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This thesis studies arc colorings and cycles of digraphs. It focuses on the following topics: vertex-distinguishing proper arc colorings in digraphs, short cycles in digraphs with forbidden subdigraphs, disjoint cycles and cycle factors in bipartite tournaments, universal arcs in tournaments, and directed cuts in a type of Cayley digraph.

The thesis consists of an introductory chapter (Chapter 1), a conclusion chapter (Chapter 7) and five research chapters (Chapters 2-6). Each research chapter is based on an original article, which has been published, or submitted for publication, in an international journal.

In Chapter 1, the basic terminology and notation used in this thesis are introduced, and then a brief introduction to the research contents and main results is given.

In Chapter 2, the (semi-)vertex-distinguishing proper arc coloring of digraphs is introduced. Denote by χ 2 vd (D) (resp. χ 2 svd (D)) the minimum number of colors required for a vertex-distinguishing (resp. semi-vertex-distinguishing) proper 2-type arc coloring of D. We give tight upper bounds for χ 2 vd (D) and χ 2 svd (D) in terms of its order and degrees. Furthermore, the values of χ 2 vd (D) for some regular digraphs D are given. Besides, we show that the values of χ 2 vd (D) and χ 2 svd (D) will not be changed if the coloring, in addition, required to be equitable.

In Chapter 3, we concentrate on the Caccetta-Häggkvist conjecture, which claims that every digraph on n vertices without directed cycles of lengths at most l contains a vertex with outdegree at most n-1 l . As a partial support of the conjecture, Razborov [A. Razborov, On the Caccetta-Häggkvist conjecture with forbidden subgraphs, J.

Graph Theory (2012) 1-13] verified the case l = 3 for a specific family of digraphs. v

Chapter 1 Introduction

Graph theory studies the properties of various graphs and is a branch of discrete mathematics. The earliest known paper on graph theory was given by Euler in 1736, which discussed the seven bridges of Königsberg. The first book on graph theory is "Theorie der endlichen und unendlichen Graphen", which was written by Kőnig and published in 1936. After the appearance of this book, the subject has gone through a remarkable development. In particular, in the recent decades, graph theory has experienced explosive growth concurrent with the growth of computer science. Moreover, since graphs can be used to model many types of relations and processes, the results of graph theory have wide applications in chemistry, physics, biology and computer science. This thesis focuses on the following topics: vertex-distinguishing proper arc colorings in digraphs, short cycles in digraphs with forbidden subdigraphs, disjoint cycles and cycle factors in bipartite tournaments, universal arcs in tournaments, and directed cuts in a type of Cayley digraph. The results obtained concerning these topics are contained in five distinct research chapters (Chapters 2-6). Each chapter is based on an original article, which has been published, or submitted for publication, in an international journal.

In this chapter, we give a short but relatively complete introduction of this thesis.

In Section 1, the basic terminology and notation are given. Sections 2, 3, 4, 5 and 6 are devoted to the main results on vertex-distinguishing proper arc colorings in digraphs, short cycles with forbidden subdigraphs in digraphs, vertex-disjoint cycles in bipartite tournaments, cycle factors in bipartite tournaments, universal arcs in tournaments and directed cuts of a type of Cayley digraphs, respectively. The final section, Section 7, concludes with some problems deserving further consideration.

Basic terminology and notation

In this section, we give some basic terminology and notation that will be used in the thesis. For those not defined here, we follow Bang-Jensen and Gutin [START_REF] Bang-Jensen | Digraphs: Theory, Algorithms and Applications[END_REF].

Graph and digraph

A graph G is a pair (V (G), E(G)) consisting of a nonempty set V (G) of vertices and a set E(G), distinct from V (G), of edges. Similarly, a digraph or directed graph D is a pair (V (D), E(D)) consisting of a nonempty set V (D) of vertices and a set E(D), distinct from V (D), of arcs. Alternatively, a digraph can be regarded as a graph such that every edge has a direction. Throughout the thesis, a graph always means an undirected graph. Unless otherwise stated, the letter G denotes a graph and the letter D denotes a digraph.

Subgraph and subdigraph

A graph G is a subgraph of G if V (G ) ⊆ V (G) and E(G ) ⊆ E(G). Moreover, if
G is a subgraph of G and G contains all the edges uv ∈ E(G) with u, v ∈ V (G ), then G is an induced subgraph of G; and if if G is a subgraph of G and V (G ) = V (G), then G is a spanning subgraph of G. Similarly, we can define a subdigraph, an induced subdigraph and a spanning subdigraph of a digraph D.

Order and size

The number of vertices of a graph (a digraph) is its order and the number of edges (arcs) is its size.

Finite and simple

A graph (digraph) is finite if both its vertex set and edge set (arc set) are finite. A graph is simple if no edge is incident with only one vertex and no two edges incident with the same two vertices. A digraph is simple if no arc is incident with only one vertex and no two arcs have both the same starting vertex and the same ending vertex. Unless otherwise stated, all graphs and digraphs considered in this thesis are finite and simple.

Degree

For an edge uv of a graph G, say u is a neighbor of v and vice versa. For a vertex v of G, let N (v) be its neighborhood, i.e., the set of neighbors of v, and let d(v) = |N (v)| be its degree. Denote by δ(G) and ∆(G) the minimum degree and maximum degree of G, respectively. Let n d (G) be the number of vertices with degree d in G.

Outdegree and indegree

For an arc uv (or (u, v)) of a digraph D, write u → v and say v is an outneighbor of u and u is an inneighbor of v. For a vertex v of D, let N + (v) and N -(v) be its outneighborhood and inneighborhood, i.e., the set of outneighbors and the set of inneighbors of v, respectively. Let 

Regular digraph

Let k be a nonnegative integer. A digraph D is k-regular if every vertex has both outdegree and indegree k.

D(k) and D(k, l)

Let k and l be two nonnegative integers. Denote by D(k) the family of digraphs in which every vertex has outdegree at most k and D(k, l) the family of digraphs in which every vertex has either outdegree at most k or indegree at most l.

π(G) and π(D)

For a graph G and a digraph D, let

π(G) = min{k ∈ Z : k d ≥ n d (G) f or δ(G) ≤ d ≤ ∆(G)} (1.2)
and

π(D) = min        k ∈ Z : k d + ≥ n d + (D) f or δ + (D) ≤ d + ≤ ∆ + (D) k d -≥ n d -(D) f or δ -(D) ≤ d -≤ ∆ -(D)       
.

(1.3)

Edge coloring

Let k be a positive integer. A k-edge-coloring of a graph G is an assignment of k colors to the edges of G. An edge coloring of G is proper if no two adjacent edges receive the same color. Denote by χ (G) the minimum number of colors required for a proper edge coloring of a graph G.

VDPE coloring and vdec-graph

A vertex-distinguishing proper edge coloring (abbreviated VDPE coloring) of a graph G is a proper edge coloring where no two vertices are incident with the same set of colors. Note that a graph has a VDPE coloring if and only if it contains no isolated edge and at most one isolated vertex. Such a graph is referred to as a vertexdistinguishing edge-colorable graph (abbreviated vdec-graph). Denote by χ vd (G) the minimum number of colors required for a VDPE coloring of a vdac-graph G.

Arc coloring

Let k be a positive integer. A k-arc-coloring of a digraph D is an assignment of k colors to the arcs of D. An arc coloring of D is 1-type proper if no two consecutive arcs receive the same color, and is 2-type proper if no two arcs with a common tail or with a common head receive the same color. Denote by χ 1 (D) and χ 2 (D) the minimum numbers of colors required for a 1-type and 2-type arc coloring of D, respectively.

VDPA coloring and vdac-digraph

Define the out-arc set (in-arc set) of v to be the set of arcs starting with v (resp. ending with v). A vertex-distinguishing proper arc coloring (semi-vertex-distinguishing proper arc coloring) of D is a proper arc coloring with no two vertices (no three vertices) have the same set of colors either for their out-arc sets or for their in-arc sets. Such a coloring is abbreviated VDPA coloring (semi-VDPA coloring).

A digraph is a vdac-digraph (svdac-digrpah) if it has a VDPA coloring (semi-VDPA coloring). Clearly, every vdac-digraph is also a svdac-digraph.

Let n + S = n + S (D) (n - S = n - S (D)) be the number of vertices with out-arc set (inarc set) assigned color set S. Alternatively, a (semi-)VDPA coloring of D can be defined as a proper arc coloring such that n + S ≤ 1 and n - S ≤ 1 (n + S ≤ 2 and n - S ≤ 2) for any color set S. Denote by χ 1 vd (D) and χ 2 vd (D) the minimum numbers of colors required for a 1-type VDPA coloring and a 2-type VDPA coloring of a vdac-digraph D, respectively.

Equitable edge (arc) coloring

For a proper k-edge-coloring (a proper k-arc-coloring) f of a graph G (a digraph D), let E α be the set of edges (arcs) colored by α and let e α = |E α |, f is called equitable if |e α -e β | ≤ 1 for any two colors α, β ∈ {1, . . . , k}. Let χ e (G) (χ 2 e (D) ) be the minimum number of colors required for an equitable proper edge (arc) coloring of G (of D) and let χ evd (G) (χ i evd (D)) be the minimum number of colors required for an equitable VDPE coloring (equitable i-type VDPA coloring, i ∈ {1, 2}) of a vdec-graph G (a vdac-digraph D).

Directed path and cycle

A directed path or a directed k-path of a digraph D is a sequence of vertices v 1 , v 2 , . . . , v k with v 1 v 2 , . . . , v k-1 v k ∈ E(D), and a directed cycle or a directed k-

cycle of D is a sequence of vertices v 1 , v 2 , . . . , v k with v 1 v 2 , . . . , v k-1 v k , v k v 1 ∈ E(D).
Throughout this thesis, a cycle (path) in a digraph always means a directed cycle (path).

Vertex-disjoint and arc-disjoint cycles (paths)

Two cycles (paths) are called vertex-disjoint (arc-disjoint) if they have no common vertex (arc). 

Hamilton cycle and Hamiltonian digraph

Tournament, bipartite tournament and multipartite tournament

A tournament is an orientation of a complete graph and a bipartite tournament (multipartite tournament) is an orientation of a complete bipartite (multipartite or c-partite, c ≥ 3 is an integer) graph.

Regular bipartite tournament F 4•k

Define F 4•k to be the k-regular bipartite tournament consisting of four independent sets K, L, M, N each of cardinality k, and all possible arcs from K to L, from L to M , from M to N and from N to K (See Figure 1.1).

Cut vertex

A vertex v of a graph (digraph) is a cut vertex if its edge set (arc set) can be partitioned into two nonempty sets E 1 and E 2 such that the subgraphs (subdigraphs)

induced by E 1 and E 2 have just the vertex v in common.

Universal arc

An arc uv of a digraph D is universal if for any vertex w of D there exists a cycle containing both uv and w. For a partition {V 1 , V 2 } of V (G), the set (V 1 , V 2 ) of edges crossing this partition, i.e.,

Max cut

(V 1 , V 2 ) = {uv ∈ E(G) : u ∈ V 1 , v ∈ V 2 }, (1.4 
)

is called a cut of G. For a partition {V 1 , V 2 } of V (D), the set (V 1 , V 2 ) of arcs going from V 1 to V 2 , i.e., (V 1 , V 2 ) = {(u, v) ∈ E(D) : u ∈ V 1 , v ∈ V 2 }, (1.5) 
is called a directed cut of D. When no confusion occurs, we use "cut" to denote "directed cut" in a digraph. A max cut is a cut of largest size in a graph (digraph).

Let f (G) be the size of a maximum cut of G. Define f (m) to be the minimum of f (G) over graphs of size m. Let g(D) be the size of a maximum directed cut of D.

Define g(m) to be the minimum of g(D) over digraphs of size m.

Directed cut cover

A k-cut-cover of a digraph D is a family of k directed cuts such that each arc of D belongs to at least one cut. The cut cover number c(D) of D is the minimum k for which D has a k-cut-cover.

Cayley graph and Cayley digraph

Let G be an additive group, and let S be a subset of G that is closed under taking inverses and does not contain the identity. The Cayley graph X(G, S) is defined with vertex set G and edge set

{xy : y -x ∈ S}. (1.6)
If S is an arbitrary subset of G, then we can define the Cayley digraph X(G, S) with vertex set G and arc set

{(x, y) : y -x ∈ S}. (1.7) Cayley digraph X(Z k 2 , S k ) The digraph X(Z k 2 , S k ) is a Cayley digraph X(G, S) with G = Z k 2 consists
of all binary vectors of length k and

S = S k = {e 1 , . . . , e k }, (1.8) 
where

e i = {0 . . . 1 . . . 0} (1.9) 
in which the ith position is assigned the number "1" and each one of other positions is assigned the number "0". Alternatively, it is a digraph with vertex set V = {v 0 , v 1 , . . . , v 2 k -1 } and arc set E = {v i v j : j -i ≡ 2 t (mod 2 k ),where t ∈ {0, 1, ..., k -1}}.

Arc colorings

The edge coloring problem is one of the fundamental problems in graph theory and has been studied extensively by many researchers. Clearly, every graph G satisfies

χ (G) ≥ ∆(G). For a bipartite graph G, König showed that χ (G) = ∆(G). In 1964,
Vizing proved that χ (G) ≤ ∆(G) + 1 for every simple graph G. In this thesis, we mainly consider VDPA colorings of digraphs. First, we present some background and motivation. To be precise, we summarize the main results on proper arc colorings of digraphs and VDPE colorings of graphs. After this, we introduce VDPA colorings of digraphs.

Proper arc colorings

In 1972, Harner and Entringer [START_REF] Harner | Arc colorings of digraphs[END_REF] first considered the 1-type arc colorings of digraphs. The following results have been obtained.

Theorem 1.1 (Harner and Entringer [START_REF] Harner | Arc colorings of digraphs[END_REF]). Let D be a digraph and k a positive integer. Then

log 2 χ(D) ≤ χ 1 (D) ≤ min{k : χ(D) ≤ k k/2 }.
Theorem 1.2 (Harner and Entringer [START_REF] Harner | Arc colorings of digraphs[END_REF]). Let T n be the transitive tournament on

n vertices. Then χ 1 (T n ) = log 2 n .
Theorem 1.3 (Harner and Entringer [START_REF] Harner | Arc colorings of digraphs[END_REF]). There exists a digraph D with underlying graph K n and χ 1 (D) = min{k :

χ(D) ≤ k k/2 }.
Theorem 1.4 (Harner and Entringer [START_REF] Harner | Arc colorings of digraphs[END_REF]). Let D be an acyclic digraph on n vertices.

Then χ 1 (D) ≤ log 2 n . In 2006, Bessy et al. [START_REF] Bessy | Arc-chromatic number of digraphs in which every vertex has bounded outdegree or bounded indegree[END_REF] improved the lower bound in Theorem1.1 for digraphs with no sink or no source.

Theorem 1.6 (Bessy et al. [START_REF] Bessy | Arc-chromatic number of digraphs in which every vertex has bounded outdegree or bounded indegree[END_REF]). Let D be a digraph with chromatic number χ(D).

(1) If D has no sink, then χ 1 (D) ≥ log 2 (χ(D) + 1).

(2) If D has no sink and no source, then χ 1 (D) ≥ log 2 (χ(D) + 2).

Moreover, arc colorings of digraphs with degree restrictions have attracted special attention. Let

Φ(k) = max{χ 1 (D) : D ∈ D(k)}, Φ(k, l) = max{χ 1 (D) : D ∈ D(k, l)}. (1.10)
Note that the problem of finding χ 1 (D) of a digraph D is NP-hard (see Poljak and Rödl [START_REF] Poljak | On the arc-chromatic number of a digraph[END_REF]), and is equal to the problem of finding the minimum number of directed cuts of D such that each arc of D belongs to at least one directed cut.

For convenience, denote the function min{k : n ≤ k k/2 } mentioned in Theorem 1.1 by c(n). In 2006, Alon et al. [START_REF] Alon | Maximum directed cuts in acyclic digraphs[END_REF] and Bessy et al. [START_REF] Bessy | Arc-chromatic number of digraphs in which every vertex has bounded outdegree or bounded indegree[END_REF] got the following similar results independently.

Theorem 1.7 (Alon et al. [START_REF] Alon | Maximum directed cuts in acyclic digraphs[END_REF]). Let k and l be two nonnegative integers. Then

(1) χ 1 (D) ≤ c(2k + 1) for any digraph D ∈ D(k). (2) χ 1 (D) ≤ c(2k + 2l + 2) for any digraph D ∈ D(k, l). (3) χ 1 (D) ≤ c(k + l + 1) for any acyclic digraph D ∈ D(k, l).
Theorem 1.8 (Bessy et al. [START_REF] Bessy | Arc-chromatic number of digraphs in which every vertex has bounded outdegree or bounded indegree[END_REF]). Let k and l be two positive integers. Then

(1) If k ≥ 2, then χ 1 (D) ≤ c(2k) for any digraph D ∈ D(k). (2) If k + l ≥ 3, then χ 1 (D) ≤ c(2k + 2l) for any digraph D ∈ D(k, l).
Theorem 1.9 (Bessy et al. [START_REF] Bessy | Arc-chromatic number of digraphs in which every vertex has bounded outdegree or bounded indegree[END_REF]). Let k and l be two positive integers. Then

(1) max{log 2 (2k + 3), c(k + 1)} ≤ Φ(k) ≤ c(2k + 1).
(2) max{log 2 (2k + 2l + 43), c(k + 1), c(l + 1)} ≤ Φ(k, l) ≤ c(2k + 2l + 2). Some special cases have been considered. Theorem 1.10 (Bessy et al. [START_REF] Bessy | Arc-chromatic number of digraphs in which every vertex has bounded outdegree or bounded indegree[END_REF]). Let k and l be two positive integers.

(1) Φ(k, 0) = Φ(k). (2) Φ(k, 1) = Φ(k) or Φ(k, k) = Φ(k) + 1. (3) Φ(k + 1) = Φ(k) + 2. (4) If Φ(k) = Φ(k -1) or Φ(k) = Φ(k + 1), then Φ(k, 1) = Φ(k).
Theorem 1.11 (Bessy et al. [START_REF] Bessy | Arc-chromatic number of digraphs in which every vertex has bounded outdegree or bounded indegree[END_REF]). ( 1

) Φ(1, 1) = Φ(1, 0) = Φ(1) = 3. (2) Φ(2, 2) = Φ(2, 1) = Φ(2, 0) = Φ(2) = 4. (3) Φ(3, 3) = Φ(3, 2) = 5.
In 2011, Bai et al. [START_REF] Bai | Covering the edges of digraphs in D(3, 3) and D(4, 4) with directed cuts[END_REF] proved the following result. Theorem 1.12 (Bai et al. [START_REF] Bai | Covering the edges of digraphs in D(3, 3) and D(4, 4) with directed cuts[END_REF]). Φ(k, k) ≤ c(2k + 1) + 1 and Φ(4, 4) = Φ(3, 3) = 5.

In 2013, Xu et al. [103] considered Φ(5, 5) and Φ [START_REF] Alon | Maximum directed cuts in acyclic digraphs[END_REF][START_REF] Alon | Maximum directed cuts in acyclic digraphs[END_REF]. Theorem 1.13 (Xu et al. [103]). 5 ≤ Φ(5, 5) ≤ Φ(6, 6) ≤ 6.

The 2-type proper arc coloring of digraphs is much simpler than the 1-type one.

It was considered in [START_REF] West | Introduction to Graph Theory[END_REF] and the exact arc chromatic number was obtained. 

Vertex-distinguishing proper edge colorings

The VDPE coloring of graphs was introduced and studied independently by Aigner et al. [3], by Burris and Schelp [START_REF] Burris | Vertex-distinguishing proper edge-colorings[END_REF] and by Horňák and Soták [START_REF] Horňák | Observability of complete multipartite graphs with equipotent parts[END_REF]. In 1997, Burris and Schelp [START_REF] Burris | Vertex-distinguishing proper edge-colorings[END_REF] conjectured that χ vd (G) ≤ |V (G)| + 1. Bazgan et al. [START_REF] Bazgan | On the vertexdistinguishing proper edge-colorings of graphs[END_REF] verified this conjecture in 1999.

Theorem 1.15 (Bazgan et al. [START_REF] Bazgan | On the vertexdistinguishing proper edge-colorings of graphs[END_REF]). Let G be a vdec-graph. Then

χ vd (G) ≤ |V (G)|+ 1.
Note that the above result is sharp by considering the complete graphs with even order. Burris and Schelp [START_REF] Burris | Vertex-distinguishing proper edge-colorings[END_REF] also proposed the following conjecture. One can see that Conjecture 1.1 is analogous to the Vizing's Theorem on edge colorings. As for this conjecture we do not even know whether the bound of χ vd (G) ≤ π(G)+c holds for some fixed constant c. However, the conjecture has been verified for some special classes of graphs, including complete graphs, complete bipartite graphs, paths, cycles and some trees by Burris and Schelp [START_REF] Burris | Vertex-distinguishing proper edge-colorings[END_REF], union of paths, union of cycles by Balister [START_REF] Balister | Vertex-distinguishing colorings of graphs with ∆(G) = 2[END_REF], two families of cubic graphs, ladders and unions of K 4 , by Taczuk and Woźniak [START_REF] Taczuk | A note on the vertex-distinguishing index for some cubic graphs[END_REF] and any graph G with ∆(G) ≥ 2|V (G)| + 4 and δ(G) ≥ 5 by Balister et al. [START_REF] Balister | Balanced edge colorings[END_REF]. In addition, graphs with big maximum degree or small maximum degree are considered. Bazgan et al. [START_REF] Bazgan | A note on the vertexdistinguishing proper coloring of graphs with large minimum degree[END_REF] showed that

χ vd (G) ≤ ∆(G)+5 if δ(G) > |V (G)|/3.
Balister et al. [START_REF] Balister | Vertex-distinguishing colorings of graphs with ∆(G) = 2[END_REF] showed that π(G) ≤ χ vd (G) ≤ π(G) + 5 if ∆(G) = 2. Also, it is worth noting that Burris and Schelp [START_REF] Burris | Vertex-distinguishing proper edge-colorings[END_REF] gave an upper bound of χ vd (G) for a vdec-graph G as follows.

Theorem 1.16 (Burris and Schelp [31]). Let G be a vdec-graph with maximum degree ∆. Then m 1 ≤ χ vd (G) ≤ (∆ + 1) 2m 2 + 5 , where

m 1 = max{k!n 1/k k + k -1 2 : 1 ≤ k ≤ ∆} and m 2 = max{n 1/k k : 1 ≤ k ≤ ∆}. (1.11)
Besides, Balister [START_REF] Balister | Vertex-distinguishing edge colorings of random graphs[END_REF] considered the VDPE coloring of random graphs and gave a strong bound.

Theorem 1.17 (Balister [12]). Let G be a random graph on n vertices with edge

probability p = p(n). If pn log n , (1-p)n log n → ∞ as n → ∞, then the probability that χ vd (G) = ∆ goes to 1 as n → ∞.
For more details on VDPE colorings, we refer the readers to see [START_REF] Balister | Vertex-distinguishing edge colorings of random graphs[END_REF][START_REF] Balister | Vertex-distinguishing colorings of graphs with ∆(G) = 2[END_REF][START_REF] Balister | Balanced edge colorings[END_REF][START_REF] Bazgan | A note on the vertexdistinguishing proper coloring of graphs with large minimum degree[END_REF][START_REF] Dedo | The observability of the Fibonacci and the Lucas cubes[END_REF][START_REF] Rudašová | Vertex-distinguishing proper edge colorings of some regular graphs[END_REF][START_REF] Taczuk | A note on the vertex-distinguishing index for some cubic graphs[END_REF].

Besides, in a proper edge coloring of a graph, instead of requiring that any two vertices have different color sets, it can be required that any two adjacent vertices have different color sets. Such a coloring is called adjacent vertex-distinguishing proper edge coloring (abbreviated adjacent VDPE coloring). It was introduced by Zhang et al. [START_REF] Zhang | Adjacent strong edge coloring of graphs[END_REF] and has also been considered intensively. Let χ avd (G) be the smallest number of colors required for a adjacent VDPE coloring of a graph G. In 2002, Zhang et al. [START_REF] Zhang | Adjacent strong edge coloring of graphs[END_REF] proposed the following conjecture.

