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Réduction de modèles polyédriques pour l’analyse de tolérances géométriques
Résumé : L’analyse de tolérances par des ensembles de contraintes repose sur la détermina-
tion de l’accumulation de variations géométriques par des sommes et intersections d’ensembles
opérandes 6d. Les degrés de liberté des liaisons et les degrés d’invariance des surfaces génèrent
des opérandes non-bornés (polyèdres), posant des problèmes de simulation. En 2014, L. Homri
a proposé une méthode pour résoudre ce problème, consistant à ajouter des limites artificielles
(contraintes bouchon) sur les déplacements non-bornés. Même si cette méthode permet la ma-
nipulation d’objets bornés (polytopes), les contraintes bouchon augmentent la complexité des
simulations. En réponse à cette difficulté, une méthode dérivée est proposée dans cette thèse.
Cette méthode consiste à tracer et simplifier les contraintes bouchon au travers des opérations.
Puis une seconde stratégie basée sur la décomposition d’un polyèdre en une somme d’un poly-
tope et de lignes droites (associées aux déplacements non-bornés). Cette stratégie consiste à
simuler d’une part les sommes de droites, et d’autre part, à déterminer la somme de polytopes
dans un sous-espace de dimension inférieur à 6. Ces trois stratégies sont comparées au travers
d’une application industrielle. Cela montre que la traçabilité des contraintes bouchons est un
aspect fondamental pour contrôler leur propagation et pour réduire le temps de calcul des
simulations. Toutefois, cette méthode exige encore de déterminer les limites des déplacements
non-bornés. La deuxième méthode, adaptant systématiquement la dimension de l’espace de
calcul, elle permet de diminuer davantage le temps de calcul. Ce travail permet d’envisager la
mise en œuvre de cette méthode selon des formulations statistiques avec la prise en compte des
défauts de forme des surfaces.
Mots clés : Analyse de Tolérances, Géométrie Algorithmique, Polyèdre, Somme de Minkowski,
Degrés de Liberté, Screws.

Polyhedral models reduction in geometric tolerance analysis
Abstract : The cumulative stack-up of geometric variations in mechanical systems can be
modelled summing and intersecting sets of constraints. These constraints derive from tolerance
zones or from contact restrictions between parts. The degrees of freedom (DOF) of joints
generate unbounded sets (i.e. polyhedra) which are difficult to deal with. L. Homri presented
in 2014 a solution based on the setting of fictitious limits (called cap constraints) to each DOF
to obtain bounded 6D sets (i.e. polytopes). These additional constraints, however, increase the
complexity of the models, and therefore, of the computations. In response to this situation,
we defined a derived strategy to control the effects of the propagation of the fictitious limits
by tracing and simplifying the generated, new cap constraints. We proposed a second strategy
based on the decomposition of polyhedra into the sum of a polytope and a set of straight lines.
The strategy consists in isolating the straight lines (associated to the DOF) and summing
the polytopes in the smallest sub-space. After solving an industrial case, we concluded that
tracing caps constraints during the operations allows reducing the models complexity and,
consequently, the computational time; however, it still involves working in 6d even in cases
where this is not necessary. In contrast, the strategy based on the operands decomposition
is more efficient due to the dimension reduction. This study allowed us to conclude that the
management of mechanisms’ mobility is a crucial aspect in tolerance simulations. The gain on
efficiency resulting from the developed strategies opens up the possibility for doing statistical
treatment of tolerances and tolerance synthesis.
Keywords : Tolerance Analysis, Computational Geometry, Polyhedron, Minkowski Sum, De-
grees of Freedom, Screws.
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Résumé étendu

Problématique générale

Toute pièce fabriquée est soumise à des variations géométriques inhérentes aux procédés
de fabrication. La prise en compte de ces variations est un aspect crucial du cycle de vie du
produit, notamment en conception. L’analyse des tolérances géométriques consiste à simuler
le comportement d’un système mécanique en fonction de ces variations. L’objectif est de véri-
fier la conformité du système au regard des exigences fonctionnelles caractérisant le fonction-
nement attendu du système. Cette simulation impose de prendre en compte les spécifications
géométriques des pièces constitutives et les spécifications entre les pièces potentiellement en
contact.

Nombreux sont les travaux publiés sur la représentation et la modélisation des écarts et
variations géométriques, et de leur cumul au niveau des assemblages. Le chapitre 1 de ce mé-
moire, «Review of geometric tolerancing approaches», propose une classification de ces travaux
en selon : leur modèle physique, leur modèle géométrique, leur modèle de défauts, leur modèle
de comportement, des outils d’analyse (probabiliste ou pire des cas) et du principe de résolution
(analyse ou synthèse). Cette classification permet de statuer sur le positionnement de ce travail
de recherche par rapport aux autres travaux dans le domaine du tolérancement.

Méthode de tolérancement par des polytopes (méthode de référence)

Parmi les approches d’analyse de tolérances, celles reposant sur la manipulation d’ensembles
de contraintes géométriques présentent l’avantage d’adresser indifféremment la modélisation de
la propagation de variations géométriques dans des assemblages isostatiques et hyperstatiques.
Les ensembles de contraintes proviennent de la restriction de déplacements induits par des spéci-
fications géométriques, par des spécifications de contact ou bien par des exigences fonctionnelles
d’un système mécanique. Ces contraintes sont générées en discrétisant les géométries nominales
manipulées en Conception Assistée par Ordinateur (CAO). Chaque ensemble est conformé en
un polyèdre résultant d’une intersection de demi-espaces dans un espace affine de dimension 6.
Cette approche permet de déterminer la position relative entre deux surfaces quelconques d’un
système mécanique par des opérations sur des polytopes : somme de Minkowski et intersection.
Le respect d’une exigence fonctionnelle est caractérisé par l’inclusion d’un polytope calculé dans
un polytope fonctionnel.

Les degrés de liberté des liaisons et les degrés d’invariance des surfaces génèrent des opéran-
des non-bornés (polyèdres), posant des problèmes de simulation. En 2014, L. Homri a proposé
une méthode pour résoudre ce problème, consistant à limiter les degrés d’invariance des surfaces
et les degrés de liberté des contacts par des limites fictives (contraintes bouchon).
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Même si cette méthode permet la manipulation uniquement d’objets bornés (polytopes)
pendant les simulations, les contraintes bouchon augmentent la complexité de la topologie des
opérandes. Ceci a un fort impact sur le calcul des sommes de Minkowski. Cette opération, algo-
rithmiquement complexe et très gourmande en temps de calcul, est très sensible à la complexité
des polytopes opérandes.

Dans le chapitre 2, «Geometric tolerancing with 6D polytopes», la méthode de tolérancement
par des polytopes est détaillée, ainsi que la stratégie de simulation reposant sur l’adjonction de
contraintes bouchon. L’algorithme de troncature, qui permet d’exploiter la HV-description des
polytopes, est présenté. Une étude de cas portant sur un assemblage hyperstatique (système
de freinage) a été utilisée pour illustrer la démarche de référence.

Cet exemple a permis de mettre en évidence le problème de l’explosion combinatoire issue
de la propagation de facettes bouchons. Le polytope résultant de la simulation, représentant le
cumul de tous les défauts de la chaîne de cotes, est constitué de 99,99% de facettes bouchons
parmi l’ensemble des facettes. Ces facettes représentent les limites fictives sur des déplace-
ments non bornés et, par conséquent, n’ont pas d’intérêt du point de vue du tolérancement et
accroissent la difficulté de l’interprétation des résultats de simulation.

En réponse à cette problématique, cette thèse a comme objectif de développer des stratégies
pour maîtriser cette explosion combinatoire en réduisant la complexité et temps de calcul des
simulations.

Méthode de réduction des contraintes bouchons

Une méthode dérivée des travaux de L. Homri est proposée dans le chapitre 3, «Controlling
the effects of DOF propagation» , afin de contrôler la propagation des déplacements théorique-
ment illimités dont les limites sont fictives. Cette méthode se base sur une définition formelle
d’une contrainte bouchon et sur des mécanismes pour tracer ces contraintes à travers les sommes
et les intersections. Parmi ces opérations, c’est pendant la somme que de nouvelles contraintes
sont générées. Un théorème est démontré pour décrire ce phénomène de propagation: :

Théorème de propagation des bouchons : soient Γ1, Γ2 deux polyèdres de Rn et Γ′1, Γ′2
leurs polytopes bornés respectifs. Soit FΓ′ une facette de Γ′1 ⊕ Γ′2 et FΓ′

1
+ FΓ′

2
sa décomposition

en faces de Γ′1 et Γ′2. FΓ′ a une facette correspondente dans FΓ qui appartient à Γ1 ⊕ Γ2, si
et soulement si les représentations combinatorires CR(FΓ′

1
) et CR(FΓ′

2
) ne contiennent pas des

hyperplans bouchon.

Ce nouveau formalisme permet, après chaque opération, d’effectuer une simplification du
polytope résultant afin de réduire systématiquement au minimum le nombre de contraintes
bouchon, tout en assurant que les contraintes non-bouchons sont conservées.

L’efficacité de la nouvelle approche est démontrée sur le cas d’étude du système de freinage à
travers une réduction considérable du temps de calcul (99,37%). Cela montre que la traçabilité
des contraintes bouchons est un aspect fondamental pour contrôler leur propagation et pour
réduire le temps de calcul des simulations.

Toutefois, cette méthode exige encore le calcul des opérations dans R6, même si dans la plu-
part de cas cela n’est pas nécessaire (à cause de degrés de liberté ou des degrés d’invariance, la
position relative entre deux surfaces peut être décrite avec un nombre de paramètres inférieur à
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6). En conséquence, faire les opérations avec de polytopes dans R6 implique le calcul de limites
des déplacements théoriquement illimités.

Méthode de décomposition cinématique des opérandes

Une seconde méthode est introduite dans le chapitre 4, «Kinematic decomposition of geo-
metric constraints». Basée dans la définition de polyèdre prismatique, cette méthode repose
sur la décomposition des polyèdres opérandes en une somme d’un polytope (sous-ensemble
borné) et de lignes droites (sous-ensembles non-bornés). Dans le cadre du tolérancement, le
sous-ensemble non-borné caractérise les degrés de liberté de l’élément tolérancé ou bien de la
liaison et le sous-ensemble non-borné caractérise les contraintes géométriques. Cette décom-
position peut être réalisée par une analyse cinématique. Étant donné les similitudes de leurs
définitions mathématiques avec les contraintes géométriques, la méthode des “screws” est mise
en œuvre. Ce principe de décomposition est présenté pour les éléments tolérancés et les liaisons
les plus couramment utilisées en tolérancement géométrique. Au lieu de sommer des polyèdres
de dimension 6, cette stratégie consiste à simuler d’une part les sommes de déplacements non
bornés par des sommes de droites, et d’autre part, à déterminer la somme des déplacements
bornés par des sommes de polytopes de dimension inférieure à 6. Un théorème a été démontré
pour formaliser cette nouvelle stratégie de somme :

Au lieu de sommer des polyèdres de dimension 6, cette stratégie consiste à simuler d’une
part les sommes de déplacements non bornés par des sommes de droites, et d’autre part, à
déterminer la somme des déplacements bornés par des sommes de polytopes de dimension
inférieure à 6. Un théorème a été démontré pour formaliser cette nouvelle stratégie de somme :

Théorème de somme de polyèdres prismatiques : soient Γ1 et Γ2 deux polyèdres
prismatiques de Rn décomposables en une somme d’un polytope P1, P2 plus une somme de
droites ∆i :

Γ1 = P1 ⊕
k∑

i=1
∆i, P1 ⊂ HP1 =

k⋂
i=1

Hi

Γ2 = P2 ⊕
l∑

i=k+1
∆i, P2 ⊂ HP2 =

l⋂
i=k+1

Hi

avec ∆i ⊥ Hi ∀i ∈ {1, ..., l}

La somme Γ1⊕Γ2 la somme peut être calculée comment la somme des projections des poly-
topes sous-jacents dans le sous-espace commun aux opérandes HP1 ∩HP2 plus leurs respectives
droites :

Γ1 ⊕ Γ2 = πHP1∩HP2
(P1)⊕ πHP1∩HP2

(P2)⊕
l∑

i=1
∆i

(πH : projection orthogonale sur l’espace H)

Les droites ∆i représentent les déplacements illimités (degrés d’invariance ou degrés de
liberté) et leur somme définissent le sous-espace des mobilités (twist-space). Selon la théorie
des mécanismes reposant sur l’hypothèse de liaisons parfaites, ce sous-espace est orthogonal au
sous-espace des efforts HP1 , HP2 (wrench-space). Le sous-espace commun HP1∩HP2 , correspond
aux directions de déplacements le long desquelles des efforts peuvent être transmis par les deux
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liaisons. Finalement, c’est selon ces directions de mouvement que les variations géométriques
peuvent être maîtrisées.

Dans ce contexte, à partir d’analyses cinématiques des éléments tolérancés, il est possible
d’identifier le sous-espace affine de R6 dans lequel toutes les contraintes manipulées provien-
nent uniquement de déplacements bornés. Cela présente l’avantage de calculer uniquement
les facettes significatives selon le problème de tolérancement associé (en évitant le calcul de
facettes sur d’axes de déplacements non bornés). De plus, cela permet de réduire la complexité
des opérations en réduisant la dimension de l’espace de calcul (en réalisant des opérations dans
un espace de dimension inférieure à 6).

En appliquant cette méthode au cas d’étude du système de freinage, une diminution signi-
ficative du temps de calcul par rapport à la méthode de référence (99,997% de réduction) et
à la méthode de réduction des contraintes bouchons (99,539% de réduction) a été démontrée.
Ceci est du à l’adaptation systématique de la dimension de l’espace de calcul qui permet de
manipuler uniquement les facettes non-bouchon.

Conclusions et perspectives

Ce travail a montré que la gestion des mobilités des systèmes mécaniques est un aspect
fondamental pour l’analyse de tolérances par des ensembles de contraintes.

Les stratégies développées dans cette thèse ont permis d’améliorer l’efficacité de l’approche
de tolérancement par des polytopes en maîtrisant l’explosion combinatoire de facettes pendant
les simulations. Ceci permet d’envisager la mise en œuvre de cette méthode selon des formula-
tions statistiques où les défauts des pièces sont simulés conformément aux lois de distribution
de la production avec la prise en compte des défauts de forme des surfaces.
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Introduction

Context

Geometric uncertainties influence product assembly, functioning and aesthetics. In response to
this, geometric product specification (GPS) has emerged as an international and unequivocal
means of communication by which the designer, the manufacturer and the metrologist can
exchange functional information about a product (Petit, 2004). These specifications, formalized
under ISO-1101 (2012), ISO-5459 (2011), ISO-8015 (2011), ISO-14405-1 (2011); ISO-14405-2
(2011) and ASME-Y14.5 (2009) standards, provide a way to define admissible manufacturing
deviations according to the design requirements (Mounaud et al., 2011).

In general, the choice of a tolerancing scheme is not made lightly, and in addition, it im-
pacts all the stages of the product life cycle (Dumas, 2014); hence the highly active research in
tolerance management. The main problem, which is still unresolved, is how to decompose the
assembly design requirements into tolerances on individual parts, given the available manufac-
turing capabilities (Fleming, 1987; Lindkvist and Söderberg, 2003; Petit, 2004).

This problem is usually addressed in three steps (Dantan, 2000). First, the geometric
deviations are modelled. Second, design requirements are mathematically described. Finally,
the mathematical constraints of the assembly are transferred to constraints in the deviations
of the constituent parts. This process is illustrated in Figure 1.

Figure 1: Geometric tolerancing process (adapted from (Dantan, 2000)).

Ideally, this transfer should be performed in a top-down fashion (tolerance synthesis). How-
ever, due to its complexity, the problem is usually solved in the opposite direction: the designer
first identifies the influential parts along the tolerance chain, chooses tolerances and then verifies
that the requirements are satisfied (tolerance analysis) (Anselmetti et al., 2010).
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Contribution of this thesis

Different methods of tolerance simulation have been developed. Most of them consider the
effects of 3D geometric variations in rotation or translation along a given direction (Lindkvist
and Söderberg, 2003; Desrochers et al., 2003; Clozel and Rance, 2010; Anselmetti, 2013), limit-
ing their application only to isostatic mechanisms. In addition, this strategy implies that more
than one simulation has to be carried out, considering different displacements directions, in
order to validate the fulfilment of a design requirement (Dantan, 2000; Homri et al., 2015). In
contrast, methods based on operations of geometric constraints can cope with these issues. In
an abstract deviation space, these methods represent the movement constraints imposed by the
tolerance zone of each toleranced feature and joint (Giordano et al., 1992; Teissandier et al.,
1999; Davidson et al., 2002; Beaucaire et al., 2013). The obtained set of constraints represents
all possible deviations of a feature or joint within its tolerance zone. By combining these sets,
deviation propagation at the assembly level can be simulated.

Depending on the way the sets of constraints are defined and represented, different oper-
ations are required. They can be defined either, by means of their frontiers, or by means of
representative samples of internal points. In the first case, Minkowski sums and intersection of
polytopes are able to simulate deviation propagation. In the second case, linear optimization
combined with reliability calculations can be used.

This thesis, in continuity with previous work carried out at the I2M laboratory, is focused
on the management of sets of constraints by means of their frontiers.

Contribution of this thesis

Although the method based on sets of constraints is sufficiently robust to treat most mechanical
design cases (including over-constrained assemblies), the complexity of the Minkowski sums
makes it time-consuming and involves elaborate computing processes.

We found that such complexity, in the context of geometric tolerancing, is correlated to
the way in which the degrees of freedom (DOFs) of joints and the degrees of invariance of
the toleranced features are considered and treated. For example, the sum of the geometric
constraints derived from two planar surfaces can be computed in a 3-dimensional space. In
general, however, the sets belong to spaces of different dimensions requiring special treatment.

One solution to this problem is presented by Homri (2014). The author proposes to compute
the sums in a 6-dimensional space by introducing some additional constraints, called caps, to
the displacements related to the DOFs. We found that this solution entails an increase in
model complexity caused by the propagation of the DOFs along the tolerance chains. This
complexity worsens after each sum until it becomes far too significant and consumes most of
the computational resources.

In response to this challenge, this thesis proposes different strategies to handle sets of geo-
metric constraints with which to face the problems resulting from unconstrained displacements
during tolerance propagation simulations:

• The first strategy, which follows the approach of Homri (2014), proposes to tag the cap
constraints when the operand sets are created. This can be easily done as the type of
surface from which the constraints are derived is known. The strategy is based on a
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characterization of the way in which the cap constraints spread during the computations.
This allows the caps to be traced during the different operations throughout the tolerance
simulations. After each operation, the calculated set can be simplified, re-establishing a
minimum set of cap constraints to control the increase in complexity.

• The second strategy proposes to decompose each set of geometric constraints into a
bounded subset (representing the limits imposed by the tolerance zones) and an un-
bounded subset (representing the DOFs). When summing two operand sets, only the
bounded subsets can be considered, thus isolating the rest. As they usually belong to dif-
ferent spaces, we propose to identify the sub-space in which the projection of the operand
subsets are bounded. This sub-space is characterized by the displacements that define
the relative position of the two features from which the operand sets derive. The fact
of calculating the sum in this sub-space means that the complexity of the operands, and
consequently the computational time, can be significantly reduced. We propose to carry
out this decomposition and calculate this sub-space by means of kinematic analysis using
screw systems.

After testing both strategies and comparing them by solving an industrial case, we concluded
that the traceability of constraints during the operations allows reducing the models complexity
and consequently of the computational time. This strategy is straightforward to implement over
a Minkowski sum algorithm, but it still involves working in 6D, even in cases where this is not
necessary. On the other hand, the strategy based on the sum of the operand projection is more
efficient because the dimensions of the calculation space are reduced.

The whole list of scientific communications derived from this thesis is presented in Annex A.

Document review

This document is divided into five main parts:

• In Chapter 1, the existing geometric tolerancing techniques are reviewed. They are cate-
gorized, first according to the way they model the deviations at the part level and their
propagation at the assembly level, and second according to the strategy adopted to per-
form computations.

