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Introduction

Nous présentons en premier lieu dans cette introduction un certain type de constructions architecturales : les gridshells. La conception dŠun gridshell élastique nécessite une attention particulière sur le choix de la forme de cette construction. Les problématiques de recherche de forme pour les gridshells ont motivé cette thèse. Ces constructions sont obtenues par la déformation élastique dŠune grille de poutres, que nous supposerons incompressibles et inextensibles, assemblées dans le plan. Nous présentons dans la section 1.1 une introduction à ce type de construction. Nous y mettons en avant lŠimportance de la recherche de forme dans la conception de ces structures. La déformation de la grille, appelée mise en forme du grishell, est modélisée par un type particulier de systèmes de coordonnées : les réseaux de Chebyshev. Ainsi, la recherche dŠune surface accessible par gridshell passe par la construction dŠun réseau de Chebyshev sur celle-ci. Dans la section 1.2, nous présentons quelques notions sur les surfaces et sur les systèmes de coordonnées nécessaires pour la présentation des réseaux de Chebyshev. Ces derniers sont introduits dans la section 1.3. Après avoir énoncé les principales problématiques de cette thèse, nous indiquons dans cette section quelques propriétés satisfaites par les réseaux de Chebyshev. Un état de lŠart sur lŠexistence de ces réseaux sur une surface donnée est ensuite présenté. EnĄn, nous présentons la méthode du compas : une méthode numérique permettant la discrétisation des réseaux de Chebyshev. Nous terminons ce chapitre en présentant les résultats obtenus au cours de cette thèse ainsi quŠun résumé des chapitres suivants (section 1.4).

Généralités

Nous commençons par déĄnir le concept de gridshell.

DéĄnition

Les gridshells peuvent être déĄnis de la manière suivante : un gridshell est une structure obtenue par assemblage de poutres en une grille ayant un comportement mécanique de coque discrète.

Ceci explique la juxtaposition des deux mots ŞgridŤ (grille) et ŞshellŤ (coque). Une déĄnition plus précise est donnée par Frei Otto dans [START_REF] Otto | Il10 gitterschalen[END_REF] : ŞUn gridshell est une structure de barres, courbe dans lŠespace. Les barres forment une grille plane avec une maille rectangulaire et un espacement constant entre chaque noeud.Ť Ainsi, le terme de gridshell fait également références aux méthodes de construction permettant dŠobtenir cette structure. Une méthode consiste à déformer une grille de poutres assemblée dans le plan (voir la Ągure 1.1). Cette déformation est appelée mise en forme de la structure. Aussi, nous utiliserons le terme raideur pour référer à la résistance dŠun matériau ou dŠune structure à une déformation. Quelques remarques faisant ressortir les (a) Grille de poutres assemblée sur le sol [START_REF] Du Peloux | Faith can also move composite gridshells[END_REF] (b) Déformation élastique de la grille de poutres [START_REF] Du Peloux | The ephemeral cathedral of Créteil : a 350m2 lightweight structure made of a GFRP composite gridshell[END_REF] Fig. 1.1 Mise en forme dŠun gridshell : déformation élastique dŠune grille de poutres (Créteil, 2013) caractéristiques des gridshells peuvent maintenant être faites à propos de cette mise en forme :

1. Tout dŠabord, le choix de la forme a une place prépondérante dans la conception des gridshells. En efet, nous soulignons que la rigidité de la structure dépend principalement de cette forme.

2. Ensuite, pour pouvoir procéder à cette mise en forme, il est nécessaire que les poutres vériĄent certaines propriétés. Celles-ci doivent tout dŠabord être élancées et avoir une faible raideur en Ćexion. Aussi, ces poutres doivent être en capacité de subir une grande déformation élastique avant rupture. Finalement, aĄn dŠassurer la rigidité de la structure, les poutres doivent avoir une grande raideur en traction/compression. Le choix des matériaux est donc essentiel pour la conception dŠun gridshell. Ces propriétés peuvent être observées notamment dans certains bois ou certains matériaux composites qui, dans la majorité des cas, sont les matériaux utilisés pour ces constructions.

3. EnĄn, les formes accessibles par gridshells sont des formes issues de cette déformation. Cela induit une restriction sur les formes accessibles que nous détaillons ci-dessous. 3 Un gridshell après contreventement [START_REF] Du Peloux | Construction of a Large Composite Gridshell Structure: A Lightweight Structure Made with Pultruded Glass Fibre Reinforced Polymer Tubes[END_REF] de poutres réalisant de grands déplacements, la simulation de son comportement mécanique et notamment de sa stabilité nécessite une adaptation des méthodes de calculs à ce type de mécanique non-linéaire (voir par exemple [START_REF] Douthe | Etude de structures élancées précontraintes en matériaux composites, application à la comception des gridshells[END_REF]Chap. 3]). Soulignons que les gridshells présentent de nombreux intérêts par rapport à dŠautres types de constructions plus classiques, qui motivent ces eforts dŠadaptation. Ainsi, deux types dŠavantages concernant les gridshells peuvent être mis en avant : le premier concerne la méthode de construction et le second réside dans la légèreté de la structure. Tout dŠabord, en ce qui concerne la méthode de construction, le premier grand intérêt est quŠelle est relativement simple et peu coûteuse. En efet, cette construction peut se faire en très peu de temps et demande un outillage peu important. Un second avantage de ce type de construction est quŠil permet de couvrir de grands espaces, libres de tout support. Pour Ąnir, le démontage, voire le recyclage, des gridshells est tout aussi simple : il suit de défaire les liaisons entre lŠextrémité des poutres et le sol. La grille peut ensuite être repliée (très faible raideur en cisaillement des jonctions) ou désassemblée.

Regardons maintenant le deuxième grand avantage de ces constructions : leur légèreté. Pour commencer, la légèreté dŠune structure est généralement déĄnie comme le rapport entre le poids propre de celle-ci et les charges variables (charge que doit supporter la structure, vent, neige,...). Ainsi, notons que meilleure est la rigidité structurelle, plus légère sera la structure. En efet, cette rigidité permet une réduction du dimensionnement et donc une réduction du poids propre de la structure. En ce sens, pour concevoir des structures légères, Jörg Schlaigh donne quatre éléments principaux à prendre en compte [15, Chap. 1] :

1. La Ćexion des éléments qui doit être minimisée, ceci dans le but de mieux répartir les contraintes dans la structure.

2. Les matériaux de la structure qui doivent être choisis en prenant en compte les eforts quŠils ont à subir et leurs propriétés mécaniques.

3. La précontrainte des éléments de la structure qui est à utiliser judicieusement aĄn dŠobtenir une meilleure rigidité de ces éléments.

4. La forme de la structure qui doit être prise en compte, dans le même but de répartir de manière optimale les eforts dans celle-ci. En ce sens, il faut privilégier les surfaces à double courbure (courbure de Gauss non-nulle). Cette double courbure permet en efet à la structure dŠavoir un comportement membranaire exploitant au mieux les propriétés du matériau (une grande raideur en traction/compression et en cisaillement de la structure).

Les gridshells ont été conçus en ce sens et la recherche de forme, préalable à la construction dŠun gridshell, permet dŠoptimiser ces diférents points. Cette optimisation permet dŠassurer une grande rigidité structurelle à la construction, aussi appelée rigidité géométrique dans la suite. Qui plus est, la quantité de matériaux est aussi considérablement réduite grâce à lŠutilisation dŠune structure de grille au lieu dŠune coque continue. Pour Ąnir, nous soulignons aussi la légèreté des matériaux utilisés (bois, matériaux composites verre/résine). Le poids propre de la structure est donc, de ce fait, très réduit, rendant le ratio déĄnissant la légèreté dŠune structure très élevé. Ceci fait du gridshell une structure très attractive dans ce contexte. 

Conception : la recherche de forme

Nous nous intéressons maintenant à la recherche de forme : la recherche de surfaces accessibles par le procédé de mise en forme des gridshells. Nous décrivons dans un premier temps les contraintes devant être satisfaites par la forme du gridshell dans la sous-section 1.1.2.1. DŠautres aspects doivent aussi être pris en compte par le concepteur comme la rigidité géométrique de la structure Ąnale. Nous présentons un aperçu des diférentes méthodes utilisées à ce jour pour cette recherche de forme en sous-section 1.1.2.2.

Des contraintes mécaniques et géométriques

Nous exposons maintenant les contraintes sur les formes que lŠon peut obtenir par gridshell. Pour commencer, nous soulignons que les formes accessibles par ce procédé sont soumises à deux types de contraintes. Premièrement, celles-ci sont obtenues par la mise en forme : déformation élastique dŠune grille de poutres assemblée dans le plan. Ainsi, cette contrainte, dite géométrique, est déĄnie par les propriétés mécaniques des poutres (incompressibilité et inextensibilité) ainsi que par le type dŠassemblage de la grille (articulations). La deuxième contrainte concerne la stabilité mécanique du gridshell. En efet, la structure doit être en équilibre avant même la prise en compte de la troisième direction de barres (contreventement) aĄn dŠobtenir une structure ayant une grande rigidité. Il sŠagit ainsi dŠune contrainte qui ne peut être vériĄée quŠaprès simulation. Cette contrainte, que nous qualiĄerons de mécanique, ne sera pas détaillée dans ce manuscrit. Nous renvoyons à la thèse de Cyril Douthe [START_REF] Douthe | Etude de structures élancées précontraintes en matériaux composites, application à la comception des gridshells[END_REF]Chap. 3] pour un algorithme permettant de simuler les gridshells. CŠest donc la contrainte géométrique à laquelle nous nous intéressons maintenant. Ainsi, nous considérons uniquement la mise en forme et nous ignorons la question de la stabilité mécanique de la structure.

Tout dŠabord, en raison de la diférence dŠéchelle entre la raideur en Ćexion et en tension/compression dans les poutres, nous simpliĄons le comportement mécanique de ces dernières en supposant que la raideur en tension/compression est inĄnie. LŠincompressibilité et lŠinextensibilité des poutres est ainsi imposée et la déformation dŠune poutre de longueur L > 0 est donc déĄnie par une courbe paramétrée par longueur dŠarc

γ : [0, L] → R 3 , avec ♣γ ′ (s)♣ = 1 pour tout s ∈ [0, L].
(

Ensuite, lŠassemblage de la grille dans le plan est réalisé par des articulations, ce qui induit une très faible raideur en cisaillement que nous supposons nulle. La mise en forme dŠun gridshell est la déformation élastique de chacune des poutres de manière à préserver leurs longueurs, mais aussi la position des jonctions entre celles-ci. Étant élastique, cette déformation sera supposée lisse. Nous supposons de plus pour simpliĄer que la grille est régulière, cŠest-à-dire que les poutres ne sont pas courbées dans le plan et que la distance h > 0 entre celles-ci est constante. Cette distance reste ainsi constante au cours de la déformation grâce à la préservation de la longueur des poutres. Dans ce cas, lŠangle entre les deux directions de poutres est constant et un simple cisaillement nous ramène au cas où les mailles sont des carrés. Plaçons-nous donc dans ce cas et notons U gs ⊂ (R + ) 2 le domaine connexe et borné sur lequel est assemblé la grille de poutres. Nous notons N 1 ≥ 1 et N 2 ≥ 1 le nombre de poutres dans les directions verticales et horizontales respectivement. Nous supposons maintenant que les poutres sont initialement positionnées sur les domaines 

D 1,i (U gs ) = U gs ∩ ( ¶ih♦×R + ), D 2,α (U gs ) = U gs ∩ (R + × ¶αh♦), (1.2 
⊂ (R + ) 2 lisse ϕ : U gs → ϕ(U gs ) ⊂ R 3 telle que ϕ(ih, y) = γ 1,i (y), pour tout y ∈ D 1,i (U gs ) et i ∈ ¶1, ..., N 1 ♦, ϕ(x, αh) = γ 2,α (x), pour tout x ∈ D 2,α (U gs ) et α ∈ ¶1, ..., N 2 ♦. (1.3) 
Cette application modélise la position du gridshell dans R 3 . Ainsi, un gridshell est représenté par :

• son domaine de déĄnition U gs ;

• les courbes ¶γ 1,i ♦ 1≤i≤N 1 et ¶γ 2,α ♦ 1≤α≤N 2 le composant ou, de manière équivalente, par une application ϕ : U gs → ϕ(U gs ) ⊂ R 3 déĄnie à partir de celles-ci.

Notons Ąnalement que, aĄn de bien prendre en compte toutes les contraintes géométriques dues à la mise en forme, il faudrait aussi imposer sur chacune des poutres une courbure maximale au delà de laquelle les poutres peuvent se détériorer. Il serait aussi souhaitable dŠintroduire un angle de cisaillement minimal, ceci dans le but de prendre en compte les contraintes liées aux jonctions. En efet, ces deux propriétés mécaniques sont aussi des contraintes sur la déformation déĄnie par ϕ. Ces deux points peuvent néanmoins être vériĄés a posteriori. Ainsi, dans un souci de simpliĄcation, ils ne sont pas considérés dans cette modélisation.

Les diférentes méthodes

Le but de la recherche de forme est de satisfaire les contraintes géométriques et mécaniques tout en ayant une grande rigidité géométrique. De plus, il est souhaitable de laisser du choix dans la forme aĄn de donner un peu de liberté au concepteur de la structure. Nous décrivons ci-dessous les méthodes les plus importantes permettant de trouver des formes satisfaisant ces contraintes et objectifs.

La première méthode consiste à idéaliser le comportement des poutres du gridshell par un comportement de Ąl, tout en choisissant une forme permettant à cette approximation dŠêtre Introduction justiĄée a posteriori. Ainsi, avec cette méthode, dite du Ąlet suspendu, la contrainte géométrique est satisfaite, tandis que la contrainte mécanique est analysée a posteriori. LŠexpérience est réalisée de la manière suivante : on choisit un domaine U gs ⊂ (R + ) 2 et on assemble une grille de Ąls formant des mailles orthogonales (le Ąlet) sur ce domaine U gs . LŠextrémité des Ąls est ensuite attachée à un support puis le Ąlet est suspendu. Finalement, on ajuste la longueur de chacune des cordes aĄn que celles-ci soient sans bosse (relativement tendues). Ainsi, les paramètres de recherche permettant dŠobtenir diférentes formes sont :

• lŠimage de lŠextrémité des Ąls ϕ(∂U gs ), cŠest-à-dire les points où le Ąlet est attaché au support ;

• le domaine U gs , bien que ce choix ne soit pas complètement libre puisque ce domaine évolue au cours de lŠexpérience.

Cette méthode, illustrée dans la Ągure 1.7, a lŠavantage dŠêtre simple, mais permet diicilement de parcourir lŠensemble des formes accessibles et nŠassure pas nécessairement la stabilité de la forme obtenue. Une seconde méthode permet de pallier en partie les deux diicultés ci-dessus : la méthode dite à contour libre. Il sŠagit ici de prendre en compte la raideur en Ćexion, bien que faible, des poutres dans lŠexpérimentation, qui devient cette fois numérique. Le réseau de poutres est simulé par ordinateur aĄn de déterminer une statique de ce système qui réponde aux attentes des concepteurs. Cette prise en compte de la raideur en Ćexion permet de libérer de nombreux paramètres de recherche imposés dans la méthode précédente. Notamment, lŠimage du bord ϕ(∂U gs ) peut être laissée libre (dans un domaine du plan par exemple) puisque la raideur en Ćexion va imposer la position de lŠextrémité des poutres. Ainsi, dans cette méthode, les contraintes géométriques et mécaniques sont toutes deux vériĄées. Il reste donc à parcourir les formes accessibles aĄn dŠoptimiser la rigidité géométrique. Une analyse de cette méthode, ainsi que des diférents paramètres de recherche permettant de parcourir les formes disponibles, peut être trouvée dans [15, section 4.3].

Surfaces paramétrées et systèmes de coordonnées

Cette méthode présente toujours le désavantage de ne pas pouvoir déterminer au préalable la forme du gridshell. Ainsi, une troisième méthode, que nous développons dans ce manuscrit, permet cette fois de Ąxer la forme désirée M ⊂ R 3 . Cette méthode est par exemple utilisée dans [START_REF] Du Peloux | Construction of a Large Composite Gridshell Structure: A Lightweight Structure Made with Pultruded Glass Fibre Reinforced Polymer Tubes[END_REF] où la forme M est issue dŠune optimisation sur des critères mécaniques. Nous notons aussi ce parti pris de Ąxer la forme dans [START_REF] Bouhaya | Optimization of gridshell bar orientation using a simpliĄed genetic approach[END_REF][START_REF] Hernández | On the materiality and structural behaviour of highly-elastic gridshell structures[END_REF][START_REF] Hernandez | Topology optimisation of regular and irregular elastic gridshells by means of a non-linear variational method[END_REF] où des méthodes dŠoptimisation sont utilisées pour concevoir des gridshells. Ce choix a priori de la forme complexiĄe considérablement la contrainte géométrique. Cette dernière se ramène dans ce cas à la question suivante :

Question 1.1. Existe-t-il U gs ⊂ (R + ) 2 et ϕ : U gs → M vérifiant les contraintes : • (1.3) et (1.
2) sur l'assemblage des poutres réalisé par des articulations sur le domaine U gs ;

• (1.1) sur l'inextensibilité des poutres.

Si la réponse à cette question est positive, il serait aussi souhaitable de savoir si la solution vériĄe la contrainte mécanique de stabilité. Cette problématique reste ouverte et nous nous concentrons dans cette thèse sur la première question, à savoir est-ce que M vériĄe les contraintes géométriques ? Nous étudions pour cela les réseaux de Chebyshev qui sont au coeur de cette problématique. Une introduction à ce type de systèmes de coordonnées sur les surfaces est présentée dans la section 1.3.

Surfaces paramétrées et systèmes de coordonnées

Nous présentons maintenant quelques notions et propriétés concernant la géométrie des surfaces : système de coordonnées, application de Gauss, courbure, etc. Les notations que nous utiliserons dans la suite du manuscrit sont aussi introduites dans cette section.

Nous précisons tout dŠabord que nous ne déĄnissons pas dans la suite toutes les notions utilisées et nous renvoyons vers des ouvrages de géométrie comme [START_REF] Do Carmo | Differential geometry of curves and surfaces[END_REF] ou [START_REF] Gallot | Riemannian geometry[END_REF] pour une déĄnition de ces notions. Nous appelons surface une variété connexe bidimensionnelle notée M , munie dŠune métrique notée g. La surface est donc déĄnie par le couple (M, g). SŠil nŠy a pas dŠambiguïté, nous la noterons simplement M . Les surfaces considérées sont supposées orientées et lisses. Nous précisons que le mot voisinage référera dans la suite à un voisinage ouvert. Une première propriété vériĄée par M est lŠexistence en tout point dŠun système local de coordonnées :

Propriété 1.2 (Système local de coordonnées). Pour tout p ∈ M , il existe un voisinage (ouvert) Ω ⊂ M de p et un C ∞ -difféomorphisme ϕ : U ⊂ R 2 → Ω. Le couple (Ω, ϕ) est appelé système local de coordonnées de M en p.
LŠensemble des systèmes locaux de coordonnées dŠune surface est appelé atlas. Ces systèmes vériĄent la propriété de compatibilité suivante :

Propriété 1.3 (Cartes C ∞ -compatibles). Soient (Ω i , ϕ i ), (Ω j , ϕ j ) deux systèmes locaux de coordonnées de M tels que Ω i ∩ Ω j ̸ = ∅. Alors, l'application ϕ -1 j • ϕ i : ϕ -1 i (Ω i ∩ Ω j ) → ϕ -1 j (Ω i ∩ Ω j ) (1.4)
est un C ∞ -difféomorphisme et ces systèmes de coordonnées sont dits C ∞ -compatibles.

Introduction

Un espace tangent à M peut être déĄni en chaque point p ∈ M . Il est noté T p M et le Ąbré tangent à M , déĄni par ∪ p∈M T p M , est noté T M . Comme la surface est munie dŠune métrique g, nous utiliserons les notations suivantes : pour tous

p ∈ M et X p , Y p ∈ T p M , ⟨X p , Y p ⟩ g := g(X p , Y p ), ♣X p ♣ 2 g := g(X p , X p ).
Nous noterons, pour tous X, Y ∈ R 

Ω, ϕ) par [X, Y ] = X j ∂ j Y i -Y j ∂ j X i e i , où X = X i e i et Y = Y i e i . De plus, nous notons X ⊥ le champ de vecteurs vériĄant ∠(X, X ⊥ ) = π 2
en tout point p ∈ M tel que X p ̸ = 0. Soit γ : I ⊂ R → M une courbe paramétrée par longueur dŠarc. Nous appelons courbure géodésique de γ la fonction κ : I → R déĄnie par

κ(t) = ⟨γ ′′ (t), γ ′⊥ (t)⟩ g , pour tout t ∈ I.
Supposons maintenant que la surface M soit plongée dans R 3 . Ainsi, il existe un système local de coordonnées (Ω, ϕ) au voisinage de tout point p ∈ M , avec ϕ :

U ⊂ R 2 → Ω ⊂ R 3 et Ω un ouvert de M . Le plan tangent en p = ϕ(u, v), est déĄni par T p M = vect(∂ u ϕ, ∂ v ϕ), lŠespace vectoriel engendré par ∂ u ϕ(u, v) et ∂ v ϕ(u, v) dans R 3 .
Comme M est plongée dans R 3 , la métrique g p en p ∈ M est déĄnie par la restriction à T p M de la métrique euclidienne sur R 3 . Le système de coordonnées (Ω, ϕ) induit une métrique sur U rendant ϕ isométrique. Cette métrique est appelée première forme fondamentale et notée I p au point p ∈ M , lŠindice p étant omis quand il nŠy a pas dŠambiguïté. La métrique I a la forme suivante :

I = Edu 2 + 2Fdudv + Gdv 2 , avec E = ♣∂ u ϕ♣ 2 , F = ⟨∂ u ϕ, ∂ v ϕ⟩, G = ♣∂ v ϕ♣ 2 .
De plus, le plan tangent T p M est indépendant du système de coordonnées (Ω, ϕ) et nous notons donc N (p) la normale à T p M . Cette application N : M → S 2 , où S 2 est la sphère unitaire de R 3 , est appelée application de Gauss et est déĄnie par

N (p) = ∂ u ϕ × ∂ v ϕ ♣∂ u ϕ × ∂ v ϕ♣ (u, v), avec p = ϕ(u, v).

Les réseaux de Chebyshev

Notons maintenant II p la seconde forme fondamentale déĄnie en p ∈ M par 

II p (X p , Y p ) = -⟨dN p (X p ), Y p ⟩ = ⟨S p (X p ), Y p ⟩ g , ∀X p , Y p ∈ T p M, où S p ∈ L(T p M )
respectivement K = λ 1 λ 2 et H = λ 1 +λ 2 2
la courbure de Gauss et la courbure moyenne de la surface.

Les réseaux de Chebyshev

Nous présentons maintenant une introduction aux réseaux de Chebyshev. Dans un premier temps, nous introduisons brièvement dans la section 1.3.1 ces systèmes de coordonnées et nous exposons un aperçu des problématiques de cette thèse. Quelques exemples de réseaux de Chebyshev sur des surfaces avec symétries sont aussi présentés. Dans un second temps, nous énonçons dans la section 1.3.2 quelques propriétés satisfaites par ces systèmes de coordonnées que nous utiliserons dans ce manuscrit. Puis, nous présentons dans la section 1.3.3 la méthode du compas qui permet de construire des réseaux de Chebyshev discrets. Finalement, nous présentons un état de lŠart sur la construction de réseaux de Chebyshev dans la section 1.3.4.

Brève introduction

De la contrainte géométrique aux réseaux de Chebyshev

Nous revenons dans ce paragraphe à la question 1.1 modélisant les contraintes géométriques de la recherche de forme pour les gridshells. Ainsi, nous reprenons les notations introduites dans la sous-section 1.1.2.1 et nous notons M ⊂ R 3 la surface que lŠon souhaite construire par gridshell. Pour commencer, cette question peut être reformulée sous la forme suivante : pour un h > 0 Ąxé, existe-t-il

U gs ⊂ (R + ) 2 et ϕ : U gs → M tels que d du ϕ(u, αh) = 1 pour tout u ∈ D 2,α (U gs ) et α ∈ ¶1, ..., N 2 ♦, d dv ϕ(ih, v) = 1 pour tout v ∈ D 1,i (U gs ) et i ∈ ¶1, ..., N 1 ♦, Introduction pour tout (u, v) ∈ U gs .
Notons ici que la modélisation faite ci-dessus reste valable dans le cas de jonctions de Ąls inextensibles et incompressibles. Les tissus sont donc des exemples de structures pouvant être modélisées dŠune manière similaire, dans le cas où le glissement entre les Ąls est négligé. Ainsi, la question 1.4 a été initialement posée en 1878 par P.L. Chebyshev lors dŠun exposé dont le thème était la coupe des vêtements [START_REF] Ghys | Sur la coupe des vêtements: variation autour dŠun thème de Tchebychev[END_REF]. En supposant de plus que (∂ u ϕ, ∂ v ϕ) forme une famille libre pour tout (u, v) ∈ U , le couple (M, ϕ) est un système de coordonnées de la surface M appelé réseau de Chebyshev.

La première problématique est de savoir sŠil existe, et en tout point p dŠune surface M , un système local de coordonnées de Chebyshev. La réponse est positive, comme on peut le voir dans la proposition ci-dessous, dont la première preuve a été apportée en 1902 par Bianchi [START_REF] Bianchi | Lezione di geometria differenziale[END_REF].

Proposition 1.5. Soient M une surface et p ∈ M . Il existe un ouvert U de R 2 , un voisinage Ω ⊂ M de p et un système local de coordonnées (Ω, ϕ) de M tels que ϕ : U → Ω satisfasse (1.5), pour tout (u, v) ∈ U .
Nous renvoyons à [START_REF] Ghys | Sur la coupe des vêtements: variation autour dŠun thème de Tchebychev[END_REF] pour une ébauche de preuve pour cette proposition et une approche historique des réseaux de Chebyshev. Une fois lŠexistence locale assurée, la problématique principale est celle de lŠexistence globale dŠun réseau de Chebyshev sur une surface donnée : peut-on trouver une carte globale (M, ϕ) vériĄant (1.5) ? Cette problématique, centrée sur lŠexistence dŠun système de coordonnées, est développée dans le chapitre 2. Dans le chapitre 3, cette question est généralisée en considérant les lignes de coordonnées comme une entité. Ainsi, il nŠest pas nécessaire que ces lignes de coordonnées soient déĄnies par un unique système de coordonnées et on se ramène au problème suivant : Question 1.6. Soit M une surface. Existe-t-il un ensemble de systèmes de coordonnées ¶(Ω i , ϕ i )♦ i∈E , avec ∪ i∈E Ω i = M , tel que ϕ i satisfasse (1.5) pour tout i ∈ E et tel que les lignes de coordonnées "recollent" sur les domaines d'intersection des Ω i ?

Pour le moment, cette question est présentée de manière informelle et nous renvoyons au chapitre 3 pour plus de précisions sur le passage du local au global. Dans la section 1.3.4, nous remarquerons que toutes les surfaces ne permettent pas de répondre positivement à la question 1.6. Cela se traduit par lŠapparition de singularités sur les réseaux de Chebyshev déĄnis sur les surfaces ne satisfaisant pas ces contraintes. AĄn dŠillustrer ces singularités, nous notons

ω = ∠(∂ u ϕ, ∂ v ϕ) lŠangle entre les lignes de coordonnées de lŠapplication ϕ : U ⊂ R 2 → ϕ(U ) ⊂ M vériĄant (1.5).
Les points de singularités de ϕ sont lŠensemble des points où cette application nŠest plus un C 1 -diféomorphisme. Génériquement, ces singularités peuvent être de deux types diférents appelés plis (ω = π) et fronces (ω = 0) [START_REF] Ghys | Sur la coupe des vêtements: variation autour dŠun thème de Tchebychev[END_REF]. Ces deux types de singularités sont présentés sur la Ągure 1.8. Ainsi, aĄn de ne pas avoir une trop grande restriction sur les surfaces accessibles, nous sommes amenés à considérer les réseaux de Chebyshev avec singularités. Les singularités des systèmes de coordonnées sont introduites dans le chapitre 3.

Quelques exemples

Nous présentons dans cette section des constructions de réseaux de Chebyshev connus pour des surfaces particulières. Nous ne prétendons pas à lŠexhaustivité des diférentes symétries permettant lŠexistence de ces réseaux. Seuls quelques exemples introduisant les réseaux de Chebyshev sont présentés ci-dessous. 

U → M ⊂ R 3 , avec ψ(u, v) = cos(u)γ x (v), sin(u)γ x (v), γ y (v)  .
LŠespace tangent de M est donc engendré en chaque point ψ(u, v) ∈ M par les vecteurs

∂ u ψ = -sin(u)γ x (v), cos(u)γ x (v), 0  , ∂ v ψ = cos(u)γ ′ x (v), sin(u)γ ′ x (v), γ ′ y (v)  .
Ces champs de vecteurs satisfont

⟨∂ u ψ, ∂ v ψ⟩ = 0, ♣∂ u ψ♣ 2 = ♣γ x ♣ 2 et ♣∂ v ψ♣ 2 = 1. Nous déĄnissons, pour tout α > 0, lŠouvert U α = (u, v) ∈ U ♣ αγ x (v) 2 < 4, γ x (v) ̸ = 0 ⊂ U.
De plus, soient Xα , Ỹα : ψ(U α ) → R 3 les champs de vecteurs sur ψ(U α ) déĄnis par

Xα = α∂ u ψ, Ỹα = 4 -α 2 ♣γ x ♣ 2 ∂ v ψ.
Alors les champs de vecteurs Xα , Ỹα satisfont ⟨ Xα , Ỹα ⟩ = 0, [ Xα , Ỹα ] = 0 et

♣ Xα ♣ 2 + ♣ Ỹα ♣ 2 = α 2 ♣γ x ♣ 2 + 4 -α 2 ♣γ x ♣ 2 = 4.
Ainsi, les champs de vecteurs

X α = Xα+ Ỹα 2 et Y α = Xα-Ỹα 2 vériĄent ♣X α ♣ = 1, ♣Y α ♣ = 1 et [X α , Y α ] = 0. On en déduit donc lŠexistence dŠun système de coordonnées ϕ α : V α ⊂ R 2 → ψ(U α ) tel que ∂ u ϕ α = X α et ∂ v ϕ α = Y α .
LŠapplication ϕ α est de plus, par déĄnition, un réseau de Chebyshev. Nous remarquons que les points (u, v) ∈ cl(U α ) ∩ U , avec cl(U α ) lŠadhérence de U α , sont des points où lŠapplication ϕ α nŠest plus un C 1 -diféomorphisme. En efet, les vecteurs X α et Y α ne forment pas une base de T ϕα(u,v) M en ces points. Ces derniers sont donc des points de singularité de lŠapplication ϕ α .

Nous présentons maintenant deux applications permettant la construction de réseaux de Chebyshev. Tout dŠabord, soit γ 1 = (γ 1,x , γ 1,y ) : [-π 2 , π 2 ] → R 2 la courbe déĄnie par γ 1 (t) = (cos(t), sin(t)). La surface de révolution déĄnie par γ 1 est S 2 , la sphère unitée de R 3 . Un exemple de réseau de Chebyshev sur la sphère construit par cette méthode est présentée sur la Ągure 1.9. On peut γ 2 est le caténoïde. Nous présentons sur la Ągure 1.10 le réseau de Chebyshev ϕ α 0 , avec α 0 < 1, construit sur cette surface. On peut observer sur cette Ągure des lignes de la surface le long desquelles lŠangle entre les lignes de coordonnées est π. Ces lignes, dites de pli, correspondent à lŠensemble des points tels que α 0 γ 2,x 2 = 4. Finalement, nous observons que, en réduisant α 0 , le domaine de déĄnition U α 0 de ϕ α 0 est aggrandi et on peut construire de cette manière un réseau de Chebyshev sur tout domaine borné de la surface. De même que pour la sphère, il est par contre impossible de trouver un réseau de Chebyshev global sur le caténoïde.

Les surfaces de translation

Les surfaces de translation sont dŠautres exemples de surfaces sur lesquelles on peut construire un réseau de Chebyshev. Ainsi, soient deux courbes γ 1 :

I 1 ⊂ R → R 3 et γ 2 : I 2 ⊂ R → R 3 paramétrées par longueur dŠarc. Dès lors que, pour tout (u, v) ∈ I 1 ×I 2 , on a γ ′ 1 (u)×γ ′ 2 (v) ̸ = 0,
avec × le produit vectoriel, ces deux courbes permettent de déĄnir une surface de translation M . Celle-ci est déĄnie par la paramétrisation ψ :

I 1 ×I 2 → M ⊂ R 3 , où ψ(u, v) = γ 1 (u) + γ 2 (v), pour tout (u, v) ∈ I 1 ×I 2 . Ainsi, on a ∂ u ψ = γ ′ 1 et ∂ v ψ = γ ′
2 et ψ est donc un réseau de Chebyshev. Un exemple de surface de translation est donné par les courbes γ 1 : R → M et γ 2 : R → M respectivement déĄnies par γ 1 (u) = (u, 0, sin(u)) et γ 2 (v) = (0, v, sin(v)). Le réseau de Chebyshev ψ de cette surface est présenté dans la Ągure 1.11.

Propriétés

Nous présentons maintenant certaines propriétés satisfaites par les réseaux de Chebyshev. Soit ϕ : U ⊂ R 2 → Ω ⊂ M un réseau de Chebyshev, cŠest-à-dire un système de coordonnées (Ω, ϕ) 

♣∂ u ϕ♣ g (u, v) = ♣∂ v ϕ♣ g (u, v) = 1, (1.6) pour tout (u, v) ∈ U . Nous notons ω : U → (0, π) la distribution dŠangles déĄnie par ω(u, v) = ∠(∂ u ϕ, ∂ v ϕ)(u, v), pour tout (u, v) ∈ U .
Alors, la première forme fondamentale sŠécrit dans ce système de coordonnées :

I = du 2 + 2 cos(ω)dudv + dv 2 .
La courbure de Gauss K : U → R de cette métrique I est

K = ∂ uv ω sin(ω) .
Soit maintenant (Ω, ψ), avec ψ : Ũ ⊂ R 2 → Ω, un système de coordonnées. Notons que lŠon peut exprimer (Ω, ϕ) dans le système de coordonnées (Ω, ψ) par le biais de lŠapplication ψ -1 •ϕ : U → Ũ . Une propriété importante satisfaite par un réseau de Chebyshev est que les lignes de coordonnées en u sont transportés parallèlement le long des lignes de coordonnées en v, et inversement. Cela sŠexprime dans le système de coordonnées (Ω, ψ) par lŠéquation de Servant énoncée dans la propriété ci-dessous. Propriété 1.7 (Transport parallèle et équation de Servant). En dérivant la condition (1.6), on obtient D ∂u ∂ v ϕ = 0, D ∂u étant la dérivation covariante dans la direction de ∂ u ϕ. Ainsi, en exprimant (Ω, ϕ) dans un système de coordonnées (Ω, ψ), on obtient que l'application f = ψ -1 • ϕ : U → Ũ satisfait l'équation de Servant

∂f i ∂u∂v + 2 k,l=1 Γ i k,l (f ) ∂f k ∂u ∂f l ∂v = 0, pour i = 1, 2, (1.7 
)

où Γ i k,l : Ũ → R, pour i, k, l ∈ ¶1, 2 
♦, sont les symboles de Christoffel exprimés dans le système de coordonnées (Ω, ψ).

En utilisant la propriété 1.7, on obtient de plus la propriété suivante sur les lignes de coordonnées des réseaux de Chebyshev.

Propriété 1.8 (Courbure géodésique des lignes de coordonnées). Soit

ϕ : U ⊂ R 2 → ϕ(U ) ⊂ M une application satisfaisant (1.6) and soient (u 1 , v 1 ) ∈ R 2 et (u 2 , v 2 ) ∈ R 2 . Nous notons ω : U → R/2πZ la distribution d'angles définie par ω(u, v) = ∠(∂ u ϕ, ∂ v ϕ)(u, v), pour tout (u, v) ∈ U . Alors, en supposant que u 1 , v 1 et v 2 sont tels que ¶u 1 ♦×[v 1 , v 2 ] ⊂ U , on a ω(u 1 , v 2 ) = ω(u 1 , v 1 ) - -v 1 -v 2 κ v , où κ v : [-v 2 , -v 1 ] → R est la courbure géodésique de la courbe η 1 : [-v 2 , -v 1 ] → M définie par η 1 (v) = ϕ(u 1 , -v), pour tout v ∈ [-v 2 , -v 1 ]
. Cette propriété, illustrée en figure 1.12, résulte du transport parallèle de ∂ u ϕ le long de η 1 . De plus, en supposant que

u 1 , u 2 et v 1 sont tels que [u 1 , u 2 ]× ¶v 1 ♦ ⊂ U , on a ω(u 2 , v 1 ) = ω(u 1 , v 1 ) - u 2 u 1 κ u , où κ u : [u 1 , u 2 ] → R est la coubure géodésique de la courbe η 2 : [u 1 , u 2 ] → M définie par η 2 (u) = ϕ(u, v 1 ), pour tout u ∈ [u 1 , u 2 ]. ϕ(u 1 , •) ∂ u ϕ(u 1 , v 1 ) ω(u 1 , v 1 ) ∂ u ϕ ω ∂ u ϕ(u 1 , v 2 ) ω(u 1 , v 2 )
Fig. 1.12 Illustration du transport parallèle de ∂ u ϕ le long de ϕ(u 1 , •) Nous présentons maintenant la formule dŠHazzidakis [START_REF] Hazzidakis | Ueber einige Eigenschaften der Flächen mit constantem Krümmungsmaass[END_REF] reliant les angles entre les lignes de coordonnées des réseaux de Chebyshev et la courbure de Gauss de la surface. Les notations introduites pour exprimer cette formule sont présentés dans la Ągure 1.13.

Propriété 1.9 (Formule dŠHazzidakis). Soit

U = [0, L 1 ]×[0, L 2 ], avec L 1 , L 2 > 0, et soit ϕ : U → ϕ(U ) ⊂ M un réseau de Chebyshev. Nous notons Ω = ϕ(U ) et nous définissons les cinq points suivants A = ϕ(0, 0), B = ϕ(L 1 , 0), D = ϕ(0, L 2 ), C = ϕ(L 1 , L 2 ).
Les angles (dans (0, π)) entre les lignes de coordonnées en ces points sont respectivement notés

ω A = ω(0, 0), ω B = ω(L 1 , 0), ω D = ω(0, L 2 ), ω C = ω(L 1 , L 2 ).

Ces angles satisfont la formule d'Hazzidakis

ω A + ω C = ω B + ω D - Ω KdA. (1.8)
Nous remarquons Ąnalement que les réseaux de Chebyshev sont utilisés pour paramétrer les surfaces à courbure de Gauss constante négative. Voir par exemple [START_REF] Bobenko | Discretization of surfaces and integrable systems[END_REF][START_REF] Bobenko | Discrete surfaces with constant negative Gaussian curvature and the Hirota equation[END_REF] 1.13 Schéma des angles entre les lignes de coordonnées dŠun réseau de Chebyshev sur Ω discrétisation de ces surfaces se ramène ainsi à la discrétisation de lŠéquation de Sine-Gordon étudiée par Hirota [START_REF] Hirota | Nonlinear partial difference equations. III. Discrete sine-Gordon equation[END_REF]. Des classes spéciales de ces surfaces ont été étudiées par Hofmann [START_REF] Hoffmann | Discrete Amsler surfaces and a discrete Painlevé III equation[END_REF] et Pinkall [START_REF] Pinkall | Designing cylinders with constant negative curvature[END_REF].

ω A π-ω B ω C π-ω D A B C D Ω (L1, 0) (0, 0) (0, L2) ϕ U Fig.

Discrétisation : la méthode du compas

Nous présentons une méthode permettant de discrétiser les lignes de coordonnées dŠun réseau de Chebyshev (Ω, ϕ), avec ϕ : U ⊂ R 2 → Ω. Nous notons h > 0 le pas de la discrétisation. La méthode présentée ci-dessous permet dŠapprocher la grille ϕ(U ∩ hZ 2 ) par approximation de la condition (1.6). Pour illustrer la méthode, nous prenons maintenant les quatre points de U suivants :

A = (u, v), B = (u + h, v), C = (u + h, v + h), D = (u, v + h).
En supposant h assez petit, le point ϕ(C) est approché par un point de M à une distance h des points ϕ(B) et ϕ(D). Nous supposons de plus que h est assez petit pour que les distances de la surface soient assez proches des distances de R 3 . Ainsi, cette approximation est donnée par lŠunique point (en dehors de ϕ(A)) à lŠintersection de la surface et des deux sphères de rayon h centrées en ϕ(B) et en ϕ(D). La donnée des trois points ϕ(A), ϕ(B) et ϕ(D) permet donc de déterminer de manière unique une approximation de ϕ(C). Nous présentons cette méthode dans le cadre des conditions au bord dites de type primal. Nous renvoyons au chapitre 6 pour une présentation de la méthode du compas avec dŠautres types de conditions au bord. Ainsi, soient

γ 1 : [0, L 1 ] → M , avec L 1 > 0, et γ 2 : [0, L 2 ] → M , avec L 2 > 0, deux courbes de la surface et posons D = [0, L 1 ]×[0, L 2 ], N 1 = ⌊ L 1 h ⌋ et N 2 = ⌊ L 2 h ⌋.
Alors la grille associée au réseau de Chebyshev ϕ est donnée par lŠapplication P : ¶1, ..., N 1 ♦× ¶1, ..., N 2 ♦ → M vériĄant P(i, 1) = γ 1 (ih), pour tout i ∈ ¶1, ..., N 1 ♦, P(1, j) = γ 2 (jh), pour tout j ∈ ¶1, ..., N 2 ♦.

