Evaluation of Acronychia-type Acetophenones instrument (Pittsburgh, PA) including a fluid delivery module with high pressure pumps for CO 2 and modifier delivery, an autosampler, a column oven for temperature control, a makeup pump, a 2298 Photodiode Array (PDA) detector, an automated back pressure regulator (ABPR) for column pressure controlling, and a fraction collector. Data acquisition and processing was performed using Mass lynx 4.1.

Optical rotations were obtained on a Perkin-Elmer 341 polarimeter. Nuclear magnetic resonance (NMR) spectra were recorded on a Bruker Advance III 600 spectrometer

Thesis summary

Medicinal plants constitute an unfailing source of compounds (natural products -NPs) utilised in medicine for the prevention and treatment of various deceases. The introduction of new technologies and methods in the field of natural products chemistry enabled the development of high throughput methodologies for the chemical composition determination of plant extracts, evaluation of their properties and the exploration of their potentials as drug candidates. Lately, metabolomics, an integrated approach incorporating the advantages of modern analytical technologies and the power of bioinformatics has been proven an efficient tool in systems biology. In particular, the application of metabolomics for the discovery of new bioactive compounds constitutes an emerging field in natural products chemistry.

In this context, Acronychia genus of Rutaceae family was selected based on its wellknown traditional use as antimicrobial, antipyretic, antispasmodic and anti-inflammatory therapeutic agent. Modern chromatographic, spectrometric and spectroscopic methods were utilised for the exploration of their metabolite content following three basic axis: a) phytochemical investigation, identification of secondary metabolites and evaluation of their biological properties, b) development of analytical methods for identification of acetophenones (chemotaxonomic markers of the genus) and dereplication strategies for the chemical characterisation of extracts and c) application of metabolomic methodologies (LC-MS & NMR) for comparative analysis (between different species, origins, organs), chemotaxonomic studies (between species) and compound-activity correlations.

Bioinformatics and sophisticated statistical tools were employed especially towards the latter methodology. In particular:

The application of various analytical and chromatographic techniques (LC-PDA, -ELSD, -HRMS, SFC-UV, HRNMR; chiral separation, FCPC) enabled the phytochemical exploration and isolation of numerous NPs (alkaloids, lignans, terpenoids). Among them, several acetophenones, an important and interesting class for the genus (Acronychia-type acetophenones-AtA) from A. pedunculata were isolated and identified. Their particular structural characteristics compelled their detailed and unabigious structural investigation. In addition, the evaluation of their pharmacological properties, including antimicrobial, cytotoxic (against human tumour cell lines) and anti-inflammatory activity, of all isolated AtA was assessed in vitro.

The small number of Acronychia-type acetophenones (AtA) despite their important pharmacological profile, the limited information regarding their identification as well as the low number of species investigated so far, led to the development of an identification and dereplication strategy for further exploration of AtA in complex mixtures. In particular, a UPLC-HRMS & HRMS n method was developed and applied for the detailed and accurate identification thereof. Fragmentation patterns and certain ion motifs enabled the construction of decision trees for AtA identification and a MS nomenclature scheme was suggested. Moreover, this methodology was utilised for the analysis of different A. pedunculata extracts enabling the dereplication of known AtA and the discovery of potentially new ones. This approach, having taken advantage of state of the art analytical platforms and concepts, could be incorporated for the investigation of other complex mixtures and plant extracts.

NMR and UPLC-HRMS-based metabolomics (metabolic profiling) were used for the investigation of various Acronychia species and organs, from different geographical origin. Dereplication tools were also employed for the characterization of their chemical profiles.

Statistical models were developed for the comparison of the different extracts revealing organ-and species-specific biomarkers. Moreover, discrimination models allowed the identification of certain compounds giving new insight into chemotaxonomic issues. Specific strategies were established for the identification of the revealed biomarkers including statistical integration of datasets obtained from both platforms. Statistical correlation of the analytical and pharmacological data resulted in the development of a methodology for tracking bioactive metabolites in extracts without any prior purification.

This approach provides a novel tool for the drug discovery in natural products field.
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Specifically, I owe a great thanks to my grandmother for her unconditional love, her support and her advice to enjoy all the aspects of life. I feel really grateful to my parents, Pinelopi and Giannis, who raised me with love and provided me a supportive environment in each step of my life. I appreciate their passion to offer me an excellent education and all the sacrifices they have made for me. I feel also grateful to Eleni for being always next to me, for her love and care. I would like also to thank my beloved family members Mairi, Lena, Natural products chemistry research has been extremely evolved during the last years mainly due to the introduction of new technologies. Nowadays, the application of new technologies in each step of the phytochemical investigation process is resulted in more automated, high throughput and comprehensive experimental conditions. In particular, phytochemical investigation involves mainly the extraction of plant material, the profiling of plant extracts, the isolation and purification of natural products and the structural elucidation of pure isolated compounds. The profiling of plant extracts is an important step in the overall process which is significantly facilitated by the introduction of hyphenated techniques in natural products chemistry field [START_REF] Wolfender | The importance of hyphenated techniques in the discovery of new lead compounds from nature[END_REF][START_REF] Sarker | Hyphenated Techniques and Their Applications in Natural Products Analysis. Natural Products Isolation[END_REF].

The hyphenation of high resolution separation techniques [e.g. high performance liquid chromatography (HPLC), ultra performance liquid chromatography (UPLC)] with advanced detection systems [e.g. mass spectrometry (MS), nuclear magnetic resonance (NMR), ultraviolet (UV) detectors] has allowed the profiling of the complex plant extracts prior to any isolation step. Therefore, profiling of crude extracts leads to the qualitative and quantitative estimation of the metabolite composition and the structural characterization of contained metabolites by the combination of online spectroscopic data [START_REF] Wolfender | Advances in Techniques for Profiling Crude Extracts and for the Rapid Identificationof Natural Products: Dereplication, Quality Control and Metabolomics[END_REF]). This information is of crucial importance for the efficiency of the isolation procedure since tedious isolation of the same natural products, time and expenses consumption can be easily circumvented. In addition, in cases of targeted isolation studies a detailed qualitative and quantitative assessment of the starting material is essential for the scheduling of the separation step.

Despite the tremendous development of analytical techniques providing strong evidences for the identification of natural products in complex mixtures, there is still the need of isolation of pure natural products. The achievement of several amounts of highly pure compounds constitutes an essential prerequisite for the complete structural elucidation of new natural products by further spectroscopic analysis and for their pharmacological evaluation using in vitro or in vivo experiments [START_REF] Seger | Mass spectrometry and NMR spectroscopy: modern high-end detectors for high resolution separation techniques-state of the art in natural product HPLC-MS, HPLC-NMR, and CE-MS hyphenations[END_REF]). The isolation step traditionally is performed using liquid-solid chromatography techniques such as column chromatography operating in ambient or medium or high pressure. However, the combination of these techniques with other orthogonal techniques based on different separation mechanisms could be utilized for the more efficient recovery of pure natural products.

In particular, liquid-liquid partition techniques possess the uniqueness of using nosolid stationary phase, while separation is achieved between two immiscible liquid phases [START_REF] Ito | Countercurrent Chromatography: Liquid-Liquid Partition Chromatography without Solid Support[END_REF]. In this case, the separation is based on the partition coefficient of each compound between the two phases and eventually closely eluting compounds by conventional chromatographic column may possess totally different partition coefficients which results in their efficient separation. Another important advantage of this technique is that eliminates the irreversible adsorptive loss of samples onto the solid support matrix observed in the conventional chromatographic column [START_REF] Pauli | Countercurrent Separation of Natural Products[END_REF]. Therefore, the application of liquid-liquid partition principal provides a fast and efficient technique for the isolation of natural products.

Another alternative technique for preparative isolation of natural products is supercritical fluid chromatography (SFC). This technique is based on the application of a supercritical fluid, most commonly CO 2 , as a mobile phase in combination with one or more polar organic solvents. Supercritical fluids have densities and dissolving capacities similar to those of certain liquids, but lower viscosities and better diffusion properties [START_REF] Taylor | Supercritical fluid chromatography for the 21st century[END_REF].

Consequently, improved resolution of compounds comparing to classical liquid-solid chromatography techniques is observed permitting efficient separation in terms of velocity and mass capacity [START_REF] White | Integration of supercritical fluid chromatography into drug discovery as a routine support tool: II. Investigation and evaluation of supercritical fluid chromatography for achiral batch purification[END_REF]. In addition, the different selectivity and elution order of compounds using SFC renders it a good complementary technique to reversed phase HPLC. It is worth noting that SFC is proved a valuable technique for the separation isomers and enantiomers, and structurally related compounds [START_REF] White | Integration of supercritical fluid chromatography into drug discovery as a routine support tool: Part I. Fast chiral screening and purification[END_REF][START_REF] Taylor | Supercritical Fluid Chromatography[END_REF]).

New technologies have contributed extremely in natural product chemistry research in each step of this long procedure. During this study, the application of different state of the art techniques was performed for the detection, targeted isolation and unambiguous structural elucidation of Acronychia-type acetophenones from Acronychia pedunculata.

2. Acronychia pedunculata (L.) Miq.

Botanical and chemotaxonomic characteristics

Acronychia pedunculata is one of the 48 species of Acronychia genus [START_REF] Bayly | Major Clades of Australasian Rutoideae (Rutaceae) Based on rbcL and atpB Sequences[END_REF]. Acronychia genus belonging to the Rutaceae family is represented by scrubs, small trees or trees widely distributed in the Indochina peninsula, in eastern Australia, and the islands of the western Pacific Ocean. The principal botanical features of Acronychia genus have been described by Hartley [START_REF] Hartley | A revision of the genus Acronychia. (Rutaceae)[END_REF]. The leaves are opposite monofoliolate, trifoliolate or unifoliolate, having leaflets entire, pinnately veined and articulated at the base.

Inflorescences are axillary, paniculate, subcorymbose often reduced to one flower. The flowers are bisexual with 4 sepals, distinct or connate basally, usually imbricate and persistent. The petals are 4 distinct, valvate, usually white narrowly triangular becoming reflexed, deciduous or rarely semipersistent in fruit. The stamens are 8 as long as the petals, the antesepalous slightly longer than the antepetalous. The filaments are flattened ending up to 2 anthers. The ovaries are tetralocular or rarely octalocular, with or without fissures between the locules, scarcely differentiated stigmas from the style with two ovules in each loculus. The fruits are tetralocular or rarely octalocular represented mainly by a drupe, with or without septicidal fissures. The fruit is so characteristic that Hartley mentioned that could be used to distinguish Acronychia from the other genera of Rutaceae. The epicarp is semifleshy spongy-crustaceous or woody when dry with or without evident mesocarp and cartilaginous to pergamentaceous endocarp. Finally, the seeds are usually ellipsoid and shiny.

Acronychia pedunculata is a widely spread species distributed in rainforests of India, Sri Lanka, Indonesia, Malaysia, Philippines, Taiwan and southern mainland China (Figure 1).

The botanical characteristics that distinguish A. pedunculata from the other species are the petioles which are usually longer and probably its name derives from this since -pedunculata‖ is a Latin word meaning "slender stalked". In addition, the leaflets are variable in shape but not suborbicular, the ovary and disc are presented entirely pubescent and inflorescences are often more than 10 cm long. However, Hartley denotes the synonymy confusion of A. pedunculata due to its variance according to the geographical distribution with the most dominant synonyms those of Jambolifera pedunculata Vahl., A. laurifolia Bl.

and A. apiculata Miq. This variance is reflected in the gradation in disc size and consequently in fruit size occurring mainly from India to China, Malaysia and Borneo [START_REF] Hartley | A revision of the genus Acronychia. (Rutaceae)[END_REF]. In particular in Malaysia Burkill referred to the species as Acronychia laurifolia Blume (Acronychia pedunculata (L) Miq.) [START_REF] Burkill | A dictionary of the economic products of the Malay Peninsula[END_REF]. Chinese botanists in national and regional Floras called the species Acronychia pedunculata (L) Miq.

(Jambolifera pedunculata L.) [START_REF] Chun | Flora Hainanica. Bei Jing[END_REF]. Lecomte, in the ‗Flore générale de l'Indochine' mentioned Acronychia laurifolia Bl. and a number of synonyms among them Acronychia pedunculata (L) Miq.; Cyminosma pedunculata DC.; Jambolifera pedunculata

Vahl. (Lecomte 1907(Lecomte -1951)). For further confusion Wang separates the species, ascribing to Acronychia pedunculata to the monsoon rain forests of Hainan Island and southern

Yunnan alone [START_REF] Wang | The Forests of China[END_REF]. Regarding the abovementioned literature data is clear that the nomenclature and synonymy of this species is still a confusing issue however, during this study the name A. pedunculata will be used as this botanical name is proposed from Hartley and Chinese flora. 

Traditional use of Acronychia species

Acronychia species have been traditionally used in the eastern word from food condiments and salad ingredients to therapeutics in folk medicine. In particular, many parts of the plant including the roots, stems, leaves, and fruits of certain species in this genus have been used for centuries in eastern traditional medicine for the treatment of asthma, cough, diarrhea, itchy skin, pain, rheumatism, scales, sores, and ulcers and also for their antihemorrhagic, antipyretic, and aphrodisiac activities [START_REF] Rahmani | Constituents of Acronychia laurifolia[END_REF]. Biological evaluation of extracts of A. pedunculata has shown significant antiplasmodial [START_REF] Horgen | Biological screening of rain forest plot trees from Palawan Island (Philippines)[END_REF], antibacterial [START_REF] Jayasinghe | Screening for antimicrobial activity of Acronychia pedunculata (Ankenda) and Adenanthera Pavonina (Madatiya) against bacteria causing skin and wound infections in humans[END_REF], and antifungal [START_REF] Rodrigo | Antifungal, Antioxidant and Cytotoxic Activity of Acronychia pedunculata and Adenanthera pavonina[END_REF]) activities as well as cytotoxic effects for several cancer cell lines [START_REF] Horgen | Biological screening of rain forest plot trees from Palawan Island (Philippines)[END_REF] confirming in some extend the traditional use of this genus. However, the anti-inflammatory activity hinted beneath its traditional use is not confirmed up to date. Moreover, the essential oil obtained from flowers and leaves has been employed in cosmetics [START_REF] Epifano | Phytochemistry and pharmacognosy of the genus Acronychia[END_REF]).

2.3.

Phytochemical profile of Acronychia species

Among the 48 Acronychia reported species, only 12 species have been investigated

concerning their phytochemical profile. Nevertheless, a number of diverse secondary metabolites have been isolated from the studied species. In particular, several compounds belonging to alkaloids, acetophenones, flavonoids, phenolic acids, lignans, coumarins, steroids, and triterpenes have been reported. The most abundant chemical category found in the majority of Acronychia species is alkaloids belonging to quinolone or acridone basic structures [START_REF] Lamberton | Alkaloids of the Australian Rutaceae: Acronychia baueri Schott. IV. Alkaloids present in the leaves[END_REF]). Predominantly, from A. pedunculata quinolone alkaloids and particularly furoquinoline derivetives have been isolated [START_REF] Cui | Quinoline alkaloids from Acronychia laurifolia[END_REF]. Another relatively abundant chemical category in Acronychia genus is prenylated acetophenones.

Prenylated acetophenone monomers and dimers have been reported from A. pedunculata, A. trifoliolata and A. vestita. Specifically, the presence of acetophenones dimers is uniquely reported from Acronychia genus indicating their value as chemotaxonomic markers of the genus (Adsersen et al. 2007). Biological interest in prenylated acetophenones has focused on their antioxidant [START_REF] Su | Acetophenone derivatives from Acronychia pedunculata[END_REF], cytotoxic (Wu et al. 1989), and anti-inflammatory (Pathmasiri et al. 2005) activities, while the acetophenone dimers have been assessed for cytotoxicity against numerous cancer cell lines, with acrovestone reported to exhibit significant cytotoxicity (Wu et al. 1989, Oyama et al. 2003). Despite their potential chemotaxonomic and biological importance, only a small number of acetophenone dimers (4 derivatives) have been isolated and biologically evaluated from the genus Acronychia.

Current objectives

The objective of the current study was the detection of the acetophenone dimer derivatives in A. pedunculata extracts by means of metabolite profiling using various hyphenated analytical platforms and their targeted isolation utilizing orthogonal chromatographic techniques such as fast centrifuge partition chromatography (FCPC), reversed phase chromatography and supercritical fluid chromatography (SFC) techniques.

In total, seven acetophenone dimer derivatives were obtained, among them three natural products. Furthermore, a detailed conformational analysis was intended since acetophenone dimers exhibit particular structural characteristics leading to a dynamic conformational equilibrium in solution and thus, incomprehensive NMR data. For this purpose, NMR studies of acetophenones dimers over a range of different temperatures were combined to molecular mechanics calculation. In addition, the presence of chiral centres in acetophenone dimers implied their enantioselective resolution using chiral normal phase chromatography. In order to ascribe the pharmacological profile of this group of compounds based on the literature data concerning the traditional use of Acronychia genus as therapeutic, in vitro evaluation of potential activities was assessed.

Different assays were implemented to define the activity of these compounds involving antimicrobial activity, cytotoxic activity against human tumour cell lines and antiinflammatory activity. Fast centrifugal partition chromatography (FCPC) was performed using a CPC Kromaton with a 1000 mL column and a Laboratory Alliance pump with a pressure safety limit of 50 bar. A manual sample injection valve was used to introduce the samples into the column, with the rotation adjusted at 800 rpm and the flow rate held at 20 mL/min.

Semipreparative HPLC was performed on a Thermo Finnigan apparatus equipped with a UV Spectral System UV2000 using an Ascentis RP-8 C8 (250 × 10 mm i. 

Plant Material

The trunk bark of Acronychia pedunculata was collected in the dense rainforest of alkalinization was partitioned with 10% HCl (3 × 150 mL) until the negative reaction of the aqueous phase using Mayer's reagent and then alkalinized to pH 8-9 with 28% NH 4 OH and extracted with CH 2 Cl 2 (6 × 150 mL) using Mayer's reagent to control the process. An organic fraction (20.3 g) and an aqueous fraction (452 mg) rich in alkaloids were obtained after this procedure.

Analytical profiling for detection of acetophenone dimers

Analytical profiling of the Et 2 O extract was performed before separation procedures using identical reversed phase chromatographic conditions and different detectors. In particular, an Ascentis RP-8 C 8 (250 × 4.6 mm i.d.; 5 um) (Discovery Supelco) column was applied for all aforementioned analysis and a mobile system containing MeOH and H 2 O+2% acetic acid were used for HPLC separations. A gradient elution program was applied starting from 70% up to 100% MeOH in 90 min, following 10 min of isocratic elution (100% MeOH), returning back to initial conditions in 5 min and re-equilibrating with 70% MeOH for 5 min. The flow rate was set at 1 mL/min and volumes of 20 uL were injected from working solution of 10 mg/mL of all obtained extracts. The detection was performed using 4 different detectors. PDA detector was set to record UV absorption range of 200-600 nm and three different UV channels at 254, 280 and 365 nm were chosen to monitor the run. ELSD detector was operated at 80 °C with a N 2 flow rate at 2.1 L/mL in order to vaporize the mobile phase. In addition, the option ‗'impactor off'' was selected since there was no suspicion of volatile compounds in A. pedunculata extracts and the gain option was set at 4. HPLC-ESI-TOF-HRMS chromatograms were acquired at a mass range of m/z 150-1500 in positive and negative mode. Nitrogen was used as nebuliser gas, at 2 bar and as dry gas at 9 L/min and 240 °C and spray voltage was set at 4.5 kV. Internal mass calibration of each analysis was performed by the infusion of 1% sodium formate in isopropanol:water 5 mM sodium hydroxide, 1:1 (v/v), at a gradient time of 110 min using a diverter valve. HPLC-APCI-Orbitrap-HRMS chromatograms were acquired also in positive and negative mode. In APCI vaporizer temperature was set at 350 

Targeted isolation of acetophenone dimers

After the detection of potential acetophenone dimers by profiling the Et 2 O extract using multiple detectors, the initial fractionation of the extract was performed by FCPC.

Concerning FCPC procedure, the most critical decision step is the selection of the suitable two-phase system. Briefly, the selection of the two-phase system was performed based on already described two-phase systems in the literature (Table I) by applying the ‗shake-flask' method [START_REF] Ruey-Shiuan | Measurement of Partition Coefficient Using Centrifugal Partition Chromatography[END_REF]. This involved testing of the solubility of the analytes in the two-phase system and the volume ratio formed between two phases. Subsequently, the partition coefficients of the targeted compounds were measured by reversed phase HPLC as described by Marston et al. applying the elution method used for the analytical profiling of the extract [START_REF] Marston | Developments in the application of counter-current chromatography to plant analysis[END_REF]. After the evaluation of the results, system No 9 was found the most appropriate for the separation of this mixture of compounds. In particular, 15g of the extract were fractionated with a two-phase solvent system composed of n-heptane-ethyl acetate-methanol-water (10:1:10:1), using the organic phase first as mobile phase. The separation afforded 80 fractions of 50 mL each. After the collection of the 60 initial fractions, the apparatus was switched to the descending mode, and another 20 fractions were collected. Two fractions out of the eighty obtained contained in high purity the two major metabolites of the Et 2 O extract, acrovestone (4, 243.2 mg; fraction 13) and acrofolione A (6, 471.8 mg; fraction 71), while the other metabolites were isolated as mixtures. The purity of all fractions was estimated using reversed phase HPLC-PDA at 280 nm (Figure A 1). The same conditions as for analytical profiling were applied using working solutions of 5 mg/mL for FCPC fractions and 1 mg/mL for pure compounds. Fraction 13 was found to contain 87% acrovestone, while fraction 71, 92% acrofolione A. Moreover, yellow crystals of acrovestone (4, 182.5 mg) precipitated from fraction 13.

In order to isolate all prenylated acetophenone dimers present in the extract, FCPC fractions containing mixtures of acetophenones were purified further by semipreparative HPLC using an elution program of a 90 min linear gradient from 70% to 100% MeOH, then 10 min pure MeOH, 1 min back to initial conditions, and 9 min for re-equilibration (70% MeOH) with a flow rate of 5 mL/min. Separation of a portion (80 mg, 10 mg per injection)

of fraction 8 afforded acropyrone (1, 10.7 mg), and similarly a portion of fractions 17 and 18 (120 mg, 10 mg per injection) was subjected to semipreparative HPLC to obtain acropyranol A (2, 7.3 mg) and acrovestenol (5, 8.7 mg). Acropyranol B (3, 3.2 mg) and acrofolione B (7, 8.5 mg) were isolated from fraction 28 (100 mg, 10 mg per injection), while an additional quantity of acropyranol B (3, 2.8 mg) was isolated from fractions 33-39 (50 mg, 10 mg per injection). Finally, acronyline (8, 26.0 mg), a prenylated acetophenone monomer, was isolated as transparent crystals from fraction 69.

Acropyrone (1): yellowish oil; [α] 25 D 0 (c 1, CHCl 3 ); UV (MeOH) λmax (log ε) 214 (4.13), 226 (4.15), 289 (4.12), and 333 (3.67, sh) nm; 1 H NMR (CDCl 3 , 600 MHz) and 13 C NMR (CDCl 3 , 150 MHz), see 319.1905 (100), 303.1594 (16), 235.0966 (15). 319.1907 (100), 253.1073 (22). (25), 319.1908 (100), 237.1124 (14).

Acrovestenol (5): yellowish oil; [α] 25 D 0 (c 1, CHCl 3 ); UV (MeOH) λmax (log ε) 210 (4.29), 231 (4.21), 299 (4.15), 335 (3.99, sh) nm; 1 H NMR (CDCl 3 , 600 MHz) and 13 C NMR (CDCl 3 , 150 MHz), see 335.1856 (23), 319.1905 (100), 253.1074 (17). 319.1908 (100), 253.1073 (11).

Further purification of diastereomer derivatives was performed using SFC. In particular, separation of acrofolione A (6) diastereomers, which was isolated in adequate quantity for further preparative purification by SFC, was achieved on a Viridis Silica 2-Ethylpyridine column (150 × 10 mm i.d.; 5 um) (Waters). The mobile phase was composed of supercritical CO 2 modified by MeOH and the flow rate was set at 15 mL/min. The elution program started with an initial conditioning step of 5% MeOH for 1 min, then a gradient step from 5% to 40% of MeOH in 6 min and an isocratic step of 1 min of 40% MeOH were followed to conclude with 1 min step returning to the initial condition and 1 min of re-equilibration. A working solution of 5 mg/mL was prepared and the injection volume was 200 mL.

Enantiomer screening of acetophenone dimers

The occurrence of chiral centres in acetophenone dimer structures lead to the development of a screening strategy in order to determine the number of different enantiomers and estimate their relative ratio. Therefore, enantiomer separation of isolated acetophenone dimers was carried out using multiple immobilized polysaccharide-based chiral stationary phases (CSPs). Specifically, analytical columns (250 × 4.6 mm i.d.; 5 um) with different chiral selectors CHIRALPAK IA, CHIRALPAK IB, CHIRALPAK IC and CHIRALPAK ID were applied. Different isocratic elution methods were tested in a context of an enantiomer separation screening strategy which are quoted in section 4 of results and discussion part. All compounds were prepared in solutions of 100 µg/mL diluted in Hexane/ Isopropanol (99/1). For all tested methods injection volumes of 10 µL were applied, the temperature of the column oven was set at 25 °C and the flow rate at 1 mL/min. The detection was performed using a UV absorption range of 200-600 nm and three different UV channels at 254, 280 and 365 nm were chosen to monitor the run.

Isolation of alkaloids

The alkaloid rich fraction obtained after the alkalinization was submitted to flash chromatography using CH 2 Cl 2 -MeOH (100:0 to 30:70) gradient solutions, which afforded four furoquinoline alkaloids, dictamnine (9, 8.5 mg), pteleine (10, 3.9 mg), evolitrine (11, 26.6 mg), and kokusaginine (12, 32.0 mg). Dictamnine and pteleine were isolated for the first time from this species.

Conformational analysis of acetophenone dimers

Conformational analyses of all acetophenone dimers were performed at the Molecular Mechanics (MM) level using the mixed Low mode/Monte Carlo algorithm (10000 steps, AMBER* forcefield) and an implicit GB/SA chloroform solvent model as implemented in Macromodel v. 9 software [START_REF] Mohamadi | Macromodel-an integrated software system for modeling organic and bioorganic molecules using molecular mechanics[END_REF]). Resulting conformations were clustered using XCluster software. Boltzmann normalized populations of all dominant conformers were determined for each compound using the MM energies calculated at 273K. Critical to the conformation analysis of the acetophenone dimers was the relative arrangement of the isopentyl and isoprenyl chains leading to the discrimination between two major conformational states (Figure 8).

Antibacterial activity

Different Staphylococcus aureus strains, Bacillus subtilis, Streptococcus pneumoniae, Escherichia coli, Klebsiella pneumoniae, Proteus, Pseudomonas aeruginosa, Salmonella typhi bacteria strains were used to assess the antibacterial activity of acrovestone (4) and acrofolione A (6). All strains were cultured on nutrient agar (Oxoid) prior to determination of minimum inhibitory concentration (MIC). Cation-adjusted Mueller-Hinton broth (MHB; Oxoid), containing Ca 2+ (20 mg/L) and Mg 2+ (10 mg/L), was used for susceptibility tests.

Bacterial inocula equivalent to the 0.5 McFarland turbidity standard were prepared in normal saline and diluted to give a final inoculum density of 5 × 10 5 cfu/mL. Test compounds were dissolved in DMSO before dilution into MHB for use in MIC determinations. The inoculum (125 µL) was added to all wells and the microtitre plate was incubated at 37 °C for 24 h. The MIC was recorded as the lowest concentration at which no bacterial growth was observed [START_REF] Gibbons | The effect of reserpine, a modulator of multidrug efflux pumps, on the in vitro activity of tetracycline against clinical isolates of methicillin resistant Staphylococcus aureus (MRSA) possessing the tet(K) determinant[END_REF]. Norfloxacin was used a positive control.

10. Evaluation of cytotoxic activity against human tumor cell lines 10.1.

Cell Lines and Culture

Human A2058 melanoma and DU145 prostate cancer cell lines were obtained from the American Type Culture Collection (ATCC). Cells were cultured in RPMI 1640 medium supplemented with 10% heat-inactivated FBS and 1% penicillin/streptomycin. Normal human dermal fibroblast (NHDF) cells were purchased from Lonza. Cells were cultured in DMEM media containing 10% FBS.

Cell Viability Assays

Cell viability assays were performed as described previously [START_REF] Liu | 6-Bromoindirubin-3'-oxime inhibits JAK/STAT3 signaling and induces apoptosis of human melanoma cells[END_REF]. Briefly, cells were seeded onto 96-well plates at a density of 5000 cells per well. After overnight incubation, cells were treated for 48 h with the isolated compounds 1-7 or DMSO as the vehicle control. MTS Reagent (CellTiter 96 AQueousOne Solution Cell Proliferation Assay;

Promega) was added to each well according to the manufacturer's instructions.

Absorbance was monitored at 490 nm using a microplate reader (Bio-Rad). Cell viability (%)

was normalized to the vehicle control. Each experiment was performed in triplicate or quadruplicate. Sorafenib was used as positive control. IC 50 values against DU145 and A2058 cells were 5.1 ± 0.7 and 3.8 ± 0.9 uM, respectively.

11. Anti-inflammatory activity 11.1. Expression and Purification of 5-LO 5-LO was expressed in E. coli Bl21 (DE3) cells, transformed with pT3-5LO, and purification of 5-LO was performed as described previously [START_REF] Fischer | Phosphorylation-and stimulusdependent inhibition of cellular 5-lipoxygenase activity by nonredox-type inhibitors[END_REF]. Thus, E. coli were collected by centrifugation (7,700  g for 15 min), lysed with 50 mM triethanolamine/HCl, pH 8.0, 5 mM ethylenediaminetetraacetate (EDTA), 60 µg/mL soybean trypsin inhibitor (STI), 1 mM phenylmethylsulphonyl fluoride (PMSF), 1 mM DTT and 1 mg/mL lysozyme, homogenized by sonication (3  15 sec) and centrifuged at 10,000

 g for 15 min and then at 40,000  g for 70 min at 4 °C. The supernatant was then applied to an ATP-agarose column (Sigma; Deisenhofen, Germany). Partially purified 5-LO was immediately used for activity assays.

Cell-free and cellular LO assays

For determination of 5-LO activity in cell-free assays, samples of partially purified human 5-LO (1 mL, in PBS buffer containing 0.1 % glucose and 1 mM EDTA) were incubated 10 min at 4 °C with vehicle (0.1% DMSO, control) or test compounds, prewarmed for 30 sec at 37 °C and 2 mM CaCl 2 and the indicated concentrations of AA were added. The reaction was stopped after 10 min at 37 °C by addition of 1 mL ice-cold methanol and 30 µL of 1 N HCl, 200 ng prostaglandin B 1 and 500 µL of PBS were added.

For assays of intact cells, freshly isolated neutrophils (5 x 10 6 ) or monocytes (2 x 10 6 )

were resuspended in 1 mL PGC buffer. After pre-incubation with vehicle or compounds for 10 min, LO product formation was started by addition of the respective stimuli, as indicated.

The reaction was stopped as indicated for purified 5-LO.

Formed 5-LO metabolites, 12(S)-H(P)ETE and 15(S)-H(P)ETE were extracted and analysed by HPLC as described [START_REF] Werz | Activation of 5-lipoxygenase by cell stress is calcium independent in human polymorphonuclear leukocytes[END_REF]. 5-LO products include LTB 4 and its all-trans isomers, and 5(S)-H(P)ETE.

mPGES-1 assay

Preparations of A549 cells and determination of mPGES-1 activity was performed as described [START_REF] Koeberle | Pirinixic Acid Derivatives as Novel Dual Inhibitors of Microsomal Prostaglandin E2 Synthase-1 and 5-Lipoxygenase[END_REF]. In brief, cells were treated with 2 ng/mL IL-1β for 72 h at 37 °C, 5% CO 2 , harvested, sonicated and homogenized (homogenization buffer: 0.1 M potassium phosphate buffer, pH 7.4, 1 mM PMSF, 60 µg/mL STI, 1 µg/mL leupeptin, 2.5 mM glutathione, and 250 mM sucrose). The homogenate was centrifuged at 10,000 × g for 10 min and 174,000 × g for 1 h at 4 °C, and the resulting pellet (microsomal fraction) was resuspended in 1 mL homogenization buffer, and the total protein concentration was determined. Microsomal membranes were diluted in potassium phosphate buffer (0.1 M, pH 7.4) containing 2.5 mM glutathione. Test compounds or vehicle were added, and after 15 min at 4 °C reaction (100 µL total volume) was initiated by addition of 20 µM PGH 2 . After 1 min at 4°C, the reaction was terminated using stop solution (100 µL; 40 mM FeCl 2 , 80 mM citric acid, and 10 µM 11β-PGE 2 as internal standard), followed by solid-phase extraction and analysis of PGE 2 by HPLC as described previously [START_REF] Koeberle | Pirinixic Acid Derivatives as Novel Dual Inhibitors of Microsomal Prostaglandin E2 Synthase-1 and 5-Lipoxygenase[END_REF].

11.4. Docking on 5-Lipoxygenase (5-LO)

The crystal structure of the stable S663D mutant of 5-LO in complex with the natural substrate arachidonic acid (pdb code: 3V99) was downloaded from RCSB Protein Data Bank and was used for docking calculations. The protein was prepared using the PPrep module of Maestro. All isolated Acronychia-type acetophenones were built and prepared using the LigPrep module of Maestro. Docking of the aforementioned compounds was performed in the active site of the enzyme utilizing Glide SP algorithm, a preconstructed grid of the protein biding pocket and default settings. Docked poses were evaluated in term of binding affinity using the Glidescore scoring function [START_REF] Friesner | Glide: a new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy[END_REF], Halgren et al. 2004).

Results and Discussion acetophenone dimers, was partitioned using HCl solution and after a second alkalinization step an organic and an aqueous fractions were obtained, rich in acetophenone and alkaloids, respectively (see Experimental Section 3 for further details).

1.1.

Analytical profiling of Acronychia extracts using different detectors

In order to achieve thorough information concerning the metabolite composition of the obtained acetophenone rich extract, the profiling of the extract was performed by reversed phase HPLC hyphenated with a number of diverse detectors (Figure 2). The nonpolar nature of Et 2 O extract as well as the in silico calculations of logP values as a measure of molecular hydrophobicity for known acetophenone dimers (6.3-8.1) implied the utilization of a mobile phase with high organic solvent content (see Experimental Section 4 for further details). This enabled the effective separation of the contained metabolites and the collection of valuable information concerning the metabolite composition of A. pedunculata extract based on the chromatographic, spectral and spectrometric features. (Wu et al. 1989, Oyama et al. 2003, Pathmasiri et al. 2005). The analysis of the Et 2 O extract using ELSD detector presented similar chromatographic appearance to the chromatograms obtained by HPLC-PDA analysis. The analysis by ELSD is based on the scattering of the light beam by the different eluting compounds, thus the detection of compounds lacking chromophores is possible [START_REF] Vervoort | Performance evaluation of evaporative light scattering detection and charged aerosol detection in reversed phase liquid chromatography[END_REF]. In this context, only one additional peak at 85.5 min was observed denoting the presence of a highly unpolar compound lacking chromophores on its structure. This is probably attributed to a triterpene compound such as b-sitosterol [START_REF] Rahmani | Constituents of Acronychia laurifolia[END_REF]) or b-amyrin (De Silva et al. 1991) previously reported in the literature. 

Preparative isolation of acetophenone dimers

After the profiling of the Et 2 O extract of A. pedunculata by HPLC hyphenated with multiple detectors, seven major possible acetophenone dimers were detected. The isolation of these compounds in preparative scale was aimed in order to obtain adequate quantity for efficient structure elucidation and pharmacological assessment of the purified and potentially new acetophenone dimers.

As a first fractionation step of the Et 2 O extract, FCPC technique was selected in order to achieve efficient separation of the contained acetophenone dimer derivatives with good recovery, in short time and consuming rational quantity of solvents. The two phase system applied for the separation of the Et 2 O extract of A. pedunculata resulted in the isolation of two acetophenone dimers acrofolione A (6) and acrovestone (4) in high purity and important quantities while the rest derivatives were isolated in mixtures and further purified by semi-preparative HPLC (see Experimental Section 5 for further details). At this point, it is worth noting that FCPC enabled the separation of compounds that would not be possible to separate by semi-preparative HPLC. In particular, compounds closely eluted in the analytical reversed phase HPLC chromatogram, with difference of one to two minutes such as acropyranol B (2), acrofolione B (7) and acrovestone (4), acrovestenol (5) were resolved separately by FCPC. Thus, the combination of FCPC technique with semi-preparative reversed phase HPLC was proved highly efficient for the preparative isolation of acetophenone dimers from a complex mixture.

Structure elucidation of acetophenone dimers

Acetophenone dimers or Acronychia-type acetophenones may be considered as a particular group of acetophenones exhibiting specific structural features. They are polyhydroxylated, fully substituted derivatives consisting of two aromatic rings linked to an isopentyl chain. Apart from the hydroxy groups present, isoprenyl, acetyl, and methoxy units compose their common substituents, also additional rings derived from the isoprenyl moiety after cyclization have been observed. The presence of multiple hydroxy groups on these molecules results in the formation of extended inter and intra hydrogen bonds (Wu et al. 1989). All the dimers reported so far as well as the new natural products described in the current study (compounds 1-3) present structural differences only in one aromatic ring (ring A) while the B aromatic ring and the isopentyl chain remain constant (Figure 3). Moreover, Acronychia-type acetophenones exhibit an extended degree of similarity and symmetry regarding the substitution of the two aromatic rings. For instance, in acrovestone (4), which represents a model compound for Acronychia-type acetophenones, the two aromatic rings differ only in the presence of a methyl group. However, at 320 K the resolution of hydroxy protons was not possible and the NMR data obtained from experiment performed at 273K (0 °C) were utilized to obtain valuable information from NOESY and HMBC spectra. The isoprenyl unit of 1 was deduced from the presence of a characteristic spin system consisting of a methylene proton at δ H 3.29 that appeared as a broad singlet (H-1″″)

correlating with a carbon (HSQC spectrum) at δ C 22.9. Also, an olefinic proton appeared as a broad triplet at δ H 5.19 (J = 6.5 Hz, H-2″″), correlating with a carbon at δ C 123.0 along with two methyl groups at δ H An additional 2,2-dimethyl-2H-pyran ring attached to ring A in 1 was deduced by the two characteristic doublets at δ H 6.64 (H-1′) and 5.43 (H-2′) in the 1 H NMR spectrum with a coupling constant of 9.9 Hz, typical of the olefinic protons of a pyran ring. Correlations of these protons with two carbon atoms at δ C 117.0 and 124.9, respectively, were evident in the HSQC spectrum. Also characteristic were the signals of the H-4′ and H-5′ methyl groups that resonated at δ H 1.47 as a broad singlet integrating for six protons and correlating with a carbon atom at δ C 27.9 assigned as C-4′/C-5′. Moreover, the presence of a quaternary carbon at δ C 78.0 correlating with H-1′ ( 3 J), H-2′ ( 2 J), H-4′ ( 2 J), and H-5′ ( 2 J) in the HMBC spectrum resulted in its assignment as C-3′. The assignment of the fusion of the ring to C- Finally, the protons of the H-4′ and H-5′ methyl groups were observed as two singlets at δ H Carbon atoms C-4′ and C-5′ at δ C 24.4 and 21.6, respectively, were defined through crosspeak correlations observed between them and the H-4′ and H-5′ methyl protons, in the HSQC spectrum. Furthermore, the positions of the methyl groups at C-4′ and C-5′ were determined from their HMBC correlations with C-2′ ( 3 J) and C-3′ ( 2 J). Similarly to 

Conformational analysis of acetophenone dimers

Due to their abovementioned structural characteristics, Acronychia-type acetophenones presented complicated NMR spectra at room temperature which hampered the structural elucidation of these molecules. In particular, concerning Furthermore, rotation of the isoprenyl chains about C3-C1' and C3'''-C1'''' was suggested by the respective protons as detected at 0 and 52 °C (Figure 5). As a matter of fact, the signals corresponding to H-1', H-1''' at δ H 3.42 and 3.31, respectively, observed as two doublets at 52 °C, were spitted into a number of doublets at 0 °C. Concerning H-2' and H-2''', a faster interconversion rate was deduced from the well resolved triplet of triplets at δ H 5.23 and 5.21, respectively, at 52 °C which were coalesced and broadened moving towards 0°C.

Similarly, hydroxyl protons of the molecule presented interesting behaviour in variable temperature NMR experiments (Figure 6). At low temperatures, duplicated, well resolved peaks were detected corresponding to hydroxyl protons facilitating their characterization.

In case of hydroxyl protons significant differences in terms of chemical resonances between Conformational isomers exist in a dynamic equilibrium, where the relative free energies of isomers determine the population of each isomer and the energy barrier of rotation determines the rate of interconversion between isomers [START_REF] Morris | NMR Determination of Internal Rotation Rates and Rotational Energy Barriers: A Physical Chemistry Lab Project[END_REF]. In order to estimate the barriers of rotation about C1''-C5''' the rate of exchange (k e ) between the two states was calculated using the Gutowski-Holm equation (Equation 1) [START_REF] Gutowsky | Rate Processes and Nuclear Magnetic Resonance Spectra. II. Hindered Internal Rotation of Amides[END_REF]). Moreover, the free energy of activation for the rotation (∆G ‡ ) was calculated at the coalescence temperature using equation 2 [START_REF] Akhmedov | Dynamic NMR and ab initio studies of exchange between rotamers of derivatives of octahydrofuro[3,4-f]isoquinoline-7(1H)carboxylate and tetrahydro-2,5,6(1H)-isoquinolinetricarboxylate[END_REF]: k e = 2.22 ∆v (Equation 1)

∆G ‡ = 4.576 T c [(10.32+log(T c /k e )] (Equation 2)

where ∆v is the frequency difference between the two signals of the different conformers corresponding to the same proton and T c is the coalescent temperature for a specific signal.

In 1 H NMR spectrum (Figure 5, 298 K) of acrovestone, the chemical shift difference for the two resonance signals of H-1'' is 52 Hz, corresponding to k e = 294 s -1 and ∆G ‡ 14.9 kcal mol - 1 at T c 294 K. Correspondingly, ∆G ‡ for OH-6''' was calculated for 15.1 kcal mol -1 at T c 311 K.

Therefore, a rotation barrier of ~15 kcal mol -1 was proposed for acrovestone rotamers.

