
HAL Id: tel-01674170
https://theses.hal.science/tel-01674170

Submitted on 2 Jan 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Design and soc implementation of a low cost smart
home energy management system

Trung Kien Nguyen

To cite this version:
Trung Kien Nguyen. Design and soc implementation of a low cost smart home energy management
system. Other. Université Nice Sophia Antipolis, 2015. English. �NNT : 2015NICE4127�. �tel-
01674170�

https://theses.hal.science/tel-01674170
https://hal.archives-ouvertes.fr

UNIVERSITÉ NICE SOPHIA ANTIPOLIS

POLYTECH’NICE-SOPHIA

École Doctorale des Sciences et Technologies de

l’Information et de la Communication

Electronique pour Objets Connectés

THESE

Pour obtenir le titre de
Docteur en Sciences spécialité Electronique

de l’Université Nice Sophia Antipolis

présentée et soutenue par

Kien Trung NGUYEN

Conception et réalisation d’un système de gestion intelligente de la

consommation électrique domestique

Thèse dirigée par Gilles JACQUEMOD

 Soutenance prévue le 11 Décembre 2015

Jury :

 P. GARDA Rapporteur Professeur, Université Pierre et Marie Curie Paris
 S. WEBER Rapporteur Professeur, Université de Lorraine Nancy

G. JACQUEMOD Directeur Professeur, UNS Sophia Antipolis
 E. DEKNEUVEL Co-Encadrant Maître de Conférences, UNS Sophia Antipolis

L. HEBRARD Examinateur Professeur, Université de Strasbourg
B. NICOLLE Examinateur Ingénieur, Qualisteo Nice
O. PARSON Examinateur Associate Professor, University of Southampton

Table of Contents

Chapter 1. INTRODUCTION ... 1

1.1. Motivation ... 3
1.2. NIALM Technology and Applications .. 5

1.2.1 Introduction ... 5

1.2.2. State of the art ... 6

1.2.3. Applications of NIALM ... 9

1.3. Electrical Signatures .. 10
1.3.1. Parallel RLC model .. 11

1.3.2. Steady-state signatures ... 12

1.3.3. Transition-state signatures .. 14

1.4. The trend of NIALM technology .. 15
1.5. Thesis contributions .. 17

1.5.1. Context ... 17

1.5.2. A real-time innovative NIALM proposal ... 17

1.5.3. A HW SW co-development methodology for rapid prototype 18

1.6. Thesis Organization ... 19

Chapter 2. SYSTEM MODELING FOR EMBEDDED SYSTEM ... 21

2.1. SoC, SoPC and FPGA ... 23
2.2. System development of SoC ... 25

2.2.1. Algorithm optimization .. 25

2.2.2. SoC design flow ... 27

2.2.3. SoC development approaches .. 29

2.3. Model of Computation .. 35
2.3.1. Finite State Machine ... 36

2.3.2. StateChart ... 38

2.3.3. Dataflow modeling ... 40

2.3.4. Kahn Process Network ... 41

2.3.5. Synchronous Data Flow ... 42

2.3.6. Structured Data Flow .. 44

2.3.7. Reactive Process Network .. 45

2.4. Languages and development tools... 47
2.4.1. System design tools .. 47

2.4.2. Model-based design tools ... 48

2.4.3. Architecture design tools .. 51

2.4.4. RTL design tools .. 54

2.5. HW SW codevelopment approach for rapid prototyping .. 56
2.5.1. Modeling executable specification of RPN system .. 59

2.5.2. Architecture exploration ... 64

2.5.3. Hardware Software co-development .. 66

2.6. Conclusion ... 67

Chapter 3. APPLICATION MODEL FOR A REAL-TIME NIALM SYSTEM 69

3.1. Activity model of system in dataflow ... 71
3.1.1. System requirements .. 71

3.1.2. Entity analysis and modeling ... 72

3.1.3. Activity model of system ... 73

3.2. Electrical signatures extraction: Event-based approach .. 76
3.2.1. Power signatures ... 78

3.2.2. Shape of transitions signatures ... 85

3.2.3. Harmonic signatures ... 86

3.2.4. Early application classification .. 89

3.3. CUSUM - An online Event Detection ... 91
3.4. Genetic Algorithm-based power Disaggregation .. 96

3.4.1 Sequential clustering K-mean ... 98

3.4.2. Genetic Algorithm .. 99

3.5. Conclusion ... 101

Chapter 4. SOC IMPLEMENTATION OF NIALM SYSTEM ... 103

4.1. The Zynq-7000 platform ... 105
4.2. Executable specification .. 107

4.2.1. Modeling Virtual Appliances ... 107

4.2.2. Modeling the NIALM process ... 108

4.2.3. Modeling Control Logic ... 110

4.2.4 Disaggregation functional validation .. 111

4.3. FPGA development approaches .. 113
4.4. Architecture exploration .. 116
4.5. Prototyping system .. 119
4.6. Conclusion ... 122

Conclusions and Perspectives .. 123

Conclusion .. 123
Perspectives .. 125

Publications .. 123

REFERENCES ... 129

Acronyms, abbreviations and definitions

Term Description

ADC Analog to Digital Converter

AMS Analog Mixed Signal

API Application Program Interface

ASIC Application Specific Integrated Circuit

CLIP Component-Level IP
CPU Control Process Unit

CUSUM CUmulative SUM
DFD Data-Flow Diagram
DMA Direct Memory Access
DSP Digital Signal Processing
EPC Energy Performance Certificate
FIR Finite Impulse Response

FFT Fast Fourier Transform

FIFO First In, First Out
FPGA Field Programming Gate Array
FSM Finite State Machine
GA Genetic Algorithm
GUI Graphical User Interface

HDL Hardware Description Language
HLS High Level Synthesis
HMM Hidden Markov Model
HW SW HardWare SoftWare

HVAC Heating, Ventilation and Air Conditioning
HID High Intensity Discharge

IIR Infinite Impulse Response

IP Intellectual Properties
KPN Kahn Process Network
LUT Look Up Table

MCU Micro Controller Unit

MoC Model of Computation
NIALM Non-Intrusive Appliance Load Monitoring
NoC Network on Chip

NRE Non-Recurring Engineering

OCED Organization for Economic Cooperation and Development
OVP Open Virtual Platform

PRA Pyramid Recursive Algorithm

REDD Reference Energy Disaggregation Data set

RMS Root Mean Square
RPN Reactive Process Network
RTL Register-Transfer Level
SDF Synchronous Dataflow
SoC System on Chip
THD Total Harmonic Distortion
TLM Transaction-Level Model
UML Unified Modeling Language

USOM USer Operating Mode

VAR Volt-Ampere Reactive
VFD Variable Frequency Driver
VLSI Very Large Scale Integration circuits
XSG Xilinx System Generator

1

CHAPTER 1. INTRODUCTION

Contents

1.1. Motivation

1.2. NIALM technology and Applications

1.2.1. Introduction
1.2.2. State of the art
1.2.3. Applications of NIALM

1.3. Electrical signatures

1.3.1. Parallel RLC model
1.3.2. Steady-state signatures
1.3.3. Transition-state signature

1.4. The trend of NIALM technology

1.5. Thesis contributions

1.5.1. Context
1.5.2. A real-time innovative NIALM proposal
1.5.3. A HW SW co-development methodology for rapid prototype

1.6.Thesis organization

Abstract:

This chapter is the useful background information of the Non-Intrusive Appliance Load

Monitoring (NIALM) technology and the motivation of this research. Section 1.1 presents a big

image about the relation between energy usage of human and environmental pollution. This

section also talks about smart meters, which can monitor and give people more information

about their energy usage to engage them in saving energy. Section 1.2 gives a brief introduction

about the NIALM technology, a state of the art, and its daily area in life. Section 1.3 introduces

some electrical signatures, which a NIALM system must extract, analyze to recognize and

monitor power usage of appliances in an electrical network. Section 1.4 discusses about the

trend of NIALM technology to be able to solve its remain challenges. Thus, section 1.5 presents

our proposal for an innovative real-time NIALM system based on System on Chip (SoC) and the

contributions of this thesis. Finally, section 1.6 will present the organization of this thesis.

 Chapter 1. Introduction

2

 Chapter 1. Introduction

3

1.1. Motivation

We are today's fully aware of the global climate change, the global warming mainly coming
from the carbon dioxide (CO2) emission through the urbanization of human. Too much CO2
causes natural disasters such as drought, flooding, tsunami, hurricane, diseases that destroy the
earth and human life. Even though more and more developed countries have planned to use
green technologies, renewable energy sources and better energy usage monitoring, most of
developing countries accept air pollution for economic reasons. In Figure 1.1, the CO2 emission
in fossil fuel energy almost remains from 1990 to now in Organization for Economic
Cooperation and Development (OCED) countries. However, this value increases three times in
non-OCED countries and mainly in coal. The annual energy outlook 2013 of US Energy
Information Administration [1] also shows that from 2010 to 2040, coal-fired power plants are
still generating about 40% global electrical power and emit over 40% of CO2 in the earth and
these CO2 emissions are still mainly linked to the use of energy of human. The amount of CO2
emission are also shown in the greenhouse gas equivalencies calculator tool of the
Environmental Protection Agency of United States [2] that 15.873 MWh electricity
consumption – the average energy usage in house for one year, is equivalent up to 10 tons CO2
emission to the environment. Consequently, changing people’s awareness of using energy
effectively and economically becomes very urgent.

Billion metric tons Billion metric tons

(a) (b)

2013

Figure 1.1 (a) World energy-related carbon dioxide emissions by fuel type, (b) OECD and non-

OECD energy-related carbon dioxide emissions by fuel type [1]

Although European (EU) countries are leading in using renewable energy sources. Their
objective aims to replace 20% of EU’s energy consumption by using renewable energy sources
in 2020 [3]. Thus, economic energy usage management is still vital in many decades and people
want to decrease environmental pollution. In 2007, England introduced the Energy Performance
Certificate (EPC), which contains the rating of energy efficiency of a house and
recommendations for potential improvements. As illustrated in Figure 1.2, the EPC gives
customers the energy consumption level of the house and the potential future saving money, if

 Chapter 1. Introduction

4

they follow such recommendations. With better information in monthly electricity bills, the EPC
can engage people to reduce the energy usage in the house.

(a) (b)

Figure 1.2 Some information in an EPC sample [4]

However, EPC has impact on only 18% of people and 17% of people follow its
recommendations [4]. It is probably due to the recommendations are too general which
recommend them to repair the house or to replace better appliances. They are not convenient for
most of the customers who just need to know the relation between the increasing on the electrical
bills and their daily or weekly activities. That is why smart meters, the emerging technology to
help people to know their monthly energy consumption, are gradually replacing mechanical
power meters nowadays. Some new modern smart meters even offer real-time feedback on the
in-home display with detailed daily records of activities of customers in appliances and their
effect on the total energy consumption as well as the ratio of energy usage in individual
appliance. This individual appliance-monitoring feature at the heart of those smart meters gives
customers many advanced benefits:

- Real-time feedback about the effect of their behavior in energy consumption. For
example, the water heater is, sometimes, still turned-on while no one is taking a bath or
the air conditioning in the living room is still turned-on while there is no one there.

- Awareness of energy performance of their appliance in comparison to the standard
energy-saving products. Some customers will recognize that after three years, they have
to pay the same money (including buying cost and yearly bills) for the new modern

 Chapter 1. Introduction

5

energy-saving refrigerator and the old one while it is certain that using a new modern
refrigerator is much more comfortable and convenient.

- Suggestions about energy usage based on the Time-of-Day Electricity Pricing.
Consumers will be indicated about variations of electricity prices during a day, and they
can then keep using the same amount of energy while saving money by using it at the
right time.

- Estimating the equivalent CO2 emission of energy consumption can engage consumers
in changing their energy usage behaviors for environmental protection.

1.2. NIALM Technology and Applications

1.2.1 Introduction

There are two solutions for monitor consumption on individual appliances: using one sensor
per appliance as in a conventional approach or using only one sensor to monitor the whole loads
as in the Non-Intrusive Appliance Load Monitoring (NIALM) approach. Intrusive sensors work
similarly to a normal current meter that needs to be connected in serial with the load to measure
its current. In contrast, non-intrusive current sensors can convert the magnetic field around the
electrical wire into analog voltages without intrusive connections. Such sensors are more
advanced than intrusive sensors because of a very fast, safety and flexible installation.

As illustrated in

Figure 1.3, NIALM technology introduced by Hart in 1992 [5] aims to use only one non-
intrusive sensor to monitor all appliances in the electrical network. Because of using fewer
hardware components, NIALM has lower cost because it is easier to setup and maintenance than
conventional method. Unfortunately, NIALM requires more complex algorithms to analysis,
classify, breakdown and assign power consumption to appropriate appliances while intrusive
method is able to define exactly from where the power usage events come. However, intrusive
method will be very expensive and it has to use complex communication network to transfer
data that limits the bandwidth if there are too many nodes in the network. NIALM method,
which has only one node, can use full bandwidth of communication channel. The limited number
of appliances, which can be detected and monitored, depends only to the efficiency of NIALM
algorithms. Some NIALMs can also do many computations at sensing nodes for examples
computing power consumption, detecting transitions to decrease data size in communication
channels.

 Chapter 1. Introduction

6

Data acquisition

Preprocessing

Event Detection

Classification

Estimation

Conventional
method

Load 1 Load 2 Load n

NIALM
method

Break
down

Main power line

Figure 1.3 Conventional and NIALM method in power monitoring application

In order to be able to monitor consumption on individual appliances in an electrical network
using only one sensing node, NIALM systems must have five basic processes:

- Data acquisition: NIALM system collects values from current and voltage sensors in a
defined sampling frequency.

- Preprocessing: This is an important step to handle in noise filtering and electrical
features extracting such as total real power, re-active power and apparent power. It can
contain some advanced tasks such as calculating the phase of electrical signal, harmonics
data and power factor. More electrical features the processing extracts, more accuracy
the step classification is.

- Event Detection works on the change detection in aggregated current or power to detect
an ON-turning or OFF-turning from an appliance in the electrical network. This step also
extracts the transition signatures after a detected event.

- Classification clusters events after Event Detection step and matches ON events to OFF
events to classify appliances.

- Estimation is the last process to summarize the total power consumption and ratios
power consumption in each appliance.

1.2.2. State of the art

In 1992, Hart [5] introduced the topic NIALM which can monitor a number of switches ON
and OFF from appliances. His algorithms based on 1-second sampling average power and Root
Mean Square (RMS) voltage was able to compute the normalized real and reactive power. The
normalized powers were used by the edge detection algorithm to find out the time of the change
in normalized power. A fixed 15 Watts tolerance was used to define steady periods and transition
periods to create the time-stamped step-change p-vectors. These p-vectors are clustered to find
out the quantity of clusters and their centroids to be able to pair the ON-OFF or Finite State
Machine (FSM for multi-state appliances) models of appliance using the rule Zero Loop-Sum

 Chapter 1. Introduction

7

Constraint. Last function is to set the name of the model of appliance for the system able to track
out in the future. However, his algorithm has still need to be improved to work well with under
100 W appliance, continuously variables, and multi-state appliances. Moreover, it cannot
distinguish appliances who have the similar real power and reactive power.

Leeb et al. 1995 [6] used higher sampling frequency to extract power information of third
harmonic for classification. Leeb also used three sampling rate levels to detect both fast, medium
and slow transitions. However, the classification cannot process in real-time and both
overlapped transitions and continuous variable appliances are still intractable. Three sampling
rate levels in detection are not enough for all appliances in commercial and industrial application
so that Laughman [7] proposed the use of shape information to detect transitions. However, his
system is complex and needs a tedious training with all kinds of appliance that it should be able
to work with; and his method can still not trace overlapped events.

Baranski et al. in 2004 [8] presented a new approach for NIALM system. His algorithm also
uses power data sampled in 1-second rate to detect events by considering the change between
two sequential active powers with a threshold value and the direction of the change. That means
two changes in the same increasing direction belong to the same event. Then, he used Fuzzy-
clustering algorithm to cluster all the detected events. His paper clearly presents Genetic
Algorithm (GA) to find out both ON-OFF and FSM appliances up to five different states.
However, his algorithm limits the length of detected event sequence to be processed in the
limitation in maximum process time.

Instead of using both current sensors and voltage sensors in standard NIALM system, Cox et
al. proposed, in 2006 [9], a NIALM system to identify the operation appliances using only the
distortion information of total voltage. Removing the need of a current sensor gives a more
economical NIALM system solution. The preprocessor will estimate the coefficients
information of the input voltage in some order harmonics. Then software will analyze each array
of spectral envelopes to detect the transitions. Cox said that system now could detect and identify
ON-OFF appliances with small power consumption from 50W. Moreover, his result also shows
the ability to track the FSM type appliances. Although his work does not use power
measurement, tracking the appliance using only voltage sensor can cooperate with all kind of
current power meter to give more energy consumption information for customer in the electricity
bill. However, Cox needs to evaluate the accuracy of his system in all household appliances.

Suzuki et al. in 2008 [10] used integer programming approach, based on current waveform
in one period, to classify appliance, then to disaggregate appliances. No complex preprocessing
algorithms and steady based NIALM are advantages of his algorithm. This algorithm also works
with FSM appliances, which makes one more integer equation for each appliance. However, it
needs to have a database of appliance waveform and quite sensitive with unknown noises.

Patel et al. in 2009 [11] and Froehlich et al. in 2010 [12] used only single plug-in sensor to
detect events of some home appliances from electrical noise in power line in operation of
appliances. They found that there are transition noises and continuous noises. The transition

 Chapter 1. Introduction

8

noise lasts only some microseconds and comes from switching mechanism and load
characteristics of appliances while continuous noises come from the internal switching
mechanism. He developed the power-line interface hardware to filter and collect a standard 60
Hz AC power signal, 100 to 100 kHz filtered signals and 50 kHz to 100 MHz filtered signals.
After that, a USB oscilloscope interface (EBest 2000) was used to amplify signals, convert them
to digital data, and send data to a computer in sampling frequency up to 100 MHz. One shifting
window FFT algorithm will extract harmonic information for classification using Support
Vector Machine (SVM) algorithm. However, his work focuses only on the domestic
environment especially with a weak noisy outside environment. Other limit of their works is the
dependence of noises onto length and type of electrical wires so that the training databases for
the same appliances in different houses are different. Moreover, this method cannot be used in
real-time with complex Digital Signal Processing (DSP) card, computer and pre-trained
database. The system has not been tested for slow transitions and continuously variable
appliances.

Many current researches [13] [14] focused on exploring new disaggregation algorithm on 1
second sampling aggregated power consumption using algorithm Hidden Markov Model
(HMM). HMM algorithm based NIALM is developed to work with most of current power
meters and quite high accuracy. However, slow sampling rate can cause losing the “peak” states
sometimes, which can be an important signature to distinguish same power appliances.
Moreover, training phases can meet problem if there are new appliances, which do not exist, in
the pre-trained database.

The main objective of most of current research in NIALM is to improve the accuracy of this
technology by exploring more complicate disaggregation algorithm. However, such algorithms
need a powerful computer such as a server to process. Most of researches also use supervised
learning or well-known database to classify appliances. Therefore, some challenges are still
valid to solve in NIALM are:

- The need to extract more electrical signatures to distinguish similarity appliances.

- The problem of variable load appliances which creates slow transition that is not detected
by most of event detect algorithms.

- A low sampling frequency data can meet problems with overlap transitions and can lead
to missing event.

- There are still not any effective methods to detect multi-state load appliances, which can
have many states in their operation.

- The NIALM system should be low cost, compact and similar price as current power
meter. The low cost system can help NIALM to gain popularity in every home in the
finance support program of the electricity company or the government.

 Chapter 1. Introduction

9

1.2.3. Applications of NIALM

Energy monitoring

People applied NIALM technology in many fields of the life. The first application of NIALM
is home or building energy monitoring. Mario E. Berges et al. 2010 [15] discussed about four
types of existing commercial NIALM products: the whole-house meter, the smart meter
ARM/AMI, the plug-load meters and the smart home packaged solution. Products of TED
company with the Energy Detective Footprints software can track only five home appliances
after training their power consumption [16]. Products of Enetics company in USA record over
Internet detail information of energy usage such as time, current, voltage, power, power factor,
Total Harmonic Distortion (THD) [17]. Then they provide energy usage analysis based on this
information in both residential and industrial sites but their system does not provide real-time
monitoring feature.

Gas and water monitoring

Gas and water monitoring is another application of NIALM which is often integrated to
power monitoring activity to give customer a complete energy monitoring. In an extra part of
the article [12] in 2010, Jon Froehlich et al. applied a single point sensor approach to develop
HydroSense system to monitor water usage and the GasSense system to monitor gas usage in
house. There are already real products to monitor gas usage in at home for example Loop Gas
product of Navetas company in UK [18].

System fault detection and maintenance

System fault detection and maintenance may be the most interesting capability of NIALM
technology. The research [19] used NIALM technology to develop a Condition Base
Maintenance system in a US Navy Ship in 2005. Because of the difficulty to connect sensors
for all the electrical devices in an exist system in the ship, NIALM was used to trace out and
monitor the operation of all devices in the system in order to detect and to predict failures in
their working. This application is very useful when analyzing all components inside a complex
machine is a very hard work. Moreover, we can also apply this capability to home energy
monitoring to early detect errors in electrical appliances for the maintenance.

Commercial and Industrial domain

However, most researches in the past worked in residential site and there are not adequate
researches about using NIALM in commercial and industrial sites. Most of commercial NIALM
products are applying in home energy monitoring. The lack of applying NIALM in commercial
and industrial sites may come from below reasons. First, in commercial and industrial sites,
machine can contains many basic electrical appliances inside so that it is very difficult to
recognize what real machines are working. For instance: an industrial oven can contain a
magnetron tube that generates heat in di-electric heater type, one or more fans, power controller
and time controller, lamps, tri-ac driver circuit and high voltage transformer. Second, many

 Chapter 1. Introduction

10

kinds of noise in industrial site coming from high power motors, fans or inverters can generate
errors in current detection algorithm of NIALM. Third, monitoring all basic appliances inside
machine in commercial and industrial sites is very difficult so that it takes a lot of time and
money to build database for all new coming machines. A NIALM system may be impossible to
analyze and disaggregate all electrical machines in an industrial factory or one NIALM system
cannot monitor all apartments in a big building. However, in the supporting of other technology
for example wireless sensor network, which each NIALM system is a monitoring node, this
technology can be used more broadly in commercial and industrial site.

1.3. Electrical Signatures

Electrical signatures are characteristic information of electrical appliances such as current,
power, power factor, harmonic etc., which can be used to distinguish appliances. As illustrated
in Figure 1.4, such signatures can be classified into two main categories that affects the event
detection and algorithms in NIALM: Steady-state signatures and Transition-state signatures.
Steady-state signatures are steady-features, which can be derived under the steady-state
operation of the appliances, or in other words, steady-state signatures are the changes in
interested features in electrical network after ON-turning and OFF-turning occurrences. In
contrast, a transition-state is the duration between two steady states. The differences in
structures between appliances cause differences in some electrical features in transitions-state
that can be used to classify them.

Figure 1.4 Electrical signatures for classification

Electric
signatures

Transient
signatures

Shape

Duration

Size

Voltage noise
(EMI)

Steady
signatures

Harmonic
currents

Fundamental
frequency

Power

Current

Power factor
Voltage Noise

(EMI)

 Chapter 1. Introduction

11

1.3.1. Parallel RLC model

Before analyzing in detail about the steady states and transition states, we present the theory
of RLC architecture of electrical appliances, which can explain the difference in electrical
signatures between appliances. In theory, an electrical circuit composed by basic elements
resistor R, inductor L and capacitor C can represent appliances. Then, this circuit can be
simplified to an equivalent parallel RLC circuit as illustrated in Figure 1.5. In this model, power
information of appliance then can be computed by traditional equations. VS, the root mean
square (rms) of AC voltage, are often used to express voltage of electrical network connected to
the RLC circuit. Three elements R, L, C of the circuit generate three kinds of power
consumption. In this circuit, IR, IL, IC are currents flowing in R, L and C branch; and IS is the
total current in parallel RLC circuit.

Figure 1.5 Parallel RLC model of an appliance

Real Power P, measured in Watt, is a function of circuit’s dissipative element resistance R.

 𝑃 = 𝑉𝑠. 𝐼𝑅 (1.1)

Reactive power Q, measured in Volt-Ampere-Reactive (VAR), is a function of circuit’s
reactance X.

 𝑄 = |𝑉𝑠. 𝐼𝐿 − 𝑉𝑠. 𝐼𝐶 | = |𝑄𝐿 − 𝑄𝐶| (1.2)

Apparent power S measured in Volt-Ampere (VA) is a function of circuit total impedance.

 𝑆 = 𝑉𝑠. 𝐼𝑆 (1.3)

Applying the Kirchhoff’s current law in RLC parallel circuit, we notice that currents in each
branch of the circuit are not in the same phase as illustrated in Figure 1.5. Current flowing in
resistor R branch is in same phase with voltage. However, current flowing in inductor L branch
is later 90 degrees than the voltage and current flowing in capacitor C branch is earlier 90
degrees than the voltage. Apply the Pythagoras’s theorem; we have the equation to compute
aggregated current.

 𝐼𝑠 = √𝐼𝑅
2 + (𝐼𝐿 − 𝐼𝐶)22

 (1.4)

 Chapter 1. Introduction

12

Replace (1.4) to (1.3), we get

 𝑆 = 𝑉𝑠. 𝐼𝑆 = 𝑉𝑠. √𝐼𝑅
2 + (𝐼𝐿 − 𝐼𝐶)22

= √𝑉𝑠
2𝐼𝑅

2 + 𝑉𝑠
2(𝐼𝐿 − 𝐼𝐶)22

Or 𝑆 = √𝑃2 + 𝑄22 (1.5)

When a new electrical appliance is turned on, its represented RLC circuit is connected to the
electrical network to create a new circuit in the electrical network, which contains new parallel
RnLnCn electrical circuit with new power information Qn, Pn, Sn as illustrated in Figure 1.6.
Based on the relation between represented RLC of the new electrical appliance with differences
in power Qn, Pn, Sn from the point (P0, Q0) of working appliance 1, there are six types of event
with three turning on events and three turning off events as illustrated in Figure 1.6. Moreover,
events ON can be matched with events OFF in five pairs: (ON-1, OFF-2), (ON-1, OFF-5), (ON-
3, OFF-2), (ON-3, OFF-5) for electrical appliances that have XLn smaller than XCn, and pair
(ON-6, OFF-4) for electrical appliances that have XLn larger than XCn.

Figure 1.6 (a) Parallel RLC model of electrical network after turning on the second appliance;

(b) Six types of appliance based on power change dS, dP, dQ = dQL - dQC

1.3.2. Steady-state signatures

Power change

Most common examples of steady state signatures are the changes of real power (ΔP) and
reactive power (ΔQ) after a changing status in appliance. Some appliances having only two

 Chapter 1. Introduction

13

states ON and OFF are called ON-OFF appliances. Some other appliances having many states
in their operation are called multi-state appliances or finite-state appliances. As shown in Figure
1.7, the difficulty in classifying finite-state appliances is that such appliance can work as either
an ON-OFF appliance or a multi-state appliance depending on its operation mode. Another
complex finite-state appliance example is a fan with three levels of the speed forms a 4-states
appliance. However, this appliance has many complete operation modes by many different
combinations of transition powers.

Figure 1.7 (a) ON-OFF appliance water pump and (b) 3-states appliance water boiler

Figure 1.8 ΔP-ΔQ plan of some house appliances

Some NIALM algorithms only need the change in real power to disaggregate total power and
classify appliance. Parson et al. [13] and Kolter et al. [14] used only the real power changes to
classify appliance using the statistic HMM algorithm. Baranski et al. [8] proposed using Genetic
Algorithm (GA) for pattern detection based on a series of real power in 1-second time resolution.
His method can also work on finite-state appliances. However, only real power method is not

 Chapter 1. Introduction

14

enough to distinguish appliances that have the similar real power. In order to solve this problem,
many researches [6] [7] used both real power and reactive power in ΔP-ΔQ plan to classify
appliances. Figure 1.8 shows the principle of this approach. In order to enhance the NIALM
accuracy, Leeb et al. 1995 [6] proposed using power information in third harmonics to enhance
the accuracy of appliance classification. C. Laughman et al. [7] even proposed using ΔP-ΔQ
plan of up to seventh harmonic to distinguish loads.

Current and voltage

Waveform of current has been used as a steady-state electrical signature. In a research in
2004, Lee, W. et al. [20] explored that current waveforms are different between appliances and
they can be used for classifying appliance. Moreover, Suzuki, Kosuke, et al. [10] used current
waveform to disaggregate power base on integer programming method. First, they collected a
period current waveform of many appliances including their operation modes. Next, overall load
circuit is represented by a current waveform (in 1 period) which is the total of all current
waveform of working appliances and a disturbance value generated by noise or unknown
appliance. Finally, an integer quadratic programming problem is solved to estimate the working
appliances, which minimizes the disturbance value. Cox, Robert et al. [9] used only voltage
measurement in high frequency to classify appliance. Ting, K. et al. [21] also proposed using 2-
dimensional voltage-current trajectories under start up and steady-state condition to distinguish
appliances.

Many NIALM researches worked on voltage noises in very high frequency [11], [12], [22].
These steady-state signatures are potentially the most useful information to classify appliances
accurately. That can solve the problem similarity in power based NIALM approaches. However,
this approach needs expensive hardware, which is able to extract small signal in high order
harmonics. Moreover, voltage noises caused by appliance are very small and easy to be
interfered by noises from environment.

