in the file system. This operation is described in Algorithm 2.

Algorithm 2 traverse tree

D ← D ∪ {d} 4:
for m ∈ d.map do

5: i ← lookup(m.ino) 6: if i.type = DIR then 7:
traverse(i, D) 8: procedure CheckNoCycles

Modification Operations

In this section, we describe some representative file system operations in POSIX, including: create, mkdir, link, setattr, write, unlink, rmdir, and rename; the other operations, such as symlink or truncate, are either almost identical to, or an optimization of those representative.

We use the generator-effector structure [START_REF] Shapiro | Conflict-free Replicated Data Types[END_REF] to present the pseudo-code of the following operations. The generator of a function ensures all invariants and all preconditions are met, then it computes a state transformation to be applied on the state of the system; this transformation is the effector. Applying a transformation is an atomic process, which has no side effect other than those explicitly specified.

create

This operation creates an empty file and is used by POSIX's system calls creat and open. It takes the path to the parent directory, a name, and a stat object as its inputs. In the normal case with no errors, it creates a new file with the assigned stat in the parent directory. Algorithm 3 describes the details of this operation.

Algorithm 3 create create an empty regular file

1: procedure create_gen(path, n, stat) inputs: parent directory, file name, stat

2:

Require(Invariants) Require(Invariants)

Ensure(Invariants)

This operation obviously does not violate any invariant as it creates a file with: a single parent directory (Invariant 3), a unique inode number (Invariant 2), a single name which is unique (as a precondition; Invariant 4 holds) and is reflected in its st_nlink (Invariant 7), a reverse mapping (Invariant 5 holds); and this certainly does not change the root (Invariant 1) or any directory structure to create a cycle (Invariant 6 holds).

mkdir

The mkdir operation is very similar to create. Require(Invariants)

3: let p = PathResolution(path) 4: if ¬(p ∈ D ∧ m ∈ p.map : m.name = n) then ERROR name already exist 5: procedure mkdir_eff(p, n , stat) 6:
Require(Invariants) Ensure(reachable(root, i)) new inode is reachable from the root 16:

Ensure(Invariants)

Similarly to create, this operation does not violate any of the invariants; it creates a directory with: a single parent directory, a single unique name (as a precondition), a reverse mapping; and this new directory does not connect to any other directory (have any child) to create a cycle.

link

The operation call link creates a hard link (an additional name) for an existing file.

Algorithm 5 shows such procedure in our file system. Require(Invariants)

3:
let p = PathResolution(path1)

4:

let i = PathResolution(path2) 5: if ¬(p ∈ D ∧ m ∈ p.map ∧ m.name = n) then ERROR name already exist 6:
if ¬(i ∈ F) then ERROR input file does not exist Ensure(Invariants)

target file to keep the coherency of the mapping (Invariants 5 and 7), and it does not change file system tree structure to create directed cycle (Invariant 6).

setattr

The operation setattr is used by various attribute-related system calls such as chmod.

It takes an inode and a stat object as the inputs then replaces the stat of the inode by the provided stat (we use the whole stat to represent the general case; actual implementations of each function such as chmod are more fine-grained and target security attributes only). Algorithm 6 describes our implementation.

Algorithm 6 setattr update the attributes of an inode 1: procedure setattr_gen(path, stat) inputs: inode path, attributes

2:

Require(Invariants)

3:

let i = PathResolution(path) 4:
if ¬(i ∈ I) then ERROR input inode is not valid Require(Invariants)

7:

Require(i ∈ I)

8: i.stat ← stat 9:
Ensure(Invariants)

The setattr operation only changes the stat of an inode. It can only change the attributes that that do not violate the invariants, for instance file type and link count cannot be changed manually. Therefore it does not violate any invariant .

write

We use the write function to abstract over a range of system calls that modify data content of a file. This includes for instance the write to flush system calls. This operation takes an inode and new data as its inputs. Similarly to setattr, this operation replaces the data part of the inode by the argument (Algorithm 7). Real-world implementations optimize this in numerous ways depending on the context of the actual system calls, for example, it might replace only a range of data.

Algorithm 7 write update the data of a file 1: procedure write_gen(path, data) inputs: file path, data

2:
Require(Invariants)

3:

let i = PathResolution(path) 4:
if ¬(i ∈ F) then ERROR input inode is not valid Require(Invariants)

7:

Require(i ∈ F)

8:
i.data ← data 9:

Ensure(Invariants)

Similarly to the case of setattr, this operation does not change the structure of the file system. Therefore it does not violate any invariant.

unlink

The unlink operation removes a name of a file, thus decreasing the file's st_nlink link count. If the st_nlink is 0 after this operation, the inode is not reachable and may be deleted (not represented in our model1). We describe this operation in Algorithm 8.

The operation unlink is the inverse of link. It does not violate any file system invariant: it removes a name of a file and reflects this in the names and its st_nlink of the file, as well as in the map of the file's parent directory.

rmdir

The operation rmdir is similar to unlink. It removes the name of an empty directory (which means a directory that has no children), and thus removes the directory because any directory has a single name only. As with the case of unlink, the inode deletion step of rmdir is not represented. We describe rmdir in Algorithm 9.

Algorithm 8 unlink delete a (name of) a file Require(Invariants)

Ensure(i ∈ F ∧ m ∈ i.names)
reverse mapping is removed from file 18:

Ensure(¬reachable(root, i) ⇐⇒ i.nlink = 0) deleted iff link count = 0 19:

Ensure(Invariants)

Algorithm 9 rmdir delete a directory 1: procedure rmdir_gen(path1, path2, n) parent path, directory path, name

2:

Require(Invariants) Ensure(¬reachable(root, i) ∧ i.nlink = 0) target directory is removed 20:

Ensure(Invariants)

The operation rmdir may remove empty directories only. Therefore it does not change the file system structure. This operation does not violate any invariant.

rename

This is the most complex file system operation, because it is a transaction that involves up to 3 different inodes. The rename operation removes an old name of an inode and assigns a new name to it. It consists of elements of link and unlink or rmdir. As the names may reside in different parent directories, this operation modifies up to 3 inodes.

Renaming a directory must not create a directory cycle. This is ensured by a precondition that rejects any rename that makes the directory a descendant of itself (lines 9 and 18 of Algorithm 10).

Real-world implementations of this operation may also differ from case to case.

For example, some fail the operation if the target name exists, while others overwrite the target. In this thesis, we choose the first approach, as it is simpler and is more inline with operations like create. Algorithms 10 and 11 describe the algorithms for renaming a directory and a file, respectively. These algorithms take the paths to the old and new parents and the old and new names as their inputs.

These algorithms ensure Invariant 1 and Invariant 2 as they do not rename the root or create a new inode. They preserve Invariant 6 because the check for reachability from i to p2 would rule out the possibility of having a directory cycle. They also include the checks for Invariant 3 and Invariant 4 in the precondition; they ensure Invariant 5 by updating the names of the inode and the child maps of the parent directories.

Other Operations

There are many other file system operations that we did not mention to keep the list of operations simple and representative. These include for instance mknod, symlink, truncate, append, and flush.

The mknod operation creates files of special types such as FIFO and devices; these are less-frequently-used types of file; the only difference with normal files is the file type (in stat's st_mode). The mknod operation therefore is substantially identical to create. Therefore, we ignore mknod.

Almost the same thing goes for symlink. This operation creates an inode that stores a symbolic link (a string) to another inode as its data. Therefore symlink is similar to combination of create and write, which have already been described.

Other operations, such as truncate, append, and flush, are engineering optimizations of write. The operation truncate either removes or appends some data at the Algorithm 10 rename_dir rename a directory Ensure(Invariants)

end of the data of a file; this is a special case of write. The operation append appends data to the end of a file, instead of replacing the whole data part. This means a lot for performance, but is conceptually identical to write. The operation flush is another optimization of write that has no observable side effects unless hardware failure occurs. Therefore, we can also ignore it.

Part II

Concurrency Semantics

Chapter 4

Concurrency Model

In this chapter, we describe the topic of replication in distributed file systems, which provides the context of concurrency, and then we present our concurrency model for achieving high availability and maintaining sequential semantics in such systems.

Replication in Distributed File Systems

Large scale distributed file systems are usually replicated at multiple locations to improve availability. A single logical distributed file system is composed of separate local file system instances, called file system replicas. In a so-called "multi-master" setting, each replica can accept local updates. Replicas may or may not synchronize their updates with each other; in either case, an update accepted at some replica is transmitted and replicated at all other replicas. Consistency is the problem of keeping replicas up to date with each other, so that users can see the same file system contents across replicas.

In order to tolerate network latency between replicas and failures, many distributed file systems enforce a weak form of consistency. In such a system, a replica commits an update locally without coordination, and later transmits its locally committed updates asynchronously to the other replicas. Conversely, a replica receiving a remote update applies the update to its own state. In this way, replicas may diverge temporarily, but converge eventually. This eventual consistency (EC) approach ensures low-latency operations, and system availability.

CHAPTER 4. CONCURRENCY MODEL

R A R B s 1 s 2 s 3 v 0 v 1 v 3 v 1 v 2

Concurrency Model

The general eventual consistency model allows update transmission to be scheduled in an arbitrary way. Similarly to the TouchDevelop model [START_REF] Burckhardt | Semantics of concurrent revisions[END_REF], we restrict concurrency to a fork-join model per replica; however, in contrast with TouchDevelop, we allow concurrency between replicas. Our combined fork-join and parallel model is illustrated in Figure 4.1. The parallelism between replicas ensures low-latency updates, inspired by the the eventual consistency approach. The fork-join model restriction maintains the traditional sequential semantics despite concurrency.

Replicas execute in parallel; each replica has its own independent state, and performs its updates independently. From time to time, a replica transmits recent updates to the other replicas. Upon receiving an update message from another replica, the receiving replica will atomically deliver the received update into its own state. Updates are delivered in causal order; in particular, they are delivered to remote replicas in the order in which they occurred.

We use the fork-join model to control concurrency inside a replica. An application works in an isolated environment, called a session. A session starts by making a consistent snapshot copy (called a fork) of the state of the local replica, containing all the updates of the local and remote sessions previously committed to the current replica. Two sessions of a replica are isolated and independent from each other: the updates of one session will be available only to sessions that fork after the current session commits (joins). Committing a session atomically merges all the updates of that session into the state of the local replica. Committing a session or receiving remote updates may reveal conflicts between concurrent updates; we will describe conflicts later, in Chapters 6 and 7. At arbitrary points in time (in the implementation: after every join) a replica transmits its locally-committed updates to the other available replicas, in an asynchronous manner. When receiving the updates of a remote session, the receiving replica delivers the received updates atomically. Conflicts are handled in the same way as for local sessions. Thus, the updates from s 1 remained isolated. When s 1 finishes and successfully commits its updates, as there were no commits in the interval, the state of R A becomes v 1 .

A session started after this point will have contents v 1 . When s 2 finishes, it commits its state v 2 into R A as well. R A resolves the concurrency between the updates of s 1 and s 2 to produce a state v 3 = v 1 ⊕ v 2 that merges updates of s 1 and s 2 . 1 Similarly, when R A receives updates from R B , it merges these concurrent updates with ⊕.

The fork-join model provides some compatibility with the traditional sequential semantics by ensuring that updates from concurrent sessions become visible in a controlled manner. Indeed, a session works in isolation (updates from one are not available to another session and thus do not interfere with it). This model ensures that interference from concurrent sessions happens only at the boundaries between sessions. This model also supports parallelism between replicas.

1 Notation ⊕ represents the concurrency resolution algorithm that we will describe in Chapter 7.

Chapter 5

Sessions

A session is similar to a long transaction in traditional DBMSes under the control of user applications. We provide the following interface for managing sessions.

• start_session(mount_point):session_id

• connect_session(mount_point, session_id)

• commit_session(session_id)

start_session

The function start_session starts a new session. When receiving this request, the local replica takes a snapshot of its file system state, associates the snapshot with a unique session identifier called session_id, and returns the session identifier. Only users and applications associated with this session can access that snapshot; updates from a snapshot are not visible except to the processes that belong to the session.

Associating a process to a session in a real-world implementation can be any mechanism that distinguishes between sessions. Our implementation (Figure 5.1) uses the Unix concept of a mount point1 as the mean of access to sessions. A client (a PC for example) of our system must have a mount point on its own facility. A client can start a session by querying the local replica using start_session. Upon receiving this request, the replica takes a snapshot of its state, associates that snapshot with a session_id and returns the snapshot and the session_id to the client. The client then mounts the snapshot into its mount point. Thereafter, accesses to the mount point will access and modify the snapshot.

The access to a session is the key for an application to manage its interaction with that session. Generally, by having the access, the application can interact with the session, and by giving up the access, the application will not be able to work in that session. Depending on specific implementation, how to obtain and give up the access to a session will be determined. For example in our implementation, accessing a specific mount point will grant an application the access to the associated session; by not going through that mount point, an application gives up the access to the associated session.

connect_session

The function connect_session requests the local replica to grant the caller an access to an existing session specified by a session identifier. If the session exists and the access is granted, the caller will be able to join existing users/applications to work on the same snapshot of the file system, which means the caller will be able to observe all updates on the session and to experience the sequential semantics and isolation guarantees.

In our implementation, a client can create a mount point on its facility and use connect_session to connect to an existing session through that mount point. Because of that, there may be multiple mount points (on the same system or not) connecting to the same session; users/applications can see the same file system contents, as well as experiencing the same sequential semantics, through these different mount points.

finish_session

The function finish_session signals the local replica to merge a session into the replica's state; this corresponds to the 'join' part in the fork-join model. The replica will revoke all access to the snapshot of the session, and atomically2 commits all updates made to the snapshot into the replica's state. Operations on a finished session is an error. In our implementation, finish_session makes a replica to unmount all existing mount points of a session, then commit the updates to the session's snapshot to the state of the replica.

A replica merges all of its sessions sequentially; it needs to fully commit all updates of one session to its state, before it can commit another sessions.

Merging a session received from a remote replica is similar. The receiving replica atomically merges all updates of the remote session.

Chapter 6

Conflicts

Concurrent sessions, either within a replica or between replicas, may update inodes in ways that conflict. In this chapter, we study the conflict cases. Conflict resolution will be described in the next chapter, but we will also make some references to it in this chapter.

Issues Of Concurrency

In the sequential file system of Chapter 2, a sequential update has a precondition that preserves the file system invariants. This is what ensures the correctness of the file system. However, in a concurrent system, the concurrency between updates may not ensure file system correctness or replica convergence if we apply the same sequential effector algorithms of the updates in Chapter 3. For example, concurrently changing the name of the same directory could violate Invariant 3 (a directory must have a single name). Concurrently updating the data of the same file does not directly violate an invariant, but applying these concurrent updates in different orders using the sequential effector algorithms could yield different results, thus causing the replicas to diverge.

To ensure convergence and correctness, conflicts must be resolved. However, a simple conflict resolution approach may not be 'meaningful' to users, making it inappropriate. For example, the Last Writer Wins (LWW) approach picks an arbitrary update out of multiple concurrent ones, and loses the others. Although the LWW approach converges the replicas, lost updates may not be the effect desired by users.

In the next sections of this chapter, we will: (1) define conflicts, and (2) enumerate the conflict cases of our file system design. 37

Conflict Definition

The correctness of our distributed file system is described by three safety rules: replica convergence, invariant preservation, and names-data coherency.

The first rule allows replicas to diverge for a while, as long as they ultimately converge. The second rule requires that every replica individually maintains the sequential invariants, described in Chapter 2.

And the last rule is our own definition of conflict that has not been covered by the previous rules: the situation when concurrent updates target the names and data part of an inode is a conflict. We will describe the rationale of this rule in the next chapter.

Any pair of concurrent updates that violates any of these safety rules constitutes a conflict.

Rule 1 (Replica Convergence) Replicas that have delivered the same updates have the same state. A replica is required to eventually deliver all updates that others have delivered. Updates may be applied in any order consistent with their partial order.

Rule 2 (System Integrity) At every replica, and at every point in time, its sequential invariants must be true.

Rule 3 (Names-Data Coherency) Concurrent updates to the names and data parts of an inode constitutes a conflict.

Types Of Conflict

With the exception of Invariant 6, by iterating through the above safety rules and by inspection of the invariants, we can see that to violate any of them, concurrent operations must target the same inodes. For example to create multiple names for a directory (violating Invariant 3), concurrent operations would have to update the names part of that directory; to create different children with the same name in a directory (violating Invariant 4), concurrent operations would have to update the map (data part) of that directory. We therefore call this type of conflict direct conflict; this is the case when concurrent updates target the same inodes and violate the defined safety rules. The other type, if exists, is called indirect conflict; this is the cases when concurrent updates violate Invariant 6 even though they are not targeting the same inode. Next sections of this chapter will describe these types of conflict.

To simplify the analysis, we treat the stat and data parts of an inode as if they were a single piece of data; this means updating the stat of an inode is equivalent to updating the data of that inode.

Direct Conflict Cases

A direct conflict is one caused by concurrent operations that target the same inode. In this section, we enumerate such cases according to the type of the target inode.

Common Concurrency Cases of All Inode Types

These are the concurrency cases that we consider the same resolution can apply whether the target inode is a directory or a file (Table 6.1). delete-delete. This is the situation when concurrent sessions both delete the same inode. Because both replicas agree on the same value of the inode, this concurrency case trivially converges without violating any of the safety rules. delete-update. This case happens when a session deletes some inode and concurrently another session updates the same inode. Because applying the concurrent updates in different orders using the respective sequential effector algorithms (Chapter 3) would not generate the same result (thus violating the rule of convergence-Rule 1), this case is a conflict and requires conflict resolution; we call this a state conflict. update-update. When neither concurrent updates is a deletion in Table 6.1), our analysis depends on the type of the targeted inode. In the next sections, we will describe the details of these cases for each type of inode.

Update-Update Concurrency On Files

Table 6.2 describes the concurrency cases when two sessions concurrently update the same file. We go through the detail of each case as below.

File data-data conflict. When updates concurrently change the data part of the same file, this does not violate any of the invariants (Rule 2), however, applying them in different orders (using the effector algorithms in Chapter 3) could yield different results (thus violating the rule of convergence-Rule 1). If the file contains a data type whose updates are commutative, such as a CRDT [START_REF] Oster | Data Consistency for P2P Collaborative Editing[END_REF][START_REF] Preguica | A Commutative Replicated Data Type for Cooperative Editing[END_REF][START_REF] Roh | Replicated abstract data types: Building blocks for collaborative applications[END_REF][START_REF] Weiss | dans l'exactitude du système de fichiers. B.4 Structure du système de fichiers Un système de fichiers peut être considéré comme un graphe où un noeud d'index constitue un noeud, et une association constitue un sommet[END_REF], concurrent updates could be merged according to the rules of that data types and converge; in this case, Table 6.2: Direct update-update concurrency cases when the target is a file. file data names data file data-data conflict file names-data conflict names file names-data conflict file names-names conflict the concurrent updates are not conflict. However, in general, the type of file contents is opaque to the file system, and a file might contain anything. For generality, we ignore such commutative data types. Our conflict resolution approach will be described in Section 7.2.2.

File names-data conflict. When an update changes the names and concurrently another update changes the data parts of the same file, these updates break the relationship between the name and the corresponding file contents as expected by the users (violating our rule of names-data coherency-Rule 3). The conflict resolution for this case will also be described in Section 7.2.2.

File names-names conflict. When concurrent updates change the names part of a file, they may create the same name and thus violate Invariant 4 (a name is unique in the map of a directory). Our solution is presented in Section 7.2.3.

Update-Update Concurrency On Directories

We describe in Table 6.3 the direct concurrency cases when the target inode is a directory. We go through the detail of each case below.

Directory data-data conflict. Whereas the data part of a file is opaque to the file system, for a directory, it consists of the child map. If we implement it using a commutative data type, then concurrent updates can be merged. 1Merging the concurrent updates in this case triggers a recursive merge of the directory's children (mapping entries).

Conflicts happen when these updates target the same mapping entries, or there are different mapping entries with the same name; this is a conflict because it violates Invariant 4 (a name is unique in a map). We present our resolution for this conflict case in Section 7.2.4.

Directory names-data conflict. Concurrent updates in this case break the relationship between different names and different directory contents, violating Rule 3. We describe our resolution for this case in Section 7.2.5. resolution is to copy the directory in order to maintain all of the updated mappings.

