
HAL Id: tel-01677737
https://theses.hal.science/tel-01677737

Submitted on 8 Jan 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Etudes expérimentales et numériques de la pyrolyse et
l’oxydation du charbon pulvérisé dans les flammes

étirées de méthane/oxygène/azote
Meng Xia

To cite this version:
Meng Xia. Etudes expérimentales et numériques de la pyrolyse et l’oxydation du charbon pulvérisé
dans les flammes étirées de méthane/oxygène/azote. Autre. Université Paris Saclay (COmUE), 2017.
Français. �NNT : 2017SACLC060�. �tel-01677737�

https://theses.hal.science/tel-01677737
https://hal.archives-ouvertes.fr


NNT : 2017SACLC060

THÈSE DE DOCTORAT DE L’UNIVERSITÉ
PARIS-SACLAY,

préparée à CentraleSupélec.

ÉCOLE DOCTORALE No579

Sciences mécaniques et énergétiques, matériaux et géosciences.

Spécialité Combustion.

Présentée par

Meng XIA

Experimental and numerical studies of pulverized coal devolatilization
and oxidation in strained methane/oxygen/nitrogen flames

Thèse soutenue à Gif-sur-Yvette, le 21 novembre 2017.

Composition du jury:

Pr. Luc VERVISCH INSA de Rouen Président du Jury, Rapporteur
Dr. Guillaume VANHOVE Université Lille 1 Rapporteur
Pr. Laurent CATOIRE ENSTA ParisTech Examinateur
Dr. Stéphanie de PERSIS Université d’Orléans Examinatrice
Dr. Michele VASCELLARI TU Freiberg Invité
Pr. Nasser DARABIHA CentraleSupélec Directeur de thèse
Pr. Benoît FIORINA CentraleSupélec Co-encadrant
M. Philippe SCOUFLAIRE CNRS Co-encadrant





Remerciements

Je tiens tout d’abord à remercier l’ensemble des membres du jury. Mes grands
remerciements sont destinés aux deux rapporteurs de ce travail, Luc Vervisch
et Guillaume Vanhove, pour le temps qu’ils ont consacré à la lecture de ma
thèse ainsi que pour les remarques qu’ils m’adressent. Je voudrais remercier
particulièrement Luc Vervisch pour avoir accepté la présidence de mon jury.
Je souhaite ensuite remercier Laurent Catoire et Stéphanie de Persis d’avoir
accepté de juger cette thèse et de tous les conseils donnés pour améliorer le
manuscrit. Je remercie enfin Michele Vascellari d’avoir accepté d’assister à la
présentation de ce travail et pour les discussions intéressantes sur la modélisa-
tion.

Je voudrais exprimer ma sincère gratitude à mon directeur de thèse, Nasser
Darabiha, pour m’avoir orienté vers le domaine de recherche sur la combustion
du charbon, pour m’avoir accompagnée et soutenue tout au long de la thèse, et
pour m’avoir apporté de conseils précieux pour ce travail.

Je remercie vivement Benoît Fiorina de son encadrement sur la partie numérique,
et d’avoir consacré beaucoup de temps pour discuter et améliorer ce travail. Je
tiens à remercier sincèrement Philippe Scouflaire, mon encadrant sur la par-
tie expérimentale, pour son soutien très important lors de la réalisation des
dispositifs expérimentaux.

Il me faut remercier l’ensemble des personnels administratifs et techniques
du laboratoire, qui m’ont immensément aidé lors des problèmes rencontrés.
Je remercie David Charalampous d’avoir consacré du temps à m’apprendre
l’utilisation du spectromètre. Je remercie également Erika Jean-Bart et Yan-
nick Le Teno pour les fabrications et les dépannages de la manip.

Je profite ici pour remercier particulièrement Christophe Laux et Juan Carlos
Rolon pour leur disponibilité et leur expertise sur la spectrométrie de la flamme.
J’adresse aussi mes remerciements à Diego et Hernando pour leur contribution
à la manip.

Je tiens à remercier tous les membres du laboratoire EM2C pour l’ambiance
amicale, pour les discussions enrichissantes et pour les nombreux moments très
agréables que j’ai passés pendant mes quatre ans en France. Je remercie les



iv

chercheurs et les thésards avec qui j’ai partagé le bureau, Wenjie, Bene, Antoine,
Pedro, Robin, Milan, Mathieu, Pierre, David, Thomas, Claire. . . Je pense aussi
aux docteurs et thésards dont l’amitié m’a beaucoup encouragée au long de
la thèse, Renaud, Maria, Florence, Pedro, Paul, Kévin, Mélody, Davi, Cédric,
Adrian, Théa, Abigail, Yi, Lorella, Léo, Livia. . .

Je tiens à remercier le China Scholarship Council (CSC) d’avoir financé mes
études de doctorat en France.

Il me faut également remercier tous mes amis chinois pour leurs accompagne-
ments pendant mes séjours en France. Entre autres, Huan, Fangyuan, Xing,
Jing, Zeyin, Wangshu. . . Sans eux, la vie à Paris aurait sûrement eu moins de
couleurs.

Enfin, je remercie celles et ceux qui me sont chers, ma famille et mes proches,
et en particulier mes parents qui sont toujours à mes côtés pour me protéger et
me soutenir tant moralement que matériellement pour que je puisse poursuivre
ce parcours académique.



Abstract

Coal has been and will continue to be one of the most important resources in the
long term due to its abundant worldwide reserves and competitively low prices,
especially used in power generation. Hence, improving the energy efficiency and
effectively reducing pollution from coal combustion, especially from those with
low rank coal, is significant to satisfy the increasing demand in energy produc-
tion and to control pollutant emissions. Pulverized coal combustion (PCC) has
been studied for the past century, but application of fundamental combustion
research for industries is still limited due to the relations between different spa-
tial and time scales and to the complexity of the combustion system. Also, the
modeling of PCC with CFD tools requires a detailed approach to address issues
related to two-phase flow, coal conversion modeling, heat transfer and pollutant
emissions. Thus, more investigations into these aspects are needed. Given the
large number of processes and factors that occur in PCC, experimental and
numerical studies of small-scale PCC are required to introduce a reliable and
efficient methodology for realistic PCC modeling.

In the present work, a laboratory-scale laminar strained configuration is used to
investigate the characteristics of pulverized coal devolatilization and oxidation
in a mixture of CH4/O2/N2 reactive flow both in conventional air conditions
and in oxygen-enriched combustion conditions. In order to stabilize the flame
and to introduce a reference for comparison and validation of modeling, CH4

is used to assist the particle combustion process. The advantages of the cho-
sen configuration are that it is well suitable for the development of numerical
models, especially 1-D simulations, and optical measurement techniques.

Non-intrusive optical diagnostics such as Flame Emission Spectroscopy (FES)
and measurement of spontaneous emission (ASE) are employed for qualitative
determination of excited-state radicals in the reaction region, which gives a
good characterization of flame structure. Flame chemiluminescence has been
widely employed as simple and nonintrusive optical diagnostic for combustion
systems. The ability of interpreting chemiluminescence intensity to monitor
equivalence ratio, heat release rate, pollutant emission and flame front location
has been proved by previous studies. The spatial concentration evolution of
three excited radicals, OH∗, CH∗ and C∗2, are analyzed in the present work.
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Results show that the comparison between ASE and FES signals highlights
the advantages and disadvantages of both methods. The spontaneous emis-
sion imaging using narrowband filters is spatially resolved and relatively les
time-consuming than FES method. However, spectrally resolved FES permits
blackbody emission correction, which has significant effect especially for the
presence of coal particles.

Whilst devolatilization and gasification sub-models are involved in LES/RANS
simulations of pulverized coal turbulent flames, their impacts on the flame
structure and species concentrations still remain unclear. Therefore the analy-
sis of PC sub-models is also an important issue towards better understanding
and prediction of PCC. In the present study, 1-D modeling of this strained
flow configuration is proposed for its capability of producing accurate descrip-
tions of the flame structure with less computational cost and without loss of
accuracy. The focus here is on the development and validation of modeling
methods applied to our experimental configuration. Simulations using detailed
gas-phase kinetics including OH∗, CH∗, and C∗2 sub-mechanisms and coal com-
bustion sub-models are performed using the 1D-REGATH code developed at
EM2C laboratory and compared with experimental data. Comparison with
experiments showed that the current numerical configuration was suitable for
the prediction of OH∗, CH∗ and C∗2 emission. The ability of chemical kinet-
ics models in prediction of coal flame chemiluminescence under different flame
conditions is discussed. Special emphasis is also given to the effect of oxygen-
enriched combustion (OEC). Finally, the predicted results from the modeling
approach differed significantly with changes to the coal sub-models and kinetic
parameters. Especially, the devolatilization model and coal pyrolysis products
seem to play more important roles.



Résumé

Le charbon est l’une des ressources les plus importantes à long terme en raison
de ses réserves mondiales et de son prix compétitifs, notamment utilisé dans
la production d’électricité. Par conséquent, l’amélioration de l’efficacité et la
réduction de la pollution provenant de la combustion du charbon, en particulier
de ceux à faible teneur en carbone, sont significatives pour satisfaire la demande
croissante d’énergie et pour contrôler les émissions de polluants. La combustion
du charbon pulvérisé (PCC) a été étudiée au cours du dernier siècle, mais
l’application de la recherche fondamentale aux industries est encore limitée en
raison des différentes échelles spatiales et temporelles et de la complexité du
système de combustion. En outre, la modélisation de PCC avec des outils CFD
nécessite une approche détaillée pour aborder les problèmes liés au écoulement
diphasique, à la modélisation de la pyrolyse du charbon, au transfert thermique
et aux émissions de polluantes. Compte tenu du grand nombre de processus qui
se produisent dans PCC, des études expérimentales et numériques de PCC à
petite échelle sont nécessaires pour introduire une méthodologie fiable et efficace
pour la modélisation réaliste de PCC.

Dans ce travail, une configuration laminaire stratifiée a été utilisé à étudier les
caractéristiques de la pyrolyse et de l’oxydation du charbon pulvérisé dans un
mélange de écoulements réactifs CH4/O2/N2 à la fois dans les conditions at-
mosphériques conventionnelles et dans des conditions de combustion enrichies
en oxygène. Afin de stabiliser la flamme et d’introduire une référence pour la
comparaison et la validation de la modélisation, CH4 est utilisé pour assister le
processus de combustion des particules de charbon. Les avantages de la config-
uration sont qu’il est bien adapté au développement de modèles numériques, en
particulier des simulations monodimensionnelles, et des diagnostics optiques.

Les diagnostics optiques non-intrusifs tels que la spectroscopie d’émission de
flamme (FES) et la mesure des émissions spontanées (ASE) sont utilisés pour la
détermination qualitative des radicaux d’état excité dans la région de réaction,
ce qui donne une bonne caractérisation de la structure de la flamme. La chim-
iluminescence de la flamme a été utilisée en tant que diagnostic optique sim-
ple et non-intrusif pour les systèmes de combustion. La capacité d’interpréter
l’intensité de la chimiluminescence pour surveiller la richesse, le taux de dé-
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gagement de chaleur, l’émission de polluants et la position du front de flamme
a été étudiée dans la littérature. L’évolution de la concentration spatiale de
trois radicaux excités, OH∗, CH∗ and C∗2 sont analysé dans ce travail. Les
résultats montrent que la comparaison entre les signaux ASE et FES souligne
les avantages et les inconvénients des deux méthodes. Les mesures d’émission
spontanée utilisant des filtres optiques sont résolues dans l’espace et relative-
ment longue durée que la méthode FES. Cependant, le FES spectrale permet
la correction des émissions du corps noir, ce qui a un effet significatif surtout
pour la présence de particules de charbon.

Alors que les sous-modèles de pyrolyse et d’oxydation sont impliqués dans les
simulations LES / RANS de flammes PCC turbulentes, leurs impacts sur la
structure de la flamme et les concentrations d’espèces restent peu clairs. Par
conséquent, l’analyse des sous-modèles de charbon est également une question
importante pour une meilleure compréhension et prédiction de PCC. Dans l’
étude présentée ici, la modélisation monodimensionnelle de cette configura-
tion est proposée pour une description précise de la structure de la flamme
avec moins de coût de calcul sans perte de précision. L’accent est mis sur le
développement et la validation des méthodes de modélisation appliquées à la
configuration expérimentale. Des simulations utilisant des cinétiques détaillées
en phase gazeuse y compris les sous-mécanismes de combustion OH∗, CH∗ and
C∗2 et les sous-modèles de combustion du charbon sont effectués en utilisant le
code 1D-REGATH développé au laboratoire EM2C et comparé aux données
expérimentales. La comparaison avec les expériences a montré que la configu-
ration numérique actuelle était appropriée pour la prédiction des émissions de
OH∗, CH∗ and C∗2. La capacité des modèles de cinétique chimique à prédire la
chimiluminescence de flamme de charbon dans différentes conditions de flamme
est démontrée. Un accent particulier est également accordé à l’effet des at-
mosphères enrichies en oxygène. Enfin, les résultats de simulation numérique
diffèrent considérablement avec les modifications apportées aux sous-modèles
de charbon et aux paramètres cinétiques. Le modèle de pyrolyse et les produits
de pyrolyse du char semblent jouer des rôles plus importants.
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Introduction

Coal: an outlook of world energy supply and usage

Coal is a readily combustible solid containing various organic and inorganic
compounds. It is formed from vegetation consolidation and alteration by the
effects of pressure and heat over millions of years. Carbon (C) is the main
component of coal. It also contains varying amounts of other components, like
hydrogen (H), oxygen (O), nitrogen (N), sulfur (S) and other trace elements.
Main parameters to classify coal ranks are calorific value, volatile matter, fixed
carbon, ash, and moisture. Different classifications of coal are used around the
world, depending on the range of ages, composition and properties. Four main
ranks are lignite, sub-bituminous coal, bituminous coal, and anthracite. Figure
1 explains briefly these ranks and their uses. In the process of coalification,
peat is altered to lignite, lignite to sub-bituminous coal, sub-bituminous coal
to bituminous coal, and bituminous coal is altered to anthracite. Lignite is the
lowest rank that has the lowest heating value and lowest carbon content.

Figure 1: Different types of coal and their uses, from World Coal Association (2017)
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Economic value of coal

The use of coal dates back thousands of years, and increases drastically during
the Industrial Revolution and never stopped growing globally. And it is be-
lieved to remain significant in the future. Compared to other energy sources,
its abundance, affordable prices, easy transportation and minor geopolitical
tensions contributes to its popularity. Coal is the world’s number one fuel for
generating electricity, and the second source of primary energy (about 30%,
declining to 27% by 2021, according to International Energy Agency (2016)).
As reported by U.S. Energy Information Administration (2016), 41% of world-
wide electricity is produced from coal and coal-fired power generation keeps to
increase by 0.8%/year from 2012 to 2040 (Fig.2). In addition, coal is also an
important raw material and source of primary energy for the manufacturing
of materials. For exemple, coal is used in 70% of steel and 50% of aluminum
production. To supply the large amount of energy required in cement manu-
facture, 200 kg of coal is needed to produce 1 tonne of cement, while 250-350
kg of cement is needed to produce 1m3 of concrete.

Year 

1012 kWh 

Figure 2: 2012-2040 World net electricity generation by energy source, unit: trillion
kWh

There are 6.9 billion tonnes of hard coal that are currently produced worldwide
World Coal Association (2017). The top five hard coal producers are China,
the USA, India, Australia and Indonesia. Most of global coal production is
used in the country where it was produced. According to International Energy
Agency (2016), the demand for coal is moving to Asia (Fig.3), where develop-
ing countries with growing populations, such as China and India, are seeking
affordable and secure energy sources to power their economies.
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Yet here lies the contradiction of coal - in the next few decades, while we rely
on coal to provide essential energy, the problems of large amounts of pollutant
emissions caused by coal uses must also be solved. Therefore, greater efforts are
needed by industry and researchers to embrace less polluting and more efficient
technologies to ensure cleaner coal energy.

Figure 3: Geographic map of global coal market share in percentage (%) of year 2000
and 2015

Environmental issues

Global consumption of energy raises environmental concerns. For coal, the re-
lease of pollutants has always been an important challenge. The coal-related
pollutants include sulfur and nitrogen oxides (SOx and NOx), particulate mat-
ter (PM) and trace elements, such as mercury. Although technologies have
been developed to minimize these emissions, for exemple the sulfur removal
from coal to prevent acid rain, additional environmental concerns have emerged
in the recent years. Among them are the health impacts of the smog caused
by microscopic particles pollution (PM2.5), and the global climate change from
greenhouse gases. One of the important sources of greenhouse gases is carbon
dioxide emissions (CO2). The release of CO2 into the atmosphere from human
activities has been linked to global warming, and the combustion of fossil fuels
is a major source.

While the use of petroleum in the transportation sector is the major source of
energy-related CO2 emissions in most developed countries, coal is also a sig-
nificant source, especially in developing countries relying on coal to meet their
energy needs. Coal is responsible for 45% of all energy-related carbon emissions
according to U.S. Energy Information Administration (2016) (Fig.4). On the
other hand, power plants using pulverized coal combustion (PCC) are the most
carbon-intensive source of power generation. As CO2 emissions need to be re-
duced dramatically and urgently, solving the issue of PCC related emissions
has become a consensus of the international research community. As a result,
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the industry has been researching and developing technological options to meet
this new environmental challenge.

Year 

109 tonne 

Figure 4: 1990-2040 Energy-related carbon dioxide emissions by fuel type of Organiza-
tion for Economic Co-operation and Development (OECD) and non-OECD countries,
unit: billion tonnes

Clean coal technologies (CCT) are a range of technological options which im-
prove the environmental performances of coal. These technologies reduce emis-
sions and waste, and increase the efficiency from burning coal. Different tech-
nologies suit different types of coal and tackle different environmental problems.
The choice of technology also depends on a country’s economic development
level. More expensive, highly advanced technologies may not be suitable in
developing countries. While cheaper readily available options can have a larger
and more affordable environmental benefit. A broad spectrum of research is
targeting on efficiency improvement and pressing environmental challenges of
coal conversion to electricity or other forms of energy.

Coal in power generation

A major part of coal is used mostly in power generation. Other ways of coal
conversion includes coal gasification and liquefaction, which offer more versatile
and clean ways to convert coal into electricity, hydrogen, and other valuable
energy products.

In the most common type of coal plants, PCC is the technology used to pro-
duce electricity. Pulverized coal (PC) is blown into the furnace where it burns
(Fig.5). Water flows through tubes that run through the furnace. The water is
heated to boiling while under pressure. This pressurized steam blasts through
a turbine, which turns a generator to produce electricity. After the steam has
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passed through the turbine, it is condensed into water and cooled, and sent
back into the furnace.

Figure 5: Diagram of pulverized coal conversion to electricity from Partha Das
Sharma (2008)

Another type of coal-fired power plant uses "fluidized bed combustion (FBC)"
instead of a standard furnace. A fluidized bed is made up of small particles
of ash, limestone and other non-flammable materials, which are partially sus-
pended in an upward flow of hot air. Pulverized coal and limestone are blown
into the bed at high temperature. They burn in the bed, and the limestone
binds with sulfur released from the coal. The heat then boils water in pipes
(Fig.6). FBC systems fit into essentially two major groups, atmospheric systems
(FBC) and pressurized systems (PFBC), and two minor subgroups, bubbling
(BFB) and circulating fluidized bed (CFB). The advantage of FBC is that sul-
fur emissions are lower than in standard coal plants. The down side is that the
plants are more complex and require more maintenance.
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Figure 6: Diagram of circulating fluidized bed combustion from International Energy
Agency (2012)

An alternative approach is to produce gaseous fuels from coal – this is called the
integrated gasification combined cycle (IGCC). In IGCC, coal is not combusted
directly but reacted with oxygen and steam to produce syngas composed mainly
of hydrogen and carbon monoxide (Fig.7). This syngas is cleaned of impurities
and then burns in a gas turbine to generate electricity and to produce steam
for a steam power cycle. IGCC systems operate at higher efficiencies. They
also remove 95-99% of NOx and SOx emissions. But the major drawback is the
high capital cost compared to conventional forms of coal power plants.

Figure 7: Diagram of integrated gasification combined cycle from International En-
ergy Agency (2012)

Pulverized coal combustion technology

PCC is currently the most widely adopted system for coal-fired power genera-
tion. It accounts for over 90% of coal-fired capacity worldwide (Godridge 2010).
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Improvements continue to be made in conventional PCC power station design
and new combustion techniques are being developed. These developments allow
improvement of the thermal efficiency.

PC power plants

In a PC furnace, finely powdered coal (with a size range typically 70% ≤ 75
µm) is burnt in a large combustion chamber (ClimateTechWiki 2010). The coal
particles and air mixture is produced by conveying milled coal using preheated
primary combustion air. The burner design may vary with different placements
and secondary air admission. The aim of PCC system is to achieve maximum
char burnout with the minimum production of NOx. The combustion process
is usually complete within a few seconds and the flame temperature is up to
1500 ◦C.

Three categories of PCC power generation with varying degrees of efficiency
are commonly used: subcritical, supercritical, and ultra-supercritical pulverized
coal plants (Nalbandian 2009). Operating temperatures and pressures (steam
parameters) are the primary parameters to distinguish different types of PC
boilers (Zhang 2013). Subcritical plants operate below the critical point of
water (647.096 K and 22.064 MPa). Supercritical and ultra-supercritical plants
operate above the critical point. As the pressures and temperatures increase, so
does the operating efficiency. Subcritical plants are at about 37%, supercriticals
at about 40% and ultra-supercriticals in the 42-45% range (ClimateTechWiki
2010).

Toward zero emission

As mentioned in the previous section, producing energy from coal can result in
the release of varying degrees of pollutants that are harmful to human health
and the environment. A brief summary of the formation and current technical
solutions of SOx, NOx and Particulate Matter (PM) is introduced as follows.

Formation of SOx:

SOx emission levels can be calculated from coal sulphur content. Ash chemistry
and ash content have important influence on the formation of SOx because the
asorption of SO2 takes place in the ash. More precisely, the level of absorption
increases with increasing levels of CaO, MgO, etc. and increasing ash content.
SOx emissions can be reduced by injection of a sorbent directly into the furnace
chamber (Demirbas and Balat 2004) and/or by flue gas desulfurization (FGD)
systems attached to the back end of the boiler (Cordoba 2015).
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Formation of NOx:

• Thermal NOx

It is formed by the attack of O atom on N2 in the gas phase. About
20% of total NOx emission from PC burners is thermal NOx. It is mainly
affected by flame temeprature and O2 concentration, the former one being
the most important.

• Fuel NOx

It comes from pyrolysis and oxidation of N compounds in coals. It takes
up about 80% of total NOx emission from PCC. However, the relation
between N content in coal vs. fuel NOx emission is not linear: Coals with
higher N do not necessarily produce more NOx. The O2 concentration
plays an important role in fuel N conversion into NOx. The N content
in char is converted to NOx in a different way compared to N content in
volatiles.

• Prompt NOx

The path is about the capture of N2 by hydrocarbon radicals. It only
contributes a small part to the total NOx emission in PCC.

Formation of PM:

PM includes the tiny particles of fly ash and dust that come from coal-fired
power plants. It has become the principal urban pollutant in many major
cities in China and all over the world (Lu and Ren 2014). Technology has
been developed to control the emissions of PM (Shanthakumar et al. 2008),
including: Electrostatic precipitator (ESP) which uses an electrical field to
create a charge on particles in the flue gas in order to attract them to collecting
plates; and fabric filters, which collect particulates from the flue gas as it passes
through the tightly woven fabric of the filter.

Reducing CO2 Emissions:

An important step in reducing CO2 emissions from coal combustion has been
improvements in the thermal efficiencies of coal-fired power stations. Thermal
efficiency is a measure of the overall fuel conversion efficiency for the electricity
generation process. The higher the efficiency levels, the greater the energy
being produced from the fuel. Therefore, the current PC power plants can be
categorized into different levels of CO2 intensity factor based on their thermal
efficiency (Fig.8).

An important factor in the future use of coal will be how to reduce CO2 emis-
sions to the maximum. Much has been done to achieve this. But in order to
achieve zero emission of CO2 in the future, one of the most promising options
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Figure 8: Reducing CO2 emissions from pulverized coal-fired power generation from
International Energy Agency (2012)

is carbon capture and storage (CCS). CCS technologies retrieve CO2 emissions
of the exhaust stream from coal combustion or gasification and dispose them
so that they do not enter the atmosphere. Once the CO2 has been captured, it
is essential that it can be safely and permanently stored. The World Coal As-
sociation (2005) proposed the roadmap towards zero CO2 emission (Table 1).

