Arc colorings and cycles in digraphs

Yandong Bai

To cite this version:

Yandong Bai. Arc colorings and cycles in digraphs. Other [cs.OH]. Université Paris Sud - Paris XI, 2014. English. NNT: 2014PA112356 . tel-01674173v2

HAL Id: tel-01674173
 https://theses.hal.science/tel-01674173v2

Submitted on 13 Mar 2018

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Université Paris-Sud

École Doctorale: Informatique

Laboratoire: Laboratoire de Recherche en Informatique
Spécialité: Informatique

THÈSE DE DOCTORAT

Par
Yandong BAI

Arc Colorings and Cycles in Digraphs

Date de soutenance: 28/11/2014
Composition du jury:

Directeur de thèse:	Hao LI	Directeur de Recherche
Rapporteurs:	Yaojun CHEN Tomáš KAISER	Professeur Maitre de Conférences
Examinateurs:	Eric ANGEL	Professeur
	Philippe DAGUE Cristina BAZGAN	Professeur Resseur
	Réza NASERASR	Chargé de Recherche

Contents

English Abstract v
Résumé Français vii
1 Introduction 1
1.1 Basic terminology and notation 2
1.2 Arc colorings 8
1.2.1 Proper arc colorings 9
1.2.2 Vertex-distinguishing proper edge colorings 11
1.2.3 Vertex-distinguishing proper arc colorings 13
1.3 Short cycles 14
1.3.1 Caccetta-Häggkvist conjecture 14
1.3.2 Caccetta-Häggkvist conjecture with forbidden subdigraphs 16
1.4 Disjoint cycles 17
1.4.1 Disjoint cycles of any lengths 17
1.4.2 Disjoint cycles of given lengths 20
1.5 Cycle factors 21
1.5.1 Cycle factors in graphs 21
1.5.2 Cycle factors in digraphs 21
1.5.3 Cycle factors in bipartite tournaments 22
1.6 Universal arcs and directed cuts 23
1.6.1 Universal arcs in digraphs 23
1.6.2 Universal arcs in tournaments 24
1.6.3 Max cuts in graphs and digraphs 24
1.6.4 Directed cuts in a type of Cayley digraph 26
2 Vertex-Distinguishing Proper Arc Colorings of Digraphs 27
2.1 Introduction 27
2.2 Vertex-distinguishing proper arc colorings of digraphs 29
2.3 Semi-vertex-distinguishing proper arc colorings of digraphs 32
2.4 Vertex-distinguishing proper arc colorings of regular digraphs 35
2.5 Equitable vertex-distinguishing proper arc colorings of digraphs 44
2.6 Conclusion 46
3 Short Cycles in Digraphs with Forbidden Subdigraphs 49
3.1 Introduction 49
3.2 Caccetta-Häggkvist conjecture with induced forbidden subdigraphs 50
3.3 Caccetta-Häggkvist conjecture with forbidden subdigraphs 57
3.4 Conclusion 60
4 Vertex-Disjoint Cycles in Bipartite Tournaments 61
4.1 Introduction 61
4.2 Vertex-disjoint cycles in bipartite tournaments 61
4.3 Vertex-disjoint cycles of given lengths in bipartite tournaments 62
4.4 Conclusion 66
5 Cycle Factors in Regular Bipartite Tournaments 69
5.1 Introduction 69
5.2 2-cycle-factors in regular bipartite tournaments 71
$5.3 k$-cycle-factors in regular bipartite tournaments 98
5.4 Conclusion 101
6 Universal Arcs and Directed Cuts 103
6.1 Introduction 103
6.2 Universal arcs in tournaments 103
6.3 Directed cuts in a type of Cayley digraph 109
6.4 Conclusion 114
7 Conclusion and Perspective 115
7.1 Arc colorings 115
7.2 Short cycles 117
7.3 Vertex-disjoint cycles 117
7.4 Cycle factors 117
7.5 Universal arcs and directed cuts 118
Published and Submitted Papers 129
Acknowledgements 131

Abstract

This thesis studies arc colorings and cycles of digraphs. It focuses on the following topics: vertex-distinguishing proper arc colorings in digraphs, short cycles in digraphs with forbidden subdigraphs, disjoint cycles and cycle factors in bipartite tournaments, universal arcs in tournaments, and directed cuts in a type of Cayley digraph.

The thesis consists of an introductory chapter (Chapter 1), a conclusion chapter (Chapter 7) and five research chapters (Chapters 2-6). Each research chapter is based on an original article, which has been published, or submitted for publication, in an international journal.

In Chapter 1, the basic terminology and notation used in this thesis are introduced, and then a brief introduction to the research contents and main results is given.

In Chapter 2, the (semi-)vertex-distinguishing proper arc coloring of digraphs is introduced. Denote by $\chi_{v d}^{\prime 2}(D)$ (resp. $\chi_{s v d}^{\prime 2}(D)$) the minimum number of colors required for a vertex-distinguishing (resp. semi-vertex-distinguishing) proper 2-type arc coloring of D. We give tight upper bounds for $\chi_{v d}^{\prime 2}(D)$ and $\chi_{s v d}^{\prime 2}(D)$ in terms of its order and degrees. Furthermore, the values of $\chi_{v d}^{\prime 2}(D)$ for some regular digraphs D are given. Besides, we show that the values of $\chi_{v d}^{\prime 2}(D)$ and $\chi_{s v d}^{\prime 2}(D)$ will not be changed if the coloring, in addition, required to be equitable.

In Chapter 3, we concentrate on the Caccetta-Häggkvist conjecture, which claims that every digraph on n vertices without directed cycles of lengths at most l contains a vertex with outdegree at most $\frac{n-1}{l}$. As a partial support of the conjecture, Razborov [A. Razborov, On the Caccetta-Häggkvist conjecture with forbidden subgraphs, J. Graph Theory (2012) 1-13] verified the case $l=3$ for a specific family of digraphs.

We generalize Razborov's result by verifying the conjecture for $l \geq 4$ on a similar specific family of digraphs.

In Chapter 4, we consider the vertex-disjoint cycles in bipartite tournaments. Let $t_{1}, \ldots, t_{r} \in[4,2 q]$ be any r even integers, where $q \geq 2$ and $r \geq 1$ are two integers. We show that every bipartite tournament with minimum outdegree at least $q r-1$ contains r vertex-disjoint directed cycles of lengths $t_{1}^{\prime}, \ldots, t_{r}^{\prime}$ such that $t_{i}^{\prime}=t_{i}$ for $t_{i}=0(\bmod 4)$ and $t_{i}^{\prime} \in\left\{t_{i}, t_{i}+2\right\}$ for $t_{i}=2(\bmod 4)$, where $1 \leq i \leq r$. The special case $q=2$ of the result verifies the bipartite tournament case of a conjecture proposed by Bermond and Thomassen, claiming that every digraph with minimum outdegree at least $2 r-1$ contains at least r vertex-disjoint directed cycles.

In Chapter 5, cycle factors in regular bipartite tournaments are considered. We show that every k-regular bipartite tournament B with $k \geq 3$ has two complementary cycles of lengths 6 and $|V(B)|-6$, unless B is isomorphic to a special digraph. Also, we show that every k-connected regular bipartite tournament has a cycle factor consisting of k cycles.

In Chapter 6, universal arcs and directed cuts are considered. Let T be a tournament with at least 3 vertices. We show that T has a universal arc if and only if T is strong, and also show that every arc of T is universal if and only if T is 2-connected or T belongs to a special class of 1-connected tournaments. Let \mathbb{Z}_{2}^{k} be the set of binary vectors with length k and let $S_{k}=\left\{2^{i-1}: i=1, \ldots, k\right\}$. We deal with directed cuts in the Cayley digraph $X\left(\mathbb{Z}_{2}^{k}, S_{k}\right)$. To be precise, we obtain a lower bound of the maximum number of arcs contained in a directed cut of $X\left(\mathbb{Z}_{2}^{k}, S_{k}\right)$ and the minimum number of directed cuts required to cover the arcs of $X\left(\mathbb{Z}_{2}^{k}, S_{k}\right)$.

Chapter 7 concludes with a survey of this thesis and some problems for further consideration.

Keywords: vertex-distinguishing proper arc colorings; Caccetta-Häggkvist conjecture; vertex-disjoint cycles; cycle factors; universal arcs; directed cuts

Résumé

Cette thèse étudie la coloration d'arcs et de cycles dans les graphes orientés. Elle se concentre sur les sujets suivants: la coloration propre d'arcs avec des sommetdistingué dans les graphes orientés, les cycles courts dans les graphes orientés avec des sous-graphes interdits, les cycles sommet-disjoints et les cycle-facteurs dans les tournois bipartis, les arcs universels dans les tournois, et des coupes dirigées dans un graphe Cayley orienté.

La thèse se compose d'un chapitre d'introduction (Chapitre 1), un chapitre de conclusion (Chapitre 7) et cinq chapitres de recherche (Chapitres 2-6). La thèse est basée sur cinq articles originaux publiés ou présentés dans des journaux. Les principaux résultats sont les suivants.

Dans le chapitre 1, la terminologie de base et la notation utilisée dans cette thèse sont introduits, puis une brève introduction au contenu de recherche et les principaux résultats est donnée.

Dans le chapitre 2, nous introduisons la coloration propre d'arcs avec des (semi) sommet-distingué dans les graphes orientés. Nous avons proposé une conjecture sur le nombre arc-chromatique (semi-) sommet-distingué et nous avons aussi donné quelque résultats partiels.

Dans le chapitre 3, nous avons étendu un résultat de Razborov en prouvant que la conjecture de Caccetta-Häggkvist est vraie pour certains graphes orientés avec des sous-graphes interdits.

Dans le chapitre 4, nous avons montré que chaque tournoi biparti avec degré sortant minimum au moins $q r-1$ contient r cycles de sommets-disjoints de toutes longueurs données $t_{1}^{\prime}, \ldots, t_{r}^{\prime}$ de telle sorte que $t_{i}^{\prime}=t_{i}$ pour $t_{i}=0(\bmod 4)$ et $t_{i}^{\prime} \in$
$\left\{t_{i}, t_{i}+2\right\}$ pour $t_{i}=2(\bmod 4)$, où $1 \leq i \leq r$ et $t_{i} \in[4,2 q]$ est arbitraire. Le cas spécial $q=2$ confirme le cas du tournoi biparti de la conjecture de Bermond-Thomassen.

Dans le chapitre 5 , nous avons montré que chaque tournoi biparti k-Regulier avec $k \geq 3$ que l'on notera B a deux cycles complémentaires de longueurs 6 et $|V(B)|-6$, à moins que B soit isomorphe à un graphe spécifique, tayant ainsi une conjecture sur des 2-cycles-facteurs dans les tournois bipartis. En outre, nous montrons que tous les tournois bipartis réguliers ont un k-cycle-facteur.

Dans le chapitre 6, nous donnons une condition nécessaire et suffisante pour l'existence d'un arc universel dans un tournoi et nous caractérisons tous les tournois où chaque arc est universel. Nous donnons aussi une bonne borne pour la taille d'une coupe max et nous montrons la valeur exacte pour le nombre coupe-abri dans un graphe Cayley orienté.

Chapitre 7 se termine par une enquête de cette thèse et certains problèmes pour un examen plus approfondi.

Mots-clés: coloration propre d'arcs avec des sommet-distingué; conjecture de CaccettaHäggkvist; cycles sommet-disjoints; cycle-facteurs; arcs universel; coupe orienté

Chapter 1

Introduction

Graph theory studies the properties of various graphs and is a branch of discrete mathematics. The earliest known paper on graph theory was given by Euler in 1736, which discussed the seven bridges of Königsberg. The first book on graph theory is "Theorie der endlichen und unendlichen Graphen", which was written by Kőnig and published in 1936. After the appearance of this book, the subject has gone through a remarkable development. In particular, in the recent decades, graph theory has experienced explosive growth concurrent with the growth of computer science. Moreover, since graphs can be used to model many types of relations and processes, the results of graph theory have wide applications in chemistry, physics, biology and computer science.

This thesis focuses on the following topics: vertex-distinguishing proper arc colorings in digraphs, short cycles in digraphs with forbidden subdigraphs, disjoint cycles and cycle factors in bipartite tournaments, universal arcs in tournaments, and directed cuts in a type of Cayley digraph. The results obtained concerning these topics are contained in five distinct research chapters (Chapters 2-6). Each chapter is based on an original article, which has been published, or submitted for publication, in an international journal.

In this chapter, we give a short but relatively complete introduction of this thesis. In Section 1, the basic terminology and notation are given. Sections 2, 3, 4, 5 and 6 are devoted to the main results on vertex-distinguishing proper arc colorings in
digraphs, short cycles with forbidden subdigraphs in digraphs, vertex-disjoint cycles in bipartite tournaments, cycle factors in bipartite tournaments, universal arcs in tournaments and directed cuts of a type of Cayley digraphs, respectively. The final section, Section 7, concludes with some problems deserving further consideration.

1.1 Basic terminology and notation

In this section, we give some basic terminology and notation that will be used in the thesis. For those not defined here, we follow Bang-Jensen and Gutin [18].

Graph and digraph

A graph G is a pair $(V(G), E(G))$ consisting of a nonempty set $V(G)$ of vertices and a set $E(G)$, distinct from $V(G)$, of edges. Similarly, a digraph or directed graph D is a pair $(V(D), E(D))$ consisting of a nonempty set $V(D)$ of vertices and a set $E(D)$, distinct from $V(D)$, of arcs. Alternatively, a digraph can be regarded as a graph such that every edge has a direction. Throughout the thesis, a graph always means an undirected graph. Unless otherwise stated, the letter G denotes a graph and the letter D denotes a digraph.

Subgraph and subdigraph

A graph G^{\prime} is a subgraph of G if $V\left(G^{\prime}\right) \subseteq V(G)$ and $E\left(G^{\prime}\right) \subseteq E(G)$. Moreover, if G^{\prime} is a subgraph of G and G^{\prime} contains all the edges $u v \in E(G)$ with $u, v \in V\left(G^{\prime}\right)$, then G^{\prime} is an induced subgraph of G; and if if G^{\prime} is a subgraph of G and $V\left(G^{\prime}\right)=V(G)$, then G^{\prime} is a spanning subgraph of G. Similarly, we can define a subdigraph, an induced subdigraph and a spanning subdigraph of a digraph D.

Order and size

The number of vertices of a graph (a digraph) is its order and the number of edges (arcs) is its size.

Finite and simple

A graph (digraph) is finite if both its vertex set and edge set (arc set) are finite. A graph is simple if no edge is incident with only one vertex and no two edges incident with the same two vertices. A digraph is simple if no arc is incident with only one
vertex and no two arcs have both the same starting vertex and the same ending vertex. Unless otherwise stated, all graphs and digraphs considered in this thesis are finite and simple.

Degree

For an edge $u v$ of a graph G, say u is a neighbor of v and vice versa. For a vertex v of G, let $N(v)$ be its neighborhood, i.e., the set of neighbors of v, and let $d(v)=|N(v)|$ be its degree. Denote by $\delta(G)$ and $\Delta(G)$ the minimum degree and maximum degree of G, respectively. Let $n_{d}(G)$ be the number of vertices with degree d in G.

Outdegree and indegree

For an arc $u v$ (or (u, v)) of a digraph D, write $u \rightarrow v$ and say v is an outneighbor of u and u is an inneighbor of v. For a vertex v of D, let $N^{+}(v)$ and $N^{-}(v)$ be its outneighborhood and inneighborhood, i.e., the set of outneighbors and the set of inneighbors of v, respectively. Let $d^{+}(v)=\left|N^{+}(v)\right|$ and $d^{-}(v)=\left|N^{-}(v)\right|$ be its outdegree and indegree, respectively. Denote by $\delta^{+}(D), \delta^{-}(D), \Delta^{+}(D)$ and $\Delta^{-}(D)$ the minimum outdegree, minimum indegree, maximum outdegree and maximum indegree of D. Define the minimum degree $\delta(D)$ and maximum degree $\Delta(D)$ of D as follows,

$$
\begin{equation*}
\delta(D)=\min \left\{\delta^{+}(D), \delta^{-}(D)\right\}, \quad \Delta(D)=\max \left\{\Delta^{+}(D), \Delta^{-}(D)\right\} . \tag{1.1}
\end{equation*}
$$

Let $n_{d^{+}}(D)$ and $n_{d^{-}}(D)$ be the numbers of vertices with outdegree d^{+}and indegree d^{-}in D, respectively.

Regular digraph

Let k be a nonnegative integer. A digraph D is k-regular if every vertex has both outdegree and indegree k.

$\mathrm{D}(\mathrm{k})$ and $\mathrm{D}(\mathrm{k}, \mathrm{l})$

Let k and l be two nonnegative integers. Denote by $D(k)$ the family of digraphs in which every vertex has outdegree at most k and $D(k, l)$ the family of digraphs in which every vertex has either outdegree at most k or indegree at most l.

$$
\pi(\mathbf{G}) \text { and } \pi(\mathbf{D})
$$

For a graph G and a digraph D, let

$$
\begin{equation*}
\pi(G)=\min \left\{k \in \mathbf{Z}:\binom{k}{d} \geq n_{d}(G) \text { for } \delta(G) \leq d \leq \Delta(G)\right\} \tag{1.2}
\end{equation*}
$$

and

$$
\pi(D)=\min \left\{k \in \mathbf{Z}: \begin{array}{c}
\binom{k}{d^{+}} \geq n_{d^{+}}(D) \text { for } \delta^{+}(D) \leq d^{+} \leq \Delta^{+}(D) \tag{1.3}\\
\binom{k}{d^{-}} \geq n_{d^{-}}(D) \text { for } \delta^{-}(D) \leq d^{-} \leq \Delta^{-}(D)
\end{array}\right\}
$$

Edge coloring

Let k be a positive integer. A k-edge-coloring of a graph G is an assignment of k colors to the edges of G. An edge coloring of G is proper if no two adjacent edges receive the same color. Denote by $\chi^{\prime}(G)$ the minimum number of colors required for a proper edge coloring of a graph G.

VDPE coloring and vdec-graph

A vertex-distinguishing proper edge coloring (abbreviated VDPE coloring) of a graph G is a proper edge coloring where no two vertices are incident with the same set of colors. Note that a graph has a VDPE coloring if and only if it contains no isolated edge and at most one isolated vertex. Such a graph is referred to as a vertexdistinguishing edge-colorable graph (abbreviated vdec-graph). Denote by $\chi_{v d}^{\prime}(G)$ the minimum number of colors required for a VDPE coloring of a vdac-graph G.

Arc coloring

Let k be a positive integer. A k-arc-coloring of a digraph D is an assignment of k colors to the arcs of D. An arc coloring of D is 1-type proper if no two consecutive arcs receive the same color, and is 2-type proper if no two arcs with a common tail or with a common head receive the same color. Denote by $\chi^{\prime 1}(D)$ and $\chi^{\prime 2}(D)$ the minimum numbers of colors required for a 1-type and 2-type arc coloring of D, respectively.

VDPA coloring and vdac-digraph

Define the out-arc set (in-arc set) of v to be the set of arcs starting with v (resp. ending with v). A vertex-distinguishing proper arc coloring (semi-vertex-
distinguishing proper arc coloring) of D is a proper arc coloring with no two vertices (no three vertices) have the same set of colors either for their out-arc sets or for their in-arc sets. Such a coloring is abbreviated VDPA coloring (semi-VDPA coloring). A digraph is a vdac-digraph (svdac-digrpah) if it has a VDPA coloring (semi-VDPA coloring). Clearly, every vdac-digraph is also a svdac-digraph.

Let $n_{S}^{+}=n_{S}^{+}(D)\left(n_{S}^{-}=n_{S}^{-}(D)\right)$ be the number of vertices with out-arc set (inarc set) assigned color set S. Alternatively, a (semi-)VDPA coloring of D can be defined as a proper arc coloring such that $n_{S}^{+} \leq 1$ and $n_{S}^{-} \leq 1\left(n_{S}^{+} \leq 2\right.$ and $\left.n_{S}^{-} \leq 2\right)$ for any color set S. Denote by $\chi_{v d}^{\prime 1}(D)$ and $\chi_{v d}^{\prime 2}(D)$ the minimum numbers of colors required for a 1-type VDPA coloring and a 2-type VDPA coloring of a vdac-digraph D, respectively.

Equitable edge (arc) coloring

For a proper k-edge-coloring (a proper k-arc-coloring) f of a graph G (a digraph $D)$, let E_{α} be the set of edges (arcs) colored by α and let $e_{\alpha}=\left|E_{\alpha}\right|, f$ is called equitable if $\left|e_{\alpha}-e_{\beta}\right| \leq 1$ for any two colors $\alpha, \beta \in\{1, \ldots, k\}$. Let $\chi_{e}^{\prime}(G)\left(\chi_{e}^{\prime 2}(D)\right)$ be the minimum number of colors required for an equitable proper edge (arc) coloring of G (of D) and let $\chi_{\text {evd }}^{\prime}(G)\left(\chi_{e v d}^{\prime i}(D)\right)$ be the minimum number of colors required for an equitable VDPE coloring (equitable i-type VDPA coloring, $i \in\{1,2\}$) of a vdec-graph G (a vdac-digraph D).

Directed path and cycle

A directed path or a directed k-path of a digraph D is a sequence of vertices $v_{1}, v_{2}, \ldots, v_{k}$ with $v_{1} v_{2}, \ldots, v_{k-1} v_{k} \in E(D)$, and a directed cycle or a directed k cycle of D is a sequence of vertices $v_{1}, v_{2}, \ldots, v_{k}$ with $v_{1} v_{2}, \ldots, v_{k-1} v_{k}, v_{k} v_{1} \in E(D)$. Throughout this thesis, a cycle (path) in a digraph always means a directed cycle (path).

Vertex-disjoint and arc-disjoint cycles (paths)

Two cycles (paths) are called vertex-disjoint (arc-disjoint) if they have no common vertex (arc).

Hamilton cycle and Hamiltonian digraph

A digraph D is Hamiltonian if it has a Hamilton cycle, i.e., a cycle containing all
vertices of D.

Cycle factor

A cycle factor of a digraph D is a spanning subdigraph of D whose components are vertex-disjoint cycles. A k-cycle-factor of D is a cycle factor consisting of k cycles. Note that a 1-cycle-factor is a Hamilton cycle, i.e., a cycle containing all the vertices of D, and a 2 -cycle-factor consists of two complementary cycles. We say that D contains all k-cycle-factors if for any possible cycle-lengths n_{1}, \ldots, n_{k} with $|V(D)|=n_{1}+\cdots+n_{k}$ there exists a k-cycle-factor with cycle-lengths n_{1}, \ldots, n_{k} respectively in D.

Connectivity

A digraph D is strong or 1 -connected if there exists a path from u to v for any two vertices u and v of D. Call D is k-connected if the removal of any set of fewer than k vertices results in a strong digraph. A digraph is cycle-connected if every two vertices are in a common cycle.

Tournament, bipartite tournament and multipartite tournament

A tournament is an orientation of a complete graph and a bipartite tournament (multipartite tournament) is an orientation of a complete bipartite (multipartite or c-partite, $c \geq 3$ is an integer) graph.

Regular bipartite tournament $\mathbf{F}_{4 \cdot \mathrm{k}}$

Define $F_{4 \cdot k}$ to be the k-regular bipartite tournament consisting of four independent sets K, L, M, N each of cardinality k, and all possible arcs from K to L, from L to M, from M to N and from N to K (See Figure 1.1).

Cut vertex

A vertex v of a graph (digraph) is a cut vertex if its edge set (arc set) can be partitioned into two nonempty sets E_{1} and E_{2} such that the subgraphs (subdigraphs) induced by E_{1} and E_{2} have just the vertex v in common.

Universal arc

An arc $u v$ of a digraph D is universal if for any vertex w of D there exists a cycle containing both $u v$ and w.

Max cut

Figure 1.1: Regular bipartite tournament $F_{4 \cdot k}$.

For a partition $\left\{V_{1}, V_{2}\right\}$ of $V(G)$, the set $\left(V_{1}, V_{2}\right)$ of edges crossing this partition, i.e.,

$$
\begin{equation*}
\left(V_{1}, V_{2}\right)=\left\{u v \in E(G): u \in V_{1}, v \in V_{2}\right\}, \tag{1.4}
\end{equation*}
$$

is called a cut of G. For a partition $\left\{V_{1}, V_{2}\right\}$ of $V(D)$, the set $\left(V_{1}, V_{2}\right)$ of arcs going from V_{1} to V_{2}, i.e.,

$$
\begin{equation*}
\left(V_{1}, V_{2}\right)=\left\{(u, v) \in E(D): u \in V_{1}, v \in V_{2}\right\}, \tag{1.5}
\end{equation*}
$$

is called a directed cut of D. When no confusion occurs, we use "cut" to denote "directed cut" in a digraph. A max cut is a cut of largest size in a graph (digraph).

Let $f(G)$ be the size of a maximum cut of G. Define $f(m)$ to be the minimum of $f(G)$ over graphs of size m. Let $g(D)$ be the size of a maximum directed cut of D. Define $g(m)$ to be the minimum of $g(D)$ over digraphs of size m.

Directed cut cover

A k-cut-cover of a digraph D is a family of k directed cuts such that each arc of D belongs to at least one cut. The cut cover number $c(D)$ of D is the minimum k for which D has a k-cut-cover.

Cayley graph and Cayley digraph

Let \mathcal{G} be an additive group, and let S be a subset of \mathcal{G} that is closed under taking inverses and does not contain the identity. The Cayley graph $X(\mathcal{G}, S)$ is defined with
vertex set \mathcal{G} and edge set

$$
\begin{equation*}
\{x y: y-x \in S\} \tag{1.6}
\end{equation*}
$$

If S is an arbitrary subset of \mathcal{G}, then we can define the Cayley digraph $X(\mathcal{G}, S)$ with vertex set \mathcal{G} and arc set

$$
\begin{equation*}
\{(x, y): y-x \in S\} \tag{1.7}
\end{equation*}
$$

Cayley digraph $\mathbf{X}\left(\mathbb{Z}_{2}^{k}, S_{k}\right)$

The digraph $\mathbf{X}\left(\mathbb{Z}_{\mathbf{2}}^{\mathbf{k}}, \mathbf{S}_{\mathbf{k}}\right)$ is a Cayley digraph $X(\mathcal{G}, S)$ with $\mathcal{G}=\mathbb{Z}_{2}^{k}$ consists of all binary vectors of length k and

$$
\begin{equation*}
S=S_{k}=\left\{e_{1}, \ldots, e_{k}\right\} \tag{1.8}
\end{equation*}
$$

where

$$
\begin{equation*}
e_{i}=\{0 \ldots 1 \ldots 0\} \tag{1.9}
\end{equation*}
$$

in which the i th position is assigned the number " 1 " and each one of other positions is assigned the number " 0 ". Alternatively, it is a digraph with vertex set $V=$ $\left\{v_{0}, v_{1}, \ldots, v_{2^{k}-1}\right\}$ and arc set $E=\left\{v_{i} v_{j}: j-i \equiv 2^{t}\left(\bmod 2^{k}\right)\right.$, where $t \in\{0,1, \ldots, k-$ $1\}\}$.

1.2 Arc colorings

The edge coloring problem is one of the fundamental problems in graph theory and has been studied extensively by many researchers. Clearly, every graph G satisfies $\chi^{\prime}(G) \geq \Delta(G)$. For a bipartite graph G, König showed that $\chi^{\prime}(G)=\Delta(G)$. In 1964, Vizing proved that $\chi^{\prime}(G) \leq \Delta(G)+1$ for every simple graph G. In this thesis, we mainly consider VDPA colorings of digraphs. First, we present some background and motivation. To be precise, we summarize the main results on proper arc colorings of digraphs and VDPE colorings of graphs. After this, we introduce VDPA colorings of digraphs.

1.2.1 Proper arc colorings

In 1972, Harner and Entringer [48] first considered the 1-type arc colorings of digraphs. The following results have been obtained.

Theorem 1.1 (Harner and Entringer [48]). Let D be a digraph and k a positive integer. Then $\left\lceil\log _{2} \chi(D)\right\rceil \leq \chi^{\prime 1}(D) \leq \min \left\{k: \chi(D) \leq\binom{ k}{k / 2\rfloor}\right\}$.

Theorem 1.2 (Harner and Entringer [48]). Let T_{n} be the transitive tournament on n vertices. Then $\chi^{\prime 1}\left(T_{n}\right)=\left\lceil\log _{2} n\right\rceil$.

Theorem 1.3 (Harner and Entringer [48]). There exists a digraph D with underlying graph K_{n} and $\chi^{\prime 1}(D)=\min \left\{k: \chi(D) \leq\binom{ k}{\lfloor k / 2\rfloor}\right\}$.

Theorem 1.4 (Harner and Entringer [48]). Let D be an acyclic digraph on n vertices. Then $\chi^{\prime 1}(D) \leq\left\lceil\log _{2} n\right\rceil$.

Theorem 1.2 and Theorem 1.3 imply that the bounds in Theorem 1.1 are tight. A digraph $D=(V(D), E(D))$ is symmetric if $u v \in E(D)$ implies that $v u \in E(D)$ for any arc $u v$. In 1981, Poljak and Rödl [77] got the arc chromatic number of symmetric digraphs with respect to its chromatic number.

Theorem 1.5 (Poljak and Rödl [77]). Let D be a symmetric digraph and k a positive integer. Then $\chi^{\prime 1}(D)=\min \left\{k: \chi(D) \leq\binom{ k}{\lfloor k / 2\rfloor}\right\}$.

In 2006, Bessy et al. [24] improved the lower bound in Theorem1.1 for digraphs with no sink or no source.

Theorem 1.6 (Bessy et al. [24]). Let D be a digraph with chromatic number $\chi(D)$.
(1) If D has no sink, then $\chi^{\prime 1}(D) \geq \log _{2}(\chi(D)+1)$.
(2) If D has no sink and no source, then $\chi^{11}(D) \geq \log _{2}(\chi(D)+2)$.

Moreover, arc colorings of digraphs with degree restrictions have attracted special attention. Let

$$
\begin{equation*}
\Phi(k)=\max \left\{\chi^{\prime 1}(D): D \in D(k)\right\}, \quad \Phi(k, l)=\max \left\{\chi^{\prime 1}(D): D \in D(k, l)\right\} . \tag{1.10}
\end{equation*}
$$

Note that the problem of finding $\chi^{\prime 1}(D)$ of a digraph D is NP-hard (see Poljak and Rödl [77]), and is equal to the problem of finding the minimum number of directed cuts of D such that each arc of D belongs to at least one directed cut.

For convenience, denote the function $\min \left\{k: n \leq\binom{ k}{\lfloor k / 2\rfloor}\right\}$ mentioned in Theorem 1.1 by $c(n)$. In 2006, Alon et al. [6] and Bessy et al. [24] got the following similar results independently.

Theorem 1.7 (Alon et al. [6]). Let k and l be two nonnegative integers. Then
(1) $\chi^{\prime 1}(D) \leq c(2 k+1)$ for any digraph $D \in D(k)$.
(2) $\chi^{\prime 1}(D) \leq c(2 k+2 l+2)$ for any digraph $D \in D(k, l)$.
(3) $\chi^{\prime 1}(D) \leq c(k+l+1)$ for any acyclic digraph $D \in D(k, l)$.

Theorem 1.8 (Bessy et al. [24]). Let k and l be two positive integers. Then
(1) If $k \geq 2$, then $\chi^{\prime 1}(D) \leq c(2 k)$ for any digraph $D \in D(k)$.
(2) If $k+l \geq 3$, then $\chi^{\prime 1}(D) \leq c(2 k+2 l)$ for any digraph $D \in D(k, l)$.

Theorem 1.9 (Bessy et al. [24]). Let k and l be two positive integers. Then
(1) $\max \left\{\log _{2}(2 k+3), c(k+1)\right\} \leq \Phi(k) \leq c(2 k+1)$.
(2) $\max \left\{\log _{2}(2 k+2 l+43), c(k+1), c(l+1)\right\} \leq \Phi(k, l) \leq c(2 k+2 l+2)$.

Some special cases have been considered.
Theorem 1.10 (Bessy et al. [24]). Let k and l be two positive integers.
(1) $\Phi(k, 0)=\Phi(k)$.
(2) $\Phi(k, 1)=\Phi(k)$ or $\Phi(k, k)=\Phi(k)+1$.
(3) $\Phi(k+1)=\Phi(k)+2$.
(4) If $\Phi(k)=\Phi(k-1)$ or $\Phi(k)=\Phi(k+1)$, then $\Phi(k, 1)=\Phi(k)$.

Theorem 1.11 (Bessy et al. [24]). (1) $\Phi(1,1)=\Phi(1,0)=\Phi(1)=3$.
(2) $\Phi(2,2)=\Phi(2,1)=\Phi(2,0)=\Phi(2)=4$.
(3) $\Phi(3,3)=\Phi(3,2)=5$.

In 2011, Bai et al. [11] proved the following result.
Theorem 1.12 (Bai et al. [11]). $\Phi(k, k) \leq c(2 k+1)+1$ and $\Phi(4,4)=\Phi(3,3)=5$.

In 2013, Xu et al. [103] considered $\Phi(5,5)$ and $\Phi(6,6)$.
Theorem 1.13 (Xu et al. [103]). $5 \leq \Phi(5,5) \leq \Phi(6,6) \leq 6$.
The 2-type proper arc coloring of digraphs is much simpler than the 1-type one. It was considered in [100] and the exact arc chromatic number was obtained.

Theorem 1.14 ([100]). Let D be a digraph. Then $\chi^{\prime 2}(D)=\max \left\{\Delta^{+}(D), \Delta^{-}(D)\right\}$.

1.2.2 Vertex-distinguishing proper edge colorings

The VDPE coloring of graphs was introduced and studied independently by Aigner et al. [3], by Burris and Schelp [31] and by Horňák and Soták [57]. In 1997, Burris and Schelp [31] conjectured that $\chi_{v d}^{\prime}(G) \leq|V(G)|+1$. Bazgan et al. [20] verified this conjecture in 1999.

Theorem 1.15 (Bazgan et al. [20]). Let G be a vdec-graph. Then $\chi_{v d}^{\prime}(G) \leq|V(G)|+$ 1.

Note that the above result is sharp by considering the complete graphs with even order. Burris and Schelp [31] also proposed the following conjecture.

Conjecture 1.1. Let G be a vdec-graph. Then $\chi_{v d}^{\prime}(G) \in\{\pi(G), \pi(G)+1\}$.
One can see that Conjecture 1.1 is analogous to the Vizing's Theorem on edge colorings. As for this conjecture we do not even know whether the bound of $\chi_{v d}^{\prime}(G) \leq$ $\pi(G)+c$ holds for some fixed constant c. However, the conjecture has been verified for some special classes of graphs, including complete graphs, complete bipartite graphs, paths, cycles and some trees by Burris and Schelp [31], union of paths, union of cycles by Balister [13], two families of cubic graphs, ladders and unions of K_{4}, by Taczuk and Woźniak [91] and any graph G with $\Delta(G) \geq \sqrt{2|V(G)|}+4$ and $\delta(G) \geq 5$ by Balister et al. [15]. In addition, graphs with big maximum degree or small maximum degree are considered. Bazgan et al. [19] showed that $\chi_{v d}^{\prime}(G) \leq \Delta(G)+5$ if $\delta(G)>|V(G)| / 3$. Balister et al. [13] showed that $\pi(G) \leq \chi_{v d}^{\prime}(G) \leq \pi(G)+5$ if $\Delta(G)=2$. Also, it is worth noting that Burris and Schelp [31] gave an upper bound of $\chi_{v d}^{\prime}(G)$ for a vdec-graph G as follows.

Theorem 1.16 (Burris and Schelp [31]). Let G be a vdec-graph with maximum degree Δ. Then $m_{1} \leq \chi_{v d}^{\prime}(G) \leq(\Delta+1)\left\lfloor 2 m_{2}+5\right\rfloor$, where

$$
\begin{equation*}
m_{1}=\max \left\{k!n_{k}^{1 / k}+\frac{k-1}{2}: 1 \leq k \leq \Delta\right\} \text { and } m_{2}=\max \left\{n_{k}^{1 / k}: 1 \leq k \leq \Delta\right\} \tag{1.11}
\end{equation*}
$$

Besides, Balister [12] considered the VDPE coloring of random graphs and gave a strong bound.

Theorem 1.17 (Balister [12]). Let G be a random graph on n vertices with edge probability $p=p(n)$. If $\frac{p n}{\log n}, \frac{(1-p) n}{\log n} \rightarrow \infty$ as $n \rightarrow \infty$, then the probability that $\chi_{v d}^{\prime}(G)=\Delta$ goes to 1 as $n \rightarrow \infty$.

For more details on VDPE colorings, we refer the readers to see $[12,13,15,19,38$, 83, 91].

Besides, in a proper edge coloring of a graph, instead of requiring that any two vertices have different color sets, it can be required that any two adjacent vertices have different color sets. Such a coloring is called adjacent vertex-distinguishing proper edge coloring (abbreviated adjacent VDPE coloring). It was introduced by Zhang et al. [108] and has also been considered intensively. Let $\chi_{\text {avd }}^{\prime}(G)$ be the smallest number of colors required for a adjacent VDPE coloring of a graph G. In 2002, Zhang et al. [108] proposed the following conjecture.

Conjecture 1.2 (Zhang et al. [108]). Let $G \neq C_{5}$ be a connected graph with at least 3 vertices. Then $\chi_{\text {avd }}^{\prime}(G) \leq \Delta(G)+2$.

Note that some special graphs, including paths, cycles, trees, complete bipartite graphs and complete graphs, were verified in [108]. Many results have been obtained concerning the bound of $\chi_{\text {avd }}^{\prime}(G)$. Among them, the following results are of special importance.

Theorem 1.18 (Akbari et al. [4]). Let $G \neq C_{5}$ be a connected graph with at least 3 vertices. Then $\chi_{\text {avd }}^{\prime}(G) \leq 3 \Delta(G)$.

Dai and $\mathrm{Bu}[37]$ improved the above result by one, i.e., $\chi_{\text {avd }}^{\prime}(G) \leq 3 \Delta(G)-1$. Balister et al. [14] gave a general bound depending on the chromatic number $\chi(G)$ of G.

Theorem 1.19 (Balister et al. [14]). Let $G \neq C_{5}$ be a connected graph with at least 3 vertices. Then $\Delta(G) \leq \chi_{\text {avd }}^{\prime}(G) \leq \Delta(G)+O(\log \chi(G))$.

In support of Conjecture 1.2, Hatami [51] showed the following result.

Theorem 1.20 (Hatami [51]). Let $G \neq C_{5}$ be a connected graph with at least 3 vertices and $\Delta(G)>10^{20}$. Then $\Delta(G) \leq \chi_{\text {avd }}^{\prime}(G) \leq \Delta(G)+300$.

For more details on adjacent VDPE colorings, we refer the readers to $[4,14,37$, 46, 51, 56, 98, 99, 108].

Motivated by the conjectures and results on VDPE colorings for undirected graphs mentioned above, we introduce and study the analogous problem for digraphs, i.e., the vertex-distinguishing proper arc coloring (abbreviated VDPA coloring) of digraphs.

1.2.3 Vertex-distinguishing proper arc colorings

Note that an isolated vertex can be regarded both as a source and as a sink. One can check that the following fact holds.

Fact 1.1. A digraph D is a vdac-digraph (resp. svdac-digraph) if and only if D contains at most one source (resp. two sources) and at most one sink (resp. two sinks).

Now we condier $\chi_{v d}^{\prime 1}(D)$ and $\chi_{v d}^{\prime 2}(D)$ of D. It is clear that $\chi_{v d}^{\prime 1}(D) \geq \chi^{\prime 1}(D)$ and $\chi_{v d}^{\prime 2}(D) \geq \max \left\{\chi^{\prime 2}(D), \pi(D)\right\}$. Note that $\chi^{\prime 2}(D)=\Delta(D)$ and $\pi(D) \geq \Delta(D)$. Thus $\chi_{v d}^{\prime 2}(D) \geq \pi(D)$. In this thesis, we mainly consider the 2-type arc coloring of digraphs. Unless otherwise stated, the proper arc coloring mentioned below always means the 2-type arc coloring. Analogous to Conjecture 1.1 for undirected graphs, we propose the following conjecture for digraphs.

Conjecture 1.3. Let D be a vdac-digraph. Then $\chi_{v d}^{\prime 2}(D)=\pi(D)$.

Despite Conjecture 1.3 remains unsolved, some good progresses concerning it have been obtained in Chapter 2. To be precise, we give upper bounds for $\chi_{v d}^{\prime 2}(D)$ and $\chi_{s v d}^{\prime 2}(D)$ respectively. In particular, the value of $\chi_{v d}^{\prime 2}(D)$ is obtained for some regular digraph D. Moreover, we show that the values of $\chi_{v d}^{\prime 2}(D)$ and $\chi_{s v d}^{\prime 2}(D)$ will not be changed if the coloring, in addition, required to be equitable.

1.3 Short cycles

The study of cycles is one of the most important and most studied problems in graph theory. There are many papers seeking sufficient conditions for the existence of a Hamilton cycle in a graph (digraph). In this thesis, we focus on short cycles in digraphs and especially consider the Caccetta-Häggkvist conjecture.

