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Titre : Navigation exploratoire au long de la vie : une approche intégrant planification, navigation, 
cartographie et localisation pour des robots mobiles disposant de ressources finies 

Mots clés : robot, autonome, intelligence, apprentissage, SLAM, planification 

Résumé : Il est fondamental pour un robot 
d'être capable de se déplacer de manière 
complètement autonome afin d'accomplir une 
mission qui lui a été confiée, et ce avec un 
budget énergétique fini, dans un laps de temps 
contraint et sans connaissances préalables de 
l’environnement. Afin d'atteindre un objectif 
dans le plan ou l'espace, un robot doit à minima 
être capable d'accomplir quatre tâches : 
maintenir une représentation abstraite de 
l'environnement (une carte), être capable de se 
localiser à l'intérieur de cette représentation, 
utiliser la représentation pour planifier des 
itinéraires et naviguer le long de la trajectoire 
prévue tout en s'adaptant aux dynamiques de 
l'environnement et en évitant les obstacles. 
Chacun de ces problèmes a été étudié par la 
communauté de la robotique. 
 

Cependant, ces quatre composants sont en 
général étudiés séparément et sont par 
conséquent incompatibles entre eux pour 
l'essentiel. De plus, étant donné qu'humains et 
robots ne disposent que de ressources 
computationelles et mémorielles finies, les 
algorithmes de planification, navigation et 
SLAM devraient être capables de fonctionner 
avec des données incomplètes ou compressées 
tout en garantissant que le ou les objectifs fixés 
soient atteints. Dans cette thèse, la planification, 
la navigation et le SLAM dans des 
environnements arbitrairement grands et avec 
des ressources computationelles et mémorielles 
finies sont vues comme un seul problème, 
créant un nouveau paradigme que nous 
appelons Navigation Exploratoire au long de la 
Vie ou Lifelong Exploratory Navigation.  

 

 

Title: Lifelong Exploratory Navigation: integrating planning, navigation and SLAM for autonomous 
mobile robots with finite resources 

Keywords: robot, autonomous, intelligence, learning, SLAM, planning 

Abstract: One of the yet unresolved canonical 
problems of robotics is to have robots move 
completely autonomously in order to 
accomplish any mission they are charged with, 
with time and resource constraints and without 
prior knowledge of the environment. Reaching a 
goal requires the robot to perform at least four 
tasks: maintaining an abstract representation of 
the environment (map), being able to localize 
itself within this representation, using the 
representation to plan paths and navigating on 
the planned paths while handling dynamics of 
the environment and avoiding obstacles. Each 
of these problems has been studied extensively 
by the robotics community. 

However, the four components are usually 
studied separately, and as a result are mostly 
incompatible with each other. Additionally, 
since humans as well as robots have to operate 
with finite memory and computing resources, 
long running planning, navigation and SLAM 
algorithms may have to operate on incomplete 
or compressed data while guaranteeing that the 
goal(s) can still be reached. In this thesis, 
planning, navigation and SLAM in arbitrarily 
large environments with finite computing 
resources and memory are considered as one 
single problem, for a new bio-inspired paradigm 
which we call Lifelong Exploratory Navigation. 
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Contributions and structure of this thesis

Contributions and structure of this thesis

1 Structure

This thesis is structured in three parts:

• Part I: introducing Lifelong Exploratory Navigation (LEN) as a new paradigm
inspired by animal behaviors, and studying why it is necessary.

• Part II: describing the integration of Planning, Navigation and SLAM into a
single paradigm called PNSLAM.

• Part III: implementing resource management into PNSLAM, as required for LEN
of mobile robots, and concluding on the approach.

2 Contributions

Introducing PNSLAM and Lifelong Exploratory Navigation (Part I, chap-
ter 1) explains why Planning, Navigation and Simultaneous Localization and Mapping
(SLAM) should be integrated for autonomous operation of mobile robots. The combined
problem is called PNSLAM. Chapter 1 also introduces Lifelong Exploratory Navigation
as a new paradigm allowing PNSLAM in robots running for a long time in environments
whose size may exceed their memory and processing capacities.

Lifelong Exploratory Navigation - a system view (Part I, chapter 2) studies
how Lifelong Exploratory Navigation is performed by animals and introduces a mobile
robot software architecture compatible with Lifelong Exploratory Navigation.

Exploratory Planning (Part II, chapter 3) introduces a new planning algorithm
compatible with PNSLAM, EDNA*. This chapter builds on the IJCAI-15 paper “Ex-
ploratory Digraph Navigation Using A*” (Mayran de Chamisso, Soulier, and Aupetit,
2015) and the associated patent PCT/FR2016051039. The IJCAI paper can be cited
as:

Fabrice Mayran de Chamisso, Laurent Soulier and Michaël Aupetit (2015). “Ex-
ploratory Digraph Navigation using A*”. In: Proceedings of the Twenty-Fourth
International Joint Conference on Artificial Intelligence. IJCAI. AAAI Press /

iv



Contributions and structure of this thesis

International Joint Conference on Artificial Intelligence. url: http://ijcai.
org/proceedings/2015.

Navigation, obstacle avoidance and topology extraction (Part II, chapter 4)
introduces topology-based navigation and topology extraction for PNSLAM and builds
on the RFIA/RFP 2016 paper “Robust topological skeleton extraction from occupancy
grids for mobile robot navigation”, which can be cited as:

Fabrice Mayran de Chamisso, Laurent Soulier and Michaël Aupetit (2016). “Ro-
bust topological skeleton extraction from occupancy grids for mobile robot nav-
igation”. In Proceedings of the twentieth national congress on Shape Recognition
and Artificial Intelligence. RFIA’16

A hybrid metrical/topological SLAM for Lifelong Exploratory Navigation
(Part II, chapter 5) develops a SLAM framework for PNSLAM. This chapter builds
on a paper called “A rigorous hybrid metrical-topological SLAM framework for au-
tonomous mobile robot navigation in large-scale highly cyclic environments” submitted
to the International Journal of Robotics Research.

Assembling PNSLAM components - experiments (Part II, chapter 6) presents
PNSLAM simulations and robot experiments using the components described in part II.
We intend to publish these experiments along with chapter 5.

Handling finiteness of computing power (Part III, chapter 7) studies the com-
puting power required by components described in part II and describes a refinement of
chapter 5 bringing the worst-case algorithmic complexity to constant in the size of the
environment the robot evolves in.

Handling finiteness of memory (Part III, chapter 8) studies lossy compression
of the map of an environment stored in memory, with the aim to achieve a high compres-
sion ratio with minimal impact on navigation performances. This chapter builds on a
paper called “Lossy graph compression for efficient navigation using smart exploration”
submitted to Artificial Intelligence.

Conclusion (Part III, chapter 9) concludes on LEN and proposes improvements to
the approach that could be implemented in later works.

v
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Part I

The Lifelong Exploratory Navigation
paradigm

A robot builds niches in the environment, mimicking the be-
havior of rodents and other animals in a primitive form of
Lifelong Exploratory Navigation.
Picture: J. McCormack (2010; 2009) for the IJCAI 2015
“AI and the arts” exhibition, Buenos Aires, http://
jonmccormack.info/
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1 Introducing PNSLAM and Lifelong
Exploratory Navigation

Mobile robots are currently used for a large number of missions: go to a single location,
find something or someone, explore an environment, draw a map of an environment. . . In
this chapter, we show that the lack of integration between planning, navigation and
SLAM is a major hurdle in achieving these complex tasks autonomously.

1.1 Mobile robots and the challenges of movement

1.1.1 Robots are moving entities with reasoning capacities

Giving a definition of what a robot is and understanding what makes it different from
a machine or computer is a key aspect in understanding what a robot can do and how
it should do it. Rather than using peer reviewed research papers to try and derive a
definition, let us use some commonly admitted definitions to try and derive what most
people expect of robots, expressed in everyday language on Wikipedia :

• “A robot is a mechanical or virtual artificial agent, usually an electro-mechanical
machine that is guided by a computer program or electronic circuitry.” (https:
//en.wikipedia.org/wiki/Robot),

• “A machine is a tool containing one or more parts that uses energy to perform an
intended action.” (https://en.wikipedia.org/wiki/Machine),

• “A computer is a general purpose device that can be programmed to carry out a
set of arithmetic or logical operations automatically.” (https://en.wikipedia.
org/wiki/Computer) and

• “An embedded system is a computer system with a dedicated function within a
larger mechanical or electrical system, often with real-time computing constraints.”
(https://en.wikipedia.org/wiki/Embedded_system).
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1 Introducing PNSLAM and Lifelong Exploratory Navigation

Looking for these words in a dictionary or encyclopedia such as Universalis or Britannica
does not result in significantly different definitions.

According to these definitions, a robot is a machine enhanced with reasoning
capacities, or an embedded computer enhanced with the ability to physically
interact with matter. As such, the missions a robot may accomplish require inter-
action and integration of intellectual (or computational) and physical (or mechanical)
abilities. This idea of computational-mechanical integration raises a few issues: how
to smoothly integrate physical actions and reasoning? Is there some balance between
physical actions and computations? Do physical actions impose a precision and time
limit on computations or computations impose a limit on physical actions?

Note that we do not include bots (or web robots) in the definition of robots. Even though
some results and algorithms such as graph planning methods may be of use for both bots
and robots, bots are pieces of software while robots are mechanical entities.

1.1.2 Movement scales

While some robots do not move and only induce changes to the environment surrounding
them through wireless actions and energy transfers, the immense majority of robots
moves in some way. We can even say that movement is the primary way robots have
to interact: industrial robots move their tools to paint cars or transfer cargo around
warehouses. Autonomous vacuum cleaners travel through houses to do the cleaning.
Humanoid robots reproduce human poses, gestures and mimics to have people feel at
ease. Rovers explore Mars to look for water and life sources while search and rescue
robots use similar algorithms to look for survivors of an earthquake. . .

We propose an intuitive classification of robotic movements based on their scale:

1. Large-scale movements correspond to changes in the position of the robot whose
amplitude is high compared to the size of the robot. For instance, an automatic
vacuum cleaner will move from room to room or a mobile robot will explore a
building.

2. Maneuvers are movements occurring at scales around that of the robot and up
to a few times the size of the robot. One typical maneuver is to turn around in
a narrow place for a non-holonomic robot (a holonomic robot would just turn in
place). Avoidance of dynamic obstacles is performed at this scale.

3. Reconfigurations are movements of a part of the robot whose result is a change
of the robot’s shape or orientation with little to no change in the robot’s posi-
tion. Robotic arms and manipulation tools are typical examples of this scale of
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1 Introducing PNSLAM and Lifelong Exploratory Navigation

movement.

4. Expressions are small movements of a part of the robot whose primary goal is not
to modify the robot’s shape or to physically interact with an object in the world.
Instead, the robot uses motion to display something or to warn someone (or some
other robot) of something. This movement scale is essential for robots interacting
with humans such as talking robotic museum guides.

While works on problems such as Simultaneous Localization and Mapping (SLAM) in-
cluding Kuipers’ Spatial Semantic Hierarchy (2000) or Bosse et al.’s ATLAS framework
(2004) tend to separate large-scale movements from small-scale movements such as ma-
neuvers, we did not find the above classification or a similar one in the mobile robot
literature. This classification resembles those reviewed and proposed by Daniel R. Mon-
tello (1993) for human perception. However, while Montello bases his classification on
perceptions, we build ours aroundmovements. Both classifications use equivalent descrip-
tions for the three first scales (respectively called “environmental”, “vista” and “figural”
space in (Montello, 1993)), while our scale 4 has no real equivalent. Interestingly, works
in the field of cognitive psychology reviewed by Montello are pretty unanimous on the
distinction between large-scale perceptions, which require substantial movement to build
a map, and small-scale perceptions which require much less movement to construct a
local space representation.

Scales 1 and 2 define the field of mobile robotics, which describes how robots can and/or
should move within an environment. Scale 3 essentially includes every physical task a
robot may have to carry that does not imply navigation. Finally, scale 4 has strong
connections to animal and human psychology and physiology. A typical workflow for a
robot is the following: the robot goes to a place (scale 1) and positions itself in order to
accomplish a task (scale 2). While manipulating objects (scale 3), it acknowledges the
presence of a human in its working area by nodding and emitting some sound (scale 4).
Figure 1.1 shows scales 1, 2 and 3 for a typical mobile robot.

The scope of this thesis is limited to scales 1 and 2, with the assumption that later
integration of scales 3 and 4 will be possible with minimum effort given a robust im-
plementation of scales 1 and 2. While scales 3 and 4 are considered out of scope, the
components we implement in Part II allow scales 3 and 4 to run on top of scales 1 and
2, in a hierarchical approach.

1.1.3 The four challenges of mobile robot movement

In order to plan and execute large-scale movements and maneuvers, the robot may have
to overcome four challenges, represented on Figure 1.2:
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Figure 1.1: A schematic view of the three first movement scales for a mobile robot: (1)
large-scale movements, (2) maneuvers and (3) reconfigurations.
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• mapping: being able to draw and maintain a map of the environment,

• localization: being able to localize itself within the map and to maintain this
localization up to date,

• planning: being able to plan a path using the map and

• (physical) navigation: being able to physically move in the environment along a
planned path and collect sensor data along this path.

Note that there are multiple definitions of the term “navigation”, even within robotics.
For instance, the “navigation” of (Milford and Wyeth, 2012) is actually topological map-
ping while Crowley (1985) includes mapping, localization and planning in his “naviga-
tion” component. Within this thesis, we define navigation as the component responsible
for physical movements along a path towards a goal, as opposed to mapping, localization
and planning which are concerned with abstract data such as maps or itineraries. The
main goal of navigation is thus to control actuators that are responsible for executing
the movement. In addition to actuator control, we also integrate sensor control and low
level sensor processing into navigation, since on the one hand it is not possible to move
consistently in the world without any feedback from sensors and on the other hand active
sensors do include actuators (think orientable cameras).

We will show in the following section that the four challenges of mapping, localization,
planning and navigation need to be simultaneously addressed in order for the robot
to move in large-scale and/or complex environments. Additionally, we will question
the independence of these challenges and introduce the idea that it may be necessary to
consider all four at the same time in order to correctly implement the movement capacity
of a mobile robot.

1.2 On the necessity of integrating localization, mapping,
planning and navigation

1.2.1 Navigation without localization, mapping and planning?

It is possible to perform navigation without mapping (without memory) and without
localization or advanced path planning techniques when certain conditions are met.
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Figure 1.2: A schematic view of mapping, localization, planning and navigation.
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Greedy navigation

Greedy navigation is a simple method which consists in the robot always trying to
minimize its distance to destination. This is done iteratively by moving straight towards
the goal, following the boundary of obstacles in the way if any. Locally, if multiple
movements lead to the same distance to destination, one movement is chosen randomly.
We call G-environments environments supporting greedy navigation from any reachable
position to any other reachable position. As shown in appendix 9.2, there are only few
G-environments.

It should be noted that environments may fulfill G but not be planar (for instance,
greedy navigation works in 2D but also in 3D - and higher for that matters). Inversely,
planar environments may not respect G, causing greedy navigation to fail. Indeed, the
robot may get stuck in a cavity of an obstacle as on Figure 1.3(a). Additionally, even
when G is true, the greedy path is not necessarily the shortest one (Figure 1.3(b)).

Planar environments, Bug and GPSR

Another example of map-less navigation is when the environment the robot evolves in is
planar, when each place can be traversed in every non-blocked direction and when the
robot’s mission is to reach a set geographic position, Maze-solving algorithms such as
Pledge, variants of Bug (Rao et al., 1993) or their graph equivalent Greedy Perimeter
Stateless Routing (GPSR) (Bose et al., 2001; Karp and Kung, 2000) are guaranteed
to lead the robot to the goal. Bug and GPSR are simple variants of Greedy which
implement a “recovery phase” for objects breaking G: each time greedy navigation is
locally impossible (local minimum of the distance to destination), the robot circles the
obstacle right (or left, but always the same) and looks for a point of the obstacle closer
to the goal than the point where contact with the obstacle was initially made. Once a
point closer to the goal is reached, greedy navigation is used until a new local minimum
is found (see Figure 1.3). Of course and as visible on the figure, if an accurate map of the
environment was available, using it would lead to shorter paths to the goal than provided
by Bug, Pledge or GPSR. The constraint of each place being traversable in every non-
blocked direction means that one-way paths such as one-way streets or escalators are
forbidden.

On the necessity of mapping

In 3D non-G-environments, in nearly 2D environments with locally multiple layers (such
as cities with bridges and tunnels) and in environments with one-way paths, there exists
to our knowledge no algorithm ensuring that a robot can reach arbitrary (reachable) GPS
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robot

(a) In a non-G-environment, greedy
navigation (dotted blue) may fail to
lead to the goal



robot

(b) Even in a G-environment, neither
greedy navigation (dotted blue) nor
Bug (plain green) will follow a tra-
jectory whose length is the shortest
(dashed red)

Figure 1.3: Greedy navigation and Bug follow suboptimal paths, Greedy additionally fails
when there are local minima of the distance to some destination position
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coordinates without using and/or building a map of the environment. Additionally, even
in environments where a map is not necessary, not using one may drastically reduce
navigation performances. In chapter 8, we show that not using a map may lead to
average path lengths being multiplied by 2.5 or more. Consequently, using/constructing
a map and finding/updating the position of the robot within said map are convenient,
if not necessary for navigation (Filliat, 2001).

The fact that there is no map-less (no memory-less) algorithm for navigation in arbi-
trary environments implies that any algorithm guaranteeing navigation in an arbitrary
environment must use some form of memory. One fundamental question would then
be: “How much memory is required to reach a single destination/to reach an arbitrary
destination”. Or more generally, “What is the relation between memory and naviga-
tion performances”. As far as we know, this question was never formulated as such, let
alone answered, in the field of robotics. The interested reader will find an experimental
study of the link between memory and navigation performances for various algorithms
in chapter 8.

1.2.2 From mapping and localization to SLAM

Suppose that a robot simultaneously builds a map of an environment and localizes itself
within the map. Theoretically, the robot would want the map and its own position as two
separate entities, independent of each other. However, intuitively, localization is always
relative to the map, which in turn is constructed around a position. This intuition was
notably developed in early works by Chatila and Laumond (1985), Crowley (1985), Smith
and Cheeseman (1986) and Leonard and Durrant-Whyte (1991). Durrant-Whyte, Rye
and Nebot (1996) formulated the intuition mathematically and devised the simultaneous
localization and map building problem as the estimation of a joint robot-position-and-
map-state probability density. With an infinite number of observations, the relative
positions of observable features in the environment (the map) will become more and
more precise, with the robot’s localization being defined relative to the map, and not
relative to the environment. The actual position of the map relative to the environment,
while bounded, may not converge.

This seminal work of Durrant-Whyte et al. kickstarted the study of a problem now
known as Simultaneous Localization and Mapping or SLAM. SLAM is one of the pillars
of mobile robotics if not the “holy grail” of mobile robotics (Durrant-Whyte and Bailey,
2006). In part II, chapter 5, we give an extensive review of existing SLAM algorithms and
implement our own. The important element for now is that mapping and localization
should be treated as one single problem: SLAM.
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1.2.3 Adding planning and navigation to SLAM: PNSLAM

SLAM describes how to build a map from a set of observations and localize the robot on
said map. It does not describe how these observations should be made or how the map
can be used. Intuitively, both mapping and localization depend heavily on sensed data
(observations), which triggers the question: should there be a dual-way link between
data acquisition (sensors) and SLAM?

In the vast majority of works on SLAM, a “robot” is guided in an environment, with
sensors gathering data. Data are then processed either online or offline (after the run)
to produce both map and robot trajectory. Note that we put quotes around the term
“robot”. Indeed, the sensor platform does not need to be a robot: the sensor platform
does not take a specific action in response to a stimulus and cannot interact with the
world. Consequently, it is possible to do SLAM just letting a human or a human-driven
vehicle carry a camera around in the environment (see (Lim, Lim, and Kim, 2014) for
instance).

In order for a robot to move efficiently and autonomously in an initially (partially or
totally) unknown environment, we showed that using a map was mandatory. Since the
environment is initially at least partially unknown, the robot has to construct the map
using SLAM. Then, it must be able to plan paths using this map and to follow the plan
to reach its goal. The integration of navigation, planning and SLAM is critical since:

• The result of a planning algorithm heavily depends on the map and on the starting
position of the robot. As a minimum requirement, the map has to be usable for
navigation, and a starting position should be provided.

• While navigating along the path, the robot may find that the environment does
not correspond to what’s written on the map, because the map is either obsolete
or plainly wrong.

• While navigating along the path, the robot should update the map, its localization
on the map and possibly its itinerary according to the updated localization and
map.

• What the map contains depends on the trajectory of the robot.

We call PNSLAM the integration of planning, navigation and SLAM, as sketched on
Figure 1.4. PNSLAM is a superset of SLAM. PNSLAM covers a family of existing mobile
robotics problems:

• navigating from point A to point B,

11
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• reaching a target known by its approximate coordinates (see Exploratory Digraph
Navigation, chapter 3),

• finding a “treasure” in a labyrinth,

• exploring an initially unknown environment in one or multiple runs (piecemal ex-
ploration, see (Awerbuch et al., 1999)) and

• building niches and finding food in order to simulate real life.

We believe that the use of PNSLAM may lead to the discovery of new problems and of
solutions to them.

1.2.4 Considering finite resources: Lifelong Exploratory Navigation

One fundamental hypothesis of this thesis is that a robot should not maintain a connec-
tion to an external resource such as a database or a command server. Indeed, connection
to external resources such as a cloud server for storage and computations or even just
the GPS is not an option in many applications due to latency, bit-rate, eavesdropping
or interception issues, risks of loosing the connexion or sheer impossibility to maintain a
connexion. Marine, mine or extraterrestrial environments are typical examples where on
the one hand, robots are much needed and on the other hand, maintaining a stable high-
speed connexion is nearly impossible using state-of-the-art technology. Even in simple
indoor environments, Wi-Fi roaming and GPS signal degradations make it difficult to
download data from external entities. Consequently, even though external resources may
sometimes be accessed, it is necessary to make the pessimistic hypothesis that the robot
must operate on its own, without external help. When the robot operates on its own,
it has to consider its resources as finite and manage them carefully in order to maintain
an operational state.

Even with integrated planning, navigation and SLAM, a mobile robot will not be able
to move in extremely large environments, since no matter how much memory and com-
puting power the robot has, there are environments too big to fit into memory, to be
processed in real time or to be explored in a single run due to limited battery capacity.
While for a single robot mission (like “find an object” or “go to a specific position”),
the map of the environment acquired by SLAM may not exceed the memory capacities
of the robot, lifelong operation with diversified missions in potentially extremely large
environments is not possible without careful memory and computing power manage-
ment as well as a mission unit to choose which planning algorithm to use and prioritize
missions.

Typically, if the size of the environment the robot may have to operate in is defined as a
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number n of features, we wouldn’t like memory or computing power to grow in O(np≥1).
An O(log(n)) or less growth should be acceptable though. As an underlying theoretical
question, one can wonder what is the minimum amount of computing power and memory
needed to travel from any point to any other point of the environment. While we do not
give a conclusive answer to this question in this thesis, the relation between planning,
navigation and resource management is one key aspect of this work.

Speaking of resource management, probably the most important resource for robot nav-
igation is energy. Even though energy handling is critical, it is relatively easy for a robot
to know when to pause its current task to look for an energy source. For instance, if en-
ergy sources are written on the map, the robot can estimate (overestimate if robustness
is needed) how much energy is needed to reach an energy source, and never go too far
from any energy source according to this energy budget. While we do not address the
issue of energy management explicitly in this thesis, the algorithms developed in the fol-
lowing chapters (especially EDNA*, chapter 3) are compatible with energy management
in addition to being energy-friendly (by reducing the amount of movements required to
reach a goal and allowing foraging for energy sources). Energy management is handled
at the mission level in the schematic view of Figure 1.4.

We decided to call the ensemble {PNSLAM + resource management + mission control}
Lifelong Exploratory Navigation (Figure 1.4), where Lifelong denotes the fact that this
paradigm is intended for robots performing multiple missions over a long period of time.
We believe that this new paradigm can be used to create robots much more autonomous
and versatile than the current ones.
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Figure 1.4: A schematic view of PNSLAM, which unifies (P)lanning, (N)avigation and
(SLAM) and of Lifelong Exploratory Navigation (LEN), which adds in resource
management, mission control and interfaces to higher level intelligence. Plain
arrows show data dependency while double arrows show integration of compo-
nents. Available resources include memory, battery and processing power. An
implementation of each of the main components (Planning, Navigation, SLAM
and Resource handling) is provided in parts II and III of this thesis.
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2 Lifelong Exploratory Navigation - a
system view

Lifelong Exploratory Navigation is a new paradigm whose definition includes planning,
navigation, SLAM, memory and computing power management. While the previous
chapter was focused on what a mobile robot should be able to do, this chapter gives an
insight on how to perform the tasks, from a structural point of view. In this chapter,
we give an overview of various components required for LEN and explain how they
can interact. Each component operates with specific timing, complexity and safety
constraints. The components are structured within a hierarchy based on time and space
scales and inspired by animals and humans.

2.1 High-level view of a robot

Figure 2.1 presents a very high level view of a robot. We made the user optional because
the definition of a robot, given in the previous chapter, does not mention a user. Indeed,
some robots do not have users, such as the Ecobots produced at Bristol university, whose
aim is just to live eating organic matter (Ieropoulos et al., 2010). While a robot without
user interaction may not seem very useful, there are potentially a huge number of uses
for such robots such as autonomous treatment and transformation of waste, interaction
with wildlife and completely autonomous cleaning agents. Science fiction authors would
add to these more exotic missions such as terraforming. However, most currently used
robots are equipped with some form of reporting mechanism, whence the inclusion of a
user on the sketch.

In the rest of this chapter, we will explore how the “robot” block of Figure 2.1 should be
structured in order for the robot both to preserve its physical integrity and to accomplish
a mission it was given, or a mission it has decided to undertake on its own. Deciding
which mission to undertake and how to undertake it is the role of the “mission” unit on
Figure 1.4.
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Figure 2.1: Very high level view of a robot. The presence of a user is optional.

2.2 LEN in animals

The first sources of inspiration to try and derive the internal components of the “robot”
on Figure 2.1 are animals and humans. While the structure and functioning of the brain
have not been fully puzzled out yet, existing studies on planning, navigation or SLAM
do give us hints on how PNSLAM may be implemented in our own brain.

2.2.1 Perceiving distances and directions

The seminal work of Tolman et al. (1948) reports experiments in which rats are trained
to go to a food source in a simple environment. Then, the environment is made more
complex. In the complex environment, rats tend to choose paths whose angle best
matches the direction of the food source. Thus, it can be deduced that rats have some
notion of orientation and angles. The works of Alyan et al. (1994), Etienne et al. (2004;
1996) as well as other works listed in (Touretzky and Redish, 1996) show that rodents
not only have a notion of angles, but also of distances. This gives them a basic sense of
vector arithmetics (additions (Touretzky and Redish, 1996) and subtractions (Etienne
and Jeffery, 2004; Etienne, Maurer, and Séquinot, 1996)) and enables them to do path
integration, that is to determine their position based on their past movements.
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Alyan et al. (1994) suggest that path integration is used when the animal only has
poor knowledge of the environment and is replaced by place or beacon recognition when
knowledge about the environment increases. When there is a conflict between positions
returned by both methods, path integration is privileged in case the conflict is major and
place or beacon recognition is privileged when the conflict is minor. Touretzky (1996)
suggests that since the process of recognizing beacons and localizing relative to them is
quite expensive computationally wise, rodents prefer using odometry for short journeys,
rarely updating their absolute position by observing beacons. Hamsters and ants can
use odometry to reach the vicinity of their goal and processes implying environment
recognition to finally home in on the goal (Etienne and Jeffery, 2004).

Path integration is performed by animals using their vestibular organs to detect acceler-
ations in 3D as well as efferent motor signals. Some animals such as blind mole rats use a
compass sense to improve the precision of their odometric sensing (Kimchi, Etienne, and
Terkel, 2004), which comes of use in large environments. Visual optic flow is also used
(Gibson, 1950) to find relative movements. Path integration computations are believed
to happen within the hippocampus (McNaughton et al., 2006).

The experiments of Byrne (1979) on humans show that our notion of angles and lengths is
approximative: angles are most of the time approximated to multiples of 90° and distance
estimates get biased by path curvature and subjective utility of a path. Similarly, the
study of McNamara et al. (1989) shows that our estimate of distance between objects
depends on membership of these objects to the same or different semantic groups.

2.2.2 Path planning

Path planning in animals and humans is less studied than localization, mapping and
navigation. The only papers we could find on the subject are theoretical papers by
Ponulak et al. (2013) and Rueckert et al. (2016) on wavefront propagation in an artifi-
cial spiking neuron network. The observed propagation scheme resembles what can be
obtained using Dijkstra’s shortest path algorithm. However, there is no proof that such
a propagation scheme is actually used in the living world.

2.2.3 SLAM

A graph-like map

The experiments of O’Keefe et al. (1987), Whishaw et al. (1991) and Etienne et al.
(1996) on rodents as well as that of Collett et al. (1997) on bees tend to prove that
these animals rely on a map of the environment stored as a graph of places (vertices)
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and links between them (for instance, distances and changes in angles). A graph-based
model can easily integrate semantic data describing vertices and links between them,
which Byrne et al. (1979) use to support the idea of semantic graph-based mapping
in humans. In the same vein, bees locate themselves relatively to successive beacons
(graph-based localization) until the goal is near enough to be directly recognized and
tracked by the vision system.

One weakness of beacon-based localization is its dependency to point-of-view. Thus,
a drastic decrease of localization performances should be expected when the point of
view changes, even when the scene itself does not change. This decrease is observed by
Simons et al. (1998). Since planning, navigation and localization need to abstract away
orientation, it is expected for vertices of the graph map to be more complex entities than
just point-of-view dependent perceptions (Touretzky and Redish, 1996). In the mammal
brain (at least), the hippocampus contains a zone called PPA for Parahippocampal Place
Area containing neurons which only fire when the animal is in a specific place (place
units), moves between places (displace units) or does not detect a place it expected to
find at the current location (misplace units) (Epstein and Kanwisher, 1998; O’Keefe
and Speakman, 1987; O’Keefe, 1976; Touretzky and Redish, 1996). This area of the
hippocampus is only sensitive to places, not to faces or to objects. Consequently, place
units continue emitting neuronal spikes when the animal is currently at the place they
are describing, even though the immediate environment has changed (things have been
removed or added). Place units also fire in the dark, despite the fact that no visual cue
is available. We can deduce from these observations that each place unit is associated to
a physical position defined by multiple criteria and observations (similarly to the local
maps used in robotic SLAM by Bosse et al. (2004)).

Finally, a graph-like map offers the ability to model a hierarchy in places and place
characteristics, including membership relations. This is compatible with the experiments
of McNamara et al. (1989) where humans had to estimate distances between objects
and estimations were biased by objects belonging or not to a common semantic group.

A dense map

In rats and humans at least, it was observed (Doeller, Barry, and Burgess, 2010; Ekstrom
et al., 2003; Kuipers, 2000; O’Keefe, 1976) that certain zones of the hippocampus had
neurons forming a metrical map of the environment, in the sense that excitation of
a neuron at position (f(x), g(x)) in the hippocampus corresponded to the animal or
human being at position (x, y) of the environment, with f and g two bijective functions
(ideally). Compared to graph-like maps, these neurons form a dense metrical map of
the environment.

Dense and graph-like (or topological) maps are not mutually exclusive. Indeed, a dense
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map is similar to a graph with many vertices and metrical relations between vertices
(Figure 2.2). The idea that there may be multiple interacting representations is also
present in the work of Newman et al. (2007). In this work, Newman et al. observed the
behavior of taxi drivers having to localize themselves in changing virtual environments.
Their conclusion was that there exists a hierarchy between localization strategies: when
layout data is available as well as visual cues and there is a contradiction between both,
visual cues are privileged. When one of the representations is missing, the other one
will be used. Steck et al. (2000) add that human navigation uses both local beacons
(whose visibility is limited to a certain distance) and global cues (objects and properties
visible or accessible from a large fraction of the environment, such as the sun, a tower
or a compass sense). When one source of information is not available, the other one is
used.

2.2.4 Resource handling

The memory and computing capacities of the brain are still widely unknown and under
investigation (Bartol et al., 2015). For instance, the rate at which living creatures learn
and forget things is still widely undetermined. What we can be sure of is that living
creatures are able to navigate in almost any environment that is presented to them, no
matter how old they are, with the hypothesis that old creatures will have perceived more
things and thus should have more memory issues. Thus, either the brain’s computational
capacities are so high that the size of the map in memory will never be a problem or there
is some kind of forgetting mechanism. Such a forgetting mechanism can be observed with
Artificial Neural Networks (ANNs) when the amount of data to learn far exceeds the
number of neurons or connections in the network. In this case, useful knowledge may be
forgotten (catastrophic forgetting, see (Robins, 1995)).

2.2.5 Summary of animal LEN capacities

Animals (or at least some species) are capable of:

• Traversing an environment from any known place to any other known place (which
includes planning and navigation capacities),

• avoiding obstacles (which requires a local representation of occupied space includ-
ing zones immediately behind the animal),

• maintaining a topological representation of the environment,

• maintaining a metrical representation of the environment,
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a b

c d

Figure 2.2: A dense map (a) is similar to a grid-graph (b). Even if the graph is deformed
(c) and if topology changes slightly (d), the map still looks similar. Case (d)
is probably closer to how maps are stored in the hippocampus than cases (a),
(b) and (c).
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Figure 2.3: Primitive control architectures from (Filliat, 2001): (a) hierarchical, (b) reac-
tive and (c) hybrid.

• performing localization within the environment,

• accomplishing various missions implying movements such as go to a target, explore,
find food or find the closest hideout and

• (probably) forgetting or compressing unused map data

These capacities give us a hint on what a mobile robot should be able to do, and how
to do it. They are also a proof that the Lifelong Exploratory Navigation paradigm can
be implemented. Reproducing the tasks performed by animals requires a robust robot
control architecture describing time and space scales as well as the interaction between
various subparts of a robot (sensors, actuators, artificial intelligence, . . . ), which is the
purpose of the next section.

2.3 The Hybrid Spatial Semantic Hierarchy and other models

2.3.1 Primitive architectures

Various robot architectures have already been proposed. Filliat (2001) for instance lists
three of them: hierarchical, reactive and hybrid (see Figure 2.3).

While the “reactive” architecture is clearly not sufficient for PNSLAM in huge environ-
ments, let alone LEN, the two other architectures are in fact similar, with planning as a
supervising step.
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2.3.2 Hierarchical SLAM and navigation structures

We can track down the origins of modern robot control architectures for SLAM and
navigation to a paper written by Crowley (1985). This paper formulated the following
ideas:

• Sensing and control should be done within an (at least) three-level model: a sensor
model, a (composite) local model and a global model.

• Path planning is done at two levels: global path planning, requiring a global map
of the environment, and local path planning, navigation and obstacle avoidance,
requiring a representation of nearby obstacles.

• The global map is represented as a network of places.

A similar, albeit more complex control architecture was formulated years later by Kuipers
(2000). The proposed hierarchy of space models is known as the Spatial Semantic Hier-
archy (SSH). The SSH models environmental representations in a hierarchical approach
(Figure 2.4). These representations are, from the least abstract to the most abstract:

1. the sensor level, which is basically sensor values;

2. the control level, which describes low-level control laws;

3. the causal level, which includes the notion of view, actions and odometry;

4. the topological level, which describes places, paths and connectivity and

5. the global 2D geometry, which describes accurate global metrical data

The key idea of the SSH is to extract the topology of the environment from a local view
and to build a global metrical map by some optimization process using the topological
map. Compared to the work of Crowley (1985), the SSH distinguishes the topological
and metrical components of the global map. The SSH was used in later works by Kuipers
and his team (Beeson, Jong, and Kuipers, 2005; Beeson, Modayil, and Kuipers, 2010;
Kuipers et al., 2004). It is also implicitly or explicitly used in nowadays’ most advanced
SLAM approaches such as hybrid metrical/topological mapping (Bailey, 2002; Bosse
et al., 2004) and graph SLAMS (Gutmann and Konolige, 1999; Pinies, Paz, and Tardos,
2009; Schuster et al., 2015; Thrun and Montemerlo, 2006; Wagner, Frese, and Bauml,
2014).

The SSH was later improved (Beeson, Modayil, and Kuipers, 2010; Kuipers et al., 2004)
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Figure 2.4: (simplified view) The Spatial Semantic Hierarchy (SSH) and the Hybrid Spatial
Semantic Hierarchy (HSSH) are multilevel SLAM architectures from sensors
to large-scale optimized maps. The main advantage of the HSSH over the SSH
is the use of a local perceptual model or local map, that is a local metrical
representation from which a local symbolic representation is extracted.
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into an “Hybrid Spatial Semantic Hierarchy” or HSSH (Figure 2.4), whose main advan-
tage over the SSH is the use of a local perceptual model or local map, that is a local
metrical representation from which a local symbolic representation is extracted.

While the HSSH was proven to be a robust architecture for SLAM, it lacks integration
of planning and navigation, reflecting the common practice in SLAM literature to let
aside planning and navigation as external issues.

2.4 System view of our Lifelong Exploratory Navigation
approach

We propose a Lifelong Exploratory Navigation mobile robot architecture based on the
HSSH (for its SLAM capacities) and on a hierarchical control structure. Our architecture
is sketched on Figure 2.5. This architecture has a few notable properties.

First, the (hard) real-time algorithms necessary for safety (obstacle avoidance) are de-
coupled from Artificial Intelligence (AI) processes such as planning, topological SLAM,
mission unit, etc., which means that no matter the algorithmic complexity or running
time (or crashes) of the high-level AI, safety is still enforced. In fact, this robot control
architecture matches the timescales observable in human beings:

• The sensorymotor level is where reflexes occur: fast movements in direct response
to a stimulus.

• The local occupancy grid and topology extraction levels maintain a local map of
nearby obstacles, as needed for obstacle avoidance and fast action.

• The topological SLAM and Exploratory Planner as well as mission unit and ab-
stract AI are the common “thoughts” of a human.

• Map optimization and compression are steps optional for navigation and PNSLAM
but necessary for LEN that would typically be executed during a “dream” phase
in a human brain.

Note that movement scales defined in paragraph 1.1.2 are also visible in this struc-
ture: large-scale movements correspond to the components running in non-constant
complexity (especially topological SLAM and planning) while maneuvers correspond to
all components up to topology extraction and local topological navigation.

Second, this structure is compatible with the PNSLAM behavior observed in animals:
there are both local-dense and global-topological maps. As in the HSSH, the topological
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map is augmented with approximate metrical properties.

Third, it is possible to switch a specific component without changing the rest of the
structure. Programmatically, minimum standard interfaces allow smooth integration of
components. It is possible to run different components in different places: sensors on
the robot, AI on a dedicated computer, . . . Our whole LEN approach may also run on a
single computer aboard the robot.

Finally and as visible on Figure 2.5, AI functions not related to large-scale movements
and maneuvers are completely separated from the Lifelong Exploratory Navigation ar-
chitecture. In fact, the LEN architecture can be viewed as a service offering an interface
to physical movements to a client AI process. This client AI process may request move-
ments and get feedback from the LEN architecture in a transactional way. For instance,
in order to find a specific item in the environment, the AI process may require the robot
to travel to a certain approximate location, a task which is forwarded to the mission unit
of Figure 2.5. While the robot is moving to the desired location or exploring around the
location, the AI process may use an object detector to look for its target item. Another
AI process independent from LEN may handle physical manipulations of the item once
found. This new AI process may request further movements from the LEN architecture
in order to position the robot more accurately relative to the item. Then, another AI
process may order the LEN architecture to return to a place where the item should be
deposited, etc.

The rest of this thesis derives the blocks marked as “new” or “improved” on Figure 2.5.
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Figure 2.5: The mobile robot architecture used in this thesis is derived from the Hybrid
Spatial Semantic Hierarchy (Beeson, Modayil, and Kuipers, 2010). In addition
to the HSSH, our framework integrates navigation and planning as well as
mission handling and map compression. This sketch is a detailed version of
Figure 1.4. Algorithmic complexities (green), space scales (red) and time scales
(blue) are given for the main components (O(K) means constant time). Our
main contributions, developed in part II, are marked with yellow stars (new
components) and crosses (improved components).
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Part II

Planning, Navigation and SLAM

The pioneer 3 robot equipped for mapping experiments. On
top of a long cardboard box, the magnetometer is protected
from the metallic parts of the robot.
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3 Exploratory Planning

“All right, we’re here! Let us never speak of the shortcut again.”
Homer, The Simpsons, Itchy & Scratchyland

http://tvtropes.org/pmwiki/pmwiki.php/Main/ShortCutsMakeLongDelays

In this chapter, we define an Exploratory Planner (EP) as a path planning algorithm
operating on an incomplete map and able to take advantage of yet unmapped areas.
We also introduce a PNSLAM approach called Exploratory Digraph Navigation (EDN).
EDN is a planning-centered view of PNSLAM which uses navigation, SLAM and EP as
external components (Figure 3.1).

The key idea of an exploratory planner is that it can choose to resort to an exploration
phase if it sees a sufficient benefit in it. In order to improve a given heuristic, the path
planner may choose to privilege exploration of uncharted space or reuse of known paths.
Exploration is riskier (it may lead to dead ends) but may also lead to shortcuts. An ex-
ploratory planner can smoothly transition from pure path planning to pure exploration.
We develop the EDNA* (Mayran de Chamisso, Soulier, and Aupetit, 2015) exploratory
planner as a simple modification of A* (Hart, Nilsson, and Raphael, 1968). This mod-
ification can be ported (see appendix 2) to other path planners such as (Lazy) Theta*
(Nash et al., 2007; Nash, Koenig, and Tovey, 2010).

3.1 Notations

Let W be a physical environment which can be completely described by a map in the
form of a directed graph (or digraph) GR. The R of GR stands for “real” (ground truth).
Let VR be the set of vertices of GR and ER ⊂ VR × VR × N be the set of edges of GR.
An edge e ∈ ER is uniquely identified by its origin or “source” vertex S(e) ∈ VR, its
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Figure 3.1: Exploratory Digraph Navigation (EDN) is a planning-centered view of
PNSLAM and LEN.

29



3 Exploratory Planning

𝓥

𝓥 𝓥

𝓤 𝓔

𝓖 𝓥 𝓔

𝓖 𝓥 𝓔

𝓔

𝓔 𝓔 𝓤

𝓑 𝓥

Figure 3.2: Sketch of the notations used in this chapter: explored and unexplored space
and boundary vertices and edges.

destination or “termination” vertex T (e) ∈ VR and an integer identifier used only when
multiple edges link the same origin vertex to the same destination vertex.

The robot navigates in W while running SLAM to maintain a map of the environment
G ⊂ GR, so that GR\G represents space not explored yet. Felner et al. (2004) call G
the currently known graph. Let V be the set of vertices of G and E ⊂ V × V × N be
the set of edges of G. In addition to these vertices and edges, called internal vertices
and explored edges respectively, we also define boundary vertices (B) and unexplored
edges (U). Unexplored edges are edges whose origin is in B but whose destination is
unknown (it may be in VR\V or in B). Formally, the set of boundary vertices is B ⊂ V
and the set of unexplored edges is U ⊂ B × ((VR\V) ∪ B) × N. Boundary vertices are
vertices which possess at least one unexplored outgoing edge: B = {v ∈ V, ∃e ∈ U ,∃v′ ∈
((VR\V) ∪ B), S(e) = v, T (e) = v′}. The boundary state of these vertices is known at
planning time. From the definition follows that G = GR ⇔ U = ∅ ⇔ B = ∅. V 6= VR
and E ∪ U 6= ER in general since some vertices and edges of GR may be missing (not yet
discovered) in G. All notations are sketched on Figure 3.2.
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3.2 Introducing Exploratory Planning and Exploratory Digraph
Navigation

3.2.1 Definitions

From its current position, the robot wants to reach a goal position with minimal effort.
While planning its path to the goal on G, it realizes that it essentially has two choices
represented on Figure 3.3: using a known (safe) path, which may be quite long, or trying
to find a shortcut thanks to places whose knowledge is incomplete (examples of vertices
in B are rooms containing doors not yet opened or junctions with corridors not yet ex-
plored). However, taking a shortcut is risky since the expected shortcut may actually
be a dead end, forcing the robot to turn back and replan its path. The said shortcut
may also actually be longer than the safe path. Depending on its internal state (battery
level, mission, . . . ), the robot may want to privilege the safe path or hope for luck and
try an exploratory path which may lead to a decrease of traveled distance relative to the
safe path while increasing the robot’s knowledge of its environment. We call the algo-
rithm responsible for path planning while considering shortcuts an Exploratory Planner
(EP). At the heart of Exploratory Planning is a trade-off between safety guaranteed by
exploitation of existing knowledge and short and long term efficiency obtained through
exploration of uncharted territory, described for example by Argamon-Engelson et al.
(1998).

We additionally define Exploratory Digraph Navigation (EDN) as the PNSLAM problem
of physically reaching a known destination F ∈ G from a known origin O ∈ G with decent
navigational and computational cost. Exploratory Planning is the Planning component
of EDN. In addition to EP, navigation and SLAM are required in order to physically
traverse yet unexplored space, model it as vertices and edges and add these to G. GR is
the theoretical limit of G when all available space has been explored.

We developed exploratory planning for use in Exploratory Digraph Navigation and more
widely PNSLAM problems where a robot models its environment as a graph (Beeson,
Jong, and Kuipers, 2005; Bosse et al., 2004; Choset and Nagatani, 2001) or as an
occupancy grid (Elfes, 1989). Indeed, an occupancy grid can be treated as a graph where
vertices are pixels and each vertex is connected to its neighbors if space is traversable
(chapter 2, Figure 2.2). Other problems related to graph theory but outside the field
of robot navigation such as the Traveling Salesman’s Problem or routing problems in
changing networks may also benefit from Exploratory Planning. In these problems,
the computational cost or algorithm execution time associated to planning is small but
not necessarily negligible compared to the navigational cost associated to navigation
and exploration, where the navigational cost is defined as the energy used or distance
physically traveled summed on each move until destination is reached.
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Figure 3.3: Typical example of Exploratory Planning (EP). At planning time, the navigat-
ing agent knows that the boundary vertex has yet unexplored edges, because
for instance there is a door it has never opened. Compared to using an already
known and safe path (1) to the goal, traversing yet unexplored space may (3) or
may not (2, 4) reduce the navigational cost. EP heuristically decides whether
or not to use exploration.
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3.2.2 What Exploratory Digraph Navigation is not

To our knowledge, EDN has never been formulated as such. However, a number of close
PNSLAM problems have already been formulated. Most of them are still open as of
2014.

The Canadian Traveler Problem (CTP) (Bar-Noy and Schieber, 1991; Karger and
Nikolova, 2007) and the Stochastic Shortest Path Problem with Recourse (SSPPR)
(Polychronopoulos and Tsitsiklis, 1996) are concerned with graphs where some edge
traversal costs may be unknown (edges may not even exist) at planning time. However,
the edge traversal cost is unknown but the extremities of explored and unexplored edges
are still known, which is not true for unexplored edges in EDN. D* and D*Lite (Koenig
and Likhachev, 2005; Koenig, Likhachev, and Furcy, 2004; Stentz, 1995) are known
approximate CTP/SSPPR solvers used for mobile robot planning and exploration (see
(Koenig, Tovey, and Smirnov, 2003) for instance). EDN can solve navigation problems
on graphs G with unknown edge costs but is not restricted to graphs with all possible
edges or all possible topologies known at planning time.

EDN is a generalization of graph exploration (Awerbuch et al., 1999; Betke, 1991; Dess-
mark and Pelc, 2004; Panaite and Pelc, 1999; Smirnov et al., 1996) since increasing the
knowledge of G relative to GR is not mandatory in EDN but any EDN solver should be
able to perform exploration at least when O and F initially belong to different compo-
nents of G.

The shortest path between O and F in a partially unknown environment is provably
computed by PHA* (Felner et al., 2004) for future use at the expense of immediate
navigational cost. EDN is a navigation problem aiming at reaching F with minimum
navigational cost. As a side effect, a reusable path from O to F is found which hope-
fully exhibits a low (but not necessarily minimal) navigational cost. As opposed to the
approach of Argamon-Engelson et al. (1998), EDN does not require the whole graph
to be considered for each planning step and only considers exploration reducing the
navigational cost to the goal (immediate reward).

3.2.3 Exploratory Digraph Navigation as a stochastic problem

EDN can be treated stochastically (stochastic edge or vertex traversal cost). The study
of pathfinding on graphs with stochastic properties, pioneered notably by Loui (1983)
is an active field of research, notably with the Markov Decision Process formulation
(Puterman, 1994). EDN can conform to the formalism of stochastic graphs if every
boundary vertex is connected to every other boundary vertex or directly to F with virtual
edges whose traversal costs are described by probability distributions. The resulting
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problem can then be solved using a utility criterion (Loui, 1983) or other techniques
out of scope of this thesis. However, the choice of the probability distribution for each
virtual edge is not trivial notably due to destinations of unexplored edges possibly already
belonging to G (unexplored loops). We therefore prefer a non-stochastic approach with
a single number instead of a probability distribution to represent the length of virtual
edges. Our approach of EDN nonetheless shares with a recent approach of the stochastic
shortest path problem by Trevizan and Veloso (2014) its tunable search horizon and
penalization of intermediary goal states.

3.3 EDNA*

We introduce a new algorithm, EDNA* (Exploratory Digraph Navigation using A*)
which achieves EDN using an improved version of A* for planning.

3.3.1 From A* to EDNA*

Let O0 be the starting position of the navigating agent in the usual Euclidean space R2

or R3. On with n > 0 is the position of the navigating agent after the nth run of EDNA*.
O is always the starting position of the current run. We need the hypothesis that GR
is static (it does not change during the experiments) for the theoretical proofs. SLAM
experiments reported in chapter 6 show that EDNA* may also work on dynamically
changing graphs though.

A path (sequence of edges from one vertex to another) is said to be admissible in a
graph if it has the lowest navigational cost amongst all possible paths. Multiple paths
can be admissible. ∀(X,Y ) ∈ V2, let D(X,Y ) be the (non-commutative) navigational
cost from X to Y following an admissible path on G. G can carry arbitrary per-vertex
and per-edge traversal costs, as long as each vertex traversal cost is greater or equal to
zero and each edge traversal cost is strictly positive. If no path exists from X to Y , we
take the convention that D(X,Y ) =∞.

EDNA*, like A*, requires an admissible but not necessarily consistent heuristic H
(Dechter and Pearl, 1985) estimating the distance between two vertices. For given ver-
tices (X,F ) ∈ V2, the value of the heuristic is written H(X,F,G), abridged to H(X) if
unambiguous. The admissibility constraint (H never overestimates navigational costs)
writes ∀(X,Y ) ∈ V2,H(X,Y,G) ≤ D(X,Y ). When not mentioned otherwise, the R2

metric space with H(X,F,G) = ||F −X|| (L2 norm) is used since it is the most common
space in path-planning applications.

It is not possible to add a shortcut discovery strategy to A* by modifying H for two
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reasons. First, taking a shortcut is risky so that H should be increased, which in turn
is in conflict with the admissibility constraint on H. Second, a boundary vertex can be
found on an admissible path, in which case there is no reason for penalizing it. For these
reasons, EDNA* defines a second heuristic, R, the shortcut risk heuristic, on boundary
vertices. R estimates the navigational cost of a shortcut while taking into account the
risk that this cost was underestimated. Given the origin O of an EDNA* planning step
and Z ∈ B, the value of the heuristic writes R(O,F, Z,G). We insist on the fact that
R does not replace H, even on boundary vertices where it is used to add information
to H. R(O,F, Z,G) is abridged to R(O,Z) or R(Z) if there is no contextual ambiguity.
There is no constraint on R (it can be negative or even infinite) even though we will
see that there is no interest in having R(O,F, Z,G) < D(O,Z) +H(Z,F,G). The value
of R relative to D(O,Z) +H(Z,F,G) determines how reluctant the navigating agent is
to try and discover shortcuts. The idea of using multiple heuristics in a single A* run
has also been developed by Aine et al. (2016) under the name “Multi-Heuristic A*”.
However, while Aine et al. use the heuristics to guide the search in order to reduce the
computational cost of the approach, EDNA* uses the new heuristic to find shorter paths
going through yet unexplored space. Additionally, the H and R heuristics in EDNA*
compete with each other, the first one describing a purely navigational strategy and the
second one describing a partially exploratory strategy. The heuristics of Multi-Heuristic
A* all describe purely navigational strategies.