Table 1: The Coal-fired Routes to CO2 Reductions

Up to 5% CO2

Reductions
Up to 22% CO2

Reductions
Up to 25% CO2

Reductions
Up to 99% CO2

Reductions
Coal Upgrad-
ing

Efficiency Im-
provements of
Existing Plant

Advanced
Technologies

Zero Emissions

Includes coal
washing and dry-
ing. Currently
used throughout
the world.

Conventional
subcritical plants
have improved
significantly in
efficiency. Su-
percritical and
ultra-supercritical
plants offer even
higher efficien-
cies and lower
emissions.

Very high ef-
ficiencies and
low emissions
from innovative
technologies such
as IGCC, PFBC
and in the future
integrated gasifi-
cation fuel cells
(IGFC).

Carbon capture
and storage.

Proposed as CCS technologies for retrofitting coal-fired power plants, oxygen-
enriched combustion (OEC) and oxy-fuel combustion of PC are practical solu-
tions for the application of oxygen combustion to conventional furnaces (Chen
et al. 2012). Research of OEC and oxy-coal technologies has been advancing in
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recent years; however, there are still fundamental issues, such as heat transfer,
flame structure, and flame stabilization, that must be addressed before this
technology can reach its full potential.

Technical challenges

From the industrial aspect, advanced coal fired power plants are being built
throughout the world. They meet the various energy and environmental stan-
dards required for commercial deployment currently (Makino 2016). However,
the key issues are to ensure that coal can be utilized efficiently to satisfy future
environmental regulations, particularly in the power sector (Minchener 2013).
This requires advances in the development of clean coal technologies, together
with the future introduction of oxy-coal combustion and CCS such that near
zero emissions from coal can be achieved. The consequent R&D challenges
include:

• Improve pollutant control, ensuring adequate interaction of individual
components, leading to optimum combination of technologies that ensure
compliance with present and future emission regulations. This would
include characterization of the release of trace pollutants for the full range
of fuel types, determining the influence of trace metal emissions on the
removal of traditional pollutants (NOx, SOx and PM).

• Improve the use of more advanced combustion technologies such as oxy-
fuel combustion. This is the case where burning coal in high-O2 concen-
tration environment rather than air. This eliminates the N2 concentration
found in air from the combustion process, resulting in flue gas composed
of CO2, H2O, coal ash, and other gases. The high concentration of CO2

and absence of N2 also simplify separation of CO2 from the flue gas for
storage or beneficial use.

• Gain a better understanding of the operating conditions of the furnaces
and coal combustion products to ensure the provision of robust systems.
Optimize the cycles for better utilization of waste heat.

• Improve the flexibility of operation through dynamic modelling, control
and instrumentation development, as well as development, selection and
fabrication of new robust materials for furnace design.

• Develop the capability of power plants to cofire coal with biomass and
other organic wastes.

While the major technology development programs are usually driven by the
industry, there remains a significant role for the research community to provide
valuable support, especially in fundamental research areas:

• Basic coal science is particularly important to the understanding of coal
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utilization processes. For example, experimental studies along with sim-
ulated process conditions of advanced PC plants are in great need, such
as volatile matter measured at realistic heating rates and temperatures,
NOx emissions characteristics, advanced techniques for collection of in-
flame data, effective techniques to measure corrosion and deposition rates.

• On-line monitoring of various species and conditions in coal-fired plants
needs to be developed, especially non-intrusive optical techniques for the
monitoring of coal flames.

• Modeling techniques are increasingly helpful with the development of
computational fluid dynamics (CFD) and software tools. CFD model-
ing needs to be improved to reflect the latest findings of coal science
such as the development of particle structure, pore diffusion and reaction
within particles.

A good understanding of the PCC processes in industrial application is funda-
mentally important. However performing experimental tests on full-scale burn-
ers is not easy and can be rather expensive. For exemple, poor optical access,
soot interference and the large dimensions of the coal burners make experimen-
tal measurements via laser diagnostics very difficult and mainly on laboratory-
scale burners (Hwang et al. 2005; Molina and Shaddix 2007; Ribeirete and
Costa 2009; Balusamy et al. 2013; Balusamy et al. 2015). Measurements of
large-scale PCC boilers (Costa et al. 2003; Costa and Azevedo 2007; Li et al.
2008) are obtained using intrusive methods that can interfere with the local
combustion processes. For this reason, CFD has been a helpful tool. In the
case of PCC, CFD must be able to simulate turbulent two-phase flows inter-
actions as well as coal conversion processes including the devolatilization, the
homogenous combustion of the volatile gases and the heterogeneous reactions
of the char.

Turbulent combustion modeling of PCC: state of the
art

Complementary to experimental measurements, numerical simulations of PCC
helps to gain better insight of the physical and chemical processes that are
difficult to be detected by experimental methods. Also it plays an important
role in the development of more efficient burners.

CFD methods for PC applications

CFD simulations have been performed over the past 50 years to predict the coal
combustion behaviour. Currently, Reynolds-Averaged Navier Stokes (RANS)
method is used as the industrial standard for modeling turbulent reactive flows,
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due to its lower computational cost. However, RANS is only able to provide
time-averaged flow quantities. When detailed information of the flow are nec-
essary, Large Eddy Simulations (LES) offers the opportunity to predict the
time-dependent flow variables.

RANS:

The first numerical studies of PCC were done in RANS during the 1980s. Tru-
elove et al. (Truelove 1988; Truelove and Williams 1989) compared RANS
simulations to experimental measurements of a 300 kW burner and also per-
formed simulations of a full scale 40 MW burner. Lockwood et al. (Lockwood
et al. 1980; Lockwood and Salooja 1983) performed simulations of the Interna-
tional Flame Research Foundation (IFRF) No. 1 furnace Weber et al. (1992)
with reasonable agreement with experimental measurements of temperature
and species mass fractions. Weber et al. (Smart et al. 1989; Peters and Weber
1997) also performed simulations of the IFRF No.1 furnace, and compared their
results to more detailed experimental data for velocity and NOx concentrations.

More recent CFD simulations of PCC have been performed in RANS on the
burners developed in the Central Research Institute of Electric Power (CRIEPI)
(Kurose et al. 2001; Kurose et al. 2004; Kurose et al. 2009) and the University
of Leeds (Backreedy et al. 1999; Backreedy et al. 2006a; Ma et al. 2009;
Gubba et al. 2012). Also, RANS simulations have been performed on oxy-coal
burners. Andersson et al. (Andersson and Johnsson 2007; Andersson et al.
2008; Hjartstam et al. 2009) performed simulations of the Chalmers 100 kW
oxy-coal test unit. The Aachen Pilot scale 100 kW burner has been investigated
experimentally and numerically under different oxy-fuel configurations by a
group of researchers (Toporov et al. 2008; Heil et al. 2009; Zabrodiec et al.
2017; Hees et al. 2016; Sadiki et al. 2017). Figure 9 compares the numerical
results using RANS and LES from the work of Hees et al. (2016).

In order to improve the ability of RANS in the prediction of PC flames, much
effort has been done to investigate the influence of different sub-models and
assumptions. Hashimoto et al. (Hashimoto et al. 2012; Hashimoto et al.
2012) developed an improved model for coal devolatilization and introduced
additional species in order to obtain a more realistic devolatilization model
and this devolatilization model was subsequently validated based on RANS
simulations. Korytnyi et al. (2009) developed a measurement methodology
to obtain activation energies, pre-exponential factors for both devolatilization
and char oxidation reactions in a pilot-scale cylindrical test furnace, which
were subsequently used for RANS simulations of a full scale furnace. Zhao
and Haworth (2014) developed a transported composition probability density
function method using single and multiple rate devolatilization models in order
to investigate the CRIEPI jet flame using RANS simulations.
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Figure 9: Temperature contour plots (a) RANS (b) LES time-averaged (c) LES
instantaneous of the Aachen burner from Hees et al. (2016)

LES:

LES provides more detailed data than RANS, but it also requires more de-
tailed validation data and higher computational cost. Many studies (Kurose
et al. 2009; Bermudez et al. 2011; Hashimoto et al. 2012; Warzecha and
Boguslawski 2014; Sadiki et al. 2017) compare RANS with LES results. The
general conclusions are that RANS is useful for order-of-magnitude estimates,
and gives an indication of the mean flow and scalar quantities and can be used
to support burner development(Heil et al. 2009). However, even unsteady
RANS approaches cannot capture the inherently non-linear transient turbulent
processes occurring in PC burners. Instead, such processes are expected pre-
dicted by more advanced numerical approaches like LES. The first study of coal
LES has been performed by Kurose and Makino (2003) of a hypothetical solid
fuel flame, where the fuel was modeled as pure methane. Edge et al. (2011) and
Gharebaghi et al. (2011) performed the first LES of a relatively large test facil-
ity (0.5 MWth and 1 MWth) . Both studies showed how LES can provide more
detailed information than a RANS simulation, however there was not much
comparison to experimental data. Yamamoto et al. (2011) performed a LES
of a preheated pulverized coal jet flame where the comparison between experi-
mental data and the simulations was limited to gas temperature, char burnout
and flame lift-off height. Jovanovic et al. (2013) numerically analysed a system
which uses oxygen and recycled flue gas in order to obtain improved ignition
properties and flame stability. They demonstrated that the predictions of LES
provide better agreement with experimental data than the corresponding results
obtained from RANS calculations. Franchetti et al. (2013) conducted LES sim-
ulations of coal combustion process of a pulverized coal jet flame studied at the
Japanese Central Research Institute of Electric Power and demonstrated good
agreement with experimental data. Stein et al. (2013) used both Lagrangian
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and Eulerian representations of the particles for LES simulation of a laboratory
scale burner and obtained satisfactory agreement between experimental data
and the predictions of LES simulations (Fig.10). Midou (2017) performed LES

Figure 10: Contour plot of the instantaneous gas temperature (left) CO2 mass frac-
tion (right) of the CRIEPI jet flame from Stein et al. (2013)

with complex chemistry of a swirl-piloted pulverized coal burner studied by
Balusamy et al. (2015). This configuration has been previously simulated by
Muto et al. (2015) using two-step global reactions. The work of Midou (2017)
showed the possibility of coupling complex chemistry with LES.

In terms of gas-phase turbulence modeling, many LES studies of coal flames
(Edge et al. 2011; Warzecha and Boguslawski 2014; Rabacal et al. 2015; Olenik
et al. 2015; Clements et al. 2015; Sadiki et al. 2017) mainly employed the eddy
break-up model (EBU) or the eddy dissipation concept (EDC) concept. These
studies considered global reactions for volatiles where two reactions describing
the conversion of volatiles to CO and H2O, and then the conversion of CO to
CO2. A third reaction is used to describe the conversion of a pilot gas such
as CH4. The volatile gas is treated as a postulate substance, because of lack
of information such as the exact composition of the volatile species, also of
reducing the computational cost.

Recently, the flamelet model, where the laminar flame structure is not influ-
enced by turbulence, is introduced into coal LES. The flamelet model assumes
reactions occur only in thin layers embedded in the turbulent flow field (Peters
1984). These thin layers maintain their structure in the turbulent flow field and
can be described one-dimensionally as a function of mixture fraction. Watanabe
et al. (Watanabe and Yamamoto 2015; Watanabe et al. 2017) used the flamelet
model to study of a lab-scale coal jet flame and a large-scale combustion test
of an actual pulverized coal burner. Rieth et al. (2016) (Fig.11) applies the
flamelet model to simulate a semi-industrial furnace studied by Weber et al.
(1992). Both studies obtained good agreement between experiment and simu-
lations, which proved the suitability of the flamelet model in PCC-LES.
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Figure 11: Particles in the quarl region scaled by diameter and colored by temperature
from the simulation of Rieth et al. (2016)

DNS:

Compared to RANS and LES, the Direct Numerical Simulation (DNS) can give
more detailed perspective on coal flames because the flow is directly solved.
However, due to the extremely high computational costs, there are not many
works on the DNS for coal combustion so far, and it is still unfeasible for
industrial applications.

Luo et al. (2012) performed DNS of simplified coal combustion with point-
source assumption to investigate the general characteristics of pulverized coal
jet flow. Brosh et al. (Brosh and Chakraborty 2014; Brosh et al. 2015) ap-
plied the similar DNS methods to investigate the localized forced ignition of
pulverized coal particle-laden mixtures in a cubic box domain initialized by an
incompressible homogeneous isotropic turbulence. Hara et al. (2015) performed
DNS to simulate the coal jet flame experiment of Hwang et al. (2005), using
a global reaction scheme for the volatile matter of coal. Muto et al. (Muto
et al. 2016; Muto et al. 2017) performed DNS of the same flame to investigate
the chemical reaction in an ignition of mono-dispersed pulverized coal particle-
laden flow using two-dimensional numerical simulation with detailed chemical
reaction mechanism. Bai et al. (2016) (Fig.12) conducted three-dimensional
DNS on the flame investigated by Hara et al. (2015); Muto et al. (2016);
Muto et al. (2017). Rather than simulating the coal flame, recent studies using
the approach of resolved single particle in quiescent fluid (RP-QF) or resolved
laminar flow simulation (RLS/DNS) allows describing in detail devolatilization,
fuel-oxidizer mixing and ignition in particle level. Vascellari et al. (2013) per-
formed Euler-Lagrange simulations and RLS along with flamelet modeling to
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Figure 12: The images of instantaneous pulverized coal particle positions: CRIEPI
experiment (left) and DNS (right) from Bai et al. (2016)
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study single coal particle ignition. Tufano et al. (2016) extended the work
of Vascellari et al. (2013) and performed RLS of single coal particle ignition
with detailed pyrolysis boundary condition and studying the effect of gas phase
chemistry. DNS of resolved particle allows analyzing the effects of kinetic re-
lated assumptions, detailed devolatilization and char oxidation models as well
as radiation modeling and their sensitivity on the computational results on
these models. These studies showed the potential to provide validation data
for LES and RANS modelling.

Modeling challenges

CFD simulation has been proved to be an effective method to evaluate the per-
formance of PCC. However, several problems remain if we want to improve the
prediction of combustion characteristics, heat and mass transfer and pollutant
formation in PCC.

• Coal conversion sub-models: Models for devolatilization, homogenous and
heterogeneous reactions of volatile matter and char govern single particle
level studies of PCC. The need for more accurate and sustainable model-
ing approaches and kinetic parameters asks for more detailed researches.

• Characteristics of different coal types: Due to the distinct physical prop-
erties and chemical structures, studies have shown various characteristics
for coal of different ranks during devolatilization, volatile combustion,
char burning, and pollutant formation. Their characteristics are essential
for the accuracy of PCC modeling.

• Gas phase reactions: High-fidelity gas combustion mechanism should cap-
ture the chemical effects of coal volatile species, and provide accurate
predictions of minor species and pollutant formations.

• Radiation modeling: Radiative heat transfer plays a major role in coal fur-
naces. Better turbulence-radiation and gas emittance/absorptance sub-
models are needed to improve the simulation of the temperature field.

• Turbulence modeling: Better predictive yet computationally economical
models for different scales and types of applications are needed.

Thesis overview

PCC has been studied for the past century, but application of fundamental
combustion research for industries is still limited due to the relations between
different spatial and time scales and to the complexity of the combustion sys-
tem. Also, the CFD of PCC requires a detailed approach to address issues
related to two-phase flow, coal conversion modeling, heat transfer and pollu-
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tant emissions. Thus, more investigations into these aspects are needed. Given
the large number of processes and factors that occur in PCC, experimental and
numerical studies of small-scale PCC are required to introduce a reliable and
efficient methodology for realistic PCC modeling.

In order to fulfill the gap between validation of specific combustion sub-models,
simulations of small-scale PC applications and those of real systems, some crit-
ical questions must be addressed:

• Which physical phenomena govern small scale coal combustion?

• Which type of experimental configuration is suitable for validation of coal
sub-models?

• What are the information that are accessible by the measurements on
this configuration?

• How to develop strategies for real systems based on small-scale applica-
tions?

Thesis objectives

Whilst devolatilization and gasification sub-models are involved in LES/RANS
simulations of pulverized coal turbulent flames, their impacts on the flame
structure and species concentrations still remains unclear. According to Pe-
ters (2000), instantaneous flame element embedded in a turbulent flow has the
structure of a 1-D strained laminar flame. This elemental configuration, re-
tained in many studies on gaseous (Lacas et al. 1992; Daguse et al. 1996) or
two-phase flow flames (Franzelli et al. 2013; Alviso et al. 2015) is attractive
to understand such fundamental coal combustion properties. The aim of the
present study is to understand the physical phenomena that govern small scale
coal combustion.

We have decided to start with a well-characterized laboratory scale laminar
burner. This could help validating detailed coal sub-models, and in the long
run, served as incorporating tabulation methods into a LES framework using a
flamelet approach. Developing a novel configuration for investigations into PCC
is the purpose of the present Ph.D. thesis entitled "Experimental and numeri-
cal studies of pulverized coal combustion in strained methane/oxygen/nitrogen
flames".

The general objective of this Ph.D. thesis is to study the PC devolatilization and
oxidation in a strained flow configuration. In order to stabilize the flame and
to introduce a reference for comparison and validation of modeling, methane
is used to assist the particle combustion process. Non-intrusive optical diag-
nostics are performed, which gives a good characterization of flame structure.
However, the analysis of PC sub-models is also an important issue towards
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better understanding and prediction of PCC. Thus, in the second part of this
Ph.D. thesis, 1-D modeling of this axisymmetric configuration is proposed for
its capability of producing accurate descriptions of the flame structure with
less computational cost and without loss of accuracy. The focus here is on the
development and validation of modeling methods applied to our experimental
configuration. The problem of chemical structure of coal and kinetic studies
for the sub-model parameters is outside the scope of this research.

Manuscript outline

The manuscipt consists of two parts:

• Part I: Experimental studies of pulverized coal devolatilization and oxi-
dation

• In Chapter 2, laboratory-scale studies of PCC are reviewed. The dif-
ferent flame diagnostics used for several configurations for investigations
of flow conditions, coal conversion as well as heat transfer are compared
and discussed.

• The experimental configurations for our laboratory-scale strained
flow burner are described in Chapter 3. Two optical diagnostics: mea-
surements of OH∗, CH∗, and C∗2 spontaneous emission and flame emission
spectroscopy are employed to investigate the flame structure and emission
characteristics.

• Chapter 4 explains the choice of the operating conditions. In partic-
ular, the post-processing methods for experimental data will be discussed
in detail. A typical experimental result of the flame structure character-
ized by the diagnostic techniques employed is presented. Experimental
results will then be used to validate the modeling procedure by comparing
numerical simulations in a 1-D configuration.

• Part II: Numerical studies of pulverized coal devolatilization and oxida-
tion

• Chapter 5 introduces a literature review of coal conversion modeling,
concerning the mains steps of coal combustion such as devolatilization,
gasification and oxidation.

• The aim of Chapter 6 is to specify the model formulations of fully-
coupled 1-D configuration of laminar two-phase flow. This modeling
method features sub-models that deals with conservation equations for
different source terms, coupled with convective and radiative heat trans-
fer through REGATH code.

• In Chapter 7, the numerical setup and model parameters, as well as
the mechanisms used in this work for chemiluminescence formation are
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given. We validate the modeling approach by presenting a typical flame
structure predicted by the simulations.

• Chapter 8 presents the comparison of experimental and numerical
results, and the analysis and discussion of the modeling methodology. A
comparative study for different operating conditions is conducted.
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Chapter 1

Literature review of pulverized
coal devolatilization and
oxidation: experimental studies

This chapter focuses on reviewing various measurement techniques used
in laboratory-scale experimental studies of the devolatilization and ox-
idation of pulverized coal. Special emphasis has been put on different
configurations of laboratory-scale laminar flow burners. Finally, a brief
summary of the advantages/limitations of the existing experiments is
presented.

1.1 Mesurements techniques of laboratory-scale PCC
experiments . . . . . . . . . . . . . . . . . . . . . . . . 25

1.1.1 Spontaneous emission . . . . . . . . . . . . . . . . . 26
1.1.2 Planar Laser-Induced Fluorescence (PLIF) . . . . . 28
1.1.3 Mie scattering . . . . . . . . . . . . . . . . . . . . . 28
1.1.4 Velocimetry techniques . . . . . . . . . . . . . . . . 29

1.2 Laboratory-scale apparatus of PCC . . . . . . . . . 30
1.2.1 Thermogravimetric Analysis (TGA) . . . . . . . . . 30
1.2.2 Drop tube furnace (DTF) . . . . . . . . . . . . . . . 31
1.2.3 Entrained flow reactor (EFR) . . . . . . . . . . . . 33

1.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . 36
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Experimental studies of pulverized coal combustion (PCC) at particle level have
been performed in recent years. They are used to provide experimental data
for the validation of theoretical and numerical investigations of the combustion
process. Figure 1.1 shows a typical graphic presentation of the detailed time
evolution that a coal particle typically undergoes together with its morphologi-
cal change depending on particle diameter and heating rate. From an industrial
point of view, it is vital to predict the time of total burnout of coal particles and
the amount of heat emitted during combustion. Besides, a full understanding
of the ignition modes and thermal processes taking place in a coal particle is
also very important for the development of reliable kinetic models in turbulent
combustion modeling.

The chief advantage of studying particle conversion in a laminar flow is the
isolation of coal devolatilization and char oxidation phenomena from the influ-
ence of particle-turbulence interaction. Additionally, if the coal mass flow rate
is relatively low, the behavior of group combustion can usually be neglected.
These experiments are designed to determine related parameters including:

• Coal particle ignition time and temperature

• Combustion mechanism in given experimental conditions (homogeneous,
heterogeneous, hetero-homogeneous combustion)

• Particular stages of particle combustion (pyrolysis, volatile combustion,
char residual combustion)

• Impact of particle size and/or changing temperature conditions and/or
varying gas composition on combustion behavior and particle burnout

• Particle mass loss during combustion

• Kinetic constants for coal conversion reactions in given experimental con-
ditions

The experimental techniques to conduct investigations of coal devolatilization
and oxidation behaviors differ to a great extent. These differences mainly come
from the construction of the test rig, the nature of the coal sample, the temper-
ature and heat transfer method of the reactor, the composition of the oxidant
gas or carrier gas, and the measurement techniques. Also, as we saw in the
introduction, experimental conditions are supposed to comply as accurately as
possible with the assumptions of a theory or a model, because the dominant
phenomena may be distinct under certain conditions. This chapter aims to
review the latest experimental studies of coal devolatilization and oxidation,
and especially the different measurement techniques and diagnostics commonly
used in laboratory-scale experiments. They have been grouped based on the
target phenomena and the type of the reactor used. The idea is to compare the
advantages and limitations of those configurations, and therefore design and
develop the most appropriate one for our study.
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Figure 1.1: Schematic of combustion process of a coal particle (diameter 10 - 100
µm) adapted from de Jong (2005)

1.1 Mesurements techniques of laboratory-scale PCC
experiments

Studying laboratory-scale coal flames can provide insights into different phe-
nomena, such as particle ignition, char burnout, or the impact of coal particles
on turbulent flames (Balusamy et al. 2013). It also simplifies the use of op-
tical diagnostics that are useful in comprehensive studies of turbulent gas or
two-phase flames. A precis of diagnostics used to study laboratory-scale coal
flames is given in the following manner :

Velocity field

• Coded aperture (Shaddix and Molina 2009)

• Laser Doppler Velocimeter (LDV) (Hwang et al. 2005; Balusamy et al.
2015)

• Particle Image Velocimetry (PIV) (Balusamy et al. 2015; Lemaire et al.
2014; Xia et al. 2017)

• Shadow Doppler Particle Analyzer (SDPA) (Hwang et al. 2005)

Visualization

• Chemiluminescence (spontaneous emission) (Molina and Shaddix 2007;
Hwang et al. 2005; Balusamy et al. 2013; Xia et al. 2017, this work)

• Laser Induced Fluorescence (OH-LIF) (Hwang et al. 2005; Balusamy
et al. 2015; Xia et al. 2017)
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• Mie scattering (Hwang et al. 2005; Balusamy et al. 2015; Hashimoto
et al. 2016)

• Laser Induced Incandescence (LII) (Hayashi et al. 2013; Balusamy et al.
2015; Hashimoto et al. 2016)

Gas temperature

• Suction pyrometer (Butler et al. 1994)

• Thermocouple (Lemaire et al. 2014)

• Coherent Anti-stokes Raman Spectroscopy (CARS) (Hancock et al. 1992)

Particle temperature

• Two-color pyrometry (Hwang et al. 2005; Schiemann et al. 2009; Lemaire
et al. 2014; Zabrodiec et al. 2017)

• Fit of emission with Plank grey body radiation (Zabrodiec et al. 2017)

Gas species

• Suction probe to analyzer (CO, CO2, H2O, NO, SO2) (Lemaire et al.
2014)

• Flame emission spectroscopy (FES) (Smolarz et al. 2012; Parameswaran
et al. 2014; Yan et al. 2017, this work)

In order to analyze the combustion process of PCC in small laboratory burners
(e.g. the counter-flow burner used in the present study), the experimental
setup can be equipped with several kinds of non-intrusive optical diagnostics.
They are widely used in flow field measurements, visualization of coal particle
combustion, temperature (coal and gas) or species concentration measurements.
However, these diagnostics differ largely in temporal, spatial as well spectral
resolutions. Most commonly employed approaches found in the literature are
presented in the next section with examples of application.