1.3.1 Caccetta-Häggkvist conjecture

The famous Caccetta-Häggkvist conjecture (which developed in 1978 and generalised as an earlier conjecture of Behzad et al. [21]) is one of the most famous conjectures in digraph theory. It concerns the length of short cycles and has inspired years of research into sufficient conditions for short cycles in digraphs. There are two equivalent statements of the conjecture.

Conjecture 1.4 (Caccetta and Häggkvist [32]). Every digraph on n vertices without cycles of lengths at most l contains a vertex with outdegree at most $\frac{n-1}{l}$.

Conjecture 1.5 (Caccetta and Häggkvist [32]). Every digraph on n vertices with minimum outdegree r contains a cycle of length at most $\left\lceil\frac{n}{r}\right\rceil$.

For Conjecture 1.4, it is obviously true for $l=2$. Note that a digraph with a 2-cycle verifies Conjecture 1.5 and thus it suffices to consider oriented graphs. Also, note that lots of work has been done around the Caccetta-Häggkvist conjecture. To be precise, for Conjecture 1.5, it has been proved for $r=2$ by Caccetta and Häggkvist [32], for $r=3$ by Hamidoune [50], for $r=4,5$ by Hoáng and Reed [55], and for $r<\sqrt{n / 2}$ by Shen [86]. Recently, Lichiardopol [69] proved the conjecture for
oriented graphs with independence number two. Besides, some weaker statements were obtained. Chvátal and Szemerédi [34] proved that every oriented graph on n vertices with minimum outdegree r contains a cycle of length at most $\frac{2 n}{r+1}$, and they also proved that such an oriented graph contains a cycle of length at most $\frac{n}{r}+2500$. In 1988, Nishimura [75] reduced the constant from 2500 to 304. In 1998, Shen [87] reduced the constant to 73 and this is the best known improvement.

Theorem 1.21 (Shen [85]). Every digraph on n vertices with minimum outdegree r contains a cycle of length at most $\left\lceil\frac{n}{r}\right\rceil+73$.

Recall that the minimum degree of D is $\delta(D)=\min \left\{\delta^{+}(D), \delta^{-}(D)\right\}$. It is natural to consider the minimum degree that forces an l-cycle. In 2010, Kelly et al. [62] proposed the following conjecture.

Conjecture 1.6 (Kelly et al. [62]). Let $l \geq 4$ be an integer and let $k \geq 3$ be the smallest integer such that k does not divide l. Then there exists an integer $n_{0}=n_{0}(l)$ such that every oriented graph D on $n \geq n_{0}$ vertices with $\delta(D) \geq\lfloor n / k\rfloor+1$ contains an l-cycle.

In the same paper, they gave an affirmative answer to the conjecture for l that is not a multiple of 3 .

Theorem 1.22 (Kelly et al. [62]). Let $l \geq 4$ and let D be an oriented graph on $n \geq 10^{10} l$ vertices with $\delta(D) \geq\lfloor n / 3\rfloor+1$. Then D contains an l-cycle.

Later, in 2013, Kühn et al. [63] proved Conjecture 1.6 asymptotically for the case when l is large enough compared to k and $k \geq 7$.

Theorem 1.23 (Kühn et al. [63]). Let $k \geq 7$ and $l \geq 10^{7} k^{6}$. Suppose that $k \geq 3$ is the smallest integer that does not divide l. Then for all $\eta>0$ there exists an integer $n_{1}=n_{1}(\eta, l)$ such that every oriented graph D on at least $n \geq n_{1}$ vertices with $\delta(D) \geq(1+\eta) n / k$ contains an l-cycle.

The special case of $r=\lceil n / 3\rceil$ has attracted most interest, which states that every digraph with minimum outdegree $\lceil n / 3\rceil$ has a 3 -cycle, i.e., a (directed) triangle. Caccetta and Häggkvist [32] gave the first weaker result for this case.

Theorem 1.24 (Caccetta and Häggkvist [32]). For $\alpha \geq(3-\sqrt{5}) / 2 \approx 0.3819$, every digraph D with $\delta^{+}(D) \geq \alpha$ contains a triangle.

Bondy [26] showed that $\alpha \geq(2 \sqrt{6}-3) / 5 \approx 0.3797$ suffices, Shen [85] relaxed it to $\alpha \geq 3-\sqrt{7} \approx 0.3542$, Hamburger et al. [49] improved it to 0.3531 , and Hladký et al. [54] improved the bound to 0.3465 . The best know value of α, till now, is as follows.

Theorem 1.25 (Joannis de Verclos et al. [60]). Let D be a digraph on n vertices and let $\alpha \geq 0.3386$. If $\delta^{+}(D) \geq \alpha n$, then D contains a triangle.

De Graaf et al. [39] firstly considered the minimum degree instead of the minimum outdegree.

Theorem 1.26 (De Graaf et al. [39]). For $\beta \geq 0.349$, every digraph D with $\delta(D) \geq$ βn contains a triangle.

Shen [85] showed that $\beta \geq 0.348$ suffices. The best known value of β, till now, is as follows.

Theorem 1.27 (Hamburger et al. [49]). Let D be a digraph on n vertices and let $\beta \geq 0.346$. If $\delta(D) \geq \beta n$, then D contains a triangle.

1.3.2 Caccetta-Häggkvist conjecture with forbidden subdigraphs

In particular, characterizing some forbidden subdigraphs is another meaningful way to consider this conjecture. In 2012, Razborov [80] verified the case $l=3$ with three well defined (induced) forbidden subdigraphs.

Theorem 1.28 ([80]). Let Γ be an oriented graph on n vertices without directed triangles. If
(1) Γ contains none of the oriented graphs of Figure 1.2 as an induced subdigraph, or
(2) Γ contains none of the oriented graphs of Figure 1.3 as a subdigraph (not necessarily induced),
then Γ contains a vertex with outdegree at most $\frac{n-1}{3}$.

In-pendant

Out-pendant

Figure 1.2: Forbidden oriented graphs for Theorem 1.28 (1).

Figure 1.3: Forbidden oriented graphs for Theorem 1.28 (2).

In Chapter 3, we generalize Razborov's result by verifying the conjecture for $l \geq 4$ with $l+1$ well defined (induced) forbidden subdigraphs.

1.4 Disjoint cycles

There are two types of disjoint cycles in undirected graphs (digraphs), namely, vertexdisjoint cycles and edge-disjoint cycles (resp. arc-disjoint cycles). We will consider disjoint cycles of any lengths and of given length, respectively.

1.4.1 Disjoint cycles of any lengths

The study of vertex-disjoint cycles in undirected graphs has been considered significantly. One of the famous results regarding this is as follows.

Theorem 1.29 (Corrádi and Hajnal [36]). Let G be an undirected graph on at least $3 r$ vertices and $\delta(G) \geq 2 r$. Then G contains at least r vertex-disjoint cycles.

The complete 3-partite graph with each partite set having exactly r vertices shows that the result is best possible. By using induction on the minimum degree for Theorem 1.29, we have the following corollary.

Corollary 1.1 (Corrádi and Hajnal [36]). Let G be an undirected graph on at least $3 r$ vertices and $\delta(G) \geq 2 r$. Then G contains at least $\binom{r+1}{2}$ edge-disjoint cycles.

Note that a trivial fact holds with only the minimum degree condition (one can verify this by deleting the edges of a cycle and using the induction on the minimum degree recursively).

Fact 1.2. Let G be an undirected graph with minimum degree at least $2 r$. Then G contains at least r edge-disjoint cycles.

Justesen [61] improved Theorem 1.29 by showing the following.
Theorem 1.30 (Justesen [61]). Let G be a graph on at least $3 r$ vertices. If $d(x)+$ $d(y) \geq 4 r$ for any two non-adjacent vertices x and y of G, then G contains at least r vertex-disjoint cycles.

Wang [96] strengthened Justesen's result by showing that the result holds if $d(x)+$ $d(y) \geq 4 r-1$. Motivated by Theorem 1.29, Bermond and Thomassen [23] proposed an analogous conjecture on vertex-disjoint cycles in 1981. This is regarded as one of the most famous conjectures in digraph theory.

Conjecture 1.7 (Bermond and Thomassen [23]). Let D be a digraph with minimum outdegree at least $2 r-1$. Then D contains at least r vertex-disjoint cycles.

The complete digraph on $2 r-1$ vertices implies that if the conjecture is true then it would be best possible. Note that the conjecture is trivially true for $r=1$. Thomassen [93] and Lichiardopol et al. [71] proved it for $r=2$ and $r=3$, respectively. Bessy et al. [25] verified it for regular tournaments in 2010. In 2014, Bang-Jensen et al. [17] verified it for tournaments and proposed a stronger conjecture.

Conjecture 1.8 (Bang-Jensen et al. [17]). Let D be a digraph with girth at least $g \geq 2$ and with minimum outdegree at least $\frac{g}{g-1} r$. Then D contains at least r vertex-disjoint cycles.

There are also other results concerning Conjecture 1.7. Among them, it is worth mentioning the following one, which, firstly, shows that the minimum outdegree can be bounded by a linear function of r.

Theorem 1.31 (Alon [5]). Let D be a digraph with minimum outdegree at least $64 r$. Then D contains at least r vertex-disjoint cycles.

For more details on Conjecture 1.7, we refer the readers to see [5,17,23, 25, 71, 93]. Note that the analogous statement (a linear bound of minimum degree int terms of r guaranteeing r vertex-disjoint cycles) for undirected graphs are obvious. One can show the following fact by deleting a shortest cycle and then use induction.

Fact 1.3. Let G be an undirected graph with minimum degree at least $3 r-1$. Then G contains at least r vertex-disjoint cycles.

As a corollary of Theorem 1.31, we have the following result on the number of arc-disjoint cycles.

Corollary 1.2 (Alon [5]). Let D be a digraph with minimum outdegree at least r. Then D contains at least $\frac{1}{128} r^{2}$ arc-disjoint cycles.

By Conjecture 1.7, we can conjecture the following and this can be regarded as an analogous statement of Fact 1.2.

Conjecture 1.9. Let D be a digraph with minimum outdegree at least $2 r-1$. Then D contains at least r^{2} arc-disjoint cycles.

The maximum number of arc-disjoint cycles in digraphs was considered by Alon et al. [8] and the following conjecture was proposed.

Conjecture 1.10 (Alon et al. [8]). Let D be a r-regular digraph. Then D contains at least $\binom{r+1}{2}$ arc-disjoint cycles.

Three weaker results have been obtained in the same paper.

Theorem 1.32 (Alon et al. [8]). Let D be a r-regular digraph. Then D contains at least $5 r / 2-2$ arc-disjoint cycles.

Theorem 1.33 (Alon et al. [8]). Let D be a r-regular digraph. Then D contains at least ϵr^{2} arc-disjoint cycles, where $\epsilon=3 / 2^{19}$.

Theorem 1.34 (Alon et al. [8]). Let D be a r-regular digraph. Then D contains at least $r^{2} / 8$ Inr arc-disjoint cycles.

Very recently, Lichiardopol [70] obtained some new bounds on the maximum number of arc-disjoint cycles in a digraph. To be precise, it was proved that for $r \leq 4$ the result in Theorem 1.32 is valid for all digraphs with minimum outdegree at least r. Also, it was shown that for $r \geq 4$ every digraph with minimum outdegree at least r contains at least $3 r-4$ arc-disjoint cycles.

1.4.2 Disjoint cycles of given lengths

In 2000, Wang considered vertex-disjoint triangles (3-cycles) in digraphs and showed the following. Here let $\delta^{*}(D)=\min \left\{d^{+}(v)+d^{-}(v): v \in V(D)\right\}$.

Theorem 1.35 (Wang [97]). Let D be a digraph on n vertices with $\delta^{*}(D) \geq\lfloor(3 n-$ $3) / 2\rfloor$. Then D contains $\lfloor n / 3\rfloor$ vertex-disjoint triangles.

Later, in 2005, Zhang and Wang [104] considered vertex-disjoint 4-cycles in digraphs.

Theorem 1.36 (Zhang and Wang [104]). Let D be a digraph on $4 r$ vertices with $\delta^{*}(D) \geq 6 r-2$. Then D contains r vertex-disjoint 4 -cycles unless D is isomorphic to a special digraph.

In 2010, Lichiardopol [68] considered vertex-disjoint cycles of given length in tournaments. The following result has been obtained.

Theorem 1.37 (Lichiardopol [68]). Let T be a tournament with $\min \left\{\delta^{+}(T), \delta^{-}(T)\right\} \geq$ $(q-1) r-1$. Then T contains r vertex-disjoint q-cycles.

Lichiardopol [68] conjectured in the same paper that T contains r vertex-disjoint q-cycles if $\delta^{+}(T) \geq(q-1) r-1$. Motivated by the result and the conjecture above, we consider the analogous problem for bipartite tournaments in Chapter 4. As a corollary, we verify Conjecture 1.7 for bipartite tournaments.

1.5 Cycle factors

1.5.1 Cycle factors in graphs

Note that a 1 -cycle-factor of a graph is a Hamilton cycle. The following two results are two fundamental results on Hamilton cycles in graphs.

Theorem 1.38 (Dirac [40]). Let G be a 2-connected graph on n vertices with minimum degree at least $n / 2$. Then G has a Hamilton cycle.

Theorem 1.39 (Ore [76]). Let G be a graph on n vertices. If $d(x)+d(y) \geq n$ for any two non-adjacent vertices x and y of G, then G has a Hamilton cycle.

In Theorem 1.29, if the graph has exactly $3 k$ vertices then it has a k-cycle-factor such that each cycle is a triangle. This implies a result on k-cycle-factors of graphs. In 1984, El-Zahar [42] considered the 2-cycle-factors of given cycle-lengths in graphs. Theorem 1.40 (El-Zahar [42]). Let G be a graph of order $n=n_{1}+n_{2}$ with $n_{1}, n_{2} \geq 3$ and minimum degree at least $\left\lceil n_{1} / 2\right\rceil+\left\lceil n_{2} / 2\right\rceil$. Then G has a 2-cycle-factor of cyclelengths n_{1} and n_{2}.

1.5.2 Cycle factors in digraphs

Note that a 1-cycle-factor of a digraph is a directed Hamilton cycle. Define the minimum semidegree of D to be the minimum of its minimum outdegree and minimum indegree. For an analogue of Theorem 1.38 in digrahs, Ghouila-Houri [45] proved the following result.

Theorem 1.41 (Ghouila-Houri [45]). Let D be a strong digraph on n vertices with $\delta^{+}(D)+\delta^{-}(D) \geq n$. Then D has a Hamilton cycle. In particular, if D has minimum semidegree at least $n / 2$ then D has a Hamilton cycle.

For an analogue of Theorem 1.39, Woodall [101] proved the following result.
Theorem 1.42 (Woodall [101]). Let D be a strong digraph on n vertices with $d^{+}(x)+$ $d^{-}(y) \geq n$ for every pair $x \neq y$ of vertices such that $x y \notin E(D)$. Then D has a Hamilton cycle.

Woodall's theorem is generalized by Meyniel's theorem as follows.

Theorem 1.43 (Meyniel [74]). Let D be a strong digraph on n vertices with $d(x)+$ $d(y) \geq 2 n-1$ for any two non-adjacent vertices x and y of D. Then D has a Hamilton cycle.

For 2-cycle-factors in digraphs, Little and Wang [72] got the following theorem.

Theorem 1.44 (Little and Wang [72]). Let D be a digraph on n vertices. If $d(x) \geq$ $3(n-1) / 2$, then D has a 2-cycle-factor of any given cycle-lengths, i.e., D is strongly 2-cycle-factorable.

Amar and Raspaud [10] considered the k-cycle-factors of given lengths in digraphs.

Theorem 1.45 (Amar and Raspaud [10]). Let D be a digraph on n vertices and at least $(n-1)(n-2)+3$ arcs, and let n_{1}, \ldots, n_{k} be k integers with $n=n_{1}+\ldots+n_{k}$ and $n_{i} \geq 3$ for $i=1, \ldots, k$. Then D has a k-cycle-factor of cycle-lengths n_{1}, \ldots, n_{k} except in two cases:
(1) $n=6, n_{1}=n_{2}=3$ and D contains an independent set with 3 vertices;
(2) $n=9, n_{1}=n_{2}=n_{3}=3$ and D contains an independent set with 4 vertices.

One can see that the conditions in these theorems almost guarantee that the digraph is "more" than a tournament. It is natural to consider the cycle factors in tournaments and bipartite tournaments.

1.5.3 Cycle factors in bipartite tournaments

Note that every strong tournament is Hamiltonian and is thus has a 1-cycle-factor. The problem of 2-cycle-factors in 2-connected tournaments was completely solved by Reid [81] and Song [89].

Theorem 1.46 (Reid [81] and Song [89]). Let T be a 2-connected tournament with $|V(T)| \geq 6$. Then T has a 2-cycle-factor of lengths t and $|V(T)|-t$ for all $3 \leq t \leq$ $|V(T)|-3$, unless T is isomorphic to T_{7}.

The problem of 2-cycle-factors in regular bipartite tournaments was investigated by Song [88], Zhang and Song [106], Zhang et al. [105], and Zhang and Wang [107]. They showed that every k-regular bipartite tournament with $k \geq 2$ has a 2 -cyclefactor. Volkmann [94] proved that every regular c-partite tournaments with $c \geq 3$ on at least 8 vertices have a 2 -cycle-factor. In [105], it was conjectured that every k regular bipartite tournament not isomorphic to $F_{4 \cdot k}$ has a 2-cycle-factor of all possible cycle-lengths.

Conjecture 1.11 (Zhang et al. [105]). Let B be a k-regular bipartite tournament not isomorphic to $F_{4 \cdot k}$. Then B has a 2-cycle-factor of even cycle-lengths t and $|V(B)|-t$ for all $4 \leq t \leq|V(B)|-4$.

Conjecture 1.11 is true for $t=4$. We show that Conjecture 1.11 is true for $t=6$ in Chapter 5.

1.6 Universal arcs and directed cuts

1.6.1 Universal arcs in digraphs

The concept universal arc is very new and was first appeared in [2] in 1999. In the same paper, Ádám introduced the following problem.

Problem 1.1. Does every cycle-connected digraph contain a universal arc?

Hetyei [52] conjectured in 2001 that the answer would be yes. Hubenko [58], and Volkmann and Winzen [95] verified this for bipartite tournaments in 2008 and multipartite tournaments in 2009, respectively.

Theorem 1.47 (Hubenko [58]). Let B be a cycle-connected bipartite tournament. Then every maximal cycle of B has a universal arc.

Theorem 1.48 (Volkmann and Winzen [95]). Let D be a multipartite tournament. If D is cycle-connected, then D contains a universal arc. If D is 1 -connected with $\delta(D) \geq 2$, then every longest cycle of D contains a universal arc.

1.6.2 Universal arcs in tournaments

Let $\mathbf{T}_{\mathbf{s}}^{*}$ be the set of 1-connected tournaments with one cut vertex v such that the subtournaments induced by $N^{+}(v)$ and $N^{-}(v)$ are 1-connected.

Figure 1.4: A tournament in $\mathbf{T}_{\mathbf{s}}^{*}$.

Note that an arc in a Hamilton cycle is obviously a universal arc and a tournament not 1-connected has no universal arc. Recall that a tournament is 1-connected if and only if it has a Hamilton cycle (see [33]). So a 1-connectivity can guarantee the existence of a universal arc in a tournament. In Chapter 6, we show that the converse statement is also true. Moreover, we show that every arc of a tournament is universal if and only if it is 2 -connected or belong to $\mathbf{T}_{\mathbf{S}}^{*}$.

1.6.3 Max cuts in graphs and digraphs

The well-known Max Cut problem asks for a largest cut in a graph (digraph). It is a NP-hard problem and has been the focus of extensive study, both from the algorithmic aspect in computer science and the extremal aspect in combinatorics. The algorithmic problem asks for good algorithms that determine $f(G)$ and $g(G)$. The extremal problem asks for the value of $f(m)$ and $g(m)$. Here we focus on the extremal problem and especially consider the digraphs. We first give some progress of the problem.

Note that a random bipartition of an undirected graph G gives a cut with expected size $|E(G)| / 2$. Thus $f(m) \geq m / 2$. In 1973, Edwards showed the following theorem.

Theorem 1.49 (Edwards [41]).

$$
f(m) \geq\left\lceil\frac{m}{2}+\frac{-1+\sqrt{1+8 m}}{8}\right\rceil
$$

The bound is tight by considering the complete graphs. In 1998, Alon and Halperin [7] gave the following lower bound for $f(m)$.

Theorem 1.50 (Alon and Halperin [7]). For $m=\binom{n}{2}+k$ with $0 \leq k<n$, we have

$$
f(m) \geq\left\lfloor\frac{n^{2}}{4}\right\rfloor+\min \left\{\left\lceil\frac{n}{2}\right\rceil, f(k)\right\}
$$

Furthermore, they conjectured that the " $=$ " in the above theorem always holds.

Conjecture 1.12 (Alon and Halperin [7]). For $m=\binom{n}{2}+k$ with $0 \leq k<n$, we have

$$
f(m)=\left\lfloor\frac{n^{2}}{4}\right\rfloor+\min \left\{\left\lceil\frac{n}{2}\right\rceil, f(k)\right\} .
$$

For more results on cuts in graphs, we refer to [65,78]. It is easy to see that $g(m) \geq f(m) / 2$. So $g(m) \geq m / 4$ and furthermore by Theorem 1.49 we have

Theorem 1.51.

$$
g(m) \geq\left\lceil\frac{m}{4}+\frac{-1+\sqrt{1+8 m}}{16}\right\rceil .
$$

Alon [6] and Lehel [66] considered the maximum directed cuts in digraphs with degree restrictions and obtained the following results respectively.

Theorem 1.52 (Alon [6]). If D is a digraph with m edges and contains no vertex with outdegree larger than k, then $g(D) \geq\left(\frac{1}{4}+\frac{1}{8 k+4}\right) m$.

Theorem 1.53 (Lehel [66]). If $D \in D(k, k)$ is acyclic (i.e., contains no cycle) and has m arcs, then $g(D) \geq\left(\frac{1}{4}+\frac{1}{8 k+4}\right) m$.

As mentioned in Section 1.2.1, the minimum cut cover problem is equivalent to the 1-type arc coloring of digraphs. For more introduction on cut cover of digraphs, one can see in Section 1.2.1.

1.6.4 Directed cuts in a type of Cayley digraph

Note that $\left|\mathbb{Z}_{2}^{k}\right|=2^{k}$ and $\left|S_{k}\right|=k$. So $d^{-}(v)=d^{+}(v)=k$ for every vertex v of $X\left(\mathbb{Z}_{2}^{k}, S_{k}\right)$, and $\left|E\left(X\left(\mathbb{Z}_{2}^{k}, S_{k}\right)\right)\right|=k 2^{k}$. Alon et al. [6] showed that for every digraph D with m arcs and maximum outdegree at most d,

$$
\begin{equation*}
g(D) \geq\left(\frac{1}{4}+\frac{1}{8 d+4}\right) m \tag{1.12}
\end{equation*}
$$

Thus

$$
\begin{equation*}
g\left(X\left(\mathbb{Z}_{2}^{k}, S_{k}\right)\right) \geq\left(\frac{1}{4}+\frac{1}{8 k+4}\right) k 2^{k} . \tag{1.13}
\end{equation*}
$$

Let

$$
\begin{equation*}
h(n)=\min \left\{p:\binom{p}{\lfloor p / 2\rfloor} \geq n\right\} \tag{1.14}
\end{equation*}
$$

where n and p are positive integers. Alon et al. [6] proved that the arcs of digraphs in which every vertex has either outdegree at most k or indegree at most k can be covered by $h(4 k+2)$ cuts. Bai et al. [11] showed that $h(2 k+1)+1$ cuts suffice. It follows that

$$
\begin{equation*}
c\left(X\left(\mathbb{Z}_{2}^{k}, S_{k}\right)\right) \leq h(2 k+1)+1 \tag{1.15}
\end{equation*}
$$

However, it is not best possible. In Chaper 6, we give better bound for $g\left(X\left(\mathbb{Z}_{2}^{k}, S_{k}\right)\right)$ and exact value of $c\left(X\left(\mathbb{Z}_{2}^{k}, S_{k}\right)\right)$.

Chapter 2

Vertex-Distinguishing Proper Arc Colorings of Digraphs

2.1 Introduction

For a digraph D, we define $B^{D}=(X, Y ; E)$ to be a (unique) corresponding balanced bipartite graph satisfying that $X=Y=V(D)$ and $E\left(B^{D}\right)=\{x y: x \in X, y \in$ $Y, \overrightarrow{x y} \in A(D)\}$. Let $\delta^{X}\left(B^{D}\right)$ and $\Delta^{X}\left(B^{D}\right)$ (resp. $\delta^{Y}\left(B^{D}\right)$ and $\Delta^{Y}\left(B^{D}\right)$) be the minimum and the maximum of degrees of vertices in X (resp. in Y), respectively. Put $\delta\left(B^{D}\right)=\min \left\{\Delta^{X}\left(B^{D}\right), \Delta^{Y}\left(B^{D}\right)\right\}$ and $\Delta\left(B^{D}\right)=\max \left\{\delta^{X}\left(B^{D}\right), \delta^{Y}\left(B^{D}\right)\right\}$. One can check that the following facts hold by definitions.

$$
\begin{array}{r}
\Delta^{+}(D)=\Delta^{X}\left(B^{D}\right), \Delta^{-}(D)=\Delta^{Y}\left(B^{D}\right), \\
\delta^{+}(D)=\delta^{X}\left(B^{D}\right), \delta^{-}(D)=\delta^{Y}\left(B^{D}\right), \tag{2.1}\\
\Delta\left(B^{D}\right)=\Delta(D), \delta\left(B^{D}\right)=\delta(D) .
\end{array}
$$

The proper arc coloring of D is now equivalent to the proper edge coloring of B^{D}. Note that $\chi^{\prime}(B)=\Delta(B)$ for any bipartite graph B. The following fact (see also in [100]) holds directly.

Fact 2.1. Let D be a digraph. Then $\chi^{\prime 2}(D)=\chi^{\prime}\left(B^{D}\right)=\Delta\left(B^{D}\right)=\Delta(D)$.
A proper edge coloring of a bipartite graph $B=(X, Y ; E)$ is called partial-vertex-
distinguishing if no two vertices in X and no two vertices in Y are incident with the same set of colors. A bipartite graph is partial-vertex-distinguishing edge-colorable or a pvdec-bipartite graph if it has a partial-vertex-distinguishing proper edge coloring (abbreviated PVDPE coloring). Note that B is a pvdec-bipartite graph if and only if both X and Y contain at most one isolated vertex.

One can check that the VDPA coloring of a vdac-digraph D is equivalent to the PVDPE coloring of B^{D}. Denote by $\chi_{p v d}^{\prime}(B)$ the minimum number of colors required for a partial-vertex-distinguishing proper edge coloring of B. Let $\delta(B)=$ $\min \left\{\delta_{X}(B), \delta_{Y}(B)\right\}$ and $\Delta(B)=\max \left\{\Delta_{X}(B), \Delta_{Y}(B)\right\}$.

Fact 2.2. Let D be a vdac-digraph. Then $\chi_{v d}^{\prime 2}(D)=\chi_{p v d}^{\prime}\left(B^{D}\right)$.

Fact 2.3. There is a one-to-one correspondence between digraphs (not necessarily simple and loops are allowed) with order n and balanced bipartite graphs with order $2 n$.

Let $B=(X, Y ; E)$ be a bipartite graph. Let $n_{d_{X}}^{X}\left(\right.$ resp. $\left.n_{d_{Y}}^{Y}\right)$ be the number of vertices of degree d_{X} in X (resp. degree d_{Y} in Y) in B. Define

$$
\pi^{\prime}(B)=\min \left\{\begin{array}{c}
\left.k \in \mathbf{Z}: \begin{array}{c}
k \\
d_{X}
\end{array}\right) \geq n_{d_{X}}^{X} \text { for } \delta_{X} \leq d_{X} \leq \Delta_{X} \tag{2.2}\\
\binom{k}{d_{Y}} \geq n_{d_{Y}}^{Y} \text { for } \delta_{Y} \leq d_{Y} \leq \Delta_{Y}
\end{array}\right\}
$$

It is clear that $\chi_{p v d}^{\prime}(B) \geq \pi^{\prime}(B)$. Analogous to Conjecture 1.3 we conjecture that $\chi_{p v d}^{\prime}(B)=\pi^{\prime}(B)$.

Let α and β be two colors of a proper edge coloring of an undirected graph G. An (α, β)-Kempe-path is a maximal path in G consisting of edges colored by α and β. Note that the colors α and β appear alternatively in an (α, β)-Kempe-path.

In the rest of this chapter, the proofs for the results of digraphs will be transferred to the proofs the corresponding results of the balanced bipartite graphs and the Kemp-path will play an important role in the proofs.

2.2 Vertex-distinguishing proper arc colorings of digraphs

Note that an isolated vertex can be regarded both as a source and as a sink. One can check that the following fact holds.

Fact 2.4. A digraph D is a vdac-digraph (resp. svdac-digraph) if and only if D contains at most one source (resp. two sources) and at most one sink (resp. two sinks).

Despite Conjecture 1.3 remains unsolved, some good progresses concerning it have been obtained. In particular, we get the following result.

Theorem 2.1. Let D be a vdac-digraph on n vertices and $t \geq 1$ an integer. If $\delta(D) \geq \frac{n-1}{t}$, then $\chi_{v d}^{\prime 2}(D) \leq \min \{n, \Delta(D)+t\}$.

Corollary 2.1. Let D be a vdac-digraph on n vertices. Then $\chi_{v d}^{\prime 2}(D) \leq n$.
We will show that $\chi_{v d}^{\prime 2}\left(\vec{K}_{n}\right)=n$, see in Theorem 2.3 as follows, where \vec{K}_{n} is a complete symmetric digraph on n vertices. This implies that Theorem 2.1 and Corollary 2.1 cannot be improved in general.

Proof of Theorem 2.1. For a proper edge coloring f of a bipartite graph B, let $F(u)$ be the set of colors incident with u. It suffices to show the following result.

Lemma 2.1. Let B be a pvdec-balanced bipartite graph on $2 n$ vertices and with $\delta(B) \geq \frac{n-1}{t}$, where $t \geq 1$ is an integer. If $\Delta(B) \leq n-1$, then $\chi_{p v d}^{\prime}(B) \leq$ $\min \{n, \Delta(B)+t\}$. If $\Delta(B)=n$, then $\chi_{p v d}^{\prime}(B) \in\{n, n+1\}$.

Proof. We first prove the following claim, on which the above lemma is heavily based.

Claim 2.1. Let $B=(X, Y ; E)$ be a pvdec-bipartite graph and $t \geq 1$ an integer. Then there exists a proper k-edge-coloring of B with $n_{S}^{X} \leq t$ and $n_{S}^{Y} \leq t$ for any $S \subseteq\{1, \ldots, k\}$, where k is the minimum integer such that $d_{X}\left(k-d_{X}\right) \geq n_{d_{X}}^{X}-t$ for $\delta_{X} \leq d_{X} \leq \Delta_{X}$ and $d_{Y}\left(k-d_{Y}\right) \geq n_{d_{Y}}^{Y}-t$ for $\delta_{Y} \leq d_{Y} \leq \Delta_{Y}$.

Proof. With respect to an edge coloring f of B, a vertex $x \in X$ (resp. $y \in Y$) is called bad if $n_{F(x)}^{X} \geq 2$ (resp. $\left.n_{F(y)}^{Y} \geq 2\right)$ and good otherwise. Note that $k \geq \Delta(B)=\chi^{\prime}(B)$. There exists a proper k-edge coloring of B. Let f_{0} be one coloring with minimal number of bad vertices among all the proper k-edge colorings of B.

If $\max \left\{n_{S}^{X}, n_{S}^{Y}\right\} \leq t$ for any $S \subseteq\{1, \ldots, k\}$, then we are done. Assume without loss of generality that $n_{F_{0}(u)}^{X} \geq t+1$ for some $u \in X$. Since $t \geq 1$, we have that u is a bad vertex. Note that $d_{X}\left(k-d_{X}\right)$ can be regarded as the maximum number of distinct color sets that can be obtained from $F_{0}(u)$ by changing the color of one edge incident with u. Note also that $n_{d_{X}}^{X}-t-1$ can be regarded as the possible maximum number of distinct color sets different from $F_{0}(u)$. Since $d_{X}\left(k-d_{X}\right) \geq n_{d_{X}}^{X}-t$ for all $\delta_{X} \leq d_{X} \leq \Delta_{X}$, there exist two colors α and β with $\alpha \in F_{o}(u), \beta \notin F(u)$ and $n_{F_{0}(u)-\{\alpha\}+\{\beta\}}^{X}=0$.

Let $P_{1}=u_{1} \ldots v_{1}$ be an (α, β)-Kempe-path with $u_{1}=u$. Let f_{1} be a new edge coloring of B obtained from f_{0} by exchanging the colors α and β on the path P_{1}. Note that f_{1} is proper and the color set of any vertex distinct from u_{1} and v_{1} remains the same. Since $n_{F_{0}(u)-\{\alpha\}+\{\beta\}}^{X}=0$ and $F_{1}\left(u_{1}\right) \neq F_{1}\left(v_{1}\right)$ if $v_{1} \in X$, we have $n_{F_{1}\left(u_{1}\right)}^{X}=1$ and u_{1} is good with respect to f_{1}. Recall that u_{1} is bad with respect to f_{0} and f_{0} has minimum number of bad vertices, we have that v_{1} is good with respect to f_{0} and bad with respect to f_{1}. Assume without loss of generality that $v_{1} \in X$ and let $u_{2} \in X$ with $F_{1}\left(v_{1}\right)=F_{1}\left(u_{2}\right)$. Note that $u_{2} \neq u_{1}$. Consider the (α, β)-Kempe-path $P_{2}=u_{2} \ldots v_{2}$. We interchange the colors α and β on P_{2} and denote the new edge coloring by f_{2}. Note that now u_{2} is good and v_{2} is bad with respect to f_{2}.

More generally, for the edge coloring f_{i-1} together with an (α, β)-Kempe-path $P_{i}=u_{i} \ldots v_{i}$, we can get a new proper coloring f_{i} by exchanging the colors α and β on the path P_{i-1} such that u_{i} is bad with respect to f_{i-1} and good with respect to f_{i}, and v_{i} is good with respect to f_{i-1} and bad with respect to f_{i}. Moreover, we can continue as above to get another (α, β)-Kempe-path $P_{i+1}=u_{i+1} \ldots v_{i+1}$ such that $F_{i}\left(u_{i+1}\right)=F_{i}\left(v_{i}\right)$ and $u_{i+1} \notin P_{1} \cup \ldots \cup P_{i}$. Note that we can get an (α, β)-Kempe-path P_{i+1} for every (α, β)-Kempe-path P_{i} and these (α, β)-Kempepaths $P_{1}, \ldots, P_{i}, P_{i+1}, \ldots$ are pairwise vertex disjoint. It contradicts the fact that
both X and Y are finite sets.

Consider the case $t=1$ in the above claim, we have the following claim.

Claim 2.2. Let $B=(X, Y ; E)$ be a pvdec-bipartite graph with bipartition (X, Y). Let k be the minimum integer such that $d_{X}\left(k-d_{X}\right) \geq n_{d_{X}}^{X}-1$ for all $\delta_{X} \leq d_{X} \leq \Delta_{X}$ and $d_{Y}\left(k-d_{Y}\right) \geq n_{d_{Y}}^{Y}-1$ for all $\delta_{Y} \leq d_{Y} \leq \Delta_{Y}$. Then $\chi_{p v d}^{\prime}(B) \leq k$.

Let $\delta(B) \geq \frac{n-1}{t}$. Since $d_{X}\left(\Delta(B)+t-d_{X}\right) \geq \frac{n-1}{t} \cdot t=n-1 \geq n_{d_{X}}^{X}-1$ for all $\delta_{X} \leq d_{X} \leq \Delta_{X}$ and similarly $d_{Y}\left(\Delta(B)+t-d_{Y}\right) \geq n_{d_{Y}}^{Y}-1$ for all $\delta_{Y} \leq d_{Y} \leq \Delta_{Y}$, then by Claim 2.2 we have $\chi_{p v d}^{\prime}(B) \leq \Delta(B)+t$.

If $\Delta(B) \leq n-1$, then $n(d-1) \geq(d+1)(d-1)$ for any $\delta(B) \leq d \leq \Delta(B)$. It follows that $d(n-d) \geq n-1$. So $d_{X}\left(n-d_{X}\right) \geq n_{X}-1$ for all $\delta_{X} \leq d_{X} \leq \Delta_{X}$ and $d_{Y}\left(n-d_{Y}\right) \geq n_{Y}-1$ for all $\delta_{Y} \leq d_{Y} \leq \Delta_{Y}$. By Claim 2.2, we have $\chi_{p v d}^{\prime}(B) \leq n$ and thus $\chi_{p v d}^{\prime}(B) \leq\{n, \Delta(B)+t\}$.

If $\Delta(B)=n$, then $\chi_{p v d}^{\prime}(B) \geq n$ and similarly as above we have $\chi_{p v d}^{\prime}(B) \leq n+1$. So $\chi_{p v d}^{\prime}(B) \in\{n, n+1\}$.

The proof of Theorem 2.1 is complete.

Corresponding to Claim 2.1 and Claim 2.2, we have two analogous results for digraphs.

Lemma 2.2. Let D be a vdac-digraph and $t \geq 1$ an integer. Let k be the minimum integer such that $d^{+}\left(k-d^{+}\right) \geq n_{d^{+}}-t$ for all $\delta^{+}(D) \leq d^{+} \leq \Delta^{+}(D)$ and $d^{-}\left(k-d^{-}\right) \geq$ $n_{d^{-}}-t$ for all $\delta^{-}(D) \leq d^{-} \leq \Delta^{-}(D)$. Then D has a proper k-arc-coloring with $n_{S}^{+} \leq t$ and $n_{S}^{-} \leq t$ for any $S \subseteq\{1, \ldots, k\}$.

Lemma 2.3. Let D be a vdac-digraph. Let k be the minimum integer such that $d^{+}\left(k-d^{+}\right) \geq n_{d^{+}}-1$ for all $\delta^{+}(D) \leq d^{+}(D) \leq \Delta^{+}(D)$ and $d^{-}\left(k-d^{-}\right) \geq n_{d^{-}}-1$ for all $\delta^{-}(D) \leq d^{-}(D) \leq \Delta^{-}(D)$. Then $\chi_{v d}^{\prime 2}(D) \leq k$.

2.3 Semi-vertex-distinguishing proper arc colorings of digraphs

For any vdac-digraph D, till now, we cannot show that $\pi(D)$ colors can guarantee a VDPA coloring but we can show that $\pi(D)$ colors can guarantee a semi-VDPA coloring.

Theorem 2.2. Let D be a vdac-digraph. Then $\chi_{s v d}^{\prime 2}(D) \leq \pi(D) \leq \chi_{v d}^{\prime 2}(D)$.

Proof. Clearly, $\chi_{v d}^{\prime 2}(D) \geq \pi(D)$. It suffices to show that $\chi_{s v d}^{\prime 2}(D) \leq \pi(D)$, i.e., D has a proper $\pi(D)$-arc-coloring with $n_{S}^{+} \leq 2$ and $n_{S}^{-} \leq 2$ for any $S \subseteq\{1, \ldots, \pi(D)\}$. We will get this by showing that D has a a proper $\pi(D)$-arc-coloring with $\left|n_{S}^{+}-n_{S^{\prime}}^{+}\right| \leq 2$ and $\left|n_{S}^{-}-\overline{n_{S^{\prime}}}\right| \leq 2$ for all $S, S^{\prime} \subseteq\{1, \ldots, k\}$ with $|S|=\left|S^{\prime}\right|$.

Note that a VDPA coloring satisfies that $\left|n_{S}^{+}-n_{S^{\prime}}^{+}\right| \leq 1$ and $\left|n_{S}^{-}-n_{S^{\prime}}^{-}\right| \leq 1$ for any two color sets S and $S^{\prime \prime}$. Define a balanced proper arc coloring of a digraph to be a proper arc coloring with $\left|n_{S}^{+}-n_{S^{\prime}}^{+}\right| \leq 2$ and $\left|n_{S}^{-}-n_{S^{\prime}}^{-}\right| \leq 2$ for any two color sets S and S^{\prime}. Define an optimal k-coloring of D to be a proper arc coloring of D with k colors and with minimal value of

$$
\begin{equation*}
\sum_{S}\left(\left(n_{S}^{+}\right)^{2}+\left(n_{S}^{-}\right)^{2}\right) \tag{2.3}
\end{equation*}
$$

By definition, on can check that an optimal k-coloring of D exists if and only if $k \geq \chi^{\prime 2}(D)=\Delta(D)$. We first show that an optimal coloring is also balanced.

