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Title. Geometric Distance Graphs, Lattices and Polytopes.

Abstract. A distance graph G(X,D) is a graph whose set of vertices is
the set of points X of a metric space (X, d), and whose edges connect the
pairs {x, y} such that d(x, y) ∈ D. In this thesis, we consider two problems
that may be interpreted in terms of distance graphs in Rn.

First, we study the famous sphere packing problem, in relation with the
distance graph G(Rn, (0, 2r)) for a given sphere radius r. Recently, Venkatesh
improved the best known lower bound for lattice sphere packings by a factor
log log n for infinitely many dimensions n. We prove an effective version of
this result, in the sense that we exhibit, for the same set of dimensions, finite
families of lattices containing a lattice reaching this bound. Our construction
uses codes over cyclotomic fields, lifted to lattices via Construction A. We also
prove a similar result for families of symplectic lattices.

Second, we consider the unit distance graph G associated with a norm ‖ · ‖.
The number m1 (Rn, ‖ · ‖) is defined as the supremum of the densities achieved
by independent sets in G. If the unit ball corresponding with ‖ · ‖ tiles Rn

by translation, then it is easy to see that m1 (Rn, ‖ · ‖) > 1

2n
. C. Bachoc

and S. Robins conjectured that the equality always holds. We show that this
conjecture is true for n = 2 and for several Voronoï cells of lattices in higher
dimensions, by solving packing problems in discrete graphs.

Keywords. Distance graphs, Euclidean lattices, sphere packing, Minkowski-
Hlawka bound, linear codes, parallelohedra, chromatic number.
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Titre. Graphes Métriques Géométriques, Réseaux et Polytopes.

Résumé. Un graphe métrique G(X,D) est un graphe dont l’ensemble des
sommets est l’ensemble X des points d’un espace métrique (X, d), et dont les
arêtes relient les paires {x, y} de sommets telles que d(x, y) ∈ D. Dans cette
thèse, nous considérons deux problèmes qui peuvent être interprétés comme
des problèmes de graphes métriques dans Rn.

Premièrement, nous nous intéressons au célèbre problème d’empilements
de sphères, relié au graphe métrique G(Rn, ]0, 2r[) pour un rayon de sphère r
donné. Récemment, Venkatesh a amélioré d’un facteur log log n la meilleure
borne inférieure connue pour un empilement de sphères donné par un réseau,
pour une suite infinie de dimensions n. Ici nous prouvons une version effective
de ce résultat, dans le sens où l’on exhibe, pour la même suite de dimensions,
des familles finies de réseaux qui contiennent un réseaux dont la densité atteint
la borne de Venkatesh. Notre construction met en jeu des codes construits
sur des corps cyclotomiques, relevés en réseaux grâce à un analogue de la
Construction A. Nous prouvons aussi un résultat similaire pour des familles
de réseaux symplectiques.

Deuxièmement, nous considérons le graphe distance-unité G associé à une
norme ‖·‖. Le nombrem1 (Rn, ‖ · ‖) est défini comme le supremum des densités
réalisées par les stables de G. Si la boule unité associée à ‖ · ‖ pave Rn par

translation, alors il est aisé de voir que m1 (Rn, ‖ · ‖) > 1

2n
. C. Bachoc et S.

Robins ont conjecturé qu’il y a égalité. On montre que cette conjecture est
vraie pour n = 2 ainsi que pour des régions de Voronoï de plusieurs types
de réseaux en dimension supérieure, ceci en se ramenant à la résolution de
problèmes d’empilement dans des graphes discrets.

Mots-clés. Graphes métriques, réseaux Euclidiens, empilement de sphères,
borne de Minkowski-Hlawka, codes linéaires, polytopes pavant l’espace par
translation, nombre chromatique.

Laboratoire d’accueil. Institut de Mathématiques de Bordeaux
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Introduction (en français)

Le Problème d’Empilement de Sphères est l’un des plus célèbres problèmes
de géométrie. Reconnu de tous comme un problème difficile, il est extrême-
ment simple à énoncer : comment occuper la plus grande proportion d’espace
dans Rn avec des sphères de même rayon et d’intérieurs disjoints ?

Figure 1. L’empilement optimal de cercles.

En dimension n = 1, la réponse est immédiate, puisque les intervalles
pavent parfaitement la droite réelle. En dimension 2, le meilleur empilement
de cercles est donné, sans surprise, par le réseau hexagonal (voir Figure 1).
Ceci constitue néanmoins un premier résultat non trivial. Lagrange prouva
d’abord en 1773 qu’il s’agissait du meilleur empilement de sphère par réseau
en dimension 2, c’est-à-dire lorsque les centres des sphères forment un réseau
Euclidien. Ensuite Thue [Thu92] fut le premier à fournir une preuve de son
optimalité parmi tous les empilements, irréguliers compris. Une autre preuve
historiquement importante est celle de Fejes Tóth [FT50]. En dimension 3, la
célèbre conjecture de Kepler affirme que l’empilement optimal est donné par
le réseau cubique à faces centrées (voir Figure 2). Gauss prouva en 1832 son
optimalité parmi les réseaux, mais la conjecture de Kepler n’a été résolue que
récemment par Hales ([Hal06], [HAB+17]).

En dimensions 4, 5 (Korkine et Zolotareff, [KZ77], [KZ73]), 6, 7, 8 (Blich-
feldt, [Bli35]), et 24 (Cohn et Kumar, [CK09]), les réseaux les plus denses
sont connus, et on ne savait pas si ils fournissaient des empilements optimaux
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Figure 2. L’empilement optimal en dimension 3, donné par
le réseau cubique à faces centrées. Il correspond à la manière
usuelle d’empiler des objets sphériques dans l’espace.

en général, jusqu’au récent article de Viazovska ([Via17]). Elle a prouvé que le
réseau E8 donne le meilleur empilement de sphères en dimension 8. Quelques
semaines plus tard, sa méthode fut adaptée pour prouver que l’empilement
optimal en dimension 24 est donné par le réseau de Leech ([CKM+17]). Si il
présente d’évidentes applications pratiques en dimensions 2 et 3, le problème
d’empilements de sphères dans des dimensions plus grandes n’est pas seule-
ment un beau problème mathématique. En effet, les empilements de sphères
dans Rn peuvent être vus comme des analogues continus des codes correcteurs
d’erreurs discrets, et possèdent des applications pour les réseaux de commu-
nications réels (voir [Zam14] pour plus de détails).

Un simple argument montre qu’un empilement optimal (sans imposer la
structure de réseau) en dimension n doit avoir une densité supérieure à 2−n. En
effet, prenons un empilement de sphères de rayon r dans Rn. Si il est optimal, il
n’y a plus de place pour une sphère supplémentaire. Donc pour tout x de Rn,
il y a au moins un centre de sphère c tel que d(x, c) < 2r. Autrement dit,
si on double le rayon, ce qui multiplie le volume recouvert par les sphères
par 2n, Rn est totalement recouvert. Donc la proportion d’espace occupée
par les sphères était d’au moins 2−n. Le premier sujet abordé dans cette
thèse est l’étude de bornes inférieures asymptotiques pour le supremum ∆n des
densités atteintes par les réseaux en dimension n. Historiquement, le premier
résultat marquant fut le théorème de Minkowski-Hlawka [Hla43], qui affirme
que pour toute dimension n, ∆n > ζ(n)2−(n−1), où ζ(n) désigne la fonction
Zeta de Riemann. Plusieurs auteurs se sont consacrés à l’amélioration de cette
borne ([Rog47], [DR47], [Bal92], [Van11]), jusqu’à la meilleure borne dûe
à Venkatesh [Ven13], qui a récemment prouvé que, pour une suite infinie de

dimensions, ∆n >
n log log n

2n+1
. La plupart des preuves de ces résultats reposent

sur un argument de moyenne appliqué à des familles infinies de réseaux bien
choisies. On donnera une synthèse plus détaillée de ces résultats et de leurs
preuves lors de l’introduction du Chapitre 2.

Toutefois, le but principal de ces théorèmes est d’assurer l’existence de
réseaux denses : leurs preuves sont non constructives, et ne fournissent pas de
stratégie pour construire explicitement un réseau dense pour une dimension
donnée n. Si on peut difficilement s’attendre à obtenir un algorithme efficace
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Introduction (en français)

fournissant des réseaux denses en grande dimension, réduire le creux entre
résultats théoriques et pratiques demeure un challenge intéressant. Une idée
naturelle dans ce sens consiste à réduire autant que possible la taille des familles
contenant des réseaux denses. Jusqu’à maintenant, les travaux dans cette
direction ([Rus89], [GZ07], voir l’introduction du Chapitre 2) ont fourni des
familles de réseaux finies, bien que de tailles exponentielles, qui contiennent
des réseaux atteignant la borne de Minkowski-Hlawka, ou l’une de ses versions
améliorées.

Cependant, jusqu’à présent, aucune version effective du résultat de
Venkatesh n’était connue. Il s’agit de la première contribution de cette thèse.
On construit des familles finies de réseaux en relevant des codes linéaires sur
des corps finis Fp. En considérant une généralisation de la Construction A
dans le cadre de la théorie des nombres, nos réseaux gardent la même struc-
ture algébrique que ceux de Venkatesh : ce sont des modules sur des corps
cyclotomiques Q[ζm], par conséquent invariants sous l’action du groupe des
racines m-ièmes de l’unité. Outre la finitude de nos familles, notre preuve
présente aussi des avantages techniques : par exemple l’argument de moyenne
dans notre cas se ramène à un simple argument de comptage sur des ensem-
bles finis. Aussi, en adaptant notre construction, on montre que l’on peut
obtenir des réseaux symplectiques. Ces résultats sont prouvés en détails dans
le Chapitre 2.

Le problème d’empilement de sphères peut être interprété comme un prob-
lème de théorie des graphes. Un empilement de boules unité dans Rn est
complètement déterminé par l’ensemble Λ des centres de sphères. La distance
entre deux éléments de Λ, par définition, ne peut être strictement inférieure à 2.
Soit G le graphe dont les sommets sont les points de Rn et dont les arêtes relient
les paires x 6= y ∈ Rn qui vérifient d(x, y) < 2. Alors l’ensemble Λ n’est autre
qu’un ensemble indépendant dans G, et le problème d’empilement de sphères
revient essentiellement à trouver un ensemble indépendant le plus grand pos-
sible dans G. Le graphe G est un exemple de graphe métrique. En général,
un graphe métrique G(X,D) est la donnée d’un espace métrique X = (X, d)
et d’un sous-ensemble D ⊂]0,∞[. Les sommets de G(X,D) sont les éléments
de X, et deux sommets x, y ∈ X sont reliés dans G(X,D) si et seulement
si d(x, y) ∈ D. Pour le problème d’empilement de sphères, X est l’espace
Euclidien usuel Rn, et D =]0, 2[.

Le deuxième problème principal de cette thèse met aussi en jeu un graphe
métrique. Le graphe en question est le graphe distance-unité G(Rn, ‖ · ‖) :
l’espace métrique est Rn muni d’une norme ‖ · ‖, et D = {1}. Historiquement,
la question la plus étudiée concernant le graphe distance-unité est la détermi-
nation du nombre chromatique de G(Rn, ‖ · ‖2), noté χ(Rn, ‖ · ‖2), lorsque la
norme ‖ · ‖2 est la norme Euclidienne. Il est évident que χ(R, ‖ · ‖2) = 2. En
dimension n = 2, la question est étonnamment difficile, et est connue comme
le célèbre problème de Hadwiger-Nelson (on renvoie au livre de Soifer [Soi08]

Geometric Distance Graphs, Lattices and Polytopes. 3



pour l’histoire de ce problème) : quel est le nombre minimal de couleurs néces-
saires pour colorier le plan Euclidien sans que deux points à distance 1 l’un de
l’autre ne reçoivent la même couleur ?

Figure 3. χ(R2, ‖ · ‖2) 6 7.

D’une part, il y a une coloration naturelle du plan avec 7 couleurs, obtenue
grâce à un pavage du plan par des hexagones réguliers de diamètre 1, comme
illustré dans la Figure 3. D’autre part, le graphe de Moser (voir Figure 4)
est contenu dans le plan et a pour nombre chromatique 4. On obtient donc
aisément l’inégalité

4 6 χ(R2, ‖ · ‖2) 6 7.

Figure 4. 4 6 χ(R2, ‖ · ‖2).

Curieusement, ce sont les seules informations connues sur le nombre chro-
matique du plan Euclidien. Lorque que l’on impose aux classes de couleurs
d’être mesurables, l’analogue du nombre chromatique est le nombre chroma-
tique mesurable χm(Rn, ‖·‖). Falconer [Fal81] a montré que χm(R2, ‖·‖2) > 5.
Même si χm est plus facile à manipuler que χ, la détermination de χm(Rn, ‖·‖2)
reste un problème ouvert.

Larman et Rogers [LR72] ont introduit un outil important pour obtenir des
bornes inférieures sur χm(Rn, ‖ · ‖) : il s’agit du nombre m1(Rn, ‖ · ‖), qui sera
au centre des Chapitres 3 et 4. Un ensemble A ⊂ (Rn, ‖·‖) évite la distance 1 si
pour tous x, y ∈ A, ‖x−y‖ 6= 1. Le nombre m1(Rn, ‖·‖) est alors le supremum
des densités qui peuvent être atteintes par un ensemble mesurable évitant la
distance 1. Autrement dit, un ensemble évitant la distance 1 est un ensemble
indépendant dans G(Rn, ‖ · ‖), et comme pour le problème d’empilement de
sphères, calculer m1(Rn, ‖ · ‖) consiste à trouver le plus grand (en termes de
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Introduction (en français)

densité cette fois) ensemble indépendant dans le graphe distance-unité. La
relation entre le nombre chromatique mesurable et le nombre m1(Rn, ‖ · ‖) est
donnée par l’inégalité :

χm(Rn) >
1

m1(Rn)
.

Cependant déterminer m1(R2, ‖ · ‖2), et plus généralement m1(Rn, ‖ · ‖2), s’est
avéré être encore un problème difficile. Une vue d’ensemble des résultats con-
nus à propos de m1(Rn, ‖ · ‖2) sera donnée dans l’introduction du Chapitre 3.

Les difficultés rencontrées pour calculer χm et m1 dans le cas Euclidien
encouragent à considérer des variantes du problème initial. Par exemple, on
peut remplacer le corps R par un corps plus général, et le produit scalaire Eu-
clidien usuel par des formes quadratiques générales ([BMK17]). Récemment,
DeCorte et Golubev ([DG17]) ont calculé des bornes inférieures sur le nombre
mesurable chromatique du plan hyperbolique. Dans cette thèse, on considère
une autre variante de ce problème. Comme cela sera décrit plus en détails dans
l’introduction du Chapitre 3, le fait que les sphères Euclidiennes ne peuvent
pas paver parfaitement Rn semble être un frein à ce qu’un ensemble évitant
la distance 1 dans Rn puisse atteindre une densité de 2−n. Inspiré par cette
observation, on s’intéresse aux normes dont la boule unité est un polytope P
qui pave Rn par translation. Dans cette situation, on trouve un exemple simple
et naturel d’ensemble évitant la distance 1 de densité 2−n (voir Figure 5), et
cette construction semble optimale, comme l’ont conjecturé Bachoc et Robins.

Figure 5. Lorsque la sphère unité pave l’espace par translation,
il y a un ensemble évitant la distance 1 de densité 1/2n.

Le second objectif de cette thèse est de prouver cette conjecture pour
plusieurs polytopes P . Premièrement, nous allons montrer qu’elle est vraie
en dimension 2 : pour toute norme ‖ · ‖ telle que la boule unité pave R2 par
translation, m1(R2, ‖ · ‖) = 1/4. Ceci implique que le nombre chromatique du
plan dans ce cas est exactement 4. Nous étudions aussi les polytopes qui sont
les cellules de Voronoï des célèbres réseaux An et Dn, pour toute dimension n.
On prouve que la conjecture de Bachoc et Robins est vraie pour la première
famille, tandis que pour la seconde on obtient un résultat légèrement plus
faible. En dimension 3, il y a cinq types combinatoires de polytopes pavant R3

par translation (voir Chapitre 2, Section 3). On montre que la conjecture est
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vraie pour plusieurs cellules de Voronoï en dimension 3, qui couvrent quatre
de ces cinq types combinatoires de polytopes (voir Chapitre 4).

Maintenant que l’on a parlé des résultats, il est temps de dire quelques
mots à propos des méthodes utilisées. Bien que ce problème soit a priori
énoncé dans un contexte continu, nous allons le transformer en un problème
mettant en jeu des ensembles discrets. Si G est un sous-graphe de G(Rn, ‖ · ‖)
induit par un ensemble discret V ⊂ Rn, le nombre m1(Rn, ‖ · ‖) est majoré
par le ratio d’indépendance (voir Chapitre 2, Section 4) de G. Pour chaque
polytope que l’on traitera, notre premier travail sera de construire un sous-
graphe discret approprié, avant de prouver que son ratio d’indépendance ne
peut dépasser 1/2n. Pour ce faire, nous attribuerons à V une structure de
graphe auxiliaire, de façon à ce qu’un ensemble A ⊂ V qui évite la distance
polytope 1 puisse être décomposé de manière canonique comme une union
disjointe de blocs. Dans le Chapitre 3, les graphes auxiliaires que l’on construit
possèdent une propriété forte et utile : tout ensemble A évitant la distance 1
peut s’écrire comme union de cliques dont les voisinages dans le graphe sont
disjoints. Par conséquent, la densité globale de A dans V est majorée par la
densité locale d’une clique dans son voisinage fermé. Dans le Chapitre 4, on
développe une stratégie plus générale dans le but de traiter des graphes plus
compliqués, en introduisant notamment la notion de fonction de distribution
discrète. Dès qu’un sous-ensemble A ⊂ V est séparé en blocs disjoints, une
fonction de distribution discrète répartit les points de V entre les blocs de
A, en associant à chaque bloc un voisinage. Le challenge est de trouver une
telle fonction qui assure que la densité de chaque bloc dans son voisinage est
majorée par 1/2n. Autrement dit, on a transformé le problème initial en un
problème d’empilement discret.

Contenu de la Thèse

Chapitre 1. On introduit les notions qui seront utilisées le long de la thèse.
On fixe les notations et rappelle des notions basiques de topologie et de théorie
des graphes, présente les réseaux Euclidiens sous plusieurs aspects, et donne
un bref aperçu des résultats connus à propos des parallélohèdres.
Chapitre 2. Ce chapitre contient nos résultats sur le problème d’empilement
de sphères. On utilise des codes sur des corps cyclotomiques afin de construire
des familles finies de réseaux en grande dimension qui contiennent des réseaux
denses. Ces résultats ont été publiés dans [Mou17].
Chapitre 3. Dans ce chapitre basé sur [BBMP17], qui est issu d’une col-
laboration avec Christine Bachoc, Thomas Bellitto et Arnaud Pêcher, on étudie
la conjecture de Bachoc et Robins en dimension 2 ainsi que pour les cellules
de Voronoï des réseaux An et Dn.
Chapitre 4. Ce chapitre contient d’autres résultat sur les ensembles évitant
la distance 1. On y introduit le concept de fonction de distribution discrète, et
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Introduction (en français)

on prouve la conjecture de Bachoc et Robins pour plusieurs autres polytopes,
en particulier pour le dodécahèdre allongé en dimension 3.
Chapitre 5. Dans le dernier chapitre, on présente quelques perspectives
pour de futurs travaux.

Geometric Distance Graphs, Lattices and Polytopes. 7





Introduction

The Sphere Packing Problem is one of the most famous problems in geom-
etry. In spite of its acknowledged hardness, the question is surprisingly easy
to state and to understand: what is the greatest proportion of Rn that can be
filled by non overlapping spheres of same radius?

Figure 6. The optimal circle packing.

In dimension n = 1, the answer is immediate, since intervals fill perfectly
the real line. In dimension 2, the best circle packing is given, as expected,
by the hexagonal lattice (see Figure 6). However this is already a non-trivial
result. Lagrange first proved in 1773 that it is the densest lattice sphere packing
in dimension 2, namely when the centers of the spheres shape a Euclidean
lattice. Then Thue [Thu92] was the first one to provide a proof that it is
the best packing, even among the non regular packings. Another historically
important proof is the one by Fejes Tóth [FT50]. In dimension 3, the famous
Kepler conjecture asserts that the optimal packing is given by the so-called
face-centered cubic lattice (see Figure 7). Gauss proved in 1832 that it is the
best lattice packing, whereas the Kepler conjecture has been solved lately by
Hales ([Hal06], [HAB+17]).

In dimensions 4, 5 (Korkine and Zolotareff, [KZ77], [KZ73]), 6, 7, 8 (Blich-
feldt, [Bli35]), and 24 (Cohn and Kumar, [CK09]), the densest lattice pack-
ings are known, and it was not known whether they were optimal packings,
until the recent paper by Viazovska ([Via17]). She proved that the lattice E8

9



Figure 7. The optimal packing in dimension 3, given by the
face-centered cubic lattice. It corresponds to the usual way to
pack balls in the space.

provides the optimal sphere packing in dimension 8. A few weeks later, her
method was adapted to prove that the densest packing in dimension 24 is given
by the Leech lattice ([CKM+17]). If it presents an obvious practical interest
in dimensions 2 and 3, the sphere packing problem in higher dimensions is not
just a beautiful mathematical problem. Indeed, sphere packings in Rn may
be seen as the continuous analogues of discrete error correcting codes, and ad-
mit some application in real communication channels (see [Zam14] for further
details).

A natural argument shows that an optimal packing (non necessarily a lat-
tice packing) in dimension n has density greater than 2−n. Indeed, consider
a packing of balls of radius r in Rn. If it is optimal, there is no space for
an additional sphere. So for every point x of Rn, there is at least one center
of sphere c such that d(x, c) < 2r. In other words, by doubling the size of
the radius, which multiplies the volume of the union of the spheres by 2n, Rn

is completely covered. Thus the initial balls cover at least a 2−n fraction of
the space. The first topic studied in this thesis bears upon asymptotic lower
bounds on the supreme density ∆n achieved by a lattice packing in dimen-
sion n. Historically, the first important result is Minkowski-Hlawka theorem
[Hla43], which asserts that for any dimension n, ∆n > ζ(n)2−(n−1), where ζ(n)
denotes the Riemann Zeta function. Some efforts have been done in order to
enhance this lower bound ([Rog47],[DR47] ,[Bal92] ,[Van11]), and the best
improvement is due to Venkatesh [Ven13], who recently proved that for an

infinite sequence of dimensions, ∆n >
n log log n

2n+1
. Usually, the proofs of these

theorems consist in applying averaging arguments on well chosen infinite fam-
ilies of lattices. A more detailed review of these results and their proofs will
be given in the introduction of Chapter 2.

However, the main goal of these theorems is to prove the existence of dense
lattices: their proofs are non-constructive and do not provide a strategy to
construct explicitly a dense lattice in a given dimension n. If one could hardly
expect to obtain an efficient algorithm providing dense lattices in high dimen-
sion, it is an interesting challenge to cut down the gap between theoretical
and practical results. A natural way to do so is to reduce as much as pos-
sible the size of the families containing dense lattices. Up to now, works in
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this direction ([Rus89], [GZ07], see the introduction of Chapter 2) have pro-
vided finite, although exponential-sized, families of lattices containing a lattice
reaching Minkowski-Hlawka bound, or one of its improved version.

Nevertheless, there were no effective version of Venkatesh’s result to date.
This is the first contribution of this thesis. We construct finite families of
lattices by lifting codes over finite fields Fp. By considering a generalization
of the well-known Construction A in the framework of number theory, our
lattices afford the same strong algebraic structure as the ones introduced by
Venkatesh: they are modules over the ring of integers of some cyclotomic
field Q[ζm], hence invariant under the action of the group of mth-roots of
unity. In addition to the finiteness of our families, our proof also presents
some technical advantages: for instance the averaging argument boils down to
a straightforward counting argument of finite sets. Furthermore, we adapt our
construction in order that our lattices become symplectic. These results are
proved in details in Chapter 2.

The sphere packing problem may be interpreted in terms of graph theory.
A packing of unit balls in Rn is completely determined by the set Λ of the
centers of the spheres. Two elements in Λ cannot be at distance less than 2
from each other, by definition. Let G be the graph whose vertices are the
points of Rn and whose edges are the pairs x 6= y ∈ Rn satisfying d(x, y) < 2.
Then the set Λ is nothing but an independent set in G, and the sphere packing
problem essentially amounts to finding the largest independent set in G. The
graph G is an example of distance graph. A distance graph G(X,D) in general
is given by a metric space X = (X, d) and a subset D ⊂ (0,∞). The vertices
of G(X,D) are the elements of X, and two vertices x, y ∈ X are connected in
G(X,D) if an only if d(x, y) ∈ D. For the sphere packing problem, X is the
usual Euclidean space Rn, and D = (0, 2).

The second main problem of this thesis also involves a distance graph.
The graph at issue is the so-called unit-distance graph G(Rn, ‖ · ‖): the metric
space is Rn equipped with a norm ‖ · ‖, and D = {1}. Historically, the
most important question regarding the unit-distance graph is to determine the
chromatic number of G(Rn, ‖·‖2), denoted by χ(Rn, ‖·‖2), where the norm ‖·‖2

is the Euclidean norm. It is obvious that χ(R, ‖ · ‖2) = 2. In dimension n = 2,
the question is amazingly hard, and is known as the celebrated Hadwiger-
Nelson problem (see the book by Soifer [Soi08] for the history of this problem):
what is the smallest number of colors required for coloring the plane in such
a way that two points at Euclidean distance 1 from each other do not receive
the same color?

There is a natural coloring of the plane using 7 colors, by tiling the plane
with regular hexagons of diameter 1, see Figure 8. Moreover the Moser graph
(see Figure 9) is contained in the plane and has chromatic number 4. So we
easily obtain the inequality

4 6 χ(R2, ‖ · ‖2) 6 7.