Finally, we define an EDNA* run as the combination of a planning phase, purely com-
putational, where a path to some vertex X ∈ V (not necessarily F ) is computed on
G, and of a plan execution (or navigation) phase, purely navigational, where the agent
physically navigates on W from its current position to the position x ∈ W correspond-
ing to X ∈ GR while updating its current position on G through SLAM. When at X,
if X 6= F then X ∈ B and the agent takes the “most promising” unexplored edge si-
multaneously on x and X and follows it until it reaches another vertex. We embed the
concept of “most promising” or “best” edge into R by saying that for each boundary
vertex, its R value is computed with the best edge in mind. For instance, the best edge
may be the one whose angular difference with the goal vertex F in a metric space is the
best amongst all unexplored edges on X. The most promising edge can also be chosen
randomly, possibly resulting in higher navigational costs on average.

3.3.2 Exploratory Planning with EDNA* (Algorithm 1)

Like A* (Hart, Nilsson, and Raphael, 1968), EDNA* planning has two phases. The first
one is a vertex expansion phase where vertices X are considered in order of increasing
expected navigational cost δ(X) = D(O,X)+H(X,F ) and starting with O. The priority
queue used to store vertices and their navigational cost (X, δ(X)), also known as open
set, is called Q. If H is not consistent, a list S (called closed set) of already encountered
vertices is maintained since vertices can be encountered again with a lower δ. In the

35



3 Exploratory Planning

second phase, an actual path is computed starting at F or Z ∈ B and going back to
O. The interested reader will report to open-source implementations of A* for details
and implementation of the second phase. Planning is done on G and does not imply any
movement in W.

EDNA* has the same algorithmic complexity as A*, that is up to exponential in the
size of the graph (Pearl, 1984; Russell and Norvig, 2009). On graphs describing physical
environments, vertices have a bounded number of outgoing edges (or out-degree) and
the time complexity of the algorithms can be measured in terms of vertices expanded
during the vertex expansion phase. Figure 3.6 shows that expanded vertices are located
within a kind of ellipse whose focal points are O and F . Consequently, the effective
time complexities of A* and EDNA* are described by the surface of the ellipse, that is
between linear and quadratic in the distance to destination ||F − O|| depending on the
layout of obstacles (supposing uniformly distributed vertices in the graph).

Algorithm 1 Exploratory Planning with EDNA*
Input: O, F , G, H : X → H(X,F,G),R : Z → R(O,F, Z,G)
dest ← ∅; best_distance ←∞; Q← (O, δ(O)); S ← ∅
while Q 6= ∅ do

pop (X, δ(X)) from Q; S ← (X, δ(X))
if δ(X) > best_distance then

break //EDNA* early stopping criterion
if X = F then

dest ← F ; best_distance ← δ(F )
break //traditional A* stopping criterion

if X ∈ B then
if R(O,F,X) ≤ best_distance then

dest ← X; best_distance ← R(O,F,X)
for all neighbors T of X do compute δ(T )

if not ( (T ∈ S and δ(T ) ≥ δ(T )S) or
(T ∈ Q and δ(T ) ≥ δ(T )Q) ) then

Q← (T, δ(T ))
if dest = ∅ then return failure //no path can be found
unroll a path from dest back to O and return the path found

3.3.3 Properties of the EDNA* exploratory planning algorithm

At the end of the algorithm, EDNA* returns a path to F or to a boundary vertex Z from
which exploration must take place. If no path from O to F exists on G and there is no
boundary vertex accessible, the algorithm cannot find a path. If no path exists from O to
F and there is at least one boundary vertex, the algorithm will always give the shortest
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path leading to the boundary vertex Z with the lowest R(O,F, Z) encountered during
expansion. It will thus perform similarly to Agent-Centered A* (Smirnov et al., 1996) if
∀ Z ∈ B,R(O,F, Z,G) <= D(O,Z) +H(Z,F,G). EDNA* is a greedy algorithm since
the path choice is always optimized for the current origin O. Finally, EDNA* always
expands less vertices than A* during one planning phase since vertices expanded by
EDNA* would be expanded by A* but the early stopping criterion based on R may stop
algorithm 1 before the whole A* search space has been expanded. However, F may not
be reached in one run, so that EDNA*’s search space may end up being bigger than
A*’s.

3.3.4 Navigation with EDNA* (Algorithm 2)

In order for the agent to actually move in the world, a topological navigation algo-
rithm compatible with the EDN paradigm is required. The simple algorithm 2 performs
the navigation task while being independent of the underlying planner (here EDNA*).
Physically following a path or exploring an edge means that the navigating agent simul-
taneously moves inW, which incurs a navigational cost, and updates its current position
on G. Vertex recognition and map update must be handled by a separate algorithm,
such as those used for topological SLAM (see (Bosse et al., 2004) or chapter 5 for exam-
ple). Figure 3.4 shows an example of EDNA* reducing the navigational cost compared
to A* thanks to a shortcut. Figure 3.5 shows a more complete EDNA* run highlighting
the steps of the algorithm and the role of R. Finally, Figure 3.6 gives a geometrical
interpretation of A*’s guiding heuristic H and EDNA*’s risk heuristic R.

Algorithm 2 Navigation with EDNA*
Input: W, O, F , G, H : X → H(X,F,G)
Input: R : Z → R(O,F, Z,G)
n = 0, On ← O // origin
while On 6= F do

call EDNA* Planning(On, F,G,H,R)
→ Returns path to On+1

physically follow path from On to On+1 //takes time
n← n+ 1
if On = F then break //successfully reached F
physically explore best edge E to reach a vertex On+1
n← n+ 1, insert E in G //new edge
while (On /∈ G) do

insert On in G //new vertex
if On /∈ B then break //dead end
physically explore best edge E to reach On+1
n← n+ 1, insert E in G //new edge
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Figure 3.4: EDNA* shortcut discovery as described in algorithms 1 and 2. 8-way connected
grid-like graphs used for a better understanding of the principles at work.
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Figure 3.5: EDNA* shortcut discovery as described in algorithms 1 and 2. 8-way connected
grid-like graphs used for a better understanding of the principles at work.
EDNA* starts exactly like A* (1). During step (2), a shortcut hypothesis is
made. This shortcut is obsoleted by a better one in step (3). Later (4) and as
detailed on Figure 3.6, R reaches D+H, at which point EDNA* forks from A*
by taking the shortcut (7) while A* keeps trying to reach the destination (5).
A* finally reaches the goal (6), which EDNA* also does (9) after an exploration
phase (8). Compared to the theoretically optimal path (0), EDNA* returns a
marginally longer path while A* leads to a non-negligible detour.
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Figure 3.6: This Figure is a zoom on steps (3) and (4) of Figure 3.5. Vertices which are
going to be expanded next by A* or EDNA* (colored in yellow on the figure)
verify D + H = K with K a constant. K/H(O,F ) represents the minimum
detour to reach the destination given the current state of the algorithm. No
path from O to F may be shorter than K. The equation D +H = K defines
a kind of ellipse whose focal points are O and F and whose eccentricity e =
H(O,F )

K reflects the minimum possible detour given the current state of the
algorithm. It is not a true ellipse since D is an on-graph distance while H is
an Euclidean distance. R can be represented as another ellipse with the same
focal points but eccentricity H(O,F )

R . EDNA* chooses a shortcut as soon as
both ellipses become equal.
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3.3.5 Convergence proof and exploration variant

Let e and emax be the amount of explored edges in the component around O0 of G and
GR respectively.

Theorem 1 (Navigation success and upper bound). If GR is strongly connected, EDNA*
will always lead the navigating agent to F ∈ GR from any O0 ∈ GR. A maximum of
1 + (emax − e) EDNA* navigation runs will be necessary.

Corollary 1 (Complete graph exploration). If F is unreachable from O0 because both
vertices belong to a different component in GR, at most (emax − e) EDNA* navigation
runs will lead to exploration of the whole component containing O0 before returning an
error. The 1 + (emax − e) bound is tight.

Proof. An EDNA* run either leads to F , returns an error or registers at least one new
edge in G, so that at most (emax−e) runs would lead to e = emax. As EDNA* is exactly
A* when the graph is completely known (G = GR), a last EDNA* run on GR will lead
to F if reachable or return an error if not reachable, but after having discovered the
component containing O0 (otherwise, there would be a boundary vertex which EDNA*
would target). The bound is tight considering a chain of vertices connected in GR but
not in G (Figure 3.7).

Using F /∈ GR, corollary 1 can be used to achieve complete exploration of an unknown
graph prioritizing a specific position or direction (“goto approximate coordinates” mis-
sion). The position of F will be used to bias shortcut discovery, but as the vertex cannot
be reached, the whole subgraph around O0 will be explored, starting with the part clos-
est to F . In order to explore the environment radially around O0, giving O0 as target
position but not taking F = O0 is sufficient.

It should be noted that each run of EDNA* leads to up to one unit of long-term memory
(one new edge) being used. Thus, EDNA* is guaranteed to reach the goal, but at
the expense of using up to (emax − e) units of long-term memory. In a context where
Card(VR) is potentially huge, this may become an issue. However, most of the time,
EDNA* will use much less than (emax − e) units of memory. The memory aspects of
EDNA* are further studied in chapter 8.

3.3.6 Theoretical study of the risk heuristic

DGR indicates that the navigational cost is computed on GR instead of G. From a
theoretical point of view, six cases, represented on Figure 3.8, are particularly interesting
regarding the R heuristic:
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Figure 3.7: With a chain of vertices initially unexplored, EDNA* may need to rediscover all
missing edges, so that the (emax − e) upper bound on the number of EDNA*
runs necessary to reach F is tight. Notations for this sketch are defined on
Figures 3.2 and 3.4. The navigating agent “R” (for “R”obot) is always located
on a boundary vertex until it reaches its destination F = V5.
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Figure 3.8: The behavior of EDNA* changes with the value of the risk heuristic, supposing
that the criteria on R(0, F, Z) are valid ∀ Z ∈ B, which is almost never the
case in practice.

1. early stopping to privilege exploration:
∀ Z ∈ B,R(O,F, Z,G) <= D(O,Z) +H(Z,F,G)

2. shortcut length underestimation:
∀ Z ∈ B,R(O,F, Z,G) < D(O,Z) +DGR(Z,F )

3. optimal case:
∀ Z ∈ B,R(O,F, Z,G) <= D(O,Z) +H(Z,F,G)
and ∀ X ∈ G,H(X,F,G) = DGR(X,F )

4. optimal improvement over uninformed A* on G:
∀ Z ∈ B,R(O,F, Z,G) = D(O,Z) +DGR(Z,F )

5. improvement over uninformed A* on G:
∀ Z ∈ B,R(O,F, Z,G) > D(O,Z) +DGR(Z,F )

6. EDNA* reduced to A* on G:
∀ Z ∈ B,R(O,F, Z,G)→∞

Case 1: early stopping to privilege exploration

Case 1 sees the expansion phase stopping at the first boundary vertex encountered due
to the early stopping criterion. If ∀X ∈ G,H(X) = 0 (Dijkstra’s algorithm), with F
unreachable (or no F at all) and with unitary traversal costs, this would result in the
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greedy algorithm Nearest Neighbor (NN) (Koenig and Smirnov, 1996). NN’s penalty in
terms of traversed edges on a non-directed graph during exploration relative to traversed
edges if the graph was known is only worst-case logarithmic in the number of edges
(Megow, Mehlhorn, and Schweitzer, 2011). Bounds for algorithms operating on digraphs
are still an open problem (Megow, Mehlhorn, and Schweitzer, 2011) but due to its greedy
nature, we expect EDNA* to reach a competitive ratio of n − 1 with n the number of
vertices in GR (Förster and Wattenhofer, 2012). EDNA*’s relocation strategy (using
known edges to travel from a newly completed vertex to a boundary vertex) is however
not specifically optimized for exploration tasks compared to that of Albers and Henzinger
(1997) or Fleischer and Trippen (2005). Case 1 can be exploited to perform exploration
tasks.

Case 2: shortcut length underestimation

In case 2, shortcut lengths are underestimated, which may lead to detours. However,
compared to case 1, EDNA* does not necessarily choose the first shortcut available.

Cases 3 and 4: optimal improvement over uninformed A*

In cases 3 and 4, heuristic path length estimations are replaced by their actual value
on GR, so that EDNA* is fully informed and can find shortest paths in GR using only
G for planning. In other words, the information about GR missing in G is carried by
the H and R heuristics. In case 3, the information is carried by H so that EDNA* is
also optimal in terms of computational effort (number of vertices expanded). On the
contrary, in case 4, the information on GR is carried by R. Consequently, in case 4, the
early stopping criterion of algorithm 1 is triggered optimally but the number of vertices
expanded before triggering it or reaching F is not necessarily optimal. The properties
of cases 3 and 4 can be expressed by the following theorems:

Theorem 2 (admissible EDNA*). In cases 3 and 4, EDNA∗ on G follows a path
admissible on GR.

Theorem 3 (minimum search space). In addition to theorem 2, EDNA* on G in case
3 only expands vertices on admissible paths from O0 to F in GR.

Proof. [Proving theorem 2]

This proof is done in the conditions of theorem 1. Suppose that case 3 or case 4 is
verified.
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Let P be the property “The robot (or navigating agent) is on an admissible path from
O0 to F on GR”. Let us prove that if P is true at the beginning of a planning step,
algorithm 1 will ensure that P remains true. If P is true before planning step n + 1,
then On is on a path from O0 to F admissible on GR. During planning step n + 1, if
X ∈ V is on a path from On to F admissible on GR, then X is also on a path from O0
to F admissible on GR. Consequently, if P is valid up to planning step n + 1, then P
for planning step n + 1 can be formulated “The robot (or navigating agent) is on an
admissible path from On to F on GR”.

If EDNA* returns a path to F or to Z ∈ B, this path is necessarily admissible on G
due to A* expanding vertices X by order of increasing δ(X) = D(On, X) +H(X,F ) ≤
D(On, X) + D(X,F ) ≤ DGR(On, X) + DGR(X,F ) (the proof is the same as for the
unmodified A* algorithm).

During planning step n+ 1, two cases are possible:

• (i) There exists a path from On to F in G admissible on GR or

• (ii) There exists no path from On to F in G admissible on GR. Then, since an
admissible path from On to F in GR exists, there must be a boundary vertex
Z0 ∈ B with an unexplored edge u ∈ U belonging to this path and such that there
exists a path from On to Z0 on G admissible on GR. Expressed simply, Z0 is the
first boundary vertex on the path admissible in GR

There are also only two possibilities concerning the vertex targeted by the algorithm: F
or Z ∈ B. Which one is chosen is conditioned by the early stopping criterion:

• (a) the early stopping criterion is not triggered (a path to F admissible on G is
returned) or

• (b) the early stopping criterion is triggered (a path to Z ∈ B admissible on G is
returned).

Combining the two binary choices results in four cases:

(a.i) This case corresponds to EDNA* falling back to traditional A*, which is guaranteed
to return a path to F admissible on GR, so that P remains true.

(b.i) This combination is impossible. Indeed, in case (b), the algorithm returns a path
to Z ∈ B with ∀X ∈ V, D(On, Z)+DGR(Z,F ) < D(O,X)+H(X,F ). Since F ∈ V, with
X = F and the path admissible on GR being used: D(On, Z)+DGR(Z,F ) < DGR(On, F )
which is impossible since no path from On to F can be shorter than the one admissible
on GR.

45



3 Exploratory Planning

(a.ii) F is reached. Moreover, ∀Z ∈ B, DGR(On, F ) ≤ D(On, F ) ≤ R(On, F, Z,G) =
D(On, Z) + DGR(Z,F ). If Z0 exists (case (ii)), then D(On, Z0) + DGR(Z0, F ) =
DGR(On, F ) = minZ∈B(D(On, Z) +DGR(Z,F )), meaning that D(On, F ) = DGR(On, F ).
In this case, EDNA* found a path from On to F admissible on GR and F is reached
with P still true. However, we are not in case (ii) since there exists a path from On to
F in G admissible on GR.

(b.ii) Let Z1 = argminZ∈B(R(On, F, Z,G) = D(On, Z) + DGR(Z,F )). We know that
R(On, F, Z0,G) = R(On, F, Z1,G) = DGR(O,F ) (admissible path), so EDNA* will re-
turn a path to Z0 or Z1 on an admissible path from On to F and P remains true.

Since P remains true for any planning step, EDNA* can only lead the robot (or navigat-
ing agent) on admissible paths in GR. The robot must move at each step. Furthermore,
it cannot go backwards from On since going backwards would increase the remaining
distance to destination on GR since all vertex and edge traversal costs are strictly pos-
itive. Thus, each planning/navigation step brings the robot (navigating agent) strictly
closer to the goal according to the D distance on GR.

[Proving theorem 3]

Only cases (a.i) and (b.ii) are possible according to the previous paragraphs.

(a.i) EDNA* expands vertices X by order of increasing δ(X) = D(On, X) +DGR(X,F ).
Since for X = F , δ(F ) = DGR(On, F ), no vertex not on an admissible path can be
expanded before F gets its δ(F ) set (where the algorithms stops and unrolls the path).
So, the theorem is verified.

(b.ii) Using the same arguments as for theorem 2 in case (b.ii), Z1 belongs to a path from
On to F admissible on GR. In case a vertex X not on an admissible path gets expanded,
D(On, X) + DGR(X,F ) > DGR(On, F ), the early stopping criterion gets triggered and
Z1 gets targeted.

Cases 5 and 6: improvement over uninformed A* and fallback to A*

Case 5 results in EDNA* on G always overestimating the navigational cost of shortcuts
(in case 6, all shortcuts are considered of infinite cost). This means that the stopping
criterion can only be triggered if an exploratory path’s navigational cost is actually lower
than all non-exploratory ones. However, it may not be triggered if a path is found from
O to F with a cost between DGR(O,F ) and the lowest R. For a given problem which
EDNA* must solve, if bounds can be given on D(Z,F ) for every possibly interesting
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boundary vertex Z, then bounds can be given on EDNA*’s sub-optimality in terms
of navigational cost: the worst case detour relative to A* on GR in the case 5 is the
estimated D(O,Z) +D(Z,F ) minus the actual one.

Practical considerations

In practice, while it is easy to avoid cases 1 and 6, it is not possible in general to ful-
fill the ∀Z ∈ B conditions of cases 3 and 4. Usually, only little knowledge is available
about the length of shortcuts through yet unexplored space. So, some lengths may be
underestimated, some may be overestimated and some may be approximately correctly
estimated. By increasing R globally, the lengths of more shortcuts become overesti-
mated, up to the point where all lengths are overestimated (case 5). R(O,F, Z) =
D(O,F ) + max(A,B)∈VR×VR,A 6=B(D(A,B)

H(A,B)).H(F,Z) will always achieve case 5 (it over-
estimates the length of any shortcut based on the worst-case detour relative to free
space max(A,B)∈VR×VR,A 6=B(D(A,B)

H(A,B))). It should be noted that case 5 will probably not
be optimal in terms of average traveled distance because most shortcuts are ignored.
Lowering R relative to case 5 may cause EDNA* to choose shortcuts which actually
increase the length of the path (“bad” shortcuts, whose length is underestimated) but
may also unlock access to some “good” shortcuts which would have been ignored with a
higher R. On the contrary, if R is too low, EDNA* will take more “bad” than “good”
shortcuts, leading to an increase of traveled distances in average. The best strategy in
terms of average traveled distance is to have some shortcuts underestimated (case 2)
and some overestimated (case 5). The tricky balancing between underestimation and
overestimation is studied experimentally in the next section.

3.4 Assessing the performances of EDNA*

Our objective is to demonstrate shortcut discovery i.e. EDNA* reaching F from O0 with
a lower navigational cost than a non-exploratory strategy. The point of the following
subsection is to determine which technique EDNA* should be compared to.

3.4.1 Finding a reference algorithm

Both EDNA* and D* (Lite) (Koenig and Likhachev, 2005; Koenig, Likhachev, and
Furcy, 2004; Stentz, 1995) can provide suboptimal (greedy) navigation in a static Cana-
dian Traveler Problem/Stochastic Shortest Path Problem with Recourse situation, such
as on grid-like graphs. D* and its variants use a free-space assumption (“unexplored
space is traversable”) resulting in a systematical underestimation of the navigational
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cost. As a consequence, transforming unexplored vertices to vertices with all edges
traversable makes EDNA* with R = 0 follow the D*Lite path but without D*Lite’s
search space optimization. D* (Lite) cannot work on digraphs where nothing is known
about yet unexplored vertices, so that comparing EDNA* to D* does not make sense.

It is possible to use PHA* (Felner et al., 2004) for navigation by stopping the algorithm
when F is reached for the first time (Felner et al. do not mention this possibility). In this
situation, the path returned would be either the A* path on G (infinitely overestimating
the length of shortcuts, obtainable with EDNA* and R →∞) or that of iterated Agent-
Centered A* (Smirnov et al., 1996) (obtainable with EDNA* and R = 0). Not stopping
PHA* early would result in a lot of physical movements increasing the navigational
cost and unnecessary for a navigation task. PHA* cannot balance physical exploration
of unknown parts and navigation on known parts even though it ends up using both.
Comparing PHA* to EDNA* would come down to comparing A* to EDNA* or iterated
agent-centered A* to EDNA*.

More generally, EDNA* uses the exploration risk as a degree of freedom which none of
the above algorithms does. EWP (Argamon-Engelson, Kraus, and Sina, 1998) considers
balancing exploration and navigation, but no algorithm to do it during planning is
described. As a consequence, each iteration of EWP must compute the navigational
cost from the current position to any v1 ∈ B (algorithm not explained in the article) and
estimate the cost from it to any v2 ∈ B which is orders of magnitude more compute-
intensive than our approach. When using exploration, EWP navigates to the best v1
from where it must reach the best v2 using exploration even though another v ∈ V is
reached while going from v1 to v2. As a consequence, the navigational cost from O0 to
F ends up being always higher than that of our approach in the same situation, which
is why we don’t compare EDNA* to EWP.

Since EDNA* is a modification of A*, we chose to compare it to A* itself in terms of
search space and navigation performances (path lengths). Map knowledge improvement
due to adding newly discovered zones to G is not evaluated due to the difficulty of
finding a realistic experimental protocol to do the evaluation. It is however expected
to strongly reinforce the interest of EDNA* since future traversals can benefit from
currently discovered shortcuts, dead ends and loops.

3.4.2 A simple choice of the risk heuristic for experiments

We chose to use a risk heuristic R(O,F, Z,G) = D(O,Z)+α (1− β.cos(θ))H(Z,F,G) in
an Euclidean space with the L2 norm asH. θ is the angle between an edge going out from
Z and the vector from Z to F , β is a parameter to describe an angular penalty and α is
a parameter to describe the total penalty in the sense that if β = 0, α describes by how
much a shortcut’s navigational cost is overestimated relative to H(Z,F,G). (α ≤ 1, β =

48



3 Exploratory Planning

0) for instance gives the first case of the previous section. This proposal of heuristic is
inspired by the way humans actually find shortcuts in an unknown environment (possible
shortcuts are edges which go in the right direction and would potentially save a lot of
time or distance). For a high enough risk factor α, R should fall in case 5 of the previous
section. It should be noted that R does not take advantage of the planarity of a graph.

3.4.3 Benchmark protocol

Quality measures

Let NA∗ and NEDNA∗ be the navigational cost from O0 to F using A* and EDNA* on a
graph G. The navigational cost change from A* to EDNA* on G is NG = NA∗−NEDNA∗

NA∗ .
A ±0.1 change means that if the cost following the A* path is 100 units, the one following
the EDNA* path is 100 ∓ 10. Similarly, a computational cost change CG is computed
using the number of vertices visited during the expansion phase of the algorithms which
reflects execution time.

Graph generation and data collection

nGR = 200 random planar digraphs GR with about 9 000 vertices and 12 500 dual-way
edges each are generated, with square-shaped possibly-overlapping (SSPO) obstacles
of varying size. Generating graphs allows control over obstacle shapes and obstacle
density. GR intends to mimic road networks or Generalized Voronoi Graphs (Choset
and Nagatani, 2001) while being more labyrinthine and misleading in order to test the
worst-case behavior of EDNA*. G is obtained by removing a fraction φ of the edges of
GR to create SSPO unexplored zones. Figure 3.9 shows a small zone of one of the graphs
used.

In each experiment attempt, G is created from GR and O0 and F are randomly chosen.
Due to the edge removal procedure, O0 and F may belong to different components of
G, leading to A* being unable to find a path but EDNA* still finding one. Such cases
represent more than 50% and up to 95% (high φ) of all experiment attempts. They are
eliminated as giving EDNA* an infinite navigational advantage over A*, thus strongly
favoring A* with respect to EDNA*. In these cases, a new experiment attempt is done
until a successful experiment occurs, where A* finds a path from O0 to F . Successful
experiments are accumulated until an informative experiment occurs, where NG 6= 0
(NG = 0 means R is not used). There are ns successful experiments including the
last one which is informative. On each GR, 10 000 informative experiments are done,
uniformly sampling 100 values in [1; 9] for α and 100 values in [10%; 50%] for φ.
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Figure 3.9: One of the random planar graphs used for benchmarking EDNA* (detail).
Vertices in black fall in obstacle regions. Graphs are generated with 10 000
vertices and 15 000 edges inside a square box (20000 × 20000). The graph
generator imposes a minimum distance between any two vertices and between
any vertex and any edge (

√
5000), as well as a maximum edge length (1500)

and a minimum angle between edges starting on the same vertex (30◦). SSPO
obstacles are then punched into the graph. While the initially produced graph
has a single component, SSPO obstacle-punching may partition it in multiple
components.
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Figure 3.10: Average navigational cost (N̄ ) changes for successful experiments, random
(left) and grid-like (right) graphs.

The estimators used for each (α, φ) to retrieve the average navigational and computa-
tional cost changes plotted on figures 3.10 and 3.11 are N̄ = 1

nGR
.
∑
GR
(

1
ns
.
∑
G NG

)
and

C̄ = 1
nGR

.
∑
GR
(

1
ns
.
∑
G CG

)
. Both estimators average on all GR the (poor) average on all

successful experiments on a given GR. Arithmetically averaging changes is intuitive but
highly unfavorable to EDNA* since a 0.9 degradation (navigational cost multiplied by
1.9) balances a 0.9 improvement (navigational cost divided by 10) of EDNA* over A*.

β ∼ 0.25 was experimentally observed to give EDNA* the best navigational improve-
ments over A*. Tests were also carried on 8-way connected grid-like graphs like that of
Figure 3.4 for which β ∼ 0.125 gave better results.

3.4.4 Results and discussion

EDNA* vs A* navigational cost (N̄ ) comparison

Figure 3.10, left shows EDNA* with α > 5 always reducing N̄ compared to A* in average,
demonstrating successful shortcut discovery. With α ∼ 8, informative experiments show
navigational costs divided by up to 14 when switching from A* to EDNA*. With α > 8,
EDNA*’s success decreases with α because most experiments are not informative (early
stopping is not triggered). The maximum performance gain of EDNA* over A* on
random graphs is 3.9% with our experimental protocol unfavorable to EDNA* (since
experimental results approximately follow a Gaussian distribution, the 95% confidence
interval is [0.5%; 7.3%]). We observed that selection of the sole experiments where A*
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Figure 3.11: Average computational cost (C̄) changes for successful experiments on random
graphs, up to the first boundary vertex (left) and up to F (right).

reaches F causes the A* shorter/EDNA* shorter limit to be biased towards high α
when φ increases, thus further disadvantaging EDNA*. Results on grid-like graphs
(Figure 3.10, right) show up to 20% improvement of navigational cost of EDNA* over
A*. Finally, the curvature of the A* shorter/EDNA* shorter limit was unexpected. We
think that it is an artifact due to how successful experiments are selected. So, only the
low-φ part of the curve is actually valid and EDNA* finds even shorter paths than shown
on the Figure for high φ values.

EDNA* vs A* computational cost (C̄) comparison

Figure (3.11, right) shows an increase from A* to EDNA* of C̄ when multiple EDNA*
runs are required. This penalty for EDNA*, which exceeds 100% with low α and high
φ (zone C) is most of the time located between 0 and 100%, decreasing linearly until
the high α zone (D) (which is the interesting zone as seen in the paragraph on N̄ )
where it progressively tends to 0. As explained in the paragraph on navigational cost
comparison, there is probably a bias in how successful experiments are selected, which
causes an artificial increase of computational cost for EDNA*. Figure (3.11, left) shows
the same result as Figure (3.11, right) but on a single EDNA* run where the stopping
criterion allows EDNA* to always expands less space than A*. With a high φ and a low
α (zone A), this difference reaches 100% (EDNA* explores close to no vertices). With a
low φ and a high α (zone B), each run of EDNA* performs only marginally better than
A* but there are less runs, so that EDNA*’s and A*’s performances are equivalent (with
φ = 0 or α → ∞, EDNA* would fall back to A*). EDN’s focus is on navigational cost
but the figures show a computational cost comparable to that of A*, which has been
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proved optimal in a non-exploratory situation (Hart, Nilsson, and Raphael, 1968).

3.5 Conclusion on EDNA*

We presented the Exploratory Digraph Navigation problem and the EDNA* algorithm
to solve it. With a R heuristic sufficiently overestimating shortcut lengths, the agent
using EDNA* will on average move from 3.9% to more than 20% less than using A*
to reach F , with best EDNA* runs dividing the navigational cost by up to 14. Moving
less leads for instance to energy savings, especially if the path is intended to be taken
multiple times like in routing problems. Shortcuts, dead ends and loops found during
exploration phases are stored in G. The impact of this knowledge reinforcement has
yet to be evaluated. Minimizing computational cost is not the main focus of EDN
problems where traversal is much slower than planning. Nonetheless, even if EDNA*
tends to expand about twice as many vertices as A* during the whole navigation, it
expands less per planning step which is interesting for real-time systems where single
computations must terminate quickly. Moreover, if O and F are not connected on G, A*
fails and an exploration algorithm has to be used. EDNA* on the contrary does not fail
and automatically resorts to exploration, thus combining the navigation (A*) and the
exploration algorithm. The relative amount of navigation and exploration can be tuned
through R. Additional data such as metric or semantic properties or planarity could be
integrated into H and R for better results. For instance, if GR describes a transportation
network with buses and trains (see chapter 8), R can be lowered on vertices/edges having
train connections because these are typically faster than buses.

When using an exploratory strategy, it happens that the navigating agent starts to
thoroughly explore a dead end. Ideas to deal with this situation have already been
formulated for exploration algorithms (Smirnov et al., 1996). We implemented a non-
stubbornness criterion for SLAM using EDNA* in chapter 5, which detects this situation
on the current vertex X by comparing D(O0, X)+H(X,F ) to H(O0, F ). Triggering this
criterion leads to a replan with possibly an increase of R, causing EDNA* to try finding
a safe path instead of hoping for a non-existing shortcut. Another possible solution to
the issue would be to give the navigating agent an energy budget which would decrease
with each detour while R would increase. If it is known for sure that GR is a planar
graph, a face routing algorithm such as Greedy Perimeter Stateless Routing (GPSR)
(Bose et al., 2001; Karp and Kung, 2000) can be used for exploration phases instead
of the simple greedy algorithm used within this chapter. An idea of the possible gains
using this strategy is given in chapter 8.

As a final note on Exploratory Digraph Navigation, we supposed in this chapter that
there was no mapping error, which implies that G ⊂ GR. If there are mapping errors, the
Exploratory Digraph Navigation approach described throughout the chapter may or may

53



3 Exploratory Planning

not work, depending on how severe and numerous the mapping errors are. Indeed, the
G ⊂ GR hypothesis is required for theorem 1 and corollary 1 which guarantee respectively
navigation success and exploration capacities. Since it is hard to model all possible
mapping errors, we prefer to run actual experiments in chapter 6 with EDN, navigation
(chapter 4) and SLAM (chapter 5) and check to which extent EDN is robust to mapping
errors. Chapter 6 introduces metrics to evaluate topological correctness of G as well as
navigation overheads due to incorrect maps.

3.6 Variants of EDNA*

The transformation from A* to EDNA* consists in adding a new heuristic R and com-
puting the value of this new heuristic on certain vertices. This principle can be applied
in various ways and to various algorithms. In this section, we propose two A* exten-
sions using the new heuristic: EDN-(Lazy)theta* and greedy-A*. EDN-(Lazy)theta* is
a modification of the (Lazy) Theta* (Nash et al., 2007; Nash, Koenig, and Tovey, 2010)
“any-angle” path planner. Greedy-A* is a variant of A* with smart early stopping to
limit the algorithmic complexity. It is notably used in chapter 8.

3.6.1 EDN-Theta* and EDN-Lazy Theta*

Theta* (Nash et al., 2007) and its lazy variant Lazy Theta* (Nash, Koenig, and Tovey,
2010) are A*-based algorithms which consider straight-line paths (and not only paths
constrained on the graph) between two vertices of the graph used for planning (see
Figure 3.12). (Lazy) Theta* uses line of sight checks between graph vertices to detect
straight-line paths. The difference between Theta* and Lazy Theta* resides in how both
algorithms perform these checks, with lazy theta* performing less checks for the exact
same final result. Thorough explanations and examples as well as the pseudocode of
both algorithms can easily be found on the internet.

The purpose of EDN-Theta* and EDN-Lazy Theta* is similar to that of EDNA*: discov-
ering shortcuts through yet unexplored space. The EDN modification to the algorithms
is implemented similarly for A*, Theta* and Lazy Theta*. That is: take the risk heuris-
tic R as parameter, compute it on boundary vertices and return a path to a boundary
vertex if a shortcut starting on this boundary vertex is interesting enough. For the sake
of clarity, the pseudocode of these algorithms is deferred to appendix 2. We did not
run extensive performance benchmarks of EDN-Lazy Theta* and EDN-Theta* relative
to Lazy Theta* and Theta* but the performances of the EDN variants relative to their
non-EDN base should be comparable to the relative performances of EDNA* and A*
exposed in section 3.4.4.
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a)

b)

Figure 3.12: While A* (a) returns a “drunken man” path constrained to graph edges,
(Lazy) Theta* (b) returns a path formed of straight lines traversing free
space.
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Following the three exploratory planners presented in this section (EDNA*, EDN-Theta*
and EDNA-Lazy theta*), we believe that the majority of A*-based algorithms (and
probably other algorithms) can be modified to take into account shortcuts. This shows
that Exploratory Planning, Exploratory Digraph Navigation, PNSLAM and LEN are
new paradigms and not just algorithms.

3.6.2 Greedy A*

We introduce a final EDN modification: Greedy A* (Algorithm 3). Greedy A* is not
intended to discover shortcuts (it is not an exploratory planner) and should be seen as
an implementation trick for use within chapter 8.

The principle of Greedy A* is to compute the risk heuristic R on all vertices expanded,
not just on boundary vertices. The algorithm will return a path to F or to a vertex
X ∈ V considered to be on the way to F . By imposing a greedy criterion such as
||F −X|| < ||F −On||, it is possible to guarantee that F will eventually be reached. Like
EDNA*, Greedy A* always expands less vertices than A* and may thus be preferred in
situations with constrained memory.

With R(On, F, Z,G) =
∣∣∣∣∣||F − Z|| < ||F −On|| 7→ D(On, Z) +K||F − Z|| (K � 1)
||F − Z|| ≥ ||F −On|| 7→ ∞

,

a single run of gA* from On will lead to F if reachable, to On if moving closer to F is
not possible or to X so that ||F −X|| < ||F −On|| otherwise. Unless On corresponds to
a local minimum of the distance to F , the distance to F decreases monotonically with
each run so that F will eventually be reached.

3.7 Conclusion on exploratory planning and Exploratory
Digraph Navigation

This chapter exposed a first perspective on PNSLAM/LEN from the point of view of
planning, with SLAM and navigation as input and output (Figure 3.1). As a matter
of fact, we developed EDNA* as an A* (Hart, Nilsson, and Raphael, 1968) hack while
working on robot navigation because we could not find an algorithm able to plan a path
on a partially unknown graph (an exploratory graph planner). Later, while working on
the algorithm, we realized that the reason why such an algorithm did not already exist
was probably that it required thinking about mapping, localization, navigation and
planning as interdependent entities, at least within robotics. An exploratory planner
relies on navigation and mapping to update the map while a non-exploratory planner
only considers navigation.

56



3 Exploratory Planning

Algorithm 3 Greedy A*

Input: O, F , G, H : X → H(X,F,G),R : Z → R(O,F, Z,G)
dest ← ∅; best_distance ←∞; Q← (O, δ(O)); S ← ∅
while Q 6= ∅ do

pop (X, δ(X)) from Q; S ← (X, δ(X))
if δ(X) > best_distance then

break //EDNA* early stopping criterion
if X = F then

dest ← F ; best_distance ← δ(F )
break //traditional A* stopping criterion

if R(O,F,X) ≤ best_distance then
dest ← X; best_distance ← R(O,F,X)

for all neighbors T of X do compute δ(T )
if not ( (T ∈ S and δ(T ) ≥ δ(T )S) or

(T ∈ Q and δ(T ) ≥ δ(T )Q) ) then
Q← (T, δ(T ))

if dest = ∅ then return failure //no path can be found
unroll a path from dest back to O and return the path found

In the next chapter, we develop a second perspective on PNSLAM/LEN, this time from
the point of view of navigation. A Navigation algorithm takes a path generated by
EDNA* (or another exploratory planner), refines it for local navigation and obstacle
avoidance and sends commands to the robot’s actuators. Sensor data collected during
physical movement is processed to extract the local topology of the environment and
forwarded to a SLAM component which takes care of map update.
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4 Navigation, obstacle avoidance and
topology extraction

“The greater the obstacle, the more glory in overcoming it.”
Molière

In this chapter, we develop the navigation perspective on PNSLAM (Figure 4.1). We
use an occupancy grid (Elfes, 1987, 1989; Thrun, 2001) to perform SLAM at a local
scale, as well as to provide a robust representation of local obstacles for navigation and
obstacle avoidance. The occupancy grid allows local path planning of holonomic and
non-holonomic robots. Moreover, since our SLAM component described in chapter 5 is
based on topology, this chapter also describes how to perform topology extraction from
low-level sensor data (Mayran de Chamisso, Soulier, and Aupetit, 2016). Navigation
takes advantage of the extracted topology while obstacle avoidance uses a byproduct
of topology extraction, a grid of vectors from each free pixel of the grid to the closest
occupied pixel which we call the Vectorial Euclidean Distance Map.

4.1 Introducing the occupancy grid

4.1.1 Handling obstacles and goal-directed navigation

It is necessary for the robot to be aware of nearby obstacles, which implies that a local
representation of free and occupied space must be kept in memory. Coherency of this
local map is only required to be maintained up to some fixed distance of the robot
(typically, a few meters) in order to allow maneuvering. At this local scale, odometric
drift is not an issue (Thrun et al., 1998) and there are no topological loop closure issues
(see chapter 5).
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Figure 4.1: A navigation-centered view of PNSLAM and LEN.
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Probably the most successful model to represent local obstacles and free space is the
occupancy grid (Elfes, 1987, 1989; Moravec and Elfes, 1985; Thrun, 2001). An occupancy
grid can be acquired using distance and movement sensors or provided to the robot as
a floorplan. In the grid, each pixel encodes the probability pocc that the corresponding
position in space is occupied as a log-odd l = log( pocc

1−pocc ). Values above zero describe
occupied space and values below zero describe free space (see Figure 4.2).

Occupancy grids can integrate data from various types of distance sensors including
lasers, sonars, infrared, stereo cameras and Microsoft Kinect. Dense as well as sparse
distance data can be integrated. Occupancy grids are robust to dynamic sensor and
environment noise thanks to their probabilistic nature and to time integration. They are
also easy to update with incoming sensor observations. An occupancy grid can be used
to implement obstacle avoidance using repulsive forces (Borenstein and Koren, 1989)
or potential fields (Barraquand, Langlois, and Latombe, 1992). For instance, repulsive
forces are computed by finding for each free pixel the closest occupied pixel, resulting in
a Vectorial Euclidean Distance Map. The vector to the closest occupied pixel can then
be used to compute the virtual force that characterizes the free pixel. Finally, and as we
will see, occupancy grids are convenient representations from which the local topology
of the environment can be extracted.

In the context of this thesis, we chose to implement a scrolling occupancy grid of fixed
size around the robot (Kuipers et al., 2004). The robot is always at coordinates (0, 0) in
this grid (the origin of the grid moves with the robot). The scrolling occupancy grid is
used as Local Perceptual Model as in the Hybrid Spatial Semantic Hierarchy (Beeson,
Modayil, and Kuipers, 2010).

When the robot moves further than a certain distance d from its previous position Pn−1,
an aging process is applied to the occupancy grid. This aging process is necessary since
when the grid scrolls, pixels on the far left may appear on the far right (for instance) due
to wrap-around addressing. The algorithm used for occupancy grid aging is described
in appendix 2.

4.2 Topology extraction using the Vectorial Euclidean Distance
Map

4.2.1 State of the art and motivations

Recent SLAM algorithms including ours (chapter 5) use topological or hybrid metrical-
topological mapping (Bailey, 2002; Beeson, Modayil, and Kuipers, 2010; Bosse et al.,
2004; Kuipers et al., 2004; Nitsche et al., 2011; Thrun, 1998) where the map is a set of
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Figure 4.2: An occupancy grid. Free space in white, occupied space in black, uncertain
zones in shades of cyan.

vertices describing discrete places and a set of edges describing transformations between
vertices. While being more robust to large-scale uncertainty and odometric drift than
dense representations, topological representations require vertices to be robustly defined
from sensor data in the sense that multiple observations of a place will lead to the same
vertices. The reliability of vertex detection is usually not considered (Bosse et al., 2004)
or left aside as a secondary issue (Kuipers et al., 2004). Reliability is however discussed
in depth in (Beeson, Jong, and Kuipers, 2005).

The robot wants to extract the topology of the environment around its own position.
The robot is only interested in paths it can use to navigate, that is paths that:

• describe passages large enough for the robot to traverse,

• are visible and/or accessible from the robot’s current position and

• are not too far away from the robot’s current position, with the idea that the
probabilistic data of the grid gets less reliable when the distance to the origin
increases. If the robot moves, it can update its occupancy grid and extract the
local topology again around its new position.

We propose a lightweight topology extraction method “from pixels to graph” using a
topological skeleton computed on a local occupancy grid through the Vectorial Euclidean
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distance map (VEDM) (Danielsson, 1980). The VEDM contains for each empty pixel
of the grid a vector pointing to the closest occupied pixel. We use the VEDM for two
main reasons:

• it can be computed using integer arithmetics, resulting in faster computations es-
pecially on processors without floating point units (typically, low-power processors
used in embedded systems), and

• it can be reused to perform obstacle avoidance using virtual repulsive forces (Boren-
stein and Koren, 1989).

In addition to the topology extraction method, we propose criteria to simplify the skele-
ton by removing spurious edges which the robot would not be able to physically traverse.
Compared to existing approaches such as (Choset and Nagatani, 2001) or (Beeson, Jong,
and Kuipers, 2005), this removal does not make assumptions on yet unknown space and
is only parametrized by the robot’s size, making it both more intuitive from a robotics
point of view and more robust to occlusions and noise. Finally, the approach achieves
close to linear time complexity in the number of pixels in the grid on real-world datasets,
exceeding 100 frames per second on square grids of size 300× 300 pixels.

4.2.2 State of the art of topology extraction

The topological skeleton, sometimes called Generalized Voronoï Diagram (GVD) or Gen-
eralized Voronoï Graph (GVG) (Attali, 1995; Choset and Nagatani, 2001) is a convenient
topological representation of an environment which has already been used for SLAM
(Choset and Nagatani, 2001; Thrun, 1998). Edges of the skeleton are the set of points
equidistant from two or more obstacles while vertices are the set of points where edges
meet or end. Computing the skeleton from a discrete representation such as an occu-
pancy grid is traditionally done through homotopic thinning, wavefront propagation or
distance map calculation. The vast state of the art of these approaches is reviewed in
(Attali, 1995). Briefly, (distance ordered) homotopic thinning, though easily paralleliz-
able, leads to hard-to-exploit skeletons. Moreover, the skeleton simplification techniques
such as only connecting the center of maximal balls (Pudney, 1998) lead to skeletons
unstable with grid updates since some centers may appear or disappear. Wavefront
propagation techniques need complex models to describe the wavefront. Finally, dis-
tance maps (Arcelli and Sanniti di Baja, 1989; Danielsson, 1980; Man et al., 2010) need
to be computed as a first step and exploiting them requires reconstruction of ridge lines
which is a process sensitive to noise and may lead to ‘holes’ in the skeleton, an issue
addressed by Li and Vossepoel (Li and Vossepoel, 1998). A comprehensive review of ex-
isting distance transform algorithms can be found in (Grevera, 2007) and (Fabbri et al.,
2008). Alternatively to a distance transform, an Euclidean feature transform (Hesselink,
2007) can be used to diagnose the ridges directly. This does not however address the
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issue of noise.

One of the consequences of noise in the grid is the presence of spurious edges on the
skeleton. Simplification of the skeleton is a known issue discussed notably in (Attali,
1995; Choset and Nagatani, 2001; Pudney, 1998) and (Garrido et al., 2006). Examples
without simplification of the skeleton can be found in (Li and Vossepoel, 1998). They
show that a simplification is indeed necessary for robot navigation. In order to remove
spurious edges, Choset et al. (Choset and Nagatani, 2001) proposed to discard edges
terminating near a wall (dead ends). While perfectly valid in static situations, this ap-
proach becomes unstable when the grid gets updated: sometimes, the bottom of a dead
end cannot be seen from the current origin of the grid. If the robot moves back and
forth, the edge may keep appearing and disappearing, causing navigation algorithms to
get stuck in an infinite loop. The same issue affects the “gateway” approach of Beeson
et al. (Beeson, Jong, and Kuipers, 2005) which distinguishes edges terminating in free
space as possible exits and only consider shortest paths leading to the exits as valid.
Indeed, the “exits” may actually be unseen dead ends. Attali (Attali, 1995), Malandain
et al. (Malandain and Fernández-Vidal, 1998) and Couprie et al. (Couprie, Coeurjolly,
and Zrour, 2007) proposed criteria based on bissector angles (angles between the vec-
tors pointing to the two obstacles equidistant from an edge) to remove spurious edges.
While these criteria do not make assumptions on dead ends, they require trigonometric
computations which are expensive and require floating-point representations. Note that
bissector angles can easily be recovered from the VEDM.

4.2.3 Our approach

Notations

Suppose that the dimensions of the grid are (w, h). We write L1 (“Manhattan”) distances
using simple bars |.| and Euclidean distances using double bars ||.||. We consider that the
skeleton has to be computed only within range r ≤ min(w, h) of the origin (Euclidean
distance used for range), represented by a dark red dashed circle on Figure 4.3. The
skeleton is computed in the Euclidean space. We use the term “pixel cluster” as a set of
pixels where each pixel is connected to the cluster horizontally, vertically or diagonally.
Finally, we suppose that the center of the robot is not allowed to get closer to an obstacle
than some fixed distance D + S, where S is the physical radius of the robot around its
center of inertia and D is an additional safety zone, which we call the “minimum allowed
distance to wall”.
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Overview of our approach

The following steps are required in our approach to compute the GVG or Extended GVG
(Beeson, Jong, and Kuipers, 2005) from an occupancy grid around a given origin and
extract it in a graph format:

1. (optional) Remove hot pixels and noise. Hot pixel removal can be achieved with a
simple 4× 4 or 9× 9 median filter or through more elaborate mathematical mor-
phology operators. Noise removal can be obtained by convolution with a Gaussian
Kernel.

2. Binarize every pixel of the grid to an ‘occupied/empty’ state. The simplest ap-
proach (used in this paper) is to have a fixed log-odd threshold, at 0 for instance.
Thresholding can be done on the fly and does not require a buffer to store the
binary version.

3. From the origin, radially propagate a wavefront (Figure 4.3). Propagation stops on
a specific pixel if it is occupied or if the pixel is too far from the origin (or outside
the grid). For the most part, propagation only reaches line of sight pixels. Step
3 is an optimization specific to robot navigation and could be replaced by step 3’
consisting in marking all occupied pixels directly in one pass over the image (the
benefit of step 3 over step 3’ is visible on Figure 4.10).

4. Using the occupied pixels detected at step 3/3’, compute a VEDM (see Figure
4.6), that is associate each pixel to a vector pointing to the closest occupied pixel.

5. (Figure 4.6) For each pixel with a vector computed at step 4, test whether or not it
belongs to an acceptable edge (where ‘acceptable’ will be properly defined later).

6. (optional) Remove ‘edge’ pixels that are not linked to the main skeleton, which is
defined either as the component of the skeleton passing closest to the origin or as
the component of the skeleton counting the most pixels.

7. For each remaining ‘edge’ pixel, detect whether or not it is a vertex, where a vertex
is defined as the intersection of two or more edges or as the end point of an edge
(Figure 4.7).

8. Expand each ‘vertex’ pixel by some predefined amount. If the expansion zones of
two vertices meet, both vertices are clustered into a single one.

9. Cluster ‘edge’ pixels that are not ‘vertex’ pixels into edge segments. Each segment
necessarily has exactly two end vertices.
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10. (optional) Create a graph representation of the environment with detected edges
and vertices.

We tried different orders for steps 5 to 10, such as detecting vertices first (step 7), then
edges linking them (steps 5 and 6). We also tried to extract skeletons without vertex
clustering (step 8). However, the above order of steps was the one for which the graph
representation created at step 10 best matched the topology of the environment. Up to
step 5 included, our approach can be implemented storing only three integer values per
pixel in the grid:

1. a state (never reached, reached at step 3, expanded at step 3, reached at step 4,
belonging to an edge), which can be reused during steps 5 to 10 to store a vertex
or vertex cluster identifier on the pixels classified as “vertex”

2. the x and y components of the vector to the closest occupied pixel (Vectorial
Euclidean Distance Map)

Computing a vector map (steps 3 and 4)

Initially, the vector field is set to ~Vxy = (∞,∞) or to values bigger than ~Vxy = (w, h) for
every pixel (x, y) in the grid. During step 3, pixels are considered in an order defined
by a growing circle using the L1 distance, as sketched on figure 4.3 (a). Each time an
empty pixel is considered, its empty neighbors are marked to be considered during the
next pass if they have not been considered already and if they are not further than
r from the origin (Euclidean distance). This expansion phase stops if no vertex was
marked during a pass. Each time an occupied vertex is marked, its associated vector in
the vector field is set to (0; 0). This way of proceeding tends to confine the search for the
skeleton to the zone actually visible by the robot, or in other words, the interior of the
environment, shown in green on figure 4.3. It avoids computing the part of the skeleton
that lies in zones not accessible from the origin of the grid without traversing occupied
space. The added computational burden of step 3 is balanced by the simplification of
steps 4 to 10. The interest of step 3 is visible on Figures 4.3 and 4.6: On Figure 4.3,
there are much less pixels reached by step 3 than by state 3’. On Figure 4.6, the vector
field has mostly been calculated inside the building, even though cracks (places where
the log-odd approaches 0) in the wall on the bottom-left corner led to some calculations
being carried outside the building. Figure 4.10 shows the actual decrease in computation
time due to step 3.

