
HAL Id: tel-01677857
https://theses.hal.science/tel-01677857

Submitted on 8 Jan 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Decision diagrams : constraints and algorithms
Guillaume Perez

To cite this version:
Guillaume Perez. Decision diagrams : constraints and algorithms. Other [cs.OH]. Université Côte
d’Azur, 2017. English. �NNT : 2017AZUR4081�. �tel-01677857�

https://theses.hal.science/tel-01677857
https://hal.archives-ouvertes.fr

UNIVERSITÉ COTE D’AZUR

Doctoral thesis

Decision Diagrams: Constraints and Algorithms
Defended by

Guillaume Perez

to obtain the title of

Doctor of Science

Specialty : Artificial Intelligence

Thesis Advisor: Jean-Charles Régin
prepared at I3S Sophia Antipolis, MDSC Team

Doctoral School STIC

defended on September 29, 2017

Jury :

Reviewers : Roland Yap - National University of Singapore
Nicolas Beldiceanu - IMT Atlantique
Willem-Jan van Hoeve - Carnegie Mellon University

President : David Coudert - INRIA Sophia Antipolis
Examinators : Pierre Schaus - Université Catholique de Louvain

François Pachet - Sony CSL
Michel Barlaud - Université Nice - Sophia Antipolis
Arnaud Malapert - Université Nice - Sophia Antipolis

Advisor : Jean-Charles Régin - Université Nice - Sophia Antipolis

Abstract

Multivalued Decision Diagrams (MDDs) are efficient data structures widely
used in several fields like verification, optimization and dynamic programming.
In this thesis, we first focus on improving the main algorithms such as the re-
duction, allowing MDDs to potentially exponentially compress set of tuples, or
the combination of MDDs such as the intersection of the union. We go further
by designing parallel algorithms, and algorithms handling non-deterministic
MDDs. We then investigate relaxed MDDs, that are more and more used in
optimization, and define the notions of relaxed reduction or operation and de-
sign efficient algorithms for them. The sampling of solutions stored in a MDD
is solved with respect to probability mass functions or Markov chains. In order
to combine MDDs with constraint Programming, we design the propagators
of all the types of MMDD constraints in solvers, and introduce a new one, the
channeling constraint. These new propagators outperform the existing ones
and allow the reformulation of several other constraints such as the dispersion
constraint, and even to define new ones easily. We finally apply our algorithm
to several real world industrial problems such as text and music generation
and geomodeling of a petroleum reservoir.

ii

Résumé

Les diagrammes de décision Multi-valués (MDD) sont des structures de don-
nées efficaces et largement utilisées dans les domaines tels que la vérifica-
tion, l’optimisation et la programmation dynamique. Dans cette thèse, nous
commençons par améliorer les principaux algorithmes tels que la réduction
de MDD, permettant aux MDD de potentiellement compresser exponentiel-
lement des ensembles de tuples, ou la combinaison de MDD, tels que l’in-
tersection ou l’union. Ensuite, nous proposons des versions parallèles de ces
algorithmes ainsi que des versions permettant de travailler avec la version
non déterministe des MDD. De plus, dans le domaine des MDD relâchés, un
domaine de plus en plus étudié, nous définition les notions de réduction et
combinaison relâchés, ainsi que leurs algorithmes associés. Nous résolvons le
problème de l’échantillonnage des solutions d’un MDD avec respect de loi de
probabilité tels que des fonctions de probabilité de masse ou des chaines de
Markov. Pour permettre d’utiliser les MDD dans les solveurs de programma-
tion par contraintes, nous proposons de nouveaux propagateurs pour toutes les
contraintes basées sur des MDD, améliorant les performances des algorithmes
existants, puis nous en introduisons une nouvelle contrainte, la contrainte de
channeling. Grâce à eux, nous montrons que nous pouvons reformuler plu-
sieurs contraintes et en définir de nouvelles tout en étant basés sur des MDD.
Finalement nous appliquons nos algorithmes à des problèmes industriels réels
de génération de texte et musique, et de modélisation de réservoir de pétrole.

iii

Acknowledgments

I would like to thank my advisor Prof. Jean-Charles Régin. For having bet on
me even years before my PhD, and for all his useful advices and encourage-
ments during this thesis. Jean-Charles is one of the most intelligent person I
had the opportunity to met in my life, and its ability to constantly share its
knowledge is wonderful.

Many works inside of this PhD could have never existed without several
researchers and the great collaborations we had. I would like to thanks them
all. First Laurent Perron, at the beginning of my PhD. Then François Pachet,
Pierre Roy and Alexandre Papadopoulos, which have provided me many good
advices and insights on many fields. Also, I had the chance to work with
Pierre Schaus and Christophe Lecoutre, which have provided me a great view
of real world problems.

Inside of my laboratory, I had the luck to work with Michel Barlaud and
Lionel Fillatre. I particularly want to thank them, for their patience and for
having provided me so much useful knowledge on mathematical optimization.
I am happy to thank Arnaud Malapert, for its many useful comments con-
stantly allowing me to take a step back on most of my works, and for the work
we have already done together, or for the next coming. I would like to thanks
the many people in my lab, for the right working environment and the great
atmosphere they have provided me. So thank you Sandra Devauchelle, Enrico
Formenti, Benjamin Miraglio, Jonathan Behaegel, Ophelie Guinaudeau, and
the many others.

I have a lot of gratitude for my friends. First, Mehdi Ahizoune, my best
friend, and Yoan Kraria, Nicolas Huin, Anthony Palrmieri, Heytem Zitoun,
Yassine Ferkouch, Jean-Michel Diaz Vaz, Sami (y) Lazreg. I thank them for
the support they have provided me these last years.

I have a big thank for my family, for my mom Veronique, my brother and
sisters, Virginie, Yannick and Doreenda. I would not be without them; they
are my models for so many reasons. I would also thanks my step-parents,
Isabelle and Jean, for their wonderful support.

Finally, and the most important, I would like to thank my Wife, Marion.
She is my principal inspirational source. She has supported me, motivated me
and encouraged me all along these years.

I dedicate this thesis to Her.

Contents

1 Introduction 1
1.1 Introduction and Motivation 1
1.2 Contributions and Outline . 9

1.2.1 Inside this thesis . 9
1.2.2 Other Contributions 11

2 Definitions & Related Work 13
2.1 Definitions and Notations . 13

2.1.1 Constraint Programming 13
2.1.2 Multi-valued Decision Diagrams 14

2.2 Related Work . 16
2.2.1 Automaton . 19

I MDDs: Fundamental Algorithms 23

3 Reduction 25
3.1 Introduction . 25
3.2 Related Work . 27
3.3 pReduce, a linear reduction operator 30

3.3.1 ipReduce, Incremental reduction 33
3.4 Experiments . 37

4 Constructions 41
4.1 Introduction . 41
4.2 Table and Trie . 43

4.2.1 Trie . 43
4.2.2 Table . 43
4.2.3 Linear table transformation 45

4.3 Global Cut Seed and Tuple Sequences 47
4.3.1 Definitions . 47
4.3.2 Transformations . 48

4.4 Automaton . 51
4.4.1 Definition and related work 51
4.4.2 New method . 53

4.5 Experiments . 54
4.5.1 Table . 54
4.5.2 Automaton . 55

vi Contents

5 Operations 59
5.1 Related Works . 60

5.1.1 BDD Apply . 60
5.1.2 BDD to MDD . 64

5.2 Graph-Based Apply . 66
5.2.1 Graph-Based Algorithm 68
5.2.2 Avoiding Data structures 72

5.3 In-place Operations . 76
5.3.1 Deletion of tuples from an MDD 78
5.3.2 Addition of tuples to an MDD 79

5.4 Experiments . 84

II MDDs: Advanced Algorithms 87

6 Parallel Computing 89
6.1 Introduction . 89

6.1.1 Related Work . 90
6.2 Background . 90

6.2.1 Parallelism . 90
6.3 Parallel Reduction . 91

6.3.1 Parallel Sort . 92
6.3.2 Parallel pReduce . 94
6.3.3 Discussion . 97

6.4 Parallel Apply . 98
6.5 Experiments . 100
6.6 Conclusion . 103

7 Non-deterministic operation 105
7.1 Introduction . 105
7.2 Apply for Non Deterministic 107
7.3 Apply for Deterministic . 108

8 Relaxations 113
8.1 Introduction . 113
8.2 Relaxed Creation : Existing Works 115
8.3 Relaxed Creation : New Method 116

8.3.1 Delayed Relax Creation 116
8.3.2 Generalization . 117
8.3.3 Generic merging heuristic 118
8.3.4 States relaxation . 118

8.4 Relaxed Reduction . 118

Contents vii

8.5 Relaxed Combination . 119
8.5.1 Relax Apply . 120
8.5.2 Experiments . 123

8.6 Relaxed MDDs : Use . 124

9 Sampling 127
9.1 Introduction . 127
9.2 Definitions . 129

9.2.1 Probability distribution 129
9.2.2 Markov chain . 130

9.3 Sampling and MDD . 131
9.3.1 PMF and Independent variables 131
9.3.2 Markov chain . 134
9.3.3 Incremental modifications. 139

9.4 Experiments . 139
9.4.1 PMF constraint and sampling 140
9.4.2 Markov chain and sampling 141
9.4.3 Big Number generation 142

9.5 Conclusion . 142

III MDDs: Constraints and Propagators 145

10 Table & MDD-based Constraints 147
10.1 Introduction . 147
10.2 Related Work . 150

10.2.1 Table Constraint propagators 150
10.2.2 MDD Constraint Propagators 154
10.2.3 Sparse Set . 165

10.3 GAC-4R: Table Propagator 166
10.3.1 GAC-4 . 166
10.3.2 GAC-4R . 167

10.4 MDD4R: MDD Propagator . 170
10.4.1 MDD4 Algorithm . 170
10.4.2 MDD-4R . 173
10.4.3 Improvements . 175

10.5 Experiments . 178
10.5.1 CP14 experiments . 179

10.6 Conclusion . 180

viii Contents

11 Cost-MDD constraint 183
11.1 Introduction . 183
11.2 Cost-MDD . 185

11.2.1 Definition . 185
11.2.2 Related Work . 186

11.3 Cost-MDD4R . 188
11.3.1 Variable Modification 188
11.3.2 Modification of the cost value. 192

11.4 Cost Intersection Method . 194
11.4.1 Discussion . 197

11.5 Experiments . 198
11.5.1 MaxOrder . 198
11.5.2 Random instances . 198

12 Soft-MDD constraint 199
12.1 Introduction . 199
12.2 Soft-MDD Propagator . 200

12.2.1 Dedicated Propagator 202
12.2.2 Transformation into a cost-MDD 203
12.2.3 Intersection of MDDs 203

12.3 Discussion . 204
12.4 Experiments . 206

13 Channeling Constraints and MDDs 209
13.1 Introduction . 209
13.2 MDD Channeling Constraint 211

13.2.1 Set Variables . 211
13.2.2 Definition . 211

13.3 Propagation . 212
13.3.1 Modification of I . 212
13.3.2 Modification of V . 213
13.3.3 Modification of the MDD 216

13.4 Conclusion . 219

IV MDDs: Constraints Modeling 221

14 Allen constraint 223
14.1 Introduction and Related Works 223
14.2 Constraining Contiguous Temporal Sequences 225

14.2.1 Definition of the Allen Constraint 226
14.3 Implementing the Allen Constraint 226

Contents ix

14.3.1 A First Model . 227
14.3.2 MDD-Based Model . 229

14.4 Experiments . 232
14.4.1 Evaluation of the First Model 232
14.4.2 Evaluation of the MDD-Based Model 233

14.5 Conclusion . 233

15 Markov and Statistical Constraints 235
15.1 Introduction . 235
15.2 Definition . 237

15.2.1 Probability distribution 237
15.2.2 Markov chain . 237
15.2.3 MDD of a Generic Sum Constraint 238
15.2.4 Dispersion Constraint 239

15.3 Dispersion Constraint . 239
15.3.1 Dispersion Constraint with fixed mean 239
15.3.2 Dispersion Constraint with variable mean 240

15.4 Probabilities Based Constraint 241
15.4.1 MDDs and Probabilities based constraints 241
15.4.2 Probabilities and Means 242

15.5 Experiments . 243
15.6 Conclusion . 245

16 Unefficient MDDs 247
16.1 Introduction . 247
16.2 AllDifferent . 247
16.3 Set Variables . 248
16.4 Pareto . 249

16.4.1 Storing the Pareto solutions 249
16.4.2 Pareto Constraint . 250
16.4.3 MDD as a store for the Pareto set 250
16.4.4 Why does this Fail? . 253

16.5 Conclusion . 253

V Applications 255

17 MaxOrder 257
17.1 Introduction . 257
17.2 Models . 258

17.2.1 Model 1 . 258
17.2.2 Model 2 . 259

x Contents

17.2.3 Model 3 . 260
17.2.4 Experiments . 262

17.3 Soft Version . 265
17.3.1 Introduction and Model 265
17.3.2 Experiments . 266

17.4 Conclusion . 266

18 Audio Multitrack Synchronization 269
18.1 Introduction . 269
18.2 Description of the Benchmark 270
18.3 Experiments . 273

18.3.1 First Allen Model . 273
18.3.2 MDD-Based Allen Model 273

19 Geomodeling of a Petroleum reservoir 275
19.1 Introduction . 275
19.2 Models . 276

19.2.1 Problem . 276
19.2.2 Results . 277

19.3 Conclusion . 278

20 Conclusion 279
20.1 Conclusion . 279
20.2 Perspectives . 280

VI Appendix 281

A Implementation 283
A.1 Array Implementation . 283
A.2 List Implementation . 289

A.2.1 Conclusion . 295

B Algorithms and Data Structures 297
B.1 Sorting . 297

B.1.1 Indexing sort . 297
B.1.2 Counting sort . 298
B.1.3 Radix sort . 300

Bibliography 303

Chapter 1

Introduction

Contents
1.1 Introduction and Motivation 1

1.2 Contributions and Outline 9

1.2.1 Inside this thesis . 9

1.2.2 Other Contributions 11

1.1 Introduction and Motivation

Computers are used to solve many applications like scheduling a product line
of cars in a factory, designing elevator maps in tall buildings, detecting diseases
in DNA and most important, helping you decide which movie you are going
to watch next. Problems become harder every day, but computer scientists
always design faster algorithms to fit with the ever evolving amount of data.

Constraint Satisfaction and Optimization Problems (CSPs and COPs) are
general-purpose definitions of problems. They allow to define a problem by
expressing its structure (constraints) over variables associated with domains,
and often by giving some objectives to optimize. Such a definition is then
taken by a solver which tries to find a solution satisfying the constraints while
optimizing the objectives. These solvers are more and more efficient, allowing
to always solve new problems.

However, many hard problems remain unsolved. There are many reasons
for that. The first one is problem size: indeed many problems involve hundreds
or thousands of variables. Second, many problems are too complex and con-
tain particular structures, that we are unable to exploit. Finally, many prob-
lems are easily defined by sub-problems, but combining these sub-problems is
hard in practice (Principle of compositionality).

In order to solve these issues, we need to find data structures that can
represent huge and complex problems and that can be combined. These data
structures must efficiently: 1) represent discrete problem solutions, without
necessarily enumerating them. 2) express problems and efficiently combine

2 Chapter 1. Introduction

them. 3) be integrated in solvers via fast and incremental algorithms. All of
that while aiming at solving a broader range of problems.

Many data structures has been used to represent problems or their solu-
tions. Consider first table constraints, often called extensional constraints.
A table is defined by the list of all the allowed tuples. Using such a repre-
sentation, the size of the data structure storing the solution is linear in the
number of solutions, but this number can be exponential. Thus, many com-
pressed data structures have been proposed, such as Global Cut Seeds (GCS)
[Focacci 2001]. A GCS is defined by a vector of set of values, each set is
associated with a variable, and each combination of the Cartesian product
of the sets is an allowed tuple. Such a representation can gain an exponen-
tial factor in memory, but in practice the Cartesian product is too strong for
representing a constraint, thus a large amount of GCSs is needed. Improved
versions has been proposed, such as tuple sequences [Régin 2005] for negative
tables, tables containing prohibited tuples. Another one is the smart table
[Mairy 2015], i.e. a table containing smart tuples, which allow a finer grain
description of the tuples compared to the GCS. But once again, the range
of application is limited to few constraints. More importantly, these repre-
sentations are hard to combine. That is why automaton based constraints
[Beldiceanu 2004a, Pesant 2004] have been proposed. These constraints can
be defined by regular expressions, regular languages or directly by automa-
tons.

Automaton based constraints have been a major step in constraint expres-
sivity and they solve several of the previous issues. However, the definition
of automatons is often challenging. Automatons can contain cycles which al-
low them to accept words of different sizes and this can cause several issues.
First in CP, the number of variables of a constraint is fixed. To overcome this
difficulty, propagators need to unroll the cyclic automaton over the variables,
in order to enforce the accepted words to have a fixed size. The result can
be seen as an new non necessarily minimal acyclic automaton. Second, the
definition or combination of automatons, that can generate words of different
sizes, is often harder than solving the problem for a fixed size. A simple ex-
ample is the application of a simple unary constraint forbidding a value for
a given variable can build an automaton of exponential size (see chapter 2,
section 2.2.1).

We need to find a data structure that, in addition to the previously defined
requirements, efficiently represents solutions of fixed size. That’s why we focus
in this thesis on Multi-valued Decision Diagrams.

Binary and Multi-valued Decision Diagrams (BDDs or MDDs) are efficient
data structures that represents functions or sets of tuples. An MDD, defined
over a fixed number of variables, is a layered rooted Directed Acyclic Graph

1.1. Introduction and Motivation 3

 x1

 x2

 x3

a b c

b c a b c

b c a b c

b a c

a b c b a c

a b c b

Figure 1.1: On the left, the MDD, defined over three variables (x1,x2,x3)
associated with the domain (a, b, c), representing the constraint at most one
a. On the right the MDD, defined over three variables (x1,x2,x3) associated
with the domain (a, b, c), representing the constraint at least one b.

(DAG). It associates a variable with each of its layers. MDDs have an expo-
nential compression power and are widely used in problem solving. An MDD
has a root node, and two potential terminal nodes, the true terminal node tt,
and the false terminal node ff. Each node, associated with a variable, can
have at most as many outgoing arcs as there are values in the domain of the
variable, the arcs are labeled by these values. Each path from the root node
to the tt (resp. ff) node is said to be valid (resp. invalid). The label vectors
of the valid path’s arcs represent the valid tuples.

BDDs are well known for their use in the logic area, verification and model
checking [Bryant 1986, Bryant 1992]. An unrolled automaton can be seen as
a not reduced MDD. Furthermore, BDDs and MDDs are more and more
used in optimization. During the last ten years, many works shown how to
efficiently use them in order to model and solve several optimization problems
[Bergman 2016b, Bergman 2011, Hooker 2007]. An advantage of MDDs is
that they have a fixed number of variables, and often a strong compression
ratio. However MDDs can have an exponential size, and it effectively occurs
in practice.

Example:
Consider the problem of generating sequences of three letters, defined

on three variables (x1,x2,x3) associated with the domain {a, b, c}, that
contain at most one a and the problem of generating sequences having at
least one b. Consider the MDDs from Figure 1.1. The left one represents

4 Chapter 1. Introduction

the constraint at most one a, a famous constraint enforcing that the value
a can appear at most once per solution. Note that the MDD represents all
the solutions of this constraint. Thus every solution of this MDD, which
are the paths from the highest node to the lowest node, do not contain
more than one a. The right MDD represents the constraint at least one b,
which enforce that at least one b must appear in the solution. Thus every
solution of this MDD contains a b. The path (a, c, c) is a solution of the
left MDD, but not of the right MDD. The path (a, a, b) is a solution of
the right MDD but not of the left MDD.

Many of the advantages of MDDs come from these three operations:

• Creation: MDDs allow to build many existing problems, without enu-
merating all their solutions. This very useful when modeling sub-
problems containing huge amount of solutions, many values and vari-
ables.

• Reduction: MDDs have a strong compression power. They allow for
example, to model a complex sub-problem having 1090 solutions, based
on more than one hundred of variables, using an MDD having slightly
more than 600,000 arcs (see chapter 18).

• Combination: Finally, one of the most fundamental aspect of MDDs
is their ability to be easily combined. They offer an efficient way to
combine constraints that are difficult otherwise. This allows to solve
many problems by building MDDs for sub-problems and combine them.
These are the reasons why we are going to focus on how to efficiently
use MDDs for solving problems.

Example:
Consider the problem of generating sequences of three letters, defined

on three variables (x1,x2,x3), using the alphabet {a, b, c}, that contain at
most one a and at least one b, thus the combination of the problems from
the previous example. Consider the MDD from Figure 1.2. This MDD
is the intersection of the MDDs representing the two constraints AtMost
one a and AtLeast one b from Figure 1.1. Thus all the solutions of this
MDD do not contain more than one a but they all contain at least one b.
This MDD represents the combination of the two constraints.

1.1. Introduction and Motivation 5

 ab c

b cabc a cb

b c ba b c

Figure 1.2: The intersection of the two MDDs from Figure 1.1. Thus all the
solutions do not contain more than one a but do contain at least one b.

In order to efficiently manipulate MDDs, we need efficient algorithms for
these three operations. Most of the existing methods fail to handle large do-
mains, while many applications have large size domains (greater than 10,000
values). A good example is the MaxOrder problem [Papadopoulos 2014]
(Chapter 17), it has a domain size of 11,000 in some of our instances. The
existing MDD algorithms fail to solve it in a reasonable amount of time. The
first goal of this thesis is to improve these algorithms. Thus we propose new
algorithms for each of the operations. The main idea is to use the facts that
an MDD is defined over a fixed set of variables, and that the domains can be
large but sparse for the nodes. Moreover, most of the existing algorithms use
complex internal data structures that, as we will show, slow down the compu-
tation and restrict the addition of features. We propose to remove these data
structures and design conceptually simpler and more efficient algorithms.

Creation. One good reason for using MDDs is that they can be created
from many sources, for example, they can be built from Boolean formulas
or dynamic programming [Hooker 2013]. Thus in this thesis we focus on im-
proving some of the existing conversion, like the ones from tables or automa-
ton, and we propose new creation methods for several existing compressed
data structures like the global cut seed [Focacci 2001] and the tuple sequences
[Régin 2011].

Reduction. MDDs are often used because of their strong compression
power, which mostly comes from the reduction of the MDD. The reduction of
an MDD is an operation which merges equivalent nodes. Throughout the
years, several algorithms have been proposed [Andersen 1997, Brace 1991,
Bryant 1986]. In this thesis, we propose a linear reduction algorithm, which

6 Chapter 1. Introduction

is especially well suited for large set of different values.
Combination. Consider a problem containing p constraints, building an

MDD for each constraint and intersecting them lead to an MDD contain-
ing all the solutions of the problem. Even if such a method is not always
possible, combining MDDs often drastically improves the resolution time.
Combining MDDs is a well studied topic, and as for the reduction, sev-
eral algorithms have already been proposed [Andersen 1997, Bergman 2014b,
Brace 1991, Bryant 1986, Bryant 1992]. In this thesis, we propose to study
the existing algorithms, enlightening some of their weakness and proposing
new versions strengthening them.

Advanced operations Thanks to the simple definition of our new algo-
rithms for the reduction and combination, we are able to improve and extend
them: 1) by designing parallel algorithms. 2) by considering relaxed MDDs.
3) by considering non deterministic MDDs.

Parallel versions of algorithms for BDDs or MDDs have been studied
[Bergman 2014a, Kimura 1990, Stornetta 1996], but most of these works were
limited because of the complex data structures they used for building, com-
bining or reducing MDDs. Since the algorithms we propose for the reduction
and combination of MDDs avoid such data structures, a new parallel algo-
rithm can be design for both these algorithms. These parallel algorithms are
designed to dispatch independent work between workers and are lock-free.

The relaxation of MDDs have been successfully applied in optimiza-
tion and constraints solving [Andersen 2007, Bergman 2016b, Bergman 2011,
Cire 2013, Cire 2014b, Hadzic 2008, Hoda 2010, Hooker 2007]. The authors
designed several methods for building relaxed MDDs, i.e. MDDs representing
a super set of the solutions. These methods have been integrated into solvers,
for example for extracting lower bounds of solution cost, and some solvers are
even fully based on relaxed MDDs. In this thesis, we propose to take a look
inside the algorithms. Existing works mostly focus on relaxing the creation
of MDDs. Firstly, we propose to improve these creation methods. Secondly,
we define the notion of relaxed reduction for MDDs, and we give an asso-
ciated algorithm. Thirdly, we define the notion of relaxed combination and
design two associated algorithms. Finally, we propose to analyze the available
possibilities (e.g. relax creation, relax combination...) for the modeler while
constructing its problem relaxation.

Non deterministic Finite Automaton (NFA) are well know in automata
theory for their efficient representation that can gain an exponential factor
in space against classical Deterministic Finite Automaton (DFA). This idea
has been applied to MDDs several times [Bollig 1999, Finkbeiner 2001], but
almost all the works have focused on restricted versions of non-determinism.

1.1. Introduction and Motivation 7

We propose in this thesis to study the simplest non-deterministic version of
MDDs that allows a node to have several outgoing arcs labeled by the same
value. Using this representation, we define combination algorithms that out-
put both deterministic and non deterministic MDDs. Thanks to this algo-
rithm, we will be able to design a new and original propagator handling the
cost-MDD constraint in CP solvers.

These three features are non exclusive and can be combined. The resulting
algorithms are parametric algorithms handling both deterministic and non
deterministic MDDs, applying relaxation if necessary, and running in parallel.

Sampling In the context of artificial intelligence, sampling is a useful tech-
nique. Sampling usually consists in randomly generating sequences or val-
ues, with respect to a probability distribution. Sampling under constraints
is at least as hard as solving the involved CSPs, thus several works fo-
cus on a restricted subsets of constraints [Jurafsky 2014, Papadopoulos 2014,
Papadopoulos 2015]. MDDs are well suited for combining constraints. We
study in this thesis how to sample solutions of an MDD with respect to a
probability distribution, that can be given either by a Markov chain or by a
Probability Mass Function (PMF).

MDDs and solvers Constraint Programming mostly focuses on solving
discrete CSPs and COPs. CP solvers, allow to define problems by their
sub-problems (constraint) and the propagation mechanism combines them
during the search. Embedding MDDs into solvers is one of the challenges
for benefiting of their efficient compression and expressivity power. Several
works have been focused on designing efficient propagator algorithms allow-
ing to use MDDs in constraint programming solvers [Cheng 2010, Cheng 2008,
Gange 2011]. Moreover, even a state of the art modeling language allows to
directly define MDD constraints [Boussemart 2016]. In this thesis, we pro-
pose to define a new MDD propagator for constraint solvers, which is simple,
has a good complexity, and which almost always improves the resolution time
compared to the existing ones. Furthermore, this MDD algorithm has been
implemented in several state of the art CP solvers, such as Or-Tools and
OscaR [Perron 2013, OscaR Team 2012].

MDDs can also represent optimization problems, usually this is done
by adding a cost to the arcs of the MDDs, the resulting MDDs are called
cost-MDDs. Several works have focused on optimization and MDDs, and
in the context of constraint programming, several algorithms handle these
cost-MDDs [Demassey 2006, Gange 2013]. In this thesis we propose a new
algorithm for handling cost-MDD, which improves existing algorithms in all
tested instances. Furthermore, we propose a new technique that allows to

8 Chapter 1. Introduction

convert cost-MDD constraints into simple MDD constraints, by using the non-
deterministic operations. This allows any simple MDD propagator to handle
cost-MDD constraint. Note that these converted cost-MDDs can also be used
into other areas than constraint programming, like satisfiability solvers.

Several problems do not contain any solution, they are called over-
constrained problems. Consider for example the problem of generating a word,
which has to contain at least one a, one b and two n, but whose length has
to be less than 3. This problem is unfeasible. In constraint programming,
over-constrained problems are often defined using soft constraints. A soft
constraint is a constraint which can be violated, but with respect to a viola-
tion measurement. The goal is then to find the solution minimizing the total
amount of violations. Soft constraints are well known in constraint program-
ming, but soft MDD algorithms have never been investigated. Thus in this
thesis we focus on designing several algorithms allowing to handle soft MDD
constraints.

Modeling with MDDs The size of the MDD representing the allDifferent
constraint grows exponentially. This implies that building an MDD repre-
senting all the solutions of a problem is not always a good idea. Intersecting
two constraints allows to extract all the solutions respecting both of the con-
straints. But for intersecting two constraints using MDDs, we first need to
define the two MDDs, which can already be exponential for some constraints
such as the allDifferent constraint. Then, the intersection of two MDDs can
lead to an MDD having as size the product of the size of two MDDs. Thus
several work focus on kind of relaxed version of the intersection of constraints
onto MDDs [Hoda 2010] in order to avoid these memory issues.

In this thesis we design a channeling constraint for MDDs. This constraint
allows to link the values and the variables of sub-sets of arcs of an MDD with
other constraints. This new method allows to define new constraints in CP
solvers based on MDDs. Our best example is the Allen constraint. This con-
straint aims at constraining the values of variables occurring during temporal
sequences. Constraining variables using temporal sequences is often hard to
define because the indexes of the variables do not necessarily correspond to
their temporal positions. The propagator of this constraint uses our MDD
propagators, incremental version of combinations of MDDs that we designed
and the channeling constraint for MDDs. This model allows to solve instances
orders of magnitude faster than other methods.

Constraint programming solvers are efficient because they have a specific
algorithm for each sub-problem (constraint). But this implies a lot of code and
time since the number of constraints is huge [Beldiceanu 2012]. Several works

1.2. Contributions and Outline 9

focus on reformulating constraints into others, allowing to implement and
define only a sub-set of algorithms and using them to handle many constraints
[Lhomme 2012]. In this thesis, we propose to reformulate existing constraints,
like the dispersion and thus spread constraints [Pesant 2005, Schaus 2014,
Pesant 2015] into MDD constraints.

Thanks to the proposed methods of this thesis, several models have been
designed for solving the three following industrial applications, and excellent
results have been obtained. First the geomodeling of a petroleum reservoir,
based on probability and knapsack constraints. Second, the Maxorder prob-
lem, aiming at generating sequences avoiding plagiarism. Finally, a musi-
cal synchronization problem, solved using the proposed propagators and our
model, which outperforms by orders of magnitude other methods.

1.2 Contributions and Outline

1.2.1 Inside this thesis

Most of the work of this thesis consists in improving the definition of models for
solving problems and in designing their associated algorithms. Next chapter
is a reminder of the state of the art about decision diagrams and gives several
notations used all along. The thesis is divided into five parts.

Part I focuses on the three fundamental operations for MDDs: The reduc-
tion (Chapter 3), by giving a new algorithm that is very efficient in practice.
The creation (Chapter 4), by improving several existing MDD constructors
like the one from table and by proposing several new ones. The combination
(Chapter 5), by proposing a new algorithm based on set operations instead
of composition of functions, which is simple and efficient, and avoids com-
plex data structures. Note that these improvements solve one of the problems
defined in the application part of this thesis (Chapter 17).

Part II presents efficient parallel versions of the reduction and combina-
tion algorithms (Chapter 6). Lock-free algorithms having independent work
loads, allowing to distribute the load over several computers are given. Then it
deals with modification of our algorithms in order to handle non-deterministic
MDDs (Chapter 7). Next it focuses on the existing relaxation for MDD (Chap-
ter 8) and proposes to take a look inside them and to design new algorithms
in order to define efficient relaxations. This is done by designing operations

10 Chapter 1. Introduction

like the reduction or the combination producing relaxed MDDs. Note that
these three modifications are non exclusive.

This part also focuses on designing efficient sampling algorithms for MDDs
(Chapter 9), by considering the two most used statistical distribution, the
Markov process and the Probabiliy Mass Function (PMF). Thus this chapter
defines algorithms for both of them, incremental modifications and parallel
updates.

Part III focuses on the algorithms used in CP solvers for handling pure
MDD constraints. First the GAC4R algorithm is presented (Chapter 10).
This new algorithm allows to efficiently handle table constraints, and is used
to design MDD4R, the algorithm handling MDDs inside CP solvers that we
proposed. Second, the cost version of MDDs is studied (Chapter 11), and the
cost version of MDD4R is proposed, all along with another technic converting
cost MDD constraints into classical MDD constraints. Third, the soft version
of the MDD constraint is studied (Chapter 12), and we propose three dif-
ferent methods for handling them, all with different efficiencies and levels of
consistency. Finally, we propose a channeling constraint for MDD allowing to
constrain only sub-part of the MDD (Chapter 13), by constraining the allowed
(or prohibited) values and variables

Part IV focuses on defining existing or new constraints using the proposed
MDD algorithms. First the Allen constraint is defined (Chapter 14), a con-
straint enforcing temporal constraints on variables. Then, an MDD version
of the well known Spread and dispersion constraints is given (Chapter 15),
all along with several others statistical constraints based on Markov processes
and PMF.

Part V is about the applications we solved during this PhD thesis. The
first one is a problem of generating sequences following a Markov generation
process but avoiding plagiarism from a corpus (Chapter 17). This applica-
tion is mostly solved using the operation defined in Part I. The second one
is another generation problem consisting in generating sequences of musical
notes for several instruments (Chapter 18). This problem imposes temporal
synchronization points as constraints. Furthermore, the generated sequences
have to follow a Markov generation process. Our model uses the constraints
defined in both Part III and Part IV. The last application is about the geo-
modeling of a petroleum reservoir (Chapter 19), our model use several of the
statistical constraints defined in Chapter 15.

1.2. Contributions and Outline 11

The work presented in this thesis mostly comes from the following pub-
lications: [Perez 2017b, Perez 2016, Perez 2015a, Perez 2014, Perez 2017a,
Perez 2015b, Perez 2017c, Roy 2016]. Chapters 6, 7, 8 and a part of 13 are
still under submission.

1.2.2 Other Contributions

During my PhD I had the chance and opportunity to work with many other
researchers about different topics other than MDDs. This section is dedicated
to them.

In the context of machine learning and optimization, I worked with M. Bar-
laud and his team on the design and implementation of algorithms for numer-
ical optimization, on splitting algorithms and on the design and implemen-
tation of and algorithm for the projection onto the simplex and the L1 ball.
This collaboration led to the writing of both a paper in the French conference
of the domain and a journal paper currently under submission.

In the context on constraint programming, I worked with several re-
searchers (all the authors of [Demeulenaere 2016]), about the design of an
efficient table constraint propagator. This collaboration led to a publication
to the CP conference of 2016 too. Moreover, this algorithm is becoming one
of the state of the art algorithm for table constraints.

In parallelism and constraints, with my supervisor J.-C. Régin. I designed
and implemented a search strategy selector based on active learning algorithms
(i.e Bandit, UCB) for the paper [Palmieri 2016].

Last but not least, I had worked with Anthony Palmieri, another PhD
student currently at Huawei Paris, and a long time friend, about optimization,
search strategies and search hybridization. This collaboration led to an article
under submission.

Chapter 2

Definitions & Related Work

Contents
2.1 Definitions and Notations 13

2.1.1 Constraint Programming 13

2.1.2 Multi-valued Decision Diagrams 14

2.2 Related Work . 16

2.2.1 Automaton . 19

2.1 Definitions and Notations

2.1.1 Constraint Programming

Constraint Programming (CP) is a problem-solving method. In CP, a prob-
lem is first modeled, using variables and constraints. Usually, each variable is
defined by its domain, corresponding to its set of possible values. Each con-
straint defines a property that must be satisfied by a subset of the variables.

A Constraint Satisfaction Problem (CSP) is a couple P = (X,C), where
X = x1, x2, ..., xN is a set of variables and C = C1, C2, ..., Cm is a set of
constraints. Each variable xi is associated with its domain D(xi), representing
all its possible values. A constraint Ci associated with a set of all allowed
tuples T (Ci) defined over a subset of variables S(Ci) ⊆ X.

A solution is a tuple of values (a1, a2, ..., ak) such that the assignment
x1 = a1, x2 = a2 ..., xN = aN satisfy all the constraints.

The resolution of a CSP generally involves a Depth First Search (DFS)
algorithm using backtracking building a search tree. At each node of this tree,
a propagation algorithm is run. This algorithm removes the inconsistent values
with respect to the constraints. This is done by running a specific filtering
algorithm associated with each constraint, called the filtering algorithm (or
propagator). This filtering algorithm removes values that cannot belong to a
solution of the constraint and so reduces the search space. The DFS algorithm
is driven by a search strategy, usually choosing the next couple variable value
to affect.

14 Chapter 2. Definitions & Related Work

Figure 2.1: An MDD representing the tuple set {(a,a),(a,b),(c,a),(c,b),(c,c)}

Constraints In constraint programming, a constraint can be defined in sev-
eral ways, the simplest one is to define the constraint by all its allowed tuples,
thus by a table T having λ = |T | tuples. But a constraint can be defined by
relation between variables, for example by enforcing that x1 < x3. Moreover,
in CP, complex constraints exist, like the allDifferent [Régin 1994], enforcing
that the value taken by the variables are pairwise different. Or the atMost
constraint preventing a value to appear more than a given number of times.

Applications Constraint programming is often used in product line
scheduling for industrial factories [Régin 1997, Bergman 2014b]. Moreover,
CP is often used in crew and nurse scheduling in hospitals [Pesant 2004,
Demassey 2006, Schaus 2009b]. While this list is not exhaustive, CP is often
used in industrial application of Bin-Packing, etc [Schaus 2009a, Schaus 2012,
Bent 2004]. In addition, CP is used in transportation, by managing crews,
gates and flights or in configuration problems [Sabin 1996, Hadzic 2004].

Most of the applications presented in this thesis are mainly from the
Artificial Intelligence area, based and the seminal works of Pachet and his
team in the context of content generation for entertainment [Barbieri 2012,
Pachet 1999, Pachet 2014, Pachet 2001, Pachet 2011, Papadopoulos 2014].
Thus chapters 17 and 18 present applications that have mainly been real-
ized with them. The last application presented in this thesis came from an
industrial problem about the geomodeling of a petroleum reservoir.

2.1.2 Multi-valued Decision Diagrams

Multi-valued decision diagram (MDD) is a multiple-valued extension of BDDs
[Bryant 1986, Akers 1978]. MDD is a rooted directed acyclic graph (DAG)
often used to represent some multi-valued function f : {0...d − 1}r →
{true, false}, based on a given integer d. Given the r input variables.

2.1. Definitions and Notations 15

The DAG representation is designed to contain r+ 1 layers of nodes, such
that each variable is represented at a specific layer of the r first layer of the
graph, and such that the last layer represent both the true and false terminal
nodes (the false terminal node is typically omitted). Each node on a given
layer has at most d outgoing arcs to nodes in the next layer of the graph.
Each arc is labeled by its corresponding integer.

When the MDD is used to represent a function f , there is an equivalence
between f(v1, ..., vr) = true and the existence of a path from the root node to
the true terminal node whose arcs are labeled v1, ..., vr. Figure 2.1 shows an
example of MDD defined on two variables.

Notation An MDD G = (N,E) has n = |N | nodes and m = |E| edges. A
node u has a list ω+(u) of outgoing arcs and a list ω−(u) of incoming arcs.
ω+(u)[i] is the ith arc and |ω+(u)| is the number of arcs in the list . An arc
is a triplet e = (u, v, a), where u is the emanating node, v the terminating
node and a the label. If the MDD is a cost-MDD, an arc is a quadruplet
e = (u, v, a, c), where u is the emanating node, v the terminating node, a the
label and c the cost.

16 Chapter 2. Definitions & Related Work

Figure 2.2: A simple switching circuit from [Lee 1959]

2.2 Related Work

One of the seminal work on design and analysis of circuits comes from Shannon
[Shannon 1938, Shannon 1949]. The famous shannon decomposition considers
that a Boolean function f(x1, x2, ...xk) can be recursively decomposed into
x1f(1, x2, ...xk) + x1f(0, x2, ...xk).

For example, consider the function f(x1, x2, x3) = x1x2x3 + x1x2x3 +

x1x2x3 + x1x2x3. Applying the Shannon decomposition on the first variable
gives :

f(x1, x2, x3) = x1f(1, x2, x3) + x1f(0, x2, x3)

f(x1, x2, x3) = x1(x2x3 + x2x3 + x2x3) + x1(x2x3)

f(x1, x2, x3) = x1(x2 + x3) + x1(x2x3)

The origin of Binary Decision Diagrams come from the Binary Decision
Programs defined by Lee [Lee 1959] for representing switching circuits and
in order to "compare its representation with the algebraic representation of
Shannon".

In such circuit, a switch can have a value, either 0 or 1, corresponding to
its current state. Figure 2.2 shows an example, coming from [Lee 1959], of
such a circuit. In this circuit, x indicates that x = 1 and x indicates that
x = 0.

Some voluntary long Shannon decomposition of the switching circuit from

2.2. Related Work 17

Figure 2.2 can be given as follows:

F (x, y, z) = xyz + xyz + xyz

F (x, y, z) = xF (1, y, z) + xF (0, y, z)

F (x, y, z) = x(yz + yz) + x(yz)

F (x, y, z) = xyF (1, 1, z) + xyF (1, 0, z) + xyF (0, 1, z) + xyF (0, 0, z)

F (x, y, z) = x(y(z) + y(z)) + x(y(z) + y(0))

F (x, y, z) = x(y(z(0) + z(1)) + y(z(1) + z(0))) + x(y(z(1) + z(0)) + y(z(0) + z(0)))

F (x, y, z) = x(y(z(1)) + y(z(1))) + x(y(z(1)))

A Binary Decision Program is a set of conditional instructions, whose,
using the (inverse of) today’s standard of programming, can take the form:

T → x? A : B

Meaning that if the value of x is 0 then go to instruction A, otherwise go to
instruction B. Note that each instruction is associated with a variable.

Thus for the switching circuit of Figure 2.2, we obtain the following binary
decision program:

1 → x? 2 : 4

2 → y? F : 3

3 → z? F : T

4 → y? 3 : 5

5 → z? T : F

Such a program describes all the possible paths of the circuits. As we can
see, compared to the Shannon decomposition, the function z is shared.

Several years later, Akers [Akers 1978] introduce the Binary Decision Dia-
gram, as a graphical structure. These BDDs were used to represent switching
functions extracted from the switching networks. As said before, the Binary
Decision Diagrams can have two outgoing arcs, labeled by either 0 or 1, di-
rected to the next layers and two terminal nodes 0 and 1. The arcs labeled
by 0 are usually dashed in graphical representation.

Consider for example the BDD from Figure 2.3 that represented the Binary
Decision Program defined for the switching circuit of Figure 2.2. This BDD
shows the sharing of the node 3.

18 Chapter 2. Definitions & Related Work

1

2 4

F

3 5

T

Figure 2.3: A BDD representing the switching circuit from Figure 2.2

In 1986, Bryant [Bryant 1986] published a groundbreaking work about
BDDs. Bryant proposed to impose a total ordering on the variables of the
BDD, introducing the Ordered Binary Decision Diagrams. Thanks to this,
Bryant proposed many algorithm allowing to efficiently combine BDDs. Fur-
thermore, using this total ordering, Bryant was able to reduce the OBDD
into a canonical form giving the Reduced Ordered Binary Decision Diagrams
(ROBDDs) which are widely used, and most of the time, BDD stands for
Bryant’s ROBDDs. In its works, Bryant distinguished the three important
operations for BDDs which are the creation, the reduction and the combina-
tion.

The creation of BDDs and MDDs have been studied many times, as shown
for building BDDs from Boolean formulae [Bryant 1986, Andersen 1997]. But
since several years, BDDs and MDDs are built from many other sources,
consider for example the work of Cheng and Yap [Cheng 2008, Cheng 2010,
Cheng 2005] which builds MDDs from set of tuples or sub-problems. More
about their work is given in chapter 4.

Moreover, several researchers aimed at building MDDs from dynamic
programming [Hooker 2013, Bergman 2016b], by extracting a set of states
and a transition function. Furthermore, they have made a seminal work
on compiling constraint satisfaction problems (CSPs) and constraint op-
timization problems onto MDDs and in the analysis of their complexity
[Hadzic 2008, Andersen 2007]. For example, in using an MDD as a domain
store instead of classical set of values, which has helped solve several hard
combinatorial problems.

2.2. Related Work 19

Andersen et al. [Andersen 2007] proposed to limit the size of the MDD by
limiting the number of nodes. Such MDDs are called the relaxed MDDs, since
they are discrete relaxations of the constraints they represent. These relaxed
MDDs usually represents super set of the solution, instead of the exact set of
solutions. They can be built while compiling the CSPs, like in [Hadzic 2008],
or by separation of the constraints [Ciré 2014a]. Another relaxation named the
restricted Decision Diagrams have been introduced [Ciré 2014a] to represent
a subset of the solutions, instead of a super set. One of the advantages of
such relaxation is that the cost of a solution found in this restricted DD is a
lower-bound of the best solution.

In the context of constraint programming, many works can be found. The
first MDD propagator has been given by Cheng and Yap in [Cheng 2008,
Cheng 2010], then several MDD propagators has been designed [Gange 2011,
Perez 2014], all these works allow CP solvers to directly handle an MDD stor-
ing all the satisfying or prohibited tuples. Nowadays, almost all the CP solvers
have an MDD constraint and MDDs are even part of the standard XCSP for-
mat [Boussemart 2016], and MDD where also available since 2000 in SICStus
[Carlsson] and used to implement the transition constraints associated to the
reformulation of an automaton, but without minimization.

In addition to these propagators, several works focus on constraining the
MDD himself [Hoda 2010, Bergman 2014b], by, for example, enforcing that
the cost of all the paths is in a given interval. Andersen et al. [Andersen 2007]
have introduced the notion of MDD consistency, which enforces that each arc
belongs to at least one solution.

Several distinct subjects are studied in this thesis, thus many chapters start
with a related work section focusing on the exact subject of the chapter.

2.2.1 Automaton

Automaton have been often used in Constraint Programming. A deter-
ministic finite automaton [Hopcroft 2006] can be represented by a 5-tuple
(Q,Σ, δ, q0, F) with :

• A finite set of states Q

• A finite set of symbols Σ (the alphabet)

• A transition function δ between states. Q x Σ → Q

• An initial state q0

20 Chapter 2. Definitions & Related Work

• A set of accepting states F .

An automaton accepts a word (sequence of symbols s1,s2...sn ∈ Σ) if there
exists a set of transition {(q0, s1, q1), (q1, s2, q2), ..., (qn−1, sn, qn)} and that qn
is an accepting state. The set of words accepted by an automaton is called
the language of the automaton. The minimal automaton for a given language
is the automaton recognizing the language and having the smallest number of
state.

Example:
Let Σ = {a, b, c}. Consider the following automaton preventing ac-

cepted words to finish by an a:

q0 q1

a

b, c

b, c

a

This automaton is not really complicated, and is readable.

It can be challenging to define automatons. This is often due to their
ability to accept words of arbitrary sizes.

Example:
Consider the following automaton preventing accepted words to have

a b in the before last position:

q0 q1 q2 q3

b

a, c

a, c

b

b

a, c

b

a, c

This automaton is not trivial anymore.

Combining automaton accepting words of arbitrary sizes is often harder
than solving the problems with MDDs having fixed size.

2.2. Related Work 21

Example:
Consider the automatons of the two previous examples. The product

automaton of these automatons is given in Figure 2.4. This automaton
represents the words that cannot finish by an a and not having a b in the
before last position. It is almost unreadable for human.

These two simple unary constraints can be easily enforced with MDDs.
Figure 2.5 shows the resulting MDD while applying the constraints over
3 variables. This MDD is simple and readable. This example shows that
MDDs are well suited for fixed size words generation.

Even avoiding the fact that defining automaton is challenging, some simple
unary constraints can lead to automatons having an exponential size, while
the MDD has a linear size.

Example:
Consider the generalization of the previous examples, the language

(a|b|c)∗a(a|b|c)n. The DFA representing this language has 2n+1 nodes.
The case with n = 0 and n = 1 are the two previous examples. A Non-
deterministic Finite Automaton (NFA) can represent this language using
n + 1 nodes. An MDD defined over k variables represents this language
using k nodes, see Figure 2.5.

This example shows that an MDD can have comparable compression
power to NFA. Furthermore, NFA can have an exponential compression power
against DFA. The proposed example shows an MDD having an exponential
factor of compression against DFA.

22 Chapter 2. Definitions & Related Work

q0 q1 q2 q3

q0

q1

q00

q10

q01 q02 q03

q13

b

a, c

a, c

b

b

a, c

b

a, c

ab, c

a

b, c c

ac

a

b

b

a

b

c

b

a

c

a

c

b

b

a

c

Figure 2.4: Intersection of two automatons representing unary constraints.

r

a bc

a c

tt

b c

Figure 2.5: MDD representing solutions of two unary constraints over three
variables.

Part I

MDDs: Fundamental Algorithms

Chapter 3

Reduction

Contents
3.1 Introduction . 25

3.2 Related Work . 27

3.3 pReduce, a linear reduction operator 30

3.3.1 ipReduce, Incremental reduction 33

3.4 Experiments . 37

3.1 Introduction

One of the main advantages of MDDs is their compression. MDDs are able to
gain an exponential factor in representation space, but to do so MDDs have to
be reduced. Reduction is an operation which consists of transforming an MDD
into its smallest canonical form, for a given variable ordering [Bryant 1986].
This is one of the most important operations for MDDs.

Reduction operation merges equivalent nodes. Two nodes are equivalent
if they have the same outgoing labeled paths.

Definition 1 Two nodes u and v are equivalent, denoted by u ≡ v, if:

|ω+(u)| = |ω+(v)| ∧ ∀(u,w, a) ∈ ω+(u),∃(v, w, a) ∈ ω+(v) (3.1)

Nodes that have the same outgoing arcs can be easily merged. This is
done by redirecting all incoming arcs of all the nodes to only one, and then
removing the ones that do not have any more incoming arcs.

By using this definition for merging nodes, in a bottom up fashion, we can
find all the equivalent nodes.

Proof If two nodes at layer i are equivalent, after reduction of the layer
i + 1, they have the same outgoing arcs. This property is true for the last
layer, and recursively true for the other layers.

Note that the idea is close to the tree isomorphism [Aho 1974].

26 Chapter 3. Reduction

Example:
Consider the MDDs from Figure 3.1. This example shows the merging

of the two equivalent nodes, e and c.
In the left MDD, both the nodes c and e have arcs labeled by 0 and 1

and directed to the node tt, these two nodes are equivalent. This implies
that we can merge them. The right MDD shows the MDD after the
merging of nodes, the resulting node being the node ce. As we can see
in this MDD, even if both a and b nodes have arcs labeled by 0 and 1

directed to the node ce, these two nodes are not equivalent since the node
a has an arc labeled by 2 and directed to the node d.

When no more nodes can be merged, an MDD is said to be reduced. Note
that the order in which nodes are merged has no impact since a reduced MDD,
for a given variable ordering, is on a canonical form [Bryant 1986].

We can denote a Reduced Ordered MDD by the acronym ROMDD. In this
thesis, for the sake of clarity, the acronym MDD is going to be used instead
of ROMDD.

Figure 3.1: Example of reduction.

The problem Define a reduction algorithm finding all the equivalent nodes
efficiently.

3.2. Related Work 27

Plan This chapter is split in three parts. The first one describes the state
of the art methods for reducing MDDs or BDDs. The second one introduces
pReduce, a reduction algorithm, linear on the number of arc, and one of the
contributions of this thesis. The third one proposes ipReduce, an incremental
reduction version of pReduce.

3.2 Related Work

Several algorithms for reducing MDDs and BDDs exist [Bryant 1986,
Cheng 2010, Andersen 1997, Brace 1991]. This section describes some of
them.

One of the classical representations for MDDs is to represent each node by
an array of outgoing arcs (cf Appendix A.1). The size of this array is fixed
and is the size of the domain (d). Using this representation, the existence of
an arc labeled by i is given by the value of the ith cell of this array. If the value
is ff then the arc does not exist, otherwise the cell contains the terminating
node of the arc.

The access of the outgoing arc of node u labeled by i is denoted by u[i].
Using this representation, two nodes u and v are equivalent iff:

∀i ∈ [1, d], u[i] = v[i] (3.2)

Example:
Considering the MDD from Figure 3.1, the nodes c, d and e have the

following arrays of outgoing arcs:

Node 0 1 2
c tt tt ff
e tt tt ff
d ff tt ff

The nodes c and e have the same line (array of nodes), that is why
they are equivalent.

Main idea The main idea behind a lot of reduction algorithms is to perform
a search on the MDD and to merge equivalent nodes by memorizing all the
already visited nodes in a data structures.

These algorithms usually process a DFS inside the MDD. During the post-
visit, they use a dictionary-like data structure to search for a similar node of
the current node. This kind of method has a complexity of O(n ∗ D) with

28 Chapter 3. Reduction

Algorithm 1 Reduction of an MDD using the classical DFS and a Dictionary.
reduce(M)

define D
root(M) ← reduceDFS(root(M),D)

reduceDFS(u,D)

if ∃v ∈ D, u ≡ v then return v
for each i ∈ [0, d] do

u[i] ← reduceDFS(u[i],D)

if ∃v ∈ D, u ≡ v then return v
Add(D,u)
return u

D the complexity of using a dictionary for finding equivalent nodes. The
Algorithm 1 is a possible implementation of such algorithm.

Dictionary There are two ways for implementing such a dictionary that
deserves some attention: by a radix tree or by a hash table.

A radix tree is a tree used to store words such that each node contains an
array of outgoing edges of size |Σ|, where Σ is the alphabet of the words. To
check if a word belongs to the radix tree, we have to check if a path using the
letters of the word exists. An example of radix tree is given in Figure 3.2.

The use of a radix tree with words of size d having n different values gives a
tree having d layers such that each node is an array of size n (n is the number
of nodes of the MDD). Using this radix tree, looking for an equivalent node
can be done in O(d), and the insertion of a node may lead to the creation of
d nodes of size n. This prevents us from using such a data structure.

That’s why most algorithms use hash tables. In this case we cannot ensure
reaching a O(d) time complexity but we can expect the search in the table to
be close to O(1) once the hash code of the key has been computed, which is in
O(d). Such a result can be obtained by using a table whose size is greater than
n when n elements are involved. The drawback of this approach in practice is
that it may be time consuming to compute an efficient hash code and it needs
a large table when we do not know n in advance.

Advantages This reduction method can be useful while performing opera-
tions like the Apply operator (see Chapter 5) on MDDs because it can reduce
the MDD while performing the operation.

3.2. Related Work 29

Figure 3.2: A radix tree containing the words ANA, ABA and BAR. The
word ANA is obtained by following the path A->N->A in the tree.

Example:
Consider the MDDs from Figure 3.1. This example shows the appli-

cation of the classical reduction method to the MDD on the left.
First, the algorithm processes a DFS and the post visit of the DFS

stores the nodes in a Hash map. Starting from the root node. Using the
values in the lexicographic order, this leads us to node c. Node c has
0tt1tt as signature, and thus is put in the associate cell of the hash
map. The algorithm then goes at node d and put this node in the cell
associated to signature 1tt. Then the algorithm goes to node a and put
it in cell 0c1c2d. The next studied node is e with signature 0tt1tt. Node
c already has this signature, thus this two nodes are merged. This is done
by returning c instead of e. The next processed node is b with signature
0c1c, no node has the same signature, thus b is put in the Hash map. The
result is the MDD on the right.

More Bryant [Bryant 1986] proposed an algorithm for BDDs that associates
a unique key to each node based on their outgoing arcs. The nodes are then
sorted and the algorithm checks for each two-consecutive nodes if they are
equivalent (i.e. if their unique key is the same). With d = 2, a unique key
based on the outgoing arcs can easily be generated, but generating a unique
key to any d > 2 is costly. The next section shows how to do it incrementally
without necessarily check all the arcs.

30 Chapter 3. Reduction

3.3 pReduce, a linear reduction operator

This section presents pReduce, named from "pack reduce", a reduction algo-
rithm whose time complexity per node is bounded by its number of outgoing
arcs and not by the number of possible values (d). In addition, the time and
memory complexities are both linear on the size of the MDD O(n+m).

This algorithm is close to the algorithm proposed for acyclic deterministic
automaton [Revuz 1992] which performs a kind of lexicographic sort of nodes
using bucket sort. But here, each bucket is going to be split by looking at the
next arc, and thus the complexity is bound by the number of arcs instead of
being quadratic.

This algorithm can be seen as an incremental version of the algorithm first
proposed for BDDs [Bryant 1986]. Note that the direct application would
have used a raddix sort, using as base the number of possible values, but the
complexity would have been quadratic O(d ∗ n).

Representation The pReduce algorithm uses the ω+ list implementation
of an MDD (Appendix A.2). The particularity of this list of outgoing arcs is
that they are ordered by their label. Thanks to several creation and operation
algorithms presented in this thesis, we can assume that this property is always
ensured.

Example:
Considering the MDD from Figure 3.1, the nodes c, d and e have the

following lists of outgoing arcs:

Node ω+

c {(0,tt),(1,tt)}
e {(0,tt),(1,tt)}
d {(1,tt)}

Main idea Instead of checking for each node if there exists an equivalent
node in the MDD, pReduce tries to build clusters of equivalent nodes.

From equation (3.1), two nodes are equivalent if they have the same num-
ber of outgoing arc, and for each pair (label, destination) from the ω+ of the
first one, there is a pair (label, destination) in the second one.

Let the equal = and not equal 6= operators between two arcs be operators
comparing both the label and the destination. Since the ω+ lists of arcs
are sorted by the label, we can apply the function of equivalence given in
Algorithm 2.

3.3. pReduce, a linear reduction operator 31

Algorithm 2 Equivalence of two nodes.
equivalent(u, v)

if |ω+(u)| 6= |ω+(v)| then
return False

for each i ∈ 1..|ω+(u)| do
if ω+(u)[i] 6= ω+(v)[i] then

return False

return True

This equivalent function compares the outgoing arcs of two nodes while
they are the same and stop at the first difference.

The pReduce algorithm performs this equivalence function incrementally
over all the nodes at the same time. pReduce puts all the nodes of a layer
into a set (i.e. a pack). Then it splits this set into several sets by comparing
their first outgoing arc. Then for each of these new sets, it splits the nodes by
comparing their second outgoing arc. The same process is applied iteratively
over all the arcs until obtaining a node alone or having checked all the arcs of
the nodes. When two or more nodes have all their outgoing arcs checked and
they are still in the same pack, they are equivalent.

Pack A pack is a data structure. A pack p contains a set S of nodes and a
position t. A pack ensures that all the nodes in S have the same prefix of t
arcs in their ordered ω+ list. Formally we have:

∀u, v ∈ S,∀(u,w, a) ∈ ω+(u)[1, t],∃(v, w, a) ∈ ω+(v)[1, t] (3.3)

As defined in section 2.1, ω+(v)[1, t] denotes the sub-list of the t first elements
of ω+(v). A pack contains all the nodes having the same first t arcs (prefix).
We denote by |p| the number of nodes inside the pack p.

Splitting a pack During the processing of a pack, pReduce splits the pack
into several packs according to their t + 1th arc. A pack is created for each
pair of values (v, a) in the t+ 1th arc (x, v, a) of the nodes.

pReduce Algorithm 3 is a possible implementation of the pReduce algo-
rithm. It uses VA and NA two arrays of sets in order to perform the split
operation of a pack p in O(|p|). Array VA is indexed by the values and array
NA is indexed by the nodes. Note that these two arrays contain only empty
sets at the beginning and at the end of the operation. It also uses Vlist and

32 Chapter 3. Reduction

Nlist two lists of elements that are used to save the entries that are not empty
in the arrays. At the end of the algorithm the lists are empty.

Algorithm 3 has two phases. First, it splits the current pack p into the
array of sets VA according to the value labeling the arc at position pos(t) + 1.
The second phase considers each set computed in the first phase and splits its
elements into the array of sets NA according to the terminating node of the
arcs. The algorithm also modifies the computed sets in order to detect nodes
that can be merged and to define packs and put them into the queue Q. The
time complexity of this algorithm depends only on the number of neighbors of
a node, because thanks to the lists we never reach an empty cell. In addition
each arc is traversed only twice: one for the value and one for the node. The
space complexity is in O(n+d). The operation ω+(x)[i+ 1] can be performed
by keeping the last checked arc for each node.

The reduction of the whole MDD is made by applying a BFS from the
bottom to the top and by calling Function reduceLayer for each layer with
L the list of nodes to merge as a parameter.

root

a

0

b

1

c

0 1

d

2

e

0 1

tt

0 1 1 0 1

root

a

0

b

1

c

0 1

d

2

e

0 1

tt

0 1 1 0 1

root

a

0

b

1

c

0 1

d

2

e

0 1

tt

0 1 1 0 1

Figure 3.3: Application of the pReduce algorithm on the last layer.

Example:
Consider the MDDs from Figure 3.3. This example shows the appli-

cation of the pReduce algorithm to the MDD from Figure 3.1.
First, all the nodes of the layer of the last variable (c,d,e) are put in

a pack. Then their first arc is studied. This arc is (0,tt) for c and e and
is (1,tt) for d. This is shown on the MDD on the left, remember that the
arc are sorted by their label. Two packs are thus created, one containing c
and e and one containing only d. The packs that contain only one element

3.3. pReduce, a linear reduction operator 33

are removed, thus the pack containing d is removed, MDD on the middle.
The algorithm now processes the second arc of the pack (c,e), MDD on
the rigth. This two nodes are on the same pack while no more nades has
to be processed, they are equivalent.