Lemma 2.4. In an optimal k-arc-coloring of D, we have $\left|n_{S}^{+}-n_{S^{\prime}}^{+}\right| \leq 2$ and $\mid n_{S}^{-}-$ $\overline{n_{S^{\prime}}} \mid \leq 2$ for all $S, S^{\prime} \subseteq\{1, \ldots, k\}$ with $|S|=\left|S^{\prime}\right|$.

We transfer this problem to bipartite graphs. A proper coloring of a bipartite graph with k colors is called partial-balanced if $\left|n_{S}^{X}-n_{S^{\prime}}^{X}\right| \leq 2$ and $\left|n_{S}^{Y}-n_{S^{\prime}}^{Y}\right| \leq 2$ for any two color sets $S, S^{\prime} \subseteq\{1, \ldots, k\}$ with $|S|=\left|S^{\prime}\right|$, and is called partial-semi-vertex-distinguishing if $n_{S}^{X} \leq 2$ and $n_{S}^{Y} \leq 2$ for any $S \subseteq\{1, \ldots, k\}$.

Define an optimal k-edge-coloring of B to be a proper edge coloring of B with k
colors and with minimal value of

$$
\begin{equation*}
\sum_{S}\left(\left(n_{S}^{X}\right)^{2}+\left(n_{S}^{Y}\right)^{2}\right) \tag{2.4}
\end{equation*}
$$

Note that an optimal k-edge-coloring exists for every B with $k \geq \chi^{\prime}(B)=\Delta(B)$. To prove Lemma 2.4, it suffices to show that an optimal edge coloring of a balanced bipartite graph is also partial-balanced.

Lemma 2.5. For an optimal k-edge-coloring of $B=(X, Y ; E)$, we have $\left|n_{S}^{X}-n_{S^{\prime}}^{X}\right| \leq$ 2 and $\left|n_{S}^{Y}-n_{S^{\prime}}^{Y}\right| \leq 2$ for all $S, S^{\prime} \subseteq\{1, \ldots, k\}$ with $|S|=\left|S^{\prime}\right|$.

Proof. Let f be an optimal edge coloring of B with color set $\{1, \ldots, k\}$. Denote by $[\alpha \diamond \beta]$ the family of subsets of $\{1, \ldots, k\}$ in which each subset contains precisely one of α and β. Let $V_{[\alpha \diamond \beta]}$ be the set of vertices with color sets in $[\alpha \diamond \beta]$. Define an involution $i_{\alpha \beta}$ on subsets in $[\alpha \diamond \beta]$ by interchanging the colors α and β. We first show the following claim.

Claim 2.3. Assume we have an optimal k-edge-coloring f of B and $S \in[\alpha \diamond \beta]$. Then we can change the coloring by interchanging α and β on some edges such that we get a new optimal coloring f^{\prime} in which both the pair of values n_{S}^{X} and $n_{i_{\alpha \beta} S}^{X}$ (differing by one) and one other pair of values $n_{S^{\prime}}$ and $n_{i_{\alpha \beta} S^{\prime}}$ (both in X or both in Y, differing by one) are interchanged, and all other $n_{S^{*}}^{X}$ and $n_{S^{*}}^{Y}$ remain the same. Moreover, we have $\left|n_{S}^{X}-n_{i_{\alpha \beta} S}^{X}\right| \leq 1$ and $\left|n_{S}^{Y}-n_{i_{\alpha \beta} S}^{Y}\right| \leq 1$ for any $S \in[\alpha \diamond \beta]$.

Proof. Let M_{S}^{X} (resp. M_{S}^{Y}) be a matching between the vertices in X_{S} (resp. Y_{S}) and the vertices in $X_{i_{\alpha \beta} S}$ (resp. $Y_{i_{\alpha \beta} S}$) with maximal number of edges. Let M be the union of $M_{S}^{X} \cup M_{S}^{Y}$, where $S \in[\alpha \diamond \beta]$. Note that a vertex $v \in X$ (resp. $v \in Y$) is unmatched by M implies that $n_{S(v)}^{X}>n_{i_{\alpha \beta} S(v)}^{X}\left(\right.$ resp. $\left.n_{S(v)}^{Y}>n_{i_{\alpha \beta} S(v)}^{Y}\right)$. Define K a matching with $E(K)=\{u v: u$ and v are the endvertices of an (α, β)-Kempe-path of $B\}$. Note that $V(K)=V_{[\alpha \diamond \beta]}$. Let $H_{\alpha, \beta}$ be a graph with $V\left(H_{\alpha, \beta}\right)=V_{[\alpha \propto \beta]}$ and $E\left(H_{\alpha, \beta}\right)=E(M) \cup E(K)$. One can check that $\Delta\left(H_{\alpha, \beta}\right) \leq 2$ and $H_{\alpha, \beta}$ consists of paths and cycles.

Let v_{0} be an arbitrary vertex unmatched by M. One can check that the path of H starting with v_{0} will also end with a vertex $v_{2 l+1}$ unmatched by M. Denote this path by $P=v_{0} \ldots v_{2 l+1}$. Interchange the colors α and β for the color sets of the vertices of P, i.e., interchange the colors α and β for the color sets of Kempe-paths with endvertices $v_{2 i}$ and $v_{2 i+1}$ for every $0 \leq i \leq l$. Note that $S\left(v_{2 i+1}\right)=i_{\alpha \beta} S\left(v_{2 i+2}\right)$ and $S\left(v_{2 i+2}\right)=i_{\alpha \beta} S\left(v_{2 i+1}\right)$. Assume without loss of generality that $v_{0} \in X$.

Assume first that $v_{2 l+1} \in Y$. Note that only

$$
n_{S\left(v_{0}\right)}^{X}, n_{i_{\alpha \beta} S\left(v_{0}\right)}^{X}, n_{S\left(v_{2 l+1}\right)}^{Y}, n_{i_{\alpha \beta} S\left(v_{2 l+1}\right)}^{Y}
$$

will be changed. Also, we have

$$
n_{S\left(v_{0}\right)}^{X}>n_{i_{\alpha \beta} S\left(v_{0}\right)}^{X}, n_{S\left(v_{2 l+1}\right)}^{Y}>n_{i_{\alpha \beta} S\left(v_{2 l+1}\right)}^{Y} .
$$

Furthermore, $n_{S\left(v_{0}\right)}^{X}$ and $n_{S\left(v_{2 l+1}\right)}^{Y}$ decrease by one, and $n_{i_{\alpha \beta}^{X} S\left(v_{0}\right)}$ and $n_{i_{\alpha \beta} S\left(v_{2 l+1}\right)}^{Y}$ increase by one. Recall that f is an optimal edge coloring. If $n_{S\left(v_{0}\right)}^{X} \geq n_{i_{\alpha \beta} S\left(v_{0}\right)}^{X}+2$ or $n_{S\left(v_{2 l+1}\right)}^{Y} \geq n_{i_{\alpha \beta} S\left(v_{2 l+1}\right)}^{Y}+2$, then the value of (2.4) will decrease which contradicts the optimality of f. Thus $n_{S\left(v_{0}\right)}^{X}=n_{i_{\alpha \beta} S\left(v_{0}\right)}^{X}+1$ and $n_{S\left(v_{2 l+1}\right)}^{Y}=n_{i_{\alpha \beta} S\left(v_{2 l+1}\right)}^{Y}+1$. Note that the new coloring is also optimal since the value of (2.4) remains the same.

Now assume that $v_{2 l+1} \in X$. One can check that $S\left(v_{0}\right) \neq S\left(v_{2 l+1}\right)$. In fact, by assuming without loss of generality that $S\left(v_{0}\right) \cap\{\alpha, \beta\}=\alpha$, we have that $S\left(v_{2 i+1}\right) \cap$ $\{\alpha, \beta\}=\beta$ if $v_{2 i+1} \in X$, and $S\left(v_{2 i+1}\right) \cap\{\alpha, \beta\}=\alpha$ if $v_{2 i+1} \in Y$. Similar to the above analysis, we have that $n_{S\left(v_{0}\right)}^{X}$ and $n_{S\left(v_{2 l+1}\right)}^{X}$ will decrease one, and $n_{i_{\alpha \beta} S\left(v_{0}\right)}^{X}$ and $n_{i_{\alpha \beta} S\left(v_{2 l+1}\right)}^{X}$ will increase one. By the fact that $n_{S\left(v_{0}\right)}^{X}>n_{i_{\alpha \beta} S\left(v_{0}\right)}^{X}, n_{S\left(v_{2 l+1}\right)}^{X}>n_{i_{\alpha \beta} S\left(v_{2 l+1}\right)}^{X}$ and f is optimal. We have $n_{S\left(v_{0}\right)}^{X}=n_{i_{\alpha \beta} S\left(v_{0}\right)}^{X}+1$ and $n_{S\left(v_{2 l+1}\right)}^{X}=n_{i_{\alpha \beta} S\left(v_{2 l+1}\right)}^{X}+1$. The resulting edge coloring is also optimal.

Denote by $S \triangle S^{\prime}$ the symmetric difference of S and S^{\prime}. Define $d\left(S, S^{\prime}\right)=$ $\frac{1}{2}\left|S \triangle S^{\prime}\right|$ the distance of S and S^{\prime}. Assume the opposite that there exist S_{1}, S_{2} with $\left|S_{1}\right|=\left|S_{2}\right|$ and without loss of generality $n_{S_{1}}^{X} \geq n_{S_{2}}^{X}+3$. Among all optimal k-colorings, choose one coloring and sets S_{1}, S_{2} with $d\left(S_{1}, S_{2}\right)$ is as small as possible.

Let $d=\left|S_{1}\right|=\left|S_{2}\right|, S_{+}=S_{1} \cup S_{2}, S_{-}=S_{1} \cap S_{2}$ and $\left[S_{-}, S_{+}\right]_{d}=\left\{S:|S|=d\right.$ and $S_{-} \subseteq$ $\left.S \subseteq S_{+}\right\}$. Note that $S_{1}, S_{2} \in\left[S_{-}, S_{+}\right]_{d}$. Note also that for any $S \neq S_{1}, S_{2}$ we have $d\left(S_{1}, S_{2}\right)>\max \left\{d\left(S, S_{1}\right), d\left(S, S_{2}\right)\right\}$. So by the assumption at the beginning of this paragraph we have $n_{S_{1}}^{X}>n_{S}^{X}>n_{S_{2}}^{X}$.

By Claim 2.3 we have that $n_{S_{1}}^{X}$ and n_{S}^{X} can be interchanged if $d\left(S_{1}, S\right)=1$. Let α be a color with $\alpha \in S_{1}$ and $\alpha \notin S_{2}$. Let $S \in\left[S_{-} \cup\{\alpha\}, S_{+}\right]_{d}$. Then $d\left(S_{1}, S\right)<$ $d\left(S_{1}, S_{2}\right)$. By the minimality of $d\left(S_{1}, S_{2}\right)$ we have that $n_{S_{2}}^{X}$ will interchange with S^{\prime} such that $d\left(S_{2}, S^{\prime}\right)=1$ simultaneously. So $\left|n_{S_{1}}^{X}-n_{S}^{X}\right|=1$. In fact, for any $S \in\left[S_{-} \cup\{\alpha\}, S_{+}\right]_{d}$ with $S \neq S_{1}$, we can interchange $n_{S_{1}}^{X}$ with n_{S}^{X} by a sequence of steps. It follows that $\left|n_{S_{1}}^{X}-n_{S}^{X}\right|=1$ for any $S \neq S_{1}, S_{2}$. Similarly, we can get that $\left|n_{S_{2}}^{X}-n_{S}^{X}\right|=1$ for any $S \neq S_{1}, S_{2}$. Thus $\left|n_{S_{1}}^{X}-n_{S_{2}}^{X}\right| \leq 2$, which contradicts the assumption that $n_{S_{1}}^{X} \geq n_{S_{2}}^{X}+3$.

If there exists some S with $n_{S} \geq 3$, assume that $|S|=d$, then by Lemma 2.5 we have $n_{S} \geq 1$ for every S^{\prime} with $S^{\prime} \subseteq\{1, \ldots, k\}$ and $\left|S^{\prime}\right|=|S|$. It follows that $n_{d} \geq\binom{ k}{d}-1+3=\binom{k}{d}+2$, contradicting to the definition of k.

The proof of Theorem 2.2 is complete.

2.4 Vertex-distinguishing proper arc colorings of regular digraphs

Let D_{d}^{n} be a d-regular digraph on n vertices. In particular, D_{n}^{n} is a complete symmetric digraph on n vertices and D_{n}^{n} consists of a complete symmetric digraph on n vertices and n loops. Note that D_{d}^{n} is a vdac-digraph and D_{n}^{n} is not a simple digraph. For convenience, let

$$
\begin{equation*}
k_{d, n}=\min \left\{k:\binom{k}{d} \geq n\right\} . \tag{2.5}
\end{equation*}
$$

Note that $\pi\left(D_{d}^{n}\right)=k_{d, n}$. By Conjecture 1.3 we have the following conjecture.

Conjecture 2.1. $\chi_{v d}^{\prime 2}\left(D_{d}^{n}\right)=\pi\left(D_{d}^{n}\right)=k_{d, n}$.

Although we have not proved it completely, many cases have been verified.

Theorem 2.3. Let D_{d}^{n} be a d-regular digraph on n vertices. Then Conjecture 2.1 holds both for $n \leq 7$ and for $d \in\{1,2\} \cup\left[k_{2,2 n}+4, n\right]$; moreover, it nearly holds for $d \in\left[k_{2, n}-2, k_{2,2 n}+3\right]$, where $k_{2, n}=\left\lceil\frac{1+\sqrt{1+8 n}}{2}\right\rceil$ and $k_{2,2 n}=\left\lceil\frac{1+\sqrt{1+16 n}}{2}\right\rceil$. To be precise, we have
(1) $\chi_{v d}^{\prime 2}\left(D_{d}^{n}\right)=k_{d, n}$ if $n \leq 7$;
(2) $\chi_{v d}^{\prime 2}\left(D_{1}^{n}\right)=k_{1, n}=n$;
(3) $\chi_{v d}^{\prime 2}\left(D_{2}^{n}\right)=k_{2, n}=\left\lceil\frac{1+\sqrt{1+8 n}}{2}\right\rceil$;
(4) $\chi_{v d}^{\prime 2}\left(D_{d}^{n}\right) \leq d+k_{2, n}-2 \leq 2 k_{2, n}-5=\lceil\sqrt{1+8 n}\rceil-4$ if $3 \leq d \leq k_{2, n}-3$;
(5) $\chi_{v d}^{\prime 2}\left(D_{d}^{n}\right) \in\left\{k_{d, n}, k_{d, n}+1\right\}$ and $k_{d, n}=d+2$ if $k_{2, n}-2 \leq d \leq k_{2,2 n}+3$;
(6) $\chi_{v d}^{\prime 2}\left(D_{d}^{n}\right)=k_{d, n}=d+2$ if $k_{2,2 n}+4 \leq d \leq n-2$;
(7) $\chi_{v d}^{\prime 2}\left(D_{d}^{n}\right)=k_{d, n}=d+1$ if $n-1 \leq d \leq n$.

Proof. Recall that a regular vdac-digraph corresponds to a regular balanced pvdec-bipartite-graph. Let B_{d}^{n} be a d-regular balanced bipartite graph on $2 n$ vertices. Note that B_{d}^{n} is a pvdec-bipartite graph. Since the proof of Theorem 2.3 (1) will use the result of Theorem 2.3 (2) and (3), the proofs will be given in this order: (2), (3), (1), (4), (5), (6) and (7). We first show the following claim.

Claim 2.4. If $k_{2, n}-2 \leq d \leq n-2$, then $k_{d, n}=d+2$.
Proof. Clearly, $k_{d, n} \geq d+1$. Since $\binom{d+1}{d}=d+1<n$ for $d \leq n-2$ and

$$
\begin{equation*}
\binom{d+2}{d}=\binom{d+2}{2}=\frac{(d+2)(d+1)}{2} \geq \frac{k_{2, n}\left(k_{2, n}-1\right)}{2}=\binom{k_{2, n}}{2} \geq n, \tag{2.6}
\end{equation*}
$$

we have $k_{d, n}=d+2$.
(2) Note that $k_{1}^{n}=n$. The result follows directly from Corollary 2.1.
(3) It suffices to show the following lemma.

Lemma 2.6. $\chi_{p v d}^{\prime}\left(B_{2}^{n}\right)=k_{2, n}=\left\lceil\frac{1+\sqrt{1+8 n}}{2}\right\rceil$.
Proof. B is a hamiltonian cycle or a union of vertex disjoint cycles. Put the $\binom{k}{2}$ copies of the 2-color sets in the order as indicated in Figure 2.1. We will give an

$$
\begin{aligned}
& \begin{array}{r}
(1,2) \rightarrow(1,3) \rightarrow(1,4) \rightarrow \cdots \rightarrow(1, k-1) \rightarrow(1, k) \\
(2,3) \longleftarrow(2,4) \leftarrow \cdots \nleftarrow(2, k-1) \leftarrow(2, k) \\
\longrightarrow(3,4) \rightarrow \cdots \rightarrow(3, k-1) \rightarrow(3, k) \\
\cdots \\
\ddots
\end{array} \\
& \text { (} k-1, k)
\end{aligned}
$$

Figure 2.1: Sequence of the 2-color sets
algorithm to color the edges such that these color sets appear on vertices of each part of B one by one, until there is no edge left. This will complete the proof.

According to the sequence of the 2-color sets in Figure 2.1, we have a sequence of colors.

$$
\begin{equation*}
1,2,1,3, \ldots, 1, k-1,1, k, k, 2, k-1,2, \ldots, 4,2,3,2,3,4, \ldots, 3, k-1,3, k, k, 4, \ldots \tag{2.7}
\end{equation*}
$$

Now we give a partial vertex-distinguishing k-edge-coloring of B through an algorithm.

Algorithm

Input: A 2-regular balanced bipartite graph B.
Output: A vertex-distinguish k-edge-coloring of B.
Step 1. Let $c(i)$ be the i-th number of color sequence (2.7). Set $i=1$.
Step 2. Choose an uncolored cycle arbitrarily, denoted by $u_{1} u_{2} \ldots u_{2 t} u_{1}$ in clockwise order. For any vertex u, denote the successor and the predecessor of u by u^{+}and u^{-}, respectively. Let $u=u_{1}, v=u_{2}$. Color the edge $u v$ with $c(i)$. Set $i=i+1$ and color edge $v v^{+}$with $c(i)$.

Step 3. While $v \neq u$, i.e., the cycle is not yet well-colored, do If $c(i)=k$, color $u u^{-}$with $c(i+1)$, which equals to k obviously.

Set $u=u^{-}, i=i+2$.
If $c(i)$ is odd and $c(i)=c(i+1)+1$, color $u u^{-}$with $c(i+1)$ and $u^{-} u^{--}$with

$$
c(i+2) . \text { Set } u=u^{--}, i=i+3 .
$$

Else, color $v v^{+}$with $c(i+1)$. Set $v=v^{+}, i=i+1$.

End while

Step 4. If there exists uncolored cycles, back to Step 2.
In the coloring process of the algorithm above, we call a jump appears if the coming two uncolored edges will receive two colors in different rows according to Figure 2.1. If the cycle can be colored with no jump, then we can color it just follow the "Else" part of the Step 3. This can be seen in Figure 2.2. If not, then either the coming four uncolored edges will receive colors i, k, k and $i+1$ (which induces a contradiction that two adjacent edges receive the same color k) or the coming four uncolored edges will receive colors $j, j+1, j$ and $j+1$ (which induces that $(j, j+1)$ appear on two vertices in the same part). The two cases will be avoided by the first "If" and the second "If" of Step 3, respectively. One can see this in Figure 2.3.

Figure 2.2: Coloring of a cycle with no jump

Thus we give a PVDPE coloring of B.
The proof of Theorem 2.3 (3) is complete.
(1) Let $n \leq 7$. Then either $d \in\{1,2\}$ or $d \geq \frac{n-1}{2}$. If $d \in\{1,2\}$, then by Theorem 2.3 (2) and (3) we have $\chi_{v d}^{\prime}\left(D_{d}^{n}\right)=k_{d, n}$. If $d \geq \frac{n-1}{2}$, then by Theorem 2.1 and Claim

Figure 2.3: Coloring of cycles with jumps
2.4 we have $\chi_{v d}^{\prime}\left(D_{d}^{n}\right) \leq \Delta\left(B_{d}^{n}\right)+t \leq d+2=k_{d, n}$ and thus $\chi_{v d}^{\prime}\left(D_{d}^{n}\right)=k_{d, n}$. So $\chi_{p v d}^{\prime}\left(D_{d}^{n}\right)=k_{d, n}$ for $n \leq 7$.
(4) Every D_{d}^{n} can also be defined as a union of a D_{i}^{n} and a D_{d-i}^{n} with the same vertex set. Note that every D_{i}^{n} has a VDPA coloring with $\chi_{v d}^{\prime 2}\left(D_{i}^{n}\right)$ colors and every D_{d-i}^{n} has a proper arc coloring with $d-i$ colors and with the same color set for every vertex. Then we have that

$$
\begin{equation*}
\chi_{v d}^{\prime 2}\left(D_{d}^{n}\right) \leq \chi_{v d}^{\prime 2}\left(D_{i}^{n}\right)+d-i \tag{2.8}
\end{equation*}
$$

for any $i \leq d$. Note that $\chi_{v d}^{\prime 2}\left(D_{i}^{n}\right)=k_{2, n}=\left\lceil\frac{1+\sqrt{1+8 n}}{2}\right\rceil$ and $d \leq k_{2, n}-3$. Take $i=2$, we have

$$
\begin{equation*}
\chi_{v d}^{\prime 2}\left(D_{d}^{n}\right) \leq \chi_{v d}^{\prime 2}\left(D_{2}^{n}\right)+d-2 \leq 2 k_{2, n}-5=\lceil\sqrt{1+8 n}\rceil-4 . \tag{2.9}
\end{equation*}
$$

(5) By Claim 2.4, we have $k_{d, n}=d+2$ now and thus it suffices to show the following lemma for corresponding bipartite graph B_{d}^{n}.

Lemma 2.7. If $k_{2, n}-2 \leq d \leq k_{2}^{2 n}+1$, then $\chi_{p v d}^{\prime}\left(B_{d}^{n}\right) \in\{d+2, d+3\}$.

Proof. Clearly, $\chi_{p v d}^{\prime}\left(B_{d}^{n}\right) \geq d+2$. Now we show that $\chi_{p v d}^{\prime}\left(B_{d}^{n}\right) \leq d+3$.
Let f be a proper $(d+2)$-edge-coloring of B_{d}^{n} with color set $T=\{1, \ldots, d+2\}$ and let $Z \in\{X, Y\}$. The coloring f is Z-distinguishing if no two vertices in Z are incident with the same color set, i.e., $n_{S}^{Z} \leq 1$ for any $S \subseteq T$ with $|S|=d$. And f is Z-semi-distinguishing if no three vertices in Z are incident with the same color set, i.e., $n_{S}^{Z} \leq 2$ for any $S \subseteq T$ with $|S|=d$. The following result holds.

Claim 2.5. Let $d \geq k_{2, n}-2$. Then B_{d}^{n} has an X-distinguishing and Y-semidistinguishing proper edge coloring with color set T.

Proof. We first show that B_{d}^{n} has an X-distinguishing proper edge coloring with color set T by using the result of list-edge-colorings of bipartite graphs.

Given an undirected graph G with edge set $E(G)$. A list-edge-assignment L of G is an assignment of lists of distinct colors to the edges of G. We call G is k-list-edge-colorable if for any list-edge-assignment L with $L(e) \geq k$ for any $e \in E(G)$ there exists a proper edge coloring f with $f(e) \in L(e)$ for any $e \in E(G)$. Recall that Galvin [44] has proved that every bipartite graph B is $\Delta(B)$-list-edge-colorable.

Since $\binom{d+2}{d} \geq n$, there exist at least n pairwise distinct color sets with d colors. It follows that every vertex x of X can be assigned a color set $S(x) \subseteq T$ with $|S(x)|=d$ and $S\left(x_{1}\right) \neq S\left(x_{2}\right)$ for any two distinct vertices x_{1} and x_{2} in X. Let L be a list-edge-assignment of B with $L(e)=S(x)$ for any e incident with x. Since $\Delta(B)=d$, then by the result of Galvin [44] we can get a proper edge coloring f_{1} of B such that every edge incident with x is colored by one color in $S(x)$. It follows directly that $F_{1}(x)=S(x)$ for any vertex x in X. Thus f_{1} is an X-distinguishing proper edge coloring.

Then we show that B_{d}^{n} has an X-distinguishing Y-semi-distinguishing proper edge coloring with $d+2$ colors.

Define an optimal X-distinguishing coloring to be an X-distinguishing proper edge coloring with minimal value of $\sum_{S}\left(n_{S}^{Y}\right)^{2}$. Then by the same method used in
the proof of Claim 2.3, we can get that the following claim holds. Since the proof is very similar to that of Claim 2.3, we omit the details here.

Claim 2.6. Assume we have an optimal X-distinguishing coloring f of B_{d}^{n} and $S \subseteq$ $[\alpha \diamond \beta]$. Then we can change the coloring by interchanging α and β on some edges such that we get a new optimal X-distinguishing coloring f^{\prime} in which both the pair of values n_{S}^{Y} and $n_{i_{\alpha \beta} S}^{Y}$ (differing by one) and one other pair of values $n_{S^{\prime}}$ and $n_{i_{\alpha \beta} S^{\prime}}$ (both in X or both in Y, differing by one) are interchanged, and all other $n_{S^{*}}^{X}$ and $n_{S^{*}}^{Y}$ remain the same. Moreover, we have $\left|n_{S}^{X}-n_{i_{\alpha \beta} S}^{X}\right| \leq 1$ and $\left|n_{S}^{Y}-n_{i_{\alpha \beta} S}^{Y}\right| \leq 1$ for any $S \in[\alpha \diamond \beta]$.

Now by the similar analysis used in the proof of Lemma 2.5 we can show that $\left|n_{s}^{Y}-n_{S^{\prime}}^{Y}\right| \leq 2$ for any $S, S^{\prime} \subseteq\{1, \ldots, d+2\}$ with $|S|=\left|S^{\prime}\right|$. This implies that every optimal X-distinguishing coloring is an X-distinguishing Y-semi-distinguishing proper edge coloring for B_{d}^{n} with $d \geq k_{2, n}-2$.

Given an X-distinguishing Y-semi-distinguishing proper edge coloring f^{*} of B_{d}^{n} with $d+2$ colors. If f^{*} is a PVDPE coloring, then we are done. Now assume that there exist two vertices $u, v \in Y$ with $F(u)=F(v)$. Since $\binom{d+2}{d} \geq n$, there exists $S \subseteq T$ with $|S|=d$ and $n_{S}^{Y}=0$. Let $T \backslash S=\{\alpha, \beta\}$. By Claim 2.3, we know that every bad vertex should be incident with two edges colored with α and β respectively. Otherwise we get a color set S^{\prime} with $n_{S^{\prime}}^{Y}=2$, but $d\left(S, S^{\prime}\right)=1$ which contradicts Claim 2.3.

Then for any two vertices $u, v \in Y$ with $F(u)=F(v)$, we recolor the α-colored edge incident with u with a new color α^{\prime} and keep the colors of the other edges incident with u. Besides, the colors of the edges incidents with v unchanged. Then we get a new proper edge coloring of B_{d}^{n} with $d+3$ colors and one can check that it is a PVDPE coloring.

The proof of Theorem 2.3 (5) is complete.
(6) By Claim 2.4, we have $\pi^{\prime}\left(B_{d}^{n}\right)=d+2$ and $\chi_{p v d}^{\prime}\left(B_{d}^{n}\right) \geq d+2$. Recall that

Balister et al. [15] have showed that $\chi_{v d}^{\prime}(G)=\pi(G)$ for every vdec-graph G with $\Delta(G) \leq \sqrt{2|V(G)|}+4$ and $\delta(G) \geq 5$. Note that

$$
k_{2,2 n}=\min \left\{k \in \mathbf{Z}:\binom{k}{2} \geq 2 n\right\}=\left\lceil\frac{1+\sqrt{1+16 n}}{2}\right\rceil
$$

and

$$
k_{2,2 n}+4 \geq 2 \sqrt{n}+4=\sqrt{4 n}+4=\sqrt{2\left|V\left(B_{d}^{n}\right)\right|}+4 \geq 5 .
$$

We have $\chi_{v d}^{\prime}\left(B_{d}^{n}\right)=\pi\left(B_{d}^{n}\right)=d+2$. Clearly, $\chi_{p v d}^{\prime}\left(B_{d}^{n}\right) \leq \chi_{v d}^{\prime}\left(B_{d}^{n}\right)$. Thus $\chi_{p v d}^{\prime}\left(B_{d}^{n}\right)=$ $d+2$.
(7) Clearly, $k_{d, n} \geq d+1$ for $d \in\{n-1, n\}$. Since $\binom{d+1}{d}=d+1 \geq n$, we have $k_{d, n}=d+1$. By Corollary 2.1, we have $\chi_{v d}^{\prime 2}\left(D_{n-1}^{n}\right)=n$. By Lemma 2.2, we have $\chi_{v d}^{\prime 2}(D) \leq n+1$ if loops are allowed in D and thus $\chi_{v d}^{\prime 2}\left(D_{n}^{n}\right)=n+1$. Here, we will give explicit VPPA colorings for D_{n-1}^{n} and D_{n}^{n} with n and $n+1$ colors, respectively. Note that D_{n}^{n} consists of a D_{n-1}^{n} and n loops (each vertex has a loop). Then the VDPA coloring of D_{n}^{n} follows from the VDPA coloring of d_{n-1}^{n} and all the loops colored by one new color. So we only consider D_{n-1}^{n} in the following. Let $\{1, \ldots, n\}$ be the vertex set of D_{n-1}^{n} and let $\overrightarrow{i j}$ be the arc of D_{n-1}^{n} with tail i and head j.

We will first use the existence of diagonal Latin square of order n on $1,2, \ldots, n$ to offer a VDPA coloring for D_{n-1}^{n} with n colors.

A Latin square A_{n} of order n on $1, \ldots, n$ is an array of n rows and n columns such that every row and column consists of $1, \ldots, n$. Let $a_{i j}$ be the element of A_{n} on the i th row and j th column. Call A_{n} is diagonal if $a_{i i}=i$ for $1 \leq i \leq n$. Hilton [53] showed that a diagonal A_{n} exists for any $n \geq 3$. Let A_{n}^{*} be a diagonal Latin square. Then we can color the arc $\overrightarrow{i j}$ of D_{n-1}^{n} with $a_{i j}$ of A_{n}^{*}. It follows that $S^{+}\left(v_{i}\right)=S^{-}\left(v_{i}\right)=\{1, \ldots, n\} \backslash\{i\}$ for any $1 \leq i \leq n$. This implies a VDPA coloring of D_{n-1}^{n}.

Since the diagonal Latin square is not easy to get, then we give a more intuitive VDPA coloring of D_{n-1}^{n} as follows.

Case 1. n is odd.

$$
A_{1}=\left(\begin{array}{cccccc}
1 & 2 & 3 & \ldots & n-1 & n \tag{2.10}\\
2 & 3 & 4 & \ldots & n & 1 \\
3 & 4 & 5 & \ldots & 1 & 2 \\
& & \vdots & & \vdots & \\
n-1 & n & 1 & \ldots & n-3 & n-2 \\
n & 1 & 2 & \ldots & n-2 & n-1
\end{array}\right)
$$

Based on the matrix A_{1} above, we color the arc $\overrightarrow{i j}$ of D_{n-1}^{n} with $a_{i j}$ of A_{1}. Then

$$
S^{+}\left(v_{i}\right)=S^{-}\left(v_{i}\right)=\left\{\begin{array}{l}
\{1, \ldots, n\} \backslash\{2 i-1\}, \text { for } 1 \leq i \leq(n+1) / 2 \tag{2.11}\\
\{1, \ldots, n\} \backslash\{2 i-(n+1)\}, \text { otherwise }
\end{array}\right.
$$

One can check that this is a VDPA coloring of D_{n-1}^{n}.

Case 2. n is odd.

$$
A_{2}=\left(\begin{array}{cccccccc}
1 & 2 & 3 & 4 & \ldots & n-2 & n-1 & n \tag{2.12}\\
1 & n & 2 & 3 & \ldots & n-3 & n-2 & n-1 \\
n & 1 & n-1 & 2 & \ldots & n-4 & n-3 & n-2 \\
n-1 & n & 1 & n-2 & \ldots & n-5 & n-4 & n-3 \\
& & \vdots & \vdots & & \vdots & & \\
5 & 6 & 7 & 8 & \ldots & 4 & 2 & 3 \\
4 & 5 & 6 & 7 & \ldots & 1 & 3 & 2 \\
3 & 4 & 5 & 6 & \ldots & n & 1 & 2
\end{array}\right)
$$

Based on the matrix A_{2} above, we color the arc $\overrightarrow{i j}$ of D with $a_{i j}$ of A_{2}. Note that each row of A_{2} consists of numbers $1, \ldots, n$. Note also that in the j-th column the number $j+1(\bmod n)$ does not appear and the number $n-j+2(\bmod n)$ appears
twice. Then

$$
\left\{\begin{array}{l}
S^{+}\left(v_{i}\right)=\{1, \ldots, n\} \backslash\{n-i+2(\bmod n)\}, \text { for } 1 \leq i \leq n . \tag{2.13}\\
S^{-}\left(v_{i}\right)=\{1, \ldots, n\} \backslash\{i+1(\bmod n)\}, \text { for } 1 \leq i \leq n .
\end{array}\right.
$$

One can check that this is a VDPA coloring of D_{n-1}^{n}.
The proof of Theorem 2.3 (7) is complete.
Now we finish the proof of Theorem 2.3.

2.5 Equitable vertex-distinguishing proper arc colorings of digraphs

In 2008, Rudašová and Soták [83] showed that $\chi_{\text {evd }}^{\prime}(G)=\chi_{v d}^{\prime}(G)$. We study the analogous problem for digraphs and show that both $\chi_{v d}^{\prime 2}(D)$ and $\chi_{s v d}^{\prime 2}(D)$ will not be changed if the coloring is, in addition, required to be equitable.

Theorem 2.4. Let D be a vdac-digraph. Then $\chi_{\text {evd }}^{\prime 2}(D)=\chi_{v d}^{\prime 2}(D)$ and $\chi_{\text {esvd }}^{\prime 2}(D)=$ $\chi_{s v d}^{\prime 2}(D)$.

Proof. The proofs of $\chi_{\text {esvd }}^{\prime}(D)=\chi_{\text {svd }}^{\prime}(D)$ and $\chi_{\text {evd }}^{\prime}(D)=\chi_{v d}^{\prime}(D)$ are similar. So we only present the proof of $\chi_{e v d}^{\prime}(D)=\chi_{v d}^{\prime}(D)$ in this section. Note that $\chi_{\text {evd }}^{\prime}(D)=$ $\chi_{\text {epvd }}^{\prime}\left(B^{(D)}\right)$. It suffices to show the following result on balanced bipartite graphs.

Lemma 2.8. Let B be a pvdec-bipartite-graph. Then $\chi_{\text {epvd }}^{\prime}(B)=\chi_{p v d}^{\prime}(B)$.

Proof. Note that $\chi_{\text {epvd }}^{\prime}(B) \geq \chi_{p v d}^{\prime}(B)$ and it suffices to show $\chi_{\text {epvd }}^{\prime}(B) \leq \chi_{p v d}^{\prime}(B)$. We get it by showing that B has an equitable PVDPE coloring using $\chi_{p v d}^{\prime}(B)$ colors.

Recall that B is a pvdec-bipartite-graph. Among all PVDPE colorings of B with $k=\chi_{p v d}^{\prime}(B)$ colors, choose one ψ with minimum $\sum_{a, b}\left|e_{a}-e_{b}\right|$ and then choose two colors α and β in ψ such that $e_{\alpha}-e_{\beta}$ is maximum. Assume the opposite that ψ is not equitable. Then $e_{\alpha}-e_{\beta} \geq 2$. For any $\gamma \in\{1, \ldots, k\} \backslash\{\alpha, \beta\}$, we have $e_{\beta} \leq e_{\gamma} \leq e_{\alpha}$ by the choices of α and β.

Since $e_{\alpha}>e_{\beta}$, there exists a vertex u with $S(u) \cap\{\alpha, \beta\}=\alpha$ and $n_{i_{\alpha, \beta} S(u)}=0$. Actually, if $n_{i_{\alpha, \beta} S(u)} \neq 0$ for each $S(u)$ with $S(u) \cap\{\alpha, \beta\}=\alpha$ then $e_{\alpha} \leq e_{\beta}$, a contradiction.

Let $P_{1}=v_{1} \ldots v_{1}^{\prime}$ be an (α, β)-Kempe-path with one end vertex $u=v_{1}$ and, without loss of generality, the other end vertex $v_{1}^{\prime} \in X$. If there exists $v_{2} \in X$ with $S\left(v_{2}\right)=i_{\alpha, \beta} S\left(v_{1}^{\prime}\right)$, then we can let $P_{2}=v_{2} \ldots v_{2}^{\prime}$ be the (α, β)-Kempe-path with two end vertices v_{2} and v_{2}^{\prime}. Continue this process until there exists a Kempe-path $P_{t}=v_{t} \ldots v_{t}^{\prime}$ such that $i_{\alpha, \beta} S\left(v_{t}^{\prime}\right)$ unused in the part where v_{t}^{\prime} lies in. This process will terminate in finite steps since the number of vertices is finite. Denote the union of these Kempe-paths by H.

We can distinguish two cases for v_{t}^{\prime}.
Case 3. $S\left(v_{t}^{\prime}\right) \cap\{\alpha, \beta\}=\alpha$ and $e_{\alpha}-e_{\beta}=1$ in H.
Case 4. $S\left(v_{t}^{\prime}\right) \cap\{\alpha, \beta\}=\beta$ and $e_{\alpha}-e_{\beta}=0$ in H.
Since $e_{\alpha} \geq e_{\beta}+2$, there exists such a union of Kempe-paths of Case 1, without loss of generality, say H^{*}. We construct a new coloring ψ^{\prime} of B as follows: interchange the colors α and β on the edges of H^{*}. This new coloring ψ^{\prime} is still a VDPA coloring since the color sets of the internal vertices are not changed, and for the starting vertex u and ending vertex $v, S(u), S(v)$ are changed to $i_{\alpha, \beta} S(u), i_{\alpha, \beta} S(v)$ with $n_{i_{\alpha, \beta} S(u)}=$ $n_{i_{\alpha, \beta} S(v)}=0$, respectively.

Now consider the sum $\sum_{a, b}\left|e_{a}-e_{b}\right|$ for the coloring ψ^{\prime}. Compare it with the original sum for ψ, the following facts hold:

- $\left|e_{\alpha}-e_{\beta}\right|+\left|e_{\beta}-e_{\alpha}\right|$ will decrease 4;
$\bullet\left|e_{\alpha}-e_{\gamma}\right|+\left|e_{\gamma}-e_{\alpha}\right|+\left|e_{\beta}-e_{\gamma}\right|+\left|e_{\gamma}-e_{\beta}\right|$ will decrease 4 if $e_{\beta}<e_{\gamma}<e_{\alpha}$ and it remains the same if $e_{\gamma} \in\left\{e_{\alpha}, e_{\beta}\right\}$.

Hence, the sum will decrease at least 4, a contradiction to the choice of ψ.

The proof of Theorem 2.4 is complete.

At the end of this section, we give a simple proof for the results of $\chi_{e}^{\prime}(G)$ and $\chi_{e}^{\prime}(D)$, where G is an arbitrary undirected graph and D is an arbitrary digraph.

Although the fact blow seems somewhat trivial and we are almost sure that more than one researcher have proved it before, for the completeness of this part, we give the sketch of its proof here.

Fact 2.5. Let G be an undirected graph. Then $\chi_{e}^{\prime}(G)=\chi^{\prime}(G)$.
Proof. Among all proper $\chi^{\prime}(G)$-edge-colorings of G, choose one named ψ with minimum value of $\sum_{a, b}\left|e_{a}-e_{b}\right|$, and then choose two colors α and β with maximum value of $e_{\alpha}-e_{\beta}$ in ψ. Assume the opposite that ψ is not equitable, then $e_{\alpha}-e_{\beta} \geq 2$. For any $\gamma \in\{1, \ldots, k\} \backslash\{\alpha, \beta\}$, we have $e_{\beta} \leq e_{\gamma} \leq e_{\alpha}$ by the choices of α and β. Note that interchanging the colors on an (α, β)-Kempe-path implies a new proper edge coloring. It follows from $e_{\alpha}-e_{\beta} \geq 2$ that there exists an (α, β)-Kempe-path with more edges colored by α than colored by β. Then we interchange the colors of the edges of such an (α, β)-Kempe-path. Now consider the sum $\sum_{a, b}\left|e_{a}-e_{b}\right|$ for the resulting coloring. Compare it with the original sum for ψ, the following facts hold.