In parallel, the assessment of the different rotamers was performed by molecular mechanics calculation using MacroModel software in order to determine the more energetically stable conformers of acrovestone. Calculations afforded two distinct conformational states corresponding to two energy minima (Figure 8). The relative energy of the second conformer (Figure 8, green molecule) with respect to the global minimum (Figure 8, violet molecule) was 0.11 kcal mol -1 . Furthermore, their populations were estimated at 273K using Boltzmann distribution, revealing a ratio 1:1 between the two conformers. These findings demonstrated a good agreement between the molecular mechanics simulations and experimental NMR data. Moreover, as aforementioned, signals suggesting isoprenyl group rotation were observed in variable temperature 1 H NMR experiments (Figure 5). Therefore, in order to visualize possible rotation about C3-C1' and C3'''-C1'''', superposition of the energetically more favored conformers calculated by molecular mechanics simulations was performed separately for molecules with different isoprenyl orientations. Indeed, different proposed conformations for isoprenyl chains derived from calculations confirmed the initial hypothesis (Figure 9). Towards this effort, key carbon signals (C-5, C5''') were essential for the attribution of the duplicated peaks to the respective rotational conformers. In parallel, Boltzmann populations of all dominant conformers substantiated the occurrence of rotational conformers at 0 °C.

However, in the case of acropyranol A (2) and acrofolione A (6) a different behavior was observed. Despite the detection of multiple hydroxyl protons at 0 °C, the rest of the signals in the 1 H NMR spectrum were observed similar to the respective ones observed at 47 °C suggesting a limited rotation of these molecules. This finding was also confirmed by molecular mechanics calculation. The conformation of the additional ring presenting the same orientation with the isoprenyl chain was favoured in both compounds. A conformation resulting from the rotation of molecules 2 and 6 about C1''-C5''' presented a relative energy difference of 7.62 and 7.74 kcal mol -1 , respectively, corresponding to populations smaller that 3%. Therefore, the rotation of acropyranol A (2) and acrofolione A (6) about C1''-C-5''' seems to be almost absent while limited rotations of the isoprenyl chain and isopentyl chain were observed explaining the experimental 1 H NMR spectroscopic data (Figure 10). Acronychia-type acetophenones purified by FCPC and semi-preparative HPLC were isolated as optically inactive racemic mixtures. These molecules are comprised of two aromatic rings connected with an isopentyl chain leading to the formation of a chiral carbon (C-1''). Moreover, some derivatives possessing an additional ring on aromatic ring A of the core structure presented a second chiral centre supporting the potential occurrence of diastereomers. The resolution of different diastereomer compounds was not obtained in reversed phase chromatography. However, in the 1 H NMR spectra of acropyranol A (2) and acrofolione A (6), at 47 °C, the presence of non-equivalent signals attributed to the protons of the additional ring denoted the presence of diastereomers (Table A 3,Table A 11).

Therefore, the development of a methodology for the enantiomer and diastereomer separation was compulsory.

The application of chiral stationary phases was an essential prerequisite to achieve The structural and stereochemical differences in these polymeric chiral selectors are estimated to recognise specific classes of solutes, sometimes with a common overlapping area. Therefore, the screening of the different immobilized materials is highly recommended. As far as the mobile phase is concerned, immobilized columns give the possibility to apply organic solvents of various natures. In practice, the selection of the mobile phase is based mainly on the chiral recognition criteria, but also on considerations concerning the physical and chemical natures of the solute (solubility, hydrophobicity, chemical and stereochemical stability, etc.).

The method development in such cases is performed based on a screening approach of different organic solvent mixtures and then optimization of the solvent ratio according to the compound behaviour. Briefly, according to Zhang et al. alkane-IprOH mixtures, alkane-EtOH mixtures and alkane-MtBE-EtOH mixtures were tested initially. In a second step, alkane-EtOAc mixtures and finally the addition of an acidic additive were also attempted.

The abovementioned method development strategy gave rise to a number of systems assayed that are summarized in Table II. Specifically, concerning acrovestone (4) the two enantiomers were observed using Hex/ EtOH+0.1% F.A (99/1); however, baseline resolution could not be obtained.

Enantiomers of acropyrone (1) were not resolved probably due to its high hydrophobicity leading to a retention time of 4.2 min using Hex/ EtOH+0.1% F.A (99/1) as mobile phase.

The occurrence of one chiral centre in latter optically inactive compounds implied the presence of two enantiomers while the rest compounds possessing two chiral carbons were suspected for the presence of either two enantiomers or four isomers. Poor resolution of acrovestenol (5) isomers observed using Hex/ EtOH+0.1% F.A (98/2) suggested the presence of two enantiomers which was in good accordance with the NMR data indicating Overall, concerning Acronychia-type acetophenones the determination of diastereomers, enantiomers and rotamers was a complicated task due to structural peculiarities of these compounds. In such cases, in order to tackle these issues combination of different spectroscopic, chromatographic and computational techniques need to be applied and combined to get a better insight.

Isolation of Acronychia-type acetophenone diastereomers by SFC

The determination of diastereomer presence in some Acronychia-type acetophenone samples led to the development of a strategy for the separation of mixtures of diastereomers. Among the available techniques, achiral supercritical fluid chromatography (SFC) has been proven the most efficient for diastereomeric resolution [START_REF] Ebinger | Comparison of chromatographic techniques for diastereomer separation of a diverse set of drug-like compounds[END_REF].

The low viscosity and the high diffusivity of the mobile phase in SFC allows higher flow rates and lower pressure drops comparing to HPLC and thus, significant improvement in terms of speed and efficiency is obtained [START_REF] Pinkston | Comparison of LC/MS and SFC/MS for Screening of a Large and Diverse Library of Pharmaceutically Relevant Compounds[END_REF]. Therefore, a SFC method development protocol was set for the screening of different stationary phases and operating conditions in analytical scale with an ultimate goal the scaling of the method in semipreparative conditions for the isolation of adequate quantities of diastereomers. Briefly, a typical method development procedure in SFC includes primary the screening of different stationary phases, then the screening of diverse co-solvents and the alteration of temperature and pressure conditions for the improvement of the peak resolution.

Moreover, additives can be finally utilized for further improvement of peak shape. The transfer of the method in semi-preparative and preparative SFC conditions usually improves drastically the resolution of the peaks since the same particle size is applied with a considerably increased flow rate.

In the current study, two different achiral stationary phases were tested (Silica and 2ethyl pyridine) in combination with three diverse co-solvents (MeCN, MeOH, IPrOH) applying a standard gradient elution program of 10 min consisting of 1min conditioning with 5% co-solvent, 6 min of gradient elution up to 40% of co-solvent, 1 min of 40% cosolvent, return back to initial conditions in 1 min and 1 min of 5% co-solvent re-equilibration.

The flow rate was set at 5 mL/min allowing fast and effective chromatographic performance. Moreover, increase in oven temperature and pressure conditions was tested to assess the impact on the chromatographic behaviour. The aforementioned conditions resulted to the screening of acrofolione A (6) diastereomers using ten different methods in analytical scale (Table III). The obtained chromatograms are illustrated in Figure 12 representing the impact of different stationary phases and chromatographic conditions on chromatographic behaviour. In particular, 2-ethyl pyridine silica column had a significantly superior selectivity for acrofolione A (6) than silica column. Among the three co-solvents tested, MeOH was preferred as sharper peaks in parallel with slight diastereomer separation were obtained.

Elevated temperature and pressure conditions led to co-elution of diastereomers. Therefore, method 3 was selected for scaling up to semi-preparative separation conditions. In semi-preparative scale the same stationary phase was applied for the separation of acrofolione A diastereomers. Figure 13 illustrates the chromatogram obtained by injection of 1 mg of mixture of diastereomers in semipreparative column. The semipreparative separation scaled perfectly, although the analytical conditions were not optimized to maximize throughput. The resolution of diastereomers was considerably improved comparing to analytical scale allowing collection of high purity compounds (Figure 13).

However, the loading of the column with greater quantity was prohibitive due to the obtained resolution. Therefore, ten consecutive injections were performed. Diastereomers 1 and 2 were collected using fraction collector, concentrated and analysed by NMR (47 and 0 °C). The separation produced two fractions with high diastereomeric purity. IV). 
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In particular, concerning XU212 (resistant to tetracycline) and SA-1199B (resistant to ciprofloxacin) strains, acrovestone showed 8 and 16 fold decreases in MIC, respectively, comparing to the positive control norfloxacin. These findings are of great importance suggesting acrovestone as a new extremely potent antibacterial agent. Acrofolione A found to exhibit moderate antibacterial activity against S. aureus strains and B. subtilis while both compounds were found inactive against gram(-) bacteria that were assayed.

Cytotoxic activity of Acronychia type acetophenones against human tumour cell lines

The cytotoxicity of the isolated Acronychia-type acetophenones (1-7) was examined using an MTS assay against human DU145 prostate cancer and A2058 melanoma cells. Cell viability (%) was normalized to the vehicle control (Table A 16). All acetophenones tested inhibited differentially cell viabilities for both cell lines. Compounds 1-3 and 7 displayed relatively weak cytotoxicity, while compounds 4-6 showed substantial cytotoxicity for both cell lines, as shown in Table V. Interestingly, compounds 4 and 5 exhibited the most potent activity, with IC50 values of 0.38 and 2.8 µM, among the compounds tested against A2058 melanoma cells (Table V). Among the Acronychia-type acetophenones, compounds 4 and 5

were the most effective for DU145 cells, with IC50 values of 0.93 and 2.7 µM, respectively.

All compounds were also assayed for their cytotoxicity against normal human dermal fibroblast (NHDF) cell line (Table V). They were found to be inactive and exhibited IC 50 values of >5 µM, thereby suggesting these compounds may be selective to tumor cells.

These data suggest also that the presence of a short aliphatic, hydrophobic chain such as an isoprenyl (4) or modified isoprenyl moiety (5) at the C-3 position of the ring A enhances cytotoxicity against both the tumor cell lines used. In contrast, the presence of an additional ring seems to reduce the cytotoxicity of the acetophenone dimers (1, 2, 3, and 7) investigated. Moreover, the presence of an additional ring fused at the C-3 and C-4 positions (ring A) seems to enhance the cytotoxic activity compared to their isomers having the additional ring fused at the C-2 and C-3 positions (2 vs 3 and 6 vs 7). It is worth noting the different activity profile of the two isomers 6 and 7 against the two cancer cell lines used.

This difference indicates that the relative position of the additional ring on the basic Acronychia-type acetophenone skeleton contributes significantly to the cytotoxic activity. 

Anti-inflammatory activity of Acronychia type acetophenones

Acronychia genus has been mainly utilized in traditional medicine for the treatment of asthma, cough and rheumatism designating an important anti-inflammatory activity [START_REF] Rahmani | Constituents of Acronychia laurifolia[END_REF]. Until today the anti-inflammatory properties of Acronychia constituents and specifically Acronychia-type acetophenones have not been assessed with the exception of a publication referring to the moderate COX-2 inhibitory effect of acrovestone (4) and acrovestenol (5) (Pathmasiri et al. 2005). In this context, the estimation of the anti-inflammatory activity of all Acronychia type acetophenones isolated during this study was performed by in vitro assessment of their inhibitory effects on 5-lipoxygenase (5-LO) and microsomal prostaglandin E 2 synthase-1 (mPGES-1).

5-LO is a key enzyme in the biosynthesis of leukotrienes (LTs) catalysing the initial transformation of arachidonic acid (AA). LTs are pivotal pro-inflammatory mediators associated strongly with the occurrence of asthma and other inflammation related diseases such as chronic inflammation, atherosclerosis and tumorigenesis [START_REF] Rådmark | 5-Lipoxygenase: regulation of expression and enzyme activity[END_REF]).

Currently, leukotriene antagonists are used in the treatment of asthma demonstrating the importance of this pharmacological target. 5-LO is an iron containing redox active enzyme and its natural substrate is AA. Generally, 5-LO inhibitors are categorized according to the inhibitory modes of action into three main groups. The first involves redox-active 5-LO inhibitors, acting by reducing the 5-LO active site iron from the active ferric state to the inactive ferrous state. The second concerns iron ligand inhibitors which have been reported

to chelate the active site iron. The third group are non redox-type inhibitors that compete with AA for binding to 5-LO, lacking redox properties [START_REF] Pergola | 5-Lipoxygenase inhibitors: a review of recent developments and patents[END_REF]. Recent developments in anti-inflammatory compounds promote those with dual action, possessing higher anti-inflammatory efficacy accompanied by reduced number and severity of side effects. In this context, initially, 5-LO in combination with cyclooxygenase (COX) inhibition was targeted leading to greater efficiency and lower gastric toxicity [START_REF] Laufer | 6,7-Diaryldihydropyrrolizin-5-yl)acetic Acids, a Novel Class of Potent Dual Inhibitors of Both Cyclooxygenase and 5-Lipoxygenase[END_REF].

More recently, the combination of 5-LO with microsomal prostaglandin E 2 synthase-1

(mPGES-1) inhibition was proposed as a promising category of anti-inflammatory agents that hamper cardiovascular toxicity observed in the previous case [START_REF] Koeberle | Pirinixic Acid Derivatives as Novel Dual Inhibitors of Microsomal Prostaglandin E2 Synthase-1 and 5-Lipoxygenase[END_REF].

In order to comprehensively explore 5-LO inhibition capacity of all isolated Acronychia-type acetophenones both cell-free and intact cell assays were performed.

Moreover, the estimation of mPGES-1 inhibition was considered important to assess a potential dual action of this group of compounds. For the estimation of 5-LO activity zileuton, which is approved for asthma treatment [START_REF] Wenzel | Zileuton: the first 5-lipoxygenase inhibitor for the treatment of asthma[END_REF], was used as a positive control whereas mPGES-1 inhibition capacity was compared to MK886 [START_REF] Rouzer | MK886, a potent and specific leukotriene biosynthesis inhibitor blocks and reverses the membrane association of 5-lipoxygenase in ionophore-challenged leukocytes[END_REF]. Interestingly, all Acronychia-type acetophenones exhibited important inhibition of 5-LO and mPGES-1 with some compounds presenting IC 50 values significantly close to the positive controls (Table VI). 

± 0.6 > 10 4.2 ± 0.2 acropyranol A (2) 2 ± 0.5 5.0 ± 0.6 1.9 ± 0.2 acropyranol B (3) 7.3 ± 1.8 5.3 ± 0.7 2.7 ± 0.1 acrovestone (4) 2.7 ± 0.2 2.3 ± 0.6 1.1 ± 0.02 acrovestenol (5) 2.5 ± 0.3 6.3 ± 2 1.1 ± 0.02 acrofolione A (6) 5.3 ± 1.3 7.3 ± 0.7 1.3 ± 0.2 acrofolione B (7) > 10 4.5 ± 1 1.1 ± 0.1 zileuton 0.6 ± 0.1 1.7 ± 0.7 n.d. MK886 n.d. 0.03 ± 0.01 2.5 ± 0.5
In particular, concerning mPGES-1 inhibition capacity, the majority of tested compounds displayed IC 50 values of 2-fold magnitude lower comparing to the positive control (MK866). Acropyranol A (2) demonstrated potent inhibition of 5-LO in cell-free (IC 50 2 µM) and intact cell assay (IC 50 5 µM) while important was also the mPGES-1 inhibition (IC 50 1.9 µM). Moreover, interesting inhibitory activity of both 5-LO and mPGES-1 enzymes was observed from acrovestenol (5). However, among them, acrovestone (4) represented the most potent dual inhibitor with IC 50 values of 2.7 µM in cell-free and 2.3 µM in intact cell 5-LO assays along with an IC 50 value of 1.1 µM in cell-free mPGES-1 assay (Figure 15). These results suggest acrovestone as an important natural dual inhibitor potentially applicable for the treatment of inflammation related diseases. Towards an effort to explore the way Acronychia-type acetophenones interact and inhibit 5-LO, docking calculations were performed using the structure S663D stable 5-LO mutant in complex with the natural substrate, arachidonic acid. The interaction mode of acrovestone with 5-LO is illustrated in Figure 16. Acrovestone binds 5-LO in the active site of the enzyme, forming a number of hydrophobic interactions as well as hydrogen bonds with residues of the catalytic site. However, no chelation with iron was suggested by docking. All The structural peculiarities of this category of secondary metabolites led to the application of different methodologies for the detection of conformational rotamers present in dynamic equilibrium in solution. Initially, variable temperature NMR studies were performed allowing the definition of rotational barrier energies of the observed conformers.

Emphasis was given at low temperature experiments to determine rotamer presence and spectral characteristics of individual conformer. In parallel, Boltzmann normalized populations of all dominant conformers were determined for each compound using the molecular mechanics energies calculated at the same temperature with NMR experiments (0 °C) leading to a thorough description of conformational rotamers. Furthermore, resolution of enantiomers and diastereomers of Acronychia-type acetophenones was successfully performed by normal phase chiral chromatography allowing the complete characterization of these compounds. In case of acrofolione A the two diastereomers were isolated in high purity using SFC selecting the method following a rapid screening protocol.

The pharmacological evaluation of the isolated Acronychia-type acetophenones was based on the traditional use of the plant material. A significant antibacterial activity of acrovestone against a number of Staphylococcus strains supported the traditional use of Acronychia for skin and respiratory infections. Moreover, the assessment of cytotoxicity of all isolated compounds against prostate and melanoma human cancer cells revealed an interesting activity of acrovestone and acrovestenol while absence of cytotoxicity was observed in normal cell lines. Finally, the anti-inflammatory activity designated from the utilization of the plant material for the treatment of asthma and rheumatism was assessed by the inhibition capacity of 5-LO and mPGES-1 enzymes indicating acrovestone, acropyranol A and acrovestenol the most potent compounds among Acronychia-type acetophenones.
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NMR spectroscopic data (600 MHz, 47 °C CDCl 3 ) for Acrovestone 1'', 2'', 3'' 1'', 3'', 4'', 5'' 39.5 3.27 brm 23.0 2''', 3''', 4''', 2'''', 3'''' 2'''', 5'''', MeOH, OH-4''' 2'''' 5.18 brt 122.9 3''', 1'''', 4'''', 5'''' 1'''', 4'''', MeOH, OH-4''' 3'''' 132.1 4'''' 1.68 s 25.8 3''', 2'''', 3'''', 5'''' 2'''' 5'''' 1.76 s 18.0 3''', 2'''', 3'''', 4'''' 1'''', MeO MeO 3.70 s 62.7 2''' 1'''', 2'''', 5'''', MeCO-1''' MeCO-1 2.66 s 32.9 28.2 4, 5, 2'', 3'',4''', 5''' 5, 1'', 3'', 4'', 5'', 5''' '' 3.31 (d, 5.6) 23.1 2''', 3''', 4''', 2'''', 3'''' 2'''', 5'''', MeO 2'' '' 5.21 (t, 6.5) 123.3 3''', 1'''', 4'''', 5'''' 1'''', 4'''', MeO 3'''' 131.3 4'''' 1.69 s 25.8 3''', 2'''', 3'''', 5'''' 2'''' 5'''' 1.77 s 17.9 3''', 2'''', 3'''', 4'''' 1'''', MeO MeO 3.71 s 62.6 2''' 1'''', 2'''', 5'''', MeCO- 3.27 brm 22.9 2''', 3''', 4''', 2'''', 3'''' 2'''', 5'''', MeOH 2'''' 5.17 brt 122.9 3''', 1'''', 4'''', 5'''' 1'''', 4'''', MeOH 3'''' 132.1 4'''' 1.68 s 25.5 3''', 2'''', 3'''', 5'''' 2'''' 5'''' 1.75 s 18.0 3''', 2'''', 3'''', 4'''' 1'''', MeO MeO 3.69 s 62.7 2''' 1'''', 2'''', 5'''', MeCO-1''' MeCO-1 2.70 s 32.9 (Adsersen et al. 2007). Their biological interest is focused mainly on their significant cytotoxicity against several human tumor cell lines (Wu et al. 1989, Oyama et al. 2003) and anti-inflammatory activity (Pathmasiri et al. 2005). Up to date a small number of derivatives have been reported exhibiting high potential as anticancer agents against human melanoma and prostate tumor cell lines [START_REF] Kouloura | Cytotoxic prenylated acetophenone dimers from Acronychia pedunculata[END_REF]. The cytotoxicity of these compounds seems to be strongly associated to the different structural elements of the core structure of AtA modulating their biological properties.
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Structurally, AtA are fully substituted phloroglucinol dimers consisting of two aromatic rings connected with an isopentyl chain. Naturally occurred derivatives are characterized by a standard substituted ring (ring B) while the other aromatic ring (ring A) is bearing different substituents or additional rings resulting to structurally similar derivatives or isomers (Figure 1). Moreover, they are highly symmetric with the ability to form extended intra-and inter-molecular hydrogen bonds and they are characterized by the presence of different enantiomers, diastereomers and rotamer. This particular nature of AtA renders their identification challenging and until now, limited data have been reported for the structure elucidation thereof. A previous study presenting the x-ray crystallography of acrovestone ( 1), a model AtA compound, is available (Wu et al. 1989) but mainly the structure elucidation of these compounds has been performed using NMR techniques (Pathmasiri et al. 2005[START_REF] Kouloura | Cytotoxic prenylated acetophenone dimers from Acronychia pedunculata[END_REF]). However, high temperature NMR (47°C) acquisitions and NOE experiments are highly required for the elucidation of isomers [START_REF] Kouloura | Cytotoxic prenylated acetophenone dimers from Acronychia pedunculata[END_REF]. According to our knowledge, the analysis of AtA via mass spectrometric techniques has not been reported up to now while MS data regarding the phloroglucinol derivatives in general are almost absent. Therefore, the application of modern mass spectrometric methods for the investigation and identification of AtA is of great interest.

Multistage mass spectrometry in natural products

Mass spectrometry, especially coupled with atmospheric pressure ionization (API) sources (ESI: electrospray ionization and APCI: atmospheric pressure chemical ionization)

have been applied widely for the structural investigation of natural products [START_REF] Tian | Mass spectrometry and tandem mass spectrometry of Citrus limonoids[END_REF][START_REF] Cuyckens | Mass spectrometry in the structural analysis of flavonoids[END_REF], Wang et al. 2004[START_REF] Liu | Structure analysis of triterpene saponins in Polygala tenuifolia by electrospray ionization ion trap multiple-stage mass spectrometry[END_REF][START_REF] Bankefors | Electrospray ionization ion-trap multiplestage mass spectrometry of Quillaja saponins[END_REF]). In addition, the introduction of multistage mass spectrometry (MS n ) approach in combination with dissociation methods such as collision induced dissociation (CID) facilitates significantly the identification process of secondary metabolites [START_REF] Niessen | Structure elucidation by LC-MS[END_REF]. This approach leads to the generation of sequential fragmentation spectra also called spectral trees or ion trees, where the number of the successive MS levels is depending on the ionization efficiency and the concentration of the metabolites under study. Additionally, the use of mass analyzers enabling high resolution measurements facilitates the determination of the elemental composition of both pseudomolecular and fragment ions. Thus, their application in structural studies results in deeper and thorough conception of the fragmentation mechanism of the compounds under investigation (van der [START_REF] Van Der Hooft | Polyphenol identification based on systematic and robust high-resolution accurate mass spectrometry fragmentation[END_REF].

Generally, the characterization of fragment ions observed in the different MS n spectra and the elucidation of fragmentation patterns is a demanding process while limited mass spectral fragmentation databases in API conditions are available. Furthermore, although there are numerous studies dealing with the characterization of fragment ions produced by ESI-MS/MS studies in diverse compounds, limited data are available concerning general fragmentation rules regarding API sources [START_REF] Holčapek | Basic rules for the interpretation of atmospheric pressure ionization mass spectra of small molecules[END_REF][START_REF] Weissberg | Interpretation of ESI(+)-MS-MS spectra-Towards the identification of -unknowns‖[END_REF]. For instance Mass Frontier software which was used in the current study contains a large fragmentation library with a number of established fragmentation mechanisms in EI & CI conditions and associated structures. In this context, the hybrid linear ion trap-Orbitrap mass spectrometer (LTQ-Orbitrap) has been proven a powerful tool for the development of methodologies for sensitive and accurate structure elucidation of small compounds [START_REF] Dunn | Metabolic profiling of serum using ultra performance liquid chromatography and the LTQ-Orbitrap mass spectrometry system[END_REF], Hooft et al. 2012[START_REF] Zhang | Neutral fragment filtering for rapid identification of new diester-diterpenoid alkaloids in roots of Aconitum carmichaeli by ultra-high-pressure liquid chromatography coupled with linear ion trap-orbitrap mass spectrometry[END_REF][START_REF] Blaas | Structural profiling and quantitation of glycosyl inositol phosphoceramides in plants with fourier transform mass spectrometry[END_REF][START_REF] Qiu | Profiling of phenolic constituents in Polygonum multiflorum Thunb. by combination of ultra-high-pressure liquid chromatography with linear ion trap-Orbitrap mass spectrometry[END_REF]). The linear trap analyzer offers the capability of producing MS n spectra combining the advantage of high sensitivity and fast scan speed [START_REF] Dear | Ultra-performance liquid chromatography coupled to linear ion trap mass spectrometry for the identification of drug metabolites in biological samples[END_REF]). On the other hand, the Orbitrap analyzer ensures high resolution and mass accuracy close to Fourier-transform ion cyclotron resonance (FT-ICR) [START_REF] Zubarev | Orbitrap mass spectrometry[END_REF]) providing high mass accurate measurements for both precursor and product ions commonly less than 3ppm [START_REF] Lim | Metabolite identification by data-dependent accurate mass spectrometric analysis at resolving power of 60 000 in external calibration mode using an LTQ/Orbitrap[END_REF][START_REF] Qiu | Profiling of phenolic constituents in Polygonum multiflorum Thunb. by combination of ultra-high-pressure liquid chromatography with linear ion trap-Orbitrap mass spectrometry[END_REF]. The combination of the aforementioned analyzers provides important advantages offering new insights intriguing structural issues such as the identification of isomers. Additionally, LC-HRMS n techniques facilitate drastically the structure identification procedure offering orthogonally chromatographic information.

Especially, in the field of natural products chemistry this has been proven significantly useful enabling the profiling of complex mixtures such as natural extracts. In particular, an ion treebased strategy could be considered as a method of choice for the systematic detection and structural determination of extracts' constituents. The main advantage of this strategy is the dereplication of several chemical groups in different mixtures without prior isolation [START_REF] Wolfender | Evaluation of Q-TOF-MS/MS and multiple stage IT-MSn for the dereplication of flavonoids and related compounds in crude plant extracts[END_REF][START_REF] Kind | Advances in structure elucidation of small molecules using mass spectrometry[END_REF]).

Multistage mass spectrometry of AtA compounds

In the present study, a systematic analysis of AtA using a LTQ-Orbitrap platform applying both ESI and APCI ionization sources was intended in order to establish a methodology for the unambiguous structure elucidation of AtA by multistage HRMS.

Therefore, a detailed study on the fragmentation mechanisms of these compounds under different ionization conditions was thoroughly investigated. For this purpose, the detection of key fragment ions that could be utilized for the identification of this specific category of compounds and the discrimination of different derivatives, even isomers was aimed. Since a limited number of AtA is reported up to day despite their important pharmacological importance, a UHPLC-ESI(-)-MS n method was developed for the dereplication of known and the identification of possibly new Acronychia-type acetophenones in Acronychia extracts.

Experimental 1. Standards and reagents

The reference AtA investigated in this study (Figure 1) have been previously isolated from the trunk bark of Acronychia pedunculata and unambiguously identified by spectroscopic methods [START_REF] Kouloura | Cytotoxic prenylated acetophenone dimers from Acronychia pedunculata[END_REF]. The purity of all compounds was determined by RP-HPLC-PDA and NMR and found >89%. MS grade methanol (MeOH) and water (H 2 O)

were purchased by Merck (Germany) and formic acid (FA) from Sigma-Aldrich (Germany).

Sample preparation

Stock solutions of all reference compounds were prepared in MeOH (1 mg/mL).

Further dilutions were performed in order to obtain the working samples of 10 µg/mL (ESI) and 20 μg/mL (APCI) used in the analysis by direct infusion method. A standard mixture of the reference compounds (10 μg/mL) was also prepared. For the preparation of the Acronychia extracts a previous method was applied [START_REF] Kouloura | Cytotoxic prenylated acetophenone dimers from Acronychia pedunculata[END_REF]. Briefly, an aliquot of 2 g of plant material was extracted using a two steps procedure. 

Mass spectrometry and data handling

The HRMS n analysis of AtA by direct infusion method and the LC-MS analysis were performed using an UHPLC-LTQ-Orbitrap platform (Thermo Finnigan, San Jose, CA, USA).

For infusions, ESI and APCI ionization sources, in both modes were used while for the LC-MS analysis only ESI(-) was incorporated. For all acquisitions only the Orbitrap analyzer was employed. In ESI direct infusion method all samples were subjected to analysis using an infusion pump at a flow rate of 5 μL/min, in a mass range of m/z 50-800 and injection time at 10 5 μs. The resolution was set at 30000 (FWHM) and the data were acquired in profile mode. 1 microscan was used for the full scan and 2 microscans for HRMS n acquisitions. For each acquisition 30 scans were averaged into a single profile spectrum. In positive mode, spray voltage was set at 3.5 V, capillary temperature at 350 • C, capillary voltage at 10 V and tube lens at 95 V. In negative mode, spray voltage was set at 3.5 V, capillary temperature at 300 • C, capillary voltage at -50 V and tube lens at -48 V. Nitrogen was used as sheath and auxiliary gas at flows of 12 and 6 arbitrary units, respectively, in both modes.

For APCI acquisitions, the same infusion pump was used at a flow rate of 10 μL/mL, a mass range of m/z 50-800 and injection time at 5×10 5 μs. The resolution was set at 30000

(FWHM) and the data were acquired in profile mode. 1 microscan was used for full scan and 3 microscans for the HRMS n acquisitions. All acquisitions were averaged from 30 scans into a single profile spectrum. In positive ionization mode vaporizer temperature was set at 350 • C, discharge current at 5 μA, capillary temperature at 275 • C, capillary voltage at 3 V and tube lens at 40 V. In negative ionization mode, vaporizer temperature was set at 350 • C, discharge current at 5 μA, capillary temperature at 275 • C, capillary voltage at -8,5 V and tube lens at -75 V. Nitrogen was used as sheath and auxiliary gas at flows of 30 and 10 arbitrary units, respectively, for both modes.

Regarding the MS n experiments, the collision energy (CID) was adjusted between 16% and 35%, in both sources and modes according to the requirements of each compound.

The activation time was set at 30 ms (q, 0.25). A window of 1 u was used to isolate the precursor ions. The fragmentation of all reference compounds involved four fragment levels (MS 2 until MS 5 ). Specifically, MS 2 fragmentation of the pseudomolecular or adduct ions were initially performed and then MS 3 -MS 5 fragmentations of the most intense ions were followed using a 5% threshold of relative intensity.

LC experiments were conducted using an Accela UHPLC system (Thermo Finnigan, San Jose, CA, USA) consisting of an Accela pump and autosampler. Chromatographic separations were carried out on a Hypersil GOLD™ C 18 column 150mm × 4.6 mm, 3μm. The mobile phase was consisted of a) H 2 O with 0.1% FA and b) MeOH. The elution program was composed of an initial gradient elution step of 2 min from 10% MeOH to 75% MeOH followed by 1 min of isocratic step (75% MeOH). Then a gradient elution step of 22 min from 75% MeOH to 100% MeOH and after 1 min of isocratic step (100% MeOH) were performed. A step of 1 min returning to the initial condition and finally 3 min of equilibration were followed. The flow rate was 500 μL/min. LC experiments were performed using ESI source in negative mode and the operating conditions were identical as described above apart from the flow rate of nitrogen which was used as sheath and auxiliary gas and adjusted to 40 and 20 arbitrary units, respectively. A method consisting of a full scan and a data dependent acquisition was developed. In the full scan experiments the mass range was set between m/z 50-800 and the FT resolution at 30000 (FWHM). The data dependent MS n experiments using CID value of 22% were performed at 7500 (FWHM) mass resolution.

Data acquisition and analysis were performed using Xcalibur software version 2.0.7 (Thermo Scientific). For identification of AtA specific criteria were set. Specifically, for elemental composition (EC) prediction, C (max no. 40), H (max no. 50), O (max no. 12) and Na (max no. 1) were selected as preferred elements. Mass tolerance was set to 3 ppm for all ions (full scan and MS n ) while the RDBeq. values were restricted between 0 and 16. Using Xcalibur peak peaking algorithms, ion lists were generated together with the corresponding relative intensities, ∆ values (in ppm), RDBeq. values and suggested EC for all fragments.

Using Excel environment MS n spectral trees were constructed. The generation of proposed fragmentation mechanisms and spectral trees were facilitated using Mass Frontier software (HighChem, Slovakia).

Results and Discussion

1. Structure elucidation of AtA using multistage HRMS Acronychia-type acetophenones (AtA) are prenylated acetophenone dimers, highly symmetric and fully substituted, consisted of two aromatic rings A and B linked with an isopentyl chain between C-5 and C-5'''. Regarding all AtA reported so far, ring B, is constant, substituted with two hydroxyl (C-4''' and C-6'''), an acetyl (C-1'''), an isoprenyl (C-3''') and a methoxy group (C-2'''). In contrast, ring A is characterized by different substitution patterns;

typically modified isoprenyl chain (compounds 1, 2) or additional rings (compounds 3-7).

According to the fusion position of the additional ring, AtA could be divided to type-L (compounds 4, 6) or type-R (compounds 3, 5, 7) where the ring is formed at position 3 and 4 or position 2 and 3, respectively (Figure 17). Mabry and Markham developed the widely used nomenclature system for flavonoids which has been evolved by Claeys and co-workers [START_REF] Ma | Characterization of flavone and flavonol aglycones by collision-induced dissociation tandem mass spectrometry[END_REF]) while Costello and coworkers [START_REF] Domon | A systematic nomenclature for carbohydrate fragmentations in FAB-MS/MS spectra of glycoconjugates[END_REF]) have been introduced a systematic nomenclature for glycoconjugates. Following a similar rationale, a nomenclature system is proposed based on characteristic cleavages related to rings A and B. General trends employed in systematic studies investigating the fragmentation patterns of aliphatic chains by straightforward bond cleavage were taken under consideration as well [START_REF] Klagkou | Approaches towards the automated interpretation and prediction of electrospray tandem mass spectra of non-peptidic combinatorial compounds[END_REF]. Specifically, A and B species refer to the cleavage of the corresponding aromatic rings while the subscripts 1 or 0 indicate the presence or not of the bridge isopentyl chain on the derived fragments, respectively (Figure 18). Therefore, typical product ions generated from adduct, protonated or deprotonated ions of AtA, in both modes could be annotated following the proposed nomenclature scheme (Table VII). which demonstrates their stability under these conditions [START_REF] Klagkou | Approaches towards the automated interpretation and prediction of electrospray tandem mass spectra of non-peptidic combinatorial compounds[END_REF]. The behavior of reference AtA was initially investigated by infusion method. Based on the HRMS n spectra the ion trees of compounds 1-7 were constructed. All ions reaching a 5%

intensity threshold in all levels were selected for further analysis. As first general rule, it was observed that all compounds upon subjected to ESI(+) were detected as stable adduct ions with sodium [M+Na] + in full scan mode while the protonated molecular ions were completely absent under the given conditions. Similarly, all the fragment ions in MS n spectra were also detected as sodium adducts. This ionization preference could be explained by the particular polyhydroxylated nature of AtA offering influential localized charge on the multiple oxygen atoms as well as their chelating ability which is proven by their structural motif and their tendency to form heterodimers [START_REF] Kruve | Sodium adduct formation efficiency in ESI source[END_REF].

Acrovestone (1), a model AtA compound bearing two prenyl groups on C-3 of each aromatic ring, yielded characteristic fragment ions in MS 2 , MS 3 and MS 4 spectra upon subjected to ESI(+) observed in all reference compounds. In particular, two characteristic fragmentation motifs were observed i) the elimination of intact aromatic rings by rupture of C-5 or C-5΄΄΄ and ii) the consecutive loss of C 4 H 8 (56u) indicating the fission of isoprenyl and/or isopentyl chains (Figure 19). 19). On the other hand, 5 presented similar fragmentation pattern to 4 and all the ions detected in the MS n spectra of 4 were also present in the MS n spectra of 5, accordingly.

However, additional ions were recorded in 5 revealing another pattern. In particular, Moreover, characteristic ions representing the fusion ring orientation could be observed. The behavior of 1-7 under ESI(+) revealed a specific fragmentation pattern including key fragment ions and characteristic cleavages that could be used for the identification of AtA, the separation of region and structural AtA isomers as well as their detection in complex mixtures (Figure 22). These features are summarized below.

~ and practically could be considered absent ( Regarding the [A 1 -H] -ion when subjected to further fragmentation, the elimination of IX).

This difference in the intensity of [A 1 -H] -ions could be possibly attributed to steric hindrance considerations [START_REF] Sawada | Enantioselectivity in fast-atom bombardment (FAB) mass spectrometry[END_REF]. Moreover, some minor ions at m/z 259. 0972, 193.0505 and 191.0349 Nonetheless, it enabled the generation of MS n trees for all compounds. This difference in ionization behavior of AtA between the two sources could be correlated with their relative high lipophylicity [START_REF] Gabelica | Internal energy and fragmentation of ions produced in electrospray sources[END_REF]. Regarding the fragmentation motif of AtA in higher levels using APCI(-) was found similar to ESI(-) in all reference compounds.

UHPLC-ESI(-)-HRMS n analysis of Acronychia extracts

As thoroughly discussed in the previous sections, ion tree-based methodologies were proven significantly useful for the characterization of AtA, in both ESI negative and positive mode. Certain fragmentation patterns and decision trees could be used for the accurate and selective identification of AtA compounds. In order to validate this approach but also to generate a strategy for dereplication of AtA in complex mixtures a UHPLC-ESI(-)-HRMS n methodology was developed and applied. For the generation of ion trees a data dependent method utilizing the dynamic exclusion (DE) principle was incorporated. DE is widely applied in dereplication studies and is quite useful when highly background ions are present such as in plant extracts [START_REF] Zhang | Effect of Dynamic Exclusion Duration on Spectral Count Based Quantitative Proteomics[END_REF][START_REF] Andrews | Improving Proteome Coverage on a LTQ-Orbitrap Using Design of Experiments[END_REF].

Specifically, three extracts deriving from the trunk bark of Acronychia pedunculata were analyzed and screened for the presence of the reference compounds while emphasis was given on the detection of unknown derivatives. For the selection of optimal ionization mode a standard mixture of the seven reference compounds was analyzed in both modes and sensitivity aspects were considered (Figure A 72). Despite the fact that both modes displayed high sensitivity and could afford key fragment ions, ESI(-) was finally selected since it provided better signal to noise ratio and thus minor compounds could be detected more easily.

In order to mine AtA derivatives in the extracts, BP and extracted ion chromatograms X). Furthermore it is important to note that the accuracy of the method was proven quite high as it is illustrated from the Δm values (0.27 ≤ Δm ≤ 1.43 ppm). These data are included in Table 4 and hereafter, the identification process as well as the characterization of representative new derivatives will be briefly discussed. Apart from the abovementioned compounds which comprise relative structures to the reference AtA, several other peaks satisfying the identification criteria but presenting different structural features were detected. These peaks could be divided in three different groups regarding their ECs and more specifically, AtA-C 37 , AtA-C 42 and AtA-C 47 . By straight comparison of their structural features with the reference AtA it could be easily presumed that they differ in the number of isoprenyl units (IP). Thus, group AtA-C 37 (peaks 17, 32, 34, 29, 13, 16, 30 and 31) includes all derivatives with 1 additional IP, AtA-C 42 (peaks 15, 18, 19, 21, and 26) with 2 IP and AtA-C 47 (peaks 20, 22, 23, 24, and 25) with 3 IP, on the basic AtA structure. Based on the chemical and biosynthetic possibilities could be attributed to geranyl-, farnesyl-or geralylgeranyl derivatives according to the substitution patterns and the different combinations of these units. Furthermore, the number of O atoms could be utilized for the detection of hydroxylated polyprenylated AtA (e.g. 13) and the number of H atoms the dihydropolyprenylated AtA (e.g. 16). It is worth noting that the elution order generally follows the trend C 32 C 37 C 42 C 47 verifying the occurrence of additional lipophylic units in higher Rt. Regarding their spectrometric behavior they present many similarities with AtA since most of the characteristic ions are also detected (Table 4).

Nevertheless, additional ions, cleavages and patterns are observed especially regarding the gerenylgeranyl derivatives. Given the fact that no reference polyprenylated AtA were available any assumption could be dangerous and it was not attempted in this manuscript.

Concerning the distribution of compounds, all reference AtA were unambiguously traced in the Et 2 O(A) extract as expected and in the other two extracts after alkalinization (Et 2 O and CH 2 Cl 2 ). The only exception concerns 7 which was not traced elsewhere.

Generally, more similarities were observed between the Et 2 O and CH 2 Cl 2 extracts (Table X). AtA compounds was proposed. In order to assess the validity of this approach, the reproducibility of the generated MS n spectra under different conditions was investigated by the comparison of the relative intensities of the main fragment ions.

In particular, the collision energy was considered a main parameter which could potentially influence the MS n spectra. In this context, MS n spectra were acquired at varying collision energies in both ionization modes resulted in identical fragmentation patterns.

Independently of the collision energies applied, the relative intensity of the fragment ions observed in different MS n spectra did not alter significantly, proving the reproducibility of the MS n spectra using this instrumentation (Figure 28A). Another parameter that was assessed was the reproducibility of the MS n spectra from offline and online sample introduction. Specifically, the MS n spectra obtained from infusion of reference compounds, Latin America use traditional medicine as first line healthcare while the use and popularity of traditional medicine in Western word is always increasing according to WHO [START_REF] Briskin | Medicinal Plants and Phytomedicines. Linking Plant Biochemistry and Physiology to Human Health[END_REF], Bagozzi 2003). The indications and usage of these herbal preparations are handed down orally from generation to generation consequently the scientific background on these practices is poor or absent. Nowadays, there have been targeted efforts towards the exploitation of the information derived from these traditional medicine systems. This mainly involves the identification and isolation of bioactive natural products and the exploration of their mechanisms of action which still remain unknown for the majority of them. Therefore, the drug discovery from medicinal plants constitutes an emerging field with the attempt to discover new bioactive natural products using state of art techniques [START_REF] Tyler | Phytomedicines: Back to the Future[END_REF][START_REF] Balunas | Drug discovery from medicinal plants[END_REF].

