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Abstract

A machine learning method relies on a variety of information, such as examples,
inputs’ features and labels. These different types of information can be costly to ac-
quire (human resources, time, money...). We propose to focus on cost-sensitive meth-
ods for prediction. The goal of this thesis is to develop methods that predict under a
budget. The main contributions presented in this manuscript consider the features’
cost.
We begin with an overview of the different problems in budgeted learning, and a more
thorough study of related works on feature acquisition for cost-sensitive problems
at test-time. We also provide a brief review of active-learning and meta-learning
techniques, and a more technical report on recurrent neural architectures which are
a key component of most of our models.
Our first contribution presents a static feature acquisition method. The goal is to
find the best subset of features to acquire, for any input, in order to predict cor-
rectly. We focus on the user cold-start problem in recommender system applica-
tions. In this setting, the problem translates into finding the best questions to ask a
new user to provide the more relevant recommendations afterward. We propose to
use a representation-learning approach, where a user is shifted in the latent space
depending on his answers. We learn the best-subset of questions to ask through a
set of continuous weights. The cost constraint is directly integrated into the loss of
our model. We demonstrate on classical recommender datasets the advantages of
our approach.
We continue by studying the more generic problem of adaptive feature acquisi-
tion, where we aim at designing systems that have a sequential acquisition process.
This allows the model to adapt its acquisition behavior depending on the values of
the features acquired before. Thus, it should provide a better trade-off between ac-
quisition cost and prediction quality. We present a framework that relies on a latent
representation space. The key idea is that the system sequentially builds a represen-
tation of the input, by aggregating the acquired features. This representation guides
the acquisition process. As before, the cost constraint is integrated explicitly in the
loss. We propose a continuous relaxation that allows us to use fast gradient descent
algorithms for learning. We illustrate on datasets of various sizes the efficiency of
this model.
We propose in a second time to remove the continuous relaxation. We define an up-
per bound of the loss we defined originally for the problem. We present a stochastic
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instantiation of this framework for this loss, using policy-gradient inspired tech-
niques to learn in such setting. Comparison of experimental results with the contin-
uous model shows that the stochastic method gives competitive results but requires
more training iterations due to the Monte-Carlo sampling.
The last part of this thesis studies the labels’ costs. We present preliminary works on
meta active learning. Active-learning aims at designing strategies to choose which
examples is best to label during training. We propose a meta-learning approach to
the problem, inspired by recent works in one-shot learning. In this setting, the goal
is to design systems that learn to actively learn, on several tasks. We define a model
that considers all examples of a dataset before predicting which example should be
labeled. Results on artificial and real datasets show encouraging performance and
open several leads for further research.
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Chapter 1

Introduction

1.1 Classical supervised machine learning

Machine learning techniques are now recognized as reliable and efficient methods
to tackle a large spectrum of tasks. They have proven their ability to solve problems
in various domains, from visual computing (image classification, captioning and
labeling, object recognition) to natural language processing (e.g translation). They
have also been successfully applied on research fields unrelated to machine learning
at first sight, such as medical care, biological analysis or even asteroids detection
and classification.
A classical approach is to describe the generic supervised machine learning problem
as a loss-based approach. The goal is to learn a model M based on a dataset D. This
dataset is usually composed of a certain number of examples xi, taken as inputs by
the model, and their corresponding supervision yi. This supervision can be labels of
categories (classification) or real numbers (regression). The purpose of the model is,
given xi, to predict yi as accurately as possible. Thus, training can usually be written
as finding the model M∗ that minimizes the loss of the model as follow, where ∆

computes the error between the model’s prediction and the expected output yi:

M∗ = arg min
M

∑
xi∈D

∆(yi,M(xi))

The various models in machine learning then differ on several aspects, such as the
use of parameters (e.g potentially non-parametric methods such as decision tree),
the learning strategies and algorithms (e.g various algorithms for gradient descent
in neural networks) or the architecture used (e.g neural networks).
However, the prediction performance is usually the only component of the learning
criterion, and it is also often the only aspect considered to evaluate a machine learn-
ing method. This illustrates how these approaches frequently rely on assumptions
about the "freeness" of the information used and its associated costs. For instance,
they often consider that all necessary data and resources come for free. The quan-
tity of information, the computation time or the memory used, are not considered
as impacting the quality of a model.



2 Chapter 1. Introduction

1.2 Budgeted learning

We can distinguish several aspects in the learning and inference processes of a ma-
chine learning model that may be costly for different reasons. First, the examples
are crucial for machine learning approaches. They are supposedly representative of
the current problem, and they guide the model to find some underlying principles
(e.g statistics) which help to solve the task. They are therefore necessary to learn
correctly. Some methods, especially (deep) neural networks, require a lot of exam-
ples to be trained and to obtain good performances. This prevents the use of these
methods on several tasks where examples are costly. Typically, medical tasks such as
"brain-reading" from fMRI, or genetic mutation detection on genome sequences, can
have costly examples, in terms of money (e.g extracting genome sequences), time
(e.g finding voluntary patients to conduct the experiments), or unquantifiable cost
(e.g invasiveness of the experiment for a patient). Similarly, not only each example
may have a cost, but its associated label can also be expensive. Indeed, supervision
may be done through human and manual labeling, which induce time and money
costs.
Furthermore, when we consider the examples, we can notice that they are also com-
posed of bits of information, the features, which can likewise have a cost. For in-
stance, we mentioned above the problem of medical diagnosis. For a patient, each
result of a medical test is a "feature". This highlights the need for constraining a
number of features a system needs to predict on an input at test-time. Indeed, med-
ical tests have a cost (time, money, or even risk, invasiveness, pain), and it is not
possible to take all possible tests on a patient. Obtaining features is not trivial in
various applications and can induce a cost associated to feature acquisition.
In parallel of these information required for learning and predicting, a model may
use other resources, such as time, electricity, computing memory or capacity. These
are often ignored, but they prove crucial in various domain, especially with the de-
velopment of more and more complex models in the field of deep learning.

All these aspects illustrate the need for budgeted learning methods, which inte-
grate these costs in their processes. The overall goal is to provide systems that can
interact with the data and resources, that develop some acquisition strategy in order
to perform well on a problem while keeping on a restricted budget, as illustrated
schematically in Figure 1.1.
We propose in this thesis to focus on two specific budgeted aspects, with two types
of costly information: features and labels. Our goal is to design systems that learn
how to adapt their decision process with regard to the cost of information.
Most contributions presented in this manuscript focuses on cost-sensitive feature
acquisition. We keep a "classical" machine learning prediction setting, however,
the goal is to have a system that "interacts" with the example to predict on dur-
ing inference, by acquiring the relevant features. We also provide in a second time
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FIGURE 1.1: Schematic illustration of the various costly components
a machine learning system interacts with: data information (e.g. ex-
amples, features), information coming from an oracle (e.g. labels),

computation resources (e.g. memory or CPU resources to learn).

a preliminary work for the problem of costly labels (usually referred to as active
learning). We choose to follow a novel meta-learning approach for this problem, to
learn how to select the best examples to label when faced with a new problem.

1.3 Thesis structure

1.3.1 Chapter 3 : Static Feature Selection

We study in Chapter 3 the problem of static feature selection. The goal is to find the
best subset of features (common to all inputs) that provides the better trade-off be-
tween cost and prediction quality. While being restrained by the non-adaptive abil-
ity, it can prove useful for some applications, such as recommender systems, more
specifically for the user cold-start problem. A new user enters a recommendation sys-
tem (e.g IMDb), and the system has no information about him or her. An efficient
way of providing rapidly relevant recommendations is to ask him a few questions
to learn more about his tastes. However, it has been shown that users don’t like
long interviews with several steps. This leads to the need of a "single shot" inter-
view process with few questions. This translates easily within this framework in a
static feature selection problem, where a feature is an answer to a question, typically
the rating a user gives to an item.
We propose a model that learns conjointly the best subset of features and a predic-
tion model. Previous approaches usually focus on designing the features’ subset
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only. This difference allows us to have a robust model, which is efficient for cold-
start but can also be used in the classical "warm" recommendation setting.We rely
on a representation learning approach, and the framework can be instantiated as
a fully differentiable model. Thus, we can learn our approach with efficient and
scalable methods based on gradient descent.
Our work on static feature selection for recommendation and the user cold-start
problem has led to a publication in an international conference in the poster track:

• Contardo Gabriella, Denoyer Ludovic and Artieres Thierry, (2015a) "Repre-
sentation Learning for cold-start recommendation", In International Conference
in Learning Representation (poster) ICLR 2015.

1.3.2 Chapters 4 and 5 : Adaptive Feature acquisition

While appropriate for the specific problem of cold-start in recommender systems, a
static selection process suffers from a hard constraint to provide good performance.
Indeed, the subset is the same for all the possible inputs. It doesn’t have the ability to
refine its perception, as it can not choose one specific feature for an input instead of
another. This highlights the need for adaptive methods, where feature acquisition
is done sequentially, to provide a better trade-off between cost and performance.
We present in Chapters 4 and 5 two models for this problem. They are also based
on representation learning, and can be instantiated as recurrent neural networks
(RNN) architectures. The RNN sequentially interacts with the input, by acquiring
features at each step of the process, and predicts an output at the final step. Here
again, we learn the acquisition process along with the prediction process. Both of
our models allow batch acquisition of features, i.e the system can ask for several
features at a given time step, which is novel compared to state of the art techniques
in this regard. Both models can also consider non-uniform costs.
Our work on adaptive feature acquisition has led to two international conference
proceedings:

• Contardo Gabriella, Denoyer Ludovic and Artieres Thierry, (2016a) "Recurrent
neural networks for adaptive feature acquisition", In International Conference
on Neural Information Processing, pages 591–599, Springer, Best student paper
award.

• Contardo Gabriella, Denoyer Ludovic and Artieres Thierry, (2016b) "Sequen-
tial Cost-Sensitive Feature Acquisition", In International Symposium on Intelli-
gent Data Analysis, pages 284–294, Springer.
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1.3.3 Chapter 6 : Meta Active Learning

Finally, Chapter 6 focuses on the active learning problem, where the goal is to con-
strain the number of labels used for learning. More precisely, we provide an in-
troductory work for a meta-learning approach on this problem. We propose first
to define the several fields related to the problem. We then define our learning-
setting. It is inspired by one-shot meta-learning techniques that have been recently
proposed. The key idea is that the model is trained, at each learning step, on a
complete classification problem. However, unlike previous one-shot methods, the
system can observe all the examples of the current problem, close to a pool-based
scenario in active learning. We design a model for this framework that relies on
specific recurrent architecture that allows the network to consider all the elements
of the current "data-point" (i.e the dataset of the current problem) to predict which
examples to label. We suggest that this additional, while unsupervised information,
may help the system to obtain better results. We show preliminary results to illus-
trate the relevance of our approach. We also provide insights to design a hybrid
model, which takes labeling decision sequentially.
This work is still in progress and has not been published in a conference yet.

1.3.4 Other contributions

This thesis has also lead to other contributions that are not presented in this manuscript.
We first worked on representation-learning for reinforcement learning on partially
observable environments. The key idea was to propose a dynamical representa-
tion model, which aims at learning the underlying "physics" of the environment.
More precisely, the representations are built in a "transductive" fashion: they are
not solely predicted by a function but are optimized at each step to integrate new
observations. The dynamical model is learned in an unsupervised fashion, and is
then used for policy learning through the representations. One interesting aspect of
the model is that it results in a model that can be "blind": it can still take decisions
(based on the representations and the dynamical model of the environment) even
if it receives no observation. This is tied with the budgeted learning topic of this
thesis, however, in this model there is no control to acquire information or not. This
work was then enhanced and extended to time-series completion and prediction. It
led to the following publications:

• Gabriella Contardo, Ludovic Denoyer, Thierry Artieres, Patrick Gallinari (2014)
"Learning States Representations in POMDP", In International Conference on
Learning Representations (poster) ICLR 2014 .
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• Ali Ziat, Gabriella Contardo, Nicolas Baskiotis and Ludovic Denoyer, (2015b)
"Car-Traffic Forecasting: A Representation Learning Approach,"" In Proceed-
ings of the 2nd International Workshop on Mining Urban Data, co-located with 32nd
International Conference on Machine Learning (ICML),pages 85–87.

• Ali Ziat, Gabriella Contardo, Nicolas Baskiotis, Ludovic Denoyer (2016c) "Learn-
ing Embeddings for Completion and Prediction of Relationnal Multivariate
Time-Series", In European Symposium on Artificial Neural Networks, Computa-
tional Intelligence and Machine Learning - ESANN
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Chapter 2

Supervised learning under budget
constraints: Background

Abstract: We provide an overview of the different techniques and domains
this thesis is linked to. The first part of this chapter focuses on the problem
of budgeted learning. We detail the different aspects the budget can take, be
it during learning or inference, or at different levels of information (features,
examples, labels). We then focus our review on the two aspects we propose
to study in this thesis : (i) integrating the budget of features acquisition in the
learning process to limit the inference cost (cost-sensitive inference), (ii) the cost
of acquiring labeled examples when learning a new task (cost-sensitive active
(meta) learning). Since several models presented in this manuscript are based
on recurrent neural networks (RNN) architectures, which have proven over the
years their efficiency, especially for sequential tasks, the last part of the chapter
provides a description of various RNN models.

2.1 Budgeted Learning

The classical setting to tackle a learning problem considers only the prediction per-
formance as an optimization criterion, be it in classification or regression. The gen-
eral assumption is that all data comes at no cost: we can access all the examples
labeled during training, and all inputs’ features. However, this is a strong assump-
tion. Indeed, data needed to learn a machine learning system have a cost. For
example, labeling a big dataset of pictures requires human resources. Obtaining ex-
amples or specific features can also be costly, for instance if they require extensive
computation. This observation has lead to a research domain that can be broadly
named budgeted learning. It aims at taking these types of information costs into the
development of learning systems.
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2.1.1 An overview of the different types of cost

We now define the various types of costs in a machine learning system. We choose
to divide the approaches along two axes: the nature of the costly information con-
sidered, and the time when the constraint is considered (i.e training or inference).

Nature of information We discern three "levels" of information in a learning sys-
tem, each of them being potentially "costly": (i) the examples, for instance in some
medical application e.g. genomic sequencing, where obtaining one sample is very
expensive. (ii) The features describing these examples, e.g still in medical appli-
cations, some test might be more expensive (e.g fMRI vs blood sampling) or risky
for a patient. (iii) The labels associated with each example, which often come from
human knowledge, thus require time and money resources.

Period of constraint We differentiate between methods aiming at learning under
a budget constraint vs methods aiming at inferring under a budget. The first ap-
proaches will rely on specific learning strategies to optimize a trade-off between the
information used and the performance. This happens for instance in the active learn-
ing case, when labeling examples is costly. Designing algorithms that choose specif-
ically which examples to label while achieving good performance allow to reduce
the overall cost of the system. In the second case, the cost constraint is considered
at test-time, where the information used for prediction during inference is "bud-
geted". The system will have no budget limit at train-time, but it still may have to
consider the cost constraint during learning. For example, one can design a specific
heuristic for the considered cost and force the model to learn under certain "rules".
Differently, the cost could be integrated into the decision process, as an additional
element of the optimized criterion.

Note that the nature of cost can also be considered as a third relevant aspect, de-
pending if the cost is specific for each element of information (see Section 2.1.2
where each feature has a specific cost, or if examples from a particular class are
harder to obtain), or is uniform (e.g classical active learning where all labels have
the same cost).

Taxonomy of budgeted learning methods

We now provide a brief taxonomy of the different methods which cover these two
axes. A summary of these settings is illustrated in Figure 2.1.
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FIGURE 2.1: Graphical representation of the "budgeted learning" tax-
onomy.

Integration of budget constraint during training

Active Learning This field of research focuses on algorithms that select the in-
stances to label during the learning phase. Different settings exist, where the in-
stances are presented in a pool (one fixed set of examples, all available at the begin-
ning of the process) or in a stream (one or several examples at a time in a sequential
fashion), where the selection is made in a single step (static) or iteratively, one ele-
ment at a time or by batch. Generally speaking, the system is thus composed of two
main parts: a learner (updated with the selected labeled examples) and a "selector"
that selects which example to label (through an oracle). A survey of active learning
techniques is presented in [Settles, 2010]. We provide more details for this setting in
Section 2.2.1.

Active Class Selection In this setting, the learning system can ask for an instance
of a specific class. Several strategies are defined in [Lomasky et al., 2007; Wu and
Parsons, 2011; Wu, Lance, and Parsons, 2013], based for example on the original
distribution of the categories or the examples, accuracy improvement, current accu-
racy (e.g ask for class with low accuracy), or more refined strategy such as "redis-
tricing" which aims at targeting "unstable" classes and volatile boundary. Note that
these methods consider that there is no constraint on the generation of instances
for any class, which may make them inapplicable on problems such as fraud detec-
tion. Moreover, they don’t necessarily integrate "budget" constraint explicitly (e.g
the number of examples used). Their main goal is to optimize and improve the
learning by influencing the distribution of the training dataset.

Active Feature Acquisition (AFA) This setting considers the case where, during
learning, some features are missing. These features can be acquired at some cost
(uniform or not). The goal is thus to design a learner that conjointly learn to acquire
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additional useful information for its prediction and learn to predict. The proposed
methods rely for example on expectation of improvement (expected utility) as in
[Melville et al., 2005] or information-theoretic criteria (e.g mutual information) in
[Krishnapuram et al., 2005].

Active Information Acquisition (AIA) AIA methods consider both features and
labels as information that may be acquired during training, thus leading to the de-
sign of systems able to acquire potentially both of them. The previously mentioned
paper [Krishnapuram et al., 2005] integrates such specificity. Provost, Melville, and
Saar-Tsechansky, 2007 also study the different types of "data acquisition" problems,
in the specific case of an e-commerce application, and propose an algorithm based
on a utility function designed for the "multi-type information" (labels and features)
case. In [Raghavan, Madani, and Jones, 2006], the author also present a method for
active learning interleaved with feature acquisition, where feature acquisition and
label acquisition are done in tandem.

Integration of the budget constraint during inference:

Feature Selection / Feature Acquisition This setting considers the case where,
during inference, the inputs have missing features, and most of the time, no given
feature beforehand. The system can ask for the features at some cost (uniform or
not) to an oracle. However, during training, the features’ examples are often consid-
ered to be fully available. The goal is to learn a model able to acquire some features
for the smaller possible cost and predict conjointly. We provide further details in
the next section. Note that this setting can also be referred to as active classification
(e.g in the taxonomy presented in [Settles, 2010]).

We choose in this thesis to focus on two types of costly information: features, and la-
bels. More precisely, we propose to tackle the budgeted learning problem by learn-
ing acquisition strategies for this specific information. We provide in the next sec-
tion a more detailed overview of the methods proposed for feature acquisition. We
present the more particular case of meta active learning (i.e learning to acquire the
right labels) in Section 2.2.

2.1.2 Cost-sensitive inference : feature selection and acquisition

This Section presents an overview of the models proposed to limit the cost of fea-
tures used at test-time (i.e inference), as it is one of the two problems tackled in this
thesis, notably in Chapter 3, 4 and 5. This problem can first be divided into two
settings: uniform costs vs non-uniform costs of features. The first setting implies
that each feature costs the same "price". The goal resumes to reduce the number
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of features necessary to provide an accurate prediction. The second setting aims at
integrating different costs between the features (e.g a medical test like blood sam-
pling is cheaper than conducting an fMRI). Obviously, methods able to handle non-
uniform costs can be straightforwardly used on tasks with uniform costs, making
these methods more generic.

We also distinguish in the following two families of approaches: static methods
(often referred to the problem of feature selection) vs adaptive models (feature acquisi-
tion).

Static methods : feature selection

A static feature selection method mainly means that the subset of features chosen
for prediction is the same for all inputs, and is therefore set once and for all at the
end of learning. Acquiring the features is done in a single step, and prediction is
made right afterward. The problem thus becomes to find the optimal subset of fea-
tures such that it maximizes the prediction quality (w.r.t budget).
Several types of static approaches exist, we refer to [Guyon and Elisseeff, 2003]
for a more detailed survey on variable selection and we provide here only a brief
overview of the different families of methods.

Filter models (following the classification of Kohavi and John, 1997): these meth-
ods are designed as a pre-processing step, and are independent of the choice of the
predictor. For example, variable ranking (Duda, Hart, and Stork, 2001) is a filter
method, which was often used as a baseline in several papers on variable selection.
The principle is to compute a score for all the variables so that the highest score
denotes the most valuable feature. If ones consider a ranking criterion defined for
individual variables (i.e not considering subset or combination), it can be a compu-
tationally efficient method as it only requires to compute a score for each feature.
It may be optimal w.r.t a given predictor in some very specific case. For instance,
if the covariance matrix of the problem is diagonal, then using Fisher’s criterion
is optimal for Fisher’s linear discriminant classifier (Duda, Hart, and Stork, 2001).
Various criterion exist, such as correlation, single variable classifiers (ranking w.r.t
the ability of prediction of classifiers built with a single feature), or information the-
oretic ranking ( Bekkerman et al., 2003; Dhillon, Mallela, and Kumar, 2003; Forman,
2003; Torkkola, 2003). Other filter methods have been proposed, such as the Re-
lief algorithm which is close to ranking as it aims at assigning a relevance weight
to each feature w.r.t the "target concept", or the FOCUS algorithm (Almuallim and
Dietterich, 1991), which finds the minimal subset that agrees on the features for all
examples, by examining all possible subsets.
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Wrappers approaches: These methods use a predictor learned on the complete
inputs (i.e all the features) as a black box. In such case, the algorithm has to search
for a good subset using the black box as an evaluation of the quality of the subset.
The problem thus becomes how to search the space of possible subsets of features.
Different strategies have been proposed, which are reviewed in [Kohavi and John,
1997], where the authors compare greedy search vs best-first algorithm. Branch-
and-bound, simulated annealing and genetic algorithms have also been studied.

Embedded methods: Instead of considering the prediction algorithm as a pre-
learned black box, these approaches integrate the reduction of the feature space
in the learning of the prediction process, instead of "wrapping" around an induc-
tive algorithm and trying to estimate the relevance of a selected subset of features,
which can be computationally expensive when the number of features grows. This
was already done for instance in [Breiman et al., 1984], where the CART algorithm
for decision tree has a built-in mechanism to perform variable selection 1. In [Bi
et al., 2003], the authors use sparse linear SVMs with l1 norm to identify the fea-
tures to select, and a final non-linear SVM for prediction. They rely on the fact that
both models employ the same loss function and are therefore tightly coupled. It can
be related to the LASSO (least absolute shrinkage and selection operator) method
(Tibshirani, 1996; Tibshirani, 1994) but designed for SVM regression. Directly in-
corporating a term favoring feature selection in the objective function have been
proposed, mainly for SVMs. In [Weston et al., 2000], a selection parameter vector
is integrated into the decision function and is optimized using gradient descent on
the continuous relaxation of this parameter vector, instead of using more classical
methods of search like forward or backward selection (greedy search). In [Weston
et al., 2003], the authors propose a novel method to minimize the zero norm for lin-
ear models and kernel methods. Different formulations are given depending on the
task/model at hand (e.g two-class linear models, non-linearly separable problem,
multi-class linear models, kernel methods) and for the feature selection problem. A
method to handle the selection of block of features has been proposed in [Yuan and
Lin, 2005], where instead of considering the features as individuals, the authors can
integrate subsets (block) of features in the selection process. However, the blocks
have to be known and/or defined beforehand. It can be useful to integrate a priori
knowledge on the data, but it is not clear if it is efficient when there is no partic-
ular assumption on the possible relevant blocks of features. Neural networks ar-
chitectures have not really been studied, except in [Verikas and Bacauskiene, 2002],
where the authors propose to train a neural network with a constraint on the out-
put’s derivatives. The features are selected based on the change in cross-validation
error when removing the feature in the input. Note that these approaches generally
don’t handle specific costs per feature.

1Methods using decision trees for feature acquisition are detailed later in this section.
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Adaptive methods: feature acquisition

One of the main limits of static methods are that they can not adapt depending on
the current inputs, the selected subset of features will always be the same for all
inputs. Having an adaptive process to choose which features to use would allow
for more robust and complex decisions, as well as reducing the overall cost. Indeed,
an "easy" example would only require a few features to be classified for example,
while a more "difficult" one could benefit from more information (spending more
budget on it) to ensure a correct prediction. Such methods have been proposed in
the literature, integrating more often the variability of the cost features. We detailed
some of them below. We propose to distinguish four "families" of approaches: those
relying on the estimation of the information value, methods relying on cascade and
decision trees, reinforcement-learning oriented approaches and attentions models.

Estimation of the information value: Some methods proposed to tackle the fea-
ture selection problem by estimating the information gain of the features in order
to acquire the more informative ones. It can be seen as the sequential extension
of ranking feature selection, where the ranking criterion is a particular function of
information value, which can be sometimes "weighted" by the cost of feature’s ac-
quisition. For example, a specific data structure (VOILA) is proposed in [Bilgic and
Getoor, 2007], which estimates the information values of subsets of features (a com-
binatorial problem) by exploiting the dependency between the features, resulting
in a graph where each node is a subset (of varying size) of features. However, this
method relies on the very strong assumption that one already knows the relation-
ships between the features.
In [Chai et al., 2004], the authors present a strategy to integrate sequential acqui-
sition of features to learn a test-cost sensitive naive Bayes classifier. When a new
example arrives, the system computes the utility of asking for a feature as a mix-
ture between the cost of the feature and the gain between expected misclassification
with and without this new feature. They also propose a strategy for a static acqui-
sition, namely taking the decision sequentially but "blindly", i.e without knowing
the value of the feature asked for. These strategies are greedy and can become com-
putationally expensive if the number of features is high. It is also not clear how the
difference between expected misclassification with and without the feature com-
pares with the features’ costs, even if the costs are rescaled.
In [Weiss and Taskar, 2013], the authors propose to estimate a value-function of
the information gain with reinforcement learning to guide the acquisition strategy.
They first learn a predictor a priori on subsets of features. Note that they make
some assumptions on the nature of the inputs which guide the choice of the differ-
ent features combinations used for the sparse inputs. Then they use reinforcement
learning to learn an acquisition process, based on the extraction of meta-features
which guide the policy. The acquisition is stopped when the budget is met.
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Another example of such approach is [Gao and Koller, 2011]. In this setting, a set
of weak classifiers is learned, and an information gain is computed for each one of
them depending on the currently observed information. However, in this setting, it
is not the raw features that are acquired and constrained but the number of weak
classifiers used.
These approaches are sequential and cost-sensitive, but do not allow acquisition per
block without some assumptions or knowledge on the inputs, and will be limited
when applied to larger datasets due to their greedy and/or combinatorial nature.

