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FOREWORD

What is this Ph.D. thesis about? At a basic level the answer is: understanding the formation
of structures in a particular class of system with a large number of components. This special
class concerns systems formed with particles interacting with each other via long-range interac-
tions. The most obvious examples are self-gravitating systems and plasmas but many more sys-
tems are concerned. These interactions are opposed to the short-range interactions (e.g. shocks
with O-range or nearest neighbor interactions) and can drive a system out-of-equilibrium. The
dynamics of these long-range systems is the primary interest of this Ph.D. thesis. It will be
studied through kinetics equations. The difficulty lies in the richness of these equations. The
goal of my work is to depict the dynamics around stationary states with simpler equations, this
is called dimensional reduction.

The manuscript is composed of two independent parts: one concerning an experimental
collaboration on a cold atom system with supposedly long-range interactions and another one
which can be considered as the main part on bifurcations in collisionless kinetic systems.

Main results of this Ph.D. thesis

In the experimental collaboration part, the main result is the proposition of two experiments
that could confirm or not the analogy between Large Magneto Optical Traps and a Non-Neutral
Plasma. Preliminary experimental results are discussed with a relatively good matching with
theory and simulations. However definitive conclusions remain uncertain.

In the second part, the main achievements are the bifurcation analysis for five different ki-
netic systems. Numerical simulations were done in some of these systems fully supporting the
theoretical claims. These results elucidate partially the dynamics around steady states of out-
of-equilibrium systems with long-range interactions and in at least one case predicts a behavior
that might be relevant in galactic systems. Our results could prove to be very generic thanks
to the universal character of bifurcation analysis. For example, bifurcation regimes found for
Vlasov systems with a small dissipation are like the one obtained for two dimensional fluids; we
also conjecture a Triple Zero bifurcations around non homogeneous Vlasov states. Moreover,
along this Part we raise many questions and observations on the unstable manifold technique
used after J.D. Crawford and the possibility of exact dimensional reductions.
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INTRODUCTION

The Newton’s law of universal gravitation describes one of the most fundamental forces,
thus since we all experience it directly we will use it as a guiding thread of this introduction.
Newton was able to derive planets motions around the sun associating this force with equations
of motion he postulated. In other words, he solved a one body problem (since the Sun is
considered fixed because of its large mass), meaning he could predict the motion of planets
(position and velocity) in time. The natural sequel for this problem is the two-body problem,
that we also know exactly how to solve. However, upon increasing the number of bodies N from
two to three the problem incredibly more difficult: no general solutions are known and chaos
emerges. A chaotic system can behave very differently for two very close initial conditions,
making its analytical description difficult. For even larger systems with a large number N of
self-gravitating bodies, knowing the exact evolution is therefore hopeless.

What can we say about the evolutions of a N —body systems with gravitational like
interactions?

The statistical physics field was actually developed to understand many body systems, not
by describing the exact evolution for all bodies but rather by finding the most probable one.
The construction of various statistical ensembles such as the Microcanonical/Canonical/Grand
Canonical ensemble with quantities such as entropies lead for example to thermodynamics as
we teach it nowadays. Laws are essentially known for the non-interacting gas (perfect gas)
or for short-range interactions, which is enough to solve a lot of various problems from heat
engine to social dynamics. In these problems, a natural assumption is to consider ensemble
additivity meaning that if a system is composed of two subsystems 1 and 2, the total energy is
approximatively the sum of the individual energies of the subsystems Fy + Ey = E7.5. This
turns out to be true for short-range interactions in the large /V limit.

But is this Bachelor statistical physics useful for our self-gravitating problem where long-
range interactions are at stake? First let’s set our definition ' of long-range interactions. We will
say two bodies are interacting with long-range interactions if their potential of interaction V()

1. Depending on the field one can find different definitions. For example, one can find that interaction with
infinite range are "long-range". That is not our definition.

17



Introduction

and more generally their force of interactions F(r) satisfies

r—oo CSt r—oo CSt ) . . .
Vir) ~ i F(r) ~ g with o < D = spatial dimension. (1
For example, a Coulomb/Newton interaction is long-range since its « = 1 < D = 3. From this
mathematical definition, we immediately see why this boundary exists > at « = D. Consider-
ing the total interaction energy of one particle centered at » = 0 in a constant distribution of
particles * p, we get

cst ifa>D

Vit = V(r)dPr ~ 1i LP~o = 2
' pO/TeRD (r)d%r ~ fim po {oo ifa < D. 2)

This phenomenon leads to the non extensivity of long-range systems F; + Fy # Ej,-. Long-
range systems display other intriguing particularities such as nonequivalence of the different
statistical ensembles and negative heat capacity. For review of those systems see [CDRO9,
DRAWO02, CGMLOS8] or the introductory and very understandable talks of J. Barré and H.
Touchette [ICT16] at the ICTP of Trieste at the Conference on Long-Range-Interacting Many
Body Systems: from Atomic to Astrophysical Scales.

To have a rather broad overview of the different systems displaying long-range forces, one
can refer to the program of the ICTP conference program* in Trieste, where a lot of differ-
ent fields were represented. The most obvious example are self-gravitating systems with many
astrophysical examples and plasma systems [EE02] with Coulomb forces between electron or
ions. Another example that will be presented in this thesis is the large Magneto-Optical Trap
(MOT). One also finds examples in hydrodynamics [Mil90, RS91], atomic physics, nuclear
physics and for Rydberg gases [DRAWO02, CGMLO08] or spin systems [SJM15]. Character-
istic behaviors of long-range systems have been observed in some nonlinear optics experi-
ments [XVF15].

One can argue that we know the fate of any Hamiltonian system (including self-gravitating
one) because they should at some point reach Boltzmann-Gibbs statistical equilibrium. Never-
theless, another particularity of long-range systems is that they possess what we call a Quasi Sta-
tionary State (QSS) that has a very long relaxation time. Thus, we will need out-of-equilibrium
tools. For example, the Large deviation theory [BBDROS5] or fluctuation dissipation theo-
rems [Kub66] are precious to give statistical information. Entropy methods with applications
closer to our concern are also possible [RTBPL14, LB99, Per06]. Note that non Hamiltonian
systems are by nature out-of-equilibrium e.g. system with non-conservative forces and coupled
oscillator systems. In this thesis, we are interested in the temporal evolution of out equilibrium
system around their stationary states (or QSS). To do so we will use the kinetic description of
the system. The kinetic description is often said to be at the mesoscopic scale since it is an
intermediate description in between the microscopic scale and macroscopic scale. The micro-
scopic scale describes the evolution of every particle via the different equations of motion. The
macroscopic scale describes the evolution of macroscopic observable such as the mean velocity,
temperature, pressure, etc. see Figures 1 and 2.

2. In Part Two, in order to simplify the manuscript we will use only a simple all-to-all coupling (o« = 0 < D),
but the main physicals phenomena remain. More generic potentials are considered in our publications.

3. In all the manuscript the term particles will refer to the components of the system studied, be it atoms, stars,
electrons, oscillators, crickets, etc.

4. http://indico.ictp.it/event/7612/other-view?view=ictptimetable
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THE VLASOV EQUATION

The Vlasov equation is one of the fundamental kinetic equations. It will be the main evolu-
tion equation of this thesis (all other equations will be related to it in some way). Here we show
formally how the Vlasov equation emerges from the microscopic description of long-range sys-
tems. Then, once velocity is integrated, one can obtain macroscopic equations (for observables
such as velocity, pressure, etc.). All the reasoning is summarized in Figure 2.

The evolution of a N bodies Hamiltonian system is governed by 2N x D first order equations
of the form

7 =T, (3a)
mi; =Y F(i — ). (3b)
i#£j

As mentioned earlier, solving this problem analytically is utopian, so a statistical approach of
the problem must be developed. The exact position and velocity of each particles is no longer
considered but rather the density f of particles in the phase space (7, ) is. This forms the
mesoscopic approach. Thus, we keep track of both spatial distribution and speed distribution
of particles in time. A macroscopic approach would erase the velocity information ; therefore,
the kinetic approach can solve more subtle phenomena such as phase mixing and emergence of
instabilities due to velocity resonances as we will see later.

There are several ways to construct the Vlasov equation from Eq. (3), here we postulate its
form and show that it is the relevant equation to study. The empirical density function is defined
as

N
fe(r,7,t) = 25(77—7%@))5(?7—@@)), (4a)
=1
with
/ fe(7,0,t) d*Fd*7 = N. (4b)

This singular distribution still contains all information on the particles. It is possible to show ’
that fz is a weak © solution of the Vlasov equation,

of +5-9,f+ 0 g p g, (52)
F[f e () = / / F(7— ) f (", 0 1) 7 0, (5b)

/ / f(7 v, t) d*Fd*T = N. (5¢)

For a distribution, f(7,v,t)d*~d*7 gives the number of particles in the phase space volume
(7" + dr,v 4 dv) at a time ¢. In this evolution equation, the distribution evolves through an
advection term and a nonlinear term with a self-consistent mean field force Fyp[f](7).

5. The Vlasov equation can be found writing the density conservation along trajectories d fg/dt = 0.
6. Weak means that is must be integrated with some test function to make sense.
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We just constructed the Vlasov equation from the singular empirical distribution, but is it
possible to construct in the large N limit a smooth distribution describing accurately the par-
ticles evolution? How close are the exact dynamics of fz to a smoothed version of it f? If
the two start "closely", how will they evolve through Vlasov dynamics? To measure this, one
defines a suitable distance between two distributions d(f1, f2) and look at its time evolution
d(f(t), fe(t)). Itis possible to show [BH77, Dob79, NW80] that this distance is at most expo-
nential:

d(f(t), fe(t)) < d(f(0), fe(0))e", (6)

where 7 is a constant independent of the initial condition and N. So, over a time scale O (1)
the two distributions will stay close by. Moreover, the empirical distribution converges toward

the smoothed distribution as d(f(0), f(0)) = O <1/\/N> So, if 7 does not depend on N, we

expect the continuous description to be valid over a time scale 7. = O (In V). This estimate can
be made sharper for Vlasov steady states as 7. = O (N 6), 0 > 0. We name violent relaxation
the time 7, during which a particles system evolves according to the Vlasov dynamics, after
which the collisional relaxation dominates. These different time steps are summarized on
Figure 1. The demonstration’ relies heavily on the long-range nature of the interactions to

Violent relaxation Collisional relaxation
Initial stat Vlasov’s equilibrium Bolt Jibri
al sta —_— ; ) —_— 7 S e
nitial state — oW Quasi-Stationary States TC: O(N‘j) oltzmann’s equilibrium

Figure 1 — Schematic representation of the different time scales in a long-range system.

construct the mean field force. This means that the Vlasov equation is not well suited for
systems with short-range interactions. In the N — oo limit, particles only feel the mean force
Frre[f] created by the whole distribution of particles, thus correlations vanish. Therefore, the
exact interactions between two particles do not matter anymore.

The Vlasov equation has many interesting properties, amongst them, it possesses an infinite
number of preserved quantities called the Casimir invariants [Mor(00]

Clf] = / / SN, 5, 8) a8, )

where f is a Vlasov solution, meaning that C,[f] = 0 (where the dot denotes d/dt) for any
generic function s. Thus, in addition to the energy, entropy, momentum, angular momentum,
etc. which are conserved in standard Hamiltonian systems, there are an infinite number of in-
tegrals of motion. This gives to the Vlasov equation an infinite number of stationary states.
Another very surprising feature associated with the Vlasov flow is that it can relax to its initial
state after a perturbation with constant entropy. More precisely, the phase space distribution

f(7, U, t) oscillates more and more in the velocity variable while the integrated density / fdv

does relax (see Section V.4). This phenomenon is the Landau damping (or non-entropic re-
laxation) and was discovered in the linear case by L.D. Landau [Lan46], a proof for the full
nonlinear Vlasov equation has been given recently by C. Mouhot and C. Villani [MV11].

7. To be fair, rigorous mathematical derivation are not yet obtained for Coulomb/Newton potential. Demon-
strations without cut off are limited to F'(r) ~ r~® with @ < 1 [JHI1]. However, in 1D, interaction potential are
much more regular and rigorous results exist [Tro86].
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Remark .1

— The word collision has different meaning here depending on the context. For short-range
systems, collision refers to real collision between two particles and in this context, they
would be essential, while long-range systems are dominated by mean field. A kinetic de-
scription of short-range system leads to the Boltzmann equation. For long-range systems
collisions or collisional effects mean finite N effects, in fact correlations. In the astro-
physical community, the Vlasov equation is called the collisionless Boltzmann equation.

— So far, we have used a deterministic approach, meaning that for a given initial distribution
fr the Vlasov equation gives the deterministic evolution of particles. Another approach
is the probabilistic one, considering for example the mean field evolution of particles
over different initial conditions distributed along a given fi,;; distribution. It uses the
propagation of chaos theory [Szn91, Mon16]. Its use led to a recent proof of the mean
field limit of the Vlasov equation for Coulomb/Newton potential with a very small cut-off
scaling like N ~1/3+¢,

Mesoscopic

Microscopic Macroscopic

Figure 2 — Schematic representation of the different possible scales of description. On the arrow
are the different functions linking two different scales.

With distribution functions, it is easy to construct macroscopic observables such as the mean
-

velocity (v) () = [ ©¥f d*v and the temperature T'(7) = % f d®v. To obtain the associ-

ated evolution equation one must do some approximation valid within some regime; for example
fluid equations such as gyrofluid equations can be derived [BHO7, SR0O0] from the Vlasov equa-
tion. In this thesis, we do not study this macroscopic behavior. In out-of-equilibrium systems
the velocity distribution is in general not simply a Gaussian and leads to counter-intuitive effect
like Landau damping (damping without dissipation) that could not be predicted by macroscopic
equations.

GOALS AND OUTLINE OF THE THESIS

The goal of this thesis is to study the behavior of out-of-equilibrium many body systems with
long-range interactions. It is divided in two very different parts. In the first Part, we study a real
experimental set-up and give theoretical and numerical predictions. In the second Part we focus
on the bifurcation technique developed by J.D. Crawford for kinetic equations.

Part One is devoted to the study of an experimental Magneto-Optical Trap (MOT). We col-
laborated with Guillaume Labeyrie and Robin Kaiser of the Non Linear Institute of Nice (INLN)
and Bruno Marcos of the Laboratory J.A. Dieudonné. The standard modeling for large MOT
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composed of neutral atoms predicts effective Coulomb like interactions between particles (via
photon rescattering). Therefore a kinetic description through the Vlasov-Fokker-Planck equa-
tion (Vlasov equation with friction and diffusion) is expected to be accurate. The goal of the
collaboration is to test experimentally the long-range nature of those effective forces, since the
literature still lacks an irrefutable experiment. The main idea was to observe plasma physics
effects such as the Debye length as an experimental proof. In Chapter I we present the stan-
dard modeling through atomic physics leading to a plasma like description of a large MOT.
We introduce then the basics of plasma physics through the Non Neutral Plasma (NNP) model.
Chapter II is dedicated to the introduction of the different observables and tools used to analysis
and probe a cold atom cloud. In Chapter III we present and discuss different realistic measure-
ments (theoretically and numerically) that could highlight plasma phenomena, and compare
them to the preliminary experiments realized by G. Labeyrie.

Part Two is devoted to bifurcations around steady states of kinetic equations. Kinetic equa-
tion such as the Vlasov one are nonlinear self-consistent partial differential equations, they have
a very rich dynamics such as an infinite number of stationary states, filamentation of the phase
space ® , strong wave/particles resonances, non-entropic relaxation, etc., thus their mathematical
and physical understanding is far from being complete. The bifurcation study is a natural strat-
egy to simplify the dynamics in specific cases (e.g. neighboring of stationary states close to an
instability threshold). One hope is that these bifurcations might structure the whole dynamics;
another motivation is to obtain a classification of these bifurcations (by studying various kinetic
equations) as there is for standard (dissipative) systems (saddle-node, pitchfork, Hopf, etc.).
However, due to the previously mentioned difficulties standard bifurcation techniques such as
multiple-timescale analysis or center manifold fail [CH89, HC89, MH13, HM13].

In Chapter IV we present the unstable manifold technique introduced by J.D. Crawford in the
context of kinetic equations [Cra94a, Cra94b, Cra95a, Cra95b] which overcomes some of the
difficulties met by standard expansions. The price to pay is that this approach is not well sup-
ported mathematically and that the description of the bifurcation is incomplete but qualitatively
correct providing precious informations on the bifurcation nature. We shall use this technique
for the rest of the manuscript. Chapter V review quickly the standard results for the bifurca-
tion around homogeneous steady states of the Vlasov equation. In Chapter VI we present our
results on the bifurcation around inhomogeneous states obtained in collaboration with Y.Y. Ya-
maguchi. In this case, we also obtain with a center manifold approach a finite three-dimensional
reduction agreeing well with the numerical simulations. In Chapter VII, we perform a similar
analysis for homogeneous Vlasov-Fokker-Planck states, in particular we show how interplay
between a weak instability and weak dissipation gives rise to several regimes.

In Chapter VIII we introduce another kinetic equation based on the Kuramoto model de-
scribing coupled oscillator systems. It shares many similarities with the Vlasov equation and
was also studied by J.D Crawford. We then once again use in Chapter IX the unstable manifold
technique for the Kuramoto model with inertia and in Chapter X with delayed interactions (with
and without inertia).

As one can already tell from this outline the work of J.D. Crawford is very important in this
thesis since he has laid the foundation of the bifurcation study for both Vlasov and Kuramoto
equation. Therefore, the overall procedure will be similar every time but we will see that each
specific case has its own physical and technical issues. We will summarize in Chapter XI
our results, classifications and conjectures for the bifurcation analysis of the various kinetic

8. The filamentation refers to the highly oscillating behavior of the distribution function f (7, ¥/, t) with respect
to the velocity variable.
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equations studied.
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PART ONE

EXPERIMENTAL COLLABORATION:
DEBYE LENGTH IN
MAGNETO-OPTICAL-TRAPS?
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CHAPTER 1

FROM MAGNETO-OPTICAL-TRAPS TO
PLASMA

A large part of low energy physics is concerned with set-up at cold temperature 7' < mK,
where lasers are used to manipulate atoms for their useful and interesting classical or quantum
properties. To reach weak temperature experiments the radiation pressure exercised by lasers is
used. It is the force felt by an atom when it absorbs a photon, possibly decreasing its velocity
via momentum transfer. That mechanism is at the origin of the "cold atom" field. A widely
used set-up because of its relative simplicity is the Magneto Optical Trap (MOT); its essential
components are

— Neutral atoms (such as Rubidium, Strontium)

— Two magnet coils set in anti-Helmholtz configuration (producing a magnetic field gradi-

ent),

— Six lasers (one pair for each spatial dimension),

— A vacuum chamber.

At low atom number N < 10*, the physics is relatively well understood. Thanks to radiation
pressure of the six lasers the trapping and cooling of atoms is achieved. Moreover, in this
regime no interactions between atoms are considered and the particles dynamics is essentially
a Brownian motion. In metrology with atomic clocks [KHS16], the low atoms speed is used
for high precisions measurements.

However, when N > 10°, the physics sees several qualitative changes, some effective inter-
actions between atoms appear... Indeed, for MOT's with a large number of particles it has been
observed that the cloud size L increases with the number of atoms N, whereas for N < 10*, the
size L was independent of N. So, there must be a repulsive process developing. Because of this
repulsion, the atom cloud cannot be compressed indefinitely, preventing for example Bose Ein-
stein condensation, that are since its first realization in the 90s [AEM "95] a very active topic.
With the advent of more powerful laser sources, it is now possible to prepare very large MOT's
(VLMOT) with 10! atoms [CKL14], where collective effects are enhanced.
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The description of this collective behavior is far from being well understood. Neutral atoms
interact with the trap composed of lasers and a magnetic field and with each other through ab-
sorption and emission of photons with rules given by the energy levels of atoms of the trap (an
exact description should then depend on the atom species and it hyperfine structure). In 1988
Dalibard [Dal88] showed that absorption of the laser light in the cloud results in an effective
attracting force between atoms like one dimensional gravity: the so-call Shadow Effect. Dal-
ibard was the first to describe effective interactions between particles and formally his model
for VLMOT bears similarities with a galactic model of self-gravitating stars. However, this
description didn’t explain why in experiments when N is increased, the cloud L also increases,
in fact it predicts the opposite.

The current "standard model" to describe VLMOTSs was then proposed in [WSW90] by T.
Walker, D. Sesko and C. Wieman (2001 Nobel prize winner), it includes an effective Coulombian-
like force between two level atoms, due to multiple scattering of photons. According to this pic-
ture, VLMOTSs thus share similarities with a Non Neutral Plasma (NNP). In this plasma physics
model electrons are all interacting through Coulomb interactions in a neutralizing background
(as large positive ions).

The main question in this part is then can we observe plasma physics phenomenon in VL-
MOT? Is there any chance to observe Landau damping in a VLMOT? We will quickly answer
negatively to this question in the second part Bifurcations of this thesis making a bridge between
the two parts. Indeed, the friction range for the experimental MOT is too large to observe Lan-
dau damping. So, what else could we seek? Debye length? Instabilities and bifurcations? In
this thesis, we will search for the analog of Debye length which is characteristic of plasmas and
Coulomb interactions. More generally the goal is to search for evidence of long-range interac-
tions between atoms via direct correlation and response to an external potential measurement.

In this chapter, I will first retrace the standard modeling of VLMOTs. Then I will present
the Non Neutral Plasma model, introducing the different characteristic parameters in the MOT
units.

1 STANDARD MODEL FOR MOT

All the numerical values given here for the MOT are taken from [CKL 14, GPLK10, SteO1].
For the French readers, I recommend the College de France lecture by J. Dalibard [Dall4],
to get a clear introductory picture of the cold atom field. Also, one can read the review of
Cohen-Tannoudji for his 1998 Nobel prize [CT98] on manipulation of atoms with photons.

1.1 The trapping

The idea behind Magneto-Optical-Trap is to trap atoms in the velocity and position space
thanks to one pair of magnet coils and six lasers in all of the six directions of space, as repre-
sented in Figure I.1.

For a two energy level atom, |g) ground state and |e) excited state trapping occurs via ab-
sorption and emission of photons from the Laser (see Figure 1.2). Basically, absorbing a photon
coming from the left will push the atom to the right (see Section I.1.1.c).

The detuning 0 = w; — Watom 1S the quantity that measures the energy difference between
a photon with frequency w;, and the excitation energy wyiom Of the atoms. In practice, it can
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‘ LASER beams
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z é;

Figure 1.1 — Schematic representation of a Magneto-Optical-Trap (MOT) with six Lasers and
two magnet coils creating a linear gradient of magnetic field.

™

Magnet coil

hEL wr, Watom

)

Figure 1.2 — Schematic representation of the transition |g) — |e) for an absorbed photon of
momentum and frequency (hky,w) with an atomic transition of natural frequency wagom. The
detuning of the lasers 0 = wy, — Watom 1S Negative here.
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be tuned ' very well, in a typical range 0Ty < |§| < 8Ty, where 'y ~ 10 MHz is the natural
width of the transition. For the Rubidium atoms used in experiments ['; = 27 x 6.06 MHz. In
short Doppler and Zeeman effects modify detuning to favor absorption of photon as a function
of speed and position for cooling and trapping atoms (see Section I.1.1.a and I.1.1.b).

1.1.a  Doppler effect

The idea to cool neutral atoms with lasers was first proposed in 1975 by T. Hénsch and
A. Schawlow[HS75] (and independently by Wineland and Dehmelt [WD75] for ions). Due
to Doppler effect an atom with speed v; > 0 sees photons coming from the left (in the same
direction) with a shifted frequency wrqy = wy — krv; and from the right (opposite direction)
Wright = wr, + krv;. The effective detuning with photon of opposite direction is then 5opposite =
0 + kr|v;|. To favor absorption of photons with opposite direction (to reduce the atom velocity
after absorption) the detuning 6 must be negative (redshifted Laser).

1.1.b  Zeeman effect

Zeeman effect is the energy split of an exited level due to the coupling of an external magnetic
field B with the total magnetic dipole moment of electrons ji; = iy + jis (J = L + S is the
total angular momentum, L is the angular momentum and S is the spin angular momentum).
Let’s take the example of a J = 0 — J' = 1 transition. Ground state |g, J = 0) with no
magnetic moment is not affected while exited state with |e, J = 1) sees an energy shift (for
weak magnetic field)

A-E'Zeemam - ngJ/LBB(F)v

where m; = 0,+£1 is the quantum magnetic number and ¢ is the Landé factor for the atom
considered and ;.5 the Bohr magneton, a universal constant describing the magnetic moment of
an electron. Setting two counter propagating lasers with opposite circular polarization o+ and
o, Figure 1.3, will then select the transition with the m, = +1 or m, = —1 respectively.

The magnetic field created by the two anti-Helmholtz magnetic coils is

1
B(z,y,2) = |A.B| (xe} +3 (yé, + z€Z)> (L.1)

where |A, B| ~ 10G-cm™ ' is the value of the constant gradient imposed. In the end the effective
detuning depend on position § = § — m g up|A., Blr;/h, we call p; = g;up|A,, B|/h.