- $\left|e_{\alpha}-e_{\beta}\right|+\left|e_{\beta}-e_{\alpha}\right|$ will decrease $4 ;$
$\bullet\left|e_{\alpha}-e_{\gamma}\right|+\left|e_{\gamma}-e_{\alpha}\right|+\left|e_{\beta}-e_{\gamma}\right|+\left|e_{\gamma}-e_{\beta}\right|$ will decrease 4 if $e_{\beta}<e_{\gamma}<e_{\alpha}$ and it remains the same if $e_{\gamma} \in\left\{e_{\alpha}, e_{\beta}\right\}$.

This contradicts the minimality of $\sum_{a, b}\left|e_{a}-e_{b}\right|$. Thus ψ is equitable.

Note that $\chi_{e}^{\prime 2}(D)=\chi_{e}^{\prime}\left(B^{D}\right)=\chi^{\prime}\left(B^{D}\right)$. The analogous result for digraphs holds directly.

Fact 2.6. Let D be a digraph. Then $\chi_{e}^{\prime 2}(D)=\chi^{\prime 2}(D)=\Delta(D)$.

2.6 Conclusion

In this chapter, the (semi-)VDPA coloring of digraphs is introduced. Many results on $\chi_{v d}^{\prime 2}(D)$, where D is a vdac-digraph, have been obtained. We give upper bounds for $\chi_{v d}^{\prime 2}(D)$ and $\chi_{s v d}^{\prime 2}(D)$ respectively. In particular, the value of $\chi_{v d}^{\prime 2}(D)$ is obtained for some regular digraph D. Moreover, we show that the values of $\chi_{v d}^{\prime 2}(D)$ and $\chi_{s v d}^{\prime 2}(D)$ will not be changed if the coloring, in addition, required to be equitable.

For further consideration, it would be interesting to consider the strong 2-type VDPA coloring f of vdac-digraphs, here "strong" we mean that the color sets in $\left\{F^{+}(v), F^{+}(v), F^{-}(u), F^{-}(v)\right\}$ are pairwise distinct for every two vertices u and v. One can check that it is equal to the VDPE colorings of balance bipartite graphs if loops are allowed in the vdac-digraphs.

Despite few analysis on $\chi_{v d}^{\prime 1}(D)$, it is also an interesting problem and would be difficult too. Analogous to Corollary 2.1, it seems that $\chi_{v d}^{\prime 1}(D) \leq n$ also holds. Directed cycles are trivial examples supporting this conjecture.

Chapter 3

Short Cycles in Digraphs with Forbidden Subdigraphs

3.1 Introduction

An oriented graph is a digraph without loops, parallel arcs or directed 2-cycles. Let D be an oriented graph with vertex set $V(D)$ and arc set $E(D)$. For a subset S of $V(D)$, denote by $\left.D\right|_{S}$ the oriented graph induced by S. For a subdigraph P of D, denote by $D \backslash P$ the oriented graph induced by $V(D) \backslash V(P)$. For a vertex v of D, denote by $N_{D}^{+}(v)$ and $d_{D}^{+}(v)=\left|N_{D}^{+}(v)\right|$ its outneighborhood and outdegree in D, respectively. For better presentation, we use $\langle u, v\rangle$ to denote an arc $u v$ of D, and for an $\operatorname{arc}\langle u, v\rangle, u$ is its tail and v is its head. Vertices u and v are independent if neither $\langle u, v\rangle$ nor $\langle v, u\rangle$ is an arc. Let $k \geq 3$ be a positive integer. Define a quasi-k-cycle be an oriented graph that can be obtained by reversing the direction of one arc of a cycle of length k. Or simply, we use quasi-cycle for quasi- k-cycle when the context is clear. Let n, l, r with $n \geq l \geq 2$ and $n \geq r$ be three positive integers.

3.2 Caccetta-Häggkvist conjecture with induced forbidden subdigraphs

In particular, characterizing some forbidden subdigraphs is another meaningful way to consider this conjecture. For the case $l=3$ of Conjecture 1.4, Lichiardopol [69] verified it with one induced forbidden subdigraph I_{3}; it was noted in [80] that it holds with one induced forbidden subdigraph $\vec{K}_{1,2}$, it was also noted that Seymour verified it with one induced forbidden subdigraph $\vec{K}_{2,1}$; and as a corollary of a result in [80], it is true with one induced forbidden subdigraph \vec{P}_{3}. The four oriented graphs mentioned here can be found in Figure 3.1.

Figure 3.1: Some oriented graphs on three vertices.

Besides, by deeply considering the nature of the conjectured extremal configurations, Razborov [80] verified the case $l=3$ with three well defined induced forbidden subdigraphs (see Figure 3.2) as follows.

Theorem 3.1 (Razborov [80]). Let D be an oriented graph on n vertices without directed triangles. If D contains none of the oriented graphs of Figure 3.2 as an induced subdigraph, then D contains a vertex with outdegree at most $\frac{n-1}{3}$.

We generalize Theorem 3.1 to the case $l \geq 4$ by the following theorem.
Theorem 3.2. Let D be an oriented graph on n vertices without cycles of lengths at most l. If D contains none of the oriented graphs of Figure 3.3 as an induced subdigraph, then D contains a vertex with outdegree at most $\frac{n-1}{l}$.

Proof. Let D be the oriented graph defined in Theorem 3.2. Assume that CaccettaHäggkvist conjecture holds for all the proper induced subdigraphs of D. Throughout

Figure 3.2: Forbidden oriented graphs for Theorem 3.1.

Figure 3.3: Forbidden oriented graphs for Theorem 3.2.
the proof, the calculations of the densities of the oriented graphs in Figure 3.4 will play an important role. We first give the definitions.

For an oriented graph $O^{A}(u, v)$ with $u, v \in V(D)$ in Figure 3.4, let $W_{O^{A}}$ be the set of vertices in $V(D) \backslash\{u, v\}$ such that $\left.D\right|_{\{u, v, w\}}$ is isomorphic to $O^{A}(u, v)$ for any $w \in W_{O^{A}}$. Define the density of $O^{A}(u, v)$ as follows.

$$
\begin{equation*}
d\left(O^{A}(u, v), D\right)=\frac{\left|W_{O^{A}}\right|}{n-2} . \tag{3.1}
\end{equation*}
$$

For $\hat{O}^{A}(u, v)$ with $u, v \in V(D)$ in Figure 3.4, let $W_{\hat{O}^{A}}$ be the set of pairs of vertices in $V(D) \backslash\{u, v\}$ such that $\left.D\right|_{\left\{u, v, w, w^{\prime}\right\}}$ is isomorphic to $\hat{O}^{A}(u, v)$ for any $\left\{w, w^{\prime}\right\} \in W_{\hat{O}^{A}}$. Define the density of $\hat{O}^{A}(u, v)$ as follows.

$$
\begin{equation*}
d\left(\hat{O}^{A}(u, v), D\right)=\frac{\left|W_{\hat{O}^{A}}\right|}{\binom{n-2}{2}} . \tag{3.2}
\end{equation*}
$$

Similarly, we can define the densities for other oriented graphs listed in Figure 3.4,
i.e., $d\left(I^{A}(u, v), D\right), d\left(P_{3}^{A}(u, v), D\right), d\left(\vec{K}_{2,1}^{N}(u, v), D\right)$ and $d\left(\vec{P}_{3}^{N}(u, v), D\right)$. Besides, let

$$
\begin{equation*}
d(\alpha(v))=\frac{d_{D}^{+}(v)}{n-1} \tag{3.3}
\end{equation*}
$$

for a vertex v of D. Note that now it suffices to show $\alpha(v) \leq 1 / l$ for some vertex v of D.

In sake of convenience, we write H for $d(H, D)$ in the following when no confusion occurs.

$\hat{O}^{A}(u, v)$

Figure 3.4: Oriented graphs needed in the proof of Theorem 3.2.

We call an arc $\langle u, v\rangle \in E(D)$ critical if $O^{A}(u, v)$ is minimal over all arcs going out from u. Note that v is a vertex in $N_{D}^{+}(u)$ with smallest outdegree in $\left.D\right|_{N_{D}^{+}(u)}$. The following two claims will be used later. Since the proofs can be found in [80], we omit the details here.

Claim 3.1 (Razborov [80]). Let $\langle u, v\rangle$ and $\langle v, w\rangle$ be two critical arcs. Then u and w are independent, and $\vec{K}_{2,1}^{N}(u, w)=0$.

Claim 3.2 (Razborov [80]). Let $\langle u, v\rangle$ be a critical arc. Then $\hat{O}^{A}(u, v)=0$.
We first show a relationship between $O^{A}(u, v)$ and $\vec{P}_{3}^{N}(v, w)$, where $\langle u, v\rangle$ and $\langle v, w\rangle$ are two critical arcs.

Claim 3.3. If $\langle u, v\rangle$ and $\langle v, w\rangle$ are two critical arcs, then

$$
\begin{align*}
O^{A}(u, v) & \leq \frac{\vec{P}_{3}^{N}(u, w)}{l}-\frac{1}{l(n-2)} \tag{3.4}\\
I^{A}(v, w) & \leq \frac{\vec{P}_{3}^{N}(u, w)}{l}-\frac{1}{l(n-2)}
\end{align*}
$$

Proof. The proof of the second inequality is similar to that of the first one. So we only show the first inequality. By Claim 3.1, u and w are independent and thus $\vec{P}_{3}^{N}(u, w)$ exists. Let H be the set of vertices which contribute to $\vec{P}_{3}^{N}(u, w)$ and let $h=|H|$. Then $\vec{P}_{3}^{N}(u, w)=\frac{h}{n-2}$. Applying the inductive assumption to $\left.D\right|_{H}$, there is a vertex $v^{*} \in H$ that has outdegree at most $\frac{h-1}{l}$. Now we show that

$$
\begin{equation*}
O^{A}\left(u, v^{*}\right) \leq \frac{h-1}{l(n-2)}=\frac{\vec{P}_{3}^{N}(u, w)}{l}-\frac{1}{l(n-2)} \tag{3.5}
\end{equation*}
$$

from which the claim follows since $O^{A}(u, v) \leq O^{A}\left(u, v^{*}\right)$ due to the criticality of $\langle u, v\rangle$. Note that it suffices to show that every vertex x contributing to $O^{A}\left(u, v^{*}\right)$ belongs to H, that is $\langle x, w\rangle \in E(D)$. If x and w are independent, then $\left\{u, v^{*}, x, w\right\}$ induces an out-pendant. If $\langle w, x\rangle \in E(D)$, then $x \in \vec{K}_{2,1}^{N}(u, w)$ which contradicts to Claim 3.1 that $\vec{K}_{2,1}^{N}(u, w)=0$.

Now we consider a path consisting of $l-1$ critical arcs.

Claim 3.4. For any $i \in\{1, \ldots, l-1\}$ and for any $\left\{v_{1}, \ldots, v_{l}\right\} \subseteq V(D)$ satisfying that $\left\langle v_{i}, v_{i+1}\right\rangle$ is a critical arc and $\left\langle v_{i}, v_{j}\right\rangle \notin E(D)$ for any $j \neq i+1$, we have

$$
\begin{equation*}
\sum_{i=1}^{l} \alpha\left(v_{i}\right)+\left(O^{A}\left(v_{1}, v_{2}\right)+I^{A}\left(v_{1}, v_{2}\right)\right)-\left(O^{A}\left(v_{l-1}, v_{l}\right)+I^{A}\left(v_{l-1}, v_{l}\right)\right) \leq 1 \tag{3.6}
\end{equation*}
$$

Proof. It is equal to show that

$$
\begin{align*}
\sum_{i=1}^{l} \alpha\left(v_{i}\right) & +\left(O^{A}\left(v_{1}, v_{2}\right)+I^{A}\left(v_{1}, v_{2}\right)\right)-\left(O^{A}\left(v_{l-1}, v_{l}\right)+I^{A}\left(v_{l-1}, v_{l}\right)\right) \\
& +\sum_{j=2}^{l-2} O^{A}\left(v_{j}, v_{j+1}\right)-\sum_{j=2}^{l-2} O^{A}\left(v_{j}, v_{j+1}\right) \tag{3.7}\\
& +\sum_{j^{\prime}=2}^{l-1} I^{A}\left(v_{j^{\prime}}, v_{j^{\prime}+1}\right)-\sum_{j^{\prime}=2}^{l-1} I^{A}\left(v_{j^{\prime}}, v_{j^{\prime}+1}\right) \\
& \leq 1
\end{align*}
$$

By Inequality (3.4) in Claim 3.3, we have

$$
\begin{align*}
& O^{A}(u, v) \leq \vec{P}_{3}^{N}(u, w)-(l-1) O^{A}(u, v)-\frac{1}{n-2} \\
& I^{A}(u, v) \leq \vec{P}_{3}^{N}(u, w)-(l-1) I^{A}(u, v)-\frac{1}{n-2} \tag{3.8}
\end{align*}
$$

Thus, it suffices to show that

$$
\begin{align*}
\sum_{i=1}^{l} \alpha\left(v_{i}\right) & +I^{A}\left(v_{1}, v_{2}\right)+2 \sum_{j=1}^{l-2} \vec{P}_{3}^{N}\left(v_{j}, v_{j+2}\right) \\
& -(l-1) O^{A}\left(v_{1}, v_{2}\right)-l \sum_{k=2}^{l-2} O^{A}\left(v_{k}, v_{k+1}\right)-O^{A}\left(v_{l-1}, v_{l}\right) \tag{3.9}\\
& -l \sum_{k^{\prime}=1}^{l-2} I^{A}\left(v_{k^{\prime}}, v_{k^{\prime}+1}\right)-I^{A}\left(v_{l-1}, v_{l}\right) \\
& \leq 1+\frac{2(l-2)}{n-2} .
\end{align*}
$$

Now we re-calculate all quantities in the left-hand side of Inequality (3.9) in $V(D) \backslash\left\{v_{1}, \ldots, v_{l}\right\}$. Denote these re-calculated quantities with $\widetilde{\alpha}, \ldots, \widetilde{K_{2,1}^{A}}$, respectively. Note that D has no cycle of length at most l and $\left\langle v_{i}, v_{j}\right\rangle \notin E(D)$ for any $j \neq i+1$. By the definitions of the terms in Inequality (3.9) and the re-calculated terms, we have the following three facts.

Fact 3.1. For any $i \in\{1, \ldots, l-1\}$ and any $j \in\{1, \ldots, l-2\}$ we have

$$
\begin{align*}
\alpha\left(v_{i}\right) & =\frac{n-l}{n-1} \widetilde{\alpha}\left(v_{i}\right)+\frac{1}{n-1} ; \\
\alpha\left(v_{l}\right) & =\frac{n-l}{n-1} \widetilde{\alpha}\left(v_{l}\right) ; \\
\vec{P}_{3}^{N}\left(v_{j}, v_{j+2}\right) & =\frac{n-l}{n-2} \widetilde{\vec{P}_{3}^{N}}\left(v_{j}, v_{j+2}\right)+\frac{1}{n-2} ; \tag{3.10}\\
O^{A}(u, w) & =\frac{n-l}{n-2} \widetilde{O^{A}}(u, w) ; \\
I^{A}(u, w) & =\frac{n-l}{n-2} \widetilde{I^{A}}(u, w) .
\end{align*}
$$

Fact 3.2. Let x be an arbitrary vertex in $V(D) \backslash\left\{v_{1}, \ldots, v_{l}\right\}$. If x contributes to $\widetilde{I^{A}}\left(v_{1}, v_{2}\right)$, then x contributes to no term in $\left\{\widetilde{\alpha}\left(v_{i}\right): i=1, \ldots, l\right\}$ and no term in $\left\{\widetilde{\vec{P}_{3}^{N}}\left(v_{j}, v_{j+2}\right): j=1, \ldots, l-2\right\}$.

Fact 3.3. Let x be an arbitrary vertex in $V(D) \backslash\left\{v_{1}, \ldots, v_{l}\right\}$. Assume that x does not contribute to $\widetilde{I^{A}}\left(v_{1}, v_{2}\right)$. By Claim 3.2, we have that x contributes to at most two terms in $\left\{\alpha\left(v_{i}\right): i=1 \ldots, l\right\}$. If x contributes to two terms in $\left\{\widetilde{\alpha}\left(v_{i}\right): i=1 \ldots, l\right\}$, then x contributes to one term in $\left\{\widetilde{O^{A}}\left(v_{j}, v_{j+1}\right): i=1, \ldots, l-2\right\}$ for some j. If x contributes to one term in $\left\{\widetilde{\alpha}\left(v_{i}\right): i=1 \ldots, l\right\}$, then x contributes to at most one term in $\left\{\widetilde{\vec{P}_{3}^{N}}\left(v_{j}, v_{j+2}\right): j=1, \ldots, l-2\right\}$.

Since $\sum_{i=1}^{l} \alpha\left(v_{i}\right)>1$ by our assumption, we have

$$
\begin{align*}
\frac{n-l}{n-2} \sum_{i=1}^{l} \widetilde{\alpha}\left(v_{i}\right) & =\frac{n-1}{n-2} \sum_{i=1}^{l} \alpha\left(v_{i}\right)-\frac{l-1}{n-2} \\
& =\sum_{i=1}^{l} \alpha\left(v_{i}\right)+\frac{\sum_{i=1}^{l} \alpha\left(v_{i}\right)-(l-1)}{n-2} \tag{3.11}\\
& \geq \sum_{i=1}^{l} \alpha\left(v_{i}\right)-\frac{l-2}{n-2}
\end{align*}
$$

Thus,

$$
\begin{equation*}
\sum_{i=1}^{l} \alpha\left(v_{i}\right) \leq \frac{n-l}{n-2} \sum_{i=1}^{l} \widetilde{\alpha}\left(v_{i}\right)+\frac{l-2}{n-2} \tag{3.12}
\end{equation*}
$$

Now for (9) it also suffices to show that

$$
\begin{align*}
\frac{n-l}{n-2}\left(\sum_{i=1}^{l} \widetilde{\alpha}\left(v_{i}\right)\right. & \left.+\widetilde{I^{A}}\left(v_{1}, v_{2}\right)+2 \sum_{j=1}^{l-2} \widetilde{\vec{P}_{3}^{N}}\left(v_{j}, v_{j+2}\right)\right)+\frac{3(l-2)}{n-2} \\
& -\frac{n-l}{n-2}\left((l-1) \widetilde{O^{A}}\left(v_{1}, v_{2}\right)+l \sum_{k=2}^{l-2} \widetilde{O^{A}}\left(v_{k}, v_{k+1}\right)+\widetilde{O^{A}}\left(v_{l-1}, v_{l}\right)\right) \\
& -\frac{n-l}{n-2}\left(l \sum_{k^{\prime}=1}^{l-2} \widetilde{I^{A}}\left(v_{k^{\prime}}, v_{k^{\prime}+1}\right)+\widetilde{I^{A}}\left(v_{l-1}, v_{l}\right)\right) \\
& \leq 1+\frac{2(l-2)}{n-2} . \tag{3.13}
\end{align*}
$$

That is,

$$
\begin{align*}
\sum_{i=1}^{l} \widetilde{\alpha}\left(v_{i}\right) & +\widetilde{I^{A}}\left(v_{1}, v_{2}\right)+2 \sum_{j=1}^{l-2} \widetilde{\overrightarrow{P_{3}^{N}}}\left(v_{j}, v_{j+2}\right) \\
& -(l-1) \widetilde{O^{A}}\left(v_{1}, v_{2}\right)-l \sum_{k=2}^{l-2} \widetilde{O^{A}}\left(v_{k}, v_{k+1}\right)-\widetilde{O^{A}}\left(v_{l-1}, v_{l}\right) \tag{3.14}\\
& -l \sum_{k^{\prime}=1}^{l-2} \widetilde{I^{A}}\left(v_{k^{\prime}}, v_{k^{\prime}+1}\right)-\widetilde{I^{A}}\left(v_{l-1}, v_{l}\right) \\
& \leq 1
\end{align*}
$$

By Facts 2 and 3, it suffices to consider the case that x contributes to both $\widetilde{\alpha}\left(v_{i}\right)$ and $\widetilde{\vec{P}_{3}^{N}}\left(v_{i}, v_{i+2}\right)$ for some $2 \leq i \leq l-2$. Since D has no induced F_{4}, then x contributes to at least one of $\left\{\widetilde{O^{A}}\left(v_{i}, v_{i+1}\right), \widetilde{I^{A}}\left(v_{i+1}, v_{i+2}\right)\right\}$. Thus the Inequality (3.14) follows and the proof is complete.

By the definition of critical arcs, there exists a critical arc going out of u for any vertex u. So a cycle consisting of critical arcs exists. Let $C=u_{1} \ldots u_{p}$ be such one of minimal length.

Claim 3.5. Let u_{i} and u_{j} be any two vertices of C. Then $\left\langle u_{i}, u_{j}\right\rangle \in E(D)$ if and only if $j=i+1$ (modulo p).

Proof. The sufficiency is obvious. For the necessity, assume the opposite that $\left\langle u_{i}, u_{j}\right\rangle \in$
$E(D)$ for some $j \neq i+1$. If $\left\langle u_{i}, u_{j}\right\rangle$ is not a critical arc, then $O^{A}\left(u_{i}, u_{j}\right) \neq \emptyset$. Note that $\left\{u_{i}, u_{j}, u_{j-1}, u\right\}$ induces an in-pendant for any $u \in O^{A}\left(u_{i}, u_{j}\right)$. So $\left\langle u_{i}, u_{j}\right\rangle$ is a critical arc. Replacing $u_{i} u_{i+1} \ldots u_{j}$ by $\left\langle u_{i}, u_{j}\right\rangle$ yields a cycle consisting of less number of critical arcs, a contradiction to the minimality of C.

We now prove Theorem 3.2. Sum up the quantities in the left side of Inequalities (3.6) along the cycle C. Note that the terms O^{A} and I^{A} will get canceled. Therefore,

$$
\begin{equation*}
\sum_{i=1}^{p} \alpha\left(u_{i}\right) \leq p / l \tag{3.15}
\end{equation*}
$$

It follows that there exists at least one vertex u_{j} with $\alpha\left(u_{j}\right) \leq 1 / l$. The proof of Theorem 3.2 is complete.

3.3 Caccetta-Häggkvist conjecture with forbidden subdigraphs

In [80], Razborov also proved that the Caccetta-Häggkvist conjecture holds for digraphs with three forbidden subdigraphs (not necessarily induced).

Theorem 3.3 (Razborov [80]). Let D be an oriented graph on n vertices without directed triangles. If D contains none of the oriented graphs of Figure 3.5 as a subdigraph (not necessarily induced), then D contains a vertex with outdegree at most $\frac{n-1}{3}$.

Figure 3.5: Forbidden oriented graphs for Theorem 3.3.
To generalize Theorem 3.3 to the case $l \geq 4$, or equivalently, to drop the restriction of being induced of Theorem 3.2, we introduce an operation as follows.

Figure 3.6: Forbidden oriented graphs for Theorem 3.4.

Operation 1. Let u and v be two arbitrary independent vertices in an oriented graph without cycles of lengths at most l.
(1) If there is one path between u and v, assume w.l.o.g. that from u to v, of length $s \leq l-1$, then add a path from v to u of length $l-s+1$ (add $l-s$ vertices);
(2) If there is no path between u and v, then add a path from u to v of length $s \geq 2$ and a path from v to u of length $s^{\prime} \geq 2$ such that $s+s^{\prime}=l+1$ (add $l-2$ vertices $)$.

Denote by $F_{1}, F_{2}, F_{3}^{k}(4 \leq k \leq l+1)$ and F_{4} (see Figure 3.6) the four oriented graphs generated from the four oriented graphs in Figure 3.3 by this operation, respectively. The new added vertices are denoted by empty circles and the new added paths are denoted by dotted lines.

Now we generalize Theorem 3.3 to the case $l \geq 4$ as follows.
Theorem 3.4. Let D be an oriented graph on n vertices without cycles of lengths at most l. If D contains none of the oriented graphs of Figure 3.6 as a subdigraph, then D contains a vertex with outdegree at most $\frac{n-1}{l}$.

Proof. Assume that Conjecture 1.4 holds for all oriented graphs that contain at least one oriented graph in Figure 3.6. Let D be an arbitrary oriented graph without cycles of lengths at most l. It suffices to show that D contains a vertex v with outdegree at most $\frac{n-1}{l}$. We can assume w.l.o.g. that D is maximal, i.e., adding any new arcs to D destroys the C_{k}-freeness for some $3 \leq k \leq l$.

If D contains no induced subdigraphs in Figure 3.3, then we are done by Theorem
3.2. Now assume that D contains at least one induced subdigraph in Figure 3.3.

By the maximality of D and our construction of F_{1}, F_{2}, F_{3}^{k} and F_{4}, D contains
at least one oriented graph in Figure 3.6. So a vertex v with outdegree at most $\frac{n-1}{l}$ exists by our assumption at the beginning.

So far, we complete the generalization of Theorems 3.1 and 3.3 by Theorems 3.2 and 3.4 , respectively. As a supplement, we also obtain the following forbidden subdigraph condition for Conjecture 1.4. It is somewhat trivial but very interesting and a simple proof is presented.

Proposition 3.1. Let D be an oriented graph on n vertices without cycles of lengths at most l. If D contains no (induced) quasi-k-cycle for any $3 \leq k \leq l+1$, then D contains a vertex with outdegree at most $\frac{n-1}{l}$.

Proof. Assume that D has minimum outdegree at least $\frac{n}{l}$. It follows that D has a cycle and furthermore by assumption the cycle has length more than l. So D has a path of length at least $l-1$ and let $P=v_{1} \ldots v_{l}$ be a path of length $l-1$. By the minimum outdegree condition, we have

$$
\begin{equation*}
\sum_{i=1}^{l} d_{D}^{+}(v) \geq n \tag{3.16}
\end{equation*}
$$

Note that $\sum_{i=1}^{l} d_{P}^{+}(v)=l-1$. Thus,

$$
\begin{equation*}
\sum_{i=1}^{l} d_{D \backslash P}^{+}(v) \geq n-l+1 \tag{3.17}
\end{equation*}
$$

It follows that there exist two vertices in $V(P)$ having a common outneighbor in $V(D) \backslash V(P)$, which implies a quasi- k-cycle for some $3 \leq k \leq l+1$, a contradiction.

Note that Proposition 3.1 has an equivalent statement: Every digraph on n vertices with minimum outdegree r contains either a cycle of length at most $\left\lceil\frac{n}{r}\right\rceil$ or a quasi cycle of length at most $\left\lceil\frac{n}{r}\right\rceil+1$.

3.4 Conclusion

In this chapter, we consider the famous Caccetta-Häggkvist conjecture. Motivated by the result of Razborov [80] on $l=3$ of Conjecture 1.4 with forbidden subdigraphs. We generalize this result by showing that Caccetta-Häggkvist conjecture (Conjecture 1.4) holds for $l \geq 4$ with four given forbidden subdigraphs. It is worth noting that the definition "density" is the key quantity in flag algebras, which was introduced by Razborov [79] in 2007. For more details, we refer the readers to [79, 80].

Chapter 4

Vertex-Disjoint Cycles in Bipartite

Tournaments

4.1 Introduction

We write $u \rightarrow L$ if $u \rightarrow v$ for every $v \in L$ and write $L \rightarrow u$ if $v \rightarrow u$ for every $v \in L$. Define a $\{k, l\}$-cycle to be a cycle of length either k or l. As mentioned in Section 1.4, vertex-disjoint cycles in graphs and digraphs have attracted much attention. The work of this chapter on vertex-disjoint cycles in bipartite tournaments is mainly motivated by the results on vertex-disjoint cycles in tournaments.

4.2 Vertex-disjoint cycles in bipartite tournaments

In 2001, Chen et al. [35] showed the following theorem.
Theorem 4.1 (Chen et al. [35]). Let T be a k-connected tournament with at least $5 k-3$ vertices and $k \geq 2$. Then T contains k vertex-disjoint cycles.

Here, we give a similar result for bipartite tournaments as follows.

Theorem 4.2. Let $B T=(X, Y ; E)$ be a k-connected bipartite tournament with $\min \{|X|,|Y|\} \geq 4 k-3$ and $k \geq 2$. Then BT contains k vertex-disjoint cycles.

As a direct corollary, we have the following result.

Corollary 4.1. Every k-connected balanced (hamiltonian) bipartite tournament with at least $8 k-6$ vertices contains k vertex-disjoint cycles.

Proof of Theorem 4.2. To the contrary, let $k \geq 2$ be the smallest positive integer such that there exists a k-connected bipartite tournament with $\min \{|X|,|Y|\} \geq$ $4 k-3$ that does not contain k vertex-disjoint cycles. By the minimality of k and the fact that every 1-connected bipartite tournament has a cycle, $B T$ has $k-1$ vertexdisjoint cycles. By Lemma $1.2, B T$ has $k-1$ vertex-disjoint cycles of length 4, say, Q_{1}, \ldots, Q_{k-1}. Let

$$
\begin{equation*}
H=B T-\bigcup_{j=1}^{k-1} V\left(Q_{j}\right) \tag{4.1}
\end{equation*}
$$

Note that H has no cycle. Let $H_{1}, H_{2}, \ldots, H_{2 i-1}, H_{2 i}, \ldots, H_{2 m-1}, H_{2 m}, m \geq 1,1 \leq$ $i \leq m$, be the vertex-disjoint subsets defined in Lemma 1.3. Assume w.l.o.g that $H_{2 i-1} \subseteq X$ and $H_{2 i} \subseteq Y$.

Let M be the set of the first appeared k monochromatic vertices according to the sequence $H_{1}, \ldots, H_{2 m}$, without loss of generality (or simply, w.l.o.g.), assume that $M \subseteq X$. Let N be the set of the last appeared k vertices (in Y) according to the sequence $H_{1}, \ldots, H_{2 m}$. Since

$$
\begin{equation*}
|V(H)|=|V(B T)|-\sum_{j=1}^{k-1}\left|V\left(Q_{j}\right)\right| \geq 8 k-6-4(k-1) \geq 4 k-2 \tag{4.2}
\end{equation*}
$$

and there is no arc from H_{p} to H_{q} for $p>q$, we have $M \rightarrow N$. Since $B T$ is k connected, there exist k vertex-disjoint paths from N to M. Clearly, these paths plus the appropriate arcs from M to N form k vertex-disjoint cycles. The proof of Theorem 4.2 is complete.

4.3 Vertex-disjoint cycles of given lengths in bipartite tournaments

In 2010, Lichiardopol [68] considered the vertex-disjoint cycles of given length in tournaments and proposed the following conjecture.

Conjecture 4.1 (Lichiardopol [68]). Let T be a tournament with $\delta^{+}(T) \geq(q-1) r-$ 1. Then T contains r vertex-disjoint q-cycles.

Motivated by the conjecture, we consider the analogous problem for bipartite tournaments, i.e., vertex-disjoint cycles of given length(s) in bipartite tournaments. The following results have been proved.

Theorem 4.3. Let $B T$ be a bipartite tournament with $\delta^{+}(B T) \geq q r-1$. Then $B T$ contains r vertex-disjoint cycles either of length $2 q$ for even q or of length in $\{2 q, 2 q+2\}$ for odd q.

Theorem 4.4. Let $B T$ be a bipartite tournament with $\delta^{+}(B T) \geq q r-1$ and let $t_{1}, \ldots, t_{r} \in[4,2 q]$ be any r even integers. Then BT contains r vertex-disjoint cycles of lengths $t_{1}^{\prime}, \ldots, t_{r}^{\prime}$ such that $t_{i}^{\prime}=t_{i}$ for $t_{i}=0(\bmod 4)$ and $t_{i}^{\prime} \in\left\{t_{i}, t_{i}+2\right\}$ for $t_{i}=2(\bmod 4)$, where $1 \leq i \leq r$.

We leave the proofs of Theorems 4.3 and 4.4 at the end of this section.
In 1981, Bermond and Thomassen [23] conjectured that every digraph with minimum outdegree at least $2 r-1$ contains at least r vertex-disjoint cycles. This is trivially true for $r=1$. Thomassen [93] and Lichiardopol, Por and Sereni [71] proved it for $r=2$ and $r=3$, respectively. In 2010, Bessy, Lichiardopol and Sereni [25] verified it for regular tournaments. Recently, Bang-Jensen et al. [17] verified it for tournaments. Take $q=2$ in Theorem 4.3, then the Bermond-Thomassen conjecture will be verified for bipartite tournaments.

Corollary 4.2. Let $B T$ be a bipartite tournament with $\delta^{+}(B T) \geq 2 r-1$. Then $B T$ contains r vertex-disjoint 4-cycles.

We give some preliminary results as follows.
Theorem 4.5 (Jackson [59]). Let BT be a strong bipartite tournament with $\delta^{+}(B T) \geq$ s and $\delta^{-}(B T) \geq t$. Then BT contains a cycle of length at least $2(s+t)$.

The following fact will be used later.
Fact 4.1. $F_{4 \cdot k}$ contains a $4 k^{\prime}$-cycle for all $1 \leq k^{\prime} \leq k$.

Theorem 4.6 (Beineke and Little [22]). Let C be a $2 s$-cycle of a bipartite tournament $B T$. If the sub-bipartite-tournament induced on C is not isomorphic to $F_{4 \cdot k}$, where $k=s / 2$, then $B T$ contains a $2 s^{\prime}$-cycle for all $2 \leq s^{\prime} \leq s$.

We now prove Theorems 4.3 and 4.4, respectively.

Proof of Theorem 4.3. We can assume w.l.o.g. that $B T$ is strong. In fact, if not, then we can choose a strong component with minimum outdegree at least $q r-1$. Then $\delta^{-}(B T) \geq 1$ and $B T$ has a cycle of length at least $2 q r$ by Theorem 4.5. Thus $B T$ has a $2 q$-cycle for even q or a $(2 q+2)$-cycle for odd q by Theorem 4.6 and Fact 4.1.

By induction on r. It obviously holds for $r=1$. Assume that $r \geq 2$ and every bipartite tournament with minimum outdegree at least $q(r-1)-1$ contains $r-1$ vertex-disjoint cycles either of length $2 q$ for even q or of lengths in $\{2 q, 2 q+2\}$ for odd q. We distinguish two cases.

Case 1. q is even.

Note that $B T$ has a $2 q$-cycle. Denote it by C and let $B T^{\prime}=B T \backslash C$. Then

$$
\begin{equation*}
\delta^{+}\left(B T^{\prime}\right) \geq q r-1-q=q(r-1)-1 . \tag{4.3}
\end{equation*}
$$

By hypothesis $B T^{\prime}$ has $r-1$ vertex-disjoint $2 q$-cycles. These cycles plus C form r vertex-disjoint $2 q$-cycles of $B T$.

Case 2. q is odd.

If $B T$ has a $2 q$-cycle C, then the same as Inequality (4.3) we have $\delta^{+}\left(B T^{\prime}\right) \geq$ $q(r-1)-1$ for $B T^{\prime}=B T \backslash C$. Thus by hypothesis $B T^{\prime}$ has $r-1$ vertex-disjoint $\{2 q, 2 q+2\}$-cycles. These cycles plus C form r vertex-disjoint $\{2 q, 2 q+2\}$-cycles of $B T$.

Now assume that $B T$ has no $2 q$-cycle. We will show that $B T$ has r vertex-disjoint $(2 q+2)$-cycles.

Note that $B T$ has a cycle of length at least $2 q r$. Let C be the maximum cycle of $B T$. Then $|C| \geq 2 q r$. Since $B T$ contains no $2 q$-cycle, by Theorem 4.6, we have that C induces a $F_{4 \cdot k}$ for $k=|C| / 4$. Recall that $F_{4 \cdot k}=F(K, L, M, N)$ with $|K|=|L|=|M|=|N|=k$.

If $|C| \geq r(2 q+2)$, then $F_{4 \cdot k}$ contains at least r vertex-disjoint $(2 q+2)$-cycles and thus the result holds. Now assume that $|C|<r(2 q+2)$. We will get a contradiction by showing that $B T$ has a cycle longer than C.

Note that

$$
\begin{equation*}
d_{C}^{+}(v)=\frac{|C|}{4}<\frac{r(q+1)}{2} \tag{4.4}
\end{equation*}
$$

for any $v \in V(C)$ and

$$
\begin{equation*}
\delta^{+}(B T) \geq q r-1>\frac{r(q+1)}{2}>d_{C}^{+}(v) \tag{4.5}
\end{equation*}
$$

Thus $X \cap(B T \backslash C) \neq \emptyset, Y \cap(B T \backslash C) \neq \emptyset$ and every vertex of C has at least one outneighbor in $B T \backslash C$.

For any $x \in X \cap(B T \backslash C)$, assume w.l.o.g. that $y_{1} \rightarrow x$ for some $y_{1} \in L$ and assume that there exists $y_{2} \in L$ with $x \rightarrow y_{2}$. Since $|C| \geq 2 q+2$, then $B T[C]$ has a path P of length $2 q-2$ from y_{2} to y_{1}. Now $y_{2} P y_{1} x y_{2}$ is a $2 q$-cycle, a contradiction. This, and by symmetry, implies that

- $x \rightarrow L$ or $L \rightarrow x$ for any $x \in X \cap(B T \backslash C)$;
- $x \rightarrow N$ or $N \rightarrow x$ for any $x \in X \cap(B T \backslash C)$;
- $y \rightarrow K$ or $K \rightarrow y$ for any $y \in Y \cap(B T \backslash C)$;
- $y \rightarrow M$ or $M \rightarrow y$ for any $y \in Y \cap(B T \backslash C)$.

For any $y \in N$, since $d_{C}^{+}(y)=k<q r-1$, there exists $x_{K} \in X \cap(B T \backslash V(C))$ with $N \rightarrow x_{K}$. If $L \rightarrow x_{K}$, then since $B T$ is strong there exists a path from x_{K} to C. Assume that $P=x_{K} v_{1} \ldots v_{p}$ is a shortest one. Since $N \rightarrow x_{K}$ and $L \rightarrow x_{K}$, we have $v_{1} \notin L \cup N$ and $p \geq 2$. If $v_{p} \in K \cup M$, then w.l.o.g. assume that $v_{p} \in K$. Let P^{\prime} be
a Hamilton path of $B T[C]$ from v_{p} to a vertex $y^{\prime} \in N$. Then $x_{K} P v_{p} P^{\prime} y^{\prime} x_{K}$ is a cycle longer than C, a contradiction. If $v_{p} \in L \cup N$, then $p \geq 3$ and assume w.l.o.g. that $v_{p} \in L$. Let $x^{\prime \prime}, y^{\prime \prime}$ be two vertices in K and N respectively and let $P^{\prime \prime}$ be a Hamilton path of $B T[C] \backslash\left\{x^{\prime \prime}\right\}$ from v_{p} to $y^{\prime \prime}$. Then $x_{K} P v_{p} P^{\prime \prime} y^{\prime \prime} x_{K}$ is a cycle longer than C, a contradiction. This, and by symmetry, shows that

- $x_{K} \rightarrow L$ and $N \rightarrow x_{K}$ for some $x_{K} \in X \cap(B T \backslash C)$;
- $x_{M} \rightarrow N$ and $L \rightarrow x_{M}$ for some $x_{M} \in X \cap(B T \backslash C)$;
- $y_{L} \rightarrow M$ and $K \rightarrow y_{L}$ for some $y_{L} \in Y \cap(B T \backslash C)$;
- $y_{N} \rightarrow K$ and $M \rightarrow y_{N}$ for some $y_{N} \in Y \cap(B T \backslash C)$.

Let $x_{1} \in K, x_{2}, x_{2}^{\prime} \in M, y_{1}, y_{1}^{\prime} \in L$ and $y_{2} \in N$. Let P^{*} be a Hamilton path of $B T[C] \backslash\left\{x_{1}, x_{2}, y_{1}, y_{2}\right\}$ from x_{2}^{\prime} to y_{1}^{\prime}. Then

$$
\begin{equation*}
y_{1}^{\prime} x_{M} y_{2} x_{K} y_{1} x_{2} y_{N} x_{1} y_{L} x_{2}^{\prime} P^{*} y_{1}^{\prime} \tag{4.6}
\end{equation*}
$$

is a cycle longer than C, a contradiction.
The proof of Case 2 is complete.
The proof of Theorem 4.3 is complete.

Proof of Theorem 4.4. By Theorem 4.6 and Fact 4.1, the sub-bipartite-tournament induced on any $2 q$-cycle either contains a $2 q^{\prime}$-cycle for any $2 \leq q^{\prime} \leq q$ or contains a $2 q^{\prime}$-cycle for any even q^{\prime} with $2 \leq q^{\prime} \leq q$. Then the result follows directly from Theorem 4.3.

4.4 Conclusion

In this chapter, we consider vertex-disjoint cycles and vertex-disjoint cycles of given lengths in bipartite tournaments. Let $B T$ be a bipartite tournament with $\delta^{+}(B T) \geq$ $q r-1$ and let $t_{1}, \ldots, t_{r} \in[4,2 q]$ be any r even integers. We show that $B T$ contains
r vertex-disjoint cycles of length $t_{1}^{\prime}, \ldots, t_{r}^{\prime}$ such that $t_{i}^{\prime}=t_{i}$ for $t_{i}=0(\bmod 4)$ and $t_{i}^{\prime} \in\left\{t_{i}, t_{i}+2\right\}$ for $t_{i}=2(\bmod 4)$, where $1 \leq i \leq r$.