Natural products possess a predominant position as therapeutic agents throughout the years [START_REF] Newman | Natural Products as Sources of New Drugs over the Last 25 Years[END_REF][START_REF] Newman | Natural Products As Sources of New Drugs over the 30 Years from 1981 to 2010[END_REF]. Natural products are synthetized in nature to facilitate various physiological functions constituting a structurally diverse and complex array of compounds [START_REF] Wink | Evolution of secondary metabolites from an ecological and molecular phylogenetic perspective[END_REF]. These unique structural features such as chiral centres, aromatic rings, complex ring systems, degree of molecule saturation, and number and ratio of heteroatoms provide high impact at the drug discovery effort [START_REF] Yuliana | Metabolomics for the rapid dereplication of bioactive compounds from natural sources[END_REF]). In addition, natural products have been proved to cover a larger ‗chemical space' comparing to compounds designed from combinatorial chemistry that is associated to a widespread biological relevance [START_REF] Dobson | Chemical space and biology[END_REF][START_REF] Larsson | ChemGPS-NP: Tuned for Navigation in Biologically Relevant Chemical Space[END_REF]). Thus, natural products excel comparing to synthetic chemicals from the perspective of drug lead finding in terms of molecular diversity and biological functionality [START_REF] Nisbet | Will natural products remain an important source of drug research for the future?[END_REF]. Therefore, natural products can serve not only as potential drugs but also as an initial point for the optimization of the structure in order to achieve more efficient and/or less toxic derivatives.

As a matter of fact, naturally derived compounds have been the inspiration for a great number of approved drugs and drug candidates [START_REF] Newman | Natural product scaffolds as leads to drugs[END_REF].

Despite the evidence that medicinal plants comprise a prolific source of lead compounds, the drug discovery process from plant material faces many challenges.

Traditional drug discovery approaches usually lead to the repeated isolation of the same compounds while false positive results are often observed due to the presence of multiple bioactive compounds (synergic interactions) or the presence of highly active compounds in really small quantities [START_REF] Gilbert | Synergy in plant medicines[END_REF]. Nevertheless, the introduction of modern technological advances in the natural products drug discovery contributed significantly to circumvent these challenges. Towards this effort, the implementation of state of the art analytical techniques played a crucial role. Therefore, miniaturised and automated methodologies have been proposed providing a high impact in the reproducibility and the effectiveness of the discovery approaches of new bioactive compounds [START_REF] Michel | New Concepts, Experimental Approaches, and Dereplication Strategies for the Discovery of Novel Phytoestrogens from Natural Sources[END_REF][START_REF] Potterat | Concepts and technologies for tracking bioactive compounds in natural product extracts: generation of libraries, and hyphenation of analytical processes with bioassays[END_REF]. Despite these remarkable achievements, all these approaches are pointing in the analysis of plant extracts with targeted methods and under specific purposes disregarding the complex nature of these matrices.

Metabolomics

More recently, metabolomics approaches taking advantage of all these technological advances and developments have been implemented for the analysis of plant materials in a more holistic way. Metabolomics as a methodology is combining the robustness and the sensitivity of state of the art analytical techniques with the statistical power of bioinformatics and a sample through put allowing ideally the identification and quantification of every individual metabolite [START_REF] Issaq | Analytical and statistical approaches to metabolomics research[END_REF]). Metabolomics has been proven an important tool to explore biological systems providing a holistic view of the metabolites under certain biological conditions [START_REF] Hall | Plant metabolomics: from holistic hope, to hype, to hot topic[END_REF]. Therefore, metabolomics applied in phytochemisty field are aiming at the comprehensive and large-scale analysis of plant metabolites and thus, provide a broad view of the metabolite composition of a given organism [START_REF] Sumner | Plant metabolomics: large-scale phytochemistry in the functional genomics era[END_REF].

Metabolomics is a reflection of genetic factors and metabolites are often regarded as the functional endpoint of a biological system [START_REF] Sumner | Plant metabolomics: large-scale phytochemistry in the functional genomics era[END_REF]. Therefore, the comprehensive analysis of the metabolome of a given organism is the key point for the understanding of the biochemical status of an organism closely related to its phenotype [START_REF] Fiehn | Metabolomics -the link between genotypes and phenotypes[END_REF]. The metabolome of plant organisms is consisted of primary and secondary metabolites. The primary metabolites are involved in basic functions of plants and are generally common in all species while secondary metabolites or natural products are species specific [START_REF] Verpoorte | NMR-based metabolomics at work in phytochemistry[END_REF]). This is why the amount of secondary metabolites is estimated to attain the number of 200.000 metabolites [START_REF] Goodacre | Metabolomics by numbers: acquiring and understanding global metabolite data[END_REF]). Therefore, the determination of the entire metabolome in a plant organism is a really challenging task.

A wide range of analytical platforms have been applied in metabolomic studies with the respect to analyse the complete array of metabolites including gas chromatography mass spectrometry (GC-MS) [START_REF] Lisec | Gas chromatography mass spectrometry-based metabolite profiling in plants[END_REF], capillary electrophoresis mass spectrometry (CE-MS) [START_REF] Levandi | Capillary electrophoresis time-of-flight mass spectrometry for comparative metabolomics of transgenic versus conventional maize[END_REF], fourier transform infrared spectroscopy (FT-IR) [START_REF] Khairudin | Direct discrimination of different plant populations and study on temperature effects by Fourier transform infrared spectroscopy[END_REF]) while the most widely used are liquid chromatography hyphenated with mass spectrometry (LC-MS) and nuclear magnetic resonance spectrometry (NMR) [START_REF] Weckwerth | Metabolomics: from pattern recognition to biological interpretation[END_REF][START_REF] Allwood | Metabolomic technologies and their application to the study of plants and plant-host interactions[END_REF]. Each technique provides different advantages and disadvantages in terms of sensitivity, reproducibility and interpretability which have been exhaustively discussed [START_REF] Sumner | Plant metabolomics: large-scale phytochemistry in the functional genomics era[END_REF][START_REF] Dunn | Metabolomics: Current analytical platforms and methodologies[END_REF][START_REF] Lenz | Analytical Strategies in Metabonomics[END_REF][START_REF] Hagel | Plant metabolomics: analytical platforms and integration with functional genomics[END_REF][START_REF] Wolfender | Plant metabolomics: from holistic data to relevant biomarkers[END_REF]). However, no single analytical method is sufficient to accurately survey the entire metabolome. The wide chemical diversity and range of concentration of all metabolites present in a plant material, implies the combination of multiple analytical platforms in parallel to get a better insight into the chemical composition of plant extracts [START_REF] Bino | Potential of metabolomics as a functional genomics tool[END_REF], Moco et al. 2007). Towards this direction, recent chemometrics and bioinformatics advances promise to enhance the global understanding of plant metabolome.

In metabolomics field the analysis of multiple samples with diverse analytical techniques leads to the generation of an enormous amount of data which needs to be handled in a homogeneous way. The assistance of bioinformatics in this point is indispensible as the resulting metabolite profiles generated from multiple analytical platforms have to be translated into meaningful information [START_REF] Trygg | Chemometrics in Metabonomics[END_REF][START_REF] Bartel | Statistical methods for the analysis of high-throughput metabolomics data[END_REF]. Therefore, independently of the analytical platform that is applied the establishment of a robust data handling workflow is necessary for the interpretation of the large amount of data (van den [START_REF] Van Den Berg | Centering, scaling, and transformations: improving the biological information content of metabolomics data[END_REF]. Typically, the transformation of the raw data into data matrices is performed initially in order to obtain adaptable structures for the data analysis step. These matrices are analysed applying mainly different multivariate methods in order to unravel the significant features related to the biological information. According to the study and consequently to the biological questions to be answered, a number of supervised and unsupervised multivariate methods for exploration, visualization, classification and prediction of the data are employed leading to the identification of biomarkers (van der [START_REF] Van Der Greef | Symbiosis of chemometrics and metabolomics: past, present, and future[END_REF][START_REF] Issaq | Analytical and statistical approaches to metabolomics research[END_REF]).

Biomarkers are generated from any analytical approach as distinct features; therefore, the identification of the metabolites represented from the respective features is

indispensible to obtain the biological information. For this purpose the generation of free available libraries would be of great value. Nevertheless, the great number and the diversity of the secondary metabolites hinder the achievement of a universal library of secondary metabolites. Consequently, this step remains an obstacle in the overall high throughput strategy as it is based mainly on manual handing [START_REF] Moco | Metabolomics technologies and metabolite identification[END_REF]). However, the identification of biomarkers as the ultimate goal of metabolomics procedure is very important as the results are translated into meaningful information.

During the last years, metabolomics have been spread out in many areas related to plant research. The unique advantages inheriting from the combination of state of the art analytical techniques with chemometrics methods using simple and throughput sample preparation steps have been exploited for diverse applications. According to the scope of study, a range of metabolite fingerprinting and profiling approaches are applied.

Fingerprinting consists of a rapid holistic way for screening of the metabolic composition of an organism with the respect to compare or discriminate it from others whereas profiling is referring additionally to the identification and quantification of the contained metabolites [START_REF] Hall | Plant metabolomics: from holistic hope, to hype, to hot topic[END_REF]. Metabolomics, regardless the applied approach, as an untargeted, non-biased and throughput strategy has been employed successfully for chemotaxonomic studies exploring the taxonomic proximity of different plant species, origins or organs in respect to their metabolite profile (Kim et al. 2010[START_REF] Safer | Metabolic fingerprinting of Leontopodium species (Asteraceae) by means of 1 H NMR and HPLC-ESI-MS[END_REF][START_REF] Kim | LC-MS-based chemotaxonomic classification of wild-type Lespedeza sp. and its correlation with genotype[END_REF][START_REF] Porzel | Metabolite profiling and fingerprinting of Hypericum species: a comparison of MS and NMR metabolomics[END_REF].

Another important topic that metabolomics studies have contributed significantly is the quality assessment of plant medicinal products. The analysis of medicinal plant preparations using metabolomics techniques enables the assessment of the total metabolite composition in contrast to traditional approaches that are focusing on the analysis of specific metabolites (Wang et al. 2004[START_REF] Gad | Application of chemometrics in authentication of herbal medicines: A review[END_REF]. Furthermore, the identification of bioactive compounds is an emerging field in plant metabolomics as augmented literature data are dealing with the discovery of bioactive metabolites from plant sources using metabolomics strategies (Yuliana et al. 2011[START_REF] Inui | Unbiased evaluation of bioactive secondary metabolites in complex matrices[END_REF]. Towards this direction, the contribution of metabolomics strategies for drug discovery purposes is of great importance. In addition, other essential applications have been reported to take advantage of the metabolomics platforms such as exploration of metabolite variation during physiological processes [START_REF] Roldan | Metabolomics reveals organ-specific metabolic rearrangements during early tomato seedling development[END_REF]) and investigation of metabolite variation as a response to stress conditions or interaction with other organisms [START_REF] Choi | NMR metabolomics to revisit the tobacco mosaic virus infection in Nicotiana tabacum leaves[END_REF][START_REF] Shulaev | Metabolomics for plant stress response[END_REF]. Overall, the integration of metabolomics strategies in natural products chemistry field constitutes an additional powerful tool that may be exploited beneficially.

Plant metabolomics workflow

Plant metabolomics as every metabolomics platform is consisted of discrete stages in which special attention should be given in order to obtain reliable results from each step of this pipeline. Briefly, these stages can be summarised as sample preparation, data acquisition, data preprocessing, data pretreatment, data analysis and identification of biomarkers.

Sample preparation

Sample preparation is considered a crucial step in plant metabolomics analysis as the initial step of a downstream analysis. Since the goal of metabolomics studies is to detect the variances of the samples due to inherent biological difference, the sample preparation has to be performed in un unbiased manner, as homogenously as possible in order to avoid induced variances from this procedure [START_REF] Schripsema | Application of NMR in plant metabolomics: techniques, problems and prospects[END_REF]. The sample preparation for plant metabolomics involves three basic steps: the harvesting of the plant material, the extraction of the plant material and the preparation of the samples for the analysis (Kim et al. 2010).

Harvesting of plant material

In the context of a metabolomics analysis, the selection of the plant materials has to be performed taking into consideration some basic criteria. The most important consideration is to ensure enough biological replicates (Kim et al. 2010). Multiple samples from different sources are a necessary prerequisite to provide enough variation to create statistically significant differences among samples. However this remains an important challenge in plant metabolomics since usually is hard to obtain multiple biological replicates [START_REF] Inui | Unbiased evaluation of bioactive secondary metabolites in complex matrices[END_REF]. Another important consideration is the collection of all required metadata for the characterization of the plant material [START_REF] Fiehn | Minimum reporting standards for plant biology context information in metabolomic studies[END_REF]). These metadata are of valuable importance during data analysis process for classification of prediction purposes as well as the explanation of outlier behaviours.

Extraction procedure

The plant metabolome is comprised of thousands of different metabolites [START_REF] Bino | Potential of metabolomics as a functional genomics tool[END_REF], thus the extraction of the entire metabolome is practically impossible. Therefore, it is widely recognized that there is no universal or optimal extraction method for plant metabolomics; hence, the chosen extraction protocol can only be regarded as good compromise that fulfils the scope of a given study (Halabalaki et al. 2014).

A number of factors affects the extraction procedure and has to be taken into account before the development of the extraction protocol. In this context, an initial factor to take into consideration is the type of the analytical method that will be used for the metabolomics study. For instance, relatively non-polar solvents are utilized when GC-MS analysis follow in order to extract the volatile and unpolar compounds, whereas more polar solvents are preferred when LC-MS or NMR techniques are applied for the metabolomics analysis [START_REF] Kim | NMR-based plant metabolomics: where do we stand, where do we go?[END_REF]). In addition, in case of NMR-based metabolomics studies the extraction procedure can be simplified by the direct use of deuterated NMR solvents for the extraction. This approach has the main advantage of minimizing the steps of sample preparation which may induce undesirable variations. However, the use of deuterated solvents as extraction solvents narrows the choice of solvents since a small number of deuterated solvents are commercially available [START_REF] Lubbe | NMR-Based Metabolomics Analysis[END_REF]). Another drawback that has been mentioned when deuterated solvents are used for the extraction of plant materials is their effect at the resolution of NMR spectra (Kim et al. 2010).

In the most cases the extraction is performed with conventional organic solvents.

Undoubtedly, the choice of the extraction solvent is one of the most important aspects that affect the sample preparation. Solvents are usually selected according to their polarity and selectivity, two parameters that define the range of the metabolites that may be extracted.

Other factors that have to be considered before the selection of the extraction solvent are the boiling point, the toxicity and the contaminants that may be present in a solvent. As mentioned above, the scope of the study will determine the optimal extraction solvent (Kim Typically, during the extraction procedure a number of analytical replicates are prepared in order to control better the reproducibility of each step of the downstream analysis. The minimum used number is three analytical replicates while the increase of these replicates leads to a further degree of reliability of the overall methodology.

Sample preparation for analysis

According to the analytical platform that is intended to be applied for plant metabolomics analysis different concepts of sample preparation has to be followed. The variance in sensitivity and operation principals for diverse analytical techniques implies the use of different magnitudes of sample quantities (µg-mg magnitudes) and specific solvents (e.g LC-MS grade, deuterated solvents etc.). Thus, the sample preparation before the analysis has to be adjusted according to the selected analytical techniques and to be executed in a homogenous manner in order to avoid induced variation in the dataset.

Data acquisition

Data acquisition involves the analytical measurement of the metabolite composition using diverse analytical platforms. A wide array of analytical platforms have been applied in plant metabolomics, among them the most popular are nuclear magnetic resonance (NMR) spectroscopy and mass spectrometry (MS). The principal of each method and the mode of operation of these two techniques is totally different leading to discrete advantages and disadvantages and hence, usually these techniques are used complementarily. Furthermore, the completely diverse instrumentation requisites of these platforms are influencing strongly each stage of the overall downstream analysis.

Nuclear magnetic resonance (NMR) spectroscopy is a valuable tool for plant metabolomics as it provides a rapid, non-destructive, high-throughput method requiring minimal sample preparation for the characterization of the metabolite composition [START_REF] Hagel | Plant metabolomics: analytical platforms and integration with functional genomics[END_REF]. NMR spectroscopy operates by the application of strong magnetic fields and radio frequency (RF) pulses to the nuclei of atoms provoking their promotion to high energy spin states and the detection is performed by the subsequent emission of radiation during the relaxation process [START_REF] Hagel | Plant metabolomics: analytical platforms and integration with functional genomics[END_REF]. NMR is the most adaptable method from the available analytical techniques to extract unambiguous information for the structural elucidation of metabolites contained in complex mixtures [START_REF] Robinette | NMR in Metabolomics and Natural Products Research: Two Sides of the Same Coin[END_REF]. The major drawback of NMR is related with its low sensitivity, which is about 10 6 -10 9 fold less than chromatography-coupled MS [START_REF] Sumner | Plant metabolomics: large-scale phytochemistry in the functional genomics era[END_REF]. Although is less sensitive than MS, NMR offers an unbiased view of metabolite composition affording simultaneously quantitative information about the contained metabolites [START_REF] Simmler | Universal quantitative NMR analysis of complex natural samples[END_REF].

Mass spectrometry (MS) constitutes a really valuable technique in plant metabolomics

field in terms of speed, sensitivity and accuracy with the potential to identify a wide range of metabolites present in plant extracts [START_REF] Dettmer | Mass spectrometry-based metabolomics[END_REF]). Mass spectrometers operate by ion formation, separation of ions according to their mass-to-charge (m/z) ratio and detection of separated ions [START_REF] Dunn | Metabolomics: Current analytical platforms and methodologies[END_REF]. Direct infusion mass spectrometry analysis (DIMS) provides a rapid technique for metabolite profiling of plant extracts resulting in the acquisition of a single mass spectrum for each extract. This approach relies on accurate mass measurements and the generation of the elemental composition of each detected metabolite [START_REF] Dunn | Metabolomics: Current analytical platforms and methodologies[END_REF]. This technique is unable to detect isobaric metabolites while ion suppression phenomena are taking place leading to the loss of signals of several analytes [START_REF] Gustavsson | Studies of signal suppression in liquid chromatography-electrospray ionization mass spectrometry using volatile ionpairing reagents[END_REF]. Hyphenation of mass spectrometry with separation techniques such as gas or liquid chromatography leads to the reduction of spectra complexity due to the separation of the metabolites in time dimension. Therefore, ion suppression of the signal is reducing significantly and less complex spectra are collected corresponding to a much smaller part of metabolites accompanied with additional information on the physicochemical properties of the metabolites [START_REF] Dettmer | Mass spectrometry-based metabolomics[END_REF]).

LC-MS techniques are becoming increasingly popular for the analysis of plant extract samples [START_REF] Allwood | An introduction to liquid chromatography-mass spectrometry instrumentation applied in plant metabolomic analyses[END_REF]. The main advantage of these techniques is the sensitivity which is significantly higher comparing to NMR techniques [START_REF] Sumner | Plant metabolomics: large-scale phytochemistry in the functional genomics era[END_REF][START_REF] Hagel | Plant metabolomics: analytical platforms and integration with functional genomics[END_REF]). In addition the fact that usually MS are hyphenated with separation techniques increase the possibilities of detection of compounds in small quantities present in complex mixtures such as plant extracts [START_REF] Allwood | An introduction to liquid chromatography-mass spectrometry instrumentation applied in plant metabolomic analyses[END_REF]). On the other hand, the main drawback of LC-MS techniques is the reproducibility issue but careful handling during data acquisition and exhaustive assessment of variability during acquisition can result in reliable data [START_REF] Sangster | Investigation of analytical variation in metabonomic analysis using liquid chromatography/mass spectrometry[END_REF]). Overall, detailed information can be extracted concerning metabolite profile of plant extracts and structural data related to containing metabolites.

Data preprocessing

Data preprocessing is an essential procedure of metabolomics pipeline to transform the raw data into compatible format for data analysis. In metabolomics analysis, the raw data usually contain a large number of measurement outputs that has to be filtered and organized properly into a single data matrix in order to use the appropriate information for the data analysis [START_REF] Goodacre | Proposed minimum reporting standards for data analysis in metabolomics[END_REF]). Due to the different mode of operation of metabolomics analytical platforms, raw data acquired by dissimilar platforms need particular handling using specific software designed for this purpose.

NMR data preprocessing

Since NMR is characterized by satisfactory reproducibility not extensive preprocessing is needed comparing with MS techniques. In NMR metabolomics data preprocessing usually includes baseline correction, alignment and binning [START_REF] Smolinska | NMR and pattern recognition methods in metabolomics: From data acquisition to biomarker discovery: A review[END_REF].

According to the nature of samples acquired and the contained metabolites baseline distortion phenomena and shifted peaks appearing in the NMR datasets hamper the data analysis process. In these cases, specific algorithms for the correction of these phenomena have been developed [START_REF] Smolinska | NMR and pattern recognition methods in metabolomics: From data acquisition to biomarker discovery: A review[END_REF]. Concerning preprocessing algorithms for NMR data, there several software available such as Metabolab [START_REF] Ludwig | MetaboLab -advanced NMR data processing and analysis for metabolomics[END_REF], MVAPACK [START_REF] Worley | MVAPACK: A Complete Data Handling Package for NMR Metabolomics[END_REF] and Automics [START_REF] Wang | Automics: an integrated platform for NMR-based metabonomics spectral processing and data analysis[END_REF]. For instance, Metabolab, a MATLAB based software package, is designed to facilitate NMR data processing by providing automated algorithms for processing series of spectra. Alternatively, when minor corrections need to be performed, manual processing using software for NMR data acquisition, such as TopSpin TM (Bruker), leads to satisfactory results.

Once the NMR data have been preceded, they have to be digitalized to numeric values for further statistical analysis. A common way to deal with NMR peaks in a very consistent way is binning (bucketing). Literally, the NMR spectrum is divided into a series of small bins (buckets) and the sum of intensities of the signals in each bin is calculated and exported into a data matrix. Binning can be used for all types of spectra, however, is more frequently used with NMR analysis. There are two different types of bins the equidistant and the non-equidistant. The advantage of the latter is that avoids peak splitting which is very usual during equidistant binning. In plant metabolomics field, usually equidistant bins of 0.04 ppm size are used to proceed with the data analysis despite the fact that this binning size reduce significantly the resolution of the analysis (Kim et al. 2010). Alternatively, smaller bins or full resolution NMR data can be utilized for the statistical analysis [START_REF] Rasmussen | Multivariate analysis of integrated and full-resolution 1 H-NMR spectral data from complex pharmaceutical preparations: St. John's wort[END_REF]).

LC-MS preprocessing

The preprocessing step in a LC-MS metabolomics platform is performed as mentioned above to optimize the resulting matrix of identified peaks and transform the data into a format that makes the subsequent statistical analysis easier and more robust. Since the preprocessing in LC-MS is more demanding comparing to NMR a series of software packages have been developed for this purpose [START_REF] Castillo | Algorithms and tools for the preprocessing of LC-MS metabolomics data[END_REF], among them the most popular are XCMS [START_REF] Smith | XCMS: Processing mass spectrometry data for metabolite profiling using nonlinear peak alignment, matching and identification[END_REF], MZmine [START_REF] Pluskal | MZmine 2: Modular framework for processing, visualizing, and analyzing mass spectrometry-based molecular profile data[END_REF], MAVEN [START_REF] Melamud | Metabolomic Analysis and Visualization Engine for LC-MS Data[END_REF], MetAlign [START_REF] Lommen | MetAlign: Interface-Driven, Versatile Metabolomics Tool for Hyphenated Full-Scan Mass Spectrometry Data Preprocessing[END_REF]). The preprocessing procedure can be separated into two main steps: the peak detection and the annotation of isotope and adduct peaks.

The peak detection procedure consists in the characterization of peaks in the three dimensional space (time, mass, intensity) as defined by the LC-MS data and estimation of the peak intensity. The major problem in peak detection procedure is the identification of the real peaks from the noise peaks and specifically for small abundant peaks close to noise level. According to the utilized software different algorithms are applied for peak detection.

For instance, XCMS software incorporates the matched filter algorithm [START_REF] Danielsson | Matched filtering with background suppression for improved quality of base peak chromatograms and mass spectra in liquid chromatography-mass spectrometry[END_REF]) and centWave algorithm [START_REF] Tautenhahn | Highly sensitive feature detection for high resolution LC/MS[END_REF]). An important issue in the application of a given software is to understand the features and the underlying algorithms used in the software to allow optimal choice of parameters.

After the peak detection step a number of features are generated including features corresponding to isotope and adduct ions that hamper the compound identification and subsequently the biological interpretation. In order to identify the isotope and adduct ions in a data matrix inheriting from the peak detection step, specific algorithms are incorporated according to the applied software. In the case of XCMS, CAMERA software is usually combined for this purpose which has been proven efficient in isotope and adducts annotation even in high complex data [START_REF] Kuhl | CAMERA: An Integrated Strategy for Compound Spectra Extraction and Annotation of Liquid Chromatography/Mass Spectrometry Data Sets[END_REF]).

Data pretreatment

Data pretreatment consist in the correction and refining of the dataset removing confounding variation originated from experimental inaccuracies retaining the inherent biological variation. Independently from the analytical platform applied, the preprocessing step aims to convert the raw data into numeric matrices compatible with the statistical analysis, however, before proceeding with the data analysis it is important to clean the data matrix from undesired noise peaks and focus only to the features that reflect the metabolite composition of the analysed samples. These clean data can be directly used as the input for statistical analysis; nevertheless, in the majority of cases some additional pretreatment steps are necessary to reduce the influence of disturbing factors such as noise measurements.

Therefore, usually, normalization and scaling procedures are applied. Overall, pretreatment than continuous techniques such as NMR [START_REF] Hrydziuszko | Missing values in mass spectrometry based metabolomics: an undervalued step in the data processing pipeline[END_REF]). In addition, the percentage of missing values in the entire dataset may range depending on the type of the metabolomics experiment. The handling of missing values is an important step in the pretreatment pipeline since it is affecting the forthcoming data analysis. Up to now two main approaches are applied in regards to the handling of missing values. A first approach suggests the exclusion of the variables containing missing values. Focusing only on the variables with no missing values could be applied to datasets with small proportion of variables that are affected by missing data. However, regarding HRMS analysis this is very rare [START_REF] Xia | MetaboAnalyst: a web server for metabolomic data analysis and interpretation[END_REF]) and exclusion of variables with missing data in this case would lead to reduction of statistical power. Therefore, in HRMS metabolomics analysis the most common practice is to impute missing values using appropriate algorithms [START_REF] Xia | Web-based inference of biological patterns, functions and pathways from metabolomic data using MetaboAnalyst[END_REF].

Imputation of missing values using appropriate algorithms provides a consistent and automated way to create data matrices compatible with data analysis process.

Normalization, scaling

Once the dataset is filtered and the missing values are imputed (when necessary) a critical step before data analysis is the normalization, centring and scaling procedures.

A common problem arising in metabolomics studies is the dilution issue. When dealing with a large number of samples, smaller or larger variation in sample concentrations are usually arrive. Therefore, normalization is typically applied to correct technical variation originating from sampling, sample work-up and analytical errors. The term normalization is used to express the treatment applied to each observation/ samples (also in Metaboanalyst platform). Principally this involves applying a correcting factor so that the sum of all intensities equals unity, making overall intensity scales comparable across samples.

Alternatively, the normalization can be applied using an internal standard feature to normalize across all the samples or sample-specific normalization option allows to manually specify a normalization value for each sample, for instance, on the basis of dry weight [START_REF] Xia | Web-based inference of biological patterns, functions and pathways from metabolomic data using MetaboAnalyst[END_REF].

Another consideration before the data analysis step is the centring and scaling of the data. Normally, the metabolome of a given plant organism issued for analysis consists metabolites presenting significant differences in concentration levels. However, the contribution of each metabolite in a given biological response may be independent of its concentration. Therefore, a number of scaling techniques are available to scale the metabolites accordingly in order to approach better the biological information. This operation is performed on the variables of the dataset across all samples; hence it is usually referred as column wise scaling. As presumed, the scaling technique is not only dependent on the nature of the dataset but also on the statistical method chosen for analysis.

Centring may be regarded as a scaling method; however, it is usually combined with other scaling factors. Centring is a technique that is commonly applied for the treatment of metabolomics data. It converts all the concentrations to fluctuations around zero instead of around the mean of the metabolite concentrations. This permits the adjustment for differences in the offset between high and low abundant metabolites [START_REF] Bro | Centering and scaling in component analysis[END_REF].

Therefore, the statistical analysis of the data is not affected from the relative variation between the samples (expressed by the mean value) but it focuses only on the fluctuating part of the data increasing the fit to data (van den [START_REF] Van Den Berg | Centering, scaling, and transformations: improving the biological information content of metabolomics data[END_REF].

Other scaling factors focus on the transformation of the features in order to be more comparable between them. Some available scaling features in Metaboanalyst platform are log transform, autoscaling, Pareto scaling and range scaling. Each of these techniques is treating differently the data and thus the decision of the scaling method has a direct impact on the results (van den [START_REF] Van Den Berg | Centering, scaling, and transformations: improving the biological information content of metabolomics data[END_REF]. For instance, in autoscaling each feature of the table is scaled so that it has unit variance using the standard deviation as scaling factor, therefore, the variables become equally important and the weights of each feature reflect their correlation. However, the main disadvantage of this technique is that ‗false' peaks possibly present in the dataset become as well equally important and may obscure the interpretability of the model. Pareto scaling is similar to autoscaling but in this case the scaling factor is the square root of the standard deviation. Pareto scaling is considered in between no scaling at all and auto-scaling and gives the variable a variance equal to its standard deviation instead of unit variance. Consequently, the importance of the relatively abundant variables is reduced but it keeps the proportions more closely to reality.

Data analysis

Data analysis in metabolomics is an essential step that relates the analytical outcome with the biological information. The aim of data analysis step is the application of appropriate statistical methods in order to extract the biological important information related to the initial scope of a given research. That includes the development of efficient and robust methods for modelling and analysis of these complicated data matrices [START_REF] Trygg | Chemometrics in Metabonomics[END_REF]. The selection of the statistical method to apply is related from one hand to the purpose of the study and from the other hand on the nature of the dataset. Different methods are preferred for regression or classification/ discrimination purposes while the visualization capability of a method is always an important factor to consider [START_REF] Steinfath | Metabolite profile analysis: from raw data to regression and classification[END_REF]. In metabolomics context, statistical methods should be able to unravel patterns and sources of variation in the complex datasets generated after the multistage metabolomics pipeline. Usually, due to the multidimensionality of metabolomics data, the recognition of comprehensive patterns and their interpretation has imposed the application of multivariate data analysis methods (MVDA). However, univariate or clustering statistical methods are also facilitating the analysis of metabolomics data. The application of all the aforementioned statistical methods is performed using both web based (e.g. Metaboanalyst, MeltDB, metaPserver) and commercial platforms (e.g. Simca, SAS) for data analysis [START_REF] Xia | Web-based inference of biological patterns, functions and pathways from metabolomic data using MetaboAnalyst[END_REF].

A number of multivariate techniques for statistical analysis are available. Among them, the most widely used are the multivariate reduction techniques or projection techniques which are designed to overcome dimensionality problems through the compression down to simple components and pseudo variables in the form of weighted linear combinations of the original data [START_REF] Liland | Multivariate methods in metabolomics -from pre-processing to dimension reduction and statistical analysis[END_REF]. Principal Component Analysis (PCA) and Partial Least Squares (PLS) are the most commonly used multivariate data analysis methods [START_REF] Kemsley | Discriminant analysis of high-dimensional data: a comparison of principal components analysis and partial least squares data reduction methods[END_REF].

In particular, PCA is an unsupervised method that attempts to explain the variance of the independent variables of the dataset (X dataset) by its linear transformation in principal components based on the covariance of the dataset without any previous knowledge. PCA decomposes the data into score vectors and loading vectors in a way that the variation is maximized in the first components and decreasing in the subsequent components. The scores are representing the positions of the observations in a new, rotated coordinate system and the loadings the weights for the original variables to transform them into the scores. Therefore, PCA is used as an exploratory data analysis for the visualization of inherent patterns based on the classification of the different scores and the expiration of the biomarkers responsible for this classification [START_REF] Wold | Principal component analysis[END_REF][START_REF] Bartel | Statistical methods for the analysis of high-throughput metabolomics data[END_REF].

PLS is a supervised method that attempts the relation of the data matrix containing the independent variables (X dataset) with a matrix containing the dependent variables (Y dataset) corresponding to a given response for each sample. In PLS the decomposition of the X dataset in latent variables is performed in order to obtain the optimal prediction of the Y dataset. PLS can be used as a regression method to unravel correlated variables between X and Y datasets. In addition, PLS can be combined with Discriminant Analysis (PLS-DA) for classification purposes to uncover discrimination between predefined groups [START_REF] Wold | PLS-regression: a basic tool of chemometrics[END_REF], Lindon et al. 2006).

Biomarker identification

All abovementioned statistical methods results in the identification of important or discriminant features (biomarkers), corresponding to metabolites related with given biological information. The biomarker identification step is the most important in the metabolomics pipeline in order to translate the data analysis result into biological knowledge. However, this step specifically in plant metabolomics field constitutes a significant bottleneck in the overall downstream analysis [START_REF] Moco | Metabolomics technologies and metabolite identification[END_REF]). The extremely big number of secondary metabolites in plants as well as the absence of plant specific and complete databases hampers significantly this step [START_REF] Wolfender | Plant metabolomics: from holistic data to relevant biomarkers[END_REF]. The assignment of biomarkers is based on the spectroscopic or spectrometric and physicochemical characteristics depending on the applied analytical platform. The linkage between the feature information and the biological knowledge is still performed manually hindering the through put of the overall downstream analysis. During the last years, many individual strategies have been developed to overcome this issue based on publically available databases not specified in secondary metabolites or in-house databases. Nevertheless, still a lot of work is demanded to achieve the metabolite identification of biomarkers in a high throughput way.

The case study of Acronychia species

Acronychia genus is composed of 48 species among them a great number that has Given this background and the previous obtained knowledge on the phytochemical and pharmacological profile of Acronychia pedunculata (Chapter 1, 2), the investigation of representative populations of Acronychia species was aimed using metabolomics strategies.

In this context, different Acronychia samples were selected belonging to diverse species and organs and collected from six different locations in Malaysia and Vietnam in order to develop a metabolic profiling methodology for the investigation of these samples. NMR and UPLC-HRMS metabolomics platforms were developed validating every step of this downstream analysis for the phytochemical and pharmacological evaluation of Acronychia species. Therefore, a workflow was designed to collect a large volume of data from both metabolomics platforms for the investigation of different biological questions and their exploitation as a proof of concept for the development of specific strategies concerning particular steps of the pipeline. As initial objective, taking advantage of the high resolution UPLC-ESI(±)-LTQ-Orbitrap platform the dereplication of the known compounds in investigated and unexplored Acronychia species was intended since the assessment of the presence of known compounds in other species would be of vital importance. Towards this goal, a 13 C NMR based dereplication strategy was planned in parallel to characterize Acronychia species. The application of metabolomics strategies was also applied to develop a statistical model for the discrimination and classification of diverse species, origins and organs utilizing unsupervised multivariate methods. The construction of this robust model enabled the identification of biomarkers responsible for the discrimination of these Acronychia samples and the investigation of taxonomic issues. Concerning the metabolite identification, which is a challenging task in the overall process, the combination of different strategies was proposed among them the integration of the data from the two different metabolomics platforms using a sparse PLS analysis in order to get a better insight into the structural nature of the significant metabolites. Moreover, metabolomics incorporating the predictive ability of PLS regression analysis were utilized as a tool for the prediction of bioactivity in complex plant mixtures allowing subsequently the tracking of bioactive metabolites. The statistical and structural validation of this high throughput process renders this approach a promising tool for drug discovery purposes.

Experimental 1. Chemicals and instrumentation

During this study, the extraction of Acronychia samples was performed using an ultrasound bath Elmasonic S100H (Elma, Germany). Evaporation of the Acronychia extract samples was performed with the aid of a GeneVac HT-4X EZ-2 series evaporator Lyospeed ENABLED (Genevac Ltd, UK).

All nuclear magnetic resonance (NMR) spectra, apart 13 C NMR, were recorded at 300 K on a Bruker Avance III 600 spectrometer operating at 600 and 150 MHz for 1 H and 13 C, respectively, equipped with a 5 mm BBI probe and by using CDCl 3 (Sigma-Aldrich) as deuterated solvent and hexamethyldisiloxane (HMDS) as internal standard (Sigma-Aldrich). 13 C NMR analyses were recorded at 298 K on a Bruker Avance AVIII-600 spectrometer (Karlsruhe, Germany) operating at 150 MHz for 13 C. The spectrometer is equipped with a cryoprobe optimized for 1 H detection and cooled 1 H, 13 C coils and preamplifiers, with a 13 C S/N calculated for 1271:1 from the standard ASTM test sample (60% C 6 D 6 , 40% dioxane).

The UPLC-ESI(±)-HRMS/MS experiments were carried out using a LTQ-Orbitrap apparatus (Thermo Finnigan, San Jose, CA, USA). The UPLC system is equipped with an Acquity pump and autosampler. The solvents used were LC-MS grade methanol (MeOH)

and water purchased by Merck (Germany) and formic acid (FA) by Sigma-Aldrich (Germany).

Harvesting of plant material

In the current study, approximately 500g of dried plant materials of 20 Acronychia species from different species, organs and origin were provided by the French National Centre for Scientific Research (CNRS) (Gif-sur-Yvette, Paris, France). As illustrated in 

Extraction of plant material

All Acronychia samples were extracted in six analytical replicates using ultrasonic assisted extraction. Since our goal was to focus on the secondary metabolites of Acronychia, disregarding the primary metabolites eventually, the selection of EtOAc as extraction solvent was considered optimal. In addition, a compatible for both NMR-and MS-based metabolomics ‗one pot' extraction was performed in order to allow a comparative analysis of the metabolite data derived from different analytical platforms. Specifically, approximately 400 mg (± 5%) of dried plant material were weighted for all the 120 samples in eppendorf tubes. After the addition of 1.5 mL of EtOAc in the eppendorf tubes the plant materials were extracted for 30 min in ultrasound bath controlling the temperature under 40° C.

Then, the extraction solutions were transferred to pre-weighted eppendorf tubes after their filtration using 0.45 nylon filters. The plant residues were added another 0.75 mL of EtOAc and extracted for 30 min more under the same conditions. The solutions from the second extraction step were added to the pre-weighted eppendorf tubes and evaporated until dry using SpeedVac apparatus.

Sample preparation for analysis

The 120 extracts obtained from the 20 different biological samples of Acronychia species were intended to be analysed by two different metabolomics platforms and to be evaluated for their anti-inflammatory activity by assessing their capacity to inhibit 5lipoxygenase (5-LO) enzyme. In this regard, a rational separation of the obtained extracts in 3 aliquot types was designed prior to any specific sample preparation in order to obtain later solutions compatible with the specific analysis. Thus, the dilution of each extract in EtOAc was performed to obtain a stock solution of 10 mg/mL and then 700 uL, 20 uL and 67.5 uL were transferred to different tubes and evaporated until dryness using SpeedVac apparatus. Consequently, dried extracts of 7 mg, 0.2 mg and 0.675 mg were obtained for the NMR analysis, UPLC-HRMS analysis and the biological evaluation, respectively, of all Acronychia extracts (Figure 29). Obviously, for each metabolomics platform a special sample preparation is required that will be presented in the relative sections below. 

NMR sample preparation

All dried extracts (7 mg) were resuspended in 700 µL of CDCl 3 0.01% hexamethyl disilane (HMDS) maintained in 0 °C during the sample preparation process to obtain final solution of 10 mg/mL. After complete dilution, using vortex and/or ultrasonication the samples were centrifuged at 15000 rpm for 5 min in order to avoid precipitant presence.

Then 550 µL of the supernatant were transferred into 5 mm diameter NMR tubes and stored in the fridge until data acquisition.

UPLC-HRMS sample preparation

As described above a part of the 120 prepared extracts (6 replicates of 20 samples)

was used for the acquisition of LC-MS experiments. In particular, solutions of 100 µg/mL were prepared by diluting 0.2 mg in 2 mL of methanol. Among the solvents that were tested for the dilution step methanol was chosen because it resulted in transparent solutions in this concentration and due to its compatibility with the LC-MS analysis. In 6. UPLC-HRMS data acquisition 6.1.

UPLC conditions

The UPLC method was developed using the QC sample as reference. The chromatographic conditions applied were a compromise between metabolite resolution, retention time stability and sample throughput. The analysis of the samples was performed on an Acquity UPLC BEH C18 column 1.7 µm (2.1×150 mm,) and a gradient of 30 min was chosen in order to enable descent separation of the majority of compounds. The mobile phase was consisted of methanol and 0.1% aqueous formic acid. The gradient elution program was composed of a conditioning step followed by a steep gradient step passing from the aqueous solvent to methanol and a longer step of a flatter gradient of high methanol content due to the plethora of medium to low polarity metabolites present in the extract samples. At the end a washing step and a reconditioning step were performed in order avoid contamination and ensure stable performance. The UPLC method is presented in details in Table XII. The flow rate was set at 200 µL/min and the sample and column temperatures were stabilized at 10°C and 30°C respectively. 

HRMS conditions

The LTQ-Orbitrap XL hybrid mass analyser used was equipped with an ESI source. For the metabolic profiling of Acronychia extracts, data were acquired in both positive and negative modes using a mass range of 205-1000 m/z. Full scan experiments were acquired with a resolution of 30000 in profile mode. The operating conditions of the source are presented in details in Table XIII. Moreover, tandem MS analysis of the 20 different biological samples was performed using the same conditioned applied for both positive and negative mode incorporating a data dependent scanning event. For MS/MS experiments, the collision energy (CID) was set at 35%, the activation time at 30 ms (q, 0.25) and a window of 2 u was used to isolate the precursor ions. 

NMR data preprocessing

Both automated and manual processing of the NMR spectra was performed using Metabolab and TopSpin software, respectively. In particular, in both cases the data were phased and baseline corrected using the incorporated algorithms. In addition, the spectra were referenced to the internal hexamethyldisiloxane (HMDS) signal at 0.062 ppm. Both approaches lead to similar results, as observed after data analysis.

Binning was performed either directly from Metabolab software or by using the Amix 2.7 (BrukerBioSpin GmbH) software when manual processing with TopSpin 3.1 (BrukerBioSpin GmbH) was applied. In both cases, the 1 H NMR and pJRES data were binned 

UPLC-HRMS preprocessing

During this study, XCMS package is applied for feature detection followed by annotation step using CAMERA package. Both packages are implemented in R environment and provided by bioconductor (http://www.bioconductor.org/).

8.1.

Raw data preparation

Prior to any preprocessing step all samples were converted to centroid data in NetCDF format in order to be compatible with the XCMS software. In this file format, the data are stored as separate lists of mass/intensity pairs with each list representing one scan [START_REF] Smith | LC/MS Preprocessing and Analysis with xcms[END_REF]. This procedure was accomplished using the MSConverter tool provided by proteowizard (http://proteowizard.sourceforge.net/).