(1.9) La grille P h ainsi construite est donc une approximation de la grille P associée au réseau de Chebyshev ϕ : D → M . Notons que le pavage de la surface M formé par P h est constitué de losanges de R 3 . Cette méthode est schématisée dans la Ągure 1.14. 

Nous
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: [-L 1 , 0] → M , avec L 1 ∈ R + * ∪ ¶∞♦, et η 2 : [0, L 2 ] → M , avec L 2 ∈ R + * ∪ ¶∞♦, deux courbes lisses de courbure géodésique κ 1 : [-L 1 , 0] → R et κ 2 : [0, L 2 ] → R telles que η 1 (0) = η 2 (0). Supposons que ∠(η ′ 1 (0), η ′ 2 (0)) ∈ (0, π).
ϕ(u, 0) = η 2 (u), ∀u ∈ [0, L 2 ], ϕ(0, v) = η 1 (-v), ∀v ∈ [0, L 1 ],
et tel que ses lignes de coordonnées en v soient paramétrées par longueur d'arc et aient une courbure géodésique κ map 2

: D → R satisfaisant κ map 2 (u, v) = ∂ v ω(u, v) pour tout (u, v) ∈ D. Supposons de plus qu'il existe D = [0, L2 ]×[0, L1 ], avec L1 ∈ (0, L 1 ] et L2 ∈ (0, L 2 ], tel que 0 < ω(u, v) < π, pour tout (u, v) ∈ D. Alors, l'application ϕ satisfait ♣∂ u ϕ♣ g (u, v) = ♣∂ v ϕ♣ g (u, v) = 1, pour tout (u, v) ∈ D.
De plus, ϕ dépend continuement des conditions au bord η 1 et η 2 .

• Dans le chapitre 5, nous construisons des réseaux de Chebyshev avec singularités coniques (voir la déĄnition 3.5 du chapitre 3) sur des surfaces à courbure négative dominante. Le résultat principal de ce chapitre est énoncé dans le théorème suivant :

Theorem 1.12. Soit M une surface lisse, ouverte, complète et simplement connexe. Supposons que M satisfasse

M K + < 2π, M K -< ∞.
Alors il existe un réseau de Chebyshev avec singularités coniques lisse par morceau sur M .

Nous soulignons Ąnalement que la preuve du théorème présentée dans ce chapitre est constructive.

• Nous appliquons dans le chapitre 6 les résultats précédents pour construire par ordinateur des réseaux de Chebyshev. En efet, un programme permettant la construction de réseaux de Chebyshev avec singularités coniques à partir dŠentrées fournies par lŠutilisateur a été développé au cours de cette thèse. Ces entrées constituent les données dŠun des diférents types de conditions au bord que nous présentons dans ce chapitre. Le programme a été relié à un logiciel de conception assisté par ordinateur utilisé dans le domaine de lŠarchitecture : Rhinoceros. Nous décrivons tout dŠabord dans ce chapitre un algorithme permettant de déterminer automatiquement des conditions au bord amenant à la construction de réseaux de Chebyshev avec singularités coniques sur toute surface M satisfaisant M K -< ∞ et ayant une courbure positive suisamment bien répartie. Nous présentons dans un second temps des résultats numériques obtenus par ce programme. Finalement, nous décrivons quelques fonctionnalités supplémentaires présentes danc ce programme comme la construction de singularités dites de type rosace.

Introduction

In this paper we call surface a Riemannian 2-manifold, whose metric will be denoted g, and we consider complete, simply connected surfaces. A Chebyshev net Φ on a surface is a parameterization of the surface satisfying

∀(u 1 , u 2 ) ∈ R, ∂ u Φ(u 1 , u 2 ) g(Φ(u 1 ,u 2 )) = ∂ v Φ(u 1 , u 2 ) g(Φ(u 1 ,u 2 )) = 1, (2.1) 
which means that length is preserved in two directions, called the primal coordinates. Let Ω(u 1 , u 2 ) be the angle between the coordinate curves at Φ(u 1 , u 2 ). A question of interest both for the existence of bi-Lipschitz maps [START_REF] Burago | Remarks on Chebyshev coordinates[END_REF] and for applications in textile or architectural shape design [START_REF] Ghys | Sur la coupe des vêtements: variation autour dŠun thème de Tchebychev[END_REF][START_REF] Douthe | Form-Ąnding of a grid shell in composite materials[END_REF] is the existence of a Chebyshev net on a given surface. While local existence of a Chebyshev net holds for all surfaces [START_REF] Bianchi | Lezione di geometria differenziale[END_REF], two approaches have been explored to obtain global existence. The Ąrst approach relies on a geometric proof on more general Alexandrov surfaces. The Ąrst result on global existence of a Chebyshev net on complete and simply connected Alexandrov surfaces has been obtained by Bakelman [START_REF] Bakelman | Chebyshev nets in manifolds of bounded curvature[END_REF]. Existence is proved on every sector Q α delimited by two geodesics crossing at an angle α such that Qα K + < α and Qα K -< πα, where K + and K -denote, respectively, the positive and negative parts of the Gaussian curvature K. A global Chebyshev net is then obtained on the surface for α = π/2. Burago, Ivanov and Malev [START_REF] Burago | Remarks on Chebyshev coordinates[END_REF] improved this result by showing that a complete and simply connected Alexandrov surface M admits a global Chebyshev net under the relaxed constraints M K + < 2π and M K -< 2π, but this net is not necessarily smooth on a Riemannian surface as the coordinate curves might present kinks at the boundaries between adjacent sectors.

A second analytical approach was developed by Samelson and Dayawansa [START_REF] Samelson | On the existence of global Tchebychev nets[END_REF] using the dual coordinates. A geodesic cutting the surface into two connected components R + and R -is chosen as a dual curve. In each connected component, existence and uniqueness of a smooth solution to ServantŠs equations (see (2.5) below) in the dual coordinates is proved for any smooth distribution of angles along the dual curve. Then, choosing a constant angle π/2 along the geodesic and using an estimate on the angle Ω of the net on R ± , it is shown that the solution to ServantŠs equations is a difeomorphism under the condition that R ± K + < π/2 and R ± K -< π/2. In the present paper, we add some arguments to the proof to improve this result by relaxing the constraints on the integrals of the Gaussian curvature. Our main result is the following:

Theorem 2.1. Let M be a complete, simply connected, C ∞ surface. Suppose that M ♣K♣ < 2π.
Then M admits a global Chebyshev net.

Let us note that the HazzidakisŠ formula [START_REF] Hazzidakis | Ueber einige Eigenschaften der Flächen mit constantem Krümmungsmaass[END_REF] suggests that this result is optimal in the sense that a smooth global Chebyshev net does not exist on a complete, simply connected surface M such that ♣ M K♣ > 2π.

The paper is organized as follows. In Section 2.2, we restate two existing results in a form that is useful for our purpose. The Ąrst one is that the estimates obtained on half the surface in [START_REF] Samelson | On the existence of global Tchebychev nets[END_REF] can be doubled using a theorem proved by Bonk and Lang [START_REF] Bonk | Bi-Lipschitz parameterization of surfaces[END_REF] stating that the surface can be split by a geodesic into two connected components (called half-surfaces) such that each component contains half of the integral of K + and K -on the surface. The second result concerns the existence (and uniqueness) of a smooth solution to ServantŠs equations proved in [START_REF] Samelson | On the existence of global Tchebychev nets[END_REF] which we restate by specifying the boundary conditions from the choice of a dual curve and an arbitrary smooth angle distribution on that curve. Then in Section 2.3, we prove the existence of a Chebyshev net on each half-surface. To that end, we Ąrst observe that it is suicient to keep the angles Ω of the net uniformly away from 0 and π for Φ to be a global difeomorphism. This means that no nonlocal self-intersection of the parameterization can occur when Φ is locally injective everywhere. Proving an analogue to the HazzidakisŠ formula in the dual coordinates, we are able to choose an adequate (constant) angle distribution on the dual geodesic curve to control the angles in each half-surface. Finally, we conclude the proof in Section 2.4 by assembling the intermediate results.

Preliminary results

In this section, we restate two existing results on splitting the surface into two components and on the solution to ServantŠs equations.

Splitting the surface into two components

We give a restatement of [9, prop. 6.1] applied to the continuous nonnegative function K -.

Preliminary results

Proposition 2.2. Let M be a smooth, complete surface homeomorphic to the plane. Suppose that M K + < 2π and M K -< ∞. Then there exists a properly embedded, complete geodesic γ, splitting M into two connected components M 1 and M 2 such that

M 1 K + = M 2 K + , M 1 K -= M 2 K -.
(2.2)

Solution to Servant's equations

Following Samelson and Dayawansa [START_REF] Samelson | On the existence of global Tchebychev nets[END_REF], we introduce the change of variables D : (u 1 , u 2 ) → (x 1 , x 2 ) = (u 1u 2 , u 1 + u 2 ) to the dual coordinates. We use upper case letters Φ and Ω for the primal parameterization and angle between primal coordinate curves, lower case letters

ϕ = Φ • D -1 and ω = Ω • D -1
for their dual counterparts. The Ąrst fundamental form in a Chebyshev net is then

g = (du 1 ) 2 + 2 cos(Ω(u 1 , u 2 ))du 1 du 2 + (du 2 ) 2 (2.3) = sin 2 ω(x 1 , x 2 ) 2 (dx 1 ) 2 + cos 2 ω(x 1 , x 2 ) 2 (dx 2 ) 2 .
(2.4)

A derivation of (2.1) along coordinates (u 1 , u 2 ) leads to ServantŠs equations, expressed here in the dual coordinates (x 1 , x 2 ),

∂ 2 yy ϕ i -∂ 2 xx ϕ i + 2 k,l=1 Γ i k,l (ϕ) ∂ y ϕ k ∂ y ϕ l -∂ x ϕ k ∂ x ϕ l  = 0, for i = 1, 2, (2.5) 
where Γ i k,l denote the Christofel symbols, together with the Cauchy boundary conditions

   ϕ(x 1 , 0) = γ(x 1 ), ∂ y ϕ(x 1 , 0) = ψ(x 1 ), ∀x 1 ∈ R, (2.6) 
for given functions γ, ψ : R → M . The following result on smooth solutions with smooth boundary conditions is proved in [START_REF] Samelson | On the existence of global Tchebychev nets[END_REF].

Proposition 2.3. Assume that γ, ψ are C ∞ functions. Then there exists a unique C ∞ solution ϕ to (2.5)-(2.6).
The primal parameterization Φ = ϕ • D, where ϕ is the solution to (2.5)-(2.6), is then a Chebyshev net if and only if (2.1) is satisĄed by Φ on the boundary. This is expressed, on the dual coordinates, by

       ∂ x ϕ(x 1 , 0), ∂ y ϕ(x 1 , 0) g(ϕ(x 1 ,0)) = 0, ∂ x ϕ(x 1 , 0) 2 g(ϕ(x 1 ,0)) + ∂ y ϕ(x 1 , 0) 2 g(ϕ(x 1 ,0)) = 1, ∀x 1 ∈ R. (2.7) But (2.7
) is equivalent to the existence of an arc length parameterized curve γ and an angle distribution ω : R → (0; π) along γ such that

       ϕ(x 1 , 0) = γ(α(x 1 )), ∂ y ϕ(x 1 , 0) = cos ω(x 1 ) 2 n(α(x 1 )), ∀x 1 ∈ R, (2.8) 
where t(x 1 ) is the tangential vector to γ at x 1 , n(x 1 ) is the normal vector to this curve at x 1 such that (t(x 1 ), n(x 1 )) is positively oriented, and

α(x 1 ) = x 1 0 sin  ω(s) 2  ds.
Moreover, we have ω(x 1 ) = ω(x 1 , 0) where ω is the angle between the primal coordinate curves. The Cauchy boundary conditions for ServantŠs equations (2.5) satisfying the Chebyshev property (2.1) are now prescribed by specifying

• an arc length parametrized curve γ : R → M ;

• an angle distribution ω : R → (0; π) uniformly bounded away from 0 and π.

We will say that a map ϕ : R → M is a local Chebyshev net on M if it satisĄes ServantŠs equations (2.5) with Cauchy boundary conditions (2.8).

Existence of a Chebyshev net on each half-surface

In this section we prove the existence of a Chebyshev net on each half-surface. The key ingredient is a new Hazzidakis-type formula on the dual (see Lemma 2.5) which allows us to specify a suitable angle distribution along the geodesic (see Lemma 2.7).

Global injectivity of the map ϕ

Lemma 2.4. Let M be a complete, simply connected, C ∞ surface. A mapping ϕ : R → M satisfying (2.1) is a global Chebyshev net if it satisfies ∃ε > 0 s.t. ε < ω(x 1 , x 2 ) < π -ε, ∀(x 1 , x 2 ) ∈ R (2.9)
where ω is the angle of the map defined in (2.3).

Proof. Let ds 2 be the metric (2.3) associated with ϕ. Since ω satisĄes (2.9), (R, ds 2 ) is a geodesically complete, simply connected, C ∞ surface. Moreover, ϕ : (R, ds 2 ) → M is a local isometry. That ϕ is a global isometry follows from [20, prop. 2.106]. Hence ϕ : R → M is a global Chebyshev net.

Hazzidakis' formula on the dual

Lemma 2.4 shows that the map ϕ can be proved to be a difeomorphism by deriving a uniform estimate on the angle ω of the net. To this purpose, we derive an equivalent to the HazzidakisŠ formula in the dual coordinates. We derive the result from the classical relation (see for instance [START_REF] Stoker | of Pure and Applied Mathematics[END_REF]): 

∂ 2 uv Ω(u 1 , u 2 ) = -K Φ(u 1 , u 2 )  sin(Ω(u 1 , u 2 )). ( 2 
∀(x 0 , y 0 ) ∈ R, ∀h > 0, ω(x 0 + h 2 , y 0 + h 2 ) = ω(x 0 , y 0 ) + ω(x 0 + h, y 0 ) 2 + AB k γ - ABC K,

Existence of a Chebyshev net on each half-surface

where ω is the angle of the net introduced in (2.3) and k γ is the geodesic curvature of γ defined as

k γ = - 1 ♣∂ x ϕ♣ g(ϕ) ∂ x ∂ x ϕ ♣∂ x ϕ♣ g(ϕ) , ∂ y ϕ ♣∂ y ϕ♣ g(ϕ) g(ϕ) dual curve γ primal curve primal curve π-ω A 2 π-ω B 2 ω C A B C Γ + Fig. 2.

Scheme of the HazzidakisŠ formula on triangle ABC

The proof of Lemma 2.5 hinges on the following lemma.

Lemma 2.6. Let ϕ : R → M be a local Chebyshev net of M . The following holds for all y 0 ∈ R: 

∂ y ω(•, y 0 ) = 2k γ sin  ω(•, y 0 ) 2  . ( 2 
∂ x ∂ x ♣∂ x ♣ g(ϕ) , ∂ y g(ϕ) = ∂ x ∂ x ♣∂ x ♣ g(ϕ)
, ∂ y g(ϕ)

+ 1 2 ♣∂ x ♣ g(ϕ) ∂ y ♣∂ x ♣ 2 g(ϕ)  = -♣∂ y ♣ g(ϕ) ♣∂ x ♣ g(ϕ) k γ + 1 2 ♣∂ x ♣ g(ϕ) ∂ y  sin 2  ω 2  . Moreover, ⟨∂ x , ∂ y ⟩ g(ϕ) = 0, ♣∂ x ♣ g(ϕ) = sin( ω 2 ) and ♣∂ y ♣ g(ϕ) = cos( ω 2
) due to (2.4), so that (2.11) holds.

Proof. (HazzidakisŠ formula): Let (u 0 , v 0 ) = D -1 (x 0 , y 0 ). Let Γ + be the triangle delimited by the dual curve joining A to B and the two primal curves joining B to C and C to A (see Figure 2.1):

Γ + = ϕ (x, y) ∈ R♣ x 0 ≤ x ≤ x 0 + h, y 0 ≤ y ≤ y 0 + h 2 -x -x 0 -h 2  = Φ (u, v) ∈ R♣ u ≤ u 0 + h 2 , v ≤ v 0 , u + v ≥ u 0 + v 0  .
Integrating (2.10) on Γ + leads to

- Γ + K = u 0 + h 2 u 0 v 0 u 0 +v 0 -u ∂ 2 uv Ω(u, v)dvdu = u 0 + h 2 u 0 (∂ u Ω(u, v 0 ) -∂ u Ω(u, u 0 + v 0 -u)) du = Ω(u 0 + h 2 , v 0 ) -Ω(u 0 , v 0 ) - 1 2 u 0 + h 2 u 0 (∂ u -∂ v )Ω(u, u 0 + v 0 -u)du - 1 2 u 0 + h 2 u 0 (∂ u + ∂ v )Ω(u, u 0 + v 0 -u)du = Ω(u 0 + h 2 , v 0 ) -Ω(u 0 , v 0 ) - 1 2 Ω(u 0 + h 2 , v 0 -h 2 ) -Ω(u 0 , v 0 ) - 1 2
x 0 +y 0 +h

x 0 +y 0 ∂ y ω(-y 0 + x, y 0 )dx = Ω(u 0 + h 2 , v 0 ) - 1 2 Ω(u 0 , v 0 ) - 1 2 Ω(u 0 + h 2 , v 0 -h 2 ) - AB ∂ y ω 2 sin( ω 2 ) = ω(x 0 + h 2 , y 0 + h 2 ) - 1 2 ω(x 0 , y 0 ) - 1 2 ω(x 0 + h, y 0 ) - AB k γ .
This completes the proof.

Angle distribution along the dual curve

Lemma 2.7. Let γ be a geodesic of M which splits this surface into two connected components

M 1 and M 2 . If max i=1,2 M i K + + max i=1,2 M i K -< π, (2.12)
then there exists a distribution ω : R → (0; π) such that the solution of Servant's equations (2.5) given by the Cauchy boundary conditions γ and ω in

(2.8) is a C ∞ -diffeomorphism.
Proof. Lemma 2.5 applied with x 0 = x 1x 2 , y 0 = 0 and h = 2x 2 leads to the following estimate:

∀(x 1 , x 2 ) ∈ R, inf s∈R ω(s) -max i=1,2 M i K + ≤ ω(x 1 , x 2 ) ≤ max i=1,2 M i K -+ sup s∈R ω(s).
Hence, choosing for instance the constant distribution of angles along γ such that

ω(x) = π 2 + 1 2 max i=1,2 M i K + - 1 2 max i=1,2 M i K -
gives a global Chebyshev net owing to Lemma 2.4.

Proof of the main theorem

Let γ be a geodesic splitting M into two connected components M 1 and M 2 , as resulting from Proposition 2.2. Then the hypotheses of Lemma 2.7 are satisĄed upon choosing the geodesic γ and the constant distribution of angles ω = π 2 + 1 4 M K as Cauchy boundary conditions in (2.8). This proves the main theorem.

Chapter 3

Conical singularities

The main issue addressed in this thesis is to construct Chebyshev coordinates on a given surface M . These coordinates and the main diiculties regarding their construction are introduced in Section 3.1. As will be shown, the existence of Chebyshev coordinates is constrained by the total Gaussian curvature of M . Hence, we then introduce a new paradigm of Chebyshev nets with conical singularities to improve the conditions ensuring their existence. Next, we take a global view on parametrization and singularities in Section 3.2. We primarily consider the globalization of coordinate systems and we then deĄne singularities of coordinate systems. We focus in Section 3.3 on Chebyshev nets with conical singularities and we justify the construction presented in Section 3.1. We Ąnally present in Section 3.4 the proof of some properties concerning coordinate systems stated in Section 3.2.

Chebyshev coordinates

Introduction

We now introduce the main issues related to the construction of Chebyshev nets with singularities. Before this, we Ąx some notation and some deĄnitions used in the sequel. We call surface a connected, smooth two-dimensional oriented manifold, denoted M , endowed with a metric, denoted g. Unless explicitly mentioned, the considered surfaces are supposed to be homeomorphic to the plane. We denote (Ω, ϕ) the coordinate system ϕ :

U ⊂ R 2 → Ω ⊂ M , with Ω an open set of M , U an open set of R 2 and ϕ a difeomorphism. DeĄnition 3.1 (Chebyshev nets). We call Chebyshev net any coordinate system (Ω, ϕ), with ϕ : U ⊂ R 2 → Ω ⊂ M a diffeomorphism satisfying ♣∂ u ϕ♣ g (u, v) = ♣∂ v ϕ♣ g (u, v) = 1, (3.1)
for all (u, v) ∈ U .

While local existence of a Chebyshev net on any surface M is always satisĄed [START_REF] Ghys | Sur la coupe des vêtements: variation autour dŠun thème de Tchebychev[END_REF], the existence of a global Chebyshev net (M, ϕ), with ϕ : U ⊂ R 2 → M , is constrained by the total Gaussian curvature of M . The source of these constraints lies in the following Hazzidakis formula [START_REF] Hazzidakis | Ueber einige Eigenschaften der Flächen mit constantem Krümmungsmaass[END_REF].

Property 3.2 (Hazzidakis formula). Let U = [0, L 1 ]×[0, L 2 ], with L 1 , L 2 > 0. Let ϕ : U → Ω ⊂ M ,
with Ω = ϕ(U ), be a Chebyshev net. We define the following points:

A = ϕ(0, 0), B = ϕ(L 1 , 0), D = ϕ(0, L 2 ), C = ϕ(L 1 , L 2 ).

The angles between the coordinate curves at these points are respectively denoted

ω A = ω(0, 0), ω B = ω(L 1 , 0), ω D = ω(0, L 2 ), ω C = ω(L 1 , L 2 ).
Then, these angles satisfy the Hazzidakis formula

ω A + ω C = ω B + ω D - Ω KdA, (3.2)
where K is the Gaussian curvature of M .

ω A π-ω B ω C π-ω D Ω A B C D Fig. 3.

Illustration of the angles between the coordinate curves of a Chebyshev net on Ω

From [START_REF] Burago | Remarks on Chebyshev coordinates[END_REF], there exists a Chebyshev net on any complete surface homeomorphic to the plane satisfying

M K ± < 2π, (3.3) 
with K the Gaussian curvature of the surface, K + = max(K, 0) and K -= max(-K, 0). Then, using the Hazzidakis formula (3.2), we emphasize that this result is optimal whenever the curvature of the surface has constant sign. However, let us mention that optimization methods have been introduced in [START_REF] Garg | Wire mesh design[END_REF][START_REF] Bouhaya | Optimization of gridshell bar orientation using a simpliĄed genetic approach[END_REF] to construct Chebyshev nets in practical cases where (3.3) is not satisĄed. To consider a set of surfaces less restricted than surfaces satisfying (3.3), we introduce in the sequel singularities of Chebyshev nets. Indeed, as will be seen, the introduction of singularities permits to go beyond the constraint formulated by the Hazzidakis formula. Therefore, we consider the two following generalizations of (3.3):

1. The surface has a dominantly negative curvature: M K + < 2π and M K -> 2π.

2. The surface has a dominantly positive curvature: M K + > 2π and M K -< 2π.

In this manuscript, we focus on the case of surfaces with dominantly negative curvature (case 1). Concerning case 2, we mention that a global parametrization of the sphere minus two segments is presented in [START_REF] Ghys | Sur la coupe des vêtements: variation autour dŠun thème de Tchebychev[END_REF]. This parametrization has four cusp singularities. We also mention that

Chebyshev coordinates

another parametrization of the sphere by a Chebyshev net can be obtained with two so-called rosette singularities (see Figure 1.9 of Chapter 1). Then, in the case 1, Burago et al pointed out in [START_REF] Burago | Remarks on Chebyshev coordinates[END_REF] that so-called generalized Chebyshev nets can be constructed on every complete surface homeomorphic to the plane satisfying

M K + < 2π, M K -< ∞. (3.4)
To construct Chebyshev nets on surfaces satisfying (3.4), we introduce Chebyshev nets with conical singularities in Section 3.1.2. We present in Chapter 5 a constructive proof of the existence of a piecewise smooth Chebyshev net with conical singularities on any complete surface homeomorphic to the plane.

Construction of Chebyshev nets with conical singularities

O-polyhedral surfaces

We deĄne particular polyhedral surfaces obtained by junctions of (R + )2 sets along their vertices located in R + × ¶0♦ ∪ ¶0♦×R + . These surfaces are called O-polyhedral surfaces, as an abbreviation of orthogonal polyhedral surfaces. O-polyhedral surfaces are deĄned by a set of polygons whose boundaries are isometrically identiĄed [START_REF] Bobenko | Computational approach to Riemann surfaces[END_REF]Subsec 1.1.3]. These identiĄcations are encoded in the so-called equivalence table.

DeĄnition 3.3 (O-polyhedral surface).

Let N pol ≥ 1 be an integer and, for all i ∈ ¶1, ...,

N pol ♦, let ¶γ i,α e ♦ 1≤α≤N i , with N i ≥ 2, be a partition of R + × ¶0♦ ∪ ¶0♦×R + . The polygon (R + ) 2 delimited by the edges ¶γ i,α e ♦ 1≤α≤N i is denoted B i e , for all i ∈ ¶1, ..., N pol ♦. Assume that T : ¶1, ..., N pol ♦ 2 →
N is a mapping satisfying the following: for all i, j ∈ ¶1, ..., N pol ♦ such that i ̸ = j,

• T (i, i) = T (j, j) = 0;
• T (i, j) = α ∈ ¶1, ..., N i ♦ and T (j, i) = β ∈ ¶1, ..., N j ♦ whenever the two edges γ i,α e and γ j,β e are identified.

• T (i, j) = T (j, i) = 0 whenever no identification is made between edges belonging to the boundaries of B i e and B j e .

The mapping T is called an equivalence table and the pair S = ( ¶B

i e ♦ 1≤i≤N pol , T ) is called an O-polyhedral surface. The set of vertices of S is denoted ¶p i e ♦ 1≤i≤Nver . The set of edges of S is denoted ¶γ i e ♦ 1≤i≤N ed .
A simple O-polyhedral surface is presented in Figure 3.2 and an illustration of a portion of an O-surface is presented in Figure 3.3. Let us notice that each vertex of an O-polyhedral surface is either at a corner of a polygon containing this vertex or in the interior of some edge in the boundary of this polygon (see Figure 3.4).

DeĄnition 3.4 (Interior angle of vertices). Let S be an O-polyhedral surface and let ¶p i

e ♦ 1≤i≤Nver be its set of vertices. Let i ∈ ¶1, ..., N ver ♦. We denote I i ⊂ ¶1, ..., N pol ♦ the indices of the polygons containing p i e . We denote θ i,α ∈ ¶ π 2 , π♦ the interior angle of B α e at p i e , for all α ∈ I i , and we set λ i := α∈I i θ i,α . We call interior angle of p i e the positive real number 

λ i = k i π e γ 5 e =γ 3,1 e \ \\\ B 3 e T (1, 3) = 3 T (3, 1) = 2 T (2, 3) = 2 T (3, 2) = 1 T (1, 2) = 4 T (2, 1) = 1 edge γ 3 e ( symbol 
× p 1 e θ 1,1 θ 1,2 θ 1,3 B 1 e B 3 e B 2 e γ 2,2 e =γ 3,1 e γ 1,1 e γ 2,1 e γ 3,2 e Fig. 3.4 A vertex p 1 e of an O-polyhedral surface (λ 1 = θ 1,1 + θ 1,2 + θ 1,3 = 2π)
3.1 Chebyshev coordinates

Junction of pieces of Chebyshev nets

Now, we outline the contruction of Chebyshev nets with conical singularities, deĄned as the junction of Chebyshev nets ϕ :

B e = (R + ) 2 → B c ⊂ M , with B c = ϕ(B e
), on a surface M .

DeĄnition 3.5 (Chebyshev nets with conical singularities).

Let M be a surface and let N pol ≥ 1 be an integer. For all i ∈ ¶1, ..., N pol ♦, let ¶γ i,α e ♦ 1≤α≤N i , with

N i ≥ 2, be a partition of R + × ¶0♦ ∪ ¶0♦×R + . The polygon (R + ) 2 delimited by the edges ¶γ i,α e ♦ 1≤α≤N i is denoted B i e , for all i ∈ ¶1, ..., N pol ♦. Assume that ¶ϕ i ♦ 1≤i≤N pol is a set of Chebyshev nets ϕ i : B i e → B i c ⊂ M , with B i c = ϕ i (B i e )
for all i ∈ ¶1, ..., N pol ♦, and assume that T : ¶1, ..., N pol ♦ 2 → N is an array such that: for all i, j ∈ ¶1, ..., N pol ♦,

• if i = j, then T (i, j) = 0; • if i ̸ = j and T (i, j) ̸ = 0, then: -T (i, j) = α ∈ ¶1, ..., N i ♦, T (j, i) = β ∈ ¶1, ..., N j ♦; -ϕ i γ i,α e = ϕ j γ j,β e and B i c ∩ B j c = ϕ i (γ i,α e ) = ϕ j (γ j,β e ); • if i ̸ = j and T (i, j) = 0, then T (j, i) = 0 and B i c ∩ B j c = ∅.

The array T is called an equivalence table and the triple

C = ( ¶B i e ♦ 1≤i≤N pol , ¶ϕ i ♦ 1≤i≤N pol , T
) is called a Chebyshev net with conical singularities. DeĄnition 3.6 (Piecewise smooth Chebyshev nets with conical singularities). Let C = ( ¶B i e ♦ 1≤i≤N pol , ¶ϕ i ♦ 1≤i≤N pol , T ) be a Chebyshev net with conical singularities. We say that C is piecewise smooth if the mapping ϕ i is piecewise smooth, for all i ∈ ¶1, ..., N pol ♦.

We illustrate in Figure 3.5 the construction of the equivalence table associated with a Chebyshev net with one conical singularity. We present a second example of Chebyshev net with one conical singularity in Figure 3.6. By Remark 3.7, Chebyshev nets with conical singularities can be equivalently deĄned as follows.

B 1 c B 3 c B 2 c γ 1,2 c =γ 2,1 c γ 1,1 c =γ 3,2 c γ 1,1 c =γ 3,2 c γ 2,2 c =γ 3,1 c T (1, 2) = 2 T (2, 1) = 1 T (1, 3) = 1 T (3, 1) = 2 T (2, 3) = 2 T (3, 2) = 1
DeĄnition 3.8 (Chebyshev nets with conical singularities). Let M be a surface and let S be an O-polyhedral surface. Then, any homeomorphic mapping ϕ : S → M inducing the metric

ds 2 = du 2 + 2 cos(ω(u, v))dudv + dv 2 , (3.5)
with ω : S → (0, π) the angle distribution between the coordinate curves, on S is called a Chebyshev net with conical singularities. The mapping ϕ is said to be piecewise smooth whenever it is piecewise smooth on each polygon B i e = (R + ) 2 of S. Let ¶p i e ♦ 1≤i≤Nver be the set of vertices of S and let i ∈ ¶1, ..., N pol ♦. Suppose that the interior angle

λ i = k i π 2 , with k i ≥ 1 an integer, of p i e is different from 2π. Then, the point ϕ(p i e ) is called a conical singularity of valence k i of ϕ.
The set of singularity points of ϕ is denoted P.

For example, the Chebyshev nets with one conical singularities of Figure 3.7 have valence 5 (EnneperŠs surface) and 3 (sphere). Remark 3.9 (Generalization to polygons of interior angle π 2 ). Chebyshev nets with conical singularities can be generalized to the junction of Chebyshev nets φ : Be → Bc = φ( Be ) ⊂ M , with Be an orthogonal polygon of R 2 . See Figure 3.8 for an illustration of the diferent types of orthogonal polygons of R 2 . We present an example of Chebyshev nets with two conical singularities, in this generalized sense, on the sphere in Figure 3.9.

Fig. 3.8 Illustration of the four types of orthogonal polygons in R 2

Let M be a surface and let C be a Chebyshev net with conical singularities P. Then, any point p ∈ M P has a Chebyshev net (Ω 0 , ϕ 0 ) deĄned by C in its neighborhood. On the other hand, the points in P have a particular coordinate system on their neighborhood called conical net in what follows. We take a global view on these singularity points in the next section.

Global surface parametrization and conical singularities

We set in this section the theorical basis to tackle the main problem addressed in this thesis: the construction of global Chebyshev nets on a given surface. The transition from local to global coordinate systems is considered in Section 3.2.1. This leads us to the introduction of globally compatible (GC) coordinate systems, deĄned to be a set of coordinate systems on the surface such that the coordinate curves are uniquely deĄned. Then, we consider in Section 3.2.2 GC coordinate systems on a surface minus a Ąnite set of isolated points called singularity points. Next, we focus on singularities with one more property: at their neighborhood, coordinate systems are distortions of conical surfaces. These singularities are called conical singularities. 

From local to global coordinate systems

In this section, we introduce global ŞmeshingsŤ, that is, globally deĄned coordinate curves.

We call these global ŞmeshingsŤ GC coordinate systems. With this purpose in mind, we emphasize that although global coordinate systems (M, ϕ) may exist in particular cases, in all generality coordinate systems are only deĄned locally. Hence, in order to consider surfaces non-homeomorphic to the plane or to consider singularity points, we deĄne the coordinate curves on the surface with multiple coordinate systems A = ¶(Ω i , ϕ i )♦ i∈E . Then, to have uniquely deĄned coordinate curves, the transition mappings between the nets in A must satisfy compatibility conditions. Indeed, to deĄne globally some notion on the surface, it is necessary to reduce the set of coordinate systems in order to have a deĄnition independent of the coordinate system in which it is expressed. An example is given by the Riemann surfaces [START_REF] Bobenko | Computational approach to Riemann surfaces[END_REF]: transition mappings are restricted to holomorphic mappings which permits to deĄne oriented angles. In the same manner, whenever the transition mappings are restricted to aine transformations, the atlas is called an aine structure. In order to have a unique deĄnition of the coordinate curves (and their parametrization) at each point of the surface, we restrict the transition mappings to grid automorphisms [START_REF] Nieser | Parameterizing singularities of positive integral index[END_REF], which are isometric mappings of R 2 deĄned as follows:

DeĄnition 3.10 (Grid automorphism of translation vector V and Ćip k). Let v ∈ R 2 and let k ∈ ¶0, 1, 2, 3♦. We call grid automorphism of translation vector V and flip k the isometry

L : R 2 → R 2 defined by L(x) = R k π 2 (x) + V, (3.6) for all x ∈ R 2 , with R kπ 2 the rotation of angle k π 2 .
Two coordinate systems on M such that the transition mapping is a piecewise grid automorphism are said to be compatible.

DeĄnition 3.11 (Compatibility of coordinate systems). Let M be a surface and let

(Ω i , ϕ i ) and (Ω j , ϕ j ) be two coordinate systems of M such that Ω i ∩Ω j ̸ = ∅. Let L i,j = ϕ -1 j •ϕ i : ϕ -1 i (Ω i ∩Ω j ) → ϕ -1 j (Ω i ∩ Ω j )
be the transition mapping between these two nets. Then, the coordinate systems (Ω i , ϕ i ) and (Ω j , ϕ j ) are said to be compatible whenever for all connected open set U ⊂ ϕ -1 i (Ω i ∩Ω j ), the mapping L i,j U : U → L i,j (U ) is the restriction to U of a grid automorphism.

We present in Figure 3.10 an illustration of two compatible nets (Ω i , ϕ i ) and (Ω j , ϕ j ). • ϕ i at p). Let A be a GC atlas and let (Ω i , ϕ i ) ∈ A and (Ω j , ϕ j ) ∈ A be such that Ω i ∩ Ω j ̸ = ∅. For all p ∈ Ω i ∩ Ω j , we call grid automorphism associated with the transition mapping ϕ -1 j • ϕ i at p, the grid automorphism of the connected component of ϕ -1 i (p) in ϕ -1 i (Ω i ∩ Ω j ). The GC atlases, as well as aine structures, are (G, H)-structures. We refer to [START_REF] Goldman | Geometric structures on manifolds[END_REF] for a deĄnition and study of these geometric structures. Moreover, we note that in the literature on mesh generation, grid automorphisms are used for deĄning so-called globally continuous meshes [START_REF] Ray | Periodic global parameterization[END_REF][START_REF] Kälberer | Quadcover -surface parameterization using branched coverings[END_REF].

Ω j Ω i U i U j ϕ -1 i ϕ -1 j
Remark 3.14 (Construction of GC atlases). Let M be a surface and let ∪ i∈I Ω i be an open cover of M . Assume that ¶(Ω i , ϕ i )♦ i∈I is a set of compatible coordinate systems. Then, there exists a GC atlas on M containing these coordinate systems. This GC atlas is said to be induced by

¶(Ω i , ϕ i )♦ i∈I in what follows.
We make explicit in the following proposition, proved in Section 3.4.3, the relations between GC atlases and homeomorphisms in the particular case of simply connected complete surfaces. Proposition 3.15 (Existence of a global coordinate system). Let M be a complete, simply connected surface and let A be a GC atlas on M . Suppose that there exists C > 0 such that for all (Ω, ϕ) ∈ A, sup

y∈ϕ -1 (Ω) ♣dϕ y (X)♣ 2 g ≤ C♣X♣ 2 , ∀X ∈ R 2 ,
with dϕ y : R 2 → T ϕ(y) M the differential of ϕ at y. Then, there exists a global coordinate system (M, φ) ∈ A.

An example of GC atlas on a simply connected surface that does not contain a global coordinate system is presented in Figure 3.11.

U 1 U 2 ϕ 2 ϕ 1 ϕ 1 (U 1 ) ϕ 2 (U 2 ) U ⊂ R 2 M Fig. 3.
11 Illustration of a GC atlas that does not contain a global coordinate system Remark 3.16 (Coordinate curve parametrization in GC atlases). The coordinate curves and their parametrizations are preserved by transition mappings whenever these mappings are grid automorphisms. Hence, these items are deĄned in a unique manner everywhere on the surface. Whenever it is not necessary to have a unique deĄnition of the coordinate curves parametrization, this constraint on the transition mappings ϕ -1 j • ϕ i can be relaxed as follows:

ϕ -1 j • ϕ i (x) = α • R k π 2 (x) + v, ∀x ∈ ϕ -1 i (Ω i ∩ Ω j ), (3.7 
)

with v ∈ R 2 , k ∈ ¶0, ..., 3♦, R k π 2 the rotation of angle k π 2 and α(x, ỹ) = α 1 (x), α 2 (ỹ) , α 1 , α 2 : R → R being two difeomorphisms.
In order to give some non-trivial (homeomorphisms) examples, we consider covering mappings, deĄned below. DeĄnition 3.17 (Covering mapping). Let N, M be two surfaces. The mapping τ : N → M is called a smooth covering mapping whenever it is surjective, smooth and satisfies the following property: for all m ∈ M , there exists a neighborhood

V m ⊂ M of m and a disjoint open cover ∪ i∈J Ṽi of τ -1 (V m ) ⊂ N such that τ Ṽi : Ṽi → V m is a diffeomorphism for all i ∈ J.
Example 3.18 (GC atlases from covering mappings). Let τ : R 2 → M be a covering mapping and let m ∈ M . Let V m ⊂ M and ∪ i∈J Ṽm,i be respectively the neighborhood of m in M and the disjoint open cover of τ -1 (V m ) ⊂ R 2 obtained using DeĄnition 3.17. Suppose moreover that, for all i, j ∈ J, τ -1 Ṽm,j

• τ Ṽm,i : Ṽm,i → Ṽm,j is a translation of the plane. Then, the coordinate systems (V m , τ Ṽm,i

), deĄned for all m ∈ M and i ∈ J, are compatible and cover M . Hence, these coordinate systems induce a GC atlas on M . We present two examples of GC atlases deĄned by covering mappings:

• Let M = ¶(x, y, z) ∈ R 3 ♣ x 2 + y 2 = 1♦
be a cylinder of revolution and let τ : R 2 → M be the mapping deĄned by τ (u, v) = (cos(u), sin(u), v). Then, τ is a covering mapping deĄning a GC atlas on the surface M . This GC atlas is presented in Figure 3.12.

• Let R, r ∈ R + * be such that R > r > 0 and let

M = ¶(x, y, z) ∈ R 3 ♣ (x 2 + y 2 + z 2 + R 2 -r 2 ) 2 = 4R 2 (x 2 + y 2
)♦ be a torus. Let τ : R 2 → M be the mapping deĄned by

τ (u, v) = (R + r cos(v)) cos(u), (R + r cos(v)) cos(u), sin(v) .
Then, τ is a covering mapping and it deĄnes a GC atlas on the surface M . This GC atlas is presented in Figure 3.13. Fig. 3.12 A GC atlas on the cylinder of revolution Fig. 3.13 A GC atlas on the torus

Singularities of globally compatible coordinate systems

We introduce in this section singularities of GC atlases and we then highlight a particular type of singularities called conical. First, in Subsection 3.2.2.1, we emphasize the importance of singularities in the search for GC atlases on surfaces and we introduce these objects in an informal setting. Then, we introduce these particular points of GC atlases in Subsection 3.2.2.2.

