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TOULOUSE MIDI-PYRÉNÉES
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Abstract

A strong requirement to deploy autonomous mobile robots is their capacity to local-
ize themselves with a certain precision in relation to their environment. Localization
exploits data gathered by sensors that either observe the inner states of the robot,
like acceleration and speed, or the environment, like cameras and Light Detection
And Ranging (LIDAR) sensors. The use of environment sensors has triggered the
development of localization solutions that jointly estimate the robot position and
the position of elements in the environment, referred to as Simultaneous Local-
ization and Mapping (SLAM) approaches. To handle the noise inherent of the
data coming from the sensors, SLAM solutions are implemented in a probabilis-
tic framework. First developments were based on Extended Kalman Filters, while
a more recent developments use probabilistic graphical models to model the esti-
mation problem and solve it through optimization. This thesis exploits the latter
approach to develop two distinct techniques for autonomous ground vehicles: one
using monocular vision, the other one using LIDAR.

The lack of depth information in camera images has fostered the use of specific
landmark parametrizations that isolate the unknown depth in one variable, concen-
trating its large uncertainty into a single parameter. One of these parametrizations,
named Parallax Angle Parametrization, was originally introduced in the context of
the Bundle Adjustment problem, that processes all the gathered data in a single
global optimization step. We present how to exploit this parametrization in an
incremental graph-based SLAM approach in which robot motion measures are also
incorporated.

LIDAR sensors can be used to build odometry-like solutions for localization by
sequentially registering the point clouds acquired along a robot trajectory. We define
a graphical model layer on top of a LIDAR odometry layer, that uses the Iterative
Closest Points (ICP) algorithm as registration technique. Reference frames are
defined along the robot trajectory, and ICP results are used to build a pose graph,
used to solve an optimization problem that enables the correction of the robot
trajectory and the environment map upon loop closures.

After an introduction to the theory of graphical models applied to SLAM prob-
lem, the manuscript depicts these two approaches. Simulated and experimental
results illustrate the developments throughout the manuscript, using classic and
in-house datasets.





Résumé

La capacité des robots mobiles à se localiser précisément par rapport à leur envi-
ronnement est indispensable à leur autonomie. Pour ce faire, les robots exploitent
les données acquises par des capteurs qui observent leur état interne, tels que cen-
trales inertielles ou l’odométrie, et les données acquises par des capteurs qui ob-
servent l’environnement, telles que les caméras et les Lidars. L’exploitation de
ces derniers capteurs a suscité le développement de solutions qui estiment con-
jointement la position du robot et la position des éléments dans l’environnement,
appelées SLAM (Simultaneous Localization and Mapping). Pour gérer le bruit des
données provenant des capteurs, les solutions pour le SLAM sont mises en œuvre
dans un contexte probabiliste. Les premiers développements étaient basés sur le fil-
tre de Kalman étendu, mais des développements plus récents utilisent des modèles
graphiques probabilistes pour modéliser le problème d’estimation et de le résoudre
grâce à techniques d’optimisation. Cette thèse exploite cette dernière approche et
propose deux techniques distinctes pour les véhicules terrestres autonomes: une
utilisant la vision monoculaire, l’autre un Lidar.

L’absence d’information de profondeur dans les images obtenues par une caméra
a mené à l’utilisation de paramétrisations spécifiques pour les points de repères qui
isolent la profondeur inconnue dans une variable, concentrant la grande incertitude
sur la profondeur dans un seul paramètre. Une de ces paramétrisations, nommé
paramétrisation pour l’angle de parallaxe (ou PAP, Parallax Angle Parametriza-
tion), a été introduite dans le contexte du problème d’ajustement de faisceaux,
qui traite l’ensemble des données en une seule étape d’optimisation globale. Nous
présentons comment exploiter cette paramétrisation dans une approche incrémen-
tale de SLAM à base de modèles graphiques, qui intègre également les mesures de
mouvement du robot.

Les Lidars peuvent être utilisés pour construire des solutions d’odométrie grâce
à un recalage séquentiel des nuages de points acquis le long de la trajectoire. Nous
définissons une couche basée sur les modèles graphiques au dessus d’une telle couche
d’odométrie, qui utilise l’algorithme ICP (Iterative Closest Points). Des repères
clefs (keyframes) sont définis le long de la trajectoire du robot, et les résultats de
l’algorithme ICP sont utilisés pour construire un graphe de poses, exploité pour
résoudre un problème d’optimisation qui permet la correction de l’ensemble de la
trajectoire du robot et de la carte de l’environnement à suite des fermetures de
boucle.

Après une introduction à la théorie des modèles graphiques appliquée au prob-
lème de SLAM, le manuscrit présente ces deux approches. Des résultats simulés et
expérimentaux illustrent les développements tout au long du manuscrit, en utilisant
des jeux des données classiques et obtenus au laboratoire.
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Chapter 1

Introduction

Mobile robot autonomous navigation requires the integration of a variety of pro-
cesses that can be casted as an instantiation of the sense / plan / act paradigm for
autonomous systems. Sensing encompasses the acquisition of information from the
environment and their structuring into environment models, which are the basis
upon which the planning processes decide the motions to execute, and execution
being part of the acting process. Depending on the type of robots (e.g. ground,
aerial or submarine), on the type of sensors that provide information on the envi-
ronment (e.g. cameras, LIDARS, radars), the type of environments (e.g. indoors,
urban), and on the context in which autonomous navigation is achieved (e.g. reach
a far away goal, follow a road), these processes are declined into a large variety
– not to mention that numerous different approaches have been proposed in the
literature to implement them.

Besides the three sense / plan / act processes, there is an other essential process
that is required for autonomous navigation, actually often classified as a sensing
process: robot localization, which is the estimate of the robot position in a given
reference frame. This process is actually one of the most important one in mobile
robotics, as it conditions the success of all the others: environments models are
not spatially consistent in the absence of localization, which precludes any consis-
tent motion planning, and trajectory execution, whatever the servoing scheme is,
strongly relies on localization. Localize oneself has motivated numerous work in
the history of technology, and when it comes to mobile robotics, there is again a
large variety of sensors, contexts and definition for the localization function, which
generated a considerable amount of work in the community.

This thesis is a contribution to the localization problem in robotics, within
a formalism that has recently been introduced and applied to localization: the
graphical models. This section introduces the manuscript, by presenting first the
context of the work, briefly reviewing the importance of the localization problem
and the main types of solutions, and then the thesis contributions and outline.

1.1 Context

1.1.1 Outdoor robotics

The primary considered context of this work is large scale outdoor environments,
either structured or not (fig. 1.1). The deployment of robots in such environments is
typically considered for information gathering missions (to sample, map or monitor
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some information in scientific contexts), transportation, logistics or surveillance
applications.

Figure 1.1: Illustrations of some of the outdoor environments in which the two LAAS robots
Mana and Minnie have been deployed (fields, rural and urban environments).

These contexts define a series of characteristics that relate to the environment
and the robots: the environment is large, varied, may not be known beforehand, and
missions are long lasting. Of course these characteristics are more or less pregnant,
depending on the actual application. Yet we consider the generic case where the
robot has to achieve long range navigation missions in such environments.

1.1.2 On the importance of localization

On-board an autonomous mobile robot, localization per se is not a functionality
that is the goal of the robot mission. Yet, it is a key component necessary for three
main functionalities that are at the core of the robot autonomy:

• It is required to ensure the proper execution of trajectories, that are either
specified to the robot or autonomously planned. For this purpose, localization
explicits the deviations with respect to the trajectories, which are the entry
point of the lowest level locomotion and motion controls activities.

• It is required to ensure the spatial consistency of the environment models built
by the robot. Such models (e.g. obstacles maps) are defined by the structuring
and integration of exteroceptive sensor data: the positions from which these
data are acquired have to be known, otherwise their integration would yield
environment models that do not properly represent the robot environment.

• It is required to ensure the achievement of the missions the robot is tasked.
This is trivial if the mission is a mere navigation one (”goto [goal]”), or when
the mission is to ensure coverage of a given area. The proper handling of the
missions is ensured by higher levels planners, that must reason of the progress
of the mission: the robot localization information is of course necessary for
this purpose.

These three functionalities are processes of very different nature, and are solved
by various approaches. Hence they call for different instances of localization solu-
tions: for instance executing a trajectory may require to localize the robot at a high
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frequency relative to local features to servo the motions, such as a road line, or with
respect to a local frame, such as the beginning of the trajectory. Building a local
environment model may also only require precise localization over short ranges, but
at the frequency at which the exteroceptive data are gathered. And to monitor the
achievement of the overall mission, an estimate of the robot position is not needed
at high frequencies, nor with a very good precision.

There is actually a wide range of localisation solutions, that can be characterized
along the following criteria:

• the precision of the localisation, and its evolution over space and time,

• the frequency at which the robot position is estimated,

• the reference frame in which the position estimate is expressed,

• the availability of the localisation solution, which can depend on the area
where the robot is, or even on the time of the day,

• and the integrity of the localisation solution, that is the level of guarantee one
has on the position and precision estimates.

To our knowledge, no localisation solution is able to maximize all these criteria,
and it is very likely that the state of the art will never reach this: a series of
localisation solutions with varying performance for each criteria must be developed
and integrated on-board an autonomous robot.

1.1.3 Localization solutions in robotics

A large variety of sensors can provide information on the motion and/or the
localization of a mobile, and robotics has inherited all these technologies:
accelerometers, gyrometers, magnetometer, speedometers, etc. But robotics
introduced in the realm of localization the use of exteroceptive sensors, that is
sensors that acquire information on the environment, and not on the robot inner
state. These sensors are of course the entry point for the autonomy of robots that
must adapt to their environment, and they have been used since the very beginning
of researches on autonomous mobile robots in the beginning of the 70’s. The most
used are sonar telemeters, cameras, Lidars and radars, and they have been rapidly
exploited in localization processes.

One can classify localization solutions in robotics into the following three large
categories:

• Dead-reckoning. This consists in integrating a sequence of elementary motion
measures to compute the current pose of the robot. The most straightfor-
ward dead-reckoning approach for wheeled mobile robot is odometry. Inertial
navigation also falls in these approaches, as well as visual motion estimation
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techniques from monocular or stereovision sequences – often coined “visual
odometry”. The main characteristic of dead-reckoning approaches is that the
error on the position they estimate grows with time and/or distance traveled,
and this growth can not be bounded. Hence dead-reckoning approaches are
not applicable over the long term.

• Map-based localization. The only solution to guarantee bounded errors on
the position estimates is to rely on stable environment features. If a spa-
tially consistent map of the environment is available, map-based localization
approaches can be applied: they consist in matching data acquired by the
robot with a given initial map of the environment that is spatially consis-
tent. Various approaches exist, depending on the kind of information that is
extracted to be matched (e.g. mapped features that are detected in the envi-
ronment by the robot, surface models like digital elevation map, etc), and on
the estimation technique that derive position estimate in the map frame from
the matched data. Map-based localization provide position estimates whose
errors are bounded and depend on the resolution of the data encoded in the
initial map. Yet, they require the existence of a prior map of the environ-
ment, and assume that the environment has not drastically changed between
the time it has been mapped and the time the robot evolves within.

• Simultaneous localization and mapping. In the absence of an a priori map of
the environment, the robot is facing a kind of “chicken and egg problem”: it
makes noisy observations of features on the environment, from positions which
estimates are also corrupted with noise. These errors in the robot’s pose have
an influence on the estimate of the observed environment feature locations,
and similarly, the use of the observations of previously perceived environment
features to locate the robot provide position estimates that inherits from both
errors: the errors of the robot’s pose and the map features estimates are
correlated. It has early been understood in the robotic community that the
mapping and the localization problems are intimately tied together, and that
they must therefore be concurrently solved in a unified manner, turning the
chicken and egg problem into a virtuous circle. The approaches that solve this
problem are commonly denoted as “Simultaneous Localization and Mapping”
(SLAM), and have now been thoroughly studied.

The SLAM problem has received a lot of attention since the early stages of
researches on mobile robotics. It is indeed a solution to both the important lo-
calization and mapping problems that is autonomous (the robot does not need to
resort to any initial data or dedicated localisation infrastructure such as Global
Navigation Satellite System), and is thus applicable in any context, provided the
environment exhibit some structures that are perceivable by some sensors.
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1.2 Thesis objective and contributions

This thesis builds upon the latest researches on the SLAM problem, that use
probabilistic graphical model theory to solve SLAM problems through optimization
[Grisetti 2010]. By exploring the sparsity of the SLAM problem, recent work
have shown the possibility to considerably reduce the computation time needed to
converge to a solution. Also, the graphical models used to model the optimization
problem provide a powerful layer of abstraction that helps to better understand the
problem and to design powerful solutions, like the iSAM2 algorithm [Kaess 2012].

The thesis tackles two variations of the problem for ground mobile robots evolv-
ing outdoors :

• SLAM with monocular vision. The well known issue with monocular vision
is that the landmark depth is not directly perceivable: we consider the
problem in the least favorable context, that is with a camera pointing
towards the direction of the robot motion. In this contribution we tailor an
optimization-based SLAM approach to a specific landmark parametrization
that has proven its performance in the context of a batch bundle adjustment
approach, the parallax angle parametrization [Zhao 2011].

• Long range SLAM with a Lidar. Here we adopt a pose-graph SLAM ap-
proach, in which no landmarks are extracted from the perceived data: the
SLAM solutions builds upon the estimate of motions computed thanks to a
scan alignment technique applied on the point clouds data provided by the
Lidar, namely, the Iterative Closest Points (ICP) algorithm. A particular care
is taken on augmenting the quality of the motion estimations computed by
ICP, by properly filtering the input data on the one hand, and by properly
managing the built “map” on the other hand, that is the selection of the point
clouds to memorize along the robot route. This latter point also enables to
detect loop closures.

1.3 Thesis outline

Chapter 2 is a synthetic introduction to the SLAM problem, focusing on its graphi-
cal modeling and on solutions based on non-linear optimization techniques. Its goal
is to make the reader familiar with the concepts and tools that are latter used in
the manuscript.

Chapter 3 is our first contribution. It proposes the use of a specific parametriza-
tion of point landmarks in the context of an incremental Graphical SLAM approach.
All the details of the adaptation of a Graphical SLAM approach to this parametriza-
tion are given, and results in simulation are analysed.

Chapter 4 presents our second contribution, that is the development of a pose-
graph SLAM approach based on the ICP scan matching algorithm. All the details
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of the approach are provided, and results obtained in two different datasets are
analysed.

Finally a conclusion ends the manuscript, and an appendix depicts some tools
we have been developing to support our researches.
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Probabilistic Graphical Models
for SLAM
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The main subject of this thesis is the Simultaneous Localization and Mapping
(SLAM) problem. This chapter presents this problem, with a focus on the current
trend to model it using graphical models and to solve it using non-linear optimiza-
tion techniques.

The SLAM problem has been studied in robotics for about thirty years now
[Chatila 1985, Smith 1987, Crowley 1989], and many works that explains very well
the problem were produced since [Bailey 2006, Durrant-Whyte 2006, Cadena 2016].
We do not have the ambition here to complement these texts: this chapter is a
synthetic presentation of the SLAM problem, so as to present the basis into where
the two contributions presented in chapters 3 and 4 of this thesis are built.

2.1 Modeling the SLAM problem

In a nutshell, the SLAM problem consists in estimating the pose of the robot in
relation to a map, while computing an estimate for this map at the same time. This
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is a fusion of the localization problem, where a fixed map is available and one esti-
mates only the robot pose, with the mapping problem, where the robot localization
is known and one seeks to find a map that best describes the environment.

This situation is very common in robotics. Often robots are requested to explore
an unknown environment and perform tasks there, and for these purposes they need
to know their location and their surroundings. Sometimes a map is available but
it may be unprecise, incomplete or it may not correspond to the current state of
the environment anymore: it is necessary to perform map updates as the robots
perceive the current state of the environment. Thus, being able to perform SLAM
is a key requirement to allow autonomous tasks and missions for robots, which has
been reckoned early in the roboticists community.

2.1.1 Probabilistic Formulation of SLAM

The estimation is computed based on data acquired from the robot sensors. This
data contains noise, which any SLAM solution should handle properly. The common
way to do is to use a stochastic framework, where the observations and values to
be estimated are random variables. Mathematically we can write the following: if
x0:T = {x0, . . . ,xT } is a sequence of robot states (including the initial state x0),
o1:T = {o1, . . . ,oT } is a sequence of observations made from the robot sensors,
and m is set of random variables that represents the map of the environment,
then to solve the SLAM problem is the same as to compute the following posterior
probability:

p(x0:T ,m | o1:T ) (2.1)

with T representing the elapsed time. We can further divide the observations o1:T
depending on the type of sensor used to acquire the data. Proprioceptive sensors
provide measurements of how the robot state changes, denoted by u1:T . On the
other hand, exteroceptive sensors provide measurements of the environment rela-
tive to the robot pose and are denoted by z1:T . Using these two variables, and
considering that the robot origin x0 is normally known or arbitrary, we can rewrite
eq. (2.1) as:

p(x1:T ,m | x0,u1:T , z1:T ) (2.2)

Computing an estimate for the posterior in eq. (2.2) requires to operate in high
dimensional states and would not be possible if the SLAM problem did not have
a well defined structure [Grisetti 2010]. This structure is derived from the Markov
assumption, that postulates that past and future are independent if the current
state is known. This leads to two other assumptions that if not considered would
violate the Markov one: the static world and the independent noise assumptions.

With the Markov assumption it is possible to derivate simplified probabilistic
models that govern the SLAM problem. The first one is the transition model:

p(xt | x0:t−1,m,u1:t, z1:t) = p(xt | x0:t−1,u1:t) = p(xt | xt−1,ut) (2.3)
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that expresses mathematically that the current state depends only on the last state
and the last control (or proprioceptive measurement). The second model describes
the exteroceptive sensors. It is named the observation model:

p(zt | x0:t,m,u1:t, z1:t−1) = p(zt | xt,m) (2.4)

which means in other words that the expected current world observations depends
only on the current state and on the map. These two models form the basis for the
stochastic SLAM solutions.

2.1.2 Structure of a SLAM solution

An essential concern when defining a SLAM solution is the map structure. So far
we considered the exteroceptive observations zt in a generic way, where they are
just “observations of the world”, and the map has been represented only by the
variable m. While this may be convenient to write probabilities in a compact form,
this hides an important aspect of the SLAM problem, due to the fact that sensor
data are most of the times only observations of a part of the environment.

Mathematically, zt = {zt1, . . . , ztj} is a set of observations of parts of the world.
In the same way, the variable m represents the set m = {l1, . . . , ln}, where each li
represents one of these parts: a distinguishable world element that can be observed
from the sensor data, or simply: a landmark.

Given the subdivision of both zt and m, we can talk about two different kind
of processes that are required to define a SLAM solution:

• Data association. When we consider that zt is composed by several obser-
vations of parts of the world, one question that arises is which part li of the
world is observed by which observation ztj . Thus, before using the observa-
tions it is necessary to associate the observation with the part of the map it
relates to. This problem is called data association, and it is crucial for the
SLAM problem. The part responsible to perform data association in a SLAM
system is commonly known as front-end. The front-end deals with data from
the sensors, and thus is heavily sensor dependent. It is a critical part of
SLAM: wrong data association may induce wrong estimations for the map,
which results in a deformed map that does not represent well the environment
and cannot be used for localization.
It is not in the scope of this thesis to deal with data association: it is considered
solved for the contribution presented in chapter 3, and it is implicit in the
contribution presented in chapter 4.

• Estimation. The part responsible for the estimation is called back-end, and
is normally sensor agnostic. Both front-end and back-end of a system may be
independent from each other, but they may also be coupled. For instance, the
front-end may use the current estimation from the back-end to perform guided
data association (associate observations with the most probable parts of the
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map); or the back-end may detect inconsistencies in the data-association and,
if possible, remove or not use the inconsistent observations to compute the
estimation.

Using these new variables and the process of data association, the observation
model in eq. (2.4) then becomes:

p(ztj | xt, li) (2.5)

that is the probability of the measurement of one specific landmark given the robot
pose, given the data association D and (i, j) ∈ D.

The format of the variables that compose the map m depend on the sensors
used by the robot and on the information extracted from the sensor data. For
instance: robot systems that detect landmarks-features in images will contain the
representation of these features in the map (points, lines, etc.); a robot moving in a
plane that uses a 2D laser range finder may exploit an occupancy grid as the map,
or the positions of features detected on the scans (corners, walls, etc).