Geometric Distance Graphs, Lattices and Polytopes. 11



Figure 8. χ(R2, ‖ · ‖2) 6 7.

Figure 9. 4 6 χ(R2, ‖ · ‖2).

Surprisingly, nothing more is known about the chromatic number of the
Euclidean plane. The analogue of the chromatic number when we require the
color classes to be measurable is themeasurable chromatic number χm(Rn, ‖·‖).
Falconer [Fal81] proved that χm(R2, ‖ · ‖2) > 5. Even if χm is easier to handle
than χ, determining χm(Rn, ‖ · ‖2) remains open.

An important tool that has been introduced by Larman and Rogers [LR72]
in order to get lower bounds on χm(Rn, ‖ · ‖) is the number m1(Rn, ‖ · ‖), that
will be the center of our attention in Chapters 3 and 4. A set A ⊂ (Rn, ‖ · ‖)
avoids distance 1 if for any x, y ∈ A, ‖x− y‖ 6= 1. The number m1(Rn, ‖ · ‖) is
then the supreme density that can be achieved by a measurable set avoiding
distance 1. In other words, a set avoiding distance 1 is an independent set in
G(Rn, ‖ · ‖), and like for the sphere packing problem, computing m1(Rn, ‖ · ‖)
corresponds to finding the largest (in terms of density in this case) independent
set in the unit distance graph. The relation between the measurable chromatic
number and the number m1(Rn, ‖ · ‖) is given by the inequality:

χm(Rn) >
1

m1(Rn)
.

However, the determination of m1(R2, ‖ · ‖2), and more generally that of
m1(Rn, ‖ · ‖2), turned out to be a difficult problem as well. An overview
of the known results about m1(Rn, ‖ · ‖2) will be given in the introduction of
Chapter 3.

The difficulties encountered in the computation of the numbers χm and m1

in the Euclidean case encourage to consider variants of the original problem.
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For instance, one could replace the field R by a more general field, and the
usual Euclidean quadratic form by general quadratic forms ([BMK17]). Re-
cently DeCorte and Golubev ([DG17]) have computed lower bounds on the
measurable chromatic number of the hyperbolic plane. In this thesis, we con-
sider another variant of this problem. As we will describe in the introduction
of Chapter 3, the fact that Euclidean spheres cannot fill perfectly Rn is likely
to prevent a set avoiding distance 1 in Rn to reach a density of 2−n. In the light
of this observation, we consider norms for which the unit ball is a polytope P
tiling Rn by translation. In this situation, there is a simple example of a set
avoiding distance 1 of density 2−n (see Figure 10), and this construction seems
to be optimal, as conjectured by Bachoc and Robins.

Figure 10. When the unit ball tiles space by translation, there
is set avoiding distance 1 of density 1/2n.

The second goal of this thesis is to prove this conjecture for several poly-
topes P . First, we will prove it in dimension 2: for any norm ‖ · ‖ such that
the unit ball tiles R2 by translation, m1(R2, ‖ · ‖) = 1/4. As a consequence the
chromatic number of the plane in that case is exactly 4. We will also consider
the polytopes that are the Voronoï cells of the famous lattices An and Dn,
in any dimension n. We prove that Bachoc and Robins conjecture is true for
the first family, and we obtain a slightly weaker result for the second one. In
dimension 3, there are five combinatorial types of polytopes that tile R3 by
translation (see Chapter 2, Section 3). We show that the conjecture is true for
several Voronoï cells in dimension 3, that realize four combinatorial types of
polytopes out of five (see Chapter 4).

Now that we have stated the results, it is worth to say a few words about
the techniques employed. Although this problem is a priori stated in a con-
tinuous framework, we will turn it into a problem about discrete sets. If G
is a subgraph of G(Rn, ‖ · ‖) induced by a discrete set V ⊂ Rn, the num-
ber m1(Rn, ‖ · ‖) is upper bounded by the independence ratio (see Chapter 2,
Section 4) of G. For every polytope that we will consider, we will first need
to construct an appropriate discrete graph, and then we will prove that its
independence ratio cannot exceed 1/2n. To do so, we will give the set V an
auxiliary graph structure, in such a way that a set A ⊂ V avoiding polytope
distance 1 may be decomposed in a canonical way as a disjoint union of blocks.

Geometric Distance Graphs, Lattices and Polytopes. 13



In Chapter 3, the auxiliary graphs that we construct afford a strong and useful
property: any set A avoiding polytope distance 1 may be written as a union of
cliques whose neighborhoods in the graph are disjoint. As a consequence the
global density of A in V is upper bounded by the local density of a clique in its
neighborhood. In Chapter 4, we develop a more general framework in order to
handle more complicated graphs, by introducing the concept of discrete distri-
bution function. Once that a set A ⊂ V is split into disjoint blocks, a discrete
distribution function breaks V up and assign to every block a neighborhood.
The challenge is to find such a function which ensures that the density of each
block in its neighborhood is upper bounded by 1/2n. In other words, the initial
problem has turned into a... discrete packing problem.

Outline of the Thesis

Chapter 1. We introduce the material that will be used along the thesis.
We fix some notation and recall very basic notions of topology and graph
theory, present several aspects of Euclidean lattices, and give a short overview
of known results about parallelohedra.
Chapter 2. This chapter contains our results on the sphere packing prob-
lem. We use codes over cyclotomic fields in order to construct finite families
of lattices in high dimension that contain a dense lattice. These results have
been published in [Mou17].
Chapter 3. In this chapter based on [BBMP17], which is joint work with
Christine Bachoc, Thomas Bellitto and Arnaud Pêcher [BBMP17], we study
Bachoc and Robins conjecture for parallelohedra in dimension 2 as well as for
the Voronoï cells of the lattices An and Dn.
Chapter 4. This chapter contains further results on sets avoiding parallelo-
hedron distance 1. We introduce the notion of discrete distribution function
and we prove Bachoc and Robins conjecture for several new polytopes, espe-
cially for the so-called elongated dodecahedron in dimension 3.
Chapter 5. The last chapter is dedicated to concluding comments and per-
spectives for future work.

14 Philippe Moustrou



Chapter 1

Preliminaries

In this chapter, we introduce most of the material that we will need along
this thesis. The main goal is to fix definitions and notations, and to recall,
without proofs, well known results concerning the objects that we will handle.

1. Topological Preliminaries

1.1. Normed Spaces, Euclidean Spaces

Most of the time, our playground will be E = Rn, the real vector space
of dimension n, equipped with the Lebesgue measure. A measurable subset
A ⊂ Rn will be understood as a set measurable with respect to the Lebesgue
measure, and we will denote by Vol(A) its volume.

The space E = Rn will also be given a norm, that we will denote by ‖ · ‖.
We keep the usual notations for the classical norms, for instance

‖(x1, . . . , xn)‖∞ = max{|xi|, i = 1 . . . n},

where | · | is the usual absolute value in R.
For x ∈ E, r 6 0, we denote by B(x, r) the open ball of radius r centred

in x

B(x, r) = {y ∈ E | ||x− y|| < r},

and we write B(r) instead of B(0, r). Denote by Vn the volume of the unit
ball in dimension n. By Stirling formula, we have

Vn =
π
n
2

Γ(n
2

+ 1)
∼ 1√

nπ

(√
2πe

n

)n
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1. Topological Preliminaries

where f ∼ g means lim
n→∞

f/g = 1. Thus, if Vol(B(r)) = V , we get that

(1) r ∼
√

n

2πe
V

1
n .

If A is a subset of E, we denote by Å its interior, by Ā its closure in E,
and by ∂A its boundary. We also define the diameter of A:

Diam(A) = sup{‖x− y‖, x, y ∈ A}.

Finally, a Euclidean space is a vector space E isomorphic to Rn, equipped
with a scalar product, denoted by 〈·, ·〉. This scalar product induces a norm
on E, by ‖x‖ = 〈x, x〉 12 . The most classical Euclidean space is Rn, together
with the Euclidean norm ‖ · ‖2, coming from the natural scalar product

〈(x1, . . . xn), (y1, . . . yn)〉 =
n∑
i=1

xiyi.

1.2. Density of a Set and Sphere Packings

We need to define the density of a measurable subset A ⊂ Rn, in order to
quantify the proportion of space covered by A in Rn. One would like to take
the limit in R of the quotient

Vol(A ∩ [−R,R]n)

Vol([−R,R]n)
,

but this limit does not always exist. So we define the upper density of A:

δ(A) = lim sup
R→∞

Vol(A ∩ [−R,R]n)

Vol([−R,R]n)
.

From now on, we will forget the term upper density, and simply write density.
A sphere packing is a union of non overlapping balls having the same

radius r. More precisely, it corresponds to a set P ⊂ Rn such that, for any
x 6= y ∈ P ,

B(x, r) ∩B(y, r) = ∅.
The density of the packing P is the density in Rn of the reunion of all the

balls

∪x∈PB(x, r).

The famous sphere packing problem asks for the highest density that can
be achieved by a sphere packing in dimension n.
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1.3. Polytope Norms

Let P a convex symmetric polytope, centered at 0, and with a non empty
interior. The polytope norm ‖ · ‖P associated with P is defined by

‖x‖P = inf{λ ∈ R+ | x ∈ λP}.

We also call polytope distance the distance induced by ‖ · ‖P .
If BP(r) = {x ∈ Rn | ‖x‖P < r}, we have by definition:

x ∈ BP(1)⇔ x ∈ P̊ and ‖x‖P = 1⇔ x ∈ ∂P .

Figure 1 presents an example of polytope distance, when the polytope is a
regular hexagon in the plane.

1

1

Figure 1. An example of polytope distance.

Several well-known norms are polytope norms, such as ‖ · ‖∞ and ‖ · ‖1

for instance. Finally, suppose that a polytope P in Rn can be written as the
direct product of two polytopes

P = P1 × P2,

with P1 ⊂ Rm and P2 ⊂ Rn−m. Then the polytope norm on Rn corresponding
to P is nothing but

‖(x1, . . . , xn)‖P = max{‖(x1, . . . , xm)‖P1 , ‖(xm+1, . . . , xn)‖P2}.

2. Euclidean Lattices

Euclidean lattices will assume a preponderant role in this thesis. There is
a lot to say about this topic. In this short presentation, we only focus on the
aspects that will be useful in the next chapters. Nice references on lattices are
[CS87], [Mar03], or [Ebe13].

Geometric Distance Graphs, Lattices and Polytopes. 17



2. Euclidean Lattices

2.1. First Definitions

Let E = Rn, equipped with the usual Euclidean scalar product. A n-
dimensional lattice is a subset Λ ⊂ Rn with the property that there exists a
basis B = {e1, . . . en} of Rn such that

Λ = Ze1 ⊕ . . .⊕ Zen.
Such a basis is then called a basis of Λ, and we denote by AB the matrix whose
columns are the vectors e1, . . . , en, written in the canonical basis of Rn. For
any n > 2, a lattice Λ admits infinitely many bases, but the following property
holds: two bases B and B′ of Rn span the same lattice Λ if and only if there
exists a matrix M in

{M ∈ GLn(Z) | detM = ±1}
such that

AB′ = MAB.

A fundamental region of Λ is a measurable set R ⊂ Rn such that for any
λ 6= λ′ ∈ Λ, the measure of (λ+R) ∩ (λ′ +R) is 0, and

Rn =
⋃
λ∈Λ

(λ+R).

For instance, if B is a basis of Λ, the fundamental parallelotope of Λ associated
with B

PB =

{
n∑
i=1

xiei | xi ∈ [0, 1]

}
is a fundamental region of Λ.

The volume of Λ is defined as the volume of a fundamental region of Λ. It
does not depend on the choice of the fundamental region. For example, if B is
a basis of Λ, we have

Vol(Λ) = | det(AB)|.
The Gram Matrix of Λ with respect to one of its basis B = {e1, . . . en} is

the matrix whose coordinates are the scalar products between the elements
of B:

GB = (〈ei, ej〉)16i,j6n = AtrBAB,

where AtrB is the transpose of the matrix AB. If B′ is another basis of Λ, we have
det(GB) = det(GB′) and this value is the determinant of Λ. The determinant
and the volume of Λ are related by the formula

det(Λ) = Vol(Λ)2.

If Λ′ is a lattice in Rn such that Λ′ ⊂ Λ, then the index |Λ/Λ′| is finite, and
Vol(Λ′) = |Λ/Λ′|Vol(Λ).

The symmetry group (or automorphism group) of Λ is the group made by
the isometries of Rn (i.e. the linear transformations preserving the scalar
product) that send Λ onto itself.
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Finally, we introduce the dual lattice Λ# of Λ

Λ# = {x ∈ Rn,∀ y ∈ Λ, 〈x, y〉 ∈ Z},

its volume is the inverse of the volume of Λ:

Vol(Λ#) =
1

Vol(Λ)
.

2.2. Voronoï Cell, Packing Radius, Covering Radius

Voronoï cell. The Voronoï cell of a lattice Λ ⊂ Rn is a very important
region associated to Λ. It consists of the points of Rn that are closer to 0 than
to any other vector of Λ

V = VΛ = {z ∈ Rn | ∀ x ∈ Λ, ||z − x|| > ||z||},

and it is a fundamental region of Λ.
The Voronoï vectors of Λ are the vectors that define its Voronoï cell. More

precisely, a vector v ∈ Λ is a Voronoï vector of Λ if the intersection between V
and the hyperplane

Hv =

{
x ∈ Rn | 〈x, v〉 =

1

2
〈v, v〉

}
is non empty. We say that v is relevant if this intersection is a facet of V , that
is a (n− 1)-dimensional face of V (see Figure 2).

Figure 2. An example of Voronoï cell of a lattice with its
Voronoï vectors. The red vectors are relevant, while the blue
ones are not.
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2. Euclidean Lattices

The relevant Voronoï vectors give a complete description of V : a vector
x ∈ Rn belongs to V if and only if, for any relevant Voronoï vector v,

|〈x, v〉| 6 1

2
〈v, v〉.

We have the following nice characterization of the Voronoï vectors (see
[CS92], Chapter 21, Section 3.G.):

Proposition 1. A vector v ∈ Λ \ {0} is a Voronoï vector if and only if it
is a shortest vector in the coset v + 2Λ.

Moreover, v is relevant if and only if ±v are the only shortest vectors in
that coset.

Packing Problem and Covering Problem. Previously we presented the
sphere packing problem. For the lattice sphere packing problem, the centers
of the spheres are required to shape a lattice. The minimum of a lattice Λ,
denoted by µ, is the minimal norm among the non-zero vectors of Λ:

µ = µΛ = min{||x||, x ∈ Λ \ {0}}.
The largest radius that one can take in order to get a sphere packing associated
with Λ is obviously µ/2: this radius is the packing radius of Λ. The density of
the corresponding periodic packing is given by the ratio between the volume
of a sphere and the volume of a fundamental region (see Figure 3).

Figure 3. The density of a lattice packing is the ratio between
the volume of a sphere and the volume of the lattice.

This density ∆(Λ) is completely determined by µ:

∆(Λ) =
Vol(B(µ/2))

Vol(Λ)
=
(µ

2

)n Vn
Vol(Λ)

.

The lattice sphere packing problem asks for the supreme density ∆n over all
the lattices in dimension n. An equivalent formulation involves the so-called
Hermite invariant of Λ:

γ(Λ) =

(
µ

Vol(Λ)1/n

)2

.
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The analogue of ∆n in this formulation is γn = sup
Λ
γ(Λ), and both are related

by the relation

γn = 4

(
∆n

Vn

)2/n

.

The lattice covering problem is often described as the dual problem of the
lattice packing problem. The covering radius of Λ is the minimal radius r
such that the union of balls of radius r, centered at the points of Λ, covers Rn.
Formally:

τ = τΛ = sup
z∈Rn

inf
x∈Λ
||z − x||.

The analogue of the density of the lattice is in this situation the thickness of Λ,
measuring the average number of spheres in the covering that contain a point
of Rn:

Θ(Λ) =
Vol(B(τ))

Vol(Λ)
=

Vn
Vol(Λ)

τn.

A good lattice for the covering problem is a lattice whose thickness is small.
Voronoï cell, packing radius, and covering radius are related in the following

way: the packing radius is the largest r such that B(r) ⊂ V , and the covering
radius is the smallest R such that V ⊂ B(R) (see Figure 4).

µ

µ
2

τ

Figure 4. The packing radius and the covering radius of the lattice.

2.3. Fundamental Examples

The cubic lattice Zn. The most natural lattice is the cubic lattice Zn made
by the points in Rn having integer coordinates. A basis of Zn is the canonical
basis {e1, . . . en} of Rn, and its Gram matrix in this basis is the identity matrix
of size n. Moreover, we have:

• det(Zn) = Vol(Zn) = 1,
• µ(Zn) = 1, so the packing radius of Zn is 1/2,
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• τ(Zn) =

√
n

2
,

• The symmetry group of Zn is the group generated by all permutations
and sign changes of the coordinates.

• Zn is unimodular : it is its own dual lattice,
• The Voronoï cell of Zn is the hypercube whose vertices are the vectors

(±1/2, . . . ,±1/2). The relevant Voronoï vectors are the 2n vectors
±ei.

The lattice An. For n > 1, let H be the hyperplane in dimension n + 1
defined by

H = {(x0, . . . , xn) ∈ Rn+1 |
n∑
i=0

xi = 0}.

In this n-dimensional vector space, the lattice An is defined by

An = H ∩ Zn+1.

Let {e0, . . . , en} be the canonical basis of Rn+1. A basis of An is the family
{e0 − e1, e1 − e2, . . . , en−1 − en}. The Gram matrix of An in this basis is

G =



2 −1 0 · · · 0 0

−1 2 −1
. . . 0 0

0 −1 2
. . . 0 0

...
... . . . . . . . . . ...

0 0 0
. . . 2 −1

0 0 0 · · · −1 2


and we have

• det(An) = n+ 1 and Vol(An) =
√
n+ 1,

• µ(An) =
√

2, so the packing radius of An is
√

2/2,

• τ(An) =
a(n+ 1− a)

n+ 1
, where a is the integer part of (n+ 1)/2.

• The symmetry group of An is the group generated by all permutations
of the n+ 1 coordinates and the multiplication by −1.

• The relevant Voronoï vectors of An are all the vectors of the form
ei − ej. The Voronoï cell of An will be described in more details in
Chapter 3.

• Let pH : Rn+1 → H denote the orthogonal projection on H. Then the
dual lattice of An is A#

n = pH(Zn+1).

Remark 1. For n = 2, the lattice A2 is the so-called hexagonal lattice (see
Figure 5), which provides the densest packing in dimension 2, with ∆(A2) =
π√
12
≈ 0.9069.
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0

Figure 5. The hexagonal lattice A2

The lattice Dn. For n > 3, Dn is the lattice made by the points in Zn
whose sum of coordinates is even:

Dn =

{
(x1, . . . , xn) ∈ Zn |

n∑
i=1

xi = 0 mod 2

}
.

Let {e1, . . . , en} be the canonical basis of Rn. A basis of Dn is the family
{e1 + e2, e1− e2, e2− e3 . . . , en−1− en}. The Gram matrix of Dn in this basis is

G =



2 0 1 · · · 0 0

0 2 −1
. . . 0 0

1 −1 2
. . . 0 0

...
... . . . . . . . . . ...

0 0 0
. . . 2 −1

0 0 0 · · · −1 2


and we have

• det(Dn) = 4 and Vol(Dn) = 2,
• µ(Dn) =

√
2, so the packing radius of Dn is

√
2/2,

• τ(D3) = 1, and for n > 4, τ =

√
n

2
.

• The symmetry group of Dn for n 6= 4 is the same as the symmetry
group of Zn: the group generated by all permutations and sign changes
of the coordinates. When n = 4, one has to add to the generators the

Hadamard matrix
1

2


1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1

.

• The relevant Voronoï vectors of Dn are all the vectors of the form
ei ± ej. The Voronoï cell of Dn will also be described in Chapter 3.
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• The dual lattice of Dn is

D#
n = Dn∪

((
1

2
, . . . ,

1

2

)
+Dn

)
∪
((

1

2
, . . . ,−1

2

)
+Dn

)
∪((0, . . . , 0, 1)+Dn).

Remark 2. For n = 3, we have A3 ' D3, and this lattice is the famous
face-centered cubic lattice, which realizes the highest density ∆3 =

π√
18
≈

0.7405 reached by a packing in dimension 3.

2.4. Construction A

Construction A is a method to construct lattices from codes. A general
reference about codes is [Rot06]. For relations between lattices and codes, one
should look at [CS87] and [Ebe13]. A [n, k]p-linear code C is a k-dimensional
subspace of Fnp . The parameters n and k are respectively called the length and
the dimension of C.

If C is a [n, k]p-code, the orthogonal code, or dual code C⊥ of C is defined
as

C⊥ =

{
(y1, . . . , yn) ∈ Fnp | ∀(x1, . . . , xn) ∈ C,

n∑
i=1

xiyi = 0

}
and is a [n, n− k]p-code.

Let us denote by π the canonical projection π : Zn → Fnp . Let C be a
[n, k]p-code. The lifted lattice ΛC obtained from C by Construction A is the
preimage of C via π:

ΛC = π−1(C) = {x ∈ Zn | π(x) ∈ C}.
It satisfies the following properties:

• pZn ⊂ ΛC ⊂ Zn,
• Vol(ΛC) = pn−k,
• Let C⊥ be the orthogonal code of C. Then the dual lattice of ΛC is

Λ#
C =

1

p
ΛC⊥ .

Example 1. The lattice E8, that has been recently proved to realize the best
packing in dimension 8 (see [Via17]) can be constructed via Construction A: it
is obtained by lifting the extended Hamming code H8, which is the [8, 4]2-code
generated by the lines of the matrix

G =


0 0 0 0 1 1 1 1
0 0 1 1 0 0 1 1
0 1 0 1 0 1 0 1
1 1 1 1 1 1 1 1

 .

Precisely:

E8 =
1√
2

ΛH8 .
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In Chapter 2, we will use a generalization of Construction A in the context
of number fields.

2.5. Lattices from Algebraic Number Theory

Another way to construct Euclidean lattices involves ideals in algebraic
number fields. For details about basic algebraic number theory, including all
definitions and proofs that we ommit here, see [Sam67] or [Neu99].

Let K/Q be a number field of degree n. This degree may be broken down
into n = r1 +2r2, where r1 (respectively 2r2) is the number of real (respectively
complex) embeddings of K. More precisely, we label by σ1, . . . , σr1 the real
embeddings K → R, and by and σr1+1, . . . , σr1+2r2 the complex embeddings
K → C, in such a way that for every 1 6 j 6 r2, σr1+r2+j = σ̄r1+j, where
·̄ denotes the complex conjugation in C. Thanks to these maps, there is a
natural embedding ι of K into KR, where KR = Rr1 × Cr2 ' Rn ' K ⊗Q R:

ι : K → KR
x 7→ (σ1(x), . . . , σr1(x), σr1+1(x), . . . , σr1+r2(x))

.

The n-dimensional real vector space KR is given a structure of Euclidean space
by the trace form tr = trK/Q of K over Q. Indeed, recall that, for any x ∈ K,

tr(x) =
n∑
i=0

σi(x). Then the map

β : K ×K → R
(x, y) 7→ tr(xȳ)

is a positive-definite symmetric bilinear form, which induces a scalar product
〈·, ·〉 on KR.

The ring of integers OK , and more generally every fractional ideal A of
K are free Z-modules of rank n. So their images under ι are lattices in the
Euclidean space KR. From now on, we will also denote the image ι(A) by A.

The determinant of OK is by definition the absolute value of the discrim-
inant dK of K. Thus Vol(OK) =

√
|dK |. Moreover, it is easy to see that

the minimum of OK is
√
n: indeed ||1|| =

√
n and the arithmetic geometric

inequality gives ||x|| > √n for all x ∈ OK . Further, we will need bounds on
the minimum and the covering radius of general fractional ideals:

Lemma 1 ([BF06], propositions 4.1 and 4.2.). Let A be a fractional ideal
of K, where K is a number field of degree n over Q. Then we have :

(i)
µA

Vol(A)
1
n

>

√
n√
|dK |

1
n

,

(ii)
τA

Vol(A)
1
n

6

√
n

2

√
|dK |

1
n .

Example 2. In Chapter 2, we will focus on lattices coming from ideals in
cyclotomic fields. Let K be the cyclotomic field Q[ζm], where ζm is a primitive
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m-th root of unity. This is a totally imaginary field of degree φ(m) over Q,
where φ is the Euler’s totient function, and its discriminant is (e.g [Was97])

(2) |dK | =
mφ(m)∏

l∈P
l|m

lφ(m)/(l−1)

where P is the set of prime numbers.

3. Parallelohedra

The polytopes that tile space by translation will be the center of
Chapters 3 and 4. Here we present some characterisations of those polytopes,
as well as a complete description of parallelohedra in dimensions 2 and 3.

3.1. Polytopes Tiling Space by Translation and Parallelo-
hedra

We say that a convex body K tiles Rn by translation if there exists a family
of vectors T ⊂ Rn such that:

• Rn = ∪t∈T (K + t),
• For any t 6= t′ ∈ T , K + t and K + t′ have disjoint interiors.

A parallelohedron in dimension n is a polytope P that tiles Rn face-to-
face by translation, i.e. there is a tiling such that the intersection between
two translates of P , if non empty, is a common face of both of them. Works
by Minkowski [Min97], Venkov [Ven54], and McMullen [McM80] have led
to a proof that the convex bodies tiling space by translation are exactly the
parallelohedra. Moreover, they provide a characterization of such polytopes.
These results can be summed up in the following theorem. Recall that a facet
of a polytope P is a (n − 1)-dimensional face of P , and that a belt of P is a
sequence of facets F1, . . . , Fk such that for every i (defined modulo k), Fi∩Fi+1

is a (n−2)-dimensional face of P which is a translate of F1∩F2 (see Figure 6).