On the terminology

The existence of a GC atlas on a given surface M is constrained by the topology of the aforesaid surface, as can be seen by the PoincaréŰHopf formula. Then, whenever a particular type of parametrization is required on M , this contraint on the type of expected GC atlas can also be an obstacle to the existence of this structure on M . This lack of global existence often materialises itself with the appearance of singularities. In order to overcome these singularities or simply to permit a larger choice in the accessible parametrizations, an approach consists in constructing GC atlases with singularities. With this paradigm, the singularities are chosen beforehand. This point of view is often adopted in the literature on mesh generation, as can be seen in [START_REF] Kharevych | Cone singularities to the rescue: Mitigating area distorsion in discrete conformal[END_REF][START_REF] Kharevych | Discrete conformal mappings via circle patterns[END_REF][START_REF] Ray | Periodic global parameterization[END_REF]. Usually, in the case of coordinate systems, the term singularity refers to a singularity of the mapping ϕ : U ⊂ R 2 → Ω ⊂ M that deĄnes the coordinate system (Ω, ϕ). For instance, let Ū be an open set of R 2 , Ω be an open set of M and let φ : Ū → Ω be a smooth mapping. The singularity points of φ are the points φ(x) ∈ Ω, with x = (u, v) ∈ Ū , such that (∂ u ϕ(x), ∂ v ϕ(x)) is not an independent family of vectors. We denote ¶x i ♦ i∈I ⊂ Ω this set. We refer to [START_REF] Ghys | Sur la coupe des vêtements: variation autour dŠun thème de Tchebychev[END_REF] for an analysis of this set in the generic case, where the singularity points of φ can be of two diferent types: cusps and folds. In the particular case of Chebyshev nets, an example of these singularities is presented in the Figure 3.14. In this manuscript, we consider a slightly diferent notion of singularity. Hence, we deĄne a GC atlas on M D, where D ⊂ M is a Ąnite set of isolated points called singularity points. A usual singularity is also a singularity in the present meaning if it is restricted to a point. To illustrate this remark, we now suppose that the mapping φ :

Ū ⊂ R 2 → Ω ⊂ M is a difeomorphism in Ū ¶x 0 ♦, where x 0 ∈ Ū is such that (∂ u φ(x 0 ), ∂ v φ(x 0 )
) is not an independent family of vectors. We set p = φ(x 0 ). Then, the coordinate system ( Ω ¶p♦, φ Ω ¶p♦ ) cannot be extended in the neighborhood of p. The point p is called a singularity point of the GC atlas induced by this net. An example of this type of singularities deĄned by a Chebyshev net φ is presented in Figure 3.15. Let us notice that the generic singularities in the usual sense (cusp-type and fold-type) are one-dimensional submanifolds. Hence, these points do not deĄne a GC atlas with singularities (D is not a Ąnite set of isolated points in this case). Finally, a singularity in the present meaning is not necessarily a usual singularity. The most important examples are conical singularities that we now introduce. 

GC atlases with conical singularities

The singularities of GC atlases that are not usual singularities (see paragraph above), can be informally considered as the set of isolated points of M such that the Şnumber of coordinate curvesŤ at this point is diferent from two. The conical singularities are particular singularity points such that the Şnumber of coordinate curvesŤ at this point is Ąnite. In order to deĄne more precisely the conical singularities, we Ąrst Ąx some notation in Subsection 3. 2 for some integer k ≥ 1. Embeddings in R 3 of the cones of interior angles 3 π 2 and 5 π 2 are presented in Figure 3.17. We call global isometry any mapping which is a bijective local isometry. Let us remark that conical surfaces are deĄned in polar coordinates. Hence, we point out in what follows subsets of cones, called branch-cut domains, that can be isometrically identiĄed with the plane. In other words, we endow locally the conical surfaces with cartesian coordinates. DeĄnition 3.21 (Branch-cut domain). Let C λ be the conical surface of interior angle λ > 0. Let V ⊂ C λ be a connected set and suppose that there exists η 1 ∈ [0, λ) and δ ∈ (0, 2π] ∩ (0, λ] such that θ > η 1 or θ < η 2 , for all (r, θ) ∈ V , with η 2 = (η 1 + δ) mod λ. We say that the domain V ⊂ C λ is a branch-cut domain and we denote 

(r, θ) ∼ (r ′ , θ ′ ) if and only if r = r ′ and θ -θ ′ ∈ λZ or r = r ′ = 0 , for all θ, θ ′ ∈ R, r, r ′ ∈ R + . The quotient set C λ := R + ×R /∼ endowed with the metric ds 2 = dr 2 + r 2 dθ 2 is called a conical surface of interior angle λ. O × / A × R + × ¶0♦ R + × ¶λ♦ / B × λ
Is(C λ , V ) : V → Pl(C λ , V ) ⊂ R 2 , with Pl(C λ , V ) = Is(C λ , V )( V ),
Is(C λ , V )(r, θ) =    (r cos(θ), r sin(θ)), if θ ≥ η 1 , (r cos[θ + λ], r sin[θ + λ]), otherwise.
We illustrate diferent types of branch-cut domains in a cone C λ , with λ > 0, and their associated global isometry in Figure 3.18.

DeĄnition 3.22 (Smoothness of mappings deĄned on cones).

Let M be a surface, let p ≥ 1 be an integer and let C λ be the conical surface of interior angle λ > 0. Let Ū ⊂ C λ be a set with non-empty interior and let ψ : Ū → M be a mapping. For all θ 0 ∈ [0, λ) and δ ∈ (0, λ), we define the set Vθ 0 ,δ = (r,

θ 0 + θ) ∈ C λ ♣ 0 ≤ θ ≤ δ ∩ Ū ,
with θ 0 +θ the addition modulo λ. We say that ψ has regularity C p whenever, for all θ 0 ∈ [0, λ) and δ ∈ (0, λ) such that Vθ 0 ,δ is a branch-cut domain, the mapping

ψ•Is(C λ , Vθ 0 ,δ ) -1 : Pl(C λ , Vθ 0 ,δ ) → M has regularity C p .
The set Vθ 0 ,δ , with θ 0 ∈ [0, λ) and δ ∈ (0, λ), introduced in the deĄnition is depicted in Figure 3.19. 

A simple example

ξ 0 : C * R + → ξ 0 (C * R + ) ⊂ C * the mapping deĄned by ξ 0 (z) = z 1/d = r 1/d e iθ d , for all z = re iθ ∈ C * R + , with r ∈ R +
* and θ ∈ [0, 2π). Moreover, for every η ∈ [0, 2π), we deĄne the set

U η = z ∈ C * ♣ arg(z) ∈ [0, 2π) ¶η♦ × 0 R + × ¶η 2 ♦ R + × ¶η 1 ♦ V × 0 η 1 mod 2π
Pl(C λ , V ) 

Is(C λ , V ) (a) Case η 2 > η 1 and η 2 -η 1 ≤ 2π × 0 R + × ¶η 1 ♦ R + × ¶η 2 ♦ V V × 0 η 1 mod 2π Pl(C λ , V ) Is(C λ , V ) (b) Case η 2 < η 1 and λ -η 1 + η 2 ≤ 2π × 0 R + × ¶η♦ V 0 η Pl(C λ , V ) Is(C λ , V ) (c) Case λ < 2π and η 1 = η 2 = η
U η → ϕ η,β (U η ) ⊂ M * the mapping deĄned by ϕ η,β (z) = (R 2π d ) β ξ η (z), for all z ∈ U η .
Then, for all η ∈ [0, 2π) and β ∈ ¶0, ..., d-1♦, the mapping ϕ η,β is a difeomorphism and satisfy 

τ ϕ η,β (z) = z for all z ∈ U η . Then, the set of coordinate systems (ϕ η,β (U η ), ϕ η,β ), with η ∈ [0, 2π) Conical singularities × 0 Ū θ 0 δ Vθ 0 ,δ
• Π -1 : U 0 → φ( Ūβ ) ⊂ C * is a difeomorphism deĄned by φ • Π -1 (z) = φ Ūβ (r, θ) = r 1/d exp i(2πβ + θ) d = exp  2πβi d  re i θ 1/d = exp  2πβi d  z d ,
for all z = re i θ ∈ U 0 , with θ ∈ [0, 2π). We infer that the mapping φ • Π -1 is compatible with the GC atlas A deĄned in the Example 3.23. Finally, we observe that, since the mapping φ • Π -1 has no derivative at 0, the mapping φ does not have a C 1 -regularity (see DeĄnition 3.22). However, the mapping φ C 2πd ¶0♦ has a C ∞ -regularity. We present in Figure 3.21 an illustration of the cone in the case d = 2.

DeĄnition and properties

Now, we deĄne the singularities of GC atlases. The deĄnitions presented here are motivated by conical singularities of Euclidean surfaces [START_REF] Troyanov | Les surfaces euclidiennes à singularités coniques[END_REF].

DeĄnition 3.25 (GC atlases with singularities).

Let M be a surface. The set of coordinate systems A is called a GC atlas with singularities P on M , with P a finite set of isolated points, whenever A is a GC atlas on M P. The point p ∈ P is called a singularity point of A whenever there is no local coordinate system ( Ω, φ) on M compatible with A such that p ∈ Ω. The GC atlases with singularities are also called generalized GC atlases.

Let A be a GC atlas with singularities P on M . Let us remark from the deĄnition that all the points in M P have a local coordinate system in A in their neighborhood. We introduce in what follows a more restrictive deĄnition which allows the coordinate systems of A to be extended into a homeomorphism in the neighborhood of the singularity points. To Ąx a deĄnition for these singularities, that will be called conical, we Ąrst make explicit the form of the coordinate systems in their neighborhood. This is the purpose of the following deĄnitions.

DeĄnition 3.26 (Conical net of valence n).

Let M be a surface, let n ≥ 1 be an integer, and let A be a GC atlas with singularity points P on M . Let Ω ⊂ M be a neighborhood of p ∈ P and let Ū ⊂ C λ , with λ = n π 2 , be a neighborhood of 0 in the cone C λ . Assume that φ : Ū → Ω is a homeomorphism such that φ(0) = p. Then, the couple ( Ω, φ) is called a conical coordinate system (or conical net) of valence n.

DeĄnition 3.27 (Compatibility of conical nets).

Let M be a surface and let A be a GC atlas with singularity points P. Let Ω ⊂ M be a neighborhood of p ∈ P and let ( Ω, φ), with φ : Ū ⊂ C λ → Ω, be a conical net of valence n ≥ 1, where λ = n π 2 . For every branch-cut domain V ⊂ Ū , we denote 

ϕ 0,1 (U 0 ) ϕ 0,0 (U 0 ) Is(C 4π , Ū0 ) Is(C 4π , Ū1 ) Ū1 C 4π Ū0 × ϕ 0,1 ϕ 0,0 φ U 0 =Pl(C 4π , Ū0 ) U 0 =Pl(C 4π , Ū1 )
Φ( φ, V ) = φ • Is(C λ , V ) -1 . (3.8) Let (Ω i , ϕ i ) ∈ A be such that Ω ∩ Ω i ̸ = ∅ and such that Vi := φ-1 ( Ω ∩ Ω i ) ⊂ C λ is a branch-cut domain.
Then, the conical net ( Ω, φ) is said to be compatible with (Ω i , ϕ i ) whenever the mapping

Φ( φ, Vi ) : Pl(C λ , Vi ) → Ω ∩ Ω i is a diffeomorphism compatible with (Ω i , ϕ i ). The conical net ( Ω, φ)
is said to be compatible with A whenever it is compatible with all the coordinate systems in A.

We present in Figure 3.21 a conical net φ of valence 8 compatible with two non-conical nets ϕ 0,0 := Φ( φ, Ū0 ), with Ū0 ⊂ C 4π , and ϕ 0,1 := Φ( φ, Ū1 ), with Ū1 ⊂ C 4π .

Remark 3.28 (Coordinate systems from branch-cut domains). Let A be a GC atlas with singularities P. Let Ω ⊂ M be a neighborhood of p ∈ P. Assume that ( Ω, φ) is a conical net of valence n ≥ 1 compatible with A. We set λ = n π 2 and Ū := φ-1 ( Ω) ⊂ C λ . Let V ⊂ Ū be a branch-cut domain of C λ . Then, we obtain from DeĄnition 3.27 that ( φ( V ), Φ( φ, V )) ∈ A is a non-conical net.

In order to deĄne in a unique manner the valence of a singularity point, we need the following justiĄcation: Proposition 3.29 (Uniqueness of the valence of a singularity point). Let M be a surface and let A be a GC atlas with singularities P. Assume that ( Ω1 , φ1 ) and ( Ω2 , φ2 ) are two conical nets of respective valence n 1 ≥ 1 and n 2 ≥ 1 in the neighborhood of p ∈ P. Suppose moreover that the two conical nets are compatible with A. Then, we have

n 1 = n 2 .
Proof. We denote Ω = Ω1 ∩ Ω2 and λ j = n j π 2 , for all j ∈ ¶1, 2♦. First, we obtain from DeĄnition 3.26 that the conical net φj : Ūj ⊂ C λ j → Ωj is a homeomorphism for all j ∈ ¶1, 2♦. To prove the proposition, we show that the transition mapping

T := φ-1 2 • φ1 : φ-1 1 ( Ω) ⊂ C λ 1 → φ-1 2 ( Ω) ⊂ C λ 2 (3.9)
is a global isometry. First, we have that T is an homeomorphism (composition of homeomorphisms). Then, let (Ω α , ϕ α ) ∈ A be a coordinate system such that Ω α ∩ Ω ̸ = ∅. Up to reducing Ω α , we suppose that Ω α ∩ Ω is connected and we suppose that Vj = φ-1 j ( Ω ∩ Ω α ) is a branch-cut domain, for all j ∈ ¶1, 2♦. Let j ∈ ¶1, 2♦. We denote Π j := Is(C λ j , Vj ) : Vj → Pl(C λ j , Vj ). Then, using the compatibility of ( Ωj , φj ) with (Ω α , ϕ α ), we have that Φ( φj , Vj ) :

Pl(C λ j , Vj ) → φj ( Vj ) satisĄes Φ( φj , Vj ) = ϕ α • L j ,
with L j : R 2 → R 2 a grid automorphism. Then, we infer that

Φ( φ1 , V1 ) = ϕ α • L 2 • L -1 2 • L 1 = Φ( φ2 , V2 ) • L -1 2 • L 1 .
Using moreover (3.8), we obtain that

φ1 • Π -1 1 = φ2 • Π -1 2 • L -1 2 • L 1 .
We conclude that the mapping T V1 : V1 → V2 satisĄes

T V1 = Π -1 2 • L -1 2 • L 1 • Π 1 .
Therefore, the mapping T V1 is a global isometry (composition of global isometries). Using the deĄnition of GC atlases with singularities, we obtain that there exists an open cover ∪ α∈E Ω α of Ω * := Ω ¶0♦ such that there exists a coordinate system (Ω α , ϕ α ) ∈ A for all α ∈ E. Hence, using that T is a homeomorphism, we obtain that the mapping T φ-1

1 ( Ω * ) : φ-1 1 ( Ω * ) → φ-1 2 ( Ω *
) is a global isometry. We conclude that T is a global isometry and the result follows. DeĄnition 3.30 (GC atlases with conical singularities). Let M be a surface and let A 1 be a GC atlas with singularities P on M . A singularity point p ∈ P is called a conical singularity of valence n ≥ 1 whenever there exists a neighborhood Ω ⊂ M of p and a conical net ( Ω, φ) of valence n compatible with A 1 . We call index of the conical singularity p the number

Ind(p) = 1 - n 4 = δ 2π ,
where δ is the curvature at 0 of the cone C n π 2 on which is defined the conical net ( Ω, φ). Moreover, supposing that all the points in P are conical singularities, the set of coordinate systems A = A 1 ∪ A 2 , with A 2 the set of conical nets on the surface, is called a GC atlas with conical singularities. The GC atlases with conical singularities are supposed to be maximal for the inclusion.

Finally, we have that, whenever a GC atlas A 1 with singularities can be extended at a singularity point, this point is a conical singularity of A 1 . This result is stated in the following proposition proved in Section 3.4.3.

Proposition 3.31 (Extension into conical singularities).

Let M be a surface and let A 1 be a GC atlas with singularities P. Assume that, for all p ∈ P, there exists a neighborhood Ωp of p and a finite open cover ∪ N i=1 Ω i of Ω * p := Ωp ¶p♦. Moreover, for all i ∈ ¶1, ..., N ♦, we suppose that Ω i is geodesically convex and we suppose that there exists

(Ω i , ϕ i ) ∈ A 1 such that ϕ -1 i : Ω i → U i ⊂ R 2 is
uniformly continuous. Then, there exists a GC atlas A with conical singularities P on M containing A 1 .

In the case where hypotheses of Proposition 3.31 are not satiĄed, the main counter-example to this result is the following rosette singularity.

Example 3.32 (A rosette singularity). Let τ : R + ×R → R 2 be the mapping deĄned by τ (u, v) = (u cos(v), u sin(v)) and denote

N = R + ×R, N * = R + * ×R, M = R 2 and M * = R 2 * . Let U 1 = R + * ×(-π, π 2 ) and U 2 = R + * ×(0, 3π 2 
). The two compatible coordinate systems (τ (U 1 ), τ U 1 ) and (τ (U 2 ), τ U 2 ) cover M * . Hence, they induce a GC atlas on M * denoted A. Equivalently, A is a GC atlas on M with one singularity at 0 (see Figure 3.22). Let D h be the open disk of radius h > 0 centered at 0 and set D * h := D h ¶0♦. Then, we have

τ -1 U 1 (D * h ) = (0, h)×(-π, π 2 ), τ -1 U 2 (D * h ) = (0, h)×(0, 3π 2 
), for all h > 0. We infer that the mapping τ

-1 U l
is not uniformly continuous on U l , for all l ∈ ¶1, 2♦. Therefore, these mappings cannot be extended continuously at 0, so that the singularity point 0 is not a conical singularity. The GC atlas A is presented in Figure 3.22.

Properties of Chebyshev globally compatible atlases with conical singularities

Let us Ąrst deĄne Chebyshev GC atlases with conical singularities. DeĄnition 3.33 (Chebyshev GC atlases with conical singularities). Let M be a surface. We call a Chebyshev GC atlas with conical singularities a GC atlas A with conical singularities such

D h τ (U 1 ) τ (U 2 ) R + × ¶-π♦ R + × ¶0♦ R + × ¶ π 2 ♦ R + × ¶ 3π 2 ♦ ¶0♦×R U 2 U 1 τ -1 U 2 (D * h ) τ -1 U 1 (D * h )
τ Fig. 3.22 A GC atlas with one singularity deĄned on R 2 by the mapping τ of Example 3.32

that, for all non-conical net (Ω i , ϕ i ) ∈ A, we have

♣∂ u ϕ♣ g (u, v) = ♣∂ v ϕ♣ g (u, v) = 1, for all (u, v) ∈ ϕ -1 i (Ω i ).
In order to state properties of Chebyshev GC atlases, we need the following theorem proved in Chapter 4. 

η 2 : [0, L 2 ] → M , with L 2 ∈ R + * ∪ ¶∞♦, be two smooth curves with respective geodesic curvatures κ 1 : [-L 1 , 0] → R and κ 2 : [0, L 2 ] → R, and such that η 1 (0) = η 2 (0). Suppose that ψ := ∠(η ′ 1 (0), η ′ 2 (0)) ∈ (0, π). Then, there exists a unique angle distribution ω : D → R/2πZ, with D = [0, L 2 ]×[0, L 1 ],
satisfying the Hazzidakis formula

ω(u, v) = π -ψ - u 0 κ 2 - 0 -v κ 1 - ϕ([0,u]×[0,v]) K, (3.10)
with ϕ : D → M the unique smooth mapping satisfying the boundary conditions

ϕ(u, 0) = η 2 (u), ∀u ∈ [0, L 2 ], ϕ(0, v) = η 1 (-v), ∀v ∈ [0, L 1 ], (3.11) 
and such that its v-coordinate curves are arc-length parametrized curves with a geodesic curvature

κ map 2 : D → R satisfying κ map 2 (u, v) = ∂ v ω(u, v) for all (u, v) ∈ D.
Suppose moreover that there exists D = [0, L2 ]×[0, L1 ], with L1 ∈ (0, L 1 ] and L2 ∈ (0, L 2 ], such that 0 < ω(u, v) < π, for all (u, v) ∈ D. Then, the mapping ϕ satisfies

♣∂ u ϕ♣ g (u, v) = ♣∂ v ϕ♣ g (u, v) = 1, (3.12) 
for all (u, v) ∈ D.

The Hazzidakis formula is illustrated in Figure 3.23. We deduce from Theorem 3.34 the following property satisĄed by conical singularities of Chebyshev GC atlases. Let M be a surface and let A be a Chebyshev GC atlas with conical singularities P. Let ( Ω, φ) ∈ A be a conical net of valence n ≥ 1 in the neighborhood of p ∈ P. We set λ = n π 2 and V = φ-1 ( Ω) ⊂ C λ , with C λ the cone of interior angle λ. Let m ∈ ¶0, ..., n-1♦. We define the set

π-ψ ω(u, v) ϕ([0, u]×[0, v]) η 2 η 1 (u, 0) (0, 0) (0, v) ϕ [0, u]×[0, v]
Vm,1 = (r, θ + m π 2 ) ∈ C λ ♣ 0 ≤ r < h, 0 ≤ θ ≤ π 2 , ( 3.13) 
with θ + m π 2 the addition modulo λ and h > 0 such that Vm,1 ⊂ V . We set V * m,1 := Vm,1 ¶0♦ and we suppose that φ V * m,1

: V * m,1 → φ( V * m,1 ) ⊂ Ω is smooth. Then, the mapping φ Vm,1 : Vm,1 → φ( Vm,1 ) ⊂ Ω is smooth.
We present in Figure 3.24 a conical net φ : V ⊂ C 4π → φ( V ) ⊂ M of valence 8. The image by φ of the domains Vm,1 , with m ∈ ¶0, ..., 7♦, deĄned by (3.13) are delimited by the red curves in this Ągure.

Proof. Since Vm,1 is not necessarily a branch-cut domain of C λ (case n = 1), we Ąrst deĄne

Ōm,1 = (r, θ + m π 2 ) ∈ C λ ♣ 0 < r < h, 0 < θ < π 2 ⊂ Vm,1 .
Then, Ōm,1 is a branch-cut domain and we set O m,1 := Pl(C λ , Ōm,1 ) ⊂ R 2 and, for the clarity of the proof, we suppose that O m,1 ⊂ (R + ) 2 . Otherwise, the general case is reduced to that case by an application of the rotation of angle -m π 2 to O m,1 . Then, we set ϕ m,1 := Φ( φ, Ōm,1 ) :

O m,1 → φ( Ōm,1 ). Let L 1 , L 2 > 0 be such that (0, L 2 ]×(0, L 1 ] ⊂ O m,1 . We set D = [0, L 2 ]×[0, L 1 ]
and we denote η 1 : (-L 1 , 0] → M and η 2 : [0, L 2 ) → M the two smooth curves respectively deĄned by We infer from Proposition 3.35 that Chebyshev nets with conical singularities are not smooth outside of the singularity points. This is stated in the following proposition: Proposition 3.37 (Non-smoothness of Chebyshev GC atlases with conical singularities). Let M be a surface and let A be a Chebyshev GC atlas with conical singularities P ̸ = ∅ on M . Then, there exists a non-conical net (Ω, ψ) ∈ A such that ψ is not smooth.

η 1 (v) = ϕ m,1 (L 2 , L 1 + v), for all v ∈ (-L 1 , 0], η 2 (u) = ϕ m,1 (L 2 -u, L 1 ), for all u ∈ [0, L 2 ). ( 3 
Proof. We prove the claim by contradiction. Thus, we suppose that all the non-conical nets are smooth. Let p ∈ P be a conical singularity of valence n ̸ = 4. Let λ = n π 2 and let ( Ω, φ) ∈ A, with φ : Ū ⊂ C λ → Ω ⊂ M , be a conical net in the neighborhood of p. We infer from the smoothness of non-conical nets that φ is smooth on Ū * := Ū ¶0♦ (see Remark 3.28). Let α ∈ ¶0, ..., n-1♦ and let Vα,1 ⊂ Ū be the set deĄned by (3.13), with h > 0 small enough for the inclusion to hold true. Then, owing to Proposition 3.35, the mapping φ is smooth on Vα,1 . Therefore, we deĄne the two unit vectors

X α (x) = d dr φ(r, α π 2 ) r=x , Y α (x) = d dr φ(r, α π 2 ) r=x ,
for all x ∈ [0, h), with α = (α + 1) mod n (see Figure 3.26a). Moreover, using the deĄnition of × φ( Vα,1 ) compatible conical nets, we have that φ Ū * : Ū * → Ω * is a local difeomorphism. We infer that we have ∠(X α (x), Y α (x)) ∈ (0, π), for all x ∈ (0, h). Hence, using the smoothness of φ Vα,1 at 0, we deĄne the smooth mapping

X α (0) Y α (0) θ α (0) X α (x) Y α (x) θ α (x) ( 
θ α : [0, h) → [0, π] by θ α (x) = ∠(X α (x), Y α (x)) for all x ∈ [0, h).
Then, we have n-1 α=0 θ α (0) = 2π (see Figure 3.26b). Let us notice that the case n = 1 yields a contradiction with θ α (0) ∈ [0, π], for all α ∈ ¶0, ..., n -1♦. Hence, we can suppose that n > 1 in what follows. Moreover, since n ̸ = 4, there exists two consecutive integers α 0 , α 1 ∈ ¶0, ..., n-1♦ (with the convention that 0 is after n -1 modulo n) such that

θ α 0 (0) + θ α 1 (0) ̸ = π. (3.15)
Now, we deĄne the open set

Ōα 0 ,2 = (r, θ + α 0 π 2 ) ∈ C λ ♣ 0 < r < h, 0 < θ < π ⊂ Ū ,
where θ + α 0 π 2 is the addition modulo λ and h > 0 is small enough for the inclusion to hold true. Using that n > 1, we infer that the open set Ōα 0 ,2 is a branch-cut domain of C λ . Therefore, we set O α 0 ,2 := Pl(C λ , Ōα 0 ,2 ) and ϕ := Φ(C λ , Ōα 0 ,2 ) : O α 0 ,2 → φ( Ōα 0 ,2 ) ⊂ Ω. For the clarity of the proof, we suppose that O α 0 ,2 ⊂ R×R + . Otherwise, the general case is reduced to that case by an application of the rotation of angle -α 0 π 2 to O α 0 ,2 . Then, by hypothesis, ϕ is smooth and we have

θ α 0 (v) + θ α 1 (v) = ∠(∂ u ϕ, ∂ v ϕ)(0, v) + ∠(∂ v ϕ, -∂ u ϕ)(0, v) = ∠(∂ u ϕ, -∂ u ϕ)(0, v) = π,
for all v ∈ (0, h). Using the smoothness of θ α 0 and θ α 1 on [0, h), we conclude that θ α 0 (0)+θ α 1 (0) = π. This contradicts (3.15), so that the claim follows.

φ( Vα 0 ,2 ) 

θ α 0 (x) θ α 1 (x) θ α 0 (0) θ α 1 (0)

Some technical results

From globally compatible atlases to local homeomorphisms

We construct in this section a local homeomorphism ψ : M → ψ(M ) ⊂ R 2 on any simply connected surface M equipped with a GC atlas A. Before this, we deĄne homotopies of curves.

DeĄnition 3.38 (Homotopic curves).

Let Ω ⊂ M and let γ 1 : [0, 1] → Ω and γ 2 : [0, 1] → Ω be two continuous curves such that γ 1 (0) = γ 2 (0) and γ 1 (1) = γ 2 [START_REF] Aleksandrov | Intrinsic geometry of surfaces[END_REF]. A continuous mapping H : [0, 1] 2 → Ω is called an homotopy whenever it satisfies

H(0, t) = γ 1 (t), H(1, t) = γ 2 (t), H(t, 0) = γ 1 (0) = γ 2 (0), H(t, 1) = γ 1 (1) = γ 2 (1),
for all t ∈ [0, 1], and the curves γ 1 and γ 2 are said to be homotopic in Ω.

To construct the mapping ψ, we join the domains in R 2 associated with all the coordinate systems in A. To this purpose, we deĄne the total transition mapping as follows: DeĄnition 3.39 (Total transition mapping along γ). Let M be a surface, let A be a GC atlas on M and let γ : [0, 1] → M be a continuous curve. Let 0 = t 0 < ... < t N = 1 and ¶Ω i ♦ 1≤i≤N , with N ≥ 2, be such that

γ i := γ [t i-1 ,t i ] : [t i-1 , t i ] → Ω i ,
for all i ∈ ¶1, ..., N ♦, and such that there exist coordinate systems ¶(Ω i , ϕ i )♦ 1≤i≤N ⊂ A. We denote U i = ϕ -1 i (Ω i ), for all i ∈ ¶1, ..., N ♦, and we denote T j : R 2 → R 2 the grid automorphism associated with the transition mapping ϕ -1 j+1 • ϕ j at γ(t j ), for all j ∈ ¶1, ..., N -1♦. We call total transition mapping along γ and we denote F Ω N ,γ : R 2 → R 2 the mapping defined by

F Ω N ,γ := T N -1 • ... • T 1 : U 1 → U N .
(3.16)

The construction of the total transition mapping along a curve γ : [0, 1] → M is illustrated in Figure 3. [START_REF] Hoffmann | Discrete Amsler surfaces and a discrete Painlevé III equation[END_REF].

Ω N =Ω Ω 1 Ω 2 γ(t N ) γ T -1 3 T -1 2 T -1 1 ϕ -1 1 ϕ -1 2 ϕ -1 3 ϕ -1 4 U 4 U 3 U 2 U 1 γ(t 0 ) γ(t 1 ) γ 2 γ 1 γ 3
Fig. 3.28 Illustration of the total transition mapping [START_REF] Wolff | Travaux dirigés de master 2 : Groupes fuchsiens et représentation de groupes de surfaces[END_REF] Remark 3.40 (Notation of the total transition mapping). We state in the following lemma that the total transition mapping only depends on γ and on the Ąrst and the last coordinate systems of the cover of γ, denoted respectively (Ω 1 , ϕ 1 ) ∈ A and (Ω N , ϕ N ) ∈ A, with N ≥ 2, in the deĄnition. Moreover, we Ąx in the sequel the coordinate system (Ω 1 , ϕ 1 ), so that this mapping only depends on γ and on (Ω N , ϕ N ). To simplify the notation, we only mention γ and Ω N , its associated coordinate system being implicit, so that the total transition mapping along γ is denoted F Ω N ,γ . Lemma 3.41 (Total transition mapping). Let M be a surface, let A be a GC atlas on M and let γ : [0, 1] → M be a continuous curve. Let 0 = t 0 < ... < t N = 1 and ¶Ω i ♦ 1≤i≤N , with N ≥ 2, be such that

γ i := γ [t i-1 ,t i ] : [t i-1 , t i ] → Ω i ,
for all i ∈ ¶1, ..., N ♦, and such that there exist coordinate systems

¶(Ω i , ϕ i )♦ 1≤i≤N ⊂ A. We denote U i = ϕ -1 i (Ω i )
, for all i ∈ ¶1, ..., N ♦, and we denote T j : R 2 → R 2 the grid automorphism associated with the transition mapping ϕ -1 j+1 • ϕ j at γ(t j ), for all j ∈ ¶1, ..., N -1♦. Then, whenever N > 2, the total transition mapping F Ω N ,γ defined by (3.16) is independent of the open cover ¶Ω i ♦ 2≤i≤N -1 of γ. Moreover, F Ω N ,γ is invariant by homotopy in M with respect to γ.

Proof. Let ¶ Ωα ♦ 1≤α≤ Ñ , with Ñ ≥ 2, be another open cover of γ such that ¶( Ωα , φα )♦ 1≤α≤ Ñ ⊂ A, ( Ω1 , φ1 ) = (Ω 1 , ϕ 1 ) and ( Ω Ñ , φ Ñ ) = (Ω N , ϕ N ). Then, there exist 0 = s 0 < ... < s Ñ = 1 such that

η α := γ [s α-1 ,sα] : [s α-1 , s α ] → Ωα .
To avoid technicalities, whenever N > 2 and Ñ > 2, we suppose that s α ̸ = t i for all i ∈ ¶2, ..., N -1♦ and α ∈ ¶2, ..., Ñ -1♦. Then, for all α ∈ ¶1, ..., Ñ -1♦, we denote Tα : R 2 → R 2 the grid automorphism associated with the transition mapping φ-1 α+1 • φα at γ(s α ). Moreover, we deĄne the mapping FΩ N ,γ := T Ñ -1 • ... • T1 : R 2 → R 2 . We notice that there exists 1 = n 1 ≤ ... ≤ n Ñ +1 = N such that we have, for all α ∈ ¶1, ..., Ñ ♦,

η α ([s α-1 , s α ]) = n α+1 l=nα η α,l ([0, 1]), with η α,l : [0, 1] → γ l ([t l-1 , t l ]
) a portion of the curve γ l , for all l ∈ ¶n α , ..., n α+1 ♦. We depict the notation in Figure 3.29. For all α ∈ ¶1, ..., Ñ ♦ and l ∈ ¶n α , ..., n α+1 ♦, we denote Tl,α : R 2 → R 2 and T α,l : R 2 → R 2 the grid automorphisms respectively associated with the transition mappings φ-1 α • ϕ l and ϕ -1 l • φα at η α,l (0). It is clear that all these mappings satisfy T -1 l,α = T α,l . 

s α s α-1 t nα+1 t nα+1 t nα Ωα+1 Ωα-1 Ωα Ω n α+1 Ω nα+1 Ω nα γ η α η α+1,n α+1 η α,n α+1 η α,nα+1 η α,nα
(n α+1 = n α + 2) Let α ∈ ¶1, ..., Ñ ♦ and suppose Ąrst that n α < n α+1 . Let l ∈ ¶n α , ..., n α+1 -1♦. Since η α,l ([0, 1]) ⊂ Ωα ∩ Ω l , we have that η α,l (0) and η α,l (1) are in the same connected component of Ωα ∩ Ω l denoted U. For all x in the connected component of ϕ -1 l (η α,l (1)) in ϕ -1 l (U ∩ Ω l+1 ), we have T l (x) = ϕ -1 l+1 • ϕ l (x) = ϕ -1 l+1 • φα • φ-1 α • ϕ l (x) = T α,l+1 • Tl,α (x).
Hence, we obtain that 

T n α+1 -1 • ... • T nα = T α,n α+1 • Tn α+1 -1,α  • ... • T α,nα+1 • Tnα,α  = T α,n α+1 • Tnα,α . ( 3 
γ(s α ) in φ-1 α Ωα+1 ∩ O , we have Tn α+1 ,α+1 • T α,n α+1 (x) = φ-1 α+1 • ϕ n α+1 • ϕ -1 n α+1 • φα (x) = φ-1 α+1 • φα (x) = Tα (x). (3.18)
From (3.17), we infer that

F Ω N ,γ = T N -1 • ... • T 1 = T n Ñ +1 -1 • ... • T n Ñ  • ... • T n 2 -1 • ... • T n 1  = T Ñ ,n Ñ +1 • Tn Ñ , Ñ  • ... • T 1,n 2 • Tn 1 ,1  = T Ñ ,n Ñ +1 • Tn Ñ , Ñ • T Ñ -1,n Ñ • ... • Tn 2 ,2 • T 1,n 2  • Tn 1 ,1 . (3.19)
Hence, from (3.18) and (3.19), we obtain that

F Ω N ,γ = T Ñ ,n Ñ +1 • T Ñ -1 • ... • T1 • Tn 1 ,1 = T Ñ ,n Ñ +1 • FΩ Ñ ,γ • Tn 1 ,1 .
Using that (Ω 1 , ϕ 1 ) = ( Ω1 , φ1 ) and (Ω N , ϕ N ) = ( Ω Ñ , φ Ñ ), we conclude that F Ω N ,γ = FΩ N ,γ . Therefore, F Ω N ,γ is independent of the cover ¶Ω i ♦ 2≤i≤N -1 of γ. Finally, since ¶Ω i ♦ 1≤i≤N are open sets, we obtain that there exists an open set Γ ⊂ M in the neighborhood of γ such that F Ω N ,γ is invariant by homotopy in Γ. Since A covers M , we conclude that F Ω N ,γ is invariant by homotopy in M .

Let (Ω 1 , ϕ 1 ) ∈ A. Using the simple connectedness of M , we associate with every coordinate system (Ω α , ϕ α ) ∈ A, such that Ω α is an arcwise connected open set, the total transition mapping F Ωα,γα : R 2 → R 2 , where γ α : [0, 1] → M is a curve such that γ α (0) = g ∈ Ω 1 and γ α (1) = q ∈ Ω α . This mapping, independent of the curve γ α and of q ∈ Ω α , is denoted F Ωα in what follows.

Proposition 3.42 (Existence of a local homeomorphism). Let M be a simply connected surface and let A be a GC atlas on M . Then, there exists a local homeomorphism ψ :

M → ψ(M ) ⊂ R 2 such that, for all (Ω α , ϕ α ) ∈ A with Ω α ⊂ M an arcwise connected open set, the mapping ψ Ωα : Ω α → ψ(Ω α ) is a homeomorphism and (Ω α , ψ -1 Ωα ) ∈ A. Proof. Let (Ω α , ϕ α ) ∈ A and (Ω β , ϕ β ) ∈ A be such that Ω α ∩ Ω β ̸ = ∅ and let q ∈ Ω α ∩ Ω β . Let γ : [0, 1] → M be a curve such that γ(0) = g ∈ Ω 1
and γ(1) = q. We denote T : R 2 → R 2 the grid automorphism associated with the transition mapping ϕ -1 β • ϕ α at q. Then, we infer from (3.16) that F Ω β ,γ = T • F Ωα,γ and we conclude that F Ω β = T • F Ωα . Hence, we have

F -1 Ω β • ϕ -1 β (q) = F -1 Ωα • T -1 • ϕ -1 β (q) = F -1 Ωα • ϕ -1 α • ϕ β • ϕ -1 β (q) = F -1 Ωα • ϕ -1 α (q).
We denote ψ : M → ψ(M ) ⊂ R 2 the mapping deĄned by

ψ(q) = F -1 Ωα • ϕ -1 α (q), whenever q ∈ Ω α for (Ω α , ϕ α ) ∈ A,
for all q ∈ M . Then, assume that (Ω α , ϕ α ) ∈ A is such that Ω α ⊂ M is an arcwise connected open set. The mapping ψ Ωα : Ω α → ψ(Ω α ) ⊂ R 2 is clearly a homeomorphism and, since F Ωα is a grid automorphism, the mapping ψ -1

Ωα : ψ(Ω α ) → Ω α is compatible with A. Since A is maximal, the claim follows.

Proof of Proposition 3.15

Now, we present conditions ensuring that the local homeomorphism ψ : M → ψ(M ) ⊂ R 2 constructed in Section 3.4.1 is a homeomorphism. The aim of the following proposition is to rule out the counter-example presented in Figure 3.11 by ensuring that ψ(M ) = R 2 . Proposition 3.43 (Existence of a global coordinate system). Let M be a complete, simply connected surface and let A be a GC atlas on M . Suppose that there exists C > 0 such that for all (Ω, ϕ) ∈ A, sup

y∈ϕ -1 (Ω) ♣dϕ y (X)♣ 2 g ≤ C♣X♣ 2 , ∀X ∈ R 2 , (3.20)
with dϕ y : R 2 → T ϕ(y) M the differential of ϕ at y ∈ ϕ -1 (Ω). Then, there exists a global coordinate system (M, φ) ∈ A.

Proof. Owing to Proposition 3.42, there exists a local homeomorphism ψ :

M → ψ(M ) ⊂ R 2 .
Moreover, supposing that ψ is a homeomorphism, we have that the mapping ψ -1 is compatible with A. Hence, we only have to show that ψ is a homeomorphism to prove the claim. We pullback by ψ the Euclidean metric g E to obtain a Ćat metric on M denoted g := ψ * g E . In order to show that ψ is a covering mapping (see DeĄnition 3.17), we prove that the surface (M, g) is a geodesically complete surface. Let q ∈ M , let Y ∈ T q M and let (Ω, ϕ) ∈ A, with Ω ⊂ M a connected open set, be a coordinate system in the neighborhood of q. We set X := d(ϕ -1 ) q (Y ) ∈ R 2 . Then, using hypothesis (3.20), we obtain that

♣X♣ 2 ≥ 1 C dϕ ϕ -1 (q) (X) 2 g = 1 C ♣Y ♣ 2 g . (3.21)
Moreover, owing to Proposition 3.42, the mapping

ψ Ω : Ω → ψ(Ω) ⊂ R 2 is a homeomorphism and (Ω, ψ - 1 
Ω
) is compatible with (Ω, ϕ). Hence, we have that 

F := ψ • ϕ : ϕ -1 (Ω) → ψ(Ω) is an isometry of R 2 . We infer that ♣dψ q (Y )♣ 2 = dψ q • dϕ ϕ -1 (q) (X) 2 = dF ϕ -1 (q) (X) 2 = ♣X♣ 2 . ( 3 
♣Y ♣ 2 g = ♣dψ q (Y )♣ 2 ≥ 1 C ♣Y ♣ 2 g .
Since (M, g) is a geodesically complete surface, we conclude that (M, g) is also geodesically complete.