Conjecture 1.2 (Zhang et al. [START_REF] Zhang | Adjacent strong edge coloring of graphs[END_REF]). Let G = C 5 be a connected graph with at least

3 vertices. Then χ avd (G) ≤ ∆(G) + 2.
Note that some special graphs, including paths, cycles, trees, complete bipartite graphs and complete graphs, were verified in [START_REF] Zhang | Adjacent strong edge coloring of graphs[END_REF]. Many results have been obtained concerning the bound of χ avd (G). Among them, the following results are of special importance.

Theorem 1.18 (Akbari et al. [START_REF] Akbari | r-strong edge colorings of graphs[END_REF]). Let G = C 5 be a connected graph with at least 3 vertices. Then χ avd (G) ≤ 3∆(G).

Dai and Bu [START_REF] Dai | An upper bound on the adjacent vertex-distinguishing chromatic number of graph[END_REF] improved the above result by one, i.e., χ avd (G) ≤ 3∆(G) -1.

Balister et al. [START_REF] Balister | Adjacent vertex distinguishing edge-colorings[END_REF] gave a general bound depending on the chromatic number χ(G) of G.

Theorem 1.19 (Balister et al. [START_REF] Balister | Adjacent vertex distinguishing edge-colorings[END_REF]). Let G = C 5 be a connected graph with at least

3 vertices. Then ∆(G) ≤ χ avd (G) ≤ ∆(G) + O(logχ(G)).
In support of Conjecture 1.2, Hatami [START_REF] Hatami | ∆ + 300 is a bound on the adjacent vertex distinguishing edge chromatic number[END_REF] showed the following result.

Theorem 1.20 (Hatami [51]). Let G = C 5 be a connected graph with at least 3 vertices and ∆(G) > 10 20 . Then ∆(G) ≤ χ avd (G) ≤ ∆(G) + 300.

For more details on adjacent VDPE colorings, we refer the readers to [START_REF] Akbari | r-strong edge colorings of graphs[END_REF][START_REF] Balister | Adjacent vertex distinguishing edge-colorings[END_REF][START_REF] Dai | An upper bound on the adjacent vertex-distinguishing chromatic number of graph[END_REF][START_REF] Győri | General neighbour-distinguishing index of a graph[END_REF][START_REF] Hatami | ∆ + 300 is a bound on the adjacent vertex distinguishing edge chromatic number[END_REF][START_REF] Hocquard | Adjacent vertex-distinguishing edge coloring of graphs with maximum degree ∆[END_REF][START_REF] Wang | On coloring problems[END_REF][START_REF] Wang | Adjacent vertex-distinguishing edge colorings of K 4 -minor free graphs[END_REF][START_REF] Zhang | Adjacent strong edge coloring of graphs[END_REF].

Motivated by the conjectures and results on VDPE colorings for undirected graphs mentioned above, we introduce and study the analogous problem for digraphs, i.e., the vertex-distinguishing proper arc coloring (abbreviated VDPA coloring) of digraphs.

Vertex-distinguishing proper arc colorings

Note that an isolated vertex can be regarded both as a source and as a sink. One can check that the following fact holds. Despite Conjecture 1.3 remains unsolved, some good progresses concerning it have been obtained in Chapter 2. To be precise, we give upper bounds for χ 2 vd (D) and χ 2 svd (D) respectively. In particular, the value of χ 2 vd (D) is obtained for some regular digraph D. Moreover, we show that the values of χ 2 vd (D) and χ 2 svd (D) will not be changed if the coloring, in addition, required to be equitable.

Short cycles

The study of cycles is one of the most important and most studied problems in graph theory. There are many papers seeking sufficient conditions for the existence of a Hamilton cycle in a graph (digraph). In this thesis, we focus on short cycles in digraphs and especially consider the Caccetta-Häggkvist conjecture.

Caccetta-Häggkvist conjecture

The famous Caccetta-Häggkvist conjecture (which developed in 1978 and generalised as an earlier conjecture of Behzad et al. [START_REF] Behzad | On minimal regular digraphs with given girth[END_REF]) is one of the most famous conjectures in digraph theory. It concerns the length of short cycles and has inspired years of research into sufficient conditions for short cycles in digraphs. There are two equivalent statements of the conjecture. Conjecture 1.4 (Caccetta and Häggkvist [START_REF] Caccetta | On minimal digraphs with given girth[END_REF]). Every digraph on n vertices without cycles of lengths at most l contains a vertex with outdegree at most n-1 l .

Conjecture 1.5 (Caccetta and Häggkvist [START_REF] Caccetta | On minimal digraphs with given girth[END_REF]). Every digraph on n vertices with minimum outdegree r contains a cycle of length at most n r .

For Conjecture 1.4, it is obviously true for l = 2. Note that a digraph with a 2-cycle verifies Conjecture 1.5 and thus it suffices to consider oriented graphs. Also, note that lots of work has been done around the Caccetta-Häggkvist conjecture.

To be precise, for Conjecture 1.5, it has been proved for r = 2 by Caccetta and Häggkvist [START_REF] Caccetta | On minimal digraphs with given girth[END_REF], for r = 3 by Hamidoune [START_REF] Hamidoune | A note on minimal directed graphs with given girth[END_REF], for r = 4, 5 by Hoáng and Reed [START_REF] Hoáng | A note on short cycles in digraphs[END_REF],

and for r < n/2 by Shen [START_REF] Shen | On the girth of digraphs[END_REF]. Recently, Lichiardopol [START_REF] Lichiardopol | Proof of the Caccetta-Häggkvist conjecture for oriented graphs with positive minimum outdegree and of independent number two[END_REF] proved the conjecture for oriented graphs with independence number two. Besides, some weaker statements were obtained. Chvátal and Szemerédi [START_REF] Chvátal | Short cycles in directed graphs[END_REF] proved that every oriented graph on n vertices with minimum outdegree r contains a cycle of length at most 2n r+1 , and they also proved that such an oriented graph contains a cycle of length at most n r + 2500. In 1988, Nishimura [START_REF] Nishimura | Short cycles in digraphs[END_REF] reduced the constant from 2500 to 304. In 1998, Shen [START_REF] Shen | On the Caccetta-Häggkvist conjecture[END_REF] reduced the constant to 73 and this is the best known improvement.

Theorem 1.21 (Shen [85]). Every digraph on n vertices with minimum outdegree r contains a cycle of length at most n r + 73.

Recall that the minimum degree of D is δ(D) = min{δ + (D), δ -(D)}. It is natural to consider the minimum degree that forces an l-cycle. In 2010, Kelly et al. [START_REF] Kelly | Cycles of given length in oriented graphs[END_REF] proposed the following conjecture.

Conjecture 1.6 (Kelly et al. [START_REF] Kelly | Cycles of given length in oriented graphs[END_REF]). Let l ≥ 4 be an integer and let k ≥ 3 be the smallest integer such that k does not divide l. Then there exists an integer n 0 = n 0 (l) such that every oriented graph D on n ≥ n 0 vertices with δ(D) ≥ n/k + 1 contains an l-cycle.

In the same paper, they gave an affirmative answer to the conjecture for l that is not a multiple of 3.

Theorem 1.22 (Kelly et al. [START_REF] Kelly | Cycles of given length in oriented graphs[END_REF]). Let l ≥ 4 and let D be an oriented graph on n ≥ 10 10 l vertices with δ(D) ≥ n/3 + 1. Then D contains an l-cycle.

Later, in 2013, Kühn et al. [START_REF] Kühn | Embedding cycles of given length in oriented graphs[END_REF] proved Conjecture 1.6 asymptotically for the case when l is large enough compared to k and k ≥ 7.

Theorem 1.23 (Kühn et al. [START_REF] Kühn | Embedding cycles of given length in oriented graphs[END_REF]). Let k ≥ 7 and l ≥ 10 7 k 6 . Suppose that k ≥ 3 is the smallest integer that does not divide l. Then for all η > 0 there exists an integer n 1 = n 1 (η, l) such that every oriented graph D on at least n ≥ n 1 vertices with δ(D) ≥ (1 + η)n/k contains an l-cycle.

The special case of r = n/3 has attracted most interest, which states that every digraph with minimum outdegree n/3 has a 3-cycle, i.e., a (directed) triangle.

Caccetta and Häggkvist [START_REF] Caccetta | On minimal digraphs with given girth[END_REF] gave the first weaker result for this case.

Theorem 1.24 (Caccetta and Häggkvist [START_REF] Caccetta | On minimal digraphs with given girth[END_REF]). For α ≥ (3 -√ 5)/2 ≈ 0.3819, every digraph D with δ + (D) ≥ αn contains a triangle.

Bondy [START_REF] Bondy | Counting subgraphs: A new approach to the Caccetta-Häggkvist conjecture[END_REF] showed that α ≥ (2 √ 6 -3)/5 ≈ 0.3797 suffices, Shen [START_REF] Shen | Directed triangles in digraphs[END_REF] relaxed it to α ≥ 3 -√ 7 ≈ 0.3542, Hamburger et al. [START_REF] Hamburger | On directed triangles in digraphs[END_REF] improved it to 0.3531, and Hladký et al. [START_REF] Hladký | Counting flags in triangle-free graphs[END_REF] improved the bound to 0.3465. The best know value of α, till now, is as follows.

Theorem 1.25 (Joannis de Verclos et al. [START_REF] De Joannis De Verclos | Presented at J.A. Bondy's 70th birthday[END_REF]). Let D be a digraph on n vertices and let α ≥ 0.3386. If δ + (D) ≥ αn, then D contains a triangle.

De Graaf et al. [START_REF] De Graaf | Directed triangles in directed graphs[END_REF] firstly considered the minimum degree instead of the minimum outdegree.

Theorem 1.26 (De Graaf et al. [START_REF] De Graaf | Directed triangles in directed graphs[END_REF]). For β ≥ 0.349, every digraph D with δ(D) ≥ βn contains a triangle.

Shen [START_REF] Shen | Directed triangles in digraphs[END_REF] showed that β ≥ 0.348 suffices. The best known value of β, till now, is as follows.

Theorem 1.27 (Hamburger et al. [START_REF] Hamburger | On directed triangles in digraphs[END_REF]). Let D be a digraph on n vertices and let β ≥ 0.346. If δ(D) ≥ βn, then D contains a triangle.

Caccetta-Häggkvist conjecture with forbidden subdigraphs

In particular, characterizing some forbidden subdigraphs is another meaningful way to consider this conjecture. In 2012, Razborov [START_REF] Razborov | On the Caccetta-Häggkvist conjecture with forbidden subgraphs[END_REF] verified the case l = 3 with three well defined (induced) forbidden subdigraphs.

Theorem 1.28 ( [80]). Let Γ be an oriented graph on n vertices without directed triangles. If

(1) Γ contains none of the oriented graphs of Figure 1.2 as an induced subdigraph, or

(2) Γ contains none of the oriented graphs of Figure 1.3 as a subdigraph (not necessarily induced), then Γ contains a vertex with outdegree at most n-1 3 .

In-pendant Out-pendant Quasi-4-cycle In Chapter 3, we generalize Razborov's result by verifying the conjecture for l ≥ 4 with l + 1 well defined (induced) forbidden subdigraphs.

Disjoint cycles

There are two types of disjoint cycles in undirected graphs (digraphs), namely, vertexdisjoint cycles and edge-disjoint cycles (resp. arc-disjoint cycles). We will consider disjoint cycles of any lengths and of given length, respectively.

Disjoint cycles of any lengths

The study of vertex-disjoint cycles in undirected graphs has been considered significantly. One of the famous results regarding this is as follows.

Theorem 1.29 (Corrádi and Hajnal [36]). Let G be an undirected graph on at least 3r vertices and δ(G) ≥ 2r. Then G contains at least r vertex-disjoint cycles.

The complete 3-partite graph with each partite set having exactly r vertices shows that the result is best possible. By using induction on the minimum degree for Theorem 1.29, we have the following corollary.

Corollary 1.1 (Corrádi and Hajnal [36]). Let G be an undirected graph on at least 3r vertices and δ(G) ≥ 2r. Then G contains at least r+1 2 edge-disjoint cycles.

Note that a trivial fact holds with only the minimum degree condition (one can verify this by deleting the edges of a cycle and using the induction on the minimum degree recursively).

Fact 1.2. Let G be an undirected graph with minimum degree at least 2r. Then G contains at least r edge-disjoint cycles.

Justesen [START_REF] Justesen | On Independent Circuits in Finite Graphs and a Conjecture of Erdös and Pósa[END_REF] improved Theorem 1.29 by showing the following.

Theorem 1.30 (Justesen [61]). Let G be a graph on at least 3r vertices. If d(x) + d(y) ≥ 4r for any two non-adjacent vertices x and y of G, then G contains at least r vertex-disjoint cycles.

Wang [START_REF] Wang | On the maximum number of independent cycles in a graph[END_REF] strengthened Justesen's result by showing that the result holds if d(x)+ d(y) ≥ 4r -1. Motivated by Theorem 1.29, Bermond and Thomassen [START_REF] Bermond | Cycles in digraphs-a survey[END_REF] proposed an analogous conjecture on vertex-disjoint cycles in 1981. This is regarded as one of the most famous conjectures in digraph theory.

Conjecture 1.7 (Bermond and Thomassen [START_REF] Bermond | Cycles in digraphs-a survey[END_REF]). Let D be a digraph with minimum outdegree at least 2r -1. Then D contains at least r vertex-disjoint cycles.

The complete digraph on 2r -1 vertices implies that if the conjecture is true then it would be best possible. Note that the conjecture is trivially true for r = 1.

Thomassen [START_REF] Thomassen | Disjoint cycles in digraphs[END_REF] and Lichiardopol et al. [START_REF] Lichiardopol | A step toward the Bermond-Thomassen conjecture about disjoint cycles in digraphs[END_REF] proved it for r = 2 and r = 3, respectively.

Bessy et al. [START_REF] Bessy | Two proofs of the Bermond-Thomassen conjecture for tournaments with bounded minimum in-degree[END_REF] verified it for regular tournaments in 2010. In 2014, Bang-Jensen et al. [START_REF] Bang-Jensen | Disjoint 3-cycles in tournaments: A proof of the BermondCThomassen conjecture for tournaments[END_REF] verified it for tournaments and proposed a stronger conjecture.

Conjecture 1.8 (Bang-Jensen et al. [START_REF] Bang-Jensen | Disjoint 3-cycles in tournaments: A proof of the BermondCThomassen conjecture for tournaments[END_REF]). Let D be a digraph with girth at least g ≥ 2 and with minimum outdegree at least g g-1 r. Then D contains at least r vertex-disjoint cycles.

There are also other results concerning Conjecture 1.7. Among them, it is worth mentioning the following one, which, firstly, shows that the minimum outdegree can be bounded by a linear function of r.

Theorem 1.31 (Alon [5]). Let D be a digraph with minimum outdegree at least 64r.

Then D contains at least r vertex-disjoint cycles.

For more details on Conjecture 1.7, we refer the readers to see [5,[START_REF] Bang-Jensen | Disjoint 3-cycles in tournaments: A proof of the BermondCThomassen conjecture for tournaments[END_REF][START_REF] Bermond | Cycles in digraphs-a survey[END_REF][START_REF] Bessy | Two proofs of the Bermond-Thomassen conjecture for tournaments with bounded minimum in-degree[END_REF][START_REF] Lichiardopol | A step toward the Bermond-Thomassen conjecture about disjoint cycles in digraphs[END_REF][START_REF] Thomassen | Disjoint cycles in digraphs[END_REF].

Note that the analogous statement (a linear bound of minimum degree int terms of r guaranteeing r vertex-disjoint cycles) for undirected graphs are obvious. One can show the following fact by deleting a shortest cycle and then use induction.

Fact 1.3. Let G be an undirected graph with minimum degree at least 3r -1. Then G contains at least r vertex-disjoint cycles.

As a corollary of Theorem 1.31, we have the following result on the number of arc-disjoint cycles.

Corollary 1.2 (Alon [5]). Let D be a digraph with minimum outdegree at least r.

Then D contains at least 1 128 r 2 arc-disjoint cycles.

By Conjecture 1.7, we can conjecture the following and this can be regarded as an analogous statement of Fact 1.2.

Conjecture 1.9. Let D be a digraph with minimum outdegree at least 2r -1. Then D contains at least r 2 arc-disjoint cycles.

The maximum number of arc-disjoint cycles in digraphs was considered by Alon et al. [8] and the following conjecture was proposed.

Conjecture 1.10 (Alon et al. [8]). Let D be a r-regular digraph. Then D contains at least r+1 2 arc-disjoint cycles.

Three weaker results have been obtained in the same paper.

Theorem 1.32 (Alon et al. [8]). Let D be a r-regular digraph. Then D contains at least 5r/2 -2 arc-disjoint cycles.

Theorem 1.33 (Alon et al. [8]). Let D be a r-regular digraph. Then D contains at least r 2 arc-disjoint cycles, where = 3/2 19 .

Theorem 1.34 (Alon et al. [8]). Let D be a r-regular digraph. Then D contains at least r 2 /8 Inr arc-disjoint cycles.

Very recently, Lichiardopol [START_REF] Lichiardopol | New lower bounds on the maximum number of arc-disjoint cycles in a digraph[END_REF] obtained some new bounds on the maximum number of arc-disjoint cycles in a digraph. To be precise, it was proved that for r ≤ 4 the result in Theorem 1.32 is valid for all digraphs with minimum outdegree at least r. Also, it was shown that for r ≥ 4 every digraph with minimum outdegree at least r contains at least 3r -4 arc-disjoint cycles.

Disjoint cycles of given lengths

In 2000, Wang considered vertex-disjoint triangles (3-cycles) in digraphs and showed the following. Here let δ * (D) = min{d

+ (v) + d -(v) : v ∈ V (D)}.
Theorem 1.35 (Wang [97]). Let D be a digraph on n vertices with δ * (D) ≥ (3n -3)/2 . Then D contains n/3 vertex-disjoint triangles.

Later, in 2005, Zhang and Wang [START_REF] Zhang | Disjoint directed quadrilaterals in a directed graph[END_REF] considered vertex-disjoint 4-cycles in digraphs.

Theorem 1.36 (Zhang and Wang [START_REF] Zhang | Disjoint directed quadrilaterals in a directed graph[END_REF]). Let D be a digraph on 4r vertices with δ * (D) ≥ 6r -2. Then D contains r vertex-disjoint 4-cycles unless D is isomorphic to a special digraph.

In 2010, Lichiardopol [START_REF] Lichiardopol | Vertex-disjoint directed cycles of prescribed length in tournaments with given minimum out-degree and in-degree[END_REF] considered vertex-disjoint cycles of given length in tournaments. The following result has been obtained.

Theorem 1.37 (Lichiardopol [68]). Let T be a tournament with min{δ

+ (T ), δ -(T )} ≥ (q -1)r -1.
Then T contains r vertex-disjoint q-cycles.

Lichiardopol [START_REF] Lichiardopol | Vertex-disjoint directed cycles of prescribed length in tournaments with given minimum out-degree and in-degree[END_REF] conjectured in the same paper that T contains r vertex-disjoint q-cycles if δ + (T ) ≥ (q -1)r -1. Motivated by the result and the conjecture above, we consider the analogous problem for bipartite tournaments in Chapter 4. As a corollary, we verify Conjecture 1.7 for bipartite tournaments.

Cycle factors 1.5.1 Cycle factors in graphs

Note that a 1-cycle-factor of a graph is a Hamilton cycle. The following two results are two fundamental results on Hamilton cycles in graphs.

Theorem 1.38 (Dirac [40]). Let G be a 2-connected graph on n vertices with minimum degree at least n/2. Then G has a Hamilton cycle.

Theorem 1.39 (Ore [START_REF] Ore | Note on hamilton circuits[END_REF]). Let G be a graph on n vertices. If d(x) + d(y) ≥ n for any two non-adjacent vertices x and y of G, then G has a Hamilton cycle.

In Theorem 1.29, if the graph has exactly 3k vertices then it has a k-cycle-factor such that each cycle is a triangle. This implies a result on k-cycle-factors of graphs.

In 1984, El-Zahar [START_REF] El-Zahar | On circuits in graphs[END_REF] considered the 2-cycle-factors of given cycle-lengths in graphs.

Theorem 1.40 (El-Zahar [START_REF] El-Zahar | On circuits in graphs[END_REF]). Let G be a graph of order n = n 1 +n 2 with n 1 , n 2 ≥ 3

and minimum degree at least n 1 /2 + n 2 /2 . Then G has a 2-cycle-factor of cyclelengths n 1 and n 2 .

Cycle factors in digraphs

Note that a 1-cycle-factor of a digraph is a directed Hamilton cycle. Define the minimum semidegree of D to be the minimum of its minimum outdegree and minimum indegree. For an analogue of Theorem 1.38 in digrahs, Ghouila-Houri [START_REF] Ghouila-Houri | Une condition suffisante d'existence d'un circuit Hamiltonien[END_REF] proved the following result.

Theorem 1.41 (Ghouila-Houri [START_REF] Ghouila-Houri | Une condition suffisante d'existence d'un circuit Hamiltonien[END_REF]). Let D be a strong digraph on n vertices with

δ + (D) + δ -(D) ≥ n.
Then D has a Hamilton cycle. In particular, if D has minimum semidegree at least n/2 then D has a Hamilton cycle.

For an analogue of Theorem 1.39, Woodall [START_REF] Woodall | Sufficient conditions for cycles in digraphs[END_REF] proved the following result. Woodall's theorem is generalized by Meyniel's theorem as follows.

Theorem 1.43 (Meyniel [74]). Let D be a strong digraph on n vertices with d(x) + d(y) ≥ 2n -1 for any two non-adjacent vertices x and y of D. Then D has a Hamilton cycle.

For 2-cycle-factors in digraphs, Little and Wang [START_REF] Little | Vertex-disjoint cycles in a directed graph[END_REF] got the following theorem. (1) n = 6, n 1 = n 2 = 3 and D contains an independent set with 3 vertices;

(2) n = 9, n 1 = n 2 = n 3 = 3 and D contains an independent set with 4 vertices.

One can see that the conditions in these theorems almost guarantee that the digraph is "more" than a tournament. It is natural to consider the cycle factors in tournaments and bipartite tournaments.

Cycle factors in bipartite tournaments

Note that every strong tournament is Hamiltonian and is thus has a 1-cycle-factor.

The problem of 2-cycle-factors in 2-connected tournaments was completely solved by Reid [START_REF] Reid | Two complementary circuits in two-connected tournaments[END_REF] and Song [START_REF] Song | Complementary cycles of all lengths in tournaments[END_REF].

Theorem 1.46 (Reid [81] and Song [START_REF] Song | Complementary cycles of all lengths in tournaments[END_REF]). Let T be a 2-connected tournament with

|V (T )| ≥ 6.
Then T has a 2-cycle-factor of lengths t and

|V (T )| -t for all 3 ≤ t ≤ |V (T )| -3, unless T is isomorphic to T 7 .
The problem of 2-cycle-factors in regular bipartite tournaments was investigated by Song [START_REF] Song | Complementary cycles in bipartite tournaments[END_REF], Zhang and Song [START_REF] Zhang | Complementary cycles containing a pair of fixed vertices in bipartite tournaments[END_REF], Zhang et al. [START_REF] Zhang | Complementary cycles containg a fixed arc in diregular bipartite tournaments[END_REF], and Zhang and Wang [START_REF] Zhang | Complementary cycles containing a fixed arc and a fixed vertex in bipartite tournaments[END_REF].

They showed that every k-regular bipartite tournament with k ≥ 2 has a 2-cyclefactor. Volkmann [START_REF] Volkmann | All regular multipartite tournaments that are cycle complementary[END_REF] proved that every regular c-partite tournaments with c ≥ 3 on at least 8 vertices have a 2-cycle-factor. In [START_REF] Zhang | Complementary cycles containg a fixed arc in diregular bipartite tournaments[END_REF], it was conjectured that every k- 

Universal arcs and directed cuts 1.6.1 Universal arcs in digraphs

The concept universal arc is very new and was first appeared in [START_REF] Ádám | On some cyclic connectivity properties of digraphs[END_REF] in 1999. In the same paper, Ádám introduced the following problem.