Theorem 1 (Minkowski, Venkov, McMullen). The convex bodies that
tile Rn by translation are the parallelohedra. Moreover, a convex polytope P is
a parallelohedron if and only if it satisfies the three following conditions:

(1) It is centrally symmetric,
(2) Each of its facets is centrally symmetric,
(3) Each of its belts contains 4 or 6 facets.

Finally, we may assume that the set of translation vectors T is a lattice.
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Figure 6. Two examples of belts of a same parallelohedron.

3.2. Voronoï’s Conjecture

If we go back to the definition of a fundamental region of a lattice, it
becomes clear that a fundamental region of a lattice, if convex, is a parallelo-
hedron. In particular, the Voronoï cell of a lattice is a parallelohedron. Voronoï
conjectured that the converse is also true, up to an affine transformation:

Conjecture 1 (Voronoi’s Conjecture). If P is a parallelohedron in Rn,
then there is an affine map ϕ : Rn → Rn such that ϕ(P) is the Voronoï cell of
a lattice Λ ⊂ Rn.

This conjecture has been solved for several families of parallelohedra. For
instance, Voronoï himself [Vor08] proved it for primitive parallelohedra, that
are the polytopes presenting a facet-to-facet tiling in dimension n such that
in each vertex of a tile, exactly n + 1 tiles meet. Erdahl [Erd99] solved it
for zonotopal parallelohedra, that are Minkowski sums of line segments. See
[Gru07] of [Val03] for further details. Moreover, Delone [Del29] has shown
that Voronoï’s conjecture is true in dimensions up to n = 4. The most impor-
tant result for us is the latter, since most of the parallelohedra that we will
consider will be in dimension 2 and 3.

3.3. Parallelohedra in Dimensions 2 and 3

Following Delone’s result, the understanding of parallelohedra in dimen-
sions 2 and 3 boils down to the description of Voronoï cells of lattices in
those dimensions. Here we give a short overview of the classification presented
in [CS92].

Let Λ ⊂ Rn be a lattice. A superbase of Λ is a family of n + 1 vectors
v0, v1, . . . , vn such that

• {v1, . . . , vn} is a basis of Λ,
• v0 + v1 + . . .+ vn = 0.

Let us define, for i, j ∈ {0, . . . , n}, i 6= j, the Selling parameter

pi,j = −〈vi, vj〉.
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A superbase is said to be obtuse if for all i 6= j, pi,j > 0, and strictly obtuse if
for all i 6= j, pi,j > 0.

Even though every lattice obviously admits a superbase, it is not true that
every lattice affords an obtuse superbase. Such a lattice is said to be of Voronoï
first kind. For instance, An and A#

n have an obtuse superbase, whereas Dn for
n > 4 do not. Whenever a lattice has an obtuse superbase, there is a nice
description of its Voronoï vectors:

Theorem 2 ([CS92], Theorem 3). Suppose Λ has an obtuse superbase
v0, . . . , vn. Then the 2n+1 − 2 subsums

vS =
∑
i∈S

vi,

where S runs through all the 2n+1 − 2 non trivial subsets of {0, . . . , n}, are
Voronoï vectors. For any such S, if S̄ is the complementary set of S, vS̄ = −vS,
and the vS represent all the 2n − 1 non-zero cosets of Λ mod 2Λ.

Furthermore, the vS are all relevant if and only if v0, . . . , vn is strictly
obtuse.

The remarkable fact is that in dimensions n 6 3, all the lattices are of
Voronoï first kind:

Theorem 3 ([CS92], Theorem 8). Let n 6 3. Then every lattice Λ in Rn

has an obtuse surperbase.

Even more interesting, the combinatorial type of the Voronoï cell only
depends on the Selling parameters whose value is 0. More precisely, the generic
type of Voronoï cell is that of a lattice affording a strictly obtuse superbase.
The other parallelohedra are degenerate cases, when pi,j = 0 for some i 6= j,
which geometrically corresponds to the shrinking of a family of parallel edges.
We now illustrate this idea by enumerating the parallelohedra in dimensions 2
and 3.
Dimension 2. Let Λ ⊂ R2 be a lattice, with obtuse superbase v0, v1, v2.
When this superbase is strictly obtuse, the Voronoï cell of Λ is a hexagon.
Since v0 = −v1 − v2, at most one Selling parameter pi,j can be 0: in that
case, the Voronoï cell of Λ is a rectangle. So these are the only two kinds of
parallelohedra in dimension 2 (see Figure 7).
Dimension 3. Let Λ ⊂ R3 be a lattice, with obtuse superbase v0, v1, v2, v3.
When this superbase is strictly obtuse, the Voronoï cell of Λ is a truncated
octahedron, see Figure 8.

The truncated octahedron has 6 families of 6 parallel edges. Assume with-
out loss of generality that p0,1 = 0. Then one of this families of edges is
shrinked, and we get a elongated dodecahedron, see Figure 9.

There are two non equivalent ways of shrinking edges in the elongated
dodecahedron:

• There are 4 families of 6 parallel edges. Shrinking one of these families
corresponds to putting pi,j = 0 with i ∈ {0, 1} or j ∈ {0, 1} (recall
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0 v1

v2

−v1

−v2

−v0 = v1 + v2

v1 − v2

v2 − v1

v0 = −v1 − v2

0 v1

−v2

−v1

v0 = −v1 − v2

v2

−v0 = v1 + v2

Figure 7. The two kinds of parallelohedra in dimension 2.

Figure 8. The truncated octahedron.

Figure 9. The elongated dodecahedron.

that p0,1 = 0). By this process, we obtain a hexagonal prism, see
Figure 10.

Figure 10. The hexagonal prism.
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• There is one family of 4 parallel edges remaining. This family is
shrinked when p2,3 = 0, and in this case we get a rhombic dodecahe-
dron, see Figure 11.

Figure 11. The rhombic dodecahedron.

Finally, from the two previous parallelohedra, there is only one way to
shrink edges keeping a polytope in dimension 3. In both cases, one gets a
cuboïd, see Figure 12. This the fifth and last combinatorial type of parallelo-
hedron in dimension 3.

Figure 12. The cube.

Remark 3. In Figures 8, 9, 10, 11 and 12, the polytopes are presented
in their more symmetrical shape. We point out that the truncated octahedron
in Figure 8 is the Voronoï cell of the lattice A#

3 ' D#
3 , and that the rhombic

dodecahedron in Figure 11 is the Voronoï cell of the lattice A3 ' D3. Of course,
the cube in Figure 12 is the Voronoï cell of the Z3.

4. Graphs

We conclude this preliminary chapter by some quick reminders on graph
theory. If one is interested in graph theory in general, one could read [Bol98].
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4.1. Definitions and Examples

A graph G is an ordered pair (V,E) such that the elements of E are
pairs {x, y}, with x 6= y ∈ V . The set V is the set of vertices of G, and the el-
ements of E are the edges of G. If {x, y} ∈ E, we say that the vertices x and y
are neighbors in G. The degree of a vertex v ∈ V is the number of its neighbors.
A path between two vertices x and y is a chain z0 = x, z1, . . . , zt−1, zt = y such
that for every 0 6 i 6 t, zi ∈ V , and for every 0 6 i 6 t − 1, {zi, zi+1} ∈ E.
We say that t is the length of the path. Then the graph distance dG(x, y)
between x and y in G is the minimal length of a path between x and y. If
there is no path between x and y, we set dG(x, y) = +∞.

If A is a subset of V , and x ∈ V , the graph distance between x and A is
naturally the minimal graph distance between x and an element of A:

dG(x,A) = inf
a∈A

dG(x, a).

Let A ⊂ V be a subset of vertices. The closed neighborhood N [A] of A in G
is A augmented by its neighbors. In other words, it is the set of vertices at
graph distance 0 or 1 from A:

N [A] = {v ∈ V | dG(v,A) 6 1}.
A clique of G is a subset C ⊂ V such that, for every x 6= y ∈ C, {x, y} ∈ E.

The clique number ω(G) is the maximal size of a clique in G. A connected
component in G is a subset A ⊂ V such that, for every x 6= y ∈ A, there
is a path in G from x to y. The graph G is said to be connected if for
every x 6= y ∈ V , there is a path in G from x to y, namely if V is a connected
component in G.

The complementary graph Ḡ = (V̄ , Ē) of G = (V,E) is the graph con-
structed as follows: {

V̄ = V

{x, y} ∈ Ē ⇔ {x, y} /∈ E .

Finally, if G = (V,E) is a graph, for any subset A ⊂ V , we define the
subgraph of G induced by A: its set of vertices is A, and two vertices x, y ∈ A
are connected in this new graph if and only if {x, y} ∈ E.

Example 3. The first example that we present is the so-called Moser
graph: it is a connected graph having 7 vertices. It is depicted in Figure 13.

Figure 13. The Moser graph.
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Now we present two precise kinds of graph, that will be of particular interest
for us later.
Cayley Graphs. Let Γ be a group, and let S be a generating set of Γ.
Suppose that S is symmetric, i.e. if γ ∈ S, then γ−1 ∈ S. We associate to Γ
and S a graph, called Cayley graph, denoted by G = G(Γ, S) = (V,E), defined
as follows: {

V = Γ

{x, y} ∈ E ⇔ xy−1 ∈ S .

Since S is a generating set of Γ, the Cayley graph G(Γ, S) is connected.

Example 4. There is a natural way to construct Cayley graphs on lattices.
Let Λ be a lattice, and let B be a basis of Λ. Then we can associate to Λ the
Cayley graph G(Λ, SB), where SB = {±E | ε ∈ E}. However, there can be other
interesting Cayley graphs associated with Λ. In Figure 14, we present, for the
hexagonal lattice A2, the Cayley graph structure previously defined, as well as
the Cayley graph associated with the generating set made by the 6 shortest
vectors of A2.

v2

v1

−v2

−v1
0

v2

v1

v3

−v2

−v1

−v3

0

Figure 14. Two different Cayley graphs on A2.

Distance Graphs. Let X be a metric space, and denote by d the associated
distance d : X × X → (0,+∞). Let D ⊂ (0,+∞). Then we construct the
distance graph G = G(X,D) = (V,E) as follows:{

V = X

{x, y} ∈ E ⇔ d(x, y) ∈ D .

Example 5. Let X = Rn, equipped with a norm ‖ · ‖. The unit distance
graph G(Rn, ‖ · ‖) = (V,E) is the distance graph corresponding to D = {1}:{

V = Rn

{x, y} ∈ E ⇔ ‖x− y‖ = 1
.
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4.2. Independent Sets and Chromatic Number of Finite
Graphs

Here we recall the notion of independent set in a graph, and introduce the
chromatic number of a graph. As a first step, before discussing the generaliza-
tion of these notions to infinite graphs, we present them for finite graphs.
Independent Sets. An independent set in G is a subset A ⊂ V such that
for every x, y ∈ A, {x, y} /∈ E. Note that an independent set in G is nothing
but a clique in the complementary graph Ḡ.

Let G = (V,E) be a finite graph, i.e. the set of vertices V is finite. The
independence number α(G) of G is the maximal size of an independent set
of G:

α(G) = max{|A| | A ⊂ V independent},
where |A| denotes the cardinality of A. Note that we have, following the
definition, α(G) = ω(Ḡ). We also define the independence ratio of G, which is
the quotient

ᾱ(G) =
α(G)

|V | .

This ratio measures the maximal density, in terms of finite sets, of an inde-
pendent set in G.

Example 6. The independence number of the Moser graph is 2, see Fig-
ure 15.

Figure 15. α(G) = 2.

The Chromatic Number. The chromatic number χ(G) is the minimal
number of colors required to color the vertices ofG in such a way that if x, y ∈ V
and {x, y} ∈ E, x and y do not receive the same color. Obviously we
have χ(G) > ω(G).

Example 7. The chromatic number of the Moser graph is 4, see Figure 16.

Now suppose G is finite, and fix a coloring of V with k colors, such that
two neighbors do not get the same color. We can partition V into color classes.
Every color class must be, following the definition, an independent set of G,
so that its size is bounded from above by α(G). Since these k color classes are
obviously disjoint, we get the inequality

|V | 6 kα(G),
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Figure 16. χ(G) = 4.

which implies immediately the important inequality:

(3) χ(G) >
1

ᾱ(G)
.

In the sequel, we shall generalize this inequality to infinite graphs embedded
in Rn.

4.3. Generalization to Infinite Graphs in Rn

In this paragraph, we suppose that the set of vertices V is a subset of Rn.
Let G = (V,E) be a discrete graph, i.e. the set V is discrete in Rn. For

any R > 0, and any subset A ⊂ V , we define AR as the intersection

AR = A ∩ [−R,R]n,

which is finite since V is discrete.
For A ⊂ V , we define the density of A in V :

(4) δV (A) = lim sup
R→∞

|A ∩ VR|
|VR|

This is a natural generalization of the density in finite sets, and the discrete
analogue of the definition of density that we gave in Rn. Based on this notion,
we extend the definition of the independence ratio to discrete graphs:

ᾱ(G) = sup{δV (A) | A independent set}.
With this definition, (3) still holds.
In Chapter 3, we will use the following equivalent formulation of ᾱ(G):

Lemma 2. Let G = (V,E) be a discrete graph with V ⊂ Rn. If every v ∈ V
has finite degree, then

ᾱ(G) = lim sup
R→∞

ᾱ(GR),

where GR is the finite induced subgraph of G whose set of vertices
is VR = V ∩ [−R,R]n.

The proof of the lemma is rather technical, we omit it there. However one
can find a proof in the Appendix in [BBMP17], along with a discussion on
the importance of the hypothesis that all the vertices of the graph have finite
degree.
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In the case of the unit distance graph presented previously, the density of an
independent set is the density of a set in Rn. Since we only defined the density
of measurable sets, we must introduce the measurable chromatic number χm,
when the color classes are required to be measurable. Obviously, χ 6 χm. The
equivalent of the independence ratio is in that case the number m1(Rn, ‖ · ‖):

m1(Rn, ‖ · ‖) = sup{δ(A) | A independent measurable set },
and the equivalent of (3) is:

χm(G(Rn, ‖ · ‖)) > 1

m1(Rn, ‖ · ‖) .

The number m1(Rn, ‖ · ‖) and its relations with the measurable chromatic
number of the unit distance graph will be discussed at length in Chapter 3.
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Chapter 2

On the density of cyclotomic
lattices constructed from

codes

This chapter is based on the publication [Mou17].

1. Introduction

The sphere packing problem in Euclidean spaces asks for the biggest pro-
portion of space that can be filled by a collection of balls with disjoint interiors
having the same radius. Here we focus on lattice sphere packings, where the
centers of the balls are located at the points of a lattice, and we denote by ∆n

the supremum of the density that can be achieved by such a packing in dimen-
sion n. Let us recall that the exact value of ∆n is known only for dimensions up
to 8 [CS87] and for dimension 24 ([CK09]). For other dimensions, only lower
and upper bounds are known. Moreover, asymptotically, the ratio between
these bounds is exponential.

Here we focus on lower bounds. The first important result goes back
to the celebrated Minkowski-Hlawka theorem [Hla43], stating the

inequality ∆n >
ζ(n)

2n−1
for all n, where ζ(n) denotes the Riemann zeta func-

tion. Later, Rogers [Rog47] improved this bound by a linear factor: he showed
that ∆n >

cn

2n
for every n > 1, with c ≈ 0.73. The constant c was successively

improved by Davenport and Rogers [DR47] (c = 1.68), Ball [Bal92] (c = 2)
and Vance [Van11] (c = 2.2 when n is divisible by 4). Recently Venkatesh
has obtained a more dramatic improvement [Ven13], showing that for n big

enough, ∆n >
65963n

2n
. Most importantly, he proves that for infinitely many
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dimensions n, ∆n >
n log log n

2n+1
, thus improving for the first time upon the

linear growth of the numerator.
Unfortunately, all these results are of existential nature: their proofs are

non constructive by essence, due to the fact that they generally use random
arguments over infinite families of lattices. It is then natural to ask for effective
versions of these results. It is worth to explain what we mean here by effec-
tiveness. Indeed, designing a practical algorithm, i.e. running in polynomial
time in the dimension, to construct dense lattices appears to be out of reach to
date. More modestly, one aims at exhibiting finite and explicit sets of lattices,
possibly of exponential size, in which one is guaranteed to find a dense lattice.

In this direction, the first to give an effective proof of Minkowski-Hlawka
theorem was Rush [Rus89]. Later, Gaborit and Zémor [GZ07] provided an
effective analogue of Roger’s bound for the dimensions of the form n = 2p
with p a big enough prime number. In both constructions, the lattices are lifted
from codes over a finite field, and run in sets of size of the form exp(knd log n),
with k a constant, d = 1 for [GZ07] and d = 2 for [Rus89].

Let us now explain with more details two ingredients that play a crucial
role in the proofs of the results above. The first one is Siegel’s mean value
theorem [Sie45] which in particular states that, on average over the set L of
n-dimensional lattices of volume 1,

EL[|B(r) ∩ (Λ \ {0})|] = Vol(B(r)).

It follows that, if Vol(B(r)) < 1, then there exists a lattice Λ ∈ L such that
B(r) ∩ (Λ \ {0}) = ∅, i.e. such that the minimum norm µ of its non zero
vectors is greater than r. The density of the sphere packing associated to Λ
then satisfies

∆(Λ) =
Vol(B(µ))

2n
>

1

2n
.

It is worth to point out that the same reasoning holds if Vol(B(r)) < 2, because
lattice vectors of given norm come by pairs {±x}. From this simple remark
we get

∆n >
2

2n
,

which is essentially Minkowski-Hlawka bound.
The second idea follows almost immediately from the previous observa-

tion: considering lattices affording a group of symmetries larger than the
trivial {±Id} should allow to replace the factor 2 in the numerator by a
greater value. To this end, one needs a family of lattices, invariant under
the action of a group, for which an analogue of Siegel’s mean value theorem
holds. This idea is exploited in [GZ07], [Van11] and [Ven13]. In partic-
ular, this is how Venkatesh obtains the extra log log n term, by considering
cyclotomic lattices, i.e. lattices with an additional structure of Z[ζm]-modules.
It turns out that, for a suitable choice of m, one can find such lattices in
dimension n = O(

m

log logm
).
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In this chapter, we consider cyclotomic lattices constructed from codes,
in order to deal with finite families of lattices. We employ a generalization
of the standard Construction A in the context of cyclotomic fields. To be
more precise, the lattices that we take are the preimages through the standard
surjection associated to a prime ideal P of Q[ζm]

Z[ζm]2 → (Z[ζm]/P)2

of all one dimensional subspaces over the residue field Z[ζm]/P.
Our approach is simpler and more straightforward than the previous ones

in several respects. On one hand, the analogue of Siegel’s mean value theorem
in our situation boils down to a simple counting argument on finite sets (see
Lemma 5). On the other hand, the group action, which is, as in [GZ07], that
of a cyclic group, is in our case easier to deal with, because it is a free action.
As a consequence, we can cope with arbitrary orders m, while Gaborit and
Zémor only consider prime orders.

Our main theorem is an effective version of Venkatesh’s result:

Theorem 4. For infinitely many dimensions n, a lattice Λ such that its
density ∆(Λ) satisfies

∆(Λ) >
0.89n log log n

2n

can be constructed with exp(1.5n log n(1 + o(1))) binary operations.

This result follows from a more general analysis of the density on average
of the elements in the families of m-cyclotomic lattices described above, see
Theorem 5 and Proposition 2 for precise statements.

A lattice Λ is said to be symplectic if there exists an isometry σ exchanging
Λ and its dual lattice, and such that σ2 = −Id. Symplectic lattices are closely
related to principally polarized Abelian varieties. In [Aut16], Autissier has
adapted Venkatesh’s approach to prove the existence of symplectic lattices
with the same density. We show that, with some slight modifications, our
construction leads to symplectic lattices, thus providing an effective version of
Autissier’s result (see Theorem 6 and Corollary 2 ).

The chapter is organized as follows: Section 2 introduces the construction
of cyclotomic lattices from codes. In Section 3 we state and prove the main
results discussed above. Section 4 is dedicated to the case of symplectic lattices.

2. Cyclotomic Lattices Constructed from Codes

A standard construction of lattices lifts codes over Fp to sublattices of Zn,
this is the well known Construction A (see Chapter 2, subsection 2.4). Here we
will deal with a slightly more general construction in the context of cyclotomic
fields.
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2. Cyclotomic Lattices Constructed from Codes

Let us consider K = Q[ζm] and KR the Euclidean space associated with K
(see Chapter 2, subsection 2.5). Let P be a prime ideal of OK lying over a
prime number p which does not divide m. Then the quotient F = OK/P is a
finite field of cardinality q = pf for some f .

Let E = Ks
R. We still denote by 〈·, ·〉 the scalar product 〈x, y〉 =

s∑
i=1

〈xi, yi〉

induced on the sφ(m)-dimensional R-vector space E by that of KR. Let Λ0

be a lattice in E which is a OK-submodule of E. We consider the canonical
surjection

π : Λ0 → Λ0

/
PΛ0.

The norm ‖ · ‖ on E associated with 〈·, ·〉 induces a weight on the quotient
space Λ0

/
PΛ0: if c ∈ Λ0

/
PΛ0,

wt(c) = min{||z||, π(z) = c}.
The quotient Λ0

/
PΛ0 is a vector space of dimension s over the finite field F .

We will call a F -subspace C of Λ0

/
PΛ0 a code. We denote by k its dimension

and by d its minimal weight, with respect to the weight defined above. Finally
we denote by ΛC the lattice obtained from C

ΛC = π−1(C)

and give in the following lemma a summary of its properties:

Lemma 3. Let C be a code of Λ0

/
PΛ0 of dimension k and minimal weight d.

Then :
(i) The volume of ΛC is

Vol(ΛC) = qs−k Vol(Λ0).

(ii) The minimum of ΛC is µΛC = min{d, µPΛ0}.
(iii) If d 6 µPΛ0, the packing density of ΛC is:

∆(ΛC) =
Vol(B(d))

2nqs−k Vol(Λ0)
,

where n = sφ(m) is the dimension of E.

Proof. (i) The lattice π−1(C) contains the lattice PΛ0 and we have:

|π−1(C)/PΛ0| = |C| = qk,

so
Vol(ΛC) =

1

qk
Vol(PΛ0) = qs−k Vol(Λ0).

(ii) and (iii) follow directly from the definitions.
�

To conclude this subsection, we state a lemma that relates the Euclidean
ball and the discrete ball B(r) := {c ∈ Λ0

/
PΛ0, wt(c) 6 r}.
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2. On the density of cyclotomic lattices constructed from codes

Lemma 4. Assuming r <
µPΛ0

2
, we have:

(i) |B(r)| = |Λ0 ∩B(r)|
(ii) Vol(B(r − τΛ0)) 6 |B(r)|Vol(Λ0) 6 Vol(B(r + τΛ0)).
(iii) If B(r) ∩ (C \ {0}) = ∅, then

(5) ∆(ΛC) >
Vol(B(r))

2nqs−k Vol(Λ0)
.

Proof. (i) Let c ∈ Λ0

/
PΛ0 such that wt(c) 6 r. We want to prove that

c has exactly one representative x ∈ Λ0 which satisfies ||x|| 6 r. Indeed,
if y ∈ Λ0 with y 6= x and π(y) = π(x) = c, we have y = x + z with
z ∈ PΛ0 \ {0}. Then ||x− y|| = ||z|| > µPΛ0 > 2r, a contradiction.

(ii) Let us consider
A =

⋃
x∈Λ0∩B(r)

(x+ VΛ0)

where VΛ0 is the Voronoï cell of Λ0. The volume of A is

Vol(A) = |Λ0 ∩B(r)|Vol(Λ0) = |B(r)|Vol(Λ0)

so the wanted inequalities will follow from the inclusions
B(r − τΛ0) ⊂ A ⊂ B(r + τΛ0).

Let us start with the second inclusion. If z ∈ x + VΛ0 , by definition
of the covering radius, we have

||z − x|| 6 τΛ0 ,

so if ||x|| 6 r, ||z|| 6 r + τΛ0 . For the first inclusion, let y be such
that ||y|| 6 r − τΛ0 . If x denotes the closest point to y in Λ0, we have
y ∈ x+ VΛ0 and ||x|| 6 ||y||+ ||x− y|| 6 r, so that y ∈ A.

(iii) It follows directly from Lemma 3.
�

3. The Density of Cyclotomic Lattices
Constructed from Codes

In this section, we introduce a certain family of lattices obtained from codes
as described in the previous section, and show that for high dimensions, this
family contains lattices having good density.

As before, K = Q[ζm], F = OK/P ' Fq. Let us set s = 2 and consider the
Euclidean space E = K2

R, of dimension 2φ(m), in which we fix Λ0 = O2
K .

Definition 1. We denote by C the set of the (q+ 1) F -lines of Λ0

/
PΛ0 =

F 2, and by LC the set of lattices of E constructed from the codes in C:
LC = {ΛC , C ∈ C}.
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3. The Density of Cyclotomic Lattices Constructed from Codes

The following lemma evaluates the average of the value of |B(r)∩C \ {0}|
over the family C:

Lemma 5. We have:

E(|B(r) ∩ (C \ {0})|) < |B(r)|
q

.

Proof. It is a straightforward computation:

E(|B(r) ∩ (C \ {0})|) =
1

|C|
∑
C∈C

|B(r) ∩ (C \ {0})|

=
1

|C|
∑
C∈C

∑
c∈C

0<wt(c)6r

1

=
1

|C|
∑

c∈B(r)\{0}

|{C ∈ C , c ∈ C}|.

There is exactly one line passing through every non zero vector in F 2. So

E(|B(r) ∩ (C \ {0})|) =
|B(r) \ {0}|
|C| <

|B(r)|
q

.

�

From now on, q will vary with m, so we adopt the notation qm instead of q.
We show that the family LC of lattices contains, when m is big enough and
when qm grows in a suitable way with m, lattices having high density.