The algorithm now processes the layer of nodes a and b, they are on
the same pack for their two first arcs (0,c) and (1,c), but they are splitted
since b does not have any arc to process and a is alone in its pack thus
not processed.

Improvement While the complexity is already linear, we can try to improve
the efficiency of this reduction algorithm by first splitting the pack of the nodes
of a layer by considering the size of the ω+ list of arcs.

Complexity Since pReduce only considers the common prefix of the outgo-
ing arcs list, the complexity can be defined as the sum of the common prefix
of the nodes. The worst-case complexity is bounded by O(n+m+ d).

More This notion of pack is important, using it, we are going to modify the
pReduce algorithm in order to deal with incremental modification of MDDs
(next section) and parallel version of the algorithms (chapter 6).

3.3.1 ipReduce, Incremental reduction

Some algorithms presented in this thesis in chapter 5 modify MDDs that was
already reduced. After these modifications we want to reduce the obtained
MDDs. A simple method is to apply the existing reduction algorithms. But
classical reduction operations consider the whole MDD, even when small mod-
ifications occur.

ipReduce is an incremental adaptation of the pReduce algorithm, allowing
to save time while reducing previously reduced MDDs after their modifica-
tions.

Main idea After the modification of an MDD, only modified nodes, newly
created nodes or nodes having arcs directed to such nodes can lead to a merge.
The idea is to consider only the packs that contain such nodes.

In order to be able to know whose nodes have been modified since the last
reduction, we need to store this information inside the nodes. Let m be the
field of nodes that contains a stamp whose value is the stamp of the last
modification.

34 Chapter 3. Reduction

The algorithm 4 is a possible implementation of this algorithm. As you
can see, the first line of the iReducePack function check if the current pack
contains or not a node whose m value is equal to the last modification stamp
mg. Note that this can be maintained by keeping in each pack the max value
of the m values of the nodes while building it.

While the worst-case complexity of this algorithm remains the same as the
non-incremental version, the advantage in practice is important. Also, this
incremental version of the reduction can become the only one in an imple-
mentation of an MDD package since it considers all the nodes at the creation
of an MDD.

An application of this algorithm is shown in the chapter 5 section 5.3.

3.3. pReduce, a linear reduction operator 35

Algorithm 3 pReduce of an MDD.
pReduce(L)

define VA, NA, Vlist, Nlist

for each i from r − 1 to 0 do
reduceLayer(L[i], VA, NA, Vlist, Nlist)

reduceLayer(Layer, VA, NA, Vlist, Nlist)

delete nodes without outgoing neighbors
define the pack p with Layer, 0
Q← ∅
reducePack(p, VA, NA, Vlist, Nlist, Q)

while Q 6= ∅ do
pick and remove p from Q

reducePack(p, VA, NA, Vlist, Nlist, Q)

reducePack(p, VA, NA, Vlist, Nlist, Q)

i← pos(p)

for each x ∈ p do
v ← value(ω+(x)[i+ 1])

if VA[v] = ∅ then add v to Vlist
add x to VA[v]

for each v ∈ Vlist do
for each x ∈ VA[v] do

y ← node(ω+(x)[i+ 1])

if NA[y] = ∅ then add (v, y) to Nlist

add x to NA[y]

VA[v]← ∅ for each (v, y) ∈ Nlist do
if |NA[y]| > 1 then

define a pack p′ with ∅, i+ 1

M ← {x ∈ NA[y]/|ω+(x)| = i+ 1}
merge all elements of M together
add NA[y]−M to p′; add p′ to Q

NA[y]← ∅
Nlist ← ∅

Vlist ← ∅

36 Chapter 3. Reduction

Algorithm 4 ipReduce of an MDD.
ipReduce(L)

define VA, NA, Vlist, Nlist

for each i from r − 1 to 0 do
iReduceLayer(L[i], VA, NA, Vlist, Nlist)

iReduceLayer(Layer, VA, NA, Vlist, Nlist)

delete nodes without outgoing neighbors
define the pack p with Layer, 0
Q← ∅
iReducePack(p, VA, NA, Vlist, Nlist, Q)

while Q 6= ∅ do
pick and remove p from Q

iReducePack(p, VA, NA, Vlist, Nlist, Q)

iReducePack(p, VA, NA, Vlist, Nlist, Q)

if 6 ∃ u ∈ p,m(u) = mg then return
i← pos(p)

for each x ∈ p do
v ← value(ω+(x)[i+ 1])

if VA[v] = ∅ then add v to Vlist
add x to VA[v]

for each v ∈ Vlist do
for each x ∈ VA[v] do

y ← node(ω+(x)[i+ 1])

if NA[y] = ∅ then add (v, y) to Nlist

add x to NA[y]

VA[v]← ∅ for each (v, y) ∈ Nlist do
if |NA[y]| > 1 then

define a pack p′ with ∅, i+ 1

M ← {x ∈ NA[y]/|ω+(x)| = i+ 1}
merge all elements of M together
add NA[y]−M to p′; add p′ to Q

NA[y]← ∅
Nlist ← ∅

Vlist ← ∅

3.4. Experiments 37

type of problem pReduce Bryant
rand-5-12-12-200-p12442 8.2 46.7
rand-8-20-5-18-800 74.5 191.8
crossword-m1c-uk-vg 50.2 668.2
crossword-m1c-ogd-vg 103.5 724.6
crossword-m1c-lex-vg 5.0 97.0
bdd-21-133-18-78 110.9 244.0

Table 3.1: Average creation time for each table constraint (ms) involved int
the solver competition XCSP.

1000 tuples
arity

d 6 8 10 12
12 11 20.6 26.7 29.8
30 32.3 47.5 57.8 54.7
60 80.6 84.6 76.1 79.1

Table 3.2: Time gain factor of pReduce while growing the domain size and
the arity with 1000 tuples.

3.4 Experiments

In these experiments, we will consider not reduced MDDs given and we will
compare time needed to reduce them.

Configuration All these algorithms have been implemented in C++ and
run on a 6 cores server (Inter 3930) having 64 GB of memory and running
under Windows 7.

XCSP Competition The first problems are from the Solver Competition
archive [Lecoutre 2009]. For each type of problem, the geometric mean of the
reduction times of all the instances is show for the pReduce algorithm and
State of the Art Bryant algorithms based on Hash + DFS. We obtain the
results from Table 3.1 which clearly show the advantage of pReduce.

Random instances The methods are also compared on random table con-
straints. The tables 3.2 and 3.3 show the gain factor of pReduce against
Bryant.

38 Chapter 3. Reduction

arity = 12
tuples

d 1K 10K 100K
4 8.2 5.3 5.9
8 20 18.7 18.6
12 29.8 25,8 38.6
30 54.7 40.1 110.6
60 79.1 55.1 150.0

Table 3.3: Time gain factor of pReduce while growing the domain size and
the number of tuples with an arity of 12.

Out-place In-place
instances deletion reduction deletion reduction
30*300K-300K 35,4 4.2 24.8 1.8
300K - 1K 5.3 0.7 1.2 0.6
90K-30K 2.1 0.2 1.6 0.2
300K-10 4.7 0.6 0.002 0.2

Table 3.4: Arity 12, domain size 10. Average deletion and reduction times (s)
for random instances.

ipReduce on random instances The table 3.4 show the efficiency of the
ipReduce

MaxOrder Problem The results given here are from the problem defined
in chapter 17. The MDDs of these experiments have a domain size close to
11k. Only pReduce and ipReduce have successfully reduced these MDDs.
The MDD (reduced) from the second operation has more than 1.2 millions of
nodes and close to 200 millions of edges. The deletion operation are from the
chapter 5. The table 3.5 show how the incremental version of the reduce can
be efficient.

Classic In-place
deletion reduction total deletion reduction total

First Operation 2 1.7 3.7 1.3 0.9 2.2
Second Operation 23.9 14.6 38.5 1.5 6.3 7.8

Table 3.5:

3.4. Experiments 39

Conclusion This section has presented an efficient algorithm for reducing
MDDs. This algorithm is linear, can be transformed into an incremental
algorithm. Moreover, this algorithm can be performed in parallel (see Chapter
6). The experimental results show that it is efficient in practice. Furthermore
these algorithms are easy to implement.

Chapter 4

Constructions

Contents
4.1 Introduction . 41

4.2 Table and Trie . 43

4.2.1 Trie . 43

4.2.2 Table . 43

4.2.3 Linear table transformation 45

4.3 Global Cut Seed and Tuple Sequences 47

4.3.1 Definitions . 47

4.3.2 Transformations . 48

4.4 Automaton . 51

4.4.1 Definition and related work 51

4.4.2 New method . 53

4.5 Experiments . 54

4.5.1 Table . 54

4.5.2 Automaton . 55

4.1 Introduction

Building an MDD is obviously the first step before using MDDs. Several cre-
ation methods for MDDs already exist, from Boolean formula [Bryant 1992],
extensional table [Cheng 2008], regular expression [Pesant 2004] ... The ad-
vantage of representing data using MDDs is that MDDs are reduced after their
creations and arc consistency algorithms may benefit from this compression.

Building an MDD can often be done while avoiding the enumeration of
the solutions during the construction, like the creation made from dynamic
programming [Hooker 2013, Trick 2003]. But they offer access to all of these
solutions once the MDDs are created. Moreover using MDDs for representing
several different constraints allow to use only one propagator in constraint

42 Chapter 4. Constructions

solvers for these constraints, thus it prevents to implement a bunch of different
propagators. Finally, as presented in Chapter 5, representing constraints with
MDDs allow the user to combine them aiming at building more powerful and
advanced models.

Even if many transformations from existing data representations to MDDs
exist, several data structures still do not have any transformation or efficient
transformation. This chapter aims at giving a good transformation for ta-
bles, GCSs [Focacci 2001], sequences of tuples [Régin 2011] and automaton
[Pesant 2004].

Related Works One of the first Decision Diagrams creations came from
Boolean formula [Bryant 1992, Andersen 1997, Bryant 1986]. This transfor-
mation was successfully applied to formal verification and circuit verification.
But BDDs and MDDs can be defined from many data structures or even
directly from the problems by compiling CSPs or constraints [Cheng 2008,
Pesant 2004, Andersen 2007, Hadzic 2008, Cheng 2012]. Consider for exam-
ple building MDDs from dynamic programming [Hooker 2013, Cire 2013]. For
this kind of problem, the Dynamic Programming problem is considered as a
set of state and transition. But one of the problem of dynamic programming
is that, compared to automata, the transition table is huge and cannot always
fit in memory.

In order to build the MDD, they start with a initial state s1 and unroll the
transition state graph by computing it on the fly. Arcs of this graph depend on
the state of the emanating node. Consider the knapsack problem [Trick 2003],
let sj be an intermediate state, let vi be the cost of taking or not the ith item,
we can consider as the initial state the scalar 0, and the transition function is
given by:

δ(sj, vi) = sj + vi (4.1)

Finally, some works focus on compiling CSPs on data structures close to
MDDs [Koriche 2015, Cheng 2005, Mateescu 2008], the MDD here is different
since it can have more information on its arc and special nodes like for the
And/Or decision diagram.

Since there is many existing transformation, only a subset of the existing
transformations are going to be presented, and for each transformation, it is
explained before the new version.

Plan This chapter first describes state of the art methods for building an
MDD from a trie and a table. Then the first linear algorithm for building an
MDD from a table, a Global cut seed or a tuple sequence is presented. In
addition, after having presented existing work about the transformation from

4.2. Table and Trie 43

Figure 4.1: An MDD (left graph) and a trie (right graph) representing the
tuple set {{a,a},{a,b},{c,a},{c,b},{c,c}}

an automaton or Dynamic Programming to an MDD, a simple and efficient
algorithm doing it is presented. Finally, the experimental section shows the
efficiency of these algorithms on industrial and random problems.

4.2 Table and Trie

4.2.1 Trie

A trie is a data structure used in Constraint Programming that can be used
for compressing a tuple set [Gent 2007]. Each path from the root node to a
leaf represents an allowed tuple.

A trie representing a set of T tuples will have exactly |T | leaves. Each
variable corresponds to a layer of the trie. A node has a maximum of d
children, where d is the size of the domain of the corresponding variable of
the node. An example of trie is given in Fig. 4.1. A trie can be transformed
into an MDD by merging all the leaves into the terminal node tt and by
applying the reduction operation [Cheng 2010]. See Chapter 3 for reduction
algorithms. By using the algorithm proposed in Chapter 3, the complexity of
the transformation is linear on the size of the trie.

4.2.2 Table

A table is a data structure where each row represents a tuple and where
each column corresponds to a value of a variable. The table constraint
[Lecoutre 2011, Lecoutre 2012a, Lhomme 2005, Mohr 1988, Bessiere 1997] is
one of the most important constraints because it can represent any other

44 Chapter 4. Constructions

constraint. Moreover, the study of a good algorithm is still a hot topic
[Demeulenaere 2016, Verhaeghe 2017].

Example:
Let T be the following table defined for two variables:

x1 x2

a a
a b
c a
c b
c c

The MDD representing this table must have all these tuples as paths. The
following MDD is the result:

The main advantage of building an MDD from a table is to gain space.
Furthermore, since there exist several efficient MDD propagators that can be
linear over the size of the MDD [Cheng 2008, Gange 2011, Perez 2014], MDDs
can improve the computation time while using a constraint solver.

The classical method for building an MDD from a table come from Cheng
and Yap [Cheng 2010]. The algorithm builds an MDD from a table by first
defining a trie and then transforming the trie into an MDD, as defined in
section 4.2.1. The transformation from a trie to an MDD is linear, thus the
important part lies in building the trie.

Building the trie In order to build the trie, an incremental algorithm
successively adds the tuples in the trie. To do so, a common root node is
first created. Then paths, corresponding to tuples, starting from the root are
created. The rooted sub-paths common to several tuples are merged together
in order to be represented only once.

In order to merge the common sub-paths starting from the root, and since
a trie cannot have more than d outgoing arcs, when the algorithm is at node

4.2. Table and Trie 45

table sorted table trie
a a c a a a a b a b a a b a b
a b a b b a a b a c c
a a b a c a a c a a c a a
a a b a b a b a a b b a a b
a b a a b a b a b b b b

Table 4.1: Creation of an MDD from a table of tuples.

u and needs to find the arc labeled by c, it starts by looking if such an
arc exists or not. As presented in Appendix A, an array implementation is
required if we want a random access to an arc using its label. Using the array
implementation, the memory cost of a node is O(d), and so is the creation
cost. If the trie has n nodes, the complexity is O(nd).

4.2.3 Linear table transformation

In this section, a simple method transforming a table into an MDD with a
linear time and space complexity O(n+m) is presented.

Main idea Since the costly operation in building a trie from a table is the
need for a random access, we are going to preprocess the data in order to
release this need. This pre-processing is a simple increasing lexicographic
sort.

When a table is sorted, all the tuples having a common prefix (sub-path
in the trie) are contiguous. Furthermore, consider the two tuples ti and ti+1,
contiguous in the sorted table. By definition of the increasing lexicographic
sort:

∃k, ti[k] < ti+1[k] ∧ ∀j < k, ti[j] = ti+1[j] (4.2)

Thus, using a sorted table, there is no need for a random access, the look for
the arc only need to consider the last arc.

Sorting the table Sorting a table can be performed in a linear time because
a tuple can be viewed as numbers having r digits where a digit can take up
to d values. Thus we can sort a table containing t tuples in O(r(t + d)) by
using a radix sort [Cormen 2001]. While the size of a table is r ∗ t, the sort is
linear in the size of the table. An example is given in Table 4.1.

Adding the tuples in the trie Starting from the root, the algorithm looks
at the last arc in the ω+ list, if the label of this arc is equal to the value of the

46 Chapter 4. Constructions

0

1

 a

2

 a

3

b

4

 a

5

b

6

 c

0

1

 a

2

 a

3

b

7

 c

4

 a

8

 a

5

b

6

 c

9

 a

0

1

 a

2

 a

10

 b

3

b

7

 c

11

 a

4

 a

8

 a

5

b

6

 c

9

 a

12

 a

14

 b

13

 b

15

 b

Figure 4.2: Construction of the trie from the tuple set given in Figure 4.1.

tuple, it uses the arc, otherwise it builds a new arc, whose label is the value
of the tuple, and puts it in the last position of the ω+ list. Algorithm 5 is a
possible implementation.

Example:
Figure 4.2 shows the construction of the trie from the tuple set

given in Figure 4.1. The most left trie contains only the first two tu-
ple (a, a, b, a, b) and (a, a, b, a, c). The middle trie shows the addition of
the tuple (a, a, c, a, a), as we can see, for node 2, the algorithm checks if
the last arc is equal to c, it is not so the algorithm builds an arc labeled
by c starting at 2 and the algorithm continues. The right most trie shows
the final trie containing all the tuples.

Complexity This method is divided into three steps. The first step is the
sort, which is linear in both space and time. The second step is adding the
tuples in the trie, which is also linear in both space and time. The third step
is to transform the trie into and MDD, which is linear in both space and time.
Finally, we obtain a linear algorithm in both time and space for building an
MDD from a table.

The experimental section at the end of this chapter shows the efficiency of
this method.

4.3. Global Cut Seed and Tuple Sequences 47

Algorithm 5 Transformation of a table into an MDD.
TableToMDD(T)

Sort(T)
trie ← new Trie()
trie.root ← new node()
for each t ∈ T do

u← trie.root
for each i ∈ 1..r do

if label(end(ω+(u))) 6= t[i] then
pushBack(ω+(u), t[i], new node())

u = dest(end(ω+(u)))

Merge all the leaves
return Reduce(trie)

4.3 Global Cut Seed and Tuple Sequences

4.3.1 Definitions

Compressed tuples improve the expressiveness of table constraints and try to
reduce the complexity of the filtering algorithms by saving space. Thanks
to such tuples, we can express more easily set of tuples. Therefore, it is
interesting to represent them by MDDs in order to reinforce the compression
and/or to allow the combination of these representations with other MDDs.

GCS A GCS (Global Cut Seed) is a compact representation of a tu-
ple set [Focacci 2001]. A GCS is defined by a vector of value sets:
{{v1,1, v1,2, ..., v1,k1}, ..., {vn,1, vn,2, ..., vn,kn}}, where each value set represents
the set of values that can be taken by a variable. The Cartesian product of
these sets defines the represented tuples.

Example:
Given D ={1,2,3,4}, the GCS c = {D,D,D,D} represents the tuple

set:

1 1 1 1
1 1 1 2
...
4 4 4 3
4 4 4 4

One GCS can represent an exponential number of tuples. However not

48 Chapter 4. Constructions

all tuple sets can be compressed by only one GCS. Two tuples can be repre-
sented by the same GCS if they have a Hamming distance equals to 1. For
instance, the tuples {1,1,1} and {1,1,2} may be compressed into {1,1,{1,2}}.
By contrast the tuples {1,1,1} and {1,2,2} have an Hamming distance equals
to 2 and so cannot be represented by only one GCS. So, the compression of a
table by a set of GCSs may require a huge number of GCSs.

In order to remedy this problem, tuple sequences have been introduced
[Régin 2011]. They generalize GCSs.

Tuple sequences A tuple sequence encapsulates a GCS g and two tuples:
tmin a minimum tuple, and tmax a maximum tuple. It bounds the lexicographic
enumeration of the tuples of the GCS by these two tuples.

Example:
Let D = {1, 2, 3, 4} then the tuple sequence :

g = {D,D,D,D}, tmin = {1, 2, 2, 2}, tmax = {3, 1, 3, 2}, represents the
tuple set:

1 2 2 2
1 2 2 3
1 2 2 4
1 2 3 1
...
3 1 3 1
3 1 3 2

Both of these data structures can be used in current Constraint Program-
ming solvers. The next section provides transformation for both of them.

4.3.2 Transformations

Since a tuple sequence is a restriction of a GCS, we propose to first show how
to transform a GCS, and then show how to restrict it.

GCS The transformation of a GCS into an MDD is simple, since all the
values of the ith set can be taken independently of the previous choice, the
MDD representing a GCS is an MDD having 1 node by layer. We call such a
node a wild card node.

Wild card nodes Let g be a GCS. There is at most one wild card node per
layer i per GCS g which is denoted by wg[i]. The wild card nodes are linked

4.3. Global Cut Seed and Tuple Sequences 49

together. All the arcs outgoing from wg[i] are incoming arcs of node wg[i+ 1]

and all arcs outgoing of node wg[n− 1] are incoming arcs of tt. Let g[i] be the
value set of g for the layer i, all the outgoing arcs of node wg[i] are labeled by
values in g[i].

Example:
Let g = {{0, 1}, {0, 2}, {0, 1}}, the wild card of this GCS is :

Wild card nodes are a simple method for representing a GCS.

Tuple sequences While we are able to build an MDD representing a GCS,
thanks to the wild card nodes, we want to build an MDD representing a tuple
sequence. The idea is to use the tmin and tmax tuples to bound the MDD
representing the GCS.

Let s = (g, tmin, tmax) be a tuple sequence. The MDD representing s is
built in three steps:

1. The paths corresponding to tmin and tmax are created.

2. Arcs from the nodes of the paths previously created to wild card nodes
are created as follows. Consider the path created for tmin. For each
layer i, let g[i] be the value set of g for the layer i. For each value
a ∈ g[i] such that a > tmin[i] we create an arc from the node ni of the
path representing tmin to the wild card node w[i + 1]. We repeat this
process for the path created for tmax. In addition, we add a particular
treatment when a node is shared by the two initial paths: instead of
considering all values of g[i], we consider only the values in the interval
g[i]∩]tmin[i], tmax[i][.

3. From nodes w[i] to node w[i+1] we add as many arcs as there are values
in g[i+ 1].

50 Chapter 4. Constructions

Figure 4.3: Creation of an MDD from the tuple sequence g = {D,D,D,D},
with D = {1, 2, 3, 4}, tmin = {1, 2, 2, 2}, tmax = {3, 1, 3, 2}

Example:
Fig. 4.3 shows the resulting MDD for the tuple sequence, g =

{D,D,D,D}, tmin = {1, 2, 2, 2}, tmax = {3, 1, 3, 2} with D = {1, 2, 3, 4}.
The left graph contains the two paths from the first step representing the
minimum and maximum tuples. The right graph represents with dashed
lines the added arcs to wild card nodes. For instance, for node a each
value in {1,2,3,4} greater than 2 labels an arc to node w2. Arcs joining
wild card nodes together and with tt are represented by dotted lines.

Complexity Let r be the number of involved variables. The number of
nodes of the obtained MDD is bounded by 3(r− 1) + 2. There are 2r arcs for
the paths corresponding to tmin and tmax. There are at most |g[i]| arcs from
nodes of the tmin (resp. tmax) path to wild card nodes; There are |g[i+1]| arcs
from node w[i] to node w[i+1]. Thus, there are at most 2

∑r
i=1 |g[i]|+2r arcs

in the MDD. This is equivalent to the number of values of the tuple sequence.

Set of tuple sequences We can consider successively each tuple sequence
and build for each sequence an MDD with the previous algorithm. Then,
there are two possibilities. Either the tuple sequences are disjoint or not. The
former case arises frequently (for instance when the tuple sequences represent
a set of forbidden tuples). We just have to merge the MDDs. This can be easily
done because they are disjoint. The resulting MDD has a space complexity
equivalent to the set of tuple sequences and we have:

4.4. Automaton 51

Property 1 A set of disjoint tuple sequences can be represented by an MDD
having an equivalent space complexity.

The latter case is more complex. A set of disjoint tuple sequences may
be computed from a set of non disjoint tuple sequences and each disjoint
tuple sequence can be represented by an MDD. Nevertheless, it may create an
exponential number of tuple sequences [Régin 2011] so an exponential number
of MDDs.

4.4 Automaton

Recall from section 2.2.1.

4.4.1 Definition and related work

A deterministic finite automaton [Hopcroft 2006] can be represented by a 5-
tuple (Q,Σ, δ, q0, F) with :

• A finite set of states Q

• A finite set of symbols Σ (the alphabet)

• A transition function δ between states. Q x Σ → Q

• An initial state q0

• A set of accepting state F .

An automaton accepts a word (sequence of symbols s1,s2...sn ∈ Σ) if it
exists a set of transition {(q0, s1, q1), (q1, s2, q2), ..., (qn−1, sn, qn)} and that qn
is an accepting state. The set of words accepted by an automaton is called
the language of the automaton.

Example:
The Figure 4.4 represents an example of automaton. As we can see

the state r is the initial one, and states a, b and c are accepting states.
The transition function δ of the automaton from 4.4 is:

52 Chapter 4. Constructions

r

a b c

0
1

2

1 1

200

Figure 4.4: An example of automaton.

Qs Qe v

r a 0
r b 1
r c 2
a a 0
a b 1
b b 0
b c 1
c b 1
c c 2

Qs (resp. Qe) denotes the starting (resp. ending) state of the transition.

Constraint The automata and regular constraints [Beldiceanu 2004a,
Pesant 2004] deal with automatons and ensure that the solutions of the con-
straint belong to the language of the automaton.

The automata constraint [Beldiceanu 2004a] can be defined using a set of
ternary transition constraints : T (δ,Qi, xi, Qi+1), where δ is the transition
function of the automaton, Qi and Qi+1 two state variables whose domain is
Q and xi is the variable of the constraint.

The Regular constraint [Pesant 2004] allows the use of regular language
to constrain the variables, since a regular language can be represented by an
automaton, we can use the automaton to constrain the variable.

Building a DAG from an automaton Existing methods for automa-
ton generally unroll the automaton and builds a directed acyclic graph
[Pesant 2004, Trick 2003]. At the first layer, the root represents the initial
state. Then arcs and nodes representing a specific state are created, and fi-

4.4. Automaton 53

Figure 4.5: On the left, a Directed Acyclic Graph (DAG) representing the
automata from Fig.4.4.On the right, an MDD representing the automata from
Fig.4.4. An important remark is that an MDD can reduce the size of the DAG
representing the automata.

nally only accepting states are created for the last layer. An example is given
in Figure 4.5.

The exact same technique in addition with a reduction scheme can be used
in order to obtain an MDD [Hooker 2013, Cire 2013].

4.4.2 New method

The method presented in this section is a simple and efficient method for build-
ing an MDD from an automaton when the transition table is huge. See the
chapter 17 for an application with a big transition table, and the experimental
section of this chapter.

Main idea Using the same trick as for tables, sorting the transition table
δ by the label allows to prevent the need for a random access. The following
algorithm uses this idea.

1. The first step is to index the transition according to their transition
value. This can be done with a linear complexity over the transition
table, for example by using a counting sort.

2. For each layer i of the MDD, build as many nodes as there are states s
in the automaton. Such nodes are denoted by pis.

3. For each transition t = qs, qe, v in the indexed transition table:

54 Chapter 4. Constructions

• If qs is the initial state, then create an arc between the root node
and the node p1

qe labeled by v.

• For each layer i ∈ [1,k-2] create an arc between piqe and p
i+1
qe labeled

by v.

• If qe is an accepting state, then create an arc between pk−1
qe and the

true terminal node tt.

4. For each layer from the top layer to the bottom layer, nodes without
incoming arcs are removed. Finally, reduce the obtained MDD.

Example:
The Figure 4.5 shows both of the methods for handling the automata

from Figure 4.4. On the left, a classical unrolling scheme, on the right,
an MDD. As we can see, the reduction operation has merged the nodes
a2 and b2.

Complexity The complexity of this algorithm can be worse than unrolling
method, since for each layer, the whole table of arc is built. The complexity is
O(|δ|∗r). In practice, in many random and existing benchmark, the proposed
method is at least twice faster than classical method.

Furthermore, it is important to remark that each layer of the MDD can-
not have more arcs than the number of tuples in the transition constraint.
So, using an MDD explicitly does not introduce any additional costs if the
arc consistency algorithms of the ternary constraints do not share a global
transition table.

Finally, merging nodes and using MDDs can drastically improves the result
while solving problems [Cheng 2010].

4.5 Experiments

4.5.1 Table

MaxOrder The Maxorder problem using MDDs, defined in Chapter 17,
contains an MDD named MDD4 representing all the sequences of 4 words
from a corpus of books. The domain size of this problem is close to 11,000
values. The classical creation method for building an MDD from the corpus
takes 13 213 ms. The method presented in this chapter takes 77 ms, including
the sorting times. The resulting MDD contains more than 90 thousand nodes
and more than one millions of arcs.

4.5. Experiments 55

min max average
gain factor 2.0 5.3 4.1

Table 4.2: Gain factor grid creation.

XCSP competition this experiment studies the performance of the new
table creation algorithms against the classical method using the table from
the XCSP competition. The times for sorting the elements are included into
our results. Next is a table who gives the results for the most representative
ones (Boolean, bigger domain size, random ...). "sorted" corresponds to the
algorithm described here, "unsorted" is the classical creation method.

instances creation
sorted (ms) unsorted (ms)

crossword-m1c-ogd 31.5 66.2
crossword-m1c-uk-vg 9.6 23.1
nonogram-gp 25.1 34.5
rand-10-60-20-30 70.9 179.9
bdd-21-2713 8.1 11.6
bdd-21-133 98.23 122.3

Random On the other hand, random instances have been tested. Instances
having 22 variables, 1,000 tuples and increasing the domain size is given in
Fig. 4.6. This figure is important because it shows that the domain size does
not influence the creation time.

We can see that even if the number of tuples or the number of variables
increase, the sorted creation algorithm outperforms the existing one. we have
also tested instances for all the combinations with domain size in the set {2,
4, 8, 12, 20, 25, 30, 45, 60}, arity in the set {6, 10, 14, 18, 22, 25, 30} and
number of tuples in the set{30, 100, 150, 200, 250, 300, 500, 700, 800, 900,
1000, 2000, 3000, 4000, 5000, 7500, 10000, 12500, 15000, 17500, 20000, 24000,
28000, 30000}. For all these cases, The new method was better.

4.5.2 Automaton

MaxOrder The Maxorder problem using MDDs, defined in Chapter 17,
contains an MDD namedMDDm representing a huge Markov transition func-
tion extracted from a corpus of books. The first method that unrolls this MDD
takes 3 503 ms to build the MDD. The method define in this chapter takes
733 ms, including the indexing and reducing time.

56 Chapter 4. Constructions

pentominoes-int This experiment uses all the regular constraints defined
from the pentominoes-int problems of the 2014 Minizinc Challenge, because
an efficient algorithm is required to solve them. We compare the creation from
a regular constraint that we propose versus the creation of the graph (which
is a kind of MDD) performed by classical methods. The Table 4.2 shows the
gain factors we obtain.

4.5. Experiments 57

Figure 4.6: Sorted vs unsorted creation

Chapter 5

Operations

Contents
5.1 Related Works . 60

5.1.1 BDD Apply . 60

5.1.2 BDD to MDD . 64

5.2 Graph-Based Apply . 66

5.2.1 Graph-Based Algorithm 68

5.2.2 Avoiding Data structures 72

5.3 In-place Operations . 76

5.3.1 Deletion of tuples from an MDD 78

5.3.2 Addition of tuples to an MDD 79

5.4 Experiments . 84

MDDs are efficient data structures for storing functions, tuples, etc.
An advantage of representing data using MDDs is that they can be com-
bined. These combinations allow the composition of functions, the in-
tersection of set of tuples, the union of languages. The combination
of MDDs is one of the most important operations and has been stud-
ied many times [Andersen 1999, Bryant 1986, Bryant 1992, Bergman 2014a,
Brace 1991, Miller 1998, Srinivasan 1990].

Consider for example Constraint Programming, since we can convert sev-
eral constraints into MDD and even any sub-problem, the intersection of two
MDDs representing distinct constraints gives an MDD representing the con-
junction of these constraints, which can improve the resolution.

Thanks to these combinations, modelers are able to build more efficient
models. For example, operation between MDDs has been used in circuit verifi-
cation [Andersen 1999], in compilation of product configuration [Hadzic 2004]
and even during the search as filtering algorithms for constraints inside CP
solvers [Bergman 2014b, Roy 2016]. Furthermore, all the models proposed in
the Application part of this thesis use operation between MDDs in order to
solve problems.

60 Chapter 5. Operations

(a)

r1

a

0

b

1

d

0

c

0

e

1

tt

0 0 1 1

(b)

r2

f

0

g

1

h

0

i

0 1

tt

1 0 1

(c)

r

bg

1

ci

0

ei

1

tt

0 1 1

Figure 5.1: The MDD (c) represents the intersection of the two left MDDs.
The tuples on MDD (c) are present in both of the left MDDs.

Example:
Consider the MDDs from Figure 5.1. The MDD (a) represents the

tuples {(0,0,0),(1,0,0),(1,0,1),(1,1,1)}. The MDD (b) represents the tu-
ples {(0,0,1),(1,0,0),(1,0,1),(1,1,0)(1,1,1)}. Le MDD (c) represents the in-
tersection of the two MDDs (a) ad (b), this MDD contains the tuples
{(1,0,0),(1,0,1),(1,1,1)}

This chapter is organized as follows, first a state of the art presenting the
most used methods for performing an operation between is presented. Then
a new version of this operation scheme is proposed and compared. Finally, an
incremental version of this new algorithm is given for modifying MDDs.

5.1 Related Works

One of the most famous methods for combining BDDs is the Apply operator
from Bryant [Bryant 1986, Bryant 1992]. This Apply operation, defined for
BDDs, generates a BDD representing a Boolean function, depending on two
other BDDs.

5.1.1 BDD Apply

The Apply operation for BDD is based on the Shannon expansion:

F = v · Fv + v̄ · Fv̄ (5.1)

5.1. Related Works 61

This equation holds for any Boolean operator ⊕ :

F ⊕G = v · (Fv ⊕Gv) + v̄ · (Fv̄ ⊕Gv̄) (5.2)

Main idea Using the equation 5.2, the Apply operation builds a BDD by
recursively applying the equation, while the nodes are not terminal nodes.
Finally, when the nodes are both terminals, their values are 0 or 1, the ⊕
operator is applied.

The algorithm 6 is a possible pseudo-code for the Apply operation. I
have chosen in this pseudo-code to use a loop from 0 to 1, because the MDD
generalization of this algorithm will be easier to see.

Note: The algorithm’s behavior is the same independently of the function
⊕. For each pair, if the nodes are both terminals then it applies the operator ⊕
to the values, otherwise, it recursively builds the outgoing arcs of the current
node.

Unique table and Processed table In order to gain times and to not
repeat the same process again and again, the algorithm keeps a data structure
storing the processed pairs of nodes from both BDDs. This data structure
keeping the already processed pair is named P in the algorithm.

In the same manner as defined in Chapter 3 about reduction, the Apply
operator keeps a data structure storing the nodes in order to find equivalent
nodes during the operation. This data structure prevents having twice the
same node in the resulting BDD, implying that the BDD is reduced. The
name H is used in Algorithm 6 to denote this data structure.

Set of pairs P The first thing that the algorithm does while processing a
pair of nodes, is to check in the already processed set of pairs P if the current
pair exists. If such a pair already exists, then this pair is returned, otherwise,
this is the first time we reach this pair, then we can process it and add it to P .
The lines 1 and 5 from Algorithm 6 show the implementation of this method.

The set P contains all the combinations of nodes considered during the
processing of the algorithm, thus we have the following equation:

|P | ≥ |F ⊕G| (5.3)

There are two ways for computing this set. The first one uses a 2-
dimensional array, using this representation implies an initialization with time
and space complexity of Ω(|F | · |G|) but a random access to each cell during
the algorithm. The second method is to use a dynamic hash table with a spe-
cific hashing function. Using a hashing function, we need to first build a "Big
enough" array and it may be required to extend this array. The complexity
is not constant anymore for this last one.

62 Chapter 5. Operations

Algorithm 6 Apply operator for BDD.
Apply(F,G,⊕)

init(P)
ApplyDFS(F,G,⊕)

ApplyDFS(u, v,⊕)

if u is terminal ∧ v is terminal then
return u⊕ v

1 if P contains (u,v) then
return P.entry(u,v)

w ← new Node
2 for each i ∈ [0, 1] do

w(i) ← ApplyDFS(u(i),v(i),⊕)
3 if H contains w’ s.t w’ ≡ w then

w ← w’

else

4 Add w to H
5 Add {(u,v) ⇒ w} in P

return w

Unique table H Lines 3 and 4 maintain the unique table. The unique
table contains the set of nodes defined by their pairs (low, high). A node
u = (lowu, highu) has an equivalent node in H if there exists a node v =

(lowu, highu) in H.
The unique table in this algorithm allows the Apply operator to build a

reduced BDD. By definition a BDD is reduced if for any nodes u and v in the
BDD, then u 6≡ v. During the construction of the resulting BDD, a new node
is returned if and only if no equivalent node has been already defined, line 3.
Thanks to this, during the operation, the current result is reduced.

With BDDs, this unique table is generally implemented using a perfect
hash function, and a "big enough" array. For example, an array of 15,485,863
cells has been proposed [Andersen 1997]. This perfect hashing function is
defined over the two values (low,high) of a node. Note that while processing
the Apply operation, this array may need to be extended.

Loop over [0,1] On line 2, the loop is the main part of the algorithm. The
node is represented by its Shannon expansion, equation 5.2. To do so, for
each of the possible values, in a BDD only 0 and 1, the sub-BDD starting
from the node and restricted to this value is computed. This computation is

5.1. Related Works 63

then recursively done.

Example:
Consider the two MDDs on the left of Figure 5.1. We apply the

Bryant’s algorithm for processing the intersection.
First, we define the H and P data structures (both Hash table). Then

starting from the pair containing the node r1 from the first MDD and
node r2 from second MDD, thus (r1,r2). (r1,r2) is not in P, we can
follow the arcs labeled by 0 starting from both nodes on their respective
BDDs and obtain the pair (a,f). This new pair is not in P thus we follow
the arcs labeled by 0 in both nodes and find the pair (d,h). This new pair
is not in P, we can follow the arcs labeled by 0 and find the pair (tt,ff).
Since both of the nodes are terminal nodes, we can apply the Boolean
operator, which is a and. We obtain False, and return to the pair (d,h),
we follow the arcs labeled by 1 and find the pair (ff,tt). They are both
terminal nodes, thus we apply the operator and obtain False again. We
return to pair (d,h), since all its children are directed to a False node, the
pair is set to ff and the pair (d,h) is added into (d,h).

The same work is made for pair (a,f). We are now back on pair (r1,r2)
and follow the arcs labeled by 1. We find the pair (b,g) which is not in
P. Starting from this pair we follow the arcs labeled by 0 and reach the
pair (c,i). This pair is not in P thus we start following the arcs labeled
by 0 and reach the pair (tt,tt). This pair contains only terminal nodes,
thus we apply the operator and obtain a True. Then, starting from (c,i),
we follow the arcs labeled by 1 and reach (tt,tt) again, which is equal
to True. We have processed all possible values (0 and 1), thus we can
add the pair (c,i), associated to its just built node, into both P and H.
We return at node for the pair (b,g) and follow the arcs labeled by 1. We
obtain the pair (e,i), which is not in P, thus we follow first the arcs labeled
by 0, obtain the pair (ff,tt) equals to False and then we follow the arcs
labeled by 1 and obtain (tt,tt) thus True. The DFS return to the root
by adding all the remaining nodes into both P and H.

The BDD processed during this example is given below:

64 Chapter 5. Operations

r

af

0

bg

1

dh

0

ff

1

01

ci

0

ei

1

tt

010 1

5.1.2 BDD to MDD

An adaptation of the BDD Apply operator for MDDs has been done by
[Srinivasan 1990, Miller 1998]. The main difference between MDDs and BDDs
is the number of outgoing arcs, which is no longer 2 but d.

The Shannon expansion from (5.2) with d values by nodes becomes:

F =
d−1∑
i=0

(v = i) ·Gi (5.4)

And for any Boolean operator ⊕ :

F ⊕G =
d−1∑
i=0

(v = i) · (Fi ⊕Gi) (5.5)

The adaptation of the algorithm mainly changes in the loop over the values.
Here the algorithm needs to iterate over the d values. A pseudo-code for this
MDD adaptation of BDD apply is given in Algorithm 7.

As we can see, in the pseudo-code of the adaptation, only one line is
changed. But even if the modification is small, the complexity has strongly
changed.

Loop over d values The loop, which was previously defined over 2 values,
now has to deal with d values. This implies that the complexity by nodes is
now in O(d), and so the overall worst-case complexity is in O(|F ⊕G| ∗ d).

Unique table H The previous implementation of the unique table was
depending on two values, so a perfect hashing function was defined and the
use of a "big enough" array for the hash table was sufficient. The problem is

5.1. Related Works 65

Algorithm 7 Apply operator for MDD.
Apply(F,G,⊕)

init(P)
ApplyDFS(F,G,⊕)

ApplyDFS(u, v,⊕)

if u is terminal ∧ v is terminal then
return u⊕ v

if P contains (u,v) then
return P.entry(u,v)

w ← new Node
for each i ∈ [0, d] do

w(i) ← ApplyDFS(u(i),v(i),⊕)
if H contains w’ s.t w’ ≡ w then

w ← w’

else
Add w to H

Add {(u,v) ⇒ w} in P
return w

that the more d increases, the bigger this table has to be. This implies that
with d values, it is generally not possible to use a perfect hashing table. A
dictionary of words can be used, but as described in section 3.2, the complexity
is not linear.

5.1.2.1 Other Algorithms

ITE operator The ite operator defined in [Brace 1991] can define all the
two variables Boolean operations. This operator computes for three BDDs F,
G and H: If F then G else H.

ite(F,G,H) = F ·G+ F̄ ·H (5.6)

The algorithm for this expansion is close to the BDD Apply algorithm. The
difference is: when the node n from F is terminal (True of False), then the
result is G if n = 1 and H otherwise.

Case operator The adaptation of the Apply operation to MDDs of the
Algorithm 7 considers Boolean terminal nodes. Let m be the number of
terminal values. The Case operator [Srinivasan 1990] can define most of the

66 Chapter 5. Operations

useful operations on MDDs. This operator takes as argument F , a function
(MDD), and m other MDDs (G0,...Gm−1). Let H = Case(F,G0,...Gm−1), if
F (X) = i, then H(X) = Gi(X). For the case operator, the algorithm is close
to the MDD Apply except that it performs the DFS over m + 1 different
MDDs, F and the m Gi MDDs. The difference is again when the node n of F
is terminal, then if n = i the result is the current node from Gi.

Melding In its book [Knuth 2011], Knuth proposes to refine the process
of the function based apply by not expending nodes which will be reduce to
either the tt node or the ff node. To do that, he uses the information coming
from the operation, for example, while performing an intersection, we should
stop expending pairs composed of at least one ff node.

This work can be seen as a motivation of building algorithm leaded by the
wanted operation. To do so, we are going to consider MDDs as tuple sets
instead of functions. Thanks to that, we are going to define an algorithm
performing set operations, which will be fully leaded by the operation.

5.2 Graph-Based Apply

Motivations As presented before, existing algorithms are based on apply-
ing the ⊕ operator on the leaves: we can say that they are function based
operators. These operators process in a recursive way which is often associ-
ated with a DFS over the resulting BDD/MDD. Consider the two MDDs from
Figure 5.2. When we apply classical operators in order to build the intersec-
tion, we obtain an empty MDD. But the algorithm processes the DFS graph
from Figure 5.3. Thus modified of these algorithm has to be used.

The most important part it that the complexity of the existing operators
mainly depends on the complexity of the data structures used for P and H.
If the programmer of a BDD or MDD package does not pay enough attention
to these data structures, the package can be orders of magnitude slower than
with efficient data structures.

These are the motivations for this chapter. It proposes another method
for performing the classical operation on MDDs or BDDs. This new method
does not need to wait for the leaves for making decisions and does not need
any specific or complex data structure.

The content of this section is twofold. First the graph-based version of
the apply operation is presented. Second the modification allowing no need
of any specific or complex data structure is presented.

5.2. Graph-Based Apply 67

r

0

1

23

tt

0

0

01

01

r

0

1

23

tt

0

1

01

01

Figure 5.2: The left MDD represents the set {(0,0,0,0),(0,0,1,1)}. The right
MDD represents the set {(0,1,0,0),(0,1,1,1)}.

r

a

b

cd

ff

e

fg

0

0

01

01

1

01

01
ff

Figure 5.3: The left MDD represents the processing of classical Apply operator
over the two MDDs from Figure 5.2. The result is the empty MDD on the
right.

68 Chapter 5. Operations

5.2.1 Graph-Based Algorithm

MDDs can be seen as a compressing tuple store data structure. When a node
is reached, the labels vector of the path used from the root node to the current
node is a prefix of at least one tuple contained in the MDD. This implies that
extracting the tuples from an MDD consists of enumerating all the paths from
the root to the tt node.

Since an MDD is considered as a tuple store, it does not need to have arcs
directed to ff. The algorithm proposed here used the List implementation
described in Appendix A. This implies that each node contains an ordered list
named ω+ of outgoing arcs.

Main Idea Using this representation, the information maintained and pro-
cessed by the operator is a pair of two nodes from the input MDDs. But
this is not the only information, since the paths labels used in both MDDs or
BDDs are the same. This implies that both MDDs contain a tuple with this
labels vector as a prefix.

The Graph-based Apply is going to use this information. Instead of pro-
cessing a function of the leaves, it processes the result using the graph structure
of the MDDs. More precisely, the decisions are made using the arcs instead
of the leaves.

Today’s algorithm for MDDs tends to converge to Graph-Based algorithm
for operations. For example, in [Bergman 2014a] a kind of graph-based al-
gorithm has been provided for the intersection. This algorithm builds the
outgoing arcs of a node if and only if both of the nodes have an arc with the
same label.

The rest of this chapter explains how the graph-based apply works. First
the decision-making process is given, then the algorithm.

Decisions An arc has 3 information, both its ends and its label. While
considering a pair of nodes in the algorithm, the decision-making considers
only the arcs label. But the following assumption is made by definition of the
algorithm: the starting point of the arcs have at least one common prefix.

The decision of building or not an arc labeled by a in the resulting MDD
depends on the existence of an arc labeled by a in the pair nodes. This offer
4 possibilities: does it exist an arc labeled by a in the first node or not; does
it exist an arc labeled by a in the second node or not.

Definition 2 Let (u, v) = w be a pair of nodes from both the MDDs operand
A and B. Let a be any possible label value in [0, d]. The four possible cases
for the decision of building an arc labeled by a in w are:

5.2. Graph-Based Apply 69

op[0] op[1] op[2] op[3]
¬a1 ∧ ¬a2 ¬a1 ∧ a2 a1 ∧ ¬a2 a1 ∧ a2

layer [1..r-1] r [1..r-1] r [1..r-1] r [1..r-1] r
A ∩B F F F F F F T T
A ∪B F F T T T T T T
A−B F F F F T T T F
A∆B F F T T T T T F
A ∪B T T T F T F T F
A ∩B T T T T T T T F

Table 5.1: Different configuration of the op vector depending on the desired
operation. A distinction is made depending on the layer of the resulting MDD.

∃a1 ∈ ω+(u) | `(a1) = a ∧ ∃a2 ∈ ω+(v) | `(a2) = a =⇒ 3

∃a1 ∈ ω+(u) | `(a1) = a ∧ 6 ∃a2 ∈ ω+(v) | `(a2) = a =⇒ 2

6 ∃a1 ∈ ω+(u) | `(a1) = a ∧ ∃a2 ∈ ω+(v) | `(a2) = a =⇒ 1

6 ∃a1 ∈ ω+(u) | `(a1) = a ∧ 6 ∃a2 ∈ ω+(v) | `(a2) = a =⇒ 0

Let op be the vector of decisions for building the arc depending on the four
possible cases. The values of op[i] defining the binary operations are defined
in Table 5.1 for the different combinations. More information are given in
Figure 5.9.

Example:
Consider the intersection operation. An arc labeled by a in the result-

ing MDD is built if and only if both of the nodes have an arc labeled by
a. As shown in Figure 5.4, the application of these rules of intersection
builds first the outgoing arc from r labeled by 0 because both of the other
root nodes contain an arc labeled by 0. But for the two pairs of nodes
a = (0, 0), with the node 0 from the left MDD and 0 from the middle
MDD, does not have any arc with the same label. This implies that the
algorithm stops at this node.

Now consider the union operation. An arc labeled by a in the resulting
MDD is built if and only if one of the nodes has an arc labeled by a. The
Figure 5.5 shows the application of this decision-making. From the node
r, both have an arc labeled by 0 thus we can create the arc (r, a, 0) with
a = (0, 0), then only the first node has an arc labeled by 0 thus we create
the arc (a, b, 0) with b = (1, ff). Then for 1 only one node has an arc
labeled by 1 thus we create the arc (a, e, 0) with e = (ff, 1). The algorithm

70 Chapter 5. Operations

(a)

r

0

1

23

tt

0

0

01

01

(b)

r

0

1

23

tt

0

1

01

01

(c)

r

a
0

Figure 5.4: The MDD (a) represents the set {(0,0,0,0),(0,0,1,1)}. The MDD
(b) represents the set {(0,1,0,0),(0,1,1,1)}. The MDD (c) is the application
of the construction of the intersection of the two MDDs (a) an (b) using the
rules define by Definition 2.

then unfolds both of the MDDs using the op[1] and op[2].

Efficient implementation Since the nodes have an outgoing arc list ω+

which is sorted by the label, an efficient decision-making can be implemented.
In the same way as the merge used in fusion sort [Cormen 2001], the algorithm
iterates over both of the lists and considers the smallest label.

When the algorithm is processing this pair, it makes the following steps:

1. Define a1 ← first(ω+(u)) and a2 ← first(ω+(v)).

2. Define l = min(label(a1), label(a2)). Switch :

• label(a1) = l ∧ label(a2) = l : build the arc by considering op[3]

• label(a1) = l ∧ label(a2) 6= l : build the arc by considering op[2]

• label(a1) 6= l ∧ label(a2) = l : build the arc by considering op[1]

3. If label(a1) = l then a1 ← next(a1). If label(a2) = l then a2 ← next(a2).

4. If a1 6= null ∨ a2 6= null then return to step 2.

The maximum number of operations for a pair of nodes (u, v) is now
bounded by O(|ω+(u)|+|ω+(v)|), against O(d) previously. As shown in step 2,
it is impossible to reach the state label(a1) 6= l∧ label(a2) 6= l. This particular
case occurs for example while processing operations like A ∪B. If one needs

5.2. Graph-Based Apply 71

r

a

b

cd

tt

e

fg

0

0

01

01

1

01

01

r

0

1

23

tt

0

1 0

01

01

Figure 5.5: The left MDD represents the application of the union of the two
MDDs on the left of Figure 5.4. The right MDD is the left MDD after the
application of the reduction operator.

u

3

 a

8

 b

2

 d

v

5

 a

3

 c

1

 d

w

3,5

 a

2,1

 d

Figure 5.6: Nodes u, v and w from the example of the intersection.

to perform this operation, the classical iteration over the [0, d] interval has to
be performed.

Example:
Consider a pair of nodes w = (u, v) with ω+(u) = ((a, 3), (b, 8), (d, 2))

and ω+(v) = ((a, 5), (c, 3), (d, 1)). Using this method, the algorithm is
going to process the decisions a1 = a ∧ a2 = a, a1 = b ∧ a2 6= b, a1 6=
c ∧ a2 = c and a1 = d ∧ a2 = d. If the algorithm was processing an
intersection, then both the arcs labeled by a and d are created. The
Figure 5.6 shows the nodes u, v and w.

72 Chapter 5. Operations

Building the new pairs Since only the op[3] contains both of the nodes
for building a pair, the three other pairs creations miss at least one node.
When a node is missing, this implies that the algorithm has taken a prefix
such that there is no tuple in the MDD starting with this prefix. In fact,
in a representation having both the tt and ff nodes, this implies that the
algorithm reaches the ff node. So when the algorithm reaches such a node,
the pair is made using a ff node which is a node having no outgoing arc.

Let M = (V,E) be an MDD and [0, d] be possible values. Node ff is a
node that does not have any outgoing arcs. Thus for each value, when the
algorithm looks for an arc, the answer is always false.

Complement case The algorithm presented here is able to perform the
complement of an MDD. But to do so, the operator needs to use the wild
card nodes defined in Chapter 4.

Wild card nodes are special nodes depending on a Global Cut Seed (GCS)
g and whose outgoing arcs are all directed to the wild card node of the next
layer or to tt. The labels of the outgoing arcs of the wild card node of layer
i are the values of g[i].

Consider D = {0, 1, ..., d} and the GCS g = {D,D, ..., D}. The MDD T

representing g with d = 1 is the MDD from Figure 5.7 and containing all the
possible tuples. Using this MDD, it is easy to build the complement of A
by processing T − A. The right MDD of Figure 5.7 is the application of this
method to the middle MDD.

The algorithm A possible implementation of this algorithm is given in
Algorithm 8. As we can see a parameter V is given. If this parameter is given
then the algorithm uses this set of values for the label testing part. Otherwise
the union of the possible labels is made.

This algorithm performs a Breath First Search instead of the classical
Depth First Search. The search is different because it will allow us not to
need any data structure for both P and H. As we can see, the algorithm does
not reduce the MDD during the processing but at the end. The explanation
of this choice is also given in the next section.

5.2.2 Avoiding Data structures

Avoiding the P The P set contains all the pairs processed during the
operation. When a new pair is created, the algorithms generally look into the
P set in order to determine if such a pair has already been processed.

Using a Breath First Search, the pairs from layer i are processed only
when all the pair from layer i − 1 have been processed. Furthermore, once a

5.2. Graph-Based Apply 73

(a)

r

w1

 0 1

w2

 0 1

w3

 0 1

tt

 0 1

(b)

r

0

 0

1

 0 1

2

 0

3

 1

tt

 1 0

(c)

r

a

 0

b

 1

c

 0 1

d

 0 1

e

 0

f

 1

g

 0 1

tt

 0 1 0 1

Figure 5.7: The MDD (a) T in this figure represents the GCS g =

{{0, 1}, {0, 1}, {0, 1}, {0, 1}}. The MDD (b) M is the MDD from Figure 5.5
which is the union of the two MDD from Figure 5.4. The MDD (c) is the
complementary of the middle MDD. It has been constructed by applying the
T −M operation.

pair from layer i is processed, no more pair for layer i is generated. What is
proposed here is to generate the pairs for layer i, and before processing the
layer i, to merge all the equivalent pairs (i.e. pairs defined by the same two
nodes).

This operation can be efficiently done, with a linear memory and space
complexity. Let TM1 be an array of sets whose size is the number of nodes
from the first MDD and TM2 be an array of set size of the second MDD.
The sets can easily be implemented using list. The algorithm first indexes
the pairs in the array TM1 using the first node index, and then for each set
of nodes, it indexes again the pair in the array TM2 using the second node
index. Algorithm 9 is a possible implementation of this method.

Avoiding the H The H hash table was used during the search in order to
build a reduced MDD during the construction. The proposed algorithm does
not reduce the MDD on the fly but at the end of the algorithm. This choice is
made because it does not increase the memory complexity, see equation (5.3).

74 Chapter 5. Operations

Algorithm 8 Generic Apply Function.
Apply(mdd1,mdd2, op, V): MDD // L[i] is the set of nodes in layer i.
root← createNode(root(mdd1), root(mdd2))

L[0]← {root}
for each i ∈ 1..r do

L[i]← ∅
for each node x ∈ L[i− 1] do

get x1 and x2 from x = (x1, x2)

if V [i] = nil then
V [i]← values(ω+(x1) ∪ ω+(x2))

for each v ∈ V [i] do
if 6 ∃(x1, v, y1) ∈ ω+(x1) then

if 6 ∃(x2, v, y2) ∈ ω+(x2) ∧ op[0] then
addArcAndNode(L, i, x, v, ff)

if ∃(x2, v, y2) ∈ ω+(x2) ∧ op[1] then
addArcAndNode(L, i, x, v, ff, y2)

else
if 6 ∃(x2, v, y2) ∈ ω+(x2) ∧ op[2] then

addArcAndNode(L, i, x, v, y1, ff)

if ∃(x2, v, y2) ∈ ω+(x2) ∧ op[3] then
addArcAndNode(L, i, x, v, y1, y2)

merge all nodes of L[r] into t
pReduce(L)

return root
addArcAndNode(L, i, x, y1, v, y2)

if 6 ∃y ∈ L[i] s.t. y = (y1, y2) then
y ← createNode(y1, y2)

add y to L[i]

createArc(L, i, x, v, y)

Example:
Consider the two MDDs on the left of Figure 5.8. We process the

intersection of these MDD, that result to the MDD on the right.
First we build the pair (r1,r2), we consider here the smallest arcs,

thus the arcs (r1,0,a) and (r2,0,i), the intersection build an arc if and
only if both of the nodes have the arc, which is true here. We build the

5.2. Graph-Based Apply 75

Algorithm 9 Merge of equivalent pairs.
pairsMerge(L,mdd1,mdd2): L
TM1 = array of set (|mdd1|)
TM2 = array of set (|mdd2|)
Q1 = empty queue
Q2 = empty queue
for each c = (u, v) ∈ L do

if TM1(u) = ∅ then
Q1.push(u)

TM1(u).add(c)

for each u ∈ Q1 do
for each c = (u, v) ∈ TM1(u) do

if TM1(v) = ∅ then
Q2.push(v)

TM2(v).add(c)

for each v ∈ Q2 do
Merge all pairs from TM2(v)

Q2.clear()

(a)

r1

a

0

b

1

d

2

c

0 1 0 1

tt

1 0 1

(b)

r2

i

0 2

j

0 2

tt

1 2

(c)

r

ai

0

dj

2 0

tt

1

Figure 5.8: The MDD (c) represents the intersection of the two left MDDs.
The tuples on the right MDD are present in both of the left MDDs.

76 Chapter 5. Operations

arc (r,0,ai) and add the pair (a,i) to the next layer. Then the algorithm
process the arc (r1,1,b) which is alone thus no arc creation for r, and same
for (r2,2,i). We merge all the equivalent pairs, here their is only one pair
thus nothing to do. We process the pair (a,i), both a and i have an arc
labeled by 0, thus we can create the arc (ai,0,cj) and add the pair (c,j) to
the next layer. Only a has an arc labeled by 1, thus we do not create the
arc, and both have an arc labeled by 2, thus we create the arc (ai,2,dj)
and add the pair (d,j) to the next layer. We have processed all the node
of this layer thus we go to the next layer.

We first look for equivalent pairs, thus apply the Algorithm 9. This
algorithm put the pair (d,j) in one cell and the pair (c,j) in another cell.
They are both singleton, thus cannot be merged. The algorithm pick a
node in the layer, the pair (c,j). Only node c has an arc labeled by 0,
thus we cannot create this arc, both of them have an arc labeled by 1,
thus we create the arc (cj,1,tt). Only j has an arc labeled by 2, thus we
do not create such an arc. pair (d,j) is process in an equivalent way.

Finally, we apply the reduction algorithm from chapter 3 which merges
the nodes of the pairs (c,j) and (d,j).

Complexity Let M1 = (N1, E1) and M2 = (N2, E2) be two MDDs, let
M = (N,E) be the resulting MDD from an operation between M1 and M2.
First the memory complexity of the representation of M is O(|N | + |E|),
which is linear. The worst-case complexity of the operation is well now and
is O(|M1| ∗ |M2|).

Special case: Multiple terminal values Several MDD constructors build
MDDs having multiple terminal values, like the sum MDD [Trick 2003]. This
kind of MDD can be transformed into a classical tt ff terminals MDD by
adding a layer where arcs are leaving the terminal states a labeled by a and
directed to tt. Such a transformation is done in Chapter 12 and in Chapters
application 19 and 14.

Advantages Thanks to this new scheme of operations, efficient operators
that can be processed in parallel, for relaxed or even non-deterministic MDDs
will be designed in the next chapters.

5.3 In-place Operations

In this section, we define in-place algorithms for the addition/deletion of tuples
from an MDD. The operator algorithms presented until here build a resulting

5.3. In-place Operations 77

Operation Expression Bit ITE Graph-Based
0 0 0000 0 0000 | 0000

AND F.G 0001 ite(F,G,0) 0001 | 0001
F > G F.G 0010 ite(F,G,0) 0011 | 0010

F F 0011 F 0011 | 0011
F < G F .G 0100 ite(F,0,G) 0101 | 0100

G G 0101 G 0101 | 0101
XOR F ⊕G 0110 ite(F,G,G) 0111 | 0110
OR F +G 0111 ite(F,1,G) 0111 | 0111
NOR F +G 1000 ite(F,0,G) 1111 | 1000
XNOR F ⊕G 1001 ite(F,G,G) 1111 | 1001
NOT(G) G 1010 ite(G,0,1) 1111 | 1010
F ≥ G F +G 1011 ite(F,1,G) 1111 | 1011
NOT(F) F 1100 ite(F,0,1) 1111 | 1100
F ≤ G F +G 1101 ite(F,G,1) 1111 | 1101
NAND F.G 1110 ite(F,G,1) 1111 | 1110

1 1 1111 1 1111 | 1111

Figure 5.9: The proposed algorithm can perform at least of the operations
done by classical algorithms. In addition, for example, we can do the inter-
section of the k first variables and then the union of the others, while it is
impossible with existing methods.

78 Chapter 5. Operations

(a) (b) (c)

Figure 5.10: Tuple {0,0,0} is removed from the MDD (a). The isolation of
the path corresponding to the tuple is performed (MDD (b)) and then the
reduction is applied (MDD (c)). Nodes aI and bI are created from nodes a
and b during the path isolation.