We suppose that at least one occupied pixel was reached during step 3 (otherwise, the
skeleton is empty). In environments with large patches of empty spaces, the Extended
GVG (discussed in the paragraph describing step 5) can be used to prevent the skeleton
from being empty.
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Figure 4.3: Step 3 (a) versus step 3’ (b), reached pixels in green. Synthetic large occupancy
grid used to illustrate the difference between steps 3 and 3’. In practice, the
scrolling occupancy grids used are smaller. Step 3 tries to reach only pixels in
line of sight of the robot, up to a certain range equal here to half the size of
the map. However, due to the L1 distance used for propagation (orange unit
ball), step 3 also reaches pixels not in line of sight of the robot. Step 3’ marks
all pixels up to a certain range of the robot, equal here to half the size of the
map. Compared to step 3, step 3’ marks more pixels to be processed during
later steps. Thus, the computational burden of steps 4+ is increased when
using step 3’ instead of step 3. This is not completely compensated by step 3’
being faster than step 3.
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Step 4 computes a field of vectors to the closest occupied pixel or Vectorial Euclidean
Distance Map (VEDM), which is very like distance map calculation but vectors contain
both distance and direction. In a (vectorial) Euclidean Distance Map, the environment
is partitioned into Voronoï cells, where each cell is made of one occupied pixel, the
seed, and all empty pixels closer to the seed than to any other seed. Linear complexity
algorithms exist to compute Euclidean distance maps, such as that of (Breu et al., 1995)
based on incremental construction of the Voronoï cells or that of (Hirata, 1996) based
on building an intermediate map of closest obstacles along the vertical axis. A review
of modern parallel approaches to Euclidean distance map calculation is given in (Man
et al., 2010). The difficulty of constructing a (Vectorial) Euclidean Distance Map comes
from the fact that the boundary of Voronoï cells is not restricted to the boundary of
pixels and the local width of a cell may be arbitrarily small (see Figure 4.4).

Instead of an exact algorithm, we chose to use the approximate algorithm of Danielsson
(1980) to compute the VEDM. This algorithm propagates vectors from pixels to their
neighbors, where occupied pixels start with a vector of (0, 0). With an eight-neighbor
propagation scheme, the algorithm was demonstrated in (Danielsson, 1980) to be com-
pletely accurate for a pixel when there exists a path from the closest occupied pixel
to it within the Voronoï cell. Otherwise, the maximum error of the algorithm is 0.076
pixels (the pixel is attached to a Voronoï seed 0.076 pixels further than the true seed
of its actual cell). There are extremely few cases where the algorithm is not exact, and
when an error occurs, its impact is negligible compared to that of sensor noise (even
a one-pixel error would probably not cause any visible change in the skeleton). One
failure situation is represented on figure 4.4. This algorithm does not require dynamical
allocation or sorting and does not use a stack, as opposed to Breu et al. (1995), Hirata et
al. (1996) and later approaches. Moreover, the algorithm of Danielsson always returns
single-cluster Voronoï cells, which alleviates the issue of isolated ‘hot’ pixels. Paralleliza-
tion of the computation is also possible, even on embedded platforms such as ASICs or
FPGAs.

Both steps 3 and 4 are efficient computationally wise since they can be coded with integer
arithmetics, without dynamical allocation, divisions, square roots and trigonometry).

At the end of step 4, the VEDM is obtained as a vector field ~V such as that of figure
4.6.

Detecting and pruning edges (step 5)

During step 5, each pixel of the image expanded at step 4 is tested to see if it belongs
to an edge of the skeleton.

Let J( ~Vxy) = ( ~V(x+1)y− ~Vxy, ~Vx(y+1)− ~Vxy) be the approximate Jacobian of the vector field
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Figure 4.4: Local inaccuracy at step 4 : the pixel circled in red is erroneously labeled
as belonging to the orange cell (square distance 170) instead of the blue one
(square distance 169). Numbers represent square Euclidean distances in pixels,
colors represent Voronoï cells and yellow lines are the boundary of the cells.
The seed of each cell (occupied pixel) has a distance of 0 to the closest occupied
pixel (itself).
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at point (x, y). We propose an edge detection criterion based on the maximum norm of
the Jacobian along the x and y directions, M = max(|| ~V(x+1)y − ~Vxy||, || ~Vx(y+1) − ~Vxy||.
If M < 2(S+D), then the walls the edge is supposed to go between are too close for the
robot to pass, so the edge is discarded. Zhang et al. (Zhang et al., 2014) seem to use this
same criterion of minimal distance between the two obstacles. IfM ≥ 2(S+D), the edge
is kept and a local tangent vector to it is computed as

~V(x+1)y+ ~Vxy

|| ~V(x+1)y+ ~Vxy ||
if || ~V(x+1)y− ~Vxy|| >=

|| ~Vx(y+1)− ~Vxy|| or
~Vx(y+1)+ ~Vxy

|| ~Vx(y+1)+ ~Vxy ||
if || ~V(x+1)y− ~Vxy|| < || ~Vx(y+1)− ~Vxy||. The tangent vector

is perpendicular to the difference of adjacent vectors, in the direction where the norm of
the Jacobian is maximal. Note that due to the definition of the Jacobian, the skeleton
is computed with a constant offset of (0.5, 0.5).

We found a further refinement for mobile robot navigation: check that the pixel pointed
to by the average of adjacent vectors in the x or y direction (subsequently called average
pixel) is far enough from an obstacle, where far enough means the robot should be able to
navigate up to this point without hitting an obstacle. This refinement can be understood
as virtually projecting the robot forward on the hypothetic edge, supposing that the edge
remains straight (first-order approximation). Formally, suppose that || ~Vxy − ~V(x+1)y|| ≥
|| ~Vxy − ~Vx(y+1)|| (the other case is handled by permuting x and y). Then, let (x′, y′) =
(x+(x+1),y+y)+ ~Vxy+ ~V(x+1)y

2 = (x + 0.5, y) +
~Vxy+ ~V(x+1)y

2 . If M ′ = || ~Vx′y′ || < S + D, then it
is likely that there is no actual path between the walls and that the presumed edge is
a shallow dead end. The method is not exact since it considers that the edge remains
straight when going towards an obstacle (the average of both vectors is tangent to the
edge at the current pixel, so the approximation is first-order). However, experiments in
real conditions proved it to be quite reliable even though we could not find a metric in
literature to describe the quality of the extracted skeleton. Figure 4.6 shows the two
criteria for edge validationM ≥ 2(S+D) andM ′ ≥ S+D. M ′ ≥ S+D ⇒M ≥ 2(S+D),
so that the first criterion is only used in order to avoid the small overhead due to
computation of the second criterion.

It is easy to implement the Extended GVG (Beeson, Jong, and Kuipers, 2005) with a
(vectorial) Euclidean distance map. The difference between simple and extended GVGs
is that in the latter, no edge is allowed to lie more than a distance L away from the
closest obstacle and there must be edges at distance L from any obstacle. An example
of GVG and EGVG is given on Figure 4.5. With our approach, the Extended GVG is
computed the following way: for each pixel at coordinates (x, y),

• If ||Vxy|| > L, then the pixel at (x, y) cannot belong to an Extended GVG edge.

• If ||Vxy|| ≤ L and if one of the eight neighbors (x′, y′) of (x, y) defined by (x′ −
x)2 + (y′ − y)2 ∈ {1, 2} verifies ||Vx′y′ || > L, then the pixel at (x, y) necessarily
belongs to an Extended GVG edge.
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Figure 4.5: (a) GVG and (b) Extended GVG (L = 25 pixels) computed for the same
environment. In the Extended GVG, no edge lies further than L away from
an occupied pixel, which is useful in environments containing patches of empty
space whose size exceeds the range of the robot’s sensors. The GVG can be
seen as an Extended GVG with L→∞.

• Otherwise, the two edge validation criteria M ≥ 2(S + D) and M ′ ≥ S + D are
used like for the regular GVG computation.

The Extended GVG is particularly useful in environments whose dimensions are much
larger than the maximum range of the robot’s distance sensors, such as outdoor envi-
ronments. Within our implementation, the transition from Extended GVG to GVG is
equivalent to changing L from a finite value to positive infinity.

Detecting vertices (steps 7 and 8)

Once edges have been detected using the above method, vertices are found as edge
intersections and loose ends of edges with a single pass over the image.
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Figure 4.6: Removal of parasitic edges (step 5 ): each pixel (bold black square) is tested to
see if it belongs to an edge or not. S + D is represented with a yellow circle.
In configuration (a), M/2 (dashed purple circle) and M ′ (red disc) are high
enough for the pixel to belong to an edge. In configuration (b), M/2 < S+D,
so the pixel does not belong to an edge. In configuration (c),M/2 ≥ S+D but
M ′ < S + D, invalidating the edge hypothesis in dotted green. Black arrows
are the local edge tangents, computed as average of both vectors and scaled
arbitrarily. Red arrows are the vectors of the Vectorial Euclidean Distance
Map (in each configuration, one of both vectors was offset one pixel left or up
from its original position marked with a dotted arrow. This offset is due to the
discrete gradient implementation).
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Figure 4.7: Vertex detection process (step 7 ): an edge pixel is a vertex if and only if one
or strictly more than two edges cross the orange contour. Edges crossing the
contour are counted as the number of yellow clusters, considering only 4-way
connection. Errors may occur on one pixel but are likely not to occur on
neighboring pixels. For instance, in case (d), 2 edges are detected on pixel D
while on neighboring pixel C, there are actually 3 edges (case (d’)). This is
not an issue since it is sufficient that one pixel be marked as vertex. Multiple
neighboring pixels can be marked as vertex (pixels A and B for cases (c) and
(c’)), which calls for a vertex clustering process.

For each edge pixel, a test is performed to determine if it is a vertex. This test sketched
on Figure 4.7 consists in checking how many edges cross a closed contour around the
pixel. A pixel marked as edge is a vertex if and only if the contour crosses exactly one
or strictly more than two edges. As opposed to the method proposed in (Malandain
and Fernández-Vidal, 1998) or to simple point characterization (Klette, 2003), contours
are not restricted to 4- or 8-neighborhoods. With a 4- or 8-neighbor scheme, no vertex
would have been detected in case (d’) of Figure 4.7.

This contour-based vertex detection does only work well if edges are locally one or two
pixels wide, which represents the immense majority of cases. In order to handle edges
locally wider than two pixels (which may happen when multiple individual edges get too
close to each other and form one single apparent edge), if a pixel has more than 7 out of
8 neighbors belonging to edges, it is automatically labeled as vertex, as well as said 7 or 8
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neighbors. This refinement is almost never necessary. Both the contour-based approach
and the 7-8-neighbors case are heuristic choices which were observed to give visually
satisfying results in a very large fraction of the thousands of skeletons extracted while
working on this thesis. For reference, a 270m run of the robot with our experimental
setup (see chapter 6) leads to extraction of more than 10 000 skeletons!

After the initial detection, vertices are clustered respecting the two following rules:

1. Two different clusters must be disconnected regarding 8-way connection.

2. An edge must always link exactly two vertex clusters. This means that two edges
cannot “touch” each other at any place but a vertex (using 8-way connectivity).

We found that both rules were enforced by attaching vertices within 3 pixels (inclusive,
using the L1 distance) of each other, or within four pixels if not along the same line or
column. The value of 3 was found by trial and error and validated a posteriori given
that the immense majority of edges are one or two pixels wide according to the precision
of vector calculation and edge detection. As a consequence, each edge intersection will
cause at least one pixel to be classified as vertex. If edges are locally wider than two
pixels, the refinement for pixels having 7 neighbors belonging to edges is likely to ensure
that the second rule does not get violated. Once clustering is done, the center of each
cluster is taken as the center of gravity of all vertex pixels belonging to the cluster.

Finally, each one of the original vertex pixels marks a zone of radius 1 pixel (L1 distance)
around itself as belonging to the cluster it belongs to (because anything that would be
within this range would belong to the cluster). 1 is strictly lower than the integral part
of 3/2 (3 being the vertex clustering radius, which can also be seen as the minimum
inter-vertex distance), so that this step will not fuse clusters together. The center of
the cluster is also marked as vertex, as well as the zone of 1 pixel around it, because it
is conceptually impossible that the center of the cluster does not belong to the cluster.
The output of the clustering step is shown on Figure 4.8.

Higher clustering radiuses simplify the graph structure (less vertices with more edges
per vertex in average).

Some skeletons obtained with steps 1 to 8 are presented on Figure 4.9.

Graph extraction (steps 9 and 10)

If the second rule of vertex clustering is verified, then edges always stop at a vertex
cluster. Thus, each edge segment links exactly two vertex clusters. Edge segments,
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Figure 4.8: (a) Vertex clustering radius. (b) Final vertex (red) obtained after clustering
of three vertex pixels (black). Center of the cluster in gray. The small arrows
show how vertices detected at step 7 (black) as well as the cluster center gray
are expanded, marking neighboring pixels as belonging to the cluster (red).
The final vertex cluster (blue outline) is made of the black, gray and red pixels.
(c) Vertex clustering applied on a pseudorandom vertex pixel distribution.
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Figure 4.9: Some outputs of the algorithm. Edges in green and vertices in red. Removal
of edges not belonging to the main cluster (step 6) was not applied, as can be
seen on the middle figure where there are two disconnected graph components
(red arrow). Vertices are automatically placed at the end of raw edges even
though these may not lead to dead ends.
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characterized by their two end vertices, are found using a simple agglomerative clustering
algorithm:

For each edge pixel P :

• Enumerate all eight neighbors Q of P one after the other:

– If P does not belong to an edge cluster and Q does, attach P to the cluster
of Q.

– If P and Q belong to the same cluster, do nothing.

– If P and Q belong to different edge clusters, fuse both clusters.

• If none of the eight neighbors of P already belonged to an edge cluster, create a
new edge cluster with two empty vertex slots.

• Enumerate all eight neighbors Q of P one after the other a second time. If Q is a
vertex with identifier i:

– If one of the end vertices of P ’s edge cluster already has the identifier i, do
nothing.

– Otherwise, i is one of the end vertices of P ’s edge cluster.

Then, edges with less than one extremal vertex get pruned, which notably eliminates
the rare case where an edge links a vertex to itself. Vertices with exactly two edges
are possible due to vertex clustering, as shown on figure 4.12. Path segments made of
chains of such vertices can be simplified to a single edge between both extremal vertices.
Skeletons shown on all figures of this chapter were all extracted without topological
errors in a graph format such as that shown on Figure 4.12.

Implementation

The above series of algorithms was implemented in C using only integer arithmetics.
Dynamical allocation was only used for clustering and graph extraction. The actual
execution time of the whole computation is on the order of 6 milliseconds for a grid of
300 × 300 pixels. Without parallelization or further optimizations, extrapolation (from
Figure 4.10) leads to typical execution times of a few seconds for a grid of 10 000 pixels.
This is the order of magnitude obtained for CPUs by Man et al. (Man et al., 2010)
in their approach to Euclidean distance mapping using CPUs and GPUs. However,
comparing both approaches is biased since on the one hand, Man et al. recover an exact
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Figure 4.10: (a) Execution time (ms) of the steps of our method as a function of the size of
the grid (in square pixels) on a 2.7 GHz core. (b) Step 3 can be replaced by
step 3’ where all occupied pixels are direcly marked as Voronoï seeds, which
increases the total execution time. These graphs show the close-to-linear
complexity of our approach and reveal that computing the VEDM (step 4) is
the most time-consuming part.
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Euclidean distance map while we use an approximate VEDM but on the other hand,
Man et al. don’t run the edge and vertex detection (steps 5 to 8). We observed that
steps 6+ run almost in linear time (Figure 4.10), which was not obvious given that these
steps include naively implemented clustering which may operate in quadratic complexity
in the number of pixels to cluster (Sibson, 1973). The worst case for clustering is when
all edges first form independent clusters (r/2 vertical edges of length up to r pixels,
separated by one pixel) and then join at the bottom of the image. This is far from an
usual situation where there are only a handful of edges and clusters, so that managing
clusters takes negligible time compared to scanning the image.

We compared our skeleton computation approach (steps 4 to 6) to the works of Garrido
et al. (Garrido et al., 2006) on Figure 4.11 and to that of Beeson et al. (Beeson, Jong,
and Kuipers, 2005) on Figure 4.12. The occupancy grids used to compare approaches are
bigger than scrolling occupancy grids typically used by a robot to represent its immediate
environment. Remarkably, there is almost no visible difference for a well chosen robot
size (S + D = 5 pixels) with the works of Beeson, validating our approach. Beeson et
al. don’t describe how they computed the skeleton (whether a distance map was used
or not and how the ridges were detected), so we cannot compare the efficiency of the
algorithms.

We tested robustness of our approach by randomly offsetting pixels of the grid before
detection. The result can be seen on the last image of Figure 4.12. The random offset
of the pixels (up to 10px) used to simulate noise is higher than S + D = 5px and yet
the simplified skeleton is mostly similar to the non-noisy one, demonstrating robustness
to noise of our approach, without even applying step 1. Finally, we extracted a graph
representation of the simplified skeleton of the first image, which is also shown on the
figure. The graph representation does not show any topological error. This is essential
to perform large-scale topological SLAM, as described in chapters 5 and 6.

4.2.4 Final words on topology extraction

In this section, we described how to perform robust extraction of the local topology
from an occupancy grid using an approximate Euclidean skeleton whose spurious edges
have been removed. As far as we know, it is the first description of a robust integrated
method from pixels to topology. The steps of this approach individually exhibit multiple
benefits over existing ones:

• We use a Vectorial Euclidean Distance Map to compute the skeleton. This map
can be reused to achieve obstacle avoidance.

• Spurious edges are removed from the skeleton using criteria parametrized only by
the robot’s size (the same size being used for obstacle avoidance). These criteria
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Figure 4.11: (a) Comparing our approach (green edges) to that of Garrido et al. (Garrido
et al., 2006) (blue edges) on a dataset of (Garrido et al., 2006) reveals that the
skeleton of Garrido et al. is not a true Voronoï diagram where all points are
equidistant to two obstacles. (b): the robot size S was increased, simplifying
the skeleton due to the two edge validation criteria M ≥ 2(S + D) and
M ′ ≥ S +D. Step 3’ was used in all cases.

do not make assumptions on whether edges lead to dead ends or are exits leading
to free space. The approach is thus more robust to occlusions and point-of-view
differences.

• Our vertex detection and clustering algorithms allow robust extraction of the sim-
plified skeleton in a graph format for use in topological mapping.

• Detection of the skeleton (steps 1 to 5) runs in linear complexity. Later steps
(steps 6 to 10) either take negligible time or run near linear complexity on real-
world data. The total execution time (around 6 ms for a 300 × 300 pixel grid) is
compatible with robotics experiments.

While our topology extraction approach is robust to noise, there are still rare situations
(see Figure 4.14) where slight changes in the occupancy grid lead to large changes in
the skeleton. In the context of this thesis, we did not study this issue further, since we
found the current accuracy of skeleton extraction to be sufficient for large-scale SLAM
(chapter 6). One possible approach to limit this issue of small local changes leading to
the local topology being reported differently is to use a two-threshold extraction. That
is, extract the skeleton once using robot size S1 and minimum distance to obstacle D1
and once using S2 = S1 + ε and D2 = D1 + ε, with ε greater than the uncertainty of
individual readings of distance sensors. In most cases, when ε is small (typically, one
or two pixels), both extracted skeletons will exhibit the same topology (homeomorphic
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Figure 4.12: Our approach (b) gives similar results to that of Beeson et al. (Beeson, Jong,
and Kuipers, 2005) (a) on a dataset of (Beeson, Jong, and Kuipers, 2005).
Step 3’ was used in order to compute the skeleton on the whole image. Image
(c) shows the graph extracted from (b), preserving two-edge vertices. For im-
age (d), before computing the skeleton, each pixel of the original image was
offset by a random number up to 10 = 2(S +D) pixels in the x and y direc-
tions. This simulated noise, comparable to the size of the robot in amplitude,
causes only minor modifications of the skeleton, confirming robustness of the
method.
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graphs). If both graphs exhibit a different topology, both can be considered as valid
hypotheses for future steps using the skeleton, such as topological SLAM (chapter 5).

4.3 Navigation using topology and the Vectorial Euclidean
Distance Map

In the previous section, we explained how to compute a Vectorial Euclidean Distance
Map and how to extract the topology of the environment using this map. This section
explains how to perform navigation using both local topology and the Vectorial Euclidean
Distance Map.

4.3.1 Large-scale planning and local topological navigation

An (exploratory) planning algorithm such as EDNA* (see chapter 3) is able to compute
a path using a map represented as a graph. While it is possible to run EDNA* or other
(exploratory) planning algorithms on dense maps, the computational burden may quickly
become intractable. Thus, it is preferable to run the planning algorithm on a sparse
structure representing places and paths instead of pixels. However, this means that the
planning algorithm returns a series of places and paths between places as itinerary. In
order to physically execute the plan and transform the sequence of places and paths into
speed or acceleration commands, a local (fine-grained) navigator is required.

The main task of the local navigator is to follow a path from one place to another,
where paths and places correspond respectively to GVG edges and vertices. A naive
navigation approach would be to keep the robot on the GVG, as done by Choset et al.
(2001). However, discretization of the GVG would lead to the robot zigzagging around
edges. Moreover, we would like the robot to be able to reach any place physically
reachable in the environment, which implies that the robot should have some movement
freedom around the GVG.

In order to robustly track an edge while not being constrained to navigate exclusively
on GVG edges and vertices, we use a virtual ski-tow approach represented on Figure
4.13. Without additional constraints on the robot’s motion system, it is sufficient for
the robot to go towards the point P where the tow is attached to the cable (edge),
represented by a dark blue circle on the figure. The virtual cable on which the tow is
attached always moves forward unless the length of the tow reaches its maximum value
because the robot is lagging behind. If this is the case, the cable stops. It starts moving
again as soon as the robot gets closer to P . In the absence of sensor noise and obstacles
preventing the robot from going towards P , the robot’s movement curve is close to
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Figure 4.13: The robot behaves like a skier attached to a cable (edge) by a ski-tow. The
robot is towed forward while keeping lateral movement capacities. If the
robot happens to get too close to an obstacle (the VEDM gives the distance
to the closest obstacle), a virtual force-based obstacle avoidance strategy is
triggered.

a tractrix. When the pole reaches a vertex, the vertex is reported to the topological
SLAM and planning algorithms, which in return give the next edge to take. It should
be noted that tracking a single edge or vertex between different frames is difficult due
to pixelization, especially around a vertex where multiple edges meet. Robustness to
occlusions and noise of topology extraction exposed in the previous section is critical to
keep the amount of navigation mistakes tractable.

As a final word on topological navigation, we have to raise a subtle issue: while navigat-
ing, the robot updates its local occupancy grid and regularly extracts a new skeleton.
Since the robot must always be attached to one single edge, each time the skeleton gets
updated, we have to find to which edge En of the new skeleton Sn the edge Eo of the old
skeleton So to which the robot is attached corresponds. To do so, algorithm 4 finds to
which edge Ei of Sn the individual pixels of Eo correspond and associates a confidence
score to the match. The edge En of Sn that got the best confidence score from all pixels
po of Eo is returned.

The 1√
(|| ~popn||2+1)(||po||2+1)

confidence score is inversely proportional to the distance be-
tween old (po) and new (pn) pixel and also inversely proportional to the distance from
the old pixel (po) to the robot, with the intuition that the grid gets less reliable when
the distance to the robot increases. The +1 terms prevent the score of one pixel from
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Algorithm 4 Local edge remapping
origin of So ← robot’s position
origin of Sn ← robot’s position
matchbuffer ← [0, 0, ..., 0], with as many zeros as edges in Sn.
for all pixels po of Eo do

find edge pixel pn of Sn that is closest to po. pn belongs to edge i of Sn.
matchbuffer[i]← matchbuffer[i] + 1√

(|| ~popn||2+1)(||po||2+1)
return En, n = argmax(matchbuffer[i])

being infinite.

4.3.2 Obstacle avoidance

While the ski-tow approach allows the robot to move according to the local topology
of the environment and theoretically prevents it from hitting obstacles, there are cases
where ski-tow navigation fails, causing the robot to hit an obstacle. Some of these cases
are:

• as shown on Figure 4.14, despite the robustness to noise of the algorithmic stack
explained in section 4.2, edges may appear or disappear on the GVG due to noise
and the use of a threshold S +D in GVG edge pruning. This happens quite often
in passages barely large enough for the robot, that is passages whose width is just
above 2(S +D).

• the ski-tow is too loose and the robot has to go around a corner, as on Figure 4.13.

In order to provably avoid obstacles represented in its local world model, a robot can
use simple physics-based techniques. Three of the most successful physics-based ap-
proaches are the real-time obstacle avoidance approach of Borenstein and Koren (1989),
the potential field approach of Barraquand et al. (1992) and the elastic band approach
of Quinlan and Khatib (1993).

The approach of Borenstein and Koren is based on having obstacles emit virtual repulsive
forces ~fr towards the robot and the goal position of the robot (if known) emit a virtual
attractive force ~fa towards the robot. The desired acceleration ~a of the robot is then
computed using Newton’s law mrobot~a = ~fa +

∑ ~fr. This approach’s large-scale use is
limited by at least two factors: local non-convexities of obstacles causing the robot to
get stuck (the issue is represented on Figure 1.3 (a), page 9) and tricky balancing of
||~fa|| and ||~fr|| which, if not done correctly, causes the robot either not to move at all
or to hit walls. Nevertheless, if the repulsive forces ~fr are chosen so that they grow to

83



4 Navigation, obstacle avoidance and topology extraction

Figure 4.14: It may happen for GVG edges to appear or disappear between GVG extracted
at successive time steps due to almost invisible differences in the occupancy
grid. For instance, here, a subtle change in the zone pointed by a red arrow
caused an edge present at step t1 to appear broken at step t2. Fortunately,
this is a border case happening when the distance between obstacles is very
close to 2(S + D) (the robot hesitates whether or not it can pass between
these obstacles).

infinity when the robot approaches a wall and to 0 far from any wall (typically, forces
in 1/r and 1/r2), a robot with null reaction time will never hit an obstacle.

While Borenstein and Koren use a Newtonian formulation, Barraquand et al. use a
Hamiltonian or Lagrangian (aka. energy-based or integral) formulation of the differential
equations of movement. Thus, a virtual potential field (corresponding to a potential
energy) is constructed around the robot. This field’s value at a specific point corresponds
to the distance to the closest object. The ridges of the field correspond to the GVG. The
potential field approach is sensitive to sensor noise and is costly computationally-wise,
however it supports path planning on the skeleton.

The obstacle avoidance approach of Quinlan and Khatib (1993) is based on construct-
ing and updating free-space “bubbles” centered on the robot’s trajectory (Figure 4.15).
These bubbles describe space traversable by the robot, leaving safety borders around
obstacles. It is easy to recover these bubbles using the Vectorial Euclidean Distance
Map: the radius of a bubble centered on pixel x, y of the grid is || ~Vxy|| − (D + S).

The Vectorial Euclidean Distance Map combines the advantages all three techniques:
while the ski-tow approach uses the GVG computed using non-local properties of the
map, virtual repulsive forces are easily obtained from single vectors of the map. More-
over, the robot can compute zones it is not allowed to access using bubbles centered on
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Figure 4.15: The “bubbles” approach to navigation and obstacle avoidance of (Quinlan
and Khatib, 1993). Obstacles in gray, robot trajectory represented with a
dash-dotted blue line. The green balls and the associated interpolated patch
represent zones that the robot can safely traverse. These zones do never
approach obstacles closer than a “safety” distance D + S marked with a red
arrow for each ball. The balls/safety zone approach can easily be derived
from the Vectorial Euclidian Distance Map.
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its current position in the VEDM. In order to guarantee that the robot never hits an ob-
stacle, we propose the following strategy using two levels of free-space bubbles centered
on the robot:

1. When the robot is further than D+S away from an obstacle, the ski-tow approach
alone is used to issue speed commands to the actuators. This first strategy corre-
sponds to a free-space bubble extending up to a distance D + S of any obstacle.

2. When the robot gets closer than D+S away from an obstacle, the ski-tow approach
is progressively replaced by a repulsive forces-based strategy which we call “obstacle
avoidance mode”. The influence of both strategies is represented by a single factor
α. α = 1 corresponds to pure ski-tow and α = 0 to pure repulsive-forces navigation.
Pure repulsive-forces navigation correspond to a free-space bubble extending up to
a distance S of any obstacle. If the robot comes closer than S to any obstacle, a
collision is likely to occur.

This dual control strategy allows the robot to provably avoid static and dynamic obsta-
cles, as will be shown in the following paragraphs.

Static obstacles

Suppose that the robot is at position (0, 0) on the grid and that the ski-tow approach
returns a unitary speed command ~vu.

In order to guarantee safety of the navigation system, if the Vectorial Euclidean Distance
Map ~V0,0 at the robot’s position is such that || ~V0,0|| < S+D, the robot enters an “obstacle
avoidance” mode. In obstacle avoidance mode, a virtual repulsive force ~f is computed as
~f = − ~V0,0. More robust approaches taking into account multiple nearby pixels instead
of just the nearest one are possible. Let α = || ~V0,0||−S

D .

The unitary command ~vu is corrected in obstacle avoidance mode as ~vu ← (1− α2) ~fu +
α2
(
~vu − ( ~vu. ~fu) ~fu

)
with ~fu = ~f

||~f ||
and normalized: ~vu ← ~vu

|| ~vu|| . The purpose of

~vu − ( ~vu. ~fu) ~fu is to compute the part of ~vu that is orthogonal to ~fu (removing the
part tangent to ~fu). The purpose of the α factor is to balance ski-tow navigation and
obstacle avoidance. We found experimentally that squaring α resulted in better obstacle
avoidance behaviors but other formulae are possible. When || ~V0,0|| = S +D, α = 1 and
the robot moves orthogonally to ~V0,0. When || ~V0,0|| = S, α = 0 and the robot moves
in direction ~fu (directly away from the obstacle). Thus, a robot with sufficiently low
reaction time cannot hit a static obstacle that was present on the occupancy grid at
the time the Vectorial Euclidean Distance Map was computed. The obstacle avoidance
strategy is represented on Figure 4.16.
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Figure 4.16: When the robot gets too close to an obstacle, an obstacle avoidance procedure
is triggered. (a) The robot is far from any obstacle, ski-tow-based navigation
is used. The ski-tow vector is represented in blue. (b) Getting closer to
an obstacle: the ski-tow vector is progressively replaced by the (normalized)
virtual repulsive force emitted by the obstacle (represented by a red arrow).
The resulting movement vector is represented with a green arrow. (c) Almost
touching a wall: when a collision is imminent, the robot uses pure obstacle
avoidance and goes directly away from the obstacle.
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Dynamic obstacles

Dynamic obstacles are more of an issue. Suppose that there is a dynamic obstacle whose
position is (xo(t), yo(t)) at time t. Suppose that the robot’s position is (xr(t), yr(t)).
The position of the obstacle relative to the robot is thus (x(t), y(t)) = (xo(t), yo(t)) −
(xr(t), yr(t)). A dynamic obstacle is provably avoided if ||(x(t), y(t))|| ≥ S at all times.
The speed of the dynamic obstacle relative to the robot is (dx(t)

dt ,
dy(t)
dt ) = ((vx(t), vy(t)).

There are various delays in the system:

• t1d: sensor delay,

• t2d: write values to occupancy grid,

• t3d: compute the Vectorial Euclidean Distance Map,

• t4d: compute a trajectory,

• t5d: send values to motors and

• t6d: physical acceleration

We call ts = t1d + t2d + t3d the sensing delay (delay necessary to detect anything). We also
call tm = t5d+ t6d the motor delay (time to reach a given command). t4d is the update rate
of the speed command issued by the local navigator.

The worst-case dynamic obstacle avoidance scenario is the following: the robot and the
dynamic obstacle are moving towards each other, preparing for a head-to-head collision.
We take y(t) = 0 given the symmetry of the problem and suppose that the “intruder”
(dynamic obstacle) does not change its trajectory, going along the x axis at speed vo > 0.
The robot’s speed is vr(t) along the x axis. Let v(t) = vo−vr(t). ts is modeled by saying
that while the local navigator sees the intruder at distance r, the intruder is already
at distance r + vo.ts. Let vmax be the maximum speed of the robot. The dynamical
obstacle avoidance process is sketched on Figure 4.17.

At time t0, the “intruder” (dynamic obstacle) and robot are x(t0) apart with r0 =
|x(t0)| < S +D. At time t1 = t0 + ts, the local navigator “sees” the obstacle at distance
r0 from the robot. The minimum value of r0 is S + D − (vo + vmax).ts (otherwise, the
obstacle would have been detected at the previous frame). At this point, robot and
intruder are r1 = r0−

∑t1
t′=t0 v(t′).t4d apart. If r1 < S+D, a collision occurs. Otherwise,

the obstacle avoidance mode is triggered, and a corrected unitary speed command ~vu(t1)
is issued. Given how ~vu(t1) is computed, vxu(t1) ≥ 1−α2

√
2 = ( 1√

2 −
(r0−S)2
√

2D2 ). In the worst
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Figure 4.17: (1) An intruder approaches the robot at a distance r0 < S + D. (2) The
robot sees the intruder at r0, but due to the sensing delay ts, the intruder
is already at r1. (3) The robot tries to flee. (4) If the robot increased its
distance to the intruder before the next grid update, obstacle avoidance has
succeeded. (4’) If obstacle avoidance fails, there is a collision. It is possible
that S < r(t1 + t3d) < r1 due to inertia, in which case another frame of
duration t3d has to be considered.
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case, the final speed command of the robot will be vr(t1) = vmax( 1√
2 −

(r0−S)2
√

2D2 ).

Between t1 and t1 +t3d, the speed command of the robot will be vr(t1 +n.t4d) = vmax( 1√
2−

(r0+
∑t1+(n−1)t4

d
t′=t1

vr(t′−tm).t4d−S)2

√
2D2 ) unless r0 +

∑t1+(n−1)t4d
t′=t1 vr(t′ − tm).t4d ≥ S+D (which is a

best-case scenario: the robot escaped the intruder). The robot successfully escapes the
intruder if it manages to increase its distance to this intruder:

∑t1+t3d
t′=t1 vr(t

′ − tm).t4d ≥
vo.t

3
d. Otherwise, the calculation is repeated for another t3d frame. Figure 4.18 shows an

example of successful and unsuccessful dynamical obstacle avoidance. Correct obstacle
avoidance is observed on the figure with vo = 1m s−1, vmax = 1.7m s−1, t3d = 200ms, t4d =
10ms, ts = 210ms, tm = 70ms, S = 10cm and D = 80cm. It should be noted that
avoidance of dynamic obstacles is only possible if vmax > vo by some amount dependent
on the various delays. Reducing delays is always beneficial for obstacle avoidance. A
typical C implementation without parallelism can easily reach ts < 50ms on a 300× 300
grid, using a ring of sonars as distance sensors. (Massively-)parallel (GPU) or hardware
implementations (ASIC, FPGA) may only need 20ms or less.

The formulae of the previous paragraph are computed for a worst-case (head-to-head)
collision. Practically, the robot is extremely likely to perform lateral obstacle avoidance
instead of trying to escape in the direction the intruder is moving. The additional
security margin obtained thanks to lateral obstacle avoidance may be necessary for a
non-holonomic robot which may need to rotate around itself before trying to escape.

Even during dynamic obstacle avoidance, the robot remains attached to the topological
skeleton by the ski-tow. If the dynamic obstacle causes the edge to which the tow is
attached to disappear, the tow attaches itself to the closest remaining edge.

4.4 Conclusion on local topology, navigation and obstacle
avoidance

Local navigation and obstacle avoidance is probably one of the earliest capacity acquired
by animals during evolution (think “escaping predators”). For a robot, it is critical to
perform these tasks provably and in constant time, no matter the size of the environment
or the mission the robot is charged with (or charged itself with). The approach we
proposed in this chapter is both fast (the whole sensing-and-control loop may react
faster than 50ms, down to less than 20ms with an optimized implementation) and safe
(provable static and dynamic obstacle avoidance). The underlying tool, the Vectorial
Euclidean Distance Map, is also used in our approach to robustly extract the local
topology of the environment for use in topological SLAM and planning. The description
of our (hybrid metrical/)topological framework is the point of chapter 5.
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Figure 4.18: (a) The robot (S = 0.1), whose position is marked with a dashed blue line,
managed to escape the dynamically moving obstacle whose position is marked
with a dotted black line. Indeed, the position difference x(t) (plain red line)
never goes below S = 0.1 and increases from timestep 8 on. The dash-dotted
green line represents the robot’s estimation of x(t) (the robot erroneously
thinks the obstacle is static). (b) here, the robot did not manage to escape
and collided with the obstacle (the position difference goes below S = 0.1).
On both figures, the horizontal axis represents timestep n from vr(t1 + n.t4d).
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5 A hybrid metrical/topological SLAM for
Lifelong Exploratory Navigation

“Our brain is mapping the world. Often that map is distorted, but it’s a map with
constant immediate sensory input.”

E. O. Wilson

The SLAM component is not straightforward to implement, notably because it has
to cope with probabilistic sensor noise as well as semantic place recognition (a clas-
sification problem). Additionally, the SLAM framework is the common denominator
allowing interaction of abstract intelligence, robot mission control, exploratory path
planning and low-level navigation (Figure 5.1). Our SLAM framework uses a new
bounded uncertainty model as well as active disambiguation in order to ensure that
the robot never gets lost. Compared to other SLAM frameworks, it is designed for Life-
long Exploratory Navigation while offering additional features such as handling of one-
way paths or recognition of already visited environments (the kidnapped robot problem:
https://en.wikipedia.org/wiki/Kidnapped_robot_problem). This chapter explains
the theoretical construction of the framework, with simulations and experiments deferred
to chapter 6.

5.1 Introduction - Motivations

5.1.1 Stakes of autonomous robot navigation and SLAM

In order to build an accurate map of an environment, a reliable SLAM framework should
cope with three sources of errors (Kuipers et al., 2004) represented on Figure 5.2:
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Figure 5.1: A SLAM-centered view of PNSLAM and LEN.
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1. Movement uncertainty, which describes errors of the sensors determining the tra-
jectory of the robot (typically, wheel odometry or point tracking with a camera).

2. Pose uncertainty which describes the fact that the robot cannot determine its
exact position relative to a point of interest in real space, because its sensors are
not precise enough or because the position of the point of interest is not precisely
defined. For instance, a road crossing may be a conceptually well-defined and
point-of-view independent place, but the exact center of the crossing is defined
only within a precision of a few feets.

3. Structural ambiguity, also known as the cycle detection or loop closure problem and
which is solved by unambiguously determining whether or not the current place is
already on the map (and if yes, which place on the map it is).

In addition to these three sources of errors, a SLAM framework may also correct global
metrical uncertainty (Kuipers et al., 2004) to produce a map visually close to ground
truth.

Autonomous navigation imposes additional constraints on the SLAM framework:

• First and foremost, the SLAM framework should run online, which limits the
execution time of any algorithm to a maximum of a few seconds.

• Then, the SLAM framework should maintain up to date a map of the environment
which represents physically traversable space (and not only landmarks for instance).

• Additionally, path planning algorithms require a unique starting position (current
position of the robot). Thus, it is not sufficient for the SLAM framework to update
a set of likely positions of the robot: the framework should provide a single robot
position.

• Finally, physical environments contain single-way paths, which the map produced
by the SLAM framework should model. Examples of single-way paths are escala-
tors and single-way roads.

In this chapter, we propose a new SLAM approach addressing all these constraints in a
unified framework.

5.1.2 Hybrid metrical/topological SLAM

Our approach is based on the hybrid metrical/topological SLAM frameworks of Kuipers,
Beeson et al. (Beeson, Modayil, and Kuipers, 2010; Kuipers et al., 2004; Kuipers, 2000),
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Bailey (2002) and the ATLAS framework of Bosse et al. (2004). In these works, the map
produced by the SLAM algorithms is a graph of submaps linked by metrical relations
(see Figure 5.2).

In the works of Bailey (2002) and Bosse et al. (2004), each vertex of the graph is
associated to a local coordinate frame and each edge models the transformation and ac-
cumulated uncertainty from its origin vertex to its destination vertex, in the coordinate
frame of the origin vertex. Mapping does not require a global coordinate frame, but
approximate absolute positions can still be obtained by means of global optimization
of the position of submaps. In order to diagnose and fix structural ambiguity, uncer-
tainty projection is used to determine places already on the map that may match the
current place. Each of these places generates a loop closure hypothesis. The validity of
each hypothesis will be tested against evidence acquired during later movements of the
robot. If there is sufficient evidence to validate an hypothesis, then a new loop has been
found and can be written down on the map. Since acquiring evidence that a specific
loop closure hypothesis is valid requires physical movements and computations, there is
a balance between map correctness and mapping and navigation efficiency. For perfor-
mance reasons, when a loop is found in the environment, the transformations stored in
the edges of the graph are not modified even though the compound transformation along
the newly formed loop should be the identity. A global map may be obtained a posteri-
ori by means of constrained optimization. All processes but uncertainty projection and
disambiguation run in constant complexity. Uncertainty projection runs in O(N.log(N))
complexity (Bosse et al., 2004) and disambiguation of place hypotheses runs in O(N)
complexity, where N is the number of vertices on the map at a given time, provided that
the degree (number of outgoing edges) of each vertex is bounded.

5.1.3 Problems of existing hybrid metrical/topological SLAMs

The works of Bailey (2002) and Bosse et al. (2004) present a number of unsolved issues:

• They do not describe traversability of a mapped environment, only the relative
position of features in this environment. Consequently, the produced map cannot
be used directly by a robot to navigate in the environment.

• They are not designed to interact with approaches used for local path planning and
obstacle avoidance, such as occupancy grids.

• The disambiguation of place hypotheses while mapping is not compatible with au-
tonomous robot navigation while mapping, which requires loops to be ascertained
as quickly as possible and not only when enough information is available.

• They do not consider the kidnapped robot problem.
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• They do not meet the single robot position requirement.

• They cannot take into account single-way relations between vertices of the graph.
When traversability of an environment has to be modeled, single-way paths have
to be considered.

• They have trouble coping with point-of-view dependency of place detection.

• They do not separate pose and movement uncertainties, which may cause inaccu-
racies in uncertainty projection.

• They cannot ensure topological correctness of the produced map.

• Their worst-case algorithmic complexity is at least linear in the number of features
or places in the environment.

5.1.4 Proposed approach

This chapter introduces a hybrid metrical-topological SLAM framework designed from
the ground up for (real-time) autonomous robot navigation and exploration in extremely
large, highly cyclic (hundreds of loops) and ambiguous environments, such as entire cities.
A consistent map is produced after each observation, where consistent means that path
planning and navigation algorithms can use the map to successfully direct the robot
within the environment. Only a finite set of past movements of the robot is remembered
in addition to the map itself.

We introduce a few essential modifications and additions to the concepts described by
Bailey (2002) and Bosse et al. (2004):

• Our approach uses a map representing physically traversable places as graph ver-
tices and paths as graph edges.

• Our framework is designed to interact with a scrolling occupancy grid of fixed size
(Kuipers et al., 2004) or an equivalent representation of free and occupied space
in the immediate vicinity of the robot.

• We introduce active disambiguation of place hypotheses to allow for autonomous
navigation and meet the requirement of a single robot position.

• The method used to build and maintain the map provides an elegant solution to the
kidnapped robot problem (recognizing whether the current environment corresponds
to a map stored in memory).
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• The map generated by our framework is a directed graph which can contain single-
way edges.

• Using single-way edges provides an elegant solution to point-of-view dependency of
place detection.

• While movement uncertainty was already handled in the works of Bailey (2002)
and Bosse et al. (2004), we introduce pose uncertainty and propose a unified
formalism (section 5.3) to handle both pose and movement uncertainties.

• When all sensor uncertainties are bounded, we demonstrate (section 5.4, theorem
7) that constructing a “provably good” map with our framework is possible under
some mild assumptions.

• Under some mild assumptions, we reduce in chapter 7 the worst-case algorithmic
complexity of the SLAM framework to constant in the number of features or places
in the environment.

• In addition to these modifications, we also introduce a new set of evaluation metrics
based on using the map for navigation in order to compare SLAM approaches in
a quantitative and sensor-agnostic way.

Places are understood in our approach as approximate physical positions whose definition
may be point of view dependent but which are detected identically when traversing the
environment multiple times with the same trajectory in the absence of sensor noise. Each
place is associated to its signature, which may be globally and locally ambiguous. Like
in (Bosse et al., 2004), a local SLAM algorithm running in constant complexity can be
used to increase the quality of odometry. However, such a local SLAM is not required
in our approach.

Absolute vertex positions are not necessary for SLAM and navigation but useful for vi-
sualization of the produced map, interaction with a human operator and optimization of
algorithmic complexity (see chapter 7). With our approach, approximate absolute vertex
positions are obtained by means of considering the graph as a spring-mass network whose
energy should be minimized. With the help of spring-mass energy minimization and rig-
ging with the graph, it is possible to produce a global dense map of the environment
(section 5.5).

The main components of our approach are sketched on Figure 5.2.
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Figure 5.2: Overview of the components of our SLAM framework. Satellite components
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section or chapter where the corresponding component is described.
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5.1.5 This chapter

The rest of this chapter goes as follows: in section 5.2, we briefly review existing SLAM
frameworks with a focus on their structural differences and on which kinds of uncertain-
ties or ambiguities they can tolerate. We then compare the components of our approach
to that of existing SLAM frameworks. In section 5.3, we introduce a bounded uncertainty
model and derive the relative uncertainty accumulated (or projected) from one vertex
to another along a path. Uncertainty projection is used in section 5.4 to determine
places already on the map that may match the current place. Active disambiguation of
these place hypotheses is then used to validate loop closures, leading to theorem 7 which
guarantees that structural ambiguity is handled correctly in our approach. Rules for
choosing the parameters of the approach are also given. In section 5.5, we describe how
spring-mass optimization and rigging allow computing a global map in a single reference
frame. Simulations and experiments are postponed until chapter 6 since these do reflect
the whole PNSLAM/LEN approach, not only the SLAM component.

5.2 Related work

The history of SLAM is that of progressively taking uncertainty and errors into account
in order to produce accurate maps of environments of increasing size and complexity.
The development of SLAM frameworks was first driven by the necessity to take into
account probabilistic movement uncertainty. It then progressively switched focus to the
loop closure or structural ambiguity (Kuipers et al., 2004) problem, leading to hybrid
metrical/topological frameworks such as ours.

We call topologically correct a SLAM algorithm producing both a map homeomorphic to
the environment being mapped and topologically correct positioning within said map.
The notion of homeomorphism denotes the fact that the map is free of structural am-
biguity (perfect loop detection). Topologically correct positioning means that the robot
knows at which intersection in the topological map or along which path between inter-
sections it is located at any moment. Topological correctness of SLAM is sufficient to
achieve planning and navigation from any already explored place to any other already
explored place in the environment.

5.2.1 probabilistic uncertainty and structural ambiguity

In the presence of noise, the works of Smith et al. (1986; 1990) and Durrant-Whyte et al.
(1996) introduced a fundamental idea: the robot’s position and the current map state
should be expressed as a single joint probability distribution and cannot be factored into
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a robot position distribution and a map state distribution. When a joint distribution
is used and if there is no structural ambiguity, the map will converge with increasing
number of observations.

The first probabilistic SLAM approaches such as Enhanced Kalman Filter (EKF) SLAM
(Dissanayake et al., 2001; Smith, Self, and Cheeseman, 1990) considered the joint robot-
position-and-map-state distribution as a whole, ignoring multimodality caused by struc-
tural ambiguity, which caused them to produce topologically inconsistent maps in all
but very small environments with few or no loops. Intuitively, a probability density can
be expressed as the product of peaks due to different hypotheses (structural ambiguity)
and unimodal probability densities due to uncertainty. This intuition was used in Mon-
temerlo et al.’s FastSLAM (Montemerlo et al., 2002). In FastSLAM, the distribution
of possible trajectories of the robot gets sampled (to recover from structural ambigui-
ties) while the distribution of measurements around the robot (uncertainty-driven) keeps
its model-driven nature. However, FastSLAM suffers from progressive loss of diversity
of the particle cloud used to represent sampled hypotheses (Havangi, Teshnehlab, and
Nekoui, 2010) and its ability to map extremely large environments has yet to be demon-
strated (Aulinas et al., 2008; Bosse et al., 2004). A simple description of both the EKF
and FastSLAM can be found in the first part of the survey of probabilistic SLAM by
Durrant-Whyte and Bailey (2006).

In parallel to the aforementioned Bayesian SLAM approaches whose internal memory is
the joint probability density of the robot position and the map state at a given time,
another type of SLAM methods developed: topological SLAMs. Topological SLAMs
model the environment as a graph of places characterized by signatures (see for instance
Dudek et al. (1991; 1993), Savelli and Kuipers (2004), Tapus et al. (2008) or Werner
et al. (2009)). Since they do not consider metrical localization, topological SLAMS
are robust to odometric drift and don’t need to model sensor uncertainties. The use of
the notion of places is supported by evidence from neurobiology (Ekstrom et al., 2003;
O’Keefe, 1976) that the brain of mammals encodes such places even though the complete
localization and mapping system of the brain has not been puzzled out yet. Using places
raises the issue of how to reliably extract places that will be detected identically in future
traversals of the environment. The recent survey of visual place recognition by Lowry et
al. (2016) discusses the notion of places, the use of places for SLAM as well as extraction
of places from visual data. Visual SLAM algorithms such as FabMap (Cummins and
Newman, 2008; Cummins and Newman, 2010) or SegSLAM (Milford and Wyeth, 2012)
can be categorized as topological approaches where places of the graph are individual
pictures.

Purely topological SLAMs where places are only characterized by their signature are
however computationally expensive since the search space to be considered for each
new observation is not constrained by a position estimate. Moreover, purely topological
SLAMs cannot easily disambiguate between different places with the same signature.
There is also evidence from neurobiology that at least rodents (but probably other

100



5 A hybrid metrical/topological SLAM for Lifelong Exploratory Navigation

mammals) are able to manipulate some kind of vector arithmetics (Etienne and Jeffery,
2004; Touretzky and Redish, 1996). For these reasons amongst others (Bailey, 2002),
hybrid topological/metrical SLAMS (Bailey, 2002; Beeson, Modayil, and Kuipers, 2010;
Bosse et al., 2004; Estrada, Neira, and Tardos, 2005; Kuipers et al., 2004; Thrun et al.,
1998; Thrun and Montemerlo, 2006; Tomatis and Nourbakhsh, 2002) were developed.
Hybrid frameworks store approximate metrical relations on the edges and vertices of
the graph in addition to the semantic properties necessary for topological SLAM. In a
hybrid metrical/topological SLAM framework, probabilistic uncertainties are stored on
edges and vertices while structural ambiguity is encoded in the structure of the graph
(its topology): structural errors are represented by the absence/incorrect presence of
some edges and vertices.

Finally, the seminal paper of Lu and Millios (1997) led to the development of so-called
Graph SLAMs (Gutmann and Konolige, 1999; Pinies, Paz, and Tardos, 2009; Schuster et
al., 2015; Thrun and Montemerlo, 2006; Wagner, Frese, and Bauml, 2014) which repre-
sent the map as a graph of robot poses (vertices) and constraints describing observations
(edges) (Grisetti et al., 2010). The main difference between graph SLAMs and hybrid
metrical/topological (m/t) SLAMs is that hybrid m/t frameworks rely at some point on
discrete places and create a sparse graph using only these places, while graph SLAMs
represent each pose (or a subset of all poses) of the robot as vertices of the graph. Addi-
tionally, hybrid m/t frameworks often use two levels of mapping (local and global) while
graph SLAMs usually use only one. While hybrid m/t SLAMs are focused on topological
correctness (uncertainty projection and the loop closure problem), graph SLAMs try to
optimize metrical correctness of the produced map relative to ground truth (which can
be done as an optional post-processing step in hybrid m/t approaches). Both approaches
are currently being mixed together by making loop closure more robust (Pfingsthorn and
Birk, 2014) and reducing the number of vertices in the graph (Carlevaris-Bianco, Kaess,
and Eustice, 2014; Mazuran, Burgard, and Tipaldi, 2016) in graph SLAMs.