Problem 1.1. Does every cycle-connected digraph contain a universal arc?

Hetyei [START_REF] Hetyei | Cyclic connectivity classes of directed graphs[END_REF] conjectured in 2001 that the answer would be yes. Hubenko [START_REF] Hubenko | On a cyclic connectivity property of directed graphs[END_REF],

and Volkmann and Winzen [START_REF] Volkmann | Every cycle-connected multipartite tournament has a universal arc[END_REF] verified this for bipartite tournaments in 2008 and multipartite tournaments in 2009, respectively.

Theorem 1.47 (Hubenko [58]). Let B be a cycle-connected bipartite tournament.

Then every maximal cycle of B has a universal arc.

Theorem 1.48 (Volkmann and Winzen [95]). Let D be a multipartite tournament.

If D is cycle-connected, then D contains a universal arc. If D is 1-connected with δ(D) ≥ 2, then every longest cycle of D contains a universal arc.

Universal arcs in tournaments

Let T * s be the set of 1-connected tournaments with one cut vertex v such that the subtournaments induced by N + (v) and N -(v) are 1-connected.

' & $ % ' & $ % t r r r r r ¨¨¨¨' j B T y T x v Figure 1.4: A tournament in T * s .
Note that an arc in a Hamilton cycle is obviously a universal arc and a tournament not 1-connected has no universal arc. Recall that a tournament is 1-connected if and only if it has a Hamilton cycle (see [START_REF] Camion | Chemins et circuits hamiltoniens des graphes complets[END_REF]). So a 1-connectivity can guarantee the existence of a universal arc in a tournament. In Chapter 6, we show that the converse statement is also true. Moreover, we show that every arc of a tournament is universal if and only if it is 2-connected or belong to T * S .

Max cuts in graphs and digraphs

The well-known Max Cut problem asks for a largest cut in a graph (digraph). It is a NP-hard problem and has been the focus of extensive study, both from the algorithmic aspect in computer science and the extremal aspect in combinatorics.

The algorithmic problem asks for good algorithms that determine f (G) and g(G).

The extremal problem asks for the value of f (m) and g(m). Here we focus on the extremal problem and especially consider the digraphs. We first give some progress of the problem.

Note that a random bipartition of an undirected graph G gives a cut with expected size |E(G)|/2. Thus f (m) ≥ m/2. In 1973, Edwards showed the following theorem.

Theorem 1.49 (Edwards [41]).

f (m) ≥ m 2 + -1 + √ 1 + 8m 8 .
The bound is tight by considering the complete graphs. In 1998, Alon and Halperin [START_REF] Alon | Bipartite subgraphs of integer weighted graphs[END_REF] gave the following lower bound for f (m).

Theorem 1.50 (Alon and Halperin [START_REF] Alon | Bipartite subgraphs of integer weighted graphs[END_REF]).

For m = n 2 + k with 0 ≤ k < n, we have f (m) ≥ n 2 4 + min{ n 2 , f (k)}.
Furthermore, they conjectured that the "=" in the above theorem always holds.

Conjecture 1.12 (Alon and Halperin [START_REF] Alon | Bipartite subgraphs of integer weighted graphs[END_REF]). For m = n 2 + k with 0 ≤ k < n, we have

f (m) = n 2 4 + min{ n 2 , f (k)}.
For more results on cuts in graphs, we refer to [START_REF] Laurent | Max-cut problem[END_REF][START_REF] Poljak | Maximum cuts and largest bipartite subgraphs, in: Combinatorial optimization[END_REF]. It is easy to see that g(m) ≥ f (m)/2. So g(m) ≥ m/4 and furthermore by Theorem 1.49 we have Theorem 1.51.

g(m) ≥ m 4 + -1 + √ 1 + 8m 16 .
Alon [START_REF] Alon | Maximum directed cuts in acyclic digraphs[END_REF] and Lehel [START_REF] Lehel | Maximum directed cuts in digraphs with degree restriction[END_REF] considered the maximum directed cuts in digraphs with degree restrictions and obtained the following results respectively.

Theorem 1.52 (Alon [6]). If D is a digraph with m edges and contains no vertex with outdegree larger than k, then g(D)

≥ ( 1 4 + 1 8k+4 )m.
Theorem 1.53 (Lehel [66]). If D ∈ D(k, k) is acyclic (i.e., contains no cycle) and has m arcs, then g(D)

≥ ( 1 4 + 1 8k+4 )m.
As mentioned in Section 1.2.1, the minimum cut cover problem is equivalent to the 1-type arc coloring of digraphs. For more introduction on cut cover of digraphs, one can see in Section 1.2.1.

Directed cuts in a type of Cayley digraph

Note that |Z k 2 | = 2 k and |S k | = k. So d -(v) = d + (v) = k for every vertex v of X(Z k 2 , S k ), and |E(X(Z k 2 , S k ))| = k2 k .
Alon et al. [START_REF] Alon | Maximum directed cuts in acyclic digraphs[END_REF] showed that for every digraph D with m arcs and maximum outdegree at most d,

g(D) ≥ ( 1 4 + 1 8d + 4 )m. (1.12) Thus g(X(Z k 2 , S k )) ≥ ( 1 4 + 1 8k + 4 )k2 k . (1.13) Let h(n) = min{p : p p/2 ≥ n}, (1.14) 
where n and p are positive integers. Alon et al. [START_REF] Alon | Maximum directed cuts in acyclic digraphs[END_REF] proved that the arcs of digraphs in which every vertex has either outdegree at most k or indegree at most k can be covered by h(4k + 2) cuts. Bai et al. [START_REF] Bai | Covering the edges of digraphs in D(3, 3) and D(4, 4) with directed cuts[END_REF] showed that h(2k + 1) + 1 cuts suffice. It

follows that c(X(Z k 2 , S k )) ≤ h(2k + 1) + 1. (1.15)
However, it is not best possible. In Chaper 6, we give better bound for g(X(Z k 2 , S k )) and exact value of c(X(Z k 2 , S k )).

Chapter 2

Vertex-Distinguishing Proper Arc

Colorings of Digraphs Put

δ(B D ) = min{∆ X (B D ), ∆ Y (B D )} and ∆(B D ) = max{δ X (B D ), δ Y (B D )}. One
can check that the following facts hold by definitions.

∆ + (D) = ∆ X (B D ), ∆ -(D) = ∆ Y (B D ), δ + (D) = δ X (B D ), δ -(D) = δ Y (B D ), ∆(B D ) = ∆(D), δ(B D ) = δ(D).
(2.1)

The proper arc coloring of D is now equivalent to the proper edge coloring of B D .

Note that χ (B) = ∆(B) for any bipartite graph B. The following fact (see also in [START_REF] West | Introduction to Graph Theory[END_REF]) holds directly. 

(B) = min{δ X (B), δ Y (B)} and ∆(B) = max{∆ X (B), ∆ Y (B)}. Fact 2.2. Let D be a vdac-digraph. Then χ 2 vd (D) = χ pvd (B D ). Fact 2.3.
There is a one-to-one correspondence between digraphs (not necessarily simple and loops are allowed) with order n and balanced bipartite graphs with order 2n.

Let B = (X, Y ; E) be a bipartite graph. Let n X d X (resp. n Y d Y ) be the number of vertices of degree d X in X (resp. degree d Y in Y ) in B. Define π (B) = min        k ∈ Z : k d X ≥ n X d X f or δ X ≤ d X ≤ ∆ X k d Y ≥ n Y d Y f or δ Y ≤ d Y ≤ ∆ Y        . (2.2) It is clear that χ pvd (B) ≥ π (B). Analogous to Conjecture 1.3 we conjecture that χ pvd (B) = π (B).
Let α and β be two colors of a proper edge coloring of an undirected graph G.

An (α, β)-Kempe-path is a maximal path in G consisting of edges colored by α and β. Note that the colors α and β appear alternatively in an (α, β)-Kempe-path.

In the rest of this chapter, the proofs for the results of digraphs will be transferred to the proofs the corresponding results of the balanced bipartite graphs and the Kemp-path will play an important role in the proofs.

Vertex-distinguishing proper arc colorings of digraphs

Note that an isolated vertex can be regarded both as a source and as a sink. One can check that the following fact holds. Despite Conjecture 1.3 remains unsolved, some good progresses concerning it have been obtained. In particular, we get the following result.

Theorem 2.1. Let D be a vdac-digraph on n vertices and t ≥ 1 an integer. If

δ(D) ≥ n-1 t , then χ 2 vd (D) ≤ min{n, ∆(D) + t}. Corollary 2.1. Let D be a vdac-digraph on n vertices. Then χ 2 vd (D) ≤ n.
We will show that χ 2 vd ( 

- → K n ) = n,
δ(B) ≥ n-1 t , where t ≥ 1 is an integer. If ∆(B) ≤ n -1, then χ pvd (B) ≤ min{n, ∆(B) + t}. If ∆(B) = n, then χ pvd (B) ∈ {n, n + 1}.
Proof. We first prove the following claim, on which the above lemma is heavily based. Then there exists a proper k-edge-coloring of B with n X S ≤ t and n Y S ≤ t for any S ⊆ {1, . . . , k}, where k is the minimum integer such that d

X (k -d X ) ≥ n X d X -t for δ X ≤ d X ≤ ∆ X and d Y (k -d Y ) ≥ n Y d Y -t for δ Y ≤ d Y ≤ ∆ Y . Proof. With respect to an edge coloring f of B, a vertex x ∈ X (resp. y ∈ Y ) is called bad if n X F (x) ≥ 2 (resp. n Y F (y) ≥ 2
) and good otherwise. Note that k ≥ ∆(B) = χ (B). There exists a proper k-edge coloring of B. Let f 0 be one coloring with minimal number of bad vertices among all the proper k-edge colorings of B.

If max{n X

S , n Y S } ≤ t for any S ⊆ {1, . . . , k}, then we are done. Assume without loss of generality that n X F 0 (u) ≥ t + 1 for some u ∈ X. Since t ≥ 1, we have that u is a bad vertex. Note that d X (k -d X ) can be regarded as the maximum number of distinct color sets that can be obtained from F 0 (u) by changing the color of one edge incident with u. Note also that n X d X -t -1 can be regarded as the possible maximum number of distinct color sets different from

F 0 (u). Since d X (k -d X ) ≥ n X d X -t for all δ X ≤ d X ≤ ∆ X , there exist two colors α and β with α ∈ F o (u), β / ∈ F (u) and n X F 0 (u)-{α}+{β} = 0. Let P 1 = u 1 . . . v 1 be an (α, β)-Kempe-path with u 1 = u. Let f 1 be a new edge
coloring of B obtained from f 0 by exchanging the colors α and β on the path P 1 . Note that f 1 is proper and the color set of any vertex distinct from u 1 and v 1 remains the same. Since n X F 0 (u)-{α}+{β} = 0 and F 1 (u 1 ) = F 1 (v 1 ) if v 1 ∈ X, we have n X F 1 (u 1 ) = 1 and u 1 is good with respect to f 1 . Recall that u 1 is bad with respect to f 0 and f 0 has minimum number of bad vertices, we have that v 1 is good with respect to f 0 and bad with respect to f 1 . Assume without loss of generality that v 1 ∈ X and let

u 2 ∈ X with F 1 (v 1 ) = F 1 (u 2 ). Note that u 2 = u 1 . Consider the (α, β)-Kempe-path P 2 = u 2 . . . v 2 .
We interchange the colors α and β on P 2 and denote the new edge coloring by f 2 . Note that now u 2 is good and v 2 is bad with respect to f 2 .

More generally, for the edge coloring f i-1 together with an (α, β)-Kempe-path P i = u i . . . v i , we can get a new proper coloring f i by exchanging the colors α and β on the path P i-1 such that u i is bad with respect to f i-1 and good with respect to f i , and v i is good with respect to f i-1 and bad with respect to f i . Moreover, we can continue as above to get another (α, β)-Kempe-path P i+1 = u i+1 . . . v i+1 such that F i (u i+1 ) = F i (v i ) and u i+1 / ∈ P 1 ∪ . . . ∪ P i . Note that we can get an (α, β)-Kempe-path P i+1 for every (α, β)-Kempe-path P i and these (α, β)-Kempepaths P 1 , . . . , P i , P i+1 , . . . are pairwise vertex disjoint. It contradicts the fact that both X and Y are finite sets.

Consider the case t = 1 in the above claim, we have the following claim.

Claim 2.2. Let B = (X, Y ; E) be a pvdec-bipartite graph with bipartition (X, Y ).

Let k be the minimum integer such that d Lemma 2.2. Let D be a vdac-digraph and t ≥ 1 an integer. Let k be the minimum

X (k -d X ) ≥ n X d X -1 for all δ X ≤ d X ≤ ∆ X and d Y (k -d Y ) ≥ n Y d Y -1 for all δ Y ≤ d Y ≤ ∆ Y . Then χ pvd (B) ≤ k. Let δ(B) ≥ n-1 t . Since d X (∆(B) + t -d X ) ≥ n-1 t • t = n -1 ≥ n X d X -1 for all δ X ≤ d X ≤ ∆ X and similarly d Y (∆(B) + t -d Y ) ≥ n Y d Y -1 for all δ Y ≤ d Y ≤ ∆ Y , then by Claim 2.2 we have χ pvd (B) ≤ ∆(B) + t. If ∆(B) ≤ n -1, then n(d -1) ≥ (d + 1)(d -1) for any δ(B) ≤ d ≤ ∆(B). It follows that d(n -d) ≥ n -1. So d X (n -d X ) ≥ n X -1 for all δ X ≤ d X ≤ ∆ X and d Y (n -d Y ) ≥ n Y -1 for all δ Y ≤ d Y ≤ ∆ Y . By Claim 2.
integer such that d + (k -d + ) ≥ n d + -t for all δ + (D) ≤ d + ≤ ∆ + (D) and d -(k -d -) ≥ n d --t for all δ -(D) ≤ d -≤ ∆ -(D)
. Then D has a proper k-arc-coloring with n + S ≤ t and n - S ≤ t for any S ⊆ {1, . . . , k}.

Lemma 2.3. Let D be a vdac-digraph. Let k be the minimum integer such that Note that an optimal k-edge-coloring exists for every B with k ≥ χ (B) = ∆(B).

d + (k -d + ) ≥ n d + -1 for all δ + (D) ≤ d + (D) ≤ ∆ + (D) and d -(k -d -) ≥ n d --1 for all δ -(D) ≤ d -(D) ≤ ∆ -(D). Then χ 2 vd (D) ≤ k.

Semi-vertex-distinguishing proper arc colorings of digraphs

To prove Lemma 2.4, it suffices to show that an optimal edge coloring of a balanced bipartite graph is also partial-balanced. Proof. Let M X S (resp. M Y S ) be a matching between the vertices in X S (resp. Y S ) and the vertices in X i αβ S (resp. Y i αβ S ) with maximal number of edges. Let M be the

union of M X S ∪ M Y S , where S ∈ [α β]. Note that a vertex v ∈ X (resp. v ∈ Y ) is unmatched by M implies that n X S(v) > n X i αβ S(v) (resp. n Y S(v) > n Y i αβ S(v)
). Define K a matching with E(K) = {uv : u and v are the endvertices of an (α, β)-Kempe-path Let v 0 be an arbitrary vertex unmatched by M . One can check that the path of H starting with v 0 will also end with a vertex v 2l+1 unmatched by M . Denote this path by P = v 0 . . . v 2l+1 . Interchange the colors α and β for the color sets of the vertices of P , i.e., interchange the colors α and β for the color sets of Kempe-paths with endvertices v 2i and v 2i+1 for every 0 ≤ i ≤ l. Note that S(v 2i+1 ) = i αβ S(v 2i+2 ) and S(v 2i+2 ) = i αβ S(v 2i+1 ). Assume without loss of generality that v 0 ∈ X.

of B}. Note that V (K) = V [α β] . Let H α,β be a graph with V (H α,β ) = V [α β] and E(H α,β ) = E(M ) ∪ E(K). One can check that ∆(H α,β ) ≤
Assume first that v 2l+1 ∈ Y . Note that only n X S(v 0 ) , n X i αβ S(v 0 ) , n Y S(v 2l+1 ) , n Y i αβ S(v 2l+1 )
will be changed. Also, we have

n X S(v 0 ) > n X i αβ S(v 0 ) , n Y S(v 2l+1 ) > n Y i αβ S(v 2l+1 ) .
Furthermore, n X S(v 0 ) and n Y S(v 2l+1 ) decrease by one, and

n i X αβ S(v 0 ) and n Y i αβ S(v 2l+1 ) increase by one. Recall that f is an optimal edge coloring. If n X S(v 0 ) ≥ n X i αβ S(v 0 ) + 2 or n Y S(v 2l+1 ) ≥ n Y i αβ S(v 2l+1 ) + 2
, then the value of (2.4) will decrease which contradicts the optimality of f . Thus n X S(v 0 ) = n X i αβ S(v 0 ) + 1 and n Y S(v 2l+1 ) = n Y i αβ S(v 2l+1 ) + 1. Note that the new coloring is also optimal since the value of (2.4) remains the same. Now assume that v 2l+1 ∈ X. One can check that S(v 0 ) = S(v 2l+1 ). In fact, by assuming without loss of generality that S(v 0 ) ∩ {α, β} = α, we have that S(v 2i+1 ) ∩ {α, β} = β if v 2i+1 ∈ X, and S(v 2i+1 ) ∩ {α, β} = α if v 2i+1 ∈ Y . Similar to the above analysis, we have that n X S(v 0 ) and n X S(v 2l+1 ) will decrease one, and n X i αβ S(v 0 ) and n X i αβ S(v 2l+1 ) will increase one. By the fact that n

X S(v 0 ) > n X i αβ S(v 0 ) , n X S(v 2l+1 ) > n X i αβ S(v 2l+1 )
and f is optimal. We have

n X S(v 0 ) = n X i αβ S(v 0 ) + 1 and n X S(v 2l+1 ) = n X i αβ S(v 2l+1 ) + 1.
The resulting edge coloring is also optimal. . To be precise, we have

(1) χ 2 vd (D n d ) = k d,n if n ≤ 7; (2) χ 2 vd (D n 1 ) = k 1,n = n; (3) χ 2 vd (D n 2 ) = k 2,n = 1+ √ 1+8n 2 ; (4) χ 2 vd (D n d ) ≤ d + k 2,n -2 ≤ 2k 2,n -5 = √ 1 + 8n -4 if 3 ≤ d ≤ k 2,n -3; 
(5)

χ 2 vd (D n d ) ∈ {k d,n , k d,n + 1} and k d,n = d + 2 if k 2,n -2 ≤ d ≤ k 2,2n + 3; (6) χ 2 vd (D n d ) = k d,n = d + 2 if k 2,2n + 4 ≤ d ≤ n -2; (7) χ 2 vd (D n d ) = k d,n = d + 1 if n -1 ≤ d ≤ n.
Proof. Recall that a regular vdac-digraph corresponds to a regular balanced pvdecbipartite-graph. Let B n d be a d-regular balanced bipartite graph on 2n vertices. Note that B n d is a pvdec-bipartite graph. Since the proof of Theorem 2.3 (1) will use the result of Theorem 2.3 (2) and ( 3), the proofs will be given in this order: (2), ( 3), ( 1), (4), ( 5), ( 6) and [START_REF] Alon | Bipartite subgraphs of integer weighted graphs[END_REF]. We first show the following claim.

Claim 2.4. If k 2,n -2 ≤ d ≤ n -2, then k d,n = d + 2. Proof. Clearly, k d,n ≥ d + 1. Since d+1 d = d + 1 < n for d ≤ n -2 and d + 2 d = d + 2 2 = (d + 2)(d + 1) 2 ≥ k 2,n (k 2,n -1) 2 = k 2,n 2 ≥ n, (2.6) 
we have k d,n = d + 2.

(2) Note that k n 1 = n. The result follows directly from Corollary 2.1.

(3) It suffices to show the following lemma.

Lemma 2.6.

χ pvd (B n 2 ) = k 2,n = 1+ √ 1+8n 2
.

Proof. B is a hamiltonian cycle or a union of vertex disjoint cycles. Put the k 2 copies of the 2-color sets in the order as indicated in Figure 2.1. We will give an According to the sequence of the 2-color sets in Figure 2.1, we have a sequence of colors.

1, 2, 1, 3, . . . , 1, k-1, 1, k, k, 2, k-1, 2, . . . , 4, 2, 3, 2, 3, 4, . . . , 3, k-1, 3, k, k, 4, . . . (2.7) 
Now we give a partial vertex-distinguishing k-edge-coloring of B through an algorithm.

Algorithm

Input: A 2-regular balanced bipartite graph B.

Output: A vertex-distinguish k-edge-coloring of B.

Step 1. Let c(i) be the i-th number of color sequence (2.7). Set i = 1.

Step 2. Choose an uncolored cycle arbitrarily, denoted by u 1 u 2 . . . u 2t u 1 in clockwise order. For any vertex u, denote the successor and the predecessor of u by u + and u -, respectively. Let u = u 1 , v = u 2 . Color the edge uv with c(i). Set i = i + 1 and color edge vv + with c(i).

Step 3. While v = u, i.e., the cycle is not yet well-colored, do

If c(i) = k, color uu -with c(i + 1), which equals to k obviously.

Set u = u -, i = i + 2.
If c(i) is odd and c(i) = c(i + 1) + 1, color uu -with c(i + 1) and u -u --with

c(i + 2). Set u = u --, i = i + 3.
Else, color vv + with c(i + 1). Set v = v + , i = i + 1.

End while

Step 4. If there exists uncolored cycles, back to Step 2.

In the coloring process of the algorithm above, we call a jump appears if the coming two uncolored edges will receive two colors in different rows according to (4) Every D n d can also be defined as a union of a D n i and a D n d-i with the same vertex set. Note that every D n i has a VDPA coloring with χ 2 vd (D n i ) colors and every D n d-i has a proper arc coloring with d -i colors and with the same color set for every vertex. Then we have that

χ 2 vd (D n d ) ≤ χ 2 vd (D n i ) + d -i (2.8) for any i ≤ d. Note that χ 2 vd (D n i ) = k 2,n = 1+ √ 1+8n 2 and d ≤ k 2,n -3. Take i = 2,
we have Proof. We first show that B n d has an X-distinguishing proper edge coloring with color set T by using the result of list-edge-colorings of bipartite graphs.

χ 2 vd (D n d ) ≤ χ 2 vd (D n 2 ) + d -2 ≤ 2k 2,n -5 = √ 1 + 8n -4. ( 2 
Given an undirected graph G with edge set E(G). A list-edge-assignment L of G is an assignment of lists of distinct colors to the edges of G. We call G is k-listedge-colorable if for any list-edge-assignment L with L(e) ≥ k for any e ∈ E(G) there exists a proper edge coloring f with f (e) ∈ L(e) for any e ∈ E(G). Recall that Galvin [START_REF] Galvin | The list chromatic index of a bipartite multigraph[END_REF] has proved that every bipartite graph B is ∆(B)-list-edge-colorable.

Since d+2 d ≥ n, there exist at least n pairwise distinct color sets with d colors. It follows that every vertex x of X can be assigned a color set S(x) ⊆ T with |S(x)| = d and S(x 1 ) = S(x 2 ) for any two distinct vertices x 1 and x 2 in X. Let L be a listedge-assignment of B with L(e) = S(x) for any e incident with x. Since ∆(B) = d, then by the result of Galvin [START_REF] Galvin | The list chromatic index of a bipartite multigraph[END_REF] we can get a proper edge coloring f 1 of B such that every edge incident with x is colored by one color in S(x). It follows directly that F 1 (x) = S(x) for any vertex x in X. Thus f 1 is an X-distinguishing proper edge coloring.

Then we show that B n d has an X-distinguishing Y -semi-distinguishing proper edge coloring with d + 2 colors.

Define an optimal X-distinguishing coloring to be an X-distinguishing proper edge coloring with minimal value of S (n Y S ) 2 . Then by the same method used in the proof of Claim 2.3, we can get that the following claim holds. Since the proof is very similar to that of Claim 2.3, we omit the details here. 

k 2,2n = min{k ∈ Z : k 2 ≥ 2n} = 1 + √ 1 + 16n 2 and k 2,2n + 4 ≥ 2 √ n + 4 = √ 4n + 4 = 2|V (B n d )| + 4 ≥ 5.
We have We will first use the existence of diagonal Latin square of order n on 1, 2, . . . , n to offer a VDPA coloring for D n n-1 with n colors.