MDD.
The problem of removing compressed information inside of an MDD have

been already studied in [Ciré 2014a]. The problem was to remove a partial
assignment from an MDD. This problem can be seen as removing the GCS
composed of the values of the partial assignment and a wild-card value for the
other.

This section proposes to explore the insights of the modification possible
for an MDD. Since for the operator presented before considers an MDD as
a compressed tuple store, the addition or deletion of tuples in an MDD are
studied.

5.3.1 Deletion of tuples from an MDD

First, an algorithm for deleting one tuple from an MDD is given. Then, the
method is generalized for a set of tuples.

The deletion of a tuple τ from an MDD is based on an operation named
path isolation, which is a kind of local decompression. The idea is to build
a specific path whose arcs are labeled by the values of τ . Furthermore, arcs
equivalent to the ones of the isolated path are deleted from the MDD. After
the isolation process, the MDD is reduced. Let τ [i] be the value of the variable
x[i]. The isolation is performed in 3 steps:

5.3. In-place Operations 79

Step 1. Identify a1 = (root, τ [1], n2), the arc of the first layer labeled by
τ [1] the first value of the tuple. Create the node ne2, the arc (root, τ [1], ne2)

and delete the arc a1. Set xmdd (a node of the MDD) to n2 and xpath (an
isolated node) to ne2.

Step 2. For each layer i from 2 to r − 1 repeat the following operation.
Identify ai = (xmdd, τ [i], ni+1) the outgoing arc from the xmdd labeled with τ [i].
Create the node nei+1 and the arc (xpath, τ [i], nei+1). For each arc (xmdd, w, y)

such that w 6= τ [i] create the arc (xpath, w, y). Set xmdd to ni+1 and xpath to
nei+1.

Step 3. For each arc (xmdd, w, tt) such that w 6= τ [r] create the arc
(xpath, w, tt).

If at any moment, the algorithm cannot identify an arc then it means that τ
does not belong to the MDD. Fig. 5.10 shows the application of this algorithm.
The complexity of the deletion of a tuple is bounded by O(rd) because for
each isolated node we need to recreate its arcs. However, in practice it is often
close to O(r).

5.3.1.1 Deletion of a set of tuples.

This section proposes a better method than repeating the previous algorithm
for each tuple. Transform the set of tuples into an MDD and subtract this
new MDD from the initial one by following the same steps of the previous
algorithm. Isolate nodes having a common path in both MDDs, then remove
the common arcs to the isolated nodes of the second last layer. At last,
call the incremental reduction algorithm (see 3). Algorithm 10 is a possible
implementation of this method.

Example:
Fig. 5.11 shows the subtraction of the GCS {1,{0,1,2,3},1} from the

MDD representing all the tuples possible for the values {0,1,2,3}. The
GCS is isolated from the MDD. Then, the deletion of the arc labeled 1

of node d corresponds to the deletion of only the tuples contained in the
GCS.

It is difficult to bound the complexity of the deletion of T tuples, because the
MDD created from them may compress the information.

5.3.2 Addition of tuples to an MDD

The addition of tuples into MDD follows the same principles as for the dele-
tion. In this case, the isolated path contains arcs labeled by the values of the

80 Chapter 5. Operations

Figure 5.11: The left MDD represents all the possible tuples for the values
{0,1,2,3}. The right MDD represents the deletion of the GCS {1,{0,1,2,3},1}
from the left MDD.

tuple that must be added. It is performed by applying the same steps as for
the deletion.

First, consider the addition of one tuple τ . The two first steps are very
similar to the ones of the deletion. Except that at a point, there will be no
more path in the MDD having the same subpath as τ . Otherwise, it would
mean that τ is already in the MDD. Thus, at a certain moment we will not be
able to identify any arc (xmdd, τ [i], ni+1) as in step 2 in the deletion algorithm.
When this case arises the algorithm can stop the step 2 and directly create the
path from the current isolated node to the terminal node. This path will be
labeled by the values of τ for the remaining layers. Step 3 can be skipped. At
last, call the incremental reduction algorithm. The complexity of the addition
of a tuple is in O(rd) because for each isolated node we need to recreate its
arcs.

5.3.2.1 Addition of a set of tuples.

Let mdd1 be the initial MDD. Transform the set of tuples into an MDD,
named mdd2. Add mdd2 to mdd1 by following the same steps as for the
previous algorithm. Isolate nodes having a common path in both MDDs.
When an arc belongs to mdd2, create an isolated node and create an arc from
the current isolated node to it. When an arc belongs only to mdd1, create an
arc from the current isolated node to the node in mdd1.

Fig. 5.12 shows the effect of the addition of the tuple {1,2,1} in the MDD
given in Fig. 5.11. We can see the usefulness of the path isolation for avoiding

5.3. In-place Operations 81

Algorithm 10 In-place Deletion Algorithm
Deletion(mdd1,mdd2)

L← empty Array of set of nodes
for each (root(mdd1), v, y1) ∈ ω+(root(mdd1)) do

if ∃(root(mdd2), v, y2) ∈ ω+(root(mdd2)) then
addArcAndNode(L, 1, root(mdd1), v, y1, y2)

deleteArc(root(mdd1), v, y1)

for each i ∈ 1..r − 2 do
L[i]← ∅
for each node x ∈ L[i− 1] do

get x1 and x2 from x = (x1, x2)

for each (x1, v, y1) ∈ ω+(x1) do
if ∃(x2, v, y2) ∈ ω+(x2) then

addArcAndNode(L, i, x, v, y1, y2)

else createArc(x, v, y1)

for each node x ∈ L[r − 1] do
get x1 and x2 from x = (x1, x2)

for each (x1, v, tt) ∈ ω+(x1) do
if 6 ∃(x2, v, y2) ∈ ω+(x2) then

createArc(x, v, tt)

ipReduce(L)

addArcAndNode(L, i, x, y1, v, y2)

if 6 ∃y ∈ L[i] s.t. y = (y1, y2) then
y ← createNode(y1, y2) add y to L[i]

createArc(x, v, y)

the addition of the tuples {1,{0,1,3},1}. The right MDD shows the impact of
the reduction on the MDD: nodes e and b are merged because they have the
same outgoing arcs. It is difficult to bound the complexity of the addition of T
tuples, because the MDD created from them may compress the information.
Algorithm 11 is a possible implementation of the in-place addition operations.

Duality The proximity of these algorithms is due to the duality of the prob-
lems: adding a tuple set T to an MDD M is equivalent to delete T from the
complementary MDD of M .

82 Chapter 5. Operations

Figure 5.12: The right MDD represents the addition of the tuple {1,2,1} to
the left MDD, before the reduction.

5.3. In-place Operations 83

Algorithm 11 In-place Addition Algorithm
Addition(L,mdd1,mdd2)

for each v ∈ ω+(root(mdd1)) ∪ ω+(root(mdd2)) do
if ∃ (root(mdd1), v, y1) ∈ ω+(root(mdd1)) then

if ∃ (root(mdd2), v, y2) ∈ ω+(root(mdd2)) then
addArcAndNode(L, 1, root(mdd1), v, y1, y2)

deleteArc(L, i, root(mdd1), v, y1)

else addArcAndNode(L, 1, root(mdd1), v, nil, y2)

for each i ∈ 1..r − 2 do
L[i]← ∅
for each node x ∈ L[i− 1] do

get x1 and x2 from x = (x1, x2)

// If x1 is nil then ω+(x1) is empty
for each v ∈ ω+(x1) ∪ ω+(x2) do

if ∃ (x1, v, y1) ω+(x1) then
if ∃ (x2, v, y2) ∈ ω+(x2) then

addArcAndNode(L, i, x, v, y1, y2)

else createArc(L, i, x, v, y1)

else addArcAndNode(L, i, x, v, nil, y2)

for each node x ∈ L[r − 1] do
// If x1 is nil then ω+(x1) is empty
for each v ∈ ω+(x1) ∪ ω+(x2) do

createArc(L, i, x, v, tt)

ipReduce(L)

84 Chapter 5. Operations

Classic In-place
instances deletion reduction deletion reduction
30*300K-300K 35,4 4.2 24.8 1.8
300K - 1K 5.3 0.7 1.2 0.6
90K-30K 2.1 0.2 1.6 0.2
300K-10 4.7 0.6 0.002 0.2

Table 5.2: Arity 12, domain size 10. Average deletion time (s) for random
instances.

5.4 Experiments

All the applications of this dissertation use the Apply operation define here.
Some results presented here are directly coming from these chapters. Chapter
17 contains many experiments using these algorithm, so do the two others
application chapters.

MaxOrder The MaxOrder problem, is a sequence generation problem,
based on corpus and avoiding plagiarism. This problem is one of the mo-
tivation for building new algorithms, since it contains thousands of different
values by variables. This implies that each node can potentially have thou-
sands of outgoing arcs. Using classical approaches, looking for each values,
none of the existing algorithms were able to solve the problem for just 6 vari-
ables. It needed close to 64 GB of memory and the time needed was more
than one hour.

Our apply algorithm solve the problem for 20 variables in 143.5 seconds.
20 variables was the goal at first. Moreover, the required memory is close to
8GB. For more details see chapter 17.

Random instances We propose to compare the performance of the classi-
cal and the in-place algorithms and the performance of the classical and the
incremental reduction algorithms. We use random instances obtained using a
uniform distribution.

On the instances column of TableThe 5.2, the first number corresponds to
the number of the tuples represented by the MDD whereas the second number
is the number of tuple that are removed from the MDD. This table shows that
using in-place algorithm while remove small part of an MDD can drastically
improve the processing time.

We also propose a table summarizing the advantages of the different al-
gorithms. We add results for the BDD and MDD packages proposed in

5.4. Experiments 85

#tuples #deleted Fct based P&R15 in-place
20000 1000 159 11.5 6
40000 2000 291 40 21
40000 20000 663 51 33
80000 40000 2643 174 114
40000 10 466 185 19

Table 5.3: Arity 12, domain size 10. Average deletion time (s) for random
instances.

[Srinivasan 1990, Brace 1991] (See column “Fct based”). “P&R15” represents
the results we previously obtained and “in-place” column corresponds to the
new algorithms. Table 5.3 gives some results for MDD representing 10,000s
tuples. With such an amount of tuple and domain size, this is one of the
worst case for classical algorithm. Moreover, the MDDs are often sparse, thus
building an array for each column often lead to huge memory requirement.

Part II

MDDs: Advanced Algorithms

Chapter 6

Parallel Computing

Contents
6.1 Introduction . 89

6.1.1 Related Work . 90

6.2 Background . 90

6.2.1 Parallelism . 90

6.3 Parallel Reduction . 91

6.3.1 Parallel Sort . 92

6.3.2 Parallel pReduce . 94

6.3.3 Discussion . 97

6.4 Parallel Apply . 98

6.5 Experiments . 100

6.6 Conclusion . 103

6.1 Introduction

Parallelism is a classical approach for improving the efficiency of algorithms
consisting in running an algorithm on several machines/cores/workers. Paral-
lel version of many algorithms have already been proposed, but finding good
parallel algorithm is often challenging. For example, many different works
exist for parallelizing the search in CP solvers [Régin 2013, Hamadi 2002].

As shows in the application part of this thesis and in many existing appli-
cations, the computing time for operations and reductions of MDDs can be
huge. For example, in chapter 17, up to 143.5 seconds are needed to process
several intersections, and in chapter 19, more than 2,000 seconds are needed.

Thus parallel version of such algorithms can drastically improve the build-
ing of model. Note that the building of a model is an operation which is rarely
parallelized.

90 Chapter 6. Parallel Computing

This chapter first recall several existing works about parallelism and
MDDs, then it proposes a parallel version of both the reduction and the apply
operation.

6.1.1 Related Work

Related works The processing in parallel of MDDs or automata has been
well studied and is still a hot topic Bergman et al. introduced a paral-
lel B&B search that branches on nodes in the MDDs instead of branch-
ing on variable-value pairs as it is done in conventional search methods
[?]. Other works focus on minimizing an automaton in parallel, using
specific algorithms [Ravikumar 1996, Tewari 2002] or by using the well-
known map-reduce principles [Hedayati Somarin 2016, Dean 2008]. Finally
for Binary Decision Diagrams, parallel creation and manipulation algorithms
[Kimura 1990, Stornetta 1996] have been designed. These algorithms use
global hash-tables and they are organized so that locks are only needed for
these global hash tables and the global tree nodes. In addition, a thread safe
unordered queue using asynchronous messages is required. These algorithms
and their implementation are quite complex, define complex dedicated data
structures and use locks. The hash-table manipulation is describe in chapter
3.

This chapter proposes a new method for applying operations and minimiz-
ing MDDs or acyclic deterministic automaton in parallel without any com-
plex parallel data structure, which is easy to implements and most important,
without any lock.

6.2 Background

6.2.1 Parallelism

When a parallel program is correct, that is when race condition and deadlock
issues1 have been resolved, several other aspects must be taken into account
to reach a good scalability. At least four difficulties that may impact that
scalability can be identified:

• Data dependencies : it is a situation in which an instruction refers to
the data of a preceding instruction. Thus, no program can run more
quickly than the longest chain of dependent calculations (known as the

1Race conditions depends on the sequence or timing of processes or threads for it to
operate properly. A deadlock is a state in which each member of a group is waiting for
some other member to take action [Coulouris 2005].

6.3. Parallel Reduction 91

critical path), since calculations that depend upon prior calculations in
the chain must be executed in order.

• Software lock-out : it is the issue of performance degradation due to the
idle wait times spent by the CPUs in kernel-level critical sections.

• Resource contention and particularly false sharing : it is a conflict over
access to a shared resource such as random access memory, disk storage,
cache memory, internal buses or external network devices. False sharing
is a term which applies when threads unwittingly impact the perfor-
mance of each other while modifying independent variables sharing the
same cache line.

• Load balancing : it refers to the distribution of workloads across multiple
computing resources, such as cores.

For convenience we will use the word worker to represent an entity per-
forming computation. Usually it corresponds to a core.

6.3 Parallel Reduction

The reduction of an MDD consists in removing nodes that have no successor
and merging equivalent nodes, i.e. nodes having the same set of neighbors
associated with the same labels. This means that only nodes of the same
layer can be merged. In addition, two nodes can be merged iff they have the
same signature. Figure 1 gives an example of reduction.

The main difficulty is to identify nodes having the same signature. The
pReduce algorithm (Chap 3) improved previous algorithms that checked for
each node whether it can be merged with another node or not. It works per
layer and groups the nodes having the same suffix of signatures into packs2.
Nodes that remain in the same pack with their entire signature, and not only
a suffix, can be merged together. The worst-case time complexity is bounded
by the sum of the size of common suffix of the nodes.

Efficient parallelization of this algorithm is not trivial, thus a simplified
version of the sequential algorithm is considered first. Then, a more complex
algorithm is presented to fit the best complexity of the sequential algorithm.

2The algorithm normally works with prefixes, but it can be straightforwardly adapted
to deal with suffixes.

92 Chapter 6. Parallel Computing

6.3.1 Parallel Sort

The identification of nodes having the same signature can be simply performed
by sorting the node according to their signature. Since nodes and labels are
integers, a linear sort algorithm can be used. We propose to consider a radix
sort.

We reproduce the presentation in [?]. Consider that each element in the
q-element array A has δ digits, where digit 1 (resp. δ) is the least (resp. most)
significant digit. The radix sort algorithm consists of calling for r = 1..δ a
stable sort to sort array A on digit r. The counting sort can be used as a
stable sort. Counting sort assumes that each of the q input elements is an
integer in [0, k], for some integer k. It determines, for each input element x,
the number of elements less than x. This information can be used to place
element x directly into its position in the output array. For example, if there
are 17 elements less than x, then x belongs in output position 18. When
several elements have the same value we distinguish them by their order of
appearance in order to have a stable sort. Thus, the time complexity of the
radix sort is δO(q + k).

The parallel radix sort with w workers [Zagha 1991]. It uses a parallel
counting sort as stable sort. Let V be a vector of q elements. The parallel
counting sort splits V into w subvectors, one for each worker. Then each
worker applies a counting sort on its subvector. Finally, the workers put the
nodes in their new position.

Example. We propose to detail the parallel radix sort for a vector of nodes
of the MDD. We assume that there each node has only one neighbors and one
label. For the sake of clarity we represent an ordered pair (li, uj) by ij, i.e.
(l0, u1) is written 01.

Consider the following vector of nodes, the second line gives the index of
the node, the third line is associated with the signatures.

a b

0 1 2 3 4 5 6 7 8 9 V
10 00 11 11 00 10 10 01 11 01 sig

Using two workers (a and b), we can split the vector into two independent
parts and apply a counting sort. The two parts are [0, 4] and [5, 9], b is always
after a in order to avoid collision. The first step of the radix sort considers the
rightmost digit. Let a#i (resp. b#i) be the number of i counted by worker a
(resp. b). These numbers are computed by traversing the values. This is the
counting step of the counting sort. We obtain:

6.3. Parallel Reduction 93

a#0 = 3 a#1 = 2 b#0 = 2 b#1 = 3

Then we determine the global indices of each digit by workers, let iar (resp.
ibr) be the position in the resulting vector of the first value of the elements of
part a (resp. b) whose current digit is r. We have ia0 = 0; ib0 = ia0 +a#0 = 3;
ia1 = ib0 + b#0 = 3 + 2 = 5 and ib1 = ia1 + a#1 = 7. When there are more
than two workers the same principle applies: the information of the previous
worker is used for the current worker. We have:

ia0 = 0 ia1 = 5 ib0 = 3 ib1 = 7

This step, denoted by the cumulative step, can also be performed in par-
allel. Each worker receives a set of values ([0..k] is divided into w subranges)
and performs the computations for its set of values. Each worker j computes
the number of time each of its value is taken and cs(j) the cumulative sum of
these numbers. Then, we compute for each worker j the sum of the cumulative
sum of the previous workers: scs(j) =

∑j−1
i=1 cs(i). This can be globally done

in O(w). From these scs values, each worker computes the global indices of
its values.

Using these positions, the workers a and b can independently build the
global vector without any collision and thus without lock. So this last step,
named the position step, can also be performed in parallel by assigning to
each vector its initial subvector of elements. For example, a puts the value 10

of node 0 in position ia0 = 0 then, it increments ia0, so ia0 = 1, then it puts
the value 00 of node 1 in position ia0 = 1 and increments it again, etc. The
global vector is:

0 1 4 5 6 2 3 7 8 9
10 00 00 10 10 11 11 01 11 01

The same process has to be applied to the second digit in order to sort the
nodes. We finally obtain:

a b

1 4 7 9 0 5 6 2 3 8
00 00 01 01 10 10 10 11 11 11

Complexity. For each worker, the counting step3 is in O(q/w), the cumu-
lative step is in O(k/w) and the position step is in O(q/w). Thus, the overall
time complexity of the parallel counting sort is in O(q/w+k/w). The parallel

3The count array can be initialized by traversing the elements to set the count of their
values to 0 after the different steps.

94 Chapter 6. Parallel Computing

radix sort considers all digits of the signatures, thus its time complexity is
in δ × O(q/w + k/w), which is more than the sum of common suffix of the
pReduce algorithm. For instance, consider the following signatures of nodes:
0010, 1101, 1012, 0113, 1004, 0015, 0116. The algorithm will process for each
node all four digits while the sequential algorithm will process only the least
significant one.

In order to remedy this issue, the pReduce algorithm works with packs,
which are common suffixes. Two nodes belong to the same pack when their
signature have the same suffix defined by the pack. Only nodes in the same
pack can be merged. So, if at a moment, the signature of a node u has a
different digit value for a given position than any other node of its current
pack, then u cannot be merged with any node and it can be ignored. Nodes
that remain in the same pack will be merged at the end.

Working by digits such as the radix sort is similar as working by common
suffixes. Thus, we propose to apply the same mechanism for the parallel
algorithm by introducing the pack notion.

6.3.2 Parallel pReduce

Packs and leaders. For the sake of clarity, node at position p in the layer
is denoted by up. Consider the iteration r of the radix sort. A pack is a set
of nodes having signatures sharing the same digits from 1 to r (1 being the
least significant digit). This means that for any iteration all nodes of a pack
are consecutive. A particular node of a pack can be identified: its leader. The
leader is the node of the pack having the smallest position. Then, for any node
up with p > 0, either up is a leader and up−1 belongs to another pack than
up, or up is not a leader and up−1 belongs to the same pack as up. Therefore,
packs can be deduced from leader nodes.

At the beginning of the algorithm, all nodes are in the same pack, and the
pack leader is the first node. For the previous example, all nodes have 0 as
leader (first line):

0 0 0 0 0 0 0 0 0 0 ldr
0 1 2 3 4 5 6 7 8 9 V
10 00 11 11 00 10 10 01 11 01 sig

Then, packs are refined depending on the current digit values, because
nodes in a pack have signatures having the same suffix. When a new pack is
created, its leader is the node having the smallest index of the nodes in the
pack. The identification of packs and leaders is performed after the position
step of the counting sort.

6.3. Parallel Reduction 95

For the previous example if we have one worker then the initial pack is
split into two packs when considering the least significant digit. Node 2 is the
leader of the new pack.

0 0 0 0 0 2 2 2 2 2 ldr
0 1 4 5 6 2 3 7 8 9 V
10 00 00 10 10 11 11 01 11 01 sig

We precisely define when a pack is created for the iteration r. Pack are
defined by their leader. Node u0 is always a leader. Consider p > 0. First,
we assume that up−1 has already been set. Node up is a leader iff up−1 was in
the same pack at the previous iteration and the rth digit of the signature of
up and up−1 are different, or up−1 was not in the same pack at the previous
iteration.

For the second iteration of the previous example we obtain the following
result:

1 1 7 7 0 0 0 2 2 2 ldr
1 4 7 9 0 5 6 2 3 8 V
00 00 01 01 10 10 10 11 11 11 sig

Nodes having the same leader at the end must be merged.

Parallel computation of packs and leaders. When workers are intro-
duced, a problem arises because when up is set, it is possible that up−1 has
not been set. After the positioning step of the counting sort, each worker
will define the leader of its part by checking whether each element is a leader
or not. Then, a problem arises for consecutive nodes that are handled by
different workers, known as junction.

For instance in the previous example, after the first counting sort, nodes
are ordered as follows: 0, 1, 4, 5, 6, 2, 3, 7, 8, 9. Then, worker a considers the five
first nodes, and worker b the five last nodes. That is, a deals with 0, 1, 4, 5, 6.
Since all signatures have the same first digit (0), then 0 is the leader of this
group. In addition node at position 0 is always a leader so 0 is a global
leader. Worker b deals with 2, 3, 7, 8, 9. Since all signatures have the same
first digit (1), then 2 is the leader of this group. However, there is not enough
information to deduce that 2 is a global leader. The leadership of node 2,
at position 5, will be deduced by comparing the previous pack of 2 and the
current digit of its signature of 2 with the data of node at position 5− 1 = 4,
which is not necessary available. The w− 1 junctions will be studied when all
the workers have finished their work. The relation between nodes and leader
can be maintained by using a union find data structure [Tarjan 1975]. Each

96 Chapter 6. Parallel Computing

Algorithm 12 parallel reduce of an MDD.
paraReduce(mdd,W)

// W is the set of workers
for each i from n− 1 to 0 do

V ← L[i], the set of nodes in layer i.
δ ← maxu∈V (size of sig(u))
for each r from 1 to δ while V 6= ∅ do

Partition V into |W | parts: V1, ..., V|W |
parallel for wj ∈ W do

wj.initUnionFind(Vj, r, V)

parallel for wj ∈ W do
wj.countingSort(Vj, r, V)

parallel for wj ∈ W do
wj.computeLeaders(Vj, r, V)

Define leaders for junctions
Remove from V nodes in singleton packs

in parallel Merge in L[i] nodes u ∈ V with its leader

tree represents nodes of a pack. By performing merge according to decreasing
indices, the depth of the tree can never be more than 2, so the time complexity
of these operations is globally linear, that is in O(1) per node.

At last and for reducing the time complexity in practice, if at any moment
a pack contains only one element, then it is removed from the vector of nodes
and ranges of indices of workers are accordingly redefined.

Algorithm. Algorithm 12 is a possible implementation. It works by layer.
For a layer, the successive digits of the signatures are considered from the
least significant digit. The vector of nodes is partitioned into as many parts
as workers, each part having the same number of elements. Each worker wj
performs a counting sort on this set of nodes Vj and puts the result in V

(Function countingSort(Vj, r, V)). Then, each worker computes the leader
of its part of the nodes (Function computeLeaders(Vj, r, V)). The junc-
tions are managed and nodes that cannot be merged are removed from V .
Note that the internal data structures are managed at the beginning of each
loop. Finally, nodes that remain in V are merged in L[i] in parallel by par-
titioning V and by keeping only the leaders. If the leader of a node in Vj is
not managed by wj, then the node in Vj with leftmost index becomes a local
leader and nodes in Vj are merged with it instead of the global leader. Then,

6.3. Parallel Reduction 97

local leaders are merged to global leaders. Note that there is at most one local
leader per worker, so it does not impact the time complexity, which remains
the same as the one of the pReduce algorithms.

Parallelization difficulties. This algorithm overcomes the four difficulties
of the parallelization of a sequential algorithm. The data dependencies are
controlled by working by layer. There is no software lock. Workers get the
information from different places, i.e. the Vi parts, and write the result in
different positions and these two actions are performed separately and so the
chance of false sharing is reduced. At last, the vector of nodes is always split
in equal parts, thus the workload is well balanced.

6.3.3 Discussion

The time complexity of the parallel reduction algorithm is the same as the
parallel radix sort involving w workers. It is in O(δ(q/w + k/w)) (1) where q
is the number of elements and k the greatest possible value and δ the number
of digits. If q = O(k) or if k is clearly smaller than q then the complexity is
in O(δq/w) (2).

If k is clearly greater than q, then there are two ways to reduce the com-
plexity. First, a different algorithm [Perez 2015a] can be used. Indeed, the
counting sort can be relaxed because the reduction algorithm does not require
to sort the elements. Instead it searches to identify elements having the same
digits. Thus, we can use an algorithm similar to the counting sort whose
complexity is based only on the number of values, and not on their range, i.e.
[0..k]. This algorithm uses A, an array of values ranging from [0..k] initially
at zero. Like the counting sort, it traverses the elements to count the number
of times a value appears. However at the same time it builds the list of taken
values and it uses this list to define the position instead of the range [0..k].
In this way, the ordering between the values is lost, but the algorithm still
groups together the elements having the same value, without traversing the
range [0..k]. So it can be used for our purpose. Unfortunately this algorithm
is quite complex to parallelize because it requires to use a local queue per
worker and the compare-and-swap instruction to be correct and efficient.

Second, the same algorithm is used but the number of digits of the sig-
nature is increased. If k is greater than q then we can reduce its size by
splitting the number k into several digits. The number k can be writ-
ten with logm(k) digits in base m. So, we can express the overall time
complexity (1) by logm(k)O(δ(q/w + m/w)). By using m = 256 we have
log256(k)O(δ(q/w + 256/w)) ≤ 4O(δ(q/w + 256/w)) for k ≤ 232. This com-
plexity is equals to 4O(δq/w) if q ≥ 256. So, in practice (i.e. k ≤ 232), by

98 Chapter 6. Parallel Computing

r1

a

0

b

1

d

2

c

0 1 0 1

tt

1 0 1

r2

i

0 2

j

0 2

tt

1 2

r

ai

0

dj

2 0

tt

1

Figure 6.1: Intersection of two MDDs.

writing k in base 256 we multiply the initial complexity (2) by at most a factor
of 4.

6.4 Parallel Apply

In chapter 5, we have introduced an efficient apply algorithm in order to de-
fine operations between MDDs. From the MDDs mdd1 and mdd2 it computes
mddr = mdd1 ⊕mdd2, where ⊕ is union, intersection, difference, symmetric
difference, complementary of union and complementary of intersection.

The algorithm proceeds by associating nodes of the two MDDs. Each node
u of the resulting MDD is associated with a node u1 of the first MDD and
a node u2 of the second MDD. So, each node of the resulting MDD can be
represented either by an index, or by a pair (u1, u2). First, the root is created
from the two roots. Then, layers are successively built. From the nodes of
layer i− 1, nodes of layer i are built as follows. For each node u = (u1, u2) of
layer i− 1, arcs outgoing from nodes u1 and u2 and labeled by the same value
l are considered. Note that there is only one arc leaving a node u with a given
label. Thus, there are four possibilities depending on whether there are v1 and
v2 such that (u1, l, v1) and (u2, l, v2) exist or not. The action that is performed
for each of these possibilities defines the operation that is performed for the
given layer. For instance, a union is defined by creating a node v = (v1, v2)

and an arc (u, l, v) each time one of the arcs (u1, l, v1) or (u2, l, v2) exists. An

6.4. Parallel Apply 99

u

3

 a

8

 b

2

 d

v

5

 a

3

 c

1

 d

w

3,5

 a

2,1

 d

Figure 6.2: Intersection of two nodes

intersection is defined by creating a node v = (v1, v2) and an arc (u, l, v) when
both arcs (u1, l, v1) and (u2, l, v2) exist. Figure 6.2 gives an example of the
intersection of two nodes. Thus, these operations can be simply defined by
expressing the condition for creating a node and an arc. . We assume that
Function buildArcs&Nodes implements this mechanism and returns the
array of created nodes with its length.

After each layer, the algorithm merges equivalent ordered pairs (x1, x2),
because a lot of them can be created. For instance, consider a node u1 of
the first MDD at layer i with an arc (u1, l, v1) and v2 a node of the second
MDD at layer i + 1. Then, every arc of the second MDD labeled by l and
reaching v2 will provoke the creation of the ordered pair (v1, v2). Function
mergeOrderedPairs is in charge of this task. At last, the computed MDD
is reduced.

Parallelization. Function buildArcs&Nodes can be easily parallelized
by splitting the nodes of the layer according to the number of workers that are
involved. The returned arrays must be merged into one an array of created
nodes. This can be done in parallel, by using the length of each array to
distribute the workload among the workers. Since, an ordered pair of node
can be seen as a signature containing two digits, algorithm paraReduce can
be used for implementing Function mergeOrderedPairs.

Algorithm. Algorithm 13 is a possible implementation of the parallel ver-
sion of Apply.

Complexity. Let mdd1 be the first MDD, mdd2 be the second, n1 (resp.
n2) be the number of nodes of mdd1 (resp. mdd2), and d be the maximum

100 Chapter 6. Parallel Computing

Algorithm 13 Parallel Apply.
Apply(mdd1,mdd2, op,W): MDD

// W is the set of workers
// We assume that each node can access its signature
Define mdd s.t. L[i] is the set of nodes in layer i.
root← createNode(root(mdd1), root(mdd2))

L[0]← {root}
for each i ∈ 1..n do

Partition L[i− 1] into |W | parts: V1, ..., V|W |
L[i]← ∅
parallel for wj ∈ W do

arrj ← wj.buildArcs&Nodes(Vj, op)

Build in parallel L[i] from arr1, ..., arr|W |
parallel for wj ∈ W do

wj.mergeOrderedPairs(L[i])

paraReduce(mdd,W)

return mdd

number of labels of a layer. For any layer, for each node of mdd1 of this layer
and for each node of mdd2 of this layer, a node may be built. In addition, this
created node may have d outgoing arcs. Thus, the complexity of the sequential
apply algorithm is in O(n1n2d). The time complexity of the parallel version
of apply can be divided by the number of workers.

Parallelization difficulties. The data dependencies are controlled by
working by layer. There is no explicit software lock, but objects are created
therefore it is important to manage the memory per worker and independently
from the others. Some false sharings have been observed (See Experiments)
because the array of nodes per layer is shared. It was solved by postponing
as much as possible the access to common cache [?].

6.5 Experiments

Global settings All the experiments have been made on a Dell machine
having four E7- 4870 Intel processors, each having 10 cores with 256 GB of
memory, 16 memory channels and running under Scientific Linux. Each tested
combination is followed by a reduction.

6.5. Experiments 101

Real instances First, we have run the instances from the application part.
The first one named MaxOrder consists of intersecting and applying a symetric
difference between two very large MDDs, the result contains more than 1
million of nodes and 200 millions of arcs. The second one is named Dispersion,
consists of the intersection of three MDDs representing different sum functions.
Curves from Figure 6.3 show the speed-up, i.e. ratio between parallel and
sequential runtimes, for these two problems. As we can see, for these instances,
the speed-up is significant. Thanks to parallel algorithms, we are able to close
previously hard problems in seconds.

Random instances We have also tested many random MDDs generated
by fixing a lower and upper bound on the number of nodes on each layer and
then building the outgoing arcs with respect to some probabilities. This allow
to handle the different sizes of MDDs, like small ones with high density, big
ones with low density, etc.

We have run instances with a high arc density (> 0.60). The number
of variables does not have an impact on the results. Figure 6.3 shows the
application of the parallel intersection between two MDDs. The number of
nodes by layer varies from 20k to 100k and three main curves are presented:

• For 50k-90k and 75k-100k, the speed-up is a straight line from 1 to 16
cores with 1 as coefficient, which corresponds to the number of available
memory channels. Then, it is a line with 0.65 as coefficient. Note that
this comes from the fact that the resulting MDDs are bigger than 70
GB and so the memory channels are saturated.

• For 20k-50k, the speed-up ratio is lower, because the amount of work is
low and thus the time is hardly reducible.

Thanks to these speed-ups, we are able to build MDDs representing very large
constraints in seconds or minutes while hours was required before. This implies
that we can reinforce our model by intersecting constraints as a preprocess
before running the search for solutions.

Remarks. The sequential algorithm is less than 10% more efficient than the
parallel version running with one worker. When some operations are done in
less than one second, our parallel algorithms are slower. An explanation can
be the time needed to create the required memory.

False Sharing. The blue line shows the False sharing problem we had, as
we can see, the algorithm scales until eight workers, then fails to keep a good
speed-up, and finally loses efficiency with the growing number of workers.

102 Chapter 6. Parallel Computing

0 5 10 15 20 25 30
#cores

0

5

10

15

20

25

30
G

a
in

 F
a
ct

o
r

False Sharing
20k-50k
50k-90k
75k-100k
MaxOrder
Dispersion

Figure 6.3: Gain factor value compared to the number of workers.

Dedicated algorithm or more digits? Figure 6.4 compares the complex
algorithm (See Discussion in Section Parallel Reduction) and the method of
the augmentation of digits for the parallel reduction when the values are very
large. The dedicated algorithm outperforms the second method by at most a
factor of 2.5.

0 5 10 15 20 25 30
#workers

0

5

10

15

20

25

30

Sp
ee

d
up

Dedicated algorithm
More digits

Figure 6.4: Very large values management.

6.6. Conclusion 103

Laptop On a simple Macbook pro 2013 using four cores, we observe the
following speed-up:

40 variables 20 values 40 values
5k-100k nodes/layer 3.78 3.37
10k-200k nodes/layer 3.67 3.84

Remark: With some operation that are done in less than one second,
our parallel algorithms are slower. An explanation can be the time needed to
create the required memory.

6.6 Conclusion

A parallel version of the reduction and the apply algorithms for MDDs have
been presented. These algorithms do not need any complex data structure and
are simple to implement. They overcome the common difficulties encountered
when parallelizing a sequential algorithm. Experimental results show that
they accelerate the sequential algorithms by a linear factor according to the
number of involved workers.

Chapter 7

Non-deterministic operation

Contents
7.1 Introduction . 105

7.2 Apply for Non Deterministic 107

7.3 Apply for Deterministic 108

7.1 Introduction

Non deterministic Decision Diagrams are studied since the 90s, and in several
ways. From the simplest form, the NOBDD for Non deterministic Ordered Bi-
nary Decision Diagrams [Finkbeiner 2001], to several restricted versions exists
(k-OBDD, k-IBDD, k-PBDD...) [Bollig 1999].

We consider here Non deterministic Ordered Multi-valued Decision Dia-
gram, the notation NMDD will be used. An NMDD is a rooted, labeled,
directed, acyclic graph, where each node can have an arbitrary number of
outgoing arcs. The main differences with classic MDDs is that NMDDs can
have several outgoing arcs emanating from a node and labeled by the same
value.

A tuple is valid in a NMDD if it exists at least one valid path in the
NMDD, from the root to the valid tt terminal node, labeled by the tuple.
Figure ?? gives an example of NMDD.

The choice of this definition is simple, in constraint programming, prop-
agators like MDD4R or MDDw can already handle such NMDDs without
modification. Thus we can directl apply all the existing CP solvers containing
one of these propagators.

Moreover, NMDD can be smaller than MDD for representing the same
tuples. Consider the MDD from Figure 7.2, this MDD has 7 arcs, but an
NMDD having 6 arcs represents the same tuples.

Automata Finding the minimal NFA (Non deterministic Finite Automa-
ton) starting from a DFA is PSPACE-complete [Jiang 1993], the minimum

106 Chapter 7. Non-deterministic operation

r

a a b

tt

d b c

Figure 7.1: A NMDD. The root node has two outgoing arc labeled by a.

a b

a b a b c

a b b

a b c

Figure 7.2: On the left, an MDD having 7 arcs. On the right, an NMDD
having 6 arcs and representing the same tuples as the MDD on the left.

union or intersection of two NFA is NP-complete [Jiang 1993]. Thus existing
algorithms focus on restricted version of the determinization, for example the
negative-normal RONBDDs accepts only one arc labeled by 0 by node in order
to be able to perform operations.

Some works focus on defining "good" NFA for a given set of words
[Sgarbas 2001], by successively add the words into the NFA and randomly
creating new paths instead of following the existing ones. Such work can
directly be applied to MDD and thus integrated into CP solvers.

Motivations Motivations of this chapter are twofold. First a propagator
defined in chapter 11 needs to intersect an MDD with a NMDD defined by
mapping a cost function over the arcs of an MDD.

Second, NFAs can gain a exponential factor in size over DFAs. Using
MDDs, union of GCSs is exponential on the number of GCS. Using NMDDs,
by simply applying non determinism to the root, then the space required
becomes linear. Figure 7.3 shows an example. This implies that NMDDs
can gain an exponential factor over MDDs too. That’s some of the reason of

7.2. Apply for Non Deterministic 107

(a)

a, b, c

a, b, c

a, b, c

a, b, d

a, b, d

a, b, d

c a, b d

c

c a, b d

a, b d

(b)

a, b, c

a, b, c

a, b, c

a, b, d

a, b, d

a, b, d

Figure 7.3: Union of the two GCSs ({a, b, c}, {a, b, c}, {a, b, c}) and
({a, b, d}, {a, b, d}, {a, b, d}). (a) the result is an MDD. (b) the result is a
NMDD.

why researchers, even in CP [Cheng 2012], want to be able to deal with such
MDDs.

Finally, even if NMDDs have many advantages, they also have same draw-
backs. The negation of an NMDD is an NP-Hard task, while it is trivial for
classical MDD.

Plan This section proposes to work directly with non deterministic MDDs.
Thus an apply operator for non deterministic MDDs that output a non de-
terministic MDD is proposed. Then an apply operator for non deterministic
MDDs that output a deterministic MDD is proposed. Both of these operation
came with some theoretical insight.

7.2 Apply for Non Deterministic

We want to build a NMDD resulting from an operation between two NMDDs.
An easy method is to consider all the combination of arcs with same label. If
a node has 3 arcs labeled by a and the other has 2 arcs labeled by a, then
we are going to try 3*2=6 combinations. Starting from the Apply defined in
chapter 5, we can define an operator for the non deterministic MDDs.

This algorithm build the couple associated to all the combination of arcs
having the same label. For each arc labeled by a value in the first node,
the algorithm need to check each arc labeled by the value in the other node.
Consider a couple of node w = (u, v), with u a node from the first MDD and
v a node from the second MDD. If u has 3 arcs labeled by a and v has 2 arc

108 Chapter 7. Non-deterministic operation

labeled by a, then w is going to build 2 ∗ 3 = 6 arcs labeled by a.
The Algorithm 14 is a possible implementation of this method.
Remark: Non deterministic MDDs are not that easy to handle, thus this

operator can only do operations that do not contain complementation, like
the difference [Amilhastre 2014]. This can be easily seen when we have two
equivalent sub-paths leading to two distinct nodes. One can create an arc
directed to the accepting path while the label of this arc can be used in the
other path.

Complexity The number of couple of nodes that can be processed is bound
by the product of the nodes from both MDDs. A finer grain complexity can
be bound by the sum of the product of the nodes of the same layer in both
MDDs. Let M1 and M2 be two MDDs, the complexity of this operation is
O(|M1| ∗ |M2| ∗ N) with N the complexity of processing a couple of nodes.
The complexity of processing a node is bound by the product of the outgoing
arcs. Let |ω1| (resp. |ω2|) be the maximum number of outgoing arcs from M1

(resp M2), N = |ω1| ∗ |ω2|.

Reduction The reduction of Non deterministic MDDs differs since several
arc out of a node can be labeled by the same value. Thus before comparing
the nodes we need to ensure that their signature is the same. This can be
easily done by first sorting by the label and then by the terminating node.
Note that the reduction operation does not output a canonical representation
anymore.

7.3 Apply for Deterministic

This section proposes to directly determinize the MDD while building it. To
do so, we will group all the terminating extremities of the arcs of a node
labeled by the same value, during the algorithm. Thus the apply operator
consider now couple of set of nodes instead of couple of nodes.

Outgoing arcs In order to build the outgoing arcs, we can iterate over
the arcs of the nodes of each set using the same method as for the classical
apply. Thanks to that the complexity over each node of the set is bound by
its number of arc.

Complexity The maximum number of couple of set of nodes possible is a
product of power set from the nodes of both MDDs. Given two NMDDs M1

and M2, the complexity is bounded by O(2M1 ∗ 2M2 ∗ d ∗ (|M1|+ |M2|). This

7.3. Apply for Deterministic 109

power set can be define by a sum for each layer since a set of nodes contains
only nodes of a same layer. Chapter 8 proposes a method for handling this
complexity by relaxing the operation.

Remark The power set complexity arises the fact that the determinization
of an NFA contains a power set [Rabin 1959].

110 Chapter 7. Non-deterministic operation

Algorithm 14 Generic Non Deterministe All to All Apply Function.
NDApply(mdd1,mdd2, op, V): MDD // L[i] is the set of nodes in layer i.
root← createNode(root(mdd1), root(mdd2))

L[0]← {root}
for each i ∈ 1..r do

L[i]← ∅
for each node x ∈ L[i− 1] do

get x1 and x2 from x = (x1, x2)

if V [i] = nil then
V [i]← values(ω+(x1) ∪ ω+(x2))

for each v ∈ V [i] do
if 6 ∃(x1, v, y1) ∈ ω+(x1) then

if 6 ∃(x2, v, y2) ∈ ω+(x2) ∧ op[0] then
addArcAndNode(L, i, x, v, ff)

else
for each e2 = (x2, v, y2) ∈ ω+(x2) do

if op[1] then addArcAndNode(L, i, x, v, ff, y2)

else
for each e1 = (x1, v, y1) ∈ ω+(x1) do

if 6 ∃(x2, v, y2) ∈ ω+(x2) ∧ op[2] then
addArcAndNode(L, i, x, v, y1, ff)

else
for each e2 = (x2, v, y2) ∈ ω+(x2) do

if op[3] then addArcAndNode(L, i, x, v, y1, y2)

merge all nodes of L[r] into t
pReduce(L)

return root

7.3. Apply for Deterministic 111

Algorithm 15 Generic Non Deterministic All to One Apply.
NDApply(mdd1,mdd2, op, V,Width): MDD // L[i] is the set of nodes in layer
i.
root← createNode({root(mdd1)}, {root(mdd2)})
L[0]← {root}
for each i ∈ 1..r do

L[i]← ∅
for each node x ∈ L[i− 1] do

get s1 and s2 from x = (s1, s2)

E1 ← ∪xi∈s1ω+(x1)

E2 ← ∪x2∈s2ω+(x2)

if V [i] = nil then
V [i]← values(ω+(X1) ∪ ω+(X2))

for each v ∈ V [i] do
Ev

1 ← |(∗, v, ∗) ∈ E1|
Ev

2 ← |(∗, v, ∗) ∈ E2|
Xv

1 ← |y ∈ (∗, v, y) ∈ E1|
Xv

2 ← |y ∈ (∗, v, y) ∈ E2|
if Ev

1 = ∅ then
if Ev

2 = ∅ ∧ op[0] then
manageWildcardPath(i, w)

createArc(L, i, x, v, w[i])

if Ev
2 6= ∅ ∧ op[1] then
addArcAndNodeSet(L, i, x, v, {}, Xv

2)

else
if Ev

2 = ∅ ∧ op[2] then
addArcAndNodeSet(L, i, x, v,Xv

1 , {})
if Ev

2 6= ∅ ∧ op[3] then
addArcAndNodeSet(L, i, x, v,Xv

1 , X
v
2)

merge all nodes of L[r] into t
pReduce(L)

return root
addArcAndNodeSet(L, i, x, s1, v, s2)

if 6 ∃y ∈ L[i] s.t. y = (s1, s2) then
y ← createNode(s1, s2)

add y to L[i]

createArc(L, i, x, v, y)

Chapter 8

Relaxations

Contents
8.1 Introduction . 113

8.2 Relaxed Creation : Existing Works 115

8.3 Relaxed Creation : New Method 116

8.3.1 Delayed Relax Creation 116

8.3.2 Generalization . 117

8.3.3 Generic merging heuristic 118

8.3.4 States relaxation . 118

8.4 Relaxed Reduction . 118

8.5 Relaxed Combination 119

8.5.1 Relax Apply . 120

8.5.2 Experiments . 123

8.6 Relaxed MDDs : Use 124

8.1 Introduction

MDDs are more and more used in optimization [Andersen 2007, Hadzic 2008].
One of the fundamental reasons is their compression efficiency. For example
in a musical scheduling problem (chapter 18), an MDD having 14.000 nodes
and 600.000 arcs represents 1090 combinations of more than 100 variables.

An advantage of MDDs is that their creation does not necessarily need
the enumeration of all their solutions. In contrary with trees, where each
leaf represent a solution, an MDD can have much less nodes and arcs than
solutions because the paths store the combinations. Usually MDDs can be
built from dynamic programming models and often allow the resolution of
pseudo-polynomial problems.

The three important operations for MDDs are the creation, the reduction,
which ensures that the MDD is as small as possible and canonical, and the

114 Chapter 8. Relaxations

combination of MDDs. Several works focus on these three operations (see Part
I), because they are fundamental for building advanced MDD-based models.

Unfortunately sometimes MDDs are too big to fit in memory, a solution
is to relax these MDDs [Hadzic 2008, Bergman 2011]. A relaxed MDD is an
MDD representing a super set of the solution of the exact (non relaxed) MDD.
The requirement is that these relaxed MDDs have to be smaller than their
exact version. Others objectives of a good relaxation are the quality of the
obtained MDD, the amount of non-solution or in optimization the distance to
the optimal solution.

In this chapter, we study the 3 fundamental operations on relaxed MDDs:

Relaxed Creation. Existing works focus on trying to relax the creation of the
MDD, as said in the Cire’s PhD thesis [Cire 2014b], the relaxed DDs can be
associated to state-space relaxation [Christofides 1981]. These methods build
an MDD from specific problem by relaxing the problem during the creation of
the MDD. In this paper, we provide an improvement of the existing creation
methods. Also, while the relaxation of the MDD creation need the definition of
problem specific functions, we provide in this chapter several generic selection
functions that can be used for many different problems.

Relaxed Reduction. We introduce the relaxation of the reduction operation,
by relaxing the equivalence function of the reduction and giving a generic
method for merging nodes in existing MDDs.

Relaxed Combination. We study the relaxation of the combination of MDDs
and we give two algorithms with different complexities and properties. One
with a quadratic complexity, and another one with a k∗(m1 +m2) complexity.

Finally, the creation of an MDD-based model for solving a problem is rarely
easy, the user has to make choices during this process, and these choices can
drastically change the memory requirement and the quality of the obtained
model. We describe at the end of this chapter different schemes for MDD-
based models building.

Relaxed MDDs definition The MDD of a constraint can be too large to
be represented in computer memory. In order to remedy to this drawback,
several works [Hadzic 2008, Bergman 2011] proposed to use a relaxation of
the MDD. The condition of this relaxation is that the set of solutions of this
relaxed MDD must be a super set Ŝ of the solutions S of the exact MDD, a
super set implies that S ⊆ Ŝ. Thus this MDD must contain all the solutions
of S.

8.2. Relaxed Creation : Existing Works 115

8.2 Relaxed Creation : Existing Works

Node splitting One of the first algorithm building relaxed MDDs
[Hadzic 2008] was define to compile a CSP into relaxed MDDs. This Al-
gorithm, builds an MDD representing the compilation of the constraint in a
top-bottom manner. During this process, it considers nodes as equivalent by
measuring the distance between their partial assignment and allowing a given
threshold. This distance depends on the constraint type.

The algorithm proceed as follow, first an MDD allowing a big threshold in
the distance is built, then this allowed distance is reduced. This algorithm is
a refinement algorithm, and proceeds a Breadth-First Search (BFS) inside the
MDD and splits nodes having incoming paths that are no longer equivalent,
with respect to the allowed distance. If this algorithm proceed to a refinement
with a threshold of zero, then an exact MDD is obtained. Generally the
algorithm stops when a maximum size is reached.

Dynamic Programming relaxation Many works relaxing the creation
operation often consists of relaxing the Dynamic Programming (DP) model
generating the MDD [Bergman 2011]. A dynamic programming model can be
seen as a set of states and a transition function. Relaxed creation methods
using DP start by trying to build the exact MDD for the DP model. In a
top-bottom BFS building layer by layer the MDD, when a given maximum
amount of nodes is reached, then the algorithm merges nodes of a layer by
merging their states from the DP model. This merging function has to ensure
that the newly created nodes generates at least all the combination starting
from the merged nodes states. The state of this new node is a super-state of
the states of the nodes it contains.

This method needs the definition of at least two functions in order to be
used: dp_select and dp_merge. The dp_select function is a heuristic function
who takes as argument the current layer of nodes of an MDD and return the
nodes that have to be merged. The dp_merge heuristic function defines the
procedure of state merging of the node, this heuristic has to ensure that the
sub-MDD of the resulting node contains all the paths from the sub-MDD of
the merged nodes. This function depends on the state representation of the
problem.

Max width Several works propose to bound the width of a layer (i.e. the
number of nodes of a layer). The main idea behind this method is to have
upper-bounds on the maximum memory and time used during the process.
This Maximum width constraint can be ensured by both the node splitting
and dynamic programming creation methods.

116 Chapter 8. Relaxations

a b ab

ab

a'b'' b'a''

Figure 8.1: This is the classical method, the two states in left are merged,
leading to the middle nodes, and then the outgoing edges are created.

8.3 Relaxed Creation : New Method

8.3.1 Delayed Relax Creation

Main idea As we mention, the Dynamic Programming relaxation performs
two steps. The first step is to find nodes in the current layer using the select
function and then merge these nodes using the merge function. The second
step is to build the arcs directed to the next layer. See Figure 8.1.

However, in MDD theory, the merge of two nodes is performed by the
reduction operation and has a different meaning. The reduction operator
merges equivalent nodes by considering their outgoing arcs. This kind of
algorithms perform either a BFS in a bottom-up fashion, or a DFS and merge
nodes during the post-visit. In these algorithms, the outgoing arcs (label,
terminating node) are considered. Two nodes are equivalent iff they have the
same list of outgoing arcs.

The main idea of this new method is to consider the outgoing arcs for the
dp_select and dp_merge in addition to the node state. To do so, we have to
reverse the process of relaxation.

Delayed Relax Creation (DRC) During the process of a layer, the cre-
ation of the outgoing arcs is firstly performed, then if in the current layer there
is more than the maximum allowed number of nodes, then the dp_select func-
tion chooses nodes. These nodes are merged and the dp_merge function is
applied to their child nodes.

Advantages This delayed reduction, has an access to more information
when the dp_select and dp_merge function are called. Thanks to these in-
formation, we can perform better relaxation. These advantages are:

8.3. Relaxed Creation : New Method 117

• The dp_select function has access to much more information. The out-
going arcs, their labels and the state on wich they are directed. Using
these information can lead to better heuristics.

• The dp_merge function is applied to the child nodes, this lead to a
better state relaxation (See Figure 8.2).

The differences of this method is presented in Figure 8.2. We can see that
the states of the child nodes are different from the previous method Figure
8.1.

a b

a

a'

b

b'

ab

a' b'

Figure 8.2: Delayed Relax Reduction method: from left to right, first the arcs
are created, then the nodes are merged. We can see that no residual states
are added to the nodes.

Definition 3 A residual state is the part of a state of a node due to the merge
of the parent node, which would not exists if there is no merge.

In Fig. 8.1, the state b” is a residual state of the node with state a’.

8.3.2 Generalization

The idea of the Delayed Relax Creation is to build the layer i and then merge
the nodes of the layer i-1. We can unfold this process until the wanted depth.

118 Chapter 8. Relaxations

Definition 4 DRC(k) unfold k layers before merging the nodes.

If k is greater or equal to the number of variables, then the merges of the
nodes leads to an exact union.

8.3.3 Generic merging heuristic

While specific dp_select and dp_merge function are required in general for
each specific constraint, some general scheme for state representation, selec-
tion and merging heuristic can be presented.

Set of values A simple state representation is often a set of values. A set of
values can represent the state of many problem, for example Independent set
or allDifferent etc. For this set of value, we can define as dp_merge function
the classic union operation for set. For the dp_select function, we can use the
minimum number of difference between the set.

8.3.4 States relaxation

The existing relaxation of Dynamic Programming model merge node states
during the building. another method is to build an exact MDD by using a
relaxed state function. For example on a relaxed version of a graph problem,
or even using methods like bit scaling.

8.4 Relaxed Reduction

The reduction operation of MDDs is based on the equivalence function. This
operation merges equivalent nodes until a fix point is reached. After the
application of a reduction, an MDD is said to be reduced.

Let ω+(u) be the list of outgoing edges of node u. Let SG(n) be the sub-
graph starting from the node n. Let |G|p be the number of paths of the MDD
G from the root node to the true terminal node.

Definition 5 Two nodes u and v are equivalent, denoted by u ≡ v iff:

|ω+(u)| = |ω+(v)| ∧ ∀(u,w, a) ∈ ω+(u), ∃(v, w, a) ∈ ω+(v) (8.1)

Let u, v be nodes. Let n be the node resulting from the merge of u and v:

u ≡ v =⇒ SG(u) = SG(v) = SG(n)

8.5. Relaxed Combination 119

Union of nodes: We define the union of two nodes ∪ as the application of
the union operator on the MDDs starting from these two nodes. Let u and v
be nodes and n be the resulting node from the union of u and v:

SG(u ∪ v) = SG(n)

Property 2 The union of two nodes from layer i in an MDD cannot increase
the number of nodes in the layers 1..i. But it can increase or decrease the
number of nodes of the layer i+1..n.

Property 3 The union of two nodes u and v from layer i in an MDD can
increase the number of paths to tt starting from the ancestor nodes of u and
v.

Relaxed equivalence ≈: We introduce a relaxed version of the equivalence,
this relation does not necessarily come from Definition 5 anymore, and can
be defined by the user. An MDD is relax reduced iff a fix point is reached for
the relaxed equivalence (≈).

While it was easy to merge equivalent nodes, mergin relax equivalent nodes
is more complicated, because they can have arcs labeled by the same value
and directed to different nodes. So we need to use the union of nodes (∪) as
merging method.

Relaxing an existing MDD The definition of the relaxed equivalence
function will define the order of application of the union. Consider that the
user want to reduce the number of nodes in each layer in a top-bottom fashion.
We can apply the union operation to the nodes from layer 1 to n while the
number of nodes of the considered layer is greater than the wanted amount.
Since property 2 ensures that the union of nodes from layer i cannot increase
the number of nodes of the layer from 1 to i, then the algorithm is valid.

We now have a simple method allowing the relaxation of exact MDDs.
The relaxation of an exact MDD is an interesting question and allow us to
build different kind of relaxed MDD-based models. The section 8.6 gives an
application for such relaxation.

8.5 Relaxed Combination

The combination of MDDs is mainly done by the Apply operator. This opera-
tor can perform the intersection, the union, the symmetric difference of MDDs
and many other operations. Several implementations exist for this operator

120 Chapter 8. Relaxations

(see chapter 5), they are based either on a Boolean function or on the graph
structure.

The main idea of these algorithms is to build the resulting MDD by build-
ing each node of the resulting MDD in function of nodes from the operand
MDDs. Precisely while processing m = m1 ∩m2, the algorithm associates to
each node from m a couple of nodes from m1 and m2.

Simple idea A simple relaxed version of the Apply algorithm is to build
the resulting MDD using a DFS. When the number of nodes of the MDD is
too big, then we apply a relaxed reduction to the current MDD.

The main advantages of a DFS algorithm against a BFS for this relaxation
is that we can have a look at a real part of the MDD. Since, until the first
relaxed merge, the information is exact, and the MDD a sub-graph of the
exact one. Thanks to that we have more information about the general form
of the MDD. One of the drawback of this simple relaxed Apply is that the
time complexity is the same as the exact intersection.

Since this idea has a bad complexity, the next section will introduce an-
other method with a better complexity.

8.5.1 Relax Apply

The relaxation of an MDD is based on the union operation, so we will make
the union of the operands during the operation.

The classical Apply operator has usually two nodes as operands, one node
from the first MDD and another one from the second MDD. The Apply opera-
tor then build the arc function of these two nodes. The goal of this relaxation
is to be able to merge nodes during the process of the apply.

To do so, the relaxed Apply algorithm does not consider couple of nodes
from both MDDs, but couple of sets of nodes. When to nodes of the Apply
process have to be merged, then we can build a first set containing both nodes
from the first MDD, and a set containing both nodes from the second MDD.
When the nodes to merge are already couple of set of nodes, we make the
union of these set from both MDDs.

The Apply algorithm (section 5.2, graph based apply) can be modified
in this way. During the Processing, if to many couples of sets of nodes are
created in the currently processed layer, then using an equivalence function
(select), we choose couples and merge them by making the union of their
corresponding sets.

8.5. Relaxed Combination 121

r1

0

0

1

1

2

2

0

0

1

1

2

2 0 1

3

2 0 1

tt

1 2 0 1 2 0 1 0

r1

0

0

1

1

2

2

1

1

2

2 2

0

0 1 0

tt

0 20 1 1 2

Figure 8.3: On the left an MDD representing the sum between [1,3]. On the
right, an MDD representing the no two consecutive same values constraint.

Example:
Consider the two MDDs from Figure 8.3. The exact intersection is the

MDD on the left of Figure 8.4.
We process the relax intersection of these two MDDs by bounding the

maximum number of nodes at a layer to be lower or equal to 4. In order
to perform the intersection, we build the couple (r1,r2) of nodes. Using
this couples we can generate the couples (0,0) using the arcs 0, (1,1) using
the arcs labeled by 1 and (2,2) using the arcs labeled by 2. We have less
than four nodes, thus we can continue. From the couple (0,0), we build
the couple (1:1) by following the arcs labeled by 1 and (2:2) by following
the arcs labeled by two. Note that the couples (1,1) and (2,2) are at a
different layer as the one previsouly defined. Using the other couples we
build (1,0), (3,1), (3,2) and (2,0). We have 6 couples, thus we have to
merge some of them.

The choice of the nodes to merge is very important. First, as shown
in Figure 8.4, the couples (3,2) and (3,1) are equivalent, but we cannot
know until we build the outgoing arcs. Moreover, the choice is often made
using the cost of the current state, but we do not have any cost in this
example.

Consider that you want to enforce more the non consecutive constraint
than the sum constraint. Thus we allow to merge randomly couples having
the same second nodes. Applied to our couples (1,0), (1,1), (2,0), (2,2),
(3,1) and (3,2), this can lead to merging the couples (1,0) and (2,0) into

122 Chapter 8. Relaxations

r

0:0

0

1:1

1

2:2

2

1:1

1

2:2

2

1:0

0

3:21

2 1

2:0

0

tt

0 2 0 1 1 2 0 1

r

0:0

0

1:1

1

2:2

2

13:1

1

2:2

2

12:0

0

3:2

21 0

tt

0201 12 0

Figure 8.4: On the left, the exact intersection of the two MDDs from Figure
8.3. On the right, a relax version of the intersection.

({1,2},0). We have still 5 couples, thus we select again and choose (1,1)
and (3,1), giving ({1,3},1). Our couples are now ({1,2},0), ({1,3},1), (2,2)
and (3,2).

Starting from couples ({1,2},0), the possible values outgoing from
nodes in {1,2} are {0,1,2} from 1 and {0,1} from 2. We perform the
union of the possible label to obtain {0,1,2}. Intersecting with the node
0 from the second MDD build the arcs labeled by 1 and 2 directed to tt.

The global result is the right MDD in Figure 8.4. As we can see, in
this MDD, no two consecutive values are the same, but the sum are no
longer between 1 and 3.

The main advantage of this method is that a relaxed MDD is build on the
fly, and the time complexity is less than the exact computation.Let m1 and
m2 be the operands of the operation, if the maximum width is one, then the
complexity is linear on the operands O(|m1|+ |m2|), if there is no maximum
number of nodes, then time complexity is quadratic over the operands O(|m1|∗
|m2|), finally if the maximum size allowed in a layer is k, then the complexity
is : O(k(|m1|+ |m2|)).

See Algorithm 16 for a possible implementation of this algorithm.