Using several variables to describe the map has the benefit to exposing in details
how the variables (composing the map and the trajectory) interact with each other.
This will become clearer when we discuss graphical models below. A toy-example
showing a robot moving and observing different landmarks is shown in fig. 2.1. This
example will be used as a helper in the rest of this chapter.

. . .

. . .
x0 x1 x2

xt−1

xt

l1

l2

l3

l4

Figure 2.1: Toy-example used in the rest of this chapter. The robot moves in the world
while observing some landmarks on its way. The colors in the figure show the different
information available: for odometry measurements, for landmark measurements, and
for the prior information about the robot origin. The same colors will be used in following
figures to show elements related with these information.

‘

2.1.3 Graphical Models

Graphical models are tools to model and visualize probabilistic relations between
random variables. In general, graphical models provide a skeleton for represent-
ing the joint distribution compactly and in a factorized way [Koller 2007]. What
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changes between each representation is how the joint probability is factorized, what
each factor represent, and how the factors are represented in the graph.

2.1.3.1 Bayesian Networks

One of the most common types of graphical model is the Bayesian Network (BN),
where the representation is a directed acyclic graph (DAG) G. If G is a BN over
the variables X1, . . . , Xn, then each node Xi represents a conditional probability
distribution (CPD) p(Xi | PaXi) of Xi conditioned by its parents PaXi , or a local
probabilistic distribution p(Xi) (i.e. a CPD with an empty set of condition vari-
ables). Mathematically, we say that a distribution pB over the same variable space
as G factorizes according to G if pB can be expressed as:

pB(X1, . . . , Xn) =
n∏
i=1

p(Xi | PaXi) (2.6)

A BN where its variables relate to each other over adjacent time steps is called
Dynamic Bayesian Network (DBN). For example, the joint probability of the SLAM
problem can be represented by the DBN shown in fig. 2.2, modeled using eqs. (2.3)
and (2.4). The factorization represented in this DBN is:

p(x0:T ,m,u1:T , z1:T ) = p(x0)
T∏
i=1

p(xi | xi−1,ui)
∏

(j,k) ∈ D
p(zik | xi, lj) (2.7)

x0 x1 x2 xt−1 xt

u1 u2 ut−1 ut

z1 z2 z3 z4 z5 z6 z7 z8

l1 l2 l3 l4

. . .

Figure 2.2: Dynamic Bayesian Network representing the toy-example of Fig. 2.1. Observed
variables (data from the sensors and prior about initial state) are shown as colored nodes,
and hidden variables (the ones we want to estimate) in white. This graph represents the
factorization in eq. (2.7), using the models in eqs. (2.3) and (2.5).
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2.1.3.2 Markov Random Fields

The second common class of probabilistic graphical models is called Markov Ran-
dom Field (MRF). MRFs are represented by a undirected graph H where nodes
represent variables and edges correspond to direct probabilistic interactions be-
tween neighboring variables. The graph shown in fig. 2.3 is a MRF for the DBN
shown in fig. 2.2 after elimination of the observations and the initial pose.

x0 x1 x2 xt−1 xt

l1 l2 l3 l4

. . .

Figure 2.3: Possible Markov Random Field of the SLAM toy-example. The graph was
generated from the elimination of control and measurement variables, resulting only in the
robot trajectory and map. Different elimination order would generate a different MRF.
Edges are loosely related with the measurements acquired by the robot, but this may be
misleading. For example, the prior about the origin is represented implicitly by one of the
edge potentials connecting to x0.

MRFs are parametrized into factors, which are functions of a set of random vari-
ables. This is a contrast with BNs that are parametrized by CPDs. We say that a
distribution pH factorizes over H if it is associated with: a set of subsets D1, . . . ,Dm,
where each Di is a complete subgraph of H; and with factors π1[D1], . . . , πm[Dm],
such that:

pH(X1, . . . , Xn) = 1
Z
p′

H(X1, . . . , Xn) (2.8)

where
p′

H(X1, . . . , Xn) = π1[D1] × · · · × πm[Dm] (2.9)

is a un-normalized measure, and where

Z =
∑

X1,...,Xm

p′
H(X1, . . . , Xm) (2.10)

is a normalizing constant. Note that this definition is very close to the definition of
BNs, but here the factors do not necessarily represents a probability, thus the need
to normalize it using the constant Z.

2.1.3.3 Factor Graphs

Another useful graphical model for the SLAM problem, and the one most im-
portant for this thesis, is the factor graph representation, originally proposed by
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[Kschischang 2001]. As it happens with both BN and MRF representations, the fac-
tor graphs allow a global function of several variables to be expressed as a product
of factors over subsets of those variables, but factor graphs make this decomposition
explicit by introducing additional nodes for the factors themselves, in addition to
the nodes representing the variables [Bishop 2006, chapter 8].

If we write the joint probability of a set of random variables X in the form of a
product of factors:

p(X ) =
∏
s

fs(Xs) (2.11)

where Xs is a subset of the variables in X , the factor graph where this probability
factorizes into would have each factor fs connected to the variables Xs, like the
factor graph for the toy-example shown in fig. 2.4.

x0 x1 x2 xt−1 xt

l1 l2 l3 l4

p0 u1 u2 ut

z1 z2 z3 z4 z5 z7 z8

z6

. . .

Figure 2.4: Factor graph representing the toy-example. The main difference between this
graph and the MRF shown in fig. 2.3 is that all the factors are now are represented explicitly
by factor nodes in the graph. For instance, now it is possible to see the prior about the
origin.

The factor graph representation is more interesting for SLAM problems because
it allows the visualization of the details of the problem, that are hidden in other
representations. Take for example the situation of a robot that has two different
odometry sensors, like for example wheel encoders and inertial odometry, and we
want to model the joint probability of the robot poses along its trajectory. This
could be modeled by the graphs in fig. 2.5, but it is clear that the graph shown in
fig. 2.5c is more expressive than the others because it shows the contribution of each
measurement separately. As we will see in section 2.2, normally when modeling the
SLAM problem with factor graphs, each measurement can be related with a factor
that imposes a constraint in the neighboring variables.

2.1.4 Types of SLAM problems

The SLAM problems can be distinguished according to various criteria. A tax-
onomy that shows several of these dimensions can be seen in [Thrun 2007]. And
an other relevant taxonomy presented in [Forster 2016] casts existing contributions
on visual-inertial odometry systems along three main criteria: number of camera
poses, representation of uncertainty, and number of times the measurement model
is linearized. Here, we concentrate on criteria relevant to this thesis.
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xt−1 xt

(a) MRF

xt−1 xt

(b) Single motion factor

xt−1 xt

(c) Distinct motion factors

Figure 2.5: Different graph representations for a robot with multiple motion measurements.
With MRFs we have only the representation in (a), while with factor graphs we could model
it as a single factor (b) or isolate each measurement in a separated factor (c). The graph
in (c) allows better visualization of the problem as each data is seen as one separated
constraint in the graph.

2.1.4.1 Full versus Online versus Keyframe

One dimension to consider is related to the number of robot poses we want to
estimate. The Full SLAM problem is when we are interested in estimating the
maps and all the poses along the robot trajectory, represented by p(x1:t,m | o1:t).
Its counter-part is known as Online SLAM, that is when we want to estimate only
the current (or most recent) pose of the robot together with the map: p(xt,m | o1:t).

For each of the mentioned problems there is a kind of solution that is more
adapted to solve it: solutions for the Full SLAM are called smoothing techniques,
like graph-based optimization technique that rely on least-square minimization;
while Online SLAM is better handled by filtering techniques, like Kalman filters,
information filters, and particle filters. Solutions that estimate poses inside a sliding
window of last poses are called fixed-lag smoothers. They may be implemented by
means of a filter or optimization techniques, although optimization techniques tend
to yield more precise results.

Sometimes it is also interesting to estimate only a subset of the robot poses.
In the Keyframe-based SLAM one selects some poses along the robot trajectory to
estimate the ones that are of some interest, named keyframes, while discarding or
not estimating the others. The keyframe selection increases the distance between
subsequent estimated keyframes, normally to allow better observation baseline or
to avoid estimation of redundant poses. Graphs representing these SLAM specific
problems and solutions are shown in fig. 2.6.

2.1.4.2 Pose versus Landmark SLAM

Another dimension of SLAM is related to the variables that are estimated. What
is known as Pose SLAM is when only the poses of the robot are estimated (see
graphical model in fig. 2.7). In this case the map is not explicitly part of the
system.

When the map is estimated and composed of environment landmarks the prob-
lem is known as Landmark SLAM (already seen in fig. 2.4). In this case, the
landmarks are features extracted from the sensor stream. A counter-part to this
strategy is to use all the sensor data and compare with a volumetric map, but then
the problem has a high dimension and requires much more computation. By us-
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x0 x1 x2 x3

l1 l2 l3 l4 l5 l6

(a) MRF of Full SLAM
x0 x1 x2 x3

l1 l2 l3 l4 l5 l6

(b) Filter

x0 x1 x2 x3

l1 l2 l3 l4 l5 l6

(c) Keyframe BA
x0 x1 x2 x3

l1 l2 l3 l4 l5 l6

(d) Keyframe SLAM

Figure 2.6: (a) Graphical model of the full SLAM problem as a Markov Random Field, after
eliminating measurement variables. (b-c) shows how the inference progresses in a filter,
keyframe-based optimization for Bundle Adjustment. (d) shows the inference progress in
a keyframe-based optimization for Keyframe-SLAM, that is close to the BA case but with
an extra edge linking the retained poses. Based on [Strasdat 2012, fig. 1].

ing only feature-landmarks as the map it is possible to be more efficient, but with
the risk of having inferior results due to the discarded information in the feature
extraction process.

These two SLAM types are important for this thesis because each of our main
contributions deal with one of them: Landmark SLAM is addressed in chapter 3,
and Pose SLAM chapter 4.

x0 x1 x2 xt−1 xt

p0 u1 u2 ut

c1

. . .

Figure 2.7: Possible factor graph of a Pose SLAM for the toy-problem. Factor c1 is a
loop closing constraint that encodes a “virtual transformation” between the connected pose
nodes. This transformation is derived from observations of the same part of the environ-
ment, that is only l2 in this example (see fig. 2.1), assuming that the measurements are rich
enough to be used to compute such transformation (e.g.: enough overlap of laser scans or
visual landmarks). Note that since l2 was also observed from x0 we also have the possibility
to close the loop between xt−1 and x0 (not represented here).
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2.1.4.3 Bundle Adjustment

There is a problem called Structure from Motion (SfM), originated from the fields
of computer vision and photogrammetry, where one is interested in recovering the
3D structure of the scene along with the camera parameters (pose and intrinsic
parameters), given only the images captured by the camera.

SfM is normally solved by a technique called Bundle Adjustment (BA), where
the values of the points describing the scene and the camera parameters are refined
simultaneously by minimizing the reprojection error between the image locations
of observed and predicted image points. If all the data is available beforehand this
computation can be done offline in a batch optimization, but real-time SfM, also
known as visual SLAM, is also possible when the images come from a live video
stream.

As it happens with SLAM solution, BA may be classified as Full, Fixed-lag or
Keyframe, depending on the number of estimated poses. The key structural dif-
ference between BA and the SLAM solutions mentioned so far is that in BA there
is no movement constrains between the camera poses, only the external measure-
ments are considered. [Strasdat 2012] presents a comparison between filtering and
keyframe BA in the context of visual SLAM, and shows that increasing the num-
ber of landmarks detected in the images increases accuracy, while increasing the
number of intermediate keyframes has only a minor effect.

2.2 Solving the SLAM with graph-based optimization

The solutions for SLAM can be divided into two main categories: filtering and
smoothing. The filtering category itself may be subdivided into the ones that use
Extended Kalman Filters (EKF), information filter, or particle filters.

The online slam problem is usually solved by filtering techniques, while Full
SLAM is solved by smoothing, but this may be misleading. Mathematically the
state space of a filter may be increased to hold more than the last robot pose,
allowing the implementation of fixed-lag, keyframe or even full SLAM solutions. In
the same way, a graph optimization technique may be used to estimate only the
current pose of a robot. The main reason for not doing so that is because there
is no efficient way to compute the estimates of the given problem, either due to
the extra computational cost (full SLAM with filters) or due to neglected benefits
like the possibility to linearize more than once (online SLAM with graph-based
optimization).

Recently there has been a lot of research on solving SLAM through smoothing,
where the solution is computed using sparse optimization techniques. For long time
the filtering techniques were seen as the way to solve SLAM, despite its drawbacks
with the non-scalability regarding the map size. Since the seminal work presented
in [Lu 1997], the community started to explore the sparsity of the SLAM more
efficiently, with the aid of graphical models, making graph-based optimization tech-
niques the current state-of-the-art solution for SLAM problems.
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This thesis follows this trend and relies on graph-based optimization to solve
SLAM. Next we will describe how we can solve SLAM using optimization based on
a factor graph, mostly based on [Grisetti 2010].

2.2.1 Intuitive presentation

Before going into the mathematics of how to perform smoothing from a factor
graph, I want to introduce the intuition behind it. Imagine a network of springs
as the one in fig. 2.8, each spring having possible different length and stiffness.
The springs are connected to by its endpoints, forming a graph. At the beginning
we select the positions of the endpoints and keep then fixed. Then we release the
endpoints, letting then be moved by the springs, until they are in a configuration
of equilibrium.

x0 x1 x2

l1

l2

l3

Figure 2.8: Section of the toy example abstracted as a spring network (ignore masses and
gravity!). Coils represent factors that influence the variables in the graph, represented
by joints and coils endpoints. Prior factors attach the variables with relation to a fixed
object. Graph-based optimization may be seen as fixing the endpoints to a certain initial
configuration and releasing them, letting the coils move the endpoints to a configuration of
equilibrium.

This analogy is close to what happens in the graph based optimization. Each
spring is a factor in the graph, and each endpoint is a variable. The different lengths
and stiffness relates respectively to the measurements and covariances associated
to each factor: factors with larger covariances carry less information, thus they
constrain less their neighboring variables (smaller spring stiffness), while smaller
covariances means more information, thus the neighboring variables will tend to
respect more the constraint of this factor (higher stiffness). Prior factors can be
seen as springs with one of the endpoints attached to a fixed object.

The main missing point in this simple analogy is that in graph-based optimiza-
tion the relation between the variables and the error functions encoded in the factors
are not always linear, as the endpoints and spring parameters. Depending on the
starting configuration the variables may converge to local configurations that are
not the one of minimal error (a local minimum), so it is desirable to start from a
configuration close enough to the global minimum.
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2.2.2 Modeling the problem as MLE

The objective of the graph-based optimization is to find a configuration for the
variables that best matches the measurements encoded in the factors. If the obser-
vations are affected by Gaussian noise, this is the same as to compute a configuration
that maximizes the likelihood of the observations. Note that the process is a point
estimator, since only the values for the variables are estimated. This value is the
mean of a Gaussian approximation over the graph variables. If necessary, the in-
formation matrix of this Gaussian can be computed once the mean is known, but
it requires extra computation than what is needed to find only the mean.

Generically, each factor fi encodes an error function that computes the difference
between the expected observation and the acquired observation. For measurements
in Euclidean spaces, this function has the form:

efi
= oi − h(Xi) (2.12)

where we use oi to denote the measurement encoded in fi, and h(Xi) as the model
that gives us the prediction of the measurement based on the set Xi of variables
connected to the factor fi (the same notation as in eq. (2.11)). If the measurement
comes from a sensor, then h(.) is the observation model of the sensor, but it may be
for example a motion model if the measurements are the control inputs, or just the
relative pose if the measurement is the robot displacement. This is the reason why
we use oi as a generic measurement, instead of specifying it as proprioceptive mea-
surement ui or exteroceptive measurement zi. The error function for non-Euclidean
spaces is explained later in this chapter.

Let Σi the covariance of the measurement oi and Ωi = Σ−1
i its information

matrix. The likelihood of Xi given oi encoded by fi is:

Lfi
= L(Xi ; oi) ∝ e−[oi−h(Xi)]>Ωi[oi−h(Xi)] (2.13)

∝ e
−e>

fi
Ωiefi (2.14)

To find the configuration X ∗ that maximizes the likelihood given all observations
we need to consider all factors in the graph:

L(X ) =
∏
i

Lfi
(2.15)

and is the same to solve:
X ∗ = arg max

X
L(X ) (2.16)

By using the logarithm of the likelihood function, that is monotone and has its max-
imum at the same point of the likelihood function, we can substitute the products
of likelihoods by the sum of log likelihoods. And by negating it, we can transform
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the maximization problem in a minimization problem, resulting in:

X ∗ = arg min
X

(− log L(X )) (2.17)

= arg min
X

∑
i

− log Lfi
(2.18)

= arg min
X

∑
i

e>
fi
Ωiefi

(2.19)

2.2.3 Solving the minimization problem

If a good initial guess X̆ is available, eq. (2.19) can be solved by Gauss-Newton (GN)
or Levenberg-Marquardt (LM) algorithms. For that, we start by approximating the
error function of each factor by the first order Taylor expansion around the current
initial guess:

efi
(X̆i + ∆Xi) = efi

(X̆ + ∆X ) (2.20)
≈ efi

+ Ji∆X (2.21)

where efi
, efi

(X̆ ) is the error of the factor given the initial guess (the simplification
of the notation will be handy in the equations below), Ji is the Jacobian of efi

(X )
computed at X̆ , and ∆X is a small increment on the variables. Note that in
eq. (2.20) we changed the domain of the error function of a factor fi from its
neighboring variables Xi to all variables X , even if effectively only the neighboring
variables are used to compute the error. This was done so that the Jacobian Ji can
be computed with relation to all variables: the reason for this will become clear
when we discuss the structure of the matrices used in the optimization problem.

By substituting eq. (2.21) in the terms of the sum in eq. (2.18) we get:

− log Lfi
(X̆ + ∆X ; oi) = efi

(X̆ + ∆X )>Ωiefi
(X̆ + ∆X ) (2.22)

≈ (efi
+ Ji∆X )>Ωi(efi

+ Ji∆X ) (2.23)
= e>

fi
Ωiefi︸ ︷︷ ︸
ci

+2 e>
fi
ΩiJi︸ ︷︷ ︸
bi

∆X + ∆X > J>
i ΩiJi︸ ︷︷ ︸

Hi

∆X (2.24)

= ci + 2bi∆X + ∆X >Hi∆X (2.25)

that is the local approximation of the likelihood for one observation. To approximate
for all observations, we substitute eq. (2.25) in the sum being minimized in eq. (2.19)
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to get: ∑
i

e>
fi
Ωiefi

=
∑
i

(
ci + 2bi∆X + ∆X >Hi∆X

)
(2.26)

=
∑
i

ci︸ ︷︷ ︸
c

+2
(∑

i

bi

)
︸ ︷︷ ︸

b>

∆X + ∆X >
(∑

i

Hi

)
︸ ︷︷ ︸

H

∆X (2.27)

= c+ 2b>∆X + ∆X >H∆X (2.28)

and finally, by differentiating the quadratic form in eq. (2.28) and making it equal
to zero, we get the following linear system:

d

d∆X

(
c+ 2b>∆X + ∆X >H∆X

)
= 0 (2.29)

2b> + 2∆X >H = 0 (2.30)
H∆X = −b (2.31)

that can be solved to find ∆X ∗ that minimizes eq. (2.19) in ∆X . The linearized
solution can be obtained by adding the computed increments to the initial guess:

X ∗ = X̆ + ∆X ∗ (2.32)

Algorithms like GN and LM normally iterate between linearizing the system at the
current solution with eq. (2.28), solving the linearized system for the increment with
eq. (2.31), updating the solution with increment through eq. (2.32), and repeating
the process using the new solution as the linearization point for the next iteration.
This is done until convergence.

2.2.4 Matrix structures

The matrices b and H in the linear system shown in eq. (2.31) are sparse, thus
the system may be efficiently solved by sparse techniques, like Cholesky sparse
factorization. The sparsity of these matrices originates from the use of the Jacobians
Ji in their construction (see eq. (2.24)). In fact, the error from each factor depends
only on the variables connected to the factor, thus the Jacobian of the error with
relation to all variables in the graph will have an structure where only the blocks
related to the factor variables will have information, and it will be zero everywhere
else. Through the sums performed in eq. (2.27), each factor produces contributions
in the matrices b and H that are localized as well. In the end, one only need
to iterate through the factors, computing these contribution for each factor and
adding them in the right places in the both system matrices. This can be visualized
in fig. 2.9.