Indirect Conflict Case

In this section, we present our definition of indirect conflict and our method for detecting this case.

Indirect Conflict Definition

By iterating through the invariants, we can see that concurrent operations that target the same inodes cannot violate Invariant 6 (no cycles). To do that, updates would have to transitively impact each other in a way that creates a directory cycle. We describe the conditions for concurrent updates to violate Invariant 6, and then our definition of indirect conflict as below.

Formally, consider I 1 and I 2 as the sets of inodes updated by operations op 1 and op 2 , respectively. The condition for them to violate Invariant 6 is as below.

   I 1 ∩ I 2 = ∅ ∃i 1 ∈ I 1 , i 2 ∈ I 2 : reachable(i 1 , i 2) ∧ reachable(i 2 , i 1) . (6.1)
The above requirements specify that concurrent update even though do not necessarily target the same inodes, in fact create a directory cycle. This is easy to achieve; Figure 6.1 visually describes an example of creating a directory cycle. Consider there exist directories 1, 2, 3, 4, 5, and 6 initially such that:

         reachable(1, 3) ∧ reachable(3, 5) reachable(2, 4) ∧ reachable(4, 6) ¬(reachable(1, 2) ∨ reachable(2, 1)) . (6
         I 1 ∩ I 2 = ∅ reachable(4, 3) result of: rename(3, 6) reachable(3, 4) result of: rename(4, 5) . (6.3)
This clearly shows that there is a directed cycle between 3 and 4 in the merging result;

this violates Invariant 6. However it cannot be easily detected by direct inspection, as the concurrent operations op 1 and op 2 target different sets of inodes.

Therefore we define indirect conflict as following: an indirect conflict happens when concurrent updates, even not targeting the same inodes, modify the tree structure of the file system, thus causing directory cycles and violating Invariant 6.

Our conjecture is that concurrent renames is the only situation that might create directory cycles. According to Condition 6.1, concurrent updates have to transitively impact each other; this can only be achieved with rename because it is the only operation that transitively update the sub-tree of a directory when renaming that directory.

Indirect Conflict Detection

In the case of indirect conflict, concurrent updates that cause the conflict do not target the same inodes, making it not possible to detect the conflict based on the concurrency on individual inodes. As these concurrent updates transitively modify the path of each other's target inodes (Condition 6.1), our intuition is that an indirect conflict can be identified by checking if concurrent updates modify the path of each other's target inodes.

In order to do this, we mark all ancestors of an updated inode as updated. We call this 'back-propagation' of updates. For example, when the file /foo/bar/qux is updated, all its ancestor directories /, foo, and bar are marked as updated, even though there were no direct modifications to these inodes.

An update back-propagation from a child to a parent directory has the same effect as if the parent's names part and the mapping entry to the child were updated. This means it may cause a conflict with another concurrent update on the parent directory; however, With this approach, we are able to detect indirect conflicts systematically. Indeed, the Condition 6.1 indicates that to make a cycle between directories i 1 and i 2 , each of these directories must be updated in a concurrent operation, such that one becomes an ancestor of the other. By using update back-propagation, these directories become updated in both sessions, thus we can easily detect the direct conflict on them.

Applying update back-propagation to the example in Figure 6.1, we can see that 2 and 4 were updated when updating 6 (by rename(3, 6)), and 1 and 3 were updated when updating 5 (by rename(4, 5)). Combining the updated inodes of these concurrent renames, we can clearly see the direct conflicts on {1, 3, 2, 4} representing the indirect conflict; this would otherwise have not been identified without update back-propagation.

Chapter 7

Conflict Resolution

In this chapter, we describe our conflict resolution for the conflict cases from the previous chapter. This high level description shows how we resolve conflicts with respect to system integrity (Rule 2) and inode names-data coherency (Rule 3). Recall that a conflict is a violation of the safety rules that include the aforementioned rules and the rule of replica convergence (Rule 1). We defer discussion of conflicts with respect to the latter to the next chapter.

Conflict Resolution Principles

Resolving a conflict is to present the effects of the concurrent updates in a way that does not violate the safety rules. Technically, any approach that preserves system integrity and correctness would be safe, including losing all updates. Of course, we prefer solutions that enhance system liveness and user experience. Accordingly, we propose the following principles for conflict resolution.

Principle 1 (No Lost Updates) Conflict resolution should preserve the effects of all updates.

Clearly, arbitrarily dropping updates is undesirable, but it does occur in approaches such as Last-Writer-Wins (LWW), which resolves a conflict by choosing one of the updates and dropping the others. We decouple the No-Lost-Updates (NLU) principle into: (1) preserving updated file data contents, and (2) preserving the paths of updated directories and parent directories of updated files. The latter rule implies, for instance, that if an updated directory had a path p, there must be a corresponding directory at the path p after conflict resolution. This enables users to see their updated contents at the same path and to not surprise them. This is the rationale for the inode names-data coherency rule (Rule 3) of the previous chapter.

Principle 2 (No Ghost Updates) Conflict resolution should not make up updates that are not requested explicitly by users.

This principle restricts conflict resolution from creating new updates out of thin air.

For example, resolving a conflict on a file /foo should not create an unrelated directory /bar as part of the result.

Both of these principles are reasonable, but it is impossible to follow them rigidly.

In fact, we show in this chapter that there are situations where this either would result in violating the safety rules of Chapter 6, or (where applying both simultaneously) would violate the file system semantics of Chapters 2 and 3. For example, preserving two concurrent updates to a same file requires either keeping both versions inside that file, which is not supported by POSIX file system APIs, or to store them in two different files (with different names), which violates the No-Ghost-Updates (NGU) principle.

Our design decision is, if there are no other options, to favor the NLU principle over NGU principle. For instance, in the previous example, we create new files to store the concurrent updates. Although for directories, concurrent updates can be merged without violating either principle.

We also relax the NLU principle in some cases where the concurrent updates are contradicting with each other. For example, when an inode is concurrently both deleted and updated, it is impossible to keep both, and we preserve the update and ignore the deletion.

In the next sections, we will detail conflict resolution for the direct and indirect conflict cases of Chapter 6. Two main details will be presented: conflict resolution is a recursive process starting from the root directory and go down the tree; and resolving concurrent updates on an inode may require to generate new inodes to store these updates.

Conflict Resolution For Direct Conflicts

This section describes the conflict resolution for the direct conflict cases discussed in Chapter 6. These include the delete-update conflict, data-data conflict, names-data conflict, and names-names conflict for inodes of any type.

The next sections will discuss the conflict resolution algorithms for delete-update conflict, data-data conflict, names-data conflict, and names-names conflict. The algorithm for file data-names conflict is similar to that for file data-data conflict. This is because these cases both map different names of an inode to different data contents (violating Rule 3), thus these cases can be resolved in the same way. Similarly, we apply the same conflict resolution algorithm for directory data-names conflict and for directory names-names conflict.

foo i 1 i 1 i 0 i 1 i 2 foo f o o 2 i 0 i 0 f o o i 0 foo i 1 i 0 foo i 1 i 0 foo i 1 (a) directory (b) file

Delete-Update Conflict

Recall that a delete-update conflict happens when concurrently deleting and updating the same inode. Our resolution algorithm depends on the type of the inode, but generally, we preserve the update and ignore the deletion, thus violating NLU. Intuitively, this is because users can manually roll back an update if this is not the desired conflict resolution outcome, but since a deletion took place, there is no direct way to roll it back. The conflict resolution for each type of inode is as below.

When the target inode is a directory, we preserve the updated directory and use it as the merging result, in order to maintain the updated path, following NLU (Fig. 7.1a).

This helps maintaining a familiar structure of the file system through conflict resolution, following the names-data coherency rule (Rule 3).

When the target inode is a file, we preserve the updated contents in a new file, and delete the original one (Fig. 7.1b) favoring NLU over NGU. Chapter 8 will describe how we generate the new file's name and new inode number. We do not keep the update in the original file, in order to unify the conflict resolution mechanism with the file data-data conflict.

File Data-Data Conflict

A file data conflict happens when concurrent sessions update the data part of the same file. Our conflict resolution algorithm is to keep both updates following the NLU principle.

Some existing approaches that preserve both updates in the context of a distributed file system are: (1) merging the contents, (2) keeping the contents as different versions, and (3) keeping the contents in new files.

The first approach (Fig. 7.2a) merges the updated contents together. This is applicable when the data type contained in the file is is known to be mergeable; in fact, this is our approach for directories. A shared document represented by a sequence of characters is an example that has been extensively studied for collaborative text editors, such as Google GSuite Colaborate [START_REF] Google | [END_REF], Microsoft Office Online [START_REF]Office Online[END_REF], Dropbox Paper [14], or similar academic systems [START_REF] Oster | Data Consistency for P2P Collaborative Editing[END_REF][START_REF] Preguica | A Commutative Replicated Data Type for Cooperative Editing[END_REF][START_REF] Roh | Replicated abstract data types: Building blocks for collaborative applications[END_REF][START_REF] Weiss | dans l'exactitude du système de fichiers. B.4 Structure du système de fichiers Un système de fichiers peut être considéré comme un graphe où un noeud d'index constitue un noeud, et une association constitue un sommet[END_REF]. This approach is not general, however, since not all file types are mergeable.

The second approach (Fig. 7.2b) is to store the updates in concurrent versions (or branches) of the file, then users can access these versions or merge them manually.

Version control systems, such as Git [42] or SVN [START_REF]Subversion[END_REF], extensively use this approach to manage collaborative source code (text-based files) developments. This solution is also the approach of versioning file systems [START_REF] Demmer | TierStore: A Distributed Filesystem for Challenged Networks in Developing Regions[END_REF][START_REF] José Mashtizadeh | Replication, History, and Grafting in the Ori File System[END_REF][START_REF] Muniswamy-Reddy | A Versatile and User-Oriented Versioning File System[END_REF] that keep multiple versions of a file. This approach however relies mostly on manual intervention from users to resolve conflicts, which is not scalable.

The last approach (Fig. 7.2c) is to create new files with different names, in order to keep the different updated contents, while preserving Invariant 4 (a name is unique in the map of a directory). This breaks the NGU principle, but this is necessary to maintain the NLU principle with a file system that does not support versioning. The names of these new files are chosen to make users aware of the conflict and to resolve that manually if necessary. A simple approach is to append a unique identifier to the original names. For example, we use foo.A and foo.B to represent the concurrent updates to foo from sessions A and B, respectively. Chapter 8 describes the details of our format for new file names, motivated by the convergence requirement.

The last approach however violates the NGU principle since it creates new files that do not correspond directly to a user request. We will discuss the issues with this approach in Section 8.3.

We chose this approach because it works with any file type and of its compatibility with the traditional POSIX semantics.

Key merged content i 1 i 1 i 2 i 3 i 1 i 1 (a) merge (c) new files (b) versioning i 0 i 0 i 0 i 0 foo foo foo i 0 f o o 2 f o o 1 foo set of versions

File Names-Names Conflict

This is the situation where concurrent sessions update only the names part of the same file. Because the data type of the names part of an inode is a map, just like the data part (child map) of a directory, we therefore can merge the concurrent updates on this part of a file together.

In the case a name of the file is concurrently updated (Figure 7.3), we store the concurrent updates to the name in new names to preserve these updates. For example, when concurrent sessions A and B create the same name /bar for a same inode, resolving this conflict results in new names /bar.A and /bar.B to preserve the updates of A and B, respectively. Creating new names in this case follows the same mechanism of creating new names for file data-data conflicts (Section 7.2.2).

Directory Data-Data Conflict

Concurrent updates to the child map (the data part) of a directory are merged together because its data type (a map) is known to be mergeable. Recall that the map of a directory maps local names to inodes; merging takes the union of the updated mapping entries of the concurrent updates.

Merging the concurrent updates in this case is a recursive process because conflicts might happen on the mapping entries of that directory. Conflicts happen when concur-

i 2 i 4 i 4 foo i 1 bar i 2 foo i 1 bar i 4 f o o i 1 b a r A i 2
b a r B rent updates modify the same mapping entries, thus violating the Invariant 4 (a name is unique in the map of a directory). A conflict on a mapping entry requires a conflict resolution on that entry, as well as a recursive conflict resolution on the target inodes of that entry. For example, concurrently creating the same directory /foo/bar cause a directory data-data conflict on /foo; merging these updates on /foo recursively merges the directories with the same name bar.

There are multiple situations that lead to this type of conflict, depending on: the state of the mapping entries (deleted or updated), target inode number (the same inode or different inodes), and target inode type (directory or file). Table 7.1 shows the possible combinations of these factors. Our conflict resolution algorithm for each of these cases is as follows.

Case 1: This is the situation when concurrent updates delete the same mapping entry.

Similar to the case of concurrent deletes of the same inode, there is no conflict in this case because updates commute and do not violate any invariant.

Case 2: In this case, a mapping entry is concurrently both deleted and updated, causing a state conflict on the mapping. Similarly to the case of concurrent updatedelete on an inode, we preserve the update. If the updated mapping entry maps to a file, we change the name of the mapping; changing the name follows the same naming algorithm as with the conflict cases described earlier.

Case 3: Concurrent updates in this case target the same name which maps to a directory; this recursively creates another directory data-data conflict on the target Case 4: The concurrent updates in this case target the same file, may cause on the target file either file data-data conflict or file names-names conflict. We recursively resolve the conflict on the file according to the type of conflict. This creates new file names to preserve these concurrent updates.

Case 5: Concurrent updates in this case map the same name to different directories;

this violates the uniqueness of the names (Invariant 4). This is similar to Case 3.

The conflict resolution algorithm recursively merges the contents of the directories (Figure 7.4c).

Case 6: Concurrent updates map the same name to a directory and a file; this also violates the name's uniqueness invariant as with the previous case. We recursively resolve this conflict by keeping the mapping entry to the directory as is, and changing the name of the mapping entry to the file (Figure 7.4b); this makes the names of the mapping entries unique again.

Case 7: The same name are mapped to different files; this also violates Invariant 4

(name uniqueness). This case is similar to the file data-data conflict, except that here different contents are in different inodes. Similarly, the conflict resolution algorithm renames both mapping entries (Figure 7.4a), but without creating new inodes.

Directory Names-Names Conflict

When concurrent sessions rename the same directory to different names, this makes the directory to have different names, thus violating the Invariant 3 (a directory must have a single name). We preserve both names in different copies of the directory (Figure 7.5); making new copies of the directory has to recursively making new copies of its children. This approach violates Principle 2 (No-Ghost-Update) but preserves Principle 1 (No-Lost-Update). We choose this approach because it would otherwise lose updates if we opted for preserving a single name (LWW).

i 0 i 1 i 2 i 1 i 2 (a) file-file i 2 (b) directory-file (c) directory-directory i 0 i 0 i 0 i 0 i 0 i 1 i 2 i 1 i 2 f o o 1 foo foo foo foo foo i 1 i 0 i 0 i 0 f o o foo f o o 2 f o o 2 foo i 3

Conflict Resolution For Indirect Conflicts

As has been described earlier in Section 6.5.2, with update back-propagation, an indirect conflict becomes a set of direct conflicts on ancestors of updated inodes of concurrent updates. This makes resolving an indirect conflict becomes resolving direct conflicts, for which conflict resolution has been discussed in the previous section. In this section, we will go through the example of directory cycle by concurrent renames. By resolving the directory data-data conflicts on inodes 1 and 2, we retain the mappings foo and bar, respectively; by resolving the directory naming conflict on inodes 3 and 4, we preserve the sub-trees rooted by these inodes. Chapter 8

i 3 i 2 i 0 i 1 foo b a r q u x i 3 i 2 foo b a r q u x bar i 1 i 3 i 2 foo b a r q u x qux i 1 i 2 i 6 b a r b a r q u x b a r i 7 i 4 i 5 q u x q u x i 0 i 0 i 0 mv /foo

Replica Convergence

In the previous chapter, we showed how we semantically resolve the conflicts between any pair of concurrent sessions, with respect to system integrity (Rule 2) and to inode names-data coherency (Rule 3). This semantic resolution however does not guarantee replica convergence. In this chapter, we study the violations of replica convergence (Rule 1), and we propose our conflict resolution. Our approach is based on CRDTs [START_REF] Shapiro | A comprehensive study of Convergent and Commutative Replicated Data Types[END_REF][START_REF] Shapiro | Conflict-free Replicated Data Types[END_REF], a set of priciples for eventually consistent data types.

CRDTs

CRDT, which stands for Conflict-Free Replicated Data Type, is a set of principles for replicated data types to ensure the eventual consistency of their replicas. We summarize these principles and how to apply them to converge our file system replicas as below.

CRDT Principles for State-based Replication

Replica State The state of each replica advances after a modification, with respect to a predefined partial order between the states.

Merging Replicas Merging the states of concurrent replicas computes their Least

Upper Bound (LUB); the LUB of two states is the least one among those states equal or more advanced than them, with respect to the defined partial order. By definition, computing LUB (denoted by ⊕) is idempotent, commutative, and associative; these properties are formalized as below, where s, s i , s j , s k are states.

idempotent :

s ⊕ s = s commutative : s i ⊕ s j = s j ⊕ s i associative : (s i ⊕ s j) ⊕ s k = s i ⊕ (s j ⊕ s k) . (8.1)

Replica Convergence Using CRDT

A file system is defined as a collection of individual inodes I = i 0 , i 1 , . . . , i n , where an inode i j might have multiple versions i 0 j , i 1 j , . . . , i m j , each of which is created by an update to the inode. Note that a deletion creates a version called a delete marker (as will be described in Section 8.3.1); a delete marker appears to the users as if the inode was deleted. In this chapter, we consider a file system is a set of inode versions, and a correct file system state is one that satisfies the invariants of Chapter 2.

We define the partial order between two correct file system states S A and S B as following (we use to represent the concurrency between two states, and ∩, ∪, and \ for set intersection, union, and difference operations, respectively):

       S A = S B ⇐⇒ S A ∩ S B = S A ∧ S B ∩ S A = S B S A < S B ⇐⇒ S A ∩ S B = S A ∧ S B \ S A = ∅ S A S B otherwise . (8.2)
Because an update on an inode creates a new version of that inode, the state of the file system therefore advances upward after each update, with respect to our definition of partial order above. Indeed, consider S t and S t+1 are correct file system states before and after an update, which targets i j and creates a new version i k j , then we have S t ∩ S t+1 = S t and S t+1 \ S t = {i k j }, therefore S t < S t+1 . Merging two correct states also produces another correct state (upper bound) which is equal or more advanced then both of them. Consider a pair of concurrent updates that change a correct state S to new correct states S A and S B , respectively; these updates target inode i j of S, and create different versions i A j and i B j , respectively. Merging these states is to compute the union of the diverged states, and resolve the conflict between i A j and i B j , then store the conflict resolution result in a new version i C j (cases delete-delete, delete-update, file names-names conflict, and directory data-data conflict)

or new inodes i j , i j (cases file data-data conflict and directory names-names conflict).

In any case, the merged state

S C (S C = S A ∪ S B ∪ {i C j } or S C = S A ∪ S B ∪ {i j , i j }
) is always more advanced then each of the diverged states S A and S B .

We also make merging correct file system states to have the LUB properties, with respect to the correctness of file system and our merging rules; the LUB properties are idempotency, commutativity, and associativity. Though not formally proving it, our conjecture is that the upper bound computed by merging is the LUB of the states.

In the next sections, we describe how we ensure the LUB properties of merging file system states, which is translated into ensuring the LUB properties of our con-flict resolutions. We present the commutativity and associativity properties of our conflict resolutions; the idempotency property is automatically achieved as there is no concurrency in the case of s ⊕ s.

Ensuring Commutativity

In the previous chapter, we resolved the conflicts using the following main actions:

(1) generating new file names, (2) generating new inode numbers, and (3) merging directories. Ensuring the commutativity of our conflict resolution algorithms implies ensuring the commutativity of these actions, which in turn implies generating a new name or inode number, or merging inodes deterministically (while of course ensuring other file system invariants, such as name and inode number uniqueness). We describe how we achieve determinism for these actions below.

Deterministic File Name Generation

The problem of deterministically generating a new file name can be formally represented by a deterministic function n = f (n) where n and n are the old and the new file names.