Remark Since the number of created nodes at layer i+1, |L[i+1]| ≤ |L[i]|∗d,
then we can use the same delayed fusion for the addArcAndNode as for the
usual Apply. We first build all the nodes at layer i, then merge the equivalent
ones. If needed, after the exact merge, we merge relax equivalent nodes.

8.5. Relaxed Combination 123

Another remark We can efficiently merge equivalent nodes by sorting them
in the same manner as the reduction algorithm. By first indexing the couple
of sets by the first node of the first set, then the second one etc... when a node
is alone in an index, it cannot be merged with any other node. When two
nodes are in the same cell and all the nodes of their sets have been visited,
then we can merge them. This algorithm is linear.

Select The relax version of the Apply needs the definition of a relax equiva-
lent function (select) which chooses the non equivalent nodes to merge. Note
that this function can be used either in the fly as defined in the algorithm,
or after building the whole layer and so it has all the nodes as argument and
return a set of set of node where each set of nodes have to be merge.

Last select function. The last relax equivalent function return always
the kth nodes of the layer to be merge with the > k nodes.

Randselect function. The rand function choose uniformly between the
k first nodes.

Remark Obtaining a relax MDD from an existing one can be also seen as
relax intersecting an MDD with itself.

Non deterministic The Apply for non deterministic MDDs presented in
chapter 7 is close to this algorithm. Moreover, this algorithm can be applied to
non deterministic MDDs allowing to deal with their exponential complexity.
This can be done by either merging nodes, or by splitting the set into smaller
one. For example, do not allowing more than k nodes in a set.

8.5.2 Experiments

Consider the following problem, we have 2 MDDs and we aim at building the
relaxation of the intersection of these two MDDs.

We have tried to change both the maximum layer size and the select
function. The Fig. 15.3 shows the results.

In the left table, the first MDD is fully included in the second one, the
exact intersection has 2775 nodes and 3773 arcs. In the right table, the first
MDD is not at all included in the second one, the exact intersection has 0
node and 0 arc.

First, this example shows that the way we merge nodes has a strong impact
on the number of created solution.

The last select shows that we should avoid merging too much nodes
on the same node, otherwise we are going to accept everything. Thus we
completely lost our information.

124 Chapter 8. Relaxations

Also, thank to this relaxed apply algorithm, we are able to build relaxed
version of MDDs defined by combination of others.

Width last Rand
90 157515761 11822467
200 6102219 186531
400 2456238 15497
exact 1000 1000

Width last Rand
100 851331 0
200 630 0
400 0 0
exact 0 0

Figure 8.5: Number of solutions for the Last and Random heuristics of selec-
tion of node on small instances.

8.6 Relaxed MDDs : Use

While the previous sections presented methods for building relaxed MDDs,
the final user will have to choose between several possibilities while building
its own model. This section describes the different opportunities for the final
user to build its own MDD-based models.

Example For modeling purpose, consider the need of performing the inter-
section of two MDDs. Formally we want to define:

Mr = M1 ∩M2 (8.2)

But while performing these intersection, either the time is too long or the
memory is overloaded. That’s why the modeler has to relax this intersection.

From this intersection, we can decide to either relaxing the resulting MDD
during its creation, to build a relaxed version of M1 and/or M2 and then per-
form an intersection while having an upper-bound of the size of the resulting
MDD etc.

When to relax The relaxation of an MDD can be done at different moment,
during its creation, after its creation, during the combination. When it is
possible, we can build an MDD and relaxing part that are less useful than
other, for example in optimization, we can relax part of the MDD where the
cost is bad.

Remark: Relaxing an MDD after its creation generally implies that we
want to use it for another combination.

8.6. Relaxed MDDs : Use 125

Who to relax Choosing the MDDs to relax is important, for example in
the MaxOrder problem, a problem of text generation from a corpus avoiding
plagiarism, two MDDs are involves, one containing all the Markov sequences
from a corpus, and the other containing all the plagiarism sequences. Relaxing
the Markov MDD will allow the generation of sequences which are not define
from the Markov matrix of the corpus, but this relaxation can be considered
as better than generating plagiarism sequences. Such choices are made by the
authors of the models.

Another reason of relaxing an operand MDD is that this MDD is too huge
to fit in memory. When performing an intersection, we can either relaxing the
MDD which is currently building, or we can relax one of several operands.

When and who Using the previous example, Mr = M1 ∩M2, we have 4
general choices:

• Relax Mr during its construction (relax combination).

• Relax Mr after its construction (relax reduction).

• Relax M1 (and/or M2) during the construction (relax construction).

• Relax M1 (and/or M2) after the construction (relax reduction).

The choice between these options depend on the possibility of representing
these MDDs in memory. But any choice will impact on the resulting MDD.

126 Chapter 8. Relaxations

Algorithm 16 Generic Relax Apply.
RelaxApply(mdd1,mdd2, op, V,Width): MDD // L[i] is the set of nodes
in layer i.
root← createNode({root(mdd1)}, {root(mdd2)})
L[0]← {root}
for each i ∈ 1..r do

L[i]← ∅
for each node x ∈ L[i− 1] do

get s1 and s2 from x = (s1, s2)

E1 ← ∪xi∈s1ω+(x1)

E2 ← ∪x2∈s2ω+(x2)

if V [i] = nil then
V [i]← values(ω+(X1) ∪ ω+(X2))

for each v ∈ V [i] do
Ev

1 ← |(∗, v, ∗) ∈ E1|
Ev

2 ← |(∗, v, ∗) ∈ E2|
Xv

1 ← |y ∈ (∗, v, y) ∈ E1|
Xv

2 ← |y ∈ (∗, v, y) ∈ E2|
if Ev

1 = ∅ then
if Ev

2 = ∅ ∧ op[0] then
manageWildcardPath(i, w)

createArc(L, i, x, v, w[i])

if Ev
2 6= ∅ ∧ op[1] then
addArcAndNodeSet(L, i, x, v, {}, Xv

2)

else
if Ev

2 = ∅ ∧ op[2] then
addArcAndNodeSet(L, i, x, v,Xv

1 , {})
if Ev

2 6= ∅ ∧ op[3] then
addArcAndNodeSet(L, i, x, v,Xv

1 , X
v
2)

merge all nodes of L[r] into t
pReduce(L)

return root
addArcAndNodeSet(L, i, x, s1, v, s2)

if 6 ∃y ∈ L[i] s.t. y = (s1, s2) then
if Width > |L[i]| then

y ← createNode(s1, s2)

add y to L[i]

else
y ← select(L[i])
y.set(y.s1 ∪ s1,y.s2 ∪ s2)

createArc(L, i, x, v, y)

Chapter 9

Sampling

Contents
9.1 Introduction . 127

9.2 Definitions . 129

9.2.1 Probability distribution 129

9.2.2 Markov chain . 130

9.3 Sampling and MDD . 131

9.3.1 PMF and Independent variables 131

9.3.2 Markov chain . 134

9.3.3 Incremental modifications. 139

9.4 Experiments . 139

9.4.1 PMF constraint and sampling 140

9.4.2 Markov chain and sampling 141

9.4.3 Big Number generation 142

9.5 Conclusion . 142

9.1 Introduction

For solving some automatic generation problems, sampling from a knowledge
data set is used to generate new data. Often, some additional control con-
straints must be satisfied. One approach is to generate a vast amount of
sequences for little cost, and keep the satisfactory ones. However, this does
not work well when constraints are complex and difficult to satisfy. Thus,
some works have investigated to integrate the control constraints into the
stochastic process.

For instance, in text generation, a Markov chain, which is a random pro-
cess with a probability depending only on the last state (or a fixed num-
ber of them), is defined from a corpus [Jurafsky 2014, Papadopoulos 2014,
Papadopoulos 2015]. In this case, a state can represent a word, and such a

128 Chapter 9. Sampling

process will generate sequences of words, or phrases. It can be modeled as
a directed graph, encoding the dependency between the previous state and
the next state. Then, a random walk, i.e. a walk in this graph where the
probability for choosing each successor has been given by the Markov model,
will correspond to a new phrase. Such a walk corresponds to a sampling
of the solution set while respecting the probabilities given by the Markov
chain. This process generates sequences imitating the statistical properties of
the corpus. Then, the goal is to be able to incorporate some side constraints
defining the type of phrase we would like to obtain. For example, we may want
to only produce sequences of words that contains no subsequence belonging
to the corpus, longer than a given threshold, in order to limit plagiarism
[Papadopoulos 2014].

Such Markov models have long been used to generate music in the style
of a composer [Brooks 1957, Papadopoulos 2014]. The techniques of Markov
constraints have been introduced to deal precisely with the issue of generating
sequences from a Markov model estimated from a corpus, that also satisfy non
Markovian, user defined properties [Pachet 2011, Barbieri 2012, Roy 2013].

Hence, there is a real need for being able to sample some solutions while
satisfying some other constraints.

The idea of this chapter is to represent the corpus dependencies and the
additional constraints by an MDD and develop sampling algorithms dealing
with the solution set represented by this MDD.

Papadopoulos et al. have designed an algorithm which can be applied to
a regular constraint [Papadopoulos 2015]. However, the paper is complex
because it is a direct adaption of the powerful and general belief propagation
algorithm and requires the definition of a regular constraint.

This chapter proposes a simpler solution defined on a more general data
structure (the MDD), which may represent any regular constraint, but also
different constraints (see chapter 4. In addition, it shows how to apply it
for any kind of samplings and not only on Markov samplings. Thus, instead
of developing ad-hoc algorithms or forcing the use of regular constraints, we
propose a more general approach that could be used for a large range of
problems provided that we have enough memory for representing the MDD.

However, combining samplings and MDDs is not an easy task. Consider,
for instance, that we have a very simple MDD involving only two variables
x1 and x2 whose values are a and b and that it represents the three solutions
S = {((x1, a), (x2, a)), ((x1, a), (x2, b)), ((x1, b), (x2, b))} (Fig. 9.1). Assume
that we want to sample uniformly the solution set. In other words, we want
to randomly select one solution with an equal probability for each solution.
This can easily be done by randomly selecting a solution in S. Since there
are 3 solutions, any solution has a probability of 1/3 to be selected. The issue

9.2. Definitions 129

a b

a b b

Figure 9.1: A simple MDD.

with MDDs is that they compress the solution set, so picking a solution with a
uniform probability is not straightforward. For instance, if we randomly select
the first value of the first variable and if we randomly select the value of the
second variable then the selection is not uniform, because we are going to select
more often the solution ((x1, b), (x2, b)) than the others. This problem can be
solved by computing the local probabilities of selecting a value according to
the probabilities of the solutions containing that value.

Furthermore, this chapter studies the case where the probabilities of values
are not the same and considers Markov sampling, that is sampling where
instead of considering the probability of selecting one value, we consider the
probability of selecting a sequence of values.

Plan This chapter is organized as follows. First it recalls some definitions
about probability distribution and Markov chain. Then, it proposes some
algorithms for sampling the solution set of an MDD while respecting the
probabilities given by a distribution, that can be a probability mass function
or a Markov chain. Finally, it presents some experiments on the geomodelling
of a petroleum reservoir, on the generation of French alexandrines based on the
famous La Fontaine’s fables and on the generation of huge random number.

9.2 Definitions

9.2.1 Probability distribution

We consider that the probability distribution is given by a probability mass
function (PMF), which is a probability density function for a discrete random
variable. The PMF gives for each value v, the probability P (v) that v is taken:

130 Chapter 9. Sampling

Given a discrete random variable Y taking values in Y = {v1, ...vm} its
probability mass function P: Y → [0, 1] is defined as P (vi) = Pr[Y = vi] and
satisfies the following condition: P (vi) ≥ 0 and

∑m
i=1 P (vi) = 1.

Property 4 Let fP be a PMF and consider {xi} a set of n discrete inte-
ger variables independent from a probabilistic point of view and associated
with fP that specifies probabilities for their values. Then, the probability of
an assignment of all the variables (i.e. a tuple) is equal to the product of
the probabilities of the assigned values. That is ∀i = 1..n , ∀ai ∈ D(xi)

P (a1, a2, ..., an) = P (a1)P (a2)...P (an).

9.2.2 Markov chain

A Markov chain1 is a stochastic process, where the probability for state Xi, a
random variable, depends only on the last state Xi−1. A Markov chain pro-
duces sequence X1, ..., Xn with a probability P (X1)P (X2|X1)...P (Xn|Xn−1).

Property 5 Let PM be a Markov chain and consider a set of n discrete in-
teger variables associated with PM that specifies probabilities for their values.
Then, ∀i = 1..n , ∀ai ∈ D(xi) P (a1, a2, ..., an) = P (a1)P (a2|a1)...P (an|an−1).

Several methods can be used to estimate the Markov chain from a corpus,
like the maximum likehood estimation [Jurafsky 2014]. This work is indepen-
dent from such methods and considers that the Markov chain is given.

Sampling a Markov chain can be simply and efficiently done by a random
walk (i.e. a path consisting of a succession of random steps) driven by the
distribution of the Markov chain. If we need to build a finite sequence of length
k, then we perform a random walk of k iterations using the given distribution.

Example:
ConsiderM , the Markov chain in Fig. 9.2 and an initial probability of

0.6 for a and 0.4 for b. If we applyM on two variables x1 and x2, then the
probability of the tuple (a, a) is P (x1, a)P ((x2, a)|(x1, a)) = 0.6 × 0.9 =

0.54. The probabilities of the four possible tuples are given in Fig. 9.2.
The sum of the probabilities is equal to 1.

1Order k Markov chains have a longer memory: the Markov property states that
P (Xi|X1, ..., Xi−1) = P (Xi|Xi−k, ..., Xi−1). They are equivalent to order 1 Markov chains
on an alphabet composed of k-grams, and therefore we assume only order 1 Markov
chains.[Papadopoulos 2015]

9.3. Sampling and MDD 131

\ a b
a 0.9 0.1
b 0.1 0.9

Tuple Probability
aa 0.54
ab 0.06
ba 0.04
bb 0.36

Figure 9.2: Markov chain for two variables. The starting probabilities are
0.6 for a and 0.4 for b.

9.3 Sampling and MDD

This section aims at sampling the solution set of an MDD while respecting the
probabilities given by a distribution, that can be a PMF or a Markov chain.

Let M be an MDD whose n variables are associated with a distribution
that specifies the probabilities of their values. For sampling the solutions
of M , we associate with each arc a probability, such that a simple random
walk from the root node to tt according to these probabilities will sample the
solution set of M while respecting the probabilities of the distribution of M .

First, we consider that the distribution of M is given by a PMF and that
the variables of M are independent from a statistical point of view. Then, we
will consider that we have a Markov chain for determining the probability of
a value to be selected.

9.3.1 PMF and Independent variables

If the distribution associated with M is defined by a PMF fP and if the vari-
ables of M are independent from a statistical point of view, then we associate
with each arc e a probability P (e). From Property 12 we know that the
probability of a solution (a1, ..., an) must be equal to Πn

i=1P (ai).
We could be tempted to define P (e) as the value of fP (label(e)) where

label(e) is the label (i.e. value) associated with e. However, this is not exact
because the MDD usually does not contain all possible combinations of values
as solutions. For instance, consider the example of Fig. 9.1 with a uniform
distribution. If all probabilities are equivalent then each solution must be able
to be selected with the same probability, which is 1/3 since there are three
solutions (a, a), (a, b) and (b, b). Now, if we do a random walk considering
that the probability of each arc is 1/2 then we will choose with a probability
1/2 the solution (b, b) which is incorrect. The problem stems from the fact
that the probabilities of the higher layers are not determined according to the
probabilities of solutions that they can reach while it should be the case. The

132 Chapter 9. Sampling

choice (x1, a) allows to reach 2 solutions and (x1, b) one. So, with a uniform
distribution the probability of choosing a for x1 should be 2/3 while that of
choosing b should be 1/3.

Definition 6 The partial solutions that can be reached from a node n in an
MDD are defined by the paths from n to tt.

In order to compute the correct values, we compute for each node n the
sum of the original probabilities of the partial solutions that we can reach from
n. Then, we renormalize these values in order to have these sums equal to 1

for each node. For instance, for the node reached by traversing the first arc
labeled by a in Fig. 9.1, the sum of the original probabilities is 1/2 + 1/2 = 1,
so the original probabilities are still valid. However, for the node reached by
traversing the arc from the root and labeled by b, the sum of the original
probabilities is 1/2, so half of the combinations are lost. This probability is
no longer valid and new values must be computed.

The sum of the original probabilities of the partial solutions that can be
reached from a node is defined as follows:

Property 6 Let M be an MDD defined on X and fP a PMF associated with
M . Let n be any node of the MDD and A be any partial instantiation of X
reaching node n. The sum of the original probabilities of the partial solutions
that can be reached from n is v(n) =

∑
s∈S(n) P (s|A), where S(n) is the set

of partial solutions that we can reach from n and P (s|A) is the probability of
s under condition A. The probability of any arc e = (n′, n, a) is defined by
P (e) = fP (a)× v(n).

proof: By induction from tt. Assume this is true at layer i + 1. Let n′ be
a node of layer i, n a node in layer i + 1 and e = (n′, n, a) an arc. We have
P (e) = fP (a)× v(n), that is P (e) = fP (a)×

∑
s∈S(n) P (s|A), where A is any

partial instantiation reaching node n. So for node n′ we have:
v(n′) =

∑
e∈ω+(n′) P (e), where ω+(n′) is the set of outgoing arcs of n′

v(n′) =
∑

e∈ω+(n′) fP (label(e)) ×
∑

s∈S(n) P (s|A). Note that A is any partial
instantiation reaching node n, so it can go through e. So we have
v(n′) =

∑
s∈S(n′) P (s|A′) where A′ is any partial instantiation reaching node

n′. �

The correct probabilities can be computed by a bottom-up algorithm and
a top-down algorithm. First, we consider the second to last layer and we
define the probability P of an arc labeled by a as fP (a). Then, we directly
apply Property 6 from the bottom of the MDD to the top: once the layer
i + 1 is determined, we compute for each node n′ of the layer i the value

9.3. Sampling and MDD 133

v(n′) =
∑

e∈ω+(n′) P (e) =
∑

e∈ω+(n′) fP (label(e))× v(n). Once the bottom-up
part is finished, we normalize the computed values P in order to have v(n) = 1

for each node n. We use a simple top-down procedure for computing these
values.

Example:
Fig. 9.3 details this process. The left graph simply contains the proba-

bility of the arc labels. The middle graph shows the bottom-up procedure.
For instance, we can see that the right arc outgoing from the source has
a probability equal to 1/2 × 1/2 = 1/4. Thus a normalization is needed
for the root because the sum of the probabilities of the outgoing arcs is
1/2 + 1/4 = 3/4 < 1. The right graph is obtained after normalization.

a,1/2 b,1/2

a,1/2 b,1/2 b,1/2

a,1/2 b,1/4

a,1/2 b,1/2 b,1/2

a,2/3 b,1/3

a,1/2 b,1/2 b,1

Figure 9.3: Sampling from a simple MDD. The probability of a and b are 1/2.

Note that the normalization consists of computing the probability accord-
ing to the sum of the probabilities. If P (e) is the current value for the arc
e = (u, v, a) and T is the sum of the probability of the outgoing arcs from u,
then the probability of e becomes P (e)/T .

This step can be avoided in practice by computing such normalized values
only when needed.

Algorithm computeMDDProbabilities can be described as follows:

1. Set v(tt) = 1; For each node v 6= tt, in a Breadth First Search (BFS) in
bottom-up fashion:

(a) Compute v(n) the sum of the original probabilities of the outgoing
arcs of n.

(b) Define the probability of each incoming arc e of n labeled by a as
P (e) = fP (a)× v(n)

134 Chapter 9. Sampling

2. For each node in a BFS top-down fashion, normalize the probabilities
of the outgoing arcs.

During this algorithm, each sum is calculated once for each node during
the bottom up processing, and the normalization is performed once for each
arc. The final complexity is O(|E|+ |V |).

a,1/3 b,2/3

a,1/3 b,2/3 b,2/3

a,1/3 b,4/9

a,1/3 b,2/3 b,2/3

a,3/7 b,4/7

a,1/3 b,2/3 b,1

Figure 9.4: Sampling from a simple MDD. The probability of a is 1/3 and it
is 2/3 for b.

Example:
Fig. 9.4 gives an example of the running of this algorithm when the

probabilities are not uniform.

9.3.2 Markov chain

As in the previous section, our goal is to associate each arc with a prob-
ability and then sample the solution set by running a simple random walk
according to these probabilities. The second method we obtain is equiva-
lent to the one proposed by Papadopoulos et al. for the regular constraint
[Papadopoulos 2015]. However, their method is complex and the propagation
of the regular constraint costs more memory than the one of an MDD (see
chapter 10).2

It is more difficult to apply a Markov chain than a PMF because in a
Markov chain the probability of selecting a value depends on the previous

2In addition, our methods are quite simpler to understand since they do not require the
use of belief propagation.

9.3. Sampling and MDD 135

selected value, that is, probabilities must be defined in order to satisfy Prop-
erty 5. More precisely, in an MDD, a node can have many incoming arcs,
and these different incoming arcs can have different labels. Since the Markov
probability depends on the previous value, the outgoing arcs of that node may
have different probabilities depending on which was the incoming arc label.
Thus, for an arc e, we need to have several probability values depending on
the previous arc that has been used.

There are two possible ways to deal with a Markov chain. Either we
transform the MDD by duplicating nodes in order to be able to apply an
algorithm similar as computeMDDProbabilities or we directly deal with
the original MDD and we design a new algorithm.

\ a b
a 0.9 0.1
b 0.1 0.9

(c) n is split (d) x is split

Figure 9.5: Duplication of a node and computation of probabilities.

9.3.2.1 Duplication of nodes

We can note that the matrix of the Markov chain represents a compression of
nodes. Thus, if we duplicate each node according to its incoming arcs then
we obtain a new MDD for which the probabilities become independent. More
precisely, for each node n we split the node n in as many nodes as there are
different values incoming. This means that each node n has only incoming arcs
having the same label, and so only one value a incoming. Thus, the probability
of each outgoing arc of the duplicated nodes of n can be determined directly
by the Markov matrix.

Example:
For instance, consider the probabilities of Fig 9.2 and that we have a

136 Chapter 9. Sampling

node n with two incoming arcs: one labeled by a an the other labeled by
b; and with two outgoing arcs: one labeled by a an the other labeled by
b (Fig. 9.5). The node n is split into two nodes na and nb. Node na has
only incoming arcs labeled by a, and nb has only incoming arcs labeled
by b ((c) in Fig 9.5). In this case, we can define the probabilities as if we
had independent variables. The probability of the arc (na, x, a), is defined
by P (a|a) = 0.9, the probability of the arc (na, x, b) is P (b|a) = 0.1, the
probability of the arc (nb, x, a) is P (a|b) = 0.1, the probability of the arc
(nb, x, b) is P (b|b) = 0.9. Fig. 9.5 shows the duplication of a node. Note
that when the node x will be split into two nodes xa and xb, then each of
them will have two incoming arcs having the same label, a for xa and b
for xb ((d) in Fig. 9.5).

Let PC(e) be the computed probability of any edge e computed by the dupli-
cation process. We can establish a Property similar as Property 6

Property 7 Let M be an MDD defined on X and PC a probability associated
with each arc. Let n be any of node of the MDD and A be any partial in-
stantiation of X reaching node n. The sum of the original probabilities of the
partial solutions that can be reached from n is v(n) =

∑
s∈S(n) P (s|A), where

S(n) is the set of partial solutions that we can reach from n and P (s|A) is the
probability of s under condition A. The probability of any arc e = (n′, n, a) is
defined by P (e) = PC(e)× v(n).

proof: Similar as for Property 6. �
From this property we can design an algorithm similar as computeMD-

DProbabilities by using PC(e) instead of fP (label(e)) for each arc e. The
drawback of this method is that it can multiply the number of nodes by at
most d, the greatest cardinality domain of variables and also increases the
number of edges which slowdowns the propagators. The next section presents
another method avoiding this duplication.

9.3.2.2 A new algorithm

In order to deal with the fact that the probability of an outgoing arc depends
on the label of the incoming arc without duplicating nodes, we associate each
node with a probability matrix whose row depends on the incoming arc label.
We denote these matrices by P n

M for the node n. For efficiency, we only
have one vector by incoming value instead of the full matrix, and each vector
contains only the probability of the possible outgoing arcs labels. Then, the
same reasoning as previously can be applied. We just need to adapt the
previous algorithm by using matrices instead of duplicating nodes:

9.3. Sampling and MDD 137

Algorithm computeMDDMarkovProbabilities can be described as
follows:

1. For each node n, build the P n
M matrix by copying the initial Markov

probabilities.

2. For each node n, in BFS in bottom-up fashion:

(a) Build the vector vv(n) whose size is equal to the number of different
incoming labels3. Each cell contains the sum of the probabilities of
the row of the corresponding label in the P n

M matrix.

(b) Multiply each incoming arc probability by the cell of vv(n) corre-
sponding to its label.

3. For each node in a BFS top-bottom fashion, normalize the probability
of the outgoing arcs.

Example:
Consider the MDD of Fig. 9.6.a, if we reuse the Markov distribution

of Fig. 9.2 and apply the step 1 of the method, we obtain the MDD in
Fig. 9.6.b.

Now from the MDD in Fig. 9.6.b, we perform the step 2, first (step
2.a) we process the sum of the outgoing probabilities for each node. For
example for node 5 its probability is 0.1 + 0.9 = 1 and for node 3 the sum
is 0.9. For these two nodes the sum does not depend on the incoming arc
label because there is only one. This is not the case for node 4 which has
a sum of 0.1 for the incoming arc labeled by a and 0.9 for the incoming
arc labeled by b. Now we apply step 2.b: we multiply the probability of
the incoming arcs by the sum associated to their label in their destination
node. Consider the arc from node 1 to node 3 and labeled by a, its
probability was 0.9 and the sum of probabilities in its destination node
is 0.9, then its new probability is 0.81. The arc from node 1 to node 4
is labeled by b; its probability was 0.1. For node 4, the sum is 0.9 for
the incoming arc labeled by b, so the new probability of the (1, 4, b) is
0.1 × 0.9 = 0.09. The MDD in Fig. 9.7.a is labeled with the resulting
global probabilities.

Finally, from the MDD in Fig. 9.7.a, we normalize the outgoing arc
probability of each node (step 3). For the root node 0, the outgoing
probabilities sum is 0.54 + 0.364 = 0.904. For its arc labeled by a and
directed to node 1, the probability become 0.54/0.904 = 0.597, this value

3vv(n) represents a vector of v(n).

138 Chapter 9. Sampling

has been rounded to 3 digits for readability. For its arc labeled by b

and directed to node 2, the probability becomes 0.364/0.904 = 0.403

(rounded). Thus, the outgoing sum of probabilities emanating from node
0 becomes 0.597 + 0.403 = 1. The MDD from Figure 9.7.b shows the
normalized probabilities.

0

1

a

2

b

3

a

4

b a

5

b

6

a b a b

0

1

(a,0.6)

2

(b,0.4)

3

(a,0.9)

4

(b,0.1) (a,0.1)

5

(b,0.9)

6

(a,0.9) (b,[a b;0.1 0.9]) (a,0.1) (b,0.9)

Figure 9.6: (a) left: an MDD. (b) right: the MDD whose arcs have their
probability set thanks to the Markov distribution.

0

1

(a,0.54)

2

(b,0.364)

3

(a,0.81)

4

(b,0.09) (a,0.01)

5

(b,0.9)

6

(a,0.9) (b,[a b;0.1 0.9]) (a,0.1) (b,0.9)

0

1

(a,0.597)

2

(b,0.403)

3

(a,0.9)

4

(b,0.1) (a,0.011)

5

(b,0.989)

6

(a,1) (b,[a b;1 1]) (a,0.1) (b,0.9)

Figure 9.7: (a) left: MDD from Fig. 9.6.b whose arcs probability has been
multiplied by the sum of the probabilities of the outgoing arcs from their
destination node. (b) right: the MDD with renormalized probabilities.

Complexities. The complexities of computeMDDMarkovProbabil-
ities algorithm are the following. The number of matrices is |V |, in the worst
case the number of columns and rows is d, so the global memory complexity

9.4. Experiments 139

is O(|V | × d2). The complexity of each of the operations of this method are
all linear over the matrices, so the overall time complexity is O(|V | × d2).
Since the number of columns of the matrix of a node is equal to the number
of outgoing arcs of this node, a more realistic complexity for space and time
is O(|V |+ |E| × d), knowing that in a MDD, |E| ≤ |V | × d. Note that, for a
given layer, nodes can be processed in parallel.

9.3.3 Incremental modifications.

If some modifications occur in the MDD, then instead of reprocessing all the
probabilities we can have an incremental approach. From Step 2 of algo-
rithms computeMDDProbabilities or computeMDDMarkovProba-
bilities, which performs a BFS in bottom-up, we perform the BFS only from
the modified nodes since they are the only ones that can trigger modifications
of the probabilities.

The reset principle used in MDD4R (chapter 10) can also be applied in
this case. In other words, when there are fewer remaining arcs than deleted
arcs, it is worthwhile to recompute from scratch the values.

9.4 Experiments

This chapter is mainly about modeling and the advantage of having general
methods for dealing with different kinds of problems occurring in Artificial
Intelligence. As an example of this advantage, we apply these methods to the
transformation of classical texts written in French into alexandrine texts.This
means that we try to express the same idea as the original text with the same
style but by using only sentences having twelve syllables. The generation of
the text in the same style as an author uses Markov chain that are extracted
from the corpus. An MDD is defined from the corpus and ensures that each
sentence will have exactly twelve syllables. Then, a random walk procedure
is used for sampling the solutions. Thus, the model of this problem is simple
and easy to implement.

We also test these methods on a real world application mainly involving
convolutions which are expressed by knapsack constraints (i.e.

∑
αixi). In

addition, the probability of a value to be taken by a variable is defined by a
probability mass function and outliers are not allowed.

Finally, the problem of generating huge number (number with many digits)
without repetition is considered. This problem is also solved by encoding the
number using MDDs.

The experiments were run on a macbook pro (2013) Intel core i7 2.3GHz

140 Chapter 9. Sampling

with 8 GB of memory. The constraint solver used is or-tools. MDD4R
[Perez 2014] is used as MDD propagator and cost-MDD4R as cost-MDD prop-
agator [Perez 2017c].

9.4.1 PMF constraint and sampling

The data come from a real life application: the geomodeling of a petroleum
reservoir [Pennington 2001]. The problem is quite complex and we consider
here only a subpart. The chapter 19 contains a clear definition of the problem
and its models, a small part is given here.

Given a seismic image we want to find the velocities. Velocities values
are represented by a probability mass function (PMF) on the model space.
Velocities are discrete values of variables. For each cell cij of the reservoir,
the seismic image gives a value sij and from the given seismic wavelet (αk) we
define a sum constraint Cij :

∑22
k=1 αklog(xi−11+k−1j) = sij ± ε. Locally, that

is, for each sum, we have to avoid outliers w.r.t. the PMF for the velocities.
The problem is huge (millions of variables) so we consider here only a very
small part.

We recall that the MDD of the constraint
∑

xi∈X f(xi) is defined as follows.
For the layer i, there are as many nodes as there are values of

∑i
k=1 f(xk).

Each node is associated with such a value. A node np at layer i associated
with value vp is linked to a node nq at layer i + 1 associated with value vq if
and only if vq = vp + f(ai) with ai ∈ D(xi). Then, only values v of the layer
|X| with a ≤ v ≤ b are linked to tt. The reduction operation is applied after
the definition and delete invalid nodes. The construction can be accelerated
by removing states that are greater than b or that will not permit to reach a
during the construction.

Each constraint Cij is represented by MDD(Σai,I(X)) where ai(xi) = αixi
and I is the tight interval representing [sij − ε, sij + ε]. Outliers are avoided
thanks to an MDDProbability constraint defined from the PMF for the veloc-
ities. Pmin is defined by selecting only values having the 10% smaller proba-
bilities, Pmax is defined by selecting only values having the 10% greater proba-
bilities. This constraint is represented by a cost-MDD constraint (see chapter
11). Then, we intersect it with MDD(Σai,I(X)).

We consider 20 Cij. We repeat the experiments 20 times and take the
mean of the results.

For each constraint Cij, the resulting MDD has in average 116,848 nodes
and 1,239,220 edges. More than 320s are needed to compute it. Only 8 ms
are required by computeMDDProbabilities algorithm in average. When a
modification occurs the time to recompute the values are between a negligible
value when the modifications are close to the root of the MDD and 8 ms when

9.4. Experiments 141

another part is modified.
For sampling 100,000 solutions we need 169 ms with the old C rand()

function and 207 ms with the Mersenne-Twister random engine in conjunction
with the uniform generator of the C++ standard library. Note that the time
spends within the rand() function is 15 ms, whereas it is 82 ms with the
second function. Therefore, the sampling procedures require less than 3 times
the time spent in the random function.

9.4.2 Markov chain and sampling

We evaluate the method by generating French alexandrines. That is, sentences
containing exactly twelve syllables. The goal is to transform an existing text
into a text having the same meaning but using only alexandrines. Thus, the
corpus defines a Markov chain and the MDD defines the sentences having
the right number of syllables. The sampling procedure we define generates
solutions of the MDD associated with the Markov chain, that is, sentences
hopefully resembling those of the corpus and having exactly 12 syllables. This
model is simple and easy to implement. Note that we are not able to model this
problem with any other technique, even the one proposed by Papadopoulos
et al, because we need to deal only with sentences having 12 syllables and we
do not know how to integrate this constraint into their model.

First, we use a corpus defined by one of the famous La Fontaine’s fables.
Here is the result we obtain for the fable: La grenouille qui veut se faire aussi
grosse que le boeuf (The Frog and the Ox). We have underlined the syllables
that must be pronounced when it is unclear:

La grenouille veut se faire aussi grosse que le bœuf

Grands seigneurs Tout bourgeois veut bâtir comme un Bœuf
Plus sages Tout marquis veut bâtir comme un œuf
Pour égaler l’animal en tout M’y voila
Voici donc Point du tout comme les grands seigneurs
Chétive Pécore S’enfla si bien qu’elle creva
Seigneurs Tout petit prince a des ambassadeurs

The generation of the MDD with the correct probabilities, that is just
before the random walk, can be performed in negligible computational time.

We also considered a larger corpus: “A la recherche du temps perdu” of
Proust, which contains more than 10,000 words. In this case, the results are
less pertinent and some more work must be done about the meaning of the
sentences. However, the method is efficient in term of computing performance

142 Chapter 9. Sampling

because only 2 seconds are needed to create the MDD with the correct prob-
abilities.

9.4.3 Big Number generation

This third experiment considers the generation of huge numbers (number with
many digits) without repetition.

LetM be the biggest number we want to represent and m be the smallest.
Let b be a base used for representing the number, and B be the number of
digit in base b for representing M .

Let X = (x1, ..., xB) be the set of variables having the values [0, b − 1] as
domain (i.e. the digits in base b). It exists an assignment of the variable in
X such that:

x1 ∗ bB−1 + x2 ∗ bB−2 + ...+ xB ∗ b0 = M (9.1)

Using the construction of an MDD using a sequence of tuples (chapter 4),
we can easily build an MDD representing the number between [m,M] over
the variables of X.

Sampling By applying a PMF law of 1/b on the arc and using the sampling
method for PMF, then we can extract a tuple representing a number n ∈
[m,M]. If we repeat this process then we obtain a generation of huge numbers
with repetition.

In order to have generation without repetition, we need to enforce that once
a number n has been chosen, it cannot be chosen again. To do so, we can
simply remove this number from the MDD by using the in-place tuple deletion
(chapter 5). Then we reapply the sampling algorithm. Thus once a number
n has be chosen and deleted, the next tuple is in the interval [m,n[∪]n,M].

For example, the MDD from Figure 9.8 contains the numbers in the interval
[1352,6293].

9.5 Conclusion

This chapter has presented two methods for sampling MDDs, one using a
probability mass function and another one using the Markov distribution.
These methods require the definition of probabilities for each arc and we have
given algorithms for performing this task.

Thanks to these algorithms we can easily model and implement complex
problems of automatic music or text generations having good performances

9.5. Conclusion 143

 1 6[2,5]

 3 [4,9]

 5 [6,9] [0,9]

 [2,9] [0,9]

[0,1] 2

[0,8] 9

[0,3]

[0,9]

Figure 9.8: The MDD representing the numbers in the interval [1352,6293].

in practice. Moreover, this chapter shows how it is easy to define the model
and to generate solutions.

Part III

MDDs: Constraints and
Propagators

Chapter 10

Table & MDD-based Constraints

Contents
10.1 Introduction . 147

10.2 Related Work . 150

10.2.1 Table Constraint propagators 150

10.2.2 MDD Constraint Propagators 154

10.2.3 Sparse Set . 165

10.3 GAC-4R: Table Propagator 166

10.3.1 GAC-4 . 166

10.3.2 GAC-4R . 167

10.4 MDD4R: MDD Propagator 170

10.4.1 MDD4 Algorithm . 170

10.4.2 MDD-4R . 173

10.4.3 Improvements . 175

10.5 Experiments . 178

10.5.1 CP14 experiments . 179

10.6 Conclusion . 180

10.1 Introduction

In constraint programming, the notion of defining a constraint by the set of
allowed tuples is common and very useful. Those constraints, often named ex-
tensional constraints or table constraints, allow to model any other constraints
and is often defined directly by the users or synthesized from constraints of
sub-problems [Lhomme 2012].

Efficient filtering algorithms for the table constraint are the kernel of
constraint programming solvers and the topic of many research since several
years [Régin 2011, Mohr 1988, Lecoutre 2012a, Lecoutre 2011, Lecoutre 2015,
Bessiere 1997, Demeulenaere 2016, Wang 2016, Verhaeghe 2017,

148 Chapter 10. Table & MDD-based Constraints

x1 x2 x3

1 1 1
1 2 1
2 2 3
3 3 3

Table 10.1: A table containing 4 tuples of 3 values.

Bessière 2005, Lhomme 2005, Xia 2013, Mairy 2012, Régin 2005]. Im-
proving table constraints filtering algorithms is very challenging and still
studied.

Consider an extensional constraint C. Arc-consistency algorithms for C
operate as follows: for each value a in the domain of a variable x, they search
for a combination of values in the current domains of the other variables in
the scope of C that contains (x, a) and satisfies C.

A tuple of C is a combination of values in the domain of the variables
in the scope of C. We say that the tuple is allowed, or a support, when it
appears in the constraint definition. We say that the tuple is valid if and
only if its values appear in the current domains of the respective variables.
Note that a valid tuple is not necessarily allowed. Arc-consistency algorithms
can be distinguished depending on how they manage allowed and valid tuples
[Lhomme 2005]. While the allowed tuples do not change during the search
because they are listed in the constraint definition, their validity is determined
by the current domains.

Example:
Let T be the table from Table 10.1. A constraint C using T as allowed

tuples and applied to the variables x1, x2 and x3 allows only the follow-
ing assignment: {(x1=1, x2=1, x3=1),(x1=1, x2=2, x3=1),(x1=2, x2=2,
x3=3),(x1=3, x2=3, x3=3)}

The arc consistency algorithms for table constraints mainly differ by how
they operate when a value is deleted. Some algorithms are lazy (e.g., GAC-
Schema [Bessiere 1997] or STR-3 [Lecoutre 2012a]). They try to reduce the
operations executed at each modification (i.e., deletion of value of a domain)
at the cost of increasing the complexity of the implementation. Others, such
as GAC-4 [Mohr 1988] or STR-2 [Lecoutre 2011], operate more systematically,
thus keeping simple the implementation. Moreover some arc-consistency al-
gorithms operate on allowed tuples to check their validity, while others first
consider the current domains and look for a combination satisfying the con-
straint. The related work section of this chapter gives more insights about

10.1. Introduction 149

table constraint algorithms.

Motivations A key idea for improving the performance of arc-consistency
algorithms for table constraints is to reduce the size of the representation of
the tuples because the complexity depends on it. Several algorithms for com-
pressing the allowed tuples of a constraint have been proposed, and arc consis-
tency algorithms adapted for dealing with them [Katsirelos 2007, Gent 2007,
Régin 2011, Mairy 2015, Demeulenaere 2016, Verhaeghe 2017, Wang 2016,
Cheng 2008, Cheng 2010].

Some compressions are based on trees [Gent 2007], global cut
seeds [Katsirelos 2007], sequences of tuples [Régin 2011] or smart tuples
[Mairy 2015]. As presented in chapter 4, the global cut seed and the sequences
of tuples data structures may gain an exponential factor in representation.
They are also efficiently transformed into MDDs.

Several works focus on regular expressions and automatons [Pesant 2004,
Beldiceanu 2004a]. An automaton or a regular expression can be seen as an
intensional way for expressing a table constraint [Cook 2009].

More recently several works used a bit-set representation of the table
[Demeulenaere 2016, Wang 2016]. They project the tuples over a bit-set by
associating a bit to each tuple, representing the validity of the tuple. Even if
the maximum gain factor is bound by the number of bits of the machine, the
efficiency in practice is strong. In order to improve this theoretical gain factor,
some works focus on representing smart tuples using a bit-set representation
[Verhaeghe 2017].

Multi-valued Decision Diagrams are one of the most advanced and powerful
compressed representations. As presented in Chapter 4 MDDs can be used
for storing tuples, many data structures, problem definitions and even other
constraints. Thus an efficient filtering algorithm is required. In response to
this need, several MDD filtering algorithms have been proposed [Cheng 2008,
Cheng 2010, Gange 2011].

Example:
Consider the MDD from Figure 10.1. This MDD represents the set of

12 tuples of the table (a). While the table needs 12 * 3 = 36 cells in order
to represent the tuples, the MDD need 11 arcs and 6 nodes.

This chapter presents GAC-4R and MDD4R, two improved versions of
the classical GAC-4 algorithm for tables and MDDs. They are already
implemented in several constraint programming solvers [OscaR Team 2012,
Perron 2013] and have a linear complexity. They are very efficient in prac-
tice. The plan is organized as follows. First we recall some state of the art

150 Chapter 10. Table & MDD-based Constraints

(a) A Table

x1 x2 x3

a a a
a b b
a b c
a c a
b a b
b a c
b c b
b c c
c a b
c a c
c c b
c c c

(b) An MDD

r

0

a

1

b c

3

b

2

ac ac

tt

bca

Figure 10.1: On the left, a table containing 12 tuples of 3 values. On the right
an MDD representing the table on the left.

algorithms for table and MDD constraints. Then GAC-4 and GAC-4R are
described. Finally, MDD4R the MDD propagator is described.

10.2 Related Work

10.2.1 Table Constraint propagators

Table constraint A table constraint is a constraint defined directly by
its set of allowed or prohibited tuples. Filtering algorithms enforcing arc
consistency on table constraints have to ensure that for each value of each
variable, there exists a valid combination of the current domain of the variables
that is allowed by the table.

Pending values The pending values [Régin 2005] are the values whose va-
lidity is uncertain and have to be checked by the propagators.

We can describe the filtering algorithms of table constraints by three main
parts:

• How the algorithm reacts when a value is removed?

• Which are the pending values?

10.2. Related Work 151

• How these pending values are validated?

For the several table constraints filtering algorithms, a simple description of
these operations is given below.

GAC-3 GAC-3 is one of the simplest constraint propagators
[Mackworth 1977]. For each value of each variable, GAC-3 tests all the
tuples until it found a valid tuple and supports the value.

• Removing a value: Nothing to do.

• Pending values: All the values in the current domain of the variables.

• Validation of the pending values: For each pending value, search in the
table for the first valid tuple supporting the value.

GAC-4 GAC-4 is the first optimal GAC algorithm for table constraints
[Mohr 1988]. It maintains for each value of each variable the set of valid
tuples containing the value. This algorithm is going to be explained in the
next section.

• Removing a value: For each tuple t in the support of the value, remove
t from all the sets of support from the values of t.

• Pending values: All the values whose set of support has been modified.

• Validation of the pending values: Is their set of support non-empty?

GAC-Schema Or GAC-6 is the "lazy" algorithm between GAC-4 and
GAC-3 [Bessiere 1997]. Instead of testing all the tuples each time like GAC-3
or maintaining all the valid tuples like GAC-4, GAC-Schema gives a schema
of propagator maintaining at least one support by value. Thus GAC-6 does
not maintain all the valid support. Moreover GAC-Schema can be combined
with many data structures like trees, etc [Gent 2007].

• Removing a value: Mark all the values sharing a support with one of
the removed values.

• Pending values: All the marked values.

• Validation of the pending values: For each pending value, starting from
the last valid support, search on the data structure of possible supports
if one of them is valid.

152 Chapter 10. Table & MDD-based Constraints

STR The STR algorithm [Ullmann 2007, Lecoutre 2011] proposes the idea
searching over the valid tuples and validates the supported values instead of
searching for each particular value a support. STR projects the tuples into
a reversible set S of possible valid tuples. When a modification occurs, STR
iterates over the S set of tuples. For each tuple, if the tuple is valid, then it
validates all the values of the tuples. Otherwise it removes the tuple from S.
The algorithm can stop the iteration when all the values are supported.

• Removing a value: Nothing to do.

• Pending values: All the values in the current domain of the variables.

• Validation of the pending values: Search over the set of possibly valid
tuples and check if the tuple is valid. If the tuple is valid then validate
the values of the tuples, otherwise remove it. Stop when all the values
are supported.

STR2. STR2 [Lecoutre 2011] is an improvement of the STR algorithm. But
instead of maintaining a set of possible valid tuples, it maintains the set of valid
tuples. Moreover it improves the test of the validity of a tuple by considering
only the variables whose domain changed since the last call. Then in order
to support the pending values, it simply iterates over the valid tuples and
support all the values belonging to one of them.

• Removing a value: Iterate over the set of valid tuples and remove all the
invalid tuples by considering only the modified variables.

• Pending values: All the values in the current domain of the variables.

• Validation of the pending values : Iterate over the valid tuples and
validate the values that appear on them. Stop when all the values are
supported.

STR3. STR3 has been defined in [Lecoutre 2012a]. This algorithm com-
bines the principle of both GAC-4 and GAC-schema, while having an opti-
mality property. Like GAC-4, when a value is removed then all the tuples
involving the value are marked invalid and so removed. Then like the GAC-
schema behavior, it iterates over the possible supports of the pending values,
starting from the last valid, and seeks for a new support.

• Removing a value: For all the tuples in the list of support of the value,
mark them as invalid.

• Pending values: All the values that belong to a removed tuple.

10.2. Related Work 153

• Validation of the pending values: For each pending value, starting from
the last valid tuple of the value, search on the list of possible support if
one of them is valid.

STR-Bit This algorithm is one of the first global table propagator using
bit-set [Wang 2016]. It consists of an efficient transformation of the STR3
propagator using a bit-set for the IsValid function of the tuples. But since the
bit-set representation does not allow to easily know the pending values, like
STR3 can do, all the values are considered pending.

• Removing a value: For all the tuples in the list of support of the value,
mark them invalid.

• Pending values: All the values in the current domain of the variables.

• Validation of the pending values: For each pending value, starting from
the last valid tuple, search on the list of possible support if one of them
is valid.

Compact Table Compact-Table [Demeulenaere 2016] has been recently in-
troduced, while it is implemented since several years in CP solvers. In the
same way as STR-Bit is a bit-set transformation of STR3, Compact Table can
be seen as a bit-set transformation of STR2 using the bit-set as the IsValid
function of a tuple.

• Removing a value: Iterates over the set of valid tuples and removes all
the invalid tuples by considering only the modified variable.

• Pending values: All the values in the current domain of the variables.

• Validation of pending values : For each pending value, test the last
support. If the last support is invalid then search in the table for the
first valid tuple supporting the value.

Bit-wise based propagators Both STR-Bit and Compact Table use bit-
wise operations in order to maintain the validity function of a tuple. For each
tuple, a bit is associated with its state, 1 if the tuple is valid and 0 otherwise.
Both of the algorithm maintained and backtrack this information during the
search. Thanks to this bit-set representation, the invalidation of several tuples
involve in the same word can be efficiently done using a bit-wise operation.

154 Chapter 10. Table & MDD-based Constraints

10.2.2 MDD Constraint Propagators

The MDD associated with a constraint C is an MDD which models the set of
tuples satisfying C. An MDD propagator of C is an algorithm which removes
some inconsistent values of X(C), the variables on which C is defined.

10.2.2.1 MDD of a constraint.

Let C be a constraint defined on X(C). The MDD associated with C, denoted
by MDD(C), is an MDD which models the set of tuples satisfying C. More
precisely, MDD(C) is defined on X(C), such that the labels of arcs of the layer
of the variable x correspond to values of x, and a path of MDD(C) where ai
is the label of layer i corresponds to a tuple (a1, ..., an) on X(C).

10.2.2.2 Consistency with MDD(C).

A value a of the variable x is valid iff a ∈ D(x). An arc (u, v, a) at layer i is
valid iff a ∈ D(xi). A path is valid iff all its arcs are valid.
Let pathrtt(MDD(C)) be the set of paths from root r to tt in MDD(C). The
value a ∈ D(xi) is consistent with MDD(C) iff there is a valid path in
pathrtt(MDD(C)) which contains an arc at layer i labeled by a.

10.2.2.3 MDD propagator.

An MDD propagator associated with a constraint C is an algorithm which
removes some inconsistent values of X(C).

The MDD propagator establishes arc consistency of C if and only if it
removes all inconsistent values with MDD(C). This means that it ensures
that there is a valid path from the root to the true terminal node in MDD(C)

if and only if the corresponding tuple is allowed by C and valid.
The MDD propagator enforces MDD consistency if it removes all the

arcs that do not belong to a valid path with respect to the constraint
[Andersen 2007, Hoda 2010]. MDD consistency is a stronger notion and arc
consistency is inherited from MDD consistency.

10.2.2.4 mddc propagator

Cheng and Yap [Cheng 2008, Cheng 2010] provide mddc, an algorithm main-
taining arc consistency for an MDD constraint. This algorithm searches on
the MDD, using a depth first search, by considering only arcs whose label is
still a valid value from the domain of its corresponding variable. When this
search reaches the final tt nodes, a valid tuple has been found and we we can
make valid all the values of this tuple in their associated variable domains.

10.2. Related Work 155

When the depth first search ends, the values that have not been validated
can be safely removed because there is no longer a path from the root to the
positive terminal node tt, which involves an arc corresponding to this value.

This propagator uses the array representation of an MDD (see Appendix
A). This implies that each node contains an array of d values and so random
access for the cells of values that belong to the current domain of the variable
is easy.

In order to improve the algorithm, several improvements are made. The
first one is to record during the search, in a backtracking data structure, the
nodes that do not belong to a valid path from the root node to the tt node.
Then during the search, when such a node is reached, the algorithm does
not need to process it. This can be efficiently done using a reversible sparse
set. A second improvement is during the depth first search on the MDD, the
algorithm keeps the nodes for which a valid path from the root node to the tt
node has been found. When one of these nodes is reached again by another
incoming path, the algorithm can support the values of this incoming path
since the values belong to at least one valid path from the root node to the
tt node.

Example:
Consider M , the MDD from Figure 10.1. Let the constraint C defined

on the variables x1, x2 and x3 and using the MDD M . Consider that,
for external causes, the second variable x2 is set to b. The algorithm is
going to perform the following steps: Starting from the root node r, the
arc labeled by a is used to reach the node 0. Since the second variable
contains only the value b in its current domain, the arc labeled by b is used
to reach node 3. Starting from node 3 the arc labeled by a reaching ff is
used because the algorithm considers the current domain. The algorithm
returns to node 3 and the arc labeled by b is used to reach tt. A valid path
is found, b is supported in x3, then the node 3 is set valid. The algorithm
used the arc labeled by c starting at 3 and valid c from x3. The algorithm
returns to node 0, marks 0 as valid and supports x2 = b and returns to
r and supports x1 = a. The algorithm follows the arc labeled by b and
reaches the node 1. From node 1 the algorithm follows the arc labeled by
b and reaches ff. The algorithm returns to 1 and marks it as invalid, it
returns to r, follows the arc labeled by c, reaches 1 and returns to r since
1 is marked as invalid. There is no more arc to follow, the algorithm is
over and the values b and c are removed from the current domain of x1

and the value a is removed from the current domain of x3.
The arcs processed by mddc are dashed in Figure 10.2.

156 Chapter 10. Table & MDD-based Constraints

r

0

a

1

b c

3

b

2

a c a c

ff

b

a

tt

bca

Figure 10.2: Application of the mddc algorithm for processing the decision
x2 = b. The dashed arcs are the arcs touched by the propagator.

In mddc, it is important to note that any arc is traversed at most once,
because a depth first search is used and because the MDD is not changed
during the search by the algorithm. The way the MDD is traversed only
depends on the current domains.

Moreover it is not straightforward to find an arc corresponding to a value
belonging to the current domain and this task is even more difficult when the
domain size is reduced. But when the MDD is small, or when the domain size
is small, then mddc can be very efficient.

Remark: mddc can be seen as a tuple based algorithm like the STR al-
gorithm. It iterates over the tuples, with a compression mechanism (MDD
+ validation/negation of the nodes), and supports all the values occurring in
one of the discovered tuples.

10.2.2.5 Regular Constraint Propagators

The regular or automaton constraints [Pesant 2004, Beldiceanu 2004a] are
constraints that can be defined using a regular expression or an automaton.
The relation between MDDs and automaton is strong, and the propagators
close. In contrast to the extensional constraints, regular expressions or au-
tomaton can be seen as intensional constraints. In constraint programming,
the number of variable (i.e. the arity) of a constraint is given by r. This
implies that the valid tuples of such a constraint C are the subset T (C) of

10.2. Related Work 157

tuples of size r that respect the intensional definition.
Even if the intensional representation can be very small, the set of tuples

T (C) can be exponential. In order to propagate such intensional constraint,
the algorithm has the two following points:

• Before removing a value a from a variable x, be sure that there is no
combination of the values of the current domains of the variable of C
that is in T (C).

• Before not removing a value a from a variable x, be sure that there is
at least one combination of the values of the current domains of the
variable of C that is in T (C).

Since the simplest way to do it would be to extract the table from the in-
tensional definition, this table could be exponential in size. Better algorithms
have been found, and they can be seen with a common data structure, the
unfolded graph representation.

Unfolded Graph Representation Consider an automaton defined by the
transition table τ . The unfolded version over the r variables of this automaton
represents the set of tuples T (C). To do so the automaton is unfolded r times.
Each node u from a layer is associated to a state s(u) from the automaton.
There is an arc between a node u from layer i and v from layer i + 1 labeled
by a if and only if there is a transition (s(u), s(v), a) ∈ τ .

Example:
Consider the automaton from Figure 10.3. The automaton (a) is used

to prevent a machine of working more than twice without a break, for
example for cooling the machine, but prevents the machine to have two
consecutive breaks. The unfolded graph (b) is the unfolded version of the
automaton. As we can see each node corresponds to a pair (state - layer).

This unfolded representation can be seen as a possible non reduced MDD.
This unfolded graph representation is used to propagate the constraint. The
next two propagators are mainly suited for regular or automaton constraints
but can easily be adapted to MDDs.

Ternary Decomposition The ternary decomposition of regular and au-
tomaton constraints is often considered as a good option [Beldiceanu 2004a,
Quimper 2006]. This decomposition consists of associating to each layer of
nodes from the unfolded graph representation an intermediate variable. The
domain of these variables are the indexes of the nodes of the associated layer.

158 Chapter 10. Table & MDD-based Constraints

(a) The automaton

s

1

2

3

b

w

w

b

b

w

(b) The unfolded graph

s

1-1

w

2-1

b

2-2

b

3-2

w

1-2

w

1-3

w

2-3

b b

3-3

w

tt

w bb w

Figure 10.3: On the left, an automaton that prevents a machine of working
(w) more than twice without a break (b) and prevents the machine to take
two consecutive breaks. The right graph represents the unfolded version over
4 variables.

10.2. Related Work 159

This allows to control the nodes of the graph by controlling the domains of
the intermediate variables.

The arcs are associated with the original variables from the constraint
since the label of the arc are associated with the values of the domains of the
variables.

Then for each layer i ∈ 1..r, the nodes of layer i and i + 1 are extracted
and the arcs between these nodes are used for building a table constraint. For
each arc between the node ui at layer i to node ui+1 at layer i+ 1 labeled by
a, the tuple (ui,a,ui+1) is created. Each of these table constraints involve the
two intermediate variables and the variable associated with the arcs.

Once these table constraints defined, we can use any existing table con-
straint algorithms to propagate them. This decomposition is Berge acyclic,
this implies that enforcing arc consistency on the table constraints allows to
enforce arc consistency on the decomposed constraint.

Graph-Based Propagator An algorithm using the unfolded graph rep-
resentation directly in order to propagate the constraint has been proposed
[Pesant 2004]. This implies no more intermediate variables due to the ternary
decomposition.

This algorithm is close to GAC-4 since it maintains for each value a of
each variable x a set Qx,a of all the nodes that contain an arc labeled by a in
the layer of x. The algorithm also maintains for each node of the graph the
list of outgoing arc and the list of incoming arcs.

The algorithm processes as follows: For each node u stored in the support
Qx,a of the pair variable x value a that has to be propagated, it removes the arc
labeled by a starting at u from both its extremities. Then it propagates the
modification in the unfolded graph in a recursive way. When an arc has to be
removed, it is also removed from the Q set associated with the variable/value
that it supports.

When the Q set of a value becomes empty, this implies that there is no
arc in the unfolded graph supporting the value anymore. The value is invalid
and can be safely removed.

For the Q sets of the values, storing the node is enough since using the
node and the value, the transition function gives the other extremity node.
Maintaining the arcs of the nodes is made using two double linked lists of
arcs. Finally, an arc contains a pointer to both of its positions in the lists of
its extremities, allowing efficient removing and backtracking.

Example:
Consider M , the MDD from Figure 10.1. Let the constraint C defined

160 Chapter 10. Table & MDD-based Constraints

r

0

a

1

b c

3

b

2

ac ac

tt

bca

Figure 10.4: Application of the graph-based propagator for processing the
decision x2 = b. The dashed arcs are the arcs touched by the propagator.

on the variables x1, x2 and x3 and using the MDD M . Consider that, for
external causes, the second variable x2 is set to b. The algorithm is going
to perform the following steps: First it considers Qx2,a, it removes the arc
(0, 2, a), checks if 0 has to be deleted, checks if 2 has to be deleted. Then
it removes (1, 3, a), checks if 1 has to be deleted, checks if 3 has to be
deleted. After the Qx2,a list, the Qx2,c list is processed. The arc (0, 2, c)

is removed, the node 0 is checked for deletion, the node 2 is checked and
has to be removed. The algorithm removes the node 2, removes the arc
(2, tt, a) and remove 2 from the Qx3,a list. Since the list Qx3,a is now
empty the value a can be safely removed from the current domain of x3.
The algorithm removes the arc (1, 3, c), checks if the node 1 has to be
removed, removes the node 1 and its incoming arcs (r, 1, b) and (r, 1, c).
modify the Qx1,b and Qx1,c lists and removes the values b and c from the
current domain of x1.

The arcs processed by the graph-based propagator are dashed in Figure
10.5.

Remark: This algorithm is close to the one from GAC-4 and so it will be
close to MDD4. It maintains for each value of each variable the list of valid
support and so for nodes. When a modification occurs, it removes the invalid
supports and removes the supports that are related to them.

10.2. Related Work 161

10.2.2.6 mddw propagator

mddw is the propagator defined in [Gange 2011] for MDDs, I have chosen
the name mddw for MDD propagator with watched literals. In the same
way as other lazy algorithms [Bessiere 1997], the algorithm tries to do as less
operation as possible. This implies trying not to maintain the whole graph
like [Pesant 2004].

To do so, the algorithm maintains only one support by value or node at a
moment. But just like the differences between GAC-4 and GAC-schema, lazy
algorithms are often more complex.

Let x be a variable and a a value in the domain of the variable x, arcs(x, a)

is the list of arcs emanating from a node at the layer of x and labeled by a.
Let u be a node, the list arcs+(u) and arcs−(u) contains respectively the
emanating and terminating arcs for the node u.

The algorithm maintains for each arc (u, v, a), with u and v being the two
extremities of the arc and a being the label, the following information:

• Is the arc valid?

• Is the arc the support of the node above (u watcher)?

• Is the arc the support of the node beyond (v watcher)?

• Is the arc the support of the pair variable value (x = V ar(u),a) (value
watcher)?

This algorithm also maintains for each value a of each variable x a valid
arc valid(x,a) inside the MDD.

When a value a of a variable x is removed, all the valid arcs for the pair
(x, a) are removed from the MDD. To do so, the algorithm searches over the
list arcs(x, a), starting from the last valid arc valid(x,a), and for each arc
e = (u, v, a) of these arcs, if the arc is valid, then:

1. The arc is set to invalid.

2. If the arc was the support of u, then u is added to the set Upi of the
possible inconsistent nodes.

3. If the arc was the support of v, then v is added to the set Downi of the
possible inconsistent nodes.

Once all the arcs in arcs(x, a) have been removed, the algorithm starts
a second step which consists on propagating the modification on the MDD.
To do so, for each of the node u in Downi, a new valid arc is searched in
arcs−(u). If such an arc is found, then this arc become the new support of u.
Otherwise for all the arc e = (u, v, a) in arcs+(u), if the arc is valid:

162 Chapter 10. Table & MDD-based Constraints

1. The arc is set to invalid.

2. If the arc was the support of the pair variable value (x = V ar(u),a) then
add the pair (x, a) to the set V ari of possible inconsistent values.