Chapter 5

Cycle Factors in Regular Bipartite

Tournaments

5.1 Introduction

Let $D=(V(D), E(D))$ be a digraph and let k be a positive integer. For an arc $\overrightarrow{u v}$ of D, we write $u \rightarrow v$ and say u dominates v (or v is dominated by u), and we call u and v the tail and the head of the arc, respectively. For two vertex-disjoint subsets P and Q of $V(D)$, we write $P \rightarrow Q$ if every arc of D between P and Q goes from P to Q, and we write $P \nrightarrow Q$ if there exists an arc of D between P and Q that goes from Q to P. Let R be a subset of $V(D)$. We use $N_{R}^{+}(P)$ (resp. $\left.N_{R}^{-}(P)\right)$ to denote the set of vertices of R which are dominated by (resp. dominate) at least one vertex of P. For convenience, we write $v \rightarrow P$ for $\{v\} \rightarrow P, v \nrightarrow P$ for $\{v\} \nrightarrow P, P+v$ for $P \cup\{v\}, P-v$ for $P \backslash\{v\}, P+u-v$ (or $P-v+u$) for $P \cup\{u\} \backslash\{v\}, N_{D}^{+}(v)$ for $N_{D}^{+}(\{v\}), N_{D}^{-}(v)$ for $N_{D}^{-}(\{v\}), d_{D}^{+}(v)$ for $\left|N_{D}^{+}(v)\right|$ and $d_{D}^{-}(v)$ for $\left|N_{D}^{-}(v)\right|$.

Recall that a k-cycle-factor is a cycle factor consisting of k cycles. Here we call the two cycles of a 2 -cycle factor are complementary.

Denote by

$$
B=(X, Y ; E)
$$

a bipartite tournament with bipartition (X, Y), vertex set $V(B)=X \cup Y$ and arc set
$E(B)$. It is well known that B has a cycle factor if and only if B contains a perfect matching from X to Y and a perfect matching from Y to X. By Hall's Theorem, B has a perfect matching from X to Y if and only if $\left|N_{B}^{+}(P)\right| \geq|P|$ for any $P \subseteq X$.

It is well known that every tournament has a Hamilton path. Let T be a tournament with order n. We say T is a transitive tournament if T has a Hamilton path $v_{1} \rightarrow v_{2} \rightarrow \cdots \rightarrow v_{n}$ such that $v_{i} \rightarrow v_{j}$ for any $1 \leq i<j \leq n$. Define $\delta^{+}(T)=\min _{v \in V(T)}\left\{d_{T}^{+}(v)\right\}, \delta^{-}(T)=\min _{v \in V(T)}\left\{d_{T}^{-}(v)\right\}$. Let T_{7} be the tournament of order 7 containing no transitive subtournament of order 4 . Let \mathcal{T}_{7}^{*} be the set of 3 -regular tournaments of order 7. Denote by $\mathcal{D}_{3,2}$ the set of the 2-regular 3-partite tournaments with exactly two vertices in each partite set.

The problem of 2-cycle-factors in 2-connected tournaments was completely solved by Reid [81] and Song [89]. Moreover, Li and Shu [67] characterized strong tournaments that have a 2 -cycle-factor. Thus the problem of 2-cycle-factors in tournaments has been almost completely solved.

Theorem 5.1 (Reid [81] and Song [89]). Let T be a 2-connected tournament with $|V(T)| \geq 6$. Then T has a 2-cycle-factor of cycle-lengths t and $|V(T)|-t$ for all $3 \leq t \leq|V(T)|-3$, unless T is isomorphic to T_{7}.

Theorem 5.2 (Li and Shu [67]). Let T be a strong tournament with $|V(T)| \geq 6$ and $\max \left\{\delta^{-}(T), \delta^{+}(T)\right\} \geq 3$. Then T has a 2-cycle-factor, unless T is isomorphic to T_{7}.

The problem of k-cycle-factors in highly connected tournaments was posed by Bollobás (see Reid [82]).

Problem 5.1 (Bollobás). Let k be a positive integer. What is the least integer $h(k)$ such that all but a finite number of $h(k)$-connected tournaments contain a k-cyclefactor?

Reid showed that $h(k)$ exists and $h(k) \leq 3 k-4$. Chen et al. [35] proved in 2001 that $h(k)=k$.

Theorem 5.3 (Chen et al. [35]). Let T be a k-connected tournament with $|V(T)| \geq$ $8 k$. Then T has a k-cycle-factor.

The problem of k-cycle-factors of given cycle-lengths in highly connected tournaments was posed by Song [89].

Problem 5.2 (Song [89]). Let k, n be two positive integers and let n_{1}, \ldots, n_{k} be k integers with $n=n_{1}+\ldots+n_{k}$ and $n_{i} \geq 3$ for $i=1, \ldots, k$. What is the least integer $h^{\prime}(k)$ such that all but a finite number of $h^{\prime}(k)$-connected tournaments contain a k -cycle-factor of given cycle-lengths n_{1}, \ldots, n_{k} ?

Note that $h^{\prime}(1)=h(1)=1$. Song showed that $h^{\prime}(2)=h(2)=2$. It is clear that $h^{\prime}(k) \geq h(k)$. Song conjectured that $h^{\prime}(k)=h(k)$. By Theorem 5.3, Song's conjecture is $h^{\prime}(k)=k$. Recently, Kühn et al. [64] gave an upper bound of $h^{\prime}(k)$.

Theorem 5.4 (Kühn et al. [64]). Let T be a $10^{10} k^{4} \log k$-connected tournament on n vertices and let n_{1}, \ldots, n_{k} be k integers with $n=n_{1}+\ldots+n_{k}$ and $n_{i} \geq 3$ for $i=1, \ldots, k$. Then T has a k-cycle-factor of cycle-lengths n_{1}, \ldots, n_{k}.

5.2 2-cycle-factors in regular bipartite tournaments

The problem of 2-cycle-factors in regular bipartite tournaments was investigated by Song [88], Zhang and Song [106], Zhang et al. [105], and Zhang and Wang [107].

Theorem 5.5 (Zhang and Song [106]). Let B be a k-regular bipartite tournament with $k \geq 2$. Then B has a 2-cycle-factor.

Theorem 5.6 (Zhang et al. [105]). Let B be a k-regular bipartite tournament with $k \geq 2$. Then for any $u v \in E(B), B$ has a 2-cycle-factor such that one cycle contains $u v$ and has length 4.

Theorem 5.7 (Zhang and Wang [107]). Let B be a k-regular bipartite tournament with $k \geq 2$. Then for any $u v \in E(B)$ and for any $w \in V(B) \backslash\{u, v\}, B$ has a 2-cyclefactor such that one cycle contains uv and has length 4 and the other cycle contains w, unless B is isomorphic to a special digraph (defined in [107]).

Volkmann [94] characterized the regular c-partite tournaments with $c \geq 3$ that have a 2 -cycle-factor.

Theorem 5.8 (Volkmann [94]). Let D be a regular c-partite tournament with $c \geq 3$ and $|V(D)| \geq 6$. Then D has a 2-cycle-factor, unless D is isomorphic to some digraph in $\mathcal{T}_{7}^{*} \cup \mathcal{D}_{3,2}$.

Thus, all regular multipartite tournaments containing a 2 -cycle-factor have been characterized.

Theorem 5.9 (Volkmann [94]). Let D be a regular c-partite tournament. If $c=2$ and $|V(D)| \geq 8$ or $c \geq 3$ and $|V(D)| \geq 6$, then D has a 2-cycle-factor, unless D is isomorphic to some digraph in $\mathcal{T}_{7}^{*} \cup \mathcal{D}_{3,2}$.

Corollary 5.1 (Volkmann [94]). Let D be a regular multipartite tournament with $|V(D)| \geq 8$. Then D has a 2-cycle-factor.

In [105], it was conjectured that every k-regular bipartite tournament not isomorphic to $F_{4 \cdot k}$ has a 2-cycle-factor of all possible cycle-lengths.

Conjecture 5.1 (Zhang et al. [105]). Let B be a k-regular bipartite tournament not isomorphic to $F_{4 \cdot k}$. Then B has a 2-cycle-factor of even cycle-lengths t and $|V(B)|-t$ for all $4 \leq t \leq|V(B)|-4$.

By Theorem 5.6, Conjecture 5.1 is true for $t=4$. In this chapter, we show that Conjecture 5.1 is true for $t=6$.

Theorem 5.10. Let B be a k-regular bipartite tournament not isomorphic to $F_{4 \cdot k}$ and $k \geq 3$. Then B has a 2-cycle-factor of cycle-lengths 6 and $|V(B)|-6$.

Our proof of Theorem 5.10 is heavily based on Lemma 5.1.

Lemma 5.1. Let B be a k-regular bipartite tournament not isomorphic to $F_{4 \cdot k}$ and $k \geq 3$. Then B has a cycle C of length 6 such that $B-C$ has a cycle factor .

The following theorems are needed in the proofs of Theorem 5.10 and Lemma 5.1.

Theorem 5.11 (Häggkvist and Manoussakis [47]). A bipartite tournament is Hamiltonian if and only if it has a cycle factor and is strong.

Theorem 5.12 (Häggkvist and Manoussakis [47]). Let B be a bipartite tournament containing a cycle factor, B is not strong if and only if B has a m-cycle factor $C_{1}, C_{2}, \ldots, C_{m}, m \geq 2$, such that $C_{i} \rightarrow C_{j}$ for $i<j$.

Theorem 5.13 (Amar and Manoussakis [9]). Let uv be any arc of a k-regular bipartite tournament B not isomorphic to $F_{4 \cdot k}$. Then there are cycles of all even length $m, 4 \leq m \leq 4 k$, through uv.

We now prove Theorem 5.10 and Lemma 5.1. The main tool of the proofs is Hall's Theorem.

Proof of Theorem 5.10. By Lemma 5.1, B has a cycle C of length 6 such that $R=B-C$ has a cycle factor. It suffices to show that R is Hamiltonian or that there is a cycle $C^{*} \neq C$ such that $\left|C^{*}\right|=6$ and $B-C^{*}$ is Hamiltonian. If R is strong, then R is Hamiltonian for every k by Theorem 5.11. If $k=3$, then $|R|=6$ and R has a cycle factor, where each cycle has length at least 4 . Hence this cycle factor is a Hamilton cycle. Now assume that R is not strong and $k \geq 4$.

Case 1. $k=4$.
Let $B=(X, Y ; E)$ and let

$$
C=x_{1} \rightarrow y_{1} \rightarrow x_{2} \rightarrow y_{2} \rightarrow x_{3} \rightarrow y_{3} \rightarrow x_{1},
$$

where $\left\{x_{1}, x_{2}, x_{3}\right\} \subseteq X$ and $\left\{y_{1}, y_{2}, y_{3}\right\} \subseteq Y$. Note that R is not strong and $|R|=$ 10. By Theorem $5.12, R$ has a 2-cycle-factor, say C_{1} and C_{2}, such that $C_{1} \rightarrow C_{2}$. Moreover, one cycle has length 4 and the other cycle has length 6 . Now let

$$
\begin{gathered}
1 \rightarrow 2 \rightarrow 3 \rightarrow 4 \rightarrow 1, \\
5 \rightarrow 6 \rightarrow 7 \rightarrow 8 \rightarrow 9 \rightarrow 10 \rightarrow 5
\end{gathered}
$$

be the two cycles of the 2-cycle-factor, where $\{1,3,5,7,9\} \subseteq X$ and $\{2,4,6,8,10\} \subseteq$ Y.

Suppose first that $\left|C_{1}\right|=4$ and $\left|C_{2}\right|=6$. Each vertex of C_{1} dominates one vertex of C_{1} and three vertices of C_{2}. Hence since B is 4-regular, we have $C \rightarrow C_{1}$ and every vertex of C_{2} has at least two outneighbors in C. Assume w.l.o.g. that $6 \rightarrow x_{1}$. Let

$$
C^{\prime}=x_{1} \rightarrow y_{1} \rightarrow 3 \rightarrow 4 \rightarrow 5 \rightarrow 6 \rightarrow x_{1} .
$$

Note that $\left|C^{\prime}\right|=6$. If $10 \rightarrow x_{2}$, then $B-C^{\prime}$ has a Hamilton cycle $x_{2} \rightarrow y_{2} \rightarrow x_{3} \rightarrow$ $y_{3} \rightarrow 1 \rightarrow 2 \rightarrow 7 \rightarrow 8 \rightarrow 9 \rightarrow 10 \rightarrow x_{2}$. If $x_{2} \rightarrow 10$, then since $\{1,3,9\} \rightarrow 10$ and $x_{2} \rightarrow\left\{y_{2}, 2,4\right\}$ we have $10 \rightarrow 7$ and $8 \rightarrow x_{2}$. Then $B-C^{\prime}$ has a Hamilton cycle $x_{2} \rightarrow y_{2} \rightarrow x_{3} \rightarrow y_{3} \rightarrow 1 \rightarrow 2 \rightarrow 9 \rightarrow 10 \rightarrow 7 \rightarrow 8 \rightarrow x_{2}$.

Now suppose that $\left|C_{1}\right|=6$ and $\left|C_{2}\right|=4$. Each vertex of C_{2} is dominated by one vertex of C_{2} and three vertices of C_{1}. Hence since B is 4-regular, we have $C_{2} \rightarrow C$ and every vertex of C_{1} has at least two inneighbors in C. Assume w.l.o.g. that $y_{1} \rightarrow 5$. Similarly to the above analysis, we can show that

$$
C^{\prime \prime}=x_{1} \rightarrow y_{1} \rightarrow 5 \rightarrow 6 \rightarrow 3 \rightarrow 4 \rightarrow x_{1}
$$

is a cycle of length 6 such that $B-C^{\prime \prime}$ is Hamiltonian.
Case 2. $k \geq 5$.
Let $C_{1}, C_{2}, \ldots, C_{m}, m \geq 2$, be cycles of R as given in Theorem 5.12. Let $\left|C_{i}\right|=n_{i}$ for $i=1, \ldots, m$. Note that $|V(B)|=4 k=\sum_{i=1}^{m} n_{i}+6$. If $n_{1} \leq n_{2}+\ldots+n_{m}$, then for every vertex v of C_{1} such that $d_{C_{1}}^{+}(v)$ is maximal we have

$$
\begin{aligned}
k \geq\left|N_{R}^{+}(v)\right| & \geq \frac{n_{1}}{4}+\frac{n_{2}+\ldots+n_{m}}{2} \\
& =\frac{n_{1}+n_{2}+\ldots+n_{m}}{4}+\frac{n_{2}+\ldots+n_{m}}{4} \\
& \geq \frac{n_{1}+n_{2}+\ldots+n_{m}}{4}+\frac{n_{1}+n_{2}+\ldots+n_{m}}{8} \\
& =\frac{4 k-6}{4}+\frac{4 k-6}{8} \\
& =k+\left(\frac{k}{2}-\frac{9}{4}\right),
\end{aligned}
$$

a contradiction to $k \geq 5$. On the other hand, if $n_{1} \geq n_{2}+\ldots+n_{m}$, then using similar

Figure 5.1: Non-isomorphic 3-regular bipartite tournaments with 2-cycle-factors.
arguments we can obtain a contradiction by considering $\left|N_{R}^{-}(v)\right|$, where v is now a vertex of C_{m} such that $d_{C_{m}}^{-}(v)$ is maximal.

Proof of Lemma 5.1. Let $B=(X, Y ; E)$. For $k=3$, by considering the arcs from X to Y, there is a one-to-one correspondence between 3-regular bipartite tournaments and 3 -regular bipartite graphs on 12 vertices. Using the utility "genbg", Mckay [73] verified that there are exactly 6 non-isomorphic 3 -regular bipartite graphs on 12 vertices. The corresponding 6 non-isomorphic 3 -regular bipartite tournaments together with the 2-cycle-factors (except the first one $F_{4 \cdot 3}$) are presented in Figure 5.1. Alternatively, our method in the proof for $k \geq 4$ below can be extended to a proof for $k=3$. From now on, we assume that $k \geq 4$.

For convenience, we say a cycle C^{*} of B is good if C^{*} has length 6 and $B-C^{*}$ has a cycle factor. Assume the opposite that Lemma 5.1 is not true. Then B has no good cycle. By Theorem 5.13, we can let

$$
C=x_{1} \rightarrow y_{1} \rightarrow x_{2} \rightarrow y_{2} \rightarrow x_{3} \rightarrow y_{3} \rightarrow x_{1}
$$

Figure 5.2: $B=(X, Y ; E)$.
be a cycle of length 6 in B, where $\left\{x_{1}, x_{2}, x_{3}\right\} \subseteq X$ and $\left\{y_{1}, y_{2}, y_{3}\right\} \subseteq Y$. Let

$$
R=B-C .
$$

Then R has no cycle factor. By Hall's Theorem, there exists a subset P either of $X-\left\{x_{1}, x_{2}, x_{3}\right\}$ or of $Y-\left\{y_{1}, y_{2}, y_{3}\right\}$ such that $|P|>\left|N_{R}^{+}(P)\right|$. Assume w.l.o.g. that

$$
\begin{equation*}
P \subseteq X-\left\{x_{1}, x_{2}, x_{3}\right\} . \tag{5.1}
\end{equation*}
$$

Define Q, M and L as follows (see Figure 5.2).

$$
\begin{equation*}
Q=N_{R}^{+}(P), M=X-\left(P \cup\left\{x_{1}, x_{2}, x_{3}\right\}\right), L=Y-\left(Q \cup\left\{y_{1}, y_{2}, y_{3}\right\}\right) . \tag{5.2}
\end{equation*}
$$

Claim 5.1. $k \geq|P|>|Q| \geq k-3$.

Proof. It follows directly from the facts that B is k-regular, $|P|>\left|N_{R}^{+}(P)\right|=|Q|$ and $Q \subseteq Y-\left\{y_{1}, y_{2}, y_{3}\right\}$.

It suffices to consider the following six possible cases:
(A) $|P|=k$ and $|Q|=k-1$;
(B) $|P|=k$ and $|Q|=k-2$;
(C) $|P|=k$ and $|Q|=k-3$;
(D) $|P|=k-1$ and $|Q|=k-2$;
(E) $|P|=k-1$ and $|Q|=k-3$;
(F) $|P|=k-2$ and $|Q|=k-3$.

Since the proof of Case (C) is simple, the proofs of Cases (E) and (F) are heavily based on that of Case (D), the proof of Case (B) is heavily based on that of Cases (D) and (E), and the proof of Case (A) is heavily based on that of Cases (C), (D), (E) and (F), we consider the six cases above in the following order: (C), (D), (E), (B), (F) and (A).

Case 1. $|P|=k$ and $|Q|=k-3$.
By using regularity on degrees, we have $P \rightarrow Q \cup\left\{y_{1}, y_{2}, y_{3}\right\}$. So $P+x_{1} \subseteq N_{B}^{-}\left(y_{1}\right)$ and $d_{B}^{-}\left(y_{1}\right) \geq k+1$, a contradiction.

Case 2. $|P|=k-1$ and $|Q|=k-2$.
Let $B[C]$ denote the subdigraph of B induced by $V(C)$ and let

$$
\begin{equation*}
E_{3}=E(B[C])-E(C) \tag{5.3}
\end{equation*}
$$

We distinguish four cases.
Case 2.1. Every arc of E_{3} has a tail in $\left\{x_{1}, x_{2}, x_{3}\right\}$.

It follows that

$$
x_{1} \rightarrow y_{2}, x_{2} \rightarrow y_{3}, x_{3} \rightarrow y_{1} .
$$

If $L \rightarrow x_{1}$, then $x_{2} \rightarrow L$ and $d_{B}^{+}\left(x_{2}\right) \geq\left|L+y_{2}+y_{3}\right|=k+1$. So $L \nrightarrow x_{1}$ and there exists $l \in L$ such that $x_{1} \rightarrow l$. If $x_{2} \rightarrow Q$, then $L \rightarrow x_{2}, x_{1} \rightarrow L$ and $d_{B}^{+}\left(x_{1}\right) \geq\left|L+y_{1}+y_{2}\right|=k+1$. So $x_{2} \nrightarrow Q$ and there exists $q \in Q$ such that $q \rightarrow x_{2}$. If $P \rightarrow y_{i}$ for some $i \in\{1,2,3\}$, then $P+x_{i}+x_{i+2} \rightarrow y_{i}$ and $d_{B}^{-}\left(y_{i}\right) \geq k+1$, where
$x_{4}=x_{1}$ and $x_{5}=x_{2}$. So $P \nrightarrow y_{i}$ and $N_{P}^{+}\left(y_{i}\right) \neq \emptyset$ for any $i \in\{1,2,3\}$. Since $L \rightarrow P$ and $|L|=k-1$, we have $N_{P}^{+}\left(y_{i}\right) \subseteq N_{P}^{-}\left(y_{i+1}\right)$, where $y_{4}=y_{1}$. Thus for $i \in\{1,2,3\}$ we have

$$
N_{P}^{+}\left(y_{i}\right) \cap N_{P}^{-}\left(y_{i+1}\right) \neq \emptyset .
$$

Let

$$
p_{i} \in N_{P}^{+}\left(y_{i}\right) \cap N_{P}^{-}\left(y_{i+1}\right) .
$$

Note that p_{1}, p_{2}, p_{3} are different and $\left\{p_{1}, p_{2}, p_{3}\right\} \rightarrow Q$. Let

$$
C^{\prime}=l \rightarrow p_{3} \rightarrow q \rightarrow x_{2} \rightarrow y_{3} \rightarrow x_{1} \rightarrow l
$$

and let $R^{\prime}=B-C^{\prime}$. We show that C^{\prime} is a good cycle, i.e., for any $P^{\prime} \subseteq X-\left\{p_{3}, x_{1}, x_{2}\right\}$ or $P^{\prime} \subseteq Y-\left\{l, q, y_{3}\right\}$ we have $\left|N_{R^{\prime}}^{+}\left(P^{\prime}\right)\right| \geq\left|P^{\prime}\right|$. By Claim 5.1, it is obvious for $\left|P^{\prime}\right| \geq k+1$ and for $\left|P^{\prime}\right| \leq k-3$.

Case 2.1.1. $P^{\prime} \subseteq X-\left\{p_{3}, x_{1}, x_{2}\right\}$.

For any $\{u, v\} \subseteq M+x_{3}$ and any $l^{\prime} \in L-l$, since $l^{\prime} \rightarrow P$ we have $l^{\prime} \nrightarrow\{u, v\}$, $l^{\prime} \in N_{R^{\prime}}^{+}(\{u, v\})$ and

$$
\begin{equation*}
L-l \subseteq N_{R^{\prime}}^{+}(\{u, v\}) \tag{5.4}
\end{equation*}
$$

For any $w \in P-p_{3}$, since $L \rightarrow w$ and $\left|(Q-q) \cup\left\{y_{1}, y_{2}\right\}\right|=k-1$ we have $\left|N_{(Q-q) \cup\left\{y_{1}, y_{2}\right\}}^{-}(w)\right| \leq 1$ and

$$
\begin{equation*}
\left|N_{(Q-q) \cup\left\{y_{1}, y_{2}\right\}}^{+}(w)\right| \geq k-2 . \tag{5.5}
\end{equation*}
$$

If $\left|P^{\prime}\right|=k-2$, then since either $\left|P^{\prime} \cap\left(M+x_{3}\right)\right| \geq 2$ or $P^{\prime} \cap\left(P-p_{3}\right) \neq \emptyset$ for $k \geq 4$ we have

$$
\left|N_{R^{\prime}}^{+}\left(P^{\prime}\right)\right| \geq \min _{w \in P-p_{3}}\left\{|L-l|,\left|N_{(Q-q) \cup\left\{y_{1}, y_{2}\right\}}^{+}(w)\right|\right\} \geq k-2
$$

If $\left|P^{\prime}\right|=k$, then since $\left|P^{\prime} \cap\left(M+x_{3}\right)\right| \geq 2$ and $P^{\prime} \cap\left(P-p_{3}\right) \neq \emptyset$ for $k \geq 4$ we have

$$
\left|N_{R^{\prime}}^{+}\left(P^{\prime}\right)\right| \geq|L-l|+\min _{w \in P-p_{3}}\left|N_{(Q-q) \cup\left\{y_{1}, y_{2}\right\}}^{+}(w)\right| \geq k .
$$

Now let $\left|P^{\prime}\right|=k-1$. If $P^{\prime} \cap\left(P-p_{3}\right)=\emptyset$, then $P^{\prime}=M+x_{3}$ and

$$
\left|N_{R^{\prime}}^{+}\left(P^{\prime}\right)\right| \geq\left|L-l+y_{1}\right|=k-1
$$

If $P^{\prime} \cap\left(P-p_{3}\right) \neq \emptyset$, then $\left|P^{\prime} \cap\left(M+x_{3}\right)\right| \geq 1$. If $\left|P^{\prime} \cap\left(M+x_{3}\right)\right|=1$, then $\left\{p_{1}, p_{2}\right\} \subseteq P^{\prime}$ and

$$
\left|N_{R^{\prime}}^{+}\left(P^{\prime}\right)\right| \geq\left|N_{R^{\prime}}^{+}\left(\left\{p_{1}, p_{2}\right\}\right)\right|=|Q-q|+\left|\left\{y_{1}, y_{2}\right\}\right|=k-1 .
$$

If $\left|P^{\prime} \cap\left(M+x_{3}\right)\right| \geq 2$, then

$$
\left|N_{R^{\prime}}^{+}\left(P^{\prime}\right)\right| \geq|L-l|+\min _{w \in P-p_{3}}\left|N_{(Q-q) \cup\left\{y_{1}, y_{2}\right\}}^{+}(w)\right| \geq k-1 .
$$

Case 2.1.2. $P^{\prime} \subseteq Y-\left\{l, q, y_{3}\right\}$.

Note that $\left|P-p_{3}\right|=k-2$ and

$$
L-l \rightarrow P-p_{3} .
$$

Since $\left\{p_{3}, x_{1}\right\} \rightarrow y_{1}$ and $y_{1} \rightarrow x_{2}$, we have

$$
\left|N_{R^{\prime}}^{+}\left(y_{1}\right)\right|=k-1 .
$$

Since $\left\{p_{3}, x_{1}, x_{2}\right\} \rightarrow y_{2}$, we have

$$
\left|N_{R^{\prime}}^{+}\left(y_{2}\right)\right|=k .
$$

If $\left|P^{\prime}\right|=k-2$, then $P^{\prime} \cap\left((L-l) \cup\left\{y_{1}, y_{2}\right\}\right) \neq \emptyset$ and

$$
\left|N_{R^{\prime}}^{+}\left(P^{\prime}\right)\right| \geq \min \left\{\left|P-p_{3}\right|,\left|N_{R^{\prime}}^{+}\left(y_{1}\right)\right|,\left|N_{R^{\prime}}^{+}\left(y_{2}\right)\right|\right\} \geq k-2 .
$$

Let $\left|P^{\prime}\right|=k-1$. If $P^{\prime} \cap\left\{y_{1}, y_{2}\right\} \neq \emptyset$, then

$$
\left|N_{R^{\prime}}^{+}\left(P^{\prime}\right)\right| \geq \min \left\{\left|N_{R^{\prime}}^{+}\left(y_{1}\right)\right|,\left|N_{R^{\prime}}^{+}\left(y_{2}\right)\right|\right\}=k-1 .
$$

If $P^{\prime} \cap\left\{y_{1}, y_{2}\right\}=\emptyset$, then $P^{\prime} \cap(L-l) \neq \emptyset$ and $P-p_{3} \subseteq N_{R^{\prime}}^{+}\left(P^{\prime}\right)$. Since $x_{3} \rightarrow\left\{y_{1}, y_{3}\right\}$, we have $x_{3} \nrightarrow P^{\prime}, x_{3} \in N_{R^{\prime}}^{+}\left(P^{\prime}\right)$ and

$$
\left|N_{R^{\prime}}^{+}\left(P^{\prime}\right)\right| \geq\left|P-p_{3}+x_{3}\right|=k-1 .
$$

Now let $\left|P^{\prime}\right|=k$. Then $P^{\prime} \cap(L-l) \neq \emptyset$ and $P-p_{3} \subseteq N_{R^{\prime}}^{+}\left(P^{\prime}\right)$. If $M \rightarrow P^{\prime}$, then $l \rightarrow M$ and $d_{B}^{+}(l) \geq|M|+|P| \geq k+1$ for $k \geq 4$. Thus $M \nrightarrow P^{\prime}$ and there exists $m \in M$ such that $m \in N_{R^{\prime}}^{+}\left(P^{\prime}\right)$. Since $x_{3} \rightarrow y_{3}$, we have $x_{3} \nrightarrow P^{\prime}$ and $x_{3} \in N_{R^{\prime}}^{+}\left(P^{\prime}\right)$. Thus

$$
\left|N_{R^{\prime}}^{+}\left(P^{\prime}\right)\right| \geq\left|P-p_{3}\right|+\left|\left\{m, x_{3}\right\}\right|=k .
$$

So C^{\prime} is a good cycle, a contradiction.
Case 2.2. There are exactly two arcs of E_{3} which have a tail in $\left\{x_{1}, x_{2}, x_{3}\right\}$.
Assume w.l.o.g. that

$$
x_{1} \rightarrow y_{2}, x_{2} \rightarrow y_{3}, y_{1} \rightarrow x_{3} .
$$

Since $\left\{x_{1}, x_{2}\right\} \rightarrow y_{2}$ and $|P|=k-1$, we have $P \nrightarrow y_{2}$ and there exists $p_{1} \in P$ such that $y_{2} \rightarrow p_{1}$. Note that $p_{1} \rightarrow Q+y_{1}+y_{3}$. Similarly, there exists $p_{2} \in P$ such that $y_{3} \rightarrow p_{2}$ and $p_{2} \rightarrow Q+y_{1}+y_{2}$. Note that $N_{L}^{+}\left(x_{i}\right) \neq \emptyset$, as otherwise, $L \rightarrow x_{i}, x_{j} \rightarrow L$ for some $j \in\{1,2\}$ and $d_{B}^{+}\left(x_{j}\right) \geq k+1$. Note also that $N_{Q}^{-}\left(x_{1}\right) \neq \emptyset$, as otherwise, $x_{1} \rightarrow Q+y_{1}+y_{2}, L \rightarrow x_{1}, x_{2} \rightarrow L+y_{2}+y_{3}$ and $d_{B}^{+}\left(x_{2}\right) \geq k+1$. Let

$$
\begin{gathered}
l \in N_{L}^{+}\left(x_{3}\right), q \in N_{Q}^{-}\left(x_{1}\right), \\
C^{\prime}=l \rightarrow p_{2} \rightarrow q \rightarrow x_{1} \rightarrow y_{2} \rightarrow x_{3} \rightarrow l
\end{gathered}
$$

and $R^{\prime}=B-C^{\prime}$. We show that C^{\prime} is a good cycle, i.e., for any $P^{\prime} \subseteq X-\left\{p_{2}, x_{1}, x_{3}\right\}$ or $P^{\prime} \subseteq Y-\left\{l, q, y_{2}\right\}$ we have $\left|N_{R^{\prime}}^{+}\left(P^{\prime}\right)\right| \geq\left|P^{\prime}\right|$. By Claim 5.1, it is obvious for $\left|P^{\prime}\right| \geq k+1$ and for $\left|P^{\prime}\right| \leq k-3$.

Case 2.2.1. $P^{\prime} \subseteq X-\left\{p_{2}, x_{1}, x_{3}\right\}$.

As in Case 2.1 (see Equations (4) and (5)), for any $\{u, v\} \subseteq M+x_{2}$ and for any $w \in P-p_{2}$,

$$
\begin{gathered}
L-l \subseteq N_{R^{\prime}}^{+}(\{u, v\}), \\
\left|N_{(Q-q) \cup\left\{y_{1}, y_{3}\right\}}^{+}(w)\right| \geq k-2 .
\end{gathered}
$$

Thus $\left|N_{R^{\prime}}^{+}\left(P^{\prime}\right)\right| \geq\left|P^{\prime}\right|$ for $\left|P^{\prime}\right| \in\{k-2, k\}$. Now let $\left|P^{\prime}\right|=k-1$. If $p_{1} \in P^{\prime}$, then since $p_{1} \rightarrow(Q-q) \cup\left\{y_{1}, y_{3}\right\}$ we have

$$
\left|N_{R^{\prime}}^{+}\left(P^{\prime}\right)\right| \geq\left|N_{R^{\prime}}^{+}\left(p_{1}\right)\right|=k-1
$$

If $p_{1} \notin P^{\prime}$, then $\left|P^{\prime} \cap\left(M+x_{2}\right)\right| \geq 2$ and $L-l \subseteq N_{R^{\prime}}^{+}\left(P^{\prime}\right)$. If $P^{\prime} \cap\left(P-p_{2}\right)=\emptyset$, then $P^{\prime}=M+x_{2}, y_{3} \in N_{R^{\prime}}^{+}\left(P^{\prime}\right)$ and

$$
\left|N_{R^{\prime}}^{+}\left(P^{\prime}\right)\right| \geq\left|L-l+y_{3}\right|=k-1
$$

If $P^{\prime} \cap\left(P-p_{2}\right) \neq \emptyset$, then

$$
\left|N_{R^{\prime}}^{+}\left(P^{\prime}\right)\right| \geq|L-l|+\min _{w \in P-p_{2}}\left|N_{(Q-q) \cup\left\{y_{1}, y_{3}\right\}}^{+}(w)\right| \geq k-1 .
$$

Case 2.2.2. $P^{\prime} \subseteq Y-\left\{l, q, y_{2}\right\}$.

Note that $\left|P-p_{2}\right|=k-2$ and

$$
L-l \rightarrow P-p_{2} .
$$

For any $q^{\prime} \in Q-q$, since $p_{2} \rightarrow Q-q$ we have

$$
\left|N_{R^{\prime}}^{+}\left(q^{\prime}\right)\right| \geq k-2
$$

Moreover, since $p_{1} \rightarrow Q-q$ we have

$$
\left|N_{M+x_{2}}^{+}\left(q^{\prime}\right)\right| \geq 1 .
$$

Since $\left\{p_{2}, x_{1}\right\} \rightarrow y_{1}$ and $y_{1} \rightarrow x_{3}$, we have

$$
\left|N_{R^{\prime}}^{+}\left(y_{1}\right)\right|=k-1 .
$$

Similarly, since $y_{3} \rightarrow\left\{p_{2}, x_{1}\right\}$ and $\left\{p_{1}, x_{3}\right\} \rightarrow y_{3}$ we have

$$
\left|N_{R^{\prime}}^{+}\left(y_{3}\right)\right|=k-2,\left|N_{M+x_{2}}^{+}\left(y_{3}\right)\right| \geq 1 .
$$

So $\left|N_{R^{\prime}}^{+}\left(P^{\prime}\right)\right| \geq\left|P^{\prime}\right|$ for $\left|P^{\prime}\right|=k-2$. Let $\left|P^{\prime}\right|=k-1$. If $y_{1} \in P^{\prime}$, then

$$
\left|N_{R^{\prime}}^{+}\left(P^{\prime}\right)\right| \geq\left|N_{R^{\prime}}^{+}\left(y_{1}\right)\right|=k-1 .
$$

If $y_{1} \notin P^{\prime}$, then $P^{\prime} \cap(L-l) \neq \emptyset, P^{\prime} \cap\left(Q-q+y_{3}\right) \neq \emptyset$ and

$$
\left|N_{R^{\prime}}^{+}\left(P^{\prime}\right)\right| \geq\left|P-p_{2}\right|+\min _{q^{\prime} \in Q-q}\left\{\left|N_{M+x_{2}}^{+}\left(q^{\prime}\right)\right|,\left|N_{M+x_{2}}^{+}\left(y_{3}\right)\right|\right\} \geq k-1 .
$$

Now let $\left|P^{\prime}\right|=k$. Then $P^{\prime} \cap(L-l) \neq \emptyset$ and $P-p_{2} \subseteq N_{R^{\prime}}^{+}\left(P^{\prime}\right)$. If $M \rightarrow P^{\prime}$, then $l \rightarrow M$ and $d_{B}^{+}(l) \geq|M|+|P| \geq k+1$ for $k \geq 4$. So $M \nrightarrow P^{\prime}$ and there exists $m \in M$ such that $m \in N_{R^{\prime}}^{+}\left(P^{\prime}\right)$. Since $x_{2} \rightarrow y_{2}$, we have $x_{2} \nrightarrow P^{\prime}$ and $x_{2} \in N_{R^{\prime}}^{+}\left(P^{\prime}\right)$. Thus

$$
\left|N_{R^{\prime}}^{+}\left(P^{\prime}\right)\right| \geq\left|P-p_{2}\right|+\left|\left\{m, x_{2}\right\}\right| \geq k .
$$

So C^{\prime} is a good cycle, a contradiction.

Case 2.3. There is exactly one arc of E_{3} which has a tail in $\left\{x_{1}, x_{2}, x_{3}\right\}$.

Assume w.l.o.g. that

$$
x_{1} \rightarrow y_{2}, y_{3} \rightarrow x_{2}, y_{1} \rightarrow x_{3} .
$$

Since $\left\{x_{1}, x_{2}\right\} \rightarrow y_{2}$ and $|P|=k-1$, we have $P \nrightarrow y_{2}$ and there exists $p^{*} \in P$ such that

$$
y_{2} \rightarrow p^{*}, p^{*} \rightarrow Q+y_{1}+y_{3} .
$$

Since $\left\{y_{1}, y_{3}\right\} \rightarrow x_{2}$ and $|L|=k-1$, we have $L \nrightarrow x_{2}$ and there exists $l \in L$ such that $x_{2} \rightarrow l$. Now we distinguish two cases.

Case 2.3.1. $y_{1} \rightarrow P-p^{*}$.

It follows that $P-p^{*} \rightarrow Q+y_{2}+y_{3}, L+y_{1} \rightarrow P-p^{*}$ and $P \rightarrow Q$. We first show the following claim.

Claim 5.2. In Case 2.3.1, we have $L \nrightarrow x_{1}$.

Proof. Assume the opposite that $L \rightarrow x_{1}$. It follows that

$$
\begin{gathered}
L \rightarrow P+x_{1}, M+x_{2}+x_{3} \rightarrow L, x_{1} \rightarrow Q+y_{1}+y_{2} \\
\\
Q \rightarrow M+x_{2}+x_{3}, P+x_{1} \rightarrow Q, M \rightarrow L+y_{1}
\end{gathered}
$$

Let $l^{\prime} \in L, p \in P-p^{*}, q \in Q$ and $m \in M$. Then we have

$$
\begin{gathered}
M-m \rightarrow L-l-l^{\prime}, L-l-l^{\prime} \rightarrow P-p-p^{*}, \\
P-p-p^{*} \rightarrow Q-q, Q-q \rightarrow M-m,
\end{gathered}
$$

and

$$
\left|L-l-l^{\prime}\right|=\left|P-p-p^{*}\right|=|Q-q|=|M-m|=k-3 .
$$

It follows that the subdigraph induced by $\left(L-l-l^{\prime}\right) \cup\left(P-p-p^{*}\right) \cup(Q-q) \cup(M-m)$ has a Hamilton path $l^{*} \vec{H} m^{*}$ starting with $l^{*} \in L-l-l^{\prime}$ and ending with $m^{*} \in M-m$. Then

$$
C_{1}^{\prime}=m \rightarrow l \rightarrow p \rightarrow q \rightarrow x_{2} \rightarrow y_{2} \rightarrow m
$$

is a good cycle since $B-C_{1}^{\prime}$ has a Hamilton cycle $l^{\prime} \rightarrow p^{*} \rightarrow y_{3} \rightarrow x_{1} \rightarrow y_{1} \rightarrow x_{3} \rightarrow$ $l^{*} \vec{H} m^{*} \rightarrow l^{\prime}$, a contradiction.

Let

$$
C^{\prime}=l \rightarrow p^{*} \rightarrow y_{1} \rightarrow x_{3} \rightarrow y_{3} \rightarrow x_{2} \rightarrow l
$$

and let $R^{\prime}=B-C^{\prime}$. We show that C^{\prime} is a good cycle, i.e., for any $P^{\prime} \subseteq X-\left\{p^{*}, x_{2}, x_{3}\right\}$ or $P^{\prime} \subseteq Y-\left\{l, y_{1}, y_{3}\right\}$ we have $\left|N_{R^{\prime}}^{+}\left(P^{\prime}\right)\right| \geq\left|P^{\prime}\right|$. By Claim 5.1, it is obvious for $\left|P^{\prime}\right| \geq k+1$ and for $\left|P^{\prime}\right| \leq k-3$.