1.3.3. Transition-state signatures

Transition state signatures are another type of electrical features extracted from electrical
network. Most of transition signatures occur in a very short instant (milliseconds) or in high
order harmonics. Such signatures are more difficult to be extracted than steady state signatures
because measuring them requires high frequency data sampling in acquisition hardware.
However, they add more supplement information to classify more appliances.

Shape of transitions

Some examples of transition-state signatures are start-up current and power transients with
features current spikes, size, duration, shape of the transitions. Wang et al. in 2012 [23]
decomposed power consumption to two basic shapes triangle and rectangular. These basic

 Chapter 1. Introduction

15

shapes then can be represented by data such as start-time, peak-time, peak value, steady-time
and steady power in a two graphic units, which is call a schematic diagram.

Voltage noises

Patel et al. [11] developed a device to measure electrical voltage noises in high frequency
sampling in both steady and transition states. Their research shows that electrical noises in
transition state have rich frequency spectrum varying from 10 Hz to 100 kHz as illustrated in
Figure 1.9. This frequency spectrum depends not only on the load characteristic but also depends
on the mechanic architecture of the switches, and the length of electrical lines. Therefore, this
is also a potential approach to distinguish same kind appliance located in different rooms.
Moreover, this noise can be measured from any electrical outlets at home.

Figure 1.9 (a) Transient voltage noise signatures of turning ON event of a light switch, (b)

Steady-state continuous voltage noise signatures of some home appliances [11]

1.4. The trend of NIALM technology

The revolution of electronics and telecommunications is changing the application and the
architecture of NIALM system. In this section, we will discuss about some important
technologies and their impacts on the NIALM then figure out the perspectives of future NIALM
smart meters

 Ubiquitous computing (ubicomp)

This concept means that computing can appear anywhere in human life in any devices, any
format. Some involved technologies are Internet of Thing (IoT) and Wireless Sensor Network
(WSN). Ubicomp can have underlying technology sensors, microprocessor, network, user
interface etc. An example of ubicomp is the LG Smart ThinQ LFX31995ST Refrigerator [24],
which can monitor its performance, energy consumption, weather and track the food freshness,
daily receipt and notes. When all home appliances support ubicomp technology, they can record
their power consumption and customer behavior by them-selves. NIALM can be applied there
to disaggregate power consumption of all electrical devices inside that appliance for monitoring

 Chapter 1. Introduction

16

and maintenance purposes for example the pumps, lights and fans inside the smart refrigerator.
Information about their power consumption and the temperature inside the refrigerator can give
us health status of the refrigerator. So that, for the smart appliance like that, a small stand-alone
low cost NIALM meter is more reasonable than the expensive NIALM system.

Cloud computing

Cloud computing technology has been applied into many commercial smart products.
Instead of using a computer to process the complex applications and store database, cloud-
computing devices can send data to be processed and to be stored in the server. This technology
helps the service supplier to upgrade and maintain the system much more easily and more
economically. Unfortunately, in NIALM domain, storing power consumption data for millions
houses for months or a year is not practical so that current smart meters only send very slow
sampling rate aggregated power consumption to reduce the size of transmitted data. This limits
the capacity of NIALM to disaggregate more appliances. The reasonable solution is that future
NIALM meter can do the preprocessing and event detecting by themselves to extract more
electrical signatures with time-stamped events. Then cloud computing is applied to let the server
disaggregates total power using event data and do other utility services such as creating detail
electricity bill, data statistic.

System on Chip (SoC)

The last recommended technology for the future of NIALM is System on Chip (SoC). This
is single special integrated circuit, which is embedded inside all components to be able to run as
a computer. SoC now may contain not only memory, processor unit, input output interface,
timing sources, power manager unit; but also communication interface units such as USB,
Ethernet, UART, SPI, Wi-Fi module, and real world interface such as temperature sensor,
Analog to Digital converter, GPS etc. Some new SoCs also have special reprogrammable
hardware named Field Programming Gate Array (FPGA). System on Programmable Chip
(SoPC), which can be constructed to complex custom Digital Signal Processing (DSP) hardware
to accelerate the computing for instance Zynq-7000 family of Xilinx [25]. Such a SoC includes
a Processing System part and a Programmable Logic part. Processing system part includes dual-
core ARM Cortex A9 with cache, memory, communication interfaces etc. Programmable Logic
FPGA is programmed by using Hardware Programming Language (HDL). HDL is the special
language to create the electronic circuit inside FPGA such as a filter, a microprocessor, a video
processing hardware unit etc. Therefore, SoC is potential real future for NIALM and all
algorithms can be implemented inside a chip. While the microprocessor processes the simple
function, the hardware part (FPGA or DSP) will handle and accelerate the hard constraint and
complex algorithms. SoC is also used to name the methodology that develops hardware and
software in parallel in a system.

 Chapter 1. Introduction

17

1.5. Thesis contributions

1.5.1. Context

This research belongs to the CoCoE project (Contrôle de la Consommation Electrique dans
les bâtiments) of ARCSIS (Pôle de compétitivité Solutions Communicantes Sécurisées) and
CIM-PACA Design Platform. Partners of this project are EpOC (URE UNS 006) and IM2NP
(UMR AMU 7234) laboratories, Qualisteo and RivieraWaves companies. The objective of this
project is to develop an innovative, non-intrusive and communicating solution for electrical
energy measurement in the building. Today, optimizing energy in building is based on the total
electrical power consumption, with no detailed information about power consumed in individual
appliances. Thus, solution so far needs complex systems with many meter and sensors, which is
incompatible and inconvenient with existing building.

The problematics, which must be solved by the CoCoE project, are that the electric power
consumption information is less accessible, not in real-time without any information about kind
of appliances and usage, even with the Linky future smart meter. This can be solved by using
NIALM technology implemented into FPGA and with the development of remote wireless
sensors. There are two other PhD students working on this project in developing these new
sensors to measure electrical current and other electrical signatures (Cifre thesis with Qualisteo
company) and modeling and optimizing wireless communication systems (Cifre thesis with
RivieraWaves company). The CoCoE project received an award during the World Efficiency
Congress (Paris, October 2015): “Lauréat du Trophée de la Recherche Publique Energie-
Climat-Environnement”, given by ADEME and the two magazines EnergiePlus and Mesures,
in the topic of Energy efficiency. Moreover, CoCoE is a building block of the “Smart Campus
Nice Sophia Antipolis” project, which has been labialized by the French ministry of economy
on the national industrial plan on smart grid.

1.5.2. A real-time innovative NIALM proposal

The thesis proposes a development of an innovative NIALM system based on SoC, which
can solve some challenges in electrical power measurement and optimization. The performance
of system was analyzed and validated according to the NIALM public data set REDD
(http://redd.csail.mit.edu) to prove that they can solve well above technical challenges in
NIALM technology. The system can enhances the precision or accuracy of the energy estimation
to reach more than 80% of classification of the total power by solving several challenges
including:

 Extraction of more electrical signatures to improve distinguishing similar appliances.
They are changes in real power, reactive power and Total Harmonic Distortion (THD)

 Chapter 1. Introduction

18

of current as well as the shape information of transitions including maximum and
minimum values of real and reactive power in the transition and the duration of the
transition.

 Detection of slow transitions in variable load appliances.
 Detection of simultaneous transitions to avoid missing event
 Detection of multi-state load appliances, which can have many states in their operation.

Moreover, attempting to solve these challenges requires carefully examination of the timing
constraints of the system because we have mentioned the possibility for the user to get a real-
time feedback of the effect of his behavior. Typical timing constraints are 5 seconds maximum
response time or maximum delay between a real event and its display in the Graphical User
Interface (GUI) and 200 milliseconds minimum duration between the detection of two events.
Apart of performance constraints, technological and economic constraints cannot be ignored.
To get a stand-alone, low cost, compact system, the implementation (hardware platform design)
must also cope with other constraints including a low cost (more or less than $150), a low power
consumption (more or less than 80 Watt), the ability to disaggregate 80% total power
consumption and dimensions compatibles to fit on the breaker panel. Regarding of these
constraints, SoC technology is a good candidate to solve that big challenge, except that hardware
and software system design in SoC is not an easy task to be achieved.

1.5.3. A HW SW co-development methodology for rapid prototype

The second important contribution of this research is to propose a hardware-software co-
development methodology aiming to develop the ability to rapidly prototype the hard real-time
constraint SoC system using LabVIEW FPGA [26]. The thesis will present the use of
Synchronous Dataflow (SDF) model as a user case of applying SDF model for hardware
software co-development in FPGA SoC. Such approach proves that it is suit in developing a
NIALM system and very effective in analyzing the performance in hard real-time constraint
system. This model-based SoC design approach uses libraries supported in LabVIEW FPGA in
both sides: the rich C, RTOS libraries for software development and the ready National
InstrumentsTM reused Intellectual Properties (IPs) for hardware development. Thus, software
and hardware co-developing using LabVIEW is boosted in time from the system design.

Moreover, customized FPGA IPs can be developed in several ways: using Xilinx System
Generator or HDL manual coding. These IPs then can be integrated to the system by two useful
tools: the Component-level IP (CLIP) and the IP Integration Node. These tools are especially
vital when supported IP libraries do not satisfy hard constraint functions. Another advantage of
this methodology is the possibility proceeding quickly to architecture exploration because
partitioning of the functions in hardware or software can be easily investigated. A C/C++
software developer can appreciate the hardware interface API, which is created by the C API
Interface tool in the C/C++ Eclipse programming environment, while a LabVIEW developer
can use the interface in the LabVIEW environment. Whatever the environment, the SW/SW
interface, HW/HW interface, and HW/SW interface mainly affects the memory and latency of

 Chapter 1. Introduction

19

the system that can be analyzed in guide of the system constraints. This approach then enables
rapid architecture exploration in order to boost the hard real-time constraints satisfaction by the
FPGA and the CPU cooperation, reducing the time to market, which is another major constraint
for companies.

1.6. Thesis Organization

The thesis has four chapters, which presents in the deep research about the NIALM
technology from defining the drawbacks of this technology and their future in the support from
the evolution of electronics and telecommunications to propose an innovative NIALM system.
In order to develop such a system, the thesis presents base knowledge of embedded system in
SoC development methodology, Model of Computation (MoC), and languages and tools. The
HW SW co-development methodology to prototype rapidly the NIALM system based on SoC
technology is also presented in the document. Then, the thesis also presents the application
model for the NIALM meter using many MoCs: the dataflow, synchronous dataflow and
statechart model. Finally, results of our experiment work will be presented in the end of the
thesis. Detailed contents of each chapter are specified:

Chapter 1 states the motivation of the thesis on engage people in saving electrical power.
We then focus on investigating the NIALM technology- an innovative technology in monitoring
power usage on individual appliances in the building. The chapter will present quite deeply
about the principle of NIALM approach with their advantages, state of the art of NIALM with
remain challenges and predicting the trend of this technology.

Chapter 2 presents about many theories in developing a SoC embedded system. Reader can
also find useful knowledge about the architecture independent design and the model of
computations (MoCs). MoC can help developer in finding the best architecture for system early
at design step. This capability can increase the productivity, optimize resource, and improve the
performance to save cost and time from development to market of product. Introduction about
design languages and EDA at each design level of system will be presented at the end of this
chapter. This chapter also describes a hardware-software codevelopment approach aiming to
rapid prototyping SoC application with hardware acceleration using FPGA. In this approach,
we also propose to use synchronous dataflow model to model the system because this model
can support well allocating memory and scheduling the operation of system in compilation time
in multi processors architectures.

Chapter 3 focuses on the development of algorithms for NIALM application. First, we
present a system specification of innovative NIALM system, which can solve many challenges
of NIALM technology in extracting more electrical signatures, detecting multi-states appliance
and aiming to the development of real-time NIALM system. Then, information about the
Cumulative Sum (CUSUM) event detection and Genetic Algorithm-based disaggregation
algorithm will be presented. The chapter also presents some functional verification results in
processing a public NIALM data set REDD to analyze the accuracy of system.

 Chapter 1. Introduction

20

Chapter 4 presents the use cases of MoC approach and HW/SW system design methodology
in chapter 2 to develop a Real-time NIALM SoC based system, which focuses on analyzing the
architecture exploration to satisfy the system requirements. The chapter also presents some
detailed experimental prototypes of the system to give us some important conclusions and the
road to continue to make a real commercial NIALM product.

21

CHAPTER 2. SYSTEM MODELING FOR EMBEDDED SYSTEM

Contents

2.1. SoC, SoPC and FPGA

2.2. System development of SoC

 2.2.1. Algorithm optimization
 2.2.2. SoC design flow
 2.2.3. SoC development approaches
 2.2.3.1. Board-based design

 2.2.3.2. Virtual platform-based design

 2.2.3.3. Model based design

2.3. Model of Computation

 2.3.1. Finite State Machine
 2.3.2. StateChart
 2.3.3. Dataflow modeling
 2.3.4. Kahn Process Network
 2.3.5. Synchronous Data Flow
 2.3.6. Structured Dataflow
 2.3.7. Reactive Process Network
2.4. Languages and Development tools

 2.4.1. System design tools
 2.4.2. Model-based design tools
 2.4.3. Architecture design tools
 2.4.4. RTL design tools
2.5. HW SW co-development approach for rapid prototyping

 2.5.1. Modeling executable specification of RPN system
 2.5.2. Architecture exploration
 2.5.3. Hardware Software co-development
2.6. Conclusion

Abstract:

Most of complex DSP systems are Reactive Process Network (RPN) systems, which contain both

event control processes and data streaming processes. The objective of this chapter is finding

out a development methodology to develop a Reactive Process Network system in SoC with

FPFA acceleration. Therefore, we investigated various development approaches, many MoCs

and development tools. Finally, we proposed new hardware and software co-development

approach aiming to rapid prototyping a RPN system.

Chapter 2. System Modeling for Embedded System

22

Chapter 2. System Modeling for Embedded System

23

2.1. SoC, SoPC and FPGA

SoC

Today, SoCs systems contain most of essential elements to be able to develop a complete
system just in a single chip: one or many programmable processors, memories (cache, RAM,
Flash, DMA), complex buses (processor bus, peripheral bus, communication bus) and many
kinds of real world interfaces (temperature sensor, ADC blocks, DAC blocks etc.). Moore’s law
is still valid in stating that the number of transistor in a chip doubles every 18 months period.
The integrated circuit has passed ultra-large-scale integration with more than 1 million
transistors in a tens nanometer technology chip and now turns to the stage of three-dimensional
integrated circuit (3D-IC) [27]. Thus, complex SoCs with multi-core processors are used broadly
to increase the system performances. Some SoCs may also have special functional units
optimized for specific applications such as energy metering integrated HW, audio
decoding/encoding, graphic acceleration, and power management unit. However, the higher
integration scale the SoCs are, the higher active power the SoCs consume, that makes
temperature in SoCs to increase and increases their leakage power.

SoPC

The SoPC concept came from FPGA research domain with the possibility to develop a soft-
processor based on the huge programmable hardware elements in FPGA for control
applications. Such control applications involve looping and interrupt programming to react to
input events that are better processed in software on conventional processor rather than in
configurable hardware in FPGA. Thus, two most famous FPGA vendors, Xilinx and Altera,
supplied some synthesizable processor cores (soft processor) such as the MicroBlaze of Xilinx
and the NIOS of Altera. Moreover, there are also various synthesizable processor cores
developed by the community of developers, which may open to be used in any applications and
can be found in [28]. However, synthesizable processor cores do not satisfy the requirements in
most of products with high performance and low power consumption. Thus, newest FPGAs
have integrated real processors (hard processor) core into FPGA for example Xilinx has the Zynq
IC with dual core ARM processors embedded into the FPGA platform [25].

SoCs are still developed for some objectives including very high-speed interconnection as
network-on-chip (NoC), hundreds or more processors, optical communication interfaces, GPS
etc. Integrating FPGA into SoC may be the most important evolution of SoC, which provides
developers a powerful tool to develop, and analyze the integration of new specific hardware
units to accelerate the performance of their application. This feature of course may not give the
best solution to get a system with the highest performance and the lowest power consumption
but it can help the company to avoid expensive Nonrecurring Engineering (NRE). NRE relates
to the total cost in researching, developing, designing and testing a new product, which may be
very expensive because of the large number of iteration during the development cycle. NRE

Chapter 2. System Modeling for Embedded System

24

only stops when final product is manufactured and put to market. Unfortunately, NRE in a
development of specific applications without standard supported SoCs is still very expensive
because some specific hardware IPs are not supported in any current SoCs. Thus, FPGA is
necessary to give us a programmable architecture, that supports quickly changes and analyze
the customer’s hardware functions before prototyping the product.

Figure 2.1 A generic structure of FPGA

FPGA

FPGA is the lowest cost solution in developing specific customer functions in hardware,
which are not supported in current SoCs. Figure 2.1 shows the general structure of a FPGA that
has a rich hardware resources as configurable logic blocks (CLB), I/O blocks and programmable
interconnects. CLBs contain basic logic cells AND, OR, NOT, Flip-flop which are used to create
combinatorial or sequential logic circuits. Modern FPGAs also contain Memory (blocks RAM),
DSP blocks and hardware-embedded processors to improve the performance of computations.
These resources are surrounded by a dense grid network of programmable interconnects which
are controlled by configuration memory in FPGA to connect hardware resources together to
create functions in digital circuit. Moreover, the configurable I/O blocks in direction and voltage
level of this technology gives developers the flexibility in placing and routing PCB boards.

Because hardware functions in FPGA process much faster than in processor, FPGA functions
are often used in specific high performance applications that require very high speed processing.
In NIALM system, some complex features must be extracted from electrical appliances in very
high sampling frequency: high order harmonics or information of events. The strict timing
constraints of such system surely require a high throughput processing that cannot be achieved
by conventional microprocessors. Figure 2.2 shows an example where parallel processing in
FPGA hardware improves performance 19x compared to a standard DSP processor. That is

Chapter 2. System Modeling for Embedded System

25

because DSP processor needs many loops to process an algorithm while FPGA can express in
parallel this algorithm in using more hardware resources but improving performance
dramatically.

X X X X X

+

R
e

g

C0 C1 C2 C3 C58

R
e

g

R
e

g

R
e

gData In

Fully Parallel Implementation

(Spartan 6 FPGA)

Reg

+

X

Data Out Data Out

Data In

Coefficients

Sequential

(Standard DSP Processor)

Single MAC

Unit

390 MHz

1 Clock Cycle
= 390 MSPS

1,2 GHz

58 Clock Cycles
= 20 MSPS

 Figure 2.2 Performance comparison between DSP processor and FPGA [29]

The main idea behind FPGA is the ability to program hardware resources using HDL
languages. These languages allow developers to program the configuration memory to connect
hardware resources in FPGA device together to create a complex digital circuit only by writing
codes. Popular HDL languages for “hardware coding” so far are VHDL, VHDL-AMS, Verilog,
Verilog-AMS, SystemC, and SystemC-AMS. Moreover, there are also many model-based
approaches to develop FPGA functions such as MATLAB HDL coder, Xilinx System Generator
in Simulink, LabVIEW FPGA. These languages will be discussed in detail in coming section.

2.2. System development of SoC

2.2.1. Algorithm optimization

In many high-level analysis tools such as MATLAB, Scilab, and Octave, developers can use
matrix mathematics, built-in signal processing or graphic libraries to quickly model and analyze
algorithms. MATLAB can process a matrix array with memory size up to 8 Gigabytes in 64-bit
Window XP running 64-bit MATLAB and this value is up to about 260 MB in Scilab. However,
such original algorithms often consume a lot of memory and they do not suit to be implemented
into SoCs. In most of DSP systems, developers always have to collect processes, present and
analyze data in various formats to get more knowledge about the object. Such complex systems
may contain some parts, which have requirements to process and transmit data stream in a very
short time. Developers can solve these requirements easily if they select powerful platforms to
implement these complex algorithms. However, SoCs do not support well matrix computing on
their limited resources so that developers cannot use the same algorithms developed in

Chapter 2. System Modeling for Embedded System

26

MATLAB. Developers then need to analyze and select algorithms, which satisfy system
requirements in resources usage, power dissipation, latency of each function and global timing
constraints.

Figure 2.3 Online algorithm and offline algorithm

Figure 2.3 shows two algorithm types: offline and online algorithms; and processing online
algorithm requires less memory and power processor than their offline versions. Thus, online
algorithm can be used to optimize both timing and resource usage requirements in SoC system.
A following simple example of computing average value in online and offline algorithm is
shown below:

%% generate database
size = 100000;
data = rand(1,size)*100;
%% MATLAB offline code
tic();
a1 = data;
b1 = mean(a1);
t1 = toc();

b1 = 50.1136;
Memory size: 800016 bytes

Processing time: t1 = 0.026 seconds

%% MATLAB online code
tic();
s = 0;
for i =1: size
 s = s + data(1,i)*100;
end
b2 = s/size;
t2 = toc();

b2 = 50.1136
Memory size: 32 bytes

Processing time: t2 = 0.1543 seconds

It shows that memory size usage in online version is only 32 bytes comparison to 800016
bytes in offline version. However, time processing for this online algorithm is about 59 times
slower than in offline version when tested on a standard computer. The interesting thing is that

Data package
getting

Offline version
of algorithm

Visualize and
Analyze algorithm

Sequential
data getting

Online version
of algorithm

Database of
samples

Convert

Simulation speed

M
em

or
y

co
ns

um
pt

io
n Offline

algorithm

Online
algorithm

Chapter 2. System Modeling for Embedded System

27

this online algorithm needs only 0.1543/100000 or 1.543 microseconds to process each input
signal measured in a defined sampling rate about 648 kHz. Such sampling rate is very high in
most of SoC applications. Therefore, the main objective of algorithm optimization is to find the
compromise algorithms that are able to convert to online version for processing stream data in
a resource limited SoC system.

2.2.2. SoC design flow

The design process of a SoC has changed to move from a hardware-oriented perspective to
be close to the software-dominated concern in system level design, hardware-software
partitioning decision and system architecture design. SoPC technology becomes a powerful tool
not just in developing specific hardware functions but also in exploring a system in various
architectures (one core, multi core or multi core with FPGA acceleration) to find the best one
for the product. So that, this technology may reduce the spin iteration in development works
then increasing the productivity and reducing the price of product. Figure 2.4 shows a generic
system design flow for SoC with three main steps: system specification, architecture exploration
and architecture design.

Figure 2.4 Generic design flow of SoC [30]

Chapter 2. System Modeling for Embedded System

28

System Specification

System specification is the first step to convert the system requirement of customers to a
formal document, which sets a contract between customers and developer about the system to
design. This process often starts from requirements defined as an abstract description of
customer about general functionality, performance, and budget of the system they want to
design. Thus, a system specification must formally exhibit the overall activity of the system and
then describes objects, data, events definition, and the functional decomposition with selected
algorithms for each function. Although the detailed algorithms may not be described in system
specification, some results of algorithm’s analysis should be shown to prove that they satisfy
customer’s requirements. Then this document is validated by the end-customer to decide if some
modifications in the requirement are needed, involving changes in the functions or
improvements in the algorithms. One the agreement from the customer got, system developers
can continue their works to develop the system.

Architecture exploration

Architecture exploration is a major step in SoC system level design to decide the final
architecture of the system, which includes modeling functionality of system, selecting the best
hardware architecture and hardware software partitioning. Partitioning hardware and software
will create an abstract platform of the system. This abstract platform should be executable to be
able to analyze the input-output relation and to validate the operation and communication
between functions with the system specification. From results of this analysis, developer can
find out the best architecture for system that can satisfy all required criteria relating to the
performance of the system. This selected architecture will be the “golden” abstract architecture
to drive the architecture design.

Architecture design

Architecture design contains implementation works: design hardware, software and HW/SW
interface in selected architecture from architecture exploration step. In hardware design step,
hardware designers have to transform hardware functions from the abstract level model into
Register-Transfer Level (RTL) model, which can be synthesizable. Designer can reused
hardware IPs supported by SoC vendors to optimize hardware resource and performance or they
can use RTL generated by automation generation tools. However, software design is often
developed when the design of hardware is completed because just at that time, hardware
designers can supply to software designer the API (Application Program Interface) to
communicate to the hardware design. In some modern SoC approaches, software and hardware
can be developed in parallel if hardware designer and software designer reuse standard
communication channels. Architecture design often produces a prototype, on which system
designers can validate system in real environment to assure that final products will satisfy
constraints enumerated in the system specification.

Chapter 2. System Modeling for Embedded System

29

2.2.3. SoC development approaches

Three main SoC development approaches are based-board design, virtual platform-based
design, and model-based design approach. However, both three approaches generally contain
three main processes: hardware, software and application developments, which are responsible
by system, application and implementation designers [31]. In order to handle these tasks, there
are many specific requirements for each designer:

- Application designers must have a good knowledge of structures and algorithms of the
appliance to be able to decompose it into tasks and sub-tasks. As we mentioned in
previous section, application designers are the ones who can investigate various
algorithms and do the algorithm optimization to design the best algorithms for SoC
system. Therefore, they are often required to have good skills in logistics, mathematics,
statistics, and analysis languages such as MATLAB, Scilab, Octave, …

- Implementation designers are hardware designers and software designers who have
knowledge of specific platforms and implementation methodologies with software
programming languages (e.g. C, C++, C#, Java, Basic) or HDL languages (e.g. Verilog,
VHDL, SystemC) or designing platform using CADs tool. They can implement
algorithms of application designers in a specific architecture designed by system
designers.

- System designers often have a good knowledge of system organizations, architecture of
microprocessors, hardware components, and the communication between hardware and
software. They can design architectures or platforms for the system by selecting suitable
hardware components such as CPU, UART, Ethernet etc. and the interface buses
between them and they can design the firmware to handle the communication between
hardware and applications. System designers must be able to explore and to analyze the
performances of the system in many selected architectures to select the best one, which
satisfies all system requirements. In order to do these tasks, system designers must have
strong skills in system modeling languages (e.g. Dataflow, Finite State Machine, Kahn
Process Network etc.), and system design languages (e.g. Verilog, VHDL, SystemC
etc.).

SoC development approach will define the importance and the role between these three
designer types and that will have effect on system quality. Moreover, selecting development
approach may depend on the characteristic of the system we want to design.

2.2.3.1. Board-based design

Board based design is a traditional system design approach, which the development of system
is done systematically through many processes. It starts with the platform designed by system
designer; then implementation designer will develop a real prototype for application designer
able to test applications. However, we cannot verify the system before prototyping the real

Chapter 2. System Modeling for Embedded System

30

platform, which can causes high risk in timing error between process threads in the real platform.
Some problems in hardware, software and hardware software cooperation, which have not been
covered completely in the platform design step, may appears. All designers have to work
together to fix all bugs, but they sometimes have to rebuild other real platforms. This cycle may
repeat many times and take long time to finish the product.

This method is still useful in some cases when considering an application-oriented design in
a reused HW and firmware platform, when the constraints are not too strict and when it is just a
product update for the next software version. However, such methods cannot apply in designing
complex systems with hard constraints in resource and timing of real-time processing and high
performance computing applications. That sets a big challenge in system development for such
applications from system design, hardware and software implementation, verification,
prototyping, system on chip verification to market product.

As illustrated in Figure 2.5, traditional SoC development methodologies often require
hardware designers and software designers to convert system design of system designer to HW
synthesizable codes and SW compilable codes. System designers can only test the system
running on target when hardware designers and software designer finish their work. This final
test is more difficult to define where bugs come from HW designers, SW designers or system
designers. Recognizing the bug and correcting process may require some designers to work
while the others have to wait. In other words, although software and hardware can be developed
in parallel, the complete system development is still in waterfall design flow.

Functionality
Verification

Architecture
Exploration

SW/HW Interface
Implementation

HW
Implementation

SW
Implementation

System
Specification

On-target
Verification

System
designer

HW
designer

SW
designer

System
designer

Figure 2.5 Tasks of each designer in the traditional SoC design flow

2.2.3.2. Virtual platform-based design

In architecture exploration, instead of developing real code of HW and SW in each platform
to evaluate the performance between them, developers use a special model named “abstract
platform”. Abstract platform is a system model where software elements in microprocessor,
hardware elements such as hardware IPs, FIFO memory, and communication channels can be

Chapter 2. System Modeling for Embedded System

31

modeled at a very abstract level. Such models give developers the capability to model a
technological independent system, which helps to change system architecture quickly and
flexibly. Moreover, the abstract level also helps to speed up running the system simulation
depending on the accuracy level of designed model. The specification model is the lowest
accuracy model but its simulation is the fastest one so that this model is often used to validate
the functionality of system. Simulating the cycle-accurate model is slowest but the results is
closest to real architecture so that this model is always used to exploring the architecture for
system.

Figure 2.6 Design flow of CoFluent SoC design methodology [32]

Other architecture exploration approach follows the “virtual platform based design” but with
a risk to increase the time when changing the model of function to adapt to the selected “virtual
platform”. For instance, a function modeled in C running in processors must be converted to
RTL format using HDL to be able to run in hardware FPGA. However, “virtual platform based
design” has an advantage in that the real platform is ready after the architecture exploration and
the final step in hardware software development can be boosted from the work with “virtual
platform”. Cofluent Studio gives the excellent solution for “virtual platform based design”
approach. As show in Figure 2.6, initially, SystemC is used to develop the technology-
independent architecture, which can be executed for application verification. Thanks to the
capability of SystemC, the SystemC specification model then can be quickly converted to

Chapter 2. System Modeling for Embedded System

32

variation levels of architecture model from time-functional model, Transaction-Level Model
(TLM) and cycle-accurate model.