1. The lasers wavelength can be slightly modified with an acoustic-optic modulator.
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Figure 1.3 — Representation of the Zeeman effect in a MOT set up. The energy level 1 is de-
generate in three levels m, = +1,0, —1 (dotted lines) due to the magnetic field. The constant
magnetic gradient insures a linear spatial dependency upon the energy levels m, = +1, —1.
Two counter propagating lasers (red lines) with opposite polarization o, and o_, to select ab-
sorption of photons with levels m, = +1 and m, = —1 respectively.

1.1.c Radiation pressure

The first MOT was reported in [RPC"87] for Sodium atoms using the radiation pressure of
photons on atoms. We describe here the basic mechanisms for two level atoms.
— Absorption: atoms gain hk;
— There are two different mechanism for an atom to relax toward equilibrium
e Stimulated emission. Emission of the photon in the same direction, so the total mo-
mentum gain for the atom is zero, Figure 1.4.
e Spontaneous emission Figure [.4. The atom is reemitted with a random direction.
In particular, the probability to be reemitted in direction hE’L is the same that the

probability to be reemitted in —hlg’L, so the momentum gain is on average 5 <E’L> =
0. In general, this probability is assumed to be isotropic. So, on average the total
process absorption+emission gives a gain of hky + h </¥’L> = hky.
So, the total force in average is
Foag = hkr7e 1.2)

where
re = L'qP. (1.3)

is the rate of spontaneous emission [Dall4], with P, the probability to be in the excited state.
This population number is given by optical Bloch equations mixing a coherent process of in-
teraction atom-laser and incoherent process of spontaneous emission. It gives, if the laser is
not too powerful (i.e. that the Rabi frequency €2, of one atom should be very small compared
to the optical frequency w;, ~ 384 - 10'> Hz, which can be checked after the fact). The Rabi
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Figure 1.4 — Schematic representation of the two different scattering processes stimu-
lated/spontaneous emission. The red color stands for the energy.

frequency “ is the oscillation frequency between exited and fundamental state due to the laser

forcing
d,E [ 1
Q,=-2-=T 1.4
r A d QIsat ( )

where F is the electric field of amplitude, d, the transition dipole moment for the transition
1 — 2. In experiments, we use the intensity of the laser / and the saturation intensity I,
(define thought Eq. (I.4)). For our experimental regimes [ ~ I, (see Section 1.3.2 for typical
experimental values), hence we have indeed €2, ~ 10" Hz < wy. When [ /I = 1 sponta-
neous and stimulated emission are equally probable.

The saturation parameter

I/[sat
= /s 1.5
" T 1140212 @)

is related to 1
s
P =- . 1.6
21+ s (1.6)
Hence, the radiation pressure is
1 S

Fraqa = =hk T 1.7
4= ghirtay s (L7)

Note that this approach, i.e. consider a mean force for all the photon absorptions/emission cy-
cles, is valid for a fixed saturation rate s. Hence the spatial and velocity dependency of s
(through Zeeman and Doppler effect) must be smooth in order that after a photon hit s(7 +
AT, ¥ + Av) = s(7, ). The recoil speed after one hit for an atom is

Av = TFL R < 08 s, (L8)
m

2. Here we are just interested in the modulus of the Rabi frequency, a complex description includes a phase
term with the Laser.
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The condition is then )

o =k Av="" 1.9)
m

which is known as the thick band condition. For Rubidium atoms this condition is satisfied
with w, = 4.82- 10" Hzand I'; = 3.80 - 10" Hz.

We will note the lasers propagating in the same direction as the axis 7, and the opposite one
1.

In the weak saturation regime so = s(7"= 0,0 = 0) < 1,

1
Fraa & 5hkys(7, 0).

Therefore, in one dimension ® in a weakly saturated regime s, < 1 adding the Doppler/Zeeman
detuning yields the radiation force

"left laser"=1 "right laser"=1_
= Iohk,Ty |© 1 - 1 )
Fraa &= 70— - ;- — . @i
E 144 (2= LU — [T 144 + KRLv + {1
Fd Fd

Expanding the denominator for small Doppler/Zeeman shifts gives a linearized force with a
friction and harmonic trapping term,

krv;

J

ﬁrad C € 2 —mryv; — mwgri for <1, <1, IL.11)

‘Mm
)

where we define the coefficients below.
— The effective friction parameter

_ Io8hki  (=0)/T4
T L m (1+462/T2)*

Rough estimation gives v < 9.6 x 10®s™! for s, < 0.1.
— The effective pulsation of the trap

o lo8hkrp  (=6)/Ty Iz
wy = — = —

I, m (14 462/T2) k)

In this configuration, the cloud is supposed to have cylindrical symmetry because 1, =
24ty = 2y, but experimentally this asymmetry is compensated via different intensities,
so in the following we will consider a spherical symmetry with 4 = p, = p, = p, =
gsps|A,B|/h. Since g5 ~ 1, 1 = 8.8 x 10°m™*s™! so wy < 3 x 10° Hz.

From this force modeling one can define a quality factor () = wy/~ as for damped oscillators.

Here ) = 0.3 lower than 3 meaning that atoms act like over damped oscillators.

From the small velocity expansion one can see that in this limit the lasers act as "optical mo-
lasses" inducing friction for atoms. Similarly, the magnetic field will act as harmonic trapping
on atoms.

3. In principle interference terms should be added when summing the effect of the six lasers. A rigorous
treatment [Dal14] shows that for sy < 1 they can be neglected.
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Another important parameter of the model is the on resonant cross section

hwil'y
2[sat ,

(1.12)

Og =

it is related to the probability of an incident photon to be absorbed by an atom. For nonzero

detuning the cross section is
00

(1+462/12)%

For circular polarization o, [Ste01] gives og >~ 2.9 x 10 %cm?.

o =

1.2 Diffusion

The previous Doppler effect would in principle cool atoms to zero temperature. But there
are of course fluctuations setting a lower bound to the minimal temperature. The origin of those
fluctuations is the random speed due to the large number of absorption/emission cycle giving to
the atoms a random recoil force. It is natural to assume that atoms undergo a Brownian motion,
allowing us to define a diffusion coefficient D, [GA80, Dall4],

D, = W*k;T4s¢ 1.13)

50, at equilibrium, after a short time of equilibration* ~ 1/~ (remember () < 1) the temperature
is given by
D, h&*+T173 /4

kgT = —
B my 2 |0]

(1.14)
The temperature diverges at very small detuning, which of course is nonphysical since in this
regime the linear assumption of Eq. (I.10) is not valid.

The minimal possible temperature (in the Doppler limit) 7},;, is for § = —1";/2,

kgTimin = &. (I.15)
2
For Rubidium atoms, 7,,;, ~ 145 uK, which gives an order of magnitude for the real MOT
temperature and for the speed vo = +/kg7T/m =~ 11.9 cm/s with this speed we can check
self consistently > the Brownian motion assumption and the development made in Eq. (I.10).
Due to more complex structure than two energy levels, there exists systems with sub-Doppler
temperatures [MYMB 10, CHB " 14].

1
4. 1/v = %2— 2 100 us for sy = 0.1 (which we can consider to be the largest acceptable saturation
L 450
parameter in the small sg limit).

A
5. The speed recoil is small in front of the mean speed 2 2y/w;/Tq < 1 validating the Brownian
Vg

krv
approach. F— = v/w;/Tq < 1 so the linearization is valid.
d
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1.3 Shadow effect: an effective attractive force between atoms

In 1988 Dalibard proposed the first model to describe effective interaction between atoms [Dal88].
Indeed, for atoms trapped in a harmonic potential. He considers the fact that the laser is ab-
sorbed as it crosses the cloud, so its entrance intensity /; will be reduced at the cloud exit.
This position dependence of the laser intensity for a laser propagating on the 2+ —axis (other
direction lead to similar expressions) can be written as:

I.(x,y,z+dz) — I.(x,v, z) = absorption

= - IJr[f}(x? Y, Z) / U(Zu U;)f(l’l, yl7 2/7 U/z)é(‘r - xl>6(y - y/> d'l};d’l};d'l}; dz

R

~
portion of absorbed photons

(1.16)

with I, (—oo) = Ij and the absorption section (depending on the detuning and thus on position
and velocity via the Doppler/Zeeman effect)

o+(z,v,) = F— . 1.17)
1+4( F va$u2>

So
dl
d—i(z) =— (Ii[f](z) / or(z,0")f(z,0) dv;) (1.18)
z R
and
foa MRl | L)L AL |
1+4(5—kva’—Mz‘Ti) 1+4(5+/€LU1‘+M¢7’¢>
Fd 1_‘d

with the formal solutions of Eq. (I.18),

I [f](2) = Iyexp <— /z /E§U+(z’,v')f(z’,vg) dv;dz’) (1.20a)
I_[f](z) = Ipexp <— /+Oo/]RU_(z',U')f(z',v;) dv;dz’) . (1.20b)

To quantify absorption in the cloud we use an experimentally rather accessible quantity: the
optical density (or optical thickness) b(J) defined as

= exp( / /0+ 20 ,v;)dv;dz') . (1.21)

For the VLMOT used at INLN its value it typically b(d = 0) ~ 100.
If we suppose the absorption to be small for working regime —§/T"; ~ 4, we can expand the
exponential terms ® to get a total radiation force of the form

= = krv; T

o 25 5 L M
Fraa = =m0 — mwiT + Fg[f](7) + o ( 5 ‘1, ;Z b, (1.22)
6. Note that in fact even for 6 = —4I'y, b ~ 1 which is not small, so the expansion might not be valid. But

since there is no better theory available in this regime we keep the expansion.
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where

IO ﬁkLFd —+o00
F[f](F) = — L [{( )p<x',y',z’>6<y—y’>6<z—z ) da’dy/d

(1 +4(5/111 / / }
{ ( /OO /:00) oy )5(x — )5z — o) da'dy/d’ }
/-] |

—+o00
) p(@',y, 2)0(x — 2')(y — ') da'dy'd~’ ] :

(1.23)
The corresponding two body force is
_ o
(Fs)int(xa Y, Z) ’ gx - IO? Slgn(‘r)é(ry)é(’z)a (124)
where sign(z < 0) = —1 and sign(z > 0) = +1. Note that numerically one must introduce

some spatial extent to the Dirac functions as in [BMW 14]. Writing the divergence of this new

force gives,
2

V- F, = 61,7 p(z,y, 2). (1.25)
C

The computation of the divergence of a Newtonian force would give the same result! Explaining
the analogy between gravitational systems and MOT. Nevertheless, this force is different from
Newton force because it does not derive from a potential, indeed it is rotational, V x F, # 0, and
F, # VV, for a V,(7). Therefore F, = V x A, + V'V, for some couple (A, V,). Physically the
system is driven out-of-equilibrium by the six laser, this non-potential force is the mathematical
translation of this fact, it induces particle flux in the system [BMW14] and complicates the
mathematical analysis (a Hamiltonian is not defined for these cases).

Remark I.1

Note that 9,|z| = sign(z) o (Fy)int(2) which shows that in one dimension the shadow ef-
fect is a conservative force (it is exactly one-dimensional gravity). It is the additional spatial
dimensions that make the force non conservative.

1.4 Multiple scattering: an effective Coulomb force between atoms

The shadow effect is a first step for an effective interaction model between atoms, neverthe-
less this attractive force does not explain satisfactorily experimental observations that shows in-
compressibility of the MOT that results in a growing cloud size L [CKL14, GPLK10, WSW90].
This naturally leads one to think that in a VLMOT there is non-negligible repulsive interac-
tions between atoms. Two years after Dalibard’s paper, Walker et al. proposed the hypothesis
in [WSWO0] that this repulsion comes from a multiple scattering effect; indeed, so far, we have
not considered what happened to a rescattered photon. There are two different possibilities for
a reemitted photon

— Stimulated emission. This process is forgotten since it does not contribute to the total

momentum change of atoms.

— Spontaneous emission. The atom is reemitted with a random direction. So, its probabil-

ity to encounter an atom at distance 7 is proportional to 1/(47r?) which is the inverse
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surface of a r—radius sphere. The bumped atom is then pushed by this incident pho-
ton. Considering the large number of spontaneous emission cycles between two atoms,
one can justify ' an effective repulsive force between atoms to be F. x 1 /7. So, if we
assume isotropic spontaneous emission, remembering the absorption rate 7, Eq. (I.3)
(emission rate should be equal), the average force ﬁc between atoms is

. hkiTaly s (og) 7 s<1, 01 (OR) T

FC<F) - ~3

— = — 1.26
2 I,1+s 4r 13 O 4re 3 (1.26)

where (o) is the average cross-section of rescattered photon. It is expected that (o) >
o, since some reemitted photons are very close to resonance, so their probability of ab-
sorption is increased. In fact, the reemission spectrum is quite involved to determine and
several photon frequencies are possible [Mol69]. Photons divide in to two contributions:
elastic scattering with a reemitted frequency centered in wr = wy, and inelastic scattering
with Qr = wy, £ Qg, with Qg a frequency shift that can be computed in some regimes.
The photons with w41 have a detuning closer to zeros and a high absorption probabil-
ity resulting in a high o that is the dominant contribution. The ratio of elastic scattering

1
over the total scattering is [Mol69, SCF92] s
S

1.5 Other quantum effects

Rubidium atoms or other atoms used in MOT are in general more complex than a two energy
level description, with hyperfine level leading to other cooling/trapping mechanism such as the
Sisyphus effect [DLN 94, DCT89]. Nevertheless, in general these effects are forgotten because
in regimes studied they are small (in general for small saturation parameter s).

For Rubidium [DACT00, Ste01] due to the coupling of total angular momentum of the elec-
tron J and nuclear magnetic momentum / which is much smaller, another energy splitting
occurs with a new quantum number [' = J + [, describing the hyperfine structure of atoms.
The magnetic field B splits each F' level into 2F + 1 levels which has a linear dependence for
small B (more precisely if the shift induced by B is small in front of the hyperfine splitting). So,
the actual Landé factor for Rb® should satisfy gr # ¢;. For example, the two-level transition
used for trapping with Rubidium is Fj; = 2 — F, = 3.

In parallel to the hyperfine structure effects, there is the "dressed atom" approach that com-
putes the rescattering cross section (oz) [RHV11] and deals with the physics at large saturation
so [MS79, LPR89]. For example, in [MYMB10] and [CHB™ 14] the effect of I/ I, (small
or not) is clearly measured and compared with the Doppler prediction, leading to sub-Doppler
measurements.

7. A similar argument for writing the radiation pressure Eq. (I.7) should be used, verifying that the thick band
approximation is enough to write an average force between two atoms.
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2 SUM UP AND QUESTIONS

2.1 Sum-Up of the model

The standard model describing a MOT is then
— Radiation pressure of laser — Doppler effect favors cooling of atoms — friction force

Fgp = —mnv
— Magnet coils — splitting of energy levels — favor absorption of confining photons —
position trapping (Zeeman effect)— Fy, = —mwir

— The effective repulsive interaction between atoms (due to multiple scattering) is given by
a potential satisfying a Poisson equation F, o (o) o 7/r?
— Due to attenuation of the lasers in the cloud, there is an effective attractive force V- 13s o
—aip.
One expects for VLMOT (og) > oy, so the Coulomb like force is the dominant interaction
force. This mean that the Walker et al. model does indeed predict a cloud size growing with
the number of particles since the repulsion dominated. It means that up to some modification
(trapping, friction diffusion, shadow force) a VLMOT behave like a plasma of charged particles.
Of course, this conclusion is appealing as plasma physics is very rich and well investigated. But
due to the relative complexity of the various effects considered for the model it is also legitimate
to question this "to good to be true" vision of VLMOT. In the next Section, we review some
experiments linked with those questions.

2.2 Experimental confirmation?

The Doppler/Zeeman cooling and trapping have been observed since the beginning of MOT's
with for example temperature measurements and cloud size (e.g. [RPC87, SF91, MYMBI10]).
The shadow effect has also been observed in 1D or 2D MOTSs (meaning the magnetic field is
very strong in two or one dimension leading to consider only the other(s) remaining dimension)
with respectively cigar or disc shapes. Indeed, in those asymmetric setting multiple scattering
is expected to be much weaker, the reason being that most of the rescattered photons escape the
trap in another dimension of the MOT.

A list of the experimental clues in favor of this form of long-range Coulomb force is the
following

— Scaling experiments [CKL14, GPLK 10, Gat08] where L ~ N~'/3. A skeptic would say
as a disclaimer that other types of non long-range interactions can give the same scaling
e.g. imagine a set of tennis balls (hard spheres) bound together also have L ~ N 173,

— Coulomb explosion. [PSDJ00, Prul?2] tested the expansion speed of a cloud when the
Zeeman trapping is turned off The result shows a good agreement with what is predicted
for a similar Coulomb gas.

— MOT instabilities. In the works [TMK10, LMKO06], the authors tested some instability
threshold for the MOT due to the non linearity in the radiation pressure. If the instability
criterion is found using the Coulomb force for the multiple scattering, it is also not a
direct test of the force.

To the author’s knowledge these are the only experimental evidences agreeing quantitatively
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with the Coulomb nature of the repulsion. Of course, finding the Debye length in a MOT would
incontestably highlight the plasma like nature of VLMOT. That is what we will seek.

3 NON NEUTRAL PLASMA

We have seen in previous Section that if one forgets about the shadow effect, the VLMOT
description in term of forces is equivalent to a plasma formed by electrons pushing each other
via Coulomb force and trapped by a harmonic trap. This model is known as the Non Neutral
Plasma (NNP) model. NNP experiments are done with a Penning trap [DMF88, MDB " 88] that
traps one charged species (e.g. electrons) with a magnetic and electric field. Another similar
model, that we will also refer to is the One Component Plasma (OCP). It is a plasma com-
posed with electrons embedded in a uniform neutralizing background of large positive ions
(see [DO99, Ich82, TLB99] for reviews on the subject).

The primary goal of the collaboration and this work is to highlight the similitudes between
VLMOT "standard model" and NNP with observables unilaterally characteristic of Coulomb
interactions (more selective than the scaling law L ~ N'/3). At this point we had two ideas,
one was to look directly at the correlations in the system and compare them with those of the
NNP model. The other idea was to force the system with an external sinusoidal potential and
look at the response of the cloud, a dependence on the force nature (attractive/repulsive and
short/long-range) is then expected depending on the sinusoidal modulation.

After defining precisely NNP model and giving its essential parameters and features such
as the Debye length we will do a recap of the different expected experimental values for the
VLMOT comparing it with some true plasma in Table I.1.

Then we will present different relevant observables of an NNP adapted to a VLMOT.

3.1 Presentation of NNP model

3.1.a Standard NNP model

The NNP model is formed with a single charged species, in general electrons, trapped with
a harmonic force. The N electrons interact through long-range Coulomb force

.
Fo= 57 (1.27)

where here C' = IOW

e
(¢ the electron charge and €, the vacuum permittivity). So, there is an order 10° difference and

the effective repulsion between MOT’s atoms coupling is very weak.
The Poisson equation satisfied by the associated potential V. is

~ 107** N-m2. For electrons Cge. = ¢*/(47mep) ~ 2 - 107* N-m?

AV, = —4xC o(7). (1.28)
The N evolution equations for the standard NNP systems are
7= T, (1.29a)
MU = Foap(F) + > Fol(7 — ) (1.29b)
i#]
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where ﬁtrap(F) = —mwa7. When N — 0o, as we have seen in the Introduction we can write in
the mean field approximation the Vlasov equation

<ﬁc [f] + ﬁtrap)

Of+7T-Vof+ - Vof =0. (1.30)

3.1.b NNP model for the MOT

When adding the other forces present in a MOT to the NNP model, such as friction, diffusion
and shadow effect we get

7’:; = @i, (I.31a)
L -, P B (7 _ = o
muv; = —7Yv; — mwyT; + Z Fint(Tj - ri) + £<t)7 (1.31b)
i#]

where Fy; = F. + Fy, € is a stochastic Gaussian variable accounting for the random noise 8

(&) =0 (1.32a)
(€(t1)E(t2)) = 2vksTo(ty — t1) (1.32b)

Then again in the large N limit one gets the Vlasov-Fokker-Planck equation

L = <ﬁtrap + ﬁc[f] + ﬁb) 5 . . kBT -
of+v-V,.f+ -Vyfzvvy(vf%—ﬁvvf) (1.33a)
and the associated Poisson equations
V- F. = —Ag¢. = 4rC)p, (1.33b)
V- F, = —6adp. (1.33¢)

The friction and diffusion model possess a return toward thermal equilibrium that the original
Vlasov equation does not have. In [RHV11] is considered the Fokker-Planck equation without
expanding the radiation pressure force, leading to a position and velocity dependent diffusion
coefficient and drift term. In our regime of low saturation and thick band, their model reduces
to our equation Eq. (1.33a).

After a fast time® 1/, the velocity distribution relaxes to a Gaussian equilibrium leading for
the spatial density evolution to a Fokker-Planck equation (also called nonlinear Smoluchowski
equation)

. I R I T =
V0ip(r) =V - <W§Tp + —(Fe + Fo)lplo + %Vp) : (1.34)

From now on we will formally forget about the Shadow effect. Indeed since it has the same
divergence as the Coulomb force (with an opposite sign) it suffices to rescale the Coulomb
parameter C' to include its effect. The non potential part effects of the Shadow force will be then
neglected. Actually, simulations with the full Shadow effect were performed and in the regimes
relevant for the experiment, it did not add significant changes, justifying our assumption for a
first exploration of the long-range effects.

8. A Gaussian noise is motivated by the discussion Section I.1.2.

1
9. Indeed in standard experiments the quality factor QQ = wy /7 is in the over-damped regime Q < 5
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Density profile for zero temperature

The most natural observable is the density profile of the cloud. Without correlation at zero

temperature, the density solution of Eq. (I.34) is expected to have "rigid" boundaries p(7)
po(7)O(L — r) where L is the cloud radius '°.
From Eq. (I1.34) at T" = 0 K one possible solution satisfies for p # 0

mwir + Fofp] = 0.

Applying the divergence operator \2 gives a constant density profile for r < L,

3mw?
= O(L — 1.35
() = “ee (L = 1) (1352
with the inside density
3mw?
0 — 0. 1.35b
P = C (1.35b)
The cloud radius L can be computed from the normalization condition
00 4 LS
/ p(7) dPr = 47r/ rp(r)dr = el N; (1.36)
R3 0 3
thus, )
NON'Y?
L= ( 2) ) 1.37)
mwg

So L o< N'/3 for the NNP model. This was more or less observed in [CKL14].

Density profile for non-interacting cloud

The in this case analytically tractable limit of the model is when particles do not interact with
each other; they just feel the trapping due to the Zeeman/Doppler effect and the thermal motion.
From Eq. (I.34), one possible solution satisfies for each direction

mwgrip + kgT'0,,p =0,

giving (with the normalization condition)

N [(mw? 3/2 mw? 7
A — — — .38

which does not display any N —scaling size. We can define the characteristic length (sometime
called Gaussian length or one particle length) for this system as

kgT

mws

l pu—

g

10. For non-zero temperature, this rigid boundary is softened and one expects p(r) — 0 for r — oo.

41 Laboratoire Jean-Alexandre Dieudonné



CHAPTER I. FROM MAGNETO-OPTICAL-TRAPS TO PLASMA

3.1.c Debye length

In the OCP model, the classic computation made by Debye and Hiickel [HD23] shows the
existence of a typical correlation length between particles. This is the famous Debye length. In
the context of a plasma with electron and large positive ions, there is a simple interpretation.
The positive ions screen the long-range interactions between electrons for long distance, see
Figure 1.5, so the effective sphere of influence for one electron is given by the Debye radius.

Figure 1.5 — Schematic representation of a neutral plasma (OCP model) exhibiting a Debye
length of effective interaction.

In the VLMOT model, the neutralizing background of positive ions (OCP model) is replaced
by the trapping potential (NNP model). Formally a Debye length is also expected. We will only
show the Debye-Hiickel computation for this case.

Imagine the system is at statistical equilibrium with a constant density profile p° and you add
a small perturbation, one particle at 7 = 0. The perturbed profile is given by the Boltzmann
factor

p(7) = ple=dres(/(knT) (1.39)

and the associated Poisson equation for the total potential is

A [p(F] = Abe[p(F)] + Adn(F) = —4rCp(F) — muf — 4Co(F).  (140)
When the temperature is large with respect to the potential created (typically lf to} < 1), 1t
is legitimated to expand
dre 2 S
A¢t0t = —47TCPO + k_Tp ¢t0t + 3mw0 — 47TC(S(T) (141)
B
Defining the Debye length '! as
kgT
AD = (| 77— 1.42
D Bmwg ) ( )
we get a total potential of the form
1
A — 2 bror = —4TCO(T), (1.43)
D

11. Note that [, = v3\p
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and solution is known as the Yukawa potential

G*T/)\D

(btot (7’> =C

(1.44)
r

So, the typical potential created by a particle is screened (strongly attenuated) for distance larger
than the Debye length. For A\p — oo, this potential is again the Coulomb potential as expected.