Technically, there are many ways f can achieve its determinism. For our system, we choose f to generate new names by appending information to the original file name, according to the following format: n.info.ino.ssid .hash. In this format, info describes the type of conflict, such as "file data-data conflict" or "file names-names conflict"; ino is the original inode number of the file; ssid is the identifier of the session that has updated the file; and hash is the result of hashing all the previous fields. For example, the generated names foo.data_conflict.12345.A.abcde and foo.data_conflict.12345.B.edcba indicate that they were generated from resolving a file data-data conflict on file foo between concurrent updates from sessions A and B, respectively.

We have decided to use this format because, first, the process is deterministic (assuming the hash function is deterministic); second, the informative name helps users to reason about the conflict; and last, the generated name is unique with high probability.

However, absolute uniqueness cannot be guaranteed since a user may manually create any arbitrary name. To reliably ensure uniqueness, naming convention enforcement or coordination between replicas would be necessary; the latter is possible at the expense of availability. Our current implementation simply assumes such naming collisions do not occur.

To simplify the presentation, in this thesis, we use the simplified format n.ssid to describe automatically generated names; the implementation uses the full format.

Deterministic Inode Number Generation

The commutativity problem of generating a new inode is to deterministically generate a new inode number for the new inode, so that replicas have the same inode number for the same file content.

To ensure determinism, we compute a new inode number i as the result of hashing the identifier ssid of the updating session, and the original inode number i, as in:

i = hash(i, ssid).
The uniqueness of the inputs ensures the uniqueness of the output with high probability, assuming a good hash function. Inode number collisions however might still happen depending on the hash function being used. As above, global coordination would be necessary to ensure uniqueness. In our implementation, we assume no hashing collisions as well.

Deterministic Directory Merge

When the map of a directory is concurrently changed, or when there are different directories with the same name concurrently exist, we merge the updated maps into a single directory inode. Commutativity of directory merging reduces to ensure that the directory inode to store the merging result is deterministically chosen, and thus ensuring commutativity of conflict resolution.

Different approaches are possible, for example, generating a new inode based on the combination of the input inodes, or arbitrarily picking an inode among those conflicting (as in LWW). However for its known simplicity and support for both commutativity and associativity, we choose the LWW approach to store the merge result in the inode whose inode number is larger.

Consider, for instance, merging three directories whose inodes are 1, 2, and 3, respectively. When merging in the order (1 ⊕ 2) ⊕ 3, we will pick inode 2 to store the result of 1 ⊕ 2, then to pick inode 3 to store the result of merging then 2 with 3. The same outcome goes for another grouping 1 ⊕ (2 ⊕ 3); resolving this results in 3 as the final inode to store the merging result of the inodes.

Ensuring Associativity

In this section, we present the problem of achieving associativity. For this, we introduce a new concept, the delete marker.

Delete-Update Dectection Issue and Delete Marker

In a non-versioning POSIX file system implementation, a deletion physically removes the target mapping entry and inode (if its nlink reaches 0) from the file system. This however makes it difficult to tell if there is a delete-update concurrency, or there is only an update on an inode.

In order to detect the delete-update concurrency cases, we use the concept of delete marker. In our file system, a deletion does not remove its target (mapping and inode), but instead, it changes its target into a delete marker. A delete marker remains internal to our implementation and is not visible to any file system operation. However, detecting update-update conflicts takes delete markers into account.

In the next sections, we will go through all concurrency cases between three updates and will show that our conflict resolution algorithms are associative with the help of delete marker.

Concurrency Cases Between Three Updates

Between any three updates A, B, and C, there are three ordering possibilities as followings (we use → to represent the happen-before relationship, following Lamport's notation [32], and for concurrency):

A → B → C, A → (B C), (A → B) C, and
A B C.
In the first case, the updates are causally ordered. Because of that, these updates follow the sequential semantics described in Chapter 2; there are no conflicts between the updates. In the second case, the concurrent updates (B and C) both happen-after A; resolving this case is equal to merging B and C, therefore converging the replicas.

We are interested in the last two concurrency cases and will present our approach for ensuring the associativity for these cases.

Associativity For Causally Related Updates

This section discusses the associativity for the concurrency situation with causally related updates; this is the case of (A → B) C as described before. Consider S A , S B , and S C are the states of the file system as the results of the updates, respectively, the goal of associativity for this case is to have

(S A ⊕ S B) ⊕ S C = (S C ⊕ S A) ⊕ S B .
However because A → B, thus S A < S B , therefore S A ⊕ S B = S B , the requirement to ensure associativity becomes:

S B ⊕ S C = (S C ⊕ S A) ⊕ S B .
The requirement is however not satisfied with our conflict resolution algorithms so far. When they automatically generate new files; the names of these new files do not follow the causal relationship between subsequent session. For example when A, B, and .

We can see that on the right-hand side, even though S A is subsumed by S B , the existing conflict resolution still generates foo.A to store S A 's foo.

To solve this issue, when resolving the conflict of a session B with a concurrent one

C,

Associativity For Full Concurrency On Inodes

This section describes the concurrency cases between three concurrent sessions A B C that update the same inode i. Table 8.1 shows all possible concurrency cases. In the following, we show that our conflict resolution for each of these cases is associative.

We use deleted and updated to refer to different states of an inode i; i A , i B , and i C are inodes generated when resolving the conflicts of the respective sessions.

Case 1: This is the case when all the sessions delete the inode. Because resolving concurrent deletions of an inode results in a deleted inode, resolving any number of concurrent deletions in any grouping always result in a deleted inode.

(deleted ⊕ deleted) deleted ⊕deleted deleted = deleted ⊕ (deleted ⊕ deleted) deleted deleted
Case 2: This is the case when there are two deletions and one update on an inode.

For the case of a directory:

(deleted ⊕ deleted) deleted ⊕updated updated = deleted ⊕ (deleted ⊕ updated) updated updated .
(deleted ⊕ deleted) deleted ⊕updated deleted + i C = deleted ⊕ (deleted ⊕ updated) deleted + i C deleted + i C .
We can see that in all cases, committing the updates in any grouping has the same result. When i is a directory, the final outcome is the updated directory. When i is a file, it is i being a marker, and i C storing C's update (as described in Chapter 7).

Case 3: This is the case when when one of the concurrent sessions deletes the inode and the other two update it. For any type of the inode, the conflict between these sessions on the inode becomes the conflict between the two updates. Resolving the conflict between a pair of updates on an inode is commutative as described earlier, therefore we have the same result when committing these sessions in any grouping. For the case i is a directory:

(deleted ⊕ updated) updated ⊕updated dir. data/naming conflict = deleted ⊕ (updated ⊕ updated)
dir. data/naming conflict dir. data/naming conflict .

For the case i a file:

(deleted ⊕ updated) deleted + i B ⊕updated deleted + i B + i C = deleted ⊕ (updated ⊕ updated) deleted + i B + i C deleted + i B + i C .
Case 4: This is the case when the sessions update only the data part of the inode.

For i is a directory, because we can merge the updates together, the final outcome of conflict resolution is always i storing the merged of the concurrent updates. This case is associative.

(data ⊕ data) (dir. data conflict) merged(A + B) ⊕data (dir. data conflict) merged(A + B + C) = data ⊕ (data ⊕ data) (dir. data conflict) merged(B + C) (dir. data conflict) merged(A + B + C)
.

For i is a file, the concurrent updates in this case cause pairwise file data conflicts on the inode. Resolving the conflicts in any order generates i A , i B , and i C storing the updates from A, B, and C, respectively.

(data ⊕ data)

(file data conflict) deleted + i A + i B ⊕data (file data conflict) deleted + i A + i B + i C = data ⊕ (data ⊕ data) (file data conflict) deleted + i B + i C (file data conflict) deleted + i A + i B + i C .
Case 5: In this case, two sessions update the data of the inode and the other session updates the names of it. For i is a directory, resolving this conflict merges the updates to the data of the directory why generating a new directory for the update to the names part; the merging process is as below.

(data ⊕ data)

(dir. data conflict) merged(A + B) ⊕names (dir. naming conflict) merged(A + B) + i C = data ⊕ (data ⊕ names) (dir. naming conflict) i + i C (dir. data conflict) merged(A + B) + i C .
For i is a file, resolving this conflict generates new files to store the updates to the data part, while keeping the last update in the original file.

(data ⊕ data)

(file data conflict) deleted + i A + i B ⊕names (file data conflict) deleted + i A + i B + i C = data ⊕ (data ⊕ names) (file data conflict) deleted + i B + i C (file data conflict) deleted + i A + i B + i C .
Case 6: The conflict in this case is between two concurrent updates to the names part of the inode, and an update to its data part. For i is a directory, our conflict resolution generates new directories to store the updates to the names part of the directory, while keeping the original inode to store the update to the data part.

(names ⊕ names)

(dir. naming conflict) deleted + i A + i B ⊕data (dir. naming conflict) i A + i B + i = names ⊕ (names ⊕ data) (dir. naming conflict) i B + i (dir. naming conflict) i A + i B + i .
For i is a file, our conflict resolution generates a new file to store the updates to the data part of the file, while keeping the merged of the other updates in another file.

(names ⊕ names)

(file naming conflict) i ⊕data (file data conflict) i + i C = names ⊕ (names ⊕ data) (file data conflict) i + i C (file naming conflict) i + i C .
Case 7: In this case, the concurrent sessions all update the names part of the inode.

For i is a directory, this causes two consecutive directory naming conflicts. Resolving this case is similar to the previous case, except in this case, our conflict resolution generates new directories for all of the updates.

(names ⊕ names)

(dir. naming conflict) deleted + i A + i B ⊕names (dir. naming conflict) deleted + i A + i B + i C = names ⊕ (names ⊕ names) (dir. naming conflict) deleted + i B + i C (dir. naming conflict) deleted + i A + i B + i C .
For i is a file, the updates in this case cause pairwise file naming conflicts. Resolving this case is to merge all the names of each updates in the original file.

(names ⊕ names)

(file naming conflict) i ⊕names (file naming conflict) i = names ⊕ (names ⊕ names) (file naming conflict) i (file naming conflict) i .

Associativity For Concurrency On Mapping Entries

The concurrency cases between three concurrent updates on a mapping is similar to those for an inode; we also briefly describe these cases in Table 8.2.

The conflict resolution for the cases including at least a deletion of a mapping is also similar to the resolution for an inode. For the case of three concurrent deletions, the merge deletes the mapping at the end; for the case of a single update, this update is preserved by the end, meaning the mapping is the updated mapping; for the case with two updates, the conflict resolution for a pair of update on a mapping has been described in the resolution for directory data conflict (Section 7.2.4).

For the cases with three concurrent updates on a mapping, the conflict resolution is simple. Basically, a directory has a higher priority of maintaining its name in a conflict resolution with a file, and our conflict resolution always rename a file in any file conflict. Based on these characteristics of conflict resolution, in this case of conflict, if the mapping in any of the update is a directory, the final conflict resolution result for that mapping is a directory; if the mapping of an update is a file, it is renamed deterministically, therefore the mapping by the end may be a marker if the input mappings are all file. The conflict resolution for each pair of conflict using the deterministic inode and/or name generation as has been described before; this makes resolving a conflict on a mapping associative.

For example, concurrent updates create two directory mappings and a file mapping with the same name /foo. Regardless of the target inodes, we can easily see that our conflict resolution will create /foo.C (with '.C' as the deterministic suffix described before) to store the file mapping, and it will merge the content of the directories together if they are different directories. In the end, there will be a mapping /foo which maps to a directory, and a mapping foo.C that maps to a file.

Implementation

In this chapter, we present the design and implementation of the prototype of our file system. It targets, first, achieving the desired functionalities (concurrent sessions and conflict resolution), and second, to some extent, optimizing the performance of the system. We focus on the following particular points:

• MetaData-Data decoupling for system performance • Directory layout for system's scalability • Session implementation

Metadata-Data Decoupling

Data (the data part of a file) and metadata (everything else including directory child maps) of a file system have different access patterns; data is immutable and throughput oriented, whereas metadata is mutable and latency sensitive. Therefore existing large scale distributed file systems, such as GFS [START_REF] Ghemawat | The Google File System[END_REF][START_REF] Ghemawat | The Google File System[END_REF] and HDFS [START_REF] Shvachko | The Hadoop Distributed File System[END_REF], usually separate them to improve system performance.

For the same reason, we decouple metadata from data in the implementation of our file system. We stores them in separate distributed key-value stores, named datastore for data and metastore for metadata.

The datastore is an object store that provides a simple key-value interface and is specialized in storing large objects. We use the Ring from Scality [63] for this purpose. When it stores an object, the datastore generates a random key identifier.

The application (our file system in this context) can later use this key to access the object content. The datastore divides a large object (whose size exceeds a certain threshold) into small chunks, called data stripes, each one is stored under its own random key that is returned to the application. We call these identifiers data keys.

The datastore provides other functions such as byte range locking to facilitate data access, and erasure coding for replication. In what follow, we ignore the Ring internals and treat it as a black box.

The metastore is a separate key-value store, optimized for small and mutable objects. We implemented our metastore by combining multiple instances of LevelDB [START_REF] Ghemawat | LevelDB[END_REF] as the storage building block, with Raft [START_REF] Ongaro | In search of an understandable consensus algorithm[END_REF] as the replication protocol. The metastore supports a simple key-value store API: PUT to store or update an object under a string key, which we will call a meta key, GET to retrieve it, DELETE to delete it, BATCH to atomically perform a batch of PUT and/or DELETE operations, and LIST to list all keys in a given range.

We use the metastore to store different types of information, such as inodes and directory mapping entries. To better separate these types (to make it easy to list all keys objects of a certain type, for example), we separate the metastore into logical namespaces, each representing different information type. To implement that, we append a prefix to every meta key, for example we use "I::" and "N::" as the prefixes for meta keys of inodes and directory mapping entries, respectively.

The meta key of an inode is of the format: "I::inode_number", where "I::" is the namespace of the inodes, and "inode_number" is the decimal string representation of the inode number of the inode. For example, the inode identified by inode number 4 is stored under the key "I::4" in the metastore.

A directory is stored entirely in the metastore. In contrast, the data part of a file in the metastore contains the data keys of the data stripes of that file. To write a file, our file system first stores the file's contents in the datastore, which returns the list of data keys for the data stripes. The file system then stores this list in the data part of the file inode in the metastore1 . Accessing a file's contents is the reverse: first look up desired file in metastore to get its data keys, then read the corresponding data stripes from the datastore.

Directory Data Layout in the Metastore

The scalability of a file system is directly impacted by the scalability of a directory, i.e., how many mapping entries a directory can hold without increasing latency. The problem of scaling out directories for large scale distributed file systems has always been inherent issue in high performance computing area [START_REF] Patil | Scale and Concurrency of GIGA+: File System Directories with Millions of Files[END_REF][START_REF] Ren | IndexFS: Scaling File System Metadata Performance with Stateless Caching and Bulk Insertion[END_REF][START_REF] Weil | Ceph: A Scalable, High-performance Distributed File System[END_REF][START_REF] Weil | Dynamic Metadata Management for Petabyte-Scale File Systems[END_REF]. In this section, we describe and justify our directory design to support system scalability. Example of our metadata system implementation using key-value store abstraction. The figure on the left shows the file system structure visually; the table on the right presents the data structure of that file system in metastore.

Directory Inode-Data Decoupling

To address the directory scalability issue while being simple, we rely on the scalability of the metastore to scale out the directories. We store each mapping entry of a directory as a separate object in the metastore, and store the directory itself (without its child map) as a separate object. We use the following format for the meta key of a directory mapping entry:

N::inode_number::mapping_name where "N::" is the namespace for meta keys of directory mapping entries, inode_number is the decimal string representation of the inode number of the directory containing the mapping, mapping_name is the name of the child in this directory. For example in Figure 9.1, we use "I::2" as the meta key of inode 2 (which is directory foo), and "N::2::qux" as the meta key for the mapping of inode 2's child "qux".

With this approach, we can implement most operations similarly to traditional inode-based implementations, except for listing a directory. For example, to access inode 4, our file system queries the metastore for the value associated with key "I::4".

Different from classical file system designs, to list a directory (primitive readdir),

we rely on the range query capability of the metastore. Listing directory inode 4, for example, is done by searching for all entries with prefix "N::4::", whereas it is a simple retrieval of "I::4" in the classical file system implementations. In the example in Figure 9.1, listing directory foo, whose inode is 2, is searching for all objects whose key starts with "N::2::".

Advantages and Disadvantages

Implementing our metastore as a distributed key-value store has many advantages. The simple key-value API abstracts away many of the complexities of file system implementation. For example, having the datastore to handle data avoids having to deal with traditional indirect block pointers of large inodes. The scalability of the key-value store removes the need to worry about the scalability in the file system implementation as we rely on the scalability of the metadata store for scaling out directories.

The implementation of the metadata system using the key-value store abstraction also has some disadvantages. One is about the size of the metadata of a file. Because our implementation stores all data keys of a file in its metadata, the metadata object thus may be large and may thus incur larger overhead than traditional indirect inode pointers (which stores some data keys at the first level). However, we believe that this case is rare and could be solved by standard techniques, such as adjusting the data stripe size or by caching. We could also store the data part of a file in a separate key, similarly to directories, but this will increase access latency as a trade-off. Because this depends on workload, we leave this issue of scalability to future work.

Using range queries to list directories (using LIST) may be slower compared to classical direct inode retrieval (using GET), and may make caching difficult. The is a trade-off between using a simple design and having to deal with the complexity of low-level indirect inode pointers. Furthermore, because of its size, listing a very large directory in distributed file systems is usually moderated, for example by limiting the number of entries in a listing result (to 1000 as with Amazon's S3 service [START_REF] Amazon | GET Bucket (List Objects) Version 1[END_REF]).

This approach may reduce the potential performance gap between our approach and traditional approach in listing a large directory. Nevertheless, distributed key-value stores are a dynamic research topic; we believe that this active research area will help improving the performance of listing in the future.

Session Data Layout in the Metastore

To support sessions in our file system, the metastore must be able to store and retrieve different versions of an object. In this section, we describe how we support object versioning in metastore.

Object Versioning in the Metastore

We store each version of an inode or a mapping entry as a separate object in the metastore. Furthermore, for each inode or mapping entry, we also keep a master version, which has the contents of the last committed version, and the lists of committed and non-committed versions. The meta key of the master version is the meta key of the inode or the mapping entry as described earlier.

The key of a version other than the master is the concatenation of the master key with the identifier of the session that created it. Writing an object will create or update the version specific to the current session;

reading an object will either read the session's specific version if it exists, or the last version committed before the current session started. In the above example, consider a session S D that starts after S A 's commit (but before S B 's and S C 's commits), S D 's writes will create or update I::4::S D , and it reads will read from I::4::S D if that version exists, or I::4::S A , otherwise.

Object Versioning With Version Vectors

We use version vectors [START_REF] Fidge | Timestamps in message-passing systems that preserve the partial ordering[END_REF]32,[START_REF] Mattern | Virtual time and global states of distributed systems[END_REF] to encode the partial order between versions. A version vector is an array of monotonically increasing integers, each representing the state (number of committed sessions in our case) of a corresponding replica. A version vector can be less than, greater than, equal to, or concurrent with another, indicating the partial order between the version vectors.

The different parts of an inode each equipped with their own independent version vector. A file has a version vector for each of its data and names parts, as well as a version vector for the whole file, called its general version vector. If the names part of the file is updated, both its general version vector and the names version vector are increased; if its data part is updated, all of its version vectors are increased because of update back-propagation. A directory also has a version vector for each of its mapping entries; updating a mapping entry is updating the directory's data part, thus increasing the version vectors of the updated mapping entry, the data part, the names part, and the directory itself.

In our implementation, we have an entry for each session in the version vectors to distinguish concurrent sessions from the same replicas; updates inside a session increase the value of the entry for that session; we merge this value back to the entry of the replica of the session when the session is committed. For example, in a system with replicas A, B, and C, if the version vector of an inode updated by a session S on replica B is <A:1, B:2, C:3, S:1>, then that version vector when S is committed is <A:1, B:3, C:3>.

Committing a Session

Our session system is basically a transaction processing system, specialized in processing long transactions. This sections describes how we ensure the transactional properties2 of committing the sessions in a replica.

In a replica, sessions are committed according to their partial order relationship: causally related sessions are committed in their causal order; non-overlapping concurrent sessions (those modified disjoint sets of inodes) can be committed concurrently, however, those overlapping are committed sequentially.