5.2.2 Comparison to our approach

Structure of the map

The structure of the map as a network of submaps (places) of our approach is taken
from (Bosse et al., 2004), as well as the general algorithm: uncertainty projection im-
plemented with Dijkstra’s algorithm, vector summation (expressed more generally as
transformation composition in (Bosse et al., 2004)) and disambiguation. The paper of
Bosse et al. describes the various advantages of such a structure over approaches with a
single reference frame such as the Enhanced Kalman Filter or FastSLAM (Montemerlo
et al., 2002). Similarly to the works of Bosse et al. or Thrun et al. (1998) and as
opposed to that of Choset et al. (1997; 2001), local uniqueness of place signatures is not
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required in our approach. Finally, like (Bosse et al., 2004), our approach can be coupled
to a local mapping technique such as a scrolling occupancy grid (Kuipers et al., 2004),
knowing that structural ambiguity can be ignored at a local scale (Thrun et al., 1998).

We represent physical places and paths by a graph, as in Choset et al.(1997; 2001) or in
Modayil, Beeson and Kuipers (2010; 2004). These places and paths are not extracted
directly from a sensor profile, but from an intermediary process such as a local SLAM
and/or an occupancy grid following Kuipers and Beeson (Beeson, Jong, and Kuipers,
2005; Kuipers et al., 2004). We carried experiments (not reported here) using the
approach of Choset et al. without an occupancy grid but detection of vertices proved
not to be robust enough to sensor noise when mapping large environments. The issue
was especially critical for vertices with more than three outgoing edges. Contrary to the
works of Bosse et al. (2004) and Bailey (2002), we define our “places” as single points
in space, following Kuipers et al. (2004) and Beeson et al. (2005). This alleviates the
issue of “multiple overlapping submaps for the same region of the environment” and of
map fusion raised but not solved by Bosse et al. The equivalent of Atlas’s map-frames
would be local occupancy grids centered on a physical place.

Autonomous robot navigation

One of the main differences between our approach and existing SLAM frameworks is that
SLAM, planning and navigation are usually studied separately, with the assumption that
they can act independently from each other. As a result, most SLAM approaches able to
map large and highly ambiguous environments are incompatible with path planning, nav-
igation or both. For instance, approaches that track multiple hypotheses such as Thrun
et al.’s metrical topological integration (1998), Montemerlo et al.’s FastSLAM (2002) and
hybrid metrical/topological frameworks (Bailey, 2002; Bosse et al., 2004) do not allow
path planning in the sense that the robot almost never knows where it is, only where
it may be. Additionally, not all SLAM approaches run online. For instance, Thrun and
Montemerlo’s GraphSLAM (2006) processes data a posteriori to produce the most likely
map of the environment. Finally, navigation requires a map representing traversable
and occupied space and not only landmarks as used for example by Dissanayake et al.
(2001).

On the other hand, SLAM approaches designed for autonomous path planning and
navigation are more limited in terms of mapping capacities or in the way the robot can
move within the environment. For instance, occupancy grids (Elfes, 1989; Thrun, 2001)
are easily used for path planning (using the (Lazy) Theta* (Nash et al., 2007; Nash,
Koenig, and Tovey, 2010) algorithm for instance) and navigation but cannot model
structural ambiguity as defined by Kuipers et al. (2004). Choset and Nagatani’s (2001)
approach of topological maps based on the Generalized Voronoï Graph (GVG) is partly
successful in modeling structural ambiguity but requires the robot to stay equidistant
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to two obstacles at all times. Additionally, the approach of Choset and Nagatani may
fail when identical-looking places exist within the environment.

The idea of combining hybrid metrical/topological maps for large-scale mapping and
path planning (using A* (Hart, Nilsson, and Raphael, 1968) or EDNA* (Mayran de
Chamisso, Soulier, and Aupetit, 2015)) and local representations of physical space such
as occupancy grids for autonomous navigation emerged with the works of Kuipers, Bee-
son et al. (Beeson, Modayil, and Kuipers, 2010; Kuipers et al., 2004; Kuipers, 2000) and
was later used by Konolige et al. (2011). The approach of Kuipers, Beeson et al. does
not use uncertainty projection to find loop closures. As a consequence, a tree of all loop
closure hypotheses has to be maintained in (Beeson, Modayil, and Kuipers, 2010), which
is not compatible with path planning during mapping and may become intractable in
extremely large environments with hundreds of loops. Konolige et al. (2011) do nei-
ther use uncertainty projection to find loop closures nor advanced hypothesis testing to
ascertain the validity of loop closure hypotheses. Moreover, the nodes (vertices) of the
graph used as topological map in (Konolige, Marder-Eppstein, and Marthi, 2011) do
not represent places (understood as the intersection of physical paths). Finally, while
we were working on our SLAM framework, Carrillo et al. (2015) published an approach
mixing occupancy grids (for autonomous robot navigation and exploration) and graph
SLAM. The approaches of Konolige et al., Kuipers, Beeson, Modayil et al. and Carrillo
et al. are tested in environments containing only a handful of topological loops, which
is not sufficient to assess large-scale mapping capacities.

Single-way edges

As far as we know, the use of single-way edges and the associated point of view depen-
dence of place extraction is unique to our work. However, if the transformation and
accumulated uncertainty along an edge E from an origin vertex V1 to a destination ver-
tex V2 is the same as that on a reciprocal edge from V2 to V1, then both single-way edges
can be merged into a single dual-way edge to return to the operating conditions of Bosse
et al. (2004) or Gutmann and Konolige (1999). Merging edges is only possible if point-of
view dependence is low and if space is physically traversable in both directions.

Pose uncertainty

Even though Kuipers et al. (2004; 2000) formulated the difference between pose and
movement uncertainty, this difference was never explicitly used in the structure of a
hybrid metrical/topological SLAM approach. Attaching movement uncertainty to mea-
surement of paths/edges and pose uncertainty to detection of places/vertices seems very
natural, but maintaining a model with two different sources of uncertainty requires extra
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care. We show in section 5.3 that the pose uncertainty terms are necessary to decorrelate
the map from the actual trajectory of the robot by allowing loops to be ignored during
uncertainty projection.

Kidnapped robot problem

The kidnapped robot problem consists in recognizing, when the robot is switched on,
whether the current environment corresponds to a known one or is completely new. In
case the environment is known, the current localization of the robot within the existing
map should also be provided. The kidnapped robot problem requires the robot to travel
in the new environment until it can ascertain whether this new environment matches
the existing map (Koenig, Mudgal, and Tovey, 2006). The kidnapped robot problem
is usually solved using Kalman filtering or Monte Carlo Localization (Thrun, 2000).
Vision-based techniques have also been developed (Lee, Lee, and Baek, 2011). Our
framework considers the kidnapped robot problem as a particular loop closure where no
hint is available initially. Our disambiguation strategy then solves the problem exactly
like a regular loop closure where hints are available.

Bounded uncertainties

The whole idea of using bounded uncertainties is, as far as we know, new in the field of
hybrid metrical/topological SLAMs. It was introduced for three purposes: reducing the
computational and memory burden relative to probabilistic approaches (to equip smaller
and simpler robots), simplifying uncertainty projection formulae and making topological
correctness of the approach provable. It is expected that replacing edge vectors by linear
transformations (and vector summation by transformation composition) and modeling
uncertainties with covariance matrices, as in (Bosse et al., 2004), would not degrade the
mapping capabilities of our framework and may even improve them but at the expense
of losing provability of topological correctness. Since using bounded uncertainties is
less precise than using a probabilistic formulation, it is important for the graph to be
sparse as in hybrid metrical/topological approaches and not dense as in graph SLAM
approaches.

Active disambiguation of place hypotheses

In hybrid metrical/topological SLAM litterature, disambiguation strategies consist of
updating the likelihood of a discrete set of place hypotheses (Bailey, 2002; Bosse et
al., 2004). A review of such strategies is given in (Bosse et al., 2004). Bosse et al.
and Bailey defer the loop closure process in their respective approaches by maintaining
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hypotheses until enough evidence is gathered, knowing that sometimes enough evidence
will never be gathered. We can see three main weaknesses of strategies currently used
in literature. First, there is no upper bound on the amount of space to physically
traverse until enough evidence is gathered to confirm that a place was already known, a
failure cause underlined but not solved by Bosse et al. The second weakness of current
strategies is branching, that is the case where while disambiguating between hypotheses,
new hypotheses arise. Branching is potentially infinite. Third, no strategy deferring a
loop closure to a later moment is compatible with goal-directed path planning where one
decision has to be taken even though there are multiple place hypotheses (single robot
position requirement).

For these reasons, we choose an active approach, explicitly disallowing branching of hy-
potheses and actively looking for evidence that the current hypothesis is valid or not.
An active strategy requires the navigating robot to be freely able to chose its path,
whence the tight integration with (exploratory) path planning and navigation of our
SLAM framework shown on Figure 5.3. The idea of physical navigation for disambigua-
tion has also been developed by Kuipers et al. (2004; 1991). The extra evidence is payed
for by disrupting the path plan for the whole duration of the disambiguation phase and
possibly requiring more physical movements (trying to follow disambiguation paths and
backtracking in case of failure) of the robot. Nevertheless, if the correct hypothesis is
tested first and the disambiguation path is chosen in agreement with the path planning
algorithm, navigation may not be affected at all. Our disambiguation strategy revises
beliefs backwards in time, which is conjectured in (Thrun et al., 1998) to be essential
for mapping of large environments.

When a loop closure hypothesis gets validated, the robot is not required to backtrack
to the point where the loop closure was first detected, as opposed to (Tomatis and
Nourbakhsh, 2002). Backtracking can sometimes fail due to dynamics of the environment
and/or sensor noise, so avoiding backtracking when possible is beneficial. Note that
backtracking errors are taken into account in our framework (see Figure 5.10), and even
happen quite often on actual datasets such as that presented in chapter 6.

At last, our disambiguation strategy does not impose limits on the maximum uncertainty
accumulated on a loop before encountering the ambiguous situation, contrary to Atlas
(Bosse et al., 2004).

5.3 Bounded uncertainty projection

Within hybrid metrical/topological frameworks, it is possible to compound transforma-
tions along edges from a first vertex to a second vertex of the map, in order to find the
coordinates of the second vertex in the reference frame of the first vertex. Uncertainty
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Figure 5.3: Our SLAM framework, its inputs and outputs. This sketch details the SLAM
block of Figure 5.1.
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projection consists in finding the cumulated uncertainty associated to this compound
transformation. In this section, we derive uncertainty projection formulae for a single
edge traversed once (equations 5.3 and 5.4), for a sequence of edges and vertices tra-
versed once (theorem 4) and for a path made of edges and vertices traversed an arbitrary
number of times (theorem 5). In the process of deriving this last projection formula, we
also explain how to update edge transformations and uncertainties when new measure-
ments are available (Figure 5.8). The uncertainty projection formulae derived in this
section are used in section 5.4 to perform robust cycle detection (theorem 6).

5.3.1 Notations

Consider a mobile robot moving in a world W. The robot creates a map of said world
in the form of a graph G whose vertices v ∈ V represent places in W and whose edges
e ∈ E represent paths or transformations from one place to another. Each vertex v ∈ V,
corresponding to a place at position Rv inW, can be associated to its global coordinates
R̃v, computed in a post-processing step through spring-mass optimization. Each edge
e ∈ E from S(e) ∈ V (for “start”) to T (e) ∈ V (for “termination”) is associated to
the measured vector r̃e, where r̃e is an estimate of the difference re = RT(e) − RS(e)
between the positions of both its end vertices. Global vertex coordinates are used for
visual output but not for SLAM, path planning or navigation. We suppose that W
remains static while the robot is mapping it and navigating inside it. An environment
is said to be static if in the absence of sensor noise, if a place is traversed twice with the
same trajectory, then the sensed data describing this place both times are identical.

Each time the robot traverses an edge and a vertex, a traversal counter t is increased
by one unit. V (t) ∈ V is the vertex that was traversed at step t when coming from
V (t − 1) ∈ V through edge E(t) ∈ E . A real robot will need to forget old values of
V (t) and E(t) because of limited memory. Typically, history of the trajectory is only
maintained within a finite time horizon ∆, so that if the current time step is t, only
V (i), E(i), i ≥ t−∆ are stored.

A single vertex v is visited at timestep t when V (t) = v. Let V isit(v) = {t|V (t) = v}.
Similarly, for an edge e, let V isit(e) = {t|E(t) = e}.

Let dmin ∈ R+ be the minimum distance between any two places in W.

5.3.2 Angular sensing

We assume that there is no large-scale angular odometric drift, which can be ensured
using a compass in three ways compatible with each other:
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Figure 5.4: (plain blue line) Offset in degrees between heading deduced from wheel odom-
etry and from compass: 49000 data points collected along a 276m trajectory
using a Kobuki robot for odometry and a common MEMS magnetometer for
compass. (dotted red line) Applying a sliding median (or mean) filter on the
raw offset produces a smooth measurement of the angular drift of wheel odom-
etry relative to compass, which happens to be constant around 1◦/m.

• Using compass-based odometry (Duckett, Marsland, and Shapiro, 2002). Compass-
based odometry can be used for outdoor environments where compass information
can be considered reliable.

• Using large-scale compass-based angular drift compensation (appendix 2, section
4): while compasses are not reliable indoor at a small scale due to metallic objects
and magnetic field emitters, integrating the offset between odometric heading and
compass values over a few meters or dozens of meters leads to a reliable measure-
ment of odometric drift, as shown on Figure 5.4.

• If the robot reaches the same place twice and unless there is locally a strong
magnetic field gradient, the magnetic field is likely to be the same each time.
Thus, even though the field itself does not give the geographic north, it still allows
computing the relative angular drift accumulated between both traversals of the
place. Furthermore, place signatures can be oriented relative to the field, which
simplifies signature matching by removing the rotational degree of freedom.

The difference between compass-based odometry and odometry without a compass is
sketched on Figure 5.5.

Nowadays, most robots are equipped with a magnetometer or a similar device, so that
the “no large-scale angular odometric drift” hypothesis is realistic. There are also hints
(Kimchi, Etienne, and Terkel, 2004) that some mammals such as blind mole rats use
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 𝑖=1
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𝛿𝜃1

𝛿𝜃2

𝛿𝜃3

𝛿𝜃4

𝛿𝜃1

𝜹𝜽𝟏 + 𝛿𝜃2
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Figure 5.5: Odometric drift without (a) and with (b) a compass. Actual and measured
trajectory are respectively represented with plain and dashed arrows, with each
arrow corresponding to a measurement. Angles are always computed relative
to a reference. In case (a), an angle measurement consists in estimating the
rotation accumulated since the last angle measurement (taken as reference)
and adding it to this last measurement, resulting in an angular drift. On the
contrary, in case (b), the reference is fixed (geographical North) so that even
though the angle measurement is not completely accurate, it does not drift
with successive measurements. The additional angular errors in case (a) are
written in bold red. After hundreds or thousands of measurements in case (a),
the angular drift may exceed 360◦. In case (b), the measured angle relative to
geographical North remains close to its actual value, so that the vectorial error
on one single odometric measurement (one of the arrows) is infinitesimal.
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some kind of compass-based odometry. Without large-scale angular odometric drift,
the error δ~ri on a single odometric measurement ~ri verifies δ~ri � ||~ri|| (perturbative
regime). If there was large-scale angular odometric drift, δ~ri may be of the same order
of magnitude than ||~ri||.

Without large-scale angular odometric drift and in a 2D world, all transformations stored
in edges are translations, coded with a vector in R2.

5.3.3 Bounded uncertainty model

We suppose that all inputs (sensors, commands, . . . ) of a robot performing SLAM are
bounded. Then, the following property shows that all compound measurements obtained
as continuous functions of inputs are bounded:

Property 1 (boundedness propagation). Let (m1, . . . ,mp) ∈ Rp be physical quantities,
of which measurements (m̃1, . . . , m̃p) ∈ Rp have been taken. Suppose that these mea-
surements’ uncertainties are bounded: ∀i ∈ 1 . . . p,∃εi ∈ R+, ||m̃i −mi|| < εi. Let f be a
continuous function defined on the compact C = [m1−ε1;m1+ε1]×. . .×[mp−εp;mp+εp]
with values in Rq(q ∈ N∗). Then, f(C) is bounded.

Proof. f is continuous on a compact with values in the separable space Rq, which means
its image is compact, so f(C) is bounded.

We chose a vector (as center) and a single real (as radius) to represent uncertain mea-
surements as maximum uncertainty Euclidean balls. 1 The radius is taken so that the
uncertainty ball covers the whole support of the distribution, including bias if any. Given
the lack of precision of this representation, the value of the actual quantity measured
can be anywhere inside the ball, without any specific probability density. However and
by definition, it cannot be outside the ball, which is the critical part of our formulation.
Therefore, the following property holds:

Property 2 (ball intersection). If a point P belongs to uncertainty balls B1, . . . , Bn
returned by different measurements m1, . . . ,mn (correlated or not), then it must belong
to the intersection of these balls: (∀i ∈ 1 . . . n, P ∈ Bi)⇒ P ∈

⋂n
i=1Bi

Proof. The point cannot be outside of any of the balls, so it must belong to the inter-
section of all balls. Formally, P /∈

⋂n
i=1Bi ⇒ ∃i ∈ 1 . . . n, P /∈ Bi is trivial.

1Directionality of uncertainty in SLAM has been questioned by Duckett et al.(2002) who found that
there was not much change in their results when using circles instead of ellipses to describe covariances
in their model.
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We define an error estimate as consistent if it does not underestimate uncertainty of the
quantity it describes. Formally:

Definition 1 (consistent error estimates of a measurement). Let M be the set of all
possible measurements of a physical quantity m ∈ Rp by one or multiple sensors. ε ∈ R+

is said to be a consistent error estimate of the measurement of m if ∀m̃ ∈M, ||m̃−m|| ≤
ε, where || • || denotes the Euclidean norm in Rp.

If ∀m̃ ∈ M, ||m̃ − m|| has an upper bound s = Supm̃∈M{||m̃ − m||}, then all values
ε ≥ s are consistent error estimates. Using property 1, the image f(m1, . . . ,mn) of a
continuous function f of bounded measurements m1, . . . ,mn is bounded. Thus, we can
define consistent error measurements of f :

Definition 2 (consistent error estimates of a function of measurements). Let {Mi, i =
1 . . . n} be the set of all possible measurements of physical quantities {mi ∈ R, i = 1 . . . n}
by one or multiple sensors. Suppose that these measurements’ uncertainties are bounded:
∀i ∈ 1 . . . n,∃εi ∈ R+, ∀m̃i ∈ Mi, ||m̃i − mi|| < εi. Let f be a continuous function
defined on the compact C = [m1 − ε1;m1 + ε1]× . . .× [mp − εp;mp + εp] with values in
Rq(q ∈ N∗). Then εf ∈ R+ is said to be a consistent error estimate of f(m1, . . . ,mn)
if ∀(m̃1, . . . , m̃n) ∈ (M1, . . . ,Mn), ||f(m̃1, . . . , m̃n) − f(m1, . . . ,mn)|| ≤ εf , where || • ||
denotes the Euclidean norm in R and Rq.

5.3.4 Single edge traversal

First, let us study what happens on a single edge E(n) (see figure 5.6). Suppose that
V (n−1) ∈ W and V (n) ∈ W have precise and point-of-view independent world positions
Rn−1 = RV(n−1) ∈ R2 and Rn = RV(n) ∈ R2 in some referential R0 (this referential
is not important and cancels out in calculations). We are looking for consistent error
estimates of the edge vector rn−1,n = Rn −Rn−1 from V (n− 1) to V (n).

Let R̃n be a noisy estimator of Rn in R0. R̃n = Rn + ωRn where ωRn ∈ R2 is an
additive noise (or error) parameter describing some absolute vertex positioning error (it
will cancel out in calculations). Let dn be the position of the navigating agent relative
to vertex V (n) inW. The navigating agent is thus at Rn +dn in R0. A noisy estimation
of dn is d̃n = dn +ωdn with ωdn a pose uncertainty. Let tn = Rn +dn−Rn−1−dn−1 be
the distance traveled inW by the agent when moving from the vicinity of V (n−1) to the
vicinity of V (n). Its noisy estimation is t̃n = tn +ωtn with ωtn a movement uncertainty.
ωRn , ωdn and ωtn follow some probability distributions not necessarily centered on ~0.
Finally, let r̃n−1,n be the noisy estimation of the edge’s vector rn−1,n. By definition,
r̃n−1,n = t̃n + d̃n−1 − d̃n. All notations are sketched on Figure 5.6 for n = 2.

The definition of tn writes:
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Figure 5.6: Uncertainty relations. Vertex positions represented with crosses, robot posi-
tions with rings and maximum uncertainties with balls. Translating the dashed
red quadrilateral representing measured quantities relative to the green quadri-
lateral representing world positions (ground truth) allows a graphical deriva-
tion of equation 5.3.
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Rn + dn = Rn−1 + dn−1 + tn (5.1)

This equation expresses the fact that the current position of the agent (in the vicinity of
V (n)) can be obtained from the previous position (in the vicinity of V (n− 1)) and the
movement from V (n− 1) towards V (n). Replacing exact quantities by their estimates,
we get:

R̃n−R̃n−1

=r̃n−1,n

+ (ωRn + ωdn)
− (ωRn−1 + ωdn−1)− ωtn (5.2)

or also going back to the theoretical vertex positions, we get:

rn−1,n = Rn −Rn−1

= r̃n−1,n + ωdn − ωdn−1 − ωtn (5.3)

In equation 5.3, the difference between the measured edge r̃n−1,n and its theoretical
value rn−1,n is ωdn −ωdn−1 −ωtn . We call ωdn the arrival error on V (n) and ωdn−1 the
departure error on V (n− 1). Note that the ωR• terms disappeared.

If the support of the distribution of ωdn , ωdn−1 and ωtn is bounded: ||ωdn−1 || ≤ δdn−1 ,
||ωdn || ≤ δdn and ||ωtn || ≤ δtn , then:

||rn−1,n − r̃n−1,n|| ≤ δdn−1 + δdn + δtn (5.4)

Equation 5.4 expresses δdn−1 + δdn + δtn as a consistent estimate of the error on the edge
vector r̃n−1,n relative to ground truth rn−1,n = Rn −Rn−1.

The calculation was carried in a context where it is possible to define a precise position
Rv for each vertex v but can be extended to vertices whose definition is more vague
by increasing the uncertainty radius δd of uncertain vertices. If the vertex lies for sure
within a ball of radius ρ but its exact position cannot be known with more precision,
then δd should be replaced by δd + ρ.
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5.3.5 Sequential traversal

Now, imagine that the navigating agent visits a vertex V (n+ 1) after V (n). We have:

rn−1,n+1 =Rn+1 −Rn−1

=r̃n−1,n+1

+ ωdn+1 − ωdn

+ ωdn − ωdn−1

−
(
ωtn+1 + ωtn

)
(5.5)

The departure error ωdn cancels out the arrival error ωdn in equation 5.5. This cancel-
lation of the vertex errors on V (n) is logical since the robot arrived on V (n) with some
error but left V (n) immediately from the same position, so that the actual position dn
of the navigating agent relative to V (n) has no impact (r̃n, rn, d̃n and dn get canceled
out).

Cancellation of the error on traversed vertices Vi occurs if and only if Card(V isit(Vi)) =
1. We say that a path has been traversed sequentially if all the vertices on this path
except the departure and arrival vertices have been traversed exactly once. Figure 5.7
shows examples of sequential and non-sequential paths. Sequentially traversing a path
creates favorable correlations between the ωd• terms which cancel out altogether.

The case of two sequential edge traversals is trivially extended to an arbitrary number
of sequential edge traversals, leading to the following theorem expressing consistency of
error estimates for sequential traversal:

Theorem 4 (Sequential traversal). For the path V (i) → V (i + 1) → . . . → V (j −
1) → V (j) between arbitrary vertices V (i) and V (j) such that ∀k ∈ i + 1 . . . j −
1, Card(V isit(V (k)) = 1:

ri,j =Rj −Ri

=r̃i,j +

ωdj − ωdi −
j∑

k=i+1
ωtk

 (5.6)

which leads to the consistent error estimate on the compound transformation r̃i,j on the
path:

||ri,j − r̃i,j|| ≤ δdj + δdi +
j∑

k=i+1
δtk (5.7)
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Figure 5.7: Sequential (a) and non-sequential (b,c) traversals supposing no movement un-
certainty. Model (left) and actual trajectory (right). The radius of circles
represents pose uncertainty. For case (b), the robot turned back after visiting
V 4. Reasoning within the context of sequential traversal for cases (b) and (c)
will cause inconsistencies in uncertainty projection due to the robot detect-
ing different positions for vertex V 3 both time it is reached. The resulting
error, due to pose uncertainty is represented with a bold red arrow. When
pose uncertainty is taken into account during uncertainty projection, the ac-
tual trajectory 3-4-3 (b) or 3-4-5-3 (c) of the robot can be ignored and the
uncertainties accumulated on the 3-4-3 or 3-4-5-3 loop are replaced by twice
the pose uncertainty on vertex V3, which is the maximum length of the bold
red arrow and a consistent error estimate of the uncertainty accumulated on
any loop starting and terminating on the vertex.
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5.3.6 Non-sequential traversal

In the case of non-sequential traversal, no hypothesis can be made on whether the ωd• are
correlated, so that a pessimistic model (ensuring consistency of error estimates) will take
the hypothesis of defavorable correlation, thus preserving all ωd• terms. An intuitive
explanation for the non-cancellation of ωd• terms is the following: when a path is not
traversed sequentially, the robot doesn’t remember where it was when it measured the
vertex’s coordinates when arriving on it and when leaving it. When the arrival errors ωa
and departure errors ωl on a vertex V are bounded by δdV , Figure 5.7 gives an intuitive
solution to this issue: the actual trajectory of the robot can be forgotten by considering
an uncertainty 2δdV when traversing V . More generally, we will prove in the following
paragraphs that the pessimistic model preserving all ωd• terms leads to consistent error
estimates.

The case of non-sequential traversal of a path requires considering not only one single
traversal but all traversals of each edge and vertex along the path. Equation 5.3 can be
written for each visit of an edge e from vertex v1 to vertex v2 as follows:

∀n ∈ V isit(e), rn−1,n = Rn −Rn−1

= r̃n−1,n +
(
ωdn − ωdn−1 − ωtn

)
(5.8)

r• and R• notations represent real world coordinates which do not depend on the mea-
surements, so that

∀(n, p) ∈ V isit(e)2,

rn−1,n = rp−1,p = re,

Rn−1 = Rp−1,Rn = Rp (5.9)

Writing the uncertainty projection formula of theorem 4 on a given path is not possible
since each traversal yields different measurements. However, with the hypothesis of
bounded uncertainty, equation 5.4 still holds for each individual traversal:

∀n ∈ V isit(e),
||re − r̃n−1,n|| ≤ δn = δdn−1 + δdn + δtn (5.10)

With finite memory, a fusion strategy has to be used to find per-edge (and not per-edge-
traversal) values of r̃n−1,n, δdn−1 , δdn and δtn which we respectively call r̃e, δdeo (for edge
origin), δded (for edge destination) and δte . These values should be updated each time
the edge gets traversed. δe = δdeo + δded + δte must remain a consistent error estimate
(definition 2), which means:

||re − r̃e|| ≤ δe = δdeo + δded + δte (5.11)
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Since δe is a consistent error estimate at all times, re must lie within a ball Bold(δe, r̃e) of
radius δe around r̃e. Similarly, for each traversal at the nth time step, re must lie within
a ball Bcur(δn, r̃n−1,n) (Equation 5.10). Property 2 thus implies that re ∈ Bold ∩ Bcur.
The tightest upper bound in uncertainty respecting this constraint is represented on
Figure 5.8. The drawings of the figure show how to compute new values δnew, r̃new of
δe, r̃e:

δnew = min{δ ∈ R+|∃r̃new ∈ R2,

Bold(δe, r̃e) ∩Bcur(δn, r̃n−1,n) ⊂ Bnew(δ, r̃new)} (5.12)

From equation 5.12 and as visible on Figure 5.8, Bold(δe, r̃e) ∩ Bcur(δn, r̃n−1,n) 6= ∅ ⇒
δnew ≤ min(δn, δe). This necessary decrease of δnew when error estimates are consistent
can be seen as a form of metrical convergence of the map (measurement errors are
progressively forgotten), even though δnew may never reach 0.

Without the sequential traversal hypothesis, keeping one value of δt and two values
of δd just to describe δnew is not necessary: one parameter such as δt is sufficient.
However, if the constraint extraction uncertainty and the place extraction uncertainty
need to remain separated for other calculations, we suggest to update δdeo through
δdeo ← min(δdeo , δdn−1) and δded through δded ← min(δded , δdn). After δdeo and δded have
been updated, δte takes the value max(δnew − δdeo − δded , 0). Thus, error estimates are
consistent and the non-probabilistic nature of the measurements returned by the place
extraction system is accounted for.

Now that consistent error estimates are enforced on each individual edge (equation 5.11),
we need to check that they are enforced on any path from vertex v1 ∈ V to vertex v2 ∈ V.
Let Rv1 be the position of v1 (∀n ∈ V isit(v1),Rv1 = Rn). Let Rv2 be the position of
v2 (∀n ∈ V isit(v2),Rv2 = Rn). If the edges ei form a path from v1 to v2, the vector
from v1 to v2 in W writes:

Rv2 −Rv1 = ∆R =
∑
ei

rei (5.13)

Then, using the triangular inequality:

||∆R −
∑
ei

r̃ei ||

=||
∑
ei

rei −
∑
ei

r̃ei ||

≤
∑
ei

||rei − r̃ei || (5.14)

Using equation 5.11 which gives a consistent error estimate for each individual edge, we
can derive the following theorem expressing consistency of the error estimates on a path
without the sequential traversal hypothesis:
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𝛿𝑜𝑙𝑑 = 𝛿𝑒
= 𝛿𝑑𝑒𝑜 + 𝛿𝑑𝑒𝑑 + 𝛿𝑡𝑒
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Figure 5.8: Uncertainty update when traversing an edge for the nth time. Old uncertainty
ball Bold (plain, red), newly measured ball Bcur (textured, blue). The new
uncertainty ball Bnew (bold green circle) is the smallest ball containing the
intersection of Bold and Bcur. The error case (right) represents a situation
that could occur if at least one error estimate was not consistent.

Theorem 5 (Non-sequential traversal). If the edges ei form a path from v1 to v2, then

||(Rv2 −Rv1)−
∑
ei

r̃ei || ≤
∑
ei

δei (5.15)

The intuitive idea that loops can be ignored when projecting uncertainty along a path
is expressed in the following corollary:

Corollary 2 (ignoring loops). In theorem 5, the tightest consistent error estimates are
always obtained by considering loop-free paths.

Proof. Let P be the (possibly infinite) set of paths from va ∈ V to vb ∈ V. Let P1 ∈ P be
one specific path which may contain loops. Let P2 ∈ P be the loop-free path obtained
by removing all loops from P1. For instance, on Figure 5.7, va = V 1, vb = V 6, P1 =
V 1 − V 2 − V 3 − V 4 − V 5 − V 3 − V 6 and P2 = V 1 − V 2 − V 3 − V 6. Then, since
∀ei ∈ E , δei ≥ 0 and ei ∈ P2 ⇒ ei ∈ P1,

∑
ei∈P2 δei ≤

∑
ei∈P1 δei .
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5.4 Loop closure

In the previous section, we derived two uncertainty projection formulae (theorems 4
and 5) to project pose and movement uncertainty from one vertex of the graph to
another along a path. In this section, we develop an approach for robust loop closure
based on uncertainty projection and active disambiguation of place hypotheses. With
well chosen parameters (subsection 5.4.4), our approach is guaranteed (theorem 7) to
handle structural ambiguity so that the produced map will be topologically correct.
Within this section, labels ([l]) refer to Figure 5.10 which describes how loop closure is
implemented.

5.4.1 Generation and pruning of loop closure hypotheses

Each time the robot explores an edge and discovers a new vertex v ([0]), the map is
scanned for loop closure candidates vi ∈ V having the same number of outgoing edges
as v. Indeed, it is possible that ∃i|vi = v. In the worst case, all vertices on the map
may be loop closure candidates. Similarly to (Bosse et al., 2004), we use Dijkstra’s
algorithm to project uncertainty and edge vectors from each vi to v along the path of
lowest uncertainty ([1]). Some invalid loop closure candidates vi|vi 6= v are then pruned
using the following theorem checking whether summed vectors and projected uncertainty
between v and vi are compatible:

Theorem 6 (necessary condition for loop closure). Let (v1, v2) ∈ V2 be two vertices
of the map. Let P be the set of all paths from v1 to v2 on the graph, and δi be the
uncertainty accumulated on the edges forming one of these paths Pi ∈ P according to
theorems 4 or 5. Let ∆Ri be the sum of vectors along Pi. Then, (∃Pi ∈ P|di = ||∆Ri|| >
δi)⇒ Rv1 6= Rv2.

Proof. The proposition to prove is strictly equivalent to Rv1 = Rv2 ⇒ ∀Pi ∈ P, di ≤ δi.
If Rv1 = Rv2 , theorems 4 and 5 both simplify to di ≤ δi. It is easy to know which
paths or parts of paths were traversed sequentially (and thus whether theorem 4 or 5
should be used for each path or part of path) because all vertices on sequential parts
have been traversed exactly once, and parts containing only vertices traversed exactly
once are necessarily sequential.

Once invalid candidates have been removed, the set of remaining candidates is further
pruned using the minimum distance between two vertices, dmin: if dmin ≥ di + δi then
v = vi. Even with this refinement sketched on Figure 5.9, pruning is not sufficient to
perform robust loop closure. Indeed:
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Figure 5.9: Four possible cases when looking for loop closure candidates. (a): di > δi, (b):
dmin ≥ di + δi and two ambiguous cases (c), (d). In cases (b), (c) and (d),
loop closure candidates are valid according to theorem 6.

• Pruning is done according to only one path: that of smallest uncertainty. It should
be done using all paths.

• The pruning condition expressed in theorem 6 is necessary but not sufficient.

• dmin ≥ di + δi is not verified in most cases.

Consequently, a disambiguation strategy is required in order to ascertain whether v = vi
for each remaining candidate vi ([2], [3]). When the kidnapped robot problem has to be
solved, the uncertainty projection phase is skipped (uncertainty is considered infinite)
and the robot starts the disambiguation strategy directly.

5.4.2 Disambiguation of hypotheses

A disambiguation strategy consists in updating the likelihoods of a set of loop closure
hypotheses according to evidence gathered during traversal of the environment. In this
subsection, we explain how the robot actively looks for evidence, what this evidence is
and how it is collected and memorized.
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An active disambiguation strategy

We implement disambiguation by having the robot choose one hypothesis v = vi and
try to follow a loop-free path which it would be able to follow if the hypothesis was
correct. On this path (which we term disambiguation path), evidence is gathered (see
subsubsection 5.4.2 for details). Figure 5.11 gives an example of disambiguation paths.
If the hypothesis is correct, there should not be any loops on the path, so if a loop is
found, then the hypothesis is incorrect. Thus, branching of hypotheses (generation of
new hypotheses during disambiguation) is impossible. The disambiguation strategy ends
when enough evidence has been gathered to validate one hypothesis ([6]) or discard all
hypotheses ([10]). If a hypothesis is validated ([6]), the map is corrected accordingly and
navigation continues normally (without the need for backtracking to the vertex where
ambiguity was initially detected). On the contrary, if the hypothesis is invalidated ([9]),
the robot backtracks ([11]) to the ambiguous vertex and choses another hypothesis. If
there are no hypotheses left ([10]), the current location has never been reached before
and a new vertex is created. While following the disambiguation path of one hypothesis,
the robot may test the compatibility of other hypotheses ([7]) with incoming evidence
and discard ([8]) or accept ([6]) them if necessary.

Computation of a disambiguation path ([4]) can be done with a simple graph traversal
or planning algorithm such as Dijkstra, as done on Figure 5.11. However, if the robot
is navigating towards a specific goal, the disambiguation path may be chosen to bring
the robot closer to the goal, explaining the arrow linking the “find disambiguation path”
([4]) and the “graph planning algorithm” ([12]) blocks of Figure 5.10. The number of
edges in the longest disambiguation path in a specific environment corresponds to the
time horizon ∆ after which the actual trajectory of the robot gets forgotten. Koenig et
al. (2006) provide an efficient method to choose disambiguation paths in order to solve
the kidnapped robot problem. This method can also be used to choose disambiguation
paths for a regular loop closure.

Not being able to backtrack is an error which can occur in a dynamic environment (a door
has just been closed behind the robot) or when one of the edges on the disambiguation
path is one way only (the disambiguation path determination algorithm tries as much as
possible to select only two-way edges). If such an error occurs, vertices found since the
first ambiguous vertex are written down on the map ([13]) (possibly duplicating vertices
which may be fused together later) and navigation continues normally.

During the first few steps of topological mapping after the robot has been switched on,
the map may not contain enough vertices and edges to find a long enough disambiguation
path. In this border case, once the end of the disambiguation path has been reached,
the limited evidence available is used to guess whether the loop closure hypothesis is
valid or not. If an erroneous guess is made, the resulting error may be corrected during
a later traversal.
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Figure 5.10: Implementation of hypothesis handling. Hypotheses handling decides
whether or not a new loop was found in the environment and updates the map
accordingly. As the loop closure hypothesis may be ambiguous, a disambigua-
tion strategy (in green) may be triggered to try to find evidence (in)validating
a hypothesis.
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? ?
? ?
R

Figure 5.11: Example of disambiguation paths. The robot has four place hypotheses and
has to use active disambiguation. A disambiguation path for each hypothe-
sis is marked with arrows. It may not be necessary to travel along all four
paths since a hypothesis may be eliminated ([8]) or accepted ([6]) while dis-
ambiguating another hypothesis. In this thesis, disambiguation paths are
chosen as random loop-free paths containing a fixed number of edges (here,
4). This strategy does not necessarily discriminate hypotheses optimally.
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A highly ambiguous environment like a regular grid may require more traversals for dis-
ambiguation. On the contrary, if very accurate information about a vertex vi is available
(such as a high quality snapshot taken during a previous traversal), the disambiguation
procedure is facilitated.

Accumulating evidence

While traversing the environment during disambiguation, evidence is accumulated ([5])
on whether the loop closure hypothesis is correct or not. In general, the following pieces
of evidence can be used:

• local topology (Kuipers et al., 2004), such as the number and angles of outgoing
edges on each vertex reached (if a vertex is reached with a topology different than
forecast, the hypothesis is immediately invalidated),

• edge metric, that is checking whether maximum uncertainty balls corresponding to
two edges with the same supposed origin do intersect (not intersecting balls cause
the hypothesis to be immediately invalidated thanks to the consistent error model
developed in section 5.3),

• vertex signatures, such as 360°snapshots, lists of nearby features or sonar scans
(Duckett, Marsland, and Shapiro, 2002),

• edge signatures, such as snapshots, occupancy grids or a list of features seen while
traversing the edge and

• global positioning such as a GPS position or triangulation of wireless beacons.

Evidence is stored as a log-odd l = log( p
1−p) with p the probability that the hypothesis is

correct. Log-odds are a preferred representation in problems where neither validation nor
invalidation of a hypothesis is privileged, such as in occupancy grid approaches (Elfes,
1987; Thrun, 2001). They allow easy integration of new evidence by summation. Let 1
denote the fact that the hypothesis is correct and 0 denote the fact that the hypothesis
is incorrect. In our framework, new evidence related to measurement mi is described by
a probability P (mi|1) and P (mi|0).

A simple calculation analogous to that carried by Thrun et al. (2001) for occupancy
grids leads to:
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l = log(P (1|m1, . . . ,mn)
P (0|m1, . . . ,mn))

=
n∑
i=1

log(P (mi|m1, . . . ,mi−1, 1)
P (mi|m1, . . . ,mi−1, 0)) (5.16)

where the priors P (0) and P (1) have been set to 1/2 since there is no reason to privilege
a hypothesis or another initially.

A hypothesis is validated as soon as P (1|m1, . . . ,mn) = 1
e−l+1 exceeds a certain threshold

ph. It is invalidated if P (1|m1, . . . ,mn) < pl. Perfect hypothesis disambiguation requires
two criteria to be met: first, the high threshold ph must never be underestimated, other-
wise an incorrect hypothesis could be validated, thus discarding the correct hypothesis.
Second, the low threshold pl must never be overestimated, otherwise a correct hypothesis
could be discarded.

Equation 5.16 can be simplified supposing that measurements are conditionally indepen-
dent given the hypothesis: ∀i ≤ n, P (mi|m1, . . . ,mi−1, 1) = P (mi|1). This hypothesis
is similar to the static world assumption of Thrun (2001) which states that “[measure-
ments] are conditionally independent given knowledge of the map” and is valid in a static
environment with a non-changing map (Thrun, 2001). The simplified log-odd equation
writes:

ls = log(P (1|m1, . . . ,mn)
P (0|m1, . . . ,mn))

=
n∑
i=1

log( P (mi|1)
1− P (mi|1)) (5.17)

where the “s” stands for “simplified”.

In order to compensate the effects of this last formula which may be incorrect, especially
in non-static environments, we overestimate psh and underestimate psl . In a given (finite)
environment, there always exist psl and psh, so that 1

e−ls+1 < psl ⇒
1

e−l+1 < pl and
1

e−ls+1 > psh ⇒
1

e−l+1 > ph.

5.4.3 Theoretical validation of topological correctness

Loop closure errors in a topological context were classified by Dudek et al. (1993) in
three categories:

• Type 1: old looks new (not recognizing an existing vertex),
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• Type 2: mis-correspondence (recognizing the current vertex as being the already
visited vertex vj even though it is the already visited vertex vi) and

• Type 3: new looks old (thinking that the current vertex is already on the map
when it is not).

Using theorem 6 and the active disambiguation strategy, we can find conditions under
which our framework is topologically correct (absence of loop closure errors). These are
expressed in the following theorem:

Theorem 7 (localization provability). The SLAM framework described in this article
is topologically correct provided that:

1. W can be abstracted as a static directed graph of places and paths, with the robot
moving along paths from one place to another,

2. none of the uncertainties δt and δd were underestimated (they are consistent error
estimates),

3. dmin was underestimated,

4. ph was overestimated and pl was underestimated and

5. the map allows computing long enough disambiguation paths, where ph and pl can
be reached in finite time for each loop closure hypothesis,

Proof. Suppose that our framework makes a mistake by thinking the robot is somewhere
on the graph while it is actually elsewhere (wrong loop closure). Then, the topology of
the graph does not match that of the environment the robot is trying to navigate in. In
order for the robot to make a mistake, it is necessary that either

• a loop closure was not detected (Type 1), or

• a loop closure was incorrectly detected (Type 2 or 3).

Type 1 errors: It is impossible for a loop closure not to be detected since the uncertainty
projection model always overestimates uncertainty (error estimates are consistent in
theorems 4 and 5) and the threshold pl always underestimates hypotheses’ plausibility.

Type 2 and type 3 errors: If a loop was incorrectly detected, then an incorrect hypoth-
esis has been validated because either dmin is too high (see Figure 5.9, case (b)), or
because the validation threshold ph was reached. If dmin is underestimated and ph is
overestimated, no incorrect hypothesis can be validated.
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Figure 5.12: Vertex positioning inaccuracy (pose uncertainty) when drawing the General-
ized Voronoï Graph on an occupancy grid (occupation probability in shades
of grey, edges in green, vertices in red): which position should be given to the
center vertex?

Finally, ifW can be abstracted as a static directed graph, backtracking when a hypothesis
is invalidated always succeeds and traversal of already known places during normal
navigation or disambiguation always succeeds.

Thus, under the hypotheses, the loop closure process always succeeds, and the robot
never gets lost.

Hypothesis (1) of theorem 7 may seem unrealistic. It can however be replaced by the
following three constraints:

1. the world W is static,

2. places of ofW and their topological characteristics (number of outgoing paths) are
detected identically each time the place is traversed (“perfect vertex extraction”)
and

3. navigation along a path from one place to another always succeeds.
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5.4.4 Parameters of our approach

Our model is driven by only five parameters or families of parameters: dmin to facilitate
pruning of loop closure hypotheses, ph and pl for evidence acquisition and δt and δd
(arrival and departure) for each edge. We can devise a few guidelines on how to choose
these parameters:

• dmin is an intrinsic property of the place extraction system whose meaning is:
“how close can two places be”. For instance, robustly detecting intersections using
the GVG computed from an occupancy grid (see chapter 4) requires a clustering
step, so that vertices cannot be closer than twice the clustering radius (four pixels
on Figure 5.12). If unsure, dmin can be set to zero, which does not prevent the
approach from being topologically correct but increases the amount of ambigu-
ous loop closures (see Figure 5.9). However, dmin should never be overestimated
according to theorem 7.

• δt and δd are properties of the sensors and algorithms used to perform constraint
and place extraction respectively. For instance, if movements are computed from
odometry alone, then δte is the maximum odometry error associated to the traversal
of edge e. δt and δd must be consistent error estimates in order for the produced
map to be topologically correct according to theorem 7. δt and δd can be set after
running field experiments with actual sensors in real environments.

• Finally, the two probabilistic thresholds pl and ph are application-, dataset- and
sensor-dependent. We see these thresholds as a conceptual guarantee given to
the robot by its user: “As long as you wait until these thresholds are reached,
I can guarantee that you will not get lost in the environment you are currently
traversing”. The probability densities related to individual measurements as well
as values for the thresholds can be learned by supervised or automatic methods.
A rich representation such as a high quality RGB-D snapshot is likely to provide
much better disambiguation than a sonar reading. As setting pl and ph is some-
what ad-hoc, we carry experiments with more or less ad-hoc values and show that
topologically correct SLAM is still achievable. Chapter 6, subsection 6.2.1 shows
a simplified case where ph and pl are directly related to the number of edges to be
traversed to achieve disambiguation.

5.5 Building a global map

The map constructed by our SLAM framework is made of a graph where only rela-
tive positioning, described by edge measurements, is relevant for SLAM, planning and
navigation. However, in order to interact with humans, a global map within a single

128



5 A hybrid metrical/topological SLAM for Lifelong Exploratory Navigation

reference frame may be beneficial, if not required. In addition, global coordinates are
required (see chapter 7) to decrease the time complexity of our SLAM framework from
O(N.log(N)) to O(log(N)) with N = Card(V) the number of vertices on the map at a
given time.

5.5.1 Spring-mass optimization: principle

We use spring-mass optimization in order to get a global map within a single reference
frame from the graph of relative coordinate frames obtained by SLAM. The idea of
spring-mass optimization was introduced by Lu and Millios (1997) and later referred
to as back-end in the context of graph SLAMs. Spring-mass optimization is notably
used in (Duckett, Marsland, and Shapiro, 2000; Duckett, Marsland, and Shapiro, 2002;
Filliat, 2001; Golfarelli, Maio, and Rizzi, 1998) and (Lu and Milios, 1997; Thrun and
Montemerlo, 2006) with spring constants replaced by concentration matrices. The graph
is considered as an out-of-equilibrium network of springs and masses. Springs are asso-
ciated to edges and the relaxed length of a spring is the associated edge’s (measured)
vector. Masses are associated to vertices. Spring-mass optimization sets or updates the
global coordinates of vertices in order to minimize the energy H defined as follows:

H =
∑
e∈E

1
2Ke||(T (e)− S(e))− e||2

=
∑
vi∈V

∑
vj∈V

∑
e∈E

S(e)=vi
T (e)=vj

1
2Ke||(vj − vi)− e||2 (5.18)

where each vertex is identified with its global coordinates and the Ke are stiffness con-
stants which can be set to 1 for instance. S(e) and T (e) are respectively the origin and
destination of edge e, as defined in section 5.3. Optimal vertex coordinates obtained
after spring-mass optimization are denoted with a star (O∗(e), D∗(e), . . .). Spring-mass
optimization does not change edge vectors. Thus, spring-mass optimization does neither
affect SLAM, nor planning or navigation. Spring-Mass optimization however reduces
global metrical uncertainty in the sense of Kuipers (2004). An example of spring-mass
optimization is displayed on Figure 5.13.

Note that spring-mass optimization corrects vertex positions found through simple odo-
metric integration (for each edge e, T (e) = S(e) + e). Thus, comparing the relative
positions T ∗(e)− S∗(e) of vertices after spring-mass optimization to the edge e is a way
to find (and correct) biases in the odometric system.
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Figure 5.13: Spring-mass optimization deducing the most likely vertex positions from mea-
sured edge vectors. Edge vectors in gray, final position of vertices in black.
(Top) Originally, the red spring contains the energy added by the loop closure
constraint. (Bottom) After spring-mass optimization, this energy is spread
amongst multiple springs shown in orange.
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5.5.2 Solving the spring-mass equation

Equation 5.18 is quadratic, so that finding a set of positions {v∗i ∈ V} which minimizes
H comes down to solving a linear equation system:

∀u ∈ V,∑
v∈V

∑
e∈E

S(e)=u
T (e)=v

Ke((v − u)− e) +
∑
e∈E

S(e)=v
T (e)=u

Ke((v − u) + e) = 0 (5.19)

Equation 5.18 only describes differences between the position of adjacent vertices of the
graph. Consequently, it is invariant to a global translation of all vertices. The underlying
phenomenon is probably the same that causes the absolute uncertainty not to decrease
in probabilistic SLAM while the relative uncertainty does, as noted by Durrant-Whyte
et al. (1996). It is however possible to get a unique solution by fixing an absolute
position. For instance, v1 = 0 for some vertex v1 ∈ V. Alternatively,

∑
v∈V v = 0 sets

the coordinates of the isobarycenter of all vertices to 0. Both conditions are mutually
exclusive, and each one can be implemented using Lagrange multipliers.

For v1 = 0, the equation set is:

∀u 6= v1 ∈ V,∑
v 6=v1∈V

∑
e∈E

S(e)=u
T (e)=v

Ke((v − u)− e) +
∑
e∈E

S(e)=v
T (e)=u

Ke((v − u) + e) =0 (5.20)

∑
e∈E

S(e)=u
T (e)=v1

Ke((v1 − u)− e) +
∑
e∈E

S(e)=v1

T (e)=u

Ke((v1 − u) + e) + λ =0 (5.21)

∑
v 6=v1∈V

∑
e∈E

S(e)=v1

T (e)=v

Ke((v − v1)− e) +
∑
e∈E

S(e)=v
T (e)=v1

Ke((v − v1) + e) + λ =0 (5.22)

v1 =0 (5.23)
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For
∑
v∈V v = 0, the equation set is:

∀u ∈ V,∑
v∈V

∑
e∈E

S(e)=u
T (e)=v

Ke((v − u)− e) +
∑
e∈E

S(e)=v
T (e)=u

Ke((v − u) + e) + λ =0 (5.24)

∑
v∈V

v =0 (5.25)

In both cases, solving the equation system comes down to finding the solution of a linear
system with n = 2(Card(V) + 1) unknowns. This can be done for instance using LU
decomposition, running in O(2

3n
3) (Trefethen and David, 1997). Since there are only a

few edges on each vertex, the matrix describing the system is sparse, so that a smart
LU solver including a permutation matrix may require much less than O(2

3n
3) running

time.

5.5.3 Our implementation

We chose not to solve the equation system directly. Instead, we use relaxation as defined
in (Duckett, Marsland, and Shapiro, 2000) to solve iteratively and locally. Relaxation
consists for each vertex u ∈ V in minimizing the local energy:

Hu =
∑
v∈V

∑
e∈E

S(e)=u
T (e)=v

1
2Ke||(v − u)− e||2 +

∑
e∈E

S(e)=v
T (e)=u

1
2Ke||(v − u) + e||2 (5.26)

which comes down to finding the coordinates of u that verify:∑
v∈V

∑
e∈E

S(e)=u
T (e)=v

Ke((v − u)− e) +
∑
e∈E

S(e)=v
T (e)=u

Ke((v − u) + e) = 0 (5.27)

that is:

u =

∑
e∈E

S(e)=u
T (e)=v

Ke(v − e) +
∑

e∈E
S(e)=v
T (e)=u

Ke(v + e)

∑
e∈E

S(e)=u,T (e)=v
or S(e)=v,T (e)=u

Ke
(5.28)
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considering all vertices but u as fixed. Or as Duckett (2000) puts it, “pick each vertex
in turn, and move it to where its neighbors think it should be”.