The virtual platform can speed up the development process by giving hardware developer
and software developer a unique simulation environment to co-design hardware and software.
Limitation of this method is that the cycle-accurate model takes a long time to simulate complex
systems. Moreover, it may take a huge time to optimize system with hard constraints because
this method still cannot verify application at platform modeling step. Designers have to
reprocess all steps if some constraints are not satisfied. This method is fast when the constraints
in real-time and resource are not too strict and there are not real platforms. An advantage of this
approach is that designer can analyze system in different supported platforms to find out the best
one for system.

Figure 2.7 System design flow on Cadence Virtual system platform

An example of the virtual platform based design approach is Cadence virtual system
platform. This is a powerful commercial software, which supports rich libraries model of
hardware components [33]. They are most basic components for embedded system development
such as UART, keyboard/mouse controller, real-time clock, programmable timer, interrupt
controller, audio codec interface, programmable Led, LCD; to complex component such as

Chapter 2. System Modeling for Embedded System

33

Ethernet controller, I2C, SPI, bus controller, serial interface, buffer, memory, touch screen input,
flash memory, router, etc. This approach also supports virtualize hardware such as terminal,
Ethernet, etc. Thus, system designer can quickly design a suitable platform that application
designer will use to early develop and test the software application. In advance, system designer
and application designer can cooperate better in developing complex hardware/software system
with automated modeling and faster hardware/software debugging. Cadence virtual system uses
various languages from system design language SystemC to RTL languages Verilog, VHDL,
System Verilog, and software development languages C, C++, Assembly. As illustrated in the
design flow of this approach (Figure 2.7), software can access both emulated RTL digital
peripherals and Analog Mixed Signal (AMS) peripherals, that make simulated system works
almost exactly the same with the real system.

In open source area, popular instances of virtual platform approach are OVP, ArchC. Open
Virtual Platforms (OVP) supplies many architectures for software developers test their
applications [34]. Such platform has three main components: Open Source Models, OVPsim
simulator and Modeling APIs. Similar to Cadence Virtual system, Open Source models contains
many processor models as ARC, ARM, MIPS, PowerPC, NEC v850, and OpenRisc families
and system component models such as RAM, ROM, trap, cache, bridge, Direct Memory
Access (DMA), UART, FIFO, etc. These models can be put together to create required platform
from single to multi-core system with complex memory, cache system. ArchC is an interesting
other open source SystemC-based language [35]. It supports system developed in various
instruction set architectures such as MISP, PowerPC, 8051, Sparc, PIC16F87. ArchC can also
generate an executable SystemC model, so that designers can integrate it with other SystemC
model using transaction-level interface for the complete design process from specification,
modeling and simulation steps.

2.2.3.3. Model-based design

Model-based design is an attractive design approach, which system developer can specify a
complex system in very high-level model using built-in blocks or using system design
languages. System can be even modeled in continuous time and discrete time domain. Instead,
writing complex structure and extensive software code, which should be done in the
implementation phase after selecting a detail architecture, developers just figure out the abstract
specification for the system. Model-based design environment is also call a high-level
executable specification because it can simulate, and verify the functionalities of system in
abstract level design. Some EDAs also have automated code generation feature, which can
generate both hardware and software detail codes to be implemented on specific architecture.

The speed of system simulation varies on different system level models [31]. As we
mentioned about the level of abstraction in Figure 2.8, this verification may generate more
detailed model step-by-step for example generating RTL model from the system level design.
So, the designers can run their verification scenarios in each level of the system with an
advantage is that the system simulation runs faster in higher abstract level as illustrated in Figure

Chapter 2. System Modeling for Embedded System

34

2.8. Highest-level specification model takes shortest simulation time because this model is
untimed in both computation and communication. In contrast, cycle-accurate model (RTL
model) is cycle-timed model in both communication and computation so that system simulation
is very slow in this level.

Figure 2.8 System level models [31]

Minimizing hardware detail or technical independent in a model-based design gives
developers many important benefits:

- Developer can reuse the stable model libraries: algorithms, communication protocol,
peripheral interface, etc. from other developer groups as a powerful base infrastructure
for his design. One when the system verification is finished, developer can quickly
automated generate lower level of system for the test. Some EDA tools also support
testing system design model on real hardware directly (Simulink + System Generator).

- Model-based design approach may help software developers can study to develop a
hardware system in a short time then manager can save a lot resource usage. For
example, data flow programming with supported model in LabVIEW can help
developers who do not know about C, C++ programming, can quickly develop an
embedded system. In other example, LabVIEW FPGA can help developer, who have not
studied HDL languages, to develop RTL systems.

- Execution specification is a dynamic specification of system, which may increase the
productivity of a design. Moreover, there are more and more researches in automated
code generation from system model that allows developer a rapid prototyping system to
minimize the time to market constraint.

Chapter 2. System Modeling for Embedded System

35

2.3. Model of Computation

The development of electronic design methodology is much slower than the development of
hardware capability [36] that sets a big challenge in system design of complex systems with
difficult constraints in resources usage and timing of real-time processing and high performance
applications. That challenge goes through all steps: system design, hardware and software
implementation, verification, prototyping, system on chip verification to market product.
Therefore, a system design must also be able to help developers to find the best architecture for
the system for examples: the number of CPUs, processor speed, power and memory budget etc.
Such architecture should be reliable, resource-efficient and support a fast and predictable system
development.

System level

Behavior level

Register-transfer level

Logic level

Transistor level

Layoutlevel

Power reduction opportunities Power analysis iteration times

10 – 20X

2– 5X

20– 50% In
sc

re
as

e
p

o
w

er
 s

av
in

g

Seconds - minutes

Minutes - hours

Hours - days

D
ec

re
as

e
d

es
ig

n
 in

te
ra

ti
o

n
 t

im
es

Figure 2.9 High-level power analysis and optimization [37]

Model of Computation is an abstract specification of a computation that is critical for
functional validation, performance analysis, and then driving the system development more
productively. Abstraction level in a system depends to its complexity. From 1980s to now,
abstraction level of system model changed from Boolean expression to represent basic logic
gates; to Register transfer level (RTL) to represent medium-scale integration (MSI) circuit and
to System Level to represent complex hardware and software system. Designers can save power
consumption by optimizing system in each model level of designed system but the system level
gives designers highest opportunity to save power consumption and power dissipation on system
[37]. As illustrated in Figure 2.9, system level has 10-20x opportunity to increase the power
saving compared to 2-5x in register-transfer level and 20-50% in transistor level.

A good MoC has several requirements [38]. As shown in Figure 2.10, input parameters are
specified system requirements in resources, environment, and real-time. System resources must
include memory and energy consumption, performance of processing and communication.
Output system metrics are quality aspects and resource usage in system for analyzing system in
reliability, energy efficiency, security, memory usage and throughput.

Chapter 2. System Modeling for Embedded System

36

Figure 2.10 System resources and System metrics for performance analysis [39]

Initial MoC of system should be purely to describe behavior of system in a technological-

independent way to overcome the gap between technology development and design method
improvement. Thus, a MoC should be implementation independence, composability, and
analyzability [40]. It should describe in overall the activity of system, which is composed by
many complex functions in less detail about the platform, or architecture of the system. The
implementation independence property helps the system to be clearly designed for performance
analyzing and validation. This property is also very vital to upgrade system to the new
architecture in the next generation version. The composability of a MoC decides the possibility
in analyzing amount of resources consumed by sub-tasks and timing influence between them.
Therefore, with the MoC, we can allocate abstract resource budgets to require the
implementation follow timing and resources constraint to improve the system. The other
requirement of a MoC, the analyzability, may vary between MoCs, which depends on the
restriction of the system. For instance, Synchronous Data Flow model allows only a constant
amount of input and output token at each activity cycle so that such MoC is efficient for static
scheduling and resources allocation.

2.3.1. Finite State Machine

Operation of a system means a series of actions, which can occur regularly in specific time
or in responding to input triggers. If such actions are finite, each action can represent to a state
of the system and a finite number of states can be considered as an abstract model of the
machine-Finite State Machine (FSM). In FSM, a state is a status of a system that is keeping the
current operation and waiting to execute the next transition. A transition is executed when
system need to process a new set of actions which is caused by a fulfilled condition or by an
external event. An example of FSM is the heating, ventilation and air conditioning (HVAC)
systems shown in Figure 2.11. Such a HVAC has two state named cooling and heating

depending on the temperature sensor from input source. System is initially in cooling state and
the next transition to the heating mode when temperature value is less than 180C. In heating
state, only heatOn signal is active to heat the air in the building. Next state transient from heating
to cooling occurs and heatOff is active to turn of the heater source when temperature value is
higher than 220C.

Chapter 2. System Modeling for Embedded System

37

The mathematical model of computation of FSM can be defined by five elements [41]
(Q, Σ, Δ, δ, q0) where

- Q is a finite set of states
- Σ is a set of input symbols
- Δ is a set of output symbols
- 𝛿 is a transition function mapping 𝑄 × Σ to 𝑄 × Δ
- 𝑞0 is the initial state, 𝑞0 ∈ 𝑄

If  is a function of output q0, two FSM types can be classified depending to the relation
between output and input. If only current state effects on output or (: Q  Δ), this defines a
Moore machine. If output is a function of both current state and inputs (: Q x Σ  Δ), this is a
Mealy machine. The main difference between such two models is that Mealy machine responds
to the input immediately. Conversely, the Moore machine does the respond when system
changes to the next transition. In diagram, Mealy machine labels the outputs in arcs (transitions)
while Moore machine labels the outputs in nodes (state). In fact, designer can transform a Mealy
machine into Moore machine. However, system uses loops to check current state and input value
to determine the next state so that it repeats the action in current state every iteration. Thus,
Moore machine consumes more resources than Mealy machine.

Current
state

Input condition Next
state

Respond
action

Cooling Temperature > 18 0C Cooling -

Temperature ≤ 18 0C Heating heatOn

Heating Temperature < 22 0C Heating -

Temperature ≥ 22 0C Cooling headOFF

Cooling Heating

Temperature ≤ 18 0C / heatON

Temperature ≥ 22 0C / heatOFF

Figure 2.11 Mealy FSM model of a HVAC system

Current
state

Action Input condition Next state

Cooling heatOff Temperature > 18 0C Cooling

Temperature ≤ 18 0C Heating

Heating headOn Temperature < 22 0C Heating

Temperature ≥ 22 0C Cooling

Temperature ≤ 18 0C

Temperature ≥ 22 0C

Cooling
heatOff

Heating
heatOn

Figure 2.12 Moore FSM model of a HVAC system

Figure 2.11 and Figure 2.12 are the refined Mealy and Moore FSM diagrams of this HVAC
system to model the operation of the heating, ventilation and air conditioning (HVAC) systems,
where circles denote the states and arcs denote the transients [42]. We can see a transient 𝛿1

Chapter 2. System Modeling for Embedded System

38

associate with {temperature ≤ 18/ heatOn} where temperature ≤ 18 is a guard and heatOn is an
action. That means the condition for the transient 𝛿1 occurrence is temperature ≤ 18 and the
action in this transient activate signal heatOn to turn on the heater. If there are not guards, the
transient occurs automatically in the next operation cycle of the FSM. Such FSMs with guards
for the transition are Mealy machine; others are Moore machines. The mathematics model of
HVAC system described above is Q = {cooling, heating}; Σ = {temperature}; Δ = {heatOn,
heatOff}; 𝛿1 (cooling, temperature ≤ 18) = (heating, heatOn), 𝛿2 (heating, temperature ≥ 22) =
(heating, heatOff) where cooling is the initial state of the system.

2.3.2. StateChart

In a complex application, system specification using traditional Finite State Machine model
may be not manageable and comprehensible. David Harel in 1980s [43] invented an innovative
formalism of state machine and state diagram named StateChart with three notations of
hierarchy, concurrency and communication in complex discrete-event system. Two key
innovations of StateChart are OR state and AND state. OR state, illustrated in Figure 2.13, is
used to describe hierarchical states A and C in the transition to state B. AND state, illustrated in
Figure 2.14, is used to describe concurrent states. Because state B and C can run at the same
time with states E, G and F, then AND notation divides main block to two side A and D.
Transitions of states in each side are in sequence but two FSM A and B can run in parallel. This
feature is especially important in developing system in multi-processors architecture. It ensures
that all capabilities of parallel computing are used in the system. While conventional FSM is
neither hierarchical nor concurrent, StateChart keeps the usefulness of FSM still clearly in
complex states and transitions then improve both expressive and analyzable of a FSM
specification. In Figure 2.14, replacing eleven arcs (transitions) by only six arcs (transitions)
makes the machine much more expressive.

Figure 2.13 A basic FSM and hierarchical equivalent in StateChart with OR states

Chapter 2. System Modeling for Embedded System

39

Figure 2.14 A basic FSM and concurrency equivalent in StateChart with AND states

In 1986, Statemate is the first software, which used statechart to model complex reactive

systems [44] [45]. This software has graphic editor environment, which designer can draw
statechart to model a real system. The model in Statemate can be executed step by step, interact
to the environment emulation in designed execution of scenarios. During the execution, current
states and activities are highlighted and the results are animated to verify the activity of the
system. In addition, Statemate can produce the document, and can automatically translate
statechart into code in high-level programming languages Ada and C. This software can also
generate hardware description languages VHDL and Verilog [44]. Then, these codes can be
synthesized to run in real target as a prototype of system or in a simulation version of the target.
Although the generated codes are not always as efficient as final code, this approach satisfies
requirements in speeding up the system level verification by reducing the iteration of design
flow.

Figure 2.15 Statechart describes Soda Vending Machine with Dispensing Logic and

Temperature Control AND state [46]

Chapter 2. System Modeling for Embedded System

40

National Instruments corp. has LabVIEW StateChart module that uses to develop system
functionality in statechart model [47]. LabVIEW StateChart supplies a great environment for
developer from building executable documents for system specification to LabVIEW code
generation. LabVIEW StateChart can deploy system in various architectures from desktop PC,
micro controller to FPGAs. Figure 2.15 shows an example in using LabVIEW StateChart to
model a vending machine. A state is noted by a square block, which can contain many levels of
FSM by hierarchy capability for example the Vending Superstate is inside the Vending substate.
Two AND FSMs express concurrent feature: Vending substate and Temperature control
substate in two white square block. Actions can be launched in the transition or in a state which
makes Statechart can model system in a mixture Mealy and Moore FSM type.

In 1990s, StateChart became one diagram standard to model the behavior of system within
Unified Modeling Language OMG-UML V1.3, section 3.73 – 94, 2000. With advantages of a
very popular open modeling language in visualize the design of system; UML Statechart
diagram can model a state machine with emphasizing states of system and transition among
these states. Development tool Rhapsody supports executing a UML-statechart in many modes:
regular mode, trace mode or animation mode [48]. Developer can test in high accuracy the
behavior of system in a simulation environment, which uses the codes generated by Rhapsody
for real product.

2.3.3. Dataflow modeling

Dataflow Diagram (DFD) developed by Larry Constantine in 1974 [49] is a popular model
to develop digital signal processing (DSP) systems. This model allows visualizing the behavior
of system in a very abstract model level that emphasizes on the flow of data through many main
processes.

Figure 2.16 A simple example about dataflow diagram

A dataflow model uses only some basic symbols to present the operation of the system as
illustrated in Figure 2.16. Functions are call actors denoted by circles which may be data sources
or data sinks. File and database are storages to store data denoted by a special symbol in DFD.
A transmission or a firing is a data transmission from a data source to a data sink (other actor)
through a communication channel denoted by an arc in the DFD. Communication channels are

Chapter 2. System Modeling for Embedded System

41

always FIFO queues (buffers) to synchronize data between actors. All data transmitted by actor
in a communication channel (arc) in each computation is call a token and an actor can fire only
one token but consume many tokens in one computation. As shown in Figure 2.16, actor
function B needs two tokens from actor function A to generate only one token.

A characteristic of Dataflow model is the ability in sufficiently allocating the size of buffer
memory in communication channels and scheduling operations between actors. This feature is
very useful because time delays for computations in actors can cause the full and loose data in
communication channel. There are also some fire rules in special DFD to manage size of buffer
and scheduling the queue of flow for example the rule in KPN (Kahn Process Network) and
SDF (Synchronous Data Flow) which we will present in next sections.

2.3.4. Kahn Process Network

Kahn Process Network (KPN) introduced by Gilles Kahn in 1974 [50] is the most general
model in expressing streaming-based media and signal processing application. This is one form
of process networks, which models a system as a collection of concurrent communication
streams of data through FIFO channels. However, nodes KPN (actors) are arbitrary sequential
programs that communicate through FIFO channel using blocking read and non-blocking

write rule. Thus, during a processing in KPN nodes can either be waiting for the input or doing
computations. When a process reads data from a channel, it will create a read request and block
its computing until the data is available. In contrast, non-blocking write means the writing
immediately works and returns data to output channel. Such a simple mechanism ensures the
correctness of the mathematical condition of the process, which allows a KPN process does the
computation and writes out data right after it receives input data.

Figure 2.17 An example of Kahn Process Network

A KPN is not broken during the computation so that it is suitable for continuously executing
application. However, non-blocking writing may cause the unboundedness problem in FIFO
channels. For example in Figure 2.17, processes P2, P3, P4 in this KPN are connected via
unbounded FIFO queues created by infinite buffers. If processes P1 and P2 produce tokens at a
faster rate than they can be consumed in processes P3 and P4, tokens will accumulate on the
FIFOs (buffers) that may unbound the limited physical memory in the system. Therefore, the

Chapter 2. System Modeling for Embedded System

42

rate and the order of processes in network should be determined to reserve enough memory
needed for system.

2.3.5. Synchronous Data Flow

Synchronous data flow (SDF) introduced by Edward A. Lee in 1987 [51] is a special case of
dataflow which the number of tokens produced and consumed in each node are fixed numbers.
Thus, in such a data flow model, buffer size in each communication channel and the schedule
can be set at compiling time. Figure 2.18 is a simple example of SDF model where function A
transmits data to function B. SDF diagram adds to basic dataflow diagram with some important
information. The number of tokens (or data) consumed or produced when the node fires, are
noted at the start and the end of arcs. Delay unit in each communication is noted in the middle
of arcs and the execution time of the function is noted inside each node. These values may be
not a fixed number because each function (actor) may be complex and has some conditional
processes inside its algorithm. However, in scheduling purposes, the worst value can be
investigated and be indicated on the SDF mode. Finally, name of the channel (arc) may be
presented in a square node beside the arc.

Figure 2.18 An example of a SDF diagram

Additional information does not make the SDF more expressive but they are useful for
computing the buffer size and creating the static schedule at the compiling time. Moreover, the
independence between actors helps for exploring many architectures for the system from one
processor system to multi-processors system [52] [53] [54]. Verifying unboundedness on
communication buffers, optimizing memory resource and optimizing performance of system
can be statically set in compiling time in SDF development environments.

Unbound memory requirement

A schedule of system should define the optimum order of functions to be invoked for the
unbound memory requirement. Lee and Seshia [42] mentioned a simple rule to define a satisfied
schedule for an SDF model system by balance equation: qA.M = qB.N.

Chapter 2. System Modeling for Embedded System

43

With assuming that node A produces M tokens and node B consumes N tokens each time
they are invoked. In addition, qA and qB are the iteration numbers of node A and B invoked in
the schedule. This equation must be correct for all arcs in SDF diagram. Such equation was also
introduced by Lee in 1987 [51] in more general theory to verify the correctness and scheduling
of SDF model. Lee stated the topology matrix of SDF model where (i, j)th entry in the matrix is
the amount of tokens produced by node j in arc i each time it is invoked. For example topology
matrix of SDF model in Figure 2.18 is:

Γ = [
2 −3 0
1 0 −3
0 1 −2

]

A vector q contains the iteration number of each node in the schedule. Thus, a schedule
satisfies the unbound requirement when ᴦ*q gives a zero vector. That means balance equation
of LeeSeshia is satisfied in any arcs of SDF model. In example Figure 2.18, q can be easily
defined:

𝑞 = [
3
2
1

]

Memory resource optimizing

Two criteria in scheduling of system are optimizing performance and saving memory
resources. In order to save memory resource, Bhattacharyya et al. 1999 [55] proposed a way to
compute the maximum number of token in a schedule with assuming that all tokens have the
same memory size. Such an approach initially finds all possible schedules for a SDF system
then compute the necessary buffer size for each communication (arc) in this schedule. In
example in Figure 2.18, there are two possible schedules are S1 = {1, 1, 1; 2, 2; 3}, S2 = {1, 1,
2, 1, 2, 3}. Then max-tokens in arcs are computed by: Max-token (1, S1) = 2x3 + 1 = 7 where 3
is the times the actor 1 is invoked; 2 are the amount of tokens it produced each time and one
more token in the buffer size to avoid the unbound memory problem. Similarly, max token of
channel (2, S1) = 1x3 +1 = 4 and channel (3, S1) = 1x2 + 1 = 3. Then maximum buffer for
schedule S1 equals total number of tokens in arcs, which is 14 tokens. However, in the same
computing, S2 needs only 12 tokens. Therefore, schedule S2 is more economy than schedule S1
in memory consuming.

Performance optimizing

Optimizing performance of system depends on both schedule and execution time in each
node. Because execution times in nodes do not change by the time so that performance of system
implemented in one CPU architecture cannot optimize. However, in multiprocessor system,
pipeline technique can be used to accelerate the performance. In such case, sharing memory
must be used in multi-processing to exchange data between many processors. Unfortunately,

Chapter 2. System Modeling for Embedded System

44

sharing memory management may limit the number of processing for SDF system. In SDF
model, sharing memories are FIFOs or queues in asynchronous mode, which mean the read, and
write to FIFOs are not synchronous. However, in order to data integrity, policy of FIFO access
does not permit two writing operations or two reading operations at a time. This rule allows
when there is a reading to a FIFO; the FIFO will turn to busy status and does not allow other
reading until the current reading finishes. Therefore, in example Figure 2.19, we cannot schedule
three functions (nodes) 1 to run parallel in three processors because they cannot write data to
one sharing memory (arc 1) at a time.

Other requirement in a parallel SDF model is the firing rule of actor. It defines that an actor
can fire when and only when there are enough tokens consumed in the input channel. That means
actor 2 can fire only when actor 1 fires two times to produce enough three tokens. As the same
rule, actor 3 can fire when actor 1 has fired three times and actor 2 has fired two times. Then the
possible optimum schedule for example Figure 2.18 can be statically set to six time units as
Figure 2.19 assuming execution times of nodes 1 and 3 are one time unit and executing node 2
takes two time units. Two functions 2 can run in parallel on two processors but they cannot start
in the same time. That is because reading the FIFO in channel “subtask 1-subtask 2” may take
less execution time than one time unit.

CPU 1 1 2 3 1 2 3

CPU 2 1 1 2 1 1 2 1 1

Figure 2.19 A schedule solution for example in dual processors architecture

2.3.6. Structured Data Flow

Structured Data Flow is an extended model of Dataflow in order to make DataFlow become
a visual programming language, which can be used effectively by a broad range of programmers
in different programming skill levels [56]. Such a DF model contains all well-known
programming structures such as while loop and for loop structures, case structure, sequential
structure or if then else structures as shown in Figure 2.20. These features thus solve the limit
of dataflow model in only applying data processing application. Structured DF now can model
a mixed control and data processing application in reactive systems. Because of control flow in
structured DF, the firing rule in actor functions now can be programmed to fire in complex
algorithms. As the principle of KPN, sinking actor only run when there is at least one data token
in the communication channel. This process then writes a data token to output channel
immediately.

Chapter 2. System Modeling for Embedded System

45

Figure 2.20 Some examples of structured DF model in LabVIEW: for loop, while, if then and

case structure model

From 1986, Structured Dataflow became Graphic programming or G programming in
LabVIEW- a commercial development environment of Nation Instruments Company for
developing software or embedded applications. LabVIEW gives system designer an ideal tool
to develop an executable specification with keeping the benefit of dataflow model in modeling
the activity of a system. Current version of LabVIEW supports a huge actor functions in library
for a large range of application. An interesting feature of LabVIEW is the GUI in its design
environment allows developers interact and visual analyze algorithms in the developed system.

2.3.7. Reactive Process Network

Requirements of real-life application classify embedded system into two main behaviors:
control-dominated and data-dominated behavior. A finite state machine (FSM) which requires
very quickly reaction to random time events and irregular control signals is a famous model to
define control-dominated system. Such systems mainly focus on how the processes work in
sequential automatically (Moore FSM) or relating to input triggers (Mealy FSM). Thus, the
operation of system is organized to many states where changing between states presents the
algorithm of system. In contrast, data-dominated systems focus on data processing and reaction
time is less important. Such systems can be found in DSP systems with Fast Fourier Transform
(FFT), Finite Impulse Response (FIR) and Infinite Impulse Response (IIR) functions. Output
data of system are the results of input data after passing many transformations, which are
implementations of DSP algorithms. Dataflow model is often used to model data-dominated
systems. Such model type is can provide a clear and pure view of overall activity of the system

Chapter 2. System Modeling for Embedded System

46

where each DSP process is represented by a node in the model. However, most of real modern
systems contain both control-dominated and data-dominated behaviors with a composition of
plural processing types: control, event processing and streaming processing, which should be
modeled by a specific MoC named Reactive Process Network (RPN) [57]. Some modern
applications such as multimedia applications with stream processing audio, video data or our
NIALM application in this research are typically objects for using RPN model.

Figure 2.21 Structure of a Reactive Process Network

Figure 2.21 illustrates a structure of such applications. Stream processing is the main part of
system. This kernel must process periodic input stream in highest priority. This input stream
may be a sequence of audio signal from a microphone sampled at the rate 144 kHz, a video data
from a camera with 24 frames per second or sampled current and voltage value in defined
sampling rate. These periodic data come infinitively to the system so that they need to finish
processing it before the new data coming. The stream kernel will process periodic input data by
packet depending on the algorithm. Packet can contain one data or many data, which are
temporarily stored in a communication channel (FIFO) between processes, then decide the size
of memory consumed by process. Moreover, the duration between two continuous packet data
transmissions will affect the timing constraints for this kernel process. All characteristics
described above make SDF is a good candidate for this kernel process because this model has
efficiently static scheduling and allocating buffer memory.

Irregular input streams and input events are unpredictable data, which is impossible to define
the moment they come. They are important control signals or messages to control or reconfigure
the system that can stop the streaming process if they are signals for system reconfiguration.
Other processing to control signals can run parallel with streaming process if it is necessary.
Therefore, KPN can be used in dynamic stream processing layer and FSM can be used in control
layer with the requirement in user interaction. Such MoCs are capable to describe a data
dependent behaviors and fully asynchronous processing dynamically.

Chapter 2. System Modeling for Embedded System

47

2.4. Languages and development tools

In a design flow, system goes through all abstract levels, which require the use of various
languages and development tools. As we mentioned earlier, abstract level of an embedded
system can be described through untimed model, approximate timed model and cycle-timed
model. At the specification level, model relies on untimed models with no consideration of
timing or delay during the simulation. The objective of specification model is to give the clear
relationship between inputs and outputs for faster functional verification.

High-level programming languages are often used to model the untimed model such as
MATLAB, Simulink, and LabVIEW. These languages are widely used in heavy data processing
domain and complex reactive system such as FSM, KPN model, SDF computational models. At
the low-level, HDLs (Hardware Description Language) such as VHDL, Verilog are very popular
in developing VLSI circuits. However, complex SoCs with multi-core and the interconnection
between shared resources and components need a special language such as SystemC to specify
the architecture of system.

2.4.1. System design tools

MATLAB of Mathworks is one of the best mathematical tools to analyze and to visualize
data processed in a computation or algorithm. MATLAB uses interpreted code called M or m-
code to run directly from the working place in MATLAB environment. It strongly supports
vector and matrices mathematic with the accuracy of datatype up to double-precision 64 bit-
floating point. Two main cores MATLAB and Simulink and many toolboxes with prebuilt
functions can be used to design applications in various domains including filter design control
system design, robotic, RF design, etc. The capability of MATLAB in visualizing data help
developers quickly to analyze their algorithms; building the gold reference to verify system in
lower abstract level. Moreover, MATLAB so far has Instruments Control Toolbox, which
allows direct connecting to various instruments including oscilloscopes, function generators,
signal analyzers, and analytical instruments. Thus high-level system can be verified the behavior
in real input data before the implementation.

Another important tool in MATLAB is embedded code generation. This tool can
automatically generate C, C++ code from model designed in MATLAB or Simulink so that it
increases the productivity and quality of system by addressing specific architecture and industry
certification standards. In order to accelerate algorithms in FPGA or ASIC hardware, HDL coder
tool gives developer a very powerful capability in automate VHDL or Verilog code generation
from M code. Such worth tools save a lot of time consumed by programming and verifying
FPGA or ASIC applications in conventional way. Alternatively, besides using MATLAB,
developers can use open-source and cross-platform language named Scilab, which also supports
well modeling system level in a syntax close to MATLAB. This interesting language can be
used in signal processing, image enhancement, matrix calculation optimization, feedback
control system.

