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THÈSE DE DOCTORAT

Par
Yandong BAI

Arc Colorings and Cycles in
Digraphs

Date de soutenance: 28/11/2014

Composition du jury:
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3.2 Caccetta-Häggkvist conjecture with induced forbidden subdigraphs . 50
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Abstract

This thesis studies arc colorings and cycles of digraphs. It focuses on the following

topics: vertex-distinguishing proper arc colorings in digraphs, short cycles in digraphs

with forbidden subdigraphs, disjoint cycles and cycle factors in bipartite tournaments,

universal arcs in tournaments, and directed cuts in a type of Cayley digraph.

The thesis consists of an introductory chapter (Chapter 1), a conclusion chapter

(Chapter 7) and five research chapters (Chapters 2-6). Each research chapter is based

on an original article, which has been published, or submitted for publication, in an

international journal.

In Chapter 1, the basic terminology and notation used in this thesis are intro-

duced, and then a brief introduction to the research contents and main results is

given.

In Chapter 2, the (semi-)vertex-distinguishing proper arc coloring of digraphs

is introduced. Denote by χ′2vd(D) (resp. χ′2svd(D)) the minimum number of colors

required for a vertex-distinguishing (resp. semi-vertex-distinguishing) proper 2-type

arc coloring of D. We give tight upper bounds for χ′2vd(D) and χ′2svd(D) in terms of

its order and degrees. Furthermore, the values of χ′2vd(D) for some regular digraphs

D are given. Besides, we show that the values of χ′2vd(D) and χ′2svd(D) will not be

changed if the coloring, in addition, required to be equitable.

In Chapter 3, we concentrate on the Caccetta-Häggkvist conjecture, which claims

that every digraph on n vertices without directed cycles of lengths at most l contains a

vertex with outdegree at most n−1
l

. As a partial support of the conjecture, Razborov

[A. Razborov, On the Caccetta-Häggkvist conjecture with forbidden subgraphs, J.

Graph Theory (2012) 1-13] verified the case l = 3 for a specific family of digraphs.
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Abstract

We generalize Razborov’s result by verifying the conjecture for l ≥ 4 on a similar

specific family of digraphs.

In Chapter 4, we consider the vertex-disjoint cycles in bipartite tournaments. Let

t1, . . . , tr ∈ [4, 2q] be any r even integers, where q ≥ 2 and r ≥ 1 are two integers.

We show that every bipartite tournament with minimum outdegree at least qr − 1

contains r vertex-disjoint directed cycles of lengths t′1, . . . , t
′
r such that t′i = ti for

ti = 0 (mod 4) and t′i ∈ {ti, ti + 2} for ti = 2 (mod 4), where 1 ≤ i ≤ r. The

special case q = 2 of the result verifies the bipartite tournament case of a conjecture

proposed by Bermond and Thomassen, claiming that every digraph with minimum

outdegree at least 2r − 1 contains at least r vertex-disjoint directed cycles.

In Chapter 5, cycle factors in regular bipartite tournaments are considered. We

show that every k-regular bipartite tournament B with k ≥ 3 has two complementary

cycles of lengths 6 and |V (B)| − 6, unless B is isomorphic to a special digraph.

Also, we show that every k-connected regular bipartite tournament has a cycle factor

consisting of k cycles.

In Chapter 6, universal arcs and directed cuts are considered. Let T be a tourna-

ment with at least 3 vertices. We show that T has a universal arc if and only if T is

strong, and also show that every arc of T is universal if and only if T is 2-connected

or T belongs to a special class of 1-connected tournaments. Let Zk2 be the set of bi-

nary vectors with length k and let Sk = {2i−1 : i = 1, . . . , k}. We deal with directed

cuts in the Cayley digraph X(Zk2, Sk). To be precise, we obtain a lower bound of the

maximum number of arcs contained in a directed cut of X(Zk2, Sk) and the minimum

number of directed cuts required to cover the arcs of X(Zk2, Sk).

Chapter 7 concludes with a survey of this thesis and some problems for further

consideration.

Keywords: vertex-distinguishing proper arc colorings; Caccetta-Häggkvist conjec-

ture; vertex-disjoint cycles; cycle factors; universal arcs; directed cuts
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Résumé

Cette thèse étudie la coloration d’arcs et de cycles dans les graphes orientés. Elle

se concentre sur les sujets suivants: la coloration propre d’arcs avec des sommet-

distingué dans les graphes orientés, les cycles courts dans les graphes orientés avec

des sous-graphes interdits, les cycles sommet-disjoints et les cycle-facteurs dans les

tournois bipartis, les arcs universels dans les tournois, et des coupes dirigées dans un

graphe Cayley orienté.

La thèse se compose d’un chapitre d’introduction (Chapitre 1), un chapitre de

conclusion (Chapitre 7) et cinq chapitres de recherche (Chapitres 2-6). La thèse

est basée sur cinq articles originaux publiés ou présentés dans des journaux. Les

principaux résultats sont les suivants.

Dans le chapitre 1, la terminologie de base et la notation utilisée dans cette thèse

sont introduits, puis une brève introduction au contenu de recherche et les principaux

résultats est donnée.

Dans le chapitre 2, nous introduisons la coloration propre d’arcs avec des (semi-

) sommet-distingué dans les graphes orientés. Nous avons proposé une conjecture

sur le nombre arc-chromatique (semi-) sommet-distingué et nous avons aussi donné

quelque résultats partiels.

Dans le chapitre 3, nous avons étendu un résultat de Razborov en prouvant que

la conjecture de Caccetta-Häggkvist est vraie pour certains graphes orientés avec des

sous-graphes interdits.

Dans le chapitre 4, nous avons montré que chaque tournoi biparti avec degré

sortant minimum au moins qr − 1 contient r cycles de sommets-disjoints de toutes

longueurs données t′1, . . . , t
′
r de telle sorte que t′i = ti pour ti = 0 (mod 4) et t′i ∈
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Résumé

{ti, ti+2} pour ti = 2 (mod 4), où 1 ≤ i ≤ r et ti ∈ [4, 2q] est arbitraire. Le cas spécial

q = 2 confirme le cas du tournoi biparti de la conjecture de Bermond-Thomassen.

Dans le chapitre 5, nous avons montré que chaque tournoi biparti k-Regulier avec

k ≥ 3 que l’on notera B a deux cycles complémentaires de longueurs 6 et |V (B)|− 6,

à moins que B soit isomorphe à un graphe spécifique, tayant ainsi une conjecture sur

des 2-cycles-facteurs dans les tournois bipartis. En outre, nous montrons que tous

les tournois bipartis réguliers ont un k-cycle-facteur.

Dans le chapitre 6, nous donnons une condition nécessaire et suffisante pour

l’existence d’un arc universel dans un tournoi et nous caractérisons tous les tournois

où chaque arc est universel. Nous donnons aussi une bonne borne pour la taille

d’une coupe max et nous montrons la valeur exacte pour le nombre coupe-abri dans

un graphe Cayley orienté.

Chapitre 7 se termine par une enquête de cette thèse et certains problèmes pour

un examen plus approfondi.

Mots-clés: coloration propre d’arcs avec des sommet-distingué; conjecture de Caccetta-

Häggkvist; cycles sommet-disjoints; cycle-facteurs; arcs universel; coupe orienté

viii



Chapter 1

Introduction

Graph theory studies the properties of various graphs and is a branch of discrete

mathematics. The earliest known paper on graph theory was given by Euler in

1736, which discussed the seven bridges of Königsberg. The first book on graph

theory is “Theorie der endlichen und unendlichen Graphen”, which was written by

Kőnig and published in 1936. After the appearance of this book, the subject has

gone through a remarkable development. In particular, in the recent decades, graph

theory has experienced explosive growth concurrent with the growth of computer

science. Moreover, since graphs can be used to model many types of relations and

processes, the results of graph theory have wide applications in chemistry, physics,

biology and computer science.

This thesis focuses on the following topics: vertex-distinguishing proper arc color-

ings in digraphs, short cycles in digraphs with forbidden subdigraphs, disjoint cycles

and cycle factors in bipartite tournaments, universal arcs in tournaments, and di-

rected cuts in a type of Cayley digraph. The results obtained concerning these topics

are contained in five distinct research chapters (Chapters 2-6). Each chapter is based

on an original article, which has been published, or submitted for publication, in an

international journal.

In this chapter, we give a short but relatively complete introduction of this thesis.

In Section 1, the basic terminology and notation are given. Sections 2, 3, 4, 5 and

6 are devoted to the main results on vertex-distinguishing proper arc colorings in
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Chapter 1. Introduction

digraphs, short cycles with forbidden subdigraphs in digraphs, vertex-disjoint cycles

in bipartite tournaments, cycle factors in bipartite tournaments, universal arcs in

tournaments and directed cuts of a type of Cayley digraphs, respectively. The final

section, Section 7, concludes with some problems deserving further consideration.

1.1 Basic terminology and notation

In this section, we give some basic terminology and notation that will be used in the

thesis. For those not defined here, we follow Bang-Jensen and Gutin [18].

Graph and digraph

A graph G is a pair (V (G), E(G)) consisting of a nonempty set V (G) of vertices

and a set E(G), distinct from V (G), of edges. Similarly, a digraph or directed graph

D is a pair (V (D), E(D)) consisting of a nonempty set V (D) of vertices and a set

E(D), distinct from V (D), of arcs. Alternatively, a digraph can be regarded as a

graph such that every edge has a direction. Throughout the thesis, a graph always

means an undirected graph. Unless otherwise stated, the letter G denotes a graph

and the letter D denotes a digraph.

Subgraph and subdigraph

A graph G′ is a subgraph of G if V (G′) ⊆ V (G) and E(G′) ⊆ E(G). Moreover, if

G′ is a subgraph of G and G′ contains all the edges uv ∈ E(G) with u, v ∈ V (G′), then

G′ is an induced subgraph of G; and if if G′ is a subgraph of G and V (G′) = V (G),

then G′ is a spanning subgraph of G. Similarly, we can define a subdigraph, an induced

subdigraph and a spanning subdigraph of a digraph D.

Order and size

The number of vertices of a graph (a digraph) is its order and the number of

edges (arcs) is its size.

Finite and simple

A graph (digraph) is finite if both its vertex set and edge set (arc set) are finite. A

graph is simple if no edge is incident with only one vertex and no two edges incident

with the same two vertices. A digraph is simple if no arc is incident with only one

2



Chapter 1. Introduction

vertex and no two arcs have both the same starting vertex and the same ending

vertex. Unless otherwise stated, all graphs and digraphs considered in this thesis are

finite and simple.

Degree

For an edge uv of a graph G, say u is a neighbor of v and vice versa. For a vertex v

of G, let N(v) be its neighborhood, i.e., the set of neighbors of v, and let d(v) = |N(v)|

be its degree. Denote by δ(G) and ∆(G) the minimum degree and maximum degree

of G, respectively. Let nd(G) be the number of vertices with degree d in G.

Outdegree and indegree

For an arc uv (or (u, v)) of a digraph D, write u→ v and say v is an outneighbor

of u and u is an inneighbor of v. For a vertex v of D, let N+(v) and N−(v) be

its outneighborhood and inneighborhood, i.e., the set of outneighbors and the set

of inneighbors of v, respectively. Let d+(v) = |N+(v)| and d−(v) = |N−(v)| be its

outdegree and indegree, respectively. Denote by δ+(D), δ−(D), ∆+(D) and ∆−(D) the

minimum outdegree, minimum indegree, maximum outdegree and maximum indegree

of D. Define the minimum degree δ(D) and maximum degree ∆(D) of D as follows,

δ(D) = min{δ+(D), δ−(D)}, ∆(D) = max{∆+(D),∆−(D)}. (1.1)

Let nd+(D) and nd−(D) be the numbers of vertices with outdegree d+ and indegree

d− in D, respectively.

Regular digraph

Let k be a nonnegative integer. A digraph D is k-regular if every vertex has both

outdegree and indegree k.

D(k) and D(k, l)

Let k and l be two nonnegative integers. Denote by D(k) the family of digraphs

in which every vertex has outdegree at most k and D(k, l) the family of digraphs in

which every vertex has either outdegree at most k or indegree at most l.

π(G) and π(D)

3



Chapter 1. Introduction

For a graph G and a digraph D, let

π(G) = min{k ∈ Z :

(
k

d

)
≥ nd(G) for δ(G) ≤ d ≤ ∆(G)} (1.2)

and

π(D) = min

k ∈ Z :

(
k

d+

)
≥ nd+(D) for δ+(D) ≤ d+ ≤ ∆+(D)(

k

d−

)
≥ nd−(D) for δ−(D) ≤ d− ≤ ∆−(D)

 . (1.3)

Edge coloring

Let k be a positive integer. A k-edge-coloring of a graph G is an assignment of

k colors to the edges of G. An edge coloring of G is proper if no two adjacent edges

receive the same color. Denote by χ′(G) the minimum number of colors required for

a proper edge coloring of a graph G.

VDPE coloring and vdec-graph

A vertex-distinguishing proper edge coloring (abbreviated VDPE coloring) of a

graph G is a proper edge coloring where no two vertices are incident with the same

set of colors. Note that a graph has a VDPE coloring if and only if it contains no

isolated edge and at most one isolated vertex. Such a graph is referred to as a vertex-

distinguishing edge-colorable graph (abbreviated vdec-graph). Denote by χ′vd(G) the

minimum number of colors required for a VDPE coloring of a vdac-graph G.

Arc coloring

Let k be a positive integer. A k-arc-coloring of a digraph D is an assignment of k

colors to the arcs of D. An arc coloring of D is 1-type proper if no two consecutive arcs

receive the same color, and is 2-type proper if no two arcs with a common tail or with

a common head receive the same color. Denote by χ′1(D) and χ′2(D) the minimum

numbers of colors required for a 1-type and 2-type arc coloring of D, respectively.

VDPA coloring and vdac-digraph

Define the out-arc set (in-arc set) of v to be the set of arcs starting with v

(resp. ending with v). A vertex-distinguishing proper arc coloring (semi-vertex-

4



Chapter 1. Introduction

distinguishing proper arc coloring) of D is a proper arc coloring with no two vertices

(no three vertices) have the same set of colors either for their out-arc sets or for their

in-arc sets. Such a coloring is abbreviated VDPA coloring (semi-VDPA coloring).

A digraph is a vdac-digraph (svdac-digrpah) if it has a VDPA coloring (semi-VDPA

coloring). Clearly, every vdac-digraph is also a svdac-digraph.

Let n+
S = n+

S (D) (n−S = n−S (D)) be the number of vertices with out-arc set (in-

arc set) assigned color set S. Alternatively, a (semi-)VDPA coloring of D can be

defined as a proper arc coloring such that n+
S ≤ 1 and n−S ≤ 1 (n+

S ≤ 2 and n−S ≤ 2)

for any color set S. Denote by χ′1vd(D) and χ′2vd(D) the minimum numbers of colors

required for a 1-type VDPA coloring and a 2-type VDPA coloring of a vdac-digraph

D, respectively.

Equitable edge (arc) coloring

For a proper k-edge-coloring (a proper k-arc-coloring) f of a graph G (a digraph

D), let Eα be the set of edges (arcs) colored by α and let eα = |Eα|, f is called

equitable if |eα− eβ| ≤ 1 for any two colors α, β ∈ {1, . . . , k}. Let χ′e(G) (χ′2e (D) ) be

the minimum number of colors required for an equitable proper edge (arc) coloring

of G (of D) and let χ′evd(G) (χ′ievd(D)) be the minimum number of colors required

for an equitable VDPE coloring (equitable i-type VDPA coloring, i ∈ {1, 2}) of a

vdec-graph G (a vdac-digraph D).

Directed path and cycle

A directed path or a directed k-path of a digraph D is a sequence of vertices

v1, v2, . . . , vk with v1v2, . . . , vk−1vk ∈ E(D), and a directed cycle or a directed k-

cycle of D is a sequence of vertices v1, v2, . . . , vk with v1v2, . . . , vk−1vk, vkv1 ∈ E(D).

Throughout this thesis, a cycle (path) in a digraph always means a directed cycle

(path).

Vertex-disjoint and arc-disjoint cycles (paths)

Two cycles (paths) are called vertex-disjoint (arc-disjoint) if they have no common

vertex (arc).

Hamilton cycle and Hamiltonian digraph

A digraph D is Hamiltonian if it has a Hamilton cycle, i.e., a cycle containing all

5



Chapter 1. Introduction

vertices of D.

Cycle factor

A cycle factor of a digraph D is a spanning subdigraph of D whose components

are vertex-disjoint cycles. A k-cycle-factor of D is a cycle factor consisting of k

cycles. Note that a 1-cycle-factor is a Hamilton cycle, i.e., a cycle containing all the

vertices of D, and a 2-cycle-factor consists of two complementary cycles. We say

that D contains all k-cycle-factors if for any possible cycle-lengths n1, . . . , nk with

|V (D)| = n1 + · · · + nk there exists a k-cycle-factor with cycle-lengths n1, . . . , nk

respectively in D.

Connectivity

A digraph D is strong or 1-connected if there exists a path from u to v for any

two vertices u and v of D. Call D is k-connected if the removal of any set of fewer

than k vertices results in a strong digraph. A digraph is cycle-connected if every two

vertices are in a common cycle.

Tournament, bipartite tournament and multipartite tournament

A tournament is an orientation of a complete graph and a bipartite tournament

(multipartite tournament) is an orientation of a complete bipartite (multipartite or

c-partite, c ≥ 3 is an integer) graph.

Regular bipartite tournament F4·k

Define F4·k to be the k-regular bipartite tournament consisting of four independent

sets K,L,M,N each of cardinality k, and all possible arcs from K to L, from L to

M , from M to N and from N to K (See Figure 1.1).

Cut vertex

A vertex v of a graph (digraph) is a cut vertex if its edge set (arc set) can be

partitioned into two nonempty sets E1 and E2 such that the subgraphs (subdigraphs)

induced by E1 and E2 have just the vertex v in common.

Universal arc

An arc uv of a digraph D is universal if for any vertex w of D there exists a cycle

containing both uv and w.

Max cut
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Chapter 1. Introduction
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Figure 1.1: Regular bipartite tournament F4·k.

For a partition {V1, V2} of V (G), the set (V1, V2) of edges crossing this partition,

i.e.,

(V1, V2) = {uv ∈ E(G) : u ∈ V1, v ∈ V2}, (1.4)

is called a cut of G. For a partition {V1, V2} of V (D), the set (V1, V2) of arcs going

from V1 to V2, i.e.,

(V1, V2) = {(u, v) ∈ E(D) : u ∈ V1, v ∈ V2}, (1.5)

is called a directed cut of D. When no confusion occurs, we use “cut” to denote

“directed cut” in a digraph. A max cut is a cut of largest size in a graph (digraph).

Let f(G) be the size of a maximum cut of G. Define f(m) to be the minimum of

f(G) over graphs of size m. Let g(D) be the size of a maximum directed cut of D.

Define g(m) to be the minimum of g(D) over digraphs of size m.

Directed cut cover

A k-cut-cover of a digraph D is a family of k directed cuts such that each arc of

D belongs to at least one cut. The cut cover number c(D) of D is the minimum k

for which D has a k-cut-cover.

Cayley graph and Cayley digraph

Let G be an additive group, and let S be a subset of G that is closed under taking

inverses and does not contain the identity. The Cayley graph X(G, S) is defined with

7
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vertex set G and edge set

{xy : y − x ∈ S}. (1.6)

If S is an arbitrary subset of G, then we can define the Cayley digraph X(G, S) with

vertex set G and arc set

{(x, y) : y − x ∈ S}. (1.7)

Cayley digraph X(Zk
2,Sk)

The digraph X(Zk
2,Sk) is a Cayley digraph X(G, S) with G = Zk2 consists of all

binary vectors of length k and

S = Sk = {e1, . . . , ek}, (1.8)

where

ei = {0 . . . 1 . . . 0} (1.9)

in which the ith position is assigned the number “1” and each one of other positions

is assigned the number “0”. Alternatively, it is a digraph with vertex set V =

{v0, v1, . . . , v2k−1} and arc set E = {vivj : j − i ≡ 2t(mod 2k),where t ∈ {0, 1, ..., k −

1}}.

1.2 Arc colorings

The edge coloring problem is one of the fundamental problems in graph theory and

has been studied extensively by many researchers. Clearly, every graph G satisfies

χ′(G) ≥ ∆(G). For a bipartite graph G, König showed that χ′(G) = ∆(G). In 1964,

Vizing proved that χ′(G) ≤ ∆(G) + 1 for every simple graph G. In this thesis, we

mainly consider VDPA colorings of digraphs. First, we present some background and

motivation. To be precise, we summarize the main results on proper arc colorings of

digraphs and VDPE colorings of graphs. After this, we introduce VDPA colorings of

digraphs.

8
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1.2.1 Proper arc colorings

In 1972, Harner and Entringer [48] first considered the 1-type arc colorings of di-

graphs. The following results have been obtained.

Theorem 1.1 (Harner and Entringer [48]). Let D be a digraph and k a positive

integer. Then dlog2 χ(D)e ≤ χ′1(D) ≤ min{k : χ(D) ≤
(

k
bk/2c

)
}.

Theorem 1.2 (Harner and Entringer [48]). Let Tn be the transitive tournament on

n vertices. Then χ′1(Tn) = dlog2 ne.

Theorem 1.3 (Harner and Entringer [48]). There exists a digraph D with underlying

graph Kn and χ′1(D) = min{k : χ(D) ≤
(

k
bk/2c

)
}.

Theorem 1.4 (Harner and Entringer [48]). Let D be an acyclic digraph on n vertices.

Then χ′1(D) ≤ dlog2 ne.

Theorem 1.2 and Theorem 1.3 imply that the bounds in Theorem 1.1 are tight.

A digraph D = (V (D), E(D)) is symmetric if uv ∈ E(D) implies that vu ∈ E(D) for

any arc uv. In 1981, Poljak and Rödl [77] got the arc chromatic number of symmetric

digraphs with respect to its chromatic number.

Theorem 1.5 (Poljak and Rödl [77]). Let D be a symmetric digraph and k a positive

integer. Then χ′1(D) = min{k : χ(D) ≤
(

k
bk/2c

)
}.

In 2006, Bessy et al. [24] improved the lower bound in Theorem1.1 for digraphs

with no sink or no source.

Theorem 1.6 (Bessy et al. [24]). Let D be a digraph with chromatic number χ(D).

(1) If D has no sink, then χ′1(D) ≥ log2(χ(D) + 1).

(2) If D has no sink and no source, then χ′1(D) ≥ log2(χ(D) + 2).

Moreover, arc colorings of digraphs with degree restrictions have attracted special

attention. Let

Φ(k) = max{χ′1(D) : D ∈ D(k)}, Φ(k, l) = max{χ′1(D) : D ∈ D(k, l)}. (1.10)

9
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Note that the problem of finding χ′1(D) of a digraph D is NP-hard (see Poljak and

Rödl [77]), and is equal to the problem of finding the minimum number of directed

cuts of D such that each arc of D belongs to at least one directed cut.

For convenience, denote the function min{k : n ≤
(

k
bk/2c

)
} mentioned in Theorem

1.1 by c(n). In 2006, Alon et al. [6] and Bessy et al. [24] got the following similar

results independently.

Theorem 1.7 (Alon et al. [6]). Let k and l be two nonnegative integers. Then

(1) χ′1(D) ≤ c(2k + 1) for any digraph D ∈ D(k).

(2) χ′1(D) ≤ c(2k + 2l + 2) for any digraph D ∈ D(k, l).

(3) χ′1(D) ≤ c(k + l + 1) for any acyclic digraph D ∈ D(k, l).

Theorem 1.8 (Bessy et al. [24]). Let k and l be two positive integers. Then

(1) If k ≥ 2, then χ′1(D) ≤ c(2k) for any digraph D ∈ D(k).

(2) If k + l ≥ 3, then χ′1(D) ≤ c(2k + 2l) for any digraph D ∈ D(k, l).

Theorem 1.9 (Bessy et al. [24]). Let k and l be two positive integers. Then

(1) max{log2(2k + 3), c(k + 1)} ≤ Φ(k) ≤ c(2k + 1).

(2) max{log2(2k + 2l + 43), c(k + 1), c(l + 1)} ≤ Φ(k, l) ≤ c(2k + 2l + 2).

Some special cases have been considered.

Theorem 1.10 (Bessy et al. [24]). Let k and l be two positive integers.

(1) Φ(k, 0) = Φ(k).

(2) Φ(k, 1) = Φ(k) or Φ(k, k) = Φ(k) + 1.

(3) Φ(k + 1) = Φ(k) + 2.

(4) If Φ(k) = Φ(k − 1) or Φ(k) = Φ(k + 1), then Φ(k, 1) = Φ(k).

Theorem 1.11 (Bessy et al. [24]). (1) Φ(1, 1) = Φ(1, 0) = Φ(1) = 3.

(2) Φ(2, 2) = Φ(2, 1) = Φ(2, 0) = Φ(2) = 4.

(3) Φ(3, 3) = Φ(3, 2) = 5.

In 2011, Bai et al. [11] proved the following result.

Theorem 1.12 (Bai et al. [11]). Φ(k, k) ≤ c(2k + 1) + 1 and Φ(4, 4) = Φ(3, 3) = 5.

10



Chapter 1. Introduction

In 2013, Xu et al. [103] considered Φ(5, 5) and Φ(6, 6).

Theorem 1.13 (Xu et al. [103]). 5 ≤ Φ(5, 5) ≤ Φ(6, 6) ≤ 6.

The 2-type proper arc coloring of digraphs is much simpler than the 1-type one.

It was considered in [100] and the exact arc chromatic number was obtained.

Theorem 1.14 ( [100]). Let D be a digraph. Then χ′2(D) = max{∆+(D),∆−(D)}.

1.2.2 Vertex-distinguishing proper edge colorings

The VDPE coloring of graphs was introduced and studied independently by Aigner

et al. [3], by Burris and Schelp [31] and by Horňák and Soták [57]. In 1997, Burris

and Schelp [31] conjectured that χ′vd(G) ≤ |V (G)|+1. Bazgan et al. [20] verified this

conjecture in 1999.

Theorem 1.15 (Bazgan et al. [20]). Let G be a vdec-graph. Then χ′vd(G) ≤ |V (G)|+

1.

Note that the above result is sharp by considering the complete graphs with even

order. Burris and Schelp [31] also proposed the following conjecture.

Conjecture 1.1. Let G be a vdec-graph. Then χ′vd(G) ∈ {π(G), π(G) + 1}.

One can see that Conjecture 1.1 is analogous to the Vizing’s Theorem on edge

colorings. As for this conjecture we do not even know whether the bound of χ′vd(G) ≤

π(G)+c holds for some fixed constant c. However, the conjecture has been verified for

some special classes of graphs, including complete graphs, complete bipartite graphs,

paths, cycles and some trees by Burris and Schelp [31], union of paths, union of cycles

by Balister [13], two families of cubic graphs, ladders and unions of K4, by Taczuk and

Woźniak [91] and any graph G with ∆(G) ≥
√

2|V (G)|+ 4 and δ(G) ≥ 5 by Balister

et al. [15]. In addition, graphs with big maximum degree or small maximum degree

are considered. Bazgan et al. [19] showed that χ′vd(G) ≤ ∆(G)+5 if δ(G) > |V (G)|/3.

Balister et al. [13] showed that π(G) ≤ χ′vd(G) ≤ π(G) + 5 if ∆(G) = 2. Also, it

is worth noting that Burris and Schelp [31] gave an upper bound of χ′vd(G) for a

vdec-graph G as follows.

11
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Theorem 1.16 (Burris and Schelp [31]). Let G be a vdec-graph with maximum degree

∆. Then m1 ≤ χ′vd(G) ≤ (∆ + 1)b2m2 + 5c, where

m1 = max{k!n
1/k
k +

k − 1

2
: 1 ≤ k ≤ ∆} and m2 = max{n1/k

k : 1 ≤ k ≤ ∆}. (1.11)

Besides, Balister [12] considered the VDPE coloring of random graphs and gave

a strong bound.