• In Chapter 2, the method for geometric tolerancing based on 6D polytopes is summarized.
It describes how restrictions derived from the tolerance zone of toleranced feature or from
the gap of a mechanical joint can be represented by 6D polyhedra. These polyhedra
are then bounded into polytopes by introducing cap constraints. In the last part of this
chapter, the case study used throughout this thesis is presented and solved. Some aspects
that have potential for improving the current method are highlighted and discussed.

• In Chapter 3, the mathematical definition of a cap constraint is presented. The chapter
also describes how the cap constraints spread during sums and intersections. A theorem
and an algorithm formalize the strategy for tolerance analysis with cap control propaga-
tion. The strengths and weaknesses of this strategy are discussed around the same case
study presented in Chapter 2.
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• Chapter 4 details how to decompose geometric sets of constraints using kinematic anal-
yses. This decomposition is presented in a general way, with the most common cases in
geometric tolerancing being illustrated. This decomposition leads to more efficient ways
to simulate interactions between sets of geometric constraints. A method for summing
decomposed sets of constraints, supported by a theorem, is presented and tested with the
case study.

• Finally, in the last chapter, a general discussion is presented with prospects for further
research.

Notations

The field of real numbers is denoted by R. Vector spaces defined on R are denoted Rn, where n
is an integer representing the dimension of the space. Vectors are denoted in boldface type, such
as x, y, z. The zero vector is denoted by 0. Scalars are represented in by Greek letters, such
as α, β, γ. Integers are denoted with latin letters: a, b, c. Other notations used throughout
this document are:

H hyperplane of Rn.

H̄+ positive closed half-space associated to H.
P polytope of Rn.

HP set of half-spaces defining the polytope P .
VP set of vertices defining the polytope P .

Γa,b/c,d polyhedron of Rn describing the relative position of the surface b of the part a with
respect to the surface d of the part c.

Γ′a,b/c,d capped polytope associated to polyhedron Γa,b/c,d.

P1 ⊕ P2 Minkowski sum of polytopes P1 and P1.

P1+̃P2 Minkowski sum of polytopes P1 and P1 followed with a cap removal.

CD(v) dual cone of vertex v.

N (P ) normal fan of polytope P .

∆ straight line in Rn.

Wa,b/c,d wrench describing a given restricted movement between the surface b of the part a
with respect to the surface d of the part c.

Ta,b/c,d twist describing a given mobility between the surface b of the part a with respect to
the surface d of the part c.

Ŵ wrench-matrix.

T̂ twist-matrix.
πH orthogonal projection in the hyperplane H.
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Chapter 1

Review of geometric tolerancing
approaches

In this chapter, we review the existing approaches for simulating geometric variations in
mechanical systems. The differences between them lie in the assumptions they make to
reproduce variations at the part level and their propagation at the assembly level. Dif-
ferent phenomena interact at different stages of the products life cycle to produce greater
geometric deviations (see for example Figure 1.1). The complexity of considering all the
real phenomena and their interaction renders assumptions imperative. We review and
categorize these assumptions throughout the different stages comprised in the definition of
a geometric tolerancing approach. This taxonomy, summarized in Figure 1.2, is developed
in the following sections.

Figure 1.1: Phenomena causing geometric deviations in a turboshaft engine (Pierre, 2011).
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1.1 Tolerancing model

Figure 1.2: Map of geometric tolerancing approaches.

1.1 Tolerancing model

A tolerancing model aims to reproduce not only the geometric variations at the part level, but
also their interaction at the assembly level. Reproducing these variations at part level involves,
first, the definition of a physical model reproducing the phenomena causing the variations,
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next, the choice of model for describing the geometry of manufactured parts, and finally, a
mathematical model to represent their variations.

1.1.1 Physical model

Whatever the process, geometric deviations occur during manufacturing and assembly. These
deviations generate uncertainties in surface orientation, position and form. Similarly, when
products are in operation, other geometric deviations occur, generated by phenomena such
as friction, gravity, motion-induced forces, heat, etc. According to the product type and its
operating conditions, some of these phenomena may be more relevant than others and cannot
be ignored.

The difficulty of modelling all of these variations realistically lies in the consideration of
flexible parts. Thus we classify existing models into those that consider rigid bodies and those
that consider deformations.

Mechanical deformations are a common concern in the automotive and aircraft industry.
Sheet metal parts can suffer significant deviations during the assembly process, and they cannot
therefore be modelled as rigid bodies (Wärmefjord et al., 2016). Beyond the automotive and
aircraft industry, the elastic properties of parts can be considered as a possibility for recovering
parts originally considered as non-compliant (Petit, 2004).

Thermal-induced deviations cannot be neglected in certain cases, for example on turboshaft
engines. Pierre (2011) and Rique Garaizar et al. (2016) modelled thermo-mechanical deforma-
tions in turbine blade tips (see Figure 1.3). Benichou and Anselmetti (2011) considered the
effect of thermal expansions in shafts, looking at uniform coaxiality deviation. Lorin et al.
(2013) consider aesthetic impacts of thermal expansions in car parts.

(a) 3D model. (b) 2D nominal and skin model.

Figure 1.3: Functional requirement in a turboshaft engine (Pierre, 2011).

Finding a general and efficient method to consider the deformation of parts in geometric
tolerancing is a challenging task. Either the developed methods are based on specific models,
valid for a given kind of part or they include finite element analysis, which tend to be time-
consuming (Rouetbi et al., 2017; Stricher, 2013). Thus, most geometric tolerancing approaches
assume rigid bodies.
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1.1.2 Geometric model

Designers usually manipulate only the nominal geometry of products through CAD systems.
However, the need to consider geometric deviations has led to alternative geometric represen-
tation models.

Skin model shapes are models based on non-ideal geometries representing given instances
of manufactured parts, including form defects (see Figure 1.4). Different strategies to generate
skin model shapes have been proposed in (Favreliere, 2009; Zhang et al., 2011; Schleich and
Wartzack, 2014; Yan and Ballu, 2017; Homri et al., 2017; Zhu et al., 2017). The advantage
of this kind of representation is that it can simulate geometric deviations that are expected,
predicted or already observed in real manufacturing processes (Anwer et al., 2013).

Figure 1.4: Skin model shape generation (Yan and Ballu, 2017).

However, the level of detail of the models, and consequently of the simulations, restricts
their use to simple assemblies, as shown in Figure 1.5. Furthermore, designers tend to neglect
form defects, assuming that contact clearances are of a higher-order (Adragna et al., 2010;
Dumas, 2014); this cannot be assumed at the nano-scale (Samper, 2007).

Tolerance simulations are often based on features of perfect form, called substitute features.
These are associated to the real feature following a given criterion (minimization of the sum
of the squared distances, minimization of the maximal distance) to minimize the form defects.
Figure 1.6 illustrates an example of this association process.

In the most approximate case, a real surface is represented as a point (1D tolerancing). In
2D tolerancing, real surfaces are represented by line segments. In 3D tolerancing, perfect form
surfaces are used to simulate position and orientation deviations. Seven surface classes are used:
spherical, planar, cylindrical, helical, rotational, prismatic and complex. Each of these classes
is derived from the displacement subgroup that leaves it globally invariant (Hervé, 1994).

1.1.3 Variation model

A mathematical model is associated to a geometric model to represent its variations. Different
kinds of models have been proposed for both skin model-based and substitute feature-based
representations.

Variations in skin model shapes are typically simulated by linear combinations of form error
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(a) Schleich et al. (2015). (b) Schleich and Wartzack (2014).

(c) Corrado et al. (2017). (d) Schleich and Wartzack (2015).

Figure 1.5: Simulations with skin model shapes.

modes associated to the nominal geometry (Samper, 2007; Homri et al., 2017). Figure 1.7
illustrates examples of some natural modes of a plane with circular boundary.

Following this logic, neglecting form defects in geometric tolerancing corresponds to consid-
ering only the first six natural modes. In these cases, the deviations (in position and orienta-
tion) of the substitute feature are characterized by means of vectors, transformation matrices
or torsors/screws. The difference between these models lies in the assumed dimension of the
substitute feature and the consideration or not of rotations as linear (i.e. small displacements).

When the substitute feature is a point and only one movement direction is considered, the
variation is associated to a 1D interval. Despite its approximation level, this model is still used
by the draftsmen’s community because of its simplicity (Shah et al., 2007). This model can
also be used in 2D (Chase et al., 1995) and 3D (Gao et al., 1998) by associating a vector to the
point (vectorial tolerancing).

In 3D tolerancing, the position and orientation of features can be characterized by means of
homogeneous transforms (Sodhi and Turner, 1994). This approach involves manipulating non-
linear relations, which can make further manipulations difficult. Serré et al. (2011) suggest to
use conformal geometric algebra to solve such relations. Another way to proceed is to linearize
these relations assuming that rotations are small with regard to the dimensions of the features
(Bourdet et al., 1996). An example of this linearization is presented in Figure 1.8. Among
the linearized models, we can find one based on Jacobian matrices (Laperrière and ElMaraghy,
2000; Desrochers et al., 2003), one based on small displacement torsors (SDT) (Anselmetti,
2006; Clozel and Rance, 2010) or screws (Desrochers and Delbart, 1998; Adams and Whitney,
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Figure 1.6: Substitute surface association (Dantan and Qureshi, 2009).

1999; Kumaraswamy et al., 2013).

Models such as domains, T-Maps and polytopes represent all possible positions of a feature
within their tolerance zone or two surfaces potentially in contact. These models consider the
deviation limits of features and contacts in an abstract deviation space.

A deviation domain is created by translating the displacement limits imposed by the tol-
erance zones (or contact clearance) into algebraic constraints expressed in terms of small dis-
placements. The same reasoning is applied to toleranced joints to create clearance domains.
A graphic representation of a domain derived from a planar surface with a circular contour is
shown in Figure 1.9a. Further details about this model can be found in (Giordano et al., 1992;
Samper et al., 2006; Giordano et al., 2007; Mansuy et al., 2013b).

T-Maps are obtained from a basic simplex which is described with areal coordinates in the
space defined by the Euclidean motions. The extreme positions of the related feature within
its tolerance zone are mapped to a specific point of the T-Map. A graphic representation of
a T-Map derived from a planar surface with a circular contour is given in Figure 1.9b. This
method has been described in various studies (Davidson et al., 2002; Davidson and Shah, 2002;
Ameta et al., 2004; Jian et al., 2007).

The polytope-based method (which is detailed further in Chapter 2) is also based on SDTs
to express the constraints imposed by the tolerance zones. The particularity of this method is
that non-linear features’ boundaries are discretized to obtain linear constraints and manipulate
linear objects only. A graphic representation of a polytope derived from a planar surface with
a circular contour is presented in Figure 1.9c. More details about this technique can be found
in (Teissandier et al., 1999; Homri et al., 2015; Arroyave-Tobón et al., 2017c)

The main difference between the models described above lies in the way they define the
constraints. Although T-Maps and domain models are initially able to handle quadratic con-
straints, they finally linearize the set boundaries because of the complexity of summing convex
non-linear constraints. The effects of this linearization are discussed in (Dumas et al., 2015). A
comparison of T-Maps and domain models can be found in (Ameta et al., 2011; Mansuy et al.,
2013a) and comparisons with parametric approaches are described in (Shah et al., 2007; Pierre
and Anselmetti, 2014). Other reviews are presented in (Prisco and Giorleo, 2002; Chen et al.,
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Figure 1.7: Natural modes of a disc (Samper, 2007).

Figure 1.8: Rotation linearization (Chen et al., 2014).

2014).

1.1.4 Assembly behaviour model

At the assembly level, component uncertainties combine to produce greater uncertainties. In
mathematical terms, there is an assembly response Y representing the accumulative stack-up of
deviations which depends of independent deviations on n components {X1, X2, ...Xn} (Nigam
and Turner, 1995; Dantan and Qureshi, 2009):

Y = f(X1, X2, ...Xn) (1.1)

Function f corresponds to the assembly behaviour model and simulates the effects of de-
viation interaction. This interaction depends on how individual parts are mated (geometric
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(a) Domain. (b) T-Map. (c) Polytope.

Figure 1.9: Comparison of domains, T-Maps and polytopes.

behaviour laws) and strength-related phenomena (mechanical behaviour laws).

Considering the interaction of geometric and mechanical behaviour laws simultaneously is
challenging. This is why only a few studies have addressed this problem: (Mazur et al., 2011;
Samper and Giordano, 2003; Xie et al., 2007; Dupac and Beale, 2010; Stricher, 2013; Lindau
et al., 2016). Most tolerancing models therefore consider only geometric behaviour laws.

Geometric behaviour laws depend on the topological structure of the assembly (Bourdet
and Ballot, 1996). While serial joints entail a variation accumulation, parallel ones generate
a variation counteraction. When variables {X1, X2, ...Xn} represent 1-dimensional deviations
(considering only dimensional and positional variations), Eq. 1.1 is reduced to an arithmetic
operation (Shah et al., 2007). Figure 1.10a illustrates this case.

(a) Points variation in 1D. (b) Points variation in 3D. (c) Surfaces variations in 3D.

Figure 1.10: Models for representing geometric variations and their accumulation.

The construction of the assembly response function depends on how variations are modelled.
When using Unified Jacobian-Torsors, f is a relation of matrices (Ghie et al., 2010; Zeng et al.,
2017b). The CLIC method (Anselmetti, 2006) proposes to determine a set of analysis lines along
a tolerance chain. These lines represent the most disadvantageous movement directions for a
given design requirement. By using pre-established relations for the different types of joints,
the assembly response can be characterized. The TTRS (Technologically and Topologically
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Related Surfaces) method suggests a successive surface association to obtain f (Desrochers and
Clément, 1994; Clément et al., 1998). These associations are based on intersections and/or
unions of displacement subgroups. The same results can be obtained by a direct manipulation
of SDTs or screws and solving the derived system of linear equations (Ballot et al., 2003;
Teissandier, 2012; Bourdet et al., 2013).

Using these strategies, explicit linear relations can be obtained (as shown in Figure 1.10b)
(Ledoux and Teissandier, 2013); which facilitate their integration into commercial Computer-
Aided Tolerancing tools (Clozel and Rance, 2010). However, the main drawback of these models
is that they consider each movement direction to be independent from the others (Dantan, 2000;
Homri et al., 2015). This implies that more than one simulation can be required to validate
the fulfilment of a design requirement. Furthermore, over-constrained mechanisms cannot be
treated with these models.

These limitations can be overcome when all possible feature deviations are taken into ac-
count simultaneously. By means of models such as domains, T-Maps or polytopes, the de-
pendencies between rotations and translations are considered, requiring only one simulation to
ensure the compliance of a design requirement, even in the case of over-constrained assemblies.
In this instance, f is a relation of 6D vector sets. For parallel contacts, the intersection of
the respective vector sets is required (Teissandier et al., 1999; Mansuy, 2012; Homri et al.,
2015). Defect accumulations in serial contacts are simulated by means of Minkowski sums of
the respective vector sets (Fleming, 1988; Srinivasan, 1993) (see Figure 1.10c). Once the final
calculated polytope is obtained (the polytope containing the entire cumulative stack-up of vari-
ations), the compliance of the functional condition can be verified, checking that the calculated
polytope is included inside the functional polytope.

1.2 Computation strategy

Different strategies have been proposed in the literature to solve tolerancing problems. These
strategies define the way deviations limits are treated (deterministically or statistically) and
the solution sense of the problem (analysis or synthesis).

1.2.1 Estimation of limits

To compute the worst-case deviation propagation scenario in an assembly, the extreme values
for each tolerance and contact are assumed. By doing this, it is ensured that 100% of the
products are going to be assembled and/or work as expected, which becomes interesting for
prototypes or small production series. However, it implies tighter tolerances, and consequently,
higher manufacturing costs due to additional machining operations or more expensive machining
equipment (Jeang, 1994).

The statistical approach considers that it is more economical to reject a small percentage
of production than to use a more accurate manufacturing process (Fleming, 1987). Using this
idea, tolerance values are relaxed to some extent, which is interesting for high production rates.
The challenge is then to find the right compromise between the cost of the rejected production
and the cost of the increase in the tolerance values.
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1.2 Computation strategy

The objective of a statistical simulation is to estimate the probability distribution of Y
considering the probability distributions of the contributors. When real manufacturing data
are available, more accurate tolerance propagation simulations can be performed (Dantan and
Qureshi, 2009). This can be done either by analytic or stochastic methods. When analytic
methods are used, it is assumed that the contributors X1, X2, ...Xn are all normally distributed.
Their nominal values are then set at the mean and from the standard deviation of the input
variables the probability distribution of the output can be estimated (Morse, 2004; Shen et al.,
2005; Ghie et al., 2010):

σY =
√(

∂X1

∂f

)2
σ2

X1 +
(
∂X2

∂f

)2
σ2

X2 + ...
(
∂Xn

∂f

)2
σ2

Xn
(1.2)

When f is not available in analytic form, the partial derivatives cannot be computed.
Stochastic methods, such as the Monte Carlo simulation, are then required to generate a popu-
lation of input parameters and estimate σY (Chase et al., 1995; Yang et al., 2013; Qureshi et al.,
2012). A representative number of feature instances are generated, varying their position and
orientation according to a given probability distribution (see for example the sample illustrated
in Figure 1.11). In this way, intersections and Minkowski sums are avoided. The propagation
is computed by means of linear optimization methods combined with reliability calculation
algorithms (Dantan and Qureshi, 2009; Beaucaire et al., 2013; Mansuy et al., 2013b). One of
the advantages of this strategy is that sensitivity indices can be estimated in relation to the
tolerance values, which produces very interesting results for tolerance decision-making (Ziegler
and Wartzack, 2015).

Figure 1.11: Monte Carlo simulation (Dumas, 2014).

18



Review of geometric tolerancing approaches

1.2.2 Solution direction

In the design process, the functional requirements of products have to be transferred to con-
straints in the deviations of the constituent parts. This way to solve the problem is referred
to as tolerance synthesis. It involves, first defining the required functional specifications (spec-
ification synthesis), and second their magnitude (tolerance allocation), so that the functional
requirements can be satisfied. The problem of specification synthesis has been addressed by,
among others, Anselmetti (2006) and Mejbri et al. (2005). Tolerance allocation is an under-
constrained problem, and therefore it is usually addressed from an optimization perspective
(Etienne, 2007). The aim is to balance tolerance values against cost aspects while consider-
ing manufacturing constraints (Wandebäck et al., 2009). The cost function, which must be
minimized, usually takes the form (Chase and Parkinson, 1991; Mansuy et al., 2011):

C = A+ b1

t1
+ b2

t2
+ ...+ bn

tn
(1.3)

where A represents fixed costs (machine setup, material, etc.) and bi the cost of producing
a single component dimension to a specified tolerance ti.

Different optimization techniques have been used for tolerance allocation considering dif-
ferent types of constraints. Ming and Mak (2001) and also Geetha et al. (2013) used genetic
algorithms, Zeng et al. (2017a) and Wu et al. (2009) proposed a statistical strategy based on
Monte Carlo simulations; Muthu et al. (2009) used particle swarm optimization.

Due to its complexity, geometric tolerancing problems are usually solved in the opposite
direction: the designer first identifies the influential parts along the tolerance chain, chooses
tolerances and then verifies that requirements are satisfied (Anselmetti et al., 2010).

1.3 Positioning this thesis in the geometric tolerancing
map

The work proposed here is based on the following considerations:

• parts are considered as rigid bodies,

• form defects are not considered,

• contact surfaces are considered frictionless,

• small rotations are considered as linear.

Based on the taxonomy illustrated at the beginning of this chapter, Figure 1.12 positions
this thesis in the geometric tolerancing map.

Although this thesis was developed for a given computation strategy (worst-case in tolerance
analysis), it can also be applied to the statistical treatment of tolerances as well as tolerance
synthesis.
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1.3 Positioning this thesis in the geometric tolerancing map

Figure 1.12: Position of this thesis in the geometric tolerancing map.
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1.4 Conclusions

The need to consider geometric uncertainties in product quality has brought about several geo-
metric tolerancing approaches. We found that these approaches usually consist of a tolerancing
model and a solution strategy.

On the one hand, the tolerancing model serves to reproduce geometric variations of parts,
derived from different kinds of phenomena and their influence in the assembly context. Assump-
tions significantly reduce the difficulty of considering all real situations that influence geometric
variations in products. Existing models usually focus on reproducing some phenomena, while
neglecting others. This is also because there can be different assembly and operation condi-
tions, making some phenomena more relevant than others. For example, in the automotive and
aircraft industry, geometric variations due to part deformation are usually considered, whereas,
for the nanotechnology industry, form deviations are an important issue. Thus, the creation of
a generic, realistic and efficient model for geometric tolerancing remains an unresolved problem.