Committing a session is to apply (or install) all of its updates into the state of the current replica. Installing the updates is done in the Depth-First-Search manner from the root directory. Installing all updates of a session is an atomic process which means all updates or nothing is visible in the state of the current replica at any moment.

There are some available approaches to committing the sessions, such as 2 Phase Commit (2PC) protocol or using centralized sequencer; we chose the latter approach to commit the sessions in a replica. This simplifies the implementation of our system.

In the next sections, we will describe how we use the centralized sequencer to commit sessions atomically, and how we improve this approach to fit the session system.

Committing With a Sequencer

The central sequencer in a replica defines a total order of committing the sessions in that replica. Every starting or committing session is thus aware of those that are being committed before it by contacting the sequencer. The sequencer has the following API:

• commit_session(ssid):map -commit a session whose identifier is ssid; return a map of the identifiers of committing sessions (including the current session) and commit sequence numbers defining the total order of the committing sessions.

• start_session():{ssid, map, n} -start a session, return the identifier ssid associated with the session, the map of committing sessions as above, and the commit sequence number n of the latest committing or committed session.

In a common usage scenario (Figure 9.3), a session S 1 starts committing by registering with the sequencer using the function commit_session. The sequencer then keeps S 1 in its list of committing sessions, and then returns to S 1 a commit sequence number and the list of committing sessions. At this point, S 1 can safely notify users that it has been committed, and asynchronously start to install its updates.

When another session S 2 starts to commit before S 1 has finished installing its updates, S 2 , just like S 1 earlier, registers itself to the sequencer, the sequencer returns to S 1 a commit sequence number and the list of the sessions that are being committed (which contains S 1), then S 2 notifies users as committed, and starts installing its updates asynchronously. While installing its updates on an inode, if S 2 encounters a update of S 1 which has not been installed, S 2 stops its installing process on that inode and will wait until the update of S 1 has been successfully installed. This ensures that all updates of S 1 are installed before S 2 can install its updates, thus ensuring the atomicity of S 1 .

Similarly, when a session S 3 starts, it also needs to contact the sequencer to get the commit sequence number of the latest committing or committed sessions. In the situation when S 3 starts before both S 1 and S 2 have finished installing their updates, the list returned to S 3 will contain both these sessions. When accessing an inode, if S 3 finds any non-installed update of the these sessions on that inode, S 3 will need to wait until these updates are installed. This ensures the atomicity of all sessions committed before S 3 starts.

Committing with Fine-Grain Locking

The fine-grain locking is an optimization to avoid waiting for non-installed updates to be committed when accessing an inode. In our system, a session when seeing a non-installed update on an inode will wait only if this pending update does not have any conflict with the replica's state of the inode. These are the cases when there is no concurrency on an inode, or concurrent updates do not cause conflicts. In this case, it is totally safe to proceed the access on the inode. For example, S 1 updates a file /foo/bar and then commits; after S 1 has done installing its update, S 2 starts and updates /foo/qux then commits; when S 3 starts and updates /foo/quz before S 2 has installed its update, it is safe for S 3 to proceed its access on /foo because the pending update in /foo of S 2 does not cause any conflict with the installed update of S 1 as they are both updated by back-propagation (which does not change anything of /foo).

The advantage of our fine-grain locking optimization over the traditional 2PC locking system is that concurrent sessions are only serialized at the parts that they conflict when committing. This optimization is in fact valuable because the ratio of conflicts between sessions might be low 3 and the committing time for a session is long (several seconds for thousands of updated files in our experiments); pessimistically locking in these cases would be neither necessary nor efficient. Our session system is comparable to 2PC in the worst case when all sessions update the same set of directories and files. In such case, starting and stopping sessions will not be blocked, but accessing the updated directories and files will be blocked until all conflicts are resolved.

We can also proactively commit the pending updates of a committing session by other sessions. For example, even if the updates of S 1 and S 2 are conflicting, a session S 3 can proactively resolve the conflict and commit S 1 and S 2 's updates, thus S 3 does not need to wait. This optimization is however is not implemented in our prototype;

our future work will target this.

Chapter 10

Evaluation

In this chapter, we present our experiments to evaluate our file system design and implementation. The main objective of the evaluation is to compare our conflict resolution with existing approaches, and to analyse its performance.

Basic Conflict Resolutions

We compare the behaviour of our approach to those of commercial systems, including:

Dropbox [START_REF][END_REF], Google Drive [START_REF]Drive[END_REF], and Microsoft OneDrive [START_REF]OneDrive[END_REF]. The criteria for the comparison is the conflict resolution principles (Chapters 6 and 7); these include the convergence of the replicas and the meaningfulness (Rules 1 and 2) of the merging results. The result is reported in Table 10.1

We implemented the prototype of our geo- the conflict cases that we described in Chapter 6. In all of the cases, our prototype was able to resolve the conflicts and to produce the desired outcomes, with respect to the target of our merging semantics. For such result, we only describe the behaviours of the commercial systems with the experiments in the followings.

Experiment 1. Hard link support This experiment is to determine if a system supports hard links when resolving conflict. In this experiment, we created a hard link bar to an existing file foo in a session s on A, then we checked if the same hard link is created on B or not. After merging session s, the replica B of all setups of Dropbox, Google

Drive, and Microsoft OneDrive had the same files named foo and bar, however, these file names on B pointed to different inodes, which means there is a divergence in the structures of the replicas.

There were also some anomalous results we observed with Dropbox in this experiment. Continuing the previous experiment, we updated bar on A, after merging the update to B, we deleted both foo and bar on B. However, foo appeared again on both

A and B after the merge. From this observation, we speculated that Dropbox passively detected the update of foo on A caused by update to bar, and its concurrency with the deletion of foo from B was then resolved by resurrecting foo. This can be explained that Dropbox uses inotify, which is a Linux tool for detecting updates in a directory, but not at the inode level. In the case updating bar on A, inotify was able to report that bar was updated but not foo; when receiving foo's deletion from B, Dropbox checked if it can merge this operation by inspecting the stat of foo (which is stored in foo's inode). The found information indicated that foo was also updated and thus this merging resulted in foo reappeared on all sites when done resolving conflict.

Experiment 2. Directory Data-Data Conflict This experiment is to compare how the systems resolve the conflict when files with the same name exist. We concurrently created a file foo on each replica A and B to make a situation that multiple mappings with the same name exist. After resolving the conflict, the replicas of the setups (Dropbox, MS OneDrive, and Google Drive) created different files to store the data of these conflicting updates. However, the setup using Google Drive did not converge the replica to the same structure, i.e., foo.A's content on A was equal to foo.B's on B, and vice versa.

The results were repeated when we created a directory with the same name on each of the replicas. The setups using Dropbox and OneDrive were able to make their replicas converged by merging the contents of these directories, while Google Drive did not merge them, but changed the name of one of the directories, even though directories with the same name on both replicas do not have the same contents; Google Drive thus failed to make replicas converged.

Experiment 3. File Data-Data Conflict This experiment is to compare how the systems resolve the conflict of concurrent writes to the same file. We concurrently updated a file foo on both replicas A and B. The setups using Dropbox and OneDrive resolved the conflict by creating different files to store these different updates of the file as expected. The setup using Google Drive however only retained the update from one replica and dropped the other. Because of this, we believe that Google Drive uses the LWW approach to resolve the concurrent updates on a file; this approach, while being simple, does not preserve all concurrent updates. We consider Google Drive failed in this test with respect to our measures of conflict resolution properties (Principle 1: no lost updates); the other setups, including ours, even though violated Principle 2 (no ghost updates), did not lose updates, which we objectively valuate more.

Experiment 4. State Conflict This experiment determines how a system resolve the concurrent delete and update to the same inode. We concurrently deleted a file foo on A, while writing to it on B. Google Drive deleted foo on both replicas after the merge.

The other setups preserved the updated file. Our conjecture is that Google Drive resolves this conflict using the Delete-Wins approach, where the deletion of an element wins over the other concurrent operations on that element in conflict resolution. The others use a Write-Wins approach like ours that prefers the update over the delete.

Experiment 5. Indirect Conflict The purpose of this experiment is to find out if a conflict resolution could handle the concurrent renames that create a directory cycle.

Initially, we started both A and B with the same file system structure of directories /test/foo and /test/bar. On A, we moved foo into bar, while on B, we moved bar into foo to make the cycle of these directories. We expected the merged namespace would be /test/foo/bar and /test/bar/foo, which preserves both updates of A and B while not violating the No-Directory-Cycle invariant (Invariant 6). The Dropbox system was able to make the expected outcome, while the Google Drive system put all the directories in the cycle in root, and the OneDrive system stayed diverged with only

/

Conflict Resolution Performance

We compared the conflict resolution performance of our prototype of Tofu against Dropbox-the most popular public cloud storage system. The performance is expressed in terms of the time to converge the replicas and the network usage for update propagation, with varying numbers of conflicting files. These measures stand for how efficient the conflict resolution is and how much overhead it has.

We knew that it would be unfair when comparing an industrial level system, which has to handle many real-world cases, to a prototype, which has a lot of assumptions.

Therefore, the interpretation of the benchmark results should be moderated, for example we do not directly compare the times it takes different systems to complete the same task; we focus more on whether a system could keep its efficiency and what is the increase in the overhead when the size of the test increases. In this experiment, we kept increasing the number of conflicts for this purpose.

For both systems, we deployed the same setup of four replicas. Each of the replicas is a virtual machines running Ubuntu Server 14.04 LTS, and each has the configurations of one CPU core and 1GB memory of the host; these replicas were in the bridge mode of networking. For the setup of Dropbox, the clients was with the lansync mode on;

this mode is supposed to enable replicas in the same network to communicate directly.

On each of the replicas, we concurrently created n files, being named 1, 2, to n, thus creating n conflicts between each pair of replicas; we use a single session on each replica in our system. The content of each file was the one-byte identifier of the replicas (A, B, C, and D respectively) on which the file was created. We repeated the experiment with different values of n: 100, 400, and 900. We kept the number of replicas unchanged.

We measured the time from when we started to create the files on all replicas, until these replicas finished their synchronization. For our system tofu, it's easy to measure this time span because we can manipulate the code; however it's difficult for measuring this information of the Dropbox system because its proprietary software could not be interfered. Therefore we decided to use a manual method, in which we manually watched the status of all Dropbox's replicas and identified when they finished synchronizing. We used a daemon1 provided by Dropbox to check the synchronization status of each replica, we identified the termination of synchronization only when the status of all replicas is "Up to date"; we used Linux tools time and watch with an interval of 2 seconds to monitor the replicas' status. In addition, we used another tool iftop to track the network usage of both systems.

The result of this experiment is shown shown in Figure 10.1; Tofu used much less time and network bandwidth to synchronize its replicas in all cases compared to Dropbox. More importantly, we see the exponential increase in both the time and the bandwidth that Dropbox used in synchronization as the number of conflicts increased.

On the other hand, the increase of these measures for Tofu was linear. This can be explained by the synchronization mechanism of each system. As we inspected the network usage of Dropbox, we saw a lot of traffic between each Dropbox replica and dropbox.com. Furthermore, Dropbox's synchronization status showed that the status of each replica repeatedly changed between being stable ("Up to date") then being active ("synchronizing", "uploading", and "downloading") for multiple times before all of these replicas finally converged. From these observations, we believe that Dropbox uses a form of centralized synchronization where dropbox.com acts as the central point. As opposed to Dropbox, our prototype Tofu is totally decentralized in any sense (network traffic and conflict resolution); this led to the linear increase of time and network usage for synchronization when the number of conflicts increased.

Micro-Benchmarks

In this experiment, we evaluate the impacts of concurrent sessions on the normal usage of users in a session, and we analyze the impact of committing a session on a concurrent session.

Experimental Setup

Our experimental setup comprises of two groups of storage servers inside a single data center. Each group composes of 6 physical servers, each of which has a 4-core Intel Xeon CPU, 64GB of memory, and 2TB of HDD storage. The network interface between all servers has a bandwidth of 1 Gbps. The average round-trip latency between these servers is 0.24 ms. We mimicked the geo-distribution by adding latency to the network between these server groups; this latency is a normal distribution with the mean of 100 ms and the standard deviation of 10%. The bandwidth for the network between these server groups however remained unchanged.

We labeled the groups as replicas A and B; these groups act as the replicas of a geodistributed file system. On each of the physical storage servers, we created 8 processes to serve as logical storage nodes for the metastore of each replica. There were thus 48 storage nodes per metastore deployment. On each of the replicas, we also deployed an instance of the commercial Scality Ring as the datastore of that replica. In each group, we included an additional server where for clients to create mount points to connect to the local replica.

Normalization

In order to understand the performance limits that we could expect with our geodistributed file system, we measured the best performance we can have for a single replica in our experimental setup.

Our specific strategy is to tune our system to find the best combination of concurrent mount points and number of concurrent processes for each mount point. We started by varying the number of concurrent processes on a single mount point of the file system.

Each process sequentially created 10,000 directories under the root. As shown in the left sub-figure of Figure 10.2, the system achieved the best throughput-latency tradeoff at 420 ops and 5ms when using 2 concurrent processes. We therefore used 2 as the default number of processes for each mount point in our experiments.

We then varied the number of the mount points per replica with two concurrent processes each. We achieved the best throughput-latency tradeoff with the configura-tions of 8 and 16 mount points per replica. The difference of throughput between these level is 5% with the setup of 16 mount points having the higher throughput while the difference in latency is 83% with the setup of 8 mount points having the lower latency (as shown by local updates in the right sub-figure of the Figure 10.2). We therefore used 8 as the number of mount points in our experiments because this setup enables our experiments to have a wider range of tradeoff when the concurrency changes.

We also included in the right sub-figure of the Figure 10.2 our conjecture of the performance characteristics that a geo-distributed file system may have using our experimental setup. There are two extremes in this sub-figure, one (solid line) describes the tradeoff between throughput and latency of the system under local updates while the other (dashed line) describes that of the global updates; global updates are those require coordination between replicas to commit. The former workload represents that of the eventual consistency systems and the later workloads represents that of the strong consistency systems. In the local case, the latency was maintained at a good level around 5ms when we increased the number of mount points to 8. As we further increased the number of the mount points, the latency increased significantly. It reached the latency level of strong consistency approach at 640 mount points. We were not able to test with more mount points due to unknown technical issue. Meanwhile, the latency for global updates were at around 429ms when the number of mount points varied between 1 and 512, and started to deteriorate when more mount points were used.

Because of the way our conflict resolutions work, for each operation, we need to write it twice, one when writing it in the session and another one is when committing it. Therefore, we can expect the throughput of our system to theoretically be haft of the optimal throughput of the setup.

Workloads

In the lack of the workloads for eventual consistency geo-distributed file systems, we designed our own synthetic workload for our experiments. Our workload design is to satisfy the following testing criteria: (1) the workload should have enough contention level to put the file system to the limit, and (2) the workload should be wide enough to cover a large part of the file system; this second criterion is to test the impact of committing a long session whose modified elements span all over the system.

In our synthetic workload, we use 8 mount points per replica, each of which receives the workloads from two concurrent processes. Each process creates a large number of directories (10,000) in the root directory; processes in the same session create different directories; all sessions create the same set of directories. We chose to have all sessions creating the same sets of directories is to create a large number of conflicts, which helps testing our conflict resolution system. The large number of directories to be created is also to fulfill the second criterion of the workload design which is to have a large coverage; this helps distinguishing our optimized commit protocol with the locking-based 2PC. We chose to only create directories under the root to have a clearer distribution of latency and throughput. This is because, in file system, a single file system operation issued by users would then be translated into a set of operations on the elements on the absolute path of the target; this significantly increases the latency of the operations and makes it difficult to compare systems using random workloads.

For example, to create a directory /foo/bar/qux, the file system has to check for the availability and the permission of each of the directories /, /foo, and /foo/bar before creating the desired directory. This will be translated into a large set of sequential accesses to the file system, which will hamper the latency in the case of global updates and will make comparing different approaches less fair. By using our workload, the latency of each operation is minimized due to the short paths of the targets.

Experiments

Overall Our first experiment was to get an overview of the performance characteristics of our file system under a stress workload. In this experiment, we created 8 concurrent sessions on each of the replicas A and B; the sessions on each replica was initialized sequentially with one started 5s after another. Each of the session had a dedicated mount point, to which each of 2 concurrent processes generated 10,000 directories. All sessions received the same set of directories from their concurrent processes. A session commits when it has done creating all of these directories.

The results of the experiment (Fig. 10.3) show our expected outcome despite a large fluctuation in the latency during the experiment. Each replica in our system was able to fully commit all 16 sessions with the total of 320,000 directories in 271.594s from the start of the first session to the end of the last session. This gives our system in this test the average throughput of 1178 ops with the average latency of 15.6ms (not considering the delay of sequentially starting the session). This result is in line with our analysis that committing a session requires revisiting all modified entries of that session thus may halve the throughput.

In a long period at the beginning, the latency remained stable around the baseline level, which is the latency of the single replica setup with 8 mount points and 2 processes each. The latency then fluctuated as each replica received more local and remote session commits. This fluctuation continued until all 16 sessions were fully committed.

However, as shown in the latency distribution graph on the right of Figure 10.3, the large majority of the operations resulted in low latency with 90% under 10ms and the overall average was 15.6ms.

Session Commit

We further investigated on decomposing the impact of the commit of a session by instrumenting our system to measure the exact moments when a session started and finished; we used a single session per replica, and a light workload with only 10K between the time spans of writing and of committing, and (2) the time span for registering a session-the only moment when we actually lock a replica using the sequencer to decide the order of committing the session. We can see that the committing time, started when the session was registered, is longer than the amount of time spending for making all the directories. This is because the process of commit has to do both resolving conflicts and merging the session version of each of the directories into their main version. The back-propagation process (which back propagates all updates up to the root in order to detect indirect conflicts) also took a large chunk of time; this is because back-propagations may have to go through multiple storage nodes on different servers of metastore. The time that a session actually requires a global lock to decide its order (using the sequencer) is about 4ms; this is significantly less than the length for the whole commit process, which would have been the length of locking using locking-based 2PC to commit a session. The timeline of the events of a session. Numbers show the timespans between events in milliseconds. Timespan scale is not supposed to reflect the real scale.

Chapter 11

Previous Work

In this section, we summarize the state-of-the-art geo-distributed storage systems, both academic and industrial. Our study subjects include legacy distributed file systems, as well as modern cloud storage systems, and related systems such as version control.

Distributed File Systems By Consistency

Distributed file systems can be classified based on their consistency model, into stronglyand eventually-consistent distributed file systems, and hybrids.

Strongly-Consistent Distributed File Systems

Traditional strongly-consistent distributed file systems provide the legacy POSIX API or similar. However, this inherently requires some form of coordination between replicas to commit updates, which increases update latency. Some, such as CalvinFS [START_REF] Thomson | CalvinFS: Consistent WAN Replication and Scalable Metadata Management for Distributed File Systems[END_REF],

Warp [START_REF] Escriva | The Design and Implementation of the Warp Transactional Filesystem[END_REF], and HopsFS [START_REF] Niazi | HopsFS: Scaling Hierarchical File System Metadata Using NewSQL Databases[END_REF], straightforwardly use distributed transactions. Distributed transactions in geo-setups suffer high latency; this is reported in the evaluation of these systems, where global operations commit in 300 ms to 1000 ms. Other systems, such as GlobalFS [START_REF] Pacheco | GlobalFS: A Strongly Consistent Multi-Site File System[END_REF], SOFS [START_REF] Segura | Scality's experience with a geo-distributed file system[END_REF], CFS [9, 10], and XtreemFS [START_REF] Hupfeld | The XtreemFS Architecture -a Case for Object-based File Systems in Grids[END_REF][START_REF]Quobyte Inc. XtreemFS replication[END_REF] use a primary-backup approach; they partition data and assign to each partition a primary replica; all writes to a partition need to go through its primary. As an optimization, the primary of a partition can be then placed on the replica where most of the accesses originate. This approach works well with highly local workloads, but not with those span multiple partitions where committing updates will require inter-replica coordination.

Generally, strong consistency approaches fit well where manual reconciliation is difficult, and for highly parallel and disjoint short workloads (so that conflicts are less likely to occur). Otherwise, these approaches result in high update latency. In contrast, our system provides low update latency; it is a good fit for long working sessions with complex structure of the file systems.