χ vd (B n d ) = π(B n d ) = d + 2. Clearly, χ pvd (B n d ) ≤ χ vd (B n d ). Thus χ pvd (B n d ) = d + 2.
A Latin square A n of order n on 1, . . . , n is an array of n rows and n columns such that every row and column consists of 1, . . . , n. Let a ij be the element of A n on the ith row and jth column.

Call A n is diagonal if a ii = i for 1 ≤ i ≤ n.
Hilton [START_REF] Hilton | Embedding an incomplete diagonal Latin square in a complete diagonal Latin square[END_REF] showed that a diagonal A n exists for any n ≥ 3. Let A * n be a diagonal Latin square. Then we can color the arc

- → ij of D n n-1 with a ij of A * n . It follows that S + (v i ) = S -(v i ) = {1, . . . , n} \ {i} for any 1 ≤ i ≤ n. This implies a VDPA coloring of D n n-1 .
Since the diagonal Latin square is not easy to get, then we give a more intuitive VDPA coloring of D n n-1 as follows.

Case 1. n is odd.

A 1 =                1 2 3 . . . n -1 n 2 3 4 . . . n 1 3 4 5 . . . 1 2 . . . . . . n -1 n 1 . . . n -3 n -2 n 1 2 . . . n -2 n -1                (2.10)
Based on the matrix A 1 above, we color the arc

- → ij of D n n-1 with a ij of A 1 . Then S + (v i ) = S -(v i ) =      {1, . . . , n} \ {2i -1}, f or 1 ≤ i ≤ (n + 1)/2; {1, . . . , n} \ {2i -(n + 1)}, otherwise.
(2.11)

One can check that this is a VDPA coloring of D n n-1 .

Case 2. n is odd. 

A 2 =                       1 2 3 4 . . . n -2 n -1 n 1 n 2 3 . . . n -3 n -2 n -1 n 1 n -1 2 . . . n -4 n -3 n -2 n -1 n 1 n -2 . . . n -5 n -4 n -3 . . . . . . . . . 5 
                     
(2.12)

Based on the matrix A 2 above, we color the arc -→ ij of D with a ij of A 2 . Note that each row of A 2 consists of numbers 1, . . . , n. Note also that in the j-th column the number j + 1(mod n) does not appear and the number n -j + 2(mod n) appears twice. Then

     S + (v i ) = {1, . . . , n} \ {n -i + 2(mod n)}, f or 1 ≤ i ≤ n. S -(v i ) = {1, . . . , n} \ {i + 1(mod n)}, f or 1 ≤ i ≤ n.
(2.13)

One can check that this is a VDPA coloring of D n n-1 .

The proof of Theorem 2.3 (7) is complete.

Now we finish the proof of Theorem 2.3.

Equitable vertex-distinguishing proper arc colorings of digraphs

In 2008, Rudašová and Soták [START_REF] Rudašová | Vertex-distinguishing proper edge colorings of some regular graphs[END_REF] showed that χ evd (G) = χ vd (G). We study the analogous problem for digraphs and show that both χ 2 vd (D) and χ 2 svd (D) will not be changed if the coloring is, in addition, required to be equitable. Since e α > e β , there exists a vertex u with S(u) ∩ {α, β} = α and n i α,β S(u) = 0.

Actually, if n i α,β S(u) = 0 for each S(u) with S(u) ∩ {α, β} = α then e α ≤ e β , a contradiction.

Let P 1 = v 1 . . . v 1 be an (α, β)-Kempe-path with one end vertex u = v 1 and, without loss of generality, the other end vertex v 1 ∈ X. If there exists v 2 ∈ X with S(v 2 ) = i α,β S(v 1 ), then we can let P 2 = v 2 . . . v 2 be the (α, β)-Kempe-path with two end vertices v 2 and v 2 . Continue this process until there exists a Kempe-path

P t = v t . . . v t such that i α,β S(v t
) unused in the part where v t lies in. This process will terminate in finite steps since the number of vertices is finite. Denote the union of these Kempe-paths by H.

We can distinguish two cases for v t . Hence, the sum will decrease at least 4, a contradiction to the choice of ψ.

The proof of Theorem 2.4 is complete.

At the end of this section, we give a simple proof for the results of χ e (G) and χ e (D), where G is an arbitrary undirected graph and D is an arbitrary digraph.

Although the fact blow seems somewhat trivial and we are almost sure that more than one researcher have proved it before, for the completeness of this part, we give the sketch of its proof here. 

Conclusion

In this chapter, the (semi-)VDPA coloring of digraphs is introduced. Many results on χ 2 vd (D), where D is a vdac-digraph, have been obtained. We give upper bounds for χ 2 vd (D) and χ 2 svd (D) respectively. In particular, the value of χ 2 vd (D) is obtained for some regular digraph D. Moreover, we show that the values of χ 2 vd (D) and χ 2 svd (D) will not be changed if the coloring, in addition, required to be equitable.

For further consideration, it would be interesting to consider the strong 2-type VDPA coloring f of vdac-digraphs, here "strong" we mean that the color sets in {F + (v), F + (v), F -(u), F -(v)} are pairwise distinct for every two vertices u and v.

One can check that it is equal to the VDPE colorings of balance bipartite graphs if loops are allowed in the vdac-digraphs.

Despite few analysis on χ 1 vd (D), it is also an interesting problem and would be difficult too. Analogous to Corollary 2.1, it seems that χ 1 vd (D) ≤ n also holds. Directed cycles are trivial examples supporting this conjecture. 

(v) = |N + D (v)
| its outneighborhood and outdegree in D, respectively. For better presentation, we use u, v to denote an arc uv of D, and for an arc u, v , u is its tail and v is its head. Vertices u and v are independent if neither u, v nor v, u is an arc. Let k ≥ 3 be a positive integer. Define a quasi-k-cycle be an oriented graph that can be obtained by reversing the direction of one arc of a cycle of length k. Or simply, we use quasi-cycle for quasi-k-cycle when the context is clear. Let n, l, r with n ≥ l ≥ 2 and n ≥ r be three positive integers.

Caccetta-Häggkvist conjecture with induced forbidden subdigraphs

In particular, characterizing some forbidden subdigraphs is another meaningful way to consider this conjecture. For the case l = 3 of Conjecture 1.4, Lichiardopol [START_REF] Lichiardopol | Proof of the Caccetta-Häggkvist conjecture for oriented graphs with positive minimum outdegree and of independent number two[END_REF] verified it with one induced forbidden subdigraph I 3 ; it was noted in [START_REF] Razborov | On the Caccetta-Häggkvist conjecture with forbidden subgraphs[END_REF] that it holds with one induced forbidden subdigraph K 1,2 , it was also noted that Seymour verified it with one induced forbidden subdigraph K 2,1 ; and as a corollary of a result in [START_REF] Razborov | On the Caccetta-Häggkvist conjecture with forbidden subgraphs[END_REF], it is true with one induced forbidden subdigraph P 3 . The four oriented graphs mentioned here can be found in Figure 3.1. Besides, by deeply considering the nature of the conjectured extremal configurations, Razborov [START_REF] Razborov | On the Caccetta-Häggkvist conjecture with forbidden subgraphs[END_REF] verified the case l = 3 with three well defined induced forbidden subdigraphs (see Figure 3.2) as follows.

I 3 K 1,2 K 2,1 P 3
Theorem 3.1 (Razborov [80]). Let D be an oriented graph on n vertices without directed triangles. If D contains none of the oriented graphs of Figure 3.2 as an induced subdigraph, then D contains a vertex with outdegree at most n-1 3 .

We generalize Theorem 3.1 to the case l ≥ 4 by the following theorem. 

d(O A (u, v), D) = |W O A | n -2 . (3.1)
For ÔA (u, v) with u, v ∈ V (D) in Figure 3.4, let W ÔA be the set of pairs of vertices in

V (D)\{u, v} such that D| {u,v,w,w } is isomorphic to ÔA (u, v) for any {w, w } ∈ W ÔA .
Define the density of ÔA (u, v) as follows.

d( ÔA (u, v), D) = |W ÔA | n-2 2 . (3.2)
Similarly, we can define the densities for other oriented graphs listed in Figure 3.4,

Proof. It is equal to show that l i=1 α(v i ) + (O A (v 1 , v 2 ) + I A (v 1 , v 2 )) -(O A (v l-1 , v l ) + I A (v l-1 , v l )) + l-2 j=2 O A (v j , v j+1 ) - l-2 j=2 O A (v j , v j+1 ) + l-1 j =2 I A (v j , v j +1 ) - l-1 j =2 I A (v j , v j +1 ) ≤ 1.
(3.7)

By Inequality (3.4) in Claim 3.3, we have

O A (u, v) ≤ P N 3 (u, w) -(l -1)O A (u, v) - 1 n -2 , I A (u, v) ≤ P N 3 (u, w) -(l -1)I A (u, v) - 1 n -2 . (3.8)
Thus, it suffices to show that

l i=1 α(v i ) + I A (v 1 , v 2 ) + 2 l-2 j=1 P N 3 (v j , v j+2 ) -(l -1)O A (v 1 , v 2 ) -l l-2 k=2 O A (v k , v k+1 ) -O A (v l-1 , v l ) -l l-2 k =1 I A (v k , v k +1 ) -I A (v l-1 , v l ) ≤ 1 + 2(l -2) n -2 .
(3.9)

Now we re-calculate all quantities in the left-hand side of Inequality (3.9) in V (D)\{v 1 , . . . , v l }. Denote these re-calculated quantities with α, . . . , K A 2,1 , respectively. Note that D has no cycle of length at most l and v i , v j / ∈ E(D) for any

j = i + 1.
By the definitions of the terms in Inequality (3.9) and the re-calculated terms, we have the following three facts.

Fact 3.1. For any i ∈ {1, . . . , l -1} and any j ∈ {1, . . . , l -2} we have

α(v i ) = n -l n -1 α(v i ) + 1 n -1 ; α(v l ) = n -l n -1 α(v l ); P N 3 (v j , v j+2 ) = n -l n -2 P N 3 (v j , v j+2 ) + 1 n -2 ; O A (u, w) = n -l n -2 O A (u, w); I A (u, w) = n -l n -2 I A (u, w).
(3.10) Fact 3.2. Let x be an arbitrary vertex in V (D)\{v 1 , . . . , v l }. If x contributes to

I A (v 1 , v 2 )
, then x contributes to no term in { α(v i ) : i = 1, . . . , l} and no term in Since l i=1 α(v i ) > 1 by our assumption, we have

{ P N 3 (v j , v j+2 ) : j = 1, . . . , l -2}.
n -l n -2 l i=1 α(v i ) = n -1 n -2 l i=1 α(v i ) - l -1 n -2 = l i=1 α(v i ) + l i=1 α(v i ) -(l -1) n -2 ≥ l i=1 α(v i ) - l -2 n -2 . (3.11) Thus, l i=1 α(v i ) ≤ n -l n -2 l i=1 α(v i ) + l -2 n -2 . (3.12)
Now for [START_REF] Amar | Cycles and paths of many lengths in bipartite digraphs[END_REF] it also suffices to show that

n -l n -2 ( l i=1 α(v i ) + I A (v 1 , v 2 ) + 2 l-2 j=1 P N 3 (v j , v j+2 )) + 3(l -2) n -2 - n -l n -2 ((l -1) O A (v 1 , v 2 ) + l l-2 k=2 O A (v k , v k+1 ) + O A (v l-1 , v l )) - n -l n -2 (l l-2 k =1 I A (v k , v k +1 ) + I A (v l-1 , v l )) ≤ 1 + 2(l -2) n -2 . (3.13)
That is,

l i=1 α(v i ) + I A (v 1 , v 2 ) + 2 l-2 j=1 P N 3 (v j , v j+2 ) -(l -1) O A (v 1 , v 2 ) -l l-2 k=2 O A (v k , v k+1 ) -O A (v l-1 , v l ) -l l-2 k =1 I A (v k , v k +1 ) -I A (v l-1 , v l ) ≤ 1. (3.14)
By Facts 2 and 3, it suffices to consider the case that x contributes to both α(v i ) and 

P N 3 (v i , v i+2 ) for some 2 ≤ i ≤ l -2. Since D has no induced F 4 , then x contributes to at least one of { O A (v i , v i+1 ), I A (v i+1 , v i+2 )}.
only if j = i + 1 (modulo p).
Proof. The sufficiency is obvious. For the necessity, assume the opposite that u i , u j ∈ E(D) for some j = i + 1. If u i , u j is not a critical arc, then O A (u i , u j ) = ∅. Note that {u i , u j , u j-1 , u} induces an in-pendant for any u ∈ O A (u i , u j ). So u i , u j is a critical arc. Replacing u i u i+1 . . . u j by u i , u j yields a cycle consisting of less number of critical arcs, a contradiction to the minimality of C.

We now prove Theorem 3.2. Sum up the quantities in the left side of Inequalities It follows that there exists at least one vertex u j with α(u j ) ≤ 1/l. The proof of Theorem 3.2 is complete.

Caccetta-Häggkvist conjecture with forbidden subdigraphs

In [START_REF] Razborov | On the Caccetta-Häggkvist conjecture with forbidden subgraphs[END_REF], Razborov also proved that the Caccetta-Häggkvist conjecture holds for digraphs with three forbidden subdigraphs (not necessarily induced). To generalize Theorem 3.3 to the case l ≥ 4, or equivalently, to drop the restriction of being induced of Theorem 3.2, we introduce an operation as follows.

. . . (1) If there is one path between u and v, assume w.l.o.g. that from u to v, of length s ≤ l -1, then add a path from v to u of length l -s + 1 (add l -s vertices);

F 1 F 2 F k 3 , 4 ≤ k ≤ l + 1 F 4
(2) If there is no path between u and v, then add a path from u to v of length s ≥ 2 and a path from v to u of length s ≥ 2 such that s + s = l + 1 (add l -2 vertices).

Denote by

F 1 , F 2 , F k 3 (4 ≤ k ≤ l + 1
) and F 4 (see Figure 3.6) the four oriented graphs generated from the four oriented graphs in Proof. Assume that D has minimum outdegree at least n l . It follows that D has a cycle and furthermore by assumption the cycle has length more than l. So D has a path of length at least l -1 and let P = v 1 . . . v l be a path of length l -1. By the minimum outdegree condition, we have

l i=1 d + D (v) ≥ n. (3.16) 
Note that l i=1 d + P (v) = l -1. Thus,

l i=1 d + D\P (v) ≥ n -l + 1. (3.17) 
It follows that there exist two vertices in V (P ) having a common outneighbor in V (D)\V (P ), which implies a quasi-k-cycle for some 3 ≤ k ≤ l+1, a contradiction.

Note that Proposition 3.1 has an equivalent statement: Every digraph on n vertices with minimum outdegree r contains either a cycle of length at most n r or a quasi cycle of length at most n r + 1.

Chapter 4

Vertex-Disjoint Cycles in Bipartite Tournaments

Introduction

We

write u → L if u → v for every v ∈ L and write L → u if v → u for every v ∈ L.
Define a {k, l}-cycle to be a cycle of length either k or l. As mentioned in Section 1.4, vertex-disjoint cycles in graphs and digraphs have attracted much attention.

The work of this chapter on vertex-disjoint cycles in bipartite tournaments is mainly motivated by the results on vertex-disjoint cycles in tournaments.

Vertex-disjoint cycles in bipartite tournaments

In 2001, Chen et al. [START_REF] Chen | Partitioning vertices of a tournament into independent cycles[END_REF] showed the following theorem.

Theorem 4.1 (Chen et al. [START_REF] Chen | Partitioning vertices of a tournament into independent cycles[END_REF]). Let T be a k-connected tournament with at least 5k -3 vertices and k ≥ 2. Then T contains k vertex-disjoint cycles.

Here, we give a similar result for bipartite tournaments as follows.

Theorem 4.2. Let BT = (X, Y ; E) be a k-connected bipartite tournament with min{|X|, |Y |} ≥ 4k -3 and k ≥ 2. Then BT contains k vertex-disjoint cycles.

As a direct corollary, we have the following result. 

Q 1 , . . . , Q k-1 . Let H = BT - k-1 j=1 V (Q j ). (4.1) 
Note that H has no cycle. Let

H 1 , H 2 , . . . , H 2i-1 , H 2i , . . . , H 2m-1 , H 2m , m ≥ 1, 1 ≤ i ≤ m, be the vertex-disjoint subsets defined in Lemma 1.3. Assume w.l.o.g that H 2i-1 ⊆ X and H 2i ⊆ Y .
Let M be the set of the first appeared k monochromatic vertices according to the sequence H 1 , . . . , H 2m , without loss of generality (or simply, w.l.o.g.), assume that M ⊆ X. Let N be the set of the last appeared k vertices (in Y ) according to the sequence H 1 , . . . , H 2m . Since

|V (H)| = |V (BT )| - k-1 j=1 |V (Q j )| ≥ 8k -6 -4(k -1) ≥ 4k -2 (4.2) 
and there is no arc from H p to H q for p > q, we have M → N . Since BT is kconnected, there exist k vertex-disjoint paths from N to M . Clearly, these paths plus the appropriate arcs from M to N form k vertex-disjoint cycles. The proof of Theorem 4.2 is complete.

Vertex-disjoint cycles of given lengths in bipartite tournaments

In 2010, Lichiardopol [START_REF] Lichiardopol | Vertex-disjoint directed cycles of prescribed length in tournaments with given minimum out-degree and in-degree[END_REF] considered the vertex-disjoint cycles of given length in tournaments and proposed the following conjecture.

Theorem 4.6 (Beineke and Little [START_REF] Beineke | Cycles in bipartite tournaments[END_REF]). Let C be a 2s-cycle of a bipartite tournament BT . If the sub-bipartite-tournament induced on C is not isomorphic to F 4•k , where k = s/2, then BT contains a 2s -cycle for all 2 ≤ s ≤ s.

We now prove Theorems 4.3 and 4.4, respectively.

Proof of Theorem 4.3. We can assume w.l.o.g. that BT is strong. In fact, if not, then we can choose a strong component with minimum outdegree at least qr -1.

Then δ -(BT ) ≥ 1 and BT has a cycle of length at least 2qr by Theorem 4.5. Thus

BT has a 2q-cycle for even q or a (2q + 2)-cycle for odd q by Theorem 4.6 and Fact 4.1.

By induction on r. It obviously holds for r = 1. Assume that r ≥ 2 and every bipartite tournament with minimum outdegree at least q(r -1) -1 contains r -1 vertex-disjoint cycles either of length 2q for even q or of lengths in {2q, 2q + 2} for odd q. We distinguish two cases.

Case 1. q is even.

Note that BT has a 2q-cycle. Denote it by C and let BT = BT \C. Then

δ + (BT ) ≥ qr -1 -q = q(r -1) -1. (4.3) 
By hypothesis BT has r -1 vertex-disjoint 2q-cycles. These cycles plus C form r vertex-disjoint 2q-cycles of BT .

Case 2. q is odd.

If BT has a 2q-cycle C, then the same as Inequality (4.3) we have δ + (BT ) ≥ q(r -1) -1 for BT = BT \C. Thus by hypothesis BT has r -1 vertex-disjoint {2q, 2q + 2}-cycles. These cycles plus C form r vertex-disjoint {2q, 2q + 2}-cycles of BT . Now assume that BT has no 2q-cycle. We will show that BT has r vertex-disjoint (2q + 2)-cycles.

Note that BT has a cycle of length at least 2qr. Let C be the maximum cycle of BT . Then |C| ≥ 2qr. Since BT contains no 2q-cycle, by Theorem 4.6, we

have that C induces a F 4•k for k = |C|/4. Recall that F 4•k = F (K, L, M, N ) with |K| = |L| = |M | = |N | = k.
If |C| ≥ r(2q + 2), then F 4•k contains at least r vertex-disjoint (2q + 2)-cycles and thus the result holds. Now assume that |C| < r(2q + 2). We will get a contradiction by showing that BT has a cycle longer than C.

Note that

d + C (v) = |C| 4 < r(q + 1) 2 (4.4) 
for any v ∈ V (C) and

δ + (BT ) ≥ qr -1 > r(q + 1) 2 > d + C (v). (4.5) 
Thus X ∩ (BT \C) = ∅, Y ∩ (BT \C) = ∅ and every vertex of C has at least one outneighbor in BT \C.

For any x ∈ X ∩ (BT \C), assume w.l.o.g. that y 1 → x for some y 1 ∈ L and assume that there exists y 2 ∈ L with x → y 2 . Since |C| ≥ 2q + 2, then BT [C] has a path P of length 2q -2 from y 2 to y 1 . Now y 2 P y 1 xy 2 is a 2q-cycle, a contradiction.

This, and by symmetry, implies that

• x → L or L → x for any x ∈ X ∩ (BT \C); • x → N or N → x for any x ∈ X ∩ (BT \C); • y → K or K → y for any y ∈ Y ∩ (BT \C); • y → M or M → y for any y ∈ Y ∩ (BT \C).
For any y ∈ N , since

d + C (y) = k < qr -1, there exists x K ∈ X ∩ (BT \V (C)) with N → x K . If L → x K ,
then since BT is strong there exists a path from x K to C.

Assume that P = x K v 1 . . . v p is a shortest one. Since N → x K and L → x K , we have v 1 / ∈ L ∪ N and p ≥ 2. If v p ∈ K ∪ M ,
then w.l.o.g. assume that v p ∈ K. Let P be a Hamilton path of BT [C] from v p to a vertex y ∈ N . Then x K P v p P y x K is a cycle longer than C, a contradiction. If v p ∈ L ∪ N , then p ≥ 3 and assume w.l.o.g. that v p ∈ L. Let x , y be two vertices in K and N respectively and let P be a Hamilton path of BT [C]\{x } from v p to y . Then x K P v p P y x K is a cycle longer than C, a contradiction. This, and by symmetry, shows that

• x K → L and N → x K for some x K ∈ X ∩ (BT \C); • x M → N and L → x M for some x M ∈ X ∩ (BT \C); • y L → M and K → y L for some y L ∈ Y ∩ (BT \C); • y N → K and M → y N for some y N ∈ Y ∩ (BT \C). Let x 1 ∈ K, x 2 , x 2 ∈ M , y 1 , y 1 ∈ L and y 2 ∈ N . Let P * be a Hamilton path of BT [C]\{x 1 , x 2 , y 1 , y 2 } from x 2 to y 1 . Then y 1 x M y 2 x K y 1 x 2 y N x 1 y L x 2 P * y 1 (4.6)
is a cycle longer than C, a contradiction.

The proof of Case 2 is complete.

The proof of Theorem 4.3 is complete.

Proof of Theorem 4.4. By Theorem 4.6 and Fact 4.1, the sub-bipartite-tournament induced on any 2q-cycle either contains a 2q -cycle for any 2 ≤ q ≤ q or contains a 2q -cycle for any even q with 2 ≤ q ≤ q. Then the result follows directly from Theorem 4.3.

Conclusion

In this chapter, we consider vertex-disjoint cycles and vertex-disjoint cycles of given lengths in bipartite tournaments. Let BT be a bipartite tournament with δ + (BT ) ≥ qr -1 and let t 1 , . . . , t r ∈ [4, 2q] be any r even integers. We show that BT contains r vertex-disjoint cycles of length t 1 , . . . , t r such that t i = t i for t i = 0 (mod 4) and t i ∈ {t i , t i + 2} for t i = 2 (mod 4), where 1 ≤ i ≤ r.