The matrix b represents the differences between the expected measurements
and the real measurements for each factor, weighted by the measurement errors
in the respective factors (in the information form), and projected in the variable
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Figure 2.9: Example of the construction of the linearized system matrices from the factor
graph. Different tones of the same color were used to differ each landmark observation
factor. Top-left: small section of the factor graph for the toy example. Bottom: structure
of the Jacobian matrices computed for each factor, and the resulting contributions in the
matrices H and b of the linearized system. Top-right: resulting system matrices colored
by the contributions from each factor.

space. The matrix H is the information matrix of the system, that projects all the
measurement errors to the space of the variables. Since it is a symmetric matrix,
an additional optimization is to compute only its upper (or lower) triangular part.
For graphs where the measurements can be represented by Euclidean spaces, the
final covariance on the variables can be obtained by inverting this matrix.

2.2.5 On the need of priors

A certain care should be taken to avoid building graphs with relative constraints
only. In such cases, the function being minimized in eq. (2.19) may present some
invariance (e.g.: a pose graph with only relative constraints is invariant under a rigid
transformation of all poses). Prior factors can be added to avoid such problems.
It is common to add a prior factor at the origin with a very small covariance,
although setting the error at the origin to zero is not advisable since this is “too
much informative” (zero covariance maps to infinity in the information form) and
leads to numerical instability.
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2.2.6 Dealing with manifolds

The approach explained above does not apply directly to the SLAM problem, in
which the space for some variables may be non-Euclidean. For example, the orien-
tation of the robot poses span over non-Euclidean spaces, like the group SO(2) or
SO(3) for 2D and 3D rotations. If we apply eq. (2.32) for these variables, we may
break the rules of the over-parametrization. This can be avoided by using a minimal
representation for these variables, but then it would be subjected to singularities
avoided by the over-parametrization.

One solution is to consider the variable space as a manifold and define an opera-
tor � that maps the variation to a locally Euclidean tangent space to the manifold:
∆X 7→ X � ∆X . A new error function can be defined and linearized as:

efi
(X̆i � ∆X̃i) = efi

(X̆ � ∆X̃ ) (2.33)
≈ efi

+ J̃i∆X̃ (2.34)

where we use (̃ ) to distinguish from the previous variables in the non-manifold
equations. The Jacobian J̃i can be expressed by:

J̃i = ∂efi
(X̆ � ∆X̃ )
∂∆X̃

∣∣∣∣∣
∆X̃ =0

(2.35)

Since efi
depends only on Xi ⊂ X , and using the chain rule, we can write:

∂efi
(X̆ � ∆X̃ )
∂∆X̃

= ∂efi
(X̆ )

∂X̆︸ ︷︷ ︸
Ji

· X̆ � ∆X̃
∂∆X̃

∣∣∣∣∣
∆X̃ =0︸ ︷︷ ︸

M

(2.36)

The term Ji in eq. (2.36) is the same as previously discussed for the Euclidean
spaces. Since it has only a few block structures with non-zero values, the Jacobian J̃i
may be computed by multiplying only the non-zero blocks of Ji by the appropriate
block of M.

In a similar way, eq. (2.34) can be used in eq. (2.23) to produce the linear system:

H̃∆X̃ = −b̃ (2.37)

which is again sparse by construction, and may be solved using efficient sparse
techniques. Once the system is solved for the increment in the local tangent space,
the solution in the manifold can be updated using:

X = X̆ ∗ � ∆X̃ ∗ (2.38)

The final solution is then found by iterating the approximating with eq. (2.34),
solving the system in eq. (2.37) and accumulating the increments in the manifold
space using eq. (2.38). Also, note that M can be computed once for the current
linearization point and have its blocks reused to compute each J̃i.
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Note that the H̃ now represents the information matrix in the tangent space ∆X̃ ,
and not over the graph variables. If necessary, the covariance matrix over the graph
variables may be computed once the configuration for the maximum likelihood is
found through the projection of measurement errors through the Jacobians Ji.

2.3 Insights on SLAM from graphical models

As we have seen, modeling SLAM as a graph-based optimization problem provides
us with efficient ways to solve it. The graphical model analyze may also bring
other insights, that may lead to innovative solutions to SLAM. Here I would like to
discuss one of such interesting solution.

ISAM2

The ISAM2 algorithm was presented in [Kaess 2012]. It exploits graphical models to
propose an incremental alternative to the linearize-solve-update strategy commonly
used to find the solution.

Solving the linear system in eq. (2.37) usually involves factorization of the sys-
tem matrix. It was shown in [Kaess 2012] that the factorization is the same as
converting the factor graph into a Bayes network using the variable elimination or-
der. Furthermore, the Bayes network can be converted into a novel structure, called
Bayes Tree, that is a directed tree whose nodes represent cliques on the underlying
chordal Bayes net. Nodes in the Bayes Tree can be mapped to blocks of the matrix
resulting from the elimination. Figure 2.10 show an example of graphical models
and associated sparse matrices.

In ISAM2 the Bayes Tree is used to store the square root information matrix
used to find the update increments. The building of the tree is associated with a
forward substitution where the information goes from the leaves to the root (con-
ditioning of the node variables on the parent node variables), the back substitution
that retrieves the solution is associated with passing the information from the root
to the leaves (computing the value of the variable given the parents values).

When new factors are added to the graph, it is shown that it only causes local
changes in the tree. More specifically, only the section from the nodes containing
variables affected by new factors up to the root of the tree changes, and all the
remaining sub-trees remains the same. Thus, when incrementally adding factors to
the graph can be handled efficiently by re-building only a small portion of the tree,
unless it is a loop-closing factor, where in this case a larger section of the tree needs
to be re-built. The sub-trees that are not affected are removed from the Bayes Tree
during the rebuilding and re-attached once the rebuilding is done.

ISAM2 also provides an strategy to control the linearization of the system,
named fluid relinearization. It consists into track the validity of the linearization
point for each variable separately, and only re-linearize the factors that connect to a
variable whose linearization point moved more than a certain threshold (named β in
the original paper). The linearization point of a variable that is not anymore valid
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Figure 2.10: Graphical models and associated matrices, extracted from [Kaess 2012]. (a)
Factor graph and Jacobian matrix A (the concatenation of Jacobians of all factors). (b)
Bayes network and associated square root information matrix R resulting from the elimina-
tion of variables in the order l1, l2, x1, x2, x3. (c) The Bayes Tree and the associated square
root information matrix R. Matrix blocks encoded by the cliques are color-coded.

gets updated, and the nodes containing this variable and the ones up to the root
will need to be relinearized (this is because the information about the linearization
point goes up to the root of the tree). To be more efficient, the tree is rebuild
only once per update, for both variables with non-valid linearization points and for
variables affected by new factors.

The resulting Bayes Tree depends on the variable elimination order, and finding
an elimination order that minimizes the fill-in is essential for a good performance.
In ISAM2 an incremental variable ordering is used, where only the variables in the
section of the tree being rebuild may be re-ordered, in a way to minimize the fill-in
locally. While it causes more fill-in than if all variables were considered, authors
claim that the incremental ordering still provide good solutions. For the ordering,
the constrained column approximate minimum degree (CCOLAMD) algorithm is
used: it is a COLAMD with the extra constraint to keep the variables affected by
the new factors at the end of the elimination order, and thus closer to the root of
the tree. The addition of this extra constraint is justified by the fact that the next
factors being added are more likely to be connected to the last accessed variables
(last pose or last seen landmarks). By putting the next accessed variables close
to the root, the next incremental updated have a higher chance to affect a smaller
region of the tree, speeding up its incremental reconstruction.

Finally, ISAM2 performs partial updates. The idea is that updates in variables
that are local to the current robot position does not need to be propagated to
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variables that are very far back in the robot trajectory. Since the last accessed
variables are positioned close to the root, a threshold is used to control if updates
should be propagated further variables, that are localized below in the tree: the
update proceeds if changes in the variables of the current cluster are larger than
the threshold, named α in the original paper.

The ISAM2 algorithm is a interesting example of how modeling the problem as
a graphical model can bring insights that leads to the derivation of innovative and
efficient algorithms. This algorithm was used as the optimization technique for the
work presented in chapter 3.

2.4 Summary

This chapter presented SLAM as a probabilistic inference problem. The two prob-
lem main elements, namely the front-end and the back-end, were discussed, together
with their respective relation with the data-association problem and the estimation
of a solution. The main graphical models, Bayes networks, Markov random fields
and factor graphs, were presented, using the same typical SLAM example as a
guideline.

The typical way to solve the SLAM as a graph-based optimization was also
presented, showing how the graph structure influence the matrices used to find the
solution. Nevertheless, this is not the unique solution, and an alternative named
ISAM2 was briefly presented, showing how important the insights brought by the
graphical modeling are for solving the SLAM problem efficiently .

The focus in this chapter on the graph-based solution for SLAM is justified
by the contributions in the next two chapters being based on such type of solu-
tion. Chapter 3 deals with the parametrization of landmarks for an incremental
monocular visual-SLAM using ISAM2, and chapter 4 deals with Pose-SLAM using
data from Lidar sensors, with constraints derived from a point cloud alignment
algorithm.
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3.1 Introduction

In this chapter we are dealing with the monocular SLAM problem, that is when the
sole exteroceptive sensor used is a single camera. This problem is important because
cameras are the smallest, lightest and the most power efficient exteroceptive sensors
that can be used on-board robots. The possibility to detect and track environment
features detected in images during motion make them a solution of choice for the
SLAM problem.

Image data carry plenty of information about the world, for both close and far
objects, but with the drawback that the depth information is not perceived because
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of the perspective projection. This challenges the estimation, all the more when the
camera is facing towards the main direction of motion. For instance, the cameras
exploited for localization on board micro-UAVs are always oriented downwards (see
e.g. [Weiss 2011]), so as to yield a good observability of depth, the UAVs evolving
mostly in horizontal directions. On the contrary, autonomous ground robots are
usually equipped with forward looking cameras, or endowing an UAV with a visual
sensing and avoidance capacity requires the use of forwards facing cameras. In open
areas, landmarks that lie far ahead are good reference point to correct orientation
errors, but hardly provide information about translations. On the other hand, close
landmarks can be used to correct translation errors if their depth from the image
is known. But this information is not available from a single image and may not be
easily recoverable when the robot is moving along the camera focal axis.

To overcome the problem of partial landmark observations in images, alternative
ways to represent a point in space were proposed, other than the Cartesian coor-
dinates in a 3D Euclidean space. Several different parametrizations for monocular
SLAM are compared in [Solà 2012]. Among them, the inverse depth parametriza-
tion (IDP) [Civera 2008], is one of the most well known parametrizations for point
landmarks, and has been applied successfully together with filtering techniques.
In a nutshell, a landmark in IDP is represented by the direction and the distance
(or depth) to a position in space from where it was seen. This position is called
its anchor. Moreover, what is stored is the inverse of the distance (or inverse of
the depth), which makes the handling of very distant landmarks numerically sta-
ble. This way, the unobserved dimension is isolated in one parameter, the inverse
depth, instead of being spread into several parameters. The large uncertainty in
this parameter can be well handled in a SLAM solution based on filtering.

In the context of the Bundle Adjustment problem, [Zhao 2011] propose the par-
allax angle parametrization (PAP), which constitutes an improvement over IDP,
especially for features lying in the direction of the camera motion. PAP basically
extends the concept of IDP by using two anchors instead of one, and by encoding
the missing dimension in the parallax angle formed from vectors going from the
anchors towards the 3D point, and in the distance between the anchors. The au-
thors show that this parametrization avoids ill-conditioned equations, yields fast
convergence due to the objective function having no small gradients with respect to
the introduced parameters to describe the features location, and handles well the
forward looking camera scenario.

The PAP presents a good potential for bundle adjustment, where the only mea-
surements available are the camera images and all the processing is done offline and
in batch. This potential motivates the study of how to use the PAP in incremental
SLAM, in the same challenging scenario of a forward-looking camera. This chapter
presents this study to the reader, showing the mechanics needed to use PAP in a
incremental monocular SLAM solution, modeled using the theory of factor graphs
that was introduced in chapter 2.

This chapter is structured as follows:
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• First we present the basics of perspective camera models used in visual SLAM

• We then review the various visual point landmark parametrizations, focusing
the specific PAP parametrization.

• Then we show how the PAP equations reflect in different factors that are used
in the graph, and how to build and update the graph when new measurements
arrive. This is the main contribution of the chapter, that ends with the defi-
nition of an algorithm for incremental SLAM using the PAP parametrization.

• Finally, we analyze results obtained from experiments with simulated datasets.

3.2 Basic notions of computer vision

The subject in this chapter is visual SLAM, so it is interesting to start presenting
some fundamentals about reference frames and the perspective projection model
that are used throughout the chapter.

3.2.1 Reference frames

The reference frames used in this work are defined to be right-handed. The position
and orientation of a frame F relative to another frame W is specified by a translation
vector t ∈ R3 and a rotation matrix R ∈ SO(3). When appropriate, the orientation
of a frame is represented by the quaternion q ∈ R4 that is equivalent to the rotation
matrix. The rotation matrix representation of a quaternion is written R(q).

We use the same notation as [Solà 2007] to indicate the alignment of the frames:
a 3D frame F{FLU} has its x-axis pointing forward, its y-axis pointing to the left,
and its z-axis pointing upwards. Similarly a frame G{RDF} has a right-down-
forward alignment. The same notation is also used for 2D frames. For instance,
I{RD} defines a 2D right-down frame. Frames representing the robot or the robot
trajectory have the FLU alignment. The alignment notation is important to dis-
tinguish the camera frame from the sensor frame and from the image frame.

There are two operations that may be performed using frames. We can trans-
form a point pF , expressed in the frame F , to a frame W with:

pW = RpF + t (3.1)

and the opposite operation that transform a point from the frame W to the frame
F is:

pF = R>pW − R>t (3.2)

The frame transformations operations can be written in homogeneous form. Let
the homogeneous representation of a point p be:

p ,

[
p
1

]
∈ Rn+1 (3.3)
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then we can rewrite the operations in eqs. (3.1) and (3.2) respectively as:[
pW

1

]
=
[
R t
0 1

] [
pF

1

]
(3.4)

[
pF

1

]
=
[
R> −R>t
0 1

] [
pW

1

]
(3.5)

This representation allow us to write the operations in compact form:

pW = HWFpF (3.6)

pF = HFWpW (3.7)

with
HWF ,

[
R t
0 1

]
; HFW ,

[
R> −R>t
0 1

]
(3.8)

being known as homogeneous matrices. These matrices satisfy HWF = (HFW)−1.
The advantage of writing the frame operations with homogeneous matrices is to
perform frame compositions. For example, if we have the frame FW (F expressed
in W) and CF (C expressed in F), we can convert a point pC to pW with:

pW = HWCpC = HWFHFCpC (3.9)

3.2.2 Perspective projection model

The pin-hole camera model is shown in fig. 3.1. By applying triangle similarities,
the point pS =

[
X Y Z

]>
can be projected to the point pI with:

pI =
[
x

y

]
= f

Z

[
X

Y

]
(3.10)

with f being the focal distance. The same relation may be written using matrices
and homogeneous coordinates as:

pI =

xy
1

 ∝ s

xy
1

 =

fXfY
Z

 =

f 0 0 0
0 f 0 0
0 0 1 0



X

Y

Z

1

 (3.11)

where the relation ∝ means proportional to, and s is a scalar.
The point in the image frame I may further be converted to image pixel coor-
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Figure 3.1: The pin-hole camera model. Three frames are defined: the camera body frame
C with its x-axis pointing forward; the sensor frame S with its z-axis pointing forward; and
the 2D image frame I that follows the right-down alignment. The image is represented by
the gray rectangle, positioned at the focal distance f . Pixel coordinates (u, v) are expressed
relative to the upper-left corner of the image.

dinates with: uv
1

 =

su sθ u0
0 sv v0
0 0 1


xy

1

 (3.12)

Given all these conversions, we can write the conversion from a point pS to the
image coordinates as:

uv
1

 ∝

su sθ u0
0 sv v0
0 0 1


f 0 0 0

0 f 0 0
0 0 1 0



X

Y

Z

1

 (3.13)

This can be further decomposed as:

uv
1

 ∝

su sθ u0
0 sv v0
0 0 1


f 0 0

0 f 0
0 0 1


1 0 0 0

0 1 0 0
0 0 1 0



X

Y

Z

1

 (3.14)
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and its members being defined as:

Ks ,

su sθ u0
0 sv v0
0 0 1

 ; Kf ,

f 0 0
0 f 0
0 0 1

 ; P0 ,

1 0 0 0
0 1 0 0
0 0 1 0

 . (3.15)

The matrix P0 is usually referred as the normalized projection matrix. The matrices
Ks and Kf define the intrinsic camera parameters. They normally appear together
in a matrix K, named intrinsic matrix, and defined as:

K , KsKf =

fsu fsθ u0
0 fsv v0
0 0 1

 =

αu αθ u0
0 αv v0
0 0 1

 . (3.16)

For most cameras the images can be considered squared, thus the shear component
sθ is usually zero, and consequently αθ becomes zero as well. With this decompo-
sition we can write the same conversion in the following compact form:

u ∝ KP0pS (3.17)

3.2.3 Inverse perspective projection model

The point pS can be recovered from the image pixel coordinates up to a scale. In
other words, the depth of the point should be defined in advance because the depth
information is lost in the projection of the point to the image frame. The depth is
the free parameter s in the following equation:

pS = sK−1u (3.18)

The point may then be converted to other frames if desired, using the reference
frame equations introduced in section 3.2.1.

3.2.4 Camera body frame and sensor frame

One important remark to be done about the perspective projection model is related
to the different frames used in the model. As can be seen in fig. 3.1, the model has
three frames: the body camera frame C{FLU}, the sensor frame S{RDF}, and the
image frame I{RD}, being this last one internal to the camera model. C is used
to facilitate the specification of camera position with relation to the robot frame
R{FLU}. The homogeneous matrix that transforms a point in S to C is:

HCS =


0 0 1 0

−1 0 0 0
0 −1 0 0
0 0 0 1

 (3.19)

Often in the parametrizations that will be presented next, 3D points are repre-
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sented in an arbitrary frame F . Thus to project the point it is necessary to convert
it to S frame first. Supposing that the transformation HFC is known, this can be
done by:

HSF = HSCHCF =
(
HCS

)−1 (
HFC

)−1
(3.20)

3.2.5 About lens distortion

The reader may notice that we did not mention the possible effects of distortion
caused by the lenses in the camera, even though this has to be taken into account
into most vision systems. If considered, the lens distortion effect should be dealt
in the projection model after projection of the point to the image plane and before
conversion to image coordinates. Respectively, it should be dealt in the inverse
projection model after the conversion from image coordinates to the image frame
and before converting to the sensor frame.

In this thesis we worked direct with simulated data and rectified images from
datasets, thus we are not developing further into the distortion subject – which does
not mean it can be neglected: interested readers may refer to [Solà 2007] for the a
in-depth discussion on this matter.

3.3 Landmark Parametrizations
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(c) Parallax Angle

Figure 3.2: Three parametrizations for a point pj : (a) An Euclidean point is parametrized
by its coordinates in a Cartesian frame; (b) An inverse depth point is parametrized by one
anchor p0, two direction angles ψ and θ, and the inverse of the distance between p0 and
the point, named ρ. Note that the direction vector m is a function of the angles φ and
θ; (c) A parallax angle point is parametrized by two anchors pm and pa, the same two
direction angles from inverse depth point, plus the parallax angle ω. The angle ϕ is an
implicit parameter, being computed from the anchors and direction angles using eq. (3.34).