3.1.d Plasma parameter

The experimental set up is believed to be in a ’gas like phase’ quantified by the plasma
parameter [' which is the ratio of the typical potential energy between two particles to the
typical kinetic energy of a particle

F_C/a_ C (mw§)1/3_a_2
kT kT \ C 3N

(145)

where «a is the mean distance between particles

I C 1/3
0= i = (mwg) . (1.46)

Note that in I' < 1 regime we justify the derivation made for the Debye length in Eq. (1.43),
which means that for other regime [' > 1 the Debye length is not physically relevant any more.
It becomes smaller than the inter-particles distance Eq. (1.45).

This is the unique parameter determining the system state for the NNP model (when the
system size is infinite or with periodic boundary conditions), it measures the correlation in the
system. For the standard OCP model, there is one phase transition from liquid phase to solid
phase (see the Los Alamos National Laboratory Plasma group website ' for nice illustrations),

Fluid Solid
Gas-like | Liquid-like
P<1|T~1-100 > 175

For the finite sized MOT, we also consider
h=1,/L (147)

which quantifies in a way the finite size and temperature effects.
To have a gas like phase and a quasi-step function density profile we need

2

r— ‘;—2 <1 (1.48)
g
!

h = zg <1 (1.49)

this regime is believed to be the one of the VLMOT of INLN.

12. http://www.lanl.gov/projects/dense-plasma-theory/research/one-component-plasma.php
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A last characteristic plasma parameter is the plasma frequency (also called Langmuir fre-
quency) defined for a MOT as
4 p°C
wy = | L= = 3wy (1.50)

m

It characterizes the fast oscillation of the atoms when small perturbations move aside a plasma
from a homogeneous distribution. In fact, those oscillations can be related to the Landau damp-
ing mechanism that we will study in details in Section V.4.

3.2 Some numerical values for experimental MOT

In our MOT, the plasma parameter is weak I' ~ 10~*, which means that the interactions are
weak in comparison with kinetic energy. Thus, one does not expect a liquid or crystal structure
in the atomic cloud but rather a gas like medium. This is the weak correlations regime.

Small MOTs size has been measured (e.g. [RPC*87]) to be of the order of 100 um. In
these MOT's we expect no Coulomb interactions between atoms. Hence the particles follow a
Gaussian distribution Eq. (I.38) with [, ~ 100 ym. Since [, = V/3\p, we have an expectation
value for the Debye length, that in principle should remain true for very large MOTS with
repulsive interactions.

In Table 1.1 we present some typical value for known weakly coupled (I' < 1) plasma and
compare them with the VLMOT. Despite that the INLN MOT is far from known a regime of
plasma it shares some parameters with magnetic fusion plasma.

T (X)) p°(cm?) L (cm) r h a(cm) Ap(cm) w, (rad/s)
Magnetic Fusion ~ 10° 10" 100 1077 107* 107° 1072 6- 10"
Solar Wind 10° 10 6-10° 107 10 0.1 2.10°  7-10°
Galactic center 107 102 10" 107 107 o008 3-10® 6-10°
VLMOT 1071 10! 1 10" 001 10°* 1072 10°

Table I.1 — Some typical parameters for weakly coupled plasma.

So far we have gathered a number of parameters to characterize the system. Here we try to
give an overview of them with some typical experimental values.

The number of atoms can be varied over several orders of magnitudes from N = 10° to 10"
for the INLN MOT. For N ~ 10" one has L ~ 1cm with a density py ~ 10 atoms/cm?3.
The on resonance optical thickness is computed with the measured maximal density (which is
assumed constant along the cloud) and the cloud size L Eq. (1.21),

bo = 2Loop° ~ 100.

It might seem large and completely invalidate the small b hypothesis needed to express the
shadow effect but it decreases quickly with the detuning since

o) = —

BT vk (L51)

insuring that experimental working detuning b(|d|) ~ 1.
Here is a list of several other values
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2
— k= ﬁi) nm ! is the wavenumber of the laser

— m = mpq = 1.443 x 107?° kg is the atom mass (while Mejectron = 9.1 - 107> kg)

— Two energy level rubidium atoms AF = Aw,iom =~ 1.589¢eV, with the corresponding
wavelength A\ ;o = 780.241 nm (in vacuum)

— Temperature ~ 150 uK

— Iy = 1.2mW/cm™? lasers intensity

— I, = 1.67mW/cm™? [Ste01].

— I'y = 27 x 6.06 MHz natural width of the atomic transition for Rubidium atoms at
resonance at Watom

— 00 ~2.9 x 10 %cm?

— C= fo% ~ 2 - 107% N-m? (while Cejectron = 2 - 1072* N-m?)
e
Also, to be useful the probing of the Debye length by a laser must satisfy Ap/A; > 1
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CHAPTER 11

THEORETICAL AND EXPERIMENTAL
OBSERVABLES

The analogy between the MOT and NNP model is now established. The aim of this Chapter
is to define the characteristic observable of the NNP model (and in general long-range systems)
that could be use in a real experiment. We will also introduce our numerical simulations to
illustrate those observable. In next Chapter, all those tools will serve the experimental proposal
to see long-range effects.

1 DENSITY

The most obvious observable is the one point density function p(7) that depends directly
on the interactions. Due to the supposed isotropy of the system one can in general consider
only p(7) = p(r). However experimentally, one cannot' access this 3D profile and only an
integrated profile p,(z),

L L
pa(T) = / / p(Va? +y? + 2?) dy'dz". (IL1)

It corresponds to what is seen when the cloud is observed with fluorescence on a slice —e <
y=0<e

The fluorescence technique consists in changing brutally the detuning of the confining lasers
from the working experimental value to the largest detuning possible |0| = 8T'; and observing
the photon emitted. The switch and measurement are fast enough so that the atom positions
do not change much. If single scattering events are diminished "< o |" at large detuning,

1. In principle a tomography, which gives p(r), is doable but experimentally somehow painful to set up.
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scattering followed by rescattering on another atom ” o opor || 7 is furthermore diminished.
Therefore, photons on the CCD camera mainly come from single scattering events and so are
linked with the position of atoms. The resulting profile is more accurate than directly looking
at the emitted light from the cloud at smaller detuning [CKL.14] where both types of scattering
are mixed.
So experimentally we will compare two things with the Coulomb model
— The shape of p,(r)
— The scaling of the cloud radius with various quantities. Practically it is easy to change
e The detuning § with the disadvantage that it changes both interactions and tempera-
ture.
e The number of particles N, that should be a well-controlled and predicted quantity.
The cloud size is experimentally measured as the Full Width at Half Maximum (FWHM) of the
fluorescence profile. Per the standard model Eq. (1.35),

pe(z) x VL2 — 220(L — 1)
and L ~ N'/3_ [CKL14] gives

— approximatively the good N —scaling
— adensity profile p,(x) which is not very well fitted by the theory.

2 PAIR DISTRIBUTION FUNCTION

The pair distribution function ¢® is a direct measure of correlation in the system, it is defined
through the one and two point density function,

p (7, 7)) = g (7o, 71) p(71) p(72), (11.2)

where p? (7, 1) measures the probability of two atoms being at 7 and 7. If ¢®) = 1, it means
there are no correlations, thus a particle at 7} will see a homogeneous density around it with no
particular exclusion zone. For a weakly correlated plasma [' < 1 the pair correlation function
can be found by the Debye-Hiickel theory (similar calculation to that of Section 1.3.1.c) as

r r
g, — 7)) = gP(r) ~ 1 - & =t/ exp (—a—e_r/)‘D> (IL.3)
r r

where we assumed the isotropy; the last equality an interpolation between g (r=0)=0and
the Debye-Hiickel theory, its validity is discussed in [BH80]. For small » < Ap it is very close
to zero, meaning two particles cannot collide (because of the interaction), then it goes quickly
to 1, meaning for » > Ap one particle "sees" a homogeneous repartition of particles.

Theoretically and numerically this quantity is very interesting and accessible, but experimen-
tally it is not directly accessible. It would require position tracking for particles. Note that for
some "dusty" plasma experiment with heavy ions it is feasible [SVH " 04].
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3 NUMERICAL EXAMPLES

The major issue with the simulation of a VLMOT is the number of particles. Due to the
machine limitations, the simulated particle number cannot be higher than about N ~ 10°. Thus,
obtaining both low h of Eq. (I.47) and I" of Eq. (1.45) is difficult. The only way to decrease one
without increasing the other is to have a large V. In fact, to get i ~ 10? and I" ~ 10~* as in the
experiment we would need about N ~ 107 particles...!

Nevertheless, we expect the main features we seek to remain. Thus, in Part One we will
perform molecular dynamics simulations with N = 16384 7.

The inter-particles distance a of Eq. (1.46) is relatively well known in experiments since both
the number of particles and the size of the cloud are controlled. It is thus natural to use a to
define dimensionless distances.

3.1 Numerical details

All MOT numerical simulations are performed via a 3D molecular dynamics (MD) code with
a parallel implementation on a Graphical Processing Units (GPU). I gratefully acknowledge
Bruno Marcos who provided the code in its original structure (for pure self-gravitating systems).
I added to the code friction, diffusion® and trapping. For some tests I also coded the Shadow
Force. The code performs a time integration for the NV particles evolving through Eq. (I.31).
— The interaction force is coded in parallel: thanks to the block structure of GPUs the
force F; felt by an atom ¢ can be computed simultaneously for many ¢s. Compared
with a standard Central Processing Unit (CPU) computation the number of operations is
still proportional to N (NN — 1) but with a coefficient greatly diminished. The speed-up
depends on the number of particles, the problem and the GPU used, but here it is at least
100 times.
— The whole Langevin dynamics (with friction and diffusion) is coded according to a sec-
ond order Leapfrog algorithm [ISP10].
The advantage of this code is that it computes exactly all force terms. Indeed, other codes such
as GADGET [Spr05], make approximations using the long-range nature of the force to gain in
computation time. It is also a disadvantage because GADGET codes are much faster. In our
simulations we find a compromise between a large particle number and a reasonable simulation
time with NV = 16384.

2. This number was chosen because it is a power of two and it is optimal for GPU computing.
3. The cuRAND library [CGM 14] allows fast random Gaussian number generation on GPU.
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3.2 Numerics

For one snapshot the density is computed as

p(r) = Z % (I1.4)

1

where V, = 4w (r® — (r — Ar)*)/3 is the volume of a 3D ring between r and 7 + dr Then it
is averaged over at least 50 snapshots. Simulations are shown in Figure II.1(a), for different

400

I— p——— y T ; T
i //f —T=1
T=4
300[ ] 08 — T=2 .
* |
— L/
= 06 ]
p(r) a
200 — = j
0,43 .
100 - i
02F ]
ol o v N e ‘ S N
0 10 20 L/a 30 0 I 2 3 4 5 6
r/d r/a
(a) Density profile p(r). We noted the theoretical length (b) Pair correlation function ¢® (r).

L given by Eq. (I1.37).

Figure II.1 — Density and pair correlation functions from MD simulations for three different
temperatures (see Table II.1 for parameters value).

dimensionless temperatures 7'. For h < 1 the profile is a step function while for A > 1 it
has a Gaussian shape. The length of the cloud L indicated on the Figure is well recovered in
simulation as well as the density py = 298. The pair correlation function g? is computed as

follows:
onr(|m — —
ROES Zp Ml Sy el ”|) 2 aLs)
r1<e r1<2z Fo#T]
where
1 "—rl< A
Sar(r! — 1) =4 =l < Ar (IL6)
0, elsewhere.

Here € is a parameter that should be smaller than the cloud radius but large enough to sample
many particles. Just a note, the large r limit of ¢'® is supposed to be 1, but obviously for a
finite system it will go to 0. It does not matter since the correlation effects we seek are found
for small r.
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Figure I1.2 — 1 — ¢® () for three different temperatures in a simulation with standard Coulom-
bian interaction. Also, plotted is the analytical expression of ¢'® (r) with the computed values
of Ap, a and I (see Table II.1 for parameter values)

Numerical test

To see these correlation effects (i.e. when ¢'¥ (1) # gﬁ%(r) = 1) we look at 1 — g@(r)
in Figure II.2. We compare the simulations with the theory of Eq. (II.3) with the theoretical
parameters (hence it is not a fit). The effect of temperature is clear: on one hand for high cor-
relations (low temperature) the theory is less accurate. On the other hand for high temperature,
fluctuations are higher which may also damage the precision.

I'=1 T=4 T=20
Ap 0.0577 0.115  0.258
h0.0245 0.0490 0.110
r 0.862 0.215 0.0431

Table 1I.1 — Parameters used in the MD simulations for different temperatures. We also have
temperature independent parameters: v = 100, mC = 0.08, N = 16384, wy = 10 so L = 2.36,
a = 0.093, p° = 298 for the three different temperatures.
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4 STRUCTURE FACTOR

If the pair correlation function was clear to interpret and density independent, it could not
be directly observed in experiment*. However, the static structure factor S(k) has the advan-
tage that it can be directly linked to the experimental diffraction profile (see Appendix A.1).
Following [HMO06], we define the structure factor as

2
> (IL.7)

ﬂ%=<%m®m—a>=<%

where the bracket stands for an ensemble average and we have used the empirical density Eq. (4a)
to obtain the last expression

N N
p(k) = / p(7)e 7 4 = / S o(F—m)eFrar =Y e (IL8)
i=1

=1

Z e—iEﬂ

)

The ensemble average is crucial to see correlations, removing it carelessly would erase them.
Another formulation of the structure factor highlights their role

S(E):<% Zek2> <N§; i rj>_1+< ié >

i

:+% Zz//%ﬁm FwﬂmM%>

=1 j#i
1 S
=1+ / / e~ )3 (7 ) A di
(IL9)

where we used the definition of the empirical two point density function. So, neglecting correla-
tions would correspond to considering p'® = p(7,)p(7). For an isotropic infinite homogeneous
media (N — 00), one can write

R i r .
S(k) =1+ po / T AT+ po / (9@ = 1)e ™™ di = 1 + poViaed (k) — 4o / O = ik T g
T

4mral’pg Ay
= NO(k) +1— P Ng(R) 41— D
W) 1=y ~ VW T -
/{32
= NO(k) +
W)+ g,

(II.10)

where the 3D Fourier transform was directly obtained from the modified Poisson equation Eq. (1.43)
that is satisfied by the Yukawa potential. The Dirac function corresponds to the unscattered ra-
diation. Without interactions g(l) = 1, so one would expect

Sur = No(k) + 1
In our problem, the structure factor will be modified for large wavelength due to the finite

size effect, resulting in a spread peak reflecting the Fourier transform of the density profile, not
just a Dirac peak.

4. However if the media is infinite, homogeneous, and isotropic it can be computed via the structure factor.
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Numerical test

Computing S(|k| = k) for a MD simulation of a trapped Coulomb cloud gives Figure II.3,

— The main peak in S(k = 0) = NN correspond to the unscattered radiation.

— For small & ~ 1/L, a large peak with many bump, reflecting the step function profile of
the cloud

— For large k, the structure factor goes to 1. This contribution is always present and stands
for a background noise.

— For intermediate k£ ~ 1/Ap, a small gap is formed and is deeper when the temperature is
smaller (thus it depends on Ap). This is characteristic of the Coulomb correlations.

I
DO W
|

‘1 I 1 I 1 1 | I | I 1 1 1 | I |
10
0.1 21 1
a7 ka
Figure I1.3 — Structure factor S(k) from MD simulations averaged in all k directions at a fixed
|k| = k for three different temperatures. We indicated the position of the peak corresponding to
the cloud size 2wa/ L. For other parameters see Table II.1.

We compare these simulations with the exact overcritical expression Eq. (I1.10) for £ > 1/L in
Figure 11.4. Once again, the simulation/theory agreement is very good.

5 COMPARISON WITHOUT CORRELATIONS

We have a clear prediction for an experimental measurement of correlations: a "dip" in the
structure factor characteristic of Coulomb interactions with a functional dependence that leads
directly to the Debye length. Nevertheless, to be sure that this "dip" corresponds to correlations
we can compare it with the structure factor of a cloud with no correlations (see Figure III.1).
We propose two different ways to achieve this, one that will be useful for numerics and one that
shall be used in experiments.
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Figure I1.4 — Structure factor S(k) from MD simulations averaged in all k directions at a fixed

\lg | = k for three different temperatures. We plot the non fitted theoretical expression Eq. (IL.10).
We indicated the position of the different Debye length. Theoretical values used are given in
Table II.1.

5.1 Random arrangement

Numerically we know the density profile, it is then easy to draw random particle positions
according to this profile. With this procedure, we have a cloud with the exact same density
profile but without any correlation between particles, in particular we expect g? (r) = 1. This
method is also very useful for the structure factor since the density profile plays an important
role, so keeping it constant allows us to distinguish the correlation effects without assuming an
ideal profile. This will be very useful when we study different interaction models (with a priori
different density shapes). However, we cannot apply this procedure in experiments.

5.2 Turning off the trap and interactions

In the experiment one cannot turn off interaction without turning off the lasers and thus the
whole trap. When it is done, particles evolve freely with constant speed and direction. After a
time tp = Ap/ (|v|) (typical time to "escape" the Debye radius), we expect correlations to have
diminished greatly. Plotting the new structure factor> (Figure I1.5) gives as expected a "closing

5. From now on we normalize the structure factor by S(0).
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of the dip". Note that ¢p is estimated as

\/ 3mw0
N 1
Y 24w0 -

8kpT’
™m
- — Trap ON :
: Trap OFF t = tp ]
. %\ — Trap OFF t = 2tp .
- — Trap OFF t = 3tp i
S(k)
1 - AN

: ka

Figure I1.5 — Structure factor S(k) from MD simulations with the trap ON (interaction force
+ friction/diffusion + harmonic force) and after turning OFF the trap (evolution at constant
velocity ). We wait respectively ¢ p, 2t p, 3tp and plot the associate structure factor to observe
the correlations disappearing.

Experimentally this method is well controlled. The escape time has ¢, small enough so the
density profile doesn’t change too much (and so the structure factor). However, an issue of this
method is that it cannot be simply transposed for the modulations experiment we will propose
Section II1.2.

6 DIFFRACTION AND STRUCTURE FACTOR: LINK WITH
EXPERIMENTS

As explained in Appendix A.1, there is a simple link between the structure factor S(k) and
the experimental diffracted intensity. However, the real diffracted intensity contains multiple
scattering (which is not contained in S(k)) events that can screen the effect we seek. These
events are typically measured by the optical thickness b(J) Eq.(I.51). For large b, multiple
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scattering is very important, while for very small b the diffraction is mainly composed of single
scattering. We show in Figure A.1 that for b ~ 1 these effects are small and thus can be forgotten
for this first exploration. A laser emits a wave Ej, e’*.7&_ The wave is diffracted in direction

Figure I1.6 — Sketch of an incident beam k; diffracted on an atom with an angle 6.

k} = kp(cos @ sin O, sin py, sin Oy, cos 0y, ), see Figure 11.6. In our regimes, it is natural to
consider elastic scattering |k;| = |k;| = kg|e|). The difference vector k& = k; — k; appears

-,

naturally (see Eq.(A.4)) in computation of the diffracted light, thus we will study S(k) =
SOk, pr)-
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CHAPTER Il =

LOOKING FOR DEBYE LENGTH AND
OTHER PLASMA PHYSICS EFFECTS

The goal of the experimental collaboration is to highlight the repulsive long-range nature
of the effective forces between atoms as it was predicted by [WSW90]. As we have seen no
experimental measurement has yet confirmed with no ambiguities these forces.

In this Chapter, we come to what is the result of Part One: experimental proposals to measure
the Debye length or at least stress the long-range nature of the forces. We first briefly review
the direct diffraction response method with a more realistic Laser shape. However, in real
experiment this method might give a signal way too weak to be observed. The other experiment
idea is to force the MOT with an external potential and look at its response. This latter should
be characteristic of the nature of the effective interaction forces. The numerics and theoretical
prediction are compared to the preliminary experiment done by the INLN team. The theoretical
and experimental data are consistent nevertheless it remains difficult to draw conclusion
on the presence or not of long-range forces. Indeed, the effect sought might be cover by
density effects due to the existence of two diffraction regimes that crossover about where the
experiment probed.

1 DIRECT PROBING

1.1 With a Gaussian probing beam

In real experiments the probing Laser (in the 2 direction) is not an ideal plane waves Eg o
¢'*L% but has a Gaussian envelope. Thus, we consider following expression for the probing
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Laser

2,2
z7+y
—2 5

ikLze Wl

ELaser x e

where w is the Laser waist '. If the Laser waist w is smaller than the cloud’s size (typically in
experiments . ~ 8mm and w =~ 2mm) it has the advantage to soften borders. Figure III.1
clearly shows how in the diffraction response border effects are suppressed with a Gaussian
beam. We also compare this profile with an another one without correlations. This uncorrelated
cloud was obtained via the procedure explained in Section II.5.1 (we randomly drawn particles
along the density of the correlated cloud). Clearly the small dip disappears with correlations.

4. I T T T |||||| T T T T 1T T1TT

10

-2 I ’/’I 1 1 1 1 1 L1 I 1 1 1 1 1 1 L1
10
0.1 1
ka

Figure III.1 — Structure factor with a Gaussian probing beam S (k) and with a plane wave S(k).
The "random" curve is obtained for a random drawing of particles as suggested in Section I1.5.1.
We plot the non fitted theoretical expression Eq. (I.10) of the Structure factor. Theoretical
values used are given in Table II.1, here T" = 4.

1.2 Comparison with experiments

The correlations of the Coulomb forces are characterized by a small dip in the diffracted
intensity as explained in Section II.5. We expect the background intensity to be of the order
1/N4, where N, is the number of diffracting atoms. If the probing beam is larger than the
cloud all atoms diffract so N; = N and S(k — 00)/S(0) = 1/N ~ 107'°! Such contrast
leaves no hope to observe any dip near k& = 1/Ap (even with a Gaussian beam where Ny is
smaller the contrast would be too large). The best experimental resolution is about five orders
of magnitudes...

A mask was used to hide the central peak in order diminish the contrast but preliminary
experiments where pessimistic. Thus, this experiment was abandoned.

1. There is in principle also a dependence of the waist dependence on the longitudinal direction w(z) but for
the Laser used, this effect is very small since z < zr = 41 m, where zg is the Rayleigh length.
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2 RESPONSE TO AN EXTERNAL POTENTIAL

Since the dip characterizing the Debye correlation is very hard to detect in experiments, we
must change strategy. Going from a static measurement, to a response to an external forcing
measurement, increasing the signal to measure. Note that not only the measurement principle
is different but also the effect sought. In previous experiments, we wanted to analyze the posi-
tion of particles to find some special arrangement between them: correlations, characteristic of
Coulomb interactions. Here we no longer look directly for correlations between particles, but
rather for a response characteristic of Coulomb forces (or more generally long-range interac-
tions).

2.1 Experiment principle

We apply a modulation in one direction €, of the cloud and measure the response depending
on the modulation length. The modulating potential is made experimentally by focusing two
interfering laser beam on the cloud. It shape is

Gext = Asin(kex)

where the angle between the two modulating Lasers determines the wavelength k. and A is the
modulation amplitude. The Fokker-Planck equation predicts the density response in stationary
regime

V- [(Fu + Felo)p — TV = p¥ x| =0, . 1)

so around the constant profile p(7) = pg + dp(7), the linear response in A is (neglecting border
effects of the cloud)

A
Abp — K256p = —kB—Tk:zpo sin(kex), (II1.2a)
SO A kQ
Sp(z,y,2) O ¢ _sin(kex) (I11.2b)

- ]{IBTp /{?g + KJQD

with kp = 1/Ap, where we used that F. [p] + F,. = 0. Hence the modulated profile has a
clear amplitude dependence on the modulation number k. and it is characteristic of Coulomb
interactions (another force would have given a different result). Hence if we measure this shape
it will prove the experimentally the Coulomb-like model of VLMOT [WSWO90]. In next Section,
we will discuss this dependence in terms of long-range interactions.

Remark III.1

Here we have done a 3D computations assuming an infinite homogeneous unmodulated density.
Of course, the border effects (as finite size and temperature) might modify slightly the profile
and response, but it seems quite safe to assume that at first order and for & > 1/L they can be
neglected
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2.2 Fluorescence-like density profile

2.2.a The Response function

A direct observation of the modulation effects consists in looking directly at the density
profile p,(z) via the fluorescence technique. In the Fourier spectrum, we expect a peak at
k, = k. with height proportional to the response function

/{72

I p———
k% + k3,

(1IL.3)

there are also some density effects for k& < 1/L since p° is not a perfect infinite constant den-
sity profile. Without interactions between particles (thus with no Debye length), the response
function is B(k.) = 1. For other type of interaction forces this response function changes. The
interpretation here can be put this way

— For large scale £ < xp, moving atoms on large distance will cost much (so the response

will diminish) since particles interact via long-range forces, moving on large scale will
imply moving a lot of particles and modify (/N — 1) terms in their potential energy.

— On the contrary for large £ > xp (small modulations), it will cost less to move on small

scale involving less.
For short range repulsion, the response has an opposite profile B(k. — 0) =cst (a particle
sees only its neighbors, hence for modulation larger than a given scale the response is constant)
while B(k.) will decrease for large k..

For attractive long-range forces, we also expect B(large k.) — cst, but for large scale pertur-
bation, we expect an instability to develop at a certain scale k;, where k is the Jeans wavenum-
ber. This is the Jeans instability [Jea02, BT11] well known for galactic systems: when a self-
gravitating system is too large its kinetic pressure cannot compensate the gravitational force and
the system collapses.