Eventually Consistent Distributed File Systems

Eventually consistent distributed file systems range from basic versioning to complex conflict resolution. These systems either do not provide automatic conflict resolution or do not provide the traditional file system API.

Distributed file systems usually use versioning file system, such as [START_REF] Cornell | Wayback: A Userlevel Versioning File System for Linux[END_REF][START_REF] Muniswamy-Reddy | A Versatile and User-Oriented Versioning File System[END_REF][START_REF] Santry | Elephant: the file system that never forgets[END_REF][START_REF] Santry | Deciding when to Forget in the Elephant File System[END_REF][START_REF] Santry | Deciding when to Forget in the Elephant File System[END_REF], as the local file system of their replicas as a basic building block to support disconnected updates. With versioning-enabled replicas, distributed file systems can take the simple approach of exchanging and storing all concurrent versions of their data on all replicas without ever resolving the conflicts of these versions; Tofu without all conflict resolution mechanism is a versioning distributed file system; examples of these systems include Ori [START_REF] José Mashtizadeh | Replication, History, and Grafting in the Ori File System[END_REF] and TierStore [START_REF] Demmer | TierStore: A Distributed Filesystem for Challenged Networks in Developing Regions[END_REF]. Though they can provide traditional POSIX API, these simple versioning distributed file systems always require manual intervention to resolve conflicts. Tofu differs from them by providing automatic conflict solution.

To another extent, eventually consistent file systems using fully automatic conflict resolution (such as GeoFS [START_REF] Tao | A Name Is Not A Name: The Implementation Of A Cloud Storage System[END_REF][START_REF] Tao | Merging Semantics for Conflict Updates in Geo-Distributed File Systems[END_REF], and the cloud storage systems [START_REF][END_REF][START_REF]Drive[END_REF][START_REF]OneDrive[END_REF]) do not provide the traditional POSIX semantics. Their automatic resolution causes trouble for legacy applications, which are not prepared for concurrency anomalies. The synchronization systems [START_REF] Balasubramaniam | What is a file synchronizer[END_REF][START_REF] Bjørner | Models and software model checking of a distributed file replication system. Formal methods and hybrid real-time systems[END_REF][START_REF] Kermarrec | The IceCube approach to the reconciliation of divergent replicas[END_REF][START_REF] Ramsey | An Algebraic Approach to File Synchronization[END_REF][START_REF] Ramsey | An Algebraic Approach to File Synchronization[END_REF][START_REF] Terry | Managing Update Conflicts in Bayou, a Weakly Connected Replicated Storage System[END_REF] do not have the support for all file system components such as hard link. The conflict resolution of these systems usually adhoc, for example, some move those conflicting into a special directory and notify users after that. These systems also sometimes use simple resolution approach such as Last-Writer-Wins which does not retain all updates. Tofu offers a superior approach with support for both eventual consistency and legacy software.

The class of pioneer optimistic replication file systems such as Coda [START_REF] James | Disconnected operation in the Coda file system[END_REF][START_REF] Satyanarayanan | Coda: A highly available file system for a distributed workstation environment[END_REF], Ficus [START_REF] Peter L Reiher | Resolving file conflicts in the Ficus file system[END_REF], Locus [START_REF] Popek | The LOCUS Distributed System Architecture[END_REF][START_REF] Walker | The LOCUS Distributed Operating System[END_REF][START_REF] Walker | The LOCUS Distributed Operating System[END_REF], Rumor [START_REF] Guy | Rumor: Mobile data access through optimistic peer-to-peer replication[END_REF], Roam [START_REF] Ratner | Roam: A scalable replication system for mobile computing[END_REF][START_REF] Ratner | Roam: a scalable replication system for mobility[END_REF], Ivy [START_REF] Muthitacharoen | Ivy: A read/write peer-to-peer file system[END_REF], and TierStore [START_REF] Demmer | TierStore: A Distributed Filesystem for Challenged Networks in Developing Regions[END_REF] exhibit various degrees of limitations, similarly to the aforementioned cloud storage systems. They usually do not fully model file systems (by dropping hard links) and they usually opt for LWW or ad-hoc approaches (such as moving all conflicting directories and files into a special directory, which requires manual intervention to resolve conflicting updates).

The closest work to our system so far has been BatchFS [79]. BatchFS briefly studied the idea of using a single session per replica to improve the latency of the geo-distributed file system while maintaining the traditional POSIX semantics during a session. This system however does not provide automatic conflict resolution or multiple sessions per replica.

Our system Tofu is classified as an eventually-consistent system. It offers a full solution compared to the others in this group. Tofu provides traditional POSIX semantics during each session; it automatically detects and resolve all conflicts between concurrent sessions; and it has a concurrency model that enables low-latency local commit of updates.

Consistency-Tunable Distributed File Systems

Andrew File System (AFS) [START_REF] John | An Overview of the Andrew File System[END_REF][START_REF] Leon | Synchronization and caching issues in the Andrew file system[END_REF] and OceanStore [START_REF] Kubiatowicz | Oceanstore: An architecture for global-scale persistent storage[END_REF] are hybrids that can be either strongly consistent or eventually consistent, depending on usage. This is because, though enabling client caching, these systems require the applications to manage the desired consistency themselves. In the case of AFS, a cache flush to an AFS server when a file is closed would overwrite anything before that without warning; applications must build their own logic and control to achieve their desired consistency level.

AFS in a setup which has the coordination of the distributed applications would be a strongly consistent distributed file system; in another setup without any application coordination, AFS is an eventually consistent distributed file system which uses LWW exclusively to resolve conflicting updates. Whereas in the case of OceanStore, applications need to build and manage their proper set of tuples predicates, update, and merge, following Bayou's conflict resolution model [START_REF] Terry | Managing Update Conflicts in Bayou, a Weakly Connected Replicated Storage System[END_REF]; these are the instructions for the primary replicas of OceanStore to resolve the conflict if any and commit an update. Compared to our approach, AFS and OceanStore do not have enough solution to handle all conflict cases and they are not coordination-free for ensuring strong POSIX semantics.

State-Based And Operation-Based Approaches

Orthogonally to the consistency model, geo-distributed file systems can also be classified into two groups, based on their approaches to conflict resolution: operation-based and state-based.

Operation-based approaches keep a log (journal) of file system operations on each replica. A replica from time to time propagates its log to the other replicas. A receiving replica replays the log to keep its state consistent with the sender. Examples of this approach include IceCube [START_REF] Kermarrec | The IceCube approach to the reconciliation of divergent replicas[END_REF], Bayou [START_REF] Terry | Managing Update Conflicts in Bayou, a Weakly Connected Replicated Storage System[END_REF], OceanStore [START_REF] Kubiatowicz | Oceanstore: An architecture for global-scale persistent storage[END_REF], and Ramsey's algebraic approach [START_REF] Ramsey | An Algebraic Approach to File Synchronization[END_REF][START_REF] Ramsey | An Algebraic Approach to File Synchronization[END_REF].

The operation-based approach is however computing intensive. It usually requires calculating a new order of updates from all replicas, then applying this new sequence of updates on the replicas to converge them. This is not practical in real-world geodistributed file systems. Moreover, an experience with a large scale file system [START_REF] Segura | Scality's experience with a geo-distributed file system[END_REF] for a telecommunications service provider in France has shown that, the number of operations in that real-world system is three orders of magnitude larger than the number of changed files and directories, which results in much larger log sizes as compared to the changes in the state of file system; reordering updates in such system is computationally expensive as compared to the state-based approach, which does less computation.

The state-based approach keeps track of the state of each file and directory in a replica, then propagates either the final states or deltas of the changed files and directories to the other replicas. Examples of this approach include Coda, Ficus, Unison [START_REF] Balasubramaniam | What is a file synchronizer[END_REF],

Andrew File System, and Microsoft's DFS-R [START_REF] Bjørner | Models and software model checking of a distributed file replication system. Formal methods and hybrid real-time systems[END_REF]. Our system Tofu is also an instance of this approach.

Namespace-Based and Inode-Based Approaches

Another dimension is whether conflict resolution of a geo-distributed file system is namespace-based or inode-based.

The Namespace Approach

The namespace approach models a file system as a collection of paths, each of which represents a different directory or file. Merging the replicas of a file system computes the union of the path collections. Conflicts happen when the same path represents different contents. Examples of this approach are Unison [START_REF] Balasubramaniam | What is a file synchronizer[END_REF], Dropbox [START_REF][END_REF], and version control systems such as Git [42] and SVN [START_REF]Subversion[END_REF].

The namespace approach is free from the indirect conflict because the path of an updated file or directory acts as our update back-propagation; an updated directory at a specific path already ensures that a directory must exist at the same path after conflict resolution, this has the same effect as update back-propagation which is used to detect indirect conflicts in our system.

The namespace approach however does not fully model file systems. It assumes a one-to-one mapping between paths and inodes, and thus this approach does not take into account hard links. This incorrect model results in the waste of storage and bandwidth to store duplicate data contents, the divergence the replicas, and other anomalous behaviors when as shown in our experiment with Dropbox (Section 10.1).

The Inode Approach

The inode approach models a file system as a collection of inode objects (or database records as in the case of DFS-R [START_REF] Bjørner | Models and software model checking of a distributed file replication system. Formal methods and hybrid real-time systems[END_REF]). The namespace is stored in the directory inodes, and data is stored in the file inodes. Merging diverged replicas involves computing the union of the corresponding inode collections. Examples of this approach are Locus [START_REF] Stott | Detection of mutual inconsistency in distributed systems[END_REF][START_REF] Popek | The LOCUS Distributed System Architecture[END_REF][START_REF] Walker | The LOCUS Distributed Operating System[END_REF] and its descendants, such as Ficus [START_REF] Peter L Reiher | Resolving file conflicts in the Ficus file system[END_REF] Rumor [START_REF] Guy | Rumor: Mobile data access through optimistic peer-to-peer replication[END_REF] and Roam [START_REF] Ratner | Roam: A scalable replication system for mobile computing[END_REF][START_REF] Ratner | Roam: a scalable replication system for mobility[END_REF].

The inode approach however is prone to indirect conflicts where updates target elements that are on the same path but are stored in different inodes. Detecting and resolving indirect conflicts are usually ad-hoc. For example in Ficus and DFS-R, the directories that form a directory cycle are moved into some arbitrary directory for manual resolution later.

Other Conflict Resolution Systems

Merging framework

The problem of merging diverged replicas of a class inheritance graph has been discussed by Pottinger and Bernstein in [START_REF] Rachel | Merging models based on given correspondences[END_REF]; the problems in this work are similar to that of a file system: a class may have parents and children, a class may be concurrent updated and cycles between classes can be made by concurrent updates.

This work proposes some merging semantics including element preservation and relationship preservation. It present some basic resolution algorithms for conflicting updates. For example, for a conflict in the type-of relationship between parent-child classes, which is known to be one-to-one similarly to the parent directory -child in file systems, this work solves the conflict in the same way to our system: it creates new types (classes) to store concurrent updates. A cycle between classes either is collapsed into a single class or requires manual intervention. Apart from the difference of the domains, our work in file system is different from this work in the objectives of merging, i.e., we try to preserve the structure of the replicas by using the No-Lost-Update Principle, while this work does not target that.

Version control systems

Git [42] and SVN [START_REF]Subversion[END_REF] are representative examples of distributed and centralized version control systems, which could also be viewed as simplified file systems. Their main objectives is to keep replicas of some project consistent, by keeping their namespaces synchronized. At the same time, there could be different versions of the project in different branches; concurrent updates to the same file in the same branch are automatically merged together using three-way merging, but users are expected to manually resolve the conflict semantically. These systems rely on manual intervention from users to semantically resolve the conflicting updates. Version control systems can be classified as a namespace-based approach as well.

Database Systems

The problem of resolving conflicting updates has also been studied in the field of database systems. A database models its data as a collection of tables as with traditional relational databases or as a key-value store as with modern NoSQL databases.

A database supports operations to insert, update, or delete at the table row or key level. A conflict is a situation where a row or a key is concurrently created or updated.

Databases support a very limited number of conflict cases, as compared to those in file systems. Because of the space constrain, we present only some conflict cases and conflict resolution in Oracle [START_REF][END_REF], which is a representative example of relational databases, and Dynamo [START_REF] Decandia | Dynamo: Amazon's highly available key-value store[END_REF] and Riak [START_REF] Basho | Conflict Resolution[END_REF], which are examples of key-value stores.

In Oracle supports update conflict, uniqueness conflict, and delete conflict. An update conflict happens when a row is concurrently updated. Oracle resolves this conflict by using either the LWW approach or some specific conflict resolution algorithms for known data types, such as using additive algorithm to aggregate the updated values or a row of numeric data type. A uniqueness conflict happens when different rows with the same primary key are concurrently created; this conflict is resolved by adding a sequence, such as site identifier, to the value of the primary keys to make them unique.

A delete conflict, which is the case when a row is concurrently deleted and updated, requires manual intervention.

Similar cases arise in key-value stores, such as concurrently updating the value of the same key. For all of these cases, Dynamo and Riak solve this conflict by using either the LWW approach or by keeping these values as different versions of the key.

Collaborative Text Editing Systems

A collaborative text editor is a system that enables multiple users to concurrently edit a text-based document. Each user can edit a separated (and maybe disconnected) replica of the document.

Collaborative text editing systems share some common targets with geo-distributed file systems: they support asynchronous updates, and resolving conflicting updates to converge replicas. The approaches to collaborative text editing can either be classified into state-based or operation-based.

The state-based approaches usually target synchronizing the state of the replicas to converge them; the state of a replica is usually represented by a list of charactersthe building block-with their unique identifiers. Systems such as Woot [START_REF] Oster | Data Consistency for P2P Collaborative Editing[END_REF] and Logoot [START_REF] Weiss | dans l'exactitude du système de fichiers. B.4 Structure du système de fichiers Un système de fichiers peut être considéré comme un graphe où un noeud d'index constitue un noeud, et une association constitue un sommet[END_REF] use the combination of identifiers such as replica name and document position to represent the index (unique identifier) of document characters; TreeDoc [START_REF] Preguica | A Commutative Replicated Data Type for Cooperative Editing[END_REF] uses binary tree representation and RGA [START_REF] Roh | Replicated abstract data types: Building blocks for collaborative applications[END_REF] uses linked list respectively for their character positioning mechanism; for whatever they use, these systems usually resolve the concurrent edits at the same position by having these characters sharing the same or adjacent positions (a kind of LWW). In addition, by considering only insert and delete as the available operations, these systems can use the commutativity property of these operation as a way to resolve conflicts. The state-based approaches presented so far can work well with basic text-based documents and simple operations, but may face challenges in real-world collaborative implementation where more advanced data types and operation types are used.

The operation-based approach may support better the advanced features and operations, but may be more computationally expensive. In a representative operation-based system: Operational Transformation (OT) [START_REF] Ellis | Concurrency Control in Groupware Systems[END_REF][START_REF] Ellis | Concurrency Control in Groupware Systems[END_REF], concurrent operations from different replicas are transformed into a new set of operations, such that applying this transformation on both replicas results in the same outcome of the document. By ensuring the preconditions of the operations and preserving their effect, OT can work better with advanced elements and operations than the state-based approach, though it is more computationally intensive.

We also conducted some experiments with the existing popular collaborative text editing systems Google Docs and Dropbox Paper. With the experience with the file system synchronizers, we set some expectations to the behaviors of these collaborative systems, such as commutative operations can be merged to gather, and merging concurrent edits preserves the users intentions through preserving the updated states. In the first experiment, we tested a simple scenario in which we concurrently changed the type of a block of text to be bold and italic; both Google Docs and Dropbox Paper handled well this situation and merged these styles together. In the next experiment, we moved two blocks of text into each other; after being converged, both text blocks were deleted in Google Docs, while in Dropbox Paper, their positions were swapped without retaining the result of the update on each replica. Though the replicas converged, we believe that the merging results could be improved, with respect to our presented principle of conflict resolution (Section 7.1).

Chapter 12

Conclusions and Future Work

In this thesis, we presented our solution to the problems of supporting asynchronous replication and of supporting the traditional API of geo-distributed file systems. We present the design and implementation of our prototype geo-distributed file system, named Tofu. Its design includes a new session abstraction to support the legacy API, while allowing optimistic updates. Unlike previous approaches, our solution is based on a formal model covering all aspects of a Unix-like file system, including directories, inodes, hard links, etc. It is able to detect all conflicts on those data structures, and resolves them in a way that we believe users will find generally reasonable. Experiments show that Tofu is highly scalable, and incurs linear overhead, improving over existing academic and industrial systems.

In the future work, we target some complement features to Tofu, including garbage collection of old object versions in Tofu, and support for sessions between sites, and micro sessions. We also expand our study to related areas such as indexing and searching in such distributed storage, and conflict resolutions for collaborative text editing.

merging semantics has to follow the CRDT rules of idempotent, commutative, and associative. We ignore extended attributes in this work.

The other system attributes, such as st_nlink and st_size, are changed when the data of an inode is changed. They are updated by the conflict resolution algorithms to reflect the results of merging the data part and of merging the names part of an inode.

   I 1 ∩ I 2 = ∅ ∃i 1 ∈ I 1 , i 2 ∈ I 2 : reachable(i 1 , i 2) ∧ reachable(i 2 , i 1)
.

Les conditions ci-dessus spécifient que la mise à jour simultanée même si ne cible pas nécessairement les mêmes noeud d'indexs, en fait créer un cycle de répertoire.

B.7 Résolution des conflits

Dans cette section, nous décrivons les principes généraux et les règles spécifiques pour la résolution des conflits.

B.7.1 Principes de résolution de conflit

I = i 0 , i 1 , .
. . , i n , où un inode i j peut avoir plusieurs versions i 0 j , i 1 j , . . . , i m j , dont chacun est créé par une mise à jour du noeud d'index. Notez qu'une suppression crée une version appelée un marqueur de suppression (comme cela sera décrit dans la section 8.3.1); un marqueur de suppression apparaît aux utilisateurs comme si le noeud d'index avait été supprimé. Dans ce chapitre, nous considérons qu'un système de fichiers est un ensemble de versions de noeuds d'index, et un état de système de fichiers correct est celui qui satisfait aux invariants du chapitre 2.

Nous définissons l'ordre partiel entre deux états de système de fichiers corrects jour, qui cible i j et crée une nouvelle version i k j , alors nous avons S t ∩ S t+1 = S t et S t+1 \ S t = {i k j }, donc S t < S t+1 . La fusion de deux états corrects produit également un autre état correct (limite supérieure) qui est égal ou plus avancé que les deux. Considérons une paire de mises à jour simultanées qui changent un état correct S aux nouveaux états corrects S A et S B , respectivement; ces mises à jour ciblent le noeud d'index i j de S, et créent des versions différentes i A j et i B j , respectivement. La fusion de ces états permet de calculer l'union des états divergents, et de résoudre le conflit entre i A j et i B j , puis de stocker le résultat de la résolution des conflits dans une nouvelle version i C j (cas suppression-suppression, suppression-mise à jour, conflit données-données de répertoire) ou des nouveaux noeuds d'index i j , i j (cas conflit données-données de fichier et conflit noms-noms de répertoire). (data ⊕ data)

(

B.9 Évaluation

Nous avons implémenté le prototype de notre système de fichiers géolocalisé Tofu dans NodeJS et FUSE.

Nous comparons le comportement de notre approche à celui des systèmes commerciaux, y compris: Dropbox [START_REF][END_REF], Google Drive [START_REF]Drive[END_REF], et Microsoft OneDrive [START_REF]OneDrive[END_REF]. Le critère de comparaison est le principes de résolution des conflits (Chapters 6 et 7); ceux-ci comprennent la convergence des répliques et la signification (Rules 1 et 2) des résultats de la fusion. Dans tous les cas, notre prototype a pu résoudre les conflits et produire les résultats souhaités, par rapport à la cible de notre sémantique de fusion, alors que les autres ne l'étaient parfois pas.