Chapter 5

Cycle Factors in Regular Bipartite Tournaments

Introduction

Let D = (V (D), E(D)) be a digraph and let k be a positive integer. For an arc -→ uv of D, we write u → v and say u dominates v (or v is dominated by u), and we call u and v the tail and the head of the arc, respectively. For two vertex-disjoint subsets P and Q of V (D), we write P → Q if every arc of D between P and Q goes from P to Q, and we write P Q if there exists an arc of D between P and Q that goes from Q to P . Let R be a subset of V (D). We use N + R (P ) (resp. N - R (P )) to denote the set of vertices of R which are dominated by (resp. dominate) at least one vertex of P . For convenience, we write v → P for {v} → P , v P for {v} P , P + v for P ∪ {v}, P -v for P \{v}, P + u -v (or

P -v + u) for P ∪ {u}\{v}, N + D (v) for N + D ({v}), N - D (v) for N - D ({v}), d + D (v) for |N + D (v)| and d - D (v) for |N - D (v)|.
Recall that a k-cycle-factor is a cycle factor consisting of k cycles. Here we call the two cycles of a 2-cycle factor are complementary.

Denote by

B = (X, Y ; E)
a bipartite tournament with bipartition (X, Y ), vertex set V (B) = X ∪ Y and arc set E(B). It is well known that B has a cycle factor if and only if B contains a perfect matching from X to Y and a perfect matching from Y to X. By Hall's Theorem, B has a perfect matching from X to Y if and only if |N + B (P )| ≥ |P | for any P ⊆ X. It is well known that every tournament has a Hamilton path. Let T be a tournament with order n. We say T is a transitive tournament if T has a Hamilton

path v 1 → v 2 → • • • → v n such that v i → v j for any 1 ≤ i < j ≤ n. Define δ + (T ) = min v∈V (T ) {d + T (v)}, δ -(T ) = min v∈V (T ) {d - T (v)}.
Let T 7 be the tournament of order 7 containing no transitive subtournament of order 4. Let T * 7 be the set of 3-regular tournaments of order 7. Denote by D 3,2 the set of the 2-regular 3-partite tournaments with exactly two vertices in each partite set.

The problem of 2-cycle-factors in 2-connected tournaments was completely solved by Reid [START_REF] Reid | Two complementary circuits in two-connected tournaments[END_REF] and Song [START_REF] Song | Complementary cycles of all lengths in tournaments[END_REF]. Moreover, Li and Shu [START_REF] Li | The partition of a strong tournament[END_REF] characterized strong tournaments that have a 2-cycle-factor. Thus the problem of 2-cycle-factors in tournaments has been almost completely solved.

Theorem 5.1 (Reid [START_REF] Reid | Two complementary circuits in two-connected tournaments[END_REF] and Song [START_REF] Song | Complementary cycles of all lengths in tournaments[END_REF]). Let T be a 2-connected tournament with |V (T )| ≥ 6. Then T has a 2-cycle-factor of cycle-lengths t and |V (T )| -t for all

3 ≤ t ≤ |V (T )| -3, unless T is isomorphic to T 7 .
Theorem 5.2 (Li and Shu [START_REF] Li | The partition of a strong tournament[END_REF]). Let T be a strong tournament with |V (T )| ≥ 6 and max{δ -(T ), δ + (T )} ≥ 3. Then T has a 2-cycle-factor, unless T is isomorphic to T 7 .

The problem of k-cycle-factors in highly connected tournaments was posed by Bollobás (see Reid [START_REF] Reid | Three problems on tournament, graph theory and its applications: east and west[END_REF]).

Problem 5.1 (Bollobás). Let k be a positive integer. What is the least integer h(k)

such that all but a finite number of h(k)-connected tournaments contain a k-cyclefactor?

Reid showed that h(k) exists and h(k) ≤ 3k -4. Chen et al. [START_REF] Chen | Partitioning vertices of a tournament into independent cycles[END_REF] proved in 2001 that h(k) = k. Theorem 5.3 (Chen et al. [START_REF] Chen | Partitioning vertices of a tournament into independent cycles[END_REF]). Let T be a k-connected tournament with |V (T )| ≥ 8k. Then T has a k-cycle-factor.

The problem of k-cycle-factors of given cycle-lengths in highly connected tournaments was posed by Song [START_REF] Song | Complementary cycles of all lengths in tournaments[END_REF].

Problem 5.2 (Song [START_REF] Song | Complementary cycles of all lengths in tournaments[END_REF]). Let k, n be two positive integers and let n 1 , . . . , n k be k integers with n = n 1 + . . . + n k and n i ≥ 3 for i = 1, . . . , k. What is the least integer h (k) such that all but a finite number of h (k)-connected tournaments contain a kcycle-factor of given cycle-lengths n 1 , . . . , n k ? Kühn et al. [64] gave an upper bound of h (k).

Note that h (1) = h(1) = 1. Song showed that h (2) = h(2) = 2. It is clear that h (k) ≥ h(k). Song conjectured that h (k) = h(k). By Theorem 5.3, Song's conjecture is h (k) = k. Recently,
Theorem 5.4 (Kühn et al. [START_REF] Kühn | Proof of a tournament partition conjecture and an application to 1-factors with prescribed cycle lengths[END_REF]). Let T be a 10 10 k 4 log k-connected tournament on n vertices and let n 1 , . . . , n k be k integers with n = n 1 + . . . + n k and n i ≥ 3 for i = 1, . . . , k. Then T has a k-cycle-factor of cycle-lengths n 1 , . . . , n k .

2-cycle-factors in regular bipartite tournaments

The problem of 2-cycle-factors in regular bipartite tournaments was investigated by Song [START_REF] Song | Complementary cycles in bipartite tournaments[END_REF], Zhang and Song [START_REF] Zhang | Complementary cycles containing a pair of fixed vertices in bipartite tournaments[END_REF], Zhang et al. [START_REF] Zhang | Complementary cycles containg a fixed arc in diregular bipartite tournaments[END_REF], and Zhang and Wang [START_REF] Zhang | Complementary cycles containing a fixed arc and a fixed vertex in bipartite tournaments[END_REF].

Theorem 5.5 (Zhang and Song [START_REF] Zhang | Complementary cycles containing a pair of fixed vertices in bipartite tournaments[END_REF]). Let B be a k-regular bipartite tournament with k ≥ 2. Then B has a 2-cycle-factor. Theorem 5.6 (Zhang et al. [START_REF] Zhang | Complementary cycles containg a fixed arc in diregular bipartite tournaments[END_REF]). Let B be a k-regular bipartite tournament with k ≥ 2. Then for any uv ∈ E(B), B has a 2-cycle-factor such that one cycle contains uv and has length 4. Theorem 5.7 (Zhang and Wang [START_REF] Zhang | Complementary cycles containing a fixed arc and a fixed vertex in bipartite tournaments[END_REF]). Let B be a k-regular bipartite tournament with k ≥ 2. Then for any uv ∈ E(B) and for any w ∈ V (B)\{u, v}, B has a 2-cyclefactor such that one cycle contains uv and has length 4 and the other cycle contains w, unless B is isomorphic to a special digraph (defined in [START_REF] Zhang | Complementary cycles containing a fixed arc and a fixed vertex in bipartite tournaments[END_REF]).

Volkmann [START_REF] Volkmann | All regular multipartite tournaments that are cycle complementary[END_REF] characterized the regular c-partite tournaments with c ≥ 3 that have a 2-cycle-factor. Theorem 5.12 (Häggkvist and Manoussakis [START_REF] Häggkvist | Cycles and paths in bipartite tournaments with spanning configurations[END_REF]). Let B be a bipartite tournament containing a cycle factor, B is not strong if and only if B has a m-cycle factor C 1 , C 2 , . . . , C m , m ≥ 2, such that C i → C j for i < j. Theorem 5.13 (Amar and Manoussakis [START_REF] Amar | Cycles and paths of many lengths in bipartite digraphs[END_REF]). Let uv be any arc of a k-regular bipar- 

C = x 1 → y 1 → x 2 → y 2 → x 3 → y 3 → x 1
Q = N + R (P ), M = X -(P ∪ {x 1 , x 2 , x 3 }), L = Y -(Q ∪ {y 1 , y 2 , y 3 }). ( 5 
E 3 = E(B[C]) -E(C). (5.3) 
We distinguish four cases.

Case 2.1. Every arc of E 3 has a tail in {x 1 , x 2 , x 3 }.

It follows that

x 1 → y 2 , x 2 → y 3 , x 3 → y 1 . If L → x 1 , then x 2 → L and d + B (x 2 ) ≥ |L + y 2 + y 3 | = k + 1. So L x 1 and there exists l ∈ L such that x 1 → l. If x 2 → Q, then L → x 2 , x 1 → L and d + B (x 1 ) ≥ |L + y 1 + y 2 | = k + 1. So x 2
Q and there exists q ∈ Q such that q → x 2 .

If P → y i for some i ∈ {1, 2, 3}, then P + x i + x i+2 → y i and d - B (y i ) ≥ k + 1, where

x 4 = x 1 and x 5 = x 2 . So P y i and N + P (y i ) = ∅ for any i ∈ {1, 2, 3}. Since L → P and |L| = k -1, we have N + P (y i ) ⊆ N - P (y i+1 ), where y 4 = y 1 . Thus for i ∈ {1, 2, 3} we have

N + P (y i ) ∩ N - P (y i+1 ) = ∅.
Let

p i ∈ N + P (y i ) ∩ N - P (y i+1 ).
Note that p 1 , p 2 , p 3 are different and (5.4)

{p 1 , p 2 , p 3 } → Q. Let C = l → p 3 → q → x 2 → y 3 → x 1 →
For any w ∈ P -p 3 , since L → w and |(Q -q) ∪ {y 1 , y 2 }| = k -1 we have 

|N - (Q-q)∪{y 1 ,y 2 } (w)| ≤ 1 and |N + (Q-q)∪{y 1 ,y 2 } (w)| ≥ k -2. ( 5 
|N + R (P )| ≥ |N + R ({p 1 , p 2 })| = |Q -q| + |{y 1 , y 2 }| = k -1. If |P ∩ (M + x 3 )| ≥ 2, then |N + R (P )| ≥ |L -l| + min w∈P -p 3 |N + (Q-q)∪{y 1 ,y 2 } (w)| ≥ k -1.
Case 2.1.2. P ⊆ Y -{l, q, y 3 }.

Note that |P -

p 3 | = k -2 and
L -l → P -p 3 .

Since {p 3 , x 1 } → y 1 and y 1 → x 2 , we have

|N + R (y 1 )| = k -1.
Since {p 3 , x 1 , x 2 } → y 2 , we have

|N + R (y 2 )| = k. If |P | = k -2, then P ∩ ((L -l) ∪ {y 1 , y 2 }) = ∅ and |N + R (P )| ≥ min{|P -p 3 |, |N + R (y 1 )|, |N + R (y 2 )|} ≥ k -2. Let |P | = k -1. If P ∩ {y 1 , y 2 } = ∅, then |N + R (P )| ≥ min{|N + R (y 1 )|, |N + R (y 2 )|} = k -1.
If P ∩ {y 1 , y 2 } = ∅, then P ∩ (L -l) = ∅ and P -p 3 ⊆ N + R (P ). Since x 3 → {y 1 , y 3 }, we have x 3 P , x 3 ∈ N + R (P ) and m ∈ M such that m ∈ N + R (P ). Since x 3 → y 3 , we have x 3 P and x 3 ∈ N + R (P ). Thus

|N + R (P )| ≥ |P -p 3 + x 3 | = k -1.
|N + R (P )| ≥ |P -p 3 | + |{m, x 3 }| = k.
So C is a good cycle, a contradiction.

Case 2.2. There are exactly two arcs of E 3 which have a tail in {x 1 , x 2 , x 3 }.

Assume w.l.o.g. that

x 1 → y 2 , x 2 → y 3 , y 1 → x 3 .
Since {x 1 , x 2 } → y 2 and |P | = k -1, we have P y 2 and there exists p 1 ∈ P such that y 2 → p 1 . Note that p 1 → Q + y 1 + y 3 . Similarly, there exists p 2 ∈ P such that y 3 → p 2 and p 2 → Q + y 1 + y 2 . Note that N + L (x i ) = ∅, as otherwise, L → x i , x j → L for some j ∈ {1, 2} and d + B (x j ) ≥ k + 1. Note also that N - Q (x 1 ) = ∅, as otherwise, 4) and ( 5)), for any {u, v} ⊆ M + x 2 and for any

x 1 → Q + y 1 + y 2 , L → x 1 , x 2 → L + y 2 + y 3 and d + B (x 2 ) ≥ k + 1. Let l ∈ N + L (x 3 ), q ∈ N - Q (x 1 ), C = l → p 2 → q → x 1 → y 2 → x 3 → l and R = B -C .
w ∈ P -p 2 , L -l ⊆ N + R ({u, v}), |N + (Q-q)∪{y 1 ,y 3 } (w)| ≥ k -2. Thus |N + R (P )| ≥ |P | for |P | ∈ {k -2, k}. Now let |P | = k -1. If p 1 ∈ P , then since p 1 → (Q -q) ∪ {y 1 , y 3 } we have |N + R (P )| ≥ |N + R (p 1 )| = k -1.
If p 1 / ∈ P , then |P ∩ (M + x 2 )| ≥ 2 and L -l ⊆ N + R (P ). If P ∩ (P -p 2 ) = ∅, then P = M + x 2 , y 3 ∈ N + R (P ) and

|N + R (P )| ≥ |L -l + y 3 | = k -1.
If P ∩ (P -p 2 ) = ∅, then

|N + R (P )| ≥ |L -l| + min w∈P -p 2 |N + (Q-q)∪{y 1 ,y 3 } (w)| ≥ k -1.
Case 2.2.2. P ⊆ Y -{l, q, y 2 }.

Note that |P -p 2 | = k -2 and

L -l → P -p 2 .
For any q ∈ Q -q, since p 2 → Q -q we have

|N + R (q )| ≥ k -2.
Moreover, since p 1 → Q -q we have

|N + M +x 2 (q )| ≥ 1.
Since {p 2 , x 1 } → y 1 and y 1 → x 3 , we have

|N + R (y 1 )| = k -1.
Similarly, since y 3 → {p 2 , x 1 } and {p 1 , x 3 } → y 3 we have such that m ∈ N + R (P ). Since x 2 → y 2 , we have x 2 P and x 2 ∈ N + R (P ). Thus

|N + R (y 3 )| = k -2, |N + M +x 2 (y 3 )| ≥ 1. So |N + R (P )| ≥ |P | for |P | = k -2. Let |P | = k -1. If y 1 ∈ P , then |N + R (P )| ≥ |N + R (y 1 )| = k -1. If y 1 / ∈ P , then P ∩ (L -l) = ∅, P ∩ (Q -q + y 3 ) = ∅ and |N + R (P )| ≥ |P -p 2 | + min q ∈Q-q {|N + M +x 2 (q )|, |N + M +x 2 (y 3 )|} ≥ k -1.
|N + R (P )| ≥ |P -p 2 | + |{m, x 2 }| ≥ k.
So C is a good cycle, a contradiction.

Case 2.3.

There is exactly one arc of E 3 which has a tail in {x 1 , x 2 , x 3 }.

Assume w.l.o.g. that

x 1 → y 2 , y 3 → x 2 , y 1 → x 3 .
Since Proof. Assume the opposite that L → x 1 . It follows that

L → P + x 1 , M + x 2 + x 3 → L, x 1 → Q + y 1 + y 2 , Q → M + x 2 + x 3 , P + x 1 → Q, M → L + y 1 . Let l ∈ L, p ∈ P -p * , q ∈ Q and m ∈ M . Then we have M -m → L -l -l , L -l -l → P -p -p * , P -p -p * → Q -q, Q -q → M -m, and 
|L -l -l | = |P -p -p * | = |Q -q| = |M -m| = k -3.
It follows that the subdigraph induced by (L-l -l )∪(P -p-p * )∪(Q-q)∪(M -m) has a Hamilton path l * -→ H m * starting with l * ∈ L-l-l and ending with m * ∈ M -m.

Then Suppose first that P ⊆ X -{p * , x 2 , x 3 }. Since y 3 → M + x 1 , then for any

C 1 = m → l → p → q → x 2 → y 2 → m is a good cycle since B -C 1 has a Hamilton cycle l → p * → y 3 → x 1 → y 1 → x 3 → l * - → H m * → l , a contradiction. Let C = l → p * → y 1 → x 3 → y 3 → x 2 → l and let R = B-C .
v ∈ M + x 1 we have |N + R (v)| ≥ k -2. Note that |Q + y 2 | = k -1 and P -p * → Q + y 2 . So |N + R (P )| ≥ |P | for |P | = k -2. Let |P | = k -1.
As in Cases 2.1 and 2.2, for any {u, v}

⊆ M + x 1 , L -l ⊆ N + R ({u, v}). If P ∩ (P -p * ) = ∅, then |N + R (P )| ≥ |Q + y 2 | = k -1.
If P ∩ (P -p * ) = ∅, then P = M + x 1 and

|N + R (P )| ≥ |L -l + y 2 | = k -1. Now let |P | = k. Then |P ∩ (M + x 1 )| ≥ 2, P ∩ (P -p * ) = ∅ and |N + R (P )| ≥ |L -l| + |Q + y 2 | ≥ k. Now suppose that P ⊆ Y -{l, y 1 , y 3 }. Note that |P -p * | = k -2 and
L -l → P -p * .

Since P → Q and |P | = k -1, then for any q ∈ Q we have |N - M +x 1 (q)| ≤ 1 and

|N + R (q)| = |N + M +x 1 (q)| ≥ k -2.
Since (P -p * ) ∪ {x 1 , x 2 } → y 2 , we have y 2 → M and

|N + R (y 2 )| = |N + M +x 1 (y 2 )| = k -2. So |N + R (P )| ≥ |P | for |P | = k -2. Let |P | = k -1. If P ∩ (L -l) = ∅, then P ∩ (Q + y 2 ) = ∅ and |N + R (P )| ≥ |P -p * | + min q∈Q {|N + M +x 1 (q)|, |N + M +x 1 (y 2 )|} ≥ k -1. If P ∩ (L -l) = ∅, then P = Q + y 2 . If x 1 / ∈ N + R (Q + y 2 ), then x 1 → Q + y 2 , x 1 → Q + y 1 + y 2 and L → x 1 , a contradiction to Claim 5.2. Thus |N + R (Q + y 2 )| ≥ |N + M (y 2 )| + |{x 1 }| = k -1. Now let |P | = k. Then P ∩ (L -l) = ∅ and P -p * ⊆ N + R (P ). If m / ∈ N + R (P ) for some m ∈ M , then m → P and d + B (m) ≥ |P + y 1 | = k + 1. So M ⊆ N + R (P ). Since x 1 → y 1 , we have x 1 P , x 1 ∈ N + R (P ) and |N + R (P )| ≥ |P -p * | + |M + x 1 | ≥ k.
So C is a good cycle, a contradiction.

Case 2.3.2. y 1 P -p * .

It follows that there exists p ∈ P -p * such that p → y 1 . Let (

C = l → p → y 1 → x 3 → y 3 → x 2 →
) M + x 1 L -l + y 2 . 2 
Proof.

(1) Assume the opposite that Then

|N + R (P -p + m)| ≤ k -2 for some m ∈ M . Since |N + R (P -p + m)| ≥ |N + R (p * )| = k -2, we have |N + R (P -p + m)| = k -2 and N + R (P -p + m) = N + R (p * ) = Q. It follows that y 2 → (P -p) ∪ {m, x 3 }, P -p → Q + y 1 + y 3 , y 1 → M + x 2 + x 3 , L -l → P + m, x 1 → (L -l) ∪ {y 1 , y 2 }, l → P + x 1 , x 2 → L + y 2 , x 3 → L + y 3 , M -m → L -l, (L -l) ∪ {y 1 , y 2 } → m, m → Q + l + y 3 . Since |N + Q (p)| ≥ k -3, there exists q ∈ Q such that p → Q -q. Thus P + m → Q -q. Let l ∈ L -l.
C 1 = m → l → p → y 1 → x 2 → y 2 → m is a good cycle since B -C 1 has a Hamilton cycle l → p * → q → x 3 → y 3 → x 1 → l * - → H m * → l , a contradiction.
(2) Assume the opposite that M + x 1 → L -l + y 2 . It follows that

x 1 → (L -l) ∪ {y 1 , y 2 }, M + x 1 + x 2 → y 2 , l → x 1 , M + x 2 + x 3 → l, y 2 → P + x 3 , P → Q + y 1 + y 3 , M → L + y 2 , Q + y 1 + y 3 → M. Let q ∈ Q, m ∈ M , l ∈ L -l and p ∈ P -p -p * . If x 2 → Q, then since x 2 → {l, y 2 } we have L -l → x 2 , M → L.
Similarly to the proof of Claim 5.2, the subdigraph induced by (Q -q) ∪ (M -m) ∪ (L -l -l ) ∪ (P -p -p ) has a Hamilton path q * -→ H 1 p * starting with q * ∈ Q -q and ending with p * ∈ P -p. Then

C 2 = l → p → q → m → y 2 → x 3 → l is a good cycle since B -C 2 has a Hamilton cycle y 3 → x 1 → y 1 → x 2 → l → p → q * -→ H 1 p * → y 3 , a contradiction. So x 2
Q and there exists q * * ∈ Q with q * * → x 2 .

Let q ∈ Q -q * * . Similarly to the proof of Claim 5.2, the subdigraph induced by

(M -m) ∪ (L -l -l ) ∪ (P -p -p * ) ∪ (Q -q ) has a Hamilton path m * -→ H 2 q * * starting with m * ∈ M -m and ending with q * * ∈ Q -q . Then C 3 = y 2 → p * → y 1 → x 3 → y 3 → m → y 2 is a good cycle since B -C 3 has a Hamilton cycle x 2 → l → x 1 → l → p → q → m * -→ H 2 q * * → x 2 , a contradiction.
Suppose first that P ⊆ X -{p, x 2 , x 3 }. Note that |L -l| = k -2 and for any

{u, v} ⊆ M + x 1 , L -l ⊆ N + R ({u, v}).
For any w ∈ P -p, since l → P -p we have

|N + Q+y 2 (w)| ≥ k -2. So |N + R (P )| ≥ |P | for |P | ∈ {k -2, k}. Now let |P | = k -1. If P ∩ (P -p) = ∅, then P ∩ (M + x 1 ) = ∅. If |P ∩ (M + x 1 )| ≥ 2, then |N + R (P )| ≥ |L -l| + min w∈P -p |N + Q+y 2 (w)| ≥ k -1.
If P ∩(L-l) = ∅, then P ∩(Q+y 2 ) = ∅ and P -p ⊆ N + R (P ). Since |P -p| = k -2, it suffices to show that M + x 1 P .

Assume the opposite that M + x 1 → P . Then M + x 1 → P ∩ (Q + y 2 ). Since It follows that

p * → Q and x 2 → y 2 , we have P ∩ (Q + y 2 ) → p. Since L → p and |L| = k -1, we have |P ∩ (Q + y 2 )| = 1. Then P = L -l + y 2 or P = L -l + q for some q ∈ Q. If P = L -l + y 2 , then by Claim 5.3 (2) we have M + x 1 P . Let P = L -l + q. If x 1 → L -l + q, then d + B (x 1 ) ≥ |L -l + q| + |{y 1 , y 2 }| = k + 1. So x 1 P and M + x 1 P . Thus for |P | = k -1, |N + R (P )| ≥ |P |. Now let |P | = k. Then P ∩ (L -l) = ∅ and P -p ⊆ N + R (P ). Since x 1 → y 1 , we have x 1 P and x 1 ∈ N + R (P ). Note that |P -p + x 1 | = k -1.
y 1 → x 3 , y 2 → x 1 , y 3 → x 2 .
Now we distinguish two cases. For any p ∈ P , since |P -p| = k -1 then by the proofs of Case 2 and Case 3 we

have |N + R (P -p)| ≥ k -1. So |Q| = |N + R (P )| ≥ |N + R (P -p)| ≥ k -1, a contradiction to |Q| = k -2. Case 5. |P | = k -2 and |Q| = k -3. As in Case 3, N + L (x i ) = ∅ and N - L (x i ) = ∅ for i ∈ {1, 2, 3}. Assume w.l.o.g. that |N + L (x 1 )| ≥ max{|N + L (x 2 )|, |N + L (x 3 )|}. If |N + L (x 1 )| = |N + L (x 2 )| = |N + L (x 3 )| = 1, then {x 1 , x 2 , x 3 } → Q and every vertex of Q has indegree at least |P | + |{x 1 , x 2 , x 3 }| ≥ k + 1, a contradiction. So we have |N + L (x 1 )| ≥ 2.
Let l be a vertex of N + L (x 1 ) such that it has minimum number of inneighbors in {x 1 , x 2 , x 3 } and let p ∈ P . Let (1) Q + y 1 M + x 2 .