3. If the arc was the support of v, then v is added in the set Downi of the
possible inconsistent nodes.

The same process is then applied to the set Upi. Finally, for each pair (x, a)

in V ari, the algorithm searches over the list arcs(x, a) for a valid arc. If such
an arc is not found, this implies that there is no valid arc in the MDD for the
variable x and labeled by a, thus the value a can be safely removed from the
domain of x.

Example:
Consider M , the MDD from Figure 10.1. Let the constraint C defined

on the variables x1, x2 and x3 and using the MDD M . Consider that, for
external causes, the second variable x2 is set to b. The algorithm is going
to perform the following steps: First it considers the list arcs(x2, a), it
invalidates the arc e1 = (0, 2, a), checks if e1 is the watch of node 0, let
consider it is since it’s the first one, and puts 0 in the Upi set. Then it
checks if e1 is the watch of node 2, let consider it is since it’s the first
one again, and puts 2 in the Downi set. The second arc e2 = (1, 3, a) is
invalidated, mddw checks if e2 is the watch of node 1, let consider it is
since it’s the first one, and puts 1 in the Upi set. Then it checks if e2 is the
watch of node 3, let consider it is since it’s the first one again, and puts
3 in the Downi set. Second, it considers the list arcs(x2, b), it invalidates
the arc e3 = (0, 2, b), checks if e3 is the watch of node 0. Then it checks
if e3 is the watch of node 2. The second arc e4 = (1, 3, b) is invalidated,
mddw checks if e4 is the watch of node 1. Then it checks if e4 is the
watch of node 3. Now that all the arcs from the arcs list of the values
have been removed, the algorithm has to propagate these modifications.
Starting with the Upi set, the node 0 is pop, the algorithm iterates over
the arcs+(0) and finds the valid arc b which is marked as the new watch
of 0. Then the node 1 is pop from Upi, the algorithm searches over the
arcs+(1) list of arcs and tests both the outgoing arcs of 1 but they both
are invalid, so the algorithm has to remove the incoming arcs of 1, the
arcs in arcs−(1). The arc e5 = (r, 1, b) is marked invalid, the algorithm
checks if e5 is the support of r, it is not here, then checks if e5 was the
support of the pair (x1, b), it is so (x1, b) is pushed into V ari. The arc
e6 = (r, 1, c) is marked invalid, the algorithm checks if e6 is the support
of r, it is not here, it checks if e6 was the support of the pair (x1, c), it

10.2. Related Work 163

r

0

a

1

b c

3

b

2

ac ac

tt

bca

Figure 10.5: Application of the mddw propagator for processing the decision
x2 = b. The dashed arcs are the arcs touched by the propagator.

is so (x1, c) is pushed into V ari. The algorithm now focuses on the set
Downi, the node 2 is pop, the algorithm searches over the arcs−(2) list of
arcs in order to determine if the node 2 has to be removed or not. It tests
both the incoming arcs of 2 but they both are invalid, so the algorithm
has to remove the outgoing arcs of 2. The arc e7(2, tt, a) from arcs+(2) is
marked as invalid, then the algorithm checks if e7 is the watch of node tt,
let consider it is not, then it checks if e7 is the watch of the pair (x3, a),
it is so (x3, a) is pushed into V ari. Finally, once all the propagation of
the modifications is over, the algorithm has to ensure that the pending
values, the values inside the V ari set, still have a support. The pair (x1, b)

is extracted from V ari, the algorithm iterates over the list arcs(x1, b), the
only arc is invalid, so we can remove the value b from the current domain
of x1. The same process is made for the two other pairs (x1, c) and (x3, a).

The arcs processed by mddw propagator are dashed in Figure 10.5.

The complexity over a branch tree of the mddw algorithm can be amortized
to linear on the number of arcs if for each of the searches onto the arcs∗ lists,
the algorithm start from the last watch. While this information has to be
backtracked in order to keep this complexity, a problem often occurs in these
kinds of algorithms: The trashing.

164 Chapter 10. Table & MDD-based Constraints

1

2

ab c

3

d

4

e fg

5

hi

Figure 10.6: A trashing example. When the variables associated with node 1

is set to a, if the arc labeled by a is already the support of node 1, then no
work has to be done for node 1. But later, when the arc (1, 2, a) is removed,
for example after the removing of node 2, the algorithm has to check all the
outgoing arcs of 1. Since this work is delayed, several repetitions are going to
be processed.

Remark This algorithm is close to STR3. When a value has to be removed,
all the valid supports and possible supports are removed, and then the algo-
rithm looks for at least one support by value or node.

Trashing One of the main goals of lazy algorithms (STR3, GAC-schema or
mddw) is trying to avoid work that will never be required. But such a lazy
behavior can do the contrary.

Consider for example a list of values, and an algorithm that ensures during
the search that at least one of these values is valid from a given criteria. Lazy
algorithms are going to keep the first valid value from this criteria and while
it is not required, these lazy algorithms are not going to check or so to remove
the invalid values from the list. In this case, if the first value of the list is the
only valid value during the whole search and is removed only on the leaves,
then these lazy algorithms are going to perform an exponential number of
times the delayed work.

Consider now the mddw algorithm, in the bottom of the search tree the
algorithm often has a lot of work to do that has been delayed because of the

10.2. Related Work 165

Algorithm 17 Functions for manipulating a sparse set. k is an element. S
is a sparse set with two arrays S.dense and S.sparse and scalar S.members.
member(k, S)

return S.sparse[k] < S.members and S.dense[S.sparse[k]] = k

add(k, S) // assume k is not a member
S.sparse[k]← S.members
S.dense[S.members]← k

S.members← S.members +1

delete(k, S) // assume k is a member
ik ← S.sparse[k];
ie← S.members −1;
e← S.dense[ie]

S.sparse[e]← ik

S.dense[ik]← e

S.sparse[k]← ie

S.dense[ie]← k

S.members← S.members −1

lazy behavior. For example, consider a value a of a variable x that is supported
by it first arc in arcs(x, a). If the first decision invalidates all the other arcs
in arcs(x, a), then the lazy behavior of the algorithm will not process this
deletion until it needs to search for a new support. While processing this
deletion costs D, if the deletion is processed each time at worst on the leaves,
if i variables are still not assigned to a single value, the possible worst case
complexity of this deletion is going to be O(diD). The same reasoning can be
applied to several other lazy algorithms.

Example of trashing The MDD given in Figure 10.6 presents one of the
possible cases of trashing. Here it is the one associated with the delayed
deletion of the arcs.

10.2.3 Sparse Set

Sparse sets are an efficient data structure for manipulating sets with a fixed
size universe U [Briggs 1993]. they have been successfully used in CP for repre-
senting sets or lists [Cheng 2008, Cheng 2010, Lecoutre 2011, Lecoutre 2012a].
We are going to use and modify the behaviour of these sets for designing effi-
cient propagators.

For convenience, the elements in U are mapped to integers 0 through
|U | − 1. The Sparse Set representation has three components: two vectors
(named dense and sparse), each |U | elements long and a scalar (named
members) that records the number of members in the set. The values in the

166 Chapter 10. Table & MDD-based Constraints

array dense from 0 to members - 1 corresponds to the elements in the set.
The array sparse contains indices of the array dense. If a number k is a
member of the set, it must satisfy two conditions 0 ≤sparse[k] < members
and dense[sparse[k]] = k. It means that sparse[k] is the index i in the array
dense of the value k, that is, we have dense[i] = k. Here is a sparse set:

sparse 5 2 - 0 - 1 - 3 4 -
dense 3 5 1 7 8 0

members 6

The membership, addition and deletion functions are defined in Algo-
rithm 17. Function delete has been modified from its original definition in
[Briggs 1993] in order to be able to restore the sparse set easily after some
deletions. Consider the sparse set previously defined. Suppose that member
7 is deleted. Before the deletion the scalar members is equal to 6 and after
the deletion, we have the new sparse set:

sparse 3 2 - 0 - 1 - 5 4 -
dense 3 5 1 0 8 7

members 5

When 7 has been deleted, the members 7 and 0 (i.e. the last value of
the set) have been exchanged. Precisely, we swap dense[sparse[7]] and
dense[sparse[0]] and we swap sparse[7] and sparse[0]. Thanks to these
swaps, we can easily restore the sparse set simply by setting the members value
to 6. The sparse set contains the same elements but not in the same order.

10.3 GAC-4R: Table Propagator

In order to present the GAC-4R algorithm, this section first recalls the GAC-4
filtering algorithm.

10.3.1 GAC-4

GAC-4 is a fully incremental algorithm associating to each variable-value pair
(x, a), the list S(x, a) of valid tuples involving (x, a) that satisfy C. When a
value b is deleted from the domain of a variable y, the tuples associated with
(y, b) are no longer valid and must be removed. Consequently, for each tuple
t ∈ S(y, b) and for each variable-value pair (z, c) in t, we remove t from S(z, c).
If S(z, c) becomes empty, then no valid tuple involving (z, c) and satisfying C
exists. Thus, we can safely remove c from D(z).

The algorithm can be described as follows:

10.3. GAC-4R: Table Propagator 167

Algorithm 18 reviseGAC-4
reviseGAC-4(C: constraint; deletionSet: list): Boolean

for each (x, a) ∈ deletionSet do
for each t ∈ S(x, a) do

for each (z, c) ∈ t do remove t from S(z, c)

if S(z, c) = ∅ then
remove c from D(z) ;
add (z, c) to deletionSet

if D(z) = ∅ then
return False;

return True

• Initialization: for each tuple t and for each value (x, a) belonging to t
we add t to S(x, a).

• Invariant: ∀x ∈ X(C), ∀a ∈ D(x): S(x, a) contains the valid tuples
t ∈ T (C) with t[x] = a.

When modifications occur in the current domain of the variable, the func-
tion reviseGAC-4 (See Algorithm 18) is called in order to propagate the
consequences of these modifications and to close the invariant.

10.3.2 GAC-4R

10.3.2.1 Motivation

GAC-4 is a simple and an easy algorithm to implement. Its worst case com-
plexity is optimal. However it is mainly focused on the study of the conse-
quences of the deletions of values. GAC-4 is efficient when there are only few
tuples for each value, which typically occurs at deeper levels of the search tree.
However, at shallower levels its performance is qualitatively different in that
maintaining the internal data structures is costly.

While GAC-4 focuses on the deletions, it could be worthwhile to recompute
some data structures instead of maintaining them incrementally. In other
words, the performance of GAC-4 can be improved by rebuilding, from scratch,
the data structures of GAC-4 when the modifications have reached a given
threshold.

Example Consider a table constraint with k tuples and involving a variable
x having 10 values in its domain (the arity is not important here). Assume

168 Chapter 10. Table & MDD-based Constraints

that the tuples are homogeneously distributed among the values of x. In other
words, every value of x appears in about k

10
tuples. Now, assume that a is

assigned to x. Thus, only about k
10

tuples remain valid. GAC-4 will consider
and propagate deletions of 9k

10
tuples although only about k

10
tuples remain.

Thus, it is more effective to reset the constraint with the elements of S(x, a),
in other words, to rebuild the constraint from scratch. In this situation, we
can restart from a tuple set of only k

10
tuples and save a factor of 9.

We can determine exactly when it is worthwhile to apply such an operation.
When the sum of the sizes of S lists of the deleted values of x is larger than
the sum of the sizes of S lists of the remaining values in the current domain
of x.

The Reset The idea of reset had already been applied to define which
algorithm should be preferred between AC-2001 and AC-6 [Bessière 2001] or
to design an adaptive algorithm [Régin 2005]. Combining GAC-4 with this
idea will save a lot of computations for a shallow depth of the tree search.
Such a combination requires to answer two questions:

1. How can we know whether a reset is better or not?

2. How can we perform this reset and the restoration of the previous set
efficiently?

We can simply answer the first question. Consider a variable x and ∆(x)

the set of values of D(x) that have been deleted and not yet considered by
GAC-4 algorithm (i.e. they belong to deletionSet). The number of tuples that
are no longer valid, denoted by #T∆(x), is given by the sum of the size of
the S lists of the values in ∆(x), and the number of remaining tuples is the
difference between the total number of tuples and #T∆(x) because a tuple
contains only one value per variable. So we have:

Property 8 Let x be a variable, ∆(x) be the values of x that have been deleted
and that must be propagated, #T∆(x) =

∑
a∈∆(x) |S(x, a)| be the number of

tuples that are no longer valid and T be the current number of tuples.
If #T∆(x) > T

2
then a reset operation will consider less tuples than the ap-

plication of Function reviseGAC-4.

This property is useful only if we can answer the second question. A good
answer to this second question is the use of sparse sets for efficiently computing
a reset operation in such a way that the restoration is easy.

The question can be reformulated as follows. Consider S a set with two lists
of elements R and Q. The lists are disjoint and their union contains exactly

10.3. GAC-4R: Table Propagator 169

Algorithm 19 Function re-add of a sparse set S. k is an element.
re-add(k, S) // We assume that S.dense[S.sparse[k]] = k ik ← S.sparse[k];
e← S.dense[S.members]

S.sparse[k]← S.members
S.sparse[e]← ik

S.dense[S.members]← k

S.dense[ik]← e

S.members← S.members +1

all the elements of S. The sets R and Q are not explicitly given, that is, we
do not have a set representing them but we can traverse them (in terms of
programming language, they are given by an iterator) and their size is known.
We want to modify S by removing the set of elements R ⊆ S in order to obtain
a set containing only the elements of Q. However, instead of performing |R|
operations for this task, we want to have a number of operations bounded
by min(|R|, |Q|). In addition, we have to be able to restore the set S after
performing the modifications with a similar complexity (or less).

Let S be represented by a sparse set. If |R| ≤ |Q|, then we delete the ele-
ments of R from S as it is explained in the sparse set section. The restoration
of S consists of modifying the scalar members of S. Assume that |Q| < |R|.
S is recomputed as follows. First, we set S.members to 0. Then, we traverse
Q and for each element a ∈ Q we add a to S by calling Function re-add
(See Algorithm 19) which is a modified version of Function add of the sparse
set. It exploits the fact that the value which is added was previously in the
set. Thus, it proceeds to a swap in a way similar as the one used by Function
delete in order to be able to restore the set in the future. More precisely,
when an element i is re-added to the sparse set, we swap i and the value j at
the index defined by members. That is, we exchange the value of i and the
value of j in the sparse array and we exchange i and j in the dense array.
For instance, consider the left sparse set in Figure 10.7. The set contains the
values 3 and 5. If we re-add the value 8 then we will exchange the value of
dense[members], i.e. 1, with 8. So we will have dense[2] = 8; dense[4] = 1;
sparse[8] = 2; sparse[1] = 4. We obtain the right sparse set.

The advantage of this method is that the restoration of the scalar members
is enough for restoring the sparse set. Function re-add has a complexity of
O(1) per call. Thus, we can re-add |Q| elements in O(|Q|).

A possible implementation of GAC-4R is given by Algorithm 20. Each list
S is represented by a sparse set with a fixed size universe equal to |T (C)|. For
convenience, we will consider that t is a tuple and also the index of the tuple
in the table of tuples.

170 Chapter 10. Table & MDD-based Constraints

sparse 3 2 - 0 - 1 - 5 4 -
dense 3 5 1 0 8 7

members 2

sparse 3 4 - 0 - 1 - 5 2 -
dense 3 5 8 0 1 7

members 3

Figure 10.7: The first sparse set contains the values 3 and 5, while the second
one is the re-add of the value 8.

The complexity of GAC-4R remains the same as the complexity of GAC-4,
because the deletion of a tuple or the re-addition of a tuple have the same com-
plexity which corresponds to the arity of the constraint. In addition traversing
the valid tuples costs at least the cost of traversing all the domains of the vari-
ables involved in the constraint and since we do this only when there are less
valid tuples than non-valid tuples, the traversal of all the domains does not
impact the complexity.

10.4 MDD4R: MDD Propagator

This section proposes to adapt the principles of GAC-4R to be able to deal
with an MDD instead of a table. While the graph-based propagator for regular
constraints was already close to GAC-4, the MDD-4 algorithm presented here
is another way of implementing an MDD version of GAC-4 for MDD. Thanks
to this modification, the algorithm MDD4R will be designed by incorporating
the efficient idea of reset.

10.4.1 MDD4 Algorithm

The algorithm MDD-4 is a modification of GAC-4 for dealing with MDDs.
This algorithm maintains the whole MDD during the search. This implies that
for each node n, MDD4 maintains the ω+(n) and ω−(n) lists of outgoing and
incoming arcs. Moreover MDD4 maintains for each value a of each variable x
the list S(x, a) of valid arcs labeled by a at the layer of x.

In GAC-4 the maintenance of the list of valid tuples is made by managing
the S lists. With an MDD this is more complex, because the tuples are not
explicitly represented in an MDD. The representation is implicit: a valid tuple
corresponds to a path from the root node to the tt node, traversing only arcs

10.4. MDD4R: MDD Propagator 171

Algorithm 20 GAC-4R. T is the current number of tuples
reviseGAC-4R(C: constraint; deletionSet: list, T : number of tuples):
Boolean

for each x ∈ X(C) do #T∆(x)← 0

for each (x, a) ∈ deletionSet do #T∆(x)← #T∆(x) + |S(x, a)|
#T∆max← maxx∈X(C)(#T∆(x))

if #T∆max > T
2
then

// we reset the data structures
pick a variable x with #T∆(x) = #T∆max

Tset← ∅; T ← 0

for each a ∈ D(x) do add S(x, a) in Tset
for each y ∈ X(C) do

for each b ∈ D(y) do S(y, b).members← 0

// we re-add valid tuples into the S lists
for each t ∈ Tset do

if t is valid then
for each i = 1...n do re-add(t, S(xi, t[i]))

T ← T + 1

// We remove values having an empty S list.
for each y ∈ X(C) do

for each b ∈ D(y) do
if S(y, b) = ∅ then remove b from D(y)

if D(y) = ∅ then return False;

else
// classical GAC-4 deletion process
for each (x, a) ∈ deletionSet do

for each t ∈ S(x, a) do
for each i = 1...n do

delete(t[i],S(xi, t[i]))

T ← T − 1

if S(xi, t[i]) = ∅ then remove t[i] from D(xi)

if D(xi) = ∅ then return False;

return True

corresponding to valid values. That is why we keep the list of valid arcs since
a valid arc belongs to at least one valid tuple.

Since MDD4 is a GAC-4 like algorithm, most of the work occurs when

172 Chapter 10. Table & MDD-based Constraints

values are removed. Consider a variable x whose ∆ set of values has been
removed and has to be propagated. The MDD4 algorithm removes all the
arcs from layer x labeled by the values in ∆. Then all the arcs that do not
belong to a valid path anymore are removed from the ω and S lists.

In order to do that efficiently, the algorithm use two queues Q↑ and Q↓.
They contain the nodes that do not belong to a valid path anymore. Nodes
for which all the outgoing or incoming arcs have been removed. Each time an
arc (i, j) is removed, if it was the last outgoing arc of node i then i is pushed
into Q↑, if it was the last incoming arc of node j then j is pushed into Q↓.

The algorithm processes as follows: First all the arcs of the values in the ∆

set are removed from the MDD. Then, while Q↑ is not empty, all the arcs from
the nodes of Q↑ are removed. Finally, while Q↓ is not empty, all the arcs from
the nodes of Q↓ are removed. The algorithm 21 is a possible implementation
of the MDD4 algorithm.

Implementation Both the S list and the ω lists are implemented using
sparse sets. This allows an efficient backtracking, and in an analogous way
with GAC-4R, it will allow us to apply the reset idea.

Differences The MDD4 algorithm is close to the graph-based propagator
used for filtering the regular constraint. They differ by the use of a BFS
instead of a DFS. Furthermore the S list contains the valid arcs and no longer
the nodes, this implies that MDD4 (and so MDD4R) is able to deal with non-
deterministic MDDs. Finally, the MDD4 algorithm propagates the deletion
into the MDD when all the deletions have been made and not at each arc
deletion. This last property will allow us to reset.

Example:
Consider M , the MDD from Figure 10.1. Let the constraint C defined

on the variables x1, x2 and x3 and using the MDD M . Consider that, for
external causes, the second variable x2 is set to b. The algorithm is going
to perform the following steps: First for variable x2 MDD4 removes the
arcs from the list S(x2, a), The arc (0, 2, a) is removed. The arc (1, 3, a)

is removed. Then for the list S(x2, c), the arc (0, 2, c) is removed and
2 is pushed into Q↓. The arc (1, 3, c) is removed and 1 is pushed into
Q↑. The algorithm has removed all the arcs of the deleted values, now
the algorithm is going to propagate the Q queues. First the node 1 is
pop from Q↑. The arc (r, 1, b) is removed from r, removed from S(x1, b)

which becomes empty and thus b is removed from x1. The arc (r, 1, c) is
removed from r, removed from S(x1, c) which becomes empty and thus

10.4. MDD4R: MDD Propagator 173

Algorithm 21 MDD-4.
removeArc(MDD, Q↓, Q↑, (i, j)):Boolean

delete the arc (i, j) from the MDD
if ω+(i) = ∅ then push node i into Q↑
if ω−(j) = ∅ then push node j into Q↓
(y, b)← pair (variable, value) of the arc (i, j);
remove the arc (i, j) from the S(y, b)

if S(y, b) = ∅ then remove b from D(y)

return (D(y) 6= ∅)
reviseMDD-4(C: constraint; ∆: list of values; x : variable): Boolean

Q↓← ∅; Q↑← ∅
1 for each (x, a) ∈ deletionSet do

for each arc (i, j) ∈ S(x, a) do
if ¬ removeArc(MDD,Q↓, Q↑, (i, j)) then return False

2 while Q↑6= ∅ do
pick the node i ∈ Q↑ with the lowest layer
for each arc (j, i) do

if ¬ removeArc(MDD,Q↓, Q↑, (j, i)) then return False

remove i from Q↑
3 while Q↓6= ∅ do

pick the node j ∈ Q↓ with the highest layer
if there is no incoming arc to j then

for each arc (j, i) do
if ¬ removeArc(MDD,Q↓, Q↑, (j, i)) then return False

remove j from Q↓

return True

c is removed from x1. The node 2 is pop from Q↓. The arc (1, tt, a) is
removed from tt, removed from S(x3, a) which becomes empty and thus
a is removed from x3.

The arcs processed by MDD4 are the dashed arcs of the left MDD
from Figure 10.8.

10.4.2 MDD-4R

MDD-4 can be improved by integrating the idea of resetting the data struc-
tures instead of being focused only on the deletions. MDD-4 works by layer
in the MDD, that is, variable per variable. Let #A(x) be the total number of
arcs associated with a variable x. This number is stored and maintained for
each variable.

174 Chapter 10. Table & MDD-based Constraints

r

0

a

1

b c

3

b

2

ac ac

tt

bca

r

0

a

1

b c

3

b

2

ac ac

tt

bca

Figure 10.8: On the left, the application of the MDD4 propagator for pro-
cessing the decision x2 = b. On the right, the application of the MDD4R
algorithm. The dashed arcs are the arcs touched by the propagator.

For a given layer corresponding to the variable x, we have to compute
#DA(x) the number of arcs that will be deleted for this layer. By comparing
this number to #A(x) we will know whether it is better to reset the layer or
not. Resetting the layer means that we rebuild the layer of the graph from
the remaining nodes by adding their remaining arcs instead of deleting the
arcs and nodes of the layer.

The computation of #DA(x) depends on the type of modification occur-
ring in the MDD. There are two kinds of modifications:

• First: the arcs corresponding to the deletions of values of a variable x
are removed. In this case, we have #DA(x) =

∑
a∈∆(x) |S(x, a)|. This

happens only once.

• Second: the consequences of the deletion of arcs and nodes in the MDD
are propagated, in other words, the MDD is maintained. MDD-4R pro-
ceeds by layer. For a given variable y, MDD-4 has the list Q(y) of
nodes that must be deleted, which is for the given layer the content of
the queue Q↑ or Q↓ depending on the sense of propagation. We have
#DA(y) =

∑
u∈Q(y) |ω(u)|, where ω(u) is the list of arcs associated with

y having u as extremity.

10.4. MDD4R: MDD Propagator 175

Property 9 Let x be any variable, If #DA(x) > #A(x)
2

then a reset operation
for the layer of x will consider less arcs than the application of MDD-4 for
this layer.

Note that this property computes exactly whether it is better to reset or
not the data structure.

Example:
Consider M , the MDD from Figure 10.1. Let the constraint C defined

on the variables x1, x2 and x3 and using the MDD M . Consider that,
for external causes, the second variable x2 is set to b. The algorithm is
going to perform the following steps: The algorithm sums the number of
arcs to delete which is 4, 4 is greater than 5/2=2.5 so MDD4R is going
to apply a reset. The set of nodes of the layer 1 and 2 are cleared. The
arcs (0, 3, b) put back the node 0 in the layer 1 and node 3 in layer 2 and
clear their arcs list. (0, 3, b) is put back into ω+(0) and ω−(3). For layer
1, the number of arcs to restore is 1 and the number of arcs to delete
is 2 so the algorithm chooses to reset. The layer 0 is cleared and the S
lists of the values of x1 are cleared. The arc (r, 0, a) puts back r in layer
0 and is put back into the S(x1, a) list. The algorithm iterates over the
S lists, since the lists S(x1, b) and S(x1, c) are empty, the values b and c
are removed from x1. Then the algorithm considers the layer 2 in down
propagation, there are 2 arcs to keep and 1 arc to delete: the algorithm
chooses to delete the arc. The arc (2, tt, a) is removed from both ω−(tt)

and S(x3, a) which becomes empty so a is removed from x3.
The arcs processed by MDD4R are the dashed arcs of the right MDD

from Figure 10.8. The figure 10.9 shows the processed arcs for all the
MDD propagators.

10.4.3 Improvements

Counting on the fly The processing of the sum #DA(y) =
∑

u∈Q(y) |ω(u)|
can be made while putting the nodes on the set Q, and during a reset, by
considering the re-added nodes.

Reverse counting When a variable is set to a single value a, or even in
the general case of modification, it can be worthwhile to count the number of
arcs to remove by considering the smallest set of values.

One side deletion The deletion of an arc can be triggered by two actions:
The deletion of a value or the Deletion of a node. When an arc has to be

176 Chapter 10. Table & MDD-based Constraints

(a) mddc

r

0

a

1

b c

3

b

2

a c a c

ff

b

a

tt

bca

(b) graph-based

r

0

a

1

b c

3

b

2

ac ac

tt

bca

(c) MDD4

r

0

a

1

b c

3

b

2

ac ac

tt

bca

(d) MDDw

r

0

a

1

b c

3

b

2

ac ac

tt

bca

(e) MDD4R

r

0

a

1

b c

3

b

2

ac ac

tt

bca

Figure 10.9: The touched (dashed) arcs during the processing of the decision
x2 = b for all the MDD propagators.

10.4. MDD4R: MDD Propagator 177

removed because the node of one of its extremities has to be removed, then
the algorithm can avoid removing the arc from the deleted node.

MDD4R-Last When an arc has to be removed from a node and this arc
was the last support of this node, then the algorithm can prevent this deletion.
In order to do that efficiently, when the algorithm has to delete an arc, the
algorithm checks if it is the last arc of the extremity, in this case it adds the
arc into the Q set, otherwise it removes the arc.

Some of these optimization are already implemented into the CP solvers
[OscaR Team 2012, Perron 2013] having the MDD4R propagator.

178 Chapter 10. Table & MDD-based Constraints

10.5 Experiments

Maxorder This experiment comes from chapter 17. The problems is com-
posed of two constraints, an allDifferent constraint and an MDD constraint
associated with an MDD with more than 1 millions of nodes and close to 200
millions of arcs for the size 20. The following table gives the time for finding
the 50 first solutions.

size MDD4R mddc mddw
9 6 3021 T-O
20 26.8 T-O T-O

This tables shows that MDD4R is robust to huge MDDs.

Ternary decomposition It is often considered (See [Beldiceanu 2004a,
Quimper 2006]) that the best way for maintaining arc consistency for reg-
ular constraint is to decompose the constraint into a set of ternary transition
constraints and to directly deal with them. We propose to compare this model
with the explicit use of the MDD corresponding to the automaton of the reg-
ular constraint in conjunction with MDD4R algorithm. The MDD is reduced.

We use constraints defined by transition constraints involving 8,000 tuples.
The following figure gives the factor of gains of the use of a MDD + MDDR4
in comparison with transition constraints + GAC4R and clearly shows the
advantage of our approach.

We also compare the two approaches on a problem with 5 random con-
straints and one knapsack constraint imposing that the sum of all variables
must be greater than a value k (usually defined as the mean of the domains).
The results given in the following table should a gain factor of 1.4:

10.5. Experiments 179

Arity dom size 1 sol all sol
Ternary MDD4R Ternary MDD4R

8 6 0.7 0.3 18.4 12.2
8 8 0.8 0.5 25.1 17.2
10 8 0.9 0.4 44.3 31.8
10 10 1.3 0.7 58.4 41.3
12 10 2.3 1.5 89.2 66.4
12 12 4.2 2.8 109.6 82.5

10.5.1 CP14 experiments

The following experiments are the ones made in 2014, at the moment of the
publication. Since, several modification of algorithms have been made, for
example the allowed is now the CT algorithm published in 2016.
Machine: Dell server having four E7- 4870 Intel processors, each having 10
cores with 256 GB of memory and running under Scientific Linux.
Solver: or-tools 3158.
Selected Benchmarks: all problems can be downloaded from the Solver
Competition archive [Lecoutre 2009]. We selected problems having only posi-
tive table constraints and at least one variable whose domain is not Boolean.
We do not include BDD-based instances and instances involving only binary
constraints because we are interested in large arity constraints. rand-8-20-5-
18-800 is abbreviated by rand-1 and rand-10-20-10-5-10000 is abbreviated by
rand-2. half-n25-d5-e56-r7-1 is abbreviated by half-1 and contains the prob-
lems of half-n25-d5-e56-r7 that are solved by mddc in less than 1800s and
half-n25-d5-e56-r7-2 is abbreviated by half-2 and contains the problems of
half-n25-d5-e56-r7 that are not solved by mddc in less than 1800s.

We also used random problems that we defined. One of the most difficult
parameter to define is the tightness of the constraint that is, the ratio between
the number of tuples allowed by the constraint and the total number of tuples.
We use ratio from 0.00004% to 1%. For a comparison, we can note that an
alldiff constraint defined on a set of k variables sharing the same k values is
equal to k!

kk
which is 0.6% for k = 7; 0.034% for k = 10 and 0.0003% for

k = 15.
Search Strategy: we select the variable that appears in most constraints and
its smallest value as proposed for testing mddc [Cheng 2010]. Our algorithm
is more robust than the Cheng’s one for the strategy, because we maintain
the MDD whereas they traverse the initial MDD according to the current
domains. Thus mddc algorithm can lose time for finding an arc corresponding
to a value belonging to the current domain of the associated variable. This
problem does not arise in neither MDD-4 nor MDD-4R.

180 Chapter 10. Table & MDD-based Constraints

Table 10.2: Geometric means of the time needed to solve some categories of
problems.

benchmark MDD-4 MDD-4R mddc GAC-4 GAC-4R STR2 STR3 allowed
nonograms 0,33 0,27 0,8 4,3 3,18 2,77 1,52 1,03
cw-m1c-ogd 3,07 1,72 32,69 4,03 2,74 13,21 2,69 3,09
cw-m1c-uk 3,96 1,91 21,14 3,24 2,27 8,32 1,89 2,22
rand-1 6,06 2,93 13,71 2,90 1,38 1,56 1,93 1,09
rand-2 192,47 50,51 186,35 241,56 170,36 141,03 T-O T-O
half-1 975,49 471,25 1438,20 T-O T-O T-O T-O T-O
half-2 1720 778,28 T-O T-O T-O T-O T-O T-O

Results: times are expressed in seconds. Time Out (T-O) is set at 1800s.
All means are geometric.

General comparison Table 10.2 gives results for the selected benchmarks.
MDD-based algorithms perform well in general. Algorithm mddc is clearly
improved by MDD-4 and MDD-4R algorithms. GAC-4R outperforms GAC-4
and is competitive with other GAC algorithms for table constraints. The reset
strategy is quite interesting and MDD-4R clearly outperforms all the other
algorithms.

We propose to study in detail the behavior of these algorithms according
to the tightness and the domain size. For each graph we select randomly 10
problems and run them 30 times and take the mean.

10.6 Conclusion

This chapter presents several new algorithms, for handling both table con-
straints and MDD constraints. These algorithms have good results in prac-
tice. With the recent development of algorithm like CT [Demeulenaere 2016]
or STRbit [Wang 2016], more experiments should be done. Usually, when the
problem can be compressed, using an MDD, then using an MDD instead of a
regular table constraint can improve the running time. Otherwise, the choice
of the table algorithms depends on the table structure (number of variables, of
values). Many problem, they can’t even be defined by a table (see Application
part of this thesis). For this kind of problem, the choice depend once again of
the structure of the MDD, if the MDD is not too big and contains few values,
then mddc can be really effective. When it starts being bigger, with many

10.6. Conclusion 181

values etc, then using MDD4R can lead to better performances.

Chapter 11

Cost-MDD constraint

Contents
11.1 Introduction . 183

11.2 Cost-MDD . 185

11.2.1 Definition . 185

11.2.2 Related Work . 186

11.3 Cost-MDD4R . 188

11.3.1 Variable Modification 188

11.3.2 Modification of the cost value. 192

11.4 Cost Intersection Method 194

11.4.1 Discussion . 197

11.5 Experiments . 198

11.5.1 MaxOrder . 198

11.5.2 Random instances . 198

11.1 Introduction

In constraint programming, cost constraints are constraints associating a cost
to each combination satisfying the constraint. This cost can be processed in
several ways and mainly depends on the constraint.

Consider the cost version of the Global Cardinality Constraint (GCC)
[Régin 2002]. In this constraint the cost is given by a function associating a
cost to each pair variable value. Thus the cost of an assignment is the sum of
the cost of the pair variable value of the assignment. The cost can be handled
by giving a cost-variable to the constraint in addition to its main variables,
but also by giving a maximum or/and a minimum cost to the constraint like
the knapsack constraint [Trick 2003].

In constraint programming, cost version of constraints are widely used, for
example the cost versions of the global constraint of difference [Sellmann 2002]

184 Chapter 11. Cost-MDD constraint

or the regular constraint are used in time-tabling problems [Demassey 2006].
Moreover, cost constraints are often used in scheduling or vehicle rout-
ing problems [Quimper 2010, Malapert 2008, Houndji 2014, Dejemeppe 2015,
Vilím 2004].

One of the main advantages of having efficient cost-MDD constraints fil-
tering algorithms is that cost-MDDs offer cost versions for table constraints
and any constraints which can be represented by an MDD (regular, slide,
knapsack...).

Furthermore, the main motivation in this thesis for building cost version of
MDDs is an application consisting on the generation of text and music from a
corpus while avoiding plagiarism [Papadopoulos 2014, Perez 2015a]. The goal
of this problem, named maxOrder, is to generate sequences of words, where
for example, each subsequence of size two belongs to the corpus (Markovian
transition) and no subsequence of size 4 belongs to the corpus. Here 4 denotes
the maximum plagiarism size. While the chapter 17 is dedicated to this prob-
lem, the experimental section of this chapter contains some of the experiments
using the cost-MDD propagator proposed here.

The cost version of an MDD is an MDD whose arcs have an additional
information: the cost of the arc. Several state of the art papers about decision
diagram [Lai 1992, Gange 2013] use the name value instead of the cost of
an arc, but in constraint programming, the term value is ambiguous and so
replaced by cost, which is widely used for these kinds of constraints.

In a cost-MDD, each path from the top layer to the bottom layer has a
cost, which is the sum of the cost of its arcs, and a cost-MDD propagator
aims at bounding the maximum or minimum path cost passing through an
arc. Cost-MDDs are useful to model optimization problems [Bergman 2016a,
Bergman 2011] or dynamic programming problems [Hooker 2013].

Example:
Consider the cost-MDD from Figure 11.1. The arcs of this MDD can

be defined by a 4-uplet (origin, destination, label, cost). For example, the
arc (r,1,a,1) is the arc emanating from the root node, directed to node 1,
labeled by a and with a cost of 1. The cost of the path (b,b,a), composed
of the arcs (r,2,b,2), (2,5,b,2) and (5,tt, a, 2) is 2 + 2 + 2 = 6.

Several cost-MDD propagators already exist [Demassey 2006, Gange 2013,
Andersen 2007, Hoda 2010], they consist in the modification of existing MDD
filtering algorithms allowing to handle in addition to the propagation of the
deletion, the cost propagation inside the MDD. They will be presented in the
next section.

11.2. Cost-MDD 185

r

1

a,1 d,2 e,3

2

 b, 2

3

c,1

4

a,1 b, 2

5

c,1 a,1 b, 2

6

c,1 b, 2

tt

b, 2 c,1 a, 2 a,1 c, 2

Figure 11.1: Cost-MDD defined over three variables. Each arc is associated
with both a label and a cost.

As presented in chapter 10, MDD4R is a powerful propagator for MDD
constraints. For some industrial instances, MDD4R improves on previous
propagators by a speed factor of up to 500. Hence, this chapter proposes
an adaptation of the propagator MDD4R to process cost-MDDs and shows
that good speed up are also observed for cost-MDD4R compared to existing
methods.

11.2 Cost-MDD

11.2.1 Definition

A cost-MDD is an MDD whose arcs have additional information: the cost c of
the arc. That is, an arc is a 4-tuplet e = (u, v, a, c), where u is the emanating
node, v the terminating node, a the label and c the cost. Let M be a cost-
MDD and p be a path of M . The cost of p is denoted by γ(p) and is equal to
the sum of the costs of the arcs it contains. A shortest path of M is a path of
M whose cost is minimum. A shortest path of an arc e, denoted by pmin(e), is
a path such that there is no path of M containing e having a smaller cost.

186 Chapter 11. Cost-MDD constraint

11.2.1.1 Cost-MDD of a constraint

For a definition of the MDD of a constraint, see chapter 10. Let C be a
constraint and fC be a function associating a cost with each value of each
variable of X(C). The cost-MDD of C and fC is denoted by cost-MDD(C, fC)

and is the MDD(C) in which the cost of an arc labeled by a at layer i is
fC(xi, a).

Remark Cost-MDDs are not only built from existing constraints, and that,
in the general case, the cost of two arcs from the same layer and with the same
label can be different.

11.2.1.2 Cost-MDD propagator

A cost-MDD propagator for the constraint C associated with the cost-MDD
M , a value H, and a symbol ≺ (which can be ≤ or ≥) is a propagator for C
which ensures that it exists a path p such that a ∈ p and γ(p) ≺ H.

A cost-MDD propagator establishes arc consistency of C iff for each value
of each variable it exists an arc labeled by the value at the layer of the variable
in cost-MDD(C) that belongs to p a valid path of pathrtt(cost-MDD(C)) with
γ(p) ≺ H1. For the sake of clarity, only the case ≤ is considered here, the
other case is equivalent.

11.2.2 Related Work

The first cost-MDD propagator came from the regular constraint, so it has
been named the cost-regular constraint propagator [Demassey 2006] and is the
adaptation of the graph-based MDD propagator used for classical regular con-
straints [Pesant 2004] (see chapter 10). Then two filtering algorithms for the
cost-MDD constraint have been provided [Andersen 2007, Gange 2013], con-
sider a cost-MDD propagator named here cost−mddw since it is the adaptation
of the mddw MDD constraint propagator.

All of these propagators are based on the same idea of processing and/or
maintaining up[u], the shortest path cost between the root node and every
node u, and dn[u], the shortest path cost between each node u and the
terminal tt node. Thanks to this information, an arc e = (u, v, a, c) is safely
deleted when up[u] + dn[v] + c > H.

These algorithms use modified versions of their own MDD/regular propa-
gators to handle this new deletion and propagation on the cost-MDD. Basi-

1Note that the definition given in [Perez 2017c] is wrong. Also the definition saying for
establishing arc consistency the algorithm needs to ensure that for each arc it exists a path
whose cost is lower or equal to H is stronger than the arc consistency for the constraint but
ensures the MDD consistency [Hoda 2010] since each arc belongs to a feasible solution.

11.2. Cost-MDD 187

cally, for a cost-MDD constraint C, when a variable of X(C) is modified, the
arcs labeled by the deleted values have to be removed, and, if a node lost all
its incoming or outgoing arcs, it has to be removed. When a node is removed,
all its remaining arcs have to be removed. This behavior is classical for MDD
propagators, but in addition, if a value up[u] or dn[u] of a node u is modified,
because of the arcs deletion, then the new value has to be propagated.

An algorithm maintaining during the search the additional information
which is the costs (up and down) of a node during the search can propagate the
costs modification by performing a DFS or a BFS starting at the modification
and updating the up and down values of the impacted nodes. This is what the
existing algorithms do.

Example:
Consider the MDD from Figure 11.1. Let the maximum cost H be 5.

The first step is to build the shortest path cost of each node u (up[u] and
dn[u]).

Node r 1 2 3 4 5 6 tt
up 0 1 2 1 2 2 3 3
dn 3 2 2 3 1 2 1 0

Then for each node, we can determine the cost of the shortest path
passing through each arc e = (u, v, a, c) by processing up[u] + c + dn[v].
Thus the arc (1, 4, b, 2) as a minimal cost of up[1]+2+dn[4] = 1+2+1 = 4,
which is lower than 5. But the arc (2, 5, b, 2) has a cost of up[2]+2+dn[5] =

2 + 2 + 2 = 6, which is greater than 6, Thus we can safely remove this arc
since no solution with an acceptable cost pass through it.

Two-sided inequalities Another algorithm has been provided for handling
the two-sided inequalities of the cost of an MDD [Hoda 2010]. The main
difference between this algorithm and the others is that it stores in each node
all the possible path costs. Let u be a node of the MDD, let Up[u] be the set
of different costs of paths reaching u from the root, let Dn[u] be the set of
different costs of paths reaching tt from u. An arc e = (u, v, a, c) can be safely
removed when:

∀up ∈ Up[u],∀dn ∈ Dn[v], up+ c+ dn > H (11.1)

While this chapter first considers the one-sided inequality, it then describes
a method enforcing arc consistency for the cost equal to a set of distinct values
and thus will be compared to this algorithm.

188 Chapter 11. Cost-MDD constraint

11.3 Cost-MDD4R

This section proposes Cost-MDD4R, a modified version of the MDD4R algo-
rithm for establishing the arc consistency of a constraint C represented by
cost-MDD(C). But, in order to deal with costs, in the same ways as the exist-
ing cost-MDD propagators, cost-MDD4R adds and maintains for each node
u, the value up[u] and dn[u].

While a propagator dealing with classical MDD constraints only has to
manage variables modifications, a propagator dealing with cost-MDD con-
straints also needs to handle cost modifications. The description of the cost-
MDD4R is split into two parts, one for each of these modifications.

11.3.1 Variable Modification

When the domain of a variable is modified, cost-MDD4R performs the same
work as MDD4R, which is maintaining for each value of each variable its set
of valid arcs and for each node its set of valid incoming and outgoing arcs.
But in addition it maintains for each node u the values up[u] and dn[u].

To do so, the algorithm marks the modified nodes and, between the work
made layer by layer, it updates the cost of the modified nodes, and deletes
the arcs that just became invalid. Then, it continues this cost propagation,
layer by layer, even if no more arcs have to be deleted by MDD4R.

To avoid unnecessary work, the algorithm only marks nodes whose value
is equal to the value brought by the deleted arc. For example, if we remove
the arc e = (u, v, a, c), we mark u only if dn[u] = c + dn[v] and we mark v
only if up[v] = c+ up[u].

Remark: The dn value of the root and the up value of the tt node contain
the lower bound of the cost of the constraint, which is the shortest path cost
of the cost-MDD constraint considering the current domain of the variables.

Reset While the previous definition and behavior can already be applied to
existing algorithms, the main advantage of MDD4R is the efficient use of a
reset. If a reset is performed (i.e. fewer valid arcs than invalid arcs), then the
algorithm is able to reset the values up and dn while putting back the arcs.

An interesting remark is that the arcs propagating a cost propagation will
always be processed during the propagation. This means that if the algorithm
performs a reset or a deletion, in both cases the arcs will be processed, thus
the choice of the reset of the arcs has to avoid these arcs. We can consider that
the nodes are partitioned into three partition:unchanged, modified, removed.

11.3. Cost-MDD4R 189

Algorithm 22 cost-MDD4R Propagate.
Propagate(mdd, x : variable, δ : values)

for each value a ∈ δ do
for each e = (u, v, a, c) ∈ S(x, a) do

if dn[v] + c = dn[u] then
put u in Upc

if dr[u] + c = dr[v] then
put v in Downc

remove(e)

for each Layer i ∈ layer(x)..0 if Q↑ ∪ Upc 6= ∅ do

4 Upc ← checkModified↑(Upc)
if Should Reset then

Put back all the arcs not in Q↑
else

Remove all the arcs from Q↑
5 Propagate the arcs from Upc

for each Layer i ∈ layer(x) + 1..r if Q↓ ∪ Downc 6= ∅ do
Downc ← checkModified↓(Downc)
if Should Reset then

Put back all the arcs not in Q↓
else

Remove all the arcs from Q↓
Propagate the arcs from Downc

Algorithm Let Upc be the set of nodes whose dn may have changed and let
Downc be the set of nodes whose up may have changed. Just like MDD4R,
the algorithm decides for each layer to reset by considering the arcs to remove
and the remaining arcs. When an arc in the modified partition is put in
the removed partition, this implies that the node is removed from the set
Upc (or Downc) and put into Q↑ (or Q↓). The Algorithm 22 is a possible
implementation of this propagation algorithm. The line 4 checks for each node
which has lost one of its incoming arcs bringing the best dn value if it was
the last one, and so modify its dn, otherwise it removes the node from the set
Upc. The algorithm 23 is a possible implementation of the update of the Upc
set (checkModified↑).

The line 5 from Algorithm 22 first tests for each arc which is propagating

190 Chapter 11. Cost-MDD constraint

Algorithm 23 cost-MDD4R nodes cost update.
checkModified↑(Upc : setofnodes)

for each node u ∈ Upc do
dntmp ← inf

for each arc e = (u, v, a, c) ∈ ω+(u) do
dntmp ← max(dn[v]+c,dntmp)
if dntmp =dn[u] then break

if dntmp 6=dn[u] then
dn[u] ← dntmp

else
Remove u from Upc

a new cost if this new cost is lower than H. If the cost is strictly greater, then
the arc is removed, otherwise, if the emanating node has a dn value equal to
the previous dn value of the terminating node plus the cost of the arc, then
the emanating node is added to the Upc set for the next layer. This part is
close to the first lines of the algorithm.

Example:
Consider the cost-MDD from Figure 11.1. Consider a cost-MDD con-

straint defined for the three variables (x1, x2, x3), with a H = 5. At
first, as shown in the previous example, the arc (2, 5, b, 2) is removed. We
obtain the MDD from Figure 11.2 and the up and dn values:

Node r 1 2 3 4 5 6 tt
up 0 1 2 1 2 2 3 3
dn 3 2 2 3 1 2 1 0

Consider the assignment of the third variable x3 (the variable on the last
layer) to the value b. cost-MDD4R first count the number of arc to remove
and to keep at the layer of x3. We have four arcs to remove and only one
to keep, thus cost-MDD4R perform of reset. It consider all the nodes a
the layer of its emanating nodes as potentially removed (nodes 4,5 and 6).
Then it puts back the arc (4,tt, b, 2). This arc set the node 4 as valid.
since the node 5 and 6 have not been set as valid, they are considered as
removed. The previous dn value of 4 was 1, but the only puted back arc
have a cost of two so the dn cost of 4 is now 2. For tt, the value up was
3, but its only value is now 4.

Both the deletion and the cost modification of 4 have to be propagated.

11.3. Cost-MDD4R 191

r

1

a,1 d,2 e,3

2

 b, 2

3

c,1

4

a,1 b, 2

5

c,1 a,1

6

c,1 b, 2

tt

b, 2 c,1 a, 2 a,1 c, 2

Figure 11.2: Cost-MDD defined over three variables. Removing of the arc
(2, 5, b, 2) from the cost-MDD of figure 11.1.

there are four arcs to remove and 2 arc to keep, the algorithm reset again.
It puts back the arcs (1,4,a,1) and (1,4,b,2), since the cose of 4 has changed,
it impact the cost of 1, which is set to 3 while putting back the arcs. 1 is
put in the modified nodes set Upc.

For the layer of variable X1, there are 2 arcs to remove and three to
keep, thus the algorithm choose to remove the arcs. The arc (r,2,b,2)
is removed, it was not the support of the dn value of r since dn[2] +
2 = 4 and dn[r] = 3, so their is no need of putting r in the modified
nodes set. Same for the arc (r,3,c,1). Now we consider the modified
nodes inside of UPc, there is node 1, whose cost changed from 2 to 3. We
consider all the incoming arcs of 1, first (r,1,a,1), whose minimal cost is
now dn[1]+ 1 + up[r] = 3 + 1 + 0 = 4 ≤ 5 thus this arc is still valid, but
it was a probable support of the dn[r] value, thus r is pending for a new
support of its dn value. Arc (r,1,d,2) is still valid since its minimal cost is
5, but the arc (r,1,e,3) has a cost of dn[1]+3+up[r] = 3+3+0 = 6 > 5,
thus we have to remove this arc. Finally, r update its new dn value to 4.
The resulting MDD is given in Figure 11.3.

Complexity The complexity of MDD4R is linear amortized over a branch
tree. This implies that while processing all the events of a branch, then the

192 Chapter 11. Cost-MDD constraint

r

1

a,1 d,2

2 3

4

a,1 b, 2

5 6

tt

b, 2

Figure 11.3: Propagation of x3 = b with H = 5 in the cost MDD of Figure
11.2.

total amount of work is linear on the size of the MDD. The cost-MDD4R
algorithm is mainly composed of MDD4R and the propagation of the cost.
Since the propagation of the cost on the MDD can lead to search over the
whole MDD, the complexity of a cost-MDD4R propagation is bound by the
size of the MDD at each call.

11.3.2 Modification of the cost value.

While the first part describes how the algorithm reacts when the variables of
the constraint are modified, the algorithm has to face another modification,
the modification of the H value.

During the search, constraint solver can modify this H value, consider for
example constraint optimization solvers, when a solution with best value H is
found then the solvers often search with H ′ = H− 1 in order to prove that no
solution exists. In order to efficiently handle this modification, consider the
following property.

Let e = (u, v, a, c) be an arc, the Minimal Path Cost of e denoted by
MPC(e) is MPC(e) = c+ up[u] + dn[v] = γ(pmin(e)).

Proposition 1 Let C be an arc consistent constraint with a cost value H =

k+ i. If H is reduced to k, then removing all arcs of cost-MDD (C) such that
MPC(e) > k is sufficient for C to be arc consistent.

11.3. Cost-MDD4R 193

Algorithm 24 cost-MDD4R BoundUpdate.
boundUpdate(mdd)

for each layer l ∈ mdd.Layers do
#e_t_remove←

∑Pmax
c=Nmax+1 |El[c]|

#e_t_keep← #edges[l]−#e_t_remove
if #e_t_remove < #e_t_keep then

for each c ∈ [Nmax+ 1, Pmax] do
for each e ∈ El[c] do

remove(e)

else
for each c ∈ [0, Nmax] do

for each e ∈ Sl[c] do
restore(e)

Proof: Any arc ε with MPC(ε) > k is not consistent by definition, and so
can be safely deleted. Let e be any arc with MPC(e) ≤ k. Then, for every
arc e′ ∈ pmin(e) there is p′ a path such that γ(p′) ≤ γ(pmin(e)) = MPC(e),
so MPC(e′) ≤ MPC(e) ≤ k. Thus, no arc of pmin(e) has been deleted and
pmin(e) is a valid path of pathrtt(M) . Hence, e is consistent with C. �

Thanks to this property, we can efficiently propagate the modification of
the cost H of a cost-MDD constraint. When the value H is reduced from
k+ i to k, cost-MDD4R establishes arc consistency by performing a BFS, and
for each layer, it simply removes the arcs such that MPC > k. This can be
efficiently done by maintaining the arcs sorted by their MPC.

Reset Here again, the reset idea can be applied. When there are fewer arcs
with MPC ≤ k than arcs with MPC > k, then cost-MDD4R will choose
to clear the data structures and put back the arcs with MPC ≤ k. This is
an important part of the algorithm because bound propagation can be costly.
This idea avoids deleting almost all the MDD when only few arcs are still
valid.

The algorithm Let Ei be the backtracking data structure storing the arcs
of a layer and ordering them by their MPC value. Since this value is bound
between the shortest path cost from the original MDD and the maximum cost
H, a linear sort can be used. The Algorithm 24 is a possible implementation

194 Chapter 11. Cost-MDD constraint

r

0

a,0

1

b,0 c,1

3

b,0

2

a,0c,1 a,0c,1

tt

b,0c,1a,0

S = 0

S = 0

0

S = 1

1

S = 0

0

S = 1

1 0

S = 2

1

S = 0

0

S = 1

1 0

S = 2

1 0

S = 3

1

0 1 2 3

Figure 11.4: On the left, a cost-MDD assigning a cost of 1 for the value c and
0 otherwise. On the right, MDDΣ{0,1} on 3 variables

of the bound modification algorithm.

Complexity Consider that the algorithm does not perform any reset, then
the number of arc processed along a branch tree is bound by the number of
arcs of the MDD, since each time an arc is removed, it can’t be removed again.
Consider now that the algorithm performs a reset only when the number of
remaining arcs is lower than the number of arcs to remove, then since the
overall number of arcs is lower than the number of arcs of the MDD, the
complexity remains the same.

Remark: Since the cost-MDD4R can be seen as an add-on of the
MDD4R propagator, we can apply several cost constraint to the same MDD
[Demassey 2006]. This implies a stronger propagation than propagating sev-
eral distinct cost-MDD constraints.

11.4 Cost Intersection Method

The cost-MDD4R filtering algorithm is able to handle cost-MDD constraints.
But the complexity of the cost-MDD4R propagator is worse than the complex-
ity of the MDD4R propagator. This section proposes a transformation of the
cost-MDD into a simple MDD that can be handled by an MDD propagator

11.4. Cost Intersection Method 195

r

0,s=0

a

1,s=0

b

1,s=1

c

2,s=0

a

2,s=1

c

3,s=0

b a

3,s=1

c a

3,s=2

c

tt,s=0

a

tt,s=1

ab c b

tt,s=2

c b

tt,s=3

c

tt

0 1 2 3

Figure 11.5: The resulting MDD after the cost intersection between the MDDs
from Figure 11.4

and enforcing arc consistency on the cost-variable. Having a strong consis-
tency for cost-variable usually allow to remove sooner inconsistent values and
thus having a smaller search tree. This transformation will be done by adding
a layer to the MDD corresponding to the cost.

Intersection of MDDs As shown in chapter 5, efficient operators between
MDDs allow us to perform several operations on MDDs. In general these
operations aim at combining MDDs according to the label of their arcs. In
this section, we use these operations in another way. Instead of applying
operators on the label of the arcs, we apply them on their cost.

0-1 cost intersection Let MDDΣ{0,1} (right on Figure 11.4) be the MDD
representing the sum of n variables with the set {0, 1} as a domain. The last
variable represents the possible values of this sum. Consider an MDD mddc
where the cost of an arc is either O or 1. If we perform the intersection between
mddc and MDDΣ{0,1}, then we obtain an MDD whose last layer corresponds
to the cost of the assignment. Thus, any MDD constraint propagator can be
used and the last variable represents the cost-variable.

196 Chapter 11. Cost-MDD constraint

S = 0

S = 0

0

S = 1

1

S = 0

0

S = 1

1 0

S = 2

1

S^ = 0

0

S^ = 1

1

S^ = 2

2 123 234

S^ = 0

S^ = 0

0

S^ = 1

1

0101

Figure 11.6: MDDΣ{0,1} on 4 variables

Example:
Consider the left MDD from Figure 11.4, the cost of its arcs are either

0 or 1, thus we can intersect this MDD with the MDD on the right. We
obtain the MDD of Figure 11.5, in this MDD all the nodes have been
duplicated in as many different incoming sums, for example consider the
node 3 from the original MDD, since 3 different sums reach the node, the
node has been split 3 times.

Complexity We can compute the size of this newly created MDD. Let M
be any cost-MDD, we denote by |M.layer(i)| the number of nodes at the
layer i and by |M | the total number of nodes of M . The maximum number
of nodes at a layer i of the intersection of M and MDDΣ{0,1} is bounded by
|M.layer(i)| ∗ |MDDΣ{0,1}.layer(i)|. The sum of all the layers is bounded by
|M | ∗ maxi(|MDDΣ{0,1}.layer(i)|). In our case, the maximum for a layer of
MDDΣ{0,1} is the number of variables plus one, that is n+ 1. So the resulting
MDD has a maximum size of (n+ 1)|M |

Note that we can reduce the size of |MDDΣ{0,1}|, by modeling
∑

i xi = S,
the sum constraint, in a different way. Instead of ordering the variables from
x1 to xn and to S the final sum variable,we can order the variable from x1 to
xn

2
then S and then from xn

2
+1 to xn. This leads to an MDD having half as

many nodes for its largest layer (Figure 11.6).

11.4. Cost Intersection Method 197

Any cost intersection This intersection method can be applied to any
constraint represented by a cost-MDD. However, in general the cost of an arc
is not only 0 or 1 and so this sum is not bounded by a small number.

Let MDDΣ[0,k] be the MDD representing the sum of n variables with the
set {0, 1, ..., k} as a domain. In the best representation of MDDΣ[0,k], the
number of nodes of the middle layer is the number of different values reachable
by summing the numbers between 0 and k, which is nk/2.

The intersection of a cost-MDD M with MDDΣ[0,k] leads to an MDD
having at most nk|M |/2 nodes. Note that this number is an upper bound,
because the number of times a node is duplicated in the intersection is equal to
the number of different values of the sums reaching this node. This number of
different values is the same as the considered values of the algorithm presented
in [Hoda 2010] for the two-sided inequality. If this number is not too large,
then applying this transformation is a good idea because MDD propagators
are faster than cost-MDD propagators.

11.4.1 Discussion

Cost of a value Some search heuristic or algorithms require, a lower bound
for the cost of a pair variable value (x, a). This value can be extracted from the
constraint by looking for the minimum MPC value of the arcs in the S(x, a)

list. Thus a linear algorithm can be define to extract such value.

Remark Consider two distinct cost-MDD constraints, mdd1 associated with
a cost C1 and mdd2 associated with a cost C2. Enforcing arc consistency on
MDDi = mdd1 ∩mdd2, having on the same MDD both of the cost function
is stronger than propagating the two constraints independently.

198 Chapter 11. Cost-MDD constraint

11.5 Experiments

11.5.1 MaxOrder

The main motivation and experiments are the one made on chapter 17. The
results are the one for the soft constraint handle with a cost-MDD constraint.

11.5.2 Random instances

We test the propagators on several random instances, in order to detect the
location of the best performances of each propagator. We select a certain
number randomly of tuples and build an MDD from this tuple set. We as-
sociate each arc with a random cost between 0 and 10. This implies the use
of MDDΣ[0,10] instead of MDDΣ{0,1} for the intersection method. We have a
constraint of arity 18 and an allDifferent constraint. Table 11.1 shows that the
intersection method can be very efficient in practice. Intuitively, the intersec-
tion method “precomputes” some operations that are recomputed each time
by the cost-MDD propagator. However, when the MDD grows up to reach
our memory limit (around 1.7GB), then cost-MDD4R become faster than the
intersection method.

#tuples cost-MDD4R ev-mdd inter
50 35,89 59,23 2,55
150 19,15 33,98 1,97
500 19,61 35,38 2,77
1k 19,97 37,37 4,15
2k 32,04 66,22 8,23
5k 32,27 71,43 14,22
10k 44,26 83,58 19,12
25k 101,57 189,30 49,84
50k 201,94 378,533 150,316
100k 478,296 755,570 1668,508

Table 11.1: Time (s) for finding the best solution. Construction time is in-
cluded, arity 18, domain size 18.

Chapter 12

Soft-MDD constraint

Contents
12.1 Introduction . 199

12.2 Soft-MDD Propagator 200

12.2.1 Dedicated Propagator 202

12.2.2 Transformation into a cost-MDD 203

12.2.3 Intersection of MDDs 203

12.3 Discussion . 204

12.4 Experiments . 206

12.1 Introduction

Many real-world problem do not contain any solution: we call these kinds of
problems over constrained problems.

Consider for example a seating plan for a wedding. Suppose we have 2
tables of 8 people, 15 different people and 4 people that do not want to be
on the same table. In this problem, each person is represented by a variable,
the domain of these variables are the tables to which people can be assigned,
either table a of b. For each table, a constraint prevents that more than 8
people to be seated on it. For the four incompatible people, a constraint of
difference (all-different) prevents them from being assigned to the same table.

This problem is unsatisfiable. But since a wedding planner cannot answer
that there is no solution, because this implies that the wedding is canceled, a
good non-solution has to be found.

Consider that the number of tables and the size of the table are given by
the restaurant, so they cannot be changed, thus the first constraints cannot
be modified. We usually call these constraints hard constraints.