Theorem 1.17 (Balister [12]). Let G be a random graph on n vertices with edge

probability p = p(n). If pn
log n

, (1−p)n
log n

→ ∞ as n → ∞, then the probability that

χ′vd(G) = ∆ goes to 1 as n→∞.

For more details on VDPE colorings, we refer the readers to see [12,13,15,19,38,

83,91].

Besides, in a proper edge coloring of a graph, instead of requiring that any two

vertices have different color sets, it can be required that any two adjacent vertices

have different color sets. Such a coloring is called adjacent vertex-distinguishing

proper edge coloring (abbreviated adjacent VDPE coloring). It was introduced by

Zhang et al. [108] and has also been considered intensively. Let χ′avd(G) be the

smallest number of colors required for a adjacent VDPE coloring of a graph G. In

2002, Zhang et al. [108] proposed the following conjecture.

Conjecture 1.2 (Zhang et al. [108]). Let G 6= C5 be a connected graph with at least

3 vertices. Then χ′avd(G) ≤ ∆(G) + 2.

Note that some special graphs, including paths, cycles, trees, complete bipartite

graphs and complete graphs, were verified in [108]. Many results have been obtained

concerning the bound of χ′avd(G). Among them, the following results are of special

importance.

Theorem 1.18 (Akbari et al. [4]). Let G 6= C5 be a connected graph with at least 3

vertices. Then χ′avd(G) ≤ 3∆(G).

12
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Dai and Bu [37] improved the above result by one, i.e., χ′avd(G) ≤ 3∆(G) − 1.

Balister et al. [14] gave a general bound depending on the chromatic number χ(G)

of G.

Theorem 1.19 (Balister et al. [14]). Let G 6= C5 be a connected graph with at least

3 vertices. Then ∆(G) ≤ χ′avd(G) ≤ ∆(G) +O(logχ(G)).

In support of Conjecture 1.2, Hatami [51] showed the following result.

Theorem 1.20 (Hatami [51]). Let G 6= C5 be a connected graph with at least 3

vertices and ∆(G) > 1020. Then ∆(G) ≤ χ′avd(G) ≤ ∆(G) + 300.

For more details on adjacent VDPE colorings, we refer the readers to [4, 14, 37,

46,51,56,98,99,108].

Motivated by the conjectures and results on VDPE colorings for undirected graphs

mentioned above, we introduce and study the analogous problem for digraphs, i.e., the

vertex-distinguishing proper arc coloring (abbreviated VDPA coloring) of digraphs.

1.2.3 Vertex-distinguishing proper arc colorings

Note that an isolated vertex can be regarded both as a source and as a sink. One

can check that the following fact holds.

Fact 1.1. A digraph D is a vdac-digraph (resp. svdac-digraph) if and only if D

contains at most one source (resp. two sources) and at most one sink (resp. two

sinks).

Now we condier χ′1vd(D) and χ′2vd(D) of D. It is clear that χ′1vd(D) ≥ χ′1(D) and

χ′2vd(D) ≥ max{χ′2(D), π(D)}. Note that χ′2(D) = ∆(D) and π(D) ≥ ∆(D). Thus

χ′2vd(D) ≥ π(D). In this thesis, we mainly consider the 2-type arc coloring of digraphs.

Unless otherwise stated, the proper arc coloring mentioned below always means the

2-type arc coloring. Analogous to Conjecture 1.1 for undirected graphs, we propose

the following conjecture for digraphs.

Conjecture 1.3. Let D be a vdac-digraph. Then χ′2vd(D) = π(D).

13
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Despite Conjecture 1.3 remains unsolved, some good progresses concerning it have

been obtained in Chapter 2. To be precise, we give upper bounds for χ′2vd(D) and

χ′2svd(D) respectively. In particular, the value of χ′2vd(D) is obtained for some regular

digraph D. Moreover, we show that the values of χ′2vd(D) and χ′2svd(D) will not be

changed if the coloring, in addition, required to be equitable.

1.3 Short cycles

The study of cycles is one of the most important and most studied problems in graph

theory. There are many papers seeking sufficient conditions for the existence of a

Hamilton cycle in a graph (digraph). In this thesis, we focus on short cycles in

digraphs and especially consider the Caccetta-Häggkvist conjecture.

1.3.1 Caccetta-Häggkvist conjecture

The famous Caccetta-Häggkvist conjecture (which developed in 1978 and generalised

as an earlier conjecture of Behzad et al. [21]) is one of the most famous conjectures

in digraph theory. It concerns the length of short cycles and has inspired years

of research into sufficient conditions for short cycles in digraphs. There are two

equivalent statements of the conjecture.

Conjecture 1.4 (Caccetta and Häggkvist [32]). Every digraph on n vertices without

cycles of lengths at most l contains a vertex with outdegree at most n−1
l

.

Conjecture 1.5 (Caccetta and Häggkvist [32]). Every digraph on n vertices with

minimum outdegree r contains a cycle of length at most dn
r
e.

For Conjecture 1.4, it is obviously true for l = 2. Note that a digraph with a

2-cycle verifies Conjecture 1.5 and thus it suffices to consider oriented graphs. Also,

note that lots of work has been done around the Caccetta-Häggkvist conjecture.

To be precise, for Conjecture 1.5, it has been proved for r = 2 by Caccetta and

Häggkvist [32], for r = 3 by Hamidoune [50], for r = 4, 5 by Hoáng and Reed [55],

and for r <
√
n/2 by Shen [86]. Recently, Lichiardopol [69] proved the conjecture for
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oriented graphs with independence number two. Besides, some weaker statements

were obtained. Chvátal and Szemerédi [34] proved that every oriented graph on n

vertices with minimum outdegree r contains a cycle of length at most 2n
r+1

, and they

also proved that such an oriented graph contains a cycle of length at most n
r

+ 2500.

In 1988, Nishimura [75] reduced the constant from 2500 to 304. In 1998, Shen [87]

reduced the constant to 73 and this is the best known improvement.

Theorem 1.21 (Shen [85]). Every digraph on n vertices with minimum outdegree r

contains a cycle of length at most dn
r
e+ 73.

Recall that the minimum degree of D is δ(D) = min{δ+(D), δ−(D)}. It is natural

to consider the minimum degree that forces an l-cycle. In 2010, Kelly et al. [62]

proposed the following conjecture.

Conjecture 1.6 (Kelly et al. [62]). Let l ≥ 4 be an integer and let k ≥ 3 be the

smallest integer such that k does not divide l. Then there exists an integer n0 = n0(l)

such that every oriented graph D on n ≥ n0 vertices with δ(D) ≥ bn/kc+ 1 contains

an l-cycle.

In the same paper, they gave an affirmative answer to the conjecture for l that is

not a multiple of 3.

Theorem 1.22 (Kelly et al. [62]). Let l ≥ 4 and let D be an oriented graph on

n ≥ 1010l vertices with δ(D) ≥ bn/3c+ 1. Then D contains an l-cycle.

Later, in 2013, Kühn et al. [63] proved Conjecture 1.6 asymptotically for the case

when l is large enough compared to k and k ≥ 7.

Theorem 1.23 (Kühn et al. [63]). Let k ≥ 7 and l ≥ 107k6. Suppose that k ≥ 3

is the smallest integer that does not divide l. Then for all η > 0 there exists an

integer n1 = n1(η, l) such that every oriented graph D on at least n ≥ n1 vertices

with δ(D) ≥ (1 + η)n/k contains an l-cycle.

The special case of r = dn/3e has attracted most interest, which states that every

digraph with minimum outdegree dn/3e has a 3-cycle, i.e., a (directed) triangle.

Caccetta and Häggkvist [32] gave the first weaker result for this case.

15



Chapter 1. Introduction

Theorem 1.24 (Caccetta and Häggkvist [32]). For α ≥ (3−
√

5)/2 ≈ 0.3819, every

digraph D with δ+(D) ≥ αn contains a triangle.

Bondy [26] showed that α ≥ (2
√

6 − 3)/5 ≈ 0.3797 suffices, Shen [85] relaxed it

to α ≥ 3 −
√

7 ≈ 0.3542, Hamburger et al. [49] improved it to 0.3531, and Hladký

et al. [54] improved the bound to 0.3465. The best know value of α, till now, is as

follows.

Theorem 1.25 (Joannis de Verclos et al. [60]). Let D be a digraph on n vertices and

let α ≥ 0.3386. If δ+(D) ≥ αn, then D contains a triangle.

De Graaf et al. [39] firstly considered the minimum degree instead of the minimum

outdegree.

Theorem 1.26 (De Graaf et al. [39]). For β ≥ 0.349, every digraph D with δ(D) ≥

βn contains a triangle.

Shen [85] showed that β ≥ 0.348 suffices. The best known value of β, till now, is

as follows.

Theorem 1.27 (Hamburger et al. [49]). Let D be a digraph on n vertices and let

β ≥ 0.346. If δ(D) ≥ βn, then D contains a triangle.

1.3.2 Caccetta-Häggkvist conjecture with forbidden subdi-

graphs

In particular, characterizing some forbidden subdigraphs is another meaningful way

to consider this conjecture. In 2012, Razborov [80] verified the case l = 3 with three

well defined (induced) forbidden subdigraphs.

Theorem 1.28 ( [80]). Let Γ be an oriented graph on n vertices without directed

triangles. If

(1) Γ contains none of the oriented graphs of Figure 1.2 as an induced subdigraph, or

(2) Γ contains none of the oriented graphs of Figure 1.3 as a subdigraph (not neces-

sarily induced),

then Γ contains a vertex with outdegree at most n−1
3

.
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In-pendant Out-pendant Quasi-4-cycle

Figure 1.2: Forbidden oriented graphs for Theorem 1.28 (1).

Figure 1.3: Forbidden oriented graphs for Theorem 1.28 (2).

In Chapter 3, we generalize Razborov’s result by verifying the conjecture for l ≥ 4

with l + 1 well defined (induced) forbidden subdigraphs.

1.4 Disjoint cycles

There are two types of disjoint cycles in undirected graphs (digraphs), namely, vertex-

disjoint cycles and edge-disjoint cycles (resp. arc-disjoint cycles). We will consider

disjoint cycles of any lengths and of given length, respectively.

1.4.1 Disjoint cycles of any lengths

The study of vertex-disjoint cycles in undirected graphs has been considered signifi-

cantly. One of the famous results regarding this is as follows.

Theorem 1.29 (Corrádi and Hajnal [36]). Let G be an undirected graph on at least

3r vertices and δ(G) ≥ 2r. Then G contains at least r vertex-disjoint cycles.

The complete 3-partite graph with each partite set having exactly r vertices shows

that the result is best possible. By using induction on the minimum degree for

Theorem 1.29, we have the following corollary.
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Corollary 1.1 (Corrádi and Hajnal [36]). Let G be an undirected graph on at least

3r vertices and δ(G) ≥ 2r. Then G contains at least
(
r+1

2

)
edge-disjoint cycles.

Note that a trivial fact holds with only the minimum degree condition (one can

verify this by deleting the edges of a cycle and using the induction on the minimum

degree recursively).

Fact 1.2. Let G be an undirected graph with minimum degree at least 2r. Then G

contains at least r edge-disjoint cycles.

Justesen [61] improved Theorem 1.29 by showing the following.

Theorem 1.30 (Justesen [61]). Let G be a graph on at least 3r vertices. If d(x) +

d(y) ≥ 4r for any two non-adjacent vertices x and y of G, then G contains at least

r vertex-disjoint cycles.

Wang [96] strengthened Justesen’s result by showing that the result holds if d(x)+

d(y) ≥ 4r − 1. Motivated by Theorem 1.29, Bermond and Thomassen [23] proposed

an analogous conjecture on vertex-disjoint cycles in 1981. This is regarded as one of

the most famous conjectures in digraph theory.

Conjecture 1.7 (Bermond and Thomassen [23]). Let D be a digraph with minimum

outdegree at least 2r − 1. Then D contains at least r vertex-disjoint cycles.

The complete digraph on 2r − 1 vertices implies that if the conjecture is true

then it would be best possible. Note that the conjecture is trivially true for r = 1.

Thomassen [93] and Lichiardopol et al. [71] proved it for r = 2 and r = 3, respectively.

Bessy et al. [25] verified it for regular tournaments in 2010. In 2014, Bang-Jensen et

al. [17] verified it for tournaments and proposed a stronger conjecture.

Conjecture 1.8 (Bang-Jensen et al. [17]). Let D be a digraph with girth at least

g ≥ 2 and with minimum outdegree at least g
g−1

r. Then D contains at least r

vertex-disjoint cycles.

There are also other results concerning Conjecture 1.7. Among them, it is worth

mentioning the following one, which, firstly, shows that the minimum outdegree can

be bounded by a linear function of r.
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Theorem 1.31 (Alon [5]). Let D be a digraph with minimum outdegree at least 64r.

Then D contains at least r vertex-disjoint cycles.

For more details on Conjecture 1.7, we refer the readers to see [5,17,23,25,71,93].

Note that the analogous statement (a linear bound of minimum degree int terms of

r guaranteeing r vertex-disjoint cycles) for undirected graphs are obvious. One can

show the following fact by deleting a shortest cycle and then use induction.

Fact 1.3. Let G be an undirected graph with minimum degree at least 3r − 1. Then

G contains at least r vertex-disjoint cycles.

As a corollary of Theorem 1.31, we have the following result on the number of

arc-disjoint cycles.

Corollary 1.2 (Alon [5]). Let D be a digraph with minimum outdegree at least r.

Then D contains at least 1
128
r2 arc-disjoint cycles.

By Conjecture 1.7, we can conjecture the following and this can be regarded as

an analogous statement of Fact 1.2.

Conjecture 1.9. Let D be a digraph with minimum outdegree at least 2r−1. Then

D contains at least r2 arc-disjoint cycles.

The maximum number of arc-disjoint cycles in digraphs was considered by Alon

et al. [8] and the following conjecture was proposed.

Conjecture 1.10 (Alon et al. [8]). Let D be a r-regular digraph. Then D contains

at least
(
r+1

2

)
arc-disjoint cycles.

Three weaker results have been obtained in the same paper.

Theorem 1.32 (Alon et al. [8]). Let D be a r-regular digraph. Then D contains at

least 5r/2− 2 arc-disjoint cycles.

Theorem 1.33 (Alon et al. [8]). Let D be a r-regular digraph. Then D contains at

least εr2 arc-disjoint cycles, where ε = 3/219.
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Theorem 1.34 (Alon et al. [8]). Let D be a r-regular digraph. Then D contains at

least r2/8 Inr arc-disjoint cycles.

Very recently, Lichiardopol [70] obtained some new bounds on the maximum

number of arc-disjoint cycles in a digraph. To be precise, it was proved that for

r ≤ 4 the result in Theorem 1.32 is valid for all digraphs with minimum outdegree

at least r. Also, it was shown that for r ≥ 4 every digraph with minimum outdegree

at least r contains at least 3r − 4 arc-disjoint cycles.

1.4.2 Disjoint cycles of given lengths

In 2000, Wang considered vertex-disjoint triangles (3-cycles) in digraphs and showed

the following. Here let δ∗(D) = min{d+(v) + d−(v) : v ∈ V (D)}.

Theorem 1.35 (Wang [97]). Let D be a digraph on n vertices with δ∗(D) ≥ b(3n−

3)/2c. Then D contains bn/3c vertex-disjoint triangles.

Later, in 2005, Zhang and Wang [104] considered vertex-disjoint 4-cycles in di-

graphs.

Theorem 1.36 (Zhang and Wang [104]). Let D be a digraph on 4r vertices with

δ∗(D) ≥ 6r − 2. Then D contains r vertex-disjoint 4-cycles unless D is isomorphic

to a special digraph.

In 2010, Lichiardopol [68] considered vertex-disjoint cycles of given length in

tournaments. The following result has been obtained.

Theorem 1.37 (Lichiardopol [68]). Let T be a tournament with min{δ+(T ), δ−(T )} ≥

(q − 1)r − 1. Then T contains r vertex-disjoint q-cycles.

Lichiardopol [68] conjectured in the same paper that T contains r vertex-disjoint

q-cycles if δ+(T ) ≥ (q − 1)r − 1. Motivated by the result and the conjecture above,

we consider the analogous problem for bipartite tournaments in Chapter 4. As a

corollary, we verify Conjecture 1.7 for bipartite tournaments.
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1.5 Cycle factors

1.5.1 Cycle factors in graphs

Note that a 1-cycle-factor of a graph is a Hamilton cycle. The following two results

are two fundamental results on Hamilton cycles in graphs.

Theorem 1.38 (Dirac [40]). Let G be a 2-connected graph on n vertices with mini-

mum degree at least n/2. Then G has a Hamilton cycle.

Theorem 1.39 (Ore [76]). Let G be a graph on n vertices. If d(x) + d(y) ≥ n for

any two non-adjacent vertices x and y of G, then G has a Hamilton cycle.

In Theorem 1.29, if the graph has exactly 3k vertices then it has a k-cycle-factor

such that each cycle is a triangle. This implies a result on k-cycle-factors of graphs.

In 1984, El-Zahar [42] considered the 2-cycle-factors of given cycle-lengths in graphs.

Theorem 1.40 (El-Zahar [42]). Let G be a graph of order n = n1+n2 with n1, n2 ≥ 3

and minimum degree at least dn1/2e+ dn2/2e. Then G has a 2-cycle-factor of cycle-

lengths n1 and n2.

1.5.2 Cycle factors in digraphs

Note that a 1-cycle-factor of a digraph is a directed Hamilton cycle. Define the min-

imum semidegree of D to be the minimum of its minimum outdegree and minimum

indegree. For an analogue of Theorem 1.38 in digrahs, Ghouila-Houri [45] proved the

following result.

Theorem 1.41 (Ghouila-Houri [45]). Let D be a strong digraph on n vertices with

δ+(D)+δ−(D) ≥ n. Then D has a Hamilton cycle. In particular, if D has minimum

semidegree at least n/2 then D has a Hamilton cycle.

For an analogue of Theorem 1.39, Woodall [101] proved the following result.

Theorem 1.42 (Woodall [101]). Let D be a strong digraph on n vertices with d+(x)+

d−(y) ≥ n for every pair x 6= y of vertices such that xy /∈ E(D). Then D has a

Hamilton cycle.
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Woodall’s theorem is generalized by Meyniel’s theorem as follows.

Theorem 1.43 (Meyniel [74]). Let D be a strong digraph on n vertices with d(x) +

d(y) ≥ 2n − 1 for any two non-adjacent vertices x and y of D. Then D has a

Hamilton cycle.

For 2-cycle-factors in digraphs, Little and Wang [72] got the following theorem.

Theorem 1.44 (Little and Wang [72]). Let D be a digraph on n vertices. If d(x) ≥

3(n− 1)/2, then D has a 2-cycle-factor of any given cycle-lengths, i.e., D is strongly

2-cycle-factorable.

Amar and Raspaud [10] considered the k-cycle-factors of given lengths in digraphs.

Theorem 1.45 (Amar and Raspaud [10]). Let D be a digraph on n vertices and at

least (n− 1)(n− 2) + 3 arcs, and let n1, . . . , nk be k integers with n = n1 + . . .+ nk

and ni ≥ 3 for i = 1, . . . , k. Then D has a k-cycle-factor of cycle-lengths n1, . . . , nk

except in two cases:

(1) n = 6, n1 = n2 = 3 and D contains an independent set with 3 vertices;

(2) n = 9, n1 = n2 = n3 = 3 and D contains an independent set with 4 vertices.

One can see that the conditions in these theorems almost guarantee that the

digraph is “more” than a tournament. It is natural to consider the cycle factors in

tournaments and bipartite tournaments.

1.5.3 Cycle factors in bipartite tournaments

Note that every strong tournament is Hamiltonian and is thus has a 1-cycle-factor.

The problem of 2-cycle-factors in 2-connected tournaments was completely solved by

Reid [81] and Song [89].

Theorem 1.46 (Reid [81] and Song [89]). Let T be a 2-connected tournament with

|V (T )| ≥ 6. Then T has a 2-cycle-factor of lengths t and |V (T )| − t for all 3 ≤ t ≤

|V (T )| − 3, unless T is isomorphic to T7.
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The problem of 2-cycle-factors in regular bipartite tournaments was investigated

by Song [88], Zhang and Song [106], Zhang et al. [105], and Zhang and Wang [107].

They showed that every k-regular bipartite tournament with k ≥ 2 has a 2-cycle-

factor. Volkmann [94] proved that every regular c-partite tournaments with c ≥ 3

on at least 8 vertices have a 2-cycle-factor. In [105], it was conjectured that every k-

regular bipartite tournament not isomorphic to F4·k has a 2-cycle-factor of all possible

cycle-lengths.

Conjecture 1.11 (Zhang et al. [105]). Let B be a k-regular bipartite tournament not

isomorphic to F4·k. Then B has a 2-cycle-factor of even cycle-lengths t and |V (B)|−t

for all 4 ≤ t ≤ |V (B)| − 4.

Conjecture 1.11 is true for t = 4. We show that Conjecture 1.11 is true for t = 6

in Chapter 5.

1.6 Universal arcs and directed cuts

1.6.1 Universal arcs in digraphs

The concept universal arc is very new and was first appeared in [2] in 1999. In the

same paper, Ádám introduced the following problem.

Problem 1.1. Does every cycle-connected digraph contain a universal arc?

Hetyei [52] conjectured in 2001 that the answer would be yes. Hubenko [58],

and Volkmann and Winzen [95] verified this for bipartite tournaments in 2008 and

multipartite tournaments in 2009, respectively.

Theorem 1.47 (Hubenko [58]). Let B be a cycle-connected bipartite tournament.

Then every maximal cycle of B has a universal arc.

Theorem 1.48 (Volkmann and Winzen [95]). Let D be a multipartite tournament.

If D is cycle-connected, then D contains a universal arc. If D is 1-connected with

δ(D) ≥ 2, then every longest cycle of D contains a universal arc.
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1.6.2 Universal arcs in tournaments

Let T∗s be the set of 1-connected tournaments with one cut vertex v such that the

subtournaments induced by N+(v) and N−(v) are 1-connected.
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Figure 1.4: A tournament in T∗s.

Note that an arc in a Hamilton cycle is obviously a universal arc and a tournament

not 1-connected has no universal arc. Recall that a tournament is 1-connected if

and only if it has a Hamilton cycle (see [33]). So a 1-connectivity can guarantee

the existence of a universal arc in a tournament. In Chapter 6, we show that the

converse statement is also true. Moreover, we show that every arc of a tournament

is universal if and only if it is 2-connected or belong to T∗S.

1.6.3 Max cuts in graphs and digraphs

The well-known Max Cut problem asks for a largest cut in a graph (digraph). It

is a NP-hard problem and has been the focus of extensive study, both from the

algorithmic aspect in computer science and the extremal aspect in combinatorics.

The algorithmic problem asks for good algorithms that determine f(G) and g(G).

The extremal problem asks for the value of f(m) and g(m). Here we focus on the

extremal problem and especially consider the digraphs. We first give some progress

of the problem.

Note that a random bipartition of an undirected graphG gives a cut with expected

size |E(G)|/2. Thus f(m) ≥ m/2. In 1973, Edwards showed the following theorem.
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Theorem 1.49 (Edwards [41]).

f(m) ≥ dm
2

+
−1 +

√
1 + 8m

8
e.

The bound is tight by considering the complete graphs. In 1998, Alon and

Halperin [7] gave the following lower bound for f(m).

Theorem 1.50 (Alon and Halperin [7]). For m =
(
n
2

)
+ k with 0 ≤ k < n, we have

f(m) ≥ bn
2

4
c+ min{dn

2
e, f(k)}.

Furthermore, they conjectured that the “=” in the above theorem always holds.

Conjecture 1.12 (Alon and Halperin [7]). For m =
(
n
2

)
+ k with 0 ≤ k < n, we

have

f(m) = bn
2

4
c+ min{dn

2
e, f(k)}.

For more results on cuts in graphs, we refer to [65, 78]. It is easy to see that

g(m) ≥ f(m)/2. So g(m) ≥ m/4 and furthermore by Theorem 1.49 we have

Theorem 1.51.

g(m) ≥ dm
4

+
−1 +

√
1 + 8m

16
e.

Alon [6] and Lehel [66] considered the maximum directed cuts in digraphs with

degree restrictions and obtained the following results respectively.

Theorem 1.52 (Alon [6]). If D is a digraph with m edges and contains no vertex

with outdegree larger than k, then g(D) ≥ (1
4

+ 1
8k+4

)m.

Theorem 1.53 (Lehel [66]). If D ∈ D(k, k) is acyclic (i.e., contains no cycle) and

has m arcs, then g(D) ≥ (1
4

+ 1
8k+4

)m.

As mentioned in Section 1.2.1, the minimum cut cover problem is equivalent to

the 1-type arc coloring of digraphs. For more introduction on cut cover of digraphs,

one can see in Section 1.2.1.
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1.6.4 Directed cuts in a type of Cayley digraph

Note that |Zk2| = 2k and |Sk| = k. So d−(v) = d+(v) = k for every vertex v of

X(Zk2, Sk), and |E(X(Zk2, Sk))| = k2k. Alon et al. [6] showed that for every digraph

D with m arcs and maximum outdegree at most d,

g(D) ≥ (
1

4
+

1

8d+ 4
)m. (1.12)

Thus

g(X(Zk2, Sk)) ≥ (
1

4
+

1

8k + 4
)k2k. (1.13)

Let

h(n) = min{p :

(
p

bp/2c

)
≥ n}, (1.14)

where n and p are positive integers. Alon et al. [6] proved that the arcs of digraphs

in which every vertex has either outdegree at most k or indegree at most k can be

covered by h(4k + 2) cuts. Bai et al. [11] showed that h(2k + 1) + 1 cuts suffice. It

follows that

c(X(Zk2, Sk)) ≤ h(2k + 1) + 1. (1.15)

However, it is not best possible. In Chaper 6, we give better bound for g(X(Zk2, Sk))

and exact value of c(X(Zk2, Sk)).
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Chapter 2

Vertex-Distinguishing Proper Arc

Colorings of Digraphs

2.1 Introduction

For a digraph D, we define BD = (X, Y ;E) to be a (unique) corresponding balanced

bipartite graph satisfying that X = Y = V (D) and E(BD) = {xy : x ∈ X, y ∈

Y,−→xy ∈ A(D)}. Let δX(BD) and ∆X(BD) (resp. δY (BD) and ∆Y (BD)) be the

minimum and the maximum of degrees of vertices in X (resp. in Y ) , respectively.

Put δ(BD) = min{∆X(BD),∆Y (BD)} and ∆(BD) = max{δX(BD), δY (BD)}. One

can check that the following facts hold by definitions.

∆+(D) = ∆X(BD), ∆−(D) = ∆Y (BD),

δ+(D) = δX(BD), δ−(D) = δY (BD),

∆(BD) = ∆(D), δ(BD) = δ(D).

(2.1)

The proper arc coloring of D is now equivalent to the proper edge coloring of BD.

Note that χ′(B) = ∆(B) for any bipartite graph B. The following fact (see also

in [100]) holds directly.

Fact 2.1. Let D be a digraph. Then χ′2(D) = χ′(BD) = ∆(BD) = ∆(D).

A proper edge coloring of a bipartite graph B = (X, Y ;E) is called partial-vertex-

27



Chapter 2. Vertex-Distinguishing Proper Arc Colorings of Digraphs

distinguishing if no two vertices in X and no two vertices in Y are incident with the

same set of colors. A bipartite graph is partial-vertex-distinguishing edge-colorable or

a pvdec-bipartite graph if it has a partial-vertex-distinguishing proper edge coloring

(abbreviated PVDPE coloring). Note that B is a pvdec-bipartite graph if and only

if both X and Y contain at most one isolated vertex.

One can check that the VDPA coloring of a vdac-digraph D is equivalent to

the PVDPE coloring of BD. Denote by χ′pvd(B) the minimum number of colors

required for a partial-vertex-distinguishing proper edge coloring of B. Let δ(B) =

min{δX(B), δY (B)} and ∆(B) = max{∆X(B),∆Y (B)}.