Theorem 5. For every 1 > ε > 0, if φ(m)2m = o(qm
1

φ(m) ), then for m big
enough, the family of lattices LC contains a lattice Λ ⊂ R2φ(m) satisfying

∆(Λ) >
(1− ε)m

22φ(m)
.

We start with a technical lemma.

Lemma 6. Let ρm =

√
φ(m)

πe
(qm Vol(Λ0))

1
2φ(m) . If φ(m)2m = o(qm

1
φ(m) ),

then

(i) lim
m→∞

φ(m)τΛ0

ρm
= 0,

(ii) For m big enough, ρm <
µPΛ0

2
.

Proof. (i) We have:

φ(m)τΛ0

ρm
=

√
πeφ(m)τΛ0

(qm Vol(Λ0))
1

2φ(m)

.
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2. On the density of cyclotomic lattices constructed from codes

Since Λ0 = OK×OK , we have τΛ0 =
√

2τOK and Vol(Λ0) = Vol(OK)2.
Then, by (ii) of Lemma 1,

τOK

Vol(OK)
1

φ(m)

6

√
φ(m)

2
|dK |

1
2φ(m) .

Applying |dK | 6 mφ(m) (following (2)), we obtain

τOK

Vol(OK)
1

φ(m)

6

√
mφ(m)

2
.

So
φ(m)τΛ0

ρm
6

√
πe

2
φ(m)

√
mq

− 1
2φ(m)

m

which tends to 0 when m goes to infinity, by hypothesis.
(ii) We have:

ρm =

√
φ(m)

πe

(
qm Vol(Λ0)

) 1
2φ(m) 6

1

2

√
φ(m)q

1
2φ(m)
m |dK |

1
2φ(m)

6
1

2

√
φ(m)q

1
2φ(m)
m

√
m

.

Because PΛ0 = P ×P, µPΛ0 = µP. Then, by (i) of Lemma 1, since
Vol(P) = qm

√
|dK |,

µP > q
1

φ(m)
m

√
φ(m).

The hypothesis on qm ensures in particular that for m big enough, we

have m < q
1

φ(m)
m , and thus

ρm <
1

2

√
φ(m)q

1
φ(m)
m 6

µPΛ0

2
.

�

Now we can prove Theorem 5.

Proof of Theorem 5. Let us fix 1 > ε > 0. Let rm > 0 be the radius
such that Vol(Brm) = (1 − ε)mqm Vol(Λ0). By (1), rm ∼ ρm, where ρm is the
radius defined in Lemma 6. Applying Lemma 5, we get

E(|B(rm) ∩ (C \ {0})|) < |B(rm)|
qm

.

Because rm ∼ ρm, by (ii) of Lemma 6, rm <
µPΛ0

2
, so we can apply (ii) of

Lemma 4, so that

E(|B(rm) ∩ (C \ {0})|) < Vol(B(rm + τΛ0))

qm Vol(Λ0)
=

Vol(B(rm))

qm Vol(Λ0)

(
1 +

τΛ0

rm

)2φ(m)

= (1− ε)m
(

1 +
τΛ0

rm

)2φ(m)

.
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3. The Density of Cyclotomic Lattices Constructed from Codes

Now applying (i) of Lemma 6, we have lim
m→∞

(
1 +

τΛ0

rm

)2φ(m)

= 1, and so, for m

big enough,

(6) E(|B(rm) ∩ (C \ {0})|) < m.

Now comes the crucial argument involving the action of the m-roots of
unity. From (6), there is at least one code C in C which satisfies
|B(rm) ∩ (C \ {0})| < m. Because the codes that we consider are stable under
the action of them-roots of unity, which preserves the weight of the codewords,
and because the length of every non zero orbit under this action is m, we can
conclude that B(rm) ∩ (C \ {0}) = ∅, and so by (iii) of Lemma 4 that,

∆(ΛC) >
Vol(B(rm))

22φ(m)qm Vol(Λ0)
=

(1− ε)m
22φ(m)

.

�

Theorem 5 shows that for every big enough dimension of the form n = 2φ(m)

our construction provides lattices having density approaching
m

2n
, thus larger

than
cn

2n
with c = 1/2. A particular sequence of dimensions leads to a better

lower bound:

Corollary 1. For infinitely many dimensions, the family LC contains a
lattice Λ ⊂ Rn satisfying

∆(Λ) >
0.89n log log n

2n
.

Proof. To get the optimal gain between m and 2φ(m), we take m =
∏
l∈P
l6X

l,

where X is a positive real number, which tends to infinity. Thanks to Mertens’
theorem [Har27], we can evaluate:

(7)
m

φ(m)
∼ eγ log logm.

where γ is the Euler-Mascheroni constant which satisfies γ > 0.577.
So we get

(8) m ∼ φ(m)eγ log logm ∼ eγ

2
n log log n.

Let us set δ := 2e−γ0.89. Because
eγ

2
> 0.89, δ < 1. Then by Theorem 5,

we get a lattice Λ ⊂ Rn such that

∆(Λ) >
δm

2n
.

So by (8), for m big enough,

∆(Λ) >
0.89n log log n

2n
.
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�

Finally we evaluate the complexity of constructing a lattice Λ with the
desired density:

Proposition 2. Let n = 2φ(m). For every 1 > ε > 0, the construction of
a lattice Λ ⊂ Rn satisfying

∆(Λ) >
(1− ε)m

22φ(m)

requires exp(1.5n log n(1 + o(1))) binary operations.

We need to find a prime ideal P such that qm = |OK/P| satisfies the
condition required in Theorem 5. Let us recall that qm = pfmm where pm is
the prime number lying under P, and fm is the order of pm in the group
(Z/mZ)∗ (see [Was97]). We will restrict our attention to the case fm = 1,
i.e. when pm = 1 mod m. In that case, pm decomposes totally in Q[ζm], and
qm = pm. We use Siegel-Walfisz theorem in order to give an upper bound for
the smallest such prime number:

Lemma 7. For m big enough, there is a prime number pm congruent to 1
mod m such that:

1

2
(m3 logm)φ(m) 6 pm 6 (m3 logm)φ(m).

Proof. Let us denote by π(x,m, a) the number of primes p < x such that
p = a mod m. Siegel-Walfisz theorem (see [IH04]) gives for any A > 0:

π(x,m, a) =
Li(x)

φ(m)
+O

(
x

(log x)A

)
,

where the implied constant depends only on A, and Li(x) =

∫ x

2

dt

log t
. Apply-

ing this theorem to x = (m3 logm)φ(m), a = 1, and A = 2 we get

π(x,m, 1)− π(x/2,m, 1) =
1

φ(m)

∫ x

x/2

dt

log t
+O

(
x

(log x)2

)
.

We have
1

φ(m)

∫ x

x/2

dt

log t
>

x

2φ(m) log x
, which grows faster than the error

term since log x ∼ 3φ(m) log(m), and thus ensures the existence of a prime pm
between x/2 and x. �

Proof of Proposition 2. Applying Lemma 7, the complexity of
finding qm satisfying the condition of Theorem 5 is

O(m3 logm)φ(m) = e3φ(m) log(m)(1+o(1)) = e1.5n log(n)(1+o(1)).

The corresponding family of lattices LC has qm + 1 elements. By construction,
each of these lattices is generated by vectors with coefficients which are polyno-
mial in n. So, the cost of computing their density, which can be done with 2O(n)
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operations, following [HPS11], is negligible compared with the enumeration
of the family. �

4. Symplectic Cyclotomic Lattices

For a survey about symplectic lattices, we refer to [Ber97]. Here we briefly
introduce this notion.

Let E be a Euclidean space, and Λ a lattice in E. Then an isoduality is
an isometry σ of E such that σ(Λ) = Λ#. If Λ affords an isoduality, then it is
called isodual. If moreover σ satisfies σ2 = −Id, then Λ is called symplectic.

Now we explain how to change the lattice Λ0 in such a way that our con-
struction provides symplectic lattices.

Let
Λ0 = α−1OK × αP−1O#

K ,

where α = (q|dK |)
1

2φ(m) . The volume of Λ0 is now

(9) Vol(Λ0) = Vol(OK) Vol(P−1O#
K) =

Vol(OK) Vol(O#
K)

q
=

1

q
.

Let us define the map

σ : K2
R → K2

R
(x1, x2) 7→ (−x2, x1)

.

It is clear that σ is an isometry, and that σ2 = −Id.
In the following lemma, we show that the lattices we defined in Definition 1

are now symplectic:

Lemma 8. If C is a F -line of Λ0/PΛ0, then the lattice ΛC is symplectic.

Proof. Let us prove that σ(ΛC) ⊂ Λ#
C . Let us take (x1, x2) ∈ ΛC . We

have to show that for every (y1, y2) ∈ ΛC , 〈σ(x1, x2), (y1, y2)〉 ∈ Z, that is
(10) tr(−x2y1) + tr(x1y2) ∈ Z.
According to the definition of C, we have C = F (u1, u2) with u1 ∈ α−1OK and
u2 ∈ αP−1O#

K . So there exists λ, µ ∈ OK such that{
x1 = λu1 mod α−1P

x2 = λu2 mod αO#
K

and

{
y1 = µu1 mod α−1P

y2 = µu2 mod αO#
K

.

This implies that
tr(x1y2) = tr(λµu1u2) mod Z

and
tr(x2y1) = tr(λµu1u2) mod Z,

so that (10) is satisfied.
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To conclude the proof it is enough to notice that Vol(ΛC) = qVol(Λ0) = 1,
which implies σ(ΛC) = Λ#

C . �

We again consider the set C of lines of Λ0/PΛ0. It is clear that the result
of Lemma 5 remains valid for this new family of codes. The general strategy
underlying the proof of Theorem 5 applies to the family of lattices associated
to these codes, so that we get the following analogues in this context :

Theorem 6. For every 1 > ε > 0, if φ(m)2m = o(qm
1

φ(m) ), then for m
big enough, the family of symplectic lattices LC contains a lattice Λ ⊂ R2φ(m)

satisfying

∆(Λ) >
(1− ε)m

22φ(m)
.

Corollary 2. For infinitely many dimensions, the family LC contains a
symplectic lattice Λ ⊂ Rn satisfying

∆(Λ) >
0.89n log log n

2n
.

The proofs of Theorem 6 and Corollary 2 are similar to those of Theorem 5
and Corollary 1. However, we need to prove that Lemma 6 still holds, even if
we changed Λ0:

Lemma 9. Let ρm =

√
φ(m)

πe
(qm Vol(Λ0))

1
2φ(m) =

√
φ(m)

πe
.

If φ(m)2m = o(qm
1

φ(m) ), then

(i) lim
m→∞

φ(m)τΛ0

ρm
= 0,

(ii) For m big enough, ρm <
µPΛ0

2
.

Proof. (i) We have:
φ(m)τΛ0

ρm
=
√
πeφ(m)τΛ0 .

Let us set A1 = α−1OK and A2 = αP−1O#
K . Then Λ0 = A1 × A2

and the covering radius of Λ0 is τΛ0 =
√
τ 2
A1

+ τ 2
A2
. So we have to bound

both covering radii τA1 and τA2 . Applying (ii) of Lemma 1, and because

Vol(A1) = Vol(A2) =
1√
q
, we have, for i ∈ {1, 2},

τAi 6

√
φ(m)

2
|dK |

1
2φ(m) q−

1
2φ(m) 6

√
mφ(m) q−

1
2φ(m)

2
.

So

τΛ0 6
√

2 max{τA1 , τA2} 6
√
mφ(m)q−

1
2φ(m)

and finally
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φ(m)τΛ0

ρm
6
√
πe φ(m)

√
mq

− 1
2φ(m)

m

which tends to 0 when m goes to infinity, by hypothesis.
(ii) Let us set B1 = α−1P and B2 = αO#

K . Then PΛ0 = B1 × B2, and
clearly µPΛ0 = min{µB1 , µB2}. Then, applying (i) of Lemma 1, since
Vol(B1) = Vol(B2) =

√
q, we have, for i ∈ {1, 2},

µBi >

√
φ(m) q

1
2φ(m)

|dK |
1

2φ(m)

>

√
φ(m) q

1
2φ(m)

√
m

.

So

µPΛ0 >

√
φ(m) q

1
2φ(m)

√
m

.

The hypothesis on qm ensures in particular that for m big enough, m

satisfies
√
m < q

1
2φ(m)
m , and thus

ρm =

√
φ(m)

πe
<

1

2

√
φ(m) q

1
2φ(m)

m
6
µPΛ0

2
.

�

Since the condition on the growth of qm does not change, the estimation
for the complexity of construction in this context is the same:

Proposition 3. Let n = 2φ(m). For every 1 > ε > 0, the construction of
a symplectic lattice Λ ⊂ Rn satisfying

∆(Λ) >
(1− ε)m

22φ(m)

requires exp(1.5n log n(1 + o(1))) binary operations.
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Chapter 3

On the density of sets avoiding
parallelohedron distance 1

This chapter is based on [BBMP17], which is joint work with Christine
Bachoc, Thomas Bellitto and Arnaud Pêcher.

1. Introduction

A set avoiding distance 1 is a set A in a normed vector space (Rn, ‖ · ‖)
such that ‖x− y‖ 6= 1 for every x, y ∈ A. The number m1(Rn, ‖ · ‖) measures
the highest proportion of space that can be filled by a set avoiding distance 1.
More precisely, m1(Rn, ‖ · ‖) is the supremum of the densities (see Chapter 2,
subsection 1.2 for a precise definition) of Lebesgue measurable sets A ⊂ Rn

avoiding distance 1.
The problem of determining m1(Rn, ‖ · ‖) has been mostly studied in the

Euclidean case. The number m1(Rn) = m1(Rn, ‖ · ‖2) was introduced by Lar-
man and Rogers in [LR72] as a tool to study the measurable chromatic number
χm(Rn) of Rn, which is the minimal number of colors required to color Rn in
such a way that two points at Euclidean distance 1 have distinct colors, and
that the color classes are measurable. Determining χm(Rn) has turned out
to be a very difficult problem, that has only been solved in dimension 1, and
that is wide open in any other dimension, including the familiar dimension 2,
where it is only known that 5 6 χm(R2) 6 7 (see [Fal81], [Szé02], and
[Soi08, Chapter 3] for a detailed historical account).

The connection between m1(Rn) and χm(Rn) lies in the following inequal-
ity:

χm(Rn) >
1

m1(Rn)
,

so, from an upper bound for m1(Rn), one obtains a lower bound for χm(Rn).
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A natural approach to build a set avoiding distance 1, that works for any
norm, starts from a packing of unit balls. Let Λ be a set such that if x, y ∈ Λ,
then the unit open balls B(x, 1) and B(y, 1) do not overlap. Then the set
A = ∪λ∈ΛB(λ, 1/2) of disjoint balls of radius 1/2 is a set avoiding 1 and its

density is
δ

2n
where n is the dimension of the space and δ is the density of the

packing. This construction is illustrated in Figure 1.

Figure 1. A set avoiding distance 1 built from a sphere packing.

In the Euclidean plane, the density of an optimal packing of discs of
radius 1 is 0.9069 and this approach therefore provides a lower bound of
0.9069/4 = 0.2267 for m1(R2, ‖ ·‖2). The best known construction is not much
better than that: by refining this idea, Croft manages to build in [Cro67] a
set of density 0.2293, which is an arrangement of balls cut out by hexagons,
see Figure 2.

Figure 2. The block of Croft’s set: the intersection of a
hexagon and a ball, depicted in dark blue.

Regarding upper bounds, Erdős conjectured (see [Szé02]) that

m1(R2) <
1

4
.

The best upper bound up to now is due to Keleti, Matolcsi, de Oliveira Filho
and Ruzsa [KMdOFR16], who have shown m1(R2) 6 0.258795. Moser, Lar-
man and Rogers (see [LR72]) generalized Erdős’ conjecture to higher dimen-
sions: for every n > 2,

m1(Rn) <
1

2n
.

A weaker result has been proved in [KMdOFR16]: a set avoiding distance 1

necessarily has a density strictly smaller than
1

2n
if it has a block structure, i.e.

if it may be decomposed as a disjoint union A = ∪Ai such that if x and y are in
the same block Ai then ‖x−y‖ < 1 and if they are not, ‖x−y‖ > 1. However,
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3. On the density of sets avoiding parallelohedron distance 1

without this assumption, the known upper bounds are pretty far from 2−n,
even asymptotically: the best asymtotic bound is m1(Rn) 6 (1 + o(1))(1.2)−n

(see [LR72], [BPT15]).
Going back to the general case of an arbitrary norm, the method described

previously to build a set avoiding distance 1 from a packing is still valid. We
make the remark that if the unit ball tiles Rn by translation, it provides a
set of density exactly 1/2n, as illustrated in Figure 3. Moreover, it is likely
that this construction of a set avoiding distance 1 is optimal, as conjectured
by Bachoc and Robins:

Figure 3. The natural construction of density 1/2n.

Conjecture 2 (Bachoc, Robins). If ‖ · ‖ is a norm such that the unit ball
tiles Rn by translation, then

m1(Rn, ‖ · ‖) =
1

2n
.

In this chapter, we prove Conjecture 1 in dimension 2:

Theorem 7. If ‖·‖ is a norm such that the unit ball tiles R2 by translation,
then

m1(R2, ‖ · ‖) =
1

4
.

Recall that the only convex bodies that tile space by translation are the
parallelohedra, i.e. the polytopes that admit a face-to-face tiling by translation
(see Chapter 2, subsection 3.1). For a given parallelohedron P , we denote
by ‖ · ‖P the norm whose unit ball is P .

The Voronoï cell of a lattice is a parallelohedron. Conversely, Voronoï con-
jectured that all parallelohedra are, up to affine transformations, the Voronoï
cells of lattices (see Chapter 2, subsection 3.2). On the other hand,m1(Rn, ‖·‖)
is clearly left unchanged under the action of a linear transformation applied
to the norm. So, in the light of Voronoï’s conjecture, it is natural to consider
the polytopes that are Voronoï cells of lattices.

The most obvious family of lattices is the family of cubic lattices Zn, whose
Voronoï cells are hypercubes. We will see that in this case, Conjecture 1
holds trivially. The next families of lattices to consider are arguably the root
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lattices An and Dn, where

An = {x ∈ Zn+1 :
n+1∑
i=1

xi = 0} (n > 2).

and

Dn = {x ∈ Zn :
n∑
i=1

xi ≡ 0 mod 2} (n > 4).

We will prove Conjecture 1 for the Voronoï cells of the lattices An in every
dimensions n > 2. For the lattices Dn, we can only show the inequality

m1(Rn, ‖ · ‖P) 6
1

(3/4)2n + n− 1

which is however asymptotically of the order O
(

1

2n

)
.

Let us now give an idea of the method that we use to prove these results.
The strategy is to transfer the study of sets avoiding distance 1 to a discrete
setting, in which such sets can be decomposed as the disjoint union of small
pieces (in other words they afford a kind of block structure). Computing the
optimal density of a set avoiding distance 1 in the discrete setting amounts
then to understanding how these blocks fit together locally.

To be more precise, we consider discrete subsets V of Rn, seen as induced
subgraphs of the unit distance graph G(Rn, ‖ · ‖). This is the graph whose
vertices are the points of Rn and whose edges connect the vertices x and y if
and only if ‖x− y‖ = 1.

If G = (V,E) is a finite induced subgraph of G(Rn, ‖ · ‖), then it is well
known that (see [LR72])

m1(Rn, ‖ · ‖) 6 α(G)

|V | ,

where as usual α(G) denotes the independence number of G and |V | is the
number of its vertices. We use a generalization of this inequality to discrete
graphs (see Subsection 2.2). Of course, the most difficult task is to design
an appropriate discrete subset V , i.e. one that provides a good upper bound
of m1(Rn, ‖ · ‖) and at the same time is easy to analyse.

For the regular hexagon in the plane, we follow an idea due to Dmitry
Shiryaev [Shi] who proposed an auxiliary graph satisfying the following re-
markable property: if two points x and y are at graph distance 2, then they
are at polytope distance 1. This implies that a set avoiding polytope distance 1
is a union of cliques whose closed neighborhoods are disjoint. The density of
such a set is bounded by the supremum of the local densities of the cliques
in their closed neighborhood. In the case of a general hexagonal Voronoï cell
in the plane, this approach doesn’t work straightforwardly and we need to in-
troduce a different graph with a slightly weaker property. The construction of
such an auxiliary graph is also a key ingredient of our proofs of the bounds for
the Voronoï cells of An and Dn.
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3. On the density of sets avoiding parallelohedron distance 1

The chapter is organized as follows: in Section 2, we set our problem
formally and make some preliminary work. In Section 3, we prove Theorem 7.
Section 4 is dedicated to the families of lattices An (Theorem 10) and Dn

(Theorem 11). In Section 5, we discuss the chromatic number of the unit
distance graph G(Rn, ‖ · ‖P).

2. Preliminaries

2.1. The Density of a Set Avoiding Polytope Distance 1

Let Rn be equipped with a norm ‖·‖. A set S ⊂ Rn is said to avoid 1 if for
every x, y ∈ S, d(x, y) = ‖x− y‖ 6= 1. Recall that the density of a measurable
set A ⊂ Rn with respect to Lebesgue measure is

δ(A) = lim sup
R→∞

Vol(A ∩ [−R,R]n)

Vol([−R,R]n)
.

We denote by m1(Rn, ‖ · ‖) the supremum of the densities achieved by mea-
surable sets avoiding distance 1:

m1(Rn, ‖ · ‖) = sup
S⊂Rnmeasurable
S avoiding 1

δ(S).

Let P be a polytope tiling Rn by translations, and let Λ ⊂ Rn such that⋃
λ∈Λ

(λ+ P) = Rn and for every λ 6= λ′, (λ+ P̊) ∩ (λ′ + P̊) = ∅. Then, the set

A =
⋃
λ∈Λ

(λ+
1

2
P̊)

avoids 1, and has density
1

2n
. This set gives a lower bound for m1:

Proposition 4. If P is a polytope tiling Rn by translation, and ‖ · ‖P the
norm associated with P, then

m1(Rn, ‖ · ‖P) >
1

2n
.

2.2. Discretization of the Problem

A set avoiding distance 1 in Rn is exactly an independent set in G(Rn, ‖·‖),
i.e. a subset S of vertices such that, for all x, y ∈ S, ‖x − y‖ 6= 1. Therefore
m1(Rn, ||.||) is the supremum of the densities achieved by independent sets. It
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is the analogue of the independence ratio ᾱ(G) =
α(G)

|V | of a finite graph G,

see Chapter 2, Section 4.
Discrete induced subgraphs of G(Rn, ‖ · ‖) provide upper bounds

of m1(Rn, ‖ · ‖) thanks to the following lemma:

Lemma 10. Let G = (V,E) be a discrete induced subgraph of G(Rn, ‖ · ‖).
Then

m1(Rn, ‖ · ‖) 6 ᾱ(G).

Proof. By Lemma 2, we may assume without loss of generality that G is
finite. In this case the result is well known: the proof below is for the sake of
completeness.

Let R > 0 be a real number, and let X ∈ [−R,R]n chosen uniformly at
random. For S ⊂ Rn, the probability that X is in S is

P(X ∈ S) =
Vol(S ∩ [−R,R]n)

Vol([−R,R]n)
.

Notice that lim sup
R→∞

P(X ∈ S) = δ(S).

Let S ⊂ Rn be a set avoiding 1. We define the random variable

N = |(X + V ) ∩ S|.
On one hand, we have:

E
[
N

|V |

]
=

1

|V |E
[∑
v∈V

1{X+v∈S}

]

=
1

|V |
∑
v∈V

P(X ∈ S − v).

For every v, we have lim sup
R→∞

P(X ∈ S − v) = δ(S − v) = δ(S).

On the other hand, since for v1, v2 ∈ V , ‖(X + v1)− (X + v2)‖ = ‖v1 − v2‖,
and (X + V ) ∩ S ⊂ S, the set

{v ∈ V | X + v ∈ S}
is an independent set in G, so that, for any R > 0,

N

|V | 6 ᾱ(G).

Thus we get,
δ(S) 6 ᾱ(G).

�

In order to give a first example, we consider the most natural lattice: the
cubic lattice. The associated tiling and norm are respectively the cubic tiling
and the well known sup norm ‖x‖∞ = sup

16i6n
|xi|. More precisely, if L = 2Zn,

54 Philippe Moustrou



3. On the density of sets avoiding parallelohedron distance 1

the Voronoï cell of L is the cube whose vertices are the points of coordinates
(±1,±1, . . . ,±1).

Proposition 5. For every n > 1, we have:

m1(Rn, ‖ · ‖∞) =
1

2n

Proof. Let V = {0, 1}n ⊂ Rn and let G be the subgraph of G(Rn, ‖ · ‖)
induced by V . Following the definition of V , for every v, v′ ∈ V with v 6= v′, we
have ‖v − v′‖∞ = 1. So G is a complete graph, thus its independence number
is 1. Since it has 2n vertices, applying Lemma 10, we get

m1(Rn, ‖ · ‖∞) 6
α(G)

|V | =
1

2n
.

�

3. Parallelohedron Norms in the Plane

In this section, we prove Theorem 7. It is well known that the parallelo-
hedra in dimension 2, are, up to an affine transformation, the Voronoï cells of
a lattice, and that their combinatorial type is either that of a square or of a
hexagon (see Figure 4).

Figure 4. The two kinds of Voronoï cells of lattices in the plane.

We have already seen that m1(R2, ‖ · ‖∞) =
1

4
, so it remains to deal with

hexagons. Even though it is not true that every hexagonal Voronoï cell is
linearly equivalent to the regular hexagon, we will first consider the regular
hexagon in order to present in this basic case, the ideas that will be used in
the general case.

3.1. The Regular Hexagon

The following result is due to Dmitry Shiryaev [Shi]:
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3. Parallelohedron Norms in the Plane

Theorem 8. If P is the regular hexagon in the plane, then

m1(R2, ‖ · ‖P) =
1

4
.