The simplest way to represent a 3D-point is by its Cartesian coordinates relative
to some reference frame:

lEP =

xy
z

 (3.21)

where we use l with the meaning of landmark parametrization, and the subscript
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as the name of the parametrization. In this case, lEP means that the landmarks
is expressed in Euclidean parametrization. It can be visualized in fig. 3.2a. The
observation of this landmark in a camera C can be directly computed with the
equations from section 3.2.2. If the landmark is expressed in the world frame W,
then we have:

u ∝ KP0HSW lEP (3.22)

with:
HSW = HSCHCW

As seen in section 3.2.3, the landmark can be initialized from one measurement
up to a scale by eq. (3.20). In this equation we notice that the scale appears as
a multiplicative factor in all parameters of the landmark representation. Thus,
if we chose different scales, all parameters of the landmark will change. In other
words, the scale is encoded into all parameters of the Euclidean representation of a
landmark.

The real depth can be recovered by triangulation from two image measurements
of the same point landmark. Due to noise in these measurements, a good baseline
between the cameras used to acquire the measurements is necessary (either two
different cameras, like in a stereo rig, or by displacing a single camera and acquiring
the images at different times). In any case, some error in the depth estimation is
considered normal, and this error affects all parameters of lEP.

In incremental systems, new measurements for a landmark may trigger updates
in the depth estimation, especially when the baseline between the measurements
is still small with relation to the true depth of the point. This results in strong
nonlinear updates in all landmark parameters, and makes it difficult to produce
proper estimates using linearization techniques.

3.3.1 Inverse Depth

Another way to parametrize point landmarks is through the inverse depth repre-
sentation that can be seen in fig. 3.2b. The point p is represented in inverse depth
by a point p0, the direction angles ψ and ω, and by the inverse depth ρ:

lID =


p0
ψ

θ

ρ

 (3.23)

The point p0 is the landmark’s anchor, and is chosen to be one of the camera
positions from where the point was seen (normally from the first time it was seen,
but any of the camera positions can be used). The angles ψ and ω encode a direction
vector m relative to a frame attached to the anchor p0 and oriented as the world
frame (see fig. 3.2b). In this parametrization, the depth is encoded only in the
parameter ρ, which is the inverse of the distance of the point to the anchor p0
through the vector m.
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The points detected in the images can be at a considerable distance from the
sensor. For these points, the inverse representation of the depth is more appropriate
because it behaves more linearly for large distances. The parameter ρ presents a
non-linear behavior for small distances, which are actually way less numerous in
practical cases – and must even be avoided when using a forward facing camera for
safe robotics navigation. Moreover, this representation gives us the possibility of
representing very far away points by making ρ → 0.

The isolation of the depth information in one parameter makes the inverse depth
parametrization more interesting than the Euclidean one when using camera mea-
surements: with the main source of non-linearities isolated in one parameter, sys-
tems using inverse depth are less non-linear then ones using Euclidean landmarks.
In solutions based on Gaussian filtering like EKF, it is common to initialize the
inverse depth with a Gaussian prior whose mean is defined based on the size of the
environment being explored, and with a standard deviation that covers the range
of possible depths (i.e. the 3σ range should encompass ρ = 0 and ρ = 1/dmin).

A drawback of using this representation is that six parameters are required to
define a landmark, in contrast to three needed in the Euclidean representation. For
filtering solutions this results in larger states, which in turn increases the computa-
tion needed per filter updates. A common workaround for this is to re-parametrize
the landmarks from inverse depth to Euclidean once the covariance of the depth
goes below a given threshold.

A point in this parametrization can be converted to Euclidean by:

lEP = p0 + m(ψ, θ)
ρ

(3.24)

where the direction vector m(.) is a function of the angles ψ and θ, given by:

m(ψ, θ) =

cosψ cos θ
sinψ cos θ

sin θ

 . (3.25)

The pin-hole projection of a point represented in inverse depth could be computed
by firstly converting to Euclidean with eq. (3.24) and then projecting with eq. (3.22),
but we can do better and avoid the potentially dangerous division by ρ in eq. (3.24).
For this we rewrite eq. (3.22) in its non-homogeneous form:

u ∝ KR(qS)(lEP − tS) (3.26)

where tS and R(qS) are respectively the translation and orientation in rotation
matrix form of the frame S with relation to the frame the euclidean landmark is
represented (normally the world frame W). Substituting eq. (3.24) in eq. (3.26) we
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have:

u ∝ KR(qS)>
(

p0 + m(ψ, θ)
ρ

− tS
)

= K R(qS)>
(m(ψ, θ)

ρ
− (tS − p0)

)
︸ ︷︷ ︸

point in sensor frame

(3.27)

Due to the proportionality property of projection, we can multiply the point in
sensor frame by a constant and have it project to the same place in the image.
Thus, if we multiply it by ρ we get:

u ∝ K
(

R(qS)>
(m(ψ, θ)

ρ
− (tS − p0)

)
ρ

)
= KR(qS)>

(
m(ψ, θ) − ρ(tS − p0)

)
(3.28)

Now we have the parameter ρ as a multiplicative factor in the camera position tS

and the anchor p0. In the cases the projected point is too far (ρ → 0) or when the
base line is to little (tS − p0 → 0), only the direction vector m(ψ, θ) will be rotated
and projected, as we would expect to happen in these cases.

3.3.2 Parallax Angle

The Parallax Angle Parametrization (PAP) was first presented in [Zhao 2011] and
further analyzed in [Zhao 2015]. Its main characteristic is that it uses two anchors
instead of one for the IDP, and the depth is encoded in a parallax angle between vec-
tors from these anchors to the point. Since PAP is the main parametrization used in
this chapter, it will be presented below in more detail than the other parametriza-
tions.

3.3.2.1 Definition

An image feature lPAP of a 3D point p represented in Parallax Angle Parametriza-
tion as:

lPAP =


pm
pa
ψ

θ

ω

 (3.29)

where pm and pa are points in space known as main anchor and associated anchor,
and ω is the parallax angle after which the representation is named. Similar to IDP,
the anchors are camera positions from where the landmark was seen. The extra
anchor in PAP increases the number of values to represent a landmark to nine,
three more than what is needed for IDP, and therefore even less suitable to be used
in a filtering technique. However, if used in a smoothing solution, the anchors can
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ta
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pj
ωj

ψj , θj

G

−−−→tmpj

−−→tapj

Figure 3.3: Geometrical relations between PAP parameters. For simplicity the relations are
drawn in 2D, from a top view, and hence the angles ψj and θj are represented as the same
arc. The triangles represent the field of view of the cameras. The main anchor camera is
in green, the associated anchor camera is in yellow, and the global frame is in red.

be chosen to be camera positions that are already being estimated by the system,
and thus the landmark can be parametrized only by the angle values, that will give
its position in relation to its anchors.

Let’s then redefine a landmark in PAP. From now on we only deal with PAP
landmarks, so we drop the parametrization name from the subscripts to improve
readability. An image feature lj of a 3D point pj observed from two cameras
represented by frames Cm, Ca is represented in PAP as:

lj =

ψjθj
ωj

 (3.30)

where ψj and θj are the azimuth and elevation angles in a frame centered at tm and
oriented as the global frame, (the same as IDP) and ωj is the parallax angle, which is
the angle between the vectors −−−→tmpj and −−→tapj (see fig. 3.2c for the 3D representation,
or fig. 3.3 for a simpler 2D view). The feature lj is said to be anchored to the frames
Cm and Ca: it has tm as the main anchor and ta as the associated anchor.

Throughout the rest of this chapter, main anchor related variables are written
as (.)m, associated anchor related variables as (.)a, variables not related with any of
the anchors as (.)o (which stands for “other than anchors”), and variables related
with landmark j as (.)j . Camera frames written as Ci represents any camera frame,
possibly the main frame Cm or the associated frame Ca.

3.3.2.2 Observation Function

Given a general camera frame Ci =
[
ti qi

]>
and a PAP representation lj of a 3D

point pj , let vi be the vector in the global frame that goes from the camera center
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at ti towards pj (fig. 3.4). vi can be computed in two distinct ways:

vi =

vm if Ci = Cm

ṽi if Ci 6= Cm
(3.31)

When Ci = Cm, vi = vm is the direction vector from the main anchor to the point,
given by1:

vm = m(ψj , θj) =

cosψj cos θj
sinψj cos θj

sin θj

 . (3.32)

The reader should notice that vm is the same director vector m(.) for IDP in
eq. (3.25) and fig. 3.2. When Ci 6= Cm, vi = ṽi is the vector proportional to −−→tipj ,
given by [Zhao 2011, Zhao 2015]:

ṽi , sinωj
−−→tipj

= sin(ωj + ϕ)‖−−→tmta‖vm − sinωj
−−→tmti

(3.33)

where ϕ is the angle between −−→tmta and vm, and can be computed as2

ϕ = atan2
(
‖vm × −−→tmta‖,vm · −−→tmta

)
(3.34)

The image projection zi =
[
ui vi

]>
of a point pj to a camera Ci can then be

computed as uivi
1

 ∝ KR(qi)>vi (3.35)

with K being the camera calibration matrix, and R(q) being the rotation matrix
representation of the quaternion q. A 2D representation of the variables that define
this observation function can be seen in fig. 3.4.

3.3.2.3 Initialization From Measurements

Given a feature lj first observed from a camera at Cm, its azimuth and elevation
angles in PAP are computed as:

ψj = atan2 (ŷm, x̂m)

θj = atan2
(
ẑm,

√
(x̂m)2 + (ŷm)2

) (3.36)

1Here we use the Front- Left-Up (FLU) frame convention [Solà 2007, Section 1.2.1], for the XYZ
axes, instead of Right-Down-Forward (RDF) convention of the original PAP papers.

2In the original PAP papers this angle was computed using arccos, we opt for a more stable
version using atan2
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Figure 3.4: Variables involved in the observation function in PAP (again, the relations are
drawn in 2D, from a top view). The white triangle represents the field of view of a camera
other than the main and associated cameras. The vector vm, the vector ṽi and the angle ϕ
are respectively computed using eqs. (3.32) to (3.34). The vector ṽa can be also computed
from eq. (3.33) when i = a.

where v̂m is the vector computed by back-projecting the image measurement zm =[
um vm

]>
taken from Cm:

v̂m =

x̂mŷm
ẑm

 = R(qm)K−1

umvm
1

 . (3.37)

If the feature is re-observed from a camera at Ca, then the parallax angle ωj
can be initialized as

ωj = atan2 (‖v̂m × v̂a‖, v̂m · v̂a) (3.38)

where v̂a is the vector computed by back-projecting the new measurement za, with
an expression akin to v̂m in eq. (3.37).

3.4 PAP in Incremental Graphical SLAM

As already discussed in chapter 2, the first step to solve graphical SLAM is to
build the graph whose structure will be used to fill efficiently the matrices that are
used in the minimization. Doing it incrementally means that we update the graph
(adding new variables and/or factors) as new measurements are available, to then
find an updated solution using the new graph structure. The updated solution may
be computed every time the graph changes, or after the graph has accumulated
enough changes.

Normally data acquisition from robot sensors is performed in a rate that is
faster than the robot dynamics. Updating the graph at sensor rate would create
many redundant variables, e.g.: several poses variables representing robot poses too
close to each other. The increased number of variables would reduce the system
performance without further benefit for the trajectory estimation. Besides that, for
visual SLAM, graph updates as such would result in landmark variables connected
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to many projection factors that can not provide new information about the land-
mark parameters because the poses variables they are connected to are not distant
enough from each other to provide a good baseline to observe the landmark.

To avoid these problems we made some assumptions. We assume that there
exists:

• A lower-level odometry system that is able to provide short term measurement
of the robot movement without accumulating too much drift;

• A lower-level visual tracking system to detect and track landmarks in the
image; and

• A criteria that decides when to add a new pose to the graph, according to
some heuristics. For visual SLAM, the usual heuristics are:

– Minimum number of common features between the current image and
the image taken from the pose that was last added to the graph;

– Maximal linear and angular distance between the current pose estimated
by the lower-level odometry and the pose that was last added to the
graph;

– Both previous heuristics.

When there is a decision to add a new pose to the graph, the current estimation
of the lower-level odometry system (mean and covariance) is used as the odometry
measurement that is then encoded in a odometry factor. Also, measurements to
landmarks in the image taken from this pose may be encoded in projection factors.
This process is described in section 3.4.3 further below.

3.4.1 Projection Factors for PAP

When using PAP in a graphical SLAM, the observation function shown in eq. (3.35)
may involve values from up to four different variables (main anchor, associated
anchor, camera pose, and landmark). Due to different ways to compute the vector
vi in eq. (3.31), we have three types of projection factors for PAP landmarks. They
are shown in fig. 3.5.

The ordinary factor is shown in fig. 3.5(c). In these cases the camera to where
we wish to project the point is not an anchor camera, and thus it uses eq. (3.33)
to compute vi (which is in fact ṽi), and it depends on both landmark, anchors and
the camera to where the landmark is being projected.

The other two factors are special cases when the measurements are taken from
one of the anchor frames: the factor shown in fig. 3.5(a) is called main factor
and uses the equation eq. (3.32) to compute vi (which in this case is vm). The
projection function depends only on the landmark parameters ψ and θ, and on the
orientation stored on xm, thus we have a factor with only two connections. The
factor shown on fig. 3.5(b) is the special case of equation eq. (3.33) when i = a, and
it is called associated factor, thus it depends on the main and associated anchor
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Figure 3.5: Three possible projection factors for a PAP feature. (a) main factor; (b)
associated factor; and (c) ordinary factor. The subscripts for the camera variables represents
the anchors: m for the main anchor frame, a for the associated anchor frame, and o for all
the other cameras from where the landmark was observed.
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Figure 3.6: Formulation of the SLAM problem using projection factors. Vari-
able nodes are shown in large circles and factor nodes as small solid circles
(V ={x0, x1, x2, l1}, F ={p, u1, u2, z0, z1, z2}). The factors represent a prior information
p about the origin, odometry measurements u, and landmark measurements z. (a) Typi-
cal factor graph of the monocular SLAM when landmarks are parametrized as Euclidean
coordinates. Note that every factor z here are of the same type, connecting only to the
landmark and the camera pose from which the measurement was taken. (b) Factor graph
when using the specific PAP factors. The color code is the same as in the former figures: the
measurements from the main and associated anchors are respectively in green and yellow.
Here the landmark l1 is anchored in the camera frames represented by x0 and x1.

values, resulting in three connections. Note that for each fully initialized landmark
there is always one main and one associated factor, all other factors for the same
landmark being of the ordinary type.

Figure 3.6 shows examples of monocular SLAM factor graphs using the afore-
mentioned PAP factors (fig. 3.6b), together with the graph with Euclidean projec-
tion factors (fig. 3.6a) for comparison. The main structural difference between them
is the increased number of edges due to the use of projection factors that connect
to more than one camera frame in the PAP factor graph.

3.4.2 Incremental Anchor Selection

PAP was originally conceived to be used in Bundle Adjustment. In this context,
initial estimates of the camera frames are computed from two-view geometry tech-
niques, like the eight point algorithm. The parallax angle is then computed using
these initial camera frame estimates for each pair of measurements to a landmark,
and the camera frames that provides the best parallax angle, i.e. maximum par-
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allax found, or a parallax angle larger than a threshold, are selected as landmark
anchors. This threshold is used to stop the anchor search when the parallax is good
enough, avoiding unnecessary computation. The anchors are then kept fixed during
the optimization phase.

Indeed, for PAP to perform well it is important to choose anchors that provide
a good observability of the landmark depth, that is encoded in the parallax angle
and the anchors. In an incremental SLAM solution, it is not possible to know in
advance which camera frames will be the best anchors for a landmark: it is necessary
to allow the anchors to be actively selected when new observations are made. This
is done in two steps: first the landmark should be anchored, and then possibly be
re-anchored if better anchor frames are found.

3.4.2.1 Anchoring

To anchor a landmark it is necessary to decide which frames are adequate anchors.
Observing fig. 3.4 we can see that the anchors should not define a vector −−→tmta that is
collinear with vector vm. Such configuration produces an angle ϕ and potentially an
initial parallax angle ωj that, when combined, make ṽi → 0 due to the coefficients
sin(ωj + ϕ) and sinωj in eq. (3.33), that we repeat here for convenience:

ṽi = sin(ωj + ϕ)‖−−→tmta‖vm − sinωj
−−→tmti

As a consequence of ṽi → 0, eq. (3.35) becomes ill-posed, and the associated and
ordinary factors of this landmark can not compute the expected image measurement
properly.

Figure 3.7(a)-(b) shows the cases to avoid when anchoring a landmark. This
problem is more likely to happen when the camera is moving along its focal axis
and observing a landmark situated on the focal point. Note that cases when the
point is very far away (zero or near zero initial parallax) but the anchors are not
collinear should not cause problems in PAP, as shown in fig. 3.7(d).

3.4.2.2 Re-anchoring

To re-anchor a landmark, a re-anchoring test is performed after the optimization
step, whenever an anchored landmark is observed from a new camera frame and
the current parallax is below a threshold. Equation (3.38) is used to compute the
parallax angle as if the new frame was one of its anchors. This angle is computed
twice: one time considering the main-new frame pair as anchors; and another time
for the associated-new frame pair. In both cases the current frame estimates and
the respective measurements from these frames to the landmark are used.

If any of the pairs provides a better parallax, the frames that compose this pair
are selected as the new anchors. Then, we have two cases to deal with:

• If main-new is a better pair of anchors, we need to change the current associ-
ated anchor. For this, the current associated factor is replaced by a ordinary
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Figure 3.7: Particular geometrical configurations of landmark anchors and the angles ϕ and
ωj (again presented in 2D, compare with fig. 3.4): (a) The associated anchor is between
the main anchor and point; (b) The main anchor is between the associated anchor and the
point; (c) The point is in the middle of anchors; (d) The point is at infinity and the anchors
are not aligned. Configurations (a) and (b) should be avoided because they produce a vector
ṽi = 0 in eq. (3.33) that cannot be properly projected by eq. (3.35). (c) will hardly occur
in practice because the re-anchoring process stops once the anchors provide good parallax
angle for the landmark, not to mention that visual features can hardly be matched in such
conditions. (d) shows that PAP can handle very far away points (theoretically at infinity)
as long as the anchors are not aligned with the point.

factor that has the new frame as the associated anchor, and the factor with
the new measurement is replaced by an associated factor. Also, all other or-
dinary factors need to be adapted to link to the new associated anchor, and
the landmark’s ω has to be updated to reflect this new anchor as well. The
main factor is the only that remains unchanged;

• If associated-new is a better pair of anchors, both current anchors should
change. The current main factor is replaced by a ordinary factor, and the
current associated factor is replaced by a main factor. The factor with the
new measurement is replaced by an associated factor, and all other ordinary
factors are adapted to link to the new anchors. The landmark variable has to
be fully updated as well: ψ and θ should reflect the orientation from the new
main anchor, and ω should be set according to the new anchor pair.

In the case none of the tested pairs provide a better parallax, the new landmark
measurement is kept as an ordinary projection factor. This re-anchoring procedure
is shown in fig. 3.8. Note that replacing some projection factors by other types
implies the use of different functions to compute the error between the expected
and acquired measurements.

3.4.3 Incremental PAP Algorithm

The algorithm for incremental SLAM with PAP is described in algorithm 1. The
initialization step goes from lines 1 to 5. Here the origin and the prior factor
are normally set to the identity frame (line 1). The prior covariance is set to
be very small, but not zero (line 2). Setting it to zero would introduce a hard
constraint to the system that can cause problems during optimization. Then we
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Figure 3.8: Landmark re-anchoring after addition of a factor zn. All affected factors and
variables are highlighted in red. (a) New measurement does not provide better parallax
or current landmark’s parallax angle ω is above a threshold, so the measurement is kept
as an ordinary factor; (b) A new measurement provides better parallax with respect to
the main anchor: xn becomes the associated anchor, all projection factors but the main
one are updated, and landmark’s ω is updated using eq. (3.38); (c) A new measurement
provides better parallax with respect to the associated anchor: the current associated anchor
x1 becomes the new main anchor, xn becomes the new associated anchor, all projection
factors are updated, and landmark’s ψ, θ and ω are updated using eq. (3.36) and eq. (3.38)
according to the new anchors.

store a frame-measurement pair for each landmark observed from the origin as
the main anchor information for that landmark (line 4), and compute its direction
angles (line 5). The stored anchor information is used later to initialize the landmark
variable and to create the projection factors to the anchors.

The main loop of the algorithm starts at line 6 and goes until line 29. For
each new camera frame and new odometry measurement we initialize a new frame
variable by composing the previous frame with the odometry measurement (lines 7
and 8), and we add a odometry factor between subsequent camera frames to the
graph (line 9).