2.2.b Numerical Simulations

In Figure II1.2 we plot a simulation of the modulated density profile p,(x) (for a fixed temper-
ature) for two different modulations. As expected the amplitude grows with k.. In Figure I11.3
we plot the response to modulation (peak of the Fourier transform at £ = k.) for several k.
and different temperatures and compare the result with the response function B(k.). The ratio
between the amplitude response for different temperatures agrees with the factor (kg7) ' in
Eq. (IlI.2b). For small temperature, the simulations do not match perfectly the theory, this is
because is the regime A/T > 1 the linear theory is expected to fail. Nevertheless, we see that
the essential features of B(k.) remain, just the effective 1/Ap seems shifted to the left, thus
there is a larger effective \p outside linear regime. Effective (\},).z and A}, seems to about the
same.
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Figure III.2 — Integrated density profile p,(x) with and without an external potential with ampli-
tude A = 8 and wavenumber k.. When k. increases the response also increases. Here 7' = 20
and other theoretical values used are given in Table II.1.
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Figure I11.3 — Amplitude of the Fourier transform F'T'|p, |(k.). We plot the theoretical expression
of the response B(k.) = Eq.(II.3) for the theoretical parameters given in Table II.1. The
external amplitude is A = 8. The linear theory works better for A/T" small.
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2.2.c Experiments

This method requires experimentally to be able to see the modulations in the fluorescence
profile and then deduce its Fourier spectrum. This set up can be seen more generally as testing
the long-range character of the interaction; an increasing response with k., would be a signature
of a long-range repulsion.

Unfortunately, it seems that fluorescence techniques are not accurate enough, less than 10%
changes are in the noise of the density profile. Our small modulations are thus not observed at
all. Also, larger modulation intensity seems not possible without completely destabilizing the
MOT.

2.3 Diffraction

Since the fluorescence technique is not accurate enough, an alternative way to measure the
density modulation is diffraction. It is very accurate, but interpreting the results is not straight-
forward, as we will now explain.

As explained in Sections II.4 and III.1, to predict the diffraction profile we must study the
perturbed structure factor

S(R) = $U(8) + { o)) + (S 00-RPE ) + (o@op(-F)) i

where S is the unmodulated structure factor (without external potential A = 0).

In this modulation experiment it is legitimate to neglect the correlations because here they
are very small as we have already painfully experimented, Section III.1. So, we can write for a
symmetric density profile

S(k) = S°(k) + %5;)(/5) P (k) + 6p(k)? + O (correlation) . (111.5)

The perturbed density Fourier transform can be easily related to the unperturbed Fourier trans-
form thanks to the shift in £ induced by the sin function

ET [p(z) sin(ker)] (ko) = 5 (p(ka — ke) — p(kz + ke)) ,

1
2
where FT[p](k,) stands for the Fourier Transform of the density p.

23.a Expression of the k vector

The goal of this subsection is to introduce some effects that may not be intuitive for reader
concerning 1D and 3D diffraction calculus. For example, |k — k.| # |k — k.| in 3D while it is
true in 1D. The diffracted wavenumber vector is (see Figure 11.6)

k= (kg ky, k) = (— cos ¢y sin O, — sin ¢y, sin Oy, 1 — cos by,),

and its norm is
k = 2k sin(6x/2), (I11.6)
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so 0y = 2arcsin(k/(2kr)). A simple calculus shows that

k= —k,/l— k cosgok,—wl— Sin g, o | - (111.7)
L

In experiments, we observe S(0y, ¢x). Two modulated den51ty produces two diffraction
peaks in ¢, = 0 and 7. The angle 6y, is directly linked with |k:| Due to the modulation, we

expect a peak in S (E) around k ~ k.. The perturbed wave vector expression after the shift due
to the modulation is

o E\2
|kike|:\/k§+k:§+k§+k§i2kxk:e: k2 + k2  2kkoy 1 — (%) cos ¢p. (TIL8)

The minimum of this norm is reached around k = k. with ¢, = 0 or 7 (those will correspond

experimentally to the two-diffraction discs observed).
106
We expect the Debye length to be around 100 m so k ~ 10*m™!, with k;, = 078 m~!, so

k./k; < 1. Hence, we can safely expand the square root in Eq. (II.8), to get with |k| ~ k. and

o = 0 (for example)
2 ke \?
ke Cl — ke _‘z -
(ke € = ke €] = 5 ((%L) ) (IIL.9)

~k, #0.

This computation shows that due to the 3D nature of the system, one must not a priori forget
about the longitudinal direction €, in the diffraction. It will be the origin of two regimes of
diffraction.

Therefore, the perturbed Fourier transform is at the peak k ~ k.

2
plb) = (0 + 570 (4 (32 ) = (2] (I1L10)
Here remember that p(k = 0) = N and also that the Fourier transform of the profile decrease
very quickly to 0 with k increasing (the more regular p(r) is the faster its Fourier transform tends
to 0). The dominant term in the structure factor? is for NA/(kgT) > 1 (for 10% modulation
and N ~ 10'° the approximation is safe) and k, > 1/L (for smaller k, the unperturbed term
becomes of the same order),

1/ AN, o [ K2\’
S(ke)_1+ﬁ<2kBT> B(k,) <p <2kL>> : IL11)

where have neglected terms with large argument in p(k). Due to its fast variation around k& ~
1/L it is dangerous to replace the last term by p°(k = 0) = N. In next Section, we give a
simple illustration of this fact.

2. We keep the +1 background term which for large k is dominant.

63 Laboratoire Jean-Alexandre Dieudonné



CHAPTER III. LOOKING FOR DEBYE LENGTH AND OTHER PLASMA PHYSICS EFFECTS

2.3.b A simple example: existence of two diffraction regimes Raman-Nath/Bragg

In this Section, I will give a simple example where two different regimes are easily observer
in the diffraction response.

Let’s take a 3D cube of atoms p°(z,y,2) = p’O(L — 2)O(L — 3)O(L — z), modulated
such that §p = Ap°sin(k.x) were we set a constant A = AB(k,) (for example with a trapped
non interacting cloud). It means that here we do not seek interaction effects just the regimes
of diffraction. The diffraction S(k) response is maximum (forgetting of course the undiffracted

peak in & = 0) for k ~ k.. Standard calculation gives

o g asin(k L) sin(kyLy) (sin((ky — ke)Ly)  sin((ky + ke) L)
) = 4y ARl (S gl o )

(IIL.12)

so, with Eq. (II.11) we have

~\ 2
ooy 1 [(4p°AN [sin(k.Ly) sin(k,L,) sin((ks — ko) Lo)\?
Sk) = S(k) = (2k3T> ( k. ky (kr — ke) ) ——

where we have neglected correlation terms and cross termed terms in Eq. (II1.5) which are neg-
ligible for & > 1/L.
— If k,L, < 1 (thin media) then the diffraction is independent of the density along the
longitudinal direction ¢€,. The max of this function is reached for k£, = k. and &k, = 0.
So, the peak response is constant with k. and its amplitude is constant

S(k.) ~ % (pgfleLny)Q.

— Now if k,L, > 1, the peaks of diffraction are still situated around k£ ~ k.. We can still

set k, = 0, but this time we must also consider the additional dependence on k., # 0.
k2
2k’

The peak response is now, remembering k, ~

_ ‘ ) 2
1 [ 4poALyL, sin (;;:L LZ>

Slke) ~ K2/ (2ks)

So, in this simple example we have seen the existence of two diffraction regimes:
— k,L, < 1, response is constant with the modulation k,
No density effects: Raman-Nath regime of diffraction.
— k.L, > 1, response has a k,* dependence with the modulation
Strong longitudinal density effects: Bragg regime of diffraction.
It shows clearly that the diffraction response to modulation displays a slope change due only to
density effects without any link with the response function B(Ee). Of course, it is problematic,
because it will interfere with the slope change effect expected from the long-range interactions!
The criteria for these two regimes is in terms of a critical wavelength A') (or wavenumber
k() of modulation

L, 2k
/\ff):2m/2k = VrLAL o K =4[ 7E (IL.14)
L z
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So, for a cloud of radius L ~ 6 mm and a laser \;, = 780 nm, the regime change is expected
at )\éc) ~ 120 pum... which is the worst case scenario since the Debye length is also expected
around 100 pm!

Thus in the following, we will need to distinguish/separate the ''density effects'' from the
""long-range effects''. To do so theoretically, we will often set B(k.) = 1, which corresponds
to a response without interaction, to compare with a case with interactions.

Remark II1.2

One physical picture for those regimes is: considers at the cloud entrance a series of Gaussian
beams with a waist given by the size of diffracted object, which is here the density modulation
of size A\ = 27/k.. That beam will propagate and spread in perpendicular plane, Raman-Nath
regime corresponds to the situation where two adjacent beams do not superpose which is to say

the Rayleigh length
/\2
ZR — T —

AL
is smaller than the longitudinal size of the cloud L.. When zg > L, beams overlap: it is the
Bragg regime. In the context of ultrasonic light diffraction this criteria Eq. (III.14) between
Raman-Nath/Bragg is also known [KC67].

2.3.c Diffraction discs

In the previous Section, we have seen on a simple example that we expect for a homogeneous
distribution of particles with no interactions a diffraction profile with

— A < A9, S(A) o AL,

— A > A9, 5(0,) oc A2
Here we will show how measuring the total intensity of diffraction discs (\.) (and not only its
maximum) affects the scaling in adding a linear contribution A,

— A < A9 RN o A2,

— A > A9, R(A) o AL
Indeed, in experiments is measured the total intensity of diffraction discs (to which we remove
the unmodulated profile). It is defined as follow

99+59 509+€4p
/ / S%)(0e + €5, e + €,) deyde,, (II1.15)
¢

e —€p

where 0, is the associated angle of the modulation Eq. (IIL.7) and (e, €,) are chosen large
enough to enclose the diffraction disc.
A simple calculation of the integral of (S — S) (Ee + dE) in two extreme cases (step function
and Gaussian) can give an idea of the effect on the response scaling of this computation.
— For the step function density profile Eq. (III.13), we expand around the peak at (6 =
0. + 6,0 = 0+ d¢), which gives a term like

~ sinc?(k.0¢p).

1
This term integrated give something proportional to = Ae

— For a peak with Gaussian shape, one expects

7 > 7 k) ~ke
e—w2|kl—keem\2/8 _ e—wz(kﬁ_—i-kg—QkLkecosd))/S 15 6—w2k36¢2/4e—w25k/8 (111.16)

this term integrated gives something proportional to 1/k, o< A..
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In conclusion, it seems rather generic that for k. < kp, the total surface intensity of the diffrac-
tion peak R has an extra linear dependency with \. when compared to the peak maximum S.

2.3.d Comparison theory simulations

Simulations

The various components of this experiment and associated predictions are now theoretically
established with simple examples.

We show on Figure II1.4 the result of the diffraction on simulated clouds for three differ-
ent temperatures. We do not plot the surface of the diffraction discs as suggested in Sec-
tion I11.2.3.c, but rather the maximum of this diffraction disc (corresponding to £ = k. and
¢ = 0 or m). We do so just to get a first illustration of the Bragg/Raman-Nath regimes versus
long-range effects without additional "surface effects". Furthermore, we chose an infinite waist
(corresponding to a plane wave) to avoid other additional effects. In Section III1.2.3.e we will
consider both effects.

The Figure I11.4 shows indeed a regime change where it is expected at A\, = )\é‘l). Moreover,
the effects of the long-range interactions are clear for A\, = Ap: the response decreases. In
between the two crossover the response is almost constant which is expected. A cloud with no
long-range effects would have a constant response for large modulation A, > Ap (instead of a
decreasing one); but for small modulation )\, < )\éc) the response will be (as with interactions)
dominated by "density effects" (Bragg regime).

T T T I I T T || T T T || T I I T
104 — Bragg X X o % Raman-Nath _
- X X 3
:ﬁ B X ]
< — —
o T 5O 000 © o ]
= - : O X s
8 - O i
0n - .
qu) @) x T=1 O
10°F 5 T =4 =
E X o 1T =20 E
i O § i
L <i). ! PR S T [
1 2 q AL Ja A a 10 A /q
/a )\@/CL pla n/a /a

Figure I11.4 — Maximum response of the diffraction discs S(k) for simulated cloud with different
temperatures (Table II.1). The waist is infinite here and k£;, = 1800. The amplitude perturbation
is A = 8. We show the two diffraction regimes Bragg and Raman-Nath predicted by theory and
well observed here.
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Removing density effects

Here we have chosen this example so the crossover for diffraction does not occur where
long-range effects happen. But in the experimental set up both might happen at the same place
obscuring the result.

Thus, how could we see without ambiguities the long-range effects without any of these
density effects, keeping just the response function B(k.).

In equation Eq. (III.11) we can rewrite the density term to get

S(ke) — S°(k,) ~ (‘Zi—g;‘f))z (SO (%) — 1> : (I1.17)

Hence the response is linked with the unmodulated structure factor at small angles k2 /(2kp).
So, in principle measuring theses small angles for the unmodulated structure factor S° of the
same cloud would give the density contribution. Then dividing by this same term

S(ke) = S°(ke) _ (AB(k)\*
SO ((k2/(2hy)) — 1 ‘( %J) ’ (HL-1%)

just leaves the response function B (k. ).

To test this prediction, for the same simulations than in Figure I11.4, we plot in Figure II1.5 the
height of the diffracted peak S()\.) * by a probing beam larger than the cloud (so not a Gaussian
beam) divided by the corresponding diffraction response at small angleszS (A2/(mAr)). Finally,

we plot (with no fit) the remaining term predicted theoretically ( ) B%(\,) for A = 8and

2kgT
T = 20 (where the linear regime is valid), with the simulation par;meters, and it fits very well
the simulations! For other regimes where the response is nonlinear (A/kgT > 1), our method
still work to highlight long-range effects but the theoretical amplitude (not shown) is different
from simulations. The interest to perform such simulations is to check that even with an intense
laser the effects sough remain. For very small modulations the denominator of Eq. (II.18) is
very close to zero explaining the points out of range.

Once again if there were no long-range interactions B(\.) = 1, the response on Figure II1.5
would be constant.

It is an excellent means to test our predictions with simulations. Experimentally one may
think that measuring the structure factor for small angles would be easy since one expect a large
response for small angles. The problem is that the signal might be too strong and varying too
much to be well captured. Also, measuring small angles requires to change the experimental set
up so that it might be hard to measure both small angles and large angles with one experimental
configuration.

3. All the +1 terms can be forgotten for the region of interest.
4. So in principle it is not exactly the disc area experimentally measured.
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Figure III.5 — Amplitude of diffracted peaks with respect to A, without the "density effects"
measured as in Eq. (II1.18) where S” and S where obtained from simulations for 7' = 1, 4, 20.
We compare with the theoretical expression of the r.h.s. of Eq. (III.18) for 7" = 20. It is the
same data that in Figure I11.4.

2.3.e Comparison theory/experiments

Comparison

In order to compare theory and experiments we have to choose a density profile. We chose
a simple one that can be tracked analytically in Fourier space. In the perpendicular direction
of the probing we know that border effects will be "cut" by the Gaussian beam, while in the z
direction we expect a step like structure. Hence, we chose p(7) = Eq. (A.5) and compute its
Fourier transform.

In Figure I11.6 is plotted the result of one experiment for two different detuning 6 = —4I";, —31',.
We compare these results with the theoretical diffraction response via S(\.) — S°(\.) of the
profile Eq. (A.5). The parameters L, w, N are chosen to be the same that in the experiment. In-
deed, the waist and atom number is well controlled and the length can be easily extracted from
a density profile. The only adjusted parameter here is the vertical amplitude of the theoretical
response (in arbitrary units), that we set so it coincides with the experimental curves. On the
three theoretical curves, we change the value of the Debye length A to observe its effect.

The conclusions of this comparison are

— Experimental crossover coincides with the one predicted Eq. (I11.14)

— In the Bragg regime the theoretical prediction has a smaller response. The difference
could be explained by the fact that the density profile chosen differs certainly with the
real one, and in this region. Exact form of the density might play a role. For example, a
sharper density profile decreases slower in this region.

— Theoretically we observe oscillations in Bragg regime (it is to be expected for a step
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function). The experimental profile also displays such oscillation (to a lesser extent)
around )\, = 70 um. We will discuss this next paragraph.

— In the Raman-Nath regime the slopes of experiment and theory are both about 1 as ex-
plained in Section III.2.3.c (the response is not constant as in Figure I11.4, because this
time we consider the whole disc of diffraction). For larger modulation we expect the
long-range effects to take place, which we see clearly for A\p = 100 um. Unfortu-
nately, the theory agrees well with the experiment only for the non interacting case with
B(A¢) = 1 and to some extend with the A\p = 300 um case. Hence at this point it is not
possible to be conclusive on the presence of long-range interactions.

For a Debye length, larger than 300 m (blue dashed line), the long-range effects are rather
hard to see in the measurement range. Thus, differentiate between the case without interaction
(dashed doted black line) for large Debye length is difficult! One could be tempted to extent
the measurement range to conclude but finite size effects of the waist £ ~ 1/w will become

dominant.
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10° " //:\\ ] --- Theory with A\p = 300 um ]
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Figure II1.6 — Power of the diffracted discs with a Gaussian beam in G. Labeyrie’s experiments
(crosses) and in theory (lines). The detuning is 0/I'y = —3 and —4, N ~ 10*°, L = 7.41 mm,
w = 2.2mm. We compare the theoretical model with the same parameters L, w at various
Debye length A = 100, 300 m. The "rigidity" of the step function Eq. (A.5) is chosen arbitrary
at [ = 100 pm (it does not change much the results). We indicate the theoretical Bragg/Raman-
Nath regime change by the tick )\ff) ~ 135 um. We also show the theoretical extreme case with
no interactions B(\.) = 1. The vertical dotted line shows the separation of the two diffraction
regimes. The vertical dashed lines show at which )\, the diffracted discs plotted Figure I11.7

and I11.8 were taken.
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Split bump

In the experiment, some split diffraction discs have been observed, Figure II1.7(b), corre-
sponding to the small oscillation in the experimental response near A\, ~ 70 um. Can we
explain this observation? To explain simply their origin, one has to remember that the response
has a dependence with the longitudinal profile Eq. (III.10), so around a peak & = k. + dk, the
response is

k% + 2k 0k
0 Z2e =™
S(k) o< S ( ok, )

If this small angle happens to correspond to a "hole" in the Fourier profile (as in Figure I1.3 for
ka < 1), then the diffracted discs can be split in two parts. We illustrate that with our theoretical
model with parameters provided by the experiments (thus with no adjustment to fit). We can
see in Figure II1.6, (dashed lines) that a split bump is also expected around A\, = 76.5 um. We
show this disc Figure II1.8(b). It very close in term of \. to the experimental observation!

In Figure II1.7(a) we show an experimental diffraction disc at A\, = 64.2 um (see the left
vertical dashed line of Figure III1.6) where no split is expected. There is indeed no particular
asymmetry and the disc is circular. The corresponding theoretical expectation is also, Fig-
ure [11.8(a), not split. It is quite reassuring to have a theory able to explain and describe with

pic D pic D

. ia
2 4 B g 10 12 14
kS

(@) A = 64.2 um (b) A = 75.7 um

Figure II1.7 — Experimental diffraction discs for A, = 75.68 ym in the experiment

rather good precision this non trivial/intuitive experimental observations.

3 CONCLUSIONS

We suggested different experiments to "see" and measure the Debye length in VLMOT.
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Figure II1.8 — Theoretical diffractions discs S(f, ¢), L = 7.51 mm.

Static diffraction experiment

The first experiment (see Section II1.1) is a direct diffraction measure on a static MOT. It has
the upside of directly measuring the correlations in the system. The downside is that the effect
sought is very small and hard to observe. However, with a Gaussian beam, it is possible to "in-
crease" the effect by reducing the contrast between the background and the non-diffracted beam
(see Figure I1I.1). A well-disposed mask should help to reduce the central peak contribution
and its tail but so far has not yielded anything.

Modulation experiments

Modulation experiments (section II1.2) have the advantage that the effects foreseen are much
bigger than correlations. They do not try to directly measure the correlations of the particles but
rather the influence of long-range interaction in the cloud’s response.

Density response via fluorescence

The fluorescence experiment (section II1.2.2) is well controlled theoretically and numeri-
cally. Furthermore, the expected effect is clear: we want to observe a response in the amplitude
of the modulated density as B(\.) = Eq.(II1.3). With a precise signal, we could even extract
the Debye length value.

A less demanding result would be to simply observe a decreasing response when A, grows.
This would be enough to conclude on the presence of long-range forces.

However, since the amplitude modulation of the density is small and the fluorescence imag-
ing is mysteriously (of what I have heard) not really accurate, the hope to see any modulation is
thin.
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Diffraction response

The diffraction experiment (Section I11.2.3) is more sensitive since experimental signals have
been seen and measured. However, the result interpretation is less direct. The measurement is
plagued by two regimes of diffraction that cross over near the supposed Debye length. Nev-
ertheless, after simple estimations we believe that we discovered the essential features of this
measurement; it seems that the experimental profiles measured are quite well understood.

The remaining problem is that no long-range effects are seen unequivocally since experi-
ments and theoretical predictions for A\p = 300 yum and A\p — oo match up to A\, ~ 800 um
where the size of the waist could modify the response. Hence several possibilities occur:

e There are no repulsive long-range effects (or they are very weak and not the dominant
contribution) thus there is no Debye length in VLMOT. The repulsion mechanism is
provided by a non long-range force. An extreme case would be that there are only contact
interactions. Note that in this case the scaling L ~ N 1/3 observed in [CKL14] would
still be valid. Another possibility could be a Yukawa interaction between particles due
for example to a very fast reabsorption of rescattered photons. This could be the case of
the photon emitted at resonance in the Mollow triplet [Mol69]. Numerical tests of these
cases have been started.

e The Debye length is too large for our experimental window (meaning our estimation
Ap ~ 100 ym is wrong). We can either enlarge this window, or reduce the Debye length
by increasing for example the trap pulsation wy or reducing the temperature.

e There are attractive long-range effect dominant for large modulation screening the effect
of the repulsive force, which might be of shorter range than expected.

e Another pessimistic possibility is that we did not interpret correctly the theory and thus
experimental data, or that we neglected a serious phenomenon (like multiple scattering).
Thus, our inconclusive interpretation is wrong.

So far, we did not consider the full Shadow effect (Section I.1.3). In the case where the Coulomb
description is false and the true repulsion is of shorter range, the attractive Shadow force could
dominate at long-range. Either way (Coulomb forces or not), the first order derivation® (at
small optical thickness b < 1 Eq.(I.21) and Eq. (1.22)) of this effect could be wrong in the
experimental regime where b ~ 1, bringing additional attractive effects that could possibly
explain the data.

So, to conclude this Part, a serious theoretical proposal has been made with consistent ex-
perimental data. Nevertheless, strong long-range effects as expected with the standard model
for MOT do not seem to appear. More experiments should be made with different parameters
as well as simulations with various type of interactions. If some more accurate fluorescence
technique is developed to observe the modulated density profiles, one could directly measure
the amplitude response and compare it with the response function B(\.).

5. Even the numerical simulations of this force are considering only the first order expression.
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ADDENDUM

Additional comparisons between the experimental data and the Coulomb simulations were
done and presented for my Ph.D. defense. I summarize here these results.

We studied experimental static (without modulations) density profiles measured by fluores-
cence (see Section II.1) for different detuning. The more the detuning is large the more we ex-
pect repulsive interactions between atoms to be weak. Hence, for large detuning the cloud size
should be smaller and its shape should be Gaussian. We superposed these data with the p, ()
obtained by Coulomb simulations (see Eq. (Il.1)) for well-chosen parameters on Figure IIL.9.
The first thing to notice is that the fits work quite well for the various detuning, meaning the
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Figure I11.9 — Experimental density p,(z) obtained by fluorescence for —/I'y = 4, 6 compared
with MD simulation (lines) of a tapped Coulomb gas. The inset shows the extrapolated Debye
length \p and the cloud radius L. (The density plots for —§/T"; = 5, 8 are not shown here).

trapped Coulomb gas model is coherent with experiments. Knowing the simulation parameters
allow us to extrapolate the experimental parameters, in particular the Debye length (which is
linked to the size of the distribution tails). However, for the fits to work we have set the Debye
length around 1 mm which is much larger than our 100 m expectation ®. This "measurement”
of a very large Debye length is consistent with the modulation results (see Section I11.2) where
we did not observe long-range effects around 100 ym. Instead the experimental response pro-
files were matching the theory uniquely for very large Debye (see Figure I11.6).