1.1.1 Spontaneous emission

In the combustion zone, the electronically excited species are formed from the
intermediate ground state species. These excited species are highly reactive.
They return to the ground state by emitting radiation in form of light, as
shown in Fig.1.2. Chemiluminescence is the emission of light (hν) as result of
molecules returning to the ground state which are excited chemically.

Spontaneous emission of chemiluminescent species is responsible for ultra-violet
and visible light in the combustion process. It offers an optical diagnostic tool
for the observation of flames due to its natural occurrence. Three main radicals
for this emission can be identified in hydrocarbon flames: OH∗ (around 310 nm),
CH∗ (around 431 nm) and C∗2 (around 516 nm). These radicals are naturally
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present in the reaction zone and are used to determine important macroscopic
properties such as flame location, flame speed, and heat release rate evolution.
In premixed conditions, the OH∗ chemiluminescent signal is often considered to
be proportional to the heat release of flame. Images of flame chemiluminescence
are typically acquired on CCD cameras equipped with band-pass filters for
spatially resolved measurements.

Figure 1.2: Schematic diagram to illustrate the origin of discrete and continuous
absorption and emission spectra for atoms (left) and molecules (right) from Demtröder
(2008)

Blackbody emission CH* (431 nm) filter 

Figure 1.3: Comparison of backbody emission (filterless image) and chemiluminescent
CH∗ emission of the Sandia single-particle burner from Molina and Shaddix (2007)

Burning coal usually results in luminous yellow flames, and C∗2 and CH∗ emis-
sion can be observed in such flames (Gaydon 1957). While the OH∗ radical
seems more suitable for lean flames, CH∗ and C∗2 have a more monotonic be-
havior and stronger dynamics for richer flames (Docquier et al. 2000). Thus,
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CH∗ chemiluminescence intensity is used to observe luminous flame structure
and is considered to be a good representative of the heat release rate (Lacas
et al. 2005). Molina and Shaddix (2007) also measured CH∗ chemiluminescence
signals as a better indicator for the onset of pulverized coal particle ignition and
the volatile reaction zone (Fig.1.3). The measurement of C∗2 chemiluminescence
has also been proved to be useful for validating coal sub-models in the present
configuration by Xia et al. (2017).

However, the main challenge of measuring chemiluminescence signals with band-
pass filters is that it is often extremely difficult to eliminate the impact of certain
emissions, such as the CO2 spectrum as well as blackbody emission, the most
affected being the CH∗ and C∗2 signals. It makes the quantification of radical
concentrations and the comparison with numerical studies relatively difficult.

1.1.2 Planar Laser-Induced Fluorescence (PLIF)

Laser induced fluorescence (LIF) is a non-intrusive optical diagnostic, which is
able to measure spatially and temporally the induced fluorescence of molecules.
The excitation is obtained by directing a laser beam towards the target molecule.
If the laser beam is introduced as a thin sheet, the molecules located in this
sheet are excited. Then one can take 2-D images from the fluorescence of the
molecules contained in this 2-D plane. This technique is Planar Laser induced
fluorescence (PLIF). The main interest of PLIF is to obtain the relative inten-
sity profiles corresponding to the relative concentration of intermediate species
such as OH and CH, or pollutant such as NO and PAH. The measurement of
OH-PLIF has been proved to be useful for validating coal sub-models in the
present configuration in our previous study (Xia et al. 2017).

1.1.3 Mie scattering

When light encounters particles, it is scattered in a way that depends on the
particle size given the light wavelength. When the wavelength and the particle
diameter are comparable, the applicable light scattering theory is Mie scatter-
ing. When applied to coal particles, signal from each particle can be obtained
to get information on its position. The overall signal is thus dependent on the
particle number density and the size of each particle. The scattered light by
the particles can be used to collect images of their 2-D spatial distribution.

Simultaneous measurement system for OH-PLIF and Mie scattering image of
pulverized coal particles are used by Hwang et al. (2005) and Balusamy et al.
(2015) to examine the spatial relations of combustion reaction zone and pul-
verized coal particles (Fig.1.4).
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Mie scattering OH-PLIF 

Figure 1.4: Instantaneous two-dimensional images taken simultaneously using Mie
scattering and OH PLIF from Balusamy et al. (2015)

1.1.4 Velocimetry techniques

Measurements of the flow field of coal particles can be obtained by using laser
diagnostic techniques such as laser Doppler velocimetry (LDV) and particle
image velocimetry (PIV), which are based on the Mie scattering signal from
particles. LDV is a point-based measurement, which is widely used in spray and
solid combustion. It is time-consuming for the characterization of the entire
flow field. The alternative is PIV, which allows vectors measurement across the
field at a given instant. The principle of PIV is to estimate the displacement
of a particle between two instants from its Mie scattering signal recorded on
two successive images. A plane within the flow is illuminated by laser, creating
two laser sheets with a small time delay. This delay depends on the mean flow
velocity and the resolution of the images. The light scattered by the particles is
then acquired in a sequence of images. The displacement of particles between
subsequent images is then calculated through correlation of images (Agarwal
2013). In our previous study (Xia et al. 2017), PIV measurements have been
performed to prove that the particle average velocity matches the gas velocity
at the injector exit.

Balusamy et al. (2013) compared LDV and PIV measurements (Fig.1.5) using
alumina and coal particles of a laboratory-scale annular pulverized coal burner.
They concluded that PIV measurements are affected by the size distribution
of coal particles, whereas LDV measurements turned to be biased toward the
velocity of small particles.
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Figure 1.5: Instantaneous two-dimensional images taken simultaneously using Mie
scattering and OH PLIF from Balusamy et al. (2013)

1.2 Laboratory-scale apparatus of PCC

Most practical PCC systems operate under turbulent conditions, where the heat
release is more efficient than under laminar conditions. The study of chemi-
cally reacting turbulent flows, such as PCC, is really challenging because of
interactions between chemistry and turbulence, along with solid phase conver-
sions. In laminar flows, however, the measurements of velocity, temperature,
and concentration will obtain quite smooth profiles (Kuo 2005). Therefore,
laboratory-scale laminar flow burners are preferentially used for the investiga-
tions of PCC, especially of coal kinetics and ignition behaviors. In this section,
three types of laminar flow experiments which have been commonly used in the
literature are introduced.

1.2.1 Thermogravimetric Analysis (TGA)

Thermogravimetric analysis (TGA) is one of the most common techniques used
to investigate thermal conversion and kinetics of coal pyrolysis (Reverte et al.
2007; Shi et al. 2013; Aboyade et al. 2013; Seo et al. 2011). It provides weight
loss history of the coal sample as a function of time and temperature. It is also
used to perform the proximate analysis of coal samples (see section 4.1.1). A
thermogravimetric analyzer is a combination of an electronic microbalance with
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a furnace, a temperature programmer and computer for control, that allows the
sample to be simultaneously weighed and heated or cooled in a controlled man-
ner, and the mass, time, temperature data to be captured (see Fig.1.6). The
kinetics of coal conversion can be determined by the application of the Arrhe-
nius equation corresponding to the separate slopes of constant mass degradation
during the pyrolysis. TGA has also been widely used for the determination of
ignition temperature and combustion characteristics of coal (Tognotti et al.
1985; Hurt and Gibbins 1995; Zolin et al. 1998; Le Manquais et al. 2009; Li
et al. 2014). The temperature is typically from low to moderate at relatively
slow heating rates, with high accuracy and time resolution. However, the heat-
ing rate is usually about 3∼200 K/min, which is not comparable to the actual
heating rate in practical coal furnaces.

Figure 1.6: Schematic of thermogravimetry from Brown (2001)

1.2.2 Drop tube furnace (DTF)

Complementary to TGA, drop tube furnaces (DTF) are designed for labora-
tory experiments under similar conditions in temperature and residence time
as those of industrial boilers and power plants (Authier et al. 2015; Wang et al.
2014; Li et al. 2012; Riaza et al. 2014; Khatami et al. 2012). DTFs are usu-
ally electrically heated, and the wall temperature is maintained constant. The
coal particle is rapidly heated to a controlled temperature and completes de-
volatilization in a short residence time. A heating rate of 105 K/s and maximum
temperature of 1700 ◦C can be achieved in the DTF. In addition, free-falling
coal particles are in a dynamic, dilute phase, which allows for individual and
group particle combustion.
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Figure 1.7: Schematic of a drop tube furnace from Wang et al. (2014)

DTF can also be used for kinetic analysis of pulverized coal devolatilization
and combustion characteristics under inert or reactive gaseous atmosphere. Be-
jarano and Levendis (2008) investigated the combustion of single coal particles
in air- and oxy-combustion environments. Zhang et al. (2010) examined pre-
dried coal combustion characteristics in a DTF and concluded that oxy-coal
combustion showed different behavior in pyrolysis, volatiles ignition and oxida-
tion, char oxidation rate and surface temperature, comparing to conventional
air combustion. Khatami et al. (2012) studied the ignition characteristics of
single coal particles of various ranks. Wang et al. (2014); Wang et al. (2014) re-
ported gas temperature, major gas species concentration and particle burnout
measured along a DTF (Fig.1.7) of various coal type, particle size distribu-
tion and oxy-fuel atmospheres. Köser et al. (2015) studied the combustion
characteristics of individual coal particles in an oxygen-enriched environment
using high-speed OH-PLIF. Bai et al. (2017) carried out experimental investi-
gations into the combustion behaviors of single pulverized coal particles based
on high-speed imaging and image processing techniques.

Figure 1.8 shows the difference of heating rate between slow TGA and fast DTF
systems. The mass loss rate of both systems is successfully predicted for a wide
range of thermal conditions by optimization of the two-step reaction model,
which will be introduced in Chapter 4.
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Figure 1.8: Normalized mass loss versus time from the devolatilization of Calentu-
ritas coal in TGA and DTF (dots: experimental data; lines: modeling results) from
Authier et al. (2015)

1.2.3 Entrained flow reactor (EFR)

Another type of laminar flow PCC burner is entrained flow reactor (EFR),
which is designed for introducing coal particles into well-characterized, pre-
heated gas stream. Heating rates as much as 106 K/s can be achieved using a
Flat Flame Burner (FFB). This burner is a flow reactor with premixed/non-
premixed gaseous fuel and air injected through a honeycomb grid. The gases
ignite, forming a uniform thin flame sheet. Coal particle and carrier gases are
injected through a narrow tube in the center of the burner slightly above the
tip of the flame sheet at a certain velocity. The advantage of this kind of sin-
gle particle experiment is that it focuses only on phenomena directly related
to the coal conversion and in the boundary layer around the particle. It also
reduces complexity compared to large scale reactors. In this cofiguration there
is no interactions with other particles or turbulent flows, which is good for
development and calibration of kinetic models.

Ignition of single coal particle during devolatilization was investigated by Shad-
dix et al. (Molina and Shaddix 2007; Shaddix and Molina 2009; Liu et al. 2011),
using optical diagnostics for estimating ignition. Experiments were conducted
in the laminar optical FFB (Fig.1.9). The reactor operates at 1 atm and uses a
non-premixed-flamelet Hencken burner to provide a high velocity flow of com-
bustion product gases. Coal particles are injected at the furnace centerline with
different feeding rates. The experimental results from chemiluminescent imag-
ing and pyrometry are used to develop and validate coal conversion modeling.
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Figure 1.9: Schematic of the a flat-flame burner (left) and a typical coal jet flame
(right) from Molina and Shaddix (2007)

Schiemann et al. (2009) analyzed the firing and combusting behavior of coal
particles in a FFB, which the coal conversion during the whole combustion
process can be tracked via optical diagnostics. The coal particles are injected
into the heated combustion chamber through a small borehole metered by a
mechanical coal dozer. A quartz tube separates the hot stream of combustion
gases from the surrounding atmosphere and provides optical access during the
whole process, from firing to complete burnout. A two-color pyrometry system
was used to study the combustion of coal and chars. This camera system is
based on two cameras, which allows studies on the combustion temperature
and size evolution of coal char particles. The measurements can be used to
calculate char burning kinetics.

Lemaire et al. (2014) conducted characterization of a similar test bench (Fig.1.10)
designed to study the devolatilization and oxidation of pulverized coal particles.
A premixed propane/air laminar flat flame is stabilized on the porous media
generating hot gases for a heating rate of approximately 106 K/s. The inert
or oxidant carrier gas stream is injected in the centerline of the burner along
with coal particles. They also performed numerical simulations to characterize
the velocity and temperature fields in the reaction chamber. Measurements
of particle image velocimetry, two-color pyrometry and the composition of the
burnt gases have been characterized.

Figure 1.11 gives the gas and particle temperature history from the correla-
tion of velocimetry measurement and distance (height above burner, HAB).
Similarly, devolatilization yield profiles are available for the validation and op-
timization of coal pyrolysis models.
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Figure 1.10: (a) CAD representation of the experimental test bench, (b) pictures of
the fuel feeding system, (c) the sampling line for char and combustion gas analyses,
and (d) a typical coal jet flame stabilized on the FFB using air as a carrier gas from
Lemaire and Menanteau (2016)

Figure 1.11: Comparison between gas temperatures Tg obtained by CFD and ther-
mocouple measurements with experimental coal particle temperatures Tp measured by
pyrometry as a function of the residence time in the reaction chamber from Lemaire
and Menanteau (2016)
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1.3 Summary

This review of laboratory-scale laminar PCC burners for the study of coal de-
volatilization and oxidation can be summarized in the Table.1.1. The main
advantages as well as certain limitations related to each configuration are ex-
plained. It is furthermore noteworthy that all the current test benches focus on
the description of fundamental processes taking place during the combustion
of coal, such as heat and mass exchange or reaction kinetics. However, most of
them are not able to reproduce the operating conditions of real coal furnaces.

Another very important factor when making choices of experimental design is
the modeling issues. The CFD of coal flames requires a detailed approach to
simulate aspects including two-phase flow, coal conversion modeling, heat trans-
fer and pollutant emissions. The modeling of current configurations generally
remains in the validation of coal kinetic models. The simulation of particle-gas
coupling under laminar flow conditions is often simplified. It seems that the
gap between specific combustion sub-models and the simulations of real PCC
systems has not been fulfilled yet. Therefore, the development of a novel con-
figuration for the investigations into coal devolatilization and oxidation is in
great need.

Table 1.1: Summary of laboratory-scale laminar configurations for the investigations
of pulverized coal devolatilization and oxidation

Type of
reactors

Advantages Limitations

TGA - precise control of tempera-
ture and residence time; - sim-
plicity in implementation and
utilization; - good repeatabil-
ity; - varying atmosphere;

-low heating rate (3∼200
K/min); - non-uniform dif-
fusion of oxidizer within the
sample; - ash formation at the
surfaces of particles.

DTF - high and homogeneous gas
temperature; - high heating
rate (105 K/s); - varying at-
mosphere;

- relatively difficult real-time
analysis; - repeatability and
reproducibility.

EFR - possible pilot flame; - high
heating rate (106 K/s); - vary-
ing atmosphere; - easy optical
access;

- evacuation of burnt gases
mixed with volatile gases.
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pulverized coal devolatilization
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This chapter presents the experimental setup chosen for studying PCC
in laminar strained premixed methane/oxygen/nitrogen flames. The
description of the burner, the setup of positioning system as well as
the coal feeding system are explained. We then present the two optical
diagnostics used to investigate the flame structure and emission char-
acteristics: measurements of OH∗, CH∗ and C∗2 spontaneous emission
and flame emission spectroscopy (FES).
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A geometrically simple strained flow can be obtained by injecting a laminar
gas flow against a stagnation plane (a wall, for example). The axial velocity
of the impinging jet vanishes at this plane. If the mixture is ignited in close
proximity of the stagnation plane, a stable flame with a flat-circular structure
is obtained (Darabiha et al. 1993). Figure 2.1 shows a direct view of a flat
CH4/air flame. In this counterflow configuration, the flame front is located at
a fixed position in space, where flow speed equals the flame speed, determined
by the equivalence ratio of the fresh gas mixture and by the strain rate.

As seen in the introduction, flamelet is one of the most promising turbulent
PCC models because it can take into account detailed chemical kinetics at
a reasonable computational cost (Vascellari et al. 2013; Watanabe and Ya-
mamoto 2015; Rieth et al. 2017). Commonly-used flamelet approaches are
referred as flamelet-based tabulated chemistry methods where the turbulent
flame structure is modeled by an ensemble of single flamelet elements gener-
ally assuming single/muitiple burning regime(s). Tabulation strategies using
laminar strained flame configuration for spray flames have been discussed by
Franzelli et al. (2013) and recently applied to PCC by Messig et al. (2017).

Because this type of flame is well suitable for the development of numerical
models, especially 1-D simulations, and optical measurement techniques, this
system has been commonly used in the case of gaseous (Lacas et al. 1992;
Darabiha et al. 1993) and spray reactants (Franzelli et al. 2013; Alviso et al.
2015). But only a small number of studies, dated back to the 1980s, deal
with coal particles (Graves and Wendt 1982; Wendt et al. 1988), where the
characteristics of laminar opposed jet premixed/diffusion pulverized coal flame
were studied.

Figure 2.1: Direct view of a methane/air flat flame
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In the present study, experiments of premixed laminar flames (Fig.2.2) estab-
lished by the strained flow of monodisperse coal particles with a stream of
CH4/O2/N2 are performed at atmospheric pressure. This chapter aims to
present the exprimental configurations and measurement techniques used in
this work.

Y"

Figure 2.2: Schema of the strained flame with coal particles

2.1 Description of stained flow burner

The experiments are carried out using a strained flow burner as illustrated in
Fig.2.3. A premixed CH4/O2/N2 stream, carrying the pulverized coal particles,
exits an axisymmetric convergent nozzle of 10 mm inner diameter. The flow
then impacts a horizontal metallic brass wall. The distance between the nozzle
and the wall is kept constant to 20 mm in all experiments. When ignited, a
laminar flame front appears at a given distance from the wall, where the laminar
flame speed equals the flow velocity. A co-flow of nitrogen is injected in order
to prevent the flame from ambient air perturbations. The hot gases issued from
the combustion of CH4/O2/N2 mixture flow between the flame front and the
wall. Pulverized coal particles start burning at the CH4/O2 flame front and
the hot region promotes heating, pyrolysis and oxidation of the pulverized coal
particles.

To our knowledge, there is no previous experimental studies of coal/air flames
with a similar configuration. The introduction of methane in the mixture makes
possible the ignition the coal particles. Bradley et al. (2001) argued that is
very difficult to ignite and stabilize small pulverized coal flames under atmo-
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spheric conditions. Also it is practically impossible for coal particle ignition
without preheating (Bradley et al. 2006). However, we have found that it is
not necessary to add a preheating system because the methane flame provides
the heat to ignite and stabilize the coal flame (Xia et al. 2017). In addition, the
CH4/O2 flame can be considered as a reference for the optical measurements.

CH4/O2/N2 
+Coal Particles 

CH4/O2/N2+Coal  
Flat Flame 
CH4/O2/N2+Coal  
Flat Flame 

Brass Wall 
Stagnation Plane 

N2 
N2 N2 

Adapter 

X 

Y 

Thermocouple 

Figure 2.3: Schema of the strained flow burner

There are two important parameters to obtain a stable flame: the equivalence
ratio, and the strain rate. The equivalence ratio of the gas mixture CH4/O2/N2

is defined by

Φ =
Yfuel/Yoxygen

(Yfuel/Yoxygen)stoichio
(2.1)

where Yi is mass fraction of the fuel and oxydizer and "stoichio" refers to
stoichiometric conditions. The strain rate is defined as:

ε =
2Vu
H

(2.2)

where H is the separation distance between the burner nozzle and the flat plate
and Vu is the is the velocity of reactants injected from the burner nozzle.

2.2 Experimental setup

2.2.1 Coal feeding system

Lignite coal briquettes (Heizprofi braunkohle) are grounded in an electrical
grinder and sieved manually (sieve size = 100 µm) to obtain pulverized coal
samples. Prepared samples were examined under an optical microscope in order
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to determinate the granulometric properties of the coal particles. Figure 2.4
shows an typical image acquired by the microscope. Figure 2.5 presents the
particle size distribution as an histogram from the processing of 100 images
in which 56986 particles where identified and analyzed. The distribution is
also summarized in Table 2.1. From the particle analysis, the mean particle
diameter value of 11.42 µm is obtained, and the Sauter mean diameter D32 of
the coal particles is 15 µm (Xia et al. 2017). More properties of coal briquettes
are presented in Appendix A.

Figure 2.4: Sample image obtained from optical microscope

Figure 2.5: Histogram of coal particle size distribution
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Table 2.1: Particle size population distribution of processed coal particles

Diameter range (µm) Particle count Population percentage (%)
0-20 49530 86
20-40 6441 12.21
40-60 890 1.57
60-80 121 0.2
80-100 14 0.02

The coal feeding system consists of three cylindrical tubes, showed in Fig.2.6. A
porous sintered disk is placed between the top and the middle tubes. Pulverized
coal samples are stocked on top of the porous disk. O2/N2 mixture is injected
through four inlets at the bottom tube, passing through a honeycomb disk first
before crossing the porous disk. The gas mixture carries coal particles out of
the top reservoir.

So as to achieve a stable feeding rate of coal particles to the burner, we must
be able to control the coal mass flow rate. However, it is difficult to find
commercially-available equipment to fluidize, measure and control this param-
eter in real time. Therefore we connected the coal feeder to a collection con-
tainer weighed by a precision weight balance. The value of the collected coal
is recorded in regular time intervals (3-minutes, 5-minutes, half-hour and one
hour), and the measurement runs length is set to one hour in each test. Figure
2.7 shows curves obtained from four runs with constant initial coal load in the
reservoir. The tests gave an average flow rate of 0.5 g/h. However, due to
the inhomogeneous nature of coal particles and the small mass flow rate, the
uncertainty of the measurement is about 50%.

O2/N2 O2/N2 

Porous Sintered 
Disk  

Pulverized Coal 
Particles 

O2/N2 + Coal 
Exit 

Honeycomb 
Disk  

Figure 2.6: Schema and photo of the coal reservoir



Part I - Experimental studies of pulverized coal devolatilization and
oxidation

43

0 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 

0 10 20 30 40 50 60 

C
oa

l m
as

s f
lo

w
 (g

/h
)  

Time (min)  

3-min test 
5-min test 
30-min test 
60-min test 

Figure 2.7: Measured coal mass flow rate vs time, initial coal load 20 g
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Figure 2.8: The strained flow burner with the micro-positioning system

2.2.2 Mechanical system

The positioning of the burner and the collimation of the optical path is carried
out through 5 manual linear translation/precision positioning stages as illus-
trated in Fig 2.8. Translation T1 is used to align the lens with the centerline of
the burner. The distance between the burner and the brass wall is controlled
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by T2. Translation T3 moves the whole burner system assembly in the vertical
direction. The other two translations (T4 and T5) are arranged in the bottom
of the lower burner (adopted from a counterflow position) to position the wall
coaxial with the burner. This system allows exploring the whole flame zone
without moving the optics or diagnostics.