The metric g has been constructed such that the mapping ψ : (M, g) → (ψ(M ), g E ) is a local isometry. Then, using [20, prop. 2.106], we conclude that the mapping ψ is a covering mapping. Moreover, ψ(M ) is clearly a complete subset of R 2 , and, since ψ is an open mapping, ψ(M ) is open. Hence, we have ψ(M ) = R 2 and, since R 2 is simply connected, we infer that ψ is a homeomorphism [34, cor. 11.33]. This concludes the proof.

Proof of Proposition 3.31

Let M be a surface and let A 1 be a GC atlas on M with singularities P. Under the conditions of Proposition 3.31, we construct in the sequel a conical net compatible with A 1 in some neighborhood Bp of a singularity point p ∈ P. First, let us Ąx some notation. We denote d M the distance in M and d E the Euclidean distance in R 2 . We denote B M (p, h) ⊂ M the open ball centered at p with radius h > 0 and B λ (0, h) ⊂ C λ , with λ > 0, the open ball centered at the origin with radius h. For any set Ω ⊂ M , we denote cl M (Ω) its closure in M . Lemma 3.44 (Construction of a mapping from Bp to a cone). Let M be a surface, let A 1 be a GC atlas on M with singularities P and let p ∈ P. Assume that there exists a neighborhood Ωp ⊂ M of p such that there exists a finite open cover ∪ N i=1 Ω i of Ω * p := Ωp ¶p♦. Moreover, for all i ∈ ¶1, ..., N ♦, we suppose that Ω i is geodesically convex and we suppose that there exists 2. for all h ∈ (0, h 0 ], there exists l > 0 such that

(Ω i , ϕ i ) ∈ A 1 such that ϕ -1 i : Ω i → U i ⊂ R 2 is
ψ -1 cone B λ (0, l) ⊂ B M (p, h); (3.23)

for all

(Ω i , ϕ i ) ∈ A 1 such that Ω i ⊂ B * p is arcwise connected and such that ψ cone (Ω i ) ⊂ C λ is a branch-cut domain, the mapping ψ cone Ω i : Ω i → ψ cone (Ω i ) ⊂ C λ is a homeomorphism
and the inverse of the homeomorphism

ζ i := Is C λ , ψ cone (Ω i ) • ψ cone Ω i : Ω i → ζ i (Ω i ) ⊂ R 2 is compatible with A 1 , i.e., (Ω i , ζ -1 i ) ∈ A 1 .

the image of a closed curve homotopic to a circle around p in B *

p is a closed curve homotopic to a circle around 0 in C λ ¶0♦.

Proof. We prove the claims in two parts that we summarize as follows:

• Part 1: we proceed as in the proof of Proposition 3.42, i.e., we Ąrst construct the total transition mapping between a Ąxed coordinate system (Ω α , ϕ α ) ∈ A 1 , with Ω α ⊂ Ω * p , and the other coordinate systems of A 1 included in Ω * p . To overcome the diiculty of non-simple connectedness of Ω * p , we remove a geodesic curve η from Ω * p . Hence, as in Proposition 3.42, we obtain a mapping ψ 1 : Ω * p → ψ 1 ( Ω * p ) ⊂ R 2 that is a local homeomorphism on Ω * p minus the curve η. We construct the mapping ψ 1 in Step 1 and we prove that ψ 1 can be extended continuously at p in Step 2. We then show in Step 3 that p is the unique preimage of ψ 1 (p) by ψ 1 . We Ąnally prove that, up to a rotation of angle n π 2 , with n ∈ ¶0, ..., 3♦, the mapping ψ 1 is a local homeomorphism (Steps 4 and 5). 3.30). Let q ∈ Ω * p and let (Ω i , ϕ i ) ∈ A 1 be such that q ∈ Ω i . We Ąx in the sequel a path γ : [0, 1] → Ω * p from g to q to deĄne the total transition mapping F Ω i ,γ along γ (see DeĄnition 3.39). Let us consider the two following subcases:

1. case q ∈ O: let γ gq : [0, 1] → Ω * p be a curve such that γ(0) = g, γ(1) = q and γ (0,1] : (0, 1] → O. We moreover suppose that the oriented angle between η ′ at g and γ ′ gq (0) is in (0, π) so that the curve γ gq , up to homotopy, always turns in the positive sense.

2. case q ∈ η * set : let γ gq : [0, 1] → η * set be a curve such that γ(0) = g and γ(1) = q.

We show the notation in Figure 3.30. It is clear that, for a Ąxed q ∈ Ω * p , all the curves γ gq satisfying these properties are homotopic to each other. Now, as in Proposition 3.42, we deĄne the mapping

ψ 1 : Ω * p → ψ 1 ( Ω * p ) ⊂ R 2 by ψ 1 (w) = F -1 Ωα,γgw • ϕ -1 α (w), whenever w ∈ Ω α for (Ω α , ϕ α ) ∈ A 1 , (3.24) 
for all w ∈ Ω * p . We easily obtain, in the same manner as in the proof of Proposition 3.42, that ψ 1 is well-deĄned. Then, assume that (Ω i , ϕ i ) ∈ A 1 is such that Ω i ⊂ O and such that Ω i is an arcwise connected set. Since Ω i is arcwise connected, we infer that the total transition mapping

F Ω i ,γgq is independent of q ∈ Ω i . Hence, the mapping ψ 1 Ω i : Ω i → ψ(Ω i ) ⊂ R 2 is
a homeomorphism (composition of homeomorphisms). Therefore, ψ 1 O is a local homeomorphism and, using that F Ω i ,γgq , with q ∈ Ω i , is a grid automorphism, we conclude that the mapping ψ 1

-1 Ω i is compatible with A 1 .
Although, let us Ąnally remark that ψ 1 may be discontinuous along η * set . Indeed, assume that q ∈ η * set ∩ Ω i , with (Ω i , ϕ i ) ∈ A 1 . Then, F Ω i ,γgq is not independent of q ∈ Ω i , so that this may materialise itself with a jump along η * set that we make explicit in Step 5.

η × × γ gq g q γ g q × q Ωp × p Fig. 3.

Illustration of the branch-cut

Step 2 (Continuous extension of ψ 1 at p). Let ε > 0 and I = ¶1, ..., N ♦. For all i ∈ I, using the uniform continuity of ϕ -1 i , there exists d i > 0 such that for all q i 1 , q i 2 ∈ Ω i , d E [ψ 1 (q), ψ 1 (q)] < ε, for all q, q ∈ B * M (p, d). (3.26) This clearly implies that ψ 1 admits a continuous extension at p. Let q, q ∈ B * M (p, d) and let γ q q : [0, 1] → B * M (p, d) be a curve such that γ q q(0) = q and γ q q(1) = q, and satisfying:

d M (q i 1 , q i 2 ) < 2d i ⇒ d E [ϕ -1 i (q i 1 ), ϕ -1 i (q i 2 )] < ε 2N . ( 3 
1. γ q q : [0, 1] → O, if q, q ∈ O;

2. γ q q : [0, 1] → η * set , if q, q ∈ η * set ;

3. γ q q : (0, 1] → O, if q ∈ η * set and q ∈ O. We also suppose in this case that, as above, γ q q turns in the positive sense up to homotopy.

We emphasize that the subcase q ∈ η * set and q ∈ O is equivalent to Subcase 3 by symmetry. Moreover, we note that the curve γ q q is deĄned such that the mapping ψ 1 • γ q q : [0, 1] → R 2 is continuous. Let j ∈ I and suppose Ąrst that Ω j ∩ η set ̸ = ∅. Then, since Ω j is geodesically convex, we obtain that the set Ω j η * set has two arcwise connected components denoted Ũj,1 and Ũj,2 . We suppose that they are indexed such that ψ 1 is continuous on U j,1 := Ũj,1 ∪ Ω j ∩ η * set and we set U j,2 = Ũj,2 . For ease of notation, we set U j,1 = Ω j and U j,2 = ∅ whenever Ω j ∩ η * set = ∅. Then, there exists an integer A ∈ ¶1, ..., 2N ♦ and an injection ξ : ¶0, ..., A-1♦ → I × ¶1, 2♦, with ξ = (ξ 1 , ξ 2 ). Moreover, there exists 0 = t 0 < ... < t A = 1, such that γ q q(t i ), γ q q(t i+1 ) ∈ U ξ(i) for all i ∈ ¶0, ..., A-1♦. Then, for all i ∈ ¶0, ..., A-1♦, using that d M γ q q(t i ), γ q q(t i+1 ) < 2 d < 2d i and using (3.25), we obtain that

d E [ϕ -1 ξ 1 (i) (γ q q(t i )), ϕ -1 ξ 1 (i) (γ q q(t i+1 ))] < ε 2N . (3.27)
Furthermore, for all j ∈ I and l ∈ ¶1, 2♦ such that U j,l ̸ = ∅, we obtain from the construction of U j,l that F Ω j ,γgw = F Ω j ,γg w , for all w, w ∈ U j,l . Then, using that grid automorphisms are isometries, we infer from the deĄnition of ψ 1 , i.e., (3.24), and (3.27) that d E [ψ 1 (γ q q(t i )), ψ 1 (γ q q(t i+1 ))] < ε 2N for all i ∈ ¶0, ..., A-1♦. Using the triangle inequality, we conclude that (3.26) is satisĄed.

Step 3 (Unique preimage of 0). We denote T : R 2 → R 2 the translation of R 2 such that T •ψ 1 (p) = 0 and we deĄne the mapping

ψ 2 := T • ψ 1 : Ωp → ψ 2 ( Ωp ) ⊂ R 2 .

We now prove the following:

There exists h 0 > 0 such that any sequence

(q n ) n∈N ⊂ B M (p, h 0 ) satisfying lim n→∞ ψ 2 (q n ) = ψ 2 (p) = 0 converges to p.
Let us Ąrst recall from Step 2 that Ω * p is covered by the arcwise connected sets U j,l , with j ∈ I and l ∈ ¶1, 2♦, deĄned such that U i,1 ∪ U i,2 = Ω i , for all i ∈ I. For all h > 0, we denote ¶U h i ♦ i∈E the sets U j,l , with j ∈ I and l ∈ ¶1, 2♦, such that U j,l ∩ B M (p, h) ̸ = ∅. Since F Ω i ,γgw = F Ω i ,γg w , for all w, w ∈ U i h , we have that ψ 2 U h i is a homeomorphism, for all i ∈ E and h > 0. We moreover notice that, since the cover of B M (p, h) ¶p♦ by ¶U h i ♦ i∈E is Ąnite, for all h > 0, there exists h 0 > 0 such that B M (p, 2h 0 ) ⊂ Ωp , and p ∈ cl M (U 2h 0 i ) for all i ∈ E. Now, let (q n ) n∈N ⊂ B M (p, h 0 ) be a sequence such that lim n→∞ ψ 2 (q n ) = 0. We prove that (q n ) n∈N converges to p by a contradiction argument. First, using the compactness of cl M (B M (p, h 0 )) ⊂ B M (p, 2h 0 ), there exists a subsequence of (q n ) n∈N converging in B M (p, 2h 0 ). We denote q ∞ ∈ B M (p, 2h 0 ) this limit and we suppose that q ∞ ̸ = p. Then, ψ 2 (q ∞ ) = 0 and, for some i ∈ E, we have q ∞ ∈ U 2h 0 i . Now, since p ∈ cl M (U 2h 0 i ), there exists a sequence (q n ) n∈N ⊂ U 2h 0 i converging

Some technical results

to p and, due to the continuity of ψ 2 on U 2h 0 i and at p, we have lim n→∞ ψ 2 (q n ) = 0.

(3.28)

Let Γ ∞ ⊂ U 2h 0 i be a neighborhood of q ∞ such that p / ∈ cl M (Γ ∞ ). Since ψ 2 U 2h 0 i is a homeomor- phism, there exists a neighborhood U ∞ of ψ 2 (q ∞ ) = 0 such that ψ 2 -1 U 2h 0 i (U ∞ ) = Γ ∞ .
This is in contradiction with (3.28). We conclude that q ∞ = p and we have the expected result.

Step 4 (A mapping ψ2 in the neighborhood of η * set ). To make explicit the jump of ψ 2 whenever we cross the curve η, let Γ ⊂ Ω * 

: O 1 ∪ η * set → ψ 2 (O 1 ∪ η * set ) ⊂ R 2 is a continuous mapping.
Then, for all q ∈ Γ, let γgq : [0, 1] → Γ be a curve such that γgq (0) = g and γgq (1) = q. In the same manner as for the mapping ψ 2 , we deĄne the smooth mapping ψ2 :

Γ → ψ2 (Γ) ⊂ R 2 by ψ2 (q) = T • F -1 Ωα,γgq • ϕ -1 α (q), where q ∈ Ω α with (Ω α , ϕ α ) ∈ A 1 ,
for all q ∈ Γ. Let us remark that, in the same manner as in Step 2, we obtain that ψ2 has a continuous extension at p. Moreover, for all (Ω i , ϕ i ) ∈ A 1 with Ω i an arcwise connected set in Γ, the mapping ψ2

Ω i : Ω i → ψ2 (Ω i ) ⊂ R 2 is an homeomorphism and ψ2 -1 Ω i is compatible with A 1 . η × γ gq g × q ×q γgq=γgq Ωp × p O 2 O 1 Γ γgq Fig. 3.

Illustration of the construction of the mapping ψ2

Step 5 (Local homeomorphism up to a rotation). We prove the following:

There exists n ∈ ¶0, 1, 2, 3♦ such that for all q ∈ Γ,

ψ2 (q) =    ψ 2 (q), if q ∈ O 1 ∪ η * set , R n π 2 • ψ 2 (q), if q ∈ O 2 .
(3.29)

By construction, for all q ∈ O 1 ∪ η * set , we have ψ 2 (q) = ψ2 (q). We denote J ⊂ I the set of indices i ∈ I such that Ω i ∩ O 2 ̸ = ∅. Then, for all i ∈ J and q ∈ Ω i ∩ O 2 , we have

ψ2 (q) = T • F -1 Ω i ,γgq • ϕ -1 i (q) = T • F -1 Ω i ,γgq • F Ω i ,γgq • T -1 • T • F -1 Ω i ,γgq • ϕ -1 i (q) = T • F -1 Ω i ,γgq • F Ω i ,γgq • T -1 • ψ 2 (q). (3.30)
Hence, we have ψ2 (q) = G i,q • ψ 2 (q), with G i,q : R 2 → R 2 the grid automorphism deĄned by

G i,q = T • F -1 Ω i ,γgq • F Ω i ,γgq • T -1 ,
for all i ∈ J and q ∈ Ω i ∩O 2 . Therefore, due to the continuity of ψ 2 and ψ2 on O 2 , we have that G i,q is independent of i ∈ J and q ∈ O 2 and we denote this mapping G : R 2 → R 2 . Furthermore, since ψ2 has a continuous extension at p, we infer from ψ2

O 1 ∪η * set = ψ 2 O 1 ∪η * set that ψ2 (p) = ψ 2 (p) = 0.
We conclude that 0 is a Ąxed-point of the grid automorphism G, so that there exists n ∈ ¶0,

1, 2, 3♦ such that G = R n π 2 .
Part 2: mapping from Ω * p to the cone C λ

Step 6 (Construction of the mapping ψ cone ). We Ąrst lift the image of ψ 2 to the cylinder. We denote τ cyl : R + * × R → R 2 * the mapping deĄned by τ cyl (u, v) = (u cos(v), u sin(v)). We Ąx q 0 ∈ O 1 and, using that the mapping τ cyl is a covering mapping and [START_REF] Lee | Introduction to topological manifolds[END_REF]Cor. 11.19], we obtain that there exists a unique lifting

ψ cyl : O → ψ cyl (O) ⊂ R + * × R of the mapping ψ 2 O : O → ψ 2 (O) ⊂ R 2 *
such that ψ cyl (q 0 ) = ♣ψ 2 (q 0 )♣, arg(ψ 2 (q 0 )) ∈ R + * ×[0, 2π). By construction, the mapping ψ cyl satisĄes τ cyl • ψ cyl = ψ 2 . Moreover, the mapping

ψ cyl O 1 : O 1 → ψ cyl (O 1 ) ⊂ R + * × R can be extended continuously on η * set .
With this extension, we obtain a mapping ψ cyl : Ω * p → ψ cyl ( Ω * p ) ⊂ R + * × R. We illustrate the lifting of the mapping ψ 2 in Figure 3.32. Owing to Step 5, there exists an integer N ∈ Z such that, for all sequence (q n ) n∈N ⊂ O 2 converging to q ∞ ∈ η * set , the following is satisĄed: lim

n→∞ ψ cyl (q n ) = ψ cyl (q ∞ ) + 0, 2πN -n π 2  . ( 3.31) 
We set λ = ♣2πNn π 2 ♣ and we denote C λ the cone of interior angle λ. Let τ λ : R + * × R → C λ ¶0♦ be the quotient mapping deĄned by τ λ (u, v) = (u, ṽ), with ṽ = v mod λ. Then, we deĄne the mapping ψ cone : Ωp → C λ by

ψ cone (q) =    τ λ • ψ cyl (q), if q ∈ Ω * p , 0, if q = p,
for all q ∈ Ωp . Now, in the same manner as above, we lift to the cylinder the image of the mapping ψ2 . We denote this mapping ψcyl : Γ → ψcyl (Γ) ⊂ R + * × R. Then, using Step 5 and (3.31), we obtain that

ψcyl (q) =    ψ cyl (q), if q ∈ O 1 ∪ η * set , ψ cyl (q) + (0, 2πN -n π
2 ), if q ∈ O 2 , for all q ∈ Γ. Hence, we have

τ λ • ψcyl (q) = τ λ • ψ cyl (q) = ψ cone (q), (3.32) 
for all q ∈ Γ.

× 0 V 1 V 2 V 3 V 4 V 5 V 6 V 7 (a) Illustration of the domains V i = ψ 2 (Ω i ) ⊂ R 2 ¶0♦×R × (0, 0) × (0, 2πN-n π 2 )
ψ cyl (Ω1) Step 7 (Proof of Statements 1-4). First, since ψ 2 O is a local homeomorphism, we infer that the mapping ψ cone O is a local homeomorphism. Then, we easily conclude from (3.32) that the mapping ψ cone Ω * p is a local homeomorphism and Statement 1 follows. Moreover, Statement 4 is a direct consequence of (3.31). For Statement 2 to hold true, we restrict in what follows ψ 2 and ψ cone to Bp := B M (p, h 0 ), with h 0 > 0 deĄned in Step 3. Then, owing to Step 3, for all h ∈ (0, h 0 ], there exists l > 0 such that d E (ψ 2 (q), 0) < l ⇒ d M (q, p) < h, for all q ∈ Bp . Equivalently, we have

ψ cyl (Ω2) ψ cyl (Ω3) ψ cyl (ΩN-1)
ψ cyl (ΩN ) (b) Lifting to the cylinder: illustration of the domains ψ cyl (Ω i ) ⊂ R + * × R
ψ -1 2 B E (0, l) ⊂ B M (p, h),
and we conclude that 

ψ -1 cone B λ (0, l) ⊂ B M (p, h). ( 3 
F i := ψ 2 • ϕ i : ϕ -1 i (Ω i ) → ψ 2 (Ω i ) is a grid automorphism. Let (u, v) ∈ ϕ -1 i (Ω i ) and let (r, θ) ∈ R + * × [0, 2π) be the polar coordinates of F i (u, v). Then, there exists Ni ∈ Z such that ψ cyl • ϕ i (u, v) = (r, θ + 2π Ni ).
We infer that

ψ cone • ϕ i (u, v) = τ λ (r, θ + 2π Ni ).
Then, setting Π := Is(C λ , ψ cone (Ω i )) : ψ cone (Ω i ) → Pl C λ , ψ cone (Ω i ) , we obtain that there exists

n i ∈ Z such that Π • ψ cone • ϕ i (u, v) = R n i π 2 • F i (u, v). (3.34)
Since Π, ψ cone , ϕ i and F i are continuous, we infer that n i is independent of (u, v) ∈ ϕ -1 i (Ω i ) and we deduce that ψ cone Ω i is a homeomorphism. Moreover, setting

ζ i := Π • ψ cone Ω i : Ω i → ζ i (Ω i ) ⊂ R 2 , we have that (3.34) is equivalent to ζ i • ϕ i (u, v) = R n i π 2 • F i (u, v). (3.35) We conclude that (Ω i , ζ -1 i ) is compatible with (Ω i , ϕ i ).
Finally, in the case where Ω i ∩ η * set ̸ = ∅, we emphasize that the result (3.35) is obtained in the same manner using ψcyl instead of ψ cyl . This yields Statement 3. Now, we can prove Proposition 3.31 restated as follows.

Proposition 3.45 (Extension into conical singularities).

Let M be a surface and let A 1 be a GC atlas with singularities P. Assume that, for all p ∈ P, there exists a neighborhood Ωp of p and a finite open cover ∪ N i=1 Ω i of Ω * p := Ωp ¶p♦. Moreover, for all i ∈ ¶1, ..., N ♦, we suppose that Ω i is geodesically convex and we suppose that there exists

(Ω i , ϕ i ) ∈ A 1 such that ϕ -1 i : Ω i → U i ⊂ R 2 is
uniformly continuous. Then, there exists a GC atlas A with conical singularities P on M containing A 1 .

Proof.

Step 1 (Preliminaries). Let p ∈ P and let Ωp ⊂ M be a neighborhood of p satisfying the assumptions of the proposition. Owing to Lemma 3.44, there exists λ = k π 2 , with k ≥ 1 an integer, an open ball Bp := B M (p, h 0 ), with h 0 > 0, and a continuous mapping ψ cone : Bp → ψ cone ( Bp ) ⊂ C λ satisfying Statements 1-4 of Lemma 3.44. To prove the claim, we only need to show that there exists h ∈ (0, 

h 0 ] such that ψ cone B M (p, h) : B M (p, h) → ψ cone (B M (p, h)) ⊂ C λ is a homeomorphism. Indeed, supposing that ψ cone B M (p, h) is a homeomorphism, Statement
: Ω * 0 → ψ cone ( Ω * 0 ) ⊂ C λ ¶0♦,
with Ω * 0 := Ω0 ¶p♦, is a covering mapping. To this purpose, we prove that this mapping is proper, i.e., that the preimage by

ψ cone Ω * 0 of a compact set in ψ cone ( Ω * 0 ) is a compact set. In Step 2, we ensure that ψ cone Ω * 0 is
proper by showing that we can keep away the preimage of compact sets in ψ cone ( Ω * 0 ) from the boundary of B * p , that is, from p and from the boundary of Bp . We Ąnally prove in Step 3 that ψ cone B M (p, h) is a homeomorphism.

Step 2 (Proof that ψ cone is a covering mapping). Let h max > 0 be such that cl M B M (p, h max )) ⊂ Bp . Owing to Statement 2, there exists l > 0 such that

ψ -1 cone B λ (0, l) ⊂ B M (p, h max ). (3.36)
Moreover, using the continuity of ψ cone at p and ψ cone (p) = 0, there exists h > 0 such that

B M (p, h) ⊂ ψ -1 cone (B λ (0, l)). (3.37)
We set Ω0 := ψ -1 cone ψ cone B M (p, h) and Ω * 0 := Ω0 ¶p♦. Then, using (3.37), we obtain that

Ω0 ⊂ ψ -1 cone ψ cone ψ -1 cone B λ (0, l)  ⊂ ψ -1 cone (B λ (0, l)).
We ( Ω * 0 ) be a compact set. Since 0 / ∈ D, we denote L 0 = d λ (0, D) > 0 the distance from 0 to the compact set D in C λ . Then, using the continuity of ψ cone at p, we obtain that there exists h min > 0 such that B M (p, h min ) ⊂ ψ -1 cone (B λ (0, L 0 2 )) (see Figure 3.33). Moreover, using (3.38), we have

ψ -1 cone (D) ⊂ Ω0 ⊂ B M (p, h max ). Therefore, since ψ cone is continuous, ψ -1 cone (D) is a closed subset of the compact set cl M (B M (p, h max )) B M (p, h min ) in Bp . We conclude that ψ -1 cone (D) is a compact set. Hence, ψ cone Ω * 0
is a proper mapping, so that, owing to [34, Exercise 11.9], this mapping is a covering.

Step 3 (Proof that ψ cone is a homeomorphism). First, using that ψ cone Ω * 0 is a covering mapping and using Statement 2, we easily obtain that there exists l 0 > 0 such that B λ (0, l 0 ) ⊂ ψ cone ( Ω0 ). Then, owing to Statement 4 the image of a closed curve around p homotopic to a circle in Ω * 0 is a closed curve around 0 homotopic to a circle in ψ cone ( Ω * 0 ) ⊂ C λ ¶0♦. To prove that ψ cone Ω * 0 is a homeomorphism, suppose that x ∈ ψ cone ( Ω0 ) has two distincts preimages q 1 and q 2 in Ω * 0 . Let C be a closed curve passing by q 1 and q 2 , and homotopic to a circle around p in Ω * 0 . Then, ψ cone ( C) is composed by two closed curves and is homotopic to a circle around 0 in ψ cone ( Ω * 0 ). Therefore, one of these closed curves is contractible in ψ cone ( Ω * 0 ), which contradicts that q 1 ̸ = q 2 . We conclude that the covering mapping ψ cone Ω * 0 : Ω * 0 → ψ cone ( Ω * 0 ) is a homeomorphism. Therefore, we have Ω0 = B M (p, h) and we conclude that 

ψ cone B M (p, h) : B M (p, h) → ψ cone (B M (p, h)) is a homeomorphism using Statement 2. The claim follows.

Conical singularities

h max h h min × p Ωp D × 0 C λ ψ cone ψ -1 cone ψ -1 cone (D) ψ cone [B M (p, h)]

Smooth Chebyshev nets defined by primal boundary conditions

We prove in this chapter the existence and the uniqueness of a Chebyshev net delimited by two smooth curves called boundary conditions. We outline the main ideas of the proof as follows.

Following [START_REF] Ghys | Sur la coupe des vêtements: variation autour dŠun thème de Tchebychev[END_REF], we consider the angle distribution deĄned by the angle between the coordinate curves of the candidate Chebyshev net. We prove that one can construct a unique mapping from this angle distribution such that the v-coordinate curves are arc-length parametrized curves with the proper geodesic curvature deĄned by this angle distribution. Note that the choice of the direction is arbitrary, so that the u-coordinate curves could have been chosen. This construction entails a loss of symmetry between these two coordinates which materializes itself by a diferentiation between the regularity of the two directions of coordinates curves. The aim is now to view the Hazzidakis formula as a Ąxed-point equation on the angle distribution, using that the candidate Chebyshev net depends (Lipschitz) continuously on this angle distribution.

We then show that, supposing that the Hazzidakis formula is satisĄed by the angle distribution, we obtain a regularity pick-up by the use of this identity, and therefore we recover the symmetry between the two directions. Furthermore, we prove that, under suitable regularity conditions, the candidate mapping constructed from the angle distribution is indeed a Chebyshev net, i.e., the u-coordinate curves are also arc-length parametrized. The last step of the proof is to show the existence of a unique solution to the equation associated with Hazzidakis formula. This is obtained in the spirit of the CauchyŰLipschitz theorem: we Ąrst prove this existence and uniqueness for a small interval in the v-coordinate, and we then extend this result to the whole domain.

Preliminaries

Informal statement of the main result

Let D = [0, L u ]×[0, L v ], with L u , L v ∈ R + * ,
and let γ u : [0, L u ] → M and γ v : [0, L v ] → M be two curves such that γ u (0) = γ v (0), and forming an interior angle ∠(γ ′ u (0), γ ′ v (0)) ∈ (0, π) at their intersection. For clarity of exposition, throughout this chapter, we consider a slightly diferent notion of Chebyshev net which will refer to mappings

(not necessarily homeomorphisms) ϕ : D → M satisfying ♣∂ u ϕ♣ g (u, v) = 1, (4.1a) ♣∂ v ϕ♣ g (u, v) = 1, (4.1b)
for all (u, v) ∈ D. Furthermore, note that the orientation of the boundary curve γ v is reversed in this chapter to simplify the exposition. We prove in the sequel the existence and the uniqueness of a Chebyshev net ϕ : D → M verifying the primal boundary conditions

ϕ(u, 0) = γ u (u), ∀u ∈ [0, L u ], ϕ(0, v) = γ v (v), ∀v ∈ [0, L v ]. (4.2)
Moreover, we show that the solution depends continuously on these boundary curves, in a sense that will be made precise later on. The considered surface M is supposed to be smooth, open, complete, and simply connected and we denote K its Gaussian curvature. Due to the above assumptions, the surface M is homeomorphic to the plane so that we suppose in what follows that M = (R 2 , g). We moreover suppose that the metric g satisĄes the following property: for all compact set W ⊂ M , there exists

C surf > 1 such that ♣X♣ g(p) ≤ C surf ♣X♣, (4.3) 
for all p ∈ W and X ∈ R 2 . Unless explicitly mentionned, all the considered curves are assumed to be arc-length parametrized. Then, the geodesic curvature κ σ :

I ⊂ R → R of a curve σ : I → M is deĄned by κ σ = ⟨σ ′′ , σ ′⊥ ⟩ g , (4.4)
where σ ′⊥ is the direct π 2 -rotation of σ ′ . In the sequel, C and C are two generic constants whose values can change at each occurrence and we will often explicit their dependence.

Following [START_REF] Ghys | Sur la coupe des vêtements: variation autour dŠun thème de Tchebychev[END_REF], we reformulate the problem of Ąnding a Chebyshev net ϕ : D → M as the problem of Ąnding the angle distribution ω : D → R/2πZ between the coordinate curves deĄned by (u, v). With this purpose in mind, we observe that ω satisĄes the following integrability condition (in the form of a modiĄed Sine-Gordon equation) [START_REF] Ghys | Sur la coupe des vêtements: variation autour dŠun thème de Tchebychev[END_REF] ∂ uv ω = -K(ϕ) sin(ω).

ω(u, v) = ∠(∂ u ϕ, ∂ v ϕ)
(4.5)

Equivalently, ω satisĄes the integrated form of (4.5) called the Hazzidakis formula

ω(u, v) = ∠ γ ′ u (0), γ ′ v (0) - u 0 κ u (s)ds + v 0 κ v (s)ds - u 0 v 0 K(ϕ(s, t)) sin ω(s, t) ds dt, (4.6)
for all (u, v) ∈ D, with κ u : [0, L u ] → R and κ v : [0, L v ] → R the geodesic curvatures of γ u and γ v respectively (see Figure 4.1). We moreover remark that, since ϕ is a Chebyshev net, it satisĄes the following property: Suppose moreover that there exists D = [0, Lu ]×[0, Lv ], with Lu ∈ (0, L u ] and Lv ∈ (0, L v ], such that 0 < ω(u, v) < π, for all (u, v) ∈ D. Then, the mapping ϕ D is a Chebyshev nets, that is, it satisfies (4.1) for all (u, v) ∈ D.

κ map u (u, v) = -∂ u ω(u, v), (4.7a) κ map v (u, v) = ∂ v ω(u, v), ( 4 
In order to prove Theorem 4.3, we proceed along the following plan. In Section 4.2, given the two curves γ u and γ v on M and the angle distribution ω : D → R/2πZ between the coordinate curves, we Ąrst construct the candidate Chebyshev net ϕ = I(γ, ω) : D → M . We then show that whenever ϕ satisĄes the integrability condition (4.5), this mapping also satisĄes (4.1) under suitable regularity conditions. In Section 4.3, we view the Hazzidakis formula (4.6), with ϕ := I(γ, ω), as a Ąxed-point problem on ω. We show existence and uniqueness of the solution to this Ąxed-point equation for the curves γ u and γ v [0,L 0 ] : [0, L 0 ] → M , where L 0 ∈ (0, L v ] is a constant depending on the C 0 -norm of the geodesic curvatures of γ u and γ v . This result is called Şlocal existenceŤ in what follows. We Ąnally extend this result to the curves γ u and γ v of arbitrary length, in the spirit of the CauchyŰLipschitz theorem.

Functional spaces and statement of the main result

We now turn to the regularity required on the curves γ u and γ v and on the angle distribution ω. In what follows, we deĄne the spaces in which the curves, parametrizations and angles are constructed. Recall that

D = [0, L u ]×[0, L v ], with L u , L v ∈ R + * .
Let k ∈ N and L ∈ (0, L v ]. We consider the space C k+2 ([0, L], M ) of curves γ with general parametrizations on M and such that the geodesic curvature of γ has C k -regularity. We deĄne Γ k+2 ([0, L]) to be the closed subset of C k+2 ([0, L], M ) formed by arc-length parametrized curves:

Γ k+2 ([0, L]) = γ ∈ C k+2 ([0, L], M ) s.t. ∀s ∈ [0, L], ♣γ ′ (s)♣ g(γ(s)) = 1 , equipped with the norm ∥ • ∥ C k+2 ([0,L])
. Note that the norms involved in the Sobolev spaces are the Euclidean norms. Let r ∈ N. We deĄne the space Θ r,k (D) of angle distributions on D:

Θ r,k (D) = C r [0, L u ], C k ([0, L v ], R/2πZ) ,
equipped with the norm

∥ω∥ Θ r,k (D) = ∥ω∥ C r ([0,Lu],C k ([0,Lv])) .
In the case where k = r, the notation of Θ k,k (D) is simpliĄed to Θ k (D). We denote Φ r,k+2 (D) the closed subset of the Banach space C r ([0, L u ], C k+2 ([0, L v ], M )) formed by arc-length parametrized curves with C k+2 -regularity depending on a parameter of regularity C r :

Φ r,k+2 (D) := C r [0, L u ], Γ k+2 ([0, L v ]) ⊂ C r [0, L u ], C k+2 ([0, L v ], M ) .
This space is equipped with the norm

∥ϕ∥ Φ r,k+2 (D) = ∥ϕ∥ C r ([0,Lu],Γ k+2 ([0,Lv])) .
Note that we do not require the regularity on the Ąrst variable to be the same as the regularity on the second variable. This will be made visible in the construction of the candidate Chebyshev net ϕ: the Ąrst coordinate denotes the initial conditions of an ordinary diferential equation in the second coordinate, which does not entail the same regularity.

Let γ = (γ u , γ v ) ∈ Γ r+2 ([0, L u ])×Γ k+2 ([0, L v ]
) be two curves with respective geodesic curvatures

κ u : [0, L u ] → R and κ v : [0, L v ] → R,
and such that γ u (0) = γ v (0). We deĄne the aine subspace composed of the angle distributions satisfying the boundary conditions (4.8):

Θ r,k γ (D) = ω ∈ Θ r,k (D), s.t. ω satisĄes (4.8) .
The subspace Θ r,k γ is a closed subset of the Banach space Θ r,k . Again, in the case where r = k, we set Θ k γ = Θ k,k γ . We can now restate Theorem 4.1 with the correct regularity.

Theorem 4.3 (Existence and uniqueness of Chebyshev nets). Let M be a smooth, open, complete, and simply connected surface and let

k ∈ N. Let γ = (γ u , γ v ) ∈ Γ k+2 ([0, L u ])×Γ k+2 ([0, L v ]), with L u , L v ∈ R + * , be two curves with respective geodesic curvatures κ u ∈ C k ([0, L u ]) and κ v ∈ C k ([0, L v ]), and such that γ u (0) = γ v (0). Suppose that ∠(γ ′ 1 (0), γ ′ 2 (0)) ∈ (0, π).
Then, there exists a unique angle distribution ω : Suppose moreover that we have 0 < ω(u, v) < π, for all (u, v) ∈ D. Then, ϕ is a Chebyshev net, i.e., it also satisfies (4.1a) and (4.7a), and the mappings

= J (γ) ∈ Θ k+1 γ (D), with D = [0, L u ]×[0, L v ],
J : Γ k+2 ([0, L u ])×Γ k+2 ([0, L v ]) → Θ k+1 (D), I : Γ k+2 ([0, L u ])×Γ k+2 ([0, L v ])×Θ k+1 (D) → Φ k+2 (D) are continuous.

Construction of a Chebyshev net from its angle distribution

We now prove that a Chebyshev net can be constructed uniquely from its angle distribution. We start by showing in Subsection 4.2.1 that the construction of curves from their geodesic curvature, initial point and initial tangent vector is a well-posed problem. We then deĄne, following [START_REF] Ghys | Sur la coupe des vêtements: variation autour dŠun thème de Tchebychev[END_REF], the mapping I(γ, ω) which, for given boundary curves γ u and γ v , associates with any angle distribution ω satisfying the boundary conditions (4.8) the candidate Chebyshev net ϕ, with angle distribution ω, satisfying the boundary conditions (4.2) (Subsection 4.2.2). The parametrization ϕ is constructed in such a way that the v-coordinate curves are arc-length parametrized curves with geodesic curvatures satisfying (4.7b). We moreover show the continuity of the mapping I with respect to the angle distribution and to the delimiting curves γ u and γ v . In Subsection 4.2.3, we show that the candidate Chebyshev net ϕ has improved regularity in the u-coordinate whenever ω satisĄes the integrability condition (4.5). Finally, in Subsection 4.2.4, we prove that ϕ is indeed a Chebyshev net if ω satisĄes the integrability condition and has a suicient regularity.

Construction of curves from their geodesic curvature

Proposition 4.4 (Construction of curves from their geodesic curvature). Let M be a smooth, open, complete, and simply connected surface. Let L max ∈ R + * , L ∈ (0, L max ) and k, r ∈ N. Let x ∈ M , let V ∈ T x M be a unit vector, i.e., a vector such that ♣V ♣ g = 1, and let κ ∈ C k ([0, L], R). Then, there exists a unique (arc-length parametrized) curve σ(x, V, κ) := σ ∈ Γ k+2 ([0, L]) such that σ(0) = x, σ ′ (0) = V , and with geodesic curvature κ.

Moreover, let L 1 , L 2 ∈ (0, L max ), let x 1 , x 2 ∈ C r ([0, L 1 ], M ) be initial position distributions and let V 1 , V 2 ∈ C r ([0, L 1 ], T M ), with ♣V 1 ♣ g = ♣V 2 ♣ g = 1, be initial derivatives distribution. Let D 1,2 = [0, L 1 ]×[0, L 2 ] and let κ 1 , κ 2 ∈ C r ([0, L 1 ], C k ([0, L 2 ], R)) be geodesic curvatures. We denote σ 1 , σ 2 : [0, L 1 ] → Γ k+2 ([0, L 2 ]) the two families of curves defined by σ m (η, •) := σ(x m (η), V m (η), κ m (η, •)),
for all η ∈ [0, L 1 ] and m ∈ ¶1, 2♦. Then, we have

σ 1 , σ 2 ∈ Φ r,k+2 (D 1,2 ) = C r ([0, L 1 ], Γ k+2 ([0, L 2 ])),
and, for all m ∈ ¶1, 2♦,

∥σ m ∥ Φ r,k+2 (D 1,2 ) ≤ C, (4.9)
where the constant

C depends on L max , ∥x m ∥ C r ([0,L 1 ]) , ∥V m ∥ C r ([0,L 1 ]) , and ∥κ m ∥ C r ([0,L 1 ],C k ([0,L 2 ])) .
Finally, we have

∥σ 1 -σ 2 ∥ Φ 0 (D 1,2 ) ≤ C L 2 ∥κ 1 -κ 2 ∥ C 0 (D 1,2 ) + ∥x 1 -x 2 ∥ C 0 ([0,L 1 ]) + ∥V 1 -V 2 ∥ C 0 ([0,L 1 ])  ,
if k = 0 and r = 0, (4.10a)

∥σ 1 -σ 2 ∥ Φ r,k+2 (D 1,2 ) ≤ C ∥κ 1 -κ 2 ∥ C r ([0,L 1 ],C k ([0,L 2 ])) + ∥x 1 -x 2 ∥ C r ([0,L 1 ]) + ∥V 1 -V 2 ∥ C r ([0,L 1 ])  , (4.10b)
where the constants C and C depend on

L max , ∥x m ∥ C r ([0,L 1 ]) , ∥V m ∥ C r ([0,L 1 ]) , and ∥κ m ∥ C r ([0,L 1 ],C k ([0,L 2 ])) , with m ∈ ¶1, 2♦.
We illustrate the family of curves σ 1 introduced in Proposition 4.4 in Figure 4.2. 

x 1 (0) × σ 1 (0, •) σ 1 (η, •) x 1 (η) × V 1 (η) V 1 (0) σ 1 (η, s)×

Construction of a Chebyshev net from its angle distribution

Proof. To prove the claim, we proceed as follows. We Ąrst introduce in Step 1 the geodesic curvature equation that permits to deĄne uniquely a curve from its geodesic curvature. The existence and the uniqueness of the curve is proved in Step 2 using CauchyŰLipschitz theorem. Then, in order to apply an induction argument, we prove (4.9) and (4.10) in the case k = 0 and r = 0 using GrönwallŠs inequality. The equation satisĄed by the derivatives of the solution is presented in a generic form to facilitate the end of the proof in Step 3. Finally, we prove (4.9) and (4.10b) in Steps 4 and 5 using induction arguments. Whenever there is no ambiguity, the domain of the variables will be omitted.