On the other hand, the solution strategy determines, first, how deviations limits are con-
sidered; and second, the direction for solving the problem. Deviations limits can be considered
according to a probabilistic distribution or a worst-case scenario. The probabilistic approach
is useful when real manufacturing data are available for simulating a probability distribution
of geometric variations. The worst-case approach becomes more interesting for prototypes or
small production series, but because of its conservative spirit (tighter tolerances), it requires
higher manufacturing costs. Lastly, the direction for solving the problem can be top-down
or bottom-up. The top-down fashion, which is the ideal way to do it, involves optimization
problems. However, because the complexity it implies, tolerance allocation is typically done
in a bottom-up fashion: after choosing a given tolerancing scheme the designer verifies if the
design requirements are satisfied.
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Chapter 2

Geometric tolerancing with 6D
polytopes

In this chapter, we describe how geometric deviations can be modelled with polytopes. In
assemblies, the accumulation of these deviations is computed by summing and intersecting
polytopes. This is a summary of the work of Teissandier (2012) and Homri (2014) and
establishes the basis for this thesis. We also review the method proposed by Homri (2014)
to treat unbounded displacements related to degrees of freedom (of joints) or invariance (of
geometric features). In these cases, the derived sets of constraints are unbounded objects,
i.e. polyhedra, which are challenging to deal with from an algorithmic point of view. A
case study is developed to present the approach and aspects for improvement.

23



2.1 Combinatorial geometry

2.1 Combinatorial geometry

The combinations and arrangements of geometric objects is known as combinatorial geometry.
It is concerned not only with theoretical aspects but also applied ones (Weibel, 2007).

The applied branch of the combinatorial geometry is called computational geometry. It
deals with algorithms computing geometrical objects and solving geometrical problems. Since
many general problems in sciences can be solved by geometrical models, the field of applications
is very large.

In biology, Pey and Planes (2014) uses polyhedral cones to represent metabolic networks
(see Figure 2.1a). In robotics, Firmani et al. (2008) and Dai (2016) represent sets of reaction
forces by means of polyhedral cones (see Figure 2.1b). In CAD, Peternell and Steiner (2007)
employ polytopes combinatorics (particularly Minkowski sums) in solid modelling (see Figure
2.1c). In manufacturing, Inui and Ohta (2007) use Minkowski sums for computing tool paths
(see Figure 2.1d). Grandguillaume et al. (2017) represent kinematic limits of machine-tools
with polytopes for choosing tooling orientation.

(a) Polyhedral cones representing metabolic
networks (Pey and Planes, 2014).

(b) Polyhedral cones representing reaction
forces (Dai, 2016).

(c) Polytopes in solid modelling (Peternell
and Steiner, 2007).

(d) Polytopes representing tool paths (Inui
and Ohta, 2007).

Figure 2.1: Different application of polytopes.

On the other hand, theory attempts to understand the combinatorial properties of geomet-
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rical objects. Some relevant references in the subject, which were an important support for this
thesis, are (Fukuda and Rosta, 1994; Ziegler, 1995; Fukuda, 2004; Weibel, 2007). From these
references, we extracted the following concepts.

Definition 2.1.1 (Polytope) A polytope of Rn is a subset P ⊆ Rn that can be presented as
a V-polytope or, equivalently, as an H-polytope.

Definition 2.1.2 (H-polytope) A H-polytope of Rn is the bounded intersection of a finite
number of closed half-spaces of Rn.

Definition 2.1.3 (V-polytope) A V-polytope of Rn is the convex hull of a finite number of
points of Rn.

Minkowski-Weyl theorem states that the former two definitions are equivalent (see Figure
2.2).

Figure 2.2: Two equivalent definitions of a polytope: half-spaces versus vertices.

Definition 2.1.4 (Polyhedron) A polyhedron is a unbounded polytope.

2.2 Modelling sets of constraints with 6D polyhedra

In mechanical design, a tolerance zone represents the limits of the manufacturing defects for
a given feature. When the feature is considered as a discrete set of points Ni, this restriction
is transferred to each of them. These geometric constraints can be modelled as algebraic
constraints:

S1 ⊆ TZ ⇔ ∀Ni ∈ S0 : dsup ≥ tNi
· ni ≥ dinf (2.1)

where S1 is the substitute surface related to the nominal feature S0, TZ is the tolerance
zone defined offsetting S0 from dinf to dsup and tNi

is the translation displacement of S1 in
relation to S0 at point Ni (see Figure 2.3).
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2.2 Modelling sets of constraints with 6D polyhedra

Figure 2.3: Toleranced feature and tolerance zone (Homri et al., 2015).

Expressing the constraints in (2.1) at any point M (which is assumed to be rigidly linked
with the toleranced feature) of the Euclidean space and linearizing the rotations under the
assumption of small displacements (Bourdet et al., 1996) we have:

dsup ≥ (tM +NiM × r) · ni ≥ dinf (2.2)

where r is the rotation vector of S1 in relation to S0.

Considering a vectorial base [u,v,w], we define the vectors r = [ru, rv, rw], tM = [tu, tv, tw],
NiM = [diu, div, diw], ni = [niu, niv, niw]. When expanding the vectorial and scalar products in
inequality (2.2) and setting ru = x1, rv = x2, rw = x3, tu = x4, tv = x5 and tw = x6, we obtain:

dsup ≥(nivdiw − niwdiv)x1 + (niwdiu − niudiw)x2+
(niudiv − nivdiu)x3 + niux4 + nivx5 + niwx6 ≥ dinf (2.3)

These constraints represent closed half-spaces of R6. For each point Ni ∈ S0, two parallel
half-spaces are obtained. Then, if a finite set of m points Ni is considered, a set of 2m
constraints is obtained (Homri et al., 2015). According to definition 2.1.2, the intersection of
these constraints defines a convex H-polyhedron in R6 (Teissandier et al., 1999):

Γ =
kmax⋂
k=1

H̄+
k (2.4)

where

H̄+
k =

{
x ∈ R6 : bk + ak1x1 + ...+ ak6x6 ≥ 0

}
(2.5)

Let us take, for example, the toleranced feature depicted at the left-hand side in Figure
2.4. For illustrative purposes, let us consider it as a 2D model: only displacements in the plane
[x,y] are taken into account. The tolerance zone implies the restriction on the translation of
the points q1 and q2, tq1 and tq2 respectively:

c/2 ≥ tq1 · y ≥ −c/2

c/2 ≥ tq2 · y ≥ −c/2
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Figure 2.4: A polytope representing geometric deviations in 2D.

When expressing the former inequalities at point M , we have:

c/2 ≥ (tM + q1M × r) · y ≥ −c/2

c/2 ≥ (tM + q2M × r) · y ≥ −c/2

assuming q1M = [d, 0, 0] and q2M = [−d, 0, 0], we obtain four half-spaces:

H̄+
1inf : c/2 + tM_y − rzd ≥ 0

H̄+
1sup : c/2− tM_y + rzd ≥ 0

H̄+
2inf : c/2 + tM_y + rzd ≥ 0

H̄+
2sup : c/2− tM_y − rzd ≥ 0

In the space spanned by [rz, tM_y], the intersection of these half-spaces defines a bounded poly-
hedron, i.e. a polytope, illustrated at the right-hand side of Figure 2.4. When considering, for
example, the 3D space spanned by [rz, tM_x, tM_y], the intersection of the half-spaces generates
an unbounded object as the tolerance zone does not impose limits on tM_x (see Figure 2.5).
The same occurs with the other unbounded displacements in R6.

In a similar way, a polyhedron representing the allowable displacements of a couple of
features potentially in contact can be defined. In this case, the toleranced feature is defined in
the nominal case of permanent contact between the features (see Figure 2.6), and the tolerance
zone is obtained offsetting the toleranced feature according to the clearance value (Teissandier
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Figure 2.5: A polyhedron representing geometric deviations in 3D.

et al., 1999; Homri, 2014).

Figure 2.6: Cylindrical pair (Homri, 2014).

In general, the unbounded displacements characterized by the degrees of freedom of contact
features or the degrees of invariance of geometric features generate unbounded sets of con-
straints, i.e. polyhedra. Just in the case of a complex surface, the derived set of constraints
defines a polytope (a bounded polyhedron) in R6.

In the case of unilateral pairs (ball-and-cylinder pair, cylinder-and-plane pair and planar
pair), asymmetric sets of constraints are obtained. This because the lower clearance bound
is dinf = 0 (ensuring no interpenetration) and the upper one dsup is not defined, i.e. it is an
infinite value. For further details in this aspect, the reader can refer to (Homri, 2014).
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2.3 Modelling stack-up of deviations by operations with
polytopes

When considering rigid parts, the defects propagation in a mechanical system depends on how
the constituting parts mated. The cumulative stack-up of deviations between any couple of
surfaces of an assembly can be simulated operating with geometric and contact constraints. To
do this, all the constraints must be expressed under the same reference system and at the same
point. The set of required operations can be determined according to the topological structure
of the assembly (serial or parallel).

As presented in Eq. 2.5, the native input data used for defining polyhedra in geometric
tolerancing is the H-representation (set of closed half-spaces). As we expose next, the V-
representation (set of vertices) is also required for computing some operations. So we handle
polytopes in their HV-representation.

2.3.1 Modelling parallel architectures - intersections

The interaction of geometric deviations when parts are mated in parallel, i.e. sharing mul-
tiple contacts, can be modelled as the intersection of the derived sets of constraints. In the
typical example of a clamp, the misalignment between the connected parts can be calculated
intersecting the polyhedra derived from the pin-hole joints, as depicted in Figure 2.7.

Figure 2.7: Modelling stack-up of deviations as the intersection of polyhedra (Gouyou et al.,
2016).

Algorithmically, the computation of the intersection of polyhedra is not complicated. It
demands joining together the constraints of both operands and removing the redundant ones.
Then, an intersection of two polyhedra Γ1 and Γ2 can be computed with the H-representation

29
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of the operands (Teissandier, 2012; Arroyave-Tobón et al., 2017c):

Γ1 ∩ Γ2 =
kmax1⋂

k1=1
H̄+

k1

 ∩
kmax2⋂

k2=1
H̄+

k2

 (2.6)

2.3.2 Modelling serial architectures - Minkowski sums

Fleming (1988) and Srinivasan (1993) established the correlation between cumulative defect
limits on parts in contact and the Minkowski sum of sets of constraints. In other words, if
several parts are mated in a serial configuration, the stack-up of their geometric deviations can
be calculated summing the geometric and contact polyhedra involved in the toleranced chain
(see Figure 2.8).

Figure 2.8: Modelling stack-up of deviations as the sum of polytopes.

Definition 2.3.1 (Minkowski sum) Let P1 and P2 be two polytopes. Their Minkowski sum
is defined as:

P1 ⊕ P2 =
{
a+ b,a ∈ P1, b ∈ P2

}

Because their unbounded nature, Minkowski sum of polyhedra is challenging in computa-
tional geometry. This is why few works has been published in this subject. A graphical example
of the sum of polyhedra is presented in Figure 2.9.
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Fukuda (2004) presented an algorithm to compute Minkowski sums of polytopes, mentioning
the possibility of applying the same procedure for the case of polyhedra with at least one
vertex (pointed polyhedra) by treating infinite rays as points at ‘infinity’. However, due to the
degrees of freedom (or invariance), the polyhedra manipulated in tolerancing usually do not
have vertices. In fact, each degree of freedom (or invariance) implies a sweeping operation of a
polytope along a straight line, placing the vertices at infinity.

Figure 2.9: Sum of 2D polyhedra.

Figures 2.10a and 2.10b present examples of Minkowski sums of 2D and 3D polytopes
respectively. Probably the most common technique for computing sums of polytopes consists
in adding all the vertices of the operands (Wu et al., 2003; Peternell and Steiner, 2007). It
implies, afterwards, the computation of the convex hull of the calculated cloud of points, which
can be expensive in an affine space of dimension 6. In addition, this method has to deal with
the identification of the points which are not vertices but which are located on the boundary
of the calculated polytope.

Although some improvements in the calculation of the sum of the vertices of the operands are
presented in (Weibel, 2007; Mansuy et al., 2011; Delos and Teissandier, 2015c), these algorithms
do not provide the H-description of the calculated polytope (required in tolerance analysis to
compute subsequent intersections). Other methods have been proposed in the literature (Fogel
and Halperin, 2007; Lien, 2010; Li and McMains, 2014) but they are only applicable in a
3-dimensional space and can not be generalized to higher dimensions.

Within the context of geometric tolerancing, Mansuy et al. (2011) propose a method for
calculating separately the sum of the most disadvantageous vertices with respect to a functional
polytope. Even if this method avoids the computation of Minkowski sums, the set of computed
vertices is only representative of a given functional condition. In addition, the authors only
consider the case of serial tolerance chains made up of features of the same invariance class and
in a particular relative position (i.e. a set of parallel planes).

Teissandier and Delos (2011) proposed a method for summing HV-polytopes in a 3D space.
The generalization in Rn is formalized in (Delos and Teissandier, 2015b). With this algorithm it
is possible to compute Minkowski sums taking advantage of the duality property of polytopes.
This property, proved by Ziegler (1995), states that the normal fan of a Minkowski sum of two
polytopes P1 ⊕ P2 is the common refinement of the normal fans of its summands:

N (P1 ⊕ P2) = N (P1) ∧N (P2) (2.7)
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(a) Sum of 2D polytopes.

(b) Sum of 3D polytopes.

Figure 2.10: Sum of polytopes. Operands assumed to be centred on the origin.
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Definition 2.3.2 (Normal fan) The normal fan N (P ) a polytope P of Rn is defined as the
set of all the dual cones of P (see Figure 2.11). N (P ) partitions Rn.

Definition 2.3.3 (Dual cone) A dual cone CD(v) of a vertex v is defined as the positive
linear combination of the set of outer normals of its corresponding facets.

Then, to calculate the common refinement of the normal fans of two polytopes P1 and P2,
each pair of polyhedral cones CD(v1i) ∈ N (P1) and CD(v2j) ∈ N (P2) must be intersected.
Examples of the Minkowski sum of polytopes following this strategy is presented in Figures
2.12a and 2.12b.

Figure 2.11: Normal fan N (P ) of a polytope P .

2.3.3 Checking requirements satisfaction: inclusion test

The main objective in tolerance analysis is to conclude whether the functional requirements of
a product are satisfied or not according to the propagation of the defects of its components.
Specifically, with a strategy based on polytopes it can be verified if the calculated polytope,
containing the cumulative stack-up of variations along the dimension chain, fits inside the
functional polytope: PR ⊆? PF . The evaluation of this inclusion can easily be done if the
HV-description of the operands is available. Then, it is required to evaluate if all the vertices
of PR satisfy all half-spaces of PF :

PR ⊆ PF ⇔ ∀c ∈ VR,∀{x ∈ Rn, b+ ax ≥ 0} ∈ HF : b+ ac ≥ 0 (2.8)

An graphical example of an inclusion test is presented in Figure 2.13.

2.4 Truncation algorithm

As exposed before, the approach for geometric tolerancing based on polytopes demands the
H-description for computing intersections and the V-description for computing sums. Thus,
for the general case, the double description (HV-description) of the operands must be available.
Additionally, the fact of deal with the HV-description allows to identify the set of half-spaces
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(a) Summing 2D polytopes intersecting normal fans.

(b) Summing 3D polytopes intersecting normal fans.

Figure 2.12: Sum of polytopes intersecting normal fans. Operands assumed to be centred on
the origin.
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Figure 2.13: Polytopes inclusion test (Teissandier, 2012).

generating each vertex and the set of vertices belonging to each half-space. These relations can
also be traced along the different operations of a simulation to identify the vertices and facets
of a calculated polytope with respect to the vertices and facets of the operands. It turns out
that it is essential to optimize the fitting of a calculated polytope inside a functional polytope.

In response to this, Delos and Teissandier (2015a) proposed using a double description
algorithm for performing vertex and facet enumeration of polytopes in any dimension. The
idea of the algorithm is to start with big hypercube K, which represents the whole space Rn,
and systematically chop it with each half-space H̄+

i defining a polytope P . The definition of
the size of this hypercube is not a problem in tolerancing analysis as we work in the space of
small displacements. Evaluating if H̄+

i intersects (formally separates) K, three cases can occur:

• H̄+
i separates K, i.e. K 6⊂ H−i and K 6⊂ H̄+

i (see Figure 2.14a). In this case the new
vertices have to be found. A new vertex vhk is generated when an edge eh of K has one
vertex vha ∈ H̄+

i and the other one vhb ∈ H−i .

• H̄+
i does not separatesK andK ⊂ H̄+

i (see Figure 2.14b). In this case, H̄+
i is a redundant

half-space that must be removed from the list.

• H̄+
i does not separates K and K ⊂ H−i (see Figure 2.14c). In this case, the result is an

empty set.
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(a) Separation half-space. (b) Redundant half-space. (c) Empty set.

Figure 2.14: Definition of separation half-space (Arroyave-Tobón et al., 2017c).

Algorithm 1 Truncation
Require: An hypercube K and the list of half-spaces of P , HP

Ensure: The list of vertices of P , VP

1: for each half-space H̄+
i ∈ HP do

2: if K ⊂ H−i then // empty set
3: VP = ∅
4: break
5: else if K ⊂ H̄+

i then // redundant half-space
6: remove H̄+

i from HP

7: else // separation half-space
8: for each edge eh = (vha,vhb) ∈ K do
9: if vha ∈ H−i and vhb ∈ H−i then
10: remove vha and vhb from VP

11: else if vha ∈ H̄+
i and vhb ∈ H−i then

12: compute intersection vhk = eh ∩Hi

13: add vhk to VP

14: remove vhb from VP

15: end if
16: end for
17: end if
18: end for
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This procedure, formalized in Algorithm 1, is illustrated in Figure 2.15. All the steps of
the truncation of a polytope with a set of constraints derived from a planar surface with a
rectangular boundary are depicted. The boundary of the surface is discretized in 4 points and
then two constraints per point are obtained HP = {H̄+

1 , ..., H̄
+
8 }. The constraints are expressed

at the centroid of the surface. The input is the hypercube K and the output is the list of
vertices of P , VP . Both, HP and VP represent the HV-description of P .

In Figure 2.16, the truncated polytope P is shown. As shown, each vertex is related to its
corresponding extreme positions of the related feature. For this case, if the value of the tolerance
zone is augmented, the polytope will be scaled according to the ratio; and if the length and
width of the toleranced surface are increased, the polytope will become more slender due to
the decrease in rx and ry.

2.4.1 Computing intersections and sums

The former algorithm can also be used to compute the intersection of two polytopes. In this
case, the initial hypercube K is replaced by one of the two operands. The H-description of
the other one is then used to carry out the truncation. If it exists, the polytope satisfying the
H-description of both operands is calculated. As the intersection of polytopes is a commutative
operation, the choice of the operand to be truncated does not affect the result.

As explained in the previous section, the method for summing HV-polytopes is based on
the intersection of polyhedral cones. Therefore, the truncation algorithm can also be used for
this purpose. In short, the truncation algorithm is the base of the approach developed at the
I2M laboratory for tolerance analysis with polytopes (as it is depicted in Figure 2.17).

2.4.2 PolitoCAT and politopix software tools

The tolerancing process following the above described approach is detailed in Figure 2.18. This
process can be carried out by means of the software tools PolitoCAT and politopix, available
at http://i2m.u-bordeaux.fr/politopix/ under the LGPL license.

By means of its graphical interface, the software allows the user to import CAD models
in formats as *.step, *.iges, *.stl, among others. Directly from the CAD model, operand
polytopes can be created. Truncations, intersections and sums of polytopes can be computed
with politopix. Finally, the designer can import the results in the graphical interface to analyze
them. This process is illustrated in Figure 2.19.

2.5 Polytopes and cap half-spaces

Due to the aforementioned difficulties treating polyhedra, Homri et al. (2015) proposed bound-
ing the original set of constraints with virtual boundaries called cap half-spaces to avoid the
manipulation of vertices placed at infinity. An example of the Minkowski sum of a polyhedron
Γ1 and a polytope P2 following this technique is presented in Figure 2.20. In this case, Γ1 is
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Figure 2.15: Example of the truncation process (Arroyave-Tobón et al., 2017c).
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Figure 2.16: Truncated polytope (Arroyave-Tobón et al., 2017c).