Cascades and Tree-based models: Decision trees are often used in feature acqui-
sition models, as they will naturally reduce the number of features selected. In [Xu,
Weinberger, and Chapelle, 2012; Xu et al., 2014b], several weak decision trees are
learned with a constraint on the features used globally, and an additional constraint
is used on which weak learners to use. Nan, Wang, and Saligrama, 2015 propose a
new algorithm for random forest that integrates feature costs by using greedy min-
imax cost-weighted impurity splits to grow the trees.
In parallel, an important part of the literature relies on learning cascade of classi-
fiers. One of the first approaches that proposed a cascade architecture was [Viola
and Jones, 2001], where acquisition was made on high-level features of images for
visual object detection. In their setting, the cascade structure allows to reject some
features (sub-windows in the image) and do expensive processing only on the most
useful patches of pixels. Other methods relying on weak classifiers cascade were
presented afterward, as in [Trapeznikov, Saligrama, and Castañón, 2013], where the
use of the cascade structure is slightly different. It is used so that each stage can
either classify early (from the few features acquired up to now) or go further in the
acquisition process.
In [Raykar, Krishnapuram, and Yu, 2010], groups of features are pre-assigned at
each stage of the cascade, while in [Chen et al., 2012] the set of features are learned
globally using additive regression method to re-weight and re-order the set of clas-
sifiers in a chain of cascades. Recently, Xu et al., 2014a presented a method to learn
a tree of classifiers that allows an individual path for each input and an extension to
cascade architecture.
The main limitation of cascade and decision trees based models lies in dealing with
datasets with a high number of features, especially if one wants to cover a broader
range of costs. However, the cascade architecture often induces the possibility of
early-stopping, which is an interesting aspect.

Reinforcement learning (RL) based approaches: The problem of feature acquisi-
tion can be seen as a sequential decision process, and it has been studied under the
Markov Decision Process (MDP) and RL framework. One of the first proposition
in this regard was from Ji and Carin, 2007, who propose to solve the cost-sensitive
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classification problem with a partially observable MDP alongside a myopic algo-
rithm. Benbouzid, Busa-Fekete, and Kégl, 2012 proposed to design a controller that
chooses between evaluating (a base classifier/a feature), skipping it or classifying
from what have been seen, by modeling it as a Markov Decision Directed Acyclic
Graph. Similarly, in [Trapeznikov and Saligrama, 2013], a sequential classifier using
MDP-framework is presented, which chooses at each step to classify or to get the
"next feature"2. Other reinforcement-learning approaches for sequential acquisition
have been proposed, such as in [Dulac-Arnold et al., 2012], where a vector of the ac-
quired features is built following a pre-defined heuristic and used to represent the
current state and thus learn/follow an acquisition policy. Learning acquisition poli-
cies has also been tackled through imitation learning in [He, Daumé III, and Eisner,
2012]. However, this method requires an oracle to guide learning which is often not
available in real-life tasks. Most of the reinforcement-learning based models suffer
from a high computational learning cost and cannot easily scale with larger datasets
when the number of features to choose from increases. It is also interesting to note
that they can usually only consider classification problems.

Visual Attention Models: Models based on (visual) attention have been recently
proposed for different image-related task, such as [Mnih, Heess, and Graves, 2014;
Dulac-Arnold et al., 2013] for classification, [Xu et al., 2015] for text generation based
on image, or for image generation [Gregor et al., 2015]. They are closely related to
sequential acquisition. The principle of visual attention was presented to tackle
tasks such as multiple object recognition [Ba, Mnih, and Kavukcuoglu, 2014], and
was motivated by the comparison with humans behaviours in this case : when con-
fronted with a new "scene", a human detects and distinguish the various object by
moving the fovea from one specific area to another. The authors’ goal was thus to
mimic this process, by feeding the input (context image) to a deep recurrent neural
network, which focuses at each step of the process on a particular location of the im-
age (glimpse), possibly provided with better resolution, e.g in [Sermanet, Frome, and
Real, 2014]. The internal state is updated w.r.t. the observed glimpse. This sequen-
tial process can be observed in Figure 2.2, which is the recurrent attention model
as presented in [Ba, Mnih, and Kavukcuoglu, 2014], where each l̂i is the predicted
location of the glimpse to acquire. The attention strategy usually relies on adapted
reinforcement learning techniques. Note that the literature has distinguish between
"soft attention" vs "hard attention". Soft attention is based on continuous weights on
all the input with more or less "attention" (higher weights) on some areas. This has
the advantage of keeping the model fully differentiable. Hard attention consists in
sampling a specific part of the considered object.
The key idea of attention has then been extended to other applications, notably nat-
ural language processing, e.g translation task (Bahdanau, Cho, and Bengio, 2014;

2Here the authors doesn’t focus on choosing which feature has to be acquired: it is based on the
indices of the features.
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FIGURE 2.2: Deep recurrent attention model as illustrated in Ba,
Mnih, and Kavukcuoglu, 2014. The system receives an image as in-
put, and at each step of the process predicts some "patch" to acquire.
This glimpse is then fed to the RNN which update its internal state

with this additional refined information.

Luong et al., 2014; Luong, Pham, and Manning, 2015). Attention is also used to in-
teract with the memory in memory networks, which we detail in Section 2.3.2.
The competitive performances of these methods motivate to design models that not
only receives raw inputs and process it, but "interact" (e.g acquire specific infor-
mation) with it. However, these models assume that there is a first observation of
the input, where the attention process only helps to improve the final prediction by
focusing on parts of the input. Moreover, they do not assume that there is a cost
associated with additional information. Thus, the setting and assumptions quite
differ from classical cost-sensitive feature acquisition.

Regarding these different methods, the methods presented in this thesis differ on
several points. We present, to the best of our knowledge, the first framework that
fully models the adaptive cost-sensitive acquisition problem with differentiable com-
ponents (Chapters 4 and 5), making it learnable with (scalable) gradient descent al-
gorithms. It is also one of the rare methods that allows batch selection of features, i.e
acquiring several features at a given step, without suffering from the combinatorial
problem when the number of features increases and without making assumptions
on the nature of the input and the batch to acquire. Relying on a latent representa-
tion space that is learned conjointly with the two tasks, with a RNN-like architec-
ture, seems also to be a novel aspect in the field.

2.2 Meta Active Learning

We mentioned above the problem of active learning, where the labels are costly. We
define now the meta active learning problem, where one aims at learning an active-
learning strategy. In this setting, during inference, the system is confronted with
new problems, and it has to acquire the more useful labels for prediction. Here,
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each data point is a complete prediction problem, with training and testing exam-
ples, and possibly labels or some oracle that provides labels, which has a cost. This
setting is inspired by one-shot learning methods (e.g in [Santoro et al., 2016]). To
the best of our knowledge, only one recent paper focuses on this problem (Wood-
ward and Finn, 2017).
Note that transfer active learning has also been studied (Wang, Huang, and Schnei-
der, 2014; Zhao et al., 2013; Yan et al., 2012). However, this field studies how active
learning techniques can help transfer learning. In this case, the system has a cheap,
often with a lot of examples, source dataset, and an expensive, smaller, target dataset.
The goal is to use efficiently the source dataset to solve the target problem. Thus, ac-
tive learning methods can help to better select a few labels on the target domain.

We present in this section an overview of the different axes of research that are
closely related to meta active learning. First, we provide more details on the clas-
sical active learning setting, with various methods proposed in the field. We then
present a brief survey of meta learning key ideas and different approaches. At last,
we focus on the problem of one-shot learning, which has known recently a surge
of interest and has motivated us to propose a meta-learning protocol for the ac-
tive learning problem. A detailed and formal definition of the meta active learning
protocol is provided in Chapter 6, where we propose different leads to tackle this
problem.

2.2.1 Active learning

Active-learning techniques aim at constraining the amount of labeled examples
used during training, by designing acquisition strategies that provide good final
prediction performance. We propose to distinguish in our review two families of
approaches in active learning, based on the nature of this acquisition process. We
separate static methods, where the acquisition is made in a single shot, with sequen-
tial methods, with several steps of acquisition.

Static active learning These methods select the subset of examples to label (typ-
ically from a pool of unlabeled instances) in a single step, without considering the
feedback of the oracle on the labels of each chosen example. In such setting, it
is therefore not possible to rely on an estimation of the oracle, and the proposed
methods will solely be based on what can be extracted from the dataset of unsu-
pervised examples (e.g distribution of data). For example, in [Gu et al., 2012], the
authors approach the problem as selective labeling, with a fixed budget, where they
consider the out-of-sample error for a Laplacian Regularized Least Squares as a
semi-supervised learner. Yu, Bi, and Tresp, 2006 present an approach for regression
based on transductive experimental design: they aim at selecting examples that are
hard to predict but also representative with regard to the test data (supposed to be
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given beforehand). Off-line single batch active learning has also been proposed for
specific graphs-based tasks, e.g in [Guillory and Bilmes, 2009], where the authors
aim at selecting sets of vertices to label.

Sequential active learning In this setting, the models can send some instances to
label to the oracle and observe the answer(s) of the oracle before asking maybe for
more labels. We distinguish the case where there is a finite, observable, pool of in-
stances vs the "stream" setting, where the data arrives through time, one example
after the other. In [Tong and Koller, 2001], the authors proposed to tackle the pool
based sequential single-instance-mode active learning problem with SVM, where
label selection is driven by the resulting reduction of the size of the version space.
Other "single-instance-mode" methods have been proposed, e.g in [Zhang and Oles,
2000] who demonstrate the utility of the Fisher information matrices for such prob-
lems. In [Collet and Pietquin, 2014], the authors present how to use a multi-armed
bandit setting for active learning in binary classification. Guo and Schuurmans,
2008 propose an approach for batch-mode active learning, where a subset of exam-
ples is selected at each step of labeling. The authors define the performance of a
model as high likelihood on the labeled examples and low uncertainty on the unla-
beled ones and propose an approximation for the NP-hard optimization problem.
Previously, Hoi et al., 2006 presented a method where the informativeness of a sub-
set of examples is computed w.r.t the Fisher information matrix, using a greedy
algorithm to overcome the combinatorial aspect of the problem. The same authors
propose in [Hoi et al., 2009] an approach relying on SVM, where they first learn a
kernel using labeled and unlabeled data 3, and then use this kernel for batch active
learning.
In the case of stream of instances, the sequentiality is obviously required, as a deci-
sion has to be made at each step when a new example arrives. Freund et al., 1997
present a selective sampling approach based on a query by committee algorithm in
a bayesian model of concept learning.

2.2.2 Meta learning

While learning to predict is the main goal of machine learning, meta-learning is a
domain of research that focuses more on how to learn to learn. Here, the goal is not
only to correctly classify on a single task but to use this knowledge across different
tasks (with or without similar target domains). As we aim in part of this thesis at ex-
tending active learning to new unseen tasks (by learning the active label acquisition
process), this typically falls under the meta-learning paradigm. We present here a
brief overview and taxonomy of meta-learning and active-learning based partially
on the surveys of Vilalta and Drissi, 2002 and Pan and Yang, 2010.

3Note that generally it is assumed that some labeled data are given beforehand and that the pool
of unlabeled data on which to select is big
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In [Vilalta and Drissi, 2002], meta-learning is defined according to region of tasks
and learning algorithms. Each learning algorithm gives a specific performance on
each task, and some perform well on a subspace of tasks and bad on other. The
authors describe one goal of meta-learning as learning what causes a learning algo-
rithm L to dominate in some region tasks RL. From there, the target is to design
techniques that adapt or select the best learning strategy for the tasks. Usually, the
approaches distinguish two parts of a meta-learning system: a base-learner, which
outputs predictions on the current task, and the meta-learner, which aims at using
the knowledge of the previous problems to modify or guide the base-learner.
The survey distinguish different types of techniques for this problem. They first
give an overview of the methods focused on the meta-learning of base learners, for
example using stacked generalization (Wolpert, 1992). Another type of approaches is
the dynamic selection of bias. It is based on moving the region of expertise of the
system along the tasks, thus relying on some structures along the tasks. Utgoff, 1986
propose to do so by changing the representation of the feature space. In [Rendell,
Seshu, and Tcheng, 1987], the authors propose to use algorithm-selection, while in
[Rendell, Sheshu, and Tcheng, 1987] the meta-learner learns relationships between
the tasks characteristics (e.g number of features) and biases embedded in the learn-
ing algorithm. This is closer to meta-rules matching domains with algorithm per-
formance, where the idea is to define a set of domains related meta-features that
are linked to the performance of a learning algorithm as in [Aha, 1992]. In parallel,
methods based on inductive transfer (Pratt and Thrun, 1997) have been presented
to transfer the knowledge gathered from one task to another, in order to improve the
learning through time. Thrun and Pratt, 1998 illustrate how learning from multiple
tasks improve generalization while Pratt and Jennings, 1996 study how learning on
related tasks can benefit neural networks in the learning to learn scheme. Schmidhu-
ber, Zhao, and Wiering, 1996 propose a meta-reinforcement learning strategy, that
considers learning algorithms as possible actions of the RL system. Schmidhuber,
2004 also presents a hybrid approach, that mixes inductive transfer and dynamic
selection.

In parallel, different methods have been proposed to learn the optimization algo-
rithm (or the update rule). In [Schmidhuber, 1995] a reinforcement-learning system
is designed "self-improves". The system improves the way it learns but also im-
proves the way it improves the way it learns. More recently, Andrychowicz et al.,
2016 propose to follow the idea in [Hochreiter, Younger, and Conwell, 2001] that
use a RNN as a base-learner, with an approach that scale to larger neural networks
optimization problems. They propose to rewrite the classical update rule for differ-
entiable functions (θt+1 = θt − αt∇f(θt)) with a function that predicts the updating
value (here the αt∇f(θt)). This function is defined by its own parameters Ψ and
takes as input the gradient ∇(fθt). Thus, the updating function of the parameters
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FIGURE 2.3: Architecture of the meta-learning architecture proposed
by Andrychowicz et al., 2016, with a joint RNN. The upper part (op-
timizee) outputs at each steps t a prediction ft and associated gradi-
ent ∇t. This gradient is taken as input by the lower network, opti-
mizer, which then outputs gt, the predicted update of the optimizee

weights.

is rewritten as:
θt+1 = θt + gt(∇f(θt),Ψ)

They model the update rule g with a RNN, as illustrated in Figure 2.3 from their
work. They show that their network manages to learn some optimization strategy
that converges faster than classical gradient techniques and obtains better perfor-
mances4. Similarly, Li and Malik, 2016 present a reinforcement learning approach
to the problem, where they redefine the generic optimization algorithm as a policy
(sequence) of updates. Thus, an action is a step vector used to update the param-
eters, partially depending on the gradient. Munkhdalai and Yu, 2017 propose to
design an architecture that combines both "fast weights" (similar to Andrychowicz
et al.) and "slow weights" (more classical updates), and present several experiments
including one-shot learning tasks. , as it uses the gradients and loss of a network as
the input of another network (LSTM) to predict the new set of weights θt.

2.2.3 One-shot learning

We present in this section an overview of methods proposed for the problem of
one-shot learning, first described in [Yip and Sussman, 1997]. The goal is to design
algorithms capable of predicting correctly using very few examples for each class
(typically between one and five). It is inspired by the ability of humans, especially
young children, to learn rapidly new concepts and generalize from few examples
of a category (studied in cognitive science e.g in [Berko, 1958)]. Usually, the ap-
proaches assume that data of similar nature is available beforehand, which will
guide the learning, in an unsupervised or semi-supervised fashion. We describe
in the following section methods based on various methodologies, which can differ
in the assumption w.r.t. the available data and the protocol used during training.

4Note that the paper by [Ravi and Larochelle, 2017] mentioned in the next section on one-shot
learning also relies on this idea. It has been published on arxiv shortly after.
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FIGURE 2.4: Example of the one-shot "meta-learning" protocol, illus-
tration from Ravi and Larochelle, 2017. The Meta-train Dmeta−train
is the training set of the overall system : each line is a data-point,
composed of 5 training examples, one for each class (left of the doted
line), for example the categories are "bird, tank, dog, singer and pi-
ano" for the first problem. Left of the doted line are the testing ex-
amples of the problem. There are several problems in the meta-train
dataset. The meta-test dataset is built similarly, on categories unseen

in the meta-train.

Generative methods One type of approaches proposed for this problem relies on
learning a generative model to better understand and represent the data at hand, e.g
in [Rezende et al., 2016; Lake, Salakhutdinov, and Tenenbaum, 2013; Lake et al.,
2014]. For example, in [Lake et al., 2011], the authors learn a generative model of
the strokes composing a character, learned in an unsupervised fashion on various
alphabets5. Prediction is based on the computation of the probability that two char-
acters are explained by the same sequence of strokes.
The work of Edwards and Storkey, 2016 is also of interest while taking a different
approach on the problem. They propose to design a model able to learn repre-
sentations on a whole dataset, in an unsupervised fashion. The underlying idea is
that these representations should encapsulate some statistics linked to the observed
problem.

Bayesian framework In [Fe-Fei, 2003; Fei-Fei, Fergus, and Perona, 2006; Salakhut-
dinov, Tenenbaum, and Torralba, 2012], the authors use (variational) Bayesian frame-
work to integrate the information from the previously seen and learned class for
future prediction. The "prior knowledge" is expressed as a probability density func-
tion on the parameters of these models. The prior can then be updated w.r.t one (or
few) new observations for a new category. In these approaches, it is assumed that
one has access to categories with a lot of examples.

5The model is evaluated -in classification- on unseen alphabets.
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Representation learning based methods Fink, 2004 presents the first approach
for one-shot learning based on metric learning (Bellet, Habrard, and Sebban, 2013;
Kulis, 2013). He proposes to learn a representation function so that distance be-
tween instances of the same class is smaller than the distance between different
classes’ examples. He learns this metric on examples of similar nature but different
categories. The representations are then used with a nearest neighbours algorithm
to predict. In [Koch, 2015], the authors propose to design a Siamese (Convolutional)
Network that will learn to discriminate between pairs of examples (i.e decides if two
images are similar or different), for which there is a lot of supervised data. Then, this
network is used on new categories with few examples during inference, by simply
measuring the similarity between labeled instances and examples to classify, and
predicting the most similar class.

Learning to predict from few examples Inspired by Hochreiter, Younger, and
Conwell, 2001, several recent methods rely on a specific learning scheme which
mimics the final task at hand, in some "meta-learning" fashion. Instead of solely us-
ing instances of other categories to learn a representation model as before, they de-
fine a "training point" as a one-shot classification problem. This is illustrated in Fig-
ure 2.4. They then design specific models able to learn on such data. For example,
Santoro et al., 2016 propose to use the recent memory-augmented neural network, to
integrate and store the new examples. Similarly, Vinyals et al., 2016 propose to rely
on external memories for neural networks, bidirectional LSTM and attention LSTM.
One key aspect of their approach is their aim at representing an instance w.r.t. the
current memory (i.e observed labeled examples). Note that these approaches design
a "one-shot learning problem" (e.g training point/inference point) as a sequential
problem, where one instance arrives after the other. Additionally, the system can
receive some afterward feedback on the observed instances. For example in San-
toro et al., 2016, the system receives the true label of an instance at the next step of
the sequence.

Finally, one can also cite the work of [Bertinetto et al., 2016], where the authors
aim at achieving dynamic parameters predictions to tackle the one-shot learning
problem. They propose a method that learns the parameters of a deep model (gen-
erally not suited for one-shot task) in a single shot, by designing a "learnet", a deep
network which predicts the parameters of a "pupil" network used for prediction.

2.2.4 Meta Active Learning

The problem that we propose to approach in the Chapter 6 of this manuscript is at
the junction of active learning, meta-learning and one-shot learning. We observe
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that all the approach proposed for one-shot learning consider that the labeled ex-
amples are picked randomly. Moreover, they do not necessarily integrate the un-
supervised information of the future examples to classify. This leads us to the idea
that integrating active learning properties in such system should improve the final
performance. Moreover, it would present a novel way of tackling active learning,
as instead of designing strategies beforehand, the active policy could be learned on
training problems, in a similar fashion as presented before.
To the best of our knowledge, only one recent paper studies this problem. Wood-
ward and Finn, 2017 propose to use reinforcement learning in their system so that it
is able to decide which examples are "worth to label". They still consider each prob-
lem as a sequence of inputs. However, they transform slightly the original problem:
instead of having a first part of the sequence composed of labeled examples, and
then of unlabeled instances on which to predict, they consider all elements of the
sequence similarly. For each input, the system can either classify or ask for a label
(thus falling in the sequential active learning scheme). They do so by extending the
model of Santoro et al., 2016, but where the true label of the previous instance is
withheld unless the system asks for it. The system gets a high reward for accurate
prediction and is penalized when acquiring label or giving false prediction6. They
design the action-value function to learn as a LSTM.
The main limitation we observe in this method is that it suffers from the same draw-
backs as one-shot methods, mainly as it does not consider the whole dataset at hand.
This is one major aspect that we aim at studying in the last part of this thesis.

2.3 Recurrent Neural Networks Architectures

Several methods that are presented in this manuscript share a common idea with
the (visual) attention models presented in Section 2.1.2 : the key idea is to design
systems that acquire information on an input (a data-point) sequentially, in several
steps. We chose to use recurrent architectures as well to build such systems in Chap-
ters4, 5 and 6. We present in this section a description of various recurrent neural
networks architectures designed for particular problems and inputs.
Neural networks systems for machine learning have known several evolutions since
the perceptron in the late 50’s (Rosenblatt, 1958). Notably, the integration of non-
linear functions, the multiplication of layers and the development of the back-propagation
algorithm (Werbos, 1974; Rumelhart, Hinton, and Williams, 1985), have helped
to obtain better and better results with these systems. The design of particular
functions for image processing (e.g convolutional layers [Fukushima and Miyake,
1982; LeCun et al., 1998]) and more recently the general growth of deep learning
(Salakhutdinov, Mnih, and Hinton, 2007) have known in the last decade a pick of

6At each step the model can either classify or ask for a label but not both.
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popularization, notably due to the good performance achieved on various challeng-
ing tasks from image classification, object recognition, to game playing and natural
language processing.

Recurrent neural network (RNN) is a specific type of neural networks, commonly
used to handle sequential inputs or sequential problem such as speech recognition
(Sak, Senior, and Beaufays, 2014), handwriting recognition (Graves et al., 2009), or
language translation (Sutskever, Vinyals, and Le, 2014). The main particularity of
RNN is that they contain cyclic connections, based on recurrent weights (dupli-
cated weights, see Figure 2.5a). This allows these architectures to build an internal
state with memory ability, through a feedback loop. These systems are intrinsically
dynamical, and their flexibility allows a variety of application setting. We present
in this thesis several models that rely on these type of architectures to design se-
quential, adaptive and interactive systems for our budgeted tasks. This section thus
proposes a non-exhaustive technical review on recurrent neural networks. We first
define the various settings RNN can be adapted to. We then provide details on the
more specific architectures Long-Short Term Memory (LSTM), memory network,
bi-directional RNN, and attention RNN.

2.3.1 Overview of the various settings

As we mentioned, a recurrent network is based on cyclic connections on their inter-
nal state. The very basic architecture can be illustrated as in the Figure 2.5a, where
an input x is integrated to the current hidden state s with weights U . This state is
"updated" sequentially w.r.t. its previous value with an update function of weights
W . Prediction is made based on the current state through function of weights V . If
both x and y are non-sequential, this resume to a vanilla feed-forward network, as
the "feedback loop" W is not used. Generally speaking, we can thus compute the
update state st at step t as follow:

st = gK(fW ((st−1), fU (xt))

And the expected output yt as:
yt = fV (st)

However, the flexibility of the RNN allows various "shapes" for both inputs x and
outputs y, which we detail now.

Static input to sequential output This setting corresponds to the case where the
input is non-sequential, and the output sequential, for example image caption gen-
eration, where from an image one aims at predicting a sentence describing the pic-
ture. One corresponding architecture is illustrated in Figure 2.5b. In this case, the
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(A) Basic recurrent
architecture.

(B) Generic RNN architecture for
a single input and sequential

output.

(C) Generic RNN architecture for
sequential input and a single

output.

FIGURE 2.5: Schematic RNN architectures for different input/output
settings.

input x (e.g image) is fed to the RNN at each step of the process, and each yt corre-
sponds to a word, leading to a full sentence at the end of the process. Note that the
input can be fed only at the first step and that one can consider re-integrating the
predicted yt in the next hidden state st+1 (as in Figure 2.7b).

Sequential input to static input This setting corresponds to the case where the
input is sequential, and the output non-sequential. Sentiment prediction is one ap-
plication of such settings, as the goal is to predict for instance if a sentence is positive
or negative. As shown in Figure 2.5c, the state st is updated at each step of the pro-
cess w.r.t. the t-th element of the input sequence (e.g a word) and its previous state
st−1, however prediction is made only at the end of the input. Thus, supervision
is back-propagated through all states st from the last state sT (limitations related to
this -e.g vanishing gradient- are discussed later on this section).