Then, from lines 10 to 22 we handle the landmark measurements from this new
frame. For new landmarks we store their main anchor information (line 12) and
compute their azimuth and elevation angles (line 13). Observed landmarks that had
been previously seen but are not yet anchored are tested to avoid the collinearity
problem (line 15). If the test succeeds they have their associated anchor information
stored (line 16), their parallax angle computed (line 17), their anchor factors created
and added to the graph (line 18), their variable node initialized (line 19), and finally
they are set as anchored (line 20). Observed landmarks that were already anchored
receive a new ordinary projection factor (line 22).

Next, the current factor graph is solved (line 23) and all variables are updated
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with the optimization solution (line 24).
Finally we deal with re-anchoring in lines 25 to 29, the final part of the main

loop. The re-anchoring test is performed for every landmark observed from the
new frame to which the measurement was added as an ordinary factor (lines 26
and 27), and updates in the factor graph and the landmark variables are performed
if needed, as described in section 3.4.2.

Note that the re-anchoring step is performed only after the optimization step.
This is needed to guarantee that the tested parallax angles use frame values com-
patible with the anchor frame values, i.e. that all frame values used in the test
come from the solution of the optimization.

Algorithm 1 Incremental PAP SLAM.
Camera frames xi and landmark variables li are stored in the variable set V. Odom-
etry measurements ui and landmark measurements zij are stored as factors in the
factor graph F . Anchor information for a landmark j is stored as a pair (Ci, zij)
1: Add camera frame C0 as origin x0 to V
2: Add prior about the origin as a factor p to F
3: for each measurement z0j of a landmark j visible from C0 do
4: Store (C0, z0j) as main anchor of landmark j
5: Compute ψj and θj of lj . eq. (3.36)

6: for each new odometry measurement ui from Ci−1 to Ci do
7: Compose xi−1 in V with ui to initialize variable xi

8: Add variable xi to V
9: Add ui as odometry factor between xi and xi−1 to F

10: for each measurement zij of a landmark j visible from Ci do
11: if zij is first measurement of landmark j then
12: Store (Ci, zij) as main anchor of landmark j
13: Compute ψj and θj of lj . eq. (3.36)
14: else if landmark j is not anchored then
15: if −−−−→tmjtaj is not collinear with vmj then . section 3.4.2.1
16: Store (Ci, zij) as associated anchor of landmark j
17: Compute ωj of lj . eq. (3.38)
18: Add both anchor factors of lj to F . figs. 3.5 and 3.6b
19: Add variable lj to V
20: Set landmark j as anchored
21: else if landmark j is anchored then
22: Add it as an ordinary factor of lj to F . figs. 3.5 and 3.6b

23: Solve optimization problem using F and V . chapter 2
24: Update V with current solution

25: for each measurement zij of a landmark j visible from Ci do
26: if measurement zij is encoded as a ordinary factor then
27: Perform re-anchoring test for landmark j . section 3.4.2.2
28: if landmark j should be re-anchored then
29: Update F and V to match new anchors . fig. 3.8
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3.5 Analysis

The experiments were realized in a simulated environment using SLAMTB3, a
SLAM Toolbox for Matlab. They consisted in a robot represented as a 3D pose
moving in a plane, in an environment filled with 3D landmarks. The robot has an
odometry sensor and one camera, which is positioned with the focal axis looking for-
ward. Key-frames were selected after a certain number of odometry measurements.
These measurements were integrated and the result is used as odometry measure-
ments in algorithm 1, together with image measurements of landmarks visible from
the key-frame.

The front-end used is similar to the one used in RT-SLAM [Roussillon 2011]: we
limit the number of measurements in each key-frame to the first Nup measurements
to landmarks whose projections provide the best innovations. We always try to
initialize Ninit new landmarks every key-frame to deal with possible landmarks
going out of the field-of-view.

The optimization back-end used ISAM2 [Kaess 2012] as it is implemented on
GTSAM 3.1.0. The PAP variables with initialization methods and the different
projection factors described in this work are implemented in GTSAM and are avail-
able at github.com/Ellon/gtsam. As a wrapper is used to access GTSAM libraries
from Matlab, it is impossible to have a computational analysis of time performance
of the algorithm, although some theoretical analysis are discussed below.

The proposed algorithm is placed in-between the SLAMTB front-end and the
ISAM2 back-end. It decides which landmarks can be anchored and initialized, and
when to do so, dealing also with projection factor creation and possible removals,
modifications and re-insertions of these factors in the factor graph inside ISAM2 due
to incremental re-anchoring. Contrary to the original PAP papers, here we estimate
the robot frames instead of camera frames. While this increases the non-linearity
of the system, it is the easiest way to fuse data from multiple sensors (odometry
and camera in our case). The landmark anchors are taken from the composition
of estimated robot frames with the camera frame with respect to the body frame,
which is considered known and constant.

The trajectory estimated for a long run along a squared path can be seen in
fig. 3.9.

3.5.1 Performance on ISAM2

The decision to use ISAM2 as the incremental optimization back-end was motivated
by its popularity and reported performance when used in SLAM solutions. Here
we present the results of using PAP with ISAM2.

The main features of ISAM2 are:

1. restructure the factor graph in a tree of cluster-nodes called Bayes
Tree [Kaess 2011] in a way incremental updates tends to modify only a small
part of the tree;

3github.com/joansola/slamtb

github.com/Ellon/gtsam
github.com/joansola/slamtb
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Figure 3.9: Robot trajectory for a long run: estimated in red, and simulated in blue

Table 3.1: Average size of frontal variables and separators of Bayes trees

Front Variables Separator set
Euclidean 1.33 9.19
PAP 2.09 11.31

2. the ability to perform partial updates of the variables to reduce the compu-
tational cost while recovering a nearly exact solution; and

3. track the validity of the linearization point for each variable and only re-
linearize when needed.

3.5.1.1 Incremental Updates

We investigated the impact of the extra edges needed by the associated and ordinary
projection factors presented in section 3.4 on the incremental update. We compared
the Bayes trees built for the monocular SLAM using Euclidean XYZ and using
PAP, run over the scenario shown in fig. 3.10. The differences between the average
number of frontal variables and the sizes of the separator is shown in table 3.1.
They suggest a denser fill-in of the system matrices when using PAP, which yields
slower incremental updates. The Hessian matrices in fig. 3.11 confirm the increase
of the fill-in caused by the additional edges needed to implement PAP with factor
graphs.

3.5.1.2 Sensibility to ISAM2 parameters

The ISAM2 features mentioned in items 2 and 3 are controlled respectively by two
parameters α and β. They were found to have great impact on the results, espe-
cially β. Setting β to a large number trigger re-linearizations less often, providing
faster updates. We suppose that by estimating the landmarks values in the system
we increase the non-linearity of the system, being necessary to keep the system
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Figure 3.10: Scenario used for testing of incremental updates. The polygons are the sim-
ulated robot: simulated in blue, and estimated (little below the simulated) in green. The
crosses are the simulated landmarks. Red marks are estimated landmarks and the blue
circles and line are the key-frames and trajectory.

Jacobians up to date to achieve a good solution. In the experiments we normally
set this parameter to a very low value.

3.5.2 Projection Factors and Cheirality

The measurements associated to a projection factor are the image coordinates of the
landmark (i.e. their projection on the camera). To evaluate the error contribution
of a projection factor (and to derive the Jacobians of the observation function)
we use the equations from section 3.3.2.2. For a projection to be valid, the vector
R(qi)>vi in eq. (3.35) needs to be in the front side of the image plane of the camera
at Ci, also named cheirality [Hartley 1993]. If the cheirality is negative, the point
lays behind the camera, and then the projection factor should not be considered
(the Jacobians are set to zero). This can be dangerous for monocular vision systems
because it may reduce the rank of the matrix used in the optimization step that
is built from the factor graph, possibly leading to ill-conditioned local systems that
cannot be solved.

When using PAP points, we noticed that sometimes the estimated points are
indeed behind the camera. This mostly occurs with points lying on the ground and
during the few first observations. Since the robot is always moving forward in our
test case, a landmark estimated by a PAP that is close to the robot and with a
reduced observability (for example, with only measurements from its anchors) may
have big changes on its depth with respect to the main anchor on each iteration of
the algorithm, and possibly move behind another camera that has a measurement to
it. We noticed that the point became stable as more measurements are incorporated
and the re-anchoring is applied.
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Figure 3.11: Hessian matrices for the SLAM problem using Euclidean and PAP. The PAP
Hessian has a higher number of non-zeros (41649) with respect to the Euclidean solution
Hessian (26733).

3.6 Conclusions

This chapter presented how to use Parallax Angle Parametrization (PAP) for 3D
points in an incremental graphical SLAM setting. The main difference from the
original PAP approach is the incremental selection of anchors, and the estimation
of robot frames instead of camera frames. We presented the factors needed to
project a PAP points into the cameras, and how to re-anchor then when needed
to obtain an observation of the landmark parallax angle. Some analysis of the
performance in the incremental estimation were presented, based on simulations.
We used ISAM2 as the incremental optimization back-end and the projection factors
for PAP implemented on GTSAM framework were made publicly available.

In the original PAP for BA, the search for the best anchors is done only once at
the beginning. The camera poses are initialized by composing the transformations
between subsequent keyframes. These transformation are obtained with the 8-point
geometry technique with fixed scale, using the common set of measurements in
the images taken from the keyframes. The search stops once there is a pair of
keyframes that provide a minimal initial parallax for the landmark, or after testing
all keyframes, in which case the best pair is selected as anchors.

For the incremental version proposed here, the decision to re-anchor a land-
mark is done by comparing the current estimated landmark’s parallax with
those computed from the new anchor candidates, and we emphasized that this
comparison is done after the optimization. The reason behind this is that since the
new frames are initialized by composing the current odometry estimate with the
estimated pose of the last keyframe, by performing the test after the optimization
we avoid using a noisy value for the new frame to compute the parallaxes that
is compared in the test, giving a chance for the new frame to be optimized at
least once. Regarding the values being compared, an alternative would be to
recompute the parallax using the current estimate of the current anchors, instead of
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using the current landmark’s parallax estimate, and compare it with the one com-
puted from both candidate pairs. The interest of this alternative has to be assessed.

The proposed system was only tested using simulated data, and experiments
on real datasets were tried, but not concluded. Running the approach with real
datasets requires the presence of a front-end to detect and keep track of landmarks
between the keyframes. The front-end used to process the images in our trials with
real datasets was based on a naive feature-based matching on subsequent images,
and turned out to be not able to keep track of features over long sequence of images.

Also, neither the algorithm 1 nor the used optimization back-end is able to han-
dle outliers in the data association. Thus the front-end should be able to perform
data-association with few outliers, otherwise errors from bad matches would be
propagated in the system. The use of robust error functions for the image measure-
ments can reduce the effect of such outliers, but may also disturb the convergence,
and increase risk of being trapped in a local minimum.

A complete visual odometry system would be the most appropriated choice for
a front-end. As showed by [Strasdat 2010, Strasdat 2012], increasing the number of
observations in visual SLAM increases the accuracy of the system, while increasing
the number of intermediate keyframes has only minor effect. In this sense, an
active-search filter front-end is not the best choice, since it would only detect a few
landmarks (the ones that provide the best innovation) on each image. The needed
front-end must be able to track a high number of landmarks to provide enough
observations to the back-end to be accurate on its estimation. Loop closings in
the system are simply the re-observation of the landmarks when revisiting a known
place: this ability could be provided by a place-recognition system, that would
provide matches between the landmarks.

Possible future extensions to this work could be to find a better elimination
order that increases the sparsity when using PAP, and performing the re-anchoring
inside ISAM2 by only reconnecting edges, without the need to explicitly remove
and reinsert the modified factors in the factor graph.

This chapter presented the first adaptation of PAP to incremental SLAM setting,
presenting the mechanics that should be used in such adaptation. The main caveat
of the proposed method is the need to perform re-linearization more often than it
would be necessary in a pose-graph SLAM, which goes against one of the main ideas
of ISAM2, and surely hinders its performance. We believe this happens because the
landmarks are also estimated as part of the state, resulting in a system with more
sources of non-linearity than it would be if the only non-linear factor would be the
orientation of robot poses. The same mechanisms presented here can be applied to
build and adapt a graph of the SLAM problem incrementally, and whose solution
would be found by classical non-linear optimization techniques, other than ISAM2.

If only the trajectory of the robot is of interest, one possible alternative would
be to use structureless landmarks, as described in [Forster 2015], that uses smart
projection factors [Carlone 2014] to avoid estimating landmark parameters directly
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while still using landmark measurements to constrain the robot trajectory.
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As we have seen in the previous chapter, maintaining a landmark map is a bur-
den for the estimation process, due to the increased size of the state to be estimated
and the non-linear relations between the parameters composing the map and the
poses composing the robot trajectory. One way to avoid this is to use the external
observations to derive constraints directly on the poses, and not explicitly repre-
sent the map in the system state being estimated. This is more complicated for
image measurements due to the lack of depth information in the landmark obser-
vations, but may be not the case when using different sensors. For instance, point
clouds provide data that is rich in depth information, and such constraints can be
computed by means of registration algorithms. This is the idea that motivates the
contribution presented in this chapter: it describes a way to exploit scan registra-
tion algorithms and graphical model optimization to build a localization system for



54 Chapter 4. ICP-Based Pose-Graph SLAM

autonomous mobile ground robots equipped with LIDAR sensors, for missions in
semi-structured environments. Besides the integration of these two techniques, the
configuration of the registration algorithm to work with point clouds acquired from
the Velodyne HDL LIDAR is precisely described.

4.1 LIDARs and robot localization

LIDAR sensors, like the Velodyne HDL sensors, have primarily been used for obsta-
cle detection, but they have also rapidly been exploited for localization using scan
registration algorithms. These algorithms find the transformation that best aligns
the points of one point cloud with respect to a reference point cloud. They have
been used for several LIDAR odometry solutions, that compute the overall robot
position by integrating elementary displacement estimates. Some solutions perform
registration on the basis of matches established between features extracted from
the scans [Zhang 2014], others directly exploit the scan points [Pomerleau 2011].

The main scan registration technique is the Iterative Closest Points (ICP) algo-
rithm, originally introduced in [Besl 1992]. ICP is a rather simple algorithm with a
clear sequence of steps, but numerous variants have been developed along the years,
so that selecting the proper configuration and its parameters requires empirical tests
and experience. The designer needs to consider the environment in which the robot
evolves, and especially the sensor being used, the amount of data to process, how
the data is organized, the measurement errors in the data, and so on.

When properly configured, the scan registration is precise. But as it is inherent
to any dead-reckoning system, the accumulation of errors made at every registration
leads to a drift of the overall position estimate. In the absence of any prior map
of the environment, resorting to a Simultaneous Localization and Mapping (SLAM)
approach is the only way to reduce this drift.

4.2 System Overview

This section provides an overview of the system, and the outline for the remainder
of the chapter. The diagram shown in fig. 4.1 describes an hypothetical state of the
overall system after processing some scans. It exhibits the two main layers of the
proposed system, plus the scan stream, that is simply the history of acquired scans.
The ICP layer is composed by keyframes Ki, and their associated scans (gray cloud
shapes in fig. 4.1), also called keyframe scans. Each keyframe Ki is associated to a
node xi in the graph layer. Some of these keyframe scans are selected to compose
local maps (blue clouds, local map of size 3), that are used as reference input for
the ICP process. The keyframe scans not used as local map are stored, and may be
later used to compose a local map if the robot revisits this part of the environment.
The robot frame R is always expressed with respect to the local map frame L, which
is coincident with closest keyframe (K18 in fig. 4.1). The system does not require
a complete map of the environment, yet such a map can be computed on demand:
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Figure 4.1: Overview of the system, composed by the ICP layer and the graph layer. The
scan stream is also shown to explicit the acquisition of data with the elements of each layer.
Red vertical lines exhibit correspondences in-between these elements, and between elements
and the scans being acquired.

it consists of the concatenation of all keyframe scans positioned according to the
respective keyframe values.

As the robot starts, a first keyframe K0 is associated to the first acquired scan.
The associated node x0 is also created in the graph, and a factor representing the
initial robot position with respect to the world origin is added to the graph (black
square).

Every time a new scan (green cloud) is available at the current robot position
R, the ICP finds the transformation (green arrow) that aligns it with the current
local map, correcting the robot position locally. If the overlap between the current
scan (still the green cloud) and the current local map is lower than a threshold, a
new keyframe is created – otherwise the scan is just discarded (crossed circles in the
scan stream level). Section 4.3 depicts the ICP algorithm used to align the scans
and how it is configured for the Velodyne HDL data.

Newly created keyframes are initialized to be coincident with the robot frame
after the local correction from ICP. A new frame variable that is associated to
the new keyframe is added as a node to the graph (named white circles on top
of fig. 4.1), as well as a factor containing the transformation between the new and
former keyframes (blue squares for factors, blue arrows for transformations). Finally
the local map is rebuilt by incorporating the newest keyframe scan and removing
the furthest keyframe scan (i.e. in fig. 4.1, K0 was removed from the local map
upon creation of K18 and its addition to the local map). Section 4.4 depicts the
selection of keyframes and management of the local maps. The graph layer and
details of the factors being used are presented in section 4.6.

When the system detects a potential loop closing between two keyframes (not
shown in fig. 4.1 for simplicity), a local map is built around the oldest between these
loop closing keyframes, and an ICP call tries to align the scan of the newest loop
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closing keyframes with this local map. If the ICP is successful, a new factor is added
to the graph between the variables associated with these loop closing keyframes,
creating a loop in the graph level. An optimization using the graph data is then
triggered. The loop closing process ends with the repositioning of keyframes using
the optimization result, and local maps are reconstructed according to these new
keyframe values. Since the robot frame R is always expressed with respect to the
closest keyframe, its global pose is implicitly updated by the loop closing process.
Section 4.5 presents the details of this loop closing procedure.

4.3 Point Cloud Registration

The first building block of the system is the well known Iterative Closest Points
(ICP) registration algorithm. This section presents an overview of the ICP algo-
rithm, followed by the details of the ICP solution designed for this work.

4.3.1 Overview of ICP

We present the ICP algorithm according to the in-depth review in
[Pomerleau 2013b]. The ICP is responsible to find the transformation that best
aligns a geometric shape called reading, to another shape called reference. This
operation is known as registration. In our case, a shape S is a set of 3D points
extracted from a LIDAR scan. As it is usual for ICP implementations, scans are
preprocessed by filters before running the optimization that finds the best align-
ment. They may, for example, add more information to the scan (e.g. add normal
vectors to points based on the point neighborhood), or to remove points that do
not bring valuable information for the registration.

Let PA the reading set in a coordinate frame A, QB the reference set in a coor-
dinate frame B, and PA,QB the filtered version of the respective sets (the need to
apply filters on the input sets is discussed in section 4.3.2). The registration algo-
rithm estimates the transformation T̂ BA that minimizes an error function e(P,Q):

T̂ BA = arg min
T

(e(T (PA),QB)) (4.1)

where T (S) is the transformation applied to a set S.
Note that the error function in eq. (4.1) has the filtered sets as inputs. In fact,

the error function is computed on pairs of points that have been associated between
the filtered input sets. The association is produced by a matching function, and
is usually solved by associating to each point of the reading the closest point in
the reference. For the sake of robustness, weights can be provided by an outlier
rejection function to change the influence of the matches in the error function.
Thus, if M = match(P,Q) = {(p, q) : p ∈ P, q ∈ Q} and W = outlier(M) =



4.3. Point Cloud Registration 57

{w(p, q) : ∀(p, q) ∈ M}, the error function is given by:

e(P,Q) =
∑

(p,q)∈M
w(p, q)d(p, q) (4.2)

where d(p, q) is a distance function between two points.
In practice the associations from the matching function are not perfect, and the

best estimate for T BA cannot be found perfectly by eq. (4.1). Nevertheless, the idea
behind ICP is that even with imperfect matches, minimizing the error can provide
an estimation that, in turn, provides better matches, and so on. This leads to an
iterative algorithm where each iteration provides an intermediary transformation
T i+1,i from:

T i+1,i = arg min
T

(e(T (P i),QB)) (4.3)

where P i is the filtered cloud that is iteratively transformed by the intermediary
transformations. The final transformation estimate is given by:

T̂ BA =
(

©
i

T i+1,i
)

◦ Tinit (4.4)

with ©
i

T i+1,i being the iterative composition of all intermediary transformations
and Tinit being the initial transformation between the shapes that is supplied to ICP
at the beginning of this iterative process. Note that the initial transformation is
important, since initial transformations that do not provide enough good matches
may cause the ICP minimization procedure to be trapped in a local minimum.