The constraint preventing the four people of being on the same table is
usually a preference constraint, we would like to satisfy it but it is not neces-
sarily possible. We call this kind of constraint soft constraints, the constraints
that can be violated, but with respect to a certain violation measurement.

200 Chapter 12. Soft-MDD constraint

Several soft versions of constraints exist, like the soft all-different constraint
[Van Hoeve 2004] or the soft table constraint [Lecoutre 2012b]. The violation
measurement of a constraint mainly depends on the constraint.

For example, consider a soft all-different applied to 4 variables x1 to x4

having as domain the set a, b. should the solutions (a, a, a, b) and (a, a, b, b)

have the same violation cost?
Several criteria for the violation of a constraint have been given

[Beldiceanu 2004b, Petit 2001]. One for example counts the number of vari-
ables to remove or change in order to satisfy the constraint, and is named
the variable based violation cost. Another counts the number of violated con-
straints in the binary decomposition of the constraint, and is named the de-
composition based violation cost.

In the previous example, applying a soft all-different gives for the assign-
ment (a, a, b, b), a variable based cost of 2 and a decomposition based cost
of 2. Now considering the assignment (a, a, a, b), the variable based cost is 2
but the decomposition based cost is 3. This implies that for our seating plan,
the solution putting in each table two incompatible people seems to be better
considering the decomposition based violation cost than putting three of them
on the same table.

In the context of MDDs, no work has been done for soft-MDD, but
in the context of the regular constraint, an algorithm has been proposed
[Van Hoeve 2006]. For a regular constraint, two main violation costs can be
extracted, one of them is the classical variable based violation cost, and the
second one is based on the language accepted by the automaton. This sec-
ond violation criteria, named edit based violation cost, considers the minimum
amount of modification, that can be an insertion, a deletion or a substitution
required to get an accepted word.

An MDD represents a set of tuples, thus a simple violation criteria can be
defined by the minimum distance between a given solution and a tuple in the
MDD. Using a Hamming distance, we obtain the variable based modification
cost.

12.2 Soft-MDD Propagator

A soft constraint is a constraint which allows some violations. In this section,
we consider only the variable based violation cost [Petit 2001]. Precisely, for a
given assignment A of valid values of a constraint C, the cost of the violation of
C by A is defined as the minimal number of values of A that should be changed
in order to satisfy C. In other words, it corresponds to the minimum of the

12.2. Soft-MDD Propagator 201

0

1

a

2

b

3

a c b

4

ac

5

b c a

0

1

a *

2

b *

3

a c * b *

4

a c *

5

b c * a *

Figure 12.1: Soft MDD and scMDD

Hamming distance between A and any tuple of C. We denote this distance
by Hamming(A,C). We consider that a value a ∈ D(x) is consistent with a
soft constraint C associated with an integer H if and only if there exists A, an
assignment of valid values involving (x, a), such that Hamming(A,C) ≤ H.

A soft-MDD propagator of a soft constraint C associated with an integer
H is an algorithm which removes some values inconsistent with C and H.

Example:
For example, consider the top left MDD of Figure 12.1. If all the arcs

of any path are valid, then the constraint is not violated. But if values a
and b are deleted from the domain of the first variable (i.e. the variable
of the first layer) then the propagation of this deletion will remove all the
nodes and arcs of the MDD. This shows the need for new propagators in
order to deal with the amount of violation.

This section presents three methods to propagate a soft constraint C rep-
resented by MDD(C). The first one is a simple propagator, which does not
modify MDD(C) and uses some properties on the shortest path to establish
arc consistency of C. The second one uses the idea from the soft regular in or-
der to transform MDD(C) into a cost-MDD and uses a cost-MDD propagator
on it. The last one builds an MDD explicitly dealing with the violation cost
variable and intersects it with MDD(C) and applies on the resulting MDD an
MDD propagator.

202 Chapter 12. Soft-MDD constraint

12.2.1 Dedicated Propagator

The first propagator does not modify MDD(C) and is easy to implement.
Consider µ(p) the function which counts the number of arcs of the path p

that are not valid. During the search, only assignments involving values in
the current domains of the variables are considered, so the Hamming distance
between any assignment and a tuple of the MDD corresponding to the path
p is at least µ(p).

Let M be an MDD, let e be an arc of M . If e is not involved in a path
p of pathrtt(M) with µ(p) ≤ H then it means that no path containing e may
support a value, so e can be safely deleted.

Property 10 Let p be a path of pathrtt(M). If µ(p) = H, then it means that
p supports any value of a variable corresponding to the layer of non-valid arcs
of p.

Proof: The µ(p) = H implies that r − H values of the path belong to the
current domain of their respective variables. Let X(H) be the variables at
the layers of the invalid arcs. Let ¯X(H) be the set of variables at the layers of
the valid arcs. The partial instantiation of the ¯X(H) variables to the label of
their valid arc has a violation cost of 0. Thus using this partial instantiation,
the instantiation of the H remaining variables to any values of their current
domain cannot have a violation cost greater than H. �

Property 11 Let p be a path of pathrtt(M). If µ(p) < H, then it means that
p supports any value of any variable.

Proof: Let h < H be the number of invalid arcs of p. LetX(h) be the variables
at the layers of the invalid arcs. Let ¯X(h) be the set of variables at the layers
of the valid arcs. For any variable x ∈ ¯X(h), the partial instantiation of the

¯X(h)\{x} variables to the label of their valid arc has a violation cost of 0. Thus
using this partial instantiation, the instantiation of the h+ 1 ≤ H remaining
variables to any values of their current domain cannot have a violation cost
greater than H. �

Algorithm Using these two properties about paths, we design a simple
propagator for the soft-MDD constraint. First, we search for the shortest
path of the MDD according to function µ. If this path has a cost strictly
lower than the maximum cost H, then all the values are supported (Property
11). Otherwise, we delete all arcs e with a shortest path cost according to µ
greater than H.

12.2. Soft-MDD Propagator 203

The resulting MDD can be handled by any MDD propagator. Using 2 BFS,
we can determine the shortest path cost of all arcs and remove all impossible
paths. This method establishes arc consistency of the soft constraint.

Note that a classical cost-MDD cannot handle this constraint by consid-
ering µ as cost function because the cost of an arc depends on the domain of
the variables.

12.2.2 Transformation into a cost-MDD

The second method for handling soft-MDD constraints is an adaptation of the
method initially created for the regular constraint [Van Hoeve 2006].

The idea is to add, for each two nodes which have at least one arc between
them, an additional arc labeled by *, with a cost of 1. The cost of all the other
arcs is set to 0. An arc labeled by * is an arc which supports any value of
the variable. We call *-arcs such arcs and we denote by scMDD the resulting
cost-MDD and fSC the cost function we have defined. Then, we define a
cost-MDD propagator on scMDD with fSC , H + 1 and <.

Example:
For instance, in Figure 12.1 the *-arcs (in red) are created only between

connected nodes. Nodes 2 and 3 are connected by an arc labeled by b, so
we create the *-arc, but 1 and 4 are not connected, so we do not create
the *-arc between them. Now, assume that the values a and b are deleted
from the domain of the variable x1. The resulting MDD is the MDD in
Figure 12.2. We can see that only 2 arcs have been deleted, and, unlike
in MDD(C), the nodes are not deleted, thanks to the *-arcs. It is easy to
see that the shortest path cost in this MDD is 1 because all paths contain
at least one *-arc.

12.2.3 Intersection of MDDs

Chapter 11 proposed a method allowing to handle a cost-MDD constraint
with an MDD propagator. To do so, the cost-MDD is intersected with an
MDD representing the cost function.

For soft MDDs, the cost function is a 0-1 function. Thus the intersection
method can intersect the MDD given by the transformation of section 12.2.2
and the MDD |MDDΣ{0,1}|. This intersection leads to duplicating each node
at worst min(r/2, H) times.

204 Chapter 12. Soft-MDD constraint

1

3

a c *

5

b c *

2

b *

4

a c *

a *

0

* *

Figure 12.2: Soft MDD propagation

Example:
For example, if we take the left MDD from Figure 12.3, and we inter-

sect it with the one on the right, then we obtain the MDD of Figure 12.4.
In the resulting MDD, the node (1 S=0) represents the copy of the node
1 from the first MDD having an incoming cost of 0. We can observe that
the outgoing arcs of node (1 S=X) are still directed to a node labeled by
(3 S=X).

Thanks to this intersection transformation, any MDD propagator can han-
dle and enforce arc consistency for a soft-MDD constraint, by trading some
memory, but allowing to use more efficient propagators and enforcing arc con-
sistency on the violation variable.

12.3 Discussion

Choice The choice between the possible implementations of the soft con-
straint depends first on the algorithms already present in the used solver.
Many solvers have MDD constraint propagators, while very few of them have
cost-MDD constraint propagators. The second point to care about is the
transformation size, while the first one can add at worst as many arcs as the
number of existing arcs, the second transformation can use r/2 times more

12.3. Discussion 205

0

1

a *

2

b *

3

a c * b *

4

a c *

5

b c * a *

S = 0

S = 0

0

S = 1

1

S = 0

0

S = 1

1 0

S = 2

1

S = 0

0

S = 1

1 0

S = 2

1 0

S = 3

1

0 1 2 3

Figure 12.3: scMDD and the |MDDΣ{0,1}| for 3 variables

memory. Thus the choice between the methods has to consider all these points.
Considering the tests made, when the intersection method can be used, the
results are often faster.

Remark MDDs are often used in order to combine constraints. The use of a
soft-MDD constraint for handling such combination has to be done carefully.
An MDD M which is the intersection of the two MDDs M1 and M2 contains
the tuples that appears on both M1 and M2. Thus applying a soft-MDD con-
straint using M is not the same as applying two soft-MDD constraints using
M1 and M2. The intersection loose the information of the original MDDs,
when the information is not shared by both of the MDDs. The experimental
section gives an example of such behavior.

Relax As discussed in chapter 8, several works focus on relaxed MDDs
[Bergman 2016a, Bergman 2011]. They aim at obtaining an MDD represent-
ing a superset Ŝ of the solutions S of the exact MDD, a superset implies that
S ⊆ Ŝ. They generally bound the number of nodes in a layer. Applying
the softening method proposed in this paper to a relax MDD will give a soft
version of the Ŝ set of solutions.

206 Chapter 12. Soft-MDD constraint

0 S=0

1 S=0

a

1 S=1

*

2 S=0

b

2 S=1

*

3 S=0

ac

3 S=1

* a c

3 S=2

*b *

4 S=0

a c

4 S=1

* b *a c

4 S=2

*

5 S=0

b b

5 S=1

* bb

5 S=2

* bb

5 S=3

*a * a * a *

0 1 2 3

Figure 12.4: MDD resulting from the intersection of the two MDDs of Figure
12.3.

12.4 Experiments

We compare cost-MDD4R with ev-mdd, the incremental algorithm presented
in [Gange 2013] and with inter, the intersection method we proposed.

Sequence generation The problem presented here partially comes from
chapter 17.

We consider the problem detailed in Section Motivation. We have tested
both ways of softening the constraint and they both give pertinent results.
For the experimentation, we used "The fables of Jean de La Fontaine"
because they contain several sentences, not too many words and often produce
funny results.

An important remark is that, if the corpus size grows, then the maxOrder
constraint becomes satisfiable. If it grows again, then it becomes useless to
apply a maxOrder constraint because it becomes exponentially improbable to
build a sequence containing plagiarism. That’s why we focus on corpus like
fables and short texts.

Table 12.1 gives the time results (in seconds) and Table 12.2 gives the size
of the MDDs. Note that the model also contains an alldifferent constraint.
Markov means that we apply the soft constraint on the Markovian transition,
Plagiarism is for the plagiarism part. The creation time is similar for both

12.4. Experiments 207

Algo Markov Plagiarism
size 18 20 22 18 20 22
inter 5,5 104,8 111,7 4,7 8,1 9,3
cost-MDD4R 5,3 86,5 94,9 23,7 44,6 67,9
ev-mdd 11,1 361,9 355,5 26,2 58,5 78,0

Table 12.1: Times needed to build the sequences with minimum of violations
(Time out 1800s).

Markov Plagiarism
#nodes #arcs #nodes #arcs

original 73 168 261 21.5k
arc * 73 380 261 22.1k
intersection 147 590 783 54.6k

Table 12.2: Size of the MDDs. 60 different words.

MDDs, and insignificant compared to the search time.
These tables show that both methods are useful, and that our algorithms

clearly outperform the existing methods. First, the intersection method, seems
to be very efficient, by being either the best one, or close to the best one. The
using a cost-MDD constraint for handling soft-MDD is possible as shows this
experiments. Moreover, our cost-MDD4R seems to performe better than ev-
mdd in this examples.

Chapter 13

Channeling Constraints and
MDDs

Contents
13.1 Introduction . 209

13.2 MDD Channeling Constraint 211

13.2.1 Set Variables . 211

13.2.2 Definition . 211

13.3 Propagation . 212

13.3.1 Modification of I . 212

13.3.2 Modification of V . 213

13.3.3 Modification of the MDD 216

13.4 Conclusion . 219

13.1 Introduction

Desiging efficient algorithms enforcing constraints on MDDs often lead to solve
hard combinatorial problems [Andersen 2007, Hoda 2010, Bergman 2014b,
Cheng 2005, Hadzic 2008]. For example, several algorithms exist enforcing
the allDifferent constraint, inequality constraints, among constraints or even
MDD constraints onto MDDs.

The simplest way for constraining MDDs is to intersect them with other
constraints. While such a method can easily be implemented and often gives
good results, the size of the resulting MDD can become a problem. Thus
several works focus on applying algorithms on the MDD in order to apply
other constraints to the MDD, by modifying or by storing information on the
nodes and removing arcs using this information. A simple example is the cost-
MDD, which stores in nodes the minimal path cost and uses it for removing
arcs whose cost is greater than a maximum cost.

210 Chapter 13. Channeling Constraints and MDDs

(a)

 0 1 2 3

 0 1 2 3

 1 3 2 2

(b)

 0 1 2 3

 0 3

 1 2

(c)

 0 1 2 3

 0 2

 1 3 2

Figure 13.1: An MDD (a) having 4 marked arcs (dashed). This marking
implies that the variables involved are x2 and x3 and the values are {0, 2, 3}.
(b) the prohibition of variable 3 for the marked arcs of the MDD (a). (c), the
mandatory of variable 2 for the marked arcs of MDD (a).

What is proposed here is to constrain a sub-part of an MDD. This is
done in two steps. First, we mark a subset of arcs of the MDD using a
marking function. A marking function selects a sub-set of arcs depending
on a criteria which depends on the problem. Then we manage these arcs
by constraining their values or the index of their variables. The channeling
constraint [Cheng 1999] is well suited for this problem.

Example:
Consider for example the MDD (a) of Figure 13.1, applied to the three

variables x1, x2 and x3. The dashed arcs are the arcs marked by a given
marking function. The set of possible values for these arcs is {0, 2, 3} and
the set of possible variables are {2, 3}. If we enforce that the variable x3

cannot have marked arcs, then we obtain the MDD (b) of Figure 13.1.
Furthermore, if instead we enforce that x2 must have a marked arc, then
we obtain the MDD (c) of Figure 13.1.

Managing the arcs must allow to select the possible, mandatory or prohib-
ited values and the possible, mandatory or prohibited variables for these arcs.
Thus the use of set variables for managing the arcs seems to be a good option.

This chapter first describes the definition of the MDD-Arc constraint, then
it proposes several algorithms managing the constraint.

13.2. MDD Channeling Constraint 211

13.2 MDD Channeling Constraint

13.2.1 Set Variables

Set variables [Gervet 1993, Puget 1993] are variables that can be assigned to
several values at the same time, a set of values. In a CP solver, a set-variable
can be defined using a set of Boolean variables, by introducing a Boolean
variable for each value. The state of a value a is defined as follows depending
on the current domain of its associated Boolean variable ba:

• Dc(ba) = {0} implies that the value does not belong to the Set.

• Dc(ba) = {1} implies that the value is mandatory.

• Dc(ba) = {0, 1} implies that the value is possible but not mandatory.

Constraint programming solvers have several constraints for set variables,
like the cardinality, the intersection or partition [Bessiere 2004, Yip 2010]. Set
variables can be used for representing problems like the social golfer [Harvey]
or music titles selection [Pachet 1999].

13.2.2 Definition

Let C be an MDD constraint associated with the MDD M . Let f be a mark-
ing function, let I and V be set variables. The mddChannel(C,X, f, I, V)

constraints ensure that the marked arcs by the function have their values in
V and their variable indexes in I. Thus I and V manage a subset of the arcs
of the MDD used by the constraint C.

Definition 7 An index i is possible for I if there exists a valid marked arc at
layer i.

Definition 8 An index i is mandatory for I if there does not exist a valid
non-marked arc at layer i.

Definition 9 An index i is prohibited (removed) for I if it does not exist a
valid marked arc at layer i.

Definition 10 A value a is possible for V if there exists a valid marked arc
labeled by a.

Definition 11 A value a is mandatory for V if it does not exist a valid path
that does not contain a marked arc labeled by a.

212 Chapter 13. Channeling Constraints and MDDs

Definition 12 A value a is prohibited (removed) for V if it does not exist a
valid marked arc labeled by a.

The next section presents how the modification of the set variables I and
V allow to manage the marked arc of the MDD.

Remark: The constraint C can be any MDD constraint thus it can be an
mddChannel constraint. This implies that an MDD can be constrained by
several different mddChannel constraints, in the same ways as an MDD can
be constrained by several cost-MDD constraints or several distinct constraints
[Andersen 2007, Hoda 2010].

13.3 Propagation

We can distinguish two modifications of a set variable for a given value, the
value becomes mandatory or is removed. Thus we have to define the impact
of such modifications for the two set variables I and V . Moreover, since the
MDD used by the constraint can be modified for external reasons, like another
mddArcs constraint modifying the MDD, we have to handle the impact of
these modifications to the set variables I and V .

13.3.1 Modification of I

13.3.1.1 Removing an index i in I

Consider that the value i is removed from the set variable I. Its associated
Boolean variable is set to 0. This implies that none of the marked arcs at the
layer i can belong to a solution anymore. Thus we have to enforce that such
a solution does not belong to the MDD.

This can be simply done by removing all the arcs marked at the layer i
and then propagating these modifications inside the MDD. This propagation is
close to the one of MDD4R and thus the complexity of applying this algorithm
is linear. The MDD (b) of Figure 13.1 shows an example of removing an index
of I.

13.3.1.2 Mandatory of an Index i in I

Consider that the index i becomes mandatory in the set variable I. Its associ-
ated Boolean variable is set to 1. This implies that at least one of the marked
arcs at the layer i must belong to a solution. Thus we have to enforce that all
the solutions of the MDD contain a marked arc at layer i.

13.3. Propagation 213

(a)

 0 1 2 3

 0 1 2 3

 1 3 2 2

(b)

 0 1 2 3

 0 1 3

 1 3 2

Figure 13.2: (a) an MDD having 4 marked arcs (dashed). (b) the propagation
of 2 being removed from V .

As for the removing, a layer becoming mandatory can efficiently be en-
forced by removing all the non-marked arcs of the layer i. Thus all the solu-
tions of the MDD contain at least one arc at the layer i and this arc is marked
otherwise it would have been deleted. The MDD (c) of Figure 13.1 shows an
example of an index of I becoming mandatory.

13.3.2 Modification of V

13.3.2.1 Value a Removing in V

Consider the removing a value a from the set variable V . This implies that,
just like the removing of an index in I, none of the marked arcs labeled by a
can belong to a solution. Thus we have to enforce that none of the solutions
of the MDD contains a marked arc labeled by a anymore.

We can enforce that efficiently by removing all the marked arcs labeled
by a in the MDD and then propagating these modifications. Once all these
prohibited arcs removed, they cannot be part of a solution anymore.

Example:
Consider the MDD from Figure 13.2, if the value 2 becomes prohibited

for the marked arcs, its Boolean variable is set to 0, then all the marked
arc labeled by 2 are removed. The result is the MDD (b).

214 Chapter 13. Channeling Constraints and MDDs

(a)

r

a

 0 1

b

 2 3

c

 0

d

 1 2

e

 3

tt

 1 3 2 2

(b)

r

a

 0 1

b

 2 3

d

 1 2

tt

 3 2

Figure 13.3: (a) an MDD having 4 marked arcs (dashed). This marking
implies that the variables involved are x2 and x3 and the values are {0, 2, 3}.

13.3.2.2 Mandatory of a Value a in V

Consider that the value a becomes mandatory in the set variable V . This
implies that at least one of the marked arcs labeled by a must belong to a
solution. Thus we have to enforce that all the solutions of the MDD contain
such an arc.

Remark: In contrary to the previous modification, the MDD containing
only solution is not a sub-MDD of the current MDD. This implies that we
cannot only remove a set of arcs for enforcing the constraint.

Example:
Consider MDD (a) of Figure 13.3, if the value 2 becomes mandatory in

V then all the solutions have to contain a marked arc labeled by 2. Thus
the marked arc (a, c, 0) cannot be part of a solution anymore since it does
not belong to any path from r to tt containing a marked arc labeled by
2. The same reasoning allows to remove the arcs (c, tt, 1), (b, t, 3) and
(e, tt, 2). We obtain the MDD (b).

In this MDD, all the arcs belong to at least one path containing a
marked arc labeled by a. But not all the paths of the MDD contain an
arc labeled by 2, for example the path of the tuple (0, 1, 3) does not contain
any marked arc labeled by 2. Moreover, if the arc (d, tt, 2) is removed,
because of the current domain of x3 for example, then there is no more
valid path for the arcs (r, a, 0), (r, a, 1) and (a, d, 1).

13.3. Propagation 215

First method As the previous example shows, a value becoming mandatory
for the set variable V is not trivial to handle since a simple deletion is not
enough.

The first method for handling such a modification is to add for each value
a becoming mandatory a cost constraint. The cost function of this constraint
is to set a cost of 1 for all the marked arcs labeled by the mandatory value,
and a cost of 0 otherwise. Then the constraint ensures that the solutions have
a cost greater or equal to 1.

Example:
Considering the MDD on the right of figure 13.3. If the value 2 becomes

mandatory for V , the application of this first method gives a cost of 1 to
the arcs (b, d, 2) and (d, tt, 2) and a cost of 0 for all the others. The cost-
MDD constraint ensures that the cost of a path is greater or equal to
1.

The longest path of the arcs (c, tt, 1), (b, t, 3) and (e, tt, 2) is 0 so the
algorithm can remove these arcs. Now if the arc (d, tt, 2) is removed,
because of the current domain of x3 for example, then the longest path
cost of the arcs (r, a, 0), (r, a, 1) and (a, d, 1) becomes 0 and these arcs are
removed too.

Second method The first method needs a cost-MDD propagators for han-
dling the values becoming mandatory. As shown in chapter 11, the difference
in efficiency between MDD and cost-MDD propagator can be huge.

This second method proposes to ensure that all the paths of the MDD
contain a marked arc labeled by the mandatory value. To do so, we are going
to use the following remark:

Remark: The MDD containing all the good paths is not a sub-graph of the
original MDD, but the MDD containing all the prohibited paths is a sub-graph
of the original MDD.

Algorithm Consider an MDD M and a value a becoming mandatory in V .
The algorithm for enforcing that all the solutions of an MDD Ma contain a
marked arc labeled by a first extracts the sub-graph Mā. In order to extract
Mā, we remove all the marked arcs labeled by a and propagate these deletion
in the MDD. Then we can buildMa = M−Mā using any operators for MDDs.

By construction, Ma contains all the solutions ofM minus the solutions of
M that do not contain a marked arc labeled by a. Moreover, since the modi-
fication of the MDD can be small, the use of the in-place operator proposed
in chapter 5 is well suited for them.

216 Chapter 13. Channeling Constraints and MDDs

(a)

 0 1 2 3

 0 1 2 3

 1 3 2 2

(b)

 0 1 2 3

 0 1 3

 1 3 2

(c)

 0 1 2 3

'

 1 2

 2 3 2

Figure 13.4: (a) an MDD having 4 marked arcs (dashed). This marking
implies that the variables involved are x2 and x3 and the values are {0, 2, 3}.
In (b) the modification of (a) enforcing that no solution contain a marked arc
labeled by 2. MDD (c) is MDD (a) minus MDD (c), thus the MDD enforcing
that all the solutions contain a marked arc labeled by 2.

Example:
Consider the MDD (c) of the figure 13.4 and that the value 2 becomes

mandatory for V . For applying this second method we first extract from
the original MDD, the MDD that does not contain any solution having a
marked arc labeled by 2. We obtain the MDD (b) of Figure 13.4. Then
we remove from the original MDD this new MDD and obtain the MDD
containing all the solutions of the original MDD without solutions that
do not contain a marked arc labeled by 2, the MDD (c).

13.3.3 Modification of the MDD

Modifying the MDD can lead to modification of the set variables I and V . For
example, consider MDD (a) of Figure 13.5, if we set the variable of the layer
3 (x3) to the value 3, we obtain the MDD on the right. These modifications
enforce that index 3 is mandatory in I, that value 0 is removed from V and
that value 3 is mandatory for V .

We need to define algorithms enforcing that the modifications made to the
MDD are propagated to the set variables I and V .

13.3. Propagation 217

(a)

 0 1 2 3

 0 1 2 3

 1 3 2 2

(b)

r

a

 0 1

b

 2 3

d

 1 2

tt

 3

Figure 13.5: (a) an MDD having 4 marked arcs (dashed). This marking
implies that the variables involved are x2 and x3 and the values are {0, 2, 3}.

13.3.3.1 Propagation for I

As shown in Figure 13.5, the modification can make indexes to be mandatory.
But the MDD modification can also remove all the marked arcs of a layer and
thus the index of this layer has to be removed from the set variable I.

Removing an index Using property 9, we can remove an index i of the
set variable I when no more valid marked arc exists at layer I. This can be
done by maintaining for each index i ∈ I the set of valid marked arcs at layer
i, then when this set is empty, the value i can be safely removed from I. Note
that this set can also be used for propagating the deletion of the index of the
set variable into the MDD.

Index becoming mandatory Using property 8, we know that an index i
is mandatory if all the valid arcs of the layer i are marked. Thus we can use
the set used for the removing of an index and compare its cardinality with the
number of arcs of the layer. If they are equal, then the index is mandatory.

13.3.3.2 Propagation for V

Just like for the index, the Figure 13.5 shows that the modification of the
MDD can trigger modification of the set variable V . Some values may have to
be removed or may become mandatory. Thus we need to be able to propagate
these modifications to the set variable V .

218 Chapter 13. Channeling Constraints and MDDs

Removing a value Using property 12, we can easily know if a value a has
to be removed from V . In the same manner as for the index, we can maintain,
for each value a in V , the set of valid marked arcs labeled by a. Thus a value
has to be removed when this set becomes empty. This set can also be used
for propagating the deletion of a value of the set variable V in the MDD.

Value becoming mandatory The property 11 says that a value is manda-
tory if all the valid paths of the MDD contain at least one marked arc labeled
by the value. For this one, it is not trivial to test if the value is mandatory or
not.

First method A simple method is to perform a BFS on the MDD for ex-
tracting the mandatory values. This BFS stores in the node if all its incoming
paths use a marked arc labeled by a given value.

During the BFS, when a valid marked arc labeled by the value is used,
then it propagates to its destination node that all the paths passing through it
use a marked arc labeled by value. Then for each node, the algorithm checks
if all its incoming arcs are marked by the value or if they are coming from
a node whose all the incoming paths use a marked arc labeled by the value.
If it is true, then the node keeps the information that all the paths passing
through it use a marked arc labeled by the value. Finally, if the tt node has
kept this information for a given value, the value is mandatory.

We can perform all the values at the same time by keeping at each node
the set of mandatory values and performing the intersection at each node of
the incoming sets.

Cost method While the first method is quite simple, it can be costly to
perform a search over the MDD at each modification and it implies to write
an ad hoc code. Thus we are going to use an existing algorithm for handling
this information.

In the same manner as we deal with the values becoming mandatory in the
set variable V , we can use the cost-MDD constraint for having information
about mandatory values.

Let C be a cost-MDD which, for a value a in a set V , gives a cost of 1

for all the marked arcs labeled by a and a cost of 0 otherwise. Let cp be the
shortest path cost of the cost-MDD, if cp is greater or equal to 1, then the
value is mandatory, otherwise it exists a path whose cost is 0, which implies
that it does not contain any marked arc labeled by a.

13.4. Conclusion 219

13.4 Conclusion

This chapter has presented a method for defining channeling constraint for
MDDs. This new method allows to constrain sub-parts of the MDD in a
finer fashion compared to existing methods. Moreover, we propose several
propagator enforcing different level of consistency. This method is used in
chapter 14 for building the Allen constraint and helps to solve the problem of
music synchronization of chapter 18. Thus the experiments are presented in
these sections.

Part IV

MDDs: Constraints Modeling

Chapter 14

Allen constraint

Contents
14.1 Introduction and Related Works 223

14.2 Constraining Contiguous Temporal Sequences 225

14.2.1 Definition of the Allen Constraint 226

14.3 Implementing the Allen Constraint 226

14.3.1 A First Model . 227

14.3.2 MDD-Based Model . 229

14.4 Experiments . 232

14.4.1 Evaluation of the First Model 232

14.4.2 Evaluation of the MDD-Based Model 233

14.5 Conclusion . 233

14.1 Introduction and Related Works

Many difficult combinatorial problems consist in arranging sequences of events
in time, subject to horizontal and vertical constraints, they are often called
matrix models [Flener 2001]. These constraints are expressed on the temporal
position of events. Horizontal constraints relate events in the same sequence,
but occurring at different positions. Vertical constraints relate events occur-
ring simultaneously, i.e., at the same position in different sequences. This is
similar to scheduling problems, such as job-shop scheduling, in which tasks are
performed on machines according to sequential and resource constraints. The
combination of horizontal and vertical constraints make these problems ex-
tremely difficult to solve: the job-shop scheduling problem is notorious among
the hardest combinatorial problems.

A typical constraint programming approach to generating such sequences
is to define a variable for each item of the sequence, and to post constraints on
these variables. Temporal sequences challenge this model, since the position
of an event is determined by the duration of all the preceding events, and so is

224 Chapter 14. Allen constraint

only weakly dependent on its index. It is therefore difficult, if not impossible,
to express temporal properties using constraints on item variables.

This problem appears naturally in application domains related to enter-
tainment [Derrien 2015, Galvane 2015a, Galvane 2015b, Berrani 2013]. Struc-
tural properties usually involve long-range dependencies between events. Deep
learning approaches attempt precisely at capturing these dependencies in a
statistical model, to reproduce them during classification or sampling. How-
ever, the representation of structure in statistical models is not explicit, mak-
ing them inappropriate for specifying hard constraints on sequences.

Generally, in many interactive or content generation applications, we need
to specify sequences with structural properties that cannot be inferred using
statistical models. Constraint programming provides an ideal way of enforc-
ing structure on sequences. However, as highlighted earlier, we cannot state
structural constraints on events based on their index alone.

Related Work Adopting a position-based model, in which variables repre-
sent events of smaller, atomic duration whereby longer objects are made up
of several consecutive variables, solves this issue. For a given total duration, a
fixed number of variables are defined and therefore indexes correspond to tem-
poral positions. This requires discretizing time into a grid of equal-duration
slices, small enough so that all events are aligned with the grid. In this model,
the number of variables is considerably larger than the number of events in
the generated sequences: if durations are expressed as fractions of the longest
event, the atomic duration decreases with the least common multiple of the
denominators, whose growth is exponential [Nair 1982]. Hence, the size of
the grid may be exponentially smaller than the event lengths, creating an
intractable number of variables. Moreover, the position-based model requires
additional horizontal constraints to aggregate atomic events to form longer
objects. These constraints are not easy to specify in general. This approach
is therefore not applicable in many real problems.

Several frameworks using constraint propagation make inferences about
temporal relations from a qualitative [Allen 1983] or quantitative standpoint
[Dechter 1991]. The computational efficiency of these approaches is very lim-
ited in the general case, but they offer a precise and powerful representation
of relations between times events.

Allen Allen [Allen 1983] introduced an algebra with 13 binary relations be-
tween time intervals for temporal reasoning. A constraint based on Allen’s
algebra [Derrien 2015] has already been defined and takes a set of tasks, a set
of Allen relations, a set of intervals, and checks that every task satisfies at
least one relation for one interval. They apply this work to the generation of

14.2. Constraining Contiguous Temporal Sequences 225

video summaries. In their approach, the checks for every task are independent
from one another.

The Allen constraint proposed here uses the Allen algebra as a language
to express temporal positions. It defines variables corresponding to a given
Allen relation. Technically, for a given time interval t and a given Allen
relation R, Allen maintains two set variables: the set of events and the
set of variable indexes satisfying R for t. Then, temporal properties of the
sequence can be represented by constraints defined on these set variables.

One of the simplest example is the following. Given an time interval
t = [2, 5], I want to enforce that at least one of my variables will take the
value c. This will be define by first defining an Allen constraint, and then
by constraining my set variable defined for the values to contain a c.

Plan This chapter first presents the definition of the Allen global con-
straint. Then two models implementing Allen are presented: the first model
is based on a classical scheduling approach and the second model uses Multi-
valued Decision Diagrams (MDDs). Finally, the experimental section shows
that the MDD models seem to be well suited for the constraint and performs
well in practice.

14.2 Constraining Contiguous Temporal Se-
quences

A temporal event e is a symbol with a duration d(e). A contiguous temporal
sequence, CTS for short, is a finite sequence of temporal events (e1, . . . , en).
A CTS is basically a concatenation of events: two consecutive events in a
CTS are considered contiguous. Therefore, for a CTS S = (e1, . . . , en), the
duration d(S) of S is the sum of the duration of the events contained in S,
defined by d(S) =

∑n
i=1 d(ei). The absolute temporal position, or starting

time of an event ep in S is defined by s(ep) =
∑p−1

i=1 d(ei). Note that the
absolute temporal position is not an intrinsic property of a temporal event,
it is a property of a temporal event with respect to a CTS. A same temporal
event may appear several times in a same CTS at different starting times.

Here, we consider only temporal events with integer duration and, there-
fore, we address CTS in which all events have integer temporal positions.

Given a set E of temporal events, a model for the generation of CTS is
to represent a CTS containing n temporal events of E as a sequence of n
constrained variables (X1, . . . , Xn), each with domain dom(Xi) = E. With
this model, it is easy to state constraints relating events based on their index
in the sequence, such as X1 = Xn, or Xi 6= Xi+1. However, the absolute

226 Chapter 14. Allen constraint

temporal position of an event in a CTS is not directly related to its index
as it depends on the duration of all preceding events. There is therefore no
straightforward way of constraining the elements of the sequence based on
their absolute temporal position.

14.2.1 Definition of the Allen Constraint

The idea behind the Allen constraint is to use Allen relations between tem-
poral intervals to specify some temporal element(s) of a CTS (the 13 atomic
relations of Allen are given on Table 14.1). Let S be a CTS (e1, . . . en). An
Allen relation R and a temporal interval t specify a subsequence of S. For
instance, if R is d, i.e., the relation “during”, and t = [a, b], then R and t

specify the subsequence of S containing the events which start after a and
end before b.

Let E be a set of temporal events and let X1, . . . , Xn be n constrained
variables, each with domain E. The Xis are the sequence variables. Let t be a
temporal interval and let R be a relation of Allen between temporal intervals
(see Table 14.1). Let I be a set variable, with domain {1, . . . , n} and E be a
set variable with domain E. The Allen constraint

AllenR,t(X1, . . . , Xn, I, E) (14.1)

ensures that I contains the indexes of all sequence variables Xi belonging to
the subsequence of (X1, . . . , Xn) specified by Allen relation R and temporal
interval t. Similarly, the constraint (14.1) ensures that E contains the values
of all sequence variables Xi belonging to the subsequence of (X1, . . . , Xn)

specified by R and t.
The Allen constraint defined above is satisfied if and only if

I = {i ∈ {1, . . . , n} | [s(Xi), s(Xi+1)] R t} and E = {Xi | i ∈ I}

14.3 Implementing the Allen Constraint

This section describes two implementations of the Allen constraint. The
first one is a simple model, based on scheduling, and performing only local
propagations. The second one uses an MDD to represent the sequences ex-
plicitly, which makes it possible to prune more values during the search. In
both models, the sequence variables X1, . . . , Xn take temporal event values.

14.3. Implementing the Allen Constraint 227

Relation Symbol Example Semantics Inverse

t1 before t2 < t1 t2 t1+ < t2− >

t1 equal t2 eq t1t2 t1− = t2− and t1+ = t2+ eq

t1 meets t2 m t1 t2 t1+ = t2− mi

t1 overlaps t2 o t1 t2 t1− < t2− and t2− < t1+ < t2+ oi

t1 during t2 d t1 t2 t1− > t2− and t1+ < t2+ di

t1 starts t2 s t1 t2 t1− = t2− and t1+ < t2+ si

t1 finishes t2 f t1t2 t1− > t2− and t1+ = t2+ fi

Table 14.1: The 13 atomic relations of Allen. The lower bound of a time
interval ti is denoted by ti− and the upper bound by ti+.

14.3.1 A First Model

The Allen constraint can be seen as a non-preemptive scheduling problem
with unary resources where variables correspond to activities having a variable
duration. In this model, each variable Xi is associated with two variables Si
and Di. Variable Si represents the absolute temporal position of Xi in the
CTS, and Di represents the duration of Xi. The start and duration variables
are related via a set of constraints

Si+1 = Si +Di,∀i = 1, . . . , n− 1 (14.2)

with S1 = 0.
In order to define the propagation rules, we will use the following five

predicates:

• HoldsR,t(s, d)
def⇐⇒ [s, s+ d]R t, where s is a start time (i.e., absolute

temporal position) and d a duration

• PossibleR,t(i, e)
def⇐⇒ e ∈ dom(Xi) and ∃s ∈ dom(Si),

HoldsR,t(s, d(e))

• PossibleR,t(i)
def⇐⇒ ∃e ∈ dom(Xi) such that PossibleR,t(i, e)

• RequiredR,t(i, e)
def⇐⇒ Xi = e and ∀s ∈ dom(Si), HoldsR,t(s, d(e))

• RequiredR,t(i)
def⇐⇒ ∀e ∈ dom(Xi),∀s ∈ dom(Si), HoldR,t(s, d(e))

228 Chapter 14. Allen constraint

Variables I and E are set variables. We will use the notation lb(.) for the
lower-bound of a set-variable domain and ub(.) for its upper-bound. Intu-
itively, during the filtering procedure, the lower-bound lb(I) (resp., lb(E)) is
the set of required values for I (resp., E). Similarly, the upper-bound ub(I)

(resp., ub(E)) is the set of possible values for I (resp., E). The filtering rules
presented below rely on the equivalences:

i ∈ ub(I) ⇐⇒ PossibleR,t(i) (14.3)
i ∈ lb(I) ⇐⇒ RequiredR,t(i) (14.4)
e ∈ ub(E) ⇐⇒ ∃i,PossibleR,t(i, e) (14.5)

Note that e ∈ lb(E) is more difficult to express in terms of the predicates,
which is why Rule (14.15) is more complex. In fact, reasoning on lb(E) is the
most complex operation for maintaining the consistency between the sequence
variables and the set variables. In the next section, we use an MDD model,
which is sufficiently rich to infer the exact lower-bound lb(E).

The consistency between the event, start, and duration variables, and the
lower and upper bounds of the Allen set variables, is maintained with a set
of filtering rules.

When Si is modified, i.e., a value was removed from its domain, the fol-
lowing rules may apply:

i ∈ ub(I) : ¬PossibleR,t(i)⇒ i 6∈ ub(I)

RequiredR,t(i)⇒ i ∈ lb(I) (14.6)
i ∈ lb(I) : e ∈ dom(Xi) ∧ (∀s ∈ dom(Si),¬HoldsR,t(s, d(e)))

⇒ e 6∈ dom(Xi) (14.7)
i 6∈ ub(I) : e ∈ dom(Xi) ∧ (∀s ∈ dom(Si),HoldsR,t(s, d(e)))

⇒ e 6∈ dom(Xi) (14.8)
e ∈ ub(E) : 6 ∃j,PossibleR,t(j, e)⇒ e 6∈ ub(E) (14.9)
e 6∈ ub(E) : (∀s ∈ dom(Si),HoldsR,t(s, d(e)))

⇒ e 6∈ dom(Xi) (14.10)

Rule (14.6) in detail Rule (14.6) is applied when a value is removed from
the domain of Si and if i ∈ ub(I). The predicate PossibleR,t(i) is evaluated,
and if it does not hold true, index i is removed from ub(I). The predicate
RequiredR,t(i) is also evaluated, and if it holds true, index i is added to lb(I).
The variable Si represents the starting times of the i-th event in the CTS. The
property i ∈ ub(I) means exactly that predicate PossibleR,t(i) holds true
(by Equivalence (14.3)). A possible consequence of removing a value from the
domain of Si is that there may be no more starting time s in Si such that

14.3. Implementing the Allen Constraint 229

[s, s + d(e)]R t. Therefore, we reevaluate PossibleR,t(i), and if it does not
hold true anymore, we remove i from ub(I). Another possible consequence of
removing a value from Si is that all remaining values s ∈ dom(Si) are such that
[s, s+d(e)]R t for any event e ∈ dom(Xi), which means that RequiredR,t(i)
holds true. Equivalence (14.4), we add index i to lb(I).

When Xi is modified, we apply the following rules:

i ∈ ub(I) : ¬PossibleR,t(i)⇒ i 6∈ ub(I)

RequiredR,t(i)⇒ i ∈ lb(I) (14.11)
i ∈ lb(I) : dom(Xi) = {e} ⇒ e ∈ lb(E)

s ∈ dom(Si) ∧ (∀e ∈ dom(Xi),¬HoldsR,t(s, d(e)))

⇒ s 6∈ dom(Si) (14.12)
i 6∈ ub(I) : s ∈ dom(Xi) ∧ (∀e ∈ dom(Xi),HoldsR,t(s, d(e)))

⇒ s 6∈ dom(Si) (14.13)
e ∈ ub(E) : 6 ∃j,PossibleR,t(j, e)⇒ e 6∈ ub(E) (14.14)
e ∈ lb(E) : ∃i ∈ ub(I) s.t.

PossibleR,t(i, e)∧
∀j ∈ ub(I) s.t. j 6= i, (e 6∈ dom(Xj) ∨ ¬PossibleR,t(j, e))

⇒ dom(Xi) = {e} ∧ i ∈ lb(I) (14.15)

When I is modified: if i ∈ lb(I), apply Rule (14.7) and Rule (14.12); if
i 6∈ ub(I) apply Rule (14.8) and Rule (14.13). When E is modified: if e ∈ lb(E)

apply Rule (14.15); if e 6∈ ub(E), ∀i ∈ ub(I), apply Rule (14.10).
Most of those rules are straightforward implications of the predicate defini-

tions, except rule (14.15). The first line of Rule (14.15) says that it is possible
to have value e in the sequence. The following lines express the fact that if a
only one variable Xi may take value e, we perform the assignment Xi ← e.
We can easily verify that no rule removes any consistent value, i.e., the rules
are sound. However, this model does not remove all inconsistent values, i.e.,
it does not achieve arc-consistency for Allen.

14.3.2 MDD-Based Model

This model uses an MDD constraint to represent the extension of the Allen
constraint. By using propagators for MDDs, we can therefore achieve arc
consistency of the whole Allen constraint. In fact, we can even combine
several Allen constraints into a single MDD and thus achieve arc-consistency
for a set of Allen constraints.

Defining the Allen constraint with MDDs can be decomposed into two
steps:

230 Chapter 14. Allen constraint

0

1

a

2

b

2

a

3

b a

4

b

4

b

5

b

6

b

a b

a b a b

b b

Figure 14.1: The graph (left) and MDD (right) representations of the con-
straint Allend∨s∨fi∨eq[2,5] (see Table 14.2). Red labels correspond to values
satisfying the constraint. Numbers in the graph on the left represent the
temporal position.

• We first represent the temporal constraint by a transition function com-
puting the set of all temporal positions reachable from a given temporal
position. In this MDD, each arc correspond to a temporal intervall as-
sociated to an event. The MDD is defined as follow: We create a root
node associated to position 0. Then, we successively apply the time
cumulative transition function to determine all reachable temporal po-
sitions. An arc is associated to a duration, i.e., time difference between
the temporal position of its ending node and its origin node, i.e., for and
arc a = (i, j), we have t(j) = t(i)+d(a), where t(.) denotes the temporal
position of a node. The MDD constructed this way simply represents a
sum function. Events are introduced in the MDD as follows: for each
arc associated to a duration, we create as many arcs as there are events
with this duration. Each arc in the resulting MDD is therefore labeled
with a couple (event, duration).

• Then, for a given Allen relation, we identify all the arcs in the MDD
that satisfy this relation. We can do this by noting that an arc a = (i, j)

occupies the temporal interval [t(i), t(j)]. These are the red arcs in
Figure 14.1. Using this Allen relation as a marking function, we can
use the mddChannel constraint (chapter 13).

Let M be the MDD defined in the first step, A be the marking function of
the MDD using the Allen relation as define for the second step. Let I and E be
the set variables of the constraint. The constraint mddChannel(M,A, I, E)

enforce consistency for the Allen constraint.

14.3. Implementing the Allen Constraint 231

X1 X2 X3 I E
a a b {3} {b}
a b b {3} {b}
b a b {2, 3} {a, b}
b b b {2} {b}

Table 14.2: The extension of AllenR[2,5] for the example. Events that are,
not strictly, during [2, 5] are in red.

Example Consider two events a and b with d(a) = 1 and d(b) = 2 and a
sequence of three variables X1, X2, X3 with domains dom(X1) = dom(X2) =

{a, b} and dom(X3) = {b}. Let R denote the relation d∨s∨f∨eq, which is sim-
ilar to d except it is not strict. The extension of AllenR[2,5]([X1, X2, X3], I, E)

is shown in Table 14.2, where events that occur, not strictly, during [2,5] are
in red.

The list of valid sequences of the constraint may be represented by the
graph in Figure 14.1 (left). Each layer represents one sequence variable (X1

is the top layer, X2 is the middle layer, and X3 the bottom layer). Node
labels represent start times and edge labels are events. Edges corresponding
to events satisfying AllenR[2,5] are in red.

Note that the Allen relation does not change during search. As a con-
sequence, one can ignore the temporal information in the nodes and apply
the MDD reduction operation to the graph. This yields the reduced MDD in
Figure 14.1 (right). Note that the reduction distinguishes between black and
red labels.

The MDD4R algorithm is used to filter the domains of the sequence vari-
ables in the constraint represented by the MDD. The set variables I and E
must satisfy the following properties:

1. if ∀a ∈ Ai, a is red, then i ∈ lb(I);

2. if ∃a ∈ Ai such that a is red, then i ∈ ub(I) and label(a) ∈ ub(E).

where Ai denotes the i-th layer of the MDD, and a denotes an arc. The
MDDArc constraint ensures by definition these two properties.

In practice, the MDD representation is efficient because the bottom layers
are compressed. This approach solves problems with up to 150 variables by
MDDs, which is enough for the targeted applications (see chapter 18).

An important aspect of this approach it that we represent several Allen
constraints stated on the same sequence in a single MDD. Then, we implement

232 Chapter 14. Allen constraint

channeling relations between the MDD and the set variables for each relation.
This allows us to achieve arc-consistent of the conjunction of all the Allen
constraints. Note that integrating the set variables in the MDD would require
the definition of one MDD per Allen relation, and would sacrifice compression
without improving filtering.

14.4 Experiments

The main problem of the experiments and motivation for the Allen constraint
is a music synchronization problem. This is a lead sheet generation problem
containing 3 different tracks, one for each instrument. In this problem, the
sequences generated for each instrument must respect a given transition con-
straint, but more important, we need to impose several synchronization points
between the instruments.

Thus the problem contains three transition constraints, one for each in-
strument, which are implemented using MDDs in both of the models. And
then, for each synchronization point, three Allen constraints are added to the
model, one for each instrument. Moreover, in order to constrain the possible
values at the synchronization points, dedicated table constraints are imposed
to the set variables of the Allen constraints. The full definition of the experi-
ments is given in chapter 18.

The experiments were run on a MacBook pro late 2013, having a I7 2.3Ghz
and 8 Go of rams. The code is implemented using the OR Tools solver
[Perron 2013].

14.4.1 Evaluation of the First Model

We evaluate two implementations of the scheduling model, depending on how
we implement the constraint which links start times and duration (defined in
Section 14.3.1). First, we enforce arc-consistency on this ternary sum con-
straint. The model solves the problem for two bars in 8.4 seconds. It does
not solve the problem for more than two bars in less than 30 minutes, which
we consider a timeout.

A lighter version has also been implemented where the ternary sums con-
straints only perform bound-consistency, based on the intuition that propa-
gating information about the bounds of event duration offers a good trade off
between simplicity and pruning. This model solves the problem for two bars
in 5.4 seconds, but does not scale either to larger instances.

14.5. Conclusion 233

14.4.2 Evaluation of the MDD-Based Model

Note that, as said in Section 14.3.2, all the Allen constraints on a same track
are represented by a single MDD.

n
MDD size (#Vertices, #Edges) Time

Guitar Bass Drum (ms)
6 2382 41k 848 13667 1864 73k 2301
8 4199 74k 1493 24k 3817 156k 7219
10 6530 117k 2388 39k 6513 275k 23k
12 9374 169k 3623 61k 9957 429k 57k
14 12k 231k 5085 87k 14k 617k 112k

Table 14.3: The size of the MDDs and the execution time to find 5 solutions
for various multitrack lengths

.

The comparison with the performance of the simple model for Allen is
clearly in favor of the MDD approach (see Table 14.3). The simple model
does not solve problems longer than two bars in less than 30 minutes. In
contrast, the MDD-based model solves the 14-bar problem in less than 2
minutes. The extra cost of performing the MDD construction and operations
is more than compensated for by the higher pruning offered by this model,
especially regarding the treatment of the set variable E .

14.5 Conclusion

This chapter has presented the Allen global constraint. Allen maintains set
variables representing events in a temporal sequence in two ways: one variable
is the set of events occurring at a given position, defined by an Allen relation
with a reference time interval; the other variable is the set of indexes of these
events. In practice, Allen offers the possibility to control the generation of
temporal sequences by constraining events defined by their index and temporal
position. Allen makes it possible to model and solve new types of problems
involving structural constraints on patterns, represented by sub-sequences.

Two models for Allen have been proposed: a simple model using lo-
cal propagation and a model based on MDDs. The experimental section has
shown that the MDD representation, which achieves the global AC of the con-
straint, performs much better than the simple model on a temporal sequence
synchronization problem.

Chapter 15

Markov and Statistical
Constraints

Contents
15.1 Introduction . 235

15.2 Definition . 237

15.2.1 Probability distribution 237

15.2.2 Markov chain . 237

15.2.3 MDD of a Generic Sum Constraint 238

15.2.4 Dispersion Constraint 239

15.3 Dispersion Constraint 239

15.3.1 Dispersion Constraint with fixed mean 239

15.3.2 Dispersion Constraint with variable mean 240

15.4 Probabilities Based Constraint 241

15.4.1 MDDs and Probabilities based constraints 241

15.4.2 Probabilities and Means 242

15.5 Experiments . 243

15.6 Conclusion . 245

15.1 Introduction

Several constraints, like spread [Pesant 2005], deviation [Schaus 2007a,
Schaus 2007b, Schaus 2007c, Schaus 2014], balance [Beldiceanu 2007,
Bessiere 2014] and dispersion [Pesant 2015], have mainly been defined to
balance certain features of a solution. For example, the balanced academic
curriculum problem [bac] involves courses that have to be assigned to peri-
ods so as to balance the academic load between periods. Most of the time
the mean of the variables is fixed and the goal is to minimize the standard
deviation, the distance or the norm.

236 Chapter 15. Markov and Statistical Constraints

The dispersion constraint is a generalization of the deviation and
spread constraints. It ensures that X, a set of variables, has a mean (i.e.
µ =

∑
x∈X x) belonging to a given interval and ∆ a norm (i.e.

∑
x∈X(x−µ)p)

belonging to another given interval. If p = 1 then it is a deviation constraint
and p = 2 defines a spread constraint. Usually, the goal is to minimize the
value of ∆ or find a value below a given threshold.

In some problems, variables are independent from a probabilistic point of
view and are associated with a distribution (e.g. a normal distribution) that
specifies probabilities for their values. Thus, globally the values taken by the
variables have to respect that law and we can define a constraint ensuring
this property, either by using a spread, a dispersion, a KolmogorovSmirnov
or a Student’s t-test constraint[Rossi 2014]. However, if only a subset of
variables is involved in a constraint, then the values taken by these variables
should be compatible with the distribution (e.g. the normal law), but we
cannot impose the distribution for a subset of values because this is a too
strong constraint.

Therefore, we need to consider the interval of values for µ and ∆. The
definition of an interval for µ can be done intuitively. For instance we can
consider an error rate of 10%. Unfortunately, this is not the case for ∆. It
is hard to control the relation between two values of ∆, because data are
coming from measures and there are some errors and because it is difficult
to apply a continuous law on a finite set of values. Since we use constraint
programming solvers we have to make sure that we do not forbid tuples that
could be acceptable. This is why, in practice, the problem is not defined in
term of µ and ∆ but by the probability mass function (PMF).

The probability mass function gives the probability that Xr, a discrete
random variable, is exactly equal to some value. In other words, if Xr takes
its values in V , then the PMF gives the probability of each value of V . The
PMF is usually obtained from the histogram of the values. From fP , a PMF,
we can compute the probability of any tuple by multiplying the probability of
the values it contains, because variables are independent. Then, we can avoid
outliers of the statistical law but imposing that the probability of a tuple
belongs to a given interval [Pmin, Pmax]. With such a constraint we can select
a subset of values from a large set having a mean in a given interval while
avoiding outliers of the statistical law. Roughly, the minimum probability
avoids having tuples with values having only very little chance to be selected
and the maximum probability avoids having tuples whose values have only
the strongest probability to be selected.

It is sometimes interesting to define some constraints on the sampling.
For instance, the problem of generating the sequences with the maximum
probability in the Markov chain estimated from the corpus satisfying other

15.2. Definition 237

constraints has been studied by Pachet and Roy [Pachet 2011, Pachet 2001].
Hence this chapter focus on constraints imposing that the probability of the
solutions belongs to a given range of probabilities.

The motivation of this chapter is mainly a real world application involving
convolutions which are expressed by knapsack constraints (i.e.

∑
αixi). The

experimental section proposes several models for solving the problem.
The chapter is organized as follows. First, it recalls some basics about the

dispersion constraint, PMF and Markov processes. Then, it introduce simple
models using MDDs for modelling the dispersion constraint with a fixed or
a variable mean, and shows how we can combine them in order to obtain only
one MDD. Next, it presents the PMF and markov constraints and show how
they can be represented by an MDD and filtered by MDD propagators.

15.2 Definition

15.2.1 Probability distribution

We consider that the probability distribution is given by a probability mass
function (PMF), which is a probability density function for a discrete random
variable. The PMF gives for each value v, the probability P (v) that v is taken:

Given a discrete random variable Y taking values in Y = {v1, ...vm} its
probability mass function P: Y → [0, 1] is defined as P (vi) = Pr[Y = vi] and
satisfies the following condition: P (vi) ≥ 0 and

∑m
i=1 P (vi) = 1.

Property 12 Let fP be a PMF and consider {xi} a set of n discrete in-
teger variables independent from a probabilistic point of view and associated
with fP that specifies probabilities for their values. Then, the probability of
an assignment of all the variables (i.e. a tuple) is equal to the product of
the probabilities of the assigned values. That is ∀i = 1..n , ∀ai ∈ D(xi)

P (a1, a2, ..., an) = P (a1)P (a2)...P (an).

15.2.2 Markov chain

A Markov chain1 is a stochastic process, where the probability for state Xi, a
random variable, depends only on the last state Xi−1. A Markov chain pro-
duces sequence X1, ..., Xn with a probability P (X1)P (X2|X1)...P (Xn|Xn−1).

1Order k Markov chains have a longer memory: the Markov property states that
P (Xi|X1, ..., Xi−1) = P (Xi|Xi−k, ..., Xi−1). They are equivalent to order 1 Markov chains
on an alphabet composed of k-grams, and therefore we assume only order 1 Markov
chains.[Papadopoulos 2015]

238 Chapter 15. Markov and Statistical Constraints

0

3

3

7

7

10

7

6

3 3

14

7

17

7

13

3 37

20

37

Figure 15.1: MDD of the
∑
xi = nµ constraint

Property 13 Let PM be a Markov chain and consider a set of n discrete
integer variables associated with PM that specifies probabilities for their values.
Then, ∀i = 1..n , ∀ai ∈ D(xi) P (a1, a2, ..., an) = P (a1)P (a2|a1)...P (an|an−1).

Several methods can be used to estimate the Markov chain from a corpus,
like the maximum likehood estimation [Jurafsky 2014]. Consider that the
Markov process is given, see chapter 9 for more about Markov.

15.2.3 MDD of a Generic Sum Constraint

We define the generic sum constraint [Trick 2003].
Σf,[a,b](X) which is equivalent to a ≤

∑
xi∈X f(xi) ≤ b, where f is a

non negative function. The MDD of the constraint
∑

xi∈X f(xi) is defined
as follows. For the layer i, there are as many nodes as there are values of∑i

k=1 f(xk). Each node is associated with such a value. A node np at layer i
associated with value vp is linked to a node nq at layer i + 1 associated with
value vq if and only if vq = vp + f(ai) with ai ∈ D(xi). Then, only values v
of the layer |X| with a ≤ v ≤ b are linked to tt. The reduction operation
is applied after the definition and delete invalid nodes (see chapter 3). The
construction can be accelerated by removing states that are greater than b or
that will not permit to reach a. For convenience, Σid,[α,α](X) is denoted by
Σα(X).

15.3. Dispersion Constraint 239

Example:
Figure 15.1 is an example of MDD(Σ20(X)) with {3, 7} as domains.

Since fC is non negative, the number of nodes at each layer of
MDD(Σf,[a,b](X)) is bounded by b.

15.2.4 Dispersion Constraint

Given X = {x1, ..., xn}, a set of finite-domain integer variables, µ and
∆, bounded-domain variables and p a natural number. The constraint
dispersion(X,µ,∆, p) states that the collection of values taken by the
variables of X exhibits an arithmetic mean µ =

∑n
i=1 xi and a deviation

∆ =
∑n

i=1 |xi − µ|p [Pesant 2015]..
The deviation constraint is a dispersion constraint with p = 1 and a

spread constraint is a dispersion constraint with p = 2.
The main complexity of the dispersion constraint is the relation between

µ and ∆ variables, because µ is defined from the X variables, and ∆ is defined
from X and from µ. So, some information is lost when these two definitions
are considered separately. However, when µ is assigned, the problem becomes
simpler because we can independently consider the definitions of µ and ∆.
Therefore, this chapter studies some models depending on the fact that µ is
fixed or not.

15.3 Dispersion Constraint

15.3.1 Dispersion Constraint with fixed mean

Arc consistency for the X variables has been established by Pesant
[Pesant 2015], who proposed an ad-hoc dynamic programming propagator for
this constraint. This algorithm builds an acyclic graph representing the sum
for the µ and the cost function then the cost-regular propagator handle it.

However, it exists a simpler method avoiding problems of ad-hoc algo-
rithms: we define a cost-MDD from µ and ∆ and obtain a propagator having
the same complexity.

15.3.1.1 MDD on µ and ∆ as cost

The mean µ is defined as a sum constraint. Since µ is fixed, we propose to
use the cost-MDD of the constraint

∑
xi = nµ and the cost function defined

by ∆ =
∑n

i=1 |xi − µ|p.
The constraint

∑
xi = nµ can be represented by MDD(Σnµ(X)).

240 Chapter 15. Markov and Statistical Constraints

∆ as cost. We represent the dispersion constraint by cost-MDD(Σµ(X),∆).
There are two possible ways to deal with the boundaries of ∆. Either we
define two cost-MDD propagators on cost-MDD(Σµ(X),∆), one with a and
≥, and one with b and ≤; or we define only one cost-MDD propagator on cost-
MDD(Σµ(X),∆) which integrates the costs at the same time as proposed by
Hoda et al [Hoda 2010].

These methods are simpler than Pesant’s algorithm because they do not
require to develop any new algorithm. If we use an efficient algorithm (chapter
11) for maintaining arc consistency for cost-MDDs then we obtain the same
worst case complexity as Pesant’s algorithm but better result in practice.

15.3.1.2 MDD on µ intersected with MDD on ∆

Since µ is fixed, the definition of ∆ corresponds to a generic sum as previously
defined. Thus, the dispersion constraint can be model by defining the MDD of
Σµ(X) and the MDD of Σ∆,[∆,∆](X) and then by intersecting them. Replac-
ing a cost-MDD by the intersection of two MDDs may strongly improve the
computational results (chapter 11). In addition, we can intersect the resulting
MDD with some other MDDs in order to combine more the constraints. This
method is the first method establishing arc consistency for both µ and ∆. The
drawback is the possible size of the intersection.

With similar models we can also give an efficient implementation of the
Student’s t-test constraint and can be used to close the open question of
Rossi et al.[Rossi 2014].

15.3.2 Dispersion Constraint with variable mean

In order to deal with a variable mean, we can consider all acceptable values
for nµ, that is the integers in [nbµc, ndµe], and for each value we separately
apply the previous models for the fixed mean. Unfortunately, this often leads
to a large number of constraints. Therefore it is difficult to use this approach
in practice. In addition, note that there is no advantage in making the union
of these constraints because they are independent.