Chapter 2. System Modeling for Embedded System

48

2.4.2. Model-based design tools

Simulink and System Generator

MATLAB Simulink is a model-based design approach for designing and analysis system
with rich toolsets and libraries supported by MATLAB. In 1999, Robert D. Turney et al. [58]
introduced a new approach to generate HDL netlist design from the system level tool MATLAB
Simulink using Xilinx SystemLinx blockset. In Simulink, SystemLinx is an interface to Xilinx
Core Generator to generate HDL codes automatically. This interesting tool also supports bit-
accurate simulation and even in multi-rate clock system. In 2007, Markovic et al. [59] used
Simulink and Xilinx System Generator (XSG) to explore the best architecture for their
algorithms. XSG (new version of SystemLinx) is a collection of Xilinx function blocks
optimized for DSP design in MATLAB Simulink to model a system. Beside the capability as
SystemLinx, this tool also supports the hardware co-simulation. This important feature allows a
hardware algorithm implemented in real FPGA board can be controlled and analyzed under
Simulink environment [60].

Figure 2.22 System Generator design flow

As illustrated in Figure 2.22, the design flow of System Generator starts from developing the

executable specification in Simulink using System Generator blocksets. Logic blocksets
supported by System Generator vary from basic logic (AND, OR, NOT) to arithmetic operator
blocks, input output interfaces, DSP blocks and even the microprocessor blocks. This dynamic
system can also use traditional blocksets of Simulink for visualizing and analyzing functions.
One system is modeled and verified in Simulink, RTL codes and testbench codes can be
automatic generated to test in RTL simulators such as ModelSim or ISE Simulator. Finally,

Chapter 2. System Modeling for Embedded System

49

Xilinx Implementation Flow creates bit-stream file from these RTL codes, which is able to
download to FPGA target to test system in real platforms.

Figure 2.23 shows a simple example of System Generator in Simulink with blocks in blue square
are Simulink models and blocks in red square are System Generator models. System Generator
symbol is the configuration model for configuring the HDL generation and target
implementation. In order to run in the target, the Xilinx synthesis tool (ISE) is invoked to
generate the bit stream file for FPGA target implementation.

Figure 2.23 A simple example of modeling system with System Generator

System Generator also supports the hardware-software co-simulation mode which is very
useful for verify the correct of complex DSP algorithm in real platform. From the designed
model, System Generator can generate HDL codes, configuration files and do the
implementation to FPGA board. It also manages the interaction between designed model in
Simulink and the running system on board by Jtag or Ethernet communication. Moreover, a
completed system including microprocessor and peripherals can be modeled in Simulink by
importing an embedded design from Xilinx Platform Studio through EDK Processor block.
Developer can also monitor signals in input output port and internal signals using verification
tool Chip Scope Pro.

Although System Generator can be used in all design levels from specification, system design
to architecture and RTL implementation, this software is only useful for specification and
system design. In architecture design and RTL implementation (circuit design), this approach
focuses only on functional verification then gives developers the feel in algorithm running in
real environment so they can proceed to the resources and performance estimation.

LabVIEW and LabVIEW FPGA

LabVIEW, a term of Laboratory Virtual Instrumentation and Engineering Workbench, is a
graphical programming environment based on the dataflow paradigm of National Instruments
Corporation. LabVIEW was designed for data acquisition and control systems with a rich set of
supported hardware and prebuilt software function blocks. LabVIEW environment can run the
simulation in host computer as executable specification or can implement to specific NI target
to run the test in real devices. Moreover, LabVIEW keeps the connection of program running in

Chapter 2. System Modeling for Embedded System

50

target with GUI in Front Panel, which provides an attractive feature to make the verification in
real device easier in the visual way.

Figure 2.24 A dataflow model in LabVIEW is composed by an activity dataflow model in
block diagram and a GUI in Front Panel

As illustrated in Figure 2.24, a LabVIEW model is an integration of two separate
components:

- Block diagram object specifies the behavior of a model in two main formats: dataflow
in G code and MathScript code. G code is the original coding method in LabVIEW. This
model-based design approach is more popular than MathScript code because it can reuse
thousand functions of LabVIEW that NI optimized for various hardware platforms.
Therefore, G codes are often used to prototype the system quickly. In contrast,

Chapter 2. System Modeling for Embedded System

51

MathScript provides a text-based environment to develop the text-based signal
processing or mathematic codes, which can work on Windows or on Real-Time (RT)
targets. MathScript also has a rich function library in matrix computations, mathematic,
DSP, statics and plotting functions etc. as MATLAB.

- Front panel object is an advance feature of LabVIEW to support a user interface of
Block diagram. The Controls Palette library of LabVIEW has a lot of control
components and indicator components, which are used to develop complete application
with expert GUI in window, or to test functions. Some examples are control components
such as knobs, buttons, dials etc. and indicator components such as graphs, LEDs, meters
etc.

LabVIEW FPGA Module is an extra tool of LabVIEW to develop LabVIEW models (VIs)

that run on FPGA targets. This feature is actually a high-level synthesis language like the System
Generator in Simulink with IPs supported by Xilinx. Some of them are similar to normal
functions of LabVIEW but it can implement either in software in desktop or embedded SW in
real-time target (MCU) or in hardware in FPGA by selecting the right target to implement. Using
a unique environment allows LabVIEW FPGA is the best the hardware software co-
development tools to rapid prototype complex system with SW and hardware acceleration.
Therefore, accelerating the performance of embedded systems using FPGA is more and more
popular in LabVIEW product now.

Scicos and Scicos-HDL

Scilab has a package Scicos, which is equivalent to Simulink from Mathworks. This tool has
been used as a Rapid Control Prototype environment to develop a real-time motor feedback
control system using the open real-time RTAI Linux, RTAI-Lab package [61]. This system can
run in several embedded architectures x86, x86_64, PowerPC, ARM, m68k. Scicos has Scicos-
HDL package, which is a Digital System Design tool similar to the System Generator in
Simulink [62].This tool has basic logic models and some standard combine logics such as
Multiplexor, Encoder, Decoder, BUS etc. and can convert the model-based design to Verilog,
VHDL or SystemC code. These RTL code then can be synthesized and download to run in
FPGA target by any synthesis tools. Unfortunately, Scicos-HDL is limited in Scilab version
5.x.x, and complex logic libraries such as Xilinx IP core library does not support this tool.

2.4.3. Architecture design tools

Some conventional tools for architecture exploration are HDL languages such as VHDL,
Verilog, System Verilog and SystemC. The following example presents a simple application of
Verilog HDL language in modeling a counter in various architectures with time functional
model and simple share variables are shared between processes. In the one processor-
architecture model 1, delay 10 time-unit (#10) is the estimated time to process one loop. This

Chapter 2. System Modeling for Embedded System

52

value can be get from the estimated instructions generated from the code and the frequency of
the processor. Model 2 specifies the “enable” signal (to control the counter) in the CPU 1 and
the CPU 2 processes the counter. Different system frequency can cause the missing of the
control signal if the “enable” signal switches its status during a counting activity in CPU 2. Last
model can solve the problem of model 2 with the counter is accelerated by hardware with very
fast system clock and no sequence instructions processes as in processor.

Model 1 Model 2 Model 3
module adder_single_cpu();
reg [7:0] counter;
reg enable;

//CPU 1
initial begin
 counter = 0;
 enable =1;
 while(1) begin
 if (counter == 256) begin
 counter = 0;
 else
 if (enable = 1) begin
 counter = counter + 1;
 end
 end

 #10 ; // wait 10 time units
 end
end
endmodule

module adder_dual_cpu();
reg [7:0] counter;
reg enable;

// CPU 1
initial begin
 enable = 0;
 # 100 enable = 1;
 # 100 enable = 0;
end

//CPU 2
initial begin
 counter = 0;
 while(1) begin
 if (counter == 256) begin
 counter = 0;
 else
 if (enable = 1) begin
 counter = counter + 1;
 end
 end
 #10;
 end
end
endmodule

module hw_acceleration();
reg [7:0] counter;
reg enable, clock;

// Hardware acceleration
always @ (posedge clock)
if (counter == 256) begin
 counter = 0;
 else
 if (enable = 1) begin
 counter = counter + 1;
 end
end

// CPU
initial begin
 enable = 0;
 clock = 0;
 counter =0;
 # 100 enable = 1;
 # 100 enable = 0;
end

// Clock generator
always #10 clock = ~clock;

endmodule

Multi-cores SoC systems become more and more popular in the requirement of high
computing application so far. Modeling such a complex system cannot be handled by standard
RTL programming language like Verilog, VHDL because the gap between hardware and
software development is so big. Therefore, modeling such a SoC system needs to use more
powerful but still lightweight HDL languages which are able to model and run the simulation
for both hardware and software components. Moreover, communications between components
in multi-cores SoC are no longer a bunch of wire or buffer. Each core in this system must share
communication channel and resources for more efficient performance, which is a very hard task
and requires a heavy design in RTL programming language. SystemC addresses above problems
[63].

Chapter 2. System Modeling for Embedded System

53

Figure 2.25 Vivado HLS design flow in exploring system in various architectures [64]

Synopsys introduced SystemC in 1990s intending to replace Verilog and VHDL as input
language of logic synthesis – a High Level Synthesis (HLS) language [30] [41]. Xilinx uses
SystemC in Vivado High-Level Synthesis for their newest device such as seven Series, Zynq
and Ultra Scale devices [64]. This tool accelerates IP creation from both C, C++ and SystemC
codes without the need of RTL languages. Verifying system in a high-level language gives some
benefits. First, developers just need to focus to develop algorithm in very friendly language C,
C++ or SystemC. Second, simulation in high-level language is much faster than in cycle accurate
level. Third, using Xilinx IP generated from the tool is faster and more reliable than the RTL
manual coding. Fourth, testbench in C, C++ can represent the SW task running in processor,
which can interact to the HW in the SW/HW co-simulation. This tool helps architecture

definition in the HW/SW partitioning when we need to decide which processes are in hardware
or software. Figure 2.25 illustrates the architecture exploration capability of Vivado HSL design
flow in exploring system in various architectures such as pipelining, unrolling and interfaces.

In 2001, SystemC 2.0 introduced the Transaction Level Model (TLM) for a complex SoC
model with address management feature for bus model, creating read/write transfers in bus
master mode, modeling memory, timer and interrupt controller with a thread in the bus master
handling the interrupts. SystemC TLM supports system design and verification in untimed
accurate model simulation. Simulating this system in SystemC was around thousand time faster
than the equivalent RTL simulation [63]. SystemC is the best language for architecture
development. In other words, SystemC can model HW as well as SW components and support
the concurrent HW/SW development based on TLM as shown in Figure 2.26.

Chapter 2. System Modeling for Embedded System

54

Figure 2.26 A SoC Design Flow using TLM [63]

2.4.4. RTL design tools

Schematic CAD tools can be used to develop small-scale integrated circuits (IC) but very
difficult to handle for a very large scale integrated (VLSI) circuit design. Hardware description
Languages (HDL) is a technological-independent approach in IC design. HDL so far replaced
conventional RTL CAD in developing most of digital circuit systems. Such languages can
specify a system in many abstract levels for example an one bit ADD operator can be defined
in high level c = a +b as C language or directly in low level c = xor(a,b) or c = or(and (a, not
(b)), and (b, not(a))). However, high-level designs in HDL, after satisfying the function
verification, are converted to RTL low-level circuit. In implementation step, some synthesis
software like Synopsys Design Compiler will translate RTL model to gate-level netlist, which
is finally placed and routed system to connect CMOS gates to implement the designed RTL
model in real hardware.

Verilog [65] and VHDL [66] are the most popular industrial-dominant HDL languages now.
Phil Moorby designed Verilog in 1983 in a context that developing large-scale IC using
schematic capture software is still a hard work and expensive. Cadence Design System bought
Verilog in 1990 and put it become the IEEE Standard 1364-1995 from 1996. At the same time,
US Department of Defense developed VHDL and strongly supported it to be standard IEEE
1076-1987. In some applications, system may need to interact with analog parts in the mixed
analog and digital systems. In order to simulate some analog peripherals such as sensors, which
do conversions between two analog physic parameters, we need to use continuous model.
SystemC-AMS, VHDL-AMS, Verilog-AMS are good languages to model some blocks like
PLL, A/D converter, etc. Detail discussions about many use-cases of VHDL-AMS and
SystemC-AMS can be found in [67], [68].

Chapter 2. System Modeling for Embedded System

55

HDL languages are often used in traditional FPGA design flow as presented in Figure 2.27.
The hardware circuit is specified by a digital circuit schematic or by a hardware description
language (text-based method). Design then needs to be verified in simulation tools such as
Xilinx Simulator, ModelSim etc., which support the functional and timing simulation in various
levels: behavior level, RTL level, or timing level.

- Behavioral description is the highest design level, which is used to specify the operation
of an algorithm, the activity of a system or the protocol of a communication bus. In more
detail, behavior model of a system can be the function description, a FSM with general
type of input, output and internal variable such as integer, float, char, etc. A behavioral
model may be not synthesizable and only be used to simulate and verify the activity of the
system.

- RTL description requires more detailed description in a synthesizable structure where
system is described as combinatorial or clocked processes. RTL design contains variables
and input, output ports in bit type and defined size such as signals or buses of signal (of
combinatorial processes), or registers or buses of register (for clocked processes).

- In FPGA implementation, timing level description is the result of synthesis and mapping
process of a design in a specific platform. Synthesis tools convert RTL design to other
RTL design, which uses specific component of selected platform such as LUT, BRAM,
and DSP blocks to model the circuit. Such model thus contains detail real delay
information as in the real system that can be used to do the last verification before
implementation. System verification in this level is slowest but it is still faster and signal
traceable than on-target testing.

Figure 2.27 Traditional FPGA design flow in RTL

Design

Verification

Design

Entry

Design

Implementation

- Optimize

- Bitstream

Generation

Function

Simulation

Back

Annotation

- Mapping

- Placement

- Routing

Download

to FPGA

- Function and timing

Simulation

- In-Circuit Verification

- Schematic Entry

- Test-based Entry

Chapter 2. System Modeling for Embedded System

56

After the functional and timing verification, many optimization steps can be done in mapping,
placing and routing using compilation tools. These tools then generate a bit stream file that
contains the configuration of the system to be able to download into the FPGA target. Finally,
verifying system in real target can be done by specific tool such as ChipScope Pro of Xilinx,
which works as the logic analyzer equipment to trace necessary signals.

This FPGA traditional design flow approach is still popular used to design and optimize a
system in performance and power usage because developer can manually and directly drive the
synthesis, the mapping and routing process. However, in complex DSP applications with
hardware acceleration, this method is not convenient because it cannot visualize the analysis’s
results of DSP’s algorithms and hardware-software cooperation.

After investigating many languages and tools, which can be used to develop Reactive Process
Network based on SoC, we summarized them according to the design level they can support in
developing an embedded system in SoC, as illustrated in

Figure 2.28. It shows that the LabVIEW FPGA may be the best tool for hardware software
co-development. This language supports well model-based design approach many analysis
functions, GUI, IPs library to quickly develop a system from the specification to prototype.

Specification

System Design

Architecture
Design

Implementation

Scilab/R/
Octave

Verilog/
VHDL

SystemC Matlab,
Simulink,

Xilinx System Generator

Labview,
Labview FPGA

Cost

Design level Software design
Hardware design

Figure 2.28 Comparison of hardware and software design capacity in some popular languages
and tools

2.5. HW SW codevelopment approach for rapid prototyping

The board-based approach consumes longest time because it has to process each step of the
system development in sequence. That means only when system designer finish their work,
hardware designer can develop the real platform for the software designer to implement the

Chapter 2. System Modeling for Embedded System

57

application. Some system problems may only occur after the first version of system is complete
and system designer, hardware designer and software designer may have to repeat their process
to repair that system problem. Therefore, such traditional approach may be too expensive and it
suits only to the simple application. Virtual platform-based approach can overcome the
drawback of board-based approach in complex system by using an abstract model of various
architectures so that software designer can validate their application running in the virtual
platform before running in the real-platform. However, this approach has other drawback. It still
takes a lot of time to transform system designed in such approach to the version, which can run
in the real-system.

Solving above challenge is the objective of this research. In this section, we propose a model-
based design approach to rapid develop a Reactive Process Network system in complex SoC
using tools LabVIEW and LabVIEW FPGA. This approach is very interesting because system
designers can do all the steps in developing a SoC system by him-self from system specification,
architecture design to developing and prototyping the system. This method will be useful and
economy for some people:

- Developers and researchers who want to quickly develop, analyze and demonstrate their
complex RPN system in real SoC without the need to have hardware/ software design
skills (HDL languages, C/C++ languages). With this approach, they just need to focus
on developing their algorithms and system architectures that saves a lot of time and
money.

- System developers, who are working on projects with difficult requirements in
performance, power consumption and short time to market.

As shown in Figure 2.29, the design flow of this approach has three steps:

- System Specification is the first step to specify the overall activity of the system. In order
to model the RPN system, both three types of MoC: dataflow, SDF and StateChart model
are proposed. In advance, the RPN model developed in Labview can be executable to
present better the overall activity of final system.

- The SDF model, which is used to model the data streaming processes in the system
specification, can be used for architecture exploration. As shown in Figure 2.29, there
are a few modifications in the codes for the Labview able to generate the code, which
are runnable in selected architecture SoC. However, it requires changing the valid FIFO
communication type in each target. The Target Scope FIFOs are used to transfer data
between HW IPs in FPGA; the RT FIFOs are used to transfer data between SW IPs in
processors; and the Host to Target DMA FIFOs and Target to Host DMA FIFO are used
to transfer data between HW and SW IPs.

- Co-developing software hardware is the prototyping step in this system development
approach. This step supports quickly convert selected architecture design from previous

Chapter 2. System Modeling for Embedded System

58

step to prototype a real RPN system. Moreover, it is possible to improve the software of
the system by using C text-based programing for software elements and to improve the
hardware of the system using manual HDL coding or HDL coding generated by System
Generator tool.

System Services (Networking and I/O
Protocol task)

C
 A

PI
 in

te
rf

ac
e

to

FP
G

A
 (

ge
n

er
at

ed

b
y

La
b

vi
ew

)

FPGA core
Application

Tasks

NI reused IPs

VHDL
IPIN

CLIP

System
Generator,

Manual coding

DSP Tasks

Communication Tasks

IO Interface
Tasks

Real-time Operation System

ARM Processor

3rd party IPs
Labview Realtime

T1
T2

T4

SW-IP HW-IP

Application
Tasks

Labview FPGA

C/C++ Programming

SW/SW Interface (Communication API)
HW/SW Interface (Memory-mapped data transfer)
HW/HW Interface (Wires or FIFOs)

SW IP
HW IP

Sub-tasks

Tasks

Application
Tasks

HW/SW CoDevelopment

System Specification

Zynq SOC

Architecture Exploration

T3

Target Scoped
FIFO

Host to Target
DMA FIFO

RT FIFO

Executable
RPN Model

Dataflow
Model

StateChart
ModelSDF Model

Figure 2.29 SoC development approach aiming to rapid prototyping RPN systems

Chapter 2. System Modeling for Embedded System

59

2.5.1. Modeling executable specification of RPN system

Modeling an activity dataflow model

LabVIEW is a potential environment for rapid developing of a Reactive Process Network
(RPN) as the NIALM system in our research. As shown in Figure 2.29, this approach models
the executable specification using three MoCs in system design: modeling activity of system in
dataflow, modeling event-based processes of system in StateChart and modeling Synchronous
Dataflow model of data streaming process for memory allocation, scheduling and architecture
exploration. That thanks to graphic programming approach of LabVIEW, which can also model
almost exactly, some dataflow models based MoC such as Process Network (PN), Finite State
Machine (FSM), and Synchronous Dataflow (SDF).

MathScript

Formula node Script node

Figure 2.30 MathScript, Formula node and Matlab script node in modeling a function in

LabVIEW

At the beginning, dataflow models are used to describe clearly the overall activity of system
in processing and transmitting data through processes in the system. LabVIEW is not just a
dataflow programming language; it also can create a GUI for the design, which is executable in
a visual way. Besides graphic programming with LabVIEW, there are three tools can be used to
model a process in text-based code: MathScript node, formula node and script node as illustrated
in Figure 2.30.

- LabVIEW MathScript is a text-based environment to model a process using LabVIEW
MathScript syntax. The MathScript syntax is an intuitive and logical syntax
predominantly based on standard mathematical and computer programming term. We
can even deploy MathScript node to real Real-Time target with built-in MathScript
functions.

- Formula node is a convenient tool to evaluate mathematics and expressions in
LabVIEW. Instead of drawing a For Loop, While Loop, Case structure as diagram,
Formula Node uses C-like statement delimited by semicolons as a C code. This tool also
supports following built-in functions: abs, acos, acosh, asin, asinh, atan, atan2, atanh,

Chapter 2. System Modeling for Embedded System

60

ceil, cos, cosh, cot, csc, exp, expm1, floor, getexp, getman, int, intrz, ln, lnp1, log, log2,
max, min, mod, pow, rand, rem, sec, sign, sin, sinc, sinh, sizeOfDim, sqrt, tan, tanh.

- A script node can connect to other software script servers such as MATLAB, Scilab to
execute scripts written in syntax of these languages. The MATLAB script node requires
a licensed MATLAB software installed in computer because it will invokes the
MATLAB software script server to execute the scripts. However, developer can use open
source Scilab script node provided free in LabVIEW website. Developer can also even
import .m files to script nodes or export script nodes to .m text files. This is a good
feature to validate the script codes in both MATLAB/Scilab and LabVIEW
environments.

Figure 2.31 Executable electrical network model in LabVIEW MathScript with three virtual
appliances

The example in Figure 2.31 presents the executable model of electrical network. Both loop
structures in G code and MathScript are used in this model in order to emulate the sampling
process in every 20 millisecond (50 Hz) for collecting a full electrical signal data in a cycle.
GUI in front panel object is used to change current phase and amplitude of electrical network
with three appliances working.

Chapter 2. System Modeling for Embedded System

61

Modeling a Synchronous DataFlow model

In a structured dataflow in Labview such as the while loop, for, if then, an actor in a dataflow
design has to wait previous actors to finish their computation before being able to do its
computation. Therefore, all actors in a structure dataflow work in the same sampling rate
defined. Maximum sampling rate can be defined by the total latency through all actors in the
dataflow.

In order to model a SDF model, LabVIEW uses FIFO buffers to transfer data between two
asynchronous processes (actors). This is a special data sharing method using an amount of
memory for data transaction between different VIs running on a target or on different targets.
The first data written into FIFO will be the first data, which will be read and removed from
FIFO. When the FIFO is full, Time Out signal is generated to block writing a new data until a
space is available in FIFO after a reading. When the FIFO is empty, it will generate the timeout
signal and the FIFO cannot be read until a data is available in FIFO after a writing. Therefore,
these basic characteristics of a FIFO can control the writing and reading process so that it avoids
the data missing. However, it still needs to define the size of FIFO depending on the operation
of functions in the system. As we discussed in previous section, Synchronous Dataflow model
can be used to organize the buffer size of FIFO and the schedule of processes in the system.

Example of modeling SDF model in LabVIEW is illustrated in Figure 2.32. Actors A and B
working at rate F1=2 kHz and actors C working at rate F2 = 50 Hz are modeled as three single
threads, which are working in parallel. This time loop structure of Labview allows designer to
define the working rate, the priority level and the processor to execute each thread. The working
rate of an actor is the frequency of the actor invoked during a second. Because working in
different rates, FIFOs are used to transmit data types between these processes. The buffer size
of FIFO is defined based on SDF rule in section 2.3.5: qA*M = qC*N and qA = 2000, qC = 50 are
number of times task A, and task C are invoked per second. Thus, we must select M=1 is number
of token produced by Task A and N = 40 is number of token consumed by Task C. It is safe to
select the buffer size 80 for FIFO communications between task A, task B with task C.

Figure 2.32 shows the scheduling of task A, task B and task C running in one processor
(CPU0) platform which was monitored and recorded by RT Trace Time Viewer tool. In order
to use this tool, the VIs model Trace Tool Start Trace and Trace Tool Stop Trace and Send must
be used and connected to each process as shown in this figure. Default buffer size of this tool is
250000 bytes, which are used to store all operations of CPU relevant to the operation of these
tasks.

Chapter 2. System Modeling for Embedded System

62

Figure 2.32 The actual activity of actors in a dataflow design

Modeling a StateChart model

As a complex device, a system has to provide services required by users who intervene not
only during its exploitation, like the power estimation service, but throughout its life cycle, from
its conception to its dismantling (initialization, local and/or remote configuration, etc.). A
service is usually defined as a procedure whose execution results in the modification of at least
one datum in the device database, or/and at least one signal on its output interface [69]. In order
to define the obtained values (outputs O), one has to describe the computations which are done,
its internal configuration (parameters P), the variables on which they are applied (inputs I) and
the required resources R (hardware, software). As illustrated in Figure 2.33, we demonstrated
how the computations in a service like the estimating power can be expressed using a
synchronous data flow diagram formalism following a functional decomposition.

Task A
DA

Task B
DB

Task C,
Dc

A_in

B_in

F1 = 2 kHz

F1 = 2 kHz

F2 = 50 Hz

C_out

1

2

3

5

3

2
5

4

1. Create a single thread in Labview
2. Create RT FIFO
3. Write a data to selected FIFO
4. Read a data from a FIFO
5. Real-Time Trace Viewer tool to monitor thread events on CPU

(Task C)

(Task A)

(Task B)

1

1

Chapter 2. System Modeling for Embedded System

63

Figure 2.33 External model of the NIALM system

The service executions can be either dependent (precedence, mutual exclusion) or
independent and concurrent. Services can have a limited duration or can end on the occurrence
of simple or complex events (operator request, emergency alarm, etc.). Finally, these services
can be organized according to user operating modes (USOM) is a coherent sub-set of services
and contains at least one service and each service belongs at least to one USOM. The expression
of such an external model of the instrument requires another computational model different from
the one of SDF formalism. Some works in progress aim to express USOM and services using
the Statecharts formalism available in LabVIEW [42]. In this formalism, USOM and services
can be represented using macro-states. States inside macro states defining services will express
the various states of a service (idle, running) with transitions expressing the conditions required
for state changes (external events and/or condition guards). Entrance to the running state will
launch the SDF procedure to make the computations like for the power estimating service.

Figure 2.34 presents a simple version of our NIALM system with three main services: power
monitoring, database management and datalogger. Because services power monitoring and
datalogger need to run all the time so that three concurrent states were developed. There is also
a small login service to check the user and account of customer. From idle state, if there is a
login action, system will move to login state to check input account and password with database.
If the account is correct, transient Success will available and system changes to the Main macro
state. Both three main services are initialized to idle state and start to run in parallel. Depending
on the events from the GUI panel, each service will be activated or deactivated. When entering
the Power-monitoring mode, two services Power monitoring and Data-logger run in parallel.
However, in Database Management mode, the Data-logger service is disabled while Power
Monitoring service is still running inside the system.

Once StateChart is modeled correctly, it can be executed as an executable specification that
customer can test and verify according to his requirement. For multi- processing as our NIALM
system, StateChart may be the best tool because of its capability in modeling overall activity of
complex systems whose services can run in parallel. The second reason to select StateChart

Chapter 2. System Modeling for Embedded System

64

formalism relies on the ability of LabVIEW to generate synthesizable models from StateChart
model to get prototype a RPN system in a very short time.

Figure 2.34 StateChart model of NIALM system

2.5.2. Architecture exploration

In a RPN application base on SoC, memory usage, response time, throughput, energy
efficient are the most important requirements. The requirement to respond in almost real-time
to customer behavior in energy usage puts the system into the real-time streaming application
class in which data are processed in a streaming way from input (electrical network) to output
(user). Following the requirements of Stonebraker et al. [70] for such an application, the data
should also be processed throughput in the system. Therefore, selecting suitable Model of
Computation (MoC) to model the system for easily analysis of the throughput, the hardware
resources usage, and the performance of the system is very critical.

According to the classification tree in [71], both time-driven and event-driven properties exist
in NIALM system. As in specification step, the KPN was considered to model the overall
activity of this system [38]. However, KPN model does not express the rate and the number of
token in each process then it is difficult to analysis the timing and resources consummation to
optimize these resources. Basing on data-driven scheduling, the capability in managing FIFO

Chapter 2. System Modeling for Embedded System

65

size at run-time may also cause the memory overflow problem in system. So, SDF is the best
candidate to model this system. SDF can solve the KPN problems by making the static schedule
and the size of buffer in communication channels for heterogeneous system in compiling time
[51], [52] and [55]. However, SDF model requires all processes (or actors) of SDF must fire (or
write to communication channels) a constant number of tokens in every firing.

Selecting the best architecture bases on the balance between some criteria: total latency
through all processes of the system, hardware resources usage and power consumption.
Satisfying timing requirement of system is the most important criteria that requires to measure
latency of each process in each architecture. Common method to measure the latency of process
is to subtract the time when the process finishes its work to the time when the process starts to
run. LabVIEW has high-level function to do this benchmark quickly in supported platform.
Figure 2.35 shows that the methods to get benchmark of the worst latency of a process in
computer or microprocessor (a) and in FPGA platform (b) are the same. A measured latency
will define the maximum working rate of the process and the buffer size of the FIFO, which is
needed for an architecture.

Figure 2.35 Benchmark of the worst latency of each process in (a) computer or microprocessor
and in (b) FPGA

Power consumption analysis

Similar to hardware usage exploration, power consumption cannot be estimated at system
design and must be measured directly in the target by using external equipment. LabVIEW
already implemented an operation system on the target to run some default services for
examples: myRIO Toolkit, Wireless Certificate Management, System State Publisher that are
necessary for running a model based design in target. The formula to estimate power
consumption of CPU when it runs functions can be defined as:

   loadcpu CPUPPPP *minmaxmin  Pcpu = Pmin + (Pmax-Pmin)*CPUload (2.1)

Where:

- Pmin is measured when there is no load in CPU. This is the standby power of system.
- Pmax is measured when CPU is full of load with no interaction with peripheral elements.