2.2.3 Flow control system

The gaseous flows are controlled by thermal mass flow meters (Bronkhorst
EL-FLOW). Figure 2.9 shows the schematic diagram for the gas flow control
system. The maximum flow capacities for each mass-flow meter are showed in
Table 2.2. These devices are coordinated with a LM-50 controller.
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MF1 

MF2 
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Coal Reservoir 

Burner 

EL-FLOW 

Co-flow 

Fuel 

Oxidizer 

Controller 

Figure 2.9: Schematic diagram of the gas flow control system

Table 2.2: Description of flow meters

Flow meter Max. Flow (L/min) Calibration gas Metered gas
MF1 0.8 Methane(CH4) Methane(CH4)
MF2 1.89 Air Oxygen (O2)
MF3 15.31 Oxygen (O2) Nitrogen (N2)
MF4 16.67 Nitrogen (N2) Nitrogen (N2)
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2.3 Measurement techniques

Measurements on a strained flame of small dimensions require precautions, since
the flow is very sensitive to outer perturbations. The non-intrusive optical di-
agnostics are well adapted for the current experimental configuration, thanks
to the easy optical access. Two measurements techniques, flame chemilumines-
cence and emission spectroscopy, are chosen to obtain information on the flame
structure. A schema of the experimental setup and diagnostics is displayed in
Fig.2.10.
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Figure 2.10: The experimental arrangements of the two optical diagnostic techniques
(CL: chemiluminescence, FES: spectroscopy)

2.3.1 Flame chemiluminescence measurements

Chemiluminescence is defined as the spontaneous emission of electromagnetic
radiation due to exicited radicals in chemical reactions. Visualization of flame
chemiluminescence is a simple and fast diagnostic. The most common method
of visualization involves a CCD camera and spectral filters. The detected
species may have visible, ultraviolet or infrared wavelengths. The image re-
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sults from integration of filtered light over the spectral band pass of the filter
during the camera exposure time. It is also spatially integrated in the direction
of the camera. As the flame front is axi-symmetrical, Abel inversion can be
used to remove the effects of the integration and get the image of the flame
front in the symmetry plane of the burner. Taking into account the very short
time interval of each image (from 20000 to 500 frames per minute depending
on the signal strength and camera), it can be considered to catch instantaneous
information of certain species in the flame zone. If the experimental setup and
camera parameters remain the same, it is possible to compare relative quantifi-
cation of free radicals mole fractions in different operating conditions (Merotto
et al. 2017).
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Figure 2.11: Direct view of methane/air flame fed with coal particles (up), average
image of CH∗ emission of methane/air flame with coal particles(bottom)

2.3.1.1 Chemiluminescence setup

2-D images of OH∗, CH∗ and C∗2 spontaneous emission have been recorded us-
ing a 512 × 512 pixels ICCD camera (Princeton Instruments) equipped with
UV lens Nikkor 105 mm focal length f/4.5. Narrow-band interference filters
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are interposed along the optical path for capturing the chemiluminescence sig-
nals. The OH∗ narrow-band filter is centered at 313 nm, 10 nm band-pass and
68% transmission in the maximum. The CH∗ filter has 60% transmission and
a 10 nm width band-pass centered at 430 nm. The filter for C∗2 band-pass is
centered at 515 nm and has 10 nm bandwidth and 80% transmission. Emission
profiles are obtained by averaging 300 images, which are corrected by means
of dark background subtraction. An averaged CH∗ emission image is shown
in Fig.2.11. Since the camera captures the overall signal from the flame pat-
tern, Abel inversion of the axisymmetric data field is performed to remove the
curvature effect and to obtain the profiles along the central axis.

2.3.2 Flame Emission Spectroscopy (FES)

Transition of a molecule/radical from the excited state to the fundamental state
correspond to the emission of a spectral line at a frequency of:

ν =
E2 − E1

h
(2.3)

Where E2 and E1 are the initial and final energy states, respectively, and h is
the Planck constant (h = 6.62E−34 J.s).
Molecular spectroscopy has played an important part in interpreting spectro-
scopic observations of flames (Gaydon 1957). The molecules of combustion
products which have spectra of appreciable strength in the visible or ultravio-
let regions includes hydroxyl radical OH, which gives a band system with the
strongest head at 306.4 nm, and intermediate species such as CH, C2, HCO,
CN, NH, NH2, etc. The primary combustion zone of hydrocarbon flames at
atmospheric pressure is characterized by the emission of CH bands strongly at
431.5 nm, which gives the flame the blue color, and the C2 radicals emitting
strongly at 516.5 nm, with a green color. Another fairly strong component is
mainly the quasi-continuous emission from excited CO2. The spectrum CO2

generally extends from below 300 nm to 600 nm. In this present study, excited
radicals naturally present in the combustion zone are chosen, OH, CH, C2. In-
deed, they are widely used to determine important macroscopic properties such
as flame location, equivalence ratio and heat release rate fluctuations.

Unlike visualization of flame chemiluminescence via optical filters, Flame Emis-
sion Spectroscopy (FES) allows spectral resolution of the emission spectra.
Since the CO2 and blackbody emission plays an important role in coal flame
emission, it is necessary to compare the results from FES with that obtained
by chemiluminescence.
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2.3.2.1 OH spectrum

The existence of the ultraviolet bands of OH molecule in flames is widely used
as an indicator of flame behavior (Panoutsos et al. 2009). In hydrocarbon/air
flames, OH∗ is mainly formed via the following route:

CH +O2 → CO +OH∗ (2.4)

Smith et al. (2005) determined the rate constants for two additional formation
paths of OH∗, important mainly in H2/air flames:

O +H +M → OH∗ +M

OH +OH +H → OH∗ +H2O
(2.5)

Figure 2.12 shows the OH(A) band (head at 306.4 nm) measured in a lean
premixed methane/air flame (Flame A1 from table 3.1).
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Figure 2.12: Measured OH spectrum in a lean premixed methane-air flame

2.3.2.2 CH spectrum

In hydrocarbon/air flames, it is considered that CH∗ is mainly formed via
following reactions:

C2H +O → CO + CH∗

C2H +O2 → CO2 + CH∗

C2 +OH → CO + CH∗
(2.6)

The strongest CH∗ band system is around 431.5 nm (often refered as CH(A)),
another weaker one is located around 387.2 nm (refered as CH(B)). Figure
2.13 shows the CH(A) band measured in a lean premixed methane/air flame
(Flame A1). In order to compare with spontaneous emission, the CH(A) band
is measured in this study.
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Figure 2.13: Measured CH spectrum in a lean premixed methane-air flame

2.3.2.3 C2 spectrum

C2 is strongly involved in the formation of OH∗ and CH∗. Therefore, Smith
et al. (2002) proposed the kinetic paths of C2.

C2 +H2 → C2H +H

CH + CH → C2 +H2

C + C +M → C2 +M

C + CH → C2 +H

O + C2 → C + CO

C2 +O2 → CO + CO

(2.7)

If no further improvement is considered by adding the kinetics of C3 and related
species (Smith et al. 2005), C2 can be used as the indicator of the relative
intensity of C∗2. Further discussion of the C∗2 kinetics is given in the next
chapter.

Figure 2.14 shows the C2(d) band measured in a rich premixed methane/air
flame (Flame A3 from table 3.1). It is also refered as the San band, where the
strongest (0,0) band is at 516.5 nm.
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Figure 2.14: Measured C2 spectrum in a rich premixed methane-air flame

2.3.2.4 Trace elements spectra

Besides the molecular spectra of OH, CH and C2, the spectrum of coal flames
presents strong lines of metallic trace elements such as Sodium (Na) at 589 nm,
Lithium (Li) at 671 nm and Potassium (K) at 766 and 769 nm. Figure 2.15
presents the typical spectra of a lean premixed methane/air flame with/without
addition of coal particles. A low resolution spectrometer (OceanOptics, Maya2000Pro)
is used to obtain preliminary information of the flame emission spectra. Re-
sults show that the wavelengths of these emission lines do not interfere with
the intensity measurement of OH, CH and C2 emission.
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Figure 2.15: Measured spectra using low-resolution spectrometer

2.3.2.5 FES setup

FES is used to measure the visible, ultraviolet (UV) chemiluminescence of OH,
CH and C2 radicals. A Czerny-Turner type monochromator (SpectraPro-500i)
is used. A 512 × 512 pixels ICCD camera (Princeton Instruments) is located
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at the monochromator output. The diffraction grating is 1200 grating/mm
and the focal length of the spherical mirrors is 500 mm. The spectrometer
is optically collimated by two plano-convex synthetic fused silica ultraviolet
lenses of 500 mm and 300 mm focal length respectively. A slit width of 80 µm
is chosen and the exposure time is kept constant to 300 ms. The correction in
the detector response is done with a Tungsten lamp and a mercury lamp. As
the spectrometer entrance slit is vertical while the flame front is horizontal, two
mirrors (Fig. 2.16) are used to rotate the image by 90◦to coincident the slit with
the flame front. The diagram of the optical system can be found in Fig.2.10.
The mechanical positioning system allows the burner to move vertically, thus
obtaining the spectra at different locations along the burner axis.

Figure 2.16: The strained flow burner with the micro-positioning system

In order to obtain OH∗, CH∗ and C∗2 emission profiles, the evolution of the
spectrum band heads intensity at 309 nm, 431 nm and 516.5 nm (Gaydon 1957)
are obtained along the burner axis respectively. A comparison of the spectra
with/without coal particles obtained for OH∗ emission of Flame I with/without
coal particles is shown in Fig.2.15. We can note that there is a displacement
of the baseline of the spectra when coal particles are added to the flame. This
is attributed mainly to ambient background as well as the black body emission
of solid coal particles and unburned coal char. Post-processing of the raw data
then needs to be performed so as to clarify the origin of this difference. This
background emission is subtracted from every measured spectrum. The post-
processing techniques will be discussed in detail in the next chapter.
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Processing procedure and
experimental results

The purpose of this chapter is first to describe the post-processing pro-
cedure of experimental data in the present work. The approaches used
to process the raw data obtained from spontaneous emission and spec-
troscopy are presented. The main purpose is to get reliable information
on OH∗, CH∗ and C∗2 emission intensities. Then all the operating con-
ditions are explained. Finally, typical experimental results of one par-
ticular condition obtained from post-processing methods are introduced
and thoroughly discussed.
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3.1 Processing procedure

3.1.1 ASE data processing

The measurements of spontaneous emission in this study are performed by
the acquisition of images. Figure 3.1 presents the spontaneous emission of
a CH4/air flame obtained by the ICCD camera. This image shows that the
flame front is not straightly flat but slightly convex. This is essentially due to
the natural convective flow around the burner. As a consequence, the signal
observed by the camera is modified by the surrounding burnt gases.
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Figure 3.1: Spontaneous emission of CH4/air Flame A1 (filterless image)

Also, these images are the projections of the circular flame zone on to the CCD
camera (see Fig.3.2). That is to say, the signal of the three-dimensional flame
zone is obtained through the line-of-sight integration. Abel inversion technique
is therefore needed to obtain two-dimensional information from the projection.

x 

y 

r

ICCD 

Figure 3.2: Geometry of the axi-symmetric flame zone and projection on to the
camera

Abel transform is an integral transform often used in the analysis of spherically
or axially symmetric functions. In image analysis, This often-called "forward"
Abel transform is used to project an optically thin, axially symmetric emission
function ε(r) onto a plane in order to get the intensity function I(y) along the
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parallel lines of sight.

I(y) = 2

∫ ∞
y

ε(r)rdr√
y2 − r2

(3.1)

where y is the displacement of the intensity profile and r is the radial distance
from the source. That is to say, I(y) is the one-dimensional projection of a two-
dimensional, spherically symmetric function ε(r) as a radial slice. Vice versa,
the reconstruction of ε(r) from its projection I(y) is known as Abel inversion.
It provides a 2-D "cut" of the flame zone at the plan of burner axis. The inverse
integral is given by

ε(r) = − 1

π

∫ ∞
r

dI

dy

dy√
y2 − r2

(3.2)

Abel-inverted spontaneous emission (ASE) profiles of the strained flame will be
presented in the next section.
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Figure 3.3: (up):example of spectra asquisition postions; (bottom): an typical image
of CH∗ emission spectrum - radial position (mm) vs Wavelength (nm)
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3.1.2 FES data processing

3.1.2.1 Acquisition of raw data

In the present flame emission spectroscopy (FES) measurments, a mirror system
(section 2.3.2.5) is added between the entrance slit of the spectrometer and the
flame. The aim of this setup is to rotate the image of the flame by 90◦ to
coincident the slit with the flat flame front. Therefore, the emission profiles
along the radial axis (the red pointed line in Fig.3.3(up))is obtained at each
time. Measurements are then repeated at certain distances from the burner
(h1, h2, h3, etc.). By doing this, the error related to the spatial resolution
along the burner axis can be reduced significantly. Also, a 3-mm diameter iris
diaphragm is mounted to reduce the interference from the border effect. An
image of CH∗ emission spectra obtained from Flame A1 with coal particles
is shown in Fig.3.3 (bottom) where the colormap corresponds to the emission
intensity (a.u.). The average of emission intensity of 1 mm at the burner axis
is taken to plot the evolution of the spectrum band heads. In this area, the
temperature and species mass fractions are considered to be independent of the
radius. A typical CH∗ spectrum is presented in Fig.3.4 In order to avoid the
uncertainties of plotting the evolution of only one pixel, an average of 5 pixels
around the band heads was done.
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Figure 3.4: CH∗ spectrum obtained at the flame front of CH4/air flame A1

The intensity profiles at different distances from the burner are then obtained
by moving the burner via the micropositioning system presented in section
2.2.2. Therefore, the optical path and setup is kept constant. A series of
spectra corresponding to each axial position is presented in Fig.3.5. It shows
clearly that the baseline of each raw spectrum is not necessarily the same.
The contribution to this baseline value comes from both background emission
(i.e. the ambient environment) and as well as continuous spectra such as CO∗2
and blackbody emission. In order to remove this baseline and to get relative
information on OH∗, CH∗ and C∗2 emission intensities, subtraction preocedure
is necessary to correct the profiles. This will be developped in detail in the next
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section.
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Figure 3.5: Axial CH∗ emission profiles of Flame A1 with coal particles, raw spectra

3.1.2.2 Post-processing procedure

Background signal
The background signal from ambient environment is measured and averaged
before and after the measurement of each operating condition. This value
may change due to the temperature and other parasite light sources. In Fig.3.6
(left) is presented the comparison of two raw CH∗ spectra obtained in the flame
front for CH4/Air and Coal/CH4/Air flames respectively. After removal of the
corresponding background signal respectively, the corrected spectra are shown
in Fig.3.6(right). This first step removes the "offset" value of each spectrum.
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Figure 3.6: Comparison of raw CH spectra (left) and background-removed spectra
(right) obtained in the flame front for CH4/Air (blue) and Coal/CH4/Air (red) flames
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Figure 3.7: Examples of the continuous spectra correction of OH∗, CH∗ and C∗
2

emission profiles of Coal/CH4/air flame A1

Continuous spectra

IbbOH(309nm) = I301nm

IbbCH(431nm) =
1

2
(I422nm + I440nm)

IbbC2(516.5nm) =
1

2
(I508nm + I525nm)

(3.3)

The CO∗2 and blackbody subtraction is performed according to equations (3.3),
where the overall signal Ibb is estimated. This subtraction is done because both
the CO∗2 and blackbody emission have continuous spectrum (Alviso (2013)).
Therefore, the Ibb of CH∗ at 431 nm is obtained by averaging the Ibb at 422 nm
and 440 nm wavelength, while the Ibb of C∗2 from 508 nm and 525 nm wavelength.
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These value are chosen from the same spectrum acquired at each measurement.
As for OH∗ spectrum, Ibb at 301 nm is used where no OH∗ band is present
at this wavelength. Figure 3.7 illustrates the subtraction procedure for OH∗,
CH∗ and C∗2 emission profiles respectively. An example of these two steps of
post-processing is given in the next section. This blackbody signal is relatively
smaller for OH∗ and CH∗ spectrum because the blackbody radiation effect is
much more significant with higher wavelength according to the Planck’s law.
However, for C2 spectrum, this substraction is essential to clearify the sources
of emission intensity.

3.2 Experimental results

3.2.1 Operating conditions

Operating conditions are selected to ensure flame stability, flame thickness
for enough spatial resolution and high emission intensity to improve the sig-
nal/noise ratio . The main limitation when conducting the experiments is that
the flame stability is very sensible to the following three parameters:

• Equivalence ratio Φ of the gas mixture

• Injection velocity Vu (strain rate ε)

• Oxygen/Nitrogen ratio

Name Equivalence ratio Φ Inlet velocity Vu (m/s) Strain rate ε (s−1)
Flame A1 0.88 2.6 260
Flame A2 1.0 2.6 260
Flame A3 1.12 2.6 260
Flame A4 1.2 2.6 260

Table 3.1: Four different equivalence ratios (Φ) studied

Name Φ Vu (m/s) ε (s−1) O2 (%) N2 (%)
Flame A1 0.88 2.6 260 21 79
Flame B1 0.88 2.7 260 23 77
Flame C1 0.88 2.8 260 25 75

Table 3.2: Three oxygen inlet volume fractions studied

So it is necessary to perform parametric studies. In order to identify the im-
portance of each factor, we have performed numerical simulations (Xia et al.
(2017)) to study the effect of strain rate on the flame structure and emission
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intensity. The results showed that the strain rate would result in the dis-
placement of the flame front position. The increase of residence time of coal
particles would produce more pollutants. However the parametric study fur-
ther discussed in section 7.1 will show that the mole fractions of OH∗, CH∗ and
C∗2 do not exhibit significant difference with moderate difference of strain rate.
To illustrate the type of results obtained, the experimental conditions of four
different equivalence ratio (Φ defined by Eq.2.2) with constant strain rate (ε
defined by Eq.2.1) are fisrt chosen as shown in Table 3.1. Secondly, the oxygen
mole fraction in the oxidizer stream has been varied from 21% to 25% for a
constant equivalence ratio Φ = 0.88, as shown in Table 3.2.

3.2.2 Spontaneous emission

Figure 3.8(up) presents a typical CH4/air flame front obtained by CH∗ chemi-
luminescence of Flame A1. The Abel-inverted spontaneous emission (ASE)
profile is plotted along with the averaged signal in Fig.3.8(bottom). Because
the absolute value is changed after Abel transformation, both profiles are nor-
malized by their repective peak values. It can be noted that Abel inversion has
shifted very slightly the location of the maximum CH∗ emission intensity. Sim-
ilarly, the ASE signal of Flame A1 with coal particles is presented in Fig.3.9.
The same curvature effect is corrected by Abel inversion.
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Figure 3.8: Average image of CH∗ emission of Flame A1 (up); axial CH∗ emission
profiles of the averaged and Abel inverted data normalized with the peak values (bottom)

By plotting the two normalized ASE profiles of Flame A1 with and without
coal particles in Fig.3.10, one may notice that both CH∗ and C∗2 signals appear
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in the burnt gases of the CH4/coal/air flame while they are not observed in the
CH4/air flame. Numerical simulations presented later in this present work will
help to analyze this phenomenon.

It’s also worth noticing that the C∗2 profile of coal flame does not show clearly
the peak which indicates the position of the flame front but a small plateau
instead. This can be explained by the fact that the emission intensity around
516 nm in the hot gases is much higher than that of the flame front. However,
this emission is the combination of C∗2 radical and the blackbody spectrum. In
order to get an idea of the influence from each factor, the results obtained from
FES are compared in parallel in the following section.

X(mm)

D
is

ta
n

c
e
 f

r
o

m
 b

u
r
n

e
r
 (

m
m

)

−12 −10 −8 −6 −4 −2 0 2 4 6 8 10 12

10

12

14

16

18

20

11 12 13 14 15 16 17 18 19 20
0

0.2

0.4

0.6

0.8

1

Distance from burner (mm)

N
o

r
m

a
li

z
e
d

 C
H

*
 i

n
te

n
si

ty

 

 

Average

Abel Inverted

Figure 3.9: Average image of CH∗ emission of Flame A1 fed with coal particles (up);
axial CH∗ emission profiles of the averaged and Abel inverted data normalized with the
peak values (bottom)
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Figure 3.10: Axial CH∗ (left) and C∗
2 (right) emission profiles of Flame A1 nor-

malized with the peak values (METH: CH4/air flame, METH-COAL: CH4/coal/air
flame)
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3.2.3 Emission spectroscopy
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Figure 3.11: Comparison of emission profiles of original signal(black), signal after
ambient background subtraction(green) and final corrected signal after subtraction of
blackbody radiation (red) of Coal/CH4/Air flame: (a) OH∗, (b) CH∗, (c) C∗

2

Figure 3.11 shows the comparison of signals before and after post-processing
procedure. The first correction (black to green signal) corresponds to the re-
moval of the ambient backgroud. The offset value is practically constant along
the burner axis. However, it should be noted that the second subtraction (green
to red signal) of continuous spectrum from CO∗ emission and blackbody radia-
tion is not consistent along the burner axis. This can be explained by the fact
that the flame is not perfectly flat but slightly saucer-shaped (see Figs.3.8 and
3.9). The measurements along the vertical direction in the region above the
flame are inevitably affected by the light emissions from the upward-curved tail.
This creates an artificial signal, which increases the measured concentration on
the fresh gas side.



Part I - Experimental studies of pulverized coal devolatilization and
oxidation

63

The uncertainty of the measurement is estimated from maximum emission in-
tensities in 300 images, in comparison to the average values obtained from those
images. In CH4/air flames the uncertainty is 5% and in CH4/coal/air flames
10%. As the measurements do not give absolute values, in order to make com-
parisons with the numerical results, the experimental profiles of OH∗, CH∗ and
C∗2 were normalized by the maximum values from the reference CH4/air Flame
A1.

3.2.4 Comparison between ASE and FES
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Figure 3.12: Comparison of OH∗ spontaneous emission imaging (dashdot line) and
spectroscopy (circle and square) profiles for CH4/O2/N2 (blue) and Coal/CH4/O2/N2

(red) flames for different O2 mole fractions: (a) OH∗, (b) CH∗, (c) C∗
2

Here we compare the signals from ASE and FES measurements of Flame A1.
Figure 3.12 illustrates the comparisons of OH∗, CH∗ and C∗2 emissions of both
CH4/air and CH4/coal/air flames respectively. The experimental setup and
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parameters are kept constant, so that the intensity profiles can be considered
relatively comparable with each other. All profiles are normalized by the max-
ima of OH∗, CH∗ and C∗2 emission corresponding to CH4/air Flame A1 (without
coal particles) from ASE and FES signals respectively. The comparison shows
that results from ASE and FES are coherent at the fresh gas side. However in
the burnt gases OH∗ profiles from both methods are consistent but CH∗ and
C∗2 signals significantly differ. It seems that in this region the ASE signal is
more important due to blackbody emission because it can not be eliminated
from the measurement, while FES signal is corrected for blackbody emission.

The comparison between ASE and FES signals highlights the advantages and
disadvantages both methods. The spontaneous emission imaging using narrow-
band filters is spatially resolved and relatively les time-consuming than FES
method. However, spectrally resolved FES permits blackbody emission correc-
tion, which has significant effect especially for the presence of coal particles.
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Chapter 4

Literature review of pulverized
coal devolatilization and
oxidation: modeling

This chapter addresses one of the most important aspects to simulate
coal combustion: the thermal conversion of coal particles. First the
characterization of coal, the kinetics of devolatilization, volatile com-
bustion and char combustion are reviewed. Different levels of modeling
complexity are summarized. Then, the coupling of these kinetic mod-
els with CFD is discussed, in particular, several examples are presented
in order to illustrate the gap between detailed models and the need of
simplified approaches in CFD applications.
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4.1 Characterization of coal

Unlike other fossil fuels such as natural gas or diesel, coal varies considerably in
nature. Analysis of the chemical composition of coal and some of its properties
is given in this section.

4.1.1 Proximate analysis

The proximate analysis of coal gives an overview of its general composition,
based on the different levels of volatile matter, fixed carbon, moisture and ash.
These quantities are determined by measuring the mass loss of a coal sample
that undergoes the thermo-gravimetric analysis (TGA). The sample is usually
heated to up to 900◦C under a nitrogen atmosphere and then held at 900 ◦C
and the atmosphere is switched to air (Speight 2005).

4.1.1.1 Moisture

The moisture content can be determined by the mass loss after the sample has
been heated to 110◦C under a N2 atmosphere until a constant mass is achieved
(Donahue and Rais 2009). The measured moisture content represents water
that may be physically or chemically bound in the coal. The percent of water
changes with the rank of the coal. Lignite has the most quantity of moisture,
while anthracite has the least.

4.1.1.2 Volatile Matter (VM)

Volatile matter is determined by the loss of mass, corrected for moisture, when
heating up a coal sample to 900◦C in an oxygen-free environment as a result
of thermal decomposition. Volatile matter consists of a mixture of gases and
tar. The main constituents are CO2, CO, H2O, methane and other hydrocar-
bons (CxHy). Determination of the devolatilization rate plays a fundamental
role in modeling coal combustion. Anthracite coal has the lowest volatile mat-
ter content (typically 2-12%), while bituminous, sub-bituminous, and lignite
coals yield higher results, 15-45%, 28-45%, and 24-32%, respectively (Speight
2005). The amount of volatile matter released is also strongly dependent on
experimental conditions and heating rates.