Fact 2.2. Let D be a vdac-digraph. Then χ′2vd(D) = χ′pvd(B
D).

Fact 2.3. There is a one-to-one correspondence between digraphs (not necessarily

simple and loops are allowed) with order n and balanced bipartite graphs with order

2n.

Let B = (X, Y ;E) be a bipartite graph. Let nXdX (resp. nYdY ) be the number of

vertices of degree dX in X (resp. degree dY in Y ) in B. Define

π′(B) = min

k ∈ Z :

(
k

dX

)
≥ nXdX for δX ≤ dX ≤ ∆X(

k

dY

)
≥ nYdY for δY ≤ dY ≤ ∆Y

 . (2.2)

It is clear that χ′pvd(B) ≥ π′(B). Analogous to Conjecture 1.3 we conjecture that

χ′pvd(B) = π′(B).

Let α and β be two colors of a proper edge coloring of an undirected graph G.

An (α, β)-Kempe-path is a maximal path in G consisting of edges colored by α and

β. Note that the colors α and β appear alternatively in an (α, β)-Kempe-path.

In the rest of this chapter, the proofs for the results of digraphs will be transferred

to the proofs the corresponding results of the balanced bipartite graphs and the

Kemp-path will play an important role in the proofs.
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2.2 Vertex-distinguishing proper arc colorings of

digraphs

Note that an isolated vertex can be regarded both as a source and as a sink. One

can check that the following fact holds.

Fact 2.4. A digraph D is a vdac-digraph (resp. svdac-digraph) if and only if D

contains at most one source (resp. two sources) and at most one sink (resp. two

sinks).

Despite Conjecture 1.3 remains unsolved, some good progresses concerning it have

been obtained. In particular, we get the following result.

Theorem 2.1. Let D be a vdac-digraph on n vertices and t ≥ 1 an integer. If

δ(D) ≥ n−1
t

, then χ′2vd(D) ≤ min{n,∆(D) + t}.

Corollary 2.1. Let D be a vdac-digraph on n vertices. Then χ′2vd(D) ≤ n.

We will show that χ′2vd(
−→
Kn) = n, see in Theorem 2.3 as follows, where

−→
Kn is

a complete symmetric digraph on n vertices. This implies that Theorem 2.1 and

Corollary 2.1 cannot be improved in general.

Proof of Theorem 2.1. For a proper edge coloring f of a bipartite graph B, let

F (u) be the set of colors incident with u. It suffices to show the following result.

Lemma 2.1. Let B be a pvdec-balanced bipartite graph on 2n vertices and with

δ(B) ≥ n−1
t

, where t ≥ 1 is an integer. If ∆(B) ≤ n − 1, then χ′pvd(B) ≤

min{n,∆(B) + t}. If ∆(B) = n, then χ′pvd(B) ∈ {n, n+ 1}.

Proof. We first prove the following claim, on which the above lemma is heavily based.

Claim 2.1. Let B = (X, Y ;E) be a pvdec-bipartite graph and t ≥ 1 an integer.

Then there exists a proper k-edge-coloring of B with nXS ≤ t and nYS ≤ t for any

S ⊆ {1, . . . , k}, where k is the minimum integer such that dX(k − dX) ≥ nXdX − t for

δX ≤ dX ≤ ∆X and dY (k − dY ) ≥ nYdY − t for δY ≤ dY ≤ ∆Y .
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Proof. With respect to an edge coloring f of B, a vertex x ∈ X (resp. y ∈ Y ) is called

bad if nXF (x) ≥ 2 (resp. nYF (y) ≥ 2) and good otherwise. Note that k ≥ ∆(B) = χ′(B).

There exists a proper k-edge coloring of B. Let f0 be one coloring with minimal

number of bad vertices among all the proper k-edge colorings of B.

If max{nXS , nYS } ≤ t for any S ⊆ {1, . . . , k}, then we are done. Assume without

loss of generality that nXF0(u) ≥ t + 1 for some u ∈ X. Since t ≥ 1, we have that u

is a bad vertex. Note that dX(k − dX) can be regarded as the maximum number of

distinct color sets that can be obtained from F0(u) by changing the color of one edge

incident with u. Note also that nXdX − t−1 can be regarded as the possible maximum

number of distinct color sets different from F0(u). Since dX(k − dX) ≥ nXdX − t for

all δX ≤ dX ≤ ∆X , there exist two colors α and β with α ∈ Fo(u), β /∈ F (u) and

nXF0(u)−{α}+{β} = 0.

Let P1 = u1 . . . v1 be an (α, β)-Kempe-path with u1 = u. Let f1 be a new edge

coloring of B obtained from f0 by exchanging the colors α and β on the path P1. Note

that f1 is proper and the color set of any vertex distinct from u1 and v1 remains the

same. Since nXF0(u)−{α}+{β} = 0 and F1(u1) 6= F1(v1) if v1 ∈ X, we have nXF1(u1) = 1

and u1 is good with respect to f1. Recall that u1 is bad with respect to f0 and f0

has minimum number of bad vertices, we have that v1 is good with respect to f0

and bad with respect to f1. Assume without loss of generality that v1 ∈ X and let

u2 ∈ X with F1(v1) = F1(u2). Note that u2 6= u1. Consider the (α, β)-Kempe-path

P2 = u2 . . . v2. We interchange the colors α and β on P2 and denote the new edge

coloring by f2. Note that now u2 is good and v2 is bad with respect to f2.

More generally, for the edge coloring fi−1 together with an (α, β)-Kempe-path

Pi = ui . . . vi, we can get a new proper coloring fi by exchanging the colors α and

β on the path Pi−1 such that ui is bad with respect to fi−1 and good with respect

to fi, and vi is good with respect to fi−1 and bad with respect to fi. Moreover,

we can continue as above to get another (α, β)-Kempe-path Pi+1 = ui+1 . . . vi+1

such that Fi(ui+1) = Fi(vi) and ui+1 /∈ P1 ∪ . . . ∪ Pi. Note that we can get an

(α, β)-Kempe-path Pi+1 for every (α, β)-Kempe-path Pi and these (α, β)-Kempe-

paths P1, . . . , Pi, Pi+1, . . . are pairwise vertex disjoint. It contradicts the fact that
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both X and Y are finite sets.

Consider the case t = 1 in the above claim, we have the following claim.

Claim 2.2. Let B = (X, Y ;E) be a pvdec-bipartite graph with bipartition (X, Y ).

Let k be the minimum integer such that dX(k−dX) ≥ nXdX − 1 for all δX ≤ dX ≤ ∆X

and dY (k − dY ) ≥ nYdY − 1 for all δY ≤ dY ≤ ∆Y . Then χ′pvd(B) ≤ k.

Let δ(B) ≥ n−1
t

. Since dX(∆(B) + t − dX) ≥ n−1
t
· t = n − 1 ≥ nXdX − 1 for all

δX ≤ dX ≤ ∆X and similarly dY (∆(B) + t − dY ) ≥ nYdY − 1 for all δY ≤ dY ≤ ∆Y ,

then by Claim 2.2 we have χ′pvd(B) ≤ ∆(B) + t.

If ∆(B) ≤ n − 1, then n(d − 1) ≥ (d + 1)(d − 1) for any δ(B) ≤ d ≤ ∆(B). It

follows that d(n − d) ≥ n − 1. So dX(n − dX) ≥ nX − 1 for all δX ≤ dX ≤ ∆X and

dY (n− dY ) ≥ nY − 1 for all δY ≤ dY ≤ ∆Y . By Claim 2.2, we have χ′pvd(B) ≤ n and

thus χ′pvd(B) ≤ {n,∆(B) + t}.

If ∆(B) = n, then χ′pvd(B) ≥ n and similarly as above we have χ′pvd(B) ≤ n+ 1.

So χ′pvd(B) ∈ {n, n+ 1}.

The proof of Theorem 2.1 is complete.

Corresponding to Claim 2.1 and Claim 2.2, we have two analogous results for

digraphs.

Lemma 2.2. Let D be a vdac-digraph and t ≥ 1 an integer. Let k be the minimum

integer such that d+(k−d+) ≥ nd+−t for all δ+(D) ≤ d+ ≤ ∆+(D) and d−(k−d−) ≥

nd−−t for all δ−(D) ≤ d− ≤ ∆−(D). Then D has a proper k-arc-coloring with n+
S ≤ t

and n−S ≤ t for any S ⊆ {1, . . . , k}.

Lemma 2.3. Let D be a vdac-digraph. Let k be the minimum integer such that

d+(k − d+) ≥ nd+ − 1 for all δ+(D) ≤ d+(D) ≤ ∆+(D) and d−(k − d−) ≥ nd− − 1

for all δ−(D) ≤ d−(D) ≤ ∆−(D). Then χ′2vd(D) ≤ k.

31



Chapter 2. Vertex-Distinguishing Proper Arc Colorings of Digraphs

2.3 Semi-vertex-distinguishing proper arc color-

ings of digraphs

For any vdac-digraph D, till now, we cannot show that π(D) colors can guarantee

a VDPA coloring but we can show that π(D) colors can guarantee a semi-VDPA

coloring.

Theorem 2.2. Let D be a vdac-digraph. Then χ′2svd(D) ≤ π(D) ≤ χ′2vd(D).

Proof. Clearly, χ′2vd(D) ≥ π(D). It suffices to show that χ′2svd(D) ≤ π(D), i.e., D has

a proper π(D)-arc-coloring with n+
S ≤ 2 and n−S ≤ 2 for any S ⊆ {1, . . . , π(D)}. We

will get this by showing that D has a a proper π(D)-arc-coloring with |n+
S −n

+
S′ | ≤ 2

and |n−S − n
−
S′ | ≤ 2 for all S, S ′ ⊆ {1, . . . , k} with |S| = |S ′|.

Note that a VDPA coloring satisfies that |n+
S − n

+
S′ | ≤ 1 and |n−S − n

−
S′| ≤ 1 for

any two color sets S and S ′. Define a balanced proper arc coloring of a digraph to be

a proper arc coloring with |n+
S − n

+
S′ | ≤ 2 and |n−S − n

−
S′| ≤ 2 for any two color sets

S and S ′. Define an optimal k-coloring of D to be a proper arc coloring of D with k

colors and with minimal value of

∑
S

((n+
S )2 + (n−S )2). (2.3)

By definition, on can check that an optimal k-coloring of D exists if and only if

k ≥ χ′2(D) = ∆(D). We first show that an optimal coloring is also balanced.

Lemma 2.4. In an optimal k-arc-coloring of D, we have |n+
S − n

+
S′| ≤ 2 and |n−S −

n−S′| ≤ 2 for all S, S ′ ⊆ {1, . . . , k} with |S| = |S ′|.

We transfer this problem to bipartite graphs. A proper coloring of a bipartite

graph with k colors is called partial-balanced if |nXS − nXS′ | ≤ 2 and |nYS − nYS′ | ≤ 2

for any two color sets S, S ′ ⊆ {1, . . . , k} with |S| = |S ′|, and is called partial-semi-

vertex-distinguishing if nXS ≤ 2 and nYS ≤ 2 for any S ⊆ {1, . . . , k}.

Define an optimal k-edge-coloring of B to be a proper edge coloring of B with k
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colors and with minimal value of

∑
S

((nXS )2 + (nYS )2). (2.4)

Note that an optimal k-edge-coloring exists for every B with k ≥ χ′(B) = ∆(B).

To prove Lemma 2.4, it suffices to show that an optimal edge coloring of a balanced

bipartite graph is also partial-balanced.

Lemma 2.5. For an optimal k-edge-coloring of B = (X, Y ;E), we have |nXS −nXS′| ≤

2 and |nYS − nYS′| ≤ 2 for all S, S ′ ⊆ {1, . . . , k} with |S| = |S ′|.

Proof. Let f be an optimal edge coloring of B with color set {1, . . . , k}. Denote by

[α � β] the family of subsets of {1, . . . , k} in which each subset contains precisely one

of α and β. Let V[α�β] be the set of vertices with color sets in [α � β]. Define an

involution iαβ on subsets in [α � β] by interchanging the colors α and β. We first

show the following claim.

Claim 2.3. Assume we have an optimal k-edge-coloring f of B and S ∈ [α�β]. Then

we can change the coloring by interchanging α and β on some edges such that we get

a new optimal coloring f ′ in which both the pair of values nXS and nXiαβS (differing by

one) and one other pair of values nS′ and niαβS′ (both in X or both in Y , differing

by one) are interchanged, and all other nXS∗ and nYS∗ remain the same. Moreover, we

have |nXS − nXiαβS| ≤ 1 and |nYS − nYiαβS| ≤ 1 for any S ∈ [α � β].

Proof. Let MX
S (resp. MY

S ) be a matching between the vertices in XS (resp. YS)

and the vertices in XiαβS (resp. YiαβS) with maximal number of edges. Let M be the

union of MX
S ∪MY

S , where S ∈ [α � β]. Note that a vertex v ∈ X (resp. v ∈ Y ) is

unmatched by M implies that nXS(v) > nXiαβS(v) (resp. nYS(v) > nYiαβS(v)). Define K a

matching with E(K) = {uv : u and v are the endvertices of an (α, β)-Kempe-path

of B}. Note that V (K) = V[α�β]. Let Hα,β be a graph with V (Hα,β) = V[α�β] and

E(Hα,β) = E(M) ∪ E(K). One can check that ∆(Hα,β) ≤ 2 and Hα,β consists of

paths and cycles.
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Let v0 be an arbitrary vertex unmatched by M . One can check that the path of

H starting with v0 will also end with a vertex v2l+1 unmatched by M . Denote this

path by P = v0 . . . v2l+1. Interchange the colors α and β for the color sets of the

vertices of P , i.e., interchange the colors α and β for the color sets of Kempe-paths

with endvertices v2i and v2i+1 for every 0 ≤ i ≤ l. Note that S(v2i+1) = iαβS(v2i+2)

and S(v2i+2) = iαβS(v2i+1). Assume without loss of generality that v0 ∈ X.

Assume first that v2l+1 ∈ Y . Note that only

nXS(v0), n
X
iαβS(v0), n

Y
S(v2l+1), n

Y
iαβS(v2l+1)

will be changed. Also, we have

nXS(v0) > nXiαβS(v0), n
Y
S(v2l+1) > nYiαβS(v2l+1).

Furthermore, nXS(v0) and nYS(v2l+1) decrease by one, and niXαβS(v0) and nYiαβS(v2l+1) increase

by one. Recall that f is an optimal edge coloring. If nXS(v0) ≥ nXiαβS(v0) + 2 or

nYS(v2l+1) ≥ nYiαβS(v2l+1) + 2, then the value of (2.4) will decrease which contradicts the

optimality of f . Thus nXS(v0) = nXiαβS(v0) + 1 and nYS(v2l+1) = nYiαβS(v2l+1) + 1. Note that

the new coloring is also optimal since the value of (2.4) remains the same.

Now assume that v2l+1 ∈ X. One can check that S(v0) 6= S(v2l+1). In fact, by

assuming without loss of generality that S(v0)∩ {α, β} = α, we have that S(v2i+1)∩

{α, β} = β if v2i+1 ∈ X, and S(v2i+1) ∩ {α, β} = α if v2i+1 ∈ Y . Similar to the

above analysis, we have that nXS(v0) and nXS(v2l+1) will decrease one, and nXiαβS(v0) and

nXiαβS(v2l+1) will increase one. By the fact that nXS(v0) > nXiαβS(v0), n
X
S(v2l+1) > nXiαβS(v2l+1)

and f is optimal. We have nXS(v0) = nXiαβS(v0) + 1 and nXS(v2l+1) = nXiαβS(v2l+1) + 1. The

resulting edge coloring is also optimal.

Denote by S M S ′ the symmetric difference of S and S ′. Define d(S, S ′) =

1
2
|S M S ′| the distance of S and S ′. Assume the opposite that there exist S1, S2

with |S1| = |S2| and without loss of generality nXS1
≥ nXS2

+ 3. Among all optimal

k-colorings, choose one coloring and sets S1, S2 with d(S1, S2) is as small as possible.
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Let d = |S1| = |S2|, S+ = S1∪S2, S− = S1∩S2 and [S−, S+]d = {S : |S| = d and S− ⊆

S ⊆ S+}. Note that S1, S2 ∈ [S−, S+]d. Note also that for any S 6= S1, S2 we have

d(S1, S2) > max{d(S, S1), d(S, S2)}. So by the assumption at the beginning of this

paragraph we have nXS1
> nXS > nXS2

.

By Claim 2.3 we have that nXS1
and nXS can be interchanged if d(S1, S) = 1. Let

α be a color with α ∈ S1 and α /∈ S2. Let S ∈ [S− ∪ {α}, S+]d. Then d(S1, S) <

d(S1, S2). By the minimality of d(S1, S2) we have that nXS2
will interchange with

S ′ such that d(S2, S
′) = 1 simultaneously. So |nXS1

− nXS | = 1. In fact, for any

S ∈ [S− ∪ {α}, S+]d with S 6= S1, we can interchange nXS1
with nXS by a sequence

of steps. It follows that |nXS1
− nXS | = 1 for any S 6= S1, S2. Similarly, we can get

that |nXS2
− nXS | = 1 for any S 6= S1, S2. Thus |nXS1

− nXS2
| ≤ 2, which contradicts the

assumption that nXS1
≥ nXS2

+ 3.

If there exists some S with nS ≥ 3, assume that |S| = d, then by Lemma 2.5

we have nS ≥ 1 for every S ′ with S ′ ⊆ {1, . . . , k} and |S ′| = |S|. It follows that

nd ≥
(
k
d

)
− 1 + 3 =

(
k
d

)
+ 2, contradicting to the definition of k.

The proof of Theorem 2.2 is complete.

2.4 Vertex-distinguishing proper arc colorings of

regular digraphs

Let Dn
d be a d-regular digraph on n vertices. In particular, Dn

n is a complete sym-

metric digraph on n vertices and Dn
n consists of a complete symmetric digraph on n

vertices and n loops. Note that Dn
d is a vdac-digraph and Dn

n is not a simple digraph.

For convenience, let

kd,n = min{k :

(
k

d

)
≥ n}. (2.5)

Note that π(Dn
d ) = kd,n. By Conjecture 1.3 we have the following conjecture.

Conjecture 2.1. χ′2vd(D
n
d ) = π(Dn

d ) = kd,n.

Although we have not proved it completely, many cases have been verified.
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Theorem 2.3. Let Dn
d be a d-regular digraph on n vertices. Then Conjecture 2.1

holds both for n ≤ 7 and for d ∈ {1, 2} ∪ [k2,2n + 4, n]; moreover, it nearly holds

for d ∈ [k2,n − 2, k2,2n + 3], where k2,n =
⌈

1+
√

1+8n
2

⌉
and k2,2n =

⌈
1+
√

1+16n
2

⌉
. To be

precise, we have

(1) χ′2vd(D
n
d ) = kd,n if n ≤ 7;

(2) χ′2vd(D
n
1 ) = k1,n = n;

(3) χ′2vd(D
n
2 ) = k2,n =

⌈
1+
√

1+8n
2

⌉
;

(4) χ′2vd(D
n
d ) ≤ d+ k2,n − 2 ≤ 2k2,n − 5 =

⌈√
1 + 8n

⌉
− 4 if 3 ≤ d ≤ k2,n − 3;

(5) χ′2vd(D
n
d ) ∈ {kd,n, kd,n + 1} and kd,n = d+ 2 if k2,n − 2 ≤ d ≤ k2,2n + 3;

(6) χ′2vd(D
n
d ) = kd,n = d+ 2 if k2,2n + 4 ≤ d ≤ n− 2;

(7) χ′2vd(D
n
d ) = kd,n = d+ 1 if n− 1 ≤ d ≤ n.

Proof. Recall that a regular vdac-digraph corresponds to a regular balanced pvdec-

bipartite-graph. Let Bn
d be a d-regular balanced bipartite graph on 2n vertices. Note

that Bn
d is a pvdec-bipartite graph. Since the proof of Theorem 2.3 (1) will use the

result of Theorem 2.3 (2) and (3), the proofs will be given in this order: (2), (3), (1),

(4), (5), (6) and (7). We first show the following claim.

Claim 2.4. If k2,n − 2 ≤ d ≤ n− 2, then kd,n = d+ 2.

Proof. Clearly, kd,n ≥ d+ 1. Since
(
d+1
d

)
= d+ 1 < n for d ≤ n− 2 and

(
d+ 2

d

)
=

(
d+ 2

2

)
=

(d+ 2)(d+ 1)

2
≥ k2,n(k2,n − 1)

2
=

(
k2,n

2

)
≥ n, (2.6)

we have kd,n = d+ 2.

(2) Note that kn1 = n. The result follows directly from Corollary 2.1.

(3) It suffices to show the following lemma.

Lemma 2.6. χ′pvd(B
n
2 ) = k2,n =

⌈
1+
√

1+8n
2

⌉
.

Proof. B is a hamiltonian cycle or a union of vertex disjoint cycles. Put the
(
k
2

)
copies of the 2-color sets in the order as indicated in Figure 2.1. We will give an
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Figure 2.1: Sequence of the 2-color sets

algorithm to color the edges such that these color sets appear on vertices of each part

of B one by one, until there is no edge left. This will complete the proof.

According to the sequence of the 2-color sets in Figure 2.1, we have a sequence

of colors.

1, 2, 1, 3, . . . , 1, k−1, 1, k, k, 2, k−1, 2, . . . , 4, 2, 3, 2, 3, 4, . . . , 3, k−1, 3, k, k, 4, . . . (2.7)

Now we give a partial vertex-distinguishing k-edge-coloring of B through an al-

gorithm.

Algorithm

Input: A 2-regular balanced bipartite graph B.

Output: A vertex-distinguish k-edge-coloring of B.

Step 1. Let c(i) be the i-th number of color sequence (2.7). Set i = 1.

Step 2. Choose an uncolored cycle arbitrarily, denoted by u1u2 . . . u2tu1 in clockwise

order. For any vertex u, denote the successor and the predecessor of u by u+ and

u−, respectively. Let u = u1, v = u2. Color the edge uv with c(i). Set i = i+ 1 and

color edge vv+ with c(i).

Step 3. While v 6= u, i.e., the cycle is not yet well-colored, do

If c(i) = k, color uu− with c(i+ 1), which equals to k obviously.

Set u = u−, i = i+ 2.

If c(i) is odd and c(i) = c(i+ 1) + 1, color uu− with c(i+ 1) and u−u−− with
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c(i+ 2). Set u = u−−, i = i+ 3.

Else, color vv+ with c(i+ 1). Set v = v+, i = i+ 1.

End while

Step 4. If there exists uncolored cycles, back to Step 2.

In the coloring process of the algorithm above, we call a jump appears if the

coming two uncolored edges will receive two colors in different rows according to

Figure 2.1. If the cycle can be colored with no jump, then we can color it just follow

the “Else” part of the Step 3. This can be seen in Figure 2.2. If not, then either

the coming four uncolored edges will receive colors i, k, k and i+ 1 (which induces

a contradiction that two adjacent edges receive the same color k) or the coming four

uncolored edges will receive colors j, j+ 1, j and j+ 1 (which induces that (j, j+ 1)

appear on two vertices in the same part). The two cases will be avoided by the first

“If” and the second “If” of Step 3, respectively. One can see this in Figure 2.3.

Figure 2.2: Coloring of a cycle with no jump

Thus we give a PVDPE coloring of B.

The proof of Theorem 2.3 (3) is complete.

(1) Let n ≤ 7. Then either d ∈ {1, 2} or d ≥ n−1
2

. If d ∈ {1, 2}, then by Theorem

2.3 (2) and (3) we have χ′vd(D
n
d ) = kd,n. If d ≥ n−1

2
, then by Theorem 2.1 and Claim
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Figure 2.3: Coloring of cycles with jumps

2.4 we have χ′vd(D
n
d ) ≤ ∆(Bn

d ) + t ≤ d + 2 = kd,n and thus χ′vd(D
n
d ) = kd,n. So

χ′pvd(D
n
d ) = kd,n for n ≤ 7.

(4) Every Dn
d can also be defined as a union of a Dn

i and a Dn
d−i with the same

vertex set. Note that every Dn
i has a VDPA coloring with χ′2vd(D

n
i ) colors and every

Dn
d−i has a proper arc coloring with d− i colors and with the same color set for every

vertex. Then we have that

χ′2vd(D
n
d ) ≤ χ′2vd(D

n
i ) + d− i (2.8)

for any i ≤ d. Note that χ′2vd(D
n
i ) = k2,n =

⌈
1+
√

1+8n
2

⌉
and d ≤ k2,n − 3. Take i = 2,

we have

χ′2vd(D
n
d ) ≤ χ′2vd(D

n
2 ) + d− 2 ≤ 2k2,n − 5 =

⌈√
1 + 8n

⌉
− 4. (2.9)

(5) By Claim 2.4, we have kd,n = d + 2 now and thus it suffices to show the

following lemma for corresponding bipartite graph Bn
d .
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Lemma 2.7. If k2,n − 2 ≤ d ≤ k2n
2 + 1, then χ′pvd(B

n
d ) ∈ {d+ 2, d+ 3}.

Proof. Clearly, χ′pvd(B
n
d ) ≥ d+ 2. Now we show that χ′pvd(B

n
d ) ≤ d+ 3.

Let f be a proper (d + 2)-edge-coloring of Bn
d with color set T = {1, . . . , d + 2}

and let Z ∈ {X, Y }. The coloring f is Z-distinguishing if no two vertices in Z are

incident with the same color set, i.e., nZS ≤ 1 for any S ⊆ T with |S| = d. And f is

Z-semi-distinguishing if no three vertices in Z are incident with the same color set,

i.e., nZS ≤ 2 for any S ⊆ T with |S| = d. The following result holds.

Claim 2.5. Let d ≥ k2,n − 2. Then Bn
d has an X-distinguishing and Y -semi-

distinguishing proper edge coloring with color set T .

Proof. We first show that Bn
d has an X-distinguishing proper edge coloring with color

set T by using the result of list-edge-colorings of bipartite graphs.

Given an undirected graph G with edge set E(G). A list-edge-assignment L of

G is an assignment of lists of distinct colors to the edges of G. We call G is k-list-

edge-colorable if for any list-edge-assignment L with L(e) ≥ k for any e ∈ E(G) there

exists a proper edge coloring f with f(e) ∈ L(e) for any e ∈ E(G). Recall that

Galvin [44] has proved that every bipartite graph B is ∆(B)-list-edge-colorable.

Since
(
d+2
d

)
≥ n, there exist at least n pairwise distinct color sets with d colors. It

follows that every vertex x of X can be assigned a color set S(x) ⊆ T with |S(x)| = d

and S(x1) 6= S(x2) for any two distinct vertices x1 and x2 in X. Let L be a list-

edge-assignment of B with L(e) = S(x) for any e incident with x. Since ∆(B) = d,

then by the result of Galvin [44] we can get a proper edge coloring f1 of B such that

every edge incident with x is colored by one color in S(x). It follows directly that

F1(x) = S(x) for any vertex x in X. Thus f1 is an X-distinguishing proper edge

coloring.

Then we show that Bn
d has an X-distinguishing Y -semi-distinguishing proper edge

coloring with d+ 2 colors.

Define an optimal X-distinguishing coloring to be an X-distinguishing proper

edge coloring with minimal value of
∑

S(nYS )2. Then by the same method used in
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the proof of Claim 2.3, we can get that the following claim holds. Since the proof is

very similar to that of Claim 2.3, we omit the details here.

Claim 2.6. Assume we have an optimal X-distinguishing coloring f of Bn
d and S ⊆

[α � β]. Then we can change the coloring by interchanging α and β on some edges

such that we get a new optimal X-distinguishing coloring f ′ in which both the pair

of values nYS and nYiαβS (differing by one) and one other pair of values nS′ and niαβS′

(both in X or both in Y , differing by one) are interchanged, and all other nXS∗ and

nYS∗ remain the same. Moreover, we have |nXS − nXiαβS| ≤ 1 and |nYS − nYiαβS| ≤ 1 for

any S ∈ [α � β].