C = l → p → y 2 → x 3 → y 3 → x 1 → l and let R = B -C . We show that C is a good cycle, i.
(

) If P ⊆ L -l and |P | = 2, then |N + R (P )| ≥ 2. (3) If P ⊆ Y -{l, y 2 , y 3 } and |P | = 4, then |N + R (P )| ≥ 4. Proof. Note that |N + L (x 1 )| ≥ 2. Let M = {m, m , m }, L = {l, l , l , l }, P = {p, p }, Q = {q}. 2 
( 

N + {q,y 1 ,y 2 ,y 3 } (x 3 ) = {q, y 1 , y 3 }, we have |N - L (x 3 )| = 3. Note that |N + L (x 2 )| = 2.
So we can assume w.l.o.g. that x 2 → l and l → x 3 . Note also that q → {m, m , m , x 2 } and {m , m } → L. Then

C 1 = l → p → y 2 → x 1 → y 1 → x 2 → l is a good cycle since B -C 1 has a Hamilton cycle l → m → l → p → q → m → l → x 3 → y 3 → m , a contradiction.
(2) Assume w.l.o.g. that P = {l , l }. Suppose the opposite that So C is a good cycle, a contradiction.

|N + R ({l , l })| ≤ 1. Since {l , l } → p , we have |N + R ({l , l })| = 1. Then {l , l } → {p, p , x 1 , x 3 } and {m, m , m , x 2 } → {l , l }. Since |N + L (x 1 )| ≥ 2, we have x 1 → {l, l }. Since |N + L (x 1 )| ≥ |N + L (x 2 )|,
The proof of Lemma 5.1 is complete.

k-cycle-factors in regular bipartite tournaments

The k-cycle-factors of a highly connected tournament was posed by Bollobás (see [START_REF] Reid | Three problems on tournament, graph theory and its applications: east and west[END_REF])

and was proved by Chen et al. [START_REF] Chen | Partitioning vertices of a tournament into independent cycles[END_REF].

Theorem 5.14 (Chen et al. [START_REF] Chen | Partitioning vertices of a tournament into independent cycles[END_REF]). Let T be a k-connected tournament with |V (T )| ≥ 8k. Then T has a k-cycle-factor.

Motivated by Theorem 5.14, we consider k-cycle-factors of a highly connected bipartite tournament. Häggkvist and Manoussakis [START_REF] Häggkvist | Cycles and paths in bipartite tournaments with spanning configurations[END_REF] proved that a bipartite tournament is Hamiltonian if and only if it is strong and has a cycle-factor. Note that there are infinite families of highly connected bipartite tournament without Hamilton cycles and thus without a cycle-factor, i.e. it cannot be partitioned into cycles.

Thus, we should assume that the considered bipartite tournaments are Hamiltonian.

Let f (k) be the smallest integer so that all but a finite number of f (k)-connected By replacing the condition "Hamiltonian" by "regular", we get a weaker result. Thus Ψ 1 Ψ 2 and C i C j for some C i ∈ Ψ 1 and for some C j ∈ Ψ 2 . Then u → v for some u ∈ C j and for some v ∈ C i . Note that u + C j → v - C i . Then

u + C j v - C i ww + C u + C j , (5.12 
) The proof of Theorem 5.15 is complete.

uvC i v -- C i w - C w -- C u C ++ j C j u ( 

Conclusion

In this chapter, we consider the 2-cycle-factors and more generally k-cycle-factors of regular bipartite tournaments. First, we prove that every k-regular bipartite tour- x and uv are in a cycle, there is an (x, u)-path P 1 . Similarly, there is a (v, y)-path P 2 . If P 1 and P 2 are vertex disjoint, then xP 1 uvP 2 y is an (x, y)-path. If P 1 and P 2 have at least one common vertex, let w be the first appeared vertex on the path P 1 , then xP 1 wP 2 y is an (x, y)-path.

(2) Let T be a tournament satisfying that every arc is universal. Assume that T is not 2-connected and T / ∈ T * s . If T is not 1-connected, then the arc uu is a non-universal arc where u, u ∈ V (T ) satisfying that here exists no (u , u)-path. Now we have T is 1-connected and T / ∈ T * s . Then T has a cut vertex v such that one of the subtournaments induced by N + (v) and N -(v) (denote by T x and T y , respectively) is not 1-connected. Assume without loss of generality that T x is not 1-connected. Then there exists no (x, x )-path for some two vertices x, x ∈ V (T x ) excluding v. Thus vx and x are not in any cycle and vx is not a universal arc, a contradiction.

For the converse, it follows directly from the two lemmas below. Lemma 6.2. Every arc of a 2-connected tournament T is universal.

Proof. Assume the opposite that T has a non-universal arc uv. Let C be a longest cycle containing uv in T . Since T has no 2-cycles, we have |V (C)| ≥ 3. By assumption C is not hamiltonian. Let w be an arbitrary vertex in V (T )\V (C). For convenience, a cycle containing both uv and w is called good in the following. We will get a contradiction by showing that a good cycle exists.

If w → u, then since T is 2-connected there exists a (x, w) C -path P for some x ∈ V (C)\{u}. Now wuvCxP w is a good cycle. If v → w, then similarly since T is Chapter 7

Conclusion and Perspective

In this Chapter, we summarize the main results of this thesis and conclude with some problems for further research.

Arc colorings

In Chapter 2, we mainly consider the (semi-)vertex-distinguishing proper arc coloring of digraphs. We give upper bounds for χ 2 vd (D) and χ 2 svd (D) respectively. In particular, the value of χ 2 vd (D) is obtained for some regular digraph D. Moreover, we show that the values of χ 2 vd (D) and χ 2 svd (D) will not be changed if the coloring, in addition, required to be equitable. But the following two conjectures remain open for general cases. 

  d + (v) = |N + (v)| and d -(v) = |N -(v)| be its outdegree and indegree, respectively. Denote by δ + (D), δ -(D), ∆ + (D) and ∆ -(D) the minimum outdegree, minimum indegree, maximum outdegree and maximum indegree of D. Define the minimum degree δ(D) and maximum degree ∆(D) of D as follows, δ(D) = min{δ + (D), δ -(D)}, ∆(D) = max{∆ + (D), ∆ -(D)}. (1.1) Let n d + (D) and n d -(D) be the numbers of vertices with outdegree d + and indegree d -in D, respectively.

A

  digraph D is Hamiltonian if it has a Hamilton cycle, i.e., a cycle containing all vertices of D. Cycle factor A cycle factor of a digraph D is a spanning subdigraph of D whose components are vertex-disjoint cycles. A k-cycle-factor of D is a cycle factor consisting of k cycles. Note that a 1-cycle-factor is a Hamilton cycle, i.e., a cycle containing all the vertices of D, and a 2-cycle-factor consists of two complementary cycles. We say that D contains all k-cycle-factors if for any possible cycle-lengths n 1 , . . . , n k with |V (D)| = n 1 + • • • + n k there exists a k-cycle-factor with cycle-lengths n 1 , . . . , n k respectively in D. Connectivity A digraph D is strong or 1-connected if there exists a path from u to v for any two vertices u and v of D. Call D is k-connected if the removal of any set of fewer than k vertices results in a strong digraph. A digraph is cycle-connected if every two vertices are in a common cycle.

Figure 1 . 1 :

 11 Figure 1.1: Regular bipartite tournament F 4•k .

Theorem 1 . 2 and

 12 Theorem 1.3 imply that the bounds in Theorem 1.1 are tight. A digraph D = (V (D), E(D)) is symmetric if uv ∈ E(D) implies that vu ∈ E(D) for any arc uv. In 1981, Poljak and Rödl [77] got the arc chromatic number of symmetric digraphs with respect to its chromatic number. Theorem 1.5 (Poljak and Rödl [77]). Let D be a symmetric digraph and k a positive integer. Then χ 1 (D) = min{k : χ(D) ≤ k k/2 }.

Theorem 1 .

 1 14 ( [100]). Let D be a digraph. Then χ 2 (D) = max{∆ + (D), ∆ -(D)}.

Conjecture 1 . 1 .

 11 Let G be a vdec-graph. Then χ vd (G) ∈ {π(G), π(G) + 1}.

Fact 1 . 1 .

 11 A digraph D is a vdac-digraph (resp. svdac-digraph) if and only if D contains at most one source (resp. two sources) and at most one sink (resp. two sinks). Now we condier χ 1 vd (D) and χ 2 vd (D) of D. It is clear that χ 1 vd (D) ≥ χ 1 (D) and χ 2 vd (D) ≥ max{χ 2 (D), π(D)}. Note that χ 2 (D) = ∆(D) and π(D) ≥ ∆(D). Thus χ 2 vd (D) ≥ π(D). In this thesis, we mainly consider the 2-type arc coloring of digraphs. Unless otherwise stated, the proper arc coloring mentioned below always means the 2-type arc coloring. Analogous to Conjecture 1.1 for undirected graphs, we propose the following conjecture for digraphs. Conjecture 1.3. Let D be a vdac-digraph. Then χ 2 vd (D) = π(D).

Figure 1 . 2 :

 12 Figure 1.2: Forbidden oriented graphs for Theorem 1.28 (1).

Figure 1 . 3 :

 13 Figure 1.3: Forbidden oriented graphs for Theorem 1.28 (2).

Theorem 1 .

 1 42 (Woodall [101]). Let D be a strong digraph on n vertices with d + (x)+ d -(y) ≥ n for every pair x = y of vertices such that xy / ∈ E(D). Then D has a Hamilton cycle.

Theorem 1 . 44 (

 144 Little and Wang [72]). Let D be a digraph on n vertices. If d(x) ≥ 3(n -1)/2, then D has a 2-cycle-factor of any given cycle-lengths, i.e., D is strongly 2-cycle-factorable.Amar and Raspaud[START_REF] Amar | Covering the vertices of a digraph by cycles with precribed length[END_REF] considered the k-cycle-factors of given lengths in digraphs.Theorem 1.45 (Amar and Raspaud[START_REF] Amar | Covering the vertices of a digraph by cycles with precribed length[END_REF]). Let D be a digraph on n vertices and at least (n -1)(n -2) + 3 arcs, and let n 1 , . . . , n k be k integers with n = n 1 + . . . + n k and n i ≥ 3 for i = 1, . . . , k. Then D has a k-cycle-factor of cycle-lengths n 1 , . . . , n k except in two cases:

  regular bipartite tournament not isomorphic to F 4•k has a 2-cycle-factor of all possible cycle-lengths. Conjecture 1.11 (Zhang et al. [105]). Let B be a k-regular bipartite tournament not isomorphic to F 4•k . Then B has a 2-cycle-factor of even cycle-lengths t and |V (B)|-t for all 4 ≤ t ≤ |V (B)| -4. Conjecture 1.11 is true for t = 4. We show that Conjecture 1.11 is true for t = 6 in Chapter 5.

2. 1 Introduction

 1 For a digraph D, we define B D = (X, Y ; E) to be a (unique) corresponding balanced bipartite graph satisfying that X = Y = V (D) and E(B D ) = {xy : x ∈ X, y ∈ Y, -→ xy ∈ A(D)}. Let δ X (B D ) and ∆ X (B D ) (resp. δ Y (B D ) and ∆ Y (B D )) be the minimum and the maximum of degrees of vertices in X (resp. in Y ) , respectively.

Fact 2 . 1 .

 21 Let D be a digraph. Then χ 2 (D) = χ (B D ) = ∆(B D ) = ∆(D). A proper edge coloring of a bipartite graph B = (X, Y ; E) is called partial-vertex-distinguishing if no two vertices in X and no two vertices in Y are incident with the same set of colors. A bipartite graph is partial-vertex-distinguishing edge-colorable or a pvdec-bipartite graph if it has a partial-vertex-distinguishing proper edge coloring (abbreviated PVDPE coloring). Note that B is a pvdec-bipartite graph if and only if both X and Y contain at most one isolated vertex. One can check that the VDPA coloring of a vdac-digraph D is equivalent to the PVDPE coloring of B D . Denote by χ pvd (B) the minimum number of colors required for a partial-vertex-distinguishing proper edge coloring of B. Let δ

Fact 2 . 4 .

 24 A digraph D is a vdac-digraph (resp. svdac-digraph) if and only if D contains at most one source (resp. two sources) and at most one sink (resp. two sinks).

Claim 2 . 1 .

 21 Let B = (X, Y ; E) be a pvdec-bipartite graph and t ≥ 1 an integer.

  2, we have χ pvd (B) ≤ n and thus χ pvd (B) ≤ {n, ∆(B) + t}. If ∆(B) = n, then χ pvd (B) ≥ n and similarly as above we have χ pvd (B) ≤ n + 1. So χ pvd (B) ∈ {n, n + 1}. The proof of Theorem 2.1 is complete. Corresponding to Claim 2.1 and Claim 2.2, we have two analogous results for digraphs.

Lemma 2 . 5 .

 25 For an optimal k-edge-coloring of B = (X, Y ; E), we have |n X S -n X S | ≤ 2 and |n Y S -n Y S | ≤ 2 for all S, S ⊆ {1, . . . , k} with |S| = |S |. Proof. Let f be an optimal edge coloring of B with color set {1, . . . , k}. Denote by [α β] the family of subsets of {1, . . . , k} in which each subset contains precisely one of α and β. Let V [α β] be the set of vertices with color sets in [α β]. Define an involution i αβ on subsets in [α β] by interchanging the colors α and β. We first show the following claim. Claim 2.3. Assume we have an optimal k-edge-coloring f of B and S ∈ [α β]. Then we can change the coloring by interchanging α and β on some edges such that we get a new optimal coloring f in which both the pair of values n X S and n X i αβ S (differing by one) and one other pair of values n S and n i αβ S (both in X or both in Y , differing by one) are interchanged, and all other n X S * and n Y S * remain the same. Moreover, we have |n X S -n X i αβ S | ≤ 1 and |n Y S -n Y i αβ S | ≤ 1 for any S ∈ [α β].

  2 and H α,β consists of paths and cycles.

  Denote by S S the symmetric difference of S and S . Define d(S, S ) = 1 2 |S S | the distance of S and S . Assume the opposite that there exist S 1 , S 2 with |S 1 | = |S 2 | and without loss of generality n X S 1 ≥ n X S 2 + 3. Among all optimal k-colorings, choose one coloring and sets S 1 , S 2 with d(S 1 , S 2 ) is as small as possible. Let d = |S 1 | = |S 2 |, S + = S 1 ∪S 2 , S -= S 1 ∩S 2 and [S -, S + ] d = {S : |S| = d and S -⊆ S ⊆ S + }. Note that S 1 , S 2 ∈ [S -, S + ] d . Note also that for any S = S 1 , S 2 we have d(S 1 , S 2 ) > max{d(S, S 1 ), d(S, S 2 )}. So by the assumption at the beginning of this paragraph we have n X S 1 > n

Figure 2 . 1 :

 21 Figure 2.1: Sequence of the 2-color sets

Figure 2 . 1 .

 21 Figure 2.1.If the cycle can be colored with no jump, then we can color it just follow the "Else" part of the Step 3. This can be seen in Figure2.2. If not, then either the coming four uncolored edges will receive colors i, k, k and i + 1 (which induces a contradiction that two adjacent edges receive the same color k) or the coming four uncolored edges will receive colors j, j + 1, j and j + 1 (which induces that (j, j + 1) appear on two vertices in the same part). The two cases will be avoided by the first "If " and the second "If " of Step 3, respectively. One can see this in Figure2.3.

Figure 2 . 2 :Figure 2 . 3 :

 2223 Figure 2.2: Coloring of a cycle with no jump
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 952725 By Claim 2.4, we have k d,n = d + 2 now and thus it suffices to show the following lemma for corresponding bipartite graph B n d . If k 2,n -2 ≤ d ≤ k 2n 2 + 1, then χ pvd (B n d ) ∈ {d + 2, d + 3}. Proof. Clearly, χ pvd (B n d ) ≥ d + 2. Now we show that χ pvd (B n d ) ≤ d + 3. Let f be a proper (d + 2)-edge-coloring of B n d with color set T = {1, . . . , d + 2} and let Z ∈ {X, Y }. The coloring f is Z-distinguishing if no two vertices in Z are incident with the same color set, i.e., n Z S ≤ 1 for any S ⊆ T with |S| = d. And f is Z-semi-distinguishing if no three vertices in Z are incident with the same color set, i.e., n Z S ≤ 2 for any S ⊆ T with |S| = d. The following result holds. Let d ≥ k 2,n -2. Then B n d has an X-distinguishing and Y -semidistinguishing proper edge coloring with color set T .

Claim 2 . 6 .

 26 Assume we have an optimal X-distinguishing coloring f of B n d and S ⊆ [α β]. Then we can change the coloring by interchanging α and β on some edges such that we get a new optimal X-distinguishing coloring f in which both the pair of values n Y S and n Y i αβ S (differing by one) and one other pair of values n S and n i αβ S (both in X or both in Y , differing by one) are interchanged, and all other n X S * and n Y S * remain the same. Moreover, we have |n X S -n X i αβ S | ≤ 1 and |n Y S -n Y i αβ S | ≤ 1 for any S ∈ [α β]. Now by the similar analysis used in the proof of Lemma 2.5 we can show that |n Y s -n Y S | ≤ 2 for any S, S ⊆ {1, . . . , d + 2} with |S| = |S |. This implies that every optimal X-distinguishing coloring is an X-distinguishing Y -semi-distinguishing proper edge coloring for B n d with d ≥ k 2,n -2. Given an X-distinguishing Y -semi-distinguishing proper edge coloring f * of B n d with d + 2 colors. If f * is a PVDPE coloring, then we are done. Now assume that there exist two vertices u, v ∈ Y with F (u) = F (v). Since d+2 d ≥ n, there exists S ⊆ T with |S| = d and n Y S = 0. Let T \S = {α, β}. By Claim 2.3, we know that every bad vertex should be incident with two edges colored with α and β respectively. Otherwise we get a color set S with n Y S = 2, but d(S, S ) = 1 which contradicts Claim 2.3. Then for any two vertices u, v ∈ Y with F (u) = F (v), we recolor the α-colored edge incident with u with a new color α and keep the colors of the other edges incident with u. Besides, the colors of the edges incidents with v unchanged. Then we get a new proper edge coloring of B n d with d + 3 colors and one can check that it is a PVDPE coloring. The proof of Theorem 2.3 (5) is complete. (6) By Claim 2.4, we have π (B n d ) = d + 2 and χ pvd (B n d ) ≥ d + 2. Recall that Balister et al. [15] have showed that χ vd (G) = π(G) for every vdec-graph G with ∆(G) ≤ 2|V (G)| + 4 and δ(G) ≥ 5. Note that

( 7 )

 7 Clearly, k d,n ≥ d + 1 for d ∈ {n -1, n}. Since d+1 d = d + 1 ≥ n, we have k d,n = d + 1. By Corollary 2.1, we have χ 2 vd (D n n-1 ) = n. By Lemma 2.2, we have χ 2 vd (D) ≤ n+1 if loops are allowed in D and thus χ 2 vd (D n n ) = n+1. Here, we will give explicit VPPA colorings for D n n-1 and D n n with n and n + 1 colors, respectively. Note that D n n consists of a D n n-1 and n loops (each vertex has a loop). Then the VDPA coloring of D n n follows from the VDPA coloring of d n n-1 and all the loops colored by one new color. So we only consider D n n-1 in the following. Let {1, . . . , n} be the vertex set of D n n-1 and let -→ ij be the arc of D n n-1 with tail i and head j.

Theorem 2 . 4 .Lemma 2 . 8 .

 2428 Let D be a vdac-digraph. Then χ 2 evd (D) = χ 2 vd (D) and χ 2 esvd (D) = χ 2 svd (D). Proof. The proofs of χ esvd (D) = χ svd (D) and χ evd (D) = χ vd (D) are similar. So we only present the proof of χ evd (D) = χ vd (D) in this section. Note that χ evd (D) = χ epvd (B (D) ). It suffices to show the following result on balanced bipartite graphs. Let B be a pvdec-bipartite-graph. Then χ epvd (B) = χ pvd (B). Proof. Note that χ epvd (B) ≥ χ pvd (B) and it suffices to show χ epvd (B) ≤ χ pvd (B). We get it by showing that B has an equitable PVDPE coloring using χ pvd (B) colors. Recall that B is a pvdec-bipartite-graph. Among all PVDPE colorings of B with k = χ pvd (B) colors, choose one ψ with minimum a,b |e a -e b | and then choose two colors α and β in ψ such that e α -e β is maximum. Assume the opposite that ψ is not equitable. Then e α -e β ≥ 2. For any γ ∈ {1, . . . , k}\{α, β}, we have e β ≤ e γ ≤ e α by the choices of α and β.

Case 3 .

 3 S(v t ) ∩ {α, β} = α and e α -e β = 1 in H.

Case 4 .

 4 S(v t ) ∩ {α, β} = β and e α -e β = 0 in H. Since e α ≥ e β + 2, there exists such a union of Kempe-paths of Case 1, without loss of generality, say H * . We construct a new coloring ψ of B as follows: interchange the colors α and β on the edges of H * . This new coloring ψ is still a VDPA coloring since the color sets of the internal vertices are not changed, and for the starting vertex u and ending vertex v, S(u), S(v) are changed to i α,β S(u), i α,β S(v) with n i α,β S(u) = n i α,β S(v) = 0, respectively. Now consider the sum a,b |e a -e b | for the coloring ψ . Compare it with the original sum for ψ, the following facts hold: • |e α -e β | + |e β -e α | will decrease 4; • |e α -e γ | + |e γ -e α | + |e β -e γ | + |e γ -e β | will decrease 4 if e β < e γ < e α and it remains the same if e γ ∈ {e α , e β }.

Fact 2 . 5 .Fact 2 . 6 .

 2526 Let G be an undirected graph. Then χ e (G) = χ (G). Proof. Among all proper χ (G)-edge-colorings of G, choose one named ψ with minimum value of a,b |e a -e b |, and then choose two colors α and β with maximum value of e α -e β in ψ. Assume the opposite that ψ is not equitable, then e α -e β ≥ 2. For any γ ∈ {1, . . . , k}\{α, β}, we have e β ≤ e γ ≤ e α by the choices of α and β. Note that interchanging the colors on an (α, β)-Kempe-path implies a new proper edge coloring. It follows from e α -e β ≥ 2 that there exists an (α, β)-Kempe-path with more edges colored by α than colored by β. Then we interchange the colors of the edges of such an (α, β)-Kempe-path. Now consider the sum a,b |e a -e b | for the resulting coloring. Compare it with the original sum for ψ, the following facts hold. • |e α -e β | + |e β -e α | will decrease 4; • |e α -e γ | + |e γ -e α | + |e β -e γ | + |e γ -e β | will decrease 4 if e β < e γ < e α and it remains the same if e γ ∈ {e α , e β }. This contradicts the minimality of a,b |e a -e b |. Thus ψ is equitable. Note that χ 2 e (D) = χ e (B D ) = χ (B D ). The analogous result for digraphs holds directly. Let D be a digraph. Then χ 2 e (D) = χ 2 (D) = ∆(D).

  An oriented graph is a digraph without loops, parallel arcs or directed 2-cycles. Let D be an oriented graph with vertex set V (D) and arc set E(D). For a subset S of V (D), denote by D| S the oriented graph induced by S. For a subdigraph P of D, denote by D\P the oriented graph induced by V (D)\V (P ). For a vertex v of D, denote by N + D (v) and d + D

Figure 3 . 1 :

 31 Figure 3.1: Some oriented graphs on three vertices.

Theorem 3 . 2 .Figure 3 . 2 :Figure 3 . 3 :

 323233 Figure 3.2: Forbidden oriented graphs for Theorem 3.1.

Fact 3 . 3 .