Sequential input and sequential output This setting corresponds to the case where
both inputs are sequential. Here, we distinguish two cases: (i) both sequences have
the same length, for example video labeling at the frame level, where at each step
(one frame of the video), a label is expected. (ii) The sequences are of different cor-
responds to translation tasks, as translation doesn’t necessarily match one word to
another, but a whole sentence. Figure 2.6a shows an architecture for the first case,
where for each input xt, the internal state is updated and predicts an output yt.
Figure 2.7b illustrates the second case, where the input sequence has a size T , and
output sequence has a size T ′, and where Cho et al., 2014a propose two RNN as
an encoder and a decoder to tackle the translation problem. Both RNN are "linked"
through a common layer c.
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(A) Generic architecture of a RNN for
sequential inputs and outputs of same

length.

(B) Sequential inputs and sequential out-
puts of different size T and T ′, architecture
and illustration from [Cho et al., 2014a]. A
first RNN takes the original sequence (here
sentence) as input, which leads to an inter-
nal state c. This state is forwarded as in-
put to the "decoder" RNN that outputs a

sequence of size T ′.

FIGURE 2.6: Two possible RNN architectures for sequential inputs
and outputs.

2.3.2 Different specific RNN architectures

These various settings can thus be implemented in a "vanilla" fashion, with single
layer hidden state and non-linear function such as hyperbolic tangent, but more
complex layers can be integrated, such as convolutional ones. However, as it is,
RNN architectures suffer from one major drawback with the problem of vanishing
gradient. Indeed, for long sequences, and more particularly if the supervision is
not done at each step of the sequence, the back-propagated gradient will become
smaller and smaller going back through the time steps. As a consequence, the net-
works have a limited memory through time. We present in this section several types
of architectures that try to overcome these limitations, first with specific "gated"
cells, then with specific approaches that integrate an explicit memory in the net-
work. Afterward, we present two techniques that aim at overcoming the "myopic"
hard sequential aspect of RNN, as it considers inputs as ordered sequences and
usually can not integrate "future" knowledge as it is considered "unseen".

Long-Short Term Memory and Gated Recurrent Unit

Long-Short Term Memory (LSTM) 7 is an architecture for RNN that has been pro-
posed in [Hochreiter and Schmidhuber, 1997]. It has known in the recent years
various success on several tasks on sequential data, and various variations have

7LSTM can designate both the cell or the RNN composed of the cells
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been proposed (see [Greff et al., 2016] for an overview). The key idea that moti-
vated the LSTM design is to have one part of the cell which can keep its state over
time (memory cell), and one part that update/forget depending on the incoming
information (gating unit). Figure 2.7a illustrates this specific cell. It contains three
(or four) gates which control how the information "flows" in or out of the memory.
The "forget" gate typically allows to "start afresh", by forgetting the previously seen
inputs. The "input" gate allows integrating more or less information depending on
what is observed. The Gated Recurrent Unit (Cho et al., 2014a; Cho et al., 2014b)
is close to LSTM, as it also relies on gates that enable "forgetting", and on additive
functions for the internal state. The use of additive function implies that the internal
state is not "squashed" at each step and thus allows the gradient to flow through the
steps when back-propagating. This, therefore, prevents from the vanishing gradient
problem mentioned earlier.

(A) LSTM cells as illustrated in Greff et
al., 2016. The input is forwarded to three
"gates", and the internal state c. The
⊗ can be considered hadamard product.
The input gate, considering ct−1 and xt,
"weights" how much of the input informa-
tion will influence the hidden state ct. The
forget gate, also taking ct−1 into account,
outputs a vector of the size of c which con-
trols the "resetting" the hidden state. The
output gate controls how much the inter-
nal state weights on the final prediction.
Each gate acts as a "mask", respectively on
the input (input gate) and the hidden state

(forget and output gate).

(B) Gated Recurrent Unit illustration from
Cho et al., 2014b; Cho et al., 2014a. Simi-
larly to LSTM, there is here two gates. A
reset gate r, controlled by the current input
and the previous hidden state h. An up-
date gate z, controlled by the input and the
hidden state h. The actual update is done
through a weighting between ht−1 and h̃t.

FIGURE 2.7: Diagrams of two "gated" cells for RNN: LSTM and
Gated Recurrent Unit.

Memory Networks

Several extensions of RNN have been proposed to integrate an explicit memory. It
is based on the similar idea driving the LSTM, which is to provide a way to remem-
ber or forget what has been seen in the sequence. However, in the case of LSTM,
the "memory" is contained and represented in the hidden state of the cell, thus it is
not explicit and can lack power, as it’s a "small" memory. As mentioned in [Weston,
Chopra, and Bordes, 2014], these networks, unfortunately, don’t benefit from one
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of the major aspects of a modern day computer: the memory. The authors propose
to this hand a class of models that integrates a memory component which can be
read and written to. They define four additional components: (i) an input feature
map which transform the raw input into latent feature representation, (ii) a "gen-
eralization" component, which updates the memory w.r.t. the current input, (iii)
the "output feature map" which outputs a representation vector given the input and
current memory, (iv) a module that transforms the output representation vector into
the expected format. The authors present a specific implementation of this frame-
work and experiments on textual and language tasks. Very close to this model, and
published on arxiv shortly before this one, [Graves, Wayne, and Danihelka, 2014]
presents Neural Turing Machine, a fully differentiable architecture that integrates a
similar process of reading and writing in a "memory bank" (illustrated in Figure 2.8).
They motivate their work on both psychology, neuroscience and cognitive science
and the concept of "working memory" (Miller, 1956). Writing and reading is done
through a set of (normalized) weights, which controls the degree of importance (to
read or write into) of each part of the memory (thus giving "blurry" read and write
operations, as mentioned by the authors, in order to keep the architecture differen-
tiable and thus trainable with gradient descent). The authors distinguish two types
of addressing mechanisms (which can be considered as "attention" mechanisms,
as the read or write heads "focus" on some part of the memory): (i) content-based
addressing, where the attention is based on similarity measures between elements
of the memory and the current value to store, (ii) location-based addressing, using
a rotational shift of the attention weights. This addressing strategy is particularly
useful to handle problems such as arithmetic problem solving8.

It is interesting to note that these models are closely related to attention models,
to drive how the memory is addressed. However, some recent methods propose to
use active memory (Kaiser and Sutskever, 2015), to replace attention techniques. In
this case, the model can access and change all its memory. A more extensive com-
parison between attention and active memory is provided in [Kaiser and Bengio,
2016].

Bidirectional RNN

Bi-directional RNN have first been proposed by Schuster and Paliwal, 1997. It is
motivated by the observation that some prediction at a given step could benefit from
future observations. While the prediction can be delayed for a few steps, it can only
be for a fixed number of steps. Moreover, several applications work with sequences
that are fully observable, thus it is not necessary to constraint a prediction on only
part of the available information. Yet, the RNNs have more powerful ability than

8The authors note that content-based is more general than location-based as some information
regarding location could be included in the content of a memory cell.
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FIGURE 2.8: Neural Turing Machine Architecture, from Graves,
Wayne, and Danihelka, 2014, integrating a memory "bank" and a con-

troller to read and write on this memory.

FIGURE 2.9: Bi-directional RNN illustration. Each prediction yt is
made w.r.t. both internal states st+1 and s′T−t, where st+1 (resp. s′T−t)
which has "seen" examples x0 to xt (resp. examples xT−1 to xt. Thus,
the whole sequence needs to be processed before the system is able

to compute any prediction.

classical feed-forward network to handle sequences. The authors thus proposed an
adapted RNN architecture where each predicted output depends on two internal
states. These two internal states are respectively computed in the "positive" time
direction and the "negative" time direction (i.e from T to 0). This "two-way" process
is illustrated in Figure 2.9. With similar notations, we can write the computation of
each prediction yt as the combination of st, s′t, where st is computed w.r.t. inputs
x0, . . . , xt and previous states s0, . . . , st−1, while s′t is computed w.r.t xt, . . . , xT and
previous states s′0, . . . , s

′
T−t (with T the size of the sequence).

Order-invariant RNN

While bi-directional RNN architectures (and its variations) allows making predic-
tions by considering the complete sequences, it is still dependent on the order of the
sequences. While it is one of its advantages when dealing with actual ordered data
such as sentences or video, it becomes a limitation when applying these types of
methods on sets. For example for the task of sorting a set of numbers, or in our set-
ting in Chapter 6, where we consider a complete dataset as input, the system should
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FIGURE 2.10: Read-Process and Write model illustration presented
by Vinyals, Bengio, and Kudlur, 2015 to provide an order-invariant

(w.r.t inputs) system.

be resilient w.r.t the order of the input sequence. Vinyals, Bengio, and Kudlur, 2015
study how the order influences the results of "sequence to sequence" models, both
in inputs and outputs. To this matter, the authors propose two strategies to provide
order-invariant method, one with respect to the inputs, one w.r.t. the outputs. To
handle inputs sets, they design a recurrent system integrating associative memories
with a content based attention. The model has three components: (i) a reading block
which transforms each input xi into a memory vector mi, (ii) a process block, which
is a LSTM working solely on the memories vectors mi, and does not take inputs or
outputs. It performs T steps of computations on the memory to build its internal
state. (iii) A write block, a LSTM that takes the final state of the process block. In
their case, they propose to use a LSTM pointer network (Vinyals, Fortunato, and
Jaitly, 2015) that outputs a pointer to an element of the memory mi, as their task is
to re-order a sequence of inputs, however it seems possible to use any RNN archi-
tecture. The overall system is depicted in Figure 2.10. Note that this method can
be seen as a special case of Neural Turing Machine (Graves, Wayne, and Danihelka,
2014) or Memory Network (Weston, Chopra, and Bordes, 2014).

2.4 Closing remarks

We provided in this chapter an overview of the different fields of research this thesis
is linked to. The first section was dedicated to the research in budgeted learning.
It is composed by a global survey of the various costs existing in machine learning,
and in a second part by a specific focus on methods for feature acquisition, which
is the main problem studied in this thesis (Chapters 3, 4 and 5). We distinguished
two main types of approaches: static methods, which select a unique subset of fea-
tures to acquire, the same for all inputs, vs adaptive methods, which sequentially
gather features in several steps. The second section presented an overview of active
learning and meta-learning works, which are two research domains tied to our
meta active learning goal, studied in Chapter 6. Finally, the third section provided
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a more technical review related to recurrent neural architectures, as this family of
networks is a key component of several of our models.
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Chapter 3

Feature Selection - Cold-start
application in Recommender
Systems

Abstract: We present in this chapter a static feature selection model and its
specific application for cold-start in recommender systems. We first provide a
reminder of the problem at hand, as well as a related work section on recom-
mender systems and on the cold-start problem. The method we propose learns
at the same time an interview set (which questions to ask a new user, i.e which
features to select) and a set of representations used for prediction. We propose
to rely on a particular representation learning scheme compared to what is usu-
ally done in recommender systems, and we integrate specific weights and reg-
ularization that control the interview learning. This chapter is partially based
on the work presented in [Contardo, Denoyer, and Artieres, 2015].

3.1 Introduction

Representation learning has become of crucial importance to provide robust and ef-
ficient methods in machine learning. Most of these approaches tend to assume that
the processed data is fully observed. However, there are many applications where
the system has access only to partial information. For example, applications that
relies on streams of inputs, where a decision should be made at each step without
knowing the future incoming information (e.g on-line video tagging). Some ap-
plications also need models able to infer on only a partial view of the input, i.e a
subset of features. Typically if the features are costly, it could be useful to reduce
the amount used for prediction. One typical example of such case is the medical
diagnosis, where all features (results of medical tests) can not be known as it would
take too much time and money, and would not be necessary useful. In such setting,
one would ideally want to choose which information to acquire on the inputs in
order to improve the final decision. This is the problem we study in this chapter.



34 Chapter 3. Feature Selection - Cold-start application in Recommender Systems

More particularly, we propose to focus on recommender systems and on the cold-
start recommendation problem. Recommender systems have become an active field
of research and are now used in an increasing variety of applications, such as e-
commerce, social networks or participative platforms. They aim at suggesting the
most relevant items (e.g products) to each user, in order for example to improve
their experience (e.g Netflix). To recommend relevant items, recommender systems
can rely on different types of data, such as users’ explicit and/or implicit feedbacks
(e.g rating a movie on a scale of stars, buying an item, or listening to a song), or
informative features about users (age, postcode) or items (type of movie, actors).
Users may all provide different information (rate different items and not rate all of
them). Thus, the recommendation problem is typically relying on partial (incom-
plete) information (e.g ratings) of the inputs (e.g users). This is generally handled
through the use of specific representation learning algorithms.

However, when a new user arrives in the system, there is no information about him
or her provided, implicit nor explicit feedback. This is called the cold-start problem.
A majority of the proposed methods can not make any personalized prediction in
this case unless using pre-determined heuristics. It is considered to be a crucial
problem in recommender systems, as one seeks to please the user as quickly as pos-
sible to ensure that he or she stays in the system. Therefore, waiting for information
about the user to arrive through time is not a viable option. In such a setting, one
needs to gather the information directly, for example by asking questions to the user
about his or her tastes regarding some items. This is what we propose to study in
this chapter. We present a model that can build relevant representations from a few
information (e.g right after the interview, with only a few answers) to more "sta-
ble" settings (e.g warm context). The model also learns at the same time a subset
of items on which to conduct the initial interview. The proposed method provides
a static feature selection, as the subset will be the same for all inputs (in our case
users). This is motivated by a study (Golbandi, Koren, and Lempel, 2011) illustrat-
ing that users prefer to have a finite and unique set of questions, appearing on one
webpage, instead of having the questions showing one after another (thus allowing
adaptiveness in the interview process), even if the total number of questions is the
same.

We first provide an overview of related works on recommender systems and the
cold-start problem in Section 3.2. Then we define more formally the cold-start prob-
lem and describe our model in Section 3.3, as well as how the approach can be
used in different settings of the recommendation process. Experimental results are
shown in Section 3.4.
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FIGURE 3.1: Collaborative filtering process: from a matrix of ratings,
where each row is the ratings of a particular user, the goal is to rec-
ommend relevant items, using knowledge of the ratings given by all

users on different items.

3.2 Related work on recommender systems and cold start

The recommendation problem has been intensively studied in the recent years,
more particularly since the Netflix challenge in 2009 (Bennett and Lanning, 2007).
The overall goal is to suggest the most relevant items (movies, videos, advertise-
ments, products) so that the user will watch, listen, click or buy the item. The set-
ting can, therefore, vary a lot between one application to another. Indeed, some
systems, such as imdb or amazon, can access ratings of users on some items (e.g in
Figure 3.1), while others will have more implicit data like sequence of songs listened
to. We propose to focus our approach on cases where explicit feedback (e.g ratings)
is obtained on items.

In such setting, the recommendation problem is often seen as accurately predicting
the ratings given by each user on the items. Then, the recommendation is done
by suggesting the item with the highest predicted score. Thus, distance prediction
error (RMSE) is generally used in this case. However this topic has been widely
discussed, and several other performance measures can be used, such as top-K.

3.2.1 Collaborative Filtering

One of the main family of approaches are Collaborative Filtering methods, which
rely only on the interactions between users and items, such as ratings or purchase
history (see [Shi, Larson, and Hanjalic, 2014; Koren and Bell, 2015] for recent and ex-
tensive surveys). Other families of approaches exist, such as Content-Based methods,
which use informative features on users and items (Pazzani and Billsus, 2007), and
hybrid methods that mix ratings and informative features (Basilico and Hofmann,
2004). We do not give details here as these approaches rely on different information
as ours, and are thus not easily comparable.
Collaborative filtering techniques can be distinguished into two categories. Memory-
based methods, such as Neighbour-based collaborative filtering Resnick et al., 1994,
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compute weights between pairs of items (Sarwar et al., 2001) or users (Herlocker
et al., 1999), based on similarities or correlations between them. To overcome the
scaling limitation of these methods (which need to compute all pairwise similari-
ties), Koren, 2010 proposes to factor the neighborhood model and learn these neigh-
borhood relations through the minimization of a global cost function. Model-based
methods, such as Latent Factor Models, have rather a representation learning approach,
where representations vectors for each user and item are inferred from the matrix of
ratings using matrix factorization techniques (Koren, Bell, and Volinsky, 2009). Let
us define the rating matrix R ∈ R|U|×|I|, U being the set of users, I the set of items.
The notation | · | is the cardinality of a set. Note that this matrix R is incomplete,
as all ratings (couple user and item) are not observed. Matrix factorization based
methods aim at learning a decomposition based on two sub-matrices, such that the
rating matrix can be approximated as R ≈ PQ (see Figure 3.2), Q ∈ RN×|I| and
P ∈ R|U|×N , where N is the size of the latent space. Each of these sub-matrices can
be interpreted as latent profiles of respectively the users (pu ∈ RN , i.e the u-th line of
matrix P , is the representation of user u, u ∈ U) and the items (qi ∈ RN resp. the i-th
column of matrix Q, the representation of item i, i ∈ I), and the product between
the representations of user u and item i should predict the expected rating the user
would give to the item (ru,i ' qipu). Intuitively, a feature l of the item representa-
tion (qi,l) could be seen as "how much this item has a particular characteristic" (e.g
a movie is funny / a comedy), while the feature pu,l would respectively represent
how much the user u appreciates such feature in an item.

Following the previous notations, and denotingO the set of actually observed pairs
(u, i) such that a rating on item i has been made by user u (as R is incomplete),
the representations pu, qi, ∀u ∈ U ,∀i ∈ I (hence the matrices P and Q) are usually
learned by minimizing an objective loss function L(p,q) which measures the differ-
ence between observed ratings ru,i and predicted ones. The loss is usually defined
as a L2 objective:

L(p,q) =
∑

(u,i)∈O

(ru,i − qipu)2 + λ(
∑
i∈I
||qi||2 +

∑
u∈U
||pu||2) (3.1)

The coefficient λ is a manually defined regularization coefficient. Different opti-
mization algorithms have been proposed such as alternated least squares or stochas-
tic gradient descent (Koren, Bell, and Volinsky, 2009). Moreover, several extensions
have been proposed regarding the shape of P and Q, by adding for example con-
straints for non-negativity (non-negative matrix factorization e.g [Lee and Seung,
1999; Paatero and Tapper, 1994; Luo et al., 2014]), sparsity (Kim and Park, 2007), or
both (Kim and Park, 2008).

It is interesting to note that this family of methods is built such that it computes rep-
resentations over a set of a priori known users and items. Integration of new ratings
for existing users is not straightforward, as it requires partial or complete retraining
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FIGURE 3.2: Matrix factorization in the recommendation problem :
the goal is to find a decomposition of the rating matrix in two sub-
matrices U and V , respectively the latent profile of the users (Ui the
representation vector of user i) and of the items (Vj the representa-

tion vector of item j).

(strategies for updating P and Q w.r.t continuous incoming information have been
studied for example in [Rendle and Schmidt-Thieme, 2008]). It is an interesting
problem as recommender systems are typically expected to change through time, to
gain new users and to recommend new items.

3.2.2 Cold-start recommendation

Collaborative filtering models generally suffer from a major drawback when they
are confronted with completely new users with no rating. This setting is called in
the literature the (user) cold-start1. While specific similarities have been designed to
address this problem for memory-based models (Bobadilla et al., 2012, Ahn, 2008), a
classical and intuitive approach is to use an interview process, where few questions
are asked to a user to gather information (i.e ratings). Thus, the problem is then of
choosing the more relevant questions to ask. Several papers have proposed different
methods to tackle this problem.

Static approaches Static seed sets are constructed following a selection criterion
fixed among all users, and results in a unique set of questions, the same for all new
users incoming in the system. Rashid, Karypis, and Riedl, 2008 present a compara-
tive study of different criteria :

• Popularity (items with higher numbers of ratings), which improves the chance
the user will know the item and be able to rate it.

• Entropy, characterizing the dispersion of opinions of user on items.

• Coverage, which emphasizes items more heavily co-rated with other items.

• Entropy0, which considers missing ratings by setting a corresponding value
for it (0). This palliates the tendency of Entropy to select "obscure" items.

1Note that the symmetric problem exists obviously with regard to new items, however, it is not
studied in this thesis, it raises interesting questions as to how to adapt the following methods
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• HELF (Harmonic mean of Entropy and Logarithm of Frequency) for an item
i:

HELF (i) =
2 ∗ LF ′i ∗H ′(i)
LF ′i +H ′(i)

where LF ′(i) = log(|i|)/log(|U|), the normalized logarithm of item i’s rating
frequency, and H ′(i) = −

∑
k∈rangeratings

pi,klog(pi,k)/log(5) the normalized en-

tropy of the item.

• GreedyExtend :Golbandi, Koren, and Lempel, 2010 propose a greedy algo-
rithm to construct a set : greedily add items to the seed set such that the item
minimizes the error metric of the prediction performed with the actual seed
set.

Adaptive approaches have also been proposed, where the interview process consid-
ers the user’s previous answers to choose the next questions. For example, Rashid,
Karypis, and Riedl, 2008 fit a decision tree to find a set of clusters of users, while
Golbandi, Koren, and Lempel, 2011 use a ternary tree where each node is an item
and branch corresponds to eventual answers (like, dislike, unknown). Zhou, Yang,
and Zha, 2011 present functional matrix factorization, a decision tree based method
which also associate a latent profile to each node of the tree. The closest model to
our approach is from Sun et al., 2013, who learn a ternary tree allowing multiple
questions at each node, each node containing a (learned) regressor and translations
functions on selected items. Our model can be seen as one node of their tree. How-
ever, their approach does not seem to allow a bridge between cold start and warm
context as ours does.
Another possible strategy is the use of Active Learning approaches (see [Rubens,
Kaplan, and Sugiyama, 2011] for a general ”foray” into Active Learning in recom-
mender system). For example, Jin and Si, 2004 proposed a Bayesian Selection ap-
proach which has been extended by Harpale and Yang, 2008 to tackle the user cold
start problem of selecting the ratings to ask for.
It is also interesting to note that these approaches while being usually more efficient,
suffer from one major drawback for real-life applications: users usually dislike hav-
ing to rate item sequentially and prefer rating several items at once in a single step,
as shown by Golbandi, Koren, and Lempel, 2011 and Rashid et al., 2002.

Compared to these approaches, our model falls in the static category. The advantage
and novelty of our approach is to propose not only a way of finding a subset of items
for the interview process but also a global system for the recommendation problem,
which helps at the same time to achieve better results in the cold-start setting, but to
"survive" in the more usual setting with more ratings ("warm") and still be efficient
compared to classical methods for this context. We propose to do so by conjointly
learn a specific prediction model and the interview subset.
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FIGURE 3.3: Test error rate vs. number of train ratings per user on
the Netflix data for a model item-item factor, from [Golbandi, Koren,
and Lempel, 2010]. Lower y-axis values represent more accurate pre-
dictions. The x-axis describes the number of ratings taken for each

user.

3.3 Formulation of representation learning problem for user
cold start

We presented in the previous section a brief overview of classical approaches in
recommender system on one hand, and of the specific problem of cold-start on the
other hand, where methods usually focus on how to best choose the questions of
an interview process. As we noted, latent factor techniques are however somehow
limited when dealing with ever-changing settings (new users, new items, and new
ratings for already known users and items, arriving continuously in the system),
as they will need to retrain often, which can be computationally expensive. Other
collaborative filtering methods don’t seem much more resilient to the small amount
of information available on new users after an interview process (e.g 10 ratings).
Golbandi, Koren, and Lempel, 2010 illustrate this in Figure 3.3, where one can see
how the item-item factor method (Koren, 2010) performs w.r.t the number of ratings
available for a user. This highlights how much the models are usually dependent
from a minimum of ratings, thus making the cold-start problem difficult.

This motivates us to propose a model that not only learns the interview set of ques-
tions, but also rely on building representations in an inductive fashion. Changing the
representation-learning paradigm to propose inductive methods has especially not
been studied in the case of cold-start. However, it seems a powerful approach as it
would provide similar prediction ability (in terms of RMSE) and allow to use simple
methods to integrate interview learning. Moreover, we will see that this paradigm
also allows us to provide a hybrid method that can cover all the "life" of the system,
from the cold-start setting with a new user, to a more common warm setting, close
to the classical problem of rating prediction, with several ratings available per user.

We first rewrite the cold-start problem coupled with representation learning in a
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generic way. We then present the inductive approach that we propose for the rep-
resentation learning part. Finally, we show how the model can be used in the cold-
start setting as well as the warm-setting, thus tying the two situations together.

First, let us rewrite the objective function detailed in Equation 3.1 in a more general
form that will allow us to integrate the user cold-start problem as a representation-
learning problem. As seen above, we still consider that each item will have its own
learned representation denoted qi ∈ RN and we focus on building a user representa-
tion. When facing any new user, our model will first collect a set of ratings by asking
a set of queries during a static interview process. This process is composed of a set
of items that are selected during the training phase. For each item in the interview,
the new user can provide a rating, but can also choose to not answer if he has no
opinion. This is typically the case for example with recommendation of movies,
where users are only able to provide ratings on movies they have seen. The model
will thus have to both select relevant items to include in the interview, but also to
learn how (incomplete) collected ratings will be used to build a user representation.