Now by the similar analysis used in the proof of Lemma 2.5 we can show that

|nYs − nYS′ | ≤ 2 for any S, S ′ ⊆ {1, . . . , d + 2} with |S| = |S ′|. This implies that

every optimal X-distinguishing coloring is an X-distinguishing Y -semi-distinguishing

proper edge coloring for Bn
d with d ≥ k2,n − 2.

Given an X-distinguishing Y -semi-distinguishing proper edge coloring f ∗ of Bn
d

with d + 2 colors. If f ∗ is a PVDPE coloring, then we are done. Now assume that

there exist two vertices u, v ∈ Y with F (u) = F (v). Since
(
d+2
d

)
≥ n, there exists

S ⊆ T with |S| = d and nYS = 0. Let T\S = {α, β}. By Claim 2.3, we know that

every bad vertex should be incident with two edges colored with α and β respectively.

Otherwise we get a color set S ′ with nYS′ = 2, but d(S, S ′) = 1 which contradicts Claim

2.3.

Then for any two vertices u, v ∈ Y with F (u) = F (v), we recolor the α-colored

edge incident with u with a new color α′ and keep the colors of the other edges

incident with u. Besides, the colors of the edges incidents with v unchanged. Then

we get a new proper edge coloring of Bn
d with d+ 3 colors and one can check that it

is a PVDPE coloring.

The proof of Theorem 2.3 (5) is complete.

(6) By Claim 2.4, we have π′(Bn
d ) = d + 2 and χ′pvd(B

n
d ) ≥ d + 2. Recall that
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Balister et al. [15] have showed that χ′vd(G) = π(G) for every vdec-graph G with

∆(G) ≤
√

2|V (G)|+ 4 and δ(G) ≥ 5. Note that

k2,2n = min{k ∈ Z :

(
k

2

)
≥ 2n} =

⌈
1 +
√

1 + 16n

2

⌉

and

k2,2n + 4 ≥ 2
√
n+ 4 =

√
4n+ 4 =

√
2|V (Bn

d )|+ 4 ≥ 5.

We have χ′vd(B
n
d ) = π(Bn

d ) = d + 2. Clearly, χ′pvd(B
n
d ) ≤ χ′vd(B

n
d ). Thus χ′pvd(B

n
d ) =

d+ 2.

(7) Clearly, kd,n ≥ d + 1 for d ∈ {n − 1, n}. Since
(
d+1
d

)
= d + 1 ≥ n, we have

kd,n = d + 1. By Corollary 2.1, we have χ′2vd(D
n
n−1) = n. By Lemma 2.2, we have

χ′2vd(D) ≤ n+1 if loops are allowed in D and thus χ′2vd(D
n
n) = n+1. Here, we will give

explicit VPPA colorings for Dn
n−1 and Dn

n with n and n+ 1 colors, respectively. Note

that Dn
n consists of a Dn

n−1 and n loops (each vertex has a loop). Then the VDPA

coloring of Dn
n follows from the VDPA coloring of dnn−1 and all the loops colored by

one new color. So we only consider Dn
n−1 in the following. Let {1, . . . , n} be the

vertex set of Dn
n−1 and let

−→
ij be the arc of Dn

n−1 with tail i and head j.

We will first use the existence of diagonal Latin square of order n on 1, 2, . . . , n

to offer a VDPA coloring for Dn
n−1 with n colors.

A Latin square An of order n on 1, . . . , n is an array of n rows and n columns

such that every row and column consists of 1, . . . , n. Let aij be the element of An

on the ith row and jth column. Call An is diagonal if aii = i for 1 ≤ i ≤ n.

Hilton [53] showed that a diagonal An exists for any n ≥ 3. Let A∗n be a diagonal

Latin square. Then we can color the arc
−→
ij of Dn

n−1 with aij of A∗n. It follows that

S+(vi) = S−(vi) = {1, . . . , n} \ {i} for any 1 ≤ i ≤ n. This implies a VDPA coloring

of Dn
n−1.

Since the diagonal Latin square is not easy to get, then we give a more intuitive

VDPA coloring of Dn
n−1 as follows.
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Case 1. n is odd.

A1 =



1 2 3 . . . n− 1 n

2 3 4 . . . n 1

3 4 5 . . . 1 2

...
...

n− 1 n 1 . . . n− 3 n− 2

n 1 2 . . . n− 2 n− 1


(2.10)

Based on the matrix A1 above, we color the arc
−→
ij of Dn

n−1 with aij of A1. Then

S+(vi) = S−(vi) =


{1, . . . , n} \ {2i− 1}, for 1 ≤ i ≤ (n+ 1)/2;

{1, . . . , n} \ {2i− (n+ 1)}, otherwise.
(2.11)

One can check that this is a VDPA coloring of Dn
n−1.

Case 2. n is odd.

A2 =



1 2 3 4 . . . n− 2 n− 1 n

1 n 2 3 . . . n− 3 n− 2 n− 1

n 1 n− 1 2 . . . n− 4 n− 3 n− 2

n− 1 n 1 n− 2 . . . n− 5 n− 4 n− 3

...
...

...

5 6 7 8 . . . 4 2 3

4 5 6 7 . . . 1 3 2

3 4 5 6 . . . n 1 2



(2.12)

Based on the matrix A2 above, we color the arc
−→
ij of D with aij of A2. Note that

each row of A2 consists of numbers 1, . . . , n. Note also that in the j-th column the

number j + 1(mod n) does not appear and the number n − j + 2(mod n) appears
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twice. Then
S+(vi) = {1, . . . , n} \ {n− i+ 2(mod n)}, for 1 ≤ i ≤ n.

S−(vi) = {1, . . . , n} \ {i+ 1(mod n)}, for 1 ≤ i ≤ n.
(2.13)

One can check that this is a VDPA coloring of Dn
n−1.

The proof of Theorem 2.3 (7) is complete.

Now we finish the proof of Theorem 2.3.

2.5 Equitable vertex-distinguishing proper arc col-

orings of digraphs

In 2008, Rudašová and Soták [83] showed that χ′evd(G) = χ′vd(G). We study the

analogous problem for digraphs and show that both χ′2vd(D) and χ′2svd(D) will not be

changed if the coloring is, in addition, required to be equitable.

Theorem 2.4. Let D be a vdac-digraph. Then χ′2evd(D) = χ′2vd(D) and χ′2esvd(D) =

χ′2svd(D).

Proof. The proofs of χ′esvd(D) = χ′svd(D) and χ′evd(D) = χ′vd(D) are similar. So we

only present the proof of χ′evd(D) = χ′vd(D) in this section. Note that χ′evd(D) =

χ′epvd(B
(D)). It suffices to show the following result on balanced bipartite graphs.

Lemma 2.8. Let B be a pvdec-bipartite-graph. Then χ′epvd(B) = χ′pvd(B).

Proof. Note that χ′epvd(B) ≥ χ′pvd(B) and it suffices to show χ′epvd(B) ≤ χ′pvd(B). We

get it by showing that B has an equitable PVDPE coloring using χ′pvd(B) colors.

Recall that B is a pvdec-bipartite-graph. Among all PVDPE colorings of B with

k = χ′pvd(B) colors, choose one ψ with minimum
∑

a,b |ea − eb| and then choose two

colors α and β in ψ such that eα−eβ is maximum. Assume the opposite that ψ is not

equitable. Then eα − eβ ≥ 2. For any γ ∈ {1, . . . , k}\{α, β}, we have eβ ≤ eγ ≤ eα

by the choices of α and β.
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Since eα > eβ, there exists a vertex u with S(u) ∩ {α, β} = α and niα,βS(u) = 0.

Actually, if niα,βS(u) 6= 0 for each S(u) with S(u) ∩ {α, β} = α then eα ≤ eβ, a

contradiction.

Let P1 = v1 . . . v
′
1 be an (α, β)-Kempe-path with one end vertex u = v1 and,

without loss of generality, the other end vertex v′1 ∈ X. If there exists v2 ∈ X with

S(v2) = iα,βS(v′1), then we can let P2 = v2 . . . v
′
2 be the (α, β)-Kempe-path with

two end vertices v2 and v′2. Continue this process until there exists a Kempe-path

Pt = vt . . . v
′
t such that iα,βS(v′t) unused in the part where v′t lies in. This process will

terminate in finite steps since the number of vertices is finite. Denote the union of

these Kempe-paths by H.

We can distinguish two cases for v′t.

Case 3. S(v′t) ∩ {α, β} = α and eα − eβ = 1 in H.

Case 4. S(v′t) ∩ {α, β} = β and eα − eβ = 0 in H.

Since eα ≥ eβ + 2, there exists such a union of Kempe-paths of Case 1, without

loss of generality, say H∗. We construct a new coloring ψ′ of B as follows: interchange

the colors α and β on the edges of H∗. This new coloring ψ′ is still a VDPA coloring

since the color sets of the internal vertices are not changed, and for the starting vertex

u and ending vertex v, S(u), S(v) are changed to iα,βS(u), iα,βS(v) with niα,βS(u) =

niα,βS(v) = 0, respectively.

Now consider the sum
∑

a,b |ea − eb| for the coloring ψ′. Compare it with the

original sum for ψ, the following facts hold:

• |eα − eβ|+ |eβ − eα| will decrease 4;

• |eα − eγ|+ |eγ − eα|+ |eβ − eγ|+ |eγ − eβ| will decrease 4 if eβ < eγ < eα and it

remains the same if eγ ∈ {eα, eβ}.

Hence, the sum will decrease at least 4, a contradiction to the choice of ψ.

The proof of Theorem 2.4 is complete.

At the end of this section, we give a simple proof for the results of χ′e(G) and

χ′e(D), where G is an arbitrary undirected graph and D is an arbitrary digraph.
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Although the fact blow seems somewhat trivial and we are almost sure that more

than one researcher have proved it before, for the completeness of this part, we give

the sketch of its proof here.

Fact 2.5. Let G be an undirected graph. Then χ′e(G) = χ′(G).

Proof. Among all proper χ′(G)-edge-colorings of G, choose one named ψ with min-

imum value of
∑

a,b |ea − eb|, and then choose two colors α and β with maximum

value of eα− eβ in ψ. Assume the opposite that ψ is not equitable, then eα− eβ ≥ 2.

For any γ ∈ {1, . . . , k}\{α, β}, we have eβ ≤ eγ ≤ eα by the choices of α and β.

Note that interchanging the colors on an (α, β)-Kempe-path implies a new proper

edge coloring. It follows from eα − eβ ≥ 2 that there exists an (α, β)-Kempe-path

with more edges colored by α than colored by β. Then we interchange the colors of

the edges of such an (α, β)-Kempe-path. Now consider the sum
∑

a,b |ea− eb| for the

resulting coloring. Compare it with the original sum for ψ, the following facts hold.

• |eα − eβ|+ |eβ − eα| will decrease 4;

• |eα − eγ|+ |eγ − eα|+ |eβ − eγ|+ |eγ − eβ| will decrease 4 if eβ < eγ < eα and it

remains the same if eγ ∈ {eα, eβ}.

This contradicts the minimality of
∑

a,b |ea − eb|. Thus ψ is equitable.

Note that χ′2e (D) = χ′e(B
D) = χ′(BD). The analogous result for digraphs holds

directly.

Fact 2.6. Let D be a digraph. Then χ′2e (D) = χ′2(D) = ∆(D).

2.6 Conclusion

In this chapter, the (semi-)VDPA coloring of digraphs is introduced. Many results on

χ′2vd(D), where D is a vdac-digraph, have been obtained. We give upper bounds for

χ′2vd(D) and χ′2svd(D) respectively. In particular, the value of χ′2vd(D) is obtained for

some regular digraph D. Moreover, we show that the values of χ′2vd(D) and χ′2svd(D)

will not be changed if the coloring, in addition, required to be equitable.
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For further consideration, it would be interesting to consider the strong 2-type

VDPA coloring f of vdac-digraphs, here “strong” we mean that the color sets in

{F+(v), F+(v), F−(u), F−(v)} are pairwise distinct for every two vertices u and v.

One can check that it is equal to the VDPE colorings of balance bipartite graphs if

loops are allowed in the vdac-digraphs.

Despite few analysis on χ′1vd(D), it is also an interesting problem and would be

difficult too. Analogous to Corollary 2.1, it seems that χ′1vd(D) ≤ n also holds.

Directed cycles are trivial examples supporting this conjecture.
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Chapter 3

Short Cycles in Digraphs with

Forbidden Subdigraphs

3.1 Introduction

An oriented graph is a digraph without loops, parallel arcs or directed 2-cycles. Let

D be an oriented graph with vertex set V (D) and arc set E(D). For a subset S

of V (D), denote by D|S the oriented graph induced by S. For a subdigraph P of

D, denote by D\P the oriented graph induced by V (D)\V (P ). For a vertex v of

D, denote by N+
D (v) and d+

D(v) = |N+
D (v)| its outneighborhood and outdegree in D,

respectively. For better presentation, we use 〈u, v〉 to denote an arc uv of D, and for

an arc 〈u, v〉, u is its tail and v is its head. Vertices u and v are independent if neither

〈u, v〉 nor 〈v, u〉 is an arc. Let k ≥ 3 be a positive integer. Define a quasi-k-cycle

be an oriented graph that can be obtained by reversing the direction of one arc of a

cycle of length k. Or simply, we use quasi-cycle for quasi-k-cycle when the context

is clear. Let n, l, r with n ≥ l ≥ 2 and n ≥ r be three positive integers.
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3.2 Caccetta-Häggkvist conjecture with induced

forbidden subdigraphs

In particular, characterizing some forbidden subdigraphs is another meaningful way

to consider this conjecture. For the case l = 3 of Conjecture 1.4, Lichiardopol [69]

verified it with one induced forbidden subdigraph I3; it was noted in [80] that it

holds with one induced forbidden subdigraph ~K1,2, it was also noted that Seymour

verified it with one induced forbidden subdigraph ~K2,1; and as a corollary of a result

in [80], it is true with one induced forbidden subdigraph ~P3. The four oriented graphs

mentioned here can be found in Figure 3.1.

I3 ~K1,2
~K2,1

~P3

Figure 3.1: Some oriented graphs on three vertices.

Besides, by deeply considering the nature of the conjectured extremal configura-

tions, Razborov [80] verified the case l = 3 with three well defined induced forbidden

subdigraphs (see Figure 3.2) as follows.

Theorem 3.1 (Razborov [80]). Let D be an oriented graph on n vertices without

directed triangles. If D contains none of the oriented graphs of Figure 3.2 as an

induced subdigraph, then D contains a vertex with outdegree at most n−1
3

.

We generalize Theorem 3.1 to the case l ≥ 4 by the following theorem.

Theorem 3.2. Let D be an oriented graph on n vertices without cycles of lengths

at most l. If D contains none of the oriented graphs of Figure 3.3 as an induced

subdigraph, then D contains a vertex with outdegree at most n−1
l

.

Proof. Let D be the oriented graph defined in Theorem 3.2. Assume that Caccetta-

Häggkvist conjecture holds for all the proper induced subdigraphs of D. Throughout
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In-pendant Out-pendant Quasi-4-cycle

Figure 3.2: Forbidden oriented graphs for Theorem 3.1.

In-pendant Out-pendant Quasi-k-cycle, 4 ≤ k ≤ l + 1 Double 3-path

Figure 3.3: Forbidden oriented graphs for Theorem 3.2.

the proof, the calculations of the densities of the oriented graphs in Figure 3.4 will

play an important role. We first give the definitions.

For an oriented graph OA(u, v) with u, v ∈ V (D) in Figure 3.4, let WOA be the

set of vertices in V (D)\{u, v} such that D|{u,v,w} is isomorphic to OA(u, v) for any

w ∈ WOA . Define the density of OA(u, v) as follows.

d(OA(u, v), D) =
|WOA|
n− 2

. (3.1)

For ÔA(u, v) with u, v ∈ V (D) in Figure 3.4, let WÔA be the set of pairs of vertices in

V (D)\{u, v} such that D|{u,v,w,w′} is isomorphic to ÔA(u, v) for any {w,w′} ∈ WÔA .

Define the density of ÔA(u, v) as follows.

d(ÔA(u, v), D) =
|WÔA|(
n−2

2

) . (3.2)

Similarly, we can define the densities for other oriented graphs listed in Figure 3.4,
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i.e., d(IA(u, v), D), d(PA
3 (u, v), D), d( ~KN

2,1(u, v), D) and d(~PN
3 (u, v), D). Besides, let

d(α(v)) =
d+
D(v)

n− 1
(3.3)

for a vertex v of D. Note that now it suffices to show α(v) ≤ 1/l for some vertex v

of D.

In sake of convenience, we write H for d(H,D) in the following when no confusion

occurs.

u

v

u

v

u

v

u

v

u

v

u

v

ÔA(u, v) ~KN
2,1(u, v) ~PN

3 (u, v)

OA(u, v) IA(u, v) PA
3 (u, v)

Figure 3.4: Oriented graphs needed in the proof of Theorem 3.2.

We call an arc 〈u, v〉 ∈ E(D) critical if OA(u, v) is minimal over all arcs going

out from u. Note that v is a vertex in N+
D (u) with smallest outdegree in D|N+

D(u).

The following two claims will be used later. Since the proofs can be found in [80],

we omit the details here.

Claim 3.1 (Razborov [80]). Let 〈u, v〉 and 〈v, w〉 be two critical arcs. Then u and

w are independent, and ~KN
2,1(u,w) = 0.

Claim 3.2 (Razborov [80]). Let 〈u, v〉 be a critical arc. Then ÔA(u, v) = 0.

We first show a relationship between OA(u, v) and ~PN
3 (v, w), where 〈u, v〉 and

〈v, w〉 are two critical arcs.
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Claim 3.3. If 〈u, v〉 and 〈v, w〉 are two critical arcs, then

OA(u, v) ≤
~PN

3 (u,w)

l
− 1

l(n− 2)
,

IA(v, w) ≤
~PN

3 (u,w)

l
− 1

l(n− 2)
.

(3.4)

Proof. The proof of the second inequality is similar to that of the first one. So we

only show the first inequality. By Claim 3.1, u and w are independent and thus

~PN
3 (u,w) exists. Let H be the set of vertices which contribute to ~PN

3 (u,w) and let

h = |H|. Then ~PN
3 (u,w) = h

n−2
. Applying the inductive assumption to D|H , there

is a vertex v∗ ∈ H that has outdegree at most h−1
l

. Now we show that

OA(u, v∗) ≤ h− 1

l(n− 2)
=

~PN
3 (u,w)

l
− 1

l(n− 2)
(3.5)

from which the claim follows since OA(u, v) ≤ OA(u, v∗) due to the criticality of

〈u, v〉. Note that it suffices to show that every vertex x contributing to OA(u, v∗)

belongs to H, that is 〈x,w〉 ∈ E(D). If x and w are independent, then {u, v∗, x, w}

induces an out-pendant. If 〈w, x〉 ∈ E(D), then x ∈ ~KN
2,1(u,w) which contradicts to

Claim 3.1 that ~KN
2,1(u,w) = 0.

Now we consider a path consisting of l − 1 critical arcs.

Claim 3.4. For any i ∈ {1, . . . , l − 1} and for any {v1, . . . , vl} ⊆ V (D) satisfying

that 〈vi, vi+1〉 is a critical arc and 〈vi, vj〉 /∈ E(D) for any j 6= i+ 1, we have

l∑
i=1

α(vi) + (OA(v1, v2) + IA(v1, v2))− (OA(vl−1, vl) + IA(vl−1, vl)) ≤ 1. (3.6)
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Proof. It is equal to show that

l∑
i=1

α(vi) + (OA(v1, v2) + IA(v1, v2))− (OA(vl−1, vl) + IA(vl−1, vl))

+
l−2∑
j=2

OA(vj, vj+1)−
l−2∑
j=2

OA(vj, vj+1)

+
l−1∑
j′=2

IA(vj′ , vj′+1)−
l−1∑
j′=2

IA(vj′ , vj′+1)

≤ 1.

(3.7)

By Inequality (3.4) in Claim 3.3, we have

OA(u, v) ≤ ~PN
3 (u,w)− (l − 1)OA(u, v)− 1

n− 2
,

IA(u, v) ≤ ~PN
3 (u,w)− (l − 1)IA(u, v)− 1

n− 2
.

(3.8)

Thus, it suffices to show that

l∑
i=1

α(vi) + IA(v1, v2) + 2
l−2∑
j=1

~PN
3 (vj, vj+2)

− (l − 1)OA(v1, v2)− l
l−2∑
k=2

OA(vk, vk+1)−OA(vl−1, vl)

− l
l−2∑
k′=1

IA(vk′ , vk′+1)− IA(vl−1, vl)

≤ 1 +
2(l − 2)

n− 2
.

(3.9)

Now we re-calculate all quantities in the left-hand side of Inequality (3.9) in

V (D)\{v1, . . . , vl}. Denote these re-calculated quantities with α̃, . . . , K̃A
2,1, respec-

tively. Note that D has no cycle of length at most l and 〈vi, vj〉 /∈ E(D) for any

j 6= i + 1. By the definitions of the terms in Inequality (3.9) and the re-calculated

terms, we have the following three facts.
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Fact 3.1. For any i ∈ {1, . . . , l − 1} and any j ∈ {1, . . . , l − 2} we have

α(vi) =
n− l
n− 1

α̃(vi) +
1

n− 1
;

α(vl) =
n− l
n− 1

α̃(vl);

~PN
3 (vj, vj+2) =

n− l
n− 2

~̃PN
3 (vj, vj+2) +

1

n− 2
;

OA(u,w) =
n− l
n− 2

ÕA(u,w);

IA(u,w) =
n− l
n− 2

ĨA(u,w).

(3.10)

Fact 3.2. Let x be an arbitrary vertex in V (D)\{v1, . . . , vl}. If x contributes to

ĨA(v1, v2), then x contributes to no term in {α̃(vi) : i = 1, . . . , l} and no term in

{ ~̃PN
3 (vj, vj+2) : j = 1, . . . , l − 2}.

Fact 3.3. Let x be an arbitrary vertex in V (D)\{v1, . . . , vl}. Assume that x does

not contribute to ĨA(v1, v2). By Claim 3.2, we have that x contributes to at most two

terms in {α(vi) : i = 1. . . . , l}. If x contributes to two terms in {α̃(vi) : i = 1. . . . , l},

then x contributes to one term in {ÕA(vj, vj+1) : i = 1, . . . , l − 2} for some j. If x

contributes to one term in {α̃(vi) : i = 1. . . . , l}, then x contributes to at most one

term in { ~̃PN
3 (vj, vj+2) : j = 1, . . . , l − 2}.

Since
∑l

i=1 α(vi) > 1 by our assumption, we have

n− l
n− 2

l∑
i=1

α̃(vi) =
n− 1

n− 2

l∑
i=1

α(vi)−
l − 1

n− 2

=
l∑

i=1

α(vi) +

∑l
i=1 α(vi)− (l − 1)

n− 2

≥
l∑

i=1

α(vi)−
l − 2

n− 2
.

(3.11)

Thus,
l∑

i=1

α(vi) ≤
n− l
n− 2

l∑
i=1

α̃(vi) +
l − 2

n− 2
. (3.12)
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Now for (9) it also suffices to show that

n− l
n− 2

(
l∑

i=1

α̃(vi) + ĨA(v1, v2) + 2
l−2∑
j=1

~̃PN
3 (vj, vj+2)) +

3(l − 2)

n− 2

− n− l
n− 2

((l − 1)ÕA(v1, v2) + l

l−2∑
k=2

ÕA(vk, vk+1) + ÕA(vl−1, vl))

− n− l
n− 2

(l
l−2∑
k′=1

ĨA(vk′ , vk′+1) + ĨA(vl−1, vl))

≤ 1 +
2(l − 2)

n− 2
.

(3.13)

That is,

l∑
i=1

α̃(vi) + ĨA(v1, v2) + 2
l−2∑
j=1

~̃PN
3 (vj, vj+2)

− (l − 1)ÕA(v1, v2)− l
l−2∑
k=2

ÕA(vk, vk+1)− ÕA(vl−1, vl)

− l
l−2∑
k′=1

ĨA(vk′ , vk′+1)− ĨA(vl−1, vl)

≤ 1.

(3.14)

By Facts 2 and 3, it suffices to consider the case that x contributes to both α̃(vi) and

~̃PN
3 (vi, vi+2) for some 2 ≤ i ≤ l−2. Since D has no induced F4, then x contributes to

at least one of {ÕA(vi, vi+1), ĨA(vi+1, vi+2)}. Thus the Inequality (3.14) follows and

the proof is complete.

By the definition of critical arcs, there exists a critical arc going out of u for any

vertex u. So a cycle consisting of critical arcs exists. Let C = u1 . . . up be such one

of minimal length.

Claim 3.5. Let ui and uj be any two vertices of C. Then 〈ui, uj〉 ∈ E(D) if and

only if j = i+ 1 (modulo p).

Proof. The sufficiency is obvious. For the necessity, assume the opposite that 〈ui, uj〉 ∈
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E(D) for some j 6= i + 1. If 〈ui, uj〉 is not a critical arc, then OA(ui, uj) 6= ∅. Note

that {ui, uj, uj−1, u} induces an in-pendant for any u ∈ OA(ui, uj). So 〈ui, uj〉 is a

critical arc. Replacing uiui+1 . . . uj by 〈ui, uj〉 yields a cycle consisting of less number

of critical arcs, a contradiction to the minimality of C.

We now prove Theorem 3.2. Sum up the quantities in the left side of Inequalities

(3.6) along the cycle C. Note that the terms OA and IA will get canceled. Therefore,

p∑
i=1

α(ui) ≤ p/l. (3.15)

It follows that there exists at least one vertex uj with α(uj) ≤ 1/l. The proof of

Theorem 3.2 is complete.

3.3 Caccetta-Häggkvist conjecture with forbidden

subdigraphs

In [80], Razborov also proved that the Caccetta-Häggkvist conjecture holds for di-

graphs with three forbidden subdigraphs (not necessarily induced).

Theorem 3.3 (Razborov [80]). Let D be an oriented graph on n vertices without

directed triangles. If D contains none of the oriented graphs of Figure 3.5 as a

subdigraph (not necessarily induced), then D contains a vertex with outdegree at most

n−1
3

.

Figure 3.5: Forbidden oriented graphs for Theorem 3.3.

To generalize Theorem 3.3 to the case l ≥ 4, or equivalently, to drop the restriction

of being induced of Theorem 3.2, we introduce an operation as follows.
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.

.

.

F1 F2 F k
3 , 4 ≤ k ≤ l + 1 F4

Figure 3.6: Forbidden oriented graphs for Theorem 3.4.

Operation 1. Let u and v be two arbitrary independent vertices in an oriented graph

without cycles of lengths at most l.

(1) If there is one path between u and v, assume w.l.o.g. that from u to v, of length

s ≤ l − 1, then add a path from v to u of length l − s+ 1 (add l − s vertices);

(2) If there is no path between u and v, then add a path from u to v of length s ≥ 2

and a path from v to u of length s′ ≥ 2 such that s+ s′ = l + 1 (add l − 2 vertices).

Denote by F1, F2, F
k
3 (4 ≤ k ≤ l + 1) and F4 (see Figure 3.6) the four oriented

graphs generated from the four oriented graphs in Figure 3.3 by this operation,

respectively. The new added vertices are denoted by empty circles and the new

added paths are denoted by dotted lines.

Now we generalize Theorem 3.3 to the case l ≥ 4 as follows.

Theorem 3.4. Let D be an oriented graph on n vertices without cycles of lengths at

most l. If D contains none of the oriented graphs of Figure 3.6 as a subdigraph, then

D contains a vertex with outdegree at most n−1
l

.

Proof. Assume that Conjecture 1.4 holds for all oriented graphs that contain at least

one oriented graph in Figure 3.6. Let D be an arbitrary oriented graph without cycles

of lengths at most l. It suffices to show that D contains a vertex v with outdegree

at most n−1
l

. We can assume w.l.o.g. that D is maximal, i.e., adding any new arcs

to D destroys the Ck-freeness for some 3 ≤ k ≤ l.