Let P be the regular hexagon in R2. We denote by S its set of vertices
and by ∂P its boundary. Thus, ‖x‖P = 1 if and only if x ∈ ∂P . We label the
vertices of P modulo 6 as described in Figure 5a.

The set
1

2
S spans a lattice V . Let us consider GP , the subgraph of

G(R2, ‖ · ‖P) induced by V . We shall prove that ᾱ(GP) 6 1/4. To do so,
we introduce an auxiliary graph G̃ = (Ṽ , Ẽ), which is the Cayley graph with

the same set of vertices Ṽ = V corresponding to the generating set
1

2
S. In

other words, for x, y ∈ V , (x, y) ∈ Ẽ if and only if x− y ∈ 1

2
S. This graph is

drawn in Figure 5b.
We denote by d̃(x, y) the distance between two vertices x and y in the

graph G̃, i.e. the minimal length of a path in G̃ between x and y. We define
the distance d̃(A,B) in G̃ between two subsets of vertices A and B as the
minimal distance between a vertex of A and a vertex of B. The following
lemma will be crucial for the proof of Theorem 8:

v0

v1v2

v3

v4 v5

(a) The regular hexagon. (b) The Cayley graph G̃.

Lemma 11. Let u1 and u2 be two vertices of G̃. Then:

(Property D) d̃(u1, u2) = 2⇒ ‖u1 − u2‖P = 1.

Proof. Since G̃ is vertex-transitive, we may assume without loss of gen-
erality that u1 = 0. The vertices u at graph distance 2 from 0 must be of
the form

vi
2

+
vj
2
. It is not hard to check that if u2 =

vi + vj
2

is neither 0

nor another
vk
2

(in which case d̃(0, u2) < 2), then it is a point of ∂P (see also
Figure 5b). �

Remark 4. It can be noted, although it will not be useful, that the equiva-
lence d̃(u1, u2) = 2⇔ ‖u1 − u2‖P = 1 holds here.
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3. On the density of sets avoiding parallelohedron distance 1

For a set A ⊂ Ṽ , we define its closed neighborhood

N [A] = {v ∈ Ṽ such that d̃(v, A) 6 1} = A+

(
{0} ∪ 1

2
S

)
.

Now we consider the cliques of G̃, that is the sets C ⊂ Ṽ such that for
every u 6= v ∈ C, d̃(u, v) = 1. We will use the following lemma several times: it
shows that for any graph G̃ satisfying (Property D), if A ⊂ Ṽ avoids polytope
distance 1, then A is a union of cliques whose closed neighborhoods are disjoint:

Lemma 12. Let ‖ · ‖P be a polytope norm in Rn, and GP an induced sub-
graph of G(Rn, ‖ · ‖P). Assume there exists an auxiliary graph G̃ with the
same vertices V as GP satisfying (Property D). Let A ⊂ V avoiding polytope
distance 1. Then A may be written as a union of cliques of G̃

A =
⋃
C∈C

C

such that if C,C ′ ∈ C with C 6= C ′, then

N [C] ∩N [C ′] = ∅.
Proof. Let us consider the decomposition of A in connected components

with respect to G̃. Following Lemma 11, since A avoids polytope distance 1, a
connected component C cannot contain two vertices at graph distance 2 from
each other. So C must be a clique.

Assume that two different cliques C and C ′ of A share a common neighbor.
Thus d̃(C,C ′) 6 2. Since C and C ′ are two disjoint connected components,
d̃(C,C ′) > 1. So d̃(C,C ′) = 2, which is impossible, since A avoids polytope
distance 1. �

Now we define the local density of a clique C of G̃: δ0(C) =
|C|
|N [C]| . In

the next lemma, we analyse the different possible cliques of the graph G̃ that
we constructed for the regular hexagon, and determine their local density:

Lemma 13. For every clique C ⊂ G̃,

δ0(C) 6
1

4

Proof. Let C be a clique of G̃. Since G̃ is vertex transitive, we can assume
without loss of generality that 0 ∈ C. Up to the action of the dihedral group
D3 on V , there are only three possible cliques in G̃ containing 0, and one can
easily determine their neighborhoods (see Figure 6):

• C = {0}: its neighborhood is {0} ∪ 1

2
S. Thus δ0(C) =

1

7
.

• C =
{

0,
v0

2

}
, and δ0(C) =

2

10
=

1

5
.

• C =
{

0,
v0

2
,
v1

2

}
, and δ0(C) =

3

12
=

1

4
.
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3. Parallelohedron Norms in the Plane

Figure 6. The possible cliques and their neighborhoods.

�

We have all the ingredients to prove that the density of a set avoiding 1 for
the regular hexagon cannot exceed 1/4:

Proof of Theorem 8. Following Lemma 10, it is sufficient to prove

that ᾱ(GP) 6
1

4
. If A ⊂ V is a set avoiding 1, it may be written as the

union of cliques in G̃, whose neighborhoods are disjoint (Lemma 12). So the
density of A is bounded from above by the maximum local density of a clique

in G̃. So, from Lemma 13, ᾱ(GP) 6
1

4
. �

3.2. General Hexagonal Voronoï Cells

In this subsection, we deal with a general hexagonal Voronoï cell P of the
plane, and prove:

Theorem 9. If P is an hexagonal Voronoï cell in the plane, then

m1(R2, ‖ · ‖P) =
1

4
.

Let P be the hexagonal Voronoï cell of a lattice L ⊂ R2. Let {β0, β1} be
a basis of L such that the vectors β0 , β1, β2 = β1 − β0, and their opposites
define the faces of P . We label the vertices vi, for 0 6 i 6 5, of P in such a
way that βi = vi+vi+1, where i is defined modulo 6. This situation is depicted
in Figure 7.

In order to prove Theorem 9, just like in the case of the regular hexagon, we
shall construct a graph GP induced by G(R2, ‖ · ‖P), and prove
that ᾱ(GP) 6 1/4. Unfortunately, in general, the vertices of P do not span
a lattice. We will use a different point of view in order to build GP , together
with an auxiliary graph G̃ that will satisfy a weaker version of (Property D).

For the set V of vertices of GP , we take the lattice
1

2
L, together with the

translates of the vertices VP of P by
1

2
L. We set A =

1

2
L and B = VP +

1

2
L so

that V = A∪B; this construction is represented in Figure 8 where the vertices
of A are depicted in red, and those of B in green.
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β0

β1β2

β3

β4 β5

v3

v2

v1

v0

v5

v4

Figure 7. The vectors βi and the vertices of the hexagon.

(a) We start with A =
1

2
L, (b) We add the vertices of P...

(c) ... and their translates by A. (d) The set of vertices V .

Figure 8. Constructing the vertices of GP .

Let us note that for every i mod 6, vi+2 = vi mod L. Indeed,

vi+2 − vi = vi+2 + vi+1 − (vi + vi+1) = βi+1 − βi = βi+2.

As a consequence, we may write V as the disjoint union of three sets:

V =
1

2
L ∪ (

1

2
L+ v0) ∪ (

1

2
L+ v1),

and this implies that the density of B in V is twice that of A.
Now, let us construct the auxiliary graph G̃ = (Ṽ , Ẽ). It has the same

vertices as GP , i.e. Ṽ = V . Let us describe the edges of G̃. By construction,
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there are exactly 7 vertices of V in the interior of P : the center 0 ∈ A, and six
points of B denoted s0, . . . , s5, with

si =
vi−1 + vi+1

2
.

For every point of a ∈ A, we define the edges (a, a+ si) and (a+ si, a+ si+1)
for i from 0 to 5. This is illustrated in Figure 9.

s2
s1

s0

s5

s4

s3

Figure 9. Constructing the edges of G̃.

Remark 5. In the case of the regular hexagon, this construction leads to
the same graph G̃ that we considered in Subsection 3.1.

Let us describe the neighborhood (with respect to G̃) of each type of point.
By construction, a point in A has 6 neighbors, and they all belong to B. A
vertex a + si of B also has six neighbors. Three of them are elements of A,

namely a, a+
βi
2

and a+
βi−1

2
and the other three are elements of B, namely,

a + si−1, a + si+1 and a + vi. Figure 10 illustrates the neighborhoods of the
vertices of G̃.

It should be noted that (Property D) is not in general fulfilled by G̃: indeed,
the vertices s0 and s3 are at graph distance 2 in G̃ but not (in general) at
polytope distance 1. However, this property continues to hold for points that
share a common neighbor in B. We prove this in the next lemma, which will
play the role of Lemma 11 for this new graph G̃:

Lemma 14. If two vertices x, y ∈ V are at distance 2 from each other in
G̃ and have a common neighbor z ∈ B, then ‖x− y‖P = 1.

Proof. First suppose that at least one of the two vertices is in A. In this
case we may assume x = 0. Then z is one of the si, and following the analysis
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s2

s1

s0
s5

s4

s3

v3

v2

v1

v0

v5

v4

0 β0

2

β1

2β2

2

β3

2

β4

2

β5

2

Figure 10. The basic pattern in G̃.

of the neighbors of si, y must be in the set {0, si−1, si+1,
βi
2
,
βi−1

2
, vi}. The first

three are obviously not at graph distance 2 from 0, so y is one of the last three
vertices, and they all are in ∂P . Thus, ‖x− y‖P = 1.

Now suppose x, y, z ∈ B. Then we may assume without loss of generality
x = si−1, and z = si. Since z has only three neighbors in B, y can be either
si+1 or vi. We have:

si+1 − si−1 =
vi + vi+2

2
− vi + vi−2

2
=
vi+2 − vi−2

2
=
vi+2 + vi+1

2
=
βi+1

2

and

vi − si−1 = vi −
vi + vi−2

2
=
vi − vi−2

2
=
vi + vi+1

2
=
βi
2
.

In both cases ‖x− y‖P = 1. �

Let U ⊂ V be a set of vertices avoiding polytope distance 1, let C be
a connected component of U and let N [C] be its closed neighborhood. We
define:

NB[C] = N [C] ∩B
and

δ0
B(C) =

|C|
|NB[C]| .

The following lemma is the analogue of Lemma 12 in this situation: we
show that if C and C ′ are two different connected components, then NB[C]
and NB[C ′] must be disjoint:

Lemma 15. Let U ⊂ V be a set avoiding polytope distance 1. If C 6= C ′

are two connected components of U , then

NB[C] ∩NB[C ′] = ∅.
Proof. If a vertex z ∈ B is in both NB[C] and NB[C ′], then there is

x ∈ C, y ∈ C ′ such that d̃(x, z) = d̃(z, y) = 1. Since C and C ′ are connected
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components of U , we have d̃(x, y) > 1. Thus d̃(x, y) = 2 and by Lemma 14,
‖x− y‖P = 1, which is impossible, since U avoids 1. �

Now we study the different possible connected components:

Lemma 16. Let U ⊂ V be a set avoiding polytope distance 1. If C is a
connected component of U , then

δ0
B 6

3

8
.

Proof. We enumerate the possible connected components. Let us start

with the isolated points. Up to translations by
1

2
L, we have:

• C = {0} ⊂ A. Its neighborhood is made of six vectors from B. So
δ0
B(C) = 1/6.

• C = {si} ⊂ B. We know that such a vertex has three neighbors in B,
thus δ0

B(C) = 1/4.

Figure 11. The two possible types of connected component
with one element. The circled vertices denote the elements of C
and the figure represents all their neighbors in B.

We now focus on the connected components of size 2. Since a vertex in
A has all its neighbors in B, such a connected component cannot contain two
elements of A. Thus, up to translation, we only have:

• C = {0, si}, and the only neighbor in B that is not a neighbor of 0 is
vi. Thus δ0

B = 2/7.
• C = {si, si+1} and the neighbors in B are si−1, vi, si+2, vi+1. Thus
δ0
B = 2/6 = 1/3.

There are up to translations two kinds of connected components of size
three:

• C = {0, si, si+1}. The only neighbor of si+1 in B that is not a neighbor
of {0, si} is vi+1. Thus δ0

B = 3/8.
• C = {0, si,−si}. The only neighbor of −si in B that is not a neighbor
of {0, si} is −vi. Thus δ0

B = 3/8.
It is easy to check, applying Lemma 14, that we have enumerated all kinds

of connected components of U . �
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Figure 12. The two possible types of connected component
with two elements.

Figure 13. The two possible types of connected component
with three elements.

Finally we can put everything together and complete the proof of Theo-
rem 9:

Proof of Theorem 9. Let U ⊂ V avoiding polytope distance 1. We
define

δB(U) = lim sup
R→∞

|U ∩ VR|
|B ∩ VR|

where as usual VR = V ∩ [−R,R]n. We have:

δGP (U) 6 δB(U)× δGP (B),

and since V = A ∪B and B is twice as dense as A in GP ,

δGP (U) 6
2

3
δB(U).

From Lemma 15, we have δB(U) 6 sup
C⊂U

δ0
B(C) where C runs over the connected

components of U . Then Lemma 16 shows that

δB(U) 6
3

8

and we get

δGP (U) 6
2

3
× 3

8
=

1

4
.

�
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4. The Norms Associated with the Voronoï
Cells of the Lattices An and Dn

4.1. The Lattice An

Here we consider for any n > 2, the lattice

An = Zn+1 ∩H,

where H is the hyperplane H = {(x1, . . . , xn+1) ∈ Rn+1,
n+1∑
i=1

xi = 0}. Let P

be the Voronoï cell of An. We shall prove:

Theorem 10. For every dimension n > 2, if P is the Voronoï cell of the
lattice An, then

m1(Rn, ‖ · ‖P) =
1

2n
.

In fact, for n = 2, the Voronoï cell of A2 is nothing but the regular hexagon.
We are going to generalize to all dimensions n > 2 the strategy that we used
in subsection 3.1.

Let us recall the description of the Voronoï cell P of An given in [CS87],
Chapter 21, section 3.

The orthogonal projection on H is denoted by pH . Let, for 1 6 i 6 n and
j := (n+ 1)− i,

vi = pH((0, . . . , 0︸ ︷︷ ︸
i times

, 1, . . . , 1︸ ︷︷ ︸
j times

))

= (0, . . . , 0, 1, . . . , 1)− j

n+ 1
(1, . . . , 1)

= (
−j
n+ 1

, . . . ,
−j
n+ 1︸ ︷︷ ︸

i times

,
i

n+ 1
, . . . ,

i

n+ 1︸ ︷︷ ︸
j times

).

Let S be the simplex whose vertices are 0 and the vectors vi. Then the
vertices of P are the images of the non zero vertices of S under the permutation
group Sn+1. In other words, the set of vertices of P is

VP = {pH(u) | u ∈ V0}, where V0 = {0, 1}n+1 \ {(0, . . . , 0), (1, . . . , 1)}.

We also analyze the boundary of P , in order to understand the norm as-
sociated with P . The non zero vertices of S are supported by the hyperplane
H0,n of H defined by H0,n = {x = (x0, . . . xn) ∈ H | xn − x0 = 1}. Apply-
ing Sn+1, we find that the faces of P are supported by all the hyperplanes
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Hi,j = {x = (x0, . . . xn) ∈ H | xj − xi = 1}, for i 6= j. So{
x ∈ P if and only if for all i 6= j, xj − xi 6 1

x ∈ ∂P if and only if max
i 6=j

(xj − xi) = max
j
xj −min

i
xi = 1,

and more generally the norm ‖x‖P of a vector x ∈ H is given by

‖x‖P = max
j
xj −min

i
xi.

Note that if x = pH(u), because H⊥ = R(1, . . . , 1), we have

max
j
xj −min

i
xi = max

j
uj −min

i
ui.

The vertices of P generate a lattice, which is the dual lattice of An:

Lemma 17. The vertices of P span over Z the lattice A#
n = pH(Zn+1).

Proof. Let v ∈ VP . There is u ∈ V0 such that v = pH(u). Because
(u− pH(u)) ∈ H⊥, we have, for every x ∈ An = Zn+1 ∩H,

〈x, v〉 = 〈x, pH(u)〉 = 〈x, u〉 =
∑
i,ui=1

xi ∈ Z,

so spanZ(VP) ⊂ A#
n .

Now let us take x ∈ A#
n = pH(Zn+1), so x = pH(z0, . . . , zn), with zi ∈ Z.

Then

x = pH(z0, . . . , zn) =
n∑
i=0

zipH(0, . . . , 0, 1︸︷︷︸
i

, 0 . . . , 0) ∈ spanZ(VP).

Thus spanZ(VP) = A#
n . �

We consider the subgraph GP of G(Rn, ‖ · ‖P) induced by the set of

vertices
1

2
A#
n , and the auxiliary graph G̃ which is the Cayley graph on

1

2
A#
n

associated with the generating set
1

2
VP . These graphs are the generalizations

of the graphs that we considered in subsection 3.1. Here we show that G̃
satisfies the same remarkable property:

Lemma 18. The graph G̃ satisfies (Property D).

Proof. We follow the proof of Lemma 11. We may assume x = 0, and we

need to show that, for v, v′ ∈ VP , if
v + v′

2
6= 0 then it is either some

v′′

2
∈ 1

2
VP ,

or an element of ∂P . Equivalently, we study v + v′ and show that one of the
three following situations occurs:

v + v′ = 0,

v + v′ = v′′ ∈ VP ,
‖v + v′‖P = 2.
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Let u and u′ be elements of V0 = {0, 1}n+1 \ {(0, . . . , 0), (1, . . . , 1)} such
that v = pH(u) and v′ = pH(u′). The coordinates of the vector u + u′ belong
to {0, 1, 2}, but cannot be all 0 nor all 2. We explore the possible cases:

• If u+ u′ = (1, . . . , 1), then pH(u+ u′) = (0, . . . , 0), and v + v′ = 0.
• If the coordinates of u+ u′ are only 0’s and 1’s, then u+ u′ ∈ V0, and
thus v + v′ ∈ VP .

• If the coordinates of u + u′ are only 1’s and 2’s, we may decompose
u + u′ as u+ u′ = (1, . . . , 1) + w, and w must be an element of V0.
This implies that v + v′ = pH(w) ∈ VP .

• The last remaining case is when both 0’s and 2’s appear in the coordi-
nates of U = u+u′. Then, max

j
Uj−min

i
Ui = 2, that is ‖v+v′‖P = 2.

�

Because G̃ satisfies (Property D), Lemma 12 is satisfied by G̃. So we can
proceed to analyze the cliques of G̃, and for each of them, determine its local
density. Since G̃ is vertex transitive, we only describe the cliques containing 0.
For u ∈ V0, we define its support I = {i ∈ {1, . . . , n+ 1}, ui = 1}.

Lemma 19. The cliques of G̃ containing 0 are the sets of the form{
0,
pH(u1)

2
, . . . ,

pH(us)

2

}
such that if Ii is the support of ui, then

I1 ⊂ I2 ⊂ . . . ⊂ Is.

In particular, since s 6 n, a clique can not contain more than n+ 1 vertices.

Proof. Let C be a clique of G̃, and assume 0 ∈ C. Then the other

elements of C must belong to
1

2
VP and since C is a clique, they must be

adjacent in the graph. In other words, if
v

2
,
v′

2
∈ C, then

v − v′
2
∈ 1

2
VP . Let

v 6= v′ ∈ VP , and u, u′ ∈ V0 such that v = pH(u) and v′ = pH(u′). We denote
by I and I ′ the respective supports of u and u′. For i ∈ {1, . . . , n+ 1}, the ith
coordinate of u− u′ is: 

1 if i ∈ I \ I ′,
−1 if i ∈ I ′ \ I,
0 otherwise.

If both 1 and −1 appear in the coordinates of u− u′, then ‖v − v′‖P = 2,
and v− v′ /∈ VP . By definition of V0 and since v 6= v′, the coordinates of u−u′
must take two different values. Two cases remain: if u − u′ contains only 0’s
and 1’s, u− u′ ∈ V0 and v− v′ ∈ VP ; and if it contains only 0’s and −1’s, then
we can write u− u′ = w− (1, . . . , 1), with w ∈ V0, so that v− v′ ∈ VP as well.

To conclude, we find that v − v′ ∈ VP if and only if I ⊂ I ′ or I ′ ⊂ I.
�
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Lemma 20. For every clique C of G̃,

δ0(C) 6
1

2n
.

Proof. Let
{

0,
pH(u1)

2
, . . . ,

pH(us)

2

}
be a clique. By symmetry, we may

assume that
ui = (1, . . . , 1︸ ︷︷ ︸

wi

, 0, . . . , 0),

where wi = |Ii|. We want to count the vertices in

N [C] =
1

2
({0, pH(u1), . . . , pH(us)}+ VP) .

Since 0 ∈ C, the set ({0, pH(u1), . . . , pH(us)}+ VP) must contain all the im-
ages of V0 ∪ {0} by pH : there are 2n+1 − 1 such vertices. We count, for
each i = 1, . . . , s, how many new neighbors are provided by pH(ui) + VP . We
find that

• The vector
u1 = (1, . . . , 1︸ ︷︷ ︸

w1

, 0, . . . , 0),

provides (2w1 − 1)(2n+1−w1 − 1) new neighbors.
• The vector

u2 = (1, . . . , 1︸ ︷︷ ︸
w1

, 1, . . . , 1︸ ︷︷ ︸
w2−w1

, 0, . . . , 0),

provides 2w1(2w2−w1 − 1)(2n+1−w2 − 1) new neighbors.
• For any 2 6 i 6 s, ui provides 2wi−1(2wi−wi−1 − 1)(2n+1−wi − 1) new
neighbors.

By summing all the values, if we set w0 = 0, we get:

|N [C]| = 2n+1 − 1 +
s∑
i=1

2wi−1(2wi−wi−1 − 1)(2n+1−wi − 1)

= (s+ 1)2n+1 − (2ws +
s∑
i=1

2n+1−(wi−wi−1)).

Since ws 6 n and for every i, (wi − wi−1) > 1, we have

2ws +
s∑
i=1

2n+1−(wi−wi−1) 6 (s+ 1)2n,

and this implies
|N [C]| > (s+ 1)2n+1 − (s+ 1)2n = (s+ 1)2n.

Finally, the local density of C satisfies:

δ0(C) =
|C|
|N [C]| =

s+ 1

|N [C]| 6
1

2n
,
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and we may note that this bound is sharp if and only if ws = n and for every i,
wi − wi−1 = 1, that is when C is a maximal clique of the form

{0, (1, 0, . . . , 0), (1, 1, 0, . . . , 0), . . . , (1, . . . , 1, 0, 0), (1, . . . , 1, 0)}.
�

Now we can conclude the proof of Theorem 10:

Proof of Theorem 10. Following Lemma 20 and Lemma 12, ᾱ(GP) 6
1

2n
, which leads to the theorem, following Lemma 10. �

4.2. The Lattice Dn, n > 4

We apply the same method as for An to another classical family of lattices.
For n > 4, the lattice Dn is defined by

Dn = {x = (x1, . . . , xn) ∈ Zn,
n∑
i=0

xi = 0 mod 2}.

The same construction provides again a graph that satisfies (Property D).
Unfortunately, the analysis of the neighborhoods of the cliques does not lead

to the wanted
1

2n
upper bound. Nevertheless, we can prove:

Theorem 11. For every dimension n > 4, if P is the Voronoï cell of the
lattice Dn, then

m1(Rn, ‖ · ‖P) 6
1

(3/4)2n + n− 1
.

Let us describe the Voronoï cell of Dn. Again we refer to [CS87] for further

details. Let S be the simplex whose vertices are 0, (0, . . . , 0, 1),
(

1

2
, . . . ,

1

2

)
,

and the vectors

0, . . . , 0︸ ︷︷ ︸
i

,
1

2
, . . . ,

1

2

, for 2 6 i 6 n − 2. Then the Voronoï

cell P of Dn is the union of the images of S by the group generated by all
permutations of the coordinates and sign changes of evenly many coordinates.
Note that some of the vertices of S are not extreme points of P anymore.
Actually, there are two types of vertices of P :2n vectors of the form (±1, 0, . . . , 0) (type 1),

2n vectors of the form
(
±1

2
, . . . ,±1

2

)
(type 2).

The non zero vectors of S are contained in the hyperplane of Rn defined
by the equation xn−1 + xn = 1. The faces of P are supported by the images of
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this hyperplane under the action of the group i.e. the hyperplanes defined by
the equations of the form ±xi ± xj = 1, with i 6= j. Thus,{

x ∈ P if and only if for all i 6= j, |xi|+ |xj| 6 1

x ∈ ∂P if and only if max
i 6=j

(|xi|+ |xj|) = 1,

and the norm ‖x‖P of a vector x ∈ Rn is

‖x‖P = max
i 6=j

(|xi|+ |xj|).

As in the case of An, the vertices of P span the dual lattice of Dn:

Lemma 21. The vertices of P span over Z the dual lattice D#
n .

Proof. It is immediate to check that for every x ∈ Dn and v ∈ VP ,
〈x, v〉 ∈ Z, so spanZ(VP) ⊂ D#

n . The converse follows directly from the follow-
ing decomposition of D#

n :

D#
n = Dn∪

((
1

2
, . . . ,

1

2

)
+Dn

)
∪
((

1

2
, . . . ,−1

2

)
+Dn

)
∪((0, . . . , 0, 1)+Dn).

�

Once again, let GP be the subgraph of G(Rn, ‖ · ‖P) induced by V =
1

2
D#
n ,

and let G̃ be the auxiliary graph which is the Cayley graph on V associated

with the generating set
1

2
VP . It also satisfies (Property D):

Lemma 22. The graph G̃ satisfies (Property D).

Proof. We follow the proof of Lemma 18. Let v, v′ ∈ VP . We distinguish
three cases depending on the type of v and v′:

• If both v and v′ are of type 1, v+ v′ is either 0, or, up to permutation
of the coordinates, of the form (±2, 0, . . . , 0) or (±1,±1, 0, . . . , 0), and
‖v + v′‖P = 2.

• If both v and v′ are of type 2, the non zero coordinates of v + v′ are
1 or −1. If v + v′ 6= 0, then either it is a vertex of VP of type 1, or
it has at least two coordinates whose absolute values are equal to 1,
and so ‖v + v′‖P = 2.