Figure 2.17: Truncation algorithm in tolerance analysis (Arroyave-Tobón et al., 2017c).
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2.5 Polytopes and cap half-spaces

Figure 2.18: Flowchart of the current methodology for tolerance analysis with polytopes.
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Figure 2.19: Tolerance analysis process using PolitoCAT and politopix software tools.
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bounded with two cap half-spaces H̄c+
1 and H̄c+

2 to obtain a polytope Γ′1 and be able to use
the algorithm based on normal fans intersection.

Figure 2.20: Summing 2D capped polytopes intersecting normal fans.

In the context of geometric tolerancing, these half-spaces virtually limit the unbounded
displacements of the related feature or joint. Therefore, they can be characterized according to
the joint type or the class of the surface and their situation elements. The idea is to introduce
the strict minimum of cap facets to each polyhedron:

Γ′ =
kmax⋂

k=1
H̄+

k

 ∩
 2d⋂

j=1
H̄c

+
j

 = Γ ∩
 2d⋂

j=1
H̄c

+
j

 (2.9)

where d is the number of degrees of invariance (or freedom) of the toleranced (or kinematic)
feature.

An example of introduction of cap facets in a case derived from a tolerancing problem is
presented in Figure 2.21. In this figure, a 6D polyhedron derived from the geometric constraints
of a plane surface is depicted in two partial 3D representations. The bottom left polyhedron
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is a partial visualization of the rotations and the right is one of the translations. As the
tolerance zone imposes limits only on rx, ry and tz, cap facets are required to virtually limit
the unbounded displacements rz (in the polyhedron at the left-hand side), tx and ty (in the
polyhedron at the right-hand side). As aforementioned, the decision to add cap half-space to
obtain bounded sets is only due to algorithmic reasons.

Figure 2.21: Cap half-spaces to virtually limit rz, tx and ty depicted in red, blue and green
respectively (Arroyave-Tobón et al., 2017a).

Even if this strategy allows to compute sums, its brings as consequence an alteration of
the topology of the operand polytopes, increasing their complexity. Although such an issue
does not influence the results from the tolerancing point of view, it does involve spending time
calculating meaningless information. During a simulation, this problem increases after each
sum due to the accumulation of the DOFs along the toleranced chains. Therefore, after the
first sum, the definition of the set of cap facets of the operand polytopes is no longer minimal.
As a consequence, the time for computing cap facets is in general far greater than that for
computing significant facets. This phenomena is illustrated further in Section 2.6.
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2.6 Case study: solution by caps-based method

In order to illustrate the concepts described along this chapter, a tolerance analysis of a braking
system is presented. The assembly is made up of six parts, as depicted in Figure 2.22. The
braking performance is directly correlated with the parallelism between the two planar surfaces
of the brake shoes which are in contact with the disc (surfaces 1,1 and 6,1 in Figure 2.23).

As it can be noticed in the section view presented in Figure 2.23, this example has the
particularity of being over-constrained. Three couples of pin-holes clamps generate redundantly
suppressed DOFs. For this reason, it is not possible to solve it directly by means of parametric
approaches without restrictive assumptions.

Figure 2.22: Case study: breaking system (Arroyave-Tobón et al., 2017c).

The objective of the simulation, according to the functional condition FC, is to control the
relative position of the surfaces 1,1 and 6,1 considering manufacturing and contact defects on
the mating parts (see FC in Figure 2.24). More specifically, the relative orientation (variables
[rx, ry]) of these surfaces has to be controlled. This restriction defines the functional polyhedron
PF , which is the one that must be satisfied by the polytope resulting from the deviations
propagation along the tolerance chain.

In order to determine the set of operands and operations, the analysis of the topology of
the mechanism was initially made. According to the enumeration of the parts and the surfaces
presented in Figure 2.23, the topological model of the assembly was created (see Figure 2.24).
In this graph, the nodes are designated by two integers (a, b). The first one refers to the part
number and the second one to the surface number. The nominal model of a part is represented
setting b to 0. The edges in the graph represent some deviations; these may be geometric
deviations, in the case of inner edges, or deviations due to contacts, in the case of edges
connecting two nodes from different parts. These deviations can be represented by geometric
and contact polyhedra respectively (Homri et al., 2015).
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Figure 2.23: Parts and surfaces enumeration (Arroyave-Tobón et al., 2017c).

Figure 2.24: Contact graph of the mechanism (Arroyave-Tobón et al., 2017c).
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2.6 Case study: solution by caps-based method

2.6.1 Operands and operations definition

By analyzing the contact graph, the set of operations required to simulate the relative position
of the surfaces involved in the functional condition can be determined. The following relation
(Eq (2.10)) can then be deduced. In that equation and hereafter, Γa,b/c,d represents a polyhedron
describing the relative position of the surface b from the part a with respect to the surface d of
the part c..

ΓR = Γ1,1/6,1 = Γ1,1/1,0 ⊕ Γ1,0/3,0 ⊕ Γ3,0/4,0 ⊕ Γ4,0/6,0 ⊕ Γ6,0/6,1 (2.10)

where:

Γ1,0/3,0 = Γ1,0/3,0−a ∩ Γ1,0/3,0−b ∩ Γ1,0/3,0−c (2.11)
with:

Γ1,0/3,0−a = Γ1,0/1,2 ⊕ Γ1,2/3,2 ⊕ Γ3,2/3,0 (2.12)
Γ1,0/3,0−b = Γ1,0/1,3 ⊕ Γ1,3/3,3 ⊕ Γ3,3/3,0 (2.13)
Γ1,0/3,0−c = Γ1,0/1,4 ⊕ Γ1,4/2,0 ⊕ Γ2,0/3,0 (2.14)

Γ3,0/4,0 = Γ3,0/4,0−a ∩ Γ3,0/4,0−b ∩ Γ3,0/4,0−c (2.15)
with:

Γ3,0/4,0−a = Γ3,0/3,4 ⊕ Γ3,4/4,4 ⊕ Γ4,4/4,0 (2.16)
Γ3,0/4,0−b = Γ3,0/3,5 ⊕ Γ3,5/4,5 ⊕ Γ4,5/4,0 (2.17)
Γ3,0/4,0−c = Γ3,0/3,6 ⊕ Γ3,6/4,6 ⊕ Γ4,6/4,0 (2.18)

Γ4,0/6,0 = Γ4,0/6,0−a ∩ Γ4,0/6,0−b ∩ Γ4,0/6,0−c (2.19)
with:

Γ4,0/6,0−a = Γ4,0/4,2 ⊕ Γ4,2/6,2 ⊕ Γ6,2/6,0 (2.20)
Γ4,0/6,0−b = Γ4,0/4,3 ⊕ Γ4,3/6,3 ⊕ Γ6,3/6,0 (2.21)
Γ4,0/6,0−c = Γ4,0/5,0 ⊕ Γ5,0/6,4 ⊕ Γ6,4/6,0 (2.22)

As some polyhedra are defined over the same feature, they are consequently homothetic. The
sum of homothetic polyhedra can be performed directly by homothetic transformations and no
numerical computation is needed. A sum of homothetic polytopes can be carried out summing
the second member of the half-spaces of the operands. This is the case of the operands: Γ1,4/2,0,
Γ2,0/3,0, Γ3,0/4,0−c, Γ4,0/5,0, Γ5,0/6,4 and Γ1,1/1,0.

In the case of the ball-cylinder pairs listed next, the DOF of the joints absorb the restricted
rotations of the features. Considering this, the whole set of operands can be considered ho-
mothetic to the operand derived from the contact feature. This is the case of the operands:
Γ1,0/3,0−a, Γ1,0/3,0−b, Γ3,0/4,0−a, Γ3,0/4,0−b, Γ4,0/6,0−a and Γ4,0/6,0−b

Following the strategy summarized in Section 2.5, the unbounded displacements of the
toleranced features were treated through the use of cap half-spaces. Two cap half-spaces were
introduced to bound each DOF and obtain 6D polytopes. After truncating a polyhedron Γa,b/c,d,
we represent the obtained capped polytope as Γ′a,b/c,d. The operand polytopes required for
the simulation were created with the open source software PolitoCAT (Delos and Teissandier,
2015a) (see Table 2.1). Each feature with non-linear boundary was discretized in 8 points,
except in the case of the operand Γ3,0/4,0−a in which 10 points were used. This number of
points implies a good compromise between precision and computation efficiency.
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Table 2.1: Summary of the operand polytopes (HS: half-space, TZ: tolerance zone).
Operand Feature type Related surfaces TZ dimension DOFs Cap HS Non-cap HS Vertices
Γ′1,1/1,0 Plane 1,1; 6,1 0,1 mm 3 6 8 48
Γ′1,0/3,0−a Ball-and-cylinder 1,2; 3,2 0,1 mm 4 8 8 128
Γ′1,0/3,0−b Ball-and-cylinder 1,3; 3,3 0,1 mm 4 8 8 128
Γ′1,0/1,4 Plane 1,4 0,1 mm 3 6 8 48
Γ′1,4/2,0 Plane 2,2 0,1 mm 3 6 16 80
Γ′2,0/3,0 Cylinder 2,1; 3,1 0,1 mm 2 4 16 256
Γ′3,0/4,0−a Plane 3,6; 4,6 0,1 mm 3 6 20 144
Γ′3,0/4,0−b Ball-and-cylinder 3,5; 4,5 0,1 mm 4 8 8 128
Γ′3,0/4,0−c Ball-and-cylinder 3,4; 4,4 0,1 mm 4 8 8 128
Γ′4,0/6,0−a Ball-and-cylinder 4,2; 6,2 0,1 mm 4 8 8 128
Γ′4,0/6,0−b Ball-and-cylinder 4,3; 6,3 0,1 mm 4 8 8 128
Γ′6,4/6,0 Plane 6,4 0,1 mm 3 6 16 80
Γ′5,0/6,4 Plane 5,2 0,1 mm 3 6 8 48
Γ′4,0/5,0 Cylinder 4,1; 5,1 0,1 mm 2 4 16 256

2.6.2 Simulation run

The HV-description of the polytopes, the intersections and the Minkowski sums defined in Eqs.
(2.10) to (2.22) were performed with the software politopix (Delos and Teissandier, 2015a). The
summary of the operations is presented in Table 2.2.

Table 2.2: Summary of the simulation following the current method (HS: half-space).
Operation DOFs Cap HS Non-cap HS Vertices Time [s]
Γ′1,0/3,0−ab = Γ′1,0/3,0−a ∩ Γ′1,0/3,0−b 3 6 14 128 0,02
Γ′1,4/3,0 = Γ′2,0/3,0 ⊕ Γ′1,4/2,0 4 432 12 1 984 2,63
Γ′1,0/3,0−c = Γ′1,4/3,0 ⊕ Γ′1,0/1,4 4 1 048 12 4 104 11,47
Γ′1,0/3,0 = Γ′1,0/3,0−ab ∩ Γ′1,0/3,0−c 1 12 26 512 0,47

Γ′3,0/4,0−ab = Γ′3,0/4,0−a ∩ Γ′3,0/4,0−b 1 2 28 288 0,02
Γ′3,0/4,0 = Γ′3,0/4,0−ab ∩ Γ′3,0/4,0−c 0 0 36 504 0,06

Γ′4,0/6,0−ab = Γ′4,0/6,0−a ∩ Γ′4,0/6,0−b 3 6 14 128 0,02
Γ′4,0/6,4 = Γ′4,0/5,0 ⊕ Γ′5,0/6,4 4 432 12 1 984 2,53
Γ′4,0/6,0−c = Γ′4,0/6,4 ⊕ Γ′6,4/6,0 4 1 048 12 4 104 8,53
Γ′4,0/6,0 = Γ′4,0/6,0−ab ∩ Γ′4,0/6,0−c 1 12 26 512 0,39

Γ′1,1/3,0 = Γ′1,1/6,1 ⊕ Γ′1,0/3,0 4 1 246 12 3 728 7,23
Γ′1,1/4,0 = Γ′1,1/3,0 ⊕ Γ′3,0/4,0 4 16 406 28 33 374 751,20
Γ′R = Γ′1,1/6,1 = Γ′1,1/4,0 ⊕ Γ′4,0/6,0 4 64 400 28 108 860 10 348,51

Computations performed with the library politopix with an Intel Core i7-3740QM.
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Let us show in detail the computation of the operand Γ′1,0/3,0−c. The operands required to
carry out this operation are shown in Figure 2.25. The first operation is depicted in Figure
2.26a. A projection into the three-dimensional subspace spanned by [rx, ry, tz] was carried out
for visualization purposes; since their original polytopes belong to spaces with a dimension
larger than three.

Figure 2.25: 3D representation of some operands. Cap facets are shown in red.

Notice that a strict minimum set of cap facets (facets in red) in the operands, were in-
troduced to bound the sets. However, many cap facets, and consequently many unnecessary
vertices, appear in the calculated polytope Γ′1,4/3,0; having a pair of caps for each DOF is
no longer guaranteed. This phenomenon is caused by the propagation of the unconstrained
displacement tz contained in the operand Γ′2,0/3,0. The result of this sum, which models the
possible deviations of a plane surface oriented along the y-axis (face 1,4) with respect to a
cylindrical surface oriented along the y-axis (face 2,1), shows that only two displacements can
be controlled: rx and ry. This conclusion is justified further on (in Chapter 4) with a kinematic
analysis.

This problem, caused by the propagation of the DOFs, worsens when the calculated poly-
tope, highly ‘contaminated’ with caps, is used again as an operand for a subsequent sum. This
is actually the scenario of the operand Γ′1,0/3,0−c, illustrated in Figure 2.26b. At this point, 1048
caps appear to bound 4 DOFs, where only 8 were enough.
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(a) Computation of Γ′1,4/3,0.

(b) Computation of Γ′1,0/3,0−c.

Figure 2.26: 3D representation of the computation of Γ′1,0/3,0−c. Cap facets are shown in red.
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The same phenomena appears all along the simulation making it to take more than 3hrs
(see Table 2.2). Most of this time was wasted calculating unnecessary data: 99.96% of the
calculated facets come from cap half-spaces, and therefore they have no meaning in the related
tolerancing problem.

2.6.3 Analysis of results

A 3D representation of the final polytope Γ′R is presented in Figure 2.27. Some of the cap
facets (facets in red) can be seen in this particular projection. The maximal values of the
bounded displacements rx and ry (displayed on the figure) depend on the topological structure
of the mechanism, the geometry of the toleranced features and joints and the dimension of
the tolerance zone assumed for each operand. The maximal values along the tz-axis are not
displayed since they depend on the second member of the cap half-spaces and therefore they
are of no interest in the simulation.

The functional polytope PF (derived from the FC), representing the allowable limits in rx

and ry, is illustrated in Figure 2.28. The calculated polytope Γ′R was projected into the same
subspace in order to compare both. For this particular tolerance scheme, it can be concluded
that the functional condition is satisfied. However, the optimal case is when the boundary of
Γ′R touches the boundary of PF , i.e. when d = 0. In the case when PF 6⊆ Γ′R, the tolerance
values of the features and the clearances of the joints have to be tight until reach the fitting.

Figure 2.27: 3D representation of Γ′R.

It is worth mentioning that the point M , in which the constraints were defined, does not
influence the obtained results. Changing this point will generate an affine transformation of
the operands and consequently of Γ′R, but also of PF and if the inclusion is initially satisfied it
will be for any other point (Homri, 2014).
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Figure 2.28: Inclusion test.

2.7 Conclusions

In this chapter we explained how the restrictions imposed by the tolerance zones on the toler-
anced features can be represented by 6-dimensional sets of constraints. As features and joints
usually have some unconstrained displacements (those related to the degrees of invariance or
freedom), these sets are unbounded polyhedra. We reviewed a strategy to deal with this prob-
lem, which consists in imposing additional fictitious limits to the unbounded displacements.

We also showed how the propagation of geometric defects in assemblies can be modelled
with operations of HV-polytopes. We presented the truncation algorithm, which is the com-
putational core of these operations.

We illustrated this approach by means of a case study. This consists of a braking system
made up of several over-constrained joints. By means of a simulation with HV-polytopes, all
the possible configurations of the mechanism (due to the manufacturing and contact defects)
were considered simultaneously. This resulted in not only a pair of extreme values, but also a
set of all the possible relative positions (the calculated polytope) of the surfaces involved in the
functional condition.

As has been shown, this approach has the advantage of being robust enough to treat even
over-constrained mechanisms. However, when performing tolerance simulations following this
method, a great deal of unnecessary data are computed. These data come from the propagation,
along the kinematic chain, of the fictitious bounds (cap constraints) introduced into the joints.
We found that the fact of adding bounding or cap half-spaces increases the model’s complexity.
This complexity increases after each operation until it becomes far too significant, making the
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approach very time-consuming and error-prone.

In addition to the waste of computational resources, this implies that the results obtained
must be analysed to differentiate real displacement limits from fictitious ones (new cap con-
straints), which could lead to misinterpretations.
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Chapter 3

Controlling the effects of DOF
propagation

In this chapter, we formalize and test a strategy to deal with the problem caused by DOF
propagation when summing sets of geometric constraints. The basic idea is to identify
and label the bounding or cap constraints when the operand sets are defined. We suggest
tracing the caps during tolerance simulations to keep the generation of new caps under
control. The mathematical support for this strategy is based on a formal definition of a
cap half-space. Using this definition, cap-spreading rules are formalized for intersections
and sums. The advantages of this strategy are illustrated by means of the same case study
used in the previous chapter, with the aim of comparing both results.

53



3.1 Cap half-space definition

3.1 Cap half-space definition

Before giving a formal mathematical definition of a cap half-space, we need first to present the
formal concept of face of a polytope and the combinatorial representation of a face.

Definition 3.1.1 (Face) Let P be a polytope of Rn. The intersection of P with a supporting
hyperplane H is called a face. H supports P if H ∩ P 6= ∅ and P lies in one of the two closed
half-spaces bounded by H. The dimension of a face is the dimension of its affine hull: a 0-face
is called a vertex, a 1-face is an edge and in Rn a (n− 1)-face is a facet.

In Figure 3.1, for example, the plane H intersects the polytope P at its frontier and it is
completely included in the closed half-space H̄+.

Now, let us write as LP the list of all the faces of P and as Lj
P the list of faces of dimension

j only. Then L0
P = VP is the list of vertices of P , L1

P its list of edges and Ln−1
P its list of facets.

Therefore, list of all the faces of P is LP =
n⋃

j=0
Lj

P , which corresponds to the lattice of P .

Figure 3.1: Concepts of supporting hyperplane and face of a polytope.

Definition 3.1.2 (Subface) Let F and F ′ be two faces of a polytope P . F is a subface of F ′
if and only if F ′ ⊂ F

Definition 3.1.3 (Combinatorial representation (Fukuda and Rosta, 1994)) The com-
binatorial representation CR(F ) of a given face F of a polytope P , is the set of facet indices j
of Ln−1

P such that F is a subface of Fj.

For example, the combinatorial representation of the vertex v of the polytope at the right-
hand side of Figure 3.2 is: CR(v) = {1, 2, 3}.

Based on the former definitions, we formalize the concept of cap half-space.
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Figure 3.2: Combinatorial representation.

Definition 3.1.4 (Cap half-space) Let Γ be a polyhedron in Rn. The half-spaces in the list
Hcap = {H̄+

u , u = 1, ..., w} are caps for Γ if and only if:

• Γ′ = Γ ∩ (∩uH̄
+
u ) is a full-dimensional polytope in Rn

• the combinatorial representations of the faces of Γ are also combinatorial representations
of faces of Γ′.

Definition 3.1.5 (Cap facet) A cap facet is a non-redundant intersection of dimension (n−
1) of a polytope of Rn with the frontier hyperplane of a cap half-space.

In Figure 3.1, for example, if H̄+ is a cap half-space, then F is a cap facet.

Definition 3.1.6 (Capped polytope) A capped polytope is a polytope derived from a poly-
hedron that has been bounded with cap half-spaces.