Nous avons comparé les performances de résolution de conflit de notre prototype de Tofu contre Dropbox-le système de stockage en nuage public le plus populaire. La

2

 Sequential File System Model 2.1 File System Data Objects . 2.1.1 Inode Stat . 2.1.2 Inode Data . 2.1.3 Inode Names . 2.2 File System Structure . 2.3 File System Invariants . 2.3.1 Notations . 2.3.2 Invariants . 3 File System Operations 3.1 Preliminaries . 3.1.1 Helper Functions . 3.1.2 Path Resolution . 3.2 Read Operations . 3.3 Modification Operations . 3.3.1 create . 3.3.2 mkdir . 3.3.3 link . 3.3.4 setattr . 3.3.5 write . 3.3.6 unlink . 3.3.7 rmdir . 3.3.8 rename . iii List of Tables 6.1 Common direct concurrency cases for all inode types. 6.2 Direct update-update concurrency cases when the target is a file. 6.3 Direct update-update concurrency cases when the target is a directory. . 7.1 Concurrency cases on a mapping entry. 8.1 Concurrency cases on an inode between three updates. 8.2 Concurrency cases on an inode between three updates. 10.1 Evaluation of our merging semantics with commercial systems. B.1 Cas de concurrence sur une entrée de mappage. B.2 Cas de concurrence sur un noeuds d'index entre trois mises à jour. xi List of Algorithms

Figure 2 . 1 :

 21 Figure 2.1: Inode model describing the stat, names, and data parts of an inode. With (a) and (b) are a directory and a file, respectively. Manually updatable attributes are highlighted. Triangle and square represent the arbitrary data of a file. Solid arrows represent parent-child mappings, and dotted arrows are the reverse of those mappings. The parent of (a) is represented in a simplified form.

Figure 2 .

 2 Figure 2.2a presents an example file system composed of three inodes. Inodes 1

Figure 2 . 2 :

 22 Figure2.2: Our file system model. With (a) describes the data structure of the file system with a collection of inodes and their data structure (inodes are in simplified representation with only important bits described; the parts of an inode represent its stat, data, and names), and (b) visually presents the file system.

Invariant 2 (

 2 unique inode number) The number of an inode is unique in its file system. ∀i, i ∈ I, i.ino = i .ino =⇒ i = i Invariant 3 (single parent) A directory has a single parent directory, except the root, which has no parent.    ∀d ∈ D * , |parents(d)| = 1 parents(root) = ∅ Invariant 4 (unique name) The children of a directory have a unique name within that directory. ∀d, ∀m, m ∈ d.map, m.name = m .name =⇒ m = m Invariant 5 (mapping coherency) a parent-child mapping entry in a directory is reflected by a corresponding reverse mapping in the names part of the child inode. ∀d, i, s,∃m ∈ d.map : m.ino = i .ino ∧ m.name = s ⇐⇒ ∃n ∈ i.names : n.ino = d .ino ∧ n.name = s Invariant 6 (no cycles, reachability) An inode is not reachable from itself, and an inode (not the root) is reachable from the root.    ∀i ∈ I, reachable(i , i) = FALSE ∀i ∈ I * , reachable(root, i) = TRUE Invariant 7 (metadata coherency) The st_nlink of an inode is the number of the names of that inode. = |d.names| = 1 f.nlink = |f.names| Invariants We define the conjunction of all invariants as: Invariants = 7 i=1

CHAPTER 3 .

 3 FILE SYSTEM OPERATIONS Algorithm 1 path resolution 1: procedure PathResolution(path, index = -1, p) index defaults to -1 2:

Figure

 Figure 4.1 illustrates the session concept. On replica R A , session s 1 obtained a

. 2)

 2 Then the following concurrent operations are valid on separate replicas whose states are as described in Condition 6.2 above: op 1 = rename[START_REF] Balasubramaniam | What is a file synchronizer[END_REF][START_REF] Brewer | Towards Robust Distributed Systems[END_REF], corresponding to the command mv A/foo B/bar/quz in the figure, and op 2 = rename(4, 5), corresponding to the command mv B/bar A/foo/qux in the figure (inputs of op 1 and op 2 : inode to rename, target directory; we omit the other arguments). The sets of updated inodes of respective operations then become: I 1 = {1, 3, 6}, I 2 = {2, 4, 5}. We have the following:

Figure 6 . 1 :

 61 Figure 6.1: An example of indirect conflict created by concurrent rename operations. Dashed arrows are deleted mappings; bold-red shapes are those updated.

Figure 7 . 1 :

 71 Figure 7.1: Resolving inode delete-update conflict for each type of the target inode.

Figure 7 . 2 :

 72 Figure 7.2: Resolving file data-data conflict with different approaches.

Figure 7 . 3 :

 73 Figure 7.3: Merging semantics for file naming conflicts.

Figure 7 . 4 :

 74 Figure 7.4: Conflict resolution for directory data-data conflicts.

Figure 7 .

 7 Figure 7.6 presents an example. In this example, making inode 3 a descendant of inode 6 (mv /A/foo /B/bar/quz) indirectly updates inodes 2 and 4 by update backpropagation. Similarly, making inode 4 descendant of inode 5 indirectly updates inodes 1 and 3. The sets of updated inodes of the sessions are {1, 2, 3, 4, 5} and {1, 2, 3, 4, 6}, respectively. This translates to the directory data-data conflicts on inodes 1 and 2, and the directory names-names conflicts on inodes 3 and 4.

Figure 7 . 5 :Figure 7 . 6 :

 7576 Figure 7.5: Conflict resolution for directory names-names conflicts.

C

 all update the data part of a file foo, even though S A < S B , the result of S A ⊕ S C is not subsumed by S B ⊕ S C , thus (S C ⊕ S A) ⊕ S B = S B ⊕ S C as following: S B ⊕ S C foo.B, foo.C, foo(marker) = (S C ⊕ S A) foo.A, foo.C, foo(marker) ⊕S B foo.A, foo.B, foo.C, foo(marker)

 we remove the result of resolving A (such that A → B and A : A → A ∧ A → B) and C if A C. In the example above, when merging S B ⊕ S C , we remove foo.A (the result of S A ⊕ S C) because A → B and A C; the final outcome is the desired {foo.B, foo.C, foo (marker)}.

 Figure9.1: Example of our metadata system implementation using key-value store abstraction. The figure on the left shows the file system structure visually; the table on the right presents the data structure of that file system in metastore.

 Figure 9.2 shows an example of versioning in metastore. In this example, the master version of inode 4 is stored under the key I::4, and its versions, created by session S A , S B , and S C , are stored under the keys I::4::S A , I::4::S B , and I::4::S C , respectively. In this example, S B 's version is the latest committed version, and S C is a non-committed version. The master version keeps the lists of committed versions and non-committed versions in its V C and V A , respectively; the master version contains the contents of S B 's version, as S B is the latest committed version.

Figure 9 . 2 :

 92 Figure 9.2: Example of our metadata system implementation with versioning. Where V A and V C in the master version are respectively the lists of uncommitted versions and of committed versions.

Figure 10 . 1 :

 101 Figure 10.1: Evaluation of Dropbox and Tofu. Values are the average for each replica.

Figure 10 . 2 :

 102 Figure 10.2: The baseline of the system for evaluation. Points of the left sub-figure show the throughput-latency information of a single mount point when the number of concurrent clients was changed between 1, 2, 4, and 8. Points of the right sub-figure show the throughput-latency information of a replica when the number of mount points ranging in {2 0 , . . . , 2 9 , 640}. Solid line connects the points of local updates; dashed line connects those of global updates.

Figure 10 . 3 :

 103 Figure 10.3: The overall experiment results showing 90% of updates was done in under 10ms with the overall average latency was 15.6ms. Left figure shows the latency distribution overtime; dots are measured values; solid line is the 95th percentile level; orange dashed line is the 95th percentile level of the baseline system. Right figure shows the CDF of the latency in the experiment.

Figure 10 . 4 :

 104 Figure 10.4: The latency during a session with the commit of another session. Vertical dotted lines are the events of committing another session.

Figure 10 .

 10 Figure 10.5 shows the timeline of a session from its first process started until its commit was finished on the local replica. This figure describes the (1) relationship

 Figure 10.5: The timeline of the events of a session. Numbers show the timespans between events in milliseconds. Timespan scale is not supposed to reflect the real scale.

SS

 A et S B comme suit (nous utilisons pour représenter la concurrence entre deux états, et ∩, ∪ et \ pour définir des opérations d'intersection, d'union et de différence,A = S B ⇐⇒ S A ∩ S B = S A ∧ S B ∩ S A = S B S A < S B ⇐⇒ S A ∩ S B = S A ∧ S B \ S A = ∅ S A S B otherwise . (B.2) Parce qu'une mise à jour sur un noeud d'index crée une nouvelle version de cet noeud d'index, l'état du système de fichiers avance donc vers le haut après chaque mise à jour, par rapport à notre définition de l'ordre partiel ci-dessus. En effet, considérons S t et S t+1 sont des états de système de fichiers corrects avant et après une mise à

 Dans tous les cas, l'état fusionné S C (S C = S A ∪ S B ∪ {i C j } ou S C = S A ∪ S B ∪ {i j , i j }) est toujours plus avancé que chacun des états divergents S A et S B .Nous faisons également fusionner les états de système de fichiers corrects pour avoir les propriétés LUB, en ce qui concerne l'exactitude du système de fichiers et nos règles de fusion; les propriétés LUB sont l'idempotence, la commutativité et l'associativité. Bien que cela ne soit pas formellement prouvé, notre conjecture est que la borne supérieure calculée en fusionnant est le LUB des états.Dans les sections suivantes, nous décrivons comment nous assurons les propriétés LUB de la fusion des états du système de fichiers, ce qui se traduit par la garantie des propriétés LUB de nos résolutions de conflits. Nous présentons les propriétés de commutativité et d'associativité de nos résolutions de conflit; la propriété d'idempotence fié n.ssid pour décrire les noms générés automatiquement; l'implémentation utilise le format complet. Génération de nombre de noeud d'index déterministe Le problème de commutativité de la génération d'un nouveau noeud d'index est de générer de façon déterministe un nouveau numéro de noeud d'index pour le nouveau noeud d'index, de sorte que les réplicas aient le même numéro d'noeud d'index pour le même contenu de fichier. Pour garantir le déterminisme, nous calculons un nouveau numéro de noeud d'index i comme résultat du hachage de l'identifiant ssid de la session de mise à jour et du numéro de noeud d'index d'origine i, comme dans: i = hash(i, ssid).L'unicité des entrées assure l'unicité de la sortie avec une probabilité élevée, en supposant une bonne fonction de hachage. Cependant, des collisions de numéros de noeuds d'index peuvent toujours se produire en fonction de la fonction de hachage utilisée. Comme ci-dessus, une coordination mondiale serait nécessaire pour assurer l'unicité. Dans notre implémentation, nous n'assumons pas non plus de collisions de hachage.Fusion déterministe des répertoiresLorsque la carte d'un répertoire est modifiée simultanément, ou lorsqu'il existe plusieurs répertoires portant le même nom, nous fusionnons les cartes mises à jour dans un seul noeud d'index de type répertoire. La commutativité de la fusion des répertoires se réduit pour s'assurer que le noeud d'index répertoire pour stocker le résultat de la fusion est choisi de façon déterministe, assurant ainsi la commutativité de la résolution des conflits. Différentes approches sont possibles, par exemple, générer un nouveau noeud d'index basé sur la combinaison des noeuds d'index d'entrés, ou choisir arbitrairement un noeud d'index parmi ceux qui sont en conflit (comme dans LWW). Cependant, pour sa simplicité connue et son support pour la commutativité et l'associativité, nous choisissons l'approche LWW pour stocker le résultat de la fusion dans le noeud d'index dont le numéro du noeud d'index est plus grand. Considérons, par exemple, la fusion de trois répertoires dont les inodes sont 1, 2, et 3, respectivement. Lors de la fusion dans l'ordre (1 ⊕ 2) ⊕ 3, nous allons choisir le noeud d'index 2 pour stocker le résultat de 1 ⊕ 2, puis choisir le noeud d'index 3 pour stocker le résultat de la fusion de 2 avec 3. Le même résultat vaut pour un autre groupe 1 ⊕ (2 ⊕ 3); la résolution résultat en 3 comme le noeud d'index final pour stocker le

(.

 deleted ⊕ deleted) deleted ⊕deleted deleted = deleted ⊕ (deleted ⊕ deleted) deleted deleted Cas 2: C'est le cas lorsqu'il y a deux suppressions et une mise à jour sur un noeuds d'index. Pour le cas d'un répertoire: (deleted ⊕ deleted) deleted ⊕updated updated = deleted ⊕ (deleted ⊕ updated) updated updated Pour le cas d'un fichier:(deleted ⊕ deleted) deleted ⊕updated deleted + i C = deleted ⊕ (deleted ⊕ updated) deleted + i C deleted + i C .Nous pouvons voir que dans tous les cas, commettre les mises à jour dans un groupe a le même résultat. Lorsque i est un répertoire, le résultat final est la mise à jour annuaire. Quand i est un fichier, i est un marqueur et i C Mise à jour de C (comme décrit dans le chapitre 7).

Cas 3 :

 3 C'est le cas lorsque l'une des sessions simultanées supprime le noeuds d'index et les deux autres le mettent à jour. Pour tout type de noeuds d'index, le conflit entre ces sessions sur le noeuds d'index devient le conflit entre le deux mises à jour. La résolution du conflit entre une paire de mises à jour sur un noeuds d'index est commutatif comme décrit précédemment, nous avons donc le même résultat lorsque engager ces sessions dans n'importe quel groupe. Pour le cas i est un répertoire: (deleted ⊕ updated) updated ⊕updated dir. data/naming conflict = deleted ⊕ (updated ⊕ updated) dir. data/naming conflict dir. data/naming conflict . Pour le cas i est un fichier:(deleted ⊕ updated) deleted + i B ⊕updated deleted + i B + i C = deleted ⊕ (updated ⊕ updated) deleted + i B + i C deleted + i B + i C .Cas 4: C'est le cas lorsque les sessions ne mettent à jour que les data partie du noeuds d'index. Pour i est un répertoire, parce que nous pouvons fusionner les mises à jour ensemble, le résultat final de la résolution des conflits est toujours i stocker la fusion des mises à jour simultanées. Ce cas est associatif. (data ⊕ data) (dir. data conflict) merged(A + B) ⊕data (dir. data conflict) merged(A + B + C) = data ⊕ (data ⊕ data) (dir. data conflict) merged(B + C) (dir. data conflict) merged(A + B + C) . Pour i est un fichier, les mises à jour simultanées dans ce cas provoquent deux à deux conflits données-données de fichier sur le noeuds d'index. Résoudre les conflits dans n'importe quel ordre génère i A , i B et i C stockant les mises à jour de A, B et C, respectivement.

 performance est exprimée en termes de temps de converger les répliques et le réseau utilisation pour la propagation de mise à jour, avec un nombre variable de fichiers en conflit. Celles-ci les mesures représentent l'efficacité de la résolution du conflit et combien frais généraux il a. Le résultat de cette expérience est que Tofu a utilisé beaucoup moins de temps et de bande passante réseau pour synchroniser ses répliques dans tous les cas par rapport à Dropbox. Plus important encore, nous voyons l'exponentielle aug-menter à la fois le temps et la bande passante que Dropbox utilisé dans synchronisation comme le nombre de conflits a augmenté.En général, les expériences montrent que le tofu est hautement évolutif et qu'il entraîne des frais généraux linéaires, améliorant ainsi les systèmes académiques et industriels existants.

Table Of Contents

 Of

	1 Introduction
	I Sequential Semantics

 1 path resolution . 2 traverse tree .

3 create create an empty regular file . 4 mkdir create an empty directory . 5 link create a hard link to a file . 6 setattr update the attributes of an inode 7 write update the data of a file . 8 unlink delete a (name of) a file . 9 rmdir delete a directory . 10 rename_dir rename a directory .

 It creates an empty directory. Creating a directory requires setting the type of the created inode as directory and performing other directory-specific tasks. In UNIX file systems, examples of such tasks usually include creating the default entries '.' and '..'. We omit this, considered to be implementation detail (Section 2.1) and we exclude it from this high level semantic model.

Algorithm 4 mkdir create an empty directory 1: procedure mkdir_gen(path, n, stat) inputs: parent directory, file name, stat 2:

 [START_REF] Basho | Conflict Resolution[END_REF].1 illustrates the session concept. On replica R A , session s 1 obtained a snapshot of R A in state v 0 . Applications in s 1 update the snapshot to state v 1 . While s 1 was running, s 2 started and made a snapshot of R A ; because there were no updates committed in the interval, the initial content of the s 2 's snapshot is identical to v 0 .

 Client 2 was able to observe both foo and bar in /mnt2.

		Client 1		Replica R
		Apps		
		/mnt1			Session s
		start_session		fork
	Client 2	mkdir /mnt1/foo	ssid
	Apps	mkdir /mnt1/bar		mkdir
	/mnt2			OK
		connect_session(ssid)
				OK
		ls /mnt2		readdir
			{foo, bar}
		finish_session(ssid)	join
				OK
					join
	Legend:			
	timeline	req./res.	replica/session	client
	Figure 5.1: An example of our implementation of session. Client 1 first starts a ses-
	sion with identifier ssid on its mount point /mnt1, and then creates two directories
	/mnt1/foo and /mnt1/bar. Client 2 later connects to the session through its mount
	point /mnt2;			

Table 6 .

 6 1: Common direct concurrency cases for all inode types.

	any inode	delete	update
	delete	delete-delete	delete-update
	update	delete-update	update-update cases (see Tables 6.2 and 6.3)

Table 6 .

 6 3: Direct update-update concurrency cases when the target is a directory.Directory names-names conflict. Concurrent updates to the names part of a directory might result in multiple names for the same directory, violating Invariant 3 (a directory has a single name). As we explain and justify in Section 7.2.5, our conflict

	directory	data	names
	data	dir. data-data conflict	dir. names-data conflict
	names	dir. names-data conflict	dir. names-names conflict

Table 7 .

 7 1: Concurrency cases when mappings with the same name has been updated concurrently. A row shows the state of the mappings (updated or deleted), their target inode (same or different), and the types of the target inodes if different.

	concurrent updates target	target type	resolution
	delete + delete	-	-	1: no conflict
	delete + update	-	-	2: preserve update
		same	directory	3: recursive merge
		same	file	4: rename file
	update + update	different directory + directory 5: recursive merge
		different directory + file	6: rename file
		different file + file	7: rename files
	directory. The conflict resolution algorithm recursively merges the concurrent updates
	on the target directory of the mapping.		

Table 8 .

 8 1: Concurrency cases on an inode between three updates.

	concurrency case	merging result directory	file
	1: deleted deleted deleted	deleted	deleted
	2: deleted deleted updated	updated	updated
	3: deleted updated updated data/naming conflict data/naming conflict
	updated updated updated		
	4: data data data	merged	split
	5: data data names	merged + copy	split
	6: names names data	copies	split + merged
	7: names names names	copies	merged
	For the case of a file:		

Table 8 .

 8 2: Concurrency cases on an inode between three updates. A row represents a combination of them.

	concurrency case	merging result directory	file
	1: deleted deleted deleted	deleted	deleted
	2: deleted deleted updated	updated	updated
	3: deleted updated updated data/naming conflict data/naming conflict
	updated updated updated		
	4: data data data	merged	split
	5: data data names	merged + copy	split
	6: names names data	copies	split + merged
	7: names names names	copies	merged

 Example showing how sequencer is used to ensure session atomicity. Thick lines are the states of the sequencer and a file foo, respectively; thin black lines are the sessions; gray arrows are messages and their direction between agents; callouts showing the states of the sequencer with the sequence number and the list of committing sessions; timeline is from left to right.

	41:{}	42:{S1:42} 43:{S1:42,S2:43}	43:{S2:43}
	S1 foo	reg.	com.	43:{42}	sequencer	43:{42,43}	done done
	timeline S2	reg.		com.	wait	read	wait	S3
	Figure 9.3:						

Table 10 .

 10 1: Evaluation of our merging semantics with commercial systems.

	These virtual machines were hosted on the same physical machine, with Network Ad-
	dress Translation networking. The setup for Google Drive and Microsoft OneDrive was
	a Mac running Mac OS X v.10.10 as replica A, and a PC with Windows 8.1 Enterprise
	as replica B. These replicas were in the same local network. The versions of Google
	Drive for Mac and Windows were the same, v.1.18.7821.2489, while those of Microsoft

distributed file system Tofu in NodeJS and FUSE. Because this experiment aims to test the conflict resolution mechanisms, we simply deployed Tofu on a single physical server and had two concurrent sessions as replicas A and B ; these sessions are mounted on different mount points. The host server ran Ubuntu Desktop 14.04 LTS. The deployment of Dropbox composes of two replicas, named A and B. Each is a virtual machine running Dropbox client for Linux v.3.0.3 on Ubuntu Server 14.04 LTS.