• If v is of type 1 and v′ is of type 2, then v + v′ is either a vertex
of VP of type 2, or, up to a permutation of coordinates, of the form(
±3

2
,±1

2
, . . . ,±1

2

)
, and ‖v + v′‖P = 2.

�

It remains to analyze the neighborhoods of the cliques of G̃. We first
determine the possible cliques of G̃. We may assume that they contain 0.
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Lemma 23. Up to symmetry, a clique of G̃ containing 0 must be a subset
of the maximal clique

Cmax =
{

0,
v1

2
,
v2

2
,
v3

2

}
where


v1 = (0, . . . , 0, 1)

v2 =

(
1

2
,
1

2
, . . . ,

1

2

)
v3 =

(
−1

2
,
1

2
, . . . ,

1

2

) .

Proof. Let v, v′ ∈ VP such that
v − v′

2
∈ 1

2
VP . The conclusion follows

from the following facts:

• Both v and v′ can not be of type 1, because the difference of two such
vectors, is either 0 or has polytope norm 2.

• If v and v′ are both of type 2, then v and v′ must differ by only one
coordinate, otherwise ‖v − v′‖P = 2.

• If v is of type 1, say v = (0, · · · , 0, ±1︸︷︷︸
i

, 0 · · · , 0), if v′ is of type 2 and

v − v′
2
∈ 1

2
VP , then the ith coordinate of v′ must have the same sign

as the ith coordinate of v.

�

Then, we analyze the local density of the cliques:

Lemma 24. For every clique of G̃,

δ0(C) 6
1

(3/4)2n + n− 1
.

Proof. By enumerating the neighbors of every element in Cmax and by
couting the intersections of the different neighborhoods, we find that:

• If C = {0}, δ0(C) =
1

1 + 2n + n
.

• If C =
{

0,
v1

2

}
,

δ0(C) =
2

2n + 2n−1 + 4n
=

1

(3/4)2n + 2n
.

Note that for n > 6, this density is already greater than
1

2n
.

• If C is one of the two symmetric cliques
{

0,
v2

2

}
and

{
0,
v3

2

}
,

δ0(C) =
2

2× 2n + 2n
=

1

2n + n
.
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• By symmetry, the cliques of the form
{

0,
vi
2
,
vj
2

}
have the same num-

ber of neighbors. If C is one of them,

δ0(C) =
3

2× 2n + 2n−1 + 3n− 1
=

1

(5/6)2n + n− 1/3
,

which is also greater than
1

2n
.

• Finally,

δ0(Cmax) =
4

3× 2n + 4n− 4
=

1

(3/4)2n + n− 1
,

which is the highest possible value of δ0(C).
�

5. The Chromatic Number of G(Rn, ‖ · ‖P)

In this section, we discuss the chromatic number χ(Rn, ‖ · ‖P) of the unit
distance graph associated with a parallelohedron. We start with the construc-
tion of a natural coloring of Rn with 2n colors, leading to:

Proposition 6. Let P be a parallelohedron in Rn. Then

χ(Rn, ‖ · ‖P) 6 2n.

Proof. By assumption, there is a lattice Λ such that Rn is the disjoint
union ∪λ∈Λ(λ+ P). We may also write Rn as the disjoint union

Rn =
⋃
λ∈ 1

2
Λ

(
λ+

1

2
P
)

=
⋃
λ∈ 1

2
Λ

BP

(
λ,

1

2

)
.

If H is a coset of
1

2
Λ
/

Λ, then

AH =
⋃
λ∈H

BP

(
λ,

1

2

)
is a set avoiding distance 1. So the points in AH can receive the same color.
This concludes the proof, since Rn is the disjoint union of all AH where H runs
through the 2n cosets. �

In order to bound χ(Rn, ‖ · ‖P) from below, we can take advantage of the
induced subgraphs that we have constructed in previous sections. In particular,
whenever we have a discrete induced subgraph GP of G(Rn, ‖ · ‖P) satisfying

ᾱ(GP) =
1

2n
, we obtain as an immediate consequence that

χ(Rn, ‖ · ‖P) > χ(GP) >
1

ᾱ(GP)
= 2n.
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Figure 14. χ(Rn, ‖ · ‖P) 6 2n.

Thus we have proved:

Corollary 3. Let P be a parallelohedron in R2. Then

χ(R2, ‖ · ‖P) = 4.

Corollary 4. Let P be the Voronoï cell of the lattice An in Rn. Then

χ(Rn, ‖ · ‖P) = 2n.

Remark 6. We want to point out the fact that in dimension 2, one can
find a finite induced subgraph of G(Rn, ‖ · ‖P) with chromatic number 4. This
is illustrated in Figure 15: consider the induced subgraph of G(Rn, ‖·‖P) whose
vertices are highlighted in Figure 15a and whose edges are drawn in Figure 15b.
Then one can easily see that the chromatic number of this graph is 4.

(a) Consider the subgraph induced by the
highlighted vertices. (b) Its chromatic number is 4.

Figure 15. χ(R2, ‖ · ‖P) > 4.
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Chapter 4

Discrete distribution
functions and application to

polytope distance graphs

1. Introduction

In this chapter, we generalize the method that we used in the previous

chapter in order to prove that the bound m1(Rn, ‖ ·‖P) >
1

2n
is sharp for other

polytopes P .
All the bounds that we have obtained so far derive from the same strat-

egy: we consider a discrete induced subgraph G of the unit distance graph
G(Rn, ‖ · ‖P) for which we want to prove that ᾱ(G) 6 1/2n. For this, we
give to this set of vertices an auxiliary graph structure G̃, such that the sets
avoiding 1 in G can be written as the union of cliques in G̃ whose closed
neighborhoods are disjoints. This is a consequence of (Property D). Finally,
we obtain our upper bound on the global density of a set avoiding 1 in G by
computing the highest local density of a clique of G̃ in its closed neighborhood.

However, given a discrete induced subgraph G in G(Rn, ‖ · ‖P), finding an
auxiliary graph having (Property D) and providing a good upper bound, is
not always possible. We shall generalize this method in several respects.

First, we keep the idea of writing a set avoiding polytope distance 1 as
a disjoint union of small pieces. Indeed, such sets were seen to be easier to
handle in the Euclidean plane. In [KMdOFR16], the authors prove that the
density of a set affording block structure is strictly lower than 1/2n, where a
set A in (R2, ‖ · ‖2) is said to have block structure when it can be written as a
disjoint union

A = ∪i∈IAi
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such that for any i ∈ I, Diam(Ai) < 1, and for any i 6= j, the distance between
Ai and Aj is greater than 1. Here we adapt this idea in a discrete framework,
by forcing our independent sets to have a kind of block structure. As we did in
the previous chapter, we add an auxiliary graph structure G̃ to a discrete subset
V ⊂ Rn. We want G̃ to satisfy the following property: in the decomposition

A = ∪C∈CC
of a set A avoiding polytope distance 1 into connected components in G̃, every
connected component C satisfies Diam(C) < 1. However, we do not require a
priori the condition dP(C,C ′) > 1.

Second, once a set A ⊂ V avoiding polytope distance 1 is split into blocks,
we can obtain an upper bound on the density of A by bounding from above
the local density of each block. Nevertheless, there are several ways to define
the local density of a block. In the previous chapter, the strong (Property D)
naturally implied a definition: the local density of block was its density in its
closed neighborhood in the auxiliary graph G̃. In a more general context, the
challenge is to find a good division of the points of V between the blocks of A;
in other words, each block receives a certain amount of points of V , that we
will refer to as its neighborhood. Then the local density of a block is its density
in that neighborhood. This idea is inspired by the methods usually employed
to solve packing problems. For instance, the well known Voronoï region of a
sphere in a packing in Rn is the set made by the points in Rn that are closer to
that sphere than to any other sphere in the packing. The highest density of a
sphere in its Voronoï region gives an upper bound for the density of the whole
packing. In dimension 2, the smallest, in terms of volume, local Voronoï region
is a regular hexagon, and it is the Voronoï cell of the optimal hexagonal lattice
packing. In dimension 3, the local upper bound given by Voronoï regions is
not sharp. Indeed, following the Kepler conjecture proved by Hales ([Hal06],
[HAB+17]), the best packing in dimension 3 is realized by the face-centered
cubic lattice and has density about 0.74, whereas the dodecahedral conjecture,
claimed by Fejes Tóth [Fej43], and proved almost sixty years later by Hales
and McLaughlin [HM10], asserts that the minimum volume of a Voronoï cell
is a regular dodecahedron of inradius 1. The density of a unit ball in this
region is approximately 0.755. The proof of Kepler conjecture requires also a
partition of the space, but more sophisticated than the one involving Voronoï
regions.

In this chapter, we will define the discrete analogue of the Voronoï distri-
bution, as well as more general discrete distribution functions. We shall see
that with good choices of functions, we can extend the scope of polytopes for
which we can prove that the bound 1/2n is sharp: by using a somehow sim-
pler graph, we provide an alternative proof for the hexagonal Voronoï cells in
dimension 2. More dramatically, we employ this method to handle the regular
elongated dodecahedron. This is the main result of the chapter, see Theo-
rem 13. Finally, we will consider polytopes that may be written as a product
P = P0× [−1, 1]m, where P0 is a parallelohedron in dimension n. Precisely, we
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4. Discrete distribution functions and application to polytope distance graphs

will show that m1(Rn+m, ‖ · ‖P) = 1/2mm1(Rn, ‖ · ‖P0). We will first give an
intrinsic argument, before replacing this result in the context of this chapter,
by using discrete distribution functions. This is motivated by one of the five
types of polytope in dimension 3: the hexagonal prisms.

The chapter is organized as follows: in Section 2, we introduce the notion
of discrete distribution function of discrete sets. Then, as a first example,
in Section 3, we use discrete distribution functions to prove in another way
Theorem 7 of Chapter 3 . Section 4 is dedicated to the elongated dodecahedron,
it contains the main theorem of the chapter. Finally, in Section 5, we deal with
hexagonal prisms, and their generalizations in higher dimension.

2. Discrete Distribution Functions

2.1. Definitions

Let V ⊂ Rn be a discrete set, and let A be a subset of V . Recall (see
Chapter 2, Section 4) that the density of A in V is defined as the limit sup:

δV (A) = lim sup
R→∞

|A ∩ VR|
|VR|

.

We want to bound δV (A) from above. To do so, we associate to each point
a ∈ A a region, a kind of neighborhood, in such a way that a has a low density in
its neighborhood. In other words, the points of V are allocated to the elements
of A. A single point v in V may eventually be shared between several points
of A. More precisely, we introduce the notion of discrete distribution function:

Definition 2. Let A ⊂ V be two discrete subsets of Rn. A discrete distri-
bution function of V with respect to A is a map

f : A× V → [0, 1]
(a, x) 7→ f(a, x)

satisfying the following properties:

(11) ∀ a ∈ A, f(a, a) = 1,

(12) ∀ x ∈ V,
∑
a∈A

f(a, x) 6 1.

Moreover, for technical reasons, we also require

(13) ∃ ρ > 0 | ∀ (a, x) ∈ A× V, ‖a− x‖∞ > ρ⇒ f(a, x) = 0.

Once we have a discrete distribution function f , we can define in a natural
way the neighborhood of an element, its volume, and its local density corre-
sponding to f . The f -neighborhood of a ∈ A is made by the points in V that
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are, eventually partially, allocated to a. Its f -volume is the sum of the contri-
butions f(a, x), and the f -density of a with respect to f is defined locally as
the inverse of the f -volume of its f -neighborhood:

Definition 3. Let A ⊂ V be two discrete subsets of Rn, and let f :
A× V → [0, 1] be a discrete distribution function of V with respect to A. We
define:

• The f -neighborhood of a ∈ A as the set of points x in V such that
f(a, x) > 0:

Nf (a) = {x ∈ V | f(a, x) > 0}.
• The f -volume of the f -neighborhood of a:

Volf (Nf (a)) =
∑

x∈Nf (a)

f(a, x) =
∑
x∈V

f(a, x)

• The f -density of an element a ∈ A in its f -neighborhood:

δf (a) =
1∑

x∈V f(a, x)
=

1

Volf (Nf (a))
.

Remark 7. Note that condition (13) implies that the f -volume of Nf (a)
is finite, because V is discrete. Moreover, the condition (11) ensures that this
volume cannot be 0 and that δf (a) 6 1.

The density of A in V is bounded by the supremum of the local densities
δf achieved by the elements of a, as proved in the following lemma:

Lemma 25. Let A ⊂ V be two discrete subsets of Rn, and let
f : A × V → [0, 1] be a discrete distribution function of V with respect to
A. We set:

δ∗f = sup
a∈A

δf (a).

Suppose that V satisfies, for any constant r > 0,

(14) lim
R→∞

|VR \ VR−r|
|VR|

= 0.

Then
δV (A) 6 δ∗f .

Remark 8. The condition (14) is a technical requirement that allows to
take limits when we deal with infinite graphs. We will apply our method to
periodic sets, therefore fulfilling the condition.

Proof. Let ρ > 0 be such that f(a, x) = 0 whenever ‖a − x‖∞ > ρ, and
let us fix R > ρ. We have:

|AR|
|VR|

=
|AR−ρ|
|VR|

+
|AR \ AR−ρ|
|VR|

.
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4. Discrete distribution functions and application to polytope distance graphs

Following the assumption on ρ, we have, for every a ∈ AR−ρ,∑
x∈V

f(a, x) =
∑
x∈VR

f(a, x).

Consequently,

|AR−ρ|
|VR|

=

∑
a∈AR−ρ 1

|VR|
=

∑
a∈AR−ρ δf (a)

∑
x∈VR f(a, x)

|VR|

6 δ∗f

∑
x∈VR(

∑
a∈AR−ρ f(a, x))

|VR|

6 δ∗f
|VR|
|VR|

= δ∗f .

Thus

(15)
|AR|
|VR|

6 δ∗f +
|AR \ AR−ρ|
|VR|

.

The hypothesis on V allows to conclude the proof, because AR \ AR−ρ is con-
tained in VR \ VR−ρ. �

2.2. Discrete distribution functions associated with parti-
tions

Here we introduce a particular type of discrete distribution function, asso-
ciated with a given partition of the set A:

Definition 4. Let A ⊂ V be two discrete subsets of Rn. Suppose that
A may be written as a disjoint union of finite subsets C ∈ C. A discrete
distribution function of V associated with the partition C is a map

f : C × V → [0, 1]
(C, x) 7→ f(C, x)

satisfying the following properties:

(16) ∀ C ∈ C, ∀ c ∈ C, f(C, c) = 1,

(17) ∀ x ∈ V,
∑
C∈C

f(C, x) 6 1,

and

(18) ∃ ρ > 0 | ∀ (C, x) ∈ C × V, d∞(x,C) > ρ⇒ f(C, x) = 0,

where d∞(x,C) = min
c∈C
‖x− c‖∞.

This definition induces the following analogue of Definition 3. In particular,
we get a local density function on the elements of the partition C:
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Definition 5. Let A ⊂ V be two discrete subsets of Rn, and let f be
a discrete distribution function of V associated with a partition C of A. We
define:

• The f -neighborhood of C ∈ C:
Nf (C) = {x ∈ V | f(C, x) > 0}.

• The f -volume of the f -neighborhood of C:

Volf (Nf (C)) =
∑

x∈Nf (C)

f(C, x) =
∑
x∈V

f(C, x)

• The f -density of C in its f -neighborhood:

δf (C) =
|C|∑

x∈V f(C, x)
=

|C|
Volf (Nf (C))

.

A discrete distribution function fC associated with a partition C naturally
provides a discrete distribution function in the sense of Definition 2. Indeed, if
A =

⋃
C∈C

C, for every a ∈ A, there is a unique Ca ∈ C such that a ∈ Ca. Then

it is immediate to check that the map
f : A× V → [0, 1]

(a, x) 7→

1 if x ∈ A
1

|Ca|
fC(Ca, x) else

satisfies conditions (12) and (13). Not surprisingly, we get the following con-
sequence of Lemma 25:

Lemma 26. Let A ⊂ V be two discrete subsets of Rn, and let f be a discrete
distribution function of V associated with a partition C of A. We set:

δ∗f = sup
C∈C

δf (C).

Suppose that V satisfies, for any constant r > 0,

(19) lim
R→∞

|VR \ VR−r|
|VR|

= 0.

Then
δV (A) 6 δ∗f .

2.3. Scope of Application and Examples

Although we defined discrete distribution functions in the general frame-
work of discrete sets, we will use this notion in a more specific context. In order
to get a natural partition of a subset A of a discrete set V in Rn, we will give
V an auxiliary graph structure. Then the elements of C will be the connected
components of A in V . However, the graph structure must be chosen in such
a way that the connected components of a set avoiding polytope distance 1
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4. Discrete distribution functions and application to polytope distance graphs

are always finite. Moreover, we want the possible connected components to
be easy to enumerate. A possible way to do so is to construct a graph such
that for every pair x, y ∈ V such that dP(x, y) > 1, any path from x to y con-
tains a point z at polytope distance 1 from x. As a consequence, a connected
component of a set avoiding polytope distance 1 must have a diameter strictly
lower than 1. Such a graph will be constructed in order to treat the elongated
dodecahedron (see Section 4).

Once we fixed a graph structure on V , the decomposition of A into con-
nected components is completely determined. Then we can still define several
different distribution functions associated with this decomposition. Let us now
present two elementary examples of discrete distribution functions.

Suppose that the auxiliary graph G̃ satisfies (Property D). By definition,
this means that if the graph distance in G̃ between two vertices x and y in
V is 2, then ‖x − y‖P = 1. As a consequence, the connected components
in G̃ of a set avoiding polytope distance 1 must be cliques. Incidentally, the
strategy that we employed in the previous chapter may be interpreted in terms
of discrete distribution functions, as presented in the following first example:

Example 8. Suppose that the auxiliary graph G̃ satisfies (Property D).
Let A =

⋃
C∈C

C be the decomposition of a set avoiding 1 A into connected

components in G̃. Then it is easy to see that the function

f : C × V → [0, 1]

(C, x) 7→
{

1 if x ∈ N [C]

0 else

is a discrete distribution function. In the previous chapter, we computed im-
plicitly the number δ∗f for several graphs G̃.

Our second example is a discrete analogue of the well-known Voronoï par-
tition of space associated with a packing. Note that here, no auxiliary graph
is a priori required. However, we will always use it for decompositions induced
by graph structures.

Example 9. Let A ⊂ V a set avoiding 1, and let C be a partition of A in
finite subsets. For x ∈ V , we define

dx = dP(x,A)

and
nx = |{C ∈ C | dP(x,C) = dx}|,

that are both finite, since V is discrete. Let us consider the function

f : C × V → [0, 1]

(C, x) 7→


1

nx
if dP(x,C) = dx

0 else

.
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The condition (17) is obviously satisfied. Moreover, if we assume that A is
saturated, then the condition (18) is also satisfied.

In Figure 1 we consider the graph that we introduced in order to treat
the regular hexagon. We have seen that this graph has (Property D). In
Figure 1a, one can see the points that contribute to every connected com-
ponent of A. In Figure 1b, we consider the same subset, but we depict the
f -neighborhoods of the connected components with respect to the discrete
Voronoï distribution function. This figure aims at showing that for a graph
satisfying (Property D), even if the function described in Example 8 does not
lead to the expected local bound 1/2n, one may hope to reach better bounds
by considering the Voronoï distribution associated with this graph, or more
sophisticated distribution functions.

(a) The neighborhoods of the
connected components for the
function of Example 8, when the
auxiliary graph has (Property D).
They only contain the neighbors
of the connected component in
the auxiliary graph G̃.

(b) The neighborhoods corre-
sponding to the discrete Voronoï
distribution of Example 9. The
circled points are the ones that are
in several neighborhoods. For in-
stance the black point is shared
among the three cliques.

Figure 1. Several neighborhoods for the same decomposition.

3. An alternative proof in dimension 2

In this section, we illustrate the computation of local bounds by using
several discrete distribution functions on the simple example of a set A avoiding
hexagonal Voronoï distance 1 in the plane, contained in a specific discrete
set V . We will see that the two functions that we displayed in the previous
section do not lead to the expected bound 1/4. Nevertheless we will introduce
a function f for which computing δ∗f = 1/4 is not hard. This will provide an
alternative proof of the fact that m1(R2, ‖ · ‖P) = 1/4.
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4. Discrete distribution functions and application to polytope distance graphs

3.1. Definition and description of the graph

The graph that we are going to study is nothing but a subgraph of the
graph that we used for general hexagonal Voronoï cells. Recall that the set of
vertices of the latter was

1

2
L ∪ (

1

2
L+ v0) ∪ (

1

2
L+ v1),

where L was the translation lattice of the polytope P , and v0 and v1 were two
consecutive vertices of P . Here we deal with a slightly simpler set of vertices,

V =
1

2
L ∪ (

1

2
L+ v0).

Remark that we only keep two cosets modulo
1

2
L out of three. The edges

of the auxiliary graph G̃ are the ones induced by the edges of our previous
auxiliary graph. Note that now green points cannot be connected anymore.
The edges that remain simply correspond to the semi-edges of the hexagon P .
Both graphs are pictured in Figure 2.

Figure 2. Comparison between the previous and the new graph.

It is almost immediate to check that this new graph G̃ verifies (Property D).
The distribution functions will always be associated with the decomposition
of a set A avoiding polytope distance 1 into connected components, that are
cliques in this particular case, in the graph G̃.

The size of these connected components cannot exceed 2. Moreover, one
can note that red vertices and green vertices play symmetrical roles, as depicted
in Figure 3. As a consequence, there are, up to symmetries, only two kinds of
connected components in G̃, that are represented in Figure 4.

3.2. The bound given by the previous method

Since the graph G̃ is a regular graph of degree three, the local densities,
with respect to the function defined in Example 8, of the connected components
of size 1 and 2 are respectively 1/4 and 1/3 (see Figure 5). So our previous
method leads to the bound 1/3 for that graph.
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Figure 3. Red vertices and green vertices play symmetrical roles.

Figure 4. The two different kinds of cliques in G̃.

Figure 5. The neighborhoods of the cliques in G̃.

3.3. The bound given by the Voronoï distribution

Now we compute the number δ∗f when f is the Voronoï distribution function
described in Example 9.

Because G̃ satisfies (Property D), the Voronoï neighborhood of a connected
component must contain its neighbors in G̃. Hence the bound obtained with
the Voronoï distribution cannot be worse than the previous one.

Since the isolated vertices already have a local density bounded from above
by 1/4, we only care about the connected components of size 2.

Let us fix such a connected component C0, and suppose that a saturated
set A avoiding polytope distance 1 contains C0. We already know that for
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x ∈ V , if dP(x,C0) < 1, then x is entirely attributed to C, namely{
f(C0, x) = 1

f(C, x) = 0 for any C 6= C0.

Moreover, if dP(x,C0) > 1, there must be C 6= C0 such that dP(x,C0) 6 1,
otherwise A would not be saturated. So f(C0, x) = 0. In other words, we need
to understand the minimal contribution of the points at polytope distance 1
from C0 in its Voronoï cell.

It is possible that such a point x does not contribute to the Voronoï cell
of C0, precisely when there is another connected component at polytope dis-
tance strictly less than 1 from x. If this does not happen, then x is in the
f -neighborhood of C0, and is shared between the connected components at
polytope distance 1 from it. We want to know the highest possible local den-
sity of C0 in its neighborhood, or, equivalently, its smallest f -neighborhood.

Let Ω be the set made by all the cliques in G̃. We say that two elements C
and C ′ of Ω are compatible if there is no c ∈ C, c′ ∈ C ′ such that dP(c, c′) = 1.
In other words, C and C ′ can coexist in a set avoiding polytope distance 1.
Here two elements C and C ′ of Ω are compatible if and only if dP(C,C ′) > 1.
In more complicated sets, such as the one we will consider for the elongated
dodecahedron, this equivalence does not hold. Let us define

S = {C ∈ Ω compatible with C0 | dP(C,C0) 6 2}.

The elements of S are precisely the cliques that can contribute to the f -volume
of the f -neighborhood of C0. Indeed, for x at polytope distance 1 from C0, by
the triangular inequality, a connected component such that f(C, x) > 0 must
be at polytope distance at most 2 from C0.

A subset S ⊂ S is said to be admissible, if any two C,C ′ ∈ S are com-
patible. In order to compute the highest possible f -density of C0, we look
through all the configurations associated with the maximal admissible subset
of S, and we compute the f -volume of the Voronoï neighborhood of C0 in that
configuration. Note that finding these maximal subsets amounts to compute
the maximal cliques in the graph whose vertices are the elements of S, in which
two elements C and C ′ are connected if and only if they are compatible. With
the help of a computer, one finds that the maximal f -density of a clique is

δ∗f =
2

6 + 5/3
=

6

23
≈ 0.261.

An example of such a configuration is given in Figure 6: among the ten
points at distance 1 from C0, five do not contribute to its Voronoï cell, and
five are shared between three different connected components. This bound is
not exactly 1/4 but is clearly better than the one that we obtained with the
previous method.
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Figure 6. An example of a configuration with local Voronoï
density 0.261. The clique C0 is the one depicted in red. The five
black points at polytope distance 1 from C0 are the ones that
are in its Voronoï neighborhood. They all are at distance 1 from
exactly three cliques.

3.4. Achieving 1/4 with another distribution function

Finally we introduce a more specific distribution function and show that it
leads to the expected bound 1/4:

Theorem 12. Let us consider the graph introduced in subsection 3.1. Let
A be a subset of V avoiding polytope distance 1, and let C be its partition into
connected components of G̃. Consider the function f : C × V → [0, 1] defined
as follows: for any x ∈ V , C ∈ C,

f(C, x) =


1 if dP(x,C) = 0,

2/3 if 0 < dP(x,C) < 1,

1/3 if dP(x,C) = 1,

0 if dP(x,C) > 1.

Then f is a discrete distribution function of V with respect to C. Moreover,

δ∗f =
1

4
.