If D contains no induced subdigraphs in Figure 3.3, then we are done by Theorem

3.2. Now assume that D contains at least one induced subdigraph in Figure 3.3.

By the maximality of D and our construction of F1, F2, F
k
3 and F4, D contains
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at least one oriented graph in Figure 3.6. So a vertex v with outdegree at most n−1
l

exists by our assumption at the beginning.

So far, we complete the generalization of Theorems 3.1 and 3.3 by Theorems

3.2 and 3.4, respectively. As a supplement, we also obtain the following forbidden

subdigraph condition for Conjecture 1.4. It is somewhat trivial but very interesting

and a simple proof is presented.

Proposition 3.1. Let D be an oriented graph on n vertices without cycles of lengths

at most l. If D contains no (induced) quasi-k-cycle for any 3 ≤ k ≤ l + 1, then D

contains a vertex with outdegree at most n−1
l

.

Proof. Assume that D has minimum outdegree at least n
l
. It follows that D has a

cycle and furthermore by assumption the cycle has length more than l. So D has a

path of length at least l − 1 and let P = v1 . . . vl be a path of length l − 1. By the

minimum outdegree condition, we have

l∑
i=1

d+
D(v) ≥ n. (3.16)

Note that
∑l

i=1 d
+
P (v) = l − 1. Thus,

l∑
i=1

d+
D\P (v) ≥ n− l + 1. (3.17)

It follows that there exist two vertices in V (P ) having a common outneighbor in

V (D)\V (P ), which implies a quasi-k-cycle for some 3 ≤ k ≤ l+1, a contradiction.

Note that Proposition 3.1 has an equivalent statement: Every digraph on n ver-

tices with minimum outdegree r contains either a cycle of length at most dn
r
e or a

quasi cycle of length at most dn
r
e+ 1.
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3.4 Conclusion

In this chapter, we consider the famous Caccetta-Häggkvist conjecture. Motivated

by the result of Razborov [80] on l = 3 of Conjecture 1.4 with forbidden subdigraphs.

We generalize this result by showing that Caccetta-Häggkvist conjecture (Conjecture

1.4) holds for l ≥ 4 with four given forbidden subdigraphs. It is worth noting that

the definition “density” is the key quantity in flag algebras, which was introduced by

Razborov [79] in 2007. For more details, we refer the readers to [79,80].
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Chapter 4

Vertex-Disjoint Cycles in Bipartite

Tournaments

4.1 Introduction

We write u→ L if u→ v for every v ∈ L and write L→ u if v → u for every v ∈ L.

Define a {k, l}-cycle to be a cycle of length either k or l. As mentioned in Section

1.4, vertex-disjoint cycles in graphs and digraphs have attracted much attention.

The work of this chapter on vertex-disjoint cycles in bipartite tournaments is mainly

motivated by the results on vertex-disjoint cycles in tournaments.

4.2 Vertex-disjoint cycles in bipartite tournaments

In 2001, Chen et al. [35] showed the following theorem.

Theorem 4.1 (Chen et al. [35]). Let T be a k-connected tournament with at least

5k − 3 vertices and k ≥ 2. Then T contains k vertex-disjoint cycles.

Here, we give a similar result for bipartite tournaments as follows.

Theorem 4.2. Let BT = (X, Y ;E) be a k-connected bipartite tournament with

min{|X|, |Y |} ≥ 4k − 3 and k ≥ 2. Then BT contains k vertex-disjoint cycles.

As a direct corollary, we have the following result.
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Corollary 4.1. Every k-connected balanced (hamiltonian) bipartite tournament with

at least 8k − 6 vertices contains k vertex-disjoint cycles.

Proof of Theorem 4.2. To the contrary, let k ≥ 2 be the smallest positive integer

such that there exists a k-connected bipartite tournament with min{|X|, |Y |} ≥

4k− 3 that does not contain k vertex-disjoint cycles. By the minimality of k and the

fact that every 1-connected bipartite tournament has a cycle, BT has k − 1 vertex-

disjoint cycles. By Lemma 1.2, BT has k − 1 vertex-disjoint cycles of length 4, say,

Q1, . . . , Qk−1. Let

H = BT −
k−1⋃
j=1

V (Qj). (4.1)

Note that H has no cycle. Let H1, H2, . . . , H2i−1, H2i, . . . , H2m−1, H2m, m ≥ 1, 1 ≤

i ≤ m, be the vertex-disjoint subsets defined in Lemma 1.3. Assume w.l.o.g that

H2i−1 ⊆ X and H2i ⊆ Y .

Let M be the set of the first appeared k monochromatic vertices according to the

sequence H1, . . . , H2m, without loss of generality (or simply, w.l.o.g.), assume that

M ⊆ X. Let N be the set of the last appeared k vertices (in Y ) according to the

sequence H1, . . . , H2m. Since

|V (H)| = |V (BT )| −
k−1∑
j=1

|V (Qj)| ≥ 8k − 6− 4(k − 1) ≥ 4k − 2 (4.2)

and there is no arc from Hp to Hq for p > q, we have M → N . Since BT is k-

connected, there exist k vertex-disjoint paths from N to M . Clearly, these paths

plus the appropriate arcs from M to N form k vertex-disjoint cycles. The proof of

Theorem 4.2 is complete.

4.3 Vertex-disjoint cycles of given lengths in bi-

partite tournaments

In 2010, Lichiardopol [68] considered the vertex-disjoint cycles of given length in

tournaments and proposed the following conjecture.
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Conjecture 4.1 (Lichiardopol [68]). Let T be a tournament with δ+(T ) ≥ (q−1)r−

1. Then T contains r vertex-disjoint q-cycles.

Motivated by the conjecture, we consider the analogous problem for bipartite

tournaments, i.e., vertex-disjoint cycles of given length(s) in bipartite tournaments.

The following results have been proved.

Theorem 4.3. Let BT be a bipartite tournament with δ+(BT ) ≥ qr − 1. Then

BT contains r vertex-disjoint cycles either of length 2q for even q or of length in

{2q, 2q + 2} for odd q.

Theorem 4.4. Let BT be a bipartite tournament with δ+(BT ) ≥ qr − 1 and let

t1, . . . , tr ∈ [4, 2q] be any r even integers. Then BT contains r vertex-disjoint cycles

of lengths t′1, . . . , t
′
r such that t′i = ti for ti = 0 (mod 4) and t′i ∈ {ti, ti + 2} for

ti = 2 (mod 4), where 1 ≤ i ≤ r.

We leave the proofs of Theorems 4.3 and 4.4 at the end of this section.

In 1981, Bermond and Thomassen [23] conjectured that every digraph with min-

imum outdegree at least 2r − 1 contains at least r vertex-disjoint cycles. This is

trivially true for r = 1. Thomassen [93] and Lichiardopol, Por and Sereni [71] proved

it for r = 2 and r = 3, respectively. In 2010, Bessy, Lichiardopol and Sereni [25]

verified it for regular tournaments. Recently, Bang-Jensen et al. [17] verified it for

tournaments. Take q = 2 in Theorem 4.3, then the Bermond-Thomassen conjecture

will be verified for bipartite tournaments.

Corollary 4.2. Let BT be a bipartite tournament with δ+(BT ) ≥ 2r− 1. Then BT

contains r vertex-disjoint 4-cycles.

We give some preliminary results as follows.

Theorem 4.5 (Jackson [59]). Let BT be a strong bipartite tournament with δ+(BT ) ≥

s and δ−(BT ) ≥ t. Then BT contains a cycle of length at least 2(s+ t).

The following fact will be used later.

Fact 4.1. F4·k contains a 4k′-cycle for all 1 ≤ k′ ≤ k.
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Theorem 4.6 (Beineke and Little [22]). Let C be a 2s-cycle of a bipartite tournament

BT . If the sub-bipartite-tournament induced on C is not isomorphic to F4·k, where

k = s/2, then BT contains a 2s′-cycle for all 2 ≤ s′ ≤ s.

We now prove Theorems 4.3 and 4.4, respectively.

Proof of Theorem 4.3. We can assume w.l.o.g. that BT is strong. In fact, if not,

then we can choose a strong component with minimum outdegree at least qr − 1.

Then δ−(BT ) ≥ 1 and BT has a cycle of length at least 2qr by Theorem 4.5. Thus

BT has a 2q-cycle for even q or a (2q + 2)-cycle for odd q by Theorem 4.6 and Fact

4.1.

By induction on r. It obviously holds for r = 1. Assume that r ≥ 2 and every

bipartite tournament with minimum outdegree at least q(r − 1) − 1 contains r − 1

vertex-disjoint cycles either of length 2q for even q or of lengths in {2q, 2q + 2} for

odd q. We distinguish two cases.

Case 1. q is even.

Note that BT has a 2q-cycle. Denote it by C and let BT ′ = BT\C. Then

δ+(BT ′) ≥ qr − 1− q = q(r − 1)− 1. (4.3)

By hypothesis BT ′ has r − 1 vertex-disjoint 2q-cycles. These cycles plus C form r

vertex-disjoint 2q-cycles of BT .

Case 2. q is odd.

If BT has a 2q-cycle C, then the same as Inequality (4.3) we have δ+(BT ′) ≥

q(r − 1) − 1 for BT ′ = BT\C. Thus by hypothesis BT ′ has r − 1 vertex-disjoint

{2q, 2q + 2}-cycles. These cycles plus C form r vertex-disjoint {2q, 2q + 2}-cycles of

BT .

Now assume that BT has no 2q-cycle. We will show that BT has r vertex-disjoint

(2q + 2)-cycles.
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Note that BT has a cycle of length at least 2qr. Let C be the maximum cycle

of BT . Then |C| ≥ 2qr. Since BT contains no 2q-cycle, by Theorem 4.6, we

have that C induces a F4·k for k = |C|/4. Recall that F4·k = F (K,L,M,N) with

|K| = |L| = |M | = |N | = k.

If |C| ≥ r(2q+ 2), then F4·k contains at least r vertex-disjoint (2q+ 2)-cycles and

thus the result holds. Now assume that |C| < r(2q + 2). We will get a contradiction

by showing that BT has a cycle longer than C.

Note that

d+
C(v) =

|C|
4

<
r(q + 1)

2
(4.4)

for any v ∈ V (C) and

δ+(BT ) ≥ qr − 1 >
r(q + 1)

2
> d+

C(v). (4.5)

Thus X ∩ (BT\C) 6= ∅, Y ∩ (BT\C) 6= ∅ and every vertex of C has at least one

outneighbor in BT\C.

For any x ∈ X ∩ (BT\C), assume w.l.o.g. that y1 → x for some y1 ∈ L and

assume that there exists y2 ∈ L with x→ y2. Since |C| ≥ 2q + 2, then BT [C] has a

path P of length 2q − 2 from y2 to y1. Now y2Py1xy2 is a 2q-cycle, a contradiction.

This, and by symmetry, implies that

• x→ L or L→ x for any x ∈ X ∩ (BT\C);

• x→ N or N → x for any x ∈ X ∩ (BT\C);

• y → K or K → y for any y ∈ Y ∩ (BT\C);

• y →M or M → y for any y ∈ Y ∩ (BT\C).

For any y ∈ N , since d+
C(y) = k < qr− 1, there exists xK ∈ X ∩ (BT\V (C)) with

N → xK . If L → xK , then since BT is strong there exists a path from xK to C.

Assume that P = xKv1 . . . vp is a shortest one. Since N → xK and L→ xK , we have

v1 /∈ L ∪N and p ≥ 2. If vp ∈ K ∪M , then w.l.o.g. assume that vp ∈ K. Let P ′ be
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a Hamilton path of BT [C] from vp to a vertex y′ ∈ N . Then xKPvpP
′y′xK is a cycle

longer than C, a contradiction. If vp ∈ L ∪N , then p ≥ 3 and assume w.l.o.g. that

vp ∈ L. Let x′′, y′′ be two vertices in K and N respectively and let P ′′ be a Hamilton

path of BT [C]\{x′′} from vp to y′′. Then xKPvpP
′′y′′xK is a cycle longer than C, a

contradiction. This, and by symmetry, shows that

• xK → L and N → xK for some xK ∈ X ∩ (BT\C);

• xM → N and L→ xM for some xM ∈ X ∩ (BT\C);

• yL →M and K → yL for some yL ∈ Y ∩ (BT\C);

• yN → K and M → yN for some yN ∈ Y ∩ (BT\C).

Let x1 ∈ K, x2, x
′
2 ∈ M , y1, y

′
1 ∈ L and y2 ∈ N . Let P ∗ be a Hamilton path of

BT [C]\{x1, x2, y1, y2} from x′2 to y′1. Then

y′1xMy2xKy1x2yNx1yLx
′
2P
∗y′1 (4.6)

is a cycle longer than C, a contradiction.

The proof of Case 2 is complete.

The proof of Theorem 4.3 is complete.

Proof of Theorem 4.4. By Theorem 4.6 and Fact 4.1, the sub-bipartite-tournament

induced on any 2q-cycle either contains a 2q′-cycle for any 2 ≤ q′ ≤ q or contains

a 2q′-cycle for any even q′ with 2 ≤ q′ ≤ q. Then the result follows directly from

Theorem 4.3.

4.4 Conclusion

In this chapter, we consider vertex-disjoint cycles and vertex-disjoint cycles of given

lengths in bipartite tournaments. Let BT be a bipartite tournament with δ+(BT ) ≥

qr − 1 and let t1, . . . , tr ∈ [4, 2q] be any r even integers. We show that BT contains
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r vertex-disjoint cycles of length t′1, . . . , t
′
r such that t′i = ti for ti = 0 (mod 4) and

t′i ∈ {ti, ti + 2} for ti = 2 (mod 4), where 1 ≤ i ≤ r.
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Chapter 5

Cycle Factors in Regular Bipartite

Tournaments

5.1 Introduction

Let D = (V (D), E(D)) be a digraph and let k be a positive integer. For an arc −→uv

of D, we write u→ v and say u dominates v (or v is dominated by u), and we call u

and v the tail and the head of the arc, respectively. For two vertex-disjoint subsets

P and Q of V (D), we write P → Q if every arc of D between P and Q goes from P

to Q, and we write P 9 Q if there exists an arc of D between P and Q that goes

from Q to P . Let R be a subset of V (D). We use N+
R (P ) (resp. N−R (P )) to denote

the set of vertices of R which are dominated by (resp. dominate) at least one vertex

of P . For convenience, we write v → P for {v} → P , v 9 P for {v} 9 P , P + v

for P ∪ {v}, P − v for P\{v}, P + u− v (or P − v + u) for P ∪ {u}\{v}, N+
D (v) for

N+
D ({v}), N−D (v) for N−D ({v}), d+

D(v) for |N+
D (v)| and d−D(v) for |N−D (v)|.

Recall that a k-cycle-factor is a cycle factor consisting of k cycles. Here we call

the two cycles of a 2-cycle factor are complementary.

Denote by

B = (X, Y ;E)

a bipartite tournament with bipartition (X, Y ), vertex set V (B) = X∪Y and arc set
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E(B). It is well known that B has a cycle factor if and only if B contains a perfect

matching from X to Y and a perfect matching from Y to X. By Hall’s Theorem, B

has a perfect matching from X to Y if and only if |N+
B (P )| ≥ |P | for any P ⊆ X.

It is well known that every tournament has a Hamilton path. Let T be a tour-

nament with order n. We say T is a transitive tournament if T has a Hamilton

path v1 → v2 → · · · → vn such that vi → vj for any 1 ≤ i < j ≤ n. Define

δ+(T ) = minv∈V (T ){d+
T (v)}, δ−(T ) = minv∈V (T ){d−T (v)}. Let T7 be the tournament

of order 7 containing no transitive subtournament of order 4. Let T ∗7 be the set of

3-regular tournaments of order 7. Denote by D3,2 the set of the 2-regular 3-partite

tournaments with exactly two vertices in each partite set.

The problem of 2-cycle-factors in 2-connected tournaments was completely solved

by Reid [81] and Song [89]. Moreover, Li and Shu [67] characterized strong tourna-

ments that have a 2-cycle-factor. Thus the problem of 2-cycle-factors in tournaments

has been almost completely solved.

Theorem 5.1 (Reid [81] and Song [89]). Let T be a 2-connected tournament with

|V (T )| ≥ 6. Then T has a 2-cycle-factor of cycle-lengths t and |V (T )| − t for all

3 ≤ t ≤ |V (T )| − 3, unless T is isomorphic to T7.

Theorem 5.2 (Li and Shu [67]). Let T be a strong tournament with |V (T )| ≥ 6 and

max{δ−(T ), δ+(T )} ≥ 3. Then T has a 2-cycle-factor, unless T is isomorphic to T7.

The problem of k-cycle-factors in highly connected tournaments was posed by

Bollobás (see Reid [82]).

Problem 5.1 (Bollobás). Let k be a positive integer. What is the least integer h(k)

such that all but a finite number of h(k)-connected tournaments contain a k-cycle-

factor?

Reid showed that h(k) exists and h(k) ≤ 3k − 4. Chen et al. [35] proved in 2001

that h(k) = k.

Theorem 5.3 (Chen et al. [35]). Let T be a k-connected tournament with |V (T )| ≥

8k. Then T has a k-cycle-factor.
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The problem of k-cycle-factors of given cycle-lengths in highly connected tourna-

ments was posed by Song [89].

Problem 5.2 (Song [89]). Let k, n be two positive integers and let n1, . . . , nk be k

integers with n = n1 + . . .+ nk and ni ≥ 3 for i = 1, . . . , k. What is the least integer

h′(k) such that all but a finite number of h′(k)-connected tournaments contain a k-

cycle-factor of given cycle-lengths n1, . . . , nk?

Note that h′(1) = h(1) = 1. Song showed that h′(2) = h(2) = 2. It is clear

that h′(k) ≥ h(k). Song conjectured that h′(k) = h(k). By Theorem 5.3, Song’s

conjecture is h′(k) = k. Recently, Kühn et al. [64] gave an upper bound of h′(k).

Theorem 5.4 (Kühn et al. [64]). Let T be a 1010k4 log k-connected tournament on

n vertices and let n1, . . . , nk be k integers with n = n1 + . . . + nk and ni ≥ 3 for

i = 1, . . . , k. Then T has a k-cycle-factor of cycle-lengths n1, . . . , nk.

5.2 2-cycle-factors in regular bipartite tournaments

The problem of 2-cycle-factors in regular bipartite tournaments was investigated by

Song [88], Zhang and Song [106], Zhang et al. [105], and Zhang and Wang [107].

Theorem 5.5 (Zhang and Song [106]). Let B be a k-regular bipartite tournament

with k ≥ 2. Then B has a 2-cycle-factor.

Theorem 5.6 (Zhang et al. [105]). Let B be a k-regular bipartite tournament with

k ≥ 2. Then for any uv ∈ E(B), B has a 2-cycle-factor such that one cycle contains

uv and has length 4.

Theorem 5.7 (Zhang and Wang [107]). Let B be a k-regular bipartite tournament

with k ≥ 2. Then for any uv ∈ E(B) and for any w ∈ V (B)\{u, v}, B has a 2-cycle-

factor such that one cycle contains uv and has length 4 and the other cycle contains

w, unless B is isomorphic to a special digraph (defined in [107]).

Volkmann [94] characterized the regular c-partite tournaments with c ≥ 3 that

have a 2-cycle-factor.
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Theorem 5.8 (Volkmann [94]). Let D be a regular c-partite tournament with c ≥ 3

and |V (D)| ≥ 6. Then D has a 2-cycle-factor, unless D is isomorphic to some

digraph in T ∗7 ∪ D3,2.

Thus, all regular multipartite tournaments containing a 2-cycle-factor have been

characterized.

Theorem 5.9 (Volkmann [94]). Let D be a regular c-partite tournament. If c = 2

and |V (D)| ≥ 8 or c ≥ 3 and |V (D)| ≥ 6, then D has a 2-cycle-factor, unless D is

isomorphic to some digraph in T ∗7 ∪ D3,2.

Corollary 5.1 (Volkmann [94]). Let D be a regular multipartite tournament with

|V (D)| ≥ 8. Then D has a 2-cycle-factor.

In [105], it was conjectured that every k-regular bipartite tournament not isomor-

phic to F4·k has a 2-cycle-factor of all possible cycle-lengths.

Conjecture 5.1 (Zhang et al. [105]). Let B be a k-regular bipartite tournament not

isomorphic to F4·k. Then B has a 2-cycle-factor of even cycle-lengths t and |V (B)|−t

for all 4 ≤ t ≤ |V (B)| − 4.

By Theorem 5.6, Conjecture 5.1 is true for t = 4. In this chapter, we show that

Conjecture 5.1 is true for t = 6.

Theorem 5.10. Let B be a k-regular bipartite tournament not isomorphic to F4·k

and k ≥ 3. Then B has a 2-cycle-factor of cycle-lengths 6 and |V (B)| − 6.

Our proof of Theorem 5.10 is heavily based on Lemma 5.1.

Lemma 5.1. Let B be a k-regular bipartite tournament not isomorphic to F4·k and

k ≥ 3. Then B has a cycle C of length 6 such that B − C has a cycle factor.

The following theorems are needed in the proofs of Theorem 5.10 and Lemma 5.1.

Theorem 5.11 (Häggkvist and Manoussakis [47]). A bipartite tournament is Hamil-

tonian if and only if it has a cycle factor and is strong.
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Theorem 5.12 (Häggkvist and Manoussakis [47]). Let B be a bipartite tournament

containing a cycle factor, B is not strong if and only if B has a m-cycle factor

C1, C2, . . . , Cm,m ≥ 2, such that Ci → Cj for i < j.

Theorem 5.13 (Amar and Manoussakis [9]). Let uv be any arc of a k-regular bipar-

tite tournament B not isomorphic to F4·k. Then there are cycles of all even length

m, 4 ≤ m ≤ 4k, through uv.

We now prove Theorem 5.10 and Lemma 5.1. The main tool of the proofs is

Hall’s Theorem.

Proof of Theorem 5.10. By Lemma 5.1, B has a cycle C of length 6 such that

R = B−C has a cycle factor. It suffices to show that R is Hamiltonian or that there

is a cycle C∗ 6= C such that |C∗| = 6 and B − C∗ is Hamiltonian. If R is strong,

then R is Hamiltonian for every k by Theorem 5.11. If k = 3, then |R| = 6 and R

has a cycle factor, where each cycle has length at least 4. Hence this cycle factor is

a Hamilton cycle. Now assume that R is not strong and k ≥ 4.

Case 1. k = 4.

Let B = (X, Y ;E) and let

C = x1 → y1 → x2 → y2 → x3 → y3 → x1,

where {x1, x2, x3} ⊆ X and {y1, y2, y3} ⊆ Y . Note that R is not strong and |R| =

10. By Theorem 5.12, R has a 2-cycle-factor, say C1 and C2, such that C1 → C2.

Moreover, one cycle has length 4 and the other cycle has length 6. Now let

1→ 2→ 3→ 4→ 1,

5→ 6→ 7→ 8→ 9→ 10→ 5

be the two cycles of the 2-cycle-factor, where {1, 3, 5, 7, 9} ⊆ X and {2, 4, 6, 8, 10} ⊆

Y .

73



Chapter 5. Cycle Factors in Regular Bipartite Tournaments

Suppose first that |C1| = 4 and |C2| = 6. Each vertex of C1 dominates one vertex

of C1 and three vertices of C2. Hence since B is 4-regular, we have C → C1 and

every vertex of C2 has at least two outneighbors in C. Assume w.l.o.g. that 6→ x1.

Let

C ′ = x1 → y1 → 3→ 4→ 5→ 6→ x1.

Note that |C ′| = 6. If 10→ x2, then B − C ′ has a Hamilton cycle x2 → y2 → x3 →

y3 → 1 → 2 → 7 → 8 → 9 → 10 → x2. If x2 → 10, then since {1, 3, 9} → 10 and

x2 → {y2, 2, 4} we have 10 → 7 and 8 → x2. Then B − C ′ has a Hamilton cycle

x2 → y2 → x3 → y3 → 1→ 2→ 9→ 10→ 7→ 8→ x2.

Now suppose that |C1| = 6 and |C2| = 4. Each vertex of C2 is dominated by one

vertex of C2 and three vertices of C1. Hence since B is 4-regular, we have C2 → C

and every vertex of C1 has at least two inneighbors in C. Assume w.l.o.g. that

y1 → 5. Similarly to the above analysis, we can show that

C ′′ = x1 → y1 → 5→ 6→ 3→ 4→ x1

is a cycle of length 6 such that B − C ′′ is Hamiltonian.

Case 2. k ≥ 5.

Let C1, C2, . . . , Cm,m ≥ 2, be cycles of R as given in Theorem 5.12. Let |Ci| = ni

for i = 1, . . . ,m. Note that |V (B)| = 4k =
∑m

i=1 ni + 6. If n1 ≤ n2 + . . . + nm, then

for every vertex v of C1 such that d+
C1

(v) is maximal we have

k ≥ |N+
R (v)| ≥ n1

4
+
n2 + . . .+ nm

2

=
n1 + n2 + . . .+ nm

4
+
n2 + . . .+ nm

4

≥ n1 + n2 + . . .+ nm
4

+
n1 + n2 + . . .+ nm

8

=
4k − 6

4
+

4k − 6

8

= k + (
k

2
− 9

4
),

a contradiction to k ≥ 5. On the other hand, if n1 ≥ n2 + . . .+nm, then using similar
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Figure 5.1: Non-isomorphic 3-regular bipartite tournaments with 2-cycle-factors.

arguments we can obtain a contradiction by considering |N−R (v)|, where v is now a

vertex of Cm such that d−Cm(v) is maximal.

Proof of Lemma 5.1. Let B = (X, Y ;E). For k = 3, by considering the arcs from

X to Y , there is a one-to-one correspondence between 3-regular bipartite tournaments

and 3-regular bipartite graphs on 12 vertices. Using the utility “genbg”, Mckay

[73] verified that there are exactly 6 non-isomorphic 3-regular bipartite graphs on

12 vertices. The corresponding 6 non-isomorphic 3-regular bipartite tournaments

together with the 2-cycle-factors (except the first one F4·3) are presented in Figure

5.1. Alternatively, our method in the proof for k ≥ 4 below can be extended to a

proof for k = 3. From now on, we assume that k ≥ 4.

For convenience, we say a cycle C∗ of B is good if C∗ has length 6 and B − C∗

has a cycle factor. Assume the opposite that Lemma 5.1 is not true. Then B has no

good cycle. By Theorem 5.13, we can let

C = x1 → y1 → x2 → y2 → x3 → y3 → x1
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Figure 5.2: B = (X, Y ;E).

be a cycle of length 6 in B, where {x1, x2, x3} ⊆ X and {y1, y2, y3} ⊆ Y . Let

R = B − C.

Then R has no cycle factor. By Hall’s Theorem, there exists a subset P either of

X −{x1, x2, x3} or of Y −{y1, y2, y3} such that |P | > |N+
R (P )|. Assume w.l.o.g. that

P ⊆ X − {x1, x2, x3}. (5.1)

Define Q, M and L as follows (see Figure 5.2).

Q = N+
R (P ), M = X − (P ∪ {x1, x2, x3}), L = Y − (Q ∪ {y1, y2, y3}). (5.2)

Claim 5.1. k ≥ |P | > |Q| ≥ k − 3.

Proof. It follows directly from the facts that B is k-regular, |P | > |N+
R (P )| = |Q|

and Q ⊆ Y − {y1, y2, y3}.

It suffices to consider the following six possible cases:
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(A) |P | = k and |Q| = k − 1;

(B) |P | = k and |Q| = k − 2;

(C) |P | = k and |Q| = k − 3;

(D) |P | = k − 1 and |Q| = k − 2;

(E) |P | = k − 1 and |Q| = k − 3;

(F) |P | = k − 2 and |Q| = k − 3.