OneDrive on these replicas were v.17.3.4501 and v.6.3.9600.17334, respectively.

In the following experiments, we determined how well these systems could resolve 77 a Diverged: elements are preserved, but replicas' structures diverged. b Last-Writer-Wins: the write with the last timestamp wins over the others. c Delete-Wins: the element, if deleted on any site, is deleted after merging. d Arbitrary: the directories in the cycles are placed at root after merge.

 test/bar/foo on A and only /test/foo/bar on B. The result of Google Drive in this situation though technically converges the replica (by moving both foo and bar to root), it does not preserve the updated directories (/test/foo and /test/bar), thus violating Principle 1 (no lost updates).

 Algorithm 12 Merge inode's st_mode 1: procedure MergeStatMode(mode A , mode B , mode O) O → (A B) basée sur un modèle formel couvrant tous les aspects d'un système de fichiers Unix, y compris les répertoires, les noeuds d'index, les liens matériels, etc. Il est capable de détecter tous les conflits sur ces structures de données et de les résoudre d'une façon que nous pensons que les utilisateurs trouveront généralement raisonnable. De plus, les systèmes de fichiers géo-distribués EC existants ne prennent pas bien en charge les applications anciennes. Ces systèmes changent automatiquement le système de fichiers à des moments inattendus et de manière non intuitive. Adapter les applications anciennes pour faire face à ce comportement nécessiterait une logique complexe. Les résultats expérimentaux montrant l'exhaustivité de notre approche par rapport à celles existant en ce qui concerne la capacité de résolution des conflits. Nous montrons à travers des expériences (Chapitre 10) que Tofu détecte et résout tous les conflits, y compris ceux qui représentaient une difficulté pour les systèmes précédents. Le système de session de Tofu est capable de fournir la faible latence pour les mises à jour de l'approche de cohérence éventuelle. Nous montrons également que la validation d'une session a un impact minimal sur la latence des autres sessions en cours. Il existe deux types de noeud d'index principaux : répertoire et fichier. Un noeud d'index de type répertoire stocke le contenu du répertoire (une association des chemin d'accès aux numéros de noeud d'index) dans sa partie de données (section suivante). Un noeud d'index de type fichier contient des données arbitraires (opaques) dans sa partie données, comme un document texte ou une image. (2) Les informations de sécurité sont stockées dans les attributs st_mode (autorisations d'accès), st_uid (propriétaire) et st_gid (groupe). Ces informations dictent qui (utilisateur, groupe) aura quel type d'accès (lecture, écriture, exécution) au noeud d'index. (3) Les attributs restants contiennent des informations de comptabilité pour le noeud d'index, telles que les horodatages (st_atime : heure de dernier accès, st_mtime : heure de dernière modification et st_atime : heure de création), son emplacement (st_dev et st_rdev : l'identifiant de l'appareil contenant le noeud d'index, st_ino : numéro du noeud d'index), sa taille sur le disque (st_size, st_blksize, st_blocks : informations sur la taille réelle et sur la taille sur le disque du noeud d'index), et son nombre de liens , le chemin /foo/bar indique que foo est un enfant de la racine / et que bar est un enfant de foo. Le noeud d'index nommé par /foo/bar peut être un répertoire Nous désignons l'ensemble de tous les noeuds d'index par I, qui est rangé par i, i 1 , i 2 , . . . ; l'ensemble de tous les noeuds d'index privé de la racine comme I * ; l'ensemble de tous les répertoires comme D, rangés par root, d, d 1 , d 2 , . . . ; l'ensemble de tous les répertoires en excluant la racine comme D * ; et l'ensemble de tous les fichiers comme F. Les relations I = D ∪ F et D ∩ F = ∅ sont vraies. Invariant 6 (pas de cycles, accessibilité) Un noeud d'index n'est pas accessible depuis lui-même, et un noeud d'index (sauf la racine) est accessible depuis la racine. (violant ainsi la règle de convergence -Règle 1), ce cas est un conflit et nécessite une résolution de conflit; nous appelons cela un conflit d'état. Conflit de données-données de répertoire. Alors que la partie données d'un fichier est opaque au système de fichiers, pour un répertoire, elle est constituée de la mappe enfant. Si nous l'implémentons en utilisant un type de données commutatif, alors les mises à jour simultanées peuvent être fusionnées. Conflit de noms-noms de répertoire. Les mises à jour simultanées de la partie des noms d'un répertoire peuvent aboutir à plusieurs noms pour le même répertoire, violant l'Invariant 3 (un répertoire a un nom unique). Comme nous l'expliquons et le justifions dans la Section 7.2.5, notre résolution de conflit consiste à copier le répertoire afin de maintenir tous les mappages mis à jour.

	2: 3: 4: 5: 6: 7: 8: 9: 10: 11: Algorithm 13 Merge inode's st_gid and st_uid mask A ← XOR(mode A , mode O) mask B ← XOR(mode B , mode O) mask ← OR(mask A , mask B) mask ← NOT(mask) mode O ← AND(mask , mode O) masked ← AND(mask, mode O) masked ← NOT(masked) masked ← AND(mask, masked) clear toggled O's all but masked bits A's modified bits since O B's modified bits since O modified bits of A and B (bitmask) inverse of bitmask make all O's masked bits zero value of O's masked bits toggled O's masked value mode ← OR(masked , mode O) apply toggled bits to get result return mode 1: procedure MergeStatOwner(stat A , stat B) inputs: stats 2: stat ← stat A stat to return 3: if stat A .st_gid = stat B .st_gid then notre solution est Les expériences montrent que Tofu est hautement évolutif et qu'il entraîne des surcoûts linéaires, améliorant ainsi les systèmes académiques et industriels existants. B.2 Introduction Un système de fichiers géo-distribué s'étend généralement sur plusieurs réplicas distants les uns des autres. Le réseau inter-réplique d'un système de fichiers géo-distribué a une bande passante limitée et une latence élevée, en particulier comparé à la structure intra-réplica. Pour être disponible, un système de fichiers géo-distribué doit aborder le compromis inhérent entre cohérence et disponibilité, souligné par le théorème CAP [70, 72, 73]. Beaucoup de systèmes de fichiers géo-distribués à grande échelle optent pour l'approche de cohérence consécutive (Eventual Consistency -EC) [70,72,73]. Dans un système EC, une mise à jour est validée localement sur son réplica d'origine avant d'être propagée de manière asynchrone aux autres réplicas; EC s'assure que, lorsque toutes les répliques ont reçu et appliqué toutes les mises à jour des autres répliques, elles auront toutes le En raison de la difficulté de détecter et de résoudre les conflits dans des systèmes aussi complexes, les approches existantes renoncent souvent à certains invariants du système ou limitent la capacité de détection et de résolution des conflits. Certains, notamment Dropbox [13] ou Unison [3], simplifient le modèle de système de fichiers en ignorant les liens matériels et en traitant plusieurs liens vers le même fichier comme des fichiers différents, ce qui entraîne des divergences entre les fichiers sur les différentes répliques des système de fichiers. D'autres, y compris Ficus [3], Coda [30], ou Mi-crosoft OneDrive [37], laissent la résolution des cas de conflit difficiles aux utilisateurs; ils peuvent déplacer les répertoires et les fichiers impliqués dans un conflit dans un répertoire spécial, en attendant que les utilisateurs résolvent les problèmes manuelle-ment. D'autres, notamment AFS [26] et Google Drive [23], optent pour une approche simple de Last-Writer-Wins (LWW) qui choisit une mise à jour arbitraire pour gagner les conflits; cette approche perd la durabilité de la mise à jour. Par exemple, lorsque deux utilisateurs écrivent simultanément dans un même fichier, Dropbox et Google Drive résolvent le conflit en créant de nouveaux fichiers avec des noms quelque peu arbitraires. Cela peut même arriver lorsque le fichier est en cours une sorte de longue transaction, au sein de laquelle les applications bénéficient de la forte sémantique séquentielle d'un système de fichiers POSIX traditionnel. Plusieurs sessions peuvent coexister simultanément, chacune étant isolée des autres. Une session crée un instantané cohérent de l'ensemble du système de fichiers au début et fusionne atomiquement toutes ses modifications dans le système de fichiers à la fin. Tofu résout automatiquement toutes les mises à jour simultanées entre la session de validation et toute autre session validée auparavant. L'intervention manuelle n'est requise que si la résolution automatique des conflits a apporté des modifications incompatibles avec les applications des sessions ultérieures. Une telle intervention manuelle se limite à renommer les répertoires et les fichiers. 3. B.3 Modèle de système de fichiers interprétés uniquement par des utilisateurs ou des applications, tels que ceux qui con-servent la géolocalisation d'une image contenue dans la partie concernant les données du noeud d'index. Certains des attributs du système jouent un rôle mineur (par ex-emple, st_atime); ci-après, nous nous concentrons sur ceux qui sont essentiels pour le bon fonctionnement du système de fichiers. (1) Le type d'un noeud d'index est indiqué ou un fichier; cela ne peut pas être déduit du nom seul. À aucun moment, deux noeuds n'ont le même chemin absolu. Parce qu'un répertoire a un seul parent, un répertoire a donc un seul chemin absolu. Un fichier peut avoir plusieurs noms, et donc plusieurs chemins absolus. Par con-séquent, le graphique complet des répertoires et des fichiers n'est pas un arbre, mais un cas particulier d'un ensemble d'ordres partiel (partial ordered set).    ∀i ∈ I, reachable(i , i) = FALSE ∀i ∈ I * , reachable(root, i) = TRUE Invariant 7 (cohérence des métadonnées) Le lien st_nlink d'un noeud d'index est le numéro du noms de cet noeud d'index. Invariants Nous définissons la conjonction de tous les invariants comme: Invariants = 7 i=1 Invariant i. mise à jour-mise à jour. Lorsque aucune des mises à jour simultanées n'est une suppression (Tableau 6.1), notre analyse dépend du type du noeud d'index ciblé. Dans les sections suivantes, nous décrirons les détails de ces cas pour chaque type d'noeud d'index. 1. Conflit de données-données sur un fichier. Lorsque les mises à jour mod-olant ainsi la règle de convergence -Règle 1). Si le fichier contient un type de données dont les mises à jour sont commutatives, comme un CRDT [44,50,58,78], 6. Conflit indirect. En itérant à travers les invariants, nous pouvons voir que les opérations simultanées qui ciblent les mêmes noeuds d'index ne peuvent pas violer l'Invariant 6 (pas de cycles). Pour ce faire, les mises à jour doivent avoir un impact par l'attribut st_mode. physiques associés st_nlink (nous reviendrons sur les liens matériels dans la section ∀d, f,    ifient simultanément la partie données du même fichier, cela ne viole aucun des transitif d'une manière qui crée un cycle de répertoire. Nous décrivons les conditions d.nlink = |d.names| = 1 invariants (Règle 2), cependant, les appliquer dans différents ordres (en utilisant pour que les mises à jour simultanées violent l'Invariant 6, puis notre définition de f.nlink = |f.names| les algorithmes effecteurs du chapitre 3) peut donner des résultats différents (vi-conflit indirect comme ci-dessous.
	4: 5: même état. Parce qu'un changement est local, sans coordination entre les réplicas, les gid ← MakeNewGroup(groupname) new group, random name d'utilisation. Les applications héritées ne sont pas préparées pour faire face à de tels suivante). Un système de fichiers est une collection de structures de données appelées noeud users A ← GetUsersOfGroup(stat A .st_gid) get all users from group A 6: utilisateurs ont une faible latence. Un utilisateur peut modifier une réplique, même si changements soudains et imprévisibles. d'index. Un noeud d'index est identifié par un identifiant unique appelé numéro de users B ← GetUsersOfGroup(stat B .st_gid) get all users from group B 7: AddUsersToGroup(users A , gid) add A's users to common group cette réplique reste déconnectée pendant une longue période, assurant ainsi une haute Cette thèse aborde ces problèmes : pour prendre en charge les mises à jour simul-noeud d'index. Chaque noeud d'index a trois composants, à savoir, son métadonnées B.3.2 Données d'un noeud d'index
	8: 9: 10: disponibilité. AddUsersToGroup(users B , gid) stat.st_gid ← gid Cette approche EC doit gérer les conflits entre les mises à jour simultanées provenant add B's users to common group tanées et la compatibilité avec les applications anciennes. En conséquence, nous avons (stat), son nom et ses données. La partie de données d'un noeud d'index stocke le contenu utile de ce noeud d'index. conçu un système de fichiers géo-distribué, nommé Tofu. Nos contributions sont les if stat A .st_uid = stat B .st_uid then 11: uid ← MakeNewUser(stat.st_gid, username) new user, random name 12: de différentes répliques. Un système de fichiers géorépliqué utilisant l'approche EC est confronté à deux défis majeurs: (i) détecter (tous) les conflits entre les mises à jour Selon le type du noeud d'index, sa partie de données peut être significative ou opaque suivantes : B.3.1 Métadonnées d'un noeud d'index pour le système de fichiers. Par exemple, la partie de données d'un lien symbolique est i.stat.st_uid ← uid 13: simultanées, et les résoudre de manière significative pour les utilisateurs, tout en main-1. Conception et implémentation d'un mécanisme de détection et de résolution des Cette partie stocke les attributs de métadonnées d'un noeud d'index, y compris les une chaîne représentant l'emplacement d'un autre noeud d'index; le système de fichiers return stat tenant les invariants d'intégrité du système; et (ii) la prise en charge des applications conflits qui identifie et résout tous les conflits, basé sur : notre modèle de système attributs dits système et les attributs étendus. Les premiers sont prédéfinis et sont lit cette information et transmet l'accès vers sa destination. La première règle permet aux répliques de diverger pendant un certain temps, tant
	qui ne sont pas préparées pour gérer les anomalies de concurrence. de fichiers formel (Chapitres 2 et 3) qui supporte tous les composants du système de créés et maintenus par le système de fichiers, bien que certains puissent être mis à jour La partie de données d'un répertoire est une table de noms (chaînes) associés à des qu'elles finissent par converger. La deuxième règle exige que chaque réplique conserve La fusion des mises à jour simultanées dans ce cas déclenche une fusion récursive
	La détection et la résolution de conflits dans un système de fichiers à répartition fichiers incluant les liens matériels (Chapitres 7 et 8) qui préserve toutes les mises à par les utilisateurs. Par exemple, l'attribut st_atime d'un noeud d'index enregistre numéros de noeud d'index (appelés noeuds d'index cibles). Chaque association de ce individuellement les invariants séquentiels décrits au chapitre 2. des enfants du répertoire (entrées de mappage).
	géographique sont difficiles en raison de la structure hiérarchique complexe du système jour simultanées, tout en présentant des résultats de résolution de conflit significatifs. l'heure à laquelle le noeud d'index a été accédé pour la dernière fois; cet attribut est type constitue un lien direct avec le noeud d'index cible. Le système de fichiers utilise Et la dernière règle est notre propre définition d'un conflit qui n'a pas été couverte Des conflits se produisent lorsque ces mises à jour ciblent les mêmes entrées de
	de fichiers. Un système de fichiers consiste généralement en une arborescence de réper-La mise en oeuvre de Tofu (chapitre 9) est basée sur le concept de type de données automatiquement mis à jour par le système de fichiers. D'autre part, l'attribut st_mode, cette information d'association dans sa structure hiérarchique (section 2.2). Ci-après, par les règles précédentes : la situation où les mises à jour simultanées ciblent les noms mappage ou qu'il existe différentes entrées de mappage portant le même nom.
	toires; un répertoire peut contenir d'autres répertoires ou des fichiers; cependant, un répliquées sans conflit (CRDT) [65, 66] pour assurer la convergence et l'exactitude. qui stocke les informations de propriété du noeud d'index, est initialisé par le système nous appelons la partie données d'un répertoire sa carte enfant ou simplement mappage, et la partie de données d'un noeud d'index est un conflit. Nous décrirons la raison c'est un conflit car il viole l'Invariant 4 (un nom est unique sur une carte).
	fichier peut être inclus dans plusieurs répertoires, grâce à des liens matériels. Cette 2. Le concept de session qui isole les applications POSIX des changements automa-de fichiers, mais il peut être mis à jour manuellement par les utilisateurs. et une entrée de mappage (lien physique) en tant que mappage. Nous définissons la relation d'accessibilité (reachable) pour indiquer si un répertoire d'être de cette règle dans le chapitre suivant. 5. Conflit de noms-données de répertoire. Dans ce cas, les mises à jour simul-
	structure complexe est régie par des invariants stricts, tels que l'unicité des noms dans tiques inattendus dans le système de fichiers. Notre système de session (Chapitres 4 Les attributs étendus sont définis et gérés manuellement par les utilisateurs unique-tanées rompent la relation entre différents noms et différents contenus d'annuaire,
	un répertoire, ou l'absence de cycles de répertoires. et 5) divise l'utilisation d'un système de fichiers distribué en sessions. Une session est ment et sont opaques pour la sémantique du système de fichiers. Ces attributs sont en violation de la règle 3.

La partie de données d'un fichier est opaque et est de type arbitraire, comme la séquence de caractères d'un document de texte, ou l'ensemble de pixels d'une image. exempleB.5 Invariants du système de fichiers Cette section décrit les invariants qui caractérisent l'exactitude d'un système de fichiers. B.5.1 Notations Nous désignons la carte enfant dans un répertoire sous la forme d'un ensemble de paires (nom, ino), représentant respectivement le nom de la chaîne et le numéro de noeud d'index d'un noeud d'index cible. Nous utilisons la notation par points, par exemple: m.name et m.ino, où m est une entrée dans la carte enfant. Nous utilisons les raccourcis i.ino pour i.stat.st_ino, le numéro du noeud d'index d'un noeud d'index i; i.nlink pour i.stat.st_nlink, le nombre de liens vers le noeud d'index i; i.type pour son type, qui est DIR si le noeud d'index est un répertoire, ou FILE sinon; et d.map à représente la carte enfant du répertoire d. est un descendant d'un autre, et la relation de parenté (parent) pour indiquer si un répertoire est le parent d'un noeud d'index; parents(i) désigne l'ensemble de tous les B.6 Cas de Conflit Des sessions simultanées, dans une réplique ou entre des réplicas, peuvent mettre à jour des noeuds d'index de manière conflictuelle. Dans ce chapitre, nous étudions les cas de conflit. B.6.1 Définition d'un conflit L'exactitude de notre système de fichiers distribué est décrite par trois règles de sécurité: la convergence des répliques, la préservation des invariants et la cohérence des noms et des données. Toute paire de mises à jour simultanées qui enfreint l'une de ces règles de sécurité constitue un conflit. résultat les mises à jour simultanées peuvent être fusionnées selon les règles de ces types de données et converger; dans ce cas, les mises à jour simultanées ne sont pas conflictuelles. Cependant, en général, le type de contenu du fichier est opaque au système de fichiers et un fichier peut contenir n'importe quoi. Pour la généralité, nous ignorons ces types de données commutatives. 2. Conflit de noms-données sur un fichier. Lorsqu'une mise à jour modifie les noms et qu'une autre mise à jour modifie simultanément les parties de données du même fichier, ces mises à jour rompent la relation entre le nom et le contenu du fichier comme prévu par les utilisateurs (violation de la règle 3). 3. Conflit de noms-noms sur un fichier. Lorsque les mises à jour simultanées changent la partie des noms d'un fichier, elles peuvent créer le même nom et donc violer Invariant 4 (un nom est unique dans la carte d'un répertoire). 4. Formellement, considérons I 1 et I 2 comme les ensembles noeuds d'index mis à jour par les opérations op 1 et op 2 , respectivement. La condition pour qu'ils violent l'invariant 6 est la suivante.

Table B .