Proof. First we need to prove that f is a discrete distribution function.
Although it trivially verifies condition (18), we need to check that is satisfies
condition (17) as well.
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• First let us suppose x ∈ A. Then there is a unique Cx ∈ C such
that x ∈ Cx. Obviously, there cannot be another clique C such that
dP(x,C) 6 1. Hence

∑
C∈C

f(C, x) = f(Cx, x) = 1.

• Now assume dP(x,A) < 1. Because G̃ has (Property D), there is
a unique C ∈ C such that dP(x,C) = 1. In other words, x is a
neighbor of an element a ∈ A. We want to know how many connected
components can be at polytope distance exactly 1 from x. To do so,
we look at the points at polytope distance 1 from x that are not at
distance 1 from a. We also forget about the neighbors of a in G̃: in
the worst-case scenario, such a point would be in C. We find that
there are only three "free" points, and we see immediately (Figure 7)
that they cannot intersect more than one connected component. So
in that case, there is at most one clique at polytope distance 1 from x,
and

∑
C∈C

f(C, x) 6 2/3 + 1/3 = 1.

Figure 7. A neighbor of an element of A can be at polytope
distance 1 from at most one clique: suppose that the red point
is in A. The three yellow points are the only points at polytope
distance 1 from the circled point that are compatible with the
red one. These three points cannot contain more than one clique
in A.

• Finally, when dP(x,A) = 1, we only need to check that x can not be
shared between more than three cliques. This fact can be observed
by looking at the points at polytope distance 1 from x (see Figure 8).

Hence f satisfies condition (17). It remains to see that δ∗f = 1/4. First
assume C is a single point. The definition of f implies that each one of the
three neighbors of C in G̃ (respectively the nine points at polytope distance
1 from C) provides a contribution greater than 2/3 (respectively 1/3) for the
f -volume of Nf [C] (see Figure 9). As a consequence,∑

x∈V

f(C, x) > 1 + 3.
2

3
+ 9.

1

3
= 6,
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Figure 8. A vertex in V cannot be at polytope distance 1 from
more than three connected components in A: each group of three
points depicted with the same color cannot intersect more than
one connected component in G̃.

so that δf (C) 6 1/6.
Now assume C is a clique with two elements. Then C has four neighbors

in G̃ and ten points at polytope distance 1 (see Figure 9), so that, as before∑
x∈V

f(C, x) > 2 + 4.
2

3
+ 10.

1

3
= 8,

and hence δf (C) 6 2/8 = 1/4.

Figure 9. The points in the f -neighborhood of the cliques: the
contribution of the red points is 1, that of the orange ones is at
least 2/3, and that of the yellow points is at least 1/3.

�

4. The Elongated Dodecahedron

This section is dedicated to the computation of m1(Rn, ‖ · ‖P) when P is
an elongated dodecahedron.
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4.1. Description of the Polytope

Following the description of lattices in dimension three (see Chapter 2,
subsection 3.3), the elongated dodecahedra are the Voronoï cells of the lattices
having exactly one Selling parameter which is 0. Such a polytope is in general
composed by four hexagonal faces, corresponding to two pairs of orthogonal
Voronoï vectors, and by four other pairs of faces, all being parallelograms. Here
we consider the most symmetrical case, where the hexagonal faces are identical,
and, as a consequence, the height parallelograms are rhombi, identical as well.
A representation of such a polytope (see Figure 10) is the Voronoï cell P of
the lattice Λ ⊂ R3 spanned by the basis B = {(2, 0, 0), (0, 2, 0), (−1,−1, 2)}.

Figure 10. The Elongated Dodecahedron.

The aim of this section is the determination of the number m1(R3, ‖ · ‖P):

Theorem 13. Let P be the Voronoï cell of the lattice Λ spanned by B.
Then

m1(R3, ‖ · ‖P) = 1/8.

Let us portray precisely the polytope P . Its symmetry groupS is the group
generated by the permutation of the two first coordinates, and sign changes of
any coordinate.

The Voronoï vectors of Λ are the images under S of the two vectors (2, 0, 0)
and (−1,−1, 2). As a consequence, the polytope norm of an element x =
(x1, x2, x3) ∈ R3 with respect to P is given by:

‖x‖P = max

{
|x1|, |x2|,

|x1|+ |x2|+ 2|x3|
3

}
.

In the sequel, the vertices of P , the middle of its edges, and the centers
of its facets will be of particular interest. Table 1 gives an overview of all the
orbits of these points under the action of S. In order to locate each point, we
precise the type of faces containing it. As a complement of this description,
Figure 11 depicts a representative of each kind of face of P .

Geometric Distance Graphs, Lattices and Polytopes. 87



4. The Elongated Dodecahedron

Type of point Representative Number Corresponding facets

Vertex
(0, 0, 3/2) 2 4 rhombi.
(1, 0, 1) 8 2 rhombi, 1 hexagon.

(1, 1, 1/2) 8 1 rhombus, 2 hexagons.
Middle
of

edge

(1, 1, 0) 4 2 hexagons.
(1, 1/2, 3/4) 16 1 rhombus, 1 hexagons.
(0, 1/2, 5/4) 8 2 rhombi.

Center of
facet

(1, 0, 0) 4 1 hexagon.
(1/2, 1/2, 1) 8 1 rhombus.

Table 1. The vertices, middle of edges, and centers of facets of
the Elongated Dodecahedron.

(1,−1, 1/2)

(1,−1,−1/2)

(1, 1, 1/2)

(1, 1,−1/2)

(1, 0, 1)

(1, 0,−1)

(1, 0, 0)

(1,−1, 0) (1, 1, 0)

(1, 1/2, 3/4)(1,−1/2, 3/4)

(1, 1/2,−3/4)(1,−1/2,−3/4)

(1, 1, 1/2)

(0, 0, 3/2)

(1, 0, 1) (0, 1, 1)

(1/2, 1/2, 1)

(1, 1/2, 3/4) (1/2, 1, 3/4)

(0, 1/2, 5/4)(1/2, 0, 5/4)

Figure 11. The faces of the Elongated Dodecahdron.

4.2. Definition and Description of the Induced Subgraph
and its Auxiliary Graph

Using the union A of the vertices, middles of edges, and centers of facets
of P , we construct the induced subgraph G of G(Rn, ‖ · ‖P) that will be proved
to satisfy ᾱ(G) = 1/8. Precisely, the set of vertices V of G is defined as follows:

V =
1

2
Λ +A.

This set turns out to be a lattice, and moreover it is the dual lattice of the
translation lattice Λ:

Lemma 27. Let Λ1 ⊂ R3 be the lattice spanned by the basis

B1 = {(1/2, 0, 1/4), (−1/2, 0, 1/4), (0, 1/2,−1/4)}.
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4. Discrete distribution functions and application to polytope distance graphs

We have:
V = Λ1 = Λ#.

Proof. It is immediate to check that
1

2
Λ, which is generated by the centers

of the facets of P , is contained in Λ1. The Gram matrices of the bases
1

2
B

and B1 of these lattices are respectively 1 0 −1/2
0 1 −1/2
−1/2 −1/2 3/2

 and
1

16

 5 −3 −1
−3 5 −1
−1 −1 5

 ,

so that Vol

(
1

2
Λ

)
= 1 and Vol(Λ1) = 1/8. Hence, |Λ1

/
(
1

2
Λ)| = 8. Putting

together the points of A that agree modulo
1

2
Λ, we may write:

V =
1

2
Λ +R,

where

R = {0, (1/2, 0,±1/4), (0, 1/2,±1/4), (0, 0,±1/2), (1/2, 1/2, 0)}.
The eight points of R are nothing but representatives of the height cosets of

Λ1

/
(
1

2
Λ). Hence V = Λ1.

Finally, for every u ∈ B, v ∈ B1, 〈u, v〉 ∈ Z, thus Λ1 ⊂ Λ#. To conclude, it
is sufficient to note that

Vol(Λ1) = 1/8 = 1/Vol(Λ) = Vol(Λ#).

�

Before defining the edges of the auxiliary graph G̃ associated with G, we
enumerate in Table 2, up to symmetry, all the 33 points of V that are contained
in the interior of P . We give for each orbit its size and the polytope norm of
its elements.

Representative Length of the Orbit Polytope Norm
(0, 0, 0) 1 0

(0, 0, 1/2) 2 1/3
(1/2, 0, 1/4) 8 1/2
(1/2, 1/2, 0) 4 1/2

(0, 0, 1) 2 2/3
(1/2, 1/2, 1/2) 8 2/3
(0, 1/2, 3/4) 8 2/3

Table 2. The points of V inside P .
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4. The Elongated Dodecahedron

Now we construct our auxiliary graph G̃ = (Ṽ , Ẽ), where as usual, Ṽ = V .
The edges of G̃ are defined as follows: for x, y ∈ V ,

(x, y) ∈ Ẽ ⇔ 0 < ‖x− y‖P 6 1/2.

In particular, G̃ is a Cayley graph, since the set of points x satisfying
0 < ‖x‖P 6 1/2 generates V .

We shall study the possible connected components in G̃ of a set A ⊂
V avoiding polytope distance 1. First we prove that the diameter of these
components must be strictly less than 1:

Lemma 28. Let A ⊂ V be a set avoiding polytope distance 1, and let C be
the partition of A into connected components in G̃. Then, for any C ∈ C,

Diam(C) < 1.

Proof. To prove this lemma, it is enough to check that every path in G̃
that goes from 0 to a point outside P must hit the boundary of P . Following
the definition of G̃, the neighbors of 0 are the vectors of polytope norm 1/3
and 1/2. Following table 2, the neighbors of these points having a greater
polytope norm are all the points having polytope norm 2/3, and some points
on the boundary of P . Finally, all the further neighbors of the points at
polytope distance 2/3 from 0 have polytope norm 1, which is sufficient to
conclude the proof. �

As a consequence, there are, up to translation, only finitely many possible
connected components appearing in the decomposition of A. It is not hard to
compute, up to symmetry, all the connected components containing 0, and to
see that their size is upper bounded by 8. In Table 3, we give the number, up
to symmetry, of types of possible connected component containing 0 of each
size.

Size of the connected component 1 2 3 4 5 6 7 8
Number of orbits 1 3 6 14 16 13 5 2

Table 3. The numbers of types connected components contain-
ing 0 of each size.

4.3. Computation of ᾱ(G)

In order to prove Theorem 13, we introduce a discrete distribution func-
tion associated with the partition of a set A ⊂ V avoiding 1 into connected
components in G̃ and prove that the local bound provided by this function,
and as a consequence ᾱ(G), are precisely 1/8:

90 Philippe Moustrou



4. Discrete distribution functions and application to polytope distance graphs

Theorem 14. Let A ⊂ V be a set avoiding 1, and let C be its partition
into connected components in G̃. Let x be an element of V . Define

dx = dP(x,A).

Depending on the value of dx, we also define

nx =

{
|{C ∈ C | dP(x,C) = dx}| if dx 6 1/2,

|{C ∈ C | dP(x,C) = dx and |C| > 4}| otherwise.

Finally, we introduce the following discrete distribution f of V associated
with C:

f : C × V → [0, 1]

(C, x) 7→


1

nx
if dP(x,C) = dx and nx > 1

0 otherwise

.

Then

δ∗f =
1

8
.

Following Lemma 26, Theorem 13 is an immediate consequence of Theo-
rem 14. Before entering into the details of the proof of the latter, it is worth
explaining the underlying idea of the definition of the distribution function f :
for a small connected component C, the contribution of the points close to C
suffices to have δf (C) 6 1/8, while a bigger component will need the contribu-
tion of further points. In order to optimize this contribution, such points are
only shared between big connected components.

Rather than presenting directly the proof of Theorem 14, we split it into
several lemmas. Their proofs require some computations that have been made
by computer. In order to keep the writing as light as possible, we only give
here the most important results, and postpone the results of intermediate
computations and checks to Appendix A.

As a first step, we deal with the connected components of small size:

Lemma 29. Let C ∈ C, with |C| 6 3. Then

δf (C) 6 1/8.

Proof. Following the definition of f , the elements of V that contribute
to the f -volume of Nf [C] are the points at polytope distance 1/3 and 1/2
from C. If such a point is shared with another connected component C ′, then
C ′ must be at distance 2/3 from C. By looking at all the possible admissible
configurations of such connected components around C, and computing the
local density of C in this configuration, we check that this density cannot
exceed 1/8. In Table 1, we recap, for each type of connected component, up
to symmetry, the maximal local density that it can reach. �
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4. The Elongated Dodecahedron

From now on, we focus on big connected components. First of all, we show
that they cannot be too close from each other:

Lemma 30. Let C,C ′ ∈ C, with |C| > 4 and |C ′| > 4. Then

dP(C,C ′) > 1.

Proof. Obviously, the distance between C and C ′ cannot be 1, and must
exceed 1/2, because C and C ′ are disjoint connected components. So we only
have to check that it cannot be 2/3. For all the connected components C such
that |C| > 5, one can check that every point at polytope distance 2/3 from
C is at polytope distance 1 from another element of C, and as a consequence
cannot be in C ′. This property is also satisfied by all the types of connected
component of size 4 but one. For this last remaining case, we check that the
two points at distance 2/3 from C that are allowed by C do not have any
admissible neighbor, so that |C ′| = 1. �

Using Lemma 30, we get an upper bound on the number nx when dP(x,A) =
2/3:

Lemma 31. Let x ∈ V such that dP(x,A) = 2/3. Then

nx = {C ∈ C | dP(x,C) = 2/3 and |C| > 4} 6 2.

Proof. Without loss of generality, we may assume that x = 0. Following
Lemma 30, it is sufficient to understand how many points can be picked among
the ones at distance 2/3 from x, in such a way that the distance between any
two of them is strictly bigger than 1. By looking at these 18 points (see
Table 2), one can easily check that if the third coordinates of u and v have
same sign, then ‖u − v‖P 6 1. So x will be at most shared among two big
connected components. �

Finally, we can show that the local density of the big connected components
is also upper bounded by 1/8:

Lemma 32. Let C ∈ C, with |C| > 4. Then

δf (C) 6 1/8.

Proof. We have seen in the proof of Lemma 30 that whenever |C| > 5, no
point of A can be located at polytope distance 2/3 from C. As an immediate
consequence, for all x in the closed neighborhood of C in G̃, f(C, x) = 1 and
f(x,C ′) = 0 for C 6= C ′. Unfortunately, this closed neighborhood is not in
general large enough to conclude.

Fix a connected component C ∈ C, with |C| > 4. After the closed neighbor-
hood of C in G̃, the next points that can bring a contribution to the f -volume
of Nf [C] are the ones at polytope distance 2/3 from C. Some of these points
have no neighbor in G̃ that are not at polytope distance 1 from an element
of C. In other words, they must be in the f -neighborhood of C. Moreover,
following Lemma 31, this contribution is at least 1/2. We denote by M(C)
the set made by those points. Consequently the contribution of M(C) in the
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4. Discrete distribution functions and application to polytope distance graphs

f -volume of Nf (C) is at least
1

2
|M(C)|. Finally, we just have to check that

if we add the minimal contributions brought by the closed neighborhood of
C and by M(C), the local density of C with respect to f cannot exceed 1/8.
In tables 2, 3, 4, 5 and 6, we give all the bounds for every type of connected
components. We also may note that our results show, in particular, that a set
of density 1/8 is uniquely made by connected components of size 8. �

So we have proved Theorem 14:

Proof of Theorem 14. It is an immediate consequence of Lemma 29
and Lemma 32. �

5. Hexagonal Prisms

In this section, we use our results concerning hexagonal Voronoï cells in
the plane in order to deduce easily the number m1(Rn, ‖ · ‖P) for a kind of
polytope in dimension 3 very similar to the hexagons: hexagonal prisms.

A lattice whose Voronoï cell is a hexagonal prism is a lattice of the form
(see Chapter 2, subsection 3.3)

Λ = Λ0 × tZ ⊂ R2 × R,
where Λ0 ⊂ R2 is a planar lattice whose Voronoï cell is a hexagon H. We may
assume for instance that t = 2: then the Voronoï cell of Λ is

P = H× [−1, 1],

and the polytope norm ‖ · ‖P of an element v = (X, z) ∈ R2 × R is given by

‖v‖P = max{‖X‖H, |z|}.

Figure 12. A hexagonal prism.

We are going to prove:

Theorem 15. Let P ⊂ R3 be a hexagonal prism. Then

m1(R3, ‖ · ‖P) =
1

8
.
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5.1. A first natural proof

For i ∈ {0, 1}, let us denote by Hi the hyperplane

Hi = {(X, z) ∈ R2 × R | z = i},
and by [−R,R]2i the 2-dimensional square [−R,R]2 × {i}.

Let us consider the subgraph G{0,1} of G(R3, ‖ · ‖P) induced by H0 ∪H1. If
A is a subset of H0∪H1, we denote by Ai the intersection A∩Hi, for i ∈ {0, 1}.
Then, the density of A in H0 ∪H1 is

δ{0,1}(A) =
1

2
(δH0(A0) + δH1(A1)),

where for i ∈ {0, 1}, δHi is the 2-dimensional density

δHi = lim sup
R→∞

Vol(Ai ∩ [−R,R]2i )

Vol([−R,R]2i )
.

If we introduce the number

m1(G{0,1}) = sup{δ{0,1}(A) | A ⊂ H0 ∪H1, A avoiding P − distance 1},
the following analogue of Lemma 10 holds:

m1(G(R3, ‖ · ‖P)) 6 m1(G{0,1}).

The graph G{0,1} is the union of two copies of the 2-dimensional unit dis-
tance graph G(R2, ‖ · ‖H), at P-distance 1 one from the other. We are going to
show that the density of an independent set in G{0,1} cannot exceed one half
of the supreme density of a set avoiding H-distance 1 in G(R2, ‖ · ‖H), namely
1

2
× 1

4
=

1

8
. To do so, to any A ⊂ H0 ∪H1 avoiding P-distance 1, we associate

another subset, having the same density as A in H0 ∪H1 (see Figure 13):

Lemma 33. Let us consider the natural projection:
π : H0 ∪H1 → H0 ∪H1

(X, z) 7→ (X, 0)
.

Let A ⊂ H0 ∪ H1 be a set avoiding polytope distance 1. Then the restriction
π|A of π to A is injective, π(A) is again a set avoiding 1, and A and π(A) have
the same density in H0 ∪H1.

Figure 13. A set A and its projection π(A).

94 Philippe Moustrou



4. Discrete distribution functions and application to polytope distance graphs

Proof. Suppose π(X1, z1) = π(X2, z2), then X1 = X2, and if z1 6= z2,
then |z1 − z2| = 1, so that ‖(X1, z1)− (X2, z2)‖P = 1. A contradiction.

In the same manner, if ‖π(X1, z1)−π(X2, z2)‖P = 1, then ‖X1−X2‖H = 1,
which would imply ‖(X1, z1) − (X2, z2)‖P = 1, since |z1 − z2| 6 1. So π(A)
still avoids polytope distance 1 with respect to P .

Finally, because π|A is injective, A and π(A) have the same density in
H0 ∪H1. �

As a consequence, we only have to bound the density of π(A) in H0 ∪
H1. This leads us to the bound m1(G{0,1}) 6 1/8, which immediately implies
Theorem 15:

Theorem 16. The number m1(G{0,1}) satisfies:

m1(G{0,1}) 6
1

8
.

Proof. Let A ⊂ H0 ∪ H1 be a set avoiding P-distance 1. Following
Lemma 33, we may replace A with π(A), and π(A) is nothing but a set avoiding
H-distance 1 in H0. So its density in H0 is upper bounded by 1/4, following
Theorem 12. Since the density of H0 in H0 ∪H1 is obviously 1/2, the density
of π(A) in H0 ∪H1, and consequently that of A, is upper bounded by 1/8. �

5.2. Reformulation in terms of discrete distribution func-
tion

We can interpret the previous result in terms of discrete distribution func-
tions, by using the graphs that we employed in order to prove Theorem 12.

Let GH and G̃H be respectively the induced subgraph of G(R2, ‖ · ‖H) that
we have introduced in Section 3, and its associated auxiliary graph. Let G be
the subgraph of G(Rn, ‖ · ‖P) induced by

V = VH × {0, 1},
where VH is the set of vertices of GH and G̃H. We denote by Vi for i ∈ {0, 1}
the subset {v = (X, z) ∈ V | z = i}, so that V = V0 ∪ V1.

The discrete analogue of Lemma 33, whose proof is exactly the same, is
the following lemma:

Lemma 34. Let us consider the natural projection:

π : V → V
(X, z) 7→ (X, 0)

.

Let A ⊂ V be a set avoiding polytope distance 1. Then the restriction π|A of
π to A is injective, π(A) is again a set avoiding 1, and A and π(A) have the
same density in V .

Then we can construct a discrete distribution of V with respect to π(A),
which provides another proof of Theorem 15:
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Theorem 17. Let A ⊂ V be a set avoiding polytope distance 1, and let
A0 = π(A). By identifying V0 and VH, we can put on V0 the auxiliary graph
structure of G̃H . Let C be the decomposition of A0 into connected components
of this graph, and let f0 : C × V0 → [0, 1] the associated discrete distribution
function introduced in Theorem 12. Then the function

f : C × V → [0, 1]
(C, v) 7→ f0(C, π(v))

is a discrete distribution function of V with respect to C, and satisfies

δ∗f =
1

8
.

Proof. First of all, let us explain the underlying idea in the definition of f :
we want the f -volume of the f -neighborhood in G of a connected component
to be twice the f0-volume of its f0-neighborhood in GH (see Figure 14, and
compare with Figure 9).

It is clear that f is a discrete distribution function, since for every v ∈ V ,∑
C∈C

f(C, v) =
∑
C∈C

f0(C, π(v)) 6 1. It is also easy to see, following the definition

of f , that for any C ∈ C,∑
v∈V

f(C, v) = 2
∑
v∈V0

f0(C, v) 6 2
|C|
δ∗f0

,

so that, following Theorem 12,

δ∗f =
1

2
δ∗f0 =

1

8
.

Figure 14. For one point in GH contributing to a clique, there
are two points giving the same contribution in G, so that the
local density of a clique is reduced by one half. This is the
analogue in that situation of Figure 9.

�
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5.3. Generalizations

The method that we have just presented with hexagonal prisms in dimen-
sion 3 admits an immediate generalization. Indeed, if we replace the hexagon
H with any polytope P0 in Rn, then the product P = P0 × [−1, 1] satisfies

m1(Rn+1, ‖ · ‖P) =
1

2
m1(Rn, ‖ · ‖P0).

Theorem 18. Let P0 be a parallelohedron in Rn, and let

P = P0 × [−1, 1] ⊂ Rn+1.

Then
m1(Rn+1, ‖ · ‖P) =

1

2
m1(Rn, ‖ · ‖P0).

With a trivial induction, [−1, 1] may be replaced with any hypercube:

Theorem 19. Let P0 be a parallelohedron in Rn, and let

P = P0 × [−1, 1]m ⊂ Rn+m.

Then
m1(Rn+m, ‖ · ‖P) =

1

2m
m1(Rn, ‖ · ‖P0).
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Chapter 5

Concluding Comments and
Open Questions

This last chapter provides a quick overview of the results contained in this
thesis, and presents some related open questions. It is divided in two parts,
corresponding to the two main problems tackled.

1. Lattice Sphere Packings

In Chapter 2, we have constructed finite families of lattices containing
a lattice whose sphere packing density reaches the highest asymptotic lower
bound ∆n. Besides the most natural challenge of improving ∆n, there are
several other open questions related to this topic, that seem to be more ap-
proachable.

The lattices that we have constructed are invariant under the action of a
cyclic group. It is an interesting question whether larger symmetry groups can
also lead to dense lattices. Such constructions may be explored with the goal
of building smaller families of lattices with a density exponentially decreasing
in the dimension. More precisely, given a finite group G ⊂ O(Rn), we would
like to construct finite families of lattices in Rn invariant under the action of
G and containing a lattice Λ whose density ∆(Λ) satisfies

∆(Λ) > α−n,

for some α. In the context of coding theory a result of this flavor has been
obtained by Bazzi in [BM06].

Averaging arguments over families of lattices obtained via Construction A
have been used in the literature for problems different from the sphere packing
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2. Sets Avoiding Distance 1

problem, such as the covering problem, or problems related with communica-
tions (see for example [ELZ05]). It is also an interesting challenge, for these
different questions, to try to reduce the size of the families, by adding some
algebraic structure to the lattices.

2. Sets Avoiding Distance 1

In this thesis, we have proved Bachoc and Robins conjecture in dimension 2.
Namely, for every parallelohedron P ⊂ R2, m1(R2, ‖ · ‖P) = 1/4. In dimen-
sion 3, we have proved this conjecture for several polytopes, covering four
combinatorial types of 3-dimensional parallolehedra out of five. However, we
only considered the elongated dodecahedron and the rhombic dodecahedron
in their most symmetrical form. In order to settle the dimension 3, the num-
ber m1(R3, ‖ · ‖P) should be studied for these polytopes in their general form,
as well as for the last remaining type of polytope: the truncated octahedron.
For the latter, we have a natural discrete induced subgraph G that is likely to
satisfy ᾱ(G) = 1/8: the graph induced by the set of vertices obtained by trans-

lating all the centers of faces of the polytope by
1

2
L, where L is the translation

lattice. However, this construction provides, in comparison with the previous
polytopes, a larger amount of points inside the polytope, which makes harder
the analysis of the graph. It seems to be worth to construct a smaller induced
subgraph, easier to analyze, with independence ratio 1/8.

In Chapter 3, we have found an upper bound on m1(Rn, ‖ · ‖P) when P
is the Voronoï region of the lattice Dn. In particular, for n = 4, this bound
is 1/15, whereas the expected value of m1(Rn, ‖ · ‖P) is 1/16. Even if the
bound 1/15 is locally optimal for the Voronoï distribution in the graph that
we considered, we did not find any set avoiding polytope distance 1 in the
graph with a global density exceeding 1/16. It is still possible that with a
good choice of distribution function, one could prove that the independence
ratio of that graph is 1/16.