Let us denote Q ⊂ I the subset of items that will be used in the interview. The
representation of a new incoming user u will thus depend on the ratings of u over
Q that we note Q(u). This representation will be given by a function fΨ(Q(u))

whose parameters, to be optimized, are denoted Ψ. These Ψ parameters are global,
i.e shared by all users. The objective function of the cold-start problem (finding the
parameters Ψ, the items’ representations and the interview questions conjointly)
can then be written as:

Lcold(q,Ψ,Q) =

prediction quality on all observed ratings︷ ︸︸ ︷∑
(u,i)∈O

(ru,i − qTi fΨ(Q(u)))2

+ λ1(
∑
i

||qi||2 +
∑
u

||fΨ(Q(u))||2)︸ ︷︷ ︸
regularization on representations

+ λ2|Q|︸ ︷︷ ︸
constraint on the size of the interview

(3.2)

The difference between this loss and the classical CF loss is twofold: (i) first, the
learned representations pu are not free parameters, but computed by using a para-
metric function fΨ(Q(u)), whose parameters Ψ are learned; this means that the rep-
resentation of a user u is computed directly from his or her ratings; (ii) the loss
includes an additional term λ2|Q| which controls the trade-off between the quality
of the prediction, and the size of the interview noted |Q|; λ1 and λ2 are manually
chosen hyper-parameters - by changing their values, one can obtain more robust
models, and models with more or fewer interview questions. Note that solving this
problem aims at simultaneously learning the items representations, the set of items
in the interview, and the parameters of the representation building function.
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3.3.1 Inductive Additive Model (IAM)

The generic formulation presented above cannot easily be optimized with any rep-
resentation function. Particularly, the use of a transductive model in this context is
not trivial and, when using matrix factorization-based approaches in that case, we
only obtained very complex solutions with a high computation complexity. We thus
need to use a more appropriate representation-learning function fΨ that is described
below.

The Inductive Additive Model (IAM) is based on two ideas concerning the repre-
sentation of users we want to build: (i) First, one has to be able to provide good
recommendations to any user that does not provide ratings during the interview
processQ. (ii) Second, we want the user representation to be easily enriched as new
ratings are available. This feature makes our approach suitable for the particular
cold-start setting but also for the standard collaborative filtering setting as well.

Based on the first idea, IAM considers that any user without answers will be mapped
to a representation denoted Ψ0 ∈ RN . Moreover, the second idea naturally led us
to build an additive model where a user representation is defined as a sum of the
particular items’ representations. This means that providing a rating will yield a
translation of the user representation in the latent space. This translation will de-
pend on the item i but also on the rating value. This translation will be learned
for each possible rating value and item, and denoted Ψr

i , where r is the value of
the rating. More precisely, in case of binary ratings like and dislike, the like over a
particular item will correspond to a particular translation Ψ+1

i , and a dislike to the
translation Ψ−1

i . The fact that the two rating values correspond to two different un-
related translations is interesting since, for some items, the dislike rating can provide
no additional information represented by a null translation, while the like rating can
be very informative, modifying the user representation - see Section 3.4 for a quali-
tative study over Ψ. The resulting model fΨ can thus be written as:

fΨ(u,Q) = Ψ0 +
∑

(u,i)∈O/i∈Q

Ψ
ru,i
i (3.3)

where the set {(u, i) ∈ O/i ∈ Q} is the set of items selected in the interview on
which user u has provided a rating.

Note that this additive translation model for representing the users could be topped
with a non-linear function (e.g hyperbolic tangent) as long as it is differentiable.
This provides not only more complexity to the learned representations but also
helps to tie the representations in a limited space. We provide further details on
this regard in Section 3.3.3 where we study the case of going from the cold-start to
the warm setting, where the number of ratings can vary a lot between users.
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user1

user4

user2

user3
StarWars IV

12 Angry Men

Love Actually

Home Alone

user4

StarWars IV

12 Angry Men

Love Actually

Home Alone

r(StarWars VI, 1)

r(Casablanca,4)

user3

r(Star Wars III,5)

FIGURE 3.4: Difference between Matrix-Factorization (left) and IAM
(right) w.r.t representations of users : while MF will learn simulta-
neously (final) representations for users and items, IAM learns the
corresponding translation of a rating on item in the latent space. If
a new rating is received (e.g user3 rates Star Wars III with 5 stars),
the user’s representation simply moves in the latent space without

needing to re-optimize.

Continuous Learning Problem

Now, let us describe how the objective function described in Equation 3.2 with IAM
model described in Equation 3.3 can be optimized. Minimizing Lcold(q,Ψ,Q) over
q,Ψ and Q is a combinatorial problem since Q is a subset of the items. This com-
binatorial nature prevents us from using classical optimization methods such as
gradient-descent methods and involves an intractable number of possible combina-
tions of items. We propose to use a L1 relaxation in order to transform this problem
into a continuous one. Let us denote α ∈ RI a weight vector, one weight per item,
such that if αi = 0 then item i will not be in the interview. The cold-start loss can be
rewritten with α’s as:

Lcold(q,Ψ, α) =
∑

(u,i)∈O

(ru,i − qTi fΨ(u, α))2 + λ|α| (3.4)

Where |α| is a L1-norm. Note that the L2 regularization term over the computed
representation of users and items is removed here for sake of clarity. The represen-
tation of a user thus depends on the ratings made by this user for items i that have
a non-null weight αi, restricting our model to compute its prediction on a subset of
items which compose the interview. If we rewrite the proposed model as:

fΨ(u, α) = Ψ0 +
∑

(u,i)∈O

αiΨ
ru,i
i (3.5)
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then we obtain the following loss function:

Lcold(q,Ψ, α) =
∑

(u,i)∈O

(ru,i − qTi (Ψ0 +
∑

(u,i)∈O

αiΨ
ru,i
i ))2 + λ|α| (3.6)

which is now continuous. Note that, in that case, the translation resulting from a
rating over an item corresponds to αiΨ

ru,i
i rather than to Ψ

ru,i
i . As mentioned above,

one can choose to use a non-linear function on top of the additive model, therefore
writing fΨ using for example a hyperbolic tangent function as:

fΨ(u, α) = tanh(Ψ0 +
∑

(u,i)∈O

αiΨ
ru,i
i ) (3.7)

which would result in the following loss:

Lcold(q,Ψ, α) =
∑

(u,i)∈O

(ru,i − qTi tanh(Ψ0 +
∑

(u,i)∈O

αiΨ
ru,i
i ))2 + λ|α| (3.8)

Cold-Start IAM (CS-IAM) Learning Algorithm

This objective loss (Equation 3.8) can be optimized by using stochastic gradient de-
scent methods, such as the one detailed in Algorithm 1. Given a set of training users
and their observed ratings, we are going to "simulate" the interview process using
the α weights and make predictions. More precisely, we consider for each user a
subset of his or her ratings as available for the interview, and use the rest of the
ratings to evaluate the prediction (more details regarding the experimental protocol
is given in Section 3.4.1). Thus, at each iteration, a user is selected randomly (Line
3). His "train" ratings are used as inputs to the "interview" (for now it corresponds
to the product of the sparse vector of training ratings with the weights α, as the null
weights αi will ignore some of the ratings), and from this we compute the corre-
sponding representation of the user, as well as the predictions of the ratings. The
loss is calculated with regard to the "evaluation" ratings and used to compute the
gradient for each parameter (q,Ψ, α) and to update them accordingly (Lines 6-9).
Since the loss contains a L1 term that is not derivable on all points, we propose to
use the same idea than proposed in Carpenter, 2008, which consists in first making
a gradient step without considering the L1 term, and then applying the L1 penalty
to the weight to the extent that it does not change its sign. In other words, a weight
αi is clipped when it crosses zero. This corresponds to the lines 9-18 in Algorithm 1.
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Algorithm 1 Learning algorithm for CS-IAM
Require: O : set of observed ratings.
Require: ε : gradient step.
Require: λl1 for l1-regularization.

1: Initialize q,Ψ, α randomly.
2: repeat
3: Select a random user u, where ru are the ratings of user u in O.
4: Compute predicted ratings r̂u = qT tanh(fΨ(α, ru)) . See Eq. 3.7
5: Update parameters accordingly with gradient descent :
6: q← q− ε∇Lcold(q,Ψ, α)
7: Ψ← Ψ− ε∇Lcold(q,Ψ, α)
8: α← α− ε∇
9: L1-regularization on α using clipping.

10: until stopping criterion return q,Ψ, α

3.3.2 IAM and classical warm collaborative filtering

The IAM model, which is particularly well-fitted for user cold-start recommenda-
tion, can also be used in the classical collaborative filtering problem, without con-
straining the set of items. In that case, the objective function can be written as:

Lwarm(q,Ψ) =
∑

(u,i)∈O

(ru,i − qTi tanh(Ψ0 +
∑

(u,i)∈O

Ψ
ru,i
i ))2 (3.9)

which can be easily optimized through gradient descent. This model is a simple
alternative to matrix factorization-based approaches, which is also evaluated in the
experimental section. This model have some nice properties in comparison to trans-
ductive techniques, mainly it can easily update users’ representations when faced
with new incoming ratings.

3.3.3 IAM from cold-start to warm collaborative filtering

We presented in the previous sections how the IAM can be used to tackle each
problem of cold-start and warm CF separately. From this, the model can be eas-
ily adapted to bridge cold and warm context without additional retraining. This is
a crucial and interesting aspect, as it prevents from having two distinct models (as
it is often done in literature). The IAM model can be used in a unified way, with the
ability to handle the transition between one setting (cold-start) to the other (warm).
This can be done by simply changing the learning paradigm to a two-steps process
as follow:

1. Learn the q and Ψ parameters on a set of training users (and their ratings) by
optimizing the Lwarm(q,Ψ) from Equation 3.9, thus using all available ratings
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without constraint. This is done in order to ensure learning of each item’s
translation in the representation space2.

2. Consider the function Lcoldq,Ψ(α) being defined as Lcold(q,Ψ, α) in Equation 3.8,
but with parameters q,Ψ being fixed. Learn the alpha parameters for the cold-
start interview process by optimizing on α the newly defined Lcoldq,Ψ(α). This
results in the optimal α (e.g interview process) for this specific representation
model optimized for the warm setting.

In the cold-start case, the number of items selected is constrained by the α param-
eters, which naturally prevents any extreme variation of the representation’s norm.
In the cold to warm case, the number of items from which the representation is com-
puted is expected to vary through time, and its norm might be unbounded, which
could have undesirable effects. In such "mixed" setting, we recommend using the
non-linear version of the representation model to limit the representation norm.

After the interview, each new incoming rating modifies the user representation as
explained in Equation 3.7, resulting in a system that is naturally able to take into
account new information.

3.4 Experiments

3.4.1 Experimental protocol

We evaluate our models on four benchmark datasets - Table 3.1- of various size
in terms of the number of users, the number of items and with various ratings’
sparsity. The datasets are classical datasets used in the recommender system lit-
erature (Zhou, Yang, and Zha, 2011,Golbandi, Koren, and Lempel, 2010). ML1M
corresponds to the MovieLens 1 million dataset and Yahoo corresponds to the Yahoo!
Music benchmark. Flixter and Jester are also classical recommendation datasets re-
spectively on movies and jokes. As our main goal is mainly to evaluate the quality
of our approach in the context of new users arriving in the system, we define the fol-
lowing protocol in order to simulate a realistic interview process on incoming users
and to evaluate different models. We proceed as follow:

1. We randomly divide each dataset along users, to have a pool of training users
denoted U train, representing 50% of the users of the complete dataset, in which
we learn all the parameters of our model. The 50% users left are split into two
sets, a pool of users for validation (Uvalid, 25% of total users) and a pool for
testing (U test, 25% of total users).

2In cold-start setting, as the α force to ignore a large number of items, their translations are not
learned as they are not used.
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DataSet Users Items Ratings
ML1M 5,954 2,955 991,656
Flixter 35,657 10,247 7,499,706
Jester 48,481 100 3,519,324
Yahoo 15,397 1000 311,672

TABLE 3.1: Number of users, items and ratings for each considered
datasets.

2. The ratings corresponding to subsets U test and Uvalid are each randomly split
into two subsets of ratings to simulate the possible known answers: we keep
50 % of the ratings for each subset as the possible answers to the interview
questions (Answer Set).

3. The 50% of ratings left for both U test and Uvalid will be used for evaluating our
models (Evaluation Set).

We illustrate the split in Figure 3.5. We keep the model with best results in validation
(computed on ratings of subset Uvalid) and show the corresponding performance in
test (computed on ratings of subset U test). Ratings have been binarized for each
datasets, such that a rating of -1 (resp. 1) stands for a "dislike" (resp. a "like"). The
quality of the different models is evaluated by two different measures. The root mean
squared error (RMSE) measures the average ratings’ prediction precision measured
as the difference between predicted and actual ratings (r̂u,i − ru,i)

2. As we work
with binary ratings, we also use the accuracy as a performance evaluation. In this
context, it means that we focus on the overall prediction, i.e on the fact that the
system has rightly predicted like or dislike, rather than on its precision regarding the
"true" rating. The accuracy is calculated as the average "local" accuracy along users.
These measures are computed over the set of missing ratings i.e the Evaluation Set.

We explore the behavior of our approach on both the classical CF context using the
IAM Model (Equation 3.9) and on the cold-start problem using the CS-IAM model
defined in Equation 3.6.

Baselines We compare our models with two collaborative filtering methods: Ma-
trix Factorization (MF) that we presented earlier and the Item-KNN with Pearson
correlation measure (Koren, 2010) which does not compute representations for users
nor items but is a state-of-the-art CF method. Note that the inductive models (IAM
and CS-IAM) are trained using only the set of training users U train. The ratings in
the Answer Sets of U test and Uvalid are only taken as inputs during the testing phase
(inference), but not used during training. Transductive models are trained using
both the ratings of training users U train, but also the Answer sets of ratings defined
over the testing users. It is a crucial difference as our model has significantly less
information during training.
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FIGURE 3.5: Experimental protocol: this represents the sparse ma-
trix of ratings. The white parts represent unavailable ratings. A first
subset of users is used as a training set (grey). The available ratings
of a second set of users is split in two to create a validation set with
ratings used as answers (light blue) and ratings used for evaluation
(dark blue). A similar split is done on the last subset of users, with

answers in light green and evaluation ratings in dark green.

The baselines used regarding the cold-start problem, therefore the strategy used to
select a subset of items for the interview process, are the popularity criterion, where
items are ranked with regard to the number of ratings (without considering the
actual ratings), and the Harmonic mean of Entropy and Logarithm of Frequency
(HELF), defined for an item i as:

HELF (i) =
2 ∗ LF ′i ∗H ′(i)
LF ′i +H ′(i)

where LF ′(i) = log(|i|)/log(|U|), the normalized logarithm of item i’s rating fre-
quency, and H ′(i) = −

∑
k∈rangeratings

pi,klog(pi,k)/log(5) the normalized entropy of

the item.

Each model has its own hyper-parameters to be tuned: the learning-rate of the gra-
dient descent procedure, the size N of the latent space, the different regularization
coefficients... The evaluation is thus made as follows: models are evaluated for sev-
eral hyper-parameters values using a grid-search procedure, the performance being
averaged over 3 different randomly initialized runs. The models with the best av-
erage performance on validation set are selected and the respective results on the
test set are presented in the next figures and tables. All models have been evaluated
over the same dataset splits.
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3.4.2 Results

Collaborative Filtering

First, we evaluate the ability of our model to learn relevant representations in a clas-
sical CF context. In that case, the IAM model directly predicts ratings based on the
ratings provided by a user. Results for the four different datasets are presented in
Table 3.2. We can observe that, despite having much less information during the
learning phase, IAM obtains competitive results, attesting the ability of the additive
model to generalize to new users. More precisely, IAM is better than MF on three
out of four datasets. For example, on the MovieLens-1M dataset, IAM obtains 72.7%
in terms of accuracy while MF’s accuracy is only 68.9%. Similar scores are observed
for Jester and Yahoo. Although Item-KNN model gives slightly better results for
one dataset, one should note that this method do not rely on nor provide any rep-
resentations for users or items and belongs to a different family of approach, which
can be a drawback if one wants to use the users/items representations for further
(qualitative) analysis (e.g study behaviours of particular clusters of users or items).
Moreover, ItemKNN - which is based on a KNN-based method - has a high com-
plexity, and is thus very slow to use, and unable to deal with large-scale datasets
like Flixter on which many days are needed in order to compute performance. Be-
yond its nice performance, IAM is able to predict over a new user in a very short
time, on the contrary to MF and ItemKNN.

DataSet MF IAM ItemKNN
Jester 0.723 0.737 0.725

ML1M 0.689 0.727 0.675
Yahoo 0.675 0.719 0.726
Flixter 0.766 0.758 NA

TABLE 3.2: Accuracy performance of different models in the classi-
cal Collaborative Filtering context (i.e without cold-start). NA (Not
Available) means that, due to the complexity of ItemKNN, results

were not computed over the Flixter dataset.

Cold-start Setting

We now study the ability of our approach to predict ratings in a realistic cold-start
situation. As MF and ItemKNN do not provide a way to select a set of items for
the interview, we use two benchmark static selection methods used in the literature
(Rashid et al., 2002). The POP method selects the most popular items - i.e the items
with the highest number of ratings in the training set - and the HELF (Harmonic
mean of Entropy and Logarithm of rating Frequency) method which selects items based
on both their popularity but also using an entropy criterion, which focus on the
informativeness of items (e.g a controversial movie can be more informative than a
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movie liked by everyone) (Rashid, Karypis, and Riedl, 2008). Our model is learned
solely on the U train set. Baselines are computed on a dataset composed of the orig-
inal U train ratings with the additional ratings of the AnswerSets of Uvalid and U test

that lie into the set of items selected by the POP or the HELF approach. As before,
transductive approaches use more information during training that our inductive
model.

Figures 3.6 and 3.7 respectively show RMSE and accuracy results for all models on
the Yahoo dataset as a function of the interview size. The size of the interview is
straightforward to choose with POP and HELF, as you can select manually how
many items you want in the interview, from the ranking obtain depending on the
criterion. However, with CS-IAM, the size of the interview corresponds to the num-
ber of non-null αi parameters, which is not adjustable directly, but through the value
of the L1 regularization coefficient. Therefore, we tested several values for this co-
efficient, in order to obtain different sizes of interviews.

The Figures 3.6 and 3.7 first illustrate that ItemKNN approach does not provide
good results for RMSE-evaluation, as it is not a regression-based method, but is better
than MF in terms of accuracy. It also shows that HELF criterion does not seem to
be specifically better on this dataset than the POP criterion, while it is a slightly
more complex and specific heuristic (and is presented as such in related work). For
both evaluations, CS-IAM gives better results, for all sizes of interviews. It can also
be noted that CS-IAM may give good results even if no item is selected thanks to
the Ψ0 parameters that correspond to a default representation (Equation 3.7). The
model with 0 items also expresses the base performance obtained on users unable
to provide ratings during the interview.

Detailed accuracy results for the four datasets are summarized in Table 3.3, for
different reasonable sizes of interviews. Similar observations can be made on the
results, where CS-IAM managed to have the best or competitive accuracy for all
datasets and all number of questions allowed while using less information in train.

At last, when comparing the performance of CS-IAM with a version of IAM where
items have been selected by the POP criterion -IAM-Pop, Figure 3.8 - one can see
that the CS-IAM outperforms the other approaches. It interestingly shows that
(i) IAM managed to give better results than MF with the same information selec-
tion strategy (POP) (ii) CS-IAM with all its parameters learned, managed to select
more useful items for the interview process, illustrating that the performance of this
model is due to both its expressive power and on its ability to simultaneously learn
representations, and select relevant items.

We have shown that our approach gives significantly good quantitative results. We
now focus our interest on a qualitative analysis of the results performed over the
MovieLens dataset. First, we compare the items selected by the three selection
methods (CS-IAM, POP and HELF). These items are presented in Table 3.4. First,
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FIGURE 3.6: RMSE performance on Yahoo dataset for all models, re-
garding the size of the interview (number of questions/items asked)
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FIGURE 3.7: Accuracy performance on Yahoo dataset for all mod-
els, regarding the size of the interview (number of questions/items

asked)

when using the POP criterion, one can see that many redundant movies are selected
- e.g the three last episodes of Star Wars on which the ratings are highly correlated
in the dataset: users usually like or dislike all three of them-. The same effect seems
to appear also with CS-IAM which selects Back to the future I and Back to the future
III. But, in fact, the situation is different since the ratings on these two movies have
fewer correlations. Half of the users that like Back to the future I dislike Back to the
future III.
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FIGURE 3.8: Accuracy performance on Jester dataset comparing the
Pop selection criteria and the CS-IAM selection.

Figure 3.9 shows the translations αiΨi after having performed a PCA in order to
obtain 2D representations. What we can see is that depending on the movie, the fact
of having a positive rating or a negative rating does not have the same consequences
in term of representation: For example, liking or disliking Saving Private Ryan is
different than liking or disliking Star Wars; the translation concerning these two
movies are almost perpendicular and thus result in a very different modification of
the representation of the user. Schindler’s List has fewer consequences concerning
the user representation i.e the norm of αiΨr

i is lower than the others.
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FIGURE 3.9: Visualization of some αiΨi after a PCA, on dataset
MovieLens-1M
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DataSet NbItems MF POP MF HELF IKNN POP IKNN HELF CS-IAM

Jester

5 0.603 0.589 0.608 0.634 0.667
10 0.613 0.609 0.640 0.608 0.686
20 0.665 0.641 0.688 0.676 0.701

MovieLens 1M

5 0.629 0.617 0.649 0.647 0.690
10 0.634 0.620 0.651 0.653 0.695
20 0.648 0.621 0.663 0.638 0.696

Yahoo

5 0.590 0.594 0.623 0.624 0.638
10 0.601 0.610 0.633 0.634 0.647
20 0.621 0.623 0.654 0.654 0.665

Flixter

5 0.719 0.722 NA NA 0.723
10 0.720 0.726 NA NA 0.727
20 0.727 0.739 NA NA 0.735

TABLE 3.3: Accuracy performance of models on four datasets re-
garding the number of questions asked. NA (Not Available) means
that, due to the complexity of ItemKNN, results were not computed

over the Flixter dataset. Bold results corresponds to best accuracy.

CS-IAM Popularity HELF
American Beauty
Being John Malkovich
Lion King
Ghost
Superman
Back to the Future
Fargo
Armageddon
Get Shorty
Splash
20 000 Leagues Under the Sea
Back to the Future Part III

American Beauty
Star Wars: Episode I
Star Wars: Episode V
Star Wars: Episode IV
Star Wars: Episode VI
Jurassic Park
Terminator 2
Matrix
Back to the Future
Saving Private Ryan
Silence of the Lambs
Men in Black

Jurassic Park
Independence Day
Men in Black
Total Recall
Mission: Impossible
Speed
Face/Off
Who Framed Roger Rabbit?
Abyss
Austin Powers
Beetlejuice
Titanic

TABLE 3.4: MovieLens 1M - Selected items for the interview process
by the three selection methods.

Mixing Cold-start and Warm Recommendation

We propose in this section to use our approach in a context where one want to move
from cold-start to warm recommendation. After having answered the interview, the
new user will start interacting with the system, eventually providing new ratings
on its own. We follow the two-steps learning process presented in Section 3.3.3 to
address this specific task. This approach is evaluated on the Yahoo dataset with the
following experimental protocol being applied after learning:

1. Performance is firstly measured in the cold-start setting, using the items with
non-null α’s values for the interview process, as in Section 3.2.

2. We calculate the performance of this model when adding an increasing amount
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FIGURE 3.10: Accuracy regarding percentage of ratings added after
the interview (from cold-start to warm setting) on dataset Yahoo!.

of ”new” ratings sampled uniformly from the set of real available ratings left
in the Answer Set.

The results are shown in Figure 3.10, which illustrates the accuracy given the per-
centage of additional ratings taken in the ratings left after the interview process, for
three different sizes of initial interviews. This shows that this strategy starts (0%
of additional ratings used) with a good accuracy performance, consistent with the
results obtained in Table 3.3 on the strict cold-start context. The accuracy then in-
creases as new ratings are added and almost reaches the one obtain for the classical
warm setting (see Table 3.2).

This extension of our approach makes the link between the cold-start and the warm
settings, which is an original and promising feature, and is novel compared to other
classical approaches, which usually focus on either the cold-start or the classical
warm context, and potentially need (extensive) additional computation to go from
one to the other (typically for transductive models such as MF) without relearning.

3.5 Closing remarks

We presented in this chapter a method to tackle the problem of features selection for
the cold-start in recommender systems, by proposing a different approach for rep-
resentation learning and integrating the learning of static interview set. We showed
that our approach performs well compared to different techniques in various set-
tings, classical collaborative filtering as well as "budgeted" situations in cold-start.
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However, we restricted ourselves here to static feature selection, where a unique
subset of features will be acquired for each input. In the more general case of ap-
plications where features come at a cost, one intuitively tends to seek for adaptive
acquisition methods instead, as it would provide more complex power of expres-
sion (by being able to choose different subset of features depending on what has
been observed), thus more robust and efficient prediction ability. We propose to
study in the following two chapters such adaptive approaches for features acqui-
sition, with the presentation of two sequential models based also on a particular
representation-learning scheme.
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Chapter 4

Adaptive cost-sensitive feature
acquisition - Recurrent Neural
Network Approach

Abstract: The next two chapters present our contributions for the problem of
adaptive feature acquisition. We focused on the previous chapter on static selec-
tion, where a unique subset of features was acquired for all inputs, based on
representation learning and a specific architecture. This chapter introduces a
model that integrates an adaptive acquisition process, by expanding the previ-
ously used techniques into a recurrent neural network architecture. We first sit-
uate the problem we choose to tackle, then we provide definitions of our model
and finally we illustrate its ability on a variety of experiments. This chapter is
based on the work presented in [Contardo, Denoyer, and Artières, 2016a].

4.1 Introduction

We propose now to study the problem of cost-sensitive feature acquisition more
generally. We consider a target task (e.g classification), which should be solved us-
ing inputs x. The goal of feature acquisition is to choose a subset of features for ev-
ery input that will guide the prediction. Ideally, the chosen subset of features should
reduce the associated acquisition cost (e.g time or money), but without losing too
much prediction ability 1. In such more generic setting, the interest of choosing a
static selection method is not relevant anymore. Indeed, for the majority of applica-
tions were budgeted prediction would be of use, it seems that an adaptive process of
acquisition would be more efficient for the trade-off between cost and accuracy. For
example, in one of the most commonly cited use-case for feature acquisition, med-
ical diagnosis, the optimal acquisition strategy is obviously adaptive: the doctor
decides the future tests (e.g a pet scan) to be conducted by observing some prelim-
inary tests (e.g blood sampling). Figure 4.1 illustrates such sequential processes for
acquisition of information : a doctor starts with similar tests for two patients (here

1Note that the cold-start problem can be "included" in this family of problems.
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checking fever and blood pressure), and depending on the result, will choose to
ask for blood sampling for the first patient (top sequence), but will take an electro-
cardiogram for the second patient (bottom sequence), and will then proceed with
different tests after observing the respective results.