Peak detection/ Annotation of isotope and adduct peaks

The peak detection of Acronychia sample dataset was performed by XCMS using the matched filter algorithm while the individual parameters were tuned according to the experimental conditions. In particular, for peak peaking slices (step) of m/z 0.02 mass unit wide were set, a signal-to-noise ratio (snthresh) of 3 and a minimum difference (mzdiff) of 0.005 m/z mass for peaks with overlapping retention times were defined. Moreover, a 10 s binning function (bw) was applied to group variables. Annotation of isotope and adduct peaks was performed using CAMERA software. Therefore, after the preprocessing step, a peak table was generated from the UPLC-ESI(+)-MS data contained 197 columns representing the individual injections and 8093 rows representing the integrated peak area.

Accordingly, from the UPLC-ESI(-)-MS data a peak table of 197 columns and 2909 rows was extracted after the XCMS process.

NMR data filtering / Noise reduction

Concerning NMR data, the matrices inheriting from preprocessing step included 120 rows corresponding to the individual samples and 1900 or 475 columns corresponding to the different variables for 0.01 and 0.04 ppm bin sizes, respectively. With the perspective to filter out the noise bins from the initial data matrices a careful inspection of the 120 raw data simultaneously lead to the determination of the noise regions. The bins corresponding to these noise regions were consequently excluded from both 1 H NMR and pJRES matrices.

As a result the filtered data matrices contained 1394 and 308 variables for 0.01 and 0.04 bin sizes, respectively. Likewise, the 13 C NMR matrix was filtered excluding noise bins, the solvent signals and fatty acid spectral regions (around 29 and 30 ppm, 14.1 ppm, 31.9 ppm and 22.7 ppm) resulting in a data matrix of 855 variables.

UPLC-HRMS data filtering / Noise reduction

The peak list generated after the preprocessing of the UPLC-ESI(+)-HRMS data contained 197 rows representing the individual injections and 8093 columns representing the integrated peak area. Towards the elimination of ‗false' peaks, the dataset was filtered initially subtracting the features corresponding to peaks present in the blank samples.

Additionally, the peaks presenting a RSD > 25% in the QC samples were eliminated.

Moreover, filtering of the features that did not vary significantly in the different sample groups was performed by extracting those presented p-values greater than 0.05 calculated using ANOVA in Metaboanalyst platform (www.metaboanalyst.ca). As a result, the peak table was reduced significantly in dimension accounting 4679 columns corresponding to features more relevant to the biological information.

UPLC-HRMS missing values estimation

The estimation of missing values was performed at the UPLC-ESI(+)-HRMS dataset by Metaboanalyst web platform importing the peak table after data filtering. In particular, missing values were calculated for 7.6% of the total values which was translated into 42458 missing values in the entire dataset. Missing values were imputed by the PPCA algorithm to continue with the downstream analysis.

Normalization and scaling

Normalization of all datasets inheriting from both platforms was performed using Metaboanalyst platform and scaling using both Metaboanalyst and Simca 13.0 software (Umetrics, Umea, Sweden). In particular, all datasets, independently from the analytical platform used, were normalized to the sum intensity in order to avoid possible dilution variance to influence the data analysis. Moreover, according to the scope of each data analysis, mainly Pareto scaling or autoscaling were applied to adjust scale differences between the detected features.

Data analysis

Univariate data analysis was performed using analysis of variance (ANOVA) for the assessment of significance in diverse cases. MVDA including PCA, PLS, PLS-DA, OPLS and OPLS-DA were performed in Simca 13.0 (Umetrics, Umea, Sweden). Moreover, PCA analysis for both initial evaluation of the datasets and data analysis purposed was performed also in Metaboanalyst platform. Hierarchical Cluster Analysis (HCA) and heatmaps based on ANOVA and combined with HCA were generated from Metaboanalyst platform. Clustering analysis of 13 C NMR data and heatmap generation were performed in PermutMatrix, version 1.9.3 (LIRMM, Montpellier, France). Sparse PLS (s-PLS) analysis was conducted using mixOmics package (http://cran.r project.org/web/packages/mixOmics/index.html) implemented in R statistical language 3.0.3 (http://www.r-project.org). Specific details for statistical methods employed in this study are given in the respective sections.

Biomarker identification

During this study, the identification of secondary metabolites corresponding to important features extracted from both analytical platforms was performed mainly manually by matching the experimental data to an in-house database containing all isolated secondary metabolites from Acronychia genus. Moreover, concerning the characterization of metabolites those have not been reported from Acronychia genus, publically available databases were utilized for HRMS data. In particular mainly METLIN (metlin.scripps.edu), MassBank (www.massbank.jp) and Human Metabolome DataBase HMDB (www.hmdb.ca)

were used as well as MetFrag (msbi.ipb-halle.de/MetFrag) for MS/MS search.

15. Anti-inflammatory evaluation of Acronychia extracts 15.1.

Sample preparation

An aliquot from each Acronychia sample particularly destinated for anti-inflammatory in vitro biological evaluation was prepared during sample preparation procedure (see experimental 2.3 for further details). These aliquots were used to prepare 5 different concentration solutions for the in vitro assay. In particular, 0.675 mg of each sample was diluted in 22.5 µL of DMSO to obtain a stock solution of 30 µg/ mL. Then, successive dilutions with appropriate quantity of DMSO were performed to obtain solutions of 10, 3, 1, 0.3 and 0.1 µg/mL that were used for the biological evaluation.

15.2.

In vitro 5-LO cell free assay 5-LO was expressed in E. coli Bl21 (DE3) cells, transformed with pT3-5LO, and purification of 5-LO was performed as described previously [START_REF] Fischer | Phosphorylation-and stimulusdependent inhibition of cellular 5-lipoxygenase activity by nonredox-type inhibitors[END_REF]. Thus, E. coli were collected by centrifugation (7,700  g for 15 min), lysed with 50 mM triethanolamine/HCl, pH 8.0, 5 mM ethylenediaminetetraacetate (EDTA), 60 µg/mL soybean trypsin inhibitor (STI), 1 mM phenylmethylsulphonyl fluoride (PMSF), 1 mM DTT and 1 mg/mL lysozyme, homogenized by sonication (3  15 sec) and centrifuged at 10,000  g for 15 min and then at 40,000  g for 70 min at 4 °C. The supernatant was then applied to an ATP-agarose column (Sigma; Deisenhofen, Germany). Partially purified 5-LO was immediately used for activity assays.

For determination of 5-LO activity in cell-free assays, samples of partially purified human 5-LO (1 mL, in PBS buffer containing 0.1 % glucose and 1 mM EDTA) were incubated 10 min at 4 °C with vehicle (0.1% DMSO, control) or test extracts, pre-warmed for 30 sec at 37 °C and 2 mM CaCl 2 and the indicated concentrations of AA were added. The reaction was stopped after 10 min at 37 °C by addition of 1 mL ice-cold methanol and 30 µL of 1 N HCl, 200 ng prostaglandin B 1 and 500 µL of PBS were added.

Formed 5-LO metabolites, 12(S)-H(P)ETE and 15(S)-H(P)ETE were extracted and analyzed by HPLC as described [START_REF] Werz | Arachidonic Acid Promotes Phosphorylation of 5-Lipoxygenase at Ser-271 by MAPK-activated Protein Kinase 2 (MK2)[END_REF]. 5-LO products include LTB 4 and its alltrans isomers, and 5(S)-H(P)ETE.

Therefore, the 5-LO product formation (% of control) was calculated for all extracts assayed in five different concentrations (0.1, 0.3, 1, 3, 10 µg/mL) and the IC 50 values for each sample were also calculated.

Results and Discussion

NMR and UPLC-HRMS plant metabolomics workflow

During the last years, plant metabolomics has been developed as an emerging tool for plant sciences and natural products chemistry research [START_REF] Hall | Plant metabolomics: from holistic hope, to hype, to hot topic[END_REF]. The perspective of application of metabolomics strategies in plant sciences is to measure the entire number of contained metabolites, both qualitatively and quantitatively in order to obtain a complete insight into the metabolite composition under given conditions. However, the complexity of plant extracts in terms of number, concentration levels and nature of contained metabolites renders this goal unfeasible [START_REF] Dunn | Metabolomics: Current analytical platforms and methodologies[END_REF]. Towards this effort, the application of multiple techniques for the simultaneous measurement of the contained metabolites in a given sample is aiming to obtain a more complete view of the metabolite composition.

Therefore, a growing number of studies are referring to the combination of different analytical techniques. Most commonly NMR and LC-MS approaches combining their unique advantages are applied successfully as complementary tools [START_REF] Dunn | Current trends and future requirements for the mass spectrometric investigation of microbial, mammalian and plant metabolomes[END_REF].

During this study, samples belonging to Acronychia genus were analysed using NMR and MS metabolomics platforms in parallel to provide a greater coverage of the metabolome. As aforementioned, plant metabolomics analysis involves a number of successive steps that are strongly related to the applied analytical platform. A unified scheme in Figure 30 is illustrating the common and discrete procedures that were followed during this analysis. For the sake of coherence, the sample preparation for analysis, acquisition and preprocessing procedures will be presented in accordance to the analytical platform used. 

Sample selection and preparation

During this study, different Acronychia samples (Table XI) were selected belonging to diverse species and plant parts and collected from different locations as representative samples for the investigation of metabolite changes according to aforementioned conditions. Moreover, adequate biological replicates were accounted in order to ensure future statistical confidence. The selection of the different populations was performed considering previous literature data concerning the phytochemical investigation of Acronychia species, taxonomic issues and the traditional use of the plant material.

Therefore, the specific dataset has been considered as a representative dataset to explore several biological questions concerning Acronychia species and also as a proof of concept for the development of particular methodologies related to plant metabolomics. As a critical issue in natural product chemistry, the correlation of the pharmacological activity with specific metabolites in plant extracts constituted a principal goal of this study.

After the selection of the plant material, a key point in the overall metabolomics 

NMR acquisition

The most commonly applied practice for NMR based metabolomics studies is the analysis of the 1 H NMR data [START_REF] Kim | NMR-based plant metabolomics: where do we stand, where do we go?[END_REF]). 1 H NMR methods offers the advantage of fast sample acquisition times and hence high throughput (Kim et al. 2010). Nevertheless, the effectiveness of this method is strongly dependent on the nature of extracts under study.

Sometimes, as in our case, overlapping of 1 H NMR signals leads to incomprehensive peak resolution and thus hinders the robust metabolite identification. In such cases, the application of two-dimensional J-resolved (JRES) spectroscopy providing proton-decoupled projected 1D spectra (pJRES) is strongly proposed [START_REF] Viant | Improved methods for the acquisition and interpretation of NMR metabolomic data[END_REF].

As a matter of fact, visual inspection and comparison of the 1 H NMR spectra of the different Acronychia samples revealed many congested regions. In particular the overlapping in the aliphatic region resulted in a very asymmetric baseline which was difficult to handle. Therefore, projection of the 2D J-resolved spectra was performed resulting in decrease of complexity of the dataset (Figure A 73). Since JRES spectrum separates the chemical shift and spin-spin coupling data onto different axes, all protons appear as a singlet in the JRES spectra and after the projection on the axis of chemical shift many multiple peaks are converted to single peaks. For instance, Figure 32 illustrates the great improvement of the complexity of the spectra and the notable enhancement of the resolution at the aliphatic region which presented major overlapping issues. Likewise, a lot of signals were clearly resolved in the pJRES spectra. 

NMR data preprocessing/ pretreatment

Thereafter, a preprocessing step was performed to transform the metabolite profiles of Acronychia samples obtained by NMR ( 1 H NMR and pJRES) into data matrices in order to be used for further data analysis. For this step, both manual and automated processing of the NMR spectra was performed using TopSpin and Amix software for the first case and Metabolab software for the latter case (Figure 33). The incorporated algorithms were used for baseline correction, calibration to the internal standard and binning of equidistant size (0.01 and 0.04). The bins corresponding to noise were filtered out in order to enhance the statistical power in data analysis step. Both approaches led to similar results indicating a similar impact of the different algorithms in this particular dataset. An initial evaluation of the NMR datasets in order to assess the reproducibility of the overall downstream analysis and the presence of possible outliers was performed before their utilization for specific applications. For this purpose, unsupervised principal component analysis (PCA) was applied for both 1 H NMR and pJRES datasets using Metaboanalyst web platform.

For instance, for the evaluation of the 1 H NMR dataset, the data matrix was uploaded in Metaboanalyst platform in the appropriate format (.csv). A row wise normalization was applied by sum in which the total spectral area is assumed to be constant. Moreover, a pareto scaling was performed to make the features more comparable. By default in metaboanalyst also centring of the data is performed. Therefore the features are expressed as fluctuations round zero allowing the adjustment of low and high abundant metabolites.

A characteristic figure generated during the normalization procedure illustrates some representative features before and after normalization permitting the evaluation of the normalization procedure (Figure 34). Thereafter, the data were analysed by principal component analysis (PCA). An eight PC model was calculated accounting for the 95.1% of the variance with PC1 explaining the 63.6% and PC2 the 17.7% of the variance. In PCA score plot (PC1 vs PC2) the samples of the same groups, coloured according to the different species and organ, were clustered well together giving an important level of confidence for the quality of the dataset (Figure 35A).

Only one sample (K4853B_4) belonging to A. laurifolia barks group is observed out of the 95% confidence interval ellipse leading to its characterization as outlier. Moreover, the respective PCA loading plot (PC1 vs PC2) gives an indication of the features that are responsible for this classification (Figure 35B). The hyphenation of two modern analytical techniques during this study offered great advantages for the analysis of Acronychia samples. On the one hand Acquity UPLC provides high chromatographic resolution, which results in shorter run times, narrow peak widths and an increased S/N compared to conventional HPLC. This is advantageous in metabolic profiling as a large amount of samples can be analysed rapidly allowing the detection of a greater number of metabolites. On the other hand, Orbitrap analyser provides high mass resolution and mass accuracy over a wide dynamic range allowing the detection of metabolites with high level of confidence.

The development of the UPLC method was based on the nature of the extracts as assessed using the QC sample. The nonpolar nature of the EtOAc extracts implied the use of a reversed phase chromatography providing efficient separation of nonpolar compounds.

Usually, in metabolomics applications acetonitrile (ACN) or methanol (MeOH) are applied as organic solvents of the mobile phase, therefore both solvents were tested to evaluate the chromatographic profile of the QC sample. The peak shape, peak resolution and reproducibility of the chromatographic profiles obtained by a mobile phase containing MeOH as organic solvent were significantly better comparing to the respective ones obtained by ACN. This was probably attributed to the reduced sensitivity at high ACN concentrations. For all aforementioned reasons, a mobile phase using MeOH as organic solvent and a gradient with a high percentage of MeOH were used for the acquisition of Acronychia extract samples.

The acquisition was performed in ESI(+) and ESI(-) after the adjustment of the conditions in both modes. The collection of both datasets is of significant importance as additional information can be obtained for the different metabolites contained in the mixtures enhancing the level of confidence in metabolite identification step.

UPLC-HRMS run sequence

The run sequence in LC-MS metabolomics studies has to be designed properly in order to ensure reliability of the acquired data. The first consideration is the stability of the system.

In order to achieve system stability, a number of ‗conditioning' samples have to be injected under the same conditions before the samples that will be subjected to analysis with a view to condition the column and ensure stable retention times and signal intensities. During this study, four blank samples were injected at the beginning of the sequence and acquired with the same method for system stability. Another important issue is the run order. During the whole run time period the MS response changes gradually as far as the LC and MS compartments are concerned. On the one hand, the aging of the column over run time leads to retention time drifts and peak broadening phenomena. On the other hand, regarding the MS instrument, the interaction of the sample with the MS source results in contamination phenomena and reduced sensitivity over the time. As presumed, this slight change will lead to significant differences between the first and the last samples that will subsequently affect the result of the analysis. Therefore, a randomization of the different sample groups is required to ensure an equal impact on the degradation of performance over time. In addition, a common practice to enable the assessment of the data quality is the acquisition of pooled QC samples in between the extract samples in order to observe post acquisition the drifts of the LC and MS performance over time. In practice, QC samples were placed in between 5 extract samples and information regarding the retention time shift, intensity variation and mass accuracy variation was extracted (see Results and Discussion 1.3.4 for further details). Finally, blank samples were added in between 3 samples to avoid possible contamination from sample to sample. Summarizing the above information a typical run sequence list was constructed as shown in Figure 36. In order translate the raw data into compatible format for data analysis a preprocessing step was required. Among the plethora of software designed for the preprocessing of LC-MS data, XCMS package implemented in R language was chosen. The operation of the XCMS software is rather complex but flexible since a number of parameters may be tuned by the user. The peak detection in XCMS is performed by default using the matched filter algorithm. Matched filter algorithm has been proven to detect peaks in a reliable and robust way and to be able to discard noise and detect peaks close to noise level [START_REF] Smith | XCMS: Processing mass spectrometry data for metabolite profiling using nonlinear peak alignment, matching and identification[END_REF]. The XCMS detection process can be split into three basic steps: peak picking, peak grouping and retention time correction followed by filling missed data.

Particularly, the matched filter algorithm divides the data into slices of mass width (defined according to the instrument used for the acquisition) and then then operates on those individual slices in the chromatographic time domain. Each slice can be represented as an extracted ion chromatogram. Then each slice is filtered with matched filtration resulting in the generation of a new chromatographic profiles accomplishing implicit background subtraction. After filtration, peaks are selected using a signal-to-noise ratio cutoff. Finally, peaks are characterized by integrating the unfiltered chromatogram between the zero-crossing points of the filtered chromatogram [START_REF] Smith | XCMS: Processing mass spectrometry data for metabolite profiling using nonlinear peak alignment, matching and identification[END_REF]. Consequently, in the pick picking step the essential parameters to provide are the peak width (step) which depends on the instrument used for the acquisition, the signal to noise (snthresh) which depends on the background noise of the individual experiment and the minimum difference in m/z for peaks with overlapping retention times (mzdiff) which depends on the mass accuracy of the instrument. In this particular dataset, since the acquisition was performed using LTQ-Orbitrap apparatus providing a resolution of 30000, a peak width of 0.02 m/z mass unit was selected. By default this setting is 0.1 m/z applicable for low resolution instruments. Moreover, the mass accuracy using this apparatus in full scan mode is estimated <3 ppm for masses of 200-1000 m/z range, thus, a minimum difference in m/z of 0.005 was applied. The signal to noise ratio was set at 3 in order to discard the background noise.

The next step of XCMS preprocessing process after peak peaking is the grouping of the peaks representing the same analyte across samples. The peaks initially are grouped according to their mass and then a kernel density estimator calculates the overall distributions of peaks in chromatographic time. Moreover, a simultaneous retention time correction for all peaks in a single step is performed. At this stage, the important parameter to take into account is the band width of peak groups (bw) which is dependent on the chromatographic peak width of each study. The average peak width of chromatographic peaks generated after acquisition was around 6-10 s, thus a bw of 10 s was selected. Finally, the filling of missed data is performed by rereading the raw data and integrating them in the regions of the missing peaks. Thus, the peaks that were missed during the previous steps will be filled and will be distinguished from the ones that miss due to absence in the samples.

In order to determine the isotope and adduct peaks CAMERA algorithm was utilized.

Briefly, this algorithm use the feature list generated from XCMS procedure and groups the features according to the retention time. Then the presence of isotope and adduct ions are assessed in these groups simplifying the following metabolite identification process.

UPLC-HRMS data evaluation

As mentioned above the reproducibility of LC-MS based metabolomics data is an issue that has to be taken into account. In such studies, variability in the analytical methods can be originated from different sources. However, repeatable data are essential in order to proceed with the statistical analysis and extract reliable results. Therefore, commonly the assessment of metabolomics data quality prior to any analysis of the data is of great importance. In this context, a careful creation of a run sequence (see Results and Discussion 1.3.2 for further details) and examination of the data derived from pooled QC samples acquired regularly throughout the whole run could provide a good overview of the LC-MS variability [START_REF] Vos | Untargeted large-scale plant metabolomics using liquid chromatography coupled to mass spectrometry[END_REF][START_REF] Want | Global metabolic profiling procedures for urine using UPLC-MS[END_REF]). In our case, a sequence of 197 sample injections was performed including 25 QCs which were used to calculate the LC and MS performance over the 98.5 hour of continuous analysis.

In order to evaluate the performance over time, initially, the extracted ion chromatograms (XICs) of 12 randomly selected ions from the 25 QCs, with a wide range in elution time and molecular weights, were utilized. The first parameter to evaluate was the LC performance and specifically, the retention time variation. This was calculated in second deviation from the mean retention time of each ion from the 25 QCs (Figure 37a). The maximum deviation in retention time for all selected peaks was 3 s for scarce cases while for the majority of them was 2s. Moreover, the MS performance was evaluated investigating the peak intensities and the mass accuracy of these 12 randomly selected ions. In particular, the peak intensity variation, indicating the drift of sensitivity over time, was calculated as the percentage of deviation from the mean intensity (Figure 37b). The majority of the peaks presented a deviation smaller than 20% while in some scarce cases this reached the 50%.

Finally, the mass accuracy was assessed during the entire run period by calculating the mass error in parts per million (ppm) of the 12 selected peaks in all 25 QCs. The results are depicted in Figure 37c indicating a high accuracy (< 1.5 ppm) throughout the run sequence. The above mentioned findings indicate a satisfactory performance of the UPLC-LTQ-Orbitrap instrument during the entire run period. After confirming the stability of the system, the evaluation of the metabolomics data was performed. For this purpose the preprocessed data were used to observe the clustering of all samples using PCA analysis and specifically to detect the clustering pattern of QC samples. Ideally, if the analytical variations were totally absent the QC samples would be identical. In practice, this is quite impossible as there are many parameters that render repeatability a challenging issue for LC-MS analysis. In Figure 38 Although this clustering gives a first idea about the reproducibility of the LC-MS analysis and the reliability of the data, in some cases may be misleading. These are the cases when the first components are representing a large proportion of the variability. Hence, the large biological variability between samples may tend the QC samples to cluster together masking possible variations between them due to analytical issues. Therefore, another way to assess the quality of the data is the investigation of the time dependency of the PCA components. As the PCA scores represent weighted average trajectories of the original variables, the exploration of their time dependency gives an insight into the trends and drifts over time [START_REF] Gika | Within-Day Reproducibility of an HPLC-MS-Based Method for Metabonomic Analysis: Application to Human Urine[END_REF]). Figure 39 illustrates the time dependency of the PC1as all the samples are represented in run order. All QC samples are observed in the 2 SD limits and minor variances are visible between the QC samples throughout the 98.5 hours run giving a further confidence for the quality of the data. In addition, the same observation was performed for blank samples which were more frequent than the QC samples. Blank samples were also presented stable over the run period indicating absence of carry over.

Overall, a more significant variability is observed between the extract samples confirming that the difference detected is attributed to biological variation and not to analytical variation. Colored according to Obs ID (Primary) acceptance criteria (FDA 2001). However, for identification of potential biomarkers in urine samples an acceptance criterion of 30% of variation in the signal value for at least the 70% of the peaks is proposed by [START_REF] Want | Global metabolic profiling procedures for urine using UPLC-MS[END_REF].
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Considering the aforementioned criteria, the relative standard deviation (RSD%) of each peak from the peak list generated after the processing was calculated. In addition, the ions were separated according to the peak intensities in order to have an insight into the percentage of peaks of each subgroup and the number of them that meet the acceptance criteria. As illustrated in the figure X, different acceptance criteria lead to significant percentage of peaks that fell into these limits. For instance, the majority of the peaks (60.1%) presented an intensity of 10 5 order of magnitude. The 63.6% of these peaks presented a RSD% smaller than 20% and the 79.9% of them a RSD% smaller than 30%. Same observations were performed also for the rest group of peaks with different intensities.

Overall, the 60% of the total number of peaks met the acceptance criteria of a RSD < 20% while when the acceptance criteria were increased to RSD < 30% of the average value, a significant increase of 77% of the total peaks was calculated to fall into the limits. Hence, according to Want et al. a high level of confidence for the identification of biomarkers from the specific dataset was established. Overall, the abovementioned findings demonstrate the great advantages from the hyphenation of UPLC Acquity chromatography with LTQ-Orbitrap mass spectrometry. Great reproducibility was achieved in terms of retention time, chromatographic peak area and mass accuracy over the 98.5 hours of operation giving a strong confidence for the quality of the dataset.

UPLC-HRMS data pretreatment

Despite the strong evidence obtained concerning the reliability of the dataset, the big number of the features generated after the preprocessing (8093) indicated the presence of ‗false' features. Therefore, a filtering step for the reduction of the features was performed.

This step is crucial as information, presumably valueless, is eliminating from the dataset. In the current study, initially, the elimination of peaks corresponding to background noise such as impurity and solvent peaks was performed by subtracting the common features present in both extract and blank samples. Moreover, peaks presenting RSD > 25% in the QC samples were removed assuming that they correspond to random features which are not related to any biological information. In Figure 41 is clearly represented the importance of data filtering in Acronychia samples dataset using a PCA analysis importing both peak tables, before and after the filtering, in Metaboanalyst platform. PCA scores plot was used to illustrate the variance between the samples in the two first principal components and thus observe the grouping of the samples according to their biological differences. Obviously, in Figure 41A ‗false' peaks complicate significantly the classification of the samples by adding an important level of variance which is not corresponding to any biological information.

Interestingly, the elimination of the ‗false' peaks ameliorates significantly the clustering of the biologically relevant samples. Following a rationale to reduce further the features, filtering of the features that did not vary significantly in the different sample groups was performed. Therefore, p-values were calculated using ANOVA and features that presented p-values greater than 0.05 were discarded resulting to 4679 features. As expected, the removal of these features did not have a strong effect on the classification of the biologically different samples. However, this elimination was reflected in the PCA analysis as increase of the total variance account which reached the 51% instead of 49.8% that was accounted before this filtering step.

Another important consideration concerning data pretreatment step of LC-MS data is the handling of missing values which was performed using Metaboanalyst. By default

Metaboanalyst replace missing values with very small values under the detection limit (the half of the minimum value detected in the data). In addition, Metaboanalyst gives the possibility to the user to exclude variables according to the percentage of the missing values presence or manually. Finally, the possibility of missing value imputation with diverse algorithms is also available [START_REF] Xia | Web-based inference of biological patterns, functions and pathways from metabolomic data using MetaboAnalyst[END_REF] 

UPLC-HRMS dataset evaluation

Although unsupervised PCA was used extensively during the previous steps to evaluate the impact of the individual actions on the classification outcome, after the selection of the optimal parameters in previous stages, PCA was applied at the end of this procedure to evaluate the dataset and explore the presence of potential outliers. Using Metaboanalyst platform, row-wise and column-wise normalization of the dataset was performed to correct unpredictable dilution mistakes and to adjust the differences in fold differences between the different features, respectively. The effect of normalization is illustrated in Figure 42 representing the significant impact of normalized intensities for the comparison between the different samples. Metabolomic or metabolic profiling of plant extracts using modern UPLC-HRMS instrumentation is a very automated and high through put process to get an insight at the metabolite composition of different plant extracts [START_REF] Hall | Plant metabolomics: from holistic hope, to hype, to hot topic[END_REF]). Nevertheless, one of the main bottlenecks of this procedure is the identification of the known metabolites as well as the chemical assignment of unknown metabolites [START_REF] Nakabayashi | Metabolomics for unknown plant metabolites[END_REF][START_REF] Wolfender | Plant metabolomics: from holistic data to relevant biomarkers[END_REF]. In plant metabolomics field, this is more challenging comparing to metabolomics studies using mammalian fluids or bacterial material. This is due to the extremely larger number of plant secondary metabolites that occur in nature (approximately 200.000 [START_REF] Bino | Potential of metabolomics as a functional genomics tool[END_REF])) comparing to the metabolites present in mammalian biological fluids (approximately 20.000) and bacterial material (approximately 60.000). In addition, a lot of plant secondary metabolites are occurring exclusively in specific genus or even species.

Beside the fact that a number of freely available databases are existing e.g. METLIN (http://metlin.scripps.edu/), PubChem (http://pubchem.ncbi.nlm.nih.gov/), ChemSpider (http://chemspider.com/), the creation of a universal database containing all plant secondary metabolites has not yet been accomplished rendering the identification of plant secondary metabolites a labour-intensive step.

During the last years, a number of commonly used tools and strategies have been established in order to define the metabolite identity based on LC-MS data [START_REF] Kind | Advances in structure elucidation of small molecules using mass spectrometry[END_REF][START_REF] Kueger | High-resolution plant metabolomics: from mass spectral features to metabolites and from whole-cell analysis to subcellular metabolite distributions[END_REF]. The main spectrometric characteristic that can be obtained from this analysis is the molecular weight. However, this information cannot lead directly to the structure of a metabolite as a large number of compounds possess the same molecular weight indicating the inadequate structure information obtained by MS comparing to NMR.

The use of high resolution mass spectrometers is of great importance in order to determine the molecular weight with high accuracy (< 3 ppm). In addition, the combination of accurate mass measurements with relative isotope abundance accuracy is utilized for the prediction of the elemental composition of metabolites with high efficiency [START_REF] Kind | Metabolomic database annotations via query of elemental compositions: Mass accuracy is insufficient even at less than 1 ppm[END_REF]. Determining the molecular formula of a metabolite constitutes the basis for subsequent structure elucidation. Nevertheless, the number of possible metabolites is usually large and further filtering steps are applied to narrow down the candidate numbers (e.g heuristic filtering [START_REF] Kind | Seven Golden Rules for heuristic filtering of molecular formulas obtained by accurate mass spectrometry[END_REF]). Furthermore, mass spectrometers enabling the generation of multi stage mass spectrometry experiments (ion traps, triple quadrupoles or hybrids) can be exploited to obtain further structural information. Based on the interpretation of MS/MS and MS n spectra important structural information can be extracted.

In particular, the implementation of high mass accuracy in the MS n level may provide high quality data for metabolite identification (van der [START_REF] Hooft | Spectral trees as a robust annotation tool in LC-MS based metabolomics[END_REF]. Similarly to MS spectra, is highly unlike that MS/MS and MS n data of plant secondary metabolites are available in databases in order to confirm the identity of the metabolites. However, the investigation of the main losses in combination with the candidate structures often provides important information for the identity of the metabolites. In addition, software such as MassFrontier (HighChem) or free available on-line platforms such as MetFrag (http://msbi.ipbhalle.de/MetFrag/) may provide in silico calculations of the fragmentations of different metabolites. In order to improve the confidence of the metabolite annotation, other orthogonal parameters are important to be taken into consideration. Commonly, in LC-MS based metabolomics, the retention time is utilized as an essential parameter which gives an estimation of the hydrophobicity of the metabolites [START_REF] Dunn | Current trends and future requirements for the mass spectrometric investigation of microbial, mammalian and plant metabolomes[END_REF]. This information may reduce further the number of candidate structures in case that they possess significantly different logP values (octanol-water partition coefficient).

In natural products field, due to the lack of a universal plant secondary metabolites MS database, the multiple physicochemical and spectrometric characteristics collected after the acquisition of LC-MS data are combined and compared usually to in-house databases and literature data in order to identify with confidence the known metabolites present in mixtures, also named dereplication process. Particularly, in the current study, predetermination of specific features corresponding to known metabolites was performed by matching these features to multiple databases and then a screening of the datasets for the occurrence of these metabolites was followed, characterizing this procedure as a bottom-up identification and dereplication strategy (van der [START_REF] Van Der Hooft | Structural elucidation of low abundant metabolites in complex sample matrices[END_REF].

In this context, a number of different species and organ samples were analysed by UPLC-HRMS platform. Among the species subjected to analysis, A. laurifolia and A.

pedunculata have been extensively investigated by various groups resulting in a large number of literature data available concerning their chemical composition (de [START_REF] De Silva | Kokusaginine and evolitrine from Acronychia pedunculata[END_REF][START_REF] Rahmani | Constituents of Acronychia laurifolia[END_REF][START_REF] Cui | Quinoline alkaloids from Acronychia laurifolia[END_REF], Pathmasiri et al. 2005[START_REF] Kozaki | Three acetophenones from Acronychia pedunculata[END_REF]). On the other hand, A. porteri is reported only once for the presence of three methoxyflavones [START_REF] Lichius | Antimitotic and Cytotoxic Flavonols from Zieridium pseudobtusifolium and Acronychia porteri[END_REF]). LC-MS based metabolomics approaches constitute a suitable tool for the rapid, automated and simultaneous exploration of the chemical profile of plant extract samples. Therefore, based on the known compounds reported in the literature from all Acronychia species an in-house database was constructed. In particular, for each compound, structure and origin related data including physicochemical characteristics (logP), and spectrometric characteristics (accurate mass, MS/MS fragments) were collected from the literature and the dereplication of them was successfully performed in the different Acronychia samples (Table XIV, Figure 44).

The annotation of the metabolites in different Acronychia species and organs was performed exploiting their retention times and MS data and comparing them with the inhouse generated database. The MS data, accurate mass ions and MS/MS fragment ions, were collected during the analysis in ESI positive and negative mode. The majority of the identified metabolites detected from their [M+H] + or [M+Na] + ions generated in ESI(+). In ESI(-) the majority of the known metabolites were not ionized, however, a part of acetophenones were additionally observed in ESI(-). Using this approach, a total number of 33 metabolites were detected, including AtA, acetophenone monomers, alkaloids, lignans, triterpenes and phenolics. For the identification of the metabolites, the consistency of the extracted ions after preprocessing was verified in terms of average mass and retention time by tracing the compounds in the raw data. In order to define the confidence of the identification metabolites were annotated according to MSI recommendations (Sumner et al. 2007). Thus, metabolites with annotation level 1 were compared to standard compounds available in-house while metabolites with annotation level 2 were putatively annotated comparing their physicochemical properties and spectral characteristics with compounds reported in the literature. In a next step, in order to get an insight into the presence of these metabolites in the different Acronychia samples all the peaks generated after the preprocessing corresponding to the aforementioned metabolites were utilized. The visualization of the data was performed using heatmap analysis combined by hierarchical cluster analysis (HCA).

Heatmap visualization allows the representation of the relative concentration of individual metabolites in different samples represented by a colour scale in a matrix. The combination with HCA is commonly used to facilitate comparative observations between the different sample groups and thus, pattern recognition. HCA is an unsupervised clustering method which seeks to build a hierarchy of clusters according to their descriptors. There is a big number of clustering algorithms available [START_REF] Andreopoulos | A roadmap of clustering algorithms: finding a match for a biomedical application[END_REF]) however, in metabolomics field, mainly agglomerative techniques are used to produce a series of partitions of the data. The results are illustrated in dendrograms representing the divisions made at each successive stage of analysis while the distances between clusters are defined using selected metrics. Based on the annotated metabolites, and using Heatmap visualization combined with HCA (wards method, euclidian distance), dissimilarities were observed in terms of metabolite occurrence giving a general overview of their relative levels in the various samples (Figure 44).

In particular, alkaloids were mainly accumulated in A. laurifolia leaves (metabolites 3, 4, 5, 6, 7, 9) and A. porteri barks (metabolites 1,2,3,4,5,6,7,8) while smaller quantities were observed in A. pedunculata leaves (metabolites 1, 4). Interestingly, alkaloids such as oligophylicine (1), oligophyline (3), preskimmianine (8) have been reported only in A.

oligophylebia [START_REF] Zhi | Chemical studies on alkaloids in the root of Acronychia oligophylebia Merr[END_REF] and is the first time that they were detected in these species. However, these alkaloids are considered as precursors of furoquinoleine alkaloids [START_REF] Storer | Preskimmianine: The Biogenetic Precursor of Skimmianine from Dictamnus albus L[END_REF]) already reported from these species.

Acetophenones (monomers and dimmers) were principally appeared in A. laurifolia barks and A. pedunculata barks which is in agreement with previous literature data [START_REF] Su | Acetophenone derivatives from Acronychia pedunculata[END_REF][START_REF] Kouloura | Cytotoxic prenylated acetophenone dimers from Acronychia pedunculata[END_REF]. It is worth noting that some differences were observed between the samples of A. laurifolia and A. pedunculata barks regarding the occurrence of different acetophenone derivatives. In particular, samples KL4727B (A. laurifolia bark) and VN0179L (A. pedunculata bark) were dominated by metabolites 14, 15, 18, 22, 24 and 29 while metabolites 10 and 11 were exclusively found in KL4727B. On the other hand, K4652B, K4853B, KL5197B (A. laurifolia bark) and VN0874B (A. pedunculata bark) were more rich in metabolites 16, 17, 19, 20, 21, 23, 25, 27 and 28. In A. laurifolia leaves, low abundances of acetophenone monomers were detected while leaves and fruits of A.

pedunculata metabolites 13,15,17,18,22,24,29 were detected in significant amounts.

The aforementioned observations regarding acetophenone derivatives suggest that these compounds are only present in A. laurifolia and A. pedunculata species while total absence is detected in A. porteri. This remark is of crucial importance as in the literature AtA are proposed as chemotaxonomic markers of the genus (Adsersen et al. 2007).

Concerning lignan composition of the studied samples, lignans were detected principally in A. porteri species and particularly, asarinin (30) was exclusively identified in A.

porteri leaves samples. Asarinin was isolated from A. muelleri leaves [START_REF] Davenport | Asarinin in Acronychia muelleri W.D. Francis[END_REF] and it's the first time to be detected in A. porteri. The other annotated lignan, yangambin, was spotted in both A. porteri leaves and barks samples. Although yangambin (31) was isolated from A. laurifolia roots in our dataset was not detected in A. laurifolia samples [START_REF] Cui | Quinoline alkaloids from Acronychia laurifolia[END_REF]. The unique triterpene detected in the sample set was b-amyrin (32). B-amyrin was found in significant amounts only in A. laurifolia leaves which is in accordance with the literature data [START_REF] Govindachari | Chemical Investigation of Some Indian Plants: Part IV[END_REF]. Finally, the 4-geranyloxy ferulic acid isolated from barks of A. baueri [START_REF] Prager | Some neutral constituents of Acronychia baueri[END_REF]) was detected mainly in A. laurifolia leaves and A. destructive approach for the investigation of the metabolite composition of plant extracts (Kim et al. 2010). Moreover, NMR is considered as the most adaptable technique for unambiguous structure elucidation of natural products providing highly specific evidence for the identity of a metabolite [START_REF] Robinette | NMR in Metabolomics and Natural Products Research: Two Sides of the Same Coin[END_REF], Halabalaki et al. 2014). However, the identification and structural elucidation of metabolites in complex mixtures is not trivial.

Limitations of this technique, such as low sensitivity and extensive signal overlapping, are circumventing the simultaneous robust identification of multiple metabolites in different concentration levels.

1 H NMR is the most popular technique for metabolite profiling of plant extracts [START_REF] Schripsema | Application of NMR in plant metabolomics: techniques, problems and prospects[END_REF]) due to the very high natural abundance of 1 H resulting in a higher sensitivity measurements comparing to NMR experiments based on less abundant nuclei [START_REF] Dunn | Metabolomics: Current analytical platforms and methodologies[END_REF]. Despite this advantage, 1 H NMR technique suffers from extensive signal overlapping hampering significantly the identification procedure. Each metabolite is represented by a number of signals which are spread out in a range of 0-10 ppm leading often in strong overlaps in the majority of spectral regions. Therefore, the application of separation techniques prior to spectral acquisition is usually proposed for dereplication purposes (Halabalaki et al. 2014).

Towards this direction, recently, a dereplication strategy based on 13 C NMR data is suggested in order to obtain reliable information concerning the metabolite composition of a mixture [START_REF] Hubert | Identification of Natural Metabolites in Mixture: A Pattern Recognition Strategy Based on 13 C NMR[END_REF]. According to this strategy, 13 The main advantage of 13 C NMR acquisition consists in the more comprehensive structural description of NPs than 1 H NMR by the detection of all 13 C resonances, specifically, concerning those compounds possessing a noteworthy number of quaternary carbons.

Moreover, the notably higher spectral width of 13 C NMR comparing to 1 H NMR and the decoupling of 13 C NMR spectra leads to an enhanced resolution of 13 C NMR signals reducing significantly signal overlapping generally observed in 1 H NMR spectra.

Nevertheless, the drawback of low sensitivity, much lower than 1 H NMR, probably remains the reason why 13 C NMR based metabolomics approaches have not widely developed. This difference in sensitivity concerning 13 C NMR in comparison to 1 H NMR is mainly due to the lower abundance of 13 C and leads to long acquisition times in order to obtain desirable results. Towards an attempt to increase the sensitivity (or increase S/N ratio) three main possibilities may be accounted namely application of stronger magnetic field, increased concentration and noise reduction. Improvements in probe technologies have contributed significantly in the direction of the two latter possibilities. Specifically, reduced detection volume NMR probes (microprobes) allow the acquisition of several microliters of solvent and thus, a much greater sample concentration is achieved resulting in greater sensitivity measurements. Moreover, the introduction of cryoprobes reduced significantly an important source of noise, the electronic noise, keeping the probe (not the sample) in very low temperature [START_REF] Kovacs | Cryogenically cooled probes-a leap in NMR technology[END_REF].

Based on the aforementioned strategy, the dereplication of known compounds in different Acronychia extracts was attempted using the 13 C NMR data obtained from a high magnetic field NMR spectrometer equipped with a cryogenic probe. Up to now, the application was restricted in simple mixtures of natural products, obtained after a fractionation procedure of the extracts [START_REF] Hubert | Identification of Natural Metabolites in Mixture: A Pattern Recognition Strategy Based on 13 C NMR[END_REF][START_REF] Oettl | Dereplication of depsides from the lichen Pseudevernia furfuracea by centrifugal partition chromatography combined to 13 C nuclear magnetic resonance pattern recognition[END_REF]. Therefore, in this case, all 120 samples were acquired using 4096 scans in order to obtain the desirable spectral information. After the preprocessing of the data (binning, alignment, filtering), a data matrix of 120 samples and 855 variables corresponding to 13 C intensities was subjected to pattern recognition analysis using HCA (euclidian distance, ward's method). A number of clusters were defined possibly corresponding to different metabolites (Figure 45). Thereafter, the signals of each cluster were used as an input for 13 C NMR database search. The results were evaluated by confirming the 13 C chemical shifts of the proposed metabolites. Moreover, a cross-check with the results obtained from the UPLC-HRMS dereplication approach was performed to enhance the reliability of the findings (Table XV). The first three clusters observed at the heatmap were assigned to lignan compounds exclusively detected in Acronychia porteri samples. Specifically, cluster 1 was attributed to yangambin, a lignan which was also detected by UPLC-HRMS dereplication strategy, and interestingly in both cases was traced in A. porteri leaves and barks samples. The database search for cluster 2 proposed the occurrence of asarinin. Asarinin was also observed by UPLC-HRMS mainly in A. porteri leaves while the current strategy suggested its presence in both A. porteri leaves and barks samples. Moreover, another lignan, sesamolin, was observed for the first time in A. porteri samples which is described in the literature as constituent of A. laurifolia roots [START_REF] Cui | Quinoline alkaloids from Acronychia laurifolia[END_REF]. Despite the similar structures of asarinin and sesamolin and thus, the very close 13 C NMR data, the applied strategy revealed successfully the presence of these two compounds in separate clusters demonstrating a good precision. Cluster 4 consisted of 7 13 C NMR signals was attributed to preskimmianine, a quinolone alkaloid precursor of furoquinoleine alkaloids, which was mainly observed in A.

porteri barks. This finding is in absolute accordance with the UPLC-HRMS dereplication results. The presence of a cluster located exclusively in A. porteri leave samples was deduced as 4'-geranyloxyferulic acid. However, according to UPLC-HRMS dereplication approach this metabolite was mainly observed in A. laurifolia leave samples introducing an uncertainty for the assignment of this compound. Finally, b-amyrin was additionally observed as a cluster of 15 13 C NMR chemical shifts located in A. laurifolia bark and leave samples. B-amyrin was also found by UPLC-HRMS in A. laurifolia leave samples.