 33 Let x be an arbitrary vertex in V (D)\{v 1 , . . . , v l }. Assume that x does not contribute to I A (v 1 , v 2 ). By Claim 3.2, we have that x contributes to at most two terms in {α(v i ) : i = 1. . . . , l}. If x contributes to two terms in { α(v i ) : i = 1. . . . , l}, then x contributes to one term in { O A (v j , v j+1 ) : i = 1, . . . , l -2} for some j. If x contributes to one term in { α(v i ) : i = 1. . . . , l}, then x contributes to at most one term in { P N 3 (v j , v j+2 ) : j = 1, . . . , l -2}.

Claim 3 . 5 .

 35 Thus the Inequality (3.14) follows and the proof is complete. By the definition of critical arcs, there exists a critical arc going out of u for any vertex u. So a cycle consisting of critical arcs exists. Let C = u 1 . . . u p be such one of minimal length. Let u i and u j be any two vertices of C. Then u i , u j ∈ E(D) if and

( 3 . 6 )

 36 along the cycle C. Note that the terms O A and I A will get canceled. Therefore, p i=1 α(u i ) ≤ p/l. (3.15)

Theorem 3 . 3 (-1 3 .Figure 3 . 5 :

 33335 Figure 3.5: Forbidden oriented graphs for Theorem 3.3.

Figure 3 . 6 : 4 . 1 .

 3641 Figure 3.6: Forbidden oriented graphs for Theorem 3.4.

Figure 3 . 1 l

 31 3 by this operation, respectively. The new added vertices are denoted by empty circles and the new added paths are denoted by dotted lines. Now we generalize Theorem 3.3 to the case l ≥ 4 as follows. Theorem 3.4. Let D be an oriented graph on n vertices without cycles of lengths at most l. If D contains none of the oriented graphs of Figure 3.6 as a subdigraph, then D contains a vertex with outdegree at most n-1 l . Proof. Assume that Conjecture 1.4 holds for all oriented graphs that contain at least one oriented graph in Figure 3.6. Let D be an arbitrary oriented graph without cycles of lengths at most l. It suffices to show that D contains a vertex v with outdegree at most n-1 l . We can assume w.l.o.g. that D is maximal, i.e., adding any new arcs to D destroys the C k -freeness for some 3 ≤ k ≤ l. If D contains no induced subdigraphs in Figure 3.3, then we are done by Theorem 3.2. Now assume that D contains at least one induced subdigraph in Figure 3.3. By the maximality of D and our construction of F 1 , F 2 , F k 3 and F 4 , D contains at least one oriented graph in Figure 3.6. So a vertex v with outdegree at most n-exists by our assumption at the beginning. So far, we complete the generalization of Theorems 3.1 and 3.3 by Theorems 3.2 and 3.4, respectively. As a supplement, we also obtain the following forbidden subdigraph condition for Conjecture 1.4. It is somewhat trivial but very interesting and a simple proof is presented. Proposition 3.1. Let D be an oriented graph on n vertices without cycles of lengths at most l. If D contains no (induced) quasi-k-cycle for any 3 ≤ k ≤ l + 1, then D contains a vertex with outdegree at most n-1 l .

Corollary 4 . 1 .

 41 Every k-connected balanced (hamiltonian) bipartite tournament with at least 8k -6 vertices contains k vertex-disjoint cycles. Proof of Theorem 4.2. To the contrary, let k ≥ 2 be the smallest positive integer such that there exists a k-connected bipartite tournament with min{|X|, |Y |} ≥ 4k -3 that does not contain k vertex-disjoint cycles. By the minimality of k and the fact that every 1-connected bipartite tournament has a cycle, BT has k -1 vertexdisjoint cycles. By Lemma 1.2, BT has k -1 vertex-disjoint cycles of length 4, say,

  tite tournament B not isomorphic to F 4•k . Then there are cycles of all even length m, 4 ≤ m ≤ 4k, through uv. We now prove Theorem 5.10 and Lemma 5.1. The main tool of the proofs is Hall's Theorem. Proof of Theorem 5.10. By Lemma 5.1, B has a cycle C of length 6 such that R = B -C has a cycle factor. It suffices to show that R is Hamiltonian or that there is a cycle C * = C such that |C * | = 6 and B -C * is Hamiltonian. If R is strong, then R is Hamiltonian for every k by Theorem 5.11. If k = 3, then |R| = 6 and R has a cycle factor, where each cycle has length at least 4. Hence this cycle factor is a Hamilton cycle. Now assume that R is not strong and k ≥ 4. Case 1. k = 4. Let B = (X, Y ; E) and letC = x 1 → y 1 → x 2 → y 2 → x 3 → y 3 → x 1 ,where {x 1 , x 2 , x 3 } ⊆ X and {y 1 , y 2 , y 3 } ⊆ Y . Note that R is not strong and |R| = 10. By Theorem 5.12, R has a 2-cycle-factor, say C 1 and C 2 , such thatC 1 → C 2 .Moreover, one cycle has length 4 and the other cycle has length 6. Now let1 → 2 → 3 → 4 → 1, 5 → 6 → 7 → 8 → 9 → 10 → 5be the two cycles of the 2-cycle-factor, where {1, 3, 5, 7, 9} ⊆ X and {2, 4, 6, 8, 10} ⊆ Y .

Figure 5 . 1 :

 51 Figure 5.1: Non-isomorphic 3-regular bipartite tournaments with 2-cycle-factors.

Figure 5 . 2 :

 52 Figure 5.2: B = (X, Y ; E).

. 2 )

 2 Claim 5.1. k ≥ |P | > |Q| ≥ k -3. Proof. It follows directly from the facts that B is k-regular, |P | > |N + R (P )| = |Q| and Q ⊆ Y -{y 1 , y 2 , y 3 }. It suffices to consider the following six possible cases: (A) |P | = k and |Q| = k -1; (B) |P | = k and |Q| = k -2; (C) |P | = k and |Q| = k -3; (D) |P | = k -1 and |Q| = k -2; (E) |P | = k -1 and |Q| = k -3; (F) |P | = k -2 and |Q| = k -3. Since the proof of Case (C) is simple, the proofs of Cases (E) and (F) are heavily based on that of Case (D), the proof of Case (B) is heavily based on that of Cases (D) and (E), and the proof of Case (A) is heavily based on that of Cases (C), (D), (E) and (F), we consider the six cases above in the following order: (C), (D), (E), (B), (F) and (A). Case 1. |P | = k and |Q| = k -3. By using regularity on degrees, we have P → Q∪{y 1 , y 2 , y 3 }. So P +x 1 ⊆ N - B (y 1 ) and d - B (y 1 ) ≥ k + 1, a contradiction. Case 2. |P | = k -1 and |Q| = k -2. Let B[C] denote the subdigraph of B induced by V (C) and let

  l and let R = B-C . We show that C is a good cycle, i.e., for any P ⊆ X-{p 3 , x 1 , x 2 } or P ⊆ Y -{l, q, y 3 } we have |N + R (P )| ≥ |P |. By Claim 5.1, it is obvious for |P | ≥ k + 1 and for |P | ≤ k -3.

Case 2 . 1 . 1 .

 211 P ⊆ X -{p 3 , x 1 , x 2 }.For any {u, v} ⊆ M + x 3 and any l ∈ L -l, since l → P we have l {u, v}, l ∈ N + R ({u, v}) and L -l ⊆ N + R ({u, v}).

. 5 )

 5 If |P | = k -2, then since either |P ∩ (M + x 3 )| ≥ 2 or P ∩ (P -p 3 ) = ∅ for k ≥ 4 we have |N + R (P )| ≥ min w∈P -p 3 {|L -l|, |N + (Q-q)∪{y 1 ,y 2 } (w)|} ≥ k -2.If |P | = k, then since |P ∩ (M + x 3 )| ≥ 2 and P ∩ (P -p 3 ) = ∅ for k ≥ 4 we have|N + R (P )| ≥ |L -l| + min w∈P -p 3 |N + (Q-q)∪{y 1 ,y 2 } (w)| ≥ k.Now let |P | = k -1. If P ∩ (P -p 3 ) = ∅, then P = M + x 3 and |N + R (P )| ≥ |L -l + y 1 | = k -1. If P ∩(P -p 3 ) = ∅, then |P ∩(M +x 3 )| ≥ 1. If |P ∩(M +x 3 )| = 1, then {p 1 , p 2 } ⊆ P and

  Now let |P | = k. Then P ∩ (L -l) = ∅ and P -p 3 ⊆ N + R (P ). If M → P , then l → M and d + B (l) ≥ |M | + |P | ≥ k + 1 for k ≥ 4. Thus M P and there exists

  Now let |P | = k. Then P ∩ (L -l) = ∅ and P -p 2 ⊆ N + R (P ). If M → P , then l → M and d + B (l) ≥ |M | + |P | ≥ k + 1 for k ≥ 4. So M P and there exists m ∈ M

( 1 )

 1 l and let R = B -C . We show that C is a good cycle, i.e., for any P ⊆ X -{p, x 2 , x 3 } or P ⊆ Y -{l, y 1 , y 3 } we have |N + R (P )| ≥ |P |. By Claim 5.1, it is obvious for |P | ≥ k + 1 and for |P | ≤ k -3. We first show the following claim. Claim 5.3. In Case 2.3.2, we have the following two statements. For any p ∈ P -p * with p → y 1 , we have |N + R (P -p + m)| ≥ k -1 for any m ∈ M .

  Similarly to the proof of Claim 5.2, the subdigraph induced by (L -l -l ) ∪ (P -p -p * ) ∪ (Q -q) ∪ (M -m) has a Hamilton path l * -→ H m * starting with l * ∈ L -l -l and ending with m * ∈ M -m.

Case 2 . 4 .

 24 It suffices to show that M P . Assume the opposite that M → P . Then l → M ∪ P and d + B (l) ≥ |M | + |P | ≥ k + 1, a contradiction. So C is a good cycle, a contradiction. No arc of E 3 has a tail in {x 1 , x 2 , x 3 }.

Case 2 . 4 . 1 .

 241 P → {y 1 , y 2 , y 3 }. Since x i → y i for i ∈ {1, 2, 3}, we have {y 1 , y 2 , y 3 } → M . Let m ∈ M . There exists l ∈ L such that m → l, as otherwise, L → m and d - B (m) ≥ |L| + |{y 1 , y 2 , y 3 }| = k + 2. Let p ∈ P , C = m → l → p → y 1 → x 2 → y 2 → m and R = B -C . We show that C is a good cycle, i.e., for any P ⊆ X -{m, p, x 2 } or P ⊆ Y -{l, y 1 , y 2 } we have |N + R (P )| ≥ |P |. By Claim 5.1, it is obvious for 2, B has a good cycle, a contradiction. Case 4. |P | = k and |Q| = k -2.

  e., for any P ⊆ X -{p, x 1 , x 3 } or P ⊆ Y -{l, y 2 , y 3 } we have |N + R (P )| ≥ |P |. By Claim 5.1, it is obvious for |P | ≥ k + 1 and for |P | ≤ k -3. By the proofs of Case 2 and Case 3, it suffices to consider that |P | ∈ {k -2, k}. We first show the following claim. Claim 5.4. In Case 5, if k = 4 then we have the following three statements.

(P 2 2 (P 2 )+ R 2 (P 2 ) 2 (P 2 )( 3 )

 22222223 )∩{m , m } = ∅, then {m , m } → P 2 , l → {m , m } and d + B (l) ≥ |{m, m , p, p , x 2 }| = 5, a contradiction. Thus N+ R ∩ {m , m } = ∅ and |N | ≥ |{p , x 1 , x 2 }| + |N + R ∩ {m , m }| ≥ 4.So C 2 is a good cycle, a contradiction. Note that P ∩ (L -l) = ∅. Then p ∈ N + R (P ). Since x 2 → y 2 , we have x 2 P and x 2 ∈ N + R (P ). It suffices to show that|N + R (P ) ∩ M | ≥ 2. If |N + R (P ) ∩ M | = 0, then M → P , l → M and d + B (l) ≥ |{m, m ,m , p, p }| = 5, a contradiction. Now let |N + R (P ) ∩ M | = 1 and assume w.l.o.g. that m ∈ N + R (P ). Then {m , m } → P and l → {m , m }. So l → {m, m , p, p } and {x 1 , x 2 , x 3 } → l. Since {p, p , x 1 } → y 1 , we have {m , m } y 1 , y 1 / ∈ P and P = {l , l , l , q}. Since |N + L (x 1 )| ≥ 2, we can assume w.l.o.g. that l ∈ N + L (x 1 ). By the minimality of |N - {x 1 ,x 2 ,x 3 } (l)| and {x 1 , x 2 , x 3 } → l, we have {x 1 , x 2 , x 3 } → l and d - B (l ) ≥ |{m , m , x 1 , x 2 , x 3 }| ≥ 5, a contradiction. Case 5.1. P ⊆ X -{p, x 1 , x 3 }. Since P ∩ L = ∅, we have P -p ⊆ N + R (P ). Since x 2 → y 2 , we have x 2 P and x 2 ∈ N + R (P ). Thus |N + R (P )| ≥ |P -p + x 2 | = k.

Conjecture 5 . 2 .

 52 Hamiltonian bipartite tournaments have a k-cycle-factor. Note that f (1) = 1. We conjecture that f (k) exists and f (k) = k for general k. By Corollary 4.1, we propose the following conjecture. Every k-connected Hamiltonian bipartite tournament with at least 8k -6 vertices has a k-cycle-factor.

Theorem 5 . 15 .. 6 )

 5156 Let BT = (X, Y ; E) be a k-connected regular bipartite tournament with |V (BT )| ≥ 8k -6. Then BT has a k-cycle-factor. Proof. By Corollary 3.1, BT contains at least k vertex-disjoint cycles. Let C 1 , . . . , C k bek vertex-disjoint cycles of BT such that k i=1 |V (C i )| is maximum. To the contrary, assume that k i=1 |V (C i )| < n. Let Ψ = {C 1 , . . . , C k } and let H = BT -∪ k i=1 V (C i ). (5Claim 5.5. H has no cycle.Proof. Assume that H has a cycle C. Let C i be an arbitrary cycle in Ψ. We show that eitherC i → C or C → C i . Let u ∈ V (C i ) ∩ X and v ∈ V (C) ∩ Y . Assume without loss of generality that u → v. For any vertex x ∈ V (C) ∩ X, if x → u + C i then u + C i C i uvxu + C iis a cycle longer than C i and we can get another k cycles containing more vertices, a contradiction. Thus, u+ C i → C. Similarly, u ++ C i → C, . . . , u → C and thus C i → C. If v → u, then similarly C → C i . Now let Ψ 1 = {C i ∈ Ψ : C i → C}, Ψ 2 = {C j ∈ Ψ : C → C j }.(5.7)Assume first that Ψ 1 = ∅. Then Ψ 2 = Ψ. Since BT is connected, there is a path from Ψ to C and let P be one with minimal length. Then all the internal vertices of P are in V (H) -V (C). Let w and z be the starting vertex and the ending vertex of P , respectively. Assume w.l.o.g. that w∈ C j ∩ X. If z ∈ Y , then wP zCz - C → w + C j C j w (5.8) is a longer cycle than C j . If z ∈ X, then wP zCz -- C w + C j C j w (5.9)is a longer cycle than C j . For each case we can get another k cycles containing more vertices, a contradiction. If Ψ 2 = ∅, then similarly we can get a contradiction.Now assume that Ψ1 = ∅ and Ψ 2 = ∅. If Ψ 1 → Ψ 2 , then since BT is connectedthere is a path from Ψ 2 to Ψ 1 ∪ C. Let P be one with minimal length and let w and z be the starting vertex and the ending vertex of P , respectively. Note that C → Ψ 2 .By the minimality of P , all the internal vertices of P are in V (H) -V (C). Assume w.l.o.g. that w ∈ C i ∩ X and z ∈ C j . If z ∈ Y , thenwP zC j z - C j w + C i C i w(5.10) plus other k -1 unused cycles form k cycles containing more vertices, a contradiction. If z ∈ X, then wP zC j z -- C j w + C i C i w (5.11) plus other k -1 unused cycles form k cycles containing more vertices, a contradiction.

  nament B not isomorphic to a special digraph and with k ≥ 3 has a 2-cycle-factor of cycle-lengths 6 and |V (B)| -6. This gives a support to Conjecture 5.1 stating that every k-regular bipartite tournament B not isomorphic to a special digraph F 4•k contains all 2-cycle-factors. Also, we show that every k-connected regular bipartite tournament has a k-cycle-factor.

( 1 )Lemma 6 . 1 .

 161 Since every 1-connected tournament has a Hamilton cycle, then T has a universal arc. It suffices to show the converse statement. It follows from a more general result as follows. If a digraph has a universal arc, then it is 1-connected. Proof. Let D be a digraph with a universal arc uv. It suffices to show that there is an (x, y)-path for any two vertices x and y of D. If {x, y} ∩ {u, v} = ∅, then it follows directly from the definition of universal arcs. Suppose that {x, y} ∩ {u, v} = ∅. Since

Conjecture 7 . 1 .

 71 Let D be a vdac-digraph. Then χ 2 vd (D) = π(D).Conjecture 7.2. χ 2 vd (D n d ) = π(D n d ) = k d,n .Besides, it will also be interesting to consider the 1-type VDPA colorings of digraphs. What is the minimum number of colors, denoted by χ 1 vd (D), required for a 1-type VDPA colorings of a digraph D? Considering the cycles with large order, we have that χ 1 vd (D) could be very far from the 1-type arc chromatic number χ 1 (D) of D. We conjecture that χ 1 vd (D) is bounded by |V (D)|. Conjecture 7.3. χ 1 vd (D) ≤ |V (D)|.

  We will get this by showing that D has a a proper π(D)-arc-coloring with |n +

	((n X S ) 2 + (n Y S ) 2 ).	(2.4)
	S	
	For any vdac-digraph D, till now, we cannot show that π(D) colors can guarantee
	a VDPA coloring but we can show that π(D) colors can guarantee a semi-VDPA
	coloring.	
	Theorem 2.2. Let D be a vdac-digraph. Then χ 2 svd (D) ≤ π(D) ≤ χ 2 vd (D).	
	Proof. Clearly, χ 2 vd (D) ≥ π(D). It suffices to show that χ 2 svd (D) ≤ π(D), i.e., D has
	a proper π(D)-arc-coloring with n +	
	We transfer this problem to bipartite graphs. A proper coloring of a bipartite
	graph with k colors is called partial-balanced if |n X S -n X S | ≤ 2 and |n Y S -n Y	

S ≤ 2 and n - S ≤ 2 for any S ⊆ {1, . . . , π(D)}. S -n + S | ≤ 2 and |n - S -n - S | ≤ 2 for all S, S ⊆ {1, . . . , k} with |S| = |S |. Note that a VDPA coloring satisfies that |n + S -n + S | ≤ 1 and |n - S -n - S | ≤ 1 for any two color sets S and S . Define a balanced proper arc coloring of a digraph to be a proper arc coloring with |n + S -n + S | ≤ 2 and |n - S -n - S | ≤ 2 for any two color sets S and S . Define an optimal k-coloring of D to be a proper arc coloring of D with k colors and with minimal value of S

((n + S ) 2 + (n - S ) 2 ).

(2.3)

By definition, on can check that an optimal k-coloring of D exists if and only if k ≥ χ 2 (D) = ∆(D). We first show that an optimal coloring is also balanced. Lemma 2.4. In an optimal k-arc-coloring of D, we have |n + S -n + S | ≤ 2 and |n - Sn - S | ≤ 2 for all S, S ⊆ {1, . . . , k} with |S| = |S |. S | ≤ 2 for any two color sets S, S ⊆ {1, . . . , k} with |S| = |S |, and is called partial-semivertex-distinguishing if n X S ≤ 2 and n Y S ≤ 2 for any S ⊆ {1, . . . , k}.

Define an optimal k-edge-coloring of B to be a proper edge coloring of B with k colors and with minimal value of

  X S > n X S 2 . By Claim 2.3 we have that n X S 1 and n X S can be interchanged if d(S 1 , S) = 1. Let α be a color with α ∈ S 1 and α / ∈ S 2 . Let S ∈ [S -∪ {α}, S + ] d . Then d(S 1 , S) < d(S 1 , S 2 ). By the minimality of d(S 1 , S 2 ) we have that n X S 2 will interchange with S such that d(S 2 , S ) = 1 simultaneously. So |n X S 1 -n X S | = 1. In fact, for any S ∈ [S -∪ {α}, S + ] d with S = S 1 , we can interchange n X S 1 with n X S by a sequence of steps. It follows that |n X S 1 -n X S | = 1 for any S = S 1 , S 2 . Similarly, we can get that |n X S 2 -n X S | = 1 for any S = S 1 , S 2 . Thus |n X S 1 -n X S 2 | ≤ 2, which contradicts the assumption that n X S 1 ≥ n X S 2 + 3. The proof of Theorem 2.2 is complete. Let D n d be a d-regular digraph on n vertices. In particular, D n n is a complete symmetric digraph on n vertices and D n n consists of a complete symmetric digraph on n vertices and n loops. Note that D n d is a vdac-digraph and D n n is not a simple digraph. Theorem 2.3. Let D n d be a d-regular digraph on n vertices. Then Conjecture 2.1 holds both for n ≤ 7 and for d ∈ {1, 2} ∪ [k 2,2n + 4, n]; moreover, it nearly holds for d ∈ [k 2,n -2, k 2,2n + 3], where k 2,n = 1+

		√ 2 1+8n	√ and k 2,2n = 1+	1+16n 2
	2.4 Vertex-distinguishing proper arc colorings of
	regular digraphs			
	For convenience, let			
	k d,n = min{k :	k d	≥ n}.	(2.5)
	Note that π(D n d ) = k d,n . By Conjecture 1.3 we have the following conjecture.

If there exists some S with n S ≥ 3, assume that |S| = d, then by Lemma 2.5 we have n S ≥ 1 for every S with S ⊆ {1, . . . , k} and |S | = |S|. It follows that

n d ≥ k d -1 + 3 = k d + 2, contradicting to the definition of k. Conjecture 2.1. χ 2 vd (D n d ) = π(D n d ) = k d,n .

Although we have not proved it completely, many cases have been verified.

  We show that C is a good cycle, i.e., for any P ⊆ X -{p 2 , x 1 , x 3 } or P ⊆ Y -{l, q, y 2 } we have |N + R (P )| ≥ |P |. By Claim 5.1, it is obvious for |P | ≥ k + 1 and for |P | ≤ k -3. Case 2.2.1. P ⊆ X -{p 2 , x 1 , x 3 }.

	As in Case 2.1 (see Equations (

  Since {y 1 , y 3 } → x 2 and |L| = k -1, we have L x 2 and there exists l ∈ L such that x 2 → l. Now we distinguish two cases.Case 2.3.1. y 1 → P -p * .It follows that P -p * → Q + y 2 + y 3 , L + y 1 → P -p * and P → Q. We first show the following claim.

	Claim 5.2. In Case 2.3.1, we have L	x 1 .

{x 1 , x 2 } → y 2 and |P | = k -1, we have P y 2 and there exists p * ∈ P such that y 2 → p * , p * → Q + y 1 + y 3 .

  We show that C is a good cycle, i.e., for any P ⊆ X-{p * , x 2 , x 3 } or P ⊆ Y -{l, y 1 , y 3 } we have |N + R (P )| ≥ |P |. By Claim 5.1, it is obvious for |P | ≥ k + 1 and for |P | ≤ k -3.