Therefore, an ideal machine learning model for such problem should ideally adapt
its behavior (acquisition strategy) to what is currently observed on the input. More-
over, this example illustrates another aspect of the feature acquisition problem: each
feature can potentially have a particular cost. To follow our medical example, a
blood sampling is cheaper, faster to take and "easier" than an fMRI, which should
ideally be taken into account in the overall acquisition and prediction process.

We can thus define the problem we propose to study in this chapter with the fol-
lowing key properties:

1. The optimality of a model is characterized as a trade-off between accuracy and
inference budget.

2. Accurate prediction may be performed from a limited subset of features

3. Feature acquisition has a cost which is feature dependent: each feature can
have a specific cost.

4. The optimal subset of features to acquire depend on the input example.

(Note that the previous method presented in Chapter 3 matches only the first two
points.)

Our goal is also to propose methods able to deal with real problems that have poten-
tially large sizes (e.g an important number of features to choose from). We present
in this chapter a model that tackles this adaptive problem, using a recurrent neural
network architecture. The rest of the chapter is organized as follow: we define more
formally the problem at hand in Section 4.2.1, and then present the model and its
generic components in the remaining of the Section. Section 4.2.3 specifies these
components and gives further details about learning and inference algorithms. We
study the quality of our approach on a variety of experiments in Section 4.3.

4.2 Adaptive feature acquisition with a recurrent neural net-
work architecture

4.2.1 Definition of the problem

Let us first rewrite the learning problem under feature acquisition constraint, with
a static selection scheme. We propose to express the corresponding loss of the prob-
lem for an example x as the trade-off between prediction ability (a loss ∆ between
the prediction of the model and the expected output y), and the cost of acquisition.
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FIGURE 4.1: Adaptive acquisition process : the optimal information
to acquire may depend on the current input. Here, a doctor performs

on two patients different medical tests depending on their results.

For this cost, we keep the notations similar to the previous chapter, where we con-
sidered a binary vector α corresponding to αi = 1 if feature i is acquired by the
system, 0 otherwise. We consider that this vector is predicted from a parametric
function we write fβ(.), thus β are the parameters to learn to predict α. We write
x[α] the observed features of x w.r.t. the acquisition vector α (thus a partially ob-
served x).
We define the prediction model with the generic notation dθ(x[α]), which character-
izes any parametric model that outputs a prediction based on the acquired features
(w.r.t α) on input x. Thus, the input in itself is not completely observed during
testing. This results in the following functions and generic loss:

α = fβ(.)

ŷ = dθ(x[α])

L(θ, β) = ∆(dθ(x[α]), y) + λ|α|

(4.1)

Where |α| is the L1-norm of α. This loss can be rewritten to integrate an adaptive
acquisition process instead of a static selection. To do so, we express the adaptive
acquisition as a sequential process, therefore unrolling into several steps, where
features can be acquired at each time-step t. Thus, instead of considering a unique
acquisition vector α, we consider several vectors αt, indexed by the time-step t. The
prediction function is then expressed w.r.t its prediction parameters θ and all acqui-
sitions vectors αt that are predicted, as the final prediction will be made observing
all the features acquired during the process. The cost is also modified to be the norm
of the sum of all αt for all steps. Here this means that the cost of acquiring a feature
is counted only once, thus acquiring the same feature a second time comes for free2.
When considering a finite and fixed number of acquisition steps T , the generic loss

2Note that this way of expressing cost is open to discussion as it can depend on the reality of
application.
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of adaptive acquisition of features then resumes to:

αt = fβt(x[α1:t−1])

L(θ, β1, . . . , βT ) = ∆(dθ(x[α1:T ]), y) + λ|
T∑
t=1

αt|
(4.2)

A specific cost per feature can be integrated in the second component of the loss.
Let us note the vector of features’ costs c, where ci is the cost for the feature i. Then,
the problem of adaptive cost-sensitive feature acquisition that we propose to study
can be resumed by the following loss:

L(θ, β1, . . . , βT ) = ∆(dθ(x[α1:T ]), y) + λ

n∑
i=1

|
T∑
t=1

αt,i|ci (4.3)

We present now the generic aspects of the model we propose to learn such problem
following this loss, and then describe more precisely its components.

4.2.2 Generic aspects of the model

We described on Chapter 2 an overview of the methods proposed for the (cost-
sensitive) adaptive acquisition of features. We distinguished in the adaptive ap-
proaches different "families" of models, based on the ideas they were built upon :
Reinforcement learning based methods, such as [Dulac-Arnold et al., 2012], which
consider the acquisition process as a policy to learn, Cascade and Decision Trees
based approaches, such as [Xu et al., 2014a], which often rely on weak decision
trees that naturally reduce the amount of features used, Estimation of information
value, such as [Bilgic and Getoor, 2007], which aims at estimating the information
gain of subset of features to decide if it should be acquired, and in a more specific
setting, Visual Attention models, such as [Ba, Mnih, and Kavukcuoglu, 2014], where
acquisition mimics the focal eye attention on images, but are restricted to images in-
puts.These different families have various limitations, namely scaling ability with
regard to the number of features (mostly reinforcement learning methods), the abil-
ity to easily learn models covering various acquisition costs (using a few features in
average or a lot, or somewhere in between), and the combinatorial problem for ap-
proaches that propose to consider subsets of features, as they consider each possible
subsets as a "particular feature" to acquire.

We present in this chapter a new kind of approach to tackle the cost-sensitive adap-
tive feature acquisition problem, under a framework that has not been studied be-
fore to the best of our knowledge. We propose a recurrent neural network generic
architecture, with the motivation of providing a more scalable approach. The clos-
est methods in terms of architecture are attention methods -presented in Chapter
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2-, however, they assume that the input is completely observed at the beginning of
the process, and rely on acquisition only to improve their prediction, to focus on
some part of the input. They do not consider a cost nor constrain the amount of
information used. The main key ideas behind our approach are the following:

1. Differentiable components: the method is designed within a framework that
involves differentiable components only. This allows deriving a learning ap-
proach that relies on efficient gradient descent algorithms.

2. Per-block feature acquisition: Our method allows feature acquisition to be
performed per-block, i.e several features are acquired at each step, without pre-
defining the blocks before learning but nonetheless without suffering from
the potential combinatorial problem that could arise. It is a novel aspect w.r.t
state of the art models, where per-block approaches rely on manually pre-set
blocks. Such "batch" acquisition is an interesting property as it helps to over-
come some drawbacks regarding scalability when dealing with high dimen-
sional data, and can be quite useful when dealing for example with compu-
tationally costly features (where acquiring several features at one given step
allows to compute them in parallel, thus gaining time in overall).

3. Representation learning: a consequence of the adaptive property of the ac-
quisition process is that the final prediction function (e.g a classifier), as well as
the acquisition process, must be able to cope with any partially observed data
(i.e the features gathered so far). Our approach overcomes this problem by
relying on learning a shared latent space for representing an input whatever
its observed features are. A representation is built sequentially for each input
regarding the values of its previously acquired features. This representation
is used to both drive the acquisition process and make the final prediction (e.g
classify), tying the two parallel tasks together.

In the previous chapter, we defined a model with several components: a represen-
tation function for the users (user’s ratings being the input) denoted fΨ, which can
be interpreted as translation function for each item, items representations (denoted
qi), and a specific set of weights α for the feature selection parameters.
To integrate some adaptiveness, we now have to consider the acquisition as a se-
quential process, where the acquisition is driven by the currently seen observa-
tions. The generic idea here is to use a recurrent neural network architecture to do
so. A representation will be built and updated through the sequential acquisition
process, by adding the newly acquired features at each step. This representation
will also guide the acquisition: the weights α will not be learned directly in the net-
work but will be predicted by a specific layer taking the current representation as
input. The generic process is illustrated in Figure 4.2, with T steps of acquisition.
Note the sequence of αt for the acquisition process, similarly as Equation 4.2.
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FIGURE 4.2: The generic process of adaptive features acquisition re-
lying on a representation built in a recurrent fashion, from the pre-
vious representation and the observed features at a given step. The

acquisition and the prediction are driven by this representation.

Note also that in our approach, we consider a number of acquisitions steps T fixed
before learning. This number of steps will be the same for all examples, although it
is possible for the system to acquire no feature at any step. This allows us to avoid
the problem of "learning when to stop", which can be difficult in many cases, and is
not really crucial and needed here. Let us now describe the model more formally.

4.2.3 Recurrent ADaptive AcquisitIon Network (RADIN)

We consider a number of acquisition steps T fixed beforehand. One key aspect of
our framework relies on the ability to predict which features to acquire next in step
t ≤ T of the algorithm and on the ability to perform a prediction after T steps from
any partially observed input sample (i.e. whatever the subset of features that have
been observed on an input sample). We propose to rely on a representation space
where one can express any partially observed input. More precisely, we consider
that at each time step t, the partially acquired input x[α1:t], is represented as a rep-
resentation vector zt lying in a p-dimensional latent space3 zt ∈ RN . This continuous
vector zt is the internal state of the recurrent neural network and is used to encode
the information gathered (i.e the acquired features) on an input sample x ∈ Rn. The
updating process of the representation zt involve two components, the acquisition
layer in charge of choosing which features to acquire, and the aggregation layer in
charge of aggregating the newly acquired information to the currently known one.
The overall specific recurrent architecture we propose is illustrated in Figure 4.3b
unfolded over T steps. We now describe each component of the architecture.

Components of RADIN

Acquisition Layer: While in classical RNN, the input at time t is usually a pre-
determined piece of the input (an element of an input sequence for example), in
our case, this input is chosen by the model as a function of the previous state zt−1

in the following way: A specific acquisition layer (which can be compared to "atten-
tion" layer in visual attention models described in Chapter 2, e.g Mnih, Heess, and
Graves, 2014) computes a vector αt = h(A × zt−1) ∈ [0, 1]n whose component i

3For sake of clarity, we do not include x and a in the notation, using zt instead of z(x, t, a1, ..., at−1).
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(A) The recurrent RADIN network, with acquisition parameters A, aggregation parameters
U and V .

(B) Schema of RADIN’s architecture, unfolded on T acquisition steps.

FIGURE 4.3: Architecture of the recurrent network for adaptive ac-
quisition RADIN, folded (on top) and unfolded (bottom).

denoted αt,i stands for the usefulness of feature i of the input denoted xi. αt is an
attention vector that aims at selecting the features to acquire i.e the features i such
that αt,i > 0. This vector is computed based on the previous representation zt−1 and
different inputs will thus produce different representations, thus leading to differ-
ent values of the acquisition layer resulting in an adaptive acquisition model. h is
typically a non-linear activation function and A ∈ Rn×p corresponds to the param-
eters of the acquisition layer. In order to compute the input of the hidden layer, the
attention vector is then ”mixed” with the original input x by using the Hadamard
product. The acquisition layer acts as a filter on the features of x. This input is
denoted x [αt] = αt ◦ x in the following. Note that in the particular case where at
would be a binary vector, this stands for a copy of x where features that should not
be acquired are set to 0. This vector x [αt] is an additional input that is used to up-
date the internal state, i.e. to compute zt. The overall goal is to drop outputs (a lot
or some, depending on the budget constraint) of the acquisition layer to zero, as it
acts as a mask and acquire only features if αt,i is positive. Therefore the use of an
appropriate non-linear function is crucial to obtain such sparse outputs. Note that
in this approach, we consider that the acquisition layer can acquire features that
have already been gathered on previous steps.

Aggregation layer: Once the features have been acquired, the internal state zt has
to be updated, according to these features and the previous internal state. A possible



62
Chapter 4. Adaptive cost-sensitive feature acquisition - Recurrent Neural Network

Approach

aggregation function is to update s.t zt = f(U × zt−1 + V × x [αt]) (with U and V

two weight matrices of size p × p and p × n) as in classical RNN cells. The internal
state layer zt is thus an aggregation of the information gathered from all previous
acquisition steps up to step t. It is also possible to use Gated Recurrent Unit (Cho
et al., 2014b) or Long-Short Term Memory cells Hochreiter and Schmidhuber, 1997.

Decision Layer: The final representation zT , which is obtained after the T -acquisition
step, is used to perform classification o(x) = g(W × zT ) ∈ RY with g a non-linear
function and W a weight matrix of size Y × p, zT being the representation of the
input x at the end of the acquisition process.

Note that this architecture can be implemented as fully recurrent (where all weights
U, V and A are shared), semi-recurrent, if one chooses to distinguish each acquisi-
tion steps, by learning specific matrices of weights At per acquisition step, or non-
recurrent, where the weights of the aggregation layer (U and V ) will be duplicated
for every step (thus needing to learn matrices Ut, Vt∀t ∈ [1, T ]).
We now describe the corresponding loss equations of the model and its learning
algorithm.

Loss and learning

Noting ci the acquisition cost for feature i, ci ≥ 0 and c ∈ Rn the vector of all fea-

ture costs, the quantity
T∑
t=1

αᵀ
t .c stands for the actual acquisition cost, provided that

at,i are actually binary values and that a feature cannot be acquired twice. Other-
wise, it can be computed as

∑n
i=1 |

∑T
t=1 αt,i|ci (as in Equation 4.3). So ideally, the

α weights should be binary. However, predicting real binary values or integrating
a L0 norm in the actual recurrent neural network would prevent learning as these
are not differentiable components. Therefore, to handle the constraint on the pre-
dicted αt to reduce the number of acquired features, we propose first to consider a
continuous relaxation of the output of the acquisition layer. The acquisition function
f(A× zt−1) thus outputs continuous weights αt , ideally using activation functions
providing stable and true 0 outputs (e.g Rectified Linear Unit (ReLU), or sigmoid
using a threshold). Moreover, we propose to compute the evaluation of the cost as
the product between the overall sum of each acquisition vectors αt and the vector

of cost c :
T∑
t=1

aᵀt .c. This means that if a feature is acquired several times during the

process, its cost will be counted each time. Howevern the cost will be weighted by
the corresponding αt,i. Note that it corresponds to the "true" loss (Eq 4.3) if the sys-
tem predicts binary acquisition value and can not re-acquire already seen features.
While we do not have these constraints in our system, this loss induces the same
effect as the original loss.
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Algorithm 2 Learning algorithm for RADIN in a full recurrent setting.
Require: D : training dataset of couple (x, y).
Require: ε : gradient step.
Require: λ : regularization of the acquisition constraint parameter.
Require: T : number of acquisition steps.

1: Initialize weights U, V,A,W . Initialize z0 as a random vector.
2: repeat
3: Randomly select an input x and its expected output y.
4: for t = 1, . . . , T do
5: Compute αt = h(A× zt−1)
6: Simulate acquisition by computing Hadamard product :
7: acquisitiont = x ◦ αt
8: Update internal state : zt ← f(U × zt−1 + V × acquisitiont)
9: end for

10: Compute prediction: ŷ = gW (zT )
11: Compute prediction error : e = ∆(ŷ, y)
12: Update weights w.r.t gradient error (using back-propagation):
13: U ← U − ε∇LRADIN (A,U, V,W )
14: V ← V − ε∇LRADIN (A,U, V,W )
15: W ←W − ε∇LRADIN (A,U, V,W )
16: A← A− ε∇LRADIN (A,U, V,W )
17: until stopping criterion
18: Return A,U, V,W, z0

The corresponding loss of the model for an example x resumes to:

LRADIN (A,U, V,W ) = ∆(gW (zT ), y) + λ
T∑
t=1

aᵀt .c (4.4)

With zT = fU,V (zT−1, x, αT ), and αt = hA(zt−1)ᵀ, ∀t = 1, . . . , T , following the recur-
rence. The first term of the loss is a data fit term that measures how well prediction
is performed on training samples and the second term is related to the constraint
on the feature acquisition budget. This loss if fully differentiable and can therefore
be used to learn using gradient descent optimization algorithms such as stochastic
gradient descent or ADAM (Kingma and Ba, 2014). We describe in Algorithm 2 how
learning is achieved. The loop in Lines 4 to 9 correspond actually to forward x in
the recurrent neural network:the initial representation z0 is forwarded in the acqui-
sition layer, i.e computing the first set of acquisition weights α1 = h(A× z0) (where
for example h is a ReLU function). The corresponding features are "acquired" and
re-injected in the process through the Hadamard product (acquisition1), and used
to update the internal state, leading to z1 = f(U × z0 +V ×acquisition1), where f is
for example a GRU. This process is repeated T times, thus leading to T acquisition
vectors αt and the final representation zT . After the loop, prediction is computed
(line 10), as well as the corresponding error. Using back-propagation of the error, the
weights are updated following gradient error. One can observe that during learning
we consider the inputs x to be fully observable for free.
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Algorithm 3 Inference algorithm for RADIN
Require: A,U, V,W : weights of the network and z0 common starting representa-

tion.
Require: x : a new input, technically "void", on which to acquire the features..

1: for t = 1, . . . , T do
2: Compute αt = h(A× zt−1)
3: Acquire the features i on x s.t αt,i > 0 :
4: Create vector x[αt] s.t x[αt]i = xi if the feature is acquired, x[αt]i = 0 other-

wise.
5: Compute weighted partial acquisition of x : acquisitiont = x[αt] ◦ αt
6: Update internal state : zt ← f(U × zt−1 + V × acquisitiont)
7: end for
8: Compute prediction: ŷ = gW (zT )

9: Return ŷ and a binary vector of the acquired features (i.e |
∑T

t=1 αt|).

It is worth mentioning here that the architecture we present allows feature acquisi-
tion to be performed per block, i.e. the system can ask to acquire several features
at a given time-step, as the output of the acquisition layer is not constraint w.r.t the
number of non-null features per step, and during learning acquisition is done by
using the weights αt as a mask with Hadamard product.

Inference

We explain now how inference is done on a new example using RADIN. The pro-
cess is describe in pseudo-code in Algorithm 3. It is similar to the learning process,
with a loop for the T steps of acquisition, where the system starts with the initial
representation z0, which leads to the first acquisition vector α1. However, during
inference, instead of using α1 as a mask on the whole input x, here acquisition is
processed, for all non-null features of αt. We thus consider a sub-observation of the
current input, x[α1], which corresponds to the partial view of x following acquisi-
tion at the current step 1. This sparse partially observed vector is then integrated to
update the representation as during learning, with z1 = f(U×z0+V ×acquisition1),
for the first step. Note that it is the observation x[α1] weighted by α1 (as it is not
a binary vector) that is used to update the representation, in order to keep even-
tual weighting between features. This is repeated T times, for each acquisition step,
leading to the final representation zT used for final prediction (line 9). The binary
vector of acquired features can be easily computed from all αt (line 10) and used to
compute the real acquisition cost.

4.3 Experiments

This section provides results of various experiments on feature-acquisition prob-
lems with different cost-settings. We study the ability of our approach on several
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mono-label classification datasets 4.

4.3.1 Experimental protocol

The main goal of the experiments is to determine the ability of our models to give
good predictions (i.e accuracy) while constraining the amount of acquired informa-
tion (i.e cost). We have in this regard a double-target task to validate and evaluate:
accuracy and cost. We propose the following experimental validation protocol to
tune and assess the results of all the models in our experiments, where each dataset
has been split into training, validation and testing sets (the splits are common to all
models), each split corresponding to one third5 of the examples:

1. A set of models is learned on the training set with various hyper-parameters
values.

2. We compute for each model the resulting accuracy and cost on the validation
set. This yields a two dimension point (accuracy,cost) of performance for each
model. This is illustrated in Figure 4.4a (artificial points), where each red dot
corresponds to the average performance of a particular model on validation
dataset.

3. To select the best models in validation, we compute the Pareto front of this
set of points : we pick all models that are not dominated by another model
on both criteria, i.e with a higher accuracy and a lower cost. These models
correspond to various trade-offs between accuracy and cost. The Pareto front
is illustrated in Figure 4.4b, where the blue dots corresponds to the model that
are not dominated by any other in the set of results.

4. For each selected Pareto-models (blue dots), we evaluate the average accu-
racy/cost on the test set. These new points are the green rectangle in Figure
4.4c and are used to produce the test curve results, which are the curves we
present in the remaining of the Section. Note that you can observe in the Fig-
ure that not only the average accuracy vary from validation to test, but also
the average cost of acquisition. These curves have been used to extract re-
sults for a given precise cost (e.g in the Tables), using interpolation to provide
potentially missing accuracy value for a particular cost.

Model: Results shown in this manuscript are obtained with a semi-recurrent ar-
chitecture, with a specific set of weights for each acquisition step (as explained in
Section 4.2.3).

4Note that our approach also handles other problems such as multi-label classification, regression
or ranking as long as the loss function ∆ is differentiable.

5Except for MNIST, where the train/validation/test split correspond resp. to 15%,5%,80% of the
data.
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(A) Performance (average accuracy/cost) of models on validation dataset

(B) Selection of Pareto models (blue circle) in the set of models:all models that are non-
dominated (i.e there is no model with higher accuracy and lower cost) are selected.

(C) Computation of performance for each Pareto models on the test dataset : green triangle
points, linked by a black solid line corresponds to the performance (average accuracy/cost)
of the respective model that obtained the "blue squared" performance. Dashed green curve

is the final resulting curve, equivalent to what the curves we show in this Section.

FIGURE 4.4: Illustration of the different steps of our validation pro-
tocol
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We used linear functions for gW throughout all our experiments. We tested two
non-linear functions as aggregation function fU,V :

• Classical RNN cell: fRNNU,V (zt, at, x) = tanh(U × zt + V × (at ◦ x))

• Gated Recurrent Units (GRUs) as presented in [Cho et al., 2014b] and Chap-
ter2, which is composed of a reset gate rt and an update gate ht. More formally,
the output of a GRU is a linear interpolation between the previous represen-
tation (zt−1) and the candidate representation :

zt = (1− updatet)zt−1 + updatetẑt

Where the update gate update decide how much the unit updates its activa-
tion. The update gate is computed as

updatet = σupdate(Vupdatext + Uupdatezt−1)

The candidate representation is computed similarly to recurrent unit with a
reset gate :

ẑt = tanh(Vzxt + U(resett ◦ zt−1))

Where the reset gate is computed in a similar fashion as the update gate :

resett = σreset(Vresetxt + Uresetzt−1)

Final output is thus computed as

zt = (1− updatet) ◦ zt−1 + updatet ◦ σz(Vzxt + Uz(resett ◦ zt−1))

We used a hard logistic activation function for the acquisition layer, and a mean-
square error as ∆ but other functions could be used. Different sizes of latent spaces
have been tested (N ∈ {10, 25, 50, 100}), and different learning rates (η ∈ {00.1, 0.01, 0.1})
have been used with a large number of iterations. The model has been launched
with different numbers of steps : T ∈ {1, 2, 3, 5} At last, different sizes of mini-
batches have been tested {1, 10, 100}.

Baseline models: our three variants are compared with different features selection
approaches:

• SVML1 is aL1 regularized linear SVM. We used the implementation available
in the scikit-learn package in Python and optimized on hyper-parameter C.

• Decision Trees can be seen as particular cases of sequential adaptive predic-
tive models. We used the implementation available in the scikit-learn package



68
Chapter 4. Adaptive cost-sensitive feature acquisition - Recurrent Neural Network

Approach

in Python. 6 We tested various maximum depth value (up to not limiting the
depth) and criterion (gini / entropy).

• Greedy Miser (Xu, Weinberger, and Chapelle, 2012) is a cost-sensitive model
that relies on several weak classifiers (Decision Trees) where the acquisition
cost is integrated as a local and a global constraint. We used the MATLAB
implementation provided by the authors7. We conducted grid-search for the
following set of parameters: number of trees, lambda (regularization parame-
ter), learning rate and depth of trees(for CART algorithm).

Note that other models like RL-based approaches (e.g Dulac-Arnold et al., 2012)
have not been tested since their complexity is too high to handle datasets with
dozens of features, but the results obtained by our models on small datasets are
competitive with the results previously published with these methods.

4.3.2 Results

Illustration of the adaptive acquisition process

We propose first to illustrate on a visual task how our approach behaves, on the
dataset MNIST. Figure 4.5a shows the pixels that are acquired at each step of the
process for different inputs. Here, we show the acquisition of pixels for three im-
ages of numbers 0, 8, and 6, at test time, for a model RADIN with T = 3 steps
of acquisition. On the left column, in yellow, are shown the pixels acquired at the
first steps: the subset of pixels is the same for all inputs, as it depends only on the
initial representation z0. The second subset of pixels acquired is shown in blue,
in the middle column, and the third in red, in the far right column. We can ob-
serve here the adaptiveness of the process: 6 pixels are acquired for input "0" at the
third step, 8 pixels for input "8" and 3 for input "6", at a different location. In this
case, each pixel has the same cost, but the system can gain on the overall budget
by using fewer pixels for easier input (apparently "6") and a bit more for unclear
input (here "8", where we can observe that the acquisition happens in the "middle",
maybe to distinguish between a close number, like "0"). Note that we do not make
any assumption regarding the shape or nature of the input in the model, therefore
the input is processed as a vector (by flattening the images), unlike visual attention
model (Gregor et al., 2015, see Section 2.1.2). This explains why the acquisition is
not made by "patch", and seems less visually intuitive than the acquisition provided
by methods designed for image inputs, which rely on their specific nature.