The application of a 13 C NMR based dereplication strategy has led successfully to the identification of several known compounds reported from Acronychia genus. This approach expanded in more complex mixtures, such as plant extracts, was capable to discriminate structures with close 13 C NMR data. Moreover, the combination of this strategy with a UPLC-HRMS dereplication approach may provide more reliable evidences for the metabolite composition of plant extracts. The genus Acronychia is consisted of 48 species distributed widely in Australasia and New Caledonia. One widespread species A. pedunculata is distributed throughout Malaysia and westward to western India and its northern boundaries are northern India and southern China [START_REF] Hartley | A revision of the genus Acronychia. (Rutaceae)[END_REF]. Regarding the taxonomy of Acronychia genus, there is a continuous discussion concerning its relationship with the genera Euodia and Melicope which is not unravelled until today [START_REF] Appelhans | A molecular phylogeny of Acronychia, Euodia, Melicope and relatives (Rutaceae) reveals polyphyletic genera and key innovations for species richness[END_REF]. This is supported also from the occurrence of a specific group of compounds, prenylated acetophenones which constitute valuable chemotaxonomic markers of the subfamily Rutoideae, tribe Xanthoxyleae sensu Engler (Adsersen et al. 2007). Moreover, the botanical synonymy of several Acronychia species is confused in the literature data. For instance, A. pedunculata and A. laurifolia due to their morphological similarity have been described as synonyms by Hartley [START_REF] Hartley | A revision of the genus Acronychia. (Rutaceae)[END_REF] while other sources refer to them as different species [START_REF] Epifano | Phytochemistry and pharmacognosy of the genus Acronychia[END_REF].

Acronychia species have a long tradition in eastern folk medicine used for multiple purposes among them asthma, ulcers and rheumatism. Furthermore, some species possess an important dietary role as the fruits and aerial parts are used in salads and as condiments [START_REF] Epifano | Phytochemistry and pharmacognosy of the genus Acronychia[END_REF]. The use of herb materials in traditional medicine systems and in diet necessitates the authentication of raw material in terms of safety and efficacy. In particular, closely related species, which do not differ significantly as far as their morphological characteristics are concerned, exhibit different properties. Thus, the clarification of taxonomic issues in Acronychia genus is of great importance due to its extensive use in eastern world. Metabolomics profiling approaches have been proven a powerful tool for the investigation of similarities and differences in different biological samples by exploring their metabolite composition simultaneously in an untargeted and unbiased way [START_REF] Tikunov | A Novel Approach for Nontargeted Data Analysis for Metabolomics. Large-Scale Profiling of Tomato Fruit Volatiles[END_REF]. Specifically in plant metabolomics field metabolic analysis has been used extensively in the last years for the discrimination of different species using either NMR (Kim et al. 2010) or LC-MS [START_REF] Kim | LC-MS-based chemotaxonomic classification of wild-type Lespedeza sp. and its correlation with genotype[END_REF] or both techniques [START_REF] Safer | Metabolic fingerprinting of Leontopodium species (Asteraceae) by means of 1 H NMR and HPLC-ESI-MS[END_REF][START_REF] Porzel | Metabolite profiling and fingerprinting of Hypericum species: a comparison of MS and NMR metabolomics[END_REF]).

In the current study, the analysis of the Acronychia extracts was performed by NMR and LC-ESI(±)-MS techniques collecting multiple snapshots of the metabolite composition of each of the different samples (see Results and Discussion 1 for further details). The parallel analysis with these two techniques is used to provide a better insight at the chemical composition of the different species and organs of Acronychia samples. Due to the complexity of the acquired data, chemometrics analysis techniques were applied for the handling of both large metabolomics datasets because of their ability to provide interpretable and rigorous models for complex correlated datasets [START_REF] Trygg | Chemometrics in Metabonomics[END_REF].

4.1.

Classification of Acronychia samples using NMR based metabolomics NMR spectroscopy is mainly used in plant metabolomics for the classification of different samples and identification of biomarkers. NMR is a suitable method for the simultaneous detection of diverse groups of secondary metabolites. Moreover, NMR constitutes a valuable technique for the structure elucidation of natural products [START_REF] Robinette | NMR in Metabolomics and Natural Products Research: Two Sides of the Same Coin[END_REF], Halabalaki et al. 2014). Actually, in the majority of applications in plant metabolomics field, 1 H NMR spectra of multiple plant extracts are used for classification purposes among the other applications (Wang et al. 2004[START_REF] Kim | Metabolic Fingerprinting of Ephedra Species Using 1 H-NMR Spectroscopy and Principal Component Analysis[END_REF][START_REF] Safer | Metabolic fingerprinting of Leontopodium species (Asteraceae) by means of 1 H NMR and HPLC-ESI-MS[END_REF][START_REF] Zhi | Metabolic Fingerprinting of Tussilago farfara L. Using 1H-NMR Spectroscopy and Multivariate Data Analysis[END_REF]. However, in cases that extensive signal overlapping is occurring projection of 2D JRES data (pJRES) are utilized to reduce the complexity of the data and thus enhance the resolution of the method.

During this study, as aforementioned (see Results and Discussion 1.2) 1 H NMR data presented extensive signal congestion in the aliphatic region while pJRES data were characterized by more comprehensive signals. In order to take advantage of this enhanced resolution obtained from the pJRES spectra, the classification of the different Acronychia samples based on their metabolite profiling by NMR was performed using the pJRES spectra dataset.

For the analysis of this large dataset an unsupervised principal component analysis (PCA) method was applied. The JRES data were reduced by PCA and a model comprising of 12 principal components accounting for the 92.3% of the total variance of the dataset was Similarly to PCA, hierarchical cluster analysis (HCA), another unsupervised method, was used to assess the differences and similarities between Acronychia samples based on the multivariate distance between each sample and clustering them according to the relative proximity of their metabolite profiles [START_REF] Fukusaki | Plant metabolomics: potential for practical operation[END_REF]. Moreover, outlier detection can also be performed by HCA as they usually form a distant branch that joins the main cluster at a very high level [START_REF] Xia | Web-based inference of biological patterns, functions and pathways from metabolomic data using MetaboAnalyst[END_REF]). In the current study, Metaboanalyst platform was used to perform HCA. Based on ward's method for clustering HCA of the multiple Acronychia samples revealed similar clusters with PCA, confirming the robustness of the analysis (Figure 47). Two strong branches were formed representing the differences between A. laurifolia and A. pedunculata species versus A. porteri species. In addition, the barks and the leaves from each of the two main groups were separated in distinct branches of smaller distance. By means of HCA, the relationship of the A. pedunculata fruit samples and VN0179B A. pedunculata bark samples was defined closer to A. laurifolia and A. pedunculata leave samples. .38, 2.02-2.06, 2.5-2.84, 3.7-3.74, 4.82, 5.22, 10.10-10.42, 13.22-13.58 and 15.26). To confirm the findings, the 1 H NMR, 2D JRES and HSQC spectra were used and all the aforementioned signals were corresponded to the literature data [START_REF] Kouloura | Cytotoxic prenylated acetophenone dimers from Acronychia pedunculata[END_REF]. For instance, characteristic 1 H and 13 C resonances of the methoxy groups of AtA were detected at δ 3. [START_REF] De Silva | Kokusaginine and evolitrine from Acronychia pedunculata[END_REF]. A number of other features were found responsible for the discrimination of Acronychia sample groups, however, their reliable correlation with metabolites was hard to be supported.

4.2.

Classification of Acronychia samples using UPLC-ESI(+)-HRMS based metabolomics

Before analysing the data using multivariate data analysis (MVDA) the similarities and differences of the samples were evaluated by visual inspection of their metabolic profiles (Figure 49). Figure 49 illustrates more or less diverse patterns for each sample group that was analysed. In addition, major metabolites present in each group could be detected and attributed to known metabolites. Nevertheless, this approach could not provide any information regarding the significance of difference between these samples as well as the contribution of the major or minor metabolites in the classification of the various samples.

Therefore, the LC-ESI(+)-MS dataset was subjected initially to unsupervised MVDA methods to explore the relative variability within the various sample groups and the investigation of the metabolites associated with this classification. used to explain the variation between the different samples (Figure 52). In particular, as mentioned above four main groups were identified using PCA, which were confirmed by HCA. Thus, in order to identify the biomarkers for each of the four groups, their loadings on PC1, PC2 and PC3 where defined (Figure 52). Precisely, the variables with the smallest values on PC1 were considered the biomarkers for A. laurifolia and A. pedunculata bark samples. The discriminant variables for A. laurifolia and A. pedunculata bark samples were determined the variables presenting the largest values on PC1 and the smallest on PC2. For the identification of the metabolites represented from each feature or group of features a strategy, comprising multiple steps was applied (Figure 53). First of all, metabolites presenting the same retention time were grouped together in order to assess whether they attributed to adduct, fragment or dimer ions of the same metabolite or coeluting metabolites. For this step, the valuable information from CAMERA algorithm was exploited. Thus, features corresponding to Summarizing the information of Table XVI, PCA of Acronychia samples lead to the determination of biomarkers for each of the four distinct groups that were revealed. In particular, A. porteri leaves presented significant accumulation of flavonoid compounds which is in absolute coherence with the unique available literature concerning the phytochemical investigation of A. porteri leaves [START_REF] Lichius | Antimitotic and Cytotoxic Flavonols from Zieridium pseudobtusifolium and Acronychia porteri[END_REF]. Particularly, the biomarkers (metabolites 1-4, 6, 9, 11) attributed to flavonoid compounds have not been reported from Acronychia species. However, their common biosynthetic pathways with the ones reported in the literature imply a higher level of confidence concerning their annotation. Interestingly, a wide array of compounds, chemically diverse, is defined as the discriminant variables for A. porteri barks among them furoquinoline alkaloids (metabolites 12, 15), a lignan (metabolite 13) and a number of triterpenoid glycosides. Despite the fact that A. porteri barks have not been investigated previously, a number of furoquinoline alkaloids [START_REF] Cui | Quinoline alkaloids from Acronychia laurifolia[END_REF][START_REF] Kouloura | Cytotoxic prenylated acetophenone dimers from Acronychia pedunculata[END_REF], several lignans [START_REF] Davenport | Asarinin in Acronychia muelleri W.D. Francis[END_REF][START_REF] Cui | Quinoline alkaloids from Acronychia laurifolia[END_REF]) and triterpenes [START_REF] Govindachari | Chemical Investigation of Some Indian Plants: Part IV[END_REF][START_REF] Rahmani | Constituents of Acronychia laurifolia[END_REF] reported in the literature from other species assisted the annotation of these biomarkers. As far as the A.

laurifolia / A. pedunculata leaves group is concerned, a number of biomarkers were found but could not been identified. Finally, the majority of biomarkers identified for A. laurifolia / A. pedunculata barks are belonging to Acronychia-type acetophenones (AtA). Apart from the other metabolites that were identified, based on the previous work (Chapter 2, Results

and Discussion 2) metabolite 46 was assigned as AtA with additional OH group and additional ring type L. Following this strategy for the identification of biomarkers in different Acronychia sample groups a better insight of the chemical composition of these groups was obtained.

4.3.

Discrimination of A. laurifolia and A. pedunculata species

As mentioned above, the synonymy of A. laurifolia and A. pedunculata species is an obscure issue (see Chapter 1, Introduction 2.1 for further details). Previously, UPLC-ESI(+)-HRMS dataset obtained from Acronychia samples was reduced by PCA in order to obtain the maximum variation between the samples. Four distinct groups were formed; however, the discrimination of A. laurifolia and A. pedunculata species was not possible. As a consequence, the use of another tool for understanding the difference between the two groups and reveal possible discriminating metabolites was necessary. A supervised model, such as PLS-DA or OPLS-DA analysis, can be used as they provide a correlation between the variables and the groups so the detection of chemotaxonomic markers between these two species may be expected. PLS-DA and OPLS-DA are prediction and regression methods that reveal information from the X dataset related to known information Y dataset. OPLS-DA can be considered as a modification of the traditional PLS-DA, with integral orthogonal signal correction filter [START_REF] Bylesjö | OPLS discriminant analysis: combining the strengths of PLS-DA and SIMCA classification[END_REF]. The separation of the Y-predictive and Y-orthogonal variation, the discriminating and the one that do not contribute to the classification, respectively, facilitates the interpretation and visualization of the model specifically when the orthogonal variation is significant. However, the predictions that are made with both PLS and OPLS methods are identical [START_REF] Tapp | Notes on the practical utility of OPLS[END_REF]. Therefore, in the current study, OPLS-DA in Simca 13.0 software was used to get a better understanding of the relevant metabolite variations of different metabolic profiles and thus reveal statistically and potentially significant biomarkers responsible for the discrimination of A. laurifolia and A.

pedunculata species. The two different organs were examined separately. In both cases, a clear separation of the different species was obtained (Figure 54A, Figure 55A). In order to define the variables that presented the strongest correlation with this classification, the Splot, the OPLS-DA loadings plot was utilized (Figure 54B, Figure 55B). The S-plot visualizes the covariance (p) and correlation (pcorr) between the metabolites and the modelled class designation. Therefore, S-plot contributes at the identification of statistically significant and potentially biologically significant metabolites, based both on contributions to the model and their reliability, respectively. OPLS-DA despite the fact that is a very good method to argue classification between two groups, as a supervised method, is very prone to over-fit. Thus, before the interpretation of the potentially discriminant variables, the validation of the method is compulsory.

Therefore, extensive model validation by means of cross validation technique was performed. Following this principal, each time a number of samples is removed from the model and the model is constructed based on the remaining data. The removed samples are predicted from the constructed model and this is performed until all the samples will be predicted once. In the current study, using SIMCA 13.0 software the two models were evaluated by assessment of the cross validated scores based on 7-fold cross validation. In particular, the 120 samples were divided into 7 groups randomly and each time the omitted samples were calculated based on the models constructed from the rest samples. These results were evaluated using the cross validated score plots (Figure 56). A good separation of the different species was also observed in the scores plot using the cross validated scores instead of the normal scores indicating the robustness of the model. strongly contributed to differences between two species. Thus, the integrals of metabolites which were meeting the VIP and correlation coefficients criteria may account for the discrimination. For the identification of the metabolites, the same strategy mentioned above was followed (Figure 53) resulting in the characterization of several biomarkers which can be used for the separation of the two species for each organ. This information is summarized in Table XVII.

In order to confirm the significance of the discriminating variables univariate t-test analysis were performed for both datasets using Metaboanalyst platform and the significant Despite the close relation of A. pedunculata and A. laurifolia, according to OPLS-DA analysis based on the UPLC-ESI(+)-HRMS data these two species are differing significantly as far as the metabolite composition of bark and leave samples are concerned. This finding supports that A. pedunculata and A. laurifolia are different species presenting important differences in key metabolites concentrations. Particularly a number of secondary metabolites found to contribute significantly to this classification such as AtA and alkaloid compounds. However, it is important to take into consideration the different origin of the two species. A. pedunculata samples were collected in Vietnam while A. laurifolia samples were harvested in Malaysia. Thus, the variation observed in those two Acronychia species may be arise from the growing conditions in different locations and reflected to their different metabolite composition.

Statistical integration of different metabolomics techniques for the identification of metabolites

Currently, in plant metabolomics a number of different analytical techniques are applied for the metabolite profiling of plant extracts resulting in the reliable characterization of the metabolome [START_REF] Hall | Plant metabolomics: from holistic hope, to hype, to hot topic[END_REF]). Among them, the most popular are NMR and MS methodologies providing complementary information for the identification of biomarkers [START_REF] Dunn | Metabolomics: Current analytical platforms and methodologies[END_REF]. Nevertheless, in plant metabolomics field, the identification of biomarkers constitutes the main bottleneck of this high throughput procedure. The complex nature of plant secondary metabolites renders the identification procedure of biomarkers a difficult task. In addition, the great number of plant metabolites including the potentially new natural products in plant extracts has hindered the establishment of a universal database containing all the spectroscopic and spectrometric data [START_REF] Wolfender | Plant metabolomics: from holistic data to relevant biomarkers[END_REF]). Thus, the structure elucidation of biomarkers in complex mixtures is still a time consuming and user dependent step [START_REF] Moco | Metabolomics technologies and metabolite identification[END_REF]. In traditional natural products chemistry studies, the structure elucidation of pure isolated metabolites is performed using mainly NMR and MS data. In these cases, the combination of these two techniques is implemented -manually‖ as the data are referring to the same compound. However, in metabolomics studies this is not applicable. The plant extracts are analysed as complex mixtures, hence the direct integration of both techniques with the respect of characterization of single molecules is not feasible. On the top of that, metabolomics generate a large amount of data which impose the use of multivariate analysis methods for their handling.

The integration of two datasets by statistical methods is usually referred to the literature using projection based methods such as PLS, OPLS and O2PLS regression methods [START_REF] Richards | Intra-and inter-omic fusion of metabolic profiling data in a systems biology framework[END_REF]. The two datasets are denoted as X and Y and after the fitting the relation of the respective variables is assumed based on their correlation and covariance. In these cases, the obscure part of the analysis is the interpretation of the results since the variable selection of the biological related information is non-trivially accurate due to multicollinearity phenomena [START_REF] Naes | Understanding the collinearity problem in regression and discriminant analysis[END_REF]. A novel computational methodology called -sparse PLS‖ (sPLS) is introduced for a predictive purpose analysis and is used to match the information from two datasets and unravel correlated features (Le [START_REF] Cao | A sparse PLS for variable selection when integrating omics data[END_REF]. In metabolomics studies the datasets are characterized by high dimensionality containing noise and multicollinearities, while the sample replication is always restricted especially comparing with the number of generated features. The application of sPLS utilizes the properties of PLS regression analysis maximising the covariance between each linear combination (components) associated to each data set. Additionally, its unique characteristics include the variable selection from both data sets based on soft-thresholding penalization (Lasso) on the loading vectors. This penalization approach of sPLS loadings contributes to overcome multicollinearity issues and leads to the extraction of the more relative biologically related correlations removing noise interferences by shrinking their coefficients towards zero (Le [START_REF] Cao | Sparse PLS discriminant analysis: biologically relevant feature selection and graphical displays for multiclass problems[END_REF]. Therefore, this method permits the integration of two datasets and the selection of variables in one step procedure following an unsupervised approach.

In this context, Dejean et al have built mixOmics package implemented in R environment which includes sPLS algorithm and a number of graphical outputs to visualize the results [START_REF] Dejean | mixOmics: Omics Data Integration Project[END_REF]. In metabolomics studies, adaptable visualisation techniques constitute a crucial prerequisite to unravel the biological information by the high dimensionality of the generated data. In this package a number of graphical outputs are available to resume the results and obtain a better insight into the relationship between two datasets.

5.1.

Integration of NMR and MS datasets of Acronychia extracts samples using sPLS

In plant metabolomics studies, as previously mentioned the identification of biomarkers is a crucial step to unravel the biological information from the complex datasets.

Therefore, the integration of different information from multiple techniques is really valuable. In this context, the exploration of the correlation between NMR and MS data of Acronychia extracts was performed in order to get a better insight into the structural characteristics of biomarkers. The integration of the measurements from both techniques was executed using sPLS algorithm incorporated in mixOmixs package. In particular, for the X matrix the dataset obtained from the pJRES data of Acronychia samples was selected.

Concerning the Y matrix, the features generated by UPLC-ESI(+)-HRMS corresponding to the biomarkers were selected since the handling of the entire dataset was too much complicated. For the optimal implementation of sPLS analysis, two parameters had to be tuned, the number of dimensions (sparsity degrees) and the number of variables to be selected. Concerning the number of dimensions, the selection was based on the predictive ability of the model by performing cross validation calculations, evaluating the Q 2 values for each dimension (Le [START_REF] Cao | A sparse PLS for variable selection when integrating omics data[END_REF]). In the current study, initially a number of 10 dimensions was chosen and after a 10 fold cross validation approach and taking into account the proposed cut-off of 0.0975, the application of 4 sparsity degrees for the analysis was decided (Figure A 82). The number of variables to be selected is more challenging issue given the complexity of the two datasets. According to the literature, variable selection in sPLS is performed based on the biological information that needs to be answered and the experience of the scientist on the dataset (Le [START_REF] Cao | A sparse PLS for variable selection when integrating omics data[END_REF]. Only in cases of sPLS discriminant analysis specific criteria have been proposed for the selection of the number of variables (Le [START_REF] Cao | Sparse PLS discriminant analysis: biologically relevant feature selection and graphical displays for multiclass problems[END_REF]). In our case, concerning Acronychia extract samples, an arbitrary selection of 50 variables for each dimension for the X matrix was decided while all variables of the Y matrix were accounted for the analysis, considering it appropriate for the next interpretation step.

The evaluation of the model was performed using a 10 fold cross validation procedure. The predictive power of the model was estimated by the cumulative Q 2 (predicted variation) for the 4 components which was calculated for 0.977 indicating the reliability of the model to predict the UPLC-HRMS features from the NMR data.

Identification of metabolites based on the sPLS model of NMR and MS datasets

In order to explore the associations between the NMR and MS datasets the sPLS loadings were exploited. The visualization of the correlated loadings from the X and Y datasets was performed initially by the examination of the correlation circle plot. In this plot, the sPLS variables are represented as vectors projected into a space spanned by two (2D plot) or three (3D plot) latent variables, inside a circle of radius 1. The relationship between the variables is denoted by their relative position on the space. The angle between two variables is representing the type of correlation; for instance a very sharp angle denotes a positive correlation, an obtuse angle a negative correlation and when the vectors of two loadings are placed perpendicularly it means that no correlation is presented between them. In addition, the length of the vectors, their relative distance between the centre and the circumference of radius 1, is characteristic for the strength of correlation. Usually in the 2D correlation circle plots two circles are designed to assist the interpretation, the external one of radius 1 and another one of radius 0.5 in order to visualise better the more important variables [START_REF] Gonzalez | Visualising associations between paired 'omics' data sets[END_REF]. Specifically, in the correlation circle plot of Acronychia samples in the first dimension a group of correlated X (red elements) and Y (blue elements) variables is clearly observed (blue dashed rectangle) (Figure 57A). The strong correlation between the variables is also denoted by their relative position close to the circumference of the external cycle. In the second dimension, a group of strongly correlated X and Y variables was detected close to 1(green dashed rectangle) together with three other groups of variables that were presented less correlated (Figure 57A). The correlation circle plots contributed significantly to the evaluation of the sPLS results by presenting the general picture of the correlated variables. However, the extraction of detailed information from this kind of representations is not straight forward for the majority of cases. A more efficient representation of the correlations of the specific features from both datasets can be achieved using clustered image maps (CIM). CIM is based on the hierarchical clustering of the discrete datasets combined with a coloured heatmap indicating the correlation between subsets of variables [START_REF] Gonzalez | Visualising associations between paired 'omics' data sets[END_REF].

Therefore, information regarding the proximity between correlated variables can be extracted and utilized for the identification of biomarkers.

In order to evaluate the results obtained from the sPLS analysis of Acronychia samples, in the first step the correlation of the MS features with the respective NMR signals of the identified biomarkers was investigated. In particular, a principal cluster at the left top of the CIM including identified AtA compounds (e.g. metabolites 47, 50, 51, 54-57 of Table XVI) presented strong correlation with NMR signals that correspond to these chemical structures (Figure 58). Specifically, downfield shifted signals at δ 15. 26, 13.26-13.62 were revealed corresponding to the hydroxyl groups of these molecules that forms hydrogen bonds. Moreover, signals at δ 5. 18, 5.22, 3.22, 3.68, 1.35, 1.38 and 1.46 were found to be correlated with the AtA MS features corresponding to the protons of the two isoprenyl groups. Two signals at δ 2.5 and 2.7 were detected matching with the protons of the acetyl groups. And finally characteristic signals at δ 2.03 and 4.82 corresponding to the isopentyl chain were also observed to be correlated with the MS features of AtA. Another compound that was successfully identified was yangambin. Strong correlations were revealed between the MS features of yangambin and the aromatic protons at δ 6.54 as well as with the protons of the hydrofuran rings at δ 4.73, 4.5, 3.9 and 3.1. The protons of the methoxyl groups were also traced at δ 3.83 and 3.78. Interestingly, a cluster corresponding to flavonoid compounds as deduced from HRMS features presented strong correlation with NMR signals at a range of δ 5.9-7.2 and some of them presented also correlation with signals at 3.6 and 4.26 probably corresponding to methoxy groups on the structures.

The above mentioned findings support that sPLS analysis may successfully be applied for the integration of MS and NMR datasets obtained from different analytical metabolomics platforms acquiring the same samples. This integration is of valuable importance for the annotation or structural elucidation of biomarkers which constitutes a bottleneck in the overall plant metabolomics pipeline. The interpretation of this information necessitates specific visualization tools such as clustered image maps (CIM). The CIM revealed clusters attributed to specific categories of compounds according to both MS and NMR signals providing an increased level of confidence for their identification. et al. 2005[START_REF] Mishra | Natural products: An evolving role in future drug discovery[END_REF][START_REF] Dias | A Historical Overview of Natural Products in Drug Discovery[END_REF]. However, the discovery of pharmacologically active metabolites in plant extracts is a complicated task. The main characteristic of plant extracts is their complex nature. A wide array of secondary compounds present in these complex mixtures co-exist contributing to significant activity.

Despite the clear advantage of the natural products as drugs due to their unique structures [START_REF] Newman | Natural Products As Sources of New Drugs over the 30 Years from 1981 to 2010[END_REF], the tracing of bioactivity in complex mixture remains a challenging issue and the improvement of the drug discovery methods is compulsory [START_REF] Butler | The Role of Natural Product Chemistry in Drug Discovery[END_REF].

Toward the direction to replace methodologies including laborious and time consuming processes multiple successful drug discovery strategies have been proposed for the tracking of bioactivity in plant extracts focusing on individual active compounds using mainly reductionist approaches [START_REF] Michel | New Concepts, Experimental Approaches, and Dereplication Strategies for the Discovery of Novel Phytoestrogens from Natural Sources[END_REF][START_REF] Potterat | Concepts and technologies for tracking bioactive compounds in natural product extracts: generation of libraries, and hyphenation of analytical processes with bioassays[END_REF]). However, it is increasingly supported that multiple active compounds are hidden behind any given activity of medicinal herbal preparations and often synergistic or antagonism phenomena are taking place [START_REF] Gilbert | Synergy in plant medicines[END_REF]. In addition, another characteristic that complicates the drug discovery process is the presence of small amounts of highly active compounds in herbal preparations that are not detected due to moderated activity that is reflected to the whole mixture. Thus, the necessity of holistic approach to comprehend the contribution of each compound or the interaction of the compounds in the overall bioactivity of the complex mixture prior to any isolation step is of great impact for the drug discovery effort. Recently, the introduction of metabolomics techniques in drug discovery process has been proven a great tool towards this direction (Yuliana et al. 2011[START_REF] Wolfender | New approaches for studying the chemical diversity of natural resources and the bioactivity of their constituents[END_REF]. Metabolomics profiling approaches utilizing state of art analytical and spectroscopic techniques provide a broad insight into the metabolite composition of a given complex sample. In parallel, high throughput bioassays deliver a pharmacological activity profile for these complex mixtures.

By applying chemometrics data analysis the combination of the metabolic profile with the pharmacological activity profile of the different samples is performed unravelling the relation of certain marker compounds with this activity.

To address this issue an appropriate MVDA method has to be employed. PLSregression (PLS-r) is a supervised method specifically established to make good predictions in multivariate problems. Its goal is to analyse or predict a set of dependent variables from a set of independent variables or predictors. This method attempts to find an optimal decomposition of the predictor dataset given a matrix of responses [START_REF] Bartel | Statistical methods for the analysis of high-throughput metabolomics data[END_REF].

Applying this technique, the dimensionality of the data acquired with various analytical techniques is reduced by combining correlated variables to form latent variables. By means of the new latent variables, the response in the dataset can be explained in relation to one or more variables [START_REF] Abdi | Partial least squares regression and projection on latent structure regression (PLS Regression)[END_REF]. PLS-r has proven to be a very versatile method for multivariate data analysis and the number of applications is steadily increasing in research fields like bioinformatics, machine learning and chemometrics [START_REF] Mehmood | A review of variable selection methods in Partial Least Squares Regression[END_REF]).

However, lately the modification of the PLS-r analysis method led to the introduction of the orthogonal projections to latent structures (OPLS). The main idea of the OPLS method is to separate the systematic variation in the X variable into two parts that which is linearly related to Y (Y-predictive) and that which is orthogonal to Y (Y-orthogonal). This gives rise to a much better interpretability as the orthogonal variation is not accounted for the prediction [START_REF] Trygg | Orthogonal projections to latent structures (O-PLS)[END_REF]. Nevertheless, it is well known that the predictions of the single response OPLS and the single response PLS-r result in identical regressions [START_REF] Verron | Some theoretical properties of the O-PLS method[END_REF][START_REF] Indahl | Towards a complete identification of orthogonal variation in multiple regression from a PLS1 modeling point of view: including OPLS by a change of orthogonal basis[END_REF].

The application of metabolomics approaches for the discovery of bioactive compounds is an emerging field growing the last years. Up today only 6 publications have been found to address this issue. In all cases, NMR based metabolomics data are used as independent variables and are correlation with a pharmacological activity (response). In particular, only 3 publications among them are applying regression models to predict the activity and identify the bioactive metabolites by relating the response with more correlated metabolites [START_REF] Roos | Classification and Correlation of St. John's Wort Extracts by Nuclear Magnetic Resonance Spectroscopy, Multivariate Data Analysis and Pharmacological Activity[END_REF][START_REF] Cho | Classification and prediction of free-radical scavenging activities of dangyuja (Citrus grandis Osbeck) fruit extracts using 1H NMR spectroscopy and multivariate statistical analysis[END_REF], Yuliana et al. 2011). The rest 3 literature data are dealing with this problematic using discriminant analysis and revealing the bioactive compounds by matching them with the most important discriminating variables. In the current study, for the first time the correlation of UPLC-HRMS data with a pharmacological activity is reported constructing both PLS and OPLS regression models to predict the activity of new samples and to reveal bioactive compounds.

In this context, different organs and different species of the genus Acronychia have been selected in order to trace pharmacologically active metabolites. Acronychia species have been traditionally used in folk medicine for their anti-inflammatory and antipyretic effects to treat asthma, ulcers and rheumatism [START_REF] Epifano | Phytochemistry and pharmacognosy of the genus Acronychia[END_REF]. Based on the traditional use of Acronychia species, 5-lipoxygenase (5-LO) enzyme was selected to evaluate the antiinflammatory potency of the obtained extracts. 5-LO is a key enzyme involved in the inflammation and allergy process through catalysis of the first step in the biosynthesis of leukotrienes (LTs) from arachidonic acid. Based on the multiple potent pathophysiological actions of LTs in respiratory and cardiovascular diseases, the pharmacological intervention with 5-LO is a challenge in the development of new therapeutics [START_REF] Pergola | 5-Lipoxygenase inhibitors: a review of recent developments and patents[END_REF]) (see Chapter 1 Results and Discussion 8 for further details).

PLS and OPLS regression model for prediction of 5-LO inhibition

In a first step, in order to get an insight into the correlation of the chemical profile of multiple Acronychia samples and their capacity to inhibit 5-LO enzyme (Table A 17) a PLS multivariate calibration method was applied which utilizes two blocks of data sets the independent X, in this case the UPLC-ESI(+)-HRMS data, and the dependent Y, % inhibition of 5-LO data at a concentration of 1 µg/mL, and relates them using regression [START_REF] Wold | PLS-regression: a basic tool of chemometrics[END_REF]. Using Simca 13.0 software, an optimum number of 6 latent variables was defined for the construction of a significant and robust model explaining the 69% of the total variance of X dataset and the 97.5% of Y dataset (Figure A 84). The PLS-r scores plot (Figure 59)

illustrates the correlation between X (t scores) and Y (u scores) datasets as explained from the first component accounting for the 22.7% and 44.3% of the total variance, respectively.

U scores, correspondingly to t scores, are representations of the observations in the Y space as situated on the projection plane. The interpretability of model using the regression line is not easy in PLS-r models as the scores represent the global variation of the dataset, including the variation that is not related to the Y dataset. Therefore, as observed in the scores plot the overall correlation of the X and Y dataset is not very strong (R 2 = 0.44)

indicating the presence of orthogonal variation on X dataset which is not related to Y dataset. This is totally comprehensive for a complex mixture of compounds such as extracts containing metabolites possessing a potential 5-LO inhibition capacity and others which are not interacting with 5-LO enzyme. Since PLS-r is a supervised multivariate method, an extensive validation of the model has to be performed. A quantitative measure of the goodness of fit of the model is given by R 2 X and R 2 Y (explained variation), indicating the amount of X and Y variables explained by the model, respectively. More important than fit, however, is the predictive ability of the model. The predictive power of the model is represented by Q 2 (predicted variation) which is estimated using cross-validation values to calculated how accurately the dependent variable is predicted by a given set of independent variables. Therefore, Q 2 value has to be arbitrarily close to one (indication prediction ability) [START_REF] Eriksson | Multi-and Megavariate Data Analysis[END_REF]). In the current model, the cumulative Q 2 for the 6 components were calculated for 0.959 demonstrating that using this model the pharmacological response can be predicated with accuracy from the UPLC-ESI(+)-HRMS data.

In addition, as PLS models tend to over-fit the assessment of the model significance was performed using the results obtained from the response on a 100 permutation test. The order of the Y variables is randomly permuted and each of the randomized group generates For the sake of interpretation reasons, the same dataset was analysed by OPLS. Since single Y OPLS method is an extended version of single Y PLS in which the PLS model is rotated, placing the Y-predictive part of the model in the first component. Therefore, the first component is much more interpretable comparing to PLS. In addition, PLS and OPLS with the same number of components give identical prediction [START_REF] Eriksson | CV-ANOVA for significance testing of PLS and OPLS® models[END_REF]. As a matter of fact, in the OPLS score plot of the first component, the correlation of the spectrometric data and the response values was well described by a linear relationship (R 2 = 0.98) since only the correlated X-variables were accounted for this model (Figure 62), in contrast to the PLS-r model where the total variation of the X dataset was accounted (Figure 59).

Specifically, the analysis overview of the OPLS model demonstrated that a large amount (62.8%) of the X dataset (spectrometric data) was orthogonal to the Y dataset (pharmacological response). In this case that the orthogonal variation was not taken into account, the Y variance found strongly correlated to the X-predictive variance (R 2 cum = After the evaluation of the VIPs and the correlation coefficients obtained from both PLS and OPLS analysis 12 features among the thousands features describing the metabolic profile of Acronychia samples were found to be strongly positively correlated with the activity dataset. In the same time, other features meeting the abovementioned criteria were found to de be negatively related with the pharmacological activity and attributed to metabolites exhibiting antagonism effects. Interestingly, different chemical structural patterns were recognised among the positively correlated metabolites. Feature 260.0924@8.37, representing a furoquinoline alkaloid possibly skimmianine, maculosidine or kokusaginine, was identified as the most correlated one. In addition 261.0954@8.37 feature, corresponding to the M+1 ion of skimmianine, maculosidine or kokusaginine was extracted among the significant features indicating the robustness of the method. It is worth to note that also 230.0815@9.09 is attributed to a furoquinoline alkaloid which suggests that this group of compounds may present significant inhibition of 5-LO.

Unfortunately, there is no literature data confirming this finding. Moreover, features 469.1832@8.69 and 915.3767@8.69 corresponding to yangambin, a symmetric lignan, have demonstrated significant positive contribution to the regression. This observation is also supported by literature data demonstrating significant inhibition of 5-LO by yangambin [START_REF] Lim | 5-Lipoxygenase-inhibitory constituents from Schizandra fructus and Magnolia flos[END_REF]). Finally, acrovestone, an AtA derivative, was characterized by significant correlation. Acrovestone, was evaluated previously, and demonstrated potent inhibitory activity (IC 50 = 2.7 µM) against 5-LO (see Chapter1 Results and Discussion 8 for further details).

The identification of compounds with reported pharmacological activity consist a proof of concept that the integration of high accuracy, efficient and robust analytical techniques with the appropriate multivariate data analysis method can be applied to reveal bioactive compounds from complex mixtures such as plant extracts. The statistical and chemical validation of this method seems promising for the application of metabolomics approaches with the attempt to discover new target compounds. Metabolomics, correlating the chemical profile with the bioactivity prior to any isolation step, can contribute significantly to overcome problems such as discovery of known bioactive compounds or loss of bioactivity after fractionation steps occurring using time-consuming and ineffective traditional approaches. Overall, these techniques can enhance the efficacy of drug discovery in terms of time and quality of the results.

Conclusion

In this chapter, novel dereplication strategies and integrated metabolomics approaches were developed optimised and applied aiming to the identification of novel The initial step of this effort was the development and optimisation of sample preparation procedures which are one of the most critical processes for any metabolomic workflow with strong impact to the validity and reliability of the data obtained. A unified extraction scheme was applied for the simultaneous preparation of the samples designated for NMR and LC-MS acquisitions along with their pharmacological assessment. Moreover, method validation steps for the entire procedure were performed for both platforms using analytical and statistical means giving new insight in plant metabolomics pipeline. Based on the developed methodology reliable datasets were obtained from this downstream analysis allowing their exploitation for the investigation of essential biological questions.

Much attention was also given to the utilisation of the different potentials offered by the analytical platforms used, aiming to the development of an integrated and complete metabolomic workflow. Thus, data from 1 H NMR, pJRES NMR and 13 C NMR experiments as well as data from UPLC-ESI(+)-HRMS/MS and UPLC-ESI(-)-HRMS/MS analysis were obtained and analysed, both in parallel and in combination. pJERS was proven a useful alternative for complex mixtures such as plant extracts offering higher spectra resolution while 13 C data can significantly contribute to the classification of samples but also in identification of metabolites of interest especially in combination with other techniques.

For the first time the combination of the UPLC-ESI(±)-HRMS as well as the 13 C NMR datasets was utilized for the dereplication of compounds in all different plant samples giving a better insight into their chemical composition and therefore, qualitative information related to the classification patterns. Furthermore, the hyphenation of data derived from both positive and negative ionisation mode in LC-MS analysis strengthened considerably the dereplication procedure. This strategy resulted to useful information regarding their value as metabolomic tools but also enabled the in depth characterization of Acronychia samples metabolite composition without any isolation step. Briefly, a total number of 33 known compounds belonging to acetophenones, alkaloids, lignans, terpenes and other phenolic compounds were determined in Acronychia samples by UPLC-ESI(±)-HRMS with different contribution in the clustering patterns while new structures were proposed. It is important to highlight, that 8 Acronychia metabolites were also revealed by the 13 C NMR approach, verifying the UPLC-ESI(±)-HRMS results.

Furthermore, since the identification of statistically significant metabolites responsible for the classification and/or discrimination of different samples (biomarkers) comprise a challenging task in any metabolomic study, a systematic effort towards this direction was also performed. Thus, apart the in-house databases (LC-MS) and the combination of data, investigation of public databases was also carried out. In this context, a total number of 57 metabolites were identified belonging to flavonoids, acetophenones, alkaloids, lignans and terpenes. Thus, the identification of the metabolites exploiting the maximum possible information obtained from both platforms based on in house or freely available databases is proposed. Moreover, in order to enhance identification reliability, the integration of UPLC-HRMS and NMR using bioinformatics tools is also suggested for the handling and interpretation of the large amount of data. Therefore, the application of sPLS analysis led to the confirmation of the structural identity of species and organ specific biomarkers. This approach constitutes a promising tool for the structural characterization of metabolites in plant metabolomics studies.

The multiple metabolomics platform was also utilised for the thorough investigation of chemotaxonomic issues associated with Acronychia species. The main goal was to investigate the metabolome of the different organs, species and plant origins but also to evaluate whether A: penduculata and A. laurifolia are identical or comprise different species based on their metabolome analysis. In particular, NMR and LC-MS based metabolomics profiling approaches were used for the determination of variances between the analysed samples. The application of unsupervised PCA analysis allowed the exploration of discriminant features which revealed important species and organ specific biomarkers, however, the discrimination of A. laurifolia and A. pedunculata samples wasn't achieved.

Alternative statistical tools were thus employed, such as supervised OPLS-DA analysis, in order to further explore the relevant taxonomic issue. Indeed, OPLS-DA analysis of these species enabled the discrimination of the two species and the detection of 14 metabolites significantly different indicating that they probably comprise different species. It is worth noting that Acronychia-type acetophenones weren't detected in A. porteri samples leading to a serious doubt regarding their future utilisation as chemotaxonomic markers of the genus.

Furthermore, given the fact that identification of an active entity in a plant extract prior to any isolation and purification step encompasses a challenging and still unresolved issue in natural products chemistry, an attempt to identify anti-inflammatory compounds in Acronychia samples was also performed. Thus, a novel approach involving the correlation of the UPLC-HRMS data with the pharmacological responses of all extracts against 5lipoxygenase (5-LO) was performed. Sophisticated statistical tools such as regression analysis (PLS and OPLS) were employed in order to disclose new 5-LO inhibitors while still being in mixture. Statistical and chemical validation of this approach was achieved identifying compounds with known anti-inflammatory activity such as acetophenones, together with new candidates e.g. lignans. Based on our results, metabolomics was proved a valuable tool to predict pharmacological activity in complex mixtures, track bioactive components and direct bioguided isolation under a new perspective.

Overall, this study constitutes a proof of concept of the successful application of dereplication and metabolomics techniques for taxonomic investigation and identification of bioactive compounds in total extracts. That aspires to introduce an alternative and holistic concept in natural products chemistry, in general. Probably, the main strength of this work is that several discriminant features characterising the different samples were revealed, many of them were identified, new ones were proposed while possible new 5-LO inhibitors were unravelled without the need of any fractionation, isolation and purification step.
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Figure 1 :

 1 Figure 1: Distribution map of Acronychia pedunculata (L.) Miq.

Experimental 1 .