Thus, the next section proposes another model using the probability mass
function.

15.4. Probabilities Based Constraint 241

15.4 Probabilities Based Constraint

15.4.1 MDDs and Probabilities based constraints

For some reasons, like security or for avoiding outliers of the statistical laws,
some paths of MDDs can be unwanted, because they have only very little
chance to be selected or because they contain almost only values having the
strongest probability to be selected. In other words, we accept only paths
whose probability is in a certain interval.

We define constraints for this purpose. One, named the MDDProbability,
considered that the MDD is associated with a PMF and independent variables
and the other, named MDDMarkovProcess, that the MDD is associated with
a Markov chain.

Definition 13 Given M an MDD defined on X = {x1, x2, ..., xn} that are
independent from a probabilistic point of view and associated with fP a prob-
ability mass function , Pmin a minimum probability and Pmax a maximum
probability. The constraint MDDProbability(X, fP ,M, Pmin, Pmax) ensures
that every allowed tuple (a1, a2, ...an) is a solution of the MDD and satisfies
Pmin ≤ Πn

i=1fP (a1) ≤ Pmax.

This constraint can be easily transformed into cost-MDD constraints. The
cost associated with an arc labeled by a is log(fP (a)), and the logarithms of
Pmin and Pmax are considered for dealing with a sum instead of a product2.
Thus, any cost-MDD propagator can be used (see chapter 11).

Definition 14 Given M an MDD defined on X = {x1, x2, ..., xn} and asso-
ciated with P a Markov chain, Pmin a minimum probability and Pmax a maxi-
mum probability. The constraint MDDMarkovProcess(X,P,M,Pmin, Pmax) en-
sures that every allowed tuple (a1, a2, ...an) is a solution of the MDD and
satisfies
Pmin ≤ P (a1)P (a2|a1)...P (an|an−1) ≤ Pmax.

As we have seen, with a Markov chain, the probability for selecting an arc
depends on the previous selected arc. Thus, each arc of the MDD is associated
with several probabilities. So we cannot directly use a cost-MDD propagator
as for the MDDProbability constraint. However, if we accept to duplicate the
nodes as proposed in the previous section then we can immediately transforms
the constraint into a simple cost-MDD constraint by considering logarithms
of probabilities and any cost-MDD propagator can be used. Since the number
of time a node can be duplicated is bounded by d, the overall complexity of
this transformation is O(d× (|V |+ |E|)).

2We can also directly deal with products if we modify the costMDD propagator accord-
ingly.

242 Chapter 15. Markov and Statistical Constraints

15.4.2 Probabilities and Means

In this section we define the PMF constraint which aims at respecting a variable
mean and avoiding outliers according to a statistical law given by a probability
mass function.

The PMF gives for each value v, P (v) the probability that v is taken. Let
fP be a PMF and consider a set of variables independent from a probabilistic
point of view and associated with fP that specifies probabilities for their
values. Since the variables are independent, we can define the probability
of an assignment of all the variables (i.e. a tuple) as the product of the
probabilities of the assigned values. Then, in order to avoid outliers we can
constrain this probability to be in a given interval.

Definition 15 Given a set of finite-domain integer variables X =

{x1, x2, ..., xn} that are independent from a probabilistic point of view, a prob-
ability mass function fP , a bounded variable µ (not necessarily fixed), a min-
imum probability Pmin and a maximum probability Pmax. The constraint
PMF(X, fP , µ, Pmin, Pmax) states that the probabilities of the values taken by
the variables of X is specified by fP , the collection of values taken by the vari-
ables of X exhibits an arithmetic mean µ and that Πxi∈Xxi the probability of
any allowed tuple satisfies Pmin ≤ Πxi∈XfP (xi) ≤ Pmax.

This constraint can be represented by
MDDProbability(X, fP ,Σid,[µ,µ](X), Pmin, Pmax), note that arc consistency
can be enforce on the variable µ using the Σid,[µ,µ] mdd.

15.5. Experiments 243

15.5 Experiments

The experiments were run on a macbook pro (2013) Intel core i7 2.3GHz
with 8 GB. The constraint solver used is or-tools. MDD4R is used as MDD
propagator and cost-MDD4R as cost-MDD propagator.

The data come from a real life application: the geomodeling of a petroleum
reservoir [Pennington 2001]. The problem is quite complex and we consider
here only a subpart. Given a seismic image we want to find the velocities.
Velocities values are represented by a probability mass function (PMF) on
the model space. Velocities are discrete values of variables. For each cell cij
of the reservoir, the seismic image gives a value sij and the from the given
seismic wavelet (αk) we define a sum constraint

∑22
k=1 αklog(xi−11+k−1j) = sij.

Locally, that is for each sum, we have to avoid outliers w.r.t. the PMF for
the velocities. Globally we can use the classical dispersion constraint. The
problem is huge (millions of variables) so we consider here only a very small
part.

The models used a briefly given here, a full description is given in chapter
19.

The first experiment involves 22 variables and a constraint Cα:∑n
i=1 αixi = I, where I is an tight interval (i.e. a value with an error varia-

tion). Cα is represented by mddα = MDD(Σai,I(X)) where ai(xi) = αixi.
First, we impose that the variables have to be distributed with respect to

a normal distribution with µ, a fixed mean.

• Mσ<,σ> represents the model of Section 3.2: one cost-MDD propagator
on mddµ = cost-MDD(Σnµ(X), σ) with σ and ≤ and one with σ and ≥.
This model is similar to Pesant’s model.

• MGCC involves a GCC constraint [Régin 1996] where the cardinalities
are extracted from the probability mass function.

• Mµ∩σ represents the mean constraint by mddσ = MDD(Σnµ(X)). It
represents the sigma constraint by the MDD(Σσ(X)). Then the two
MDDs are intersected. An MDD propagator is used on this MDD,
named mddµσ. See Section 3.3.

• Mµ∩σ∩α intersects mddα, the MDD of the constraint Cα, with mddµσ
the previous MDD to obtain mddsol. In this case, all constraints are
combined.

• Mµ∩σ∩α intersects mddα, the MDD of the constraint Cα, with mddµσ
the previous MDD to obtain mddsol. In this case, all constraints are
combined.

244 Chapter 15. Markov and Statistical Constraints

Fixed µ Variable µ
Sat? #sol Mσ<,σ> MGCC Mµ∩σ Mµ∩σ∩α Mlog Mlog∩α

Build 50 31 138 2,203 34 317,921
Sat 10 sol 14 T-O 16 0 14 0

All sol T-O T-O T-O 0 T-O 0
Build 55 28 121 151 37 133,752

UnSat 10 sol T-O T-O T-O 0 T-O 0
All sol T-O T-O T-O 0 T-O 0

Figure 15.2: Comparison solving times (in ms) of models. 0 means that their
is no need of solver. T-O indicates a time-out of 500s.

Fixed µ Variable µ
Sat? N/A mddα mddµ mddσ mddµσ mddsol mddIµ mddIlog mddlogα
Sat #nodes 3 3 5 67 521 2 18 24,062
Sat #arcs 44 27 55 660 4,364 30 268 341,555
UnSat #nodes 3 2 5 67 0 2 18 0
UnSat #arcs 46 27 55 660 0 30 268 0

Figure 15.3: Comparison of MDD sizes (in thousands) of different models. 0

means that their is no need of solver.

Then, we consider a PMF constraint and that µ is variable:

• Mlog. We define a cost-MDD propagator on mddIµ = cost-
MDD(Σid,[µ,µ](X), logP) with log(Pmin) and ≥ and with log(Pmax) and
≤. See Section 5.

• Mlog∩α. We define mddIlog = MDD(ΣlogP,Ilog(X)) and we intersect it
with mddIµ . Then, we intersect it with mddα, the MDD of Cα, to
obtain mddlogα.

Table 15.2 shows the result of these experiments. As we can see when
the problem involves many solutions, all the methods perform well (excepted
MGCC). We can see that an advantage of the intersection methods is that
they contain all the solutions of problem. Table 15.3 shows the different sizes
of the MDDs.

Random instances. The intersection methods Mµ∩σ and Mµ∩σ∩α have
been tested on random bigger instances. Table 15.4 and 15.5 gives some re-
sults showing how this method scales with the number of variables. In the first
line, the couple is #var/#val. Times are in ms. Experiments of Table 15.4
set 0 < σ < 4n for having a delta depending on the number of variables like

15.6. Conclusion 245

0 < σ < 4n

Method n/d 20/20 30/20 40/30 40/40 50/40 50/50 100/40 100/100
T(ms) 26 132 391 401 848 875 12,780 14,582

Mµ∩σ #nodes 18 63 153 1578 306 311 2,285 2,532
#arcs 198 808 2,308 2,427 5,196 5,354 53,757 62,057
T(ms) 561 3,084 11,864 10,789 58,092 60,513 M-O M-O

Mµ∩σ∩α #nodes 163 764 0 0 0 0 M-O M-O
#arcs 1,788 8,416 0 0 0 0 M-O M-O

Figure 15.4: Time (in ms) and size (in thousands) of the MDDs of models
Mµ∩σ andMµ∩σ∩α. 0 means that the MDD is empty. M-O means memory-out.

100 < σ < 400

Method n/d 20/20 30/20 40/30 40/40
T(ms) 162 333 586 602

Mµ∩σ #nodes 81 184 326 338
#arcs 823 1,865 3,329 3,479
T(ms) 2,663 10,379 21,063 26,393

Mµ∩σ∩α #nodes 1,098 2,555 35 0
#arcs 11,166 23,764 151 0

Figure 15.5: Time (in ms) and size (in thousands) of the MDDs of models
Mµ∩σ and Mµ∩σ∩α. Mµ∩σ∩α is empty because there is no solution.

in [Pesant 2015], whereas experiments of Table 15.5 impose 100 < σ < 400,
these numbers come from our real world problem.

These experiments show that the Mµ∩σ model can often be a good
trade-off between space and time. Using the lower bound of the expected
size of the MDD (chapter 11), we can estimate and decide if it is possible
to process Mµ∩σ∩α. The last two columns of Table 15.4 show that it is not
always possible to build such an intersection.

15.6 Conclusion

This chapter has shown that modeling constraints by MDDs has several advan-
tages in practice. It avoids to develop ad-hoc algorithms, gives competitive
results and leads to efficient combination of constraints outperforming the
other approaches.

Moreover, we are now able to constrain the probability of solution consid-
ering statistical distribution during the search.

246 Chapter 15. Markov and Statistical Constraints

Finally, the experimental section has shown the advantage of such method
for solving the geomodeling of a petroleum reservoir.

Chapter 16

Unefficient MDDs

Contents
16.1 Introduction . 247

16.2 AllDifferent . 247

16.3 Set Variables . 248

16.4 Pareto . 249

16.4.1 Storing the Pareto solutions 249

16.4.2 Pareto Constraint . 250

16.4.3 MDD as a store for the Pareto set 250

16.4.4 Why does this Fail? 253

16.5 Conclusion . 253

16.1 Introduction

This chapter is an outsider considering problems where building an MDD is
not really a good idea. But more efficient algorithms must be defined.

We propose here to focus on building the MDD of the alldifferent con-
straint, to integrate set variables in MDDs and to use MDDs for handling the
Pareto constraint.

16.2 AllDifferent

Building MDDs can be done using state machine [Hooker 2013]. The state
of an node in a MDD representing the allDifferent constraint containing n

variables and n values can be given by a Boolean vector having n digits. If
the digit at cell i is 0, then the value can be taken, otherwise the value cannot
be taken. The number of different state for this MDD is 2n, but it represents n!

solutions, thus even if the MDD is huge, its compression ratio is exponential.
An example over 4 variables is given in Figure 16.1.

248 Chapter 16. Unefficient MDDs

{}

{a}

a

{b}

b

{c}

c

{d}

d

{a,b}

b

{a,c}

c

{a,d}

d a

{b,c}

c

{b,d}

d ab

{c,d}

d abc

{a,b,c}

c

{a,b,d}

db

{a,c,d}

dbc a

{b,c,d}

d ac

{a,b,c,d}

dc

ab

ba

Figure 16.1: MDD representing the solutions of an allDifferent constraint over
four variables having the set {a, b, c, d} as domain.

Given an allDifferent constraint having n distinct variables and d values,
with d ≥ n, the number of possible states is given by:

n∑
i=1

(
n

i

)
(16.1)

Directly defining an MDD for this constraint can be costly. That’s why effi-
cient algorithms handling MDD has been defined [Andersen 2007, Cire 2013].
Thanks to them, we are able to incorporate the allDifferent information into
MDD and to efficiently remove incosistent arcs.

16.3 Set Variables

Instead of using the constraining method proposed in chapter 13, we could be
interesting in integrating the set variables into the MDD. Given a set variable
containing d values in its set, the number of possible assignment is 2d, while
classical variables with d values have d possible assignment. Thus since an
MDD has an arc for each value, possibly by node at the layer of the variable,
having set variables inside the MDD instead of using at the top as proposed
in this thesis can lead to an exponential decompression.

16.4. Pareto 249

16.4 Pareto

Multi-objective combinatorial optimization (MOCO) problems are present in
many industrial applications. A lot of works has been done to handle this
kind of problem, one of the principal problem is the set of Pareto solutions
[Finkel 1974, Gavanelli 2002, Hartert 2014, Mostaghim 2002, Schaus 2013].

In a MOCO, variables has a discrete domain, and the problem has several
incomparable objective function p ≥ 2. A good solution of this problem is a
non-dominated solution.

Definition 16 Let #»u and #»v be solutions of a MOCO. #»v is weakly-dominated
#»u (#»u � #»v) iff:

#»u � #»v ⇐⇒ ∀i ∈ [1, p], #»u [i] ≤ #»v [i] (16.2)

Definition 17 Let #»u and #»v be solutions of a MOCO. #»v is dominated #»u

(#»u ≺ #»v) iff:
#»u ≺ #»v ⇐⇒ #»u � #»v ∧ ∃i ∈ [1, p], #»u [i] < #»v [i] (16.3)

Definition 18 A set P of solutions is pareto optimal iff:

∀ #»v ∈ P, 6 ∃ #»u ∈ P, #»u ≺ #»v (16.4)

In MOCO, solvers aim at generating all the pareto solutions. One of
the most important part is the data structure used to store all these pareto
solutions. Existing methods are described in the section 16.4.1. In the section
16.4.3 is describe another efficient method to store the pareto set using MDDs.

16.4.1 Storing the Pareto solutions

Several data structures exist for storing the set of pareto solutions. In this
section, we recall the state of the art of data structures used to store the
pareto front.

List: One of the simplest and often used is the list. The list contains all the
pareto solution vectors.

Quad-Trie: The Quad-trie are one of the most efficient data structure used
to store the pareto set of solution. A Quad-Trie is a trie where each node
contains 2p childs.

Several others methods exist, but these two ones are the most used in
practice. The complexity of these two data structures for storing and checking
if a solution is or is not dominated by another solution is given in table 16.4.3.

250 Chapter 16. Unefficient MDDs

16.4.2 Pareto Constraint

The Pareto constraint well defined in [Schaus 2013], is used to allow the CP
solvers to deals with MOCO. This global constraint is define on the objectives
variables and ensures that all the next solution is non-dominated.

Definition 19 Let S be a storing data structure for the current pareto set.
The Pareto global constraint pareto(obj1, obj2...objp, A) ensures that it exists a
affectation of the objectives variables #»v = (obj1, obj2...objp) such that:

6 ∃ #»u ∈ S, #»u ≺ #»v (16.5)

They generally performs Bound Consistency (BC) on the objective vari-
ables by checking for each if the tuple composed of the lower bound for all the
objective variables except one using its upper bound is possible.

Definition 20 Let S be a storing data structure for the current Pareto set.
The Pareto global constraint pareto(obj1, obj2...objn, A) is Bound Consistant
(BC) iff:

∀i ∈ [1, p] 6 ∃ #»u ∈ S, #»u ≺ {obj1, obj2, ..., obji, ..., objp} (16.6)

Current implementation of this constraint use list or quad-tree and a spe-
cialized algorithm. In this section we present another method using MDDs as
a storage for the Pareto set. This allows any CP solver containing a Multi-
valued Decision Diagrams package to deal with MOCO.

16.4.3 MDD as a store for the Pareto set

In this section we describe how we can use an MDD as a storing method for
the Pareto set.

A data structure used to represent the Pareto set has to be able to deal
with two requests:

1. Check : Given a solution, the data structure has to answer if the solution
is dominated or not by a solution inside the data structure.

2. Insertion: Given a solution, the data structure have to introduce the
solution is the solution is not dominated, and remove all the solution
already inside the data structures dominated by the new solution.

We want the MDD to contains all the solutions non-dominated by any
solution of the pareto set. using this MDD, the Check request is really fast
because we only need to know if a given path exist in the MDD. For the

16.4. Pareto 251

0

1

0 1 2 3

2

0 1 2 3

3

0 1 2 3

0

1

2 3

2

1 23

3

3

0

1

2 3

2

2 3

3

2 3

Figure 16.2: The Left MDD is the initial MDD with domain = {0,1,2,3},
the middle MDD represents the GCS {{2, 3}{1, 2, 3}, {3}} from the solution
{2, 1, 3}. The right MDD represents the GCS {{2, 3}{2, 3}, {2, 3}} from the
solution {2, 2, 2}

second request, we will perform modification in the MDD in order to update
its solutions.

Let the solution (v1, v2, ..., vp) be discovered, then all the dominated so-
lutions inside the MDD have to be removed. Since a solution is dominated
iff all the p values are greater or equal to the dominating solution. We can
represent the set of solution by the following GCS: {{v1, v1 + 1, ..., d}{v2, v2 +

1, ..., d}...{vp, vp + 1, ..., d}}.

Example:
An example of such a GCS is given in Figure 16.2 for the solutions

{2,1,3} and {2,2,2}.

Thanks to the In-Place deletion algorithm (Chapter 5), we can simply re-
move from our MDD representing all the previously non-dominated solutions,
the GCS containing all the newly dominated solution.

Initialisation: At first, no solution are dominated, then building an MDD
representing all the possible solutions is enough. The MDD representing the
GCS {{1, 2, ..., d}{1, 2, ..., d}...{1, 2, ..., d}} represents all the solutions. An
example of initial MDD is given in Figure 16.2 for three variables with the set
{0,1,2,3} as domain.

252 Chapter 16. Unefficient MDDs

0

1

0 1

4

2 3

2

0 1 23 0

5

1 2 3

3

0 1 2 3 0 1 2

0

1

0 1

4

2 3

2

0 1 23 0

5

1

6

2 3

3

0 1 2 3 0 1 2 0 1

Figure 16.3: The left MDD is the result of the deletion from the initial MDD
(Left MDD in Figure 16.2) of all the dominated solutions from the solution
{2, 1, 3} (MDD in the middle of Figure 16.2). The right MDD is the result
of the deletion from the right MDD of all the dominated solutions from the
solution {2, 2, 2} (Right MDD in Figure 16.2

Example:
An example is given in Figure 16.3. It shows how the MDD handle the

deletion of a set of solutions. The first MDD (in the left) is the result of
deleting the GCS {{2, 3}{1, 2, 3}, {3}} (MDD in the middle of Figure 16.2)
from the solution {2, 1, 3}. As we can see the Resulting MDD represents
all the non-dominated solution. This implies that each path in the MDD
lead to an affectation of the objective variables that is non-dominated by
the solution {2, 1, 3}.

The right MDD from Figure 16.3 represent the deletion from the pre-
vious MDD of all the solutions dominated by the solution {2, 2, 2}, to do
so, the GCS has been created (right MDD from Figure 16.2) and then
deleted from this MDD. The resulting MDD is an MDD containing all the
solution non-dominated by the 2 previous solutions.

Complexity: The table 16.4.3 gives the different complexities of the two
requests, for the MDDs and for the existing methods. As we can see, the
MDDs are really efficient at checking if a solution is dominated or not. But
the deletion of a solution can need the evalution of the whole MDD.

16.5. Conclusion 253

Operation MDDs List Quad-trie
Check O(p) O(|P|*p) O(|P|*p)
Insertion O(MDD) O(|P|*p) O(|P|*p)

Table 16.1: Complexity of check and insertion for the pareto storing data
structure, |P| denotes the number of exising pareto solutions, p denote the
number of objectives.

16.4.4 Why does this Fail?

The problem came from the insertion operation. The complexity is in
O(MDD), there is a factor of two. Thus, each time a solution is inserted,
the size of the MDD can be twice more than its previous size.

This implies that if we insert k Pareto solution, the size of the MDD
can growth up to 2k. Thus using MDD to directly store the non dominated
solution is not really a good idea.

Note that we also investigate how to use MDD for storing the pareto front,
instead of the non dominated solution. This lead to a more complex algorithm,
which seems to be slower than the existing methods when the number of
objectives grows.

Related Even if we should not directly use MDDs for storing the pareto
front, some works between MDDs and Pareto have been done. For example
in [?], the authors process Pareto shortest paths in MDDs.

16.5 Conclusion

This chapter has presented several problems where MDDs fail to solve the
problem. It is interesting to detect efficiently such problem.

Most of the time, the problem come from the number of states of the
DP represented by the MDD. But as showed for the Pareto constraint, the
complexity is sometimes hidden.

Part V

Applications

Chapter 17

MaxOrder

Contents
17.1 Introduction . 257

17.2 Models . 258

17.2.1 Model 1 . 258

17.2.2 Model 2 . 259

17.2.3 Model 3 . 260

17.2.4 Experiments . 262

17.3 Soft Version . 265

17.3.1 Introduction and Model 265

17.3.2 Experiments . 266

17.4 Conclusion . 266

17.1 Introduction

The MaxOrder problem [Papadopoulos 2014] consists on, starting from a cor-
pus, generating sequences using a transition function, but preventing the sub-
sequences of a certain length of coming from the corpus.

For example a goal can be, using a corpus of books, to generate sequences
of words, where each subsequence of size 2 belongs to the corpus (Markovian
transition) and no subsequence of size 4 belongs to the corpus. Here 4 denotes
the maximum plagiarism size. suppose that the corpus is the word electric-
ity. we can generate the word citri or lecit but not lecity because city is a
subsequence of length 4 from the corpus

Plan This chapter is split as follows, first it recalls the model proposed by
the original authors, then several models are presented for CP solvers. Finally,
a soft version of the problem is considered, which aims to minimize the number
of plagiarisms or the number of invalid transitions.

258 Chapter 17. MaxOrder

Figure 17.1: MaxOrder model 1, extraction of the constraints from the corpus.

17.2 Models

Let X = x1, x2, ...xr be the variables, let B be the corpus, let M be the tran-
sition between the words extracted from the corpus. Let p be the minimum
plagiarism size for the subsequences.

The original model [Papadopoulos 2014] first builds the automaton from
the transition function. Then, it builds the trie containing all the no-goods
(plagiarism subsequences). Finally, it removes from the automaton the trie of
no-goods using automaton algorithms. The resulting automaton can then be
handled by any CP solver.

MDD models This problem can be solved using several distinct models.
This section presents 3 different MDD models for solving the problem, each
with different efficiency.

17.2.1 Model 1

The first model is twofold. For the transition constraint we can either use
binary constraints, since the value of xi depends on the value of xi−1, or we
can use the transition function for building an MDD.

For the plagiarism constraint, we build mddP , the MDD containing all the
prohibited sequences contained in the corpus. Thus all the sequences of size p
in B. Then we can build mddP̄ , the complementary of mddP , thus the MDD
containing all the sequences of length p that do not belong to the corpus. Note
that the sequences of mddP̄ may not respect the transition function M . The
Figure 17.1 shows the extraction of the model from the corpus.

17.2. Models 259

Figure 17.2: MaxOrder model 1, 11 variables, p = 3.

Using this MDD, we can build the model for constraining the sequences.
For each 2 consecutive variables put a binary transition constraint. For each
p consecutive variables, put an MDD constraint using mddP̄ . The solutions of
this model are the sequences that respect the transition constraint and that
do not contain any plagiarism subsequences.

Example Figure 17.2 shows the model applied to 11 variables and with
p = 3. As we can see, all 3 consecutive variables are constrained by an
MDD constraint using the MDD mddP̄ (NP in the Figure). M is the binary
transition function.

Remark: This model is weaker than the automaton model, but simpler,
smaller in space and faster to build.

17.2.2 Model 2

The second model is close to the idea of [Papadopoulos 2014]. The first step is
to build mddT , the MDD defined for p variables containing all the sequences
composable using the transition function.

The second step is to build mddP , the MDD containing all the prohibited
sequences contained in the corpus. Then using the operator for MDD, we
can build mddA = mddT − mddP , the MDD composed of all the sequences
composable using the transition function minus all the prohibited sequences.
Thus this MDD contains all the solutions for a set of p variable. Figure 17.3
shows the extraction of the model from the corpus.

260 Chapter 17. MaxOrder

Figure 17.3: MaxOrder model 2, extraction of the constraints from the corpus.

Using mddA, we can build a model for the problem by putting an MDD
constraint using mddA for all the p consecutive variables.

Example Figure 17.4 shows the model applied to 11 variables and with
p = 3. As we can see, all the 3 consecutive variables are constrained by an
MDD constraint using mddA.

Remark: This model is still weaker than the automaton model, since the
automaton model contains a kind of intersection of these constraints. But still
simpler, smaller in space and faster to build.

17.2.3 Model 3

The third model uses the mddA defined in the second model, the MDD con-
taining all the solutions for p variables. The problem here is to constrain the
r variable and not p variables. The search, in addition to the constraint, gives
us the solution that respect the conjunction of the constraints, thus we are
going to process directly the intersection of the constraints.

Model 2 defines an MDD constraint for all the p consecutive variables. This
implies r − p+ 1 constraints. The ith constraint is defined over the variables
(xi,xi+1,xi+2,...,xi+p) and the i + 1th constraint is defined over the variables
(xi+1,xi+2,xi+3,...,xi+p+1). If we intersect these two MDD constraints, we ob-
tain an MDD constraint defined over the variables (xi,xi+1,xi+2,...,xi+p+1).
Note that the intersection has to take care of the variables of the MDD.

Finally, if we intersect all these MDD constraints we obtain mddG, an
MDD defined over the variables (xi,xi+1,xi+2,...,xi+r) and that contains all
the solution of the problem. Figure 17.5 shows how to build this model.

17.2. Models 261

Figure 17.4: MaxOrder model 2, 11 variables, p = 3.

mddG corresponds exactly to the reduced version of the unfolded automaton
from the original model.

Intersection The choice of the order in which the intersections are made
has a strong impact on the construction time. We focus here on 3 different
ordering for the intersections.

Intersection order (a) The first one is to intersect the MDD constraint
from the variable 1 to r. Thus this implies intersecting the constraint 1 and 2

defined over the p+ 1 first variables. Then intersecting the result of the first
intersection with the constraint 3, thus obtaining a constraint over the p + 2

first variables. Then continuing until all the constraints have been intersected.
See ordering (a) in Figure 17.6.

Intersection order (b) The second ordering is simply the reverse of the
first one. Instead of starting at the constraint 1, we start at the constraint
r− p+ 1 and intersect it with the constraint r− p. See ordering (b) in Figure
17.6.

Intersection order (c) This third ordering uses the following re-
mark: intersecting the MDD constraint defined over the variables
(xi,xi+1,xi+2,...,xi+p) with the MDD constraint defined over the variables

262 Chapter 17. MaxOrder

Figure 17.5: MaxOrder model 3, 11 variables, p = 3.

(xi+p+1,xi+p+2,xi+p+3,...,xi+2p+1) is simple. It consists on the concatenation
of the two MDDs. See ordering (c) in Figure 17.6.

Using this remark, we can intersect first all the contiguous MDD con-
straints. We obtain p MDD constraints and we can intersect them. Note that
we perform max(p, r − p) intersections instead of r − p.

17.2.4 Experiments

The main instance of the problem deals with Markov Sequence Generation
on corpus having more than 10,000 different words, thus the domain of the
variables is greater than 10,000. The goal is to generate phrases having 20

words where all successions of 2 words come from the corpus and where there
is no sequence of more than 4 words coming from the corpus.

The main issue with this approach is the size of the MDDs. The corpus
has 10,785 words. mddT has 15,950 nodes and 129,465 arcs, mddP has 56,225
nodes and 127,786 arcs, mddG has 1,208,219 nodes and 188,035,203 arcs. Note
that the reduction is efficient, for instance for mddP the number of nodes go
from 123,025 to 56,225 and mddG has more than 2.2 times fewer nodes than
the unfolded automaton.

Building times The next table gives the times for building the different
MDDs from the different models.

MDD mddT mddP mddA
Time (ms) 733 77 1248

17.2. Models 263

v1 v2 v3 v4 v5 v6 v7 v8 v9

mddG[1-3]

...

v10 v11

...

(a)

(b)

(c)

mddG[2-4]

mddG[3-5]

mddG[9-11]

mddG[9-11]

mddG[8-10]

mddG[1-3]

mddG[1-3]

mddG[2-4]

mddG[3-5]

mddG[4-6]

mddG[5-7]

mddG[6-8]

mddG[7-9]

mddG[8-10]

mddG[9-11]

Figure 17.6: The three ordering for the intersection of the constraints.

Thus building either the models 1 or 2 is simple and fast. The next table gives
the times for the intersections depending on the ordering for the model 3.

Method (a) (b) (c)
Time (s) 390.0 271,9 143.5

The ordering (c) gives the best results for this benchmark. It is interest-
ing to remark that the ordering (b) which consist on the reverse ordering of
ordering (a) strongly improves the construction time. The original time pub-
lished was 425 seconds [Perez 2015a] since it proposed only the ordering (a).
Authors of the original problems indicate that their time was approximately
the same. The time is now 3 times faster using the ordering (c).

Resolution Times In addition to the constraints for the maxorder, the
model contains an alldifferent constraint. Propagators like mddc [Cheng 2010]
cannot represent the MDD for 20 variables since it requires an array of size
10,000 by node. The memory consumption exceeded 64 GB quickly whereas
it is kept below 10 GB with our algorithms. Restricted to a set of 9 variables

264 Chapter 17. MaxOrder

(instead of 20) and using the model 2, since the model 3 cannot be handled.
It takes more than 50 min with mddc to find the first 50 solutions whereas it
took 6 seconds for MDD4R with mddA. It is a gain factor of 500.

Using MDD4R, for the whole 20 variables, the model 3 takes 26.8 seconds
for finding the first 50 solutions. The resolution time of the original model is
the same.

17.3. Soft Version 265

Figure 17.7: MaxOrder: soft version

17.3 Soft Version

17.3.1 Introduction and Model

Several corpus do not have any solution. For example, when the corpus is
too small, or too complex (too many different words compared to the total
number of words), there is no solution. In this case, we would like to provide
solutions with respect to an amount of violation.

The problem is that in this problem, we would like to soften either the
transition function, or the plagiarism. Using model 3 or the original model, it
is not possible to soften either one of then. Moreover, the meaning of softening
the mddG or the automaton of the original model is not trivial.

Consider model 1. If we use a soft MDD constraint for the MDDT MDD,
then it means that we allow the generation algorithm to create new transitions,
transitions not belonging to the corpus. But if we use a soft MDD constraint
for the MDDP̄ , then this allows the generation algorithm to create sequences
containing some plagiarisms. Finally, the goal of the solver is to limit this
plagiarism or the number of invalid transitions. Figure 17.7 shows which
MDDs are soften.

An important remark is that, if the corpus size grows, then the maxOrder
constraint becomes satisfiable. If it grows very large, then it becomes useless
to apply a maxOrder constraint because it becomes exponentially improbable
to build a sequence containing plagiarism 1. That’s why we focus on corpus
like fables and short texts.

1This remark came from discussions with Alexandre Papadopoulos. I found its remark
very interesting.

266 Chapter 17. MaxOrder

Algo Markov Plagiarism
size 18 20 22 18 20 22
inter 5,5 104,8 111,7 4,7 8,1 9,3
cost-MDD4R 5,3 86,5 94,9 23,7 44,6 67,9
ev-mdd 11,1 361,9 355,5 26,2 58,5 78,0

Table 17.1: Times needed to build the sequences with minimum of violations
(Time out 1800s).

Markov Plagiarism
#nodes #arcs #nodes #arcs

original 73 168 261 21.5k
arc * 73 380 261 22.1k
intersection 147 590 783 54.6k

Table 17.2: Size of the MDDs. 60 different words.

17.3.2 Experiments

The results are split depending on which MDD is softened since both gives
pertinent results. For the experimentation, "The fables of Jean de La
Fontaine" are used because they contain several sentences, not too many
words and often produce funny results.

Table 17.1 gives the time results (in seconds) and Table 17.2 gives the size
of the MDDs. Note that the model also contains an alldifferent constraint.
Markov means that we apply the soft constraint on the Markovian transition,
Plagiarism is for the plagiarism part. The creation time is similar for both
MDDs, and insignificant compared to the search time.

The filtering algorithms used for the soft constraints are first the cost MDD
propagators ev-mdd and cost-MDD4R up with the cost transformation from
chapter 12, and then the MDD4R algorithm used with the MDD results from
the intersection method from chapter 12, named inter in the tables. These
tables show that both the cost and intersection methods for soft constraints
are useful.

17.4 Conclusion

This chapter has presented several models for solving the MaxOrder problem,
all with different complexity and efficiency. Then the problem of generating
good non-solution has been considered and a model proposed. The results for

17.4. Conclusion 267

both of these problems seems to indicate that MDDs are well suited for these
kinds of problems.

Chapter 18

Audio Multitrack Synchronization

Contents
18.1 Introduction . 269

18.2 Description of the Benchmark 270

18.3 Experiments . 273

18.3.1 First Allen Model . 273

18.3.2 MDD-Based Allen Model 273

18.1 Introduction

A lead sheet is a representation of a musical piece commonly used in popular
music and consisting of a melody with chord labels on top, as shown on
Figure 18.1 (extract of A Day in the Life by Lennon / McCartney).

An important aspect of this lead sheet is that melodic patterns are dis-
tributed according to a temporal structure. For example, the pattern of bars
1-2 is repeated at bars 5-6. This type of structure is commonplace in popular
music. To generate lead sheets with a similar temporal structure similar, a
standard CP approach is to define one variable per note. However, notes have
a different duration: bar 1 contains eight short notes (including the rest) and
bar 2 contains only one long note. Consequently, there is no direct correspon-
dence between the index of a note and its temporal position. This makes it
hard to post constraints stating that the first two bars should be repeated
two bars later, regardless of their number of notes; or any other constraint of
the same kind. In Section 18.3, we show that our approach yields a practical
solution to this problem.

Automatic Accompaniment Generation The generation of musical ac-
companiment from audio multitrack recordings has immediate applications
for computer generated musical improvisation or accompaniment generation.

The task consists in generating a new multi-track audio accompaniment by
reusing an existing multitrack recording. The original tracks are segmented

270 Chapter 18. Audio Multitrack Synchronization

Figure 18.1: The first 8 bars of A Day in the Life by John Lennon and Paul
McCartney

into chunks, using an onset detector [Dixon 2006]. Then new tracks are gen-
erated by recombining chunks, using concatenative synthesis [Maestre 2009].
Chunks in the generated tracks may appear in a different order than in the
original track and may be used any number of times.

Such a scheme involves several types of constraints: On the one hand,
we have to constrain each track to avoid awkward chunk transitions, by al-
lowing transitions that are similar to the transitions in the training corpus.
The similarity is measured using acoustic features, see Section 18.2. On the
other hand, to prevent the tracks from “drifting” from one another, e.g., one
track becomes increasingly louder while another track fades out, we have to
synchronize the tracks at regular points in time, for instance at the onset of
every bar.

This problem raises the same issue as lead sheet generation. The chunks
have different durations, therefore the index of a chunk and its temporal po-
sition are not directly depending on one another.

18.2 Description of the Benchmark

We use a three-track recording (guitar, bass, and drum) of the first 32 bars of
song Prayer in C (Lilly Wood & The Prick). Each track is segmented using
standard onset detection and quantized to 1/24th of a beat (see Figure 18.2).

Chunks are categorized into clusters according to harmonic similarity (for
pitched instruments) and timbre similarity for drums. The timbre is repre-
sented by Mel Frequency Cepstral Coefficients (MFCC) with 13 coefficients;
the harmonic similarity is computed using the Harmonic Pitch-Class Profile
(HPCP) with 36 divisions of the octave [Gómez 2006].

The guitar track contains 128 chunks with duration ranging from an eighth-
note (half a beat) to a dotted quarter-note (1.5 beats), categorized into 13
harmonic clusters. The bass track contains 81 chunks (duration from half a
beat to 1.5 beats) categorized into 9 bass clusters (harmonic similarity). The
drum track contains 94 chunks with duration from half a beat to 20/3 beats,
that is a full bar plus two thirds of a bar. There are 40 timbre-based drum

18.2. Description of the Benchmark 271

Figure 18.2: A graphical representation of the guitar (top), bass (center), and
drum (bottom) tracks of Prayer in C. Each track contains 32 bars and each
triangle represents a chunk. Vertical lines indicate bar separations.

clusters.
We state the problem of creating new multitracks as the generation of

three sequences of chunks, each with an imposed total duration of n bars.
Each bar has four beats, and the duration of the shortest chunks is 1/8 of a
bar, therefore each sequence contains at most p = 32n chunks.

We define a sequence of p chunk variables: G1, . . . , Gp (guitar), B1, . . . ,

Bp (bass), and D1, . . . , Dp (drums). The domain of each variable is the set
of chunks in the corresponding recorded track, plus a dummy chunk with
duration 0, called the padding element, which we explain below.

For each track, all chunk transitions, e.g., Gi → Gi+1, are such that the
associated cluster transition exists in the original track. Additionally, we syn-
chronize the tracks together at the beginning of every bar. More precisely,
let Gi, Bj, Dk be the three chunks playing at the beginning of bar b, and
C(GI), C(Bj), C(Dk) be the corresponding clusters. We enforce that the same
cluster “signature” exists somewhere in the original multitrack, not necessarily
at the beginning of a bar. The underlying idea is that the cluster signatures
of the original track are musically acceptable. Intuitively, this constraint im-
poses that the generated multitrack uses acceptable chunk signatures at the
beginning of every bar but can “invent” new cluster signatures (new sounds)
between bar lines.

Total Duration The total duration can be handle in two different ways.
For the first Allen model, it is sufficient to ensure that the last note has to
terminate at 4n. For the MDD-based Allen model, it is easy to impose the
total duration of 4n to each track by simply removing all nodes of the graph
(see Figure 18.3, left) whose label is greater than 4n and every node of the final
layer whose label is different from 4n. Every node with label 4n that is not in

272 Chapter 18. Audio Multitrack Synchronization

0

1

a

2

b

2

a

3

b a

4

b

4

b

5

b

6

b

a b

a b a b

b b

Figure 18.3: The graph (left) and MDD (right) representations of the con-
straint Allend∨s∨fi∨eq[2,5]. Red labels correspond to values satisfying the con-
straint. Numbers in the graph on the left represent the temporal position.

the final layer receives a new arc, labeled with the padding element, going to
the next layer to a new node with the same label 4n, since the padding element
has a 0 duration. We repeat this process to the final layer. This allows us
to generate sequences with fewer than p “actual” variables, the padding value
being assigned to the “extra” variables.

Markov transition The variables are subject to the binary constraints on
chunk cluster transitions. These constraints are expressed as simple table
constraints between consecutive chunk variables in each track. For example,
(C(Gi) → C(Gi+1)) ∈ Cg, where Cg is the set of all cluster transitions in the
original guitar track. The same applies to the two other instruments.

Synchronization The vertical synchronization constraints are represented
by an Allen constraint for each track and for each bar. To specify the events
that are playing at the beginning of bar i, we use the Allen relation o ∨ s
applied to the time interval [4(i− 1),+∞). In our context, this relation, one
of the 213 combinations of Allen relations, specifies exactly the intervals which
“contain” the temporal point 4(i− 1), the onset of bar i.

The Allen constraints for the guitar track are

Alleno∨s [4(i−1),∞)([C
g
1 , . . . , C

g
p], Igi , E

g
i)

where Cg
i is the variable cluster(Gi). The synchronization itself is enforced

by an ad hoc table constraint between Egi , Ebi , and Edi , where accepted triplets
are cluster signatures of the original multitrack.

This approach applies to the generation of automatic accompaniment of
an imposed melody in a given style.

18.3. Experiments 273

n
MDD size (#Vertices, #Edges) Time

Guitar Bass Drum (ms)
6 2382 41k 848 13667 1864 73k 2301
8 4199 74k 1493 24k 3817 156k 7219
10 6530 117k 2388 39k 6513 275k 23k
12 9374 169k 3623 61k 9957 429k 57k
14 12k 231k 5085 87k 14k 617k 112k

Table 18.1: The size of the MDDs and the execution time to find 5 solutions
for various multitrack lengths

.

18.3 Experiments

The experiments were run on a MacBook pro late 2013, having a I7 2.3Ghz
and 8 Go of rams. The code is implemented using the OR Tools solver
[Perron 2013].

18.3.1 First Allen Model

We evaluate two implementations of the scheduling model, depending on how
we implement the constraint which links start times and duration (defined in
Section 14.3.1). First, we enforce arc-consistency on this ternary sum con-
straint. The model solves the problem for two bars in 8.4 seconds. It does
not solve the problem for more than two bars in less than 30 minutes, which
we consider a timeout.

A lighter version has also been implemented where the ternary sums con-
straints only perform bound-consistency, based on the intuition that propa-
gating information about the bounds of event duration offers a good trade off
between simplicity and pruning. This model solves the problem for two bars
in 5.4 seconds, but does not scale either to larger instances.

18.3.2 MDD-Based Allen Model

Note that, as said in Section 14.3.2, all the Allen constraints on a same track
are represented by a single MDD.

The comparison with the performance of the simple model for Allen is
clearly in favor of the MDD approach (see Table 18.1). The simple model
does not solve problems longer than two bars in less than 30 minutes. In
contrast, the MDD-based model solves the 14-bar problem in less than 2
minutes. The extra cost of performing the MDD construction and operations

274 Chapter 18. Audio Multitrack Synchronization

is more than compensated for by the higher pruning offered by this model,
especially regarding the treatment of the set variable E .

Chapter 19

Geomodeling of a Petroleum
reservoir

Contents
19.1 Introduction . 275

19.2 Models . 276

19.2.1 Problem . 276

19.2.2 Results . 277

19.3 Conclusion . 278

19.1 Introduction

The geomodeling of a petroleum reservoir [Pennington 2001] consists on gen-
erating images, respecting several constraint like the one from seismic images.
These constraints are defined from pattern, for the geomodeling, and from
seismic process. This chapter consider the latter one, the seismic constraint.

The generated images have to respect the geophysics constraint, called the
convolution, consisting on applying a seismic process. An image can be seen
as a vector of pixels, and constraints over images often contain other images
and information. The geophysics constraint contains a siesmic image and a
vector corresponding to a wavelet. This siesmic image has to correspond to
the application of a process onto the generated image.

The applied processes are velocity distribution functions, that are given.
Given a seismic image we want to find these velocities.

Suppose that α is a vector of 51 values corresponding to the "seismic wave",
let V be the velocity image of the initial image, the image that we want to
generate. We obtain this image by randomly selecting the values, considering
a given distribution, under the following strong constraint.

For each pixel pi in position i in its column, we define a pixel at the same

276 Chapter 19. Geomodeling of a Petroleum reservoir

position in the seismic image with a value si:

si =
51∑
k=1

αk log(Vi−25+k−1) (19.1)

Finally we want to avoid statistical outliers.

19.2 Models

19.2.1 Problem

Velocities values are represented by a probability mass function (PMF, see
chapter 9) on the model space. The PMF is given by physic laws. Velocities
are discrete values of variables. For each cell cij of the reservoir, the seismic
image gives a value sij and the given seismic wavelet (αk). We define a sum
constraint

∑22
k=1 αklog(xi−11+k−1j) = sij. Locally, that is for each sum, we

have to avoid outliers w.r.t. the PMF for the velocities.
We recall that the MDD of the constraint

∑
xi∈X f(xi) is defined as follows.

For the layer i, there are as many nodes as there are values of
∑i

k=1 f(xk).
Each node is associated with such a value. A node np at layer i associated
with value vp is linked to a node nq at layer i + 1 associated with value vq if
and only if vq = vp + f(ai) with ai ∈ D(xi). Then, only values v of the layer
|X| with a ≤ v ≤ b are linked to tt. The reduction operation is applied after
the definition and delete invalid nodes. The construction can be accelerated
by removing states that are greater than b or that will not permit to reach a
during the construction.

Outliers are avoided thanks to an MDDProbability constraint defined from
the PMF for the velocities. Pmin is defined by selecting only values having the
10% smaller probabilities, Pmax is defined by selecting only values having the
10% greater probabilities.

The first experiment involves 22 variables and a constraint Cα:∑n
i=1 αixi = I, where I is an tight interval (i.e. a value with an error varia-

tion). Cα is represented by mddα = MDD(Σai,I(X)) where ai(xi) = αixi.

Dispersion First, we impose that the variables have to be distributed with
respect to a normal distribution with µ, a fixed mean.

• Mσ<,σ> One cost-MDD propagator on mddµ = cost-MDD(Σnµ(X), σ)

with σ and ≤ and one with σ and ≥. This model is similar to Pesant’s
model [Pesant 2015].

19.2. Models 277

• MGCC involves a GCC constraint [Régin 1996] where the cardinalities
are extracted from the probability mass function.

• Mµ∩σ represents the mean constraint by mddσ = MDD(Σnµ(X)). It
represents the sigma constraint by the MDD(Σσ(X)). Then the two
MDDs are intersected. An MDD propagator is used on this MDD,
named mddµσ.

• Mµ∩σ∩α intersects mddα, the MDD of the constraint Cα, with mddµσ
the previous MDD to obtain mddsol. In this case, all constraints are
combined.

PMF Then, we consider a PMF constraint and that µ is variable:

• Mlog. We define a cost-MDD propagator on mddIµ = cost-
MDD(Σid,[µ,µ](X), logP) with log(Pmin) and ≥ and with log(Pmax) and
≤.

• Mlog∩α. We define mddIlog = MDD(ΣlogP,Ilog(X)) and we intersect it
with mddIµ . Then, we intersect it with mddα, the MDD of Cα, to
obtain mddlogα.

19.2.2 Results

Table 19.1 shows the result of these experiments. As we can see when the prob-
lem involves many solutions, all the methods perform well (excepted MGCC).
We can see that an advantage of the intersection methods is that they contain
all the solutions of problem. Table 19.2 shows the different sizes of the MDDs.

We consider 20 definitions of Cij. We repeat the experiments 20 times and
take the mean of the results.

For each constraint Cij, the resulting MDD has in average 116,848 nodes
and 1,239,220 edges. More than 320s are needed to compute it. Only 8 ms
are required by computeMDDProbabilities algorithm in average. When a
modification occurs the time to recompute the values are between a negligible
value when the modifications are close to the root of the MDD and 8 ms when
another part is modified.

For sampling 100,000 solutions we need 169 ms with the old C rand()
function and 207 ms with the Mersenne-Twister random engine in conjunction
with the uniform generator of the C++ standard library. Note that the time
spent within the rand() function is 15 ms, whereas it is 82 ms with the second
function. Therefore, the sampling procedures require less than 3 times the
time spent in the random function.

278 Chapter 19. Geomodeling of a Petroleum reservoir

Fixed µ Variable µ
Sat? #sol Mσ<,σ> MGCC Mµ∩σ Mµ∩σ∩α Mlog Mlog∩α

Build 50 31 138 2,203 34 317,921
Sat 10 sol 14 T-O 16 0 14 0

All sol T-O T-O T-O 0 T-O 0
Build 55 28 121 151 37 133,752

UnSat 10 sol T-O T-O T-O 0 T-O 0
All sol T-O T-O T-O 0 T-O 0

Figure 19.1: Comparison solving times (in ms) of models. 0 means that this
is immediate. T-O indicates a time-out of 500s.

Fixed µ Variable µ
Sat? N/A mddα mddµ mddσ mddµσ mddsol mddIµ mddIlog mddlogα
Sat #nodes 3 3 5 67 521 2 18 24,062
Sat #arcs 44 27 55 660 4,364 30 268 341,555
UnSat #nodes 3 2 5 67 0 2 18 0
UnSat #arcs 46 27 55 660 0 30 268 0

Figure 19.2: Comparison of MDD sizes (in thousands) of different models. 0

means that the MDD is empty.

19.3 Conclusion

This chapter proposes models for the geomodeling of a petroleum reservoir
problem using MDDs. These different models have different efficiency, but
also different costs. This chapter shows that combining MDD for designing
more powerful model can be efficient but a trade-off between memory and
processing has to be done.

Chapter 20

Conclusion

Contents
20.1 Conclusion . 279

20.2 Perspectives . 280

20.1 Conclusion

This thesis has focused on two main points. How to efficiently work with
Decision Diagrams and how to efficiently integrate them in Constraints solvers.

For the first point, this thesis proposed several new methods for the most
important operations which are the reduction, the combination and the cre-
ation of MDDs. Almost all these improvements come from the fact that MDDs
have a fixed number of variables, and are directed acyclic graphs. Thanks to
that, we have improved the existing operations by defining simple algorithm
that avoid complex data structures and memory hacks. Moreover, using our
new definition, we have designed an efficient parallel version of the reduction
and combination algorithms. We have adapted the algorithms to deal with
non deterministic and relaxed MDDs, allowing to deal with a broader range
of real world problems. Finally, we have designed several algorithms allowing
to sample solutions in MDDs with respect to probability distributions. All
these improvements have allowed us to solve new problems of several order of
magnitude in size.

For the second point, we have designed the current best three algorithms
for MDDs in Constraint solvers. These algorithms allow to handle MDD con-
straints, cost-MDD constraint and soft MDD constraints. Furthermore, we
have designed several mechanisms like the channeling constraint allowing to
constrain sub-part of MDDs. Thank to these algorithms, we have shown how
to reformulate several of the state of the art constraints like the dispersion
constraint into MDDs and how to define new constraints like the Allen con-
straint. Using these new algorithms, we have solved many problems in text
and music generation for entertainment, like the MaxOrder problem and the

280 Chapter 20. Conclusion

multi-track audio synchronization problem. Furthermore, we have also solved
a problem of geomodeling of a petroleum reservoir combining several knapsack
problems.

20.2 Perspectives

This thesis mostly focuses on the algorithmic aspects of MDDs, but several
characterization problems should be worked. First the relation between the
size of an MDD and the global Hamming distance of the tuples contained in
the MDD. Since a set of tuple with a global Hamming distance of 1 (Global
Cut Seed) can be turned into an stick MDD, and ones with a bigger hamming
distance cannot, one should describe the relation between this characteristics.

Moreover, the problem of finding the best variable ordering in an MDD is
known to be NP-Complete. But some works should be done on local modi-
fications of the variable ordering coupled with local search, for finding good
local optimum size of MDDs.

In the context of constraint programming, we should try to convert several
other constraints into MDDs, in the same way as done in this thesis. This
allows us to reduce the number of specialized propagators in solvers. A good
idea is often to extract the state machine of the constraints and to apply it to
a fixed number of variables.

Part VI

Appendix

Appendix A

Implementation

In this section, I present different existing implementations for an MDD pack-
age. All these implementations are used in at least one algorithm presented in
this thesis. The crucial difference between these implementations is how the
arcs are represented. The first representation, using arrays, is used in most
of the state of the art implementation [Cheng 2010, Cheng 2008], the second
one, using lists, is used in several papers and in almost all the algorithms
proposed in this thesis.

Figure A.1: An MDD representing the tuple set {(a,a),(a,b),(c,a),(c,b),(c,c)}

A.1 Array Implementation

The first MDD representation is simple and easy to implements. Each node
of the MDD is represented by an array of size d (d is the domain size, see 2.1).
The possible values of these arrays are the terminal node tt, the terminal node
ff or another node. tt and ff are two special nodes, tt represents the true
terminal node and ff the false terminal node. The index of an arc is its label,
a mapping can be used if the values are not between 0 and d.

Example Consider the MDD from Figure A.1, the root node (node 0) has
the following array [1, ff, 2] of outgoing arcs. The mapping of the values is
[0→ a, 1→ b, 2→ c]. The outgoing arcs of all the nodes are:

284 Appendix A. Implementation

Node 0/a 1/b 2/c
0 1 ff 2

1 tt tt ff

2 tt tt tt

Complexity The space complexity of such representation is O(d) by node.
This implies an overall space complexity of O(nd). This complexity is strongly
related to the domain size. The advantage of this representation is the random
access for any outgoing arcs. The drawback is when the average outgoing
degree is smaller than d.

Using this implementation, a random access to each outgoing edges is
possible and testing the existence of a path can be implemented in O(k) for
an MDD with k variables. This kind of graph is often used for storing large
set of words and then be used as a dictionary.

C++ possible implementation A possible implementation of the array
version of MDDs is given here. The nodes ff and tt can be global (static in
C++) and we will use the id 0 for the ff node and 1 for the tt node.

1 c l a s s NodeA{
2 p r i va t e :
3 NodeA ∗∗ childs ; // Array o f c h i l d
4 i n t size ; // s i z e o f the array c h i l d s
5 i n t id ; // unique id
6 i n t stamp ; // stamp used f o r the search

a lgor i thms
7 pub l i c :
8 NodeA (i n t size) ; // Constructor
9 ~NodeA () ; // de s t ru c t o r
10 i n t Id () ; // i f g e t t e r
11 i n t Size () ; // s i z e g e t t e r
12 i n t Stamp () ; // stamp g e t t e r
13 void setStamp (i n t newStamp) ; // stamp s e t t e r
14 void set (i n t label , NodeA ∗ end) ; // add or modify

a r c s
15 NodeA∗ get (i n t label) ; // get the te rminat ing

e x t r em i t i e s o f the arc
16 } ;
17 c l a s s MDDA {
18 pub l i c :

A.1. Array Implementation 285

19 NodeA ∗ root ; // root o f the MDD
20
21 s t a t i c i n t opStamp ; // stamp used f o r the search

a lgor i thm
22 s t a t i c i n t current_id ; // maximum al ready as s i gned

id
23 s t a t i c NodeA ∗ ff ; // f a l s e te rmina l node
24 s t a t i c NodeA ∗ tt ; // t rue te rmina l node
25 } ;

Code A.1: Array MDDs

Construction and setter The construction of a node is easy, first we build
the array of outgoing arcs and then we set all the arcs to the false terminal
node ff . Adding or modifying an outgoing arc for a node is done by changing
the value of the array corresponding to the label of the arc.

1 NodeA : : NodeA (i n t size_) :
2 childs (new NodeA∗ [size_]) ,
3 size (size_) ,
4 id (MDDA : : current_id++) ,
5 stamp(−1)
6 {
7 f o r (i n t i=0; i < size ; i++){
8 childs [i] = MDDA : : ff ;
9 }
10 }
11 NodeA : : ~ NodeA () {
12 d e l e t e [] childs ;
13 }
14 i n t NodeA : : Id () { re turn id ; }
15 i n t NodeA : : Size () { re turn size ; }
16 i n t NodeA : : Stamp () { re turn stamp ; }
17 void NodeA : : setStamp (i n t newStamp) { stamp = newStamp ; }
18
19 void NodeA : : set (i n t label , NodeA ∗ end) {
20 childs [label] = end ;
21 }
22 NodeA∗ NodeA : : get (i n t label) {
23 re turn childs [label] ;
24 }

286 Appendix A. Implementation

25
26 i n t MDDA : : opStamp = 0 ; // no opera t i on made
27 i n t MDDA : : current_id = 0 ; // maximum al ready

as s i gned id
28 NodeA ∗ MDDA : : ff = new NodeA (0) ; // ID = 0
29 NodeA ∗ MDDA : : tt = new NodeA (0) ; // ID = 1

Code A.2: Constructor Array MDDs

Example Building the MDD from Figure A.1 can be done using the follow-
ing code:

1 MDDA mdda ;
2 mdda . root = new NodeA (3) ;
3 NodeA ∗ n1 = new NodeA (3) ;
4 NodeA ∗ n2 = new NodeA (3) ;
5 mdda . root−>set (0 , n1) ;
6 mdda . root−>set (2 , n2) ;
7 n1−>set (0 , MDDA : : tt) ;
8 n1−>set (1 , MDDA : : tt) ;
9 n2−>set (0 , MDDA : : tt) ;
10 n2−>set (1 , MDDA : : tt) ;
11 n2−>set (2 , MDDA : : tt) ;

Code A.3: Example of construction of an Array MDD

Depth First Search Most of the operation applied to MDDs using an array
implementation use depth first search in a recursive way. The following code
gives an example of how to search on an MDD using a DFS and print the dot
version of the MDD.

1 void MDDA : : printDot (std : : ostream &ss) {
2 ss << "digraph G{\n" ;
3 MDDA : : opStamp ++;
4 printDotDFS (root , ss) ;
5 ss << "}\n" ;
6
7 }
8 void MDDA : : printDotDFS (NodeA ∗ n , std : : ostream &ss) {
9 i f (n−>Stamp () != MDDA : : opStamp) {

A.1. Array Implementation 287

10 n−>setStamp (MDDA : : opStamp) ;
11 f o r (i n t l = 0 ; l < n−>Size () ; l++) {
12 i f (n−>get (l) != MDDA : : ff) {
13 ss << n−>Id () << " −> " << n−>get (l)−>Id

() << " [l a b e l = " << l << "]\ n" ;
14 printDotDFS (n−>get (l) ,ss) ;
15 }
16 }
17 }
18 }

Code A.4: Example of construction of an Array MDD

Calling this method for the MDD example will give the following output:

1 digraph G{
2 2 −> 3 [label = 0]
3 3 −> 1 [label = 0]
4 3 −> 1 [label = 1]
5 2 −> 4 [label = 2]
6 4 −> 1 [label = 0]
7 4 −> 1 [label = 1]
8 4 −> 1 [label = 2]
9 }

Code A.5: Dot DFS output

Breath First Seach We can also apply Breath First Search (BFS) over
MDDs. The following code print the dot version of the MDD using a BFS.

1 void MDDA : : printDotBFS (std : : ostream &ss) {
2 MDDA : : opStamp ++;
3 std : : queue<NodeA∗> q ;
4 q . push (root) ;
5 ss << "digraph G{\n" ;
6 whi l e (! q . empty ()) {
7 NodeA ∗ n = q . front () ;
8 q . pop () ;
9 f o r (i n t l = 0 ; l < n−>Size () ; l++) {
10 i f (n−>get (l) == MDDA : : ff) { cont inue ; }
11 ss << n−>Id () << "−>" << n−>get (l)−>Id () <<

" [l a b e l = " << l << "]\ n" ;

288 Appendix A. Implementation

12 i f (n−>get (l)−>Stamp () !=MDDA : : opStamp) {
13 n−>get (l)−>setStamp (MDDA : : opStamp) ;
14 q . push (n−>get (l)) ;
15 }
16 }
17 }
18 ss << "}\n" ;
19 }

Code A.6: Example of construction of an Array MDD

Calling this method for the MDD example will give the following output:

1 digraph G{
2 2−>3[label = 0]
3 2−>4[label = 2]
4 3−>1[label = 0]
5 3−>1[label = 1]
6 4−>1[label = 0]
7 4−>1[label = 1]
8 4−>1[label = 2]
9 }

Code A.7: Dot BFS output

A.2. List Implementation 289

A.2 List Implementation

The list implementation is the one used in almost all the algorithms presented
in this thesis. Using this representation, a node contains a list of outgoing
arcs instead of an array and an arc has two information, its label and its
terminateing extremity. While the label was implicittly given in the array
implementation by the index, the list representation need to give it explicitly.
We denote the list of outgoing arcs by ω+.

Important The ω+ list is an ordered list of arcs. The arcs are ordered by
their label. All the creation, operation and reduction algorithms developed
here consider as input MDDs whose node’s ω+ are sorted, and output MDDs
with the same property.

Example Consider again the MDD from Figure A.1. The nodes have the
following ω+ list:

• ω+(0) = ((a, 1), (c, 2))

• ω+(1) = ((a, tt), (b, tt))

• ω+(2) = ((a, tt), (b, tt), (c, tt))

Complexity Using this representation, the overall space complexity is
O(n+m) = O(|N |+ |E|).

C++ possible implementation A possible implementation of the ordered
list version of MDDs is given here. Since we want to have ordered list of
outgoing arcs, each node will maintains a pointer to its last arc in order to
add an arc in the last position in O(1).

1 c l a s s Node ;
2 c l a s s Arc {
3 f r i e nd Node ;
4 Arc ∗ next ; // Next Edge in the l i s t
5 Arc ∗ prev ; // Previous Edge in the l i s t
6 Node ∗ start ; // s t a r t i n g node
7 Node ∗ end ; // te rminat ing node
8 i n t label ; // l a b e l o f the a r c s
9 } ;
10 c l a s s Node {

290 Appendix A. Implementation

11 Arc ∗ arcs ; // Double−l i nk ed L i s t o f outgoing
edges

12 Arc ∗ last_arc ; // po in t e r to the l a s t edge
13 i n t id ; // unique id
14 i n t stamp ; // stamp used f o r the search

a lgor i thms
15 } ;
16 c l a s s MDD{
17 Node ∗ root ; // root o f the MDD
18 in t node_id ; // id used to g ive a unique id

to nodes .
19 i n t opStamp ; // stamp used f o r the search

a lgor i thm
20 } ;

Code A.8: List MDDs

Construction and setter The construction of a node without outgoing
arc is easy. Set all the pointors to NULL. An Arc is define using the starting
node, the terminating node and the label.