Step 1 (Formulation of the geodesic curvature equation). Let (σ 1 , σ 2 ), with σ 1 , σ 2 : [0, L] → R, be the coordinates of the candidate curve σ : [0, L] → M with geodesic curvature κ. We denote which can be written, in coordinates, Ẋ = G(X) + κf (X), (4.12)

with

X(0) = (x 1 , x 2 , V 1 , V 2 )
. Here, we have denoted

X =      σ 1 σ 2 σ ′1 σ ′2      , f (X) =      0 0 N 1 N 2      , G(X) =          X 3 X 4 - 1≤i,j≤2 Γ 1 i,j (X 1 , X 2 )X 2+i X 2+j - 1≤i,j≤2 Γ 2 i,j (X 1 , X 2 )X 2+i X 2+j          ,
Γ k ij being the smooth Christofel symbols, G the smooth geodesic function and N the normal vector deĄned by

N = N 1 N 2 = det g(X 1 , X 2 )g -1 (X 1 , X 2 ) -X 4 X 3 .
Step 2 (Proof for k = 0 and r = 0). As G + κf is continuous and locally Lipschitz continuous with respect to X, owing to CauchyŰLipschitz theorem, there exists a local solution to (4.12). Moreover, since σ is by construction arc-length parametrized, we have ♣σ ′ ♣ g = 1 and we infer from (4.3) that ♣σ ′ ♣ ≤ C surf . Hence, the image of X is included in a ball B whose radius depends only on L max and C surf . We deduce that the solution is deĄned on [0, L]. Moreover, G and f are Lipschitz continuous with respect to X on B. Hence, G + κf is Lipschitz continuous with respect to X on B, so that the uniqueness of the solution follows. Moreover, we infer from (4.12) that

σ ∈ Γ 2 ([0, L]). Let m ∈ ¶1, 2♦ and let X m = (σ 1 m , σ 2 m , σ ′1 m , σ ′2 m ) t : D 1,2 → R 4 be such that X m (η, •) is the unique solution to (4.12) with κ = κ m (η, •), for all η ∈ [0, L 1 ]. First, owing to [25, Chap. V, Th. 2.1], we have X m ∈ C 0 ([0, L 1 ], C 1 ([0, L 2 ])), so that σ m ∈ Φ 0,2 (D 1,2 ). Then, since ♣σ ′ ♣ ≤ C surf , we infer that ∥σ m ∥ Φ 0,2 (D 1,2 ) ≤ C, where the constant C depends on ∥σ m (•, 0)∥ C 0 ([0,L 1 ]) and ∥X ′ m ∥ C 0 (D 1,2 ) . Moreover, due to ♣f (X m )♣ g = ♣σ ′ m ♣ g = 1, we have ♣f (X m )♣ ≤ C surf . (4.13)
Furthermore, since X m ( ¶η♦ × [0, L 2 ]) ⊂ B, we infer that G(X m ) is bounded and that this bound only depends on B, so that it only depends on X m (η, 0), L max and C surf , for all η ∈ [0, L 1 ]. We conclude that

∥σ m ∥ Φ 0,2 (D 1,2 ) ≤ C,
where the constant C depends on ∥x m ∥ C 0 ([0,L 1 ]) and ∥κ m ∥ C 0 (D 1,2 ) , and (4.9) holds with k = r = 0. Then, since the restrition of G and f to B are Lipschitz continuous in the variable X with coeicients denoted respectively C G and C f , we have

♣ Ẋ1 -Ẋ2 ♣ ≤ (C G + ♣κ 1 ♣C f )♣X 2 -X 1 ♣ + ♣κ 2 -κ 1 ♣ ∥f (X 2 )∥ C 0 (D 1,2 )) .
Therefore, using GrönwallŠs inequality and (4.13), we infer that

♣X 1 (t) -X 2 (t)♣ ≤ exp t C G + C f ∥κ 1 ∥ C 0 (D1,2)  ♣X 2 (0) -X 1 (0)♣ + C surf t 0 ♣κ 2 -κ 1 ♣  , ( 4.14) 
for all t ∈ [0, L]. We deduce that (4.10a) and (4.10b) are satisĄed for k = r = 0.

Step 3 (Differential equation on the derivatives of X). Let m ∈ ¶1, 2♦. Owing to [25, Chap. V, Th. 4.1], we have that σ ∈ Γ k+2 ([0, L]) and σ m ∈ Φ r,k+2 (D 1,2 ). We use the following notation: for

I = (i 1 , i 2 ) ∈ N 2 , we set ∂ I f (η, t) = ∂ i 1 η ∂ i 2 t f (η, t).
We denote (H r,k ), with r, k ∈ N * , the following induction hypothesis:

for all I = (i 1 , i 2 ) ∈ ¶0, ..., r♦× ¶0, ..., k♦ such that I ̸ = (0, 0), we have ∂ t ∂ I X m = (∇G(X m ) + κ m ∇f (X m ))∂ I X m + 0≤α≤i 1 0≤β≤i 2 F I α,β (∂ (p,q) X m ) 0≤p+α≤i 1 , 0≤q+β≤i 2 , p+q<i 1 +i 2 ∂ (α,β) κ m , ( 4.15) 
where F I α,β : R 4n 0 → R 4 , with

n 0 =    (i 1 -α + 1)(i 2 -β + 1), if α + β ̸ = 0, (i 1 + 1)(i 2 + 1) -1, otherwise, are C ∞ functions, for all (α, β) ∈ ¶0, ..., i 1 ♦× ¶0, ..., i 2 ♦.
We denote ∂ 1 and ∂ 2 the derivatives with respect to η and t respectively. We Ąrst obtain from (4.12) that, for all m ∈ ¶1, 2♦ and i ∈ ¶1, 2♦,

∂ t ∂ i X m = ∇G(X m )∂ i X m + ∂ i κ m f (X m ) + κ m ∇f (X m )∂ i X m .
Hence, (4.15) is satisĄed for I = (0, 1) and I = (1, 0), so that (H 1,1 ) holds. We now suppose that (H r,k ) holds for r, k ∈ N * . Then, for I = (i 1 , i 2 ) with i 1 = r and i 2 = k, we have

∂ t ∂ i ∂ I X m = (∇G(X m ) + κ m ∇f (X m ))∂ i ∂ I X m + ∂ i ∇G(X m ) + κ m ∇f (X m ) ∂ I X m + 0≤α≤i 1 0≤β≤i 2  ∂ i F I α,β (∂ (p,q) X m ) 0≤p+α≤i 1 , 0≤q+β≤i 2 , p+q<i 1 +i 2  ∂ (α,β) κ m + F I α,β ∂ i ∂ (α,β) κ m  .
The Ąrst term is in the form of the Ąrst term on the right-hand side of (4.15) and the last two terms can be put in the form of the second term on the right-hand side of (4.15). Equation (4.15) is then satisĄed for I = (r + 1, k) and I = (r, k + 1), so that (H r+1,k ) and (H r,k+1 ) hold. The claim follows.

Step 4 (Proof of (4.9)). Let m ∈ ¶1, 2♦. First note that we have by deĄnition

∥σ m ∥ Φ r,k+2 (D 1,2 ) ≤ r i 1 =0 k+1 i 2 =0 ∥∂ i 1 η ∂ i 2 t X m ∥ C 0 (D 1,2 ) .
Then, to obtain (4.9), we only need to prove that

∥∂ I X m ∥ C 0 (D 1,2 ) ≤ C, ( 4.16) 
where the constant

C depends on L max , ∥x m ∥ C i 1 ([0,L 1 ]) , ∥V m ∥ C i 1 ([0,L 1 ]) , and ∥κ m ∥ C i 1 ([0,L 1 ],C i 2 ([0,L 2 ]))
, for all I = (i 1 , i 2 ) ∈ ¶0, ..., r♦× ¶0, ..., k+1♦. We prove (4.16) by induction on I ∈ ¶0, ..., r♦× ¶0, ..., k+ 1♦. Hence, we Ąrst consider the case i 2 = 0, in which case we have, using (4.15) and GrönwallŠs inequality,

♣∂ i 1 η X m (t)♣ ≤ exp ∥∇G(X m ) + κ σm ∇f (X m )∥ C 0 (D 1,2 ) t × ♣∂ i 1 η X m (0)♣ + i 1 α=0 t 0 F (i 1 ,0) α,0 X m , .., ∂ i 1 -1 η X m ∂ (α,0) κ σm  , for all i 1 ∈ ¶1, ..., r♦. Moreover, from
Step 2, we have that (4.16) holds in the case where I = (0, 0). Then, since the functions

F (i 1 ,0) α,0 have C ∞ -regularity with respect to (X m , ..., ∂ i 1 -1 η X m
), for all α ∈ ¶0, ..., i 1 ♦ and i 1 ∈ ¶1, ...r♦, an induction argument on i 1 ∈ ¶0, ..., r♦ permits to prove that (4.16) holds for all I ∈ ¶0, ..., r♦× ¶0♦. Now, noting that

∂ t ∂ I X m = ∂ i 1 η ∂ i 2 +1
t X m , we infer from (4.15) that

∥∂ t ∂ I X m ∥ C 0 (D1,2) ≤ ∥∇G(X m ) + κ∇f (X m )∥ C 0 (D1,2) ∥∂ I X m ∥ C 0 (D1,2) + 0≤α≤i1 0≤β≤i2 F I α,β (∂ (p,q) X m ) 0≤p+α≤i1, 0≤q+β≤i2, p+q<i1+i2 C 0 (D1,2) ∥∂ (α,β) κ m ∥ C 0 (D1,2) ,
for all I = (i 1 , i 2 ) ∈ ¶0, ..., r♦× ¶0, ..., k♦ such that I ̸ = (0, 0). Finally, since (4.16) holds for all I = (i 1 , 0) ∈ ¶0, ..., r♦× ¶0♦ and for I = (0, 1) by step 2, and since all the functions F I α,β have C ∞regularity, the induction argument on I to prove that (4.16) holds for all I ∈ ¶0, ..., r♦× ¶0, ..., k+1♦ is straightforward. We conclude that (4.9) holds.

Step 5 (Proof of (4.10b)). Let I = (i 1 , i 2 ) ∈ ¶0, ..., r♦× ¶0, ..., k♦ be such that I ̸ = (0, 0) and let m ∈ ¶1, 2♦. Owing to (4.9), ∂ Ĩ X m is bounded by a constant depending only on

∥κ m ∥ C r ([0,L 1 ],C k ([0,L 2 ]) , ∥x m ∥ C r ([0,L 1 ]) , and ∥V m ∥ C r ([0,L 1 ]
) , for all Ĩ ∈ ¶0, ..., r♦× ¶0, ..., k♦. Hence, the smooth functions F I α,β are Lipschitz continuous on the compact set deĄned by the image of the derivatives of X m , for all (α, β) ∈ ¶0, ..., i 1 ♦× ¶0, ..., i 2 ♦. We denote C F I α,β their respective Lipschitz coeicients in this compact set and we set W m = ∂ I X m . Using (4.15), we easily obtain that

♣∂ t W 2 -∂ t W 1 ♣ ≤ ∥∇G(X 1 )∥ C 0 + ♣κ 1 ♣∥∇f (X 1 )∥ C 0 ♣W 2 -W 1 ♣ + κ 1 ∇f (X 1 ) -κ 2 ∇f (X 2 ) + ∇G(X 1 ) -∇G(X 2 )  ∥W 2 ∥ C 0 + i1 α=0 i2 β=0 C F I α,β p∈ ¶0,...,i1♦, q∈ ¶0,...,i2♦ p+q<i1+i2 ∂ (p,q) X 2 -∂ (p,q) X 1 ∥∂ (α,β) κ 1 ∥ C 0 + i1 α=0 i2 β=0 F I α,β (∂ (p,q) X 2 ) 0≤p+α≤i1, 0≤q+β≤i2, p+q<i1+i2 C 0 ♣∂ (α,β) κ 1 -∂ (α,β) κ 2 ♣,
where C 0 refers to the norm C 0 (D 1,2 ). Using GrönwallŠs inequality, we infer that

♣W 1 -W 2 ♣(η, t) ≤ exp ∥∇G(X 1 ) + κ 1 ∇f (X 1 )∥ C 0 t ×  ♣W 1 -W 2 ♣(η, 0) + ∥W 2 ∥ C 0 max i∈ ¶1,2♦ max ∥κ i ∥ C 0 , ∥∇f (X i )∥ C 0 , 1 t 0 ♣κ 2 -κ 1 ♣+ C ∇f +C ∇G ♣X 2 -X 1 ♣ + i1 α=0 i2 β=0 C F I α,β ∥∂ (α,β) κ 1 ∥ C 0 p∈ ¶0,...,i1♦, q∈ ¶0,...,i2♦ p+q<i1+i2 t 0 ♣∂ (p,q) X 2 -∂ (p,q) X 1 ♣ + i1 α=0 i2 β=0 F I α,β (∂ (p,q) X 2 ) 0≤p+α≤i1, 0≤q+β≤i2, p+q<i1+i2 C 0 t 0 ∂ (α,β) κ 1 -∂ (α,β) κ 2  ,
where C 0 refers to the norm C 0 (D 1,2 ), and C ∇f and C ∇G are the Lipschitz constants of ∇f and ∇G, respectively. Then, we obtain using (4.9) that

∥σ 1 -σ 2 ∥ Φ i 1 ,i 2 +1 (D 1,2 ) ≤ C ∥κ 1 -κ 2 ∥ C i 1 ([0,L 1 ],C i 2 ([0,L 2 ])) + ∥x 1 -x 2 ∥ C i 1 ([0,L 1 ]) + ∥V 1 -V 2 ∥ C i 1 ([0,L 1 ]) + Σ 1 + Σ 2  ,
where the constant C depends on

L max , ∥x l ∥ C i 1 ([0,L 1 ]) , ∥V l ∥ C i 1 ([0,L 1 ]) , and ∥κ l ∥ C i 1 ([0,L 1 ],C i 2 ([0,L 2 ]))
, with l ∈ ¶1, 2♦, and

Σ 1 =    ∥σ 1 -σ 2 ∥ Φ i 1 -1,i 2 +1 (D 1,2 ) , if i 1 > 0, 0, otherwise, Σ 2 =    ∥σ 1 -σ 2 ∥ Φ i 1 ,i 2 (D 1,2 ) , if i 2 > 0, 0, otherwise. 
Hence, using (4.15), we obtain in the same manner that

∥σ 1 -σ 2 ∥ Φ i 1 ,i 2 +2 (D 1,2 ) ≤ C ∥κ 1 -κ 2 ∥ C i 1 ([0,L 1 ],C i 2 ([0,L 2 ])) + ∥x 1 -x 2 ∥ C i 1 ([0,L 1 ]) + ∥V 1 -V 2 ∥ C i 1 ([0,L 1 ]) + Σ 1 + Σ 2  ,
where the constant C depends on

L max , ∥x l ∥ C r ([0,L 1 ]) , ∥V l ∥ C r ([0,L 1 ]) , and ∥κ l ∥ C r ([0,L 1 ],C k ([0,L 2 ]))
, with l ∈ ¶1, 2♦. We then obtain (4.10) by a straightforward induction argument on I = (i 1 , i 2 ) ∈ ¶0, ..., r♦× ¶0, ..., k♦, recalling that the case I = (0, 0) was proved in Step 2. This concludes the proof of the proposition.

Construction of the parametrization

Let R x (θ) be the rotation of angle θ in the tangent plane

T x M at x ∈ M and let D = [0, L u ]×[0, L v ], with L u , L v ∈ R + * . Let r, k ∈ N.
Using the notation of Proposition 4.4, given an angle distribution ω ∈ Θ r+1,k+1 γ (D) satisfying the boundary conditions (4.8) given by the two curves γ

= (γ u , γ v ) ∈ Γ r+2 ([0, L u ])×Γ k+2 ([0, L v ]), we set x(η) = γ u (η) ∈ M, V (η) = R γu(η) (ω(η, 0))γ ′ u (η) ∈ T γu(η) M, (4.17) 
and κ(η, s) = ∂ v ω(η, s), for all (η, s) ∈ D. Let ϕ ω : D → M be the family of curves such that the curve ϕ ω (η,

•) ∈ Γ k+2 ([0, L v ]) has initial position ϕ ω (η, 0) = x(η), initial tangent vector ∂ v ϕ ω (η, 0) = V (η)
, and geodesic curvature κ(η, •), for all η ∈ [0, L u ] (see Figure 4.3). Note that the mapping ϕ ω also depends on the curves γ = (γ u , γ v ) but since these curves are kept Ąxed in what follows, we do not mention them explicitly. We denote

I(γ, •) : Θ r+1,k+1 γ (D) → Φ r+1,k+2 (D), ω → ϕ ω ,
the mapping that associates with each angle distribution ω with Θ r+1,k+1 -regularity and satisfying the boundary conditions (4.8), the mapping ϕ ω : D → M . 

x(0) × ϕ ω (•, 0)=γ u ϕ ω (0, •)=γ v ϕ ω (η, •) x(η) × γ ′ u (η) V (η) ω(η, 0) ω(0, 0) ϕ ω (η, s)× ∂ v ϕ ω (η, s) ω(η, s)
= [0, L u ]×[0, L v ], with L u , L v ∈ R + * . For all γ = (γ u , γ v ) ∈ Γ r+2 ([0, L u ])×Γ k+2 ([0, L v ]), the mapping I(γ, •) is well defined. Moreover, let γ 1 , γ 2 ∈ Γ r+2 ([0, L u ])×Γ k+2 ([0, L v ]), with γ 1 = (γ u,1 , γ v,1 ) and γ 2 = (γ u,2 , γ v,2 ), be such that γ u,1 (0) = γ u,2 (0) = γ v,1 (0) = γ v,2 (0) and such that γ ′ u,1 (0) = γ ′ u,2 (0) and γ ′ v,1 (0) = γ ′ v,2 (0). Consider the two angle distributions ω m ∈ Θ r+1,k+1 γm (D), for m ∈ ¶1, 2♦. Then, we have ∥I(γ m , ω m )∥ Φ r+1,k+2 (D) ≤ C (4.18)
where the constant C depends on L u , L v , ∥γ u,m ∥ Γ s ([0,Lu]) , and ∥ω m ∥ Θ r+1,k+1 (D) , with s = max(r + 1, 2). Moreover, for all L ∈ (0,

L v ], setting D L = [0, L u ]×[0, L], we have ∥I(γ 1 , ω 1 ) -I(γ 2 , ω 2 )∥ Φ 0 (D L ) ≤ C L∥ω 1 -ω 2 ∥ Θ 1 (D L ) + ∥γ u,2 -γ u,1 ∥ Γ 2 ([0,Lu])  , if r = 0 and k = 0, (4.19a 
)

∥I(γ 1 , ω 1 ) -I(γ 2 , ω 2 )∥ Φ 1,k+2 (D L ) ≤ C ∥ω 1 -ω 2 ∥ Θ 1,k+1 (D L ) + ∥γ u,2 -γ u,1 ∥ Γ 2 ([0,Lu])  , if r = 0, (4.19b 
)

∥I(γ 1 , ω 1 ) -I(γ 2 , ω 2 )∥ Φ r+1,k+2 (D L ) ≤ C ∥ω 1 -ω 2 ∥ Θ r+1,k+1 (D L ) + ∥γ u,2 -γ u,1 ∥ Γ r+1 ([0,Lu])  , if r > 0, (4.19c) 
where the constant C depends on L u , L v , ∥γ u,i ∥ Γ s ([0,Lu]) , and ∥ω i ∥ Θ r+1,k+1 (D) , with i ∈ ¶1, 2♦ and s = max(r + 1, 2).

Proof. Since the construction of the mapping ϕ ω is the same as that in the construction of Proposition 4.4, we only need to prove that the boundary conditions used in the construction of ϕ ω are smooth enough. We denote κ u,1 : [0, L u ] → R and κ u,2 : [0, L v ] → R the geodesic curvatures of the curves γ u,1 and γ u,2 respectively. Using the notation of Proposition 4.4, for all m ∈ ¶1, 2♦ and u ∈ [0, L u ], we set x m (u) = γ u,m (u) and

V m (u) = R γu,m(u) (ω m (u, 0))γ ′ u,m (u) = cos(ω m (u, 0))γ ′ u,m (u) + sin(ω m (u, 0))γ ′⊥ u,m (u), (4.20) 
where

γ ′⊥ u,m is the direct π 2 -rotation of γ ′ u,m . Since ♣V m ♣ g = 1, we infer from (4.3) that ∥V m ∥ C 0 ([0,Lu]) ≤ C surf , for all m ∈ ¶1, 2♦. Furthermore, using that ω 1 ∈ Θ r+1,k+1 γ 1 (D) and ω 2 ∈ Θ r+1,k+1 γ 2
(D) both satisfy the boundary conditions (4.8), we obtain

♣ω 2 -ω 1 ♣(u, 0) = u 0 κ u,2 - u 0 κ u,1 ≤ u 0 ♣κ u,2 -κ u,1 ♣.
Hence, using (4.20), we obtain by a straightforward computation that

∥V 2 -V 1 ∥ C 0 ([0,Lu]) ≤ C ∥κ u,2 -κ u,1 ∥ C 0 ([0,Lu]) + ∥γ ′ 2 -γ ′ 1 ∥ C 0 ([0,Lu])  . ( 4.21) 
Let m ∈ ¶1, 2♦. Since ω m satisĄes the boundary conditions (4.8) given by the arc-length parametrized curve γ u,m , we infer from the deĄnition of geodesic curvature (4.4) that

D du γ ′ u,m = κ u,m γ ′⊥ u,m = -∂ u ω m (•, 0)γ ′⊥ u,m , D du γ ′⊥ u,m = -κ u,m γ ′ u,m = ∂ u ω m (•, 0)γ ′ u,m ,
where D du is the covariant derivative along the curve γ u,m . Hence, we deduce from (4.20) that

D du V m (u) = ∂ u ω m (u, 0) cos(ω m (u, 0))γ ′⊥ u,m -sin(ω m (u, 0))γ ′ u,m  + cos(ω m (u, 0)) D du γ ′ u,m + sin(ω m (u, 0)) D du γ ′⊥ u,m = 0, (4.22) 
for all u ∈ [0, L u ]. Therefore, in the same manner as in Proposition 4.4, using that V m is bounded, (4.21) and (4.22), we obtain

∥V m ∥ C r+1 ([0,Lu]) ≤ C, ∥V 1 -V 2 ∥ C r+1 ([0,Lu]) ≤ C∥γ u,1 -γ u,2 ∥ Γ s ([0,Lu]) , (4.23) 
where s = max(r + 1, 2), the constant C depends on L u , L v , and ∥γ u,m ∥ Γ s ([0,Lu]) , and the constant C depends on L u , L v , and ∥γ u,l ∥ Γ s ([0,Lu]) , with l ∈ ¶1, 2♦. Moreover, since x m = γ u,m , we have

∥x m ∥ C r+1 ([0,Lu]) = ∥γ u,m ∥ Γ r+1 ([0,Lu]) , ∥x 1 -x 2 ∥ C r+1 ([0,Lu]) = ∥γ u,1 -γ u,2 ∥ Γ r+1 ([0,Lu]) . (4.24) We set κ map v,m (u, •) := ∂ v ω m (u, •) : [0, L v ] → R, for all u ∈ [0, L u ].
We conclude the proof using (4.23), (4.24) and Proposition 4.4 with regularity (r+1, k), i.e., with

x 1 , x 2 ∈ C r+1 ([0, L u ]), V 1 , V 2 ∈ C r+1 ([0, L u ]) and κ map v,1 , κ map v,2 ∈ C r+1 ([0, L u ], C k ([0, L v ])).

Regularity of the candidate Chebyshev nets

Let us now consider the case where we have the same regularity in both coordinates in the data permitting the construction of ϕ ω , i.e., r = k. Then, taking r = k in Proposition 4.5 gives an optimal estimate in the second coordinate regularity but a suboptimal estimate in the Ąrst coordinate, since we expect C k+2 -regularity in both directions. We show in this section that, whenever the mapping constructed satisĄes the integrability equation (4.5), it has indeed the expected regularity in the Ąrst variable as well. 

ω m (u, v) = ∠ γ ′ u,m (0), γ ′ v,m (0) - u 0 κ u,m + v 0 κ v,m - u 0 v 0 K I(γ m , ω m )(t, s) sin(ω m (t, s))dtds, (4.25) 
for all m ∈ ¶1, 2♦. Then, we have ϕ m ∈ Φ k+2 (D) and

∥I(γ m , ω m )∥ Φ k+2 (D) ≤ C, (4.26) 
where the constant

C depends on L u , L v , ∥γ u,m ∥ Γ k+2 ([0,Lu])
, and ∥ω m ∥ Θ k+1 (D) , for all m ∈ ¶1, 2♦. Moreover, we have

∥I(γ 1 , ω 1 ) -I(γ 2 , ω 2 )∥ Φ k+2 (D) ≤ C ∥ω 1 -ω 2 ∥ Θ k+1 (D) + ∥γ 2,u -γ 1,u ∥ Γ k+2 ([0,Lu])  (4.27)
where the constant

C depends on L u , L v , ∥γ u,i ∥ Γ k+2 ([0,Lu]) and ∥ω i ∥ Θ k+1 (D) , for i ∈ ¶1, 2♦.
Proof. Let m ∈ ¶1, 2♦. First, owing to Proposition 4.5, we have

ϕ m = I(γ m , ω m ) ∈ Φ k+1,k+2 (D). We denote κ map v,m = ∂ v ω m ∈ C k+1 ([0, L u ], C k ([0, L v ]
)) the geodesic curvatures of the v-coordinate curves of ϕ m . Let us remark that, since ω m ∈ Θ 1 (D) satisĄes the Hazzidakis formula (4.25), ω m satisĄes the integrability condition (4.5), i.e.,

∂ uv ω m = -K(ϕ m ) sin(ω m ). (4.28)
Then, the claim is obtained by remarking that (4.28) implies that the geodesic curvatures κ map v,m of the v-coordinate curves satisfy

κ map v,m ∈ C k+2 ([0, L u ], C k ([0, L v ])). (4.29) 
Indeed, for all i, j ∈ ¶0, ..., k♦, we have

∂ i+1 u ∂ j v κ map v,m = ∂ i u ∂ j v ∂ u ∂ v ω m = ∂ i u ∂ j v -K(ϕ m ) sin(ω m )  . ( 4.30) 
Hence, since ω m ∈ Θ k+1 γm (D) and ϕ m ∈ Φ k+1,k+2 (D) and since K is smooth, we infer that (4.29) holds and that (4.30) is satisĄed for all i ∈ ¶0, ..., k+1♦ and j ∈ ¶0, ..., k♦. Furthermore, we have

∂ 2 u κ map v,m = ∂ u -K(ϕ m ) sin(ω m ) = -sin(ω m )∇K(ϕ m )∂ u ϕ m -K(ϕ m ) cos(ω m )∂ u ω m , (4.31) 
so that we easily obtain

∂ 2 u κ map v,m C k ([0,Lu],C k ([0,Lv])) ≤ C, where the constant C depends on L u , L v , ∥ω m ∥ Θ k+1 (D)
, and ∥ϕ m ∥ Φ k+1 (D) . Using moreover (4.18), we conclude that the constant C only depends on L u , L v , ∥ω m ∥ Θ k+1 (D) , and ∥γ u,m ∥ Γ s ([0,Lu]) , with s = max(k + 1, 2). We infer that

κ map v,m C k+2 ([0,Lu],C k ([0,Lv])) ≤ C, ( 4.32) 
where the constant C depends on L u , L v , ∥ω m ∥ Θ k+1 (D) , and ∥γ u,m ∥ Γ s ([0,Lu]) . Recalling that s = max(k + 1, 2), we deduce from (4.31) and (4.19) that

∂ 2 u κ map v,2 -∂ 2 u κ map v,1 C k ([0,Lu],C k ([0,Lv])) ≤ C ∥ω 2 -ω 1 ∥ Θ k+1 (D) + ∥ϕ 2 -ϕ 1 ∥ Φ k+1 (D)  ≤ C ∥ω 2 -ω 1 ∥ Θ k+1 (D) + ∥γ u,2 -γ u,1 ∥ Γ s ([0,Lu])  ,
where the constants C, C depend on L u , L v , ∥γ u,i ∥ Γ s ([0,Lu]) , and ∥ω i ∥ Θ k+1 (D) , with i ∈ ¶1, 2♦. We conclude that

κ map v,2 -κ map v,1 C k+2 ([0,Lu],C k ([0,Lv])) ≤ C ∥ω 2 -ω 1 ∥ Θ k+1 (D) + ∥γ u,2 -γ u,1 ∥ Γ s ([0,Lu])  , ( 4.33) 
where the constant C depends on L u , L v , ∥γ u,i ∥ Γ s ([0,Lu]) , and ∥ω i ∥ Θ k+1 (D) , with i ∈ ¶1, 2♦. As in the proof of Proposition 4.5, for all u ∈ [0, L u ], we set x m (u) = γ u,m (u) and

V m (u) = R γu,m(u) (ω m (u, 0))γ ′ u,m (u).
Before we apply Proposition 4.4 with regularity (k + 2, k), let us Ąrst note that, as in the proof of Proposition 4.5, the estimate on

x 1 , x 2 ∈ C k+2 ([0, L u ]), V 1 , V 2 ∈ C k+2 ([0, L u ]
) is given by (4.23), (4.24). Hence, the claim follows from the estimate on

κ map v,1 , κ map v,2 ∈ C k+2 ([0, L u ], C k ([0, L v ]))
given by (4.32) and (4.33), and Proposition 4.4 with regularity (k + 2, k). 

From integrability conditions to Chebyshev nets

= [0, L u ] × [0, L v ], with L u , L v ∈ R + * , and let k ≥ 1. Let γ = (γ u , γ v ) ∈ Γ k+2 ([0, L u ])×Γ k+2 ([0, L v ]). Assume that ω ∈ Θ k+1 γ (D)
is an angle distribution satisfying the integrability condition (4.5), with ϕ := I(γ, ω) ∈ Φ k+2 (D). Suppose moreover that 0 < ω(u, v) < π, for all (u, v) ∈ D. Then, the mapping ϕ is a Chebyshev net in the sense that it satisfies (4.1).

Proof. First, owing to Proposition 4.6, we have that ϕ ∈ Φ k+2 (D), so that ϕ has C 3 -regularity. Since the v-coordinate curves are arc-length parametrized curves, we have by construction We now suppose that L ∈ (0,

♣∂ v ϕ♣ g (u, v) = 1, and we set R(u, v) = ♣∂ u ϕ♣ g (u, v), for all (u, v) ∈ D. Then, since γ u is an arc- length parametrized curve, we have R(u, 0) = 1, for all u ∈ [0, L u ]. The proof amounts to showing that ∃L ∈ (0, L v ], ∂ v R(u, v) = 0, ∀(u, v) ∈ [0, L u ]×[0, L].
L v ] is small enough so that R(u, v) > 0, for all (u, v) ∈ [0, L u ]×[0, L], we set D L = [0, L u ]×[0, L], and we set X 1 (u, v) := ∂uϕ R (u, v), ∂ v ϕ(u, v) g and X 2 (u, v) := ∂uϕ ⊥ R (u, v), ∂ v ϕ(u, v) g , for all (u, v) ∈ D L . Note that by deĄnition X 2 1 + X 2 2 = 1 in D L . Recalling that R(•, 0) = 1 by construction of ϕ, we have X 1 (u, 0) = ∂ u ϕ, ∂ v ϕ g (u, 0) = cos ω(u, 0) , ( 4.35a) 
X 2 (u, 0) = ∂ u ϕ ⊥ , ∂ v ϕ g (u, 0) = sin ω(u, 0) , (4.35b) 
for all u ∈ [0, L u ]. Hence, since X 2 is continuous, up to reducing L, we have X 2 > 0 due to the assumption that 0 < ω < π.

We prove (4.34) as follows. We show that an identiĄcation of the Gaussian curvature computed using the local coordinates ϕ with (4.5) leads to the following integro-diferential equation on R in the v-coordinates:

∂ vv R = ∂ v ω∂ v RT + (∂ v R) 2 R T 2 -K(ϕ)X 2 sin ω v 0 ∂ v R X 2 sin ω + cos ω v 0 ∂ v R X 2 cos ω  , (4.36) 
with T = X 1 X 2 . We show that ∂ v R = 0 is the unique solution to (4.36) to prove the claim (4.34).

First, we compute in Step 1 the initial conditions satisĄed by ∂ v R necessary to obtain the uniqueness of the solution of (4.36), i.e., we prove that ∂ v R(•, 0) = 0. Then, we compute in Steps 2-4 the Gaussian curvature K in terms of R, X 1 and X 2 . Using (4.5), we reduce the Gaussian curvature to (4.36) in Step 5 and we conclude in Step 6.

Step 1 (Initial conditions). We prove that

∂ v R(u, 0) = 0, for all u ∈ [0, L u ].
We denote in what follows D ∂u Y and D ∂v Y the covariant derivative of the vector Ąeld Y in the directions ∂ u ϕ and ∂ v ϕ, respectively. First, since R(•, 0) = 1, we have that ∂ u R(u, 0) = 0, for all u ∈ [0, L u ]. Moreover, since ω satisĄes the boundary conditions (4.8), we have that

D ∂u ∂ u ϕ(u, 0) = -[∂ u ω∂ u ϕ ⊥ ](u, 0)
. Combining these results with (4.35), we obtain

1 2 ∂ v (R 2 )(u, 0) = D ∂v ∂ u ϕ, ∂ u ϕ g (u, 0) = ∂ u (RX 1 )(u, 0) -D ∂u ∂ u ϕ, ∂ v ϕ g (u, 0) = R(u, 0)∂ u X 1 (u, 0) + ∂ u ω∂ u ϕ ⊥ , ∂ v ϕ g (u, 0) = d du [cos(ω(u, 0))] + ∂ u ω(u, 0) sin(ω(u, 0)) = 0, for all u ∈ [0, L u ]. Therefore, we have ∂ v R(u, 0) = 0, for all u ∈ [0, L u ].
Step 2 (Computation of the Gaussian curvature (1 st part)). We prove the following relations on the parallel transport of vectors:

D ∂u ∂ u ϕ =  ∂ u R R + X 1 X 2 2 (∂ v R -∂ u X 1 )  ∂ u ϕ +  R X 2 2 (∂ u X 1 -∂ v R)  ∂ v ϕ, ( 4.37a 
)

D ∂v ∂ u ϕ = D ∂u ∂ v ϕ = ∂ v R RX 2 2 ∂ u ϕ - ∂ v RX 1 X 2 2 ∂ v ϕ, ( 4.37b) 
D ∂v ∂ v ϕ = ∂ v ω∂ v ϕ ⊥ . ( 4.37c) 
The results (4.37a) and (4.37b) easily follow from the identities

D ∂u ∂ u ϕ, ∂ u ϕ g = R∂ u R, D ∂u ∂ u ϕ, ∂ v ϕ g = ∂ u (RX 1 ) -∂ u ϕ, D ∂v ∂ u ϕ g = ∂ u RX 1 + R∂ u X 1 -R∂ v R, D ∂u ∂ v ϕ, ∂ u ϕ g = R∂ v R, D ∂u ∂ v ϕ, ∂ v ϕ g = 0,
where we have used in the last equality the fact that ♣∂ v ϕ♣ g = 1. Equation (4.37c) is obtained using that the v-coordinate curves of ϕ are arc-length parametrized and have by construction a geodesic curvature given by ∂ v ω.