The Figure 4.5b illustrates more quantitatively the advantage of the adaptive pro-
cess by plotting the accuracy/cost curves obtained for models RADIN learned with

6Note that these two baselines don’t allow to integrate a specific cost per feature during learning.
7http://www.cse.wustl.edu/~xuzx/research/code/code.html

http://www.cse.wustl.edu/~xuzx/research/code/code.html
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(A) Illustration of the adaptive behavior
of RADIN with three acquisition steps on
three different MNIST inputs. The first pix-
els acquired are pictured in yellow on the
left, the second step in blue in the middle,
and the last pixels acquired are in red, on

the right.

(B) RADIN with various numbers of ac-
quisition steps (T ) on MNIST. Abscissa is
the percentage of acquired features, ordi-
nate is the obtain accuracy. This illustrates
the advantage of having an adaptive pro-
cess (solid and dashed curves for 3 and 5
steps) versus a static selection (dotted black

curve).

FIGURE 4.5: Adaptive acquisition of features: quantitative and qual-
itative advantages.

a different number of acquisition steps T : 1,3 and 5. We see here the gain in accu-
racy between a static process (T = 1) or an adaptive one (T = 3 or 5), for all the
cost range (here the ratio of pixels acquired: 0.2 in abscissa means that 20 percent
of the features have been acquired on average on the test inputs). The difference of
accuracy performance when all features (100%, 1 in abscissa) are acquired can be
explained by the non-linearity of the aggregation function, which provides a more
complex, in some way "deeper", network.

Uniform cost

We propose now to further study the results on experiments with uniform cost, i.e
ci = 1,∀i, on more diverse datasets. As mentioned above, in this case, the acqui-
sition cost is directly the number of features gathered. The cost is thus expressed
as the percentage of features acquired w.r.t the total number of available features.
Figure 4.6a illustrates the overall accuracy-cost curves for the dataset cardio. One
can see for example that the GreedyMiser approach yields an accuracy of about 68
% for a cost of 0.4, i.e acquiring 40 % of the features in average on test inputs, while
our model RADIN obtains approximately 82 % of accuracy for the same amount
of acquired features. The results in Table 4.1 show the ability of our method to
give competitive or better results on a variety of datasets from UCI. These datasets
have various size (number of features from 8 to 780, number of examples in training
from 541 to 10000) and cover problem of classification from 2 classes to 26 classes.
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(A) Curves "accuracy/cost" on cardio for all
considered methods. Abscissa is the per-
centage of acquired features, ordinate is the

obtain accuracy.

(B) Comparison of performance on pendigits
with regards of the choice of the aggrega-
tion function fU,V with 3 acquisitions steps.

FIGURE 4.6

We summarize the results by focusing on 5 sparsity levels: 90%,75%,50%,25% and
10% of features used. Best accuracy for each sparsity levels is highlighted in the
Table. One can see that our approach leads to competitive performance, with the
best accuracy on a majority of datasets and acquisition level (42 best accuracies for
60 couples dataset-sparsity). Interestingly, some dataset need really few features
to obtain interesting level of accuracy, for example "page-blocks" (10 features to-
tal) where our approach, as well as the decision tree baseline, manage to obtain
93% of accuracy with an average sparsity of 10% (i.e 1 feature acquired)8. How-
ever, the three baselines provide results that are less stable among datasets and
levels of acquisition, performing well on some and poorly on other. More partic-
ularly, GreedyMiser is competitive on almost all dataset, except for high levels of
sparsity (e.g "cardiotocography" or "statlog", where compared to our performance,
GreedyMiser drops significantly when having few features acquired). DecisionTree,
while seeming a quite naive baseline for the problem, actually gives reasonable re-
sults on several datasets and even perform best on some (e.g "letter"). However,
it is interesting to note that some results of this model are similar for all levels of
acquisition (for example in "Statlog","mnist" or "musk"), as it was difficult to force
the algorithm to pick more features. As we use a validation protocol relying on
selecting the Pareto front, it is also possible that the models achieving higher acqui-
sition cost were generalizing poorly on the validation set, thus weren’t selected in
the Pareto-set.
Regarding the choice of the aggregation function in our architecture, the impact of
choosing a Gated Recurrent Unit or a more simple cell without gate seems to indi-
cate a slight advantage for the GRU. For example, we plot in Figure 4.6b the curves
results for models with 3 acquisitions steps with GRU vs RNN. It illustrates that

8Yet, note that this dataset is quite unbalanced, with one class representing 89% of examples.
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FIGURE 4.7: Cost-sensitive setting on cardio dataset, where model
RADIN has 3 acquisition steps.

both models perform almost equally well, except between 20% and 50% of features
acquired, where GRU manages to gain a few percent in accuracy.

Results on larger datasets (5000 to 6224 features) are provided in Table 4.2, with 4
levels of acquisition: 25%,10%,5% and 1% of features used. Our approach performs
well on these datasets more specifically when the percentage of acquired features
drops substantially, e.g to 1 or 5 % (e.g on dataset r8, where our approach still man-
age to obtain 95.9 % of accuracy using only 62 features out of 6224, while the second
best accuracy is given by GreedyMiser which achieves 93.9 %). It is interesting to
note however that simple (naive) method such as SVM L1 still manage to perform
well and competitively on these tasks, particularly if the inputs contains mainly
noisy features and a few relevant features to acquire "no matter what" (typically
the dataset "gisette" is built in such a way, where about 90% of features are to be
discarded as useless and noisy).

Cost-sensitive setting

We propose now to study the ability of our approach in a cost-sensitive setting, by
testing it on datasets with artificial costs. We choose to define the cost of feature i
as ci = i

n , which makes no assumption with regard to the potential real meaning or
usefulness of the features. Figure 4.7 shows the performance obtained by RADIN,
with a number of acquisition steps of T = 3, and GreedyMiser on such artificial
cost-sensitive version of the dataset "cardiotocography". One can observe that our
model yields better accuracy results than Greedy Miser for all the cost range, which
indicates its ability to not only acquire the relevant features but also to integrate into
the process their different costs ci.
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Corpus Name Nb.
Train
Ex

Nb.
Feat

Nb.
Cat

Model Amount of features used (%)

90% 75% 50% 25% 10%

Abalone 1396 8 3

SVM L1 64.3 63.2 60.0 56.7 50.5
DecisionTree 60.5 60.5 60.5 61.3 56.1
GreedyMiser 63.8 63.6 60.3 59.9 54.9

RADIN 63.9 64.0 63.8 63.5 53.6

Page-Blocks 1754 10 5

SVM L1 94.2 92.3 90.6 89.3 88.9
DecisionTree 95.8 95.8 96.4 95.8 93.3
GreedyMiser 95.9 94.7 94.2 92.0 90.1

RADIN 96.7 96.6 96.4 96.0 93.6

Magic 6315 10 2

SVM L1 79.6 79.6 79.3 78.9 73.4
DecisionTree 84.5 84.5 83.1 79.2 72.9
GreedyMiser 85.6 85.7 82.6 82.1 73.5

RADIN 86.9 86.9 86.4 82.4 73.5

White wine 1635 11 7

SVM L1 53.7 53.3 52.8 52.3 44.8
DecisionTree 51.8 51.8 52.7 52.0 45.2
GreedyMiser 54.6 54.3 53.2 49.7 46.3

RADIN 53.1 53.8 53.6 53.4 51.2

Red Wine 541 11 6

SVM L1 55.9 55.5 54.3 53.7 53.7
DecisionTree 58.1 58.1 58.1 58.1 54.0
GreedyMiser 58.1 55.8 53.9 52.1 46.5

RADIN 57.2 57.2 58.7 57.0 55.3

Adult 10708 14 2

SVM L1 84.4 84.3 81.2 77.8 76.3
DecisionTree 85.3 85.3 85.3 84.6 79.0
GreedyMiser 86.0 86.0 85.9 84.8 78.0

RADIN 85.3 85.3 84.9 84.4 82.1

Letter 6661 16 26

SVM L1 48.3 33.0 23.6 14.2 08.6
DecisionTree 82.3 82.3 82.3 48.4 10.2
GreedyMiser 74.9 40.1 27.5 15.6 08.5

RADIN 68.5 67.7 62.7 47.8 17.7

Pendigits 2460 16 10

SVM L1 79.5 55.5 32.7 24.5 20.2
DecisionTree 94.4 94.4 94.4 79.6 32.0
GreedyMiser 85.8 67.8 64.9 37.5 21.1

RADIN 98.6 97.6 95.1 80.7 43.0

Cardiotocography 685 21 10

SVM L1 68.3 58.0 49.6 33.8 25.9
DecisionTree 77.5 77.5 77.5 77.1 64.3
GreedyMiser 82.7 81.8 75.1 48.0 34.3

RADIN 80.2 80.2 80.2 79.6 66.2

Statlog 1444 36 3

SVM L1 77.5 74.1 70.3 63.0 58.7
DecisionTree 82.3 82.3 82.3 82.3 82.1
GreedyMiser 85.1 84.6 83.1 76.5 60.5

RADIN 85.9 85.8 85.8 85.2 83.3

Musk 2175 166 2

SVM L1 95.0 95.0 94.2 92.1 86.5
DecisionTree 94.2 94.2 94.2 94.2 94.2
GreedyMiser 95.0 95.0 95.1 95.2 94.9

RADIN 97.4 97.1 96.7 96.8 94.4

MNIST 9000 780 10

SVM L1 89.7 89.7 88.2 70.4 57.7
DecisionTree 80.8 80.8 80.8 80.8 80.8
GreedyMiser 92.0 92.0 90.3 84.6 77.6

RADIN 95.0 94.8 92.6 92.0 85.9

TABLE 4.1: Accuracy at different cost levels, here directly the amount
(%) of features used. The accuracy is obtained through a linear inter-
polation on accuracy/cost curves. Highlighted results corresponds
to the best performance obtained at each cost level. The same subset
of train/validation/test data have been used for all models for each

dataset.
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Corpus Name Nb. Ex Nb. Feat Model Amount of features used (%)
25% 10% 5% 1%

gisette 6000 5000

SVM L1 97.0 96.8 96.3 91.0
DecisionTree 91.9 91.9 91.9 91.9
GreedyMiser 88.4 88.4 86.7 78.5

RADIN 95.7 95.7 95.7 94.7

r8 7674 6224

SVM L1 96.9 96.8 95.1 91.3
DecisionTree 90.1 90.1 90.1 90.1
GreedyMiser 94.8 94.7 94.5 93.9

RADIN 96.2 96.1 96.1 95.9

webkb 4162 5388

SVM L1 89.1 88.7 85.9 71.7
DecisionTree 79.3 79.3 79.3 79.3
GreedyMiser 86.1 86.4 85.7 82.8

RADIN 96.2 96.1 86.5 83.1

TABLE 4.2: Accuracy at different cost levels on datasets with a large
number of features, specified as an amount (%) of features used. The
accuracy is obtained through a linear interpolation on accuracy/cost
curves. Highlighted results corresponds to the best performance ob-

tained for each cost level.

4.4 Closing remarks

In this chapter, we proposed to study the more general problem of feature acquisi-
tion without making assumptions on the nature of the data, and focus on adaptive
process to enhance the performance on the goal task at hand. We presented a model
that encapsulates such adaptive acquisition mechanism in the prediction process.
The model can be implemented as a recurrent neural network and allows different
variations in implementation. One of its main new aspects w.r.t state of the arts is
its ability to perform acquisition per block, and its differentiable nature. We showed
that while the optimized loss is not the exact optimal loss one wants to achieve, the
method performs well in various settings, on datasets of different nature, and is able
to scale well to larger tasks.

However, it seems interesting to study now how to build a model that provides real
binary values for acquisition, in order to get closer to the real optimal loss. Indeed,
we optimized our approach following a loss that is not exactly corresponding to the
real problem at hand. While our choices seemed to provide the same global effect
regarding the budget acquisition constraint, we want to go further. We propose to
study this in the next Chapter, where we propose to use a stochastic method relying
on policy gradient technique to obtain binary weights.
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Chapter 5

Adaptive cost-sensitive feature
acquisition - Stochastic Approach

Abstract: We presented in the previous chapter a model for adaptive feature ac-
quisition, relying on a recurrent neural network architecture. However, the loss
we defined for our instantiation is a continuous relaxation of the "true" loss of
the problem. We propose to study in this chapter how to design a model that fit
closer the actual adaptive feature acquisition loss we defined in the first place.
We present a stochastic framework, relying on policy gradient inspired tech-
niques, which allows introducing real binary values for the acquisition weights.
The performance of the method is illustrated on a variety of experiments, and
a comparative study with the previous model is provided. This chapter is par-
tially based on the work presented in [Contardo, Denoyer, and Artières, 2016b].

5.1 Introduction

In the previous chapter, we proposed a recurrent neural network-based approach
to solve the problem of adaptive feature acquisition. We proposed a formulation of
the generic loss in Equation 4.3 for the problem of sequential acquisition, that we
rewrite here as a reminder:

L(θ, β1, . . . , βT ) = ∆(dθ(x[α1:T ]), y) + λ
n∑
i=1

|
T∑
t=1

αt,i|ci (5.1)

However, the instantiated model optimizes a continuous relaxation of the budget,
where the cost of an acquired feature was counted each time the feature was ac-
quired during the process:

L(θ, β1, . . . , βT ) = ∆(dθ(x[α1:T ]), y) + λ

T∑
t=1

αᵀ
t .c

As explain in Section 4.2.3, this corresponds to the true loss in the "ideal" case, if the
system provides binary values for αt, and if a feature can not be acquired more than
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once (or if one considers that the cost should be counted as many times a feature is
acquired during the process)1. However, our approach predicts continuous values
and has no constraint on re-acquisition of features. We expected that the loss would
have an overall similar effect on the acquisition constraint, and we indeed observed
satisfying results on experiments. But we now want to go further on this task and
study how to get closer to an "ideal" system, and if such system would provide
better results.

We propose in this Chapter to consider the first steps to close this gap, which resides
in removing the continuous relaxation on the αt weights, thus extending our system
to provide binary values for the acquisition process. It is actually not straightfor-
ward, as we also want to keep the properties we defined for the previous frame-
work, in Section 4.2.2. Indeed, one of the aspects of our approach is to propose
a completely differentiable method, allowing the use of efficient gradient descent
optimization algorithms for learning. However, predicting binary values is not pos-
sible using differentiable functions.

To tackle this problem, we first propose to redefine the acquisition process as a
stochastic sequential process. In the previous chapter, we had deterministic con-
tinuous weights, outputted by the acquisition function. We now consider that the
acquisition function outputs probability distributions, which are used to sample the
actual acquisition binary weights. With this change of formulation, the adaptive ac-
quisition of features can be approached as a reinforcement learning problem, where
the choice of features to acquire is made by a policy, and the final performance (qual-
ity of prediction) is the reward. From this observation, we present an adaptation of
the previous architecture to a stochastic one, which can be learned using reinforce-
ment learning algorithms, inspired from policy-gradient techniques, adapted to our
loss.

We fist present a brief summary of the reinforcement learning problem and policy
gradients in Section 5.2. Then we present the stochastic formulation of the adaptive
acquisition and we define our stochastic framework in Section 5.3. Specific instanti-
ations are given in Section 5.4 Experimental results, with a comparison between the
previous approach and this one, are shown in Section 5.5.

5.2 Related work

5.2.1 Reinforcement learning

In the specific reinforcement learning domain, the learning process is defined with
a different point of view than classical supervised learning. Let us first define the
overall setting. We consider an agent, the system which has to solve a particular task.

1However this can be discussed depending on the application one considers.
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This agent evolves and acts in an environment, where it can make different actions,
which will change its environment (therefore the observation the system has of it).
The choices of taken actions are driven by a policy, which will guide which action to
take depending on the current state of the environment. Each action the agent takes
also results in a potential change in the environment, therefore in an observation of
this new state. The agent also receives after each action a reward, depending on the
state, action and the overall task to solve. The reward can potentially happen only
when the task is solved, thus actions can have a null reward but not be necessarily
bad. For example, a mouse in a maze (see Figure 5.1) can choose different paths
(left/right/forward), and its goal is to find the cheese (the reward), similarly to a
robot aiming at a certain point on the map. But the environment could also be a
video game, where at each step and action taken, the agent receives a positive feed-
back if it has destroyed an opponent. The general goal is thus to find a policy of
actions that best solves the task, i.e that maximizes the total reward received. When
the underlying rules of operation of the environments are known (i.e the transition
probabilities between the states depending on the action taken, namely the Markov
Decision Process formulation), the problem of finding the optimal policy of action
can be formulated as an optimization or a planning problem. Reinforcement learn-
ing approaches are however used when these transition probabilities are unknown.

Various methods have been proposed, with different characteristics (see for instance
[Sutton and Barto, 1998; Kaelbling, Littman, and Moore, 1996] for surveys). There is
a first distinction, between model-based approaches (e.g [Kuvayev and Sutton, 1997;
Littman and Szepesvári, 1996]), which aim at finding the underlying markov deci-
sion process before solving the optimal policy, vs model-free (e.g [Strehl et al., 2006]),
which learns solely the policy. Methods are also usually differentiated between
value-based, where the goal is to associate a value to each action, then implicitly
deduce a policy, vs policy-based, where only a policy is learned, vs actor-critic, where
both policy and action-value function are learned simultaneously.

We do not describe in further details all approaches here and propose to focus in-
stead on policy-based methods, more specifically policy-gradient ones, which have
nice convergence properties and will fit in our framework.

5.2.2 Policy Gradient

Policy gradient techniques are model-free approaches that have been first presented
in [Williams, 1992; Gullapalli, 1992], and have been later extended to better handle
RL tasks with continuous states, continuous or high dimensional actions, and non-
Markovian environments (Wierstra et al., 2007). The general principle is to represent
the policy as a parametric function and to update its parameters directly with an
estimated gradient in the direction of the higher reward. We rely on [Wierstra et al.,
2007] to describe in this section the formalism of policy gradient, and how it can be
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FIGURE 5.1: An example of a reinforcement learning environment.
The agent (the mouse) takes actions (left, right, etc.) in an environ-
ment, here a labyrinth. Its goal is to find the cheese, the reward. Each
time the mouse makes a decision, it perceives a change in the envi-

ronment : a new state (or observation).

combined with a recurrent neural network as the parametric policy function, where
each "step" of the RNN is a decision, an action taken by the agent. This will allow
us in the next section to formalize our acquisition problem as a stochastic decision
process sampled from our model output, and to use similar techniques as below to
compute the gradient and learn.

Formalization of the problem

We first provide some notations and a more formal definition of the problem. We
consider a set of states S , a set of possible actionsA, a transition distributionP (st+1|at)
(unknown to the model). We note rt the reward received by the agent at step
t, which is dependent of the state st. xt is the observation the agent gets of the
environment at step t, associated to the state st. Rt is the return at step t, Rt =∑∞

k=t rkγ
t−k−1, where γ is a discount factor between 0 and 1. Finally, π is the policy

defined by a probability distribution on the actions w.r.t. the observations.
The measure of quality of the policy is defined as the return’s expectation at step 0,
J(π) = Eπ[R0] = E[

∑T−1
t=0 γtrt]. The goal of RL is to find an optimal policy w.r.t J .

As the agent interacts with the environment, it builds episodes : sequences of ob-
servations and actions, as well as reward. The observed history ht is defined as
ht =< x0, a0, x1, a1, . . . , at−1, xt >, the sequence of observations and actions from
the beginning of the episode up to step t. A stochastic policy π thus makes its de-
cision of action w.r.t. the observed history ht, where π(a|ht) outputs a probability
distribution over the possible actions, from which at is sampled (at ∼ π(a|ht)).
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Computing the gradient

Let us now define how the gradient for these parameters θ can be estimated, in
order to maximize the expected reward.
R(h) denotes a measure of the total reward gained during a trajectory. P (h|θ) is the
probability of this trajectory to happen given the policy parameters θ (as the history
depends on the actions taken by the agent). With this in mind, one can rewrite
the measure of quality of the policies as the reward over all possible trajectories,
weighted by the probability of the trajectory under π :

J =

∫
h
P (h|θ)R(h)dh

Its gradient w.r.t θ can be written as follow using the likelihood ratio trick:

∇θJ =

∫
∇θP (h)R(h)dh =

∫
P (h)

P (h)
∇θP (h)R(h)dh =

∫
p(h)∇θ logP (h)R(h)dh

As, for a single fixed h, ∇θR(h) = 0, because the reward for a given trajectory do
not depend on the policy parameters. Using Monte Carlo approximation of this
expectation on M trajectories leads to:

∇θJ = Eh[∇θ logP (h)R(h)] ≈ 1

M

M∑
n=1

∇θ logP (hn)R(hn)

This expectation is still dependent on distributions unknown to the system within
P (h). However, the actions probabilities are known by the agent and one can de-
compose the probability of an history as :

P (hT ) = P (x0)ΠT
t=1P (xt|ht−1, at−1)π(at−1|ht−1)

i.e the product of all actions and observations probabilities given the observed his-
tory h. The log-derivative of P (hT ) results in a sum where the only part dependent
of θ is the actions probabilities. Thus, we can rewrite the above approximation as:

∇θJ ≈
1

M

M∑
n=1

T∑
t=0

∇θ log π(at|hnt )Rnt

Where Rnt is the return, defined above, as future actions do not depend on past
rewards.

Using policy gradient with RNN

The authors of [Wierstra et al., 2007] motivate their use of RNN (specifically LSTM)
with policy gradient algorithms by the memory capacity these models have. Indeed,
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using these architectures would allow the system (i.e agent) to map histories to action
probabilities through the internal state and recurrence of the network, instead of
making a decision based on the current observation only.
More precisely, the RNN integrates each new observation by updating its internal
state. Each output of the Recurrent Policy Gradients are interpreted as a probability
distribution for the actions. At each step, the network receives an observation xt and
a reward rt−1, updates its internal state (which could be interpreted as a "sufficient
statistic" of the history T (ht)), and outputs a distribution P (at|T (ht); θ), where θ are
the RNN parameters. Similarly as before, at is sampled following this distribution.
The authors propose to use eligibility back-propagation through time (Williams, 1992)
to learn the network. We inspire from this approach to build our network, however,
we do not have reward but a differentiable loss.

5.3 Definition of the stochastic model

5.3.1 Cost-sensitive Learning problem with stochastic acquisition method

We consider as in the previous chapter, a sequence of acquisition vectors (α1, . . . , αT ),
for an acquisition process of T steps. Here the vectors αt are binary. Let us denote
this sequence α for simplicity of writing. We define max(α) ∈ {0, 1}n as the vector
such thatmax(α)i =

∑T
t=1 |αt,i|, i.e the binary vector that corresponds to all features

acquired through the entire process.

We propose now to adopt a stochastic probabilistic formalization of the process.
Thus, we consider that each binary vectors αt have been sampled from a probabil-
ity distribution. We introduce π an acquisition policy, where π(αt|αt−1, . . . , α1, x)

corresponds to this probability distribution, i.e the probability of acquiring the fea-
tures, depending on all the previously acquired features observed on input x.

If we consider a generic function d that predicts an output ŷ from a sequence of ac-
quisition vectors α and an input x (which we denote for sake of clarity d(x[α]) as in
the previous chapter), the loss of this stochastic process can be rewritten as the ex-
pectation on α w.r.t π the acquisition policy of the (weighted) sum of the prediction
error (∆) and the acquisition cost (similarly as before):

J (d, π) = EP (x,y)

[
Eα∼π(α|x) [∆(d(x[α]), y) + λmax(α)ᵀ.c]

]
(5.2)

Where Eα∼π(α/x)[.] stands for the expectation on the sequence of acquisition α given
a particular input sample x and the acquisition policy induced by π. max(α)ᵀ.c is
the overall cost of feature extraction and λ controls the trade-off between prediction
quality and feature acquisition cost. P (x, y) is the unknown underlying data distri-
bution. Given a training set of ` samples (x1, y1), ..., (x`, y`), the loss function can be
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approximated by the empirical loss J emp(d, π) defined as:

J emp(d, π) =
1

`

∑̀
k=1

Eα∼π(α|xk)

[
∆(d(xk[α]), yk) + λmax(α)ᵀ.c

]
(5.3)

5.3.2 Gradient computation

Let us consider first generic parametric functions for both the prediction function
and the acquisition policy, respectively denoted dW and πA. We consider for dW any
functions that take as input the sequence of acquired features on x w.r.t the given
sequence of acquisition α. Typically, representation-learning based functions can be
used, but other could also be proposed. We also consider any parametric function
that predicts a sequence of probability distribution vectors of size n, n being the
number of features in the input2.

We explain below how the gradient of the empirical loss of Equation 5.3 can be es-
timated. Let us rewrite the empirical loss associated with a single training example
(x, y), J emp(x, y,A,W ):

J emp(x, y,A,W ) = Eα∼πA(α|x) [∆(dW (x, α), y) + λmax(α)ᵀ.c] (5.4)

Even with differentiable functions ∆, πA and dW , the right term of the following
loss is not derivable due to the max term, so we first propose to upper bound this
loss, and to perform the gradient descent over this bound.

As the αt are binary vector, the computation of the acquisition cost component of
the loss can be bound by dropping the L1 norm on the sum of αt for all features i.
The bound thus corresponds to a loss where the cost of acquisition is counted each
time a feature i is acquired during the process, even if it has already been acquired
before. We denote this loss Ĵ .