Since the proof of Case (C) is simple, the proofs of Cases (E) and (F) are heavily

based on that of Case (D), the proof of Case (B) is heavily based on that of Cases

(D) and (E), and the proof of Case (A) is heavily based on that of Cases (C), (D),

(E) and (F), we consider the six cases above in the following order: (C), (D), (E),

(B), (F) and (A).

Case 1. |P | = k and |Q| = k − 3.

By using regularity on degrees, we have P → Q∪{y1, y2, y3}. So P +x1 ⊆ N−B (y1)

and d−B(y1) ≥ k + 1, a contradiction.

Case 2. |P | = k − 1 and |Q| = k − 2.

Let B[C] denote the subdigraph of B induced by V (C) and let

E3 = E(B[C])− E(C). (5.3)

We distinguish four cases.

Case 2.1. Every arc of E3 has a tail in {x1, x2, x3}.

It follows that

x1 → y2, x2 → y3, x3 → y1.

If L → x1, then x2 → L and d+
B(x2) ≥ |L + y2 + y3| = k + 1. So L 9 x1 and

there exists l ∈ L such that x1 → l. If x2 → Q, then L → x2, x1 → L and

d+
B(x1) ≥ |L+ y1 + y2| = k+ 1. So x2 9 Q and there exists q ∈ Q such that q → x2.

If P → yi for some i ∈ {1, 2, 3}, then P + xi + xi+2 → yi and d−B(yi) ≥ k + 1, where
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x4 = x1 and x5 = x2. So P 9 yi and N+
P (yi) 6= ∅ for any i ∈ {1, 2, 3}. Since L→ P

and |L| = k − 1, we have N+
P (yi) ⊆ N−P (yi+1), where y4 = y1. Thus for i ∈ {1, 2, 3}

we have

N+
P (yi) ∩N−P (yi+1) 6= ∅.

Let

pi ∈ N+
P (yi) ∩N−P (yi+1).

Note that p1, p2, p3 are different and {p1, p2, p3} → Q. Let

C ′ = l→ p3 → q → x2 → y3 → x1 → l

and letR′ = B−C ′. We show that C ′ is a good cycle, i.e., for any P ′ ⊆ X−{p3, x1, x2}

or P ′ ⊆ Y − {l, q, y3} we have |N+
R′(P

′)| ≥ |P ′|. By Claim 5.1, it is obvious for

|P ′| ≥ k + 1 and for |P ′| ≤ k − 3.

Case 2.1.1. P ′ ⊆ X − {p3, x1, x2}.

For any {u, v} ⊆ M + x3 and any l′ ∈ L − l, since l′ → P we have l′ 9 {u, v},

l′ ∈ N+
R′({u, v}) and

L− l ⊆ N+
R′({u, v}). (5.4)

For any w ∈ P − p3, since L → w and |(Q − q) ∪ {y1, y2}| = k − 1 we have

|N−(Q−q)∪{y1,y2}(w)| ≤ 1 and

|N+
(Q−q)∪{y1,y2}(w)| ≥ k − 2. (5.5)

If |P ′| = k − 2, then since either |P ′ ∩ (M + x3)| ≥ 2 or P ′ ∩ (P − p3) 6= ∅ for k ≥ 4

we have

|N+
R′(P

′)| ≥ min
w∈P−p3

{|L− l|, |N+
(Q−q)∪{y1,y2}(w)|} ≥ k − 2.

If |P ′| = k, then since |P ′ ∩ (M + x3)| ≥ 2 and P ′ ∩ (P − p3) 6= ∅ for k ≥ 4 we have

|N+
R′(P

′)| ≥ |L− l|+ min
w∈P−p3

|N+
(Q−q)∪{y1,y2}(w)| ≥ k.
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Now let |P ′| = k − 1. If P ′ ∩ (P − p3) = ∅, then P ′ = M + x3 and

|N+
R′(P

′)| ≥ |L− l + y1| = k − 1.

If P ′∩(P−p3) 6= ∅, then |P ′∩(M+x3)| ≥ 1. If |P ′∩(M+x3)| = 1, then {p1, p2} ⊆ P ′

and

|N+
R′(P

′)| ≥ |N+
R′({p1, p2})| = |Q− q|+ |{y1, y2}| = k − 1.

If |P ′ ∩ (M + x3)| ≥ 2, then

|N+
R′(P

′)| ≥ |L− l|+ min
w∈P−p3

|N+
(Q−q)∪{y1,y2}(w)| ≥ k − 1.

Case 2.1.2. P ′ ⊆ Y − {l, q, y3}.

Note that |P − p3| = k − 2 and

L− l→ P − p3.

Since {p3, x1} → y1 and y1 → x2, we have

|N+
R′(y1)| = k − 1.

Since {p3, x1, x2} → y2, we have

|N+
R′(y2)| = k.

If |P ′| = k − 2, then P ′ ∩ ((L− l) ∪ {y1, y2}) 6= ∅ and

|N+
R′(P

′)| ≥ min{|P − p3|, |N+
R′(y1)|, |N+

R′(y2)|} ≥ k − 2.

Let |P ′| = k − 1. If P ′ ∩ {y1, y2} 6= ∅, then

|N+
R′(P

′)| ≥ min{|N+
R′(y1)|, |N+

R′(y2)|} = k − 1.
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If P ′∩{y1, y2} = ∅, then P ′∩ (L− l) 6= ∅ and P −p3 ⊆ N+
R′(P

′). Since x3 → {y1, y3},

we have x3 9 P ′, x3 ∈ N+
R′(P

′) and

|N+
R′(P

′)| ≥ |P − p3 + x3| = k − 1.

Now let |P ′| = k. Then P ′ ∩ (L − l) 6= ∅ and P − p3 ⊆ N+
R′(P

′). If M → P ′, then

l → M and d+
B(l) ≥ |M | + |P | ≥ k + 1 for k ≥ 4. Thus M 9 P ′ and there exists

m ∈ M such that m ∈ N+
R′(P

′). Since x3 → y3, we have x3 9 P ′ and x3 ∈ N+
R′(P

′).

Thus

|N+
R′(P

′)| ≥ |P − p3|+ |{m,x3}| = k.

So C ′ is a good cycle, a contradiction.

Case 2.2. There are exactly two arcs of E3 which have a tail in {x1, x2, x3}.

Assume w.l.o.g. that

x1 → y2, x2 → y3, y1 → x3.

Since {x1, x2} → y2 and |P | = k − 1, we have P 9 y2 and there exists p1 ∈ P such

that y2 → p1. Note that p1 → Q + y1 + y3. Similarly, there exists p2 ∈ P such that

y3 → p2 and p2 → Q+ y1 + y2. Note that N+
L (xi) 6= ∅, as otherwise, L→ xi, xj → L

for some j ∈ {1, 2} and d+
B(xj) ≥ k + 1. Note also that N−Q (x1) 6= ∅, as otherwise,

x1 → Q+ y1 + y2, L→ x1, x2 → L+ y2 + y3 and d+
B(x2) ≥ k + 1. Let

l ∈ N+
L (x3), q ∈ N−Q (x1),

C ′ = l→ p2 → q → x1 → y2 → x3 → l

and R′ = B−C ′. We show that C ′ is a good cycle, i.e., for any P ′ ⊆ X−{p2, x1, x3}

or P ′ ⊆ Y − {l, q, y2} we have |N+
R′(P

′)| ≥ |P ′|. By Claim 5.1, it is obvious for

|P ′| ≥ k + 1 and for |P ′| ≤ k − 3.

Case 2.2.1. P ′ ⊆ X − {p2, x1, x3}.
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As in Case 2.1 (see Equations (4) and (5)), for any {u, v} ⊆M + x2 and for any

w ∈ P − p2,

L− l ⊆ N+
R′({u, v}),

|N+
(Q−q)∪{y1,y3}(w)| ≥ k − 2.

Thus |N+
R′(P

′)| ≥ |P ′| for |P ′| ∈ {k − 2, k}. Now let |P ′| = k − 1. If p1 ∈ P ′, then

since p1 → (Q− q) ∪ {y1, y3} we have

|N+
R′(P

′)| ≥ |N+
R′(p1)| = k − 1.

If p1 /∈ P ′, then |P ′ ∩ (M + x2)| ≥ 2 and L− l ⊆ N+
R′(P

′). If P ′ ∩ (P − p2) = ∅, then

P ′ = M + x2, y3 ∈ N+
R′(P

′) and

|N+
R′(P

′)| ≥ |L− l + y3| = k − 1.

If P ′ ∩ (P − p2) 6= ∅, then

|N+
R′(P

′)| ≥ |L− l|+ min
w∈P−p2

|N+
(Q−q)∪{y1,y3}(w)| ≥ k − 1.

Case 2.2.2. P ′ ⊆ Y − {l, q, y2}.

Note that |P − p2| = k − 2 and

L− l→ P − p2.

For any q′ ∈ Q− q, since p2 → Q− q we have

|N+
R′(q

′)| ≥ k − 2.

Moreover, since p1 → Q− q we have

|N+
M+x2

(q′)| ≥ 1.
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Since {p2, x1} → y1 and y1 → x3, we have

|N+
R′(y1)| = k − 1.

Similarly, since y3 → {p2, x1} and {p1, x3} → y3 we have

|N+
R′(y3)| = k − 2, |N+

M+x2
(y3)| ≥ 1.

So |N+
R′(P

′)| ≥ |P ′| for |P ′| = k − 2. Let |P ′| = k − 1. If y1 ∈ P ′, then

|N+
R′(P

′)| ≥ |N+
R′(y1)| = k − 1.

If y1 /∈ P ′, then P ′ ∩ (L− l) 6= ∅, P ′ ∩ (Q− q + y3) 6= ∅ and

|N+
R′(P

′)| ≥ |P − p2|+ min
q′∈Q−q

{|N+
M+x2

(q′)|, |N+
M+x2

(y3)|} ≥ k − 1.

Now let |P ′| = k. Then P ′ ∩ (L − l) 6= ∅ and P − p2 ⊆ N+
R′(P

′). If M → P ′, then

l→M and d+
B(l) ≥ |M |+ |P | ≥ k+1 for k ≥ 4. So M 9 P ′ and there exists m ∈M

such that m ∈ N+
R′(P

′). Since x2 → y2, we have x2 9 P ′ and x2 ∈ N+
R′(P

′). Thus

|N+
R′(P

′)| ≥ |P − p2|+ |{m,x2}| ≥ k.

So C ′ is a good cycle, a contradiction.

Case 2.3. There is exactly one arc of E3 which has a tail in {x1, x2, x3}.

Assume w.l.o.g. that

x1 → y2, y3 → x2, y1 → x3.

Since {x1, x2} → y2 and |P | = k − 1, we have P 9 y2 and there exists p∗ ∈ P such

that

y2 → p∗, p∗ → Q+ y1 + y3.
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Since {y1, y3} → x2 and |L| = k − 1, we have L 9 x2 and there exists l ∈ L such

that x2 → l. Now we distinguish two cases.

Case 2.3.1. y1 → P − p∗.

It follows that P − p∗ → Q+ y2 + y3, L+ y1 → P − p∗ and P → Q. We first show

the following claim.

Claim 5.2. In Case 2.3.1, we have L9 x1.

Proof. Assume the opposite that L→ x1. It follows that

L→ P + x1, M + x2 + x3 → L, x1 → Q+ y1 + y2,

Q→M + x2 + x3, P + x1 → Q, M → L+ y1.

Let l′ ∈ L, p ∈ P − p∗, q ∈ Q and m ∈M . Then we have

M −m→ L− l − l′, L− l − l′ → P − p− p∗,

P − p− p∗ → Q− q, Q− q →M −m,

and

|L− l − l′| = |P − p− p∗| = |Q− q| = |M −m| = k − 3.

It follows that the subdigraph induced by (L− l− l′)∪(P−p−p∗)∪(Q−q)∪(M−m)

has a Hamilton path l∗
−→
Hm∗ starting with l∗ ∈ L−l−l′ and ending with m∗ ∈M−m.

Then

C ′1 = m→ l→ p→ q → x2 → y2 → m

is a good cycle since B − C ′1 has a Hamilton cycle l′ → p∗ → y3 → x1 → y1 → x3 →

l∗
−→
Hm∗ → l′, a contradiction.

Let

C ′ = l→ p∗ → y1 → x3 → y3 → x2 → l
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and letR′ = B−C ′. We show that C ′ is a good cycle, i.e., for any P ′ ⊆ X−{p∗, x2, x3}

or P ′ ⊆ Y − {l, y1, y3} we have |N+
R′(P

′)| ≥ |P ′|. By Claim 5.1, it is obvious for

|P ′| ≥ k + 1 and for |P ′| ≤ k − 3.

Suppose first that P ′ ⊆ X − {p∗, x2, x3}. Since y3 → M + x1, then for any

v ∈M + x1 we have |N+
R′(v)| ≥ k − 2. Note that |Q+ y2| = k − 1 and

P − p∗ → Q+ y2.

So |N+
R′(P

′)| ≥ |P ′| for |P ′| = k − 2. Let |P ′| = k − 1. As in Cases 2.1 and 2.2, for

any {u, v} ⊆M + x1,

L− l ⊆ N+
R′({u, v}).

If P ′ ∩ (P − p∗) 6= ∅, then

|N+
R′(P

′)| ≥ |Q+ y2| = k − 1.

If P ′ ∩ (P − p∗) = ∅, then P ′ = M + x1 and

|N+
R′(P

′)| ≥ |L− l + y2| = k − 1.

Now let |P ′| = k. Then |P ′ ∩ (M + x1)| ≥ 2, P ′ ∩ (P − p∗) 6= ∅ and

|N+
R′(P

′)| ≥ |L− l|+ |Q+ y2| ≥ k.

Now suppose that P ′ ⊆ Y − {l, y1, y3}. Note that |P − p∗| = k − 2 and

L− l→ P − p∗.

Since P → Q and |P | = k − 1, then for any q ∈ Q we have |N−M+x1
(q)| ≤ 1 and

|N+
R′(q)| = |N

+
M+x1

(q)| ≥ k − 2.
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Since (P − p∗) ∪ {x1, x2} → y2, we have y2 →M and

|N+
R′(y2)| = |N+

M+x1
(y2)| = k − 2.

So |N+
R′(P

′)| ≥ |P ′| for |P ′| = k − 2. Let |P ′| = k − 1. If P ′ ∩ (L − l) 6= ∅, then

P ′ ∩ (Q+ y2) 6= ∅ and

|N+
R′(P

′)| ≥ |P − p∗|+ min
q∈Q
{|N+

M+x1
(q)|, |N+

M+x1
(y2)|} ≥ k − 1.

If P ′ ∩ (L − l) = ∅, then P ′ = Q + y2. If x1 /∈ N+
R′(Q + y2), then x1 → Q + y2,

x1 → Q+ y1 + y2 and L→ x1, a contradiction to Claim 5.2. Thus

|N+
R′(Q+ y2)| ≥ |N+

M(y2)|+ |{x1}| = k − 1.

Now let |P ′| = k. Then P ′ ∩ (L− l) 6= ∅ and P − p∗ ⊆ N+
R′(P

′). If m /∈ N+
R′(P

′) for

some m ∈M , then m→ P ′ and d+
B(m) ≥ |P ′ + y1| = k + 1. So M ⊆ N+

R′(P
′). Since

x1 → y1, we have x1 9 P ′, x1 ∈ N+
R′(P

′) and

|N+
R′(P

′)| ≥ |P − p∗|+ |M + x1| ≥ k.

So C ′ is a good cycle, a contradiction.

Case 2.3.2. y1 9 P − p∗.

It follows that there exists p ∈ P − p∗ such that p→ y1. Let

C ′′ = l→ p→ y1 → x3 → y3 → x2 → l

and let R′′ = B − C ′′. We show that C ′′ is a good cycle, i.e., for any P ′′ ⊆ X −

{p, x2, x3} or P ′′ ⊆ Y − {l, y1, y3} we have |N+
R′′(P

′′)| ≥ |P ′′|. By Claim 5.1, it is

obvious for |P ′′| ≥ k + 1 and for |P ′′| ≤ k − 3. We first show the following claim.

Claim 5.3. In Case 2.3.2, we have the following two statements.

(1) For any p ∈ P − p∗ with p → y1, we have |N+
R′′(P − p + m)| ≥ k − 1 for any
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m ∈M .

(2) M + x1 9 L− l + y2.

Proof. (1) Assume the opposite that |N+
R′′(P − p + m)| ≤ k − 2 for some m ∈ M .

Since |N+
R′′(P − p+m)| ≥ |N+

R′′(p
∗)| = k− 2, we have |N+

R′′(P − p+m)| = k− 2 and

N+
R′′(P − p+m) = N+

R′′(p
∗) = Q. It follows that

y2 → (P − p) ∪ {m,x3}, P − p→ Q+ y1 + y3, y1 →M + x2 + x3,

L− l→ P +m, x1 → (L− l) ∪ {y1, y2}, l→ P + x1,

x2 → L+ y2, x3 → L+ y3, M −m→ L− l,

(L− l) ∪ {y1, y2} → m, m→ Q+ l + y3.

Since |N+
Q (p)| ≥ k−3, there exists q ∈ Q such that p→ Q−q. Thus P +m→ Q−q.

Let l′ ∈ L − l. Similarly to the proof of Claim 5.2, the subdigraph induced by

(L− l− l′)∪ (P − p− p∗)∪ (Q− q)∪ (M −m) has a Hamilton path l∗
−→
Hm∗ starting

with l∗ ∈ L− l − l′ and ending with m∗ ∈M −m. Then

C ′′1 = m→ l→ p→ y1 → x2 → y2 → m

is a good cycle since B − C ′′1 has a Hamilton cycle l′ → p∗ → q → x3 → y3 → x1 →

l∗
−→
Hm∗ → l′, a contradiction.

(2) Assume the opposite that M + x1 → L− l + y2. It follows that

x1 → (L− l) ∪ {y1, y2}, M + x1 + x2 → y2,

l→ x1, M + x2 + x3 → l, y2 → P + x3,

P → Q+ y1 + y3, M → L+ y2, Q+ y1 + y3 →M.

Let q ∈ Q, m ∈M , l′ ∈ L− l and p′ ∈ P − p− p∗. If x2 → Q, then since x2 → {l, y2}
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we have

L− l→ x2, M → L.

Similarly to the proof of Claim 5.2, the subdigraph induced by (Q− q)∪ (M −m)∪

(L− l− l′) ∪ (P − p− p′) has a Hamilton path q∗
−→
H1p

∗ starting with q∗ ∈ Q− q and

ending with p∗ ∈ P − p. Then

C ′′2 = l′ → p′ → q → m→ y2 → x3 → l

is a good cycle since B − C ′′2 has a Hamilton cycle y3 → x1 → y1 → x2 → l → p →

q∗
−→
H1p

∗ → y3, a contradiction. So x2 9 Q and there exists q∗∗ ∈ Q with q∗∗ → x2.

Let q′ ∈ Q − q∗∗. Similarly to the proof of Claim 5.2, the subdigraph induced by

(M −m)∪ (L− l− l′)∪ (P −p−p∗)∪ (Q− q′) has a Hamilton path m∗
−→
H2q

∗∗ starting

with m∗ ∈M −m and ending with q∗∗ ∈ Q− q′. Then

C ′′3 = y2 → p∗ → y1 → x3 → y3 → m→ y2

is a good cycle since B − C ′′3 has a Hamilton cycle x2 → l → x1 → l′ → p → q′ →

m∗
−→
H2q

∗∗ → x2, a contradiction.

Suppose first that P ′′ ⊆ X − {p, x2, x3}. Note that |L − l| = k − 2 and for any

{u, v} ⊆M + x1,

L− l ⊆ N+
R′′({u, v}).

For any w ∈ P − p, since l→ P − p we have

|N+
Q+y2

(w)| ≥ k − 2.

So |N+
R′′(P

′′)| ≥ |P ′′| for |P ′′| ∈ {k− 2, k}. Now let |P ′′| = k− 1. If P ′′∩ (P − p) 6= ∅,

then P ′′ ∩ (M + x1) 6= ∅. If |P ′′ ∩ (M + x1)| ≥ 2, then

|N+
R′′(P

′′)| ≥ |L− l|+ min
w∈P−p

|N+
Q+y2

(w)| ≥ k − 1.
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If |P ′′ ∩ (M + x1)| = 1, then P ′′ = P − p+ x1 or P ′′ = P − p+m for some m ∈M .

By Claim 5.3 (1), it suffices to consider that P ′′ = P − p+ x1. Note that

|N+
R′′(P − p+ x1)| ≥ |N+

R′′(p
∗) ∪N+

R′′(x1)| ≥ |Q+ y2| = k − 1.

If P ′′ ∩ (P − p) = ∅, then P ′′ = M + x1 and

|N+
R′′(M + x1)| ≥ |L− l + y2| = k − 1.

Now suppose that P ′′ ⊆ Y − {l, y1, y3}. Note that |P − p| = k − 2 and

L− l→ P − p.

For any {u, v} ⊆ Q+ y2, since {u, v}9 p we have

|N+
R′′({u, v})| ≥ k − 2.

First let |P ′′| = k − 2. Then either P ′′ ∩ (L− l) 6= ∅ or |P ′′ ∩ (Q+ y1)| ≥ 2. Thus

|N+
R′′(P

′′)| ≥ min{|P − p|, |N+
R′′({u, v})|} = k − 2.

Then let |P ′′| = k − 1. If P ′′ ∩ (L− l) = ∅, then P ′′ = Q+ y2. Note that

|N+
R′′(Q+ y2)| ≥ |N+

R′′(y2)| ≥ k − 2.

If |N+
R′′(Q+ y2)| = k − 2, then |N+

R′′(y2)| = k − 2 and N+
R′′(Q+ y2) = N+

R′′(y2). Since

x1 /∈ N+
R′′(y2), we have x1 /∈ N+

R′′(Q + y2), x1 → Q + y1 + y2, L → x1 and M → L.

For any m ∈ M , since m → L we have m 9 Q + y2 and m ∈ N+
R′′(Q + y2). So

M ⊆ N+
R′′(Q + y2), N+

R′′(Q + y2) = M and P − p → Q + y2, a contradiction to

y2 → p∗. Thus

|N+
R′′(Q+ y2)| ≥ k − 1.
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If P ′′∩(L−l) 6= ∅, then P ′′∩(Q+y2) 6= ∅ and P−p ⊆ N+
R′′(P

′′). Since |P−p| = k−2,

it suffices to show that

M + x1 9 P ′′.

Assume the opposite that M + x1 → P ′′. Then M + x1 → P ′′ ∩ (Q + y2). Since

p∗ → Q and x2 → y2, we have P ′′ ∩ (Q+ y2)→ p. Since L→ p and |L| = k − 1, we

have |P ′′ ∩ (Q+ y2)| = 1. Then P ′′ = L− l+ y2 or P ′′ = L− l+ q for some q ∈ Q. If

P ′′ = L− l + y2, then by Claim 5.3 (2) we have M + x1 9 P ′′. Let P ′′ = L− l + q.

If x1 → L − l + q, then d+
B(x1) ≥ |L − l + q| + |{y1, y2}| = k + 1. So x1 9 P ′′ and

M + x1 9 P ′′. Thus for |P ′′| = k − 1,

|N+
R′′(P

′′)| ≥ |P ′′|.

Now let |P ′′| = k. Then P ′′ ∩ (L − l) 6= ∅ and P − p ⊆ N+
R′′(P

′′). Since x1 → y1,

we have x1 9 P ′′ and x1 ∈ N+
R′′(P

′′). Note that |P − p + x1| = k − 1. It suffices

to show that M 9 P ′′. Assume the opposite that M → P ′′. Then l → M ∪ P and

d+
B(l) ≥ |M |+ |P | ≥ k + 1, a contradiction.

So C ′′ is a good cycle, a contradiction.

Case 2.4. No arc of E3 has a tail in {x1, x2, x3}.

It follows that

y1 → x3, y2 → x1, y3 → x2.

Now we distinguish two cases.

Case 2.4.1. P → {y1, y2, y3}.

Since xi → yi for i ∈ {1, 2, 3}, we have {y1, y2, y3} →M . Letm ∈M . There exists

l ∈ L such that m→ l, as otherwise, L→ m and d−B(m) ≥ |L|+ |{y1, y2, y3}| = k+2.

Let p ∈ P ,

C ′ = m→ l→ p→ y1 → x2 → y2 → m

and R′ = B −C ′. We show that C ′ is a good cycle, i.e., for any P ′ ⊆ X − {m, p, x2}

or P ′ ⊆ Y − {l, y1, y2} we have |N+
R′(P

′)| ≥ |P ′|. By Claim 5.1, it is obvious for
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|P ′| ≥ k + 1 and for |P ′| ≤ k − 3. Let

E ′3 = E(B[C ′])− E(C ′).

Note that p→ y2 and y1 → m. This implies that there exists an arc of E ′3 which has

a tail in {m, p, x2} and an arc of E ′3 which has a tail in {l, y1, y2}. By the proofs of

Case 2.2 and Case 2.3, it suffices to consider that |P ′| ∈ {k − 2, k}.

Suppose first that P ′ ⊆ X −{m, p, x2}. For any {u, v} ⊆ (M −m)∪{x1, x3} and

for any p′ ∈ P − p, since L→ P we have

L− l ⊆ N+
R′({u, v}), |N

+
Q+y3

(p′)| = k − 2.

Thus |N+
R′(P

′)| ≥ |P ′| for |P ′| ∈ {k − 2, k}, where k ≥ 4.

Now suppose that P ′ ⊆ Y −{l, y1, y2}. Note that |P−p| = k−2 and L−l→ P−p.

First let |P ′| = k − 2. If P ′ ∩ (L − l) 6= ∅, then |N+
R′(P

′)| ≥ |P − p| = k − 2. If

P ′ ∩ (L − l) = ∅, then P ′ ⊆ Q + y3. If |N+
R′(P

′)| = k − 3, then P ′ → p and

d−B(p) ≥ |L| + |P ′| ≥ k + 1 for k ≥ 4, a contradiction. So |N+
R′(P

′)| ≥ k − 2. Now

let |P ′| = k. Then P ′ ∩ (l − l) 6= ∅ and P − p ⊆ N+
R′(P

′). Since x1 → y1, we

have x1 9 P ′ and x1 ∈ N+
R′(P

′). Note that |P − p + x1| = k − 1. It suffices to

show that M − m + x3 9 P ′. If M − m + x3 → P ′, then l → M − m + x3 and

d+
B(l) ≥ |M −m+ x3|+ |P | ≥ k + 1 for k ≥ 4, a contradiction.

So C ′ is a good cycle, a contradiction.

Case 2.4.2. P 9 {y1, y2, y3}.

Assume w.l.o.g. that y1 → p for some p ∈ P . Then p → Q + y2 + y3. Since

{y2, y3} → x1, we have L9 x1 and there exists l ∈ L such that x1 → l. Let

C ′′ = l→ p→ y2 → x3 → y3 → x1 → l

and let R′′ = B − C ′′. We show that C ′′ is a good cycle, i.e., for any P ′′ ⊆ X −

{p, x1, x3} or P ′′ ⊆ Y − {l, y2, y3} we have |N+
R′′(P

′′)| ≥ |P ′′|. By Claim 5.1, it is
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obvious for |P ′′| ≥ k + 1 and for |P ′′| ≤ k − 3. Let

E ′′3 = E(B[C ′′])− E(C ′′).

Note that p → y3 and y2 → x1. This implies that there exists an arc of E ′′3 which

has a tail in {p, x1, x3} and an arc of E ′′3 which has a tail in {l, y2, y3}. By the proofs

of Case 2.2 and Case 2.3, it suffices to consider that |P ′′| ∈ {k − 2, k}.

Suppose first that P ′′ ⊆ X − {p, x1, x3}. For any {u, v} ⊆ M + x2 and for any

w ∈ P − p, since L→ P we have

|N+
Q+y1

(w)| ≥ k − 2, L− l ⊆ N+
R′({u, v}).

So |N+
R′′(P

′′)| ≥ |P ′′| for |P ′′| ∈ {k − 2, k}.