Chapter 2. System Modeling for Embedded System

66

- CPUload is the percentage usage of CPU when it runs our functions. This parameter can
be got by using distribute system manager tool of LabVIEW.

Figure 2.36 Power Consumption measurement using PXI-407x and LabVIEW Software [72]

 Power consumption of a RTL function is always supported in RTL development environment
for example XPower Analyzer tool of Xilinx, Power Play Power Analyzer of Altera. However,
in LabVIEW FPGA, this feature has not been supported and it is impossible to export an FPGA
design in LabVIEW FPGA to the VHDL code design that we can estimate its power
consumption using power analysis tools of Xilinx or Altera. After that, we have to setup an
experiment station as Figure 2.36 to estimate the power consumed by FPGA hardware, which
can be defined by function.

 minPPPP CPUmeasuredFPGA  (2.2)

Where PCPU is defined by (2.2), Pmin is measured in system where there are not any of our
functions running in the system.

2.5.3. Hardware Software co-development

In LabVIEW FPGA, software developers and hardware developers can use their favorite test-
based approach such as C/C++ for software developing and VHDL for hardware developing to
optimize the prototype system initial developed by system developers. While model-based
approach supports system developers explore their design in different architectures quickly, the
text-based design gives software developer a more flexible tool to optimize the code. In
LabVIEW FPGA, the FPGA controls and interfaces to IO ports so that C/C++ software
developers must use the hardware interface API to interface to the hardware IPs.

As illustrated in Figure 2.29, customized FPGA IPs are developed with LabVIEW FPGA or
HDL manual coding. These IPs then can be integrated to the system by two useful tools: the
Component-level IP (CLIP) and the IP Integration Node. These tools are especially vital when
supported IP libraries do not satisfy hard constraint functions. Another advantage of this
methodology is the possibility proceeding quickly to architecture exploration because
partitioning of the functions in hardware or software can be easily investigated. A C/C++

Chapter 2. System Modeling for Embedded System

67

software developer can appreciate the hardware interface API, which is created by the C API
Interface tool in the C/C++ Eclipse programming environment, while a LabVIEW developer
can use the interface in the LabVIEW environment. Whatever the environment, the SW/SW
interface, HW/HW interface, and HW/SW interface mainly affects the memory and latency of
the system that can be analyzed in guide of the system constraints. This approach then enables
a rapid architecture exploration in order to boost the hard real-time constraints satisfaction by
the FPGA-CPU cooperation and reduce the time to market, which is another major constraint
for companies.

2.6. Conclusion

In this chapter, we presented many theories about SoC and approaches to develop a SoC
embedded system. Then, MoC-based approach is selected as the best candidate in this research
because of two reasons: first, it suits model RPN system like the NIALM; second, this approach
can help developer in finding the best architecture for system early at design step. Then, many
MoCs relating to the RPN development are investigated and languages and development tools
are studied in detail. Finally, this chapter describes a hardware-software codevelopment
approach aiming to rapid prototyping SoC application with hardware acceleration using FPGA.
In this approach, we also propose to use synchronous dataflow model to model the system
because this model can support well allocating memory and scheduling the operation of system
in compilation time in multi processors architectures. This capability can increase the
productivity, optimize resource, and improve the performance to save cost and time from
development to market of product.

In the next chapter, we will develop an application model of a real-time NIALM system.
Before implementing system using the methodology presented in this chapter, the overall
activity of the system must be designed and algorithms for its functions must be selected.

68

69

CHAPTER 3. APPLICATION MODEL FOR A REAL-TIME

NIALM SYSTEM

Contents

 3.1. Activity model of system in dataflow

 3.1.1. System requirements
 3.1.2. Entity analysis and modeling
 3.1.3. Activity model of system
 3.2. Electrical signature extraction: An event-based approach

 3.2.1. Power signatures
 3.2.2. Shape of transitions signatures
 3.2.3. Harmonic signatures
 3.2.4. Early application classification
 3.3. CUSUM-An online Event Detection

 3.4. Genetic Algorithm-based power disaggregation

 3.4.1. Sequential clustering K-mean
 3.4.2. Genetic Algorithm
 3.5. Conclusion

Abstract:

In order to develop our NIALM system on SoC, we need to develop an application model of the

system for functional verification. This chapter presents this high-level model of the NIALM

system. The system specification starts with an activity model giving an overview of the global

functionalities of the NIALM system then it goes in detail in describing functions and the

communications between them. The three next sections describe the behavior of the basic

operations by presenting the mathematical or algorithmic of the signature extraction activity,

the CUSUM real-time event detection and the power disaggregation based on Genetic

Algorithm. This chapter also presents functional validation results when processing a public

NIALM data set named REDD.

 Chapter 3. Application Model for a Real-Time NIALM System

70

 Chapter 3. Application Model for a Real-Time NIALM System

71

3.1. Activity model of system in dataflow

3.1.1. System requirements

Although processes in a system such the NIALM system are often known in advances, system
requirement is still a major decision step, which will have strong effects on the selection and on
the development of algorithms inside processes. Therefore, system requirement specification
aims to create important input documents useful for the development and verification steps. It
may include requirements from customer or requirements from system developer. Developer
often plays a crucial role in verifying the initial requirements from customer and transforms
them to a system requirement specification, which can satisfy customer’s requirements. After a
cooperation during a lap of time that depends on the complexity of the project, a final system
requirement specification will establish a contract between customer and developer about the
system that the customer wants to develop.

As discussed in chapter 1, the innovative NIALM meter we want to develop must satisfy new
requirements including precision, timing, technological and economic constraints. System can
detect appliances with power consumption from 80W and can classify more than 80% total
power in electrical network. Timing constraints are particularly stringent. Our system should be
able to display the status ON/OFF in appliances in a GUI (Graphic User Interface) in 5 seconds
from a real event. However, technological and economic constraints state that system must be
compact enough to be easily located inside the electrical panel while having a price less than
150 euros.

After reviewing many NIALM researches and the trend of this technology, we transformed
these basic requirements above into a formal technical requirement in the part “Thesis’s
contributions” of chapter 1 that aims to be used for the development process. We propose the
development of a NIALM based on SoC technology because the evolution of SoC is very
interesting and can satisfy requirements relating to the size and price of product and real-time
disaggregation. In order to enhance the precision or accuracy of the energy estimation to reach
more than 80% of classification of the total power, we arrived to the conclusion that the system
has to solve some challenges of NIALM technology such as:

 Extraction of more electrical signatures to improve distinguishing similar appliances.
They are the changes in real power, reactive power, coefficients of current and Total
Harmonic Distortion (THD) of current as well as the shape information of transitions
including maximum and minimum values of power and the duration of the transition.

 Detection of slow transitions in variable load appliances.
 Detection of simultaneous transitions to avoid missing event.
 Detection of multi-state appliances which can have many states in their operation.

 Chapter 3. Application Model for a Real-Time NIALM System

72

Let us now present how to translate these requirements into a specification document to
describe the complete external behavior of the system to be designed which operates in the
environment explained in the requirements.

3.1.2. Entity analysis and modeling

In order to formalize the understanding of the problem and the objective to be achieved, an
intermediate document between the system requirement and the solution (to be developed by
designers), called specification, should be provided to express functional and non-functional
specifications. In this step, developer must list out all entities of the system, analyze their
operation and characteristics, and model them at an abstract level. After this step, the system
can be delineated fully and correctly.

I

U

Electrical

network

SYSTEM
to be

SPECIFIED

Observations

Users
Commands

Figure 3.1 Context diagram of the system

The system which needs to be designed is presented in Figure 3.1 with only two entities: the
electrical network entity and the user entity. The electrical network entity is characterized by
current (I) and voltage (V). This entity provides current (I) and voltage (V) data infinitely using
specific sensors and Analog to Digital converter modules, which are hidden to simplify the
design at the system level. Then system processes I, V values to compute all necessary electrical
signatures and to detect ON-OFF transitions of appliances rely on monitoring electrical energy
usages. Then, these signatures are used to classify appliances and disaggregate the total power
usage in electrical network. System from the view of electrical network entity must do the data-
stream processing as in DSP systems. Data of electrical network entity will be monitored and
processed by main DSP algorithms in the system so that the behavior must be described for the
functional verification purpose of the system. In continuous-time domain, apparent voltage and
current sources in an electrical network are represented by standard equations:

   









11

sin)(sin)(
k

k

k

kk tkUtuandtkIti 

 with k = 1,3,5,7… is the harmonic order, φk is the shifting phase between current order k
and voltage order k. ω = 2. 𝜋. 𝐹0 with F0 is fundamental frequency of electrical system (50 Hz
in European Standard or 60 Hz in American Standard).

 Chapter 3. Application Model for a Real-Time NIALM System

73

In order to model this entity, we have to represent them in the discrete domain. If Fs is the
sampling frequency of the system, we will have N = Fs / F0 is the number of samples during a
period of fundamental frequency signal. Thus, we can model the electrical network entity in the
system as shown in Figure 3.2.

Figure 3.2 Behavioral model of electrical network entity

The user entity can make various requests to select modes to see or to modify the information.
More precisely, the user can request some services like: Start or Stop the system, turn on the
monitoring mode or maintenance mode with actions: to load, modify and save the database.
Therefore, user can be the NIALM client or the man in charge of the installation of the system.

3.1.3. Activity model of system

The aim of functional specifications is to describe the complete external behavior of the
NIALM system to be designed, which operates in the environment explained in the previous
paragraph. Due to the lack of a single model containing all required features to express
specifications, a coherent description of the external model usually requires three
complementary views.

 Object and data modeling to describe the static characteristic of each component or item.
 Activity modeling to describe the internal activities of the modeled component and all

the relations with its environment.
 Behavior modeling involving the description of temporal dependencies between the

occurrence of events and the execution of actions.

Such a specification of the NIALM system can be provided starting by the activity-modeling
viewpoint as illustrated by Figure 3.3. As stated earlier, the aim of the activity modeling is to
define the relationship between data, events, information items and the internal activities of an
entity or the system. Then, starting with a global approach and the description of the activities
rather than the behavioral viewpoint is a strategy that we adopted to cope with the complexity
of the NIALM system. In this kind of viewpoint, a data-flow diagram (DFD) decomposition
hierarchy is first developed as an intermediate model used to make the behavioral modeling
easier. In addition to the DFD, a control specification expresses the temporal evolution of each
activity in order to specify the global behavior of the NIALM system. For this, operating modes
can be established according to the functionalities that are available at a particular step in the
life cycle of the instrument. For example, in a maintenance-operating mode, the disaggregated
total apparent power service cannot be launched. If this mode can express, the maintenance
functionality is not available by the customer. System from the view of user entity works as a

 Chapter 3. Application Model for a Real-Time NIALM System

74

reactive process network, which events generated from activities of user, requires the reaction
from the system. In system level, user entity can be modeled by a message source where each
message represents a command of this entity. Control logic part then enables or disables each
function and shows it in the GUI of the system to respond to user’s interaction.

Estimation/

appliance

Data

Monitored Database

I

Total power
Disaggregation

Database
management

Monitoring

Control logic
command responde

E/D
E/D

E/D

commands

Electrical
network

User(s)

V

Total power

Process Flow Store Terminator

Dataflow diagram notation

Figure 3.3 Global activity diagram of the NIALM system

As illustrated in DF model in Figure 3.3, in power estimation mode, total power
disaggregation activity and monitoring activity are active. Current and voltage are measured at
a specific sampling rate and are used to compute the total real power in electrical network. Then,
this total power is disaggregated to power consumed in each appliance. In communication
between activities, total power disaggregation periodically sends the total power value to
activity monitoring. In addition, it can detect an event of appliance (ON-OFF transition) and
send electrical signature data of detected appliances to the Monitoring activity. However, in
maintenance mode, control logic disables total power disaggregation and monitoring activity
and actives data management activity. Then user can download, upload or modify the database
for system configuration.

This main activity of the NIALM system is a composition of some entities and description of
their operations:

- Preprocessing nodes do the preprocessing step in NIALM system including computing
real power P, reactive power Q and coefficients of harmonics Iak, Ibk from input current
I and voltage. The coefficients are needed to compute the change in THDi because it is
a non-linear value and cannot be calculated directly [73]. Grady et al. [74], Gupta et al
2007 [22] and Patel et al. [11] proved that coefficient and THDi can be used to classify
home appliances. Moreover as illustrated in Figure 3.4, the three nodes can be processed
in parallel to enhance the performance of system, if needed.

 Chapter 3. Application Model for a Real-Time NIALM System

75

- Event detection node to detect the change (event) in total power usage in NIALM system.
After detecting an event, this activity can extract many useful electrical signatures and
duration of the transition and send them to Event classification node.

- Event classification to early classify events to three basic event types: resistor, motor and
lighting. Coming section will present more details about the activity and results of this
algorithm.

- Disaggregation process will classify appliance from the detected events using three
tasks: Event clustering, Genetic Algorithm and Appliance Finding. Although Genetic
Algorithm can process the power disaggregation task, Event Clustering can improve GA
results and Appliance Finding is responsible to database searching.

- The Monitored Database supports the storage of information relevant to detected events
and applications. The requirement of this database is small, fast and possible to embed
in small resource architecture in the embedded system.

App OFF
classification

I Event
clustering
(K-mean)

Genetic
algorithm

Appliance
finding

App ON
classification

Monitored Databases

Event
detection

events

V

P
computing

Disaggregation

Total power

Q
computing

THD
computing

features

Event
classification

Figure 3.4 Data flow model of the total power disaggregation function

Dataflow model works well in modeling the activity model of system because firstly, it is
easily and visually in verifying the flow of data in a data streaming system. Second reason is the
expectation in refining the dataflow model to concurrent dataflow model for architecture
exploration and throughput analysis. The main advantage of such a modeling approach is the
ability to express the functionality through a global approach without modeling each entity. The
main disadvantage is the difficulty to know when stop the decomposition process.

In coming parts, we will present systematically the behavioral model part of the NIALM
system. For basic activities, the data transformations (relationship between inputs and outputs)
operated by elementary activities can be expressed in a formal way using transfer function or
any other mathematical formalisms. For control logic, state chart like formalisms are more
suited.

 Chapter 3. Application Model for a Real-Time NIALM System

76

3.2. Electrical signatures extraction: Event-based approach

Actually, current energy measurements ICs do not support well NIALM technology. In some
popular energy measurement ICs in Table 3.1, they measure only basic information such as
apparent power S, real power P, reactive power Q, average voltage, and average current. The
advanced information Total Harmonics Distortion (THD) can also be extracted in product of
NXP and Analog. MSP430 of TI and EM773 of NXP are interesting smart meters ICs because
they contain Microprocessor inside to be able implemented a complete low cost smart meter
system. All extracted information of current meter ICs are the aggregated information of
electrical network. However, these IC does not support extracting information of each appliance
especially with nonlinear information. This feature need customer algorithms implemented in
NIALM software. In order to solve that challenge, we proposed a new generation of energy
measurement based on event detection approach, which can embed into new kind of energy
measurement IC. A new event detection algorithm specific, which is able to extract both linear
and non-linear electrical signatures, will be presented in the next section. This event detection
can run in real-time and can extract most of necessary information for NIALM technology.

As we discussed in chapter 1, electrical signatures can be classified into two categories:
steady-state signatures and transition-state signatures. Steady-state signatures of appliances,
which are in stable ON or OFF state in the electrical network, are electrical signatures that we
can use to distinguish appliances. Thus, such signatures must be unique for a given appliance.
Some examples of steady state signatures of appliances are real power, reactive power, average
current etc. In the research conducted by Froehlich, J. et al. [12], continuous voltage noise is
also a steady-state signature. As illustrated in Figure 1.9 in chapter 1, each appliance has its own
noise with a specific frequency. For example, LCD monitor has a specific noise at a 64 kHz
frequency, but PC’s noise is located at 93 kHz. This high frequency feature can also identify
some always-ON appliances like telephone, router, and other electronics. Unfortunately, there

Vender Texas

Instrument

Cirrust Circuit NXP ANALOG MICROCHIP

Typical product MSP430F471xx CS5480 EM773 ADE7880 MCP 3905/06

ADC Resolution 16 bits 24 bits NA 24-bits 16 bits

ADC Sample
rate

3.2768 kHz 500 kHz NA 1.024 MHz 1MHz

MCU inside MSP430CPUx No ARM Cortex No No

Monitor
parameter

P, S, Q, F, Irms,
Ip, Vrms, Vp,
power factor

P, S, Q, F, Irms,
Ip, Vrms, Vp,
power factor

P, S, Q, Vrms,
Irms and THD

Harmonics, P, S,
Q, Vrms, Irms,
power factor

Active power

Accuracy 1% 0.1% 1% 0.2% NA

Firmware/
Hardware

32-bit x 32-bit
HW multiplier

On chip
calculation

Metrology
Engine FW

DSP hardware Energy to
Frequency HW

Price 2-4$ 5.25$ 2.5$ 9.45 $ 2$

 Table 3.1 Some popular energy measurement ICs and their features

 Chapter 3. Application Model for a Real-Time NIALM System

77

are no standards for the noise on appliances. Moreover, extracting high frequency noise requires
expensive equipment. Therefore, in our research, we focus on the development of a NIALM
system based on transition-state signatures leading to an event-based NIALM.

R1 L1 C1

Q
1S 1

P1
P

Q RONROFF

L > C

L < C

dQLdQC

P2

S0 ≠ S1 + S2

S
2

Figure 3.5 Electrical network with represent RLC model of appliances

Figure 3.6 Event-based signature extraction and early appliance classification methodology

The event-based approach for electrical signature extraction can detect status changing of
appliances based on the change of aggregated information in an electrical network. However,
only changes in linear features can be used to compute appliance’s signature. In chapter 1, we
assumed a representation of appliances in electrical network by RLC models connected in
parallel, as illustrated in

Figure 3.5. When a turning ON event occurs, caused by a switch bN,k, changes in real power
P, reactive power Q and apparent power S will occur in response. However, only changes in
active power and reactive power measured in main electric are linear and can be used to calculate
active and reactive power of the appliance. As illustrated in

 Chapter 3. Application Model for a Real-Time NIALM System

78

Figure 3.5, aggregated apparent power S, a non-linear data, is not the sum of apparent power
of new turning on appliance and apparent power of circuit before the event. We will present
below the behavioral model of the preprocessing activity for extracting the power signatures,
shape of power signature and harmonics information. Moreover, Figure 3.6 presents the early
appliance classification based on extracted signature and event detection algorithm.

3.2.1. Power signatures

Power signatures are very common signatures of electrical appliances, which are not only
information for classifying appliances but also the main information to build electrical bills.
Among three types of power, active power (true power) is the actual amount of power consumed
by the electrical devices. Reactive power is generated by the inductive or capacity elements in
appliance. Although this kind of power does not exist in electrical bill but it has effects on the
power factors, which is represented to power efficiency of appliances. In order to describe the
behavior of real power and reactive power computing, we assume that input voltage and current
can be represented by formulas below.

Active power

Active power is a very basic information of appliance, which presents how much energy that
an electrical appliance can perform actual work in resistance part of appliance. It is different to
reactive power, which is cause by the inductive and capacitive part of the system. The following
general formula describes the computation of the voltage and current in time continuous domain:

 𝑢(𝑡) = ∑ 𝑈𝑘. √2∞
𝑘=1 . cos (𝑘𝜔𝑡 + 𝜑𝑘) (3.1)

 𝑖(𝑡) = ∑ 𝐼𝑘. √2∞
𝑘=1 . cos (𝑘𝜔𝑡 + 𝛾𝑘) (3.2)

Where Uk = Average amplitude of voltages
 Ik = Average amplitude of currents
 ω = Angular frequency
 𝜑𝑘, 𝛾𝑘 = Phase of voltages and currents at the time t = 0
 k = 1, 2, 3…N are harmonics of current and voltage.

Formal formula to compute the active power is given by:

𝑃 = ∑ 𝑈𝑘 . 𝐼𝑘. cos(𝜑𝑘 − 𝛾𝑘)∞
𝑘 =1 (3.3)

From (3.1) and (3.2), we have:

𝑢(𝑡). 𝑖(𝑡) = ∑ 𝑈𝑘. √2

∞

𝑘=1

 . cos(𝑘𝜔𝑡 + 𝜑𝑘) . ∑ 𝐼𝑙. √2

∞

𝑙=1

 . cos (𝑙𝜔𝑡 + 𝛾𝑙)

 Chapter 3. Application Model for a Real-Time NIALM System

79

As product-to-sum identity of trigonometric theory, we know that:

cos(𝑥) . cos(𝑦) =
cos(𝑥 − 𝑦) + cos (𝑥 + 𝑦)

2

So, we get

𝑢(𝑡). 𝑖(𝑡) = ∑ 𝑈𝑘𝐼𝑘 .

𝛼

𝑘 =1,𝑘=𝑙

cos(𝜑𝑘 − 𝛾𝑘) − ∑ 𝑈𝑘𝐼𝑘 .

𝛼

𝑘 =1,𝑘=𝑙

cos(2𝑘𝜔𝑡 + 𝜑𝑘 + 𝛾𝑘)

 + ∑ 𝑈𝑘𝐼𝑙 .

𝛼

𝑘,𝑙 =1,𝑘≠𝑙

{cos[(𝑘 − 𝑙)𝜔𝑡 + 𝜑𝑘 − 𝛾𝑙] − cos[(𝑘 + 𝑙)𝜔𝑡 + 𝜑𝑘 + 𝛾𝑙] }

(3.4)

Then, we can have the definite integral of equation (3.4) in a period of the normalized
frequency defined by equation.

1

𝑛𝑇
∫ 𝑢(𝑡). 𝑖(𝑡). 𝑑𝑡

𝑛𝑇

0
= ∑ 𝑈𝑘. 𝐼𝑘. cos(∆𝜑𝑘)

∞

𝑘 =1

 (3.5)

Thus, from (3.3) and (3.5) we have the equation to compute active power defined as

𝑃 =
1

𝑛𝑇
∑ 𝑢(𝑡). 𝑖(𝑡)

𝑛𝑇

𝑡 =1

 (3.6)

Where T is the amount of samples during a period of signal and n is an integer value.

Figure 3.7 Filter-based active power computation approach in analog domain

Moreover, from above equation (3.4), there is other method to calculate the active power in
analog domain by using analog multiplier for input current and voltage and a low-pass filter as
illustrated in Figure 3.7. Output data from the analog multiplier then is fed to a low pass filter
to extract only the DC component from signal, which is the final equation to compute active
power in (3.3).

Reactive power

Reactive power, which is a useful data for evaluating the power efficiency (power factor) of
appliances, becomes important in billing activity. That is because there are more and more non-

HPF

HPF

LPF

i(t)

u(t)

P

 Chapter 3. Application Model for a Real-Time NIALM System

80

linear loads from end-customers profile especially in industrial area. Thus, the reactive power
measurement is required to be more and more accurate. There are many researches in computing
reactive power consumption.

Kezunovic, M. in 1991 [75] proposed to represent power measurement algorithms as 2D FIR
filter applied on current and voltage samples. The advantage of such a method is the possibility
to apply on both sinusoidal and non-sinusoidal signals. The author did a comprehensive test the
accuracy of real power and reactive power computing when there is the frequency variation in
the electrical network. Various reactive power algorithms such as Budeanu, Fryze, and Kuster
for inductive reactive power and capacitive reactive power computing were represented as 2D
digital filters. The advantage of this research is that it gives a very high accurate result when
the highest relative error is only 0.00277% in +0.5% frequency variation case. However, the
requirement of N samples in each channel current and voltage to run the convolution operation
is too expensive in resource especially when signals are sampled at high frequency. For example,
10 kHz needs about 30000 samples stored in FIFO or RAM to compute a value of reactive
power.

Other research [76] proposed an approach to measure reactive and distortion power using the
wavelet transform. Power analysis in wavelet domain can give us a view in both frequency and
time domains for both real and reactive powers. Such approach still needs to shift voltage 900
earlier than current to be able to compute the reactive power. However, the traditional wavelet
transform approach needs N storage cells for N cascaded filter so that it is still a resource
expensive method. Such drawback does not allow a real-time power measurement in compact
system. Ejaz, Waleed et al. [77] reformulated a new algorithm named pyramid recursive
algorithm (PRA) which consumes only L*log(N-L) storage cells with L-length of the filter much
less than N. However, investigated PRA varied significantly when they changed parameters
algorithm, the resolution of ADC and the sampling frequency.

In other research [78] in 2009, Grigorescu and al. have reviewed some methods for measuring
reactive power including Hilbert transform method, power triangle method, quarter period time
delay method and one pole low pass filter method. This research contributed to give a
comparison in performance between above methods under various testing conditions like
current and voltage in the same phase, the frequency variation test cases, and some harmonic
test cases. The results proved that Quarter period time delay is the less accurate method and
Hilbert transform method gave the best results. Hilbert transform is a digital filter circuit that is
able to shift phase input signal for exactly 900 without underlying an amplitude attenuation in
every frequency. Quarter period time delay method, that merely shifts signal N/4 samples (π/2
equivalent), has high accuracy in the ideal signal without any frequency variation.

Ludek Slosarcik in 2014 [79] proposed the use of using Fast Fourier Transform for power
computing in an application note of Freescale Semiconductor. Such algorithm first transforms
signal from time domain to frequency domain including coefficients of harmonics in current and
voltage data. Then, these data are fed to the formula that computes the complex power in

 Chapter 3. Application Model for a Real-Time NIALM System

81

Cartesian form. Such algorithm is potentially the best method to implement a power
measurement system in a resource limitation embedded system.

After reviewing many researches, we propose the use of Budeanu algorithm to represent
reactive power the use of Hilbert transform approach to get the most accurate results. We would
like to make the comparison between these methods and the Fast Fourier Transform method
because no comparison between them can be found. In this comparison, the accuracy and the
resources consumption of algorithms will be investigated under various testes relating to
frequency variation and the sampling rate.

Budeanu definition

As a brief introduction of [75], Budeanu approach defined computing apparent power by
orthogonal formula:

𝑆 = 𝑃 ± 𝑗. 𝑄 (3.7)

Such an algorithm can represent the sinusoidal waveform:

𝑄 = 𝑈. 𝐼. sin(𝜑) (3.8)

Therefore, for the non-sinusoidal waveform, reactive power can be defined as:

𝑄 = ∑
𝑈𝑘. 𝐼𝑘

2
. sin(𝜑𝑘 − 𝛾𝑘) = ∑

𝑈𝑘. 𝐼𝑘

2
. sin ∆𝜑𝑘

𝑀

𝑘 =1

𝑀

𝑘 =1

(3.9)

Where k is harmonic of signal; ∆𝜑𝑘 is the different phases between current and voltage in
each harmonic. M = N/2 - 1 is the maximum harmonics order and N is the number of samples
per second, following the sampling theory.

In comparison to equation (3.3), we have basic idea to compute Q:

 𝑄 =
1

𝑛𝑇
∫ 𝑢(𝑡). 𝑖′(𝑡). 𝑑𝑡

𝑛𝑇

0
=

1
𝑛𝑇

∫ 𝑢(𝑡). 𝑖𝑠ℎ𝑖𝑓𝑡−90(𝑡). 𝑑𝑡
𝑛𝑇

0

(3.10)

Proof:

 𝑖′(𝑡) = ∑ 𝐼𝑘 cos(𝑘𝜔𝑡 + 𝛾𝑘 −
𝜋

2

∝

𝑘=1

) = ∑ 𝐼𝑘 sin(𝑘𝜔𝑡 + 𝛾𝑘

∝

𝑘=1

)

 𝑢(𝑡). 𝑖′(𝑡) = ∑ 𝑈𝑘. √2

∞

𝑘=1

 . cos(𝑘𝜔𝑡 + 𝜑𝑘) . ∑ 𝐼𝑙. √2

∞

𝑙=1

 . sin (𝑙𝜔𝑡 + 𝛾𝑙)

As product-to-sum identity of trigonometric theory, we know:

 Chapter 3. Application Model for a Real-Time NIALM System

82

 cos(𝑥) . sin(𝑦) =
sin(𝑥 − 𝑦) + sin(𝑥 + 𝑦)

2

So that, we get

𝑢(𝑡). 𝑖′(𝑡) = ∑ 𝑈𝑘𝐼𝑘 .

𝛼

𝑘 =1,𝑘=𝑙

sin(𝜑𝑘 − 𝛾𝑘) − ∑ 𝑈𝑘𝐼𝑘 .

𝛼

𝑘 =1,𝑘=𝑙

sin(2𝑘𝜔𝑡 + 𝜑𝑘 + 𝛾𝑘)

 + ∑ 𝑈𝑘𝐼𝑙 .

𝛼

𝑘,𝑙 =1,𝑘≠𝑙

{sin[(𝑘 − 𝑙)𝜔𝑡 + 𝜑𝑘 − 𝛾𝑙] − sin[(𝑘 + 𝑙)𝜔𝑡 + 𝜑𝑘 + 𝛾𝑙] }

(3.11)

Then from (3.10) and (3.11) we have

𝑄 = ∑ 𝑈𝑘𝐼𝑘. sin (∆𝜑𝑘)

∞

𝑘=1

=
1

𝑛𝑇
∫ 𝑢(𝑡). 𝑖′(𝑡). 𝑑𝑡

𝑛𝑇

0

=
1

𝑛𝑇
∑ 𝑢(𝜏). 𝑖′(𝜏)

𝑛𝑇

𝜏=1

(3.12)

Similar to active power, from (3.11), reactive power can be computed in analog domain by a
low-pass filter shown in Figure 3.8.