1 c l a s s Arc {
2 pub l i c :
3 Arc (Node ∗ start_ , i n t label_ , Node ∗ end_) :
4 next (nullptr) ,
5 prev (nullptr) ,
6 start (start_) ,
7 end (end_) ,
8 label (label_)
9 {}
10 Node ∗ getStart () { re turn start ; }
11 Node ∗ getEnd () { re turn end ; }
12 i n t getLabel () { re turn label ; }
13 Arc ∗ Next () { re turn next ; }
14 } ;
15
16 c l a s s Node {
17 pub l i c :
18 Node (i n t id_) :
19 arcs (nullptr) ,
20 last_arc (nullptr) ,

A.2. List Implementation 291

21 id (id_) ,
22 stamp(−1)
23 {}
24 i n t Id () { re turn id ; }
25 i n t Stamp () { re turn stamp ; }
26 void setStamp (i n t newStamp) {stamp = newStamp ; }
27 Arc ∗ getFirstArcs () { re turn arcs ; }
28 void setLastArcs (i n t label , Node ∗ dest) {
29 i f (arcs == nullptr) { // empty l i s t
30 arcs = new Arc (th i s , label , dest) ;
31 last_arc = arcs ;
32 re turn ;
33 }
34 last_arc−>next = new Arc (th i s , label , dest) ;
35 last_arc−>next−>prev = last_arc ;
36 last_arc = last_arc−>next ;
37 }
38 } ;
39
40 c l a s s MDD{
41 pub l i c :
42 MDD () :
43 root (nullptr) ,
44 node_id (0) ,
45 opStamp (−1)
46 {}
47 Node ∗ Root () { re turn root ; }
48 void setRoot (Node ∗n) {root = n ; }
49 } ;

Code A.9: List MDDs constructor

Example Using this implementation, building the MDD from Figure A.1
can be done using the following code:

1 MDD mdd ;
2 mdd . setRoot (new Node (mdd . node_id++)) ;
3 Node ∗ n1 = new Node (mdd . node_id++);
4 Node ∗ n2 = new Node (mdd . node_id++);
5 Node ∗ tt = new Node (mdd . node_id++);
6 mdd . root−>setLastArcs (0 , n1) ;

292 Appendix A. Implementation

7 mdd . root−>setLastArcs (2 , n2) ;
8 n1−>setLastArcs (0 , tt) ;
9 n1−>setLastArcs (1 , tt) ;
10 n2−>setLastArcs (0 , tt) ;
11 n2−>setLastArcs (1 , tt) ;
12 n2−>setLastArcs (2 , tt) ;

Code A.10: Example of construction of a List MDD

Breath First Search Most of the operations applied to MDDs using a List
implementation use Breath First Search (BFS). The following code gives an
example of how to search on an MDD using a BFS and print the dot version
of the MDD.

1 void MDD : : printDotBFS (std : : ostream &ss) {
2 opStamp++;
3 std : : queue<Node∗> q ;
4 q . push (root) ;
5 ss << "digraph G{\n" ;
6 whi l e (! q . empty ()) {
7 Node ∗ n = q . front () ;
8 q . pop () ;
9 Arc ∗ a = n−>getFirstArcs () ;
10 whi l e (a != nullptr) {
11 ss << n−>Id () << " −> " << a−>getEnd ()−>Id ()

<< " [l a b e l = " << a−>getLabel () << "] \ n" ;
12 i f (a−>getEnd ()−>Stamp () != opStamp) {
13 a−>getEnd ()−>setStamp (opStamp) ;
14 q . push (a−>getEnd ()) ;
15 }
16 a = a−>Next () ;
17 }
18 }
19 ss << "}\n" ;
20 }

Code A.11: List MDDs Breath First Search

The application of this method on the MDD from Code A.10 gives the
following result:

A.2. List Implementation 293

1 digraph G{
2 0 −> 1 [label = 0]
3 0 −> 2 [label = 2]
4 1 −> 3 [label = 0]
5 1 −> 3 [label = 1]
6 2 −> 3 [label = 0]
7 2 −> 3 [label = 1]
8 2 −> 3 [label = 2]
9 }

Code A.12: Dot BFS output

Depth First Search While the BFS is usually applied when we use the
List implementation, we can easily search over an MDD using Depth First
Search (DFS). The following code gives an example of how to perform a DFS
for printing the dot version of the MDD.

1 void MDD : : printDot (std : : ostream &ss) {
2 opStamp++;
3 ss << "digraph G{\n" ;
4 printDotDFS (root , ss) ;
5 ss << "}\n" ;
6 }
7 void MDD : : printDotDFS (Node ∗ n , std : : ostream &ss) {
8 i f (n−>Stamp () != opStamp) {
9 n−>setStamp (opStamp) ;
10 Arc ∗ a = n−>getFirstArcs () ;
11 whi l e (a != nullptr) {
12 ss << n−>Id () << " −> " << a−>getEnd ()−>Id ()

<< " [l a b e l = " << a−>getLabel () << "] \ n" ;
13 printDotDFS (a−>getEnd () ,ss) ;
14 a = a−>Next () ;
15 }
16 }
17 }

Code A.13: List MDDs Depth First Search

The application of this method on the MDD from Code A.10 gives the
following result:

294 Appendix A. Implementation

1 digraph G{
2 0 −> 1 [label = 0]
3 1 −> 3 [label = 0]
4 1 −> 3 [label = 1]
5 0 −> 2 [label = 2]
6 2 −> 3 [label = 0]
7 2 −> 3 [label = 1]
8 2 −> 3 [label = 2]
9 }

Code A.14: Dot BFS output

A.2. List Implementation 295

A.2.1 Conclusion

In this appendix, I have presented the two most used MDD implementations.
While both of these implementations have advantages and drawbacks, the
choice depends on the problem.

Basically, for problems having a small number of different labels or who
need a O(n) check for tuple validation, the the Array implementation should
be chosen. For problems having a huge number of different labels or who
need incremental operations and modifications, then the List implementation
should be preferred.

Example Consider the problem of building a dictionary of word. In this
problem, words have 26 different letters, which is not so big. And a fast
look up for path existancy is required. The Array implementation should be
prefered.

Consider the problem from Chapter 17. It involves more than 10 thou-
sands of different labels, which is big. Using an Array implementation leads
to memory out most of the time (see the experimental part). The List imple-
mentation scales in practice and should be preferred.

Finally, consider the problem from Chapter 18. This problem involves be-
tween 30 to 60 different labels, which start to be a lot. At first the average
outgoing degree is close to 60, which implies that we can use the Array im-
plementation, but during the search, this degree is decreasing and the whole
MDD need to be modified and maintained. This is why we use the List im-
plementation.

Appendix B

Algorithms and Data Structures

B.1 Sorting

This section presents several methods for sorting a set of values. The reading
order of this section is important, since for example the radix sort use the
count sort. Moreover, all the sorting method of this appendix are well know
in computer science and so-called non comparison sort.

B.1.1 Indexing sort

Consider that you are correcting the exams of your students. But in order
to increase the suspence (or whatever), you want to distribute the corrected
exam from the lowest rank to the best one. Thus during your correction, you
have to sort them.

Most of the sort, like the Fusion sort are not so natural for sorting exams.
In general, we are going to make maybe 11 packs, one for each rank from 0
to 10. Then each time an exam is corrected, it is put in the good pack. Thus
if you have 100 exam to correct, then you do 100 instruction put the copy in
the right pack.

If we convert this idea into computer science programs, then we have an
array of scores (integer), and we are going to put them into an array of list.
Once all the exam are on the array of list, the size of this array depends on
the maximal value, we just have to iterate over all the non-empty list from
the lowest value to the biggest value.

Example Consider the following vector of values:
[3, 8, 2, 5, 3, 4, 8, 0, 9, 4, 7, 8, 5]. We need to define an array of list that
will be able to store all these values. Thus we define the following list array :

0 1 2 3 4 5 6 7 8 9
∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅

When we read the first value 3, we put it in the list of cell labeled by 3:

298 Appendix B. Algorithms and Data Structures

0 1 2 3 4 5 6 7 8 9
∅ ∅ ∅ 3 ∅ ∅ ∅ ∅ ∅ ∅

We continue, we put the values 8,2,5 and 3 in their respective lists:

0 1 2 3 4 5 6 7 8 9
∅ ∅ 2 3, 3 ∅ 5 ∅ ∅ 8 ∅

Finally, by putting the remaining values we obtain:

0 1 2 3 4 5 6 7 8 9
0 ∅ 2 3, 3 4, 4 5, 5 ∅ 7 8, 8, 8 9

We can iterate over the list, from cell 0 to 9 in order to get back the sorted
values: [0, 2, 3, 3, 4, 4, 5, 5, 7, 8, 8, 8, 9].

Sometimes, we are interested in sorting element according to their values,
so not necesseraly directly the values. Using this sort, you can store the
element or even their indexes in order to obtain a sorted permutation.

B.1.2 Counting sort

As shown in the previous section, we can put values in an array of list to sort
them. But an interesting remark is that all the values of a list are the same,
moreover, the values of the list are given by the cell index.

The counting sort [Cormen 2001] use this remark, instead of placing them
in an array of list, it counts the values. Then we can easily reconstruct a
vector of sorted values by creating as many values as counted.

Example Consider again the following vector of values:
[3, 8, 2, 5, 3, 4, 8, 0, 9, 4, 7, 8, 5]. We need to define an array # of integer
set to 0 for counting the values :

0 1 2 3 4 5 6 7 8 9
0 0 0 0 0 0 0 0 0 0

We first read 3, and increments the value of cell 3:

0 1 2 3 4 5 6 7 8 9
0 0 0 1 0 0 0 0 0 0

Then we read the values 8,2,5 and 3 and increments their respective cells:

0 1 2 3 4 5 6 7 8 9
0 0 1 2 0 1 0 0 1 0

B.1. Sorting 299

Finally when we have processed all the values, the counting array is:

0 1 2 3 4 5 6 7 8 9
1 0 1 2 2 2 0 1 3 1

From the cell 0 to cell 9 of #, we build the sorted vector of values by
adding as many times the value as the value of its associated cell. We finally
obtain [0, 2, 3, 3, 4, 4, 5, 5, 7, 8, 8, 8, 9].

As previously said, we are often interested in sorting element according
to their values, so not necesseraly directly the values. But using this method
does not allow to obtain the sorted permutation, since we recreate the value
according to their cell. Thus the counting sort is most of the time used as
described in the next paragraph.

Sorted indexes In order to obtain the sorted elements, which is often what
we want, we need to avoid creating the values based on their cell value. In-
stead, we process the position of the values (and so index) in the resulting
vector.

First, we process the P vector of position. This vector contains for each
cell, the position in the vector of the next value belonging to the cell. This
position is given by P0 = 0 for the first value and by Pi = Pi−1 + #i−1 for all
the other values.

Thus, using the previous example, the arrays C and P are:

0 1 2 3 4 5 6 7 8 9 Cells
1 0 1 2 2 2 0 1 3 1 #

0 1 1 2 4 6 8 8 9 12 P

Then, using the P vector, we first build the resulting vector R of size n
(number of values to sort, 13 in our example), then we iterate over the original
vector, and for each value i, we put i in the cell Pi of the result vector and
then increment Pi.

Following our example, the first value of the original vector is 3, thus
we put 3 in P3 = 2 and obtain R = [?, ?, 3, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?]. Then we
increment P3 which is now equal to 3.

We read the values 8,2,5 and 3 and put them in the vector
R = [?, 2, 3, 3, ?, ?, 5, ?, ?, 8, ?, ?, ?]. The current state of the P vector
is:

0 1 2 3 4 5 6 7 8 9 Cells
1 0 1 2 2 2 0 1 3 1 #

0 1 2 4 4 7 8 8 10 12 P

300 Appendix B. Algorithms and Data Structures

Note that even if P2 = 2, which is an already set cell, this is not an issue
since no more value 2 are in the original vector.

B.1.3 Radix sort

The counting sort [Cormen 2001] is very efficient for sorting values in a small
range, but numbers in a computer are most of the time encode using 32 bits,
thus an array of 232 is required, which is intractable in practice.

The radix sort proposes to see a number as a list of digits, for example 28
in base 10 can be decomposed into 2∗101 +8∗100 and thus can be represented
by (2, 8). Then to apply efficient linear sorting algorithm on the digits of this
decomposition, digit by digit.

Intuitively, if we have many scores between 0 and 99 to sort, we may want
to first apply a counting sort using the digit of the 101, and then for each cell,
re-aplying a sort. But this lead to applying several times (in the worst case
of this example 11 times) the algorithm. This schema can be seen as sorting
using first the most significant digit.

This main idea of the radix sort is to start with the least significant digit.
Thus with our scores, we first sort them using the digit associating to 100, and
then we sort all the value using the 101 digit, by keeping the ordering given
by the first sort. The linear sort used is often the counting sort.

Example Consider that you want to sort the following array of 2 Boolean
digits values:

0 1 2 3 4 5 6 7 8 9 ID
10 00 11 11 00 10 10 01 11 01 Value

Thus using a counting sort on the right most digit, we obtain the two
counters #0 = 5 and #1 = 5. Using these counter we can permute the values :

0 1 4 5 6 2 3 7 8 9
10 00 00 10 10 11 11 01 11 01

Now using the second digit, we recount, we obtain the counters #0 = 4

and #1 = 6. Using these counter we can permute the values and obtain the
sorted vector:

1 4 7 9 0 5 6 2 3 8
00 00 01 01 10 10 10 11 11 11

B.1. Sorting 301

Complexity Given n values, a base b and if d digits are required for rep-
resenting the biggest element, the complexity of the radix sort is given by
O(d(n+ b). In today’s computer, the radix sort is often encoded using a base
28 = 256, thus since the numbers are encode into 32 or 64 bits, we obtain
d = log256(232) = 4 ord = log256(264) = 8. Thus for sorting n number, it usu-
aly cost 4(n + 256) = 4n + 1024. This complexity implies that the choice of
the base depends strongly on the maximal value and on the number of values.
Sorting 4 integers encoded in 32 bits is not efficient using a radix sort, but for
sorting hundreds or millions of them, the radix sort is recommended.

Parallel version The parallel version of this algorithm is recalled in chapter
6.

Exercises Just kidding, but the book [Cormen 2001] contains many infor-
mation, exercises about these sorts and certainly more insights.

Bibliography

[Aho 1974] Alfred V Aho and John E Hopcroft. The design and analysis
of computer algorithms. Pearson Education India, 1974. (Cited on
page 25.)

[Akers 1978] Sheldon B. Akers. Binary decision diagrams. IEEE Trans. Com-
puters, vol. 27, no. 6, pages 509–516, 1978. (Cited on pages 14 and 17.)

[Allen 1983] James F. Allen. Maintaining Knowledge about Temporal Inter-
vals. Commun. ACM, vol. 26, no. 11, pages 832–843, 1983. (Cited on
page 224.)

[Amilhastre 2014] Jérôme Amilhastre, Hélene Fargier, Alexandre Niveau
and Cédric Pralet. Compiling CSPs: A complexity map of (non-
deterministic) multivalued decision diagrams. International Journal
on Artificial Intelligence Tools, vol. 23, no. 04, page 1460015, 2014.
(Cited on page 108.)

[Andersen 1997] Henrik Reif Andersen. An introduction to binary decision di-
agrams. Lecture notes, available online, IT University of Copenhagen,
1997. (Cited on pages 5, 6, 18, 27, 42 and 62.)

[Andersen 1999] Henrik Reif Andersen. An Introduction to Binary Decision
Diagrams. 1999. (Cited on page 59.)

[Andersen 2007] Henrik Reif Andersen, Tarik Hadzic, John N. Hooker and
Peter Tiedemann. A Constraint Store Based on Multivalued Decision
Diagrams. In CP, pages 118–132, 2007. (Cited on pages 6, 18, 19, 42,
113, 154, 184, 186, 209, 212 and 248.)

[bac] Problem 30 of CSPLIB. (www.csplib.org). (Cited on page 235.)

[Barbieri 2012] Gabriele Barbieri, François Pachet, Pierre Roy and Mirko
Degli Esposti. Markov Constraints for Generating Lyrics with Style. In
ECAI, volume 242, pages 115–120, 2012. (Cited on pages 14 and 128.)

[Beldiceanu 2004a] N. Beldiceanu, M. Carlsson and T. Petit. Deriving Filter-
ing Algorithms from Constraint Checkers. In CP’04, pages 107–122,
2004. (Cited on pages 2, 52, 149, 156, 157 and 178.)

304 Bibliography

[Beldiceanu 2004b] Nicolas Beldiceanu and Thierry Petit. Cost evaluation of
soft global constraints. In International Conference on Integration of
Artificial Intelligence (AI) and Operations Research (OR) Techniques
in Constraint Programming, pages 80–95. Springer, 2004. (Cited on
page 200.)

[Beldiceanu 2007] N. Beldiceanu, M. Carlsson, S. Demassey and T. Petit.
Global Constraint Catalog: Past, Present and Future. Constraints,
vol. 12, no. 1, pages 21–62, 2007. (Cited on page 235.)

[Beldiceanu 2012] Nicolas Beldiceanu, Mats Carlsson and Jean-Xavier Ram-
pon. Global constraint catalog, (revision a), 2012. (Cited on page 8.)

[Bent 2004] Russell Bent and Pascal Van Hentenryck. A two-stage hybrid local
search for the vehicle routing problem with time windows. Transporta-
tion Science, vol. 38, no. 4, pages 515–530, 2004. (Cited on page 14.)

[Bergman 2011] David Bergman, Willem Jan van Hoeve and John N. Hooker.
Manipulating MDD Relaxations for Combinatorial Optimization. In
CPAIOR, pages 20–35, 2011. (Cited on pages 3, 6, 114, 115, 184
and 205.)

[Bergman 2014a] David Bergman, Andre A Cire, Ashish Sabharwal, Horst
Samulowitz, Vijay Saraswat and Willem-Jan van Hoeve. Parallel
combinatorial optimization with decision diagrams. In International
Conference on AI and OR Techniques in Constriant Programming for
Combinatorial Optimization Problems, pages 351–367. Springer, 2014.
(Cited on pages 6, 59 and 68.)

[Bergman 2014b] David Bergman, Andre A Cire and W van Hoeve. MDD
propagation for sequence constraints. Journal of Artificial Intelligence
Research, pages 697–722, 2014. (Cited on pages 6, 14, 19, 59 and 209.)

[Bergman 2016a] David Bergman and Andre A. Cire. Multiobjective opti-
mization by decision diagrams, pages 86–95. Springer International
Publishing, Cham, 2016. (Cited on pages 184 and 205.)

[Bergman 2016b] David Bergman, Andre A Cire, Willem-Jan van Hoeve and
JN Hooker. Decision Diagrams for Optimization, 2016. (Cited on
pages 3, 6 and 18.)

[Berrani 2013] Sid-Ahmed Berrani, Mohammed Haykel Boukadida and
Patrick Gros. Constraint satisfaction programming for video summa-
rization. In IEEE International Symposium on Multimedia, Anaheim,
California, United States, December 2013. IEEE. (Cited on page 224.)

Bibliography 305

[Bessiere 1997] Christian Bessiere and Jean-Charles Régin. Arc consistency
for general constraint networks: preliminary results. 1997. (Cited on
pages 43, 148, 151 and 161.)

[Bessière 2001] C. Bessière and J-C. Régin. Refining the Basic Constraint
Propagation Algorithm. In Proceedings of IJCAI’01, pages 309–315,
Seattle, WA, USA, 2001. (Cited on page 168.)

[Bessiere 2004] Christian Bessiere, Emmanuel Hebrard, Brahim Hnich and
Toby Walsh. Disjoint, partition and intersection constraints for set
and multiset variables. In International Conference on Principles and
Practice of Constraint Programming, pages 138–152. Springer, 2004.
(Cited on page 211.)

[Bessière 2005] Christian Bessière, Jean-Charles Régin, Roland HC Yap and
Yuanlin Zhang. An optimal coarse-grained arc consistency algorithm.
Artificial Intelligence, vol. 165, no. 2, pages 165–185, 2005. (Cited on
page 148.)

[Bessiere 2014] Christian Bessiere, Emmanuel Hebrard, George Katsirelos,
Zeynep Kiziltan, Émilie Picard-Cantin, Claude-Guy Quimper and
Toby Walsh. The Balance Constraint Family. In Principles and Prac-
tice of Constraint Programming - 20th International Conference, CP
2014, Lyon, France, September 8-12, 2014. Proceedings, pages 174–
189, 2014. (Cited on page 235.)

[Bollig 1999] Beate Bollig and Ingo Wegener. Complexity theoretical results
on partitioned (nondeterministic) binary decision diagrams. Theory of
Computing Systems, vol. 32, no. 4, pages 487–503, 1999. (Cited on
pages 6 and 105.)

[Boussemart 2016] Frédéric Boussemart, Christophe Lecoutre and Cédric
Piette. XCSP3: An integrated format for benchmarking combinatorial
constrained problems. arXiv preprint arXiv:1611.03398, 2016. (Cited
on pages 7 and 19.)

[Brace 1991] Karl S Brace, Richard L Rudell and Randal E Bryant. Effi-
cient implementation of a BDD package. In Proceedings of the 27th
ACM/IEEE design automation conference, pages 40–45. ACM, 1991.
(Cited on pages 5, 6, 27, 59, 65 and 85.)

[Briggs 1993] Preston Briggs and Linda Torczon. An Efficient Representa-
tion for Sparse Sets. ACM Letters on Programming Languages and
Systems, vol. 2, pages 59–69, 1993. (Cited on pages 165 and 166.)

306 Bibliography

[Brooks 1957] Frederick P Brooks, AL Hopkins, Peter G Neumann and
WV Wright. An Experiment in Musical Composition. Electronic Com-
puters, IRE Transactions on, no. 3, pages 175–182, 1957. (Cited on
page 128.)

[Bryant 1986] Randal E Bryant. Graph-based algorithms for boolean function
manipulation. Computers, IEEE Transactions on, vol. 100, no. 8, pages
677–691, 1986. (Cited on pages 3, 5, 6, 14, 18, 25, 26, 27, 29, 30, 42,
59 and 60.)

[Bryant 1992] Randal E Bryant. Symbolic Boolean manipulation with ordered
binary-decision diagrams. ACM Computing Surveys (CSUR), vol. 24,
no. 3, pages 293–318, 1992. (Cited on pages 3, 6, 41, 42, 59 and 60.)

[Carlsson] Mats Carlsson. Sicstus prolog user’s manual, volume 3. (Cited on
page 19.)

[Cheng 1999] BMW Cheng, Kenneth MF Choi, Jimmy Ho-Man Lee and JCK
Wu. Increasing constraint propagation by redundant modeling: an ex-
perience report. Constraints, vol. 4, no. 2, pages 167–192, 1999. (Cited
on page 210.)

[Cheng 2005] Kenil CK Cheng and Roland HC Yap. Constrained decision
diagrams. In Proceedings of the National Conference on Artificial In-
telligence, volume 20, page 366. Menlo Park, CA; Cambridge, MA;
London; AAAI Press; MIT Press; 1999, 2005. (Cited on pages 18, 42
and 209.)

[Cheng 2008] Kenil C. K. Cheng and Roland H. C. Yap. Maintaining Gen-
eralized Arc Consistency on Ad Hoc r-Ary Constraints. In CP, pages
509–523, 2008. (Cited on pages 7, 18, 19, 41, 42, 44, 149, 154, 165
and 283.)

[Cheng 2010] K. Cheng and R. Yap. An MDD-based Generalized Arc Consis-
tency Algorithm for Positive and Negative Table Constraints and Some
Global Constraints. Constraints, vol. 15, 2010. (Cited on pages 7, 18,
19, 27, 43, 44, 54, 149, 154, 165, 179, 263 and 283.)

[Cheng 2012] Kenil CK Cheng, Wei Xia and Roland HC Yap. Space-Time
Tradeoffs for the Regular Constraint. In CP, pages 223–237. Springer,
2012. (Cited on pages 42 and 107.)

Bibliography 307

[Christofides 1981] Nicos Christofides, Aristide Mingozzi and Paolo Toth.
State-space relaxation procedures for the computation of bounds to rout-
ing problems. Networks, vol. 11, no. 2, pages 145–164, 1981. (Cited on
page 114.)

[Cire 2013] Andre A Cire and Willem-Jan van Hoeve. Multivalued decision
diagrams for sequencing problems. Operations Research, vol. 61, no. 6,
pages 1411–1428, 2013. (Cited on pages 6, 42, 53 and 248.)

[Ciré 2014a] André A Ciré and John N Hooker. The Separation Problem
for Binary Decision Diagrams. In ISAIM, 2014. (Cited on pages 19
and 78.)

[Cire 2014b] Andre Augusto Cire. Decision diagrams for optimization. 2014.
(Cited on pages 6 and 114.)

[Cook 2009] Roy T Cook. "Intensional Definition" in a dictionary of philo-
sophical logic. Edinburgh University Press, 2009. (Cited on page 149.)

[Cormen 2001] Thomas H.. Cormen, Charles Eric Leiserson, Ronald L Rivest
and Clifford Stein. Introduction to algorithms, volume 6. MIT press
Cambridge, 2001. (Cited on pages 45, 70, 298, 300 and 301.)

[Coulouris 2005] George F Coulouris, Jean Dollimore and Tim Kindberg.
Distributed systems: concepts and design. pearson education, 2005.
(Cited on page 90.)

[Dean 2008] Jeffrey Dean and Sanjay Ghemawat. MapReduce: simplified data
processing on large clusters. Communications of the ACM, vol. 51,
no. 1, pages 107–113, 2008. (Cited on page 90.)

[Dechter 1991] Rina Dechter, Itay Meiri and Judea Pearl. Temporal Con-
straint Networks. Artif. Intell., vol. 49, no. 1-3, pages 61–95, 1991.
(Cited on page 224.)

[Dejemeppe 2015] Cyrille Dejemeppe, Sascha Van Cauwelaert and Pierre
Schaus. The unary resource with transition times. In International
Conference on Principles and Practice of Constraint Programming,
pages 89–104. Springer International Publishing, 2015. (Cited on
page 184.)

[Demassey 2006] Sophie Demassey, Gilles Pesant and Louis-Martin Rousseau.
A cost-regular based hybrid column generation approach. Constraints,
vol. 11, no. 4, pages 315–333, 2006. (Cited on pages 7, 14, 184, 186
and 194.)

308 Bibliography

[Demeulenaere 2016] Jordan Demeulenaere, Renaud Hartert, Christophe
Lecoutre, Guillaume Perez, Laurent Perron, Jean-Charles Régin and
Pierre Schaus. Compact-table: Efficiently filtering table constraints
with reversible sparse bit-sets. In International Conference on Princi-
ples and Practice of Constraint Programming, pages 207–223. Springer
International Publishing, 2016. (Cited on pages 11, 44, 148, 149, 153
and 180.)

[Derrien 2015] Alban Derrien, Jean-Guillaume Fages, Thierry Petit and
Charles Prud’homme. A Global Constraint for a Tractable Class of
Temporal Optimization Problems. In Principles and Practice of Con-
straint Programming – CP 2015, pages 105–120. Springer, 2015. (Cited
on page 224.)

[Dixon 2006] Simon Dixon. Onset detection revisited. In Proceedings of the
9th International Conference on Digital Audio Effects, volume 120,
pages 133–137. Citeseer, 2006. (Cited on page 270.)

[Finkbeiner 2001] Bernd Finkbeiner. Language containment checking with
nondeterministic BDDs. In International Conference on Tools and Al-
gorithms for the Construction and Analysis of Systems, pages 24–38.
Springer, 2001. (Cited on pages 6 and 105.)

[Finkel 1974] Raphael A. Finkel and Jon Louis Bentley. Quad trees a data
structure for retrieval on composite keys. Acta informatica, vol. 4,
no. 1, pages 1–9, 1974. (Cited on page 249.)

[Flener 2001] Pierre Flener, Alan Frisch, Brahim Hnich, Zeynep Kiziltan, Ian
Miguel and Toby Walsh. Matrix modelling. In Proc. of the CP-01
Workshop on Modelling and Problem Formulation, 2001. (Cited on
page 223.)

[Focacci 2001] Filippo Focacci and Michela Milano. Global Cut Framework
for Removing Symmetries. In Principles and Practice of Constraint
Programming - CP 2001, 7th International Conference, CP 2001, Pa-
phos, Cyprus, November 26 - December 1, 2001, Proceedings, pages
77–92, 2001. (Cited on pages 2, 5, 42 and 47.)

[Galvane 2015a] Quentin Galvane, Marc Christie, Christophe Lino and Rémi
Ronfard. Camera-on-rails: Automated Computation of Constrained
Camera Paths. In ACM SIGGRAPH Conference on Motion in Games,
Paris, France, November 2015. (Cited on page 224.)

Bibliography 309

[Galvane 2015b] Quentin Galvane, Rémi Ronfard, Christophe Lino and Marc
Christie. Continuity Editing for 3D Animation. In AAAI Conference
on Artificial Intelligence, AAAI Press, Austin, Texas, United States,
January 2015. (Cited on page 224.)

[Gange 2011] G. Gange, P. Stuckey and Radoslaw Szymanek. MDD prop-
agators with explanation. Constraints, vol. 16, pages 407–429, 2011.
(Cited on pages 7, 19, 44, 149 and 161.)

[Gange 2013] Graeme Gange, Peter J Stuckey and Pascal Van Hentenryck.
Explaining propagators for edge-valued decision diagrams. In Principles
and Practice of Constraint Programming, pages 340–355. Springer,
2013. (Cited on pages 7, 184, 186 and 206.)

[Gavanelli 2002] Marco Gavanelli. An algorithm for multi-criteria optimiza-
tion in CSPs. In ECAI, volume 2, pages 136–140, 2002. (Cited on
page 249.)

[Gent 2007] Ian P. Gent, Christopher Jefferson, Ian Miguel and Peter Nightin-
gale. Data Structures for Generalised Arc Consistency for Extensional
Constraints. In Proceedings of the Twenty-Second AAAI Confer-
ence on Artificial Intelligence, July 22-26, 2007, Vancouver, British
Columbia, Canada, pages 191–197, 2007. (Cited on pages 43, 149
and 151.)

[Gervet 1993] Carmen Gervet. Sets and Binary Relation Variables Viewed as
Constrained Objects. In ICLP Workshop on Logic Programming with
Sets, 1993. (Cited on page 211.)

[Gómez 2006] Emilia Gómez. Tonal Description of Music Audio Signals. PhD
thesis, Universitat Pompeu Fabra, 2006. (Cited on page 270.)

[Hadzic 2004] Tarik Hadzic, Sathiamoorthy Subbarayan, Rune M Jensen,
Henrik R Andersen, Jesper Møller and Henrik Hulgaard. Fast
backtrack-free product configuration using a precompiled solution space
representation. small, vol. 10, no. 1, page 3, 2004. (Cited on pages 14
and 59.)

[Hadzic 2008] Tarik Hadzic, John N. Hooker, Barry O’Sullivan and Peter
Tiedemann. Approximate Compilation of Constraints into Multivalued
Decision Diagrams. In CP, pages 448–462, 2008. (Cited on pages 6,
18, 19, 42, 113, 114, 115 and 209.)

[Hamadi 2002] Youssef Hamadi. Optimal distributed arc-consistency. Con-
straints, vol. 7, no. 3-4, pages 367–385, 2002. (Cited on page 89.)

310 Bibliography

[Hartert 2014] Renaud Hartert and Pierre Schaus. A Support-Based Algo-
rithm for the Bi-Objective Pareto Constraint. In AAAI, pages 2674–
2679. Citeseer, 2014. (Cited on page 249.)

[Harvey] Warwick Harvey. CSPLib Problem 010: Social Golfers Problem.
http://www.csplib.org/Problems/prob010. (Cited on page 211.)

[Hedayati Somarin 2016] Iraj Hedayati Somarin. DFA Minimization Algo-
rithms in Map-Reduce. PhD thesis, Concordia University, 2016. (Cited
on page 90.)

[Hoda 2010] Samid Hoda, Willem Jan van Hoeve and John N. Hooker. A
Systematic Approach to MDD-Based Constraint Programming. In CP,
pages 266–280, 2010. (Cited on pages 6, 8, 19, 154, 184, 186, 187, 197,
209, 212 and 240.)

[Hooker 2007] John N Hooker. Integrated methods for optimization, volume
100. Springer Science & Business Media, 2007. (Cited on pages 3
and 6.)

[Hooker 2013] John N Hooker. Decision diagrams and dynamic programming.
In International Conference on AI and OR Techniques in Constriant
Programming for Combinatorial Optimization Problems, pages 94–
110. Springer, 2013. (Cited on pages 5, 18, 41, 42, 53, 184 and 247.)

[Hopcroft 2006] John E Hopcroft, Rajeev Motwani and Jeffrey D Ullman.
Automata theory, languages, and computation. International Edition,
vol. 24, 2006. (Cited on pages 19 and 51.)

[Houndji 2014] Vinasétan Ratheil Houndji, Pierre Schaus, Laurence Wolsey
and Yves Deville. The stockingcost constraint. In International Con-
ference on Principles and Practice of Constraint Programming, pages
382–397. Springer International Publishing, 2014. (Cited on page 184.)

[Jiang 1993] Tao Jiang and Bala Ravikumar. Minimal NFA problems are hard.
SIAM Journal on Computing, vol. 22, no. 6, pages 1117–1141, 1993.
(Cited on pages 105 and 106.)

[Jurafsky 2014] Dan Jurafsky and James H Martin. Speech and language
processing. Pearson, 2014. (Cited on pages 7, 127, 130 and 238.)

[Katsirelos 2007] G. Katsirelos and T. Walsh. A Compression Algorithm for
Large Arity Extensional Constraints. In Proc. CP’07, pages 379–393,
Providence, USA, 2007. (Cited on page 149.)

http://www.csplib.org/Problems/prob010

Bibliography 311

[Kimura 1990] Shinji Kimura and Edmund M Clarke. A parallel algorithm for
constructing binary decision diagrams. In Computer Design: VLSI in
Computers and Processors, 1990. ICCD’90. Proceedings, 1990 IEEE
International Conference on, pages 220–223. IEEE, 1990. (Cited on
pages 6 and 90.)

[Knuth 2011] Donald E Knuth. The art of computer programming, volume
4a: Combinatorial algorithms, part 1. Pearson Education India, 2011.
(Cited on page 66.)

[Koriche 2015] Frédéric Koriche, Jean-Marie Lagniez, Pierre Marquis and
Samuel Thomas. Compiling Constraint Networks into Multivalued De-
composable Decision Graphs. In IJCAI, pages 332–338, 2015. (Cited
on page 42.)

[Lai 1992] Y-T Lai and Sarma Sastry. Edge-valued binary decision diagrams
for multi-level hierarchical verification. In Proceedings of the 29th
ACM/IEEE Design Automation Conference, pages 608–613. IEEE
Computer Society Press, 1992. (Cited on page 184.)

[Lecoutre 2009] Christophe Lecoutre. CSP/MaxCSP/WCSP solver compe-
titions. In http://www.cril.univ-artois.fr/ lecoutre/benchmarks.html,
2009. (Cited on pages 37 and 179.)

[Lecoutre 2011] Christophe Lecoutre. STR2: optimized simple tabular reduc-
tion for table constraints. Constraints, vol. 16, no. 4, pages 341–371,
2011. (Cited on pages 43, 148, 152 and 165.)

[Lecoutre 2012a] Christophe Lecoutre, Chavalit Likitvivatanavong and
Roland H. C. Yap. A Path-Optimal GAC Algorithm for Table Con-
straints. In ECAI, pages 510–515, 2012. (Cited on pages 43, 148, 152
and 165.)

[Lecoutre 2012b] Christophe Lecoutre, Nicolas Paris, Olivier Roussel and
Sébastien Tabary. Propagating soft table constraints. In Principles and
Practice of Constraint Programming, pages 390–405. Springer, 2012.
(Cited on page 200.)

[Lecoutre 2015] Christophe Lecoutre, Chavalit Likitvivatanavong and
Roland HC Yap. STR3: A path-optimal filtering algorithm for table
constraints. Artificial Intelligence, vol. 220, pages 1–27, 2015. (Cited
on page 148.)

312 Bibliography

[Lee 1959] Chang-Yeong Lee. Representation of Switching Circuits by Binary-
Decision Programs. Bell Labs Technical Journal, vol. 38, no. 4, pages
985–999, 1959. (Cited on page 16.)

[Lhomme 2005] Olivier Lhomme and Jean-Charles Régin. A Fast Arc Consis-
tency Algorithm for n-ary Constraints. In Proceedings, The Twentieth
National Conference on Artificial Intelligence and the Seventeenth In-
novative Applications of Artificial Intelligence Conference, July 9-13,
2005, Pittsburgh, Pennsylvania, USA, pages 405–410, 2005. (Cited on
pages 43 and 148.)

[Lhomme 2012] Olivier Lhomme. Practical reformulations with table con-
straints. In Proceedings of the 20th European Conference on Arti-
ficial Intelligence, pages 911–912. IOS Press, 2012. (Cited on pages 9
and 147.)

[Mackworth 1977] Alan K Mackworth. Consistency in networks of relations.
Artificial intelligence, vol. 8, no. 1, pages 99–118, 1977. (Cited on
page 151.)

[Maestre 2009] Esteban Maestre, Rafael Ramírez, Stefan Kersten and Xavier
Serra. Expressive Concatenative Synthesis by Reusing Samples from
Real Performance Recordings. Comput. Music J., vol. 33, no. 4, pages
23–42, December 2009. (Cited on page 270.)

[Mairy 2012] Jean-Baptiste Mairy, Pascal Van Hentenryck and Yves Deville.
An optimal filtering algorithm for table constraints. In Principles and
Practice of Constraint Programming, pages 496–511. Springer, 2012.
(Cited on page 148.)

[Mairy 2015] Jean-Baptiste Mairy, Yves Deville and Christophe Lecoutre. The
smart table constraint. In International Conference on AI and OR
Techniques in Constriant Programming for Combinatorial Optimiza-
tion Problems, pages 271–287. Springer International Publishing, 2015.
(Cited on pages 2 and 149.)

[Malapert 2008] Arnaud Malapert, Christelle Guéret, Narendra Jussien, An-
dré Langevin and Louis-Martin Rousseau. Two-dimensional pickup
and delivery routing problem with loading constraints. In First CPAIOR
Workshop on Bin Packing and Placement Constraints (BPPC’08),
2008. (Cited on page 184.)

[Mateescu 2008] Robert Mateescu, Rina Dechter and Radu Marinescu.
AND/OR multi-valued decision diagrams (AOMDDs) for graphical

Bibliography 313

models. Journal of Artificial Intelligence Research, vol. 33, pages 465–
519, 2008. (Cited on page 42.)

[Miller 1998] D Michael Miller and Rolf Drechsler. Implementing a multiple-
valued decision diagram package. In Multiple-Valued Logic, 1998. Pro-
ceedings. 1998 28th IEEE International Symposium on, pages 52–57.
IEEE, 1998. (Cited on pages 59 and 64.)

[Mohr 1988] R. Mohr and G. Masini. Good Old Discrete Relaxation. In Pro-
ceedings of ECAI-88, pages 651–656, 1988. (Cited on pages 43, 148
and 151.)

[Mostaghim 2002] Sanaz Mostaghim, J"urgen Teich and Ambrish Tyagi.
Comparison of data structures for storing Pareto-sets in MOEAs. In
Evolutionary Computation, 2002. CEC’02. Proceedings of the 2002
Congress on, volume 1, pages 843–848. IEEE, 2002. (Cited on
page 249.)

[Nair 1982] M. Nair. On Chebyshev-type inequalities for primes. AMM,
vol. 89, pages 126–129, 1982. (Cited on page 224.)

[OscaR Team 2012] OscaR Team. OscaR: Scala in OR, 2012. Available from
https://bitbucket.org/oscarlib/oscar. (Cited on pages 7, 149
and 177.)

[Pachet 1999] François Pachet and Pierre Roy. Automatic generation of music
programs. In International Conference on Principles and Practice of
Constraint Programming, pages 331–345. Springer, 1999. (Cited on
pages 14 and 211.)

[Pachet 2001] François Pachet, Pierre Roy, Gabriele Barbieri and Sony CSL
Paris. Finite-length Markov processes with constraints. transition,
vol. 6, no. 1/3, 2001. (Cited on pages 14 and 237.)

[Pachet 2011] François Pachet and Pierre Roy. Markov constraints: steerable
generation of Markov sequences. Constraints, vol. 16, no. 2, pages
148–172, 2011. (Cited on pages 14, 128 and 237.)

[Pachet 2014] François Pachet. Avoiding plagiarism in Markov sequence gen-
eration. 2014. (Cited on page 14.)

[Palmieri 2016] Anthony Palmieri, Jean-Charles Régin and Pierre Schaus.
Parallel Strategies Selection. In International Conference on Principles
and Practice of Constraint Programming, pages 388–404. Springer,
2016. (Cited on page 11.)

314 Bibliography

[Papadopoulos 2014] A. Papadopoulos, P. Roy and F. Pachet. Avoiding Pla-
giarism in Markov Sequence Generation. In Proceeding of the Twenty-
Eight AAAI Conference on Artificial Intelligence, pages 2731–2737,
2014. (Cited on pages 5, 7, 14, 127, 128, 184, 257, 258 and 259.)

[Papadopoulos 2015] Alexandre Papadopoulos, François Pachet, Pierre Roy
and Jason Sakellariou. Exact Sampling for Regular and Markov Con-
straints with Belief Propagation. In International Conference on Princi-
ples and Practice of Constraint Programming, pages 341–350. Springer,
2015. (Cited on pages 7, 127, 128, 130, 134 and 237.)

[Pennington 2001] Wayne D. Pennington. Reservoir Geophysics. vol. 66,
no. 1, 2001. (Cited on pages 140, 243 and 275.)

[Perez 2014] Guillaume Perez and Jean-Charles Régin. Improving GAC-4 for
Table and MDD Constraints. In Principles and Practice of Constraint
Programming - 20th International Conference, CP 2014, Lyon, France,
September 8-12, 2014. Proceedings, pages 606–621, 2014. (Cited on
pages 11, 19, 44 and 140.)

[Perez 2015a] Guillaume Perez and Jean-Charles Régin. Efficient operations
on MDDs for building constraint programming models. International
Joint Conference on Artificial Intelligence, IJCAI-15, Argentina, 2015.
(Cited on pages 11, 97, 184 and 263.)

[Perez 2015b] Guillaume Perez and Jean-Charles Régin. Relations between
MDDs and Tuples and Dynamic Modifications of MDDs based con-
straints. arXiv preprint arXiv:1505.02552, 2015. (Cited on page 11.)

[Perez 2016] Guillaume Perez and Jean-Charles Régin. Constructions and
In-Place Operations for MDDs Based Constraints. In Integration of
AI and OR Techniques in Constraint Programming, pages 279–293.
Springer International Publishing, 2016. (Cited on page 11.)

[Perez 2017a] Guillaume Perez and Jean-Charles Régin. MDDs are Efficient
Modeling Tools: An Application to Dispersion Constraints. In Inte-
gration of AI and OR Techniques in Constraint Programming, 2017.
(Cited on page 11.)

[Perez 2017b] Guillaume Perez and Jean-Charles Régin. MDDs: Sampling
and Probability Constraints. In Principles and Practice of Constraint
Programming, 2017. (Cited on page 11.)

Bibliography 315

[Perez 2017c] Guillaume Perez and Jean-Charles Régin. Soft and Cost MDD
Propagators. In AAAI Conference on Artificial Intelligence, 2017.
(Cited on pages 11, 140 and 186.)

[Perron 2013] L. Perron. Or-tools. In Workshop "CP Solvers: Modeling, Ap-
plications, Integration, and Standardization", 2013. (Cited on pages 7,
149, 177, 232 and 273.)

[Pesant 2004] G. Pesant. A Regular Language Membership Constraint for
Finite Sequences of Variables. In Proc. CP’04, pages 482–495, 2004.
(Cited on pages 2, 14, 41, 42, 52, 149, 156, 159, 161 and 186.)

[Pesant 2005] G. Pesant and J-C. Régin. SPREAD: A Balancing Constraint
Based on Statistics. In CP’05, pages 460–474, 2005. (Cited on pages 9
and 235.)

[Pesant 2015] Gilles Pesant. Achieving Domain Consistency and Counting
Solutions for Dispersion Constraints. INFORMS Journal on Comput-
ing, vol. 27, no. 4, pages 690–703, 2015. (Cited on pages 9, 235, 239,
245 and 276.)

[Petit 2001] Thierry Petit, Jean-Charles Régin and Christian Bessiere. Spe-
cific filtering algorithms for over-constrained problems. In Principles
and Practice of Constraint Programming—CP 2001, pages 451–463.
Springer, 2001. (Cited on page 200.)

[Puget 1993] Jean-François Puget. Set constraints and cardinality operator:
Application to symmetrical combinatorial problems. In Third Work-
shop on Constraint Logic Programming–WCLP93, 1993. (Cited on
page 211.)

[Quimper 2006] C-G. Quimper and T. Walsh. Global Grammar Constraints.
In CP’06, pages 751–755, 2006. (Cited on pages 157 and 178.)

[Quimper 2010] Claude-Guy Quimper and Louis-Martin Rousseau. A large
neighbourhood search approach to the multi-activity shift scheduling
problem. Journal of Heuristics, vol. 16, no. 3, pages 373–392, 2010.
(Cited on page 184.)

[Rabin 1959] Michael O Rabin and Dana Scott. Finite automata and their
decision problems. IBM journal of research and development, vol. 3,
no. 2, pages 114–125, 1959. (Cited on page 109.)

316 Bibliography

[Ravikumar 1996] Bala Ravikumar and Xuanxing Xiong. A parallel algorithm
for minimization of finite automata. In Parallel Processing Sympo-
sium, 1996., Proceedings of IPPS’96, The 10th International, pages
187–191. IEEE, 1996. (Cited on page 90.)

[Régin 1994] Jean-Charles Régin. A filtering algorithm for constraints of dif-
ference in CSPs. In AAAI, volume 94, pages 362–367, 1994. (Cited on
page 14.)

[Régin 1996] J-C. Régin. Generalized Arc Consistency for Global Cardinal-
ity Constraint. pages 209–215, Portland, Oregon, 1996. (Cited on
pages 243 and 277.)

[Régin 1997] Jean-Charles Régin and Jean-François Puget. A filtering algo-
rithm for global sequencing constraints. Principles and Practice of Con-
straint Programming-CP97, pages 32–46, 1997. (Cited on page 14.)

[Régin 2002] Jean-Charles Régin. Cost-based arc consistency for global car-
dinality constraints. Constraints, vol. 7, no. 3-4, pages 387–405, 2002.
(Cited on page 183.)

[Régin 2005] Jean-Charles Régin. AC-*: a configurable, generic and adap-
tive arc consistency algorithm. Principles and Practice of Constraint
Programming-CP 2005, pages 505–519, 2005. (Cited on pages 2, 148,
150 and 168.)

[Régin 2011] Jean-Charles Régin. Improving the expressiveness of table con-
straints. In CP-11 ModRef Workshop, 2011. (Cited on pages 5, 42, 48,
51, 148 and 149.)

[Régin 2013] Jean-Charles Régin, Mohamed Rezgui and Arnaud Malapert.
Embarrassingly parallel search. In International Conference on Princi-
ples and Practice of Constraint Programming, pages 596–610. Springer,
Berlin, Heidelberg, 2013. (Cited on page 89.)

[Revuz 1992] Dominique Revuz. Minimisation of acyclic deterministic au-
tomata in linear time. Theoretical Computer Science, vol. 92, no. 1,
pages 181–189, 1992. (Cited on page 30.)

[Rossi 2014] Roberto Rossi, Steven David Prestwich and S. Armagan Tarim.
Statistical Constraints. In ECAI 2014 - 21st European Conference on
Artificial Intelligence, 18-22 August 2014, Prague, Czech Republic -
Including Prestigious Applications of Intelligent Systems (PAIS 2014),
pages 777–782, 2014. (Cited on pages 236 and 240.)

Bibliography 317

[Roy 2013] Pierre Roy and François Pachet. Enforcing Meter in Finite-Length
Markov Sequences. In AAAI, 2013. (Cited on page 128.)

[Roy 2016] Pierre Roy, Guillaume Perez, Jean-Charles Régin, Alexandre Pa-
padopoulos, François Pachet and Marco Marchini. Enforcing structure
on temporal sequences: The Allen constraint. In International Con-
ference on Principles and Practice of Constraint Programming, pages
786–801. Springer International Publishing, 2016. (Cited on pages 11
and 59.)

[Sabin 1996] Daniel Sabin and Eugene C Freuder. Configuration as composite
constraint satisfaction. In Proceedings of the Artificial Intelligence and
Manufacturing Research Planning Workshop, pages 153–161. AAAI
Press Palo Alto, CA, 1996. (Cited on page 14.)

[Schaus 2007a] P. Schaus, Y. Deville, P. Dupont and J-C. Régin. The De-
viation Constraint. In CPAIOR’07, pages 260–274, 2007. (Cited on
page 235.)

[Schaus 2007b] P. Schaus, Y. Deville, P. Dupont and J-C. Régin. Future and
trends of constraint programming, chapter Simplification and exten-
sion of the SPREAD Constraint, pages 95–99. ISTE, 2007. (Cited on
page 235.)

[Schaus 2007c] Pierre Schaus, Yves Deville and Pierre Dupont. Bound-
Consistent Deviation Constraint. In Principles and Practice of Con-
straint Programming - CP 2007, 13th International Conference, CP
2007, Providence, RI, USA, September 23-27, 2007, Proceedings, pages
620–634, 2007. (Cited on page 235.)

[Schaus 2009a] Pierre Schauset al. Solving balancing and bin-packing problems
with constraint programming. These de doctorat, Université catholique
de Louvain, 2009. (Cited on page 14.)

[Schaus 2009b] Pierre Schaus, Pascal Van Hentenryck and Jean-Charles Ré-
gin. Scalable load balancing in nurse to patient assignment problems. In
International Conference on AI and OR Techniques in Constriant Pro-
gramming for Combinatorial Optimization Problems, pages 248–262.
Springer Berlin Heidelberg, 2009. (Cited on page 14.)

[Schaus 2012] Pierre Schaus, Jean-Charles Régin, Rowan Van Schaeren, Wout
Dullaert and Birger Raa. Cardinality reasoning for bin-packing con-
straint: application to a tank allocation problem. In Principles and

318 Bibliography

Practice of Constraint Programming, pages 815–822. Springer Berlin
Heidelberg, 2012. (Cited on page 14.)

[Schaus 2013] Pierre Schaus and Renaud Hartert. Multi-objective large neigh-
borhood search. In International Conference on Principles and Practice
of Constraint Programming, pages 611–627. Springer, 2013. (Cited on
pages 249 and 250.)

[Schaus 2014] P. Schaus and J-C. Régin. Bound-consistent spread constraint.
vol. 2, no. 3, 2014. (Cited on pages 9 and 235.)

[Sellmann 2002] Meinolf Sellmann. An arc-consistency algorithm for the min-
imum weight all different constraint. In International Conference on
Principles and Practice of Constraint Programming, pages 744–749.
Springer, 2002. (Cited on page 183.)

[Sgarbas 2001] Kyriakos N Sgarbas, Nikos D Fakotakis and George K Kokki-
nakis. Incremental construction of compact acyclic NFAs. In Proceed-
ings of the 39th Annual Meeting on Association for Computational
Linguistics, pages 482–489. Association for Computational Linguistics,
2001. (Cited on page 106.)

[Shannon 1938] Claude E Shannon. A symbolic analysis of relay and switching
circuits. Electrical Engineering, vol. 57, no. 12, pages 713–723, 1938.
(Cited on page 16.)

[Shannon 1949] Claude Shannonet al. The synthesis of two-terminal switching
circuits. Bell Labs Technical Journal, vol. 28, no. 1, pages 59–98, 1949.
(Cited on page 16.)

[Srinivasan 1990] Arvind Srinivasan, Timothy Ham, Sharad Malik and
Robert K Brayton. Algorithms for discrete function manipulation.
In Computer-Aided Design, 1990. ICCAD-90. Digest of Technical Pa-
pers., 1990 IEEE International Conference on, pages 92–95. IEEE,
1990. (Cited on pages 59, 64, 65 and 85.)

[Stornetta 1996] Tony Stornetta and Forrest Brewer. Implementation of an
efficient parallel BDD package. In Proceedings of the 33rd annual
Design Automation Conference, pages 641–644. ACM, 1996. (Cited
on pages 6 and 90.)

[Tarjan 1975] Robert Endre Tarjan. Efficiency of a Good But Not Linear Set
Union Algorithm. J. ACM, vol. 22, no. 2, pages 215–225, April 1975.
(Cited on page 95.)

Bibliography 319

[Tewari 2002] Ambuj Tewari, Utkarsh Srivastava and Phalguni Gupta. A
parallel DFA minimization algorithm. In International Conference on
High-Performance Computing, pages 34–40. Springer, 2002. (Cited on
page 90.)

[Trick 2003] Michael A Trick. A dynamic programming approach for consis-
tency and propagation for knapsack constraints. Annals of Operations
Research, vol. 118, no. 1-4, pages 73–84, 2003. (Cited on pages 41, 42,
52, 76, 183 and 238.)

[Ullmann 2007] Julian R Ullmann. Partition search for non-binary constraint
satisfaction. Information Sciences, vol. 177, no. 18, pages 3639–3678,
2007. (Cited on page 152.)

[Van Hoeve 2004] Willem Jan Van Hoeve. A hyper-arc consistency algorithm
for the soft alldifferent constraint. In Principles and Practice of Con-
straint Programming–CP 2004, pages 679–689. Springer, 2004. (Cited
on page 200.)

[Van Hoeve 2006] Willem-Jan Van Hoeve, Gilles Pesant and Louis-Martin
Rousseau. On global warming: Flow-based soft global constraints. Jour-
nal of Heuristics, vol. 12, no. 4-5, pages 347–373, 2006. (Cited on
pages 200 and 203.)

[Verhaeghe 2017] Hélene Verhaeghe, Christophe Lecoutre and Pierre Schaus.
Extending Compact-Table to Negative and Short Tables. 2017. (Cited
on pages 44, 148 and 149.)

[Vilím 2004] Petr Vilím. O (nlog n) filtering algorithms for unary resource
constraint. In International Conference on Integration of Artificial
Intelligence (AI) and Operations Research (OR) Techniques in Con-
straint Programming, pages 335–347. Springer Berlin Heidelberg, 2004.
(Cited on page 184.)

[Wang 2016] Ruiwei Wang, Wei Xia, Roland HC Yap and Zhanshan Li. Opti-
mizing Simple Tabular Reduction with a Bitwise Representation. 2016.
(Cited on pages 148, 149, 153 and 180.)

[Xia 2013] Wei Xia and Roland HC Yap. Optimizing STR algorithms with
tuple compression. In International Conference on Principles and Prac-
tice of Constraint Programming, pages 724–732. Springer, 2013. (Cited
on page 148.)

320 Bibliography

[Yip 2010] Justin Yip and Pascal Van Hentenryck. Exponential propagation
for set variables. In International Conference on Principles and Prac-
tice of Constraint Programming, pages 499–513. Springer, 2010. (Cited
on page 211.)

[Zagha 1991] Marco Zagha and Guy E Blelloch. Radix sort for vector mul-
tiprocessors. In Proceedings of the 1991 ACM/IEEE conference on
Supercomputing, pages 712–721. ACM, 1991. (Cited on page 92.)

Decision Diagrams, Algorithms and Constraints

Abstract: Multivalued Decision Diagrams (MDDs) are efficient data struc-
tures widely used in several fields like verification, optimization and dynamic
programming. In this thesis, we first focus on improving the main algorithms
such as the reduction, allowing MDDs to potentially exponentially compress
set of tuples, or the combination of MDDs such as the intersection of the
union. We go further by designing parallel algorithms, and algorithms han-
dling non-deterministic MDDs. We then investigate relaxed MDDs, that are
more and more used in optimization, and define the notions of relaxed reduc-
tion or operation and design efficient algorithms for them. The sampling of
solutions stored in a MDD is solved with respect to probability mass functions
or Markov chains. In order to combine MDDs with constraint Programming,
we design the propagators of all the types of MMDD constraints in solvers,
and introduce a new one, the channeling constraint. These new propagators
outperform the existing ones and allow the reformulation of several other con-
straints such as the dispersion constraint, and even to define new ones easily.
We finally apply our algorithm to several real world industrial problems such
as text and music generation and geomodeling of a petroleum reservoir.
Keywords: Constraint Programming, Decision Diagram, MDD, Optimiza-
tion.

	Introduction
	Introduction and Motivation
	Contributions and Outline
	Inside this thesis
	Other Contributions

	Definitions & Related Work
	Definitions and Notations
	Constraint Programming
	Multi-valued Decision Diagrams

	Related Work
	Automaton

	I MDDs: Fundamental Algorithms
	Reduction
	Introduction
	Related Work
	pReduce, a linear reduction operator
	ipReduce, Incremental reduction

	Experiments

	Constructions
	Introduction
	Table and Trie
	Trie
	Table
	Linear table transformation

	Global Cut Seed and Tuple Sequences
	Definitions
	Transformations

	Automaton
	Definition and related work
	New method

	Experiments
	Table
	Automaton

	Operations
	Related Works
	BDD Apply
	BDD to MDD

	Graph-Based Apply
	Graph-Based Algorithm
	Avoiding Data structures

	In-place Operations
	Deletion of tuples from an MDD
	Addition of tuples to an MDD

	Experiments

	II MDDs: Advanced Algorithms
	Parallel Computing
	Introduction
	Related Work

	Background
	Parallelism

	Parallel Reduction
	Parallel Sort
	Parallel pReduce
	Discussion

	Parallel Apply
	Experiments
	Conclusion

	Non-deterministic operation
	Introduction
	Apply for Non Deterministic
	Apply for Deterministic

	Relaxations
	Introduction
	Relaxed Creation : Existing Works
	Relaxed Creation : New Method
	Delayed Relax Creation
	Generalization
	Generic merging heuristic
	States relaxation

	Relaxed Reduction
	Relaxed Combination
	Relax Apply
	Experiments

	Relaxed MDDs : Use

	Sampling
	Introduction
	Definitions
	Probability distribution
	Markov chain

	Sampling and MDD
	PMF and Independent variables
	Markov chain
	Incremental modifications.

	Experiments
	PMF constraint and sampling
	Markov chain and sampling
	Big Number generation

	Conclusion

	III MDDs: Constraints and Propagators
	Table & MDD-based Constraints
	Introduction
	Related Work
	Table Constraint propagators
	MDD Constraint Propagators
	Sparse Set

	GAC-4R: Table Propagator
	GAC-4
	GAC-4R

	MDD4R: MDD Propagator
	MDD4 Algorithm
	MDD-4R
	Improvements

	Experiments
	CP14 experiments

	Conclusion

	Cost-MDD constraint
	Introduction
	Cost-MDD
	Definition
	Related Work

	Cost-MDD4R
	Variable Modification
	Modification of the cost value.

	Cost Intersection Method
	Discussion

	Experiments
	MaxOrder
	Random instances

	Soft-MDD constraint
	Introduction
	Soft-MDD Propagator
	Dedicated Propagator
	Transformation into a cost-MDD
	Intersection of MDDs

	Discussion
	Experiments

	Channeling Constraints and MDDs
	Introduction
	MDD Channeling Constraint
	Set Variables
	Definition

	Propagation
	Modification of I
	Modification of V
	Modification of the MDD

	Conclusion

	IV MDDs: Constraints Modeling
	Allen constraint
	Introduction and Related Works
	Constraining Contiguous Temporal Sequences
	Definition of the Allen Constraint

	Implementing the Allen Constraint
	A First Model
	MDD-Based Model

	Experiments
	Evaluation of the First Model
	Evaluation of the MDD-Based Model

	Conclusion

	Markov and Statistical Constraints
	Introduction
	Definition
	Probability distribution
	Markov chain
	MDD of a Generic Sum Constraint
	Dispersion Constraint

	Dispersion Constraint
	Dispersion Constraint with fixed mean
	Dispersion Constraint with variable mean

	Probabilities Based Constraint
	MDDs and Probabilities based constraints
	Probabilities and Means

	Experiments
	Conclusion

	Unefficient MDDs
	Introduction
	AllDifferent
	Set Variables
	Pareto
	Storing the Pareto solutions
	Pareto Constraint
	MDD as a store for the Pareto set
	Why does this Fail?

	Conclusion

	V Applications
	MaxOrder
	Introduction
	Models
	Model 1
	Model 2
	Model 3
	Experiments

	Soft Version
	Introduction and Model
	Experiments

	Conclusion

	Audio Multitrack Synchronization
	Introduction
	Description of the Benchmark
	Experiments
	First Allen Model
	MDD-Based Allen Model

	Geomodeling of a Petroleum reservoir
	Introduction
	Models
	Problem
	Results

	Conclusion

	Conclusion
	Conclusion
	Perspectives

	VI Appendix
	Implementation
	Array Implementation
	List Implementation
	Conclusion

	Algorithms and Data Structures
	Sorting
	Indexing sort
	Counting sort
	Radix sort

	Bibliography