Suppose first that $P^{\prime} \subseteq X-\left\{p^{*}, x_{2}, x_{3}\right\}$. Since $y_{3} \rightarrow M+x_{1}$, then for any $v \in M+x_{1}$ we have $\left|N_{R^{\prime}}^{+}(v)\right| \geq k-2$. Note that $\left|Q+y_{2}\right|=k-1$ and

$$
P-p^{*} \rightarrow Q+y_{2}
$$

So $\left|N_{R^{\prime}}^{+}\left(P^{\prime}\right)\right| \geq\left|P^{\prime}\right|$ for $\left|P^{\prime}\right|=k-2$. Let $\left|P^{\prime}\right|=k-1$. As in Cases 2.1 and 2.2, for any $\{u, v\} \subseteq M+x_{1}$,

$$
L-l \subseteq N_{R^{\prime}}^{+}(\{u, v\})
$$

If $P^{\prime} \cap\left(P-p^{*}\right) \neq \emptyset$, then

$$
\left|N_{R^{\prime}}^{+}\left(P^{\prime}\right)\right| \geq\left|Q+y_{2}\right|=k-1 .
$$

If $P^{\prime} \cap\left(P-p^{*}\right)=\emptyset$, then $P^{\prime}=M+x_{1}$ and

$$
\left|N_{R^{\prime}}^{+}\left(P^{\prime}\right)\right| \geq\left|L-l+y_{2}\right|=k-1 .
$$

Now let $\left|P^{\prime}\right|=k$. Then $\left|P^{\prime} \cap\left(M+x_{1}\right)\right| \geq 2, P^{\prime} \cap\left(P-p^{*}\right) \neq \emptyset$ and

$$
\left|N_{R^{\prime}}^{+}\left(P^{\prime}\right)\right| \geq|L-l|+\left|Q+y_{2}\right| \geq k .
$$

Now suppose that $P^{\prime} \subseteq Y-\left\{l, y_{1}, y_{3}\right\}$. Note that $\left|P-p^{*}\right|=k-2$ and

$$
L-l \rightarrow P-p^{*}
$$

Since $P \rightarrow Q$ and $|P|=k-1$, then for any $q \in Q$ we have $\left|N_{M+x_{1}}^{-}(q)\right| \leq 1$ and

$$
\left|N_{R^{\prime}}^{+}(q)\right|=\left|N_{M+x_{1}}^{+}(q)\right| \geq k-2 .
$$

Since $\left(P-p^{*}\right) \cup\left\{x_{1}, x_{2}\right\} \rightarrow y_{2}$, we have $y_{2} \rightarrow M$ and

$$
\left|N_{R^{\prime}}^{+}\left(y_{2}\right)\right|=\left|N_{M+x_{1}}^{+}\left(y_{2}\right)\right|=k-2
$$

So $\left|N_{R^{\prime}}^{+}\left(P^{\prime}\right)\right| \geq\left|P^{\prime}\right|$ for $\left|P^{\prime}\right|=k-2$. Let $\left|P^{\prime}\right|=k-1$. If $P^{\prime} \cap(L-l) \neq \emptyset$, then $P^{\prime} \cap\left(Q+y_{2}\right) \neq \emptyset$ and

$$
\left|N_{R^{\prime}}^{+}\left(P^{\prime}\right)\right| \geq\left|P-p^{*}\right|+\min _{q \in Q}\left\{\left|N_{M+x_{1}}^{+}(q)\right|,\left|N_{M+x_{1}}^{+}\left(y_{2}\right)\right|\right\} \geq k-1 .
$$

If $P^{\prime} \cap(L-l)=\emptyset$, then $P^{\prime}=Q+y_{2}$. If $x_{1} \notin N_{R^{\prime}}^{+}\left(Q+y_{2}\right)$, then $x_{1} \rightarrow Q+y_{2}$, $x_{1} \rightarrow Q+y_{1}+y_{2}$ and $L \rightarrow x_{1}$, a contradiction to Claim 5.2. Thus

$$
\left|N_{R^{\prime}}^{+}\left(Q+y_{2}\right)\right| \geq\left|N_{M}^{+}\left(y_{2}\right)\right|+\left|\left\{x_{1}\right\}\right|=k-1 .
$$

Now let $\left|P^{\prime}\right|=k$. Then $P^{\prime} \cap(L-l) \neq \emptyset$ and $P-p^{*} \subseteq N_{R^{\prime}}^{+}\left(P^{\prime}\right)$. If $m \notin N_{R^{\prime}}^{+}\left(P^{\prime}\right)$ for some $m \in M$, then $m \rightarrow P^{\prime}$ and $d_{B}^{+}(m) \geq\left|P^{\prime}+y_{1}\right|=k+1$. So $M \subseteq N_{R^{\prime}}^{+}\left(P^{\prime}\right)$. Since $x_{1} \rightarrow y_{1}$, we have $x_{1} \nrightarrow P^{\prime}, x_{1} \in N_{R^{\prime}}^{+}\left(P^{\prime}\right)$ and

$$
\left|N_{R^{\prime}}^{+}\left(P^{\prime}\right)\right| \geq\left|P-p^{*}\right|+\left|M+x_{1}\right| \geq k .
$$

So C^{\prime} is a good cycle, a contradiction.

Case 2.3.2. $y_{1} \nrightarrow P-p^{*}$.
It follows that there exists $p \in P-p^{*}$ such that $p \rightarrow y_{1}$. Let

$$
C^{\prime \prime}=l \rightarrow p \rightarrow y_{1} \rightarrow x_{3} \rightarrow y_{3} \rightarrow x_{2} \rightarrow l
$$

and let $R^{\prime \prime}=B-C^{\prime \prime}$. We show that $C^{\prime \prime}$ is a good cycle, i.e., for any $P^{\prime \prime} \subseteq X-$ $\left\{p, x_{2}, x_{3}\right\}$ or $P^{\prime \prime} \subseteq Y-\left\{l, y_{1}, y_{3}\right\}$ we have $\left|N_{R^{\prime \prime}}^{+}\left(P^{\prime \prime}\right)\right| \geq\left|P^{\prime \prime}\right|$. By Claim 5.1, it is obvious for $\left|P^{\prime \prime}\right| \geq k+1$ and for $\left|P^{\prime \prime}\right| \leq k-3$. We first show the following claim.

Claim 5.3. In Case 2.3.2, we have the following two statements.
(1) For any $p \in P-p^{*}$ with $p \rightarrow y_{1}$, we have $\left|N_{R^{\prime \prime}}^{+}(P-p+m)\right| \geq k-1$ for any
$m \in M$.
(2) $M+x_{1} \nrightarrow L-l+y_{2}$.

Proof. (1) Assume the opposite that $\left|N_{R^{\prime \prime}}^{+}(P-p+m)\right| \leq k-2$ for some $m \in M$. Since $\left|N_{R^{\prime \prime}}^{+}(P-p+m)\right| \geq\left|N_{R^{\prime \prime}}^{+}\left(p^{*}\right)\right|=k-2$, we have $\left|N_{R^{\prime \prime}}^{+}(P-p+m)\right|=k-2$ and $N_{R^{\prime \prime}}^{+}(P-p+m)=N_{R^{\prime \prime}}^{+}\left(p^{*}\right)=Q$. It follows that

$$
\begin{gathered}
y_{2} \rightarrow(P-p) \cup\left\{m, x_{3}\right\}, P-p \rightarrow Q+y_{1}+y_{3}, y_{1} \rightarrow M+x_{2}+x_{3}, \\
L-l \rightarrow P+m, x_{1} \rightarrow(L-l) \cup\left\{y_{1}, y_{2}\right\}, l \rightarrow P+x_{1}, \\
x_{2} \rightarrow L+y_{2}, x_{3} \rightarrow L+y_{3}, M-m \rightarrow L-l, \\
(L-l) \cup\left\{y_{1}, y_{2}\right\} \rightarrow m, m \rightarrow Q+l+y_{3} .
\end{gathered}
$$

Since $\left|N_{Q}^{+}(p)\right| \geq k-3$, there exists $q \in Q$ such that $p \rightarrow Q-q$. Thus $P+m \rightarrow Q-q$. Let $l^{\prime} \in L-l$. Similarly to the proof of Claim 5.2, the subdigraph induced by $\left(L-l-l^{\prime}\right) \cup\left(P-p-p^{*}\right) \cup(Q-q) \cup(M-m)$ has a Hamilton path $l^{*} \vec{H} m^{*}$ starting with $l^{*} \in L-l-l^{\prime}$ and ending with $m^{*} \in M-m$. Then

$$
C_{1}^{\prime \prime}=m \rightarrow l \rightarrow p \rightarrow y_{1} \rightarrow x_{2} \rightarrow y_{2} \rightarrow m
$$

is a good cycle since $B-C_{1}^{\prime \prime}$ has a Hamilton cycle $l^{\prime} \rightarrow p^{*} \rightarrow q \rightarrow x_{3} \rightarrow y_{3} \rightarrow x_{1} \rightarrow$ $l^{*} \vec{H} m^{*} \rightarrow l^{\prime}$, a contradiction.
(2) Assume the opposite that $M+x_{1} \rightarrow L-l+y_{2}$. It follows that

$$
\begin{gathered}
x_{1} \rightarrow(L-l) \cup\left\{y_{1}, y_{2}\right\}, M+x_{1}+x_{2} \rightarrow y_{2}, \\
l \rightarrow x_{1}, M+x_{2}+x_{3} \rightarrow l, y_{2} \rightarrow P+x_{3}, \\
P \rightarrow Q+y_{1}+y_{3}, M \rightarrow L+y_{2}, Q+y_{1}+y_{3} \rightarrow M .
\end{gathered}
$$

Let $q \in Q, m \in M, l^{\prime} \in L-l$ and $p^{\prime} \in P-p-p^{*}$. If $x_{2} \rightarrow Q$, then since $x_{2} \rightarrow\left\{l, y_{2}\right\}$
we have

$$
L-l \rightarrow x_{2}, M \rightarrow L
$$

Similarly to the proof of Claim 5.2, the subdigraph induced by $(Q-q) \cup(M-m) \cup$ $\left(L-l-l^{\prime}\right) \cup\left(P-p-p^{\prime}\right)$ has a Hamilton path $q^{*} \overrightarrow{H_{1}} p^{*}$ starting with $q^{*} \in Q-q$ and ending with $p^{*} \in P-p$. Then

$$
C_{2}^{\prime \prime}=l^{\prime} \rightarrow p^{\prime} \rightarrow q \rightarrow m \rightarrow y_{2} \rightarrow x_{3} \rightarrow l
$$

is a good cycle since $B-C_{2}^{\prime \prime}$ has a Hamilton cycle $y_{3} \rightarrow x_{1} \rightarrow y_{1} \rightarrow x_{2} \rightarrow l \rightarrow p \rightarrow$ $q^{*} \overrightarrow{H_{1}} p^{*} \rightarrow y_{3}$, a contradiction. So $x_{2} \nrightarrow Q$ and there exists $q^{* *} \in Q$ with $q^{* *} \rightarrow x_{2}$. Let $q^{\prime} \in Q-q^{* *}$. Similarly to the proof of Claim 5.2, the subdigraph induced by $(M-m) \cup\left(L-l-l^{\prime}\right) \cup\left(P-p-p^{*}\right) \cup\left(Q-q^{\prime}\right)$ has a Hamilton path $m^{*} \overrightarrow{H_{2}} q^{* *}$ starting with $m^{*} \in M-m$ and ending with $q^{* *} \in Q-q^{\prime}$. Then

$$
C_{3}^{\prime \prime}=y_{2} \rightarrow p^{*} \rightarrow y_{1} \rightarrow x_{3} \rightarrow y_{3} \rightarrow m \rightarrow y_{2}
$$

is a good cycle since $B-C_{3}^{\prime \prime}$ has a Hamilton cycle $x_{2} \rightarrow l \rightarrow x_{1} \rightarrow l^{\prime} \rightarrow p \rightarrow q^{\prime} \rightarrow$ $m^{*} \overrightarrow{H_{2}} q^{* *} \rightarrow x_{2}$, a contradiction.

Suppose first that $P^{\prime \prime} \subseteq X-\left\{p, x_{2}, x_{3}\right\}$. Note that $|L-l|=k-2$ and for any $\{u, v\} \subseteq M+x_{1}$,

$$
L-l \subseteq N_{R^{\prime \prime}}^{+}(\{u, v\}) .
$$

For any $w \in P-p$, since $l \rightarrow P-p$ we have

$$
\left|N_{Q+y_{2}}^{+}(w)\right| \geq k-2 .
$$

So $\left|N_{R^{\prime \prime}}^{+}\left(P^{\prime \prime}\right)\right| \geq\left|P^{\prime \prime}\right|$ for $\left|P^{\prime \prime}\right| \in\{k-2, k\}$. Now let $\left|P^{\prime \prime}\right|=k-1$. If $P^{\prime \prime} \cap(P-p) \neq \emptyset$, then $P^{\prime \prime} \cap\left(M+x_{1}\right) \neq \emptyset$. If $\left|P^{\prime \prime} \cap\left(M+x_{1}\right)\right| \geq 2$, then

$$
\left|N_{R^{\prime \prime}}^{+}\left(P^{\prime \prime}\right)\right| \geq|L-l|+\min _{w \in P-p}\left|N_{Q+y_{2}}^{+}(w)\right| \geq k-1
$$

If $\left|P^{\prime \prime} \cap\left(M+x_{1}\right)\right|=1$, then $P^{\prime \prime}=P-p+x_{1}$ or $P^{\prime \prime}=P-p+m$ for some $m \in M$. By Claim 5.3 (1), it suffices to consider that $P^{\prime \prime}=P-p+x_{1}$. Note that

$$
\left|N_{R^{\prime \prime}}^{+}\left(P-p+x_{1}\right)\right| \geq\left|N_{R^{\prime \prime}}^{+}\left(p^{*}\right) \cup N_{R^{\prime \prime}}^{+}\left(x_{1}\right)\right| \geq\left|Q+y_{2}\right|=k-1 .
$$

If $P^{\prime \prime} \cap(P-p)=\emptyset$, then $P^{\prime \prime}=M+x_{1}$ and

$$
\left|N_{R^{\prime \prime}}^{+}\left(M+x_{1}\right)\right| \geq\left|L-l+y_{2}\right|=k-1 .
$$

Now suppose that $P^{\prime \prime} \subseteq Y-\left\{l, y_{1}, y_{3}\right\}$. Note that $|P-p|=k-2$ and

$$
L-l \rightarrow P-p
$$

For any $\{u, v\} \subseteq Q+y_{2}$, since $\{u, v\} \nrightarrow p$ we have

$$
\left|N_{R^{\prime \prime}}^{+}(\{u, v\})\right| \geq k-2 .
$$

First let $\left|P^{\prime \prime}\right|=k-2$. Then either $P^{\prime \prime} \cap(L-l) \neq \emptyset$ or $\left|P^{\prime \prime} \cap\left(Q+y_{1}\right)\right| \geq 2$. Thus

$$
\left|N_{R^{\prime \prime}}^{+}\left(P^{\prime \prime}\right)\right| \geq \min \left\{|P-p|,\left|N_{R^{\prime \prime}}^{+}(\{u, v\})\right|\right\}=k-2 .
$$

Then let $\left|P^{\prime \prime}\right|=k-1$. If $P^{\prime \prime} \cap(L-l)=\emptyset$, then $P^{\prime \prime}=Q+y_{2}$. Note that

$$
\left|N_{R^{\prime \prime}}^{+}\left(Q+y_{2}\right)\right| \geq\left|N_{R^{\prime \prime}}^{+}\left(y_{2}\right)\right| \geq k-2
$$

If $\left|N_{R^{\prime \prime}}^{+}\left(Q+y_{2}\right)\right|=k-2$, then $\left|N_{R^{\prime \prime}}^{+}\left(y_{2}\right)\right|=k-2$ and $N_{R^{\prime \prime}}^{+}\left(Q+y_{2}\right)=N_{R^{\prime \prime}}^{+}\left(y_{2}\right)$. Since $x_{1} \notin N_{R^{\prime \prime}}^{+}\left(y_{2}\right)$, we have $x_{1} \notin N_{R^{\prime \prime}}^{+}\left(Q+y_{2}\right), x_{1} \rightarrow Q+y_{1}+y_{2}, L \rightarrow x_{1}$ and $M \rightarrow L$. For any $m \in M$, since $m \rightarrow L$ we have $m \nrightarrow Q+y_{2}$ and $m \in N_{R^{\prime \prime}}^{+}\left(Q+y_{2}\right)$. So $M \subseteq N_{R^{\prime \prime}}^{+}\left(Q+y_{2}\right), N_{R^{\prime \prime}}^{+}\left(Q+y_{2}\right)=M$ and $P-p \rightarrow Q+y_{2}$, a contradiction to $y_{2} \rightarrow p^{*}$. Thus

$$
\left|N_{R^{\prime \prime}}^{+}\left(Q+y_{2}\right)\right| \geq k-1 .
$$

If $P^{\prime \prime} \cap(L-l) \neq \emptyset$, then $P^{\prime \prime} \cap\left(Q+y_{2}\right) \neq \emptyset$ and $P-p \subseteq N_{R^{\prime \prime}}^{+}\left(P^{\prime \prime}\right)$. Since $|P-p|=k-2$, it suffices to show that

$$
M+x_{1} \nrightarrow P^{\prime \prime}
$$

Assume the opposite that $M+x_{1} \rightarrow P^{\prime \prime}$. Then $M+x_{1} \rightarrow P^{\prime \prime} \cap\left(Q+y_{2}\right)$. Since $p^{*} \rightarrow Q$ and $x_{2} \rightarrow y_{2}$, we have $P^{\prime \prime} \cap\left(Q+y_{2}\right) \rightarrow p$. Since $L \rightarrow p$ and $|L|=k-1$, we have $\left|P^{\prime \prime} \cap\left(Q+y_{2}\right)\right|=1$. Then $P^{\prime \prime}=L-l+y_{2}$ or $P^{\prime \prime}=L-l+q$ for some $q \in Q$. If $P^{\prime \prime}=L-l+y_{2}$, then by Claim 5.3 (2) we have $M+x_{1} \nrightarrow P^{\prime \prime}$. Let $P^{\prime \prime}=L-l+q$. If $x_{1} \rightarrow L-l+q$, then $d_{B}^{+}\left(x_{1}\right) \geq|L-l+q|+\left|\left\{y_{1}, y_{2}\right\}\right|=k+1$. So $x_{1} \nrightarrow P^{\prime \prime}$ and $M+x_{1} \nrightarrow P^{\prime \prime}$. Thus for $\left|P^{\prime \prime}\right|=k-1$,

$$
\left|N_{R^{\prime \prime}}^{+}\left(P^{\prime \prime}\right)\right| \geq\left|P^{\prime \prime}\right| .
$$

Now let $\left|P^{\prime \prime}\right|=k$. Then $P^{\prime \prime} \cap(L-l) \neq \emptyset$ and $P-p \subseteq N_{R^{\prime \prime}}^{+}\left(P^{\prime \prime}\right)$. Since $x_{1} \rightarrow y_{1}$, we have $x_{1} \nrightarrow P^{\prime \prime}$ and $x_{1} \in N_{R^{\prime \prime}}^{+}\left(P^{\prime \prime}\right)$. Note that $\left|P-p+x_{1}\right|=k-1$. It suffices to show that $M \rightarrow P^{\prime \prime}$. Assume the opposite that $M \rightarrow P^{\prime \prime}$. Then $l \rightarrow M \cup P$ and $d_{B}^{+}(l) \geq|M|+|P| \geq k+1$, a contradiction.

So $C^{\prime \prime}$ is a good cycle, a contradiction.
Case 2.4. No arc of E_{3} has a tail in $\left\{x_{1}, x_{2}, x_{3}\right\}$.
It follows that

$$
y_{1} \rightarrow x_{3}, y_{2} \rightarrow x_{1}, y_{3} \rightarrow x_{2} .
$$

Now we distinguish two cases.
Case 2.4.1. $P \rightarrow\left\{y_{1}, y_{2}, y_{3}\right\}$.
Since $x_{i} \rightarrow y_{i}$ for $i \in\{1,2,3\}$, we have $\left\{y_{1}, y_{2}, y_{3}\right\} \rightarrow M$. Let $m \in M$. There exists $l \in L$ such that $m \rightarrow l$, as otherwise, $L \rightarrow m$ and $d_{B}^{-}(m) \geq|L|+\left|\left\{y_{1}, y_{2}, y_{3}\right\}\right|=k+2$. Let $p \in P$,

$$
C^{\prime}=m \rightarrow l \rightarrow p \rightarrow y_{1} \rightarrow x_{2} \rightarrow y_{2} \rightarrow m
$$

and $R^{\prime}=B-C^{\prime}$. We show that C^{\prime} is a good cycle, i.e., for any $P^{\prime} \subseteq X-\left\{m, p, x_{2}\right\}$ or $P^{\prime} \subseteq Y-\left\{l, y_{1}, y_{2}\right\}$ we have $\left|N_{R^{\prime}}^{+}\left(P^{\prime}\right)\right| \geq\left|P^{\prime}\right|$. By Claim 5.1, it is obvious for
$\left|P^{\prime}\right| \geq k+1$ and for $\left|P^{\prime}\right| \leq k-3$. Let

$$
E_{3}^{\prime}=E\left(B\left[C^{\prime}\right]\right)-E\left(C^{\prime}\right)
$$

Note that $p \rightarrow y_{2}$ and $y_{1} \rightarrow m$. This implies that there exists an arc of E_{3}^{\prime} which has a tail in $\left\{m, p, x_{2}\right\}$ and an arc of E_{3}^{\prime} which has a tail in $\left\{l, y_{1}, y_{2}\right\}$. By the proofs of Case 2.2 and Case 2.3, it suffices to consider that $\left|P^{\prime}\right| \in\{k-2, k\}$.

Suppose first that $P^{\prime} \subseteq X-\left\{m, p, x_{2}\right\}$. For any $\{u, v\} \subseteq(M-m) \cup\left\{x_{1}, x_{3}\right\}$ and for any $p^{\prime} \in P-p$, since $L \rightarrow P$ we have

$$
L-l \subseteq N_{R^{\prime}}^{+}(\{u, v\}),\left|N_{Q+y_{3}}^{+}\left(p^{\prime}\right)\right|=k-2 .
$$

Thus $\left|N_{R^{\prime}}^{+}\left(P^{\prime}\right)\right| \geq\left|P^{\prime}\right|$ for $\left|P^{\prime}\right| \in\{k-2, k\}$, where $k \geq 4$.
Now suppose that $P^{\prime} \subseteq Y-\left\{l, y_{1}, y_{2}\right\}$. Note that $|P-p|=k-2$ and $L-l \rightarrow P-p$. First let $\left|P^{\prime}\right|=k-2$. If $P^{\prime} \cap(L-l) \neq \emptyset$, then $\left|N_{R^{\prime}}^{+}\left(P^{\prime}\right)\right| \geq|P-p|=k-2$. If $P^{\prime} \cap(L-l)=\emptyset$, then $P^{\prime} \subseteq Q+y_{3}$. If $\left|N_{R^{\prime}}^{+}\left(P^{\prime}\right)\right|=k-3$, then $P^{\prime} \rightarrow p$ and $d_{B}^{-}(p) \geq|L|+\left|P^{\prime}\right| \geq k+1$ for $k \geq 4$, a contradiction. So $\left|N_{R^{\prime}}^{+}\left(P^{\prime}\right)\right| \geq k-2$. Now let $\left|P^{\prime}\right|=k$. Then $P^{\prime} \cap(l-l) \neq \emptyset$ and $P-p \subseteq N_{R^{\prime}}^{+}\left(P^{\prime}\right)$. Since $x_{1} \rightarrow y_{1}$, we have $x_{1} \nrightarrow P^{\prime}$ and $x_{1} \in N_{R^{\prime}}^{+}\left(P^{\prime}\right)$. Note that $\left|P-p+x_{1}\right|=k-1$. It suffices to show that $M-m+x_{3} \nrightarrow P^{\prime}$. If $M-m+x_{3} \rightarrow P^{\prime}$, then $l \rightarrow M-m+x_{3}$ and $d_{B}^{+}(l) \geq\left|M-m+x_{3}\right|+|P| \geq k+1$ for $k \geq 4$, a contradiction.

So C^{\prime} is a good cycle, a contradiction.

Case 2.4.2. $P \nrightarrow\left\{y_{1}, y_{2}, y_{3}\right\}$.

Assume w.l.o.g. that $y_{1} \rightarrow p$ for some $p \in P$. Then $p \rightarrow Q+y_{2}+y_{3}$. Since $\left\{y_{2}, y_{3}\right\} \rightarrow x_{1}$, we have $L \nrightarrow x_{1}$ and there exists $l \in L$ such that $x_{1} \rightarrow l$. Let

$$
C^{\prime \prime}=l \rightarrow p \rightarrow y_{2} \rightarrow x_{3} \rightarrow y_{3} \rightarrow x_{1} \rightarrow l
$$

and let $R^{\prime \prime}=B-C^{\prime \prime}$. We show that $C^{\prime \prime}$ is a good cycle, i.e., for any $P^{\prime \prime} \subseteq X-$ $\left\{p, x_{1}, x_{3}\right\}$ or $P^{\prime \prime} \subseteq Y-\left\{l, y_{2}, y_{3}\right\}$ we have $\left|N_{R^{\prime \prime}}^{+}\left(P^{\prime \prime}\right)\right| \geq\left|P^{\prime \prime}\right|$. By Claim 5.1, it is
obvious for $\left|P^{\prime \prime}\right| \geq k+1$ and for $\left|P^{\prime \prime}\right| \leq k-3$. Let

$$
E_{3}^{\prime \prime}=E\left(B\left[C^{\prime \prime}\right]\right)-E\left(C^{\prime \prime}\right)
$$

Note that $p \rightarrow y_{3}$ and $y_{2} \rightarrow x_{1}$. This implies that there exists an arc of $E_{3}^{\prime \prime}$ which has a tail in $\left\{p, x_{1}, x_{3}\right\}$ and an arc of $E_{3}^{\prime \prime}$ which has a tail in $\left\{l, y_{2}, y_{3}\right\}$. By the proofs of Case 2.2 and Case 2.3, it suffices to consider that $\left|P^{\prime \prime}\right| \in\{k-2, k\}$.

Suppose first that $P^{\prime \prime} \subseteq X-\left\{p, x_{1}, x_{3}\right\}$. For any $\{u, v\} \subseteq M+x_{2}$ and for any $w \in P-p$, since $L \rightarrow P$ we have

$$
\left|N_{Q+y_{1}}^{+}(w)\right| \geq k-2, L-l \subseteq N_{R^{\prime}}^{+}(\{u, v\}) .
$$

So $\left|N_{R^{\prime \prime}}^{+}\left(P^{\prime \prime}\right)\right| \geq\left|P^{\prime \prime}\right|$ for $\left|P^{\prime \prime}\right| \in\{k-2, k\}$.
Now suppose that $P^{\prime \prime} \subseteq Y-\left\{l, y_{2}, y_{3}\right\}$. Note that $|P-p|=k-2$ and $L-l \rightarrow P-p$. Let $\left|P^{\prime \prime}\right|=k-2$. If $P^{\prime \prime} \cap(L-l) \neq \emptyset$, then $\left|N_{R^{\prime \prime}}^{+}\left(P^{\prime \prime}\right)\right| \geq k-2$. If $P^{\prime \prime} \cap(L-l)=\emptyset$, then $P^{\prime \prime} \subseteq Q+y_{1}$. If $\left|N_{R^{\prime \prime}}^{+}\left(P^{\prime \prime}\right)\right|=k-3$, then $P^{\prime \prime} \rightarrow p$ and $d_{B}^{-}(p) \geq|L|+\left|P^{\prime \prime}\right| \geq k+1$ for $k \geq 4$. So $\left|N_{R^{\prime \prime}}^{+}\left(P^{\prime \prime}\right)\right| \geq k-2$. Now let $\left|P^{\prime \prime}\right|=k$. Then $P^{\prime \prime} \cap(l-l) \neq \emptyset$ and $P-p \subseteq N_{R^{\prime \prime}}^{+}\left(P^{\prime \prime}\right)$. Since $x_{2} \rightarrow y_{2}$, we have $x_{2} \rightarrow P^{\prime \prime}$ and $x_{2} \in N_{R^{\prime \prime}}^{+}\left(P^{\prime \prime}\right)$. Note that $\left|P-p+x_{2}\right|=k-1$. It suffices to show that $M \rightarrow P^{\prime \prime}$. If $M \rightarrow P^{\prime \prime}$, then $l \rightarrow M$ and $d_{B}^{+}(l) \geq|M|+|P| \geq k+1$ for $k \geq 4$, a contradiction.

So $C^{\prime \prime}$ is a good cycle, a contradiction.
Case 3. $|P|=k-1$ and $|Q|=k-3$.
Note that $|L|=k$. Then $N_{L}^{+}\left(x_{i}\right) \neq \emptyset$ and $N_{L}^{-}\left(x_{i}\right) \neq \emptyset$ for $i \in\{1,2,3\}$. Also, $N_{L}^{+}\left(x_{i}\right) \cap N_{L}^{-}\left(x_{i+1}\right) \neq \emptyset$, where $x_{4}=x_{1}$, as otherwise, $N_{L}^{-}\left(x_{i+1}\right) \subseteq N_{L}^{-}\left(x_{i}\right)$ and every vertex of $N_{L}^{-}\left(x_{i+1}\right)$ has outdegree at least $\left|P+x_{i}+x_{i+1}\right|=k+1$. Let

$$
\begin{gathered}
l \in N_{L}^{+}\left(x_{1}\right) \cap N_{L}^{-}\left(x_{2}\right), \\
C^{\prime}=x_{1} \rightarrow l \rightarrow x_{2} \rightarrow y_{2} \rightarrow x_{3} \rightarrow y_{3} \rightarrow x_{1}
\end{gathered}
$$

and $R^{\prime}=B-C^{\prime}$. Note that now $\left|N_{R^{\prime}}^{+}(P)\right|=\left|Q+y_{1}\right|=k-2$. By the proof of Case
$2, B$ has a good cycle, a contradiction.

Case 4. $|P|=k$ and $|Q|=k-2$.

For any $p \in P$, since $|P-p|=k-1$ then by the proofs of Case 2 and Case 3 we have $\left|N_{R}^{+}(P-p)\right| \geq k-1$. So $|Q|=\left|N_{R}^{+}(P)\right| \geq\left|N_{R}^{+}(P-p)\right| \geq k-1$, a contradiction to $|Q|=k-2$.

Case 5. $|P|=k-2$ and $|Q|=k-3$.

As in Case $3, N_{L}^{+}\left(x_{i}\right) \neq \emptyset$ and $N_{L}^{-}\left(x_{i}\right) \neq \emptyset$ for $i \in\{1,2,3\}$. Assume w.l.o.g. that

$$
\left|N_{L}^{+}\left(x_{1}\right)\right| \geq \max \left\{\left|N_{L}^{+}\left(x_{2}\right)\right|,\left|N_{L}^{+}\left(x_{3}\right)\right|\right\} .
$$

If $\left|N_{L}^{+}\left(x_{1}\right)\right|=\left|N_{L}^{+}\left(x_{2}\right)\right|=\left|N_{L}^{+}\left(x_{3}\right)\right|=1$, then $\left\{x_{1}, x_{2}, x_{3}\right\} \rightarrow Q$ and every vertex of Q has indegree at least $|P|+\left|\left\{x_{1}, x_{2}, x_{3}\right\}\right| \geq k+1$, a contradiction. So we have

$$
\left|N_{L}^{+}\left(x_{1}\right)\right| \geq 2
$$

Let l be a vertex of $N_{L}^{+}\left(x_{1}\right)$ such that it has minimum number of inneighbors in $\left\{x_{1}, x_{2}, x_{3}\right\}$ and let $p \in P$. Let

$$
C^{\prime}=l \rightarrow p \rightarrow y_{2} \rightarrow x_{3} \rightarrow y_{3} \rightarrow x_{1} \rightarrow l
$$

and let $R^{\prime}=B-C^{\prime}$. We show that C^{\prime} is a good cycle, i.e., for any $P^{\prime} \subseteq X-\left\{p, x_{1}, x_{3}\right\}$ or $P^{\prime} \subseteq Y-\left\{l, y_{2}, y_{3}\right\}$ we have $\left|N_{R^{\prime}}^{+}\left(P^{\prime}\right)\right| \geq\left|P^{\prime}\right|$. By Claim 5.1, it is obvious for $\left|P^{\prime}\right| \geq k+1$ and for $\left|P^{\prime}\right| \leq k-3$. By the proofs of Case 2 and Case 3 , it suffices to consider that $\left|P^{\prime}\right| \in\{k-2, k\}$. We first show the following claim.

Claim 5.4. In Case 5, if $k=4$ then we have the following three statements.
(1) $Q+y_{1} \nrightarrow M+x_{2}$.
(2) If $P^{\prime} \subseteq L-l$ and $\left|P^{\prime}\right|=2$, then $\left|N_{R^{\prime}}^{+}\left(P^{\prime}\right)\right| \geq 2$.
(3) If $P^{\prime} \subseteq Y-\left\{l, y_{2}, y_{3}\right\}$ and $\left|P^{\prime}\right|=4$, then $\left|N_{R^{\prime}}^{+}\left(P^{\prime}\right)\right| \geq 4$.

Proof. Note that $\left|N_{L}^{+}\left(x_{1}\right)\right| \geq 2$. Let

$$
M=\left\{m, m^{\prime}, m^{\prime \prime}\right\}, L=\left\{l, l^{\prime}, l^{\prime \prime}, l^{\prime \prime \prime}\right\}, P=\left\{p, p^{\prime}\right\}, Q=\{q\} .
$$

(1) Assume the opposite that $Q+y_{1} \rightarrow M+x_{2}$, i.e., $\left\{q, y_{1}\right\} \rightarrow\left\{m, m^{\prime}, m^{\prime \prime}, x_{2}\right\}$. Then $\left\{p, p^{\prime}, x_{1}, x_{3}\right\} \rightarrow\left\{q, y_{1}\right\},\left|N_{L}^{+}\left(x_{1}\right)\right|=2$ and $\left\{y_{2}, y_{3}\right\} \rightarrow x_{1}$. Since $\left|N_{L}^{+}\left(x_{2}\right)\right| \leq$ $\left|N_{L}^{+}\left(x_{1}\right)\right|$ and $\left\{q, y_{1}\right\} \rightarrow x_{2}$, we have $\left|N_{L}^{+}\left(x_{2}\right)\right|=2$ and $x_{2} \rightarrow\left\{y_{2}, y_{3}\right\}$. Since $\left\{p, p^{\prime}, x_{2}, x_{3}\right\} \rightarrow y_{3}$, we have $y_{3} \rightarrow\left\{x_{1}, m, m^{\prime}, m^{\prime \prime}\right\}$. Since $\left\{p, p^{\prime}, x_{2}\right\} \rightarrow y_{2}$ and $y_{2} \rightarrow\left\{x_{1}, x_{3}\right\}$, we have $\left|N_{M}^{-}\left(y_{2}\right)\right|=1$. Assume w.l.o.g. that $m \rightarrow y_{2}$. Thus $m \rightarrow L$ and assume w.l.o.g. that $l^{\prime} \rightarrow m$. Now $\left\{l^{\prime}, q, y_{1}, y_{3}\right\} \rightarrow m$ and $m \rightarrow\left\{l, l^{\prime \prime}, l^{\prime \prime \prime}\right\}$. Since $N_{\left\{q, y_{1}, y_{2}, y_{3}\right\}}^{+}\left(x_{3}\right)=\left\{q, y_{1}, y_{3}\right\}$, we have $\left|N_{L}^{-}\left(x_{3}\right)\right|=3$. Note that $\left|N_{L}^{+}\left(x_{2}\right)\right|=2$. So we can assume w.l.o.g. that $x_{2} \rightarrow l^{\prime \prime}$ and $l^{\prime \prime \prime} \rightarrow x_{3}$. Note also that $q \rightarrow\left\{m, m^{\prime}, m^{\prime \prime}, x_{2}\right\}$ and $\left\{m^{\prime}, m^{\prime \prime}\right\} \rightarrow L$. Then

$$
C_{1}^{\prime}=l^{\prime \prime} \rightarrow p \rightarrow y_{2} \rightarrow x_{1} \rightarrow y_{1} \rightarrow x_{2} \rightarrow l^{\prime \prime}
$$

is a good cycle since $B-C_{1}^{\prime}$ has a Hamilton cycle $l^{\prime} \rightarrow m \rightarrow l \rightarrow p^{\prime} \rightarrow q \rightarrow m^{\prime} \rightarrow$ $l^{\prime \prime \prime} \rightarrow x_{3} \rightarrow y_{3} \rightarrow m^{\prime \prime}$, a contradiction.
(2) Assume w.l.o.g. that $P^{\prime}=\left\{l^{\prime}, l^{\prime \prime}\right\}$. Suppose the opposite that $\left|N_{R^{\prime}}^{+}\left(\left\{l^{\prime}, l^{\prime \prime}\right\}\right)\right| \leq$ 1. Since $\left\{l^{\prime}, l^{\prime \prime}\right\} \rightarrow p^{\prime}$, we have $\left|N_{R^{\prime}}^{+}\left(\left\{l^{\prime}, l^{\prime \prime}\right\}\right)\right|=1$. Then $\left\{l^{\prime}, l^{\prime \prime}\right\} \rightarrow\left\{p, p^{\prime}, x_{1}, x_{3}\right\}$ and $\left\{m, m^{\prime}, m^{\prime \prime}, x_{2}\right\} \rightarrow\left\{l^{\prime}, l^{\prime \prime}\right\}$. Since $\left|N_{L}^{+}\left(x_{1}\right)\right| \geq 2$, we have $x_{1} \rightarrow\left\{l, l^{\prime \prime \prime}\right\}$. Since $\left|N_{L}^{+}\left(x_{1}\right)\right| \geq\left|N_{L}^{+}\left(x_{2}\right)\right|$, we have $\left\{l, l^{\prime \prime \prime}\right\} \rightarrow x_{2}$. Note that $\left\{p, p^{\prime}, x_{3}\right\} \rightarrow y_{3}$. So $\left|N_{\left\{m, m^{\prime}, m^{\prime \prime}\right\}}^{+}\left(y_{3}\right)\right| \geq 2$ and assume w.l.o.g. that $y_{3} \rightarrow\left\{m, m^{\prime}\right\}$. Since $l \rightarrow\left\{p, p^{\prime}, x_{2}\right\}$, we have $l \nrightarrow\left\{m, m^{\prime}\right\}$ and assume w.l.o.g. that $m \rightarrow l$. Let

$$
C_{2}^{\prime}=m \rightarrow l \rightarrow p \rightarrow y_{2} \rightarrow x_{3} \rightarrow y_{3} \rightarrow m
$$

and let $R_{2}^{\prime}=B-C_{2}^{\prime}$. We show that C_{2}^{\prime} is a good cycle, i.e., for any $P_{2}^{\prime} \subseteq X-\left\{m, p, x_{3}\right\}$ and for $P_{2}^{\prime} \subseteq Y-\left\{l, y_{2}, y_{3}\right\}$ we have $\left|N_{R_{2}^{\prime}}^{+}\left(P_{2}^{\prime}\right)\right| \geq\left|P_{2}^{\prime}\right|$. By Claim 5.1, it is obvious for $\left|P_{2}^{\prime}\right| \geq 5$ and for $\left|P_{2}^{\prime}\right| \leq 1$. As Case 2 and Case 3 were already considered, it suffices
to consider that $\left|P_{2}^{\prime}\right| \in\{2,4\}$. Since $\left\{p, p^{\prime}, x_{1}\right\} \rightarrow y_{1}$, we have

$$
N_{R_{2}^{\prime}}^{+}\left(y_{1}\right) \cap\left\{m^{\prime}, m^{\prime \prime}\right\} \neq \emptyset .
$$

Since $y_{1} \rightarrow x_{2}$, we have $\left|N_{R_{2}^{\prime}}^{+}\left(y_{1}\right)\right| \geq 2$. Note that

$$
\begin{gathered}
\left\{m^{\prime}, m^{\prime \prime}, x_{2}\right\} \rightarrow\left\{l^{\prime}, l^{\prime \prime}\right\}, p^{\prime} \rightarrow\left\{q, y_{1}\right\}, \\
x_{1} \rightarrow\left\{l^{\prime \prime \prime}, y_{1}\right\},\left\{l^{\prime}, l^{\prime \prime}\right\} \rightarrow\left\{p^{\prime}, x_{1}\right\}, l^{\prime \prime \prime} \rightarrow\left\{p^{\prime}, x_{2}\right\} .
\end{gathered}
$$

So $\left|N_{R_{2}^{\prime}}^{+}\left(P_{2}^{\prime}\right)\right| \geq\left|P_{2}^{\prime}\right|$ for $\left|P_{2}^{\prime}\right|=4$ and $P_{2}^{\prime} \subseteq X-\left\{m, p, x_{3}\right\}$, and for $\left|P_{2}^{\prime}\right|=2$. Now assume that $\left|P_{2}^{\prime}\right|=4$ and $P_{2}^{\prime} \subseteq Y-\left\{l, y_{2}, y_{3}\right\}$. Since $\left\{p^{\prime}, x_{2}\right\} \rightarrow y_{2}$ and $x_{1} \rightarrow l$, we have $\left\{p^{\prime}, x_{1}, x_{2}\right\} \subseteq N_{R_{2}^{\prime}}^{+}\left(P_{2}^{\prime}\right)$. If $N_{R_{2}^{\prime}}^{+}\left(P_{2}^{\prime}\right) \cap\left\{m^{\prime}, m^{\prime \prime}\right\}=\emptyset$, then $\left\{m^{\prime}, m^{\prime \prime}\right\} \rightarrow P_{2}^{\prime}, l \rightarrow\left\{m^{\prime}, m^{\prime \prime}\right\}$ and $d_{B}^{+}(l) \geq\left|\left\{m, m^{\prime}, p, p^{\prime}, x_{2}\right\}\right|=5$, a contradiction. Thus $N_{R_{2}^{\prime}}^{+}\left(P_{2}^{\prime}\right) \cap\left\{m^{\prime}, m^{\prime \prime}\right\} \neq \emptyset$ and

$$
\left|N_{R_{2}^{\prime}}^{+}\left(P_{2}^{\prime}\right)\right| \geq\left|\left\{p^{\prime}, x_{1}, x_{2}\right\}\right|+\left|N_{R_{2}^{\prime}}^{+}\left(P_{2}^{\prime}\right) \cap\left\{m^{\prime}, m^{\prime \prime}\right\}\right| \geq 4 .
$$

So C_{2}^{\prime} is a good cycle, a contradiction.
(3) Note that $P^{\prime} \cap(L-l) \neq \emptyset$. Then $p^{\prime} \in N_{R^{\prime}}^{+}\left(P^{\prime}\right)$. Since $x_{2} \rightarrow y_{2}$, we have $x_{2} \nrightarrow P^{\prime}$ and $x_{2} \in N_{R^{\prime}}^{+}\left(P^{\prime}\right)$. It suffices to show that

$$
\left|N_{R^{\prime}}^{+}\left(P^{\prime}\right) \cap M\right| \geq 2 .
$$

If $\left|N_{R^{\prime}}^{+}\left(P^{\prime}\right) \cap M\right|=0$, then $M \rightarrow P^{\prime}, l \rightarrow M$ and $d_{B}^{+}(l) \geq\left|\left\{m, m^{\prime}, m^{\prime \prime}, p, p^{\prime \prime}\right\}\right|=5$, a contradiction. Now let $\left|N_{R^{\prime}}^{+}\left(P^{\prime}\right) \cap M\right|=1$ and assume w.l.o.g. that $m \in N_{R^{\prime}}^{+}\left(P^{\prime}\right)$. Then $\left\{m^{\prime}, m^{\prime \prime}\right\} \rightarrow P^{\prime}$ and $l \rightarrow\left\{m^{\prime}, m^{\prime \prime}\right\}$. So $l \rightarrow\left\{m, m^{\prime \prime}, p, p^{\prime}\right\}$ and $\left\{x_{1}, x_{2}, x_{3}\right\} \rightarrow l$. Since $\left\{p, p^{\prime}, x_{1}\right\} \rightarrow y_{1}$, we have $\left\{m^{\prime}, m^{\prime \prime}\right\} \nrightarrow y_{1}, y_{1} \notin P^{\prime}$ and $P^{\prime}=\left\{l^{\prime}, l^{\prime \prime}, l^{\prime \prime \prime}, q\right\}$. Since $\left|N_{L}^{+}\left(x_{1}\right)\right| \geq 2$, we can assume w.l.o.g. that $l^{\prime} \in N_{L}^{+}\left(x_{1}\right)$. By the minimality of $\left|N_{\left\{x_{1}, x_{2}, x_{3}\right\}}^{-}(l)\right|$ and $\left\{x_{1}, x_{2}, x_{3}\right\} \rightarrow l$, we have $\left\{x_{1}, x_{2}, x_{3}\right\} \rightarrow l^{\prime}$ and $d_{B}^{-}\left(l^{\prime}\right) \geq$ $\left|\left\{m^{\prime}, m^{\prime \prime}, x_{1}, x_{2}, x_{3}\right\}\right| \geq 5$, a contradiction.