6. Remember that this number is related with the size [, = V/3\p of small MOTs. For example see [RPC"87]

for cloud measurements.
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Therefore, these results offer a more conclusive statement than before: the Coulomb model
with a Debye of the order of 1 mm are consistent with experiments. We look at the Debye
length expression Eq. (I.42) to understand the difference between the "measurements" and the
expectation. Either the temperature 7" is 100 times larger which is unlikely or either the trap
pulsation wy is ten times weaker. This latter possibility sounds fair since the trapping effect is
being attenuated by the cloud thickness. This will be the object of new investigations.
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CHAPTER IV

INTRODUCTION TO BIFURCATION

As we have seen in the Introduction the Vlasov equation describes the violent relaxation,
i.e. the evolution over timescales 7, < 7, = O (N 5) (see Figure 1) of particle systems inter-
acting with long-range interactions before the collisional relaxation takes over and drives the
system toward statistical equilibrium. Thus, this "out-of-equilibrium" process can be arbitrar-
ily long (e.g. galaxies have N = 10 so collisional effects can be ignored over lifetime of
~ 10'% years [BT11]) and their study is relevant by the Vlasov equation. Also for purely out-
of-equilibrium systems, such as coupled oscillators, where each oscillator is driven at its own
rhythm, there is no defined Boltzmann equilibrium so only the kinetic description can give in-
formation on the system state. The dynamics of kinetic equations like the Vlasov is very rich
due to advection, nonlinearity and self-consistent mean-field force. It leads to numerous effects
such as filamentation of the phase space, strong resonance phenomena, infinite number of sta-
tionary states, BGK modes [BGK57], echo plasma effect [MWGOG68], etc. We are not going to
focus on a specific physical system. Rather we will try to advance the general understanding of
bifurcation in the Vlasov equation and other related models, with the hope it may be useful for
various situations: tokamaks, galaxies, synchronization, etc.

To study dynamical evolution of those systems a natural starting point is to consider the
linear evolution of f = f° + g around a reference state f°,

dg =L g+ Mg (IV.1)

where . and .4~ are respectively a linear and nonlinear operators acting on a function space
for infinite-dimensional systems or R" for finite-dimensional systems.

The stability of the reference state depends on the spectrum of the linear operator. Eigen-
values )\ are defined with their associated eigenspace of eigenvectors ¥, ! through the equation

LU =\, (IV.2)

1. The subscript A will be dropped in most of the manuscript.
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From Eq. (IV.1) the linear evolution of a solution g = A(¢)V parallel to an eigenvector will be
determined by the sign of Re A (where A is has the largest real part, which we suppose is simple)

A=A = g o< e, (Iv.3)

— Re A < 0 the system is said to be (spectrally) stable, because small perturbations of the
reference states are damped to zero. However even if the system is linearly stable for
large initial perturbations nonlinear effects could take over.

— Re A > 0 the system is said to be (spectrally) unstable, after an exponential growth
regime, nonlinear effects can

e Saturate the perturbation. Typically, we have a negative cubic term of the form

A=)A—|c3||APA+ O (JA[*A) (IV.4)

is expected for symmetric systems A <— —A.
e Amplify the perturbation which typically yields

A= M+ |cs||APA+ O (JA*A) . (IV.5)

In physical systems, the perturbation eventually saturates with higher order terms at
some level O (1).

— Re A = 0 the system is said to be neutrally stable. The perturbation is purely oscillating

and will neither grow or damp. We say it is a neutral mode.

When the system depends on a parameter ., which could be temperature, coupling, initial
velocity distribution width, etc., it can undergo a bifurcation going from a stable state to an
unstable state i.e. ReA,,, < 0to Re),~, > 0. For a good introduction, quite complete
and suitable, to bifurcation theory see [Cra91b]. The goal of bifurcation theory is to describe a
qualitative change in a system structure occurring when some parameter is varied. It can be how
a homogeneous plasma (with a zero-total electric field) can go unstable, meaning the electron
distribution will develop some structure producing an electric field. Biological systems also
display bifurcation, e.g. an asynchronous crowd of clapping people synchronizing. As we shall
see later to quantify this structure change we will define the concept of order parameter.

A particularity of the kinetic equations we study is that they possess an ''infinite number
of neutral modes' * called a continuous spectrum. This infinite structure is directly linked
with the dimensionality (and difficulty) of the problem. In the simplest bifurcation analysis
with one positive mode A\ < 1 and other negative modes v < 0, one can easily separate the two
timescales: during time |v|~' < A™!, the system goes quickly on the unstable manifold, so a
description of the instability will only require one to describe the unstable direction associated
with A > 0 and the problem dimension will be reduced from two to one. Here with one neutral
mode (or a continuum) one could be tempted to do the same, but removing such modes which
are never damped could be very risky. In fact, as we will see, these modes are responsible for
stronger nonlinear effects.

We provide a detailed example of such neutral mode effects on a simple tractable example
of finite dimension, following [Cra91a]. We will introduce the unstable manifold reduction
technique used later and which already exhibits its limitations, and compare it with the more
standard central manifold technique. The goal of the center/unstable manifold technique is
always to reduce the dimension of the problem to get a simpler expression of the dynamics
close to the bifurcation. Thus one obtains the nonlinear generalization of the eigenvector

2. Strictly speaking this denomination is abusive.
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associated with neutral/unstable eigenvalue. Of course, in finite dimension we know how
to deal with neutral modes and their effect is known; it suffices to include them in the center
manifold (which for many neutral mode might be not satisfactory), but their effect on the un-
stable manifold is less known. In the following finite-dimensional example, we aim to show the
features of such unstable expansion with one neutral mode. Because bifurcations are in general
classified in "universal categories" (e.g. saddle-node, transcritical, pitchfork, Hopf bifurcation),
it makes sense to study a simpler case hoping to gather a general understanding.

Then we introduce the formalism for the infinite-dimensional case, present a rigorous defi-
nition for the spectral problem and provide a tractable example where the continuous spectrum
leads to damping.

1 A BIFURCATION EXAMPLE IN FINITE-DIMENSION

This example is taken from [GH13, Cra91b]. Let’s consider a system that can be reduced to
a two-dimensional system of o.d.e.

= A+ ay2r + agr® (IV.6a)
E=vz 4 bir? 4 b2’ (IV.6b)

with an eigenvalue A € R associated with the amplitude () and v € R associated with the
mode z(t). v < 0 will be fixed while A\ will be crossing 0 to become unstable.

1.1 Exact solution

We want to study the behavior of the system when A > 0 and v < (0. One question is, what is
the dependence of the bifurcated solutions around (79, 29) = (0, 0) on the instability parameter
A? A set of stationary solutions close to the origin can be found to be

A — b
2 =22 o0,
187
A tard (IV.7)
oo — s .

— First we see that to exist the solution needs bya; < 0 or if v = 0 b1bs < 0 ("saturating
conditions"). In practice, we want both bya; < 0 and b1by, < 0 to study (7., 2o0) With
fixed parameters and varying v.

— The solution scaling is

12~ 2\ when \—0andv <0 (IV.8)
b1a1

— The solution scaling is

r o~ —i/@7 when A — Oandv =0 (IV.9)
bla%

This latter scaling is different from the usual "pitchfork scaling" (also called here Hopf

scaling) 7o, # O <\/X)
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The modification provoked by the presence of a neutral mode on the imaginary axis is clear- it
changes the final scaling of the solution. The solution with neutral mode is much smaller than
without one. Therefore, when neutral modes couple with unstable modes one expect nonlinear-
ities to be much stronger (saturating the perturbation at much weaker amplitudes).

1.2 Center manifold approach

Now imagine that we cannot guess directly solutions, what can we say about the evolution of
the systems and the scaling of its steady states near the origin? The center manifold approach is
a dynamical expansion around a stationary point of the full model Eq. (IV.7). For this example,
we have (r9,29) = (0,0). We separate the contributions of fast and slow modes. The fast
manifold will regroup the contribution of eigenvalues with a finite negative real part. These
modes will be quickly damped and thus will not contribute to the "slow" dynamics. On the slow
manifold, we consider modes around the imaginary axis (with Re A = 0). For example, here
v < 0 is on the fast manifold and the A =~ 0 is on the slow manifold. The center manifold treats
the A\ mode as a perturbation of a neutral mode. It is described by writing Eq. (IV.6) as

™y (0 O r A+ aqzr + agr®
(=0 0) () (Vhare). av.10)
—— ~ ~
2o N\

— If v < 0, the dynamics will go quickly (as ~ 1/|v|) close to the center manifold W¢, so
it is legitimate for small \ to parametrize this center manifold as

(r,z) € W then (r,z) = (r, ha(r)), (IV.11)

with hy(r) a regular function for r close to 7. Actually, rigorous mathematical re-
sults [HI10] exist to justify that indeed for any initial condition sufficiently close to
(ro, 20), the dynamics will be well described by this A-dependent manifold. The cen-
ter manifold is the nonlinear extension of the eigenspace associated with neutral modes.
The expansion of /() in a series of r, gives then an expression of the dynamics 7 = - - -
at every order. The saturation scaling also gives

2 NLA, A—Oandrv <0
o ha
as in the exact asymptotic solution. So, we have successfully reduced the dimensionality
from 2 to 1.

— If v = 0, Eq. (IV.11) is no longer the center manifold and thus has no reason to describe
well the dynamics. Actually, in this case, the center manifold is of dimension 2 at criti-
cality. So, no further reduction is possible now! The system dimension is still 2 and the
scaling is not clear.
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1.3 Unstable manifold approach

The unstable manifold is based on the idea that only unstable modes Re A > 0 are important.
It does not consider eventual slow modes (e.g. ¥ = 0 or modes close to the imaginary axis). Of
course these slow modes can be important to describe the full dynamics, hence leaving them
aside could lead to an incomplete or wrong reduction. In our example the linear operator has a
positive eigenvalue A and the ¥ mode,

ry (A0 r a1 zr + agr®
)= 0) )+ (i) av1)
—_—— ~ v

2y N

In the unstable manifold picture modes different from A\ quickly relax and thus the remaining
"slow" dynamics is one-dimensional. The unstable manifold W*" in Eq. (IV.6) appears then as a
one-dimensional manifold tangent to the r direction near (r, z) = (0, 0):

(r,z) € W then (r, z) = (r, h(r)) (IV.13)

with 2(0) = A/(0) = 0 (deduced by symmetry »r — —r). We can build as previously the
unstable manifold for A # 0 and then takes A — 0. In the v < 0 case similar mathematical
results as for the center manifold hold, while for v = 0 there is no result insuring that this
manifold is attractive and thus that it describes well the dynamics close to it.

Let’s construct it! From z = A/(r)r and Eq. (IV.6b) we get

W (r) (A + arh(r)r + aor®) = vh(r) + bir® + boh(r)*. (IV.14)

The following expansion holds for regular maps * (which is assumed to be true near the origin)

ha(r) =Y ayr®, (IV.15)
Jj=21
with
b
] =
2\ —v
—2as(n — a1 + Z;L:_ll(bg — 2ja1)aju,; (IV.16)
Qy, = n > 2.
2nA —v
The one-dimensional equation is then
F=Ar+ (aon +a2)r’ + o 1+ 0 (r7). (IV.17)
—_— ~~
c3 C5
So, at leading order
Av —2))
2~ IV.18
"o a1b1 + CLQ(Z)\ — V) ( )
12~ 2N A 0withy <0 (IV.19)
blal

which is the same scaling as the exact asymptotic solution.

3. The even symmetry can be demonstrate using the » — —r transformation or by computing every odd
coefficients of h(r) and finding zero.
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namics is quickly attracted on the unstable manifold. It longer attractive and does not describe completely the
follows a slow one-dimensional dynamics on this mani- full dynamics.
fold.
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(¢) v = 0. The unstable manifold is no longer attractive and
does not describe completely the full dynamics.

Figure IV.1 — Phase space (r,z), for A = 0.01, a; = 1, as = —1, by = 0.1, by = 0.1 with
(r(0), 2(0)) = (107°,107°). The full line is the exact trajectory computed through the full
dynamics Eq. (3). Dashed lines are the unstable manifold h,,(r) computed at orders O (r*").
The points represent the equilibrium.

— For v = 0, the unstable manifold still exists and we can look at the limit A — 0 as it
should tend toward the previous two-dimensional center manifold. It gives

2
2~ ———X\ A= 0withy =0 (IV.20)
bl aq
which is different from the exact asymptotic solution, but still possesses the same scaling
and sign. A first observation is that higher orders are not negligible. Indeed when v = 0,
at the saturation level is 7, o A, furthermore o, < 1/ A2 g0

O (M) = O (e5r%) = O (cs5rl) = O (cons1rZ ™) = 0 (W), (IV.21)

which prevents in principle any truncation!
A crucial remark is that this unstable manifold expansion with neutral modes induces diverg-
ing coefficients. Which does not appear in classical dynamical equations (here with v < 0).
Nevertheless, the first nonlinear coefficient is enough to obtain the right scaling. To appreciate
those assertions, we plot on Figure V.1 the phase space trajectory for one initial condition and
compare it with the result given by the unstable manifold. We compute the unstable manifold
h,,(r) at various orders O (r*") to see its convergence towards the full dynamics.
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— For |v = —0.35| > A = 0.01, we are in a regime where the unstable manifold should
describe well the dynamics. Indeed, in Figure IV.1(a), we clearly see that the end points
are almost the same even at the quadratic order in h(r). We can verify numerically that
other initial condition close to the origin (7o, zo) are also attracted by the manifold /(7).

— For |[v = —0.01] ~ A = 0.01 Figure IV.1(b) and v = 0 Figure IV.1(c), the timescales
associated with the r and z direction are not dissociable anymore and we don’t expect
the unstable manifold to be attractive. We see that the effects of the neutral mode are
to fold the dynamics and to saturate the end point r., at a lower level (thus nonlinear
effects are stronger). This folding behavior can’t be captured by the unstable manifold
expansion Eq. (IV.15) which is a function (thus can’t have two images). Furthermore, a
one-dimensional dynamics can’t fold and oscillate. However it is interesting to see that
the unstable manifold A, (r) converges with n "as closely as possible" to the "branch
point singularities". This phenomenon is the translation of the infinite series Eq. (IV.21).

1.4 Conclusion

This simple example highlighted the effect of a neutral mode coupled with an unstable mode
on the bifurcation analysis resulting in

— Nonlinear effects are much stronger with a neutral mode.

— The center manifold expansion works when v < 0 but for » = 0 the dimensional re-
duction is limited by the number of neutral modes. Hence it is legitimate to think that in
general with a continuous spectrum it will not be of any help.

— The unstable manifold expansion predicts the correct scaling but does not describe the
effective dynamics e.g. a spiral behavior. Furthermore, no mathematical theorem insures
us that it is attractive with respect the dynamics close to the origin.

— The unstable manifold expansion is plagued with a diverging coefficient. At the satura-
tion level, every order O (02n+1r2”+1) contributes the same.

— It reduces the dimension of the problem.

For a system with a continuous neutral spectrum one expect those effects to be stronger!
We will see that it is the case for Vlasov systems but that for the standard Kuramoto system
despite the continuous spectrum the nonlinear saturation expansion behaves "normally" and the
unstable manifold describes well the dynamics... However, when adding for example a second
harmonic coupling, diverging coefficients cq,, 1 appear. So, there is more to understand and say
than the "continuous spectrum induces singular behavior" *....

This example should motivate using unstable manifold expansions for more complex prob-
lem where there is not only one neutral mode but an infinity and where exact solutions are
hopeless (and thus dimensional reduction more than needed). So, using that expansion will
possibly provide us with the right scaling for the bifurcation but one does not expect to get a
true dimensional reduction in the sense of going from an infinite-dimensional system to a 1D or
2D unstable manifold. That is to say the expansion won’t capture the full dynamic but will tell
us if the bifurcation is discontinuous or continuous with its saturation scaling, which is a big
qualitative argument.

4. This will be the running mystery of my Ph.D.
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2 INFINITE-DIMENSIONAL SYSTEMS

2.1 Spectral problem

In this Section, we briefly review some functional analysis result about spectral analysis of
infinite-dimensional operators that are different from the finite-dimensional case.

The mathematical framework to study the spectrum of linear operator for partial differential
equation is more involved than the one used to study ordinary differential equation. The first
difference is the dimension of the problem which is respectively infinite and finite. To get
an easy vision of finite/infinite dimension one can look at the initial conditions for those two
problems

— For a system of n ordinary differential equation (o.d.e.), the initial condition is a vector

belonging to R"
— For a partial differential equation, the initial condition is a function, for example we can
choose initial distributions f° such that f%(q,p) € L*([~7, 7[xR) N € (|-, 7[xR).
In this work we choose > to use only this following functional space B = L*([—m, 7[xR) N
€ (|—m, m[xR). It corresponds to continuous quadratically integrable functions with regular
derivatives. The partial differential equations will be decomposed in a linear . and nonlinear
A operator. These operators will act on the function space e.g.

Z:B—B. (Iv.22)
An operator .Z is bounded (continuous) if
Vu € B, || L u|| < Mu,

for some norm on L? and M > 0. In our context, we study the spectrum of an unbounded
operator .Z acting on a f € B. The choice of the function space B is important and can change
the spectrum.

The resolvent set of an operator .Z is

p(L) ={) € C, (&L —\I) is bijective and (£ —\I)~" is bounded},

where denote I the identity operator. For every A € p(¢) we can define the resolvent
operator as

R\(ZL) = (&L M)t (IV.23)

The complementary set 0(.Z) = C/p(.Z) is called the spectrum of .Z. It is not just the set
of its eigenvalues as in finite dimension, it is also composed of two other types of spectrum: the
continuous and the residual spectrum that are regrouped in essential spectrum denomination.

— The point spectrum is composed of eigenvalues defined as

op(Z) ={) € C,(Z —\I) is not injective},
meaning that there is a non zero vector ¥ defined on B such that
LU =\U. (Iv.24)

Its physical interpretation as characterizing the modes of a system still holds.

5. Some of our results may extend to broader functional spaces.
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— The continuous spectrum consists of

oc(Z) ={\ € C,(Z —\I) is injective and with a dense image but not surjective}.

One can show that the densely defined inverse operator (£ —AI)~! is not bounded

(sometime this latter assertion is chosen as the definition for 0o (.Z)). As we will see
later when highlighting its physical role this spectrum is a key ingredient in the Vlasov
dynamics.

— The residual spectrum consists of

or(Z) = {X € C, (£ —\I) is injective but has not a dense image}.

Its physical interpretation is not clear at all °. In all of the manuscript, we will forget this
type of spectrum.

2.2 Free transport example

The continuous spectrum has mixing properties. In the Vlasov context the mixing occurs
in the velocity space with oscillations at scale thinner and thinner in time. It is something
referred as filamentation of the phase space. Here following [Vill0, BMT13] we show how
the continuous spectrum of the advection operator is responsible for this phase mixing and a
damping while there is no dissipation mechanism (such as friction), it is sometime referred as
non-entropic relaxation. There are other informative examples with continuous spectra like the
Baker’s transformation [RS80]. Other cases of continuous spectrum and mixing are known in
the context of fluid mechanics [SW51, Mie92, PQO02].

The advection equation is

0if(q,p;t) + Iy f(q,p,t) =0, (IV.252)
2L f=-po,f, (IV.25b)
L [ = —ikpfi, (IV.25¢)

where we have rewritten its advection term as a linear operator Eq. (IV.25b) and its spatial
Fourier transform Eq. (IV.25¢). It is one of the simplest partial differential equation one can
think of, for example, we know its solutions. Thus this makes a good example to study the effect
of a continuous spectrum, indeed the advection operator spectrum is composed exclusively of a
continuous part with no "true" eigenvalue.

Trying to solve the eigenvalue problem gives for an eigenvector (Z,)x(q, p) = (&2)x(p)e?

(A +1kp)(Ex)r(p) = 0.

For Re A # 0, this equation has no solutions except the null vector, so op(.¢) is empty over
C/iR. What about Re A = 0? Since the operator

(=20 gl) = $20

6. One reason could be that in quantum mechanics where spectral theory of infinite-dimensional operative
appeared first in physics, operators are often self-adjoint and one can show that this type of operator has an empty
residual spectrum.

85 Laboratoire Jean-Alexandre Dieudonné



CHAPTER IV. INTRODUCTION TO BIFURCATION

is clearly unbounded for A € iR, by definition A is in the continuous spectrum, A € o.(Z).
To every A on the imaginary axis is associated a generalized eigenvectors

(Zx)k(q, p) = 0(\ + ikp)e™.

We talk about generalized eigenvectors because they are not defined in the space of solution 5,
but can be defined in a larger functional space that includes distributions like the Dirac Delta
function. The conclusion is thus that there is a continuous spectrum on the whole imaginary
axis for the advection operator .

In addition, the exact solution of the equation is known as

flg,p.t) = filg—pt,p) = Y _(fi)r(p)e e (IV.26)

k

where f(q,p,0) = fi(q,p). To highlight the role of the continuous spectrum generalized
eigenspace we can write

(Ek)k(qa p>€>\t d)\a

o= (R = () [ 0+ ke ax = (o) [ (2
- (IV.27)

Re A=0

where we used the Fourier representation of the exponential.
Another way to treat this problem and see the damping due to phase mixing is go to the
Fourier transform in both space ¢ — k and velocity p — 7. It gives

FT(q,p) [f](k'a n, t) = FT(q,p) [fz](k’, n + k’lf),

where we used the definition of the Fourier transform and indexes change to get this expression.
The Riemann-Lebesgue lemma says that the more a function is regular the more its Fourier
transform decays quickly. For analytic function in p the decay is exponential in 7, so

cst for k = 0, fixed n
FT (g [fi(k,n+ kt) = O (e7"H) = O (e=kI)  for k # 0, fixed 1) (IV.28)
cst forn = —kt

where c is a constant. It means the zeroth spatial modes is unchanged. All other k£ # 0 modes
are damped exponentially fast. The answer to the question where does the initial energy go

or why is entropy conserved ® given the last term of Eq. (IV.28): the energy / p?f dp is trans-

ported in time to higher and higher velocity modes n = —kt (cascade from low to high velocity
modes). This is the mixing (filamentation) phenomena: at some point the phase space distribu-
tion seems completely homogeneous and the high frequency oscillations in the velocity space
become "invisible" . Mathematically,

flq,p,t) v&]:jfoo(p) - / fi(q, p) dg, (IV.29)

t—

7. If the velocity variable was confined on a subset of R, the spectrum of .#;; would not fill the whole imaginary
axis.

8. It is preserved since it is just advection.

9. In practice even a very small dissipation process (physical or numerical) provides a cut off for those high
velocity modes as we will see later in the Vlasov-Fokker-Planck Chapter VII.
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meaning the initial distribution will relax to a spatially homogeneous distribution f..(p). Here
the weak convergence (as opposite to strong convergence) means that to make sense the dis-
tribution has to be integrated against some test function. The physical meaning becomes clear
with this example, the function converges in time for every k # 0 and 7, but not for n = —kt.
So, the mixing phenomena only can produce damping/relaxation, therefore even though the
equation is reversible, the observables (integrated quantities over the velocity) act as if there
were dissipation. For example, the space density

Pl )00 k) = [ fila = pt.0)dp
converges strongly to its end state. Since 7 = 0 there are no oscillations in velocity space

anymore, just the damping, so this velocity integration produces a loss of information over the
localization of energy.

2.3 Nonlinear analysis for bifurcation

The analysis of linear infinite-dimensional systems relied mainly on their spectrum. We talk
about bifurcation when a system goes from spectrally stable (or neutrally stable) to spectrally
unstable. In this case, we need to consider the effects of nonlinear terms. To study the nonlin-
ear problem there exists several different methods, like the center manifold [Van89, VI92], the
Lyapunov-Schmidt reduction, multiple scale analysis... In finite-dimensional cases or in some
infinite-dimensional cases these techniques work fine and provide an accurate reduced descrip-
tion of the full dynamics close to the bifurcation. However in presence of a continuous spectrum
these methods are not trivially transposable since the slow manifold (part of the spectrum close
to or on the imaginary axis) is of infinite-dimension. In these cases, to the author knowledge
there are not many examples where a rigorous bifurcation analysis was performed. For the stan-
dard Kuramoto model (that we will examine in Chapter VIII) the first rigorous mathematical
treatment was made by H. Chiba [Chil3, CN11] in a quite technical paper. One of his key idea
is to use larger function space where the continuous spectrum is no longer on the imaginary
axis. Another demonstration more generic and closer to the work of C. Mouhot and V. Villani
also using larger function space was provided by H. Dietert [Diel6b]. We will come back on
those results in Section VIIL.4.

However, this standard Kuramoto case may be very unique (because of its nonlinear struc-
ture) so that for other systems (e.g. the Vlasov equation) this idea of larger function space might
not be enough to deal with the bifurcation analysis. Moreover, in addition to the continuous
spectrum difficulty, a wave/particles resonance occurs for Vlasov systems making for example
the multiple time scale analysis fails (see discussion in [CH&9]).

Hence we will not try to generalize the previously cited, well-established methods to our
cases but we will rather stick '° to one efficient but incomplete method: the unstable manifold
technique. It has the advantage to be formally doable even with a continuous spectrum and
resonances (that appear as singularities). This method has so far always proven to give qualita-
tively correct informations (scaling and bifurcation nature). However, as in the finite example
case with a neutral mode v = 0 (see Figure IV.1(c)) it will not a priori provide the complete
dynamics (like oscillations of the order parameter).

In next Chapters we will use the same procedure to deal with the each different case i.e. treat
the linear analysis and construct the unstable manifold. However note that each case has its

10. With one exception where the center manifold is doable (see Section VI.9).
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own difficulties and solving the eigenvalue/eigenvector problem as well as building the unstable
manifold will require different techniques almost every time.