Figure 3.8 Filter-based reactive power computation approach in analog domain

In order to shift current to 90 degree to use equation (3.10), the research proposes using two
methods for comparison: the quarter period time delay, low pass filter and Hilbert transform.
Three approaches will be presented in detail bellow.

Quarter Period time delay

This method may be the simplest approach base on the sampling frequency. The objective of
this method is using a suit number of delay unit to get the delay π/2 which equivalent to T/4
with T is the period value of fundamental frequency Fp. If the sampling frequency is Fs, number
of sample of a full period signal is N = Fs/Fp. Thus, reactive power is an average value of the
multiplication of digitized current with the voltage delayed T/4.

𝑄 =
1

𝑛𝑇
∫ 𝑢 (𝑡 −

𝑇

4
) . 𝑖(𝑡). 𝑑𝑡

𝑛𝑇

0
=

1

𝑛𝑁
∑ 𝑢 (𝑡 −

𝑁

4
) . 𝑖(𝑡)

𝑛𝑁

𝑡=1

 (3.13)

HPF

HPF

LPF

i(t)

u(t)

Q

∫

 Chapter 3. Application Model for a Real-Time NIALM System

83

However, this method is not too accuracy depending on the sampling frequency as shown in
below table assuming fundamental frequency varies in 50Hz ± 1% with period 19.8 - 20.20
milliseconds. That means a quarter period time delay should create a delay 4.95 ms (at worse
case 50Hz + 1%) and 5.05 ms (at worse case 50Hz - 1%). Below Table 3.2 is the accuracy
evaluation in these two worst cases. It means that this method can be used in high sampling
frequency from 20 kHz with very small error (<1%). In lower sampling rate less than 2 kHz;
this method can cause error in reactive power up to 9%.

Sampling

frequency

1 kHz

2 kHz

5 kHz

10 kHz

20 kHz

100 kHz

Samples per
Period

19 – 20

39 – 40

99 – 101

198 – 202

396 – 404

1980 – 2020

Samples in
[Period/4]

4 – 5

9 -10

24 – 25

49 – 50

99 – 101

495 - 505

Max Error 19.19% 9% 3% 1% 0% 0%

Table 3.2 Accuracy of quarter period time delay in different cases of sampling rate

Hilbert transform

Hilbert transform is a special filter, which can shift the input signal a phase 90 degrees
relative to the original signal [80].The Hilbert transformer of a signal g(t) is defined as the
convolution of g(t) with the signal 1/(πt).

ℋ[𝑔(𝑡)] = 𝑔(𝑡) ∗
1

𝜋𝑡
 =

1

𝜋
∫

𝑔(𝜏)

𝑡 − 𝜏
𝑑𝜏

∞

−∞

 =
1

𝜋
∫

𝑔(𝑡 − 𝜏)

𝜏
𝑑𝜏

∞

−∞

In Fourier transform, the signal 1/(πt) is defined as

−𝑗. 𝑠𝑔𝑛(𝑓) = {

−𝑗, 𝑖𝑓 𝑓 > 0
0, 𝑖𝑓 𝑓 = 0
𝑗, 𝑖𝑓 𝑓 < 0

From the convolution property of the Fourier transform, if G(f) is the Fourier transform of
g(t), the Hilbert transform of g(t), the ĝ(t) has the Fourier transform :

𝐺̂(𝑓) = −𝑗. 𝑠𝑖𝑔𝑛(𝑓). 𝐺(𝑓)

Thus, the Hilbert transform does not change the magnitude of G(f) but it changes the phase.
Above formula shows that, in the positive frequency f >0, 𝐺̂(𝑓) = −𝑗. 𝐺(𝑓) which corresponds
to the phase change of –π/2. In other words, we have the Hilbert transform of cos(t) is sin(t).

 Chapter 3. Application Model for a Real-Time NIALM System

84

The impulse response h(n) of the Ideal Hilbert transform thus can be defined as the following
equation :

ℎ(𝑛) = {
2

𝜋

𝑠𝑖𝑛2(

𝜋𝑛
2)

𝑛
 , 𝑛 ≠ 0

0, 𝑛 = 0

Figure 3.9 FIR approximation block magnitude and phase response

Unfortunately, ideal Hilbert transform has an infinite length of the impulse response so that
implementing it is not practically. Thus, window technologies are often used to limit impulse
length of the ideal Hilbert transform. Mienkina in [81] proposed Kaiser Window of width N =
2M + 1 to implement a FIR approximation of the Ideal Hilbert Transform Impulse Response.
The Kaiser Window coefficients of this Hilbert FIR filter are expressed by equation:

𝑤[𝑛] = {
𝐼0 { 𝛽√1 − [(𝑛 − 𝑛𝑑)/𝑛𝑑]2}

𝐼0 {𝛽}
 , 0 ≤ 𝑛 ≤ 𝑁 − 1

0, 𝑜𝑡ℎ𝑒𝑟 𝑤𝑖𝑠𝑒

Where, nd = M/2, I0 is the zeroth order modified Bessel function of the first kind, 𝛽 is an
arbitrary real number that determines the shape of the Kaiser Window, N = 2M + 1 is the length
of the Hilbert FIR filter. As illustrated in Figure 3.9, a drawback of this method is the magnitude
of output signal is attenuated when the normalized frequency (signal frequency/sampling
Nyquist frequency) is less than 0.1 or more than 0.9. For example: signal 50 Hz and sampling
frequency 2 kHz will give the normalized frequency 0.05 which the magnitude response is about
-30 to -20 dB. A solution for this problem is downing the sample rate to sufficient value but it

 Chapter 3. Application Model for a Real-Time NIALM System

85

will has effects to other computations, which the accuracy depend to the time resolution. Other
solution is amplifying the signal after the Hilbert filter with a value to requite the signal
attenuation. In this research, we accepted the accuracy of reactive power around 90% so that we
selected the quarter period time delay method for the system.

Figure 3.10 Comparison real powers and reactive power computed by three methods

Functional verification of real power and reactive power is shown in Figure 3.10. In this
figure, direct method is power computed from original data and two other methods, which were
mentioned in this section. The results show that, the filter method has the delays in output data
and change the shape of transition. Thus, computing power using filters cause the loss of
information for classification. In the contrast, estimating method keeps in phase and information
for classification.

3.2.2. Shape of transitions signatures

Thanks to the innovative event detection algorithm, which will be presented in coming
section, we can extract more information about the shape of transition. Because of differences
in electrical architecture between appliances, each appliance generates a specific shape on the
ON-Turning transition and even on the OFF-turning transitions. As illustrated in Figure 3.11,
shape information includes max value and min value of real power P, reactive power Q and the
time duration of a transition dt. This information is useful for early classifying appliance that
makes the NIALM can work in real-time.

 Chapter 3. Application Model for a Real-Time NIALM System

86

Figure 3.11 Extracting shape information of a transition including Pmax, Pmin, Qmax, Qmin, dt
in a real data

3.2.3. Harmonic signatures

In real-world signal, there are not any ideal sinusoidal signals. The ideal signals are always
interfered by many kind of signal: noise, harmonics from structure of appliance. This distorted
signal if still periodic can be deconstructed into two or more sinusoidal signals at different
harmonic frequencies by Fourier technique as illustrated in Figure 3.12.

Figure 3.12 An example of the decomposition of a distorted waveform into fundamental, fifth

and seventh components

Linear Coefficients information

Thus, applying Fourier technique for electrical network, which contains only working
appliance, the electrical current signal can be represented as equation (3.14).

       









11

sincossin)(
k

kk

k

kk tkIatkIbtkIti  i (t) =

∑ Ik sin(kωt + φk)∝
k=1 = ∑ [Ibk cos(kωt) + Iak sin(kωt)]+∝

k=1
 (3.14)

 𝐼𝑏𝑘 = 𝐼𝑘 sin (𝜑𝑘) 𝐼𝑎𝑘 = 𝐼𝑘 cos (𝜑𝑘) (3.15)

 Chapter 3. Application Model for a Real-Time NIALM System

87

 𝐼𝑘 = √𝐼𝑎𝑘
2 + 𝐼𝑏𝑘

2 𝜑𝑘 = arctan (
𝐼𝑎𝑘

𝐼𝑏𝑘
) (3.16)

 Ibk =
2

T
∫ i (t) cos(kωt)dt =

2

N
∑ i (t) cos(

2π

N
kt)N

t=1
T

0

 (3.17)

 Iak =
2

T
∫ i (t) sin(kωt)dt =

2

N
∑ i (t) sin(

2π

N
kt)N

t=1
T

0

Where, k = 1, 3, 5, 7… M are order of harmonics of current, and M = N/2 - 1 with N is the

number of samples in a cycle of signal

I1

I2

I1 + I2

Ib1 Ib1 + Ib2

Ia1

Ia2

Ia1 + Ia2

φ1

φ2

Ib2

Figure 3.13 Non-linear characteristic of current in fundamental element

When a second appliance is turned on in the network, the current of the network is now
defined by the total of two working appliance. However, as illustrated in Figure 3.13, the current
depends on the phase so that total of this non-linear variable is not simply the sum of currents
from two appliances. Fortunately, the coefficients of the current do not depend on the phase so
that total coefficients can be calculated directly by adding the coefficients in the same axis of
two appliances. Linear variables Ia2k and Ib2k of the second appliance are now the changes of
aggregated data Iak and Ibk after the detected event. Then equation (3.16) can be used to estimate
the amplitude and the phase of the current consumed by the detected appliance.

i(t) = i1(t) + i2(t) = ∑ I1k sin(kωt + φ1k)

+∝

k=1

 + ∑ I2k sin(kωt + φ2k)

+∝

k=1

 = ∑[(Ia1k + Ia2k). cos(kωt) + (Ib1k + Ib2k). sin (kωt)]

+∝

k=1

Finally, THDi of detected appliance is calculated by equation (3.18).

 Chapter 3. Application Model for a Real-Time NIALM System

88

𝑇𝐻𝐷𝑖 =
√∑ 𝐼𝑘

2∞
𝑘=2

𝐼1
 .100% (3.18)

Moreover, other harmonic information, individual harmonic distortions (IHD), can be also
computed by equation (3.19):

𝐼𝐻𝐷𝑖𝑘 =
𝐼𝑘

𝐼1
 .100% (3.19)

In an article of Analog Device [82], this approach is better than other methods such as Fast
Fourier Transformer, Goertzel, band-bass filter when these methods cannot compute in real-
time, require more DSP memory, and have lower accuracy. Other advantage is that the
developers or customers can select the harmonics that they want to extract dynamically. So this
method is effective when the number of coefficient of harmonics need to be computed is less
than the total number of harmonics. The algorithm is correct as shown in Figure 3.14. In real
work, depending on the quality of power in electrical network [83], the supply voltage frequency
can vary between 49.5 and 50.5 Hz (± 1%) during 99.5% of the year and can vary between 47
and 52 Hz (± 4%) some times during a year. Nordel system (Finland, Sweden, Norway, and part
of Denmark) have best power quality when standard deviation of 0.03 Hz. However, this value
is 2.5% (1.25 Hz) for the grid network and 5% (2.5 Hz) for the island network. Frequency
variation can cause error in standard calculation of power information. Figure 3.15 shows an
experiment in the context that voltage fundamental frequency varies between 49.5 and 50.5 Hz.
We compute some harmonics using two methods: our coefficient estimation and Goertzel
algorithm. Result shows that our approach has same harmonics result in all tested frequency
with very small relative error in coefficient type b. However, Goertzel algorithm is only closed
when frequency varies from 49.9 Hz to 50.1 Hz.

Figure 3.14 Estimate (49.6-50.5) Hz signal with (49.6-50.5) in harmonic estimating algorithm

 Chapter 3. Application Model for a Real-Time NIALM System

89

Figure 3.15 Harmonics calculated by coefficient estimation and by Goertzel algorithm

3.2.4. Early application classification

After investigating many power data, we believe that there are three main basic electrical
appliances in all machines in industrial and commercial site: motors or fans, lighting appliances
and heating appliances. An electrical machine is composed of one or many basic these electrical
appliances as in below industrial oven example.

Motor and fan: There are four kinds of motor [84]. ON-OFF motors have only two states:
ON and OFF. Multi-speed driver motors use windings as voltage transformer to change voltage
level to vary speed of motor manually or automatically. Multi-motor driver motors are similar
with multi-speed driver motors but they use more than one motor with different speeds to
increase energy efficiency. Last type of motor is the most complex motor but they are widely
used in industry application: the Variable Frequency Driver (VFD) motor. Frequency variation
is used to vary the power consumption of VFD motors continuously. VFD motors are used for
three main purposes [85]:

 Varying torque load by varying power to keep some parameters constant in applications
such as centrifugal fans, blowers and pumps.

 Keep constant torque at all load by varying power in applications such as conveyors,
mixers, and compressors.

 Keep constant power consumption to optimize speed in applications such as lathe
machines, milling machines. The power consumption of third type VFD motors is
similar with ON-OFF motors while the two others are different.

Lighting appliances: Three basic lighting types are incandescent light, fluorescent light and
High Intensity Discharge (HID) light. Incandescent lights work exactly as a pure resistor sources
in which the current waveform is in phase with the voltage waveform. Fluorescent light and
HID light use ballasts to control the power factor so that they distort current waveform and
generate harmonics.

 Chapter 3. Application Model for a Real-Time NIALM System

90

Heating appliances: Industry applications generate heat from four main sources: resistance,
inductance, infrared and dielectric heaters. Resistance heaters use small resistance to though
high current and generate heat while inductance heaters generate Foucault current to heat metal
material inside the electrical coil. Infrared heaters use electromagnetic radiation from light
source to generate heat. Di-electric heaters use radio wave or microwave electromagnetic
radiation to heat di-electric material.

Table 3.3 illustrates the composition of real appliance, on which the main power consumption
part is mainly used for classifying appliances. However, control and electronics parts may cause
noise in high frequency, which can be used for appliance classification. When all of basic
electrical appliances working on the electrical network are known, we can find out what kinds
of machine are working. Then, we can estimate the power consumption of the machine based
on total of power consumption of its basic electrical appliances.

Appliance Electrical parts Characteristic

Refrigerator

Compressor
Fans
Control system
Pipe
Refrigerant

 Main power consumption

 Specific parts

Microwave Oven

Fan
DC lamp
Timer controller
Power controller
Triac driver circuit
High voltage transformer
The magnetron tube

 Specific parts

Main power consumption
part

Table 3.3 Illustration about the composition of some real appliances

Thus, although there are various kinds of appliance in real life, but we can classify them into
three main categories: the motor (or fan), the lighting and the heating appliance as below table.
After investigating database about energy usage of customer, we found that it is possible to early
classify the category of appliance based on the shape information of the Turning-ON transition,
as illustrated in Table 3.4. From three basic categories, we can develop complex algorithms to
recognize specific appliances.

dP Pmax Pmin dt dQ Qmax Qmin Event type Basic Appliance type
< 0 - ≈ 0 short - - - OFF Undefined Appliance
> 0 > dP ≈ 0 short > 0 > dQ ≈ 0 ON Motor
> 0 ≈ dP ≈ 0 short ≈ 0 - - ON Heating
> 0 - ≈ 0 long X ≠ 0 ≠ 0 ON Lighting

Table 3.4 Some basic shape information for early classify appliances

 Chapter 3. Application Model for a Real-Time NIALM System

91

 3.3. CUSUM - An online Event Detection

An event is a change in any electrical signatures to indicate a changing state of an appliance
in the electrical network. Detecting an event is necessary to compute changes in electrical
signatures after an event occurrence. Then NIALM system must use this event information to
classify appliance and disaggregate energy. Most of NIALM researches used Hart’s approach
[5], which used the changes of mean input data to detect events. Such an approach defines a
steady state to exist if the input value does not vary more than a specific threshold value during
defined samples. In contrast, if input value varies more than that threshold, an even occurs. The
mean value in steady stage is useful in minimizing noise however; such a method cannot detect
slow transitions. In addition, data sampled at a slow rate limits the possibility of detecting short
steady states and a fixed threshold makes the system potentially assimilate a large signal noise
as an event.

Marisa Figueiredo et al. 2012 [86] improve Hart’s method by using adaptive threshold values
depending to each steady period in order to detect the event if the next input value was larger
than the adaptive threshold. Such an adaptive threshold is defined between (min value + a
constant threshold) and (max value - the constant threshold). Even if their approach improves
the detection of small power appliances and is better resistant to noise, they still cannot detect
appliances with slow transitions.

Men-shen Tais, 2012 [87], proposed another method to detect events based on waveform of
current. His method subtracts current waveform in 3 continuous cycles to define the different
waveforms and the change rates. Then, change rates are compared to a threshold value to define
if they are events. However, three continuous cycles are not enough to detect a slow transition
and the research has not tested the system in noise environment.

In order to solve both above challenges, we proposed to use an online event detection using
the Cumulative Sum (CUSUM) algorithm. This algorithm was first introduced by Basseville
and Nikiforov [88] to detect transients in sequence data. This algorithm has many applications
such as monitoring petrol in tanks, tracking GPS signal, filtering noise in earphones, monitoring
fault in DC motors etc. The basic CUSUM algorithm for both positive and negative transient
detections is presented below:


















 






 vygg kkkk 11,0max  and 
















 






 vygg kkkk 11,0max 

    hghgkt kka  :min and 0 

tata gg

Where 𝛉̂𝐤−𝟏 is the estimated value after a low pass filter and yk is the input value. The drift

parameter v and the threshold h are design parameters. While threshold value h defines the
minimum change in time series data that CUSUM can detect, drift parameter v controls the

 Chapter 3. Application Model for a Real-Time NIALM System

92

latency from a real input event to the detected event or the speed of the detector. Finally, ta is
time when the event occurs.

In theory, a standard CUSUM algorithm is one kind of adaptive filter where a low pass filter
such as a least square approximation is used to predict the next value. In real life, a measured
value yt is the total of real input value 𝜽𝒕 and very small noise et as defined in equation (3.20).
Thus, when there is a change in measured value yt, there should be a big change in this noise
but we call it now the residual value st defined in equation (3.21) where 𝜽̂𝒕 is the estimated value
of real input value. Because the noise et is very small so that this residual value st can represent
the transition event in input data. This value is monitored to detect the transition in a time series
data if it is larger than a threshold. The behavior of this event detection can be described by
Figure 3.16.

 𝑦𝑡 = 𝜃𝑡 + 𝑒𝑡 (3.20)

 𝑠𝑡 = 𝑦𝑡 − 𝜃𝑡 (3.21)

Figure 3.16 General event detection system

Figure 3.17 Comparison in removing noise between mean filter, median filter and CUSUM

filter in a power profile of a lighting sector

Estimation
𝑦𝑡 = 𝜃𝑡 + 𝑒𝑡 Residual

measurement

𝜃𝑡
CUSUM

Event detector

𝑠𝑡
Event
alarm

 Chapter 3. Application Model for a Real-Time NIALM System

93

Figure 3.18 Comparison CUSUM filter with different values of threshold h in power profile of

an office sector (with v=80)

In our previous researches [89] [73], the CUSUM event detection algorithm was able to
detect fast transients but not the beginning and the end of a transient-state. That version was still
using fixed threshold value that makes large noise signals in high power consumption appliance
to potentially be seen as an event. However, as shown in Figure 3.17, first tests in power profile
of some real appliances proved that it is better than the mean and median filters in removing
noises in data. However, in Figure 3.18, CUSUM filter in very high noise signal with drift
parameter v = 80 and threshold h = 300 cannot remove all the noises so that we need to tune v
and h for better result and we found that all values h > 300 give us better filter. Because the
threshold of detection algorithm depends on h so that the lower value of h, the lower power
consumption appliance the algorithm can detect. In this case, value h = 400 is the best parameter
in removing noise and lower power consumption detectable appliances. This is a drawback of
this algorithm when it detects well only appliance with power from 400.

We have improved CUSUM event detection algorithm with the adaptive threshold feature

and the detection now can detect not only smaller power consumption appliance (from 60W)
but it also can define both the beginning and the end of the transient-state signature as shown in
Figure 3.19. This capability can solve the slow transient detection problem. The adaptive
threshold is defined as the difference between the max value and min value of a signal in each
steady state. This feature offers the better resistance to the noise. Moreover, CUSUM event
detection can extract the shape information in any linear electrical signatures as we introduced
in section 2 about the event-based approach. The detailed algorithm is defined below.

 Chapter 3. Application Model for a Real-Time NIALM System

94

X

P_mean

P

ts

te
Mean

CUSUM
rule

Mean

P Latch

Latch

reset

Xmean_before

Xmean_after

X_mean

Figure 3.19 The refinement activity model of the CUSUM detection

In above algorithm, dk is the number of samples of current status of an appliance. ts is the
beginning of a transient that happen when there is a change of value y in current steady state.
Steady state is defined when dk is larger than a threshold population dthr. This threshold depends
on the sampling frequency by dividing minimum time of a valid steady state to period of

The modified CUSUM Algorithm

Initial: 𝜃1̂ = 𝑦1; 𝑡1 = 1 ; 𝑑1 = 0;

Repeat: 𝜃𝑘−1 =
1

𝑡−𝑡𝑎
 ∑ 𝑦𝑘

𝑡
𝑘=𝑡𝑎+1

 𝑔𝑘
+ = 𝑚𝑎𝑥 [0, 𝑔𝑘−1

+ + (𝑦𝑘 − 𝜃𝑘−1) − 𝑣]

 𝑔𝑘
− = 𝑚𝑎𝑥[0, 𝑔𝑘−1

− − (𝑦𝑘 − 𝜃𝑘−1) − 𝑣]

 𝑦𝑚𝑎𝑥𝑘
= 𝑚𝑎𝑥 [𝑦𝑚𝑎𝑥𝑘−1

, 𝑦𝑘] ;

 𝑦𝑚𝑖𝑛𝑘
= 𝑚𝑖𝑛 [𝑦𝑚𝑖𝑛𝑘−1

, 𝑦𝑘]

 ℎ𝑘 = 𝑚𝑎𝑥 [40 , 𝑦𝑚𝑎𝑥𝑘
− 𝑦𝑚𝑖𝑛𝑘

] ; 𝑣 =
ℎ𝑘

2

dk = dk-1 + 1

Start of event rule:

 𝑡𝑠 = 𝑚𝑖𝑛 { 𝑘 ∶ [(𝑔𝑘
+ ≥ ℎ𝑘) ∪ (𝑔𝑘

− ≥ ℎ𝑘)] ∩ (𝑑𝑘 > 𝑑𝑡ℎ𝑟)}

End of event rule:

 𝑡𝑒 = { 𝑘 ∶ (𝑔𝑘
+ ≤ ℎ𝑘) ∩ (𝑔𝑘

− ≤ ℎ𝑘) ∩ (𝑑𝑘 = 𝑑𝑡ℎ𝑟)} − 𝑑𝑡ℎ𝑟

 𝑑𝑡𝑠 = 0; 𝑦𝑚𝑎𝑥𝑡𝑒
= 𝑦𝑘 ; 𝑦𝑚𝑖𝑛𝑡𝑒

= 𝑦𝑘

Stop rule: 𝑡𝑎 = 𝑚𝑖𝑛{ 𝑘: (𝑔𝑘
+ ≥ ℎ) ∪ (𝑔𝑘

− ≥ ℎ) }

 𝑔𝑡𝑎
+ = 𝑔𝑡𝑎

− = 0

dk = 0

Output: Mean value 𝜃𝑡

 Start time of transient-state ts

 End time of transient-state te

 Chapter 3. Application Model for a Real-Time NIALM System

95

sampling frequency. te is the end of a transient. te is defined when appliance is in transient state
and the condition of a steady state is satisfied. The input signature x will be latched its average
value before ts, its average value after te and the min value and max value during ts and te. We
then can extract changes in real power dP, reactive power dQ, coefficient dIak dIbk , dTHDi; max
values Pmax, Pmin, Qmax, Qmin and the duration of the transient dt.

Moreover, differences in dIak and dIbk are linear variables that can compute easily by
subtracting their mean values after and before the event then we can compute Ik of new appliance

who causes the event by equation Ik = √dIak
2 + dIbk

2. The harmonic information of new

appliance after an event then is recomputed by equation below. Finally, Total Harmonic
Distortion of the new appliance is computed by equation:

 𝑇𝐻𝐷𝑖 =
√∑ 𝐼𝑘

2∞
𝑘=2

𝐼1
 .100% (3.18)

Other harmonic information is individual harmonic distortions (IHD) which are computed
by equation:

 𝐼𝐻𝐷𝑖𝑘 =
𝐼𝑘

𝐼1
 .100% (3.19)

A functional verification of this algorithm has been conducted with the data set REDD [90]
in MATLAB environment using data sampled at a 15 kHz rate as illustrated in Figure 3.20 and
Table 3.5. It shows that the CUSUM works well in detecting the event as well as extracting
many electrical signatures of appliances as stated in the requirements. The accuracy of CUSUM
event detection is very high for high power appliance for example 100% in Bath-gfi 1600W,
and quite low for low power appliance such as microwave oven 165W. Such an error may come
from the compressed algorithm of the REDD data set which forms data by [time, quantity, 275
samples of a cycle]. However, the accuracy constraints for some main appliances are satisfied.
After detecting the transient, the changes in real power, reactive power and the THDi as well as
their max values, min values and the duration of the transient are calculated. Table 3.5 proves
the capability of detecting the multi-state appliances such as, for example, the furnace, which
has three, states with averaged power consumption of Furnace App 1 (620W), Furnace App 2
(440W) and Furnace App 3 (100W).

 Chapter 3. Application Model for a Real-Time NIALM System

96

Figure 3.20 Results of CUSUM event detection algorithm in extracting the beginning, and the

end of transients for both fast and slow transients

Circuit -

Appliance

Sub-

appliances

Total events

(1Hz data)

Detected

events (15kHz

data)

Accuracy

[%]

P_max

ON

Washer-
Dryer 2250W 140 138 98.57 2640W

Furnace
620W
440W
100W

70
66
66

65
62
65

92.85
93.93
98.48

620W
450W
190W

Microwave
1750W
165W

62
16

54
10

87.1
62.5

1730W
160W

Bath-gfi
1600W
1300W
950W

13
11
8

13
10
8

100
90.9
100

1650W
1300W
1000W

Electronics 1100W 130 100 76.92 1120W

Kitchen outlet
1250W
950W
380W

17
42
44

17
41
33

100
97.6
75

1250W
950W
380W

Table 3.5 Results of CUSUM event detection for main appliances in 1-Week in the House 3 in
REDD Data Set

3.4. Genetic Algorithm-based power Disaggregation

The main task of the NIALM system is to disaggregate total power usage to a set of power
usage for every appliance. As discussed in section 1, a latency constraint of a disaggregation
processing time has to be satisfied with a maximum of 5 seconds to display the associated output
to an input event. It requires a disaggregation process that can classify appliances in a time as
short as possible.

 Chapter 3. Application Model for a Real-Time NIALM System

97

Michael Baranski and Jurgen Voss in 2004 [8] have proposed the use of a fuzzy clustering
and a genetic algorithm to disaggregate appliance based on power information for NIALM
system. Fuzzy clustering initially clusters all events detected upon a change of power larger than
a threshold value of 80W. After that, a genetic algorithm will determine the appliance from best-
fit clusters. A first limitation with such an elementary detector arises when it is confronted with
the detection of slow transient appliances. Moreover, their disaggregation Genetic Algorithm
method does not process input data in real-time and, thus, a fuzzy algorithm must be used to
select the best appliance from detected appliances.

Suzuki, Kosuke et al. in 2008 [10], used an integer programming method based on the cycle-
period of the current waveform to estimate the condition of electrical appliance even with multi-
state load appliance. Such a method, based on steady-state disaggregating, is not effective
because the non-linear characteristic of current makes the aggregated current waveform
undefined based upon the sum of known currents waveform. The necessity to operate on a
known database is also a major drawback of this method. There are some other studies, also
based on trained database such as the works of Figueiredo et al. 2012 [86], Patel et al. 2007 [11]
and Froehlich, Jon et al. 2011 [12].

Akshay Uttama Nambi, S.N., et al. 2013 [91] have employed a probabilistic Hidden Markov
Model (HMM) to model the time series of aggregated power but the knowledge of the number
of appliances with their average and peak power consumption as well as their number of states
is needed. This steady-stated method also has the big drawback to require a number of iterations
that is an exponential function of the number of appliances. Moreover, collecting information
about all appliances in every house is not practical.

While most previous researches require a database and training step for appliance
disaggregation, we propose a new adaptive disaggregation algorithm that can learn new
appliances and then, can build the database by it-self. As illustrated in Figure 3.4, the
disaggregation algorithm includes two main algorithms: Event Clustering (EC) algorithm and
the Genetic Algorithm (GA). Event Clustering – a sequential version of K-mean algorithm, will
group events to clusters where their centroid will represent events including dP, dQ, dTHDi, dt
information. Then, the Genetic Algorithm (GA) processes a sequence of detected events to
discover groups of events that can possibly match an appliance based on a fitness function
thereby enabling the detection of multi-state appliances. In addition, the Appliance Finding (AF)
algorithm needs to determine the appliance name in the database thanks to its list of events. If
the detected appliance does not exist in the database, Appliance Finding will automatically
assign a new name and will save it in the database. Finally, we can also predict at an early stage
the appliance name after Event Clustering using a statistic and probabilistic event information
in the database.