Vertices u are considered one after another (the process can be parallelized), and each
vertex may be updated multiple times. It is also possible to choose which vertices
should be updated randomly. Proof of convergence of the relaxation algorithm is given
in (Duckett, Marsland, and Shapiro, 2000).

The global translation invariance of the equations is taken care of either by not allowing
one vertex v1 ∈ V to move (guaranteeing v1 = 0) or by translating all vertices after
relaxation. For instance, when relaxation is finished, b = 1

Card(V)
∑
v∈V v can be com-

puted as the isobarycenter of all vertex positions. Then, ∀v ∈ V, v ← v − b to ensure∑
v∈V v = 0.

5.5.4 Local relaxation

According to Thrun et al. (2000) and Filliat (2001), the amount of energy initially
stored within a spring decreases with the distance from the loop closure point. We thus
suggest to run a few steps of the relaxation algorithm of Duckett et al. (2000) to perform
spring-mass optimization in the vicinity of the vertex where a loop closure was detected
each time a loop is found and added to the map (Figure 5.14). Spring-mass optimization
can run as a background task with a low priority since it is neither needed by navigation
nor by SLAM.

The idea behind local relaxation in the vicinity of a loop closure point is the following:
when the robot travels in uncharted space along edges e and add them to G, the optimal
position of each new vertex T (e) is S(e) + e since no other information as to where
T (e) should be located is available. Thus, HT (e) = 0. However, when a loop closure
occurs, the position S(e) + e of the edge’s end vertex T (e) may not correspond to the
coordinates of the vertex T (e) already in G. This disparity in positions results in energy
J = J(1) = HT (e) > 0 being associated to e. If G was a physical spring-mass network
(such as the lattice of a crystal), this energy would relax to neighboring “springs” and
“masses”.

Quantitatively, during the first relaxation step, the energy gets distributed to the first-
neighbor springs (edges). If there are four neighboring edges, the additional energy per
first-neighbor-spring will roughly be J(2) = J/(4+1) or less. During the second step, the
energy gets distributed to the second neighbors. If there are sixteen second neighbors,
the additional energy per third-neighbor-spring will roughly be J(3) = J/(16 + 4 + 1)
or less, etc. In a regular 2D grid of springs, a (single-way) edge has O(n2) n-nearest
neighbors (edges closer than n edges away), so that the energy per n-nearest neighbor
J(n) decreases as O(J/n2). In a less regular network of springs, the decrease is at least
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Figure 5.14: Local relaxation after a loop closure on the vertex marked with a black arrow.
(blue) map G before spring-mass optimization. (red) map G after spring-mass
optimization. The origin of the map (first vertex encountered) remained at
(0, 0).

in J/n (1D array of edges). Consequently, in an infinite network of springs, ∀εJ >
0,∃nmax ∈ N∗|J(nmax) < εJ . Thus, it is not necessary to run spring-mass optimization
on the whole graph, but only on edges up to the nmax-nearest neighbor of the loop
closure point depending on the required precision.

As a side note, each edge traversal leading to an already known vertex could be consid-
ered as a loop closure, even though the edge itself was already known (retraversing an
already known environment). Indeed, retraversing a known edge e leads to updating its
uncertainty parameters δd, δt and its vector e (non-sequential traversal). Thus, energy
is created within the spring-mass network that should be relaxed. However, we don’t
run the relaxation algorithm each time for performance reasons. Indeed, retraversing
a known edge does not create a lot of energy in the network, at least compared to the
energy created by coming back to a known place after traversing uncharted space. Con-
sequently, not running relaxation each time does not greatly degrade vertex positions.

5.5.5 Rigging

We create dense maps of the environment on top of spring-mass optimized global maps
through rigging. Rigging is a word from the computer graphics community which refers
to the process of attaching bones to the skin of a model in order to deform the model
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Figure 5.15: Rigging deforms sensed data (here, a local occupancy grid with its local Gen-
eralized Voronoï Graph) in the vicinity of an edge using a rotation (R) and
an axial scaling (S) according to the graph. Initial occupancy grid (top) and
deformed grid (bottom).

by moving the bones. In the context of SLAM, sensed data is deformed according to
the graph. Even though the name “rigging” was not given to the process, this idea was
introduced by Nieto et al. (2004). In the work of Nieto et al., deformation takes into
account multiple nearby edges and vertices. We decided to deform edges independently of
each other. Indeed, measurements are always related to one single edge and uncertainty
is always reset to 0 when reaching a vertex after traversing an edge, so that conceptually,
there is no reason for measurements along one edge to affect another edge. An example
of rigging is given on Figure 5.15

Formally, suppose that a feature φ of the environment was sensed at position ~ρ relative
to S(e) while traversing edge e ∈ E . Define a linear function f l∗EV ∗ (e) = T ∗(e) − S∗(e)
where T ∗(e) and S∗(e) are optimal coordinates obtained after spring-mass optimization.
Then, φ should be located at position f l∗EV(~ρ).
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In order to deform edges, we use a composition of a rotation (to align the edge vector
to the vertex position difference) and an anisotropic scaling (to match the edge vector’s
length to the distance between both vertices). The direction orthogonal to the edge vec-
tor is left unchanged. The complete transformation represented on Figure 5.15 composes
(in order): a projection in a referential whose axes are along- and perpendicular to the
edge vector, the rotation, the (anisotropic) scaling and a final projection to the usual
coordinate axes. In 2D, the transformation writes:

f l∗EV =
(

~∆P u · ~ux − ~∆P u · ~uy
~∆P u · ~uy ~∆P u · ~ux

)
.

(
|| ~∆P ||
||~e|| 0
0 1

)

.

(
cos(θ) −sin(θ)
sin(θ) cos(θ)

)
.

(
~eu · ~ux ~eu · ~uy
− ~eu · ~uy ~eu · ~ux

)
(5.29)

where ( ~ux, ~uy, ~uz) is an orthonormal basis, ~e is the edge vector, ~eu = ~e
||~e|| , ~∆P = T ∗(e)−

S∗(e), ~∆P u = ~∆P
|| ~∆P ||

, cos(θ) = ~eu · ~∆P u and sin(θ) = ( ~eu × ~∆P u) · ~uz

(5.30)

It is easy to check that this function transforms the edge vector e to ~∆P = T ∗(e) −
S∗(e).

Figure 5.16 shows an example of global map generated using spring-mass optimization
and rigging during a data collection run on a pioneer robot equipped with a Kinect
camera and MEMS compass.

5.6 Conclusion on the SLAM framework

In this chapter, we introduced a new online hybrid metrical/topological SLAM frame-
work designed for PNSLAM in huge environments (hundreds of loops). This framework
models physical places and paths between places as a directed graph, introducing single-
way paths. The duality between edges and vertices in the graph is used in two ways:

1. Movement uncertainty is associated to edge measurements and pose uncertainty
is asssociated to vertex detections. Modeling pose uncertainty is necessary to
decorrelate the map from the actual trajectory of the robot by allowing loops to
be ignored in uncertainty projection. This decorrelation makes it possible to forget
old movements of the robot and perform uncertainty projection (theorems 4 and
5).

2. Edges are associated to a measured vector r̃e and to measured uncertainties δt and
δd. They describe relative transformations from one vertex to another, each vertex
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a)

b)

Figure 5.16: Generating a global map from G and edge-local occupancy grids using spring-
mass optimization and rigging. (a) before and (b) after spring-mass optimiza-
tion. While spring-mass optimization rectifies the graph, rigging transposes
this rectification to edge-local occupancy grid. Spring-mass optimization was
very efficient in the zone within the red frame.
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defining its own coordinate frame. On the other side, absolute vertex positions
referenced within a single coordinate frame can be obtained using spring-mass
optimization. Vertex positions are not required by path planning and navigation
algorithms.

We used bounded uncertainties and active disambiguation of place hypotheses to prove
that our approach can achieve topological correctness (theorem 7), i.e. it can produce
a map free of structural ambiguity. The integration of our SLAM framework with path
planning and navigation algorithms allows unsupervised navigation in initially uncharted
environments as well as other PNSLAM missions such as “go to a target whose approx-
imate position is known” or “look for a treasure”. The hypothesis testing approach
allows solving the kidnapped robot problem as a loop closure with infinite initial metrical
uncertainty.

We took the hypothesis of compass-based odometry, which implies that no rotational
drift was taken into account. We are confident that taking into account rotational drift
within the framework described in this chapter is possible by considering all rotations
not relative to an absolute referential, but to the last edge visited. In order to simplify
comparison of vertex signatures of v1 ∈ V and v2 ∈ V, we can get an initial rotation
estimate by matching the angles of the outgoing edges of v1 and v2. The spring-mass
model does not need to be modified to take into account a rotational drift.

The capacity of our approach to handle dynamics of the environment was not assessed
theoretically but we demonstrate successful mapping in environments with moderate
dynamics in chapter 6. Dynamics that do not disrupt place detection are not seen by
the algorithm. Conversely, if places are extracted directly from the topological skeleton,
a passer-by or slight changes in the positioning of objects in a room may change the
topology of the skeleton. We can devise two approaches to mitigate these errors: first,
it is possible to detect objects, especially moving objects, and subtract them from the
occupancy grid before skeleton extraction. Such a filtered occupancy grid would only
reflect the immutable part of an environment, similarly to the place cells in the brain
of mammals (see chapter 2). The second possible approach, used in chapter 6, would
be to constantly change the map according to the newly detected topology. However,
using this second approach, a single passer-by blocking a corridor may be sufficient
to part the map in two disjunct components. We believe that there is a limit on the
spatial and temporal amount of dynamics the second approach can handle without heavy
modifications of the algorithms. For instance, the second approach would not work for
a robot touring visitors around a crowded Museum (there would be incessant changes of
topology due to moving people) but would probably succeed for unsupervised everyday
navigation inside an office building (with occasional people movements) or autonomous
navigation in a countryside or forest environment.
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“In the original ’Star Wars’ movie, there is a small toaster-sized and shaped robot on
the Death Star that guides Stormtroopers to where they need to go. I always liked that

robot because I could imagine how to build it - and it served a real purpose.”
Colin Angle

In this chapter, we glue together the components described in the previous chapters: the
Exploratory Planner / Exploratory Digraph Navigation approach, local navigation and
topology extraction and the SLAM framework.

In chapter 5, we showed that with well chosen parameters and assuming perfectly robust
vertex detection and navigation, our SLAM framework would always produce topologi-
cally correct mapping and localization. However, when working with real world data, it
is often not possible or not efficient in terms of energy spent navigating (notably during
disambiguation phases) to enforce all the highly conservative hypotheses on δt, δd, ph and
pl required for theorem 7. Neither is it possible to extract vertices with 100% robustness
(there may be parasitic vertices, some legitimate vertices may not be detected and edges
starting on a vertex may not be detected correctly, see chapter 4). For this reason, we
run simulations and experiments in real environments where values of δt, δd, ph and pl
may be erroneous, where vertices are extracted from sensor data and where the robot
follows with more or less success the commands it is given (desired direction of movement
and speed). Figure 5.3 shows the general architecture of our test bench.
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6.1 Finding an experimental protocol

6.1.1 Difficulties in comparing to state of the art

We chose to test our SLAM framework on an exploration mission, which is a variant of
PNSLAM. Exploration is the PNSLAM problem corresponding to most existing SLAM
experiments whose aim is to reconstruct an environment. Comparison of our approach
to state of the art SLAM frameworks is however not straightforward.

First, our framework is oriented towards autonomous robot mapping and navigation,
so that the map should indicate traversable and occupied space instead of simply the
position of points of interest.

Second, state of the art datasets such as Bosse et al.’s MIT Killian court (Bosse et
al., 2004), Duckett et al.’s Örebro university (Duckett, Marsland, and Shapiro, 2002),
Thrun’s Museum (Thrun et al., 1998) or Werner et al.’s Carnegie Mellon Wean hall
(Werner et al., 2009) only exhibit a handful of loops, so evaluation of topological cor-
rectness using the number of erroneous loops on the map as done in (Werner et al.,
2009) is not a reliable measurement for these datasets. Thrun and Montemerlo (2006)
studied environments with more loops, but topological correctness required factoring
in GPS for at least one of their dataset (Gate’s Computer Science Building, Stanford
University’s main campus). Pinies et al. (2009), Liang et al. (2013) and later graph
SLAM approaches present results for the Manhattan and City10000 datasets which have
tens or even hundreds of loops. However, these datasets are regular grids with some un-
traversable squares, which makes them easy to map since the robot always moves an
integer number of grid units in the x and y directions between each intersection.

Third, a topologically correct SLAM algorithm should provide the current topological
position of the robot, i.e. determine on which edge or vertex of the map the robot is
currently located. In other words, for each new infinitesimal movement, the navigating
robot should update its attachment to one edge or vertex, which is not a straightforward
process. One way to avoid this difficulty is to have the robot explicitly track and follow
one edge while being extremely careful not to change edge until a vertex is reached.
This is not possible with existing measurement datasets, where the robot is not even
guaranteed to traverse an edge entirely from the vicinity of its origin vertex to the vicinity
of its destination vertex. Additionally, if an edge is not traversed completely (from the
detection range of its origin vertex to the detection range of its destination vertex),
collection of edge vectors and uncertainties is not possible, and thus, the map cannot
be built. Traversal of complete edges is not guaranteed in state of the art measurement
datasets.

Fourth, our disambiguation strategy requires the robot to be able to freely choose its
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path. In order to use existing measurement datasets, we could implement another dis-
ambiguation strategy where loop closure is deferred until there is enough evidence, even
though there may never be, at least in a finite time horizon (Bosse et al., 2004). If we
change our disambiguation strategy, the rigorous threshold-based approach cannot be
applied. Paradoxically, we could still map state of the art datasets perfectly, even with-
out a disambiguation strategy. The reason for this is that since there are only a handful
of loops, there always exists a threshold in similarity between places such that places
more similar than the threshold are the same and places less similar are not (this can be
observed using for example occupancy grid matching of local sensor data for each place).
A challenging dataset would exhibit extremely similar places and tens to hundreds of
loops.

Finally and as detailed in subsection 6.1.4, we could not find consensus metrics in liter-
ature to compare SLAM algorithms in a sensor-agnostic way.

For these five reasons, our simulation protocol described in the next subsection is based
not on sensor dumps describing odometry and sensor readings acquired beforehand but
on floorplans of environments (as black and white bitmaps). Simulations use the floor-
plan to emulate distance sensors (sonars, laser range finders, stereographic cameras,
Kinect, . . . ) and odometric readings in real time. Distance readings are obtained by
casting a ray in the floorplan. The dimensioning unit for space is the pixel. The robot
keeps mapping an environment until no vertex has unexplored edges on the produced
map. New metrics are introduced in subsection 6.1.4 to assess the topological and met-
rical correctness of the map produced by a SLAM approach.

6.1.2 Experimental protocol

We use the Generalized Voronoï Graph (GVG), computed on a local robot-centered
scrolling occupancy grid, to extract the local topology of the environment, namely edges
(as points where two obstacles of the environment are equidistant) and vertices (as
points where at least three edges meet) (Beeson, Jong, and Kuipers, 2005; Choset and
Nagatani, 2001; Kuipers et al., 2004). “Stopper” vertices are also placed at the end of
edges terminating on a wall (dead ends) and edges whose destination is not visible on
the local occupancy grid (because it is too far). The implementation is described in
chapter 4. GVG extraction is sensitive to noise in the occupancy grid, causing vertices
to be detected differently (different number of edges) and sometimes not to be detected
at all depending on the past trajectory and sensor values. The situation of Figure 6.1
will likely cause errors. The GVG may be replaced by the Extended GVG (Beeson,
Jong, and Kuipers, 2005) (see chapter 4) for environments with large open areas. The
local occupancy grid only describes obstacles within a bounded range of the current
position of the robot and construction of the grid does not take into account structural
ambiguities due for instance to loops in the environment (these are handled at the graph
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level).

The robot always tracks and follows a single edge at a time while keeping some movement
freedom around the edge (edge attachment is comparable to a ski-tow towing a skier, as
described in chapter 4), which differs from the works of Choset et al. (2001) where the
robot is constrained to stay equidistant to two obstacles at all times. The robot always
goes from the vicinity of the vertex where the edge starts to the vicinity of the vertex
where the edge ends.

We use local occupancy grids around a vertex to produce (possibly ambiguous) place
signatures. The dimension of the grids used are 200× 200 or 300× 300 pixels depending
on the scale of the features in the traversed environment. In addition to the vertex-local
occupancy grids, we also store edge-local occupancy grids. We could use them as edge
signatures but we did not in order to save computing power (matching occupancy grids
is compute-intensive and edge occupancy grids largely overlap vertex occupancy grids).
However, we use these edge occupancy grids together with a rigging approach (chapter
5, section 5.5) in order to produce visually satisfying dense maps of the environments.
Edge-local grids are about twice as large in both dimensions as vertex-local grids.

Due to sensor dynamics, it happened during mapping that wrong vertices or edges were
detected (for example, two vertices with three outgoing edges each were fused into a
single vertex with four outgoing edges for half of the traversals, as shown on Figure 6.1).
To correct errors due to sensor dynamics, inconsistent edges and vertices were deleted
when retraversing the same place and detecting a different topology. An equivalent
process in Atlas would be map fusion and obsolescence, which is not described in (Bosse
et al., 2004). Additionally, when re-traversing an already mapped environment, if a
vertex with n ∈ N∗ edges was expected and a vertex with m ∈ N∗,m < n edges is
found instead, the occupancy grid is examined near the current vertex to check whether
multiple neighboring vertices with a few edges each could be fused into a single vertex
with m edges, in which case the fused vertex with m edges is returned instead of the
initial n−edges vertex. For instance, on Figure 6.1, if vertex 1&2 was expected with
n = 4 edges and only vertex 1 was found with m = 3 edges, examining the occupancy
grid would lead to vertices 1 and 2 being fused together and vertex 1&2 being reported
correctly.

Figure 6.2 shows a close-up view of the sensor profile and the associated local occupancy
grid and extracted GVG.

The code (in C) runs faster than real time on an average laptop computer, using up to
one 2.5Ghz processor core (two threads actively carrying computations and five threads
idle most of the time) to run:

• a sensor and actuator simulation (for simulations) or communication with actual
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Figure 6.1: Vertices 1 and 2 may alternatively be detected as one single vertex or as two
distinct vertices depending on sensor noise and past trajectory of the robot.
Vertex 3 on the contrary will probably be well detected independently of the
past trajectory, even in the presence of noise. The two bottom sketches repre-
sent two possible detection errors.
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Figure 6.2: SLAM detail: noisy sensor profile and past trajectory superimposed on actual
floorplan(top) and local occupancy grid with local GVG computed from simu-
lated noisy sensor data (bottom). On the top image, one of the sensors pointing
right had its value multiplied by a random number in [1; 4] and produced a com-
pletely erroneous value (red arrow). On the bottom image, erroneous readings
translate to patches of hot pixels which are barely visible (red frame). These
patches are however obvious on Figure 6.12 where they create “fur” along the
external border of the map.
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sensors and actuators (for robot experiments),

• occupancy grid updates,

• GVG extraction,

• occupancy grid navigation,

• uncertainty projection,

• disambiguation (including occupancy grid matching),

• graph planning and plan execution,

• spring-mass optimization and

• exports (including rigging to get a dense map).

The computational effort of the algorithms described in chapter 5 is negligible in compar-
ison to GVG extraction (chapter 4), occupancy grid matching and data export to files.
A more detailed analysis of running times and complexities of the different components
can be found in chapter 7.

Simulations

For simulations, errors on odometric measurements are reproduced by transforming each
infinitesimal odometric measurement ~ro:

• adding a strongly anisotropic translational noise α.(|rxo |, |ryo |) with α uniformly
distributed between 0.015 and 0.03

• rotating ~ro by a random value ρ uniformly distributed between 0◦ and 10◦ (up to
5◦ compass noise with simulated 5◦ bias)

The 5◦ rotational bias is inspired by the work of Borenstein and Feng (1996) on measuring
and correcting odometric errors. The 1.5 to 3% translational noise is inspired by wheel
encoders with 64 binary values, supposing one angular sector gets skipped per wheel
rotation. The δ ~rot associated to each infinitesimal vector measurement ~ro is max(α)||~ro||+
max(ρ).||~ro||(1 + max(α))), which is a consistent error estimate.

Simulations use a ring of 64 range sensors. Each range reading rm is added a random
value εr with εr uniformly distributed in [−0.08rm; 0.08rm] with the aim to approach
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Figure 6.3: Killian court SLAM: actual simulated trajectory (black) superposed on the
floorplan and trajectory deduced from simulated raw odometry and compass
(blue).

the results of Drumheller (1987) on mobile robots with sonar sensors. This uniform
noise up to 8% is higher than the typical error of a Kinect sensor which is about 1%
or lower (Khoshelham and Elberink, 2012). The precision of the sensor readings is also
limited by pixelization (the maximum precision is always 1 pixel of the floorplan) which
typically results in 1 to 10% of additional errors (depending on resolution of the image
and distance of the robot to an obstacle). Finally, 2% of the distance readings get
multiplied by a random number in [1; 4] to reproduce invalid values returned by sonar
sensors when multiple reflections of the emitted ray occur (Drumheller, 1987). Figure
6.2 shows a typical sensor profile.

The simulated error model’s parameters were tuned to approximately reproduce state
of the art measurement datasets of Bosse et al., Thrun et al. and Duckett et al. with
the hypothesis of compass-based odometry (Duckett, Marsland, and Shapiro, 2002).
An example of odometry on Killian court is shown on figure 6.3. This result visually
resembles Duckett’s results with compass-based odometry (2002).

Simulation is carried using a custom version of Stage (Gerkey, Vaughan, and Howard,
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Figure 6.4: The pioneer 3 robot equipped with a Kinect 1 and MEMS magnetometer used
for experiments. The magnetometer is mounted on top of a long cardboard
box to avoid magnetic field disturbances due to metallic parts of the robot.

2003) as simulator.

Robot experiments

Robot experiments are carried out using a Pioneer 3 robot, a MEMS magnetometer
(LSM303DLHC 3D accelerometer and magnetometer) and a Kinect 1 camera (320×240
infrared depth sensing, field of view 57× 43◦, range 50cm to 5m). The Robot Operating
System (ROS/indigo) is used for communications with a laptop running Ubuntu (version
14.04) or a board such as the Tegra K1 onboard the robot. This board is responsible for
running the algorithms. Figure 6.4 shows a picture of the robot during a data collection
run.

From the depth image of the Kinect, a 1D depth profile is extracted. Since the horizontal
field of view of the Kinect is far from 360◦, each time the robot reaches a GVG vertex, it
rotates around itself to reconstruct a 360◦ signature of the environment and to confirm
the local topology of the environment. One interesting side-effect of the rotation is
that if the vertex is due to a temporary obstruction (typically, a passer-by), there is a
chance that the obstruction disappears before the end of the rotation. If this happens,
the erroneous vertex disappears from the occupancy grid and navigation continues as if
there was no vertex.

The use of an occupancy grid as intermediary representation allows a wide range of
depth sensors to be used and even fused together, including infrared, sonar, lidar and
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stereographic cameras. Sensors with a non-negligible vertical field of view such as cam-
eras have the advantage of providing depth information over a wide vertical range, which
is required to correctly detect obstacles whose shape is not constant on the vertical axis
such as chairs or desks.

Parameters for SLAM

Parameters of our approach (chapter 5, subsection 5.4.4) are chosen as follows:

dmin is set to the minimum distance between distinct GVG vertices detected from an
occupancy grid, that is 4 pixels.

Since the occupancy grid integrates range readings over time, the precision of vertex
extraction from an occupancy grid is better than that without an occupancy grid (di-
rectly from the sensor profile, as done in (Choset and Nagatani, 2001)). Since it is hard
to estimate the improvement of vertex detection precision allowed by the integration
effect, we arbitrarily set δd = (dmin − 1)/2 = 1.5px for each vertex. This value is higher
than the unavoidable 1px error due to discretization and is about the average radius of
a single vertex, as shown for instance on Figure 6.1. It is not guaranteed that δd is a
consistent error estimate.

δt is chosen according to the odometric system and always overestimates odometric un-
certainty. For simulations, δte = 0.2||r̃e|| whereas for robot experiments, δte = 0.25||r̃e||
for each edge e traversed whose odometric measurement is r̃e.

ph and pl are set using a trial and error approach. We kept the same values of the
parameters for all simulations in order to make mapping more challenging and prove
robustness of the approach. For robot experiments, the relative weights of local topology,
signature matching and other probabilistic measurements were tuned for the sensors
used.

6.1.3 Datasets

In the second part of the SLAM survey by Bailey and Durrant-Whyte (2006), the authors
wrote: “The challenge now is to demonstrate SLAM solutions to large problems where
robotics can truly contribute: driving hundreds of kilometers under a forest canopy or
mapping a whole city without recourse to global positioning system (GPS) [. . . ]”. We
thus decided to try and map a whole city. A quick image search on the internet gave us
a map of the historic center of Cuzco in Peru, which we turned into a black and white
bitmap (Figure 6.5) and used exactly like the floorplan of the environments mentioned
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above. The Cuzco dataset is interesting because it exhibits both repetitive structures
(to lure the disambiguation algorithm into finding erroneous loops) and very long paths
without intersections (to create loops with large odometric errors in a context where
odometric errors arise from each movement). While the issue of very long paths without
intersections causes metrical inaccuracies, we observed it to be less of a concern than the
repetitive structures in the process of obtaining a topologically correct map. The issue
of repetitive structures was also reported by, for instance, Bosse et al. (2004).

There is also a less visible but more problematic issue due to four-way intersections in
ambiguous zones such as that on Figure 6.1. Vertices with more than three edges are
likely to lead to incorrect place recognition: an expected vertex is not found anymore
because its amount of outgoing edges is different than forecast. Incorrect place recogni-
tion will cause navigation as well as backtracking errors (impossibility to come back to a
known place when an hypothesis gets invalidated during disambiguation). The top-right
part of our map of Cuzco (Figure 6.5) has an array of vertices with four outgoing edges,
which is a challenging situation for our SLAM algorithms since it combines repetitive
structures and ambiguously defined vertices.

Cuzco exhibits 184 loops (Figure 6.5), which makes it an interesting benchmark for
topology-based techniques.

In addition to the Cuzco dataset, we also show simulations in three environments used
in SLAM litterature: Bosse et al.’s MIT Killian court (Bosse et al., 2004), Duckett et
al.’s Örebro university (Duckett, Marsland, and Shapiro, 2002) and Thrun’s Museum
(Thrun et al., 1998).

We use a pioneer robot to run indoor experiments in the second floor of one of the Nano-
Innov buildings on the Saclay plateau, France (Figure 6.6), a typical office building.
A total of five topological loops are present in this environment, which is not much
compared to Cuzco but we could not have access to buildings containing more loops.

6.1.4 Metrics

Issues of existing metrics

Despite having been explored by Thrun et al. (1998) and Werner et al. (2009), measure-
ments of topological correctness of a SLAM algorithm do not seem to be widely used
in SLAM literature. Werner et al. used the number of places/loops in the map versus
in the environment as an estimation of topological correctness. Such a metric does not
make sense in environments where some parts may not be explored at all (reducing
the number of vertices on the map relative to the environment) while other parts may

149



6 Assembling PNSLAM components - experiments

Figure 6.5: The map of Cuzco used in simulations. Note the repetitive structure of four-
way intersections of the top-right corner (blue rectangle). In addition to the
floorplan, this image shows a Generalized Voronoï Diagram of the environ-
ment used to partition the environment into cells. The partitioning method is
explained in subsection 6.1.4.
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Figure 6.6: Robot runs took place on the second floor of one of the Nano-
Innov buildings. (Image: wikimedia commons/Lionel Allorge,
2014, https://commons.wikimedia.org/wiki/File:B%C3%A2timent_
Nano-Innov_sur_le_plateau_de_Saclay_le_23_juillet_2014.jpg)
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produce duplicate vertices on the map or lead to completely wrong edges. Both errors
may eventually compensate each other, erroneously stating that the map is topologically
correct.

We could not find consensus metrics in literature for robust comparison of metrical
correctness of SLAM algorithms either. Gutmann and Konolige (1999) for example
use the average error accumulated between adjacent poses of the robot, which heavily
depends on the sensors, and as such cannot be used to compare SLAM approaches (the
error should somehow get normalized by a parameter describing the precision of sensors).
Dissanayake et al. (2001) express the absolute errors in meters, which not only is sensor-
dependent but may also disadvantage hybrid metrical/topological frameworks based on
relative positioning. Similarly, while the RMS error used for instance in (Sunderhauf
and Protzel, 2013) is useful for comparing the maps produced by various algorithms
using the same sensor dumps, it does not make sense with different sensors or a different
trajectory of the robot within the environment (let alone different environments).

Proposed set of metrics

Giving the lack of robust and sensor-agnostic metrics in SLAM, we propose the following
set of four metrics to assess topological and metrical correctness of a map produced by
a SLAM framework:

• the normalized residual energy ηr of the spring-mass model after spring-mass
optimization,

• a graph-based evaluation ft of topological correctness,

• a navigation-based evaluation fnm, fc, fl of topological and metrical correctness
and

• the average relative RMS distance and angle errors ηl, ηθ after spring-mass
optimization relative to ground truth.

Residual energy: Let S∗(e) and T ∗(e) be the optimal positions of the start- and end-
vertices S(e), T (e) of edge e ∈ E obtained from edge measurements using a spring-mass
model. Spring-mass optimization minimizes (chapter 5 section 5.5) an energy function
H =

∑
e∈E ||(T (e)− S(e))− r̃e||2. Hr = 1

Card(E)
∑
e∈E ||(T ∗(e)− S∗(e))− r̃e||2 is the

residual energy of the spring-mass model after spring-mass optimization, homogeneous
to a square length. ηr is then defined as ηr =

√
Hr/

(∑
e∈E ||T (e)−S(e)||
Card(E)

)
. The residual

energy score is intrinsic to the robot in that it can be computed without ground truth. It
reveals how much difference between measurements (edge vectors) and optimized vertex
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positions is present in the final globally coherent map. It depends on the probability
distribution of sensor measurements. In graph SLAMS, ηr corresponds to the remaining
error after running the back-end algorithm (Grisetti et al., 2010).

In order to assess topological correctness of the maps produced by our approach, we
need to compute a graph abstraction GW of the simulated environment/floorplan W
with which the map can be compared. Thus, prior to running a simulation, the GVG
(or Extended GVG (Beeson, Jong, and Kuipers, 2005)) of the simulated environment
W is computed and used as GW . The environment is then partitioned into places Ci
around GVG vertices wi and GVG edges pij (starting on wi and ending on wj) the
following way: take a position R in the environment. Then, R ∈ Ci ⇐⇒ ∃j|∀(k, l) 6=
(i, j), SD(R, pkl) > SD(R, pij) and ||R− wi|| < ||R− wj || where SD(R, p) is the length
of the shortest path from R to p in the environment. For any physical places and paths
(not necessarily GVG vertices and edges), SD can be computed using algorithms (Lazy)
Multi Theta* or MHydra1/2 (appendix 2). Figure 6.5 shows a partitioned floorplan with
tags represented by random colors. During simulation, when the robot detects a place
wi ∈ GW , it reports it as vi ∈ V and appends to vi the tag Ci corresponding to wi.

Graph-based evaluation of topological correctness: this score evaluates the topological
differences between the produced map G and the ground truth network of places GW .
It is computed the following way (Figure 6.7): first, both GW and G are simplified by
removing vertices with exactly two edges. The situation of Figure 6.1 may cause the
floorplan and the map to differ locally because of subtle differences in the way the GVG
is computed for ground truth and during a simulation or experiment. This difference
should not be considered when assessing topological correctness of the produced map.
Thus, the map is manually modified by fusing or breaking up vertices when necessary.
Then, for each tag Ci, a list LGCi of tags that can be accessed with a single hop (traversing
exactly one edge) of a vertex tagged Ci on G is computed. If no vertex in G is tagged Ci,
LGCi = ∅ A similar list is constructed using GW instead of G: LGWCi . Let V1 be the set of
tags Ci associated exclusively to vertices with exactly one outgoing edge in G. LetW1 be
the set of tags Ci associated exclusively to vertices with exactly one outgoing edge in GW .
Let ∩i = LGCi ∩L

GW
Ci

and ∪i = LGCi ∪L
GW
Ci

. Let nCic = Card(∩i) be the amount of correct
local matches around tag Ci. Let nCit = nCic + 1

2Card{Cj ∈ ∪i \ ∩i|Cj /∈ (V1 ∪W1)} be
the average number of possible local matches around tag Ci. We define the topological

correctness of the map G relative to ground truth GW as ft =
∑

Ci
n
Ci
c∑

Ci
n
Ci
t

. Note that

the definition of nt does not count mismatches on vertices with exactly one outgoing
edge. Indeed, these may correspond to shallow dead ends and weak meet points (Choset
and Nagatani, 2001) which may or may not be detected depending on sensor noise.
ft = 100% implies that the (simplified) map G is homeomorphic to a subset of the
(simplified) ground truth graph GW .

Navigation-based evaluation of topological and metrical correctness (Figure 6.8): this
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Figure 6.7: Graph-based evaluation of topological correctness: after vertices with two
edges have been removed, the set of tags {Cj} accessible with a single hop
from a given tag Ci is compared between simplified map and simplified ground
truth. For each tag Ci, nCi

c and nCi
t are computed. Both are reported on the

sketch as nCi
c /nCi

t . Here, ft = 44/47 = 94%
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score is computed using the raw (not simplified) map G. It consists in planning shortest
paths on G using A∗ (Hart, Nilsson, and Raphael, 1968) between random places in V,
navigating along these paths and marking the paths traversed in GW as a sequence of
tags Ci (Figure 6.8 [A]). Then, the trajectory in GW is compared to that obtained by
running A∗ from the same origin to the same destination but directly on the set of
places and paths in GW (Figure 6.8 [B]). Both can be different in terms of sequence
of places traversed (topology) and in terms of path length (metric). If the sequence of
traversed places (or place tags Ci) is different in both cases, then the ratio of both path
lengths is an evaluation of the suboptimality of the map for navigation tasks. Since
path lengths are always estimated on W, this ratio is largely independent from the
probability distribution of sensor measurements. If the series of place traversed is the
same, the map is considered to provide topologically correct navigation for the specific
path chosen. Using this method, it is possible to compute the fraction of paths fc ∈ [0; 1]
for which the map provides topologically correct navigation and the average added path
length fl for all paths, with or without topological errors. A path with topologically
correct navigation has an individual added length of 0. Places reachable by the robot
but not present on the map are counted separately as a “fraction of the environment
not mapped” fnm ∈ [0; 1], ignoring shallow dead ends. Navigation-based evaluation
of topological and metrical correctness is not to be confused with the “path distance”
metric developed by Konolige et al. (2011). Indeed, this metric describes discrepancies
between trajectories obtained by path planning using a graph and path planning using
a dense map, while the discrepancies we describe are between using the map and using
ground truth for navigation. Navigation-based evaluation of topological and metrical
correctness can be done without physical traversal of the environment (since each time
an edge gets traversed, the map potentially changes) using environment tags Ci.

Evaluation of topological correctness with the graph-based and navigation-based scores
is more accurate and robust than simply counting erroneous loops. Indeed, both metrics
do not overly penalize the case where a place was detected differently from different
points of view (leading to single-way edges and vertex duplication as sketched on Figure
6.7) and the situation of Figure 6.1. Still, incorrect edges decrease ft and fc and increase
fl. In general, ft 6= fc since fc uses shortest paths, which require the metrical properties
(edge vectors) of the map to be accurate enough. We expect ft to be higher than fc
since fc is weak to cases where there are multiple paths of nearly equal lengths.

Finally, fc, fl and fnm take into account the actual use of the map for a navigation task.
It may happen for the map to be completely wrong from the point of view of an external
observer (ft ' 0) but to provide perfect or nearly perfect navigation capacities (fl ' 0),
which is the the primary interest of an autonomous robot.

Average relative RMS distance and angle errors: ηl and ηθ assess metrical cor-
rectness of a map relative to ground truth. The map is first scaled uniformly to com-
pensate the scale bias that can’t be corrected by SLAM alone (scale-invariance). A set
of n ∈ N∗ � Card(V) tag pairs (Ci1, Ci2) are then sampled with the constraint that for
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Figure 6.8: Navigation-based evaluation of topological correctness. [A]: planning on G
and executing the trajectory in W. [B]: planning on GW and executing the
trajectory in W. Here, [A] and [B] use different trajectories in W, which
reduces fc. The path length difference between both cases is described by fl.
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each Cij , there must exist exactly one vertex V i
j in V and one vertex W i

j in W that have
tag Cij . ηl and ηθ are defined as:

ηl =

√
(∆L)2 −∆L2

L
(6.1)

ηθ =
√

(∆θ)2 −∆θ2 (6.2)

with:

L =
∑n
i=1 Li
n

,Li = ||V
i
1Vi

2||+ ||Wi
1Wi

2||
2

∆L =
∑n
i=1 (||Vi

1Vi
2|| − ||Wi

1Wi
2||)Li∑n

i=1 Li

(∆L)2 =
∑n
i=1 (||Vi

1Vi
2|| − ||Wi

1Wi
2||)2Li∑n

i=1 Li

∆θ =
∑n
i=1 arg(Vi

1Vi
2,Wi

1Wi
2)Li∑n

i=1 Li

(∆θ)2 =
∑n
i=1 arg(Vi

1Vi
2,Wi

1Wi
2)2Li∑n

i=1 Li

where vertices are identified with their spring-mass optimized position and inter-vertex
distances Li are used as a weighting factor to limit noise on short distances and favor
large-scale corrections. ηl is also normalized by the average length L to produce an
adimensional metric.

6.2 Exploration missions: simulations and experiments

6.2.1 Simulations supposing perfect place extraction and navigation

We first abstracted away the difficulties of navigation and topology extraction and made
the hypothesis that places were always detected within a predefined range of their actual
position. Each time a place was detected, the number of paths from this place to
neighboring places was also detected without error. The robot was always able to travel
along a detected path. These assumptions are necessary for theorem 7 to be used. Edge
vectors nevertheless contain realistic pose and movement uncertainties as described in
subsection 6.1.2. Results for the simplified experiments described in this subsection are
reported in table 6.1.
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The main purpose of this first simplified test is to validate “experimentally” theorem 7 as
well as to test the disambiguation strategy without having to cope with place detection
problems. We used a “closest-boundary-vertex-first” exploration strategy which consists
in always targeting the nearest vertex with at least one unexplored outgoing edge.

In order to test the uncertainty projection model without the disambiguation strategy
on the Cuzco dataset, we first had an oracle validating and invalidating loop closure
hypotheses (thus, ph and pl were not used). With the oracle, the SLAM algorithms
always produced a topologically correct map, which was expected due to theorem 7.

Then, we made the oracle random (50% of the time declaring places as being the same,
50% as being different). Mapping failed badly in all cases with the algorithm infinitely
adding new vertices, thus confirming that a disambiguation strategy is necessary.

Next, we made the oracle slightly imperfect: it had a 1/10 chance to make a mistake.
Each edge traversed during disambiguation brought p = 0.9 of evidence if it was correct
and p = 0.1 if it was wrong. As such, 3 traversals were necessary to reach 0.99 certainty
and 6 traversals to reach 0.99999 certainty.

With ph = 0.99999 and pl = 0.00001, topological correctness was obtained in almost
all cases (mapping terminated and the final map was homeomorphic to the Generalized
Voronoï graph of ground truth). There were a few cases where the map was locally
incorrect due to an ambiguity that could not be resolved properly. For instance, the
situation of Figure 6.9 caused local inaccuracies in the map. These kind of inaccuracies
were always observed in very tiny portions of the graph. Another cause of inaccuracies
is when mapping starts, the map does not contain enough edges and vertices to provide
disambiguation and reach ph or pl. We did not observe cases where a non-negligible part
of the map got duplicated or where portions of the environment could not be mapped
at all, although this situation is theoretically possible.

We finally set ph to 0.99 and pl to 0.01. Mapping gained a factor 1.8 − 2 in speed,
corresponding to twice less edges being visited during disambiguation. This result was
expected since the algorithm responsible for choosing a disambiguation path (Dijkstra)
did not try and avoid distracting the robot from its trajectory. ft and fc showed little
to no change compared to the previous case, probably because the Cuzco dataset does
not present arrays of more than three identical places in a row.

6.2.2 Simulations supposing perfect place extraction but realistic navigation

We then removed the constraint that the robot was always able to travel along a detected
path. As a result, the robot sometimes did not obey orders and followed an edge it was
not asked to, or changed edges without signaling a vertex. However, when a place was
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Figure 6.9: Situation where disambiguation is likely to fail: whether B and C are the
same or different vertices will not be ascertained by further movements in the
environment. More precise sensors may however clear this ambiguity.
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disambiguation by pl, ph map construction traveled length
oracle (100%) - t.c. shortest

none (random oracle) - failure -
oracle (90%) 0.00001, 0.99999 almost always t.c. long
oracle (90%) 0.01, 0.99 almost always t.c. medium

Table 6.1: Simplified SLAM simulations with perfect navigation and place extraction. t.c.
stands for topologically correct.

detected, its local topology was reported correctly. We disabled the oracle and replaced
it with the actual evidence-based disambiguation strategy. ph and pl were set by trial
and error. This test is intended to show the maximum obtainable values of the metrics
given an imperfect navigation system and ad-hoc ph and pl.

The obtained map (spring-mass optimized and rigged) is reproduced on Figure 6.10 and
the metrics of subsection 6.1.4 are computed and displayed in table 6.2. The whole map
on Figure 6.10 seems to be rotated clockwise relative to the floorplan. We did another
test with a higher translational noise (between 0.025 and 0.05 instead of 0.015 and 0.03)
which showed about the same rotation, thus demonstrating that rotation is essentially
due to the 5◦ rotational bias and that the translational bias was mostly corrected by
spring-mass optimization.

Despite its visual aspect and as shown in table 6.2, this map is not topologically correct
(ft 6= 100%) due to subtle navigation errors (the navigation system fails to robustly follow
an edge due to the discrepancies between floating point representations and pixelized
representations). Navigation errors create single-way edges and duplicate vertices on the
map.

6.2.3 Realistic simulations

We defined the place- and constraint extractors as black-box systems whose output was
used by our framework, so that in theory, we should not cope with place detection errors.
However, there is no perfect place extraction system, which means that we should use a
realistic place extractor in order to prove compatibility of our framework with real-world
data.

For this subsection, vertices and edges are extracted from noisy occupancy grids which
are also used for navigation. In this setup, ground truth is only used in three ways:

• to emulate sonar rays (as described in subsection 6.1.2),
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Figure 6.10: Simulation: perfect place extraction - realistic navigation. Final map of the
Cuzco dataset obtained by our algorithms with perfect simulated (unrealistic)
vertex detection but realistic navigation (subsection 6.2.2). The red circle
indicates a local glitch caused by a one pixel offset in topology extraction
(chapter 4).
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• to simulate odometric measurements (as described in subsection 6.1.2) and

• to tag places for automatic computation of metrics (tags are not used for SLAM).

Using the same ph and pl as in paragraph 6.2.2, disambiguation was achieved by travers-
ing up to five edges (depending on datasets and locations within datasets).

Figures 6.11, 6.12, 6.13 and 6.14 show outputs of our algorithms for the various datasets.
The implementation of local occupancy grids with wrap-around coordinates creates er-
roneous replicas of map portions outside the physical boundaries of the map. These
artifacts are only present on the rigged output, not on the graph describing places and
paths.

6.2.4 Robot experiments

Robot experiments are carried similarly to simulations. The robot (Figure 6.4) is
switched on and left alone in the environment (Nano-Innov, Figure 6.6) until mapping
is complete (no vertex has unexplored edges). An approximate floorplan of the envi-
ronment is displayed on figure 6.15. On this floorplan, some obstacles such as chairs,
sofas and tables have been represented as circles and ellipses in addition to the walls of
the building represented with rectangles. The output of the algorithms for one of the
mapping runs is displayed on Figure 6.16. For this 1.5km run, the cumulated odometric
error amounts to 102m and the cumulated angular drift to about 1540◦ (Figure 6.17).

6.2.5 Results and discussion

Results for the datasets are displayed in table 6.2.

Globally, the produced dense maps look visually similar to the floorplans used for sim-
ulations, despite local deformations (notably visible on the middle part of the museum
dataset, Figure 6.13). Eye inspection of the produced graphs does not reveal severe
topological errors but local glitches can be seen, notably on the Cuzco (realistic) dataset
(Figure 6.14) where some vertices have been duplicated. This apparent duplication is
mostly caused by place detection errors, due to the situation of Figure 6.1, to dead
ends sometimes being considered too shallow to have an edge leading to them or to dis-
cretization errors in the navigation system leading to edges not being followed correctly.
Duplication causes the number of loops to increase relative to ground truth.

Mapping of the Cuzco (unrealistic) dataset (Figure 6.10) is the only experiment reported
in Table 6.2 which was carried enforcing perfect vertex extraction. It is the reference sim-
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Figure 6.11: Floorplan used for Killian court simulations on the left and map obtained by
our algorithms (the dense map is obtained by superposing edge-local occu-
pancy grids inside a global occupancy grid through rigging with the graph)
on the right. For this dataset, 300 pixels correspond to 48 feet.
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Figure 6.12: Floorplan used for Örebro simulations on top and map obtained by our al-
gorithms at the bottom (the dense map is obtained by superposing edge-
local occupancy grids inside a global occupancy grid through rigging with the
graph).

Dataset size n. loops traveled odom. ηr ηl ηθ ft fnm fc fl
(px2) GW/G d. (px) er. (px) (%) (%) (°) (%) (%) (%) (%)

Killian 350x900 4/4 24169 447 3.5 1.0 0.5 97.1 0 92 1.10
Örebro 848x215 5/5 11533 250 4.8 0.7 1.0 99.4 0 78 0.16

M. (large) 950x331 4/4 12825 250 4.0 0.6 0.6 96.7 0 98 0.03
‘’ (small) 950x331 5/11 53694 1092 7.4 1.3 0.8 97.5 0 92 1.20
Cuzco u. 2.4x1.9k 184/186 282752 5932 3.0 0.2 0.2 99.7 0 95 0.02

‘’ r. 2.4x1.9k 184/207 381616 7895 4.8 1.4 0.8 98.2 0 82 0.33
Nano-Innov 726x1494 5/5 ~30000 ~2000 10.7 1.4 1.6 100 0 90 0.05

Table 6.2: Simulation and experiment results. M. stands for Museum, u. for unrealistic
(subsection 6.2.2) and r. for realistic (subsection 6.2.3). The exact size of the
Cuzco dataset is 2397x1881 pixels. For the Nano-Innov dataset, 20px ' 1m.
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Figure 6.13: Simulations on the Museum dataset. (a) floorplan with GVG for a small
(4px) robot. (b), (c) simulations with a small robot and different starting
places. (d) floorplan with GVG for a large (8px) robot ignoring small places
and narrow paths. (e) simulation with a large robot.
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Figure 6.14: Final map of the Cuzco dataset obtained by our algorithms with realistic
navigation and topology extraction (top) and trajectory followed by the robot
(bottom) with actual position in black (bottom left) and odometry in blue.
The graph of the top figure is reproduced in the lower right corner of the
bottom figure for comparison. The robot started at (0;0). The translational
bias of our sensor model creates a constant odometric drift to the top-right
corner clearly visible on the figure. Sensor noise led to vertex duplication
such as that shown with a red circle.
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Figure 6.15: Floorplan used to compute metrics for the mapping runs in Nano-Innov. The
topology described by this floorplan does not exatcly reflect that seen by the
robot due to movable objects such as chairs, sofas or tables.
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Figure 6.16: (a) Final map of the Nano-Innov dataset obtained by our algorithms using
a pioneer robot, a Kinect 1 and a MEMS magnetometer. Various difficulties
are present in the environment such as: (b,c,e,f,m) - obstacle whose size
vary on the vertical axis, (d) - small steps and different floor coatings, (k) -
uneven wooden floor, (h,i,j,k) - fence walls barely detected by the Kinect 1,
(g) - glass doors barely seen by the Kinect 1, (b,h,n) - round-shaped obstacles,
(n,l,h) - varying visible and infrared illumination, (d,i,j,n) - huge metal objects
modifying the magnetic field. During experiments, stairways (i) were blocked
by placing a cardboard box in front of them.
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Figure 6.17: Coarse odometry (measured edge vectors) without (dashed blue line) and
with (plain orange line) Large-Scale Angular Drift Compensation (LSADC),
as described in chapter 5, section 5.3 and appendix 2. The first vertex of the
map is at position (0; 0). Before reaching this vertex, the robot had already
traveled around 50m in order to initialize the LSADC algorithm. Without
LSADC, the trajectory is completely unrecognizable, almost random. With
LSADC, the shape of Nano-Innov becomes recognizable despite an irreducible
odometric drift that will only be corrected by the topological SLAM (chapter
5).
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ulation to which other results can be compared. We can read metrics for this simulation
the following way:

1. The topology of the map is very similar to the actual topology of the environment
(ft > 90%). ft = 99.7% is the ultimate limit that can be reached with the current
navigation system and definition of metrics. Indeed, inspection of the logs produced
during simulation reveals that the only errors are navigation errors (ph and pl are
respectively high enough and low enough for perfect disambiguation).

2. Using the map to navigate is equivalent to using a GPS in fc = 95% of all navi-
gation attempts. As expected, fc < ft. fc = 95% is the ultimate limit that can be
reached with the current sensors and navigation system.

3. Even when navigation is not optimal, it is close to optimal, with an average addi-
tional traveled distance of fl = 0.02%.

4. The average error on lengths in the map is ηl = 0.2% which is an order of magnitude
less than the constant anisotropic translational noise (2.25%) of the simulated
odometric sensor.

5. The RMS error on angles in the map is ηθ = 0.2°which is an order of magnitude less
than the constant angular bias of 5°of the simulated compass. ηθ is a RMS error
and thus does not count the average angular error, which happens to be 4.7°, that
is almost exactly the simulated bias. Thus, the whole map is rotated uniformly
according to sensor bias but once this effect is factored out, angle measurements
are very accurate.

6. In average, ηr = 3.0% of disparity could not be absorbed by spring-mass optimiza-
tion. ηr is of the same order of magnitude as the constant odometric bias (2.25%).
The values of ηr, ηl and ηθ show that metrical errors in the map do not keep grow-
ing with the distance from the starting point of the run (while the raw odometric
error does increase, as shown on Figure 6.14). This was expected since edge vectors
and their associated pose and movement uncertainties are expressed relative to the
edge’s origin vertex and not relative to a single global origin. Even with an infinite
number of edge traversals, ηr, ηl and ηθ would probably not converge to 0 due to
the odometric and compass biases.

On the Museum dataset, the 8-pixel robot was too big to enter the little “alcoves” on
the top part of the map, as well as the middle space (which as a consequence was not
mapped). The map produced with a bigger robot is coarser than that produced with a
smaller robot. fc is higher and fl is lower for the larger robot, since it is easier to achieve
topological correctness with a coarser representation.

For all runs, navigation from any vertex of the map to any other vertex was always
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possible. Given that fnm = 0 for all runs, this implies that the map can be used
to navigate from any place to any other place in the environment. Additionally, the
average added path length using the maps produced by our SLAM framework does not
exceed fl = 1.20% of the path length obtained when using a perfect (ground truth) map,
which validates the practical use of our SLAM framework in a robot navigation context.
For the Nano-Innov experiment, fl is as low as 0.05%, which means that the robot built
a map that is almost optimal for path planning.