More generally, the would be to find a standard construction which, given
a polytope P in dimension n, provides a discrete graph G, together with a dis-
crete distribution function enabling to prove that ᾱ(G) = 1/2n. Even though
we may think that the construction involving the centers of faces of the poly-
tope leads to a good set of vertices, we do not have a general good distribution
function in order to analyze it.

After the norms whose unit ball is a parallelohedron, the natural step
towards Euclidean norm is to consider norms whose unit ball is a polytope
in general. For instance, in dimension 2, what is the value of m1(R2, ‖ · ‖P)
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for a given polytope P? What is the chromatic number of the plane in that
case? Does it bring any information on the chromatic number of the Euclidean
plane?

Finally, a more general problem is to find upper bounds for m1(Rn, ‖ · ‖)
for any norm. We know that for the Euclidean norm, m1(Rn, ‖ · ‖2) decreases
exponentially in n. Is that true in general? A possible way to attack this
question is to use Fourier analysis and linear programming, as it was done in
[dOFV10] and [BPT15] in the Euclidean case.
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Chapter A

Intermediate computational
results for the Elongated

Dodecahedron

Here we give the results of the computations of the maximal local densities
achieved by the possible connected components in the auxiliary graph that
we have constructed for the elongated dodecahedron. The Sage code used to
obtain these results is available on GitHub 1.

The following table concerns the small connected components (Lemma 29).
Recall that the maximal density of a connected component C is computed, in
that case, by checking all the configurations of connected components around
C that have an influence on the contribution on the neighbors of C.

Size Representative Maximal Local Density
1 {(0, 0, 0)} 0.0938
2 {(0, 0, 0), (0, 1/2, 1/4)} 0.1112
2 {(0, 0, 0), (0, 0, 1/2)} 0.0834
2 {(0, 0, 0), (1/2, 1/2, 0)} 0.0953
3 {(0, 0, 0), (1/2, 0, 1/4), (0, 1/2, 3/4)} 0.0968
3 {(0, 0, 0), (1/2, 0, 1/4), (1/2, 1/2, 1/2)} 0.12
3 {(0, 0, 0), (0, 1/2,−1/4), (0, 1/2, 1/4)} 0.1072
3 {(0, 0, 0), (1/2, 0,−1/4), (1/2, 1/2, 0)} 0.1225
3 {(0, 0, 0), (0, 0, 1/2), (0, 0, 1)} 0.0909
3 {(0, 0, 0), (1/2, 1/2, 0), (1/2, 1/2, 1/2)} 0.0938

Table 1. The maximal local densities for the small connected
components.

1https://gist.githubusercontent.com/PMoustrou
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Table 2 gives the maximal local densities of the connected components of
size 4. For such a component C, like for the smaller ones, we can compute the
minimal contribution of the neighborhood of C to its local density. However,
for one particular kind, it is not enough. The remaining contribution then
comes from the points in M(C) (see Chapter 4, Lemma 32 ).

Maximal of N(C) Maximal
Representative |N [C]| Contribution |M(C)| Local

of N(C) Density
{(0, 0, 0), (0, 0, 1/2),
(0, 1/2,−1/4), (0, 1/2, 3/4)}

38 38 26 0.0785

{(0, 0, 0), (0, 0, 1/2),
(0, 1/2,−1/4), (0, 1/2, 3/4)}

35 35 30 0.08

{(0, 0, 0), (1/2,−1/2, 0),
(1/2,−1/2, 1/2), (1/2, 0, 3/4)}

39 39 30 0.0741

{(0, 0, 0), (0, 0, 1/2),
(0, 1/2, 1/4), (0, 1/2, 3/4)}

34 34 24 0.0870

{(0, 0, 0), (1/2, 0,−3/4),
(1/2, 0,−1/4), (1/2, 1/2, 0)}

37 37 30 0.0770

{(0, 0, 0), (1/2,−1/2,−1/2),
(1/2,−1/2, 0), (1/2, 0, 1/4)}

37 37 30 0.0785

{(0, 0, 0), (0, 0, 1/2),
(0, 0, 1), (0, 1/2, 3/4)}

37 37 24 0.0817

{(0, 0, 0), (0, 1/2,−1/4),
(1/2, 0, 1/4), (1/2, 1/2, 1/2)}

36 36 32 0.0770

{(0, 0, 0), (1/2, 0, 1/4),
(1/2, 1/2, 0), (1/2, 1/2, 1/2)}

34 34 30 0.0817

{(0, 0, 0), (0, 1/2, 1/4),
(1/2, 0, 1/4), (1/2, 1/2, 1/2)}

32 28 18 0.1082

{(0, 0, 0), (1/2,−1/2, 0),
(1/2, 0,−1/4), (1/2, 0, 1/4)}

32 32 30 0.0852

{(0, 0, 0), (0, 1/2,−1/4),
(1/2, 0,−1/4), (1/2, 1/2, 0)}

32 32 32 0.0834

{(0, 0, 0), (1/2, 1/2,−1/2),
(1/2, 1/2, 0), (1/2, 1/2, 1/2)}

40 40 28 0.0741

{(0, 0, 0), (0, 0, 1/2),
(1/2, 1/2, 0), (1/2, 1/2, 1/2)}

38 38 28 0.0770

Table 2. The maximal local densities of the con-
nected components of size 4. Note that for C =
{(0, 0, 0), (0, 1/2, 1/4), (1/2, 0, 1/4), (1/2, 1/2, 1/2)}, 8 points in
N [C] can be shared, between at most two connected compo-
nents. So the minimal contribution of N [C] is in that case 28
instead of 32. There is no other similar case.
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A. Intermediate computational results for the Elongated Dodecahedron

Tables 3, 4, 5 and 6 give the maximal local densities of the connected
components of size bigger than 5. Recall that for all these components C
the whole neighborhood of C fully contributes to the local density of C. The
remaining contribution still comes from the points in M(C).

Representative |N [C]| |M(C)|
Maximal
Local
Density

{(0, 0, 0), (1/2, 0,−1/4),
(1/2, 0, 1/4), (1/2, 1/2,−1/2), (1/2, 1/2, 1/2)}

42 32 0.0863

{(0, 0, 0), (1/2,−1/2, 0),
(1/2,−1/2, 1/2), (1/2, 0,−1/4), (1/2, 0, 3/4)}

43 31 0.0855

{(0, 0, 0), (0, 0, 1/2),
(0, 1/2,−1/4), (0, 1/2, 1/4), (0, 1/2, 3/4)}

40 24 0.0962

{(0, 0, 0), (0, 1/2,−1/4),
(1/2, 0,−1/4), (1/2, 0, 1/4), (1/2, 1/2, 1/2)}

41 32 0.0878

{(0, 0, 0), (1/2, 0,−1/4),
(1/2, 0, 1/4), (1/2, 1/2, 0), (1/2, 1/2, 1/2)}

38 30 0.0944

{(0, 0, 0), (0, 0, 1/2),
(1/2, 0,−1/4), (1/2, 0, 1/4), (1/2, 1/2, 1/2)}

40 30 0.0910

{(0, 0, 0), (0, 1/2, 1/4),
(1/2, 0,−1/4), (1/2, 0, 1/4), (1/2, 1/2, 1/2)}

38 32 0.0926

{(0, 0, 0), (1/2, 0,−1/4),
(1/2, 0, 1/4), (1/2, 0, 3/4), (1/2, 1/2, 1/2)}

41 30 0.0893

{(0, 0, 0), (0, 0, 1/2),
(1/2,−1/2, 0), (1/2,−1/2, 1/2), (1/2, 0, 3/4)}

42 30 0.0878

{(0, 0, 0), (0, 1/2,−3/4),
(1/2, 0,−3/4), (1/2, 0,−1/4), (1/2, 1/2, 0)}

45 32 0.0820

{(0, 0, 0), (0, 1/2,−1/4),
(1/2, 0,−3/4), (1/2, 0,−1/4), (1/2, 1/2, 0)}

40 32 0.0893

{(0, 0, 0), (1/2, 0,−3/4),
(1/2, 0,−1/4), (1/2, 0, 1/4), (1/2, 1/2, 0)}

41 30 0.0893

{(0, 0, 0), (1/2,−1/2,−1/2),
(1/2,−1/2, 0), (1/2,−1/2, 1/2), (1/2, 0, 1/4)}

42 30 0.0878

{(0, 0, 0), (0, 1/2,−1/4),
(1/2, 0, 1/4), (1/2, 1/2,−1/2), (1/2, 1/2, 1/2)}

43 33 0.0841

{(0, 0, 0), (0, 1/2, 1/4),
(1/2, 0,−1/4), (1/2, 0, 1/4), (1/2, 1/2, 1/2)}

39 30 0.0926

{(0, 0, 0), (0, 1/2, 1/4),
(1/2, 0, 1/4), (1/2, 1/2, 0), (1/2, 1/2, 1/2)}

36 32 0.0962

Table 3. The maximal local densities of the connected compo-
nents of size 5.
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Representative |N [C]| |M(C)|
Maximal
Local
Density

{(0, 0, 0), (0, 1/2,−1/4), (1/2, 0,−1/4),
(1/2, 0, 1/4), (1/2, 1/2,−1/2), (1/2, 1/2, 1/2)}

45 33 0.0976

{(0, 0, 0), (1/2, 0,−1/4), (1/2, 0, 1/4),
(1/2, 1/2,−1/2), (1/2, 1/2, 0), (1/2, 1/2, 1/2)}

44 30 0.1017

{(0, 0, 0), (1/2,−1/2, 0), (1/2,−1/2, 1/2),
(1/2, 0,−1/4), (1/2, 0, 1/4), (1/2, 0, 3/4)}

44 30 0.1017

{(0, 0, 0), (0, 0, 1/2), (1/2,−1/2, 0),
(1/2,−1/2, 1/2), (1/2, 0,−1/4), (1/2, 0, 3/4)}

46 31 0.0976

{(0, 0, 0), (0, 1/2,−1/4), (1/2, 0,−1/4),
(1/2, 0, 1/4), (1/2, 1/2, 0), (1/2, 1/2, 1/2)}

42 32 0.1035

{(0, 0, 0), (0, 0, 1/2), (0, 1/2,−1/4),
(1/2, 0,−1/4), (1/2, 0, 1/4), (1/2, 1/2, 1/2)}

46 32 0.0968

{(0, 0, 0), (0, 1/2,−1/4), (0, 1/2, 1/4),
(1/2, 0,−1/4), (1/2, 0, 1/4), (1/2, 1/2, 1/2)]}

43 32 0.1017

{(0, 0, 0), (0, 0, 1/2), (1/2, 0,−1/4),
(1/2, 0, 1/4), (1/2, 1/2, 0), (1/2, 1/2, 1/2)}

43 30 0.1035

{(0, 0, 0), (0, 1/2, 1/4), (1/2, 0,−1/4),
(1/2, 0, 1/4), (1/2, 1/2, 0), (1/2, 1/2, 1/2)}

40 32 0.1072

{(0, 0, 0), (0, 1/2, 1/4), (1/2, 0,−1/4),
(1/2, 0, 1/4), (1/2, 0, 3/4), (1/2, 1/2, 1/2)}

44 32 0.1

{(0, 0, 0), (0, 1/2,−3/4), (0, 1/2,−1/4),
(1/2, 0,−3/4), (1/2, 0,−1/4), (1/2, 1/2, 0)}

46 32 0.0968

{(0, 0, 0), (0, 1/2,−1/4), (1/2, 0,−3/4),
(1/2, 0,−1/4), (1/2, 0, 1/4), (1/2, 1/2, 0)}

44 32 0.1

{(0, 0, 0), (0, 0, 1/2), (0, 1/2, 1/4),
(1/2, 0, 1/4), (1/2, 1/2, 0), (1/2, 1/2, 1/2)}

40 32 0.1072

Table 4. The maximal local densities of the connected compo-
nents of size 6.
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Representative |N [C]| |M(C)|
Maximal
Local
Density

{(0, 0, 0), (0, 1/2,−1/4),
(1/2, 0,−1/4), (1/2, 0, 1/4),
(1/2, 1/2,−1/2), (1/2, 1/2, 0), (1/2, 1/2, 1/2)}

46 32 0.1130

{(0, 0, 0), (0, 1/2,−1/4),
(0, 1/2, 1/4), (1/2, 0,−1/4),
(1/2, 0, 1/4), (1/2, 1/2,−1/2), (1/2, 1/2, 1/2)}

47 33 0.1103

{(0, 0, 0), (0, 0, 1/2),
(1/2,−1/2, 0), (1/2,−1/2, 1/2),
(1/2, 0,−1/4), (1/2, 0, 1/4), (1/2, 0, 3/4)}

47 30 0.1130

{(0, 0, 0), (0, 0, 1/2),
(1/2,−1/2, 0), (1/2,−1/2, 1/2),
(1/2, 0,−1/4), (1/2, 0, 1/4), (1/2, 0, 3/4)}

47 32 0.1112

{(0, 0, 0), (0, 1/2,−1/4),
(0, 1/2, 1/4), (1/2, 0,−1/4),
(1/2, 0, 1/4), (1/2, 1/2, 0), (1/2, 1/2, 1/2)}

44 32 0.1167

Table 5. The maximal local densities of the connected compo-
nents of size 7.

Representative |N [C]| |M(C)|
Maximal
Local
Density

{(0, 0, 0), (0, 1/2,−1/4),
(0, 1/2, 1/4), (1/2, 0,−1/4), (1/2, 0, 1/4),
(1/2, 1/2,−1/2), (1/2, 1/2, 0), (1/2, 1/2, 1/2)}

48 32 0.125

{(0, 0, 0), (0, 0, 1/2),
(0, 1/2,−1/4), (0, 1/2, 1/4), (1/2, 0,−1/4),
(1/2, 0, 1/4), (1/2, 1/2, 0), (1/2, 1/2, 1/2)}

48 32 0.125

Table 6. The maximal local densities of the connected compo-
nents of size 8.
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reduction of three-dimensional lattices. Proc. Roy. Soc. London Ser. A,
436(1896):55–68, 1992.

[dB75] R. de Buda. Upper error bound of a new near-optimal code. IEEE Transac-
tions on Information Theory, IT-21(4):441–445, 1975. cited By 24.

[Del29] B. Delaunay. Sur la partition régulière de l’espace à 4 dimensions. I, II. Bull.
Acad. Sci. URSS, 2:79–110, 1929.

109



[DG17] E. DeCorte and K. Golubev. Lower bounds for the measurable chromatic
number of the hyperbolic plane. ArXiv e-prints, August 2017.

[dOFV10] F. M. de Oliveira Filho and F. Vallentin. Fourier analysis, linear program-
ming, and densities of distance avoiding sets in Rn. J. Eur. Math. Soc.
(JEMS), 12(6):1417–1428, 2010.

[DR47] H. Davenport and C. A. Rogers. Hlawka’s theorem in the geometry of num-
bers. Duke Math. J., 14:367–375, 1947.

[Ebe13] W. Ebeling. Lattices and codes. Advanced Lectures in Mathematics. Springer
Spektrum, Wiesbaden, third edition, 2013. A course partially based on lec-
tures by Friedrich Hirzebruch.

[ELZ05] U. Erez, S. Litsyn, and R. Zamir. Lattices which are good for (almost) ev-
erything. IEEE Trans. Inform. Theory, 51(10):3401–3416, 2005.

[Erd99] R. M. Erdahl. Zonotopes, dicings, and Voronoi’s conjecture on parallelohedra.
European J. Combin., 20(6):527–549, 1999.

[Fal81] K. J. Falconer. The realization of distances in measurable subsets covering
rn. Journal of Combinatorial Theory, Series A, 31(2):184 – 189, 1981.

[Fed53] E. S. Fedorov. Načala učeniya o figurah. Izdat. Akad. Nauk SSSR, Moscow,
1953.

[Fej43] L. Fejes. über die dichteste Kugellagerung. Math. Z., 48:676–684, 1943.
[FT50] L. Fejes Tóth. Some packing and covering theorems. Acta Sci. Math. Szeged,

12(Leopoldo Fejér et Frederico Riesz LXX annos natis dedicatus, Pars A):62–
67, 1950.

[Gru07] P. M. Gruber. Convex and discrete geometry, volume 336 of Grundlehren
der Mathematischen Wissenschaften [Fundamental Principles of Mathemati-
cal Sciences]. Springer, Berlin, 2007.

[GZ07] P. Gaborit and G. Zémor. On the construction of dense lattices with a given
automorphisms group. Ann. Inst. Fourier (Grenoble), 57(4):1051–1062, 2007.

[HAB+17] T. Hales, M. Adams, G. Bauer, T. Dang, J. Harrison, Le Truong Hoang,
C. Kaliszyk, V. Magron, S. McLaughlin, T. Nguyen, Q. Nguyen, T. Nipkow,
S. Obua, J. Pleso, J. Rute, A. Solovyev, T. H. A. Ta, N. T. Tran, T. D. Trieu,
J. Urban, K. Vu, and R. Zumkeller. A formal proof of the Kepler conjecture.
Forum Math. Pi, 5:e2, 29, 2017.

[Hal06] T. C. Hales. Historical overview of the Kepler conjecture. Discrete Comput.
Geom., 36(1):5–20, 2006.

[Har27] G. H. Hardy. Note on a Theorem of Mertens. J. London Math. Soc., S1-
2(2):70, 1927.

[Hla43] E. Hlawka. Zur Geometrie der Zahlen. Math. Z., 49:285–312, 1943.
[HM10] T. C. Hales and S. McLaughlin. The dodecahedral conjecture. J. Amer. Math.

Soc., 23(2):299–344, 2010.
[HPS11] G. Hanrot, X. Pujol, and D. Stehlé. Algorithms for the shortest and clos-

est lattice vector problems. In In Yeow Meng Chee, Zhenbo Guo, San Ling,
Fengjing Shao, Yuansheng Tang, Huaxiong Wang, and Chaoping Xing, edi-
tors, IWCC, volume 6639 of Lecture Notes in Computer Science, pages 159–
190. Springer, 2011.

[IH04] Kowalski E. Iwaniec H. Analytic number theory. 2004.
[KMdOFR16] T. Keleti, M. Matolcsi, F. M. de Oliveira Filho, and I. Z. Ruzsa. Better bounds

for planar sets avoiding unit distances. Discrete & Computational Geometry,
55(3):642–661, 2016.

[KZ73] A. Korkine and G. Zolotareff. Sur les formes quadratiques. Math. Ann.,
6(3):366–389, 1873.

[KZ77] A. Korkine and G. Zolotareff. Sur les formes quadratiques positives. Math.
Ann., 11:242–292, 1877.

110 Philippe Moustrou



A. Bibliography

[Lan94] S. Lang. Algebraic number theory, volume 110 of Graduate Texts in Mathe-
matics. Springer-Verlag, New York, second edition, 1994.

[Loe97] H. A. Loeliger. Averaging bounds for lattices and linear codes. IEEE Trans-
actions on Information Theory, 43(6):1767–1773, 1997.

[LR72] D. G. Larman and C. A. Rogers. The realization of distances within sets in
Euclidean space. Mathematika, 19:1–24, 1972.

[Mar03] J. Martinet. Perfect Lattices in Euclidean Spaces. Springer-Verlag, Berlin,
2003.

[McM80] P. McMullen. Convex bodies which tile space by translation. Mathematika,
27(1):113–121, 1980.

[Min97] H. Minkowski. Allgemeine lehrsätze über die convexen polyeder. Nachrichten
von der Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-
Physikalische Klasse, 1897:198–220, 1897.

[Mou17] P. Moustrou. On the density of cyclotomic lattices constructed from codes.
Int. J. Number Theory, 13(5):1261–1274, 2017.

[Neu99] J. Neukirch. Algebraic number theory, volume 322 of Grundlehren der Math-
ematischen Wissenschaften [Fundamental Principles of Mathematical Sci-
ences]. Springer-Verlag, Berlin, 1999. Translated from the 1992 German orig-
inal and with a note by Norbert Schappacher, With a foreword by G. Harder.

[Rog47] C. A. Rogers. Existence theorems in the geometry of numbers. Ann. of Math.
(2), 48:994–1002, 1947.

[Rot06] R. Roth. Introduction to Coding Theory. Cambridge University Press, New
York, NY, USA, 2006.

[Rus89] J. A. Rush. A lower bound on packing density. Invent. Math., 98(3):499–509,
1989.

[Sam67] P. Samuel. Théorie algébrique des nombres. Hermann, Paris, 1967.
[Sha59] C. E. Shannon. Probability of error for optimal codes in a Gaussian channel.

Bell System Tech. J., 38:611–656, 1959.
[Shi] D. Shiryaev. Personal communication.
[Sie45] C. L. Siegel. A mean value theorem in geometry of numbers. Ann. of Math.

(2), 46:340–347, 1945.
[Soi08] A. Soifer. The mathematical coloring book: Mathematics of coloring and the

colorful life of its creators. Springer Science & Business Media, 2008.
[Szé02] L. A. Székely. Erdős on unit distances and the Szemerédi-Trotter theorems.

In Paul Erdős and his mathematics, II (Budapest, 1999), volume 11 of Bolyai
Soc. Math. Stud., pages 649–666. János Bolyai Math. Soc., Budapest, 2002.

[Thu92] A. Thue. Om nogle geometrisk taltheoretiske theoremer. Forandlingern- eved
de Skandinaviske Naturforskeres, (14):352,353, 1892.

[Val03] F. Vallentin. Sphere Covering, Lattices, and Tilings (in Low Dimensions).
Dissertation, Technische Universität München, München, 2003.

[Van11] S. Vance. Improved sphere packing lower bounds from Hurwitz lattices. Adv.
Math., 227(5):2144–2156, 2011.

[Ven54] B. A. Venkov. On a class of Euclidean polyhedra. Vestnik Leningrad. Univ.
Ser. Mat. Fiz. Him., 9(2):11–31, 1954.

[Ven13] A. Venkatesh. A note on sphere packings in high dimension. Int. Math. Res.
Not. IMRN, (7):1628–1642, 2013.

[Via17] M. S. Viazovska. The sphere packing problem in dimension 8. Ann. of Math.
(2), 185(3):991–1015, 2017.

[Vor08] G. Voronoi. Nouvelles applications des paramètres continus à la théorie des
formes quadratiques. Deuxième mémoire. Recherches sur les parallélloèdres
primitifs. J. Reine Angew. Math., 134:198–287, 1908.

Geometric Distance Graphs, Lattices and Polytopes. 111



[Was97] L. C. Washington. Introduction to cyclotomic fields, volume 83 of Graduate
Texts in Mathematics. Springer-Verlag, New York, second edition, 1997.

[Zam14] R. Zamir. Lattice Coding for Signals and Networks. Cambridge University
Press, 2014. Cambridge Books Online.

112 Philippe Moustrou


	Remerciements
	Introduction (en français)
	Contenu de la Thèse
	Chapitre 1
	Chapitre 2
	Chapitre 3
	Chapitre 4
	Chapitre 5



	Introduction
	Outline of the Thesis
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5



	Chapter 1. Preliminaries
	1. Topological Preliminaries
	1.1. Normed Spaces, Euclidean Spaces
	1.2. Density of a Set and Sphere Packings
	1.3. Polytope Norms

	2. Euclidean Lattices
	2.1. First Definitions
	2.2. Voronoï Cell, Packing Radius, Covering Radius
	Voronoï cell.
	Packing Problem and Covering Problem.

	2.3. Fundamental Examples
	The cubic lattice Zn.
	The lattice An.
	The lattice Dn.

	2.4. Construction A
	2.5. Lattices from Algebraic Number Theory

	3. Parallelohedra
	3.1. Polytopes Tiling Space by Translation and Parallelohedra
	3.2. Voronoï's Conjecture
	3.3. Parallelohedra in Dimensions 2 and 3
	Dimension 2
	Dimension 3


	4. Graphs
	4.1. Definitions and Examples
	Cayley Graphs.
	Distance Graphs.

	4.2. Independent Sets and Chromatic Number of Finite Graphs
	Independent Sets
	The Chromatic Number

	4.3. Generalization to Infinite Graphs in Rn


	Chapter 2. On the density of cyclotomic lattices constructed from codes
	1. Introduction
	2. Cyclotomic Lattices Constructed from Codes
	3. The Density of Cyclotomic Lattices Constructed from Codes
	4. Symplectic Cyclotomic Lattices

	Chapter 3. On the density of sets avoiding parallelohedron distance 1
	1. Introduction
	2. Preliminaries
	2.1. The Density of a Set Avoiding Polytope Distance 1
	2.2. Discretization of the Problem

	3. Parallelohedron Norms in the Plane
	3.1. The Regular Hexagon
	3.2. General Hexagonal Voronoï Cells

	4. The Norms Associated with the Voronoï Cells of the Lattices An and Dn
	4.1. The Lattice An
	4.2. The Lattice Dn, n4

	5. The Chromatic Number of G(Rn,"026B30D "026B30D P)

	Chapter 4. Discrete distribution functions and application to polytope distance graphs
	1. Introduction
	2. Discrete Distribution Functions
	2.1. Definitions
	2.2. Discrete distribution functions associated with partitions
	2.3. Scope of Application and Examples

	3. An alternative proof in dimension 2
	3.1. Definition and description of the graph
	3.2. The bound given by the previous method
	3.3. The bound given by the Voronoï distribution
	3.4. Achieving 1/4 with another distribution function

	4. The Elongated Dodecahedron
	4.1. Description of the Polytope
	4.2. Definition and Description of the Induced Subgraph and its Auxiliary Graph
	4.3. Computation of (G)

	5. Hexagonal Prisms
	5.1. A first natural proof
	5.2. Reformulation in terms of discrete distribution function
	5.3. Generalizations


	Chapter 5. Concluding Comments and Open Questions
	1. Lattice Sphere Packings
	2. Sets Avoiding Distance 1

	Appendix A. Intermediate computational results for the Elongated Dodecahedron
	Bibliography