4.3.2 Configuration of ICP

There is a wide spectrum of ICP solutions that can be implemented by different
combinations the ICP elements, namely the filters, the match, the outlier detection,
and the distance functions. The good choices for an ICP solution are strongly de-
pendent on the environment, the computing resources, and the sensing capabilities
of the robot: assessing them requires a significant amount of expertise. This section
presents the details of the ICP solution used in this work for mobile robots with the
Velodyne HDL 64 sensor in mostly urban areas, along with the rationale behind
them. The presentation of the solution is divided into the main elements already
discussed in section 4.3.1. Figure 4.2 show examples of intermediary products of
the ICP pipeline.

4.3.2.1 Filters

The filters handle the transformation of input scans S into filtered scans S ′. The
scans acquired from the Velodyne sensor contain a very large number of points, of
which a large part is redundant data. To reduce the computational time of ICP, a
first filter is applied to sub-sample the point cloud by keeping one of every N points
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(a) (b)

(c) (d)

Figure 4.2: Typical scan acquired by a LIDAR and scans produced by the ICP pipeline.
(a) Scan from a Velodyne HDL-64 sensor, from the KITTI dataset. Note how the scan lines
gets more sparse with the distance from the sensor. (b) The same scan sub-sampled by the
ICP filters (section 4.3.2.1). (c) Computed normals for the same scan (also section 4.3.2.1).
(d) Good matches (blue) and rejected matches (red) between the same scan and a later
one, after alignment. Good matches are given weight one and rejected matches are given
weight zero, as explained in section 4.3.2.3.

in the scan. This systematic sub-sampling can be used because the scan data is
somehow organized (points are stored in rows – if not, some randomness can be
used to sub-sample the points). With Velodyne HDL 64 data, up to 80% to 90% of
points can be removed without loosing the environment structure.

A second filter computes the normals for each point using Principal Component
Analysis (PCA) with the K nearest-neighbors of each point. The good number of
nearest neighbors depends on the resultant structure of the cloud after applying
the first filter. Normals are important scan features for our ICP solution: they are
used in the outlier rejection and distance function, as explained in sections 4.3.2.2
and 4.3.2.3.

The use of PCA alone provides only the plane that fits the point and its neigh-
bors, thus there is an ambiguity on the direction of the normal vector that should
be solved. The last two filters adjust the direction of the computed normals: one
computes the observation vectors that points to the sensor origin from each point
in the scan, and the second one orients the normal vector of each point so that the
angle between the observation vector and the normals are minimal. This way all
normals are oriented to the side of the plane that faces the sensor.
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4.3.2.2 Match Function and Distance Function

The matching function M = match(P,Q) pairs each point of the reading shape P
with the 3 nearest neighbor points in the reference cloud Q.

For the distance function d(p, q) it is used the distance from a point p in the
reading cloud to the plane defined by the normal of the matched point q in the
reference cloud. This is known as point-to-plane distance, and is best suited for the
environments that partly exhibit planar structures.

The decision to match the same point with several neighbors should accord
with the distance function being used. We do multiple matching because matches
of the same reading point to reference points that belong to the same plane (and
thus have similar computed normals) still produces an accumulated error that is
minimal. Also, in case outliers does not get eliminated by the outlier rejection
function, we expect that multiple matching still provides matches to points that
belongs to the correct plane, and can contribute to find the best transformation for
the current iteration of the algorithm.

Note that by matching the point with its 3 nearest neighbors, there will be 3
times more matches to compute errors from. The decision to use 3 matches has
shown to be a good compromise between the increased computational cost and
added robustness.

4.3.2.3 Outlier Rejection

The rejection function W = outlier(M) uses a hard outliers rejection, meaning
that the weights w(p, q) for a match are either zero or one. We consider that even
if noisy, the initial transformation is enough to provide several correct matches.
Thus matches whose euclidean distance are greater than a threshold are rejected
(i.e. given zero weight). Matches whose point normals present angles greater than
a threshold are also rejected. This makes ICP to consider only matches between
points that belong to planes oriented in a similar way, and avoid matches made in
cluttered areas (e.g. vegetation), that impede a good convergence of the algorithm.

4.3.2.4 Convergence Tests

As an iterative algorithm, ICP needs some criteria to assess the minimization
convergence. The main convergence test is the differential test, where we consider
the ICP converged if the translational and rotational differences between trans-
formation increments drops below given thresholds. This computed difference is
normally smoothed through a few iterations to avoid oscillations around the cost
function minimum. Also, we consider that the convergence failed if we reach a
maximum number of allowed iterations or if the relative transformation between
the initial and last computed transformation exceeds a maximum rotational and
translational threshold.
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Table 4.1: ICP Configuration for Velodyne HDL-64

ICP elements Details

Filters Keep one point in every 20 points
Compute normals using 10 nearest neighbors
Add observation vector pointing to sensor origin
Orient normals using the observation vectors

Matching Match to 3-nearest neighbors
Rejection Remove pairs if distance is greater than 1 m

Remove pairs if normal angle is greater than 60◦

Distance Use distance from the point to plane
Convergence Success if relative motions goes below 0.01 m and 0.001 rad.

Failure if reaches 80 iterations
Failure if transform goes beyond 0.8 rad and 15 m

A summary of the various parameters and associated threshold values is shown
in table 4.1.

4.4 Keyframes and Local Maps

An issue with Velodyne LIDARs (as with most LIDARs actually) is that the pro-
duced point clouds have a non uniform spatial resolution that reduces drastically
with the distance from the sensor, as can be seen in fig. 4.2a. Thus, the overlap be-
tween different clouds acquired from distant poses may have very different spatial
resolutions. As a result, points that are far from the sensor will have their nor-
mals computed using nearest neighbors that are farther from the considered points,
potentially belonging to another plane, and thus reducing the precision of these
normals. Another undesirable result is that matching may occur between points
that does not correspond to the same scene element, increasing the difficulty to
find a good transformation that aligns the clouds. An example of scan region that
produce low quality normals can be seen in fig. 4.3.

4.4.1 Local maps

An essential prerequisite for the registration is to have enough overlap of the ob-
served environment in both reading and reference scans. Otherwise the matching
process can not produce enough matches with quality (i.e. correct matches, or
matches to points near the correct one), compromising the quality of the resulting
transformation.

In our approach, reference clouds used by ICP are local maps, that are the
concatenation of n selected keyframe scans whose keyframes compose a connected
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Figure 4.3: Example of region distant from the sensor origin where normals cannot be
properly computed, i.e. nearest neighbors does not belong to the same plane.

sub-graph in the graph layer. The points of these scans are expressed in the keyframe
of the local map that is the closest to the reading scan frame. The reading frame is
usually the robot frame, but it can also be another keyframe when attempting to
close a loop. Local maps are buffers ordered by the distance to the robot, in a way
that if we push a keyframe to a full local map, the most distant keyframe will be
removed from it.

The overlap between the new scans and the current local map decreases as
the robot moves towards the borders of the local map. In order to always have
enough overlap, the overlap is estimated after every ICP call, and a new local map
is composed if this estimate drops below a threshold. The overlap estimation used
is simply the ratio between the number of matched points in the filtered reading
scan after outlier rejection and the total number of points in the filtered reading
scan.

4.4.2 Controlling the building of local maps

To control the local map building we use the concept of state: the robot may be
exploring if it is moving towards a unknown part of the environment; or it may
be revisiting if it is moving in a region that was already mapped. The selection
of keyframes used to build the local maps behave differently depending on the
current state. The idea is that when exploring we prioritize the creation of new
keyframes, adding the new keyframes to the system and to the current local map.
When revisiting, we compose the local map starting from the closest keyframe and
expanding with the nearest keyframes while following the graph topology. The use
of states forbids the system to re-enter a mapped region without a loop being closed
in the graph level, as explained in section 4.5.

When the first scan is acquired an initial local map is composed from that scan
only and the system initial state is set to exploring. The system keeps acquiring
scans and re-localizing the robot by means of ICP between the scans and local map,
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until the overlap drops below a threshold.
Then, if exploring, it verifies if the last local map does not provide a better

overlap, meaning that the robot is coming back along the explored trajectory. In
this case the last local map is re-composed and the system is set to revisiting. If
not, a new keyframe is created and a loop closing test is performed using this new
keyframe (more about this on section 4.5). In a successful loop closing, the state
also changes to revisiting. Otherwise the new keyframe is added to the local map
(removing the more distant keyframe from it), meaning that the robot is moving
towards an unknown region. The state is kept as exploring.

If the robot is revisiting, we search for another set of keyframes that compose
a local map with enough overlap to re-localize the robot. This set should contain
the closest keyframe and the ones in the vicinity of the closest, following the graph
topology. If that is the case, the new local map is composed from this set and
the robot keeps revisiting. Otherwise we create a new keyframe and test for loop
closing, and then proceed as explained before according to the loop closing test
result. Figure 4.5 shows examples of local maps of size n = 3 for both system
states.

By following this procedure for creating local maps, we see that at the very
beginning the local map is composed of only one scan, and it is concatenated with
a new scan every time a new keyframe is created. These first runs of ICP with
a reduced local map are critical for the system, since they are performed with
reference clouds that exhibits the spatial resolution problem described before.

Note that no new keyframes will be added when the robot moves in already
mapped regions. This allows the number of keyframes to scale with the size of
the environment being explored, instead of the length of the robot path, as done in
FrameSLAM [Konolige 2008]. Note also that when the robot starts again to explore
the environment from a region it was revisiting, new keyframes being created during
this exploration will gradually replace the keyframes that are more distant to the
robot in the local map of the last revisited region. This is shown in fig. 4.4.

The keyframes are important in the system because it is through them that the
information flows between the ICP localization level and the pose graph level. Every
time a new keyframe is created, a pose variable is added to the pose graph, and the
last transformation from ICP along with the estimation of its covariance is added
as a constraint (factor) in the pose graph. The keyframes are always positioned at
the poses represented by their associated pose variables in the pose graph. Updates
on these variables happens when loop closings are performed, as explained in the
following section.

4.5 Loop Closing

Every time a new keyframe is created the system verifies if a loop can be closed,
i.e. if ICP is able to align the newest keyframe scan to a local map from region
the robot is potentially revisiting. We assume that the robot is a ground vehicle
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(a) (b)

(c) (d)

(e) (f)

Figure 4.4: Example of selected local maps of size 4: (a) Local map after closing the loop;
(b-c) Robot moves while revisiting, changing local maps when the overlap gets low; (d-f)
Robot starts explore environment again, replacing distant keyframes from the the local map
with newly created ones.

and that the environment being explored does not contain tunnels or bridges: if
the robot returns to a previously visited place it should be at the same elevation as
before.

To perform the test, first the system selects a loop closing candidate keyframe.
The candidate is the closest keyframe inside the certain distance. Due to the men-
tioned assumption, the distances are computed only in the 2D xy-plane of the origin
keyframe. Also, we do not consider the m most recent keyframes as possible can-
didates. This favors the creation of longer loops that provides better corrections
of odometry drift. This set of m keyframes is called no-loop window, and is set to
be greater than the local map size. Once a candidate is selected, the loop closing
local map is built around it, using close keyframes and following the graph topology.
This procedure is illustrated in fig. 4.6.

The loop closing ICP is then performed using the candidate local map and the
new keyframe scan. The initial transformation for this ICP is the relative pose
between the candidate frame and new keyframe projected into the 2D xy-plane of
the origin. Due to accumulated errors along the loop, the filters for the loop closing
ICP should be less restrictive than the one used to re-localize the robot during
exploration. If not, there is the risk that there will not be enough matches to allow
the transformation to be found. This is normally done by relaxing (increasing the
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Figure 4.5: Local map building according to state, with respective graphs. The robot
trajectory is represented by the dashed line. Clouds represent keyframe scans. Keyframes
are identified by numbers, and R represents the robot frame. Local maps are composed
of 3 scans, and are expressed in the frames shown in red. Green arrows represents the
transformation from the local map to robot frame. For clarity reading scans are not shown.
Left: Robot explores new part of the environment, using most recent keyframe scans as
local map (5, 6 and 7); Right: local map used when the robot is revisiting a mapped
environment, right after a loop closing (keyframes 2, 8 and 9). Note how the local map
on the right uses the keyframe 2, that is far back on the robot path, but connected in the
graph through the loop closing link.

value of) the parameters of the outlier rejection. The different values used in our
loop closing ICP is shown in table 4.2.

Besides the normal ICP convergence tests described on section 4.3.2.4, the final
value for the error function is also analyzed, and the loop closing is considered
successful if it also lies below a threshold. This is important because sometimes
the initial transform does not provide enough overlap between the scans of the loop
closing ICP, or has a large angular errors. In this situation ICP needs many more
iterations to converge. It may then reach the maximum number of allowed iterations
before converging, or it may be trapped into a local minimum. This additional test
helps to avoid closing the loop with an incorrect transformation.

It should be noted that since this error is the sum of weighted distances of the
matches between the two clouds, it depends on the filtered clouds, the matches,
and the weights computed by the outlier rejection. The system designer should
compute the average error for clouds that are verified to be aligned (probably using
a software to visualize and assess the alignment) to select an appropriate value for
this threshold.
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Figure 4.6: Loop closing candidate selection and candidate local map. The circle shows
the maximum distance from keyframe 9 to allow the loop closing. Keyframes 3 and 8
are not possible candidates because they are inside the no loop window (the keyframes
shown in red). Possible candidates are keyframes 1 and 2, in green. The loop closing
candidate is keyframe 2 since it is the closest between the possible candidates. A local map
is build around it using the current connectivity of the graph layer, selecting the scans from
keyframes 1, 2 and 3.

A successful loop closing ICP then adds a loop closing constraint to the factor
graph between the variables associated to the newest keyframe and the candidate
keyframe. The optimization using the graph data can be performed, which updates
the variables in a way that the overall robot drift along the loop is reduced. The
optimization is reflected back to the ICP level by repositioning the keyframes with
the poses in the associated graph values.

The use of states to build local maps for re-localization also plays a role in
the loop closing process. If the local map could be always built from any set of
keyframes, there could be a situation where the current scan has overlap to both
the current local map and a potential loop closing local map, and the system would
chose to use the second to re-localize the robot into, without creating the loop in

Table 4.2: Modified ICP Configuration for Velodyne HDL-64 used in Loop Closing

Modified ICP elements Details

Rejection Remove pairs if distance is greater than 5 m
Remove pairs if normal angle is greater than 90◦

(Elements not mentioned here are the same of table 4.1)
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(a) (b)

(c)

Figure 4.7: Example of missed loop closing that is avoided by using states. (a) The robot
moves in the environment while accumulating drift in this pose estimation, and its current
scan overlaps a previous visited place; (b) If the system did not prioritize the creation of new
keyframes when exploring, a local map in the revising region could be used to re-localize
the robot, creating a gap in the robot trajectory; (c) The robot continues revising, missing
the loop closing and creating an inconsistent map.

the graph level. This is shown in fig. 4.7. By using states we favor the creation of
new keyframes when exploring, and possibly closing the loop in the graph.

4.6 Pose-Graph Building

The second main feature of the proposed system is the use of a pose graph to re-
duce the accumulated errors from ICP odometry when a loop closing is detected.
A pose graph is a special case of a factor graph when all the variables being esti-
mated are robot poses along the robot trajectory, and the factors are relative pose
measurements between these poses.

The main theory behind the graph based optimization was already explained in
chapter 2. In the proposed approach of this contribution, each variable in the pose
graph represents a 3D pose and is associated with a keyframe of the ICP layer, and
each factor is a constraint between two variables. Each factor encodes the following
error function:

e(xa, xb, zab) = (	zab) ⊕ ((	xa) ⊕ xb) (4.5)

where 	 and ⊕ are respectively the inverse and composition operators, a and b the
indexes of keyframes before and after the movement, and zab is the transformation
obtained from the ICP, when exploring or when closing the loop, between the scan
from keyframe b and the local map expressed in keyframe a. Since the keyframes
are 3D poses, the error is in fact computed in a local tangent space as explained in
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chapter 2.
Each measurement used in a factor should also be associated to a covariance

matrix Σ representing the measurement error. Since the ICP only produces transfor-
mations as outputs, the covariance matrix Σab for zab estimated using the technique
proposed on [Censi 2007].

4.7 Experiments

4.7.1 Setup

The overall flow chart of the implemented system is shown in fig. 4.8. It exploits
libpointmatcher [Pomerleau 2013a] for the scan registration in the ICP layer, and
GTSAM [Dellaert 2012] for the optimizations in the graph layer. Experiments
were performed using a dataset obtained on a parking lot using one of the ground
robot of LAAS, and later with the sequence 2011 10 03 drive 0027 of the KITTI
dataset [Geiger 2013]. The details of each dataset is shown in table 4.3.

Table 4.3: Description of datasets used in this work

Dataset
Details

Datasets
LAAS Parking KITTI

LIDAR sensor Velodyne HDL 64 Velodyne HDL 64
Environment Type Parking Urban area
Trajectory length 306 m 3.72 km

Ground truth from Centimeter-level GPS
(Novatel RTK)

Fusion of LIDAR and
Centimeter-level GPS

(XTS RT 3003)
Average speed 1 m/s 28.46 km/h
No. of scans 306 4541

Noisy odometry measurements were drawn from the ground truth of both
datasets in order to provide a realistic initial transformation to ICP when the robot
explores the environment. A Gaussian noise of N (µ, σ) = N (0, 0.1 m) was set for
each translation component and N (0, 1°) for each orientation component of both
datasets. The scans are converted from the sensor frame to the robot frame after
filtering but before the calls to ICP, in a way that the resulting transformations
represent robot frame displacements, instead of sensor frame displacements.

4.7.2 Parameters

The system thresholds used for each dataset are shown in table 4.4. They required
some tuning, that is discussed below.

The condition to create a new keyframe is to have the overlap between the
current scan going below a threshold. This threshold was set to a relative high
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Figure 4.8: Simplified flow chart for the algorithm proposed in this chapter.
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Table 4.4: Thresholds Used In The System

Threshold Datasets
LAAS Parking KITTI

Create keyframe if overlap below 75 % 75 %
Local map size 3 3
No-loop window size 6 10
Max distance to loop closing candidate 5 m 15 m
Max residual error for loop closing 2000 m 2000 m

value to guarantee that when going below this threshold, the overlap is still high
enough for the resulting transformation to be trusted and used to build the factors
in the graph. The overlap being simply the ratio between the number of matched
points over the number of points in the current cloud, it is highly influenced by
the matcher and outliers rejection in the ICP pipeline, and consequently by the
environment. The overlap computed from scans acquired from near poses may
present small values if most of the points lay near the sensor (i.e. narrow corridor-like
environment) or if the environment has elements without enough structure to allow
normal computation. This second example is shown in fig. 4.9. The increase in
frequency of keyframe creation can be seen also in the plots shown in fig. 4.10.
With the thresholds shown in table 4.4, the final number of created keyframes was
30 for the LAAS dataset, and 443 for the KITTI dataset.

The size for the local map was set to three after visual verification that it was
enough to reduce the non-uniform density problem of the acquired scans, although
in the KITTI dataset, one could benefit of larger local maps in the regions with
vegetation as shown in fig. 4.9. It is also worth mentioning that larger local maps
would increase the computation time of each ICP (larger reference clouds results
into more computation for the matchings) and to re-build the local maps when
needed.

The no-loop window size and the max distance for the loop closing candidate
were set to a higher value for the KITTI dataset because there the Velodyne sensor
is positioned higher with respect to the environment (on top of a car) than for
the LAAS dataset (on top of a small robot, figure 1.1 page 2). The higher sensor
position produces scans that cover larger areas, so we can increase the distance
threshold while increasing also the no-loop window threshold to reduce the creation
of small loops.

It is important to notice that while the no-loop window reduces the creation of
smaller loops, it does not avoid it completely. When tuning the system some small
loops along the robot path were observed in runs with with the KITTI dataset. The
main drawback of closing small loops is triggering an optimization that cost some
extra computational resources and that does not provide significant correction of
the drift error.