Given the visual similarity between ground truth and the produced maps, we could have
expected higher values of fc, exceeding 90% in all cases. In fact, fc is lower than 90% for
the Örebro (Figure 6.12) and Cuzco-realistic (Figure 6.14) datasets because they exhibit
multiple paths of similar lengths which get swapped (the length difference between the
path of optimal length and that of second optimal length is negligible, so that the map
may list the path of second optimal length as being shorter due to sensor noise). Since
the actual additional path length fl remains under 1% for these datasets, the impact of
switching paths on navigation is negligible. As expected, the “Museum - large robot”
run has the highest fc, because it is topologically the simplest and the map can be used
to traverse each path in both directions. On this dataset, fc 6= 100% only because the
environment contains paths of nearly equal length.

ηr is up to twice higher for the Museum - small robot (Figure 6.13, bottom) run than for
any other simulation. This is probably because our SLAM algorithms actually confused
two of the little alcoves in the top right of the map (there is an array of at least 8 of
these) and performed an incorrect loop closure during one traversal. This structural
error must have been corrected during a later traversal since the final map does not
show such an incorrect loop. This temporary structural error occurred since ph and pl
were not taken respectively high enough and low enough. The higher value of fl for
the Museum - small robot dataset is likely caused by bad tags being attributed to some
places during the incorrect loop closure. The higher value of ηr for the Nano-Innov
robot experiment reveals that less precise odometric sensors were used for experiments
compared to simulations.

Finally, the total distance traveled in order to produce the maps in our framework is
comparable to state of the art approaches. For instance, our simulated robot traveled
1.18 km for the Killian dataset (Figure 6.11), for which Bosse et al. (2004) achieved
mapping after the robot traveled approximately 2.2km. For the Nano-Innov dataset,
the robot traveled 1.5km. For the realistic Cuzco dataset (Figure 6.14), each edge was
traversed in average 3.34 times in each direction. Since we use single-way edges, each
dual-way edge has to be traversed at least once in each direction. Fiddling with ph and
pl allows to trade off topological map accuracy (ft, fc, fnm) for mapping speed.
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6.3 Other PNSLAM missions

As mentioned in chapter 3, exploration of an environment is a form of goal-directed
navigation where the goal is not reachable. In this section, we show results of a robot
carrying the more generic PNSLAM mission go to approximate destination or find trea-
sure around specified position. This mission is a generalization of:

• find a treasure (position unknown),

• explore the environment (or find a non-existing treasure) and

• go to a precise destination known by its coordinates (find a treasure at some known
position).

Figure 6.18 shows a typical find treasure around specified position mission carried in
the same conditions as the exploration missions described in the previous paragraphs,
using EDNA* with a low risk factor (α = 1, see chapter 3) which promotes exploration.
The find treasure around specified position mission can be viewed as an exploration
mission around the position where the treasure should be. For figures 6.19 and 6.20,
each time the robot completed a treasure hunt (a,b,c,f) , it was given the approximate
position of a new treasure to hunt. These figures show the strong integration of planning,
navigation and SLAM. Indeed, the robot explores the environment when it thinks there
is a benefit in exploration and navigates on known parts otherwise, as described in
chapter 3. Loop closures (d,e) are performed when the current location is ambiguous.
The SLAM framework (chapter 5) tolerates errors from the navigation system (chapter
4) while EDNA* (chapter 3) decides which way to go, occasionally making a detour to
close a loop. As far as we know, it is the first time that such an integration between
planning, navigation and large-scale SLAM is demonstrated.

6.4 Conclusion

In this chapter, we demonstrated that a real robot using the approach described in:

1. chapter 3 for (exploratory) path planning,

2. chapter 4 for local navigation and topology extraction and

3. chapter 5 for SLAM

was able to move from any place to any other place of an environment reachable using
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Figure 6.18: Finding a treasure in Cuzco around a position given as hint. The robot
first goes directly towards the hint position then searches around it for the
treasure. Only the necessary part of the environment is explored and mapped,
which is one of the main characteristics of PNSLAM.
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Figure 6.19: Multiple treasure hunts 1/2 (explanations in section 6.3).
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Figure 6.20: Multiple treasure hunts 2/2 (explanations in section 6.3).

175



6 Assembling PNSLAM components - experiments

2D movements (the environment does not need to be 2D and can notably include bridges
and tunnels). We showed using simulations that environments with tens or hundreds of
loops would not pose a problem to the robot. Tasks that can be performed by a robot
whose control system is implemented as described in this thesis include:

• going to a semantic destination, such as a specific place,

• going to an exact or approximate position,

• exploring an environment and

• finding a treasure.

These tasks cover the spectrum of PNSLAM tasks described in chapter 2.

We introduced four metrics to assess the topological and metrical correctness of a map
and its usability for a navigation task. We used these metrics to evaluate our SLAM
technique in various environment, simulated and real. We observed that our framework
enables a robot to navigate from any reachable point in the environment to any other
using only odometry, a compass and local distance measurements provided for instance
by a ring of sonar sensors or a Kinect camera. The obtained maps were visually equiv-
alent or better than the state of the art on benchmark datasets. We proposed a new
dataset for simulations, Cuzco, with 184 loops, far more challenging than the existing
benchmarks. We showed that our SLAM is visually correct and close to topological
correctness even in this case. Using our approach, the mobile robot performing the
mapping task was able to autonomously navigate in the environment with path lengths
within 1.20% of the theoretical optimum in simulated environments. Experiments using
a Pioneer 3 robot in an office building showed that the PNSLAM approach could build
maps allowing the robot to navigate in the environment with path lengths within 0.05%
of their theoretical optimum in average.
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Part III

Resource management and lifelong
operation

Huge graphs raise memory and computing power issues.

177
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“Fancy algorithms are slow when N is small, and N is usually small.”
Rob Pike

In this chapter, we study both theoretical time complexities and running times of (ex-
ploratory) planning (chapter 3), navigation and topology extraction (chapter 4) and
SLAM (chapter 5). We narrow down the performance bottleneck of PNSLAM to the
SLAM component and show that the theoretical time complexity of our SLAM frame-
work (chapter 5) can be reduced to O(1) in the number of edges or vertices on the map
at a given time. Sublinear complexity is critical when operating in very large environ-
ments for an unlimited period of time (lifelong operation). The constant time behavior
is confirmed experimentally.

7.1 PNSLAM computational loads

In order to implement Lifelong Exploratory Navigation, we have to check whether
PNSLAM can be used to navigate in huge environments with potentially thousands
of loops. In this section, we give a theoretical and practical analysis on compute loads
and running time of Planning, Navigation and SLAM as implemented in chapters 3, 4
and 5.

7.1.1 Planning (chapter 3)

We showed in chapter 3 that the effective algorithmic complexity of A* and EDNA*
on the graphs used throughout Part II should lie between O(||OF ||) and O(||OF ||2),
where O and F are respectively the origin and destination of the A*/EDNA* run.
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Importantly, this effective complexity does not depend on the total size of the graph,
only on the minimum length of the trajectory to compute. As long as the length of
all trajectories that should be computed is bounded, which is always true in real-life
navigation scenarios, the complexity of A* and EDNA* does not raise issues in Lifelong
Exploratory Navigation.

In practice, even on the Cuzco dataset (Figure 6.5) or on the 10 000 vertex graphs used
in chapters 3 and 8, the running time of EDNA* on G is negligible compared to the
timescales of sensors and actuators, no matter O and F . Indeed, each vertex expansion
step of EDNA* translates to only a handful of assembly instructions.

7.1.2 Navigation (chapter 4)

Theoretically speaking, navigation runs in constant complexity in the total size of the
environment. Indeed, all occupancy grids used are of fixed size and computations carried
on these grids do not vary with the total size of the environment. Thus, navigation will
never be a hindrance when transitioning from simple missions to lifelong operation.

In practice, navigation is the component that uses the most processing power. The
most costly part is topology extraction, whose running time is plotted on Figure 4.10.
For experiments reported in chapter 6, topology extraction on floating-point occupancy
grids typically takes a dozen of milliseconds to complete. Including sensor delays, the
sensing-and-command loop induces a maximum delay of around 50ms using a naive
single-threaded C implementation. This delay could be reduced using a parallel and/or
hardware implementation of topology extraction if faster response times are needed.
However, a 50ms delay is still much lower than the typical minimum response time of a
human being, which is around 200ms (Eckner, Kutcher, and Richardson, 2010).

7.1.3 SLAM (chapter 5)

The theoretical algorithmic complexity of our SLAM approach is the same as that of
the ATLAS framework (Bosse et al., 2004), that is O(N.log(N)) where N is the number
of vertices on the map at a given time. The O(N.log(N)) process is the search for
candidate vertices performed during loop closure. The search for candidates returns up
to N candidates, each of which carrying a signature that should be matched against
the current vertex’s own signature. While finding vertices using Dijkstra’s algorithm
is an O(N.log(N)) process, the worst case O(N) signature matching step is by far the
most time-consuming part of the SLAM framework, with running times amounting to
multiple seconds on Cuzco (Figure 6.5) for a single-threaded implementation. The robot
remains motionless while performing signature matching. Thus, it has to stay motionless
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for multiple seconds, which is not admissible in a real-life situation and is an incentive
towards trying to reduce the number of signatures being matched.

Spring-mass optimization is an optional step whose complexity depends on the imple-
mentation. Using matrix inversion, the complexity of spring-mass optimization lies be-
tween O(N2) and O(N3). In chapter 5, section 5.5, we explained that it was possible
to use a relaxation algorithm to perform spring-mass optimization locally in the vicinity
of a loop closure point. The complexity of local spring-mass optimization needs to be
ascertained.

7.2 Achieving sub-linear complexity in SLAM

In order to reduce the computing power necessary for the SLAM framework, we propose
to reduce the complexity of the whole SLAM framework to constant in the number N
of vertices on the map.

7.2.1 Sub-linear loop closure in SLAM

To our knowledge, while linear complexity SLAM algorithms can be found (Liang,
Shoudong, and Dissanayake, 2013), no existing SLAM algorithm is able to achieve an
algorithmic complexity strictly lower than O(N), where N is the number of features,
landmarks or places that can be mapped in the traversed environment. FastSLAM
(Montemerlo et al., 2002) achieves a O(log(N)) complexity assuming perfect landmark
identification, a hypothesis which corresponds to assuming perfect loop closure in a hy-
brid metrical/topological approach. No linear time landmark identification procedure is
described in (Montemerlo et al., 2002). In our approach, the theoretically hard and com-
putationally expensive problem is precisely loop closure. In order to perform logarithmic
complexity landmark identification, Montemerlo et al. (2002) propose to reference land-
marks inside a kd-tree. A kd-tree (quadtree in 2D) can indeed be used to address
vertices using their spring-mass optimized coordinates (Figure 7.1). Addressing vertices
using their coordinates is useful to give the robot a mission but it is not necessary for
(PN)SLAM.

7.2.2 Spring-mass optimization in logarithmic and linear complexity

Local spring-mass optimization operates within a bounded range of a loop closure point
(nmax nearest neighbors), so that with a bounded degree of each vertex, the number
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Figure 7.1: A quadtree (dashed lines) allows accessing vertices in O(log(N)) time com-
plexity using their spring-mass optimized coordinates, where N is the number
of vertices currently on the graph. Our quadtree implementation is asymmet-
rical, which is necessary since the size of the environment and its extension in
all four directions from the origin is not known during mapping.
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of vertices moved is polynomial in nmax, likely between O(nmax) and O(n2
max). This

number does not depend on N .

If vertices need to be referenced inside a quadtree using their spring-mass-optimized
position, each local spring-mass optimization step removes from the quadtree each vertex
whose position needs to be updated. At the end of the optimization step, vertices
get reintegrated into the quadtree. Since individual insertions and deletions from the
tree can be performed in O(log(N)), the total complexity of a single local spring-mass
optimization should lie between O(nmaxlog(N)) and O(n2

maxlog(N)).

7.2.3 Reducing the number of candidates for vertex signature matching

Theorem 8 demonstrates that it is possible under some mild hypotheses to give a bound
independent of N on the number of candidate vertices to be considered for any loop
closure at vertex O.

Theorem 8. Suppose that the following conditions are met:

1. The range U = U(O) in which to look for candidate vertices Fi which could be
vertex O, is known and independent of the total size of the graph and

2. the minimum distance between two vertices, dmin, is strictly positive

Then, we can find a bound independent of N on the number of candidate vertices Fi.

Proof. The maximum surface density of vertices is ρ = 1
d2
min

√
5/2 using an optimal com-

pacity hexagonal 2D packing. We are looking for candidate vertices Fi within range U
of O, that is ||Fi − O|| ≤ U . There is thus a maximum of O(πU2ρ) candidate vertices
Fi in range U of O.

While hypothesis 2 of theorem 8 is easy to achieve, hypothesis 1 is somewhat restrictive.
It combines two constraints:

1. The maximum uncertainty accumulated along a path before a loop closure is
bounded, and a consistent estimate of this bound is known, and

2. the distortion created by spring-mass optimization is bounded.

It is possible to bound the distortion created by spring-mass optimization by constraining
movements in the relaxation algorithm. When finding the optimal position of a single
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vertex u, it is sufficient to ensure that:

∀e ∈ E|S(e) = u or T (e) = u, ||T (e)− S(e)− e|| ≤ δe (7.1)

where δe is the uncertainty associated to edge e (δe = δeo+δed+δte , see chapter 5). Note
that the constraints can be implemented with Lagrange multipliers when relaxation is
not used. Since all error estimates in our model are consistent, it is always possible to
find a spring-mass solution verifying the constraints (world positions R and edge vectors
r do verify all constraints, so there is at least one solution).

This constraint is represented on Figure 7.2. When it is enforced, the following equation
holds:

∀(u, v) ∈ V2, ∀Pu→v, ||v − u|| ≤ δPu→v (7.2)

where Pu→v is a path from u to v on G and δPu→v is the uncertainty accumulated along
Pu→v using the non-sequential formula. Note that using the non-sequential formula
becomes mandatory even in cases where the sequential formula could be used.

Ensuring that the maximum accumulated uncertainty along a path before a loop closure
is bounded is not always possible since it notably depends on which (exploratory) planner
and navigation algorithm the robot uses to traverse uncharted space. For instance, in
a planar environment, if the robot follows walls and always turns left in uncharted
space, each new loop discovered corresponds to an obstacle being circled by the robot.
Consequently, the maximum uncertainty along a loop is that accumulated by circling
the largest obstacle in the environment in a context where uncertainty is proportional to
traveled length. If the size of the largest obstacle is known, the maximum accumulated
uncertainty can be computed. Thus, theorem 7 is preserved.

With more complex exploratory planners and navigation algorithms (such as EDNA*
with an arbitrary risk heuristic), it may not be possible to determine a maximum uncer-
tainty along any loop traversed by the robot before returning to a known place. While
setting a highly overestimated maximum uncertainty value will almost always work for
practical situations, theorem 7 does not hold anymore since loop closure candidates may
be skipped by Dijkstra uncertainty projection when the uncertainty goes over the (highly
overestimated) value.

7.2.4 Multiple target Dijkstra with bounded complexity

In this subsection, we show that under certain conditions, Dijkstra’s algorithm has a
bounded complexity O(U4/d4

min) (theorem 9) with U a spatial range independent of N .
We use this result to project uncertainty with a complexity independent of N .
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Figure 7.2: Constraining spring-mass optimization on vertex u so that vertex position dif-
ferences remain consistent with edge measurements and pose and movement
uncertainties defined in section 5.3 (represented with circles). It is necessary
that the vertex position remains within the three uncertainty balls for hypoth-
esis 1 of theorems 8 and 9.
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Dijkstra’s algorithm is a graph traversal or pathfinding algorithm able to find the short-
est, or one of the shortest (if there are multiple paths of equal length D(O,F1)) path on
a graph from vertex O ∈ V (for “origin”) to at least one destination vertex F1 ∈ V. The
algorithm has a forward phase, where target vertices are reached from an origin vertex,
and a backward phase where a path is computed from the target vertices to the origin
vertex. Instead of simply looking for a path, we project uncertainty (forward phase) and
sum edge vectors (backward phase) along said path.

Theorem 9. Suppose that the following conditions are met:

1. The range U = U(O) in which to look for candidate vertices Fi which could be
vertex O, is known and independent of the total size of the graph,

2. the degree (number of outgoing edges) of each vertex is bounded,

3. the minimum uncertainty projected between any pair of vertices is bounded relative
to the Euclidean distance between these vertices, and

4. the minimum distance between two vertices, dmin, is strictly positive

Then, we can devise a Dijkstra variant to perform uncertainty projection and edge vector
summation from all candidates Fi to O in O(U4/d4

min) time complexity.

Proof. Let ||V2−V1|| denote the Euclidean distance between vertices V1 ∈ V and V2 ∈ V
in R2. Let D(V1, V2, P ) denote the maximum uncertainty projected from V2 to V1 using
graph edges on a specific path P , using equation 5.7 on parts that were sequentially
traversed and equation 5.15 otherwise. The maximum uncertainty of a single edge e is
δe. D(V1, V2) = minP (D(V1, V2, P )) is the minimum projected uncertainty on any path
from V2 to V1.

The forward phase of Dijkstra’s algorithm works by expanding vertices X in order of
increasing heuristic h = D(O,X), where expanding a vertex means adding its immediate
neighbors Yi to a heap along with their heuristic D(O, Yi). Dijkstra can be implemented
as A* (see Algorithm 11) with H = 0. The time complexity of the algorithm for a graph
containing nv vertices and ne edges is O((nv +ne)log(nv)) with a heap implementation.
If the degree of each vertex is bounded, which is true for our SLAM application, this
complexity comes down to O(nvlog(nv)).

Now, suppose that the minimum uncertainty projected between any pair of vertices
is bounded relative to the Euclidean distance: ∃k ∈ R∗+,∀(X,Y ) ∈ V2, D(X,Y ) <
k.||Y −X||. We call k the maximum suboptimality ratio. k describes the ratio between
worst-case on-graph distance (here, uncertainty) and Euclidean distance. In finite en-
vironments and as long as a path between X and Y exists, we can always find such a
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k:

k ≤ kmax =
∑

(X,Y )∈V2,Y nb. X D(X,Y )
min(X 6=Y )∈V2 ||Y −X||

(7.3)

where kmax is finite since min(X 6=Y )∈V2 ||Y −X|| > dmin:

kmax <

∑
(X,Y )∈V2,Y nb. X D(X,Y )

dmin
(7.4)

where nb. means “neighbor of”.
∑

(X,Y )∈V2,Y nb. X D(X,Y ) is necessarily longer than
any path returned by Dijkstra (since Dijkstra can only return a path where each edge is
traversed at most once). Conversely, min(X 6=Y )∈V2 ||Y −X|| is necessarily shorter than
any Euclidean distance between distinct vertices of the graph. Thus, kmax describes the
worst case detour using Dijkstra on a given graph.

We are looking for candidate vertices Fi within range U of O, that is ||Fi − O|| ≤ U .
If k exists, Dijkstra expansion will have reached all the Fi and found D(O,Fi) at least
when h ≥ k.U since ∀X ∈ V, ||X −O|| ≤ U ⇒ D(O,X) < k.||X −O|| <= k.U .

If vertices represent physical places and dmin > 0, the maximum surface density of
vertices is ρ = 1

d2
min

√
5/2 using an optimal compacity hexagonal 2D packing. Then there

are at most around πk2U2ρ vertices in range k.U around O. Since we can stop the
algorithm as soon as h ≥ k.U , Dijkstra’s algorithm practically runs on a subgraph
containing a maximum of around πk2U2ρ vertices, so that the time complexity falls
down to O(πk2U2ρ.log(πk2U2ρ)) = O(U2/d2

minlog(U2/d2
min)).

At the end of the forward phase, all vertices X reached by the algorithm are associated
with their projected uncertainty to O. In the backward phase and for each of the can-
didate vertices Fi (for which a path of minimal projected uncertainty is known from the
forward phase), edge vectors are summed on the path of minimal projected uncertainty.
This path cannot contain loops, since these would cause an increase in projected un-
certainty and the path would not be that of minimal uncertainty (corollary 2). Thus,
each vertex in the U range around O can only be traversed once by the path. As a
consequence, the path contains a maximum of O(πk2U2ρ) vertices so that edge vector
summation runs in O(U2/d2

min).

Since there is a maximum of around O(πU2ρ) candidate vertices Fi, the backward phase
can compute vector sums from each Fi to O in O(U4/d4

min) complexity.

Note that hypotheses 2 and 4 are always true for SLAM. Hypothesis 3 is always true in
practice, since δe < ||~re|| + ν for an arbitrary edge e ∈ E in the vast majority of cases
(where ν is some highly overestimated vertex detection error). Finally, hypothesis 1 was
discussed in the previous subsection.
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Figure 7.3: The running time of our SLAM framework for each new vertex reached during
a mapping experiment as a function of the number N of vertices currently on
the map, using a single 2.7GHz thread to carry computations. Starting around
N = 550 vertices, the maximum running time stabilizes around 800ms for
each vertex reached. This plateau corresponds to the vertex density reaching
its maximum as described in subsection 7.2.3. Even in an extremely large
environment, the running time with the current code implementation should
thus not exceed 800 ms. Figure 7.4 shows a zoom on the black rectangle.

7.2.5 Experimental running times

We logged the running time of the loop closure part of our SLAM framework (chap-
ter 5, section 5.4) during a mapping experiment on the Cuzco dataset (see chapter 6).
Loop closure includes the expensive signature matching processes. Figure 7.3 displays
the observed running time as a function of N , the number of vertices on the map at
a given time. A zoom on the bottom-left part of the Figure, displayed on Figure 7.4,
shows that the running time of loop closure only takes quantified values. In fact, each
horizontal line of Figure 7.4 corresponds to a number of vertices being considered for
disambiguation: 0, 1, 2, 3, . . .. This quantification means that the running time of loop
closure is dominated by signature matching running 0, 1, 2, 3, . . . times. We showed in
subsection 7.2.3 that in an environment where vertices are at least dmin apart, the num-
ber of vertices considered as loop closure candidates could not exceed a fixed threshold
O(πU(O)∈

ρ ). On Figure 7.3, the vertex density in the graph increases until it reaches its
maximum around N = 550 and does not change anymore. Consequently, past N = 550,
the running time of loop closure becomes constant in N .
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Figure 7.4: The running time of our SLAM framework for each new vertex reached during
a mapping experiment as a function of the number N of vertices currently on
the map, using a single 2.7GHz thread to carry computations. This Figure is
a zoom on the bottom-left corner of Figure 7.3. Running times form horizon-
tal lines, each of which corresponding to a number of vertices considered for
disambiguation (0, 1, 2, 3, . . .).

7.3 Conclusion

In this chapter, we studied the time complexity and practical running time of algo-
rithms used in the previous chapters. Time complexities do not necessarily translate
into running times due to the constants hidden in complexities. Thus, our approach
was twofold: we showed that running times achieved in practice allowed operation in
the real world amongst people, animals and vehicles and demonstrated that all compo-
nents of the PNSLAM framework can run in O(1) time complexity as a function of the
number N of places in the environment. Constant time operation may become critical
in huge environments and for Lifelong Exploratory Navigation. If addressing vertices
by their position is required, storing the vertices in a quadtree using their spring-mass
optimized positions is possible. In a quadtree, retrievals, insertions and deletions can be
performed in O(log(N)) time complexity. Addressing vertices using their coordinates
may be required to share the map with a human for instance.

While all PNSLAM algorithms run in constant time complexity and decently fast in
practice, the memory cost of the approach is still at least linear in the number of places
on the map. The point of the next chapter is to compress the memory representation
(graph) in order to control the memory usage of the approach.
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8 Handling finiteness of memory

“Nothing fixes a thing so intensely in the memory as the wish to forget it.”
Michel de Montaigne

In order for the memory of the robot not to grow unbounded and thus to allow for
lifelong operation, it is necessary to compress the map stored in memory. The aim is to
achieve a high compression ratio with minimal navigation overhead. The compression
methods can be optimized depending on the robot’s habits (favorite trajectories and
places).

8.1 Introduction

Suppose that a navigating agent wants to go from its current position O to a given
location F in a physical environment W. In order to perform the task, a PNSLAM
approach is used. An (exploratory) planner such as EDNA* (chapter 3) computes a
trajectory from O to F in the environment using an abstract representation (or map)
G of W. Then, the navigating agent follows the computed trajectory in order to reach
F while updating the map using SLAM. We showed in section 1.2.1 that it was not
possible in general to reach F without using a map, that is without memorizing the
environment. This chapter only discusses environments represented as directed graphs.
However, dense maps such as grids of pixels (including occupancy grids as described in
chapter 4) can be treated as graphs whose vertices are pixels and whose edges describe
traversability between neighboring pixels. Let V and E be the set of vertices and edges
of G respectively.

One of the characteristics of SLAM algorithms operating on graphs such as ours (chapter
5) is the amount of data used to describe one vertex (also called place) or edge (also called
path) of G: place and path signatures may consist in 360◦ visual snapshots (Beranger
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and Herve, 1996; Korrapati and Mezouar, 2014), sonar signatures (Duckett, Marsland,
and Shapiro, 2002), local occupancy grids (Beeson, Modayil, and Kuipers, 2010) or other
local representations with a non-negligible memory cost. While for short runs in small
environments, the memory of a robot may not saturate, longer runs in potentially huge
environments (a whole city for instance) may lead to memory saturation even when
place signatures are compressed. Maintaining a high-bandwidth stable connexion with
an external database server is not an option for mobile robots in most environments.
Memory saturation raises the issue of how to perform lossy compression (or pruning) of
the map G with minimum impact on navigation performances.

This chapter proposes lossy compression techniques as well as compatible planning al-
gorithms operating on compressed data. These approaches are evaluated in terms of
memory gains and path length overheads. The rest of this chapter goes as follows:
section 8.2 reviews existing planning and compression approaches within the fields of
robot navigation and packet routing. Section 8.3 describes our benchmark methodology.
Section 8.4 lists the existing and new algorithms that will be compared against each
other. Section 8.5 describes the datasets used and exposes and explains experimental
results. Section 8.7 explains how to choose an approach based on the results of section
8.5. Finally, section 8.8 concludes on the approach.

8.2 Planning, navigation and compression: existing approaches

The problem of a navigating agent moving from an origin to a destination vertex can be
approached from two different points of view: when the navigating agent is responsible
for computing its path on a passive graph structure (as in robot navigation or video
game path planning) and when the graph structure is responsible for routing the pas-
sive navigating agent towards its goal (as in wireless geographic packet routing). Both
situations have their own abundant literature.

8.2.1 Robots: path planning and A*

For mobile robot navigation, the problem of finding an itinerary inW using G is referred
to as path planning and dealt with using mostly variants of A* Hart, Nilsson, and
Raphael, 1968. There are numerous variants of A* (see the review by Ferguson et al.
(2005)) adapted to various scenarios, such as when physical movements are required to
compute a path (physical A* (Felner et al., 2004)).

Lossy compression of a map of an environment stored as a graph means that some
vertices and edges of the graph have to be forgotten. However, even with an incomplete
map, the robot should still be able to navigate from any already visited place to any
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other visited place. Of course, the path computed on an incomplete map may not be
optimal in terms of length and may even require the robot to reconstruct parts of the map
that were compressed away using SLAM while moving in the environment. Navigation
using a map where some parts are missing because they were compressed away is no
different from navigation using a map where some parts are missing because they have
not been explored yet. We called navigating using an incomplete graph representation
to plan paths Exploratory Digraph Navigation in chapter 3. In Exploratory Digraph
Navigation, the robot only has a map of a subset of W, the currently known graph
(Felner et al., 2004). Dynamic path planners such as D* (Stentz, 1995) or D* Lite
(Koenig and Likhachev, 2005) are limited to situations where the set of possible edges
and vertices of the graph is known in advance, the only unknown being whether they are
traversable or not. Examples of such graphs are grids with each vertex connected to its
4- or 8- nearest neighbors when space is traversable. The general case of navigation in an
arbitrary digraph with unknown zones is handled by EDNA* (chapter 3). D* (Lite) and
EDNA* are guaranteed to reach their destination F but the amount of memory required
may be proportional to the size of the environment, typically O(Card(E)). When G is
an arbitrary digraph, it is not possible in general to reach F without using a map at all,
that is without memorizing the environment.

In addition to A* variants, some simpler algorithms such as variants of the “Bug” (Lumel-
sky and Stepanov, 1987) maze solving algorithm are also used for robot planning. These
are reviewed in a technical report by Rao et al. (1993) available online. Bug uses
greedy navigation in free space and clockwise circumventing of obstacles. Bug vari-
ants are limited to strictly planar environments with only two-way paths. However, in
such environments, they are guaranteed to reach F without even a map, whence their
“memory-less” or “state-less” denomination. Note that Bug variants are in fact not able
to use a map.

Even though graph compression techniques are used in the Simultaneous Localization
and Mapping community (see (Carlevaris-Bianco, Kaess, and Eustice, 2014)) to reduce
the computational burden of SLAM algorithms, we are not aware of previous studies on
lossy compression of a map stored as a graph for robot navigation purposes.

8.2.2 Wireless routing: greedy forwarding and face routing

On the other side, routing algorithms defer path planning to the graph vertices (routers),
which are equipped with a mechanism to find where they have to forward packets they
receive. Since routers may have to deal with huge number of packets, their routing
strategy needs to be efficient in terms of computing power, even though the obtained
path is not optimal in terms of length or traversal effort. The naive solution to the
routing problem would be to have each router maintain a routing table indicating for
each packet destination F the edge to be taken as next step. This would require at least
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O(Card(V)) memory for each of the Card(V) routers. In a network with millions of
routers, the cost of maintaining such routing tables would become intractable. It is thus
necessary to prune routers from routing tables while still guaranteeing packet delivery.
This is done for instance by adopting a hierarchical view of routing where routing is
done first between top-level entities (such as internet service providers) and then within
entities. One should note that defining a hierarchy in the vertices of a graph is not trivial
and is done manually as far as the internet is concerned. Maps used for robot navigation
typically do not have such a hierarchy between places.

One additional constraint of router networks is that only minimum information can be
stored within the packet being routed, which calls for stateless routing algorithms. The
simplest stateless routing algorithm is Greedy forwarding, where a router only knows its
immediate neighbors and forwards packets to them in order to minimize the Euclidean
distance to F . Greedy forwarding guarantees delivery of any packet to any destination
if and only if E is a superset of the non-degenerate edges of the Delaunay triangulation
of V (Ghaffari, Hariri, and Shirmohammadi, 2010). Greedy forwarding was extended by
Bose et al. (2001) and Karp et al. (2000). The resulting face routing algorithm, Greedy
Perimeter Stateless Routing (GPSR), defines a recovery phase to exit local minima of
the Euclidean distance to destination. During a recovery phase, routing is done along
the faces of the graph (similarly to the Bug algorithms). Delivery of packets with GPSR
is only guaranteed when G is planar or when the condition for Greedy forwarding is met,
in which case the recovery algorithm is never triggered. Like Bug variants in robotics,
greedy forwarding and face routing take decisions locally, without considering large-scale
trajectory optimization.

Lam et al. (2013) use another recovery strategy to cope with greedy forwarding getting
stuck in local minima of the Euclidean distance to F : if a non-degenerate Delaunay
edge is missing from E (preventing greedy routing to be used (Ghaffari, Hariri, and
Shirmohammadi, 2010)), a “virtual” edge made of a series of edges in E is stored locally
as replacement for the missing Delaunay edge. This virtual edge can be computed for
instance by Dijkstra’s algorithm or by A* (Hart, Nilsson, and Raphael, 1968). The work
of Lam et al. is valid not only in 2D but also at least in 3− and 4 dimensions according
to the authors. We can devise a straightforward extension of the work of Lam et al.
which consists in creating virtual edges not only to replace missing Delaunay edges but
also to improve navigation performances.

8.3 Methodology

In this chapter, we study how to compress G and how to use the compressed graph
GC ⊂ G to plan paths and navigate in W using (exploratory) planning and navigation
algorithms, further abridged “PN”. For simplicity, the SLAM problem is not considered,
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which is equivalent to assigning to each vertex v ∈ V a unique identifier automatically
recognized upon traversal. Moreover, the world W is supposed to be static.

Metrics collected are of two types: navigation performances on GC and memory usage.
We split memory usage in three categories: static, dynamic and execution memory.
Static memory is related to the smallest subgraph GC of G that allows navigation from
any place O to any other place F in W using the PN approach considered. Given an
(O,F ) pair, dynamic memory describes what should be added to GC in order to navigate
from O to F using the PN approach. Finally, execution memory describes the maximum
amount of memory required to execute the exploratory planning algorithm. Memory
necessary for navigation and SLAM is not considered since it does not vary with the size
of the environment G and is in practice negligible compared to memory used to store
the map GC or G even with small maps. Memory necessary for graph compression is
not considered either since it is negligible in comparison to memory necessary to store
G (memory for compression is comparable to execution memory, which is negligible
compared to static and dynamic memory, see subsection 8.5.1).

8.3.1 Additional notations

Let G be an undirected graph representing paths and places of a physical environment
W. Let V and E be the set of vertices and edges of G respectively. We suppose that each
vertex v ∈ V has a position Rv ∈ R2. Each edge e ∈ E from vertex S(e) ∈ V to vertex
T (e) ∈ V is associated to a traversal cost c(e) ∈ [||RT (e) −RS(e)||; +∞[ and each vertex
v ∈ V is associated to a traversal cost c(v) ∈ R+. Let S(v) = {e ∈ E , S(e) = v} and
T (v) = {e ∈ E , T (e) = v}. The definition intervals of c(e) and c(v) are chosen so that
the Euclidean distance underestimates path lengths, computed as the sum of traversal
costs along a path. Thus, the Euclidean distance is said to be an admissible heuristic
for heuristic-guided algorithms such as A* (Hart, Nilsson, and Raphael, 1968). Within
this chapter, we only consider path planning to a target vertex F ∈ V whose position
RF is known. We suppose that the out-degree of any vertex v ∈ V is bounded, that is
∃b ∈ N,∀v ∈ V, Card(S(v)) ≤ b.

8.3.2 Benchmark protocol overview

The process of obtaining GC from G and collecting metrics consists in two phases: a
preparatory phase and a data collection phase. The preparatory phase contains all steps
that can be executed only once on G, no matter the considered navigation problems and
parameters. The data collection phase is a parametric study of navigation and memory
metrics. The process is represented on Figure 8.1.
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Figure 8.1: Graph compression for navigation: methodology. During the preparatory
phase, preconditioning determines edges that are necessary for navigation with
a given PN algorithm. These edges count as static memory and limit the com-
pression ratio to cr∗. Then, a compression algorithm assigns a utility u(e) to
each remaining edge e ∈ EP C . During the data collection phase, the graph G is
compressed according to edge utilities and a target compression ratio cr < cr∗

and the PN algorithm is used to navigate from a vertex O ∈ G to a vertex
F ∈ G, possibly adding edges in ED to the compressed graph GC . These new
edges count as dynamic memory.
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8.3.3 Preparatory phase

Suppose that we want to study a PN algorithm such as greedy navigation. This algorithm
will not necessarily operate on any GC ⊂ G. Thus, a first step is to determine a set of
edges ES ⊂ E such that the PN algorithm is able to lead the navigating agent from any
O ∈ V to any F ∈ V reachable from O using only edges in ES and exploration of areas
missing in GC . We call this step preconditioning. Depending on the PN algorithms used,
this preconditioning phase may mark from Card(ES) = 0 to Card(ES) = Card(E) edges
as necessary for navigation. We call Card(ES) static memory. Static memory can be
expressed as a static memory ratio sm∗(PN) = Card(ES)

Card(E) . The maximum compression
ratio of the map is cr∗ = 1

sm∗(PN) . It should be noted that static memory is required no
matter the mission of the navigating agent. For instance, if the agent successively goes
to multiple destinations Fi instead of a single one, static memory will not change.

All edges in EPC = E\ES are not essential for navigation and can be compressed away.
Thus, as a second step, a compression algorithm is used to associate a cardinal utility
u(e) ∈ [0; 1[ to each edge in EPC . Since edges in ES have to be preserved in GC what-
soever, their cardinal utility does not need to be computed. Preconditioning the graph
and finding cardinal utilities are the two steps of the preparatory phase.

8.3.4 Data collection phase

The data collection phase consists in multiple data collection runs with different origins
O and destinations F as well as different map compression ratios cr.

A single data collection run consists in the following steps (Figure 8.1): first, a target
compression ratio cr ∈]1; cr∗[ is set. From cr, we compute Nr, the number of edges to
remove as Nr = Card(E)

(
1− 1

cr

)
. The Nr edges with the lowest utility are found using

the quickselect algorithm (also called Hoare’s selection algorithm (Hoare, 1961)) on the
array of utilities of all edges in EPC . GC is created at this point. The initial set of
vertices of GC is VC = V and its initial set of edges EC = ECinit. ECinit is E with the Nr

least useful edges removed. Vertices with zero remaining incoming edges are removed
from VC . Card(ECinit) is the memory used at the beginning of the data collection run.
Note that cr = Card(E)

Card(ECinit)
.

Second, an origin O ∈ V and a destination F ∈ V, F 6= O are chosen randomly. A run
of A* on G returns one of the shortest paths in terms of traversal cost from O to F . Its
length is l∗, computed as the sum of traversal costs of the n∗ edges and n∗ + 1 vertices
traversed during the trip from O to F . This initial A* run expands s∗ vertices, where
s stands for “search space” and is a measurement of the execution memory required by
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A* on G.

Third, the PN algorithm is used to reach F from O. As there may not exist a path from
O to F using only the edges of GC , this algorithm may have to resort to exploration
of zones compressed away from the map (see chapter 3). Let l be the length traveled
by the navigating agent, computed as the sum of traversal costs of the n edges and
n + 1 vertices traversed during the trip from O to F . Let s be the maximum amount
of memory (“search space”) used by the planning algorithm. Let ED be the set of edges
added to EC on the path from O to F , where dm = Card(ED) is the dynamic memory
of the run. The final set of edges in GC is ECfin = ECinit ∪ ED Contrary to static memory
which is required no matter the itinerary of the navigating agent, dynamic memory is
unique to one data collection run and is erased after each run. If runs consisted of
multiple successive choices of O and F , dynamic memory could also be erased between
each choice.

8.4 Algorithms on the test bench

8.4.1 Planning and navigation algorithms

We chose to test five combinations of (exploratory) planning and navigation (PN) algo-
rithms:

(A) [GPSR] Greedy Perimeter Stateless Routing (GPSR),

(B) [EDNA*] EDNA*,

(C) [EDNA*-GPSR] EDNA* with a dynamic memory limit and GPSR when the dy-
namic memory budget has been spent,

(D) [GRDY-GA*] Greedy navigation with greedy-A* (called gA* in the following para-
graphs) recovery, which reproduces the work of (Lam and Qian, 2013) within a
navigation context and

(E) [GPSR-GA*] GPSR with gA* recovery which is a new and more elaborate version
of Greedy navigation with gA* recovery.

Each combination of algorithms has advantages and drawbacks. Worst case memory
complexities of all five algorithms are reported in table 8.1.

(A) [GPSR] GPSR (Bose et al., 2001; Karp and Kung, 2000) alone is restricted to
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planar graphs but ensures infinite compression ratios and an O(1) worst case complexity
for both dynamic and execution memory. GPSR cannot take advantage of the existing
map GC which leads to poor performances with low compression ratios compared to
algorithms using GC . We do not test Greedy alone, since almost no graph supports
greedy navigation, and graphs supporting it also support GPSR since its recovery phase
is never triggered.

(B) [EDNA*] EDNA* (chapter 3) also allows infinite compression ratios but takes ad-
vantage of GC , which should lead to shorter paths than GPSR on average with low com-
pression ratios. However, while EDNA* can operate on arbitrary graphs (even directed
graphs), it may require up to O(Card(E)) units of dynamic memory and O(Card(V))
units of execution memory to reach the goal vertex F . We tested various values of
the risk heuristic for EDNA*. In average, shorter paths were obtained with higher
risk overestimations. As in (Mayran de Chamisso, Soulier, and Aupetit, 2015), we take
R(O,F, Z ∈ VC) = D(O,Z)+α (1− βcos(θ)) ||F −Z|| with θ the angle between an edge
going out from Z and the vector from Z to F . α >> 1 ensures high risk overestimation.
β is chosen according to (Mayran de Chamisso, Soulier, and Aupetit, 2015), that is equal
to 0.25 for arbitrary digraphs and equal to 0.125 for grid-graphs.

(C) [EDNA*-GPSR] Using EDNA* until a predefined dynamic memory budget is
reached and GPSR then ensures that dynamic memory remains bounded while taking
advantage of GC . However, this technique is limited to planar graphs due to the use of
GPSR.

(D, E) [GRDY/GPSR-GA*] We introduced gA* (algorithm 3, page 57) as a variant
of EDNA* whose principle is to compute the risk heuristicR on all vertices expanded, not
just on boundary vertices. Greedy navigation or GPSR with gA* recovery (algorithms 5
and 6) are not limited respectively to environments where greedy navigation between any
two vertices is possible and to planar graphs. However, both require a computationally
expensive preconditioning phase which limits the compression ratio cr (due to static
memory consumption). While greedy and GPSR with gA* recovery use static memory
and up to O(Card(V)) units of execution memory, their dynamic memory consumption
is O(1).

8.4.2 Preconditioning algorithms

We propose two preconditioning algorithms:

(A) Preconditioning for [GRDY-GA*] (Algorithm 7) and

(B) Preconditioning for [GPSR-GA*] (Algorithm 8).
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Algorithm 5 [GRDY-GA*] Greedy navigation with gA* recovery
Input: GC = {VC , EC}, ES , O, F
curv ← O
while curv 6= F do

e∗ ← argmine∈S(curv)(||F − T (e)||)
run gA* from curv with destination F
returns path P to vertex v′
if ||F − v′|| < ||F − T (e∗)|| then

follow path P to v′
curv ← v′

else
curv ← T (e∗)

Algorithm 6 [GPSR-GA*] GPSR navigation with gA* recovery
Input: GC = {VC , EC}, ES , O, F
curv ← O,mindist← ||F −O||
while curv 6= F do

e∗ ← argmine∈S(curv)(||F − T (e)||)
run gA* from curv with destination F
returns path P to vertex v′
if ||F − v′|| < min(||F − T (e∗)||,mindist) then

follow path P to v′
curv ← v′,mindist← ||F − v′||
OnObstacle ← false

else
if OnObstacle then

if ||T (e∗)− v′|| < mindist then//back to greedy
curv ← T (e∗),mindist← ||F − curv||
OnObstacle ← false

else
e∗ ← circle obstacle clockwise, only using e∗ ∈ S(curv)\ENP
Change face if necessary, following (Karp and Kung, 2000)

else
if ||v′ − T (e∗)|| < ||v′ − curv|| then

curv ← T (e∗),mindist← ||F − curv||
else

OnObstacle ← true
e∗ ← circle obstacle clockwise, only using e∗ ∈ S(curv)\ENP
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Figure 8.2: Preconditioning for [GPSR-GA*]. (a) Graph before preconditioning. (b) Dur-
ing preconditioning, edges preventing the graph from being planar are found
(bold red) and stored separately as ENP . Then, an attempt is made to tra-
verse each edge ε of the Delaunay triangulation of V. When traversing ε is not
possible using GPSR on G, a sequence of edges found using A* on G between
the extremities of ε is remembered (bold dashed blue) as a replacement for ε.
Edges preventing the graph from being planar and replacement trajectories for
missing Delaunay edges form static memory ES .

Both preconditioning algorithms are based on constructing the Delaunay triangulation
of G and trying from each vertex v to reach each one of its Delaunay neighbors v′ using
Greedy (A) or GPSR (B). Let l∗ be the minimal traversal cost from v to v′ according to
A* on G. A threshold Ts is used to determine whether a path to a Delaunay neighbor is
short enough. If the neighbor cannot be reached without traveling more than Ts.l∗, the
A* path from v to v′ is stored, contributing to static memory. This path is intended to be
used by gA* during the data collection phase if necessary. An example of preconditioning
is given on Figure 8.2.

Delaunay triangulation is carried using the open source TRIANGLE library by Jonathan
Shewchuk (1996; 2002).

8.4.3 Compression algorithms

We propose three compression algorithms to assign a cardinal utility u(e) to each edge
e ∈ E :
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Algorithm 7 Preconditioning for [GRDY-GA*]
Input: G = {V, E}, Ts
ES ← ∅
compute Delaunay triangulation DLN of V
for all v ∈ V do

for all v′ ∈ V neighbor of v in DLN do
curv ← v
P ← A* path from v to v′ on G
dist← 0, dist∗ ← cost(P)
while curv 6= v′ do

if dist > Ts.dist
∗ then

break
e∗ ← argmine∈S(curv)(||v′ − T (e)||)
if ||v′ − T (e∗)|| < ||v′ − curv|| then

dist ← dist + c(e∗) + c(curv)
curv ← T (e∗)

else
break

if curv 6= v′ then
ES ← ES ∪ {e ∈ P}

(A) [RND] Random utility,

(B) [CVX] Convexify and

(C) [BTW] Betweenness-centrality

(A) [RND] The Random utility compression method assigns random utilities to edges.
Assigning random utilities to edges is the simplest method and simulates a system where
memory locations are randomly overwritten when memory saturation occurs.

(B) [CVX] The idea of the convexify algorithm (algorithm 9) is that if all obstacles
were close to circles, Greedy navigation would always succeed (it is not sufficient for
obstacles to be convex). Additionally, it is intuitively more useful to remember zones
that may lead to navigation detours (obstacles) than free space where Greedy routing
will find optimal routes. The convexify algorithm tries to make all obstacles support
greedy navigation by repeatedly smoothing them.

We developed this algorithm for grid-like graphs where it is equivalent to an iterated local

sum filter, represented with convolution matrix

1 1 1
1 0 1
1 1 1

. Figure 8.3 shows outputs
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8 Handling finiteness of memory

Algorithm 8 Preconditioning for [GPSR-GA*]
Input: G = {V, E}, Ts
x← ∅ //x = edges crossing each other
for all (e, e′) ∈ E2, e′ 6= e do

if e crosses e′ then
x← x ∪ {ee′, e′e}

ENP ← ∅ //ENP = edges breaking planarity
while x 6= ∅ do //are there crossings?

e← argmax(f : e ∈ E 7→ Card{a ∈ E|ea ∈ x})
ENP ← ENP ∪ e, x← x\{ab, a = e or b = e}

ES ← ENP
compute Delaunay triangulation DLN of V
for all v ∈ V do

for all v′ ∈ V neighbor of v in DLN do
curv ← v,P ← A* path from v to v′ on G
dist← 0, dist∗ ← cost(P), OnObstacle ← false
while curv 6= v′ do

if dist > Ts.dist
∗ then break

break
e∗ ← argmine∈S(curv)\ENP (||v′ − T (e)||)
if e∗ = ∅ then

break
if OnObstacle then

if ||T (e∗)− v′|| < ContactDistance then
OnObstacle ← false
curv ← T (e∗) //greedy

else
e∗ ← circle obstacle clockwise, only using e∗ ∈ S(curv)\ENP
Change face if necessary, following (Karp and Kung, 2000)

else
if ||v′ − T (e∗)|| < ||v′ − curv|| then

curv ← T (e∗) //greedy
else

OnObstacle ← true
ContactDistance ← ||curv − v′||
e∗ ← circle obstacle clockwise, only using e∗ ∈ S(curv)\ENP

dist ← dist + c(e∗) + c(curv)
if curv 6= v′ then
ES ← ES ∪ {e ∈ P}
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8 Handling finiteness of memory

Algorithm 9 [CVX] Convexify compression
Input: G = {V, E}
for all v ∈ V do

C(v)← 1//counter assigned to each vertex
for count from 1 to huge_value do

maxcnt← 0
for all v ∈ V do//counter gets sum of neighbors

Cn(v)←
∑
x∈V,∃e∈E,(S(e),T (e))=(v,x)|(x,v)C(x)

maxcnt← max (maxcnt, Cn(v))
for all v ∈ V do//normalize C to avoid overflow

C(v)← Cn(v)
maxcnt

for all e ∈ E do
u(e)← 1− 1

2

(
CS(e) + CT (e)

)

of the algorithm for a grid-graph.

(C) [BTW] The betweenness-centrality compression algorithm (algorithm 10) assigns
each edge a cardinal utility u(e) proportional to the fraction of optimal trajectories
between random vertices which include this edge. Because of repeated A* calculations
to compute optimal trajectories, betweenness-centrality compression is more compute
intensive than any of the two other compression techniques. Figure 8.4 shows outputs
of the algorithm for a nearly planar graph.

Algorithm 10 [BTW] Betweenness-centrality compression
Input: G = {V, E}
for all e ∈ E do

C(e)← 0//counter assigned to each edge
maxcnt← 0
for count from 1 to huge_value do

sample random (O,F ) ∈ V2

for all e ∈ E on A* path from O to F do
C(e)← C(e) + 1
maxcnt← max (maxcnt, C(e))

for all e ∈ E do
u(e)← C(e)

maxcnt

Note that the utility of an edge using betweenness-centrality compression is higher when
the edge is much used for navigation. This differs from convexify for which edges not often
taken (such as edges in a dead end) are assigned a higher utility. Betweenness-centrality-
based compression can be described as “remembering the highways but forgetting smaller
roads” and should intuitively be beneficial for large-scale planning. Conversely, convex-
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8 Handling finiteness of memory

Figure 8.3: The convexify algorithm assigns a utility to each edge so that keeping edges
with the highest utilities will make obstacles convex and fill small gaps. The
three images show the output of convexify with three different utility thresh-
olds: 0.1 (a), 0.3 (b) and 0.5 (c). Obstacles are represented in black, edges/ver-
tices to keep in red and edges/vertices to remove in white. Here, the graph is
8-way connected.
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8 Handling finiteness of memory

Figure 8.4: The betweenness-centrality [BTW] algorithm assigns each edge a utility pro-
portional to the number of optimal trajectories between random vertices which
happen to pass through it. (a) Graph before compression. (b) Compression
using betweenness-centrality, without preconditioning. (c) Compression using
betweenness-centrality with the same utility threshold as (b), using precondi-
tioning for [GPSR-GA*]. Edges marked by preconditioning are shown in bold
(plain and dashed) lines.
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8 Handling finiteness of memory

ify-based compression can be described as “only remembering smaller roads because we
can assume there is always a highway within x miles of a given point”. With similar
compression ratios, we expect betweenness-centrality to lead to shorter paths on average
when traversal costs are not proportional to the Euclidean distance. Conversely, con-
vexify may lead to shorter paths on average on graphs exhibiting regularity properties
(grid-graphs) and whose edge traversal costs are equal to the Euclidean distance.

8.5 Experiments

8.5.1 Performance metrics

We compute normalized performance metrics as follows:

• navigation suboptimality: mn = l
l∗ describes the added navigational cost using a

compressed map GC instead of the uncompressed one G.

• static memory consumption: cr∗(PN) = Card(E)
Card(ES) describes the maximum com-

pression ratio or equivalently the (minimum) amount of static memory required
by the PN algorithm. For PN algorithms without preconditioning, cr∗ is infinite.

• dynamic memory consumption: mdm = ED
n∗ describes the amount of dynamic

memory used by the PN algorithm. Normalization by n∗ comes from the
experimentally-confirmed intuition that the amount of dynamic memory is roughly
proportional to the number of edges in a minimum-cost path.

• execution memory consumption: mem = s
s∗ describes the maximum amount of

memory (“search space”) used during a single run of the planning algorithm relative
to A* on G. It is only necessary to consider a single run of the planning algorithm
since individual planning steps don’t have a memory of past planning steps with
the PN approaches tested. Normalization by s∗ comes from the fact that A* is
optimal in terms of search space s∗ amongst equally-informed algorithms (Hart,
Nilsson, and Raphael, 1968).

In a situation where much memory is associated to vertices in GC , execution memory is
negligible compared to static and dynamic memory (the constant hidden in the memory
complexities of PN algorithms is much higher for static and dynamic memory). More-
over, static memory is computed for the whole graph G while dynamic memory is used for
a single trajectory. Thus, static memory is (by far) the dominant memory consumption
term. In a situation where not much memory is associated to vertices in GC , execution
memory may become prominent.
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8 Handling finiteness of memory

Figure 8.5: Overview of the three datasets used within this chapter.