The concept of combinatorial representation is interesting in the sense that it allows to
identify the same topological elements whether they belong to a polyhedron or to a capped
polytope associated to it. Such a property is illustrated in Figure 3.2, where the edges e and e′,
belonging to a capped polytope and polyhedron, have the same combinatorial representation:
CR(e) = CR(e′) = {1, 2}.

By means of former concepts we can characterize next how caps interact during sums,
intersections and inclusions tests.

3.2 Tracing caps: Minkowski sums

The sum of unbounded polyhedra is also an unbounded polyhedron. In order words, the
unbounded directions of the operands of a Minkowski sum appear also in the calculated poly-
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hedron. When summing capped polytopes, cap facets of the operands appear in the calculated
polytope. Furthermore, new cap facets appear due to a ‘contamination’ phenomenon (as we
shown with the case study in Section 2.6).

According to Definition 3.1.4, it is possible to identify the cap half-spaces in a polytope
representing a polyhedron. The question now is: when summing two capped polytopes, how do
the caps of the calculated polytope can be identified to recover the sets of half-spaces belonging
to the calculated polyhedron?

To answer this question we have, first, to ensure that the main characteristics of the poly-
hedra are preserved by their associated polytopes. This means ensuring that the topological
structure of each polyhedron is included inside that of its associated polytope. Thus, the facets
belonging to the calculated polyhedron can be differentiated among the cap facets.

Based on some theorems, we describe below the way cap facets spread during Minkowski
sums.

3.2.1 Decomposition theorem

According to Fukuda (2004) and Weibel (2007), in a Minkowski sum of polytopes, the faces of
the operands generating each face of the calculated polytope can be identified. This property
is supported by the following theorem:

Theorem 3.2.1 (Decomposition) Let P1 and P2 be polytopes in Rn, and let FP be a face of
the Minkowski sum P = P1 ⊕ P2. Then there are faces FP1 , FP2 of P1, P2 respectively such that
FP = FP1 ⊕ FP2. Such a decomposition is unique.

Figure 3.3 illustrates this property. Notice that although FP is a facet, FP1 and FP2 might
not be. In the general case, FP , FP1 and FP2 have different dimensions. In R2 for example, a
facet FP is a 1-face and we have 3 cases:

• FP1 is a vertex (0-face) and FP2 is a facet (1-face). This is equivalent to the translation
of the facet.

• FP1 is a facet (1-face) and FP2 is a vertex (0-face). This is equivalent to the translation
of the facet.

• FP1 is a facet (1-face) and FP2 is a facet (1-face). This case occurs when FP1 and FP2

are parallel.

3.2.2 Caps propagation theorem

From Definition 3.1.4 and the decomposition theorem, we can describe how cap faces propagate
when summing capped polytopes.
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Figure 3.3: Faces decomposition in Minkowski sums.

Theorem 3.2.2 (Caps propagation) Let Γ1, Γ2 be two polyhedra and Γ′1, Γ′2 their corre-
sponding capped polytopes. Let FΓ′ be a facet of Γ′1 ⊕ Γ′2 and FΓ′

1
+ FΓ′

2
its decomposition into

faces of Γ′1 and Γ′2. FΓ′ has a matching facet FΓ ∈ Ln−1
Γ1+Γ2 such that CR(FΓ′) = CR(FΓ) if and

only if the combinatorial representation of FΓ′
1
and FΓ′

2
does not contain any cap facet.

Proof. We have FΓ′ ∈ Ln−1
Γ′

1⊕Γ′
2
such that FΓ′ = FΓ′

1
+FΓ′

2
with no cap facets in the combinatorial

representation of FΓ′
1
and FΓ′

2
. It means that ∃FΓ1 ∈ LΓ1 ,∃FΓ2 ∈ LΓ2 such that{

CR(FΓ′
1
) = CR(FΓ1) and CD(FΓ1) = CD(FΓ′

1
)

CR(FΓ′
2
) = CR(FΓ2) and CD(FΓ2) = CD(FΓ′

2
)

So if u is the normal to the hyperplane supporting FΓ′
1

+ FΓ′
2
, u = CD(FΓ′

1
) ∩ CD(FΓ′

2
) =

CD(FΓ1)∩CD(FΓ2). As a consequence, FΓ1 +FΓ2 ∈ Ln−1
Γ1⊕Γ2 and FΓ1 +FΓ2 is the matching facet

of FΓ′ = FΓ′
1

+ FΓ′
2
.

The reciprocal is straightforward: let us assume FΓ′ has a matching facet in Γ1 + Γ2, as
a consequence ∃FΓ ∈ Ln−1

Γ1+Γ2 such that FΓ′ � FΓ. Let us decompose the last facet, ∃FΓ1 ∈
LΓ1 , ∃FΓ2 ∈ LΓ2 such that FΓ = FΓ1 + FΓ2 . From definition 3.1.4, ∃FΓ′

1
∈ LΓ′

1
, ∃FΓ′

2
∈ LΓ′

2
such

that{
CR(FΓ′

1
) = CR(FΓ1) and CD(FΓ1) = CD(FΓ′

1
)

CR(FΓ′
2
) = CR(FΓ2) and CD(FΓ2) = CD(FΓ′

2
)

If u is the normal to the hyperplane supporting FΓ we knew that u = CD(FΓ1) ∩ CD(FΓ2),
now we can write u = CD(FΓ′

1
) ∩ CD(FΓ′

2
). So FΓ′ = FΓ′

1
+ FΓ′

2
and no half-space in the

combinatorial representation of FΓ′
1
or FΓ′

2
is capped as CR(FΓ′

1
) = CR(FΓ1) and CR(FΓ′

2
) =

CR(FΓ2).

By means of the previous theorem it can be understood why the number of cap facets soars
when summing capped polytopes. For example, in face FΓ′ = FΓ′

1
+ FΓ′

2
having only one cap

facet in the combinatorial representation of FΓ′
1
or FΓ′

2
is enough to transfer this property to

the sum FΓ′ .
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3.2.3 Algorithm: tracing caps in sums

Based on the former rule about caps spreading, we propose Algorithm 2. It works decomposing
each facet of the calculated polytope in faces of its operands: FΓ′ = FΓ′

1
+ FΓ′

2
. This can

be done computing lists of vertices belonging to FΓ′
1
and FΓ′

2
, V(Γ′1) and V(Γ′2). For each of

these vertices, the list of its supporting half-spaces are identified for building the combinatorial
representation of FΓ′

1
and FΓ′

2
. The final step checks whether if there exists at least one cap

facet in the combinatorial representation of FΓ′
1
or FΓ′

2
. If this is the case, FΓ′ is marked as a

cap facet, if not, FΓ′ can be matched directly with a facet of Γ. Figure 3.4 presents an example
of this procedure.

Figure 3.4: Illustration of Algorithm 2.

3.2.4 Caps removal

There exists infinite possibilities to turn a polyhedron into a polytope. As we explained in the
former chapter, we are interested in handling the less complex capped polytope in order to limit
the computation of worthless data and speed up the simulations. The fact of having operands
with a minimal set of caps does not warranty that their sum generate a polytope also with a
minimal set of caps.
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Algorithm 2 Trace of cap facets in a sum
Require: V(Γ′1),V(Γ′2),V(Γ′),Ln−1

Γ′
1
,Ln−1

Γ′
2
,Ln−1

Γ′

Require: The list of cap half-spaces in Γ′1 and Γ′2
Ensure: The list of cap half-spaces in Γ′

1: for each FΓ′ ∈ Ln−1
Γ′ do

2: // Get the vertices of FΓ′
1
and FΓ′

2
such that FΓ′ = FΓ′

1
+ FΓ′

2
:

3: V(FΓ′
1
) = {a ∈ V(Γ′1)/∃b ∈ V(Γ′2)⇒ a+ b ∈ V(FΓ′)}

4: V(FΓ′
2
) = {b ∈ V(Γ′2)/∃a ∈ V(Γ′1)⇒ b+ a ∈ V(FΓ′)}

5: for each a ∈ V(FΓ′
1
) do

6: // Collect half-space numbers:
7: Get Ha = {u,a ∈ H̄u}
8: end for
9: // Get the combinatorial representation of FΓ′

1
:

10: Compute CR(FΓ′
1
) = {∩Ha,∀a ∈ V(FΓ′

1
)}

11: if No cap half-space in CR(FΓ′
1
) then

12: for each b ∈ V(FΓ′
2
) do

13: // Collect half-space numbers:
14: Get Hb = {v, b ∈ H̄v}
15: end for
16: // Get the combinatorial representation of FΓ′

2
:

17: Compute CR(FΓ′
2
) = {∩Hb,∀b ∈ V(FΓ′

2
)}

18: if No cap half-space in CR(FΓ′
2
) then

19: FΓ′ is not a cap half-space
20: else
21: FΓ′ is a cap half-space
22: end if
23: else
24: FΓ′ is a cap half-space
25: end if
26: end for
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3.2 Tracing caps: Minkowski sums

Then, we propose to simplify the calculated polytope after each sum. The idea is to generate
a new associated polytope with a minimal set of cap half-spaces containing the topology of the
polyhedra it represents. This can be done removing the cap facets of the calculated polytope
and intersecting it with a big hypercube of the same dimension than the affine space of the
polytope. By means of the Caps Propagation Theorem, it is ensured that the new obtained
polytope keeps unaltered the topology of its associated polyhedron after the truncation. In
other words, the data related to the tolerance analysis problem is not affected.

Let us go back to the 2D example in Figure 2.20 to illustrate the above. After the respective
tracing process (trivial in this case) the cap facets of the calculated polytope are identified.
The calculated polytope is not a minimal representation of the polyhedron it represents: three
caps bound each unbounded direction while only one is enough. By removing the caps and
truncating again the polyhedron with a square, a simpler associated polytope can be obtained.
This polytope preserves the topology of the polyhedron. The comparison of the two associated
polytopes (the one before and one after the truncation) is presented in Figure 3.5. From the
tolerancing point of view, these polytopes represent the same displacement limits and therefore
they can be called equivalent.

Definition 3.2.3 (Sum with caps removal) We represent hereafter the Minkowski sum with
caps removal as Γ′1+̃Γ′2.

Figure 3.5: Two different associated polytopes for a polyhedron.

3.2.5 Operands commutativity in sums with caps removal

The sums with caps removal inherits from the Minkowski sum the commutativity property, i.e
Γ′1+̃Γ′2 = Γ′2+̃Γ′1.

Proof. The Minkowski sum of two polyhedra is commutative. Then: Γ′1 ⊕ Γ′2 = Γ′2 ⊕ Γ′1.
According to Theorems 3.2.1 and 3.2.2, it easy to see that the set of cap half-spaces from the
sum Γ′1 ⊕ Γ′2 are the same of those from Γ′2 ⊕ Γ′1. We can reestablish the associated polyhedra
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satisfying that: Γ1 ⊕ Γ2 = Γ2 ⊕ Γ1. After truncating the polyhedra with an hypercube K, we
still can verify that: (Γ1 ⊕ Γ2) ∩K = (Γ2 ⊕ Γ1) ∩K.

The former property applies also for more than two operands. This can be proved by
recursion. In despite of this, operands commutativity can influence the computational time.
This is the consequence of the propagation of the unbounded directions of the operands along
the sum.

In order to explain the above, let us consider the operands P1, P2 and Γ′3 in Figure 3.6.
The sum in the order P1+̃P2+̃Γ′3 (Figure 3.6a) is more expensive than the one in the order
P1+̃Γ′3+̃P2 (Figure 3.6b); even if both provide the same result. Notice that in the first case,
P1+̃P2 produces a polytope without unbounded directions, and then, all its facets are kept.
However, in the next sum P12+̃Γ′3 most of these facets disappear because of the unbounded
direction introduced by Γ′3. The second case introduces from the beginning the unbounded
direction of Γ′3, allowing to manipulate less complex polytopes in the next sum. The number
of dual cones intersections required for the first sum order was 84 (6× 6 + 12× 4) while for the
second one 48 (6× 4 + 4× 6). Based on this, it is clear that the sum P1+̃Γ′3+̃P2 is less complex
than P1+̃P2+̃Γ′3.

Summing first the operands producing the greatest set of linearly independent unbounded
directions avoids calculating data that could be removed in a subsequent sum. These unbounded
directions are actually the extreme rays of the associated polyhedron. We propose to establish
a convenient summation order according to the number of linearly independent rays produced
by each possible pair of operands.

The former can be done either from a geometric or from a kinematic perspective. In the
first case, the characterization of the extreme rays defining each operand polyhedra is required.
By checking each possible pair of operands association, the couple having the greatest set of
linearly independent rays can be determined. In geometric tolerancing, this is equivalent to
perform a kinematic analysis of the considered assembly, for identifying in a serial chain the
couple of joints producing the largest number of DOFs.

3.2.6 Algorithm: sum with caps removal

Algorithm 3 formalizes a strategy for summing several polyhedra by means of their associated
polytopes bounded with cap half-spaces. We represent the summation with caps removal as∑̃np

i=1Γ′i.

The idea is, first, to establish a convenient summation order according to the propagation
of the extreme rays of the polyhedra; and then, to compute the sum tracing the cap facets and
truncate each partial result.
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3.2 Tracing caps: Minkowski sums

(a) P1+̃P2+̃Γ′3

(b) P1+̃Γ′3+̃P2

Figure 3.6: Operands commutativity effects in sums with caps removal.
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Algorithm 3 Sum with caps removal
Require: Set of np polytopes Γ′i in Rn

Require: The list of half-spaces Hcap
i in Γ′i

Ensure: The sum with caps removal Γ′R = ∑̃np

i=1Γ′i
1: Create an hypercube K in Rn

2: Set a convenient summation order {Γ′1, ...,Γ′np
}

3: Γ′R = Γ′1
4: for i = 2 : np do

5: Compute Γ′c = Γ′R ⊕ Γ′i
6: Compute Hcap

c from Hcap
r and Hcap

i

7: Remove Hcap
c from Γ′c to obtain Γc

8: Compute Γ′R = Γc ∩K
9: end for
10: Return Γ′R

3.3 Tracing caps: intersections

In tolerance simulations, not only sums but also polytopes intersections are required. In the
general case, the result of an intersection has to be used again for computing a sum. As the
set of cap half-spaces of each operand must be identified to run sums with caps removal, caps
must also be traced during intersections. This allows us to warranty the trace of the half-spaces
attributes throughout the entire simulation.

During the intersection of two capped polytopes two scenarios can occur with each cap
half-space:

• it is removed because of redundancy. Figure 3.7a illustrates this case.

• it remains unaltered and keeps its status of cap. Figure 3.7b illustrates this case.

From an algorithmic point of view, this is not a complicated task. It simply involves
implementing a label management in a double description algorithm.

3.4 Tracing caps: inclusion test

The final objective of a tolerance analysis is to determine whether a functional condition is
satisfied. In the method based on polytopes, this can be done by checking the inclusion of the
polytope representing the whole stack-up of deviations in the functional polytope.
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(a) Case 1.

(b) Case 2.

Figure 3.7: Capped polytopes intersection.
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When tolerance simulations are made with capped polytopes, special attention has to be
paid to the inclusion tests. We want to avoid that the inclusion of a calculated polytope
in a functional one depends on cap half-spaces. This situation could lead to the misleading
conclusion that the design requirements are satisfied. Figure 3.8 illustrates this case: Γ′R ⊂ PF .
However, as this inclusion depends on some caps, it should be concluded that the functional
requirements represented by PF cannot be guaranteed.

Figure 3.8: Checking the inclusion of a capped polytope in a functional polytope.

This situation can be faced by testing the inclusion not with the capped polytope but with
its associated polyhedron: ΓR ⊆? PF . It is equivalent to check if all the constraints of the
functional polytopes are satisfied by the calculated polyhedron. In this case, this cannot be
performed in the way proposed in Eq. (2.8), because in the general case ΓR has not vertices.

We propose to do so truncating PF with the half-spaces of ΓR. At the end of the process,
the remaining half-spaces must only come from ΓR or from cap half-spaces in PF . If at least one
non-cap half-space of PF is found, it means that the functional conditions cannot be satisfied.

3.5 Case study: solution by caps removal method

With the aim of comparing, we solved the same case study presented in Section 2.6 following
the method presented throughout this chapter chapter.

The same set of operands (Table 2.1) was used for the simulation, but in this case their
cap half-spaces were identified and labeled. This was done according to the surface class from
which each operand derived. The tracing process was done along the different operations.
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3.5.1 Caps removal

The ‘cleaning’ process was done to keep the set of cap half-spaces at the minimum: two caps
appear to bound each DOF (see Table 3.1). This is illustrated with the computation of the
operands Γ′1,4/3,0 and Γ′1,0/3,0−c (Figures 3.9a and 3.9b), by means of 3D representations. Al-
though the first sum took 20% more time to compute (with respect to the caps-based method),
the complexity of the polytope we obtained was notably reduced: 192 versus 1984 vertices.
The increase in calculation time is due to the truncation process launched after the regular
summation to reestablish a minimum set of cap half-spaces (see Figure 3.9a).

Table 3.1: Summary of the simulation with caps control (HS: half-space).
Operation DOFs Cap HS Non-cap HS Vertices Time [s]
Γ′1,0/3,0−ab = Γ′1,0/3,0−a ∩ Γ′1,0/3,0−b 3 6 14 128 0,02
Γ′1,4/3,0 = Γ′2,0/3,0 +̃ Γ′1,4/2,0 4 8 8 128 3,16
Γ′1,0/3,0−c = Γ′1,4/3,0 +̃ Γ′1,0/1,4 4 8 12 192 0,36
Γ′1,0/3,0 = Γ′1,0/3,0−ab ∩ Γ′1,0/3,0−c 1 2 26 384 0,05

Γ′3,0/4,0−ab = Γ′3,0/4,0−a ∩ Γ′3,0/4,0−b 1 2 28 288 0,05
Γ′3,0/4,0 = Γ′3,0/4,0−ab ∩ Γ′3,0/4,0−c 0 0 36 504 0,11

Γ′4,0/6,0−ab = Γ′4,0/6,0−a ∩ Γ′4,0/6,0−b 3 6 14 128 0,03
Γ′4,0/6,4 = Γ′4,0/5,0 +̃ Γ′5,0/6,4 4 8 8 128 3,44
Γ′4,0/6,0−c = Γ′4,0/6,4 +̃ Γ′6,4/6,0 4 8 12 192 0,38
Γ′4,0/6,0 = Γ′4,0/6,0−ab ∩ Γ′4,0/6,0−c 1 2 26 384 0,05

Γ′1,1/3,0 = Γ′1,1/6,1 +̃ Γ′1,0/3,0 4 8 12 192 8,72
Γ′1,1/4,0 = Γ′1,1/3,0 +̃ Γ′3,0/4,0 4 8 28 448 7,55
Γ′′R = Γ′1,1/6,0 = Γ′1,1/4,0 +̃ Γ′4,0/6,0 4 8 28 448 45,45

Computations performed with the library politopix with an Intel Core i7-3740QM.

The real impact of this simplification can be noticed in the next sum (see Figure 3.9b).
When using again the simplified version of Γ′1,4/3,0 to calculate Γ′1,0/3,0−c, the required time was
only 0,04% of the one needed without the simplification.

Similar phenomena appear all along the simulation, making it lasts 01:09 s. This represents
a reduction of 99.37% of the time of the simulation presented in Section 2.6. It is worth
mentioning that no information was lost by applying the proposed method. The gain on time is
due to the calculation of meaningless information that was avoided. Thus, when comparing the
two methods, we can conclude that the last one is more efficient. This because the systematic
filtering of the data.

Figure 3.10 presents the comparison of the results of the simulation without and with caps
removal. We represent the final polytope calculated controlling the caps spreading as Γ′′R.
This was carried out projecting both results to the subspace of the bounded displacements
(the space spanned by [rx, ry] in this case). By doing this, the influence of the caps facets is
completely avoided in the comparison test. This comparison was done numerically, testing that
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(a) Computation of Γ′1,4/3,0.

(b) Computation of Γ′1,0/3,0−c.

Figure 3.9: 3D representation of the computation of Γ′1,0/3,0−c with caps control. Cap facets are
shown in red.
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the vertices of one of projected polytopes satisfied the constraints of the other, and vice versa.
The HV-description of the final calculated polytope is presented in Annex B.2.

Figure 3.10: Comparison of the results of the simulation without (at the left-hand side) and
with caps removal (at the right-hand side).