Case 5.1. $P^{\prime} \subseteq X-\left\{p, x_{1}, x_{3}\right\}$.

Note that $\left|Q+y_{1}\right|=k-2$ and

$$
P-p \rightarrow Q+y_{1}
$$

Let first $\left|P^{\prime}\right|=k-2$. If $P^{\prime} \cap(P-p) \neq \emptyset$, then

$$
\left|N_{R^{\prime}}^{+}\left(P^{\prime}\right)\right| \geq\left|Q+y_{1}\right|=k-2 .
$$

If $P^{\prime} \cap(P-p)=\emptyset$, then $P^{\prime} \subseteq M+x_{2}$. If $\left|N_{R^{\prime}}^{+}\left(P^{\prime}\right)\right|=k-3$, then $P^{\prime} \rightarrow\left\{l, y_{2}, y_{3}\right\}$ and $d_{B}^{-}\left(y_{3}\right) \geq\left|P+x_{3}\right|+\left|P^{\prime}\right| \geq k+1$ for $k \geq 4$. So

$$
\left|N_{R^{\prime}}^{+}\left(P^{\prime}\right)\right| \geq k-2
$$

Now let $\left|P^{\prime}\right|=k$. If $P^{\prime} \cap(P-p) \neq \emptyset$, then $Q+y_{1} \subseteq N_{R^{\prime}}^{+}\left(P^{\prime}\right)$. For any $l^{\prime} \in L-l$, since $l^{\prime} \rightarrow p$ we have $l^{\prime} \nrightarrow P^{\prime}$ and $l^{\prime} \in N_{R^{\prime}}^{+}\left(P^{\prime}\right)$. Thus $L-l \subseteq N_{R^{\prime}}^{+}\left(P^{\prime}\right)$ and

$$
\left|N_{R^{\prime}}^{+}\left(P^{\prime}\right)\right| \geq\left|Q+y_{1}\right|+|L-l| \geq k .
$$

If $P^{\prime} \cap P=\emptyset$, then $P^{\prime}=M+x_{2}$ and $L-l \subseteq N_{R^{\prime}}^{+}\left(M+x_{2}\right)$. Since $|L-l|=k-1$, it suffices to show that $Q+y_{1} \nrightarrow M+x_{2}$. By Claim 4 (1), we can assume that $k \geq 5$. If $Q+y_{1} \rightarrow M+x_{2}$, then $\left|N_{L}^{+}\left(x_{2}\right)\right| \geq k-2$ and $P+x_{1}+x_{3} \rightarrow Q+y_{1}$. So $\left|N_{L}^{+}\left(x_{1}\right)\right| \leq 2$. Note that $\left|N_{L}^{+}\left(x_{1}\right)\right| \geq 2$. So $\left|N_{L}^{+}\left(x_{1}\right)\right|=2$. Now

$$
2=\left|N_{L}^{+}\left(x_{1}\right)\right| \geq\left|N_{L}^{+}\left(x_{2}\right)\right| \geq k-2,
$$

implying that $k \leq 4$, a contradiction. Thus for $k \geq 5$,

$$
\left|N_{R^{\prime}}^{+}\left(P^{\prime}\right)\right| \geq k .
$$

Case 5.2. $P^{\prime} \subseteq Y-\left\{l, y_{2}, y_{3}\right\}$.

For any $v \in Q+y_{1}$, since $p \rightarrow Q+y_{1}$ we have

$$
\left|N_{R^{\prime}}^{+}(v)\right| \geq k-2
$$

First let $\left|P^{\prime}\right|=k-2$. If $P^{\prime} \cap\left(Q+y_{1}\right) \neq \emptyset$, then

$$
\left|N_{R^{\prime}}^{+}\left(P^{\prime}\right)\right| \geq \min _{v \in Q+y_{1}}\left|N_{R^{\prime}}^{+}(v)\right| \geq k-2
$$

If $P^{\prime} \cap\left(Q+y_{1}\right)=\emptyset$, then $P^{\prime} \subseteq L-l$. By Claim 4 (2), we can assume that $k \geq 5$. If $\left|N_{R^{\prime}}^{+}\left(P^{\prime}\right)\right|=k-3$, then $P^{\prime} \rightarrow x_{1}$ and $x_{2} \rightarrow P^{\prime}$. Thus

$$
2=\left|L-P^{\prime}\right| \geq\left|N_{L}^{+}\left(x_{1}\right)\right| \geq\left|N_{L}^{+}\left(x_{2}\right)\right| \geq\left|P^{\prime}\right|=k-2
$$

implying that $k \leq 4$, a contradiction. Thus for $k \geq 5$,

$$
\left|N_{R^{\prime}}^{+}\left(P^{\prime}\right)\right| \geq k-2
$$

Now let $\left|P^{\prime}\right|=k$. Then $P^{\prime} \cap(L-l) \neq \emptyset$ and $P-p \subseteq N_{R^{\prime}}^{+}\left(P^{\prime}\right)$. By Claim 4 (3), it suffices to consider that $k \geq 5$. Since $x_{2} \rightarrow y_{2}$, we have $x_{2} \nrightarrow P^{\prime}$ and $x_{2} \in N_{R^{\prime}}^{+}\left(P^{\prime}\right)$. Since $l \rightarrow P$, we have $\left|N_{M}^{+}(l)\right| \leq 2$ and $\left|N_{M}^{-}(l)\right| \geq k-3$. Then $\left|N_{R^{\prime}}^{+}\left(P^{\prime}\right) \cap M\right| \geq k-3$. Thus for $k \geq 5$,

$$
\left|N_{R^{\prime}}^{+}\left(P^{\prime}\right)\right| \geq\left|P-p+x_{2}\right|+\left|N_{R^{\prime}}^{+}\left(P^{\prime}\right) \cap M\right| \geq k
$$

So C^{\prime} is a good cycle, a contradiction.

Case 6. $|P|=k$ and $|Q|=k-1$.

Note that $N_{P}^{+}\left(y_{i}\right) \neq \emptyset$ and $N_{P}^{-}\left(y_{i}\right) \neq \emptyset$ for $i \in\{1,2,3\}$. At least two sets of

$$
N_{P}^{+}\left(y_{1}\right) \cap N_{P}^{-}\left(y_{2}\right), \quad N_{P}^{+}\left(y_{2}\right) \cap N_{P}^{-}\left(y_{3}\right), N_{P}^{+}\left(y_{3}\right) \cap N_{P}^{-}\left(y_{1}\right)
$$

are not empty. If not, assume w.l.o.g. that $N_{P}^{+}\left(y_{1}\right) \cap N_{P}^{-}\left(y_{2}\right)=N_{P}^{+}\left(y_{2}\right) \cap N_{P}^{-}\left(y_{3}\right)=\emptyset$,
then $N_{P}^{+}\left(y_{1}\right) \subseteq N_{P}^{+}\left(y_{2}\right) \subseteq N_{P}^{+}\left(y_{3}\right)$ and every vertex in $N_{P}^{+}\left(y_{1}\right)$ has indegree at least $|L|+\left|\left\{y_{1}, y_{2}, y_{3}\right\}\right|=k+1$, a contradiction. Now assume w.l.o.g. that

$$
N_{P}^{+}\left(y_{1}\right) \cap N_{P}^{-}\left(y_{2}\right) \neq \emptyset, \quad N_{P}^{+}\left(y_{2}\right) \cap N_{P}^{-}\left(y_{3}\right) \neq \emptyset
$$

and let

$$
p \in N_{P}^{+}\left(y_{1}\right) \cap N_{P}^{-}\left(y_{2}\right), p^{\prime} \in N_{P}^{+}\left(y_{2}\right) \cap N_{P}^{-}\left(y_{3}\right) .
$$

If $N_{P}^{+}\left(y_{3}\right) \cap N_{P}^{-}\left(y_{1}\right) \neq \emptyset$, then let $p^{\prime \prime} \in N_{P}^{+}\left(y_{3}\right) \cap N_{P}^{-}\left(y_{1}\right)$. Let

$$
C^{\prime}=y_{1} \rightarrow p \rightarrow y_{2} \rightarrow p^{\prime} \rightarrow y_{3} \rightarrow p^{\prime \prime} \rightarrow y_{1}
$$

and let $R^{\prime}=B-C^{\prime}$. Since now $N_{R^{\prime}}^{+}(L)=P-\left\{p, p^{\prime}, p^{\prime \prime}\right\},|L|=k-2, \mid P-$ $\left\{p, p^{\prime}, p^{\prime \prime}\right\} \mid=k-3$ and Case 5 was already considered, there exists a good cycle. So $N_{P}^{+}\left(y_{3}\right) \cap N_{P}^{-}\left(y_{1}\right)=\emptyset$. Let

$$
C^{\prime \prime}=x_{1} \rightarrow y_{1} \rightarrow p \rightarrow y_{2} \rightarrow x_{3} \rightarrow y_{3} \rightarrow x_{1}
$$

and let $R^{\prime \prime}=B-C^{\prime \prime}$. We show that $C^{\prime \prime}$ is a good cycle, i.e., for any $P^{\prime \prime} \subseteq X-$ $\left\{p, x_{1}, x_{3}\right\}$ or $P^{\prime \prime} \subseteq Y-\left\{y_{1}, y_{2}, y_{3}\right\}$ we have $\left|N_{R^{\prime \prime}}^{+}\left(P^{\prime \prime}\right)\right| \geq\left|P^{\prime \prime}\right|$. By Claim 5.1, it is obvious for $\left|P^{\prime \prime}\right| \geq k+1$ and for $\left|P^{\prime \prime}\right| \leq k-3$. As Cases $2,3,4$ and 5 were already considered, it suffices to consider that $\left|P^{\prime \prime}\right|=k$.

Case 6.1. $P^{\prime \prime} \subseteq X-\left\{p, x_{1}, x_{3}\right\}$.

Note that $P^{\prime \prime} \cap\left(M+x_{2}\right) \neq \emptyset$. So $L \subseteq N_{R^{\prime \prime}}^{+}\left(P^{\prime \prime}\right)$. If $\left|N_{R^{\prime \prime}}^{+}\left(P^{\prime \prime}\right) \cap Q\right|=k-3$, then there exist $\left\{q_{1}, q_{2}\right\} \subseteq Q$ such that $\left\{q_{1}, q_{2}\right\} \rightarrow P^{\prime \prime}$ and thus $\left\{p, x_{1}, x_{3}\right\} \rightarrow\left\{q_{1}, q_{2}\right\}$. Since $x_{1} \rightarrow L+y_{1}$, we have $d_{B}^{+}\left(x_{1}\right) \geq\left|L+y_{1}\right|+\left|\left\{q_{1}, q_{2}\right\}\right|=k+1$, a contradiction. So $\left|N_{R^{\prime \prime}}^{+}\left(P^{\prime \prime}\right) \cap Q\right| \geq k-2$ and

$$
\left|N_{R^{\prime \prime}}^{+}\left(P^{\prime \prime}\right)\right| \geq|L|+\left|N_{R^{\prime \prime}}^{+}\left(P^{\prime \prime}\right) \cap Q\right| \geq(k-2)+(k-2) \geq k .
$$

Case 6.2. $P^{\prime \prime} \subseteq Y-\left\{y_{1}, y_{2}, y_{3}\right\}$.

Since $P^{\prime \prime} \cap L \neq \emptyset$, we have $P-p \subseteq N_{R^{\prime \prime}}^{+}\left(P^{\prime \prime}\right)$. Since $x_{2} \rightarrow y_{2}$, we have $x_{2} \nrightarrow P^{\prime \prime}$ and $x_{2} \in N_{R^{\prime \prime}}^{+}\left(P^{\prime \prime}\right)$. Thus

$$
\left|N_{R^{\prime \prime}}^{+}\left(P^{\prime \prime}\right)\right| \geq\left|P-p+x_{2}\right|=k .
$$

So $C^{\prime \prime}$ is a good cycle, a contradiction.
The proof of Lemma 5.1 is complete.

$5.3 k$-cycle-factors in regular bipartite tournaments

The k-cycle-factors of a highly connected tournament was posed by Bollobás (see [82]) and was proved by Chen et al. [35].

Theorem 5.14 (Chen et al. [35]). Let T be a k-connected tournament with $|V(T)| \geq$ $8 k$. Then T has a k-cycle-factor.

Motivated by Theorem 5.14, we consider k-cycle-factors of a highly connected bipartite tournament. Häggkvist and Manoussakis [47] proved that a bipartite tournament is Hamiltonian if and only if it is strong and has a cycle-factor. Note that there are infinite families of highly connected bipartite tournament without Hamilton cycles and thus without a cycle-factor, i.e. it cannot be partitioned into cycles. Thus, we should assume that the considered bipartite tournaments are Hamiltonian. Let $f(k)$ be the smallest integer so that all but a finite number of $f(k)$-connected Hamiltonian bipartite tournaments have a k-cycle-factor. Note that $f(1)=1$. We conjecture that $f(k)$ exists and $f(k)=k$ for general k. By Corollary 4.1, we propose the following conjecture.

Conjecture 5.2. Every k-connected Hamiltonian bipartite tournament with at least $8 k-6$ vertices has a k-cycle-factor.

By replacing the condition "Hamiltonian" by "regular", we get a weaker result.
Theorem 5.15. Let $B T=(X, Y ; E)$ be a k-connected regular bipartite tournament with $|V(B T)| \geq 8 k-6$. Then BT has a k-cycle-factor.

Proof. By Corollary 3.1, $B T$ contains at least k vertex-disjoint cycles. Let C_{1}, \ldots, C_{k} be k vertex-disjoint cycles of $B T$ such that $\sum_{i=1}^{k}\left|V\left(C_{i}\right)\right|$ is maximum. To the contrary, assume that $\sum_{i=1}^{k}\left|V\left(C_{i}\right)\right|<n$. Let $\Psi=\left\{C_{1}, \ldots, C_{k}\right\}$ and let

$$
\begin{equation*}
H=B T-\cup_{i=1}^{k} V\left(C_{i}\right) \tag{5.6}
\end{equation*}
$$

Claim 5.5. H has no cycle.

Proof. Assume that H has a cycle C. Let C_{i} be an arbitrary cycle in Ψ. We show that either $C_{i} \rightarrow C$ or $C \rightarrow C_{i}$. Let $u \in V\left(C_{i}\right) \cap X$ and $v \in V(C) \cap Y$. Assume without loss of generality that $u \rightarrow v$. For any vertex $x \in V(C) \cap X$, if $x \rightarrow u_{C_{i}}^{+}$then $u_{C_{i}}^{+} C_{i} u v x u_{C_{i}}^{+}$is a cycle longer than C_{i} and we can get another k cycles containing more vertices, a contradiction. Thus, $u_{C_{i}}^{+} \rightarrow C$. Similarly, $u_{C_{i}}^{++} \rightarrow C, \ldots, u \rightarrow C$ and thus $C_{i} \rightarrow C$. If $v \rightarrow u$, then similarly $C \rightarrow C_{i}$. Now let

$$
\begin{equation*}
\Psi_{1}=\left\{C_{i} \in \Psi: C_{i} \rightarrow C\right\}, \quad \Psi_{2}=\left\{C_{j} \in \Psi: C \rightarrow C_{j}\right\} \tag{5.7}
\end{equation*}
$$

Assume first that $\Psi_{1}=\emptyset$. Then $\Psi_{2}=\Psi$. Since $B T$ is connected, there is a path from Ψ to C and let P be one with minimal length. Then all the internal vertices of P are in $V(H)-V(C)$. Let w and z be the starting vertex and the ending vertex of P, respectively. Assume w.l.o.g. that $w \in C_{j} \cap X$. If $z \in Y$, then

$$
\begin{equation*}
w P z C z_{C}^{-} \rightarrow w_{C_{j}}^{+} C_{j} w \tag{5.8}
\end{equation*}
$$

is a longer cycle than C_{j}. If $z \in X$, then

$$
\begin{equation*}
w P z C z_{C}^{--} w_{C_{j}}^{+} C_{j} w \tag{5.9}
\end{equation*}
$$

is a longer cycle than C_{j}. For each case we can get another k cycles containing more vertices, a contradiction. If $\Psi_{2}=\emptyset$, then similarly we can get a contradiction.

Now assume that $\Psi_{1} \neq \emptyset$ and $\Psi_{2} \neq \emptyset$. If $\Psi_{1} \rightarrow \Psi_{2}$, then since $B T$ is connected there is a path from Ψ_{2} to $\Psi_{1} \cup C$. Let P be one with minimal length and let w and
z be the starting vertex and the ending vertex of P, respectively. Note that $C \rightarrow \Psi_{2}$. By the minimality of P, all the internal vertices of P are in $V(H)-V(C)$. Assume w.l.o.g. that $w \in C_{i} \cap X$ and $z \in C_{j}$. If $z \in Y$, then

$$
\begin{equation*}
w P z C_{j} z_{C_{j}}^{-} w_{C_{i}}^{+} C_{i} w \tag{5.10}
\end{equation*}
$$

plus other $k-1$ unused cycles form k cycles containing more vertices, a contradiction. If $z \in X$, then

$$
\begin{equation*}
w P z C_{j} z_{C_{j}}^{-} w_{C_{i}}^{+} C_{i} w \tag{5.11}
\end{equation*}
$$

plus other $k-1$ unused cycles form k cycles containing more vertices, a contradiction. Thus $\Psi_{1} \nrightarrow \Psi_{2}$ and $C_{i} \nrightarrow C_{j}$ for some $C_{i} \in \Psi_{1}$ and for some $C_{j} \in \Psi_{2}$. Then $u \rightarrow v$ for some $u \in C_{j}$ and for some $v \in C_{i}$. Note that $u_{C_{j}}^{+} \rightarrow v_{C_{i}}^{-}$. Then

$$
\begin{gather*}
u_{C_{j}}^{+} v_{C_{i}}^{-} w w_{C}^{+} u_{C_{j}}^{+}, \tag{5.12}\\
u v C_{i} v_{C_{i}}^{--} w_{C}^{-} w_{C}^{--} u_{C_{j}^{++} C_{j}} u \tag{5.13}
\end{gather*}
$$

are two cycles containing more vertices than C_{i} and C_{j}. We get another k cycles containing more vertices than Ψ, a contradiction. So H has no cycle.

By Lemma 1.2, $B T$ has vertex-disjoint subsets $H_{1}, H_{2}, \ldots, H_{2 i-1}, H_{2 i}, \ldots, H_{2 m-1}, H_{2 m}$, $m \geq 1,1 \leq i \leq m$, such that $H_{2 i-1} \subseteq X, H_{2 i} \subseteq Y$ and there is no arc from H_{p} to H_{q} for $p>q$. The following result holds.

Claim 5.6. let $u \in H_{s}, v \in H_{t}$ and $s<t$. Then $d_{\Psi}^{+}(u) \geq d_{\Psi}^{+}(v)$ and $d_{\Psi}^{-}(u) \leq d_{\Psi}^{-}(v)$.

Proof. Note that the result holds clearly if u and v are in the same color class. Assume w.l.o.g. that $u \in X$ and $v \in Y$. Let $w \in V\left(C_{i}\right)$ be an arbitrary outneighbor of v in Ψ. Then $w \in X$ and $w_{C_{i}}^{-} \in Y$. If $w_{C_{i}}^{-} \rightarrow u$, then

$$
\begin{equation*}
w C_{i} w_{C_{i}}^{-} u v w \tag{5.14}
\end{equation*}
$$

is a longer cycle than C_{i}, a contradiction. Thus $d_{\Psi}^{+}(u) \geq d_{\Psi}^{+}(v)$. Similarly, we have
$d_{\Psi}^{-}(u) \leq d_{\Psi}^{-}(v)$.
For any two vertices $u \in H_{1}$ and $v \in H_{2 m}$, we have $d_{\Psi}^{+}(u) \geq d_{\Psi}^{+}(v)$ by Claim 5.6. Note that $d_{H}^{+}(u)>d_{H}^{+}(v)$. Thus, $d_{B T}^{+}(u)>d_{B T}^{+}(v)$, a contradiction to the assumption that $B T$ is regular.

The proof of Theorem 5.15 is complete.

5.4 Conclusion

In this chapter, we consider the 2-cycle-factors and more generally k-cycle-factors of regular bipartite tournaments. First, we prove that every k-regular bipartite tournament B not isomorphic to a special digraph and with $k \geq 3$ has a 2-cycle-factor of cycle-lengths 6 and $|V(B)|-6$. This gives a support to Conjecture 5.1 stating that every k-regular bipartite tournament B not isomorphic to a special digraph $F_{4 \cdot k}$ contains all 2-cycle-factors. Also, we show that every k-connected regular bipartite tournament has a k-cycle-factor.

Chapter 6

Universal Arcs and Directed Cuts

6.1 Introduction

The concept of universal arc was first proposed by Ádám [2] in 1999 and is relatively new. The main problem is whether every cycle-connected digraph contains a universal arc and only few results have been obtained till now. For the max cut and cut-cover problem, it is very old and have been considered extensively. Tournaments and Cayley digraphs are two types of digraphs which have attracted much attention in digraph theory due to its special structure. In this chapter, we consider universal arcs in tournaments and directed cuts in the Cayley digraph $X\left(\mathbb{Z}_{2}^{k}, S_{k}\right)$.

6.2 Universal arcs in tournaments

The main result is the following theorem.
Theorem 6.1. Let T be a tournament on at least 3 vertices. Then
(1) T has a universal arc if and only if T is 1 -connected;
(2) every arc of T is universal if and only if T is 2-connected or $T \in \mathbf{T}_{\mathbf{s}}^{*}$;
(3) every arc of C is universal if C is a longest cycle containing a given universal arc in T and T is 1-connected.

Remark. (1) The 1-connected digraph in Figure 6.1 shows that the result in Theorem 6.1 (1) does not hold for general digraphs.
(2) Thomassen [92] showed in 1980 that every arc of a 3-connected tournament is contained in a Hamilton cycle, which implies that every arc of a 3-connected tournament is universal. Theorem 6.1 (2) shows that a weaker condition guarantees this property.
(3) Note that the longest cycle containing a given universal arc could be non-Hamiltonian. So the result in Theorem 6.1 (3) is not trivial.

Figure 6.1: A 1-connected digraph with no universal arc.

Figure 6.2: A 1-connected but not 2-connected tournament T_{n} with n universal arcs.

Proof. Let x, y be any two vertices of T. An (x, y)-path is a path from x to y. Let C be a cycle of T. A $(x, y)^{\bar{C}}$-path is a (x, y)-path with no internal vertex on C. For two vertices u, v of C, denote by u^{+}and u^{-}the successor and predecessor of u on C, respectively; and denote by $u C v$ the unique (u, v)-path on C. Let $[u, v]$ be the vertex set of $u C v$ and let $d_{C}(u, v)=|[u, v]|-1$ be the distance from u to v on C. For any vertex set $V^{\prime} \subseteq V(T)$, we write $u \rightarrow V^{\prime}$ if $u \rightarrow v$ for any vertex $v \in V^{\prime}$ and write $V^{\prime} \rightarrow u$ if $v \rightarrow u$ for any vertex $v \in V^{\prime}$.
(1) Since every 1-connected tournament has a Hamilton cycle, then T has a universal arc. It suffices to show the converse statement. It follows from a more general result as follows.

Lemma 6.1. If a digraph has a universal arc, then it is 1-connected.

Proof. Let D be a digraph with a universal arc $u v$. It suffices to show that there is an (x, y)-path for any two vertices x and y of D. If $\{x, y\} \cap\{u, v\} \neq \emptyset$, then it follows directly from the definition of universal arcs. Suppose that $\{x, y\} \cap\{u, v\}=\emptyset$. Since x and $u v$ are in a cycle, there is an (x, u)-path P_{1}. Similarly, there is a (v, y)-path P_{2}. If P_{1} and P_{2} are vertex disjoint, then $x P_{1} u v P_{2} y$ is an (x, y)-path. If P_{1} and P_{2} have at least one common vertex, let w be the first appeared vertex on the path P_{1}, then $x P_{1} w P_{2} y$ is an (x, y)-path.
(2) Let T be a tournament satisfying that every arc is universal. Assume that T is not 2-connected and $T \notin \mathbf{T}_{\mathbf{s}}^{*}$. If T is not 1-connected, then the arc $u u^{\prime}$ is a non-universal arc where $u, u^{\prime} \in V(T)$ satisfying that here exists no $\left(u^{\prime}, u\right)$-path. Now we have T is 1 -connected and $T \notin \mathbf{T}_{\mathbf{s}}^{*}$. Then T has a cut vertex v such that one of the subtournaments induced by $N^{+}(v)$ and $N^{-}(v)$ (denote by T_{x} and T_{y}, respectively) is not 1-connected. Assume without loss of generality that T_{x} is not 1-connected. Then there exists no $\left(x, x^{\prime}\right)$-path for some two vertices $x, x^{\prime} \in V\left(T_{x}\right)$ excluding v. Thus $v x$ and x^{\prime} are not in any cycle and $v x$ is not a universal arc, a contradiction.

For the converse, it follows directly from the two lemmas below.
Lemma 6.2. Every arc of a 2-connected tournament T is universal.

Proof. Assume the opposite that T has a non-universal arc $u v$. Let C be a longest cycle containing $u v$ in T. Since T has no 2-cycles, we have $|V(C)| \geq 3$. By assumption C is not hamiltonian. Let w be an arbitrary vertex in $V(T) \backslash V(C)$. For convenience, a cycle containing both $u v$ and w is called good in the following. We will get a contradiction by showing that a good cycle exists.

If $w \rightarrow u$, then since T is 2 -connected there exists a $(x, w)^{\bar{C}}$-path P for some $x \in V(C) \backslash\{u\}$. Now $w u v C x P w$ is a good cycle. If $v \rightarrow w$, then similarly since T is

2-connected there exists a $(w, y)^{\bar{C}}$-path P^{\prime} for some $y \in V(C) \backslash\{v\}$. Now $u v w P^{\prime} y C u$ is a good cycle. Assume from now on that $u \rightarrow w$ and $w \rightarrow v$.

We claim first that $w \rightarrow[v, z]$ and $\left[z^{+}, u\right] \rightarrow w$ for some $z \in V(C) \backslash\{u\}$. If not, then there exists $z^{\prime} \in V(C) \backslash\{u\}$ with $z^{\prime} \rightarrow w$ and $w \rightarrow z^{\prime+}$. Now $u v C z^{\prime} w z^{\prime+} C u$ is a cycle containing $u v$ and is longer than C, a contradiction.

Since T is 2-connected, there exists a $\left(v_{1}, u_{1}\right)^{\bar{C}}$-path P^{*} for some $v_{1} \in[v, z]$ and some $u_{1} \in\left[z^{+}, u\right]$. If $w \in V\left(P^{*}\right)$, then $u v C v_{1} P^{*} u_{1} C u$ is a good cycle. Now let $w \notin V\left(P^{*}\right)$. Assume that $d_{C}\left(u_{1}, u\right)$ is as small as possible and in addition $d_{C}\left(v, v_{1}\right)$ is as small as possible. By symmetry, we can assume without loss of generality that $d_{C}\left(u_{1}, u\right) \leq d_{C}\left(v, v_{1}\right)$. Now we distinguish two cases.

Case 7. $u_{1}=u$.
Assume first that $v_{1} \neq v$. Since T is 2-connected, there exists a $(x, y)^{\bar{C}}$-path P for some $x \in\left[v, v_{1}^{-}\right]$and some $y \in\left[v_{1}^{+}, u\right]$. If P and P^{*} have a common veretex, say z, then the path $x P z P^{*} u$ contradicts the choice of P^{*}. So P and P^{*} are vertex disjoint and $y \in\left[v_{1}^{+}, u^{-}\right]$.

If $u \neq z^{+}$, then $u^{-} \rightarrow w$ and $u v C x P y C u^{-} w v_{1} P^{*} u$ is good cycle. Now let $u=z^{+}$. Since T is 2-connected, there exists a $\left(w^{\prime}, w\right)^{\bar{C}}$-path P^{\prime} for some $w^{\prime} \in V(C) \backslash\{u\}$. If $w^{\prime} \neq u^{-}$, then $u v C w^{\prime} P^{\prime} w u^{-} u$ is a good cycle. Now let $w^{\prime}=u^{-}$. If P^{\prime} and P^{*} have a common vertex, without loss of generality let u^{\prime} be the first vertex of P^{\prime} contained in P^{*}, then replace $u^{-} u$ of C by $u^{-} P^{\prime} u^{\prime} P^{*} u$ will yield a cycle containing $u v$ longer than C. So P^{\prime} and P^{*} are vertex disjoint. If P^{\prime} and P are internally vertex disjoint, then $u v C x P y C u^{-} P^{\prime} w v_{1} P^{*} u$ is a good cycle. If P^{\prime} and P have a common internal vertex, without loss of generality let $w^{\prime \prime}$ the first vertex of P^{\prime} contained in P (possibly $w^{\prime \prime}=w$), then $u v C x P w^{\prime \prime} P^{\prime} w v_{1} P^{*} u$ is a good cycle.

Now let $v_{1}=v$. Since $u \rightarrow v$, then $\left|V\left(P^{*}\right)\right| \geq 3$. Let x be the successor of v on P^{*}.

If $x \rightarrow w$, then since T is 2-connected there exists a $\left(w, w^{\prime}\right)$-path P for some $w^{\prime} \in V(C) \cup V\left(P^{*}\right) \backslash\{v\}$. Moreover, we can assume that P has no internal vertex in $V(C) \cup V\left(P^{*}\right)$. If $w^{\prime} \in V(C) \backslash\{v\}$, then $u v x w P w^{\prime} C u$ is a good cycle. If $w^{\prime} \in$
$V\left(P^{*}\right) \backslash\{v, x\}$, then $u v x w P w^{\prime} P^{*} u$ is a good cycle. If $w^{\prime}=x$, since either $w \rightarrow v^{+}$or $v^{+} \rightarrow w$, then either $u v x w v^{+} C u$ or $u v v^{+} w P x P^{*} u$ is a good cycle.

If $w \rightarrow x$, then similarly since T is 2-connected there exists a $\left(w^{\prime \prime}, w\right)$-path P^{\prime} for some $w^{\prime \prime} \in V(C) \cup V\left(P^{*}\right) \backslash\{u\}$. Moreover, we can assume that P^{\prime} has no internal vertex in $V(C) \cup V\left(P^{*}\right)$. If $w^{\prime \prime} \in V(C) \backslash\{u\}$, then $u v C w^{\prime \prime} P^{\prime} w x P^{*} u$ is a good cycle. Now we have that $w \rightarrow V(C) \backslash\{u\}$ and $w^{\prime \prime} \in V\left(P^{*}\right) \backslash\{u\}$. Then $u v P^{*} w^{\prime \prime} P^{\prime} w v^{+} C u$ is a good cycle.

Case 8. $u_{1} \neq u$.

It follows that $v_{1} \neq v$. If $u_{1} \neq z^{+}$, then $u_{1}^{-} \rightarrow w$. Since T is 2 -connected, there exists a $(x, y)^{\bar{C}}$-path P for some $x \in\left[v, v_{1}^{-}\right]$and some $y \in\left[v_{1}^{+}, u\right]$. If $y \in\left[u_{1}, u\right]$, then the path P contradicts the choice of P^{*}. So we have that $y \in\left[v_{1}^{+}, u_{1}^{-}\right]$. If P and P^{*} have a common vertex, say x^{\prime}, then the path $x P x^{\prime} P^{*} u_{1}$ contradicts the choice of P^{*}. So P and P^{*} are vertex disjoint. Then $u v C x P y C u_{1}^{-} w v_{1} P^{*} u_{1} C u$ is a good cycle. Now assume that $u_{1}=z^{+}$. Since T is 2-connected, there exists a $\left(x^{\prime}, y^{\prime}\right)^{\bar{C}}$-path P^{\prime} for some $x \in\left[v, u_{1}^{-}\right]$and some $y \in\left[u_{1}^{+}, u\right]$. Now the path P^{\prime} contradicts the choice of P^{*}. The proof is complete.

Lemma 6.3. Every arc of a tournament $T \in \mathbf{T}_{\mathbf{s}}^{*}$ is universal.

Proof. We first show the following claim.
Claim 6.1. For any arc $u v$ and any vertex w of a 1-connected tournament T, one of the following three statements hold.
(1) $u v$ and w are in a common cycle;
(2) there exists a (v, w)-path excluding u;
(3) there exists $a(w, u)$-path excluding v.

Proof. Since T is 1 -connected, there is a (v, u)-path P. Since $u \rightarrow v$. we have $|V(P)| \geq 3$. Assume that $u v$ and w are not in a common cycle. Then $w \notin V(P)$. For any vertex $w^{\prime} \in V(P)-\{u, v\}$, if $w^{\prime} \rightarrow w$ then $v P w^{\prime} w$ is a (v, w)-path excluding u, if $w \rightarrow w^{\prime}$ then $w w^{\prime} P u$ is a (w, u)-path excluding v.

Recall that $T_{y} \rightarrow v$ and $v \rightarrow T_{x}$. Since T is 1-connected, there exist at least one arc goes from T_{x} to T_{y}. We claim that every arc between T_{x} and T_{y} goes from T_{x} to T_{y}. If not, then since both T_{x} and T_{y} are 1-connected we have v is not a cut vertex. Let x, y, z be arbitrary vertices in T_{x}, T_{y} and T, respectively.

First consider the arc $v x$. If $z \in T_{y} \cup\{v, x\}$, then one can easily see that $v x$ and z are in a cycle. If $z \in T_{x} \backslash\{x\}$, then since T_{x} is 1-connected there is a (x, z)-path P in T_{x} and $v x P z y v$ is a cycle containing both $v x$ and z. So $v x$ is universal. Similar, we can show that any arc $y v$ with $y \in T_{y}$ is universal.

Then consider an arbitrary arc $x x^{\prime}$ in T_{x}. If $z \in T_{y} \cup\left\{v, x, x^{\prime}\right\}$, then one can see that $x x^{\prime}$ and z are in a cycle. If $z \in T_{x} \backslash\left\{x, x^{\prime}\right\}$, then by Claim 6.1 we only need to consider the case that there is an $\left(x^{\prime}, z\right)$-path P^{\prime} or a (z, x)-path $P^{\prime \prime}$ in T_{x}. Note that either $x x^{\prime} P^{\prime} z y v x$ or $x x^{\prime} y v z P^{\prime \prime} x$ is a cycle containing both $x x^{\prime}$ and z. So $x x^{\prime}$ is universal.

Now consider the arc $x y$. If $z=v$, then $x y z$ is a cycle containing both $x y$ and z. If $z \in T_{x}$, note that there is a (z, x)-path $P^{\prime \prime \prime}$ in T_{x}, then $x y v z P^{\prime \prime \prime} x$ is a cycle containing both $x y$ and z. Similarly, we can prove the case $z \in T_{y}$. So $x y$ is universal.
(3) Let C be a longest cycle containing a given universal arc $u v$. By Theorem 6.1 (1), we have T is 1 -connected. If $u^{\prime} \rightarrow w$ and $w \rightarrow u^{\prime+}$ for some $u^{\prime} \in V(C) \backslash\{u\}$. Replace $u^{\prime} u^{\prime+}$ by $u^{\prime} w u^{+}$will yield a cycle containing $u v$ longer than C, a contradiction. Thus we have $V(T) \backslash V(C)=W_{a} \cup W_{b} \cup W_{c}$, where W_{a}, W_{b} and W_{c} are defined as follows.

- $W_{a}=\{w \in V(T) \backslash V(C): V(C) \rightarrow w\}$.
- $W_{b}=\{w \in V(T) \backslash V(C): w \rightarrow V(C)\}$.
- $W_{c}=\left\{w \in V(T) \backslash V(C):\left[z^{+}, u\right] \rightarrow w\right.$ and $w \rightarrow[v, z]$ for some $z \in$ $V(C) \backslash\{u\}\}$.

Claim 6.2. $W_{a}=W_{b}=\emptyset$ and $V(T) \backslash V(C)=W_{c}$.
Proof. Denote by W_{c}^{1} and W_{c}^{2} the subsets of W_{c} with $z=v$ and $z \neq v$, respectively. Note that $V(C) \backslash\{v\} \rightarrow W_{c}^{1}$ and $W_{c}^{2} \rightarrow v^{+}$.

Assume that there exists a vertex $w_{a} \in W_{a}$. Note that $u v$ is a universal arc and there exists a cycle containing both $u v$ and w. So there is a $\left(w_{a}, u\right)$-path P with $v \notin V(P)$. Since $V(C) \backslash\{v\} \rightarrow W_{c}^{1}$, we have $P \cap\left(W_{b} \cup W_{c}^{2}\right) \neq \emptyset$. Let x be the first vertex of P contained in $W_{b} \cup W_{c}^{2}$. Then $w_{a} P x \cap V(C)=\emptyset$. Now replace $v v^{+}$by $v w_{a} P x v^{+}$. A longer cycle containing $u v$ appears, a contradiction. Thus $W_{a}=\emptyset$. Similarly, we can show that $W_{b}=\emptyset$.

Let $u^{\prime} v^{\prime}$ be an arbitrary arc of C distinct from $u v$. For any vertex $w \in V(C)$, the cycle C contains both $u^{\prime} v^{\prime}$ and w. For any vertex $w \in V(T) \backslash V(C)$, by Claim 6.2 we have $w \in W_{c}$. Then the cycle obtained from C by replacing $u v$ with $u w v$ is a cycle containing both $u^{\prime} v^{\prime}$ and w. So every arc of C distinct from $u v$ is also a universal arc, which completes the proof.

The proof of Theorem 6.1 is complete.