4.1.1.3 Fixed Carbon (FC)

Fixed carbon is the solid combustible material (coke/char) that remains after
loss of moisture and volatile matter minus the ash that remains after combustion
is complete. Combustion occurs when the sample is held at 900 ◦C and the
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atmosphere is switched to air. Fixed carbon is the calculated weight percentage
of material that was lost during the testing for moisture, volatile matter, and
ash:

FC% = 1−Moisture%− VM%−Ash%

The higher the fixed carbon levels in a coal type the higher the coal rank,
highest for anthracite, and lowest for lignite (Speight 2005).

4.1.1.4 Ash

Ash is the residue remained after the coal sample has fully combusted at 900
◦C in air. The ash in coal consists of hydrated alumina silicates, iron pyrites,
calcium and magnesium carbonates and alkali chlorides (Speight 2005). Nei-
ther ash or moisture in a coal are combustible materials, thus the coal rank
diminishes with their higher contents.

4.1.2 Ultimate analysis

The ultimate analysis, which is more comprehensive than proximate analysis, is
dependent on quantitative analysis of various elements present in a coal sample.
It describes the amount of carbon, hydrogen, oxygen, sulfur and nitrogen atoms
found in a coal type. The element composition is usually reported on a dry ash
free basis (daf). Table 4.1 shows the analysis of three lignite coals: Heizprofi
(HP) lignite used in this work, South Beulah (SB) and Morwell (MW) identified
in Hara et al. (2015).

Coal Name Proximate analysis (wt %) Ultimate analysis (wt %)

Moisture Ash Volatile Fixed C H O N Smatter carbon
HP 19.0 4.3 50.6 45.1 69.0 5.0 24.7 0.8 0.5
SB 18.1 13.7 38.6 47.7 71.8 4.7 19.2 1.4 2.9
MW 19.6 2.0 51.5 46.5 67.4 5.0 26.8 0.5 0.3

Table 4.1: Ultimate analysis of three lignite coals

4.1.3 Coal properties

4.1.3.1 Particle morphology

The size and shape of coal particles influence their heat and mass transfer
characteristics and behavior in fluids (Mathews et al. 2007; Schiemann et al.
2014; Liu et al. 2015; Bai et al. 2017). Despite the knowledge that coal particles
typically are not spherical (Fig.4.1), the size and shape can be determined
by microscopy, or light scattering. The assumption of spherical particles is
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commonly applied in modeling. In this work, we consider all particles to be
spherical during the combustion process.

dp L 

D 

Figure 4.1: Example of particle size detected by optical measurements (left) and the
standard modeling assuptions (right), adapted from Schiemann et al. (2014)

4.1.3.1.1 Density Coal particles are very porous. The apparent density
ρp,A measured by experiments is usually considered more representative of the
coal density than the true density ρp,T , the weight per unit volume of a pore
free particle. The porosity θp of the particle can be obtained from the ratio of
the apparent and true densites.

θp = 1−
ρp,A
ρp,T

(4.1)

From this point on, the coal particle density ρp in this work will be referred to
its apparent density ρp,A, provided by the manufacturer. The density of a coal
particle varies during the combustion process due to devolatilization and char
combustion.

4.1.3.2 Specific heat capacity

Developing a relationship between the specific heat capacity of coal Cp,coal
and temperature is very difficult as during thermal decomposition, because the
composition of the volatile matter and char within the coal particle changes
continuously (Merrick 1983). In most modeling cases, it is assumed that the
specific heat capacity of coal remains constant with values ranging between
1100 - 1600 J/kgK (Backreedy et al. 2006b; Franchetti et al. 2016). Some
studies attempted to develop models that relate the specific heat capacity of
coal to temperature, based on experimental data or from fundamental atomic
theory (Merrick 1983; Zhao and Haworth 2014; Rieth et al. 2016; Messig et al.
2017). For a coal particle with a composition (Yvolatile, Yash, Ychar), Cp,p is
defined as

Cp,p = YvolatileCp,vol(Tp) + YashCp,ash + YcharCp,char(Tp) (4.2)

where Cp,vol, Cp,ash and Cp,char are the specific heats for volatile matter, ash
and char, respectively. The specific heats of volatile matter and char typically
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depend on temperature Tp. Another formulation is based only on Tp, used by
Wan et al. (2017)

Cp,p = 836.0 + 1.53× (Tp − 273.0)− 5.4× 10−4(Tp − 273.0)2 (4.3)

In this work, Cp,p is considered constant and equals to of 1500 J/kgK.

4.2 Modeling of coal combustion kinetics

There are four commonly-recognized steps involved in the conversion process
of pulverized coal combustion: evaporation/drying, devolatilization, volatile
combustion (homogeneous reactions) and char oxidation/gasification (hetero-
geneous reactions). Once coal particles are injected into a combustion cham-
ber, they are heated up and the drying process (the release of moisture) oc-
curs immediately, followed by the rapid devolatilization process (the release of
volatiles) which occurs due to higher temperatures. Char produced through
the volatilization process is consumed by heterogeneous processes of combus-
tion and gasification, and its combustion yields CO2 and/or CO. Figure 4.2
schematically explains briefly the conversion process of coal particles.

Figure 4.2: Schematic of coal conversion process

In the present work, the coal particles used are considered to be dry, ash-free
(daf). Therefore, the process is simplified to two major steps concerning the
particle phase: devolatilization and char oxidation, as shown in Fig.4.3. The
different models are presented in following sections.
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Figure 4.3: Illustration of the typical coal conversion model used in the present work

4.2.1 Devolatilization

The first step (neglecting drying) of coal conversion is the thermal decomposi-
tion of the large molecular structure during pyrolysis. When a pulverized coal
particle enters the furnace, it heats up very rapidly, typically at 105 to 106 K/s
(Lemaire et al. 2014). As the particle heats up the volatile material starts
to decompose into a mixture of light gases and tars which are released. This
process is known as devolatilization. The composition of the emitted volatile
species varies with coal type and heating conditions. The devolatilization pro-
cess and the combustion of the volatile gases drive the temperature to increase
at the early stages of PCC.

Several quantities are expected to be predicted by the devolatilization model,
including: the release rate of the volatiles, the yield and composition of the
volatiles, and char formation rate.

A variety of coal pyrolysis models have been developed since the 1970s. These
models differ considerably in their complexity. The models are classified into
two major categories, empirical and network-based models. The network mod-
els take into account the detailed coal structure and directly simulate the de-
velopment of this structure. But empirical models are more often used in CFD
due to their lower computational cost.

4.2.1.1 Empirical models

• Single First Order reaction Model (SFOM)
The single rate model Badzioch and Hawksley (1970) assumes that the
rate of devolatilization is first-order dependent on the amount of volatiles
remaining in the particle.
The pyrolysis kinetics are modeled following the Arrhenius’ Law:

dmvol

dt
= k

(
m∗vol,0 − mvol

)
k = Apyrexp(−Epyr/RTp)
m∗vol,0 = Qmvol,0

(4.4)
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wheremvol,0 is the initial amount of volatile predicted from the proximate
analysis. It has been shown by experiments that the amount of volatile
released by different heating rates could lead to smaller or greater release
than what is given by the proximate analysis, and this is quantified by a
factor Q. k is the kinetic rate defined by an Arrhenius type equation with
pre-exponential factor A, activation energy E and particle temperature
Tp. A and E depend on the intrinsic characteristics of the coal samples
and on the heating rate as well.

• Competing Two Step Model (C2SM)
Devolatilization rate described in this model has two weighted first order
Arrhenius reaction rates Kobayashi et al. (1977); Ubhayakar et al. (1977).
Coal is assumed to decompose via two possible reaction paths depending
on its time-temperature history.

Coal → α1 V olatiles + (1− α1)Char, with kpyr,1 = A1exp(−E1/RTp)

→ α2 V olatiles + (1− α2)Char, with kpyr,2 = A2exp(−E2/RTp)

(4.5)

And the mass loss rate is expressed as:

dmvol

dt
= k

(
m∗vol,0 − mvol

)
k = α1A1exp(−E1/RTp) + α2A2exp(−E2/RTp)

(4.6)

Both reactions occur at the same time, however the first pseudo reaction is
dominant at lower temperatures and the second pseudo reaction becomes
increasingly faster at higher temperatures. The competing reaction rate
model should be more accurate than the single-step model as the volatile
release is a function of the particle temperature history rather than the
current particle temperature. However, the model requires knowledge
of more kinetic parameters which are often not available or difficult to
obtain.

• Distributed Activation Energy Model (DAEM)
The distributed activation energy model assumes that the release of volatiles
consists of multiple independent first-order reactions Anthony et al. (1975).

Coal → αi V olatiles + (1− αi)Char (4.7)

The pyrolysis rate of the reaction i is given by:

dmvol,i

dt
= ki

(
m0
vol,i − mvol,i

)
(4.8)

The activation energy is a gaussian distribution

f(E) =
1

σ
√

2π
exp(−(E − E0)2

2σ2
) (4.9)
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with ∫ ∞
0

f(E)dE = 1 (4.10)

And the mass loss rate is expressed as:

m = minf (1− 1

σ
√

2π

∫ ∞
0

exp(−k0

∫ t

0
exp(

−E
RTp

)dt− (E − E0)2

2σ2
)dE)

(4.11)

• Models for variation of particle size
In practice, the particle size might be affected by a number of different
processes like swelling, pyrolysis, break-up, char combustion, etc. There-
fore coal particle shape and size distribution must be assumed for the
calculation. Different approaches can be found in the literature.
(1) Some use constant-diameter spherical particles corresponding to the
measured mass-based median diameter.

mp =
1

6
ρpπd

3
p (4.12)

(2) Some use a swelling model, which allowes the particle diameter to
increase by a swelling constant Csw during pyrolysis.

dp/dp,0 = 1 + (Csw − 1)
mp,0 −mp

νvolmp,0
(4.13)

where νvolmp,0 is the total volatile content of the particle. However, the
swelling effect has been found to be more influential on larger particles,
while it does not change the small-particle statistics significantly.

4.2.1.2 Network models

This approach involves approximating the break-up of the coal macromolecu-
lar structure during pyrolysis. It requires large amounts of input data about
the structure of the coal considered. The Functional-Group, Depolymeriza-
tion, Vaporization, Cross-linking (FG-DVC) modelSolomon et al. (1988), the
FLASHCHAIN modelNiksa and Kerstein (1991), and the chemical percolation
devolatilization (CPD) modelGrant et al. (1989) are most widely used. They
are more accurate models to predict the production rates of the species during
the devolatilization based on the physical and chemical transformations of the
coal structure. However, these approaches are usually too expensive to be used
directly in CFD applications.



Part II - Numerical studies of pulverized coal devolatilization and
oxidation

75

4.2.2 Volatile composition

Volatile gases are made up of light gases (CO, CO2, H2, H2O, CH4, C2H2,
C2H4, ...) and heavy gases such as tar. The composition of these gases signifi-
cantly differs depending on the type of coal and the pyrolysis temperature Hara
et al. (2015); Xu and Tomita (1987a); Xu and Tomita (1987b). They can either
be approximated to a single or a few hydrocarbon species, or obtained exper-
imentally, depending on the desired accuracy. However, modeling the release
and transport of each species individually would be expensive in LES, and as
such in many studies, the volatiles are treated as a single postulate substance
CaHbOc Hara et al. (2015); Hashimoto et al. (2012); Hashimoto et al. (2012),
in which a, b and c represent the composition ratio of each chemical element.

The volatile combustion reactions are then expressed by the following formulas.

CaHbOc + (
a

2
+
b

4
− c

2
)O2 → aCO +

b

2
H2O (4.14)

CO +
1

2
O2 → CO2 (4.15)

A more comprehensive representation of the volatile gases is to subdivide them
into different species. This approach needs a priori knowledge of the composi-
tion of the volatile gases. This knowledge can be provided by the CPD model.
Hara et al. Hara et al. (2015) chose CH4, CO, CO2, H2, H2O, C2H2, C2H4,
C2H6, C3H6, C3H8 as light gas species and C6H6 to represent tar.

4.2.3 Char combustion

Reactions of the remaining char with O2, CO2 and H2O take place at the
particle surface of the porous char particle. Char kinetics strongly vary from
individual samples and under different operating conditions. But they may also
depend on the preceding devolatilization process, as the initial char structure
and morphology as well as the initial reactivity are determined. Unlike pyrol-
ysis, it is often difficult to obtain reliable char kinetics only from coal analysis
information.

• Diffusion-kinetic model
This model includes the effects of both diffusion Kd and chemical reaction
rate Kc (Baum and Street 1971). Kd and Kc are the incorporates the
effects of chemical reaction on the internal surface of the char particle and
pore diffusion respectively.

dmp,char

dt
= πd2

pPO
KcKd

Kc +Kd
(4.16)
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Kd = C1

(
(T∞ + Tp)/2

)0.75

dp
(4.17)

Kc = Acexp(−Ec/RTp) (4.18)

Where dp is the particle diameter, PO is the partial pressure of oxidant
species in the gas surrounding the combusting particle and the kinetic
rate.

• Intrinsic model
An alternative is to obtain Kc using the physical properties of the char
rather than experimental values (Smith 1978; Smith 1982). The chemical
rate Kc is expressed in terms of the intrinsic chemical and pore diffusion
rates:

Kc = ηγρpAiski (4.19)

where ki is the intrinsic reactivity of Arrhenius form, γ = dp/6 is the
characteristic size, Ais is the internal surface area of the char particle, and
η is the effectiveness factor which is the ratio of the actual combustion
rate to the rate attainable if no pore diffusion resistance existed.

• Carbon Burnout Kinetics (CBK) model
CBK (Hurt et al. 1998; Hurt and Calo 2001; Backreedy et al. 2006a; Liu
and Niksa 2004) is a variation of the intrinsic model and it was specifically
designed to predict the total extent of carbon burnout and fly ash car-
bon content of PCC. This model takes into account both oxidation and
gasification reactions and also includes submodels for the pore evolution,
thermal annealing, ash inhibition, etc (Zhou et al. 2017).

4.3 Coal kinetics in CFD

4.3.1 Approaches to bridge the gaps

As introduced in the Section 4.2, a number of various coal models have been
developed at different complexity levels over the years. Generally, the network
models tend to predict coal conversion rate and products more accurately. How-
ever, empirical models are most often used in CFD. In the literature, detailed
models are used to calibrate the parameters of the empirical models, which help
to achieve better results in large-scale computations.

• Tabulated-devolatilisation-process (TDP) model
The main limitation of using the single rate model is that the same kinetic
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parameters are used for all coal particles at all temperatures. However,
the volatile yield depends on the particle temperature history and heating
rate. Hashimoto et al. (2012) proposed a Tabulated Devolatilisation Pro-
cess (TDP) model, which consists of a pre-processed table with different
values of the kinetic parameters A(Tp) and E(Tp), and Q-factor for a set
of particle temperature histories. During the simulation the appropriate
parameters are then allocated to each particle given its temperature his-
tory. Calculation flowcharts for the conventional and the TDP models
are given in Fig.4.4.

Figure 4.4: Calculation flowcharts for the conventional and the TDP models from
Hashimoto et al. (2012)

• Calibration of empirical pyrolysis models
Several recent PCC-LES studies used the approach of calibrating the con-
ventional SFOM model with CPD model (Franchetti et al. 2013; Rabacal
et al. 2015; Stein et al. 2013; Vascellari et al. 2013; Vascellari et al. 2014),
where the CPD model was coupled with the LES solver in by a prepro-
cessing method (Fig4.5). The suggested calibration procedure is reported
to give good results comparing with experimental data.
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Figure 4.5: Pyrolysis kinetic preprocessor (PKP) workflow from Vascellari et al.
(2013)

• Online-CPD-coupled LES

In the recent study of Wan et al. (2017), the CPD model, is incor-
porated into LES in real time (Fig.4.6). The comparison between the
CPD-coupled LES and the LES using the SFOM model showed that the
CPD-coupled LES approach is able to give a better prediction on particle
pyrolysis in the high-temperature turbulent flow.

Figure 4.6: Coupling the CPD model into an LES solver from Wan et al. (2017)

• Direct-CPD-flamelet LES
Recently, Rieth et al. Rieth et al. (2017) performed direct-CPD-flamelet
LES of the CRIEPI jet flame Hwang et al. (2005), where the devolatiliza-
tion rates are directly determined from CPD model. It is shown that the
direct use of CPD in the LES is feasible. Comparison with two empir-
ical models, SFOM and C2SM, showed the influence of devolatilization
modeling on the LES results. The difference between CPD and the fitted
SFOM model on the instantaneous particle level is significant, so that
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the direct CPD coupling may suit better the cases where polydisperse
particles experience different thermal histories.

4.4 Summary

To summarize this chapter, detailed coal conversion models are available. How-
ever the use of these models in the modeling of practical PCC applications
remains limited. Simplified but relatively accurate models are highly required.
The current approaches mainly consist of combination between detailed mod-
eling and laboratory-scale experiments for the calibration of simplified models.
On the other hand, the commonly used coal sub-models have never been tested
and validated in strained laminar configurations. Therefore, parametric studies
and analyses of the assumptions that are commonly used in PCC simulations
will be studied in the present work.





Chapter 5

Modeling of pulverized coal
devolatilization and oxidation in
strained CH4/O2/N2 flames

This chapter presents the governing equations describing pulverized
coal devolatilization and oxidation in strained methane/nitrogen/oxygen
flames. First, the governing equations that describe the gaseous phase
are presented. The equations will be limited to the 1-D formulation used
in this thesis, with the addition of a source term to account for the two-
phase coupling between the gas and solid phase. Then an overview of
the models used in this work to represent the solid phase and the gov-
erning equations are reported. Finally the numerical methods used in
this work to discretize the equations in space and time are given.
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5.1 The structure of strained premixed laminar flames

Strained premixed laminar flames offer the advantage of well defined flame con-
ditions suitable for experimental investigations and also for numerical studies
of the combustion processes (Darabiha et al. 1993). The laminar premixed flat
flame archetype retained consists of a burner ejecting fresh gases against a wall
(Fig.5.1). The premixed fuel and oxidizer flow with a velocity dependent on the
mixture composition. Strain rate ε, calculated according to Eq.2.2, increases
by increasing the mixture injection velocity. ε is thus controlled by modifying
the injection velocity Vu. The mixture of fuel and oxidizer impacts onto the
stagnation plane, which is here the wall surface. The flame is stabilized when
the flow velocity equals the flame speed, thus defining the flame front position.

Fuel + Oxidizer 
 

Hot gases 

Flame front 

Wall y

x

Figure 5.1: Schematic presentation of a laminar premixed flat flame impinging a
wall

The modeling of laminar strained flames has been well studied in EM2C lab-
oratory for decades. Rolon (1988) studied in detail the structure of a laminar
counterflow flame theoretically and experimentally. The thesis of Giovangigli
(1988) characterized the extinction limits of premixed flames. DARABIHA
and CANDEL (1992) studied the influence of temperature on the limits of igni-
tion and extinction on counterflow diffusion flames. Aguerre (1996) performed
experimental and numerical studies of steady and unsteady flames. Daguse
(1996) investigated the effect of thermal radiation on the structure of premixed
and diffusion counterflow flames. Croonenbroek (1996) studied different opti-
cal diagnostics on laminar strained flames. These studies mainly focused on
gaseous flames. Versaevel (1996) studied counterflow spray flames from a the-
oretical and experimental point of view. More recently, several studies on two-
phase counterflow flames were conducted in the EM2C laboratory. Betbeder-rey
(2008) studied experimentally and numerically n-decane counterflow diffusion
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flames. Alviso (2013) investigated the combustion of biodiesel using counterflow
spray flames, and validated a biodiesel surrogate chemical kinetic mechanism.
Franzelli et al. (2013) evaluated different tabulation techniques for spray com-
bustion. The results proved that the chemical structure of laminar spray flame
can be modeled by a multi-regime flamelet combustion model based on gaseous
flamelets.

The numerical simulation of the strained coal/methane/air flames is neces-
sary in order to study the characteristics of PCC under this configuration.
Therefore, comparisons between experimental and numerical simulations are
conducted. The simulations are performed using the 1D-COUNTERFLOW
solver integrated with coal reactions in the REGATH package with detailed
thermochemical and transport properties developed at EM2C laboratory.

5.2 Modeling of the gaseous phase

We consider an axisymmetric strained configuration as shown in Fig.5.1. Chem-
ically reacting gas-particle flow problems are mathematically formulated using
equations for gas and particle conservation of mass, momentum, energy, and
species concentration. In order to model reactive two-phase flows, this three-
dimensional time-dependent multi-species system of equations can be simplified
taking into account the symmetry conditions in counterflow flames. The ax-
isymmetric configuration can be formulated in cylindrical coordinates, and then
further simplified to a one-dimensional formulation by a similarity approach,
because the species concentrations and temperatures may be considered as in-
dependent of the radius in the vicinity of the symmetry axis. The pressure
is considered constant thereafter. Volume forces on each species, including
gravity, are neglected. Radiative heat transfer from the gaseous phase to the
exterior is considered including reabsorption by species such as CO, CO2, H2O
and OH.

5.2.1 Governing equations

In this section the governing equations for the continuous phase are introduced.
Note that the particle diameter dp and particle density number n are small
enough, so that we may consider that the solid phase volume is negligible when
compared to the gaseous phase volume. In this case, the density of gas ρg is
used to present that of the gas-solid mixture ρ. The system of equations is
completed by specifying the ideal-gas equation for the gaseous phase giving ρg
as a function of Tg and p (ρg = pW/RTg ).

We start by writing the equations in radial and axial coordinates respectively
x and y.
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Mass balance equation

∂ ρg
∂t

+
1

xj
∂ (xj ρg ug )

∂ x
+
∂ ( ρg vg )

∂y
= nṁs (5.1)

where x and y respectively denote radial and axial coordinates. Subscripts g
and s respectively designate the gaseous and solid phases, ρ, u, v, T and Yk
denote density, radial velocity, axial velocity, temperature and the kth species
mass fraction respectively. ṁs is the mass source term of a single particle.

Species balance equation

∂ (ρg Yk )

∂t
+

1

xj
∂ (xj ρg ug Yk )

∂ x
+
∂ ( ρg vg Yk )

∂y
= − ∂

∂y

(
ρg Yk Vky

)
+Wk ω̇k+ γsk nṁs

(5.2)

where γsk is the mass fraction of kth species in the volatile gases issued from coal
particles. Wk and ω̇k are the molar weight and the molar chemical production
rate of the kth species respectively, and Vky is the diffusion velocity of the kth

species in the axial direction. By developing the lefthand side of this equation
and using Eq.(5.1), we obtain

ρg
∂ Yk
∂t

+ ρg ug
∂ Yk
∂ x

+ ρg vg
∂ Yk
∂y

= − ∂

∂y

(
ρg Yk Vky

)
+Wk ω̇k +nṁs (γsk−Yk)

(5.3)

X-momentum continuity

∂ (ρg ug )

∂t
+

1

xj
∂ (xj ρg u

2
g )

∂ x
+
∂ ( ρg ug vg )

∂y
= −∂ p

∂ x
+

∂

∂y

(
µg
∂ug
∂y

)
+nṁs us−n fx

where fx is the radial component of the drag f .

Similarly, developing the lefthand side of this equation using Eq.(5.1), we obtain

ρg
∂ug
∂t

+ ρg ug
∂ ug
∂ x

+ ρg vg
∂ ug
∂y

= −∂ p
∂ x

+
∂

∂y

(
µg
∂ug
∂y

)
+nṁs (us−ug )−n fx

(5.4)

Energy balance equation

∂ (ρg hg )

∂t
+

1

xj
∂ (xj ρg ug hg )

∂ x
+
∂ ( ρg vg hg )

∂y
=

∂

∂y

(
λg
∂Tg
∂y

)
− ∂

∂y

( K∑
k=1

(ρg Yk Vk hk )
)

+

K∑
k=1

γskhk(Ts)nṁs − n q̇ − q̇R
(5.5)
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where hk is the specific enthalpy of the kth species and the total enthalpy
hg can be written as hg =

∑K
k=1 Ykhk(Tg).