3.5.2 Influence of summation order

When several sums had to be computed consecutively, the operands were ordered comparing
the DOFs generated by each possible pair. The couple of operands producing the greatest
number of DOF were summed first.

The effects of the summation order can be explained with the computation of Γ′1,0/3,0−c.
When computing Γ′1,0/1,4+̃Γ′1,4/2,0, 3 DOF are generated, but one of them is after relaxed by the
operand Γ′2,0/3,0. In this case, several facets are kept after the first sum but are later removed
during the second one. This summation order implies calculating 65 280 intersections of dual
cones in 6D. According to this, a more efficient computation order would be: Γ′1,0/3,0−c =
Γ′2,0/3,0+̃Γ′1,4/2,0+̃Γ′1,0/1,4. By doing this, 4 DOF are generated from the first sum. In contrast,
this summation order implies intersecting 27 648 pairs of dual cones in 6D. This justifies the
difference in the computational time: 11,63s vs 3,52s. It is worth to mention that both cases
produced the same result.

Exactly the same phenomenon occurs with the final three sums of the simulation. Γ′1,0/3,0
and Γ′3,0/4,0 have 1 and 0 unbounded directions respectively, while Γ′1,1/6,0 has 3. Then, if we
sum first Γ′1,0/3,0+̃Γ′3,0/4,0 a polytope with 1 unbounded direction is obtained and no significant
simplification can be made. The next sum with Γ′1,1/6,0 to obtain Γ′R took in this case more
than 3hrs. This in comparison with the 45s spent when following the order proposed in Table
3.1.
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3.6 Conclusions

For computational and algorithmic reasons, cap half-spaces are required to bound the poly-
hedra into polytopes. In order to distinguish the cap half-spaces from those representing real
limits in the tolerancing problem, traceability is the key concept. Based on the combinatorial
properties of polytopes, we characterized how caps spread throughout all the operations: sums,
intersections and inclusion tests.

We found that tracing the cap half-spaces can reduce the complexity of the calculated sets
during tolerance simulations. Among the required operations, it is during sums that caps
spread. Therefore, some rules were proposed to identify and simplify cap sets.

Reducing the complexity of a polytope derived from the sum of two capped polytopes
becomes useful when subsequent sums have to be calculated. As shown in Section 2.6, when
a polytope highly contaminated with cap facets is used for a new sum, the complexity of the
new calculated polytope is far greater.

It is worth mentioning that the proposed simplification does not imply any loss of informa-
tion since cap half-spaces bound theoretically unbounded displacements of a toleranced feature.
Therefore, the limits established by these half-spaces are of no interest from the tolerancing
point of view.

The advantages of the strategy based on cap trace and truncation were demonstrated by
means of an industrial application. The computational time could be significantly reduced
compared to that required by the strategy presented in the previous chapter. In addition to the
reduction in computational time, the proposed method reduces the complexity of the operands,
and hence the probability of having numerical problems during the calculations.

By means of the case study, we discussed the effects of the operand order when computing
more than two sums with cap removal. Even though it was demonstrated that this operation
is commutative, the summation order affects its algorithmic complexity. We therefore suggest
first summing the operands producing the greatest number of unbounded directions.

The strategy of labelling and tracing half-spaces is an important step towards tolerance
synthesis. In this way, the topological elements of a calculated polytope can be linked to our
input data, the initial set of ISO geometrical specifications. With this information, the most
influential features in the tolerance chain can be determined.

Even if the strategy presented in this chapter is able to reduce the complexity of the ma-
nipulated models and consequently the computational time, the ideal scenario is when no cap
half-spaces are used at all in the computations, which is actually the objective of the method
proposed in the next chapter.
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Chapter 4

Kinematic decomposition of geometric
constraints

In this chapter, we propose to use the theory of screws to model the mobility conditions
of an assembly during tolerance simulation. This enables us to simplify sets of geometric
constraints, decomposing them into the sum of a polytope (a bounded set) and a sum of
straight lines (an unbounded set). The unbounded part of the polyhedra is characterised by
the degrees of freedom of the toleranced feature or the joint. Therefore, this decomposition
can be performed by kinematic analysis. Due to the similarities between their mathematical
definition and the geometric constraints we manipulate in tolerance analysis, we propose
to do this by means of screws. The idea behind this strategy is, instead of summing
polyhedra in R6, to sum only their underlying polytopes by isolating the unbounded part of
the operands. This implies a reduction in operand complexity and consequently a reduction
in the computational time. Other advantages of using prismatic polyhedra for modelling
geometric constraints are discussed. The proposed strategy is illustrated at the end of the
chapter using the case study already presented.
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4.1 Kinematic and tolerance analysis

Due to the similarities in their mathematical definition with the geometric constraints, the
theory of displacement subgroups and the theory of screws are suitable for modelling rigid
body kinematics during tolerance analysis. Although both theories are finally based on the
same mathematical concepts (theory of orthogonal spaces), they have been used independently
by the scientific community, as we explain below.

4.1.1 Theory of displacement subgroups

A rigid transformation (also called isometry) is a geometric transformation acting over a set of
points such that the lengths of the vectors as well as the angular orientations are maintained. In
the Euclidean affine space of dimension 3, the set of rigid transformations D has an algebraic
structure of a continuous group; more specifically, it is a Lie group of dimension 6 (Hervé,
1982). There exists in this group several subsets which are stable under the product operations
(i.e. the product of two elements of this subset belongs to the subset). This subsets are called
subgroups. The list of the subgroups of D is presented in Table 4.1.

Table 4.1: Subgroups of D and their properties (Clément et al., 1998).
Symbolic name Description DOF Constraints free variables
D Rigid displacement 6 3 transl., 3 rot.
RP3 Free revolute pair translating in space 4 3 transl., 1 rot.
P3 Spatial translation 3 3 transl.
S3 Spherical rotation 3 3 rot.
F3 Planar motion 3 2 transl., 1 rot.
C Cylindrical motion 2 1 transl., 1 rot.
P2 Planar translation 2 2 transl.
P Translation around an axis 1 1 transl.
R Rotation around an axis 1 1 rot.
H Helical motion 1 Coupled transl. and rot.
E Identity motion 0 -

The combination of these subgroups has been used in robotics to analyze the mobility
conditions of kinematic chains. Fanghella (1988) presented an exhaustive list of all possible
combinations considering different geometric relations: coincidence, parallelism, intersection,
etc. (see Annex A.1). Hervé (1994) presented a more general procedure using the exponential
maps of the Lie groups to analytically generate the Lie sub-algebras, which are equivalent to
the aforementioned subgroups.

In geometric tolerancing we have special interest in the subgroups that leave a surface
invariant. This surface is actually the one subject to metrological control. A displacement Di

leaves a surface S invariant in position if each point M ∈ S still belongs to S after being
transformed by the displacement: M ′ ∈ S with M ′ = DiM (Clément et al., 1998). Among
the whole list, seven subgroups are compliant with this property, which define seven surface
classes: spherical, planar, cylindrical, helical, of revolution, prismatic and complex.
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Although the product of two successive displacements is also a displacement (Hervé, 1999),
the displacement subgroups cannot explain all rigid motions in space. In some cases, a rigid
motion is a displacement subset but not a subgroup itself (Li et al., 2004).

4.1.2 Theory of screws

Theory of screws, developed around Chasles’ and Poinsot’s theorem (Ball, 1900), aims to reduce
the displacement of a rigid body to its simplest form (see Figure 4.1).

• Chasles’ theorem: any rigid body motion can be represented instantaneously as a rotation
about a unique line and a translation along that same line.

• Poinsot’s theorem: any system of moments and forces acting on a rigid body can be
represented instantaneously as a one moment and one force.

Figure 4.1: Screw rotation and translation applied to a 3D rigid body (Smith, 2001).

From these theorems, the concepts of twist and wrench derive. Twists can be analyzed as
allowable motions while wrenches as forbidden motions (Su and Yue, 2013). Both, twists T̂
and wrenches Ŵ are 1x6 row vectors written as (Adams, 1998):

T̂ = [ω | v] = [ω | r × ω] (4.1)
Ŵ = [f | m] = [f | r × f ] (4.2)

where ω is a unit angular velocity vector, v is a unit linear velocity vector, f is a unit force
vector, m is unit moment vector about the point r.

By computing systematically the union and intersection of screws, the mobility condition of
any two parts of a mechanical system can be determined (Adams and Whitney, 1999; Gerbino
and Arrichiello, 2004; Rico et al., 1999). Open and closed chains can be analyzed even if the
former present redundantly suppressed degrees of freedom.
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4.1 Kinematic and tolerance analysis

Let us take the example of a planar pair to illustrate these concepts. Assuming that the
normal of the plane corresponds to the z-axis, we can define each mobility at a point M by
means of the following twists:

T̂rz
= [z | OM × z]

T̂tx = [0 | x]
T̂ty = [0 | y]

where OM is the position vector of the point M from the origin of the reference system O.

Twist-space and Wrench-space

In screw terms, the mobility of each kinematic pair of a mechanical system characterizes a
subspace of R6: the twist-space. This subspace is spanned by the set of d twists describing
each of the unbounded movements of the joint (Konkar and Cutkosky, 1995):

T =


T̂1

T̂2
...

T̂d

 (4.3)

T is usually called twist-matrix. Its dual vector space corresponds to the wrench-space (under
the considerations declared in the next section). It is represented by a wrench-matrix and
corresponds to the subspace of forbidden motions.

Going back to the example of the planar pair, we can define the derived twist-matrix Tp

corresponding to the three-dimensional twist-space:

Tp =


T̂rz

T̂tx/M

T̂ty/M

 =

 z | OM × z
0 | x
0 | y


Notice, that the mobility conditions depend on the point M in which the displacements are
expressed. The unbounded rotation rz can generate additional translations depending on the
vector OM . Equivalently, we can also define the wrench-matrix:

Wp =


Ŵrx

Ŵry

Ŵtz/M

 =

 x | OM × x
y | OM × y

0 | z


As a toleranced feature has no mobility, it is possible to see it as a joint (usually called internal
joint) mating the nominal feature and the substitute one. The mobility, in this case, is charac-
terized by the set of displacements leaving the toleranced feature invariant. In other words, the
degree of invariance of an internal joint (i.e. a toleranced feature) can be modelled the same
way we model the degree of freedom of a kinematic joint. Tolerance chains generally involve
internal and kinematic joints alternatively.

We can then model identically, by means of screws, internal and kinematic joints for toler-
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Kinematic decomposition of geometric constraints

ance analysis purposes. By doing this, it is possible to differentiate, before each operation with
sets of constraints, the motion directions which can be controlled (the wrench space) and those
that cannot (the twist space).

Reciprocity

Under the consideration of zero virtual work between wrenches on twists, the twist-space and the
wrench-space become orthogonal subspaces in R6: T ⊥ = W , and therefore: dim(T )+dim(W) =
6

This can be said considering that the constrained parts are rigid, the contact surfaces are
frictionless and the contact between parts does not break (Gerbino and Arrichiello, 2004); which
is compliant with our assumptions.

This property, called reciprocity of screws, is one of the most important properties of this
theory since changing from one subspace to the other is made easy. This can be done calculating
the nullspace.

Union of screws

We reviewed how to model the mobility conditions of internal and kinematic joints using screws.
Now, let us describe how to model the mobility conditions of a kinematic chain.

When a set of n kinematic pairs are in a serial configuration, their mobility propagate. In
terms of screws, it can be modelled by means of the union of the respective twist-matrices
(Konkar and Cutkosky, 1995):

Tunion =
n⋃

i=1
Ti =


T1
T2
...
Tn

 (4.4)

Analogously, when a set of n kinematic pairs are in a parallel configuration, their mobility
can be modelled by computing the intersection of the derived twist-matrices, or more simply,
as the union of the corresponding wrenches (Konkar and Cutkosky, 1995; Adams, 1998):

Tinter =
n⋂

i=1
Ti =

[
n⋃

i=1
Wi

]⊥
=


W1
W2
...
Wn


⊥

(4.5)

When joining screws, the resulting matrices are commonly of non-full rank. This occurs
because several joints can introduce (in the case of twists) or restrict (in the case of wrenches)
the same mobility. Therefore, it is usual to compute the reduced row echelon form of the
matrices during kinematic analysis.

In short, by means of unions and intersections of screws, the mobility conditions of any
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4.2 Prismatic polyhedra

couple of surfaces in a tolerance chain can be characterized.

4.2 Prismatic polyhedra

Let us describe how the theory of screws can be used to decompose geometric constraints.

4.2.1 Definition and properties

According to the Minkowski-Weyl theorem (Ziegler, 1995), a polyhedron Γ ⊂ Rn can be de-
composed into the sum of a bounded set and an unbounded set, namely a polytope P and a
polyhedral cone C (see Figure 4.2):

Γ = P ⊕ C (4.6)

Figure 4.2: Decomposition of polyhedra (Ziegler, 1995).

Definition 4.2.1 (Prismatic polyhedron) The Minkowski sum of a polytope with a finite
set of linearly independent straight lines ∆j generates a prismatic polyhedron of Rn:

Γ = P ⊕
d∑

j=1
∆j with d ≤ n (4.7)

Even if an infinite number of polytopes can generate a prismatic polyhedron (Eq. 4.7),
we have special interest in manipulating the one contained in the subspace orthogonal to the
straight lines:

P ⊂ H with H =
k⋂

i=1
Hi and ∆i ⊥ Hi,∀i

We justify our interest for this polytope in two reasons. From a numerical point of view, this
polytope is more stable. This in contrast, for example, with a polytope included in a subspace
near to be parallel to one of the straight lines. Additionally, from the tolerancing point of view,
the V-description of this polytope is independent of the unbounded displacements of the related
feature or joint.
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Kinematic decomposition of geometric constraints

An example illustrating a prismatic polyhedron and its decomposition is presented in Figure
4.3. Since Γ is made up only by one straight line, H is defined only by one plane.

Figure 4.3: Decomposition of a polyhedron into the sum of a polytope and a straight line.

4.2.2 Polyhedra decomposition in geometric tolerancing

In the most of the cases, polyhedra derived from geometric tolerancing are prismatic. Each
degree of freedom (or invariance) implies a sweeping operation of a polytope (derived from
geometric or contact constraints) along a straight line, defining prismatic operands. Therefore,
their decomposition can be done considering the mobility conditions of the feature or joint.

Due to the similarities between their mathematical definition and the geometric constraints
we manipulate in tolerance analysis, we propose to do this by means of screws. A screw is
a vector in R6 (Huang et al., 2008). For a given feature or joint, a twist can be seen as the
director vector of a straight line ∆j in R6 characterizing a non-restricted displacement. By
duality, this vector represents a hyperplane H∆j

(see Figure 4.3). In turn, the intersection of
the hyperplanes orthogonal to each of the twists of a feature characterizes the wrench-space.
As the geometric constraints obtained in tolerancing are limits in the directions of bounded
displacements, they define a polytope in the wrench-space.

In order to illustrate this, we applied such decomposition to the most common geometric
features and kinematic joints used in tolerancing (Tables 4.2, 4.3 and 4.4). We distinguish three
types of kinematic joints according to their contact feature type: surfaces, lines and point.

Following the classification proposed by ISO standards (ISO-3952-1, 1981), we consider:
spherical, planar, cylindrical, revolute and prismatic pairs. These joint types can be treated the
same way as their associated feature type. Seven invariance classes are considered (Desrochers
and Clément, 1994): spherical, plane, cylindrical, of revolution, prismatic and complex classes
(see Table 4.2). The helical pair and the helical class are not treated because they are not of
practical interest in geometric tolerancing. In the case of linear contact features, we consider
ball-and-cylinder and cylinder-and-plane pairs. In the case of punctual contact feature, we
consider the ball-and-plane pair (see Table 4.4). The general procedure for identifying the
unbounded displacements in a tolerance chain is summarized in Figure 4.4.

Once the straight lines of the polyhedron are identified, the underlying polytope can be
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4.3 Sum of prismatic polyhedra

obtained. This can be done by intersecting the original set of constraints (which is obtained by
applying double inequality (2.3) to a set of points belonging to a toleranced feature) with a set
of hyperplanes H∆j

such that H∆j
⊥ ∆j ∀j ∈ {1, ..., d}.

Figure 4.4: Flow chart of the decomposition of polyhedra (Arroyave-Tobón et al., 2017a).

4.3 Sum of prismatic polyhedra

The polyhedra decomposition proposed in the previous section gives way to simplified tech-
niques for calculating accumulation of manufacturing defects in mechanical systems. Instead
of operating polyhedra in R6 or its corresponding capped polytopes, we propose to deal with
simplified sets of constraints by excluding the straight lines derived from the unbounded dis-
placements (according to Tables 4.2, 4.3 and 4.4).

Even if it is possible to directly sum the underlying polytopes of prismatic polyhedra, we
found that it is more efficient to perform the sum of their projections in the subspace common
to the operands. Both strategies are detailed next.

4.3.1 Summing the underlying polytopes of two prismatic polyhedra

Let Γ1 and Γ2 be two prismatic polyhedra. According to Eq. (4.6) we have:

Γ1 ⊕ Γ2 = P1 ⊕ P2 ⊕ C1 ⊕ C2 (4.8)

We can isolate the two polyhedral cones C1 and C2 from the sum and calculate directly P1⊕P2.
This sum is, in general, a sum of two non-full-dimensional polytopes of Rn (with 1 ≤ n ≤ 6).
In that case, the way we use the truncation algorithm based on intersection of normal fans
(described in Section 2.3.2) is not suitable. This because the normal cones to be intersected
are also non-full-dimensional.

Other algorithms, such as those presented in (Delos and Teissandier, 2015c) and in (Fukuda,
2004), are able to sum non-dimensional polytopes. The first algorithm takes advantage of
the property of the uniqueness of the Minkowski vertices decomposition for computing only
the vertices defining the convex hull of the resulting polytope. The second one exploits the
adjacency properties of the operands vertices for computing only the Minkowski vertices of the
resulting polytope.
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Kinematic decomposition of geometric constraints

Type of
kinematic joint

Class of
toleranced
surface

Tolerancing constraints Lines of unbounded displacements
(λ ∈ R)

Spherical pair Spherical
surface

P =
2m⋂
k=1

H̄+
k

⋂
H∆1

⋂
H∆2⋂

H∆3

∆1 = λT̂ru = λ[u | NiM × u]
∆2 = λT̂rv = λ[v | NiM × v]
∆3 = λT̂rw = λ[w | NiM ×w]

Planar pair Plane surface

P =
2m⋂
k=1

H̄+
k

⋂
H∆3

⋂
H∆4⋂

H∆5

∆3 = λT̂rw = λ[w | 0]
∆4 = λT̂tu = λ[0 | u]
∆5 = λT̂tv = λ[0 | v]

Cylindrical
pair

Cylindrical
surface

P =
2m⋂
k=1

H̄+
k

⋂
H∆1

⋂
H∆4

∆1 = λT̂ru
= λ[u | NiM × u]

∆4 = λT̂tu
= λ[0 | u]

Revolute pair Surface of
revolution

P =
2m⋂
k=1

H̄+
k

⋂
H∆1 ∆1 = λT̂ru = λ[u | NiM × u]

Prismatic pair Prismatic
surface

P =
2m⋂
k=1

H̄+
k

⋂
H∆4 ∆4 = λT̂tu = λ[0 | u]

N/A

Complex
surface

P =
2m⋂
k=1

H̄+
k

N/A

Table 4.2: Decomposition of polyhedra derived from surfaces (Arroyave-Tobón et al., 2017a).
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4.3 Sum of prismatic polyhedra

Type of
kinematic joint Tolerancing constraints Lines of unbounded displacements

(λ ∈ R)
Ball-and-

cylinder pair

P =
2m⋂
k=1

H̄+
k

⋂
H∆1

⋂
H∆2⋂

H∆3

⋂
H∆4

∆1 = λT̂ru
= λ[u | NiM × u]

∆2 = λT̂rv
= λ[v | NiM × v]

∆3 = λT̂rw
= λ[w | NiM ×w]

∆4 = λT̂tu
= λ[0 | u],

Cylinder-and-
plane pair

P =
2m⋂
k=1

H̄+
k

⋂
H∆1

⋂
H∆3⋂

H∆4

⋂
H∆5

with m = 2

∆1 = λT̂ru
= λ[u,NiM × u]

∆3 = λT̂rw
= λ[w | 0]

∆4 = λT̂tu
= λ[0 | u]

∆5 = λT̂tv
= λ[0 | v]

Table 4.3: Decomposition of polyhedra derived from linear features (Arroyave-Tobón et al.,
2017a).