Step 3 (Computation of the Gaussian curvature (2 nd part)). We prove that X 1 and X 2 satisfy

∂ v X 1 = -∂ v ωX 2 - ∂ v R R X 1 , (4.38a) ∂ v X 2 = ∂ v ωX 1 + X 1 X 2 ∂ v R R X 1 . (4.38b)
First, using that ⟨D ∂v ∂ u ϕ, ∂ v ϕ⟩ = 0 and (4.37c), we obtain

∂ v X 1 = D ∂v ∂ v ϕ, ∂uϕ R g + D ∂v ∂uϕ R , ∂ v ϕ g = ∂ v ω ∂ v ϕ ⊥ , ∂uϕ R g + ⟨- ∂ v R R 2 ∂ u ϕ + 1 R D ∂v ∂ u ϕ, ∂ v ϕ⟩ g = -∂ v ωX 2 - ∂ v R R X 1 ,
which proves (4.38a). Then, using that the geodesic curvatures of the v-coordinate curves of ϕ is

∂ v ω, we obtain D ∂v ∂ v ϕ ⊥ = -∂ v ω∂ v ϕ.
Moreover, a straightforward comptation gives

∂ v ϕ ⊥ = - 1 RX 2 ∂ u ϕ + T ∂ v ϕ, ∂ u ϕ ⊥ , ∂ v ϕ g = -∂ u ϕ, ∂ v ϕ ⊥ g .
Combining these results, we infer that

∂ v X 2 = -D ∂v ∂uϕ R , ∂ v ϕ ⊥ g -D ∂v ∂ v ϕ ⊥ , ∂uϕ R g = ∂ v R R 2 ∂ u ϕ, ∂ v ϕ ⊥ g - 1 R D ∂u ∂ v ϕ, ∂ v ϕ ⊥ g + ∂ v ω ∂ v ϕ, ∂uϕ R g = - ∂ v R R X 2 - 1 R D ∂u ∂ v ϕ, - 1 
RX 2 ∂ u ϕ + T ∂ v ϕ g + ∂ v ωX 1 = - ∂ v R R X 2 + ∂ v (R 2 ) 2R 2 X 2 + ∂ v ωX 1 = ∂ v R R 1 X 2 -X 2 + ∂ v ωX 1 = ∂ v ωX 1 + X 1 X 2 ∂ v R R X 1 .
Step 4 (Computation of the Gaussian curvature (3 rd part)). We now compute the expression of the Gaussian curvature K in the local parametrization ϕ. Note that the metric induced by ϕ is g = R 2 du 2 + 2RX 1 dudv + dv 2 giving det g = R 2 X 2 2 . Then, recall that, by deĄnition, the Gaussian curvature K satisĄes

K det g = D ∂v D ∂u ∂ u ϕ -D ∂u D ∂v ∂ u ϕ, ∂ v ϕ g . (4.39)
Using (4.37a), we Ąrst obtain that

D ∂v D ∂u ∂ u ϕ, ∂ v ϕ g = D ∂v A∂ u ϕ + B∂ v ϕ , ∂ v ϕ g = A D ∂v ∂ u ϕ, ∂ v ϕ g + B⟨D ∂v ∂ v ϕ, ∂ v ϕ g + RX 1 ∂ v A + ∂ v B, with A = ∂uR R + X 1 X 2 2 (∂ v R -∂ u X 1 ) and B = R X 2 2 (∂ u X 1 -∂ v R).
Then, we infer that

D ∂v D ∂u ∂ u ϕ, ∂ v ϕ g = RX 1 ∂ v A + ∂ v B = ∂ v  ∂ u R R  RX 1 + RX 2 1 ∂ v  ∂ v R -∂ u X 1 X 2 2  + RX 1 ∂ v X 1 ∂ v R -∂ u X 1 X 2 2 -∂ v R ∂ v R -∂ u X 1 X 2 2 -R∂ v  ∂ v R -∂ u X 1 X 2 2  = ∂ v  ∂ u R R  RX 1 -RX 2 2 ∂ v  ∂ v R -∂ u X 1 X 2 2  + RX 1 ∂ v X 1 ∂ v R -∂ u X 1 X 2 2 -∂ v R ∂ v R -∂ u X 1 X 2 2 . ( 4.40) 
Secondly, using (4.37b), we obtain that 

D ∂u D ∂v ∂ u ϕ, ∂ v ϕ g = D ∂u  ∂ v R RX 2 2 ∂ u ϕ - ∂ v RX 1 X 2 2 ∂ v ϕ  , ∂ v ϕ g = ∂ v R RX 2 2 D ∂u ∂ u ϕ, ∂ v ϕ g - ∂ v RX 1 X 2 2 D ∂u ∂ v ϕ, ∂ v ϕ g + RX 1 ∂ u  ∂ v R RX 2 2  -∂ u  ∂ v RX 1 X 2 2  = ∂ v R RX 2 2 D ∂u ∂ u ϕ, ∂ v ϕ g - ∂ u R R 2 ∂ v R X 2 2 RX 1 + ∂ u  ∂ v R X 2 2  X 1 -∂ u  ∂ v R X 2 2  X 1 - ∂ u X 1 ∂ v R X 2 2 = ∂ v R X 2 2  1 R D ∂u ∂ u ϕ, ∂ v ϕ g - X 1 ∂ u R R -∂ u X 1  . Since ⟨D ∂u ∂ u ϕ, ∂ v ϕ⟩ g = ∂ u RX 1 + R∂ u X 1 -R∂ v R, we infer that D ∂v D ∂u ∂ u ϕ, ∂ v ϕ g = - (∂ v R) 2 X 2 2 . ( 4 
K det g = -RX 2 2 ∂ v  ∂ v R -∂ u X 1 X 2 2  + RX 1 ∂ v X 1 ∂ v R -∂ u X 1 X 2 2 + ∂ v R∂ u X 1 X 2 2 + ∂ v  ∂ u R R  RX 1 = 1 X 2 2 RX 1 ∂ v X 1 (∂ v R -∂ u X 1 ) + ∂ v R∂ u X 1 -R∂ vv R + R∂ uv X 1 + 2∂ v X 2 R(∂ v R -∂ u X 1 ) X 2 + ∂ v  ∂ u R R  RX 1 = 1 X 2 2  -RX 1 ∂ v ωX 2 + ∂ v R R X 1  (∂ v R -∂ u X 1 ) + ∂ v R∂ u X 1  -R∂ vv R -R∂ u  ∂ v ωX 2 + ∂ v R R X 1  + 2  ∂ v ωX 1 + X 2 1 ∂ v R RX 2  R(∂ v R -∂ u X 1 ) X 2 + ∂ v  ∂ u R R  RX 1 ,
using (4.38) for the last equality. Then, we split the computation in two parts. First, we have

C := 1 X 2 2  -RX 1 ∂ v ωX 2 + ∂ v R R X 1  (∂ v R -∂ u X 1 ) + ∂ v R∂ u X 1  = 1 X 2 2 -R∂ v ωX 1 X 2 ∂ v R + RX 1 X 2 ∂ v ω∂ u X 1 -X 2 1 (∂ v R) 2 + X 2 1 ∂ u X 1 ∂ v R + ∂ v R∂ u X 1 = -R∂ v R∂ v ωT + RT ∂ v ω∂ u X 1 -T 2 (∂ v R) 2 + T 2 ∂ u X 1 ∂ v R + ∂ v R∂ u X 1 X 2 2 . (4.42)
Then, we obtain

E := -R∂ vv R -R∂ u  ∂ v ωX 2 + ∂ v R R X 1  + 2 ∂ v ωX 1 + X 2 1 ∂ v R RX 2 R(∂ v R -∂ u X 1 ) X 2 + ∂ v  ∂ u R R  RX 1 = -R∂ vv R -R ∂ uv ωX 2 + ∂ v ω∂ u X 2 + ∂ v  ∂ u R R  X 1 + ∂ v R R ∂ u X 1 + 2∂ v ωT R ∂ v R -∂ u X 1 + 2T 2 ∂ v R ∂ v R -∂ u X 1 + ∂ v  ∂ u R R  RX 1 = -R∂ vv R -R∂ uv ωX 2 -R∂ v ω(∂ u X 2 + T ∂ u X 1 ) -∂ v R∂ u X 1 (1 + T 2 ) -T ∂ u X 1 R∂ v ω -T 2 ∂ v R∂ u X 1 + 2T ∂ v R∂ v ωR + 2T 2 (∂ v R) 2 . Moreover, since X 2 1 + X 2 2 = 1, we have 1 + T 2 = 1 X 2 2 and T ∂ u X 1 + ∂ u X 2 = 0. We infer that E = -R∂ vv R -R∂ uv ωX 2 - ∂ v R∂ u X 1 X 2 2 -T ∂ u X 1 R∂ v ω -T 2 ∂ v R∂ u X 1 + 2T ∂ v R∂ v ωR + 2T 2 (∂ v R) 2 . (4.43)
We obtain by combining (4.42) and (4.43) that

K det g = C + E = T 2 (∂ v R) 2 -R∂ uv ωX 2 -R∂ vv R + T R∂ v R∂ v ω. (4.44)
Using that det g = X 2 2 R 2 and dividing by R, we Ąnally obtain

-∂ v ω∂ v RT - (∂ v R) 2 R T 2 + ∂ vv R = -X 2 (∂ uv ω + KX 2 R). (4.45)
Step 5 (Bound on the right-hand side of the equation (4.45)). By (4.45) and the integrability condition (4.5), we have

∂ vv R = ∂ v ω∂ v RT + (∂ v R) 2 R T 2 + K(ϕ)X 2 sin(ω) -X 2 R . (4.46)
The proof is now reduced to showing that ∂ v R = 0 is the unique solution to (4.46) such that

∂ v R(•, 0) = 0.
To this end, we bound the right-hand side of this equation. Let F 1 = sin(ω) -RX 2 and F 2 = cos(ω) -RX 1 . We infer from (4.38b) that

∂ v F 1 = ∂ v ω cos(ω) -∂ v RX 2 -R∂ v X 2 = ∂ v ω cos(ω) -RX 1 -∂ v R X 2 + T X 1 = ∂ v ωF 2 - ∂ v R X 2 , using that X 2 + T X 1 = X 2 + 1-X 2 2 X 2 = 1
X 2 in the last equality. In the same manner, we deduce from (4.38a) that ∂ v F 2 = -∂ v ωF 1 , so that the couple (F 1 , F 2 ) satisĄes the system of diferential equations

     ∂ v F 1 = ∂ v ωF 2 - ∂ v R X 2 , ∂ v F 2 = -∂ v ωF 1 , with F 1 (0) = F 2 (0) = 0, since R(u, 0) = 1, X 1 (u, 0) = cos ω(u, 0), and X 2 (u, 0) = sin ω(u, 0), for all u ∈ [0, L 1 ].
A straightforward computation shows that the unique solution to this linear ordinary diferential equation is

(sin ω -X 2 R)(u, v) = F 1 (u, v) = -sin ω(u, v) v 0 ∂ v R X 2 (u, s) sin ω(u, s)ds -cos ω(u, v) v 0 ∂ v R X 2 (u, s) cos ω(u, s)ds, (4.47a) (cos ω -X 1 R)(u, v) = F 2 (u, v) = -cos ω(u, v) v 0 ∂ v R X 2 (u, s) sin ω(u, s)ds + sin ω(u, v) v 0 ∂ v R X 2 (u, s) cos ω(u, s)ds, (4.47b) since ∂ v R(u, 0) = 0, for all u ∈ [0, L u ], by Step 1.
Step 6 (Conclusion). Finally, we infer from (4.46) and (4.47a) that

∂ vv R = ∂ v ω∂ v RT + (∂ v R) 2 R T 2 -K(ϕ)X 2 sin ω v 0 ∂ v R X 2 sin ω + cos ω v 0 ∂ v R X 2 cos ω  . (4.48)
Then, since 0 < ω(u, v) < π, for all (u, v) ∈ D L , we have that T and 1 X 2 are bounded. Using moreover that 1 R , ∂ v ω and K • ϕ are bounded, and using ∂ v R(•, 0) = 0, we infer from (4.48) that

♣∂ v R(t)♣ ≤ C t 0 ♣∂ v R(s)♣ds + t 0 ♣(∂ v R) 2 (s)♣ds + t 0 s 0 ♣∂ v R(l)♣dlds  ≤ C t 0 ♣∂ v R(s)♣ds,
for all u ∈ [0, L u ] and t ∈ [0, L]. Using GrönwallŠs inequality, we conclude that ∂ v R(u, v) = 0, for all (u, v) ∈ D L . The claim follows.

for all (u, v) ∈ D L . Doing the same for ∂ u F (ω), ∂ v F (ω) and ∂ uv F (ω) = -K(ϕ) sin(ω), we obtain

∥F (ω γ ) -F (ω σ )∥ Θ 0 ≤ C ∥γ u -σ u ∥ Γ 2 ([0,Lu]) + ∥γ v -σ v ∥ Γ 2 ([0,Lv]) + L∥K(ϕ γ ) sin(ω γ ) -K(ϕ σ ) sin(ω σ )∥ C 0  , ∥F (ω γ ) -F (ω σ )∥ Θ 1 ≤ C ∥γ u -σ u ∥ Γ 2 ([0,Lu]) + ∥γ v -σ v ∥ Γ 2 ([0,Lv]) + ∥K(ϕ γ ) sin(ω γ ) -K(ϕ σ ) sin(ω σ )∥ C 0  .
Moreover, since K is smooth and since ϕ γ and ϕ σ are bounded, we have

∥K(ϕ γ ) sin(ω γ ) -K(ϕ σ ) sin(ω σ )∥ C 0 ≤ C ∥ω γ -ω σ ∥ Θ 0 + ∥ϕ γ -ϕ σ ∥ Φ 0  ,
and we conclude the proof of (4.52) with

∥ϕ γ -ϕ σ ∥ Φ 0 ≤ C L∥ω γ -ω σ ∥ Θ 1 + ∥γ u -σ u ∥ Γ 2 ([0,Lu])  , ( 4.53) 
obtained using (4.19a) of Proposition 4.5. Finally, using (4.52), we obtain

∥F 2 (ω γ ) -F 2 (ω σ )∥ Θ 1 ≤ C ∥γ u -σ u ∥ Γ 2 ([0,Lu]) + ∥γ v -σ v ∥ Γ 2 ([0,Lv]) + L∥F (ω γ ) -F (ω σ )∥ Θ 1 + ∥F (ω γ ) -F (ω σ )∥ Θ 0  ≤ C ∥γ u -σ u ∥ Γ 2 ([0,Lu]) + ∥γ v -σ v ∥ Γ 2 ([0,Lu]) + L∥ω γ -ω σ ∥ Θ 1  .
The inequality (4.51) follows.

Step 3 (Conclusion). We infer from (4.51) that there exists L 0 ∈ (0, L v ] such that F 2 is a contraction mapping in B Θ 1 (D L 0 ) (R(γ)) for the norm in Θ 1 (D L 0 ). Hence, the claim follows from the Banach Ąxed-point theorem on the closed subset B Θ 1 (D L 0 ) (R(γ)) of the Banach space

C 1 ([0, L u ], C 1 ([0, L 0 ])).
Let R 0 ∈ R + * and let B Γ 2 ×Γ 2 (R 0 ) be the closed ball of radius R 0 centered at the origin in Γ 2 ([0, L u ])×Γ 2 ([0, L v ]) (supposing R 0 is large enough for this set not to be empty). As the length of integration L 0 ∈ (0, L v ] of the v-coordinate curves of ϕ deĄned in Proposition 4.8 only depends on the norm in Γ 2 ([0, L u ])×Γ 2 ([0, L v ]) of the initial conditions γ = (γ u , γ v ), we can deĄne the mapping J 0,R 0 :

B Γ 2 ×Γ 2 (R 0 ) → Θ 1 ([0, L u ]×[0, L 0 (R 0 )]), γ = (γ u , γ v ) → ω γ = F (ω γ ), (4.54) 
which maps the boundary conditions γ to the solution ω γ to (4.49). We then state the following proposition which asserts the continuity of the mapping J 0,R 0 with respect to these boundary conditions.

Proposition 4.9 (Continuity with respect to the boundary conditions). Let M be a smooth, open, complete, and simply connected surface, let R 0 ∈ R + * , and let

D = [0, L u ]×[0, L v ], with L u , L v ∈ R + * . We equip B Γ 2 ×Γ 2 (R 0 ) and Θ 1 ([0, L u ]×[0, L 0 (R 0 )]) with the norms in Γ 2 ([0, L u ])×Γ 2 ([0, L v ]) and
Moreover, we deduce from Proposition 4.6 that

∥K(ϕ γ ) sin(ω γ ) -K(ϕ σ ) sin(ω σ )∥ C k ([0,Lu],C k ([0,L 0 ])) ≤ C ∥ϕ γ -ϕ σ ∥ Φ k + ∥ω γ -ω σ ∥ Θ k  ≤ C ∥γ u -σ u ∥ Γ s ([0,Lu]) + ∥ω γ -ω σ ∥ Θ l  ,
with s = max(k, 2) and l = max(k, 1). Hence, if k ≥ 1, we have

∥ω γ -ω σ ∥ Θ k+1 ≤ C ∥γ u -σ u ∥ Γ k+2 ([0,Lu]) + ∥γ v -σ v ∥ Γ k+2 ([0,Lv]) + ∥ω γ -ω σ ∥ Θ k  .
Since the Lipschitz continuity of J k,R k in the case where k = 0 follows from Proposition 4.9, we then obtain the Lipschitz continuity of J k,R k in the general case by a straightforward induction argument on k ≥ 0. Finally, the Lipschitz continuity of I • Id, J k,R k follows from Proposition 4.6. This concludes the proof.

In what follows, we will not make explicit the dependency of the mapping J k,R k on R k , so that it will be denoted J k .

Extension to rectangles

We now extend Propositions 4.8 and 4.10 on the existence and uniqueness of a solution to the Ąxed-point equation (4.49) and Propositions 4.9 and 4.11 on the continuity with respect to boundary conditions to the whole domain

D = [0, L u ]×[0, L v ], with L u , L v ∈ R + * .
In the same manner as above, we start with the case where k = 0. Proof.

Step 1 (Restriction of F to angle distributions coinciding with the local solution). First, owing to Proposition 4.8, there exists L 0 ∈ (0, L v ] such that there exists a unique solution (4.49). Suppose that L 0 < L v . Otherwise, we have the expected result. We set ϕ γ := I(γ, ω γ ) ∈ Φ 1 (D L 0 ). Since we cannot expect in the general setting that the u-coordinate curves of the mapping ϕ γ are arc-length parametrized, we cannot construct an extension of ϕ γ using the curves ϕ γ (•, L 0 ) and γ v as new boundary conditions. Therefore, we prove the claim using a Ąxed-point argument on the angle distributions ωγ deĄned to be extensions of ω γ :

ω γ = J 0 (γ) ∈ Θ 1 γ (D L 0 ), with D L 0 = [0, L u ]×[0, L 0 ], to
D L 0 → R. Let L 1 ∈ (L 0 , L v ] be such that L 1 ≤ 2L 0 and let D L 1 = [0, L u ]×[0, L 1 ].
We deĄne the set S 1,γ (D L 1 ) composed of extensions of ω γ as follows:

S 1,γ (D L 1 ) =  ωγ ∈ Θ 1 γ (D L 1 ) s.t. ωγ D L 0 = ω γ .
Note that S 1,γ (D L 1 ) is clearly not empty and, to abbreviate the notation, we also denote ω γ the generic elements of S 1,γ . We now adapt the proof of Proposition 4.8 to show that F 2 is a contraction mapping in some bounded subset of S 1,γ (D L 1 ) that is stable by F . Recall from this proof that there exists R(γ) > 0, depending only on ∥γ u ∥ Γ 2 ([0,Lu]) and ∥γ v ∥ Γ 2 ([0,Lv]) , such that DeĄnition 5.2 (Piecewise smooth curves). Let η : I ⊂ R → M be a continuous curve. We say that the curve η is piecewise smooth if there exists a partition of I in the form N +1 i=1 [a i-1 , a i ] = I, with a 0 < ... < a N +1 . Suppose moreover that η restricted to (a i-1 , a i ) is a smooth curve with all the derivatives having a finite limit from the right at a i-1 and from the left at a i , for all i ∈ ¶1, ..., N + 1♦. We say that the curve η is piecewise smooth.

We denote ∠(X, Y ) ∈ (-π, π] the oriented angle (using the orientation of M ) between the vectors X and Y in the tangent plane T p M at any point p ∈ M . We deĄne the total positive and negative turn angle of continuous piecewise smooth curves (see [START_REF] Burago | Remarks on Chebyshev coordinates[END_REF]): DeĄnition 5.3 (Positive and negative turn angle τ ± ). Let η : I ⊂ R → M be a continuous piecewise smooth curve on the partition of I defined by a 0 < ... < a N +1 . Then, for all i ∈ ¶1, ..., N + 1♦, let

κ i : [a i-1 , a i ] → R be the geodesic curvature of η [a i-1 ,a i ] defined by κ i (s) = ⟨η ′′ (s), η ′⊥ (s)⟩ g , with η ′⊥ (s) ∈ T η(s) M the vector such that ∠(η ′ (s), η ′⊥ (s)) = π 2 , for all s ∈ [a i-1 , a i ]. Let ψ i = ∠(η ′ (a - i ), η ′ (a + i ))
, for all i ∈ ¶1, ..., N ♦. We suppose that -π < ψ i < π, for all i ∈ ¶1, ..., N ♦. We define the total positive and negative turn angles τ (η) by 

τ + (η) = N +1 i=1 a i a i-1 κ + i + N i=1 ψ + i , τ -(η) = N +1 i=1 a i a i-1 κ - i + N i=1 ψ - i , (5.3 

Chebyshev nets on broken half-surfaces

In order to construct a Chebyshev net on broken half-surfaces with N ≥ 1 vertices, we Ąrst restrict ourselves in Section 5.2.1 to the case of a sector, which corresponds to the case N = 1. Then, in Section 5.2.2, we show that broken half-surfaces admit a Chebyshev parametrization as a particular piecewise smooth sector, under conditions on their total Gaussian curvature.

Construction on a sector

We give in this section some existence results for Chebyshev nets on sectors.

DeĄnition 5.4 ((Smooth) sector). A sector Q of the surface M is an unbounded connected domain of M delimited by the two curves η 1 : R -→ M and η 2 : R + → M intersecting only at p = η 1 (0) = η 2 (0). Sectors are said to be smooth whenever the two curves η 1 and η 2 are smooth.

The angle ψ = ∠(η ′ 1 (0), η ′ 2 (0)) is supposed to be in (0, π) and is called the exterior angle of the sector Q.

A sector with the notation introduced above is presented in Figure 5.2. Now, we recall a theorem obtained by Bakelman [START_REF] Bakelman | Chebyshev nets in manifolds of bounded curvature[END_REF] and stated in the present form in [START_REF] Burago | Remarks on Chebyshev coordinates[END_REF]: Theorem 5.5 (I. Ya. Bakelman). Let Q be a sector delimited by the two curves η 1 : R -→ M and η 2 : R + → M intersecting at p ∈ M . Suppose that Q satisfies the conditions

τ + (η 1 ) + τ + (η 2 ) + Q K + < π -ψ, (5.4a) τ -(η 1 ) + τ -(η 2 ) + Q K -< ψ, (5.4b)
where ψ > 0 is the exterior angle of Q at the vertex p and τ ± (η i ), with i ∈ ¶1, 2♦, are the total positive and negative turn angles of η i defined by (5.3). Then, there exist global Chebyshev coordinates in Q such that η 1 and η 2 are coordinate curves. Furthermore, the angle between the coordinate curves is bounded away from 0 and π by the positive real number This theorem gives no information about the regularity of the Chebyshev net, even when the two delimiting curves of the sector are smooth curves. Our goal is now to sharpen Theorem 5.5 (see Proposition 5.9 below) to prove the existence of smooth Chebyshev nets on sectors delimited by smooth curves satisfying the counterpart of (5.4) for smooth curves, namely

min  π -ψ - Q K + -τ + (η 1 ) -τ + (η 2 ), ψ - Q K --τ -(η 1 ) -τ -(η 2 )  . ϕ(u, 0)=η 2 (u) ϕ(0, -v)=η 1 (v) η ′ 1 (0) η ′ 2 (0) ψ=π-ω(0, 0) × p Q Fig.
R + κ + 2 + R - κ + 1 + Q K + < π -ψ and R + κ - 2 + R - κ - 1 + Q K -< ψ.
(5.5)

Then, using the continuity of the angle distribution ω and ω(0, 0) = πψ ∈ (0, π), we infer that there exists L1 , L2 > 0 such that ω(u, v) ∈ (0, π) for all (u, v) ∈ [0, L1 ]×[0, L2 ]. Hence, by Theorem 5.10, the mapping ϕ satisĄes (5.11) for all (u, v) ∈ [0, L1 ]×[0, L2 ]. Then, in the same manner as in the proof of Lemma 5.8, we obtain that ϕ : (R + ) 2 → Q is a Chebyshev net. Suppose Ąnally that φ : (R + ) 2 → M is a Chebyshev net satisfying the boundary conditions (5.9). Then, using Property 5.7, we obtain that the angle distribution ω : (R + ) 2 → (0, π) deĄned by ω = ∠(∂ u φ, ∂ v φ)(u, v), for all (u, v) ∈ (R + ) 2 , satisĄes the Hazzidakis formula (5.10). We deduce from Theorem 5.10 that ϕ = φ. This concludes the proof.

Construction on a broken half-surface

We now introduce broken half-surfaces which are deĄned to be half-surfaces with polygonal boundaries:

DeĄnition 5.11 ((Geodesic) broken half-surfaces). Let N ≥ 1 be an integer. We say that B c is a broken half-surface if B c is a half-surface delimited by a piecewise smooth curve γ : R → M on the partition of R defined by -∞ = a 0 < ... < a N +1 = ∞. We denote p i = γ(a i ), for all i ∈ ¶1, ..., N ♦, and we set

γ i := γ [a i-1 ,a i ] : [a i-1 , a i ] → M ,
for all i ∈ ¶1, ..., N + 1♦. The points ¶p i ♦ 1≤i≤N are called the vertices of B c . We suppose moreover that the exterior angle

ψ i = ∠(γ ′ i (a - i ), γ ′ i+1 (a + i ))
at the vertex p i satisfies ψ i ∈ (0, π), for all i ∈ ¶1, ..., N ♦. Finally, we define We depict the notation introduced in DeĄnition 5.11 in Figure 5.6. Note that the edges composing ∂B c are depicted as straight edges in this Ągure although they are more generally curved edges. We observe that 1-half-surfaces are smooth sectors. Now, in order to Ąnd Chebyshev nets on broken half-surfaces, we view them as sectors delimited by two piecewise smooth curves. This process, called sectorization, is described in the following deĄnition. DeĄnition 5.12 (Sectorization). Let N ≥ 1 and let B c be a N -half-surface delimited by the curves ¶γ i ♦ 1≤i≤N +1 . We denote ¶p i ♦ 1≤i≤N the vertices of B c . Let m ∈ ¶1, ..., N ♦. We denote Q(B c , p m ) the piecewise smooth sector delimited by the curves η m 1 : R -→ M and η m 2 : R + → M defined so that

♣ψ♣ l 1 = 1≤i≤N ψ i , and ♣ψ♣ l ∞ = max
η m 1 (R -) = m i=1 γ i ([a i-1 , a i ]) and η m 2 (R + ) = N +1 i=m+1 γ i ([a i-1 , a i ]).
(5.12)

The sectorization of a broken half-surface is depicted in Figure 5.7. We give in the following Proposition 5.13 (From N -half-surfaces to sectors). Let N ≥ 1 be an integer. Suppose that the N -half-surface B c satisfies the conditions

η 2 1 η 2 2 p 2 Q(B c , p 2 )
τ + (∂B c ) + Bc K + < π, (5.13a) τ -(∂B c ) + Bc K -< ♣ψ♣ l ∞ . (5.13b)
Then, there exists m ∈ ¶1, ..., N ♦ such that the piecewise smooth sector Q(B c , p m ) satisfies the conditions (5.4).

Proof. Let m = argmax 1≤i≤N ψ i and denote Q m = Q(B c , p m ). Then, a straightforward computation gives

Qm K + + τ + (η 1 ) + τ + (η 2 ) = Qm K + + ♣ψ♣ l 1 -ψ m + N +1 i=1 a i a i-1 κ + i = τ + (∂B c ) + Bc K + -ψ m , Qm K -+ τ -(η 1 ) + τ -(η 2 ) = Qm K -+ N +1 i=1 a i a i-1 κ - i < ψ m .
Then, conditions (5.4) follow from (5.13).

Corollary 5.14 (Existence of Chebyshev nets on N -half-surfaces). Let N ≥ 1 be an integer. Let B c be a N -half-surface delimited by the curves (γ i ) 1≤i≤N +1 . Suppose that B c satisfies the conditions (5.13). Then, there exist Chebyshev coordinates on B c such that (γ i ) 1≤i≤N +1 are coordinate curves. Moreover, the angle of the net is bounded away from 0 and π by

ε = min  π -τ + (∂B c ) - Bc K + , ♣ψ♣ l ∞ -τ -(∂B c ) - Bc K -  .
(5.14)

Proof. The proof follows by combining Proposition 5.13 and Theorem 5.5.

Finally, in the speciĄc case of geodesic N -half-surfaces, we obtain the following theorem:

Remark 5.17 (N 1 and N 2 ). Two diferent cases can happen for the splitting : either the geodesic curve σ * intersects ∂B c at some vertex and we have N 1 + N 2 = N + 1, or σ * intersects ∂B c in the interior of some edge and we have N 1 + N 2 = N + 2. See Figure 5.8 for an illustration of these two cases. 

(v) + α(-v) = π -♣ψ 0 ♣ l 1 for all v ∈ S D.
For this deĄnition, diferent cases, depicted in Figure 5.9, have to be considered:

1. U (v) is a half-surface with boundary σ(v);

2. U (v) is a so-called polygonal strip;

3. U (v) and U (-v) are respectively a N 1 -half-surface and a N 2 -half-surface. We denote ¶ψ 1 i (v)♦ 1≤i≤N 1 the exterior angles of B 1 c and we set ♣ψ 1 ♣ l

1 := N 1 i=1 ψ 1 i (v);
4. U (v) is a bounded polygonal domain with N 1 vertices. We denote ¶ψ 1 i ♦ 1≤i≤N 1 the exterior angles of U (v) and we set ♣ψ 1 ♣ l 1 := N 1 i=1 ψ 1 i ;

5. U (v) is the complementary of a bounded polygonal domain (so that U (-v) is a bounded polygonal domain).

Splitting of a surface into geodesic broken half-surfaces

σ(v) × p θ U (v) 1) U (v) is a half-surface with boundary σ(v) σ(v) × p θ U (v) 2) U (v) is a polygonal strip ψ 1 4 ψ 1 3 ψ 1 2 × σ(v) ψ 1 1 p θ U (v)
3) Both U (v) and U (-v) are broken half-surfaces We emphasize that, for all v ∈ D, U (v) belongs to one of the above cases. Then, we deĄne the function α in each of these cases as follows

ψ 1 1 × σ(v) ψ 1 2 p θ U (v) ψ 1 2 ψ 1 4 ψ 1 3 σ(v) × p θ ψ 1 1 ψ 1 5 U (v) 4) U (v) is a bounded polygonal domain σ(v) θ ψ 1 2 ψ 1 3 p U (v) × p ψ 1 1 5) U (v)
α(v) =                        π -♣ψ 0 ♣ l 1 , in case 1, 0, in case 2, max min π -♣ψ 1 ♣ l 1 , π -♣ψ 0 ♣ l 1 , 0 , in case 3, max min 2π -♣ψ 1 ♣ l 1 , π -♣ψ 0 ♣ l 1 , 0 , in case 4, π -♣ψ 0 ♣ l 1 -α(-v), in case 5. 
(5.20)

Using the continuity of ♣ψ 1 ♣ l 1 as σ(v) crosses the vertices of B c and the continuity of all the case transitions, one can check that α : S D → [0, π] is a continuous function which satisĄes 

ψ 1 k ≥ π -ψ 2 l ≥ ♣ψ 0 ♣ l 1 -ψ 2 l + B 2 c K + ≥ ψ 0 m . 3. Finally, if σ intersects ∂B c at p m , we have ψ 1 k + ψ 2 l = π + ψ 0 m . Since ψ 2 l ≤ π, we infer that ψ 1 k ≥ ψ 0 m .
In all the cases, we obtain the expected result. This concludes the proof.

We can now prove the main result of this section.

Theorem 5.20 (Surface splitting into broken half-surfaces). Let M be a smooth, complete, simply connected surface. Suppose that M satisfies the curvature bound (5.2), i.e.,

M K + < 2π and M K -< ∞,
with K the Gaussian curvature of M , K + = max(K, 0) and K -= max(-K, 0). We set

n max := log 2 1 π M K -+ 1  + 2. Then, there exist N pol ≤ 4 π M K -+ 8 geodesic N α -half-surfaces ¶B α c ♦ 1≤α≤N pol , with N α ≤ n max for all α ∈ ¶1, ..., N pol ♦, satisfying the conditions (5.15) and such that int(B α c ) ∩ int(B β c ) = ∅ for all α ̸ = β and M = ∪ N pol α=1 B α c . Proof. Let ε = 1 5 2π -M K + and C = M K -+ 5ε.
Then, the hypotheses of Theorem 5.18 are satisĄed by M with ε = ε and C = C. We denote ¶S α,0 ♦ 1≤α≤4 the four sectors satisfying (5.25) obtained by this theorem. As condition (5.15a) is satisĄed by each 1-half-surface S α,0 the proof consists in applying multiple times Theorem 5.16 to all of them so as to split these 1-half-surfaces recursively until condition (5.15b) on the total negative curvature is satisĄed. Since each broken half-surface is treated similarly, we only enumerate one broken half-surface in each sector S α,0 at each step of the subdividision. (Note that, otherwise, multi-indices should have been introduced.) See Figure 5.11 for an illustration of the resulting splitting. We denote, for all α ∈ ¶1, ..., 4♦, ψ α > 0 the exterior angle of S α,0 and we set C α = Cψα 2π . Since S α,0 satisĄes (5.25), the hypotheses of Theorem 5.16 are satisĄed with B c = S α,0 , ε = ε 3 and C = C α . Hence, there exists a splitting of S α,0 into two broken half-surfaces satisfying the conditions (5.19). By symmetry, we consider only one of them, denoted S α,1 . In the same manner, we apply recursively Theorem 5.16 with

B c = S α,n-1 , ε = ε 3.2 n-1 and C = Cα 2 n-1 .
This yields a splitting of S α,n-1 into two broken half-surfaces satisfying the conditions (5.19). By symmetry, we consider only one of them, the N -half-surface denoted S α,n , whose exterior angles are denoted ¶ψ n k ♦ 1≤k≤N . Note that N ≤ n + 1 by (5.18). Then, Lemma 5.19 ensures that ♣

ψ n ♣ l ∞ ≥ ψ α (with ♣ψ n ♣ l ∞ = max 1≤k≤N ψ n k ). Therefore, condition (5.15b) is satisĄed by S α,n whenever Sα,n K -< ♣ψ n ♣ l ∞ ≤ ψ α .
(5.28)

Since Sα,n K -≤ Cα 2 n , we infer that (5.28) is satisĄed whenever n = n max α , where

n max α =  log 2  C α ψ α  = log 2 C 2π
and ⌈•⌉ is the ceiling function. Therefore, we have proved that there exist

N α N i -half-surfaces ¶B α,i c ♦ 1≤i≤Nα , with N i ≤ n max α + 1, such that int(B α,i c ) ∩ int(B α,j c ) = ∅ for all i ̸ = j. Moreover, we have N α ≤ N max α , with: N max α = 2 n max α ≤ C π ≤ 1 π M K -+ 2.
(5.29)

We Ąnally deĄne N pol = 4 α=1 N α and the set of N i -half-surfaces ¶B i c ♦ 1≤i≤N pol as the union of the sets ¶B α,i c ♦ 1≤i≤Nα , for α ∈ ¶1, ..., 4♦. For all i ∈ ¶1, ..., N pol ♦, the number N i of vertices of B i c satisĄes

N i ≤ max α∈ ¶1,...,4♦ n max α + 1 = log 2 C 2π + 1 ≤ log 2  1 2π M K -+ 1  + 2 = n max .
Moreover, using (5.29), we obtain that the number N pol of polygons satisĄes

N pol = 4 α=1 N α ≤ 4 π M K -+ 8.
The claim follows.

Remark 5.21 (Tree representation). The construction can be seen as a binary tree of broken half-surfaces, each splitting being an edge, n max being the maximal depth of the tree, and N pol being the maximal number of leaves of the tree. Once the splitting is achieved, we renumber the broken half-surfaces to obtain the set ¶B α c ♦ 1≤α≤N pol .

DeĄnition 5.22 (Skeleton).

The graph in the surface M defined by the vertices of the boundaries of the broken half-surfaces ¶B α c ♦ 1≤α≤N pol obtained using Theorem 5.20 and the edges (geodesic curves) joining the vertices is called the skeleton. The vertices and the edges in the skeleton are respectively enumerated as ¶p i c ♦ 1≤i≤Nver and ¶γ i c ♦ 1≤i≤N ed .

An example of skeleton is then presented in Figure 5.12.

Proof of the main theorem

We prove in this section Theorem 5.1 on the existence of piecewise smooth Chebyshev nets with singularities on surfaces M satisfying the curvature bound (5.2). We Ąrst gather the results of Theorem 5.15 and Theorem 5.20 to construct a Chebyshev net with singularities on M (Theorem 5.23). Then, we show that the Chebyshev parametrization obtained on each broken half-surface by Theorem 5.15 is piecewise smooth (Theorem 5.28). The proof of Theorem 5.1 then follows from Theorem 5.23 and Theorem 5.28. Proof. First, we apply Theorem 5.20 to obtain a splitting of M into broken half-surfaces ¶B i c ♦ 1≤i≤N pol , with N pol ≤ 4 π M K -+ 8, all of them satisfying the conditions

Existence of a Chebyshev net with conical singularities

B i c K + < π -♣ψ i ♣ l 1 , B i c K -< ♣ψ i ♣ l ∞ . γ 1 c γ 2 c γ 3 c γ 4 c γ 6 c γ 5 c γ N ed c B 3 c B 1 c B 2 c B N pol c × × × p Nver c × p 1 c × p 2 c × p 3 c × p 4 c
Fig. 5.12 An example of skeleton Then, owing to Theorem 5.15, we infer that there exists a Chebyshev parametrization ϕ i : (R + ) 2 → B i c , for all i ∈ ¶1, ..., N pol ♦. We set B i e = (R + ) 2 , for all i ∈ ¶1, ..., N pol ♦. We construct the equivalence table T : ¶1, ..., N pol ♦ → N as follows. For all i ∈ ¶1, ..., N pol ♦, we set T (i, i) = 0. For all i, j ∈ ¶1, ..., N pol ♦ such that i ̸ = j, we set T (i, j) = T (j, i) = 0 if B i c ∩ B j c = ∅. We now suppose that B i c ∩ B j c ̸ = ∅. Let ¶γ i,α c ♦ 1≤α≤N i and ¶γ j,β c ♦ 1≤β≤N j be the edges of the skeleton that are included in B i c and B j c respectively. Then, by construction (see Theorem 5.16),

B i c ∩ B j c = γ i,α 0 c = γ j,β 0 c
for some α 0 ∈ ¶1, ..., N i ♦ and β 0 ∈ ¶1, ..., N j ♦, and, we set T (i, j) = α 0 and T (j, i) = β 0 (see Figure 5.13). We conclude that C = ¶B i e ♦ 1≤i≤N pol , ¶ϕ i e ♦ 1≤i≤N pol , T ) is a Chebyshev net with conical singularities on M .

Piecewise smooth Chebyshev nets on broken half-surfaces

Let us notice that whenever all the broken half-surfaces ¶B i c ♦ 1≤i≤N pol obtained in Theorem 5.20 are smooth sectors (only one vertex), Theorem 5.1 follows from Propositions 5.9 and 5.23. In the general case, we need to prove that, for all i ∈ ¶1, ..., N pol ♦, the Chebyshev parametrization

ϕ i : B i e = (R + ) 2 → B i c obtained from Theorem 5.
15 on the geodesic broken half-surface B i c satisfying the conditions

B i c K + < π -♣ψ i ♣ l 1 , B i c K -< ♣ψ i ♣ l ∞ , ( 5.30) 
is piecewise smooth. With this purpose in mind, we proceed as in Section 5.2: we Ąrst consider the case of a piecewise smooth sector Q of exterior angle ψ ∈ (0, π) satisfying the conditions 

τ + (η 1 ) + τ + (η 2 ) + Q K + < π -ψ, (5.31a) τ -(η 1 ) + τ -(η 2 ) + Q K -< ψ. (5.31b) × (0, 0) × × B 1 e × (0, 0) B 2 e × (0, 0) × B 3 e γ 1,1 c γ 1,2 c γ 3,3 c γ 1,3 c =γ 3,2 c γ 2,2 c =γ 3,1 c γ 1,4 c =γ 2,1 c × × × B 1 c B 3 c B 2 c ϕ 1 ϕ 2 ϕ 3
< ω(u, v) < π for all u, v ∈ [0, a]×[0, b]. We define Ω = ϕ([0, a]×[0, b]), η 1 (v) = ϕ(0, -v), σ 1 (v) = ϕ(a, -v) for all v ∈ [-b, 0], and η 2 (u) = ϕ(u, 0), σ 2 (u) = ϕ(u, b) for all u ∈ [0, a].
Then, the geodesic curvatures κ η 1 , κ η 2 , κ σ 1 , and κ σ 2 of η 1 , η 2 , σ 1 , and σ 2 , respectively, are related by

a 0 κ σ 2 = a 0 κ η 2 + Ω K, 0 -b κ σ 1 = 0 -b κ η 1 + Ω K, ( 5.32) 
and satisfy

a 0 κ + η 2 - a 0 κ + σ 2 + Ω K + ≥ 0, 0 -b κ + η 1 - 0 -b κ + σ 1 + Ω K + ≥ 0, (5.33a) a 0 κ - η 2 - a 0 κ - σ 2 + Ω K -≥ 0, 0 -b κ - η 1 - 0 -b κ - σ 1 + Ω K -≥ 0. ( 5 

.33b)

Proof. We only prove the lemma for the curves η 1 and σ 1 . The formulas for η 2 and σ 2 are obtained in a similar way. Using (5.7) and the Hazzidakis formula (5.8) with u = a and v = b, we obtain 

ω(a, b) = ω(0, 0) - a 0 κ η 2 - 0 -b κ η 1 - Ω K = ω(a, 0) - 0 -b κ η 1 - Ω K, η 2 σ 1 σ 2 η 1 [0, a]× ¶0♦ ¶a♦×[0, b] [0, a]× ¶b♦ ¶0♦×[0, b] Ω ϕ
κ σ 1 = - b 0 ∂ v ω(a, v)dv = 0 -b κ η 1 + Ω K.
To prove the inequalities (5.33), we Ąrst note that (5.32) implies

a 0 κ + η 1 - a 0 κ + σ 1 + Ω K + = a 0 κ - η 1 - a 0 κ - σ 1 + Ω K -.
Subdividing the curves η 1 and σ 1 according to the sign changes of κ η 1 and κ σ 1 , it is possible to assume that the sign of κ η 1 and κ σ 1 is constant on [0, a]. The discussion is then simpliĄed to the two following cases:

• if κ η 1 and κ σ 1 have the same sign (say, nonnegative), then

a 0 κ - η 1 - a 0 κ - σ 1 + Ω K -= Ω K -≥ 0;
• if κ η 1 and κ σ 1 have diferent signs (say, κ η 1 ≥ 0 and κ σ 1 ≤ 0), then

a 0 κ + η 1 - a 0 κ + σ 1 + Ω K + = a 0 κ + η 1 + Ω K + ≥ 0.
Theorem 5.25 (Existence of piecewise smooth Chebyshev nets on sectors). Let Q be a sector delimited by the two piecewise smooth curves η 1 : R -→ M and η 2 : R + → M . We denote πθ 1 ∈ (0, π) the exterior angle of this sector and we suppose that Q satisfies the conditions (5.31 

ω(u, v) = θ 1 -τ η 2 [0,u] -τ η 1 [-v,0] - ϕ([0,u]×[0,v])
K, (5.34) for all u, v ∈ R + , and is bounded away from 0 and π by the positive real number Proof. We Ąrst split the two curves η 1 and η 2 into smooth pieces. We denote N 1 + 1 ≥ 1 and N 2 + 1 ≥ 1 the number of smooth pieces of the curves η 1 and η 2 , respectively. Then, we parallel transport the curve η 2 along each smooth piece of η 1 . This is done recursively on N 1 . The parallel transport of η 2 along a piece of η 1 is obtained by induction on N 2 . Hence, we have two nested induction arguments (see Figure 5.15). We observe that, by symmetry, the role of the two curves can be switched, as can be seen in the same Ągure. Hence, we can always suppose that

min  π -ψ - Q K + -τ + (η 1 ) -τ + (η 2 ), ψ - Q K --τ -(η 1 ) -τ -(η 2 )  . (5.35) Finally, ϕ B i e : B i e → ϕ(B i e ) ⊂ Q is a diffeomorphism, for all 1 ≤ i ≤ N piece .
N 1 ≥ N 2 .
Once the construction is over, we prove the nonsmooth Hazzidakis formula (5.34).

Step 1 (Formulation of the first induction process (on N 1 ≥ 0)). We suppose that N 2 ∈ ¶0, ..., N 1 ♦ is a given Ąxed integer and we denote (H N 1 +1 ) the following induction hypothesis:

for any sector Q of exterior angle πθ 1 ∈ (0, π), delimited by the two curves η 1 and η 2 having respectively N 1 + 1 and N 2 + 1 smooth pieces and satisfying (5.31), there exist polygons ¶B i c ♦ 1≤i≤N piece and a Chebyshev net ϕ : (R + ) 2 → Q such that:

• (R + ) 2 = ∪ N piece i=1
B i e and int(B i e )∩int(B j e ) = ∅ for all i ̸ = j;

• η 1 and η 2 are coordinate curves;

• the angle ω = ∠(∂ u ϕ, ∂ v ϕ) of ϕ satisfies the nonsmooth Hazzidakis formula (5.34);

• ϕ B i e : B i e → ϕ(B i e ) ⊂ Q is a diffeomorphism, for all i ∈ ¶1, ..., N piece ♦.
Step 2 (Proof of the first induction process (1 st part of the construction)). We Ąrstly check that (H 1 ) holds. Since N 2 ≤ N 1 , we have N 2 = 0. Hence, the sector Q is delimited by the two smooth curves η 1 and η 2 and (H 1 ) holds, with N piece = 1, by Proposition 5.9. Now, for N 1 ≥ 1, we suppose that (H N 1 ) holds and we prove that (H N 1 +1 ) also holds. Thus, we suppose that Q is delimited by two curves η 1 and η 2 having respectively N 1 + 1 ≥ 2 and

N 2 + 1 ≥ 1 smooth pieces. Let -∞ = a 1,N 1 +1 < ... < a 1,0 = 0 = a 2,0 < ... < a 2,N 2 +1 = ∞
be such that, for all l = 1, 2, η l restricted to [a l,i-1 , a l,i ] is a smooth curve, for all i ∈ ¶1, ..., N l + 1♦. We denote η l,i : [a l,i-1 , a l,i ] → M this piece of the curve η l and κ l,i : [a l,i-1 , a l,i ] → R its geodesic curvature. We denote ψ l,i = (-1) l ∠ η ′ l,i (a l,i ), η ′ l,i+1 (a l,i ) for all i ∈ ¶1, ..., N l ♦ and l ∈ ¶1, 2♦ (see Figure 5.16). To abbreviate the notation, we set η1,1 = η 1,1 .