∑K
k=1 γskhknṁs is the total en-

thalpy issued from the solid particles, and q̇ is the heat transfer rate from the
gaseous phase to a single particle, which will be discussed later. The term q̇R
corresponds to the radiative heat transfer between the gaseous phase and the
environment, of which the modeling method is detailed in Appendix D. Then
by developing the lefthand side of this equation using Eq.(5.1), we obtain

ρ
∂hg
∂t

+ ρ ug
∂ hg
∂ x

+ ρ vg
∂ hg
∂y

=
∂

∂y

(
λg
∂Tg
∂y

)
− ∂

∂y

( K∑
k=1

(ρ Yk Vk hk )
)

+nṁs(

K∑
k=1

γskhk(Ts) − hk(Tg)) − n q̇ − q̇R

(5.6)

The similarity approach is employed by searching for similar solutions of both
gaseous and solid phases balance equations in the vicinity of the central axis.
The similarity analysis leads to solutions of the form: ug = xUg(y), vg = vg(y),
Tg = Tg(y), ρg = ρg(y), Yk = Yk(y), k = 1, ...,K, us = xUs(y), vs = vs(y),
Ts = Ts(y), ρs = ρs(y), αs = αs(y), and Ysdry = Ysdry(y). The superscript g
represents gaseous phase and the superscript s the solid phase. ρ is density,
u and v the radial and axial velocities respectively, T temperature. Yk is kth

species mass fraction, αs particles volume fraction, and Ysdry dry coal mass
fraction. Ug and Us respectively describe the y-dependence of the transverse
velocities ug and us. Assuming a constant radial pressure-gradient, J describes
J = − 1

x
∂p
∂x , and is considered constant along the axial coordinate: ∂J/∂y = 0.

The parameter j corresponds to 0 and 1 for two-dimensional and axisymmetric
configurations, respectively. fx and fy are the drag forces in x and y directions.
The parameter j corresponds to 0 and 1 for two-dimentional and axisymmetric
configurations, respectivelely. Vky is the kth species diffusion velocity modeled
by using mixture averaged multicomponent transport Kee et al. (1986). The
governing equations, which describe the flow conservation of gaseous phase, can
be written in the following form:

Mass balance equation

∂ ρg
∂t

+ (1 + j)ρgUg +
∂ρgvg
∂y

= Ṁs (5.7)

Species balance equation

ρg
∂ Yk
∂t

+ ρg vg
∂ Yk
∂y

= − ∂

∂y

(
ρg Yk Vky

)
+ Wk ω̇k + Ẏs,k , k = 1, . . . , Nsp

(5.8)
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x-momentum

ρg
∂ug
∂t

+ ρg U
2
g + ρg vg

∂ Ug
∂y

= J +
∂

∂y

(
µg
∂Ug
∂y

)
+ U̇s (5.9)

Energy balance equation

ρg
∂hg
∂t

+ ρgvg
∂hg
∂y

=
∂

∂y

(
λg
∂Tg
∂y

)
− ∂

∂y

( K∑
k=1

(ρg Yk Vky hk )
)
− q̇R+Ḣs (5.10)

In these equations Ṁs, U̇s and Ḣs represent the gas-solid coupling terms for
mass, momentum and enthalpy respectively; while Ẏs,k is the coupling term of
the kth species.

Ṁs = nṁs (5.11)

Ẏs,k = nṁs(γsk − Yk) , k = 1, . . . ,K (5.12)

U̇s = nṁs (Us − Ug ) − n fx (5.13)

Ḣs = nṁs

K∑
k=1

(γskhk(Ts) − Ykhk(Tg)) − n q̇ (5.14)

5.3 Modeling of the particle phase

5.3.1 Coal sub-model assumptions

In this section, we introduce the conservation equations describing the combus-
tion of pulverized coal particles. Therefore, the process of evaporation has been
illuminated. The parameters that quantify the heterogeneous and homogeneous
reaction during the coal devolatilization and char oxidation will be presented
in the next chapter.

We admit these following assumptions :

• We consider only the transformation of solid phase to gaseous phase, i.e.
the process of pyrolysis and the surface oxidation of char produced.

• The coal particles are dry, ash-free.

• During the coal conversion process, the diameter of coal particles remains
constant.
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• All the particles are considered monodisperse.

• The temperature is uniform at the surface of each particles.

• The global particle volume is very small compared to that of the gaseous
phase.

• Interactions between the particles are neglected.

Figure 5.2: Ilustration of the pyrolysis model

We define these following terms.
VARIABLES:

• Ys,dry: the mass fraction of dry coal contained in the solid phase that will
undergo the pyrolysis.

• Ys,char: the mass fraction of char contained in the solid phase, which is
produced during the pyrolysis and consumed by the combustion. The
solid phase is composed by the dry coal and char, so we obtain the fol-
lowing equation:

Ys,dry + Ys,char = 1 (5.15)

• dp: the diameter of coal particles.

• ρs: the density of solid phase, which decreases during the process of
pyrolysis and oxidation, because we assume that the diameter of coal
particle remains constant.

• αs: the volume fraction of solid phase, related to the porosity of coal and
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it only changes if the diameter of particles changes during the combustion
process.

• Ts: the temperature of coal particle

PARAMETERS:

• Cp,s: the specific heat value of solid phase

• ∆hpyr: the heat of pyrolysis, which can be calculated from

• ∆hchar: the heat of char combustion, this is the enthalpy change of char
oxidation reaction.

SOURCE TERMS

• ω̇s,pyr: the pyrolysis rate of coal from which volatiles are issued and char
is derived

dry coal → νcharchar + (1− νchar) volatiles (5.16)

where νchar is the mass fraction of char which remains constant during
the pyrolysis.

• ω̇s,char: the oxidation rate of char reacting with oxygen at the particle
surface. Possible char oxidation reactions are

char + O2 → CO2

char +
1

2
O2 → CO

(5.17)

which correspond to full and partial oxidation of carbon. The difference
between considering full or partial reactions will be discussed later in
section 7.4.

• ṁs: the mass source term from the release of volatiles to the gaseous
phase due to devolatilization and the consumption and release of gases
due to char combustion

• fx,y: the drag forces in x and y directions

5.3.2 Governing equations

Employing similarity approach with the assumptions introduced formerly, we
can write the conservation equation for the monodisperse particles:
Mass balance equation

∂ αsρs
∂t

+ (1 + j)αsρsUs +
∂ (αs ρsvs )

∂y
= −nṁs (5.18)
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Species balance equation

αsρs
∂ Ysdry
∂t

+ αsρs vs
∂ Ysdry
∂y

= − ω̇spyr + Ysdry nṁs (5.19)

x-momentum

αsρs
∂ Us
∂t

+ αsρs U
2
s + αsρs vs

∂ Us
∂y

= n fx (5.20)

y-momentum

αsρs
∂vs
∂t

+ αsρs vs
∂ vs
∂y

= αsρs g + n fy (5.21)

Energy balance equation

αsρsCps
∂ Ts
∂t

+ αsρs vsCps
∂ Ts
∂y

= − ω̇spyr ∆hpyr

− ω̇schar ∆hchar −
K∑
k=1

γskhk(Ts)nṁs + n q̇

(5.22)

5.3.2.1 Reaction rates

The total mass volatilization rate of particles is given by:

nṁs = (1 − νchar) ω̇spyr + ω̇schar (5.23)

The devolatilization rate is modeled using the single-step and two-step model
introduced in Section 4.2.1.1,

ω̇spyr =
(
αs ρsYsdry

)
kpyr exp

(
−Epyr
RTs

)
(5.24)

And

ω̇spyr =
(
αs ρsYsdry

)
[α1k1 exp

(
−E1

RTs

)
+ α2k2 exp

(
−E2

RTs

)
] (5.25)

The char reaction rate is modeled by the diffusion-kinetic model presented in
Section 4.2.3.

ω̇schar = (αsσs)XO2P0
KcKd

Kc +Kd
(5.26)

5.3.2.2 Drag forces

The radial and axial components of the drag force are described by the Stokes
law

fx = 3πµgdp(Ug − Us) (5.27)

fy = 3πµgdp(vg − vs) (5.28)
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5.3.3 Particle heat transfer

The heat transfer between solid fuel particles and gas consists of particle-gas
convective and radiative heat transfers. The energy source term due to convec-
tive and radiative heat transfer nq̇ is written as

nq̇ = Q̇conv + Q̇rad (5.29)

5.3.3.1 Convective heat transfer

Q̇conv = Apkconv (Tg − Ts) = αsσskconv (Tg − Ts) (5.30)

where Ap is the particle surface area. The surface-to-volume ratio σs is calcu-
lated by particle size given the concentration of coal particles Npart/Vtot and
the particle size rpart.

αs = Vs/Vtot = NpartVpart/Vtot = 3πNpartr
3
part/4Vtot (5.31)

σs = As/Vs = 3/rpart (5.32)

kconv is the heat transfer coefficient of coal particles, then

kconv = Nuλg/dp (5.33)

dp is the diameter of the particle, Nu is the Nusselt number. And according to
the Ranz-Marshall correlation model (Ranz and Marshall, 1952):

Nu = 2 + 0.6Re1/2
p Pr1/3 (5.34)

Rep is the particle Reynolds number, Pr is the Prantl number Pr = Cpµg/λg
calculated from heat capacity of gas, gas viscosity and thermal conductivity.
Nu is considered as 2 in the present work.

5.3.3.2 Radiative heat transfer

To compute the net energy flux into a volume element, the radiative heat flux
through the medium needs to be known and is thus necessary to be calcu-
lated. The solution has to take account for absorption and emission of thermal
radiation for both phases, as well as scattering by the coal particles.

Due to the complexity of modeling coal particle radiation, the Stefan-Boltzmann
model is considered in our work:

Q̇rad = εApσ
(
T 4
w − T 4

s

)
= εαsσsσ

(
T 4
w − T 4

s

)
(5.35)

where ε is the emissivity of coal particles, which is assumed to be 0.85 from
Kurose et al. (2004), σ is the Stefan-Boltzmann constant.
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5.4 Numerical methods

The Newton method is used for the resolution of the equations. In general, the
partial differential system can be writen as

F(U) = 0 (5.36)

where F is the differential equation system of U and U = {U1, ..., Uj , ..., UM}
is solution vector, M is number of variables in the system.
Here, U = {Tg, Yk, ug, vg, Ts, us, vs, αs, ρs, Ysdry}.

The problem can then be formulated by introdusing a meshX = {x1, ..., xi, ..., xN},
N is number of points in the mesh for the discrete space:

F (S) = 0 (5.37)

where S is discrete solution vector for each variable at each point of the mesh
S = {sj(xi)}. And F is the differential equation system of S.

The equation (5.37) is then solved iteratively,

F (Sk) +
∂F

∂S
(Sk)(Sk+1 − Sk) = 0 (5.38)

where Sk and Sk+1 are the estimation of S at iteration k and k+1, respectively.
From Equation 5.23 we can deduce an equation for Sk+1:

Sk+1 = Sk − [∇F (Sk)]−1Fk (5.39)

The Jacobian matrix J = ∇F (Sk) and its inversion are then calculated nu-
merically.

Summary of the chapter

This chapter presents the 1-D formulation of coupled gas-solid simulations on
the current configuration. The system of equations includes radiation heat
transfer as well as coal devolatilization and oxidation. This gas-solid coupling
is handled by the 1D-couterflow solver developed in the REGATH code, which
allows for detailed information on the thermal history of gas and coal particles,
along with concentration of reactive species, offering the possibility for com-
parison with experimental data and validation of the modeling approach. Such
numerical configuration is useful to provide a comprehensive understanding of
the mechanisms as well as the characteristics of coal conversion. It is also very
helpful to evaluate different coal sub-models.
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Numerical setup and validation

This chapter presents the numerical setup used to perform the simu-
lations of coal devolatilization and oxidation in strained CH4/O2/N2

flames. The boundary conditions are introduced, followed by the pa-
rameters describing coal conversion. Then chosen chemical mechanism
along with sub-mechnisms for OH∗, CH∗ and C∗2 chemiluminescence re-
actions used in the simulations will be given. Finally, typical numerical
results of one particular condition will be introduced and validated with
experiments.
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6.1 Numerical setup

6.1.1 Boundary conditions

The set of equations for gaseous and solid phases, as well as the strained flow
configuration have been presented in the previous chapter. Concerning bound-
ary conditions, the temperature at the burner exit is at an initial value of T0

= 310 K. The the temperature of the brass plate is measured by thermocou-
ple which gives TH = 600 K and is modeled as an isothermal wall. Gas axial
velocities at the left side are given in Table 3.1. The particle velocity has been
measured by PIV. PIV results show that the particle average velocity matches
the gas velocity at the injector exit. A typical profile is available in Appendix
B.

The diameter of injected particles corresponds to the Sauter Mean Diameter
measured by microscope: d0

p = 15 µm and the particle number density (per
unit volume) is estimated ns = 1.14× 109 particles per m3 from coal mass flow
rate measurements, which leads to α0

s = 2.0 × 10−6. The initial properties of
coal particles used for the simulations are: ρ0

s = 909 kg/m3, and the constant
pressure heat capacity cps = 1.5 kJ/(kgK). In addition, the pressure is equal
to one atmosphere. The distance between the burner exit and the stagnation
plane H is equal to 20 mm.

Boudary conditions are given in Table 6.1. In this table, "left" corresponds to
the inlet jet position (y = 0) and "right" corresponds to the wall postion (y =
H).

left (y = 0) right (y = H)
Gas temperature Tg = T0 Tg = TH

Species mass fractions Yk = Y 0
k zero gradient

Gas axial velocity vg = v0 vg = 0
Gas radial velocity ug = u0 ug = 0
Particle temperature Ts = T0 Ts = TH
Particle axial velocity vs = v0 vs = 0
Particle radial velocity us = u0 us = 0
Particle volume fraction αs = α0

s zero gradient
Particle density ρs = ρ0

s zero gradient
Particle diameter dp = d0

p zero gradient
Particle number density np = n0

p zero gradient

Table 6.1: Boundary conditions (gas and particles coming from the left)
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6.1.2 Parameters of coal sub-models

The coal particle is considered dry and ash-free. We consider only the trans-
formation of solid phase to gaseous phase, i.e. the process of pyrolysis:

Coal =⇒ (1 − νchar)V olatile + νchar Char

and the surface oxidation:

Char =⇒ (1 + νO2)CO2

The total mass loss rate of particle phase is given by:

nṁs = (1 − νchar) ω̇spyr + ω̇schar

Coal devolatilization source term ω̇spyr will be modeled either by first-order
single reaction model (Badzioch and Hawksley 1970) or by a 2-step model
(Kobayashi et al. 1977). The kinetic-diffusion model (Baum and Street 1971)
is used for char oxidation source term ω̇schar . The parameters for single reaction
model and char oxidation model are modeled as in Ranade and Gupta (2014),
and the 2-step model parameters are taken from Lemaire et al. (2014). The
heat transfer between gas and particle phase is decomposed as:

nq̇ = Q̇conv + Q̇rad

The convective heat transfer is given by

Q̇conv = αsσskconv (Tg − Ts)

where σs is the particle surface/volume ratio, kconv is the heat transfer coeffi-
cient of coal particles calculated assuming a Nusselt number of 2. The radiative
heat transfer is given by

Q̇rad = εαsσsσ
(
T 4
w − T 4

s

)
where the radiation temperature Tw is set as the boundary temperature in this
configuration, the emissivity of coal particles ε = 0.85 is kept constant in all
simulations, and σ is the Stefan-Boltzmann constant. The kinetic parameters
describing the pyrolysis and char oxidation reactions (equations 5.24 to 5.26)
are summarized in Table 6.2.

Item Parameter Value
One-step A 1.58× 1081/s

devolatilization E 1.29× 105J/molK

Two-step A1 2.0× 1051/s
devolatilization E1 1.05× 105J/molK

A2 1.3× 1071/s
E2 1.67× 105J/molK

Diffusion-kinetic Ac 2.7× 10−3kg/(m2sPa)
char oxidation Ec 9.43× 104J/molK

Table 6.2: Parameters for coal sub-models
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6.1.3 Determination of volatile compositions

As indroduced in section 4.2.1, the composition of volatile matter of a certain
coal type can be obtained from network models such as CPD (Chemical Perco-
lation Devolatilization) model (Grant et al. 1989), FG-DVC model (Solomon
et al. 1988) and FLASHCHAIN model (Niksa and Kerstein 1991). The lignite
employed in the present work is Heizprofi (HP) (see Appendix A). However,
there is no volatile mater compostion available for this lignite. Therefore in
this study, its total volatile matter (TVM) composition is considered as simi-
lar to the composition of lignite coals South Beulah (SB) and Morwell (MW)
identified by Xu and Tomita (1987a). We use the data published by Hara et al.
(2015) obtained from the CPD model. It predicts the formation of CH4, CO,
CO2, H2, H2O, C2H4, C2H6, C3H6, C3H8, and tar (represented by C6H6). The
properties of these lignite coals, i.e. HP, SB and MW coal, are listed in Table
4.1. Table 6.3 shows the mass percentage of different volatile species of SB and
MW coal.

Coal Name CH4 CO CO2 H2 H2O C2H4 C2H6 C3H6 C3H8 tar(C6H6)
SB 3.4 17 15 0.66 12 1.04 1.04 1.04 0.52 48.3
MW 4.7 19 24 0.64 15 0.96 0.96 0.96 0.48 33.3

Table 6.3: Mass percentage of species in TVM from pyrolysis of SB and MW

6.1.4 Chemical kinetic mechanisms

Simulations are performed using REGATH code for the strained flow flame
with detailed chemistry and mixture averaged multicomponent transport. To
model the gaseous combustion kinetics, we have employed the H2/CO/C1-C4

mechanism USC-Mech II (Wang et al. 2007) consisting of 111 species and 784
reactions.

Flame chemiluminescence has been widely employed as simple and nonintrusive
optical diagnostic for combustion systems. The ability of interpreting chemilu-
minescence intensity to monitor equivalence ratio, heat release rate, pollutant
emission and flame front location has been proved by previous studies (Ko-
jima et al. 2005; Leo et al. 2007; Panoutsos et al. 2009; Liu et al. 2017).
In order to predict the reaction rates of the excited species formation, kinetic
studies of gaseous flames (Smith et al. 2002; Smith et al. 2005; Kathrotia et al.
2012) have been performed by different researchers. However, because of lack
of experimental data of coal flames, the ability of chemical kinetics models in
prediction of coal flame chemiluminescence is still an open issue.

To enable comparison with OH∗, CH∗ and C∗2 measurements, the reaction ki-
netics used by Alviso et al. (2015) and Kathrotia et al. (2012) have been also
added to the USC-Mech II mechanism. This allows us to compute excited-
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state concentrations as well as chemiluminescence intensities in the flame. The
mechanisms of Alviso et al. (2015) and Kathrotia et al. (2012) are given in
Appendix C and are summarized in Table 6.4.

Name CH4 mechanism Excited Species Source
mech A USC-Mech II OH∗, CH∗, C2 Alviso et al. (2015)
mech K USC-Mech II OH∗, CH∗, C∗2 Kathrotia et al. (2012)

Table 6.4: Sub-mechanisms of excited species

We have validated these two mechanisms combined with USC-Mech II for the
methane/air combustion and flame speed by performing freely-propagating pre-
mixed 1-D flames and by comparing them to experimental data from Vagelopou-
los et al. (1994) and Vagelopoulos and Egolfopoulos (1998). Figure 6.1 presents
flame speed as a function of equivalence ratio. As expected, due to the low
concentration of the excited species, no significant difference in the results was
found with the addition of these elementary reactions. The thermochemical
data for OH∗, CH∗ and C∗2 were added as well. The transport coefficients for
the excited species were the same as those of the ground state species. The
results presented in this and the next chapter are performed using mech A, if
not specified.
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Figure 6.1: Methane/air flame speed as a function of equivalence ratio

6.2 Validation case

6.2.1 Typical flame structure

Figure 6.2 presents a typical CH4/coal/air flame structure. The numerical con-
ditions correspond to CH4/coal/air flame A1 (see Table.3.1), with a methane/air
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equivalence ratio of 0.88 and strain rate of 260 s−1. In all figures in this chapter
y = 0 corresponds to the burner exit and y = 20 to the brass plate. The pre-
mixed methane/air flame front is located at about y = 16.14mm. At this point,
the gas temperature increases very rapidly from 310 K to about 1700 K within
0.6 mm. The maximum temperature of gas and particle are 2034 K and 1485
K, respectively. The particle temperature continues to increase in the burnt
due to the heat exchange with the gas phase and to the coal devolatilization
and oxidation reactions.

This figure also presents the axial velocity profiles of gas and coal particles,
where the gas axial velocity decreases from the burner exit due to the presence
of the stagnation plane, and it reaches a minimum before the flame front. As
the flow enters the flame, due to preheating and thereby thermal expansion,
the axial velocity increases and reaches a maximum just after the peak of the
heat release. After the heat release, the axial velocity decreases to zero at the
stagnation plane.

The difference between gas and particle temperature is essentially due to the
endothermic reactions of coal pyrolysis. The exothermic char oxidation reac-
tions, however, does not play an important role under the present configuration
(see section 7.1 for detailed discussion). Moreover, the particles reach thermal
equilibrium after the rapid heating when passing through the methane flame
front.
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Distance from burner (mm)

H
C

O
 m

o
le

 f
ra

c
ti

o
n

C
H

4
 m

o
le

 f
ra

c
ti

o
n

0 5 10 15 20
0

5E­06

1E­05

1.5E­05

2E­05

2.5E­05

3E­05

3.5E­05

4E­05

0

0.02

0.04

0.06

0.08

CH4

HCO
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Devolatilization results in the release of volatile gases, therefore the particle
density decreases, see Fig.6.3, partly because of char oxidation as well. The
particle number density increases slightly before the flame front due to the
decrease of the flow velocity and then diminishes very rapidly as the flow ve-
locity increases with heat release, thus increasing the profile of particle volume
fraction αs.

Figures 6.4 to 6.6 present typical CH4/coal/air flame species profiles. All species
concentrations are presented in mole fractions. The boundary conditions cor-
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respond to CH4/coal/air flame A1. Figure 6.4 presents CH4 and HCO species
profiles. HCO is a major intermediate species in the oxidation of CH4 to CO2.
It is considered as a good indicator of the heat release rate (HRR) for premixed
methane-air flames, according to Nikolaou and Swaminathan (2014). HCO also
indicates the flame front position because this species is present only in the re-
action zone. CH4 mole fraction remains constant until it reaches the flame front
position, then decreases rapidly. As for the coal particles, CH4 mole fraction
is relatively small compared to other volatile species, therefore methane is not
formed in large quantities.
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CH2O and OH species profiles are presented in Fig.6.5. CH2O profile reaches a
peak and drops sharply. The location where CH2O peaks is also approximately
the flame front position. The maximum of the CH2O profile lies slightly ahead
of the rising slop of OH. Mulla et al. (2016) compared the correlation between
HRR and the product of CH2O and OH concentrations. They concluded that
[OH]×[CH2O] is suitable markers of HRR for premixed methane-air flames.

In Fig.6.6 are presented CO, CO2 and O2 species profiles. Concerning O2 the
oxidizer, the mole fraction remains constant from the burner exit until it reaches
the flame zone, then decreases very sharply due to the rapid reactions of CH4

with oxygen. However, the volatile species as well as coal char continue to react
with the oxidizer, O2 mole fraction decreases in the burnt gases instead of a
plateau. In the burnt gases, CO and CO2 mole fraction also increase due to
the contribution of coal pyrolysis and char oxidation. Finally, in Fig.6.7 it is
shown that C2H species has a similar profile as CH∗ radical. This explains the
main formation paths of CH∗ via reactions 2.6.
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6.2.2 Comparison between CH4/air and CH4/coal/air flames

Figure 6.8 gives a comparison of gas temperature and HCO species mole frac-
tion between CH4/air and CH4/coal/air for Flame A1. The coupling between
gaseous and solid phases will result in the mass and heat transfer between gas
and solid, which originates the variation of local equivalence ratio and flame
speed, as well as convection and radiation due to the presence of coal particles.
The gas temperature increases when the impact of coal devolatilization and
oxidation on the gaseous phase is accounted for. This increase of temperature
is due to the local augmentation of the fuel/air equivalence ratio induced by
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the release of volatile gases, which has similar effect on flame speed. According
to the HCO species profile in Fig.6.8, it can be seen that there is a noticeable
difference of the flame front positions. This is beacuse the CH4/coal/air flame
speed is slightly higher than that of the CH4/air flame, therefore the flame
front slightly moves towards upstream.
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Concerning other species profiles, the difference of peak position and maximum
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value has been observed between CH4/air and CH4/coal/air solutions. Figure
6.9 presents mole fraction profiles of C6H6 and C2H2, which are linked to the
volatile species of coal pyrolysis. Formation of these two species, also involved
in the soot formation process, are mainly influenced by the coal devolatiliza-
tion. As shown in Fig.6.9, in the hot region, C2H2 mole fraction increases in
CH4/coal/air flame, while it is localized at the flame front in CH4/air flame.
C6H6 is not present in CH4/air flame. Indeed, the presence of heavy hydrocar-
bons in the TVM promotes the formation of soot precursors in the burnt gases,
localized between the flame front and the wall. More discussion on the TVM
compostion will be presented in the next chapter.