8.5.2 Datasets

We use three different datasets represented on Figure 8.5:

• [Grid] 4-way- (to enforce planarity) or 8-way-connected grid-graphs with randomly
generated obstacles,

• [Random planar] random planar graphs, made nearly-planar by adding a few
random edges and

• [RATP] the network of all buses, metros, trains and trams operated by French
transport agency RATP in the Paris region (http://data.ratp.fr/).

[Grid]-graphs are generated by punching rectangular possibly-overlapping holes in a
square 100 × 100 grid of 4- or 8-way connected vertices. Holes are punched until one
fourth of the initial edges of the grid fall within- or intersect a hole (see Figure 8.3). 100
random edges up to 25 units in length are then added if the experimental protocol does
not require the graph to be planar. Hole punching and edge adding are tried again until
the graph has a single component. The Euclidean distance is used as heuristic for A*
variants.

[Random planar] graphs are generated with 10000 vertices and 15000 dual-way edges
within a 100 × 100 square. They then undergo the same hole-punching phase as grid-
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graphs, with a threshold at one twentieth of the initial edges. 100 random edges up
to 15 units in length are then added to make the graph nearly-planar. Hole punching
and edge adding are tried again until the graph has a single component. The Euclidean
distance is used as heuristic for A* variants. The random nearly-planar graphs intend
to mimic road networks, which are mostly planar but locally exhibit non-planar features
such as bridges or tunnels.

The [RATP] dataset (Figure 8.6) shows stops (as vertices) and trips or transfers between
stops (as edges), with each edge of the graph being associated to a timing. The resulting
graph is not planar. In order to transform timings into edge traversal costs compatible
with A* variants using the Euclidean distance, we intended to find the speed vmax
of the fastest transport and scale all timings in the graph by vmax in order to obtain a
distance overestimating the Euclidean distance between adjacent stops in all cases. Since
individual timing measurements are only given with a precision of one minute, this gave
us vmax > 1400km/h, which is obviously wrong. Thus, we manually set vmax = 90km/h
which seems reasonable for any city transportation. When speed values higher than
vmax where found, they were reduced to vmax. We removed single-way edges from the
graph, which had the effect of splitting it into disconnected components. We only kept
the main component of the graph, which contains 4502 vertices and 6183 edges. Note
that the resulting graph is still not planar.

8.5.3 Experiments carried

Table 8.1 describes experiments carried on each dataset. Each experiment tests a differ-
ent combination of compatible preconditioning, compression and PN algorithms. The
aim of the experiments is to find out the navigation performances and memory usage pat-
terns of each combination of algorithms. Each experiment is conducted on all datasets
it is compatible with.

8.5.4 Results and discussion

Within this subsection, capital letters within brackets refer to Figures 8.7, 8.8 and 8.9.

Compression ratios and static memory

First of all, for grid-graphs, cr = 16× for experiment 7 [A] and only 3.4× for experiment
10 [B], while for nearly-planar random graphs, cr = 53× for experiment 10 [C] and only
1.2× for experiment 7 [D]. This is due to grid-graphs being 8-way connected, and as
such not planar initially. So, GPSR preconditioning does not work well for these graphs.
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8 Handling finiteness of memory

Figure 8.6: The RATP dataset, showing most stops and trips of buses, trains, metros
and trams within the network operated by RATP as well as transfers between
nearby stops. UTM coordinates of stops are used for display. Raw data from
http://data.ratp.fr/.
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exp. exp. precond compress. PN restricted
nb. name (Ts) algorithm algorithm to
1 GPSR - any GPSR planar graphs
2 CVX-EDNA*-GPSR - convexify EDNA*+GPSR planar graphs
3 BTW-EDNA*-GPSR - btw-cntrlty EDNA*+GPSR planar graphs
4 RND-EDNA* - random EDNA* no restriction
5 CVX-EDNA* - convexify EDNA* no restriction
6 BTW-EDNA* - btw-cntrlty EDNA* no restriction
7 ∞-BTW-GRDY-GA* Greedy (∞) btw-cntrlty Greedy + gA* no restriction
8 2-BTW-GPSR-GA* GPSR (2) btw-cntrlty GPSR + gA* no restriction
9 5-BTW-GPSR-GA* GPSR (5) btw-cntrlty GPSR + gA* no restriction
10 ∞-BTW-GPSR-GA* GPSR (∞) btw-cntrlty GPSR + gA* no restriction

exp. symb. name max. sm. max. dm. max. em.
1 GPSR 0 0 0
2 CVX-EDNA*-GPSR 0 tunable O(s∗)+
3 BTW-EDNA*-GPSR 0 tunable O(s∗)+
4 RND-EDNA* 0 O(n∗)+ O(s∗)+
5 CVX-EDNA* 0 O(n∗)+ O(s∗)+
6 BTW-EDNA* 0 O(n∗)+ O(s∗)+
7 ∞-BTW-GRDY-GA* Card(E) 0 O(s∗)+
8 2-BTW-GPSR-GA* Card(E) 0 O(s∗)+
9 5-BTW-GPSR-GA* Card(E) 0 O(s∗)+
10 ∞-BTW-GPSR-GA* Card(E) 0 O(s∗)+

Table 8.1: Experiments carried in this chapter and the theoretical limitations of the al-
gorithms tested. Note that static memory in experiment 10 is 0 if the graph
is planar. As betweenness-centrality-based compression leads to lower naviga-
tional and memory costs on average, we do not present results for convexify and
random compression for each PN combination. Experiments 4 to 10 are carried
on each dataset. Experiments 1 to 3 are not carried on the RATP dataset since
the RATP graph is not planar. For experiments 2 and 3, we observed that
mdm = 0 led to shorter paths on average. Symbols refer to Figures 8.7, 8.8 and
8.9.
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Figure 8.7: [Grid] Experiments on the grid-graphs dataset, with line types and colors
referring to Table 8.1. (a) Navigation performance mn loss as a function of the
compression rate cr. (b) Usage of execution memory mem as a function of the
compression rate cr. (c) Usage of dynamic memory mdm as a function of the
compression rate cr. Experiments 8 to 10 can hardly be distinguished from
each other on the figure.
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Figure 8.9: [RATP] Experiments on the RATP dataset, with line types and colors refer-
ring to Table 8.1. (a) Navigation performance mn loss as a function of the
compression rate cr. (b) Usage of execution memory mem as a function of the
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However, this simple 8-way connected base is favorable for Greedy preconditioning. On
the contrary, nearly-planar random graphs are almost planar, so that GPSR precondi-
tioning “only” has to find and mark as non-planar a few edges to make the graph planar
and allow for GPSR to be used.

The RATP dataset is not regular like a grid-graph but also far from planar, so that both
preconditioning techniques perform poorly, limiting the compression ratio to a maximum
of 1.7×, obtained for experiment 10 [E]. Thus, Greedy-gA* with Greedy preconditioning
or GPSR-gA* with GPSR preconditioning are not viable options for graph compression
and navigation on compressed data, leaving EDNA* as the only viable PN approach
for the RATP dataset and probably for most far-from-planar graphs with complicated
topology.

Navigation performances

Experiments 8 and 9 are clearly superseded by experiment 10 in terms of navigation
performances [F] on all datasets these experiments are run on. Experiments 4 and 5 are
superseded by experiment 6 in terms of navigation performances and dynamic memory
[G], showing that betweenness-centrality is the best compression technique. On the
RATP dataset, using betweenness-centrality to compress the graph can lead to more
than ten times lower navigational cost overheads than random or convexify compression
[H]. For nearly-planar random graphs and the RATP dataset, random- and convexify-
based compression perform similarly in terms of navigation performances, dynamic and
execution memory [I]. For grid-graphs, convexify leads to paths up to twice shorter
than random [J], which also reflects in dynamic memory use [K]. We could not find a
convincing explanation for the bump around cr = 6 of mn using random compression
and EDNA* on grid-graphs [L], even though we suspect that this bump is a side-effect
of the size of the holes punched into the graph to create obstacles.

For experiments 1 to 3, betweenness-centrality leads to shorter paths on all datasets,
with convexify coming second [M]. GPSR without EDNA* (experiment 1) exhibits navi-
gational performances independent of cr, which was expected since GPSR does not take
advantage of GC . For cr → 1, EDNA* dominates the behavior of experiments 2 and 3
[N], leading to performances similar to that of A* on G, and to mn → 1. For cr → ∞,
experiments 2 and 3 are dominated by the behavior of GPSR, so that experiments 1, 2
and 3 exhibit to the same navigational performances in the high-cr zone [O].

For experiments 6, 7 and 10, the following rule of thumb can be used: if cr∗ goes over
4 or 5 for experiment 7 or 10, the experiment achieving the highest compression ratio
gives the best navigation performances when cr < cr∗ [P]. If the compression ratio is
under 4 or 5, only EDNA* (experiment 6) is a viable solution [Q].
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Dynamic memory

The behavior of the mdm curves for experiments 4 to 6 is mostly similar to that of the
mn curves, with betweenness-centrality leading tomdm values up to ten times lower than
both other compression algorithms [R]. With cr = 1, mdm = 0 [S] while with cr → ∞,
mdm asymptotically tends to a constant equal to 4 or less [T]. So, the amount of dynamic
memory used is of the order of magnitude of 4n∗ or less. The mdm curve using random
compression and EDNA* on grid-graphs [U] does not show the bump [L] that was visible
on the mn curve.

It is not possible to limit both mdm and sm∗: experiments 4 to 6 use sm∗ = 0 so that
even though mdm ∼ 4 is an acceptable average, extreme cases show individual mdm

higher than 200. Reciprocally, experiments 7 to 10 use mdm = 0 but let sm∗ vary.

Experiments 2 and 3 were attempted with various mdm limits. However, shorter paths
were obtained on average with mdm = 0. mdm = 0 means that only a single run of
EDNA* is allowed at the beginning of the planning and navigation phase (each subse-
quent execution of EDNA* would require one unit of dynamic memory). We believe
that this is due to GPSR being more efficient than the exploration phase of EDNA*.
Indeed, EDNA* does not take advantage of G being planar, which GPSR does.

Execution memory

Since one unit of execution memory is much less than one unit of static or dynamic
memory, execution memory consumption is only given for reference.

Execution memory is computed relative to A* on G. Thus, with cr → 1, GC = G and
mem → 1 in experiments 2 to 10 [V]. Conversely, with cr → ∞, GC → ∅ initially
(before dynamic memory comes in), so that mem → 0 [W]. Even with dynamic memory,
mem remains bounded by the amount of dynamic memory mdm. In the intermediate cr
regime, the behavior of mem depends on the dataset. While, in average, mem remains
of the order of magnitude of 1 or less, curves of the grid- and random graphs datasets
show a bump between cr = 1 and cr = 10 [X] which does not appear in the mdm and
mn curves. We think that this phenomenon is due to the structure of these datasets, for
instance to the size of the rectangular possibly overlapping holes that were punched into
them. Even within the bumps, mem does not go beyond 2.5 in average, even though
extreme cases show individual mem as high as 40, with s ∼ Card(V).
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Figure 8.10: Graph compression for LEN. In a LEN context, the currently known graph
G is not GR. Indeed a (potentially large) part of the environment may not
have been explored and mapped when compression is applied. Moreover, the
robot may explore new areas of the world after compression, so that dynamic
memory may contain edges that did not belong to G before compression.

8.6 Graph compression in a robotics context

8.6.1 Graph compression in a Lifelong Exploratory Navigation context

So far, this chapter described graph compression independently from other components
(SLAM, navigation). We applied compression to a graph G which describes the whole
environment W. Thus, G is equivalent to the GR graph used in chapter 3. Within a
Lifelong Exploratory Navigation context, the diagram of Figure 8.1 needs to be extended,
which is done on Figure 8.10.

Navigation techniques requiring preconditioning such as GPSR with gA* are not well
suited to LEN since their (static) memory usage depends on the total size of the map.
Moreover, we do not see a simple way to run preconditioning on an already incomplete
graph G instead of GR. Thus, pure EDNA*-based techniques should be preferred for
LEN in non-planar environments. In planar environments, EDNA* can be assisted by
GPSR. EDNA* is able to lead the robot from any origin to any destination no matter
the current content of G or GC . Moreover, while the dynamic memory usage of EDNA*

215



8 Handling finiteness of memory

does not have a theoretical bound lower than Card(E), it is low in practical situations.

As an additional issue, we did not explicitly state when graph compression should be
used. The general idea, represented on Figure 2.5, page 26, is to run graph compression
on the currently stored (incomplete) graph G in parallel to the rest of the algorithms.
We propose to call graph compression in two situations:

• When memory usage reaches an alert threshold, which should be less than the
amount of total memory available (typically, 90%).

• When the robot has nothing more important to do, or when the robot is in sleep
mode. In this perspective, map compression and optimization (chapter 5) can
be viewed as a “dream” phase, where the brain of the robot simplifies its data
structures and consolidates its knowledge, similarly to what happens in animals
and humans.

In a LEN perspective, the betweenness-centrality compression algorithm can be replaced
by an attendance and/or aging metric, where edges more often and more recently visited
by the robot are assigned a higher utility, causing edges never traversed or not traversed
for a long time to be compressed away. We did not test such a strategy in this chapter
since it would require real mission scenarios (some vertices of the graph should be de-
fined as interest points and the robot should be assigned somewhat repetitive missions
between these interest points, etc.) and data collection would become more complex and
not reproducible. Betweenness-centrality considers all vertices of the graph as of equal
interest to the robot.

In chapter 7, we explained that the algorithmic complexity of EDNA* (chapter 3) de-
pended on the distance between O and F and on the number and shape of obstacles on
the way. If compression is applied, the execution memory of EDNA* decreases. How-
ever, since the execution memory metric actually describes the search space of EDNA*,
a decrease in execution memory translates to a decrease in computation time and al-
gorithmic complexity of EDNA*. Within a Lifelong Exploratory Navigation context,
this property is a hint that EDNA* should be able to operate in arbitrarily large envi-
ronments, even though adversely-constructed environments may still require too much
memory and computing power for a robot or for any other navigating agent.

8.6.2 Orders of magnitude

Using the components described in chapters 3, 4 and 5, we can give order of magnitudes
for the memory usage patterns.

Within our implementation, execution memory is essentially free, with measured values
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limited to a maximum of a few dozens of kilobytes, even when working on graphs with
more than 1000 vertices. One unit of execution memory amounts to a few bytes.

Navigation (chapter 4) operates with bounded memory, typically up to a few megabytes.
Navigation memory comprises one local occupancy grid around 300×300 pixels (scrolling
occupancy grid), one around 600 × 600 pixels (edge-local occupancy grid) and a few
additional vector and scalar grids as well as small data structures such as lists and
vectors to perform topological skeleton extraction.

The memory usage of the SLAM framework (chapter 5) is essentially due to the use of
a disambiguation strategy, which typically stores up to 5 or 6 edges and vertices. Each
edge/vertex couple used in the disambiguation strategy counts as one unit of dynamic
memory.

The main memory usage of our framework comes from vertex-local and edge-local oc-
cupancy grids stored in the map G. Vertex-local grids weigh around 400 kilobytes each
while edge-local grids weigh around 1.4 megabytes. Thus, one unit of static or dynamic
memory amounts to about 2 megabytes. The final map for the Cuzco dataset presented
in chapter 6 weighs more than 3 gigabytes.

8.7 Guidelines for choosing an approach

From the experiments carried in this chapter, we can deduce the following criteria to
choose a compression and navigation approach:

• In all cases, compression based on betweenness centrality, attendance or an aging
metric should be preferred.

• Within a LEN context, if the graph is not planar, it is necessary to use an Ex-
ploratory Planning algorithm such as EDNA*. Even if the graph is planar, EDNA*
can be used but GPSR-assisted EDNA* (experiments 2 and 3) performs better than
pure EDNA*.

• Outside a LEN context, techniques using preconditioning can be used on undirected
graphs if they achieve a high enough compression ratio. Greedy with gA* recovery
should be used on graphs close to Delaunay graphs and GPSR with gA* on nearly-
planar graphs. The maximum compression ratio achievable with both algorithms
depends on how close the graph is to a Delaunay graph (for greedy with gA*
recovery) or to a planar graph (for GPSR with gA* recovery). For graphs far from
planar and from a Delaunay graph or for directed graphs, the use of EDNA* alone
is recommended.
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8.8 Conclusion

In this chapter, we demonstrated that with adequate preconditioning, compression and
planning techniques, navigation performances would degrade smoothly with memory
restrictions imposed on the system. We devised planning algorithms whose behavior
in situations without memory constraints is optimal (they fall back to A*) and which
are either able to navigate without any map initially but using dynamic memory or to
navigate with a minimal map (“static memory”) but without dynamic memory. We see
this static/dynamic memory requirement as a hint that giving a bound on the amount
of memory required to navigate between any two vertices of any graph G is not possible.
Navigation requires either a map or the ability to build one. Using GPSR with gA*
recovery, a maximum compression ratio of 53× was achieved on the nearly-planar random
graph dataset, with paths 2.3 times the theoretical optimum on average. Using EDNA*,
navigation without an initial map (infinite compression) led to paths from 3 to 6.5 times
longer than if a map was available, using a limited amount of dynamic memory. On the
real-world RATP dataset, EDNA* performed best with a doubling of navigational cost
around 7.7× compression and an asymptotic 6.5× optimal navigational cost which is
quite good given that our implementation of the risk heuristic of EDNA* chooses paths
in free space according to geometrical hints (distance, angles), not considering actual
costs. For instance, the risk heuristic R does not use the fact that trains are usually
faster than buses. We removed single-way edges from the RATP dataset in order to
compare planning algorithms but EDNA* could operate directly on directed graph.

We did not study algorithms with limited execution memory such as finite-horizon plan-
ners like gA* with K ≥ 1 alone, since these are not guaranteed to lead a navigating
agent to its destination with one of the preconditioning techniques exposed. Moreover,
for any finite-horizon planner, we can always find G, O ∈ VC , F ∈ VC such that reaching
F from O exceeds the horizon of the planner.

Experiments 1 to 3 showed that GPSR outperformed EDNA* during exploratory phases
on planar graph. This suggests an improvement of the exploration phase of EDNA* on
planar graphs, replacing the Greedy exploration process of EDNA* by GPSR.

We used results from the network literature (Lam and Qian, 2013) to perform Greedy-
preconditioning of a graph. We improved greedy preconditioning by introducing GPSR-
preconditioning, allowing a 34 times reduction of static memory on the nearly-planar
random graphs dataset. Back-porting this new algorithm for use within networks may
lead to a drastic reduction of the size of routing tables in nearly-planar router layouts.

Finally, within a Lifelong Exploratory Navigation context, compressing the map reduces
memory requirements and the running time of EDNA* while increasing path lengths.
Consequently, a compromise between memory, computing power and navigation perfor-
mances has to be found for Lifelong operation.
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This chapter contains a summary of which modifications had to be introduced to plan-
ning, navigation and SLAM in order to implement PNSLAM. With the help of a new
memory management unit, Lifelong Exploratoy Navigation can be achieved. This chap-
ter also lists a few improvements that could be implemented into the proposed ap-
proach.

9.1 Summary of our contributions

9.1.1 Modifications introduced for PNSLAM and LEN

In order to implement PNSLAM and LEN, we had to introduce a few conceptual mod-
ifications to the usual paradigms of planning, navigation and SLAM.

Exploratory Planning and Exploratory Digraph Navigation (chapter 3)

We propose to modify the planning component to take into account space not mapped
yet. The EDNA* algorithm (Mayran de Chamisso, Soulier, and Aupetit, 2015) is an
exploratory planner based on A* (Hart, Nilsson, and Raphael, 1968) which balances
exploitation of the map and exploration of uncharted space through a risk heuristic.
Both exploitation and exploration require a navigation component in order for the robot
to physically move in the environment, and a SLAM component in order to update the
map according to the environment sensed by the moving robot. We termed Exploratory
Digraph Navigation the PNSLAM problem viewed from the perspective of planning.
Exploratory Planning and Exploratory Digraph Navigation are new paradigms which
extend beyond the EDNA* algorithm used to first demonstrate them.
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Local navigation and topology (chapter 4)

EDNA* is a graph-based path planning algorithm, which means that it returns an
itinerary made of places and paths. Places and paths are detected locally in the en-
vironment every few milliseconds using the topological skeleton (Mayran de Chamisso,
Soulier, and Aupetit, 2016). We propose to use places and paths to build a global map
of the environment through a hybrid metrical/topological SLAM approach.

We propose to transform sparse graph navigation commands issued by an EDN approach
to dense actuator commands using a ski-tow approach, where the robot is loosely at-
tached to the graph by a tow. Avoidance of static and dynamic obstacles is guaranteed
when using the Vectorial Euclidean Distance Map, a grid of vectors pointing from each
pixel of free space of an occupancy grid to the closest occupied pixel of the grid. The
Vectorial euclidean Distance Map is conveniently obtained as a byproduct of topological
skeleton extraction.

Simultaneous Localization and Mapping (chapter 5)

In order to allow path planning, we implemented a SLAM framework maintaining a single
robot position at any time. The approximate current position is derived relative to a last
known position through odometric integration. Odometric integration is understood as
any process obtaining a trajectory through integration, thus including visual odometry
for instance. The recent trajectory and the existing map are matched against each other
to perform map update, with ambiguous situations resulting in an active disambiguation
phase. During active disambiguation, the robot moves in order to find evidence that it
is at a specific place in the environment. If active disambiguation succeeds, the place
hypothesis is fused into the map, and the robot is virtually relocated on the map.

Realistic simulations and experiments (chapter 6)

We introduced new metrics based on comparing the topology of the map and the mapped
environment and using the map for navigation to evaluate the quality of a map produced
by a sparse topological SLAM such as the one described in chapter 5. These metrics make
more sense from the point of view of a mobile robot than metrics describing geometrical
correctness relative to ground truth.

Simulations of planning, navigation and SLAM were run with realistic sensor models in
multiple environments including one with 184 loops. Indoor robot experiments using the
same PNSLAM code were run. Both simulations and experiments produced a map that
could be used for navigation and covered the whole environment. Moreover, paths found
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on the maps were always the shortest possible or marginally longer than the shortest
possible.

Typical PNSLAM missions such as find a treasure around specified position could also
be successfully carried.

Resource management (chapters 7 and 8)

In order to reduce the computing power required for SLAM, we managed to give bounds
on the search space to be considered when trying to find if the current place was al-
ready visited. This was done thanks to the uncertainty model and the approximate
metrical characteristics of the SLAM framework. With a bounded search space, con-
stant time complexity (in the number of places or paths on the map) can be achieved.
Experimentally-collected running times show that in practice, the running time of the
whole PNSLAM framework is constant as a function of the size of the environment.

We introduced graph (lossy) compression for navigation (chapter 8) in order to try and
control the amount of memory used by the system. While it is not possible to give a
minimal bound on the amount of memory necessary to guarantee that the robot will
reach its goal, we found there was a tradeof between map compression and navigation
performances. Our view on the problem is that thanks to the proposed compression
approaches, memory will not be an issue in practice even though adversely constructed
datasets would cause memory saturation.

9.1.2 Additional contributions

In addition to the properties necessary for PNSLAM and LEN, our SLAM framework
(chapter 5) can model one-way paths and point-of-view dependence of place detection
(to some extent). A limited amount of dynamic noise (such as passers-by) is also toler-
ated. The framework separates uncertainty of place detection (pose uncertainty) from
odometric uncertainty (movement uncertainty), which we think is one of the key as-
pects to consider for large-scale SLAM. Finally, the kidnapped robot problem is solved
elegantly as a generalized loop closure problem.

Our topology extraction approach (chapter 4) provides an elegant way to switch from
the usual topological skeleton to Beeson et al.’s Extended GVG (2005) with almost no
computational overhead. The extended GVG allows navigation in environments locally
wider than the range of the distance sensors of the robot.
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9.2 Future work

We introduced the Lifelong Exploratory Navigation paradigm and a minimal set of
algorithms allowing a robot to follow this paradigm. There is room for improvement for
these algorithms:

• Better place signatures: Detection of places in the environment can be made more
robust by adding visual data in vertex signatures. As explained in chapter 2,
multi-sensory place signatures are probably used by animals and humans.

• Improving the support for dynamic environments: It may be possible to improve
hypothesis handling (chapter 5) to better cope with dynamic environments. It
may be necessary to allow the graph structure to store the probability for each
individual edge to be blocked.

• Detecting and filtering moving obstacles: It should be possible to detect and remove
moving objects from an occupancy grid. Care should however be taken since
moving objects can be confused with occluded zones suddenly becoming visible.
Thus, it may be necessary to consider multiple frames before deciding whether an
occupied pixel belongs to a dynamic obstacle or not. If moving objects are detected
correctly, the dynamic obstacle avoidance behavior can be improved by predicting
the trajectory of the obstacle.

• GVG-assisted occupancy grid matching: In order to make matching of two occu-
pancy grids more robust without considering a rotational degree of freedom, it is
possible to match the topological skeletons extracted from both grids as a first
step. Matching the skeletons gives an accurate estimate of the translation and
rotation between both grids. The matching process may be implemented similarly
to edge remapping (chapter 4, algorithm 4. Furthermore, it may be possible to
consider skeletons, and not grids, as vertex signatures.

• Maneuver unit for non-holonomic robots: Within chapters 4 and 6, a holonomic
robot is used (it can almost turn in place). The maneuver unit (Figure 2.5) re-
quired for such a robot is minimalistic. Control of non-holonomic robots is an
open research subject, but our approach can provide a local occupancy grid with
topological skeleton and Vectorial Euclidean Distance Map (chapter 4), which is a
solid base for non-holonomic trajectory planning.

• Hardware acceleration: Multiple parts of our algorithms can easily be parallelized,
such as topological skeleton extraction and vertex/edge signature matching. Com-
putation of the Vectorial Euclidean Distance Map in chapter 4 and occupancy grid
matching could even potentially run on an ASIC or FPGA.
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• 3D navigation: In most cases, maintaining a full 3D map is useless because most
environments are either mostly 2D (indoor environments) or 3D but with the
possibility to get around obstacles by flying higher (outdoor environments). If
a 3D map is needed, EDNA* as well as our SLAM approach remain valid but
topology extraction should be performed on voxels (3D pixels) instead of pixels.
Our vision of indoor 3D mapping is to have a 2D map describing floor topology used
to perform loop closure, and a 3D SLAM used to reconstruct the 3D environment
without having to cope with the loop closure problem.

• EDNA* risk heuristic and exploration strategy: We proved in chapter 3 that with
a perfectly informed risk heuristic and exploration strategy, EDNA* would always
find optimal paths in an environment, no matter the initial state of the map of this
environment. Consequently, integrating relevant information into the risk heuristic
and exploration strategy should be the main concern when trying to reduce the
length of paths produced by EDNA*. Within this thesis, we tested EDNA* with
a simple risk heuristic based solely on estimated distances and angles and a simple
greedy exploration strategy. We can devise strategies to improve both the risk
heuristic and exploration strategy. For instance, both could take advantage of
semantic clues (say, signs along a road or the fact that it is only possible to cross
a highway or a river at a bridge, incurring a huge detour in most cases). The
exploration strategy could take advantage of characteristics of the environment,
such as planarity through face routing (see chapter 8).

• EDNA* risk heuristic and disambiguation: When considering the PNSLAM prob-
lem from the point of view of planning, EDNA*’s risk heuristic may also be used
as a way for SLAM to suggest a trajectory, for instance when disambiguating be-
tween paths. It would thus be possible to balance map consistency (represented
by quick disambiguation) and navigation efficiency (represented by goal-directed
navigation).

• Really useful missions: PNSLAM is able to accomplish missions such as “find a
treasure”. However, we did not describe how the robot recognized it just found
the treasure (a simple colored blob detector was used for testing). Moreover, even
though it finds the treasure, our PNSLAM approach does not describe how to
interact with the treasure. All in all, the integration of our model with higher-
level AI still requires testing.

• Dynamic and progressive compression: We did not test graph compression within
a Lifelong Exploratory Navigation perspective. It may be preferable to run small
compression steps often during normal operation or on the contrary to wait until
memory saturation and perform compression during a “dream” phase. The time
that the robot spends charging or being motionless for whatever reason can be
used to run compression with minimal impact on the robot’s behavior.
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• Data compression: In addition to graph compression, we could reduce the precision
of vertex or edge signatures (here, occupancy grids) not much used by the robot,
using downscaling for instance. Signatures may also be compressed using image
Run-Length-Encoding or image compression techniques.

• Fleet of robots: The ideas described in this thesis allow Lifelong Exploratory Nav-
igation for a single robot to be implemented. Robot fleets or swarms are not
considered. Handling multiple robots is a challenge since each robot is a dynamic
obstacle for the other robots. However, multiple robots can also share information,
leading to faster operation of the swarm. Swarms raise the issue of communication
between robots.

• Other navigating agents than robots: Some components we introduced or improved
relative to the state of the art are not specific to robot navigation. For instance,
topology extraction (chapter 4) may be used in medical imagery and other fields
where efficient image processing is needed. Exploratory planning (chapter 3) and
memory compression for navigation (chapter 8) may find uses in GPS devices,
packet routing or semantic database management.
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A characterization of environments
supporting greedy navigation

This appendix contains a characterization of environments supporting greedy naviga-
tion.

1 Greedy navigation: definition and properties

Greedy navigation is a simple method, which consists in the robot always trying to
minimize its distance to destination. This is done iteratively by moving straight towards
the goal, following the boundary of obstacles in the way if any. Locally, if multiple
movements lead to the same distance to destination, one movement is chosen randomly.
The robot is not allowed to stay in place until the destination is reached. Thus, even
though the environment does not locally allow a movement bringing the robot closer to
its destination, the robot choses a movement leading to the minimal increase of distance
to destination.

Definition 3 (Formal definition of greedy navigation). Let E be the (connected) set of
free space accessible to the robot. E is a subset of R2 or R3 depending on whether the
robot navigates in 2D or 3D. Let O be the current position of the robot. The destination
of the robot is F ∈ E. Let ε ∈ R∗+ be the planning horizon of the robot: from O, the

robot plans its move up to O′ | ||OO′|| < ε. Let D :
∣∣∣∣∣ E 7→ R+

X 7→ ||XF || Greedy navigation is

defined by O′ = argmin(D(X), X ∈ E, ||OX|| < ε). If ||OF || < ε, greedy succeeds at
reaching F . If multiple O′ are valid, the one closest to O is chosen. If no O′ can be
found, the robot does not move.

The argmin behavior of greedy causes paths to be straight lines in free space.

Definition 4 (Greedy-reachability from a point). A position F ∈ E (for “finish”) which
can be reached in a finite number of planning steps using Greedy from O ∈ E is called
greedy-reachable from O.
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Definition 5 (Greedy-reachability). A position F ∈ E (for “finish”) which can be
reached in a finite number of planning steps using Greedy from any O ∈ E is called
greedy-reachable.

Definition 6 (Greedy-supporting environment). E is said to be a greedy-supporting en-
vironment (abridged G-environment) if and only if all its reachable positions are greedy-
reachable. Environments which do not support greedy navigation from any reachable
position to any other reachable position are called non-G-environments.

Property 3 (Greedy-reachability characterization). Greedy-reachability of F ∈ E in
non-pathological environments is equivalent to: ∀O ∈ E,O 6= F,∃O′ ∈ E| ||OO′|| <
ε, ||O′F || < ||OF ||. Thus, E is a G-environment if and only if ∀F ∈ E,∀O ∈ E,O 6=
F,∃O′ ∈ E| ||OO′|| < ε, ||O′F || < ||OF ||.

Proof. First of all, we have to dismiss a subtle issue related to Zenon’s paradox: it is
not because the robot can move towards F from any O ∈ E that F will be reached.
Indeed, the robot may only reduce D by an infinitesimal amount at each planning step,
as shown on Figure 1. This situation only occurs with weird adversely-designed obstacles
such as fractal obstacles where if O′ = argmin(D(X), X ∈ E, ||OX|| < ε), O′ 6= F and
O 6= O′, there is no inferior bound on D(O)−D(O′)

ε . For non-pathological cases, F is
greedy-reachable from O = O0 if and only if at each planning step, On−1 6= On =
argmin(D(X), X ∈ E, ||On−1X|| < ε.

The rest of the proof is pretty straightforward.

Suppose that ∀O ∈ E,O 6= F,∃O′ ∈ E| ||OO′|| < ε, ||O′F || < ||OF ||. Then, if O′′ =
argmin(D(X), X ∈ E, ||OX|| < ε), we have ||O′′F || < ||O′F || < ||OF ||. Thus, from any
position O 6= F , the greedy algorithm will bring the robot to O′′ which is strictly closer
to F than O. By iterating the algorithm, the distance to F decreases monotonically
until F is eventually reached in non-pathological cases. F is thus greedy-reachable.

Reciprocally, suppose that F is greedy-reachable and that ∃O ∈ E,O 6= F,∀O′ ∈
E| ||OO′|| < ε, ||O′F || ≥ ||OF ||. Then, the robot does not move according to greedy.
Thus, F is never reached and is not greedy-reachable. So, F is greedy-reachable if and
only if ∀O ∈ E,O 6= F,∃O′ ∈ E| ||OO′|| < ε, ||O′F || < ||OF ||.

Knowing whether F is greedy-reachable from O can be made easier using the following
theorems 10 and 11:

Theorem 10 (reduction to boundaries: O). Let O ∈ E such that O is not on an
internal or external boundary of E. Let F ∈ E,F 6= O and ]OF ) be the half-line
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𝜖

Figure 1: An adversely-designed obstacle such as a spiral of infinite length may pose
theoretical issues for greedy navigation. For non-pathological obstacles, F is
greedy-reachable from O if and only if at each planning step, O 6= O′ =
argmin(D(X), X ∈ E, ||OX|| < ε).

starting at O and going towards F . ∀M ∈]OF ),∃t ∈]0; +∞[,M = O + t.OF . Let
t1 = sup {t ∈]0; +∞[, ∀0 < u < t,O + u.OF is traversable}. M1 = M(t1) = O + t1.OF
is the first point of the ]OF ) half-line that belongs to either the boundary of an internal
obstacle of E or the external boundary of E. Then, F is greedy-reachable from O if and
only if F is greedy-reachable from M1.

Proof. Suppose that F is greedy-reachable from O. Suppose that M1 ∈]OF ]. Paths
generated by greedy are straight lines towards F in free space and thus from O to M1.
Since F is greedy-reachable from O, it is greedy-reachable from any point of the greedy
trajectory from O to F including M1. If M1 /∈]OF ], [OM1] is entirely located in free
space with F ∈ [OM1], so F is greedy-reachable from M1.

Reciprocally, suppose that F is greedy-reachable from M1. Suppose that M1 ∈]OF ].
Then, greedy from O towards F and from M1 towards F are equivalent since the tra-
jectory using greedy from O towards F is a straight line until M1. If M1 /∈]OF ], then
the [OF ] segment is entirely located in traversable space and greedy navigation from O
towards F succeeds.

Theorem 11 (closer is more restrictive). Let O ∈ E. Let F ∈ E,F 6= O. ∀M ∈
]OF ], ∃t ∈]0; 1],M = O + t.OF . Let M2 = M(t2), t2 ∈]0; 1]. Then, if a greedy move
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towards M(t2) is possible from O, then a greedy move towards F is possible from O.

Corollary 3 (reduction to boundaries: F). It is sufficient to consider greedy-reachability
of points F on either the boundary of internal obstacles or the external boundary of E.

Proof. First, it is sufficient to consider O ∈ E on the boundary S of an internal obstacle
according to theorem 10. Since O,M2 and F are aligned in this order, ||OF −M2F || =
||OF || − ||M2F ||. Suppose that a greedy move towards M(t2) is possible at O: ∃O′ ∈
E| ||OO′|| < ε, ||O′M2|| < ||OM2||. ||O′M2|| < ||OM2|| ⇔ ||O′F −M2F || < ||OF −
M2F || ⇒ ||O′F || − ||M2F || < ||OF || − ||M2F || ⇒ ||O′F || < ||OF ||, so a greedy move
towards F is possible from O. Note that we use the property: ∀(a, b) ∈ (R2)2

, ||a− b|| >
| ||a|| − ||b|| |.

The corollary is proved the following way: first, suppose that ]OF ] crosses an (internal
or external) boundary. LetM2 = M(t2), t2 = sup {t ∈]0; 1], O+t.OF is not traversable},
which is the last point belonging to an obstacle on the ]OF ] segment. Since M2 ∈]OF ],
if a greedy move towards M2 is possible from O, then a greedy move towards F is
possible from O according to theorem 11. If ]OF ] does not cross an (internal or external)
boundary, ]OF ) does. LetM2 = M(t2), t2 = inf {t ∈]1; +∞[, O+ t.OF is not traversable
}. [OM2] is entirely contained in traversable space, so if M2 is greedy-reachable from O,
then F ∈ [OM2] is greedy-reachable from O.

When determining whether greedy navigation is possible in an environment, theorems
10 and 11 and corollary 3 can be used to reduce the search to the boundary of obstacles,
as shown on Figure 2.

2 A characterization of environments supporting greedy
navigation

While property 3 provides a rigorous definition of G-environments, it is not obvious from
the property what G-environments look like. In this section, we give a more precise
characterization of obstacles allowing greedy navigation. More precisely, we derive a
differential description of obstacle boundaries locally allowing greedy navigation.

Let BE be the external boundary of E. The coordinate system is centered on F . In the
following, we suppose that the planning horizon ε of the robot is infinitesimal and that
E is two dimensional.

Suppose that there is an obstacle within E. The contour of this obstacle is a C∞
curve S parametrized by t ∈ [0; 1[. ∀M ∈ S, ∃t ∈ [0; 1[,M = (x(t), y(t)) with ∀t0 ∈

233



A characterization of environments supporting greedy navigation

𝑂1

𝐹1

𝑂2

𝐹2

𝐹2

Figure 2: It is sufficient to study the trajectories from O1 to F1 and from O2 to F2 to prove
greedy-reachability of F from O according to theorems 10, 11 and corollary 3.
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[0; 1[, ( dxdt
∣∣∣
t=t0

, dydt

∣∣∣
t=t0

) 6= (0, 0). Parametrization is chosen so that (y′(t),−x′(t)) points
outwards.

It is sufficient to study trajectories where O ∈ S according to theorem 10. So, ∃tO ∈
[0; 1[, O = (x(tO), y(tO)). Obstacles will only cause problems on trajectories coming in
contact with them, that is when (y′(t),−x′(t)).(x(t), y(t)) > 0.

Let f :
∣∣∣∣∣ [0; 1[ 7→ R+

t 7→ D((x(t), y(t)) . So, ||OF || = f(tO). Let n = min(p ∈ {1; +∞}, d
pf
dtp

∣∣∣
t=tO

6=

0). Depending on n, multiple cases arise:

• If n =∞ (f is constant), the robot stays at O and greedy navigation fails.

• If n is odd:

– If dnf
dtn

∣∣∣
t=tO

> 0, then ∃δ ∈ R∗+, ∀t ∈ [0; 1[, (tO − t) < δ ⇒ f(t) <

f(tO). Thus, there is a point O′ = (x(t), y(t)) in any planning horizon
ε < ||(x(tO), y(tO))(x(tO − δ), y(tO − δ))|| so that ||O′F || < ||OF ||. Thus,
greedy navigation is locally possible from O to F according to property 3.

– If dnf
dtn

∣∣∣
t=tO

< 0, then ∃δ ∈ R∗+, ∀t ∈ [0; 1[, (t − tO) < δ ⇒ f(t) <

f(tO). Thus, there is a point O′ = (x(t), y(t)) in any planning horizon
ε < ||(x(tO), y(tO))(x(tO + δ), y(tO + δ))|| so that ||O′F || < ||OF ||. Thus,
greedy navigation is locally possible from O to F according to property 3.

• If n is even:

– If dnf
dtn

∣∣∣
t=tO

> 0, then O is a local minimum of the distance to F and ∃δ ∈
R∗+,∀t ∈ [0; 1[, |tO − t| < δ ⇒ f(t) > f(tO) and the robot will remain at O,
never reaching F .

– If dnf
dtn

∣∣∣
t=tO

< 0, then O is a local maximum of the distance to F and ∃δ ∈
R∗+,∀t ∈ [0; 1[, |tO − t| < δ ⇒ f(t) < f(tO). Thus, there is a point O′ =
(x(t), y(t)) in any planning horizon ε < min(||(x(tO), y(tO))(x(tO− δ), y(tO−
δ))||, ||(x(tO), y(tO))(x(tO + δ), y(tO + δ))||) so that ||O′F || < ||OF ||. Thus,
greedy navigation is locally possible from O to F according to property 3.

Derivatives of f : t 7→
√
x(t)2 + y(t)2 are hard to express due to the square root. Let us

prove that we can ignore it with the following lemma:

Lemma 1 (studying variations of compound functions). If g and h are two Cn≥1 func-
tions with values in R, with h defined on Ih ⊂ R and g defined and strictly increasing
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on h(Ih)(∀u ∈ h(Ih), dg(t)dt

∣∣∣
t=u

> 0), then ∀k ∈ {1, ..., n}, d
kg◦h(t)
dtk

∣∣∣
t=tO

= 0 ⇔ ∀k ∈

{1, ..., n}, d
kh(t)
dtk

∣∣∣
t=tO

= 0 and if ∀k ∈ {1, ..., n− 1}, d
kh(t)
dtk

∣∣∣
t=tO

= 0, then dng◦h(t)
dtn

∣∣∣
t=tO

>

0⇔ dnh(t)
dtn

∣∣∣
t=tO

> 0 and dng◦h(t)
dtn

∣∣∣
t=tO

< 0⇔ dnh(t)
dtn

∣∣∣
t=tO

< 0

Proof. For simplicity, we write dnφ
dtn

∣∣∣
t=u

= φ(n)(u) for any function φ. Now, using induc-
tion:

f (1)(tO) = h(1)(tO)g(1)(h(tO)) (1)

so that:

f (1)(tO) = 0⇔ h(1)(tO) = 0
f (1)(tO) > 0⇔ h(1)(tO) > 0 (2)

given that ∀u ∈ h(Ih), g(1)(u) > 0. Similarly,

f (2)(tO) = h(1)(tO)2g(2)(h(tO)) + h(2)(tO)g(1)(h(tO)) (3)

If f (1)(tO) = f (2)(tO) = 0, then h(1)(tO) = 0. Moreover, ∀u ∈ h(Ih), g(1)(u) > 0. Thus,

f (2)(tO) = 0⇔ h(2)(tO) = 0
f (2)(tO) > 0⇔ h(2)(tO) > 0 (4)

Just to see what’s going on, let’s derive f once again:

f (2)(tO) = h(1)(tO)3g(3)(h(tO)) + 3h(1)(tO)2h(2)(tO)g(2)(h(tO)) + h(3)(tO)g(1)(h(tO))
(5)

If f (1)(tO) = f (2)(tO) = f (3)(tO) = 0, then h(1)(tO) = h(2)(tO) = 0. Moreover, ∀u ∈
h(Ih), g(1)(u) > 0. Thus,

f (3)(tO) = 0⇔ h(3)(tO) = 0
f (3)(tO) > 0⇔ h(3)(tO) > 0 (6)

We see that each new derivative f (k) of f creates terms that cancel at tO as well as one
single term in h(k)(tO)g(1)(h(tO)). Since ∀u ∈ h(Ih), g(1)(u) > 0,

f (k)(tO) = 0⇔ h(k)(tO) = 0
f (k)(tO) > 0⇔ h(k)(tO) > 0 (7)

which proves the lemma.
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Now, Let h :
∣∣∣∣∣ [0; 1[ 7→ R∗+
t 7→ x(t)2 + y(t)2 . Let g :

∣∣∣∣∣R∗+ 7→ R∗+
t 7→
√
t

. f = g ◦ h. g is strictly increasing,

that is ∀u ∈ R∗+, dgdt
∣∣∣
t=u

> 0. Thus, lemma 1 can be used and studying the variations
of f comes down to studying that of h, which leads us to the following property:

Theorem 12 (obstacles supporting greedy navigation). Let n(tO) = min(p ∈ {1; +∞}, h(p)(t =
tO) 6= 0). Obstacles for which greedy navigation succeeds towards destination F , chosen
as origin of the coordinate axes, are those for which: ∀tO ∈ [0; 1[, either:

• (OF ) does not cross the obstacle, that is (y′(t),−x′(t)).(x(t), y(t)) < 0 or

• n(tO) is odd or

• n(tO) is even and h(n)(t = tO) < 0, where h(n)(t) is easily expressed as∑n
p=0

(
n
p

)
x(p)(t)x(n−p)(t) + y(p)(t)y(n−p)(t)

A single obstacle supports greedy navigation if and only if the above characterization is
true for every O,F ∈ S2.

Theorem 12 can be used to derive the following property:

Theorem 13 (obstacles supporting greedy navigation: refinement). In order to find
points O of S where the obstacle locally does not support greedy navigation, it is only
necessary to consider OF perpendicular to the local tangent vector to S at O. Further-
more, only the point F 6= O belonging to the closest internal or external boundary of E
needs to be considered.

Proof. h(1)(t) = ((x(t), y(t)).(dxdt ,
dy
dt )). Since S is C∞, (dxdt ,

dy
dt ) 6= (0, 0). Additionally,

O 6= F , so ((x(t), y(t)) 6= (0, 0). Consequently, h(1)(t) = 0 if and only if (x(t), y(t))
and (dxdt ,

dy
dt ) are orthogonal, that is OF is perpendicular to the tangent vector to S at

O. Furthermore, only the point F 6= O belonging to the closest internal or external
boundary of E needs to be considered according to corollary 3. Figure 3 shows a sketch
of the construction.

Theorems 12 and 13 imply that internal obstacles allowing greedy navigation towards
any destination are necessarily convex. As can be seen on Figures 4 and 2, convexity of
internal obstacles is however not sufficient for environments to support greedy navigation.
Conversely, the external envelope of the environment does not need to be convex (Figure
4). A geometrical interpretation of theorem 12 is that greedy navigation gives a condition
on local curvature of an obstacle, which is more restrictive the closer F is to O, as shown
on Figures 3 and 2.
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 Greedy locally not supported

Greedy locally supported

Figure 3: Finding whether obstacles locally support greedy navigation at O is done by
comparing a circle centered on F and the local boundary at O. Corollary 3 and
theorem 13 reduce the search for F to the intersection of the obstacle boundary
and a half-line orthogonal to the local tangent. Theorem 12 then gives a differ-
ential criterion to characterize obstacles locally supporting greedy navigation.
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Figure 4: Some environments supporting greedy navigation and not supporting it. Sup-
porting greedy navigation is not equivalent to convexity.

Finally, in order to prove that E is a G-environment, it is necessary and sufficient to
prove that all points O of E on the boundary of obstacles verify theorems 12 and 13.
Both theorems are quite restrictive, so that most real-life environments are non-G.
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In this appendix, we describe a few algorithms that were written throughout this the-
sis.

1 EDN-(Lazy) Theta* to extend chapter 3

Theta* (Nash et al., 2007) and Lazy Theta* (Nash, Koenig, and Tovey, 2010) are A*
variants computing smoother trajectories (Figure 3.12) than A* on graphs representing
physical environments with traversable and untraversable space.

This section uses notations defined in chapter 3. Let g(x ∈ V) = D(On, X). The
pseudocodes presented in this section are adapted from http://aigamedev.com (last
consulted 08/23/2016).

The Theta* algorithm is best derived by starting with A* (Algorithm 11) and tweaking
it. The actual Theta* algorithm (Algorithm 12) has its changes relative to A* highlited
in red.

Then, Lazy Theta* is derived from Theta* (Algorithm 13, with modifications relative
to Theta* highlighted in red).

From Theta*, EDN-Theta* is easily derived (Algorithm 14). The only modifications
from Theta* to EDN-Theta* are highlighted in red.

Similarly, we can derive EDN-Lazy Theta* (algorithm(15) as a simple modification of
Lazy Theta*. Changes relative to Lazy Theta* are highlighted in red.

2 Drawing multiple Voronoï cells for chapter 6, section 6.1.4

The purpose of the algorithms exposed in this section is, given a set of seeds (as vertices
in a graph or pixels in a grid), to find for each accessible vertex/pixel to which seed it
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Algorithm 11 A* base
procedure Main(O, F , G, H : X → H(X,F,G))

open ← ∅, closed ← ∅, g(O)← 0, parent(O) ← O
open.insert(O, g(O) +H(O,F ))
while open 6= ∅ do

s← open.Pop()
if s = F then

return path to F
closed ← closed ∪{s}
for all s′ ∈ neighbrvis(s) do

if s′ /∈ closed then
if s′ /∈ open then

g(s′)←∞
parent(s′) ← NULL

UpdateVertex(s, s′)
return failure (no path found)

procedure UpdateVertex(s,s’)
gold ← g(s′)
ComputeCost(s, s′)
if g(s′) < gold then

if s′ ∈ open then
open.Remove(s′)

open.Insert(s′, g(s′) +H(s′, F ))
procedure ComputeCost(s,s’)

/* Path 1*/
if g(s) + c(s, s′) < g(s′) then

parent(s′) ← s
g(s′)← g(s) + c(s, s′)
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Algorithm 12 Theta*
procedure Main(O, F , G, H : X → H(X,F,G))

open ← ∅, closed ← ∅, g(O)← 0, parent(O) ← O
open.insert(O, g(O) +H(O,F ))
while open 6= ∅ do

s← open.Pop()
if s = F then

return path to F
closed ← closed ∪{s}
for all s′ ∈ neighbrvis(s) do

if s′ /∈ closed then
if s′ /∈ open then

g(s′)←∞
parent(s′) ← NULL

UpdateVertex(s, s′)
return failure (no path found)

procedure UpdateVertex(s,s’)
gold ← g(s′)
ComputeCost(s, s′)
if g(s′) < gold then

if s′ ∈ open then
open.Remove(s′)

open.Insert(s′, g(s′) +H(s′, F ))
procedure ComputeCost(s,s’)

if lineofsight(parent(s),s′) then
/* Path 2*/
if g(parent(s)) + c(parent(s),s′) < g(s′) then

parent(s′) ← parent(s)
g(s′)← g(parent(s)) +c(parent(s), s′)

else
/* Path 1*/
if g(s) + c(s, s′) < g(s′) then

parent(s′) ← s
g(s′)← g(s) + c(s, s′)
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Algorithm 13 Lazy Theta*
procedure Main(O, F , G, H : X → H(X,F,G))

open ← ∅, closed ← ∅, g(O)← 0, parent(O) ← O
open.insert(O, g(O) +H(O,F ))
while open 6= ∅ do

s← open.Pop()
SetVertex(s)
if s = F then

return path to F
closed ← closed ∪{s}
for all s′ ∈ neighbrvis(s) do

if s′ /∈ closed then
if s′ /∈ open then

g(s′)←∞
parent(s′) ← NULL

UpdateVertex(s, s′)
return failure (no path found)

procedure UpdateVertex(s,s’)
gold ← g(s′)
ComputeCost(s, s′)
if g(s′) < gold then

if s′ ∈ open then
open.Remove(s′)

open.Insert(s′, g(s′) +H(s′, F ))
procedure ComputeCost(s,s’)

/* Path 2*/
if g(parent(s)) + c(parent(s),s′) < g(s′) then

parent(s′) ← parent(s)
g(s′)← g(parent(s)) +c(parent(s), s′)

procedure SetVertex(s)
if not lineofsight(parent(s), s) then

/* Path 1*/
parent(s) ← argmins′∈neighborvis(s)∩closed(g(s′) + c(s′, s))
g(s)← mins′∈neighborvis(s)∩closed(g(s′) + c(s′, s))
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Algorithm 14 EDN-Theta*
procedure Main(O, F , G, H : X → H(X,F,G), R : Z → R(O,F, Z,G))

open ← ∅, closed ← ∅, g(O)← 0, parent(O) ← O
open.insert(O, g(O) +H(O,F ))
dest ← NULL
best_distance ←∞
while open 6= ∅ do

s← open.Pop()
if δ(s) > best_distance then

return path to dest
if s = F then

return path to F
if s ∈ B then

if R(O,F, s) ≤ best_distance then
dest ← s; best_distance ← R(O,F, s)

closed ← closed ∪{s}
for all s′ ∈ neighbrvis(s) do

if s′ /∈ closed then
if s′ /∈ open then

g(s′)←∞
parent(s′) ← NULL

UpdateVertex(s, s′)
return failure (no path found)

procedure UpdateVertex(s,s’)
gold ← g(s′)
ComputeCost(s, s′)
if g(s′) < gold then

if s′ ∈ open then
open.Remove(s′)

open.Insert(s′, g(s′) +H(s′, F ))
procedure ComputeCost(s,s’)

if lineofsight(parent(s),s′) then
/* Path 2*/
if g(parent(s)) + c(parent(s),s′) < g(s′) then

parent(s′) ← parent(s)
g(s′)← g(parent(s)) +c(parent(s), s′)

else
/* Path 1*/
if g(s) + c(s, s′) < g(s′) then

parent(s′) ← s
g(s′)← g(s) + c(s, s′)
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Algorithm 15 EDN-Lazy Theta*
procedure Main(O, F , G, H : X → H(X,F,G), R : Z → R(O,F, Z,G))

open ← ∅, closed ← ∅, g(O)← 0, parent(O) ← O
open.insert(O, g(O) +H(O,F ))
dest ← NULL
best_distance ←∞
while open 6= ∅ do

s← open.Pop()
SetVertex(s)
if δ(s) > best_distance then

return path to dest
if s = F then

return path to F
if s ∈ B then

if R(O,F, s) ≤ best_distance then
dest ← s; best_distance ← R(O,F, s)

closed ← closed ∪{s}
for all s′ ∈ neighbrvis(s) do

if s′ /∈ closed then
if s′ /∈ open then

g(s′)←∞
parent(s′) ← NULL

UpdateVertex(s, s′)
return failure (no path found)

procedure UpdateVertex(s,s’)
gold ← g(s′)
ComputeCost(s, s′)
if g(s′) < gold then

if s′ ∈ open then
open.Remove(s′)

open.Insert(s′, g(s′) +H(s′, F ))
procedure ComputeCost(s,s’)

/* Path 2*/
if g(parent(s)) + c(parent(s),s′) < g(s′) then

parent(s′) ← parent(s)
g(s′)← g(parent(s)) +c(parent(s), s′)

procedure SetVertex(s)
if not lineofsight(parent(s), s) then

/* Path 1*/
parent(s) ← argmins′∈neighborvis(s)∩closed(g(s′) + c(s′, s))
g(s)← mins′∈neighborvis(s)∩closed(g(s′) + c(s′, s))

245



Algorithms

is the closest. We propose four algorithms to perform this task: MHydra1, MHydra2,
Multi Theta* and Lazy Multi Theta*.