3 PHYSICAL MOTIVATIONS

At the beginning of the 20" century the Boltzmann equation was the standard equation used
to describe the evolution of particle systems in position-velocity phase space. In 1938 A. Vlasov
showed ! that the Boltzmann equation was not suited to describe plasma and that due to the
presence of long-range forces the collisions term should be removed and replaced by a self-
consistent term acting as a mean field potential for every particle. The resulting kinetic equa-
tion was then studied by Landau [Lan46]. He showed by formal calculus that plasma excitations
should be damped (if some stability criterion was satisfied) even though there are no dissipation
terms in the equation (energy and entropy are conserved in time). The Landau damping is non
intuitive since it is based on the previously seen phase mixing and Landau’s demonstration used
mathematical tools such as the analytic continuation, obscuring the physical result. Realness
of Landau damping has since then been established numerically [CK76, Man97, ZGSO01] (I up-
loaded an example on my website '*) and experimentally [CP70, MW64]. Quite recently his
result was completed by C. Villani and C. Mouhot [MV11], they showed that Landau damping
can also occur when keeping nonlinear terms of the equation, with some mathematical maxi-
mum bound for the perturbation. I recommend the lecture notes of C. Villani [Vil10] on this
topic compiling a lot of mathematical and physical knowledge on the Vlasov equation. For a
discussion on the Landau damping in the Vlasov-gravity case see [Kan98].

Plasma stability was therefore understood, but it has been observed that some cold homo-
geneous plasma with a bump in their velocity distribution could become unstable and form
some small non homogeneous structures resulting in a non zero electric field £, this is called
the bump-on-tail instability. Various plasma instabilities were discovered such as two stream
instabilities. The initial instability is caused by the resonant interaction between fluctuation
(perturbation) of the initial zero electric field and particles with the same phase velocity. Then
at the nonlinear level particles are trapped by the wave created by the now nonzero electric field.
Mathematically to understand this process, we consider first the linear instability and the asso-
ciated exponential growth and then the nonlinear saturating effects. This analysis could provide
the final electric field amplitude F, after a perturbation with respect to some small instability
parameter | — ji.|. At this point two contradictory results emerged in the literature: one predi-
cating Fo, o /|t — fic| (called Hopf scaling) [SR76, JR81, BMWZ85, Den85] while the other
finding a much smaller amplitude E, oc |1 — j.|* (called trapping scaling) [OWM?71, Dew73].
In the Hopf scaling group for example, Simon and Rosenbluth [SR76] lead a multiple scale ex-
pansion producing some singular terms that were regularized with ad hoc prescriptions. In the
other group the trapping scaling was found with some adiabatic approximation or introduced as
an ansatz. Careful numerical simulations [Den85, SRS88] and even experiments [TDM87] con-

11. Although he was not the first one to write it, he correctly recognized that for long-range interaction as
mentioned in [PCMM 15] the Boltzmann interaction term was inadequate [V1a68] "or a system of charged particles
the kinetic equation method which considers only binary interactions — interactions through collisions — is an
approximation which is strictly speaking inadequate, so that in the theory of such systems an essential role must
be played by the interaction forces, particularly at large distances and, hence, a system of charged particles is, in
essence, not a gas but a distinctive system coupled by long-range forces."

12. http://math.unice.fr/~metivier/video.html
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firmed that the correct scaling was the "trapping scaling". J.D. Crawford tried a heavy approach
without any approximation on the characteristic time of the nonlinearity 7ni,; he developed a
theory considering all the eigenvalues and continuous spectrum [CH89], deriving an infinite
system of coupled o.d.e. for the amplitude evolution of each mode. Nevertheless, this heavy
computation was useless to predict anything. In 1994 he published a paper [Cra94a] where
he only considered the unstable mode and the unstable manifold reducing drastically the di-
mension of the problem. Despite the singularities present in his analysis (like in IV.1) he was
able to predict a bifurcation with a scaling consistent with numerics and experiments. His re-
sult is very powerful because the method is very generic (as we shall use it for the rest of the
manuscript). More recent works by D. del-Castillo-Negrete [dCN98b, dCN98a] later general-
ized in [BMT13], also confirmed this result by this time finding an infinite dimensional normal
form '° for this bifurcation (in the spirit of T.M. O’Neil, J.H. Malmberg and J.H. Winfrey) called
the Single-Wave-Model (SWM). Actually, this SWM proved to describe a lot more systems than
bifurcation around homogeneous Vlasov states since it also accounts for bifurcation of a large
class of Hamiltonian systems such as Shear flow and the XY model.

In Chapter IV we review in detail the classic results on Landau damping and on the unstable
manifold used by J.D. Crawford. Since all other Chapters will be based on this method we will
explain the computation in full details.

A natural sequel to this well-known case is to consider bifurcation around steady non ho-
mogeneous states with Fy # 0. To illustrate this we will switch from plasma to astrophysical
systems (the formalism is the same) where these non homogeneous situations are more frequent.
Consider the self-gravitating system evoked in the introduction with a steady radial distribution
of stars, how will it bifurcate? Does Landau damping still exist? Is an unstable manifold expan-
sion or SWM still possible? How does the resonance phenomena survive? In Chapter VI we
briefly review the formalism and results used for non homogeneous Landau damping obtained
by J. Barré, A. Olivetti and Y.Y. Yamaguchi. Then we present our study of the unstable manifold
for the bifurcation around inhomogeneous states obtained in collaboration with J. Barré and Y.Y.
Yamaguchi. This work was published in [BMY 16] and holds for generic potentials. A poten-
tial astrophysical application will be considered. As we will show the effect of wave/particles
resonances is weaker, nevertheless we can still talk about Landau damping (with certain mod-
ifications) and trapping scaling E,, — Ey o | — p.|*. However, this time it is not because
of a "resonant trapping” thus a SWM is not expected... Moreover we present recent results
(not published yet) where a three-dimensional reduction of the bifurcation is achieved without
any singularities in the coefficients (contrary to the unstable manifold) as well as a convincing
agreement with simulations. This reduced systems known as the Triple Zero bifurcation could
be very generic for degenerate '* Hamiltonian systems (with weak resonances).

In Part One we used the Vlasov-Fokker-Planck equation to describe atom evolution in an
optical molasses with Coulomb like interaction. From a theoretical point of view, how the
infinite-dimensional properties (continuous spectrum, Landau damping, Casimir invariant, etc.)
of the Vlasov equation are modified in the presence of small friction? In Chapter VII we answer
these questions and give the different regimes of bifurcation with respect to friction. For small
friction, the solution will behave as the pure Vlasov equation with trapping scaling while for
large friction we will get a more standard Hopf scaling. This question is very important since in
a sense it allows the linking of the different approaches mentioned above (predicting different
scaling) and the understanding the role of friction in the nonlinear terms.

13. A normal form can be seen as the simplest way to describe a given bifurcation highlighting its essential
features.
14. Degenerate in the sense of the Poisson brackets [MH13, HM13]
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CHAPTER V

VLASOV SYSTEMS AROUND
HOMOGENEOUS EQUILIBRIUM

In this Chapter, we retrace known results obtained mainly by L.D. Landau and J.D. Craw-
ford on the bifurcation around homogeneous states of the Vlasov equation. Historically in the
early 20™ century the Vlasov equation was used to describe the physics of plasmas where the
interaction potential is the Coulomb one Viguiomn () = Cs/|r| or astrophysical systems using
Newton interactions. In this Part, we restrict to the one dimensional Vlasov equation referred
with the abbreviation 1D (one spatial dimension + one velocity dimension). A lot of essential
features survive in 2D or 3D systems such as Landau damping while 1D has the advantage of
keeping the analysis rather simple. Despite this, in in 3D new types of bifurcation might appear
but the essential physical mechanism of the 1D case should remain.

A way to generalize the Coulomb/Newton potential in other dimensions is to use the Poisson
equation it satisfies as a definition, for attractive systems this gives

Vap(r) = =G3/|r|, (V.1a)
Van (¢a, qy) = G2 log(|¢2 + ¢.), (V.1b)
Vin(q) = Gilq|. (V.1c)

To avoid heavy generic computations, we will restrict in this manuscript to a particular interac-
tion potential between particles, the so-called Hamiltonian Mean Field potential [AR95]. It is
defined through the first mode of the Fourier series of the 1D potential

o0

cos(k
Vin(q) = Gilgl = —2G1 ) k(Q 2 (V2)
k=1
SO
Viur(q) = — cos q. (V.3)
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In fact, it is also the potential term of a pendulum and because of its simplicity we will carry out
a lot of explicit computations. Here this choice is only motivated by simplifying the formalism.
Moreover, this choice allows direct comparison with numerics (we only use a Vlasov-HMF
solver) and an easy physical picture. Another motivation is that this potential is also used in
the Kuramoto model studied later in Chapters VIII, IX, X so the comparison between the two
models will be easier. Lastly, although it was originally used to study toy models some physical
systems display HMF interactions [SIM15]. Nevertheless, the following bifurcation problems
were also solved for more generic potential with the same results, see [Cra95a, BMY16].
Throughout this Section, we will keep track of what is generic and what is not.

In order to apply the unstable manifold techniques for kinetic equations with a continuous
spectrum (after the finite dimensional example of Section IV.1) in different cases, it will be
useful to redo Crawford’s original calculations [Cra94a, Cra95a] for what will be considered as
the "standard-case" of this thesis.

1 INITIAL PROBLEM

For the HMF interaction potential the microscopic equations for particles on a 1D ring ',
(q,p) €] — 7, 7] x R are for the i particles

Gi = Di, (V.4a)

. 1 :
pi = N Z sin(q; — i), (V.4b)
i#]
where we set the particles mass m, = 1. The associated Vlasov-HMF equation giving the
evolution of the density F'(q,p,t) is

O, F + pd,F — 0,0[F)0,F =0 (V.5a)

o0

OIF1(q) = / / Vinar (¢ — @) F(d /' £) dg'dy = Vinr %, / Fdp  (V.5b)

—00

/ / Fdgdp =1 (V.5¢)

where *, is the convolution in space (this formulation makes easy the Fourier transform).
From now on we will omit the integration bounds. For the HMF potential the mean field poten-
tial ¢[F'] becomes

o[F(q) = —M.[F|(t) cos q — J(t)sing = —|M|cos(q — ¢um) (V.5d)

M[F] = M.[F]+ iM,F // Fe' dgdp, (V.5e)

where M is in general referred as the magnetization of the system and ), the phase of the
potential (defined as the phase of the magnetization). Eq. (V.5a) describes the time evolution of
the density F'(q, p, t) in the phase space (g, p); Eq. (V.5b) defines the self-consistent mean field
potential ¢[F](q) (for real systems it is a relevant macroscopic observable like the electric field

1. Since the potential is periodic it is a natural choice to have periodic boundary conditions.
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2. SPECTRUM OF THE HOMOGENEOUS VLASOV OPERATOR

of a plasma); Eq. (V.5e) defines the HMF order parameter called magnetization and Eq. (V.5¢)
is the normalization condition, true for all time ¢. For M = 0 the system is unmagnetized
(spatially homogeneous), for |M| = 1 the particles distribution is a delta Dirac function (fully
magnetized). Without loss of generality we choose in the following ¢, = 0 so that the energy
minimum is situated in ¢ = 0. In this Section the initial magnetization M (t = 0) = My = 0 is
zero which means that the system is spatially homogeneous (unmagnetized).

The basic question we ask here is what is the fate of a perturbation around a homoge-
neous stationary state? We decompose the solution as

F(q.p,t) = fOp) + fg,p.1),

where we have the following normalization conditions

//f<°>dqdp:1, /qudp:().

To perform the unstable manifold analysis we rewrite the problem in terms of a linear . and
nonlinear .#” operator

hf =L f+ N (V.6a)
L f=—pdyf + 0,0 f1(f°) (p) (V.6b)
=/Vf = anb[f]apf- (V.6¢)

2 SPECTRUM OF THE HOMOGENEOUS VLASOV OPERATOR

The latter term of Eq. (V.6b) is a compact perturbation of the advection operator Eq. (IV.25b)
(because it is of rank two) so it doesn’t change the essential spectrum [Kat95] that is the con-
tinuous spectrum. Therefore, the mixing phenomenon studied in Section IV.2.2 is expected to
remain, the difference is that now there might be some eigenvalues where for the advection the
spectrum was only composed of the continuous one. A complete analysis of the spectrum of
Eq. (V.6b) is given in [Deg86].

2.1 Eigenvalue problem

Let’s look at the spectral problem for an eigenvalue A\ associated with an eigenvector Wy.
From the linear Vlasov operator Eq. (V.6b) we get in the Fourier space

Zk fk = —i/{:pfk + 27TZ/€(VHMF)k/fk dv x (fo)/(p) (V7)

where (VHMF)k = —((51,]@ + 571,k>/2-

For k = 0 it is direct to see that .2y, = 0 so A = 0 is an eigenvalue and any function
U, = ¢ (p) # 0 is an associated eigenvector. So, there is always an 0 mode with an eigenspace
of infinite-dimension. It is related to the infinite number of possible stationary states. Without
spatial structure the mean field force is zero. As we shall see later, adding dissipation breaks
this structure.
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For k # 0 we take ¥}, = 1,(p)e™*, we find

()\ -+ ka)wk = —Z'k‘ﬂ'(f0>/<(51,k + (571,]6) /wk dp (V8)
It gives for Re A # 0
o () (p)
= —thkm~——"7-+= V.9
where have chosen the normalization
/wk dp =1. (V.10)
The normalization condition gives us the dispersion relations * Aj(\) whose roots are the eigen-
values (Y(0)
, )
Ag(N) =1+ ik ——F—d V.11
0 =1+ [ R g, \an

for k = £1. For generic potential, each k£ # 0 has its dispersion relation but it just changes the
prefactor in front of the integral. It is easy to observe by taking the complex conjugate (Ax(\))*
that if \ is an eigenvalue for A, so is \* for A_j. Similarly, if A is an eigenvalue for A, so is
—\ for A_j. It already gives precious information which is that if there is one stable eigenvalue
there is also one unstable. Therefore, a marginally stable equilibrium requires that there are no
solutions to Eq. (V.11), which says that only the continuous spectrum relaxes the system with
no additional damping of a negative eigenvalue. The stability criterion is obtained by taking the
limit )\, = Re A\ — 07, one has to be careful performing this limit and use the Plemej formula

90) g, PV/% dp + i7g(0). (V.12)

lim :

e—0 p — 1€
This formula is counter intuitive since it gives a finite imaginary part to the limit while one could
have expected that it should go to zero. In fact, this formula can be obtained by deforming the
integration path in the complex plane as in Figure V.4(a) to avoid the singularities as ¢ — 0.
Thus, we get the following stability criteria

(/) (p)

Z[f° = AOT +iN) =1+ (Pv/m

dp + iw(fo)’(—/\i/k:)> : (V.13)

For Z[f°] > 0, f" is spectrally stable [Ogal3] meaning that there is no eigenvalues (neither
positive nor negative). At criticality, both Re(V.13) = Im(V.13) = 0 which implies that
(f°)(=Xi/k) = 0. Hence for an initial Gaussian distribution \; = 0 and the eigenvalue is
real. For a Coulomb repulsive potential one can obtain a similar criterion, the difference being
that due to the change of sign in front of the integral Gaussian distribution are always stable.
Unstable distributions have bump(s) on their tail(s) and are associated with a complex pair of
eigenvalues.

Remark V.1
Unless specified we will always assume that the eigenvalues of ., are simple A} (\) # 0 in all
the manuscript. However there might be some confusion here indeed the full dispersion relation

2. This denomination is abusive since the dispersion relation is strictly defined by the relation A (\) = 0.
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3. ADJOINT PROBLEM

of Z is given by A(A\) = A1(A)A_1()), so a real eigenvalue will be of multiplicity two for the
full operator .Z,

NOY = M)A+ M) AL () =0

but simple with respect to .Z, and the dispersion relation A (\) # 0. However, in [CH89] with
spectral deformation technique is shown that at criticality A\. € ¢R is simple.

2.2 Continuous spectrum

Now that we know the eigenvalues we want to characterize the continuous spectrum over
the imaginary axis, see Figure V.1, finding its associated generalized eigenvectors. Looking for
Z1(q,p) = &(p)e™ associated with \ € iR gives

A+ ikp)& = —ikm () (51r + 014) / codp. (V.14)

Dividing by (A + ikp) gives a singular contribution (in the distribution sense) [VK55, Cas59],

0y/
&k(p) = —itkm PV <)\f—|—)z(l§2 + 0(A +ikp)A(N), (V.15)

for some function A () and £ = =1 where we have imposed

/gkdp—L

These are the van Kampen modes are all excited during phase mixing [Bra98, BMTI13]. The
normalization condition gives

o (f°)(p)

3 ADJOINT PROBLEM

In linear algebra, the notion of scalar product with projection and basis is crucial. It al-
lows for example to decompose a vector in the basis formed by eigenfunctions. What about
infinite-dimensional systems with a continuous spectrum? Does such decomposition still hold?
In [Cas59], K.M. Case shows the completeness of the basis formed by the eigenvector and gen-
eralized eigenvector. We first need to define a scalar product and what is called a dual (adjoint)
space of functions upon which to project (as the bra and ket in quantum mechanics or line and
column vector in finite-dimensional systems).
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A Im A\

g

A

<> Re A

Continuous spectrum

Y

Figure V.1 — Spectrum of the linear homogeneous Vlasov operator with one continuous spec-
trum on the imaginary axis. Here we show an unstable case with two eigenvalues A, —\ real (in
a stable case these two would disappear but not the continuous spectrum).

3.1 Adjoint operator construction

We denote B* the dual functional space of our space B (which is different in general). We
define the "scalar product" over the two space for f € B and g € B* as

(9, f) = / (9, f) dq (V.17a)

where

{9, f) = /g*fdp. (V.17b)
The dual (adjoint) operator .Z" is then defined by the relation
(9.2 )= (LY. f). (V.18)

Similarly, to what has been done previously, we can look for the eigenvalues and eigenvectors
for this operator. Let’s make explicit the derivation of .Z7,

(9,2 f) = //gpaqudp // (¢,0)°(p) (/3COSCI—Q)f(C] p)dq’dp)dqdp

- / / (0,9 + 0" (f°))) £ dadp = (L1 g, f)
(V.19)

where we have use integration by part in the first member and integral exchange in the second

Université Céte d’ Azur 96



4. LINEAR LANDAU DAMPING

one to write the second line. So

LV g =p0,g + ¢[0,9(f°)] (V.20a)
L1 g = ikpgy + ¢r[0,9(f°)']- (V.20b)

3.2 Eigenvalue problem

We denote by a tilde the adjoint eigenvectors (not to be mistaken with the * for the complex

conjugate). We have to solve B B
LNy, = Ny, (V.21)

which gives for U, = 4 (p)e™/(27) and Re A # 0

~ 1 1
= V.22
where we have chosen the normalization factor so that
(0, we) = (D) = 1. (v23)

Indeed, the derivative with respect to \ of the relation dispersion A} (\) appears naturally in the
normalization, one can check that

~ _ dkm (f%(p) NN
<wk,wk> BBy / O ilp)? dp = MOy 1. (V.24)

Remark V.2 ~
This "functional" link between scalar product of an eigenvector with its adjoint <z/1k, ¢k> (A)

and the first derivative of the dispersion relation A} ()) is something apparently very generic,
similar relations were found for every linear problem treated in this manuscript and eventually
"proven" for very generic linear operator in a quite surprising way (see Chapter X). I am not
aware of similar results, such result can for example predict directly the right normalization
choice.

It can be proven that the eigenvalues associated with U satisfy the dispersion relation Eq. (V.11)
thus the point spectrum of .Z! is the same than .Z.
[Cas59, CH89, HC89]

4 LINEAR LANDAU DAMPING

The Landau damping (sometime called resonant relaxation in the astrophysics community or
non-entropic relaxation) of stable equilibrium is a phenomenon directly linked with the phase
mixing seen previously, IV.2.2. The standard historical way to derive it is to study the linear
initial value problem, solve the problem with the Laplace transform in time and then get back
to the real problem with the inverse Laplace transform. At this point to evaluate the integral
one has to deform the integration contour and the damping is given by the roots of the analytics
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continuation of the dispersion relation, these are called resonances. The term resonance here
has not the usual physical sense (of two components with the same frequency), here it really
just denotes a root of the analytical continuation of the dispersion relation.

There exists simpler and stronger ways to show Landau damping via Volterra equation, see
the well explained thesis of H. Dietert [Diel6a], here we focus on the Landau approach to
highlight among other things the analytical continuation method for the dispersion relation that
will serve us in Section VII.2.3.

To observe the Landau damping as L.D. Landau found it, we solve the initial value problem
considering F(z,v,0) = f°(v) + f(z,v,0) = fo(v) + f'(z,v). We set ourselves in the stable
case so A(A) does not have any roots. The Laplace transform is defined by

_ / T reat (V.25)
0

where Rew > 0 for the integral to be well defined. The inverse Laplace transform is defined
through

+i0o+00
flt) = L/ flw)et dw (V.26)

211 ) oo +oo

where oy € R is large enough to be at the right of every singularity of f (p).
Inserting the Laplace transform directly in

Ofe =Lk Jr (V.27)
gives for £ = £1
(w+ ikp)f = =ikl ) () [ A0) 0+ (£ ulo) (v28)
since Rew > 0 we can safely divide. We get eventually
—1 (/) L
2 = = : 2
o) == [ Rl =505 [ S g v29)

where again the division by A(w) is safe since we have assumed to be in the stable case. Now
we want to get back to the real time w — ¢, taking the inverse Laplace transform gives

L1 gl (W)
i) = [ et (V30
When ending up with such integral one wants to use complex analysis results to deform the
integration contour toward the left part of the complex plane (so that ™" goes to zero with
Rew — —o0) and just look for the pole contribution. That was the strategy of Landau when
facing this integral. We assume that the initial condition f; is regular enough to be analytically
continued in the left part of the plane then so is ¢}, (with Plemej formula). Moreover, we assume
that the continuation of f* has no pole in the left plane. Now what about A(w)? We know it
is not continuous from the right plane to the left, but we can construct an analytic continuation
¢(w) analytic on the all complex plane as follow

AV, ReA > 0

00 0}/
) = 1+/<:7er/ (g_)g)dpﬂﬁ(foy(u), Re\ =0 Va1

1+ km /_OO (fo) E)\> dp + 2i7*(f°)'(i\), Rel < 0.

Université Céte d’ Azur 98



4. LINEAR LANDAU DAMPING

This is continuous by construction see Eq. (V.13). Another method is to write

L :/ e~ WP Re A > 0
A +ip 0
so, that
= 1+m/ / ~OFP) (£0Y(p)dp, VA € C. (V.32)

This new function can have roots wy on the left plane, they are called resonances (but they do
not have the traditional physical sense of resonance, see Section V.6).

T, Imw - Ty,

W, Rew

Figure V.2 — Deformation of the contour of integration I',, — I, in the left plane avoiding the
resonances. wy,, has is the resonances with the largest real part.

We know that deforming the integral contour does not change the result of the integral, so
we have it , 4
L7577 0 (@) . / PEW)
t) = — “dw = 1 ——e“"d V.33

where I, is the deformed contour as in Figure V.2, that avoid the poles of 1/¢(w) produced by
the root of €(w). According to the residue theorem we have

alf1(t) = o Z Ry(w)et "5 e IRewanlt (V.34)
)

where R, are the residues and Rew,, < 0 is the resonance with the largest real part that
will dominate for large times the damping. This is the Landau damping, the perturbation is
damped in time with no dissipation mechanism. Note that once again as in IV.2.2 the full
distribution f(q, p, t) will be highly oscillating and will only converge to zero in a weak sense.
In fact, we could have looked as in Section 1V.2.2 at the velocity Fourier transform and get
similar result, with the advantage of keeping the information over velocity (here we just look
at the integrated density). That is the direction taken in [MV11] to prove nonlinear Landau
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damping, that we have no time to develop here. Another method would have been to decompose
a function over the basis formed by the generalized eigenvectors observe the linear Landau
damping, see [VKS55, Cas59].

The classical physical picture for this damping is that the perturbing wave ¢[f]e™* + c.c.
which has a frequency w; = Imuwy,, loses energy to the resonant particles p ~ w;. On
my personal website® one can find a Vlasov-HMF simulation of Landau damping, see "Lan-
dau_Damping.mp4". The filamentation of the velocity space is clearly visible thanks to the
good resolution.

5 NONLINEAR EXPANSION

Now that we have reviewed the case where a homogeneous state is stable and small pertur-
bation are damped thanks to Landau damping, we will review the case treated by J.D. Craw-
ford [Cra94b, Cra95a] for unstable steady states. Close to the onset of the bifurcation we sup-
pose that only one eigenvalue A\ (or a pair of complex conjugate A\, \*) emerges in the right
complex plane from the continuous spectrum. That will be our unstable mode. As we have seen
also appears a negative eigenvalue —\.