6.2.3 Comparison between experimental and numerical pro-
files of OH∗ and CH∗ and C∗2

6.2.3.1 Normalization procedure

As the measurements do not give absolute values, in order to make compar-
isons, all numerical profiles are normalized by the maxima of OH∗, CH∗ and C∗2
concentration calculated using mech A and mech K (Table 6.4) corresponding
to CH4/air Flame A1 (without coal particles) respectively. All experimental
profiles are normalized by the maxima of OH∗, CH∗ and C∗2 emission corre-
sponding to CH4/air Flame A1 from FES signals respectively. Figure 6.10
shows an example how the normalization is performed. CH4/air Flame A1 is
chosen as the reference case. The normalized experimental and numerical OH∗

mole fractions X∗OH∗ are then calculated by the following equations:

[X∗OH∗ ]exp =
OH∗FES

max([OH∗FES ]A1)
(6.1)

[X∗OH∗ ]num =
OH∗num

max([OH∗num]A1)
(6.2)

Therefore experimental and numerical OH∗ profiles of this flame is normal-
ized from the maxima of 700 and 4.5E-10 to 1 respectively. Since the two
sub-mechanisms result in different absolute values, as shown in Fig.6.12, the
normalization is performed respectively correponding to the CH4/air Flame A1
predicted using each sub-mechanism. The similar procedure is applied to CH∗

and C∗2 profiles respectively.

For C∗2 profiles, the C2 in mech A (Appendix C) is used to represent the C∗2
radical, because no quenching reactions is included for C∗2 radical in both mech
A and K, therefore the mole fraction of C2 is suitable to present C∗2 radical.
This assumption is validated by mech K, where the calculated absolute C∗2 mole
fraction equals to that of C2 in Fig.6.11.
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The reason for this normalization procedure is that all the other operating
conditions are therefore comparable with the "calibration" case A1. The com-
parisons with experimental profiles can be then considered semi-quantitative.
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Figure 6.10: Comparison of OH∗ between spectroscopy measurements (circle and
square) and numerical profiles (using mech A) for CH4/air (blue) and CH4/Coal/air
(red) flame A1
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Normalized experimental and numerical OH∗ and CH∗ and C∗2 profiles are thus
shown in Fig.6.13.

6.2.3.2 Comparison of flame A1

Comparisons between numerical results and FES signals of flame A1 are pre-
sented as the validation of numerical setup. The simulations are performed for
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the same operating condition using two sub-mechanisms for chemiluminescent
species. The aim is to better understand the dependency of simulated OH∗,
CH∗ and C∗2 emission characteristics on chemical kinetic schemes. The two
sub-mechnisms have been introduced in Table 6.4.

As we can see in Fig.6.13, the numerical predictions of OH∗, CH∗ and C∗2 mole
fractions are very close to the experimental profiles along the axis. The po-
sitions of the peaks match both for CH4/air and CH4/coal/air flames. The
experimental profiles have larger thickness than the simulated ones. This may
be explained by the broadening of the experimental profiles. According to
Alviso (2013), one possible cause is photon deviation due to a high temperature
gradient. In fact, in a counterflow premixed flame, the temperature gradient
induces a change in the milieu refractive index, causing a deviation of photons
emitted by the flame, and therefore producing a broadening of species experi-
mental profiles. Furthermore, the FES signal may contain the projection of the
whole detected volume. This may be why the signal before flame front is more
affected.

The variation trends of all three species are well predicted by both sub-mechanisms,
that is, chemical reactions in the hot gases related to the coal conversion are
detected through flame chemiluminescence, considering the very small concen-
tration of the measured species and the uncertainties in the excited radical
kinetic modeling. The abusolute values of OH∗ and CH∗ predicted by two sub-
mechanisms are slightly different. The predicted C∗2 concentration, however,
shows more important difference in terms of absolute value. This is due to
the difference in the sub-mechanisms for C2 reactions. Another source of dis-
crepancy in the hot region between the predicted and measured intensities of
CH4/Coal/air flames can be due to the uncertainty of coal feeding rate.

Summary of the chapter

This chapter presents the numerical setup and simulation results based on the
approach developed in the previous chapter. The coupled 1-D calculations are
representative of the devolatilization and oxidation of pulverized coal particles
in a laminar strained flow configuration. The chemical mechanisms underly-
ing methane combustion as well as chemiluminecent reactions are used. The
thermal conversion of coal particles that produces volatile gas reactants is con-
sidered in the solid phase, while and the oxidation of these gas reactants is taken
into account by the combined mechanisms. Two sub-mechanisms are validated
by the comparison with experimental data. They are both able to predict the
emission characteristics of CH4/coal/air flames, although differences in abso-
lute values are observed. This modeling approach will be further evaluated by
the comparative study of experiments and simulations in the next chapter. The
relevance of coal sub-models as well as the assumptions used to describe coal
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conversion will be examined in detail.



Chapter 7

Parametric studies and
discussion

In the present chapter, results of numerical simulations for different
experimental conditions presented in Section 3.2.1 are analyzed. Para-
metric studies are performed to investigate the influences of CH4/O2

equivalence ratio and O2 mole fraction in the oxidizer stream on flame
emission characteristics. In addition, coal sub-models are varied for one
particular operating point. The effects of coal sub-models on the predic-
tion of flame emission characteristics are also highlighted. We observe
that the accuracy of coal combustion prediction depends greatly on the
choice of coal-related models and parameters. Different coal sub-models
enable to better understand the mechanisms leading to coal conversion
process as well as the influence on flame chemiluminescence.

7.1 Influence of strain rate . . . . . . . . . . . . . . . . . 110
7.2 Influence of equivalence ratio . . . . . . . . . . . . . 111
7.3 Influence of oxygen enrichment . . . . . . . . . . . . 118
7.4 Analysis of coal sub-models . . . . . . . . . . . . . . 123

7.4.1 Numerical study of char oxidation . . . . . . . . . . 126
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7.1 Influence of strain rate

In order to study the influence of strain rate on OH∗, CH∗, and C∗2 mole frac-
tion profiles, two numerical simulations are performed by varying the injection
velocity Vu (Eq.2.2) in order to compare with CH4/coal/air flame A1. The
simulations are performed using sub-mechanism A (Table 6.4). The strain rate
ε increases by increasing Vu while methane/air equivalence ratio remains con-
stant. Figure 7.1 shows that the flame front is displaced by about 3.5 mm
each time towards the wall with increasing ε. However the mole fractions of
OH∗, CH∗ and C∗2 do not exhibit significant difference with moderate changes
of strain rate.
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2 non-normalized numerical profiles for CH4/coal/air

flame A1, comparisons for different values of Vu = 2.6 m/s, 2.4 m/s and 2.2 m/s
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7.2 Influence of equivalence ratio

In this section, the influence of CH4/O2 equivalence ratio Φ (defined by Eq.2.2)
with constant strain rate as shown in Table 3.1 is discussed. Experimental data
and numerical profiles of OH∗, CH∗ and C∗2 obtained by both sub-mechanisms
mech A and K for CH4/coal/air flames A1, A2, A3 and A4 (Φ = 0.88, 1.0, 1.12
and 1.2 respectively) are compared and shown in Fig.7.2 through Fig.7.5. All
experimental profiles are normalized respectively by the maxima of OH∗, CH∗

and C∗2 emission corresponding to CH4/coal/air Flame A1 for spectroscopic
measurements. All numerical profiles are normalized respectively by the max-
ima of OH∗, CH∗ and C∗2 mole fractions calculated using mech A (Table 6.4)
corresponding to CH4/coal/air Flame A1.

The variation trends of all three species are well predicted by both sub-mechanisms,
considering the very small concentrations of the measured species and the un-
certainties in the excited radical kinetic modeling. The flame front position is
also well predicted as a function of equivalence ratio. For flame A1 in Fig.7.2,
there is significant effect from coal particles at the hot zone (between the flame
front and the wall). However for flames A2, A3 and A4, the presence of coal
particles results in richer flames. Therefore the emissions of CH∗ and C∗2 are
not as significant as for flame A1.

Considering the difference from two investigated sub-mechanisms, it mainly lies
in the prediction of CH∗ and C∗2 mole fractions. For a better understanding of
the influence of Φ on CH4/air and CH4/coal/air flames, we first focus on the
peak intensities (the maximum value of the chemiluminescence intensity), which
have a further advantage in the better signal-to-noise ratio. Figure 7.6 shows
the normalized OH∗, CH∗ and C∗2 maximum chemiluminescent intensities at the
flame front of CH4/air and CH4/coal/air flames A1, A2, A3 and A4 obtained by
experiments and numerical simulations. Both OH∗ and CH∗ chemiluminescence
are maximum near the stoichiometric conditions (Φ=1.0 for OH∗ and Φ=1.12
for CH∗). However C∗2 chemiluminescent intensity increases monotonically from
Φ=0.88 to Φ=1.2. These results agree qualitatively with experimental results of
CH4/air flames (Panoutsos et al. 2009; Liu et al. 2017) found in the literature.

The presence of coal particles shows insignificant influence on the OH∗, CH∗

and C∗2 maximum chemiluminescent intensities at the flame front. In order to
study the effect of coal particles in the hot zone, the experimental and numerical
values at the middle position between the flame front and the wall are plotted
in Fig.7.7 as a function of CH4/air equivalence ratio. For CH4/air flames,
the CH∗ and C∗2 chemiluminescent intensities are negligeable in the hot zone.
However, for CH4/coal/air flames, the CH∗ and C∗2 intensities in the hot zone
become less significant comparing with the peak value as the equivalence ratio
increases. This is due to the fact that in rich flames such as A3 and A4, there
is not enough oxygen left for the reaction with coal-related gaseous species.
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Figure 7.8 shows the numerical C2H2 mole fraction profiles of CH4/coal/air
flames A1 to A4 calculated using mech A. The concentration of C2H2 in the
burnt gases increases with the increase of equivalence ratio.
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Based on the analyses in Fig.7.6 and Fig.7.7, the mech A is able to better predict
the peak value at the flame front position, both for CH4/air and CH4/coal/air
flames.

7.3 Influence of oxygen enrichment

In this section, the influence of the oxygen mole fraction in the oxidizer stream
is discussed. Figures 7.9 through 7.11 present OH∗ and CH∗ and C∗2 profiles
respectively for three values of O2 mole fraction 21%, 23% and 25% (flames A1,
B1, and C1 from Table 3.2) for constant Φ = 0.88. On each figure, CH4/O2/N2

flame (blue) is compared to CH4/coal/O2/N2 flame (red). Symbols correspond
to experimental data obtained by spectroscopy. Two sub-mechanisms A and K
are used for simulations: solid lines correspond to mech A and dashed lines to
mech K.

The peak location of OH∗ and CH∗ and C∗2 measured in both CH4/O2/N2 and
CH4/coal/O2/N2 flames are well retrieved by the simulations. The maximum
gas temperature increases from 2030K to 2280K, while XO2 in the oxidizer
stream varies from 21% to 25%. Both chemiluminescence sub-mechanisms used
in this study are able to well predict the chemiluminescence intensity when coal
particles are added to the flame.

For a better understanding of the influence of oxygen enrichement, the peak
values of each species are investigated. Figure 7.12 shows the normalized
OH∗, CH∗ and C∗2 maximum chemiluminescent intensities at the flame front
of CH4/air and CH4/coal/air flames A1, B1 and C1 obtained by experiments
and numerical simulations. The variation trends of all three species are well
predicted by both sub-mechanisms, that is, the concentration increases with
oxygen concentration, considering the very small concentration of the measured
species and the uncertainties in the excited radical kinetic modeling. However
only a fair agreement is achieved between calculated and measured chemilu-
minescence intensity ratios in terms of oxygen concentration variations. Both
sub-mechanisms A and K overpredict the OH∗ intensities for higher oxygen
contents, while the mech K is able to better predict the CH∗ and C∗2 maximum
chemiluminescent intensities at the flame front, especially for the CH4/O2/N2

flames. This may highlight the need to investigate the dependency of kinetic
parameters under enriched air conditions.

In order to study the effect of coal particles in the hot zone, the experimental
and numerical values of at the middle position between the flame front and the
wall are plotted in Fig.7.13 as a function of oxygen mole fraction. In general,
both mechanisms are able to predict the CH∗ and C∗2 intensities caused by the
presence of coal particles. However, discrepancy in the hot region between the
predicted and measured intensities of coal/methane flames may be due to the
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uncertainty of coal feeding rate.
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Figure 7.10: Comparison of CH∗ spectroscopy (circle and square) and numeri-
cal (mech A: solid line, mech K: dashed line) profiles for CH4/O2/N2 (blue) and
CH4/coal/O2/N2 (red) flames for different O2 mole fractions: (a) Flame A1, (b)
Flame B1, (c) Flame C1



Part II - Numerical studies of pulverized coal devolatilization and
oxidation

121

13 14 15 16 17 18 19 20
0

1

2

3

4

Distance from burner (mm)

X
* C

2
*

(a): C
2
*, X

O2
=21%

13 14 15 16 17 18 19 20
0

1

2

3

4

Distance from burner (mm)

X
* C

2
*

(b): C
2
*, X

O2
=23%

13 14 15 16 17 18 19 20
0

1

2

3

4

Distance from burner (mm)

X
* C

2
*

(c): C
2
*, X

O2
=25%

Figure 7.11: Comparison of C∗
2 spectroscopy (circle and square) and numeri-

cal (mech A: solid line, mech K: dashed line) profiles for CH4/O2/N2 (blue) and
CH4/coal/O2/N2 (red) flames for different O2 mole fractions: (a) Flame A1, (b)
Flame B1, (c) Flame C1



122 Chapter 7 - Parametric studies and discussion

20 21 22 23 24 25 26
0

0.5

1

1.5

2

Oxygen content (%)

X
* O

H
*

(a): OH*

At the flame front

20 21 22 23 24 25 26
0

0.5

1

1.5

2

2.5

3

Oxygen content (%)

X
* C

H
*

(b): CH*

20 21 22 23 24 25 26
0

0.5

1

1.5

2

2.5

3

3.5

Oxygen content (%)

X
* C

2
*

(c): C2*

Figure 7.12: Comparison of experimental (symbols) and numerical peak values (mech
A: solid line, mech K: dashed line) of OH∗, CH∗ and C∗

2 as a function of O2 mole
fractions: CH4/air flames (blue), CH4/coal/air flames (red): (a) OH∗, (b) CH∗, (c)
C∗

2



Part II - Numerical studies of pulverized coal devolatilization and
oxidation

123

20 21 22 23 24 25 26
0

0.05

0.1

0.15

0.2

0.25

Oxygen content (%)

X
* C

H
*

(a): CH*

In the hot zone

20 21 22 23 24 25 26
0

0.1

0.2

0.3

0.4

Oxygen content (%)

X
* C

2
*

(b): C2*

Figure 7.13: Comparison of experimental (symbols) and numerical values (mech A:
solid line, mech K: dashed line) of CH∗ and C∗

2 in the hot zone as a function of O2

mole fractions: CH4/air flames (blue), CH4/coal/air flames (red): (a) CH∗, (b) C∗
2

7.4 Analysis of coal sub-models

The influence of TVM composition and coal combustion sub-models are ex-
plored in this section. Table 7.1 shows the different cases studied by numerical
simulations. Case A1 corresponding to CH4/coal/air flame from Table 3.1 is
chosen as a reference case, all other cases differing by only one parameter from
it. In this section, all the simulations are performed using mech A. Cases A1,
A1c, A1d and A1e use the 1-step devolatilization model (Badzioch and Hawk-
sley 1970), while case A1b uses the 2-step devolatilization model (Kobayashi
et al. 1977). Cases A1, A1b, A1d and A1e employ the TVM composition of
SB coal (Table 6.3). Case A1c corresponds to the TVM composition of MW
coal (Table 6.3). In order to analyze the influence of unburned hydrocarbons
present in the volatile matter on the flame structure, they are considered in
case A1d as only CH4 (55.34 %). Case A1e considers the oxidation product of
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char as CO instead of CO2 in cases A1 to A1d.

Case Description Devolatilization TVM Char oxidation
A1 Reference case (Table 3.1) 1-step SB CO2

A1b 2-step devolatilization 2-step SB CO2

A1c TVM = MW compostion 1-step MW CO2

A1d TVM HC considered as CH4 only 1-step SB CO2

A1e char + O2 → CO (Eq. 5.17) 1-step SB CO

Table 7.1: Variations in TVM composition and coal combustion sub-models for
CH4/coal/air flame A1
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Figure 7.14: Comparison of experimental and numerical OH∗ mole fraction profiles
in cases A1 to A1e
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Figure 7.15: Comparison of experimental and numerical CH∗ mole fraction profiles
in cases A1 to A1e

Absolute non-normalized numerical profiles of OH∗ mole fraction are shown
in Fig.7.14. The flame front positions predicted by cases A1b to A1e match
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the reference case A1. In general, the variation of TVM composition and coal
devolatilization model show slight influence in the predicted OH∗ concentra-
tion. However significant differences in the predicted CH∗ and C∗2 mole fraction
profiles are observed.
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Figure 7.16: Comparison of experimental and numerical C∗
2 mole fraction profiles in

cases A1 to A1e

Absolute non-normalized numerical profiles of CH∗ and C∗2 mole fraction pre-
dicted by the computation are presented in Figs 7.15 and 7.16, respectively.
The peak location of CH∗ and C∗2 are well retrieved by all simulated cases.
Measurements in case METH-COAL A1 (Figs 7.10a and 7.11a) highlight a
prolongation of the coal reaction zone in the burnt gases which is not observed
in the methane flame. This effect is not observed in case A1d where the TVM
unburned hydrocarbons are simplified as CH4 only. The results obtained with
MW coal in case A1c also show that the difference of TVM composition has a
significant effect on the hot zone where coal pyrolysis products play an impor-
tant role in the emission of CH∗ and C∗2 radicals.

The comparison of case A1b with case A1 shows that the complexity of the
devolatilization model will change the predicted CH∗ and C∗2 mole fraction.
However no definitive conclusions considering the "better" model can be drawn
before more accurate measurements are available. The assumption of char
oxidation product (case A1e) has little influence on the predicted CH∗ and C∗2
mole fraction profiles. The reason may be the relative small conversion rate of
char, considering the short residence time and moderate temperature of coal
particles in the hot zone. Another possible variable is the oxygen content.
In order to better understand the phenomenon of char oxidation, a numerical
parametric study is performed in the following section.

Finally, formation of C2H2 and C6H6, involved in the soot formation process,
are influenced by the coal devolatilization, as shown in Fig.7.17. In particular,
the presence of heavy hydrocarbons (case A1d compared with A1) in the TVM
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promotes the formation of soot precursors in the burnt gases, localized between
the flame front and the wall.
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Figure 7.17: Comparison of absolute numerical mole fraction profiles in cases A1
and A1d: (left) C2H2, (right) C6H6

7.4.1 Numerical study of char oxidation

Due to the limitation of the experimental configuration, the oxygen mole frac-
tion in the oxidizer stream does not go beyond 25%, while the injection velocity
as well as the coal feeding rate are also limited with a small range. Numerical
cases D1 and D1e are performed for a better understanding of the influence of
oxygen enrichment on char oxidation reactions. In these cases, the equivalence
ratio and injection velocity as well as the coal feeding rate are kept constant,
while the O2 mole fraction in the oxidizer stream is increase to 30%. Flame D1
considers full oxidation of char, while partial oxidation is used in flame D1e.
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Figure 7.19: Comparison of maximum gas temperature and char mass loss (%) as a
function of oxygen content (%)

In fig.7.18, normalized char mass fraction mchar
mcoal,0

is plotted for CH4/coal/O2/N2

flames A1, B1, C1, D1 and D1e. Due to the oxidation process, the char mass
fraction will decrease. With higher oxygen content, especially for flames D1
and D1e, the char burnout levels increase. The difference between the cases D1
and D1e comes from the fact that different values of heat of reaction are used
in the oxidation calculations, therefore the particle temperature is different.
However, this difference is relatively insignificant. In fig.7.19, the maximum
gas temperature and the char mass loss 1−mchar/mchar,max of flames A1, B1,
C1 and D1 are plotted as a function of oxygen content. It is clear that the char
burnout process is enhanced due to the higher oxygen content.

Summary of the chapter

The numerical simulations carried out on the coal devolatilization and oxi-
dation in strained CH4/O2/N2 flames are compared with experimental data.
The results demonstrate good agreements between experimental and numeri-
cal predictions of OH∗, CH∗ and C∗2 emissions. In particular, the influences
of CH4/O2 equivalence ratio and O2 mole fractions in the oxidizer stream are
investigated. According to the comparisons, mech A is proved to be suitable
for the predictions of CH4/coal/O2/N2 flames, while the mech K, more detailed
concerning C∗2 reactions, does not show more convincing results. In addition
to validation with experiments, parametric studies by varying coal combustion
sub-models as well as coal devolatilization products are performed. Analyses of
the assumptions that are commonly used in PCC simulations are checked un-
der the current configuration. Limited by the experimental configuration, char
oxidation is investigated by numerical parametric studies of oxygen enrichment.





Conclusion

In the present work, the devolatilization and oxidation of pulverized coal par-
ticles in a strained flame configuration has been studied by both experimental
and numerical approaches.

In Part I, the experimental approach was proposed. First, a review of the latest
experimental studies of coal devolatilization and oxidation, especially the differ-
ent measurement techniques and diagnostics commonly used in laboratory-scale
experiments was presented. They have been grouped based on the target phe-
nomena and the type of the reactor used. After comparing the advantages and
limitations of those configurations, the premixed laminar strained flow config-
uration was chosen for our study. Then, the experimental configuration of the
strained flames established by the flow of mono-disperse coal particles with a
stream of CH4/O2/N2 was presented. The description of the burner, the setup
of positioning system as well as the coal feeding system were explained. Fi-
nally, different measurement techniques used in this work were outlined. In
particular, we discussed two optical diagnostics used to investigate the flame
structure and emission characteristics: measurements of OH∗, CH∗, and C∗2
spontaneous emission (ASE) and flame emission spectroscopy (FES). The ex-
perimental and post-processing procedures of each diagnostic were presented.
The results from two diagnostics were compared for CH4/air and CH4/coal/air
flames respectively.

In Part II, the numerical approach used to carry the simulations was presented.
First the characterization of coal, the kinetics of devolatilization, volatile com-
bustion and char combustion were reviewed. Commonly used coal sub-models
and modeling assumptions were explained and were employed in the present
work. Then the governing equations describing pulverized coal devolatilization
and oxidation in strained CH4/O2/N2 flames and the numerical simulation
conditions along with coal sub-models and parameters were given. The same
operating conditions studied experimentally were simulated. To enable the cal-
culation of OH∗, CH∗ and C∗2 radicals concentrations, the sub-mechanisms used
by Alviso et al. (2015) and Kathrotia et al. (2012) have been also added to the
USC-Mech II mechanism. These two mechanisms were validated by compar-
isons with experiments. The results showed that both mechanisms were able
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to predict the OH∗, CH∗ and C∗2 emission of CH4/air and CH4/coal/air flames,
although differences in absolute values were observed. This modeling approach
was further evaluated by the comparative study of experiments and simulations
of different operating conditions. The results demonstrate good agreements be-
tween experimental and numerical prediction of OH∗, CH∗ and C∗2 emission
in terms of various CH4/O2 equivalence ratios and O2 mole fractions in the
oxidizer stream. Additional studies of coal combustion sub-models as well as
coal devolatilization products were performed.

The following conclusions can be driven from the observations in both experi-
mental and numerical studies:

• From the experimental point of view, the presence of pulverized coal par-
ticles in strained CH4/O2/N2 flames added complexity to the physical
phenomena of CH4 combustion. First, noticeable differences of the flame
front positions as well as increase of gas temperature have been observed
due to the variation of local equivalence ratio and flame speed. Second,
the comparisons between ASE and FES results were consistent at the
fresh gas side. However in the burnt gases OH∗ profiles from both meth-
ods are consistent but CH∗ and C∗2 signals significantly differ. This can
be explained that in this region the ASE signal is more important due to
blackbody emission because it cannot be eliminated from the measure-
ment. FES signal is possible with a correction of blackbody emission.
Finally, the energy related to coal particles is small comparing with the
total energy from methane combustion. Therefore, the influence from coal
particles on the flame structure is less significant than expected. Numeri-
cal studies are needed to further investigate coal combustion propertities
such as char oxidation.