 Chapter 3. Application Model for a Real-Time NIALM System

98

3.4.1 Sequential clustering K-mean

The main purpose of clustering algorithm is to collect the centroid data of the events when
their values vary in each measurement. This algorithm acts as a low pass filter to remove noise
in measured data. The sequential clustering algorithm was proposed by Konstantinos Slavakis
and Sergios Theodoridis [92] for real-time applications. In contrast to the hierarchical clustering
algorithm that proceeds once all data available, the sequential clustering algorithm runs
whenever there is a new input data and, thus, works in a straightforward and an efficient manner.
The algorithm is defined:

The threshold h plays an important role in deciding if a data belongs to a list of known events
or if it is a new event. The parameter represents the space around the center of a cluster, meaning
that if the new event is inside this space, it will belong to the cluster and vice versa. However,
the size of this space should not be the same for all clusters because 80W cluster has a measured
value ranging from 40W to 120W but the 4kW cluster has measured values ranging from 3,8kW
to 4,2kW. In order to overcome this problem, the threshold h is dynamically set in the below
function.

h = √(Kp. dP)2 + (Kq. dQ)2 + (Kthd. dTHDi)2 + (Kt. dt)2

Where Kp, Kq, Kthd and Kt are tuning parameters for the variation of dP, dQ, dTHDi and
dt.

Sequential clustering K-mean algorithm

Given initial set of k means value m1, m2 … mk, with mi is the mean value of cluster
i of transients. This algorithm has two steps:

1. Assignment step: compute distance from an event xp (dP, dQ, THDi, dt) to all
value mk of a cluster of events.

𝑆𝑖
(𝑡)

= {𝑥𝑝: (‖𝑥𝑝 − 𝑚𝑖
(𝑡)

‖
2

≤ ℎ) ∩ (‖𝑥𝑝 − 𝑚𝑖
(𝑡)

‖
2

 ≤ ‖𝑥𝑝 − 𝑚𝑗
(𝑡)

‖
2

) ∀ 1 ≤ 𝑗 ≤ 𝑘}

2. Update step:

- If the minimum distance from event xp to cluster is less than a threshold
distance h, it will be assigned to cluster Si and the centroid value of this
cluster will be updated to a new value

𝑚𝑖
(𝑡+1)

=
1

|𝑆𝑖
(𝑡)

|
 ∑ 𝑥𝑗

𝑥𝑗∈ 𝑆𝑖
(𝑡)

- If the new value xp does not satisfy equation (*) in any clusters, it will belong
to a new unknown cluster.
o k = k + 1;

o mk = xp;

 Chapter 3. Application Model for a Real-Time NIALM System

99

3.4.2. Genetic Algorithm

From the refined event list obtained after sequential clustering, some ON and OFF events can
be easily matched to pair ON-OFF based on the rule that the total changes of real and reactive
power of events in every pair is approximately zero. However, some appliances have multi-
states that this simple pair-matching algorithm cannot detect. Such an issue leads to the new
definition below:

(1) Find the groups of events that satisfy the total of changes in real, reactive power and
harmonic is approximately zero.

(2) The group of an event must start with ON event and end with OFF event.
(3) If there is an OFF event Ek in the found group [E1, E2... EN] with 1 < k < N, the total of

changes in real, reactive power and harmonic from the first event to event k must be
larger than zero.

Figure 3.21 GA algorithm (a) and illustration of GA operation in NIALM system (b)

A simple search algorithm can solve the problem described above; however, a long sequence
of events will require a long computation time with a large number of iterations. A Genetic
Algorithm [93] can solve this difficult problem. The algorithm, with terms population,
chromosome, fitness function, selection, crossover and mutation, simulates the evolution of
creatures in nature to select and create the best generation progressively in time. A chromosome
is the representation of the problem in the way it can be solved in programming. The best
chromosome is the best solution of the search. In GA, searching works based on grouping of
chromosomes or in other words, the population of chromosomes. Crossover and mutation are
special operations that exchange and change some characteristics between two chromosomes to
create new chromosomes. New chromosomes are the next generations of two old chromosomes.

 Chapter 3. Application Model for a Real-Time NIALM System

100

Such a function is a special means to compute how close the chromosome is to the best solution.
The fitness function helps in selecting the best chromosomes to create the new generator. In this
way, chromosomes in new generations are always better than their parents so that the finding is
able to converge much faster. Bandyopadhyay, Sanghamitra [93] proved that GA always
converges if the iteration quantity is sufficiently large and the convergence of GA is independent
of a crossover operation but the probability in process the mutation operation should be greater
than 0 and in the [0, ½] interval. As shown in Figure 3.21 (a), GA processes the searching with
random groups to speed up the convergence of the fitness function following the listed tasks:

(1) Generate a first random population of four chromosomes.

(2) Evaluate the fitness function of each chromosome in this population. The fitness function
is a formula of changes in real power, reactive power and total harmonic distortion.

(3) Select two chromosomes that have the best fit.

(4) Proceed to crossover and mutation to generate a new population from two selected
chromosomes. This population potentially contains a chromosome that satisfies the
fitness condition better than the previous one.

(5) Repeat steps (2) to (4) until the fitness function is satisfied or until a maximum number
of iterations is reached. In example of Figure 3.21 (b), convergence is reached in only
two iterations. In this example, we assume that there is a list of detected events data
(ON/OFF) from E1 to E6 and group {E2, E4, and E6} is the full operation cycle of an
appliance. That means this appliance has three states: E2-ON, E4-S2, E6-OFF and the
summary of event information F(E2) + F(E4) + F(E6), which is called the fitness
function, should be approximately equal to zero. In this way, regular searching
algorithms can solve this problem but can require 26 or 64 iterations in the worst case
and the long event lists consume huge computation time to iterate.

Figure 3.22. Sequential clustering results (a) and disaggregated pattern by GA on REDD
16/04/2011 (b)

 Chapter 3. Application Model for a Real-Time NIALM System

101

Appliance type P [W] Q [W] THD [%]
dt_ON

[samples]

Accuracy

[%]

Washer Dryer 1 2264 29 2 11->17 95.59
Bathroom gfi 1 1693 -11 3 2->4 100
Microwave Oven 1 1690 -319 40 23->29 85.19
Outlet 3 App 3 1293 -2 3 2 76.47
Electronics App 1 1133 0 2 2 95
Bathroom GFI App 2 1065 -18 2 28 66.67
Lighting 1 App 1 1014 -120 18 25 100
Outlet 3 App 1 942 -13 3 3 87.1
Furnace App 1 666 -320 2 1 100
Furnace App 2 442 4 2 14 96.55
Outlet 3 App 2 387 2 2 10 90.91
Lighting 2 App 1 197 2 7 3 57.14
Lighting 5 App 1 180 -62 21 6 62.5
Lighting 4 App 1 132 29 51 4 72
Refrigerator App 1 123 -25 8 16->17 94.46
Furnace App 3 91 -128 12 5 93.55

Table 3.6 Disaggregation results in 1-week in house 3 in REDD data set.

We validated this disaggregation algorithm in the REDD data set and got the results in Figure
3.22. Figure 3.22 (a) shows that the correction in functional of sequential clustering algorithm
and Figure 3.22 (b) visualizes the feature disaggregation of Genetic Algorithm without the use
of an initial database for the appliance. Detected appliances are initially given a default name;
however, the customer can reassign the name for each appliance by using database management
feature. Besides the capability to disaggregate and classify ON-OFF appliance, the Figure 3.22
also shows the ability in disaggregating multi-state appliances. Moreover, the Disaggregation
results in 1-week in house 3 in REDD data set on Table 3.6 has quite high classification
accuracy which satisfy the system requirement.

3.5. Conclusion

In this chapter, we have presented the development of algorithms for NIALM application.
Firstly, we defined system specification of innovative NIALM system, which should overcome
many challenges of NIALM technology in extracting more electrical signatures, detecting multi-
states appliance and aiming to the development of real-time NIALM system. Then, overall

 Chapter 3. Application Model for a Real-Time NIALM System

102

activity of system is presented based on Dataflow model. We also presented a studying about
designing algorithms to extract electrical signature. Then, detail algorithms Cumulative Sum
(CUSUM) for event detection and Genetic Algorithm for power disaggregation were presented.
Finally, some functional verification results in processing a public NIALM data set REDD were
presented to analyze the accuracy of system.

In the next chapter, we will present the implementation of these NIALM algorithms into a
SoC with FPGA acceleration. This FPGA acceleration is needed for system to satisfy hard
constraints in timing and hardware resources as defined in this chapter. In the following chapter,
we will also present applying hardware software co-development approach proposed in chapter
2 to prototype the NIALM system quickly.

103

CHAPTER 4. SOC IMPLEMENTATION OF NIALM SYSTEM

Contents

4.1. The Zynq platform

4.2. Executable specification

 4.2.1. Modeling Virtual Appliances
 4.2.2. Modeling the NIALM process
 4.2.3. Modeling Control Logic
 4.2.4. Disaggregation functional validation
4.3. FPGA development approaches

4.4. Architecture exploration

4.5. Prototyping system

4.5. Conclusion

Abstract:

This chapter presents a use case of SoC HW SW codevelopment methodology proposed in

chapter 2 for the development of the NIALM system. Many experimental results will be presented

to prove that implementing a SoC system with FPGA acceleration is supported well with this

approach. With HW SW cooperation, the system even satisfies much more than the hard

constraints of the system relevant to timing and hardware resources usage.

 Chapter 4. SoC Implementation of NIALM system

104

 Chapter 4. SoC Implementation of NIALM system

105

4.1. The Zynq-7000 platform

In the scope of this research, we selected SoPC is the Zynq®-7000 family of Xilinx because
its innovative architecture allows a high-level synthesis approach based on high-level synthesis
language such as C/SystemC, Labview FPGA. With both FPGA and processor core inside the
chip, Zynq is a very important evolution of FPGA technology, which allows applying various
hardware software co-development approaches. Although, there are some similar SoPC
technologies before Zynq such as the PowerPC in FPGA Virtex family of Xilinx, the low power
and high performance of ARM processors in Zynq bring a really low cost and powerful platform
in variety complex applications.

Figure 4.1 Overview of the architecture of Zynq-7000 SoC [25]

As shown in Figure 4.1, some highlights of Zynq®-7000 are this Xilinx’s products contain a
Processing System (PS) based on ARM core and the Programmable Logic (PL) based on FPGA
in a single device in 28 nm, high-performance, and low power (HPL) technology. Moreover,
this IC also contains most of the necessary hardware for all embedded applications including
on-chip memory, external memory interface and a rich set of I/O peripheral.

Central Processing Unit (CPU)

The Processing System of Zynq is composed of dual-core ARM® CortexTM–A9 MPCore
working in high frequency from 667MHz that can be configured to run the application in single
processor or dual-core processor architecture. Moreover, each processor has its own media-
processing engine (NEON) which extends the functionality of Cortex-A9 in processing vector

 Chapter 4. SoC Implementation of NIALM system

106

floating-point instruction set. Other important elements for PS in Zynq are the memory
management unit (MMU) and separate 32 KB level one (L1) instructions and data caches.

Programmable Logic

As general FPGAs, Programmable Logic of Zynq has some components such as
Configurable logic blocks (CLB), RAM blocks, DSP48E1 Slices, Clock Management,
Configurable I/Os. Moreover, there are also other extended integrated elements: low-power
gigabit transceiver, dual 12-bit 1 MSPS analog-to-digital converters (ADCs), and interface
block for PCI Express communication standard that are specialized for monitoring and
controlling applications. In Zynq’s applications, CLBs are commonly used to implement the
high performance through put data processing algorithms. DSP48E1 slices contain high-
resolution 48 bits multiplier/accumulator that provides an ability in optimizing the performance
and power consumption of DSP functions. Configurable I/O technology allows setting IO port
to work as input, output or bi-direction ports in many voltage levels 1.2 V, 1.8 V or 3.3 V that
adapts quickly to external peripherals with no need the logic level shifter ICs.

Interconnections

In order to manage inside communications, Zynq-7000 uses some interconnect technologies
such as AXI High Performance Data path Switches for PS interconnections; AXI_ACP connects
to the snoop control unit for cache coherency between the CPUs and the PL; AXI_HP with four
high performance/bandwidth master ports in the PL and AXI_GP for four general-purpose ports.
There are about 3000 connections between PL and PS, which allows hardware acceleration
function designed in PL can access memory resources in PS effectively. Moreover, the DMA
controller with four channels for PS (memory copy to/from any memory in system) and four
channels for PL (memory to PL, PL to memory) plays an important role in data transactions
inside PS and PL.

HW/SW Partitioning

Although the architecture of Zynq is quite complex, it is not difficult to develop a system
based on Zynq with LabVIEW and LabVIEW FPGA. Figure 4.2 illustrates a FPGA project in
LabVIEW base on Zynq SoC architecture in NI myRIO-1900 board. HW/SW partitioning a
system in Zynq can be done by locating designed model into the right folder in the project. As
example in Figure 4.2, module RT-Processes will be implemented in processor while module
FPGA-Processes will be implemented in FPGA. These modules will communicate together
using FIFO channels. In this figure, the FIFO channels created in FPGA Target folder transfer
data between RT Processes function running in Processor and Event Detection and
Preprocessing functions running in Program Logic. The left figure shows all hardware resources

 Chapter 4. SoC Implementation of NIALM system

107

connecting to the processor system and the programmable logic with the built-in interface under
the FPGA target as shown in the right figure.

Figure 4.2 SoPC Zynq architecture in myRIO-1900 platform and its LabVIEW project

In the next section, we will present the overall system design work of our NIALM system
using this tool and development approach proposed in chapter 2 from executable specification
of the system to architecture exploration and prototyping the system.

4.2. Executable specification

4.2.1. Modeling Virtual Appliances

Virtual Appliance model is used to emulate an electrical network to test the design NIALM
system. As illustrated in Figure 4.3, three virtual appliances are modeled in MathScript codes
from four order of harmonics and their shifting phases. We issued that the total voltage is only
in fundamental frequency and 230V amplitude. The Time Loop structure means in each 20 ms,
the system can acquire 40 samples of current and voltage signals as designed SDF model of
NIALM in chapter 3. FIFOs variables I and V are used to store these acquisition samples. This
model starts to run when switch Start Simulation is turned ON and electrical information such
as amplitude, frequency of harmonics in each active virtual appliance are set.

 Chapter 4. SoC Implementation of NIALM system

108

Figure 4.3 Electrical network model in LabVIEW MathScript with three virtual appliances

4.2.2. Modeling the NIALM process

The dataflow model of NIALM process is modeled as in Figure 4.4, with Preprocesing
connected to the sample acquisition through the communication channel FIFO I and V. As
designed in SDF model in chapter 3, both three processes Preprocesing, Event Detection and
Disaggregation work in 50 Hz rate and transmit only one package to each other in every cycle.
Therefore, a Time Loop 20ms is used to control this model. Start Power Monitor is a control
signal of the Control Logic to activate the power monitoring service.

Figure 4.4 Modeling the NIALM dataflow in LabVIEW

 Chapter 4. SoC Implementation of NIALM system

109

In order to model the Preprocessing processes, which are used to compute power, and
harmonics data, MathScript models are used as shown in Figure 4.5. However, LabVIEW can
compile MathScript models to the embedded codes that are able to run in processors.

Figure 4.5 Modeling the Preprocessing using MathScript

Figure 4.6 is the model of CUSUM Event detection. This complex DSP algorithm is

composed by three functions Filter, CUSUM rule and Data Extract. This Event data includes
signals Event Start, Event End, the changes in real power, reactive power and the Total
Harmonic Distortion. Disaggregation based on Genetic Algorithm is modeled in MathScript in
Figure 4.7 to keep the algorithm from MATLAB code for quickly functional validation the
system.

Figure 4.6 Modeling the CUSUM event detection in LabVIEW

 Chapter 4. SoC Implementation of NIALM system

110

Figure 4.7 Modeling the Genetic Algorithm in MathScript

4.2.3. Modeling Control Logic

As we developed the activity model of NIALM system in chapter 3, Control Logic handles
the interaction between system and users who can access the system for to two main services:
power monitoring service and database management service. LabVIEW StateChart was used to
model this Control Logic as illustrated in Figure 4.8.

Figure 4.8 The StateChart model of the system with three main services Power Monitoring,

Database Management and Data Logger Service

 Chapter 4. SoC Implementation of NIALM system

111

This StateChart model (Figure 4.8) controls the other processes by using the control message
shared variable. Depending on state transition, StateChart model generates different controlling
messages:

- “Active Event Manager”: when the system login is successful (Figure 4.9).

- “Start Power Monitor”: when the StateChart change to Main (macro state) and the Power
Monitoring Service starts automatically and turns from Idle state to Energy
Disaggregating state. After activate this service, NIALM processes start to run.

- “Stop Power Monitor”: when users active Database Management Service.

- “Start Event Manager” and “Stop Event Manager”, “Start App Manager” and “Stop App
Manager”: to active and de-active managing database of Events and Appliances

Figure 4.9 StateChart sends the message “Active Power Monitor” to global shared control

message to active the NIALM function when the login process is successful

4.2.4 Disaggregation functional validation

As an executable specification, it presents better the activity of the system. The power-
monitoring service works quite well when it can detect and recognize all known appliance. As
demonstrated in Figure 4.11, the GUI can display information of total real power, reactive
power, detected event and then match OFF transient to ON transient to detect the appliance. The
results show that LabVIEW is a good mode-based design approach, which is able to model a
complex Reactive Process Network system on both dataflow model for streaming processes and
StateChart model for event-based processes.

 Chapter 4. SoC Implementation of NIALM system

112

Figure 4.10 Start GUI of the executable Specification before and after the successful login with

NIALM function activate

Figure 4.11 An executable specification starts the main NIALM function when it receives

command Power Monitor from pushing button Power Monitor of user

 Chapter 4. SoC Implementation of NIALM system

113

4.3. FPGA development approaches

In comparison to memory consumed for processor functions, hardware resource consumed
of functions in FPGA is much more important because it is much expensive than memory for
software code. SDF model can optimize buffer size of FIFOs in communication channels and
improve the throughput process of system with static scheduling. However, this model is not an
efficient approach for optimizing the FPGA hardware resources and power consumed in each
process. Fortunately, LabVIEW FPGA supports prototyping the system to measure these criteria
directly and quickly. Because this tool supports develop FPGA hardware in some approaches,
we investigated development a CUSUM algorithm using these approaches for comparison. As
illustrated in Figure 4.2, a VI function will be converted to assembly code if it is located in the
Chassis folder (example RTProcess.vi) or it will be converted to RTL code if it is located in the
“FPGA target” folder (as EventDetection.vi and Preprocessing.vi).

VHDL manual coding

Figure 4.12 presents the CUSUM model in traditional method and detail register level after

synthesizing in Xilinx ISE. The design verification in Xilinx Simulator loads input data to the
system and records the output data after the CUSUM. Then the results are compared to the
results of functions designed in MATLAB, illustrated in Figure 4.13. We then used the Xilinx
Timing Analyzer tool to evaluate the performance of system and the Xilinx XPower Analyzer
to analyze the power consumption of system. The results were collected in the case
implementing system in the target Spartan xc3s500e in automatic synthesis without manual
optimization.

Figure 4.12 Schematic of CUSUM VHDL module (above) and its detail registers level after
synthesizing (below) in Vivado

 Chapter 4. SoC Implementation of NIALM system

114

Figure 4.13 Comparison result of CUSUM filter of MATLAB and ModelSim

Figure 4.14 Static power estimation of CUSUM in Vivado Synthesis for target Zynq XC7z010

System Generator

Figure 4.15 CUSUM algorithm implemented by Simulink and Xilinx System Generator

 Chapter 4. SoC Implementation of NIALM system

115

Figure 4.16 Comparison functional result of CUSUM in a signal design in System Generator
(left) and result in bit accuracy and cycle accuracy verification in WaveScope (right)

LabVIEW FPGA

Implement results of Event Detection in Figure 4.17 shows that model-based FPGA IP design
sometimes consumes more hardware resources. The VHDL manual coding of CUSUM event
detection function consumed only 125 slices of Flip-Flop (FF) and 586 slices of LUT in FPGA.
However, it consumed 3016 slices of Flip-Flop (FF) and 3924 slices of LUT by IP generated by
System Generator. Implement results in LabVIEW FPGA consumes 938 slices of Flip-Flop (FF)
and 826 slices of LUT. So that, LabVIEW FPGA uses hardware better than System Generator
but worse than VHDL manual coding approach.

Figure 4.17 Implementation of CUSUM Event Detection in SDF model based design

As shown in Table 4.3 in comparison of the throughput of function running in FPGA
architecture, function implemented in LabVIEW FPGA has the best result when it can run in 40
MHz clock or the maximum latency of the computation is only 25 ns. This result is 71 ns in
System Generator approach and 76 ns in VHDL manual coding approach. However, model-
based FPGA development approach is much faster than VHDL manual coding approach because
model validated in high-level can be used to implement hardware function in FPGA without too
much changes in model from the system design. Unfortunately, the drawback of LabVIEW

 Chapter 4. SoC Implementation of NIALM system

116

FPGA approach is that it is impossible to estimate the power consumption at system design
stage and we have to measure it with method discussed at the end of chapter 2.

Figure 4.18 SDF model of the Total power Disaggregation function where DP, DED, DEC, DGA,
DAF are times to finish processes Preprocessing, Event Detection, Event Clustering, Genetic

Algorithm, and Appliance Finding

4.4. Architecture exploration

Architecture exploration is important step to analyze the satisfaction of system in various
architectures to select the best architecture for prototyping. Figure 4.18 shows a refinement SDF
model for the disaggregating total apparent power activity. The acquisition periodically
measures current I and voltage V at defined sampling rate. The second periodic part is the
preprocessing because it consumes a quantities of samples N1 measured from the acquisition to
do the computation. Although preprocessing can compute in the same sampling rat of the
acquisition, it should be separated in different sampling rate domains (50Hz) to avoid the
difficulty in optimizing the performance of the processing algorithm. If acquisition and
preprocessing are in the same sampling rate, there is no requirement about the FIFO memory
for communication between two parts but it is mandatory the preprocessing must finish its
computation before the next sample is measured. This solution suits to the slow sampling rate
system. The next part-Event Detection needs to check every preprocessed data from
Preprocessing so that it works in the same sampling rate of Preprocessing. Finally, the
disaggregation algorithm needs to process every detected event so far. As we stated in the
constraint, the minimum duration between two continuous events is 200 milliseconds, which
means the system cannot detect two events occurring in less than 200 milliseconds. However,
there is possible no event during hours which mean Disaggregation may be time-driven (every
200 milliseconds) or an event-driven process.

 Chapter 4. SoC Implementation of NIALM system

117

Memory allocation

The visual information in SDF model gives developer more information about the
performance of each process of the system, and the number of tokens consumed and produced
in each process. That speeds up the architecture exploration, effectively static scheduling and
memory allocation. In Figure 4.18, the notations 1, 2*k, or N1 are the number of tokens, which
processes fire or consume in each operating cycle of system. Therefor SDF model can clearly
express the capability of the processes to work in pipeline to improve the throughput of the
system. While computing the average values of variables such as real power P, reactive power
Q, and coefficient of current requires N1 samples (number of samples in one cycle), other
processes need only one token. Therefore, developers can define the FIFO memory sizes
necessary for effective data transactions between processes as below Table 4.1.

Communication Chanel Memory requirement (Bytes)

Measurement - Preprocessing (N1 +b)* { Sizeof (voltage) + Sizeof (current)}

Preprocessing – Event
Detection

(1+b)*{2* Sizeof(Datatype of P/Q) + 2*k*
Sizeof(Datatype of Ak/Bk)}

Event Detection -
Disaggregation

(1+b)*{Sizeof(Datatype of dP) + Sizeof(Datatype
of dQ) + Sizeof(Datatype of dTHDi) }

Table 4.1 Allocating buffer size for FIFOs in communication channels

Where “b” is the preventive buffer of FIFO for the FIFO-writing can continue when the
system waits to the FIFO-reading; however a FIFO-reading must always finish before a FIFO-
writing. For example, from SDF model in Figure 4.18, the pseudo codes for a possible case of
architecture in one CPU system can be defined by three tasks.

Task 1: (Time-driven)
Each 0.5 milliseconds do
Code block measurement;
end

Task2: (Time-driven)
Each 20 milliseconds do
for i = 1 to N2 do
Code block preprocessing;
end
Code block event detection;
end

Task3: (Time-driven)
Wait 200 milliseconds do
Code block disaggregation;
end

In this architecture, we can statically allocate size of buffer of communication channels as
Table 4.2 with N1 = 40 and b = 1.

Communication Chanel Memory requirement (byte)

C1. Measurement - Preprocessing (N1 + b) * (2+2) = 4*(N1+b) bytes = 164 bytes
C2. Preprocessing – Event Detection (1+b)*(2 + 2+ 2*4*2) = (1+b)* 20 bytes = 40 bytes
C3. Event Detection - Disaggregation (1+b)*{2 + 2+ 2} = 6*(1+b) = 12 bytes

Table 4.2 Memory analysis results for the example architecture

 Chapter 4. SoC Implementation of NIALM system

118

Throughput analysis

Moreover, notations DP, DED, DEC, DGA, DAF present the worst processing tasks latency that
can be set bounded values to satisfy the real-time constraints of the system. Because of the
periodic, the Dp must be less than N1*Ts where Ts is the sampling period of acquisition process.
DED must be less than 20 millisecond-sampling period of Preprocessing. Finally, total of DEC,
DGA, DAF must be less than 200 milliseconds to avoid the overflow memory trouble when there
are too many events detected in every 200 milliseconds. Such algorithms must be able to
minimize the processing delay in order for the system to be able to reach the timing,
performance, and resource constraints.

Figure 4.19 Throughput analysis of system implemented in various architectures

In order to understand the capacity of system in different architectures designed for Zynq
SoC, we investigated each process in each architecture to evaluate their performance in timing,
hardware resource usage and power consumption. As illustrated in Figure 4.18, SDF model
defines clearly the order and the rate of each function to be invoked in a static schedule
operation. The architecture of Zynq can support various architectures to implement a system
using only one processor, using two processors or using two processors with FPGA acceleration.
Figure 4.19 illustrates the possible overall timing latency of total power disaggregation function
in various architectures of Zynq. As defined in SDF model, processes Preprocessing, Event
Detection and Event Classification run in the same rate in every time N1 samples are collected
by Measurement function. At that time, the communication buffer in Measurement-Processing
has enough N1 data for the function Preprocessing able to consume. Event Detection and Event
classification then run in sequence to sense the event, compute information of events. The
operation of these sequence processes in different architectures can be presented in Figure 4.19
where latency of the functions running on FPGA is always faster than running on CPU.
Therefore, if both processes 1, 2, 3 run on FPGA, the sampling frequency can increase 4 times
in comparison to run both 3 processes on one CPU.

Preprocessing in CPU can process 40 samples in 188 microseconds that means it can support
about 212765 samples per second. However, as a limitation of Zynq, the maximum data-sampling
rate of Acquisition supported in this platform is only 255 kHz, which can acquire more than 5000
samples per a period 20 milliseconds of electrical signal. Moreover, the FIFO controller of Zynq

 Chapter 4. SoC Implementation of NIALM system

119

supports the FIFO’s deep maximum 1024 samples per 20ms (or 51200 samples per second) then
maximum sampling rate is limited at about 50 kHz.

Figure 4.20 Max number of harmonics and optimized sampling rate for a NIALM system in a
single processor

In LabVIEW, we can define the processor core (of Zynq) to run the function. When all
functions of NIALM run on one processor or multicore, the computation cycle of processes
preprocessing, event detection, and disaggregation repeats every 20 milliseconds (or 20.000
microseconds). Thus, the CPU usage is defined by the ratio of active operation time of CPU in
20 milliseconds or the ratio of total latency through NIALM functions per 20 milliseconds. This
value presents the limit number of harmonic orders a single CPU can extract and defines the
optimized sampling rate for the system. Figure 4.20 shows that the best-selected sample rate
should not be larger than 10 KHz because CPU cannot extract the maximum harmonic. It also
shows that the maximum number of harmonics system can extract is 50 harmonics at 10 KHz
sampling rate. In order to increase these values, we have to implement the preprocessing in FPGA
hardware. As shown in Table 4.3, FPGA can accelerate the preprocessing function to process
each token in only 250 nanoseconds and the system can run in maximum supported sampling
rate of Zynq 50 kHz. The maximum harmonics can be extracted up to 25 kHz.

4.5. Prototyping system

There are two possible system architectures relating to the characteristic of function
disaggregation as illustrated in Figure 4.21. In the first architecture, processes acquisition,
preprocessing and event detection run on smart meters and the disaggregation runs on a server.
Events detected in NIALM meter are sent to server by internet communication and server will
run the disaggregation algorithm to classify appliances. Such system is complex, expensive in
comparison of the system with all NIALM function implemented on a SoC. As shown in Figure
4.22, the first architecture was prototyped in sbRIO-9363 platform and the disaggregation was
deployed in C++ application in a standard PC Intel core i5-2410M 4CPUs 2.3GHz.
Disaggregation responds to the appliance detection during four milliseconds. This system was

 Chapter 4. SoC Implementation of NIALM system

120

tested to be able to disaggregate three simple appliances: a blender, a kettle and a halogen lamp.
After setting the name of these appliances in database, system now can classify the name of
appliances.