6.3 Directed cuts in a type of Cayley digraph

We deal with the Cayley digraph $X\left(\mathbb{Z}_{2}^{k}, S_{k}\right)$.
Theorem 6.2. $g\left(X\left(\mathbb{Z}_{2}^{k}, S_{k}\right)\right) \geq \begin{cases}\frac{(3 k+1) 2^{k}+1}{9}, & \text { if } k \text { is odd; } \\ \frac{(3 k+1) 2^{k}-1}{9}, & \text { if } k \text { is even. }\end{cases}$
By the result of Bai et al. [11] we have $c\left(X\left(\mathbb{Z}_{2}^{k}, S_{k}\right)\right) \leq h(2 k+1)+1$. Here we give the precise value.
Theorem 6.3. $c\left(X\left(\mathbb{Z}_{2}^{k}, S_{k}\right)\right)= \begin{cases}2, & \text { if } k=1 ; \\ 3, & \text { if } k=2 ; \\ 4, & \text { if } k \geq 3 .\end{cases}$
Proof. We first show the following lemma.
Lemma 6.4. The independence number $\alpha(X)$ of X is 2^{k-2}.
Proof. Let $V(X)=\left\{0,1, \ldots, 2^{k}-1\right\}$. For any $x \in V(X)$,

$$
\left\{x, x+2^{k-2}, x+2^{k-1}, x+3 \cdot 2^{k-2}\right\}
$$

is a subset of $V(X)$ satisfying that every vertex is adjacent to the other three vertices. Since there are 2^{k-2} pairwise disjoint such sets in $V(X)$, we have $\alpha(X) \leq 2^{k-2}$. Note that

$$
\left\{0,3,6, \ldots, 3\left(2^{k-2}-1\right)\right\}
$$

is an independent set of X with cardinality 2^{k-2}. Then we have $\alpha(X)=2^{k-2}$.

Let $I=\left\{0,3,6, \ldots, 3\left(2^{k-2}-1\right)\right\}$ and $V_{1}=\left\{i, i+2^{k-2}: i \in I\right\}$. Note that $\overline{V_{1}}=\left\{i+2^{k-1}, i+3 \cdot 2^{k-2}: i \in I\right\}$. We consider the cut $E\left(V_{1}, \overline{V_{1}}\right)$. For the subsets

$$
A=\left\{x, x+2^{k-2}\right\} \text { and } B=\left\{y, y+2^{k-2}\right\}
$$

where $x, y \in I$ and $x \neq y$, there are three possible arcs in the induced graph of $A \cup B$ with starting vertices in A. One is from x to $x+2^{k-2}$, one is from x to $y+2^{k-2}$ and the last one is from $x+2^{k-2}$ to y. For the first kind, there are 2^{k-2} arcs since there are 2^{k-2} subsets like $\left\{x, x+2^{k-2}\right\}$. For the second kind, we have two possible cases

$$
\begin{gathered}
y+2^{k-2}-x=2^{t_{1}}, \text { where } y+2^{k-2}>x \text { and } 0 \leq t_{1} \leq k-3, \\
y+2^{k-2}-x+2^{k}=2^{t_{2}}, \text { where } y+2^{k-2}<x \text { and } 0 \leq t_{2} \leq k-3 .
\end{gathered}
$$

For the second case, we have $x-y=2^{k-2}+2^{k}-2^{t_{2}}=$

$$
\begin{gathered}
y-x=2^{t_{1}}-2^{k-2}, \text { if } y+2^{k-2}>x \text { and } 0 \leq t_{1} \leq k-3, \\
x-y=2^{k-2}+2^{k}-2^{t_{2}}, \text { if } y+2^{k-2}<x \text { and } 0 \leq t_{2} \leq k-3 .
\end{gathered}
$$

For the third kind, we also have two possible cases.

$$
\begin{gathered}
y-\left(x+2^{k-2}\right)=2^{t_{3}}, \text { where } y>\left(x+2^{k-2}\right) \text { and } 0 \leq t_{2} \leq k-3 \\
y-\left(x+2^{k-2}\right)+2^{k}=2^{t_{4}}, \text { where } y>\left(x+2^{k-2}\right) \text { and } 0 \leq t_{2} \leq k-3
\end{gathered}
$$

Let $m_{i}=k-2-t_{i}$ for $i=1,2$. Since $x-y \equiv 0(\bmod 3)$, we have

$$
\begin{aligned}
& 2^{k-2-m_{1}}\left(2^{m_{1}}-1\right)=3 \cdot s_{1}\left(1 \leq m_{1} \leq k-2,1 \leq s_{1} \leq 2^{k-2}-1\right) \\
& 2^{k-2-m_{2}}\left(2^{m_{2}}+1\right)=3 \cdot s_{2}\left(1 \leq m_{2} \leq k-2,1 \leq s_{2} \leq 2^{k-2}-1\right)
\end{aligned}
$$

Note that for every $1 \leq m \leq k-2,2^{m}-1$ can be divided by 3 only if m is even and $2^{m}+1$ can be divided by 3 only if m is odd. So for every m satisfying $1 \leq m \leq k-2$ we can have a common solution of the two equations above

$$
s=\frac{1}{3}\left(2^{k-2}+(-1)^{m+1} \cdot 2^{k-2-m}\right)
$$

Note that $x-y=3 s$ and $x, y \in I$ where $|I|=2^{k-2}$. So there are $2^{k-2}-s$ pairs x and y satisfying that $x-y=3 s$ for any s in I, i.e., $2^{k-2}-s$ arcs of the second kind or the third kind for any s. The total number of the arcs of second and third kinds is

$$
\sum_{m=1}^{k-2}\left\{2^{k-2}-\frac{1}{3}\left[2^{k-2}+(-1)^{m+1} \cdot 2^{k-2-m}\right]\right\}
$$

Thus we have

$$
\begin{aligned}
\left|E\left(V_{1}, \overline{V_{1}}\right)\right| & \geq k \cdot 2^{k-1}-2^{k-2}-\sum_{m=1}^{k-2}\left[2^{k-2}-\frac{1}{3}\left(2^{k-2}+(-1)^{m+1} \cdot 2^{k-2-m}\right)\right] \\
& =2^{k-2}\left[(2 k-1)-\frac{2}{3}(k-2)+\frac{1}{3} \sum_{m=1}^{k-2}\left((-1)^{m+1} \cdot 2^{-m}\right)\right] \\
& =2^{k-2}\left[\frac{4 k}{3}+\frac{1}{3}+\frac{1}{3}\left(\sum_{m=1}^{k-2}\left((-1)^{m+1} \cdot 2^{-m}\right)\right]\right. \\
& = \begin{cases}\frac{(3 k+1) 2^{k}+1}{9}, & \text { if } k \text { is odd; } \\
\frac{(3 k+1) 2^{k}-1}{9}, & \text { if } k \text { is even. }\end{cases}
\end{aligned}
$$

The proof of Theorem 6.2 is complete.

Proof. One can easily verify that the result holds for $k=1,2$. It suffices to consider
the case $k \geq 3$. Our proof relies heavily on the following structure property of this type of Cayley digraph.

Lemma 6.5. $X\left(\mathbb{Z}_{2}^{k+1}, S_{k+1}\right)$ can be constructed by two copies of $X\left(\mathbb{Z}_{2}^{k}, S_{k}\right)$.
Proof. We denote $j-i\left(\bmod 2^{k}\right)$ by $j-i$ in the following in sake of convenience. Let D_{1} and D_{2} be two copies of $X\left(\mathbb{Z}_{2}^{k}, S_{k}\right)$ with vertex sets $\left\{v_{0}, v_{2}, \ldots, v_{2^{k+1}-2}\right\}$ and $\left\{v_{1}, v_{3}, \ldots, v_{2^{k+1}-1}\right\}$, respectively. Note that $v_{i} v_{j} \in E\left(D_{t}\right), t=1,2$, if and only if $j-i \in\left\{2 \cdot 2^{i-1}: i=1, \ldots, k\right\}$. Let D be a digraph with vertex set $V\left(D_{1}\right) \cup V\left(D_{2}\right)$. Add an arc from v_{i} to v_{j} if $j-i=1$ and use E^{*} to denote the set of arcs added in this way. Let

$$
E(D)=E\left(D_{1}\right) \cup E\left(D_{2}\right) \cup E^{*}
$$

For an arbitrary arc $v_{i} v_{j} \in E(D)$, we can show that

$$
j-i \in\left\{2^{i-1}: i=1, \ldots, k+1\right\} .
$$

If $v_{i} v_{j} \in E\left(D_{t}\right)$ where $t \in\{1,2\}$, then $j-i \in\left\{2 \cdot 2^{i-1}: i=1, \ldots, k\right\}$ and $\left\{2 \cdot 2^{i-1}\right.$: $i=1, \ldots, k\} \subset\left\{2^{i-1}: i=1, \ldots, k+1\right\}$. If $v_{i} v_{j} \in E^{*}$, then $j-i=2^{0} \in\left\{2^{i-1}: i=\right.$ $1, \ldots, k+1\}$. Thus D is isomorphic to $X\left(\mathbb{Z}_{2}^{k+1}, S_{k+1}\right)$.

For convenience, we use X_{2}^{3} to denote $X\left(\mathbb{Z}_{2}^{3}, S_{3}\right)$ in the following.
Lemma 6.6. $c\left(X_{2}^{3}\right)=4$.

Proof. Let

$$
\begin{aligned}
& V_{1}=\left\{v_{0}, v_{3}, v_{5}, v_{6}\right\}, V_{2}=\left\{v_{1}, v_{2}, v_{4}, v_{7}\right\}, \\
& V_{3}=\left\{v_{1}, v_{3}, v_{6}, v_{7}\right\}, V_{4}=\left\{v_{0}, v_{2}, v_{5}, v_{7}\right\} .
\end{aligned}
$$

Then $\left\{E\left(V_{i}, \bar{V}_{i}\right): i=1, \ldots, 4\right\}$ is a 4 -cut-cover of X_{2}^{3}. It suffices to prove that $c\left(X_{2}^{3}\right) \geq 4$. Assume that $c\left(X_{2}^{3}\right) \leq 3$. Denote the possible three subsets covering $E\left(X_{2}^{3}\right)$ by E_{1}, E_{2} and E_{3}. Assign color 1 to the arcs in E_{1}, color 2 to the arcs in $E(2) \backslash E(1)$ and color 3 to the rest arcs. It follows a proper 3 -arc-coloring of X_{2}^{3}, i.e., a coloring of arcs with 3 colors such that no two consecutive arcs receive a common
color. Without loss of generality, assume that $v_{0} v_{4} \in E(1)$ and $v_{4} v_{0} \in E(2)$. Let $d_{c}(v)$ be the number of colors used on the arcs incident with v, and let $d^{i}(v)$ be the number of arcs which are incident with v and are colored by i. Note that $d_{c}(v) \leq 3$.

Claim 6.3. $d_{c}(v)=3$ for each vertex v of X_{2}^{3}.

Proof. Suppose that there is a vertex, without loss of generality v_{0}, with $d_{c}\left(v_{0}\right) \leq 2$. For each vertex v of X_{2}^{3}, note that neither its indegree nor its outdegree is zero, we have $d_{c}(v) \geq 2$. So $d_{c}\left(v_{0}\right)=2, v_{0} v_{1}, v_{0} v_{2} \in E(1)$ and $v_{6} v_{0}, v_{7} v_{0} \in E(2)$. Since $v_{0} v_{2} v_{4}$ is a directed triangle, we have $v_{2} v_{4} \in E(3)$. Similarly, we have $v_{4} v_{6} \in E(3)$. It follows that two consecutive arcs have a common color, a contradiction.

Claim 6.4. $d^{i}(v)=2$ for each vertex v of X_{2}^{3} where $i=1,2,3$.

Proof. If not, then by Claim 1 and the fact that $d(v)=6$ there is a vertex, without loss of generality v_{0}, with $d^{i}\left(v_{0}\right)=3$ for some $i \in\{1,2,3\}$. Without loss of generality, suppose that $d^{1}\left(v_{0}\right)=3$. Since $v_{4} v_{0} \in E(2)$, we have $v_{0} v_{1}, v_{0} v_{2}, v_{0} v_{4} \in E(1)$. Since $v_{0} v_{2} v_{4}$ is a directed triangle, we have $v_{2} v_{4} \in E(3)$. Note that $v_{6} v_{0} \notin E(1)$. If $v_{6} v_{0} \in E(2)$, then $v_{4} v_{6} \in E(3)$ and a contradiction to $v_{2} v_{4} \in E(3)$. So $v_{6} v_{0} \in E(3)$. Then $v_{2} v_{6} \in E(2)$ since $v_{0} v_{2} v_{6}$ is a directed triangle. Now we have $v_{0} v_{1} \in E(1)$, $v_{2} v_{4} \in E(3)$ and $v_{2} v_{6} \in E(2)$, implying that no color can be put on $v_{1} v_{2}$.

Since $d^{-}(v)=d^{+}(v)=3$ for any vertex v of X_{2}^{3}, then by Claim 6.3 and Claim 6.4 there exists two consecutive arcs having a common color. A contradiction to the fact that this is a proper 3 -arc-coloring of X_{2}^{3}.

Lemma 6.4 and Lemma 6.6 imply that for $k \geq 3$

$$
c(k+1) \geq c(k) \geq c(3)=4
$$

Note that the underlying graph of $X\left(\mathbb{Z}_{2}^{k+1}, S_{k+1}\right)$ can be covered by two cuts. Thus $X\left(\mathbb{Z}_{2}^{k+1}, S_{k+1}\right)$ can be covered by four cuts. This completes the proof of Theorem 6.3.

6.4 Conclusion

In this chapter, we first completely characterize the universal arcs in tournaments. To be precise, we show that (1) T has a universal arc if and only if T is 1-connected; (2) every arc of T is universal if and only if T is 2 -connected or $T \in \mathbf{T}_{\mathbf{s}}^{*}$, where $\mathbf{T}_{\mathbf{s}}^{*}$ is a special class of 1-connected tournaments; and (3) every arc of C is universal if C is a longest cycle containing a given universal arc in T and T is 1 -connected. Then we consider the cuts in a type of Cayley digraph $X\left(\mathbb{Z}_{2}^{k}, S_{k}\right)$, where \mathbb{Z}_{2}^{k} consists of all binary vectors with length k and $S_{k}=\left\{2^{i-1}: i=1, \ldots, k\right\}$. We obtain a lower bound of the maximum number of arcs contained in a directed cut of $X\left(\mathbb{Z}_{2}^{k}, S_{k}\right)$ and the minimum number of directed cuts required to cover the arcs of $X\left(\mathbb{Z}_{2}^{k}, S_{k}\right)$.

Chapter 7

Conclusion and Perspective

In this Chapter, we summarize the main results of this thesis and conclude with some problems for further research.

7.1 Arc colorings

In Chapter 2, we mainly consider the (semi-)vertex-distinguishing proper arc coloring of digraphs. We give upper bounds for $\chi_{v d}^{\prime 2}(D)$ and $\chi_{s v d}^{\prime 2}(D)$ respectively. In particular, the value of $\chi_{v d}^{\prime 2}(D)$ is obtained for some regular digraph D. Moreover, we show that the values of $\chi_{v d}^{\prime 2}(D)$ and $\chi_{s v d}^{\prime 2}(D)$ will not be changed if the coloring, in addition, required to be equitable. But the following two conjectures remain open for general cases.

Conjecture 7.1. Let D be a vdac-digraph. Then $\chi_{v d}^{\prime 2}(D)=\pi(D)$.
Conjecture 7.2. $\chi_{v d}^{\prime 2}\left(D_{d}^{n}\right)=\pi\left(D_{d}^{n}\right)=k_{d, n}$.
Besides, it will also be interesting to consider the 1-type VDPA colorings of digraphs. What is the minimum number of colors, denoted by $\chi_{v d}^{\prime 1}(D)$, required for a 1-type VDPA colorings of a digraph D ? Considering the cycles with large order, we have that $\chi_{v d}^{\prime 1}(D)$ could be very far from the 1-type arc chromatic number $\chi^{\prime 1}(D)$ of D. We conjecture that $\chi_{v d}^{\prime 1}(D)$ is bounded by $|V(D)|$.

Conjecture 7.3. $\chi_{v d}^{\prime 1}(D) \leq|V(D)|$.

Moreover, it will be interesting to consider the 1-type proper arc colorings of oriented planar graphs. In 1976, Steinberg proposed the following conjecture.

Conjecture 7.4 (Steinberg). Every $\left\{C_{4}, C_{5}\right\}$-free planar graphs are 3-vertex-colorable.

This conjecture has received much attention and many progresses have been obtained. For more details, one can see [1, 27-30, 84]. Let G be an undirected graph and let $\chi^{11}(G)$ be the maximum value of $\chi^{\prime 1}(D)$, as D ranges over all the orientations of G. By Theorem 1.5 and Conjecture 7.4, we propose the following conjectures.

Conjecture 7.5. Let P be a $\left\{C_{4}, C_{5}\right\}$-free planar graph. Then $\chi^{\prime 1}(P) \leq 3$ if and only if $\chi(P) \leq 3$.

Conjecture 7.6. Oriented $\left\{C_{4}, C_{5}\right\}$-free planar graphs are 3 -arc-colorable.

Note that not every oriented planar graph is 3 -arc-colorable. The graph in Figure 7.1 (in [102]) is an oriented planar graph but not 3 -arc-colorable. Assume the opposite that it has a proper 3-arc-coloring. Note that both $\left\{x_{1} x_{2}, x_{2} x_{3}, x_{3} x_{1}\right\}$ and $\left\{y_{1} y_{2}, y_{2} y_{3}, y_{3} y_{1}\right\}$ should receive three distinct colors. Also, the arcs in $\left\{x_{1} z, x_{2} z, x_{3} z\right\}$ and the arcs in $\left\{z y_{1}, z y_{2}, z y_{3}\right\}$ should receive two distinct colors. Thus, there exists one arc in $\left\{x_{1} z, x_{2} z, x_{3} z\right\}$ and one arc in $\left\{z y_{1}, z y_{2}, z y_{3}\right\}$ having a common color, a contradiction.

Figure 7.1: A non-3-arc-colorable oriented planar graph.

7.2 Short cycles

In Chapter 3, we consider the short cycles in digraphs. Especially, we focus on the Caccetta-Häggkvist conjecture (Conjecture 1.4) with forbidden subdigraphs. Motivated by the result of Razborov [80], which verifies the case $l=3$ of the CaccettaHäggkvist conjecture with three well defined (induced) forbidden subdigraphs, we generalize it by verifying Conjecture 1.4 for $l \geq 4$ with $l+1$ well defined (induced) forbidden subdigraphs. It is natural to ask if less forbidden subdigraphs suffice for Conjecture 1.4. In particular, it seems that the forbidden subdigraph double-3-path in Theorem 3.2 (resp. F_{4} in Theorem 3.4) could be removed. Also, the verification of Conjecture 1.4 for digraphs with no forbidden subdigraphs deserves further consideration.

7.3 Vertex-disjoint cycles

In Chapter 4, we consider vertex-disjoint cycles of given length in bipartite tournaments. Till now, the vertex-disjoint cycles of given length in tournaments and bipartite tournaments have been characterized. It is natural to consider the analogous problem in multipartite tournaments. We propose the following conjecture.

Conjecture 7.7. Let $D=\left(V_{1}, \ldots, V_{k} ; E(D)\right)$ be a k-partite tournament. If $d_{V_{i}}^{+}(v) \geq$ $q_{i} r-1$ for any $v \in V(D) \backslash V_{i}$, then D contains r vertex-disjoint $\sum_{i=1}^{k} q_{i}$-cycles.

7.4 Cycle factors

In Chapter 5, we consider cycle factors in bipartite tournaments. Note that Conjecture 5.1 remains unsolved for $8 \leq t \leq|V(B)|-4$. It is natural to prove or disprove this conjecture for larger t.

It will also be interesting to consider under what conditions a bipartite tournament contains all k-cycle-factors. We propose the following conjecture.

Conjecture 7.8. For a positive integer k, there exists an integer $h(k)$ such that every
k-connected Hamiltonian bipartite tournament on at least $h(k)$ vertices contains all k-cycle-factors.

7.5 Universal arcs and directed cuts

In Chapter 6, we have completely characterized the universal arcs in tournaments. Recall that the Problem1.1 proposed by Ádám [2] in 1999 remains open. Also, recall that Hubenko conjectured in [58] that every arc of a maximal cycle of a cycle connected tournament is universal. These two problems deserve further consideration. Furthermore, analogous to the conception of "universal arc", we can define a universal vertex v of a digraph D to be one vertex such that $x y$ and v are in a common cycle for any arc $x y$ of D. It will be interesting to consider under what conditions a digraph contains a universal vertex.

Besides, in this chapter, we deal with directed cuts in a type of Cayley digraph $X\left(\mathbb{Z}_{2}^{k}, S_{k}\right)$. We have obtained a lower bound of $g\left(X\left(\mathbb{Z}_{2}^{k}, S_{k}\right)\right)$ as follows.

$$
g\left(X\left(\mathbb{Z}_{2}^{k}, S_{k}\right)\right) \geq \begin{cases}\frac{(3 k+1) 2^{k}+1}{9}, & \text { if } k \text { is odd } \\ \frac{(3 k+1) 2^{k}-1}{9}, & \text { if } k \text { is even }\end{cases}
$$

We conjecture that the result is best possible, i.e., the inequality " \geq " can be replaced by " $=$ ".

Bibliography

[1] H.L. Abbott, B. Zhou, On small faces in 4-critical graphs, Ars Combin. 32 (1991) 203-207.
[2] A. Ádám, On some cyclic connectivity properties of digraphs, Acta Cybernet. 14 (1) (1999) 1-12.
[3] M. Aigner, E. Triesch, Z. Tuza, Irregular assignment and vertex-distinguishing edgecolorings of graphs, in: A. Barlotti et al. (Eds.), Combinatorics 90, Elsevier Science Publications, New York, 1999, 1-9.
[4] S. Akbari, H. Bidkhori, N. Nosrati, r-strong edge colorings of graphs, Discrete Mathmatics 306 (2006) 30053010.
[5] N. Alon, Disjoint directed cycles, J. Combin. Theory Ser. B 68 (1996) 167-178.
[6] N. Alon, B. Bollobás, A. Gyárfás, J. Lehel and A. Scott, Maximum directed cuts in acyclic digraphs, J. Graph Theory 55 (2007) 1-13.
[7] N. Alon and E. Halperin, Bipartite subgraphs of integer weighted graphs, Discrete Math. 181 (1998) 19-29.
[8] N. Alon, C. McDiarmid and M. Molloy, Edge-disjoint cycles in regular directed graphs, J. Graph Theory 22 (1996) 231-237.
[9] D. Amar and Y. Manoussakis, Cycles and paths of many lengths in bipartite digraphs, J. Combin. Theory Ser. B 50 (1990) 254-264.
[10] D. Amar and A. Raspaud, Covering the vertices of a digraph by cycles with precribed length, Discrete Math. 87 (1991) 111-118.
[11] Y. Bai, B. Li, S. Zhang, Covering the edges of digraphs in $D(3,3)$ and $D(4,4)$ with directed cuts, Discrete Math. 312 (2012) 1596-1601.
[12] P.N. Balister, Vertex-distinguishing edge colorings of random graphs, Random Structures \& Algorithms 20 (1) (2002) 89-97.
[13] P.N. Balister, B. Bollobás and R.H. Schelp, Vertex-distinguishing colorings of graphs with $\Delta(G)=2$, Discrete Math. 252 (2002) 17-29.
[14] P.N. Balister, E. Győri, J. Lehel and R.H. Schelp, Adjacent vertex distinguishing edge-colorings, AIAM J. Discrete Math. 21 (2007) 237-250.
[15] P.N. Balister, A. Kostochka, H. Li and R.H. Schelp, Balanced edge colorings, J. Combin. Theory Ser. B 90 (2004) 3-20.
[16] P.N. Balister, O.M. Riordan and R.H. Schelp, Vertex-distinguishing edge colorings of graphs, J. Graph Theory 42 (2003) 95-109.
[17] J. Bang-Jensen, S. Bessy and S. Thomassé, Disjoint 3-cycles in tournaments: A proof of the BermondCThomassen conjecture for tournaments, J. Graph Theory 75 (3) (2014) 284-302.
[18] J. Bang-Jensen and G. Gutin, Digraphs: Theory, Algorithms and Applications, in: Springer Monographs in Mathematics, Springer Verlag, London, 2008.
[19] C. Bazgan, A. Harkat-Benhamdine, H. Li and M. Woźniak, A note on the vertexdistinguishing proper coloring of graphs with large minimum degree, Discrete Math. 236 (2001) 37-42.
[20] C. Bazgan, A. Harkat-Benhamdine, H. Li and M. Woźniak, On the vertexdistinguishing proper edge-colorings of graphs, J. Combin. Theory Ser. B 75 (1999) 288-301.
[21] M. Behzad, G. Chartrand and C. Wall, On minimal regular digraphs with given girth, Fundamenta Mathematicae 69 (1970) 227-231.
[22] L.W. Beineke and C.H.C. Little, Cycles in bipartite tournaments, J. Combin. Theory Ser. B 32 (1982) 140-145.
[23] J.C. Bermond, C. Thomassen, Cycles in digraphs-a survey, J. Graph Theory 5 (1) (1981) 1-43.
[24] S. Bessy, F. Havet, and E. Birmelé, Arc-chromatic number of digraphs in which every vertex has bounded outdegree or bounded indegree, J. Graph Theory 53 (2006) 315-332.
[25] S. Bessy, N. Lichiardopol, J.S. Sereni, Two proofs of the Bermond-Thomassen conjecture for tournaments with bounded minimum in-degree, Discrete Math. 310 (3) (2010) 557-560.
[26] J.A. Bondy, Counting subgraphs: A new approach to the Caccetta-Häggkvist conjecture, Discrete Math. 165/166 (1997) 71-80.
[27] O.V. Borodin, To the paper of H.L. Abbott and B. Zhou on 4-critical planar graphs, Ars Combin. 43 (1996) 191-192.
[28] O.V. Borodin, Structural properties of plane graphs without adjacent triangles and an application to 3-colorings, J. Graph Theory 21 (2) (1996) 183-186.
[29] O.V. Borodin, A.N. Glebov, M. Montassier, A. Raspaud, Planar graphs without 5and 7 -cyles and without adjacent triangles adjacent are 3-colorable, J. Combin. Theory Ser. B 99 (2009) 268-273.
[30] O.V. Borodin, A.N. Glebov, A. Raspaud, Planar graphs without triangles adjacent to cycles of length from 4 to 7 are 3-colorable, J. Combin. Theory Ser. B 93 (2005) 303-311.
[31] A.C. Burris and R.H. Schelp, Vertex-distinguishing proper edge-colorings, J. Graph Theory 26 (2) (1997) 73-82.
[32] L. Caccetta and R. Häggkvist, On minimal digraphs with given girth, Congressus Numerantium 21 (1978) 181-187.
[33] P. Camion, Chemins et circuits hamiltoniens des graphes complets, C. R. Acad. Sci. Paris 249 (1959) 2151-2152.
[34] V. Chvátal and E. Szemerédi, Short cycles in directed graphs, J. Comb. Theory Ser. В 35 (1983) 323-327.
[35] G. Chen, R.J. Gould and H. Li, Partitioning vertices of a tournament into independent cycles, J. Combin. Theory Ser. B 50 (2001) 213-220.
[36] K. Corrádi and A. Hajnal, On the maximal number of independent circuits in a graph, Acta Math. Acad. Sci. Hungar. 14 (1963) 423-439.
[37] Y. Dai, Y. Bu, An upper bound on the adjacent vertex-distinguishing chromatic number of graph, Math. Econ. 26 (2009) 107110.
[38] E. Dedo, D. Torri and N. Zagaglis Salvi, The observability of the Fibonacci and the Lucas cubes, Discrete Math. 255 (2002) 55-63.
[39] M. De Graaf, A. Schrijver and P. Seymour, Directed triangles in directed graphs, Discrete Math. 110 (1992) 279-282.
[40] G. Dirac, Some theorems on abstract graphs, Proceedings of the London Mathematical Society 2 (1952) 69-81.
[41] C.S. Edwards, Some extremal properties of bipartite subgraphs, Canadian J. Math. 25 (1973) 475-485.
[42] M El-Zahar, On circuits in graphs, Discrete Math. 50 (1984) 227-230.
[43] A. EI-Sahili, Functions and line digraphs, J. Graph Theory 44 (2003) 296-303.
[44] F. Galvin, The list chromatic index of a bipartite multigraph, J. Combin. Theory Ser. B 63 (1995) 153-158.
[45] A. Ghouila-Houri, Une condition suffisante d'existence d'un circuit Hamiltonien, C.R. Acad. Sci. Paris 25 (1960) 495-497.
[46] E. Győri, M. Horňák, C. Palmer and M. Woźniak, General neighbour-distinguishing index of a graph, Discrete Math. 308 (2008) 827-831.
[47] R. Häggkvist and Y. Manoussakis, Cycles and paths in bipartite tournaments with spanning configurations, Combinatorica 9 (1989) 51-56.
[48] C.C. Harner and R.C. Entringer, Arc colorings of digraphs, J. Combin. Theory Ser. B 13 (1972) 219-225.
[49] P. Hamburger, P. Haxell and A. Kostochka, On directed triangles in digraphs, Electronic J. Combinatorics 14 Note 19 (2007).
[50] Y.O. Hamidoune, A note on minimal directed graphs with given girth, J. Comb. Theory Ser. B 43 (1987) 343-348.
[51] H. Hatami, $\Delta+300$ is a bound on the adjacent vertex distinguishing edge chromatic number, J. Comb. Theory Ser. B 95 (2005) 246-256.
[52] G. Hetyei, Cyclic connectivity classes of directed graphs, Acta Math. Acad. Paedagog. Nyházi. 17 (2) (2001) 47-59.
[53] A.J.W. Hilton, Embedding an incomplete diagonal Latin square in a complete diagonal Latin square, J. Combin. Theory Ser. A 15 (1973) 121-128.
[54] J. Hladký, D. Král and S. Norin, Counting flags in triangle-free graphs, Elctronic Notes in Discrete Math. 34 (2009) 621-625.
[55] C.T. Hoáng and B. Reed, A note on short cycles in digraphs, Discrete Math. 66 (1987) 103-107.
[56] H. Hocquard and M. Montassier, Adjacent vertex-distinguishing edge coloring of graphs with maximum degree Δ, J. Comb. Optimizaiton 26 (2013) 152-160.
[57] M. Horňák and R. Soták, Observability of complete multipartite graphs with equipotent parts, Ars Combin. 41 (1995) 289-301.
[58] A. Hubenko, On a cyclic connectivity property of directed graphs, Discrete Math. 308 (2008) 1018-1024.
[59] B. Jackson, Long paths and cycles in oriented graphs, J. Graph Theory 5 (1981) 145-157.
[60] R. de Joannis de Verclos, J. Sereni and J. Volec, Presented at J.A. Bondy's 70th birthday, Paris, 2014.
[61] P. Justesen, On Independent Circuits in Finite Graphs and a Conjecture of Erdös and Pósa, Ann. Disc. Math. 41 (1989) 299-306.
[62] L. Kelly, D. Kühn and D. Osthus, Cycles of given length in oriented graphs, J. Combin. Theory Ser. B 100 (2010) 251-264.
[63] D. Kühn, D. Osthus and D. Piguet, Embedding cycles of given length in oriented graphs, European J. Combinatorics 34 (2013) 495-501.
[64] D. Kühn, D. Osthus and T. Townsend, Proof of a tournament partition conjecture and an application to 1 -factors with prescribed cycle lengths, Combinatorica, to appear.
[65] M. Laurent, Max-cut problem, in: annotated bibliographies in combinatorial optimization, Wiley, 1997, 241-259.
[66] J. Lehel, F. Maffray and M. Preissmann, Maximum directed cuts in digraphs with degree restriction, J. Graph Theory 61 (2009) 140-156.
[67] H. Li and J. Shu, The partition of a strong tournament, Discrete Math. 290 (2005) 211-220.
[68] N. Lichiardopol, Vertex-disjoint directed cycles of prescribed length in tournaments with given minimum out-degree and in-degree, Discrete Math. 310 (2010) 2567-2570.
[69] N. Lichiardopol, Proof of the Caccetta-Häggkvist conjecture for oriented graphs with positive minimum outdegree and of independent number two, Discrete Math. 313 (2013) 1540-1542.
[70] N. Lichiardopol, New lower bounds on the maximum number of arc-disjoint cycles in a digraph, preprint.
[71] N. Lichiardopol, A. Por, J.S. Sereni, A step toward the Bermond-Thomassen conjecture about disjoint cycles in digraphs, SIAM J. Discrete Math. 23 (2) (2009) 979-992.
[72] C.H.C. Little and H. Wang, Vertex-disjoint cycles in a directed graph, Australasian J. Combinatorics 11 (1995) 113-119.
[73] B. Mckay, Personal communication, http://cs.anu.edu.au/~bdm/nauty/.
[74] H. Meyniel, Une condition suffisante d'existence d'un circuit hamiltonien dans un graphe orienté, J. Combin. Theory B 14 (1973) 137-147.
[75] T. Nishimura, Short cycles in digraphs, Discrete Math. 72 (1988) 295-298.
[76] O. Ore, Note on hamilton circuits, American Mathematical Monthly 67 (1960) 55.
[77] S. Poljak and V. Rödl, On the arc-chromatic number of a digraph, J. Combin. Theory Ser. B 31 (1981) 190-198.
[78] S. Poljak and Zs. Tuza, Maximum cuts and largest bipartite subgraphs, in: Combinatorial optimization, DIMACS Ser. in Discrete Mathematics and Theoretical Computer Science, volume 20, 1995, 181-244.
[79] A. Razborov, Flag algebras, J. Symbolic Logic 72 (2007) 1239-1282.
[80] A. Razborov, On the Caccetta-Häggkvist conjecture with forbidden subgraphs, J. Graph Theory 74 (2) (2012) 1-13.
[81] K.B. Reid, Two complementary circuits in two-connected tournaments, Ann. Discrete Math. 27 (1985) 321-334.
[82] K.B. Reid, Three problems on tournament, graph theory and its applications: east and west, Ann. New York Acad. Sci. 576 (1989) 466-473.
[83] J. Rudašová and R. Soták, Vertex-distinguishing proper edge colorings of some regular graphs, Discrete Math. 308 (2008) 795-802.
[84] D.P. Sanders, Y. Zhao, A note on the three color problem, Graphs Combin. 11 (1995) 91-94.
[85] J. Shen, Directed triangles in digraphs, J. Comb. Theory Ser. B 74 (1998) 405-407.
[86] J. Shen, On the girth of digraphs, Discrete Math. 211 (2000) 167-181.
[87] J. Shen, On the Caccetta-Häggkvist conjecture, Graphs Comb. 18 (2002) 645-654.
[88] Z.M. Song, Complementary cycles in bipartite tournaments, J. Nanjing Inst. Tech. 18 (1988) 32-38.
[89] Z.M. Song, Complementary cycles of all lengths in tournaments, J. Combin. Theory Ser. B 57 (1993) 18-25.
[90] B.D. Sullivan, A summary of results and problems related to the Caccette-Häggkvist conjecture, AIM Preprint 13 (2006): www.aimath.org/preprints.html.
[91] K. Taczuk and M. Woźiak, A note on the vertex-distinguishing index for some cubic graphs, Opuccula Mathematica 24 (2) (2004) 223-229.
[92] C. Thomassen, Hamiltonian-connected tournaments, J. Combin. Theory Ser. B 28 (1980) 142-163.
[93] C. Thomassen, Disjoint cycles in digraphs, Combinatorica 3 (3-4) (1983) 393-396.
[94] L. Volkmann, All regular multipartite tournaments that are cycle complementary, Discrete Math. 281 (2004) 255-266.
[95] L. Volkmann and S. Winzen, Every cycle-connected multipartite tournament has a universal arc, Discrete Math. 309 (2009) 1013-1017.
[96] H. Wang, On the maximum number of independent cycles in a graph, Discrete Mathmatices 205 (1999) 183-190.
[97] H. Wang, Independent directed triangles in a directed graph, Graphs and Combinatorics 16 (2000) 453-462.
[98] W. Wang and Y. Bu, On coloring problems, Handbook of Combinatorial Optimization (2013) 2095-2189.
[99] W. Wang and Y. Wang, Adjacent vertex-distinguishing edge colorings of K_{4}-minor free graphs, App. Math. Lett. 24 (2011) 2034-2037.
[100] D.B. West, Introduction to Graph Theory, Prentice-Hall, NJ, 1996.
[101] D. Woodall, Sufficient conditions for cycles in digraphs, Proc. London Math. Soc. 24 (1972) 739-755.
[102] C. Xu and S. Zhang, Personal communication.
[103] C. Xu, S. Zhang and Y. Lu, Covering digraphs with small indegrees or outdegrees by directed cuts, Discrete Math. 313 (2013) 1648-1654.
[104] D. Zhang and H. Wang, Disjoint directed quadrilaterals in a directed graph, J. Graph Theory 50 (2005) 91-104.
[105] K.M. Zhang, Y. Manoussakis and Z.M. Song, Complementary cycles containg a fixed arc in diregular bipartite tournaments, Discrete Math. 133 (1994) 325-328.
[106] K.M. Zhang and Z.M. Song, Complementary cycles containing a pair of fixed vertices in bipartite tournaments, Appl. Math. (in China) 3 (1988) 401-407.
[107] K.M. Zhang and J. Wang, Complementary cycles containing a fixed arc and a fixed vertex in bipartite tournaments, Ars Combin. 35 (1993) 265-269.
[108] Z. Zhang, L. Liu and J. Wang, Adjacent strong edge coloring of graphs, Appl. Math Lett. 15 (2002) 623-626.

Published and Submitted Papers

1. Covering the edges of digraphs in $\mathrm{D}(3,3)$ and $\mathrm{D}(4,4)$ with directed cuts, Discrete Mathematics 312 (2012) 1596-1601. (with Binlong Li and Shenggui Zhang)
2. Complementary cycles in regular bipartite tournaments, Discrete Mathematics 333 (2014) 14-27. (with Hao Li and Weihua He)
3. Vertex-disjoint cycles in bipartite tournaments, Discrete Mathematics, 2015, in press. (with Binlong Li and Hao Li)
4. Vertex-distinguishing proper arc colorings of digraphs, Submitted. (with Hao Li, Weihua He and Qiang Sun)
5. A note on the Caccetta-Häggkvist conjecture with forbidden subgraphs, Submitted. (with Hao Li, Weihua Yang and Weihua He)
6. Universal arcs in tournaments, Submitted. (with Hao Li, Binlong Li and Weihua He)
7. Hamiltonian cycles in spanning subgraphs of line graphs, Submitted. (with Hao Li, Weihua He and Weihua Yang)
8. A note on edge-disjoint Hamilton cycles in line graphs, Submitted. (with Hao Li, Weihua He and Weihua Yang)
9. Acyclic arc coloring in digraphs, Submitted. (with Hao Li and Weihua He)

Acknowledgements

First and foremost I would like to express my sincere gratitude to my advisor, the Directeur de Recherche of CNRS, Hao Li for his insightful suggestions and constant support. It has been an honor to be one of his Ph.D. students. His good research work on graph theory has indeed inspired me during my Ph.D. study. I thank him for giving me the opportunity to struggle, nurturing me as an independent researcher, and showing me the joy of doing good research. I appreciate all his contributions of time and ideas to make my Ph.D. experience productive and stimulating

I also would like to thank Professor Shenggui Zhang, who first guided me into the research on graph theory. I am very grateful for his nice suggestions for my first scientific article and I really appreciate his kind support and encouragement, not only in my research but also in my personal life, throughout the past years.

Special thanks to my office mate and my friend, the Chargé de Recherche of CNRS, Réza Naserasr. Thanks for his help on my oral English. I appreciate a lot the helpful discussion with him on the problems of graph theory. Also, the members of GALAC group have contributed immensely to my personal and professional time in our lab LRI at University of Paris-Sud. Many thanks to all of them. Besides, I am indebted to many of my friends in Paris, especially to Weihua Yang, Weihua He, Chen Wang, Cong Zeng, Guangyu Li, Qiang Sun, Chuan Xu, Qian Zhang, Zhesheng Chen, Yiming Xiao, Ke Wang, etc. They made my life in Paris fruitful and beneficial.

It is my pleasure to thank the committee members of this thesis: Eric Angel, Cristina Bazgan, Yaojun Chen, Philippe Dague, Tomáš Kaiser and Réza Naserasr. I am grateful for their thoughtful and detailed comments. Especially, thank Tomáš for his careful reading of my thesis and his helpful suggestions on the writing.

I also wish to thank China Scholarship Council, who offered me the scholarship for my study at University of Paris-Sud.

Last but not the least, special thanks to my parents Guangqi Bai and Lin Cao, and to my brothers Yanhong Bai and Yanbin Bai. Words cannot express how grateful I am to them. I appreciate their love, continuous support and encouragement over the past years and the year to come. Even though they did not know exactly what I am doing. They provide me support and encouragement whenever and wherever needed. Thanks so much and I love them forever. To them, I dedicate this thesis.