J emp(x, y,A,W ) = Eα∼πA(α|x) [∆(dW (x, α), y) + λmax(α)ᵀ.c]

= Eα∼πA(α|x)

[
∆(dW (x, α), y) + λ

n∑
i=1

|
T∑
t=1

αt,i|.ci

]

≤ Eα∼πA(α|x) [∆(dW (x, α), y)] + λEα∼πA(α|x)

[
T∑
t=1

αᵀ
t .c

] (5.5)

The expected value of the sum of the binary vector αt for all steps, w.r.t the acqui-
sition policy πA(α|x) can be expressed directly as the sum of the probabilities of
sampling outputted by this policy π for all acquisition steps. We therefore rewrite

2We do not make any hypothesis regarding the sampling, we propose two approaches in this re-
gard in Section 5.4.1
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the above bounded loss as follow:

Ĵ (x, y,A,W ) = Eα∼πA(α|x) [∆(dW (x, α), y)] + λ
T∑
t=1

(Eα∼πA(α|x) [αt])
ᵀ.c

= Eα∼πA(α|x) [∆(dW (x, α), y)] + λ
T∑
t=1

n∑
i=1

πA(αt,i = 1|α1, . . . , αt−1, x).ci

(5.6)
where πA(at,i = 1|x) is the probability of acquiring features i at time-step t.
We propose to learn by optimizing this bound Ĵ . We first decomposed its gradient
∇A,W Ĵ (x, y,A,W ) as follow:

∇A,W Ĵ (x, y,A,W ) = ∇A,W Eα∼πA(α|x)∆(dW (x, α), y)︸ ︷︷ ︸
Q(x,y,A,W )

+λ∇A,W
T∑
t=1

n∑
i=1

πA(αt,i = 1|x).ci︸ ︷︷ ︸
C(x,y,A,W )

(5.7)
whereQ(x, y,A,W ) is the prediction quality component of the loss while C(x, y,A,W )

is the cost of the acquisition policy component. Let us now explain how the gradi-
ent of these two terms are computed.

Computing ∇A,WQ(x, y,A,W ): The gradient of the prediction quality term may
be computed using policy-gradient inspired techniques (Wierstra et al., 2007; Mnih,
Heess, and Graves, 2014) as presented in Section 5.2.2. However, here our "reward"
is the prediction quality computed through ∆. In our case, it is dependent of the
parameters of the policy. Using the likelihood ratio trick similarly as before, we can
write the gradient as:

∇A,WQ(x, y,A,W ) =

∫
∇A,W (πA(α|x))∆(dW (x, α), y)dα+

∫
πA(α|x)∇A,W∆(dW (x, α), y)dα

=

∫
πA(α|x)

πA(α|x)
∇A,W (πA(α|x))∆(dW (x, α), y)dα+

∫
πA(α|x)∇A,W∆(dW (x, α), y)dα

=

∫
πA(α|x)∇A,W log πA(α|x)∆(dW (x, α), y)dα+

∫
πA(α|x)∇A,W∆(dW (x, α), y)dα

(5.8)
Although computing the exact expectation above is not tractable, one can approxi-
mate it through Monte-Carlo sampling on M trajectories over α, yielding:

∇A,WQ(x, y,A,W ) ≈ 1

M

M∑
m=1

[∆(dW (x[α]), y)∇A,W log πA(α|x)

+ ∇A,W (∆(dW (x[α]), y)]

(5.9)

We detail now the sequential acquisition process and the shape of the policy πA(α|x).
Since our model performs a series of acquisition steps, the policy πA(a|x), which is
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the probability of the series of acquisitions a on input x, may be decomposed as:

πA(a|x) = πA(α1, ..., αT |x) =
T∏
t=1

πA(αt|αt−1, ...α1, x) (5.10)

The probability distribution πA(αt|αt−1, ...α1, x) corresponds to the probability of
acquiring a particular set of features at step t, given the input and all the previously
acquired features. We may now rewrite the quantity Q(x, y,A,W ) w.r.t these prob-
abilities. Note that from Equation 5.10, the log-probability of α can be decomposed
over the different time-steps in the following manner:

log πA(α|x) =
T∑
t=1

log πA(αt|α1, ..., αt−1, x) (5.11)

allowing us to rewrite∇A,WQ(x, y,A,W ) such that:

∇A,WQ(x, y,A,W ) ≈ 1

M

M∑
m=1

[∆(dW (x[α]), y)

T∑
t=1

∇A,W log πA(αt|α1, ..., αt−1, x)

+∇A,W∆(dW (x[α]), y) ]

(5.12)

Computation of∇A,WC(x, y,A,W ): The term C(x, y,A,W ) can also be evaluated
by using Monte-Carlo sampling:

∇A,WC(x, y,A,W ) =∇A,W
T∑
t=1

n∑
i=1

πA(αt,i = 1|x).ci

=∇A,W
T∑
t=1

n∑
i=1

ci
∑

α1,...,αt−1

[πA(αt,i = 1|α1, ..., αt−1, x)P (α1, ..., αt−1)]

≈ 1

M

M∑
m=1

T∑
t=1

n∑
i=1

ci∇A,WπA(αt,i = 1|α1, ..., αt−1, x)

(5.13)
where α is sampled M times w.r.t πA(α|x)

Final loss gradient: Putting all together, the final gradient is computed as:

∇A,W Ĵ (x, y,A,W ) =
1

M

M∑
m=1

[
∆(dW (x[α]), y)

T∑
t=1

∇A,W log πA(αt|α1, ..., αt−1, x)

+∇A,W (∆(dW (x[α]), y) + λ

T∑
t=1

n∑
i=1

ci∇A,WπA(αt,i = 1|α1, ..., αt−1, x)

]
(5.14)
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Algorithm 4 Inference algorithm for the REAMs models.
1: procedure INFERENCE(x,A,W,U, V, T ) . input and parameters
2: Initialize z0

3: for t = 1, T do
4: αt sampled following hA(zt−1).
5: Information acquisition: Acquire each features xi such that αt,i = 1.
6: zt ← fU,V (zt−1, x[αt])
7: end for
8: return dW (zT )
9: end procedure

Variance reduction : The estimate of the gradient that is computed above can have
a high variance. Following Wierstra et al., 2007, we replace the loss ∆(dW (x[α]), y)

by ∆− b, where b = Ex,α,y[∆(dW (x[α]), y)].

5.4 REpresentation-based Acquisition Models (REAMs)

We propose, in a similar fashion as the previous model, to use parametric functions
for both the acquisition policy and the decision process. The goal of the represen-
tations here again will be to aggregate the acquired information through the acqui-
sition steps and to guide the acquisition process and the final prediction. We thus
define a parametric function πA, which takes as input a representation zt, and out-
puts the probability distribution πA(αt+1|zt), which corresponds to the probability
distribution π(αt+1|α1, . . . , αt, x) as zt is expected to contain the necessary informa-
tion of the previously acquired features. The acquisition policy is then implemented
with a parameterized function hA : RN → [0; 1]n:

πA(αt|α1, ...., αt−1, x) = hA(zt−1) (5.15)

where zt can be computed through an aggregation function similar as the previ-
ous model, such as LSTM (Hochreiter and Schmidhuber, 1997) or GRU (Cho et al.,
2014b). The final representation zT will be taken as input of the decision function
dW .

Using above choices, the gradient of the loss function is now:

∇A,W,U,V Ĵ (x, y,A,W,U, V ) =
1

M

M∑
m=1

[
∆(dW (zT ), y)

T∑
t=1

∇A,W,U,V log fA(zt)

+∇A,W,U,V (∆(dW (zT ), y) + λ

T−1∑
t=0

n∑
i=1

∇A,W,U,V hA,i(zt).ci

]
with zt = fU,V (zt−1, x[αt]) and αt sampled w.r.t hA(zt−1)

(5.16)
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FIGURE 5.2: Representation-based Acquisition Model - Generic ar-
chitecture of the framework using information aggregation through
a latent representation, where ◦ is the Hadamard product. The ac-
quisition process is done by sampling a binary vector αt following

distribution outputted by πA(αt|zt−1).

where hA,i is the i-th component of hA. Note that one can learn a unique function
hA or one can learn a distinct function hA for every step (i.e. with its own set of pa-
rameters At), which is what we did in our experiments, following the architecture
shown in Figure 5.2 .
The optimization can be done by using (stochastic) gradient descent methods. More
precisely, the different gradient terms can be computed using back-propagation
techniques3 as it is done with recurrent or deep neural networks.

5.4.1 Instances of REAM

Different instances of the proposed framework can be described, depending on the
choices of the hA, fU,V and dW functions. We propose to use non-linear functions
for fU,V , and linear functions for dW (similar settings as the previous Chapter, see
Section 4.3). Regarding the acquisition policy, we present below two expressions of
the function hA that will directly impact the way the acquisition is sampled and the
features are acquired, thus resulting in three distinct models of acquisition:

1. Multinomial Sampling Model (M-REAM): In this model, αt is sampled by
following a multinomial distribution hA(zt) such that hA,i(zt) is the probabil-
ity of sampling xi and only xi. It corresponds to a model that selects only
one feature at each time-step. This model is not efficient when facing a large
number of features but is close to Dulac-Arnold et al., 2012 and will serve as
a reference model. This probability is typically obtained by using a softmax
activation function in hA.

2. Bernoulli-based sampling model (B-REAM): In this model, αt is sampled by
following a bernoulli distribution, i.e each component i of hA corresponds to
the probability of sampling feature xi. In this model, multiple features can be

3Details on the back-propagation computations are not given here.
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FIGURE 5.3: Accuracy/Cost curves on two UCI datasets, compar-
ing L1SVM, GreedyMiser and B-REAM with 3 acquisition steps. Ab-
scissa is the percentage of acquired feature from 0% to 100% (com-

plete inputs). Ordinate is the accuracy obtained.

sampled at each time-step. This probability is typically obtained by using a
sigmoid activation function in hA.

5.5 Experimental results

We present in this section a series of experiments on feature-selection problems and
on a cost-sensitive setting, conducted on a variety of datasets on the mono-label
classification problem.

Experimental protocol: To evaluate our stochastic Bernouilli-based acquisition model
B-REAM, we propose a similar experimental protocol used in the previous chapter
(see Section 4.3.1 for more details). The choice of functions for each component is
the same as well as the loss used (RMSE).

5.5.1 Feature Selection Problem

In this setting, we consider that all the features have the same cost, i.e ∀i, ci = 1.
Therefore, we express the cost directly as the percentage of feature gathered regard-
ing the total number of features. It thus corresponds to a problem of adaptive sparse
classification.

The results obtained on different UCI datasets are summarized in Table 5.1 for var-
ious percentages amount of acquisition. Conjointly, Figure 5.3 presents the associ-
ated accuracy/cost curves on two of these datasets for better illustration. For ex-
ample, on dataset cardio (Figure 5.3b), the model B-REAM learned with 3 steps of
acquisition obtains an accuracy of approximately 70% for a cost of 0.2 (i.e acquiring
20% of the features on average), while GreedyMiser reaches 45% accuracy for the
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FIGURE 5.4: Accuracy/Cost in the cost-sensitive setting. Top: Re-
sults on two UCI datasets, in Fig. 5.4a, 5.4b, artificially made cost-
sensitive by defining the cost of a feature i as ci = i

n , where n is the
total number of features. Bottom: Results on two medical datasets,

with real costs as given in Turney, 1995 for Fig. 5.4c, 5.4d.

same amount of features.
Overall, the results provided in Table 5.1 illustrate the competitiveness of our ap-
proaches in regard to the baselines. On average, B-REAM exhibits a high ability to
adaptively select the ”good” features and to simultaneously use the gathered infor-
mation for prediction. Best results for each level of acquisition are highlighted in the
Table, and second best results are in bold. One can see that B-REAM often have the
best or second-best performance. It is however often outperformed by our contin-
uous non-stochastic method RADIN. While B-REAM provides the higher accuracy
16 times, and second best 21 times, RADIN has respectively 31 best results and 16
second higher results, for a total of 5 levels of acquisitions on 12 datasets4. Com-
paratively, the closest baseline is GreedyMiser, with 10 best results and 13 second
best. With this analysis, it seems that both of our approaches are more robust for a
variety of problems in terms of the number of features, categories or examples.
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Corpus Name Nb.
Ex

Nb.
Feat

Nb.
Cat

Model Amount of features used (%)

90% 75% 50% 25% 10%

Abalone 1396 8 3

SVM L1 64.3 63.2 60.0 56.7 50.5
C4.5 60.5 60.5 60.5 61.3 56.1

GreedyMiser 63.8 63.6 60.3 59.9 54.9
B-REAM 62.9 62.7 62.2 61.4 51.9
RADIN 63.9 64.0 63.8 63.5 53.6

Page-Blocks 1754 10 5

SVM L1 94.2 92.3 90.6 89.3 88.9
C4.5 95.8 95.8 96.4 95.8 93.3

GreedyMiser 95.9 94.7 94.2 92.0 90.1
B-REAM 96.7 96.7 96.4 95.6 91.6
RADIN 96.7 96.6 96.4 96.0 93.6

Magic 6315 10 2

SVM L1 79.6 79.6 79.3 78.9 73.4
C4.5 84.5 84.5 83.1 79.2 72.9

GreedyMiser 85.6 85.7 82.6 82.1 73.5
B-REAM 86.9 86.9 86.5 81.8 73.4
RADIN 86.9 86.9 86.4 82.4 73.5

White wine 1635 11 7

SVM L1 53.7 53.3 52.8 52.3 44.8
C4.5 51.8 51.8 52.7 52.0 45.2

GreedyMiser 54.6 54.3 53.2 49.7 46.3
B-REAM 54.1 54.1 54.1 52.8 49.6
RADIN 53.1 53.8 53.6 53.4 51.2

Red Wine 541 11 6

SVM L1 55.9 55.5 54.3 53.7 53.7
C4.5 58.1 58.1 58.1 58.1 54.0

GreedyMiser 58.1 55.8 53.9 52.1 46.5
B-REAM 57.6 57.4 56.9 54.7 52.3
RADIN 57.2 57.2 58.7 57.0 55.3

Adult 10708 14 2

SVM L1 84.4 84.3 81.2 77.8 76.3
C4.5 85.3 85.3 85.3 84.6 79.0

GreedyMiser 86.0 86.0 85.9 84.8 78.0
B-REAM 84.9 84.9 84.6 84.3 81.6
RADIN 85.3 85.3 84.9 84.4 82.1

Letter 6661 16 26

SVM L1 48.3 33.0 23.6 14.2 08.6
C4.5 82.3 82.3 82.3 48.4 10.2

GreedyMiser 74.9 40.1 27.5 15.6 08.5
B-REAM 73.8 69.5 66.0 44.1 23.4
RADIN 68.5 67.7 62.7 47.8 17.7

Pendigits 2460 16 10

SVM L1 79.5 55.5 32.7 24.5 20.2
C4.5 94.4 94.4 94.4 79.6 32.0

GreedyMiser 85.8 67.8 64.9 37.5 21.1
B-REAM 97.5 96.3 94.8 78.2 43.2
RADIN 98.6 97.6 95.1 80.7 43.0

Cardiotocography 685 21 10

SVM L1 68.3 58.0 49.6 33.8 25.9
C4.5 77.5 77.5 77.5 77.1 64.3

GreedyMiser 82.7 81.8 75.1 48.0 34.3
B-REAM 81.9 81.9 80.7 80.9 64.1
RADIN 80.2 80.2 80.2 79.6 66.2

Statlog 1105 60 3

SVM L1 77.5 74.1 70.3 63.0 58.7
C4.5 82.3 82.3 82.3 82.3 82.1

GreedyMiser 85.1 84.6 83.1 76.5 60.5
B-REAM 86.0 85.9 86.0 83.9 82.9
RADIN 85.9 85.8 85.8 85.2 83.3

Musk 2175 166 2

SVM L1 95.0 95.0 94.2 92.1 86.5
C4.5 94.2 94.2 94.2 94.2 94.2

GreedyMiser 95.0 95.0 95.1 95.2 94.9
B-REAM 96.8 96.9 97.0 96.3 93.6
RADIN 97.4 97.1 96.7 96.8 94.4

MNIST 62000 780 10

SVM L1 89.7 89.7 88.2 70.4 57.7
C4.5 80.8 80.8 80.8 80.8 80.8

GreedyMiser 92.0 92.0 90.3 84.6 77.6
B-REAM 86.4 83.8 82.8 81.1 78.7
RADIN 95.0 94.8 92.6 92.0 85.9

TABLE 5.1: Accuracy at different cost levels, here the amount (%) of
features used. The accuracy is obtained through a linear interpola-
tion on accuracy/cost curves. Highlighted results corresponds to the
best performance obtained at each cost level, bold results to the sec-
ond best performance. The same subset of train/validation/test data
have been used for all models for each dataset. Acquiring 25% of the
features is equivalent for these datasets to using from 2 features (on

abalone) to 195 features (on MNIST).
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5.5.2 Cost-sensitive setting

This section focuses on the cost-sensitive setting, where each feature is associated
with a particular cost. We propose to study the ability of our approach to tackle
such problems on two artificially generated cost-sensitive datasets (from UCI) and
on two cost-sensitive datasets of the literature Turney, 1995. Figure 5.4 illustrates
the performance on these 4 different datasets. The X-axis corresponds to the acqui-
sition cost which is the sum of the costs of the acquired features during inference
on the test set. On the 4 datasets, one can see that our B-REAM approach obtain
similar results or outperforms GreedyMiser (to which we compare our work since
it has been designed for cost-sensitive feature acquisition as well). We can observe
an interesting behaviour on the two real medical datasets: there exist cost thresh-
olds to reach a given level of accuracy (e.g Figure 5.4d, when cost ≈ 23, or Figure
5.4c when cost ≈ 14). This phenomenon is due to the presence of expensive fea-
tures that clearly bring relevant information. A similar behavior is observed with
GreedyMiser and with B-REAM, but the latter seems agiler and able to better ben-
efit from relevant expensive features5. We suppose that this is due to the use of
reinforcement-learning inspired learning techniques which are able to optimize a
long-term target i.e the cumulative sum of the costs over an acquisition trajectory.

5.5.3 Comparison of the learning complexity

The major difference between B-REAM and RADIN is the stochasticity, which im-
plies a sampling phase for B-REAM. This can yield slower learning since it requires
many more iterations to converge. We illustrate complexity issues in Figure 5.5,
where we compare different accuracy-cost curves resulting in experiments with a
varying number of iterations setting through convergence. One can see that RADIN
obtains better performance with fewer iterations, indicating a faster convergence
rate. Note that the time spent in one iteration of RADIN and B-REAM is almost
the same, the only difference being that B-REAM as an additional sampling step
over the Bernoulli distribution. While B-REAM optimizes a loss closer to our real
problem, this observation coupled with the results shown earlier indicate a strong
advantage towards the relaxed continuous version RADIN, more particularly for
the uniform cost case.

4Note that there are ties in the results thus not summing necessarily at 60
5Due to the small size of the real-world datasets (hepa and pima) the performance curve is not

monotonous. Actually, the difference between the Pareto front on the validation set and the resulting
performance on the test set suffers from a ”high” variance. Moreover, this variance cannot be reduced
by averaging over different runs because resulting accuracy/cost curves are composed of points at
different cost/accuracy levels and cannot be matched easily. Yet these curves show significant trends
in our opinion.
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(A) Comparison of convergence rate on
dataset MNIST.

(B) Comparison of convergence rate on
dataset musk-2

FIGURE 5.5: Accuracy/cost curves for RADIN and B-REAM at dif-
ferent learning stages (i.e number of iterations). Both models have
3 acquisitions teps. The cost is uniform thus represents the average

quantity of features used.

5.6 Closing remarks

We proposed in this chapter a model to get closer to the loss we define for the feature
acquisition problem. We presented a stochastic adaptation of the previous architec-
ture, which relies on policy gradient techniques in order to learn its weights. We
illustrated on the same datasets that this model performs well, however it seems
less robust than RADIN. This can be explained by the fact that B-REAM is more
"expensive" to train, due to the stochasticity and the supervision, which require
sampling a lot of trajectories in order to learn properly. However, B-REAM should
be more resilient for problems with non-uniform costs as it is integrated more effi-
ciently, compared to RADIN.

We have studied in these two chapters how to sequentially acquire features on a
static input. At each step of acquisition, a single feature remains the same, during
all the process. However, the problem of features acquisition can also be defined on
sequential inputs, for example videos (i.e streams of images). One can think of the
task of tracking objects in videos. In such case, the system has to acquire a subpart
of the features (pixels) where the object is, at each step. The value of a feature can
vary through time (as the object moves for instance), and the system has to adapt its
acquisition. Our model could be easily used for such problem with a fully recurrent
architecture.

We now focus on a completely different setting to consider the cost of labels ac-
quisition during inference.
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Chapter 6

Meta Active Learning

Abstract: This chapter presents our recent work on meta-active learning. We
consider the problem of costly labels, usually tackled in the literature using
active-learning techniques. These approaches provide strategies to choose the
examples to label before training. We design a model in order to learn an active-
learning strategy, based on a meta-learning setting. We propose different instan-
tiations of the method. Experiments on artificial and real datasets are provided
and show encouraging results.

6.1 Introduction

We have focused on the previous chapters on approaches for specific problems of
budgeted learning: static and adaptive feature acquisition, to reduce the cost of fea-
tures actually used for prediction.
As mentioned in Chapter 2, the field of budgeted learning covers different aspects,
be it where the cost appears (features, labels) or when (test-time, training). We now
propose to focus on the labels’ cost, in a particular setting we call meta-active learning
that we present now.

Machine learning, and more specifically deep learning techniques, are now recog-
nized for their ability to give very good results on a variety of problems, from image
recognition to natural language processing. However, most of the tasks tackled for
now are supervised and need a lot of labeled data to be learned properly. These la-
beled examples are often expensive to get (e.g manual annotation), and not always
available in large quantity. Moreover, one can observe that humans, on the other
hand, seem able to learn and generalize well from only a few examples (e.g chil-
dren can recognize rapidly any depiction of a car or some animals -drawing, photo,
real life- after having been shown only a few pictures with explicit "supervision").
These arguments motivate the need for methods able to learn from a very small su-
pervised training set.
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This problem has been studied in the literature as one-shot (or few-shots) learn-
ing. This setting was first proposed in [Yip and Sussman, 1997], and it knows a
renewal of interest under slightly different flavors. Recently, several methods have
been presented, relying on different techniques such as Siamese networks (Koch,
2015) or memory-networks (Santoro et al., 2016) (see Section 2.2.3 for details). These
methods do not learn a single "one-shot problem" solely based on the few labeled
examples, but instead, they use additional data. They rely on supervised or unsu-
pervised data of similar nature (e.g all data are images) but on categories that are
different than the final problem. For instance, the model has access to images of
cats, dogs, planes and houses during training, but is evaluated on elephants and bi-
cycles problems. The goal is to use the available information of the supplementary
data to build models that can "transfer" this knowledge when confronted with a
one-shot task. Some approaches rely on unsupervised learning, but other methods
design a training protocol that "mimics" one-shot learning problems. The key idea
is to learn from problems that are close to the final task. In this original setting, a
training point is not a single input example anymore, but a whole (small) dataset,
i.e a problem. After learning, the system is evaluated on similar problems but on
categories unseen before.

In parallel, the field of active learning focuses on approaches that allow a model
to ask an oracle for the label of some training examples, to improve its learning. In
this case, different settings can be defined, regarding the nature of the unsupervised
examples set (a finite dataset completely observable or a stream of inputs), and the
nature of the acquisition process (single step or sequential). We provide more de-
tails on this regard in Chapter 2.2.1. The goal in this setting is to define how to select
the best examples to label, in order to obtain good performances. For instance, one
can define some criterion, e.g information gain, computed for each example, and
choose the more "useful" ones based on this criterion. Note that in this setting, the
labels cost is considered during training: one aims at limiting the number of labeled
examples for a single training problem. Therefore, the strategy to choose which ex-
ample to label is not learned in classical active approaches.

We propose to study a problem at the crossroad of one-shot learning and active
learning. We consider that developing methods able to learn from a small amount
of labeled information is crucial. We present a method that not only learns to classify
examples (of unseen categories) using small supervision but additionally learns an
acquisition strategy of the examples to label. Our underlying goal is thus to study
how an acquisition strategy can impact the performance of the system.

In Section 6.2, we define more formally the problem, and the different possible
settings (similar to active learning), which need a specific training strategy as in
one-shot learning. We then describe our approach in Section 6.3, which considers
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FIGURE 6.1: Graphic representation of the active learning process as
illustrated in [Collet, 2016], from unsupervised data, acquisition of

labels, learning of model and final prediction model.

the unsupervised dataset as a whole (non-myopic method) and has a static acqui-
sition strategy, i.e one subset of examples is selected to be labeled in a single step
decision. Section 6.4 provides preliminary experimental results. Finally, we present
in Section 6.5 insights for a possible extension of this work for future investigation,
with a "hybrid" model to go towards adaptiveness in a "non-myopic" setting.

6.2 Definition of setting

We define in this section the setting we propose, meta-active learning, in order to
tackle active-learning coupled with few-shot learning, in a meta-training fashion.
We first describe briefly the generic scheme of an active-learning system, and its
two main settings. Then, we provide further details on the meta-training strategy,
used recently for one-shot learning, that we will rely on to learn a "meta-active"
system.

Active learning setting
The global process of an active-learning system is illustrated in Figure 6.1. In the
most generic form, the system has access to data-points (i.e examples), and to an
oracle. It can choose to ask the oracle the corresponding labels of some data-points.
The system then uses this supervised sub-dataset to train its prediction model. This
general formulation can encapsulate various situations. As mentioned in Chap-
ter 2.2.1, the literature distinguishes two cases for the "nature" of the unsupervised
dataset: (i) pool-based dataset, where the system receives a dataset of N examples
at the beginning of the process, and where all examples are observable. (ii) stream-
based dataset, where the system receives an input, one after the other, and has to
decide at each step if its label is necessary. This leads to approaches of different
natures, as the stream-based setting requires intrinsically sequential models, while
pool-based methods can make their decision in a single shot. Another major differ-
ence is the available information. A pool-based method has access to all unlabeled
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FIGURE 6.2: Examples of a complete dataset for a meta-active learn-
ing strategy, with a set of training problems S, with P categories per
problem, on a total of |Ptrain| classes, and a set of testing problems on
distinct categories. Each problem is composed of a set ofN examples
that can be labeled and used for prediction, and a set of M examples

to classify.

data, which provide a "global" view of the dataset, thus the problem at hand. On
the other hand, a stream-based model has a "myopic" view as the future examples
are unseen, but the problem to solve (asking or not for the label of a single example)
seems easier. Additionally, this type of model can potentially rely on the feedback
obtained through the oracle on all the previous steps. It can also choose to update
the current prediction model and use its performances to drive the acquisition (e.g
using uncertainty measures on classification on examples).