 1 Chemicals and instrumentationAnalytical HPLC-PDA analysis was performed on a Thermo Finnigan apparatus equipped with a PDA Spectra System UV6000LP. Data acquisition and processing was performed using Chromquest 4.1 software. HPLC-ELSD analysis was performed on a Waters instrument equipped with a Waters 600E pump and an Alltech 2000 ES Evaporative Light Scattering Detector (ELSD) controlled by Waters Empower Pro Software. HPLC-ESI-TOF-HRMS chromatograms were obtained by a micrOTOF ESI-MS system (Bruker Daltonics) and data acquisition and processing was performed using Bruker HyStar 3.0 software. HPLC-APCI-Orbitrap-HRMS chromatograms were acquired on a Hybrid LTQ-Orbitrap instrument (Thermo Finnigan) controlled by Xcalibur software version 2.0.7. Calculations of logP values, as measure of molecular hydrophobicity, for the estimation of the chromatographic behaviour of potential contained metabolites were performed by MarvinSketch 5.3.3 software.

  Acropyranol A (2): yellowish oil; [α] 25 D 0 (c 1, CHCl 3 ); UV (MeOH) λmax (log ε) 210 (4.47), 229 (4.42), 292 (4.37), 340 (3.98, sh) nm; 1 H NMR (CDCl 3 , 600 MHz) and 13 C NMR (CDCl 3 , 150 MHz),see

  Acropyranol B (3): yellowish oil; [α] 25 D 0 (c 1, CHCl 3 ); UV (MeOH) λmax (log ε) 209 (4.38), 231 (4.36), 298 (4.29), 329 (4.06, sh) nm; 1 H NMR (CDCl 3 , 600 MHz) and 13 C NMR (CDCl 3 , 150 MHz), see

  Acrofolione B (7): yellowish oil; [α] 25 D 0 (c 1, CHCl 3 ); UV (MeOH) λmax (log ε) 210 (4.45), 232 (4.47), 291 (4.40), 334 (4.06, sh) nm; 1 H NMR (CDCl 3 , 600 MHz) and 13 C NMR (CDCl 3 , 150 MHz), see

Figure 2 :

 2 Figure 2: HPLC based chromatograms of Et 2 O extract obtained from trunk barks of A. pedunculata using a number of diverse detectors

Furthermore,

  Et 2 O extract of A. pedunculata was analysed by HPLC hyphenated with mass spectrometers (MS). These analyses enabled the extraction of spectrometric characteristics from the ionized molecules in the extract. In addition, the high resolution MS analyses obtained by both TOF and Orbitrap analysers allowed the estimation of elemental compositions (ECs) and RDB eq. values of the contained metabolites contributing significantly to the detection of compounds of interest. The ionization of molecules was performed using different type of atmospheric pressure ionization (API) sources. Specifically, TOF analyser was equipped with an electrospray ionization (ESI) source leading to the ionization of a number of compounds in both positive and negative mode. HPLC-ESI(±)-TOF analysis facilitated the ionization of compounds eluting between 20 and 50 minutes which did not exhibit spectrometric characteristics potentially attributed to acetophenone dimers. Moreover, the interface of atmospheric pressure chemical ionization (APCI) source with Orbitrap analyser was applied for the analysis of the extract under study and led mainly to the ionization of more unpolar compounds. Interestingly, the extraction of mass spectra from the HPLC-APCI(+)-Orbitrap chromatogram, revealed common spectrometric characteristics for the seven compounds with similar absorption maxima (Figure A 3). In particular, a base peak in source characteristic fragment ion at m/z 319.1905 denoted the presence of compounds belonging to the same chemical group. The molecular ions of all seven peaks potentially corresponding to acetophenone dimers were detected and the elemental compositions (ECs), RDB eq. values and Δm (ppm) between the theoretical and measured values were calculated for each of these peaks. The exploration of their molecular ions unravelled the occurrence of five isomer compounds with a proposed molecular formula of C 32 H 42 O 9 . The rest two compounds exhibited slightly different molecular formulas calculated for C 32 H 42 O 8 and C 32 H 40 O 8 . Overall, comparing spectrometric and literature data, all seven compounds could be potentially attributed to acetophenone dimers. The combination of the above mentioned findings, obtained from the analysis of Et 2 O extract of A. pedunculata by HPLC hyphenated with multiple detectors, and literature data reinforced the initial assumption suggesting the occurrence of acetophenone dimers in this extract.

Figure 3 :

 3 Figure 3: Acronychia-type acetophenones isolated from the Et 2 O extract of A. pedunculata

Compound 1

 1 was isolated as optically inactive yellowish oil and, therefore, characterized as a racemic mixture. The UV spectrum in MeOH showed characteristic absorption maxima for an acetophenone dimer at214, 226, 289, and 333 (sh) nm. Its molecular formula was deduced as C 32 H 40 O 8 from the APCI(+)-HRMS data, implying 13 degrees of unsaturation (Figure A 4). The high-resolution mass spectrum revealed a pseudomolecular ion at m/z 553.2790 [M+H] + (calcd for 553.2796) as well as a fragment ion at m/z 319.1904, which is characteristic of all such isolated dimers. Based on its accurate mass (Δm = 0.0419 ppm), the proposed elemental composition, and the ring double-bond equivalent value, this ion corresponds to a fragment derived by the cleavage of the basic acetophenone skeleton at C-5 (see Chapter 2 for further details). As an Acronychia-type acetophenone, compound 1 exhibited two fully substituted aromatic rings connected to an isopentyl chain. Despite the lack of signals in the aromatic region of the 1 H NMR spectrum, the presence of these rings was determined by characteristic signals corresponding toseveral deshielded quaternary carbons in the HMBC spectrum as well as from its accurately measured molecular mass and the degree of unsaturation evident. Following the common structural pattern of an Acronychia-type acetophenone, ring B appeared identical to known compounds, while ring A was assigned as 1-[5,7-dihydro-2,2-dimethyl-2H-1-benzopyran-8yl]ethanone (IUPAC nomenclature). For all isolated dimers, the typical ring B substituents are a methoxy group in an ortho position to an isoprenyl and an acetyl group, in a meta position to two hydroxyl groups, and in a para position to the characteristic isopentyl chain connecting the two aromatic rings. Specifically, the 1 H NMR spectrum of 1 (TableA 1, Figure A 5) displayed signals ascribable to a characteristic isopentyl chain. The deshielded methine H-1″ signal between the two aromatic rings resonated at δ H 4.73 as a triplet (J = 7.7 Hz), and the methylene H-2″ was observed at δ H 2.17 as a multiplet, correlating with the corresponding carbon atoms at δ C 28.3 and 39.2, respectively, as indicated from the HSQC spectrum (FigureA 7). The methine H-3″ occurred as a multiplet at δ H 1.41, while the protons of the two methyl groups, H-4″ and H-5″, resonated together as a broad peak at δ H 0.88. The carbon at δ C 26.8 was attributed to C-3″, and the signal at δ C 22.5 to C-4″ and C-5″, due to their correlations with the corresponding protons in the HSQC spectrum. Moreover, the COSY experiment confirmed the sequence of the protons of the isopentyl chain. The position of the isopentyl chain between the two aromatic rings was determined by cross-peak correlations of H-1″ with the downfield-shifted quaternary aromatic carbons at δ C158.6, 160.7, and 162.4 in the HMBC spectrum, which were assigned as C-4, C-6/6′″, and C-4′″, respectively (Figure A 8).

  , and were used to define the relative orientation of the two methyl groups (Figure A 6). In the NOESY spectrum were also observed correlations between the protons of the methoxy group at C-2′″ at δ H 3.71 (3H, s, CH 3 O-2′″) and the H-1″″ and H-5″″ protons. The position of the isoprenyl unit on ring B was defined through the HMBC correlation of H-1″″ with two downfield shifted quaternary carbons at δ C 160.0 ( 3 J) and 162.4 ( 3 J) assigned as C-2′″ and C-4′″. Likewise, the correlation of the CH 3 O-2′″ protons with C-2′″ ( 3 J) observed in the HMBC spectrum and the correlation of H-1″ with C-4′″ ( 3 J) and C-6′″ ( 3 J) revealed the positions of the ring B substituents. Finally, a NOE correlation of the methoxy protons CH 3 O-2′″ with the protons at δ H 2.70 (3H, s, CH 3 CO-1′″) and a HMBC correlation of the CH 3 CO-1′″ protons with C-1′″ ( 3 J) at δ C 108.0 supported the presence of an acetyl group in an ortho position to the CH 3 O-2′″.

1 .

 1 48 and 1.53, respectively. The correlations in the HSQC spectrum of H-1′a/H-1′b and H-2′ with the carbons at δ C 25.7 and 68.7, respectively, confirmed the position of the additional OH group at C-2′ (Figure A 15). The HMBC correlations of H-1′a/H-1′b ( 3 J) and H-2′ ( 2 J) with a quaternary carbon at δ C 80.6 led to the assignment of this carbon as C-3′ (Figure A 16).

  the position as well as the fusion of this ring at the C-2 and C-3 positions(Figure A 22). The latter correlation was absent in the NOESY spectrum of 2, illustrating the different fusion profile. Similar to compound 2 and due to the small quantity of compound 3 isolated, the absolute configurations at C-2′ and C-1″ were not deduced, but the NOE correlations observed between the H-4′ and H-1′a protons as well as the H-5′ and H-1′b facilitated the determination of their relative orientation. Thus, compound 3 (acropyranol B) was assigned as 1-[6-[1-[3- acetyl-2,6-dihydroxy-4-methoxy-5-(3-methylbut-2-en-1-yl)phenyl]-3methylbutyl]-3,5,7-trihydroxy-2,2-dimethyl-3,4-dihydro-2H-1-benzopyran-8-yl]ethanone.Compounds 4 and 5 were isolated as optically inactive Acronychia-type acetophenones possessing aliphatic chain on ring A of their basic structure. Particularly, compound 4 was identified as acrovestone (TableA 7, Figure A 29-Figure A 36) and 5 as acrovestenol (Table A 9, Figure A 37Figure A 44) deduced from the UV, APCI(+)-HRMS (Figure A 4) and NMR spectra ( 1 H NMR, NOESY, HSQC, HMBC). Moreover, compounds 6 and 7 were isolated as optically inactive derivatives corresponding to acrofolione A (Table A 11, Figure A 45-Figure A 52) and acrofolione B (Table A 13, Figure A 53Figure A 60) structures, respectively possessing an additional 2-(2-hydroxypropan-2-yl)-2,3-dihydro-1furan ring fused at different positions on the parent structure. Compounds 6 and 7 have been reported previously in a phytochemical study of Acronychia trifoliolata (Oyama et al. 2003). However, their structural differentiation was not evident regarding the position of the additional furan ring. More specifically, similarly to acropyranol A (2) and acropyranol B (3), compounds 6 and 7 are structural isomers differing only at the fusion position of the 2-(2-hydroxypropan-2-yl)-2,3-dihydro-1-furan ring occurring at either C-2/C-3 or C-4/C-3 of ring A. According to the present study, the position of this ring could be deduced by the correlation of the protons of the methyl groups of the 2-(2-hydroxypropan-2-yl)-2,3dihydro-1-furan ring with those of the acetyl group of ring A, as observed in the NOESY spectrum. In particular, a NOE correlation was observed between H-4′ and H-5′ protons of methyl groups at δ H 2.51 (3H, s) and 2.25 (3H, s) and the protons of the acetyl group at δ H 2.64 (3H, s, CH 3 CO-1) of ring A in the spectrum of 7 (Figure A 54); this correlation was not observed in the analogous spectrum of 6 (Figure A 46). The same difference was evident from the NOESY spectra of compounds 2 and 3, indicating the position of the hydroxypyrano ring (Figure A 14, Figure A 22). Thus, this characteristic cross-peak correlation may be used as a diagnostic signal not only for the specific pair of isomers but generally for the determination of the position of the additional ring in Acronychia-type acetophenone derivatives (Figure 4).

Figure 4 :

 4 Figure 4: COSY (bold lines) and key NOE correlations (arrows) for compounds 1-3

Figure 5 :

 5 Figure 5: Variable temperature 1 H NMR spectra of acrovestone (4) in CDCl 3 , δ H 0-6

  the signals corresponding to the same protons were observed (from 70-510 Hz) indicating a slow exchange. Therefore, the coalescence of the majority of hydroxyl signals (apart from OH-6''') was observed at high temperatures (~40 °C) comparing with the signals corresponding to the protons of the isopentyl or isoprenyl chains (~20 °C).
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 6 Figure 6: Variable temperature 1 H NMR spectra of acrovestone (4) in CDCl 3 , δ H 6-16

Figure 7 :

 7 Figure 7: NOESY snapshots at 0 °C of representative rotational exchange peaks

Figure 8 :

 8 Figure 8: Major rotamers of acrovestone observed in NMR data at 273 K and confirmed by molecular mechanics calculations; global minimum structure is presented in violet and the second more stable structure is presented in green

Figure 9 :

 9 Figure 9: Superimposed energetically more favored conformers calculated by molecular mechanic simulations are separated according to the different isoprenyl orientations into two clusters

Figure 10 :

 10 Figure 10: Energetically more favored conformers of A. Acrofolione A and B. Acropyranol A as calculated by molecular mechanics simulations

  enantiomer separation. In this context, the immobilized polysaccharide-derived Chiral Stationary Phases (CSPs) were applied since they provide a number of advantages comparing to other CSPs. In particular, different chiral materials immobilized on 5 µm silica gel are designed for extended solvent compatibility (comparing to non-immobilized) offering broad chiral recognition abilities, high chromatographic efficiency and excellent reproducibility (Zhang et al. 2008). The screening strategy for enantiomer resolution involved the screening of all derivatives using four different immobilized chiral columns and mixtures of different organic solvents. The four different columns were composed of immobilized tris(3,5-dimethylphenylcarbamate) of amylose (CHIRALPAK IA), tris(3,5dimethylphenylcarbamate) of cellulose (CHIRALPAK IB), tris(3,5-dichlorophenylcarbamate) of cellulose (CHIRALPAK IC) and tris(3-chlorophenylcarbamate) of amylose (CHIRALPAK ID).

  absence of non-equivalent signals and thus absence of diastereomers. The chiral chromatographic separation of Acropyranol A (2) revealed the presence of two enantiomers, however, the NMR data denoted the presence of diastereomers which were possibly co-eluted. The presence of four Acropyranol B (3), Acrofolione A (6) and Acrofolione A (6) isomers was observed during the analysis of these compounds. The findings concerning Acrofolione A (6) were in total agreement with the NMR data however, concerning diastereomers of Acropyranol B (3) and Acrofolione B (7) probably the close chemical resonances of their NMR signals did not lead to their observation by NMR.

Figure 11 :

 11 Figure 11: HPLC chromatograms at 280 nm obtained from the analysis of Acronychia-type acetophenones using CHIRALPAK IA CSP; acropyrone (1), acropyranol A (2), acro pyranol B(3), acrovestone (4), acrovestenol (5), acrofolione A (6) and acrofolione B (7)

Figure 12 :

 12 Figure 12: SFC chromatograms at 290 nm obtained from the method development procedure for the diastereomer sepation of Acrofolione A (6)

Figure 13 :

 13 Figure 13: Analytical and semi-preparative chromatograms obtained by the SFC analysis of acrofolione A

Figure 14 :

 14 Figure 14: Different regions of 1 H NMR spectra obtained from acrofolione A_1 (green) and acrofolione A_2 (blue) at 47 °C

  Table V: IC 50 Values of Compounds 4-6 against Two Human Tumor and a Normal Cell Lines;a Cells were treated with compounds in a dose-dependent manner for 48 h, then, the MTS assay was used to assess cell viability b Data are expressed as means ± SD

  Table VI: Inhibition of 5-LO and mPGES-1 activity by natural Acronychia-type acetophenones and control inhibitors; a values are means ± SE, n = 3 -4; n.d.: not determined; b 5-LO, cell-free: isolated human recombinant 5-LO; c 5-LO, intact cells: intact human PMNL stimulated with 2.5 µM A23187 ionophore; d mPGES-1, cell-free: microsomal preparations of IL-1β stimulated A549 cells

Figure 15 :

 15 Figure 15: Comparative histogram representation of 5-LO and mPGES-1 inhibition activity by Acronychia-type acetophenones

  acetophenones were found to bind 5-LO with highly similar interactions. This provides a first insight into the structure activity relationship (SAR) of 5-LO inhibition by Acronychia-type acetophenones suggesting possible synthetic modifications on the acetopnenone dimer lead.

Figure 16 :

 16 Figure 16: A. Cocrystal structure of AA bound to 5-LO (pdb code 3V99), B. docking results of acrovestone bound to 5-LO and C. superposition of AA and acrovestone in the active site of 5-LO; the protein is depicted in a ribbon representation in purple color while the catalytic site iron and adjacent water molecules are depicted as blue and red spheres, respectively

Figure A 1 :

 1 Figure A 1: HPLC chromatograms at 280 nm of selected FCPC fractions obtained by the fractionation of Et2O extract of A. pedunculata

Figure A 5: 1 H

 1 Figure A 5: 1 H NMR (600 MHz, CDCl 3 , 47 °C) spectrum of Acropyrone (1)

Figure

  Figure A 9:1 H NMR (600 MHz, CDCl 3 , 0 °C) spectrum of Acropyrone (1) δ H 0-7

  Figure A 13: 1 H NMR (600 MHz, CDCl 3 , 47 °C) spectrum of Acropyranol A (2)

Figure A 17: 1 H

 1 Figure A 17: 1 H NMR (600 MHz, CDCl 3 , 0 °C) spectrum of Acropyranol A (2), δ H 0-5.5

Figure

  Figure A 21: 1 H NMR (600 MHz, CDCl 3 , 47 °C) spectrum of Acropyranol B (3)

Figure A 25: 1 H

 1 Figure A 25: 1 H NMR (600 MHz, CDCl 3 , 0 °C) spectrum of Acropyranol B (3), δ H 0-5.3

Figure A 29

 29 Figure A 29: 1 H NMR (600 MHz, CDCl 3 , 47 °C) spectrum of Acrovestone (4)

  s OH-6''' 15.63 s 15.75 s NMR spectroscopic data (600 MHz, 0 °C CDCl 3 ) for Acrovestone 1'', 2'', 3'', OH-4, MeCO-1'''

Figure

  Figure A 33: 1 H NMR (600 MHz, CDCl 3 , 0 °C) spectrum of Acrovestone (4), δ H 0-5.5

Figure A 37: 1 H

 1 Figure A 37: 1 H NMR (600 MHz, CDCl 3 , 47 °C) spectrum of Acrovestenol (5)

  , OH-6 1''', 5''', 6''' OH-4, MeCO-1'''5, 1'', 3'', 4'', 5'', 5''' 1'', 4'', 5'' 3, 4 1'', OH-6''' 1'', 2'', OH-4''', MeCO-1 1, 5, 6 1, 2 3''', 4''', 5'''

Figure

  Figure A 41: 1 H NMR (600 MHz, CDCl 3 , 0 °C) spectrum of Acrovestenol (5), δ H 0-6

Figure A 45

 45 Figure A 45: 1 H NMR (600 MHz, CDCl 3 , 47 °C) spectrum of Acrofolione A (6)

  Figure A 49: 1 H NMR (600 MHz, CDCl 3 , 0 °C) spectrum of Acrofolione A (6), δ H 0-6

Figure

  Figure A 53: 1 H NMR (600 MHz, CDCl 3 , 47 °C) spectrum of Acrofolione B (7)

Figure A 57

 57 Figure A 57: 1 H NMR (600 MHz, CDCl 3 , 0 °C) spectrum of Acrofolione B (7), δ H 0-6

Figure 17 :

 17 Figure 17: The different structures of reference Acronychia-type acetophenones (AtA). AtA are characterized according to their substitution patterns; AtA with additional rings are annotated as type-R and type-L indicating the fusion orientation of the ring towards right or left, respectively.

Figure 18 :

 18 Figure 18: Basic fragmentation pattern of AtA and nomenclature of product species. *Positions of substituents in reference AtA.

Figure 19 :

 19 Figure 19: Proposed fragmentation pathways for acrovestone (1) in ESI(+)

[

  A 0 +Na] + at m/z 275.0889 was detected in MS 2 which underwent further fragmentation (MS 3 ) giving rise to [A 1 +Na-C 4 H 10 O] + (m/z 269.0783) and [A 1 +Na-C 8 H 16 O] + (m/z 215.0313) ions (Table VIII, Figure A 66). It is obvious that the occurrence of these ions is due to the presence of an additional hydroxyl group on ring A. These ions were not detected in the case of 3 since the lack of free hydroxyl group disables the elimination of C 4 H 10 O and C 8 H 16 O species. Nevertheless, their absence from the spectra of 4 designates that the specific losses are in favour when the fusion occurs between C-2 and C-3 positions (type-R).The other pair of regioisomers, acropyranol A (6) and acropyranol B (7) differ only at the fusion position of the additional 3-hydroxy-2,2-dimethyl-3,4-dihydro-2H-pyrano ring and comprise structural isomers of 2, 4 and 5 as well. At their MS n spectra all specific ions indicating the AtA identity and occurrence of hydroxylated additional ring are present.

Figure 20 :

 20 Figure 20: Proposed fragmentation pathways for acropyranol A (6) in ESI(+)

  ] + (B 0 loss) is present in all AtA and its relative abundance varies according to the substitution motif of ring A. ~ The formation of [B 0 +Na] + (m/z 273.1096) ions arising from the loss of A 1 moiety are detected in the MS 2 level only when additional rings are present on the parent structure (3-7). Moreover, these ions undergo further elimination of a C 4 H 8 moiety giving rise to the [B 0 +Na-C 4 H 8 ] + ions (m/z 217.0469). Both type of ions are indicative and could be used for the identification of AtA with additional ring. ~ The ions [A 1 +Na-C 4 H 10 O] + and [A 1 +Na-C 8 H 16 O] + at MS 4 level are recorded only when the additional hydroxylated fused ring has right orientation and could facilitate the identification of AtA type-R (5 & 7). ~ [A 0 +Na] + (B 1 loss) ions are observed in MS 2 only in case of hydroxylated modified side chains and presence of additional type-R ring.

Figure 22 :

 22 Figure 22: Decision tree and table for structural characterization of AtA in ESI (+)

  CO 2 was favored giving rise to the [A 1 -H-CO 2 ] -fragment ion at m/z 259.1701 compared to smaller fragment ions derived from the cleavage of C 2 H 2 O and C 8 H 16 groups as observed in the MS 3 spectrum. The CO 2 loss is a characteristic in negative mode, in all MS levels and in all AtA derivatives which probably occurs through rearrangements and ortho elimination mechanisms. Finally, the fragmentation of the [A 0 -H] -ion is consisted of the loss of CO 2 moiety giving rise to the fragment ion at m/z 191.1079 in the MS 3 spectrum. The complete fragmentation pattern of 1 is illustrated in Figure23while all the derived fragments in MS 2 -MS 4 levels, the corresponding precursor ions, together with their relative abundances are presented in TableIX.

Figure 23 :

 23 Figure 23: Proposed fragmentation pathways for acrovestone (1) in ESI(-)

  The negative ionization of acropyrone (3) generated the less abundant [M-H] -ion, among the other compounds under study, as observed at the full scan acquisition. Acropyrone as all reference compounds presented the [B 1 -H] -, [A 1 -H] -and [A 0 -H] -key fragment ions in MS 2 detected at m/z 317.1753, 301.1441 and 233.0817, respectively. Additionally, the [B 0 -H] -ion (m/z 249.1130) was observed with relative intensity 33%. This ion all 3-7 compounds and could be consider as indicative for AtA compounds with additional ring. In MS 3 level, the fragmentation scheme of the [B 1 -H] -ion was identical to all reference compounds characterized by the loss of CH 3 , C 4 H 10 , and C 5 H 10 units. The same losses were observed from [B 0 -H] -ion generating the [B 0 -H-CH 3 ] -(m/z 234.0896), [B 0 -H-C 4 H 10 ] -(m/z 191.0353) and [B 0 -H-C 5 H 10 ] -(m/z 179.0351) ions respectively as observed in the MS 3 . Finally, the fragmentation of the [A 0 -H] -ion led to the ions at m/z 191.0715, 189.0922 and 187.0765 attributed to the [A 0 -H-C 2 H 2 O] -, [A 0 -H-CO 2 ] -and [A 0 -H CH 2 O] -ions respectively while it seems that the dimethylpyran ring remains intact (Table IX, Figure A 68). Acrofolione A (4) and acrofolione B (5) presented similar fragmentation motif in all levels however more extended compared to other AtA. Specifically, apart from the expected predominant [A 1 -H] -, [B 1 -H] -and [A 0 -H] -ions, the [B 0 -H] -fragment ion at m/z 249.1129, indicative for additional ring, was also observed. The [A 1 -H] -ion was more abundant in the MS 2 spectrum of acrofolione A comparing to acrofolione B (20% in 4 vs 87% 5) (Table

  attributed to the [B 1 -H-C 4 H 10 ] -, [A 0 -H-C 3 H 6 O] -and [B 0 -C 4 H 10 ] -ions respectively were also present. In the MS 2 level the only difference between the two isomers regards the presence of the relatively small abundant [A 0 -H-C 4 H 8 O] -or [B 0 -H-C 5 H 10 ] -fragment ion (m/z at 179.0350) in acrofolione A (4) and the [A 1 -H-C 3 H 6 O] -ion at m/z 261.1129 in acrofolione B (5). For both compounds, further fragmentation of the [A 1 -H] -ion led to the generation of a main fragment ion at m/z 261.1130 corresponding to the [A 1 -H-C 2 H 2 O] -ion. Moreover, the key fragment ions of the [B 1 -H] -ion corresponding to the loss of CH 3 , C 4 H 10 and C 5 H 10 moieties were observed at m/z 302.1520, 259.0975 and 247.0976 as in the previously mentioned AtA. The same losses were detected for the [B 0 -H] -fragment ion yielding three highly abundant ions at m/z 234.0897, 191.0351 and 179.0351, respectively. Finally, the fragmentation of the [A 0 -H] -ion revealed the most abundant [A 0 -H-C 3 H 6 O] -ion at m/z 193.0506 corresponding to the cleavage of C 3 H 6 O and the small abundant [A 0 -H-C 4 H 8 O] - ion at m/z 179.0351 as observed in the MS 3 spectrum (Table IX, Figure A 69, Figure A 70). Acropyranol A (6) and acropyranol B (7), like the majority of reference compounds presented the principal [A 1 -H] -, [B 1 -H] -, [A 0 -H] -and [B 0 -H] -fragment ions observed at m/z 319.1546, 317.1754, 251.0923 and 249.1130 in the MS 2 spectra. Additionally, fragment ions at m/z 259.0974 and 179.0351 were observed derived from the loss of C 4 H 10 and C 4 H 8 O units in both isomers. Only acropyranol B yielded the ions at m/z 247.0974 and 191.0350 attributed to the [A 1 -H-C 4 H 8 O] -or [B 1 -H-C 5 H 10 ] -and [B 0 -H-C 4 H 10 ] -ions, respectively. Similarly to the other pair of isomers 4 & 5, the [A 1 -H] -ion was more abundant in the MS 2 spectrum of acropyranol B comparing to acropyranol A (5% in 6 vs 48% 7). The former ion was further fragmented giving rise to the [A 1 -H-C 4 H 8 O] -fragment ion observed at m/z 247.0974 in the MS 3 spectrum. Regarding the [B 1 -H] -ion, it underwent further fragmentation giving rise to the key fragment ions at m/z 302.1519, 259.0972 and 247.0973 observed in the MS 3 spectra of both acropyranol compounds. In addition, the cleavage of a C 4 H 8 O moiety from [A 0 -H] -ion was observed in the MS 3 spectrum resulting in the generation of the relatively most abundant [A 0 -H-C 4 H 8 O] -fragment ion at m/z 179.0351. Finally, only in the case of acropyranol A the [B 0 -H] -ion yielded the fragment ions at m/z 234.0896, 191.0351 and 179.0351 corresponding to the cleavage of CH 3 , C 4 H 10 and C 5 H 10 moieties as observed in the MS 3 spectrum (Figure 24, Figure 25).

Figure 24 :

 24 Figure 24: Proposed fragmentation pathways for acropyranol A (6) in ESI (-)

Figure 26 :

 26 Figure 26: Decision tree and table for characterization of AtA in ESI (-)

(

  XICs) in full scan, MS 2 and MS 3 levels for key ions were generated. Specifically, in MS 2 level the [B 1 -H] -ion at m/z = 317.1753 and in MS 3 the [B 1 -H-C 4 H 10 ] -(m/z = 259,0975) were selected according to the AtA identification decision tree (Figure 26). The profiling of the extracts using the XICs, retention time (Rt), relative intensities of fragment ions, RDBeq. values, Δm values and suggested ECs for deprotonated molecules lead to the detection of 35 AtA with the majority being potential new derivatives (Figure 27, Table

Figure 27 :

 27 Figure 27: Peak base chromatogram and extracted ion chromatograms (XIC) of Et2O (A) extract

  injection of standard mix solution and extract solution were compared indicating significant difference in the relative intensity of the fragment ions (Figure28B/C). Moreover, it is important to note that the concentration levels of the reference compounds in the various solutions were different and in plant extract solutions possible coelution phenomena were occurred without introducing any variation in fragmentation patterns behavior. On the top of that, the reproducibility of the MS n spectra was also observed in experiments acquired with 1 year of interval (Figure28D/E). These results, in line with Hooft et al. support the great reproducibility of the Orbitrap analyzer[START_REF] Hooft | Spectral trees as a robust annotation tool in LC-MS based metabolomics[END_REF]) and prove the robustness of this method for the detection and characterization of AtA compounds in complex mixtures such as plant extracts.

Figure 28 :

 28 Figure 28: Reproducibility of HRMSn spectra of different AtA compounds; A: MS 2 spectra of Acrofolione A obtained in positive and negative ionization using different collision energies; B: MS 2 spectra of Acrofolione B obtained in positive and negative ionization by direct infusion, by LC-MS of the standard mixture and LC-MS of the Et2O extract; C: MS 3 spectra of Acropyranol B and Acrofolione B obtained in positive and negative ionization, respectively, by direct infusion, by LC-MS of the standard mixture and LC-MS of the Et2O extract; D: MS 2 spectra of Acropyranol B obtained in positive and negative ionization with one year of interval; E: MS

  et al. 2010, Schripsema 2010, Halabalaki et al. 2014). Finally, other parameters of the extraction procedure such as the type of extraction, time, temperature, dissolution rate and pH have to be examined for the efficiency of the extraction method. The type of extraction is closely related to the time and the temperature of the extraction. The most frequently reported technique in metabolomics studies is the ultrasonic assisted extraction. Using this technique the diffusion of the solvent in the plant material is faster and the extraction procedure is shorter obtaining more reproducible results comparing with the classical maceration extraction. Other techniques that have been reported are the microwave assisted extraction (MAE), the supercritical fluid extraction (SFE) and the classical maceration extraction (Mushtaq et al. 2014). The dissolution rate and the pH are correlated with the interaction solvent properties and the plant material. The dissolution rate defines the time and the temperature of the extraction as well as the solvent volume that has to be added for the extraction, while the acid or basic nature of each solvent leads to the dissolution of different metabolites (Schripsema 2010).

  not been investigated up to now. Acronychia species are distributed widely in Australasia and New Caledonia and they possess an important position in the eastern word as food condiments and therapeutics utilized by the traditional medicine mainly for their antiinflammatory properties. So far, a diverse range of metabolites have been isolated from the investigated species among them compounds possessing significant pharmacological properties regarding a number of different targets (Epifano et al. 2013) (see Chapter 1 Introduction 2 for further details).

  Chemical shifts (δ) are expressed in ppm with reference to the solvent signals (δ H 7.26/δ C 77.0) and coupling constancies in Hz. The 2D NMR experiments (JRES, COSY, HSQC and HMBC) were performed using standard Bruker microprograms. Centrifugation of the Acronychia extract samples for the sample preparation of the NMR samples was achieved by a Mikro 200R centrifuge (Hettich Lab Technology,Germany).

Figure 29 :

 29 Figure 29: Schematic representation of multiple aliquots of extracts samples obtained for the sample preparation of different experiments

  parallel, in order to assess the quality of LC-MS data, a quality control (QC) sample was prepared by pooling 15 µL of each extract Acronychia sample solution resulting in the QC sample solution of 1.8 mL totally representative of the entire sample set.5. NMR data acquisition and spectral processingFor metabolomics analysis, 1 H NMR and Jres spectra of all 120 Acronychia samples were acquired within a time-interval of approximately 74 hours. Repeated control experiments in between the time frame showed no additional variation. In particular, 1 H NMR spectra were recorded using the following parameters: digital resolution 0.275 Hz/point (128k complex data points), relaxation delay = 2 s, acquisition time = 3.64 s, spectral width = 30ppm, number of transients = 256, giving a total acquisition time of 24 min and 33 sec. An exponential window function with lb = 0.3 was applied to each FID prior to Fourier transformation. 2-D J-resolved NMR spectra were acquired using 4 scans per 40 increments, which were collected into 12k data points, using spectral widths of 18028.846 Hz in F2 (chemical shift axis) and 78.123 Hz in F1 (spin-spin coupling constant axis). A 2.0 s relaxation delay was employed, giving a total acquisition time of 7 min and 38 sec. Data sets were zero-filled to 256 points in F1, and both dimensions were multiplied by sine-bell functions (SSB = 0) prior to double complex FT. J-resolved spectra tilted by 45° were symmetrized about F1, baseline corrected, and then calibrated, using TopSpin(version 3.1, Bruker). Data were exported as the 1-D projection (F2 axis) of the 2-D J-resolved spectra pJRES.13 C NMR experiments were recorded using standard zgpg pulse sequence, acquisition time = 0.909 s, relaxation delay = 3 s, spectral width = 239 ppm and 4096 scans to obtain a satisfactory signal to noise (S/N) ratio. An exponential window function with EM = 1 Hz was applied to each FID prior to Fourier transformation.

  using 0.01 and 0.04 ppm bin sizes. The resulting matrices included 120 rows corresponding to the individual samples and 1900 or 475 columns corresponding to the different variables for 0.01 and 0.04 ppm bin sizes, respectively. The 13 C NMR spectra were manually processed by TopSpin 3.1, aligned and binned in equidistance bins of 0.05 ppm resulting in a matrix of 120 rows corresponding to the individual samples and 889 columns corresponding to the different variables.

Figure 30 :

 30 Figure 30: Schematic illustration of basic steps followed in NMR and LC-MS based metabolomics platforms

  analysis process was the determination of an extraction protocol. The parameters taken into account were from the one side the polarity of contained metabolites according to the literature data as well as the compatibility of the resulting extracts with the scheduled experiments. To allow a comparative study of the data obtained from the different analytical platforms and after pharmacological evaluation a ‗one pot' extraction scheme was applied. Moreover, due to the intention to focus on the secondary metabolites of Acronychia, an initial extraction of all samples was performed using EtOAc and MeOH. The evaluation of the extraction efficiency by different solvents in terms of containing metabolites and reproducibility was assessed by 1 H NMR (Halabalaki et al. 2014). Both solvents resulted to reproducible extraction of metabolites from the different samples. In case of MeOH extraction, predominance of sugars, detected from the crowded signals at approximately δ H 3.0-4.0, discouraged the utilization of MeOH as extraction solvent. On the other hand, EtOAc solvent led to successful extraction of secondary metabolites, avoiding the extraction of primary metabolites (e.g sugars). Therefore, EtOAc was chosen for preparing the 120 extracts which were further aliquoted for NMR, LC-MS analysis and pharmacological evaluation (Figure 29).

1 .

 1 Sample preparation for NMR acquisitionBefore the acquisition of Acronychia extracts by NMR several deuterated solvents were tested in order to select the optimal. The main concerns were the investigation of the extracts' solubility and the effect of the deuterated solvent on the obtained metabolomic data. Under this prism, common deuterated solvents including Acetone-d6, C 5 D 6 , CDCl 3 , DMSO, MeOD and pyridine-d5 were tested (Figure31). As far as the solubility is concerned, the dilution of Acronychia extracts by Acetone-d6, C 5 D 6 , CDCl 3 and DMSO resulted in transparent solutions while dilution by both MeOH and pyridine-d5 led to precipitate formation. Moreover, the impact of the different deuterated solvents on metabolomics data was evaluated by the 1 H NMR spectra obtained after the dilution with the aforementioned solvents. Among the solvent tried in this study, CDCl 3 showed more promising results in terms of solubility, resolution and variety of signals. Therefore all 120 samples were prepared in CDCl 3 at a concentration of 10 mg/mL and acquired using 1 H NMR, 2D J resolved and 13 C NMR experiments.

Figure 31: 1 H

 1 Figure 31: 1 H NMR data obtained from KL-5465L sample using different deuterated solvent during selection procedure; acetone-d6 (blue); C5D6 (red); CDCl 3 (green); MeOD (purple); DMSO (yellow); pyridine-d5 (orange)

Figure 32 :

 32 Figure 32: Example of A.

Figure 33 :

 33 Figure 33: Snapshot from baseline correction step of the 120 1 H NMR Acronychia samples using spline

Figure 34 :

 34 Figure 34: Data normalization view; the graph summarizes the distribution of input data values before and after normalization; the box plots on the top show the concentration distributions of individual compounds, whereas the bottom plots show the overall concentration distribution based on kernel density estimation

Figure 35 :

 35 Figure 35: A. PCA score plot (PC1 vs PC2) of Acronychia samples obtained by the 1 H NMR dataset; A. laurifolia barks are coloured in red, A. laurifolia leaves in green, A. porteri barks in blue, A. porteri leaves in turquoise, A. pedunculata barks in pink, A. pedunculata fruits in yellow and A. pedunculata leaves in grey; B. PCA loading plot (PC1 vs PC2) indicating the features (bins) responsible for the classification

Figure 36 :

 36 Figure 36: Representation of the concept for the construction of an LC-MS sequence run

Figure 37 :

 37 Figure 37: Stability of the UPLC-LTQ-Orbitrap system over the 98.5 hours of continuous spectral acquisition; a. retention time variation b. signal intensity variation c. mass accuracy variation of 12 randomly selected peaks from the 25 QCs

  the 3D PCA scores plot (including the three first components) of the preprocessed data analysed in ESI positive mode using normalization by mean value and pareto scaling in Metaboanalyst web-based platform is displayed. All QC samples were clustered tightly giving an indication for the reliability of the data. This tight classification suggests that the differences between the test samples from the different extracts are likely to reveal difference in metabolite profiles rather than analytical variations.

Figure 38 :

 38 Figure 38: 3D PCA scores plot (PC1 vs. PC2 vs. PC3) of all samples analyzed in positive mode; QC samples indicated in red circle

Figure 39 :

 39 Figure 39: Control chart of PC1 versus samples in run sequence order for analysis in ESI(+); QC samples are represented by red dots, blank samples by green dots and extract samples by black triangles

Figure 40 :

 40 Figure 40: Distribution of peaks according to their intensities in ESI(+) generated after preprocessing and their percentage with RSD <20% and RSD <30%

Figure 41 :

 41 Figure 41: PCA score plots (PC1 vs PC2) of Acronychia samples using the peak table A. before data filtering B. after data filtering; A. laurifolia barks are coloured in red, A. laurifolia leaves in green, A. porteri barks in blue, A. porteri leaves in turquoise, A. pedunculata barks in pink, A. pedunculata fruits in yellow and A. pedunculata leaves in grey

  . In our dataset, detailed inspection of missing values uncovered two types of missing values. In some cases, missing values were detected randomly mainly concerning small peaks close to noise level. Presumably these missing values were caused by technical issues such as ion suppression phenomena or misalignment of the intensity signal during preprocessing. In other cases, missing values were detected consistently in specific biological groups indicating a biological reason of absence. Therefore, the replacement of the missing values in a consistent and automated way is necessary to convert the data into compatible matrices for further statistical analysis without eliminating the important biological information. In this context, it was considered useful to discard the variables with > 85% taking into account the number of samples defining a different biological group. The rest missing values were imputed using different imputation algorithms available in Metaboanalyst platform [Probabilistic PCA (PPCA), Bayesian PCA (BPCA) and Singular Value Decomposition Imputation (SVD Impute)] and compare the results by the impact of missing value imputation on PCA analysis. However, the PCA scores plots did not reveal any significant difference between the different imputation algorithms indicating an effective preprocessing result and arbitrarily the PPCA algorithm was chosen to continue with the downstream analysis (Figure A 74).

Figure 42 :

 42 Figure 42: Plots of a randomly selected variable (feature 525.2866_6.47) obtained from the UPLC-ESI(+)-HRMS dataset of Acronychia samples as observed in the different samples before (left) and after (right) normalization using Metaboanalyst platform; A. laurifolia barks are coloured in red, A. laurifolia leaves in green, A. porteri barks in blue, A. porteri leaves in pink, A. pedunculata barks in purple, A. pedunculata fruits in yellow and A. pedunculata leaves in turquoise

Figure 43 :

 43 Figure 43: A. PCA score plot (PC1 vs PC2) of Acronychia samples obtained by the UPLC-ESI(+)-HRMS dataset; A. laurifolia barks are coloured in red, A. laurifolia leaves in green, A. porteri barks in blue, A. porteri leaves in turquoise, A. pedunculata barks in pink, A. pedunculata fruits in yellow and A. pedunculata leaves in grey; B. PCA loading plot (PC1 vs PC2) indicating the features (m/z, rt) responsible for the classification

  application of UPLC-ESI(±)-HRMS metabolic profiling approach for the dereplication of known compounds in different Acronychia samples resulted in the phytochemical characterization of studied and unexplored Acronychia species. A number of different groups of compounds were detected giving a better insight into the chemical composition of the individual samples. Nevertheless, hypothesis that supported the occurrence of Acronychia-type acetophenones in all Acronychia species rendering them chemotaxonomic markers of the genus come under question due to their absence from A. porteri samples.

Figure 44 :

 44 Figure 44: Heatmap visualization based on ANOVA combined with HCA of the annotated metabolites (numbers presented in red boxes are referred to the numbers of Table XIV) in the dataset of different Acronychia samples, particularly A. laurifolia barks are coloured in red, A. laurifolia leaves in green, A. porteri barks in blue, A. porteri leaves in turquoise, A. pedunculata barks in pink, A. pedunculata fruits in yellow and A. pedunculata leaves in grey

  C NMR data are acquired, aligned and analysed by HCA in order to detect similarities between the samples and the results are visualized by heatmap toward the objective to identify the metabolites by exploring the individual clusters of chemical shifts generated after the analysis. This is performed by matching the 13 C NMR chemical shift clusters to a locally built database using ACD/NMR Workbook Suite 2012 containing the 13 C NMR data of 900 natural products, among them all reported compounds from Acronychia species. This may considered as a top-down dereplication strategy since a number of signals corresponding to a part of molecule is used as the input for a database search (van der Hooft et al. 2013).