Now suppose that P ′′ ⊆ Y −{l, y2, y3}. Note that |P−p| = k−2 and L−l→ P−p.

Let |P ′′| = k − 2. If P ′′ ∩ (L− l) 6= ∅, then |N+
R′′(P

′′)| ≥ k − 2. If P ′′ ∩ (L− l) = ∅,

then P ′′ ⊆ Q+y1. If |N+
R′′(P

′′)| = k−3, then P ′′ → p and d−B(p) ≥ |L|+ |P ′′| ≥ k+1

for k ≥ 4. So |N+
R′′(P

′′)| ≥ k − 2. Now let |P ′′| = k. Then P ′′ ∩ (l − l) 6= ∅ and

P − p ⊆ N+
R′′(P

′′). Since x2 → y2, we have x2 9 P ′′ and x2 ∈ N+
R′′(P

′′). Note that

|P − p + x2| = k − 1. It suffices to show that M 9 P ′′. If M → P ′′, then l → M

and d+
B(l) ≥ |M |+ |P | ≥ k + 1 for k ≥ 4, a contradiction.

So C ′′ is a good cycle, a contradiction.

Case 3. |P | = k − 1 and |Q| = k − 3.

Note that |L| = k. Then N+
L (xi) 6= ∅ and N−L (xi) 6= ∅ for i ∈ {1, 2, 3}. Also,

N+
L (xi) ∩N−L (xi+1) 6= ∅, where x4 = x1, as otherwise, N−L (xi+1) ⊆ N−L (xi) and every

vertex of N−L (xi+1) has outdegree at least |P + xi + xi+1| = k + 1. Let

l ∈ N+
L (x1) ∩N−L (x2),

C ′ = x1 → l→ x2 → y2 → x3 → y3 → x1

and R′ = B − C ′. Note that now |N+
R′(P )| = |Q+ y1| = k − 2. By the proof of Case
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2, B has a good cycle, a contradiction.

Case 4. |P | = k and |Q| = k − 2.

For any p ∈ P , since |P − p| = k − 1 then by the proofs of Case 2 and Case 3 we

have |N+
R (P − p)| ≥ k− 1. So |Q| = |N+

R (P )| ≥ |N+
R (P − p)| ≥ k− 1, a contradiction

to |Q| = k − 2.

Case 5. |P | = k − 2 and |Q| = k − 3.

As in Case 3, N+
L (xi) 6= ∅ and N−L (xi) 6= ∅ for i ∈ {1, 2, 3}. Assume w.l.o.g. that

|N+
L (x1)| ≥ max{|N+

L (x2)|, |N+
L (x3)|}.

If |N+
L (x1)| = |N+

L (x2)| = |N+
L (x3)| = 1, then {x1, x2, x3} → Q and every vertex of

Q has indegree at least |P |+ |{x1, x2, x3}| ≥ k + 1, a contradiction. So we have

|N+
L (x1)| ≥ 2.

Let l be a vertex of N+
L (x1) such that it has minimum number of inneighbors in

{x1, x2, x3} and let p ∈ P . Let

C ′ = l→ p→ y2 → x3 → y3 → x1 → l

and let R′ = B−C ′. We show that C ′ is a good cycle, i.e., for any P ′ ⊆ X−{p, x1, x3}

or P ′ ⊆ Y − {l, y2, y3} we have |N+
R′(P

′)| ≥ |P ′|. By Claim 5.1, it is obvious for

|P ′| ≥ k + 1 and for |P ′| ≤ k − 3. By the proofs of Case 2 and Case 3, it suffices to

consider that |P ′| ∈ {k − 2, k}. We first show the following claim.

Claim 5.4. In Case 5, if k = 4 then we have the following three statements.

(1) Q+ y1 9M + x2.

(2) If P ′ ⊆ L− l and |P ′| = 2, then |N+
R′(P

′)| ≥ 2.

(3) If P ′ ⊆ Y − {l, y2, y3} and |P ′| = 4, then |N+
R′(P

′)| ≥ 4.
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Proof. Note that |N+
L (x1)| ≥ 2. Let

M = {m,m′,m′′}, L = {l, l′, l′′, l′′′}, P = {p, p′}, Q = {q}.

(1) Assume the opposite that Q + y1 → M + x2, i.e., {q, y1} → {m,m′,m′′, x2}.

Then {p, p′, x1, x3} → {q, y1}, |N+
L (x1)| = 2 and {y2, y3} → x1. Since |N+

L (x2)| ≤

|N+
L (x1)| and {q, y1} → x2, we have |N+

L (x2)| = 2 and x2 → {y2, y3}. Since

{p, p′, x2, x3} → y3, we have y3 → {x1,m,m
′,m′′}. Since {p, p′, x2} → y2 and

y2 → {x1, x3}, we have |N−M(y2)| = 1. Assume w.l.o.g. that m → y2. Thus m 9 L

and assume w.l.o.g. that l′ → m. Now {l′, q, y1, y3} → m and m→ {l, l′′, l′′′}. Since

N+
{q,y1,y2,y3}(x3) = {q, y1, y3}, we have |N−L (x3)| = 3. Note that |N+

L (x2)| = 2. So we

can assume w.l.o.g. that x2 → l′′ and l′′′ → x3. Note also that q → {m,m′,m′′, x2}

and {m′,m′′} → L. Then

C ′1 = l′′ → p→ y2 → x1 → y1 → x2 → l′′

is a good cycle since B − C ′1 has a Hamilton cycle l′ → m → l → p′ → q → m′ →

l′′′ → x3 → y3 → m′′, a contradiction.

(2) Assume w.l.o.g. that P ′ = {l′, l′′}. Suppose the opposite that |N+
R′({l′, l′′})| ≤

1. Since {l′, l′′} → p′, we have |N+
R′({l′, l′′})| = 1. Then {l′, l′′} → {p, p′, x1, x3}

and {m,m′,m′′, x2} → {l′, l′′}. Since |N+
L (x1)| ≥ 2, we have x1 → {l, l′′′}. Since

|N+
L (x1)| ≥ |N+

L (x2)|, we have {l, l′′′} → x2. Note that {p, p′, x3} → y3. So

|N+
{m,m′,m′′}(y3)| ≥ 2 and assume w.l.o.g. that y3 → {m,m′}. Since l → {p, p′, x2},

we have l 9 {m,m′} and assume w.l.o.g. that m→ l. Let

C ′2 = m→ l→ p→ y2 → x3 → y3 → m

and let R′2 = B−C ′2. We show that C ′2 is a good cycle, i.e., for any P ′2 ⊆ X−{m, p, x3}

and for P ′2 ⊆ Y −{l, y2, y3} we have |N+
R′2

(P ′2)| ≥ |P ′2|. By Claim 5.1, it is obvious for

|P ′2| ≥ 5 and for |P ′2| ≤ 1. As Case 2 and Case 3 were already considered, it suffices
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to consider that |P ′2| ∈ {2, 4}. Since {p, p′, x1} → y1, we have

N+
R′2

(y1) ∩ {m′,m′′} 6= ∅.

Since y1 → x2, we have |N+
R′2

(y1)| ≥ 2. Note that

{m′,m′′, x2} → {l′, l′′}, p′ → {q, y1},

x1 → {l′′′, y1}, {l′, l′′} → {p′, x1}, l′′′ → {p′, x2}.

So |N+
R′2

(P ′2)| ≥ |P ′2| for |P ′2| = 4 and P ′2 ⊆ X − {m, p, x3}, and for |P ′2| = 2. Now

assume that |P ′2| = 4 and P ′2 ⊆ Y −{l, y2, y3}. Since {p′, x2} → y2 and x1 → l, we have

{p′, x1, x2} ⊆ N+
R′2

(P ′2). IfN+
R′2

(P ′2)∩{m′,m′′} = ∅, then {m′,m′′} → P ′2, l→ {m′,m′′}

and d+
B(l) ≥ |{m,m′, p, p′, x2}| = 5, a contradiction. Thus N+

R′2
(P ′2) ∩ {m′,m′′} 6= ∅

and

|N+
R′2

(P ′2)| ≥ |{p′, x1, x2}|+ |N+
R′2

(P ′2) ∩ {m′,m′′}| ≥ 4.

So C ′2 is a good cycle, a contradiction.

(3) Note that P ′ ∩ (L − l) 6= ∅. Then p′ ∈ N+
R′(P

′). Since x2 → y2, we have

x2 9 P ′ and x2 ∈ N+
R′(P

′). It suffices to show that

|N+
R′(P

′) ∩M | ≥ 2.

If |N+
R′(P

′) ∩M | = 0, then M → P ′, l → M and d+
B(l) ≥ |{m,m′,m′′, p, p′′}| = 5, a

contradiction. Now let |N+
R′(P

′) ∩M | = 1 and assume w.l.o.g. that m ∈ N+
R′(P

′).

Then {m′,m′′} → P ′ and l → {m′,m′′}. So l → {m,m′′, p, p′} and {x1, x2, x3} → l.

Since {p, p′, x1} → y1, we have {m′,m′′} 9 y1, y1 /∈ P ′ and P ′ = {l′, l′′, l′′′, q}.

Since |N+
L (x1)| ≥ 2, we can assume w.l.o.g. that l′ ∈ N+

L (x1). By the minimal-

ity of |N−{x1,x2,x3}(l)| and {x1, x2, x3} → l, we have {x1, x2, x3} → l′ and d−B(l′) ≥

|{m′,m′′, x1, x2, x3}| ≥ 5, a contradiction.

Case 5.1. P ′ ⊆ X − {p, x1, x3}.
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Note that |Q+ y1| = k − 2 and

P − p→ Q+ y1.

Let first |P ′| = k − 2. If P ′ ∩ (P − p) 6= ∅, then

|N+
R′(P

′)| ≥ |Q+ y1| = k − 2.

If P ′ ∩ (P − p) = ∅, then P ′ ⊆ M + x2. If |N+
R′(P

′)| = k − 3, then P ′ → {l, y2, y3}

and d−B(y3) ≥ |P + x3|+ |P ′| ≥ k + 1 for k ≥ 4. So

|N+
R′(P

′)| ≥ k − 2.

Now let |P ′| = k. If P ′ ∩ (P − p) 6= ∅, then Q + y1 ⊆ N+
R′(P

′). For any l′ ∈ L − l,

since l′ → p we have l′ 9 P ′ and l′ ∈ N+
R′(P

′). Thus L− l ⊆ N+
R′(P

′) and

|N+
R′(P

′)| ≥ |Q+ y1|+ |L− l| ≥ k.

If P ′ ∩ P = ∅, then P ′ = M + x2 and L− l ⊆ N+
R′(M + x2). Since |L− l| = k − 1, it

suffices to show that Q+y1 9M+x2. By Claim 4 (1), we can assume that k ≥ 5. If

Q+y1 →M+x2, then |N+
L (x2)| ≥ k−2 and P +x1 +x3 → Q+y1. So |N+

L (x1)| ≤ 2.

Note that |N+
L (x1)| ≥ 2. So |N+

L (x1)| = 2. Now

2 = |N+
L (x1)| ≥ |N+

L (x2)| ≥ k − 2,

implying that k ≤ 4, a contradiction. Thus for k ≥ 5,

|N+
R′(P

′)| ≥ k.

Case 5.2. P ′ ⊆ Y − {l, y2, y3}.
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For any v ∈ Q+ y1, since p→ Q+ y1 we have

|N+
R′(v)| ≥ k − 2.

First let |P ′| = k − 2. If P ′ ∩ (Q+ y1) 6= ∅, then

|N+
R′(P

′)| ≥ min
v∈Q+y1

|N+
R′(v)| ≥ k − 2.

If P ′ ∩ (Q+ y1) = ∅, then P ′ ⊆ L− l. By Claim 4 (2), we can assume that k ≥ 5. If

|N+
R′(P

′)| = k − 3, then P ′ → x1 and x2 → P ′. Thus

2 = |L− P ′| ≥ |N+
L (x1)| ≥ |N+

L (x2)| ≥ |P ′| = k − 2,

implying that k ≤ 4, a contradiction. Thus for k ≥ 5,

|N+
R′(P

′)| ≥ k − 2.

Now let |P ′| = k. Then P ′ ∩ (L − l) 6= ∅ and P − p ⊆ N+
R′(P

′). By Claim 4 (3), it

suffices to consider that k ≥ 5. Since x2 → y2, we have x2 9 P ′ and x2 ∈ N+
R′(P

′).

Since l→ P , we have |N+
M(l)| ≤ 2 and |N−M(l)| ≥ k−3. Then |N+

R′(P
′)∩M | ≥ k−3.

Thus for k ≥ 5,

|N+
R′(P

′)| ≥ |P − p+ x2|+ |N+
R′(P

′) ∩M | ≥ k.

So C ′ is a good cycle, a contradiction.

Case 6. |P | = k and |Q| = k − 1.

Note that N+
P (yi) 6= ∅ and N−P (yi) 6= ∅ for i ∈ {1, 2, 3}. At least two sets of

N+
P (y1) ∩N−P (y2), N+

P (y2) ∩N−P (y3), N+
P (y3) ∩N−P (y1)

are not empty. If not, assume w.l.o.g. that N+
P (y1)∩N−P (y2) = N+

P (y2)∩N−P (y3) = ∅,

96



Chapter 5. Cycle Factors in Regular Bipartite Tournaments

then N+
P (y1) ⊆ N+

P (y2) ⊆ N+
P (y3) and every vertex in N+

P (y1) has indegree at least

|L|+ |{y1, y2, y3}| = k + 1, a contradiction. Now assume w.l.o.g. that

N+
P (y1) ∩N−P (y2) 6= ∅, N+

P (y2) ∩N−P (y3) 6= ∅

and let

p ∈ N+
P (y1) ∩N−P (y2), p′ ∈ N+

P (y2) ∩N−P (y3).

If N+
P (y3) ∩N−P (y1) 6= ∅, then let p′′ ∈ N+

P (y3) ∩N−P (y1). Let

C ′ = y1 → p→ y2 → p′ → y3 → p′′ → y1

and let R′ = B − C ′. Since now N+
R′(L) = P − {p, p′, p′′}, |L| = k − 2, |P −

{p, p′, p′′}| = k − 3 and Case 5 was already considered, there exists a good cycle. So

N+
P (y3) ∩N−P (y1) = ∅. Let

C ′′ = x1 → y1 → p→ y2 → x3 → y3 → x1

and let R′′ = B − C ′′. We show that C ′′ is a good cycle, i.e., for any P ′′ ⊆ X −

{p, x1, x3} or P ′′ ⊆ Y − {y1, y2, y3} we have |N+
R′′(P

′′)| ≥ |P ′′|. By Claim 5.1, it is

obvious for |P ′′| ≥ k + 1 and for |P ′′| ≤ k − 3. As Cases 2, 3, 4 and 5 were already

considered, it suffices to consider that |P ′′| = k.

Case 6.1. P ′′ ⊆ X − {p, x1, x3}.

Note that P ′′ ∩ (M + x2) 6= ∅. So L ⊆ N+
R′′(P

′′). If |N+
R′′(P

′′) ∩ Q| = k − 3,

then there exist {q1, q2} ⊆ Q such that {q1, q2} → P ′′ and thus {p, x1, x3} → {q1, q2}.

Since x1 → L + y1, we have d+
B(x1) ≥ |L + y1| + |{q1, q2}| = k + 1, a contradiction.

So |N+
R′′(P

′′) ∩Q| ≥ k − 2 and

|N+
R′′(P

′′)| ≥ |L|+ |N+
R′′(P

′′) ∩Q| ≥ (k − 2) + (k − 2) ≥ k.

Case 6.2. P ′′ ⊆ Y − {y1, y2, y3}.
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Since P ′′ ∩ L 6= ∅, we have P − p ⊆ N+
R′′(P

′′). Since x2 → y2, we have x2 9 P ′′

and x2 ∈ N+
R′′(P

′′). Thus

|N+
R′′(P

′′)| ≥ |P − p+ x2| = k.

So C ′′ is a good cycle, a contradiction.

The proof of Lemma 5.1 is complete.

5.3 k-cycle-factors in regular bipartite tournaments

The k-cycle-factors of a highly connected tournament was posed by Bollobás (see [82])

and was proved by Chen et al. [35].

Theorem 5.14 (Chen et al. [35]). Let T be a k-connected tournament with |V (T )| ≥

8k. Then T has a k-cycle-factor.

Motivated by Theorem 5.14, we consider k-cycle-factors of a highly connected

bipartite tournament. Häggkvist and Manoussakis [47] proved that a bipartite tour-

nament is Hamiltonian if and only if it is strong and has a cycle-factor. Note that

there are infinite families of highly connected bipartite tournament without Hamil-

ton cycles and thus without a cycle-factor, i.e. it cannot be partitioned into cycles.

Thus, we should assume that the considered bipartite tournaments are Hamiltonian.

Let f(k) be the smallest integer so that all but a finite number of f(k)-connected

Hamiltonian bipartite tournaments have a k-cycle-factor. Note that f(1) = 1. We

conjecture that f(k) exists and f(k) = k for general k. By Corollary 4.1, we propose

the following conjecture.

Conjecture 5.2. Every k-connected Hamiltonian bipartite tournament with at least

8k − 6 vertices has a k-cycle-factor.

By replacing the condition “Hamiltonian” by “regular”, we get a weaker result.

Theorem 5.15. Let BT = (X, Y ;E) be a k-connected regular bipartite tournament

with |V (BT )| ≥ 8k − 6. Then BT has a k-cycle-factor.
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Proof. By Corollary 3.1, BT contains at least k vertex-disjoint cycles. Let C1, . . . , Ck

be k vertex-disjoint cycles of BT such that
∑k

i=1 |V (Ci)| is maximum. To the con-

trary, assume that
∑k

i=1 |V (Ci)| < n. Let Ψ = {C1, . . . , Ck} and let

H = BT − ∪ki=1V (Ci). (5.6)

Claim 5.5. H has no cycle.

Proof. Assume that H has a cycle C. Let Ci be an arbitrary cycle in Ψ. We show

that either Ci → C or C → Ci. Let u ∈ V (Ci) ∩ X and v ∈ V (C) ∩ Y . Assume

without loss of generality that u→ v. For any vertex x ∈ V (C)∩X, if x→ u+
Ci

then

u+
Ci
Ciuvxu

+
Ci

is a cycle longer than Ci and we can get another k cycles containing

more vertices, a contradiction. Thus, u+
Ci
→ C. Similarly, u++

Ci
→ C, . . . , u→ C and

thus Ci → C. If v → u, then similarly C → Ci. Now let

Ψ1 = {Ci ∈ Ψ : Ci → C}, Ψ2 = {Cj ∈ Ψ : C → Cj}. (5.7)

Assume first that Ψ1 = ∅. Then Ψ2 = Ψ. Since BT is connected, there is a path

from Ψ to C and let P be one with minimal length. Then all the internal vertices of

P are in V (H)− V (C). Let w and z be the starting vertex and the ending vertex of

P , respectively. Assume w.l.o.g. that w ∈ Cj ∩X. If z ∈ Y , then

wPzCz−C → w+
Cj
Cjw (5.8)

is a longer cycle than Cj. If z ∈ X, then

wPzCz−−C w+
Cj
Cjw (5.9)

is a longer cycle than Cj. For each case we can get another k cycles containing more

vertices, a contradiction. If Ψ2 = ∅, then similarly we can get a contradiction.

Now assume that Ψ1 6= ∅ and Ψ2 6= ∅. If Ψ1 → Ψ2, then since BT is connected

there is a path from Ψ2 to Ψ1 ∪C. Let P be one with minimal length and let w and
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z be the starting vertex and the ending vertex of P , respectively. Note that C → Ψ2.

By the minimality of P , all the internal vertices of P are in V (H)− V (C). Assume

w.l.o.g. that w ∈ Ci ∩X and z ∈ Cj. If z ∈ Y , then

wPzCjz
−
Cj
w+
Ci
Ciw (5.10)

plus other k−1 unused cycles form k cycles containing more vertices, a contradiction.

If z ∈ X, then

wPzCjz
−−
Cj
w+
Ci
Ciw (5.11)

plus other k−1 unused cycles form k cycles containing more vertices, a contradiction.

Thus Ψ1 9 Ψ2 and Ci 9 Cj for some Ci ∈ Ψ1 and for some Cj ∈ Ψ2. Then u → v

for some u ∈ Cj and for some v ∈ Ci. Note that u+
Cj
→ v−Ci . Then

u+
Cj
v−Ciww

+
Cu

+
Cj
, (5.12)

uvCiv
−−
Ci
w−Cw

−−
C uC++

j Cj
u (5.13)

are two cycles containing more vertices than Ci and Cj. We get another k cycles

containing more vertices than Ψ, a contradiction. So H has no cycle.

By Lemma 1.2, BT has vertex-disjoint subsetsH1, H2, . . . , H2i−1, H2i, . . . , H2m−1, H2m,

m ≥ 1, 1 ≤ i ≤ m, such that H2i−1 ⊆ X, H2i ⊆ Y and there is no arc from Hp to Hq

for p > q. The following result holds.

Claim 5.6. let u ∈ Hs, v ∈ Ht and s < t. Then d+
Ψ(u) ≥ d+

Ψ(v) and d−Ψ(u) ≤ d−Ψ(v).

Proof. Note that the result holds clearly if u and v are in the same color class.

Assume w.l.o.g. that u ∈ X and v ∈ Y . Let w ∈ V (Ci) be an arbitrary outneighbor

of v in Ψ. Then w ∈ X and w−Ci ∈ Y . If w−Ci → u, then

wCiw
−
Ci
uvw (5.14)

is a longer cycle than Ci, a contradiction. Thus d+
Ψ(u) ≥ d+

Ψ(v). Similarly, we have
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d−Ψ(u) ≤ d−Ψ(v).

For any two vertices u ∈ H1 and v ∈ H2m, we have d+
Ψ(u) ≥ d+

Ψ(v) by Claim 5.6.

Note that d+
H(u) > d+

H(v). Thus, d+
BT (u) > d+

BT (v), a contradiction to the assumption

that BT is regular.

The proof of Theorem 5.15 is complete.

5.4 Conclusion

In this chapter, we consider the 2-cycle-factors and more generally k-cycle-factors of

regular bipartite tournaments. First, we prove that every k-regular bipartite tour-

nament B not isomorphic to a special digraph and with k ≥ 3 has a 2-cycle-factor

of cycle-lengths 6 and |V (B)| − 6. This gives a support to Conjecture 5.1 stating

that every k-regular bipartite tournament B not isomorphic to a special digraph F4·k

contains all 2-cycle-factors. Also, we show that every k-connected regular bipartite

tournament has a k-cycle-factor.

101



Chapter 5. Cycle Factors in Regular Bipartite Tournaments

102



Chapter 6

Universal Arcs and Directed Cuts

6.1 Introduction

The concept of universal arc was first proposed by Ádám [2] in 1999 and is relatively

new. The main problem is whether every cycle-connected digraph contains a universal

arc and only few results have been obtained till now. For the max cut and cut-cover

problem, it is very old and have been considered extensively. Tournaments and

Cayley digraphs are two types of digraphs which have attracted much attention in

digraph theory due to its special structure. In this chapter, we consider universal

arcs in tournaments and directed cuts in the Cayley digraph X(Zk2, Sk).

6.2 Universal arcs in tournaments

The main result is the following theorem.

Theorem 6.1. Let T be a tournament on at least 3 vertices. Then

(1) T has a universal arc if and only if T is 1-connected;

(2) every arc of T is universal if and only if T is 2-connected or T ∈ T∗s;

(3) every arc of C is universal if C is a longest cycle containing a given universal

arc in T and T is 1-connected.

Remark. (1) The 1-connected digraph in Figure 6.1 shows that the result in Theorem

6.1 (1) does not hold for general digraphs.
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(2) Thomassen [92] showed in 1980 that every arc of a 3-connected tournament is con-

tained in a Hamilton cycle, which implies that every arc of a 3-connected tournament

is universal. Theorem 6.1 (2) shows that a weaker condition guarantees this property.

(3) Note that the longest cycle containing a given universal arc could be non-Hamiltonian.

So the result in Theorem 6.1 (3) is not trivial.

Figure 6.1: A 1-connected digraph with no universal arc.

1
2 3 n− 2 n− 1

n

Figure 6.2: A 1-connected but not 2-connected tournament Tn with n universal arcs.

Proof. Let x, y be any two vertices of T . An (x, y)-path is a path from x to y. Let

C be a cycle of T . A (x, y)C-path is a (x, y)-path with no internal vertex on C. For

two vertices u, v of C, denote by u+ and u− the successor and predecessor of u on

C, respectively; and denote by uCv the unique (u, v)-path on C. Let [u, v] be the

vertex set of uCv and let dC(u, v) = |[u, v]| − 1 be the distance from u to v on C.

For any vertex set V ′ ⊆ V (T ), we write u → V ′ if u → v for any vertex v ∈ V ′ and

write V ′ → u if v → u for any vertex v ∈ V ′.
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(1) Since every 1-connected tournament has a Hamilton cycle, then T has a

universal arc. It suffices to show the converse statement. It follows from a more

general result as follows.

Lemma 6.1. If a digraph has a universal arc, then it is 1-connected.

Proof. Let D be a digraph with a universal arc uv. It suffices to show that there is

an (x, y)-path for any two vertices x and y of D. If {x, y}∩{u, v} 6= ∅, then it follows

directly from the definition of universal arcs. Suppose that {x, y}∩{u, v} = ∅. Since

x and uv are in a cycle, there is an (x, u)-path P1. Similarly, there is a (v, y)-path

P2. If P1 and P2 are vertex disjoint, then xP1uvP2y is an (x, y)-path. If P1 and P2

have at least one common vertex, let w be the first appeared vertex on the path P1,

then xP1wP2y is an (x, y)-path.

(2) Let T be a tournament satisfying that every arc is universal. Assume that

T is not 2-connected and T /∈ T∗s. If T is not 1-connected, then the arc uu′ is a

non-universal arc where u, u′ ∈ V (T ) satisfying that here exists no (u′, u)-path. Now

we have T is 1-connected and T /∈ T∗s. Then T has a cut vertex v such that one of the

subtournaments induced by N+(v) and N−(v) (denote by Tx and Ty, respectively) is

not 1-connected. Assume without loss of generality that Tx is not 1-connected. Then

there exists no (x, x′)-path for some two vertices x, x′ ∈ V (Tx) excluding v. Thus vx

and x′ are not in any cycle and vx is not a universal arc, a contradiction.

For the converse, it follows directly from the two lemmas below.

Lemma 6.2. Every arc of a 2-connected tournament T is universal.

Proof. Assume the opposite that T has a non-universal arc uv. Let C be a longest

cycle containing uv in T . Since T has no 2-cycles, we have |V (C)| ≥ 3. By assumption

C is not hamiltonian. Let w be an arbitrary vertex in V (T )\V (C). For convenience,

a cycle containing both uv and w is called good in the following. We will get a

contradiction by showing that a good cycle exists.

If w → u, then since T is 2-connected there exists a (x,w)C-path P for some

x ∈ V (C)\{u}. Now wuvCxPw is a good cycle. If v → w, then similarly since T is
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2-connected there exists a (w, y)C-path P ′ for some y ∈ V (C)\{v}. Now uvwP ′yCu

is a good cycle. Assume from now on that u→ w and w → v.

We claim first that w → [v, z] and [z+, u] → w for some z ∈ V (C)\{u}. If not,

then there exists z′ ∈ V (C)\{u} with z′ → w and w → z′+. Now uvCz′wz′+Cu is a

cycle containing uv and is longer than C, a contradiction.

Since T is 2-connected, there exists a (v1, u1)C-path P ∗ for some v1 ∈ [v, z] and

some u1 ∈ [z+, u]. If w ∈ V (P ∗), then uvCv1P
∗u1Cu is a good cycle. Now let

w /∈ V (P ∗). Assume that dC(u1, u) is as small as possible and in addition dC(v, v1)

is as small as possible. By symmetry, we can assume without loss of generality that

dC(u1, u) ≤ dC(v, v1). Now we distinguish two cases.