— In the astrophysical context, instabilities can develop when a distribution of stars have a

kinetic energy too weak to support the pressure applied by the potential energy. In terms

of distribution for example,

) = \/ﬁW,

the system goes unstable when the parameter u (related to the inverse of the temperature)
is varied over a certain value 1. In astrophysics, this type of instability leads to a collapse
and it is known as the Jeans instability.
— In plasma physics as already mentioned, an unstable distribution could be for example as
e—P?/2 e~ (P—p0)?/2

10 = e + gy

leading to the bump-on tail-instability for a certain bump size p > . and frequency py.

The idea is the same as in the example IV.1, we want to construct the unstable manifold
associated with the unstable eigenvalue A (or A, \*) close to the bifurcation Re A — 0. We
hope to get a dimensional reduction from infinite to one or two, which would simplify a lot the
description of the bifurcation. But as we have seen in the example due the continuum of neutral
modes, the constructed manifold will a priori not be attractive and will not describe for example
oscillating behavior. Nevertheless, we hope to get precious qualitative information such as the
sub/super-critical nature of the bifurcation and in the latter case the scaling of saturation.

Remark V.3

In the Fourier space, the unstable modes will be associated with £ = =41, for more generic
potential, we should also consider other modes but in practice the mode £ = =41 are always
the first to be unstable so other £—modes are not associated with eigenvalues just continuous
spectrum.

From now on the subscript k to Wy, Ay, etc. will be dropped (as it is £ = £1 and there are
not ambiguities).

3. http://math.unice.fr/~metivier/video.html
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5. NONLINEAR EXPANSION

5.1 Symmetries

Before starting building the unstable manifold it is worth looking at the symmetries of the
system. Let’s define the rotation Sy € SO(2) : (¢,p) — (¢ + 0, p) and reflexion Sy € O(2) :
(¢,p) — (—q, —p) symmetries. If f° is even (reflexion symmetry) then the eigenvalue \ is real
Eq. (V.13) associated with a eigenspace of dimension two ¥, Sp¥U = U*. Conversely if f° is
not even the reflexion symmetry is broken, there are two complex eigenvalues A = A, + i)\;
and \* associated respectively with ¥ and W*. Therefore, in both cases the unstable space is of
dimension two.

Remark V.4

An unstable space of dimension four is possible if reflexion symmetry still holds and eigen-
values A\, \* are complex (as in the plasma case with the two-stream instability) associated
respectively with ¥, SpW and ¥*, SpU*. We will not study this case in this thesis.

Remark V.5

In [CH89, HC89] authors studied the spectral properties of the Vlasov linear operator. They
highlight another difference between the infinite and finite-dimension system that we will ex-
plain. Let consider an unstable plasma composed of two pair of complex conjugate eigenvalues
(one pair with Re A = A, > 0 the other one with Re A = —\, < 0). Their real part grows with
the instability parameter ;1 — p. > 0.

— In finite-dimensional system at criticality ;4 = p., both "negative" A\, — 0~ and "posi-
tive" A, — 0" join on the real axis. Thus both Aie = 0+ 4); and /\;C =0 — 1\ are
associated with a eigenspace of dimension two [VDMvdM85, CMMO90]. Therefore, we
shall have a 2 x 2 dimensional description of the bifurcation with a two dimensional
center manifold for example; a one dimensional description would lead to singular coef-
ficient in the bifurcation expansion, as in the example Section I'V.1. Note that in this case
the merging of "positive" and "negative" eigenvalues is translated by A’(0 & i\;) = 0 at
H= He-

— In infinite-dimension (for the Vlasov equation) J.D. Crawford and P.D. Hislop [CH89]
showed that at criticality these eigenvalues were simple. It is related to the fact that
the dispersion relation is not analytic * and A(0F £ 4);) # 0 in general. Therefore, the
description of the bifurcation should be only 2 dimensional (for A, \*).

For real eigenvalues, the discussion and conclusion are similar.

We can decompose the perturbation close to f° in the direction along the unstable eigenspace
(for A complex or not) and its orthogonal

flg,p,t) = At)¥(q,p) + A*()¥*(q,p) + S(q,p, 1) (V.35)

for (U, f) = A and S such that (U, S) = 0. A plays the role of the order parameter. It is
directly proportional to the magnetization M () since

M(t) = (€', f) = A(e",¥) +0 (4%).
=2
We can write the time evolution of Eq. (V.35) by projecting the on (\Tl, f)and I — (U, /)W
A=)+ (i’r,/[f]) (V.362)

0,S=LS+.NS— ((@,ﬂm)\lurc.c.). (V.36b)

4. Technically "negative" and "positive" eigenvalues are joining the real axis on different Riemann sheet.
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Note that this system is still exact and infinite-dimensional, we have just brought out the unsta-
ble mode.

The key point is now to decompose our perturbation density f not on the infinite variety
induced by S but along the finite-dimensional unstable manifold W*. It means that we describe
now the evolution of functions belonging to the unstable manifold f € W* where (A, A*, S) =
(A, A", H(A, A")) as schematically represented on Figure V.3. Note that because the unstable
manifold is the nonlinear generalization of the eigenvector we have by construction at least
H=0 ((A, A*)Q).

AS

(A, A*, H(A, AY))

Figure V.3 — Schematic representation of the unstable manifold W* near f = f* in the infinite-
dimensional space.

One can check that the distribution f is invariant by rotation in the Vlasov equation Eq. (VI.15).
Since we want to construct the unstable manifold with a rotational invariance we impose for
f € W*Eq.(V.35), Spf € W It implies (because of the form of ¥ o< e?*9)

SpA = Ae™ ™.

Similarly, the Fourier coefficient H; of H will be constrained as Sy H, = H, L€ "% thus

Hy = |A]*ho(p, |A]?) (V.37a)
Hy = A|APR(p, |A]%), (V.37b)
Hy = Afhy(p, | A]%), k> 2 (V.37¢c)
H_, = (Hy)", (V.37d)

Now our goal is to construct the dominant order of / in order to get a dynamical equation
A= NA+c;(N)|APA+ O (JA]*A) (V.38)

with potentially a diverging c3(\) coefficient as in the example IV.1. Note that the form of the
expansion Eq. (V.38) is constrained by the rotational symmetry furthermore terms as | A|* have
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to be zero because of the rotational symmetry A <> —A. As we will see in the non homogeneous
case this symmetry is not preserved and the quadratic term is non zero.

To summarize the symmetries, constrain a lot the unstable variety and provide precious in-
formations, as that the 0 and 2" Fourier mode will be the terms of lowest order O (H,) =

O (H,) = O ((A, A)?).

5.2 Temporal equations

Now we drop the index £ = 1. The temporal evolution on the unstable manifold is

A=)+ (z/?, </Vf> (V.39)
% — g H e N [(5r F) vt ee]. (V.40)

We define A = Ap(o,t). The goal is to get the different order of |A|?, by construction gy = .
Since by construction H is a function, it can be expanded for small A as

hi(p.o) =Y huy(p)o?, (V.41)
=0
where ¢ = |A[*. The task is to evaluate the hy ; at different order. To remove the temporal
evolution, we write on one hand
dH - .
= AOAH, + A0, Hy (V42)

using Eq. (V.37a), Eq. (V.37b), Eq. (V.37c¢) gives

dH . .
= A" Alhoo +0(0)) + AA*(hoo + 0 (0)) = o(o+ ¢")(hoo + O (0)).  (V:43)
So, for &k > 0,
% = 2)\r0h0,0 + O (U) (V44a)
dH,
E — Zl H1 = AO'[(Z)\ -+ )\*) — gl]hl,O (V44b)
% — Ly Hy = AF[kN — L1 hieo. (V.44c)
On the other hand, from Eq. (V.40),
dH
d—t“ = N olf] (V.45a)
dH, ~
S = L = ] = (T, 1)) (V.45b)
dH
d—t’“ — L Hy = NS (V.45¢)

So, by equalizing Eq. (V.44) and Eq. (V.45), we eliminate the temporal dependence allowing us
to compute every order of H.
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For the HMF potential

Nk e =21 (A1) Optpdx—11 + A() OpYp* 1,1 + OpHi—1) 1 [A(L)Y + Hi]
— 20 (A() D1t + ALY O Spir—1 + Oy Hisr) b1 [A* ()07 + H_y] .

(V.46)
In particular
N o[f] = imo (0,0* — Op1) + O (07) (VA47a)
N1f] = iAo (Bpho — Ophap) + O (Ac?) (V.47b)
No[f] = inA*00 + O (AY) (V.47¢)
where we used the normalization of ¢[¢)] = 1/2.
5.3 Cubic order
Combining Eq. (V.45) and Eq. (V.47), gives
hoo(p) = m—(@ﬂbz; %) (V.48a)
im0y
hao(p) = 5 171 - (V.48b)
So, with
(1, #101) = (1, M1[]) = Aoim (1,0, (hoo — hao) ) +O (A?) (V49)
es(\)
it just remains to compute two scalar products. Let’s evaluate the term containing hs o,
/- o Opt) _ 3im [ () (p)
o <¢73ph2’0> “ 2NN / O P a0y / D ip)y P V50
_ A |
48 NN

Let’s evaluate the term containing hg g,

i <‘Z~”8ph°’°> N _2A5\2’(A) (/ (Aaiwz‘;)? - / (Aaf—zfp)?dp) B
= _MZW (/ ﬁ - / ﬁ dp) o
=0 (/ o _(fp;((fl i / %dp) |

At this point of the computation, one can take the limit A\, — 0 and look at the scaling. A clever
way proposed by J.D. Crawford was to expand the integrand in simple fraction, it has both the
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advantages to highlight directly the A, dependence and the remaining integral has the form of
A™()) derivative. The simple fraction is

1 1 1 1
: = __ + + (V.52
O TP BN 2ol ooty B ) (P
which directly gives
—m2 (AN =1 —=AN)+1 AN AN A"\ AD(N)
- - - . (V.53
EASWY) ( E T T, 6 16 ) (V:53)

Since the first (A(A))" = A(X) = 0 () is an eigenvalue) we find the asymptotic coefficient as
in [Cra94a]
2

_4_)\2

Note that this result is independent of the initial distribution function (f°)'(p).

Therefore, since c3 is always negative the bifurcation Eq. (V.38) towards a magnetized system
is always supercritical (meaning continuous or to use the equilibrium statistical mechanics term:
second order) and the scaling of the saturated states As,; is as announced

+0 (72, (V.54)

C3 ~

‘Asat| X )\72«7

it is the trapping scaling.

5.4 A note on pinching singularities

To check that the A(")()\) do not bring any additional singularity, one can consider integral
of the type
fim f(p)

—0 | (p—ime)k(p + ine)!

(V.55)

for a regular function f(p). For [ = 0 we have a function proportional to the derivative of

the dispersion relation. Once again there are different ways to see the potential divergences

— One could show that the simple fraction expansion leads to divergences in 1/e only if
m =n.

— Use the Plemej formula. A graphical interpretation of the result can be seen in Figure V.4.
When two poles or more (whatever the order k, [) approach the real axis from both side
at a different velocity p one can always deform the integration path to make the limit
finite. However, when two singularities approach the real axis at the same velocity p, the
contour cannot be deformed to avoid the singularity. This case is referred to a pinching
singularity.

In practice divergence, will come from scalar product containing terms as <@Z, ¢*>, while terms

like <7,E, ¢> will not diverge. This can be interpreted as singular projection over one unstable

mode.

Hence, from this calculation the divergence of the coefficient c3 has its origin from this
pinching singularity, but what does it means physically? The divergence occurs for p >~ —\,.
It can be physically translated as particles with velocity (frequency) around the frequency —\;
of the unstable mode have a "singular" behavior. Once again, these particles are called resonant
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+ime l +1me
p=—00 . p=0o0 p=—00 - p=o
C\_\/ °
I/im T —ime
(@ m#n b)ym=n

Figure V.4 — Integration path with poles approach the real axis.

particles. As we will see later these particles are in fact trapped with the unstable wave whose
amplitude is A. This singularity is what make the dynamical expansion of the Vlasov bifurcation
so "unique", it is not a mathematical artifact and any regularization would lead to a standard
Hopf scaling VA, corresponding to remove the trapping mechanism.

Remark V.6

These pinching singularities do not appear only in the kinetic context, for example in Perturba-
tive Quantum Chromodynamics such singular integrals with pinching singularities occur. They
physically stand for a long-distance sensitivity in the perturbation theory [Ste96]...

5.5 Higher orders

For every expansion of the previous type a safety check consist to compute and estimate
higher order terms of Eq. (V.38). If they are negligible the dimensional reduction of the system
at the bifurcation from the infinite Eq. (V.36) to one dimension Eq. (V.38) becomes exact.

Here we will not detail the computation of higher orders since a more generic treatment was
done by J.D. Crawford in [Cra94a]. It brings quite some technicalities and the main insight was
already provided by the cubic coefficient. The Crawford result is as follows:

1 :
Coj+1 X N1 J =L (V.56)

What is further more remarkable is that he computed exactly cs ~ 13/64\ " which as cs,
does not depend on the distribution f°. It is then natural to conjecture that at leading order the
unstable manifold is always the same for the Vlasov dynamics around homogeneous states (so
all cp;41 coefficient have a fixed value).

This result implies that around the saturated solution Ag,; o< A2, the series expansion of the
one dimensional dynamics becomes singular since as in the example Eq. (IV.21),

O ()\lAsatD = O (C3|Asat|3) = O (C5|Asat|5) = O (Czn+1|Asat|2n+1) = O ()\3) . (V57)

This divergence means once again that the perturbative treatment fails at times larger than
O (1/X). After this time particles are trapped with the created wave (whose amplitude is A)
and an oscillation behavior starts (which cannot be described by the one dimensional dynami-
cal equation), see Figure V.6 and V.5.
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6 RESONANCE PHENOMENON

As we have seen in the computation the damping or growing of stable/unstable perturbation
is dominated by the contribution of particles resonating with the wave created self consistently
by the perturbed distribution. These particles have a frequency (velocity) close to the frequency
of the perturbation.

— In the stable case we observe the Landau damping. The wave is damped according the
resonances of the dispersion relation (once again here resonance has the mathematical
meaning). Thus, this damping occurs thanks to the particles with a velocity close to
frequency of the wave. The Malmberg and Wharton experiment [MW64] showed indeed
that a plasma without those particles did not display damping.

— In the unstable case resonances come from pinched singularities of pole. For a perturba-
tion with zero frequency w = 0, M (t) sin g, resonant particles are found around v ~ 0.
Particles with large velocity p are not much affected by the perturbation in their phase

space trajectories,
q=p
V.58

{p:—M(t)sinq (V:58)

while resonant particles go from a straight line to a closed orbit in phase space Figure V.5.

. e . . -1 —1
The period of closed orbit is given by the nonlinear time 7, ~ VM ~ VA . Hence
there is a competition in between trapping time 7y, and linear instability 7, ~ A~'.
Saturation occurs when both are comparable

2
TNL ™~ T) = Asat“’)\ )

this yield the "trapping scaling".

Trapped particles are much more affected by the perturbation since their trajectories change
from a straight line to a close orbit. Because the crucial point of the expansion comes from
this nonlinear layer where particles are trapped, it was then natural for O’Neil et al. [OWM?71]
followed by del-Castillo Negrete [dCN98a, dCN98b] to perform an exact asymptotic multiscale
expansion of the model considering these two different regions with a third region in between.
The region with cycling orbit is called the inner critical layer, it is where the scaling of the
expansion is not standard. In the Outer region, the time expansion is regular, then a match-
ing of those two layers is done. It leads to the Single Wave Model (SWM), nicely reviewed
in [BMT13]. A normal form is obtained and in fact it is shared with various Hamiltonian sys-
tems such as XY model and Euler 2D. The normal form is for our problem (simplified normal
form from [BMT13])

Of +p0yf + 00, f =0, (V.59a)
©(g,t) = A"l + A*e ", (V.59b)
iA(t) = / fi(p,t) dp. (V.59¢)

It does look as the Vlasov equation with the difference that the perturbing wave ¢ is only along
the unstable Fourier mode £ = 1 and it does not depend directly on the distribution as the
previous mean field term ¢[f] did. This description has the advantage to display universality.
The drawback of this reduction is that it is still of infinite-dimension, thus the end behavior is not
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Figure V.5 — Density plot of F(g,p,t) in the phase space (q,p) for different times t =
0, 30,50, 60,70,90,110,130,170. Fermi distribution defined in Eq.(V1.37a) with M, = 0,
B =10, u = 0.277361, ¢ = 10~*, A = 0.0729. The associated video can be found by clicking
here homogeneous_unstable.mp4.
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Figure V.6 — Magnetization associated with the Figure V.5. The circles represent the times of
the snapshots. Fermi distribution defined in Eq. (V1.37a) with My, = 0, 8 = 10, . = 0.277361,
e=10"" X =0.0729.
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7. OPEN QUESTIONS

direct. Moreover, in the construction of the model the trapping scaling giving the characteristic
size of the critical layer is set as an ansatz that turns out to work (where traditional Hopf scaling
would fail) whereas in Crawford method it is found as a result.

7 OPEN QUESTIONS

The partial success of the unstable manifold technique plagued by singularities raise many
questions:

— How general is this unstable manifold expansion?

— Can it be applied around non homogeneous systems?

— Are bifurcation around non homogeneous states similar to the homogeneous case

— Trapping scaling

— SWM normal form

— Universal coefficient ¢,

— Singular series expansion at saturation or exact dimensional reduction?

— How with a small dissipation the critical layer is modified to give an exact one dimen-

sional reduction with a v\ scaling as one found in regular expansion.

In the Chapter VI we will perform a similar analysis for the non homogeneous case and
answer to some of the previous questions. In Chapter VII we will study the same homogeneous
system as here adding a small dissipation. Since for every newt Chapter we will use the same
methodology we will start each Chapter by highlighting the differences with respect to this
homogeneous Crawford model.
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CHAPTER VI

BIFURCATIONS AROUND NON
HOMOGENEOUS STATES

Now that we are familiar with the bifurcation problem around a homogeneous state, we
consider the same question around an already magnetized (non homogeneous) state and present
our original results. We will still consider the HMF model and highlight the differences with
generic potential in this Chapter. In [BMY 16], we prove that results of the unstable manifold
approach remain with generic potentials; we also develop a self-consistent approach in addition
to the dynamical one with similar predictions about the final states.

The unstable manifold analysis is then performed for a non oscillating perturbation (the
unstable eigenvalue A is real). The main results and physics of this study reveal that

— The wave particles/resonance is weaker than in the homogeneous case for a non oscil-

lating perturbation since few particles resonate. Thus, the pinching singularities are also
weaker.

— Nevertheless a singularity still appears in the bifurcation expansion for another physical

reason.

— The bifurcation is now asymmetric with respect to the initial magnetization perturbation

(see Figure VI.1) measured by A oc M, — M,

. 1
A=AA+ A2+ 0 (AS) with ¢y Y

o) o) 00
-

A=0 A=0
(a) Homogeneous case: symmetric supercritical bifur- (b) Inhomogeneous case: asymmetric transcritical bifur-
cation cation

Figure VI.1 — Bifurcation diagram for homogeneous and inhomogeneous case
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In bifurcation theory, this type of bifurcation is called transcritical (with here an unusual
scaling). In one case, we recover the trapping scaling A, o< A\? while for the opposite
initial condition the perturbation grows to be Ag,; o< O (1).

— In fact if a singularity arises, it is not as in the homogeneous case because no finite-
dimensional reduction is possible (thanks to strong resonances). It is because with the
unstable manifold expansion we do not consider all the slow modes that contributes near
the critical point i.e. —A — 0~ and 0, as in the finite-dimensional example (see Sec-
tion IV.1). Hence describing the problem with a three-dimensional ' manifold yields this
time to what seems to be an exact dimensional reduction. The reduction obtained is
known as the Triple Zero normal form. Preliminary predictions are compared directly
with numerics, providing for example almost exactly the amplitude and frequency of os-
cillation of the saturated states whereas the unstable manifold just provides "a qualitative"
scaling.

Technically the problem is more difficult since the angle-action variable change is necessary.
However due to a broken rotational symmetry the nonlinear computation stops at the quadratic
order c,, which does not require any calculation of the unstable manifold H.

In the first part, we will introduce the non homogeneous formalism defining the angle-action
variable more suited for the problem. Then we will quickly describe the known result for
Landau damping in the non homogeneous case.

1 STEADY STATE

The particles motion in the mean field limit is associated with the following Hamiltonian
(also called one particles Hamiltonian),

2 2
%+MC[F]<1—COSQ)—MS[F]SiIlq, (VL1)

D
H[F)(q.p) = T + O[F](q) + Mc[F] =
where we use the same definitions of the magnetization M and mean field potential ¢[f] that in
Eq. (V.5). We shifted the energy so that its minimum is zero. Hamilton’s equations are

d
d—;] — O, (V1.2a)
d
d—f = —0,M. (VI.2b)

Following the temporal evolution of the trajectories in the phase space gives the Vlasov
equation for the distribution of particles

F
G(li_t =0 + HIF — O HOF =0 =0 F + {H|f], F'}, (V1.3)

where we used the Poison bracket
{u,v} = Oud,v — Jyud,v. (V14)

For the homogeneous state finding a time independent solution was direct, here thanks to
this Hamiltonian structure one can verify that any function of the one particle Hamiltonian

1. Originally we thought that a two dimensional reduction was enough but it led to inconsistencies.
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f°(H(q,p)) is a solution of the Vlasov equation. This fact is related to the Jeans [BT11] theo-
rem that states that:
"Any steady-state solution of the Vlasov equation depends on the phase-space coordinates only
through integrals of motion in the given potential, and any function of the integrals yields a
steady-state solution of the Vlasov equation". To recover homogeneous stationary state one has
toset M, = M, = 0.

Here the energy is an obvious integral of motion, in higher dimensions other integral of
motion must be considered to describe steady states.

2 ANGLE-ACTION VARIABLE

If we want to proceed further in the unstable manifold analysis and solve the linear problem
we are quickly stopped since the linear operator is here

2 [ = —v0,f + 0,8f1(0)0pf"(a,p) + 0,01f")(4)3,f (. p) (VL5)

where the last term was previously zero. So, the spatial Fourier transform of .Z f already
involves different Fourier modes fi, fi_1, fr+1. In other terms the spatial modes are mixed at
the linear level, the problem is not diagonal which make it difficult to solve. We will thus have
to change basis to diagonalize the problem.
From now on we choose a symmetric initial distribution f°(q,v) = f°(—q,v) so (My),[f°] =
0. As we will explain later this choice should not affect any of our results, moreover we have
done some simulation with (M,),[f°] # 0 without any of our conclusion affected. So, the
initial potential writes
O[f°] = —(Mp). cos g = — My cos g, (VL6)

where we choose in the following (without loss of generality due to the symmetry of the prob-
lem) (M())C = My > 0.

2.1 Angle-action definition

The natural change of variable to diagonalize is to go from position-velocity (g, p) to the
angle-action (#, J) variable. Their definition is

g f »dg (V1.7a)
2

and the angles variable are obtained through a generator W (0, J) of the canonical transforma-
tion (q,p) — (6, J)

0 =0,W(0,J) (VL.7c)

In what follows it will be useful to define the parameter «,

k=)= (VL8)
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where H = H(J) is the energy of one trajectory of action J. We define its complementary
k' = v/1 — k2. This parameter is useful since it separated the two different types of orbit. For
k < 1 particles have elliptic orbit (blue zone in VI.2). For x > 1 particles have librating orbit
(with p < 0 or p > 0). The separatrix is the limit orbit with K = 1. To avoid confusion between
the different variable we designated f°(q,p) = F*(H) = F°(J) = f°(k).

For HMF potential it is possible to obtain an explicit expression for these variables, the
starting point is to write

p=+v2(H+ My(cosq—1)) = iz\/ﬁo\//# — sin(q/2) (VL9)

and to compute the integral Eq. (VI.7) in the three different cases x < 1,= 1, > 1. Therefore,
the definition of the angle-action variables is a priori different for three regions of space [BOY 10]
as show in Figure VI.2. J = J. is the action associated with particles on the separatrix. It is
easy to understand the different zones for angle-action variable with a pendulum:

— For small initial energy (J < J.) a pendulum oscillates. For very small oscillations it is

well known that the period is isochronous.
— At the separatrix J = J,, it takes an infinite time to travel cycle.
— For large initial energy (J > J.) the pendulum describes a complete circle

Figure VI.2 — Angle-action variables (6, .J) representation in the phase space (¢, p). Three
trajectories (arrows show the stream direction) are shown with associated angle variables. The
action variable is increased along the dotted lined. The blue zone is bounded by the separatrix
curve which separates close orbit from librating orbits.

These considerations lead naturally to the "analog" of the velocity p in angle-action variable
which is the frequency defined by
_dH
dJ’
As previously mentioned with the pendulum analogy we can already guess without any compu-
tations that

— Q(J = 0) = Qg # 0 (isochronicity)

Q(J) (VL.10)
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— Q(J = J.) = 0 (infinite period)
— Q(J > J.)  J (orbits no very different from straight lines so frequency is proportional
to the momentum).
One can find
8v/ M
J(k) = C(B(k) — (#)*K (k) k<1 (VL11a)

s
4\/ M()/i

J(k) = TE(l/K,), k> 1 (VL.11b)

IRV MO
QUK) = —— <1 VI.11
m Mok
Qr) = > 1 VI.11d
where K (k) and E'(r) are respectively the complete elliptic integral of the first and second kind,

defined in the Appendix B.1. In particular, 2y = 1/ M and around the separatrix Q(J — J.)
A(T)

O

Te

Figure V1.3 — Frequency’s orbit {2(.J).

|In"'(|J — J.|)| so the convergence towards zero is logarithmically slow, see Figure V1.3.