  Figure 45: 13 C NMR chemical shift clusters revealed after HCA of the 13 C NMR data obtained from different Acronychia samples, particularly A. laurifolia barks are abbreviated as Al_B, A. laurifolia leaves as Al_L, A. porteri barks as Ap_B, A. porteri leaves as Ap_L, A. pedunculata barks as Apn_B, A. pedunculata fruits as Apn_Fr and A. pedunculata leaves as Apn_L

Furthermore, two

  clusters (5 and 6) unravelled the presence of acetophenone compounds. The database search in these cases proposed a number of different acetophenone derivatives, therefore, verification of the structures by comparison of their structural characteristics was essential to define the metabolites represented by these specific clusters. For instance, for cluster 5 the structures of acronylin, acrofolione B and acropyranol B were suggested. Among them, after comparison of the 13 C NMR chemical shifts with the literature data, acrofolione B was proposed due to the presence of features at δ 92.0 and 98.8 attributed to C-2' and C-1 of the structure. Accordingly, cluster 6 was attributed to acrovestone and not to acronyculatin B due to the presence of 13 C NMR signals corresponding to carbon atoms of the isopentyl chain. Both acrofolione B and acrovestone were found mainly in A. laurifolia bark samples their absence in A. porteri samples confirmed the doubt arose from the UPLC-HRMS findings concerning the characterization of AtA as chemotaxonomic markers.

  (C-4'''') 21.8 (C-4'', 5'') 

  constructed using Metaboanalyst platform(Figure A 76). Nevertheless, the first three components were utilized in order to get an insight into the main metabolic differences of the various Acronychia samples explaining the 71.6% of the overall variance. Looking at the score plot of the first and second component (PC1/PC2) a clear separation of A. laurifolia and A. pedunculata species versus A. porteri species was observed along the PC1 axis indicating the close relationship of A. laurifolia and A. pedunculata species. The discrimination of the different organs of A. laurifolia and A. pedunculata species was mainly characterized by PC2. A distinct separation of the leaves and barks was observed while the fruit samples were placed in between leave and bark samples. It is worth to note that also VN0179B an A. pedunculata sample was not clustered together with the other bark samples mainly across PC2 designating a slightly different metabolic composition from the rest A. laurifolia and A. pedunculata bark samples. Finally, good discrimination of A. porteri barks and leaves was detected by PC3 (Figure46).

Figure 46 :

 46 Figure 46: PCA scores plots of A. PC1/PC2 and B. PC1/PC3 obtained from the pJRES data of Acronychia samples; A. laurifolia barks are coloured in red, A. laurifolia leaves in green, A. porteri barks in blue, A. porteri leaves in turquoise, A. pedunculata barks in pink, A. pedunculata fruits in yellow and A. pedunculata leaves in grey

Figure 47 :

 47 Figure 47: Dendrogram of different Acronychia samples based on hierarchical cluster analysis obtained from pJRES data using ward's method for clustering and pearson distance; A. laurifolia barks are coloured in red, A. laurifolia leaves in green, A. porteri barks in blue, A. porteri leaves in turquoise, A. pedunculata barks in pink, A. pedunculata fruits in yellow and A. pedunculata leaves in grey

Figure 48 :

 48 Figure 48: PCA loadings plots of A. PC1/PC2 and B. PC1/PC3 based on JRES dataset of Acronychia samples; indicated discriminating features in red for A. laurifolia /A. pedunculata bark samples; in green A. laurifolia /A. pedunculata leave samples; in blue for A. porteri bark samples; in turquoise for A. porteri leave samples

  7 and 3.72 with the respective carbons at δ 62.3 and 63.0. Moreover, revealed the presence of characteristic hydroxy groups of AtA. Likewise, signals responsible for the discrimination of A. porteri bark samples were identified at δ 8.1, 7.66, 6.3 and 4.46 in the PC2/PC3 loadings plot. The respective resonances for the 13 C were extracted from the HSQC spectra at δ 123.6, 144.1, 115.2 and 59.0, respectively. According to the aforementioned signals and literature data the presence of furoquinoline alkaloids is suggested (de

Figure 49 :

 49 Figure 49: Base peak chromatograms of the seven different Acronychia samples. Al_B: A. laurifolia barks, Al_L: A. laurifolia leaves, Ap_B: A. porteri barks, Ap_L: A. porteri leaves, Apen_B: A. pedunculata barks, Apen_FR: A. pedunculata fruits, Apen_L: A. pedunculata leaves

Figure 50 :

 50 Figure 50: PCA scores plots of A. PC1/PC2 and B. PC2/PC3 of Acronychia samples using UPLC-ESI(+)-HRMS data; A. laurifolia barks are coloured in red, A. laurifolia leaves in green, A. porteri barks in blue, A. porteri leaves in turquoise, A. pedunculata barks in pink, A. pedunculata fruits in yellow and A. pedunculata leaves in grey

Figure 51 :

 51 Figure 51: Dendrogram of different Acronychia samples based on hierarchical cluster analysis of UPLC-ESI(+)-HRMS data using ward's method for clustering and pearson distance; A. laurifolia barks are coloured in red, A. laurifolia leaves in green, A. porteri barks in blue, A. porteri leaves in turquoise, A. pedunculata barks in pink, A. pedunculata fruits in yellow and A. pedunculata leaves in grey

  [M+H] + , [M+Na] + , [2M+Na] + , [M+H-H 2 O] + , [M+H-HCOOH] + were identified and ascribed to the same metabolites along with the isotope ions M, M+1, M+2, M+3 . After the grouping step, all biomarkers were matched with the metabolites of the in-house database of Acronychia compounds in terms of accurate mass, retention time and MS/MS spectra when available. Thus, the biomarkers corresponding to reported compounds from the literature were annotated after verification of the isotopic pattern and RDB values. For the determination of the possible structures of the rest discriminating features, accurate mass search was performed in publicly available databases (METLIN, MassBank and HMDB) and MS/MS search (MetFrag). In order to reduce the number of candidate metabolites, isotopic pattern and RDB value match were performed and possible correlations with the reported metabolites from the genus were considered.

Figure 53 :

 53 Figure 53: Flowchart summarizing the main steps for HRMS identification

Figure 54 :

 54 Figure 54: A. OPLS-DA score plot and B. S-plot obtained by UPLC-ESI(+)-HRMS dataset of A. laurifolia (in green) and A. pedunculata (in turquoise) bark samples; possibly discriminating features are annotated with red colour in the S-plot

Figure 56 :

 56 Figure 56: Score plots obtained using the cross validated score values concerning the UPLC-ESI(+)-HRMS dataset of A. A. laurifolia (in green) and A. pedunculata (in turquoise) bark samples and B. A. laurifolia (in blue) and A. pedunculata (in yellow) leave samples

  features extracted from the OPLS-DA analysis were further evaluated based on the FDR values (Bonferonni corrected P-values). The results were illustrated by box-whisker plots (Figure A 80, Figure A 81).

  Interestingly, in the third dimension a group of variables was revealed to have strong positive correlation (yellow rectangle) despite the fact that was not obvious from the first two dimensions. For this reason, the 3D correlation circle plot was visualized enhancing the interpretability of the model (Figure A 83).

Figure 57 :

 57 Figure 57: Correlation Circle plots for dimensions A. 1 and 2 and B. 2 and 3 obtained from the sPLS analysis of pJRES (red elements) and UPLC-ESI(+)-HRMS (blue elements) data of Acronychia samples

Figure 58 :

 58 Figure 58: CIM on the Acronychia pJRES and UPLC-ESI(+)-HRMS datasets analysed with the sPLS; the red and blue colours indicate positive and negative correlations respectively, whereas yellow or light blue indicate small correlation values

Figure 59 :

 59 Figure 59: PLS-r scores plot (T1/ U1) obtained from the UPLC-ESI(+)-HRMS data and the response dataset expressed as the % inhibition of 5-LO; A. laurifolia barks are coloured in green, A. laurifolia leaves in blue, A. porteri barks in red, A. porteri leaves in yellow, A. pedunculata barks in turquoise, A. pedunculata fruits in purple and A. pedunculata leaves in orange

Figure 61 :

 61 Figure 61: Regression plot of the original Y-variables (YVar) and the predicted Y-variables (Ypred) based on the PLS-r model; A. laurifolia barks are coloured in green, A. laurifolia leaves in blue, A. porteri barks in red, A. porteri leaves in yellow, A. pedunculata barks in turquoise, A. pedunculata fruits in purple and A. pedunculata leaves in orange

  0.983) (Figure A 85). The extensive validation of the PLS-r model indicated a good predictive ability of the Y dataset from the X dataset, however, validity of the OPLS model was also demonstrated plotting the cross validated scores of the X-predictive variables of the UPLC-ESI(+)-HRMS dataset and the Y scores of the 5-LO inhibition response (Figure A 86).

Figure 62 :

 62 Figure 62: OPLS scores plot (T1/ U1) obtained from the UPLC-ESI(+)-HRMS data and the response dataset expressed as the % inhibition of 5-LO; A. laurifolia barks are coloured in green, A. laurifolia leaves in blue, A. porteri barks in red, A. porteri leaves in yellow, A. pedunculata barks in turquoise, A. pedunculata fruits in purple and A. pedunculata leaves in orange

Figure 63 :

 63 Figure 63: Correlation coefficients line plot of all variables obtained from the A. PLS and B. OPLS model; the red lines indicate the features with VIP >1

  active compounds in complex mixtures such as plant extracts. As a proof of concept, different Acronychia samples were utilised based on literature data and knowledge obtained during previous studies. Different Acronychia samples belonging to diverse species, organs and different geographical locations were selected. In particular, 20 different biological samples (3 different species, 3 different organs and 2 locations) were collected and comprised the working material towards the development of a comprehensive metabolomics workflow incorporating NMR and LC-MS approaches.

Figure A 73 :

 73 Figure A 73: Comparative overlay of A.

Figure A 74 :CFigure A 78 :

 7478 Figure A 74: PCA score plots using A. PPCA, BPCA or SCV Impute algorithms and B. KNN algorithm for the imputation of missing values obtained after the preprocessing of the UPLC-ESI(+)-HRMS dataset of Acronychia samples

Figure A 83 :

 83 Figure A 83: 3D Correlation Circle plot for dimensions 1, 2 and 3 obtained from the sPLS analysis of pJRES and UPLC-ESI(+)-HRMS of Acronychia samples

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  Thar SFC operating at 600 and 150 MHz for 1 H and 13 C, respectively, equipped with a 5 mm BBI probe and using CDCl 3 (Aldrich) as solvent. Chemical shifts (δ) are expressed in ppm with reference to the residual CHCl 3 solvent signals (δ H 7.26/δ C 77.0). The 2D NMR experiments (COSY, HSQC, HMBC, and NOESY) were performed using standard Bruker

	microprograms.
	Ultra gradient grade MeOH (Carlo Erba), H 2 O (filtered) and glacial acetic acid (Fisher
	optima ACS grade) were used for reversed phase HPLC separations. HPLC gradient grade
	(Fisher Scientific) cyclohexane (cHex), isopropanol (IPA), Ethyl acetate (EtOAc), Methyl tert-
	butyl ether (MTBE) and Ethanol (EtOH) were utilized for normal phase HPLC. Solvents used
	for extraction, FCPC were of analytical grade or technical grade and purified by distillation.

d.; 5 um) (Discovery Supelco) column. Super critical fluid chromatography (SFC) was performed on a For SFC CO 2 of 99.99% purity and HPLC gradient grade (Fisher Scientific) acetonitrile (ACN), methanol (MeOH) and isopropanol (IPrOH) were utilized.

Table I :

 I Two phase solvent system tested for the selection of the appropriate system for the separation of

	acetophenone dimers				
	System No	n-Hex	EtOAc	MeOH	H 2 O
	1	2	3	1	1
	2	6	3	2	5
	3	5	3	3	5
	4	4	6	3	3
	5	1	1	1	1
		n-Hex	EtOAc	Acetone H 2 O
	6	1	1	1	1
		EtOAc	n-Butanol	H 2 O	
	7	2	1	3	
		n-Hept	EtOAc	MeOH	H 2 O
	8	4	1	4	1
	9	10	1	10	1
	10	5	4	5	4
	11	5	1	5	1
	12	10	3	10	3
		n-Hept	EtOAc	MeCN	H 2 O
	13	10	1	8	1
	14	8	3	8	1
	15	10	2	7	1

Table A

 A 

	1: NMR spectroscopic data of Acropyrone (1) at 47 °C;
	APCI(+)-HRMS m/z 575.2610 [M+Na] + (3), 553.2788 [M+H] + (calcd for C 32 H 41 O 8 , 553.2807)
	(18),

Table A

 A 

	3; APCI(+)-HRMS m/z 571.2906 [M+H] + (calcd for C 32 H 43 O 9 ,
	571.2913) (3),

  CHCl 3 ); UV (MeOH) λmax (log ε) 211 (4.55), 231 (4.50), 295 (4.40), 340 (4.19, sh) nm; 1 H NMR (CDCl 3 , 600 MHz) and 13 C NMR (CDCl 3 , 150 MHz), see Table A 7; APCI(+)-HRMS m/z 555.2955 [M+H] + (calcd for C 32 H 43 O 8 , 555.2963)

	Acrovestone (4): yellow amorphous crystals; [α] 25	D 0 (c 1,

Table A 5; APCI(+)-HRMS m/z 571.2897 [M+H] + (calcd for C 32 H 43 O 9 , 571.2913) (52), 319.1904 (100), 253.1070 (14).

Table A

 A 

	9; APCI(+)-HRMS m/z 571.2906 [M+H] + (calcd for C 32 H 43 O 9 ,
	571.2913) (4), 319.1910 (100), 235.0968 (15).
	Acrofolione A (6): yellowish oil; [α] 25	D 0 (c 1, CHCl 3 ); UV (MeOH) λmax (log ε) 211
	(4.45), 231 (4.47), 293 (4.41), 335 (4.01, sh) nm; 1 H NMR (CDCl 3 , 600 MHz) and 13 C NMR
	(CDCl 3 , 150 MHz), see Table A 11; APCI(+)-HRMS m/z 571.2900 [M+H] + (calcd for C 32 H 43 O 9 ,
	571.2913) (4),	

  Table A 13; APCI(+)-HRMS m/z 571.2907 [M+H] + (calcd for C 32 H 43 O 9 , 571.2913) (13),

  1. Targeted isolation of acetophenone dimersIn the context of targeted isolation of acetophenone dimers, Acronychia pedunculata trunk barks were selected according to the literature data which suggests the presence of this group of compounds and alkaloid compounds as main chemical categories. In a first step, a specific extraction protocol for the isolation of alkaloids separately from the rest

contained secondary metabolites was followed. In particular, this protocol involved the extraction of the plant material with diethyl ether (Et 2 O), the alkalinization of the plant residue and the successive extraction with Et 2 O, CH 2 Cl 2 and MeOH. Due to the high nonpolar nature of acetophenone dimers, the Et 2 O extract, presumably containing

Table A

 A 

	2/ 4/ 6/ 8/ 10/ 12/ 14).

Table II : Isocratic elution systems tested during method development for enantiselective separation Solvent mixtures Hex / IPrOH Columns Hex/Et OH Columns MTBE/Et OH Columns Hex/EtO Ac Columns Starting condition 80:20

 II 

	Solvent mixtures	Hex/MTBE/ EtOH	Columns	Hex/MTBE/ EtOH+0.5%F.A	Columns	Hex/EtOH+0. 5%F.A	Columns
	Optimization		90:9:1	IA, ID	93:5:2	IA	96:4	IA
	Optimization		90:8:2	IB	94:4:2	IA, ID	97:3	IA
	Optimization		91:7:2	IA	96:2:2	IA	98:2	IA
	Optimization		92:6:2	IA	80:18:2	ID	99:1	
	Optimization		91:6:3	IA	85:13:2	ID		
	Optimization		50:45:5	IB					
	As concluded from the method development table, the enantiomer/ diastereomer
	resolution of Acronychia-type acetophenones was a painful task. The majority of the solvent
	mixtures did not achieve any enantiomer/ diastereomer separation. Uniquely, mixtures of
	Hex with small percentage of EtOH+0.1% F.A using CHIRALPAK IA led to a successful
	characterization of the isolated racemic mixtures (Figure 11). The enantioselective
	separation of Acronychia-type acetophenones using CHIRALPAK IA and a mobile phase
	consisting of Hex/ EtOH+0.1% F.A (95/5-99/1) confirmed the presence of enantiomers and
	diastereomers of the different derivatives.					
			IA, IB, IC, ID	80:20	IA, IB, IC,	98:2	IA, IB, IC, ID	70:30	IA, IB, IC, ID
					ID				
	Optimization	99:1	IC, ID	99:1	ID	90:10	IB, ID	90:10	IA, IC, ID
	Optimization	95:5	IC, ID	97:3	IA, IB, IC,	85:15	IC, ID	80:20	IA
					ID				
	Optimization	90:10	IC, ID	95:5	IA, IB, IC,	80:20	IA, IB, IC, ID	60:40	IB
					ID				
	Optimization	85:15	IA	90:10	ID				
	Optimization	75:25	IB						
	Optimization	60:40	IB						

Table III :

 III Ten different SFC methods assayed during method development

	No Column	Solvent Temp. (°C) Pres. (bar)
	1	2EthSil	MeCN	40	125
	2	Sil	MeCN	40	125
	3	2EthSil	MeOH	40	125
	4	Sil	MeOH	40	125
	5	2EthSil	IprOH	40	125
	6	Sil	IprOH	40	125
	7	2EthSil	MeOH	60	125
	8	2EthSil	IprOH	60	125
	9	2EthSil	MeOH	40	150
	10	2EthSil	MeOH	40	150

Table IV :

 IV Minimum inhibitory concentrations (MICs) of acrovestone and acrofolione A comparing to the

	positive control norfloxacin				
	Name of Organism	Type	Acrovestone	Acrofolione A	Norfloxacin
			(mg/L)	(mg/L)	(mg/L)
	S. aureus (XU212)	Gram(+)	2	32	16
	S. aureus (SA-1199B)	Gram(+)	2	64	32
	S. aureus (RN-4220)	Gram(+)	0.5	32	0.5
	S. aureus (EMRSA-15)	Gram(+)	2	64	0.5
	S. aureus (EMRSA-16)	Gram(+)	4	64	0.25
	S. aureus (NCTC-8532)	Gram(+)	1	16	0.5
	B.subtilis (Z11)	Gram(+)	1	64	0.25
	S.pneumoniae	Gram			

Table A 1

 A : NMR spectroscopic data of Acropyrone (1) at 47 °C

	No	1 H (J , Hz)	13 C	HMBC	NOESY
	1		104.9		
	2		155.8		
	3		103.5		
	4		158.9		
	5		108.9/112.9		
	6		161.0		
	1'	6.66 (d, 10.1)	117.3	2, 3, 4, 3', 4', 5'	2'
	2'	5.43 (d, 10.1)	124.8	2, 3, 3', 4', 5'	1', 4', 5'
	3'		78.0		
	4'	1.48 s	28.0	2', 3', 5'	
	5'	1.48 s	28.0	2', 3', 4'	
	1'' 4, 52'' 4.74 (t, 7.7) 28.5 2.22 m	
		2.14 m			
	3''	1.43 m	27.2	1'', 2'', 4'', 5''	1'', 2'', 4'', 5''
	4''	0.88 (d, 5.2)	22.5	2'', 3'', 5''	
	5''	0.88 (d, 5.2)	22.5	2'', 3'', 4''	
	1'''		108.2		
	2'''		160.0		
	3'''		116.7		
	4'''		162.4		
	5'''				

, 6, 2'', 3'', 4''', 5''', 6''' 2'', 3'', 4'', 5'' 

Table A 2

 A : NMR spectroscopic data of Acropyrone (1) at 0 °C; different rotamers' signals are assigned in red and blue

	No	1 H (J , Hz)	13 C	HMBC	NOESY
	1		104.8		
	2		155.7		
	3		103.4		
	4		158.7		
	5		108.5		
			108.0		
	6		161.3		
	1'				
		3)			
	2''a	2.19 m	39.5		
		2.30 m	39.1		
	2''b	2.13 m	39.5		
		2.04 m	39.1		
	3''	1.40 m	26.6		
			108.1		
	2'''		159.9		
	3'''		116.8		
	4'''		162.2		
	5'''		112.5		
			113.1		
	6'''		160.8		
	1''''				

6.62 (d, 10.0) 116.9 2, 3, 4, 3', 4', 5' 2' 2' 5.44 (d, 10

.0) 124.9 2, 3, 3', 4', 5' 1', 4', 5' 3' 78.1 4' 1.48 s 27.8 2', 3', 5' 2', MeCO-1 5' 1.45 s 27.9 2', 3', 4' 2', MeCO-1 1''a 4.71 (t, 7.3) 4.70 (t, 7.2'', 4'', 5'' 2'', 4'', 5'' 4'' 0.89 (d, 6.2) 22.4 2'', 3'', 5'' 1'', 2'', 3'' 5'' 0.84 (d, 6.5) 22.3 2'', 3'', 4'' 1'', 2'', 3'' 1'''

Table A 3

 A : NMR spectroscopic data of Acropyranol A (2) at 47 °C; different diasteromers' signals are assigned in grey

	No	1 H (J , Hz)	13 C	HMBC	NOESY
	1		106.7		
	2		162.5		
	3		98.7		
	4		155		
	5		106.9		
	6		159.7		
	1'a				
			108.4		
	2'''		160.2		
	3'''		116.3		
	4'''		162		
	5'''		112.8		
	6'''		159.7		
	1''''				

2.94 (dd, 17.1/ 4.8) 2.92 (dd, 17.1/ 4.6) 1'b 2.68 m 1'a, 2', 5' 2' 3.86 (t, 5.3) 3.85 (t, 5.5) 3' 80.7 4' 1.49 s 1'a, 2' 1.47 s 5' 1.53 s 1.51 s 1'b, 2' 1'' 4.75 brs 28.3 6, 2'', 4''', 5''', 6''' 2'', 3'', 4'', 5'' 2''a 2.31 m 2''b, 3'', 4'', 5'' 2''b 1.99 brs 2''a, 4'', 5'' 3'' 1.41 m 27 1'', 2'', 4'', 5'' 1'', 2''a, 4'', 5'' 4'' 0.90 (d, 6.6) 22.6 2'', 3'', 5'' 5'' 0.89 (d, 6.6) 22.3 2'', 3'', 4'' 1'''

Table A 4

 A : NMR spectroscopic data of Acropyranol A (2) at 0 °C; different rotamers' signals are assigned in red and blue

	No	1 H (J , Hz)	13 C	HMBC	NOESY
	1		106.5		
	2		162.5		
	3		98.2		
	4		155.3		
	5		105.9		
	6		159.8		
	1'a	2.90 brs			1'b, 2', 4'
	1'b	2.64 m			1'a, 2', 5'
	2'	3.87 (t, 5.2)	68.3	3	1'a, 1'b, 4', 5'
	3'		80.6		
	4'	1.46 s			1'a, 2'
		1.47 s			
	5'	1.53 s			
		1.51 s			1'b, 2'
	1''	4.79 brs			
		4.65 brs			
	2''a				

Table A 5

 A : NMR spectroscopic data of Acropyranol B (3) at 47 °C

	No	1 H (J , Hz)	13 C	HMBC	NOESY
	1		104.9		
	2		154.8		
	3		100		
	4		161.9		
	5		108.7		
	6		161.6		
	1'a	2.88 (dd, 17.2/5.0)		2, 3, 4, 2', 3'	1'b, 2', 4'
	1'b	2.62, m		2, 3, 4, 2', 3'	1'a, 2', 5'
	2'	3.79, brs	68.7		1'a, 1'b, 4', 5'
	3'		78.4		
	4'	1.37, s	24.9	2', 3', 5'	1'a, 2'
	5'	1.40, s	21.8	2', 3', 4'	1'b, 2'
	1''	4.75 (t, 7.5)	28.2	5, 6, 2'', 3'', 5''', 6'''	2'', 3'', 4'', 5''
	2''	2.16 brs	39.4		1'', 3'', 4'', 5''
	3''	1.42 m	27	1'', 2'', 4'', 5''	1'', 2'', 4'', 5''
	4''	0.88 (brd, 5.3)	22.4	2'', 3'', 5''	
	5''	0.88 (brd, 5.3)	22.4	2'', 3'', 4''	
	1'''		108.2		
	2'''		160.2		
	3'''		116.6		
	4'''		162.5		
	5'''		112.9		
	6'''		161.6		
	1''''	3.30 brd	23.1	2'''	

Table A 6

 A : NMR spectroscopic data of Acropyranol B (3) at 0 °C; different rotamers' signals are assigned in red and blue

	No	1 H (J , Hz)	13 C	HMBC	NOESY
	1		104.5		
	2		154.5		
	3		99.3		
	4		161.3		
	5		107.8		
			108.4		
	6		161.4		
	1'a	2.83, m		1'b, 2', 4'	
	1'b	2.63, m		1'a, 2', 5'	
	2'	3.78 (t, 4.8)			
		3.82 (t, 4.4)			
	3'		78.1		
	4'	1.31, s	24.6		
		1.37, s			
	5'	1.38, s	22.2		
		1.42, s			
	1''	4.71 (t, 7.7)			
		4.74 (t, 7.8)			
	2''a	2.26 m	38.4		
		2.07 m	38.4		
	2''b	2.14 m	39.0		
	3''	1.39 m	26.7		
	4''	0.84 brm	22.4	2'', 3'', 5''	
	5''	0.89 brm	22.4	2'', 3'', 4''	
	1'''		107.8		
	2'''		159.7		
	3'''		116.3		
	4'''		162.3		
	5'''		112.7		
			112.2		
	6'''		160.4		
	1''''				

1'', 2'', 4'', 5'' 1'', 2''a, 4'', 5'' 

Table A 7

 A : NMR spectroscopic data of Acrovestone (4) at 47 °C

	No	1 H (J , Hz)	13 C	HMBC	NOESY
	1		104.7		
	2		158.2		
	3		106.4		
	4		160.8		
	5		108.7		
	6		159.1		
	1'	3.42 (d,7 )	22.2	2, 3, 4, 2', 3', 4', 5'	2', 5'
	2'	5.23 (tt, 1.3/7) 121.6	3, 1', 4', 5'	1', 4'
	3'		136.6		
	4'	1.79 s	25.8	3, 2', 3', 5'	2'
	5'	1.84 s	17.7	3, 2', 3', 4'	1'
	1''	4.75 (t, 7.3)	28.7	4, 5, 2'', 3'', 4''', 5'''	2'', 3'', 4'', 5''
	2''	2.15 brs			
		2.24 brs			
	3''	1.42 (m, 6.6)	27.1	1'', 2'', 4'', 5''	1'', 2'', 4'', 5''
	4''	0.88 (d, 6.6)	22.5	2'', 3'', 5''	
	5''	0.88 (d, 6.6)	22.5	2'', 3'', 4''	
	1'''		108.2		
	2'''		160.3		
	3'''		116.7		
	4'''		162.6		
	5'''		113.2		
	6'''		160.3		
	1''				

Table A 8

 A : NMR spectroscopic data of Acrovestone (4) at 0 °C; different rotamers' signals are assigned in red and blue

	No	1 H (J , Hz)	13 C	HMBC	NOESY
	1		104.4		
	2		158.1		
	3		106.1		
	4		160.9		
	5		108.4		
			109.0		
	6		159.1		
	1'	3.40 brd			
		3.39 (d, 6.6)			
	2'	5.19 brt	121.5		
		7)			
	2''a	2.19 m	39.3		
		2.31 m	39.5		
	2''b	2.12 m	39.3		
		2.03 m	39.5		
	3''				
			107.9		
	2'''		160.0		
	3'''		116.6		
	4'''		162.6		
	5'''		113.4		
			113.0		
	6'''		160.3		
	1''''				

3, 1', 4', 5' 1', 4', OH-2, OH-4 3' 137.0 4' 1.78 s 25.9 3, 2', 3', 5' 2' 5' 1.84 s 17.9 3, 2', 3', 4' 1', OH-2 1'' 4.71 (t, 7.7) 4.75 (t, 7.1.38 (m, 3.1) 26.7 1'', 2'', 4'', 5'' 1'', 2'', 4'', 5'' 4'' 0.89 (d, 6.4) 22.5 2'', 3'', 5'' 1'', 2'', 3'' 5'' 0.84 (d, 6.2) 22.4 2'', 3'', 4'' 1'', 2'', 3'' 1'''

Table A 9

 A : NMR spectroscopic data of Acrovestenol (5) at 47 °C

	No	1 H (J , Hz)	13 C	HMBC	NOESY
	1		105.5		
	2		159.7		
	3		106.9		
	4		161.8		
	5		108.5		
	6		161.1		
	1'a	3.15 brs			1'b, 2', 4'
	1'b	2.74 m			1'a
	2'	4.33 (t, 6.5)	78.2	3, 1', 3', 4', 5'	1'a, 4', 5'a
	3'		146.7		
	4'	1.86 s	18.5	2', 3', 5'	1'a, 2', 5'b
	5'a	5.05 brs			2', 5'b
	5'b	4.88 brs			4', 5'a
	1''	4.75 (t, 7.0)	28.8	4, 5, 2'', 3'', 4''', 5'''	2'', 3'', 4'', 5''
	2''a	2.13 brs		4'', 5'', 5'''	
	2''b	2.26 m		5, 1'', 3'', 4'', 5'', 5'''	
	3''	1.42 m	27.1	1'', 2'', 4'', 5''	1'', 2'', 4'', 5''
	4''	0.88 (d, 5.6)	22.5	2'', 3'', 5''	
	5''	0.88 (d, 5.6)	22.5	2'', 3'', 4''	
	1'''		108.2		
	2'''		160.2		
	3'''		116.8		
	4'''		162.8		
	5'''		113.2		
	6'''		160.6		
	1''				

  NMR spectroscopic data (600 MHz, 47 °C CDCl 3 ) for Acrovestenol

		29.4		
		110.0 2', 4'	
		39.6		1'', 4'', 5''
				1'', 2'', 3''
				1'''
	MeCO-1 2.71 s	30.6	1, MeCO-1	
	Me CO-1	204.1		
	MeCO-1''' 2.72 s	32.8	1''', MeCO-1'''	MeO
	Me CO-1'''	204.1		
	OH-2			
	OH-4			
	OH-6			
	OH-4'''			
	OH-6'''			

Table A 10

 A : NMR spectroscopic data of Acrovestenol (5) at 0 °C; different rotamers' signals are assigned in red and blue

	No	1 H (J , Hz)	13 C	HMBC	NOESY
	1		105.5		
	2		159.7		
	3		106.9		
	4		161.8		
	5		108.0		
			108.5		
	6		161.1		
	1'a	3.07 brt	29.2 2, 3, 4, 2'	
		3.18 brd	29.6 2, 3, 4		
	1'b	2.73 m	29.2 2'		
		2.48 m	29.6 2, 3, 4, 2'	
	2'	4.29 brs	78.0 3, 1', 4', 5'	1'a, 4', 5'a
			78.8		
	3'		147.0		
	4'	1.84 s			
		1.86 s			
	5'a	4.97 (d, 8.8) 110.3		2', 5'b
		5.08 brs	110.6		
	5'b	4.85 brs	110.3		4', 5'a
		4.89 brs	110.6		
	1''	4.70 m			
		4.74 m			
	2''a	2.26 m	39.1		
		2.42 m	38.8		
	2''b	1.98 m	39.1		
		1.91 m	38.8		
	3''				
	1'''		108.2		
	2'''		160.2		
	3'''		116.8		
	4'''		162.8		
	5'''		113.6		
			113.0		
	6'''		160.6		
	1''''				

1.40 brs 26.5 2'', 4'', 5'' 4'', 5'' 4'' 0.88 (d, 6

.7) 22.6 2'', 3'', 5'' 1'', 2'', 3'' 5'' 0.84 (d, 6.7) 22.6 2'', 3'', 4'' 1'', 2'', 3''

Table A

 A 

	11: NMR spectroscopic data of Acrofolione A (6) at 47 °C; different diasteromers' signals are assigned
	in grey				
		NMR spectroscopic data (600 MHz, 47 °C CDCl 3 ) for Acrofolione A
	No	1 H (J , Hz)	13 C	HMBC	NOESY
	1		107.3		
	2		162.1		
	3		104.5		
	4		159.4		
	5		103.3		
	6		159.9		
	1'a 1'b	3.03 m 3.14 m	27.3	2', 3'	1'b, 4', 5' 1'a, 2'
	2'	4.87 (t, 8.8) 4.82 (t, 8.9)	92.9 92.5	4', 5'	1', 4', 5'
	3'		71.7		
	4'	1.21 s 1.27 s	23.6 24.2	2', 3', 5'	1'a, 2', 5'
	5'	1.38 s 1.39 s	25.8	2', 3', 4'	1'a, 2', 4'
	1''	4.70 brs	28.6		
			39.3	5, 1'', 3'' 4'', 5'', 5'''	
	4'' 5''	0.90 (d, 6.3) 0.92 (d, 6.3) 0.91 (d, 6.5) 0.90 (d, 6.5)	22.3	2'', 3'', 4'' 2'', 3'', 5''	2'', 3'', 5'' 2'', 3'', 4''
	1'''		108.8		
	2'''		160.0		
	3'''		116.4		
	4'''		160.5		
	5'''		113.0		
	6'''		160.1		
	1''''	3.30 brm	22.8	3''', 4''', 2'''', 3''''	2'''', 5'''', MeO
	2''''	5.13 (t, 6.7) 5.16 (t, 6.7)	123.0	3''', 1'''', 4'''', 5''''	2'''', 4''''
	3''''		131.9		
	4''''	1.69 s	25.4	2'''', 3'''', 5''''	2''''
	5''''	1.77 s	17.5	2'''', 3'''', 4''''	1'''', MeO
	MeO	3.73 s	62.4	2'''	1'''', 5'''', MeCO-1'''
	MeCO-1 2.69 s	33.2	1, MeCO-1	
	Me CO-1		202.0		
	MeCO-1''' 2.72 s	30.4	1''', MeCO-1'''	MeO
	Me CO-1'''		204.1		
	OH-2				
	OH-6				
	OH-3'				

2'', 3'' 2'', 3'', 4'', 5'' 2''a 2.04 m 1'', 2''b, 3'', 4'', 5'' 2''b 2.24 m 1'', 2''a, 3'', 4'', 5'' 3'' 1.43 m 26.9 1'', 2'', 4'', 5'' 1'', 2'', 4'', 5'' OH-4''' OH-6''' 15.40 s 1''', 5''', 6''' 1'', 4'', 5'', MeCO-1'''

Table A 12

 A : NMR spectroscopic data of Acrofolione A (6) at 0 °C; different rotamers' signals are assigned in red and blue

	No	1 H (J , Hz)	13 C	HMBC	NOESY
	1		107.0		
	2		162.1		
	3		104.5		
	4		159.4		
	5		103.3		
	6		159.9		
	1'a	3.11 brs			2', 5'
	1'b	3.16 (dd, 15.2/ 9.8) 2.95 brs		2, 3, 4, 3'	2', 4', 5'
	2'	4.92 brs	93.0		
		4.84 brs	92.4		
	3'		71.7		
	4' 5'	1.11 brs 1.36 s	22.7 25.6	2', 3', 5' 2', 3', 4'	1', 2'
	1''	4.70 brs	27.3		
					1'', 2'', 3'', 4'', 5'', OH-4'''
	4''	0.88 (d, 6.5)		2'', 3'', 5''	2'', 3''
	5''	0.88 (d, 6.5)		2'', 3'', 4''	2'', 3''
	1'''		108.4		
	2'''		159.8		
	3'''		116.4		
	4'''		160.5		
	5'''		112.7		
	6'''		160.1		
	1''''	3.29 brm	22.7		
		06 brs			
	2''''B 5.14 brs			
	3''''		132.0		
	4''''	1.67 s	25.5	2'''', 3'''', 5''''	2''''
	5''''	1.75 s	17.8	2'''', 3'''', 4''''	1'''', MeO
	MeO 3.71 s	62.5	2'''	
	MeCO-1 2.68 s	33.6	1, MeCO-1	OH-2, OH-6
	Me CO-1		204.8		
	MeCO-1''' 2.72 s	31.0	1''', MeCO-1'''	MeO, OH-6'''
	Me CO-1'''		204.2		
	OH-2 13.82 s			
		13.92 s			
	OH-6 9.00 s			
		9.73 s			
	OH-3'				
					4
		15.64 s			

2'', 4'', 5'', OH-6, OH-4''' 2''a 2.01 m 5, 3'' 4'', 5'', 5''' 2''b 2.24 brs 3'' 1.42 m 26.5 1'', 2'', 4'', 5'' 1'', 2'', 4'', 5'', OH-4''' 3''', 2''', 2'''', 3'''' 2'''', 5'''', MeOH 2''''A 5.1'''', 2'''', 5'''', MeCO-1''' OH-4''' 7.91 s 8.64 s 1'', 2'', 3'' OH-6''' 15.48 s MeCO-1''', OH-

Table A 13

 A : NMR spectroscopic data of Acrofolione B (7) at 47 °C

		NMR spectroscopic data (600 MHz, 47 °C CDCl 3 ) for Acrofolione B
	No	1 H (J , Hz)	13 C	HMBC	NOESY
	1		101.1		
	2		161.3		
	3		106.5		
	4		159.5		
	5		109.2		
	6		159.9		
	1'	3.05 brs	27.4	2', 3'	2', 4'
	2'	4.73 (t, 9.3)	92.0	4'	1', 4', 5', MeCO-1
	3'		71.7		
	4'	1.25 s	24.5	2', 3', 5'	1', 2'
	5'	1.35 s	26.1	2', 3', 4'	1', 2', MeCO-1
	1''	4.72 (t, 7.7)	28.3	5, 2'', 3'', 5'''	2'', 3'', 4'', 5''
	2''	2.22 brs 2.14 brs	39.5	4'', 5''	1'', 3'', 4'', 5''
	3''	1.43 m	27.0	2'', 4'', 5''	1'', 2'', 4'', 5''
	4''	0.89 brs	22.5	2'', 3'', 5''	2'', 3'', 5''
	5''	0.89 brs	22.5	2'', 3'', 4''	2'', 3'', 4''
	1'''		108.3		
	2'''		160.3		
	3'''		116.7		
	4'''		162.6		
	5'''		113.2		
	6'''		160.9		
	1''''	3.30 (d, 4.8)	23.2	2''', 3''', 2'''', 3''''	2'''', 5'''', MeO
	2''''	5.20 (t, 6.5)	123.3	3''', 1'''', 4'''', 5''''	2'''', 4'''', MeO
	3''''		131.7		
	4''''	1.69 s	25.6	2'''', 3'''', 5''''	2''''
	5''''	1.76 s	17.9	2'''', 3'''', 4''''	1'''', MeO
	MeO	3.71 s	62.5	2'''	1'''', 2'''', 5'''', MeCO-1'''
	MeCO-1 2.63 s	30.6	1, MeCO-1	5'
	Me CO-1		202.0		
	MeCO-1''' 2.70 s	30.4	1''', MeCO-1'''	MeO
	Me CO-1'''		204.1		
	OH-4				
	OH-6				
	OH-3'				
	OH-4'''				
	OH-6'''				

Table A

 A 

	14: NMR spectroscopic data of Acrofolione B (7) at 0 °C; different rotamers' signals are assigned in red
	and blue				
	No	1 H (J , Hz)	13 C	HMBC	NOESY
	1		101.1		
	2		161.3		
	3		106.5		
	4		159.5		
	5		108.1		
			109.1		
	6		159.9		
	1'	3.08 brs			
		3.00 brs			
	2'	4.76 (t, 9.2)			
		4.75 (t, 8.8)			
	3'		71.8		
	4'	1.25 s			
		1.21 s			
	5'	1.37 s			
		1.34 s			
	1''	4.70 brs			
	2''a	2.33 m	38.7		
		2.18 m	39.3		
	2''b	2.00 m	38.7		
		2.11 m	39.3		
	3''	1.41 brs	26.8	1'', 2'', 4'', 5''	1'', 4'', 5''
	4''	0.89 (d, 6.6)	22.6	2'', 3'', 5''	
	5''	0.84 (d, 6.2)	22.4	2'', 3'', 4''	
	1'''		108.1		
	2'''		159.9		
	3'''		116.6		
	4'''		162.3		
	5'''		113.0		
			112.3		
	6'''		160.9		
	1''''	3.31 brm	22.9		

4, 5, 6, 2'', 3'', 4''', 5''', 6''' 4.69 brs 4, 5, 6, 2'', 3'', 4''', 5''', 6''' 

Table A 15

 A : NMR spectroscopic data of Acrofolione A (6) diastereomers at 47 °C; different 1 H and 13 C NMR data are observed but did not attributed to specific diastereomers while HMBC and NOESY data were identical

	Table A 16: Inhibitory activities of compound 1-7 on DU145 prostate cancer and A2058 melanoma tumor
	cells; data are expressed as means ± SD			
	NMR spectroscopic data (600 MHz, 47 °C CDCl 3 ) for Acrofolione A diastereomers Cell viability (% control) at 10 μM Introduction
			Compound		DU145		A2058
	1. Background	1 2			63 ± 6* 40 ± 6		56 ± 8 33 ± 6
			3			55 ± 9		54 ± 8
	Diastreomer 1 Acronychia-type acetophenones (AtA) are considered as a characteristic chemical Diastreomer 2 4 21 ± 2 21 ± 2 5 26 ± 2 31 ± 1 6 26 ± 2 33 ± 6 group of natural products found in the genus Acronychia of Rutaceae family
	No		7	1 H (J , Hz)	13 C	1 H (J , Hz) 77 ± 9	13 C	HMBC 69 ± 8	NOESY
	1				107.3		107.3	
	2				162.1		162.1	
	3				104.5		104.5	
	4				159.4		159.4	
	5				103.3		103.3	
	6				159.9		159.9	
	1'a				27.3		27.3	
	2'	4.87 (t, 9)	92.6	4.82 (t, 8.9)	93.0		1', 4', 5'
	3'				71.7		71.7	
	4'	1.21 s	24.2	1.27 s	24.2	2', 3', 5'	1'a, 2', 5'
	5'	1.38 s	25.8 1.39 s	25.8 2', 3', 4'	1'a, 2', 4'
	1''	4.69 brt	28.6	4.72 brs	28.6	
					39.3		39.3	5, 1'', 3'' 4'', 5'', 5'''
	1'''				108.8		108.8	
	2'''				160.0		160.0	
	3'''				116.4		116.4	
	4'''				160.5		160.5	
	5'''				113.0		113.0	
	6'''				160.1		160.1	
	1''''	3.30 brm	22.8	3.30 brm	22.8	
	3''''				131.9		131.9	
	4''''	1.69 s	25.4	1.69 s	25.4	2'''', 3'''', 5''''	2''''
	5''''	1.77 s	17.5	1.77 s	17.5	2'''', 3'''', 4''''	1'''', MeO
	MeO 3.73 s	62.4	3.73 s	62.4	2'''	1'''', 5'''', MeCO-1'''
	MeCO-1 2.69 s	33.2	2.69 s	33.2	1, MeCO-1
	Me CO-1				202.0		202.0	
	MeCO-1''' 2.72 s	30.4	2.72 s	30.4	1''', MeCO-1'''	MeO
	Me CO-1'''				204.1		204.1	
	OH-2							
	OH-6							
	OH-3'							

3.06 (dd, 7.8/ 15.2) 3.06 (dd, 8.5/ 15) 2', 3' 1'b, 4', 5' 1'b 3.15 (dd, 9.5/ 15.2) 3.14 (dd, 9.6/ 15) 1'a, 2' 2'', 3'' 2'', 3'', 4'', 5'' 2''a 2.03 m 2.06 brm 1'', 2''b, 3'', 4'', 5'' 2''b 2.26 brm 2.24 m 1'', 2''a, 3'', 4'', 5'' 3'' 1.43 m 26.9 1.43 m 26.9 1'', 2'', 4'', 5'' 1'', 2'', 4'', 5'' 4'' 0.91 (dd, 1.4/ 6.6) 22.3 0.90 (t, 6.8) 22.3 2'', 3'', 5'' 2'', 3'', 5'' 5'' 0.90 (dd, 1.4/ 6.6) 0.90 (t, 6.8) 2'', 3'', 4'' 2'', 3'', 4'' 3''', 4''', 2'''', 3'''' 2'''', 5'''', MeO 2'''' 5.13 (t, 6.7) 122.8 5.16 (t, 6.7) 123.0 1'''', 4'''', 5'''' 2'''', 4'''' OH-4''' OH-6''' 15.40 s 15.40 s 1''', 5''', 6''' 1'', 4'', 5'', MeCO-1'''

  Then the plant residue was alkalinized with 10% NH 4 OH and extracted successively with Et 2 O, CH 2 Cl 2 and MeOH (2 × 50mL of each solvent) in order to exclude alkaloids. Therefore, the enriched Et 2 O, CH 2 Cl 2 and MeOH extracts were also obtained. All the extracts were diluted in methanol to obtain solutions of 100 μg/mL. All samples were stored at -20 °C prior to analysis.