  ) Assume the opposite that Q + y 1 → M + x 2 , i.e., {q, y 1 } → {m, m , m , x 2 }. Then {p, p , x 1 , x 3 } → {q, y 1 }, |N + L (x 1 )| = 2 and {y 2 , y 3 } → x 1 . Since |N + L (x 2 )| ≤ |N + L (x 1 )| and {q, y 1 } → x 2 , we have |N + L (x 2 )| = 2 and x 2 → {y 2 , y 3 }. Since {p, p , x 2 , x 3 } → y 3 , we have y 3 → {x 1 , m, m , m }. Since {p, p , x 2 } → y 2 and y 2 → {x 1 , x 3 }, we have |N - M (y 2 )| = 1. Assume w.l.o.g. that m → y 2 . Thus m L and assume w.l.o.g. that l → m. Now {l , q, y 1 , y 3 } → m and m → {l, l , l }. Since

  we have {l, l } → x 2 . Note that {p, p , x 3 } → y 3 . So |N + {m,m ,m } (y 3 )| ≥ 2 and assume w.l.o.g. that y 3 → {m, m }. Since l → {p, p , x 2 }, we have l {m, m } and assume w.l.o.g. that m → l. Let C 2 = m → l → p → y 2 → x 3 → y 3 → m and let R 2 = B-C 2 . We show that C 2 is a good cycle, i.e., for any P 2 ⊆ X -{m, p, x 3 } and for P 2 ⊆ Y -{l, y 2 , y 3 } we have |N + R 2 (P 2 )| ≥ |P 2 |. By Claim 5.1, it is obvious for |P 2 | ≥ 5 and for |P 2 | ≤ 1. As Case 2 and Case 3 were already considered, it suffices to consider that |P 2 | ∈ {2, 4}. Since {p, p , x 1 } → y 1 , we have (y 1 ) ∩ {m , m } = ∅. Since y 1 → x 2 , we have |N + R 2 (y 1 )| ≥ 2. Note that {m , m , x 2 } → {l , l }, p → {q, y 1 }, x 1 → {l , y 1 }, {l , l } → {p , x 1 }, l → {p , x 2 }. (P 2 )| ≥ |P 2 | for |P 2 | = 4 and P 2 ⊆ X -{m, p, x 3 }, and for |P 2 | = 2. Now assume that |P 2 | = 4 and P 2 ⊆ Y -{l, y 2 , y 3 }. Since {p , x 2 } → y 2 and x 1 → l, we have {p , x 1 , x 2 } ⊆ N +

		N + R 2
	So |N + R 2	
	R 2	(P 2 ). If N + R 2

  5.13) are two cycles containing more vertices than C i and C j . We get another k cycles containing more vertices than Ψ, a contradiction. So H has no cycle.By Lemma 1.2, BT has vertex-disjoint subsets H 1 , H 2 , . . . , H 2i-1 , H 2i , . . . , H 2m-1 , H 2m , m ≥ 1, 1 ≤ i ≤ m, such that H 2i-1 ⊆ X, H 2i ⊆ Yand there is no arc from H p to H q for p > q. The following result holds.Claim 5.6. let u ∈ H s , v ∈ H t and s < t. Then d + Ψ (u) ≥ d + Ψ (v) and d - Ψ (u) ≤ d - Ψ (v).Proof. Note that the result holds clearly if u and v are in the same color class.Assume w.l.o.g. that u ∈ X and v ∈ Y . Let w ∈ V (C i ) be an arbitrary outneighbor of v in Ψ. Then w ∈ X and w- C i ∈ Y . If w - C - Ψ (u) ≤ d - Ψ (v).For any two vertices u ∈ H 1 and v ∈ H 2m , we have d + Ψ (u) ≥ d + Ψ (v) by Claim 5.6. Note that d + H (u) > d + H (v). Thus, d + BT (u) > d + BT (v), a contradiction to the assumption that BT is regular.

i → u, then wC i w - C i uvw (5.14) is a longer cycle than C i , a contradiction. Thus d + Ψ (u) ≥ d + Ψ (v)

. Similarly, we have d
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i.e., d(I A (u, v), D), d(P A 3 (u, v), D), d( K N 2,1 (u, v), D) and d( P N 3 (u, v), D). Besides, let

for a vertex v of D. Note that now it suffices to show α(v) ≤ 1/l for some vertex v of D.

In sake of convenience, we write H for d(H, D) in the following when no confusion occurs. We call an arc u, v ∈ E(D) critical if O A (u, v) is minimal over all arcs going out from u. Note that v is a vertex in N + D (u) with smallest outdegree in D| N + D (u) . The following two claims will be used later. Since the proofs can be found in [START_REF] Razborov | On the Caccetta-Häggkvist conjecture with forbidden subgraphs[END_REF],

we omit the details here. Claim 3.1 (Razborov [80]). Let u, v and v, w be two critical arcs. Then u and w are independent, and K N 2,1 (u, w) = 0.

Claim 3.2 (Razborov [START_REF] Razborov | On the Caccetta-Häggkvist conjecture with forbidden subgraphs[END_REF]). Let u, v be a critical arc. Then ÔA (u, v) = 0.

We first show a relationship between O A (u, v) and P N 3 (v, w), where u, v and v, w are two critical arcs. 

.

(3.4)

Proof. The proof of the second inequality is similar to that of the first one. So we only show the first inequality. By Claim 3.1, u and w are independent and thus P N 3 (u, w) exists. Let H be the set of vertices which contribute to P N 3 (u, w) and let h = |H|. Then P N 3 (u, w) = h n-2 . Applying the inductive assumption to D| H , there is a vertex v * ∈ H that has outdegree at most h-1 l . Now we show that

from which the claim follows since O A (u, v) ≤ O A (u, v * ) due to the criticality of u, v . Note that it suffices to show that every vertex x contributing to O A (u, v * ) belongs to H, that is x, w ∈ E(D). If x and w are independent, then {u, v * , x, w} induces an out-pendant. If w, x ∈ E(D), then x ∈ K N 2,1 (u, w) which contradicts to Claim 3.1 that K N 2,1 (u, w) = 0. Now we consider a path consisting of l -1 critical arcs.

Claim 3.4. For any i ∈ {1, . . . , l -1} and for any {v 1 , . . . , v l } ⊆ V (D) satisfying that v i , v i+1 is a critical arc and v i , v j / ∈ E(D) for any j = i + 1, we have

(3.6)

Conclusion

In this chapter, we consider the famous Caccetta-Häggkvist conjecture. Motivated by the result of Razborov [START_REF] Razborov | On the Caccetta-Häggkvist conjecture with forbidden subgraphs[END_REF] on l = 3 of Conjecture 1.4 with forbidden subdigraphs.

We generalize this result by showing that Caccetta-Häggkvist conjecture (Conjecture 1.4) holds for l ≥ 4 with four given forbidden subdigraphs. It is worth noting that the definition "density" is the key quantity in flag algebras, which was introduced by

Razborov [START_REF] Razborov | Flag algebras[END_REF] in 2007. For more details, we refer the readers to [START_REF] Razborov | Flag algebras[END_REF][START_REF] Razborov | On the Caccetta-Häggkvist conjecture with forbidden subgraphs[END_REF].

Conjecture 4.1 (Lichiardopol [68]). Let T be a tournament with δ + (T ) ≥ (q -1)r -1. Then T contains r vertex-disjoint q-cycles.

Motivated by the conjecture, we consider the analogous problem for bipartite tournaments, i.e., vertex-disjoint cycles of given length(s) in bipartite tournaments.

The following results have been proved.

Theorem 4.3. Let BT be a bipartite tournament with δ + (BT ) ≥ qr -1. Then BT contains r vertex-disjoint cycles either of length 2q for even q or of length in {2q, 2q + 2} for odd q.

Theorem 4.4. Let BT be a bipartite tournament with δ + (BT ) ≥ qr -1 and let t 1 , . . . , t r ∈ [4, 2q] be any r even integers. Then BT contains r vertex-disjoint cycles of lengths t 1 , . . . , t r such that t i = t i for t i = 0 (mod 4) and t i ∈ {t i , t i + 2} for

We leave the proofs of Theorems 4.3 and 4.4 at the end of this section.

In 1981, Bermond and Thomassen [START_REF] Bermond | Cycles in digraphs-a survey[END_REF] conjectured that every digraph with minimum outdegree at least 2r -1 contains at least r vertex-disjoint cycles. This is trivially true for r = 1. Thomassen [START_REF] Thomassen | Disjoint cycles in digraphs[END_REF] and Lichiardopol, Por and Sereni [START_REF] Lichiardopol | A step toward the Bermond-Thomassen conjecture about disjoint cycles in digraphs[END_REF] proved it for r = 2 and r = 3, respectively. In 2010, Bessy, Lichiardopol and Sereni [START_REF] Bessy | Two proofs of the Bermond-Thomassen conjecture for tournaments with bounded minimum in-degree[END_REF] verified it for regular tournaments. Recently, Bang-Jensen et al. [START_REF] Bang-Jensen | Disjoint 3-cycles in tournaments: A proof of the BermondCThomassen conjecture for tournaments[END_REF] verified it for tournaments. Take q = 2 in Theorem 4.3, then the Bermond-Thomassen conjecture will be verified for bipartite tournaments. We give some preliminary results as follows.

Theorem 4.5 (Jackson [59]). Let BT be a strong bipartite tournament with δ + (BT ) ≥ s and δ -(BT ) ≥ t. Then BT contains a cycle of length at least 2(s + t).

The following fact will be used later. Corollary 5.1 (Volkmann [START_REF] Volkmann | All regular multipartite tournaments that are cycle complementary[END_REF]). Let D be a regular multipartite tournament with

Then D has a 2-cycle-factor.

In [START_REF] Zhang | Complementary cycles containg a fixed arc in diregular bipartite tournaments[END_REF], it was conjectured that every k-regular bipartite tournament not isomorphic to F 4•k has a 2-cycle-factor of all possible cycle-lengths. The following theorems are needed in the proofs of Theorem 5.10 and Lemma 5. Let 

is a cycle of length 6 such that B -C is Hamiltonian.

Case 2. k ≥ 5.

Let C 1 , C 2 , . . . , C m , m ≥ 2, be cycles of R as given in Theorem 5.12.

), a contradiction to k ≥ 5. On the other hand, if n 1 ≥ n 2 + . . . + n m , then using similar If |P ∩ (M + x 1 )| = 1, then P = P -p + x 1 or P = P -p + m for some m ∈ M .

By Claim 5.3 (1), it suffices to consider that P = P -p + x 1 . Note that

If P ∩ (P -p) = ∅, then P = M + x 1 and

L -l → P -p.

For any {u, v} ⊆ Q + y 2 , since {u, v} p we have

Note that p → y 2 and y 1 → m. This implies that there exists an arc of E 3 which has a tail in {m, p, x 2 } and an arc of E 3 which has a tail in {l, y 1 , y 2 }. By the proofs of Case 2.2 and Case 2.3, it suffices to consider that |P | ∈ {k -2, k}.

Suppose first that P ⊆ X -{m, p, x 2 }. For any {u, v} ⊆ (M -m) ∪ {x 1 , x 3 } and for any p ∈ P -p, since L → P we have

Note that p → y 3 and y 2 → x 1 . This implies that there exists an arc of E 3 which has a tail in {p, x 1 , x 3 } and an arc of E 3 which has a tail in {l, y 2 , y 3 }. By the proofs of Case 2.2 and Case 2.3, it suffices to consider that |P | ∈ {k -2, k}.

Suppose first that P ⊆ X -{p, x 1 , x 3 }. For any {u, v} ⊆ M + x 2 and for any w ∈ P -p, since L → P we have

For any l ∈ L -l, since l → p we have l P and l ∈ N + R (P ). Thus L -l ⊆ N + R (P ) and

By Claim 4 (1), we can assume that k ≥ 5. If

implying that k ≤ 4, a contradiction. Thus for k ≥ 5,

If P ∩ (Q + y 1 ) = ∅, then P ⊆ L -l. By Claim 4 (2), we can assume that k ≥ 5. If

implying that k ≤ 4, a contradiction. Thus for k ≥ 5,

Now let |P | = k. Then P ∩ (L -l) = ∅ and P -p ⊆ N + R (P ). By Claim 4 (3), it suffices to consider that k ≥ 5. Since x 2 → y 2 , we have x 2 P and x 2 ∈ N + R (P ). Since l → P , we have

So C is a good cycle, a contradiction. Note that N + P (y i ) = ∅ and N - P (y i ) = ∅ for i ∈ {1, 2, 3}. At least two sets of

are not empty. If not, assume w.l.o.g. that N + P (y 1 ) ∩ N - P (y 2 ) = N + P (y 2 ) ∩ N - P (y 3 ) = ∅, then N + P (y 1 ) ⊆ N + P (y 2 ) ⊆ N + P (y 3 ) and every vertex in N + P (y 1 ) has indegree at least |L| + |{y 1 , y 2 , y 3 }| = k + 1, a contradiction. Now assume w.l.o.g. that

and let

|P -{p, p , p }| = k -3 and Case 5 was already considered, there exists a good cycle. So

and let R = B -C . We show that C is a good cycle, i.e., for any P ⊆ X - 

Note that

Case 6.2. P ⊆ Y -{y 1 , y 2 , y 3 }.

Chapter 6

Universal Arcs and Directed Cuts

Introduction

The concept of universal arc was first proposed by Ádám [START_REF] Ádám | On some cyclic connectivity properties of digraphs[END_REF] in 1999 and is relatively new. The main problem is whether every cycle-connected digraph contains a universal arc and only few results have been obtained till now. For the max cut and cut-cover problem, it is very old and have been considered extensively. Tournaments and Cayley digraphs are two types of digraphs which have attracted much attention in digraph theory due to its special structure. In this chapter, we consider universal arcs in tournaments and directed cuts in the Cayley digraph X(Z k 2 , S k ).

Universal arcs in tournaments

The main result is the following theorem.

Theorem 6.1. Let T be a tournament on at least 3 vertices. Then

(1) T has a universal arc if and only if T is 1-connected;

(2) every arc of T is universal if and only if T is 2-connected or T ∈ T * s ;

(3) every arc of C is universal if C is a longest cycle containing a given universal arc in T and T is 1-connected.

Remark. (1)

The 1-connected digraph in Figure 6.1 shows that the result in Theorem 6.1 (1) does not hold for general digraphs.

(2) Thomassen [START_REF] Thomassen | Hamiltonian-connected tournaments[END_REF] showed in 1980 that every arc of a 3-connected tournament is contained in a Hamilton cycle, which implies that every arc of a 3-connected tournament is universal. Theorem 6.1 [START_REF] Ádám | On some cyclic connectivity properties of digraphs[END_REF] shows that a weaker condition guarantees this property.

(3) Note that the longest cycle containing a given universal arc could be non-Hamiltonian.

So the result in Theorem 6.1 (3) is not trivial. For any vertex set

2-connected there exists a (w, y) C -path P for some y ∈ V (C)\{v}. Now uvwP yCu is a good cycle. Assume from now on that u → w and w → v.

We claim first that w → [v, z] and [z + , u] → w for some z ∈ V (C)\{u}. If not, then there exists z ∈ V (C)\{u} with z → w and w → z + . Now uvCz wz + Cu is a cycle containing uv and is longer than C, a contradiction.

Since T is 2-connected, there exists a (v 1 , u 1 ) C -path P * for some v 1 ∈ [v, z] and some

is as small as possible. By symmetry, we can assume without loss of generality that

). Now we distinguish two cases. If w → x, then similarly since T is 2-connected there exists a (w , w)-path P for some w ∈ V (C) ∪ V (P * )\{u}. Moreover, we can assume that P has no internal vertex in V (C) ∪ V (P * ). If w ∈ V (C)\{u}, then uvCw P wxP * u is a good cycle. Now we have that w → V (C)\{u} and w ∈ V (P * )\{u}. Then uvP * w P wv + Cu is a good cycle.

Case 8. u 1 = u.

, then the path P contradicts the choice of P * . So we have that y

. If P and P * have a common vertex, say x , then the path xP x P * u 1 contradicts the choice of P * . So P and P * are vertex disjoint. Then uvCxP yCu - 1 wv 1 P * u 1 Cu is a good cycle. Now assume that u 1 = z + . Since T is 2-connected, there exists a (x , y ) C -path P for some x ∈ [v, u - 1 ] and some y ∈ [u + 1 , u]. Now the path P contradicts the choice of P * . The proof is complete. Lemma 6.3. Every arc of a tournament T ∈ T * s is universal.

Proof. We first show the following claim.

Claim 6.1. For any arc uv and any vertex w of a 1-connected tournament T , one of the following three statements hold.

(1) uv and w are in a common cycle;

(2) there exists a (v, w)-path excluding u;

(3) there exists a (w, u)-path excluding v.

Proof. Since T is 1-connected, there is a (v, u)-path P . Since u → v. we have

Assume that uv and w are not in a common cycle. Then w / ∈ V (P ).

For any vertex w ∈ V (P ) -{u, v}, if w → w then vP w w is a (v, w)-path excluding u, if w → w then ww P u is a (w, u)-path excluding v.

Recall that T y → v and v → T x . Since T is 1-connected, there exist at least one arc goes from T x to T y . We claim that every arc between T x and T y goes from T x to T y . If not, then since both T x and T y are 1-connected we have v is not a cut vertex.

Let x, y, z be arbitrary vertices in T x , T y and T , respectively. •

Proof. Denote by W 1 c and W 2 c the subsets of W c with z = v and z = v, respectively. Note that

Assume that there exists a vertex w a ∈ W a . Note that uv is a universal arc and there exists a cycle containing both uv and w. So there is a (w a , u)-path P with

. Then w a P x ∩ V (C) = ∅. Now replace vv + by vw a P xv + . A longer cycle containing uv appears, a contradiction. Thus W a = ∅.

Similarly, we can show that W b = ∅.

Let u v be an arbitrary arc of C distinct from uv. For any vertex w ∈ V (C), the cycle C contains both u v and w. For any vertex w ∈ V (T )\V (C), by Claim 6.2 we have w ∈ W c . Then the cycle obtained from C by replacing uv with uwv is a cycle containing both u v and w. So every arc of C distinct from uv is also a universal arc, which completes the proof.

The proof of Theorem 6.1 is complete.

Directed cuts in a type of Cayley digraph

We deal with the Cayley digraph X(Z k 2 , S k ).

, if k is odd;

, if k is even.

By the result of Bai et al. [START_REF] Bai | Covering the edges of digraphs in D(3, 3) and D(4, 4) with directed cuts[END_REF] we have c(X(Z k 2 , S k )) ≤ h(2k + 1) + 1. Here we give the precise value.

Proof. We first show the following lemma.

is a subset of V (X) satisfying that every vertex is adjacent to the other three vertices.

Since there are 2 k-2 pairwise disjoint such sets in V (X), we have α(X) ≤ 2 k-2 . Note that {0, 3, 6, . . . , 3(2 k-2 -1)} is an independent set of X with cardinality 2 k-2 . Then we have α(X) = 2 k-2 .

Let

. For the subsets

where x, y ∈ I and x = y, there are three possible arcs in the induced graph of A ∪ B with starting vertices in A. One is from x to x + 2 k-2 , one is from x to y + 2 k-2 and the last one is from x + 2 k-2 to y. For the first kind, there are 2 k-2 arcs since there are 2 k-2 subsets like {x, x + 2 k-2 }. For the second kind, we have two possible cases

For the second case, we have

For the third kind, we also have two possible cases.

Note that for every 1 ≤ m ≤ k -2, 2 m -1 can be divided by 3 only if m is even and

we can have a common solution of the two equations above

Note that x -y = 3s and x, y ∈ I where |I| = 2 k-2 . So there are 2 k-2 -s pairs x and y satisfying that x -y = 3s for any s in I, i.e., 2 k-2 -s arcs of the second kind or the third kind for any s. The total number of the arcs of second and third kinds is

Thus we have

, if k is odd;

, if k is even.

The proof of Theorem 6.2 is complete.

Proof. One can easily verify that the result holds for k = 1, 2. It suffices to consider the case k ≥ 3. Our proof relies heavily on the following structure property of this type of Cayley digraph. Lemma 6.5. X(Z k+1 2 , S k+1 ) can be constructed by two copies of X(Z k 2 , S k ).

Proof. We denote j -i(mod 2 k ) by j -i in the following in sake of convenience.

Let D 1 and D 2 be two copies of X(Z k 2 , S k ) with vertex sets {v 0 , v 2 , . . . , v 2 k+1 -2 } and {v 1 , v 3 , . . . , v 2 k+1 -1 }, respectively. Note that v i v j ∈ E(D t ), t = 1, 2, if and only if

Add an arc from v i to v j if j -i = 1 and use E * to denote the set of arcs added in this way. Let

For an arbitrary arc v i v j ∈ E(D), we can show that

For convenience, we use X 3 2 to denote X(Z 3 2 , S 3 ) in the following.

Lemma 6.6. c(X 3 2 ) = 4.

Then {E(V i , V i ): i = 1, . . . , 4} is a 4-cut-cover of X 3 2 . It suffices to prove that c(X 3 2 ) ≥ 4. Assume that c(X 3 2 ) ≤ 3. Denote the possible three subsets covering E(X 3 2 ) by E 1 , E 2 and E 3 . Assign color 1 to the arcs in E 1 , color 2 to the arcs in E(2)\E(1) and color 3 to the rest arcs. It follows a proper 3-arc-coloring of X 3 2 , i.e., a coloring of arcs with 3 colors such that no two consecutive arcs receive a common color. Without loss of generality, assume that v 0 v 4 ∈ E(1) and v 4 v 0 ∈ E(2). Let d c (v) be the number of colors used on the arcs incident with v, and let d i (v) be the number of arcs which are incident with v and are colored by i. Note that d c (v) ≤ 3.

Proof. Suppose that there is a vertex, without loss of generality v 0 , with d c (v 0 ) ≤ 2.

For each vertex v of X 3 2 , note that neither its indegree nor its outdegree is zero, we have Proof. If not, then by Claim 1 and the fact that d(v) = 6 there is a vertex, without loss of generality v 0 , with d i (v 0 ) = 3 for some i ∈ {1, 2, 3}. Without loss of generality,

, implying that no color can be put on v 1 v 2 .

Since d -(v) = d + (v) = 3 for any vertex v of X 3 2 , then by Claim 6.3 and Claim 6.4 there exists two consecutive arcs having a common color. A contradiction to the fact that this is a proper 3-arc-coloring of X 3 2 .

Lemma 6.4 and Lemma 6.6 imply that for k ≥ 3

Note that the underlying graph of X(Z k+1 2 , S k+1 ) can be covered by two cuts. Thus X(Z k+1 2 , S k+1 ) can be covered by four cuts. This completes the proof of Theorem 6.3.

Conclusion

In this chapter, we first completely characterize the universal arcs in tournaments.

To be precise, we show that (1) T has a universal arc if and only if T is 1-connected;

(2) every arc of T is universal if and only if T is 2-connected or T ∈ T * s , where T * s is a special class of 1-connected tournaments; and (3) every arc of C is universal if C is a longest cycle containing a given universal arc in T and T is 1-connected. Then we consider the cuts in a type of Cayley digraph X(Z k 2 , S k ), where Z k 2 consists of all binary vectors with length k and S k = {2 i-1 : i = 1, . . . , k}. We obtain a lower bound of the maximum number of arcs contained in a directed cut of X(Z k 2 , S k ) and the minimum number of directed cuts required to cover the arcs of X(Z k 2 , S k ).

Moreover, it will be interesting to consider the 1-type proper arc colorings of oriented planar graphs. In 1976, Steinberg proposed the following conjecture. 

Short cycles

In Chapter 3, we consider the short cycles in digraphs. Especially, we focus on the 

Vertex-disjoint cycles

In Chapter 4, we consider vertex-disjoint cycles of given length in bipartite tournaments. Till now, the vertex-disjoint cycles of given length in tournaments and bipartite tournaments have been characterized. It is natural to consider the analogous problem in multipartite tournaments. We propose the following conjecture.

Conjecture 7.7. Let D = (V 1 , . . . , V k ; E(D)) be a k-partite tournament. If d + V i (v) ≥ q i r -1 for any v ∈ V (D)\V i , then D contains r vertex-disjoint k i=1 q i -cycles.

Cycle factors

In Chapter 5, we consider cycle factors in bipartite tournaments. Note that Conjec- 

Universal arcs and directed cuts

In Chapter 6, we have completely characterized the universal arcs in tournaments.

Recall that the Problem1.1 proposed by Ádám [START_REF] Ádám | On some cyclic connectivity properties of digraphs[END_REF] in 1999 remains open. Also, recall that Hubenko conjectured in [START_REF] Hubenko | On a cyclic connectivity property of directed graphs[END_REF] that every arc of a maximal cycle of a cycle connected tournament is universal. These two problems deserve further consideration.

Furthermore, analogous to the conception of "universal arc", we can define a univer- Besides, in this chapter, we deal with directed cuts in a type of Cayley digraph X(Z k 2 , S k ). We have obtained a lower bound of g(X(Z k 2 , S k )) as follows.

, if k is odd;
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, if k is even.

We conjecture that the result is best possible, i.e., the inequality "≥" can be replaced by "=".