Case 7. u1 = u.

Assume first that v1 6= v. Since T is 2-connected, there exists a (x, y)C-path P

for some x ∈ [v, v−1 ] and some y ∈ [v+
1 , u]. If P and P ∗ have a common veretex, say z,

then the path xPzP ∗u contradicts the choice of P ∗. So P and P ∗ are vertex disjoint

and y ∈ [v+
1 , u

−].

If u 6= z+, then u− → w and uvCxPyCu−wv1P
∗u is good cycle. Now let u = z+.

Since T is 2-connected, there exists a (w′, w)C-path P ′ for some w′ ∈ V (C)\{u}. If

w′ 6= u−, then uvCw′P ′wu−u is a good cycle. Now let w′ = u−. If P ′ and P ∗ have a

common vertex, without loss of generality let u′ be the first vertex of P ′ contained

in P ∗, then replace u−u of C by u−P ′u′P ∗u will yield a cycle containing uv longer

than C. So P ′ and P ∗ are vertex disjoint. If P ′ and P are internally vertex disjoint,

then uvCxPyCu−P ′wv1P
∗u is a good cycle. If P ′ and P have a common internal

vertex, without loss of generality let w′′ the first vertex of P ′ contained in P (possibly

w′′ = w), then uvCxPw′′P ′wv1P
∗u is a good cycle.

Now let v1 = v. Since u → v, then |V (P ∗)| ≥ 3. Let x be the successor of v on

P ∗.

If x → w, then since T is 2-connected there exists a (w,w′)-path P for some

w′ ∈ V (C) ∪ V (P ∗)\{v}. Moreover, we can assume that P has no internal vertex

in V (C) ∪ V (P ∗). If w′ ∈ V (C)\{v}, then uvxwPw′Cu is a good cycle. If w′ ∈
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V (P ∗)\{v, x}, then uvxwPw′P ∗u is a good cycle. If w′ = x, since either w → v+ or

v+ → w, then either uvxwv+Cu or uvv+wPxP ∗u is a good cycle.

If w → x, then similarly since T is 2-connected there exists a (w′′, w)-path P ′ for

some w′′ ∈ V (C) ∪ V (P ∗)\{u}. Moreover, we can assume that P ′ has no internal

vertex in V (C) ∪ V (P ∗). If w′′ ∈ V (C)\{u}, then uvCw′′P ′wxP ∗u is a good cycle.

Now we have that w → V (C)\{u} and w′′ ∈ V (P ∗)\{u}. Then uvP ∗w′′P ′wv+Cu is

a good cycle.

Case 8. u1 6= u.

It follows that v1 6= v. If u1 6= z+, then u−1 → w. Since T is 2-connected, there

exists a (x, y)C-path P for some x ∈ [v, v−1 ] and some y ∈ [v+
1 , u]. If y ∈ [u1, u], then

the path P contradicts the choice of P ∗. So we have that y ∈ [v+
1 , u

−
1 ]. If P and

P ∗ have a common vertex, say x′, then the path xPx′P ∗u1 contradicts the choice of

P ∗. So P and P ∗ are vertex disjoint. Then uvCxPyCu−1 wv1P
∗u1Cu is a good cycle.

Now assume that u1 = z+. Since T is 2-connected, there exists a (x′, y′)C-path P ′

for some x ∈ [v, u−1 ] and some y ∈ [u+
1 , u]. Now the path P ′ contradicts the choice of

P ∗. The proof is complete.

Lemma 6.3. Every arc of a tournament T ∈ T∗s is universal.

Proof. We first show the following claim.

Claim 6.1. For any arc uv and any vertex w of a 1-connected tournament T , one

of the following three statements hold.

(1) uv and w are in a common cycle;

(2) there exists a (v, w)-path excluding u;

(3) there exists a (w, u)-path excluding v.

Proof. Since T is 1-connected, there is a (v, u)-path P . Since u → v. we have

|V (P )| ≥ 3. Assume that uv and w are not in a common cycle. Then w /∈ V (P ).

For any vertex w′ ∈ V (P )−{u, v}, if w′ → w then vPw′w is a (v, w)-path excluding

u, if w → w′ then ww′Pu is a (w, u)-path excluding v.
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Recall that Ty → v and v → Tx. Since T is 1-connected, there exist at least one

arc goes from Tx to Ty. We claim that every arc between Tx and Ty goes from Tx to

Ty. If not, then since both Tx and Ty are 1-connected we have v is not a cut vertex.

Let x, y, z be arbitrary vertices in Tx, Ty and T , respectively.

First consider the arc vx. If z ∈ Ty ∪ {v, x}, then one can easily see that vx and

z are in a cycle. If z ∈ Tx\{x}, then since Tx is 1-connected there is a (x, z)-path P

in Tx and vxPzyv is a cycle containing both vx and z. So vx is universal. Similar,

we can show that any arc yv with y ∈ Ty is universal.

Then consider an arbitrary arc xx′ in Tx. If z ∈ Ty ∪ {v, x, x′}, then one can see

that xx′ and z are in a cycle. If z ∈ Tx\{x, x′}, then by Claim 6.1 we only need

to consider the case that there is an (x′, z)-path P ′ or a (z, x)-path P ′′ in Tx. Note

that either xx′P ′zyvx or xx′yvzP ′′x is a cycle containing both xx′ and z. So xx′ is

universal.

Now consider the arc xy. If z = v, then xyz is a cycle containing both xy and z. If

z ∈ Tx, note that there is a (z, x)-path P ′′′ in Tx, then xyvzP ′′′x is a cycle containing

both xy and z. Similarly, we can prove the case z ∈ Ty. So xy is universal.

(3) Let C be a longest cycle containing a given universal arc uv. By Theorem

6.1 (1), we have T is 1-connected. If u′ → w and w → u′+ for some u′ ∈ V (C)\{u}.

Replace u′u′+ by u′wu′+ will yield a cycle containing uv longer than C, a contradic-

tion. Thus we have V (T )\V (C) = Wa ∪Wb ∪Wc, where Wa,Wb and Wc are defined

as follows.

• Wa = {w ∈ V (T )\V (C) : V (C)→ w}.

• Wb = {w ∈ V (T )\V (C) : w → V (C)}.

• Wc = {w ∈ V (T )\V (C) : [z+, u] → w and w → [v, z] for some z ∈

V (C)\{u}}.

Claim 6.2. Wa = Wb = ∅ and V (T )\V (C) = Wc.

Proof. Denote by W 1
c and W 2

c the subsets of Wc with z = v and z 6= v, respectively.

Note that V (C)\{v} → W 1
c and W 2

c → v+.
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Assume that there exists a vertex wa ∈ Wa. Note that uv is a universal arc and

there exists a cycle containing both uv and w. So there is a (wa, u)-path P with

v /∈ V (P ). Since V (C)\{v} → W 1
c , we have P ∩ (Wb ∪W 2

c ) 6= ∅. Let x be the first

vertex of P contained in Wb ∪W 2
c . Then waPx ∩ V (C) = ∅. Now replace vv+ by

vwaPxv
+. A longer cycle containing uv appears, a contradiction. Thus Wa = ∅.

Similarly, we can show that Wb = ∅.

Let u′v′ be an arbitrary arc of C distinct from uv. For any vertex w ∈ V (C), the

cycle C contains both u′v′ and w. For any vertex w ∈ V (T )\V (C), by Claim 6.2 we

have w ∈ Wc. Then the cycle obtained from C by replacing uv with uwv is a cycle

containing both u′v′ and w. So every arc of C distinct from uv is also a universal

arc, which completes the proof.

The proof of Theorem 6.1 is complete.

6.3 Directed cuts in a type of Cayley digraph

We deal with the Cayley digraph X(Zk2, Sk).

Theorem 6.2. g(X(Zk2, Sk)) ≥


(3k+1)2k+1

9
, if k is odd;

(3k+1)2k−1
9

, if k is even.

By the result of Bai et al. [11] we have c(X(Zk2, Sk)) ≤ h(2k + 1) + 1. Here we

give the precise value.

Theorem 6.3. c(X(Zk2, Sk)) =


2, if k = 1;

3, if k = 2;

4, if k ≥ 3.

Proof. We first show the following lemma.

Lemma 6.4. The independence number α(X) of X is 2k−2.

Proof. Let V (X) = {0, 1, . . . , 2k − 1}. For any x ∈ V (X),

{x, x+ 2k−2, x+ 2k−1, x+ 3 · 2k−2}
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is a subset of V (X) satisfying that every vertex is adjacent to the other three vertices.

Since there are 2k−2 pairwise disjoint such sets in V (X), we have α(X) ≤ 2k−2. Note

that

{0, 3, 6, . . . , 3(2k−2 − 1)}

is an independent set of X with cardinality 2k−2. Then we have α(X) = 2k−2.

Let I = {0, 3, 6, . . . , 3(2k−2 − 1)} and V1 = {i, i + 2k−2 : i ∈ I}. Note that

V1 = {i+ 2k−1, i+ 3 · 2k−2 : i ∈ I}. We consider the cut E(V1, V1). For the subsets

A = {x, x+ 2k−2} and B = {y, y + 2k−2},

where x, y ∈ I and x 6= y, there are three possible arcs in the induced graph of A∪B

with starting vertices in A. One is from x to x+ 2k−2, one is from x to y + 2k−2 and

the last one is from x + 2k−2 to y. For the first kind, there are 2k−2 arcs since there

are 2k−2 subsets like {x, x+ 2k−2}. For the second kind, we have two possible cases

y + 2k−2 − x = 2t1 , where y + 2k−2 > x and 0 ≤ t1 ≤ k − 3,

y + 2k−2 − x+ 2k = 2t2 , where y + 2k−2 < x and 0 ≤ t2 ≤ k − 3.

For the second case, we have x− y = 2k−2 + 2k − 2t2 =

y − x = 2t1 − 2k−2, if y + 2k−2 > x and 0 ≤ t1 ≤ k − 3,

x− y = 2k−2 + 2k − 2t2 , if y + 2k−2 < x and 0 ≤ t2 ≤ k − 3.

For the third kind, we also have two possible cases.

y − (x+ 2k−2) = 2t3 , where y > (x+ 2k−2) and 0 ≤ t2 ≤ k − 3,

y − (x+ 2k−2) + 2k = 2t4 , where y > (x+ 2k−2) and 0 ≤ t2 ≤ k − 3.
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Let mi = k − 2− ti for i = 1, 2. Since x− y ≡ 0 (mod 3), we have

2k−2−m1(2m1 − 1) = 3 · s1(1 ≤ m1 ≤ k − 2, 1 ≤ s1 ≤ 2k−2 − 1),

2k−2−m2(2m2 + 1) = 3 · s2(1 ≤ m2 ≤ k − 2, 1 ≤ s2 ≤ 2k−2 − 1).

Note that for every 1 ≤ m ≤ k− 2, 2m− 1 can be divided by 3 only if m is even and

2m + 1 can be divided by 3 only if m is odd. So for every m satisfying 1 ≤ m ≤ k− 2

we can have a common solution of the two equations above

s =
1

3
(2k−2 + (−1)m+1 · 2k−2−m)

Note that x − y = 3s and x, y ∈ I where |I| = 2k−2. So there are 2k−2 − s pairs x

and y satisfying that x− y = 3s for any s in I, i.e., 2k−2 − s arcs of the second kind

or the third kind for any s. The total number of the arcs of second and third kinds

is
k−2∑
m=1

{2k−2 − 1

3
[2k−2 + (−1)m+1 · 2k−2−m]}.

Thus we have

|E(V1, V1)| ≥ k · 2k−1 − 2k−2 −
k−2∑
m=1

[2k−2 − 1

3
(2k−2 + (−1)m+1 · 2k−2−m)]

= 2k−2[(2k − 1)− 2

3
(k − 2) +

1

3

k−2∑
m=1

((−1)m+1 · 2−m)]

= 2k−2[
4k

3
+

1

3
+

1

3
(
k−2∑
m=1

((−1)m+1 · 2−m)]

=


(3k+1)2k+1

9
, if k is odd;

(3k+1)2k−1
9

, if k is even.

The proof of Theorem 6.2 is complete.

Proof. One can easily verify that the result holds for k = 1, 2. It suffices to consider
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the case k ≥ 3. Our proof relies heavily on the following structure property of this

type of Cayley digraph.

Lemma 6.5. X(Zk+1
2 , Sk+1) can be constructed by two copies of X(Zk2, Sk).

Proof. We denote j − i(mod 2k) by j − i in the following in sake of convenience.

Let D1 and D2 be two copies of X(Zk2, Sk) with vertex sets {v0, v2, . . . , v2k+1−2} and

{v1, v3, . . . , v2k+1−1}, respectively. Note that vivj ∈ E(Dt), t = 1, 2, if and only if

j − i ∈ {2 · 2i−1 : i = 1, . . . , k}. Let D be a digraph with vertex set V (D1) ∪ V (D2).

Add an arc from vi to vj if j − i = 1 and use E∗ to denote the set of arcs added in

this way. Let

E(D) = E(D1) ∪ E(D2) ∪ E∗.

For an arbitrary arc vivj ∈ E(D), we can show that

j − i ∈ {2i−1 : i = 1, . . . , k + 1}.

If vivj ∈ E(Dt) where t ∈ {1, 2}, then j − i ∈ {2 · 2i−1 : i = 1, . . . , k} and {2 · 2i−1 :

i = 1, . . . , k} ⊂ {2i−1 : i = 1, . . . , k + 1}. If vivj ∈ E∗, then j − i = 20 ∈ {2i−1 : i =

1, . . . , k + 1}. Thus D is isomorphic to X(Zk+1
2 , Sk+1).

For convenience, we use X3
2 to denote X(Z3

2, S3) in the following.

Lemma 6.6. c(X3
2 ) = 4.

Proof. Let

V1 = {v0, v3, v5, v6}, V2 = {v1, v2, v4, v7},

V3 = {v1, v3, v6, v7}, V4 = {v0, v2, v5, v7}.

Then {E(Vi, V i): i = 1, . . . , 4} is a 4-cut-cover of X3
2 . It suffices to prove that

c(X3
2 ) ≥ 4. Assume that c(X3

2 ) ≤ 3. Denote the possible three subsets covering

E(X3
2 ) by E1, E2 and E3. Assign color 1 to the arcs in E1, color 2 to the arcs in

E(2)\E(1) and color 3 to the rest arcs. It follows a proper 3-arc-coloring of X3
2 , i.e.,

a coloring of arcs with 3 colors such that no two consecutive arcs receive a common
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color. Without loss of generality, assume that v0v4 ∈ E(1) and v4v0 ∈ E(2). Let

dc(v) be the number of colors used on the arcs incident with v, and let di(v) be the

number of arcs which are incident with v and are colored by i. Note that dc(v) ≤ 3.

Claim 6.3. dc(v) = 3 for each vertex v of X3
2 .

Proof. Suppose that there is a vertex, without loss of generality v0, with dc(v0) ≤ 2.

For each vertex v of X3
2 , note that neither its indegree nor its outdegree is zero, we

have dc(v) ≥ 2. So dc(v0) = 2, v0v1, v0v2 ∈ E(1) and v6v0, v7v0 ∈ E(2). Since v0v2v4

is a directed triangle, we have v2v4 ∈ E(3). Similarly, we have v4v6 ∈ E(3). It follows

that two consecutive arcs have a common color, a contradiction.

Claim 6.4. di(v) = 2 for each vertex v of X3
2 where i = 1, 2, 3.

Proof. If not, then by Claim 1 and the fact that d(v) = 6 there is a vertex, without

loss of generality v0, with di(v0) = 3 for some i ∈ {1, 2, 3}. Without loss of generality,

suppose that d1(v0) = 3. Since v4v0 ∈ E(2), we have v0v1, v0v2, v0v4 ∈ E(1). Since

v0v2v4 is a directed triangle, we have v2v4 ∈ E(3). Note that v6v0 /∈ E(1). If

v6v0 ∈ E(2), then v4v6 ∈ E(3) and a contradiction to v2v4 ∈ E(3). So v6v0 ∈ E(3).

Then v2v6 ∈ E(2) since v0v2v6 is a directed triangle. Now we have v0v1 ∈ E(1),

v2v4 ∈ E(3) and v2v6 ∈ E(2), implying that no color can be put on v1v2.

Since d−(v) = d+(v) = 3 for any vertex v of X3
2 , then by Claim 6.3 and Claim

6.4 there exists two consecutive arcs having a common color. A contradiction to the

fact that this is a proper 3-arc-coloring of X3
2 .

Lemma 6.4 and Lemma 6.6 imply that for k ≥ 3

c(k + 1) ≥ c(k) ≥ c(3) = 4.

Note that the underlying graph of X(Zk+1
2 , Sk+1) can be covered by two cuts. Thus

X(Zk+1
2 , Sk+1) can be covered by four cuts. This completes the proof of Theorem

6.3.
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6.4 Conclusion

In this chapter, we first completely characterize the universal arcs in tournaments.

To be precise, we show that (1) T has a universal arc if and only if T is 1-connected;

(2) every arc of T is universal if and only if T is 2-connected or T ∈ T∗s, where T∗s is

a special class of 1-connected tournaments; and (3) every arc of C is universal if C

is a longest cycle containing a given universal arc in T and T is 1-connected. Then

we consider the cuts in a type of Cayley digraph X(Zk2, Sk), where Zk2 consists of

all binary vectors with length k and Sk = {2i−1 : i = 1, . . . , k}. We obtain a lower

bound of the maximum number of arcs contained in a directed cut of X(Zk2, Sk) and

the minimum number of directed cuts required to cover the arcs of X(Zk2, Sk).
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Chapter 7

Conclusion and Perspective

In this Chapter, we summarize the main results of this thesis and conclude with some

problems for further research.

7.1 Arc colorings

In Chapter 2, we mainly consider the (semi-)vertex-distinguishing proper arc coloring

of digraphs. We give upper bounds for χ′2vd(D) and χ′2svd(D) respectively. In particular,

the value of χ′2vd(D) is obtained for some regular digraph D. Moreover, we show that

the values of χ′2vd(D) and χ′2svd(D) will not be changed if the coloring, in addition,

required to be equitable. But the following two conjectures remain open for general

cases.

Conjecture 7.1. Let D be a vdac-digraph. Then χ′2vd(D) = π(D).

Conjecture 7.2. χ′2vd(D
n
d ) = π(Dn

d ) = kd,n.

Besides, it will also be interesting to consider the 1-type VDPA colorings of di-

graphs. What is the minimum number of colors, denoted by χ′1vd(D), required for a

1-type VDPA colorings of a digraph D? Considering the cycles with large order, we

have that χ′1vd(D) could be very far from the 1-type arc chromatic number χ′1(D) of

D. We conjecture that χ′1vd(D) is bounded by |V (D)|.

Conjecture 7.3. χ′1vd(D) ≤ |V (D)|.
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Moreover, it will be interesting to consider the 1-type proper arc colorings of

oriented planar graphs. In 1976, Steinberg proposed the following conjecture.

Conjecture 7.4 (Steinberg). Every {C4, C5}-free planar graphs are 3-vertex-colorable.

This conjecture has received much attention and many progresses have been ob-

tained. For more details, one can see [1, 27–30, 84]. Let G be an undirected graph

and let χ′1(G) be the maximum value of χ′1(D), as D ranges over all the orientations

of G. By Theorem 1.5 and Conjecture 7.4, we propose the following conjectures.

Conjecture 7.5. Let P be a {C4, C5}-free planar graph. Then χ′1(P ) ≤ 3 if and

only if χ(P ) ≤ 3.

Conjecture 7.6. Oriented {C4, C5}-free planar graphs are 3-arc-colorable.

Note that not every oriented planar graph is 3-arc-colorable. The graph in Fig-

ure 7.1 (in [102]) is an oriented planar graph but not 3-arc-colorable. Assume the

opposite that it has a proper 3-arc-coloring. Note that both {x1x2, x2x3, x3x1} and

{y1y2, y2y3, y3y1} should receive three distinct colors. Also, the arcs in {x1z, x2z, x3z}

and the arcs in {zy1, zy2, zy3} should receive two distinct colors. Thus, there exists

one arc in {x1z, x2z, x3z} and one arc in {zy1, zy2, zy3} having a common color, a

contradiction.

x1

x2

x3

z

y1

y2

y3

Figure 7.1: A non-3-arc-colorable oriented planar graph.
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7.2 Short cycles

In Chapter 3, we consider the short cycles in digraphs. Especially, we focus on the

Caccetta-Häggkvist conjecture (Conjecture 1.4) with forbidden subdigraphs. Moti-

vated by the result of Razborov [80], which verifies the case l = 3 of the Caccetta-

Häggkvist conjecture with three well defined (induced) forbidden subdigraphs, we

generalize it by verifying Conjecture 1.4 for l ≥ 4 with l + 1 well defined (induced)

forbidden subdigraphs. It is natural to ask if less forbidden subdigraphs suffice for

Conjecture 1.4. In particular, it seems that the forbidden subdigraph double-3-path

in Theorem 3.2 (resp. F4 in Theorem 3.4) could be removed. Also, the verifica-

tion of Conjecture 1.4 for digraphs with no forbidden subdigraphs deserves further

consideration.

7.3 Vertex-disjoint cycles

In Chapter 4, we consider vertex-disjoint cycles of given length in bipartite tour-

naments. Till now, the vertex-disjoint cycles of given length in tournaments and

bipartite tournaments have been characterized. It is natural to consider the analo-

gous problem in multipartite tournaments. We propose the following conjecture.

Conjecture 7.7. Let D = (V1, . . . , Vk;E(D)) be a k-partite tournament. If d+
Vi

(v) ≥

qir − 1 for any v ∈ V (D)\Vi, then D contains r vertex-disjoint
∑k

i=1 qi-cycles.

7.4 Cycle factors

In Chapter 5, we consider cycle factors in bipartite tournaments. Note that Conjec-

ture 5.1 remains unsolved for 8 ≤ t ≤ |V (B)| − 4. It is natural to prove or disprove

this conjecture for larger t.

It will also be interesting to consider under what conditions a bipartite tournament

contains all k-cycle-factors. We propose the following conjecture.

Conjecture 7.8. For a positive integer k, there exists an integer h(k) such that every
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k-connected Hamiltonian bipartite tournament on at least h(k) vertices contains all

k-cycle-factors.

7.5 Universal arcs and directed cuts

In Chapter 6, we have completely characterized the universal arcs in tournaments.

Recall that the Problem1.1 proposed by Ádám [2] in 1999 remains open. Also, recall

that Hubenko conjectured in [58] that every arc of a maximal cycle of a cycle con-

nected tournament is universal. These two problems deserve further consideration.

Furthermore, analogous to the conception of “universal arc”, we can define a univer-

sal vertex v of a digraph D to be one vertex such that xy and v are in a common

cycle for any arc xy of D. It will be interesting to consider under what conditions a

digraph contains a universal vertex.

Besides, in this chapter, we deal with directed cuts in a type of Cayley digraph

X(Zk2, Sk). We have obtained a lower bound of g(X(Zk2, Sk)) as follows.

g(X(Zk2, Sk)) ≥


(3k+1)2k+1

9
, if k is odd;

(3k+1)2k−1
9

, if k is even.

We conjecture that the result is best possible, i.e., the inequality “≥” can be replaced

by “=”.
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distinguishing proper edge-colorings of graphs, J. Combin. Theory Ser. B 75 (1999)

288-301.

[21] M. Behzad, G. Chartrand and C. Wall, On minimal regular digraphs with given girth,

Fundamenta Mathematicae 69 (1970) 227-231.

[22] L.W. Beineke and C.H.C. Little, Cycles in bipartite tournaments, J. Combin. Theory

Ser. B 32 (1982) 140-145.

120



Bibliography

[23] J.C. Bermond, C. Thomassen, Cycles in digraphs-a survey, J. Graph Theory 5 (1)

(1981) 1-43.
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ture, Discrete Math. 165/166 (1997) 71-80.

[27] O.V. Borodin, To the paper of H.L. Abbott and B. Zhou on 4-critical planar graphs,

Ars Combin. 43 (1996) 191-192.

[28] O.V. Borodin, Structural properties of plane graphs without adjacent triangles and an

application to 3-colorings, J. Graph Theory 21 (2) (1996) 183-186.

[29] O.V. Borodin, A.N. Glebov, M. Montassier, A. Raspaud, Planar graphs without 5-

and 7-cyles and without adjacent triangles adjacent are 3-colorable, J. Combin. Theory

Ser. B 99 (2009) 268-273.

[30] O.V. Borodin, A.N. Glebov, A. Raspaud, Planar graphs without triangles adjacent

to cycles of length from 4 to 7 are 3-colorable, J. Combin. Theory Ser. B 93 (2005)

303-311.

[31] A.C. Burris and R.H. Schelp, Vertex-distinguishing proper edge-colorings, J. Graph

Theory 26 (2) (1997) 73-82.
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[91] K. Taczuk and M. Woźiak, A note on the vertex-distinguishing index for some cubic

graphs, Opuccula Mathematica 24 (2) (2004) 223-229.

[92] C. Thomassen, Hamiltonian-connected tournaments, J. Combin. Theory Ser. B 28

(1980) 142-163.

[93] C. Thomassen, Disjoint cycles in digraphs, Combinatorica 3 (3-4) (1983) 393-396.

[94] L. Volkmann, All regular multipartite tournaments that are cycle complementary,

Discrete Math. 281 (2004) 255-266.

[95] L. Volkmann and S. Winzen, Every cycle-connected multipartite tournament has a

universal arc, Discrete Math. 309 (2009) 1013-1017.

[96] H. Wang, On the maximum number of independent cycles in a graph, Discrete Math-

matices 205 (1999) 183-190.

[97] H. Wang, Independent directed triangles in a directed graph, Graphs and Combina-

torics 16 (2000) 453-462.

[98] W. Wang and Y. Bu, On coloring problems, Handbook of Combinatorial Optimization

(2013) 2095-2189.

[99] W. Wang and Y. Wang, Adjacent vertex-distinguishing edge colorings of K4-minor

free graphs, App. Math. Lett. 24 (2011) 2034-2037.

[100] D.B. West, Introduction to Graph Theory, Prentice-Hall, NJ, 1996.

[101] D. Woodall, Sufficient conditions for cycles in digraphs, Proc. London Math. Soc. 24

(1972) 739-755.

[102] C. Xu and S. Zhang, Personal communication.

[103] C. Xu, S. Zhang and Y. Lu, Covering digraphs with small indegrees or outdegrees by

directed cuts, Discrete Math. 313 (2013) 1648-1654.

126



Bibliography

[104] D. Zhang and H. Wang, Disjoint directed quadrilaterals in a directed graph, J. Graph

Theory 50 (2005) 91-104.

[105] K.M. Zhang, Y. Manoussakis and Z.M. Song, Complementary cycles containg a fixed

arc in diregular bipartite tournaments, Discrete Math. 133 (1994) 325-328.

[106] K.M. Zhang and Z.M. Song, Complementary cycles containing a pair of fixed vertices

in bipartite tournaments, Appl. Math. (in China) 3 (1988) 401-407.

[107] K.M. Zhang and J. Wang, Complementary cycles containing a fixed arc and a fixed

vertex in bipartite tournaments, Ars Combin. 35 (1993) 265-269.

[108] Z. Zhang, L. Liu and J. Wang, Adjacent strong edge coloring of graphs, Appl. Math

Lett. 15 (2002) 623-626.

127



Bibliography

128



Published and Submitted Papers

1. Covering the edges of digraphs in D(3,3) and D(4,4) with directed cuts, Dis-

crete Mathematics 312 (2012) 1596-1601. (with Binlong Li and Shenggui

Zhang)

2. Complementary cycles in regular bipartite tournaments, Discrete Mathe-

matics 333 (2014) 14-27. (with Hao Li and Weihua He)

3. Vertex-disjoint cycles in bipartite tournaments, Discrete Mathematics, 2015,

in press. (with Binlong Li and Hao Li)

4. Vertex-distinguishing proper arc colorings of digraphs, Submitted. (with Hao

Li, Weihua He and Qiang Sun)
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