Type of
kinematic joint Tolerancing constraints Lines of unbounded displacements

(λ ∈ R)
Ball-and-plane

pair
P =

2m⋂
k=1

H̄+
k

⋂
H∆1

⋂
H∆2⋂

H∆3

⋂
H∆4

⋂
H∆5

with m = 1

∆1 = λT̂ru
= λ[u | 0]

∆2 = λT̂rv
= λ[v | 0]

∆3 = λT̂rw
= λ[w | 0]

∆4 = λT̂tu
= λ[0 | u]

∆5 = λT̂tv
= λ[0 | v]

Table 4.4: Decomposition of polyhedra derived from punctual contacts (Arroyave-Tobón et al.,
2017a).

Considering the above, the synthesis of an algorithm to compute the sum of decomposed
polyhedra is straightforward (see Algorithm 4).

Let us use the example presented in Figure 4.5 to illustrate the algorithm. As a first step,
the prismatic polyhedra are decomposed, isolating their straight lines (see Figure 4.5a). Then,
the sum of the polytopes is computed using their V-description. This allowed to obtain P12, an
underlying polytope of the polyhedron ΓR (see Figure 4.5b). Finally, P12 is extruded along the
straight lines ∆1 and ∆2 (see Figure 4.5c) to generate Γ12 (two parallel planes).

Notice that in the last step, many vertices of the calculated polytope P12 are finally placed
at the infinity. In other words, some data computed during an intermediary step is removed
after; which is a similar situation of that described in Chapter 3. The most of the information
contained in the calculated polytope P12 has not meaning for the final result. Just the limits
along the v-axis are important in this case. The rest of the information is after absorbed during
the extrusion process. Therefore, a much more simpler polytope (actually a 1-dimensional) can
represent the polyhedron Γ12. Furthermore, this strategy involves the computation of the
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Kinematic decomposition of geometric constraints

(a) Step 1: polyhedra decomposition.

(b) Step 2: underlying polytopes summation.

(c) Step 3: straight lines addition.

Figure 4.5: Summing the underlying polytopes of two polyhedra.
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4.3 Sum of prismatic polyhedra

Algorithm 4 Sum of decomposed polyhedra
Require: Γ1, Γ2

Ensure: ΓR = Γ1 ⊕ Γ2

1: decompose Γ1 = P1 ⊕ C1

2: decompose Γ2 = P2 ⊕ C2

3: if dim(C1 ⊕ C2) = 6 then
4: ΓR = R6

5: else
6: compute V-description of P1, V1 = conv(a1, ...,ar)
7: compute V-description of P2, V2 = conv(b1, ..., bs)
8: compute sum VR = V1 ⊕ V2

9: ΓR = VR ⊕ C1 ⊕ C2

10: end if

convex hull of the calculated cloud of points to obtain the H-description.

A way to avoid these problems is computing the sum in the subspace common to the operand
polyhedra, as we explain next.

4.3.2 Sum of projections of decomposed polyhedra

Theorem 4.3.1 (Sum of prismatic polyhedra) Let Γ1 and Γ2 be two prismatic polyhedra
in Rn such that:

Γ1 = P1 ⊕
k∑

i=1
∆i = P1 ⊕ C1, P1 ⊂ HP1 =

k⋂
i=1

Hi

Γ2 = P2 ⊕
l∑

i=k+1
∆i = P2 ⊕ C2, P2 ⊂ HP2 =

l⋂
i=k+1

Hi

with ∆i ⊥ Hi ∀i ∈ {1, ..., l}

The sum Γ1⊕Γ2 can be calculated as the sum of the projection of their underlying polytopes
on the subspace HP1 ∩HP2 plus their respective straight lines:

Γ1 ⊕ Γ2 = πHP1∩HP2
(P1)⊕ πHP1∩HP2

(P2)⊕
l∑

i=1
∆i

where πH represents the orthogonal projection on the space H.
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Successive orthogonal projection

Without loss of generality we’re going to prove the theorem for Γ1 = P1⊕∆1 and Γ2 = P2⊕∆2
being prismatic polyhedra spanned by only one straight line, with ∆1 and ∆2 not parallel and
consequently H1 and H2 also not parallel:

Γ1 ⊕ Γ2 = P1 ⊕ P2 ⊕∆1 ⊕∆2 with ∆1 and ∆2 not parallel

Let us prove, first, that:

P ⊕∆ = πH(P )⊕∆ with ∆ ⊥ H

If x ∈ P then πH(x) = x − (δ0 + δ ·x)δ, where δ is a unit vector of ∆ and δ0 the constant
of H, so this is the sum of a point of P and a vector of ∆ (see Figure 4.6).

Figure 4.6: Illustration of P ⊕∆ = πH(P )⊕∆.

P1 ⊕∆1 ⊕∆2 = πH1(P1)⊕∆1 ⊕∆2

= πH1(P1)⊕∆2 ⊕∆1

Since πH1(P1) is also a polytope, we can follow the same logic to get:

P1 ⊕∆1 ⊕∆2 = πH2

(
πH1(P1)

)
⊕∆1 ⊕∆2
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4.3 Sum of prismatic polyhedra

As a consequence we can perform as many projections on H1 and then on H2 as we want:

P1 ⊕∆1 ⊕∆2 = πH2

(
πH1

(
...πH2(πH1(P1))

))
⊕∆1 ⊕∆2 (4.9)

To prove the theorem 4.3.1 we need to know what is the limit of all these successive projections
πH2

(
πH1

(
...πH2(πH1(P1))

))
.

According to Cheney and Goldstein (1959) and Boyd and Dattorro (2003), projecting a
point x alternately on two convex sets H1 and H2 (with H1 ∩ H2 6= ∅) converges towards a
point x∗ ∈ H1 ∩H2 whatever the initial point is (see Figure 4.7).

Figure 4.7: Successive projections in a 2D vector space.

Using this property in equation (4.9) provides:

P1 ⊕∆1 ⊕∆2 = πH1∩H2(P1)⊕∆1 ⊕∆2

By considering the same for P2, we obtain:

P1 ⊕ P2 ⊕∆1 ⊕∆2 = πH1∩H2(P1)⊕ πH1∩H2(P2)⊕∆1 ⊕∆2

Following the same logic, we can include another straight line ∆3:

P1 ⊕ P2 ⊕∆1 ⊕∆2 ⊕∆3 = πH1∩H2∩H3(P1)⊕ πH1∩H2∩H3(P2)⊕∆1 ⊕∆2 ⊕∆3

We can finally prove by recurrence Theorem 4.3.1:

Γ1 ⊕ Γ2 = P1 ⊕ P2 ⊕
l∑

i=1
∆i = πHP1∩HP2

(P1)⊕ πHP1∩HP2
(P2)⊕

l∑
i=1

∆i

4.3.3 Algorithm: projection-based sum

In a sum of prismatic polyhedra, instead of summing directly the underlying polytopes (as
suggested above in Algorithm 4), we propose to compute, first, the common subspace to the
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operands and compute after the sum into it (see Algorithm 5).

Algorithm 5 Projection-based sum
Require: Set of np prismatic polyhedra Γi in Rn

Ensure: ΓR = ∑np

i=1 Γi

1: for each polyhedron Γi (i = 1 : np) do // Decompose each operand
2: decompose Γi = Pi ⊕ Ci

3: compute Hi from Ci

4: end for
5: compute HR = ⋂np

i=1Hi

6: if dim(∑np

i=1Ci) = n then // Check the feasibility of the sum
7: ΓR = Rn

8: else
9: PR = πHR

(P1)
10: for each polytope Pi (i = 2 : np) do // Project and sum each operand
11: compute projection πHR

(Pi)
12: compute PR = PR ⊕ πHR

(Pi)
13: end for
14: compute ΓR = PR ⊕

∑np

i=1Ci // Go back to the original space Rn

15: end if

In order to illustrate the proposed procedure, let us pick up the example in Figure 4.5.
In this case, instead of summing directly P1 and P2, we compute first the intersection of the
subspaces in which P1 and P2 live (see Figure 4.8b). As H1 and H2 are secant planes, their
intersection is a straight line. This line represents the greatest subspace in which the sum of
the projections of P1 and P2 generates a bounded set, i.e. a polytope. P1 and P2 are then
projected on H1∩H2 (see Figure 4.8c), for computing after PR = πH1∩H2(P1)⊕πH1∩H2(P2) (see
Figure 4.8d). Finally, the straight lines ∆1 and ∆2 are added to PR to obtain ΓR (see Figure
4.8e). In this case, ΓR is composed by two parallel planes which impose limits only along the
v-axis.

In comparison with the procedure carried out in Section 4.3.1, we could reduced a sum of
3D polytopes to a sum of 1D polytopes, for finally obtaining the same result.

4.4 Simulation feasibility test

When the tolerance chain involve just few parts, the designer is able to anticipate without
the need of formal calculations if the mobility conditions of the assembly allow to satisfy the
functional requirements. In a general case, however, this is not an easy task. Therefore, the
designer is forced to run numerical simulations even without knowing if they are feasible.

Performing kinematic analysis during tolerance analysis opens the possibility of anticipating,
before starting numerical simulations, if the functional requirements of the assembly may be
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4.4 Simulation feasibility test

(a) Step 1: polyhedra decomposition.

(b) Step 2: computation of the common subspace.

(c) Step 3: projection of the underlying polytopes.
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(d) Step 4: sum of the projection of the underlying polytopes.

(e) Step 5: straight lines addition.

Figure 4.8: Summing the projection of the underlying polytopes of two polyhedra.
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satisfied. This can be carried out by comparing mobility of the whole system respecting with
that restricted by the functional specifications, as described next.

Let WR be wrench-space characterizing the mobility conditions of a tolerance chain and
WF be the one related to the restriction of the functional requirements. The limits established
by the FC may be satisfied if and only if WF ⊆WR.

According to this, we propose to include a feasibility test in the tolerance analysis process,
as presented in Figure 4.9.

Figure 4.9: Flowchart of the proposed methodology considering the simulation feasibility.

4.5 Prismatic polyhedra and ISO standards compatibil-
ity

Tolerancing approaches based on point-to-point constraint solving are partially compliant with
the tolerance standards that specify variation within tolerance zones (Ameta et al., 2011).
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Approaches based on set of constraints are precisely created for representing tolerances zones
derived from manufacturing specifications. However, some special cases defined in the standards
can not be directly model following the regular constraints definition process. We identified
two common situations generating these special cases and propose a solution taking advantage
of the notion of prismatic polyhedra.

4.5.1 Not fully constrained tolerance zones

The regular process for turning geometric constraints into algebraic ones is based on the nominal
definition of features. Therefore, following the regular procedure, the obtained tolerance zones
inherit the degrees of invariance of their related feature.

In some cases defined in the standards, however, the nominal geometry of the feature is not
the same of that of the tolerance zone. A similar situation occurs when the tolerance zone is
not fully constrained. This entails that the displacements allowed by the tolerance zone do not
coincide with the degrees of invariance of the toleranced feature. This occurs, for example, in
the cases explained bellow.

Let us take the case of the coaxiality specification illustrated in Figure 4.10a. By following
the regular process in tolerancing by set of constraints, a cylindrical tolerance zone is generated.
However, the tolerance zone specified in this case is instead defined by two parallel planes. A
similar situation, but with orientation specification, occurs in the case shown in Figure 4.10b.

In the case of a parallelism specification (see Figure 4.10c), the tolerance zone is made up
of the same surface type of the tolerance feature. However, their unbounded displacements do
not coincide. The tolerance zone is not constrained along the normal nominal plane, even if
this displacement does not leave invariant the surface.

The situation described above can be faced handling the derived sets of constrants as pris-
matic polyhedra. The additional unbounded displacements can be included to the set of geo-
metric constraints derived from the nominal feature until obtain the same mobility conditions
of the tolerance zone. This implies an addition of straight lines to a polyhedron, or equivalently,
an extrusion of the polyhedron along the straight lines.

Let us go back to the example of the parallelism specification to illustrate the proposed
solution. Once the set of constraints derived from the toleranced plane is defined (polytope
P ) we introduce a straight line ∆ = λT̂tz (with λ ∈ R) representing the free translation of
the tolerance zone along the z-axis (see Figure 4.11a). In order to simplify the definition of
the new polyhedron, a projection πH(P ) can be performed, where H = ∆⊥ (see Figure 4.11b).
Finally, the extrusion πH(P )⊕∆ generates Γ, the new polyhedron representing the parallelism
specification (see Figure 4.11c).

The same procedure can be carried out in the same manner for the other cases (perpendic-
ularity and angularity).
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(a) Coaxiality specification.

(b) Perpendicularity specification.

(c) Parallelism specification.

Figure 4.10: Not fully constrained tolerance zones (Charpentier, 2012).
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(a) Inclusion of an additional mobility.

(b) Simplification of the polytope.

(c) Polytope extrusion.

Figure 4.11: Inclusion of an additional mobility.
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4.5.2 Datum features

Other situation demanding a special treatment occurs when a feature is used as datum. In
this case, a tolerance zone with zero value is generated, but its mobility remains. In algebraic
terms it is equivalent to have a set of half-spaces of R6 whose second member is zero, i.e.
passing through the origin. In such a case, the obtained set can be wrongly consider as empty.
In tolerance simulation, what is important to consider of datum features is the mobility they
introduce to the kinematic chain. This mobility can also be treated in terms of screws.

In some cases, this situation can be avoided using a ‘common zone’ modifier. As illustrated
in Figure 4.12a, for example, each surface has a tolerance zone which can be modelled with
polytopes following the regular procedure. The accumulation of defects can be calculated
computing the Minkowski sum of both polytopes.

(a) Common zone modifier.

(b) Position specification.

Figure 4.12: Tolerance zone definition with the common zone (CZ) modifier.

However, when one of the surfaces is used as datum (see Figure 4.12b), the situation is
different. For the feature within a tolerance zone, a full dimensional polyhedron can be ob-
tained; and for the datum feature, three pairs of half-spaces of R6 passing through the origin
are obtained. This situation can be well modelled using prismatic polyhedra. The tolerance
zone with zero value represents a point (the origin) in the wrench-space. While the mobility
represents some straight lines in the twist-space. Thus, the point plus the straight lines rep-
resent the generated polyhedron. For this case, the polyhedron corresponds to a 2D plane in
R6.
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4.6 Case study: solution by projection-based method

To illustrate the concepts exposed throughout this chapter chapter, let us go back to the case
study of the brake system (Section 2.6). The tolerance simulation was carried out following the
proposed kinematic decomposition of geometric and contact polyhedra.

4.6.1 Kinematic analysis and feasibility test

The mobility analysis of the mechanism was conducted according the topology of the assembly
(described by the graph in Figure 2.24). All the toleranced features and joints, and their
interaction, were simulated with screws and operations on them. The centroid of surface 2,1
was chosen as the point to express the screws for the mobility analysis. For consistence, it is
the same point used to express the polytopes in Section 2.6.

The required operations with screws are equivalent to those with polytopes defined in Eqs.
(2.10) to (2.22). Following the same notation used for the polyhedra, Ta,b/c,d is the twist-matrix
representing the mobility conditions of the surface b from the part a with respect to the surface
d of the part c. The mobility of the whole tolerance chain can be calculated as:

TR = T1,1/6,1 = T1,1/1,0 ∪ T1,0/3,0 ∪ T3,0/4,0 ∪ T4,0/6,0 ∪ T6,0/6,1 (4.10)

where:

T1,0/3,0 = T1,0/3,0−a ∩ T1,0/3,0−b ∩ T1,0/3,0−c (4.11)
T1,0/3,0−a = T1,0/1,2 ∪ T1,2/3,2 ∪ T3,2/3,0 (4.12)
T1,0/3,0−b = T1,0/1,3 ∪ T1,3/3,3 ∪ T3,3/3,0 (4.13)
T1,0/3,0−c = T1,0/1,4 ∪ T1,4/2,2 ∪ T2,2/2,0 ∪ T2,0/2,1 ∪ T2,1/3,1 ∪ T3,1/3,0 (4.14)
T3,0/4,0 = T3,0/4,0−a ∩ T3,0/4,0−b ∩ T3,0/4,0−c (4.15)

T3,0/4,0−a = T3,0/3,4 ∪ T3,4/4,4 ∪ T4,4/4,0 (4.16)
T3,0/4,0−b = T3,0/3,5 ∪ T3,5/4,5 ∪ T4,5/4,0 (4.17)
T3,0/4,0−c = T3,0/3,6 ∪ T3,6/4,6 ∪ T4,6/4,0 (4.18)
T4,0/6,0 = T4,0/6,0−a ∩ T4,0/6,0−b ∩ T4,0/6,0−c (4.19)

T4,0/6,0−a = T4,0/4,2 ∪ T4,2/6,2 ∪ T6,2/6,0 (4.20)
T4,0/6,0−b = T4,0/4,3 ∪ T4,3/6,3 ∪ T6,3/6,0 (4.21)
T4,0/6,0−c = T4,0/4,1 ∪ T4,1/5,1 ∪ T5,1/5,0 ∪ T5,0/5,2 ∪ T5,2/6,4 ∪ T6,4/6,0 (4.22)

Let us describe in detail the computation of the twist T1,0/3,0−c (Eq. (4.14)). Considering
that each joint has the same mobility conditions of its related geometric features, the following
simplifications can be directly made without the need of numerical computations:

T1,0/3,0−c = T1,0/2,0 ∪ T2,0/3,0

Let us now describe the mobility of the joints with twist-matrices.
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T1,0/2,0 derives from a planar surface with normal vector parallel to the z-axis:

T1,0/2,0 =

 z | z ×O14M
0 | x
0 | y

 =

 0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0

 (4.23)

The cross product z×O14M describes the translation generated by the free rotation along
the z-axis a the point M . O14 could be any point over the surface 1,4.

T2,0/3,0 derives from a cylindrical surface oriented along the z-axis:

T2,0/3,0 =
[
z | z × 0

0 | z

]
=
[

0 1 0 0 0 0
0 0 0 0 1 0

]
(4.24)

The free rotation around the z-axis does not generate an additional translation because the
point M is over the axis of the cylindrical surface.

As the joints are linked in a serial configuration, the resulting mobility can be modelled
as the union of these twist-matrices. After computing the reduced row echelon form of the
generated matrix to remove the linear dependencies between vectors, we have:

T1,0/3,0−c =


0 1 0 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

 (4.25)

The orthogonal complement of the former matrix corresponds to the subspace of bounded
displacements defining the mobility of the surface 1,4 with respect to the surface 3,1:

W1,0/3,0−c =
[

1 0 0 0 0 0
0 0 1 0 0 0

]
(4.26)

Following the same logic, the mobility analysis of the whole mechanism was carried out
(see Annex B.1) to obtain WR. It allowed us to concluded that, according with the topological
structure of the assembly, it is possible to control the relative orientation of the brake shoes:

WR =
[

1 0 0 0 0 0
0 1 0 0 0 0

]
(4.27)

As we stated in Section 2.6, the functional requirement of the brake system impose limits
in the relative orientation of the brake shoes. Therefore, WR = WF , where WF is the subspace
spanned by the displacements restricted by the functional condition. This result leads us to
the conclusion that the tolerance simulation is feasible.
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4.6.2 Simulation run

In order to run the simulation following the strategy of the projections, the initial operands
were decomposed according their degrees of invariance (for the case of toleranced features) or
degrees of freedom (for the case of toleranced joints).

Let us present in detail the computation of Γ1,0/3,0−c. The operands required to calculate it,
Γ2,0/3,0 (coming from a planar surface oriented along the z-axis), Γ1,4/2,0 (coming from cylindrical
surface oriented along the z-axis) and Γ1,0/1,4 (coming from planar surface oriented along the
z-axis) were decomposed as:

Γ2,0/3,0 = P2,0/3,0 ⊕ C2,0/3,0 (4.28)
Γ1,4/2,0 = P1,4/2,0 ⊕ C1,4/2,0 (4.29)
Γ1,0/1,4 = P1,0/1,4 ⊕ C1,0/1,4 (4.30)

The polyhedral cone C2,0/3,0 is defined by the twist-matrix in Eq. (4.24). The polyhedral
cones C1,4/2,0 and C1,0/1,4 derive from the same surface, and therefore, can be represented by
the twist-matrix in Eq. (4.23).