Step 3 (Formulation of the second induction process (on n ∈ ¶1, ..., N 2 + 1♦)). We parallel transport in what follows the curve η 2 along η 1,1 . See Figure 5.16 for the notation and Figure 5.17 for an illustration of the construction. For all n ∈ ¶1, ..., N 2 + 1♦, we denote ( Hn ) the following induction hypothesis: for all j ∈ ¶1, ..., n♦, let η1,j : [a 1,1 , 0] → Q be a smooth curve intersecting η 2,j at η 2,j (a 2,j-1 ) = η1,j (0). If n > 1, for all j ∈ ¶1, ..., n -1♦, let B j e = [a 2,j-1 , a 2,j ]×[0, -a 1,1 ] ⊂ (R + ) 2 and assume that ϕ j : B j e → B j c ⊂ Q, with B j c = ϕ j (B j e ), are Chebyshev nets such that

ϕ j (a 2,j-1 , v) = η1,j (-v), ϕ j (a 2,j , v) = η1,j+1 (-v), ∀v ∈ [0, -a 1,1 ], ϕ j (u, 0) = η 2,j (u), ∀u ∈ [a 2,j-1 , a 2,j ].
Then, there exists a Chebyshev net ϕ n :

B n e ⊂ (R + ) 2 → B n c ⊂ Q, with B n e = [a 2,n-1 , a 2,n ]×[0, -a 1,1 ] and B n c = ϕ n (B n e ).
Moreover, the set B n c satisfies:

1. if n > 1, then B n-1 c ∩ B n c = η1,n ; 2. if n > 2, then B j c ∩ B n c = ∅, for all j ∈ ¶1, ..., n -2♦.
Finally, suppose that n < N 2 + 1 and denote η1,n+1 : 

[a 1,1 , 0] → Q the curve defined by η1,n+1 (v) = ϕ n (a 2,n , -v) for all v ∈ [a 1,1 , 0]. This curve intersects η 2,n+1 at η 2,n+1 (a 2,n ) = η1,n+1 ( 
θ n+1 = θ 1 -τ (η 2 [0,a 2,n ] ) ∈ (0, π), (5.36a) 0 -v κ1,n+1 = 0 -v κ 1,1 + n k=1 ϕ k ([a 2,k-1 ,a 2,k ]×[0,v]) K, ∀v ∈ [0, -a 1,1 ]. (5.36b) η 1,2 η 1,1 =η 1,1 η 2,1 η 2,2 θ 1 θ 2 ψ 2,1 η 2 η1,2 B 1 c η 1 p × × ψ 1,1 Fig. 5.16 Illustration of the parallel transport of η 2,1 along η 1,1 (N 1 = 1, N 2 = 1)
Step 4 (Proof of the second induction process). To prove that ( H1 ) holds, we apply Theorem 5.10 with the curves η 1,1 and η 2,1 of respective length -a 1,1 and a 2,1 and forming an interior angle θ 1 ∈ (0, π) by hypothesis. We obtain a mapping ϕ

1 : B 1 e ⊂ (R + ) 2 → B 1 c ⊂ M , with B 1 e = [a 2,0 , a 2,1 ]×[0, -a 1,1 ] and B 1 c = ϕ 1 (B 1 e ).
Then, using the same argument as the proof of Lemma 5.8, we obtain that the mapping ϕ 1 is a Chebyshev net and that B 1 c ⊂ Q. Using Lemma 5.24, we infer that η1,2 has a geodesic curvature κ1,2 satisfying

0 -v κ1,1 = 0 -v κ 1,1 + ϕ 1 ([0,a 2,1 ]×[0,v]) K, for all v ∈ [0, -a 1,1 ].
Moreover, we deduce from (5.7) that the interior angle

θ 2 = ∠(η ′ 2,2 (0), -η ′ 1,2 (0)) satisĄes θ 2 = θ 1 - a 2,1 0 κ 2,1 -ψ 2,2 = θ 1 -τ (η 2 [0,a 2,1 ]
).

Since hypothesis (5.31) (with ψ = πθ 1 ) is satisĄed by Q, we obtain that θ 2 ∈ (0, π). Hence, ( H1 ) holds. We now suppose that ( Hn-1 ) holds for n ∈ ¶0, ..., N 2 +1♦. Let ¶η 1,j ♦ 1≤j≤n and ¶ϕ j ♦ 1≤j≤n-1 be respectively curves and Chebyshev nets as in the hypothesis of ( Hn ). Since θ n ∈ (0, π), we apply Theorem 5.10 to the curves η1,n and η 2,n to obtain a mapping ϕ n :

B n e ⊂ (R + ) 2 → B n c ⊂ M , with B n e = [a 2,n-1 , a 2,n ]×[0, -a 1,1 ] and B n c = ϕ n (B n e ).
Using the same argument as in the proof of Lemma 5.8, we obtain that ϕ is a Chebyshev net, that B n c ⊂ Q and that B n c satisĄes the statements 1 and 2 of ( Hn ).

We now suppose that n < N 2 + 1. Then, from Lemma 5.24 and from the assertion (5.36b) of ( Hn-1 ), we infer that the geodesic curvature κ1,n+1 of η1,n+1 satisĄes K, for all v ∈ [0, -a 1,1 ]. Finally, from (5.7) and from the assertion (5.36a) of ( Hn-1 ), we infer that the interior angle θ n+1 = ∠(η ′ 2,n+1 (a 2,n ), -η ′ 1,n+1 (0)) satisfy

θ n+1 = θ n - a 2,n a 2,n-1 κ 2,n -ψ 2,n = θ 1 -τ (η 2 [0,a 2,n ] ).
Then, using hypotheses (5.31), we obtain that θ n+1 ∈ (0, π). This concludes the proof of the statement ( Hn ). Step 5 (Proof of the first induction process (2 nd part of the construction)). By application of ( Hn ), for all n ∈ ¶1, ..., N 2 + 1♦, we obtain the existence of polygons ¶B i e ♦ 1≤i≤N 2 +1 and, for all i ∈ ¶1, ..., N 2 + 1♦, of Chebyshev nets ϕ i : B i e → B i c ⊂ Q, with B i c = ϕ i (B i e ). Then, for all i ∈ ¶1, ..., N 2 + 1♦, we denote η2,i : [a 2,i-1 , a 2,i ] → Q the curve deĄned by η2,i (u) = ϕ i (u, -a 1,1 ), for all u ∈ [a 2,i-1 , a 2,i ]. We denote η2 : R + → Q the junction of the curves η2,i , with i ∈ ¶1, ..., N 2 + 1♦, deĄned so that η2 (R + ) = (5.37)

Then, using that ϕ band B i e is a difeomorphism for all i ∈ ¶1, ..., N 2 + 1♦ and using the statements 1 and 2 of ( Hn ), for all n ∈ ¶1, ..., N 2 + 1♦, we obtain that the mapping ϕ band is a homeomorphism. We denote η1 : R -→ η 1 (-∞, a 1,1 ] the curve deĄned by η1 (t) = η 1 (t + a 1,1 ). Then, Q is a sector delimited by the curves η1 and η2 with respectively N 1 and N 2 + 1 smooth pieces. We now prove that Q satisĄes the hypotheses of (H N 1 ) (on the interior angle and on the total curvature). First note that, using (5.6), we obtain that the interior angle θ1 of Q satisĄes θ1 = θ 1 -

0 a 1,1 κ 1,1 -ψ 1,1 = θ 1 -τ (η 1 [a 1,1 ,0] ).
(5.38)

Then, using the hypotheses (5.31) on Q, we obtain that θ1 ∈ (0, π).

To simplify the notation, we use in what follows the convention that i-1 k=1 (...) = 0 when i = 1. As parallel transport preserves the angles, we have ψ2,i = ψ 2,i , for all i ∈ ¶1, ..., N 2 ♦. Therefore, from (5.32) and the deĄnition of ϕ band , we infer that, for all i ∈ ¶1, ..., N 2 + 1♦ and u ∈ [a 2,i-1 , a 2,i ),

τ (η 2 [0,u] ) = i-1 k=1 a 2,k a 2,k-1 κ2,k + u a 2,i-1 κ2,i + i-1 k=1 ψ2,k = i-1 k=1 a 2,k a 2,k-1 κ 2,k + i-1 k=1 B k c K + u a 2,i-1 κ 2,i + ϕ i ([a 2,i-1 ,u]×[0,-a 1,1 ]) K + i-1 k=1 ψ 2,k = τ (η 2 [0,u] ) + ϕ band ([0,u]×[0,-a 1,1 ]) K.
(5.39)

Then, in the same manner as in Lemma 5.24, we deduce from (5.39) that τ + (η 2 ) ≤ τ + (η 2 ) + We now prove that Q satisĄes the condition (5.31a). First, we have Finally, we prove that Q satisĄes the condition (5.31b). From (5.40) and (5.41), we deduce that

τ + (η 1 ) + τ + (η 2 ) + Q K + + π -θ1 ≤ τ + (η 1 ) -τ + (η 1 [a 1,1 ,0] ) + τ + (η 2 ) + B band c K + + Q K + + π -θ 1 + τ (η 1 [a 1,1 ,0] ) ≤ τ + (η 2 ) + τ + (η 1 ) + π -θ 1 + Q K + , ( 5 
τ -(η 1 ) + τ -(η 2 ) + Q K -≤ τ -(η 1 ) -τ -(η 1 [a 1,1 ,0] ) + τ -(η 2 ) + Q K -.
(5.43)

Then, using the hypothesis (5.31b) on Q, we infer from (5.43) that

τ -(η 1 ) + τ -(η 2 ) + Q K -< π -θ 1 -τ -(η 1 [a 1,1 ,0] ).
Finally, using (5.38), we conclude that

τ -(η 1 ) + τ -(η 2 ) + Q K -≤ π -θ1 -τ (η 1 [a 1,1 ,0] ) -τ -(η 1 [a 1,1 ,0] ) < π -θ1 .
Hence, the hypotheses of (H N 1 ) are satisĄed by Q. We obtain the existence of polygons ¶ Bi e ♦ 1≤i≤ Ñpiece such that int( Bi e )∩int( Bj e ) = ∅ for all i ̸ = j and ∪ Ñpiece We can show, in the same manner as for ϕ band , that ϕ is a homeomorphism.

Remark 5.26 (Explicit value of N piece ). We easily see from the proof that N piece = (N 1 +1)(N 2 +1), where N 1 + 1 and N 2 + 1 are respectively the number of smooth pieces of η 1 and η 2 . be four points in U ⊂ R 2 . Supposing that h is small enough, the point ϕ(C) is approximated by a point of M at a distance h from both ϕ(B) and ϕ(D). We suppose moreover that h is small enough for the distances in the surface and the distances in R 3 to be almost identical. Therefore, a good approximation of ϕ(C) is given by the unique point of the surface (diferent from ϕ(A)) at the intersection of the two balls of radius h centered at ϕ(B) and ϕ(D). Thus, the points ϕ(B), ϕ(D) and ϕ(A) allow one to deĄne uniquely an approximation of ϕ(C). We apply in what follows this method to primal boundary conditions.

Discrete Chebyshev nets given by two primal curves

We consider the primal boundary conditions given by the two primal curves γ 1 : [0, L 1 ] → M , with L 1 > 0, and γ 2 : [0, L 2 ] → M , with L 2 > 0, satisfying γ 1 (0) = γ 2 (0) and ∠(γ ′ 1 (0), γ ′ 2 (0)) ∈ (0, π). We set U = [0, L 1 ]×[0, L 2 ], N 1 = ⌊ L 1 h ⌋ and N 2 = ⌊ L 2 h ⌋. Then, the grid ϕ(U ∩ hZ) is given by a mapping P : ¶1, ..., N 1 ♦× ¶1, ..., N 2 ♦ → M satisfying the primal boundary conditions P(i, 1) = γ 1 (ih), for all i ∈ ¶1, ..., N 1 ♦, P(1, j) = γ 2 (jh), for all j ∈ ¶1, ..., N 2 ♦.

(6.1) Now, let P h i,j ∈ M , with i ∈ ¶1, ..., N 1 ♦ and j ∈ ¶1, ..., N 2 ♦, be an array satisfying the primal boundary conditions (6.1). Then, using the method described above, the three points P h 1,1 This method is illustrated in Figure 6.2. The grid P h is clearly an approximation of the grid P associated with the Chebyshev net ϕ : U → M . The inputs and the output of the compass method with primal boundary conditions are presented in Algorithm 1. We present an example of discrete Chebyshev net obtained with our program using primal boundary conditions in Figure 6.3.

• P h

1,1 follows are conical, the term conical will be omitted. Let us remark that a discrete Chebyshev net with a singularity point at p is uniquely deĄned by the N coordinate curves starting from p, as each of the discrete nets joined to form the global net is uniquely deĄned by these curves (see Figure 6.7). We present an algorithm that consists in choosing eiciently these curves using the total Gaussian curvature of the surface. 

Splitting the surface into sectors

Before we present the algorithm in the smooth setting, let us recall the Hazzidakis formula [START_REF] Hazzidakis | Ueber einige Eigenschaften der Flächen mit constantem Krümmungsmaass[END_REF] on a parallelogram ABCD formed by coordinate curves (see Figure 6.8):

ω A + ω C = ω B + ω D - ABCD KdA, ( 6.3) 
where K is the Gaussian curvature of M . To simplify the construction, we only consider geodesic For all i ∈ ¶1, ..., N -1♦, we suppose that the curves γ i and γ i+1 delimit a sector denoted Ω i . We also suppose that the curves γ N and γ 1 delimit a sector denoted Ω N (see Figure 6.9). The sector Ω i will be said to be with interior angle ψ i , for all i ∈ ¶1, ..., N ♦, in the sequel. We denote K + = max(K, 0) and K -= max(-K, 0) the positive and the negative parts of the Gaussian curvature K of M . Let ϕ i : U i ⊂ R 2 → Ω i be the Chebyshev net deĄned using the curves γ i and γ i+1 as primal boundary conditions, for all i ∈ ¶1, ..., N -1♦. Let ϕ N : U N ⊂ R 2 → Ω N be the Chebyshev net deĄned by the curves γ N and γ 1 . From the Hazzidakis formula (6.3), we remark that the angle between the coordinate curves of the net ϕ i is bounded away from 0 and π in the sector Ω i whenever

ω A π -ω B ω C π -ω D A B C D
Ω i K + < ψ i and Ω i K -< π -ψ i , ( 6.4) 
for all i ∈ ¶1, ..., N ♦. Hence, under these conditions, the angle ω between the coordinate curves of the Chebyshev net ϕ obtained by the junction along the geodesic curves of the Chebyshev nets ¶ϕ i ♦ 1≤i≤N is bounded away from 0 and π. We emphasize that the conditions (6.4) allow one to parametrize, in the best case, surfaces with curvature satisfying M K + < 2π and M K -< ∞.

However, for these conditions on the total curvature to hold, the positive curvature should be evenly distributed among the sectors in order to satisfy (6.4) and this cannot be obtained in general (consider for example a portion of the ellipsoid). We cannot therefore expect, in general, to mesh a surface satisfying these conditions with only one singularity point and geodesic curves. Therefore, we suppose in what follows that the positive curvature is small enough (or well distributed) so that the condition Ω i K + < ψ i , for all i ∈ ¶1, ..., N ♦, is always satisĄed.

p Chebyshev nets

ψ 1 Ω 1 γ 1 ψ 2 Ω 2 γ 2 γ 3 ψ N Ω N γ N
Fig. 6.9 Illustration of the surface splitting into sectors

Additional functionalities

Note that if we were to try meshing these surfaces with a Chebyshev net without singularity, folds would appear very quickly near the multiple necks of the surface where the negative Gaussian curvature is concentrated. The use of singularity points enables us to propagate the mesh further along the necks while keeping acceptable angles, thereby ensuring the constructibility of the mesh.

Fig. 6.11 A Chebyshev net with one singularity on EnneperŠs surface of order 5

An example of Chebyshev net with one singularity point obtained on a surface M with a well-distributed positive curvature is presented in Figure 6.12. This surface is obtained by the junction of a half-sphere and an Enneper surface of type n = 4 ( M K + = 2π and M K -= -12π). The singularity of the Chebyshev net has valence 15. We notice that angles rapidly decrease on the positively curved part of the surface and increase once negative Gaussian curvature takes over. The initial angles around the singularity should therefore not be taken too small to prevent the occurence of a fold in the mesh.

Additional functionalities

Other types of boundary conditions

We now present two types of boundary conditions that can be used for deĄning discrete Chebyshev nets. As for the primal boundary conditions, we use the compass method for their discretization. We present the compass method applied to the dual boundary conditions given by a dual curve γ : R + → M and a set of angles ¶ω i ♦ 1≤i≤N 1 in (0, π), with N 1 ≥ 2. Let P h i,j , with i, j ∈ ¶1, ..., N 1 ♦, be a grid satisfying the following dual boundary conditions:

P h i,i = γ 2h i k=1 sin( ωk 2 ) 
 , for all i ∈ ¶1, ..., N 1 ♦.

In the Ąrst stage of the construction, for all i ∈ ¶1, ..., N 1 -1♦, we compute using the compass method the two uniquely deĄned points P h i+1,i and P h i,i+1 such that P h i,i P h i+1,i P h i+1,i+1 P h i,i+1 form a rhombus in R 3 . We then repeat the construction with the points ¶P h k,1+k ♦ 1≤k≤N 1 -1 above γ and with the points ¶P h k,k-1 ♦ 1≤k≤N 1 below γ (see Figure 6.13). We construct the discrete Chebyshev net symmetrically on each side of the dual curve γ, so that we only consider the construction above this curve. In the same manner, we construct the discrete Chebyshev net level by level, each level l ∈ ¶0, ..., N 1 -1♦ corresponding to a dual curve deĄned by the points ¶P h k,l+k ♦ 1≤k≤N 1 -l . In conclusion, the grid P h is well deĄned and P h satisĄes (6.2) with N 2 = N 1 . The inputs and the output of the compass method with dual boundary conditions are presented Another possible extension concerns the numerical applications of our results. Note that only a subcase of the result of Chapter 5 has been implemented and a Ąrst extension would be to implement the algorithm presented in Chapter 5, dealing in particular with the splitting of the surface. We Ąnally notice that an implementation of the above mentionned smoothing of conical singularities is also a possible extension of the numerical applications.

Existence and construction of Chebyshev nets

Let us consider the construction of Chebyshev nets on surfaces with dominant positive curvature. We observed in this thesis that conical singularities of valence greater than four are adapted to surfaces with dominant negative curvature. It appears that rosette singularities and conical singularities of valence three can be used for the parametrization of surfaces with dominant positive curvature. But, since the angle is preserved along the coordinate curves (see Figure 7.1), it seems that we cannot construct a Chebyshev GC atlas with more than three conical singularities of valence three. One way to circumvent this restriction is the introduction of a θ θ Fig. 7.1 Illustration of a Chebyshev net with two conical singularities of valence 3 joined by a coordinate curve conical singularity of valence greater than four to form a so-called rosette-type singularity, in the same manner as in Section 6.4.2. This problem is then related to the construction of rosette singularities. One way to tackle the general problem of constructing Chebyshev nets on surfaces with dominant positive curvature is then to gain a deeper understanding of the rosette singularity. We can raise in this context the following two questions:

• can we construct a Chebyshev GC atlas on the sphere with two rosette singularities that are not antipodal?

• can we construct a Chebyshev GC atlas with two rosette singularities on any ellipsoïd?

We Ąnally mention that, more generally, the construction of Chebyshev nets on ellipsoïds seems to be a challenging problem (see the conference of E. Ghys [START_REF] Ghys | La coupe des vêtements selon chebyshev[END_REF] where this problem is addressed).

Conception of Algorithms

In this manuscript, our algorithms for the construction of Chebyshev nets are mostly based on the worst case scenario. Indeed, to ensure the feasibility of the construction, we did not exploit the possibility that the positive and the negative parts of the curvature could counterbalance. But, in most applications like form-Ąnding for gridshells, the principal issue is to Ąnd a Chebyshev net such that the positive and the negative curvature counterbalance as much as possible. To achieve this goal, it appears that the total curvature of the surface (used in this manuscript)

Conception of Algorithms

may not be the most relevant information to consider. This is due to the unpredictability of the position of the coordinate curves which prevents an accurate estimation of the curvature to be used in the Hazzidakis formula. Then, other information on the geometry of the surface such as geodesic curves (or the direction of principal curvatures) can be more relevant. We expect that an algorithm splitting the surface (such as in Chapter 5) based on this information can give better results in practical cases. Finally, in this thesis we always considered a Ąxed surface M . With a view to applications such as form-Ąnding for gridshells, it would be of great interest to consider (small) modiĄcations of the surface. For example, the Chebyshev net ϕ can be separated from the surface whenever the angle ω is near 0 or π. This can be achieved by deĄning an angle distribution ω not satisfying the Hazzidakis formula everywhere on the surface. Then, the main issue in this perspective is to determine the cases where one can construct a surface M embedded in R 3 and a Chebyshev net φ on M with the prescribed angle distribution ω.
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 12 Fig. 1.2 Position des extrémités des poutres Ąxée au sol [16] Fig. 1.3 Un gridshell après contreventement [19]
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 11114 Fig. 1.4 Gridshell de Mannheim [15, p.19]
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 17 Fig. 1.7 Méthode du Ąlet suspendu et gridshell correspondant [15, p.131]
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 1813121 Fig. 1.8 Les singularités génériques des réseaux de Chebyshev
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 191 Fig.1.9 Un réseau de Chebyshev sur la sphère[START_REF] Ghys | Sur la coupe des vêtements: variation autour dŠun thème de Tchebychev[END_REF] 
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 1 Fig. 1.11 Un réseau de Chebyshev sur une surface de translation
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 1025 Lemma Let ϕ be a local Chebyshev net of M . Define the three points A = ϕ(x 0 , y 0 ), B = ϕ(x 0 + h, y 0 ), and C = ϕ(x 0 + h 2 , y 0 + h 2 ). Consider the dual line γ = ϕ(•, y 0 ) (containing the points A and B) and let ABC be the triangle delimited by the two primal lines AC and BC and the dual line γ, depicted on Figure2.1. Then the following holds:

. 11 )

 11 Proof. DeĄne ∂ x := ∂ x ϕ and ∂ y := ∂ y ϕ. Using the commutation of ∂ x and ∂ y , we obtain
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Fig. 3 . 5 3 cFig. 3 . 7

 35337 Fig. 3.5 Illustration of the equivalence table T of a Chebyshev net with one conical singularity on the plane
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 39 Fig. 3.9 A Chebyshev net with two conical singularities on the sphere: the image by ϕ of the orthogonal polygons are delimited by the red curves
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 3 Fig. 3.10 Illustration of two compatible nets on M [29, p.3]

  Fig. 3.14 Generic singularities of Chebyshev nets
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 3 Fig. 3.15 An example of singularity at once in the usual sense and in the present meaning on a Chebyshev net φ
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 3 Fig. 3.16 A representation of the cone of interior angle λ: the rays (OA) and (OB) are isometrically identiĄed as a single line
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 23 Fig. 3.17 Illustrations of conical surfaces isometrically embedded in R 3

  Let us present the example of the d th -root mapping that highlights the peculiarities of conical singularities. Example 3.23 (d th -root mapping). Let τ : C → C be the mapping deĄned by τ (z) = z d , with d ≥ 2 an integer. In order to avoid any confusion, we denote this mapping τ : M → C, with M = C and M * = C * . Then, the mapping τ M * : M * → C * deĄnes a GC atlas A on M * that we make explicit as follows. First, we denote arg(p) ∈ [0, 2π) the argument of p ∈ C * and we denote
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 3 Fig. 3.18 Representation of the branch-cut domain V ⊂ C λ with its associated global isometry Is(C λ , V ) in principal subcases

Fig. 3 .Fig. 3 .

 33 Fig. 3.19 Illustration of the set Vθ 0 ,δ introduced in DeĄnition 3.22

Fig. 3 .

 3 Fig. 3.21 Illustration of the mapping φ : C 4π → C deĄned from the square root
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 334 Existence of a unique solution to integrability condition). Let M be a smooth, open, complete, and simply connected surface. Let η 1 : [-L 1 , 0] → M , with L 1 ∈ R + * ∪ ¶∞♦, and
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 3 Fig. 3.23 Illustration of the Hazzidakis formula
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 143 Fig. 3.24 A Chebyshev GC atlas with a conical singularity of valence 8 on EnneperŠs surface
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 3 Fig. 3.25 Illustration of the proof of the smoothness of φ Vm,1 at 0
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 3 Fig. 3.26 Illustration of the angles ¶θ α ♦ 1≤α≤n of a conical singularity (proof of Proposition 3.37)
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 3 Fig. 3.27 Illustration of φ( Vα 0 ,2 ) (proof of Proposition 3.37)

Fig. 3 .

 3 Fig. 3.29 Illustration of the open covers ¶Ω i ♦ 1≤i≤N and ¶ Ωα ♦ 1≤α≤ Ñ

• Part 2 :

 2 we construct the mapping ψ cone in Step 6 by lifting the image of the mapping ψ 1 to the cone C λ , where λ = ♣2πNn π 2 ♣ and N ∈ Z. We Ąnally prove Statements 1-4 in Step 7. Part 1: mapping from Ω * p to the plane Step 1 (Construction of the mapping ψ 1 ). Let g ∈ Ω * p and let η : [0, 1] → cl M ( Ωp ) be a geodesic curve starting from p, passing by g, and such that η(1) ∈ ∂ Ωp . We set η set := η([0, 1]) and η * set := η set ¶p♦. We denote O the open and simply connected set deĄned by O := Ωp η set (see Figure

. 25 )

 25 We denote d = inf i∈I d i and we set B * M (p, d) := B M (p, d) ¶p♦. We prove in what follows that

Fig. 3 .

 3 Fig. 3.32 Construction of the mapping ψ cyl (proof of Lemma 3.44)
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 3 Fig. 3.33 Illustration of the sets Ω0 and D

  .7b) verifying the boundary conditions (4.8) and satisfying the Hazzidakis formula (4.6), with ϕ := I(γ, ω) : D → M the unique mapping satisfying (4.1b), (4.2) and (4.7b).

  verifying the boundary conditions (4.8) and satisfying the Hazzidakis formula (4.6), with ϕ := I(γ, ω) ∈ Φ k+2 (D) the unique mapping satisfying (4.1b), (4.2) and (4.7b).

Fig. 4 . 2

 42 Fig. 4.2 Illustration of the construction of the family of curves σ 1

D

  dt the covariant derivative along the curve σ. The geodesic curvature equation for arc-length parametrized curves gives D dt σ ′ = κσ ′⊥ , (4.11)

Fig. 4 . 3 Proposition 4 . 5 (

 4345 Fig. 4.3 Illustration of the construction of the parametrization ϕ ω

Proposition 4 . 6 (

 46 Regularity of mappings satisfying the integrability condition). Keeping the assumptions of Proposition 4.5 with k = r ∈ N, we moreover suppose that ω m ∈ Θ k+1 (D) satisfies the Hazzidakis formula (4.6) with ϕ m := I(γ m , ω m ), i.e.,

Proposition 4 . 7 (

 47 From integrability conditions to Chebyshev nets). Let M be a smooth, open, complete, and simply connected surface, let D

(4. 34 )

 34 Indeed, suppose that (4.34) is satisĄed and denote I ⊂ [0, L v ] the maximal interval on which we have R(u, v) = 1, for all (u, v) ∈ [0, L u ]×I. Owing to (4.34), we Ąrst have that [0, L] ⊂ I, so that I is nonempty. Moreover, suppose that [0, L0 ] ⊂ I, for some L0 ∈ (0, L v ]. Then, since the angle distribution ω [0,Lu]×[ L0 ,Lv] and the mapping ϕ [0,Lu]×[ L0 ,Lv] satisfy the hypotheses of the proposition, we infer from (4.34) that there exists L1 ∈ ( L0 , L v ] such that [0, L1 ] ⊂ I. Hence, I is open in [0, L v ], and we deduce from the continuity of R that I is closed. Therefore, (4.34) implies the claim.

Proposition 4 . 12 (

 412 Global existence of a solution). Let M be a smooth, open, complete, and simply connected surface, letD = [0, L u ]×[0, L v ], with L u , L v ∈ R + * , and let γ = (γ u , γ v ) ∈ Γ 2 ([0, L u ])×Γ 2 ([0, L v ]) be such that γ u (0) = γ v (0) and ∠ γ ′ u (0), γ ′ v (0) ∈ (0, π).Then, there exists a unique solution ω ∈ Θ 1 γ (D) to (4.49).
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 351 Fig. 5.1 Illustration of the total turn angle τ (η)
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 52 Fig. 5.2 Illustration of a Chebyshev net ϕ on a sector Q of exterior angle ψ
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 56 Fig. 5.6 Illustration of a geodesic N -half-surface B c with N = 4

Fig. 5 . 7

 57 Fig. 5.7 Illustration of the sectorization Q(B c , p 2 ) of a N -half-surface B c with N = 4

2 σ * B 1 c B 2 c 2 Fig. 5 . 8

 212258 Fig. 5.8 Illustration of the two possible cases for the splitting in Theorem 5.16 (N = 4)

  Fig. 5.9 Illustration of the possible splittings of a N -half-surface with N = 4 (proof of Theorem 5.16)

S 3, 1 (b) 2 Fig. 5 .

 125 Fig. 5.11 Illustration of the recursive splitting used for the proof of Theorem 5.20

Fig. 5 .Lemma 5 . 24 .

 5524 Fig. 5.13 Illustration of the construction of the Chebyshev net with conical singularities (the crosses are the vertices)

Fig. 5 .

 5 Fig. 5.14 Illustration of the notation of Lemma 5.24

transport of η 1 along η 2 Fig. 5 .

 25 Fig. 5.15 Parallel transport of η 1 and η 2 along each other (N 1 = 1, N 2 = 2): numbering of the double induction process

  ϕn([a 2,n-1 ,a 2,n ]×[0,v]) k ([a 2,k-1 ,a 2,k ]×[0,v])

Fig. 5 .

 5 Fig. 5.17 Illustration of the recursive parallel transport of η 2 along η 1,1 (N 1 = 1, N 2 = 2)

N 2

 2 +1 i=1 η2,i ([a 2,i-1 , a 2,i ]). We denote B band e = R + ×[0, -a 1,1 ], B band c = ∪ N 2 +1 i=1 B i c and Q = Q B bandc . Let us construct the Chebyshev net on the half-band B band e . This mapping, denoted ϕ band : B band e → B band c , is deĄned by ϕ band (u, v) = ϕ i (u, v), whenever (u, v) ∈ P i e for i ∈ ¶1, ..., N 2 + 1♦.

K

  + and τ -(η 2 ) ≤ τ -(η 2 ) + have τ ± (η 1 ) = τ ± (η 1 )τ ± (η 1 [a 1,1 ,0] ).(5.41)

. 42 )

 42 using(5.38),(5.40) and(5.41) for the Ąrst inequality. Since hypothesis (5.31a) (with ψ = πθ 1 ) is satisĄed by Q, we infer from (5.42) thatτ + (η 1 ) + τ + (η 2 ) + Q K + + π -θ1 < π.

i=1

  Bie = (R + ) 2 , and a Chebyshev parametrization of Q denoted φ : (R + ) 2 → Q. The translation of each polygon Bi e by the vector (0, -a 1,1 ), i.e., the set ¶ Bi e + (0, -a 1,1 )♦ 1≤i≤ Ñpiece is then joined to the set ¶B i e ♦ 1≤i≤N 2 +1 to obtain ¶B i e ♦ 1≤i≤N piece . Moreover, we deĄne the mapping ϕ: (R + ) 2 → Q by ϕ(u, v) =    ϕ band (u, v), if (u, v) ∈ B band e ,φ(u, v + a 1,1 ), otherwise.

Corollary 5 . 27 (Theorem 5 . 28 (

 527528 Existence of piecewise smooth Chebyshev nets on N -half-surfaces). Let N ≥ 1 and let B c be a N -half-surface delimited by the curves ¶γ i c ♦ 1≤i≤N +1 . We suppose that B c satisfies the conditionsτ + (∂B c ) + Bc K + < π, τ -(∂B c ) + Bc K -< ♣ψ♣ l ∞ .Then, there exist N piece ≥ 1 polygons ¶B i e ♦ 1≤i≤N piece such that (R + ) 2 = ∪ N piece i=1 B i e and int(B i e ) ∩ int(B j e ) = ∅ for all i ̸ = j, and Chebyshev coordinates ϕ on B c such that ¶γ i c ♦ 1≤i≤N +1 are coordinate curves. Moreover, the angle ω = ∠(∂ u ϕ, ∂ v ϕ) of the net is bounded away from 0 and π by the positive real numberε = min  πτ + (∂B c ) -Bc K + , ♣ψ♣ l ∞τ -(∂B c ) -Bc K -  .Finally, the mapping ϕ B i e: B i e → B i c ⊂ B c , with B i c = ϕ(B i e ), is a diffeomorphism, for all i ∈ ¶1, ..., N piece ♦.Proof. The proof follows by combining Theorem 5.25 and Proposition 5.13. Existence of piecewise smooth Chebyshev nets on geodesic N -half-surfaces). Let N ≥ 1 and let B c be a geodesic N -half-surface delimited by the geodesic curves ¶γ i c ♦ 1≤i≤N +1 . We suppose that B c satisfies the conditionsBc K + < π -♣ψ♣ l 1 , Bc K -< ♣ψ♣ l ∞ .Then, there exist N piece ≥ 1 polygons ¶B i e ♦ 1≤i≤N piece such that (R + ) 2 = ∪ N piece i=1 B i e and int(B i e ) ∩ int(B j e ) = ∅ for all i ̸ = j, and Chebyshev coordinates ϕ on B c such that ¶γ i c ♦ 1≤i≤N +1 are coordinate curves. Moreover, the angle ω = ∠(∂ u ϕ, ∂ v ϕ) of the net is bounded away from 0 and π by the positive real number min π -♣ψ♣ l 1 -Bc K + , ♣ψ♣ l ∞mapping ϕ B i e : B i e → B i c ⊂ B c , with B i c = ϕ(B i e ), is a diffeomorphism, for all i ∈ ¶1, ..., N piece ♦.
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 6161 Fig. 6.1 The surface used for the conception of the forum constructed for the SolidayŠs festival (Rhinoceros software)
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 162566 Fig. 6.2 Illustration of the compass method with the primal boundary conditions given by the red curves
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 67 Fig. 6.7 A discrete Chebyshev net with one conical singularity of valence 6 (view 1)
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 68 Fig. 6.8 Illustration of the Hazzidakis formula on the parallelogram ABCD

Fig. 6 .

 6 Fig. 6.12 A Chebyshev net with one singularity on a surface with positive and negative curvature

Fig. 6 .

 6 Fig. 6.14 A Chebyshev net constructed with the dual boundary conditions given by the red curve and a constant angle (view 1)

  

  

  

  

  

  

  

  

  

  2 , ⟨X, Y ⟩ le produit scalaire euclidien et ♣X♣ la norme euclidienne. Soient maintenant (M 1 , g 1 ), (M 2 , g 2 ) deux surfaces et F : M 1 → M 2 une application lisse. LŠapplication tangente à F est notée : dF : T M 1 → T M 2 et, pour tout p ∈ M 1 , la restriction de dF à T p M 1 est notée dF p : T p M 1 → T p M 2 . LŠapplication F est appelée isométrie locale lorsquŠelle vériĄe, pour tous champs de vecteurs X, Y sur M 1 et en tout point de M 1 , ⟨dF (X), dF (Y )⟩ g 2 = ⟨X, Y ⟩ g 1 .

Une application qui est à la fois une isométrie locale et une bijection est appelée isométrie globale (sous-entendu, sur son image). Nous notons u et v les deux composantes de R 2 . Soient X et Y deux champs de vecteurs sur M . Nous notons D X Y la dérivation covariante de Y dans la direction X. Soit (Ω, ϕ) un système local de coordonnées et soient les champs de vecteurs e 1 := ∂ u ϕ et e 2 := ∂ v ϕ déĄnissant une base de T p M , pour tout p ∈ Ω. En utilisant la notation dŠEinstein, nous notons [X, Y ] le crochet de Lie de X et Y , exprimé dans le système de coordonnées (

  R sont appelées courbures principales de la surface. Dans le cas où λ 1 (p) ̸ = λ 2 (p), les vecteurs propres (v 1 (p), v 2 (p)) sont déĄnis de manière unique (à normalisation près) et appelés directions principales de courbure. Dans le cas contraire, le point p ∈ M est dit ombilic. Finalement, nous notons

est un endomorphisme de T p M appelé opérateur de forme en p. Dans le système de coordonnées (Ω, ϕ), la seconde forme est notée

II = edu 2 + 2fdudv + gdv 2 , avec e, f, g : M → R.

LŠopérateur de forme S(p) est symétrique donc diagonalisable dans une base orthogonale pour la métrique g. Nous notons cette base (v 1 (p), v 2 (p)). Les deux valeurs propres associées λ 1 (p), λ 2 (p) ∈

La 1.3 Les réseaux de Chebyshev

  ou [8, Sec. 1.6, 4.2].

1.3.4 État de l'art sur l'existence

  

				•	
				•	
	γ 2			•	
			γ 1	
	Fig. 1.14 Méthode du compas avec des conditions au bord de type primal	
	(les conditions au bord sont les courbes en rouge)	
	Nous présentons maintenant les principaux résultats concernant lŠexistence de réseaux de Cheby-
	shev : étant donné une surface M , nous cherchons un réseau de Chebyshev ϕ : U ⊂ R 2 → M .
	Cette problématique a été présentée dans la question 1.4. Le premier résultat dŠexistence dŠun
	réseau de Chebyshev sur une surface générale est donné par Bakelman [2] où il est montré que
	toute surface M homéomorphe au plan, complète et satisfaisant la condition	
	M	K ± <	π 2	,	(1.10)
	avec K + = max(K, 0) et K -= max(-K, 0), admet un réseau de Chebyshev. Nous précisons
	que ce résultat est présenté dans le cadre plus général des surfaces dŠAlexandrov [1] et il ne
	garantit pas que ϕ soit lisse sur une surface (lisse). Le premier résultat dŠexistence dŠun réseau de
	Chebyshev lisse a été obtenu, sous les mêmes conditions, par Samelson et Dayawansa [41]. Tandis
	que la preuve de Bakelman est géométrique, la preuve de [41] est analytique. Il y est prouvé que,
	pour des conditions au bord données (présentés dans le chapitre 2), il existe une unique solution
	à lŠéquation de Servant (1.7). Ensuite, il est montré que, sous les conditions (1.10) sur M , il
	existe des conditions au bord permettant dŠassurer que la solution soit un C ∞ -diféomorphisme.
	La borne permettant lŠexistence est ensuite améliorée par Burago et al. [12]. En efet, il est
	montré lŠexistence dŠun réseau de Chebyshev ϕ : U ⊂ R 2 → M sur toute surface (dŠAlexandrov)
	M homéomorphe au plan, complète satisfaisant			

M K ± < 2π.

1.4 Résultats principaux et plan du manuscrit De

  même que pour la construction de Bakelman, sur laquelle sŠappuie cette construction, le réseau de Chebyshev obtenu est non lisse. On peut voir par la formule dŠHazzidakis que, dans le cas où le signe de la courbure est constant, ce résultat est optimal.