Meta-learning strategy inspired from one-shot learning
We propose to use a protocol similar to what has been recently presented for one-
shot learning problems, e.g in [Santoro et al., 2016]. It aims at extending the basic
principle of training in ML, where a model is trained on data-points from a similar
distribution to the data-points observed during inference. For one-shot learning, it
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resumes as designing data-points as one-shot problems, on dataset of similar nature
(e.g all inputs are images). The protocol therefore replicates the final task during
training and aims at learning to learn from few examples. We propose to use a similar
protocol to learn an active-learning strategy in a meta-learning fashion.
We denote S a set of supervised problems (i.e datasets), where each problem Si is
composed of a set of inputs xij ∈ RK , , j ∈ {1, N}, where N is the number of super-
vised examples for the problem1. Their respective labels yij , are in a set of categories
Pi of size P . For each training problem i, there is an additional set of examples that
the model has to classify, denoted Stesti . The total set of categories in S is denoted
Ptrain = P1∪P2∪ . . .P|S|. Similarly, we define the testing datasetQ as a set of prob-
lems, where each problem hasN examples that can be labeled andM examples that
has to be classified. All categories in the testing problems Ptest are unseen in Ptrain
(i.e Ptest ∩ Ptrain = ∅). An example of such dataset is illustrated in Figure 6.2 with
image classification. All problems are binary classification (i.e P=2). The training
problems contains categories such as cats, dogs, houses and bicycles, and the testing
problems contains categories such as elephants, cars, cakes and planes.
We resume the generic learning scheme in pseudo-code in Algorithm 5. We con-
sider that the system has an active-learning component, which controls the acqui-
sition of labels, and a prediction component, that classifies inputs based on few
labeled examples. Note however that these two components can be tied together.
During training, the process iteratively picks a random problem i. The acquisition
model receives only the examples in Si (without labels)2 and predicts which exam-
ples should be labeled. Using these labeled inputs, it provides predictions on the
examples of the prediction dataset, Stesti , using the prediction module. It evaluates
its performance (in a supervised fashion) and updates accordingly. This algorithm
is broad and still encapsulate the different settings described above, i.e pool-based
and stream-based, as well as static and sequential methods for label acquisition.
During testing, the process is similar : the system receives a dataset of unsupervised
examples Qi, and acquire labels for some of them. Based on this small supervised
dataset, it provides predictions on examples of Qtesti .

6.3 One-step acquisition model

We present in this section a strategy to design systems that learn how to actively
learn, on a pool-based dataset. When a new problem is observed by the system,
we assume one has access to all the (unsupervised) examples of the dataset. In
this preliminary study, we propose to follow a static acquisition strategy for the
labeling phase : the system will ask for the labels of a single subset of examples, in
a unique step. Different possible instanciations are provided as well as experiments

1Note that each problem could have a different number of examples.
2As our goal is to simulate an active-learning process with no preliminary labeling.
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Algorithm 5 Learning algorithm for meta-active learning algorithms.
Require: S : Set of supervised problems, where Si = {(xi1, yi1), . . . , (xiN , y

i
N )},

Stesti = {(xi,test1 , yi,test1 ), . . . , (xi,testM , yi,testM )}, and yij , y
i,test
j′ ∈ Pi, ∀j ∈ {1, N}, j′ ∈

{1,M}
Require: A = Active-learning model
Require: M = Prediction model

1: repeat
2: Pick a random problem i
3: A predicts Dil the subset of examples to label in Si
4: Feed M with labeled examples Dil .
5: Evaluate error of M on predictions of all xj ∈ Stesti

6: Update A and M accordingly.
7: until stopping criterion

that show the relevance of this first "proof of concept" model. We present in Section
6.5 insights to extend this approach into an adaptive acquisition process.
We first define in a generic fashion the different components needed in a model to
tackle this setting. We then present specific architectures that can be learned with
classical ML techniques.

Components
Generically speaking, any model apprehending static dataset and one-step acquisi-
tion needs the following components:

• Labels acquisition component: this module should take as input the whole
dataset of the current problem at hand, thus a set of examples. Its output is a
binary vector of the size of the set, which guides the acquisition : if the j-th
value of the output is 1, the label of the example xj is asked to an oracle.

• Prediction component: this module takes a (new) example as input and out-
puts a prediction (e.g a category) based on the labeled examples obtained
through the labels acquisition component. Note that this model is not nec-
essarily parametric, nor needs retraining. In this first study, we propose to use
a nearest neighbours based technique, using a similarity measure on top of
representation learning.

As mentioned, we introduce an additional component useful in our case, a repre-
sentation component. This module takes as input an example in RK and output its
representation in a latent space RL. The above modules can each potentially work
on the representation visualization of the example, or the original raw input. We
illustrate this in Figure 6.3, where the generic flow of the framework during infer-
ence is depicted, including the representation module. Note that this module can
be used before acquisition, during prediction, or both.
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FIGURE 6.3: Generic architecture of the framework, with three com-
ponents : acquisition module that receives an unsupervised dataset,
in its original space or in the representation space, through the rep-
resentation module, and decision module which predicts on a new
input, in its original space or in the representation space, based on a

labeled sub-part of the dataset.

Optimization criterion
The loss can be expressed as a trade-off between the performance of the model (the
sum of all error ∆ for all examples to classify, where ∆ measures the error between
the model prediction and the expected output) and the labeling cost that led to such
performance, i.e the size of the labeled subset. We note here fa the acquisition com-
ponent, the function predicting the subset of examples to label (Dli) from the unsu-
pervised training set Si. The prediction component is noted as a function d which
takes an input xji , and the labeled dataset, to output a label ŷji . The optimization
criterion resumes to:

Dli = fa(Si)

L =
∑
i∈S

[
∑

j∈Stesti

[∆(d(xij ,Dli), yij)] + λ|Dli|] (6.1)

Choice of architecture and implementations of components
Let us first focus on the label acquisition component. As mentioned above, this
module takes a set of vectors (raw examples or representations) as input, and out-
puts an acquisition vector. Ideally, the module should rely on the fact that the input
is a set. We propose to use recurrent neural networks, which were initially proposed
to consider sequences of inputs. More specifically, we propose in this work to use
bi-directional GRU, which ensure that the output i of the network is computed
with regards to all inputs examples (see Chapter 2.3.2 for more details). It would
also be relevant to use attentional-LSTM, presented in [Vinyals, Bengio, and Kud-
lur, 2015] (described in Chapter 2.3.2), as it provides an order-invariant network,
but this has not been tested yet in our experiments. The labels acquisition module
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is also expected to return a binary vector of acquisition. This type of outputs is not
trivial to produce in neural networks as it is non differentiable. We propose two
solutions :

• Policy gradient (Wierstra et al., 2007, see Chapter 5.2.2 for details): we propose
to obtain the binary acquisition vector through sampling from a continuous
probability distribution outputted e.g by a bidirectional RNN. By using policy
gradient techniques and Monte Carlo sampling, such approaches can be used
efficiently in neural networks, as they become differentiable.

• Continuous relaxation It is possible to use activation functions that provide
true null outputs and positive values of any range (e.g ReLU). The outputted
vector of size N (where N is the number of unsupervised examples in the
dataset i) can be considered as the weights to apply on each examples for
prediction, as was done in Chapter 4.

The prediction component could be any prediction algorithm, parametric or not,
which requires learning or not. In our case, the component should be able to back-
propagate some gradients of errors to drive the overall learning. As we mentionned
before, we propose to use similarity based prediction, and to provide more predic-
tion ability the system conjointly learns a representation model for the inputs. The
similarities are computed on these representations. We test two similarity mea-
sures, a normalized cosine similarity and an euclidean-based similarity. Addition-
ally, computing the predicted label for a new input is done as follow : (i) each sim-
ilarity with the supervised examples is computed. (ii) This vector of similarities is
then converted into a probability distribution, using a softmax with temperature.
(iii) The predicted label is computed as the sum of one-hot-vector labels of super-
vised examples weighted by this distribution. Note that when the temperature is
high enough, this distribution is a one-hot vector, which is similar to a 1-nearest
neighbour technique.

6.4 Experiments

We first describe our experimental protocol and the baselines we used. Then we
study how our model behave on artificial gaussian datasets. Finally, we sum up
results on different datasets that illustrate the relevance of our approach and show
encouraging results.

Experimental Protocol
We propose to work on datasets with a sufficient number of classes, which allow to
have a common domain for all inputs and to create different sub-problems. Before
creating our dataset, we set P , the number of categories of each problem (common
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for all problems3), N the number of examples in the dataset that can be labeled
and M the number of examples to classify on (N and M are also common to all
problems). The generation of the complete dataset is done as follow:

• training dataset: we select some "training classes" (e.g 50% of all classes) and
their corresponding examples. We generate a large amount of sub-problems,
by randomly selecting P categories in the "training classes" for each problem,
and randomly selecting N examples in these P categories, for the set ox ex-
amples "that can be labeled", and additionnal M examples to evaluate the
predictions.

• validation and testing datasets are generated similarily, on distincts "val-
idation classes" and "testing classes", unobserved in the complete training
dataset.

Baselines
As this problem has not been studied before to the best of our knowledge, we pro-
pose for this preliminary study two baselines. These baselines follow the same
global scheme, but with a different acquisition component:

• Random acquisition: the examples to label are chosen randomly in the dataset.

• K-medoids acquisition: the examples to label are selected following a k-medoid
clustering technique, where we label each example if it is a centroid of a clus-
ter.

Note that both acquisition methods do not learn during the process, only the repre-
sentation component (if one is used) is learned.
Note also that classical active-learning for pool-based static acquisition should be
tested and will be studied in future works. We however expect the k-medoids base-
line to be a reasonable and efficient baseline in such setting.

Results on artificial gaussian datasets
We propose to study first the behaviour of our method on artificial datasets. We
generated a dataset of 50 categories, where examples of each category are sampled
on a gaussian with specific mean and variance. We generated 300 examples per
class. We selected 13 categories for training, 6 for validation, and the remaining for
testing. From these 13 classes (resp. 6 and 31) we generated 3000 problems (1000
for testing and validation), where we randomly pick 4 categories , and 25 examples
(total) for these categories. As we mentioned, we have for each problem an addi-
tional dataset of 25 examples to classify. The goal of these experiments is to provide
an insight about the relevance of our approach, on 2D datasets to visualize easily

3Note that future works should include a study on the robustness of the approaches regarding the
change of the number of categories in the set of sub-problems, e.g the ability of detecting if a problem
has 3, 5 or 10 classes.
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(A) Problem 1 (B) Problem 2

(C) Problem 3 (D) Problem 4

(E) Problem 11
(F) Problem 12

FIGURE 6.4: Results on artificial datasets with 4 classes sampled from
4 distinct gaussian distributions. Each figure plots the data-points
of a problem (in blue). The examples plotter in red squares are the
examples selected by our model at the end of the learning process.

Note that these are test-problems.
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the labeled examples. We provide a qualitative study of the acquisition behaviour
of our method in Figure 6.4. The model uses a soft-similarity based on euclidean
distance, a policy-gradient based acquisition, and a representation module with a
linear layer and an hyperbolic tangent as activation function, with a representation
space of size 5. These plots show the examples of 6 problems with 4 classes, during
testing (not seen during training). One can see that the number of examples per
categories can vary a lot, as well as the "separation" between categories from one
problem to another, which makes some problems more "difficult". For each plot,
the examples asked to label by the model after training are depicted in red squares.
The "budget" is 4 examples, which matches the number of categories for each prob-
lem. Before learning, the acquisition is mostly random, thus it does not find any
structure in the data and miss some categories, which prevent good classification
results. After learning, it appears clearly that the model can detect each "cluster"
of points, and manages to acquire one label in each cluster, even when the cluster
has few examples (e.g Figure 6.4e with a category with only 2 examples). This indi-
cates the ability of our approach to find an underlying structure in the datasets that
should guide its acquisition process.

We designed a more complex dataset, which is generated in a similar fashion, how-
ever each point of a category can be drawn from 2 distinct gaussian. We created
datasets with different P values (number of categories in each problem), where P
can be equal to 2, 4 or 6, specified for each experiment below. Figure 6.5 resumes the
results obtained by our models and the two baselines for the three types of prob-
lems. For each "budget" (i.e number of examples labeled), we select for each model
the best results on validation problems and plot the corresponding performance on
test problems (results plotted in solid square). Baselines have the same grid-search
parameters as our models w.r.t. the representation module (architecture and size),
the decision module (similarities measures, temperature parameter, type of similar-
ity), and the learning rate. The additional hyper-parameter for our models is the
size of the internal representations of the bi-directional RNN.
Results of the model using policy-gradient technique for acquisition are in pink
(RNN-PG), in yellow for the continuous relaxation using Rectified Linear Unit (RNN-
ReLU), in blue for k-medoid, and in red for random acquisition. We can see that
our RNN methods perform well, especially RNN-PG, for all types of problems and
budget. More particularly, for each budget that matches the number of categories,
RNN-PG performs better than k-medoid : about 5% better for binary and 4-classes
problems (with budget 2 and 4), 15% better for 6-classes problem with budget 6.
However, RNN-ReLU does not provide consistent performances on the three set-
tings. We propose to focus on the next section on the performance of RNN-PG only.
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(A) Results on artificial DoubleGaussian Dataset with 2-categories classification problems.

(B) Results on artificial DoubleGaussian Dataset with 4-categories classification problems.

(C) Results on artificial DoubleGaussian Dataset with 6-categories classification problems.

FIGURE 6.5: Plots of results on three artificial datasets, where inputs
are sampled from a double-gaussian distribution, with 2,4 or 6 cat-
egories per problem. K-medoids acquisition strategy is depicted in
blue, random acquisition strategy in red. Our model using Policy-
Gradient is in pink, and using the deterministic ReLU instantiation
in yellow. Abscissa is the number of examples selected for label-
ing, ordinate is the average accuracy obtained on all test-problems.
For each model, we select the best results on validation problems for
each budget, and plot the corresponding performance on test prob-

lems (square points).
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(A) Results on dataset letter with 2-categories classification problems.

(B) Results on dataset letter with 4-categories classification problems.

(C) Results on dataset letter with 6-categories classification problems.

FIGURE 6.6: Plots of results on uci-dataset letter, with 2,4 or 6 cat-
egories per problem. K-medoids acquisition strategy is depicted in
blue, random acquisition strategy in red. Our model using Policy-
Gradient is in pink. Abscissa is the number of examples selected
for labeling, ordinate is the average accuracy obtained on all test-
problems. For each model, we select the best results on validation
problems for each budget, and plot the corresponding performance

on test problems (square points).
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Results on real datasets
We propose to work on the UCI dataset letter, which has 26 categories and 16 fea-
tures. We took 10 categories for training, 7 for validation and 9 for testing. We
generated 2000 problems in training and 500 problems for validation and testing.
The size of a dataset (examples that can be labeled) is 25, and the number of exam-
ples to classify per problem is 40. Here again we study 3 types of problems, binary,
4-classes and 6-classes with various budget levels. The results are plotted in Figure
6.6. We observe mixed results. Our model performs better than a k-medoid ac-
quisition strategy for a budget of 2 on binary-classification problems, but k-medoid
leads to a better accuracy for higher budgets. It is also better for all budgets except
6 on 4-categories problems. For 6-categories problems, our model beats the two
baselines for all budgets. This difference of performance can be explained by the
small amount of different categories in the training dataset; with 10 categories and
binary problems (45 possible combinations), our model can observe the same prob-
lem a large number of times, which could lead to overfitting. This seems the case, as
it performs better on 6-classes problems (210 possible combinations). We propose
thus to study now a dataset with a larger number of categories.
On the dataset aloi, a dataset of 1000 small objects, with around a hundred images
per object, we created 4000 training problems on 350 categories, and 500 validation
and testing problems on respectively 300 and 350 categories. The number of exam-
ples that can be labeled is 25, and the number of examples to classify per problem
is 40. The results are shown in Figure 6.7, for the 3 types of problems (2-classes,
4-classes and 6-classes). We see that our method performs better than k-medoid for
all budgets and all types of problems, except on binary-classification with budget
6, where k-medoid performs slightly better (0.5%). On this bigger dataset, our ap-
proach is less prone to overfit, and thus manages to generalize well its acquisition
strategy to novel problems on unseen categories.

6.5 Perspective : Hybrid Model

We have presented an approach for static acquisition of labels in a single step. The
model seems to perform well on the datasets we studied, which illustrates its ability
to find a smart strategy (as efficient or better than a k-medoid strategy) for choosing
which examples to label with a single glance at the data. Yet, an adaptive method
may be more effective. In our approach, the vector for acquisition is computed w.r.t.
the entire unsupervised dataset, but each value has no explicit information about
the probabilities of acquiring the other examples4. Furthermore, as acquisition is
done in a single step, the system do not use any feedback regarding the acquired
labels. The results could be improved if the decision was made sequentially, one
example after another, waiting for the category of the selected example.

4The information is implicit from the internal states of the bi-directional RNN
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(A) Results on dataset aloi with 2-categories classification problems.

(B) Results on dataset aloi with 4-categories classification problems.

(C) Results on dataset aloi with 6-categories classification problems.

FIGURE 6.7: Plots of results on uci-dataset aloi, with 2,4 or 6 cate-
gories per problem. K-medoids acquisition strategy is depicted in
blue, random acquisition strategy in red. Our model using Policy-
Gradient is in green. Abscissa is the number of examples selected
for labeling, ordinate is the average accuracy obtained on all test-
problems. For each model, we select the best results on validation
problems for each budget, and plot the corresponding performance

on test problems (square points).
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FIGURE 6.8: Architecture of an adaptive framework relying on a rep-
resentation of the currently supervised dataset. The acquisition pro-
cess is repeated T times (e.g if T is the number of examples to label
and one example is labeled per step). After acquisition, i.e. receiving
the labels of the selected inputs, the representation of the supervised

dataset is updated with this new information.

It is possible to design such method as an extension of our approach. The key idea is
to use an additional input in the acquisition component: a representation vector of
the currently supervised dataset. The goal is to have a representation that encapsu-
lates the inputs that are already selected, with their labels, to guide the acquisition
on the remaining examples. It relies on a similar idea as [Vinyals et al., 2016], where
the representation of each example is dependant of the dataset. In our case, the
acquisition decision should be made w.r.t. the labeled examples so far. Such repre-
sentation can be built using recurrent networks architectures, e.g. order invariant
RNN, or a memory network. If the representation model for the supervised dataset
is fully differentiable, it can be integrated easily into our framework. The process
can be sequentialized by stacking the network acquisition as many times as there
are acquisition steps. A schematic illustration of such model is provided in Figure
6.8.

Closing remarks The problem and the framework presented in this chapter open
various leads for future research. It seems crucial to go further on this path to design
more complex models that get closer to a "general" M.L. method. We defined here
a possible step to develop systems capable of considering different problems, as a
whole, instead of a unique task. Yet, we want to highlight several limitations, which
encourage more thorough studies. First, we presented here a framework able to pre-
dict on various problems, however, there is a strong assumption w.r.t. the common
nature of all inputs. This is quite restrictive and requires further investigation. We
note on the other hand that for robotic multi-tasks problems, it could be a reason-
able hypothesis (e.g. a robot has always access to the same nature of feedback, like
images or radar measures). Secondly, the instantiations we presented have a fixed
budget (i.e always acquire the same number of examples), and the datasets were
composed of similar problems (e.g all problems are binary classification). This en-
courages us to (i) study the capacity of our approach to predict on distinct types
of problems, (ii) design methods that have a soft budget for each problem. Third,
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we focused here on prediction methods based on similarities and on classification
problems. More generic models should be investigated for other types of tasks.
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Chapter 7

Conclusion and Closing Remarks

The main contribution of this thesis is a general framework for adaptive sequential
acquisition of features under cost-sensitive constraints, which allows designing dif-
ferentiable and scalable models for this task. We presented several instantiations
that can acquire several features at each step, without suffering from combinatorial
limitations and without making assumptions about the nature of the input.

In Chapter 3, we presented a model for static feature selection. We focused on the
specific problem of user cold start recommendation, where a new user arrives in
the system with no information about him or her. Unless previous approaches that
focus solely on designing interview processes for the user, our method proposes to
learn in a tied fashion the interview process as well as the decision process, based on
representation learning techniques. We chose to rely on inductive representations
for the users, at the opposite of matrix factorization based techniques. The key idea
is that a representation can be easily updated when a new information arrives (e.g a
rating), as a translation in the representation space, instead of having to re-optimize
the whole system. This choice enables us to design a system that is not only efficient
during cold-start but can be used all through the life of the recommender system.
We showed the relevance of our model on various settings on different recommen-
dation datasets, from strict cold-start to more classical "warm" set-up.

While static feature selection is relevant for the specific problem of user cold-start,
adaptive approaches are more appropriate for the general problem of costly fea-
tures. Adaptiveness should allow a better trade-off between cost and performance:
for a similar "budget", the system can choose to acquire more relevant features by
adapting its behavior w.r.t. what has been currently observed. We presented in
Chapters 4 and 5 a framework for such adaptive methods, based on recurrent neu-
ral networks. One key idea is, similarly to the previous method, to rely on represen-
tation learning. With adaptive acquisition processes, the goal is to acquire different
features from one input to another, and potentially fewer features for some inputs
that are maybe "easier" to classify. Thus, a common representation space allows ex-
pressing all partially observed inputs w.r.t. their currently gathered features. In our
framework, this representation also drives the acquisition process as well as the fi-
nal prediction process. This framework can be implemented using recurrent neural
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networks, which intrinsically provides sequential abilities, and builds an internal
representation state of the process. We propose a first instantiation in Chapter 4,
based on a relaxation of the loss we defined for the problem. The model is fully
differentiable and thus can be learned efficiently with classical or more recent algo-
rithms for gradient descent. It can also gather several features at each acquisition
steps. This is a novel aspect compared to the methods in literature which can prove
really useful. We illustrate the performance of this model on several experiments,
with two cost settings (uniform and cost-sensitive). In Chapter 5, a stochastic in-
stantiation of the framework is presented. The goal of having such stochasticity is
to get closer to the real loss we defined for the adaptive feature acquisition prob-
lem. We relied on policy gradient technique and Monte-Carlo sampling to learn a
stochastic version of our recurrent neural networks. More specifically, we showed
that we can define various ways of sampling the features to acquire, and we pro-
posed to use Bernoulli-sampling, which keeps the ability of the network to acquire
several features at each step. While the results are still competitive with the base-
lines we proposed, it was slightly less accurate than our continuous relaxation from
the previous chapter. It can be explained by the sampling phase in the stochastic
method, which induces a longer training phase. Mainly, the stochastic approach is
slower to converge than the continuous one.

In Chapter 6, we proposed to focus on the cost of labels. We presented a novel
framework to design meta-active learning methods. Unlike classical active-learning
algorithms, the key idea here is to learn an active-learning strategy, i.e learn which
examples should be labeled to better predict afterward. We proposed a protocol in-
spired by recent work on one-shot learning, but instead of receiving each example
of a problem sequentially, we chose to consider the dataset as a pool of examples,
fully observed at the beginning of the process. We instantiated a model composed
of specific recurrent neural networks like bidirectional-LSTM to predict which la-
bels to acquire, and we show on preliminary results the relevance of such systems
compared to more naive acquisition techniques. Yet, this work opens several leads
for research that we briefly describe now.

7.1 Future directions

Our preliminary works at the crossroad of meta-learning and active-learning lead to
several interesting paths for future research. This research seems particularly crucial
on two main aspects. First, meta-leaning is a key problem in artificial intelligence.
Going further with models able to rapidly learn new tasks, without forgetting, in-
stead of having a model learned for a single task, is a huge step for A.I. It has been a
trending topic recently, for example with challenges on gradual learning, or focuses
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on life-long learning. Secondly, budgeted and constrained systems are not only in-
teresting for real-life applications with costs, but also for a more general goal: to de-
sign models that go towards more semi-supervised learning, closer to human-like
learning. Unsupervised and semi-supervised learning are considered the next big
steps for artificial intelligence, and several recent works show encouraging results
in this regard. If one considers "human-like" learning as an acceptable referential,
we can observe that we learn from a variety of information, that are sometimes "la-
beled", and most of the time not. We also have several constraints regarding the
information we can access when we learn. Integrating budget or cost in a system is
therefore not only necessary to deal with several applications but also to force the
system to be "smarter", instead of solely process a large amount of data. Mimicking
these constraints seems to be one way to move towards this goal.
These motivations encourage us to go further on designing interacting meta-learning
systems, where the model not only has to learn to learn, but also has to learn how
to use and interact with the available information and more generally with the new
problem it is facing. Firstly, several extensions of the model presented in Chapter
6 are straightforward. Specifically, improvements could be done by using recent
order-invariant RNN model to process the dataset of examples. Going further with
the hybrid model, to provide adaptive acquisition and integration of labels feed-
back is the next logical step. On the long term, developing models that can acquire
information at various levels (labels and features) with a meta-learning strategy is a
key target. One interesting aspect would be to focus on strategies of acquisitions as
well as strategies of "storage" (or "remembering"), relying for example on the recent
memory networks. The underlying problem that we want to highlight here is both
how to use at best the information the environment can provide, but also how to
use what the system has seen and learn before, and how to store it to not forget the
more important knowledge. Additionally, we focused on prediction methods that
rely only on similarities, as they do not have to be learned per say for each new
problem. Unfortunately, this limits the type of tasks one can tackle, and prevents to
deal with a large heterogeneity of problems.
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