• From the simulation point of view, both chemiluminescence sub-mechanisms
used in this study were able to well predict the chemiluminescence inten-
sity when coal particles are added to the flame. The variation trends
were predicted by the simulations with different equivalence ratios and
oxygen concentrations, considering the very small concentration of the
measured species and the uncertainties in the excited radical kinetic mod-
eling. Then, it can be seen from the discussions in Chapter 7 that the
predicted results from the modeling approach differed significantly with
changes to the coal sub-models and kinetic parameters. Especially, the
devolatilization model and coal pyrolysis products seem to play more im-
portant roles. Comparison with experiments showed that the current
numerical configuration was suitable for the prediction of OH∗, CH∗ and
C∗2 emission. However, it is difficult to reach definitive conclusion that
which sub-model or set of parameters is better due to the limitation of
experimental data. Finally, numerical simulations are used to investi-
gated higher oxygen enrichment that experimental conditions do not al-
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low. More parametric studies concerning char oxidation are needed for
the current configuration.

Perspectives

The perspectives opened by this work concern both experimental procedure
and numerical setup that are not realized or considered in the present study.

• Experimental design: More effort is needed to improve the current
coal feeding system in order to reduce the uncertainty of coal mass flow
rate measurements. Also, due to the difficulty of stabilization of the
flat flame, the investigated range of CH4/O2 equivalence ratio as well as
oxygen enrichment remained limited. More leaner CH4/O2/N2 flames and
higher O2 mole fractions are expected to complement the experimental
database, where more O2 promotes the reaction of coal devolatilization
and especially char oxidation reactions.

• Experimental characterization: There are still unclear points in the
characterization of the current CH4/coal/O2/N2 flames. These data are
necessary for the validation of modeling, for example, measurements of
particle temperature, evolution of particle size, concentration of burnt
gases, analysis of coal ash, etc. Other diagnostic techniques such as LDA
and LIF are expected to help better understand the physical phenomena
involved in the combustion process.

• Coal sub-models: We have shown that the prediction of species con-
centration in CH4/coal/O2/N2 flames depends greatly on the choice of
coal-related sub-models and parameters. In particular, more detailed de-
volatilization models, such as the chemical percolation devolatilization
(CPD) model, or well-validated model parameters for simple devolatiliza-
tion models, are expected to give more reliable predictions.

• Radiation Modeling: Radiation models of solid phase have not been
explored in detail in this work. However, radiation effect of coal particles
is expected to be important when the particle number density increases.
Moreover, in oxygen enriched combustion environments, the radiative
heat transfer between coal particles and the gaseous phase is significant
due to high temperature. Therefore, the implementation of high-fidelity
radiation models will be of great interest.





Appendix A

Analysis reference values of
Heizprofi lignite briquettes

Proximate analysis (annual average)
Moisture wt% 19.0
Ash wt% 4.3
Fixed Carbon wt% 50.6
Volatile Matter wt% 45.1
Lower Calorific Value MJ/kg 19.8
Ultimate analysis (annual average)
Carbon wt% 69.0
Hydrogen wt% 5.0
Oxygen wt% 24.7
Nitrogen wt% 0.8
Sulfur wt% 0.5
Analysis of oxides in ash on dry basis (annual average)
SiO2 wt% 4.0
Fe2O3 wt% 12.0
Al2O3 wt% 5.0
SO3 wt% 20.0
CaO wt% 36.0
MgO wt% 16.0
Na2O wt% 6.0
K2O wt% 1.0

Table A.1: Analysis reference values of Heizprofi lignite briquettes provided by the
manufacturer





Appendix B

Particle image velocimetry
(PIV) of the current
configuration

Particle image velocimetry (PIV) is an optical laser diagnostic that indirectly
measures the gas flow velocity field through the reconstructed displacement of
tracer particles in the flow.

Figure B.1: Typical PIV profiles at the burner exit
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PIV has been performed as a prelimenary study of the current strained CH4/coal/air
flame. A typical profile is presented in Figure B.1. The result shows that the
particle average velocity matches the gas velocity at the injector exit. There-
fore, the particles velocity is equal to the gas velocity, assumed as a boundary
condition used in numerical simulations.



Appendix C

Reaction Kinetics of OH∗, CH∗,
and C∗2 Chemiluminescence

Chemical reactions describing the production, quenching and chemilumines-
cence of OH∗, CH∗ and C∗2 are added to the USC mechanism. Two sub-
mechanisms found in literature are presented in Table C.1 and C.2. The units
are mol, cm, cal and s.The first sub-mechanism has been validated by Alviso
et al. (2015) for biodiesel fuels in a laminar counterflow spray configuration.
The second one is recently developped by Kathrotia et al. (2012) which in-
cludes more elementary reactions such as C3 species. It is used by Liu et al.
(2017) for the validation with methane flames.

The reactions for each radical (OH∗, CH∗ and C∗2) are presented separately.
In Table C.1 (mech A), for example, the reactions for the production and de-
struction of OH∗ radical are presented in R1-R10. Those of CH∗ radical are
presented by R11-R22. R22-R26 correspond to the formation and destruction
reactions of species C and C2, which is necessary because C and C2 are invloved
in the formation of CH∗ radical via the C2H species. Here, no quenching re-
actions is considered for C2 radical therefore the mole fraction of C2 is used
to present C∗2 radical. This assumption is validated by mech K, where the
calculated C∗2 mole fraction equals to that of C2.
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# Reactions A n E
R1 CH + O2 ⇔ OH∗ + CO 1.80×1011 0 0
R2 O + H + M ⇔ OH∗ + M 3.63×1013 0 0
R3 OH∗ ⇒ OH + hν 1.45×106 0 0
R4 OH∗ + N2 ⇔ OH + N2 1.08×1011 0.5 -1238
R5 OH∗ + O2 ⇔ OH + O2 2.10×1012 0.5 -482
R6 OH∗ + H2O ⇔ OH + H2O 5.92×1012 0.5 -861
R7 OH∗ + H2 ⇔ OH + H2 2.95×1012 0.5 -444
R8 OH∗ + CO2 ⇔ OH + CO2 2.75×1012 0.5 -968
R9 OH∗ + CO ⇔ OH + CO 3.23×1012 0.5 -787
R10 OH∗ + CH4 ⇔ OH + CH4 3.36×1012 0.5 -635
R11 C2H + O ⇔ CH∗ + CO 6.20×1012 0 0
R12 C + H + M ⇔ CH∗ + M 3.63×1013 0 0
R13 CH∗ ⇒ CH + hν 1.86×106 0 0
R14 CH∗ + N2 ⇔ CH + N2 3.03×102 3.40 -381
R15 CH∗ + O2 ⇔ CH + O2 2.48×106 2.14 -1720
R16 CH∗ + H2O ⇔ CH + H2O 5.30×1013 0 0
R17 CH∗ + H2 ⇔ CH + H2 1.47×1014 0 1361
R18 CH∗ + CO2 ⇔ CH + CO2 2.41×10−1 4.30 -1694
R19 CH∗ + CO ⇔ CH + CO 2.44×1012 0.50 0
R20 CH∗ + CH4 ⇔ CH + CH4 1.73×1013 0 167
R21 C2 + H2 ⇔ C2H + H 4.00×105 2.40 1000
R22 CH + CH ⇔ C2 + H2 5.00×1012 0 0
R23 C + C + M ⇔ C2 + M 3.00×1014 0 -1000
R24 C + CH ⇔ C2 + H 5.00×1013 0 0
R25 O + C2 ⇔ C + CO 5.00×1013 0 0
R26 C2 + O2 ⇔ CO + CO 9.00×1012 0 980

Table C.1: Mech A: OH∗, CH∗ and C2 formation, chemiluminescence and quenching
reactions from Alviso et al. (2015); Panoutsos et al. (2009)
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# Reactions A n E
R1 H + O + M ⇔ OH∗ + M 1.50×1013 0 5975
R2 CH + O2 ⇔ OH∗ + CO 1.80×1011 0 0
R3 OH∗ ⇔ OH 1.45×106 0 0
R4 OH∗ + O2 ⇔ OH + O2 2.10×1012 0.5 -482
R5 OH∗ + H2O ⇔ OH + H2O 5.93×1012 0.5 -861
R6 OH∗ + H2 ⇔ OH + H2 2.95×1012 0.5 -444
R7 OH∗ + CO2 ⇔ OH + CO2 2.76×1012 0.5 -968
R8 OH∗ + CO ⇔ OH + CO 3.23×1012 0.5 -787
R9 OH∗ + CH4 ⇔ OH + CH4 3.36×1012 0.5 -635
R10 OH∗ + OH ⇔ OH + OH 6.01×1012 0.5 -762
R11 OH∗ + H ⇔ OH + H 1.31×1013 0.5 -167
R12 OH∗ + Ar ⇔ OH + Ar 1.69×1012 0 4137
R13 C2H + O2 ⇔ CH(A) + CO2 3.20×1011 0 1600
R14 C2H + O ⇔ CH(A) + CO 2.50×1012 0 0
R15 C2 + OH ⇔ CH(A) + CO 1.11×1013 0 0
R16 C + H + M ⇔ CH(A) + M 3.63×1013 0 0
R17 CH(A) ⇔ CH 1.86×106 0 0
R18 CH(A) + O2 ⇔ CH + O2 2.48×106 2.14 -1720
R19 CH(A) + CO2 ⇔ CH + CO2 2.41×10−1 4.3 -1696
R20 CH(A) + CO ⇔ CH + CO 2.44×1012 0.5 0
R21 CH(A) + CH4 ⇔ CH + CH4 1.73×1013 0 167
R22 CH(A) + H2O ⇔ CH + H2O 5.30×1013 0 0
R23 CH(A) + H ⇔ CH + H 2.01×1014 0 1362
R24 CH(A) + OH ⇔ CH + OH 7.13×1013 0 1362
R25 CH(A) + H2 ⇔ CH + H2 1.47×1014 0.5 1362
R26 CH(A) + Ar ⇔ CH + Ar 3.13×1011 0 0
R27 C2H + O2 ⇔ CH(B) + CO2 4.27×1010 0 1600
R28 C2H + O ⇔ CH(B) + CO 3.33×1011 0 0
R29 C2 + OH ⇔ CH(B) + CO 1.48×1012 0 0
R30 C + H + M ⇔ CH(B) + M 4.84×1012 0 0
R31 CH(B) ⇔ CH 2.50×106 0 0
R32 CH(B) + O2 ⇔ CH + O2 3.90×1013 0 0
R33 CH(B) + CO2 ⇔ CH + CO2 4.00×1013 0 0
R34 CH(B) + CO ⇔ CH + CO 2.44×1012 0 0
R35 CH(B) + CH4 ⇔ CH + CH4 1.65×1013 0 0
R36 CH(B) + H2O ⇔ CH + H2O 5.30×1013 0 0
R37 CH(B) + H ⇔ CH + H 2.01×1014 0 1362
R38 CH(B) + OH ⇔ CH + OH 7.13×1013 0 1362
R39 CH(B) + H2 ⇔ CH + H2 1.47×1014 0.5 1362
R40 CH(B) + Ar ⇔ CH + Ar 6.60×1011 0 0
R41 CH(B) ⇔ CH(A) 5.00×107 0 0
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R42 CH2 + C ⇔ C2
∗ + H2 2.40×1012 0 0

R43 C3 + O ⇔ C2
∗ + CO 4.22×1012 0 0

R44 C2
∗ ⇔ C2 1.00×107 0 0

R45 C2
∗ + M ⇔ C2 + M 4.80×1013 0 0

R46 C + H2O ⇔ HCO + H 3.00×1012 0 0
R47 C + OH ⇔ H + CO 5.00×1013 0 0
R48 C + OH ⇔ CH + O 2.40×1014 0 21735
R49 C + CH ⇔ C2 + H 1.00×1013 0 0
R50 C + CH2 ⇔ C2 + H2 3.00×1012 0 0
R51 C2H + O ⇔ C2 + OH 1.20×1013 0 0
R52 C2H + H ⇔ C2 + H2 6.20×1013 0 17436
R53 C2 + OH ⇔ C2O + H 5.00×1013 0 0
R54 C2 + O2 ⇔ CO + CO 9.00×1012 0 979
R55 C2 + O ⇔ CO + C 1.00×1014 0 0
R56 C2 + OH ⇔ CH + CO 5.00×1013 0 0
R57 C2 + CH4 ⇔ C2H + CH3 3.00×1013 0 590
R58 C2 + C2H2 ⇔ C2H + C2H 1.00×1014 0 0
R59 C2 + C2H4 ⇔ C2H + C2H3 1.00×1014 0 0
R60 C2 + C2H6 ⇔ C2H + C2H5 5.00×1013 0 0
R61 C2 + O2 ⇔ C2O + O 2.00×1014 0 8073
R62 CH + CO ⇔ C2O + H 1.90×1011 0 0
R63 C2O + O ⇔ CO + CO 4.80×1013 0 0
R64 C2O + OH ⇔ CH + CO2 2.00×1013 0 0
R65 C + C2H ⇔ C3 + H 2.00×1016 -1.0 0
R66 C2 + CH ⇔ C3 + H 5.00×1013 0 0
R67 C3 + OH ⇔ CO + C2H 8.00×1013 0 0
R68 C3 + O2 ⇔ CO2 + C2 9.00×1011 0 21855
R69 C3 + O ⇔ CO + C2 5.00×1013 0 0
R70 CH + C2H2 ⇔ C3H2 + H 9.40×1013 0 -500
R71 C3H + H2 ⇔ C3H2 + H 4.00×105 2.4 1003
R72 C3H2 + O ⇔ HCO + C2H 4.00×1013 0 0
R73 C3H2 + OH ⇔ HCO + C2H2 1.00×1013 0 0
R74 C3 + H2 ⇔ C3H + H 4.10×105 2.4 21974
R75 CH + C2H ⇔ C3H + H 5.00×1013 0 0
R76 C3H + O ⇔ CO + C2H 4.00×1013 0 0
R77 C3H + OH ⇔ CO + C2H2 2.00×1013 0 0
R78 C3H + O2 ⇔ CO + HCCO 3.00×1013 0 0

Table C.2: Mech K: OH∗, CH∗ and C∗
2 formation, chemiluminescence and quenching

reactions from Kathrotia et al. (2012)
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Radiative heat transfer of
gaseous phase

D.1 Radiative Transfer Equation(RTE)

The intensity field inside a medium is governed by the radiative transfer equa-
tion (RTE). For a medium that emits, absorbs, and/or scatters radiation,

dL′ν = (dL′ν)abs + (dL′ν)em + (dL′ν)outsca + (dL′ν)insca (D.1)

where L′ν the radiative intensity for wave number ν can be written by the
influence of absorption, emission, and scattering.

D.1.1 Absorption

(dL′ν)abs = −κνL′νds (D.2)

where the constant κν is the absorption coefficient. Integration of equation
(D.2) over the geometric path ŝ results in

L′ν = L′ν(0) exp(−
∫ s

0
κνds) = L′ν(0)τν (D.3)

The transmissivity τν between the abscissas s and s′ and absorptivity αν is
defined as

τν(s, s′) = 1− αν = exp(−
∫ s′

s
κν(s′′)ds′′) (D.4)

D.1.2 Emission

(dL′ν)em = κνL
0
ν(T )ds (D.5)
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where L0
ν(T ) is the blackbody intensity at local equilibrium. The emissivity εν

is defined as

εν = 1− τν = 1− exp(−
∫ s′

s
κν(s′′)ds′′) (D.6)

And εν = αν as is the case with surface radiation.

D.1.3 Scattering

The attenuation by scattering, or “out-scattering”

(dL′ν)outsca = −σνL′νds (D.7)

where σν is the scattering coefficient.
And augmentation due to scattering, or “in-scattering”

(dL′ν)insca = ds
σν
4π

∫ 4π

0
pν(u′,u)L′νdΩ (D.8)

where pν is the scattering phase function.

From equations (D.2), (D.5), (D.7), and (D.8)

d

ds

[
L′ν
(
u(s), s

)]
= −(κν+σν)L′ν(u(s), s)+κν(u, s)L0

ν(T )+
σν
4π

∫ 4π

0
pν(u′,u, s)L′ν(u′, s)dΩ

(D.9)

By introducing an extinction coefficient is defined as βν = κν + σν , the RTE is
rewritten in the form

d

ds
L′ν + βνL

′
ν = Sν (D.10)

with the source term Sν

Sν(u, s) = κν(s)L0
ν [T (s)] +

σν(s)

4π

∫ 4π

0
pν(u′ → u, s)L′ν(u′, s)dΩ′ (D.11)

If the source term Sν is assumed known, the equation(D.10) has a solution
under the form Taine et al. (2014):

L′ν(u, s) = L′ν(u0, 0) exp[−
∫ s

0
βν(s′)ds′]+

∫ s

0
Sν(u, s′) exp[−

∫ s

s′
βν(s′′)ds′′]ds′

(D.12)

Introducing the transmissivity from s′ to s

τ ′ν,s′→s = exp[−
∫ s

s′
βν(s′′)ds′′] (D.13)
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Equation(D.12) becomes

L′ν(u, s) = L′ν(u0, 0)τ ′ν,0→s +

∫ s

0
Sν(u, s′)β−1

ν (s′)
∂

∂s′
τ ′ν,s′→sds

′ (D.14)

Neglecting the scattering effect: σν = 0, therefore βν = κν

L′ν(u, s) = L′ν(u0, 0)τ ′ν,0→s +

∫ s

0
L0
ν [T (s′)]

∂τ ′ν,s′→s
∂s′

ds′ (D.15)

Rewrite in the discret form with index j, length lj and absorption coefficient
κν,j for Nc elements

L′ν(u, Nc) = L′ν(u0, 0)τ ′ν,0→Nc
+

Nc∑
j=1

L0
ν(Tj)(τ

′
ν,j→Nc

− τ ′ν,j−1→Nc
) (D.16)

with

τ ′ν,j→Nc
= exp(−

Nc∑
j′=j+1

κν,j′ lj′) (D.17)

D.2 General equation for radiative power

The radiative power PR(r, t) at point r is calculated by the divergence of the
spectral radiative flux qR.

qR =

∫ ∞
0

dν

∫ 4π

L′ν(u, r)udΩ (D.18)

PR(r, t) = −div(qR) = −
∫ ∞

0

∫ 4π

div[L′ν(u, r)u]dΩdν (D.19)

Another way of expressing PR from the RTE

d

ds
L′ν = div(L′νu) (D.20)

By Eq (D.10), and since the scattering terms outweigh each other, the equation
(D.19) can be simplified to the power due to absorption P a and emission P e

PR(r, t) =

∫ ∞
0

∫ 4π

κν(r)L′ν(u, r)dΩdν−4π

∫ ∞
0

κν(r)L0
ν(T )dν = P a−P e

(D.21)
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D.3 Numerical Methods: Statistical Narrow Band
(SNB) Model

The gas absorption coefficient (and with it, the radiative intensity) varies much
more rapidly across the spectrum than other quantities, such as blackbody
intensity, etc. Therefore, to calculate spectral radiative fluxes from a molec-
ular gas, we can replace the actual absorption coefficient (and intensity) by
smoothened values appropriately averaged over a narrow spectral range (Mod-
est 2013). Consider an interval ∆νk = [νk−∆νk/2, νk+∆νk/2] centered around
the wave number νk. The local averages of the spectral absorption coefficient
and of the spectral emissivity are indicated respectively by

κ̄ν(νk) =
1

∆νk

∫ νk+∆νk/2

νk−∆νk/2
κνdν

′

ε̄ν(νk) =
1

∆νk

∫ νk+∆νk/2

νk−∆νk/2
[1− exp(

∫ X

0
κνdX)]dν ′

The SNB model, based on the Mayer and Goody approach, is chosen here in
association with the Malkmus exponential-tailed S−1 line intensity distribu-
tion to express column transmissivities (Riviere and Soufiani 2012). The mean
transmissivity of a uniform column of length l, at total pressure p, and with
a molar fraction Xj of the absorbing species j, averaged on a narrow band of
width ∆νk is given by

τ̄νk(l,Xj , T, p) = exp[−2γ̄k
δ̄k

(

√
1 +

Xjplk̄kδ̄k
γ̄k

− 1)] (D.22)

The model parameters k̄k, γ̄k and δ̄k are the mean line intensity to line spacing
ratio, the average line Lorentz halfwidth, and the mean line spacing, as iden-
tified in the strong absorption limit, respectively. The transmissivity can be
expressed by two parameters k̄νk and β̄νk

τ̄νk(l,Xj , T, p) = exp[− β̄νk
π

(

√
1 +

2πXjplk̄νk
β̄νk

− 1)] (D.23)

where
β̄νk =

2πγ̄k
δ̄k

D.4 1D formulation

Considering the participating media to be monodimensional, the solid angle
can be chosen dΩ = 2π sin θdθ where θ is the angle between u and n, which is
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the direction vector of axis y, so equation (D.18) can be written as

qR =

[∫ ∞
0

dν

∫ π

θ=0
L′ν(y, θ)2π sin θ cos θdθ

]
n (D.24)

PR =
d

dy
qR =

∫ ∞
0

dν

∫ π

θ=0

∂L′ν(y, θ)

∂y
2π sin θ cos θdθ (D.25)

Apllying Eq (D.15) and since

cos θ
∂L′ν(y, θ)

∂y
=

∂L′ν(s, θ)

∂y
(D.26)

The radiative source term can be represented by

PR(r, t) =
d

dy
qR

=

∫ ∞
0

dν

∫ π

θ=0

[
L′ν(0, θ)

∂τν
∂s

(0, s) + L0
ν(s)

∂τν
∂s

+

∫ s

0
L0
ν(s′)

∂2τν
∂s∂s′

(s′, s)ds′
]

2π sin θdθ

(D.27)

More detail for the discretization and numerical solution of Eq (D.27) can be
referred to the PhD thesis of Daguse (1996).
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Titre: Etudes expérimentales et numériques de la pyrolyse et l’oxydation du charbon
pulvérisé dans les flammes étirées de méthane/oxygène/azote

Mots-clés: PCC, matières volatiles, flamme laminaire étirée, OEC, FES

Résumé: Dans ce travail, une con-
figuration laminaire stratifiée est util-
isée afin d’étudier les caractéristiques de
la pyrolyse et de l’oxydation du char-
bon pulvérisé dans un mélange de flux
réactif à la fois dans les conditions at-
mosphériques conventionnelles et dans
des conditions de combustion enrichie en
oxygène. Deux diagnostics optiques, la
spectroscopie d’émission de flamme et la
mesure de l’émission spontanée sont util-
isés pour caractériser la structure de la
flamme. Les profiles de concentration de
trois radicaux excités, OH∗, CH∗ and C∗

2

sont mesurés et analysés.

Des simulations 1-D utilisant la cinétique
détaillée y compris des sous-mécanismes
de OH∗, CH∗ and C∗

2 et de combustion de
charbon sont effectuées et comparées avec
des données expérimentales. La compara-
ison qualitative a montré que la configu-
ration numérique actuelle était appropriée
pour la prédiction des émissions de OH∗,
CH∗ and C∗

2. Les résultats prédits par
l’approche numérique diffèrent avec les
modifications apportées aux sous-modèles
de charbon et aux paramètres cinétiques.
Le modèle de pyrolyse et les matières
volatiles semblent jouer des rôles plus im-
portants.

Title: Experimental and numerical studies of pulverized coal devolatilization and
oxidation in strained methane/oxygen/nitrogen flames

Keywords: PCC, volatile matter, laminar strained flame, OEC, FES

Abstract: In the present work, a
laboratory-scale laminar strained config-
uration is used to investigate the charac-
teristics of pulverized coal devolatilization
and oxidation in a mixture of CH4/O2/N2

reactive flow both in conventional air con-
ditions and in oxygen-enriched combus-
tion conditions. Two optical diagnos-
tics, Flame Emission Spectroscopy and
measurement of spontaneous emission, are
employed for the characterization of flame
structure. The spatial concentration evo-
lution of three excited radicals, OH∗, CH∗

and C∗
2, are measured and analyzed.

1-D simulations using detailed gas-phase
kinetics including OH∗, CH∗, and C∗

2

sub-mechanisms and coal combustion sub-
models are performed and compared with
experimental data. Qualitative compari-
son with experiments showed that the cur-
rent numerical configuration was suitable
for the prediction of OH∗, CH∗ and C∗

2

emission. The predicted results differed
with changes to the coal sub-models and
kinetic parameters. The devolatilization
model and volatile matters seem to play
more important roles.
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