1.4 Résultats principaux et plan du manuscrit

  

	Nous présentons Ąnalement un résumé des travaux efectués dans le cadre de cette thèse. Ces
	travaux sont regroupés dans les cinq chapitres suivants. Dans le premier de ces chapitres, nous
	nous concentrons sur lŠexistence dŠun système global de coordonnées de Chebyshev, dans la
	continuité de [41]. Nous élargissons ensuite les perspectives en introduisant les singularités
	coniques dans le chapitre 3. La construction de réseaux de Chebyshev avec singularités coniques
	est présentée dans le chapitre 5. Dans ce but, nous montrons préalablement dans le chapitre
	4 lŠexistence dŠun unique réseau de Chebyshev satisfaisant des conditions au bord dites de
	type primal. Le dernier chapitre est une application numérique des résultats précédents. Plus
	précisément, nous résumons le contenu de ces chapitres ci-dessous.
	• Nous présentons dans le chapitre 2 une amélioration de la borne (1.10) sur la courbure de
	la surface M assurant lŠexistence dŠun réseau de Chebyshev lisse sur M . Ainsi, en se basant
	sur [41], nous considérons les conditions au bord dites de type dual et nous présentons une
	variante de la formule dŠHazzidakis (1.8) nous permettant de contrôler les angles entre les
	lignes de coordonnées du réseau de Chebyshev construit à partir de ces conditions au bord.
	Ce chapitre, publié dans Journal of geometry [35], a pour résultat principal le théorème
	suivant :
	Theorem 1.10 (Existence dŠun réseau de Chebyshev global). Soit M une surface ouverte,
	complète et simplement connexe de régularité C ∞ . Supposons que M ♣K♣ < 2π. Alors il
	existe un réseau de Chebyshev global sur M .
	• Dans le chapitre 3, après avoir déĄni les réseaux de Chebyshev avec singularités coniques,
	nous présentons un cadre théorique permettant le passage du local au global dans la
	déĄnition des systèmes de coordonnées. Dans ce but, nous introduisons les systèmes de
	coordonnées globalement compatibles. Nous introduisons aussi la notion de singularité
	des systèmes de coordonnées. Nous présentons Ąnalement quelques propriétés spéciĄques
	aux singularités des réseaux de Chebyshev justiĄant la déĄnition de singularités coniques
	initialement introduite.
	• Nous construisons dans le chapitre 4 des réseaux de Chebyshev à partir de conditions au
	bord de type primal. Ainsi, nous montrons par une construction géometrique se basant
	sur [23] que le problème consistant à chercher un réseau de Chebyshev satisfaisant des
	conditions au bord de type primal est bien posé au sens de Hadamard : à conditions au bord
	Ąxées, il y a existence et unicité dŠun réseau de Chebyshev et celui-ci dépend continûment
	de ces conditions au bord. Ce résultat est énoncé dans le théorème suivant :
	Theorem 1.11 (Existence et unicité dŠun réseau de Chebyshev). Soit M une surface ou-
	verte, complète et simplement connexe. Soient η 1

  2.2.2.1. We then present a simple example of conical singularity in Subsection 3.2.2.2.2. We Ąnally introduce in Subsection 3.2.2.2.3 the conical singularities. Conical surfaces We Ąrst deĄne the conical surface C λ of interior angle λ > 0[START_REF] Troyanov | Les surfaces euclidiennes à singularités coniques[END_REF]. See Figure3.16 for a representation of this conical surface.

	3.2.2.2.1

DeĄnition 3.19 (Conical surface (or cone) of interior angle λ). Let λ > 0 and let ∼ be the equivalence relation on R + ×R defined by

  As above, we notice that η α,n α+1 (0) and η α,n α+1 (1) = γ(s α ) are in the same connected component of Ωα ∩ Ω n α+1 that we denote O. Hence, for all x in the connected component of φ-1 α

.17) 

Moreover, in the case where α ∈ ¶1, ..., Ñ ♦ is such that n α = n α+1 , we denote T n α+1 -1 • ... • T nα the identity and (3.17) is trivially satisĄed. Now, we suppose that α ∈ ¶1, ..., Ñ -1♦.

  uniformly continuous. Then, there exists λ = k π 2 , with k ≥ 1 an integer, an open ball Bp := B M (p, h 0 ) ⊂ Ωp , with h 0 > 0, and a continuous mapping ψ cone : Bp → ψ cone ( Bp ) ⊂ C λ such that ψ cone (p) = 0 and such that: 1. the mapping ψ cone B *

p : B * p → ψ cone ( B * p ) ⊂ C λ , with B * p := Bp ¶p♦, is a local homeomorphism;

  p be a simply connected open set in the neighborhood of η * set such that Γ η set = O 1 ∪ O 2 , with O 1 , O 2 ⊂ O two simply connected open sets (see Figure 3.31). We suppose that O 1 and O 2 are indexed such that ψ 2 O 1 ∪η *

	set

  Bp of p, the mapping ψ cone Ω *

		3 (of Lemma 3.44) ensures
	the compatibility of the conical net ψ cone B *	-1 B M (p, h) with A 1 . Then, noting that ψ cone B * p	, with
	0		

p := Bp ¶p♦, is a local homeomorphism (Statement 1), we Ąrst prove that for some neighborhood Ω0 ⊂

  1. If p m is contained in B 1 c , the result is straightforward; 2. If p m is contained in B 2 c , applying (5.27) and the condition (5.15a) in B 1 c , we obtain that

  ). Then, there exist N piece ≥ 1 polygons ¶B i e ♦ 1≤i≤N piece such that (R + ) 2 = ∪ and Chebyshev coordinates ϕ on Q such that η 1 and η 2 are coordinate curves.

	N piece i=1 B i e and int(B i e )∩int(B j e ) =
	∅ for all i ̸ = j,

Moreover, the angle ω = ∠(∂ u ϕ, ∂ v ϕ) of the net satisfies the nonsmooth Hazzidakis formula

  , P h 1,2 and P h 2,1 determine uniquely the point P h 2,2 ∈ M such that the points P h 1,1 , P h 2,1 , P h 2,2 and P h 1,2form a rhombus of length h in R 3 . We denote d E the Euclidean distance in R 3 . Repeating the same operation, we entirely shape the grid P h using the conditions

	d E P h i,j , P h i+1,j
	d E P h i,j , P h i,j+1



= h, for all i ∈ ¶1, ..., N 1 -1♦ and j ∈ ¶1, ..., N 2 ♦,  = h, for all i ∈ ¶1, ..., N 1 ♦ and j ∈ ¶1, ..., N 2 -1♦. (6.2)

, with k i ≥ 1 an integer.
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We will Ąrst show that we can associate with any angle distribution ω : D → R/2πZ satisfying (4.8) a unique mapping ϕ := I(γ, ω) : D → M satisfying (4.1b), (4.2), and (4.7b), and then we will show that this mapping also satisĄes (4.1a) and (4.7a) whenever ω satisĄes the integrability condition (4.5). This section aims at proving the following result: 

* , be two curves with respective geodesic curvatures κ u : [0, L u ] → R and κ v : [0, L v ] → R, and such that γ u (0) = γ v (0). Suppose that ∠(γ ′ 1 (0), γ ′ 2 (0)) ∈ (0, π). Then, there exists a unique angle distribution ω : D → R/2πZ, with D = [0, L u ]×[0, L v ], verifying the boundary conditions (4.8) and satisfying the Hazzidakis formula (4.6), with ϕ := I(γ, ω) : D → M the unique mapping satisfying (4.1b), (4.2) and (4.7b).

Suppose moreover that we have 0 < ω(u, v) < π, for all (u, v) ∈ D. Then, ϕ is a Chebyshev net, i.e., it also satisfies (4.1a) and (4.7a), and the dependency of ω and ϕ is continuous with respect to the boundary conditions γ u and γ v .

In the previous statement, we have not deĄned precisely the regularity of the objects or the norms on the considered vector spaces. These are deĄned in Section 4.1.2, and a more accurate statement of Theorem 4.1 is given by Theorem 4.3. A direct consequence of Theorem 4.3 is the following theorem: Theorem 4.2 (Existence of a unique solution to integrability condition). Let M be a smooth, open, complete, and simply connected surface. Let γ u : [0, L u ] → M , with L u ∈ R + * ∪ ¶∞♦, and γ v : [0, L v ] → M , with L v ∈ R + * ∪ ¶∞♦, be two smooth curves with respective geodesic curvatures κ u : [0, L u ] → R and κ v : [0, L v ] → R, and such that γ u (0) = γ v (0). Suppose that ∠(γ ′ u (0), γ ′ v (0)) ∈ (0, π). Then, there exists a unique angle distribution ω :

Smooth Chebyshev nets deĄned by primal boundary conditions

Existence and uniqueness of angle distribution

* , and let γ = (γ u , γ v ) ∈ Γ k+2 ([0, L u ])×Γ k+2 ([0, L v ]) be two curves of geodesic curvatures κ u ∈ C k ([0, L u ], R) and κ v ∈ C k ([0, L v ], R), respectively. In this section, we consider the Hazzidakis formula (4.6) as an equation on ω ∈ Θ k+1 γ (D), i.e., on angle distributions satisfying the boundary conditions (4.8). Hence, we deĄne the mapping for all (u, v) ∈ D. We Ąrst show in Subsection 4.3.1 that there exists a unique ω * ∈ Θ k+1 γ ([0, L u ]×[0, L 0 ]), for L 0 ∈ (0, L v ] small enough, satisfying (4.49). We also prove that this solution depends continuously on the curves γ u and γ v . Then, we extend this result to Ąnite rectangles D = [0, L u ]×[0, L v ], with L u , L v ∈ R + * , in Subsection 4.3.2. Finally, we prove by a density argument on the regularity of γ u and γ v that the associated parametrization I(γ, ω * ) is indeed a Chebyshev net.

Local existence of a solution

We Ąrst suppose that k = 0 and we state the local existence of the angle distribution ω in the following proposition. ) be such that γ u (0) = γ v (0) and ∠(γ ′ u (0), γ ′ v (0)) ∈ (0, π). Then, there exists L 0 ∈ (0, L v ], depending only on

where the constant C depends on

We prove the claim by application of the Banach Ąxed-point theorem to the functional

, supposing that L is small enough. Hence, we Ąrst prove that F is stable in some bounded closed subset of Θ 1 γ (D L ) (Step 1) and we then show that F 2 is a contraction mapping in this space (Step 2). We conclude using the Banach Ąxed-point theorem in Step 3.

Step 1 (Stability in a closed subset). We denote κ u,1 ∈ C 0 ([0, L u ]) and κ v,1 ∈ C 0 ([0, L v ]) the geodesic curvatures of γ u and γ v respectively. We set ϕ γ := I(γ, ω γ ) ∈ Φ 1,2 (D). Since ϕ γ is bounded by (4.18), we have that K • ϕ γ is bounded. Moreover, a straightforward computation gives

In what follows, we restrict F to this ball.

Step 2 (Contraction mapping). We now prove the following result:

. Then, we have

where the constant C depends on R(γ) and R(σ). Note that (4.51) holds for all L ∈ (0,

In this step, the domain of deĄnition of the two-dimensional variables for the diferent norms is always D L = [0, L u ]×[0, L] and will not be speciĄed. In all the subsequent estimates, unless explicitly mentionned, the constants only depend on R(γ) and R(σ). We set ϕ σ := I(σ, ω σ ) ∈ Φ 1,2 and we denote κ u,2 ∈ C 0 ([0, L u ]) and κ v,2 ∈ C 0 ([0, L v ]) the geodesic curvatures of σ u and σ v , respectively. First, we prove that

To this end, Ąrst note that we have

, respectively. Then, the mappings J 0,R 0 and

are Lipschitz continuous, with Id the identity operator in

* a constant depending only on R 0 , and

the ball centered at the origin with radius R(γ) in Θ 1 (D L 0 ). Since ω γ and ω σ are both contained in this ball, we deduce from (4.51) that

which proves that J 0,R 0 is Lipschitz continuous. Finally, using additionally Proposition 4.6, we infer that I • Id, J 0,R 0 is Lipschitz continuous.

We now prove that C k+2 -regularity for the boundary conditions γ implies Θ k+1 -regularity for the solution ω, for all k ∈ N. 

Then, there exists L 0 ∈ (0, L v ], depending only on ∥γ u ∥ Γ 2 ([0,Lu]) and ∥γ v ∥ Γ 2 ([0,Lv]) , such that there exists a unique solution ω γ ∈ Θ k+1 γ ([0, L u ]×[0, L 0 ]) to (4.49). Moreover, we have

where the constant C depends on

Proof. Owing to Proposition 4.8, there exists L 0 ∈ (0, L v ] such that there exists a unique solution ω γ ∈ Θ 1 γ (D L 0 ) to (4.49). We prove in what follows that ω γ ∈ Θ k+1 γ (D L 0 ). In this proof, the domain of deĄnition of the two-dimensional variables for the diferent spaces is always D L 0 = [0, L u ]×[0, L 0 ] and it will not be speciĄed. Owing to Proposition 4.6, we have that ϕ ω = I(γ, ω) ∈ Φ r+2 whenever ω γ ∈ Θ r+1 γ , for all r ∈ ¶0, ..., k♦. Therefore, using that ω γ = F (ω γ ), we obtain by an induction argument on r ∈ ¶0, ..., k♦ that ω γ ∈ Θ k+1 γ (the only limiting factor being the regularity of the boundary curves γ). Hence, we have ϕ ω ∈ Φ k+2 . Now, to prove (4.55), we note that

for all I = (i 1 , i 2 ) ∈ ¶1, ..., k+1♦ 2 . Furthermore, a straightforward computation gives Let

). We denote J k,R k the restriction of the mapping (4.54) to this ball, i.e.,

We can now state the equivalent of Proposition 4.9 in Γ k+2 ([0, 

) and Θ k+1 (D), respectively. Then, the mappings J k,R k and

are Lipschitz continuous, with Id the identity operator in

Proof. Similarly to the previous proofs, the domain of deĄnition of the two-dimensional variables for the diferent norms is always

] and it will not be speciĄed. Let

and we set ϕ γ := I(γ, ω γ ) ∈ Φ k+1 and ϕ σ := I(σ, ω σ ) ∈ Φ k+1 . Using (4.56), a straightforward computation gives

. We now prove the following counterpart of (4.51):

where the constant C is independent of L 0 and L 1 . A simple modiĄcation of the proof of (4.10a) implying (4.19a) gives the following counterpart of (4.53):

where the constant C is independent of L 0 and L 1 . Hence, we obtain the following counterpart of (4.52):

)

where the constant C is independent of L 0 and L 1 . Then, (4.58) follows from (4.59) in the same manner as in the proof of Proposition 4.8.

Step 3 (Conclusion). We set

) onto itself, so that we now restrict F to this ball. We infer from (4.58) that there exists

) (R(γ)). Hence, using the Banach Ąxed-point theorem, we obtain that there exists a unique solution ω * γ ∈ S 1,γ (D L * 1 ). Moreover, since the constants in (4.58) are independent of L 0 , we infer that L * 1 is independent of L 0 , so that we can repeat (a Ąnite number of times) the argument until we reach L v . The claim follows. 

Then, there exists a unique solution ω ∈ Θ k+1 γ (D) to (4.49).

Proof. The claim is obtained in the same manner as in Proposition 4.10.

For all k ∈ N and

We prove in the following proposition that J k,R k is Lipschitz continuous.

Proposition 4.14 (Continuity with respect to boundary conditions). Let M be a smooth, open, complete, and simply connected surface, let

) and Θ k+1 (D), respectively. Then, the mappings J k,R k and

are Lipschitz continuous, with Id the identity operator in

Proof. We Ąrst prove the claim in the case where

In the same manner as in the proof of Proposition 4.9, we infer from (4.58) that

using that the mapping (4.54) is Lipschitz continuous (Proposition 4.9) for the second inequality. Since the extension process is only operated a Ąnite number of times, we easily obtain by repeating the above argument that the mapping J 0,R 0 is Lipschitz continuous. Then, the proof for the case k > 0 is obtained in the same manner as Proposition 4.11. Finally, the Lipschitz continuity of I • Id, J k,R k follows from Proposition 4.6.

Proof of the main result

Proof of Theorem 4.3. First, owing to Proposition 4.13, we obtain the existence of an angle distribution ω γ := J k (γ) ∈ Θ k+1 γ (D) satisfying (4.49). Then, the continuity of J k and I is a direct consequence of Proposition 4.14. Hence, to prove the claim, we suppose that 0 < ω(u, v) < π, for all (u, v) ∈ D, and we show that ϕ := I(γ, ω γ ) ∈ Θ k+2 γ (D) satisĄes (4.1). We suppose that k = 0. Otherwise, this is a direct consequence of Proposition 4.7. Using the density of Γ

, for all n ∈ N. Owing to Proposition 4.11, we infer that the sequence (ω n ) n∈N converges to ω in the C 0 (D)-norm. Hence, there exists n 0 ∈ N such that 0 < ω n (u, v) < π, for all (u, v) ∈ D and all n ≥ n 0 . Since

), we obtain from Proposition 4.7 that ϕ n is a Chebyshev net, for all n ≥ n 0 . Moreover, owing to Proposition 4.11, we have that ϕ n

Finally, since ϕ n satisĄes (4.1) for all (u, v) ∈ D and all n ≥ n 0 , we conclude that ϕ satisĄes (4.1) for all (u, v) ∈ D. The claim follows.

Chapter 5

Construction of Chebyshev nets with singularities 5.1 Introduction

We call surface a Riemannian 2-manifold, whose metric will be denoted g, and we consider complete, simply connected surfaces. A Chebyshev net ϕ :

for all (u, v) ∈ U . We construct in what follows Chebyshev nets with a Ąnite set of conical singularities on surfaces with Ąnite total negative curvature and total positive curvature lower than 2π. The main result of this chapter is the following theorem.

Theorem 5.1 (Existence of piecewise smooth Chebyshev nets with singularities). Let M be a smooth, complete, simply connected surface satisfying

where K is the Gaussian curvature of M , K + = max(K, 0) and K -= max(-K, 0). Then, there exists a piecewise smooth Chebyshev net with conical singularities

We highlight that the proof of the theorem is constructive. The chapter is organized as follows. In Section 5.2, we Ąrst consider the construction of Chebyshev nets on broken half-surfaces, deĄned to be half-surfaces with polygonal boundaries. We prove the existence of Chebyshev nets on broken half-surfaces under some condition on their total curvature in Theorem 5.15. Then, we show in Section 5.3 that we can split surfaces satisfying (5.2) into broken half-surfaces (Theorem 5.20), each of them satisfying the conditions of Theorem 5.15. Finally, we combine these two results to construct the Chebyshev net with conical singularities in Section 5.4 and we show that this Chebyshev net is piecewise smooth.

Before this, let us introduce some notation. First, unless explicitly mentioned, any curve

in what follows is arc-length parametrized, continuous on I, and piecewise smooth according to the following deĄnition:

Construction of Chebyshev nets with singularities

To this purpose, we state some preliminary results. First, we relate in Property 5.6 the geodesic curvatures of the coordinate curves of Chebyshev nets to the angle ω between these coordinate curves. Then, we present the Hazzidakis formula in Property 5.7. See [START_REF] Ghys | Sur la coupe des vêtements: variation autour dŠun thème de Tchebychev[END_REF] for a proof of these properties.

Property 5.6 (Geodesic curvature of coordinate curves). Let ϕ : U ⊂ R 2 → ϕ(U ) ⊂ M be a smooth mapping satisfying (5.1) and let (u

where

. This property, illustrated in Figure 5.3, results from the parallel transport of the vector field

where

Then, the angle distribution ω satisfies the following Hazzidakis formula

(5.8)

Lemma 5.8 (Homeomorphism). Let Q be a smooth sector delimited by the two smooth curves η 1 : R -→ M and η 2 : R + → M intersecting at p ∈ M , and satisfying (5.5). Assume that ϕ : (R

⊂ M is a smooth mapping satisfying (5.1), and such that ϕ(u,

Chebyshev nets on broken half-surfaces

Illustration of the Hazzidakis formula

Proof. The proof is obtained in the same manner as in [START_REF] Samelson | On the existence of global Tchebychev nets[END_REF]. We just recall here the principal ideas. We denote ω : (R

We denote κ 1 : R -→ R and κ 2 : R + → R the geodesic curvatures of η 1 and η 2 respectively. First, using (5.7), we obtain that

for all u ∈ R + . Then, using hypothesis (5.5), we deduce that ω(u, 0) ∈ (0, π), for all u ∈ R + . In the same manner, we obtain that ω(0, v) = πψ -0 -v κ 1 ∈ (0, π), for all v ∈ R + . Hence, using the continuity of ω, we infer that there exists D = [0,

* , such that ω( D) ⊂ (0, π). Since (5.1) is satisĄed, we infer that ϕ D : D → ϕ( D) ⊂ M is a local homeomorphism, so that, up to reducing l 1 and l 2 , ϕ is a homeomorphism. Moreover, since ω( D) ⊂ (0, π), we deduce that ∠(η ′ 2 (u), ∂ v ϕ(u, 0)) ∈ (0, π), for all u ∈ [0, l 1 ], and

. We conclude that, up to reducing l 1 and l 2 , we have ϕ( D) ⊂ Q.

Reasoning by contradiction, we Ąrst suppose that ϕ is not a homeomorphism.

Using the Hazzidakis formula (5.8) and hypothesis (5.5), we easily obtain that ω(U cl ) ⊂ (0, π). Hence, the mapping ϕ U cl is a local homeomorphism. Now, suppose that there exist (u

. Then, the two following cases are possible:

• case 1:

We only consider the Ąrst subcase, since the reasoning for the second subcase is similar. Then, assuming that u 1 = u 2 = L 1 , one can see that the GaussŰBonnet formula applied to the curve ϕ( ¶L

) is in contradiction with (5.5).

• case 2:

In this case, we can suppose, without loss of generality, that v 1 = L 2 and u 2 = L 1 . Then, the GaussŰBonnet formula applied to the curve ϕ

) yields a contradiction with (5.5).

We Ąnally suppose that ϕ[(R + ) 2 ] ̸ ⊂ Q. Then, let Ũ = [0, L1 )×[0, L2 ), with L1 , L2 > 0, be such that ϕ( Ũ ) ⊂ Q and such that there exists (ũ, ṽ) ∈ (0, L1 ]× ¶ L2 ♦ ∪ ¶ L1 ♦×(0, L2 ] with ϕ(ũ, ṽ) ∈ ∂Q.

Then, ϕ(ũ, ṽ) ∈ η 1 (R -) or ϕ(ũ, ṽ) ∈ η 2 (R + ) and we obtain again a contradiction between the GaussŰBonnet formula and (5.5). This concludes the proof.

Proposition 5.9 (Existence of smooth Chebyshev nets on sectors). Let Q be a smooth sector delimited by the two smooth curves η 1 : R -→ M and η 2 : R + → M , and with exterior angle ψ ∈ Construction of Chebyshev nets with singularities (0, π). Suppose that the geodesic curvatures κ 1 : R -→ R and κ 2 : R + → R of η 1 and η 2 respectively and the Gaussian curvature K of Q satisfy (5.5). Then, there exists a unique Chebyshev net ϕ

(5.9)

Moreover, the angle ω = ∠(∂ u ϕ, ∂ v ϕ) ∈ (0, π) of ϕ satisfies the Hazzidakis formula

)

The Hazzidakis formula in the sector Q is illustrated in Figure 5. [START_REF] Bobenko | Discrete surfaces with constant negative Gaussian curvature and the Hirota equation[END_REF]. Theorem 5.10 (Existence of a unique solution to integrability condition). Let M be a smooth, open, complete, and simply connected surface. Let η 1 : R -→ M and η 2 : R + → M be two smooth curves with respective geodesic curvatures κ 1 : R -→ R and κ 2 : R + → R, and such that η 1 (0) = η 2 (0). Suppose that ψ := ∠(η ′ 1 (0), η ′ 2 (0)) ∈ (0, π). Then, there exists a unique angle distribution ω : (R + ) 2 → R/2πZ satisfying the Hazzidakis formula (5.10), with ϕ : (R + ) 2 → M the unique smooth mapping satisfying the boundary conditions (5.9), and such that its v-coordinate curves are arc-length parametrized curves with a geodesic curvature κ map 2

Suppose moreover that there exists D = [0, L2 ]×[0, L1 ], with L1 , L2 ∈ R + * , such that 0 < ω(u, v) < π, for all (u, v) ∈ D. Then, the mapping ϕ satisfies

for all (u, v) ∈ D.

Proof of Proposition 5.9. Using Theorem 5.10, we infer that there exists a unique angle distribution ω : (R + ) 2 → R/2πZ satisfying the Hazzidakis formula (5.10), with ϕ : (R + ) 2 → M the unique mapping satisfying the boundary conditions (5.9) and the properties presented in the theorem.

Splitting of a surface into geodesic broken half-surfaces

Theorem 5.15 (Existence of Chebyshev nets on geodesic N -half-surfaces). Let N ≥ 1. Let B c be a geodesic N -half-surface delimited by the geodesic curves ¶γ i ♦ 1≤i≤N +1 . Suppose B c satisfies the conditions

(5.15b)

Then, there exist Chebyshev coordinates on B c such that ¶γ i ♦ 1≤i≤N +1 are coordinate curves. Moreover, the angle of the net is bounded away from 0 and π by the positive real number

(5.16)

Splitting of a surface into geodesic broken half-surfaces

In this section, we show how to split any surface M satisfying the curvature bound (5.2) into geodesic broken half-surfaces, each of them satisfying the conditions (5.15). This is the principal result of this section, stated in Theorem 5.20. This result is obtained in a similar manner to [START_REF] Burago | Remarks on Chebyshev coordinates[END_REF]Th. 4]: Ąrst, we split the surface into four sectors, all of them satisfying (5.15a) (see Theorem 5.18). Then, we split recursively each sector into broken half-surfaces, all of them satisfying (5.15a) (see Theorem 5.16). We Ąnally prove that, after a Ąnite number of splittings, all of the broken half-surfaces also satisfy the condition (5.15b).

Splitting of broken half-surfaces

We prove in this subsection the following theorem which extends the splitting of sectors, introduced in [START_REF] Burago | Remarks on Chebyshev coordinates[END_REF], to broken half-surfaces.

Theorem 5.16 (Splitting of N -half-surfaces). Let N ≥ 1 and let B c be a N -half-surface with exterior angles ¶ψ 0 i ♦ 1≤i≤N satisfying

for positive C and ε. Then, there exist N 1 , N 2 ≥ 1 such that

and a geodesic curve

Then, ξ 1 satisĄes

In the same manner, we obtain that ξ 2 (-v) = -ξ 2 (v), so that ξ(-v) = -ξ(v). Therefore, using [12, Prop. 1], we can conclude that there exists v 0 ∈ S D such that ξ(v 0 ) = (0, 0), which corresponds to

(5.21)

We now prove that U (v 0 ) necessarily matches case 3. First, by (5.21), we have

which rules out cases 1 and 2. In order to rule out cases 4 and 5, suppose now that U (v) is a bounded polygonal domain. Applying the GaussŰBonnet formula on U (v), we infer that

Then, using the hypotheses (5.17) and (5.21), we obtain that

Combining these two results and the deĄnition of α in case 4, we obtain the following contradiction:

Finally, if U (v 0 ) matches case 5, then ξ(-v 0 ) = 0. Hence, U (-v 0 ) matches case 4 which leads, as above, to a contradiction. Therefore U (v 0 ) necessarily matches case 3, i.e., both U (v 0 ) and U (-v 0 ) are broken half-surfaces. Moreover, (5.20) and (5.22) show that α(v 0 ) = π -♣ψ 1 ♣ l 1 . Then, using (5.21) and (5.23), we infer that (5.19) is satisĄed by U (v 0 ). Since ξ(-v 0 ) = 0, we obtain, by symmetry, the same result for U (-v 0 ). Finally, recalling Remark 5.17, we have

This concludes the proof.

Recursive splitting

We Ąrst restate a result by Burago et al [START_REF] Burago | Remarks on Chebyshev coordinates[END_REF]Theorem 3] that allows one to split surfaces satisfying

for positive C and ε, into four sectors delimited by geodesic curves, all of them satisfying the condition (5.15a). This result is stated in [START_REF] Burago | Remarks on Chebyshev coordinates[END_REF] with C = 2π, but the proof is valid in the general setting.

Theorem 5.18 (Burago et al.). Let M be a complete Riemannian 2-manifold homeomorphic to the plane and satisfying the conditions (5.24), for positive C and ε. Then, there exist four sectors ¶Q i ♦ 1≤i≤4 with exterior angles ¶ψ i ♦ 1≤i≤4 and delimited by geodesic curves such that int(Q i ) ∩ int(Q j ) = ∅ for all i ̸ = j and ∪ 1≤i≤4 Q i = M , and such that, for all i ∈ ¶1, ..., 4♦, the sector Q i satisfies the conditions

The four sectors obtained by this theorem are sketched in Figure 5.10. We also need the 

Proof. We denote ψ 1 k , with k ∈ ¶1, ..., N 1 ♦, and ψ 2 l , with l ∈ ¶1, ..., N 2 ♦, the exterior angle of B 1 c and B 2 c respectively at the intersection of σ with ∂B c . Two cases can occur: either the intersection point is not located at some vertex of ∂B c , or σ intersects a vertex p n ∈ ∂B c , with n ∈ ¶1, ..., N ♦, with exterior angle ψ 0 n (see Remark 5.17 and Figure 5.8). In the Ąrst case, we have ψ 1 k + ψ 2 l = π. In the second case, since ψ 0 n ≥ 0, we have

In both cases, we infer that

Note that all the angles of both B 1 c and B 2 c are angles of B c , except for the angle newly created by the intersection of σ with ∂B c . Let ψ 0 m , with m ∈ ¶1, ..., N ♦, be an exterior angle of B c such that ψ 0 m = ♣ψ 0 ♣ l ∞ . Let p m be the corresponding vertex of ∂B c . We only prove that (5.26) is satisĄed for i = 1, since the case i = 2 is treated similarly. We remark that three cases can occur:

Step 6 (Proof of the first induction process (nonsmooth Hazzidakis formula)). Let (u, v) ∈ (R + ) 2 . First, we suppose that (u, v) ∈ B band e , so that (u, v) ∈ B j e for some j ∈ ¶1, ..., N 2 + 1♦. By the Hazzidakis formula in the smooth setting (5.8), the angle ω j between the parameter curves of ϕ j satisĄes

(

Then, from (5.36) and (5.44), we infer that

We now suppose that (u, v) / ∈ B band e and we denote ū = u and v = v + a 1,1 . Then, ū, v ∈ R + and, by (H N 1 ), the nonsmooth Hazzidakis formula (5.34) is satisĄed by the angle ω between the coordinate curves of φ. Hence, using (5.34) on ω and (5.39), we obtain that

Hence, (H N 1 +1 ) holds. This concludes the proof.

Chapter 6

Construction of discrete Chebyshev nets with singularities

We focus in this chapter on numerical applications of the results of the preceding chapters. We present the program we developped during this thesis which permits to construct discrete Chebyshev nets with singularities on a given surface M based on userŠs inputs (curves and angles). We linked our program to the Rhinoceros software, a commercial 3D computer graphics, and most of the Ągures presented in this chapter were created using Rhinoceros. Unless explicitly mentionned, the surface used for the illustrations of the diferent algorithms is the surface used for the conception of the forum of the SolidayŠs festival [START_REF] Baverel | Gridshells in composite materials: Construction of a 300 m2 forum for the solidaysŠ festival in paris[END_REF] presented in Figure 6.1. We implemented in this program a particular case of the algorithm presented in Chapter 5 that permits an automatic choice of the inputs ensuring that the angle between the coordinate curves of the discrete Chebyshev net with one conical singularity constructed on M is bounded away from 0 and π. This algorithm consists in splitting the suface into sectors that are meshed independently. The construction of discrete Chebyshev nets on sectors and the junctions of these discrete nets are considered in Section 6.1 and the algorithm is detailed in Section 6.2. We present in Section 6.3 some discrete Chebyshev nets obtained with our algorithm. Finally, we detail in Section 6.4 some additional functionalities of the program, that is, other types of boundary conditions permitting the construction of discrete Chebyshev nets and methods for the construction of the so-called rosette singularity.

Discrete Chebyshev nets with conical singularities

We construct in this section discrete Chebyshev nets on a surface M using the well-known compass method [START_REF] Bouhaya | Mapping two-way continuous elastic grid on an imposed surface: Application to grid shells[END_REF][START_REF] Garg | Wire mesh design[END_REF][START_REF] Otto | Gitterschalen gridshells[END_REF] with the primal boundary conditions. We then join discrete Chebyshev nets obtained using this algorithm to form discrete Chebyshev nets with conical singularities.

Compass method

The compass method is an algorithm that allows one to approximate the coordinate curves of a Chebyshev net ϕ : U ⊂ R 2 → Ω, with Ω ⊂ M . We denote h > 0 the step of this approximation. The purpose of the compass method is to approximate the grid ϕ(U ∩ hZ 2 ) using a discretization of the conditions 

Construction of discrete

Junction of discrete Chebyshev nets and conical singularities

We present in this section the junction of two diferent meshes deĄned using primal boundary conditions. To simplify the exposition, we switch to the continuous setting in this section. Junctions of Chebyshev nets are obtained by remarking that a curve in the boundary of some Chebyshev net ϕ 1 : U 1 ⊂ R 2 → Ω 1 ⊂ M can be used as a boundary condition in order to construct a new Chebyshev net ϕ 2 : U 2 ⊂ R 2 → Ω 2 ⊂ M . Hence, we obtain a mapping ϕ : U → Ω 1 ∪ Ω 2 ⊂ M which is the junction of these two Chebyshev nets. To illustrate this process, let γ 1 : [0, L 1 ] → M , with L 1 > 0, and γ 2 : [0, L 2 ] → M , with L 2 > 0, be two curves such that γ 1 (0) = γ 2 (0) and

→ M the Chebyshev net obtained using these boundary conditions. Then, let u 0 ∈ [0, L 1 ) and let γ 3 : [0, L 1u 0 ] → M be the curve deĄned by γ 3 (s) = ϕ 1 (u 0 + s, L 2 ), for all s ∈ [0, L 1u 0 ]. Moreover, let γ 4 : [0, L 4 ] → M , with L 4 > 0, be a curve such that γ 4 (0) = ϕ 1 (u 0 , L 2 ) = γ 3 (0) and ∠(γ ′ 3 (0), γ ′ 4 (0)) ∈ (0, π). Then, there exists a Chebyshev net ϕ 2 : [0, L 1u 0 ]×[0, L 2 ] → M deĄned by the primal boundary conditions γ 3 and γ 4 .

Hence, we have constructed a mapping ϕ : Figure 6.4). The inputs and the output of the algorithm joining two discrete Chebyshev nets deĄned by primal boundary conditions are presented in Algorithm 2. We can now construct discrete Chebyshev nets with conical singularities by the junction of meshes deĄned by primal boundary conditions. Recall that the conical singularities of a discrete Chebyshev net are the points of the mesh with a valence diferent from 4. The connectivity of the mesh in a neighborhood of a conical singlarity with valence 5 is shown in Figure 6.5. An example of discrete Chebyshev net with two conical singularities is presented in Figure 6.6.

An algorithm for Chebyshev nets with one conical singularity

In this section, given a surface M and a point p ∈ M , we construct a discrete Chebyshev net with a conical singularity of valence N ≥ 5 at p. As all the singularity points considered in what 6.3 Numerical results

Algorithm

The algorithm for the construction consists in choosing the interior angles ¶ψ i ♦ 1≤i≤N of the sectors ¶Ω i ♦ 1≤i≤N so as to minimize the number N of sectors under the constraint that none of the angles of the Chebyshev net becomes Ćat in each sector. Let π-ε, with ε ∈ (0, π), be the maximal angle accepted. The angle ψ i is then chosen by dichotomy so that the condition

holds true for all i ∈ ¶1, ..., N ♦. Note that in this case the condition (6.4) is satisĄed for all i ∈ ¶1, ..., N ♦. This algorithm is summarized in Algorithm 3.

Numerical results

We apply in this section the algorithm described in Section 6.2.2 to surfaces that cannot be parametrized by a Chebyshev net without a singularity. Typical examples are Enneper surfaces of order n ≥ 2 [START_REF] Dierkes | of Grundlehren der Mathematischen Wissenschaften[END_REF]. The total Gaussian curvature of these surfaces is -4(n -1)π, which exceeds the maximal -2π negative total curvature that can be parametrized without singularity. The Chebyshev net obtained is shown on Figure 6.10 for n = 3 and on Figure 6.11 for n = 5. The red curves are the geodesic curves ¶γ i ♦ 1≤i≤N , with N ≥ 3, delimiting the N sectors. Let us notice that the Chebyshev net is not smooth, since the second coordinate curves have a kink across these curves. We observe that a singularity point with valence 9 is suicient to mesh the Enneper surface of order n = 3 (with total Gaussian curvature M K = -8π). A singularity point with valence 15 is suicient for the Enneper surface of order n = 5 with total Gaussian curvature M K = -16π. Note that a closed dual curve can be used as a dual boundary condition. We present an example of discrete Chebyshev net on a sphere obtained using a closed dual curve in Figure 6.15. The domain D of the discrete Chebyshev net P h : D → M is in this case the grid formed by the diagonals of the discrete cylinder (see Figure 6.16).

Mixed boundary conditions

We Ąnally present the compass method with the mixed boundary conditions given by the dual curve γ 1 : R + → M and the primal curve γ

, and we set γ set 1 = γ 1 (R + ) and N 2 = ⌊ L 2 h ⌋. Let P h i,j , with i, j ∈ ¶1, ..., N 2 ♦, be a grid satisfying the following boundary conditions induced by the primal curve γ 2 : P h 1,j = γ 2 (jh), for all j ∈ ¶1, ..., N 2 ♦.

Note that there exists a unique point (diferent from P h 1,1 ), say P h 2,2 ∈ γ set 1 , such that d E (P h 2,2 , P h 1,2 ) = h. The point P h 2,2 allows one to deĄne uniquely P h 2,j ∈ M , for all j ∈ ¶3, ..., N 2 ♦. Indeed, we Ąrst compute the unique point P h 2,3 such that P h 1,2 P h 2,2 P h 2,3 P h 1,3 form a rhombus using the compass method. The remaining points ¶P h 2,j ♦ 3<j≤N 2 are obtained in the same manner (see Figure 6.17). Reproducing this algorithm, we construct the discrete Chebyshev net P h level by level, each level l ∈ ¶2, ..., N 2 ♦ corresponding to a primal curve deĄned by the points

Additional functionalities

Fig. 6.16 Grid formed by the diagonals of the discrete cylinder ¶P h l,l+k ♦ 0≤k≤N 2 -l . We remark that the points P h i,i , with i ∈ ¶1, ..., N 2 ♦, deĄne a dual boundary condition. Therefore, the points P h l+k,l , with l ∈ ¶1, ..., N 2 -1♦ and k ∈ ¶1, ..., N 2l♦, are uniquely determined using the method of Subsection 6.4.1.1. Hence, the grid P h is entirely shaped and P h satisĄes (6.2) with N 1 = N 2 . The inputs and the output of the compass method with mixed boundary conditions are presented in Algorithm 5. We present an example of discrete Chebyshev net obtained with our program using mixed boundary conditions in Figure 6 

Rosette singularities

We focus in this section on the construction of discrete Chebyshev nets with so-called rosette-type singularities. We Ąrst deĄne discrete Chebyshev nets with a rosette singularity as discrete nets obtained using the one-sided compass method with a small enough closed dual curve. We present an example of these discrete nets in Figure 6.19. The mesh in the neighborhood of the closed dual curve is depicted in Figure 6.20. Note that, for technical reasons, we displayed in this Ągure whole rhombi along the closed dual curve (in red), whereas the compass method should be only one-sided.

We then restrict to discrete Chebyshev nets with a rosette singularity reduced to a point p ∈ M . In other words, we suppose that the mesh covers any small enough neighborhood of p in M (see Figure 6.21). We observe in this Ągure that the point p is a conical singularity of valence N ≥ 5 of the mesh surrounded by N conical singularity points of valence 3. We therefore call this set of conical singularity points a rosette-type singularity. An example of rosette-type conical singularity on an ellipsoid is presented in Figure 6.22.

Chapter 7

Perspectives

In this short conclusive chapter, we present some open problems identiĄed during this thesis which we think can be of interest. First, we present some possible extensions of our results. Then, we address open problems related to the existence of Chebyshev nets on general surfaces. These theorical perspectives concern the construction of singularities with positive indices, such as rosette singularities (see Section 6.4.2) and conical singularities of valence three, and the construction of Chebyshev nets on surfaces with dominant positive curvature. Finally, we present open problems more directly related to the construction of Chebyshev nets for practical applications like gridshells. In particular, we elaborate on algorithms that would permit to construct Chebyshev nets in practical cases.

Possible extensions of our results

In this thesis, we have constructed Chebyshev nets with piecewise smooth conical singularities. With an eye to architecural applications, the construction of smooth Chebyshev nets is of great interest. In this context, we remarked that the conical singularities can be easily smoothened, up to an introduction of small holes on the surface. Therefore, we conjecture the following extension of Theorem 5.1 proved in Chapter 5:

Conjecture 7.1 (Smoothing of Chebyshev nets with singularities). Let M be a smooth, complete, and simply connected surface satisfying

Then, there exists N sing ∈ N such that, for all ε > 0, there exist non-intersecting open balls ¶O ε 1 , ..., O ε N sing ♦ of radius lower than ε and a Chebyshev GC atlas on M ¶O ε 1 , ..., O ε N sing ♦. Our preliminary work on this conjecture indicates that it holds, but the proof is still open. Moreover, in the case where the Chebyshev net has no singularity point, a similar smoothing argument can be applied to the construction introduced in [START_REF] Burago | Remarks on Chebyshev coordinates[END_REF] to prove the following conjecture: Conjecture 7.2 (Global smooth parametrization of surfaces). Let M be a smooth, complete, and simply connected surface satisfying

Then, there exist global smooth Chebyshev coordinates on M .