70 Chapter 4. ICP-Based Pose-Graph SLAM

Figure 4.9: Region of the KITTI dataset showing the influence of vegetation in the keyframe
creation. Top: path in the dataset where vegetation is present on the right side of the road.
Bottom: frequency of creation of keyframes in the region with vegetation is higher than
other regions (compare with the regions far back in the robot trajectory). This happens
because normals for points laying on vegetation cannot be properly computed, increasing
the rejection of the matches. The increase in match rejection causes a reduction in the
estimated overlap, triggering keyframe creation more often.

Finally, the max residual error for loop closing is set to be a little larger than
the maximal residual from the local ICP. The rationale behind this decision is that
since the loop closing ICP is less restrictive than the local ICP, its residual error is
expected to be larger than the residuals for the local ICP. So we select a threshold
that is larger but not too large to be all permissive. Plots showing the residual error
for the local ICP for both datasets can be seen in fig. 4.11. We remind the reader
that this value is the sum of the error of all the retained matches between the scans
processes by ICP. Its large value is due to the number of points in the filtered scans
(around 6000 point are kept in each scan) and the fact that we match each point
to its 3 nearest neighbors (see table 4.1).

4.7.3 Results

The plots of the final estimated path for the LAAS dataset can be seen in fig. 4.12,
and the plots of each variable in fig. 4.13. The only angle available in this dataset
is the one around the z-axis, thus this is the only ground truth angle shown in
fig. 4.13.

In the plots it can be seen that the path estimated using ICP only presents a
significant translation drift along the z-axis. This drift is accentuated when the
robot moves away from the origin, getting reduced as the robot moves back near
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Figure 4.10: Plots of the number of keyframes per scan indexes. Long flat regions indicate
that the robot was revisiting. The steep slope near the end of KITTI dataset shows the
influence of the vegetation on the frequency at which keyframes are created.

the origin. This shows that it is being probably caused by accumulation of small
errors in the orientation from the ICP. Since both paths estimated with and without
the graph level follows the provided ground truth, as it can be seen from the yaw
plot in fig. 4.13, it is mainly influenced by the errors in the roll and pitch angles,
although the lack of ground truth on this variables make it impossible to confirm
this hypothesis in this dataset. It is noticeable that through the use of the graph
layer this drift is considerably reduced, although it is not completely eliminated.

To better assess the error in the proposed system, an analysis of the translation
and rotation errors for the estimated path were performed. We used the same eval-
uation used in the KITTI Vision Benchmark Suite [Geiger 2012]. It is performed
as follows:

• Search in the ground truth for the pose indexes that define the start and end
points of all possible sub-paths of predefined lengths;

• For each sub-path, compute the last pose with relation to the first pose in
both ground truth and estimated path, called pose deltas;

• For pair of pose deltas, compute the composition of the inverse of the esti-
mated pose delta with the ground truth pose delta. The result is the pose
error, and should be equal to the identity transformation for a perfect match
in the sub-paths;

• For each pose error, compute the translation error as the module of the pose
error, and the rotation error as the rotation angle of the pose error.

• Sum all the translation and rotation errors for the sub-paths with the same
length to get the final error with relation to this specific length.
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Figure 4.11: Plot of residual errors of local ICP for both LAAS and KITTI datasets. From
these plots we can estimate a value for the max residual error allowed for the loop closing
ICP. The saw-like pattern especially noticeable in the LAAS plot is a result of the robot
moving away from the current local map, increasing the error, and then creating a new
keyframe and re-building the local map, that drastically reduces the error.

The code for the evaluation explained above is available in the KITTI odometry
development kit. It was adapted to evaluate the results for a dataset acquired from
a slower robot traversing a shorter path, as it was the case in the LAAS dataset.
The error plots can be seen in fig. 4.14 with relation to sub-path lengths, and in
fig. 4.15 for the robot speed. Note that the curves represent the error relative to the
segment length, i.e. the translation errors are given as percentage of the segment
length, and rotation errors are given as degrees per segment length. This explains
the tendency of the curves to decrease as longer segments are considered.

We can see that in general the errors are smaller after the loop closings, an
exception being the rotational errors for small lengths, which were higher than
before the loop closing. A similar behavior can be seen in the curves for the errors
in relation to the robot speed.

The trajectory and variable plots for the KITTI dataset can be seen in fig. 4.12,
and fig. 4.13. A video showing the system running on the KITTI dataset is available
in http://youtu.be/KYvOqUB_odg.

Note the difference of scale between the plots for the LAAS dataset and the ones
for the KITTI dataset, as the robot traversed a much longer path in the second
case. It can be seen that the curves in these plots show similar features as the ones
for the LAAS dataset, namely that they follow the ground truth curves for the x,
y and yaw angles, and present a drift in z. The longer trajectory in this dataset
causes a noticeable drift in the estimation of x and y for the ICP only case. By
comparing the estimated roll and pitch angles with the ground truth, one can see
that they are estimated with some errors, which is the main source of drift that

http://youtu.be/KYvOqUB_odg
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Figure 4.12: Plot of final trajectories for the LAAS parking dataset. Note the drift in the
z-axis, which is smaller with the combination of ICP and Pose-graph optimization than
when using only ICP.

accumulates along the z-axis.
One can see that this drift is larger when away from the origin, as it was seen in

the results with the LAAS dataset. Nevertheless, the robot was able to close a loop
with the origin near the end of its trajectory (loop closing 5). The visualization of
this loop closing can be seen in fig. 4.18. Again, the overall drift is smaller when
the estimation is performed with the graph layer.

The error plots for the KITTI dataset can be seen in fig. 4.19 and fig. 4.20. Five
loop closings were performed along the robot trajectory. One can see that the error
is reduced, excepted after the forth loop closing. The error as a function of the
robot speed also show that the error was reduced after the loop closings.

4.8 Discussion

This chapter presented a system that uses transformations computed from ICP
to feed a pose graph structure, that in turn is used on loop closings to build an
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Figure 4.13: Plot of estimated pose parameters for the LAAS parking dataset. The ground
truth for roll and pitch angles is not available. Note a GPS acquisition problem from scans
79 to 97, where the value for z-axis is kept fixed at −0.345777.
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Figure 4.14: Plot of relative translational and rotational errors by the path length for the
LAAS dataset. Only the orientation around the z-axis was considered in the rotational
error due to the lack of ground truth for the other two angles. See text for details.
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Figure 4.15: Plot of relative translational and rotational errors by the robot speed for the
LAAS dataset. Only the orientation around z-axis was considered in the rotational error
due to lack of ground truth for the other two angles. See text for details.
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Figure 4.16: Plot of final trajectories for the KITTI dataset. The trajectory traversed by
the robot is considerably longer than the LAAS dataset.The visible deformations when
using ICP only is caused mostly by accumulated angular errors, that makes the estimation
drift along the z-axis. A smaller drift occur when using the ICP together with the pose
graph optimization.

optimization problem that provide updates of keyframes selected along the robot
trajectory. These updates correct the built map of the environment and reduce
the accumulated errors from the ICP odometry. The chapter also detailed the ICP
configuration for Velodyne HDL-64 sensor.

We now discuss various aspects of this work, sketching possible improvements.

4.8.1 Comparison wih the state of the art

The contribution presented here has similarities with the work in [Borrmann 2008]
(a 3D extension of the work presented in [Lu 1997] for the 2D case) that also
uses ICP to localize the robot and achieves a global consistent map on loop clo-
sures using graph based optimization. The main difference between this work
and [Borrmann 2008] is the way the optimization problem is constructed: in
[Borrmann 2008] the optimization finds the robot poses that minimizes the po-
sitional error of points matched between two neighbor scans in the graph, resulting
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Figure 4.17: Plot of estimated pose parameters for the KITTI dataset.
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(a) before (b) after

Figure 4.18: Top-view before and after closing the loop at the origin of the KITTI dataset.
The black line shows the ground truth, and the current local map is shown in gray. Compare
the correction in the keyframe positions, and the local maps used before and after the loop
closure.

in very large linearized system to be solved at every iteration, and requiring a large
amount of time to converge to the solution. In our work the transformations be-
tween keyframes outputed from ICP are used as measurements between keyframes
in the graph, and the covariances are estimated as proposed by [Censi 2007]. This
leads to a system that is faster to solve, and may benefit from the new techniques
based on factor graphs, like ISAM2.

One interesting feature of [Borrmann 2008] is that edges may be added to or re-
moved from the graph in between the optimization iterations, while in this work the
graph is static during optimization. Other differences are: we use an overlap criteria
to create new keyframes, in contrast to a fixed distance criteria; and the restriction
to create new keyframes only when exploring new parts of the environment, that
was not addressed in [Borrmann 2008].

The overlap threshold used to define new keyframes is a critical parameter of
the system. This is due to the way the overlap is estimated and the influence that
the filters have in the estimation: hard rejection based on normal angles helps to
avoid unexpected drifts caused by vegetation, but also makes the overlap estimation
go fast below the threshold. This results in keyframes that are too close each
other, and consequently local maps using these keyframes cover smaller areas of the
environment. A more robust way to compute the overlap between shapes would
benefit the proposed system.

4.8.2 Avoiding ICP local minima

Even if the proposed system improves the estimation of the robot trajectory through
loop closings, it remains prone to the ICP being trapped in a local minimum:
the resulting transformations in such cases are propagated to the graph level and
cause discrepancies in the final map. Local minima may occur when the environ-
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Errors by Length for the KITTI Dataset
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Figure 4.19: Plot of translational and rotational errors by the path length for the KITTI
dataset. See text for details.
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Figure 4.20: Plot of translational and rotational errors by the robot speed for the KITTI
dataset. See text for details.
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ment is mostly symmetric, or if it has repetitive patterns. They can be avoided
with good initial estimations for the registration, for example exploiting IMU-
based initial estimations. IMU data can also be used with pre-integrated IMU
factors [Forster 2015, Lupton 2012] that can be added to the graph as constraints
between keyframe variables instead of ICP-based ones. In this case, more variables
would need to be added per keyframe (namely the robot velocity, and the accelerom-
eter and gyrometer biases) and the graph would not be a pose graph anymore. Still
the ICP transforms could be used to create small loop closings between keyframe
poses along the robot path, helping to constrain these extra variables and allowing
successful optimizations in the graph level. This idea is shown in fig. 4.21.
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Figure 4.21: Example of factor graph that uses the pre-integrated IMU factors [Forster 2015,
Lupton 2012]. Estimated variables are the robot poses xi, robot velocity vi and IMU linear
and angular biases bi. px,v,b represents priors over the initial state variables. Factors fi are
constraints over sequential robot states based on pre-integration of IMU data, and factors
ci models the biases dynamics as random walks (i.e. allow them to change a little over
time, according to some error encoded in the factors). Finally, the factors ui are loop
closing factors between the connected poses. They may be computed from ICP between
overlapping scans along the robot trajectory, and are important to constrain the state
variables composing the loop.

The initial 3D transformation used in the loop closing ICP is computed from
the projections of the candidate and newly created keyframe on the xy-plane of
the origin keyframe, i.e. it is a 3D transformation but confined to this plane. This
transformation must provide enough overlap between both reference and reading
scans passed to the loop closing ICP, as it is always the case with ICP algorithm.
This strategy may fail if the robot accumulates too much angular errors along
the loop, and if this angular error makes the robot position drift on z-axis, like
climbing up a hill or going down a valley. In this case, if the robot approaches a
loop closing point, the projected 2D distance would be larger than it should, and
thus no candidate would be found, or the initial transformation for the loop closing
ICP would not provide enough overlap. In such a case, the system would not be
able to close the loop. This can be avoided with an ICP configuration that provides
low error on pitch and roll angles.

For ICP it is less difficult to correct the translation that aligns the clouds than
the orientation, which is the second main source of local minima. Thus, another
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problem may happen when trying to close the loop is that the initial yaw angle is
far from the one that aligns the clouds. If computational resources are available,
one strategy to overcome this problem is to perform several loop closing ICPs with
different initial yaw angles, and compare the residual error from the ones that
converged, choosing the one with least error. Since this multiple ICP calls takes
longer, it may be performed in different threads on a multi-core computer, to avoid
blocking the ICP used to re-localize the robot locally. Also, since the residual
error depends on the outlier weights, the outlier rejection filter should be much less
restrictive, notably not rejecting by angular difference between the normals. If not,
the residual error for a transformation that provides a bad alignment may be lower
than a better transformation, because it has less matches contributing to compute
this error (i.e. most of match distances were multiplied by zero in eq. (4.2)).

4.8.3 Estimating ICP relative motion errors

During the experiments, the covariances estimated with the method in [Censi 2007]
and that are used to create factors in the graph were found to be remarkably small.

To assess the quality of the covariance estimation, transformations were com-
puted with ICP using 33 scans captured with the robot standing still, so the
expected transformation is the identity transformation. The result can be seen
in table 4.5. The standard deviations computed using the method proposed by
[Censi 2007] are at least one order of magnitude smaller than the ones computed by
comparing the ICP results with the identity transformation. Although we acknowl-
edge that the quality of the transformations obtained in this experiment depends
on many factors, notably the ICP pipeline and the environment described by the
scans, it still shows that covariance estimation using [Censi 2007] may lead to over-
confident systems.

Table 4.5: Comparison of standard deviation for transformations computed from ICP using
data acquired with a stationary robot.

Pose component Standard deviation
From ICP result Using [Censi 2007]

x 3.231 × 10−3 4.703 × 10−4

y 4.210 × 10−3 5.949 × 10−4

z 4.962 × 10−3 7.316 × 10−5

roll 5.276 × 10−4 1.498 × 10−5

pitch 4.624 × 10−4 1.778 × 10−5

yaw 5.494 × 10−4 3.334 × 10−5

Our system show good results using the errors as computed in [Censi 2007], but
there is a risk that the use of such small covariances may lead to pose graphs in
which the optimization matrix is ill-posed and cannot be solved. A better error
model should be exploited: building an empirical model that relates the errors to
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some characteristics of the ICP process, or even to some signatures computed on the
scans that relates the type of environment in which the robot is to the precision on
the estimates of each estimated degree of freedom is an interesting work direction
to explore.

4.8.4 Detecting loop-closures

The test for loop closing is only performed upon creation of a new keyframe in the
graph level. Thus, a loop closing is dependent on the overlap threshold (to create
the keyframes) and the candidate selection test, other than the ICP convergence
itself. An alternative way to perform loop closings would be as follows: always
verify the distances between the robot pose and keyframes, and/or check if there is
an overlap between the last scan and keyframe scans outside the no-loop window. In
a positive case, trigger the loop closing ICP and, upon convergence, create the new
keyframe, close the loop in the graph, and optimize. In summary, this alternative
strategy would force the creation of a keyframe that would be used to close a loop.
This alternative is more costly, due to the computation of distances and overlaps
for each scan, but reduces the risk of missing a loop closing in situations like the
one described in fig. 4.22.

(a) (b)

Figure 4.22: Situation where the proposed system may miss a loop closing. (a) The robot
passes through a loop closing region, but does not create the keyframe because it still has
enough overlap with the current local map. (b) When the keyframe is created later, the
associated keyframe scan can not be used to close the loop, and the robot misses the loop
closing point (red dashed circle).

The use of local maps helps to overcome difficulties with the alignment of velo-
dyne scans with ICP, notably due to the non-uniform density of points in the scans.
Using local maps also reduces the chance of having reference clouds whose points
are too close to the robot, a situation that may occur if the robot passes through a
narrow space between large obstacles. In this case, using a scan-to-scan ICP would
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be very likely to produce a bad transformation, or to make the ICP to fail during
its the minimization step.

Since the scans for a local map are positioned at the estimated keyframe poses,
the local maps may contain little discontinuities that influences the ICP result.
Upon a loop closing and update of keyframe poses, one may consider to recompute
all the transformations of the loop, using the updated poses to position the local
map scans, and then optimize the loop in the graph again, and repeat upon conver-
gence. This strategy was not implemented due to the trouble of storing the extra
information that would be needed (i.e. the keyframes used to build the local maps
for each factor), and the computation overhead that it would produce when closing
the loop. Thus, the proposed system considers that the transformations computed
from ICP are good enough to position the scans of the next local maps.





Chapter 5

Conclusion

In the last years, the state of the art of SLAM solutions experienced a signifi-
cant shift from filtering approaches to optimization-based approaches. Modeling
the SLAM problem with probabilistic graphical models has brought a new level
of understanding of the problem, and the graphical optimization frameworks now
available to the community, like GTSAM and g2o, makes it easier for the engi-
neers to design SLAM solutions, reasoning in terms of variables to be estimated
and constraints applied to these variables.

After having synthesized these recent methods, this thesis presented two
contributions that extend and exploit them.

Chapter 3 presented the application to an incremental SLAM approach of a
landmark parametrization previously developed for the Bundle Adjustment prob-
lem. It developed the specific factors needed by the approach, and proposed a
way to incrementally update the graph with new measurements. The developments
were performed in a simulated environment, and more work is still necessary to
make it applicable on-board a real robot. In the presented work an EKF based
front-end was used, that limits the number of observed landmarks at each image
to reduce computational time, whereas numerous landmarks would be required to
obtain good results [Strasdat 2010].

Regarding the optimization back-end, the relation between landmark re-
anchoring and the changes in the Bayes tree should be further studied. ISAM2
was originally not developed with the replacement of factors in mind, and our re-
anchoring of a landmark required the removal and re-insertion of a large number
of factors. One should investigate a way to minimize the changes or computa-
tions needed to rebuild the Bayes tree in the update step, possibly achieving better
performance on incremental updates.

During the course of our work on the PAP landmarks, we noticed a tendency
in the robotics community towards using structureless projection factors in
graphical-based SLAM, which avoids the problem of explicitly estimating the
landmark parameters. This approach is currently being applied in numerous
visual-SLAM systems with success, and its use tends to increase: further develop-
ments and comparisons are required to compare our proposal with these approaches.

A system to perform SLAM based on point-cloud alignments was proposed in
chapter 4. It uses the ICP algorithm to estimate local motions, which defines
constraints that are fed to a pose-graph, which is used to reduce the drift along the
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robot trajectory upon loop closings, by means of graph-based optimization. In the
ICP, we perform the alignment of one scan to a local map built of several scans
to overcome problems due to the non-uniform density in the Velodyne scans. The
configuration of ICP for Velodyne scans was precisely described .

Tests were performed using two datasets, showing that the graph layer helps
to reduce the overall drift after loop closings, especially along the z-axis, although
some error is still present.

The first main weakness of the system is that it is completely based on the
convergence of the ICP process. But an ICP process may fail, e.g. in cases where
the robot passes through clogged environments, which makes most of the scan points
to lay into objects very close to the sensor: such scans has not enough structure to
allow a good alignment. This may be critical if the overlap gets too low, making
the robot unable to localize itself with respect to the previously seen environment.
The use of local maps reduces the risk of such failures, but does not guarantee they
are excluded.

Further work to monitor the ICP process may help to detect faulty motion
estimates. But the graph layer can also provide robustness with respect to such
failures. If the incremental ICP fails, a new keyframe can be created in the graph
level and connected to a prior factor built from the lower level odometry and with
a small covariance, in contrast of being connected to the previous keyframe. This
makes the graph disconnected, and the prior on the newly created keyframe fixes
the origin of the new disconnected part of the graph. With some chance the robot
will re-enter an area that would allow the system to perform a loop closure: if the
system manages to relocalize the robot using the loop closing ICP, the prior can
be removed and the disconnected sub-graph can be reconnected to the rest of the
graph through the constraint produced by the loop closing ICP, although it does not
create a loop in the graph. The effectiveness of this solution needs to be assessed.

A second critical point arises when closing loops. Since the accumulated drift
along a loop may be large, the initial transformation may be far from the correct
one, and the loop closing ICP may be trapped in a local minima, yielding a spatially
inconsistent map. We reduced the chances of this happening by considering that
the environment is mostly planar, and constraining the initial transformation
to a plane. In any case, the correction of the orientation is critical, due to the
non-linearities introduced by the angular terms. One possible solution to cope with
such faulty ICP loop closures is to add a discrete switch variable to the loop closing
constraints, a proposed in [Sünderhauf 2012]. The idea is to model a switch that
may turn off the contribution of the loop closing constraint if it is detected that
this constraint is causing the optimization error to increase. While this introduces
more variables to the system, this makes it more robust to loop closing ICP failures.