2.1 MHydra

MHydra algorithms operate on a grid of pixels, which in our implementation is a 2D grid,
though 3D grids do not pose problems. The principle of MHydra algorithms is to run
multiple (whence the “M” of MHydra) iterations of the Vectorial Euclidean Distance Map
algorithm of Danielsson (Danielsson, 1980). More precisely, k iterations are necessary,
where k is the maximum number of segments from one free pixel to the seed closest to
it. The complexity of MHydra algorithms is thus kmn where m× n is the dimension of
the 2D grid. We call hop pixel points where the optimal trajectory from a free pixel to
its closest seed is not a straight line (SL). Iteration i of an MHydra algorithm finds all
hop pixels i hops away from their seed, knowing that a pixel i hops away from a seed
may actually be i + j, j > 0 hops away from another closer seed. MHydra algorithms
stop when no hop pixel was found during an iteration.

If you wonder where the “Hydra” part of MHydra comes from, there are two explana-
tions: first, the algorithm of Danielsson propagates vectors somewhat like water around
the seed. Second, an Hydra is a mythological creature with multiple heads, and the
algorithm splits the propagation wavefront at each intersection. MHydra1 (Algorithm
16, Figure 1) and MHydra2 (Algorithm 17, Figure 2) are two different implementations
of the same method. MHydra2 does not use a temporary buffer and is faster than MHy-
dra1. However, Mhydra1 is slightly more accurate (up to 1 pixel more accurate) since
it considers more hop pixels.

2.2 Multi Theta*

Multi Theta* (Algorithm 18, Figure 3) is a variant of Theta* (Nash et al., 2007) and Lazy
Multi Theta* (Algorithm 19, Figure 4) is a variant of Lazy Theta*. The principle of both
algorithms is very simple: (Lazy) Theta* reaches one destination from one origin. (Lazy)
Multi Theta* reach multiple destinations from multiple origins. The difference between
Multi-algorithms and the original algorithm they are derived from are highlighted in red
in algorithms 18 and 19. Essentially, the guiding heuristic H is set to 0, references to a
destination F are removed and multiple seeds O are used as origin. The algorithms stop
when the “open” set is empty (it is empty if no path can be improved).
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Figure 1: Steps 1, 2, 34, 37, 51 and 161 (final) of MHydra1. Colors represent the minimum
distance to a seed. Wavefronts issued from the two seeds (middle and right)
propagate within the spiral until they meet and merge. Propagation continues
until no distance to an existing hop pixel can be minimized and no new hop
pixel can be found. The obtained distance field is perfectly smooth, without any
artifact.
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Algorithm 16 MHydra1
procedure Main(grid G(m× n), seeds S ⊂ G)

L← empty m× n grid //to store vector norms
V ← empty m× n grid of 2D vectors, I ← empty m× n grid of integers
fill all components of L and V with value ∞
for all pixel p ∈ G do

if p ∈ S then V (p)← (0, 0), I(p)← 1, L(p)← 0
else if G(p) > 0 then I(p)← 0 //occupied pixel will not be modified
else I(p)←∞ //free pixel is allowed to be modified

c← 0 //current hop counter
repeat

MPropagate1(c, G, I, V , L), c← c+ 2
until Not MFindHopPixels(c, G, I, V )

procedure MPropagate1(c, G, I, V , L)
directions ← {TLtoBR, TRtoBL,BRtoTL,BLtoTR}
for all d ∈ directions do //TLtoBR = top left to bottom right

xstep← ±1, ystep← ±1 corresponding to d //(1, 1) for BLtoTR
for all pixel p ∈ G iterated according to d do

for all dp ∈ {(xstep, 0), (0, ystep), (xstep, ystep)} do
if I(p+ dp) 6= c+ 1 and I(p+ dp) 6= 0 then

if I(p+ dp) = c+ 1 then
if L(p) + ||dp|| < L(p+ dp) then

L(p+ dp)← L(p) + ||dp||, V (p+ dp)← −dp //p is a hop pixel
else//we have to check our neighbors for a shared hop pixel

b← (L(p+V (p))+||V (p)−dp|| < L(p+dp)) //temporary boolean
if b and lineofsight(p+dp, p+V(p)) then

L(p+ dp)← L(p+ V (p)) + ||V (p)− dp||
V (p+ dp)← V (p)− dp //point p+ dp to p’s hop pixel

function MFindHopPixels(c, G, I, V , L)
tL← L, haschanged ← false
for all p ∈ G excluding a one pixel border do

if I(p) 6= c and I(p) 6= 0 and V (p) 6=∞ then
for all dp ∈ {(0,±1), (±1, 0), (±1,±1)} do

if V (p+ dp) 6= 0 and tL(p) + ||dp|| < tL(p+ dp) then
tL(p+ dp)← tL(p) + ||dp||, I(p) = c+ 1, I(p+ dp) = c
haschanged ← true

return haschanged
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Figure 2: Steps 1, 2, 3 and 7 (final) of MHydra2. Colors represent the minimum distance
to a seed. Wavefronts issued from the two seeds (middle and right) propagate
within the spiral until they meet and merge. Propagation continues until no
distance to an existing hop pixel can be minimized and no new hop pixel can be
found. The obtained distance field is almost as smooth as that obtained with
MHydra1, albeit with a few artifacts notably in the zone marked with a red
square.
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Algorithm 17 MHydra2
procedure Main(grid G(m× n), seeds S ⊂ G)

L← empty m× n grid //to store vector norms
V ← empty m× n grid of 2D vectors, I ← empty m× n grid of integers
fill all components of L and V with value ∞
for all pixel p ∈ G do

if p ∈ S then V (p)← (0, 0), I(p)← 1, L(p)← 0
else if G(p) > 0 then I(p)← 0 //occupied pixel will not be modified
else I(p)←∞ //free pixel is allowed to be modified

c← 2 //current hop counter
repeat c← c+ 1
until Not MPropagate2(c, G, I, V )

function MPropagate2(c, G, I, V , L)
mustcontinue ← false
directions ← {TLtoBR, TRtoBL,BRtoTL,BLtoTR}
for all d ∈ directions do //TLtoBR = top left to bottom right

xstep← ±1, ystep← ±1 corresponding to d //(1, 1) for BLtoTR
for all pixel p ∈ G iterated according to d do

for all dp ∈ {(xstep, 0), (0, ystep), (xstep, ystep)} do
if I(p+ dp) ≥ c− 1 and I(p+ dp) 6=∞ then

if V (p) 6= V (p+ dp) + dp then
b← (L(p+ dp+ V (p+ dp)) + ||V (p+ dp) + dp|| < L(p+ dp))
if b and lineofsight(p, p+ dp+ V (p+ dp)) then

L(p)← L(p+ dp+ V (p+ dp)) + ||V (p+ dp) + dp||
V (p) = V (p+ dp) + dp, I(p) = c
mustcontinue ← true

for all dp ∈ {(xstep, 0), (0, ystep), (xstep, ystep)} do
if I(p+ dp) ≥ c− 1 and I(p+ dp) 6=∞ then

if V (p) 6= dp then
if L(p+ dp) + ||dp|| < L(p) then

L(p)← L(p+ dp) + ||dp||, V (p) = dp, I(p) = c
mustcontinue ← true

return mustcontinue

250



Algorithms

Figure 3: Steps of Multi Theta*. Colors represent the minimum distance to a seed. Wave-
fronts issued from the two seeds (middle and right) propagate within the spiral
until they meet and merge. Propagation continues until no distance to an exist-
ing hop pixel can be minimized and no new hop pixel can be found. The obtained
distance field is the least smooth of all algorithms presented in this section, with
a lot of artifacts especially in the zone marked by a red square.

251



Algorithms

Algorithm 18 Multi Theta*
procedure Main(G, S ⊂ V)

open ← ∅, closed ← ∅, g(∀O ∈ S)← 0
∀O ∈ S, parent(O) ← o
∀O ∈ S, open.insert(O, g(O))
while open 6= ∅ do

s← open.Pop()
closed ← closed ∪{s}
for all s′ ∈ neighbrvis(s) do

if s′ /∈ closed then
if s′ /∈ open then

g(s′)←∞
parent(s′) ← NULL

UpdateVertex(s, s′)
return success

procedure UpdateVertex(s,s’)
gold ← g(s′)
ComputeCost(s, s′)
if g(s′) < gold then

if s′ ∈ open then
open.Remove(s′)

open.Insert(s′, g(s′))
procedure ComputeCost(s,s’)

if lineofsight(parent(s),s′) then
/* Path 2*/
if g(parent(s)) + c(parent(s),s′) < g(s′) then

parent(s′) ← parent(s)
g(s′)← g(parent(s)) +c(parent(s), s′)

else
/* Path 1*/
if g(s) + c(s, s′) < g(s′) then

parent(s′) ← s
g(s′)← g(s) + c(s, s′)
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Figure 4: Steps of Lazy Multi Theta*. Colors represent the minimum distance to a seed.
Wavefronts issued from the two seeds (middle and right) propagate within the
spiral until they meet and merge. Propagation continues until no distance to an
existing hop pixel can be minimized and no new hop pixel can be found. The
obtained distance field is quite smooth but still shows artifacts especially in the
zone marked with a red square.
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Algorithm 19 Multi Lazy Theta*
procedure Main(G, S ⊂ V)

open ← ∅, closed ← ∅, g(∀O ∈ S)← 0
∀O ∈ S, parent(O) ← o
∀O ∈ S, open.insert(O, g(O))
while open 6= ∅ do

s← open.Pop()
SetVertex(s)
closed ← closed ∪{s}
for all s′ ∈ neighbrvis(s) do

if s′ /∈ closed then
if s′ /∈ open then

g(s′)←∞
parent(s′) ← NULL

UpdateVertex(s, s′)
return success

procedure UpdateVertex(s,s’)
gold ← g(s′)
ComputeCost(s, s′)
if g(s′) < gold then

if s′ ∈ open then
open.Remove(s′)

open.Insert(s′, g(s′))
procedure ComputeCost(s,s’)

/* Path 2*/
if g(parent(s)) + c(parent(s),s′) < g(s′) then

parent(s′) ← parent(s)
g(s′)← g(parent(s)) +c(parent(s), s′)

procedure SetVertex(s)
if not lineofsight(parent(s), s) then

/* Path 1*/
parent(s) ← argmins′∈neighborvis(s)∩closed(g(s′) + c(s′, s))
g(s)← mins′∈neighborvis(s)∩closed(g(s′) + c(s′, s))
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2.3 Comparison of MHydra and Multi Theta* algorithms

While (Lazy) Multi Theta* requires dynamical memory allocation, it may run faster
than MHydra1/2 on a grid of pixels. Moreover, (Lazy) Multi Theta* can operate on
arbitrary graphs and not just grids. A quick performance benchmark of the relative
execution times of MHydra1, MHydra2, Multi Theta* and Lazy Multi Theta* shows
that MHydra1, MHydra2 and Multi Theta* are respectively 75, 2.5 and 1.8 times slower
than Lazy Multi Theta* on the “spiral” dataset. The “spiral” dataset is however highly
unfavorable to MHydra algorithms since the number of segments on a path from a seed
to a pixel is very high in a spiral (MHydra1 found 161 segments). Thus, we expect
MHydra1 and MHydra2 to perform similarly to Lazy Multi Theta* on simpler datasets
in terms of execution speed. There are slight difference of the order of magnitude of 1
pixel between results produced by all four algorithms due to slightly different definitions
of traversable and blocked space used by each algorithm. The most accurate and glitch-
free result is obtained by MHydra1, but the 75× execution time degradation is a serious
drawback of this algorithm. Lazy Multi Theta* is faster than Multi Theta* and at least
as accurate, so that we do not see a reason to use Multi Theta* altogether.

3 Data obsolescence in the occupancy grid for chapter 4

When the robot moves further than a certain distance d from its previous position Pn−1,
an aging process is applied to the occupancy grid. This aging process is necessary since
when the grid scrolls, pixels on the far left will appear on the far right (for instance)
due to wrap-around addressing. Let n× n be the dimensions of the grid and m < n be
the maximum sensor range. Let Pn be the current position of the robot in the world,
measured by odometry and eventually corrected by a local SLAM process. The grid is
addressed so that (0, 0) in the grid corresponds to Pn. Let pxy be a pixel at position
(x, y) in the grid, where (x, y) ∈ [−n/2;n/2]2 The value of pxy is a log-odd describing
whether space is occupied (pxy > 0) or empty (pxy < 0). This pixel was last updated
txy time steps ago (Figure 5), where one time step can correspond for instance to one
sensor frame or to one millisecond (for most sensors with a steady update rate, both
measurements should be equivalent). Algorithm 20 is applied:

In algorithm 20, temporal and spatial aging is applied. aspeed is the global aging speed,
which can vary from 0 (no aging) to 1 (fastest aging). We used d = m − n, aspeed =
1, rmin = d and rmax = m = n− d in this thesis. tmin and tmax are chosen according to
the sensor configuration of the robot through trial and error. With a too low tmin, useful
information may be removed early from the grid while with too high tmax, the grid will
be polluted by old data, potentially inaccurate and misplaced due to odometric drift.
Figure 6 presents multiple occupancy grids collected on a (simulated) robot trajectory,
with aging applied.

255



Algorithms

Algorithm 20 Occupancy grid obsolescence

Input: rmin ∈ [0;n], rmax ∈]rmin;n], tmin ∈ [0; +∞], tmax ∈]tmin; +∞], aspeed ∈ [0, 1]
for all pixels pxy of the grid do

rsq ← x2 + y2

if txy ≥ tmax or rsq ≥ r2
max then//is pixel obsolete or too far?

pxy ← 0 //reset the pixel because it is too obsolete
else if txy ≥ tmin or rsq ≥ r2

min then//should aging be applied?
afactor ← 1− max(rsq,r2

min)−r2
min

r2
max−r2

min

if txy ≥ tmin then
afactor ← (1− tmin−txy

tmin−tmax ).afactor
pxy ← ((afactor − 1).aspeed+ 1).pxy

Figure 5: Evolution of txy observed while the robot is performing a 360◦ clockwise rotation.
Pixels recently updated in shades of red and pixels not recently updated in shades
of cyan. (1): before rotation, (2) (3): during rotation, (4): after rotation. The
effect of the rotation is to update most pixels located in range of the distance
sensor whose field of view is represented with a green cone. For instance, pixels
in zone A got updated during the rotation. Pixels in zone B were occluded from
the point of view of the robot and did not get updated.
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Figure 6: Occupancy grids acquired during traversal of an environment. From its starting
position (1), the robot moved a distance d (2), where an aging process occurs
(3), which notably resets the pixels further than m away from the robot (dashed
circle). The aging process also resets pixels not updated for a long period. The
process is repeated again later at a distance d (4-5). (6) The aging process
continues as long as the navigation algorithm is running.
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4 Large-Scale Angular Drift Compensation for chapter 5,
section 5.3

A robot can have two types of angular measurements: absolute measurements such as
a compass or tracking stars in the sky, further abridged θabs, and relative measure-
ments such as odometric integration or rotation estimation from point tracking, further
abridged θrel. While relative angular measurements drift in time, they are usually quite
accurate and smooth on a short time- and space scale. On the contrary, compass mea-
surements are not reliable on a small scale due to magnetic field-emitting objects and
stars may be occluded. However, absolute measurements do not suffer from drift over
time.

The purpose of Large-scale Angular Drift Compensation (LSADC) is to correct the
heading (only the yaw axis is considered in this thesis) obtained by relative measurements
using that obtained by absolute measurements. The correction is performed over a long
time period in order to account for absolute measurements not being reliable locally.
There are multiple ways to implement this correction and algorithm 21 only describes
one of them. Figure 6.17 page 169 shows the amount of heading drift that can be
compensated by LSADC during a real-life indoor experiment.

We found experimentally that integration of a compass over a distance of 50 meters
was a good compromise between robustness to local magnetic fields and delay due to
integration. nsteps= 100 intermediary integration steps are used between each averaged
sample. In algorithm 21, static variables retain their value between executions of the
algorithm. We use a median instead of a mean since the median eliminates small-scale
asymmetric perturbations, which are typically produced by magnetic field emitters in
the environment.
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Algorithm 21 Large-scale Angular Drift Compensation

Input: θrel ∈]− π;π], θabs ∈]− π;π], ~rodom, distance, nsteps
static variables oldδθ, initialization_counter = ∞, slot_counter, circu-
lar_buffer[nsteps]
static variables norm_accumulator, buffer_pos, angle_accumulator
vnorm = ||~rodom||
if initialization_counter = ∞ then//first time executing the function?

oldδθ ← θabs − θrel
if oldδθ > π then

oldδθ ← oldδθ − 2π
else if oldδθ ≤ −π then

oldδθ ← oldδθ + 2π
med ← oldδθ
norm_accumulator ← 0, buffer_pos ← 0, angle_accumulator ← 0
initialization_counter ← 0, slot_counter ← 0

δθ ← θabs − θrel//difference between absolute and relative angle measurements
δθ ← δθ + 2π.floor(oldδθ−δθ2π )//bring old and new δθ closer (+k.2π, k ∈ Z)
while δθ − oldδθ > π do//correct a +2π offset if present

δθ ← δθ − 2π
while δθ − oldδθ ≤ −π do//correct a −2π offset if present

δθ ← δθ + 2π
oldδθ ← δθ
angle_accumulator ← angle_accumulator + vnorm.δθ//accumulate weighted δθ
norm_accumulator ← norm_accumulator + vnorm//accumulate weights
if angle_accumulator ≥ distance/nsteps then

//new averaged δθ sample should be collected in circular_buffer
if initialization_counter < nsteps then

initialization_counter ← initialization_counter +1
circular_buffer[buffer_pos] ← angle_accumulator / norm_accumulator
if buffer_pos = nsteps−1 then//wrap-around array index

buffer_pos ← 0
else

buffer_pos ← buffer_pos+1
med ← median(circular_buffer[0..initialization_counter-1])//integrated δθ
angle_accumulator ← 0
norm_accumulator ← 0

α← atan2(~ryodom, ~rxodom)//find direction of odometric vector
~rodom ← vnorm.(cos(α+med), sin(α+med))//rotate odometric vector
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0.1 Introduction - de nouveaux paradigmes pour
la robotique mobile

0.1.1 Robotique et mouvement
Si l’on exclut les bots ou robots web qui sont des robots virtuels (agents

logiciels), tout robot peut être défini comme une machine capable de calculer
ou un ordinateur capable d’interagir physiquement avec son environnement afin
d’accomplir un objectif. Trois problématiques sous-tendent cette définition :

1. En quoi le monde physique conditionne-t-il les algorithmes constituant
l’intelligence artificielle du robot, et, réciproquement, quel est l’impact
des algorithmes sur les performances physiques du robot ?

2. Étant donné que le principal moyen d’action que possède un robot pour
agir sur son environnement est un mouvement de toute ou partie de
sa structure, comment ce mouvement doit-il être géré physiquement et
algorithmiquement ?

3. Que penser de cette notion d’“accomplir un objectif”. En particulier, quid
de la notion de vie ou d’existence du robot, c’est à dire de l’enchaînement
de missions confiées par un opérateur externe et d’objectifs propres ?

Il est possible de classer les mouvements d’un robot en quatre catégories
(figure 1) :

1. les mouvements à grande échelle,
2. les mouvements à petite échelle ou manœuvres,
3. les manipulations et
4. les expressions
Les mouvements à grande échelle correspondent à des déplacements impor-

tants en comparaison de la taille du robot. Ceci inclut par exemple le déplace-
ment d’une pièce à l’autre pour un robot aspirateur. Les mouvements à petite
échelle ou manœuvres correspondent à des déplacements de l’ordre de grandeur
de la taille du robot ou de l’ordre de grandeur de la portée des capteurs uti-
lisés (ligne de vue). Toujours pour un robot aspirateur, des mouvements dont
l’amplitude ne dépasse pas un ou deux mètres peuvent être considérés comme
“à petite échelle”. Cette échelle est celle de manœuvres comme le demi-tour ou
l’évitement latéral d’un obstacle mouvant. La distinction entre petite et grande
échelle est qu’à petite échelle, les valeurs de capteurs de distance et de mou-
vement peuvent être exploitées directement et ne nécessitent pas de correction
de dérive ou de recalage. L’échelle suivante est constituée des manipulations,
à savoir des mouvements d’une partie du robot dont l’objectif principal n’est
pas de déplacer le centre de gravité du robot mais d’interagir avec un objet.
Cette échelle de mouvement est typiquement celle des bras articulés utilisés par
exemple dans les chaines d’assemblage automobiles. Enfin, les expressions sont
des mouvements à très petite échelle dont l’objectif est de communiquer avec un
opérateur ou un autre robot. Une mission typique pour un robot pourrait être
la suivante : le robot commence par se déplacer pour atteindre son emplacement
de travail (grande échelle). Il se positionne correctement (petite échelle ou ma-
nœuvres) avant d’agir sur un objet d’intérêt (manipulations). Si un opérateur
entre de le champ des capteurs, le robot prévient de sa présence par un mou-
vement préalablement convenu (expression) doublé par exemple d’une alarme
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Figure 1 – Une vision schématique des trois premières échelles de mouvement
pour un robot mobile : (1) mouvements à grande échelle, (2) manœuvres et (3)
manipulations.
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sonore. Dans le cadre de cette thèse, nous ne considérons que les deux premières
échelles de mouvement, l’hypothèse étant que les deux dernières échelles sont
globalement indépendantes des deux premières ou peuvent être implémentées
au-dessus de celles-ci dans une approche hiérarchique.

0.1.2 Planification, Navigation, Cartographie et Localisa-
tion

L’objectif de cette thèse est de concevoir un ensemble d’algorithmes per-
mettant à un robot de maîtriser les deux premières échelles de mouvement, et
ce quels que soient les objectifs à atteindre, l’environnement à traverser et la
connaissance préalable de cet environnement - la carte. Le robot doit utiliser le
moins de ressources (temps de calcul et mémoire) possible. Quatre composants
sont nécessaires à la réalisation d’un mouvement : un algorithme de cartogra-
phie capable de créer une représentation « mentale » d’un environnement, un
algorithme de localisation capable de situer le robot à l’intérieur de cette repré-
sentation, un algorithme de planification capable de calculer des trajectoires en
utilisant la carte si nécessaire et un algorithme de navigation permettant d’exé-
cuter ces trajectoires. Ces quatre algorithmes sont fortement interdépendants.
En effet :

— la carte de l’environnement dépend des données collectées par les cap-
teurs, qui dépendent de la trajectoire du robot,

— le robot se localise par rapport à la carte, qui elle-même est construite
en utilisant la localisation du robot,

— la carte doit permettre à un algorithme de planification de calculer un
chemin pour atteindre un objectif, sachant qu’il peut être nécessaire ou
préférable d’explorer l’environnement plutôt que d’utiliser des chemins
connus et

— le robot s’efforce de suivre le chemin calculé, sachant que celui-ci n’est
pas nécessairement praticable.

Les problématiques de cartographie et de localisation ont été unifiées en
un paradigme (Durrant-Whyte, Rye et Nebot, 1996) connu sous le nom de
SLAM (pour Simultaneous Localization and Mapping). Cependant, le SLAM est
toujours aujourd’hui considéré indépendamment des problématiques de planifi-
cation et de navigation dans l’état de l’art. L’hypothèse fondamentale de cette
thèse est qu’il est nécessaire d’intégrer (P)lanification, (N)avigation et (SLAM)
au sein d’un unique paradigme que nous appelons PNSLAM. PNSLAM nécessite
une adaptation des composants individuels :

— La planification devient exploratoire, c’est à dire que l’algorithme de pla-
nification considère à la fois des trajectoires calculées sur la carte et des
trajectoires incluant des mouvements dans des zones non-cartographiées.
Lors de la traversée d’environnements non-cartographiés, le SLAM met
à jour la carte en ajoutant les nouvelles zones tout en informant l’algo-
rithme de planification des modifications apportées.

— Le SLAM est autorisé à faire appel à la navigation (par l’intermédiaire de
la planification) pour améliorer la qualité de la carte ou la localisation.
En d’autres termes, le robot peut effectuer un mouvement dans le seul
objectif d’améliorer sa carte ou sa précision de localisation. En outre, la
carte maintenue par le SLAM est rendue compatible avec la planification.
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— L’algorithme de navigation est adapté pour accepter les ordres de l’algo-
rithme de planification et renvoyer des données de capteur au SLAM.

Nous décrivons dans les sections 0.2, 0.3 et 0.4 une implémentation possible
des composants planification, navigation et SLAM modifiés. Le fonctionnement
interne de chacun de ces composants est inspiré par le monde du vivant (le lec-
teur intéressé est invité à se reporter à la version complète de cette thèse). En
particulier, une hiérarchie d’échelles de temps (réflexe, évitement, fonctionne-
ment nominal, phase de “rêve”) calquée sur le vivant est mise en place. Cette
hiérarchie temporelle s’accompagne d’une hiérarchie spatiale séparant notam-
ment manœuvres et mouvements à grande échelle. De plus, l’architecture logi-
cielle utilisée est fortement asynchrone et permet une forte sureté de fonction-
nement en séparant les processus critiques (évitement d’obstacles dynamiques
entre autres) des processus n’impliquant pas de danger direct pour le robot et
son environnement.

0.1.3 Vers une navigation exploratoire au long de la vie
Là où PNSLAM permet à un robot d’accomplir la plupart des missions

constituées de mouvements à grande échelle et de manœuvres, le paradigme
suppose de manière implicite que les ressources calculatoires et mémorielles du
robot sont infinies. Si le robot doit accomplir plusieurs missions successives, sa
mémoire et possiblement la charge de calcul associée (du fait de la complexité
algorithmique) peuvent éventuellement saturer, particulièrement si l’environ-
nement dans lequel le robot évolue est de grande taille et que le nombre de
missions à accomplir est important. Le paradigme de navigation exploratoire
au long de la vie (LEN pour Lifelong Exploratory Navigation) décrit la capa-
cité pour un robot d’accomplir un nombre arbitraire de missions impliquant
des mouvements dans un environnement arbitrairement grand et sans être ré-
initialisé entre chaque mission. Un robot suivant le paradigme LEN peut choisir
de conserver des connaissances de l’environnement acquises précédemment ou
de les oublier partiellement ou totalement afin de libérer des ressources et di-
minuer l’empreinte mémoire et le temps de calcul des algorithmes. Il apprend
constamment, ce qui lui permet de s’adapter aux changements de l’environ-
nement. L’architecture résultante est représentée sur la figure 2. Une version
plus détaillée de cette architecture est donnée dans la version complète de cette
thèse. Le contrôle des ressources mémorielles et calculatoires nécessaire à LEN
est décrit dans les sections 0.6 et 0.7.

0.2 Planification exploratoire
Un algorithme de planification exploratoire est un algorithme de planifica-

tion traditionnel (non exploratoire) qui est capable d’ordonner une phase d’ex-
ploration si celle-ci présente un bénéfice potentiel suffisant (figure 3). Afin de
maximiser une heuristique donnée, le planificateur peut choisir de privilégier une
stratégie d’exploration d’une partie encore inconnue de l’environnement ou au
contraire d’utiliser des chemins déjà connus. Explorer l’environnement présente
un risque (le robot peut se retrouver dans un cul-de-sac ou faire un détour)
mais peut révéler des raccourcis, diminuant non seulement l’effort de navigation
actuel du robot mais aussi les efforts futurs étant donné que la zone inconnue
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Figure 2 – Une vue schématique du paradigme PNSLAM qui unifie
(P)lanification, (N)avigation et (SLAM). Construite sur PNSLAM, la navigation
exploratoire au long de la vie (LEN) ajoute la gestion de la mémoire et une unité
de mission. LEN est aussi l’interface vers des processus d’intelligence artificielle
de plus haut niveau. Sur ce schéma, les flèches en traits pleins indiquent une dé-
pendance de donnée et les flèches doubles indiquent l’intégration des composants.
Les ressources du robot incluent notamment la mémoire, la puissance de calcul
et la batterie. Cette thèse propose une implémentation des composants Planifica-
tion, Navigation, SLAM et gestion de la mémoire compatible avec le paradigme
LEN.
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Figure 3 – Un cas typique de navigation exploratoire : bien qu’il soit possible
d’utiliser un chemin connu pour atteindre la destination (1), il peut être possible
de diminuer la distance parcourue en utilisant un raccourci à travers une zone en-
core inexplorée (3). Cependant, de mauvais raccourcis (qui allongent la distance)
peuvent aussi exister (2,4).

traversée est cartographiée à la volée par le SLAM. Nous proposons un algo-
rithme de planification exploratoire sur graphe appelé EDNA* (Mayran de
Chamisso, Soulier et Aupetit, 2015) qui est une modification simple d’A*
(Hart, Nilsson et Raphael, 1968). Cette modification peut être appliquée à
d’autres algorithmes de planification, notamment (Lazy-)Theta* (Nash et al.,
2007 ; Nash, Koenig et Tovey, 2010) afin de le leur adjoindre une capacité
d’exploration.

A* est un algorithme de calcul du plus court chemin entre deux sommets
O0 et F d’un graphe dans lequel les sommets X du graphe sont considérés
par ordre d’heuristique D + H croissante, où D est la distance de O0 à X en
suivant les arêtes du graphe et H est une sous-estimation de la distance restant à
parcourir de X à F . EDNA* adjoint à cette heuristique une seconde heuristique
R, l’heuristique de risque exploratoire, calculée uniquement sur les sommets
possédant une arête menant à une zone encore inexplorée. R (sur)estime la
longueur d’un potentiel raccourci traversant la zone inexplorée. Le choix entre
stratégie non-exploratoire et stratégie exploratoire dépend des valeurs relatives
de D + H et R. La figure 4 donne une explication géométrique des algorithmes
A* et EDNA*.

Selon les environnements testés, l’utilisation d’EDNA* et ses facultés d’ex-
ploration permet de réduire la longueur des chemins empruntés par le robot
de quelques pourcents à quelques dizaines de pourcents en moyenne. Il arrive
fréquemment qu’EDNA* découvre un raccourci divisant par 10 voir plus la lon-
gueur du chemin parcouru. Il est possible de paramétrer EDNA* pour favoriser
ou au contraire pénaliser l’exploration. En prenant R faible, EDNA* devient
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Figure 4 – Fonctionneemnt d’A* et EDNA*. A* et EDNA* considèrent les som-
mets du graphe par ordre d’heuristique D + H croissante. Les sommets en jaune
seront les prochains considérés par A* et EDNA*. Si, lors du parcours de graphe,
un sommet possède une arête menant à une zone inexplorée (a), EDNA* calcule
une seconde heuristique R, l’heuristique de risque exploratoire, représentée par
une ellipse rouge pointillée et qui (sur)estime la longueur d’un chemin contenant
une phase d’exploration. L’algorithme continue de s’exécuter jusqu’à trouver le
plus court chemin ou jusqu’à ce que D +H atteigne R. Si les deux heuristiques se
rejoignent (b), un raccourci a probablement été trouvé. En contrôlant à quel point
l’heuristique R surestime la longueur d’un chemin exploratoire, il est possible de
contrôler l’équilibre entre exploration et utilisation de la carte existante.
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Figure 5 – Une grille d’occupation. Espace libre en blanc, obstacles en noir,
zones incertaines en nuances de cyan.

l’algorithme d’exploration “plus proche voisin inexploré”. Au contraire, en pre-
nant R → ∞, le robot n’utilisera que des chemins déjà connus, sauf si sa des-
tination F ne peut pas être atteinte sans explorer l’environnement, auquel cas
EDNA* recourra à une phase d’exploration depuis l’endroit le plus prometteur
de la carte. Il est possible de prouver qu’EDNA* permettra toujours au robot
d’atteindre F si cela est physiquement possible. De plus, dans le cas théorique
où les heuristiques D + H et R sont idéales, l’algorithme EDNA* est optimal
en terme de distance parcourue par le robot et en terme de charge de calcul et
complexité algorithmique.

0.3 Navigation et topologie
Le composant de navigation est chargé d’exécuter les itinéraires donnés par

l’algorithme de planification (exploratoire). L’algorithme EDNA* indique quel
chemin doit être emprunté, à charge pour le composant de navigation de suivre
ce chemin jusqu’à la prochaine instruction d’EDNA*.

Dans le cadre de cette thèse, nous avons choisi d’utiliser une grille d’occupa-
tion (figure 5) comme représentation intermédiaire entre les capteurs (odométrie,
distance, . . . ) et les composants de SLAM et planification. La grille d’occupation
décrit les obstacles se trouvant à proximité du robot. Elle est toujours centrée
sur le robot et est utilisée pour planifier des manœuvres telles que l’évitement
d’obstacles statiques ou dynamiques. La grille d’occupation est une représen-
tation à petite échelle intégrant les valeurs de capteurs brutes. En particulier,
elle ne nécessite pas l’utilisation d’une approche de type SLAM pour corriger
l’inévitable dérive odométrique (voir section 0.4).

En plus d’utiliser la grille d’occupation pour l’évitement d’obstacles, nous
avons choisi d’en extraire la topologie de l’environnement à travers le squelette
topologique ou Graphe de Voronoï généralisé (GVG). Cette topologie pourra être
utilisée par notre algorithme de SLAM présenté dans la section 0.4. Le processus
d’extraction du squelette est basé sur une grille de vecteurs pointant de chaque
pixel inoccupé de la grille vers le pixel occupé le plus proche (Vectorial Euclidean
Distance Map ou VEDM ), calculée avec un algorithme proposé par Danielsson
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Figure 6 – Une grille d’occupation avec squelette topologique.

Figure 7 – Le robot est attaché en P à une arête du squelette topologique
par une perche partiellement élastique (penser “téléski”). Cela lui garantit une
certaine liberté de mouvement tout en garantissant le suivi d’une arête.

(1980). La détection des chemins dans l’environnement est paramétrée par la
taille du robot, de sorte que le squelette calculé ne comporte que des chemins
physiquement traversables par le robot. Contrairement aux méthodes de l’état
de l’art, notre approche (figure 6) ne suppose aucune hypothèse sur les parties
inconnues de la grille et permet au squelette de rester stable dans le temps alors
même que la grille est mise à jour et que le robot se déplace.

Le passage de la représentation topologique (discrète) utilisée par EDNA*
à des commandes d’actionneurs continues se fait par l’intermédiaire d’une ap-
proche représentée sur la figure 7 et analogue au fonctionnement d’un téléski.
Une procédure d’évitement d’urgence utilisant la VEDM est également prévue
si le robot s’approche trop près d’un obstacle. Le temps de réponse global des
algorithmes de détection du squelette et de contrôle-commande (incluant l’évi-
tement d’urgence) est strictement inférieur à 50ms et peut être ramené à moins
de 20ms si besoin en utilisant une implémentation en nombre entiers au lieu de
flottants.
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0.4 Cartographie et localisation
Le problème du SLAM est probablement le problème canonique de la ro-

botique mobile qui a reçu le plus d’attention (Durrant-Whyte et Bailey,
2006). Le problème est le suivant : le robot peut facilement établir une carto-
graphie locale de son environnement, par exemple en intégrant les valeurs de
capteurs dans une grille d’occupation. Cette approche est suffisante pour l’évite-
ment d’obstacles statiques et dynamiques de petite taille. Elle n’est en revanche
pas suffisante pour garantir la faculté de mouvement à grande échelle du robot,
et cela du fait qu’il n’est pas possible de garantir la cohérence à grande échelle
d’une grille d’occupation. En effet, le robot calcule toujours sa position actuelle
en estimant le chemin parcouru depuis sa position précédente, que ce soit en
estimant la vitesse de rotation des roues ou en suivant la position de points
3D dans le champ d’une caméra ou toute autre technique d’estimation. Du fait
de l’intégration de ces mesures comportant chacune une petite erreur, l’estima-
tion de position dérive au fil du temps. En conséquence, si le robot effectue une
boucle dans l’environnement et revient à sa position de départ, la position finale
estimée ne sera pas la position initiale et la carte comportera deux copies déca-
lées de l’environnement autour de la position de départ (problème de fermeture
de boucle). Un processus capable de détecter que le robot est de retour à un
endroit déjà visité et de recalculer la carte en prenant en compte cet élément
est nécessaire. Ce processus constitue l’élément central de notre approche de
SLAM.

L’approche de SLAM que nous développons est une amélioration des SLAMs
hybrides métriques/topologiques développés par l’équipe de Kuipers (Beeson,
Modayil et Kuipers, 2010 ; Kuipers et al., 2004 ; Kuipers, 2000), Bailey
(Bailey, 2002) et Bosse et al. (Bosse et al., 2004). Elle incorpore la notion
clé de projection d’incertitude entre deux points de la carte (là où les SLAMs
traditionnels (Durrant-Whyte et Bailey, 2006) sont cantonnés à projeter
l’incertitude depuis l’origine). Par rapport à l’état de l’art, elle introduit égale-
ment de nouveaux éléments dont :

— la possibilité de modéliser des relations unilatérales (chemins à sens unique),
— la distinction fondamentale entre incertitude liée à la détection d’un en-

droit et incertitude liée à l’estimation d’un mouvement,
— la prouvabilité de la cartographie et de la localisation et
— la possibilité pour le SLAM d’influer sur la trajectoire du robot afin

de résoudre une ambiguïté dans l’environnement et plus généralement
l’intégration Planification - Navigation - SLAM.

Nous avons prouvé que l’incertitude de position, qui est censée croître de ma-
nière monotone au fur-et-à-mesure que le robot se déplace du fait de l’estimation
imparfaite du mouvement, peut en fait être ramenée à la seule incertitude de
détection de l’endroit courant à partir du moment où cet endroit a déjà été
traversé auparavant. En d’autre termes, l’incertitude de position sur une boucle
dans la carte peut être ramenée à l’incertitude de détection du point de ferme-
ture de la boucle (figure 8). Cette propriété rend la cartographie dans l’espace
possible en permettant d’oublier la trajectoire passée du robot.

Notre SLAM utilise la notion d’endroit et de chemin sans se préoccuper de
la manière dont ces endroits et chemins sont détectés, ce qui le rend fortement
générique et indépendant des capteurs utilisés. L’utilisation des arêtes et som-
mets du squelette topologique extraits par le composant de navigation (section
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Figure 8 – (gauche) vision topologique de la trajectoire du robot, avec les in-
certitudes de détection d’endroit modélisées par des sphères. (droite) trajectoire
réelle du robot. Lors d’une fermeture de boucle (b,c), le robot revient près d’une
position déjà visitée V 3. Il peut donc se recaler dans l’espace avec une incertitude
maximale représentée par une flèche rouge sur le schéma.
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0.3) est un exemple possible. Afin de résoudre une ambiguïté dans la carte, le
robot modélise chaque observation confirmant ou infirmant une hypothèse de
position par une probabilité. Encore une fois, de nombreux capteurs différents
peuvent être utilisés pour lever une ambiguïté.

0.5 Expériences de PNSLAM
Si toutes les incertitudes de capteurs sont bornées, que les endroits et chemins

sont toujours détectés correctement et que l’environnement est statique, notre
approche de SLAM garantit que la carte produite ainsi que la localisation du
robot à l’intérieur de cette carte seront toujours topologiquement correctes.
Cependant, lorsqu’endroits et chemins sont détectés avec une fiabilité inférieure
à 100%, il se peut que la carte ne reflète pas fidèlement l’environnement traversé.
Nous avons donc simulé et testé en conditions réelles l’ensemble planification,
navigation et SLAM (PNSLAM). Le robot simulé ou réel se déplace tout en
traçant la carte de l’environnement. La qualité de la carte est évaluée par rapport
à une vérité terrain à l’aide de nouvelles mesures mettant en avant l’utilisation
de cette carte pour la navigation. Ces mesures évaluent certes l’aspect métrique
(distances, angles) mais aussi et surtout l’aspect topologique de la carte, ce qui
consiste à vérifier si celle-ci retranscrit correctement l’ensemble des endroits et
chemins présents dans l’environnement cartographié.

La figure 9 montre un exemple de carte générée par un robot (lui-même
représenté sur la figure 10) en utilisant notre approche. Cette figure révèle éga-
lement les nombreux défis qui ont du être surmontés pour parvenir à cette carte,
qui reflète parfaitement la topologie de l’environnement et permet au robot de
se déplacer partout tout en utilisant des trajectoires dont la longueur moyenne
n’est supérieure à l’optimum théorique que de 0.05%.

L’approche PNSLAM permet de réaliser des missions autres que l’explora-
tion ou la navigation entre deux points, comme par exemple rechercher un trésor
autour d’une position approximative (figure 11).

0.6 Complexité et temps d’exécution
Soit N le nombre d’endroits présents dans l’environnement. Alors, le compo-

sant de navigation fonctionne (dans le pire cas) en complexité O(1), la planifica-
tion on O(N.log(N)) et le SLAM utilise des processus en O(N) et O(N.log(N))
pour la fermeture de boucles. En pratique au contraire, l’essentiel du temps de
calcul provient du composant de navigation (le calcul du squelette topologique)
car celui-ci s’exécute à une fréquence très importante.

Une analyse plus fine révèle que la complexité temporelle (temps de cal-
cul) de l’algorithme de planification dépend exclusivement de la longueur de la
trajectoire calculée et de la disposition des obstacles dans l’environnement. En
particulier, elle ne dépend pas de la taille totale de l’environnement. Ainsi, la
complexité effective (observée) d’EDNA* est O(1) en la taille de l’environne-
ment. Quant au SLAM, l’utilisation et la propagation de bornes d’incertitude
permettent de limiter la complexité de son opération la plus coûteuse, à savoir
la fermeture de boucles, à O(1) également (figure 12). Ainsi, même dans un en-
vironnement arbitrairement grand, le temps de calcul de l’approche PNSLAM
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Figure 9 – (a) Carte du bâtiment Nano-Innov utilisé pour les expériences,
obtenue par notre approche à l’aide d’un robot pioneer 3, d’une Kinect 1 et
d’un magnétomètre MEMS. Cet environnement présente de nombreuses difficul-
tés comme : (b,c,e,f,m) - des obstacles de taille variable sur l’axe vertical, (d) -
des marches et différents revêtements de sol, (k) - des portions de sol constituées
de lattes inégales, (h,i,j,k) - des parois grillagées mal détectés par la Kinect 1,
(g) - des portes vitrées difficilement visibles par la Kinect 1, (b,h,n) - des obs-
tacles plus ou moins circulaires, (n,l,h) - une illumination fortement variable dans
le visible et l’infrarouge, (d,i,j,n) - des masses métalliques créant localement de
fortes perturbations du champ magnétique. Les escaliers (i) étaient bloqués par
un carton durant les expériences.

14



Figure 10 – Le robot pioneer 3 équipé avec une Kinect 1 et un magnétomètre
MEMS. Le magnétomètre est monté sur une longue boîte en carton pour éviter
les interférences magnétiques avec la structure métallique du robot.

Figure 11 – Le robot est chargé de découvrir un trésor se trouvant aux alen-
tours d’une position donnée (indice). Il commence par se rendre à la position
indice puis cherche radialement autour de celle-ci. Seule la partie nécessaire de
l’environnement est cartographiée, ce qui est l’une des caractéristiques principales
de l’approche PNSLAM. Le trésor est reconnu par un composant « boîte noire »
non décrit dans le cadre de cette thèse.
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Figure 12 – Courbe du temps d’exécution du SLAM pour chaque nouvel endroit
visité, en fonction du nombre N de sommets (endroits) déjà présents sur la carte.
Un seul fil d’exécution à 2.7Ghz est utilisé pour les calculs. Au-delà de N =
550, le temps maximal d’exécution se stabilise autour de 800ms pour chaque
nouvel endroit atteint (il devient indépendant de N). Ce plateau correspond à la
densité maximale de sommets dans la carte. Un zoom dans le cadre noir révèle
que la mesure est fortement granulaire, c’est à dire que le temps d’exécution est
directement proportionnel au nombre (quantifié) de comparaisons de signatures
de sommets (grilles d’occupation) réalisées lors d’une fermeture de boucle.

reste à peu près constant.

0.7 Consommation mémoire
Même si le temps d’exécution des algorithmes est indépendant de la taille

totale de l’environnement, la consommation de mémoire nécessaire pour stocker
la carte croît linéairement avec la taille de celle-ci. Si la carte couvre l’intégralité
de l’environnement et si celui-ci est de très grande taille, la mémoire d’un robot
peut ne pas se révéler suffisante, ce qui est inadmissible dans le cadre d’une
approche de type LEN ou le robot n’est jamais réinitialisé. Nous proposons
donc de compresser la carte pour réduire son empreinte mémoire en élaguant
certaines zones judicieusement choisies.

Du point de vue de la navigation et grâce à la capacité d’EDNA* à exploi-
ter des zones non représentées sur la carte (incluant donc les zones volontai-
rement élaguées), le seul effet visible de l’élagage est de rallonger les trajets
moyens. Ainsi, le moment où la compression est exécutée ainsi que le taux de
compression ne sont pas contraints. La compression peut soit être effectuée ré-
gulièrement, soit lorsqu’un seuil de mémoire prédéfini est dépassé. Dans certains
cas, d’autres algorithmes qu’EDNA* sont capables de navigation exploratoire,
par exemple des variantes de l’algorithme glouton optimisées pour les graphes
planaires. Cependant, la mise en œuvre de ceux-ci est plus complexe et moins
robuste qu’EDNA*.

Nous avons envisagé plusieurs algorithmes d’élagage. L’un d’entre eux est
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Figure 13 – Les obstacles ne comportant pas de creux et d’irrégularités sont plus
facilement gérés par les algorithmes de navigation. Une approche de compression
de carte consiste donc à supprimer tous les sommets et arêtes de la carte (en
blanc), en ne gardant que ceux (en rouge) qui entourent un obstacle, dans le
but de rendre les obstacles plus réguliers (les sous-figures représentent des seuils
de suppression différents). Cet algorithme offre des performances de navigation
correctes sur des graphes sous forme de grilles.

représenté sur la figure 13. Le meilleur algorithme que nous ayons trouvé (non
représenté sur la figure) prend en compte la fréquence d’utilisation de chaque
chemin dans le graphe et supprime les chemins les moins utilisés. En utilisant cet
algorithme, il est possible de dégrader fortement l’empreinte mémoire de la carte
avec seulement un surcoût marginal en termes de navigation (14). Il est possible
de faire varier le taux de compression de manière continue dans [1; +∞[. Pour
le jeu de données le plus difficile (l’ensemble des transports de la RATP, figure
15), à taux de compression infini de la carte, les temps de trajets en utilisant
EDNA* sont allongés d’un facteur 7, sachant que la version d’EDNA* utilisée
ne fait pas la différence entre mode de transports et ne sait pas que les trains
vont en général plus vite que les bus.

0.8 Récapitulatif et conclusion
Nous avons démontré que l’intégration de la planification (éventuellement ex-

ploratoire), de la navigation, de la cartographie et de la localisation en un unique
paradigme PNSLAM, essentielle pour permettre le déplacement totalement au-
tonome d’un robot, pouvait être effectuée en apportant quelques modifications
simples à des composants existants :

— l’algorithme de planification A* hérite de capacités exploratoires, pour
un nouvel algorithme intitulé EDNA*,

— une grille d’occupation est utilisée pour extraire la topologie de l’environ-
nement, cette topologie étant mise à profit pour permettre une navigation
basée sur la topologie,

— un algorithme de SLAM hybride métrique/topologique est utilisé pour
mener à bien la cartographie à grande échelle. Il utilise un modèle d’in-
certitude topologique et peut interagir avec l’algorithme de planification
(EDNA*) pour demander au robot de modifier sa trajectoire afin de ré-
soudre une ambiguïté dans l’environnement.
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Figure 14 – Lorsque le taux de compression de la carte augmente, la longueur
moyenne des chemins empruntés augmente elle aussi. Il est donc nécessaire de
trouver un compromis entre performances de navigation et empreinte mémoire.
Les algorithmes inspirés de glouton peuvent obtenir de meilleures performances
de navigation qu’EDNA* mais sont limités en matière de taux de compression
tout en nécessitant une phase de précalcul coûteuse et difficile à mettre en œuvre
avant l’élagage à proprement parler.

Figure 15 – Graphe du réseau RATP montrant les arrêts, trajets et cor-
respondances des transports publics autour de Paris. Données disponibles sur
http://data.ratp.fr/.

18

http://data.ratp.fr/


Afin de rendre PNSLAM compatible avec une approche au long de la vie
(c’est à dire où le robot n’est jamais réinitialisé), nous avons prouvé que la
complexité algorithmique de tous les algorithmes utilisés pouvait être rendue
indépendante de la taille de l’environnement dans lequel le robot circule. Nous
avons également proposé une approche de compression de la carte en mémoire
pour éviter la saturation mémoire. La maîtrise conjointe de la charge de calcul et
de la mémoire permet d’envisager un fonctionnement dans des environnements
potentiellement infinis, et donc le paradigme LEN.

Un certain nombre d’améliorations pourraient encore être apportées à l’ap-
proche, par exemple autour de la discrimination possible entre obstacles dy-
namiques et structure de l’environnement, autour de l’amélioration des heuris-
tiques utilisées par les algorithmes de planification exploratoire ou encore autour
de la coordination entre plusieurs robots (voire toute une flotte de robots).
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