Acquisition Throughput
(worst case)

Resources usage Power
consumption

FPGA (LabVIEW
based)

3.925 μs
(≈255 kHz)

1106 FFs (3.1%)
672 LUTs (3.8%)

Event Detection Throughput

(worst case)
Resources usage Power

consumption

1 ARM Cortex A9
667MHz
 (LabVIEW RT)

91 μs (per 20ms
average sample)

16.54 kBs RAM

FPGA (LabVIEW
based)

40 MHz
(25 ns)

938 FFs (2.6%)
826 LUTs (4.7%)

FPGA (System
Generator based)

14 MHz
(71 ns)

3016 FFs (8.6%)
3924 LUTs (22.3%)

0.225 W
(estimation)

FPGA (Manual
coding)

12.9 MHz
(76 ns)

125 FFs (0.4%)
568 LUTs (3.2%)

0.105 W
(estimation)

Preprocesing (P,Q
+ Harmonic
Computing)

Throughput
(worst case)

Resources usage Power
consumption

1 ARM Cortex A9
667MHz
 (LabVIEW RT)

188μs + k*333 μs
(*)

(40 tokens)

16.8 kBs RAM

FPGA (LabVIEW
based)

250 ns (per token) 808 FFs (2.3%)
735 LUTs (4.2%)

Disaggregation
(Clustering,

Throughput
(worst case)

Resource usage Power
consumption

Computer
Intel core i5-2410M
4CPUs 2.3GHz

4 ms

847 kBs RAM

1 ARM Cortex A9
667MHz
(LabVIEW RT)

953 μs

8.03 kBs RAM

(*) k is the number of harmonic.

Table 4.3 Architecture exploration results

 Chapter 4. SoC Implementation of NIALM system

121

1. Disaggregation in server

2. Disaggregation on SoC smart meter

Programmable logic

- High cost

- Low cost

Figure 4.21 Two general models for commercial NIALM system

Implementing all NIALM functions into a single SoC needs to analyze the system in various
architectures of the SoC such as: an architecture with all functions implemented in embedded
software running in one CPU or multi-cores CPU or a complex architecture with both hardware
and software implementations. Results in Table 4.3 show in detail the performance of NIALM
function when we analyzed them in various architectures for a simple NIALM as we
implemented in the first architecture in Figure 4.22. In the second architecture, we used the
capability C/C++ programming in Zynq to bring the C++ window application to run in Zynq
architecture as shown in Figure 4.23.

Figure 4.22 Prototyping system in architecture with disaggregation in server

 Chapter 4. SoC Implementation of NIALM system

122

Figure 4.23 Prototyping NIALM in second architecture. Data Acquisition and Preprocessing,
Event Detection run in FPGA and Disaggregation runs in processor

4.6. Conclusion

This chapter illustrated a use case of development of a RPN system using the hardware
software co-development proposed in chapter 2. In order to understand this approach, the
myRIO platform with SoC Zynq was selected because this SoC has both processors and FPGA
and support exploring NIALM system in various architectures. This chapter showed that our
proposed methodology is very interesting and effectively in quickly develop and prototype a
complex RPN system like NIALM. First prototype of NIALM can function in real-time the
disaggregation algorithms and the architecture exploration results showed that the Zynq can
support more a system with more difficult timing constraints. However, this method must use
the NI platform to process the architecture exploration and power consumption measurement.

123

CONCLUSIONS AND PERSPECTIVES

Conclusion

In the motivation to engage people saving energy, the objective of the thesis is studying about
the NIALM technology and proposing an innovative NIALM system, which is more powerful,
compact and low cost and can overcome some challenges of current NIALM meters. The
research got some important results:

We developed a real-time event detection CUSUM which is able to detect and extract more
electrical in time-real event with low transient appliances based on configuring parameter drift
of algorithms. We also added adaptive threshold feature to CUSUM algorithm which can
improve the noise and small signal distinction. Functional verification of CUSUM in dataset
REDD showed its high accuracy but also its ability to smooth the noise waveform of the signal.
Then, we implemented event detection into FPGA in many approach. Experimental results in
the first prototype show that it can detect events of signal sampled at up to 40 MHz. This function
is has the potential to be integrated to a low cost but powerful NIALM system.

We proposed estimating coefficient harmonics information Ak, Bk because unlike current
information Ak, Bk are linear so that they are compatible to CUSUM event detection to extract
Ak, Bk of events. Then, Ak and Bk are used to compute the harmonics Ik, Total Harmonic
Distortion (THD) and Individual Harmonic Distortion (IHD). The capability of extracting
harmonics information of individual appliances has not yet been integrated into existing
commercial product. Commercial power meter product can measure only the THD of all the
appliance in the electrical network. Then, we continued by implementing this algorithms in
many architectures. Maximum harmonics order extracted by one core ARM should be less than
50th and optimum sampling rate in this case is about 10kHz because of the limitation of processor
performance. Version implemented in FPGA can extract coefficient harmonics of signal
sampled up to 40 MHz but that will consume more FPGA resources. First implementation
extracts 4 harmonics took 808 (2.3%) Flip-Flop and 735 (4.2%) LUT in the myRIO 1900
architecture.

The disaggregation of our NIALM system was based on Genetic Algorithm to be able to
detect multi-state appliances. In this research, the GA version used only three information of
detected events: real power, reactive power and THD but we have not yet finished analyzing to
find out the best fitness function for this GA algorithm. First results in REDD shows that this
unsupervised algorithm can detect multi-state appliance and disaggregate more than 80 % power
consumption in the electrical network. The prototype of GA function running on a server PC
just takes around 4ms to disaggregate and display information.

In studying about modeling our system, we found the relation between NIALM and the
Reactive Process Network model, which is often used to model a complex DSP system
containing both the event controlling processes and data streaming processes. RPN model is a

124

composition of dataflow model and Finite State Model. Moreover, we found that the
Synchronous Dataflow model is the best dataflow model, which allows better buffer size
allocation and statistic scheduling for the data streaming processes. Then, we proposed the use
RPN to model our NIALM system aiming to optimize the performance, memory usage and
power consumption of the NIALM system. Various approaches, tools and languages are studied
and LabVIEW, LabVIEW FPGA was found to be the best candidate not just in modeling the
RPN system but also in prototyping the product quickly. Therefore, in the second contribution
of the thesis, we proposed a methodology for quickly developing a RPN system on SoC based
on LabVIEW and LabVIEW FPGA. The advantage of this approach is that it can be used for
the regular embedded system development as well as the SoC embedded system with the
hardware acceleration. This is the first approach to implement RPN complex into SoC based on
Labview FPGA and it is a very useful for some specific purposes:

- With system designers, they can quickly develop complex DSP system without the deep
knowledge in HDL programming for hardware development and C/C++ programing for
software development. The whole system after analyzing algorithms using high-level
mathematics languages such as Matlab/Scilab/ Octave can be modeled into the system
in either model-based programming or MathScript based programming. The real-time
codes or HDL codes generated by LabVIEW are runnable into the selected NI platform.

- With researchers, understanding well how to model RPN model in this approach can
give them a very powerful tool to analyze their DSP algorithms in real system quickly.

- With hardware designers, they can apply this approach to optimize the performance and
resources consumption in their system applying SDF to model their system and explore
them in various architectures.

- With software designers, this approach also gives them the capability to prototyping a
system quickly by embedding their C code algorithm with formula node tool or
programing system in C coding approach.

Although the designed NIALM worked well in disaggregate power in dataset REDD,
verifying the system in real database measured in laboratory shows some limitations:

- The CUSUM works well in detecting ON-OFF appliances but it does not work well with
power consumed by some lighting, informatics and electronics appliances. That is
because their power usages is small and its transitions are too slow. This event-based
method should be used in combining with the steady-based method. This measure the
power consumption in network at each period time so that it can detect a large power
change between two measurements.

- Disaggregation based Genetic Algorithm matches ON and OFF events if the fitness
function of this group is satisfied. However, in industrial domain, there are so many
appliances, which have the same ON or OFF events can cause mistakes. Other common
limitation is, this algorithm cannot detect and classify two simultaneous events.

Regarding the development of the system, our SoC development methodology has to connect
to a real platform to estimate the power consumption and process’s latency. Therefore, it is

125

impossible to explore system without real-platform as virtual platform modeling approach. The
solution for this limit is studying about developing an estimation model in Labview, which
allows estimating the power consumption and the latency during the system design phase.

Perspectives

Harmonics may give more information about some appliances like electronics, informatics
appliance, which have some particular information in high harmonics. Results in this thesis show
that the NIALM system works well at the maximum 50 kHz sampling rate but we believe that
interleaving sampling methods can increase the sampling rate. Improving harmonic extraction
with FPGA acceleration will keep a low cost system and increase the power NIALM system.
Therefore, there is a need to improve the harmonics analysis which can be used to compute real
power and reactive power in higher harmonic order.

GA disaggregation algorithm needs to be improved to be able to classify similar and
simultaneous events. A probability classification approach such as Hidden Markov Model could
be used to improve the appliances classification. However, the algorithm will be more complex
and may not satisfy the timing constraint of a real-time NIALM meter. So, the disaggregation
algorithm implementation should be considered using hardware.

Another perspective of the thesis is to transform the design in one phase electrical network
to a three phases version and integrating the SoC NIALM system into a single current sensor to
create an innovative NIALM sensor node that will be able to the monitor power in large
buildings using Wireless Sensor Network.

Besides monitoring power usage application of NIALM, there is a potential application in
monitoring the electrical power quality. Bad quality electrical power can cause malfunctions
and fails in electrical machines which means maintenance. Two most important standards in
rating the quality of electrical power are EN50160 standard and IEC 61000 standard based on
the limits of voltage, current and frequency in order to prevent maintenance. NIALM technology
may be the best solution to find out which appliances cause problems or pollution in electrical
power quality, using customer or distributor views. We also will continue apply the HW SW
codevelopment methodology to improve the performance of our system in newest sbRIO-9607
platform FPGA with integrating quality power monitoring application. This rich FPGA
resources card supported by 667MHz dual-core ARM Cortex A9 can work as an independent
NIALM system while last product still need a server PC to execute the disaggregation algorithm.
Moreover, this system is needed to executing in real-time the high order Ak, Bk harmonic
extraction and HMM algorithm.

126

127

PUBLICATIONS

2014 Kien Nguyen Trung, Cyril Jacquemod, Eric Dekneuvel, Benjamin
Nicolle, Olivier Zammit, Cuong Nguyen Van, Philippe Lorenzini,
Gilles Jacquemod,”Innovative Current Sensor and Event Detection
Algorithms for NIALM Application”, SAME 2014, Nice, France. Best
demo and poster award.

Kien Nguyen Trung, Eric Dekneuvel, Benjamin Nicolle, Olivier
Zammit, Cuong Nguyen Van, Gilles Jacquemod,” Event Detection
and Disaggregation Algorithms for NIALM System”, Second
International Workshop in NILM 2014, Texas, USA

2013 Cyril Jacquemod; Kien Nguyen Trung ; Asma Chargui; Khalifa
Aguir; Olivier Zammit, Eric Dekneuvel, Benjamin Nicolle, Philippe
Lorenzini, Gilles Jacquemod, “Power Consumption Monitoring for
Smart Building Application”, SAME 2013, Nice, France

T. K. Nguyen, E. Dekneuvel, B. Nicolle, O. Zammit, V. C. Nguyen
and G. Jacquemod, "“Using FPGA for real time power monitoring in
a NIALM system.”," in In Industrial Electronics (ISIE), 2013 IEEE
International Symposium on, 2013

2012 Kien Nguyen Trung, Ngoc Nguyen Van, “Pulse Oximetry System
based on FPGA”, VN-UK International Conference on Bio-Sciences
and Bio-Electronics (ICBSBE) , Vietnam, 2012

T. K. Nguyen, O. Zammit, E. Dekneuvel, B. Nicolle, V. C. Nguyen
and G. Jacquemod, "An innovative non-intrusive load monitoring
system for commercial and industrial application," in In Advanced
Technologies for Communications (ATC), 2012 International
Conference on, 2012.

128

129

REFERENCES

[1] "The International Energy Outlook 2013," Office of Energy Analysis. U.S. Department of
Energy, 2013.

[2] EPA, "United States Environmental Protection Agency," April 2014. [Online]. Available:
http://www2.epa.gov/energy/greenhouse-gas-equivalencies-calculator.

[3] A. Zervos, C. Lins, L. Tesnière and E. Smith, "Mapping renewable energy pathways
towards 2020," European Renewable Energy Council, 2011.

[4] U. Department of Energy and Climate Change, "Behavior change and energy use," 2011.
[5] G. W. Hart, "Nonintrusive appliance load monitoring," Proceedings of the IEEE, pp.

1870-1891, 1992.
[6] S. B. Leeb, S. R. Shaw and J. L. & Kirtley Jr, "Transient event detection in spectral

envelope estimates for nonintrusive load monitoring," IEEE Transactions on Power

Delivery, pp. 10(3), 1200-1210, 1995.
[7] C. Laughman, K. Lee, R. Cox, S. Shaw, S. Leeb, L. Norford and P. Armstrong, "Power

signature analysis.," Power and Energy Magazine, IEEE, pp. 1(2), 56-63, 2003.
[8] M. Baranski and J. Voss, "Genetic algorithm for pattern detection in NIALM systems," in

In Systems, Man and Cybernetics, 2004 IEEE International Conference on, Vol. 4, 2004.
[9] R. Cox, S. B. Leeb, S. R. Shaw and L. K. Norford, "Transient event detection for

nonintrusive load monitoring and demand side management using voltage distortion.," in
In Applied Power Electronics Conference and Exposition, 2006. APEC'06, 2006.

[10] K. Suzuki, S. Inagaki, T. Suzuki, H. Nakamura and K. & Ito, "Nonintrusive appliance load
monitoring based on integer programming," in In SICE Annual Conference, 2008.

[11] S. N. Patel, T. Robertson, J. A. Kientz, M. S. Reynolds and G. D. Abowd, "At the flick of
a switch: Detecting and classifying unique electrical events on the residential power line,"
Springer Berlin Heidelberg, pp. 271-288, 2007.

[12] J. Froehlich, E. Larson, S. Gupta, G. Cohn, M. Reynolds and S. Patel, "Disaggregated
End-Use Energy Sensing for the Smart Grid," Pervasive Computing, IEEE, pp. vol.10,
no.1, pp.28-39, 2010.

[13] O. Parson, S. Ghosh, M. Weal and A. & Rogers, "Non-intrusive load monitoring using
prior models of general appliance types," 2012. [Online]. Available:
http://www.orchid.ac.uk/.

[14] J. Z. Kolter and T. Jaakkola, "Approximate inference in additive factorial hmms with
application to energy disaggregation," In International conference on artificial

intelligence and statistics, pp. 1472-1482, 2012.
[15] M. E. Berges, E. Goldman, H. S. Matthews and L. Soibelman, "Enhancing electricity

audits in residential buildings with nonintrusive load monitoring," Journal of industrial

ecology, pp. 14(5), 844-858, 2010.
[16] TED, "theenergydetective," The Energy Detective, 2015. [Online]. Available:

http://www.theenergydetective.com/.
[17] Enetics, "Power Quality Monitoring," Enetics, Inc, 2012. [Online]. Available:

http://www.enetics.com/app-PQM.html. [Accessed 2015].
[18] Navetas, "NAVETAS," Maple Tree Energy Management Limited, Company, 2015.

[Online]. Available: http://www.navetas.com/products/#gas. [Accessed 2015].

130

[19] W. Greene, J. S. Ramsey, S. B. Leeb, T. DeNucci, J. Paris, M. Obar and T. J. McCoy,
"Non-intrusive monitoring for condition-based maintenance," In American Society of

Naval Engineers Reconfigurability and Survivability Symposium (Vol. 11), 2005.
[20] W. K. Lee, G. S. K. Fung, H. Y. Lam, F. H. Y. Chan and M. & Lucente, "Exploration on

load signatures," in In International conference on electrical Engineering (ICEE), 2004.
[21] K. H. Ting, M. Lucente, G. S. Fung, W. K. Lee and S. Y. R. & Hui, "A taxonomy of load

signatures for single-phase electric appliances.," in In IEEE PESC (Power Electronics

Specialist Conference), 2005.
[22] S. Gupta, M. Reynolds and S. Patel, "ElectriSense: single-point sensing using EMI for

electrical event detection and classification in the home," in 12th ACM international

conference on Ubiquitous computing, 2010.
[23] Z. Wang and G. & Zheng, "Residential appliances identification and monitoring by a

nonintrusive method," Smart Grid, IEEE Transactions on, 3(1), pp. 80-92, 2012.
[24] LG, "Smart ThinQ™ Super-Capacity 3 Door French Door Refrigerator with 8" Wi-Fi

LCD Screen," LG,inc, [Online]. Available: http://www.lg.com/us/refrigerators/lg-
LFX31995ST-french-3-door-refrigerator. [Accessed 2015].

[25] Xilinx, "Zynq-7000 Silicon Devices," Xilinx Inc, [Online]. Available:
http://www.xilinx.com/products/silicon-devices/soc/zynq-7000/silicon-devices.html.
[Accessed October 2015].

[26] NI, "LabVIEW FPGA Module," National Instruments Corporation, [Online]. Available:
http://www.ni.com/labview/fpga/ . [Accessed October 2015].

[27] Wikimedia, "Integrated circuit," Wikimedia Foundation, Inc, [Online]. Available:
https://en.wikipedia.org/wiki/Integrated_circuit. [Accessed October 2015].

[28] OpenCores, "Opencore Projects," OpenCores.org, [Online]. Available:
http://opencores.org/projects. [Accessed October 2015].

[29] Tom Hill, "Advancing the Use of FPGA Co-Processors through Platforms and High-Level
Design Flows," Xilinx , 2011.

[30] R. Zurawski, Embedded systems handbook, CRC Press, 2005.
[31] D. D. Gajski, S. Abdi and A. Gerstlauer, Embedded System Design Modeling, Synthesis

and Verification, Springer, 2010.
[32] J. P. Calvez, A. Wyche and C. Edmundson, Embedded real-time systems, J. Wiley., 1993.
[33] Cadence, "Cadence Virtual System Platform datasheet," Cadence Design Systems, Inc,

[Online]. Available:
http://www.cadence.com/rl/Resources/datasheets/virtual_system_platform_ds.pdf.
[Accessed October 2015].

[34] "Open Virtual Platforms™ (OVP™) portal," Imperas Software Limited, [Online].
Available: http://www.ovpworld.org/. [Accessed Oct 2015].

[35] S. Rigo, G. Araujo, M. Bartholomeu and R. & Azevedo, "ArchC: A SystemC-based
architecture description language," in Computer Architecture and High Performance

Computing, 2004. SBAC-PAD 2004, 2004.
[36] D. D. Gajski, S. Abdi, A. Gerstlauer and G. Schirner, "Embedded system design:

modeling, synthesis and verification," Springer Science & Business Media, 2009.
[37] A. Raghunathan, N. K.Jha and S. Dey, High-Level Power Analysis And Optimization,

Kluwer Academic Publishers, 1998.

131

[38] M. Geilen and T. Basten, "Requirements on the execution of Kahn process networks. In
Programming languages and systems.," Springer Berlin Heidelberg, pp. 319-334, 2003.

[39] T. Basten, "Computational Models for Concurrent Streaming Applications," 2010.
[Online]. Available: http://www.asci.tudelft.nl/media/winterschool2010/asci2010_4.pdf.
[Accessed 2015].

[40] A. Jantsch, Models of computation for distributed embedded systems, 2009.
[41] I. Radojevic and Z. Salcic, Embedded Systems Design Based on Formal Models of

Computation, Springer, 2011.
[42] E. A. Lee and S. A. Seshia, Introduction to embedded systems: A cyber-physical systems

approach, Lee & Seshia, 2011.
[43] D. Harel, " Statecharts: A visual formalism for complex systems," Science of computer

programming, pp. 8(3), 231-274, 1987.
[44] D. Harel and M. Politi, Modeling reactive systems with statecharts: the STATEMATE

approach., McGraw-Hill, Inc, 1998.
[45] D. Harel, H. Lachover, A. Naamad, A. Pnueli, M. Politi, R. Sherman and M. Trakhtenbrot,

"Statemate: A working environment for the development of complex reactive systems,"
Software Engineering, IEEE Transactions on, pp. 16(4), 403-414, 1990.

[46] "Developing Applications with the NI LabVIEW Statechart Module," 2012. [Online].
Available: http://www.ni.com/tutorial/6194/en/. [Accessed 2015].

[47] "NI LabVIEW Statechart Module," [Online]. Available: www.ni.com/labview/statechart.
[Accessed 2015].

[48] D. Harel and H. Kugler, "The rhapsody semantics of statecharts (or, on the executable core
of the UML).," in In Integration of Software Specification Techniques for Applications in

Engineering, 2004.
[49] W. P. Stevens, G. J. Myers and L. L. Constantine, "Structured design," IBM Systems

Journal, pp. 13(2),115-139, 1974.
[50] K. A. H. N. Gilles, "The semantics of a simple language for parallel programming," in In

Information Processing’74: Proceedings of the IFIP Congress Vol. 74, 1974.
[51] E. A. Lee and D. G. Messerschmitt., "Synchronous data flow," Proceedings of the IEEE

75.9, pp. 1235-1245, 1987.
[52] Z. Zhou, W. Plishker, S. S. Bhattacharyya, K. Desnos, M. Pelcat and J. F. Nezan,

"Scheduling of Parallelized Synchronous Dataflow Actors for Multicore Signal
Processing," Journal of Signal Processing Systems, pp. 1-20, 2014.

[53] M. Lattuada and F. & Ferrandi, "Modeling pipelined application with synchronous data
flow graphs. In Embedded Computer Systems: Architectures, Modeling, and Simulation
(SAMOS XIII), 2013 International Conference on (pp.). IEEE..," in In Embedded

Computer Systems: Architectures, Modeling, and Simulation (SAMOS XIII), 2013

International Conference on, 2013.
[54] A. Bonfietti, L. Benini, M. Lombardi and M. Milano, "An efficient and complete approach

for throughput-maximal SDF allocation and scheduling on multi-core platforms," in In

Design, Automation & Test in Europe Conference & Exhibition (DATE), 2010.
[55] S. S. Bhattacharyya, P. K. Murthy and E. A. Lee, "Synthesis of embedded software from

synchronous dataflow specifications," Journal of VLSI signal processing systems for

signal, image and video technology, pp. 21(2), 151-166, 1999.
[56] Kodosky, Jeffrey, J. MacCrisken and G. Rymar., "Visual programming using structured

data flow," in Proceedings of Workshop on Visual Languages, 1991.

132

[57] M. Geilen and T. Basten, "Reactive process networks," in InProceedings of the 4th ACM

international conference on embedded software, 2004.
[58] R. D. Turney, C. Dick, D. B. Parlour and J. & Hwang, "Modeling and implementation of

dsp fpga solutions," in In 1999 International Conference on Signal Processing

Applications and Technology ICSPAT, 1999.
[59] D. Markovic, C. Chang, B. Richards, H. So, B. Nikolic and R. W. Brodersen, "ASIC

Design and Verification in an FPGA Environment," in InCustom Integrated Circuits

Conference, 2007. CICC'07. IEEE, 2007.
[60] "Xilinx System Generator for DSP User Guide," 2009. [Online]. Available:

http://www.xilinx.com/support/documentation/sw_manuals/xilinx11/sysgen_user.pdf.
[Accessed 2015].

[61] R. Bucher and S. Balemi, "Some practical experiences with Scilab/Scicos and RTAI-Lab
at the SUPSI laboratory," in Claude Gomez Hangzhou, 2006.

[62] Z. Dong and K. & Cai, "Targeting the Scicos Code Generator HDL Model Example," in
Claude Gomez Hangzhou, 2006.

[63] F. Ghenassia, "Transaction-level modeling with SystemC," Dordrecht, The Netherlands:

Springer, pp. 153-183, 2005.
[64] "Vivado Design Suite," [Online]. Available:

http://www.xilinx.com/support/documentation/white_papers/wp416-Vivado-Design-
Suite.pdf. [Accessed 2015].

[65] "New York IEEE Standard Hardware Description Language Based on the Verilog
Hardware Description Language (1364 - 2001)," IEEE Computer Society, 2001.

[66] "IEEE Standard VHDL Language Reference Manual (1076 - 2002)," IEEE Computer
Society, New York., 2002.

[67] P. J. Ashenden, G. D. Peterson and D. A. Teegarden, The system designer's guide to
VHDL-AMS: analog, mixed-signal, and mixed-technology modeling., Morgan
Kaufmann, 2002.

[68] K. Einwich, J. Bastian, C. Clauss, U. Eichler and P. & Schneider, "SystemC-AMS
Extension Library for Modeling Conservative Nonlinear Dynamic Systems," In FDL, pp.
113-119, 2006.

[69] E.Dekneuvel, "Intelligent sensors : analysis and design.," in The industrial Information

Technology Handbook, IEEE CRC PRESS , 2005, pp. 72-1 section V.
[70] M. Stonebraker, U. Çetintemel and S. & Zdonik, " The 8 requirements of real-time stream

processing," ACM SIGMOD Record 34.4, pp. 42-47, 2005.
[71] C. G. Cassandras, Introduction to discrete event systems, Springer Science & Business

Media, 2008.
[72] "Characterize Batteries and Power Consumption Using the NI PXI-4071 7 ½-digit Digital

Multimeter," Nation Instrument white paper, 2012.
[73] T. K. Nguyen, E. Dekneuvel, B. Nicolle, O. Zammit, V. C. Nguyen and G. Jacquemod,

"“Using FPGA for real time power monitoring in a NIALM system.”," in In Industrial

Electronics (ISIE), 2013 IEEE International Symposium on, 2013.
[74] W. M. Grady and a. R. J. Gilleskie., "Harmonics and how they relate to power factor,"

Proceedings of PQA93, 1993.
[75] M. Kezunovic, E. Soljanin, B. Perunicic and S. & Levi, "New approach to the design of

digital algorithms for electric power measurements," Power Delivery, IEEE Transactions

on 6.2, pp. 516-523, 1991.

133

[76] W.-K. Yoon and M. J. Devaney, "Reactive power measurement using the wavelet
transform," Instrumentation and Measurement, IEEE Transactions, pp. 246-252, 2000.

[77] W. Ejaz, M. K. Atiq and H. S. & Kim, "Recursive Pyramid Algorithm-Based Discrete
Wavelet Transform for Reactive Power Measurement in Smart Meters," Energies 6.9, pp.
4721-4738, 2013.

[78] S. D. Grigorescu, C. Cepisca, I. G. O. Potirniche and M. & Covrig, "Numerical simulations
for energy calculation in power measurements," in Proceedings of the European

Computing Conference (ECC09) and Proceedings of the 3rd International Conference on

Computational Intelligence (CI09), 2009.
[79] L. Slosarcik., ""FFT-Based Algorithm for Metering Applications” Application note,

Freescale Semiconductor, Inc," Freescale Semiconductor, Inc, 2014.
[80] F. R. Kschischang, The hilbert transform., University of Toronto, 2006.
[81] M. Mienkina, ""Filter-Based Algorithm for Metering Applications." An application note

of Freescale Semiconductor," Freescale Semiconductor, Inc., 2013.
[82] G. A. Petre Minciunescu, "Novel Harmonic Analysis Method Improves Accuracy,

Reduces Computation Overhead in Smart Meters," 2011.
[83] A. B. Baggini, Handbook of power quality. Vol. 520, John Wiley & Sons, 2008.
[84] State_Iowa, "Energy-Related Best Practices: A Sourcebook for the Food Industry," Iowa

State University, 2005.
[85] "Variable frequency drives – Energy efficiency Reference Guide," Natural Resources

Canada, 2009.
[86] M. Figueiredo, A. De Almeida & B. Ribeiro, "Home electrical signal disaggregation for

non-intrusive load monitoring (NIALM) systems.," Neuro computing 96, pp. 66-73, 2012.
[87] M. S. Tsai and Y. H. & Lin, "Modern development of an adaptive non-intrusive appliance

load monitoring system in electricity energy conservation," Applied Energy 96, pp. 55-73,
2012.

[88] M. Basseville and I. V. Nikiforov., Detection of abrupt changes: theory and application,
Englewood Cliffs: Prentice Hall, 1993, p. Vol. 104..

[89] T. K. Nguyen, O. Zammit, E. Dekneuvel, B. Nicolle, V. C. Nguyen and G. Jacquemod,
"An innovative non-intrusive load monitoring system for commercial and industrial
application," in In Advanced Technologies for Communications (ATC), 2012 International

Conference on, 2012.
[90] J. Z. Kolter and a. M. J. Johnson., "REDD: A public data set for energy disaggregation

research," in SustKDD workshop on Data Mining Applications in Sustainability, 2011.
[91] S. N. Akshay Uttama Nambi, T. G. Papaioannou, D. Chakraborty and K. & Aberer,

"Sustainable energy consumption monitoring in residential settings," in Computer

Communications Workshops (INFOCOM WKSHPS), 2013 IEEE Conference on, 2013.
[92] K.K. Sergios Theodoridis, Pattern recognition, 2nd edition, Elsevier Academic press, 2003.
[93] B. S. Pal. and a. S. Kumar, Classification and learning using genetic algorithms:

applications in bioinformatics and web intelligence, Springer, 2007.