The same strategy mentioned before to recover from possible incremental ICP
failure could be applied to a multi-robot setting. When using multiple robots, a
graph could be built for each robot, each graph fixed to its respective robot origin.
Then, if two different robots visit the same part of the environment, the loop closing
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ICP can be used to find a constraint that connects the robot graphs, forming a single
graph between these two robots. If the priors that encode the robot origins are not
certain, one of the two priors may be removed following a predefined priority over
the robots composing the team, resulting in single graph for the two robots that has
one fixed pose. Otherwise, if the priors are certain, both can be kept in the graphs,
and the constraint connecting both robot graphs works like a loop closing constraint
that would lead to a correction in both robot trajectories and maps. The merging
of graphs could be repeated and potentially result in a full connected graph.

Note that one should be careful with the second option, as it may lead to
ill-posed optimization systems if the priors are not consistent with the reality, i.e.
if the distance between the origins coded in the priors differs considerably from
the real distance between the real robot origins. Regarding the merging process,
centralized solutions are simpler to handle than distributed ones. If the merging is
performed in a distributed manner, the system designer should be careful to avoid
the duplication of the same constrains across the robots graphs. This may happen
with a team of three robots or more. For example, if the graphs of robot A and C
are merged with a robot B, both A and C will contain constraints originated from
B. Then if robots A and C attempt to merge their graphs later, the information of
B contained in both robot graphs should be handled carefully to avoid duplication.





Appendix A

Developed tools

Some tools were necessary to develop during the thesis. Most of them rely on
existing open source projects that almost provided the functionality I was looking
for, but for which I ended up implementing the missing needed functionalities.
This appendix briefly present these tools, which have been made accessible to the
community as open source code.

A.1 Python Wrapper for GT-SAM

The GT-SAM library comes with a wrapper for MATLAB that let call its C++
functions from MATLAB, allowing fast prototyping with the library. At some point
I needed to use GT-SAM with some python scripts, and at the time there only
existed a draft of python wrapper that was not yet functional, mostly implemented
by Andrew Melim. So I set myself to wrap the GT-SAM functionalities I needed
to python.

The MATLAB wrapper is generated by parsing a interface file with a grammar
implemented using Boost Spirit library to generate a MATLAB executable (a mex
file), that is in turn processed by MATLAB to provide access to the library from
the MATLAB interpreter. Initially the wrapper auto-generation was adapted to
produce Boost Python code that would work as the bridge between the python
interpreter and GT-SAM, but soon it was found that some grammar changes were
needed that would must probably disturb the MATLAB wrapper. We then de-
cided to directly write the code to wrap the needed functionalities, following some
handwritten files in their repository.

Most of the functionalities needed to solve SLAM using ISAM2 in python were
coded this way (poses and landmark variables, factors between poses, projection
factors, nonlinear graph structures, etc), and other ones could be easily wrapped
using these ones as examples. Codes such as the one in listing A.1 were made
possible with the implemented wrapper.

The developments were shared back for the main maintainers of GT-SAM and
incorporated in the source code, available at https://bitbucket.org/gtborg/
gtsam. At the time of writing the python wrapper is a milestone for the 4.0.0
version of GT-SAM, and there are some efforts from Duy Nguyen Ta to wrap it
automatically using Cython.

https://bitbucket.org/gtborg/gtsam
https://bitbucket.org/gtborg/gtsam
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Listing A.1: Example of code using the GT-SAM python module, slightly
edited to better fit this document. The original file can be found at
python/gtsam examples/VisualISAM2Example.py in the GT-SAM source code directory.

from __future__ import print_function

import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
import numpy as np
import time # for sleep()

import gtsam
from gtsam_examples import SFMdata
import gtsam_utils

# shorthand symbols:
X = lambda i: int(gtsam.Symbol('x', i))
L = lambda j: int(gtsam.Symbol('l', j))

def visual_ISAM2_plot(poses, points, result):
# VisualISAMPlot plots current state of ISAM2 object
# Author: Ellon Paiva
# Based on MATLAB version by: Duy Nguyen Ta and Frank Dellaert

# Declare an id for the figure
fignum = 0

fig = plt.figure(fignum)
ax = fig.gca(projection='3d')
plt.cla()

# Plot points
gtsam_utils.plot3DPoints(fignum, result, 'rx')

# Plot cameras
i = 0
while result.exists(X(i)):

pose_i = result.atPose3(X(i))
gtsam_utils.plotPose3(fignum, pose_i, 10)
i += 1

# draw
ax.set_xlim3d(-40, 40)
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ax.set_ylim3d(-40, 40)
ax.set_zlim3d(-40, 40)
plt.pause(1)

def visual_ISAM2_example():
plt.ion()

# Define the camera calibration parameters
K = gtsam.Cal3_S2(50.0, 50.0, 0.0, 50.0, 50.0)

# Define the camera observation noise model
# (one pixel in u and v)
measurementNoise = gtsam.noiseModel.Isotropic.Sigma(2, 1.0)

# Create the set of ground-truth landmarks
points = SFMdata.createPoints()

# Create the set of ground-truth poses
poses = SFMdata.createPoses()

# Create an iSAM2 object. Unlike iSAM1, which performs periodic
# batch steps to maintain proper linearization and efficient
# variable ordering, iSAM2 performs partial
# relinearization/reordering at each step. A parameter
# structure is available that allows the user to set various
# properties, such as the relinearization threshold and type of
# linear solver. For this example, we we set the
# relinearization threshold small so the iSAM2 result will
# approach the batch result.
parameters = gtsam.ISAM2Params()
parameters.relinearize_threshold = 0.01
parameters.relinearize_skip = 1
isam = gtsam.ISAM2(parameters)

# Create a Factor Graph and Values to hold the new data
graph = gtsam.NonlinearFactorGraph()
initialEstimate = gtsam.Values()

# Loop over the different poses, adding the observations to
# iSAM incrementally
for i, pose in enumerate(poses):

# Add factors for each landmark observation
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for j, point in enumerate(points):
camera = gtsam.PinholeCameraCal3_S2(pose, K)
measurement = camera.project(point)
graph.push_back( gtsam.GenericProjectionFactorCal3_S2(

measurement, measurementNoise, X(i), L(j), K))

# Add an initial guess for the current pose
# Intentionally initialize the variables off from the
# ground truth
initialEstimate.insert( X(i), pose.compose( gtsam.Pose3(

gtsam.Rot3.Rodrigues(-0.1, 0.2, 0.25),
gtsam.Point3(0.05, -0.10, 0.20))))

# If this is the first iteration, add a prior on the first
# pose to set the coordinate frame and a prior on the first
# landmark to set the scale.
# Also, as iSAM solves incrementally, we must wait until
# each is observed at least twice before adding it to iSAM.
if(i == 0):

# Add a prior on pose x0
# (30cm std on x,y,z 0.1 rad on roll,pitch,yaw)
poseNoise = gtsam.noiseModel.Diagonal.Sigmas(

np.array([0.3, 0.3, 0.3, 0.1, 0.1, 0.1]))
graph.push_back( tsam.PriorFactorPose3(X(0),

poses[0], poseNoise))

# Add a prior on landmark l0
pointNoise = gtsam.noiseModel.Isotropic.Sigma(3, 0.1)
graph.push_back( gtsam.PriorFactorPoint3(

L(0), points[0], pointNoise))

# Add initial guesses to all observed landmarks
# Intentionally initialize the variables off from the
# ground truth
for j, point in enumerate(points):

initialEstimate.insert(L(j), point
+ gtsam.Point3(-0.25, 0.20, 0.15))

else:
# Update iSAM with the new factors
isam.update(graph, initialEstimate)
# Each call to iSAM2 update(*) performs one iteration
# of the iterative nonlinear solver. If accuracy is
# desired at the expense of time, update(*) can be
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# called additional times to perform multiple optimizer
# iterations every step.
isam.update()
currentEstimate = isam.calculate_estimate()

print("**********************************************")
print("Frame", i, ":")
for j in range(i + 1):

print(X(j), ":", currentEstimate.atPose3(X(j)))

for j in range(len(points)):
print(L(j), ":", currentEstimate.atPoint3(L(j)))

visual_ISAM2_plot(poses, points, currentEstimate)

# Clear the factor graph and values for the next
# iteration
graph.resize(0)
initialEstimate.clear()

plt.ioff()
plt.show()

if __name__ == '__main__':
visual_ISAM2_example()

A.2 KITTI Dataset ROS Player

The kitti player is a software that publishes data from KITTI datasets into ROS
topics. It is original from the IRALab, from Università degli Studi di Milano -
Bicocca, and available at https://github.com/iralabdisco/kitti_player. It
was mainly developed by Francesco Sacchi and Augusto Luis Ballardini.

The IRALab version of kitti player was used in my first experiments with
KITTI dataset and ROS, and soon I had to perform some improvements to fit
specific needs. My main developments consisted of some fixes in the original code;
the addition of options to publish sensor transformations through ROS tf mech-
anism; options to publish odometry from GPS/IMU data as Odometry messages
and through tf; and an option to convert the dataset directly to a rosbag. The
code was also re-factored into classes to improve maintenance.

At the time of writing, the software received some contributions from the
community allowing it to read KITTI datasets for visual odometry and to work

https://github.com/iralabdisco/kitti_player
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with newer versions of ROS. It is available in https://github.com/Ellon/kitti_
player.

A.3 RViz Covariance Plugin

Rviz is a 3D visualizer for ROS. It allows the visualization of several entities that
are common to the ROS ecosystem, like messages passed between nodes through
topics and the robot frames in the transformation tree. Visualization for the most
common types of data in robotics are already available for the system designer, e.g.
2D and 3D poses, points, images, laser scans, point clouds, among others.

Often mathematical entities like poses, accelerations and twists are associated
to errors stored in covariance matrices. ROS has standard messages to carry such
information if necessary, but there is no built-in visualization for the covariance
in rviz. To provide this missing functionality, Thomas Moulard, a former LAAS
PhD student, developed a rviz plug-in called rviz plugin covariance that allowed
the visualization of covariances for PoseWithCovariance and Odometry messages,
available in https://github.com/laas/rviz_plugin_covariance. As I started
to use his plug-in code to visualize the covariances from ICP transformations, I felt
some functionalities were still missing, so I took the role of maintainer of the code
and added new functionality to it.

The code was re-factored to incorporate features already present for the equi-
valent messages without covariances, like better control of colors, transparencies,
scales of the drawings, and possibility to hide the covariance display or its specific
elements. The possibility to visualize poses as arrows or frames was also added, as
well as a better drawing of covariances for 2D poses, automatically set when the
variances on z, and on the roll and pitch angles are zero. The possibility to visualize
the covariance of several last Odometry messages was made possible through the use
of a buffer whose size is configurable through the rviz interface, and the pose and
covariance values can also be visualized by the user though the rviz interface. Fig-
ure A.1 show a the visualization of PoseWithCovariance messages, while Odometry
messages with covariances can be seen in fig. A.2.

The main addition to the plug-in was a new way to visualize the angular errors.
For the 2D case, the error in yaw is shown as a 2D triangle on the xy-plane. For
the 3D case, 2D ellipses are associated to each axis, and they are drawn in a plane
perpendicular to the respective axis. Each ellipse represents the influence of the
errors of the other two axis on its axis. The sizes and orientation of the ellipses are
computed from the Principal Component Analysis of a subsection of the covariance
matrix. The details of which section is used to draw each element can be seen
in fig. A.3. While this does not allow the visualization of the covariance between
all variables (notably between the position variables and the angles variables), the
strategy of decomposing the covariance matrix into smaller ones manages to be
enough informative about the characteristics of the pose error.

At the time of writing, the maximum angular error that can be visualized is set

https://github.com/Ellon/kitti_player
https://github.com/Ellon/kitti_player
https://github.com/laas/rviz_plugin_covariance
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Figure A.1: Visualization of poses with covariance. 3D poses are shown in on top and 2D
poses on the bottom. Left images show the poses as 3D frames, while right images show
them as arrows along pose’s x-axis. The extra frame in each image represents the origin.

to 89°. This is a limitation caused by the way the angular covariances are drawn: by
projecting the error into 2D ellipses fixed in a plane perpendicular to the pose axes,
angular errors of 90° would produce ellipses of infinite dimensions (fig. A.4). This
should not cause problem to most of the applications since most angular errors are
usually very small (to allow the representation of a wider range of angular errors,
one could project the covariances into a circular sphere around the pose).

A.4 Libpointmatcher Paraview Plugin

Finding a good configuration for the ICP may be cumbersome due to the number
of different pipeline elements and their parameters. A visualization software is
essential to inspect the convergence of the algorithm. Libpointmatcher provides
inspection modules to help with this task. In particular, the VTKInspector dumps
the intermediary point clouds of an ICP run into VTK files, that may be loaded
in Paraview, an application for visualization and analysis of data. This is very
handy to inspect the convergence, and see if the ICP provided a good result or
got trapped in a local minima. If needed, one may write small programs to test a
certain pipeline, dump the filtered clouds into VTK files, and visualize in Paraview,
but such a work-flow is a burden.

To improve this work-flow I started developing a Paraview plug-in for the lib-
pointmatcher library. The idea was to allow the user to build a libpointmatcher
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Figure A.2: Visualization of odometry messages with covariance, using a buffer of length
13. From top to bottom: odometry with 3D poses shown as 3D frames and as arrows; 2D
poses shown as 3D frames and arrows. The origin is shown as a 3D frame in the middle of
the images.

pipeline inside Paraview, specifying the data filters for the reading and reference
clouds, as well as the matcher, outlier filters and minimizer, together with their
parameters. The user would then be able to inspect the clouds in the outputs of
each data filter, as well as the alignment process from the ICP minimization, with-
out the need to dump the files using the VTKInspector and reload in Paraview
every time. Ultimately, the user would be able to save the configuration file for the
current pipeline in a YAML file, that could then be used directly to load the ICP
configuration in applications using libpointmatcher.

Figure A.5 shows the main elements of PointMatcherPlugin in Paraview
(pipeline, available filters and properties of the main ICP filter). Since the library
is in continuous development, some helper scripts were developed to auto-generate
the code wrapping the filters from the output of pmicp -l, a command that lists
all available modules in libpointmatcher. This way, new filters may be added with
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Figure A.3: Covariances of a 3D pose and covariance sub-matrices used to draw each
element. Colors in the matrices match the color of the element drawn in the top figure.
The position error is draw as a 3D ellipse with lengths computed from the top-left 3 × 3
sub-matrix. Different 2 × 2 sub-matrices are used to compute the 2D ellipses representing
the angular error on each axis. Each of these sub-matrices represent the covariance on the
other two axis. Gray regions of the covariance matrix are never used.

almost no effort, and the auto-generated code may be used as a base for filter wrap-
pers that use more advanced features of Paraview, like the use of some widgets to
set filter parameters. The matcher, outlier filters, minimizer and transformation
checkers are set from the properties of a single pipeline element, the PMIcpFilter.

At the time of writing the input and output of configuration files is also not
yet implemented in the plugin. Also, the visualization of the alignment process is
not yet available due to limitations on Paraview’s pipeline management, to which
a workaround was still not found. Nevertheless, the filter modules are already
functional and the plugin may be used to inspect the intermediary reading and
reference clouds modified by the filters in the pipeline. The plugin is available in
https://github.com/Ellon/PointMatcherPlugin.

https://github.com/Ellon/PointMatcherPlugin
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Figure A.4: Visualization of different covariances in the angle around z-axis. Errors in one
axis deforms the ellipses drawn on the other two axis. As the angle approaches a standard
deviation of 90° the ellipses get stretched to infinity (bottom-right figure), thus the maximal
error that can be visualized is set to 89°. Such large errors should not happen in practice.
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Figure A.5: PointMatcherPlugin in Paraview. Top-left: an example of ICP configuration
as modules in Paraview’s pipeline. Note how the reading and reference filter pipelines
connect to the inputs of a PMIcpFilter. Bottom-left: the Point Matcher filter menu with
the available filters. Right: parameters of libpointmatcher’s matchers, outlier filters, error
minimizers and transformation checkers, accessible through properties of PMIcpFilter.
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and Joachim Hertzberg. Globally Consistent 3D Mapping with Scan Match-
ing. Robot. Auton. Syst., vol. 56, no. 2, pages 130–142, February 2008.
(Cited in pages 77 and 79.)

[Cadena 2016] C. Cadena, L. Carlone, H. Carrillo, Y. Latif, D. Scaramuzza,
J. Neira, I. Reid and J. J. Leonard. Past, Present, and Future of Simulta-
neous Localization and Mapping: Toward the Robust-Perception Age. IEEE
Transactions on Robotics, vol. 32, no. 6, pages 1309–1332, December 2016.
(Cited in page 7.)

[Carlone 2014] Luca Carlone, Zsolt Kira, Chris Beall, Vadim Indelman and Frank
Dellaert. Eliminating conditionally independent sets in factor graphs: a
unifying perspective based on smart factors. In Int. Conf. on Robotics and
Automation (ICRA), Hong Kong, 2014. (Cited in page 50.)

[Censi 2007] A. Censi. An accurate closed-form estimate of ICP’s covariance. In
Robotics and Automation, 2007 IEEE International Conference on, pages
3167–3172, April 2007. (Cited in pages 67, 79, and 83.)

[Chatila 1985] R. Chatila and J-P. Laumond. Position Referencing and Consistent
World Modeling for Mobile Robots. In IEEE International Conference on
Robotics and Automation, St Louis (USA), pages 138–145, 1985. (Cited in
page 7.)

[Civera 2008] J. Civera, A.J. Davison and J. Montiel. Inverse Depth Parametriza-
tion for Monocular SLAM. Robotics, IEEE Transactions on, vol. 24, no. 5,
pages 932–945, October 2008. (Cited in page 28.)

[Crowley 1989] J. L. Crowley. World modelling and position estimation for a mo-
bile robot using ultrasonic ranging. In IEEE International Conference on
Robotics and Automation, pages 674 – 680, 1989. (Cited in page 7.)



104 Bibliography

[Dellaert 2012] Frank Dellaert. Factor Graphs and GTSAM: A Hands-on Intro-
duction. Technical Report GT-RIM-CP&R-2012-002, GT RIM, September
2012. (Cited in page 67.)

[Durrant-Whyte 2006] H. Durrant-Whyte and T. Bailey. Simultaneous Localisa-
tion and Mapping (SLAM): Part II State of the Art. IEEE Robotics and
Automation Magazine, vol. 13, no. 3, pages 108–117, June 2006. (Cited in
page 7.)

[Forster 2015] Christian Forster, Luca Carlone, Frank Dellaert and Davide Scara-
muzza. IMU Preintegration on Manifold for Efficient Visual-Inertial
Maximum-a-Posteriori Estimation. In Robotics: Science and Systems XI,
Sapienza University of Rome, Rome, Italy, July 2015. (Cited in pages 50
and 82.)

[Forster 2016] Christian Forster, Luca Carlone, Frank Dellaert and Davide Scara-
muzza. On-Manifold Preintegration for Real-Time Visual-Inertial Odome-
try. IEEE Transactions on Robotics (TRO), 2016. (Cited in page 13.)

[Geiger 2012] Andreas Geiger, Philip Lenz and Raquel Urtasun. Are we ready for
Autonomous Driving? The KITTI Vision Benchmark Suite. In Conference
on Computer Vision and Pattern Recognition (CVPR), 2012. (Cited in
page 71.)

[Geiger 2013] Andreas Geiger, Philip Lenz, Christoph Stiller and Raquel Urta-
sun. Vision meets Robotics: The KITTI Dataset. International Journal
of Robotics Research (IJRR), 2013. (Cited in page 67.)
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Stéphane Magnenat. Comparing ICP Variants on Real-World Data Sets.
Autonomous Robots, vol. 34, no. 3, pages 133–148, February 2013. (Cited
in page 67.)

[Pomerleau 2013b] François Pomerleau, Francis Colas and Roland Siegwart. A Re-
view of Point Cloud Registration Algorithms for Mobile Robotics. Founda-
tions and Trends® in Robotics, vol. 4, no. 1, pages 1–104, 2013. (Cited in
page 56.)

[Roussillon 2011] C. Roussillon, A. Gonzalez, J. Solà, , J-M Codol, N. Mansard,
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