Initially, the plant material was extracted with Et 2 O (A) (2 × 50mL, 24h per extraction) and the Et 2 O extract was obtained.

Table VII :

 VII Typical product ions, in the HRMS/MS spectra of reference compounds in ESI (±), annotated according to the proposed nomenclature of AtA.

	[M+Na-A 0 ] +	577.2766		1	[M-H-A 0 ] -	553.2803	
		575.2599		3		551.2646	
	[B 0 +Na] + or [M+Na-A 1 ] +	593.2713 577.2766 575.2599	273.1096 n.o 273.1096	2, 4-7 1 3	[B 0 -H] -or [M-H-A 1 ] -	569.2750 553.2803 551.2646	249.1130
	1.1.	Fragmentation pattern analysis for AtA in ESI(+)	
	POSITIVE ION MODE		NEGATIVE ION MODE
	Fragment	Precursor	Fragment	Compound	Fragment	Precursor	Fragment
	ion	ions (m/z)	ion (m/z)		ion	ions (m/z)	ion (m/z)
	[A 1 +Na] + or [M+Na-B 0 ] +	593.2713 577.2766 575.2599	343.1511 327.1563 325.1405	2, 4-7 1 3	[A 1 -H] -or [M-H-B 0 ] -	569.2750 553.2803 551.2646	319.1547 303.1600 301.1441
	[A 0 +Na] + or [M+Na-B 1 ] +	593.2713 577.2766 575.2599	275.0889 n.o n.o	2, 4-7 1 3	[A 0 -H] -or [M-H-B 1 ] -	569.2750 553.2803 551.2646	251.0923 235.0976 233.0817
	[B 1 +Na] + or	593.2713	341.1719	2, 4-7	[B 1 -H] -or	569.2750	317.1753

  considered indicative for AtA with hydroxylated side chains (total number of oxygen atoms is 9 vs 8 in modelAtA 1). Regarding ring B, the cleavage of the A 0 and A 0 +C 4 H 8 groups from the [M+Na] + ion observed in the MS 2 spectrum revealed the characteristic AtA fragmentation pattern which includes the successive loss of C 4 H 8 observed in the MS 2 , MS3 and MS 4 levels forming [B 1 +Na] + , [B 1 +Na-C 4 H 8 ] + and [B 1 +Na-C 8 H 16 ] + fragment ions (Table VIII, Figure A 63). Acropyrone (3) is an AtA derivative with an additional dimethylpyran ring on the main structure at C-2 and C-3 positions of ring A. In MS 2 spectra the typical [B 1 +Na] + , [B 1 +Na-C 4 H 8 ] + and [A 1 +Na] + ions were observed following the general fragmentation rules of AtA. All generated ions underwent further elimination of C 4 H 8 groups resulting to the formation of [B 1 +Na-C 8 H 16 ] + (m/z 229.0468) in MS 3 and MS 4 levels and [A 1 +Na-C 4 H 8 ] + (m/z 269.0781) in MS 3 . In addition, [B 0 +Na] + (m/z 273.1093) in MS 2 together with [B 0 +Na-C 4 H 8 ] + (m/z 217.0469) in MS 3 spectra were detected resulting from the cleavage of A 1 and A 1 -C 4 H 8 , More specifically, 4 revealed four main fragment ions in the MS 2 spectrum. Apart from the characteristic [A 1 +Na] + , [B 1 +Na] + and [B 1 +Na-C 4 H 8 ] + ions of AtA, the indicative for AtA with additional ring [B 0 +Na] + (m/z 273.1095) ion and [B 0 +Na-C 4 H 8 ] + (m/z 217.0473) in MS 3 were detected. All fragment ions obtained from [M+Na] + in MS 2 spectrum underwent further fragmentation resulting to the elimination of a C 4 H 8 group from each precursor ion giving rise to the [A 1 +Na-C 4 H 8 ] + , [B 1 +Na-C 4 H 8 ] + and [B 1 +Na-C 8 H 16 ] + ions, respectively. At MS 4 level only the [B 1 +Na-C 8 H 16 ] + ions were detected derived from the [B 1 +Na-C 4 H 8 ] + parent ions (Table VIII, Figure A 65).

	The presence of the additional hydroxyl group on the ring A favoured the neutral loss
	of H 2 O and C 4 H 8 O in MS 3 level from both [A 1 +Na] + and [A 0 +Na] + ions resulting to the
	generation of the [A 1 +Na-H 2 O] + (m/z 325.1409), [A 1 +Na-C 4 H 8 O] + (m/z 271.0940), [A 0 +Na-
	H 2 O] + (m/z 257.0781) and [A 0 +Na-C 4 H 8 O] + (m/z 203.0312) fragment ions, respectively.
	According to the MS 3 spectra, the loss of H 2 O compared to the loss of the C 4 H 8 O is more
	preferable from [A 1 +Na] + ion than from [A 0 +Na] + . Thus, a high abundance of the [A 1 +Na-
	H 2 O] + ion (100%) was observed while a relatively smaller abundance was recorded for the
	[A 0 +Na-H 2 O]

+ product ion (32%). In contrary, the [A 1 +Na-C 4 H 8 O] + ion was observed in 32% and the [A 0 +Na-C 4 H 8 O] + ion in 100% of relative abundance. It is important to note that the [A 0 +Na-H 2 O] + was not observed in any other AtA under investigation at any MS n level and could be respectively. These latter ions were generated in all cases of AtA with additional ring and could be considered as key fragments for the identification thereof (Table

VIII,

Figure A 64). Acrofolione A (4) and acrofolione B (5) are regioisomers possessing an additional 2-(2hydroxypropan-2-yl)-2,3-dihydro-1-furan ring fused at different positions on the parent structure which influences their fragmentation behavior. For instance, 5 (type-R) compared to 4 (type-L) presented more extended fragmentation in MS 2 , MS 3 and mainly in MS 4 spectra.

  Specifically, the [M+Na] + adduct ion of 6 in MS 2 level revealed the [B 1 +Na] + , [B 1 +Na-C 4 H 8 ] + , [A 1 +Na] + and [B 0 +Na] + fragment ions (Table2, Figure4). The generated product ions were further underwent C 4 H 8 elimination including the [A 1 +Na] + ion which, in contrary to 4, gave rise to an additional fragment ion at m/z 271.0938 ([A 1 +Na-C 4 H 8 O] + ) in the MS 3 spectrum. This fragment ion with relative intensity 10% derived from the elimination of a C 4 H 8 O group and is considered as characteristic fragment for acropyranols as it is present in both 6 and 7.

  All AtA are detected as adducts ions with sodium [M+Na] + and the respective pheudomolecular ions [M+H] + are not observed in full scan HRMS. ~ In all MS levels both aromatic rings A and B remain intact. ~ [B 1 +Na] + (A 0 loss) and [B 1 +Na-C 4 H 8 ] + (A 0 & C 4 H 8 , loss) ions in MS 2 and [B 1 +Na-C 8 H 16 ] + ion in MS 4 levels are always present and could be considered as diagnostic for the identification of AtA. Additionally, [B 1 +Na] + (m/z 341.1719) ion is recorded as base peak in all MS 2

  TableIX). This probably indicates that the methyl group (B ring) constrains the stabilization of the derived ions and unsubstituted phloroglucinol core is required for the generation of the [B 0 -H] -ion. Moreover, the losses CH 3 , C 4 H 10 and C 5 H 10 units from [B 1 -H] -ion (m/z 317.1756) as observed in the MS 3 spectrum gave rise to the [B 1 -H-CH 3 ] Likewise, the loss of C 4 H 10 is typical for all AtA and indicative for the occurrence of isoprenyl chain. It seems that the presence of two oxygen species in ortho position favors the elimination of the C 4 H 10 unit and could probably correlated to ortho elimination mechanisms known in EI-MS (Gross 2011). The major [B 1 -H-C 4 H 10 ] -ion underwent further fragmentation revealing the fragment ions [B 1 -H-C 5 H 14 ] -(m/z 243.0658), [B 1 -H-C 6 H 12 O] - (m/z 217.0869) and [B 1 -H-C 8 H 17 ] -(m/z 204.0428) in the MS 4 spectrum deriving from the loss of CH 4 , C 2 H 2 O and C 4 H 7 units, respectively.

-(m/z 302.1519), [B 1 -H-C 4 H 10 ] - (m/z 259.0973) and [B 1 -H-C 5 H 10 ] -(m/z 247.0973) ions, respectively. The radical ion which

derives from the loss of CH 3 could be stabilized in different resonance states and in accordance to other chemical groups of natural compounds, it is highly stable (61%)

[START_REF] Justesen | Collision-induced fragmentation of deprotonated methoxylated flavonoids, obtained by electrospray ionization mass spectrometry[END_REF]

). This motif is repeated in all AtA under investigation (Table

IX

).

Table IX ,

 IX Figure A 67).In MS 3 and MS 4 the fragmentation pattern for the [B 1 -H] -ions is similar to 1 while differences are observed regarding the more stable [A 1 -H] -and [A 0 -H] -ions. It is worth noting that extensive fragmentation is taking place especially for these ions indicating that hydroxylated side chains are more prone to fission. For instance, neutral losses of H 2 O, Among them, characteristic is the loss of H 2 O in MS 3 giving rise to both [A 1 -H-H 2 O] -and [A 0 -H-H 2 O] -which are detected as base peaks. This loss is detected only in 2 and it is indicative for AtA having an additional hydroxyl group on the isoprenyl chain. Finally, these ions undergo further cleavages of C 2 H 2 O and CO 2 moieties giving rise to the [A 1 -H-C 2 H 4 O 2 ] -(m/z 259.1338), [A 1 -H-CH 2 O 3 ] -(m/z 257.1545), [A 0 -H-C 2 H 4 O 2 ] -(m/z 191.0714) and [A 0 -H-CH 2 O 3 ] -(m/z 189.0921) as observed in the MS 4 spectra.

	C 4 H 6 O and C 4 H 8 O moieties were detected providing the [A 1 -H-H 2 O] -(m/z 301.1442), [A 1 -H-
	C 4 H 6 O] -(m/z 249.1130) and [A 1 -H-C 4 H 8 O] -(m/z 247.0974) fragment ions in the MS 3
	spectrum with [A 1 -H] -as precursor ion. The fragmentation of [A 0 -H] -generated [A 0 -H-H 2 O] -
	(m/z 233.0817), [A 0 -H-C 2 H 2 O] -(m/z 209.0818) and [A 0 -H-C 4 H 8 O] -(m/z 179.0351) in the MS 3
	spectrum.

Table X :

 X Identification of AtA compounds in three different A. pedunculata extracts Orbitrap analyzer equipped with ESI or APCI source has been proven a great tool for the structure elucidation and characterization of small molecules. During this study, a multistage HRMS platform for the dereplication of known AtA and the identification of new

		22.06	689.4052	C42H57O8	-1.076	14.5	371.2218 (100)	439.2837 (9)	249.1127 (12)	317.1750 (97)	259.0970 (14)	0.1	+2IP	Et2O(A), Et2O, CH2Cl2
		22.29	757.4677	C47H65O8	-1.112	15.5	439.2842 (100)	507.3469 (8)	249.1127 (26)	317.1750 (68)	259.0970 (10)	0.1	+3IP	Et2O(A), Et2O, CH2Cl2
	Peak No. 1	Rt (min) 22.53 23.11 3. Reproducibility of MS n spectra [M-H] -EC Δm (ppm) RDBeq. 689.4050 C42H57O8 -1.337 14.5 757.4674 C47H65O8 -1.429 15.5 16.22 553.2802 C32H41O8 -0.979 12.5 235.0974 (79) [A0-H]-371.2213 (100) 439.2839 (100) 24.38 757.4678 C47H65O8 -0.874 15.5 439.2840 (100) 23.4 757.4677 C47H65O8 -1.112 15.5 439.2842 (100) LTQ-	[A1-H]-439.2840 (36) 507.3466 (12) 303.1598 (60) n.d. 507.3469 (7)	[B0-H]-249.1126 (17) 249.1126 (24) n.d. 249.1126 (10) 249.1127 (16)	MS [B1-H]-2 317.1749 (75) 317.1748 (40) 317.1754 (91) 317.1749 (47) 317.1750 (55)	259.0970 (13) 259.0968 (5) Other 259.0970 (6) 259.0970 (8)	[A1-H] -/ 0.5 0.3 [B1-H] -0.6 -0.1	Characterization +2IP +3IP Acrovestone +3IP +3IP	Extract Et2O(A), Et2O, CH2Cl2 Et2O(A), Et2O, CH2Cl2 CH2Cl2 CH2Cl2 Et2O(A), Et2O, Et2O(A), Et2O, Et2O(A), Et2O, CH2Cl2
	2	15.93 25.55	569.2752 757.4677	C32H41O9 C47H65O8	-0.696 -1.033	12.5 15.5	251.0921 (100) 439.2841 (100)	319.1543 (48) 507.3468 (9)	n.d. 249.1126 (8)	317.1752 (21) 317.1750 (61)	233.0816 (12) 259.0970 (7)	2.2 0.1	Acrovestenol +3IP	Et2O(A), Et2O, CH2Cl2 Et2O(A), Et2O, CH2Cl2
	3	19.11 26.14	551.2648 689.4052	C32H39O8 C42H57O8	-0.492 -0.989	13.5 14.5	233.0817 (100) 371.2219 (54)	301.1440 (41) 439.2843 (100)	249.1129 (35) 249.1128 (25)	317.1752 (64) 317.1751 (87)	259.0971 (14)	0.6 1.5	Acropyrone +2IP	Et2O(A), Et2O, CH2Cl2 Et2O(A), Et2O, CH2Cl2
	4	11.63 14.5	569.2755 583.2909	C32H41O9 C33H43O9	-0.274 -0.628	12.5 12.5	251.0923 (47) 265.1076 (18)	319.1546 (19) n.d	249.1132 (78) 249.1127 (17)	317.1755 (84) 317.1750 (100)	191.0349 (12) 233.0816 (12)	0.2 -	Acrofolione A OH-,CH3-type-L	Et2O(A), Et2O, CH2Cl2 Et2O, CH2Cl2
	5	13.48 14.72	569.2754 571.2910	C32H41O9 C32H43O9	-0.379 -0.413	12.5 11.5	251.0921 (25) 253.1078 (100)	319.1544 (94) 321.1701 (51)	249.1129 (25) n.d.	317.1752 (100) 317.1752 (34)		0.9 1.5	Acrofolione B dihydroacrovestenol isomer	Et2O(A), Et2O, CH2Cl2 Et2O
	6	12.96 15.11	569.2752 637.3376	C32H41O9 C37H49O9	-0.696 -0.873	12.5 13.5	251.0921 (37) 319.1543 (100)	n.d. 387.2167 (39)	249.1129 (20) 249.1128 (53)	317.1752 (100) 317.1752 (75)		-0.5	Acropyranol A +IP	Et2O(A), Et2O, CH2Cl2 Et2O, CH2Cl2
	7	14.87 18.32	569.2752 619.3271	C32H41O9 C37H47O8	-0.59 -0.794	12.5 14.5	251.0921 (23) 301.1437 (45)	319.1544 (52) n.d	249.1128 (29) 249.1127 (21)	317.1752 (100) 317.1750 (100)	259.0970 (8)	0.5 -	Acropyranol B +IP	Et2O(A) Et2O
	8	4.75 18.55	585.2700 C32H41O10 635.3586 C38H51O8	-0.855 -0.569	12.5 13.5	267.0869 (100) 317.1750 (100)	335.1492 (25) n.d.	249.1128 (54) 249.1126 (1)	317.1751 (55) 317.1750 (100)	593.3469 (17)	0.4 -	OH type-L +IP	Et2O (A) Et2O
	9	13.59 19.38	587.2856 C32H43O10 621.3428 C37H49O8	-0.904 -0.743	11.5 13.5	269.1025 (100) 303.1598 (100)	337.1748 (38) 371.2222 (57)	n.d 249.1130 (2)	317.1751 (5) 317.1753 (45)	259.0968 (8)	7.6 1.2	OH-dihydroacrovestenol +IP	Et2O(A) Et2O
		14.15 13.27	569.2753 551.2649	C32H41O9 C32H39O8	-0.485 -0.275	12.5 13.5	251.0920 (100) 233.0817 (12)	319.1542 (64) n.d.	n.d. 249.1130 (32)	317.1751 (29) 317.1753 (40)	235.0974 (100), 303.1597 (36)	2.2 -	Acrovestenol isomer L-type Acropyrone	Et2O(A), Et2O CH2Cl2
		16.79 14.83	571.2911 637.3377	C32H43O9 C37H49O9	-0.308 -0.779	11.5 13.5	253.1077 (100) 319.1542 (100)	321.1701 (39) 387.2166 (24)	n.d 249.1127 (44)	317.1751 (21) 317.1750 (77)	259.0970 (10), 303.1595 (14)	1.8 0.3	Dihydroacrovestenol isomer +IP	Et2O(A) CH2Cl2
		17.07 16.65	555.2961 583.2907	C32H43O8 C33H43O9	-0.363 -0.936	11.5 12.5	237.1130 (89) 265.1076 (4)	305.1752 (65) 333.1700 (9)	n.d. 249.1127 (8)	317.1752 (100) 317.1750 (29)	551.2636 (100)	0.6 0.3	Dihydroacrovestone 2 × OCH3	Et2O, Et2O(A) CH2Cl2
		18.08	637.3378	C37H49O9	-0.59	13.5	319.1543 (100)	387.2167 (33)	n.d.	317.1751 (9)		3.6	+IP	Et2O (A)
		15.42	509.2179	C29H33O8	-0.317	13.5	191.0349 (27)	259.0972 (92)	249.1129 (48)	317.1752 (100)		0.9	dihydrofuran type-R	Et2O(A)
		19.97	689.4053	C42H57O8	-0.902	14.5	371.2217 (100)	439.2841 (17)	249.1127 (45)	317.1750 (76)	259.0971 (13)	0.2	+2IP	Et2O(A), Et2O, CH2Cl2
		20.68	619.3273	C37H47O8	-0.6	14.5	301.1434 (59)	n.d	249.1124 (22)	317.1746 (100)	259.0967 (11)	-	+IP	Et2O (A)
		20.83	621.3433	C37H49O8	-0.051	13.5	303.1591 (51)	n.d	249.1125 (11)	317.1747 (100)	259.0968 (8)	-	+IP	Et2O(A), Et2O
		21.83	689.4051	C42H57O8	-1.163	14.5	371.2218 (100)	439.2842 (20)	249.1128 (17)	317.1750 (87)	259.0971 (14)	0.2	+2IP	Et2O(A), Et2O, CH2Cl2

  TableXIthree different Acronychia species were subjected to this study, namely Acronychia laurifolia Bl., Acronychia porteri Hk.f. and Acronychia pedunculata (L.) Miq. from which mainly the leaves and the barks were collected separately while a sample of fruits of Acronychia pedunculata (L.) Miq. was also available. The plant materials were collected in two different countries, specifically 15 Acronychia samples were harvested in Malaysia and 5 in Vietnam. Concerning Malaysia, samples were collected in 4 distinct locations distributed from north to south of West Malaysia while in Vietnam the collection locations were situated in the north part. The plant samples were dried under shade conditions and ground into fine homogeneous powders.

Table XI :

 XI Detailed list of plant material used for the metabolomics study of Acronychia genus

	Codes	Species	Plant Part	Country	Collection Location	Date
	K-4652 (B)	Acronychia laurifolia Bl.	Bark	Malaysia	Ulu jelai, Pahang	20.11.1996
	K-4652 (L)	Acronychia laurifolia Bl.	Leaves	Malaysia	Ulu jelai, Pahang	20.11.1996
	K-4853 (B)	Acronychia laurifolia Bl.	Bark	Malaysia	Mersing, Johore	03.12.1998
	K-4853 (L)	Acronychia laurifolia Bl.	Leaves	Malaysia	Mersing, Johore	03.12.1998
	K-5445 (B)	Acronychia porteri Hk.f.	Bark	Malaysia	Gerik, Perak	12.07.2007
	K-5445 (L)	Acronychia porteri Hk.f.	Leaves	Malaysia	Gerik, Perak	12.07.2007
	KL-4727 (B)	Acronychia laurifolia Bl.	Bark	Malaysia	Mersing, Johore	26.08.1997
	KL-4727 (L)	Acronychia laurifolia Bl.	Leaves	Malaysia	Mersing, Johore	26.08.1997
	KL-4878 (B)	Acronychia porteri Hk.f.	Bark	Malaysia	Mersing, Johore	07.04.1999
	KL-4878 (L)	Acronychia porteri Hk.f.	Leaves	Malaysia	Mersing, Johore	07.04.1999
	KL-4882 (L)	Acronychia laurifolia Bl.	Leaves	Malaysia	Mersing, Johore	08.04.1999
	KL-5197 (B)	Acronychia laurifolia Bl.	Bark	Malaysia Jelebu, N. Sembilan 16.02.2006
	KL-5197 (L)	Acronychia laurifolia Bl.	Leaves	Malaysia Jelebu, N. Sembilan 16.02.2006
	KL-5465 (B)	Acronychia porteri Hk.f.	Bark	Malaysia	Mersing, Johore	28.08.2007
	KL-5465 (L)	Acronychia porteri Hk.f.	Leaves	Malaysia	Mersing, Johore	28.08.2007
	VN-0179 (B) Acronychia pedunculata (L.) Miq.	Bark	Vietnam	Chi Linh, Hai Hung	05.10.1996
	VN-0179 (L)	Acronychia pedunculata (L.) Miq.	Leaves	Vietnam	Chi Linh, Hai Hung	05.10.1996

VN-0874 (B) Acronychia pedunculata (L.) Miq. Bark Vietnam Huong Khe, Ha Tinh 18.08.2001 VN-0874 (FR) Acronychia pedunculata (L.) Miq. Fruits Vietnam Huong Khe, Ha Tinh 18.08.2001 VN-0874 (L) Acronychia pedunculata (L.) Miq. Leaves Vietnam Huong Khe, Ha Tinh 18.08.2001

Table XII :

 XII Reversed phase UPLC-MS gradient program

	Time (min)	H 2 O+0.1% F.A (%)	MeOH (%)	Flow rate (µL/min)
	0	95	5	200
	1	95	5	200
	7	20	80	200
	22	0	100	200
	25	0	100	200
	26	95	5	200
	30	95	5	200
	Column: BEH C18 column (2.1×150 mm, 1.7 µm) Acquity UPLC® (Waters)	
	Injection volume: 5 µL			
	Temperature: sample 10°C; column 30°C		

Table XIII :

 XIII Operating conditions of ESI in positive and negative modes

	Parameters	ESI(+)	ESI(-)
	Spray voltage (kV)	3.6	3.5
	Sheath Gas	45	45
	Auxiliary Gas	10	10
	Sweep Gas	0	0
	Capillary Voltage (V)	35	-35
	Capillary Temperature (°C) 300	350
	Tube Lens (V)	110	110

Table XIV :

 XIV Annotated metabolites in Acronychia extracts based on literature data

		C14H18O5Na C32H41O9	[M+Na] + [M-H] -	289.1048 569.2753 -0.485 12.5 0.537		
	12 9.35 23 18.77	C13H16O4Na C13H15O4 C32H43O9 C32H42O9Na	[M+Na] + [M-H] -[M+H] + [M+Na] +	259.0942 235.0977 571.2892 -1.714 11.5 0.617 5.5 0.458 6.5 191.1079 593.2721 -0.024 341.1727	C12H15O2 C19H26O4Na	6-demethylacronylin acropyranol A	C13H16O4 C32H42O9
	ID 13 12.13 RT 24 19.47 Alkaloids(10 compounds) Formula C19H26O5 C32H41O9 C32H42O9Na C32H41O9 1 7.46 C15H18NO3 C15H17O3NNa [M+Na] Ion [M+H] + [M-H] -[M-H] -[M+Na] + [M-H] -[M+H] + + 14 14.14 C14H19O4 [M+H] + C14H18O4Na [M+Na] + 25 19.61 C32H41O8 [M+H] + C32H40O8Na [M+Na] + 2 7.93 C12H11NO4Na [M+Na] + 3 8.36 C15H18NO2 [M+H] + 4 8.37 C14H14NO4 [M+H] C14H17O4 [M-H] -15 15.67 C19H25O4 [M+H] + 26 20.64 C32H42O9Na [M+Na] + C32H41O9 [M-H] -C19H24O4Na [M+Na] + 16 16.77 C15H19O5 [M+H] + 27 21.57 C32H43O9 [M+H] + C32H42O9Na [M+Na] + C15H17O5 [M-H] -C32H41O9 [M-H] -+ C14H13NO4Na [M+Na] + 5 8.87 C13H11NO3Na [M+Na] + 6 9.09 C13H12NO3 [M+H] + 17 17.56 C19H27O4 [M+H] + C19H25O4Na [M+Na] + 28 21.8 C32H43O8 [M+H] + C32H42O8Na [M+Na] + C19H25O4 [M-H] C32H41O8 [M-H] --18 19.45 C19H27O4 [M+H] + 29 24.65 C32H40O8Na [M+Na] + C32H39O8 [M-H] -Lignans (2 compounds) 30 9.34 C20H18O6Na [M+Na] + 31 8.69 C24H30O8Na [M+Na] +	Average Mass m/z 335.1853 -0.091 Error (ppm) 569.2754 -0.379 12.5 RDB 6.5 279.1234 MS/MS 333.1705 -0.742 7.5 593.2719 -0.327 11.5 341.1728 569.2755 -0.274 12.5 260.1284 0.923 7.5 242.1176 188.0706 C15H16O2N C15H19O5 C19H26O4Na 282.1102 251.1280 0.774 5.5 195.0652 C10H11O4 273.1099 0.475 553.2789 -1.310 12.5 575.2613 -0.433 0.480 256.0582 0.688 7.5 244.1335 0.715 7.5 188.0707 202.0863 C11H10NO2 249.1133 0.071 6.5 317.1750 0.612 7.5 593.2720 -0.125 11.5 341.1727 C19H26O4Na 569.2754 -0.274 12.5 339.1567 0.176 279.1227 0.035 6.5 319.1906 C19H27O4 571.2899 -0.524 11.5 593.2719 -0.327 277.1081 -0.097 7.5 569.2754 -0.216 12.5 260.0918 0.137 8.5 245.0685 230.045 C13H11O4N 282.0737 0.072 8.5 252.0633 0.697 230.0812 0.218 8.5 215.0579 C12H9O3N 319.1905 0.232 6.5 263.1279 C15H19O4 341.1725 0.643 285.1101 555.2950 -0.369 319.1904 C19H27O4 11.5 577.2770 -0.363 341.1722 327.1563 C19H26O4Na C18H24O4Na C11H10O2N C12H12NO2 oligophyline Identification acronyculatin B acronyculatin C acrofolione B oligophylicine acronyline acropyrone isomer 2,3-methelenedioxy 4,7-dimethoxy quinoline acronyculatin G/E acropyranol B acronyculatin A acrovestenol C13H9O3N skimmianine maculosidine kokusaginine pteleine γ-fagarine evolitrine pteleine γ-fagarine 1-[2',4'-dihydroxy-3',5'-di-(3''-methylbut-2''-enyl)-6'-methoxy] phenylethanone acrovestone C15H18O4Na 553.2809 0.341 12.5 317.1755 -0.922 7.5 319.1906 0.606 6.5 263.1279 C15H19O4 1-[2',4'-dihydroxy-575.2614 -0.329 12.5 acropyrone 551.2650 -0.091 13.5 3',5'-di-(3''-methylbut-2''-377.0996 -0.025 11.5 asarinin enyl)-6'-methoxy] phenylethanone 469.1832 -0.786 9.5 yangambin	Elemental Composition C19H26O5 C32H42O9 C15H17NO3 C14H18O4 C32H40O8 C12H11NO4 C15H17NO2 C32H42O9 C19H24O4 C32H42O9 C15H18O5 C14H13NO4 C13H11NO3 C13H11NO3 C19H26O4 C32H42O8 C32H40O8 C19H26O4 C20H18O6 C24H30O8	Annot. level 2 2 2 2 2 2
	7 19 19.63 C19H25O4 9.15 C12H12NO4 Triterpenes (1 compound) 8 9.9 C17H22NO4 C17H21NO5Na [M+Na] [M+H] + [M+H] + [M+H] + + Acronychia-type acetophenones (9 compounds) 234.0762 317.1751 304.1545 326.1364 20 21.8 C19H27O4 [M+H] + 319.1906 32 25.09 C30H50ONa [M+Na] + 449.3723 -0.929 0.494 0.518 0.478 0.309 0.606 Phenolics (1 compound) C19H25O4 [M-H] -317.1755 -0.544 33 11.9 C20H27O4 [M+H] + 331.1906 0.586	7.5 7.5 7.5 6.5 263.1279 248.0924 5.5 7.5 7.5 299.1648	C13H14NO4 C15H19O4 C19H23O3	evolitrine acronyculatin G/E 2,3-methelenedioxy 4,7-dimethoxy quinoline preskimmianine 1-[2',4'-dihydroxy-b-amyrin 3',5'-di-(3''-methylbut-2''-enyl)-6'-methoxy] phenylethanone 4-geranyloxy ferulic acid	C19H24O4 C12H11NO4 C17H21NO4 C30H50O C19H26O4 C20H26O4	2 2
	9 10 10.13 C17H15NO5Na [M+Na] 9.92 C15H17NO2Na [M+Na] + + 21 16.76 C32H42O9Na [M+Na] + C32H41O9 [M-H] -	266.1154 336.0839 -1.945 10.5 0.789 7.5 593.2719 -0.428 11.5 357.1676 569.2754 -0.216 12.5	C19H26O5Na	oligophyline melicopidine acrovestenol isomer	C15H17NO2 C17H15NO5 C32H42O9	2 2
	Acetophenone monomers (11 compounds) 11 8.69 C14H19O5 [M+H] + 267.1228 22 17.59 C32H43O9 [M+H] + 571.2897 -0.751 0.261 C32H42O9Na [M+Na] + 593.2719 -0.428	5.5 249.1127 11.5 341.1729	C14H17O4 C19H26O4Na	acronyculatin D acrofolione A	C14H18O5 C32H42O9	2

Table XV :

 XV Identification of metabolites in Acronychia samples using the 13 C NMR based dereplication strategy and verification of the results by comparison with the literature data and the results obtained by the

	previously performed UPLC-HRMS dereplication strategy		
	Clusters	Database results	Structure verification	Validation by MS	Occurrence
	Cluster	Yangambin	102.8 / 102.0 (C-2', 6',	Table XIV:	Ap_B
	1		C-2'', 6'') 56.2/ 56.4 (3', 3'', 5', 5''	ID 31	
			-OCH 3 )		
			60.8 (4', 4''-OCH 3 )		
			86.0(C-2, C-6)		
			75.0 (C-4, C-8)		
			55.0 (C-1, C-5)		
	Cluster	Arsarin	55.2 (C-1/5)	Table XIV:	Ap_B, Ap_L
	2		85.8 (C-2/6)	ID 30	
			71.8 (C-4/8)		
			101.8 (-O-CH 2 -O)		
			106.5 (C-2'/2'')		
			108.2 (C-5'/5'')		
			120.0 (C-6'/6'')		
	Cluster	Sesamolin	119.8 (C-6')	NO	Ap_B
	3		71.8 / 71.67(C-8) 109.4 (C-5')		
			54.2 (C-1)		
			118.2 (C-6')		
			85.8 (C-6)		
			51.6 (C-5)		
			111.0 (C-6'')		
	Cluster	Preskimmianine	159.4 / 159.6 (C-8, C-4)		
	4		129.6 (C-12) 115.8 (C-5)		
			56.0 (C-4, 7, 8 )		
			108.2 (C-6)		
			55.8 (C-4, 7, 8 )		
			24.8 (C-14)		

Table XIV :

 XIV 

Table XIV

 XIV 

	Table XIV:	Al_B, Apn_B
	ID 32	
	:	Al_B, Apn_B
	ID 24 4. Investigation of Acronychia species taxonomy using NMR and LC-MS based
	metabolomics approaches	

Table XVII :

 XVII Specific biomarkers responsible for the discrimination of A. laurifolia and A. pedunculata bark samples

	No Rt	m/z	Adduct/Isotope MS/MS	Loss	EC	RDB Name	Category Annotation level	FDR	Class
	1	13.92 518.2146 [M+Na]+			C28H33NO7 12.5	Alkaloid 4	1.04E-04	Al_B
	2	13.84 572.2600 [M+Na]+			C32H39NO7 13.5	Alkaloid 4	6.90E-04	Al_B
	3	17.59 593.2731 [M+Na ]+	341.1725 C13H16O5 C32H42O9	11.5 Acrofolione A	AtA	1	9.04E-04	Al_B
		17.58 594.2736 M+1							8.87E-06	Al_B
	4	8.43	317.0990 [M+Na]+			C15H18O6	6.5		4	1.75E-09	Apen_B
	5	8.20	373.1630 [M+Na]+	301.105	C4H8O	C19H26O6	6.5		4	1.93E-07	Apen_B
	6	8.89	389.1562 [M+Na]+			C19H26O7	6.5		4	1.39E-10	Apen_B
	7	9.38	355.1515 [M+Na]+			C19H24O5	7.5		4	7.67E-06	Apen_B

Table XVIII :

 XVIII Specific biomarkers responsible for the discrimination of A. laurifolia and A. pedunculata leave samples

	No	Rt	m/z	Adduct/Isotope MS/MS	Loss	EC	RDB Name	Category Annotation level	FDR	Class
	1	11.72 504.1981 [M+Na]+	275.0897 C14H15NO2 C27H31NO7 12.5		4	9.92E-05	Al_L
	2	10.32 604.2528 [M+Na]+	572.226	CH4O	C32H39NO9 13.5		4	5.27E-09	Al_L
	3	11.44 639.2756 [M+Na]+			C33H44O11 11.5		4	3.06E-19	Apen_L
	4	11.79 609.2663 [M+Na]+	357.1674 C13H16O5	C32H42O10 11.5 AtA OH type-L AtA	3	1.59E-21	Apen_L
	5	13.25 607.2494 [M+Na]+			C32H40O10 12.5	AtA	4	1.59E-21	Apen_L
	6	17.00 621.2683 [M+Na]+			C33H42O10 12.5		4	4.35E-23	Apen_L
	7	17.59 593.2731 [M+Na ]+	341.1725 C13H16O5	C32H42O9	11.5 Acrofolione A AtA	1	3.31E-11	Apen_L

Table XIX :

 XIX Major contributing features attributed to possibly bioactive compounds; compounds 5 and 7 are referred to TableXVII and compounds 4, 16 and 17 to Table XVI 

	Feature	Compound	VIP	R	Occurrence
		Skimmianine			
	260.0924@8.37	Maculosidine	12.8668	0.10742	Ap_B
		Kokusaginine			
	355.1515@9.38	7	4.35349	0.084992 Apen_B
	447.1992@10.42		2.27167	0.078178	
	373.163@8.2	5	1.16067	0.072091 Apen_B
		Pteleine			
	230.0815@9.09	Evolitrine	11.5305	0.06307	Ap_B
		g-fagarine			
	369.1673@10.68 17	13.5231	0.06182	Ap_B
	375.0848@9.34	4 (flavonoid)	1.20603	0.057702 Ap_L
	353.1732@10.57 16	9.95771	0.057572 Ap_B
	577.2776@21.8	Acrovestone	2.4245	0.046955 Al_B
	915.3767@8.69	Yangambin	12.8117	0.045634 Ap_B
	469.1832@8.69	Yangambin	17.0701	0.04269	Ap_B
		Skimmianine			
	261.0954@8.37	Maculosidine	5.02794	0.040975 Ap_B
		Kokusaginine			

Figure 21: Proposed fragmentation pathways for acropyranol B (7) in ESI(+)

Figure 25: Proposed fragmentation pathways for acropyranol B (7) in ESI (-)

spectra of Acropyranol B obtained in positive and negative ionization with one year of interval

Figure A 63: Proposed fragmentation pathways for acrovestenol (2) in ESI(+)

Figure A 64: Proposed fragmentation pathways for acropyrone (3) in ESI(+)

Figure A 65: Proposed fragmentation pathways for acrofolione A (4) in ESI(+)

Figure A 66: Proposed fragmentation pathways for acrofolione B (5) in ESI(+)

Figure A 67: Proposed fragmentation pathways for acrovestenol (2) in ESI(-)

Figure A 68: Proposed fragmentation pathways for acropyrone (3) in ESI(-)

Figure A 69: Proposed fragmentation pathways for acrofolione A (4) in ESI(-)

Figure A 70: Proposed fragmentation pathways for acrofolione B (5) in ESI(-)

H NMR, B.

2D JRES and C. pJRES spectra of an A. laurifolia bark sample in the region of 0.5-1.5 ppm

H NMR B. pJRES spectra of the

different Acronychia samples; enhanced resolution and less complexity are observed in pJRES spectra
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contributes to the comparability of the different data features and constitutes an essential step before data analysis [START_REF] Craig | Scaling and Normalization Effects in NMR Spectroscopic Metabonomic Data Sets[END_REF].

Data filtering

Data acquisition in metabolomics using various analytical techniques leads to the simultaneous measurements of real contained metabolites as well as noise. After the preprocessing step a general matrix is generated containing all measurements provided from the raw data including noise data. Therefore, the elimination of noise data may facilitate significantly the data analysis process. However, this step needs a level of justification in order to avoid exclusion of biologically important information.

Concerning the NMR metabolomics platform, data filtering usually consists in the elimination of the buckets corresponding to noise regions. This is performed by careful determination of noise regions in the whole dataset. LC-MS metabolomics platform is characterized by a significantly greater sensitivity than the NMR metabolomics platform which renders the method much more prone to noise detection. Therefore, during the peak picking procedure the algorithm is assumed to detect also ‗false' peaks that are not representing any biological information and complicate the procedure of data analysis. This is directly comprehensible since an important number of peaks is generated from the blank samples raw data. These ‗false' features are considered as the ‗background' of the dataset and they are explained as features originating from the solvents, tubes, vials, or impurities.

In addition, ‗false' features could be characterized also peaks randomly detected by the algorithm with no consistency in the samples consequently no biological importance. Therefore, a data filtering step is an essential procedure for LC-MS based metabolomics to reduce all the aforementioned ‗false' peaks in order to enhance the power of the data analysis [START_REF] Hackstadt | Filtering for increased power for microarray data analysis[END_REF]).

Missing values

Missing values in metabolomics analysis is a common phenomenon occurring as missing data in a final data matrix containing intensity numbers for a given dataset. Missing values may arise for a number of reasons including biological or/and technical reasons. An important factor for the occurrence of missing values is the applied technique. High resolution mass spectrometry techniques are much more affected from this phenomenon Accordingly, the biomarkers for the discrimination of A. porteri bark and leave samples were determined by the smallest and largest values on PC3, respectively (Figure 52). In this context, the 20 more significant features accountable for this classification were extracted from the loadings table for each group and are summarized in Table XVI. The application of both UPLC and HRMS for the analysis and afterwards the processing with XCMS and CAMERA algorithms resulted in the generation of features characterized by great robustness as is illustrated in Table XVI. As a result, multiple features corresponding to the same metabolites were characterized as discriminatory variables. In order to confirm the significance of the biomarkers, additionally analysis of variance (ANOVA) was performed in Metaboanalyst platform to compare quantitatively discriminatory variables across the groups. Because of the multiple-testing issue, FDR or Bonferonni corrected P-values computed from Metaboanalyst platform used to assess the significance [START_REF] Broadhurst | Statistical strategies for avoiding false discoveries in metabolomics and related experiments[END_REF]. The significance of the discriminating features of interest was also assessed by boxwhisker plots (Figure A 78,Figure A 79). As a matter of fact, the concentration of all discriminant features was found to differ significantly in between the diverse biological groups giving the evidence that these could be used as biomarkers. a new set of R 2 and Q 2 values, which are plotted against the correlation coefficient between the original Y values and the permuted Y values in the SIMCA software (Figure 60) [START_REF] Eriksson | Multi-and Megavariate Data Analysis[END_REF]). The intercepts for R 2 and Q 2 lines in this plot are a measure of the over-fit. A model is considered valid when R 2 int < 0.4 and Q 2 int < 0.05 [START_REF] Eriksson | Megavariate analysis of hierarchical QSAR data[END_REF]. In this case the R 2 and Q 2 intercepts were calculated for 0.324 and -0.675 indicating that the model was not over-fitting.