As it was explained above, the resulting mobility of the union of these joints corresponds
to the union of their twist-matrices (Eq. (4.25)). This means that the underlying polytope of
Γ1,0/3,0−c lives in such subspace. Therefore:

P1,0/3,0−c = πH(P2,0/3,0)⊕ πH(P1,4/2,0)⊕ πH(P1,0/1,4) (4.31)

The subspace H corresponds in this case to the space spanned by the rows of the wrench-
matrix W1,0/3,0−c (Eq. (4.26)). The illustration of the projection and addition of the operands
are presented in Figure 4.13.

The summary of the whole simulation following the method based on decomposed polyhedra
is presented in Table 4.5.

4.6.3 Analysis of results

When applying this strategy to the whole simulation, the computational time could be reduced
significantly in comparison with the other two strategies. Regarding the solution based on
6D capped polytopes, a reduction of 99,997% was achieved; and regarding the solution based
on caps removal, the reduction was of 99,539%. Table 4.6 presents a summary of the three
simulations.

This reduction is justified by the fact that only those meaningful facets in the associated
tolerancing problem were calculated. The kinematic analysis performed during the computation
acts as a sort of filter, to determine for each operation, the required set of variables to completely
define the relative position of the related features.
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(a) Computation of Γ1,4/3,0.

(b) Computation of Γ1,0/3,0−c.

Figure 4.13: 3D representation of the computation of Γ1,0/3,0−c by the projection-based method.
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Table 4.5: Summary of the simulation with projection-based sums (HS: half-space).
Operation Dim DOFs Cap HS Non-cap HS Vertices Time [s]
Γ′1,0/3,0−ab = Γ′1,0/3,0−a ∩ Γ′1,0/3,0−b 6 3 6 14 128 0,02
P1,4/3,0 = π(P2,0/3,0) +̃ π(P1,4/2,0) 2 4 0 8 8 0,001
P1,0/3,0−c = π(P ′1,4/3,0) +̃ π(P1,0/1,4) 2 4 0 12 12 0,001
Γ′1,0/3,0 = Γ′1,0/3,0−ab ∩ Γ′1,0/3,0−c 6 1 2 26 384 0,05

Γ′3,0/4,0−ab = Γ′3,0/4,0−a ∩ Γ′3,0/4,0−b 6 1 2 28 288 0,05
Γ′3,0/4,0 = Γ′3,0/4,0−ab ∩ Γ′3,0/4,0−c 6 0 0 36 504 0,11

Γ′4,0/6,0−ab = Γ′4,0/6,0−a ∩ Γ′4,0/6,0−b 6 3 6 14 128 0,03
P4,0/6,4 = π(P4,0/5,0) +̃ π(P5,0/6,4) 2 4 0 8 8 0,001
P4,0/6,0−c = π(P4,0/6,4) +̃ π(P6,4/6,0) 2 4 0 12 12 0,001
Γ′4,0/6,0 = Γ′4,0/6,0−ab ∩ Γ′4,0/6,0−c 6 1 2 26 384 0,05

P1,1/3,0 = π(P1,1/6,1) +̃ π(P1,0/3,0) 2 4 0 12 12 0,001
P1,1/4,0 = π(P1,1/3,0) +̃ π(P3,0/4,0) 2 4 0 28 28 0,001
PR = P1,1/6,1 = π(P1,1/4,0) +̃ π(P4,0/6,0) 2 4 0 28 28 0,002

Computations performed with the library politopix with an Intel Core i7-3740QM.

Table 4.6: Summary of the simulations.
Γ′R Γ′′R PR

Method Caps Caps removal Projection-based
Dim 6 6 2
DOFs 4 4 4
Caps HS 64 400 8 0
Non-cap HS 28 28 28
Vertices 108 860 448 28
Time [s] 11 133 69 0,32
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It is worth mentioning that the same result was obtained by the three methods. The
difference is the additional (and unnecessary) information calculated by each one of them. The
equality of the results was verified projecting the polyhedra to space of bounded displacements
(the space spanned by [rx, ry] in this case), as illustrated in Figure 4.14. By doing this, the
influence of the caps facets is completely avoided in the comparison test. The HV-description
of the final calculated polytope is presented in Annex B.2.

Figure 4.14: Comparison of the simulation results following the three methods.

The fact of obtaining the same results from three different methods, allowed us to conclude
that they work correctly. The accuracy of the simulation in quantitative terms does not depend
on the choice of the strategy to treat the DOFs, it depends on the initial discretization of the
nominal surfaces used to define the sets of constraints. In terms of efficiency, the method
based on projections is the most interesting due to the space reduction it proposes and the
computational resources it demands.

4.7 Conclusions

In this chapter, we introduced a new model to represent sets of geometric constraints. The
concept of prismatic polyhedra was presented in the context of tolerance analysis. We showed
that prismatic polyhedra can be decomposed into the sum of polytopes (the bounded part of the
polyhedron) and polyhedral cones (the unbounded part of the polyhedron). This decomposition
can be conducted according to the mobility conditions of the toleranced features, using the
theory of screws.

Advantages of representing geometric constraints as prismatic polyhedra were discussed.
When performing a sum of polyhedra, for example, it is possible to exploit the properties of
the model by taking only the bounded parts to calculate the sum. This new way of operating
polyhedra, which is based on a reduction of the space dimension, was detailed in an algorithm.
We demonstrated that reducing the space to calculate sums of sets of constraints avoids calcu-
lating fictitious displacements. This implies a significant reduction in the model’s complexity
and therefore in computational time.
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By using prismatic polyhedra, some special cases of the ISO geometrical specifications can
be addressed. We presented and discussed how some orientation specifications and the case
of features used as datum can be correctly treated during tolerance simulations with sets of
constraints.

The way to proceed and the advantages of applying the method were shown in a case study.
Compared with the results from the methods described in Chapters 2 and 3, the method based
on prismatic polyhedra is significantly more efficient.
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Conclusions

Due to inevitable geometric deviations, tolerance management is a key aspect during a product’s
life cycle. This is why many studies can be found in the literature addressing this issue.

We found that existing approaches usually consist of a tolerancing model and a solution
strategy. First, the model serves to simulate geometric variations at the part and assembly
levels. Assumptions are usually made when defining the model because of the difficulty of con-
sidering all real situations that influence products’ geometric variations. Second, the solution
strategy determines how deviation limits are considered (according to a probabilistic distribu-
tion or a worst-case scenario) and how to solve the problem (tolerance analysis or tolerance
synthesis).

Among the tolerancing approaches, those based on the manipulation of sets of geometric
constraints have the advantage of being robust enough to treat over-constrained assemblies.
These methods represent geometric constraints derived from the tolerance zones as sets of
algebraic constraints in a 6D abstract space. Stack-ups of geometric variations along a tolerance
chain are proposed to be computed by summing and intersecting these operand sets. Using
this approach, however, the unbounded displacements linked to the DOF of joints generate
unbounded sets of constraints in 6D, which are difficult to deal with from the algorithmic and
computational perspective. In order to address this issue, we asked how to deal with the DOFs
of the joints in tolerance simulations with sets of constraints.

A solution to this question was proposed by Homri (2014). His proposal, summarized in
section 2.5, consists in setting fictitious limits to each free displacement of each joint to obtain
bounded 6D sets. These limits are represented by additional constraints, called cap constraints
or cap facets.

This solution may avoid the problem of the manipulation of unbounded sets during tolerance
stack-up computations, but it nevertheless involves simulating much more complex kinematic
chains. We have found that when performing tolerance simulations following this method a
great deal of unnecessary information is computed (new cap constraints). We could conclude
that these unnecessary data come from propagation along the kinematic chain of the fictitious
bounds introduced to the joints. For each simulation, stack-ups of displacements in all possible
directions are computed, even if some of them are originally unbounded and consequently
unrelated to the associated problem. This implies that when a designer uses this method
for computing tolerance propagation, he/she must analyse the resulting data and be able to
differentiate real displacement limits from fictitious ones (new cap constraints), which could
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lead to misinterpretations.

In short, the caps method overcomes the problem of manipulating unbounded sets, but
with a high computational cost. This explains the results obtained and the time required to
simulate the case study: a calculated polytope made up of 64400 facets takes more than 3 hours
to calculate. By means of graphical analysis of the results, we realized that most of these facets
derived from cap constraints, and were therefore meaningless for the simulation.

From these results, we concluded that management of the mechanism mobility is a crucial
aspect in tolerance simulations with sets of constraints. The way the mobility of joints is
treated impacts on the definition of the tolerancing model and the computational efficiency of
the general approach.

Based on this conclusion, we proposed two methods for modelling the propagation of geo-
metric deviations with sets of constraints. The aim of the first was to improve the caps method
by controlling the propagation of fictitious bounds (or cap facets) during the simulations, as de-
tailed in Chapter 3. To do this, we defined propagation rules to automatically differentiate the
real displacement limits from the fictitious ones (those derived from caps) after each operation.
We were thus able:

• after each sum, to restore a minimum set of cap facets (a couple of min-max limits for each
unbounded displacement) to interrupt their successive propagation along the kinematic
chain,

• during intersections, to ensure that the fictitious limits did not hide the real ones,

• during inclusion tests, to avoid misinterpretations over the satisfaction of a functional
requirement.

This new strategy, which we called the caps removal method, was tested on a case study. The
results showed a significant reduction in unnecessary information calculated and consequently
an improvement in computational efficiency. The validity of the new method was verified by
comparing the results against those of the initial one.

In short, the caps removal method reduced the complexity of tolerance simulations with
sets of constraints. However, as the method simulates all joints with zero DOF, intermediate
fictitious displacements are still being calculated, even if they are systematically suppressed
after each operation.

The second method we formalized, presented in Chapter 4, consider the internal mobility of
the joints along the tolerance chain to avoid calculating fictitious displacements. More precisely,
we proposed to determine systematically the parameters required to define the relative position
of the surfaces involved. The number of parameters required to control the relative position
of two surfaces is usually smaller than that required to define separately the position of the
surfaces regarding a reference system. Therefore, the complete set of six parameters is rarely
required. This led us to the conclusion that the dimension of the deviation space can be reduced
when summing sets of geometric constraints.

We noticed that the same results could be obtained when summing constraints in 6D and
then projecting the result to the subspace of the bounded displacements, as when projecting
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the operands to that subspace and then computing the sum. We proved this property for the
general case, by means of a theorem (Theorem 4.3.1). We did this by introducing the concept
of prismatic polyhedra in geometric tolerancing.

We found that performing kinematic analysis simultaneously with the tolerance analysis
allowed us to determine the subspace in which the limits of the bounded displacements can
be manipulated. This space reduction avoids not only the manipulation of unbounded sets
of constraints, but also the calculation of fictitious bounds. The projection of the operands
can be linked to the phenomenon of displacement absorption, which happens in reality with
mechanisms.

We explored other advantages of representing sets of geometric constraints as prismatic poly-
hedra. For example, some special cases of the ISO geometrical specifications can be addressed.
We presented and discussed how some orientation specifications and the case of features used
as datum can be correctly treated in tolerance simulations with sets of constraints.

In short, by using the second method, which we called the projection-based method, the
complexity of tolerance simulations with sets of constraints could be reduced even further.
However, it requires an algorithm to project sets in Rn. Additionally, a special case of a set of
constraints poses problems when treated with this method, i.e. the case of unilateral contacts.
In these cases, the set of geometric constraints is not centrally symmetrical and cannot be
decomposed according to the way the projection-based method proposes.

The case of unilateral contacts can be dealt with perfectly well by means of the method based
on caps. We therefore conclude that the methods described in this study are not exclusive; on
the contrary, they are complementary.

When comparing the three methods addressed in this thesis, we concluded that, in terms of
efficiency, the one based on projections is by far the most efficient since it allows manipulation
of only the constraints we are interested in.

As the results obtained from the three different methods in the case study were equal, this
indicates the accuracy of the methods in a qualitative sense. The accuracy of the simulation
in quantitative terms does not depend on the choice of strategy used to treat the DOFs, it
actually depends on the initial discretization of the nominal surfaces originally used to define
the sets of constraints.

Future prospects

This study opens up many possibilities for further research. As shown in Figure 4.15, we
propose four main specific points:

• The methods formalized in this study have been partially implemented in the computer-
aided tolerancing software PolitoCAT, developed at the I2M laboratory. Therefore, the
next step is to finish the implementation and continue testing the methods, simulating
more case studies. This implementation implies the development of algorithms to project
n-dimensional polytopes in HV-description. Additionally, algorithms for sweeping poly-
topes are also required.
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Figure 4.15: Future work.

• As we stated at the beginning of this study, several assumptions were made regarding
the physical phenomena considered when defining the model. Future work is required
to enrich the model as far as possible, taking form defects, flexible parts and dynamic
interaction between parts into consideration. At the I2M laboratory, tolerance analysis
considering flexible assemblies started to be studied by Gouyou et al. (2017) and form
defects by Yan and Ballu (2017). Regarding to the computational strategy, future work
is also required to explore its advantages for the statistical treatment of tolerances as well
as for tolerance synthesis.

• The way the nominal features are discretized has a high impact on the complexity of
tolerance simulations with sets of constraints. Therefore, further research is required to
study different discretization strategies and measure their impact in terms of accuracy
and efficiency.

• More advantages of performing kinematic and tolerance analysis simultaneously can be
explored. It would be interesting, for example:

– to explore its advantages when computing intersections of sets of constraints,
– to determine the level of influence of each toleranced feature or joint regarding each

functional condition,
– to determine the displacements of each joint that really influence the functional

conditions of the assembly. This could lead to a strategy for the synthesis of manu-
facturing specifications.
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Product of displacements subgroups

A.1 Composition rules for algebraic constraints
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Figure A.1: Composition rules for algebraic constraints (Fanghella, 1988).
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Product of displacements subgroups

Figure A.2: Composition rules for trascendental constraints (Fanghella, 1988).
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A.2 TTRS association cases

Figure A.3: TTRS association cases (Desrochers and Clément, 1994).
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Simulation details

B.1 Mobility analysis of the brake system

T1,1/1,0 =

 z | z ×O11M
0 | x
0 | y

 =

 0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0

 (B.1)

T1,0/3,0−a =


x | x×O12M
y | y ×O12M
z | z ×O12M

0 | z

 =


1 0 0 0 15, 5 17
0 1 0 −15, 5 0 −30, 34
0 0 1 −17 30, 34 0
0 0 0 0 0 1

 (B.2)

T1,0/3,0−b =


x | x×O13M
y | y ×O13M
z | z ×O13M

0 | z

 =


1 0 1 0 15, 5 17
0 1 0 −15, 5 0 30, 34
0 0 1 −17 −30, 34 0
0 0 0 0 0 1

 (B.3)

T1,0/2,0 =

 z | z ×O14M
0 | x
0 | y

 =

 0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0

 (B.4)

T1,0/3,0−c =
[
T1,0/2,0
T2,0/3,0

]
=


0 1 0 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

 (B.5)
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T1,0/3,0 =

 (T1,0/3,0−a)⊥
(T1,0/3,0−b)⊥
(T1,0/3,0−c)⊥


⊥

(B.6)

T3,0/4,0−a =


x | x×O34M
y | y ×O34M
z | z ×O34M

0 | z

 =


1 0 0 0 0 0
0 1 0 0 0 −60
0 0 0 0 60 0
0 0 0 0 0 1

 (B.7)

T3,0/4,0−b =


x | x×O35M
y | y ×O35M
z | z ×O35M

0 | z

 =


1 0 0 0 0 0
0 1 0 0 0 60
0 0 0 0 −60 0
0 0 0 0 0 1

 (B.8)

T3,0/4,0−c =

 z | z ×O36M
0 | x
0 | y

 =

 0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0

 (B.9)

T3,0/4,0 =

 (T3,0/4,0−a)⊥
(T3,0/4,0−b)⊥
(T3,0/4,0−c)⊥


⊥

(B.10)

T4,0/6,0−a =


x | x×O62M
y | y ×O62M
z | z ×O62M

0 | z

 =


1 0 0 0 15, 5 17
0 1 0 −15, 5 0 −30, 34
0 0 1 −17 30, 34 0
0 0 0 0 0 1

 (B.11)

T4,0/6,0−b =


x | x×O63M
y | y ×O63M
z | z ×O63M

0 | z

 =


1 0 1 0 15, 5 17
0 1 0 −15, 5 0 30, 34
0 0 1 −17 −30, 34 0
0 0 0 0 0 1

 (B.12)

T5,0/6,0 =

 z | z ×O64M
0 | x
0 | y

 =

 0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0

 (B.13)
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T4,0/5,0 =
[
z | z × 0

0 | z

]
=
[

0 1 0 0 0 0
0 0 0 0 1 0

]
(B.14)

T4,0/6,0−c =
[
T4,0/5,0
T5,0/6,0

]
=


0 1 0 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

 (B.15)

T4,0/6,0 =

 (T4,0/6,0−a)⊥
(T4,0/6,0−b)⊥
(T4,0/6,0−c)⊥


⊥

(B.16)

TR =


T1,1/1,0
T1,0/2,0
T2,0/3,0
T4,0/6,0

 =


0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

 (B.17)

WR = T ⊥R =
[

1 0 0 0 0 0
0 1 0 0 0 0

]
(B.18)
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B.2 Final calculated polytope

# HALFSPACES : a0 + a1 . x1 + . . . + an . xn >= 0 .
2 28 28
# HALFSPACES : a0 + a1 . x1 + . . . + an . xn >= 0 .
1 −0 ,310217 0 ,310217
1 −0 ,055907 0 ,440788
1 −0 ,074977 0 ,434133
1 −0 ,096103 0 ,426593
1 −0 ,256120 0 ,354627
1 −0 ,129377 0 ,414379
1 0 ,310217 −0 ,310217
1 0 ,074977 −0 ,434133
1 0 ,096103 −0 ,426593
1 0 ,256120 −0 ,354627
1 0 ,129377 −0 ,414379
1 0 ,055907 −0 ,440788
1 0 ,401563 0 ,000000
1 0 ,129377 0 ,414379
1 0 ,096103 0 ,426593
1 0 ,074977 0 ,434133
1 0 ,000000 0 ,459630
1 0 ,055907 0 ,440788
1 0 ,310217 0 ,310217
1 0 ,256120 0 ,354627
1 −0 ,401563 0 ,000000
1 0 ,000000 −0 ,459630
1 −0 ,129377 −0 ,414379
1 −0 ,096103 −0 ,426593
1 −0 ,055907 −0 ,440788
1 −0 ,074977 −0 ,434133
1 −0 ,310217 −0 ,310217
1 −0 ,256120 −0 ,354627
# GENERATORS : V = (v1 , . . . , vn )
0 ,758101 −2 ,172514
0 ,774344 −2 ,169709
1 ,453266 −1 ,770280
0 ,794768 −2 ,165107
0 ,991728 −2 ,103613
−0 ,774344 2 ,169709
−1 ,453266 1 ,770280
−0 ,794768 2 ,165107
−0 ,991728 2 ,103613
−0 ,758101 2 ,172514
−2 ,490272 0 ,733274
−0 ,794768 −2 ,165107
−0 ,774344 −2 ,169709
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0 ,733274 −2 ,175663
−0 ,758101 −2 ,172514
−0 ,733274 −2 ,175663
−2 ,490272 −0 ,733274
−0 ,991728 −2 ,103613
−1 ,453266 −1 ,770280
2 ,490272 −0 ,733274
−0 ,733274 2 ,175663
0 ,794768 2 ,165107
0 ,733274 2 ,175663
0 ,774344 2 ,169709
0 ,758101 2 ,172514
2 ,490272 0 ,733274
0 ,991728 2 ,103613
1 ,453266 1 ,770280
# HALFSPACES : a0 + a1 . x1 + . . . + an . xn >= 0 .
1 2
2 3
0 4
3 5
4 5
7 8
6 9
8 10
9 10
7 11
6 12
13 14
14 15
1 16
15 17
16 17
12 18
13 19
18 19
0 20
11 21
22 23
21 24
23 25
24 25
20 26
22 27
26 27
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