2.2 Fourier basis of the HMF potential in angle-action variable

Before moving on solving the linear problem we define the Fourier transform according

to the angle variable of the potential basis (cos(q(é,.J)),sin(q(0, J))) Iy (Cm(J), $m(J])).
Indeed, the cost of the diagonalization is that the potential will not have a simple form in the
angle Fourier space, in particular it will have component for every angle mode m (while in
q—Fourier it had components only on k£ = £1). The Fourier coefficients are defined through

o (k) = % /_ " cos(q(B, K))em" (VL12a)
S (k) = % /_ ' sin(q(6, k))e™"™?. (VL.12b)

115 Laboratoire Jean-Alexandre Dieudonné



CHAPTER VI. BIFURCATIONS AROUND NON HOMOGENEOUS STATES

A convenient result of this thesis was to explicitly compute these coefficients for every m. So
far only ¢, was known and for m # 0 they had to be computed numerically >. The details
are given in Appendix B.1, we had to use results of S. C. Milne® [Mil02], where he derives
explicitly a lot of series expansion of Jacobi Elliptic Functions (and associated), in particular
the Fourier expansion of sn?, sn x cn,sn X dn.

In [BM17b] authors used those explicit expressions to compare simulations to a semi analyt-
ical theory.

3 LANDAU DAMPING AND RESONANCES

3.1 Landau damping

The Landau damping around inhomogeneous states has been studied for generic and HMF
potential by my predecessor*, my advisor J. Barré and Y.Y Yamaguchi in [BOY 10, BOY11].
The result of the study showed Landau damping with an algebraic damping for long times

SM e wamlt  for t < !
o .
‘ e 2t /3 for  t — o0,

Remark VI.1

The spectrum of the inhomogeneous linear operator is modified with respect to the homoge-
neous case. Indeed, one can look at its expression in (g, p) variables Eq. (VI.5) and see that the
"perturbation" added to the advection operator are not compact since they are spanned by an
infinite-dimensional operator>. So a priori the essential spectrum is modified and it depends on
both the initial distribution f°(g, p) and the interaction potential V' (g).

In the homogeneous case the spectrum did not depended on the initial distribution f°(v) and
interaction potential V' (¢). The result found by Crawford [Cra95a] on the nonlinear expansion
and by Balmforth et al. [BMT13] on the single wave model also exhibited some universality.
Despite that it might be unrelated, we might expect not to find universal coefficient cs, c5 for the
bifurcation analysis as in the homogeneous case due to this new sensibility of the continuous
spectrum. Moreover, we will not expect a universal reduction as the single wave model.

2. With a great numerical cost around x ~ 1.

3. In what seems to be a colossal work, we see that some number theory in the spirit of Ramanujan is used to
finally serve our physical problem!

4. Alain Olivetti was the previous PhD student of Julien Barré.

5. It depends on a function f°(q, p) where previously it was a constant w.r.t. to the position variable f°(v).
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3.2 Resonances

3.2.a Non oscillating perturbation Im \ = 0

Previously the number of resonant particles R was given by the number of particles with a
velocity around the frequency of the perturbing wave. This is for a non oscillating wave p = 0,

= [ e [ £ dadp ~ e (0 =0

for a homogeneous initial distribution regular in velocity. For inhomogeneous case, for non
oscillating perturbation, resonant particles will have a frequency €2(J) < e. For small ¢, the
frequency around the separatrix is

TV M

Q(J) ~ f .
(J) (.~ J) —J) <e for J<J,

R =/ /FO(J) dfd.J = 2 (/ +2/ )F%J)dj
Q(J)<e J<Je J>Je

Q(J)<e Q(J)<e
where we supposed that F° is regular in .J = J. and we have separated the different region of
integration (the two outside the separatrix regions contribute the same). Going to the « variable
gives at leading order in e,

771'\/7/6
Rnp = 27 (/ +2/ > (k) ( )k oc My S (s = 1). (VL13)

Q(r)<e
Therefore, there are a lot less partlcles resonating around the separatrix

e—W\/ﬁo/e

S%H ox € and ERNH X/ %H,
€

thus we expect the resonant phenomena leading to pinching singularities to be a lot weaker.
Moreover, if that resonant trapping of particles in a critical layer was the cause to the impossi-
bility of a finite-dimensional description of the bifurcation (see Single Wave Model [BMT13]),
maybe here we can achieve some reduction.

3.2.b Oscillating perturbation Im )\ # 0

If we seek the number of resonant particles for oscillating wave we find that for both homo-
geneous and inhomogeneous cases

ERH OCERNH X €,

because the frequency distribution Q(.J) is regular in all region J # J..

This contrast leads us to conjecture that there for stable inhomogeneous distribution, the
damping always oscillates because there are no resonances with non oscillating modes. In
other words, if there is an analytic continuation to the dispersion relation A(\ € R*) in for
A < 0 it has no root. An argument that goes with this reasoning is that for A\ € R, A())
is continuous (see later Eq. (VI.25) and Eq. (V1.43)) and infinitely differentiable in A = 0 with
¥ A4 (0) = 97" A.(0) = 0. So, a conjecture could state that since there is no need for analytic
continuation in this case non oscillating damping will never happen.
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4 LINEAR PROBLEM

4.1 Dispersion relation

Since the variable change from (q, p) — (6, J) is canonical (in the three regions), the Vlasov
equation in these variables is straightforward

dF

= OF + {H[F|(J), F(6,.))} = 0, (VL14)

where the Poison bracket is written here for the angle-action variable.
Around the stationary solution F°(J) = f°(g,p) the linear operator is with F' = F°(.J) +

f(6,J):

of=Lf+NF (VI.15a)
&L f={f HF} + {F°,¢[f]} (VL15b)
N f={f¢lf]} (VLI5¢)

The eigenvalue problem for A ¢ iR and ¥ is
MU0, ]) =LV =—Q(J)0pW(0, ) + 0pd[¥](q(0, J))D; FO(J) (VI.16)

going to angle Fourier transform gives

M (J) = —imQU(J )by, + ime, [P]0; F°(J). (VL17)
we have o000 0
. m J o
Ym(J) = ims=m s im0 Py =0 (VL18)
where

The dispersion relation is less trivial to obtain than before where eigenvectors had only one non
zero Fourier component (the normalization was enough to deduce A(\)). Here to get a closure
we have to project the eigenvector Eq. (VI.18) along cos ¢ and sin ¢

M[¥]  /cosq B im|e,, |20, F° ime} $m8J
2T _(2 ) —M.[¥ Z/)\—HmQ dJ = M [ Z/ A+ imQ(J dJ
(VI 20a)
M, [¥] sin g ims: @mGJF im|s,, |20, F°
2 (27r7 ) Z/ A+ imQ(J /= Z/)\Jrzmﬁ /

(VI.20b)

were we used for the projection (scalar product) the Parseval theorem that allows to write the
angle integral as a Fourier sum. This last equality can be written in a matrix form as

A(N) (%gD = (ACSM A:@) (%m) =0 (VL.21)
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where we have eliminated the diagonal terms due to the symmetries (see Eq. (B.4) and Eq. (B.6))

Comy1(k < 1) =0, (VI.22a)
Som (K < 1) = 0, (VI.22b)
Sk >1,p<0)=—=$,(k>1,p>0), (V1.22¢)
ek > 1,p < 0) = cm(k > 1,p > 0). (V1.22d)

These relations gives for any generic GG,,,(J) function that has the same definition on the two
outer regions (J > J., p < 0) a zero contribution when integrated,

Je 0
/ G Demst (DT = [ G stem(DdT+ | G2 ()5t en() dJ
0 ~—~ Je
=0 for m odd and even (V1.23)

— G, (JN)sken(J)dJ = 0.

Je

The dispersion function A(\) is given by the two dispersion relations

det A(N) = 0 = Au(A)A,(\) (V1.24)
with
mo;FO(J)
AN =1+2r /m,—|@m| (J)dJ (V1.252)
n%:o A+ imQ(J)
m;F°(J) |
AN =1+ 27 / SROTZ ) | 2(T) . (VI.25b)
n%;() A+ imQ(J)

If A is a root of A.(A) or As(\) is an eigenvalue of the whole system. Since the system is
diagonal these two type of eigenvalues are associate with different eigenspaces. One can prove
using m — —m in Eq. (VI.25), that if ) is a complex eigenvalue A(A) = A(\*) = 0. Moreover
if A is a complex eigenvalue A(A\) = A(—)\) = 0. So as before if the system has a stable
eigenvalue it has automatically an unstable one, meaning that once again relaxation in stable
case will be due to the continuous spectrum (Landau damping).

Remark VI.2

— For generic potential e.g. for full 1D gravity Vip = |q|, the potential basis has an infinite
number of non zero components. The dispersion matrix can be derived formally the same
way, but in general it is an infinite matrix with no zero elements. So manipulating it, is
only formal and one cannot explicitly compute the roots \ of its determinant. One has to
truncate at some large m ;.

— For the homogeneous case M, = 0, even for generic potential, the matrix A(\) =
diag(Ay) is diagonal since there are no spatial modes mixing. Thus, the dispersion rela-
tion can be explicitly computed in this case (since we are interested in the first Fourier
mode to go unstable k£ = 1).

— From Eq. (VI.21), we can find back Eq. (V.14) with M; — 0. One can check that x ~

p/(2My), Q(k) M0, etc., in particular ¢, = (6,1 + 0pm,—1)/2.
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— In the homogeneous case we had an eigenvalue associated with an infinite-dimensional
eigenspace. Here in Eq. (VI.17) this phenomenon still occurs. Indeed for A = 0 we can
find two types of eigenvectors

Q(J)

It means that for any v(.J), ¥, is an eigenvector associated with A = 0.

Yo(J)
T, = ¢m[(31/n]F0 and ¥, = <¢Oé‘] )). (V1.26)

4.2  Self-consistent equation for the magnetization

To find a steady state solution a function f°(q,p) = F°(J) = F°(H) = f°(k) has to satisfy
the normalization condition and a self-consistent equation for the magnetization

2
1= / a (% — My(1 — cos q)) dgdp, (VI.27a)

2
M,y = / FO <% — My(1 — cos q)) cos ¢ dgdp. (VI.27b)

In practice, to find numerically M, and the normalization, we use the transformation dgdp —
dfd.J and then integration over angle and the change of variable J — « giving

1 = 47 M, ( /O "o /1 oo) (H;; ((:))) drk, (VI.27¢)
My = 47 M, ( /0 1 /1 OO) (Hg ((/’j)) @0(/@)> dk. (V1.27d)

4.3 Eigenvector and eigenvalue

4.3.a Along the sin direction

The problem is spatially invariant, so that if F'(q, p, ) is a solution of the full non homoge-
neous Vlasov equation then so is F'(q + qo, p, t). The generator of this spatial translation is J,,
so we expect to always have an eigenvector as

Uy(q,p) = 0,1%(q,p), (VI1.28)

associated with an eigenvalue \; = A = 0 which corresponds to the Goldstone mode. Let’s
check that assertion. In Eq. (VI.25b), with A = Re A — 0 we obtain

9,F0(J)

AsA=0)=1+2r [ =————+ 2 : 1.2
(=) = 12 [ 20 S lonl'(0)7 (V1.29)
The Parseval identity here gives [Ogal3],

2y sp, = / sin(q(6, J))* 6 (V1.30)

where we used s7 = 0.
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Remark V1.3
Here we have replaced A = 0 in all integral at the limit. It might be very dangerous and bring
singularities. In fact, in homogeneous case this limit was obtained with the Plemej formula

because o
/ W dp (VL.31)

is not integrable in general. Here because the logarithmic divergence induced by the resonating
particles is integrable, the limit is well defined and we can replace A by O.
However, if ) is complex, this statement is no longer true since

0, F°
/ I 4
Ai + mQ(J)
is no longer integrable, indeed for every JT(,? # J. root of the denominator, we can expand

Xi +mQ(J) = m(J — JD)Q(JD) that has the same divergence as Eq. (VI.31).

Using that H = p?/2 + My(1 — cosq) and dH = pdp + Mjsingdg (since ¢ and p are
independent variable dg/dp = 0) we have
OpfP(v) dF° O F°(J)  9,f°
p  dH Q@)  Mysing

(VL32)

We may write angle-action integral as a space velocity integral (remember the canonic transfor-
mation insure déd.J = dqdp) to have

As(As) =1 +// %@fo sin? ¢ dgdp
_ dF°(H(q.p)) . »
—1+//Tsm qdqdp

—1+—//8f squqdp—l——//f cos g dqdp

M,
My

(VL.33)

where we have used the definition of the magnetization, integration by part and the different
expressions of the energy derivative.
From Eq. (VI.18) we get the eigenvector associated with the neutral mode A\; = 0,

oyF° Oy F°

U, — imf J : - M. 0 1.34
s ~ Q(J) Eme Q(J) S11 g anf <Qap> (V 3 )

which correspond to what was expected from the symmetry of the problem.

Therefore, there is always a neutral mode along ¥, whatever the parameters and the function
f°. Since it is associated with a translation we don’t expect it to play any role in the instability
in the weakly nonlinear regime. However, we cannot exclude that it couples with the instability
for strongly nonlinear regimes (which is not the case studied here). Hence we always suppose
that M[F] = 0 (which is supported by numerics) moreover we always choose perturbation
along the cos direction.
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4.3.b Along the cos direction

From Eq. (V1.20), we find the eigenvector associated with the eigenvalue root of A.(\),

U, = ————Cpe". VI1.35
m%;() A+ zmQ(J)C ‘ ( )

Eigenvectors are defined up to a multiplicative non zero constant, here we choose 1, so
MY, = (cosq,¥.) = —1 (VL.36)

thanks to the relation dispersion Eq.(VI1.25a). The reverse reasoning is possible, set a nor-
malization for the eigenvector and find the associated dispersion relation. Moreover, we have
MV, =0= M|V,

4.4 Stability criteria

We introduce as before the parameter p that corresponds to a tunable parameter of the initial
distribution f° = fﬁ . For example, one can have

Fo(H) = Np'/[1+ €] (Fermi distribution), (V1.37a)
Gu(H) = Ng'H? e ™, (V1.37b)

Npr and N¢ are the normalization factors. The Eq. (V1.37a) is a Fermi distribution of energy
(looking like a step function), its stiffness is controlled by the S—parameter. It is a decreasing
function of energy. The G—function Eq. (VI.37b) has an energy minimum in H = 0 and then
reach a maximum for H* = 2/, thus it a non-monotonic function of energy.

We define /i, to be the value for which the system goes unstable i.e. (A.),(A = 0) = 0. For
example, for the function fﬁ(é’ ) we plot, in Figure VL4, the phase diagram of the Fermi dis-
tribution (11, My). The line corresponds to a steady state solution satisfying the self-consistent
equation Eq. (VI.27¢). The transition stable/unstable occurs at points a = (u. = 0.669,0.336)
and [ = (u. = 0.254,0). In this thesis, we will numerically test the neighborhood of point a,
where a solution becomes unstable. In principle, we could also test what happens for weakly in-
homogeneous and unstable solution, dashed black line around /. We can establish as in [Ogal3],
the stability criteria. As mentioned earlier the W, direction is always neutrally stable. For a
monotonic function of energy S. Ogawa showed that the eigenvalue associated with Eq. (VI.25a)
is always real. In this Section, we focus on non oscillating perturbation A € R. However, we
let the initial distribution be monotonic or not. In our numerical tests, we use .7-'2 (H) which is
monotonic and 92(7-[) which is not Eq. (VI.37). As we motivated earlier in Section VI.3.2 and
remark VI.3, the choice A € R has important consequence on the number of resonant particles
and how the limit A — 0 is computed. By replacing A by zero in Eq. (VI.25a), Ogawa shows
that the system is spectrally stable if and only if

IF =1+ 27?/ %(QO(J) — ¢o(J)?)dJ >0 (VL38)
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0.8

0.6

M 04

0.2

0

Figure V1.4 — Phase diagram of the Fermi distribution F B with 8 = 40. Dotted lines correspond
to unstable stationary solutions and solid lines to stable ones. In the neighborhood of point a,
a branch of stable inhomogeneous M, # 0 stationary solutions becomes unstable. At point [/, a
branch of stable homogeneous stationary solutions (M, = 0, red solid line) becomes unstable;
the unstable homogeneous case was treated in Chapter V.

where we defined and computed g, ® thanks again to [Mil02] and Eq. (B.2b),

1 1(4(1—252)E(/€)+4K2_1 k<1
) 3 K(k ’
go(k) = %/cos (q(0, J(k)))d0 = ¢ 7 4(1— 2/(@2; K2 E(1/kK) 8kt _ 8k2 4 3 1
G (e e

(VL39)
The transition occurs at .# [F°] = 0.

4.5 Adjoint problem

The adjoint linear operator is obtained with respect to the scalar products Eq. (V.19) as,

LT, = Q)0 ¥, — K'(q(8,])) (VL.40)

where
K(q(0,.)) = / / (agxifca,FO) (', 9)Vinr (¢ — ¢) dg'dp’. (VL4la)
K (J) = =M, 05905 F | (J) — M[0g¥.0; F)$m(J). (VL41b)

6. Thanks to the Parseval theorem, we were able to explicit compute a g—elliptic series

/ 2
S nesch? <mf;((’z)>> _ jg <’§>)2((k2 S KR~ 2(K ~2) KRWE () — 3E(R?). It was un-
n>0 @

known (and surely not sought too) to my knowledge.
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The adjoint eigenvector of V. is thus:

T 1 () im0
v.(0,J)=— ; e VI.42
6:) =~ moyr zm: N —imQ(]) " (V142)
where we have set the normalization such that (\ifc, U.) = 1. So once again we find a re-

lation between this scalar product and the derivative of the dispersion relation. Keeping the
M. [0V .0 JFO] term would have led self consistently to a dispersion relation. Let’s compute
A/ (X) to check our normalizations choice. On one hand, we have

AN = —2WZ/(AZ'T%’nFQEj;)Q\@mP(J)dJ

m#0
(V1.43)
m*Q(J)0;F°(T) |
=—87mA ml2(J)dJ
! mz/ o+ (ma(n)E o )
on the other hand
~ im(f°)(J) ) B
(W, W Z/ o) Slen2(J) dJ = 1. (VL.44)

For monotonic function of energy 9, F°(.J) < 0, it is clear that AL(A € R) > 0.

Remark VI.4
We notice that because of the spatial mode mixing (m positive and negative) A.(\) oc A — 0
with A — 0. In fact, it is expected because the two roots A\, —\ merge in 0, and A()) is
differentiable in 0. However, that was not the case for the homogeneous case, where A’(0")
was a non zero constant and A(\) was in general not continuous in 0 (because of the singular
behavior of 1/p).

In [BMY16], we give a proof that this normalization factor diverges as 1/ for generic a
potential.

5 NONLINEAR EXPANSION

Now that the linear theory is clear we move on to what happens to a perturbation when
unstable. The basic idea is the same that for homogeneous case, decomposing the solution
along unstable vector and the unstable manifold. But as we will see due to symmetries the
computation will be in fact easier.

Regarding the symmetries of the problem the O(2) (rotation/reflexion) symmetry is broken,
so for a real eigenvalue the associated unstable manifold will be of dimension one (instead of
two for the homogeneous case).

We decompose the f function on the unstable direction W, associated to the eigenvalue A > 0
and its orthogonal direction.

F0,J.1) = A(t)U.(0,]) + S8, J, 1) (V1.45)

with A = (U, f) and (¥., S) = 0. S is assumed to be at least of order A? because it is associ-
ated with the nonlinear part. The order parameter A is related to the magnetization perturbation
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OM = M (t) — My, indeed by definition
(T, f) = A+0 (A*) and 0M = M—My = (cosq, f) = A(cosq, ¥.) +O (A*) (V1.46)
=1

so A oc oM for small A (which is the weakly nonlinear regime we study).
Applying the projection (¢, .) on Vlasov equation Eq. (VI.15), we get

A=XA+ (T, N f) = Ao(\, A) (V1.47)

So, the goal is now to get the first order in A of o(A, \). While for homogeneous case the
SO(2)-symmetry insured A - —A = ¢y = 0, here we have to consider ¢, # 0. This yield

A=At (Do, ¥ (A 40 (42)))
= M+ A + A’cy + O (4Y).

(VL.48)

From Eq. (VI.15¢),
N f= AT, ¢[0.]}+ O (A%). (V1.49)

In the homogeneous case, this term was zero, so we had to jump to the cubic order and construct
the unstable manifold /7. Here the quadratic order is directly given by the eigenvector.
Let’s define ¢, the coefficient associated with the quadratic term in A,

o) = (T (Wosold}) = 3 / ACALE S

(VL.50)
—27'(' / Z m+n@m n ) dJ
A+i(m+n)Q
where we have re-indexed the sum to have
8 GJF%m GJFOCm /
_ -~ Tm - m 1.51
PmanlJ) = m {”aJ ()\+imQ) "X tima'm (VIS1)

The first thing we want to extract from cs is its limit when A — 0. Once again thanks to the
logarithmic divergence of the frequency 2(.J), we can safely replace denominator of the form
A+ im€Q(J) by imS(J) when m # 0. It leaves us with
— the normalization factor 1/A’()\) o< 1/,
— m = ( terms are canceled since ¢q , = 0,
— m = —n terms bring a supplementary divergence at first sight, but a careful calculation
shows that it is not the case. Indeed for n = —m, we have in the J integral

* * 2.2
cy c; 0 mocs,
SNy, (N =-29,o,F VG
A;‘O’ (/) A "(" ( )\—i—zmQ))

)

0 o, F en ((OSF°(J

: _2@08J< . Zcfn>=eoaJ (et - )
m>0
- (VL52)

where have exchanged sum and derivative thanks to the regularity of the ¢,, function.
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Thus, the total divergence is exclusively given by the normalization factor and
ca(A) o 1/,

An exact estimation of the ¢, coefficient in particular its sign is probably out of reach but as we
will see now it does not matter. Hence the result yields

A=XA+cA?+0 (4% with ¢ o ; (VL53)
which is a transcritical bifurcation whatever the sign of c;. This behavior is illustrated and
compared with the homogeneous supercritical transition on Figure VI.1. If means for example
that if ¢ > 0, we will have a subcritical (resp. supercritical) bifurcation for A(0) > 0 (resp.
A(0) < 0). In the supercritical case Ag, oc A\* which is the trapping scaling. The numerics
(discussed later) Figure VI.5 confirm perfectly this result. Here this origin of this scaling is
very different from the homogeneous case since it comes from the normalization factor and not
from pinching singularities (associate with resonances). It could be a sign that no Single Wave
reduction is possible here.

Remark VLS5
— The symmetry of the inhomogeneous system holds for generic potential hence the bifur-
cation equation is always transcritical

A=A+ A%+ 0 (4%).

Similarly, even for a generic interaction potential, the divergence of the coefficient ¢y o<
1/ will only come from the normalization factor. Other terms are regular if we assume
the frequency 2 = dH/dJ associated with the generic potential either to not vanish at
finite J or does so only logarithmically. This includes the cases where the stationary
potential ¢[f°](¢) has a single minimum and is infinite for |¢| infinite (such as for 1D
gravity), and the generic situation with periodic boundary conditions; indeed, in the latter
situation, local minima of the stationary potential give rise to separatrices, on which the
action is constant. At these specific values of the action {2 vanishes, but generically it
does so only logarithmically These arguments make this result very generic.

— Because AL(\) o A, we have [ — p.| oc A* o Agi. In homogeneous case since
A'(0) # 0 we had |p — pre]? oc A? o< Agas.

6 HIGHER ORDER TERMS

As before to validate or not the dimensional reduction it is essential to estimate the diver-
gence of higher order terms. The detailed computation does not bring any particular insight so
we will present it only in Appendix B.2. This time we cannot escape the computation of the
first order of the unstable manifold H(A) € W*". We find for the higher order terms

1
€3 X 3 (VL.54)
which means that at saturation A, o< A2, quadratic and cubic terms are of the same order. It
means that some mechanism occurs at the saturation level, this mechanism could be similar or
not to the trapping of the SWM.
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Note that numerics tends to confirm the failure of this one dimensional reduction since we
can see oscillation on inset of Figure VI.1(b). Is this failure related to the nature of the unstable
manifold expansion where even for a two dimensional model (Section IV.1) it fails when for-
getting the neutral modes? In this case a two (or larger) dimensional reduction could works. Or
does it mean as it seems to be the case in the homogeneous model that no finite-dimensional
reduction is possible?

Remark VI.6

As stated before, remark V.5, in finite-dimensional systems with two eigenvalues A, —\ it is
natural to obtain a singular behavior near the criticality if one forget about the —\ mode. In the
homogeneous case, we have safely forgotten this mode since the criticality is of dimension 1
with (AUDY(OF) # 0. Here we have seen that A’(0) = 0. Hence in principle here we should
be able to derive a non singular two dimensional reduction of the bifurcation. In Section VI.9
we will pursue further this discuss