 B Il est clair que l'abandon arbitraire des mises à jour n'est pas souhaitable, mais cela se produit dans des approches telles que Last-Writer-Wins (LWW), qui résout un conflit en choisissant l'une des mises à jour et en supprimant les autres. Nous découplons le principe NLU en:[START_REF] Amazon | GET Bucket (List Objects) Version 1[END_REF] préservant le contenu des données de fichier mises à jour, et[START_REF]Subversion[END_REF] préservant les chemins des répertoires mis à jour et des répertoires parents des fichiers mis à jour. Cette dernière règle implique, par exemple, que si un répertoire mis à jour a un chemin p, il doit y avoir un répertoire correspondant sur le chemin p après la résolution du conflit. Cela permet aux utilisateurs de voir leurs contenu mis à jour sur le même chemin et de ne pas les surprendre. C'est la raison d'être des noms de données d'un noeud d'index règle de cohérence (règle 3) du chapitre précédent. Par exemple, dans l'exemple précédent, nous créons de nouveaux fichiers pour stocker les mises à jour simultanées. Bien que pour les répertoires, les mises à jour simultanées peuvent être fusionnées sans violer l'un ou l'autre principe. arborescence; et la résolution des mises à jour simultanées sur un noeud d'index peut nécessiter de générer de nouveaux noeuds d'index pour stocker ces mises à jour.Le conflit supprimer-mettre à jour. Rappelons qu'un conflit de suppression-mise à jour se produit lors de la suppression et de la mise à jour simultanées du même noeud d'index. Notre algorithme de résolution dépend du type du noeud d'index, mais généralement, nous conservons la mise à jour et ignorons la suppression, violant ainsi NLU. Intuitivement, cela est dû au fait que les utilisateurs peuvent annuler manuellement une mise à jour si ce n'est pas le résultat de résolution de conflit souhaité, mais si une suppression a eu lieu, il n'existe aucun moyen direct de le restaurer. La résolution de ce conflit pour chaque type de noeud d'index est expliquée ci-dessous. Le chapitre 8 décrit les détails de notre format pour les nouveaux noms de fichiers, motivés par l'exigence de convergence.Un conflit sur une entrée de mappage nécessite une résolution de conflit sur cette entrée, ainsi qu'une résolution de conflit récursive sur les noeuds cibles de cette entrée.Par exemple, créer simultanément le même répertoire /foo/bar provoque un conflit de données de données de répertoire sur /foo; la fusion de ces mises à jour sur /foo fusionne récursivement les répertoires du même nom /bar. 1: Cas de concurrence lorsque des mappages portant le même nom ont été mis à jour simultanément. Une ligne montre l'état des mappages (supprimées ou mises à jour), leur inode cible (identique ou différent) et les types des inodes cibles s'ils sont différents. algorithme de résolution de conflit pour chacun de ces cas.Le conflit noms-noms de répertoire. Lorsque des sessions simultanées renomment le même répertoire en noms différents, le répertoire a des noms différents, violant ainsi l'Invariant 3 (un répertoire doit avoir un seul nom). Nous conservons les deux noms dans différentes copies du répertoire; faire de nouvelles copies du répertoire doit faire récursivement de nouvelles copies de ses enfants. Cette approche viole le principe 2 (mise à jour sans fantôme) mais préserve le principe 1 (mise à jour sans perte). Nous avons choisi cette approche car nous perdrions des mises à jour si nous choisissions de conserver un seul nom (LWW). indirect. Comme cela a été décrit précédemment dans la Section 6.5.2, avec la rétropropagation de mise à jour, un conflit indirect devient un ensemble de conflits directs sur les ancêtres des noeuds d'index mis à jour des mises à jour simultanées. Cela permet de résoudre un conflit indirect et de résoudre les conflits directs, pour lesquels la résolution des conflits a été discutée dans la section précédente. Dans cette section, nous allons passer en revue l'exemple du cycle d'annuaire par des renommages (rename) simultanés. La Figure 7.6 présente un exemple. Dans cet exemple, nous souhaitons que le noeud d'index 3 devienne un descendant du noeud d'index 6 (mv /A/foo /B/bar/quz), ceci met indirectement à jour les noeud d'indexs 2 et 4 en effectuant une rétropropagation de mise à jour. De même, faire du noeud d'index 4 un descendant du noeud d'index 5 met à jour indirectement les noeuds d'index 1 et 3. Les ensembles de noeuds d'index mis à jour des sessions sont respectivement {1, 2, 3, 4, 5} et {1, 2, 3, 4, 6}. Cela se traduit par les conflits données-données de répertoire sur les noeuds 1 et 2, et les conflits noms-noms de répertoires sur les noeuds 3 et 4. En résolvant les conflits données-données de répertoire sur les noeuds d'index 1 et 2, nous conservons les mappages foo et bar, respectivement; en résolvant les conflits noms-noms de répertoire sur les noeuds d'index 3 et 4, nous conservons les sous-arbres enracinés par ces noeuds d'index.B.8 Convergence de répliqueDans cette section, nous étudions les violations de la convergence des répliques (Règle 1), et nous proposons notre résolution de conflit. Notre approche est basée sur les CRDT[START_REF] Shapiro | A comprehensive study of Convergent and Commutative Replicated Data Types[END_REF][START_REF] Shapiro | Conflict-free Replicated Data Types[END_REF], un ensemble de priciples pour des types de données finalement cohérents.B.8.1 CRDTsCRDT, qui signifie Conflict-Free Replicated Data Type, est un ensemble de principes pour les types de données répliqués afin d'assurer la cohérence éventuelle de leurs réplicas. Nous résumons ces principes et comment les appliquer pour faire converger nos répliques de système de fichiers comme ci-dessous.État de réplique L'état de chaque réplique avance après une modification, par rapport à un ordre partiel prédéfini entre les états.Fusion des répliques La fusion des états des réplicas simultanés calcule leur LUB (Least Upper Bound); le LUB de deux états est le moins parmi ces états égaux ou plus avancés qu'eux, par rapport à l'ordre partiel défini. Par définition, calculer LUB (noté ⊕) est idempotent, commutatif et associatif; ces propriétés sont formalisées comme ci-dessous, où s, s i , s j , s k sont des états. ⊕ s j = s j ⊕ s i associative :(s i ⊕ s j) ⊕ s k = s i ⊕ (s j ⊕ s k)B.8.2 Convergence de répliques à l'aide du CRDTUn système de fichiers est défini comme une collection de noeuds d'index individuels

	Cette approche viole cependant le principe NGU puisqu'elle crée de nouveaux
	fichiers qui ne correspondent pas directement à une requête d'utilisateur. Nous dis-
	B.7.2 Détails de résolution de conflit cuterons des problèmes avec cette approche à la section 8.3.
	Nous avons choisi cette approche car elle fonctionne avec n'importe quel type de concurrent updates target target type resolution
	fichier et car elle est compatibile avec la sémantique POSIX traditionnelle. delete delete --1: no conflict
	delete update	-	-	2: preserve update
	Le conflict noms-noms de fichier. C'est la situation où les sessions simultanées same directory 3: recursive merge
	mettent à jour uniquement la partie des noms du même fichier. Comme le type de same file 4: rename file
	données de la partie noms d'un noeud d'index est une carte, tout comme la partie update update different directory + directory 5: recursive merge
	different directory + file données (carte enfant) d'un répertoire, nous pouvons donc fusionner les mises à jour 6: rename file different file + file 7: rename files
	simultanées sur cette partie d'un fichier.	
	facteurs et notre Conflit idempotent :	s ⊕ s = s	
	Notre algorithme de résolution de conflit consiste à conserver les deux mises à jour en commutative : s i .	(B.1)
	suivant le principe NLU.			
	La résolution d'un conflit consiste à présenter les effets des mises à jour simultanées Notre approche consiste à créer de nouveaux fichiers avec des noms différents, afin
	d'une manière qui ne viole pas les règles de sécurité. Techniquement, toute approche de conserver les différents contenus mis à jour, tout en préservant l'Invariant 4 (un nom
	qui préserve l'intégrité et l'exactitude du système serait sûre, y compris la perte de Nous détendons également le principe NLU dans certains cas où les mises à jour est unique dans la carte d'un répertoire). Cela casse le principe NGU, mais cela est
	toutes les mises à jour. Bien sûr, nous préférons les solutions qui améliorent la vivacité simultanées sont en contradiction les unes avec les autres. Par exemple, lorsqu'un noeud nécessaire pour maintenir le principe NLU avec un système de fichiers qui ne supporte
	du système et l'expérience utilisateur. En conséquence, nous proposons les principes d'index est simultanément supprimé et mis à jour, il est impossible de conserver les pas le versionnage. Les noms de ces nouveaux fichiers sont choisis pour sensibiliser les
	suivants pour la résolution des conflits. deux, et nous conserverons la mise à jour et ignorerons la suppression. utilisateurs au conflit et pour le résoudre manuellement si nécessaire. Une approche Il existe plusieurs situations qui conduisent à ce type de conflit, selon : l'état des
	Dans les sections suivantes, nous détaillerons la résolution des conflits pour les cas de simple consiste à ajouter un identifiant unique aux noms d'origine. Par exemple, nous entrées de mappage (supprimées ou mises à jour), le numéro du noeud d'index cible

Principle 3 (Pas de mise à jour perdue (No-Lost-Updates -NLU))

La résolution des conflits devrait préserver les effets de toutes les mises à jour.

Principle 4 (Pas de mise à jour fantôme (No-Ghost-Updates -NGU)) La résolution des conflits ne devrait pas faire de mises à jour qui ne sont pas demandées explicitement par les utilisateurs.

Ce principe empêche la résolution de conflits de créer de nouvelles mises à jour à partir de rien. Par exemple, la résolution d'un conflit sur un fichier /foo ne doit pas créer de répertoire /bar sans rapport avec le résultat. Ces deux principes sont raisonnables, mais il est impossible de les suivre de manière rigide. En fait, nous montrons dans ce chapitre qu'il y a des situations où cela irait à l'encontre des règles de sécurité du chapitre 6, ou (si l'application simultanée des deux) viole la sémantique du système de fichiers des chapitres 2 et 3. Par exemple, préserver deux mises à jour simultanées d'un même fichier requièrent soit de conserver les deux versions dans ce fichier, ce qui n'est pas supporté par les API POSIX, soit de les stocker dans deux fichiers différents (avec des noms différents), ce qui viole le principe d'absence de mise à jour fantôme. Notre décision de conception est, s'il n'y a pas d'autre option, de favoriser le principe NLU sur le principe NGU. conflits directs et indirects du chapitre 6. Deux détails principaux seront présentés: la résolution des conflits est un processus récursif qui part du répertoire racine et descend dans l'Lorsque le noeud d'index cible est un répertoire, nous conservons le répertoire mis à jour et l'utilisons comme résultat de la fusion, afin de maintenir le chemin mis à jour, suivant NLU. Cela permet de maintenir une structure familière du système de fichiers grâce à la résolution des conflits, en suivant la règle de cohérence noms-données (règle 3). Lorsque le noeud d'index cible est un fichier, nous conservons le contenu mis à jour dans un nouveau fichier et supprimons celui d'origine (figure 7.1b) en privilégiant NLU sur NGU. Le chapitre 8 décrira comment nous générons le nom du nouveau fichier et le nouveau numéro du noeud d'index. Nous ne conservons pas la mise à jour dans le fichier original, afin d'unifier le mécanisme de résolution de conflit avec le conflit de données-données du fichier. Le conflict données-données de fichier. Un conflit de données de fichier se produit lorsque des sessions simultanées mettent à jour la partie de données du même fichier. utilisons foo.A et foo.B pour représenter les mises à jour simultanées de foo à partir des sessions A et B, respectivement. Dans le cas où un nom du fichier est mis à jour simultanément, nous stockons les mises à jour simultanées du nom dans de nouveaux noms afin de préserver ces mises à jour. Par exemple, lorsque les sessions simultanées A et B créent le même nom /bar pour un même noeud d'index, la résolution de ce conflit entraîne de nouveaux noms /bar.A et /bar. B pour préserver les mises à jour de A et B, respectivement. La création de nouveaux noms dans ce cas suit le même mécanisme de création de nouveaux noms pour les conflits de données de données de fichier (Section 7.2.2). Le conflict données-données de répertoire. Les mises à jour simultanées de la carte enfant (la partie de données) d'un répertoire sont fusionnées car son type de données (une carte) est connu pour être fusionné. Rappelons que la carte d'un répertoire mappe les noms locaux aux noeuds d'index; la fusion prend l'union des entrées de mappage mises à jour des mises à jour simultanées. La fusion des mises à jour simultanées dans ce cas est un processus récursif car des conflits peuvent se produire sur les entrées de mappage de ce répertoire. Des conflits surviennent lorsque des mises à jour simultanées modifient les mêmes entrées de mappage, violant ainsi l'Invariant 4 (un nom est unique dans la carte d'un répertoire). (le même noeud d'index ou des noeuds d'index différents) et le type du noeud d'index cible (répertoire ou fichier). Le tableau B.1 montre les combinaisons possibles de ces

Table B .

 B 2: Cas de concurrence sur un noeuds d'index entre trois mises à jour. supprimé, résoudre un nombre quelconque de suppressions simultanées dans un regroupement entraîne toujours un noeuds d'index supprimé.

	concurrency case	merging result directory	file
	1: deleted deleted deleted	deleted	deleted
	2: deleted deleted updated	updated	updated
	3: deleted updated updated data/naming conflict data/naming conflict
	updated updated updated		
	4: data data data	merged	split
	5: data data names	merged + copy	split
	6: names names data	copies	split + merged
	7: names names names	copies	merged
	d'index		

 file data conflict) deleted + i A + i B ⊕data (file data conflict) deleted + i A + i B + i C = data ⊕ (data ⊕ data) (file data conflict) deleted + i B + i C (file data conflict) deleted + i A + i B + i C .Cas 5: Dans ce cas, deux sessions mettent à jour la donnée de le noeuds d'index et l'autre session met à jour le noms de celui-ci. Pour i est un répertoire, résolvant ce conflit fusionne les mises à jour des données du répertoire pourquoi générer un nouveau répertoire pour la mise à jour de la partie noms; la processus de fusion est comme ci-dessous.Pour i est un fichier, la résolution de ce conflit génère de nouveaux fichiers pour stocker le met à jour la partie donnée, en conservant la dernière mise à jour fichier original.(data ⊕ data) (file data conflict) deleted + i A + i B ⊕names (file data conflict) deleted + i A + i B + i C = data ⊕ (data ⊕ names) (file data conflict) deleted + i B + i C (file data conflict) deleted + i A + i B + i C .Cas 6: Le conflit dans ce cas est entre deux mises à jour simultanées à la partie noms du noeuds d'index, et une mise à jour de sa partie donnée. Pour i est un répertoire, notre résolution de conflit génère de nouveaux répertoires à stocker les mises à jour de la partie noms du répertoire, tout en Inode d'origine pour stocker la mise à jour dans la partie donnée.Pour i est un fichier, notre résolution de conflit génère un nouveau fichier pour stocker le met à jour la partie donnée du fichier, tout en conservant la fusion des autres mises à jour dans un autre fichier. Dans ce cas, les sessions simultanées mettent à jour la partie noms du noeuds d'index. Pour i est un répertoire, cela provoque deux consécutifs conflits donnée-donnée de répertoire. La résolution de ce cas est similaire à l'affaire précédente, sauf dans ce cas, notre résolution de conflit génère de nouveaux répertoires pour tous les mises à jour.(names ⊕ names)(dir. naming conflict) deleted + i A + i B ⊕names (dir. naming conflict) deleted + i A + i B + i C = names ⊕ (names ⊕ names) (dir. naming conflict) deleted + i B + i C (dir. naming conflict) deleted + i A + i B + i C .Pour i est un fichier, les mises à jour dans ce cas provoquent l'appariement conflits noms-noms de fichier. La résolution de ce cas consiste à fusionner tous les noms de chaque mise à jour dans le fichier original.

	(data ⊕ data)	⊕names	= data ⊕	(data ⊕ names)
	(dir. data conflict)				(dir. naming conflict)
	merged(A + B)				i + i C	.
	(dir. naming conflict)		(dir. data conflict)
	merged(A + B) + i C		merged(A + B) + i C
	(names ⊕ names)			
	(dir. naming conflict)		
	deleted + i (names ⊕ names)	⊕data	= names ⊕ (names ⊕ data)
	(file naming conflict)			(file data conflict)
	i				i + i C
	(file data conflict) i + i C		(file naming conflict) i + i C

A + i B ⊕data (dir. naming conflict) i A + i B + i = names ⊕ (names ⊕ data) (dir. naming conflict) i B + i (dir. naming conflict) i A + i B + i . .

Cas 7:

(names ⊕ names)

(

file naming conflict) i ⊕names (file naming conflict) i = names ⊕ (names ⊕ names) (file naming conflict) i (file naming conflict) i .

A record in the Master File Table of Microsoft NTFS is their equivalent of an inode.

The inode numbers contained in a file system are unique relative to the allocation unit (e.g., a partition in POSIX.) However, real-world file system implementations such as EXT for Linux and NTFS for Microsoft Windows employ a strategy called 'inode number reuse' for practical purposes; the inode number of a deleted inode can be reused later. Only NTFS keeps track of how many times an inode number has been reused.

NTFS has two different concepts equivalent to the inode number: FileReference number and ObjectId. The former more closely resembles an inode number as it is automatically assigned to an inode when it is created and can be reused. The latter is a unique 16-byte string assigned upon the request of application layer; it is used by NTFS in distributed setups.

Throughout this thesis, we will use the terms directory and file to designate inodes of those specific types, while using inode as a generic term for both.

There are other inode types, which we ignore because they are not critical to file system integrity, such as symbolic link, FIFO, or device. For the purposes of this thesis, they can be identified with file.

Some modern Unix-like operating systems, such as Linux, use extended attributes for file system security. Abstractly, security extended attributes together constitute an ACL (Access Control List).

The data is often stored as a hierarchy of indirect inodes, each holding a part of the data. We will ignore this detail hereafter.

The deletion step depends on actual file system implementations; it could be done immediately in the unlink process, or it could be delayed until some asynchronous garbage collection. In this thesis, we assume that this step is controlled by file system's garbage collector, thus omitting it from this unlink operation.

A mount point is a directory (typically an empty one) in the currently accessible file system on which an additional file system is mounted (i.e., logically attached)[START_REF]Linux Information Project[END_REF].

Atomicity: at any point in time, either all of the updates from a session are available in the replica's state or none are.

Recall that in Section 6.3 we consider the stat of an inode a part of its data; merging the data parts of directories therefore involves merging their stats. The algorithm for merging directory stats is described in Appendix A.

A possible optimization would be to store a small file in the metastore entirely, though we did not implement it in our prototype.

These are Atomicity, Consistency, Isolation, and Durability in the definition of transaction in the database community.

https://www.dropbox.com/download?dl=packages/dropbox.py

Merging Inode stat

In the cases when we merge the contents of inodes, such as merging the data parts of directories, we also need to merge their stat parts.

Because different stat attributes store different properties of an inode, such as st_atime for last access time and st_mode for file permission, we need to merge these attributes differently. The merging algorithm for each attribute is described below. st_atime, st_ctime, st_mtime: these are the attributes to store the timestamps of certain events of the inode. We use the LWW approach to merge concurrent values of st_atime (last access time) and of st_mtime (last modify time); the final value of these attributes is the latest among those concurrent. The st_ctime (creation time) of an inode, is never changed, therefore there is no concurrency on this entry. st_mode, st_gid, st_uid: these attributes stores the inode's type, such as file or symlink, and security information (such as owner, group, and read/write/execute permission). The type of an inode never change; however the security information can be manually changed by users. We can systematically merge the concurrent updates to these attributes, but we cannot retain the security intention of users when changing these values; users need to manually check and modify it after conflict resolution if necessary. Nevertheless, we show how we merge concurrent updates on this attributes in Algorithms 12 and Algorithm 13. In these algorithms, we create a new user and/or a new group to represent the users and groups of the concurrent updates; we merge the permission settings (a sequence of bits) by using the bitwise OR operation.

The extended attributes of an inode are defined by developers; these attributes have their own meaning and their own usage. We therefore, again, can merge them technically, but we cannot preserve the intention of users with our own merging policy.

Developers or users thus should have their own merging semantics for these properties in order to have their desired conflict resolution result; the implementation of these

FALSE otherwise .

B.5.2 Invariants

Les invariants suivants caractérisent les propriétés de sécurité d'un système de fichiers correct. Toute violation de ces invariants constituerait une erreur. Pour simplifier, nous nous limitons à un système de fichiers local.

Invariant 1 (racine fixe) Un système de fichiers possède un noeud d'index racine unique et non modifiable.